
Data-Centre Traffic Optimisation

using Software-Defined Networks

Dissertation

Arne Schwabe

Submitted to the
Faculty of Electrical Engineering,
Computer Science, and Mathematics

In partial fulfillment of the requirements for the degree of
Doctor rerum naturalium (Dr. rer. nat.)

Submission: 14.12.2017

Referees:
Prof. Dr.Holger Karl, University of Paderborn, Germany
Prof. Dr.-Ing. habil. Falko Dressler University of Paderborn, Germany

Additional committee members:
Dr. Simon Oberthür, University of Paderborn, Germany
Prof. Dr. Christian Scheideler, University of Paderborn, Germany
Prof. Dr. Christian Plessl, University of Paderborn, Germany

ii

Abstract
Traffic demands in data centres are steadily increasing. Simple, yet commonly
used round-robin algorithms are not able to meet these demands since they
distribute the demands unevenly. Manually planning and redistribution, also
called traffic engineering (TE), alleviates this problem. Traffic engineering is
common in wide area networks (WANs). The high amount of manual work and
associated cost in special hardware makes traffic engineering unpractical in data
centre networks.
This thesis looks into the question whether software-defined networking (SDN)
can be used to bring traffic engineering to the data centre. To reach this goal, the
amount of manual labour and requirements for hardware need to be reduced.
I first show that label switching, which enables better traffic distribution, is
possible with SDN without special hardware. I present SynRace that infers net-
work status by combining probes with SDN. The GlobalFIB framework allows
applications to report directly their demands to a central instance. Both allow
traffic redistribution to be automated.
With running multiple SDN application on the network and trying to fulfil all
their demands and rules, conflicts are inevitable. In this thesis I analyse the
nature of these conflicts and possibilities to handle them. The NetIDE core
implements this conflict resolution and dynamic reconfiguration of the network.

iii

Zusammenfassung
Das Datenverkehrsaufkommen in Rechenzentren wächst stetig an. Die weit ver-
breiteten Round-Robin Verfahren können dieses Aufkommen nicht mehr bewäl-
tigen, da diese die Last ungleich verteilen. Manuelle Planung und Umverteilung,
auch Traffic Engineering genannt, lindert dieses Problem und wird vielfach in
Weitverkehrsnetzwerken (WANs) eingesetzt. Der hohe manuelle Aufwand und
die damit verbundenen Kosten, als auch die Kosten für spezielle Hardware, ma-
chen Traffic Engineering in Rechenzentren jedoch unpraktikabel.
Diese Dissertation beschäftigt sich mit der Frage, ob Software-Defined Networ-
king (SDN) genutzt werden kann, um Traffic Engineering im Rechenzentrums-
umfeld praktikabel zu gestalten. Um dieses Ziel zu erreichen, muss der manuelle
Aufwand minimiert werden und die Anforderungen an die Hardware reduziert
werden. Dafür zeige ich zunächst in dieser Arbeit, dass SDN es ermöglicht Label
Switching, das bessere Verteilung der Flüsse ermöglicht, ohne spezielle Hardware
zu realisieren. Ich stelle ich SynRace vor, welches SDN mit Testpaketen kom-
biniert, um den Status des Netzwerkes besser beobachten zu können. Darüber
hinaus, wird as GlobalFib Framework eingeführt, welches SDN Anwendungen
erlaubt, direkt ihre Bedarfsanforderungen an eine zentrale Stelle zu melden.
Diese Ansätze erlauben die Verteilung der Flüsse zu automatisieren.
Wenn mehrere SDN Anwendungen im gleichen Netzwerk ausgeführt werden
und versuchen, gleichzeitig ihre Anforderungen und Regeln durchzusetzen, sind
Konflikte unausweichbar. In dieser Arbeit analysiere ich die Art dieser Konflikte
und Möglichkeiten, mit diesen umzugehen. Der NetIDE core implementiert diese
Konfliktbehandlung und die dynamische Konfiguration des Netzwerkes.

iv

Acknowledgements
I thank my supervisor Prof. Holger Karl for the opportunity to start my own
research, for continuous and constant feedback and support during all research
years. He patiently taught me scientific thinking and writing.

I thank my parents Iris and Erwin for their continuous support during my study
and graduation helping me to concentrate on my education.

The work presented here has been partially sponsored by the European Union
through the FP7 project NetIDE, grant agreement 619543.
This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901).

v

Contentsy

1 Introduction 1
1.1 Resulting challenges . 3
1.2 Contributions . 4

2 Background 7
2.1 Data centres: Typical structures 7
2.2 From conventional networking to SDN 11
2.3 OpenFlow: Access to the switch data plane 12

3 Efficient SDN Routing Labels 15
3.1 Introduction . 15
3.2 Background . 17

3.2.1 Lookup hardware . 17
3.2.2 Forward Information Base 17

3.3 Related work . 18
3.4 Model and problem definition . 19
3.5 MAC addresses as labels . 20
3.6 Solving PLA . 22

3.6.1 ILP solution . 22
3.6.2 Greedy Heuristic . 23

3.7 Complexity of PLA . 26
3.8 Evaluation . 27
3.9 Conclusion . 29

4 SynRace: Multi-path Routing 31
4.1 Introduction . 31
4.2 Related work . 32
4.3 Latency as a proxy for data rate 34
4.4 Overview of SynRace . 35
4.5 Implementation in OpenFlow . 36

4.5.1 Forwarding and duplicating the probe packets 36
4.5.2 Triggering the race . 37
4.5.3 Adding path information 37
4.5.4 Installing the flow entries 39

4.6 Corner cases . 40
4.6.1 Asymmetric networks . 41
4.6.2 Multi-homed end hosts . 41
4.6.3 Effects on small flows . 42

4.7 Evaluation . 42
4.8 Conclusion . 44

vii

CONTENTS

5 Composition 45
5.1 Introduction . 45
5.2 Definitions . 46
5.3 Types of composition . 47

5.3.1 Single module without composition 47
5.3.2 Multiple modules without composition 47
5.3.3 Multiple modules with harmonising 48
5.3.4 Parallel composition . 49
5.3.5 Serial composition . 50
5.3.6 Network emulation . 50
5.3.7 Approximate serial composition 51
5.3.8 Using overlays for approximate serial composition 51
5.3.9 Composition and order of middle boxes 52

5.4 Composition strategies . 53
5.5 Composition with OpenFlow . 55

5.5.1 Definitions . 55
5.5.2 Multiple modules . 56
5.5.3 The run to completion problem 56
5.5.4 Parallel composition . 57
5.5.5 Serial composition . 57

5.6 Related work . 58
5.6.1 Classification of approaches 58
5.6.2 Existing approaches . 59
5.6.3 Summary of the different composition approaches 63

5.7 Conclusions . 66

6 NetIDE core 67
6.1 Introduction . 67
6.2 Challenges . 69
6.3 NetIDE core relation to SDN controllers 70
6.4 Composition . 71
6.5 Modularity . 73
6.6 Extending the core to non-OpenFlow protocols 76
6.7 Composition specification . 76

6.7.1 Modules . 77
6.7.2 Composition . 78
6.7.3 Conflict resolution policies 78

6.8 Evaluation . 79
6.9 Conclusion . 80

7 GlobalFIB 81
7.1 Introduction . 81
7.2 Related work . 83
7.3 Architecture . 84

7.3.1 Network . 84
7.3.2 End-to-end flow rule definition 85

viii

CONTENTS

7.3.3 GlobalFIB database . 87
7.3.4 Handling legacy rules . 90

7.4 Conflict detection . 91
7.5 Validation/Verification . 92
7.6 Conflict resolution and composition 93
7.7 Calculating paths with GlobalFIB 95
7.8 Statistics . 96
7.9 Traffic Engineering . 96
7.10 Debugging tool . 97
7.11 Distributed GlobalFIB . 97
7.12 GlobalFIB implementation . 98
7.13 Conclusion . 98

8 Reconfiguration 99
8.1 Introduction . 99
8.2 Requirements for dynamic reconfiguration 100
8.3 Related work . 101
8.4 Design . 102

8.4.1 External or internal? . 102
8.4.2 Granularity . 104
8.4.3 Specification of (Re-)Configurations 105
8.4.4 Detecting malfunctioning modules 105
8.4.5 Handling malfunctioning modules 107
8.4.6 Adding/removing modules 109

8.5 Specification language . 110
8.5.1 Modules . 111

8.6 Evaluation . 111
8.7 Conclusion . 114

9 Conclusion and future research 115
9.1 Conclusion . 115
9.2 Future work . 116

Bibliography 117

List of Figures 130

List of Tables 131

List of Algorithms 131

ix

1 Introductiony
Technology is rapidly advancing and data usage is steadily growing. The often

cited “The Zettabyte Era” analysis from Cisco [50] predicts a threefold increase
of all traffic from 2016 to 2020 and for the busiest hour an increase by 4.6 times.
This Internet-wide trend is also occurring in data centres [113]. The introduc-
tion of more distributed server architectures and of big data is increasing the
communication demand between servers. To handle these increased demands,
additional capacity is added to data-centre topologies by adding redundant links
and paths. A single 10-GBit/s link between two switches is replaced by four
10-Gbit/s links. Naively, one would assume that the network is now able to
handle four times the traffic between these two switches. Unfortunately, this is
often not the case. The reason that the additional capacity is underutilised, lies
in the behaviour of TCP/IP. TCP/IP has replaced nearly all other protocols in
Ethernet networks; the performance of TCP/IP suffers when packet reordering
happens. To avoid this performance problem on unsynchronised parallel links,
a single flow is only forwarded over a single path. To use the capacity of more
than one path, multiple TCP/IP flows are distributed over all available paths. A
typical approach is that each switch locally distributes flows over all paths with
the lowest cost metric to the destination in a simple round-robin fashion. While
easy to implement and reliable, the resulting capacity under this approach is
less than the raw capacity of the network, as the distribution of the flows over
those available paths is often far from perfect. Imagine small and large flows
that arrive in a (strictly) alternating pattern, a small query for a data location,
directly followed by the transfer of the data. The round-robin distribution will
assign the big flows to two of the four links and the small flows to the other
two links. This results in a poor use of the available capacity. The discrepancy
between raw and resulting capacity highly depends on the network topology
and the workload but can be as high as 50% [5] (also shown in Chapter 4).
The simple example in the previous paragraph showed that the remaining

capacity is very workload sensitive. As the capacity, which the applications will
be able to use, also depends on the concrete random distribution of the flows,
the remaining capacity is a random variable rather than a fixed number. For
simplicity, I will use the term “remaining capacity” in lieu of expected value of
the remaining capacity for a workload. In some scenarios, the resulting capacity
might still be sufficient to fulfil the requirements, even though it is smaller than
the raw capacity the network provides. Otherwise the resulting capacity needs
to be increased. Two options can be used to alleviate the problem. The first is
to add even more raw capacity to the network to increase the usable capacity.
The second is to use the existing capacity more efficiently.
In data centres, adding more capacity can be as cheap as adding an extra link

between two switches that both have unused ports if an unused fibre for that
link is readily available. Adding raw capacity when no ports are free might also
involve adding additional switches to the network or even adding extra fibres
to the data centre if all existing fibres are already in use. In wide-area net-
works (WANs), adding raw capacity involves laying or renting fibre that might

1

CHAPTER 1. INTRODUCTION

span hundreds to thousands of kilometres and has a significantly higher cost
associated with it than adding fibres in a data centre [37]. When cost prohib-
its adding more raw capacity or adding more raw capacity is not feasible, for
example when adding more fibres would require construction work, more likely
in WANs, or takes too long, the remaining option is to use the available capa-
city more efficiently. This involves using the underutilised paths in the network
more and employing more sophisticated methods for choosing paths than the
simple round-robin approach. To implement this, traffic is classified, analysed,
rules for better resulting capacity are developed and finally implemented. This
process is typically summarised as traffic engineering (TE). Figure 1.1 shows a
summary of the process that is often iterative. At the current state of the art,
all these steps are done manually or only partially automated, which contributes
to a high cost. For this reason, TE is predominately present in WANs since the
costs are favourable compared to the cost of adding raw capacity. A comple-
mentary technique used to partly solve the problem is quality of service (QoS)
and prioritisation of traffic. Instead of trying to provide the needed capacity
to all flows, the flows are prioritised and only the higher prioritised flows will
receive the full data rate. Often networks, especially data centre networks, have
services that can be reduced in data rate without having a negative effect on
other services or on the quality of this service. A typical example are backups,
which transfer large amount of data but a longer backup time is unproblematic.
While it is certainly possible to implement the traffic engineering of WAN

networks in data centres, doing so has a few shortcomings. Many WAN TE
techniques are coupled with virtual circuit switching based on Multiprotocol
Label Switching (MPLS) [4]. Introducing MPLS into a network adds a fair
share of complexity, especially for smaller setups. MPLS is often needed in
WAN networks to separate different customers and create network-wide overlays
[25]. In data centres, this task is typically implemented with the much simpler
VLAN protocol [12]. And most data centre servers, software and middle boxes
cannot handle MPLS as it is uncommon in data centres. A translation from/to
MPLS is required for these components. Additionally, data centres typically
already have QoS rolled out based on VLAN/IP based QoS and would also
need to reimplement it with MPLS based QoS. Most other data centre-specific
technologies are not based on MPLS but directly on VLAN and IP and therefore
are not compatible with MPLS at all. For example, advanced QoS and lossless
Ethernet/Fibre Channel over Ethernet (FCoE) [94] is tightly coupled to the
VLAN features [42]. This inflexibility mainly exists because switch vendors
implement protocols for a certain use case (WAN or data centre) and hardware
and software products are also targeted to a specific market.
Software-defined networking (SDN) allows to deviate from the protocols and

implementations provided from the switch manufactures [4]. For example, ad-
vanced per flow decision and QoS features are often tied to the MPLS imple-
mentation. In our case, using SDN allows traffic engineering tailored to data
centres, keeping the VLAN protocol and not introducing MPLS and still provide
the ability to decide the path per flow. An additional advantage of SDN is that
it allows greater control of the network. With the finer control of flow statistics

2

1.1. RESULTING CHALLENGES

Tra�c Statistics/
Data Collection Data Analysis Rule Generation

Rule
Implementation

Network

External knowledge
Knowlege about applications

Experience of network operators

Figure 1.1: Steps of traffic engineering

in switches and more selective mirroring and duplicating of flows to a monitoring
instance, it directly allows to implement new (and better) methods of data col-
lection. Using the greater flexibility of SDN in two steps of the TE process that
directly interacts with the network, allows a greater flexibility in the other two
steps as their input, and output needs to match the capability of the network.

1.1 Resulting challenges
The main challenge with bringing traffic engineering to the data centre is to
reduce the associated costs. Since the costs derive primarily from today’s manual
nature of TE, the natural consequence is to automate these steps as much as
possible.
A major step in TE is the analysis of the traffic present in the network and

gaining knowledge about the traffic patterns. Instead of doing manual analysis
and classification, the knowledge about traffic should be obtained from network
applications directly or by observing phenomena that can be automatically ana-
lysed. The next step is the automatic generation of the resulting rules to also
eliminate that step.
Most data centres are not built for a single purpose and are running multiple

different applications. These applications all have different characteristics and
different interfaces. For that reason, to collect all needed available knowledge,
the information gathering and analysis need to run in parallel for multiple differ-
ent network applications. For example, one method will gather generic inform-
ation of network behaviour while another is specialised for a specific application

3

CHAPTER 1. INTRODUCTION

such as Hadoop [35, 112, 124]. Each of the methods can produce its own set of
network rules.
Additionally, separately from traffic engineering, a data centre can have other

services running that depend on SDN, e.g., monitoring, firewalls or intrusion
detection system (IDS) [36]. These services also create network rules to fulfil
their function. They are often implemented as SDN applications tightly integ-
rated in an SDN controller. The network rules from all these different sources
can contradict each other. Installing all these rules to the network switches
can have bizarre and hard-to-debug problems and can cause part or the whole
functionality of these applications to cease working. As an example, assume
the IP rewriting rules of a load balancer that directs incoming servers to real
IP addresses of the backend servers are not executed because a switch installs
its own rules with higher priority. As consequence, some way of detecting and
resolving these conflicts is needed.

1.2 Contributions
In this thesis I present possible solutions to the challenges outlined in the pre-
vious section.
The implementation of custom network rules to steer traffic is one of the

enabling features that makes traffic engineering useful. As mentioned in the
previous sections, a technology typically used for this, especially in WANs, is
MPLS. MPLS is typically not supported by data centre switches or only at
a premium price since it is considered a WAN/advanced feature (e.g., Cisco
requires extra licenses [118, 119]). I show in Chapter 3 that it is possible to
use SDN and MAC address rewriting to achieve label-based routing with an
SDN network without specialised switches/switch software. Additionally, by
exploiting Ethernet Address Resolution Protocol (ARP) semantics, ingress label
tagging can be offloaded to the hosts.
SynRace, which I present in Chapter 4, uses SDN to extract information

for TE that would not be available without SDN. SDN is used to turn the
first packet of each connection (the SYN packet) into multiple probe packets.
The observable timing difference and order in which these probe packets arrive,
allows to infer the best path for a flow without requiring special hardware fea-
tures from the switches. Using this novel way of acquiring information (the first
TE step) and using label routing (e.g., MPLS or the MAC label routing from
Chapter 3) increases the utilisation of the network.
I discuss the detection and resolution of conflicts needed for heterogeneous

networks in Chapter 5. I describe the problem and possible solution of detecting
and resolving these conflicts of rules of multiple sources in an SDN environment.
I also show the limits and requirements in an SDN environment for composition
of rules.
As a proof of concept, Chapter 6 presents a working implementation of these

concepts that has been developed as part of my work and the NetIDE EU project
and was the core component of that project.

4

1.2. CONTRIBUTIONS

Data that can be collected directly from the networks only provides a certain
amount of information: data about the past and current state; for future flows
only educated guesses and heuristics can be used. In order to have a better basis
for handling upcoming flows the cooperation from the applications running in
the data centre is needed. To do that in a structured way, I came up with the
GlobalFIB framework idea that defines a framework to collect this information
in a structured way and is described in detail in Chapter 7.
Finally, to further increase the usability of this system and concepts in de-

manding environments, In Chapter 8 I explore the options of dynamically de-
tecting problems and reacting to these problem by reconfiguring the system. I
conclude the thesis with a summary in the last chapter (Chapter 9).
In the following chapter I will often use “we” instead of I to emphasise that

the work was done in collaboration with colleagues, as can be seen by the pub-
lications the chapters are based on.
Chapter 3 is based on

• Arne Schwabe and Holger Karl. “Using MAC Addresses As Efficient Rout-
ing Labels in Data Centers”. In: Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking. HotSDN ’14. Chicago,
Illinois, USA: ACM, 2014, pp. 115–120. isbn: 978-1-4503-2989-7. doi:
10.1145/2620728.2620730. url: http://doi.acm.org/10.1145/
2620728.2620730

Chapter 4 is based on

• Arne Schwabe and Holger Karl. “SynRace: Decentralized Load-Adaptive
Multi-path Routing Without Collecting Statistics”. In: Proceedings of the
2015 Fourth European Workshop on Software Defined Networks. EWSDN
’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 37–42.
isbn: 978-1-5090-0180-4. doi: 10.1109/EWSDN.2015.58. url: http:
//dx.doi.org/10.1109/EWSDN.2015.58

Chapter 5 is based on

• Arne Schwabe, Pedro A. Aranda Gutiérrez and Holger Karl. “Com-
position of SDN applications: Options/challenges for real implementa-
tions”. In: Proceedings of the 2016 Applied Networking Research Work-
shop. ACM. 2016, pp. 26–31

• The chapter “Composition of network applications” in the journal pa-
per: Elisa Rojes, Sergio Tamurejo Roberto Doriguzzi-Corin, Andres Beato,
Arne Schwabe, Kevin Phemius and Carmen Guerrero. “Are we ready to
tackle Software Defined Networks? A Comprehensive Survey on Man-
agement Tools and Techniques”. In: ACM Computing Surveys (to be
published)
I was the lead author of that chapter.

Chapter 6 is based on

5

https://doi.org/10.1145/2620728.2620730
http://doi.acm.org/10.1145/2620728.2620730
http://doi.acm.org/10.1145/2620728.2620730
https://doi.org/10.1109/EWSDN.2015.58
http://dx.doi.org/10.1109/EWSDN.2015.58
http://dx.doi.org/10.1109/EWSDN.2015.58

CHAPTER 1. INTRODUCTION

• The sections addressing the NetIDE core in NetIDE deliverable D2.7
NetIDE FP7 Project. “D2.7 NetIDE Manual”. In: NetIDE reports (2016)

• The NetIDE core implementation, which can be found at
https://github.com/fp7-netide/Engine/.

• PA Aranda Gutiérrez, E Rojas, A Schwabe, C Stritzke, R Doriguzzi-Corin,
A Leckey, G Petralia, A Marsico, K Phemius and S Tamurejo. “NetIDE:
All-in-one framework for next generation, composed SDN applications”.
In: NetSoft Conference and Workshops (NetSoft), 2016 IEEE. IEEE. 2016,
pp. 355–356

• The implementation of the core has been based on Tim Niklas Vinke-
meier’s master thesis:
Tim Niklas Vinkemeier. “Composition and Orchestration of Network Con-
trol Applications”. MA thesis. University of Paderborn, 2015.

Chapter 8 is based on

• Arne Schwabe, Elisa Rojas and Holger Karl. “Minimizing Downtimes: Us-
ing Dynamic Reconfiguration and State Management in SDN Networks”.
In: 3rd IEEE Conference on Network Softwarization (NetSoft 2017). Bo-
logna, Italy, July 2017

6

https://github.com/fp7-netide/Engine/

2 Backgroundy
Before presenting the details of my contributions, I will briefly describe in

this chapter the background knowledge that the remainder of thesis assumes
the reader to be familiar with.

2.1 Data centres: Typical structures
Data centres are found in a variety of organisations and fulfil a variety of tasks.
The building blocks used in these data centres are very similar and I will describe
the typical building blocks here.
The most essential building block that constitutes a data centre is a server.

Even the most basic server room, which can be an unused broom closet, has at
least one server in it.
Storing servers on shelves without proper ventilation does not scale very well

[47] and IT infrastructure in general is very power-intensive [73]. Also, accessib-
ility and other practical concerns make this server housing unpractical for larger
installations. Instead, servers are bought as rack-mounted servers which are in-
stalled in standardised racks [29, 70]. Server and rack space are measured in
rack units (RUs). Standard-sized racks can accommodate 42RUs with smaller
racks also available for smaller installations, e.g. half racks with 21RU and 4 RU
racks for small office installations. With servers typically measuring 1-4RUs, a
full rack contains 13 to 42 servers.
In order to operate as expected, servers have to be provided with electric

power, cooling and connectivity to other systems. In this thesis, I only look at
the network connectivity of servers. In a data centre, connectivity is provided
to the servers for communicating with the other servers and to communicate to
the systems outside the data centre, usually the Internet. Ethernet is the de
facto standard and has largely replaced any other network interconnect [115].
Additional specialised interconnects might be present, e.g., a high-speed inter-
connect for compute clusters like InfiniBand or a specialised storage interconnect
like Fibre Channel but these are also slowly replaced by Ethernet [95], the latter
by iSCSI [61] and Fibre Channel over Ethernet (FCoE) [94].
Each rack typically has its own Ethernet switch that is connected to each

server inside the rack, often a 1 RU switch located at the top of the rack, which
coined the term “top-of-rack switch” or simply “ToR switch”. When servers
with 2 RUs or more are used, fewer but larger servers are in a rack. Since
they require fewer Ethernet connections, one ToR switch is sometimes shared
between two neighbouring racks.
All Ethernet switches together with the links between these switches are called

the backbone of the data centre. The conventional design, which is also found in
network design guides and textbooks [10], is a tree in which the ToR switches
are the leafs and the switch at the root of the tree is called the “core” switch.
The number of layers mainly depends on the size of the data centre and the
number of ports available on the switches used in each layer. For a small data

7

CHAPTER 2. BACKGROUND

Core

Spine

Top of Rack

Servers

Figure 2.1: Ethernet data centre backbone with core, spine and ToR layer

centre, a two-layer tree with only a single core switch and corresponding ToR
switches is a reasonable solution. A larger data centre might introduce a layer
consisting of “end-of-rack” switches that bundle multiple ToR switches and even
further introduce a layer called “distribution layer” or “spine switches” (coming
from the backbone analogy) of switches below the core switch to multiplex the
core switch’s ports. Figure 2.1 gives an example with core, spine and ToR layer.
This simple structure has two main weaknesses: redundancy and scaling.

Should any of the switches or links fail, the network is partitioned and a server
cannot reach servers outside its own partition anymore. The other weakness is
that the size of the network only scales with the number of layers. If the core
or any other switch is not able to accommodate more links, another layer needs
to be added. The achievable bisection bandwidth of this topology is limited by
the maximum data rate between two switches. This data rate can be increased
by bundling multiple links (usually up to eight [49]). Bundling multiple links
between switches can further make the limited number of ports on the switches
an issue.
Modern architectures avoid these weaknesses by not limiting themselves to a

strict tree topology and use more flexible approaches to connect the switches in
the topology [123]. Especially the notion of a single root node is abandoned and,
as consequence, these topologies are not loop-free anymore and have multiple
paths between leafs. This allows alternative paths to be used if a link should
fail. Since the topology is not loop-free anymore, the network has to ensure that
packets are not forwarded in a loop. The traditional Ethernet spanning tree
protocol [41] eliminates alternative paths and reduces the active network to a
tree subset, thereby also removing any loop. This still allows higher redundancy
but eliminates performance benefits of topologies with alternative paths. To
use these alternative paths not only as standby paths, either IP routing with a
routing protocol using multiple paths like Open Shortest Path First (OSPF) [75]
or an advanced Ethernet forwarding protocol is required. Examples for Ethernet
forwarding protocols using multiple paths are Transparent Interconnection of
Lots of Links (TRILL) [2, 87], RBridges [87], vendor-specific protocols [19] or the
use of software-defined networking (SDN), which will be introduced in Section
2.3.
Many new topologies have been proposed to replace the traditional tree to-

pology, including but not limited to HyperX [3], Dcell [44], BCube [43] and

8

2.1. DATA CENTRES: TYPICAL STRUCTURES

Figure 2.2: 15 port Clos switch built from 3 and 4 port switches

Jellyfish [114]. While these topologies promise good performance, their wir-
ing requirements make them difficult to implement, e.g., the Jellyfish topology
requires random connections between the ToR switches. This creates an un-
structured wiring with few cables that can be bundled and few short distance
links that are generally preferred for their lower cost.
A typical compromise between practicality and performance are the FatTree

topologies [64], and networks topologies based on Clos switch [24, 113], which
I will call just Clos topologies in the following. Since the basic ideas of these
topologies are very similar and the names are often used interchangeably, I will
describe them together.
The Clos network comes from the telecommunication world; its idea is to build

a large non-blocking (telephone) switch from smaller non-blocking switches [24]
by arranging the switches in three stages, the ingress, middle and egress stage.
The special way of interconnecting these stages allows Clos networks to be non-
blocking. In a circuit-switched system with inputs and outputs, non-blocking
in a strict sense means that from a currently unused input to an unused output
a free path always exists. The rearrangeable non-blocking property is weaker
and only requires that for any combination of inputs and outputs a mapping
without blocking exists. If a new connection arrives, the existing connections
might need to be rearranged to provide a free path from input to output for
the new connection [54]. Figure 2.2 shows an example for a 15-port switch built
from smaller 4-port and 3-port switches. For Ethernet topologies, which are
packet-switched, I cannot directly use the circuit switching-based definition, so
instead I use the rearrangeably non-blocking property.
The concept of a Clos-like switch network to replace the big monolithic switch

as core switch with multiple small switches is common to the FatTree and Clos
topologies. In computer networks, Clos networks are often not designed to
be fully non-blocking to trade off a lower bisection bandwidth against a smaller
number of switches and links. This is done by using a smaller number of switches
in the middle stage but keeping the main structure of a Clos network. Figure 2.3
shows a realisation of a data centre network using a Clos topology. Note that the
spine switches are both the ingress and the egress stage and the core switches
are the middle stage.
Closely related to Clos topologies is the FatTree topology, which also uses

9

CHAPTER 2. BACKGROUND

Spine

Leaf
Figure 2.3: Data centre Clos-like topology

Core

Spine

Top of Rack

Servers

Pod 1 Pod 2 Pod 3 Pod 4
Figure 2.4: FatTree topology with four pods and four core switches.

a Clos network for its core but uses a different approach to bundle racks. In
a FatTree, a number of racks with their spine switches form a so called pod.
Figure 2.4 shows an example of a FatTree topology. In the example, each pod
has two racks but pods are not limited to two racks. The two spine and edge
switches in each pod form a small 4-port non-blocking switch. The connections
of these 4-port switches to the core switches form a Clos switch.
Implementations of these topologies may opt to use fewer core switches or

fewer links between spine and core switches to save costs. This does not guar-
antee the non-blocking property anymore but it allows to later add an additional
core switch, once the capacity is needed. In the same way a pod will typically
not have only two edge switches but a larger number, like four or eight. With
more than two ToR switches in each pod, switching inside each pod is still
non-blocking, but the available number of links to the core cannot provide a
non-blocking network anymore. Figure 2.5 shows such a cost-conscious FatTree
network, which uses two instead of four core switches and five instead of two
racks per pod.

10

2.2. FROM CONVENTIONAL NETWORKING TO SDN

Core

Spine

Top of Rack

Servers

Pod 1 Pod 2 Pod 3 Pod 4
Figure 2.5: Cost-conscious FatTree topology

2.2 From conventional networking to SDN

Software-defined networking (SDN) is a new technology that promises to provide
access to network control and replace closed and/or proprietary protocols with
open protocols, allowing a network administrators and network software de-
velopers to define network switch behaviour themselves. Unfortunately, SDN is
not a technically precise definition; it often describes the collection of various
technologies and is being used more and more as a marketing term. As a result,
everyone has a different interpretation of what SDN actually stands for. This
section will detail what I understand of the term SDN.
Having software-defined systems is not a completely new idea. The main idea

behind all software-defined technologies is that as little as possible is predefined
by the hardware but instead can be implemented in software. For example,
software-defined radios (SDRs), another technology that has “software-defined”
in its name, is a much older technology [122]. Unlike SDN, the distinction
between a software-defined radio and a conventional radio is much easier to
make. A conventional radio is designed and implemented for one or more specific
radio protocols, e.g. Bluetooth, and the majority of signal processing is done
in hardware. Using a new or another protocol means replacing the hardware.
On an SDR, the actual hardware does as little signal processing as possible
but instead has an interface to send and receive raw samples of modulated
radio signals. Behaviour of the radio module, especially the physical layer and
modulation being used, can then be defined solely by software. This allows
users to design and use their own radio protocol implementations instead of
choosing only between the protocol implementations that the hardware chip
manufactures offer.
SDN brings this idea to computer networking. Traditionally, switches and

routers only support the protocols and features their manufacturers have im-
plemented. These devices have no possibility to replace the software that im-
plements these protocols. SDN adds interfaces to the switch that make the
switches’ behaviour programmable by software. Software in this context is the

11

CHAPTER 2. BACKGROUND

software the administrator chooses. This software can be written by the ad-
ministrator him/herself, by the manufacturer of the switch, or by a third party.
SDN switches provide an application programming interface (API) to allow this
programmability. Different APIs exist for SDN; in this thesis, I will focus on
OpenFlow, the SDN protocol that is typically used in academic research and is
in widespread use in production SDN networks. Its interface focuses on having
very little logic in the switch itself (just as with an SDR).
As a side note, implementing switches/routers in software was always pos-

sible (unlike to radio protocol design); a normal Linux system with multiple
network cards can implement a switch. At first glance, this also allows the
same features that SDN promises. The question arises whether SDN and spe-
cial protocols like OpenFlow to interface switch hardware are really needed or
whether a system built from commodity computer hardware could also be used.
OpenFlow has two advantages here: the first is to provide a clear API that also
serves as common protocol to interface different switch implementations. Pro-
jects like Open vSwitch [88] implement an SDN switch on a normal Linux PC,
providing the same interface as a dedicated SDN switch. The other one is that
packet forwarding at a high rate is very difficult to achieve without specialised
hardware. For forwarding a packet, a switch needs to extract the header fields
from a packet, look up these header fields in a table, apply the result of the
lookup to the packet and output the packet to destination port. With modern
network speeds a switch has to execute this task million times per second; a
fully loaded 10-Gigabit Ethernet port equals to 833 333 to 19 531 250 packets
per second depending on the packet size (64-1500 byte). Even high-end hard-
ware with specialised software struggles to achieve these rates, especially if the
forwarding tables are not unrealistically small [90]. To be able to achieve these
high forward rates, switches use specialised and custom-built hardware. SDN
also allows to use software switches (e.g. Open vSwitch) and hardware switches
with the same protocol.

2.3 OpenFlow: Access to the switch data plane
OpenFlow was the first published SDN control protocol [69] and still is one of
the most used SDN protocols [60]. OpenFlow’s main idea is to allow external
entities to access and modify the switch’s Forwarding Information Base (FIB).
It allows to install and remove and modify flow rules contained in this table.
OpenFlow abstracts the entries of the forwarding table into rules with three
parts: match, action list and counters. Every incoming packet is first matched
by the rules. OpenFlow defines a number of header fields that can be used
in a match; common options for matching include Ethernet MAC addresses,
TCP/IP addresses and UDP/TCP ports. For the rule that matches the packet
and has the highest priority, the counters are increased and the action list is
evaluated.
In the action list, modifications of the packet can be specified, overwriting

header fields, e.g. replacing MAC and IP addresses or adding/removing header

12

2.3. OPENFLOW: ACCESS TO THE SWITCH DATA PLANE

fields like MPLS and VLAN tags. The action list also has an action that specifies
what should be ultimately done with the packet. This can be to drop the packet
or to output it to one or more ports. The port can also be a virtual port that
forwards the packet over the control connection. This generates a “packet in”
message. The controlling software can then react probably and for example
install a new rule if the packet belongs to a new flow.
OpenFlow uses a standard TCP connection between the switch and the ap-

plication controlling the switch, called the “SDN controller”. As OpenFlow itself
is a network protocol that works over TCP, a single SDN controller can control
multiple switches at the time, allowing SDN with OpenFlow to implement a
central control instance, in stark contrast to traditional networks. These dis-
tribute the control over all switches and the traditional protocols, like(Border
Gateway Protocol (BGP), OSPF, spanning tree,... are also designed as distrib-
uted algorithms. Often used with OpenFlow controllers is that an SDN con-
troller implements the reactive installation of flow rules: Instead of installing
all forwarding information before a packet arrives, the controller will purposely
not populate the flow rules for the majority of flows and will only install the
required flow rules when a packet triggers a miss in the flow table. This al-
lows more fine-grained control of flows but makes the communication between
a switch and the SDN controller a potential bottle neck. The alternative is
to install flows before flows arrive which avoids the additional round-trip and
performance hit but limits control of individual flows.

13

3 Efficient SDN Routing Labelsy
Traffic engineering (TE) depends on routing traffic via specific paths to dis-

tribute load over the available paths. Conventional traffic engineering (TE)
often depends on Multiprotocol Label Switching (MPLS) [99] to implement for-
warding over specific paths.
MPLS allows to assign labels to packets and to base forward decisions on the

labels independent of the packet’s contents. MPLS labels can also be stacked,
which allows to bundle certain labels for parts of their paths. For a WAN
network, a label stack consisting of three labels could express the fine-grained
ingress forwarding, then the forwarding in the backbone and the last label could
indicate routing in the egress network. Optionally, flows can be grouped by
labels and stacking labels allows to keep the forwarding tables in the switches
small. It also allows to shift classifying the packets of a flow to the edge of the
network, typically called forwarding equivalency classes (FEC) in MPLS.
As indicated in the introduction (Section 1.1) MPLS is not available or some-

times conflicting with other technologies in a data centre. In this chapter, I
will investigate two things: The first one is how well label forwarding can be
emulated using SDN and switches that lack MPLS features. The second is to de-
termine if structured MAC addresses can help to reduce the number of forward-
ing entries. For that I will formalise the problem, prove its NP-completeness
and present an approximation algorithm.
This chapter is based on

• Arne Schwabe and Holger Karl. “Using MAC Addresses As Efficient Rout-
ing Labels in Data Centers”. In: Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking. HotSDN ’14. Chicago,
Illinois, USA: ACM, 2014, pp. 115–120. isbn: 978-1-4503-2989-7. doi:
10.1145/2620728.2620730. url: http://doi.acm.org/10.1145/
2620728.2620730

3.1 Introduction
In a modern switch, forwarding is implemented in hardware to forward at line
rate. A key component of forwarding is the lookup table which is implemented
using Ternary Content-Addressable Memorys (TCAMs). TCAMs are expensive
in energy and hardware. This limits the number of forwarding entries a switch
can store in hardware. Forwarding in a data centre is based on the lookup of
the destination MAC address in contrast to WAN networks that usually base
their forwarding decisions on IP addresses or (MPLS) labels. MAC addresses of
hosts are usually unstructured and each host needs an entry in the forwarding
table. Reducing the number of entries in forwarding tables will save hardware
costs and energy.
Usually, the number of required entries is reduced either by using compres-

sion/combining multiple entries or by storing only a subset of the entries in

15

https://doi.org/10.1145/2620728.2620730
http://doi.acm.org/10.1145/2620728.2620730
http://doi.acm.org/10.1145/2620728.2620730

CHAPTER 3. EFFICIENT SDN ROUTING LABELS

hardware tables. Combining multiple entries is difficult and even good ap-
proaches only achieve compression rates of 50% [101]. The other approach, to
store only a subset of the entries in the hardware tables, introduces an addi-
tional delay whenever a packet arrives that has no corresponding entry in the
hardware table and an entry has to be fetched, e.g., from a central controller
(as often in SDN) or locally computed. Both solutions only alleviate the prob-
lem and provide no real solution. These reasons contribute to the need that
commercial switches currently have to provide a very large number of possible
entries.
The root of the problem is the lookup of unstructured addresses. For un-

structured addresses in most cases one forwarding information base (FIB) rule
per address is needed. One solution is to avoid the lookup of MAC addresses
and instead perform the lookup on a label that can be controlled and given a
structure. The idea of using labels to improve or enable forwarding hardware
is quite old, dating back at least to ATM and MPLS. To benefit the most from
using labels for forwarding, labels should be added to the packets as early as
possible and removed as late as possible along the packet’s path. Typically, the
ingress switch adds the label to a packet and the egress switch strips the labels
from the packets. This allows all switches between the ingress and egress switch
to benefit from doing label lookups instead of MAC address lookups (or other
unstructured/expensive header field lookups).
The label can be added in two ways. The first way is to encapsulate the

packet, e.g., adding an MPLS header on the ingress switch and decapsulate the
packet on the egress switch, removing the label again. The second way is to
replace the content of a header field with the label at the ingress switch and,
if necessary, reverse the replacement at the egress switch. Approaches specially
designed for the problem in a data centre like Portland [81] use the second
approach and replace the source and destination MAC addresses of the packets.
Using labels for forwarding shrinks the forwarding table when structured la-

bels are used. Structured labels enable assigning similar labels to packets for-
warded in the same way and thus one forwarding entry can be used to match
multiple labels. This saving is obviously only true if labels have been already
applied. The ingress and egress switches need multiple flow table entries for re-
moving and adding labels, which are about the same number of entries as with
regular Mac-based forwarding tables as the number of unstructured addresses
that need to matched is the same. The work of adding a destination-specific
address to the packets is also duplicated at the hosts and the ingress/egress
switches. The hosts add source and destination MAC addresses according to
their own addresses and ARP tables; the switches will then replace the addresses
according to their tables.
Modifying the hosts (respectively, their operating system) to directly write the

right MAC addresses (containing the labels) is the apparent solution, but modi-
fying hosts (and their operating system) is often unacceptable or impossible.
Without modifying the hosts, the source MAC addresses are always the hosts’
own addresses, which cannot be controlled. But the ARP table of the hosts
is filled from ARP replies and this can indeed be controlled from the outside

16

3.2. BACKGROUND

without modification to the hosts. The question arises how far this limited con-
trol over the hosts can be exploited to eliminate the duplicate work and further
improve the gain from using labels for forwarding. We will show in this chapter
that this is indeed feasible and advantageous.

3.2 Background
This background section recaps the important aspects of lookup tables in switch
hardware.

3.2.1 Lookup hardware
In a switch, an incoming packet is matched against the FIB of the switch. This
is done by looking up multiple header fields from the packet itself as well as
using meta information including the ingress port of the packet. The lookup
is either made as an exact match, e.g., an IP address equalling 1.2.3.4, or as
a wildcard match such as an IP address matching 5.6.0.0/16, often combined
with a priority to give longer prefix entries a higher priority.
This matching is implemented using TCAMs and allows fields to match

against 0, 1 and “don’t care”, usually written as X. As an example, the wild-
card 11100XXX XXXXX1100 matches all 16-bit words beginning with 11100
and ending with 110.
Wildcard matches are an a indicator function for bit strings of length n:

t : {0, 1}n 7→ {0, 1}, t(x) =
{

1 wildcard matches x
0 otherwise

Since the input domain ({0, 1}n) and output domain ({0, 1}) of the function t
are finite, the number of possible functions is also finite with 2n+1 possibilities.
We define Tn to be the set of all possible wildcard functions with n bits input
size. Tn represents all configurations that a TCAM with n bits can have.

3.2.2 Forward Information Base
Regardless of the routing algorithm/forwarding strategy used in the network, a
FIB entry consists of a matching and a forward action.
To replace two FIB entries with one entry, two conditions have to be met.

First, the matching of the new rule must match everything the two old rules
matched and not match anything the old rules did not match. Second, the
forwarding actions of both entries have to be the same. If the output actions
differ, combining two entries will change the semantics of the combined rule.
Merging multiple FIB entries is often impossible since the inputs (like the MAC
addresses of hosts) have no structure that allows grouping them together in a
wildcard.

17

CHAPTER 3. EFFICIENT SDN ROUTING LABELS

3.3 Related work

Reducing the size of the FIB has been studied for various different scenarios and
requirements. A very general approach is to use compact routing algorithms
designed for arbitrary networks. For example, the compact routing scheme
of [121] has a table size of Õ(n1/2) with a (worst case) stretch factor of 3.
Introducing a stretch factor of 3 into data-centre forwarding would have the
consequence that also the available data rate needs to be increased by a factor
of up to three.
One very general proposal aiming to reduce the FIB table size is Pathlet

routing [40]. Pathlet routing sets out to reduce the FIB size/complexity of
inter-domain routing while retaining the flexibility of policy routing possible
when using BGP. Pathlet routing achieves this flexibility by adding labels to
the packets that encode parts of the path and allows each AS to decide trade-
offs between the number of FIB entries and the complexity of the implemented
routing policy.
The question arises if FIB reduction techniques aimed at inter-AS communic-

ation [31, 128] can be applied to the data center FIB reduction discussed here.
Common to both problems is that the identifier used for forwarding, MAC ad-
dresses in the data center and IP prefixes in the inter-AS communication, are
unstructured. Directly translating these proposals does not work well because
it turns switches into ASes and the directly connected MAC addresses to the
networks of the AS. Carefully adapting the proposals to data centre networks
is not straightforward and thus creates new challenges.
There are a few key differences between these approaches and our approach:

these approaches focus on future routers and Internet protocols. Their labels
are not designed to be implemented in hardware or require hardware capabilities
not present in current data centre hardware. And these approaches also assume
a network (the Internet) that is managed by multiple entities whereas we can
assume for our data centre network that only one entity manages the network;
this single entity design is also reflected in the protocol design.
Instead of matching the header directly with TCAMs, the approach in [100]

uses Bloom filters to match addresses. Bloom filters can have false positives.
The approach avoids false positives by requiring a large number of alternative
paths between communication pairs and implementing a strategy that avoids
forwarding over paths which trigger false positives. The requirement of a special
type of network and the need to modify hardware to support Bloom filters makes
this approach only viable in scenarios where the hardware can be modified and
either enough paths are available to offset the need to exclude certain forwarding
paths or additional forwarding table entries can be installed, which can defeat
the purpose of saving entries. In contrast, our approach is designed not to make
assumptions about the topology or to need additional hardware modifications.
PortLand [81] is designed for FatTree topologies (see also Section 2.1) and

assigns to each switch a hierarchical level of either core, aggregation or edge. A
part of the network consisting of aggregation switches and edge switches is called

18

3.4. MODEL AND PROBLEM DEFINITION

a “pod”. For every host, its pod and edge switch are encoded into a “pseudo
mac” address. Portland uses this pseudo MAC address for forwarding packets
on the aggregation and core switches. Ingress switches rewrite the source MAC
addresses to the pseudo MAC address. The egress switches replace the pseudo
MAC address with the real address of the host again. PortLand maintains
a one-to-one mapping between pseudo MAC addresses and hosts. The strict
encoding of host positions into the MAC address limits PortLand to topologies
matching PortLand’s network model (FatTree). Overall, PortLand is the closest
to our own approach. The key differences between the approaches is that our
approach does not assume a fixed topology and that we offload part of rewriting
of MAC addresses to the connected end host by using ARP.
While PortLand maps one IP address to exactly one MAC address, first-hop

redundancy protocols (HSRP [67] or VRRP [77]) let multiple IP addresses share
a single MAC address for receiving packets on the failover IP gateway address
but use their own MAC addresses for forwarding packets to the hosts. Using
this “virtual” MAC address has the advantage that packets with this MAC
address will always be accepted by the routers and the ARP table of the client
always has a valid entry as long as one of the routers is still working. When
forwarding a packet to a client, a router will use its own MAC address. The
idea of answering an ARP request with multiple MAC addresses for the same
destination host is also taken up by our approach but applied to all hosts in the
network instead of only for the router.

3.4 Model and problem definition

To analyse and solve the problem of minimising the forwarding table size under
these assumptions, we need a formal definition of the problem that simplifies it
without abstracting away important details of the problem.
For our model, when a packet is forwarded in a network, it is forwarded

to an outgoing port on each switch on its path until the packet arrives at its
destination. We use the paths that the packets should be forwarded over and
the graph itself as the input for our problem.
For Ethernet link layer forwarding (basic Ethernet switching) the forwarding

action is “output packet on port x” and fits perfectly into the model. A more
complex routing algorithm will install different forwarding actions with the same
egress port. This can be represented in our model as two different outgoing edges
going to the same switch (using a multi-graph-based model).
To minimise the forwarding tables, we need to assign the labels and construct

the forwarding rules in a way that minimises the number of forwarding rules.
When constructing the wildcards to match the labels, only packets passing

a switch need to be considered. For example, in Figure 3.1, a wildcard for the
edge (u, v) must match the label of p1 and must not match the label of p2, but
it is irrelevant if the wildcard matches p3.

With these definitions, we can formulate:

19

CHAPTER 3. EFFICIENT SDN ROUTING LABELS

�

��

� �1

�2�3

Figure 3.1: Small network with three paths (thin lines)

Path label assignment (PLA) Let n be the number of bits used for the
label. Given a graph G = (V,E) and a set of loop-free paths P ⊂ P(E). Does a
mapping from the set of paths to the set of labels with n bits m : P 7→ {0, 1}n

exist so that for each edge e = (u, v) a function te ∈ Tn exists with te(m(p)) = 1
if e ∈ p and te(m(p)) = 0 if e /∈ p for all paths p ∈ P with u ∈ p (all paths that
have the same start vertex as e).
Te is the set of all possible wildcard functions with n bits input size as defined

in Section 3.2.1.
The definition of PLA asks for exactly one wildcard te per edge that should

match all labels of paths m(p) that traverse that link and should not match
any other label m(p) of a path that also crosses the same switch (u ∈ p but not
e ∈ p).

3.5 MAC addresses as labels

Using software-defined networking (SDN) gives a much greater control over
the network. We use this greater freedom to repurpose the destination MAC
address as a flexible forwarding label. This use of the MAC address has the
big advantage that labelling packets can be offloaded to the host by using ARP
rather than requiring a FIB entry to add the label on every ingress switch.
Hosts on the network rely on Ethernet Address Resolution Protocol (ARP)

and Neighbor Discovery Protocol (NDP) [78, 89] to learn the MAC address of
other devices. Instead of delivering the ARP query/neighbour discovery pack-
ets to the hosts, an SDN controller can intercept these packets. This allows us
to respond with arbitrary MAC addresses instead of the MAC address of the
host/network interface card (NIC) to which the IP address belongs. This ar-
bitrary MAC address can then be used as a forwarding label. Intercepting and
modifying the ARP request instead of attaching a separate label to the packets
has an important advantage: the host will put the received MAC address into
its own ARP cache and will put the MAC destination address into all outgoing
packets to that particular IP address. This removes the need to label the pack-
ets on the ingress switch. Effectively we use the ARP table of the hosts to store
the entries we otherwise need to store in the FIB tables of the ingress switches.
Answering the ARP queries allows us to answer with a label for the path

to the destination IP address. If a different host uses ARP to query the same
IP, we can respond with a different MAC address label. Effectively we have
the possibility not only to use structured MAC addresses for destination hosts
but even individually for each source and destination IP pair without requiring

20

3.5. MAC ADDRESSES AS LABELS

1.2.3.4
00:aa:aa

1.2.3.5
00:bb:bb

Who has 1.2.3.5 Who has 1.2.3.4
1.2.3.4 is
at 00:20:01

src 00:aa:aa
dst 00:10:01

src 00:aa:aa
dst 00:bb:bb

src 00:bb:bb
dst 00:aa:aa

src 00:bb:bb
dst 00:20:01

Network

Network

1.2.3.5 is at
00:10:01

Figure 3.2: Intercepting and modifying ARP packets in an SDN network

additional FIB entries at the ingress and egress switches. Figure 3.2 shows an
example of the resulting packet flows.
When a packet arrives at the egress, the packet still carries the label we

applied earlier as destination MAC address. Without modifying the destination
host operating system, the host will drop the packet since the destination MAC
address is not matching its own. Hence, the egress switch needs to replace the
destination MAC with the real MAC address. Having to do this extra step to
undo the labelling seems to contradict the idea of using ARP to label packets.
But the important difference is that labelling has to be done on every ingress
switch, while rewriting the MAC address needs only to be done on the egress
switch. Since the egress switch needs a FIB entry to forward the packets to
the port in any case, this only adds an additional action to the already existing
entry and does not consume an extra entry in the FIB.
Using the destination MAC address as a forwarding label breaks the assump-

tion that the source and destination address of a host are always the same for
the Ethernet layer. Our approach does not modify the source MAC address,
which is the physical address of the sending host, to avoid adding FIB entries
in the ingress switch. The ARP table of the receiving host contains a label
MAC address for the source IP address instead of the real MAC address of the
host. For a received packet the source MAC address will differ from the address
stored in the ARP table. Nevertheless, the host will accept the packet; the first
hop redundancy protocols work in a similar way, albeit in a much more limited
scope, and we do not violate the standards for Ethernet end devices.
If we loosen our initial constraint of not allowing the modification of the host

at all to allow the installation of an OpenFlow-capable software switch, like
Open vSwitch, rewriting the MAC addresses can be done by the software switch,
shifting the ingress and egress switch to the end hosts and removing these rules
from the physical ingress and egress switches. Such software SDN switches are
becoming more and more common, especially in virtualisation environments.

21

CHAPTER 3. EFFICIENT SDN ROUTING LABELS

3.6 Solving PLA
In this section we present two methods for solving the PLA problem. We provide
an exact solution with an integer linear program (ILP) and a greedy heuristic.

3.6.1 ILP solution
In this section we model the problem as an ILP. The variables of the ILP are
defined as followed. All variables are binary (only values 0 and 1 are allowed).

tej value of bit j of wildcard te
xej bit j of wildcard te is a “don’t care”
pij value of jth bit of the label for path i
nejk bit k of path j label is not matched by te
dejk decision variable for nejk

To model the three-state nature of the wildcard bits we use two binary vari-
ables for each bit. The binary variable xej defines if the wildcard is in the “don’t
care” state and if it is 0, the variable tej specifies the value of the bit.
Path labels use normal bits and we model the path’s n-bit label by binary pij

variables.
To ease writing the following equations, we define the indicator function

s(pj , e) with e = (u, v) to be 1 if and only if pj includes an edge (u,w) with
w 6= v.

xek ≥ pjk − tik (3.1)
xek ≥ tek − pjk (3.2)

k = 1 . . . n, ∀e∀pj : e ∈ pj

b∑
k=1

xek ≤ n− 1 ∀e (3.3)

nejk ≤ tek − pjk + (1− dejk) ·M (3.4)
nejk ≤ pjk − tek + dejk ·M (3.5)
nejk ≤ 1− xek (3.6)

n∑
k=1

nejk ≥ 1 (3.7)

k = 1 . . . n, ∀e∀pj : s(pj , e) = 1

The first block of constraints (3.1–3.3) ensures that a wildcard for an edge
matches all labels of paths containing that edge (e ∈ pj). Constraints 3.1 and

22

3.6. SOLVING PLA

3.2 ensure that tek and pjk (bit k of wildcard and path label) are the same if
xik is 0 (not a “don’t care”). If tek and pjk are different, the two equation force
xek = 1, meaning that the k match bit of te is a “don’t care” and thus the value
of the variable tek is ignored.

Constraint 3.3 ensures that every wildcard has at least one bit that is not set
to “don’t care” by limiting the number of “don’t care” to n− 1 bits.

With these constraints so far we know that every path that should be matched
by a wildcard is actually matched. The rest of the constraints ensure that no
other path is matched.
To ensure that the wildcard only matches labels it should match, i.e., not

matching any other labels, Constraint 3.7 ensures that at least one bit of every
other label has a value that is not matched by the wildcard. It uses the variable
nejk for that; it is only 1 if a bit is not matched. The next constraints ensure
the value of nejk. Constraints 3.4 and 3.5 ensure that nijk can be only 1 if pjk

and tek have different values (the constraints use a large value M construction
with dejk as a helper variable to tie the constraints together). Constraint 3.6
furthermore ensures that nijk is 0 if the kth bit is a “don’t care”.
The ILP has no optimisation goal since the problem is either solvable or not.
As an optimisation to improve solving time, the nijk variables do not have to

be binary but can be arbitrary float variables without changing the solution of
the ILP since the constraints will force the variables to be either 0 or 1.

3.6.2 Greedy Heuristic
Unfortunately, calculating an optimal solution using the ILP does not yield a
solution for any problem instances in a reasonable time, except for very small
ones (less than 10 vertices). To find a solution for a larger (realistic) scenario,
a faster algorithm is needed, trading off speed against a sub-optimal solution
which may use more than one wildcard per edge.
The Ethernet MAC address has no variable length but a fixed number of 48

bits. Laying 16 bit aside to differentiate multiple (virtual) hosts behind a single
switch port gives us a usable amount of 32 bit for the label. The split between
the host and label part is somewhat arbitrary and is intended to be a good trade
off but can be changed to accommodate other preferences.
Our approximation algorithm should gracefully adapt to a situation where a

perfect solution requiring the one n-bit wildcard for every output port cannot
be found and in this case use more than one wildcard rule per edge.
To achieve this goal we designed a greedy algorithm. The idea is to set one

label bit after another for every edge in a way that brings the solution closer to
requiring only one wildcard per link. For each bit, we will consider the switches
in a random order and assign the bit values to the path that improves the
situation at the most.
The greedy algorithm (Algorithm 1) gets as input the network graph and

paths (of flows); its output labels for the paths. The algorithm works as follows:
uniformly at random select an edge e = (u, v). From all paths that include that
edge e, determine from the so far assigned label bits the bits that all paths have

23

CHAPTER 3. EFFICIENT SDN ROUTING LABELS

in common. Apply these bits as a wildcard match on all paths that include an
edge (u, v′), v 6= v′, i.e. all paths that traverse also the switch u. Put any path
that matches the wildcard in the set U . This set U now contains the paths that
cannot be distinguished from e at the switch u using the wildcard. If the set of
U is empty, move to the next edge. Otherwise, set the unset bit of the paths
in U so that the set U is minimised. Continue with the algorithm until either
the set of indistinguishable edges is empty for every edge or when the number
of bits is reached.

Algorithm 1 Greedy algorithm
P set of all paths, E set of all edges, n number of bits

1: procedure assignLabels(P,E) . Initialise all label bits to unset
2: for all p ∈ E do
3: for i = 1 . . . n do
4: label[p][i]=unset

5: for i = 1 . . . n do
6: for e = (u, v) ∈ shuffle(E) do
7: L = {p ∈ P |e ∈ p} . All paths that include e
8: w = getMatch(L)
9: U = {p ∈ P | ∃ (u, v′) ∈ p, u 6= and w(label[p]) = 1}

. All paths that have the switch u in common with e
10: if U = ∅ then
11: continue . Everything good
12: for k = 1, 2 do
13: if ∀ p ∈ L : label[p][i] = k ∨ unset then
14: for all p ∈ L do
15: label[p][i] = k

16: for all {p ∈ U | label[p][i] = unset} do
17: label[p][i] = k

18: return labels

19: procedure getMatch(S)
20: m ∈ Tn . indicator function (defined in Section 3.2.1)
21: for i = 1 . . . n do
22: if ∀ p ∈ S, label[p][i] = 0 then
23: m[i] = 0
24: else if ∀ p ∈ S, label[p][i] = 1 then
25: m[i] = 0

return m

After the bits have been set for every path and U is empty for every edge,
only one wildcard is needed per edge. For the infeasible case, we use a greedy
second phase of the algorithm (Algorithm 2) to find a valid set of wildcards.
Since using bits that are common to all paths does not create an empty set U ,

24

3.6. SOLVING PLA

11100

10101
11001

0111

10100
0011

e1

e2

e3

Figure 3.3: Node with six paths and four already assigned bits, common
bits in bold, next bits in grey

we split the wildcard into two wildcards w0 and w1. We calculate the sets U1
and U0 for all bits that are not common between all paths. Then we choose the
bit that minimises U1 and U0. We repeat this step until the sets Ui are empty
for all wildcards wi of the path.
As an example, consider Figure 3.3 where the first four bits are already set.

A wildcard using the common bits of all paths including edge e1 is 1XX0, which
matches one path of e2 and one of e3. Adding 0 to the paths of e1 and 1 to the
paths of e2 and e3 makes the wildcard 1XX01 match only paths of e1.

Algorithm 2 Second Phase of the greedy algorithm
1: procedure secondPhase(P,E, labels)
2: for e = (u, v) ∈ shuffle(E) do
3: minsize =∞
4: mini = 0
5: L = {p ∈ P |e ∈ p} . All paths that include e
6: for i = shuffle(1 . . . n) do
7: w = getMatch(L)
8: w0 = tL, w1 = tL
9: w0[i] = 0, w1[i] = 1

10: U0 = {p ∈ P | ∃ (u, v′) ∈ p, u 6= and w0(label[p]) = 1}
11: U1 = {p ∈ P | ∃ (u, v′) ∈ p, u 6= and w1(label[p]) = 1}
12: if minsize > |U0|+ |U1| then
13: mini = i, minsize = |U0|+ |U1|
14: for p ∈ U0,mini

do
15: label[p][mini] = 0
16: for p ∈ U1,mini

do
17: label[p][mini] = 1

25

CHAPTER 3. EFFICIENT SDN ROUTING LABELS

1 2

3

5
4

1 2 3 4 5

Figure 3.4: Example transformation of a graph for 4-colourability

3.7 Complexity of PLA
The path label assignment problem is NP-complete for inputs of arbitrary net-
works. We present a proof in this section.
The existence of a polynomial-sized ILP (see Section 3.6.1) for the problem

shows that the problem is inside NP since ILP problems are solvable by an
NP algorithm. To establish NP-completeness, we need to show that for the
other direction a polynomial-time reduction exists as well. We will show that
the 4-colourability problem [22, 23] (can four colours be assigned to vertices of
a graph so that no edges connect vertices with the same colour) can be reduced
to the path label assignment problem.
Let G = (V,E) be the input for the 4-colourability problem. For each edge

ei ∈ E we add a switch ri in our model with two input and two output ports.
Each vertex vj ∈ V is identified with a path pj . The path pj will traverse every
ri once for each edge ei that is adjacent to vj . Traversal can be in any order.
Figure 3.4 shows the idea of the reduction and shows reduction of a 5-vertices

graph. The paths in the PLA problem have the same names as the vertices in
the 4-colourability problem. For each common edge in the graph, the paths go
through a common switch. If two connected vertices have the same colour, it is
easy to see that then also the two associated paths with the same colour/label
must cross the same switch.
By choosing the number of label bits (n) as two, four label values are possible

for each path (00, 01, 10 and 11). For a switch with one path per output
port each path must have a different label to be distinguishable. If the path
label assignment problem has a solution, set the colours of the vertices vi in G
according to the bits of the corresponding paths pi to solve the 4-colourability
problem. To show that this is indeed a colouring solution, assume that this is not
a valid solution for the 4-colourability problem. Then, an edge e = (u, v) exists
which connects two nodes with the same colour. The paths corresponding to u
and v, pu and pv, have the same bit mask. Since pu and pv are distinguishable
in re they cannot have the same bit mask. This contradicts the assumption
above that the solution is valid for the path label assignment.
If the label assignment problem has no solution, the 4-colourability problem

also has no solution. Again, assume the bit mask problem has no solution but
the 4-colour problem has a solution. Assign each colour a bit mask and the
bit masks to the paths in the bit mask problem. Then, for each switch the
paths will have different bit masks and the bit mask problem has a solution,

26

3.8. EVALUATION

establishing the contradiction.
Since a polynomial-time reduction is shown in both directions the PLA prob-

lem is indeed NP-complete.

3.8 Evaluation
Our evaluation consists of two parts. The first part shows that our method of us-
ing the destination MAC address as labels without rewriting the source address
(Section 3.5) works as anticipated. The second part is an empiric evaluation of
the greedy heuristic in multiple network scenarios.
While our method complies with the Ethernet standards, the behaviour of the

network is unusual from the perspective of an operating system. We built a test
bed using Mininet [63] and connected various virtual and physical hosts with
different operating systems (Windows, Linux, Mac OS X and Cisco IOS) to it
and implemented our approach on the test bed. The SDN controller would then
reply to ARP queries that contain label addresses instead of the real addresses
and install flow rules that use these label MAC addresses with a rule on the
final switch to rewrite the label address to the real physical address.
Our findings confirmed that the operating systems will accept IP packets for

their own IP address as long as the destination MAC address is right. The source
MAC address can be arbitrary. Or, from an Ethernet layer-centric view, the
operating systems do not make assumptions about the network addresses other
than the receiving MAC address should be its own address. There is no attempt
made to match a packet’s IP and MAC address against the corresponding entry
of that IP address in the receiving node’s ARP cache.
The second part is a simulation to evaluate the possibility of reducing the

number of needed flow table entries by using the greedy algorithm described in
Section 3.6.2.
For small or simple structured networks (without many alternative paths,

e.g. trees with less than 100 switches) the greedy heuristic achieves the optimal
solution with one wildcard per edge.
As a more challenging example for the greedy heuristic, we built a CLOS net-

work consisting of two core switches and 16 pairs of distribution switches (two
uplinks each). Each pair of distribution switches had 8 top of rack switches
connected to it. The network has 320 links between the switches (or 640 un-
directed links). To test the robustness of the heuristic, we modified the graph
by randomly removing links and switches. As paths, we calculated all shortest
paths between all switches. Using these paths, the SDN controller can choose
the exact path between two end hosts purely by answering an ARP reply and
without having to install or modify any FIB entries. The resulting number of
wildcards compared to edges in the network is plotted in Figure 3.5. In this
complex setup, the heuristic manages to achieve an average of about 4-5 wild-
cards per outgoing edge. The number of required wildcards is quite stable for
the modified graphs as well.

27

CHAPTER 3. EFFICIENT SDN ROUTING LABELS

590 600 610 620 630 640 650
Number of Edges

2200

2400

2600

2800

3000

3200

3400

N
um

be
r
of

W
ild

ca
rd
s

Figure 3.5: Average number of wildcards used by the greedy heuristic with
95% confidence intervals

28

3.9. CONCLUSION

3.9 Conclusion
We have formalised the Path label assignment (PLA) problem of finding the
optimal number of FIB entries for a network and proofed the complexity of the
problem.
We have shown that our techniques for reducing the number of needed flow

table entries in a software-defined networks are viable. A centrally managed
network makes it possible to use the destination MAC address as a very light-
weight label that can be applied through ARP by the connected hosts allowing
very small FIB tables and label routing.
We have provided a greedy algorithm that can be used to calculate labels for

arbitrary networks.
For the goal of this thesis, the aspect of being able to redirect traffic in a

better way is important. The ability to use label routing for that, even with
inexpensive SDN switches, is an essential part of reaching that goal.

29

4 SynRace: Multi-path Routingy
Multi-rooted trees are becoming the norm for modern data-centre networks.

In these networks, scalable flow routing is challenging owing to the vast number
of flows and paths. Current approaches either employ a central controller that
can have scalability issues or a scalable decentralised algorithm only considering
local information, which might only find a sub-optimal solution.
In this chapter I present a new decentralised approach to least-congested path

routing in software-defined data centre networks that has neither of these issues:
By duplicating the initial (or SYN) packet of a TCP flow and estimating the data
rate of multiple paths in parallel, we exploit TCP’s habit to fill buffers to find
the least congested path. We show that our algorithm significantly improves
flow completion time without the need for a central controller or specialised
hardware.
This chapter is based on

• Arne Schwabe and Holger Karl. “SynRace: Decentralized Load-Adaptive
Multi-path Routing Without Collecting Statistics”. In: Proceedings of the
2015 Fourth European Workshop on Software Defined Networks. EWSDN
’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 37–42.
isbn: 978-1-5090-0180-4. doi: 10.1109/EWSDN.2015.58. url: http:
//dx.doi.org/10.1109/EWSDN.2015.58

4.1 Introduction
Modern data centres no longer use a single rooted tree topology with just a
single path between hosts, but they move towards multi-path topologies like
CLOS/FatTree topologies, which provide multiple redundant paths between end
hosts. To support traffic-intense applications by providing them with a high data
rate and low latency, it is critical to avoid congestion. To fulfil these demands
the data rate of multiple paths between end hosts is required.
Ideally, this could be accomplished by distributing the traffic between com-

munication partners over multiple paths and using all available capacity. Un-
fortunately, TCP traffic cannot be easily split arbitrarily and a routing decision
has to be made to assign each individual flow to a particular path[65].
Our solution leverages the interdependence of congestion and latency. In a

data centre we assume that the paths between a source and a destination are
symmetrical. When a path is congested by multiple flows, the buffers along the
path are being filled and this gives the path a higher latency compared to a
path on which the buffers are empty. Hence, a path with a smaller latency than
another path is likely to have a higher unused data rate. We reckon that we
can use a path’s latency as an indicator for its load and its (likely) unused data
rate.
To find the path with the smallest latency between a given source and destin-

ation, we use a low-overhead mechanism to measure the latency along all paths:

31

https://doi.org/10.1109/EWSDN.2015.58
http://dx.doi.org/10.1109/EWSDN.2015.58
http://dx.doi.org/10.1109/EWSDN.2015.58

CHAPTER 4. SYNRACE: MULTI-PATH ROUTING

B

U

X

V

W

A

C
D

E
t=1

t=2

t=3

t=3

t=4

t=4

t=2

Figure 4.1: Example of SynRace

SynRace sends a TCP’s connection initial SYN packet over all paths as a probe
and then picks the path of the first arriving SYN probe. We assume that this
is the fastest path and has the highest remaining data rate.
Figure 4.1 gives a simplified illustration how SynRace works: In this example,

two flows from hosts B and C to host D are already established (dashed lines).
These two flows cause a congestion at switch V, filling up the buffer of the
switch. At time t = 0, host A decides to initiate a connection to host E and
sends two probe packets (shown as diamonds) onto the two alternative paths.
These travel on the upper and lower path at the same speed until at t = 3 the
packet on the upper path is queued and delayed by the filled buffer. At t = 4,
the probe packet of the lower path is the first probe packet to arrive at E and
SynRace selects the path the faster probe packet travelled (U → X → W) for
the new connection. The example omits the recording of the travelled path on
the probe packets and signalling back the chosen path to the sender A.

While this approach is conceptually simple (and variations of it have been
introduced before), a major contribution of this chapter is the integration of
this approach into SDN-based data centre networks and an evaluation using
realistic traffic traces and network topologies.
The remainder of the chapter is structured as follows: We begin by comparing

our approach to existing approaches in the related work section. In Section
4.3 we discuss the different sources of latency and their influence on the path
latency, which is central to our approach. We then discuss the technical aspects
in more detail in Section 4.4. We present an implementation of SynRace with the
ubiquitous SDN protocol OpenFlow in Section 4.5. We follow up by describing
some important corner cases and the applicability to WAN networks in Section
4.6 (e.g., multi-homed hosts). Finally, we give an experimental evaluation of
our approach in Section 4.7 and draw a conclusion in the last section.

4.2 Related work
Routing flows in networks with alternative paths is a very old field. Unsurpris-
ingly, there are multiple different approaches tailored to specific requirements.
The first class of approaches consists of decentralised algorithms that use only

32

4.2. RELATED WORK

local information. A popular, robust example of this class is equal-cost multi-
path routing (ECMP) [49, 76]. ECMP works by assigning each possible route
on a switch a cost, usually derived from the number of hops to the destination.
For each flow, one of the routes with the least cost is chosen in a random or
round-robin fashion, depending on the implementation. The idea is that with
enough flows the utilisation of the links equalises as a symmetric traffic pattern
is assumed. Most ECMP implementations are completely agnostic to load. But
even if the ECMP implementation uses locally available information and chooses
the route with the least local utilisation, any bottleneck that is on the remainder
of the route is completely ignored. A big advantage of ECMP is its simplicity
and that no communication between network elements is required.
The second class of approaches uses a central instance to decide routes. By

collecting statistics of utilisation of each link in the network, the central instance
can make more informed decisions using global knowledge. This paradigm is
especially popular in the software-defined networkings (SDNs) community [60].
This class of approaches, however, comes with its own problems: The central
controller becomes the bottleneck of the network and statistics of flows and/or
link utilisation need to be collected periodically or event based. The smaller
the collection interval is, the more accurate these statistics become but also the
higher is the load on switches and controller. Furthermore, either a separate
control network between the switches and the controller is needed or the con-
trol messages and actual data traffic compete. An example of such a central
flow scheduler is Hedera [30]. Hedera collects statistics only every 5 s and only
schedules a subset of flows to avoid scalability problems.
Another decentralised approach is Cisco’s CONGA [5]. The main idea is very

similar to our approach: each leaf switch selfishly uses the least congested path
in a decentral fashion. To find the least congested path, CONGA uses hardware
acceleration and piggybacks queue status onto regular network packets, keeping
the decentral path congestion information up to date. This requires specialised
hardware supporting CONGA, which is the main difference between our ap-
proach and CONGA. We carefully designed SynRace to depend on nothing but
standard OpenFlow SDN switches.
The idea to exploit the observed latency of packets to infer network char-

acteristics is used in other approaches. Examples of approaches that estimate
network performance are Packet Pairs or Packet Trains [53, 72]. By sending
multiple probing packets and measure the delays between arriving packets, they
estimate the queue size/link speed of the bottleneck link between sender and re-
ceiver. In contrast to our approach where we make assumptions on the network
topology, these approaches do not as their focus is to estimate characteristics of
a bottleneck link in the Internet with unknown characteristics. Our assumptions
allow us to send only one probe packet, which gets duplicated along the path,
whereas these approaches need multiple packets per path to determine the best
path. In a time critical task, as is finding the path for a new flow, our approach
has the advantage of needing much less time. It only needs to wait until the
first packet arrives to make a decision (in contrast to waiting for all packets as
the packet train/pair approaches).

33

CHAPTER 4. SYNRACE: MULTI-PATH ROUTING

A similar idea to SynRace, but realised in a vastly different scenario, is the
dynamic source routing (DSR) protocol for wireless networks [57]. The idea of
the protocol is very similar: Send out a probe in parallel over multiple paths
and use the path on which the first probe (copy) arrives. But wireless networks
have quite different characteristics than data-centre networks: wireless networks
share the medium, local broadcast instead of unicast, high expected packet
loss in wireless and no highly structured network (especially not completely
symmetrical), making the two approaches quite different in implementation and
technical details.

4.3 Latency as a proxy for data rate
Since we use packet latency delay to find the least congested path in the network,
we first need to establish that the path with the smallest latency is indeed the
one with the maximal residual data rate. This is due to TCP’s congestion
control dynamics: TCP will try to fill the buffer of the bottleneck link as part
of its congestion avoidance mechanism [26, 93, 127]. Even more modern TCP
variants like Data Center TCP (DCTCP) [6], which are designed to keep queue
buffers small, will have some packets in a buffer. DCTCP has a parameter K
to control this size, which is set between 20 and 65 in the original paper [6].
This in turn results in filled buffers on utilised links (like other TCP variants),
which have a low residual data rate. Since packets travelling on paths with
filled buffers will be delayed by queuing, packets on paths with empty buffers
and otherwise the same characteristics will have a smaller end-to-end delay.
The question arises if the difference of queuing delays is large enough to be

measurable and if it accounts for the lion’s share in the observed delay difference.
The delay of packets is influenced by multiple factors; we will look at the possible
factors influencing the delay and evaluate how these affect our measurement.
We start by describing the queuing delay introduced by congested links in

absolute time: Buffer sizes vary wildly from a few kilobytes in inexpensive top-
of-the-rack TOR Gigabit switches up to hundreds of megabytes in modular
core switches [21, 55]. An Ethernet packet of 1500 bytes takes between 120 ns
(100Gbit/s) and 12 µs (1Gbit/s) to be transmitted. One megabyte of queued
bytes on a 10-Gigabit link causes a delay of 800 µs. Based on these numbers,
the total queuing delay is in the order of hundreds of microseconds (µs) to a few
milliseconds (ms).
We compare this delay with other possible sources of delay differences and

start with the physical connection. At 10 Gbps, even the delay of a single queued
packet (1500Byte, 1.2 µs) causes more delay difference than a 200m difference
in cable length (200m · c · 1

1.62 ≈ 1µs (speed of light in fibre optics)).
Different switch models and different forwarding strategies can influence the

delay of a packet. Fortunately, these delays are identical for identical models
and in a symmetrical data centre structure also the paths are symmetrical and
each packet will be delayed by the same amount at each stage. Hence, this will
not lead to a difference between the different paths.

34

4.4. OVERVIEW OF SYNRACE

In conclusion, the queuing delay dominates the delay difference of alternative
paths in data centres.

4.4 Overview of SynRace

We have established in the last section that for each alternative path between
communication partners in a reasonably designed data centre, the latency is the
same. As hinted at in the introduction, we select the path with the lowest delay
to route a flow by sending a probe packet on each path. By using only one probe
packet we trade a fast connection setup time for accuracy. A single sample will
not have perfect prediction, e.g., a path with bursty traffic will temporarily have
empty queues but any traffic on a path increases the probability of delay and a
really congested link will always have a high delay.
The order of the packets in which the packets arrive at the receiver should only

depend on the queuing delays experienced by the probing packets. The naïve
approach is to send one probe packet for every path from source to destination,
but this approach favours the first packet sent. The solution to this problem is
to start by sending only one probe packet for all paths and duplicate the probe
packet only if paths diverge. When the probe packets arrive at the destination,
we need a way to recover the path the packets travelled. As we start with only
one packet, this information cannot be written into the packet by the sender and
we need to add this information in transit. We realise this by adding different
IDs to the different copies when the path branches. This allows to recover the
switches traversed by the probe packet.
In contrast to broadcast networks (like wireless networks, for which DSR has

been designed for), in a wired network like Ethernet the capacities of each dir-
ection are independent of each other. This entails two things: For bidirectional
traffic we need to discover the best path for both directions and for each direc-
tion we need to deliver the information of the selected path from the receiver
to the sender. For bidirectional flows we choose to piggyback the information
about the best path to the first packet going in the opposite direction (typically
the SYN/SYN-ACK packet).
SynRace has been designed to be a decentralised algorithm. For our approach,

each switch can have a different (local) controller to ease scaling. We assume
that every local controller has learned the network topology and that all switches
have agreed on other fixed details like switch IDs. We consider this information
exchange to be outside the scope of SynRace since they take place on large
timescales and efficient algorithms for these problems are widely known. Other
than these –almost static– information, the switches exchange information only
through the probe packets. The actual chosen path must also be signalled to
the other side of the flow. We try to piggyback that information as much as
possible on the probe request themselves. See the discussion in Section 4.5.4 for
a detailed discussion.

35

CHAPTER 4. SYNRACE: MULTI-PATH ROUTING

4.5 Implementation in OpenFlow

In this section, we present an implementation of our approach for the SDN
protocol OpenFlow [69] (see Section 2.3).
For our implementation, we differentiate between two different types of pack-

ets: probe packets and normal packets. Normal packets belong to an already
established connection and are sent over one path. Probe packets, on the other
hand, are the packets that are duplicated over the possible paths and need spe-
cial treatment. For a bidirectional connection like a TCP flow, probe packets in
both directions are needed.
An SDN switch will perform a lookup of a packet’s header in the forwarding

table for each incoming packet. When a forwarding-table miss is triggered and
the SDN controller is involved, the packet processing delay is often in the range
of milliseconds to seconds and has a large variance. This voids our assumption
that the measured delay is dominated by queuing delays. Therefore, our first
objective is to avoid forwarding-table misses for probe packets at all cost. We
need to install all packet rules needed to forward the probe packets before a
probe packet is sent.
On the other hand, we also use the forwarding table miss mechanism on the

egress switch to select the best path. By not installing flow rules for probe
packets on the egress switch, we force this specific switch to forward all probe
packets to the (local) controller and compute the path to install from the first
arriving flow miss message.
Since timing constraints force us to ensure that forwarding is done in hard-

ware, all packet modification is also limited to hardware features. This brings us
to the next key design aspect of SynRace. The copies of the packets that arrive
at the destination switch need to carry information about the travelled path.
Otherwise, the receiver of the racing packets cannot differentiate the copies and
cannot determine the path the packet used.
The conclusion is that we need to construct the forwarding tables entries such

that these –without falling back to the controller– will

• forward and duplicate probe packets
• modify the probe packets to record the travelled path.

The following subsections will address each of these challenges.

4.5.1 Forwarding and duplicating the probe packets

Forwarding and duplicating the probe packets is astonishingly simple in Open-
Flow. Instead of performing a lookup of the destination and setting the output
port to one of the possible paths, the output port is set to the list of all ports
where paths continue. This step also ensure that the copies of the incoming
packet are processed and enqueued to the output buffers at the same time.

36

4.5. IMPLEMENTATION IN OPENFLOW

4.5.2 Triggering the race
There are multiple events that can trigger the sending of probe packets. The
most basic event is the arrival of a new flow. An extremely fine grained way to
deal with new flows is to send out probe packets for every new flow; the flow
rules can be set up to forward every unicast packet not matching any other rule
to initiate the SynRace by modifying the packet to be a probe packet. A less
aggressive way is to first forward the packets to a local controller. The controller
can then decide if a race should be started or if a cached result should be used.
A controller can also make educated guesses whether a flow might be big/im-

portant enough to warrant the sending of probe packets: For example, if the
destination port belongs to a Map-Reduce framework’s file system, a large data
transfer can be expected. In contrast, a small HTTP flow that has a request and
an answer that fit into one packet (e.g., to poll a status or check for updates)
creates a lot of overhead and probe packets for this flow might not warrant
sending probe packets.
Instead of or in addition to triggering the sending of probe packets by a

new flow, the controller can also decide to send unsolicited probe packets. For
example, the controller might decide to poll every few seconds for the best
path to a few key communication partners to consider rerouting if the situation
significantly changes.

4.5.3 Adding path information
To label the probe packet with hops of the path, we have to overcome a few
challenges that are imposed by the capabilities of the OpenFlow standard and
the switch hardware. To record the path of a probe packet, we need to modify
the packet at each hop to be able to differentiate one packet copy from other
packet copies that travelled other paths. Packet modification in OpenFlow is
described by actions. Unfortunately, the only allowed actions (in all current
OpenFlow versions (1.0 – 1.5)) are to replace/add a header (field) or to keep
a header (field) unchanged; there is no possibility to reference an old header
value in an action (the only exception are in/decrements of hop count fields).
To summarise, we have to add/modify a header or a combination of headers to
create a path label.
Headers that can be reused for the label consist of unused headers and headers

that can be overwritten and restored to their original content in the last switch.
Headers that qualify are, for example, the source and destination MAC address,
MPLS labels and the VLAN ID.
Adding switch IDs can either be done by setting a new label on each hop

of the path or by modifying an existing label to contain two or more IDs. To
put two IDs into one header, we need to change that header from idswitch1
to (idswitch1, idswitch2). Since we cannot reference the first ID in the action,
a separate flow entry for each possible value of idswitch1 is needed. Encoding
three IDs like (idToR, idDistribution, idCore) into a header forces a switch to have
forwarding table entries for all possible combinations of the first (idToR) and

37

CHAPTER 4. SYNRACE: MULTI-PATH ROUTING

second (idDistribution) part of label. We can work around this limitation by
using more than one header for the label, e.g., using the MAC source address
for the first and second hop and the MAC destination address for the third and
fourth hop. We can further reduce the need for label space: When the probe
packet arrives at the egress switch it is forwarded to the SDN controller. The
switch forwarding the packet is obviously the last switch. The SDN controller
can infer the penultimate switch by looking at the ingress port of the packet.
We now need to combine label adding and forwarding into forwarding table

rules. Simple merging creates a large Cartesian product and increases the num-
ber of rules dramatically. Fortunately, OpenFlow (1.0 with extensions and
1.3+), allows to chain tables, allowing us to keep labelling and forwarding sep-
arate.
Figure 4.2 shows an example. Part of an example network and an excerpt

of the forwarding tables for the highlighted switch (grey) are shown. The first
three rules in Table 1 handle probe packets received on port 7: Depending on
whether the probe has traversed switch one, two or three, the probe packet has
been labelled either f10000, f20000 or f30000. The rules in the first table will
modify this label to also record the hop of the switch seven and delegate adding
the forwarding actions to the second table. The second table will just check
that a packet is indeed a probe packet (label begins with f) and then forward
and duplicate the probe packet.
Since label combining needs the Cartesian product of path inputs and possible

labels in the first table, it should be on switches where the possible number of
input label combinations and ports are small, e.g., from the core switches to the
distribution switches where the Cartesian product size (number of uplinks of a
distribution switch times the number of core switches) is usually below twenty.
The total number of rules depends on how paths are calculated and how for-

warding table rules are implemented. We give a calculation for a typical 3-tiered
CLOS data centre network (core, distribution, ToR) in which all shortest paths
between two hosts are allowed and structured addresses are used (e.g. pod and
tor is encoded explicitly into the destination MAC address as in Portland [81]
or implicitly as presented in Chapter 3 or encoded into the IP address like using
10.0.0.0/8 with the semantic 10.pod.tor.host). In the simpler first case, where
combining IDs in labels is not used, each core switch needs one rule per pod:
lookup pod ID from address, add own ID as label and forward packet to all
ports that lead to that pod. Distribution switches need one rule per ToR and
one rule that forwards probe packets to all (connected) core switches when the
host is not local. ToR switches just need the rules to forward the probe packet
to the controller. In the more complicated case where labels are combined, the
switches that need to combine label need to add the number of the Cartesian
product as explained above.
In summary, the number of rules that are needed for SynRace is very small

and even if structured addresses are not used in normal forwarding table entries
(for non probe packets), the structured addresses can be used for SynRace as
probe packet forwarding is separate from normal forwarding. The rules on the
ingress switch for the SynRace probe packet will transform the normal addresses

38

4.5. IMPLEMENTATION IN OPENFLOW

1

2

3

7

8

Forwarding table 1
Match Action

label=f1000,inport=7 set label=f10700, next table=2
label=f2000,inport=7 set label=f20700, next table=2
label=f3000,inport=7 set label=f30700, next table=2
label=f3000,inport=9 set label=f30900, next table=2

.

Forwarding table 2
Match Action

label=f****,dst=10.2.0.2 set outport=1,5
label=f****,dst=10.7.0.5 set outport=2,4
label=f****,dst=10.9.0.7 set outport=1,2

.

Figure 4.2: Example network and OpenFlow forwarding table setup for Syn-
Race

into structured addresses. As the probe packet will be sent to the controller on
the egress switch, the structured addresses are completely hidden from the end
hosts.

4.5.4 Installing the flow entries
We have described how to choose the path based on the delay of the SYN packet
(and return path based on SYN/ACK). But the information of the chosen path
is only present at the last hop of the path (usually the ToR switch of the destin-
ation). For TCP flows we can piggyback the information on the probe packet
containing the SYN/ACK packet, which is racing in the opposite direction. The
controller at the other end can then retrieve the meta information, install the
flow entry and forward the SYN/ACK packet to the connected host.
It is important to do the steps in the right order, in particular that the

flow rule is installed before the SYN/ACK is delivered to the destination host.
Otherwise, the arrival of the SYN/ACK packet moves the TCP’s connection
into the ESTABLISHED state; it could then start sending packets while the
flow rules we have just computed are not yet installed, triggering needless flow
table misses and PACKET_IN messages to the controller.
Installing the flow rule on the receiver side is more challenging. As indicated

39

CHAPTER 4. SYNRACE: MULTI-PATH ROUTING

Sender
Ingress
Switch

Egress
Switch Receiver

SYN

SYN

SYN+ACK

SYN+ACK

PROBE

PROBE(SYN)

ACK
ACK

ACK

Control

(SYN+ACK)

EST

EST

SYN
SENT

LISTEN

SYN
RECV

Message

Figure 4.3: Message sequence chart for installing flow entries and three way-
handshake, circles indicate the points in time when a flow rule
is installed at the respective switch

in the previous paragraph, the information how to route the direction to the
sender is only available after SYN/ACK has been received by the sender. The
natural solution is to piggyback the path information to the first packet of the
sender (the third packet of the handshake). But since the connection is in
the ESTABLISHED state, the sender and the receiver start sending packets
triggering flow misses at the receiver’s switch.
A cautious solution is to delay the delivery of the first ACK until the flow is

installed. Instead of delivering the SYN/ACK as soon as possible (and triggering
the sender’s ACK packet) the sender side’s switch can send a control message
containing only the path information and wait for an acknowledgement. This,
however, comes at the cost of introducing an additional round trip time.
Instead, we can opt for a more opportunistic solution and live with the race

condition but alleviate its effects as much as possible. We do not wait for the
acknowledgement of the control message but instead avoid risking packets to
be forwarded to the controller by installing a temporary rule as soon as we see
the SYN/ACK packet. Figure 4.3 illustrates the information flow, TCP state
on sender/receiver and order of packets with a message sequence chart for this
opportunistic approach using a temporary flow rule.
Falling back to the temporary route, the packets are forwarded over the de-

fault path until the controller of the local switch can install the specific flow rule.
Using this strategy can result in the first packets of a new connection to take
another path than the following ones. This can result into packet reordering
since the path selected by the probe packet is most likely faster and the packets
of the second path might arrive earlier. Such reordering is known to negatively
affect the performance of TCP [65]. In our own implementation and evaluation,
we decided to use the first approach to avoid this effect.

4.6 Corner cases

This section looks into some corner cases and how SynRace affects them.

40

4.6. CORNER CASES

4.6.1 Asymmetric networks
Even though routing of individual flows is mostly done in a data-centre environ-
ment, there is no compelling reason why individual flow routing should not be
done on campus or WAN network. In such networks, alternative paths typically
have unequal delays and determining the least congested path by looking at the
order of received probe packets is not sufficient anymore.
This can be avoided by adding accurate timestamps on probe packets on

the last switch. Using an uncongested reference measurement for the links can
be used to determine the difference in latency of the paths. By subtracting
these times from the timestamps of the probe packets, we can infer the lowest
queuing delay. Such a measurement can be produced in an active network if
the switches have priority queues (QoS) that have priority over all other queues.
Unfortunately, the PAKET_IN message of the current OpenFlow protocol does
not have a timestamp field but such a field could easily be added. This then
needs hardware modifications, which our approach is designed to avoid. But
since only the last switch needs the hardware modification, adding a (small)
extra switch per WAN node and keeping the other switches unmodified allows
SynRace to be also used in this scenario.

4.6.2 Multi-homed end hosts
In data centres, reliability is often an important aspect. To protect against
devices failures, end hosts are often connected to two ToR switches instead of
one. When one link is only used as a backup, the scenario is the same as a single
connected host scenario, i.e. nothing changes.
In this scenario the end hosts uses both links with a link aggregation like

802.3ad [49]. To avoid reorder problems, an individual flow is sent only to one
of the links, often by some hashing algorithm. The host therefore controls the
first hop link and thus chooses the first hop ToR switch. This implicit decision
limits the number of paths to choose from but data-centre networks with dual-
homed hosts have more redundant paths than normal data centres. Instead of
one destination ToR switch, there are now two ToR switches. Ideally, both ToR
switches would have perfectly synchronised clocks to timestamp the PACKET_IN
messages and would be controlled by the same controller; this would allow to
handle them like a single switch by sorting all probe packet’s PACKET_IN by
their arrival time and selecting the probe packet with the earliest time.
The order of the received probe packets can only be determined for each

individual switch. A simple solution is to pick one ToR switch at random
and only process the probe packet from this switch, effectively ignoring the
pathes that contains the other switch. If both ToR switches are controlled by
the same controller the controller might have additional information to make a
more educated choice than blindly choosing at random.
Picking the destination ToR switch can also be done at different stages in the

path selection process. The earliest selection point is to send the probe packets
only to one of the destination switches. Alternatively, both end switches can

41

CHAPTER 4. SYNRACE: MULTI-PATH ROUTING

send their result to the origin switch and let the controller assigned to that
switch choose.

4.6.3 Effects on small flows
Having a large residual data rate is clearly beneficial to large flows. Small flows,
which consist of only a few packets, are common and have no obvious benefit
from a high data rate but are typically sensitive to latency. Sending probe
packets for such small flows generates overhead. Knowing in advance if a flow
is large or small is difficult, in many cases even impossible. We argue that we
do not need to make this distinction since our approach is –although perhaps
counter-intuitively– beneficial for small flows in typical scenarios.
Our approach duplicates the first packet of each direction. By choosing the

path with the lowest latency, the expected average latency and completion time
for the flow is lower than with a conventional path solution. For latency-bound
small flows, this is a major improvement, also shown in our evaluation in the
next chapter. In summary, we trade a higher network load for a better and
more reliable performance of smaller flows.

4.7 Evaluation

For our evaluation we used Mininet [63] to emulate a typical multi-rooted tree
data centre topology with a CLOS topology. We compared our approach with
an ECMP implementation. We have chosen to compare our approach with
ECMP since ECMP has also the advantage of having no central instance that
decides which path a flow takes and scales well with the number of switches;
it is the most established approach for using multiple links in a data centre.
Other approaches (central and decentral) that improve data centre performance
compare themselves with ECMP. As metric we use flow completion time as
the flow completion time is a direct consequence of the data rate each flow
experiences and the vast majority of flows have a fixed amount of data that
they transfer rather than a fixed time that they run. So any improvement
in data rate that SynRace gives should be directly visible in completion time.
Furthermore, in data centres, completion time of jobs is the more interesting
metric (e.g. compared to load on the network).
In our first scenario, we use large flows randomly between the hosts of the

network. All flows have the same size. This traffic pattern is unrealistic but is
comparable to the evaluation of similar approaches (e.g., Hedera [30] uses fixed
500 MB sized transfers for the simulation of the shuffle phase). We simulated
different load levels by varying the number of flows; at a load level of 1 the
data rate of the generated flows equals the bisection bandwidth. As can be
seen in Figure 4.4, our approach significantly improves flow completion times.
Improvement of the average flow completion times is between 6% (at 20% load)
and 25% (at 100% load).

42

4.7. EVALUATION

Figure 4.4: Empirical CDF of flow completion times under different loads

To simulate realistic data-centre traffic, we used the data centre traffic gen-
erator DCT2Gen [126] and also confronted the algorithms with realistic data.
Realistic traffic has a lot of very short flows and only a few large flows and a huge
number of flows in total; these parameters favour ECMP as ECMP performs
better with a large number of flows as a large number of flows is more likely to
be evenly distributed over all links than the a small one. Nonetheless, as seen in
Figure 4.5, SynRace manages to improve the completion time for all flows over
ECMP. Overall, SynRace reduces average completion time by 5% even in this
very ECMP-friendly scenario. Even centralised approaches (e.g. Hedera [30])
have only similar or smaller gains with more available knowledge.

43

CHAPTER 4. SYNRACE: MULTI-PATH ROUTING

<1kB 1kB-10kB 10kB-100kB 100kB-1MB >1MB
0.90

0.92

0.94

0.96

0.98

1.00

1.02

Fl
o
w

 c
o
m

p
le

ti
o
n

SynRace

ECMP

Figure 4.5: Comparison of flow completion times for realistic traffic using
ECMP as baseline

4.8 Conclusion
We have shown that our method of cleverly using probe packets in SDN networks
can choose optimal paths without needing specialised switches. It significantly
improves flow completion times across all kinds of flows. Furthermore, SynRace
is well isolated and can be used in conjunction with other techniques, which
makes SynRace a candidate to further improve the quality of other approaches.
In my thesis, this approach is particularly interesting because it provides a low-
overhead method to collect information needed to make useful traffic engineering
decisions.

44

5 Compositiony
This chapter defines and discusses composition of software-defined networking

applications and shows the theoretical and practical approaches to composition
in software-defined networks and explains the challenges associated with it. I
explore feasibility of OpenFlow as an Application Programming Interface (API)
for a composition engine and argue that its design as a Southbound controller
interface makes it unsuitable for this task.

5.1 Introduction
Traditionally, network policy management is done manually: network adminis-
trators translate high-level network policies into low-level network configuration
commands. Policy changes hence take a long time to plan and implement. Even
with careful planning, side effects can be overlooked. Therefore, problems are
typically detected only at runtime when users unexpectedly loose connectivity,
security holes are exploited, or applications experience performance degrada-
tion [91].
Software-defined networking (SDN) promises higher flexibility in the way net-

works are managed. However, as we have seen in the previous chapters, by
introducing user-defined software in networks, we also introduce the complexity
and dangers of modern software systems into them.
One of the emerging problems in SDN is the heterogeneity regarding network

applications, as many different entities want to push network rules to an SDN
network, be it from traffic engineering (TE) or from an SDN application run-
ning on an SDN controller or by currently developed standardised interfaces to
an SDN controller; these interfaces include the notion of an agent that accesses
network devices – as proposed by Interface to the Routing System (i2rs) and
other working groups (WGs) in the Internet Engineering Task Force (IETF).
These interfaces foresee multiple applications accessing the same SDN control-
ler. Similar to concurrent programming, a series of issues related with multiple
access arises, including situations where several applications produce “conflict-
ing” configurations. For example, a firewall can tell the network to drop a flow
while a load-balancer will instruct the network to redirect the flow to a specific
host. Intuitively, the firewall should be given higher priority and the end res-
ult should be to drop the packet; making this decision automatically requires a
composition logic.
Contemporary approaches to defining and dealing with a “conflict” suggest

that a generalised composition logic is not possible. In this chapter, I provide a
new framework to describe the interactions between applications and the net-
work based on transactions and examine what approaches to composition may
make the problem tractable.
I start the next section by defining and explaining the different approaches

to composition in software-defined networks in Section 5.3. I will continue
by presenting general strategies to handle and implement composition in Sec-

45

CHAPTER 5. COMPOSITION

tion 5.4. I will look into the specific challenges of using OpenFlow in composition
in Section 5.5. I look at related work in Section 5.6 and provide conclusions in
Section 5.7.

This chapter is based on

• Arne Schwabe, Pedro A. Aranda Gutiérrez and Holger Karl. “Com-
position of SDN applications: Options/challenges for real implementa-
tions”. In: Proceedings of the 2016 Applied Networking Research Work-
shop. ACM. 2016, pp. 26–31

• The chapter “Composition of network applications” in the journal pa-
per: Elisa Rojes, Sergio Tamurejo Roberto Doriguzzi-Corin, Andres Beato,
Arne Schwabe, Kevin Phemius and Carmen Guerrero. “Are we ready to
tackle Software Defined Networks? A Comprehensive Survey on Man-
agement Tools and Techniques”. In: ACM Computing Surveys (to be
published)
I was the lead author of that chapter.

5.2 Definitions
For the scope of this chapter, a software-defined network is a collection V of
interconnected nodes (switches) forming a graph G = (V,E), where E describes
the connectivity between the switches. We define the state Nv of a node v ∈ V
as the state of its Forwarding Information Base (FIB). A FIB entry is defined as
a tuple (p,m, i) specifying a priority p, a match m that specifies which packets
this entry applies to, and a list of instructions i. A typical FIB entry used
in IP forwarding is (100, {ingress_port==*, dst_ip∈{192.168.100.0/24}}, set
{src_mac 00:00:00:ab:cd:ef, dst_mac aa:bb:cc:00:11:22, egress_port 3}). The
network state N is then defined as the collection of all node states

N = {Nv | v ∈ V }

The network state can be changed by a command C. A command is a sequence
of basic commands C = [c1, c2, . . .], cj ∈ {Finst, Fdel} that each modify the FIB
of a switch:

• Finst = (v, p,m, i): Install a FIB entry on node v with priority p, match
m and list of instructions i.

• Fdel = (v, p,m, i): Remove the FIB entry that was previously installed by
Finst(v, p,m, i)

We define the function a : N ×C → N as the function that applies a network
command to a network state and produces the new network state:

a(N, [c1, . . . , ck]) = a(a(N, c1), [c2, . . . , ck])

46

5.3. TYPES OF COMPOSITION

a(N, cj) =
{
Add (p,m,i) at v if cj = Finst

Remove (p,m,i) at v if cj = Fdel

for a basic command cj = (p,m, i, v).
In a network, these commands are generated by a control application or mod-

ule Mj . We define a network module as a state-based functionMj that reacts to
an event ev with a network command (and possibly modifies its internal state).
State is here not used in the pure mathematical sense but thatMj can also have
hidden state, for example remembering the network state or previous calls.

Mj : ev → C

Examples for network events are the arrival of certain packet types (like ARP
requests) or the arrival of a new flow currently not matched by any entry in the
FIB.

5.3 Types of composition
The goal of composition is to run multiple modules on the same physical network
and incorporate all their network commands into the network state.

5.3.1 Single module without composition
We start with the simplest case of a single module M1 and an event ev. All
commands are simply forwarded and applied to the network and the resulting
network state N ′ is:

N ′ = a(N,M1(ev))

5.3.2 Multiple modules without composition
A typical SDN controller runs multiple SDN modules and, commonly, all out-
puts of these modules are applied to the network without any explicit form of
composition. In this case, each command is applied to the network as it hap-
pens, just like in the single-module scenario. The resulting network state N (k)

for k modules all reacting to the same event ev looks like this:

N ′ = a(N,M1(ev))
N ′′ = a(N ′,M2(ev))
N (k) = a(N (k−1),Mk(ev))

The simplicity of this approach is also its biggest problem. Since every net-
work command is applied when it happens, the results depends on the order
of commands applied; a(a(N,M1(ev)),M2(ev) is not necessarily the same as
a(a(N,M2(ev),M1(ev)).
As an example, Module A sends the commands ’delete flow rule for 1.2.3.0/24;

install new flow rule for 1.2.3.0/24’ and module B sends the commands ’delete

47

CHAPTER 5. COMPOSITION

flow rule for 1.2.3.0/24; install new flow rule for 1.2.3.4/32". If applied in that
order the second command will delete the flow installed from the first command
set and only the rule for 1.2.3.4 is installed. If the second set of commands is
executed first, the result is that both flow rules are installed.
Both cases might occur in a non-deterministic fashion in the same network,

for example caused by differences in execution speed of modules M1 and M2.
Another problem are transient states. In the time after the first module has

answered but not the second, the transient network state N ′ is active. This
transient state is problematic since it only reflects the output of the first mod-
ule but not the others. These ill-specified, non-deterministic transient network
states are usually undesirable and constitute the main reason to explicitly define
a composition logic.

5.3.3 Multiple modules with harmonising
The output of multiple modules might contain conflicting or overlapping com-
mands. For example, two modules might instruct one switch to deal with the
same packet by either forwarding or dropping it, at the same priority (see Sec-
tion 5.4 for details). To deal with such conflicts, a stateful function

h : command→ command

can be used to modify or replace the commands. Stateful in this context means,
in the same way as with the modules Mj , that h is not a pure function in
the mathematical sense but that h but can have hidden state, for example
remembering the network state, or previous calls.
The resulting sequence of network states can be expressed as:

N ′ = a(N,h(M1(ev)))
...

N (k) = a(N (k−1), h(Mk(ev)))

An example of a harmonising function is the OpenFlow network hypervisor
FlowVisor [111], which restricts control of individual modules to parts of the
network (see the related work Section 5.6 for more examples and in-depth dis-
cussion). In this example, h would change the commands of each module to
affect only the assigned part (by a user configuration) of the network. Com-
mands that only affect parts of the network the module is allowed to interact
with can be transmitted without change; commands that affect only parts of
the network the module is not allowed not interact with are simply dropped.
For commands that affect both assigned and not-assigned parts of the network,
the function h needs to replace the commands with commands that affect only
the assigned part. This can be as simple, as adding a condition on a VLAN tag
if the module was assigned only to work on a particular VLAN. But complex
harmonising will require also very complex modification of the commands.

48

5.3. TYPES OF COMPOSITION

Naturally, the interaction of a harmonising function may render a module
non-working, especially the silent (from the module’s perspective) dropping of
commands. A simple learning switch will work fine when forcefully restricted
to a certain subset, a more complex module might not.
When the harmonising function h is the identity function we get the same

result as in the previous subsection.
This harmonising function can be used to allow multiple network module

on the network and implement a composition logic that allows to modify the
commands to prevent side effects but intermediate, hard-to-predict network
states still exist. It is hence not a satisfying solution for all use cases. In the
example of the hypervisor, the intermediate network state causes little to no
problem as the intermediate states are only visible in the network as a whole
and not visible in each partition.

5.3.4 Parallel composition

To overcome the problem with transient states and varying order of applied
results, parallel composition collects all commands and then resolves all conflicts
between these commands, composing the results into a single command to be
applied to the network. This is done by a special resolving function r that gets
all command outputs and generates a conflict-free version of these commands
that can be applied to the network.

r : command× . . .× command→ command

The new network state N ′ can then be expressed as:

N ′ = a(N, r(M1(ev),M2(ev), . . . ,Mk(ev)))

This composition requires all command outputs of an event to be available; it
must also be possible to tie a command output of a module to a specific event
(necessary when multiple events are passed to a module before commands have
been produced, compare challenges of OpenFlow, Section 5.5).
A big difference between the parallel composition and the harmonising com-

position is that the parallel composition is reactive, i.e. it depends on the fact
that the network commands generated by the modules are a response to a net-
work event. The harmonising composition works without this assumption and
can also be applied to network commands that are sent proactively without an
event (C = Mj(∅)). Just using r as an h function would not work. The sig-
nature of the function requires an event, and multiple outputs from the same
network event. Network commands that are sent proactively have no corres-
ponding events from the other modules. If we introduce a pseudo event and
set all other outputs to an empty set, to match the signature of r, we also
need to add special handling for pseudo events into r; this is basically adding a
harmonising function to r.

49

CHAPTER 5. COMPOSITION

5.3.5 Serial composition
For the serial composition, one module is fed the output of a previous module.
The desired network state of the first module only exists as an input to the
second module.
Instead of operating only on its state and the network event, a module in

this scenario also operates on the command output of the previous module,
implicitly on the state of the previous module. To support this behaviour,
we need to change the signature of the modules to accept a command as an
additional input:

M : event× command→ command

With that, we can define, for two modules M1 and 2, their serial composition
(◦) as new function M12:

M12 : ev 7→ (M1 ◦M2)(ev, ∅)

and use that in place of a normal module function (in the harmonising or parallel
composition). For example, if only the serially composed function is used, the
new network state will be:

N ′ = a(N,M12(ev))
= a(N, (M1 ◦M2)(ev, ∅)
= a(N,M2(ev,M1(ev, ∅)))

Chaining more than two network modules, e.g. M1 ◦M2 ◦M3, is defined by
obvious induction.
The main distinction of the serial composition from the parallel composition

is that the last module in the composition chain can provide a consistent set of
network commands. It also allows a module to incorporate the decisions of a
previous module into its own decisions. The downside of the serial composition
is, however, that modules need to be explicitly designed and programmed to
be used in this way. Input and output need to have the same format. This
is one of the reasons that network programming languages like Pyretic [96]
that implement a chaining of functions, define their function signature to have
symmetrical input and output: f : policy → policy. We will take a look how
useful serial composition is with existing modules in Section 5.3.7.

5.3.6 Network emulation
To be able to define a useful serial composition semantic, we need to explain
network emulation. While not directly related to composition, it is a useful tool
to implement a more complex composition logic. The idea is to implement a
network emulator that understands and can parse the network commands (e.g.
OpenFlow) and emulates a real network. The implementation of the network
emulation is a specialised software switch. The software switch will parse and
execute the network like a normal switch. The emulated switch or switches can

50

5.3. TYPES OF COMPOSITION

then be used to see what effects certain packets or network commands have. The
network command is sent to the network emulation and the results/changes to
the emulated network are observed. By configuring the emulated network to
mirror the real network, this can be used by a composition logic to answer
how packet and flow would be affected by network commands without installing
them in the network, e.g., determining if a packet would be dropped or how a
packet would be modified.

5.3.7 Approximate serial composition
As most network modules are not designed for serial composition (i.e., they
do not accept a command as an input), we define an approximate way to do
serial composition with existing network modules. In this scenario, we need to
incorporate as much as possible from the network command into the input event
of the following module by a function

α : Ñ × command→ event

where Ñ is the approximated network state resulting from applying the output
of the first function to the current network state. This approximated state is a
representation of the state in the controller; its manipulation does not involve
manipulation of the actual state in network devices.
What can be incorporated into the new event is often very limited as we will

see in Section 5.5. The new network state using this function can be expressed
as:

N ′ = a(N, (M1◦̃M2)(ev))

= a(N,M2(α(Ñ ,M1(ev))))

We use the ◦̃ here instead of ◦ to emphasise the difference from serial composi-
tion, denoted by ◦, and the approximate serial composition denoted by ◦̃.
Similarly, chaining three modules in an approximate serial composition works

as well:

N ′ = a(N, (M1◦̃M2◦̃M3)(ev)

= a(N,M3(α(˜̃
N,α(Ñ ,M1(ev)))))

where ˜̃
N is the approximated network state resulting from applying M1(ev) to

Ñ . Extension to longer composition chains is again straightforward.

5.3.8 Using overlays for approximate serial composition
A conceivable variant to implement this approximation of the network state
and the function α is to use an overlay of virtual switches to a real network
as shown in Figure 5.1: For each physical switch, a number of virtual switches
corresponding to the number of modules is emulated. Each module is assigned

51

CHAPTER 5. COMPOSITION

Physical Switch

Emulated virtual topology

1

2
3 4 5

6

1
2

3 4 5

6
1

2
3 4 5

6

1,2,3,4,5,6Module A Module B

Figure 5.1: Using a virtual overlay network for composition of module A
and B

to one virtual switch. The approximated network states are the state of the
virtual switches and the function α would “process” the packet that the module
sends to its virtual switch output ports as an event for the next module.
The advantage of this overlay semantic is that it is easier to understand how

the approximate serial composition works and how the state of the first module
affects the second module. The downside is that this approach looses flexibility
as the transformation of output from one command to another is fixed. The
other disadvantage is that if no extra steps are taken to hide the virtual topology
from the modules, the modules can adapt to this virtual topologies, for example
taking the extra virtual links into account for path calculations.

5.3.9 Composition and order of middle boxes
Often advanced network functions like intrusion detection systems (IDSs) and
firewalls are implemented in dedicated hardware. These networking devices
transform, inspect, filter, or otherwise manipulate forwarded traffic. As this
hardware is often placed between two other components (such as routers or
switches), the hardware boxes are often called middle boxes. When deploying
SDN, the functionality of these middle boxes is often replaced by a software
implementation on the SDN controller, in our terminology a module.
A common misconception is that the placement of (physical) middle boxes

always carries over to the composition order. If multiple middle boxes, for
example a firewall and a monitoring/IDS system, should act on all the same
traffic, these boxes are set up in sequence to pass traffic to one box after another.
Figure 5.2 shows an example of a traditional middle box setup with an IDS, a
firewall and a load balancer. This also forms an implicit serial composition as
each middle box gets the output of the previous middle box as input.
As SDN offers more flexibility here we can either set up these functions in

serial or in parallel composition. Usually, for a composition with SDN the

52

5.4. COMPOSITION STRATEGIES

Monitoring Server

IDS Firewall NAT

External
Network

Backend
 Servers

Figure 5.2: Typical order of IDS and Firewall and NAT load balancer middle
boxes in a traditional network

new
flow accept

copy to
monitor server

destination
backend 7

r
accept,

destination
backend 7,

copy to
monitoring

IDS

FW

NAT

Figure 5.3: Parallel composition of IDS, FW and NAT load-balancer mod-
ules

modules would be set up in a parallel composition to allow all modules to
base their decisions on the original input packets. The merging process of all
the outputs will then give an equivalent solution to the middle box solution.
Figure 5.3 shows the setup of Figure 5.2 implemented with parallel composition.
The parallel composition here allows each module to be implemented in a simpler
way since it does not need to interpret the output of a previous module.

5.4 Composition strategies
For the “true” serial composition, the mechanics required of the composition
framework are simple and implemented in the modules themselves. For the
more challenging approximate serial composition, we will discuss strategies in
the OpenFlow implementation section.
For the remainder of this section, we look at some general composition strat-

egies to implement the resolving function r for parallel composition. We concen-
trate on resolving multiple flow install commands since it is the most interesting
composition part and the ideas used here can be used analogously for resolving
other basic commands.
Our idea is to handle as much as possible in a generalized way but allow to

53

CHAPTER 5. COMPOSITION

fall back to developer-specified logic where a general approach cannot work. For
this strategy, the function r performs the following steps:

1. Check for syntactic and general conflicts

2. Check for developer-specific conflicts, optionally using additional invari-
ants specified by a user

3. If no conflicts are detected, perform generic composition

4. If a generic composition is not possible, abort or call developer-provided
conflict resolution or, if not available, abort

The first step is to check for conflicts. If two commands do not act on the
same switch, they do not conflict. Also, if one command has a higher priority
than the other, the one with the higher priority “wins” and the other command
is dropped. For the remainder of the section, we will consider two FIB install
commands that act on the same switch and have the same priority.
Both basic commands c1 and c2 have a matchm1 andm2, which in the general

case are not identical. Hence, we have three different matches to consider for
the composition. The match for packets matched only by m1∗ = m1 \m2, the
analogous match m2∗ = m2 \m1, and the match for packets that are matched
by m1 and m2: m12 = m1 ∩m2. For the generalized approach, we assume that
network modules respond to a new flow event with a FIB install command that
also matches the new flow. It directly follows, since both m1 and m2 need to
match at least the new flow, that the common match m12 is not empty and
only for the common match m12 we have instructions from both modules for
the new flow of the event. As an example, one module might want to install
policies per IP address while the other module installs policies per network. For
the generalized approach, we therefore opt to ignore the matches m2∗ and m1∗
and only generate a new FIB install command for the composed rule on m12.
A new flow that falls under the match m1∗ or m2∗ will trigger a new flow event
and we restart the composition with its new flow event.
For the instruction list of the install command, the general idea is to combine

both instruction lists into one big list of instructions. When combining these
lists, we can encounter different conflicts in the combined list. We differentiate
these into semantic and syntactic conflicts. Syntactic conflicts can be auto-
matically detected, like two instructions setting the same fields to two different
values. As an example, a misconfigured composition enables two load-balancing
modules and both try to rewrite the destination IP address of a packet to two
different server IP addresses. Different instructions can also be mutually exclus-
ive, like removing the VLAN tag and the same time changing the VLAN ID,
or dropping the packet and any other action that modifies the packets. These
syntactic conflicts can be detected by the generalized approach.
Semantic conflicts, in contrast, are not automatically detectable by a general

approach but still cause problems. Assume again two load-balancing modules:
the first module tries to redirect to a different TCP port but leaves the IP address

54

5.5. COMPOSITION WITH OPENFLOW

unchanged and the second module sets a different IP destination address. Since
no syntactic conflict exists, the action lists can be merged and will redirect the
packets to an IP/port combination that will not work. The only way to detect
such conflicts is to additionally call developer-provided logic on each conflict
detection to detect these conflicts.

5.5 Composition with OpenFlow
OpenFlow is the protocol most commonly used in real-world SDN deployments
and a lot of existing application logic is implemented using OpenFlow protocols.
This makes OpenFlow desirable as a protocol underneath of composition and
conflict resolution. On the other hand, OpenFlow itself was never designed
to be used in a composition context. OpenFlow itself only allows multiple
connections to a single switch for load balancing and failover. Reusing this
mechanism to allow multiple controllers control the same network is not viable,
as OpenFlow has the implicit assumption that there is only one entity controlling
an OpenFlow device and multiple (synchronised) controller instances connecting
to the same switch will only have partial view of the network and installed flows
will be mixed from both controllers.
This problem is aggravated by the fact that OpenFlow is not only used as a

control protocol for switches as the southbound interface. Instead, its semantic
has also left its mark on the design of northbound interfaces, which often mirror
the OpenFlow semantics. In this section, we will analyse the problems of Open-
Flow in composition and conflict detection and detail how and to what degree
they can be avoided and solved.

5.5.1 Definitions
We will briefly recapitulate the definition of the packet types in OpenFlow
important for composition:

Packet_IN event The PACKET_IN event is the main event in OpenFlow and
usually signifies the arrival of a new flow. Whenever a packet arrives at
a switch and is not handled by one of the FIB entries (or a FIB entry
explicitly states to generate a PACKET_IN), a copy of the packet and the
meta information of the packet (ingress port, etc.) are forwarded to the
controller.

FLOW_MOD This is the OpenFlow command that is analogous to our FIB
entry install command Fi.

PACKET_OUT The PACKET_OUT allows an OpenFlow controller to craft and
send a packet to the network. A typical use case for this command is to
reply to an ARP request. The PACKET_OUT consists of a packet and action
list that is identical in function and syntax to the FLOW_MOD action list.

55

CHAPTER 5. COMPOSITION

5.5.2 Multiple modules

The “multiple modules” approach without harmonisation (Section 5.3.2) is easy
to support with OpenFlow. Adding a harmonising function (Section 5.3.3) is
possible but requires to intercept FLOW_MOD commands before sending them to
the network. Depending on the specific controller architecture, this is a more
or less easy task. But if the flow mods get modified, the actual and the ex-
pected behaviour of the switch can differ. The switch will not report the flow
as being installed but instead reports successful installation of a different flow.
Also events coming back from the switch might need to be modified back to the
state that each application expects. A statistics request of the switch will re-
port statistics for actually installed flows. A harmonising function then needs to
generate statistics for the flows that the application thinks it installed to match
the behaviour an OpenFlow application expects. Correctly treating timeouts of
FIB entries is also not a trivial task. Hence, even the first non-trivial compos-
ition approach, the harmonising function h, is not entirely straightforward to
support and needs to depend on the intended level of compatibility with Open-
Flow applications to emulate normal OpenFlow behaviour rather than extensive
implementation.

5.5.3 The run to completion problem

In the previous sections, we defined the parallel composition to combine all
commands triggered by the same network event. The definition of network
events in OpenFlow is straightforward and consists of a small list of unsolicited
messages of which the most important one is the PACKET_IN event.
Unfortunately, in OpenFlow there is no relationship between a network event

and the responses of a controller and thus there is no reliable way to tie the
responses obtained from a module to the original network events. PACKET_OUTs
may reference the original PACKET_IN as optimisation to avoid copying the
packet but this captures only a fraction of the PACKET_OUTs. Also, there is
no way to tell if an OpenFlow module will respond to an event at all.
Hence, the basic assumption of composition – actions can be tied to events

across multiple modules – is not guaranteed by OpenFlow. The following sec-
tions will detail how we can still be able to achieve composition with OpenFlow
as the protocol.
There is another use case for unsolicited messages: situations where it is

more advisable to generate an initial configuration beforehand to put network
elements in a known state. This behaviour is known as proactive applications.
This behaviour can be supported by either implementing a harmonising ap-
proach for these messages or treat the initial configuration of modules with a
special “initial” event and treat all initial messages as being triggered from this
special event. The composition logic can then handle this event just as any
other event.

56

5.5. COMPOSITION WITH OPENFLOW

5.5.4 Parallel composition
If ignoring the (major) run-to-completion problem, implementing a resolve func-
tion works as sketched in Section 5.4.
Usually, an (OpenFlow) SDN application responds to a PACKET_IN with a

FLOW_MOD and PACKET_OUT. The payload of PACKET_OUT is often the same Eth-
ernet packet as in the PACKET_IN but with the action from the PACKET_OUT
applied. For these PACKET_OUTs, a generalised solution is not possible since
there is no standard approach to combine two arbitrary Ethernet packets into
one. Once more, either a developer logic is needed and/or a simple approach
that prefers packets from one module and drops packets of other modules if
more than one PACKET_OUT is present. As a special case, if all PACKET_OUTs of
all modules are indeed the result of applying the action lists of the FLOW_MODs,
we can take the same approach and use our composed FLOW_MOD and apply it
to the packet of the PACKET_IN and use that as PACKET_OUT instead of any of
the other PACKET_OUTs.

5.5.5 Serial composition
With OpenFlow we can at best try to achieve approximate serial composition
– actual serial composition is impossible as an OpenFlow-oriented northbound
interface cannot express both events and commands as input.
The input event in OpenFlow is the PACKET_IN. The goal is to create a

PACKET_IN that carries as much information from the outputs (PACKET_OUT
and FLOW_OUT) of the previous module as possible.
The generated packets and functions involved in an OpenFlow serial compos-

ition chain with two modules looks like this:

PACKET_IN0 →M1 → PACKET_OUT1, FLOW_MOD1

→ α→ PACKET_IN1

→M2 → PACKET_OUT2, FLOW_MOD2

The meta-information part of the new PACKET_IN1 (produced by the network
emulation function α, see Section 5.3.6) is a match that only carries the input
port and no other information. The input port is the same as the input port of
the PACKET_IN0 unless an overlay composition is used in which case the input
port is the output port designated by the first module.
For the packet part of PACKET_IN1 we have two options: (1) Modify the ori-

ginal packet of the original PACKET_IN0 or (2) use the packet of the PACKET_OUT0.
Option (2) can fail and stop the serial composition if there is no PACKET_OUT

from the first module. Likewise, option (1) will fail if no FLOW_MOD is generated.
If stopping the serial composition should be avoided, an option can be to fall
back to the other option.
For the second option, applying the actions from FLOW_MOD1 to the packet of

PACKET_OUT0 should not be considered as it would never happen in a normal
SDN environment. Typically, if a flowmod and packet out are present, the

57

CHAPTER 5. COMPOSITION

packet out is the first packet of the flow and all following packets are handled
by the flowmod, thus normally we can assume that all actions are either already
applied or are in the action set of the packet out. As consequence, we will ignore
FLOW_MOD1 in this case. If we decide to use the packet of the PACKET_IN0, we can
apply the actions of FLOW_MOD1 to it and thus ignore PACKET_OUT1. No matter
what option we choose, we always ignore a significant part of M1’s output.

In both cases we have to apply the instructions of the PACKET_OUT or the
FLOW_MOD to preserve as much information as possible. Only the subset of
instructions that mutates the packet itself (setting a header field or adding a
header like VLAN ID) can be preserved. Everything that is not directly related
to the content of the packet cannot be represented in the new packet, which
includes instructions like setting the output queue, rate limits, goto table x, etc.
The workaround to preserve the information contained in instruction is to

merge/intersect all actions from all modules of a sequential composition as the
last step. But this creates an unintuitive, difficult to understand and predict
hybrid between serial and parallel composition.
In summary, all these problems with generating a new PACKET_IN make se-

quential composition in an OpenFlow only usable in very limited circumstances;
only if the limited information that are carried over from the first to the pen-
ultimate module as input to the last module are sufficient and the last module
reacts accordingly, serial composition with OpenFlow is sensible.
In a wider sense, we can conclude that an OpenFlow-oriented northbound

interface is ill suited to support serial composition of control modules. Compos-
ition is possible but can only be achieved with serious effort and some short-
comings. The Chapter 6 details an approach how to deal with these problems.

5.6 Related work
The idea of module composition in SDN is not new and has been presented in
various forms. These approaches have the goal of allowing multiple applications
to run concurrently on the same network by applying all network rules and
combine them into a single set of network rules.
The objective of these approaches is twofold: (i) to allow the coexistence

and cooperation among heterogeneous control programs and (ii) to have mech-
anisms in place for possible conflicts and errors so that they can be detected
and solved automatically. We will categorise the approaches here and describe
their differences. We conclude our comparison with a table in Section 5.6.3 that
summarises the differences and similarities.
The approaches generally employ one or more of the following functions and

can be classified accordingly.

5.6.1 Classification of approaches
1. Merging of network applications: The most basic category of com-

position is the merging of the outputs from applications that need to

58

5.6. RELATED WORK

be deployed in the same slice of the network. This requires the defin-
ition of criteria and languages, e.g., to define which application has a
higher priority. Many current SDN controller frameworks, such as Flood-
light [33], OpenDaylight (ODL) [71] and Open Network Operating Sys-
tem (ONOS) [13], already provide static priorities for SDN apps to be
deployed; however, some issues like dynamically changing the priorities,
creating more complex behaviour (not based only on those priorities) or
allowing compatibility of different SDN applications from different frame-
works still remain unresolved. Most of these approaches fall into the “mul-
tiple module without composition” category (Section 5.3.2) and have a
weak form of parallel composition, as some approaches collect all outputs
and only apply the output with the highest priority.

2. Network partitioning and slicing: A category of approaches ortho-
gonal to basic merging is to avoid conflicts in the first place by partitioning
the network into multiple slices. Network administrators assign each slice
to the different applications in the network. To achieve this goal, many
SDN network hypervisors have already been implemented [14] and we de-
scribe the ones related to composition in the next section. The approaches
in this category correspond to a harmonising function (Section 5.3.3) by
modifying the applications’ output to target only a slice of the network
and therefore not conflicting with each other. This is helpful when applic-
ations should be restricted to certain parts of the network or parts of the
network are assigned to different, non-cooperating entities, e.g., different
test setups or customers. The approaches do not help in the case when
multiple SDN applications should run on the same network. Therefore,
for my thesis these approaches are not sufficiently powerful.

3. Conflict detection and resolution: The most complete concept in-
volves detecting and resolving conflicts. Approaches implementing of this
category either use a harmonising function that relies on a complex state
kept by the approach or a complex parallel composition. The approaches
that implement their own programming language also tend to implement
serial composition.

5.6.2 Existing approaches
As already mentioned the first category of approaches does not really implement
composition and mainly consists of SDN controllers, we will therefore concen-
trate on approaches of the other two categories.
Representing the second category, FlowVisor [111] can be considered as the

first approach in the SDN domain to allow multiple network controllers to run
side-by-side on top of the same network infrastructure. As one of the first, it
implements a basic form of network partitioning: Instead of allowing all control-
lers to operate on the same flows, FlowVisor partitions the network into smaller
slices and gives each controller only the view of its own slice of the network.
To achieve this goal, it sits as a centralised module between the network and

59

CHAPTER 5. COMPOSITION

the SDN controllers. Many other hypervisors are based on FlowVisor and are
documented in a comprehensive survey on SDN hypervisors [14]. A followup to
FlowVisor is OpenVirteX [109], which introduces the concept of virtual topo-
logies. Virtual topologies allow to present an SDN application a different view
of the switches and connection than the physical topology. OpenVirtex will
then transparently transform network commands between these two topologies.
These two approaches do not cover the scenario where network controllers co-
operate to control the same traffic, therefore they do not implement any merging
or conflict resolution mechanisms. In our terminology, the slicing of the net-
work is a harmonising function that avoids conflicts by making the matches of
all modules distinct. As already mentioned in the classification of approaches,
these approaches cannot do any composition of multiple modules on the same
flows and are less powerful than the approaches of the third category.
The approaches that fit into the third category of “conflict detection and

resolution” all have some notion of parallel and serial composition and almost
all approaches for composition claim to support arbitrary combinations of these
two basic operations.
The parallel composition of SDN applications was originally introduced by

Frenetic [34], a high-level language for OpenFlow networks. Similar to Fren-
etic, NetKAT [7] is a network programming language based on the so-called
Kleene algebra that defines union and sequential operators plus the Kleene
star operator to iterate applications. Grounded on Frenetic, Pyretic [96] is a
domain-specific language embedded in Python that enables network program-
mers to develop SDN applications by leveraging high-level abstractions. Pyretic
enhances Frenetic by introducing (i) sequential composition, and (ii) topology
abstraction, which allows programmers to limit each module’s sphere of influ-
ence. Pyretic applications can be executed on top of a modified version of the
POX runtime system [39]. The Pyretic interpreter communicates with POX
through a socket-based API; it can potentially run on top of any controller
platform.
The languages described in this paragraph (Freenetic, NetKAT, Pyretic) were

carefully designed to allow parallel and serial (sequential) composition on in-
dividual statements, for example by choosing a function signature that has a
policy definition as input as well as output. This approach avoids the challenges
and incompatibilities faced when using OpenFlow as basis for composition but
pays the price of mandating a new programming paradigm. It is not feasible to
translate existing OpenFlow-based network applications into Freenetic/Pyretic-
based applications. Hence, this approach also falls short of requirements needed
in this thesis of working with existing applications (for the technical details see
Chapter 6).
Based on OpenVirtex, CoVisor [56] also acts as a hypervisor and is placed

between the network and multiple controllers. CoVisor speaks OpenFlow on
both SBI (with the network) and NBI (with the guest controllers). The main
goal of CoVisor is to allow applications written for different controller plat-
forms and in different programming languages to cooperate on controlling the
same network traffic. In order to achieve this goal, CoVisor defines operators

60

5.6. RELATED WORK

to combine policies of applications running on multiple controllers to produce
a single flow table for each physical switch. Moreover, CoVisor exposes a vir-
tual view of the topology to each controller and to the applications running on
top of it. These topologies can be very simple, like presenting a topology with
just one switch to a firewall that provides a “big virtual switch” abstraction, or
they can mirror the real network for routing applications. We described this
concept as using an overlay for approximate serial composition in Section 5.3.7.
In summary, CoVisor assembles the policies of individual applications, written
for a virtual network, into a composed policy for the virtual network consist-
ing of virtual switches. Then, it compiles the “virtual” policies into policies
for the physical network. CoVisor’s use of virtual switches to implement serial
composition is the approach we outlined in Section 5.3.8. In the OpenFlow
section (5.5) we outlined a few challenges that are OpenFlow specific; the Co-
Visor paper leaves out many details how these challenges, most importantly
the run-to-completion problem, are solved by CoVisor. Moreover, the avail-
able implementation of CoVisor only implements a very limited subset of the
approach described in the paper, namely a static composition that gets all net-
work commands at the start of the program and thus avoids all the challenges
with dynamic events/network commands. Even though CoVisor came out when
OpenFlow 1.3 was well established, it only supports OpenFlow version 1.0. It is
hence difficult to ascertain how CoVisor actually intends to address the really
difficult problems in composition.
Another SDN hypervisor is FlowBricks [28]. It is a framework that integ-

rates heterogeneous controllers using only the standardised controller-to-switch
communication protocol. While CoVisor only works with OpenFlow 1.0, Flow-
Bricks is designed to support up to OpenFlow 1.4 and currently supports all
OpenFlow 1.1 datapath features; for instance FlowBricks can work with mul-
tiple flow tables. Similar to CoVisor, a policy definition configured in Flow-
Bricks specifies how different services from controllers are applied to traffic on
the datapath. FlowBricks runs on an emulated environment with heavy modi-
fications on the OpenFlow switches and cannot be used with standard network
hardware. As with CoVisor, the paper does not address the issues we described
with OpenFlow and there is no implementation publicly available that could be
examined how the implementation deals with the challenges.
Corybantic [74] supports composition of network applications by resolving

conflicts over specific OpenFlow rules. Corybantic acts as amodule orchestrator,
where modules are applications that implement particular network functions,
such as end-to-end Quality of Service or flow latency control, and their impact
on the network is evaluated in terms of cost and benefits. The Corybantic Co-
ordinator implements an iterative approach to evaluate if the proposed changes
of a particular module should be allowed on the network. Each round of the
iteration is divided in four phases: (i) modules propose changes in the network,
(ii) each module evaluates its own proposals in terms of cost and benefits, (iii)
the Coordinator picks the best proposal and (iv) the modules install the chosen
proposal onto the network. Its main difference is that it does not allow the use of
different languages and controller platforms, as the OpenFlow-based approaches

61

CHAPTER 5. COMPOSITION

do, and requires the specific implementation of the modules to be coordinated
in the sense that the cost and benefits of the modules need to be aligned with
each since otherwise the system risks to degrade to a priority based system. For
example, if a low benefit value of one module is always higher than the high
value of another module, the proposal of the first module always wins.
Like Corybantic, Statesman [117] composes network applications by resolv-

ing conflicts. Statesman defines three views of the network: observed state, pro-
posed state and target state. To prevent conflicts, applications cannot change
the state of the network directly. Instead, each application applies its own logic
to the network’s observed state to generate proposed states that may change one
or more state variables. Statesman merges all proposed states into one target
state. In the merging process, it examines all proposed states to resolve conflicts
and ensures that the target state satisfies an extensible set of network-wide in-
variants (both user specific as well as inherent in the system). Statesman may
reject a proposed state from one application based on such invariants. In this
case, the application has to handle the rejection and propose a new state.
The goal of Athens [11] is to ease coordination and automatic management

of resource conflicts between SDN and controller applications. It proposes a
revision of the Corybantic design but is essentially a compromise between Cory-
bantic and Statesman, presented above. Athens sends the current state of the
network to each application module. As a reply, all modules synchronously send
a set of proposed changes to the Athens coordinator. After that, the coordin-
ator asks each module to evaluate all proposals (by using the same evaluation
method proposed by Corybantic). Based on the evaluation feedback, Athens
runs its conflict resolution algorithm to elect the winning proposal, which is
eventually implemented onto the network.
Policy Graph Abstraction (PGA) [91] leverages graph–based and “one

big switch” abstractions to detect and resolve policy conflicts. Users and SDN
applications independently generate their policies as graphs and submit them
to the graph composer through a PGA User Interface (UI). The composer auto-
matically composes input graphs into a combined conflict-free graph, resolving
or flagging conflicts/errors and reporting them to users, possibly with suggested
fixes. An initial prototype of PGA leverages VeriFlow [59] to verify whether the
policies in the composed graph are correctly realised on the network.
Canini et al. [16] introduce the notion of transactional network updates and

provide a formal model describing the interaction between the data plane and
a distributed SDN control plane. The authors formulate the problem of con-
sistent composition of concurrent network policy updates, the Consistent Policy
Composition (CPC) problem. The CPC abstraction accepts concurrent policy-
update requests and produces a sequential composition of these policies. In
short, the proposed model ensures that every packet is processed by only one
global policy, either using the policy in place before an update, or the policy in
place after the update completes, never a mixture of the two. In the sequential
execution, conflicting updates are rejected entirely. Unlike other works presen-
ted in this section, the proposed approach is more centred on the theoretical
complexity of the CPC problem than on the actual implementation/description

62

5.6. RELATED WORK

of a software architecture.
Our approachNetIDE [103], which I will explain in more detail in Chapter 6,

provides a runtime Network Engine that allows the composition of multiple
network applications from different controllers. The semantics are similar to
the ones defined in CoVisor, but NetIDE differs from it in the following aspects:
(i) the connection to the network is performed via an SDN platform (e.g., ODL
or ONOS) instead of leveraging OpenVirtex, (ii) it supports OpenFlow 1.0 and
1.3, and potentially other protocols such as NETCONF, and (iii) apart from
merging applications, it handles and resolves possible conflicts between them.
As an OpenFlow-based solution, NetIDE also has to deal with the problems
mentioned for OpenFlow in Section 5.5. Chapter 6 will describe the NetIDE
approach in more detail and how we handle these challenges.
Finally, the algorithm and approaches used in the composition strategies (Sec-

tion 5.4) are similar in many aspects to the approaches used by SDN test tools
such as SOFT [62] and NICE [17] to detect bugs in controllers. Composition
strategies can reuse the work of these tools to enhance the semantic conflict
detection.

5.6.3 Summary of the different composition approaches

In Table 5.1, we summarise and compare the composition approaches described
in this chapter. The parameters that have taken into account are the following:

• Application interface: APIs used by SDN applications to communicate
with the framework that implements composition and conflict resolution
mechanisms.

• Applications are modified: For the approaches that reuse an existing
API, i.e., OpenFlow or other standards, this column indicates whether
preexisting application modules must be modified in order to meet the
requirements of the composition framework/approach. This categorisa-
tion is not applicable to approaches that introduce new programming lan-
guages, as existing applications cannot be reused unless they are totally
rewritten with the new language.

Note that – at least for NetIDE – the “no modifications” check mark does
not necessarily imply that any application will run unmodified. NetIDE
places some restrictions on what SDN applications are allowed to do to
handle the run-to-completion problem. As mentioned in the respective
paragraphs, for the other approaches, this was difficult to determine unless
explicitly mentioned in the paper as with FlowBricks.

63

CHAPTER 5. COMPOSITION

• Composition:

– Slicing: Network hypervisors, such as FlowVisor, OpenVirtex, force
each application module to operate on a disjoint subset, or slice, of
the traffic.

– Merging: Multiple application modules can cooperate on processing
the same traffic by merging their actions.

– Conflict: It indicates whether the approach detects and resolves
conflicts between individual policies generated by different applica-
tion modules.

• Composition specification: This illustrates how the composition is
specified. This ranges from fully automatic composition to a user-defined
composition logic. In the case of approaches with custom APIs, parts of
this task are also delegated to the modules themselves.

64

5.6. RELATED WORK

A
pp

ro
ac
h

A
pp

lic
at
io
n

in
te
rf
ac
e

A
pp

lic
at
io
ns

C
om

po
si
ti
on

C
om

po
si
ti
on

sp
ec
ifi
ca
ti
on

ar
e
m
od

ifi
ed

Sl
ic
in
g

M
er
gi
ng

C
on

fli
ct

F
lo
w
V
is
or

O
pe

nF
lo
w

N
o

X
U
se
r
de

fin
ed

O
pe

nV
ir
te
X

O
pe

nF
lo
w

N
o

X
U
se
r
de

fin
ed

C
oV

is
or

O
pe

nF
lo
w

N
o

X
U
se
r
de

fin
ed

F
lo
w
B
ri
ck
s

O
pe

nF
lo
w

Ye
s

X
U
se
r
de

fin
ed

Fr
en

et
ic

Pr
og
ra
m
m
in
g
la
ng

ua
ge

-
X

U
ni
on

of
al
ls

ta
te
m
en
ts

N
et
K
A
T

Pr
og
ra
m
m
in
g
la
ng

ua
ge

-
X
*

X
U
ni
on

of
al
ls

ta
te
m
en
ts

P
yr
et
ic

Pr
og
ra
m
m
in
g
la
ng

ua
ge

-
X

U
ni
on

of
al
ls

ta
te
m
en
ts

St
at
es
m
an

C
us
to
m

A
PI

-
X

X
A
ut
om

at
ic
,i
nv

ar
ia
nt

ch
ec
ks

C
or
yb

an
ti
c

C
us
to
m

A
PI

-
X

X
M
od

ul
es

sc
or
e
pr
op

os
al
s

A
th
en

s
C
us
to
m

A
PI

-
X

X
M
od

ul
es

sc
or
e
pr
op

os
al
s

P
G
A

C
us
to
m

po
lic

y
la
ng

ua
ge

-
X

X
X

A
ut
om

at
ic

N
et
ID

E
O
pe

nF
lo
w

N
o

X
X

U
se
r
de

fin
ed

−
M
ea
ns

no
t
ap
pl
ic
ab
le
.

∗
N
et
K
AT

su
pp

or
ts

sli
ce
s
in

its
pr
og
ra
m
m
in
g
la
ng

ua
ge
,b

ut
no

t
m
ul
tip

le
ap

ps
ru
nn

in
g
at

th
e
sa
m
e
tim

e.

Ta
bl
e
5.
1:

C
om

pa
ris

on
ta
bl
e
of

th
e
di
ffe

re
nt

co
m
po

sit
io
n
ap

pr
oa
ch
es

65

CHAPTER 5. COMPOSITION

5.7 Conclusions
Composition can be a very useful tool if its current restrictions are understood
and considered when using it. We have shown that for composition to work in a
meaningful way, the underlying south-bound interface (SBI) should be designed
to support it. While OpenFlow can be augmented and restricted to work for
composition, as Section 5.5 points out, doing so results in a customised protocol
that, even if the changes are not massive, is still lacking several aspects. The
most notable aspect is that OpenFlow-based modules will get no feedback from
composition about the conflict resolution result.
As main conclusions, we point out that an interface between controllers and

control modules that is oriented towards OpenFlow is not suitable to support any
but the most trivial composition semantics. The challenge is to find an interface
that carries enough information (commands and events in our parlance; policies
in Frenetic lingo) between modules, but hopefully without having to mandate its
own programming style as done by Frenetic/Pyretic. Finding such an interface
will make implementing the actual composition much easier as it does not need
to add an extra layer of workaround like for OpenFlow.

66

6 NetIDE corey
The previous chapters have looked at individual aspects of the problem of

traffic engineering in data centres with software-defined networking (SDN) but
have not brought the parts of the solution together. During the NetIDE EU FP7
project (NetIDE) [120], we developed a framework for running multiple SDN
applications in parallel on the same network. NetIDE aimed at supporting SDN
developers when developing applications through the help of better tools and
IDEs as well as reusing existing SDN applications in a new environment. Central
to the architecture is the NetIDE core as a central component implementing the
composition and interfaces for tools and IDEs such as a network debugger or
performance evaluator.
In this thesis, the core is used as a common platform to implement my ap-

proaches. It demonstrates that all individual aspects can indeed work together.
This chapter is based on

• The sections addressing the NetIDE core in NetIDE deliverable D2.7
NetIDE FP7 Project. “D2.7 NetIDE Manual”. In: NetIDE reports (2016)

• The NetIDE core implementation, which can be found at
https://github.com/fp7-netide/Engine/.

• PA Aranda Gutiérrez, E Rojas, A Schwabe, C Stritzke, R Doriguzzi-Corin,
A Leckey, G Petralia, A Marsico, K Phemius and S Tamurejo. “NetIDE:
All-in-one framework for next generation, composed SDN applications”.
In: NetSoft Conference and Workshops (NetSoft), 2016 IEEE. IEEE. 2016,
pp. 355–356

• The implementation of the core has been based on Tim Niklas Vinke-
meier’s master thesis:
Tim Niklas Vinkemeier. “Composition and Orchestration of Network Con-
trol Applications”. MA thesis. University of Paderborn, 2015.

6.1 Introduction
One of the goals of NetIDE is to allow multiple SDN applications to run along-
side each other. Usually, SDN applications are written and tailored for a spe-
cific SDN controller like ONOS [83], Ryu [102], Floodlight [33] or OpenDayLight
[82]. Even though SDN controller platforms have a lot in common, no standard-
ised application programming interfaces (APIs) exist that applications can use.
Porting an SDN application from one controller to another requires manual
adaptation. In the NetIDE project, we investigated automatic translation of
applications to be able to convert applications between controller platforms.
That would have allowed to pick one of the controllers and run all applications
on this controller. Unfortunately, this proofed to be an infeasible solution as
even translation between the two imperative programming languages Java used

67

https://github.com/fp7-netide/Engine/

CHAPTER 6. NETIDE CORE

by OpenDayLight and ONOS and Python used by Ryu. Automatic program
translation between APIs with different semantics is an even more difficult, if
not impossible task for arbitrary APIs. Even for the small set of three SDN con-
troller platforms, the APIs differ enough and are not well enough documented
to infer concise semantics that would be needed to create a machine-readable
format, which is only the basic foundation for an automated translation.
Instead of trying to translate the application and run them on a foreign con-

troller platform, NetIDE runs SDN applications in their original environment,
i.e., their native SDN controller. When running the application in their native
controllers, we are not directly interacting with the application anymore. To
implement the composition, we will need to intercept the communication from
the application at some layer to implement composition. The most basic one is
to not modify the controller at all but instead provide an emulated OpenFlow
to the controller (like CoVisor does, compare Section 5.6.2). This approach
provides the least intrusion in a controller framework, but on the other hand
also the least control and information about the application. Instead we opted
to implement a module in each controller to implement this interception. The
difference to normal execution is that the controller does not directly access the
SDN switches but instead is amended to forward the SDN application requests
and outputs to a central instance, the NetIDE core, bypassing as much as pos-
sible of the usual controller logic. In most controllers this amendment can be
implemented as an add-on or plugin. The NetIDE core also provides the SDN
controller with enough information and status messages to discover the topology
and switches. In the NetIDE context, the add-on/plugin for an SDN controller
that allows this integration is called backend and the SDN controllers running
this backend are client controllers. To control the network, the NetIDE core
uses a dedicated controller with a specialised interface. The component in the
server controller that provides this interface to the core is called shim in NetIDE
and the SDN controller that is running the shim is the server controller.
Figure 6.1 shows an overview of the NetIDE architecture and the place of

the core in the architecture. The figure shows the SDN applications running
on their own SDN client at the top and the SDN server controller with the
shim module on the bottom. To allow the core to control/manage also the
applications running on top of the server controller, the server controller in this
example also includes a backend module. This way, by installing a backend
and a shim in the server controller, a migration from a non NetIDE setup to
a NetIDE setup can be made without moving the application from the server
controller to a dedicated client controller or moving the switches to a dedicated
server controller first. This of course is only possible if both shim and backend
module for a controller exist and they can both be used at the same time.
The backends, shim and the core communicate via the NetIDE protocol, a cus-

tom protocol developed by the project. The protocol allows to tag all messages
with an application ID to specify the application on the backend the message
originated from. With this information, the core can treat the different SDN
applications as individual applications – even if two or more are running on the
same backend. Even then, the core cannot treat applications running on differ-

68

6.2. CHALLENGES

Figure 6.1: NetIDE architecture

ent controllers equally as it still needs to handle differences and idiosyncrasies
of different controllers to provide a more uniform SDN application behaviour.
For example, some controllers like ONOS actively query the flow table of the
switches and delete all flows that were not installed by the controller. The in-
dependent nature of the core allows to implement conflict resolution and the
GlobalFIB (Chapter 7) independent of any controller framework, improving re-
usability.
As the NetIDE protocol uses OpenFlow to pass network rules from the SDN

application to the NetIDE core, the core needs to handle the problems associated
with using OpenFlow as a north-bound protocol for composition highlighted in
Section 5.5. The NetIDE protocol does so by adding meta information and re-
stricting the OpenFlow protocol, which is described in detail in Section 6.4. The
design decision for using a server controller and the role of the server controller
is discussed in Section 6.3.

6.2 Challenges
During the development of the NetIDE core we faced and solved many chal-
lenges. The first challenge is to provide a stable platform for running SDN ap-
plications with composition while at the same time serving as an experimental
research platform that could be extended and changed easily to try out/imple-
ment new techniques. And at the same time, the core needs also to support
legacy applications with their APIs, while at the same time supporting newer
applications and providing them with modern APIs.
In the rarest cases, software written during research and research projects is

used without modifications in later projects. More often, only parts are reused
in different projects or ported to other existing projects. Accepting this reality

69

CHAPTER 6. NETIDE CORE

means that the reusability of modules of the software should be planned from
the beginning. Also, rather than implementing from scratch, reusing existing
components as much as possible should be attempted.
Another important aspect of software-defined networking is that software no

longer is static but can be changed and modified in very rapid development and
deployment cycles. Restarting the whole core and causing network downtime in
these cases is often undesirable, so the core needs to have a mechanism to handle
these cases. The need for this dynamic reconfiguration, dynamic reconfiguration
in SDN in a more general way and the implementation of reconfiguration in the
core are described in Chapter 8.
Composition of SDN applications is still in its early stages and Chapter 5

has already shown that composition has quite a few problems, especially when
using OpenFlow, that an implementation needs to handle. Typical OpenFlow
controllers and applications assume that they are the only entity that control an
OpenFlow switch. The core needs to emulate this semantic as closly as possible
to minimise the changes in other components.
The run-to-completion problem, mentioned in the Composition Chapter (Sec-

tion 5.5.3), was solved by introducing and enforcing fence messages (Section 6.4).
Each OpenFlow request includes an identifier, called XID. OpenFlow control-

lers expect the responses to be answered with the same XID and only getting
responses as a result of a request. Usually, the uniqueness of these XIDs is en-
sured by the controller, e.g. by just incrementing the XID for each request. With
more than one controller, XID from the different controllers are not guaranteed
to be unique anymore. Therefore, the core needs to guarantee uniqueness of the
XID towards the switches; it also has to keep track of the request-to-backend
mapping. This was implemented with the core routing module (Section 6.5).

6.3 NetIDE core relation to SDN controllers
The responsibilities of the core managing multiple SDN applications and acting
as a supervisor for the SDN network are quite similar to the responsibilities of
a normal SDN controller. Both have a concept of multiple applications that
need to be managed and both need ways of controlling the SDN network by
establishing and managing the connections to the SDN switches.
The core could talk directly to the switches, but we decided against this

in order not to pointlessly reimplement these features. Implementation of the
southbound interfaces, especially OpenFlow, has been done very well by existing
SDN controller frameworks. To reuse these existing SDN controller’s capabil-
ities we identified two possible concepts. The first one, which NetIDE initially
pursued, is to implement the different parts of the core directly as parts of the
backend and shim. This led to a lot of code duplication for both the different
backends and also the shim modules. The other possibility is to implement the
core as an independent component that communicates with the SDN controllers
using a well-defined protocol and handles the translation to the internal APIs
of an SDN controller by a small, controller-specific module. This allows to im-

70

6.4. COMPOSITION

plement the interface (the shim) for multiple SDN controllers with low effort
compared to implementing the core inside multiple controllers. Another, even
bigger advantage of keeping the core separate is that it becomes its own entity
that allows to implement functions and interfaces for other tools to use.
The shim used above in NetIDE allows the core to forward/receive network

commands from the switches without needing to implement the full OpenFlow
specification. Managing the switch and handling all other OpenFlow message
is still the task of the controller. From the perspective of the server controller,
the shim is running an application that sends/receives OpenFlow messages to
its switches.

6.4 Composition
The focus of NetIDE has been on a practically usable composition for existing
SDN applications. Since existing applications almost exclusively use OpenFlow,
the composition semantics realised have been focused on OpenFlow (version 1.0
– 1.4), too. For that, we had to overcome or work around the limitations of
OpenFlow identified in Section 5.5 as much as possible. This has been mainly
done by (1) a number of restrictions placed on the SDN application’s behaviour
and (2) protocol enhancements of OpenFlow using the NetIDE protocol.
The OpenFlow protocol allows an SDN controller to enforce a response when

a switch has finished executing a command with the barrier message/response
[116]; OpenFlow also defines asynchronous status messagess to inform the SDN
controller when the state of the switch changes. Examples of these asynchronous
status message are the packet-in message, port status changes, or flow mod
timeouts.
Status updates in the other directions (from controller to switch) are, however,

not designated in the protocol; a switch cannot determine if an SDN controller
has finished processing a status message or if an SDN controller sends responses
to asynchronous events. While this poses no problem in a normal SDN controller
setup, for a composition the notifications and feedback in the other direction
are needed as I pointed out in Section 5.5.3.
Determining if an unmodified OpenFlow SDN controller has finished pro-

cessing an event is impossible as it is equivalent to the halting problem [68].
The following paragraphs explain how we how handle the different aspects of
these OpenFlow related problems.

NetIDE protocol Modifying OpenFlow semantics creates a new protocol.
Instead of using a protocol incompatible with OpenFlow, we created a custom
protocol that wraps OpenFlow. That way, we can keep the OpenFlow messages
and protocol unmodified and add our modification and additions strictly in our
new protocol. This NetIDE protocol is used between the core and the backends.
This protocol has its own messages as well as a message that encapsulates Open-
Flow messages along with additional NetIDE-specific headers. It also allows to
support different SDN protocols than OpenFlow later as it specifies the type of

71

CHAPTER 6. NETIDE CORE

the encapsulated payload and can encapsulate another protocol than OpenFlow
in its messages as long as the other protocol is also message based.
In this implementation, ZeroMQ (also spelt 0MQ) [1] is used as the transport

protocol between the components (SDN controllers, core, extra tools). ZeroMQ
has the advantage of already implementing transport and socket layer, freeing
the components from implementing these tasks themselves and providing an
easy to use interface to send messages between components.

Transaction IDs OpenFlow does not guarantee that an asynchronous mes-
sage (from switch to controller) has a unique message ID that differs from other
messages. Setting the ID to zero for all PACKET_IN messages is perfectly fine
in OpenFlow. Tying a response to the request is difficult without having such
unique ID. Even determining if two responses are reactions to the same request
is not possible on the protocol level as the responses have no common ID. The
NetIDE protocol header adds a unique transaction ID to every message. This
allows the asynchronous message to be referenced in the response messages when
a controller sends a response to this message.

Module IDs As the goal is to compose multiple applications, the core needs
a way to identify the application responsible for a message. The backend adds
a module ID to identify the sender of a message on every outgoing message to
identify the application.

Fence messages To compose the network commands from all applications
for an event (e.g. a PACKET_IN message), the composition needs to collect all
responses to this event. The discussion in Section 5.5.3 has already shown that
this is nearly impossible to achieve with unmodified OpenFlow applications. The
SDN application or the SDN controller framework can determine if a request is
finished, e.g. by checking if a handler returns. In NetIDE, the task is therefore
delegated to the backend implementation. A backend signals the core that an
event has finished processing by sending a fence message. The fence message
ID repeats the transaction ID of the request message.
Using the transaction ID in the fence message, in the network command and

in the request allows the core to group messages by the transaction ID. Multiple
events can therefore be sent to a backend without waiting for a response, res-
ulting in concurrent processing and avoiding being constrained by latency when
waiting for a fence message before sending a new request.

Concentrate on parallel composition We did a case study in the NetIDE
project and defined multiple use cases for NetIDE. All use cases were implemen-
ted with parallel composition. Since we did not require serial composition for
the use cases and serial semantics are difficult to define and implement, the cur-
rent implementation is focused on parallel composition but nevertheless realises
a proof-of-concept serial composition.

72

6.5. MODULARITY

Restrict OpenFlow control module behaviour One of the problems of
parallel composition with OpenFlow is that handling a flow mod or packet out
command from one module without results from other modules is problematic as
the composition module needs results from all modules (compare Section 5.5.3).
To work around this problem, NetIDE imposes restrictions on the modules’ use
of OpenFlow. A module must reply to events only and should not use proactive
flow rule installations. We decide against working with pseudo events as this
basically would have meant to implement a second composition that works like
a harmonising function as explained in Section 5.3.4.
Modules also must not make assumptions on the state of the network, e.g.,

they need to always reply to a packet in and must not assume that previously
installed flow rules already handle the flow.
For the serial composition we require always a packet out and a flow mod as

output of all but the last module in the chain.

6.5 Modularity
This section is based on a section I wrote for: NetIDE FP7 Project. “D2.7
NetIDE Manual”. In: NetIDE reports (2016).
When designing and implementing the core, we focused on modularity and

reusability of its components, e.g., allowing the composition component to be
reused in another project. As modularity is not a new concept, there are proven
frameworks to support it. Our requirements in the core were that it should be
Java-based and the framework should handle binding of the interfaces between
the modules and manage module loading/unloading/upgrading. To be able to
make quick adjustments or reconfigure the core with little effort, we wanted to
include a command line interface (CLI). Furthermore, if possible, a framework
that is already used in other contexts and software of our project would reduce
effort to maintain multiple frameworks.
As result, we have chosen as framework for our modular implementation

Apache Karaf [8]. Apache Karaf is an Open Services Gateway initiative (OSGi)
runtime distribution for highly dynamic applications and supports runtime re-
configuration, service discovery and modularisation [8, 85]. We chose Karaf since
it fulfilled all our requirements and is already heavily used by OpenDaylight
(ODL) [82] and Open Network Operating System (ONOS) [83]. It also features
an integrated CLI that is easy to extend. As an added bonus feature, it also
allows the core to run on an existing ODL or ONOS Karaf instance.
As an OSGi-based application that adheres to the patterns of modular applic-

ations and service-oriented architectures, the core is built out of several bundles,
each implementing a particular functionality of the core. An overview of the
core bundles can be found in Figure 6.2. The bundles were chosen to get a
high reusability and easy exchange against similar bundles as the bundles are
almost self-contained. For example, putting the composition engine itself in its
own bundle (core.coas) allows to reuse the composition engine in other con-
texts, e.g., in an SDN controller. Similarly, the communication is implemented

73

CHAPTER 6. NETIDE CORE

in the core.connectivity bundle. If, for example, the communication to backends
and shim should be done via HTTP (not a good idea, but as an example), a
core.httpconnectivity bundle could replace it.

NetIDE Core

core.api bundle

Core Interfaces

Shared Classes

core.connectivity bundle

Shim Connection

Backend
Connection

core.caos bundle

Specification
Parser

Composition

Conflict Resolution

core.management bundle

Management
Connection

Configuration
Change Handling

Karaf CLI
Commandhandlers

core.routing bundle

OpenFlow Request
Message Routing

eu.netip.library bundle

Message Parser

Message Builder

Abstraction Classes

Dependencies

Figure 6.2: core Bundle Overview.

The individual bundles provide services to and consume services of other
bundles. The service references are managed by the Apache Aries Blueprint
Dependency Injection module [15]. It is integrated in Karaf and was therefore
selected as the dependency injection framework for the prototype. A short
overview of the bundles and their responsibilities follows:

core.api bundle The core.api bundle contains shared classes and interfaces
for the core bundles. It does not contain any logic itself and does not provide
or consume services. It is referenced as a dependency by the other bundles and
provided at runtime in Karaf as part of the core.

netip.library bundle With the NetIDE Protocol also came the need for lib-
raries that make handling the protocol’s messages easy. This bundle contains a
Java implementation of the NetIDE Protocol, i.e., it contains classes for parsing
and creating NetIDE messages. It is implemented as a Java library so that
other Java-based parts of NetIDE (e.g., shim module for OpenDayLight, shim
and backend module for ONOS, and the backend module for Floodlight) can
utilise it.

core.connectivity bundle This bundle contains all classes necessary for the
connection to the shim and the backends. In our prototype, the connection to
these are using ZeroMQ sockets. This bundle extensively uses the netip.library
bundle to parse incoming messages and create outgoing messages.

core.caos bundle The core.caos (Composition and Orchestration) bundle
contains the most important logic of the core, namely the composition and
conflict resolution mechanisms.

core.routing bundle This bundle manages the mapping of requests and an-
swers in order to give only the right backend/module the response to a request

74

6.5. MODULARITY

Module
(ID=X)

Backend
(ID=Y)

Core Shim Layer Switch

request msg
(xid = N)

assign new unique xid
record xid to module

NetIDE msg
(module_id=X)
request msg

(xid = N)

NetIDE msg
(module_id=None)

request msg
(xid = M)

request msg
(xid = M)

reply msg
(xid = M)

restore the old xid
xid=N module_id=X

NetIDE msg
(module_id=None)

reply msg
(xid = M)

NetIDE msg
(module_id=X)

reply msg
(xid = N)

reply msg
(xid = N)

Figure 6.3: Message diagram for XID remapping in the core

and not to broadcast the response to all backends, risking that a backend gets
confused by a response that it did not request.
This bundle solves two problems. The first is that backends should only re-

ceive responses to requests that they initiated themselves and not responses
originating from tools or other backends. The other problem is that request
messages sent to the switch need to have unique IDs to pair responses to re-
quests. Normally, this uniqueness is ensured by the SDN controller by generating
unique XIDs, e.g. by just incrementing the XID by one for each request. Since
the backends do not coordinate their XID, uniqueness needs to be established
by the core. The core does so by replacing the original XID with its own XID,
also recording the mapping to restore the original XID and direct answers only
to the right backend. Figure 6.3 shows a message diagram of this process.

core.management bundle This bundle provides a management interface for
the core using ZeroMQ and NetIDE Management messages. This interface al-
lows external tools to change the configuration of the core at runtime (i.e. by
installing a new composition specification). It also provides the special CLI
command to examine the core status in the Karaf shell and modify its config-
uration.

core.globalfib The module core.globalfib implements the GlobalFib and the
legacy implementation. For more details see Section 7.12.

75

CHAPTER 6. NETIDE CORE

6.6 Extending the core to non-OpenFlow proto-
cols

Almost all modules of the core are written in a protocol-agnostic way. The only
modules that know about and handle the content of NetIDE messages with
OpenFlow payload are core.caos and core.routing. core.routing serves a
very special purpose of mapping/remapping OpenFlow XIDs and is therefore
OpenFlow-specific.
Most of the core.caos module is also protocol-agnostic. It will do sequential

or parallel composition by instantiating the ConflictResolvers class, which
in turn calls the specific conflict resolver depending on the message content.
At the moment, this is only implemented for OpenFlow in the form of the
DefaultOFConflictResolver class. Extending caos for other protocols simply
needs implementing resolver classes for the other protocols.

6.7 Composition specification
The specification language has to be able to express all the semantics that
specify how to compose software-defined networking (SDN) application modules
running in the SDN controllers in the core.
We used an XML-based composition specification. That allows us to offload

checking the validity of the file to an XML validation tool and enables us to
use well established XML tools and libraries. The underlying XML schema is
available as part of NetIDE [79].
The first part of the specification is to define what modules are available and

how these are identified. Then the composition needs to specify when and how
the modules are being used, e.g., if the modules are used in parallel or serial in
the composition. Then finally the specification needs to specify how the results
are composed and what behaviour the core should have if conflicts are detected.
An example for such a specification is given in Listing 3. The Modules element

(line 3) fulfils the rule of defining the modules used in the composition. The
Composition element (line 12) defines the execution flow on network events.

1 <CompositionSpecification
2 xmlns="http://netide.eu/schemas/compositionspecification/v1">
3 <Modules>
4 <Module id="fw" loaderIdentification="ryu-fw.py"/>
5 <Module id="appA" loaderIdentification="appA.py"/>
6 <Module id="appB" loaderIdentification="appB.py"/>
7 <Module id="lb" loaderIdentification="loadbalancer.jar">
8 <CallCondition events="packetIn" datapaths="0 42 43 45"/>
9 </Module>

10 <Module id="log" loaderIdentification="logger.py"/>
11 </Modules>
12 <Composition>
13 <ModuleCall module="fw" />
14 <ParallelCall resolutionPolicy="priority">
15 <ModuleCall module="appA" priority="1"/>

76

6.7. COMPOSITION SPECIFICATION

16 <ModuleCall module="appB" priority="2"/>
17 </ParallelCall>
18 <Branch>
19 <BranchCondition events="flowMod"/>
20 <If>
21 <ModuleCall module="log"/>
22 </If>
23 <Else>
24 <ModuleCall module="lb"/>
25 </Else>
26 </Branch>
27 </Composition>
28 </CompositionSpecification>

Listing 6.1: Composition Specification Example.

In the following section we will describe the most important elements of the
composition XML format in detail.

6.7.1 Modules
The modules section specifies the modules to be used in the composition. Each
module can have the following attributes: attributes,

id The ID of the module is used to identify the module throughout the rest
of the configuration and also how the module identifies itself during the
handshake with the core.

loaderidentification This optional attribute specifies a binary that imple-
ments the module. A loader application can start the not running modules
by looking up this attribute to start the modules.

noFenceSupport As fence support may require modification of the modules,
the core implements a workaround/hack for modules that do not imple-
ment support. Instead of using fence messages to determine when a mod-
ule has finished processing and which events are tied together, in this
mode the core assumes that everything sent after an event belongs to that
event and that processing an event is finished when a new event is sent to
a module. This mode is intended only for testing and when implementing
fence support in a module/controller.

To restrict when a module is used, the module tag can also have a CallCon-
dition tag. When a module is used in a composition but not being called but
used due to the CallCondition tag, the module is instead treated as if it had an
empty output.
Attributes to the CallCondition tag are:

datapaths If specified, this restricts the module to being called for only the
switches (called data paths in OpenFlow) with the IDs in this list.

77

CHAPTER 6. NETIDE CORE

events Specifies a list of events for which the module is called. This list includes
the events packetIn, which is for PACKET_IN events, connectionUp and
connectionDown, which are the link status events.

headers The CallCondidition tag has also been prototyped to allow restriction
to certain packet type, e.g., a specific TCP or UDP destination port.
Although the specification allows specifying these restriction the current
prototype does not evaluate them.

6.7.2 Composition
The composition allows to specify how to the composition of the modules spe-
cified in the Modules tag should be executed. If modules are listed in a Parallel-
Call tag, the modules are called at to the same time and a parallel composition
is performed. If modules are listed without an enclosing ParallelCall tag, a
serial composition is performed. The Branch tag has the same attributes as the
CallCondidition as above for the Module and an If and Else sub tag. If the
packet matches the attributes of Branch tag, the contents of the If tag branch
is used for the composition of the packet, otherwise the Else tag.
A ModuleCall specifices that a specific module should be called. It has the

following attributes:

module ID of the module, this references the ID of the Module tag in the
Modules section.

priority Priority of the module, used in some of the conflict resolution policies,
see below (Section 6.7.3).

6.7.3 Conflict resolution policies
Currently, the following conflict resolution policies for a parallel composition
that is specified with ParallelCall are defined:

Ignore A baseline policy, simply ignores all potential conflicts and returns the
union of the commands.

Pass If two commands conflict, discard them both. Also a baseline policy;
currently not implemented (but trivial to do).

Priority Assuming that priorities have been assigned to the applications in the
composition specification (even if only implicitly by the order in which they
appear in the specification file), then pick the command resulting from the
application with the higher priority (and ignore the other commands).

Auto The auto policy tries to determine a smart resolution. It is a simplified
implementation of the conflict resolution outlined in Chapter 5.4. The
policy determines the largest match that all commands (flow mods) have
in common by using the following algorithm:

78

6.8. EVALUATION

• each match field that has wildcards in all commands, keep the wild-
card

• if there is a wildcard in one command and a specific value in the
other, keep the specific value

• if there is the same specific value in all commands, keep that value
• Otherwise the algorithms determines the match to be empty and the

conflict resolution fails.

Action resolution is currently implemented as trying to create a conflict
free union of all action sets:

• Create the union of all action
• if the union has duplicate items, remove the duplicates
• if the union has two items with the same action but different para-

meter, (e.g. Add-Vlan 1, Add-Vlan 7), the conflict resolution fails.

If the conflict resolution fails for two conflicting commands C1 and C2,
fall back to the default policy, which is usually reject/ignore the rules.

Other merge policies are easy to add to the core if needed, for example auto-
matic rewriting of rules by priorities.

6.8 Evaluation
Evaluation of the individual aspects of the core can be found in the individual
chapters; the evaluation of reconfiguration of the core is described in Section 8.6.
An evaluation of the core as the whole system configuration has been done

in the course of the NetIDE project. The NetIDE project was a use-case driven
project; one of the most important, if not the most important, goal for the soft-
ware of the project was to implement the use cases specified at the beginning of
the project. These use cases were designed by industrial partners and are mod-
elled from realistic scenarios. The scenarios have in common that they require
composition of existing applications in order to achieve the correct functional-
ity. As an example, one of the scenarios consisted of a data centre with multiple
networks that each have a switch or router connecting them. The networks
are connected by firewalls and finally the whole data centre is connected to the
Internet with a load-balancer. This scenario can be implemented with multiple
SDN switches and an SDN controller with a firewall/switch or router SDN ap-
plication on the respective controller. Using the composition implemented in
the core, all modules can be run on the same switch and the scenario can be
implemented by reusing the existing software modules. The other scenarios had
similar requirements where multiple existing SDN software should be combined.
This evaluation of the approach yielded several results. The first and most

important one is that the composition implemented here works with realistic

79

CHAPTER 6. NETIDE CORE

scenarios. The second observation is that the modules have to be carefully
selected (or modified) to comply with the restrictions laid out in Section 6.4,
something that might be more difficult with third-party modules rather than
modules developed in-house like in our scenario. Another result of the evaluation
is that a controller independent interface has proven useful to develop debugging
tools.
While a performance evaluation of the core would be critical for a productive

system, the prototype developed during this thesis has been developed with a
focus on functionality to explore if the concepts do work. We do not believe
that a performance evaluation of the core does not bring any good insights.

6.9 Conclusion
This chapter has presented the NetIDE core and its surrounding architecture.
The core has proven to be a reliable tool in NetIDE. The challenges that

present themselves for practical composition were overcome and I found solu-
tions for them. At the same time, the implementation features a modular design
that is extendable for further improvements. This practical implementation has
indeed proven that it is feasible to run multiple applications of different control-
lers simultaneously on the same network. The concept is also general enough to
be extended to protocols other than OpenFlow later. But the design and imple-
mentation of the composition has also shown that composition with OpenFlow
needs special care of selecting or even modifying existing applications.

80

7 GlobalFIBy
In this chapter, I will present GlobalFIB, an approach to bring a higher level

of abstraction to composition and flow management to an SDN controller frame-
work. This layer keeps information about all flows in a network-wide repres-
entation independent of information stored inside any particular framework.
This representation allows better composition and enables easy integration of
additional features such as verification and routing that includes application
semantics – even across controller frameworks.

7.1 Introduction
Software-defined networks (SDN) are constantly evolving, and as the applic-
ations do, the software that runs and uses SDN evolves rapidly, too. In the
beginning, SDN software was much simpler than it is today and we can still
see this legacy in many ways. For instance, the programming model for SDN
application is still very basic in some aspects; every application is allowed to
send arbitrary rules to the network. This uncomplicated and rapid program-
ming model is well suited for a single application and fast development. Using
this programming model, which focuses on a single application; running only a
single application is not sufficient for most networks anymore: a single mono-
lithic application should not implement all required functionality in networks of
non-trivial complexity.
Prior to software-defined networking (SDN), multiple parts of the network

that had different roles were also kept physically separated. Data centres have
a separate part of the network – the border routers that manage forwarding
from and to the outside (the Internet). Examples of decisions made in that net-
work are which egress path/provider to take or how to share the load between
the uplinks. These border routers are then connected using dedicated physical
links to the data centre network switches. To signal different treatment of flows
between the two domains, in-band signalling is usually used, e.g. QoS paramet-
ers are set or special (MPLS or VLAN) tags are set and the configuration of
both sides has agreed on what the tags mean, e.g., forwarding for best latency
or data rate.
Even within the data centre network, there are multiple applications (or even

dedicated middle boxes in non-SDN setups) that influence forwarding of packets:
load balancers that translate a public IP address into an address of a backend
server, QoS applications that classify or reclassify the flows’ priority, or firewalls
that block or allow flows. When migrating from a conventional network to an
SDN setup, all these applications ideally would run on a single SDN control-
ler platform and work together without any problem or manual configuration.
Unfortunately without coordination, the individual components’ flow rules and
actions that are installed on the network can be contradictory and conflict with
each other. This will render one or more of the applications to be inoperational.
This situation is particularly problematic as current SDN controllers have no

81

CHAPTER 7. GLOBALFIB

mechanism to detect such conflicts and they have barely any mechanism to
avoid and solve such conflicts. Furthermore, as most applications are designed
to run standalone, they provide more information and take more decisions than
their core necessitates: a load balancer SDN application’s purpose is to map
an incoming flow to one of the backends. Since there is (usually) no API to
communicate that, the load balancer applications (or its SDN controller) will
also calculate a path for the flow.
As in this traditional SDN programming model each application generates –

based on its decisions – flow rules for each individual switch. Applying these
changes all individually on each switch leads to problems with conflicting rules
and unexpected behaviour (see also Chapter 5).
To overcome the problems posed by running many uncoordinated network

applications on the same network, we propose the following approach: Gather
the information and changes that each applications wants to apply to any flow
and use that abstract information to merge the flow descriptions coming from
any application that concerns itself with that flow.
Controller frameworks are already going in this direction of providing these

application programming interfaces (APIs) (see also Section 7.2). But these
APIs are optional and SDN applications are free to choose whether to use the
high level APIs or use the traditional low level APIs.
We believe that this is the right direction but the approaches are not going far

enough. We also think that a cross controller framework is needed (as with the
composition in Chapter 6). Therefore, we present an approach that does two
things compared to traditional frameworks: Make the high-level flow description
rule the central element in the description of flow rules and force these flow rules
to be in a network wide format (unlike OpenFlow flow mods, which describe
only flows on a single switch). We will show that having this format for flow
rule definition has multiple advantages.
We propose GlobalFIB that stores information and meta data about end-to-

end flows as a solution. The idea is to have a forwarding information base (FIB),
which stores all information that is needed to take forwarding decisions on the
scope of a whole network and all applications. This global FIB then provides
all information to fill the individual FIB tables of the switches. And since
GlobalFIB is a network-wide table, all flow rule descriptions in this table should
also be in network-wide format, which we call end-to-end flow rule descriptions.
This solution exploits the advantage that SDN controllers typically have a global
view of the network, and use it as the key building block for our solution.
An end-to-end flow description is similar to a normal OpenFlow flow descrip-

tion (as used in an OpenFlow table) but with the important difference that it
describes the whole way of a packet through the network. In contrast, OpenFlow
flow descriptions focus on matching flows on a single switch.
Implementing GlobalFIB inside a controller framework is at first glance the

natural way to implement it. The other option is to implement it externally
as an additional layer between SDN controllers and SDN switches. As we have
already implemented the core (Chapter 6), it is more reasonable for us to realise
GlobalFIB also in the context of the core. As with the core and composition,

82

7.2. RELATED WORK

this allows to provide this API with multiple different controllers running at the
same time.
In the remainder of the chapter we will show how GlobalFIB is defined in

Section 7.3 after looking at related approaches in Section 7.2. We continue by
showing how GlobalFIB can be used to improve various areas of conflict detec-
tion (Section 7.4), validation (Section 7.5), conflict resolution and composition
(Section 7.6) and as API for collecting statistics (Section 7.8), debugging tool
(Section 7.10) and traffic engineering (TE) (Section 7.9). We present details
about our proof-of-concept implementation of GlobalFIB in Section 7.12 and
discuss aspects of integrating GlobalFIB into a distributed platform in Section
7.11 and finally draw a conclusion in the last section.

7.2 Related work
The idea to generalise individual flow rules into a more generalised concept
is widespread. The concept of looking at individual flow mods and rules on
a switch that is found in SDN is rather an artefact that originates from the
low-level perspective of south-bound SDN protocols like OpenFlow and the his-
tory of distributed autonomous packet switches and their usage of distributed
algorithms. In stark contrast, especially circuit-switched networks have always
employed an end-to-end semantic as focusing on a single network element would
break the semantic of a circuit.
In SDN, there are multiple ideas to provide high-level APIs, for example in the

IETF IB-NEMO [51] project or the Neutron API of OpenStack [80]. The idea
is to relieve the consumer of the API from the need to specify the fine details
and only specify the rules with as few details as possible. Typical requests to
these APIs are “VMs A, B and C should be in the same network” or “a tunnel
from location D to E with at least 100MBit/s”. Details of realisation (e.g. by
using VLans or by creating a GRE tunnel) are not important for the consumer
of the API.
The need to implement these more abstract descriptions of requests has

also been realised by the various controller frameworks. Both ONOS [13] and
OpenDayLight [82] implement higher level APIs. The goal of these APIs is
mainly to relieve the applications running on the controller of the details that
are needed to generate the flow rules. For this, the ONOS controller framework
[13, 84] adds intents that allow controller applications to express intents like
the HostToHost Intent, which instructs the controller to provide connectivity
between two hosts. An SDN application does not need to specify a path between
these hosts or other details. If the application wants to also specify the path
of the flow, ONOS offers the PathIntent for that. The required parameters for
a flow rule that an application (intentionally) does not specify are filled out
by ONOS before generating flowRules (ONOS’ abstraction of Flow mods) and
installing the flowRules onto the switches. This API only works inside the con-
troller and the goal is to simplify the creation of flow mods. ONOS does not
implement any conflict resolution or other optimisations based on these intents.

83

CHAPTER 7. GLOBALFIB

Running multiple apps on top of an SDN controller is also trying to be solved
by multiple approaches I already compared in Section 5.6. The approaches
either focus on single-switch semantics when implementing “legacy” protocols
like OpenFlow, or only support their own protocol that is not switch-centric.
An example for creating a language/interface that focuses on programming the
network instead of programming individual devices is SNAP [9]. It abstracts the
network into a “Big Switch abstraction”, thereby also creating only flows in its
programming language that are from edge to edge port. To split the statements
and its states onto the switches, SNAP uses Gurobi and solves an integer linear
program (ILP). The drastic change of changing the programming language is
only suited for new deployments. The new programs can then be written in
SNAP.
Most of these approaches that introduce new programming languages (like

SNAP) are designed to run solely on the network but introducing GlobalFIB as
additional layer allows these approaches to coexist.

7.3 Architecture
In this section I start defining the network definition we are working with and
continue with explaining the architecture of GlobalFIB.

7.3.1 Network
On a high level abstraction a network infrastructure can be seen as a collection
of SDN switches, end hosts and links between these components.
For these switches and links we make a number of assumptions. The SDN

controller is the only authoritative instance for any switch it controls and no
other entity is manipulating the state of the switch. This allows the SDN con-
troller to expect that the switch does exactly what the controller has instructed
it to do. We assume that the network allows us to discover its topology, as
GlobalFIB heavily depends on a correct topology. Furthermore, links between
switches forward data unmodified or, if there is a transparent firewall/IPS, that
these do not change the packets headers as we assume that packets on direct
links between (SDN) switches are unmodified.
We divide switch ports (on controlled switches) into two categories: fabric

ports and edge ports. We call a port a fabric port if it connects to another
controlled switch, i.e. every packet received/sent from such a port is coming
from/going to another fabric port. All other ports that connect to anything
not managed by the controller are edge ports. For the purpose of this defini-
tion, virtual ports to the controller (e.g. PACKET_IN in OpenFlow) are also
(virtual) edge ports. By differentiating between these port types, we can also
differentiate between handling of packets that interact with other systems and
packets that are handled purely internally. We call the ports, switches and links
that are directly and solely controlled by the controller the fabric of the net-
work. This fabric of the network is analogous to the fabric of a hardware switch,

84

7.3. ARCHITECTURE

SDN Controller

Switch

Switch

Switch

Switch

Switch

Switch

Host

Host

Host

Host

Host

Host

Host Host

Host

Firewall

Figure 7.1: Overview of a network with distinction between fabric and edge
links

which inner workings are also invisible to any outside system. Figure 7.1 gives
an overview of a network. Every link and switch that is black is considered part
of the fabric; the grey switches links are not part of the fabric and their ports
are edge ports.

7.3.2 End-to-end flow rule definition
The key point of the GlobalFIB design is the description of end-to-end flow rules.
An intuitive definition: it specifies everything that happens with a packet from
entering until leaving the network. A packet forwarding is decided by exactly
one end-to-end flow rule (or a composed end-to-end flow rule, see Section 7.6).
In contrast, in a decentralised environment and often in SDN controllers, hand-
ling packets is specified on a per-switch basis and forwarding of a packet is de-
termined by multiple flow rules, one per switch (or more with OpenFlow table
support in Openflow 1.3+). An end-to-end flow rule is defined to have an input
specification, that defines which packets belong to the flow, and an output port.
Optionally, a flow rule can also have actions/mutations, constraints and meta
data. We keep the specification as close to the OpenFlow flow mod definition as
possible but extend it to carry the end-to-end semantic. The individual parts
are defined as follows:

Input specification The input specification specifies the packets that are
matched by this flow rule. The match consists of the edge input ports and an
OpenFlow-like input match that specifies what header values of a packet are
considered to be matched by this specification. The difference to the OpenFlow
input specification is that inport of the match specifies a list of pairs (switch
ID, port ID) instead of a list of only port IDs.

85

CHAPTER 7. GLOBALFIB

Priority a single application has multiple end-to-end flow definitions that
overlap, e.g. by having overlapping input specifications, the priority will be
used to resolve the conflict.

Output ports The edge port(s) that packets matching this rule should ulti-
mately be forwarded to. As with the input ports this is a list of tuples in the
form of (switch id, port id).

Actions/mutations Modification and actions that should be performed on
the incoming packet and visible on the outgoing packet. These include changes
in the packet header like VLAN tags, IP addresses or MAC addresses.

Constraints Constraints are optional and specify anything that changes the
behaviour of forwarding the packet but is not (directly) visible on the outgoing
packets. These constraints can specify a specific path in the network or spe-
cific QoS handling. Also more high-level constraints are possible. A high-level
constraint would be the need to pass the packets of the flow through an IDS
device.

• path constraint If the application want to use a specific path, this con-
straint will contain a list of the switch IDs that describe that path.

Meta data The meta data is information for this flow but does not influence
packet processing directly. This can include the SDN application that installed
the flow or an internal priority of the rule or the original rule(s) if the rule was
converted from another format. This is implemented as a simple key-value list,
with the representation of the value depending on the key.
So far we defined the following meta data:

• importance One of optional or required. By default flow rule definitions
are considered to be required to be installed as they are needed for an
application to work correctly. Optionally an application can specify that
a flow rule can be ignored if it conflicts with another flow rule that is not
optional. This is used in the conflict resolution (Section 7.6).

• characteristics The characteristics for the flow (data rate, burstiness, dur-
ation). This information can be used to allow better decision from TE
(Section 7.9).

Note, it is possible to specify more than one port in the input specification
and also more than one port in the output specification. As a packet that
matches any of the input ports will be forwarded to all of the output ports,
this feature allows specifying many-to-one or incast, multicast/broadcast and
many-to-many (or all-to-all) flows.
An example for a rule of a connection to a load-balanced HTTP server is as

follows:

86

7.3. ARCHITECTURE

input specification: inport=7,dpid=5,dst_port=80,
dst_ip=10.0.0.1

output port: outport=3,dpid=2
actions: set dst_ip=192.168.0.34
meta data: app_id=http

7.3.3 GlobalFIB database
Storing the information about all the end-to-end flows creates the GlobalFIB
database, which serves as the authoritative database of flows for the network.
When no additional optimisation/verification is requested, these can be directly
translated into FlowMods for the southbound layer:
We calculate a path (or spanning tree if multiple in/out ports are involved)

from the input port(s) to the output port(s). On the input switches the Flow-
Mods can be generated by simply copying the input specification and reducing
the inport list to the ports of the switch itself. For the output port(s) the next
switch(es) in the calculated path are used. We also tag the packet with a label
(e.g. a MPLS label) that we link to the end-to-end flow rule. On all other
switches (in between or egress) we set the match of the flow_mod to match this
label and the outport to the next switch(es) in the path. Finally on the egress
switch, the flow_mod rule also removes the label.
The example assumes, for simplicity, that we have unique labels that we can

apply to the packets. If these are not available other header fields or a com-
bination can be used to identify the packets or the packets have to be modified
on the first switch to ensure this uniqueness and modified back on the egress
switches.
The additional knowledge present in the GlobalFIB can be used by south-

bound frameworks to optimise the rules being pushed to the network: The south-
bound layer can use GlobalFIB as a database from which the southbound layer
(or another consumer, like a debugging frontend as described in Section 7.10)
can query for flows matching certain criteria and gets back all end-to-end flows
matching the query. For example, instead of merely asking for the best possible
match, the consumer can ask for any flow definition matching an input spec. The
consumer could also ask only for rules that target specific flows. For example,
it might be useful to ask for everything that affects TCP flows with port 80.
Or when generating flows that are specific to a switch, a query of all flows that
have a specific output port can help generating fewer rules as multiple end-to-
end flows can potentially be grouped into a single rule on that switch. When
a large number of flows are going to a central destination in the network (like
the uplink or a central component like the DNS server), flows can be marked by
a special tag on the ingress switches and then all handled the same with only
one flow mod per switch in forwarding based on the tag. Another example is to
ask if there are other rules that have similar or identical actions on the egress
port. Such knowledge enables a south-bound layer to create better flow rules if
multiple end-to-end flows only differ in the input specification but are otherwise
handled identically. That distinction can be eliminated when generating the

87

CHAPTER 7. GLOBALFIB

flow rules for the switches.
Having such a flexible database as the GlobalFIB and allowing other compon-

ents to access it, begs the question how to access this database. The simplest
option is to present all flows to the consumer. This option does not scale very
well, so a mechanism to select a subset is needed. As the examples above already
highlight, consumers might be interested in different subsets. As the number of
parameters that we can choose from is very large, predefining different subsets
does not make sense either. To satisfy these needs we think a simple query
language does the best job. For the design of the query language, we wanted
to stick to an established and known notation. Therefore, we designed it to be
loosely based on the syntax of the flows rule definition, which is already based
on the OpenFlow flow rule definition. To get an idea what we think such query
language needs to support, we list a few examples of what we consider typical
queries: “flows that match the packets from 1.2.3.4 to 5.6.7.8”, “all flows that
start at the switch with DPID 23”, “any flows that matches at least one source
IP address from 10.8.0.0/16” or “flows that affects a VLAN between 200 and
300”. In the few examples, the relation of the queried element and the expected
result can have very different relationships: the answer can be coarser as in the
example of matching a flow from one IP, it can be more specific as in VLAN
query examples or even be a query for a non-empty intersection as for the flows
affecting the 10.8.0.0/16 subnet. To support all these variations we define the
following operators that specify the scope of the result:

= Query and result must be equal.

< The result should be equal to or coarser than the queried element, for
example a query for < 1.2.3.0 can result in a flow that matches 1.2.3.0/24.

> The result should be equal to or more specific than the queried element,
a query for > 4.5.0.0/16 can result in a flow that matches 4.5.6.0/24.

∅ The query and the result must have an empty intersection. The query ∅
1.1.1.0/24 would return a flow that matches 3.0.0.0/16.

∩ The result and the flow must have an non-empty intersection. A query
for ∩ 192.168.*.1 would return a flow matching 192.168.23.0/24.

The language is quite simple so far but fits our needs. The operators presented
here are a good foundation to make the language more flexible; in Section 9.2
we describe how to extend the language to be more flexible and SQL like.
Figure 7.2 shows how the GlobalFIB (and its database) is embedded into the

SDN controller architecture. It sits, as an additional layer, between the south-
bound interface and the controller framework and application that generates
rules. For the controller framework and applications that already specify rules
in a GlobalFIB compatible flow format (e.g. the ONOS intents), no further ad-
aptation is required; for all other applications, we add a legacy rule emulation,
which is described in the next section. For existing controller framework this
integration is similar to the backend modules for the core (see Chapter 6), which
also eases the implementation of GlobalFib within the core.

88

7.3. ARCHITECTURE

SDN App SDN App NB InterfacesSDN App

Switch Switch Switch

Controller
Frameworks

GlobalFib

Optimization/Veri�cation

External App

Legacy Rule
Handler

Southbound Interfaces

Figure 7.2: Architectural overview of GlobalFIB, new/modified components
GlobalFIB components are dark/light grey

89

CHAPTER 7. GLOBALFIB

7.3.4 Handling legacy rules

Not all SDN software will generate rules that can be directly converted to the
end-to-end flow rule representation; especially existing SDN controller apps will
generate flow rules individually for each switch.
Flow rules that have edge ports as input and output port(s) already describe

an end-to-end flow rule. All other flow rules, where input port, output port or
both are fabric ports, are invalid as an end-to-end flow rule. The solution is to
transform these flow rules into end-to-end flows.
We do this by emulating packet forwarding and inferring an end-to-end flow

rule definition from that. For now, assume that a controller installs all flow rules
we need for this emulation. We begin with a flow rule that matches packets on
an edge port. Using that rule we emulate packet forwarding. We start with a
virtual packet that comes from the edge port, apply the action from the flow
rule, record the changes made to the packet and the designated output port.
We also record the match used to match the packet as a tentative match for the
end-to-end flow rule. Using the topology of the network, we first check the type
of output port. If the output port is a fabric port, we look up the switch on
the other end of the link, check which (legacy) flow rule on that switch matches
our virtual packet. The match of the legacy flow rule might be only a subset of
the match we recorded so far. In this case we set the (common) subset of both
matches as new match and create copies of the virtual packet that match the rest
of the original match. For these copies we will then repeat the process. After
applying these changes to our virtual packet we repeat this step. For the other
case, that the output port is edge port, we have successfully traced the virtual
packet form an edge port to another edge port. From all the flow rules that
matched our virtual packet we can infer an end-to-end flow rule in the following
way: we already have the input port and the output port and the input match.
To create the set of action and mutations, the action/mutations of the flow rules
are combined into a single set of actions/mutations. Actions that cancel each
other out or do not have an effect are removed from this set. Actions that cancel
each other out are generally actions that reverse a previous action; for example,
first adding and then removing a VLAN tag. This adding and then removing
is not visible outside the switches that are controlled by the SDN controller.
Actions that have no effect are actions whose effects on a packet are removed
by a later action or do not modify the packet at all. For example a “decrement-
TTL” action has no effect if later a “set-TTL” action is applied to the packet.
Encapsulating a packet in an IP tunnel that discards the Ethernet, discards any
modification to MAC field before the packet is encapsulated. Optionally, if we
want end-to-end rules created from legacy to emulate as close as possible we
also store the path of the switches as a path constraint, so the end-to-end flow
definition is forced to take the same path as the legacy flow rules we emulate.
When the controller proactively installs all flows rules, end-to-end flow rules

can be inferred by the way described before. But that raises the question what
happens if no flow rule matches on a switch, when trying to look up the next
step, e.g. because the controller does not install rules proactively. To get the rule

90

7.4. CONFLICT DETECTION

for the switch in question, we need to trigger a rule installation from the SDN
controller. This can usually be done by sending a PACKET_IN to the controller.
The controller will then usually answer with a rule that matches the packet. To
create a PACKET_IN packet, we have two options. The first option is to create
an artificial packet. For that, we have to guess all packet headers and contents
that we cannot infer from the rules, e.g. setting them to random values or zero.
Creating such an artificial packet, which may not even be valid, that comes at
an unexpected time might confuse the controller. The second option is to defer
the creation of an end-to-end flow until a PACKET_IN from the network arrives
(for a real packet). Again we emulate applying the flow rules to PACKET_IN
until we arrive at the switch that has no matching flow. We then send the
PACKET_IN, which has all the modifications from the flow rules so far applied,
to the controller. As the second option is how a real network would behave and
does not have the problem of random packets, we prefer this option over the
first.
This emulation and transforming from legacy rules is naturally not always

perfect, especially since we can install the end-to-end flow rule definition in a
different way than the legacy application expects, statistics and network beha-
viour will also differ from what a legacy application expects. For example, if we
choose different paths for the flows, the network utilisation will be different from
what the application might expect. But this is a trade-off between emulating
everything precisely and using the new possibilities that we have to make.

7.4 Conflict detection
As a reminder from Chapter 5, I recapitulate what constitutes a conflict of flow
rules in an SDN network; a conflict generally occurs when packets should be
handled in two different ways: two flow rules match on the same packets (or
have a common subset) and specify different actions to be performed. Such
conflicts can exist between flow rules of just one application or between flow
rules of multiple applications. For a single application, these conflicts are often
intentional since one of the rules is more specific than the other one (a canonical
example is the default route and a local subnet route). Priorities are used to
resolve the conflicts between these rules, either explicitly or implicitly like in
longest-prefix matching. When comparing flow rules of different applications,
only these effective rules that are not ignored have to be considered.
Ideally, all flow rule definitions should coexist and not conflict with each

other. But applications are written by different developers and have different
logic therefore conflicts are inevitable. A conflict might not create erroneous
behaviour since the conflicting rules have similar behaviour. For example, one
application normally forwards ARP requests/answers directly between connec-
ted devices and another application implements proxy ARP, which redirects
ARP requests to the SDN controllers and generates ARP answers from the SDN
controller. Irrespective of the winning rule, the ARP queries are answered; and
even though ARP can still work without problems the SDN application proxy

91

CHAPTER 7. GLOBALFIB

ARP module might not work correctly since it is missing the information oth-
erwise acquired through the ARP packets, leading to errors that are hard to
debug.
Without using end-to-end flow rule definitions, flow rules will be generated

on a per-switch basis. This can also create conflicts on a per-switch basis and
will detect conflicts that are artefacts of an implementation that does not use
end-to-end semantics. As an example, two applications have decided to use the
same switch as part of a path to tunnel traffic. With end-to-end semantics this
switch is only a hop in the path constraints and does not represent a conflict.
With individual flow rule definitions, both applications can tunnelling with the
same VLAN id to identify the tunnel. If these rules have different output ports,
the path diverges, creating an unsolvable conflict. By having end-to-end flows
for each application – either by directly having them in this format or being
converted from legacy rules first – we can entirely avoid conflict detection on a
per switch basis.

7.5 Validation/Verification
Having a central database for all flows in networks enables new ways of run-time
validations. As we can assume that only flow rules exist in the network that are
also in the GlobalFIB network, we can check for problems and irregularities as
a validation step before installing rules to the network and reject rules if they
violate our invariants. The same is true for other SDN deployments but the
representation of all flows in end-to-end flow format gives a better foundation
to do verification as this section will explain.
The first validation we always perform is whether an end-to-end flow rule

is valid. That means checking whether the input specification and the output
ports are all edge ports. This ensures that there is no flow that just ends in the
middle of the of the network.
There are several problems that can arise in SDN. Most of them are inherited

from the problems of traditional networks. But the nature of SDN also brings
new problems.
A critical problem in any network are routing/forwarding loops. A forward-

ing loop is when a packet is forwarded in a circle. As the packets never leave
the network, these forwarding loops will eventually consume all forwarding per-
formance. This phenomenon is also often called “broadcast storm”, as broadcast
packets are the packets most likely to trigger the loop behaviour as these are
typically forwarded to all ports. By utilising the end-to-end semantics of Glob-
alFIB we do not allow any kind of rules that create a loop in the network fabric,
as a loop in the network fabric would violate the requirement for end-to-end
flows to never begin or end in a fabric port. This, of course, depends on the
topology discovery layer to correctly discover the network topology (which is
one of the main reasons why we require that the network topology can be dis-
covered in Section 7.3.1). Applications directly producing end-to-end flow rule
definitions have no way to specify loops. As the legacy rule emulation also pro-

92

7.6. CONFLICT RESOLUTION AND COMPOSITION

duces end-to-end flows, the “loop free guarantee” carries over to legacy SDN
applications. The legacy emulation will already detect a loop in the flows when
trying to create an end-to-end flow. Even if an application introduces a loop as
a path constraint (e.g. specifying a path constraint like 1,3,2,3,4) the SB layer
still has the option to either remove the loop from the path, refuse to install
the path or install flow rules in a way that the packets can be differentiated
and forwarded twice over the same switch/link without creating a loop by using
different tags for each pass over the switch.
The central authority of the GlobalFIB and its clear semantics allow to write

live validations of the rules being installed. Instead of relying on a firewall to fil-
ter out the unwanted traffic, all rules can be checked against a set of predefined
invariants. If a new flow rule in the GlobalFIB violates an invariant, the con-
troller can refuse the new rule. These invariants can be seen analogous to unit
tests in software development. An invariant can specify traffic between certain
hosts has to be forwarded or not. Other possible invariants include having a
certain IP range on an interface, for example disallowing any rule to forward a
private IP to/from an uplink.
Instead of creating another completely new mechanism to specify and imple-

ment the invariants, we reuse the existing end-to-end flow rule definition and
conflict detection. To specify an invariant the user (or an SDN app/framework)
has to specify an end-to-end flow rule and an expected conflict resolution result.
To specify an invariant that disallows traffic between certain hosts and a port
basis: Specify a flow rule description that may never conflict from the ports the
of the first network to the ports of the second network. This can be helpful to
verify that traffic never leaves a certain zone, e.g. no direct flows between the
DMZ and other parts of the networks without involving a firewall. The expec-
ted conflict detection result is set to having no intersection. For validation on
network level the end-to-end flow can match on source and target IP addresses
instead.

7.6 Conflict resolution and composition
Conflict detection is a powerful tool in itself but only detects problems and
does not solve them. Conflict resolution is just as important for a dependable
system. The most straightforward automatic way to deal with conflicts is to
use priorities to resolve them and give each application a different priority and
only apply the rule with the highest priority.
But this priority-based system ignores rules of an application with a lower

priority if conflicts exist. Even if the priority of the ignored application is
lower than the other applications, the ignored application’s flow rules can be
important for the correct functionality of the application. The priority in this
scenario merely ensures that the more important application will work in a case
of conflict.
Using the end-to-end flows can have multiple benefits, conflicts that occur

when using a per-switch conflict detection, may not even exist when the same

93

CHAPTER 7. GLOBALFIB

AB

B: IN VLAN=2, OUT 3 A: IN VLAN=2, OUT 2

B: IN VLAN=2, OUT 1
A: IN VLAN=2, OUT 3

3

3

3
11

1

2

2

2

Figure 7.3: Applications A and B both try to install flow rules, application
B has higher priority

flows are expressed as end-to-end flows. Two applications might decide to use
the same VLAN tag to tunnel a flow. On an intermediate switch both would
then add a rule that matches all packets with the VLAN tag, naturally creating
a conflict.
A per-switch rule can alter the packet in a way, that the packet is not matched

by any rule on the next switch anymore. Assume one rule changed the destina-
tion IP address of the packet and the other rule adds a VLAN tag; since the two
actions do not conflict with each other, a composed rule can have both actions
and apply both to an outgoing packet. The next switch might then not have
a rule that matches the packets at all since the flow rules installed on the next
switch are too specific to match the packets with two actions applied. Or worse,
an unrelated flow rule matches and forwards the packets, potentially creating a
loop. Figure 7.3 shows an example where a per-switch conflict resolution with
simple priorities misdirects packets to a destination they were never intended to
reach. Even with this simple priority based resolution system to resolve conflicts
on individual switches, the resulting packet flow is completely unintended by all
participating applications. With a real composition that actually merges the
flows, limiting the scope to a switch is even more dangerous since the resulting
packet flows can be even more confusing and very hard to debug. To overcome
these problems a composition or conflict resolution has to consider not only the
rules on each individual switch but also the rules on the neighbouring switches.
With our end-to-end flow rule definition approach rule, considering all switches
for a flow is intrinsically included in the approach.
A second advantage of using end-to-end flows is that the constraints of end-

to-end flows are optional, so an application can leave out constraints it does not
need to enforce, allowing easier merging of the rules. For the same end-to-end
flow one application can have a path constraint and other one a QoS constraint.
Since these two constraints do not contradict each other, merging the two flows
is simple. When using per-switch flow rules, a path has to be always calculated
and needs to be considered in the composition. Unlike the previous example,
conflicts are expected here.

94

7.7. CALCULATING PATHS WITH GLOBALFIB

Having a higher level format also allows to add meta-information from the
application to the composition. An application can indicate if certain flow is
required or optional (e.g. a flow that is only for update checks), so conflicts
with a firewall can be resolved automatically.

7.7 Calculating paths with GlobalFIB
Calculation of routing and forwarding paths in a network is nothing new. To
avoid loops in networks with distributed control, usually all participants use
the same path calculation, e.g. Dijkstra’s algorithms in OSPF [76]. In an SDN
network, usually the SDN controller is the central and sole instance for route
calculation. Without the need to coordinate with other instances, it has more
freedom in the routing decision. This freedom benefits a routing algorithm when
using the information from GlobalFIB.
For the flows where the path is already predetermined through the applica-

tion by specifying a path constraint entry, no route calculation is needed. For
entries that specify the need of crossing some specific nodes or a virtual network
function (VNF), the GlobalFIB allows to incorporate this information into the
routing algorithm and to pick the best path through the network if multiple
choices for the VNF are available.
We will show a solution that uses a shortest path algorithm to find a good

path. We duplicate the network into multiple layers and assign a VNF to each
layer. This layer is connected to the previous layer on nodes that have a VNF
instance. This way, a path from the start node on the first layer to the end node
on the last layer will traverse all required VNFs. In the example in Figure 7.4
a path from s to t should be found that traverses an instance of VNF A first
and then an instance of VNF B. The three layers are (from top to bottom)
“nothing traversed”, “A traversed” and “A,B traversed”. Since the layers are
only connected at nodes that provide the functions, a valid path from s in the
top layer to t in the bottom layer is guaranteed to fulfil the constraints. Further
annotating the edges with weights allows to further control the selection of a
possible path.
This approach to find a path depends on the fact that it is known that these

VNF need to be crossed. GlobalFIB provides this information when it is in-
cluded in the flow rule definition. If the information are available through
another mechanism, the algorithm will work as well.

95

CHAPTER 7. GLOBALFIB

A

B A
s

s

t

A

B A
s

t t

Figure 7.4: Transforming the network graph for a constraint that specifies
“first A then B” and a possible resulting path from s to t

7.8 Statistics
Statistics are an important part of network management. The counter of flow
rules on switches can give further insight into the traffic handled by the network.
When finer distinction of flows is needed for statistics rather then for forwarding,
flow rules are solely installed to gather statistics. Statistics-collecting rules
usually take up space in the limited flow rule table on switches and can create
a bottleneck on a busy switch. For a normal point-to-point flow the difference
in number of packets on different switches on its path are negligible when the
network is not overloaded. Using the end-to-end flow semantics helps here since
it allows to pick a switch with a low load to collect the required statistics by
allowing to infer which switches are eligible to collect the statistics by just
looking at the hop list of a flow. This allows to install the rule that collects
statistics on the switch with the most free space in its table on the path.

7.9 Traffic Engineering
Traffic engineering is one of the applications that benefits from more informa-
tion. Since traffic engineering is also looking to steer traffic to paths with better
performance characteristics for a flow, the GlobalFIB is a good fit as input for
TE. Calculating demands and possible paths for flows works much better if all
flows are available as end-to-end flows as this is similar to the circuit-based
calculation approach that is predominant in TE systems. Since our end-to-end
flows can be annotated with meta information, this allows applications to send
expected traffic characteristics (data rate, burstiness, duration) and the required
quality of service (QoS) class. Having this information in the GlobalFIB (and
by that the TE layer) readily available instead of having to guess it or manually
add it, allows for better automatisation of TE.

96

7.10. DEBUGGING TOOL

7.10 Debugging tool

Installing GlobalFIB as a completely new layer in the network architecture is
a very radical step as it changes the behaviour of the network. Even if such
a radical change of the network is not desired, GlobalFIB can still be used as
useful tool in helping to debug the network.
When feeding all flow mods into GlobalFIB’s database, GlobalFIB will be

able to recover end-to-end flows if possible. These can be checked against the
invariants, as specified in Section 7.5 to passively monitor the network’s flow
rules. Furthermore the database can be used to query if and how a certain
packet would be handled by the rules currently installed in the network.

7.11 Distributed GlobalFIB

As SDN controllers provide a central instance they also provide a single point of
failure and scalability tends to be a concern that needs to be addressed. This is
usually solved by using distributed systems for the controller; multiple instances
of the SDN controller share a common database but control different parts of the
network, i.e. each controller instance controls a different switch and maintains
the authoritative FIB database for that switch. Other instances will share a
copy of that database [27].
Any new approach introduced into an SDN controller needs to support a

distributed controller environment to be relevant for deployments that use/need
this feature. The challenge when distributing a database with multiple reader
and writers, is how to ensure the performance of the system as preferring certain
reads/writes makes other operations slower.
In an SDN network, flow install happens mainly in two ways, reactive and

proactive. For proactive flow install, the latency of the flow install is not critical
as the flow rules are installed well before the flow arrives. For reactive flow
install, the flow rules are installed when the first packet of a flow arrives. We
reckon that therefore the database should be optimised to allow fast reactive
flow installs.
The SDN controller instance that controls the switch where a new flow arrives

should be able to make a fast decision and be able to install the flow mods
after that and if needed instruct the other SDN controller instances to install
flow mods on switches it does not control itself. To achieve that, a controller
instance should be able to always have an up-to-date view of end-to-end flows
that have the controlled switch as origin. This avoids communication with other
controller instances for lookups. To ensure this property, every SDN controller
instance serves as read/write master database for all flows that originate from
one of its controlled switches. Additionally, each instance keeps a copy of the
database of every other controller instance. This way each controller has a full
copy of the GlobalFIB while for the latency critical reactive flow installation no
communication with other controller instances is needed.

97

CHAPTER 7. GLOBALFIB

When installing the flow rules the SDN controller can have setup proactive
flow mods on the switches that allow forwarding to a destination by setting the
right header on the ingress switch (using MPLS or SDN approaches like [81,
107]). In this case the end-to-end flow approach allows the ingress instance to
install the flow without coordination with the other instances.

7.12 GlobalFIB implementation
As a proof of concept, we implemented a centralised version of GlobalFIB in
the Core (Chapter 6). As the Core is a central component, it is an ideal place
to implement GlobalFIB and its legacy rule handling (Section 7.3.4). Flow in-
stallation and composition events are all routed through the GlobalFIB module
in order to enable the GlobalFIB module to have a complete view of all flows
that are installed in the network. The GlobalFIB module will keep a table
of installed legacy flow rules. From this table, a second table that holds all
calculated end-to-end flows is constructed.
In the current implementation the GlobalFIB is not used to calculate the

routing of the network. The implementation is focused on showing that the
legacy rule to end-to-end rule conversion is indeed possible and can be used to
debug the network. For this, the GlobalFIB module provides two command line
interface (CLI) commands. The first command lists the OpenFlow rules and
the second one lists the calculated end-to-end flow rules.

7.13 Conclusion
This chapter shows that the introduction of GlobalFIB as a new layer in existing
SDN frameworks and its focus on end-to-end semantics enables and eases the
implementation of additional services in an SDN controller. GlobalFIB espe-
cially allows the integration of high-level features that have a wider scope than
an individual application as seen with the integration of VNF locations into
the routing process. In our eyes, it is clear from this work that this focus on
end-to-end flow should be the general direction that controllers are heading to.
GlobalFIB is the attempt to bring this idea to existing controller frameworks

with minimal intrusion and changes. However, these changes are still major
and GlobalFIB will only achieve its full potential if all SDN applications use the
enhanced end-to-end flow semantics instead of trying to recover these semantics
from the “legacy” flows. However, if application are rewritten to use a new
API, a more radical API change can be made that is better suited at supporting
composition and running multiple applications cooperatively. Multiple of the
proposed approaches in Section 5.6 are following this approach. GlobalFIB
offers only an incremental improvement.

98

8 Reconfigurationy
Software-Defined Networks (SDN) are constantly evolving and so is their soft-

ware. One of the key advantages of SDN over traditional networks is the ability
to rapidly develop and deploy new features. However, updating features often
still requires restarting the SDN controller and causes network downtime. One
reason for such updates could be some of the changes to the network proposed
in this thesis; these major changes could take multiple iterations to implement.
In addition to such planned updates, unforeseen, accidental downtime is also

a risk for SDN. While commercialised SDN controllers are adding mechanisms
to deal with both planned and accidental downtime, they still are not competit-
ive with conventional approaches, which typically use redundant hardware and
special software to address these problems.
In this chapter I will investigate how these two challenges to SDN networks

can be addressed with dynamic reconfiguration and show how the state of the
network can by managed by reconfiguration. Finally, I present an evaluation
based on the implementation of the NetIDE core presented in the previous
chapter.
This chapter is based on
• Arne Schwabe, Elisa Rojas and Holger Karl. “Minimizing Downtimes: Us-

ing Dynamic Reconfiguration and State Management in SDN Networks”.
In: 3rd IEEE Conference on Network Softwarization (NetSoft 2017). Bo-
logna, Italy, July 2017

8.1 Introduction
Conventional networks consist of dedicated hardware switches and proprietary
software (firmware) running on these switches. The choice of software for these
devices is limited; most times there is only one software image available. Even if
multiple software versions are available, the choice is usually small and license-
driven (like “basic IP services” and “advanced services”); changing licensing is
a rare occurrence.
Upgrading to a new software version is usually the only time in the lifetime of

a device when its software changes. For this special case, switch vendors have
usually incorporated specialised routines in software and hardware that allow
upgrades without losing connectivity, often called “in-service software upgrade”
[20, 58]. This feature usually works by upgrading the software on a standby
supervisor engine to a new one, then transferring all important state to the
standby supervisor engine, and finally switching to said engine.
In this world of fixed components and monolithic software images, the need

or even potential to change the running software on a short timescale does not
exist. The user of a software cannot simply exchange one part of the software,
be it for the addition of features or to solve a problem with the code of that part
of the software. A reconfiguration/new composition of the running software is
not foreseen.

99

CHAPTER 8. RECONFIGURATION

In stark contrast to that, SDN controllers, rather than having a monolithic
software image, are typically composed of multiple modules (often also called
“apps”). Changing the composition of the modules – or also the modules them-
selves – is much more dynamic than in conventional scenarios. For example,
since modules may come from different vendors, stability might be different and
sometimes not ideal, requiring frequent tests and reconfigurations. The inter-
actions within a specific module composition might not have been tested at all
and has issues that only manifest in this specific scenario.
If that is the case, one option might be a controller restart, without a sched-

uled maintenance to change or reinitialise the running software. But in most
environments, this is not an acceptable solution since it causes network down-
time and intermediate failures.
Other components depend on the network to work correctly and this depend-

ency is comparable to conventional networks. Other services of a data centre
can be even more directly linked to an SDN than to a traditional network, e.g.
the virtualisation network services using a network API of an SDN controller to
configure its virtual network on demand instead of relying on a preconfigured
set of VLANs. To provide a similar dependability of the network using an SDN
application, we need to use paradigms that work in SDN, but also incorporate
the strengths of SDN and leverage them to ensure the required dependability
and availability.
Instead of treating the volatility of an SDN as a risk and a problem, we

believe that this is a strength that can be capitalised on by introducing dynamic
reconfiguration at run-time as a core component in an SDN deployment. Rather
than having to stop/start the whole system, dynamic reconfiguration enables
to only restart the modified parts of the system and can minimise the effects of
restarts even further.
In this chapter, we consider existing solutions and approaches to dynamic

reconfiguration. First, we collect requirements of a dynamic reconfiguration in
the context of SDN (Section 8.2). Then we analyse related work (Section 8.3)
and how these approaches address reconfiguration. We discuss how we designed
our dynamic reconfiguration in Section 8.4 to fulfil these requirements by show-
ing how malfunctioning modules can be detected (Section 8.4.4) and handled
(Section 8.4.5). Having established the behaviour in the unexpected case, we
use this as basis to develop dynamic reconfiguration behaviour for a scheduled
or manual reconfiguration in Section 8.4.6. After that, we present our specifica-
tion language for dynamic reconfiguration in Section 8.5 and how this approach
integrates into the core (Chapter 6). Lastly, we evaluate our implementation in
Section 8.6 and give a final conclusion in the last section.

8.2 Requirements for dynamic reconfiguration
We define the reconfiguration of an SDN network as the possibility to replace,
reload, add or remove a module in the currently running controller configuration
without restarting or affecting the remainder of the SDN network. For now, a

100

8.3. RELATED WORK

module is a synonym for an SDN controller app, but we will show in the design
section (Section 8.4) later that a reconfigurable module can also be used more
generally and even correspond to an entire SDN controller.
As outlined in the introduction to this chapter, the reasons for dynamic re-

configuration can be placed into two categories: (1) planned reconfigurations
and (2) unplanned reconfigurations. The planned reconfigurations also include
moving the SDN controller to a different hardware or software platform, or,
generally, changing the context: reconfiguring the services and resources based
on changes in user needs, business goals, and/or environmental conditions. Sup-
porting both categories is equally important and implies three key requirements.
While a reconfiguration takes place (e.g., even implying a controller restart),

the controller might not be able to process requests, impeding network traffic.
This is clearly undesirable. Hence, the first requirement is to minimise the
time for reconfiguration itself in which no requests are answered. If a reconfigur-
ation has an (unavoidable) disruption time, this time should also be minimised.
The reconfiguration itself needs to be triggered by an event. This is trivial

for a planned reconfiguration. But for an unplanned configuration, it will be
caused by detecting that the system is not working as intended: a part of the
system is malfunctioning or has crashed. This leads to a second requirement:
detection of malfunctioning parts or modules in the system.
The network should be disrupted as little as possible when a reconfiguration

takes place; therefore, probably the most important aspect of dynamic recon-
figuration is the transition from the old state to the new state. Therefore, the
third requirement is to gracefully handle the state during the reconfiguration.

8.3 Related work
As stated in the introduction, SDN controllers help to break monolithic software
into pieces called modules or “apps”. SDN controllers are usually written in a
single language, and to synchronise their apps, they usually leverage dynamic
frameworks already developed for the specific language they are based on. We
will focus on existing modularity and reconfigurability of the existing controllers
here.
The OSGi [85] technology facilitates the componentisation of software ap-

plications, for the specific case of the Java programming language. OSGi allows
applications or components (so-called bundles) to be remotely installed, star-
ted, stopped, updated, and uninstalled without requiring a reboot, which is
not feasible in standalone Java environments. For example, Apache Felix [32]
implements the OSGi framework and service platform in a basic form. It is
extended by Apache Karaf [8], providing some additional features on top of
a standard OSGi implementation, such as folder-based hot deployment, remote
SSH access to the console, or centralised logging. In the case of the Python
language, iPOPO [52] is a Python-based Service-Oriented Component Model
(SOCM) based on Pelix [86], which is an OSGi dynamic service platform writ-
ten in Python. Finally, Apache Celix [18] is an implementation of the OSGi

101

CHAPTER 8. RECONFIGURATION

specification adapted to C. Both Pelix and Celix follow the OGSi API as closely
as possible, with some unavoidable differences because the OSGi specification
is written primarily for Java.
The benefit of these OSGi frameworks is that they provide the programmer

with a framework that can be used to implement mechanisms that act upon on
updating or detecting a crash of a component. Though not specific to reconfig-
uration, these frameworks can be leveraged to implement the reconfiguration we
a striving for (see also Section 8.4). The reconfiguration of the modules has its
limits as the implementations are limited to the (Java) process they are running
in.
Currently, there are two SDN frameworks based on OSGi, specifically on the

Karaf OSGi framework: OpenDayLight (ODL) [82] and Open Network Operat-
ing System (ONOS) [83]. ODL is based on a Model-Driven Service Abstraction
Layer (MD-SAL) architecture, which lets different components – called pro-
jects – share information. The integration of these projects together constitutes
ODL. The projects have different priorities (called offset 0, 1 . . . in ODL) and
projects with lower priority depend on the higher ones. However, ODL lacks a
well-defined API to share common structures for dynamic reconfiguration of the
network; e.g., if an ODL project needs to save information about flow entries
in the network before being restarted, it is itself responsible for saving them.
ONOS follows a well-defined architecture with specific APIs. For example, it is
possible to obtain information about flow entries in the network and if a mod-
ule is uninstalled, the flows related to it will disappear in the network as well.
Although ONOS has some basic handling of flow entries when its configuration
changes during run time, it is still very oriented towards its own modules and
is Java-oriented. These frameworks still lack a way to detect malfunctioning
modules and have no generalised API or configuration that allows fine tuning
the behaviour.
Research on how to handle state during network updates has been carried

out, albeit without focusing on reconfiguration of the whole system as in [97] or
[66]. While we focus on the state handling between different apps, the ideas and
concepts of this research can still be applied on top of our concepts for handling
the state while reconfiguring the system.

8.4 Design
This section describes the design decision and the resulting design of our ap-
proach.

8.4.1 External or internal?
We identified two approaches of implementing the dynamic reconfiguration of
modules in an SDN network; Figure 8.1 gives a simplified overview. The first
approach is to keep the SDN controller as the central instance in the SDN stack
and integrate reconfiguration mechanisms inside the controller platform. The

102

8.4. DESIGN

SwitchSwitch SwitchSwitch

SDN
Controller
Framework

Backup
Module

SDN
Controller

SDN
ControllerSDN Controller

Recon�guration
Framework

SDN
Controller
Framework

Recon�guration
Framework

SDN Controller
Framework

Active
Module

Active
Module

Backup
Module

Figure 8.1: Simplified comparison of approaches to implement reconfigur-
ation as SDN controller component (left) and as independent
component (right)

other approach is to have a separate entity that acts as central component to
handle the actual controller and to control the restarting and reconfiguration
of the controller and its apps. Notice that these approaches are orthogonal to
whether the SDN controller is implemented in a distributed manner or not.
The controller-based approach has the advantage that the controller’s own

mechanisms can be extended and the dynamic reconfiguration can be more
tightly coupled with the controller’s features. In practice, it will be difficult
to maintain such an approach when the underlying controller framework keeps
developing.
The approach with a separate entity controlling the reconfigurable SDN con-

troller may make the integration with the SDN controller harder but offers more
flexibility and possibilities. In particular:

• Different modules can be separated into individual processes, which in
turn improves reliability.

• The reconfiguration process becomes controller framework-agnostic. This
allows to extend reconfiguration even to cases where multiple control-
lers (from different frameworks) work in parallel under the control of this
central component. In fact, the central component becomes a bit more
powerful; it will not only deal with reconfiguration but also with the com-
position of multiple modules in general as demonstrated with our central
component, which is the NetIDE core (see Chapter 6).

• Composition mechanism for multiple controllers (as demonstrated by Co-
Visor [56], OpenVirtex [110] or in Chapter 6) can be integrated.

• Radical reconfigurations are possible since the SDN controller itself is no
longer an entity that must never be stopped.

103

CHAPTER 8. RECONFIGURATION

Figure 8.2: Architecture of NetIDE

There is ample evidence for the feasibility of such an external approach. For
example, using a small external coordinator to improve the reliability of the
whole system is also used in high availability systems in which multiple instances
of a software, or even different software/hardware implementations, are used and
the external component monitors the instances and selects a working instance
to control the whole system (e.g., [38]).
In this chapter, we are hence looking in detail at the second approach since

its greater flexibility facilitates more powerful reconfiguration. Figure 8.2 sum-
marises this architecture (already presented in Chapter 6): the Core component
deals with modules running in various controllers; the Server Controller does not
implement application logic but simply deals with the network elements (e.g.,
parsing of OpenFlow messages). Both the NetIDE Core and Server Controller
in Fig. 8.2 represent what is called the Reconfiguration Framework in Fig. 8.1,
while the Client Controllers and their modules correspond to the actual SDN
Controllers. Furthermore, modules can either be in active or backup mode.
We expect the line between these approaches will be blurred in the future by

distributed SDN controllers that are a hybrid of the two approaches and incor-
porate a distributed version of the reconfiguration framework. That framework
can treat the different instances individually and thus can benefit from most of
the advantages we mentioned.

8.4.2 Granularity
As we base our design around the idea that the SDN network is controlled by
multiple modules that run on one or more controllers, we have to take this idea
into account for the central component’s design as well. On the coarsest gran-
ularity, a module is a whole SDN controller. Enhancing the SDN controller to

104

8.4. DESIGN

communicate more information about its loaded SDN applications and annotat-
ing the network commands with an identifier of the SDN application allows the
central component to treat the individual applications of a controller as indi-
vidual modules and allows reconfiguration to treat them as individual modules
instead of a having to treat a whole controller as module.

8.4.3 Specification of (Re-)Configurations
Reconfiguration at run-time requires developers or deployers of an SDN system
to be able to specify the configuration somehow, for example with some kind
of specification language. First, this specification needs to be available at de-
ployment time when an SDN controller along with is modules is brought online.
Later on, the configuration might change during run-time; such changes then
are reflected (if necessary) by a reconfiguration action.
Therefore, this specification language should support not only static config-

uration as such, but also the reconfiguration steps from one configuration to
another. Ideally, the specification should only require reconfiguration specifica-
tions that cannot be calculated automatically from the differences between an
old and a new configuration specification.
We provide more details in Section 8.5 about this specification language as

extension of the specification language presented in Section 6.7.

8.4.4 Detecting malfunctioning modules
One of the events for reconfiguration is handling malfunctioning components.
For handling these run-time problems, we have to go through three steps.
Firstly, we have to detect the problem to trigger the reconfiguration. Secondly,
we need to choose (from several possible configurations) one configuration that
alleviates the problem. Thirdly, we perform a run-time reconfiguration to this
new configuration.
Detecting a problem is in general a very hard problem (and strictly speaking,

not even computable, like the halting problem). Instead of checking if a module
ceased to work, we hence decided for a pragmatic approach and to check for
the liveliness of the deployed modules. In this section, we focus on methods to
determine the liveliness of modules; in Section 8.4.5 we will describe handling
events describing the death of a module.
Malfunction of deployed modules can manifest itself in very different ways.

The most classic and basic form of a malfunction is a dead module that crashes
and ceases to respond to requests altogether. This can be detected using a simple
heartbeat or timeout mechanism. If the module is using the OpenFlow protocol
(e.g. a client controller connected to the core), the switch will periodically send
EchoReq messages to the module. If the module is still alive, it will respond
with an EchoRes message. Missing EchoReq responses from the module indicate
a dead module. If the switch does not request EchoReq messages or the EchoReq
message interval is too long for the required reaction time, the central component

105

CHAPTER 8. RECONFIGURATION

Module A Module B

core

keepalive
packets

keepalive
packets

Module A Module B

core

keepalive
packets

keepalive
packets

Active

Module A Module B

core

keepalive
packets

Active

Active

Standby

Standby

marked
dead

Figure 8.3: Switch-over between two modules after crash of primary module

will send additional EchoReq messages to the module. Other protocols have
similar mechanisms or a separate mechanism can be implemented.
Apart from these implicit events of missing heartbeats, explicit events can also

trigger a module to be marked as dead. The module can send an exit message
or some failure message that indicates that the module is no longer available
(in the sense of a fail-stop error model). This message can also be intentional,
e.g. because the user explicitly stopped the module. Modules might also be
restarted by external mechanisms. In this case, the arrival of a new module
with the same name and configuration is another event that implicitly marks
the old module as dead and to be replaced by the new module.
Figure 8.3 shows a simple example of an active module with a standby module.

After the active module stops to send keepalive packets, it is marked as “dead”
and the central component switches over to the standby module.
A concept similar to the dead module, but much harder to detect, is a partially

dead module or malfunctioning module. These are modules that still respond to
some events but not others or send invalid or erratic messages. As an example,
think of an ARP handler that uses multiple threads. The main thread that also
handles the EchoReq from the OpenFlow protocol is still alive and working and
therefore the module is not marked as dead. To handle actual ARP requests, the
module dispatches the request to a worker thread. If, for example, the worker
is stuck in an infinite loop, the module will not answer any ARP requests,
rendering it partially dead. To check liveliness in this scenario, the central

106

8.4. DESIGN

component needs not only to check the general liveliness of the module but
also the liveliness of a specific function. A method specific to the module to
check its liveness is needed. This can be done by either passive observation (e.g.
ARP requests to the module should be followed by ARP answers) or by active
checks. An active check for the ARP function of the module is to send a test
ARP request to the module and see if the central component obtains a valid
answer.
Using external checks to monitor the network status and its components is

already implemented in most data centres with the help of a specialised network
monitoring software like Icinga [48]. Certain failure conditions in these systems,
like a failing DHCP server test, can also be considered to mark a module as
dead, e.g. the DHCP server SDN app. We hence foresee that a developer can
provide, along with a module as such, also a (hopefully simpler and more robust)
failure detector function to be executed by the central component.

8.4.5 Handling malfunctioning modules
To reach the goal of run-time reconfiguration with as little downtime as pos-
sible, malfunctioning modules also have to be handled as soon as possible. This
requires an automatic solution that does not depend on manual intervention of
an operator. But since not all failing modules that are the same, the dynamic
reconfiguration process needs some hints (from module developer or SDN de-
ployer) on how to handle the module. These hints can be provided offline, e.g.,
at deployment time, well before a possible malfunction.
For a malfunctioning module, there are a number of actions that can be taken.

We categorise them into the following categories:

1. Repair the original module.

2. Replace the module with another (hopefully better working) module/con-
figuration.

3. Control possible damage; do not restore full functionality but try to limit
the impact of the malfunction as much as possible.

Repairing the original module is usually accomplished by restarting the af-
fected module (and potential dependencies). Note that this state transition is
different from the usual “restart the controller” scenario since the central in-
stance still manages the state of the module while the module is restarting.
Replacing the module is usually an option if an alternative module is avail-
able that can accomplish the same task but perhaps not as well as the primary
module. An example for such a scenario is one very sophisticated forwarding
module that selects the forwarding paths using advanced utilisation-based al-
gorithms; the backup module is a simpler forwarding module that only selects
a path randomly among the shortest paths (leading to inferior utilisation) but
is much less likely to fail. Controlling possible damage is an option to contain a
malfunctioning module without affecting the rest of the network. As a possible

107

CHAPTER 8. RECONFIGURATION

Module

Internal state

Controller
Module state

External
State

Controllable state

SDN Controller

Switch

Flow table rules

Host

Uncontrollable state:
Considered as lost

Figure 8.4: Overview of the different states that a module has in the system

scenario, the malfunctioning module is a monitoring module that affects the
network stability but can be disabled/contained without causing problems.
For each of these options we have to treat the original module and its state.

The state of a module can be broadly categorised into three different categories
that can be seen in Figure 8.4. The categories are based on how we can manage
the state:

1. non-observable state, this is mainly the internal state of a module

2. the observable, controllable state of the module, e.g. the state of the
module in the SDN controller

3. observable but not controllable state of the module, e.g. through interac-
tion with external systems

Let us consider an example to explain these states for a simple forwarding
module. The non-observable, internal state of the module is everything that the
module holds in its own memory, like the path decisions made, internal statistics
or its own configuration. The observable and controllable state consists mainly,
but is not limited to, the installed flow rules. Controllable state can also be
state in other controller services. These installed flow rules can be tracked by
the central component via the interaction of the module over its south-bound
interface. In the reconfiguration event, this state can be changed and controlled,
e.g. removing all the installed flow rules. The last category is the state in
external systems. In this example, the forwarding module could have answered
the queries for the default gateway IP address with a specific MAC address,

108

8.4. DESIGN

which created an entry in the ARP table of the connected hosts, or in other
words a state in an external system. The example of ARP shows that a non-
controllable state is not a fixed definition. By sending more and additional ARP
replies and requests the state of the ARP table in hosts can be controlled to
some degree. In this grey area, non-controllable is defined by what is feasible
to implement.
For a malfunctioning module, its internal state has to be considered as invalid

or lost. If some of this internal state is important the module needs to have
its own mechanism to checkpoint and restore this state. Most modules will
already have most of this implemented as restarting a module without dynamic
reconfiguration also requires reading in configuration values and other persistent
data stores.
For the controllable state we have two basic options: keep the state or remove

the state. For a more advanced scenario, a combination is also conceivable,
e.g. remove or keep only flow mods that match a certain pattern. There is
no general rule to decide whether keeping or removing the state is preferable.
The best option depends on the function of a particular module. For example,
when replacing one forwarding module with another, it is better to keep the old
state and let the rules be slowly replaced with new rules whenever a new flow
arrives that triggers a new rule install. On the other hand, a firewall requires a
consistent set of rules and mixing flow rules from different firewall applications
might create unforeseeable problems, which means that we should provide a
clean state on the switch-over. Hence, we again foresee an option for the module
developer to specify the behaviour desired from the central component. The
right action is not only dependent on the modules but also the way they are
used in a composition, so we leave this configurable.
In some instances (e.g. the mentioned forwarding module) it might be the

best solution to keep the existing forwarding paths active to minimise network
disruption. The failing module might not even be under the control of the
central component and the central component can only wait for the module to
(hopefully) recover.

8.4.6 Adding/removing modules
When adding or removing a module, the behaviour is a little bit different from
handling an exception. For a planned dynamic reconfiguration the user of the
SDN network will supply a new configuration that supersedes the old configur-
ation.
To accept the new configuration, the run-time system has to make sure that

the new configuration is a valid configuration and that switching to the new
configuration does not cause additional downtime. We verify that new configur-
ation, to only allow valid configuratios to be installed. Checking and activating
the new configuration has to go through the following steps:

• Checking the syntax of the new configuration.

109

CHAPTER 8. RECONFIGURATION

• Checking if all (required) modules for the new configuration are present
or, if necessary, wait for the new modules to connect.

• For removed modules the state of this module has to be handled. Handling
this is almost identical to the exception case. But since a module is usually
removed intentionally, the default, unless specified otherwise, is to remove
as much of its state as possible. An example for keeping the old flows
would be the forwarding module example already mentioned above.

• Replace the old configuration with the new configuration with handling
the state like specified in the configuration.

8.5 Specification language

The specification language needs to express the configuration of modules, how
they should be composed into meaningful behaviour, which error checking should
be applied, what default rules should be used or which custom behaviour (e.g.,
failure detector) should be used instead, and how the actual reconfiguration
from one scenario to another should take place. We extend here an XML-based
specification language that is presented in Section 6.7. proposed earlier [45]
with composition of modules into complex network applications in mind.
For the reconfiguration, the Modules tag has been extended to provide op-

tions to configure reconfiguration. Listing 8.1 provides an example:

1 <CompositionSpecification
2 xmlns="http://netide.eu/schemas/compositionspecification/v1">
3 <Modules>
4 <Module id="firewall">
5 <liveliness type="ofPing"/>
6 <recovery type="restart" />
7 </Module>
8 <Module id="fwd">
9 <liveliness type="timeout">3000</liveliness>

10 <liveliness type="plugin">eu.netide.arpchecker
11 </liveliness>
12 <recovery type="replace">slowfwd</recovery>
13 </Module>
14 <Module id="slowfwd">
15 <recovery type="ignore" />
16 </Module>
17 </Modules>
18 <ExecutionPolicy>
19 <ModuleCall id="firewall" dpid="2 7 9"/>
20 <ModuleCall id="fwd" dpid="1 3 4">
21 </ExecutionPolicy>
22 </CompositionSpecification>

Listing 8.1: (Condensed) Specification Example

110

8.6. EVALUATION

8.5.1 Modules
The first block, the Modules block specifies the modules themselves along with
their behaviour vis-à-vis reconfiguration. Here, the following module attributes
are relevant:

id: Unique identifier for each module.

liveliness: One or several tests that check if the module is considered as still
alive. A few simple ones are available as internal checks, e.g. OpenFlow
ping or failure to respond to packet_ins in a given time (timeout). For
more sophisticated checks we allow to specify external classes that imple-
ment the check.
If more than one test is specified, a module is considered to be alive only
if all tests succeed.
As we heavily use Apache Karaf, we specify the external function as bundle
name, so that Open Services Gateway initiative (OSGi) can automatic-
ally find the checker and load it with its dependencies. The module has
complete freedom how to implement the detection. The module gets a
reference to the Core to report back the status of the checked module.

recovery: This element specifies the action that is performed when the liveli-
ness tests fail. Available options are to restart the module, to ignore the
module henceforth (do not accept any input from the module and also do
not forward information to the module), or to replace it, in which case the
module is ignored and instead another module whose identifier is specified
here is used in its place. “Used in its place” means, in effect, that the
replacement’s module ID is used instead of the replaced module’s ID in
the ExecutionPolicy.
As a last option we also provide the possibility of having a custom class
handle the recovery, similar to the liveliness check.

state: This basically tells the central component how to handle the controllable
state of the app. So far we specified remove|keep|keepUntilRecover.
The first two are self explanatory and the third is a bit of a hybrid, in
that it keeps the rules until the module is replaced or recovered.
Again, a bespoke state handling by a developer-provided class is easy
to conceive and integrate (but not yet realised in the proof-of-concept
implementation).

8.6 Evaluation
Doing a quantitative evaluation of such a reconfiguration approach is difficult
and even if done has not much significance since metrics like the number of
packets lost, time to detect a malfunction etc., are all dependent on the timeouts
and other configuration parameters that have been chosen and the result will

111

CHAPTER 8. RECONFIGURATION

just reflect the configured values if the implementation is working correctly.
Instead we opted to evaluate if the reconfiguration behaves like expected to the
specified parameters. That means we are checking if the reconfiguration time
and failure detection matches with the configured settings.
To evaluate reconfiguration, we used simple learning switches implemented

in Ryu [102]. For a planned reconfiguration, we start a second instance of the
Ryu controller with a second learning switch and loaded a new configuration
that directs all traffic to the new switch. As expected, the new configuration
was applied instantly with no measurable delay or packet loss.
To test an unplanned reconfiguration scenario, we configured two separate

Ryu controller instances, each running a learning switch. The configuration file
specified the second switch as a backup for the first. As malfunction detection
we used a timeout of 10000ms for any response of the failing switch, as the
interval we are monitoring (heartbeat of OpenFlow) is 5 s. To simulate the non-
responding controller, we used the Unix SIGSTOP signal to pause the first Ryu
process after a random time rendering it unable to respond anymore. Once that
has been detected the (queued) answers of the backup controller were sent to
the network.
The detection time naturally depends on the frequency of packets. The smal-

ler the packets’ inter-arrival time, the quicker a non-response is detected. The
normal OpenFlow heartbeat was 5 s in our test setup. A simple application we
used the standard ping command and used its reported latency. The reported
latency of ping with an interval of 0.2 s shown in Figure 8.5. Since the ping in-
terval is much shorter than the heartbeat interval, most timeouts are triggered
by ping itself and most responses are therefore in the 10 s timeout as well. The
main peak being at 9.8 s rather than 10 s but this is rather expected as 10 s
should be the maximum time an application should be seeing. And the timeout
is 10 s, so a ping packet that is sent 200ms after the last reaction from the con-
troller is expected to be waiting 9.8 s before the central component marks the
module as dead as this time (200ms + 9.8 s wait time) is the timeout period
(10 s).
In contrast to these results, when using a 20 s interval test as shown in Figure

8.6, the timeouts occurring from the heartbeat interval (5 s) are more significant.
This makes a distribution from 5 s to 15 s of reported latency visible in the plot
again with timeouts triggered by the ping packets themselves visible at 10 s. In
addition, the larger interval allows ARP timeouts to happen. So before sending
a ping packet often an ARP request is sent to the network. These extra packets
can trigger a timeout waiting for a response from the controller. As the ping
utility only records the time between sending a request until the answer, the
additional time the ping utility waits before it actually sends its packet is not
included in ping’s latency output and therefore these timeouts are measured as
5 s instead of the 10 s, leading to a large spike at 5 s instead of 10 s.
The results have some minor irregularities, which also are expected in an

emulated experiment setup like MiniNet, but otherwise confirm what is expected
for a timeout based system, which shows that our approach is working.

112

8.6. EVALUATION

9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4
Packet delay

0.00

0.01

0.02

0.03

0.04

0.05

P
ro

b
a
b
ili

ty

Figure 8.5: Recovery time as seen from the ping network application with
0.2 s interval

4 6 8 10 12 14
Packet delay

0.00

0.01

0.02

0.03

0.04

0.05

P
ro

b
a
b
ili

ty

Figure 8.6: Recovery time as seen from the ping network application with
20 s interval

113

CHAPTER 8. RECONFIGURATION

8.7 Conclusion
The chapter has shown that the proposed reconfiguration methods and the im-
plementation of the proposed mechanisms are an essential step to making SDN
controllers and networks more resilient and reduce the planned and unplanned
downtimes in SDN networks.
Almost all of the concepts in this chapter do not require a specific SDN

protocol like OpenFlow. The existing implementation could be extended to
cover other non-OpenFlow SDN protocols without conceptual difficulties.
The ability to quickly change the modules of a running SDN network allows

quicker changes to the software running of the network. This way it minimises
the risks of introducing new techniques, like the ones introduced in this thesis.
Reconfiguration is possible in both directions and a non working approach/im-
plementation can always be replaced with an earlier version or a more simple/ro-
bust approach, again minimising the risks when introducing new features into
the network.

114

9 Conclusion and future researchy
This chapter summarises the most important conclusions and reflects on the

questions that were given at the beginning of the thesis. It will also look into
possible further research and open questions.

9.1 Conclusion
In this thesis I have looked into many challenges that exist with the current
SDN technology and its current implementations. For these challenges I presen-
ted solutions. I investigated challenges from low-level problems, as the lack of
hardware features and forwarding table space in Chapter 3 all the way up to
software design and architecture in Chapter 6 and Chapter 8. All these problems
are related in one way or other to the challenges of better traffic engineering in
data centres.
I have shown in Chapter 3 that software-defined networking (SDN) allows

us to use the resources of existing network equipment more flexible and better.
It also enables using powerful techniques as selecting a forwarding path selec-
tion for individual flows that would not be possible without the use of SDN.
This path selection allows bringing the advanced traffic engineering even to
small deployments. Furthermore, to give a better understanding of the prob-
lem, the chapter includes a complexity analysis of problem and shows its NP-
completeness.
To demonstrate that SDN can be used to collect additional information of

the network in a novel way that help understanding the load of the network and
help finding underutilised paths, I showed in Chapter 4 SYNrace, a method of
intelligently using probe packets to exploit TCP’s behaviour of filling buffers to
infer network characteristics. The advantage of this approach is that no modific-
ations to applications running on the network are needed. But the information
that can be gathered by this approach is limited.
To overcome these limitations and allow collection of various information

from applications and other methods (as SYNRace) in a central component, I
introduced the concept of GlobalFIB that serves as a central database for the
network that includes all information about the flows and allows APIs to use
the information to optimise the forwarding of the network.
As a typical network will not only run one application and GlobalFIB has

information collected about multiple applications running in a network, this
information may conflict with each other. I have analysed these conflicts in
Chapter 5 and provided insights and solution for detecting and solving conflicts
between SDN applications.
As a software platform to implement and bring together all these building

blocks, I have shown that the core I developed with other NetIDE members is
a good platform to use and build upon.
Finally, I reckon that an SDN network is not static but the network and its

software is undergoing frequent changes. As these freuqent changes might cause

115

CHAPTER 9. CONCLUSION AND FUTURE RESEARCH

unwanted down-times, I have shown in Chapter 8 a reconfiguration approach,
which is also implemented in the core, that allows dynamic reconfiguration in
SDN networks.

9.2 Future work
Based on the insights I gained by working on topics of my thesis I see the
following research areas for future research:

Future OpenFlow/SDN protocols
OpenFlow is a protocol that mainly models capabilities of existing switches.
This traditional model did not foresee all the opportunities created by SDN. For
example, as already mentioned in Section 4.6.2, the protocol lacks the possibility
for time-stamped PACKET_IN messages as traditional switches do not need
them. Adding more features into OpenFlow like that can create potential for
other clever use of the network resources like SYNrace (Chapter 4).

Port Conflict resolution to ONOS/ODL
The focus in this thesis has been to implement conflict resolution outside the
scope of an SDN controller. From the research perspective I have seen this as
the more interesting and promising approach. In real SDN deployment often
only a single SDN controller is used, which also still lack conflict resolution.
Integrating the conflict resolution into the SDN controller would bring conflict
resolution to these deployments.

Explore predication approaches
The methods presented here to optimise the traffic and collect statistics have
used real-time data or statistics about the past. Adding models that incorporate
predication about the future would a good extension of that work.

Extend GlobalFIB implementation
The current GlobalFIB implementation (Section 7.12) is only implemented as
a proof-of-concept implementation. While this is sufficient to show that the
approach indeed works, it does not allow using the idea in a productive network.
A finished implementation would allows to use all the benefits this scenario.
The language defined in Section 7.3.3 is still very simple but the operators

I defined can be used to create a much more powerful language or to use an
existing query language and include the operator like Structured Query Lan-
guage (SQL). That would allow statements like “SELECT * FROM flows
WHERE destIP < 192.168.0.23 AND sourceIP ∩ SELECT destIP FROM flows
WHERE application = ‘firewall‘”.

116

Bibliographyy

[1] 0MQ Distributed Messaging. http://zeromq.org/. 2014.
[2] D. Eastlake 3rd, T. Senevirathne, A. Ghanwani, D. Dutt and A. Banerjee.

Transparent Interconnection of Lots of Links (TRILL) Use of IS-IS. RFC
7176 (Proposed Standard). Internet Engineering Task Force, May 2014.
url: http://www.ietf.org/rfc/rfc7176.txt.

[3] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren and Robert S
Schreiber. “HyperX: topology, routing, and packaging of efficient large-
scale networks”. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. ACM. 2009, p. 41.

[4] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo and Wu Chou. A
roadmap for traffic engineering in SDN-OpenFlow networks. 2014. doi:
http://dx.doi.org/10.1016/j.comnet.2014.06.002. url: //www.
sciencedirect.com/science/article/pii/S1389128614002254.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav and George Varghese. “CONGA:
Distributed Congestion-aware Load Balancing for Datacenters”. In: Pro-
ceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’14.
Chicago, Illinois, USA: ACM, 2014, pp. 503–514. isbn: 978-1-4503-2836-
4. doi: 10.1145/2619239.2626316. url: http://doi.acm.org/10.
1145/2619239.2626316.

[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta and Murari
Sridharan. “Data Center TCP (DCTCP)”. In: Proceedings of the ACM
SIGCOMM 2010 Conference. SIGCOMM ’10. New Delhi, India: ACM,
2010, pp. 63–74. isbn: 978-1-4503-0201-2. doi: 10.1145/1851182.1851192.
url: http://doi.acm.org/10.1145/1851182.1851192.

[7] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-
nin, Dexter Kozen, Cole Schlesinger and David Walker. “NetKAT: Se-
mantic Foundations for Networks”. In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
2014.

[8] Apache Karaf. http://karaf.apache.org/.
[9] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer

Rexford and David Walker. “SNAP: Stateful Network-Wide Abstractions
for Packet Processing”. In: CoRR abs/1512.00822 (2015). url: http:
//arxiv.org/abs/1512.00822.

[10] Mauricio Arregoces and Maurizio Portolani. Data center fundamentals.
Cisco Press, 2003.

117

http://zeromq.org/
http://www.ietf.org/rfc/rfc7176.txt
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2014.06.002
//www.sciencedirect.com/science/article/pii/S1389128614002254
//www.sciencedirect.com/science/article/pii/S1389128614002254
https://doi.org/10.1145/2619239.2626316
http://doi.acm.org/10.1145/2619239.2626316
http://doi.acm.org/10.1145/2619239.2626316
https://doi.org/10.1145/1851182.1851192
http://doi.acm.org/10.1145/1851182.1851192
http://karaf.apache.org/
http://arxiv.org/abs/1512.00822
http://arxiv.org/abs/1512.00822

BIBLIOGRAPHY

[11] Alvin AuYoung, Yadi Ma, Sujata Banerjee, Jeongkeun Lee, Puneet Sharma,
Yoshio Turner, Chen Liang and Jeffrey C. Mogul. “Democratic Resolu-
tion of Resource Conflicts Between SDN Control Programs”. In: Pro-
ceedings of the 10th ACM International on Conference on Emerging
Networking Experiments and Technologies. CoNEXT ’14. Sydney, Aus-
tralia: ACM, 2014, pp. 391–402. isbn: 978-1-4503-3279-8. doi: 10.1145/
2674005.2674992. url: http://doi.acm.org/10.1145/2674005.
2674992.

[12] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang and M. F. Zhani. “Data Center Network Virtualiza-
tion: A Survey”. In: IEEE Communications Surveys Tutorials 15.2 (bi2
2013), pp. 909–928. issn: 1553-877X. doi: 10.1109/SURV.2012.090512.
00043.

[13] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radosla-
vov, William Snow and Guru Parulkar. “ONOS: Towards an Open, Dis-
tributed SDN OS”. In: Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking. HotSDN ’14. Chicago, Illinois, USA,
2014, pp. 1–6.

[14] Andreas Blenk, Arsany Basta, Martin Reisslein and Wolfgang Kellerer.
“Survey on Network Virtualization Hypervisors for Software Defined Net-
working”. In: CoRR (2015). url: http://arxiv.org/abs/1506.07275.

[15] Apache ARIES Blueprint. https : / / aries . apache . org / modules /
blueprint.html.

[16] M. Canini, P. Kuznetsov, D. Levin and S. Schmid. “A distributed and
robust SDN control plane for transactional network updates”. In: Com-
puter Communications (INFOCOM), 2015 IEEE Conference on. 2015.

[17] Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, Jennifer
Rexford et al. “A NICE Way to Test OpenFlow Applications”. In: NSDI.
2012.

[18] Apache Celix. https://celix.apache.org/.
[19] Cisco. Cisco FabricPath. url: https://www.cisco.com/c/en/us/

solutions/data-center-virtualization/fabricpath/index.html.
[20] Cisco IOS In Service Software Upgrade and Enhanced Fast Software Up-

grade Process. https://www.cisco.com/c/en/us/td/docs/ios/12_
2sb/feature/guide/sb_issu.html.

[21] Cisco. Nexus 7700 F3-Series 24-Port 40 Gigabit Ethernet Module Data
Sheet. http : / / www . cisco . com / c / en / us / products / collateral /
switches/nexus-7000-series-switches/data_sheet_c78-728410.
html.

118

https://doi.org/10.1145/2674005.2674992
https://doi.org/10.1145/2674005.2674992
http://doi.acm.org/10.1145/2674005.2674992
http://doi.acm.org/10.1145/2674005.2674992
https://doi.org/10.1109/SURV.2012.090512.00043
https://doi.org/10.1109/SURV.2012.090512.00043
http://arxiv.org/abs/1506.07275
https://aries.apache.org/modules/blueprint.html
https://aries.apache.org/modules/blueprint.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/fabricpath/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/fabricpath/index.html
https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/feature/guide/sb_issu.html
https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/feature/guide/sb_issu.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728410.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728410.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728410.html

BIBLIOGRAPHY

[22] Stephen A. Cook. “The complexity of theorem-proving procedures”. In:
Proceedings of the third annual ACM symposium on Theory of computing.
STOC ’71. Shaker Heights, Ohio, USA: ACM, 1971, pp. 151–158. doi:
10.1145/800157.805047.

[23] David P. Dailey. “Uniqueness of colorability and colorability of planar 4-
regular graphs are NP-complete”. In: Discrete Mathematics 30.3 (1980),
pp. 289–293. issn: 0012-365X. doi: http://dx.doi.org/10.1016/0012-
365X(80)90236-8.

[24] W Dally and B Towles. Principles and practices of interconnection net-
works.

[25] Bruce S. Davie and Yakov Rekhter. MPLS: Technology and Applications.
1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000.
isbn: 9781558606562.

[26] Amogh Dhamdhere and Constantine Dovrolis. “Open Issues in Router
Buffer Sizing”. In: SIGCOMM Comput. Commun. Rev. 36.1 (Jan. 2006),
pp. 87–92. issn: 0146-4833. doi: 10.1145/1111322.1111342. url: http:
//doi.acm.org/10.1145/1111322.1111342.

[27] Distrubed ONOS. https://wiki.onosproject.org/display/ONOS/
Distributed+ONOS.

[28] A. Dixit, K. Kogan and P. Eugster. “Composing Heterogeneous SDN
Controllers with Flowbricks”. In: Network Protocols (ICNP), 2014 IEEE
22nd International Conference on. Oct. 2014, pp. 287–292. doi: 10 .
1109/ICNP.2014.50.

[29] EIA/ECA-310 Cabinets, racks (including 19-inch racks, rack units), pan-
els and associated equipment standard. Tech. rep. Electronic Industries
Alliance.

[30] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nel-
son Huang and Amin Vahdat. “Hedera: Dynamic Flow Scheduling for
Data Center Networks”. In: Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation. NSDI’10. San Jose,
California: USENIX Association, 2010. url: http : / / dl . acm . org /
citation.cfm?id=1855711.1855730.

[31] D. Farinacci, V. Fuller, D. Meyer and D. Lewis. The Locator/ID Separ-
ation Protocol (LISP). RFC 6830 (Experimental). Internet Engineering
Task Force, Jan. 2013. url: http://www.ietf.org/rfc/rfc6830.txt.

[32] Apache Felix. http://felix.apache.org/.
[33] Floodlight OpenFlow Controller. url: http://www.projectfloodlight.

org/floodlight/.
[34] Nate Foster, Michael J. Freedman, Rob Harrison, Jennifer Rexford, Mat-

thew L. Meola and David Walker. “Frenetic: A High-level Language for
OpenFlow Networks”. In: Proceedings of the Workshop on Programmable
Routers for Extensible Services of Tomorrow. 2010.

119

https://doi.org/10.1145/800157.805047
https://doi.org/http://dx.doi.org/10.1016/0012-365X(80)90236-8
https://doi.org/http://dx.doi.org/10.1016/0012-365X(80)90236-8
https://doi.org/10.1145/1111322.1111342
http://doi.acm.org/10.1145/1111322.1111342
http://doi.acm.org/10.1145/1111322.1111342
https://wiki.onosproject.org/display/ONOS/Distributed+ONOS
https://wiki.onosproject.org/display/ONOS/Distributed+ONOS
https://doi.org/10.1109/ICNP.2014.50
https://doi.org/10.1109/ICNP.2014.50
http://dl.acm.org/citation.cfm?id=1855711.1855730
http://dl.acm.org/citation.cfm?id=1855711.1855730
http://www.ietf.org/rfc/rfc6830.txt
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/

BIBLIOGRAPHY

[35] Apache Foundation. Apache Hadoop. url: http://hadoop.apache.
org/.

[36] Jérôme François, Lautaro Dolberg, Olivier Festor and Thomas Engel.
“Network Security Through Software Defined Networking: A Survey”. In:
Proceedings of the Conference on Principles, Systems and Applications
of IP Telecommunications. IPTComm ’14. Chicago, Illinois: ACM, 2014,
6:1–6:8. isbn: 978-1-4503-2124-2. doi: 10.1145/2670386.2670390. url:
http://doi.acm.org/10.1145/2670386.2670390.

[37] RL Gallawa. “Estimated cost of a submarine fiber cable system”. In:
Fiber & Integrated Optics 3.4 (1981), pp. 299–322.

[38] Tal Garfinkel, Mendel Rosenblum et al. “A Virtual Machine Introspection
Based Architecture for Intrusion Detection”. In: NDSS. Vol. 3. 2003,
pp. 191–206.

[39] GitHub. POX Controller. 2011. url: https://github.com/noxrepo/
pox.

[40] P. Brighten Godfrey, Igor Ganichev, Scott Shenker and Ion Stoica. “Path-
let Routing”. In: Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication. SIGCOMM ’09. Barcelona, Spain: ACM, 2009,
pp. 111–122. isbn: 978-1-60558-594-9. doi: 10.1145/1592568.1592583.
url: http://doi.acm.org/10.1145/1592568.1592583.

[41] IEEE 802.1 Working Group. IEEE 802.1D MAC Bridges. url: http:
//www.ieee802.org/1/pages/802.1D-2003.html.

[42] IEEE 802.1 Working Group. IEEE 802.1Qbb - Priority-based Flow Con-
trol. url: http://www.ieee802.org/1/pages/802.1bb.html.

[43] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yun-
feng Shi, Chen Tian, Yongguang Zhang and Songwu Lu. “BCube: a
high performance, server-centric network architecture for modular data
centers”. In: ACM SIGCOMM Computer Communication Review 39.4
(2009), pp. 63–74.

[44] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang and
Songwu Lu. “Dcell: A Scalable and Fault-tolerant Network Structure
for Data Centers”. In: Proceedings of the ACM SIGCOMM 2008 Con-
ference on Data Communication. SIGCOMM ’08. Seattle, WA, USA:
ACM, 2008, pp. 75–86. isbn: 978-1-60558-175-0. doi: 10.1145/1402958.
1402968. url: http://doi.acm.org/10.1145/1402958.1402968.

[45] A. Aranda Gutiérrez, E. Rojas, A. Schwabe (Paderborn University), C.
Stritzke, R. Doriguzzi-Corin, A. Leckey, G. Petralia, A. Marsico, K.
Phemius and S. Tamurejo (IMDEA Networks). “All-in-one framework
for next generation, composed SDN applications”. In: Proccedings of the
2nd IEEE Conference on Network Softwarization (NetSoft 2016). 2016,
pp. 1–2.

120

http://hadoop.apache.org/
http://hadoop.apache.org/
https://doi.org/10.1145/2670386.2670390
http://doi.acm.org/10.1145/2670386.2670390
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox
https://doi.org/10.1145/1592568.1592583
http://doi.acm.org/10.1145/1592568.1592583
http://www.ieee802.org/1/pages/802.1D-2003.html
http://www.ieee802.org/1/pages/802.1D-2003.html
http://www.ieee802.org/1/pages/802.1bb.html
https://doi.org/10.1145/1402958.1402968
https://doi.org/10.1145/1402958.1402968
http://doi.acm.org/10.1145/1402958.1402968

BIBLIOGRAPHY

[46] PA Aranda Gutiérrez, E Rojas, A Schwabe, C Stritzke, R Doriguzzi-
Corin, A Leckey, G Petralia, A Marsico, K Phemius and S Tamurejo.
“NetIDE: All-in-one framework for next generation, composed SDN ap-
plications”. In:NetSoft Conference and Workshops (NetSoft), 2016 IEEE.
IEEE. 2016, pp. 355–356.

[47] Magnus K Herrlin et al. “Rack cooling effectiveness in data centers and
telecom central offices: The rack cooling index (RCI)”. In: Transactions-
American Society of Heating Refrigerating and Air conditioning Engin-
eers 111.2 (2005), p. 725.

[48] Icinga | Open Source Monitoring. https://www.icinga.org/.
[49] IEEE. “Amendment to Carrier Sense Multiple Access With Collision De-

tection (CSMA/CD) Access Method and Physical Layer Specifications-
Aggregation of Multiple Link Segments”. In: IEEE Std 802.3ad-2000
(2000), pp. i–173. doi: 10.1109/IEEESTD.2000.91610.

[50] Cisco Visual Networking Index. “The zettabyte era–trends and analysis”.
In: Cisco white paper (June 2016).

[51] "Intent-Based Network Modeling". http://nemo-project.net/.
[52] iPOPO: A service-oriented component model for Python. http://ipopo.

coderxpress.net/,
[53] RAJ JAIN and SHAWN A. ROUTHIER. “Packet Trains-Measurements

and a New Model for Computer Network Traffic”. In: IEEE Journal on
Selected Areas in Communications (1985).

[54] A. Jajszczyk. “Nonblocking, repackable, and rearrangeable Clos networks:
fifty years of the theory evolution”. In: IEEE Communications Magazine
41.10 (Oct. 2003), pp. 28–33. issn: 0163-6804. doi: 10.1109/MCOM.2003.
1235591.

[55] Juniper. Data sheet covering EX8200 Ethernet line cards. http://www.
juniper.net/us/en/local/pdf/datasheets/1000262-en.pdf.

[56] Xin Jin, Jennifer Gossels, Jennifer Rexford and David Walker. “CoVisor:
A Compositional Hypervisor for Software-Defined Networks”. In: 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). Oakland, CA: USENIX Association, May 2015, pp. 87–101.
isbn: 978-1-931971-218. url: https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/jin.

[57] David B. Johnson and David A. Maltz. “Dynamic Source Routing in Ad
Hoc Wireless Networks”. In: IEEE Transactions on Mobile Computing
(1999). doi: 10.1007/978-0-585-29603-6_5.

[58] Juniper: Unified In-Service Software Upgrade. https://www.juniper.
net/documentation/en_US/junos/topics/concept/issu-oveview.
html.

121

https://doi.org/10.1109/IEEESTD.2000.91610
http://nemo-project.net/
http://ipopo.coderxpress.net/
http://ipopo.coderxpress.net/
https://doi.org/10.1109/MCOM.2003.1235591
https://doi.org/10.1109/MCOM.2003.1235591
http://www.juniper.net/us/en/local/pdf/datasheets/1000262-en.pdf
http://www.juniper.net/us/en/local/pdf/datasheets/1000262-en.pdf
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jin
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jin
https://doi.org/10.1007/978-0-585-29603-6_5
https://www.juniper.net/documentation/en_US/junos/topics/concept/issu-oveview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/issu-oveview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/issu-oveview.html

BIBLIOGRAPHY

[59] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar and P. Brighten God-
frey. “VeriFlow: Verifying Network-wide Invariants in Real Time”. In:
SIGCOMM Comput. Commun. Rev. 42.4 (2012), pp. 467–472.

[60] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky and S. Uhlig. “Software-Defined Networking: A Compre-
hensive Survey”. In: Proceedings of the IEEE 103.1 (Jan. 2015), pp. 14–
76. issn: 0018-9219. doi: 10.1109/JPROC.2014.2371999.

[61] M. Krueger and R. Haagens. Small Computer Systems Interface protocol
over the Internet (iSCSI) Requirements and Design Considerations. RFC
3347 (Proposed Standard). Internet Engineering Task Force, July 2002.
url: http://www.ietf.org/rfc/rfc3347.txt.

[62] Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele Venzano and De-
jan Kostic. “A SOFT way for OpenFlow switch interoperability testing”.
In: Proceedings of the 8th international conference on Emerging network-
ing experiments and technologies. 2012.

[63] Bob Lantz, Brandon Heller and Nick McKeown. “A Network in a Laptop:
Rapid Prototyping for Software-defined Networks”. In: Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks. Hotnets-IX.
Monterey, California: ACM, 2010, 19:1–19:6. isbn: 978-1-4503-0409-2.
doi: 10.1145/1868447.1868466. url: http://doi.acm.org/10.1145/
1868447.1868466.

[64] C. E. Leiserson. “Fat-trees: Universal networks for hardware-efficient
supercomputing”. In: IEEE Transactions on Computers C-34.10 (Oct.
1985), pp. 892–901. issn: 0018-9340. doi: 10.1109/TC.1985.6312192.

[65] Ka-Cheong Leung, Victor O. K. Li and Daiqin Yang. “An Overview of
Packet Reordering in Transmission Control Protocol (TCP): Problems,
Solutions, and Challenges”. In: IEEE Trans. Parallel Distrib. Syst. 18.4
(Apr. 2007), pp. 522–535. issn: 1045-9219. doi: 10.1109/TPDS.2007.
1011. url: http://dx.doi.org/10.1109/TPDS.2007.1011.

[66] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol and
Anja Feldmann. “Logically Centralized?: State Distribution Trade-offs
in Software Defined Networks”. In: Proceedings of the First Workshop on
Hot Topics in Software Defined Networks. HotSDN ’12. Helsinki, Finland:
ACM, 2012, pp. 1–6. isbn: 978-1-4503-1477-0. doi: 10.1145/2342441.
2342443. url: http://doi.acm.org/10.1145/2342441.2342443.

[67] T. Li, B. Cole, P. Morton and D. Li. Cisco Hot Standby Router Protocol
(HSRP). RFC 2281 (Informational). Internet Engineering Task Force,
Mar. 1998. url: http://www.ietf.org/rfc/rfc2281.txt.

[68] Davis Martin. Computability and unsolvability. 1958.

122

https://doi.org/10.1109/JPROC.2014.2371999
http://www.ietf.org/rfc/rfc3347.txt
https://doi.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
https://doi.org/10.1109/TC.1985.6312192
https://doi.org/10.1109/TPDS.2007.1011
https://doi.org/10.1109/TPDS.2007.1011
http://dx.doi.org/10.1109/TPDS.2007.1011
https://doi.org/10.1145/2342441.2342443
https://doi.org/10.1145/2342441.2342443
http://doi.acm.org/10.1145/2342441.2342443
http://www.ietf.org/rfc/rfc2281.txt

BIBLIOGRAPHY

[69] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker and Jonathan Turner. “Open-
Flow: enabling innovation in campus networks”. In: SIGCOMM Com-
put. Commun. Rev. 38.2 (Mar. 2008), pp. 69–74. issn: 0146-4833. doi:
10.1145/1355734.1355746. url: http://doi.acm.org/10.1145/
1355734.1355746.

[70] Mechanical structures for electronic equipment – Dimensions of mechan-
ical structures of the 482,6 mm (19 in) series. Standard. Geneva, CH:
International Electrotechnical Commission, 2004.

[71] J. Medved, R. Varga, A. Tkacik and K. Gray. “OpenDaylight: Towards
a Model-Driven SDN Controller architecture”. In: Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014. June 2014, pp. 1–6.

[72] B. Melander, M. Bjorkman and P. Gunningberg. “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks”. In:
Global Telecommunications Conference, 2000. GLOBECOM ’00. IEEE.
Vol. 1. 2000, 415–420 vol.1. doi: 10.1109/GLOCOM.2000.892039.

[73] Mark P Mills. “The cloud begins with coal: Big data, big networks, big
infrastructure, and big power”. In: Digital Power Group (2013).

[74] Jeffrey C. Mogul, Alvin AuYoung, Sujata Banerjee, Lucian Popa, Jeongkeun
Lee, Jayaram Mudigonda, Puneet Sharma and Yoshio Turner. “Cory-
bantic: Towards the Modular Composition of SDN Control Programs”.
In: Proceedings of the Twelfth ACM Workshop on Hot Topics in Net-
works. HotNets-XII. College Park, Maryland: ACM, 2013, 1:1–1:7. isbn:
978-1-4503-2596-7. doi: 10.1145/2535771.2535795. url: http://doi.
acm.org/10.1145/2535771.2535795.

[75] J. Moy. OSPF Version 2. RFC 1247 (Draft Standard). Obsoleted by
RFC 1583, updated by RFC 1349. Internet Engineering Task Force, July
1991. url: http://www.ietf.org/rfc/rfc1247.txt.

[76] J. Moy. OSPF Version 2. RFC 2328 (INTERNET STANDARD). Up-
dated by RFCs 5709, 6549, 6845, 6860, 7474. Internet Engineering Task
Force, Apr. 1998. url: http://www.ietf.org/rfc/rfc2328.txt.

[77] S. Nadas. Virtual Router Redundancy Protocol (VRRP) Version 3 for
IPv4 and IPv6. RFC 5798 (Proposed Standard). Internet Engineering
Task Force, Mar. 2010. url: http://www.ietf.org/rfc/rfc5798.txt.

[78] T. Narten, E. Nordmark, W. Simpson and H. Soliman. Neighbor Dis-
covery for IP version 6 (IPv6). RFC 4861 (Draft Standard). Updated
by RFCs 5942, 6980, 7048. Internet Engineering Task Force, Sept. 2007.
url: http://www.ietf.org/rfc/rfc4861.txt.

[79] NetIDE. NetIDE composition XML schema specification file. https://
github.com/fp7-netide/Engine/blob/master/core/specification/
CompositionSpecification.xsd.

123

https://doi.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
https://doi.org/10.1109/GLOCOM.2000.892039
https://doi.org/10.1145/2535771.2535795
http://doi.acm.org/10.1145/2535771.2535795
http://doi.acm.org/10.1145/2535771.2535795
http://www.ietf.org/rfc/rfc1247.txt
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc5798.txt
http://www.ietf.org/rfc/rfc4861.txt
https://github.com/fp7-netide/Engine/blob/master/core/specification/CompositionSpecification.xsd
https://github.com/fp7-netide/Engine/blob/master/core/specification/CompositionSpecification.xsd
https://github.com/fp7-netide/Engine/blob/master/core/specification/CompositionSpecification.xsd

BIBLIOGRAPHY

[80] Neutron’s developer documentation. http : / / docs . openstack . org /
developer/neutron/.

[81] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nel-
son Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya
and Amin Vahdat. “PortLand: a scalable fault-tolerant layer 2 data cen-
ter network fabric”. In: SIGCOMM Comput. Commun. Rev. 39.4 (Aug.
2009), pp. 39–50. issn: 0146-4833. doi: 10.1145/1594977.1592575.

[82] The OpenDaylight Platform. https://www.opendaylight.org/.
[83] ONOS - Open Network Operating System. http://onosproject.org/.
[84] ONOS - Intent Framework. https://wiki.onosproject.org/display/

ONOS/Intent+Framework.
[85] OSGi: The Dynamic Module System for Java. https://www.osgi.org/.

2015.
[86] Pelix/iPOPO: an OSGi framework for Python applications. https://

www.eclipsecon.org/europe2013/sites/eclipsecon.org.europe2013/
files/osgi2013-pelix-prez.pdf.

[87] R. Perlman, D. Eastlake 3rd, D. Dutt, S. Gai and A. Ghanwani. Routing
Bridges (RBridges): Base Protocol Specification. RFC 6325 (Proposed
Standard). Updated by RFCs 6327, 6439, 7172, 7177, 7357, 7179, 7180,
7455, 7780, 7783. Internet Engineering Task Force, July 2011. url: http:
//www.ietf.org/rfc/rfc6325.txt.

[88] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar
et al. “The Design and Implementation of Open vSwitch.” In: NSDI.
2015, pp. 117–130.

[89] D. Plummer. Ethernet Address Resolution Protocol: Or Converting Net-
work Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware. RFC 826 (INTERNET STANDARD). Updated
by RFCs 5227, 5494. Internet Engineering Task Force, Nov. 1982. url:
http://www.ietf.org/rfc/rfc826.txt.

[90] G. Pongrácz, L. Molnár and Z. L. Kis. “Removing Roadblocks from
SDN: OpenFlow Software Switch Performance on Intel DPDK”. In: 2013
Second European Workshop on Software Defined Networks. Oct. 2013,
pp. 62–67. doi: 10.1109/EWSDN.2013.17.

[91] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang,
Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma
and Ying Zhang. “PGA: Using Graphs to Express and Automatically Re-
concile Network Policies”. In: Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. SIGCOMM ’15. Lon-
don, United Kingdom: ACM, 2015, pp. 29–42. isbn: 978-1-4503-3542-3.
doi: 10.1145/2785956.2787506. url: http://doi.acm.org/10.1145/
2785956.2787506.

124

http://docs.openstack.org/developer/neutron/
http://docs.openstack.org/developer/neutron/
https://doi.org/10.1145/1594977.1592575
https://wiki.onosproject.org/display/ONOS/ Intent+Framework
https://wiki.onosproject.org/display/ONOS/ Intent+Framework
https://www.osgi.org/
https://www.eclipsecon.org/europe2013/sites/eclipsecon.org.europe2013/files/osgi2013-pelix-prez.pdf
https://www.eclipsecon.org/europe2013/sites/eclipsecon.org.europe2013/files/osgi2013-pelix-prez.pdf
https://www.eclipsecon.org/europe2013/sites/eclipsecon.org.europe2013/files/osgi2013-pelix-prez.pdf
http://www.ietf.org/rfc/rfc6325.txt
http://www.ietf.org/rfc/rfc6325.txt
http://www.ietf.org/rfc/rfc826.txt
https://doi.org/10.1109/EWSDN.2013.17
https://doi.org/10.1145/2785956.2787506
http://doi.acm.org/10.1145/2785956.2787506
http://doi.acm.org/10.1145/2785956.2787506

BIBLIOGRAPHY

[92] NetIDE FP7 Project. “D2.7 NetIDE Manual”. In: NetIDE reports (2016).
[93] Gaurav Raina, Don Towsley and Damon Wischik. “Part II: Control The-

ory for Buffer Sizing”. In: SIGCOMM Comput. Commun. Rev. 35.3 (July
2005), pp. 79–82. issn: 0146-4833. doi: 10.1145/1070873.1070885. url:
http://doi.acm.org/10.1145/1070873.1070885.

[94] M. Rajagopal, E. Rodriguez and R. Weber. Fibre Channel Over TCP/IP
(FCIP). RFC 3821 (Proposed Standard). Updated by RFC 7146. Internet
Engineering Task Force, July 2004. url: http://www.ietf.org/rfc/
rfc3821.txt.

[95] M. J. Rashti and A. Afsahi. “10-Gigabit iWARP Ethernet: Comparative
Performance Analysis with InfiniBand and Myrinet-10G”. In: 2007 IEEE
International Parallel and Distributed Processing Symposium. Mar. 2007,
pp. 1–8. doi: 10.1109/IPDPS.2007.370480.

[96] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford and
David Walker. “Modular SDN Programming with Pyretic”. In: USENIX
;login 38.5 (Oct. 2013), pp. 128–134.

[97] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger and
David Walker. “Abstractions for Network Update”. In: Proceedings of
the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication. SIGCOMM
’12. Helsinki, Finland: ACM, 2012, pp. 323–334. isbn: 978-1-4503-1419-0.
doi: 10.1145/2342356.2342427. url: http://doi.acm.org/10.1145/
2342356.2342427.

[98] Elisa Rojes, Sergio Tamurejo Roberto Doriguzzi-Corin, Andres Beato,
Arne Schwabe, Kevin Phemius and Carmen Guerrero. “Are we ready to
tackle Software Defined Networks? A Comprehensive Survey on Man-
agement Tools and Techniques”. In: ACM Computing Surveys (to be
published).

[99] E. Rosen, A. Viswanathan and R. Callon. Multiprotocol Label Switching
Architecture. RFC 3031 (Proposed Standard). Updated by RFCs 6178,
6790. Internet Engineering Task Force, Jan. 2001. url: http://www.
ietf.org/rfc/rfc3031.txt.

[100] Christian Esteve Rothenberg, C Macapuna, F Verdi, M Magalhães and
András Zahemszky. “Data center networking with in-packet Bloom fil-
ters”. In: Proc. SBRC. 2010, pp. 553–566.

[101] Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi
Arad, Tal Mizrahi, Yoram Revah and Avinatan Hassidim. “Compressing
forwarding tables”. In: IEEE Infocom. 2013.

[102] The Ryu Project. http://osrg.github.io/ryu/.

125

https://doi.org/10.1145/1070873.1070885
http://doi.acm.org/10.1145/1070873.1070885
http://www.ietf.org/rfc/rfc3821.txt
http://www.ietf.org/rfc/rfc3821.txt
https://doi.org/10.1109/IPDPS.2007.370480
https://doi.org/10.1145/2342356.2342427
http://doi.acm.org/10.1145/2342356.2342427
http://doi.acm.org/10.1145/2342356.2342427
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt

BIBLIOGRAPHY

[103] Arne Schwabe, Pedro A. Aranda Gutiérrez and Holger Karl. “Compos-
ition of SDN Applications: Options/Challenges for Real Implementa-
tions”. In: Proceedings of the 2016 Applied Networking Research Work-
shop. ANRW ’16. Berlin, Germany, 2016, pp. 26–31. isbn: 978-1-4503-
4443-2. doi: 10.1145/2959424.2959436. url: http://doi.acm.org/
10.1145/2959424.2959436.

[104] Arne Schwabe, Pedro A. Aranda Gutiérrez and Holger Karl. “Com-
position of SDN applications: Options/challenges for real implementa-
tions”. In: Proceedings of the 2016 Applied Networking Research Work-
shop. ACM. 2016, pp. 26–31.

[105] Arne Schwabe and Holger Karl. “SynRace: Decentralized Load-Adaptive
Multi-path Routing Without Collecting Statistics”. In: Proceedings of the
2015 Fourth European Workshop on Software Defined Networks. EWSDN
’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 37–42.
isbn: 978-1-5090-0180-4. doi: 10.1109/EWSDN.2015.58. url: http:
//dx.doi.org/10.1109/EWSDN.2015.58.

[106] Arne Schwabe and Holger Karl. “Using MAC Addresses As Efficient
Routing Labels in Data Centers”. In: Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking. HotSDN ’14. Chicago,
Illinois, USA: ACM, 2014, pp. 115–120. isbn: 978-1-4503-2989-7. doi:
10.1145/2620728.2620730. url: http://doi.acm.org/10.1145/
2620728.2620730.

[107] Arne Schwabe and Holger Karl. “Using MAC Addresses As Efficient
Routing Labels in Data Centers”. In: Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking. HotSDN ’14. Chicago,
Illinois, USA: ACM, 2014, pp. 115–120. isbn: 978-1-4503-2989-7. doi:
10.1145/2620728.2620730. url: http://doi.acm.org/10.1145/
2620728.2620730.

[108] Arne Schwabe, Elisa Rojas and Holger Karl. “Minimizing Downtimes:
Using Dynamic Reconfiguration and State Management in SDN Net-
works”. In: 3rd IEEE Conference on Network Softwarization (NetSoft
2017). Bologna, Italy, July 2017.

[109] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru
Parulkar, Elio Salvadori and Bill Snow. “OpenVirteX: Make your virtual
SDNs programmable”. In: Proceedings of the third workshop on Hot top-
ics in software defined networking. ACM. 2014, pp. 25–30.

[110] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru
Parulkar, Elio Salvadori and Bill Snow. “OpenVirteX: Make your virtual
SDNs programmable”. In: Proceedings of the third workshop on Hot top-
ics in software defined networking. 2014.

126

https://doi.org/10.1145/2959424.2959436
http://doi.acm.org/10.1145/2959424.2959436
http://doi.acm.org/10.1145/2959424.2959436
https://doi.org/10.1109/EWSDN.2015.58
http://dx.doi.org/10.1109/EWSDN.2015.58
http://dx.doi.org/10.1109/EWSDN.2015.58
https://doi.org/10.1145/2620728.2620730
http://doi.acm.org/10.1145/2620728.2620730
http://doi.acm.org/10.1145/2620728.2620730
https://doi.org/10.1145/2620728.2620730
http://doi.acm.org/10.1145/2620728.2620730
http://doi.acm.org/10.1145/2620728.2620730

BIBLIOGRAPHY

[111] Rob Sherwood, Michael Chan, Adam Covington, Glen Gibb, Mario Flajs-
lik, Nikhil Handigol, Te-Yuan Huang, Peyman Kazemian, Masayoshi
Kobayashi, Jad Naous et al. “Carving research slices out of your produc-
tion networks with OpenFlow”. In: ACM SIGCOMM Computer Com-
munication Review 40.1 (2010), pp. 129–130.

[112] Konstantin Shvachko, Hairong Kuang, Sanjay Radia and Robert Chansler.
“The hadoop distributed file system”. In: Mass storage systems and tech-
nologies (MSST), 2010 IEEE 26th symposium on. IEEE. 2010, pp. 1–10.

[113] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead,
Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano
et al. “Jupiter rising: A decade of clos topologies and centralized control
in google’s datacenter network”. In: ACM SIGCOMM Computer Com-
munication Review 45.4 (2015), pp. 183–197.

[114] Ankit Singla, Chi-Yao Hong, Lucian Popa and Philip Brighten Godfrey.
“Jellyfish: Networking Data Centers, Randomly.” In: NSDI. Vol. 12. 2012,
pp. 17–17.

[115] J. Sommer, S. Gunreben, F. Feller, M. Kohn, A. Mifdaoui, D. Sass
and J. Scharf. “Ethernet - A Survey on its Fields of Application”. In:
IEEE Communications Surveys Tutorials 12.2 (Second 2010), pp. 263–
284. issn: 1553-877X. doi: 10.1109/SURV.2010.021110.00086.

[116] OpenFlow Switch Specification.Version 1.3.1 (Wire Protocol 0x04). https:
/ / www . opennetworking . org / images / stories / downloads / sdn -
resources/onf- specifications/openflow/openflow- spec- v1.3.
1.pdf. Sept. 2012.

[117] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang
and Ahsan Arefin. “A Network-state Management Service”. In: Pro-
ceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’14.
Chicago, Illinois, USA: ACM, 2014, pp. 563–574. isbn: 978-1-4503-2836-
4. doi: 10.1145/2619239.2626298. url: http://doi.acm.org/10.
1145/2619239.2626298.

[118] Cisco System. Cisco IOS Packaging. url: http://www.cisco.com/en/
US/products/sw/iosswrel/ps5460/products_qanda_item09186a00801af2c6.
shtml.

[119] Cisco Systems. Cisco NX-OS Licensing Guide. url: http://www.cisco.
com/c/en/us/td/docs/switches/datacenter/sw/nx-os/licensing/
guide/b_Cisco_NX-OS_Licensing_Guide/b_Cisco_NX-OS_Licensing_
Guide_chapter_01.html.

[120] The NetIDE consortium. NetIDE: An integrated development environ-
ment for portable network howpublished. Jan. 2014. url: http://www.
netide.eu.

127

https://doi.org/10.1109/SURV.2010.021110.00086
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://doi.org/10.1145/2619239.2626298
http://doi.acm.org/10.1145/2619239.2626298
http://doi.acm.org/10.1145/2619239.2626298
http://www.cisco.com/en/US/products/sw/iosswrel/ps5460/products_qanda_item09186a00801af2c6.shtml
http://www.cisco.com/en/US/products/sw/iosswrel/ps5460/products_qanda_item09186a00801af2c6.shtml
http://www.cisco.com/en/US/products/sw/iosswrel/ps5460/products_qanda_item09186a00801af2c6.shtml
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/nx-os/licensing/guide/b_Cisco_NX-OS_Licensing_Guide/b_Cisco_NX-OS_Licensing_Guide_chapter_01.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/nx-os/licensing/guide/b_Cisco_NX-OS_Licensing_Guide/b_Cisco_NX-OS_Licensing_Guide_chapter_01.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/nx-os/licensing/guide/b_Cisco_NX-OS_Licensing_Guide/b_Cisco_NX-OS_Licensing_Guide_chapter_01.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/nx-os/licensing/guide/b_Cisco_NX-OS_Licensing_Guide/b_Cisco_NX-OS_Licensing_Guide_chapter_01.html
http://www.netide.eu
http://www.netide.eu

BIBLIOGRAPHY

[121] Mikkel Thorup and Uri Zwick. “Compact Routing Schemes”. In: Proceed-
ings of the Thirteenth Annual ACM Symposium on Parallel Algorithms
and Architectures. SPAA ’01. Crete Island, Greece: ACM, 2001, pp. 1–10.
isbn: 1-58113-409-6. doi: 10.1145/378580.378581.

[122] Walter HWTuttlebee. Software defined radio: enabling technologies. John
Wiley & Sons, 2003.

[123] Amin Vahdat, Mohammad Al-Fares, Nathan Farrington, Radhika Nir-
anjan Mysore, George Porter and Sivasankar Radhakrishnan. “Scale-out
networking in the data center”. In: Ieee Micro 30.4 (2010), pp. 29–41.

[124] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agar-
wal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh
Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay
Radia, Benjamin Reed and Eric Baldeschwieler. “Apache Hadoop YARN:
Yet Another Resource Negotiator”. In: Proceedings of the 4th Annual
Symposium on Cloud Computing. SOCC ’13. Santa Clara, California:
ACM, 2013, 5:1–5:16. isbn: 978-1-4503-2428-1. doi: 10.1145/2523616.
2523633. url: http://doi.acm.org/10.1145/2523616.2523633.

[125] Tim Niklas Vinkemeier. “Composition and Orchestration of Network
Control Applications”. MA thesis. University of Paderborn, 2015.

[126] P. Wette and H. Karl. “DCT2Gen: A Versatile TCP Traffic Generator
for Data Centers”. arXiv:1409.2246.

[127] DamonWischik and Nick McKeown. “Part I: Buffer Sizes for Core Routers”.
In: SIGCOMM Comput. Commun. Rev. 35.3 (July 2005), pp. 75–78.
issn: 0146-4833. doi: 10.1145/1070873.1070884. url: http://doi.
acm.org/10.1145/1070873.1070884.

[128] Xiaowei Yang, David Clark and Arthur W. Berger. “NIRA: A New Inter-
domain Routing Architecture”. In: IEEE/ACM Trans. Netw. 15.4 (Aug.
2007), pp. 775–788. issn: 1063-6692. doi: 10.1109/TNET.2007.893888.
url: http://dx.doi.org/10.1109/TNET.2007.893888.

128

https://doi.org/10.1145/378580.378581
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2523616.2523633
https://doi.org/10.1145/1070873.1070884
http://doi.acm.org/10.1145/1070873.1070884
http://doi.acm.org/10.1145/1070873.1070884
https://doi.org/10.1109/TNET.2007.893888
http://dx.doi.org/10.1109/TNET.2007.893888

List of Figuresy

1.1 Steps of traffic engineering . 3

2.1 Ethernet data centre backbone with core, spine and ToR layer . 8
2.2 15 port Clos switch built from 3 and 4 port switches 9
2.3 Data centre Clos-like topology . 10
2.4 FatTree topology with four pods and four core switches. 10
2.5 Cost-conscious FatTree topology 11

3.1 Small network with three paths (thin lines) 20
3.2 Intercepting and modifying ARP packets in an SDN network . . 21
3.3 Node with six paths and four already assigned bits, common bits

in bold, next bits in grey . 25
3.4 Example transformation of a graph for 4-colourability 26
3.5 Average number of wildcards used by the greedy heuristic with

95% confidence intervals . 28

4.1 Example of SynRace . 32
4.2 Example network and OpenFlow forwarding table setup for Syn-

Race . 39
4.3 Message sequence chart for installing flow entries and three way-

handshake, circles indicate the points in time when a flow rule is
installed at the respective switch 40

4.4 Empirical CDF of flow completion times under different loads . . 43
4.5 Comparison of flow completion times for realistic traffic using

ECMP as baseline . 44

5.1 Using a virtual overlay network for composition of module A and B 52
5.2 Typical order of IDS and Firewall and NAT load balancer middle

boxes in a traditional network . 53
5.3 Parallel composition of IDS, FW and NAT load-balancer modules 53

6.1 NetIDE architecture . 69
6.2 core Bundle Overview. 74
6.3 Message diagram for XID remapping in the core 75

7.1 Overview of a network with distinction between fabric and edge
links . 85

7.2 Architectural overview of GlobalFIB, new/modified components
GlobalFIB components are dark/light grey 89

7.3 Applications A and B both try to install flow rules, application
B has higher priority . 94

7.4 Transforming the network graph for a constraint that specifies
“first A then B” and a possible resulting path from s to t 96

129

LIST OF FIGURES

8.1 Simplified comparison of approaches to implement reconfigura-
tion as SDN controller component (left) and as independent com-
ponent (right) . 103

8.2 Architecture of NetIDE . 104
8.3 Switch-over between two modules after crash of primary module 106
8.4 Overview of the different states that a module has in the system 108
8.5 Recovery time as seen from the ping network application with

0.2 s interval . 113
8.6 Recovery time as seen from the ping network application with

20 s interval . 113

130

List of Tablesy

5.1 Comparison table of the different composition approaches 65

131

List of Algorithmsy

1 Greedy algorithm . 24
2 Second Phase of the greedy algorithm 25

133

	1 Introduction
	1.1 Resulting challenges
	1.2 Contributions

	2 Background
	2.1 Data centres: Typical structures
	2.2 From conventional networking to SDN
	2.3 OpenFlow: Access to the switch data plane

	3 Efficient SDN Routing Labels
	3.1 Introduction
	3.2 Background
	3.2.1 Lookup hardware
	3.2.2 Forward Information Base

	3.3 Related work
	3.4 Model and problem definition
	3.5 MAC addresses as labels
	3.6 Solving PLA
	3.6.1 ILP solution
	3.6.2 Greedy Heuristic

	3.7 Complexity of PLA
	3.8 Evaluation
	3.9 Conclusion

	4 SynRace: Multi-path Routing
	4.1 Introduction
	4.2 Related work
	4.3 Latency as a proxy for data rate
	4.4 Overview of SynRace
	4.5 Implementation in OpenFlow
	4.5.1 Forwarding and duplicating the probe packets
	4.5.2 Triggering the race
	4.5.3 Adding path information
	4.5.4 Installing the flow entries

	4.6 Corner cases
	4.6.1 Asymmetric networks
	4.6.2 Multi-homed end hosts
	4.6.3 Effects on small flows

	4.7 Evaluation
	4.8 Conclusion

	5 Composition
	5.1 Introduction
	5.2 Definitions
	5.3 Types of composition
	5.3.1 Single module without composition
	5.3.2 Multiple modules without composition
	5.3.3 Multiple modules with harmonising
	5.3.4 Parallel composition
	5.3.5 Serial composition
	5.3.6 Network emulation
	5.3.7 Approximate serial composition
	5.3.8 Using overlays for approximate serial composition
	5.3.9 Composition and order of middle boxes

	5.4 Composition strategies
	5.5 Composition with OpenFlow
	5.5.1 Definitions
	5.5.2 Multiple modules
	5.5.3 The run to completion problem
	5.5.4 Parallel composition
	5.5.5 Serial composition

	5.6 Related work
	5.6.1 Classification of approaches
	5.6.2 Existing approaches
	5.6.3 Summary of the different composition approaches

	5.7 Conclusions

	6 NetIDE core
	6.1 Introduction
	6.2 Challenges
	6.3 NetIDE core relation to SDN controllers
	6.4 Composition
	6.5 Modularity
	6.6 Extending the core to non-OpenFlow protocols
	6.7 Composition specification
	6.7.1 Modules
	6.7.2 Composition
	6.7.3 Conflict resolution policies

	6.8 Evaluation
	6.9 Conclusion

	7 GlobalFIB
	7.1 Introduction
	7.2 Related work
	7.3 Architecture
	7.3.1 Network
	7.3.2 End-to-end flow rule definition
	7.3.3 GlobalFIB database
	7.3.4 Handling legacy rules

	7.4 Conflict detection
	7.5 Validation/Verification
	7.6 Conflict resolution and composition
	7.7 Calculating paths with GlobalFIB
	7.8 Statistics
	7.9 Traffic Engineering
	7.10 Debugging tool
	7.11 Distributed GlobalFIB
	7.12 GlobalFIB implementation
	7.13 Conclusion

	8 Reconfiguration
	8.1 Introduction
	8.2 Requirements for dynamic reconfiguration
	8.3 Related work
	8.4 Design
	8.4.1 External or internal?
	8.4.2 Granularity
	8.4.3 Specification of (Re-)Configurations
	8.4.4 Detecting malfunctioning modules
	8.4.5 Handling malfunctioning modules
	8.4.6 Adding/removing modules

	8.5 Specification language
	8.5.1 Modules

	8.6 Evaluation
	8.7 Conclusion

	9 Conclusion and future research
	9.1 Conclusion
	9.2 Future work

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

