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Zusammenfassung

In dieser Arbeit wird die forschungsbasierte (Weiter-) Entwicklung der Lehrveranstaltung ,Einflihrung
in die Kultur der Mathematik” beschrieben, welche den Studierenden den Ubergang von der
Schulmathematik in die Mathematik der Hochschule erleichtern soll und hierbei in einem
besonderen MaRe das Themenfeld ,Begriinden und Beweisen’ unter dem Aspekt der doppelten
Diskontinuitat fokussiert. Im Sinne der Forschungsmethode des Design-Based Research wurden vier
Durchfiihrungen der Lehrveranstaltung in dem Zeitraum von 2010 bis 2015 begleitend beforscht,
retrospektiv analysiert und prospektiv ausgewertet. Die Forschung wurde dabei durch die
Verwendung der Theorien des ,Diagrammatischen SchlieBens” nach Peirce und der ,Sozio-
mathematischen” Normen nach Yackel und Cobb geleitet. Als Ergebnisse dieser Forschungsarbeit
ergeben sich der Beitrag zu einer lokalen Instruktionstheorie in der Domane ,Begriinden und
Beweisen’, die Entwicklung verschiedener Testinstrumente, welche die Erforschung zentraler
Aspekte zum Beweisen bei Lernenden ermoglichen, empirische Ergebnisse bzgl. der
Beweiskompetenzen von Lehramtsstudierenden (Haupt-, Real und Gesamtschule) zu Beginn ihres
Studiums und verschiedene Beitrdage zur Theoriebildung und Theorieentwicklung in Bezug auf die
Didaktik des Beweises; darunter: die Diskussion um generische Beweise als vollgiiltige
mathematische Beweise, die Darstellung der Enkulturationsfunktion von Beweisen, die Betonung des
Konstrukts der Beweisakzeptanz flir das Erlernen der Beweisaktivitit und eine Diskussion der
Erklarungsfunktion von Beweisen.

Abstract

The study at hand investigates the development and the refinement of the university course
“Introduction into the culture of mathematics” as a Design-Based Research project. The course was
designed as a bridging course at the University of Paderborn with the aim of helping first-year pre-
service teachers to accomplish the transition to higher mathematics, especially concerning
mathematical proofs. Using the theories of “diagrammatic reasoning” (Peirce) and “socio-
mathematical norms” (Yackel and Cobb), four cycles of the course were accompanied by qualitative
and quantitative research, evaluating the courses benefits and analyzing students’ learning. As
output of this research, several findings can be specified. First, a contribution to a local instruction
theory concerning the learning of mathematical proof for first-year pre-service teachers is
formulated. Second, various test instruments were developed to examine central aspects of the
learning of mathematical proof. Third, the previous knowledge concerning proof and proof
competencies of first-year university students are described. Finally, several theoretical issues and
discussions can enriched by the outcomes of this project: the discussion of generic proofs as valid
mathematical proofs, the enculturation function of mathematical proofs, the importance of the
concept of ‘proof acceptance’ in the learning of proof and the benefits and limits of ‘proofs that
explain’.



Danksagung

Das Abfassen einer Dissertation, in Verbindung mit den damit einhergehenden Studien, erweist sich
wohl fir jeden Doktoranden als eine ,besondere’ Erfahrung. Ich mochte an dieser Stelle all jenen
danken, die mich auf diesen Weg gebracht, mich darauf begleitet und unterstiitzt und schlieBlich
dazu beigetragen haben, dass dieses Werk gelingen konnte.

Mein grolRer Dank gilt Prof. Dr. Rolf Biehler fiir viel mehr als ,nur’ eine Einflhrung in die
wissenschaftliche Disziplin der Didaktik der Mathematik und in die mathematikdidaktische
Forschung, die ich durch ihn erfahren durfte. Vielmehr mochte ich mich fiir die zahlreichen
intensiven und konstruktiven Diskussionen bedanken, in denen ich fachmathematisch,
fachdidaktisch, forschungsmethodisch und wissenschaftstheoretisch von ihm lernen durfte.
Insbesondere moéchte ich mich fir die Moglichkeiten bedanken, mich an der internationalen
Diskussion zu der vorliegenden Thematik im Rahmen von Tagungen und Publikationen zu beteiligen.
In diesem Sinne gilt mein Dank auch der Einrichtung ,Kompetenzzentrum Hochschuldidaktik
Mathematik”.

Ganz herzlich bedanken mdchte ich mich bei Herrn Prof. Dr. Hans Niels Jahnke fiir die Ubernahme
des Zweitgutachtens dieser Dissertation. Es ist mir eine Freude und Ehre.

Die Entstehung dieser Arbeit wurde durch mein berufliches Umfeld an der Universitat Paderborn
begleitet, das maRgeblich zu deren Gelingen beigetragen hat. Bedanken mochte ich mich bei der
Fachgruppe der Didaktik der Mathematik, insbesondere bei der Arbeitsgruppe Biehler, fiir das sehr
produktive und freundschaftliche Umfeld, in dem diese Arbeit wachsen und von dem sie profitieren
konnte. In diesem Kontext gilt es auch, universitatsiibergreifend verschiedenen Wissenschaftlerinnen
und Wissenschaftlern der Mathematikdidaktischen Community fiir ihre Unterstiitzung, Anregungen
und schlieBlich fur ihre Freundschaft zu danken. Es sei mir verziehen, dass ich an dieser Stelle auf
eine Aufzahlung einzelner Namen verzichte.

Dieses Forschungsprojekt ware nicht moglich gewesen ohne die vielen Studierenden, die sich immer
wieder bereitwillig dazu erklart haben, an den verschiedenen Untersuchungen teilzunehmen. Ihnen
gilt genauso mein Dank wie auch den studentischen Hilfskraften, die in den Durchfiihrungen
2011/12, 2012/13 und 2013/14 in der Lehrveranstaltung ,Einfiihrung in die Kultur der Mathematik*
mitgearbeitet und sich in diesem Kontext auf immer neue Anforderungen eingelassen haben.
Insbesondere gilt mein Dank Sara Naseem Malik fiir ihre Unterstiitzung in der empirischen
Forschung; ohne ihre Vorarbeit in Bezug auf die Auswertung von hunderten von Fragebdgen und ihre
Zweitkategorisierung von ca. 1.240 studentischen Beweiskonstruktionen ware diese Dissertation
nicht moglich gewesen.

Mein besonderer Dank gilt Dr. Andreas Seifert fir die Hilfe im Umgang mit der Datenanalysesoftware
,,SPSS“ und Joachim Martensmeier fiir das Korrekturlesen dieser Arbeit.

SchliefBlich gilt mein groRer Dank meiner Familie fir die Unterstlitzung wahrend dieser
arbeitsintensiven Lebensphase und ihre charakteristische Art und Weise, immer wieder Ablenkung in
meinen Alltag zu bringen.

Mein unermesslicher Dank gilt meiner Freundin Lea, fiir gleichsam Halt und Antrieb. Daflir und noch
far viel mehr liebe ich dich.



Inhaltsverzeichnis

1. Einleitung: Problemstellung, Forschungsanliegen und Zielsetzung.........cccccovveeeeeeiiccciiieeieeee e 10
1.1 Die Ubergangsproblematik in der Mathematik und die doppelte Diskontinuitat..................... 11
1.2 Konzeptionen von Lehrveranstaltungen zur Einfiihrung in die héhere Mathematik und der
FOKUS @S BEWEISENS ....eeiiiiiiiiieiei ettt ettt ettt ettt ettt e st e e bt e e st e e e sabee e sneeesnseesabeesnenesareesnneas 13

1.2.1 TransitioN-10-Proof-KUISE........co i e e e e e e rar e e e e e e enaraaeeeas 14
1.2.2 Problemzentrierte KUrskONZEPLe .......ceevi ittt e e 16
1.2.3 Das Leitbild ,Elementarmathematik als Prozess’ in der Lehramtsausbildung...................... 18
1.3 ZWISCRENTAZIT ..t st 23
1.4 Forschungsanliegen, Zielsetzung und Aufbau der Arbeit........coccciiieieiii i, 24
1.4.1 Forschungsanliegen, Zielsetzungen und Forschungsfrage........cccooveeveiieccciiieeeee e, 24
1.4.2 AUTDAU dEI ArDEIt..ccieeiiieeee et 25

P o T=To ¢ A ol TN € U g o | ==Y o S 26

2.1 Der mathematiSChe BEWEIS. .....c.c.couiriieieiieree sttt e b bt b e sbee s e saee e 27
2.1.1 Der BEWEISDEEIITT .. .ot araeas 27
2.1.2 FOrMAIE BEWEISE .....eeiiieeiieeeiiee ettt ettt ettt ettt et e st e bt e e s st e st e e e sabeesabeesabeeesneeesaneeeane 29
2.1.3 Operative und ZENEriSChE BEWEISE ......uuveiiiiiiiiiiieeee ettt e e e ebree e e e e e e e annes 32
2.1.4 Strenge DEIM BEWEISEN .......uuiiiieee ettt ettt e e e et e e e e e e e et re e e e e seeeeseesnnteeseeeassennnsnns 36
2.1.5 Die Argumentationsgrundlage beim Beweisen und das lokale Ordnen ...........ccccccvveenneen. 38
2.1.6 BEWEISDEAUITNIS .. .eeieetieiieriee et et st st e 39
2.1.7 FUNKEIONEN VON BEWEISEN ...ttt ettt ettt ettt saee s st e e enees 41

2.2 Ausgewahlte Aspekte zum Erlernen der Beweisaktivitat: Das Konzept der Selbstwirksamkeit

und Einstellungen zur Mathematik und zum BEWEISEN...........uuviieieeiiicciiieeee et 49
2.2.1 Selbstwirksamkeit UNd BEWEISEN ....c..cevuiiiiiriieiieiieteee ettt 49
2.2.2 Einstellungen zur Mathematik und das BEWEISEN ........cccveeeicieeiicciee e 50

2.3 Argumentieren, Begrinden Und BEWEISEN .........uceiiiiieiciieec ettt et e e enee e e 53
2.3 1 ArBUMENTIEIEN e 53
2.3.2 Das Verhaltnis zwischen Argumentation und BEWEIS ..........ueeveeieeiciiiiiieee e 57
G TG B 21T 4 ¥ o o [T o ISR 59
2.3.4 Argumentieren, Begrinden und BEWEISEN .........ccoccveiiiiiiieeciiee ettt 60

2.4 Ausgewahlte empirische Befunde zum Themenkomplex BeWeisen........cccccevecvveeeeiiveeeccieeeeennns 62
2.4.1 Beweisen bei Studienanfangerinnen und Studienanfangern..........cccooeeeiiiiciieiee e, 62
2.4.2 Akzeptanzaspekte DEIM BEWEISEN .........ueiiiiiiiiiiieeee ettt e et e e e e e e rrare e e e e e e nnnns 63



2.4.3 Einstellungen zur Mathematik und das BEWEISEN ........cc.cuvvviieeiiiicciiiiiee e 69

2.5 Beweisen als diagrammatisches SChlI@RBEN .........eeeivcuiiiiiciiee e 72
2.5.1 Der Vorgang des diagrammatischen SChHeBens .........cccccveiivieiiicciee e 74
2.5.2 Exkurs: Eine semiotische Diskussion verschiedener Beweisprodukte ..........cccceevcveeeenneen. 76
2.5.4 Die Guite eines DiagrammsSyStemMS....ccccciiiii i 79
2.5.5 Die Rolle der fachmathematischen Sprache ..o 80

2.6 Die Theorie sozio-mathematischer NOrmen .........cocooeeiieiiriiereeeeeee e 81
2.6.1 Theoretische Grundlagen sozio-mathematischer Normen..........cccoceeiviiiiiccee e, 82
2.6.2 Sozio-mathematische Normen und BEWEISE ........c.coceeiiirierieniiniceceeeeeeeee e 82

I o Yol oYW T V=4 0 =1 o T Yo LSRR 83

3.1 Design-Based RESEAICH .........uuiiiiieie et e e et e e e e e e e e e et aae e e e e e e e anrraaeeeas 83

3.2 Design-Based Research als der vorliegende Forschungsansatz..........cccccceeeeeccviiieee i, 86

3.3 INStrUMENTENTWICKIUNG «oeeieeiiee e e e e e rta e e e e ata e e e s araeeeanereeeeas 89
3.3.1 Erfassung von Begriindungskompetenz zu Beginn des Studiums.........ccccceeevcieeeicciieeecnneen, 90
3.3.2 Beweisbewertung als ,,richtiger BEWEIS” ........cuvieiiiieeiiieee et 92
3.3.3 BEWEISAKZEPIANZ c.vreiieee et e e e e e e e e e e e e nnrreaeeaeeeennnens 94
3.3.4 Erfassung der schulischen Vorerfahrungen zum BeWeisen ..........cccccvvveeeeiiccciiieeeeeeeeeeeens 98
e BN 2 AT T o T {1 =1 o 2 USURROt 99
3.3.6 Einstellungen zum Beweisen in der SChUlE ..........coociiiiieiiiii i 100
3.3.7 Einstellungen ZUm BEWEISEN ......cccicciieie ittt e e e et e e e s eateae e e srtaeeesaraeeesnnes 102
3.3.8 Einstellungen zur MathematiK ........cc.eeeieiiiiiieiiiee e et rree e e evaee e e 103
3.3.9 FUNKLIONEN VON BEWEISEN ...ttt ettt ettt ettt e st esbeesneeesareesaree s 104

3.3.10 Motivation zum Erlernen von Beweisen und Selbsteinschatzung des Lernzuwachses ... 107
3.3.11 Nutzen von Beispielen flir den BEeWeEISPrOZESS......uuiieecceuriieeeeeeeiiieieeeeeeeccineeeeeeeeeeeeeenens 107

3.3.12 Selbstwirksamkeitserwartung und der empfundene Kompetenzzuwachs beim Beweisen

..................................................................................................................................................... 108

4. Betrachtungen zu der historischen Entwicklung didaktisch orientierter Beweiskonzepte und der mit
ihnen verbundenen INTENTIONEN ........oocuiiiie ettt e 110
4.1 Anliegen, Forschungsfragen und Methode ..........c..ooeeeiiiiiiciiic e 110
4.2 Kurzdarstellung ausgewahlter didaktisch orientierter Beweiskonzepte.........ccccecvveeeviieeeennee. 111
4.2.1 Die intuitive Beweisstufe bei Benchara Branford ..........ccocccooviiiiiiiiienieniieeeeeeeee e, 111
4.2.2 Paradigmatische Beispiele bei Hans Freudenthal ..........cccccciiiieiiii e, 114
4.2.3 Der pramathematische Beweis bzw. der action proof bei Zbigniew Semadeni ................ 115
4.2.4 Pramathematische Beweise bei Arnold KirSCh..........ccceeveeiiiiienieneneeneneeeeeeeeeiens 117
4.2.5 Inhaltlich-anschauliche Beweise nach Erich Wittmann und Gerhard Miller..................... 118

6



4.2.6 Praformale Beweise bei Arnold Kirsch und Werner Blum........ccoeeeviiiiiiiiiiieiieiieeeeeii e 119

4.3 Zusammenfassung der in der historischen Betrachtung herausgearbeiteten Aspekte zum

Umgang mit didaktisch orientierten Beweiskonzepten.......cccccovvcveeiiciee e 120
4.3.1 Empfohlene Aktivitaten fiir Lernende und Implikationen fir den Unterricht ................... 121

4.3.2 Argumente fir die Einbindung didaktisch orientierter Beweiskonzepte in die
(] o T T = TU T ]| 1o [U o =SSP ST 122

4.3.3 Probleme und offene Fragen bzgl. der didaktisch orientierten Beweiskonzepte.............. 123

5. Die verschiedenen Durchfiihrungen der Lehrveranstaltung ,Einfiihrung in die Kultur der

Mathematik” und die erfolgten STUIEN ...........ueniiiiiii e e e e 124
5.1 Die Entstehung der Lehrveranstaltung, deren Einbettung in den Studienverlauf und die
2 a0 a1 ] o =Te [Ta=dUT oY== o TR USSR 125
5.2 Die Lehrveranstaltung im Wintersemester 2011/12 und die im Kontext dieser Durchfiihrung
LY (o Foa = T U T =Y o SRR 126
5.2.1 Die erste Durchfiihrung der Lehrveranstaltung im Wintersemester 2011/12................... 126
5.2.2 Die im Kontext dieser Durchfiihrung erfolgten Studien..........cocevveiieiiciie e, 137
5.2.3 Retrospektive Analyse der ersten Durchfiihrung der Lehrveranstaltung ...........ccccuoeee... 144

5.3. Die Lehrveranstaltung im Wintersemester 2012/13 und die im Kontext dieser Durchfiihrung

LY (o) Foa = T U T =Y o SRR 147
5.3.1 Veranderungen bei der zweiten Durchfiihrung der Lehrveranstaltung im Wintersemester
2002/13 e bttt a e h e h e h e bt h bt b b e et n e ae et e b st et et ene 148
5.3.2 Die im Kontext dieser Durchfiihrung erfolgten Studien........ccccoocciieeeiiiiccciieeee e, 154
5.3.3 Retrospektive Analyse der zweiten Durchfiihrung der Lehrveranstaltung........................ 171

5.4 Die Lehrveranstaltung im Wintersemester 2013/14 und die im Kontext dieser Durchfiihrung

oY o] ==Y AT (U Lo [T o U TR 173
5.4.1 Veranderungen bei der dritten Durchflihrung der Lehrveranstaltung im Wintersemester
2003704 .ottt e et e—e e —e e ee—eeeaaeea—ee e eatereareeaateeeateeearreeereeeareeens 173
5.4.2 Die im Kontext dieser Durchfiihrung erfolgten Studien........ccccooeciiieeiiiiiicciieeee e, 179
5.4.3 Retrospektive Analyse der dritten Durchfiihrung der Lehrveranstaltung ..........cccccuee... 204
5.4.4 Veranderungen bei der vierten Durchfliihrung der Lehrveranstaltung im Wintersemester
2004715 oot e —e e te e te e te e te e beeabaeaataesraearaeeateaateenteeteeteereanns 206

6. Die Lehrveranstaltung ,,Einfihrung in die Kultur der Mathematik” im Wintersemester 2014/2015
............................................................................................................................................................. 209

6.1 Die intentionale Dimension der vierten Durchfiihrung der Lehrveranstaltung im

WiINTEISEMESTEE 2014/ 15 ..ottt e e e e e e ettt e et s esas s eaeeeeessaaassseeaseeeeessseaassseraeeesesanaenes 209

6.2 Die Gestaltung der ersten beiden Kapitel der Lehrveranstaltung im Wintersemester 2014/15

......................................................................................................................................................... 210

6.3 DEr UDUNGSDETIIIED ...ttt ettt ettt a et ne st s teneste e etenssneneas 220
6.3.1 Die PrasenzUbUNGEN ...ttt et e e e e e e st e e e e eeaeeesnntereeeeaeeannnrnns 220



6.3.2 Spezifische UbUNESAUFZADEN .......c.oiviuiieieececeeeeee ettt 221

6.3.3 Die ZeNtrallbUNG ......oeeeeieiieee et e e et e e e bt e e e e e ba e e e ennraeeeeanes 224

7. Die empirischen Studien zur Lehrveranstaltung im Wintersemester 2014/15........cccccevvevvvevveennenns 230
7.1. Datenerhebung und MesszeitPUNKLE........c..vviiiiiiiiicce et e 230
7.1.2 Messzeitpunkt 1: Die Eingangsbefragung zu Beginn der Lehrveranstaltung..................... 232
7.1.3 Messzeitpunkt 2: Die Ausgangsbefragung zum Ende der Lehrveranstaltung.................... 232
7.1.4. Messzeitpunkt 3: Die Modulklausur einen Monat nach Ende der Lehrveranstaltung...... 233

7.2. Teilstudie 1: Vorerfahrungen und Kompetenzen der Studierenden zum Beweisen und deren
Einstellungen zum Beweisen und zur Mathematik zu Beginn der Lehrveranstaltung (bzw. zu Beginn

ES STUTIUMIS) ..ttt e e ettt e e e et e e e e e taeeeeetbaeeeeasseeeseeaasaeeeeassaeeesssseeeansseeesansseeas 234
7.2.1 Forschungsanliegen und FOrschungsfragen ........cccocueveieciieeiciiee e 234
7.2.2 Ergebnisse bzgl. der Zusammensetzungen der Studierenden ..........ccceecveeiiiciieeeccieee e, 238

7.2.3 Ergebnisse bzgl. der Vorerfahrungen der Studierenden mit Beweisen aus ihrer Schulzeit244
7.2.4 Ergebnisse bzgl. der Kompetenzaspekte zum BEWEISEN........cccevecciiiiieeeec e 248

7.2.5 Ergebnisse bzgl. der Einstellungen zum Themenkomplex des Beweisens und zur

MAthEMATIK ... e et sbe e e aaeenaee 269
7.3. Teilstudie 2: Ergebnisse der Ausgangsbefragung: Veranderungen durch die Lehrveranstaltung
und wahrgenommener Lernzuwachs bzgl. des Beweisens bei den Studierenden........................ 281

7.3.1 Forschungsanliegen und FOrschungsfragen .........cccceeieeccciiiiee e e e e 282

7.3.2 Kompetenzaspekte zum Beweisen: Ergebnisse der Ausgangsbefragung und
Veranderungen durch die Lehrveranstaltung ...........ooooiiiiiciii e 284

7.3.3 Ergebnisse bzgl. der Einstellungen zum Themenkomplex des Beweisens und zur
Y Y =T o o | TP 293

7.3.4 Die Selbsteinschatzung der Studierenden bzgl. ihres Lernzuwachses in Bezug auf die
Funktionen von Beweisen, auf den Nutzen von Beispielbetrachtungen fiir den Beweisprozess,
auf die Konstruktion und den Umgang mit Beweisen und der Aspekt der
Selbstwirksamkeitserwartung beim BEWEISEN.........ccocciiiiiiie it e e 300

7.4 Teilstudie 3: Die Begriindungen und Beweisproduktionen der Studierenden in der

MOdUIabSChIUSSKIQUSUL .....coiiiiiiieee e e s e e saee e sare e 307
7.4.1 Forschungsanliegen und FOrschungsfragen .........cccceeeecciiiiee e eccciiieee e e e 308
7.4.2 Methode und verwendete AUfgaben ... 309
B == o o1 1Y TSR 310

7.4.3.1 Ergebnisse bzgl. der Begriindungsaufgabe ,Summe zweier ungerader Zahlen” und der
Abgleich mit den Ergebnissen aus der Eingangsbefragung........cccocccovieeeeiiicccciieee e, 310

7.4.3.2 Die Beweiskonstruktionen der Studierenden nach dem Besuch der Lehrveranstaltung
und der Abgleich mit den Ergebnissen aus dem vorherigen Durchgang........cccccceecvvveeciieeenee. 314

7.5 Retrospektive Analyse der vierten Durchfiihrung der Lehrveranstaltung im Wintersemester
2004715 ..ottt e e et e e et et et e e —eeea—e e e ettt e e ateeeabeeeateeabeeenteeeateeeereeereeens 318



8. Zusammenfassung, Diskussion und AUSBIICK ...........uviiiiriii e 324

8.1 Ergebnisse der Design-Forschung und der Beitrag zu einer lokalen Instruktionstheorie in der
Domaéne ,Begrinden Und BEWEISEN ........ccocciiiiiiiiiiie ettt ectte e e e stre e e sentere e e sbaeeesebaaeaenes 324

8.1.2 Der Beitrag zu einer lokalen Instruktionstheorie in der Domane ,Begriinden und Beweisen’
—die Formulierung von DesignprinZiPiEN. .. ...ttt e e ecrree e e e e e e s nrreee e s e e e esnnnns 325

8.1.3 Die Entwicklung von TestinStrumenten .........ccoccvieieiiiie et e e e eaee e 330

8.2 Empirische Ergebnisse aus der Effektivitdtsstudie zur letzten in dieser Arbeit betrachteten
Durchfiihrung der Lehrveranstaltung im Wintersemester 2014/15..........oooveeeveeeveeeceeeeeeeeerneens 332

8.3 Weitere Beitrdage der Arbeit tiber die Entwicklung einer lokalen Instruktionstheorie hinaus.. 334

8.3.1 Die Verbindung der Theorien ,Diagrammatisches SchlieRen” und ,Sozio-mathematische

[N\ Lo] 4 T=1 o SO PUP PP PPRPRRPR 334
8.3.2 Die Betrachtung generischer Beweise als vollgliltige mathematische Beweise................. 336
8.3.3 Die Enkulturationsfunktion vON BEWEISEN ........c.eeriieiiiiiiiieeiiie e 338
8.3.4 Wahrnehmung bzw. Akzeptanz von BEWEISEN .........ceevviieeeciiiiieee e e 340
8.3.5 Proofs that explain — eine DiSKUSSION........ccuuiiiiiiiii i 341

8.4 Diskussion des Forschungsprojekts anhand der aufgezeigten Gltekriterien.........cccccvveennneen. 346
8.4.1 Diskussion der Forschungsmethode..........cuviiiiiiiiiiciiiie e e 346
8.4.2 Diskussion der Glite der Ergebnisse .........uuviiveii ittt e e 349

8.5 Perspektiven flr die FOrSCRUNG ....cccoo i e e e e e et e e e e e e e ennees 350
8.5.1 Perspektiven fiir eine adressatenspezifische Vermittlung von Lerninhalten..................... 351
8.5.2 Perspektiven flr die Beweisdidaktik ..........cceeeviiiiiiiiiiiiicieee e 352
T Yol o] [V EY o1=T o g =T o (0 Lo =PRI 354

9. Lit@ratUurVerZEIChNIS .. .coveiiieiierite ettt e b et sat e st st ere e 355
10. AbDIlAUNGSVEIZEICANIS ... .uiiiiiie ittt e e e e e et re e e e e e e e e e s e s eanbeaeeseessessssseeeeeaeesnns 372






1. Einleitung: Problemstellung, Forschungsanliegen und
Zielsetzung

In der vorliegenden Arbeit wird die (Weiter-) Entwicklung einer universitdren Lehrveranstaltung
beschrieben, theoretisch begriindet und im Kontext von Evaluationsstudien kritisch reflektiert,
welche den Studierenden den Ubergang von der Schulmathematik in die Mathematik der Hochschule
erleichtern soll und hierbei in einem besonderen MalRe das Themenfeld ,Begriinden und Beweisen’
unter dem Aspekt der doppelten Diskontinuitat fokussiert. Im Zuge dieser Forschungsarbeit wird ein
Beitrag fir die Konstruktion einer adressatenspezifischen lokalen Instruktionstheorie fiir die Doméane
,Begriinden und Beweisen’ geleistet. Die Lehrveranstaltung ,Einflihrung in die Kultur der
Mathematik” wurde von Rolf Biehler fiir Lehramtsstudierende fiir Haupt-, Real- und Gesamtschule
konzipiert und im Wintersemester 2011/12 zum ersten Mal an der Universitit Paderborn
durchgefiihrt. Dieser Durchlauf, wie auch die folgenden drei, wurde von empirischen Studien
gerahmt, wodurch eine konzeptuelle Weiterentwicklung der Veranstaltung sowohl in theoretischer
als auch in praktischer Hinsicht im Sinne des Design-Based Research moglich wurde. Grundlegend fir
die Forschungsarbeit ist hierbei die Fragestellung, wie im Rahmen einer universitaren
Lehrveranstaltung der Themenbereich ,Begriinden und Beweisen’ vor dem Spannungsfeld der
doppelten Diskontinuitdt adaquat vermittelt werden kann.

Fir zukiinftige Lehrer gilt es, sowohl den Ubergang von der Schule zur Hochschule zu meistern, wie
auch spater den Wechsel von der Hochschule in die berufliche Praxis. Die unterschiedlichen
Probleme und Herausforderungen der Transition kulminieren dabei in dem Themenbereich des
Beweisens:

The nature of proofs and proving at tertiary level, with its increased demand for rigour, constitutes a major hurdle
for many beginning university students. At this level, constructing proofs involves understanding and using both
formal definitions and previously established theorems, as well as considerable creativity and insight.
Understanding and constructing such proofs entails a major transition for students but one that is often
supported by relatively little explicit instruction. (Selden 2012, S. 392)

Hier wird eine Entwicklungs- und Forschungsnotwendigkeit deutlich, welche auch Jahnke und Ufer
(2015) als ein zentrales Forschungsdesiderat formulieren:

Besonders die Studienanfangsphase in Studiengdngen mit Schwerpunkt Mathematik stellt Studierende vor die
Herausforderung, Verstandnis fur die Beweis- und Argumentationskultur der wissenschaftlichen Mathematik zu
erwerben. Theoretisch fundierte und empirisch evaluierte Ansatze sind hier derzeit kaum verfiigbar, haben jedoch
das Potential fiir eine nachhaltige UnterstitzungsmaBnahme zu Beginn des Studiums. (Jahnke & Ufer 2015, S.
350)

Im Folgenden werden zunichst die Ubergangsproblematiken in der Mathematikausbildung
dargestellt (1.1), da diese Problembereiche grundlegend fiir die weiteren Betrachtungen sind und das
Spannungsfeld kennzeichnen, in der sich die vorliegende konstruktive Forschung bewegt.
AnschlieBend werden verschiedene internationale Kurskonzepte fir das Erlernen der Beweisaktivitat
herausgestellt und kritisch gewdrdigt, wodurch bereits erste grundlegende Leitprinzipien fiir die
Konzipierung und Weiterentwicklung der hier fokussierten Lehrveranstaltung abstrahiert werden
kénnen (1.2.1 und 1.2.2). In diesem Kontext ist auch das Leitbild der , Elementarmathematik als
Prozess” zu sehen (1.2.3), welches die Inhalte und Methoden der Lehrveranstaltung malRgeblich
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beeinflusst hat. Die erhaltenen Ergebnisse bezliglich des skizzierten Spannungsfeldes der Forschung
und der abstrahierten Leitideen fiir die Konstruktion der hier fokussierten Lehrveranstaltung werden
in einem Zwischenfazit zusammengefasst (1.3). Zum Abschluss des Kapitels (1.4) werden das
Forschungsanliegen und die Forschungsziele benannt, die Forschungsfrage formuliert und der Aufbau
der vorliegenden Arbeit begriindet dargestellt.

1.1 Die Ubergangsproblematik in der Mathematik und die doppelte
Diskontinuitat

Die Mathematik, wie sie an der Hochschule unterrichtet und praktiziert wird, unterscheidet sich
fundamental von der sogenannten Schulmathematik. Die Veranderungen, mit denen sich
Studienanfangerinnen und Studienanfanger in einem mathematikhaltigen Studiengang bei Eintritt in
die Universitat auseinandersetzen missen, umfassen u.a. die neuen Inhalte, verbunden mit einem
neuen theoretischen Anspruch, die zu erreichenden Ziele, neue Darstellungsmittel (verdnderte
Sprech- und Schreibweisen) und neue Argumentationsweisen (Bauer & Partheil 2009; Biehler et al.
2014; Hefendehl-Hebeker 2016; ein guter, die Literatur zusammenfassender Uberblick (iber
verschiedene Aspekte des Ubergangs wird in Gueudet (2008) gegeben). Zu dieser ersten
Ubergangsproblematik tritt bei Lehramtsstudierenden eine zweite hinzu: der Ubergang von der
Universitat in die spatere berufliche Praxis. Wenn Studierende die verschiedenen ,Mathematiken’
der Schule und der Hochschule als voneinander getrennte Welten wahrnehmen, kann dies dazu
flhren, dass sie spater in ihrem eigenen Unterricht denjenigen reproduzieren, den sie selbst als
Schiiler erlebt haben. Felix Klein (1908) pragte fir diese Gesamtproblematik den Begriff der
,doppelten Diskontinuitat” (ebd., S. 1). Vom hochschuldidaktischen Standpunkt aus gilt es somit zwei
Briickenschlage zu schaffen: einmal von der Schule zur Universitdt und weiter von der Universitat
zurlick in die Schule.

Diese doppelte Diskontinuitat lasst sich im Besonderen im Themenfeld ,Begriinden und Beweisen’
ausmachen: Das Beweisen spielt in der Schule eher eine untergeordnete Rolle, die hier geforderten
prozessbezogenen Kompetenzen sind: Argumentieren und Kommunizieren (KMK 2012). Die
Schulabgdnger bringen aber dennoch bereits bestimmte Vorstellungen davon mit, wie ein Beweis
,funktioniert’, was als ein solcher zu gelten hat und welche Funktionen er erfillt. An der Hochschule
lernen sie dann die ,beweisende’ Mathematik kennen und miissen sogenannte formale Beweise
konstruieren. Doch diese Art des Beweisens kann schon allein aufgrund der abstrakten Darstellungen
und formalen Anspriiche nicht ohne weiteres in den Schulunterricht Gbertragen werden. Somit sind
die abgehenden Studierenden vor allem wieder an die typischen Begriindungs- und
Argumentationsformen der Schulmathematik gebunden, die sie selbst als Schiiler erfahren haben.

Eine weitere Problemlage, die durch die vermeintliche institutionelle und ausbildungsspezifische
Sozialisation erzeugt wird, ist das unterschiedliche Verstandnis der Wissenschaft bzw. des Fachs
,Mathematik’, welches Lernende und Lehrende an den Bildungsinstitutionen haben.
Wie Dorfler (2003, S. 154) betont, entstammen die meisten Konzepte der heutigen Schulmathematik
urspriinglich den physischen Aktivitaten der uns umgebenden Realitdat. Somit gilt es, Hefendehl-
Hebeker (2014) zuzustimmen, wenn sie feststellt:

This may happen in an intellectually demanding way, even with local deductions and rigorous reasoning, but on
the whole the ontological connection to reality persists. Thus school mathematics in most cases does not exceed
the conceptual level and the stage of knowledge of the 19th century. (Ebd., S. 26)
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Im Gegensatz dazu ist die Wissenschaft Mathematik eine kreative und auf neue Erkenntnisse
ausgelegte Geisteswissenschaft (etwa Heinz 2000). Doch Studierenden der Mathematik bleibt dieser
Aspekt der Mathematik haufig verborgen: In den universitdaren Lehrveranstaltungen bewirkt die
traditionelle Darstellungsfolge von Definition — Satz — Beweise im axiomatisch-deduktiven System
eine Enthistorisierung des Wissens, wenn nicht gar eine Negierung des Entstehungsprozesses
(Neubrand 1997). Die spateren Lehrer, die die Mathematik als axiomatisch-durchorganisierten und
vorgefertigten Lerninhalt erfahren haben, werden vermutlich auch in ihrer Berufspraxis weniger die
kreativen Momente der Wissenschaft beleuchten kénnen (etwa Bender et al. 1999, S. 303f,;
Beutelspacher et al. 2011, S. 11f.; Grieser 2015, S. 88ff.). Der kreative, forschende Aspekt der
Mathematik ist dabei fundamental fiir ein sachgerechtes Verstandnis der Wissenschaft, insbesondere
des mathematischen Beweises, der zunadchst aus Erkundungen und Vermutungen entsteht und als
fertiges Produkt einen Forschungsprozess beendet und schlieflich zur Systematisierung des Wissens
beitragt.

Um diesen Ubergangsproblematiken zu begegnen, werden in der Literatur verschiedene
Malnahmen fiir die universitare Lehre empfohlen. Diese werden im Folgenden (nach Beutelspacher
et al. 2011, S. 10ff.; Hefendehl-Hebeker 2013, S. 9ff.; Neubrand 2015, S. 146) paraphrasierend
zusammengefasst:

(1) Anknupfen an schulische Vorerfahrungen®

Durch das  Ankniipfen an schulmathematische Vorerfahrungen kann die
Hochschulmathematik sinnstiftend als Weiterfiihrung und Vertiefung von Vorwissen erlebt
werden.

(2) Akzeptanz und produktive Nutzung von schulischem Vorwissen

Damit eine Verbindung zwischen den ,Mathematiken’ der Schule und der Hochschule erlebt
werden kann, darf nicht der Eindruck entstehen, dass mit dem Beginn der universitaren
Ausbildung alles vorhandene Schulwissen vergessen werden muss. Selbst bei einer deduktiv-
axiomatischen Neukonstruktion von mathematischen Inhalten kann Vorwissen weder negiert
noch ,abgeschaltet’ werden. Schulisches Vorwissen muss akzeptiert und gleichsam produktiv
genutzt werden, damit ein Anknilpfen an Vorerfahrungen (s.0.) Gberhaupt méglich werden
kann.
(3) Eventuelle systematische Aufarbeitung des notwendigen Vorwissens

Wird an Vorwissen angeknipft, so wird das Vorhandensein dieses Wissens zu einer

Lernvoraussetzung. Entsprechendes Wissen muss daher systematisch aufgearbeitet werden.
(4) Explizit-Machen der Unterschiede

Studienanfangerinnen und Studienanfanger sind fachlich von der Schulmathematik

sozialisiert worden, wodurch ihr Bild von Mathematik gepragt wurde. Die an der Universitat
auftretenden Unterschiede bzgl. der Wissenschaft Mathematik (s.o0.), ihren Arbeitsweisen,
Elaborationen etc. missen expliziert werden, damit Lernende sich auf diese einstellen und
nachvollziehen kénnen.

" Innerhalb des ersten Kapitels werden verschiedene Leitprinzipien fir die Gestaltung der hier fokussierten
Lehrveranstaltung herausgearbeitet. Diese Leitprinzipien werden dabei durch Unterstreichung hervorgehoben
und am Ende des Kapitels nochmal zusammengetragen.
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(5) Einfiihren in die Arbeitsweisen der Hochschule

Auf der methodischen Ebene missen den Studierenden die veranderten Arbeitsweisen,
Zielsetzungen (etwa der Inhalte und Aufgaben) und Anspriiche explizit verdeutlicht werden.
Nur so kdnnen sie ihre Handlungs- und Arbeitsweisen an die neuen Anforderungen und
Rahmenbedingungen anpassen und diesen genligen.

(6) Vorbereitung auf Erfordernisse im Lehrberuf

Studierende missen in der universitiren Ausbildung auf ihren spateren Lehrberuf
vorbereitet werden. Dabei muss ein fachlicher ,hoherer Standpunkt” (Klein 1908) als
hilfreich und notwendig erlebt werden, ,um schulmathematisches Wissen besser zu
strukturieren, neu und vertieft zu verstehen und flexibel zu handhaben” (Hefendehl-Hebeker
2013,S.9).

(7) Schulbezug herstellen

Ubergeordnet gilt es, die Studierenden als ,Lehrdmtler’ ernst zu nehmen und sie in diesem
Selbstverstandnis zu starken. Gerade im Hinblick auf die zweite Diskontinuitat darf eine
Lehrveranstaltung fir Lehramtsstudierende nicht als einfache verkiirzte Fachveranstaltung
auftreten. Durch die Beachtung der Adressatengruppe und ihrer berechtigten (fachlichen)
Bediirfnisse werden spezielle Fokusse deutlich, denen es Rechnung zu tragen gilt. Natdrlich
liegt der Schwerpunkt einer universitaren Fachveranstaltung im Lehramtsstudiengang nicht
primar auf den konkreten, spater in der Schule zu vermittelnden Inhalten. Trotzdem sollte
ein Bezug zu der spateren beruflichen Tatigkeit deutlich werden.

Um u.a. diese MaRnahmen in der Hochschullehre umzusetzen und auch um speziell die
mathematischen Argumentationsformen der Hochschule zu vermitteln, wurden international von
verschiedenen Fachmathematikern und Fachdidaktikern verschiedene Kurskonzeptionen entwickelt
und durchgefiihrt. Auch im Zuge des Bologna-Prozesses und der damit verbundenen
Bachelorisierung der Studiengdnge entstanden neue Lehrveranstaltungen, die im Besonderen den
Ubergang zur Hochschulmathematik fokussieren und explorative und forschende Anteile enthalten.
Entsprechende Kurskonzepte und Leitideen werden im folgenden Abschnitt dargestellt und
reflektiert, um Dbereits erste Leitideen fiir die Ausgestaltung der hier thematisierten
Lehrveranstaltung zu erhalten.

1.2 Konzeptionen von Lehrveranstaltungen zur Einfithrung in die hohere

Mathematik und der Fokus des Beweisens

Aufbauend auf der erérterten Problemsituation der doppelten Diskontinuitdt werden in diesem
Abschnitt verschiedene Ansitze vergleichend dargestellt und diskutiert, die den Ubergang zur
universitaren (hoheren) Mathematik fokussieren und die Lernenden in ,das Beweisen’ einfiihren
sollen. Ein guter Uberblick iiber verschiedene internationale MaBnahmen und Konzepte wird in
Selden (2012) gegeben. Auf der Basis der zu erstellenden Synopse der Konzepte kdnnen erste globale
Implikationen fiir die Konzeption der Lehrveranstaltung abstrahiert werden, welche das Themenfeld
,Begriinden und Beweisen’ vor dem Hintergrund der doppelten Diskontinuitdt addaquat vermitteln
soll. In diesem Rahmen von Spannungsfeld und Leitideen kann schlielich das hier verfolgte
Forschungsanliegen benannt und verortet werden.

Im Folgenden wird zunachst das Konzept der traditionellen amerikanischen ,transition-to-proof‘-
Kurse beschrieben, welche explizit das Beweisen thematisieren (1.2.1). Alternative problem-
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orientierte Konzeptionen (Moore Method und sogenannte ,inquiry-based approaches‘) betrachten
dagegen das Beweisen in einem groReren Zusammenhang als niitzliches Erkenntnismittel innerhalb
explorativer Forschungsprozesse und verfolgen nicht nur das Lernziel, einen Beweis korrekt
aufzuschreiben, sondern thematisieren den gesamten Entstehungsprozess von Beweisen (1.2.2). In
diesem Kontext sind auch die problemzentrierten Ausfiihrungen von Pdlya zu sehen, welche in
neuerer Zeit durch D. Grieser in seinem Kurskonzept ,Mathematisches Problemlésen und Beweisen”
(Grieser 2013) aufgegriffen wurden. Bedeutende Reformimpulse fir die universitare
Lehrerausbildung in Deutschland, zunachst fir das Lehramt an Grundschulen, wurden durch das
,elementarmathematische Forschungsprogramm® (Wittmann und Miiller 1988) gegeben (1.2.3). Die
damit verbundene Leitidee der Elementarmathematik als Prozess, in der das Beweisen sinnstiftend
und verstandig thematisiert werden kann, bildet eine grundlegende Rahmenidee fir die Gestaltung
der in dieser Arbeit fokussierten Lehrveranstaltung. Nach der Darstellung dieser Grundkonzeption
werden mit den verschriftlichten Kurskonzepten ,Einfiihrung in die Arithmetik“ von M. Neubrand
und M. Moller (1990) sowie ,Erlebnis Arithmetik” von T. Leuders (2010) zwei exemplarische
Konzepte besprochen, in denen fachliche Inhalte im Sinne des Leitbildes ,Elementarmathematik als
Prozess’ dargeboten werden.

1.2.1 Transition-to-proof-Kurse

In den USA besuchen Studierende von mathematikhaltigen Studiengdangen in den ersten beiden
Semestern zunachst Veranstaltungen (etwa wie ,Calculus’), in denen nicht wie in deutschen
Erstsemesterveranstaltungen eine axiomatische Theorie beweisend konstruiert wird, sondern in
denen der Schwerpunkt eher auf Rechenverfahren (Ableiten, Integrieren etc.) gelegt wird. Um den
Studierenden in den spateren Semestern den Einstieg in die héhere Mathematik zu erleichtern,
werden in den USA so genannte transition-to-proof-Kurse angeboten, deren Teilnehmerzahlen meist
zwischen 15 und 40 Studierenden liegen. Diese Kurse werden in der Regel nach Lehrbichern
gestaltet (etwa Dumas und McCarthy 2007, Fendel und Resek 1990 und Solow 1982), welche haufig
einen ahnlichen Aufbau haben: Nach Behandlungen von Grundlagen der Mengenlehre und
Funktionen folgen meist abstrakte Logik, Wahrheitswertetafeln und verschiedene Beweismethoden.
Im Anschluss daran werden diverse, meist unzusammenhangende mathematische Sachverhalte
bewiesen.

Im Gegensatz zu der groRen Verbreitung entsprechender Kurse in den USA existiert international nur
wenig Forschung zu diesem Ansatz (Alcock & Weber 2010, Selden 2012 und Selden et al. 2015).
Wahrend Marty (1991) von dem Erfolg derjenigen Studierenden berichtet, die an seinem Kurs
teilgenommen haben, zeugen andere Studien von Schwachen dieser Konzepte. Moore (1994)
untersucht die Beweisproduktionen von sieben Teilnehmenden eines transition-to-proof-Kurses und
subsumiert ihre grundlegenden Hirden unter drei Problembereiche: Mangelndes
Konzeptverstandnis der mathematischen Inhalte, Mangel in der Nutzung der fachmathematischen
Sprache und Notation und Probleme dabei, einen Beweisanfang zu finden. Baker und Campbell
(2004) berichten von den Problemen der Studierenden ihres Kurses, die zuvor erarbeiteten
Grundlagen der Logik und erlernte Beweismethoden auf konkrete Problemstellungen zu tbertragen.
Vor diesem Hintergrund resiimieren die Autoren: ,While a solid understanding of logical arguments
and their application to proof writing is imperative, it appears that too much emphasis on logic can
perpetuate a problem/solution mentality.” (Ebd., S. 351).

Ubergreifend wird kritisiert, dass mit dieser traditionellen Lehrkonzeption haufig nicht der
gewiinschte verstindige Umgang mit Beweisen auf Seiten der Studierenden erreicht wird (Baker &
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Campbell 2004, Alcock & Weber 2010, Moore 1994, Selden & Selden 2003). Aus der genannten
Literatur kdnnen allgemeine Problembereiche dieser Kurskonzepte abstrahiert werden:

(1) Die primare Fokussierung auf  Wahrheitswertetafeln, Aussagenlogik und
Aussagenverknipfungen negiert den Entstehungsprozess von Beweisen und beglinstigt eine
mechanische (syntaktische) Sicht auf das Beweisen.

(2) Diese eingeschrankte Sichtweise auf das Beweisen geht damit einher, dass sich die
Lernenden nicht ausreichend mit dem zu beweisenden Sachverhalt vertraut machen; es
werden keine Beispiele betrachtet oder untersucht, um die Behauptung besser zu verstehen
oder um eine Beweisidee ausmachen zu kénnen. Dass aber gerade die vorgeschaltete
Explorationsphase zum Verstehen einer Behauptung, fir eine eventuelle Herausbildung eines
Beweisbedirfnisses und zum Ausmachen einer Beweisidee unverzichtbar ist, wird in der
fachdidaktischen Literatur vielfach betont (Boero 1999, Hsieh et al. 2012, Sandefur et al.
2012).

(3) Das Erlernen der Beweisaktivitdit an neuen Inhalten der Hochschulmathematik bedingt
Lernanforderungen auf zwei Stufen. Die Lernenden miissen sich neben dem Lerninhalt
,Beweis’ gleichzeitig mit neuen Konzepten und Inhalten der Hochschulmathematik (etwa
Mengenlehre) auseinandersetzen. Die notwendige Konzentration auf die neuen Inhalte der
Hochschulmathematik verstellt dabei die Sicht auf den Lerngegenstand ,Beweis’.

(4) Ein  mangelndes Verstindnis der fachmathematischen Sprache verhindert das
Operationalisieren und Nutzen von Definitionen und Satzen und erschwert eine korrekte
Notation der Beweise. Maier (1999, S. 25f.) weist darauf hin, dass die Verwendung der
mathematischen Fachsprache — neben dem Erlernen der Beweisaktivitat - als ein eigener
Lerngegenstand begriffen werden muss, da sich sonst entsprechende Probleme Uberlagern
und haufig gegenseitig bedingen.

(5) Die zu erarbeitenden Beweisaufgaben in meist unzusammenhangenden mathematischen
Inhaltsbereichen begiinstigen ein Verstdndnis von ,Beweis’ als kiinstliche Aufgabenform zur
nachtraglichen Verifikation flir bereits als korrekt geltende Sachverhalte. Ein weiter gefasstes
Verstdandnis von Beweis als Erkenntnis- und Verstandnismittel im Rahmen mathematischer
Theorien wird somit verhindert.

Schlieflich muss auch angemerkt werden, dass das amerikanische Vorbild der transition-to-proof-
Kurse so in Deutschland nicht umzusetzen ware, da sich in den universitaren Lehrveranstaltungen
hierzulande (gerade zu Beginn eines Studiums) in der Regel weit (iber 40 Studierende befinden und
somit diese Kurs- und Vermittlungsform so nicht ohne weiteres lbernommen werden konnte.

Positiv muss an dieser Art von Kursen zunachst gewirdigt werden, dass die Konstruktion von
Beweisen mathematisch fundiert vermittelt wird; es werden die notwendigen Grundlagen
(Aussagenlogik, Mengenlehre etc.) gelegt, um die verschiedenen Beweistypen (direkter Beweis,
Beweis durch Kontraposition, ...) fachlich fundiert verstehen zu koénnen. In der deutschen
Mathematikdidaktik hat sich fir ein solches Vorgehen, in dem mathematische Sachverhalte
Lernenden auf verschiedenen Stufen zuganglich gemacht werden, ohne diese dabei zu verfalschen,
nach A. Kirsch der Begriff der ,intellektuellen Ehrlichkeit” (Kirsch 1976) in Anlehnung an Bruner 1973,
S. 26f.; vgl. hierzu auch die Ausfiihrungen in Kirsch (1977)) etabliert. Dieses Grundanliegen soll bzw.

muss als Leitidee einer universitaren Fachveranstaltung gelten. Weiter geschieht in diesen Kursen
meist die Vermittlung neuer Inhalte, die den Studierenden das Zurechtkommen in den folgenden

Lehrveranstaltungen erleichtern sollen.
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1.2.2 Problemzentrierte Kurskonzepte

Aufgrund der oben erdrterten Probleme der traditionellen transtition-to-proof-Kurse wurde nach
Alternativen fir die Vermittlung der Beweisaktivitat gesucht. Einen deutlich kontrastierenden Ansatz
stellt die sogenannte Moore Method dar, die spater als Modified Moore Method (MMM) zu
allgemeineren problemzentrierten Kurskonzepten fihrte. Die Problemzentrierung mathematischer
Aufgabenstellungen wurde stark von G. Pdlya (1979) herausgestellt, dessen Herangehensweise an
das mathematische Arbeiten und Problemldsen in neuerer Zeit durch D. Grieser (2013) fir die
Hochschulausbildung (gymnasiales Lehramt) adaptiert wurde.

Ansatze aus den USA: Die ,Moore Method” und problemzentrierte Ansatze

Eine alternative Unterrichtsmethode, um u.a. das Beweisen zu erlernen und als sinnvolle
mathematische Tatigkeit zu erfahren, stellt die nach dem Mathematiker Robert Lee Moore benannte
Moore Method dar (etwa Parker 2005, Coppin et al. 2009). In entsprechenden Kursen werden den
Teilnehmenden nur die relevanten Definitionen und Satze zur Verflgung gestellt, die Beweise
mussen von den Studierenden - meist ohne weitere Hilfsmittel - selbst entwickelt werden. Die Moore
Method war zunachst als eine generelle Kursform fiir das Mathematikstudium entwickelt worden.
Dieses Unterrichtskonzept wurde als Modified Moore Method (MMM) weiterentwickelt und in Folge
als ein speziell problemorientiertes Kurzkonzept zum Beweisen adaptiert (Smith 2005; Yoo 2008). In
diesen problemzentrierten Kurskonzepten bilden gut ausgewihlte Problemstellungen und/oder
Explorationsauftrage den Ausgangspunkt flir eigene Erkundungen und Losungsansatze. Dieser
Methodik liegt eine konstruktivistische Ansicht auf das Lernen zu Grunde:

In a problem-based class, students develop their own mathematical knowledge while actively participating in the
problem-solving activity. Instead of presenting formal mathematics or finished solutions of the problems, a
teacher guides students’ learning by posing appropriate questions, initiating and facilitating mathematical
discourse on their own solutions, and rephrasing students’ explanation in more mathematical terms. (Yoo 2008, S.
35)

Trotz der Vorteile der Moore Method fiir das Erlernen der formalen Beweisaktivitit (etwa Jones 1977
oder Renz 1999) weist Smith (2005) darauf hin, dass diese Methode bisher nur wenig evaluiert und
beforscht wurde. In ihrer Fallstudie zeigt Smith (2005) deutliche Unterschiede zwischen
Teilnehmenden von traditionellen transition-to-proof-Kursen und Teilnehmenden eines problem-
orientierten MMM-Kurses in Bezug auf Beweisverstandnis und Beweisproduktion. Die
Teilnehmenden des problemzentrierten MMM-Kurses fokussieren bei der Beweiskonstruktion mehr
inhaltliche Aspekte und verfolgen starker das erklarende Moment von Beweisen. Auch nutzen sie —
im Gegensatz zu den Studierenden aus dem traditionellen Kurs — deutlich haufiger Beispiele, um die
Problemsituation zu verstehen, sich einen Zugang zu einem Beweis zu verschaffen und um
Argumente zu Uberprifen. Auch Yoo (2008) konnte in ihrer Studie nachweisen, dass die
Teilnehmenden ihres problemorientierten Kurses deutlich starker im Hinblick auf ein gewilinschtes
Beweisverstandnis profitieren als Teilnehmende einer traditionellen Kurskonzeption.

Zu diesen Kurskonzepten muss generell die problemzentrierte Erarbeitung von Inhalten positiv

hervorgehoben werden: Durch das Voranstellen von Problemsituationen bzw. Erkundungsauftragen
wird den Lernenden exemplarisches mathematisches Forschen im Kleinen ermdoglicht. Gefundene
Vermutungen zeichnen sich dann auch durch eine gewisse Unsicherheit bzgl. ihrer (Allgemein-)
Gliltigkeit aus. Das ermoglicht die Bildung eines weiteren Begriffsverstandnisses von Beweisen, deren

sinnstiftender Nutzung im mathematischen Arbeitskontext und beglinstigt die Herausbildung eines
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Beweisbediirfnisses. Dem Produkt ,Beweis’ geht somit explizit der Prozess der Beweisfindung und
Beweisentwicklung voraus; anschlieende Notation und Bewertungen von Losungsansatzen kénnen
dann von den Teilnehmenden erortert werden. Verschiedene Fragen sind bei diesen Konzepten
allerdings noch offen: Wodurch zeichnen sich ,gute’ Ausgangsfragestellungen aus und welche
mathematischen Gebiete eignen sich fiir ein sinnstiftendes Erlernen der Beweisaktivitat? Auch muss
die Bedeutung der fachmathematischen Symbolsprache geklart werden: Welche Normen gelten fiir
die finale Notation von Beweisen? Wie kann bzw. soll in der aktiven Auseinandersetzung mit
mathematischen Inhalten der Gebrauch der fachmathematischen Symbolsprache erlernt werden und
welcher Stellenwert soll diesem zukommen?

Beweisen bei Pélya und das Modul ,,Mathematisches Problemlésen und Beweisen“ von D. Grieser

In seinem Buch ,Vom L6sen mathematischer Aufgaben” thematisiert G. Pdlya (1979) die
Losungsprozesse bei sogenannten Problemaufgaben, also Aufgaben, fir deren Losung i.A. keine
Losungsroutine zur Verfligung steht. Im Zentrum der Ausfiihrungen stehen Mittel und Methoden des
Problemlosens, bezeichnet als ,Heuristiken“ (ebd., S. 10). Neben seinen Ausfiihrungen zu
verschiedenen Heuristiken, wie etwa dem Rekursionsverfahren, sind vor allem seine
Problemstellungen bemerkenswert, aus denen sich anschlieRende Erkundungen und Erkenntnisse
ergeben. So wird z.B. das Rekursionsverfahren Uber die Geschichte des ,kleinen Gauss’ eingefiihrt,
indem die Summe der ersten 20 natirlichen Zahlen (iber Paarbildung ermittelt wird. Diese Technik
der Paarbildung wird dann verallgemeinert auf die Summe der ersten n natirlichen Zahlen
Ubertragen und dariber hinaus auf die Summe der ersten n natlrlichen Quadratzahlen und
Kubikzahlen. Als allgemeines Rekursionsverfahren wird diese Technik dann im Kontext weiterer
Fragestellungen verwendet. Es ist diese Betrachtung konkreter Fragestellungen und die daraus
resultierenden Ubertragbaren allgemeinen Erkenntnisse und Heuristiken, die die Herangehensweise
Pélyas kennzeichnet. In diesem Kontext muss auch die von Pdlya (1969, S. 9f.) vorgenommene
Unterscheidung von Formen des plausiblen SchlieRens und Formen des demonstrativen SchlieRens
angefiihrt werden. Wahrend das demonstrative SchlieBen sicheres Schlussfolgern im Sinne der
Mathematik beschreibt, meint das plausible SchlieBen ein nicht sicheres, induktives Schlussfolgern.
Das Beobachten von Eigenschaften und Auswirkungen von Operationen kann als
Plausibilitdtsbetrachtung die subjektive Uberzeugung stirken, dass eine Behauptung gilt. Pélya stellt
die Bedeutung des plausiblen SchlieBens fiir die mathematische Arbeit heraus und erweitert somit
den Beweisprozess um das Verfolgen verschiedener Ideen und vermeintlicher Losungsansatze und
betont somit das kreative Moment des Problemldsens und Beweisens.

Daniel Grieser entwickelte 2011 an der Universitat Oldenburg eine Kurskonzeption zu dem Modul
,Mathematisches Problemlésen und Beweisen’ fiir Lehramtsstudierende des gymnasialen Lehramts,
welche sich stark an den Arbeiten von Pélya orientiert. In dieser Lehrveranstaltung wird laut Grieser
explizit die Ubergangsproblematik beriicksichtigt: Elementare und intuitiv leicht zugingliche Inhalte
sollen direkt an die Schulmathematik anschlieBen, bei neuen Inhalten soll zundchst auf Abstraktion
verzichtet werden. Die verwendete Sprache kniipft an die Alltagssprache an, welche dann prazisiert
und zur fachmathematischen Symbolsprache weitergefiihrt wird. Ubergeordnet sollen die
Studierenden durch eigene Erkundungen zur beweisenden Mathematik gefiihrt werden und diese als
lebendige Wissenschaft erfahren (vgl. Grieser 2015, S. 89ff.).

Entsprechend der Arbeit von Pdlya sind auch bei Grieser libergreifende mathematische Ideen
(Rekursion, Vollstandige Induktion, Graphen etc.) strukturgebend. Der Nutzen dieser Konzepte wird
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anhand verschiedener Inhalte aufgezeigt. Die Erdrterung von Aussagen, Quantoren, Implikation,
Aquivalenzen und Negationen bereitet die Grundlage der Thematisierung von Beweisen als ,logisch
vollstandige Begriindung einer Aussage” (Grieser 2013, S. 135ff.). Neben den allgemeinen
Beweisformen direkter und indirekter Beweis, Widerspruchsbeweis, Beweis durch Gegenbeispiel und
vollstandige Induktion werden noch typische Beweismuster unterschieden: Beweise von Formeln,
Existenzbeweise, Nichtexistenz- und Unmoglichkeitsbeweise. Auffallend ist hierbei, dass Grieser den
Entstehungsprozess der Beweise explizit darstellt: Den Denkpausen zur eigenen Erarbeitung der
Problemstellung folgen kommentierte Losungsansatze. Erst am Ende dieses Prozesses wird der
erarbeitete Beweis quasi in ,Reinschrift’ notiert.

Bei PdAlya und Grieser bilden gut gewahlte Ausgangsfragestellungen die Startpunkte zu Erkundungen,
in denen mathematische Strategien erlernt werden sollen, die anschlieBend auf weitere
Problemstellungen (ibertragen werden. Ein zentraler Aspekt hierbei ist die Vermittlung von

allgemeinen Heuristiken, mit denen allgemein Problemldseaufgaben oder auch speziell

Beweisaufgaben angegangen werden kdnnen. Wichtig ist hierbei die explizite Betonung der
verschiedenen Phasen des mathematischen Erkenntnisprozesses: Exploration eines Sachverhaltes,
Untersuchung von Gegebenheiten, Losen des Problems und anschlieRende Riickschau. Wahrend
Pélya Lehramtsstudierenden des gymnasialen Lehramts das Problemldsen vermitteln will, steht bei
Grieser die Hinflihrung zu den Beweismethoden der Hochschulmathematik und die Einflihrung in die
Mathematik der Hochschule im Zentrum. Diese Vermittlung neuer Inhalte, die den Studierenden das

Zurechtkommen in den folgenden Lehrveranstaltungen erleichtern soll, muss dabei hervorgehoben

werden und soll im weiteren Verlauf dieser Arbeit als eine Richtlinie zur Gestaltung der hier
fokussierten Lehrveranstaltung dienen. Offen bleiben jedoch die folgenden Fragen: Wie kann bei der
Thematik des Beweisens an das schulische Vorwissen von Studienanfiangerinnen und
Studienanfangern angeknipft werden? Wie wird die Verwendung der fachmathematischen
Symbolsprache motiviert und vermittelt? Inwiefern werden Beweisformen vermittelt, die die
Studierenden in ihrer spateren Berufspraxis verwenden kdnnen? SchlieRlich muss noch angemerkt
werden, dass fiir die in dieser Arbeit adressierte Zielgruppe der Lehramtsstudierenden fiir Haupt-,
Real- und Gesamtschulen die von Grieser vorgestellten Problemaufgaben schnell zu formal und
abstrakt und daher zu schwer erscheinen.

1.2.3 Das Leitbild ,Elementarmathematik als Prozess’ in der Lehramtsausbildung

Die Inhalte und Vermittlungsformen der Mathematiklehrerausbildung wurden in der Vergangenheit
besonders fiir das Lehramt an Grundschulen (etwa Bender et al. 1999; Miiller et al. 2004; Wittmann
& Miiller 1988) und fir Gymnasien/Gesamtschulen (etwa Ableitinger et al. 2013; Beutelspacher et al.
2011; Kroll 1997) kritisch diskutiert. Die verschiedenen in diesen Kontexten erbrachten
Argumentationsstrange lassen sich dabei in gewissem Malle auch auf das Lehramt fir Haupt-, Real-
und Gesamtschule libertragen. Es ist hierbei gerade die Kritik an der Grundschullehrerausbildung,
aus der Implikationen fir die Lehramtsausbildung fiir Haupt-, Real- und Gesamtschule abgeleitet
werden kénnen, da die universitdre Ausbildung der Lehrer der Sekundarstufe Il heute noch ungleich
starker an der Ausbildung der Fachmathematiker orientiert ist (etwa Fiihrer 1997).

Der fachwissenschaftliche Anteil der Lehrerausbildung kann nicht separat fiir sich betrachtet werden,
sondern muss gerade in Bezug auf seine Beziehung zum spéateren Lehrberuf reflektiert werden: ,Die
Qualitat der Ausbildung sollte man daran messen, wie gut sie den Menschen auf seinen Beruf
vorbereitet” (Kroll 1997, S. 87). Wittmann (2007) fihrt diesen Gedanken weiter aus:
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Das Mathematikstudium und der Mathematikunterricht sind keine getrennten Welten. Im Studium wird nicht
einfach Stoff aufgenommen, der gewissermalRen didaktisch neutral fir padagogisch-didaktische Unterrichts-
maBnahmen zur Verfligung steht. Im Studium werden zwangsldufig auch die Lehr-/Lernauffassungen [und das
Mathematikbild, L.K.] der Studierenden gepragt, da sie naturgemaR sich selbst als Lernende und die Hochschul-
lehrer als Lehrende erfahren. Reproduktive Lehr-/Lernformen pragen den Studierenden daher Einstellungen und
Verhaltensweisen auf, die flir den Unterricht hinderlich sind. (Ebd., S. 421)

Zwar bezieht sich Wittmann hier auf die Lehramtsausbildung fiir die Grundschule, doch kénnen diese
Aspekte, wie auch die folgenden, ebenso auf die Lehramtsausbildung fir Haupt-, Real und
Gesamtschule (ibertragen werden®. Ubergeordnet kann festgehalten werden, dass eine
Lehrerausbildung die Studierenden dazu befédhigen soll, Unterricht im Sinne der Bildungsstandards zu
gestalten. Hieraus folgt, dass eine Passung zwischen der Fachausbildung und der heutigen
Vorstellung von Lehren und Lernen an der Schule hergestellt werden muss. Diese Passung wird
allerdings durch verschiedene Faktoren an der Hochschule behindert. Dazu gehoéren u.a. die
Orientierung an einem statischen Wissenschaftsbild, in der fertige, komprimierte Mathematik
dargeboten wird, das Vorherrschen von reproduktiven Lehr- und Lernformen, die Vermittlung von
Inhalten der Hochschulmathematik, die zu weit von der Schulmathematik entfernt sind, und die
Verwendung und Vermittlung von mathematischen Ausdrucksmitteln, die ungeeignet fir die
Kommunikation mit Schilern sind (vgl. Kroll 1997, S. 87; Wittmann 2007, S. 421).

Fiir die Konstruktion einer entsprechenden Lehrerausbildung, die den oben formulierten Anspriichen
genigt, wurden aus fachdidaktischer Perspektive verschiedene MaRnahmen gefordert (vgl. hierzu
Bender et al. 1999, S. 304; Miiller et al. 2004, S. 11; Wittmann 2007, S. 422). Diese in der
aufgefihrten Literatur genannten Aspekte werden im Folgenden zusammenfassend paraphrasiert:

1. Die Lehramtsausbildung muss einen entsprechenden Anteil von Elementarmathematik

beinhalten. Dies bietet den Studierenden das Feld, sich selbst mathematisch zu betatigen
und reichhaltige Erfahrungen zu sammeln. Eventuell vorliegende Licken im
schulmathematischen Wissen erweisen sich (innerhalb eines gewissen Rahmens) bei
entsprechenden Betatigungen nicht als hinderlich. Weiter erlangen sie unterrichtsrelevantes
Fachwissen und die Relevanz der Inhalte wird leichter deutlich.

2. Die Studierenden missen zu einem sicheren Umgang mit nichtsymbolischen Darstellungen

befahigt werden, der fiir die Kommunikation mit Schilern unerlasslich ist.

3. Es gilt den Prozesscharakter der Wissenschaft herauszustellen, um eine genetische

Sichtweise auf die Wissenschaft ,Mathematik’ zu erlangen. Hierzu formulieren Bender et al.
(1999):

Lehramtsstudierende miissen die elementare Mathematik nicht als ein Fertigprodukt, sondern als eine Tatigkeit
erfahren, die vom experimentierenden Handeln innerhalb sinnvoller mathematischer und realer Problemkontexte
bis hin zum lokalen (und spater auch globalen) Ordnen der dabei gewonnenen Erkenntnisse fortschreitet.
Wichtiger als die Abarbeitung eines mdoglichst umfangreichen Stoffes ist daher in der Lehramts-Ausbildung die

2 Vgl. hierzu Bender et al. (1999, S. 302; Hervorhebungen im Original): ,Dabei kommt es uns nicht auf einzelne
Regelungen an, sondern auf den Geist des Unternehmens. Dieser wiirde auch Studierenden mit Mathematik als
Schwerpunktfach bis in die Sekundarstufe Il gut anstehen. Deren viel intensivere fachmathematische
Ausbildung erschopft sich ndmlich haufig in einem verdiinnten AufguR® von sinnferner formalistischer
Mathematiker-Mathematik.”
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Entwicklung von Verstidndnis und Selbstdndigkeit im selbsttatigen Umgang mit elementarer Mathematik: Die
Studierenden missen im Studium moglichst viel selber aktiv werden und Mathematik-Lernen an sich selbst als
,konstruktiven und zugleich entdeckenden Prozefs” erleben. (Ebd., S. 304; Hervorhebungen im Original)

4. In diesem Kontext ist schlieRlich auch die Vermittlung von Meta-Wissen Gber Mathematik zu
nennen (vgl. Kirsch 1980, S. 242; Hefendehl-Hebeker 1999 und 2015).
Lehrende sollen nicht nur Gber ein bloRes Fachwissen verfligen, sondern auch {ber ein

Wissen Uber die Lerninhalte. Was allgemein unter Metawissen verstanden werden kann,
wird von der IDM-Arbeitsgruppe Mathematiklehrerbildung (1981) wie folgt formuliert:

Unter "Wissen (Uber Wissen" oder "Metawissen" werden dabei jene allgemeinsten
erkenntnistheoretischen, wissenschaftsphilosophischen, weltanschaulichen, inhaltslogischen und
inhaltspsychologischen Orientierungen verstanden, wie sie in impliziter Weise und nicht als Gegenstand
einer ausgearbeiteten Theorie, nicht als Gegenstand der Philosophie als Profession, das Handeln
desjenigen, der mit Wissen, in diesem Fall Mathematik, befaRt ist, regulieren. (Ebd., S. 259)

Damit Lernende erfahren kdnnen, wie mathematisches Wissen entsteht, was diese Art der
Wissensbildung auszeichnet und wo ihre Chancen und Grenzen sind, miissen Lehrende dazu
in der Lage sein, ,grundlegende Kategorien mathematischer Wissensbildung in elementarem
Kontext zu erkennen, zu wiirdigen und auszuweisen.” (Hefendehl-Hebeker 1999, S. 106). Ein
Verstandnis um die Genese des mathematischen Wissens und ihrer epistemologischen
Charakteristika er6ffnen die Perspektive einer genetischen Vermittlung von Mathematik.
Dabei geht es auch um ein weiter gefasstes Bildungsideal: ,Zum Verstandnis eines Faches
gehort Bewusstheit iber dessen spezifische Denkweisen und die damit verbundenen Formen
der Wissensbildung und des Zugriffs auf die Realitdt. Diese Bildungsanteile sollten bleiben,
wenn die inhaltlichen Details vergessen werden.” (Ebd., S. 110).

Die Verbindung der Aspekte , Prozesscharakter” und ,,Metawissen” betont dabei die genetische Sicht
auf das Lernen der Mathematik. Hierfiir bieten sich elementarmathematische Anteile an, an und mit
denen exemplarisch geforscht werden kann. In einem Prozess von Exploration,
Hypothesengenerierung und Begriindungen wird bereits ein addquateres Bild von Mathematik
angebahnt. Der Einbezug von inhaltlich-anschaulichen Darstellungen und inhaltlich-anschaulicher

Beweise tragt zu einem vertieften und vernetzten Wissen bei und tragt zu einem sicheren Umgang
mit nichtformalsymbolischen Darstellungen bei. Zu einem weiter gefassten (epistemologischen)
Verstandnis von Mathematik gehort dabei auch die Darstellung und Erdrterung der Mathematik als
eine axiomatisch-deduktiv geordnete Theorie.

Bereits 1988  formulieren  Wittmann und Miller das ,elementarmathematische
Forschungsprogramm’, in dem sie einen entsprechenden Neuaufbau der Lehrerbildung fordern (s.
auch Wittmann 1989a, S. 298ff.). Dort gehen die Autoren explizit auf die Rolle von Beweisen (im
Kontext von Elementarmathematik) ein:

(1) Im sozialen Kontext ,Schule’ besteht fir das Lehren und Lernen von Mathematik eine andere
Verstehensgrundlage und ein anderer Kommunikationsrahmen als in der mathematischen Forschung.
Eine sinngemaRe Ubertragung von Beweisaktivititen in die schulischen Rahmenbedingungen erfordert
daher eine Loslosung von formalen, deduktiv durchorganisierten Darstellungen der fiir die Schule
relevanten elementarmathematischen Gebiete zugunsten inhaltlich-anschaulicher Darstellungen.
Diese sind gekennzeichnet durch Einbettung in sinnvolle Kontexte, durch Entwicklung von
Motivationen, durch ein Vorgehen gemdR heuristischen Strategien, durch die Verwendung
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bedeutungshaltiger praformaler Darstellungen und durch entsprechende inhaltlich-anschauliche

14

Beweise. ,Rettet die Phanomene!“ mul} auch die Parole der Mathematikdidaktik sein.

(2) Inhaltlich-anschauliche Beweise sollen in erster Linie dem Verstehen von GesetzmaBigkeiten dienen
und missen daher in den Lernproze der Schiler und ihre Verstandigung untereinander eingebettet
werden. Lakatos’ Buch ,Beweise und Widerlegungen” (Lakatos 1979) bietet hierfir ein sehr schones
Vorbild.

(3) Die mathematische Ausbildung von Lehrerstudenten muR einen je nach Schulstufe angemessenen
Anteil von Elementarmathematik in inhaltlich-anschaulicher Darstellung enthalten, damit eine
brauchbare Grundlage fir den Entwurf wund die Umsetzung didaktisch begriindeter
schulmathematischer Konzeptionen geschaffen wird. Zusammenhdngende inhaltlich-anschauliche
Darstellungen elementarmathematischer Gebiete bieten den Studenten ein einschlagiges
Berufswissen, das um GréRenordnungen effektiver ist als das aus formalen Darstellungen abzuleitende
,Hintergrundwissen”.” (Wittmann & Miiller 1988, S. 254)

Im weiteren Verlauf der Diskussion (seit 1988) wurden verschiedene Versuche unternommen, quasi
aus der Didaktik heraus denkend, die Fachmathematikausbildung Lehramtsstudierender neu
aufzubauen. In dem Buch , Arithmetik als Prozess” von Miiller et al. (2004) werden verschiedene gute
Umsetzungen dieses Ideals beschrieben. Als zwei weitergreifende Beispiele fiir solch eine didaktisch
motivierte Vermittlung fachmathematischer Inhalte fiir Lehramtsstudierende werden im Folgenden
die Konzepte ,Einfiihrung in die Arithmetik” von M. Neubrand und M. Méller (1990) und , Erlebnis
Arithmetik“ von T. Leuders (2010) skizziert. Neben einer Illustration moglicher Umsetzungen der oben
aufgefiihrten Anforderungen an eine sinnstiftende Lehramtsausbildung geht es auch um die Frage,
welche Aspekte dieser Konzepte fiir die hier thematisierte Fachveranstaltung (ggf. modifiziert)
Ubernommen werden kénnen.

Die ,Einfiihrung in die Arithmetik” von M. Neubrand und M. Méller

Das Buch ,Einfiuhrung in die Arithmetik” von Neubrand und Modller (1990) ist aus einer
Fachveranstaltung der Grundlagen der Arithmetik flir Studienanfanger des Studiengangs ,Lehramt
der Primarstufe” hervorgegangen. Zu ihrem Ansatz bemerken die Autoren: ,Vielmehr dirfte es,
gerade im Blick auf das Ziel des kommenden Unterrichts in der Primarstufe, von entscheidender
Bedeutung sein, ein facettenreiches, lebendiges, auf Probleme vielfdltiger Art bezogenes, offenes
Bild mathematischen Arbeitens zu zeigen” (Neubrand & Moller 1990, S. 1).

Bereits bei der Auflistung der behandelten ,Themenkreise” wird eine Abkehr von traditionellen
fachlichen Inhalten und einer deduktiv-organisierten Strukturierung der Inhalte deutlich (ebd., S. II):

- Verwendung von Zahlen in verschiedenen Situationen und zu verschiedenen Zwecken,
auch einige Bemerkungen zur historischen Entwicklung des Zahlbegriffs

- mathematische Darstellung von Zahlen, ihre Schreibweisen und die Rechenoperationen, die damit
durchgefiihrt werden,

- Kennenlernen von Strukturen, d.h. RegelmaRigkeiten, Ordnungen, internen Beziehungen, Zusammenhangen
innerhalb des Bereichs der Zahlen

Im Verlauf der Ausfiihrungen wird in ausgewiesenen Abschnitten das Dargebotene regelmalig
reflektiert und gleichsam das AnschlieRende motiviert. Begriindungen von mathematischen
Zusammenhdngen werden nicht notwendigerweise ,formal‘ dargeboten, sondern bewegen sich
explizit zwischen den Polen ,formal’ und ,inhaltlich’. Inhaltliche Begriindungen werden dabei
vornehmlich an geometrischen Punktmusterdarstellungen gegeben. Dies passt zu der generellen
Ausrichtung des Buches, in dem durchgehend mathematische Inhalte auf verschiedene Weise
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veranschaulicht® werden. Hierzu passt auch, dass das gesamte Kapitel 4 (,,Zahlen und Muster”) dem
Zusammenhang zwischen Arithmetik und Punktmusterdarstellungen (sogenannten figurierten
Zahlen, etwa: Dreieckszahlen, Quadratzahlen, ...) gewidmet ist.

Neubrand und Méller (1990) nutzen elementarmathematische Sachverhalte der Arithmetik, um die
u.a. von Wittmann und Miller formulierten Desiderate (s.0.) flir eine neugedachte
Lehramtsausbildung umzusetzen. Allgemeine Zusammenhidnge und Sachverhalte werden an
konkreten Problemsituationen bzw. Beispielbetrachtungen motiviert und abstrahiert, wobei die
formalen Darstellungen durchgehend mit ikonischen Darstellungen verbunden werden.
Retrospektive und prospektive Abschnitte ermdglichen eine Betrachtung der Inhalte auf einer
Metaebene, in deren Kontext auch der Schulbezug der Inhalte deutlich gemacht wird.
Hervorzuheben ist hierbei auch das Kapitel zum Zusammenhang zwischen Arithmetik und figurierten
Zahlen: Durch die Betrachtung von Zusammenhdngen zwischen den figurierten Zahlen wird es
moglich, Forschung im Kleinen zu betreiben und die Prozesshaftigkeit der Wissenschaft Mathematik
zu erfahren.

T. Leuders ,,Erlebnis Arithmetik“

Leuders (2010) verschriftlicht mit seinem Buch ,Erlebnis Arithmetik - zum aktiven Entdecken und
selbststandigen Erarbeiten” ebenfalls ein Vorlesungskonzept zu einer Fachveranstaltung der
Grundlagen der Arithmetik. Neben den entsprechenden fachmathematischen Inhalten (Arithmetik,
Kombinatorik, Beweistechniken etc.) werden auch heuristische Strategien und Metawissen Uber
Mathematik (etwa, wie mathematisches Wissen entsteht) vermittelt. Ausgangspunkt der
Ausfuhrungen sind dabei Erkundungsauftrdage, aus denen heraus Vermutungen gewonnen werden.
Die Vermutungen werden dann als mathematische Behauptungen formuliert und anschliefend
bewiesen. Diese Erkundungen werden durch strategische Hinweise begleitet, welche starke
Parallelen zu den Problemldseheuristiken von Pélya (1967) aufweisen: (systematische) Betrachtung
von Beispielen, Betrachtung von Teilproblemen, Suche nach Analogien etc. Im Kontext der
Erkundungen wird das Beweisen als eine mathematikspezifische Arbeitsweise zur Absicherung einer
Behauptung motiviert.

Bei der Begriindung von mathematischen Satzen werden durch Leuders verschiedene Beweisformen
auf verschiedenen Reprasentationsebenen angeboten; der Leser soll dabei zunachst selbst
entscheiden, welche Beweise er als Uberzeugend, verstandlich und korrekt einstufen wirde. Das
,formale Beweisen’ wird schlieBlich durch die Anmerkung eingeleitet, dass bei sogenannten
anschaulichen Beweisen noch ein restlicher Zweifel an der Allgemeinglltigkeit der Argumentation
verbleiben kdnnte.

Mit den formalen Beweisen wird bei Leuders der Abschnitt ,, Zahlenforschen und Beweisen” beendet,
in dem systematisch und exemplarisch die Wissensgenerierung in der Mathematik aufgezeigt wurde.
Diese Erarbeitungsweise von Inhalten ber Erkundungen, Vermutungen und Beweisen wird in den
folgenden Kapiteln beibehalten und bewirkt eine aktive Auseinandersetzung mit den
Themengebieten. SchlieRlich wird im achten Kapitel ,,Zahlen verstehen” die zuvor angesprochene
Axiomatik der Mathematik vertieft und die axiomatische Methode und Ordnung mathematischen
Wissens thematisiert.

® An dieser Stelle wird der Begriff ,,veranschaulicht” in einem gewissen Mal ,naiv’ verwendet. Eine genauere
Erérterung von ,Anschaulichkeit’ wird in Abschnitt 8.3.5 erfolgen.
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Leuders gelingt mit seinen angeleiteten Erkundungen, verbunden mit Exkursen und Reflexionen, eine
Verzahnung von fachmathematischen Inhalten, Probleml&sestrategien und Meta-Wissen Uber
Mathematik. Durch die gut gewahlten Beweisbeispiele, verbunden mit den Betrachtungsfokussen
,Uberzeugung’, ,Verstindlichkeit’ und ,Korrektheit’, wird der Leser dazu angehalten, ein
Beweisverstandnis zu erdrtern, in dem zentrale Momente, Funktionen und Fehlvorstellungen von
Beweisen beriicksichtigt werden. Die Motivation von formalen Beweisen — verbunden mit der
angesprochenen Axiomatik der Mathematik - Gber potentiell, subjektiv verbleibende Zweifel an
anschaulichen Begriindungen, scheint moglich. Offen bleibt die Frage, inwieweit Studierende zu
Beginn ihres Studiums die vielfdltigen und komprimierten Aspekte der erdrterten Beweis- und
Begriindungsformen liberhaupt interpretieren, verstehen und akzeptieren kénnen.

Vor diesem Hintergrund verschiedener Beweisformen, verbunden mit den Aspekten Uberzeugung,
Verstandlichkeit und Korrektheit, der Bedeutung bzw. Funktionen der Beweise in der Mathematik
und der Bedeutung des axiomatisch-deduktiven Aufbaus entziindet sich schlieRlich die Frage, tber
welches Wissen im Kontext der Thematik ,Begriinden und Beweisen’ ein Studierender (im
vorliegenden Fall des Lehramts Mathematik fiir Haupt-, Real- und Gesamtschule) Giberhaupt verfiigen
soll? Anders formuliert: Was muss in einem entsprechenden Lehr-/Lernszenario unter einem zu
erlangenden addquaten Beweisverstandnis gefasst werden?

1.3 Zwischenfazit

Der Ubergang von der Schule zur Hochschule stellt fiir Lernende der Mathematik eine enorme Hiirde
dar. Probleme koénnen hier auf verschiedenen Ebenen ausgemacht werden: Inhalte,
Arbeitsmethoden, Zielsetzungen, Darstellung, Abstraktion, Lehr- und Lernmethoden unterscheiden
sich fundamental von denjenigen der Schulmathematik. Der Einbezug der Gesamtproblematik der
doppelten Diskontinuitat fir Lehramtskandidaten o6ffnet die Aufmerksamkeit flr ein weiteres
Problemfeld: das notige Wissen fiir die spatere Lehrpraxis in der Schule. Die verschiedenen
Problematiken bindeln sich in besonderem MaRe in der Thematik ,Begriinden und Beweisen”:
Wahrend in der Schule das explizite ,Beweisen’ stagniert, wird es in den Erstsemester-
veranstaltungen an Universitditen prominent behandelt und eine gewisse Vorbildung hierbei
(mindestens implizit) vorausgesetzt. Auch kénnen die Begriindungsformen der Hochschulmathematik
nur sehr begrenzt im Schulunterricht eingesetzt werden.

Um dieser Problematik entgegenzuwirken, wurden international verschiedene Kurskonzepte
entwickelt und durchgefiihrt. Doch dieses Problem lasst sich nicht durch das bloRe Unterrichten von
Beweistechniken beheben; fiir ein addquateres Verstdandnis der Kulturtechnik ,Beweis’ im Kontext
der Wissenschaft Mathematik ist eine Konzeption nétig, die das Beweisen sinnvoll und sinnstiftend in
Explorations- und Erkenntnisprozesse integriert und somit gleichzeitig Mathematik als kreative und
forschende Wissenschaft darstellt. In diesem Sinne wurde das ,Elementarmathematische
Forschungsprogramm®, formuliert in Wittmann und Miiller (1988), herangezogen, um unter dem
Leitbild ,Elementarmathematik als Prozess” weitere Richtlinien fiir die hier zu entwickelnde
Lehrveranstaltung zu gewinnen.

Die im Kontext der bisherigen Erérterungen herausgestellten ersten Leitprinzipien fiir die Gestaltung
der Lehrveranstaltung ,Einflihrung in die Kultur der Mathematik” fir Lehramtsstudierende fir
Haupt-, Real- und Gesamtschulen werden in der Abbildung 1 zusammenfassend dargestellt.
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Leitprinzipien zur
Beriicksichtigung der
doppelten Diskontinuitat

Leitbild: Elementar-
mathematik als Prozess

Weitere Leitprinzipien

Ankniipfen an schulische Vorerfahrungen

Akzeptanz und produktive Nutzung von
schulischem Vorwissen

Aufarbeitung des notwendigen
Vorwissens

Explizit Machen der Unterschiede

Einfiihren in die Arbeitsweisen der
Hochschulmathematik

Vorbereitung auf Erfordernisse im

bewusste Integration elementar-
mathematischer Inhalte

Umgang mit nichtsymbolischen
Darstellungen

Prozesscharakter der Mathematik
verdeutlichen
(z.B. im Kontext figurierter Zahlen)

Einbezug inhaltlich-anschaulicher
Darstellungen

Einbezug inhaltlich-anschaulicher
Beweise

Vermittlung von Meta-Wissen iiber

Intellektuelle Ehrlichkeit

Problemzentrierte Erarbeitung von
Inhalten

Vermittlung neuer Inhalte, die den
Studierenden das Zurechtkommen in den
folgenden Lehrveranstaltungen
erleichtern

sinnstiftende Einfiihrung und Verwendung
der mathematischen Symbolsprache

Vermittlung allgemeiner Heuristiken

Vermittlung eines addquaten

Lehrberuf Mathematik Beweisverstdndnisses

Schulbezug herstellen

Lehrveranstaltung ,Einfiihrung in die Kultur der Mathematik”
(fir Lehramtsstudierende fiir Haupt-, Real- und Gesamtschule)

Abbildung 1: Erste Leitprinzipien fiir die Gestaltung der Lehrveranstaltung , Einfiihrung in die Kultur der Mathematik”

Vor dem Wissenshintergrund der Problematik der doppelten Diskontinuitdt, kulminiert in dem
Bereich des Begriindens und Beweisens, und der aus den verschiedenen Sichtweisen auf die
universitare Ausbildung gewonnenen Leitprinzipien flir die hier thematisierte Lehrveranstaltung
lassen sich nun das Forschungsanliegen und die Zielsetzung dieser Forschungsarbeit konkretisieren.

1.4 Forschungsanliegen, Zielsetzung und Aufbau der Arbeit

In diesem Abschnitt werden zunachst das Forschungsanliegen, die Zielsetzungen dieser Arbeit und
die globale Forschungsfrage 1 formuliert (1.4.1). AnschlieBend wird der Aufbau der vorliegenden
Arbeit begriindet dargelegt (1.4.2).

1.4.1 Forschungsanliegen, Zielsetzungen und Forschungsfrage

Grundlage der vorliegenden Forschungsarbeit ist die von Rolf Biehler entwickelte und im
Wintersemester 2011/12 zum ersten Mal durchgefihrte Lehrveranstaltung ,Einfiihrung in die Kultur
der Mathematik”. Das Ubergeordnete Forschungsanliegen dieser Arbeit lasst sich wie folgt
formulieren:

Die forschungsbasierte (Weiter-) Entwicklung einer Lehrveranstaltung, welche den
Studierenden den Ubergang von der Schulmathematik in die Mathematik der Hochschule
erleichtern soll und hierbei in einem besonderen Mafle das Themenfeld ,Begriinden und
Beweisen’ unter dem Aspekt der doppelten Diskontinuitét fokussiert.

Dabei soll ein Beitrag zu einer empirisch begriindeten Instruktionstheorie geleistet werden,
wie das Lernen in der Domdéne ,Begriinden und Beweisen” in einer universitéren
Erstsemesterveranstaltung gelingen kann.
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Hiermit verbunden ist die die Forschungsarbeit leitende Forschungsfrage [1]:

,Wie kann im Rahmen einer universitaren Lehrveranstaltung fir Lehramtsstudierende (Haupt-,
Real- und Gesamtschule) der Themenbereich ,Begriinden und Beweisen’ vor dem Spannungsfeld
der doppelten Diskontinuitat addaquat vermittelt werden?“

Um diese Forschungsfrage beantworten zu koénnen, missen wiederum die folgenden
Forschungsziele erreicht werden:

i Die Entwicklung von Testinstrumenten, welche die Erforschung zentraler Aspekte zum
Beweisen bei Lernenden ermoglichen.

ii. Die Erforschung der Beweisvorstellungen, -kompetenzen und -einstellungen von
Studierenden zu Beginn des Studiums (bzw. zu Beginn der Lehrveranstaltung).

iii. Die Erforschung der Auswirkungen der Lehrveranstaltung auf die Beweisvorstellungen,
-kompetenzen und -einstellungen der Teilnehmenden.

1.4.2 Aufbau der Arbeit

Ein theoretischer Fokus der vorliegenden Arbeit liegt auf dem Phanomen der doppelten
Diskontinuitdt in der Lehramtsausbildung Mathematik und dabei im Speziellen auf der Thematik
,Begriinden und Beweisen’. In Kapitel 1 wurde bereits dargestellt, in welchem Spannungsrahmen
eine Lehrveranstaltung gedacht werden muss, welche den Studierenden den Ubergang von der
Schulmathematik in die Mathematik der Hochschule erleichtern soll und in einem besonderen MaRe
das Themenfeld ,Begriinden und Beweisen’ unter dem Aspekt der doppelten Diskontinuitat
fokussiert und welche grundlegenden Leitideen fiir ihre Konstruktion und Weiterentwicklung gelten.

In Kapitel 2 werden die theoretischen Grundlagen fiir die Forschungsarbeit gelegt: Zunachst werden
die zentralen Begriffe und Aspekte im Kontext der Thematik ,Begriinden und Beweisen’ erértert und
die fiir diese Arbeit wichtigen empirischen Befunde aufgearbeitet und vergleichend diskutiert. Fiir die
retrospektiven Analysen und die Weiterentwicklung der Lehrveranstaltung sind zwei Theorien
leitend: die Theorie sozio-mathematischer Normen (Yackel & Cobb 1996) und die semiotische
Sichtweise auf das Beweisen als diagrammatisches SchlieRen nach Pierce (etwa Hoffmann 2005, S.
123ff.). Diese Theorien werden am Ende des zweiten Kapitels dargelegt und ihre Verwendung
begriindet.

Die Forschungsmethode des Design-Based Research wird in Kapitel 3 beschrieben und als
vorliegender Forschungsansatz legitimiert. Die Entwicklung der im Kontext dieser Studie
verwendeten Testinstrumente zum Beweisen ist ein wesentlicher Bestandteil dieser Arbeit und wird
im Rahmen des dritten Kapitels dargestellt.

Die bereits in Kapitel 2 angesprochenen didaktisch-motivierten Beweisformen (operativer und
generischer Beweis) stehen nicht isoliert flr sich, sondern missen im Kontext einer historischen
Entwicklung mathematikdidaktischer Ideengeschichte verstanden werden. Fir die Verwendung
entsprechender Beweisformen in der Hochschullehre scheint es angebracht, genauer zu
hinterfragen, in welchem unterrichtlichen Kontext und mit welchen Zielsetzungen diese
Beweisformen von ihren ,Urhebern’ entwickelt wurden und welche etwaigen Fallstricke damit
verbunden sein koénnten. Diesen Fragestellungen wird in Kapitel 4 in Form einer historischen
Aufarbeitung didaktischer Leitideen des Beweisens nachgegangen. Es stellt sich dabei auch die Frage,
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welche (weiteren) Implikationen fiir den Einsatz entsprechender Beweisformen in der (Hochschul-)
Lehre aus der historischen Betrachtung der Beweiskonzepte gezogen werden kénnen.

Ausgangspunkt der Weiterentwicklung der Lehrveranstaltung ,Einfihrung in die Kultur der
Mathematik” ist die erste Version der Lehrveranstaltung, wie sie von Rolf Biehler entwickelt und im
Wintersemester 2011/12 zum ersten Mal an der Universitat Paderborn durchgefiihrt wurde. Im
Sinne des Forschungsparadigmas wird beschrieben, wie die Lehrveranstaltung im Wechselspiel von
Empirie, Theorie und Praxis in einem zyklischen Prozess liber den Zeitraum von 2011 bis 2014
weiterentwickelt wurde (Kapitel 5).

Die finale (vierte) Version der Lehrveranstaltung und ihre Durchfiihrung werden schlief8lich in Kapitel
6 vorgestellt.

Die Passung und der Nutzen der finalen Version der Lehrveranstaltung wurden im Rahmen einer
Effektivitatsstudie untersucht. Die entsprechenden empirischen Studien werden in Kapitel 7
dargelegt. Mithilfe dieser Ergebnisse wird es abschlieBend moglich, den letzten hier thematisierten
Durchlauf der Lehrveranstaltung retrospektiv zu analysieren.

In Kapitel 8 werden die in dieser Arbeit erzielten Ergebnisse in drei Bereichen zusammengefasst:
Design-Ergebnisse, empirische Ergebnisse und Beitrdage der Arbeit, die iber die Entwicklung einer
lokalen Instruktionstheorie hinausgehen. Im Rahmen des ersten Abschnitts wird die globale
Forschungsfrage 1 in Form der Formulierung des geleisteten Beitrags zu einer lokalen und
adressatenspezifischen Instruktionstheorie in der Domane ,Begriinden und Beweisen’ beantwortet.
Im Anschluss daran werden kurz die in dieser Arbeit entwickelten Testinstrumente und die
empirischen Ergebnisse aus der Effektivitdtsstudie zur letzten in dieser Arbeit betrachteten
Durchfiihrung der Lehrveranstaltung im Wintersemester 2014/15 zusammengefasst. SchlieRlich
werden im dritten Abschnitt weitere Beitrdge der Arbeit herausgestellt, die (ber die
Instruktionstheorie hinausgehen und als besonders wertvoll fiir die weitere Diskussion der Thematik
erscheinen. SchlieBlich werden das gesamte Forschungsprojekt und die erzielten Ergebnisse kritisch
reflektiert und Perspektiven fir die weitere Forschung aufgezeigt.

2. Theoretische Grundlagen

In diesem Kapitel werden die theoretischen Grundlagen fir die vorliegende Arbeit gelegt. Zunachst
geht es hierbei um die Frage, was liberhaupt unter einem Beweis zu verstehen ist (2.1.1) und was das
Ideal eines formalen Beweises ausmacht (2.1.2). Diesem lIdeal werden dann die in dieser Arbeit
verwendeten Beweiskonzepte des operativen Beweises und des generischen Beweises
gegenibergestellt (2.1.3). Als weitere wichtige Grundlagen fir den Bereich des Beweisens werden
das Attribut der Strenge (2.1.4), die Argumentationsgrundlage und das lokale Ordnen (2.1.5), das
Konzept des Beweisbedirfnisses (2.1.6) und die verschiedenen Funktionen von Beweisen (2.1.7)
erortert. Schlielich werden die Zusammenhidnge zwischen dem Erlernen der Beweisaktivitat und
dem Konzept der Selbstwirksamkeit (2.2.1) und den sogenannten ,Einstellungen zur Mathematik’
bzw. ,Beliefs’ zur Mathematik beleuchtet (2.2.2). AnschlieRend wird begriindet dargestellt, was in der
vorliegenden Arbeit unter Argumentation verstanden wird (2.3.1) und wie der Beweisbegriff in
diesem Kontext eingeordnet wird (2.3.2). Entsprechende Darstellungen folgen zum
Begriindungsbegriff (2.3.3) und dem Verhaltnis der drei Begriffe zueinander (2.3.4).
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Es folgt eine Darstellung der empirischen Erkenntnisse aus der Literatur, die fiir die vorliegende
Arbeit von besonderem Interesse sind. Hierbei geht es zundchst um die Beweiskompetenzen von
Studienanfangern, ihre Vorerfahrungen mit Beweisen und ihre Ansichten zum Beweisen (2.4.1). Von
Bedeutung ist hierbei weiter, was in der Literatur unter dem Komplex der ,Beweisakzeptanz’
betrachtet wird (2.4.2) und inwiefern der Zusammenhang von Einstellungen zur Mathematik und
dem Beweisen bisher untersucht wurde.

Der in den folgenden Kapiteln dargestellte Forschungsprozess im Sinne des Design-Based Research
wird durch die Anwendung von zwei Theorien geleitet: Die Theorie des Beweisens als
diagrammatisches SchlieBen im Sinne von Charles Sanders Peirce und die Theorie der sozio-
mathematischen Normen von Yackel und Cobb (1996). Diese beiden Leittheorien werden am Ende
des Kapitels vorgestellt und ihre Passung und Anwendbarkeit fir das vorliegende Forschungsprojekt
erortert.

2.1 Der mathematische Beweis

2.1.1 Der Beweisbegriff

Der Beweis ist eines der konstituierenden Momente der Wissenschaft Mathematik und zugleich das
Charakteristikum, welches diese von anderen Wissenschaften unterscheidet (etwa Heintz 2000). Was
allerdings genau ein ,Beweis’ ist, oder was als solcher zu gelten hat, ist normativ schwer zu fassen. Als
Ausgangspunkt fir die vorzunehmende Begriffserorterung soll eine Definition von Jahnke und Ufer
(2015) dienen, welche die charakteristischen Merkmale des Konstrukts ,Beweis’ umfasst: , Unter
einem mathematischen Beweis versteht man die deduktive Herleitung eines mathematischen Satzes
aus Axiomen und zuvor bereits bewiesenen Satzen nach spezifizierten Schlussregeln” (ebd., S. 331).

Bereits an dieser Stelle wird eine erste Unterscheidung notwendig: Zunachst beinhaltet ,Beweis’ eine
prozedurale Komponente; hierunter wird im Allgemeinen der gesamte Prozess der Beweisfindung,
die Beweiserarbeitung und die schrittweise Darlegung des deduktiven Arguments verstanden. Als
,Beweis’ wird allerdings auBerdem das Produkt beschrieben, welches das finale Ergebnis des
Beweisprozesses ist (s.u.). Im Folgenden wird, aufbauend auf dem obigen Zitat, ,Beweis’ als die
schrittweise Darlegung eines deduktiven Arguments beleuchtet. Hieran wird sich eine Betrachtung
des Phasenmodells des Beweisens von Boero (1999) anschlieBen, wodurch die Beweisdarlegung in
einen groBeren Zusammenhang der mathematischen Tatigkeit gestellt wird.

Wie in dem obigen Zitat deutlich wird, wird innerhalb eines Beweises ein mathematischer Satz
deduktiv hergeleitet, bzw. dessen Giiltigkeit deduktiv nachgewiesen. Deduktive Herleitung meint
dabei ,notwendiges SchlieRen’: der Nachweis, dass die Giiltigkeit des mathematischen Satzes aus der
Gultigkeit der Pramissen durch die Anwendung von Gesetzen (,spezifizierte Schlussregeln’) mit
Notwendigkeit folgt. Als Pramissen dirfen innerhalb eines Beweises nur Sachverhalte verwendet
werden, die entweder als Axiome als gliltig vorausgesetzt oder bereits bewiesen worden sind.

Einer solchen Darlegung eines (vollstandigen) Beweises geht allerdings ein langerer (Beweis-) Prozess
voraus. Boero (1999, S. 2) unterteilt diesen Beweisprozess in sechs verschiedene Phasen und legt
somit ein idealisiertes Modell zum Beweisen als Grundlage fiir didaktische Uberlegungen vor. Bei der
Betrachtung dieses Modells werden die verschiedenen Aspekte deutlich, die den Beweisprozess als
mathematische Tatigkeit konstituieren und somit auch Lernenden bewusst gemacht werden sollten.
Aus diesem Grund wurden anhand des Phasenmodells von Boero u.a. heuristisch ausgearbeitete
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Losungsbeispiele zum Beweisen entwickelt, an denen Lernende Methoden- und Strategiewissen zum
Beweisen erlernen sollten (vgl. Reiss & Renkl 2002; Reiss et al. 2008).

Die von Boero unterteilten Stufen des Beweisprozesses sind (nach Boero 1999, S. 2):

1. Entwicklung einer Vermutung aufgrund von Exploration und dem Herausfinden von
Regelmaligkeiten und ihren Entstehungsbedingungen

2. Formulierung einer Behauptung (,,statement”) gemaR geltenden mathematischen Normen
Exploration des spezifischen Gehalts und des Umfelds der These. In dieser Phase werden
Zusammenhange, Argumente, Heuristiken etc. fiir die zu zeigende Aussage gesucht.

4. Auswahl von Argumenten und deren Aneinanderfiigen zu einer Argumentationskette

5. Aufschreiben des Beweises gemaR mathematischen Standards

6. Die Annaherung an einen formalen Beweis (,,approaching a formal proof”) — Hiermit ist die
(Um-) Gestaltung des Beweises hin zum formalen Ideal eines Beweises gemeint. Es wird
allerdings angemerkt, dass diese Phase haufig nicht erreicht wird, da eine vollstandige
Formalisierung in der forschenden Mathematik keinen Nutzen habe (vgl. Abschnitt 2.1.2).

Diese sechs vorgestellten Phasen laufen nicht notwendig linear ab, da etwa auch bei dem
Aneinanderfiigen von Argumenten zur einer Argumentationskette neue Einsichten gewonnen
werden konnten, die dann zu einer Neukonstruktion des Beweises flihren wiirden. Auch ist eine
strikte Trennung der verschiedenen Phasen nicht moglich, da z.B. auch Erkenntnisse aus der
Explorationsphase als Argumente in der vierten Phase dienen kénnen.

Bei der Betrachtung des Beweisprozesses wird deutlich, aus welchen verschiedenen Teilaspekten und
Teilkompetenzen sich der Akt des Beweisens zusammensetzt. Selbst wenn eine zu beweisende
Behauptung bereits gegeben ist, umfasst der vorzunehmende Beweisprozess die Exploration der
Behauptung und ihres Umfelds, das Ausmachen von Zusammenhdngen, die Auswahl von
Argumenten und Heuristiken, die Organisation dieser Aspekte zu einer Argumentationskette und
schlieBlich die Formulierung eines akzeptablen Beweises.

Was allerdings genau unter einem akzeptablen Beweis zu verstehen ist, d.h. an welchen Normen sich
eine Beweisende bzw. ein Beweisender zu orientieren hat, ist ein gewichtiges Problem, das auch in
der aktuellen mathematikphilosophischen Diskussion weiter erortert wird (vgl. die Beitrage in
Aberdein und Dove 2013). Trotz der charakteristischen Merkmale des Beweisprozesses und der
konstituierenden Merkmale der finalen Darlegung des Beweises, gibt es keine allgemein akzeptierten
Kriterien dafiir, wann ein Beweis ein Beweis ist (vgl. Hanna und Jahnke 1996, S. 878 und 884). Im
Allgemeinen ist es der soziale Prozess der Akzeptanz innerhalb der mathematischen Community, die
einen Beweis zu einem Beweis macht (Bender & Jahnke 1992, S. 261; Long 1986, S. 616; Manin 1977,
S. 48). Vor diesem Hintergrund wird eine Grundproblematik der Beweisdidaktik deutlich, die Hersh
pragnant formuliert hat: ,We accuse students of the high crime of , not even knowing what a proof
is“. Yet we, the math teachers, don’t know it either [...]“ (Hersh 1997, S. 49).

Aber wie kann man Lernenden das Beweisen unterrichten, wenn die Normen im engeren Sinne nicht
eindeutig sind? In der Fachwissenschaft funktioniert dieser Akzeptanzprozess, weil in den
verschiedenen Sparten der Mathematik allgemeiner Konsens Uber diesen herrscht. Wie kann aber
ein Prozess der Beweisakzeptanz im Lernkontext gelingen?
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Zunéchst ist der Lehrende die Instanz, die als Reprdsentant der mathematischen Community (Yackel
& Cobb 1996) letztlich lber die Akzeptanz eines Beweises entscheidet bzw. entscheiden kann. Doch
werden Richtlinien bendtigt, an denen Lernende ihre Beweiskonstruktionen ausrichten kénnen.
Stylianides (2007a und 2007b) entwickelt in einer Synthese der Sichtweise der Mathematikdidaktik
und der Philosophie der Mathematik eine Definition fiir Beweise, in der verschiedene normative
Aspekte in den Schulkontext relativierend U(bertragen werden (Stylianides 2007a, S. 291;
Hervorhebungen im Original):

Proof is a mathematical argument, a connected sequence of assertions for or against a mathematical claim, with
the following characteristics:

1. It uses statements accepted by the classroom community (set of accepted statements) that are true and
available without further justification;

2. It employs forms of reasoning (modes of argumentation) that are valid and known to, or within the
conceptual reach of, the classroom community; and

3. It is communicated with forms of expression (modes of argument representation) that are appropriate and
known to, or within the conceptual reach of, the classroom community.

Die Attribute ,true”, ,valid” und ,appropriate” verweisen auf die (implizit) geltenden bzw.
etablierten Normen in der entsprechenden mathematischen Community, hier der
Klassengemeinschaft. Die Zuganglichkeit der verwendeten Argumente, Begriindungsmuster und
Darstellungen eroffnet die Moglichkeit einer Diskussion Uber die (soziale) Akzeptanz der Beweise
auch innerhalb einer Lerngruppe. Dabei werden explizit verschiedene Darstellungssysteme
zugelassen, in denen die Beweise konstruiert bzw. kommuniziert werden kdnnen. Bei dieser
Definition bleibt allerdings offen, welche Rolle der Lehrperson als Reprdasentant der
fachmathematischen Community genau zukommt. Es stellt sich auch die Frage, wie nah die in der
Klassengemeinschaft zu setzenden Normen an denen der fachmathematischen Community sein
mussen bzw. sollen.

In der Beweisdefinition von Stylianides wird deutlich, dass gerade auch aus didaktischer Perspektive
die drei Aspekte: (1) zu verwendende Argumente, (2) Schlussweisen bzw. Beweistypen und (3)
Darstellungsmittel, bei der Diskussion um das Beweisen zentral sind. Was die zugelassenen
Schlussweisen betrifft, wurde bereits angemerkt, dass in Beweisen ausschlieflich deduktive Schlisse
zugelassen sind. Flir eine genauere Betrachtung von Schlussweisen innerhalb von Beweisen wird auf
Walsch (1975, S. 29ff.) verwiesen. Die Verwendung bzw. Zuganglichkeit verschiedener Beweistypen
(etwa Beweis durch Widerspruch oder Beweis durch Kontraposition) ist von dem jeweiligen
Lernkontext (Klassen- bzw. Kursstufe, universitdrer Studiengang etc.) abhéngig. Die Bedeutungen der
Aspekte ,Argument’ und ,Darstellungsmittel’ (bzw. Darstellungssysteme) in Zusammenhang mit ihren
Tragweiten bediirfen einer theoretischen Betrachtung, da sie, wie sich zeigen wird, von zentraler
Bedeutung fiir die hier erfolgende didaktische Diskussion des Konstrukts ,Beweis’ sind. Diese Aspekte
koénnen allerdings nicht in Bezug auf exakt ein theoretisches Konstrukt ,Beweis’ diskutiert werden, sie
erlangen ihre Bedeutung erst im Kontext einer spezifischen Beweisform. Im Folgenden werden daher
zunachst die Beweisformen formaler Beweis, operativer Beweis und generischer Beweis thematisiert,
bevor nach einer Erdrterung des Aspekts der Strenge eines Beweises auf die Bedeutung der
Argumentationsbasis und des lokalen Ordnens und des Darstellungssystems eingegangen wird.

2.1.2 Formale Beweise
Das Idealbild eines (strengen) mathematischen Beweises ist der formale Beweis. Dieser zeichnet sich
dadurch aus, dass er innerhalb eines formalen Systems (i.S. von Tarski 1944) stattfindet, in ihm
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Symbole verwendet werden, die keine semantische Bedeutung tragen und als Schlussweisen nur
spezielle logische Beziehungen zugelassen sind, welche sich auf Axiomen griinden (Hersh 1993, S.
390; Larvor 2012, S. 717; Reid & Knipping 2012, S. 141f.).

Die fur das Konstrukt des formalen Beweises charakteristischen Momente: formales System, Axiom,
Schlussweise und Satz, werden im Folgenden an einem Beispiel aus Hofstadter (2008) illustriert. (Die
folgende Darstellung entspricht dabei ebd., S. 37ff., ist aber keine wortgetreue Wiedergabe.)

In dem folgenden formalen System werden nur drei Buchstaben des Alphabets verwendet: ,M“, ,1“ und ,U“.
Innerhalb des Systems werden Zeichenketten betrachtet, die aus diesen drei Zeichen gebildet werden kdénnen,
wobei die Reihenfolge der Zeichen beachtet wird. Beispiele fiir solche Zeichenketten sind etwa: MU oder UIIM.

Zu Beginn besitzen wir ausschlieBlich die Kette MI. Wir diirfen die Ketten innerhalb des Systems aber nach
gewissen Regeln umformen:

Regel 1: Wenn man eine Kette besitzt, deren letzter Buchstabe I ist, kann man am Schluss ein U zufligen.
Beispiel: Aus MUUI kann man MUUIU erhalten.

Regel 2: Angenommen man hat Mx, wobei x als Platzhalter fiir ein Zeichen oder eine Zeichenkette steht. Dann
kann man seiner Sammlung Mxx zufligen. Beispiel: Aus MIU kann man MIUIU erhalten.

Regel 3: Wenn in einer der Ketten der Sammlung Ill vorkommt, kann man eine neue Kette mit U anstelle von Il
bilden. Beispiel: Aus MIIIl kann man MIU oder auch MUI machen.

Regel 4: Wenn UU in einer Kette vorkommt, kann man es streichen.
Beispiel: Aus MUUI kann man MI machen.

Diese verschiedenen Regeln kénnen nun nacheinander auf die Ausgangszeichenkette MI angewendet werden.
Wann man welche Regel anwendet, bleibt dabei der agierenden Person Uiberlassen. Wichtig ist nur, dass die
betreffende Regel angewendet werden darf. Als mathematisches Problem kdnnte die Frage formuliert werden, ob
es moglich ist, auf der Basis der formulierten Regeln die Kette MU zu erzeugen.

Durch die Anwendung bestimmter Regeln werden neue Zeichenketten gebildet. Solch eine erhaltene
Zeichenkette wird im Kontext formaler Systeme als ,Satz’ bezeichnet. Die Aufgabe der Erzeugung der Kette MU ist
somit die Frage, ob MU ein Satz dieses formalen Systems ist. Der Beweis dieses Satzes besteht dann aus der
Erzeugung der Zeichenkette nach bestimmten Regeln fiir das Rangieren von Symbolen, welche auch als
,Schlussweisen’ bezeichnet werden. Eine Zeichenkette, die schon zu Beginn zur Verfligung steht und keiner
Herleitung bedarf, wird dabei als Axiom bezeichnet. Anstatt von Beweisen wird in diesem Kontext auch von
Ableiten gesprochen. Abschliefend wird hier die Ableitung des Satzes MUIIU angegeben:

1) Ml Axiom

2) ™l aus 1) durch Regel 2
3) Ml aus 2) durch Regel 2
4)  MIIU aus 3) durch Regel 1
5) MUIU aus 4) durch Regel 3
6) MUIUUIU aus 5) durch Regel 2
7) MUV aus 6) durch Regel 4

Entsprechende Beweisprodukte, die innerhalb eines formalen Systems erfolgen, in denen die
verwendeten Symbole rein syntaktisch, also ohne semantische Bedeutung, verwendet und alle
Beweisschritte bzw. Schlussweisen expliziert werden, welche wiederum auf Axiomen griinden,
werden in der Mathematik als formale Beweise bezeichnet. Dieses Idealbild des formalen Beweises
steht in der Tradition der formalen Logik der Philosophie (etwa Boole, Frege, ...) und ist schliefRlich in
der Axiomatisierung der Mathematik begriindet, welche von ihren Vertretern zu Beginn des
zwanzigsten Jahrhunderts vollzogen wurde (etwa Hilbert & Bernays 1986, Whitehead & Russel 1978).
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Die mathematische Tatigkeit wird hier als regelgeleitetes, syntaktisches Operieren mit Zeichen
vollzogen, ohne dass eine semantische Bedeutung der Zeichen zum Tragen kommt. Allerdings geht
mit jeder vollstandigen Formalisierung dialektischerweise ein Bedeutungsverlust einher, auch die
Verstandlichkeit leidet unter der angestrebten ,allumfassenden Transparenz’ der Beweise. Bei der
Betrachtung wirklicher formaler Beweise (vgl. etwa die Beweise in den Bdnden der Principia
Mathematica von Whitehead und Russel) wird schnell deutlich, dass dieses theoretische Idealbild
mathematischer Beweise in der Praxis nicht nur nicht gewlinscht, sondern, auch aufgrund der
bendtigten Lange, unerreichbar bzw. nicht moglich ist (Bender & Jahnke 1992, S. 162; Hersh 1993, S.
390; Thurston 1994, S. 8ff.).

Aufgrund dieser Unerreichbarkeit und Impraktikabilitat formaler Beweise fiir die fachmathematische
und unterrichtliche Praxis wurden in der Literatur verschiedene Formalitatsstufen von Beweisen
unterschieden. Reid (2001) erweitert die von Lakatos (1978, S. 61ff.) herausgestellte Unterscheidung
von praformalen, formalen und postformalen Beweisen, indem er die formale Stufe in semi-formal
und vollstandig formal unterteilt. Unter praformalen Beweisen werden dabei Beweisproduktionen
gefasst, die in Notizen oder Konversationen auftreten, in denen implizit Vermutungen verwendet
werden, und sich informeller Sprache und Notation bedienen. Die formalen Beweise sind dagegen
die publizierfahigen Beweise. Im Gegensatz zu den vollstandigen formalen Beweisen, in denen jeder
Beweisschritt benannt und begriindet wird, werden in semi-formalen Beweisen — wie es in der Praxis
Ublich ist — kleinere Liicken offen gelassen, deren SchlieRen dem Leser Uberlassen wird. Als
postformale Beweise werden die Beweise der Metamathematik bezeichnet, wie etwa das
Dualitatsprinzip der projektiven Geometrie oder Gédels Beweis iber die formale Unentscheidbarkeit
mathematischer Satze.

Vor dieser Unterscheidung wird deutlich, dass ,formale’ Beweise, wie sie etwa in der universitaren
Ausbildung auftreten, im engeren Sinne nicht als formale Beweise gelten kénnen. So ware etwa der
folgende Beweis der Behauptung, dass die Summe von zwei ungeraden Zahlen immer gerade ist, ein
semi-formaler Beweis im Sinne von Reid (2001). Innerhalb dieses Beweises werden u.a. nicht alle
Schlussweisen expliziert (etwa der Schluss aus einer Existenzaussage bei der Einfihrung und
Verwendung der Buchstabenvariablen n und m oder der finale implizite Schluss auf eine Allaussage),
die Zeichen innerhalb des Beweises tragen noch semantische Bedeutung und es werden keine
Bezlige zu Axiomen, Definitionen und Satzen expliziert. Da solche oder dhnlich formulierte Beweise
allerdings in der Praxis Ublich sind, werden diese im Allgemeinen auch als formale Beweise
bezeichnet.

Beweis:

Seien a, b € N beliebige aber feste, ungerade Zahlen. Dann ist a = 2n — 1 fiir einn € N und
b = 2m — 1 fur einm € N. Weiter gilt:

2n-1D+(2m-1)=2n-142m—-1=2n+2m—-1+(-1)=2n+2m—2
=2-(n+m—-1), mt(n+m-—1) €eN.

Q.e.d.

Es ist dabei offensichtlich, dass entsprechende Beweise erst ab einer gewissen Ausbildungsstufe im
unterrichtlichen Kontext sinnvoll eingebunden werden konnen. Aus der Bemiihung heraus, die
mathematische Beweisaktivitat Lernenden auf allen Stufen der Mathematikausbildung zuganglich zu
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machen, wurden in der Mathematikdidaktik verschiedene Vorschldge unterbreitet, wie Lernende die
mathematische Beweisaktivitdt am besten erlernen kdnnen bzw. sollen. Die Entwicklungsstrange und
Querverbindungen und didaktischen Intentionen der von Biehler und Kempen (2016) so
bezeichneten ,didaktisch orientierten Beweiskonzepte” werden in Kapitel 4 skizziert. Zwei dieser
Beweiskonzepte sind dabei fir die vorliegende Arbeit von besonderer Bedeutung, da die damit
verbundenen Beweisformen im Kontext der Lehrveranstaltung explizit verwendet wurden: der
operative Beweis und der generische Beweis.

2.1.3 Operative und generische Beweise

Im Kontext der Lehrveranstaltung wurden solche Beweisformen verwendet, die in der Literatur als
,operativer Beweis’ und ,generischer Beweis’ bezeichnet werden, da diesen gewisse didaktische
Vorziige zugesprochen werden (s.u.). In der Vorlesung zu der Lehrveranstaltung wurde ab dem
zweiten Durchgang die Bezeichnung ,generischer Beweis’ verwendet (s. Abschnitt 5.3.1). Diese
beiden Beweisformen werden im Folgenden naher dargestellt.

Operative Beweise

Wittmann beschreibt 1985 das operative Prinzip der Mathematikdidaktik:

Objekte erfassen bedeutet, zu erforschen, wie sie konstruiert sind und wie sie sich verhalten, wenn auf sie
Operationen (Transformationen, Handlungen, ..) ausgeiubt werden. Daher muf man im Lern- oder
ErkenntnisprozeR in systematischer Weise: (1) untersuchen, welche Operationen ausfiihrbar und wie sie
miteinander verknipft sind, (2) herausfinden, welche Eigenschaften und Beziehungen den Objekten durch
Konstruktion aufgepragt werden, (3) beobachten, welche Wirkungen Operationen auf Eigenschaften und

Beziehungen der Objekte haben (Was geschieht mit ..., wenn ...?)“ (Wittmann 1985, S. 8; Hervorhebungen im
Original).

Im Kontext entsprechender ,operativer Unterrichtssettings’ ergeben sich die sogenannten operativen
Beweise als natlrliche Form der Verifikation. Diese beschreibt Wittmann wie folgt: , Beweise, bei
denen die den Objekten durch Konstruktion aufgepragten Eigenschaften und Beziehungen sowie
deren Verhalten bei Operationen explizit ausgenutzt werden, nennt man operative Beweise” (ebd., S.

11; Hervorhebung im Original).

Zur lllustration dieses Prinzips wird ein operativer Beweis zu dem Satz, dass die Summe der ersten n
ungeraden Zahlen gleich n? ist, aus Wittmann (1985, S. 11), in einen entsprechenden
Unterrichtszusammenhang gestellt:

Schiilerinnen und Schiiler kénnen mit Steinen Quadratzahlen als wirkliche geometrische Quadrate
legen. Dabei konnen sie feststellen, dass man zur jeweils ndachsten Quadratzahl kommt, indem man
oben rechts an ein Quadrat immer einen neuen Rand anlegt. Geht man von der n-ten zur (n + 1)-
ten Quadratzahl, so wird ein Winkel der Form 2n + 1 angelegt (vgl. Abbildung 2).

L I )
° ° I PP Abbildung 2: Abbildung zu einem operativen
Beweis liber die Summe der ersten n
1 4 9 16 ungeraden Zahlen. (Abbildung dhnlich zu

1+3 1+3+5 1+3+5+7 Wittmann 1985, S. 11)
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Dazu heiBt es bei Wittmann (ebd., S. 11):

Dieser Rand, geometrisch eine Figur, die die Differenz zweier Quadrate ... darstellt, heiRt griechisch Gnomon. Bei
den Quadratzahlen betrigt beim Ubergang von n? zu (n + 1)% der Gnomon: n + n + 1 = 2n + 1. Die Reihe der
Gnomone ... besteht also aus den ungeraden Zahlen.

1 4 9 16 25 36 49 64 81 100 121 144 n? (n+1)?
3 5 7 9 11 13 15 17 19 21 23 2n+l

Umgekehrt ergibt natirlich die Summierung der ungeraden Zahlen die Quadrate ... Geometrisch entspricht dem
die Herumlegung der Gnomone um die 1.

Hier wird innerhalb eines ,operativen Unterrichtssettings’ die Auswirkung der Operation ,Anlegen
eines Randes’ an eine geometrisch dargestellte Quadratzahl festgestellt, dass die jeweils nachst
groRere Quadratzahl entsteht. Dabei werden insbesondere die Eigenschaften der Quadratzahlen und
ihrer Beziehungen untereinander deutlich. Aus diesen Beobachtungen der Auswirkungen der
Operationen folgt dann die Erkenntnis, dass die Summe der ersten n ungeraden Zahlen gleich n? ist.

Bei dieser Form der Verifikation stellt sich allerdings die Frage, wie von einem allgemeingiiltigen
Nachweis der Behauptung gesprochen werden kann, wenn nur konkrete einzelne Fille betrachtet
werden. Wittmann und Ziegenbalg (2004) bemerken hierzu:

Selbstverstdndlich ware es kein stichhaltiger mathematischer Beweis, wenn die Richtigkeit der Behauptung nur
fiir einige Falle verifiziert wirde. Dadurch, dass aber nicht auf einzelne Beispiele, sondern auf allgemein
ausfiihrbare Operationen und deren ,Wirkungen” zurlickgegriffen wird, ist die Allgemeingultigkeit gesichert. Man
nennt Beweise dieser Art deshalb operative Beweise. Die speziellen Punktmuster, die bei einem operativen
Beweis gezeichnet oder angedeutet werden, haben selbst nur eine indirekte Bedeutung. Sie dienen lediglich zur
Demonstration der allgemein ausfiihrbaren Operationen und fungieren als Stellvertreter (Variable) flr beliebige
Muster. (Ebd., S. 38; Hervorhebungen im Original)

Hierbei gilt es festzustellen, dass nach den Autoren die ,allgemein ausfiihrbare[n] Operationen und

wu

deren ,Wirkungen““ (s.0.) die Allgemeingiltigkeit des Beweises sichern. Gleichzeitig wird jedoch
angemerkt, dass die konkreten Beispiele (hier Punktmusterdarstellungen) als Variable fungieren. Um
die Allgemeingultigkeit dieser Beweise sicherzustellen, wird auch auf die Bedeutung des

begleitenden Textes hingewiesen:

Wir weisen noch einmal darauf hin, dass die Prasentierung eines suggestiven Musters als ,Beweis ohne Worte”
nicht ausreicht. Es muss schon durch einen erkldrenden Text sichergestellt werden, dass die zur Begriindung von
Beziehungen angewandten Operationen wirklich allgemein ausflihrbar sind. (Ebd., S. 42; Hervorhebungen im
Original)

Ein operativer Beweis besteht somit (mindestens) aus den Elementen: (i) allgemein ausfiihrbare
Operationen an konkreten ,Objekten’ (etwa Zahlenbeispiele oder Punktmusterdarstellungen), (ii)
Feststellen und Nutzen der Auswirkungen dieser Operationen an den Objekten und (iii)
Versprachlichung der allgemeingiiltigen Argumentation, die aus dieser Verbindung entspringt.
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Wittmann beschreibt die charakteristischen Merkmale von operativen Beweisen wie folgt (Wittmann
2014, S. 226):

Operative Beweise:

e  ergeben sich aus der Erforschung eines mathematischen Problems, insbesondere im Rahmen eines
Ubungskontextes, und kldren einen Sachverhalt,

e grinden auf Operationen mit ,,quasi-realen” mathematischen Objekten,

. nutzen dazu die Darstellungsmittel, mit denen die Schiiler auf der entsprechenden Stufe vertraut sind, und

e lassen sich in einer schlichten, symbolarmen Sprache fihren.

Das operative Prinzip und damit verbunden auch operative Beweise haben in der deutschen
Mathematikdidaktik viel Beachtung gefunden (vgl. etwa die Arbeiten von Hering 1980, 1986 und
1988 oder die Beitrage in Miller et al. 2007). Wie Dreyfus et al. (2012, S. 204) ausfihren, hat sich
diese Begrifflichkeit in der internationalen Literatur allerdings nicht durchgesetzt. Selden (2005, S.
138) weist in Anlehnung an Wittmann (2004) auf den Nutzen von ,operative proofs” fir die
Lehrerausbildung hin, merkt dabei aber eine Ahnlichkeit zum Konzept der generischen Beweise bei
Rowland (2002a) an.

Generische Beweise

In der internationalen Diskussion hat sich der Begriff des generischen Beweises (,generic proof‘) fur
die Bezeichnung von Beweisen durchgesetzt, die an konkreten Beispielen vollzogen werden, dabei
aber den Anspruch auf Allgemeingiiltigkeit erheben kénnen (vgl. Dreyfus et al. 2012, S. 204).
Grundlegende Beitrdge zu der Diskussion um generische Beweise sind u.a. in den folgenden Arbeiten
enthalten: Bills und Rowland 1999, Dreyfus et al. 20012, Leron & Zaslavsky 2009 und 2013, Rowland
1998, 2002a und 2002b. Die entsprechenden Grundlagen dieser Beweisform werden im Folgenden
zusammenfassend dargestellt.

Die Betrachtung eines (oder mehrerer) konkreter Beispiele kann dazu fiihren, dass dem Betrachter
der Grund fir die allgemeine Gliltigkeit der Behauptung deutlich wird. Solche Beispiele, an denen
eine beispiellbergreifende und damit verallgemeinerbare Struktur deutlich wird, werden in der
Literatur als ,generische Beispiele” bezeichnet (etwa Mason & Pimm 1984), wobei in der
internationalen Diskussion bei der Begrifflichkeit nicht deutlich zwischen generischen Beispielen und
generischen Beweisen unterschieden wird und auch die Verbindung ,generic example proof”
verwendet wird (vgl. Karunakaran et al. 2014). Wie bereits bei den operativen Beweisen tritt auch
hier die Frage auf, ob ein generisches Beispiel alleine bereits als allgemeiner Beweis ausreichen kann.
Dabei wird das Problem deutlich, dass es vom Betrachter eines generischen Beispiels abhangt, ob
dieser das generische Moment in diesem Beispiel (an-) erkennt oder nicht.

Um die Unterscheidung von ,bloRen’ Beispielbetrachtungen und generischen Beweisen zu
unterstreichen, schlagen Biehler und Kempen (2013) die konzeptuelle Prazisierung vor, dass in
generischen Beweisen zusatzlich zu generischen Beispielen die verallgemeinerbare Argumentation,
die in den konkreten Beispielen deutlich wird, expliziert werden muss. Erst in dem Zusammenspiel
von generischen Beispielen und explizierter Begriindung wird dann von einem generischen Beweis
gesprochen.
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Zur lllustration dieses Konzepts wird ein generischer Beweis zu dem Satz angegeben, dass fir alle
n € N die Summe n + n? eine gerade Zahl ist.

Generischer Beweis
4+42=4-(14+4)=4'5 7+7°=7-(1+7)=7-8, 14+14°=14-(1+14)=14-15

Wie in den Beispielen deutlich wird, lasst sich die Summe aus einer natlrlichen Zahl und ihrem
Quadrat immer schreiben als Produkt der natirlichen Zahl und ihrem Nachfolger. Bei zwei
aufeinanderfolgenden natirlichen Zahlen ist immer genau eine Zahl gerade, somit werden immer eine
gerade und eine ungerade Zahl miteinander multipliziert. Da das Produkt aus einer geraden und einer
ungeraden Zahl immer gerade ist, muss das Ergebnis immer gerade sein.

Operativen und generischen Beweisen ist somit gemein, dass sie mithilfe konkreter Beispiele gefiihrt
werden, bei denen durch Operationen bzw. Transformationen eine verallgemeinerbare Strategie
deutlich wird, die begriindet fir eine allgemeingiltige Verifikation der gegebenen Behauptung
verwendet werden kann. Aufgrund der zentralen Beschaftigung mit konkreten ,Objekten’ wird meist
auf eine symbolische Darstellung verzichtet. Wahrend bei operativen Beweisen aber im eigentlichen
Sinne das den operativen Beweis rahmende (operative) Unterrichtssetting von Bedeutung ist (vgl.
Wittmann 2014, S. 226), steht das Konzept des generischen Beweises losgelost fiir sich. Dreyfus et al.
(2012) gehen naher auf die Beziehung zwischen operativen und generischen Beweisen ein:

A generic proof aims to exhibit a complete chain of reasoning from assumptions to conclusion, just as in a general
proof; however, as with operative proofs, a generic proof makes the chain of reasoning accessible to students by
reducing its level of abstraction; it achieves this by examining an example that makes it possible to exhibit the
complete chain of reasoning without the need to use a symbolism that the student might find incomprehensible.
In other words, the generic proof, although using an (numerical) example, must not rely on any properties of this
specific example. Consequently, many operative proofs are generic and vice versa. (Ebd., S. 204)

Im Sinne der obigen Ausflihrungen gilt es Dreyfus zuzustimmen. Der Aspekt der verallgemeinerbaren
Operationen in einem operativen Beweis kann als generisches Moment der Beispiele betrachtet
werden, wodurch entsprechende operative Beweise auch als generische Beweise bezeichnet werden
kénnen. Entstammen andersherum generische Beweise einem operativen Unterrichtssetting und
wird das generische Moment durch Operationen konstituiert, so kénnen auch diese generischen
Beweise als operative Beweise betrachtet werden. Dagegen lassen sich aber auch generische
Beweise ausmachen, deren generisches Moment nicht auf Operationen (i.S. von Wittmann, s.o.)
basiert und die daher nicht als operative Beweise bezeichnet werden kénnen. Ein Beispiel hierfiir ist
der Widerspruchsbeweis fir die Irrationalitat von V2 tiber den Widerspruch zu der Annahme, dass

V2 als vollstandig gekiirzter Bruch dargestellt werden kénne. Dieser Beweis kann als generischer
Beweis fur den Satz betrachtet werden, dass die Quadratwurzel einer Primzahl immer irrational ist
(vgl. Tall 1979).

Vom Einsatz generischer Beweise wird vor allem in der Hochschulausbildung berichtet (vgl. Bills &
Rowland 1999; Leron & Zaslavsky 2009 und 2013; Malek & Movshovitz-Hadar 2009 und 2011;
Rowland 1998, 2002a und 2002b), sie finden aber auch in der Schulmathematik Verwendung (vgl.
Karunakaran et al. 2014; Stylianides 2010). In der aufgefiihrten Literatur werden dieser Beweisform
verschiedene Vorteile zugesprochen, die im Folgenden zusammenfassend dargestellt werden:

1. Generische Beweise ermoglichen die Konstruktion allgemeingiltiger Beweise ohne die
Verwendung fachmathematischer Symbolsprache.
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2. Durch generische Beweise wird die Untersuchung von Beispielen explizit in den
Beweisprozess mit einbezogen, was auch zu einem besseren Verstindnis des zu
beweisenden Sachverhalts fiihren kann (s. Alcock 2004; Sandefur et al. 2012). Gleichzeitig
kann dabei der Unterschied von Beweisen zu bloRen Beispielliberpriifungen herausgestellt
werden (s. Leron & Zaslavsky 2013, S. 27).

3. Generische Beweise gelten als besonders gut ,erklarende’ Beweise (s. Hemmi 2006, S. 44).

4. Im Kontrast von generischen Beweisen zu formalen Beweisen kdnnen die Vorteile und der
Nutzen der fachmathematischen Symbolsprache herausgestellt bzw. erfahren werden.

Gleichzeitig sind mit entsprechenden Beweisen, die an konkreten Beispielen gefiihrt werden, aber
auch verschiedene Probleme verbunden:

1. Wie kann sichergestellt werden, dass Lernende wirklich das generische Moment erkennen
und den Beweis nicht als bloRe empirische Verifikation falsch verstehen?

2. Woher soll ein Betrachter Gberhaupt wissen, fiir welchen Aspekt die gegebenen Beispiele
Uberhaupt exemplarisch stehen sollen?

3. Welche Argumente sind innerhalb von generischen Beweisen lberhaupt zugelassen? Und
damit einhergehend die Frage, wie entsprechende Beweiskonstruktionen (berhaupt
propadeutisch fungieren kdnnen, wenn ein expliziter Bezug auf mathematische Satze oder
Definitionen dabei im Allgemeinen nicht gefordert wird?

Diese Probleme miissen dabei als noch offene Fragen fir die mathematikdidaktische Forschung
betrachtet werden®.

Die Frage, welche Argumente innerhalb entsprechender Beweise zugelassen werden, bzw. auf
welche Argumentationsbasis sich der Beweiskonstrukteur Uberhaupt berufen kann, sind dabei
Aspekte der haufig geforderten ,Strenge’ von Beweisen. Dieser Aspekt von Beweisen wird im
Anschluss erortert.

2.1.4 Strenge beim Beweisen

,Strenge’ ist ein Attribut, welches als notwendiges Kriterium fiir die Korrektheit und Giiltigkeit
mathematischer Beweise gefordert wird. Was allerdings genau ein strenger Beweis ist, verbleibt
meist implizit. Freudenthal (1973) umschreibt den Begriff wie folgt:

Die Mathematik hat vor allen anderen Geistesiibungen jedenfalls den Vorzug, daB man da von einer Aussage
sagen kann, ob sie richtig oder falsch ist. [...] Das alles kommt daher, daR eben keiner Wissenschaft sich eine so
stark deduktive Struktur aufprdgen IaRt wie der Mathematik. Man weifl in der Mathematik nicht nur ob ein
Resultat richtig, sondern sogar — oder eigentlich nur — ob es richtig begriindet ist. Das nennt man dann Strenge.
(Ebd., S. 139)

Dieser ,strenge’ Beurteilungsprozess einer Aussage wird deutlich, wenn man Jahnke (2010) folgt:
Das bekannteste ist das Paradoxon von Achilles und der Schildkréte, demzufolge ein schneller Laufer einen

langsamen Laufer nicht tGberholen konne. Um ein solches Paradoxon zu verstehen und zu wirdigen, ist eine
bestimmte geistige Einstellung notwendig [...]. Man weil} ja, dass Achilles die Schildkrote Gberholt. Davon darf

* Im Rahmen der Lehrveranstaltung ,Einflihrung in die Kultur der Mathematik” wurde diesen Problemen u.a.
durch die Einfihrung der Norm begegnet, dass in einem generischen Beweis das generische Moment immer
expliziert werden muss (s. Abschnitt 5.3.1). Dabei werden alle Argumente zugelassen, die als ,intuitiv-einsichtig’
gelten kdnnen. Damit stehen nicht die Argumente selbst, sondern deren Verbindung zu einem generischen
Beweis im Vordergrund.
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man sich aber nicht ablenken lassen, sondern muss seinem eigenen Denken vertrauen und den in den
Voraussetzungen angelegten Gedankengang bis zu Ende fortfiihren. In der Mathematik wird diese Einstellung mit
dem Begriff ,Strenge’ bezeichnet. (Ebd., S. 55)

Strenge meint das Festhalten am zuvor aufgestellten bzw. konstruierten mathematischen Modell,
das im idealen Fall durch ein formalisiertes System konstituiert wird. Innerhalb dieses Modells diirfen
nur zugrunde gelegte Axiome und bereits bewiesene Sachverhalte als Argumente und logisch
korrekte Schliisse verwendet werden. Neben diese formalen Aspekte tritt dabei noch eine sozial-
kulturelle Dimension: die Entsprechung der aktuell giltigen Normen der jeweiligen
fachmathematischen Community.

Die Vorstellung vollkommener mathematischer Strenge ist parallel zu dem Ideal der vollstiandig
formalisierten Theorie zu begreifen: ,Thus, the idea of rigour implies both working in the formal
mode with uninterpreted concepts and the completeness of deduction” (Bender & Jahnke 1992, S.
261).

Aus der Unangemessenheit vollkommener formaler Beweise fiir die Forschungs- und
Unterrichtspraxis (vgl. Abschnitt 2.1.2) resultiert eine praxisorientierte Adaption von ,Strenge‘: Die
Moglichkeit, ,strenge’ Beweise im (Schul-)Unterricht auch ohne eine explizit zugrunde gelegte
axiomatische Struktur durchzufiihren, wird durch das Phdanomen der lokalen Ordnung (vgl. Abschnitt
2.1.5) ermoglicht (Freudenthal 1963 und 1973). Vor diesem Hintergrund stellt sich aber die Frage,
wie bzw. inwiefern Lernende den Aspekt der Strenge lernen kénnen. Hierfiir gibt Freudenthal einen
ersten Ansatz:

Es ist doch kaum zweifelhaft, daR der Schiller mathematische Strenge nicht anders lernen soll als Mathematik
Uberhaupt: durch Nacherfindung. Und auch dies geschehe auf verschiedenen Stufen. (Freudenthal 1973, S. 140).

Strenge dient dazu, zu Gberzeugen, und fertige Mathematik Gberzeugt nicht. Um in der Strenge fortzuschreiten,
muf man an der Strenge, die man im Augenblick pflegt, erst einmal zweifeln. Ohne diesen Zweifel hat man wenig
daran, sich hohere Malstdbe von Strenge auferlegen zu lassen. (Ebd., S. 142).

Es folgt aus didaktischer Sicht, dass das ,strenge’ Arbeiten auf einer Stufe nur in Verbindung mit einer
Wertschatzung derselben erlernt werden kann: Der Zweifel an der Aussagekraft einer Begriindung
auf einer Stufe der Strenge eroffnet die Moglichkeit zur Progression. Die Wertschatzung einer
,strengen’ Theorienutzung ist hierbei im Kontext der zu erreichenden Ziele eines Beweises zu
betrachten. Wie weiter unten noch ausgefiihrt werden wird, liegen diese Ziele auch in der
(subjektiven) Uberzeugung und dem Verstindnis eines Sachverhalts. Somit ergibt sich auch eine
funktionale Deutung der Strenge, die Hanna (1997) wie folgt auslegt:

Rigour is a question of degree in any case. In the classroom one need provide not absolute rigour, but enough
rigour to achieve understanding and to convince. An argument presented with sufficient rigour will enlighten and
convince more students, who in turn may convince their peers. It is the teacher who must judge when it is
worthwhile insisting on more careful proving to promote the elusive but most important classroom goal of
understanding. (Ebd., S. 183)

Dabei muss angemerkt werden, dass diese Sicht aus propadeutischer Perspektive diskussionswirdig
ist. Zum einen erscheint es problematisch, den Grad an Strenge (und damit den Beweisbegriff) an
den Aspekten ,Verstindnis‘ und ,Uberzeugung’ auf Schiilerseite auszurichten. Im Sinne Freudenthals
soll der Grad der Strenge im unterrichtlichen Geschehen so lange aufrechterhalten werden, bis
begriindeter Zweifel an diesem aufkommt (s.0.). Der in einem entsprechenden MaRe objektive
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Nachweis der Giiltigkeit eines Satzes bildet die Referenz fiir Strenge und nicht das subjektive
Empfinden nach Verstidndnis und Uberzeugung, was u.U. auch durch bloRe empirische Argumente
erreicht werden kann’. Durch die funktionale Ausrichtung an Verstindnis und Uberzeugung riickt der
hier vorliegende Beweisbegriff stark an den allgemeineren Argumentationsbegriff heran, wie er in
Abschnitt 2.3.1 dargelegt wurde.

2.1.5 Die Argumentationsgrundlage beim Beweisen und das lokale Ordnen

Die Argumentationsgrundlage mathematischer Beweise wird durch die Axiome und Schlussregeln
gebildet, die das jeweilige rahmende mathematische System konstituieren. Des Weiteren kdnnen im
Rahmen von Beweisen Sitze verwendet werden, die auf Grundlage der Axiome bereits bewiesen
worden sind. Wird im unterrichtlichen Geschehen aber kein axiomatischer Aufbau der Mathematik
betrieben — wie es in der Schule auch nicht moglich ist —, so stellt sich die Frage, was als giiltige
Argumentationsgrundlage beim Beweisen gelten kann.

Im schulischen Kontext kdnnen Argumente nicht bis auf zu Grunde gelegte Axiome zuriickgefiihrt
werden; das Verstandnis des Beziehungsgefliges innerhalb des aktuell fokussierten und damit
Uberschaubaren Feldes ist dennoch wiinschenswert, wenn nicht aus propadeutischer Sicht
notwendig. Freudenthal entwickelte aus dieser Problematik heraus das Konzept des lokalen Ordnens:

Es blieb eben nichts anders Ubrig, als die Wirklichkeit zu ordnen, Beziehungsgefiige herzustellen und sie bis zu
einem Horizont der Evidenz zu fiihren, der nicht genau festgelegt und recht variabel war. Ich habe diese Tatigkeit
die des lokalen Ordnens genannt. (Freudenthal 1963, S. 6; Hervorhebungen im Original)

Das lokale Ordnen (eines Feldes) meint eine Analyse der Begriffe und Beziehungen im spezifischen
Umfeld der aktuellen mathematischen Tatigkeit bis zu einer ,recht willkiirlichen Grenze, sagen wir,
bis zu dem Punkte, wo man den Begriffen mit dem bloRen Auge sieht, was sie bedeuten, und von den
Satzen, dald sie wahr sind” (Freudenthal 1973, S. 142).

Stein (1986) unterscheidet verschiedene ,Beweiskonzepte’ (und damit verbundene Niveaustufen)
und fuhrt dabei das von ihm so bezeichnete Niveau der lokal geordneten Theorie ndaher aus: Die
verwendete Sprache lehnt sich meist an die Umgangssprache an und orientiert sich an dem
betrachteten mathematischen Teilgebiet. Axiome werden nicht explizit angegeben, werden aber
implizit als inhaltlich klar Gbernommen. Es werden nur die unbedingt notwendigen Begriffe definiert,
was auch implizit aus der Bedeutung der verwendeten Begriffe heraus geschehen kann, und an die
Schlussregeln und Beweise werden meist keine formalen Anspriiche angelegt. Auch koénnen
Hilfssatze verwendet werden, die intuitiv als korrekt gelten und nicht explizit vorher bewiesen
wurden. Selbst die implizite Verwendung bestimmter Sachverhalte ist hier moglich (vgl. hierzu ebd.,
S. 12).

Aus didaktischer Perspektive stellt sich allerdings die Frage, wie explizit die Argumentationsgrundlage
gemacht bzw. das lokale Ordnen betrieben werden soll. Damit hdangt auch unmittelbar die Frage
zusammen, ob innerhalb eines Beweises nur Sachverhalte verwendet werden dirfen, die bereits als
,glltig’ (bzw. ,wahr’) deklariert worden sind, oder ob jegliches intuitiv-korrekte Wissen eingebracht
werden darf.

> »In class, students are all too easily convinced! Two special cases do it.” (Hersh 1997, S. 59)
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2.1.6 Beweisbediirfnis

Unter dem Begriff ,Beweisbediirfnis’ fasst man im Allgemeinen die ,Einsicht des Schiilers in die
Notwendigkeit, dall eine mathematische Aussage [...] bewiesen werden muss” (Winter 1983, S. 64).
Diese ,Einsicht’ umfasst sowohl objektive als auch subjektive Momente: Das objektive
Beweisbediirfnis ist eine kognitive Angelegenheit: Der Lernende versteht, dass ein mathematischer
Satz innerhalb eines bestimmten Kontextes eines Beweises bedarf. Dagegen meint das subjektive
Beweisbediirfnis das intrinsische Verlangen des Lernenden, den Beweis fiir eine Aussage erfahren zu
wollen (vgl. hierzu ausfiihrlich Winter 1983). Damit das Beweisen nicht auf eine kiinstliche Aufgabe
des Mathematikunterrichts reduziert wird, war und ist es ein Anliegen der Fachdidaktik, ein
entsprechendes Verlangen bei Lernenden zu erzeugen.

Folgt man etwa Vollrath (1974, S. 25) oder Walsch (1975, S. 59f.), so sollen optische Tauschungen,
wunderliche Situationen oder Widerspriichlichkeiten dazu genutzt werden, bei Schiilern das
Vertrauen in die Anschauung zu erschiittern und fiir ein Verlangen nach (Auf-)Klarung durch Beweise
zu motivieren. Damit einhergehend soll den Schiilern die , Unzuldanglichkeit induktiver Methoden
oder die von Plausibilitatsbetrachtungen fiir die Erkenntnissicherung in der Mathematik [...]“ bewusst
gemacht werden (Walsch 1975, S. 60). Hier wird das Beweisen liber angebliche Defizite anderer
Methoden motiviert und somit gleichfalls aus einem Negativen heraus bestimmt. Durch diesen
Ansatz ergeben sich jedoch Probleme auf mehreren Ebenen (vgl. Jahnke 1978, S. 206ff.; Winter 1983,
S. 65ff.): Zunachst dient - wie bereits auch Walsch (1975, S. 131) anmerkt - das Messen in den
Naturwissenschaften und gerade auch im Physikunterricht der Schule nicht nur der
Erkenntnisfindung, sondern auch der Erkenntnissicherung. Es kann deshalb nicht darum gehen,
Erkenntniswerkzeuge der Naturwissenschaften und gerade auch der Mathematik als unzuldnglich
darzustellen, vielmehr gilt es aus fachdidaktischer Perspektive, die Besonderheit mathematischen
Wissens Uber Objekte in den Vordergrund zu stellen, das nicht durch Messen oder singuldre
Uberpriifungen erfasst werden kann (vgl. Jahnke 1978, S. 206ff.). So ist z.B. das Messen im
schulischen Geometrieunterricht ein adaquates Mittel zur Hypothesengewinnung und -Uberpriifung.
Ein mathematisches (allgemeingiiltiges) Wissen Uber ,ideale’ Objekte kann im Gegensatz dazu nicht
durch Messen gesichert werden. Weiter gilt es, diesem Ansatz, der Motivation des Beweisens liber
die ,Unzugénglichkeit induktiver Methoden“ (s.0.), die Ausfiihrungen von Lakatos (1979)
entgegenzuhalten, der die Sicht auf Mathematik als quasi-empirische Wissenschaft betont hat.
Lakatos verdeutlicht ein Bild mathematischer Praxis, das auf Exploration, Hypothesengenerierung,
empirischen Uberpriifungen, Beweisen und Widerlegungen beruht. An dieser Stelle wird die
Bedeutung empirischer Betrachtungen fiir die Mathematik evident, was einen Ausschluss derselben
aus dem mathematischen Erkenntnisprozess bzw. deren Herabwirdigung ad absurdum fihren
wirde.

Folglich kommt in der Mathematik Tatigkeiten wie Beispieliberprifungen und
Plausibilitdtsbetrachtungen eine grofle Bedeutung zu (vgl. hierzu das plausible Schliefen bei Polya
1969, S. 9ff.); erst in der Beschaftigung mit der Empirie kann ein Verstandnis von Verallgemeinerung
und Allgemeinheit entstehen: Verallgemeinerung ist, so verstanden, kein Prozess, der sich von der
Empirie entfernt, sondern sich ihr umgekehrt verstarkt zuwendet (vgl. Jahnke 1978, S. 211). So geht
es etwa im Kontext der Arithmetik nicht um die Ungenauigkeit von einzelnen Uberpriifungen, denn
konkrete Beispiele liefern exakte Ergebnisse. Die Unzuldnglichkeit der ,Mess-Methode’, hier der
Uberpriifung konkreter Fille, besteht darin, behauptete Aussagen iber alle Elemente einer
benannten (haufig unendlichen) Menge verifizieren zu missen. Und dies ist nicht durch
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Einzelfallpriifungen zu erreichen. Grundlegend fir ein (objektives) Beweisbediirfnis ist es daher, dass
der Lernende ein ,angemessenes (erkenntnistheoretisches) Verstiandnis mathematischer
Verallgemeinerung” erhilt (Jahnke 1978, S. 207); anders ausdriickt: Das mathematische Konstrukt
einer Allaussage verlangt als Giltigkeitsnachweis eine allgemeine Betrachtung, die nicht durch
Einzelfalliberprifungen leistbar ist.

Ein objektives Beweisbedirfnis muss sich folglich auf eine verstindige Konzeption von
Verallgemeinerung und einem angemessenen Verstandnis des Verhaltnisses von mathematischer
Theorie und ihren Anwendungen stltzen: Der Beweis eines Satzes macht diesen erst flr spatere
Anwendungen nutzbar. In diesem Sinne kann das Beweisen als ,Beweisen von der Zukunft her’
verstanden werden; die Zukunft der Theorie liegt in der Menge der intendierten Anwendungen (vgl.
Jahnke 1978, S. 255). Denn erst wenn ein Sachverhalt bewiesen worden ist, kann dieser als Argument
in anderen Beweisen verwendet werden. Diese Sichtweise betont die Ndhe des (objektiven)
Beweisbedirfnisses zum konzeptuellen Verstiandnis des Beweisbegriffs (vgl. Abschnitt 2.1.1): Dirfen
innerhalb eines Beweises nur Axiome und bereits bewiesene Sachverhalte verwendet werden, so
ergibt sich aus einem entsprechenden Beweisverstiandnisses die (objektive) Notwendigkeit des
Beweisens.

Das subjektive Beweisbediirfnis basiert nach Winter (1983) auf Neugier, Interesse und (intrinsischer)
Leistungsmotivation. Die Dimensionen ,Neugier’ und ,Interesse’ lassen sich hierbei mit einem
Verweis auf das Konzept des ,intellectual need” von Harel (2013) auf Seiten der Studierenden
genauer fassen. Nach Harel (2013) beglinstigt das intrinsische Verlangen nach Gewissheit und
Kausalitat® (,certainty” und ,causality”; ebd, S. 123ff.) die Herausbildung eines subjektiven
Beweisbedirfnisses (vgl. hierzu auch Zaslavsky et al. 2012, S. 220ff.). Da sich das Bedirfnis nach
Gewissheit nur vor dem Hintergrund einer unsicheren Situation ausbilden kann, muss der
Unsicherheit im Lernprozess ein entsprechender Raum gegeben werden:

A large place must be left for uncertainty in the learning process. Uncertainty in relation to mathematical
knowledge is institutionalised in the notion of conjecture, the validation of which, and even the production of
which, is devolved onto the community of students. The conjectures concern those parts of the mathematics
curriculum that students must learn during the year. We believe that the necessity, the functionality of proof can
only surface in situations in which the students meet uncertainty about the truth of mathematical propositions.
(Alibert 1988, S. 32)

Solch ein Grad an Unsicherheit kann z.B. durch Aufgabenstellungen wie ,Beweise oder widerlege”
erreicht werden. Starkere Unsicherheit ist allerdings gegeben, wenn Lernende im eigenen
Explorationsprozess Hypothesen selbst bilden und anschlieRend verifizieren miissen.

Dieses Bedirfnis nach Gewissheit und Kausalitadt (i.S. von Harel oben) steht dabei in einem engen
Zusammenhang mit der Erklarungsfunktion von Beweisen: Beweise konnen eine Erklarung dafir
liefern, warum eine Behauptung wahr ist. Somit scheint es angebracht, die ,Warum-Frage’ im
Kontext von Beweisen zu betonen, um die Bildung eines subjektiven Beweisbedirfnisses zu
beglinstigen.

Insgesamt muss zu der didaktischen Grundintention der Herausbildung eines Beweisbediirfnisses
angemerkt werden, dass sich generell ein echtes (intrinsisches) Verlangen nur vor der Wertschatzung

6 ,Thus, the need for causality is one’s desire to explain, to determine a cause of a phenomenon.” (Harel 2013,
S. 126; Hervorhebungen im Original).
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eines erreichbaren Zieles ausbilden kann. Nur wenn der Beweis eine funktionale Deutung innerhalb
einer erreichbaren Zielsetzung erfdhrt, kann sich ein Beweisbedirfnis ausbilden: ,Ein
Beweisbediirfnis kann nur derjenige entwickeln, der prinzipiell auch weil}, wie er es befriedigen
kann.” (Jahnke 1978, S. 211). Fir ein ,echtes’ Bediirfnis muss dieses Ziel fiir den Lernenden positiv
konnotiert sein: ,[...] daher wird einen Beweis nur schatzen, wer das Positive daran erlebt hat”
(Grieser 2015, S. 89). Die Frage nach der Entwicklung eines Beweisbediirfnisses muss somit vor dem
Hintergrund der verschiedenen Funktionen, die ein Beweis erfillt bzw. erflllen kann, betrachtet
werden.

2.1.7 Funktionen von Beweisen

Dem Werkzeug ,mathematischer Beweis’ werden im Kontext der Fachmathematik und der
Fachdidaktik diverse Funktionen zugeschrieben, welche kognitive, soziale und epistemologische
Aspekte tangieren. Eine Nennung entsprechender Funktionen orientiert sich haufig an der Auflistung
von de Villier (1990), welche sich wiederum auf Bell (1976) zuriickfiihren lasst. Weitere Funktionen
von Beweisen wurden u.a. durch Auslander (2008), Hanna und Jahnke (1996), Rav (1999) und Weber
(2002) in die Diskussion eingebracht. Ein guter Uberblick tiber die verschiedenen Funktionen von
Beweisen wird in Reid und Knipping (2010, S. 73ff.) gegeben.

Es herrscht ein allgemeiner Konsens dariiber, dass verschiedene Funktionen von Beweisen beim
Erlernen der Beweisaktivitat berlicksichtigt bzw. verdeutlicht werden missen, damit Lernende ein
addquates Verstandnis von Beweisen erlangen konnen, auf dessen Basis sich dann auch ein
Beweisbedirfnis (vgl. Abschnitt 2.1.6) herausbilden kann. Aus diesem Grund werden im Folgenden
die verschiedenen Funktionen von Beweisen dargestellt, die in dem vorliegenden Kontext von
Interesse zu sein scheinen’. Der folgende Abschnitt orientiert sich an den Ausfithrungen in Reid und
Knipping (2010, S. 73ff.), geht in der Auflistung weiterer Beweisfunktionen bzw. in der
Ausdifferenzierung verschiedener Funktionen® aber tber diese hinaus. Im Folgenden werden die
verschiedenen Funktionen von Beweisen dargestellt und anschlieBend aus didaktischer Perspektive
reflektiert.

1. Verifikation (Bell 1976, S. 24; Davis 1986, S. 354; de Villiers 1990, S. 18; Hanna 2000, S. 8)

In einem Beweis wird die Gliltigkeit einer Aussage nachgewiesen. Dieser Nachweis erfolgt mithilfe
logischer Schlussweisen aus als wahr postulierten Grundannahmen (,Axiomen‘) und/oder aus bereits
bewiesenen Sachverhalten. Jeder, der den verwendeten Argumenten und Schlussweisen zustimmt,
muss zwangslaufig auch dem erhaltenen Resultat zustimmen. Der Nachweis der Giltigkeit kann
dabei als objektiv festgestellte Gewissheit verstanden werden.

2. Uberzeugung (de Villiers 1990, S. 18; Duval 1990, S. 198 und 2007, S. 139; Hersh 1993; Weber
& Mejia-Ramos 2015)

7 Nicht expliziert werden im Folgenden die Beweisfunktionen ,to guide us along formally correct paths where
our intuition may be weak or misleading” (Renz 1981, S. 87), ,,to guide computiations” (ebd., S. 88) und das
Erlangen von Reputation in Form von ,theory credits” (Thurston 1994, S. 174).
® Weber und Mejia-Ramos (2015) betonen im Kontext von Beweisen den Unterschied zwischen relativer und
absoluter Uberzeugung (,relative and absolute conviction”): Wahrend relative Uberzeugung die subjektive
(unsichere) Uberzeugung bzgl. der Giiltigkeit einer Aussage beschreibt, meint absolute Uberzeugung die
Gewissheit iber deren Giiltigkeit. Bei der folgenden Auflistung von Funktionen von Beweisen wird diese
Unterscheidung aufgegriffen, was dabei zu einer Unterscheidung der Funktionen Verifikation und Uberzeugung
fahrt. Eine ahnliche Unterteilung der Verifikationsfunktion wird auch in Kuntze (2005) vorgeschlagen.
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Ein Beweis kann dazu beitragen, dass subjektiv die Uberzeugung eines Individuums bzgl. der
Gultigkeit einer Behauptung gesteigert wird.® Weber und Mejia-Ramos (2015) weisen darauf hin,
dass im Kontext von Beweisen zwischen absoluter Gewissheit und relativer (subjektiver) Gewissheit
unterschieden werden muss. Diese unterschiedlichen Grade an Gewissheit fasst Duval (1990 und
2007) unter dem Begriff der ,,epistemic values” (s.u.) zusammen. Reid und Knipping (2010) bemerken
hierzu:

[...] itis important to recognise that while logically a statement can only be true or false, psychologically it can
take on one of many values, which Duval (1990, 2007) calls its "epistemic value". Epistemic value is a personal
judgement of whether and how the proposition is believed. (Ebd., S. 74)

3. Erklarung (Bell 1976, S. 24; Kidron und Dreyfus 2009; de Villiers 1990, S. 19f. und 2012; Hersh
1993; Hanna 1989 und 2016; Steiner 1978)

Ein Beweis kann dem Betrachter erklaren bzw. Einblicke geben, warum ein Sachverhalt gilt. Durch
den Beweis wird somit ein neues bzw. erweitertes Verstandnis fiir den betreffenden Sachverhalt
erreicht. Diese Funktion wird in der didaktischen Literatur haufig als besonders bedeutsam fiir den
Unterricht hervorgehoben, da hier ein groRes Potential fiir die Entwicklung eines (subjektiven)
Beweisbedirfnisses gesehen wird. Was allerdings als ,erklarend’ betrachtet wird, gilt es genauer zu
diskutieren. Hierzu schreibt Steiner (1978):

[...] an explanatory proof makes reference to a characterizing property of an entity or structure mentioned in the
theorem, such that from the proof it is evident that the results depend on the property. It must be evident, that
is, that if we substitute in the proof a different object of the same domain, the theorem collapses; more, we
should be able to see as we vary the object how the theorem changes in respond. (Ebd., S. 143)

Steiner geht hierbei von den Beziehungen innerhalb des Beweises aus und betont die syntaktische
und semantische Bedeutung der Argumente fiir den Nachweis der Gliltigkeit der Behauptung. Hanna
(1989) beschreibt in Anlehnung an Steiner Beweise, die auch erklaren, warum ein Sachverhalt gilt als
,proof that explains’ im Gegensatz zu Beweisen, die ,nur’ zeigen, dass ein Sachverhalt gilt (,proof that
proves‘). Zu dieser Unterscheidung, die in der Fachdidaktik viel Beachtung gefunden hat, bemerkt
Hanna (1989):

Yet surely not all proofs have explanatory power. One can even establish the validity of many mathematical
assertions by purely syntactic means; with such a syntactic proof one essentially demonstrates that a statement is
true without ever showing what mathematical property makes it true. Thus | prefer to use the term explain only
when the proof reveals and makes use of mathematical ideas which motivate it. Following Steiner (1978), | will
say that a proof explains when it shows what “characteristic property” entails the theorem it purports to prove.
(Ebd., S. 10; Hervorhebung im Original).

Als Beispiel fir einen erklarenden Beweis fiihrt Hanna (1990, S. 11) den folgenden Beweis fiir den

n(n+1) ist:

Satz an, dass die Summe S(n) der ersten n natirlichen Zahlen gleich

/ /f/'/ Abbildung 3: Punktmusterdarstellung der
sukzessiven Summenbildung der ersten
d ./: ‘/: '/: vier natiirlichen Zahlen. (Abbildung dhnlich
1+2

1+42+3 1+2+3+4 |ZuHanna 1990, S. 11)

% Im Unterschied zu der Funktion Verifikation wird somit intendiert, dass zwischen der mathematisch-
objektiven Feststellung einer Giiltigkeit und der subjektiven Uberzeugung bzgl. der Giiltigkeit einer Behauptung
auch nach erfolgtem Beweis noch Unterschiede bestehen kénnen.
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The dots form isosceles right triangles containing S(n) = 1+ 2 + 3 + -+ + n dots.

Two such sums S(n) + S(n) give a square containing n? dots and n additional dots because the diagonal of n dots
is counted twice. Therefore:

2S(n) =n®+n

n*+n_ n(n+1)

St =—; 2

Der Beweis des Satzes mit vollstandiger Induktion wéare im Gegensatz dazu nach Hanna (1990, S.
10) ein ,proof that proves’.

Maller-Hill (2017, S. 169) weist darauf hin, dass zwei grundlegende Positionen bzgl. des
erklarenden Moments von Beweisen in der Literatur ausgemacht werden kdnnen. So schreiben
etwa Hersh (1993) oder Weber und Verhoeven (2002) Beweisen eine inhédrente
Erklarungsfunktion zu, woraus ein hochstens gradueller Unterschied in Bezug auf die
Erklarungsqualitdt von Beweisen abzuleiten ware (vgl. auch Hanna 2016). Dagegen nehmen
Steiner (1978) oder auch Celluci (2011) die Position ein, dass auch nicht-erklarende Beweise
existieren (vgl. Muller-Hill 2017, S. 169f.).

Der Aspekt des erklarenden Moments von Beweisen wird in Abschnitt 8.3.5 vertiefend diskutiert.
4. Systematisierung (Bell 1976, S. 24; de Villiers 1990, S. 20; Hanna 2000, S. 8)

Innerhalb eines Beweises werden mathematische Sachverhalte als Argumente verwendet, um das
Behauptete als Resultat deduktiver Schllisse zu zeigen. Somit wird mathematisches Wissen in eine
Ordnung gebracht, wodurch zunachst eine lokale Ordnung erfolgt (vgl. Abschnitt 2.1.5). Durch einen
(formalen) Beweis erfolgt eine explizite Einordnung der Resultate in das axiomatisch-deduktive
System der Mathematik. Zusammengefasst bedeutet dies, dass durch einen Beweis mathematisches
Wissen systematisiert wird.

Einhergehend mit dieser Systematisierungsfunktion werden in der Literatur weitere (Sub-)Funktionen
aufgefiihrt, die im Folgenden zusammenfassend dargestellt werden: (i) Ein Beweis kann dabei
helfen, Inkonsistenzen, Zirkelschllisse und verborgene bzw. nicht ausdriicklich erwdahnte Annahmen
zu identifizieren, (ii) in Beweisen kénnen mathematische Sachverhalte vereinheitlicht und vereinfacht
werden, indem nicht-verwandte Aussagen, Theoreme und Konzepte mit einander in Verbindung
gesetzt werden, woraus eine 6konomische Prasentation der Ergebnisse resultiert, und (iii) ein Beweis
bietet einen Uberblick tiber die Inhalte zu einem Themenbereich, indem etwa die unterliegende
(axiomatische) Struktur aufdeckt wird, von der andere Eigenschaften abgeleitet werden (kénnen).

5. Entdeckung (Auslander 2008, S. 66; Davis 1986, S. 354; de Villiers 1990, S. 21; Komatsu et al.
2014)

In einem Beweis(prozess) und bei der Reflektion eines Beweises kdnnen neue Entdeckungen
gemacht werden. Diese Funktion von Beweisen steht in Wechselwirkung mit der Erklarungs- und
Systematisierungsfunktion.

In dem Begriindungszusammenhang einer Argumentationskette konnen neue Erkenntnisse
gewonnen werden, die dann u.a. weiter generalisiert werden kdnnen. De Villiers (1990, S. 21) weist
darauf hin, dass in der Mathematik Beweise nicht nur fiir die Verifikation einer Behauptung
verwendet werden, sondern dass gerade die Aspekte von Exploration, Analyse, Entdeckung und
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Erfindung (,exploration, analysis, discovery and invention”; ebd., S. 21) innerhalb des
Beweisprozesses von groller Bedeutung sind. Nach Komatsu et al. (2014) ist diese Beweisfunktion
gerade aus didaktischer Sicht von groBer Bedeutung, da durch diese Lernenden das Beweisen als
produktive Tatigkeit und nicht als sinnentleertes Ritual vermittelt werden kann. Zur lllustration dieser
Funktion soll ein Beispiel aus Reid und Knipping (2010, S. 76) dienen. Im Kontext des Beweises Uber
die Summe zweier aufeinander folgender ungerader Zahlen wird von Studierenden die Entdeckung
gemacht, dass die Summe nicht nur gerade, sondern auch immer ein Vielfaches von vier ist: , The two
numbers are 2n — 1 and 2n+ 1. 2n — 1 4+ 2n 4+ 1 = 2(2n) which is even. IN FACT it is a multiple of
FOUR!“ (Reid & Knipping 2010, S. 76).

6. Konstruktion einer empirischen Theorie® (Hanna und Jahnke 1996, S. 892ff.)

Betrachtet man die Mathematik als Wissenschaft und Theorie liber ideale Objekte, so muss ihr Bezug
zu der uns umgebenden realen Welt diskutiert werden. Wenn etwa im schulischen
Geometrieunterricht Lernende dazu angehalten werden, die Innenwinkel eines Dreiecks zu messen
und diese zu addieren, werden sie Ergebnisse um 180° erhalten. In dem Beweis Uber den
Winkelsummensatz im Dreieck werden dann allerdings theoretische ideale Objekte thematisiert, die
sich wiederum von den konkret vorliegenden (empirischen) Dreiecken unterscheiden. Vor dieser
Perspektive kann die (euklidische) Geometrie als Wissenschaft, die die rdumlichen Beziehungen der
uns umgebenden Welt beschreibt, als ,empirische Theorie’ betrachtet werden.

Mathematische Satze (iber ideale Objekte sind durch deduktive Beziehungen miteinander
verbunden. In der uns umgebenden Welt erscheinen diese mathematischen Satze als empirische
Gesetze. Wird solch ein Gesetz durch einen Beweis zum Teil einer empirischen Theorie, dann wird es
durch den Beweis gleichsam mit den anderen Gesetzen der Theorie verbunden. In diesem Sinne
bestdtigen und testen nicht nur die konkret auf dieses Gesetz bezogenen Messungen dessen
Gliltigkeit, sondern auch all die Messungen, die Gesetze derselben Theorie bestdtigen. Mit Beweisen
werden somit empirische Theorien fiir die uns umgebende ,Realitat’ konstruiert.

7. Kommunikation (Bell 1976, S. 24; Davis 1986, S. 352; Knuth 2002, S. 381; de Villiers 1990, S.
22)

In einem Beweis wird Wissen kommuniziert und gleichsam ein Forum fiir einen kritischen Dialog
geschaffen. Die Kommunikationsfunktion bildet die Grundlage fiir den sozialen Prozess, der
konstituierend flir die Bewertung und Akzeptanz von Beweisen ist.

8. Erforschung der Gilte bzw. Bedeutung einer Definition, eines Satzes oder Sachverhalts
und/oder einer axiomatischen Theorie (Auslander 2008, S. 67; Hanna und Jahnke 1996, S.
896 und 902; Renz 1981, S. 86ff.; Weber 2002)

Bei der Konstruktion von Beweisen werden mathematische Definitionen und Satze im Rahmen von
Schlussweisen als Argumente verwendet. Dabei werden Eigenschaften von Definitionen, Satzen und
eventuell axiomatischen Systemen offenkundig und ihre spezifische Glte ergibt sich durch ihre
Passung und ihren Nutzen im Beweiskontext. Hierbei kann auch deutlich werden, dass fiir einen

1% bie Funktion ,Konstruktion einer empirischen Theorie’ wird in der Literatur nur in Hanna und Jahnke (1996, S.
892ff.) weiter ausgefiihrt. Der folgende Absatz beinhaltet eine stark zusammengefasste Paraphrase der
Ausfiihrungen dieser Autoren.
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Beweis etwa eine alternative bzw. ,passendere’ Definition fir ein mathematisches Objekt
herangezogen werden muss.

Nach Hanna und Jahnke (1996, S. 896) kann das Beweisen von ,lUberraschenden’ Sachverhalten dazu
flihren, dass die verwendeten Definitionen und Satze kritisch rekapituliert werden. Sie geben als
Beispiel den Satz (iber die Gleichmachtigkeit der Menge der natiirlichen Zahlen und der Menge der
Quadratzahlen an, der Lernende dazu bringen kann, die verwendeten Definitionen und Konzepte zu
hinterfragen.

Weber (2002) weist darauf hin, dass Beweise, in denen offensichtliche Sachverhalte nachgewiesen
werden, nicht priméar der Verifikationsfunktion und auch nicht der Erklarungsfunktion zugewiesen
werden kénnen. In solchen Beweisen kann die Verdeutlichung und Anwendung einer axiomatischen
Theorie im Vordergrund stehen. Als Beispiel fuhrt Weber (2002, S. 15) die Einfihrung der Peano
Axiome und die darauf basierenden Beweise an. In einem entsprechenden Beweis Uber den
Sachverhalt ,2 + 2 = 4“ wird dann weder das Ziel verfolgt festzustellen, dass die Behauptung
wirklich wahr ist, noch zu erklaren, warum diese wahr ist. Mit dem Beweis werden vielmehr der
Nutzen und die Tragweite des axiomatischen Systems aufgezeigt.

9. Entwicklung von konzeptuellem Verstandnis (Pinto & Tall 1999)

Pinto und Tall (1999) erortern, wie das Verstehen einer Definition mit ihrer Verwendung im Kontext
von Deduktionen zusammenhdngt. Dabei wird deutlich, dass die Betrachtung von Sachverhalten,
Definitionen und logischen Zusammenhadngen bei Beweisflihrenden zu einem konzeptuellen
Verstehen beitragen kann (s. Weber 2002, S. 2).

10. Ubertragung einer bekannten Tatsache in einen neuen Bereich und damit eine Betrachtung
derselben aus einer neuen Perspektive (Hanna und Jahnke 1996, S. 903; Renz 1981, S. 88)

Wird ein mathematischer Sachverhalt innerhalb eines Beweises als Argument verwendet, so erhalt
dieser eine funktionale Deutung im Geflige der Schlussweisen und Bezlige zu anderen Sachverhalten
kénnen dabei deutlich werden. Als ein Beispiel fiir diese Funktion fiihren Reid und Knipping (2010)
den Beweis des Hauptsatzes der Integral- und Differentialrechnung an: , By showing that integrals are
anti-derivatives, the proof repositions numerous facts about the derivatives of various functions as
facts about functions whose integrals are known“ (ebd., S. 78).

Renz (1981) fiihrt diese Funktion von Beweisen am Beispiel der ganzen Zahlen aus:

The integers may first be regarded very concretely in terms of counting and arithmetic. Next we may look at them in
terms of set theory and cardinal and ordinal arithmetic. A change to the axiomatic point of view (Peano) may shed new
light. Model theory (the work of Skolem and others on the nonstandard integers) may show limitations of the
axiomatic approach. A hypermodern category theory approach (Peano-Lawvere) may shed still further light and offer
certain simplifications. (Ebd., S. 88)

11. Intellektuelle Herausforderung/ Selbstrealisierung (de Villiers 1999 S. 8; Renz 1981, S. 87)

Fir Mathematiker kann ein Beweis eine intellektuelle Herausforderung darstellen, die nach
Beendigung eine gewisse Befriedigung verschafft. In diesem Sinne beinhaltet ein Beweis die Funktion
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einer individuellen Selbstrealisierung und Selbsterfiillung. Ein Beweis ist somit auch ein ,Prifstein’ fur
die geistige Ausdauer und den Einfallsreichtum oder die Kreativitat eines Mathematikers.

Zu dieser Funktion bemerkt de Villiers (1999):

To mathematicians proof is an intellectual challenge that they find as appealing as other people may find puzzles or
other creative hobbies or endeavours. Most people have sufficient experience, if only in attempting to solve a
crossword or jigzaw puzzle, to enable them to understand the exuberance with which Pythagoras and Archimedes are
said to have celebrated the discovery of their proofs. Doing proofs could also be compared to the physical challenge of
completing an arduous marathon or triathlon, and the satisfaction that comes afterwards. In this sense, proof serves
the function of self-realization and fulfillment. Proof is therefore a testing ground for the intellectual stamina and
ingenuity of the mathematician (compare Davis & Hersh, 1983: 369). (de Villiers 1999, S. 8; Hervorhebungen im
Original)

12. Asthetik (de Villiers 1990, S. 23; Inglis & Aberdein 2015; McAllister 2005; Mdller-Hill & Spies
2011)

Das Attribut Schénheit bzw. Asthetik wird in Zusammenhang mit verschiedenen Aspekten der
Mathematik verwendet (s. etwa McAllister 2005 oder Mdller-Hill und Spies 2005). Auch Beweise
werden in der Mathematik unterschiedlich in Bezug auf ihre Asthetik beurteilt, wobei einige Beweise
als besonders schon und elegant betrachtet werden (siehe etwa die ausgewahlten Beweisbeispiele in
Aigner und Ziegler 2010 oder in Alsina und Nelsen 2013). Inglis und Aberdein (2015) versuchen im
Kontext von Beweisen das Konstrukt der Schénheit (,,beauty”) genauer zu fassen und subsumieren
unter diesem Aspekt die Teilbereiche Schlichtheit (,simplicity”), epistemische Genugtuung
(,,epistemic satisfaction“) und Erleuchtung (,enlightenment) (Inglis & Aberdein 2005, S. 89ff.)".
Aufgrund der (Teil-)Eigenschaft der Erleuchtung wird diese Beweisfunktion in der Literatur auch mit
der Erklarungsfunktion von Beweisen in Verbindung gebracht (vgl. Reid und Knipping 2010, S. 77).

Die mit dieser asthetischen Bewertung von Beweisen einhergehende Hierarchie kann dazu fiihren,
dass in der Mathematik nach Beweisen gesucht wird, die als besonders dsthetisch bzw. schén gelten.

13. Beweise als Trager mathematischen Wissens (Hanna und Barbeau 2010, Rav 1999)

Rav (1999) bezeichnet Beweise als ,bearers of mathematical knowledge” (ebd., S. 20), da in
Beweisen mathematisches Wissen (in Form von Methoden, Konzepten, Strategien etc.) und dessen
Anwendung offenbar wird. Die damit einhergehende Funktion von Beweisen wird von Rav als
epistemische Funktion (,epistemic funtion”) beschrieben (ebd., S. 19). Hanna und Barbeau (2010)
adaptieren diesen Ansatz und fihren ihn aus didaktischer Perspektive weiter aus: ,proofs could be
accorded a major role in the secondary-school classroom precisely because of their potential to
convey to students important elements of mathematical elements such as strategies and methods”
(ebd., S. 98). Sie illustrieren diesen Ansatz u.a. an der Erarbeitung der folgenden Losungsformel fir
guadratische Gleichungen:

—b+Vb*-4ac
2a ’
Als Ausgangspunkt kann die Betrachtung verschiedener quadratischer Gleichungen dienen und die

X1,2 =

Frage, welche dieser Gleichungen sich wie I6sen lassen. Untersuchungen von Gleichungen der Form
0 = x2 — k (mit k € R) fithren zu der Methode des Faktorisierens bzw. zur Anwendung der dritten

u Vergleiche hierzu die Kriterien fiir mathematische Schénheit in Mller-Hill und Spies (2005, S. 263ff.):
Okonomie, Klarheit, Tragweite und subjektive Wirksamkeit.
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binomischen Formel. Bei der Lésung der allgemeinen quadratischen Gleichung ax* + bx + ¢ = 0 mit
a,b,c e Runda # 0 wird dann z.B. noch die Methode der quadratischen Ergdnzung angewendet.

14. Rekapitulation von wichtigen Ergebnisses (Renz 1981, S. 87)

Renz (1981) fihrt ,to help us remember important or useful results” (ebd., S. 87) als eine weitere
Funktion von Beweisen auf. Er illustriert diese Funktion von Beweisen an dem Additionstheorem des
Tangens: Wer den Beweis des Additionstheorems kennt, kann sich leicht das Ergebnis bzw. das
Theorem herleiten.

Kommentierung der betrachteten Beweisfunktionen unter einer didaktischen Perspektive

Die Verifikation einer Behauptung ist ein zentrales konstituierendes Moment der Beweisaktivitat und
durchzieht als funktionaler Aspekt alle Stadien der Mathematikausbildung. Vor allem aus
didaktischer Perspektive wird jedoch betont, dass (objektive) Verifikation eines Sachverhalts nicht
mit der (subjektiven) Uberzeugung von dessen Giiltigkeit gleichgesetzt werden darf (de Villiers 1990,
S. 18; Weber und Mejia-Ramos 2015). Wahrend Verifikation als Nachweis von Giltigkeit nur im
Rahmen der oben diskutierten ,Strenge’ im Kontext einer zugrunde gelegten Theorie erfolgen kann,
bendtigt man fiir die subjektive Uberzeugung i.A. nicht einen vollstindigen und giiltigen Beweis.
Weber und Mejia-Ramos (2015) zeigen dariber hinaus Beispiele auf, in denen die Gleichsetzung der
objektiven und subjektiven Momente zu Verstdndnisproblemen bei Lernenden und zu
missverstandlichen Forschungsergebnissen fiihren konnen. Beide Funktionen von Beweisen
erscheinen grundlegend fir einen verstandigen Umgang mit Beweisen. Hieraus folgt, dass diesen
beiden Aspekten im unterrichtlichen Geschehen ein entsprechender Raum gegeben werden muss:
dem Beweisen als objektives Nachweisen der Giiltigkeit eines Sachverhalts im Rahmen eines
Theoriegeriists und dem Beweisen fiir die subjektiven Uberzeugung bzgl. der Giiltigkeit eines
Sachverhalts.

In der Literatur wird prominent darauf hingewiesen, dass im Unterrichtsgeschehen das erkldrende
Moment von Beweisen besonders in den Vordergrund gestellt werden sollte (etwa Hersh 1993 und
1997 oder Hanna 2000). Diese Uberzeugung spiegelt sich in der Unterscheidung von ,proofs that
prove and proofs that explain® (Hanna 1989). Was allerdings einen Beweis zu einem ,erkldarenden’
Beweis macht, wird in der Literatur zwar theoretisch erortert (vgl. etwa Hanna 1989 in Anlehnung an
Steiner 1978), empirische Untersuchungen stehen hierzu allerdings noch aus.

Das Strukturieren von Argumenten zu einer Argumentationskette bedeutet bereits eine erste
Systematisierung von Wissen im Sinne einer lokalen Theorie. Deren Einordnung in eine axiomatische
Theorie kann offensichtlich nur erfolgen, wenn ein entsprechendes Theoriegeriist explizit zur
Verfligung steht. Diesen epistemologischen Funktionen kann somit nur nachgekommen werden,
wenn sich der Beweisbegriff der Idee des formalen Beweises anndhert. Diese Beweisfunktion betont
somit die Notwendigkeit der Explizierung einer lokalen und in gewisser Weise auch aufzubauenden
globalen Theorie und eines entsprechenden Konzepts ,formaler’ Beweise.

Die Funktion der Entdeckung im Kontext mathematischer Beweise betont ein aktives und produktives
Moment von Beweisen und verdeutlicht seine Stellung in Prozessen mathematischer
Wissensgewinnung. Wie Komatsu et al. (2014) darlegen, scheint u.a. gerade in dieser Funktion das
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Potential zu liegen, das Beweisen als sinnstiftende Tatigkeit zu erfahren. Hier wird die Notwendigkeit
deutlich, Beweise nicht als eine Standardaufgabe der Mathematik zu verwenden, sondern im Kontext
von Erkenntnisprozessen einzugliedern.

Die Beweisfunktion Konstruktion einer empirischen Theorie tangiert epistemologische und
philosophische Aspekte der Mathematik. Inwieweit diese Aspekte im unterrichtlichen Geschehen
thematisiert werden sollen, gilt es vor dem Hintergrund des jeweiligen Lehr-/Lernszenarios und des
entsprechenden Adressatenkreises zu diskutieren.

Die Kommunikation mathematischer Sachverhalte, gebilindelt in Beweisen, muss einerseits als
Phianomen der fachmathematischen Praxis betrachtet werden und birgt andererseits didaktische
Implikationen. Als Phanomen der fachmathematischen Praxis wird in dieser Beweisfunktion eine
Enkulturationsfunktion (vgl. Abschnitt 8.3.3) von Beweisen evident, da diese Kommunikation
entsprechend giiltiger Normen der jeweiligen fachmathematischen Kommunitat erfolgen muss. Aus
didaktischer Perspektive motiviert diese Funktion die Frage nach Ausfiihrlichkeit von Beweisen und
der Darstellung von Beweisen, damit diese von anderen Personen gelesen und verstanden werden
kdénnen.

Die Funktionen Erforschung der Giite bzw. Bedeutung einer Definition, eines Satzes oder Sachverhalts
und/oder einer axiomatischen Theorie, Entwicklung von konzeptuellem Verstédndnis und auch die
Ubertragung einer bekannten Tatsache in einen neuen Bereich und damit eine Betrachtung derselben
aus einer neuen Perspektive wenden den Blick von dem Beweisprodukt auf die verwendeten
mathematischen Sachverhalte und Methoden und scheinen dabei das Potential zu bieten, den Sinn
und Nutzen prazise formulierter fachmathematischer Definitionen und Satzen im Rahmen
mathematischer Theorien zu verdeutlichen und gleichsam zu motivieren.

Asthetik und intellektuelle Herausforderungen erscheinen in erster Linie als subjektive Momente im
Umgang mit Beweisen. Entsprechende Erfahrungen kdnnen von Lernenden gemacht werden, damit
einhergehende Wertschiatzungen von Beweisen scheinen dabei nicht durch Lehrende (von ,auBen’)
herbeigefiihrt werden zu kénnen.

Die Sichtweise auf Beweise als Trdger mathematischen Wissens und auf Beweise zur Rekapitulation
von wichtigen Ergebnissen scheint vor allem nach erfolgter Beweiskonstruktion in einer Rickschau
den Nutzen von Beweisen zu betonen. Die Riickschau bzgl. Reflexion eines Beweis- oder
Problemldseprozesses gilt als wichtiges Lernmoment entsprechender Lernprozesse (Polya 1967).
Diese Funktion von Beweisen scheint auch einen Fokus fiir die Reflexion von Beweisprozessen
bereitzustellen.

Als Grundfrage bleibt allerdings, wie man ,Funktionen von Beweisen’ unterrichten kann. Da es hier
mehr um ein Bewusstsein als um rein deklaratives Wissen geht, wird in der vorliegenden Arbeit die
These vertreten, dass es daher zentral ist, Lernanlasse zu bieten, in denen Studierende die
verschiedenen Funktionen von Beweisen wiederholt erfahren konnen. Die Bewusstmachung,
Diskussion und Reflexion entsprechender Lernhandlungen wird in diesem Kontext als zentral
erachtet.
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2.2 Ausgewahlte Aspekte zum Erlernen der Beweisaktivitit: Das Konzept
der Selbstwirksamkeit und Einstellungen zur Mathematik und zum

Beweisen

In diesem Abschnitt werden zwei ausgewahlte Aspekte thematisiert, denen potentielle Einfllsse auf
das Erlernen der Beweisaktivitdt zugesprochen werden: das Konzept der Selbstwirksamkeit und die
Einstellungen zur Mathematik. Es folgt eine Darstellung der theoretischen Grundlagen dieser
Konzepte, verbunden mit einer Erdrterung, inwiefern diese Aspekte auf das Erlernen der
Beweisaktivitat Einfluss nehmen konnten. Es werden diese Aspekte thematisiert, da diese auch bei
der spateren empirischen Beforschung der hier thematisierten Lehrveranstaltung eine Rolle spielen
werden.

2.2.1 Selbstwirksamkeit und Beweisen

Das Konzept der Selbstwirksamkeit bzw. Selbstwirksamkeitserwartung wurde von Albert Bandura
entwickelt und beschreibt ,Beliefs in one's capabilities to organize and execute the courses of action
required to manage prospective situations” (Bandura 1995, S. 2). Aus didaktischer Perspektive ist
dieses Konzept von grofRer Bedeutung, da es u.a. einen Erklarungsansatz fiir motivationale Aspekte

bietet:
Efficacy expectations determine how much effort people will expend and how long they will persist in the face of
obstacles and aversive experiences. The stronger the perceived self-efficacy, the more active the efforts. Those
who persist in subjectively threatening activities that are in fact relatively safe will gain corrective experiences
that reinforce their sense of efficacy, thereby eventually eliminating their defensive behavior. Those who cease
their coping efforts prematurely will retain their self-debilitating expectations and fears for a long time. (Bandura
1977, S. 194)

Nach Bandura (1977, S. 195ff.) kdnnen verschiedene Aspekte die Selbstwirksamkeit einer Person
beeinflussen. Eigene Erfolgserlebnisse haben, gerade in schwierigen Situationen, einen groRen
Einfluss auf die eigene Selbstwirksamkeitserwartung. Selbst Erfolgserlebnisse anderer, denen man
dhnliche Fahigkeiten zuschreibt, starken die eigene Selbstwirksamkeit, was unter dem Begriff der
stellvertretenden Erfahrung subsumiert wird. Auch verbale Ermutigungen kdnnen den Glauben einer
Person in die eigenen Fahigkeiten starken. Schliellich hat auch die emotionale Erregung einer Person
Auswirkungen auf die Selbstwirksamkeit: Stress und ein Gefiihl der Uberforderung schwichen das
Vertrauen in die eigene Person und begiinstigen Selbstzweifel.

Die Thematik der Selbstwirksamkeit wird aktuell in der Mathematikdidaktik in verschiedenen
Bereichen umfassend diskutiert. Im Folgenden soll nur der Teilbereich dargestellt werden, der sich
auf das Beweisen bezieht.

Vor allem Selden und Selden (2012 und 2013) betonen die Bedeutung der
Selbstwirksamkeitserwartung fiir das Erlernen der Beweisaktivitdt. Zentral ist hierbei der Aspekt,
dass das Beweisen als ein Problemldseprozess verstanden werden kann, da fiir die Konstruktion des
Beweises keine Losungsroutine zur Verfliigung steht und die Beweisschritte als mehrschrittige
Losungswege selbst entwickelt werden miissen. Beim Erlernen der Beweisaktivitat ist somit, wie auch
beim Problemldsen, ein gewisses MaR an Durchhaltevermégen unerlasslich, was durch eine hohe
Selbstwirksamkeitserwartung unterstiitzt wird. Auf diese Bedeutung der Selbstwirksamkeits-
erwartung beim Problemldsen weist auch Krantz (2012) hin:

You must have adequate faith in yourself to know that you can battle your way through the problems. ... Not
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unrelated to the idea of tenacity is the property of being comfortable with delayed gratification. ... Once you are
challenged to generate your own proofs and counterexamples, you are frequently at odds, and often frustrated. ...
The unifying theme for dealing with the need for tenacity and the need to deal with delayed gratification is self-
confidence. You need to believe in your own abilities, and you need to believe that you can actually do this work.
(Krantz 2012, S. 97 - 99; zitiert aus Selden & Selden 2012, o. S.; Hervorhebung im Original)

Fiir die Beweisdidaktik bedeutet dies, dass Lernende (iberhaupt die Moglichkeit erhalten missen,
eine (hohe) Selbstwirksamkeitserwartung zum Beweisen Uberhaupt aufbauen zu kénnen. Folglich
sollten Lernende friih mit eigenen Beweiskonstruktionen beginnen und entsprechende
Beweisaufgaben sollten zunadchst so gestellt sein, dass Lernende auch Erfolgserlebnisse haben
kénnen, um ihre eigene Selbstwirksamkeitserwartung und die ihrer Mitlernenden steigern zu
koénnen. SchlieRlich miissen sie an gut gewahlten Problemstellungen die Erfahrung machen, dass sich
Durchhalten auszahlen kann (vgl. Selden & Selden 2013, S. 254).

In der Literatur wird von positiven Auswirkungen der Selbstwirksamkeit auf mathematische
Leistungen im Allgemeinen (etwa Hackett und Betz 1989) und auch speziell auf die
Problemldsefahigkeiten hingewiesen (etwa Pajares und Graham 1999, Pajares und Kranzler 1995,
Pajares und Miller 1994). Entsprechende Befunde bzgl. des Beweisens stehen dabei noch aus.

2.2.2 Einstellungen zur Mathematik und das Beweisen

In der mathematikdidaktischen Forschung gerieten in der zweiten Halfte des zwanzigsten
Jahrhunderts ,subjektive Theorie” bzw. ,Einstellungen” (Grigutsch et al. 1998, S. 3) von Lernenden
und Lehrenden zur Mathematik in den Fokus des Interesses. Hierbei wird davon ausgegangen, dass
solche Einstellungen zur Mathematik das Lernen und Lehren von Mathematik beeinflussen und Gber
erworbene Einstellungen zur Mathematik der real vorherrschende Mathematikunterricht reflektiert
werden kann (ebd., S. 3f.; eine umfassende Darstellung der Bedeutung von Einstellungen zur
Mathematik erfolgt in Leder et al. (2006) und in Schléglmann und Maal (2009)).

Ein Problem bei der Diskussion um Einstellungen (bzw. ,Beliefs’) zur Mathematik sind dabei die
Verwendung verschiedener Begrifflichkeiten und die teilweise unterschiedlichen Bedeutungen, die
den Begriffen in verschiedenen Sprachen zugewiesen werden. In der deutschsprachigen
Mathematikdidaktik werden mit ,Einstellungen zur Mathematik‘ haufig die von Grigutsch et al. (1998)
herausgearbeiteten vier verschiedene Facetten von Einstellungen zur Mathematik thematisiert (s.u.),
welche auch als , Beziehungen zur Mathematik” (etwa Fischer 2014, elektronischer Anhang, S. 12),
,epistemologische Uberzeugungen zur Natur der Mathematik“ (etwa Laschke und Blémeke 2014, S.
109) oder als ,mathematische Weltbilder” (Weygandt & Oldenburg 2014, S. 1307) bezeichnet
werden. Im internationalen Kontext werden unter dem Begriff ,Beliefs’” auch die von Ernest (1989)
herausgestellten drei Aspekte zum Wesen der Mathematik verstanden.

Ubergeordnet wird in der vorliegenden Arbeit unter ,Einstellungen” (bzw. ,Beliefs“) nach Philipp
(2007) das Folgende verstanden:

Psychologically held understandings, premises, or propositions about the world that are thought to be true.
Beliefs are more cognitive, are felt less intensely, and are harder to change than attitudes. Beliefs might be
thought of as lenses that affect one’s view of some aspect of the world or as dispositions toward action. Beliefs,
unlike knowledge, may be held with varying degrees of conviction and are not consensual. Beliefs are more
cognitive than emotions and attitudes. (Ebd., S. 259)
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Da ein Verstandnis des mathematischen Werkzeuges ,Beweis’ (die Konstruktion von Beweisen, ihre
Bedeutungen und Funktionen etc.) eng mit dem individuellen vorliegenden Verstandnis von
Mathematik (bzw. mit der jeweiligen Einstellung zur Mathematik) verbunden zu sein scheint (vgl.
etwa Conner et al. 2011, S. 488; Furinghetti & Morselli 2009, S. 60f.; Solomon 2006, S. 377ff.), fanden
die Einstellungen zur Mathematik auch in verschiedenen Studien zur Beweisdidaktik Beachtung (s.
Abschnitt 2.4.3). Dabei kann vermutet werden, dass bei einer statischen, sehr formal gepragten
Sichtweise auf die Mathematik die formalen Aspekte beim Beweisen (entsprechende Darstellung und
Herausstellung der Schlussweisen) und die Funktion der Verifikation betont werden, wahrend bei
einer eher dynamischen, prozessorientierten Sicht der Beweisprozess als solcher, verbunden mit den
Beweisfunktionen Uberzeugung und Erkldrung, in den Vordergrund riickt.

In der Forschung zu dieser Thematik lassen sich zwei verschiedene Hauptbetrachtungsweisen
ausmachen, die sich auf unterschiedliche Grundlagenarbeiten stitzen: die ,Einstellungen zur
Mathematik” nach Grigutsch et al. (1998) und die ,,Beliefs“ nach Ernest (1989). Um die Ausrichtungen
dieser beiden Betrachtungsweisen deutlich zu machen, werden im Folgenden die entsprechenden
Grundlagenarbeiten skizziert.

»Einstellungen zur Mathematik” nach Grigutsch et al. (1998)

Grigutsch et al. (1998) arbeiten bei Mathematiklehrerinnen und -lehrern empirisch verschiedene
Einstellungen gegeniber der Mathematik heraus. Die Autoren gehen dabei von der folgenden
Grundunterscheidung von Sichtweisen auf Mathematik aus: In der statischen Sicht auf Mathematik
steht das (fertige) Theoriegebdude der Mathematik im Vordergrund; hierbei geht es um
angesammeltes Wissen in Form von Definitionen, Satzen, Beweisen etc. Demgegeniiber wird bei der
dynamischen Sicht der Prozesscharakter der Mathematik betont: In der Beschaftigung mit
Mathematik konnen Erfahrungen gemacht, Zusammenhange entdeckt und kann somit neues Wissen
gewonnen werden. Ausgehend von diesen beiden Polen arbeiten die Autoren die folgenden vier
verschiedenen Einstellungen gegeniiber der Mathematik heraus:

1. Der Formalismus-Aspekt
Bei dieser Einstellung zur Mathematik wird der Formalismus besonders betont: ,Mathematik
ist gekennzeichnet durch eine Strenge, Exaktheit und Prazision auf der Ebene der Begriffe
und der Sprache, im Denken (,logischen’, ,objektiven’ und fehlerlosen Denken), in den
Argumentationen, Begriindungen und Beweisen von Aussagen sowie in der Systematik der
Theorie (Axiomatik und strenge deduktive Methode)“ (ebd., S. 17).

2. Der Anwendungsaspekt
Bei einer vorliegenden Betonung dieses Aspekts wird ein direkter Anwendungsbezug oder
ein praktischer Nutzen in der Mathematik gesehen: ,Kenntnisse in Mathematik sind fir das
spatere Leben der Schiiler wichtig: Entweder hilft Mathematik, alltagliche Aufgaben und
Probleme zu l6sen, oder sie ist nitzlich im Beruf. Daneben hat Mathematik noch einen
allgemeinen, grundsatzlichen Nutzen fur die Gesellschaft” (ebd., S. 18).

3. Der Prozess-Aspekt

Im Prozess-Aspekt wird eine dynamische Sicht auf Mathematik ausgedriickt, im Zentrum
steht der Problemldseaspekt der Mathematik mit dem Ziel der Erkenntnisgewinnung:
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Es geht dabei einerseits um das Erschaffen, Erfinden bzw. Nach-Erfinden (Wiederentdecken) von
Mathematik. Andererseits bedeutet dieser Erkenntnisprozeff auch gleichzeitig das Verstehen von
Sachverhalten und das Einsehen von Zusammenhangen. Zu diesem problembezogenen Erkenntnis- und
VerstehensprozeR gehdren maRgeblich ein inhaltsbezogenes Denken und Argumentieren sowie Einfille,
neue ldeen, Intuition und das Ausprobieren. Der ProzeR-Aspekt drickt die dynamische Sicht von
Mathematik aus. (Ebd., S. 18f.)

4. Der Schema-Aspekt
Bei dieser Einstellung zur Mathematik steht der Werkzeugcharakter der Mathematik,
begriindet auf Algorithmen und Schemata, im Vordergrund:

Mathematik wird gekennzeichnet als Sammlung von Verfahren und Regeln, die genau angeben, wie man
Aufgaben |6st. Die Konsequenz fir den Umgang mit Mathematik ist: Mathematik-Betreiben besteht
darin, Definitionen, Regeln, Formeln, Fakten und Verfahren zu behalten und anzuwenden. Mathematik
besteht aus Lernen (und Lehren!), Uben, Erinnern und Anwenden von Routinen. (Ebd., S. 19)

Diese Einstellungen zur Mathematik und die durch Grigutsch et al. konstruierten Skalen wurden in
verschiedenen Studien verwendet (etwa in dem Projekt LIMA [Lehrinnovation in der
Studieneingangsphase ,Mathematik” im Lehramtsstudium®“ — Hochschuldidaktische Grundlagen,
Implementierung und Evaluation] (vgl. Biehler et al. 2013, S. 40), der PISA Studie 2003 (vgl. Pisa-
Konsortium 2006, S. 247) und in dem Projekt TEDS-M [Teacher Education and Development Study—
Learning to Teach Mathematics] (vgl. Laschke & Blomeke 2014, S. 109ff.).

Die ,Beliefs” nach Ernest (1989)

Nach Ernest (1989) beeinflussen vor allem drei Bereiche von ,Beliefs“ das Lehren von Mathematik:
das Wesen der Mathematik (,,the nature of mathematics”), das Wesen des Mathematikunterrichts
(,the nature of mathematical teaching”) und der Prozess des Mathematiklernens (,the process of
learning mathematics”). Da im Kontext der vorliegenden Arbeit nur der erste Aspekt berlicksichtigt
wird, wird nur dieser im Folgenden weiter ausgefiihrt.

Das so bezeichnete ,Wesen der Mathematik® wird von Ernest (1989) in Anlehnung an Thompson
(1984) in die drei folgenden philosophischen Sichtweisen auf Mathematik unterteilt:

1. die problemzentrierte Sicht auf die Mathematik
»[...] mathematics as a dynamic, continually expanding field of human creation and invention,
a cultural product. Mathematics is a process of enquiry and coming to know, not a finished
product, for its results remain open to revision.” (Ernest 1989, 0. S.)

2. die platonistische Sicht auf Mathematik
,mathematics as a static but unified body of certain knowledge. Mathematics is discovered,
not created.” (Ebd., 0. S.)

12 »,The teacher’s conception of the nature of mathematics, is his or her belief system concerning the nature of
mathematics as a whole” (Ernest 1989, 0. S.).
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3. die instrumentelle Sicht
»,mathematics is an accumulation of facts, rules and skills to be used in the pursuance of
some external end. Thus mathematics is a set of unrelated but utilitarian rules and facts.”
(Ebd., 0.S.)

Diese Konzeptualisierung wurde international auch im Kontext verschiedener Studien zur
Beweisdidaktik verwendet (etwa Conner 2011; Furinghetti & Moreselli 2009 und 2011; Yoo 2008).

Forschungsergebnisse zu dem Zusammenhang von Einstellungen zur Mathematik und dem Beweisen
werden in dem Abschnitt 2.4.3 zusammengetragen.

2.3 Argumentieren, Begriinden und Beweisen

Drei zentrale Begriffe des theoretischen Umfelds dieser Arbeit sind Argumentieren, Begriinden und
Beweisen. Nachdem bisher die Bedeutung des Beweisbegriffs erértert wurde, werden im Folgenden
die Begriffe Argumentieren und Begriinden und ihre Beziehungen zum Beweisen genauer betrachtet.

2.3.1 Argumentieren

In der Mathematikdidaktik gibt es keine geteilte Definition dessen, was unter ,Argumentation’
verstanden wird (vgl. Pedemonte 2007, S. 26), weshalb der Begriff in der Literatur mit
unterschiedlichen Akzentuierungen verwendet wird. Entsprechende Begriffserérterungen sind u.a. in
folgenden Arbeiten enthalten: Brunner (2014, S. 27ff.), Schwarzkopf (2000, S. 79ff.) und Reid und
Knipping (2003, S. 153). Als Ausgangspunkt der Begriffserorterung soll im Folgenden der
Argumentationsbegriff von Habermas dienen, der sich in verschiedenen Arbeiten fiir die
Mathematikdidaktik als fruchtbar erwiesen hat (etwa Knipping 2003, S. 34ff.; Brunner 2013, S. 99f.).
Auf diesem aufbauend werden konstituierende Momente von Argumentationen herausgearbeitet.
Diese Merkmalsanalyse wird durch die Strukturbeschreibung im Sinne des pragmatischen
Argumentationsbegriffs von Toulmin (1958) erganzt. Hierbei wird ein Maoglichkeitsspektrum
aufgezeigt, welches schliellich eine Erdrterung des Verhaltnisses von Argumentation und Beweis
ermoglicht. Die Argumentationsbegriffe von Habermas und Toulmin bilden dann den Rahmen, in
dem anschlieBend das mathematische Argumentieren betrachtet werden kann. Es sei hierbei
angemerkt, dass durch die Anlehnung an Habermas und Toulmin zwei verschiedene Sichtweisen auf
Argumentation miteinander verbunden werden: Argumentieren als diskursive Tatigkeit (nach
Habermas, vgl. auch Perelman 1970) und Argumentieren als , Generierung, Untersuchung und
Absicherung von Vermutungen und Hypothesen in Bezug auf deren (objektiven oder individuell
eingeschatzten) Wahrheitsgehalt” (Reiss und Ufer 2009, S. 157 in Anlehnung an Balacheff 1999).

Habermas (1999) schreibt:

Argumentation nennen wir den Typus von Rede, in dem die Teilnehmer strittige Geltungsanspriiche thematisieren
und versuchen, diese mit Argumenten einzuldsen oder zu kritisieren. Ein Argument enthdlt Griinde, die in
systematischer Weise mit dem Geltungsanspruch einer problematischen AuBerung verkniipft sind. Die ,Starke”
eines Arguments bemiBt sich, in einem gegebenen Kontext, an der Triftigkeit der Griinde; diese zeigt sich u.a.
daran, ob ein Argument die Teilnehmer eines Diskurses tUberzeugen [...] kann. (Ebd., S. 38; Hervorhebungen im
Original)

Argumentieren findet als ein Typus von Rede, nicht notwendigerweise miindlich, innerhalb einer

sozialen Interaktion, eines Diskurses statt, in welchem eine strittige Position vorliegt. Argumente

werden in systematischer Weise vorgebracht, miteinander verknilpft und stiitzen bzw. kritisieren

einen problematischen Geltungsanspruch. Ein Argument hat dabei keine in sich fest stehende
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Starke’, diese ergibt sich in dem jeweiligen Kontext. Die funktionale Ausrichtung einer
Argumentation ist die Uberzeugung des Gegeniibers fiir die Annahme des strittigen

Geltungsanspruchs (vgl. hierzu auch die Darstellungen in Brunner 2013, S. 99f.).

Es sind dies die konstituierenden Elemente und auch charakteristischen Merkmale, die eine
Argumentation ausmachen. In welchem Ausmal} diese Elemente allerdings verlangt bzw. betont
werden, bestimmt das vorherrschende Verstandnis von Argumentation. Eine Exaktifizierung dieser
Elemente wird im Folgenden nur bei den Aspekten vorgenommen, die dabei helfen, das Verhaltnis
von Argumentation und Beweis besser charakterisieren zu kénnen. Die Offenheit der anderen
Aspekte ermoglicht die Verwendung eines weiter gefassten Argumentationsbegriffs.

Im Weiteren wird die Darstellung der Argumentationsstruktur von Toulmin (1958, S. 94ff.)
verwendet, um genauer beschreiben zu koénnen, wie die Stiitzung des (problematischen)
Geltungsanspruchs geschieht; fir eine ausfiihrlichere Darstellung desselben verweise ich auf Meyer
(2007, S. 84ff.), dessen Ubersetzungen der englischen Begriffe auch hier verwendet werden.

In der Begrifflichkeit Toulmins wird von dem Datum, welches als wahr angesehene Aussagen
beinhaltet, auf die behauptete Konklusion geschlossen. Als Verbindung zwischen Datum und
Konklusion wird eine Regel eingesetzt, durch die der Schluss auf die Konklusion legitimiert wird.
Diese Regel wird in dem konkreten Fall wiederum durch eine Stiitzung abgesichert. Entsprechend
dem jeweiligen Datum und der angewandten Schlussregel muss die Konklusion allerdings nicht mit
,Sicherheit’ folgen, dies ist z.B. gerade bei Alltagsargumentationen der Fall, wenn eine unzulassige
Verallgemeinerung vorgenommen wird. Die Konklusion gilt dann eher ,vermutlich® oder
,wahrscheinlich’. Diese Begrifflichkeiten, die angeben, mit welchem Grad an Sicherheit die
Konklusion gefolgert werden kann, wird als modaler Operator bezeichnet. SchlieRlich kdnnen fiir das
Eintreten der Konklusion noch Ausnahmebedingungen angegeben werden. Das vollstandige Toulmin-
Schema wird in Abbildung 4 wiedergegeben, ein entsprechendes Beispiel (nach Toulmin 1958, S. 105)
wird in Abbildung 5 dargestellt.

folglich gilt Modaler
Datum —
. Operator
weil

es sei denn

Regel
Ausnahme-
aufgrund von bedingung
Stiitzung
Abbildung 4: Das allgemeine Toulmin-Schema
Harry wurde auf folglich gilt Harry ist
den Bermuda- vermutlich britischer
inseln geboren weil Staatsbiirger
Ein Mann, der auf den Bermudainseln es seidenn
geboren wurde, ist normalerweise ein
englischer Staatsbiirger
Er wurde in
aufgrund von S
g eingebiirgert.

I geltende Gesetze und Vorschriften

Abbildung 5: Beispiel eines angewendeten Toulmin-Schemas (nach Toulmin 1958,
S. 105
) 54



Es ist, wie oben angemerkt, bei Argumentationen zuldssig, dass die Konklusion nicht
notwendigerweise, also mit Sicherheit aus der Verbindung von Datum und Regel folgt, da z.B.
Stitzungen einer Regel, die auf visuellen Eindriicken oder empirischer Evidenz basieren, hier nicht
ausgeschlossen sind. Das bedeutet, dass modale Operatoren wie z.B. ,vermutlich® oder
,wahrscheinlich’ durch die Anwendung nicht-deduktiver Schliisse entstehen kénnen und durchaus
zulassig sind (vgl. hierzu auch das plausible SchlieRen bei Polya 1969, S. 9ff.). Und wie Pedemonte
(2007, S. 31ff.) mithilfe des Toulmin-Schemas oder auch Boero (1999, S. 4) herausarbeiten, werden
auch bei mathematischen Argumentationen Schlussweisen verwendet (wie etwa Abduktion oder
(unvollstandige) Induktion), die zu ,nicht sicheren’ Folgerungen fiihren. Weiter ist es an dieser Stelle
offen, mit welchen sprachlichen Mitteln eine Argumentation stattfindet, wobei diese sowohl
mundlich als auch schriftlich erfolgen kann.

Somit eroffnet sich ein Moglichkeitsspektrum bzgl. des Argumentationsbegriffs, durch das
verschiedene Formen des Argumentierens zuzulassen sind: Schliisse auf die Konklusion miissen nicht
mit Notwendigkeit erfolgen, durch entsprechende Verbindung von Regel und Stitzung sind auch
nicht-sichere Schllisse in Argumentationen zugelassen. Die Ausnahmebedingung kann dabei als
Ausnahmeregelung eines sonst notwendigen Schlusses oder eines nicht sicheren Schlusses auftreten.
Auch werden keine expliziten Anspriiche an die Darstellungs- bzw. Kommunikationsmittel erhoben.

2.3.1.1 Mathematisches Argumentieren

Da im Kontext der Mathematik spezifische Anspriiche an Argumentationen erhoben werden bzw. ein
bestimmtes Tatigkeitsbild damit verbunden wird, wird haufig speziell von ,mathematischem
Argumentieren’ gesprochen. Im Folgenden wird zundchst dargestellt, was im Sinne der
Bildungsstandards (KMK 2012) unter dem Begriff ,mathematisch Argumentieren” verstanden
werden kann, bevor Diskrepanzen des schulmathematischen Argumentierens zum oben erorterten
Argumentationsbegriff im Sinn von Habermas aufgezeigt werden.

Vor dem Hintergrund der Bildungsstandards im Fach Mathematik fir die Allgemeine Hochschulreife
(KMK 2012) kann ,mathematisch Argumentieren’ als Kompetenzbereich aufgefasst werden, unter
den verschiedene Facetten subsumiert werden (ebd., S. 14; Hervorhebungen im Original):

Zu dieser Kompetenz gehoren sowohl das Entwickeln eigenstandiger, situationsangemessener mathematischer
Argumentationen und Vermutungen als auch das Verstehen und Bewerten gegebener mathematischer Aussagen.
Das Spektrum reicht dabei von einfachen Plausibilitatsargumenten liber inhaltlich-anschauliche Begriindungen bis
zu formalen Beweisen. Typische Formulierungen, die auf die Kompetenz des Argumentierens hinweisen, sind
beispielsweise ,,Begriinden Sie!”, ,Widerlegen Sie!“, , Gibt es?” oder ,,Gilt das immer?“.

Die drei Anforderungsbereiche zu dieser Kompetenz lassen sich wie folgt beschreiben:

Anforderungsbereich I: Die Schilerinnen und Schiiler konnen
e Routineargumentationen (bekannte Satze, Verfahren, Herleitungen usw.) wiedergeben und anwenden
e einfache rechnerische Begriindungen geben oder einfache logische Schlussfolgerungen ziehen
e Argumentationen auf der Basis von Alltagswissen fiihren

Anforderungsbereich Il: Die Schiilerinnen und Schiiler kdnnen

e (iberschaubare mehrschrittige Argumentationen und logische Schliisse nachvollziehen, erldutern oder
entwickeln
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Anforderungsbereich Ill: Die Schiilerinnen und Schiiler kdnnen
e  Beweise und anspruchsvolle Argumentationen nutzen, erldutern oder entwickeln
e verschiedene Argumente nach Kriterien wie Reichweite und Schlissigkeit bewerten

Es wird hierbei deutlich, welche verschiedenen Aktivitdten und Verifikationsmuster unter der
Kompetenz ,mathematisch Argumentieren” gefasst werden, wobei hier auch explizit das Beweisen
eingeordnet wird.

Reiss und Ufer (2009) betonen dabei den zusammenhdngenden Tatigkeitsprozess, in den
mathematisches Argumentieren einzuordnen ist:

Mathematisches Argumentieren ist dabei weit gefasst als eine Tatigkeit, die auf die Untersuchung und
Absicherung von Hypothesen und offenen Fragen ausgerichtet ist. Insbesondere sind durchaus auch nicht-
deduktive Formen der Argumentation mit eingeschlossen wie Schliisse durch Analogie, Metaphern, durch
Abduktion oder durch Induktion. In dieser Form kann mathematisches Argumentieren ergebnisoffen sein in dem
Sinne, dass in einer bestimmten mathematischen Situation eine als (plausible) Vermutung zu formulierende
RegelmaRigkeit gesucht oder eine vorgegebene Vermutung auf ihre Plausibilitdt hin geprift und gegebenenfalls
angepasst bzw. korrigiert wird. (Ebd., S. 157)

Betrachtet man die hierbei skizzierte Aktivitdt mathematischen Argumentierens in der
Unterrichtspraxis, so werden verschiedene Diskrepanzen zum oben erérterten Argumentations-
begriff im Sinne von Habermas deutlich (vgl. hierzu die Ausfiihrungen in Brunner 2014, S. 28; Cramer
2014, S. 293; Knipping 2003, S. 34ff.). Zunachst ist der Ausgangspunkt einer Argumentation im
Unterricht nur selten durch eine unklare oder strittige Situation gegeben. Somit sind
Argumentationen im Mathematikunterricht nicht auf Klarung einer strittigen Position ausgelegt,
Schwarz et al. (2010, S. 119ff.) sprechen daher vom dialektischen Charakter (schulmathematischer)
Argumentationen. Unterschiedliche Geltungsanspriiche entstehen nicht oder eher selten im sozialen
Miteinander, sondern werden vom Lehrer bzw. durch Aufgabenstellungen initiiert. Die
diskursbedingte Argumentation ldsst sich im Unterricht daher haufig als gemeinsames Problemldsen
interpretieren: ,Schiiler (werden) in der Klasse in der Regel in Interaktionsprozesse eingebunden, die
in der Gesamtheit ihrer Handlungen eine Argumentation erzeugen” (Krummheuer & Brandt 2001, S.
18, zitiert nach Knipping 2003, S. 35). Dariber hinaus sind im unterrichtlichen Diskurs weitere
Pramissen nicht gewaéhrleistet, die Habermas (1983, S. 97ff) als notwendige
Entstehungsbedingungen fiir eine gelingende Argumentation herausgestellt hat, wie etwa die
Gleichberechtigung aller Beteiligten, die Freiheit von Zwangen und die gemeinsame Festlegung der
Inhalte (vgl. hierzu Cramer 2014, S. 293f. und 2015, S. 348f.; Habermas 1983, S. 971f.).

Insgesamt kann somit festgehalten werden, dass mathematisches Argumentieren allgemein als
,Untersuchung und Absicherung von Hypothesen und offenen Fragen” (s.0.) verstanden werden
kann. Diese Gegenstande der Untersuchung missen dabei nicht notwendig ,strittige
Geltungsanspriiche’ in einem sozialen Miteinander von gleichberechtigten Beteiligten im Sinne von
Habermas sein, sie kdnnen auch durch Dritte (Lehrer, Schulbuch etc.) an einzelne Personen
herangetragen werden. Die Aktivitdt des mathematischen Argumentierens kann dabei verschiedene
Formen von Argumentationen umfassen, welche bereits oben im Kontext der Erérterung des
Toulmin-Schemas aufgezeigt wurde. Hierunter fallen im Sinne der Bildungsstandards u.a.: einfache
Plausibilitditsargumente, Schliisse durch Analogie, durch Abduktion oder durch Induktion,
Metaphern, inhaltlich-anschauliche Begriindungen und auch formale Beweise.
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2.3.2 Das Verhiiltnis zwischen Argumentation und Beweis

Wie oben gezeigt wurde, herrscht Uber die Bedeutung der Begriffe Argumentation und Beweis kein
allgemeiner Konsens. Es Uberrascht daher nicht, dass liber das Verhaltnis dieser Begriffe zueinander
in der Literatur keine Einigkeit besteht. Zusammenfassende Beitrage zu dieser Diskussion werden u.a.
in Brunner (2014, S. 29ff.), Durand-Guerrier et al. (2012, S. 353) und Knipping (2003, S. 34ff.)
gegeben. Auf der einen Seite werden Argumentieren und Beweisen als zwei unterschiedliche
Tatigkeiten betrachtet. Diese Sichtweise wird prominent von Balacheff (1991), Duval (1991, 1995 und
1999), Perelman (1970) und Perelman und Olbrechts-Tyteca (1969) vertreten. Dem gegeniber
betonen vor allem Douek (2000) und Pedemonte (2007) die Parallelen der Begrifflichkeiten und
betrachten Beweise als eine spezielle Form der Argumentation. Zunachst wird im Folgenden die erste
Perspektive skizziert, bevor ausgefiihrt wird, warum in der vorliegenden Arbeit der zweite
Standpunkt eingenommen wird.

Balacheff (1991) begriindet den Unterschied zwischen Argumentieren und Beweisen aus einer
sozialen und epistemologischen Perspektive:

But we do consider that argumentation and mathematical proof are not of the same nature: The aim of
argumentation is to obtain the agreement of the partner in the interaction, but not in the first place to establish
the truth of some statement. As a social behavior it is an open process, in other words it allows the use of any
kind of means; whereas, for mathematical proofs, we have to fit the requirement for the use of some knowledge
taken from a common body of knowledge on which people (mathematicians) agree. As outcomes of
argumentation, problems' solutions are proposed but nothing is ever definitive. (Ebd., S. 188f.)

Als charakteristischer Unterschied wird hier zunachst die funktionale Ausrichtung von Argumentieren
und Beweisen angefiihrt. Der Hauptgedanke liegt allerdings in dem sozial-entwickelten Verstandnis
von Argumentation begriindet: Im Gegensatz zum Beweis ist der Argumentationsbegriff offen fir
verschiedene Bedeutungen.

Diese Sichtweise auf den Unterschied zwischen Argumentieren und Beweisen durch Betonung der
unterschiedlichen Funktionen und des sozial-entwickelten Verstandnisses von Argumentieren lasst
sich durch die epistemologischen und kognitiven Perspektiven in Duval (1995 und 1999) ergdnzen.
Die Ausfuhrungen von Knipping (2003, S. 36f.) zu dieser Thematik werden im Folgenden
zusammenfassend wiedergegeben und durch die Perspektive in Duval (1991) ergénzt.

Argumentationen finden in einem sozialen Kontext statt und haben die Uberzeugung eines
Gegeniibers zum Ziel. Der (epistemische) Wert der vorgebrachten Argumente hangt dabei auch von
den subjektiven Vorstellungen und Uberzeugungen der Beteiligten ab; hier steht der semantische
Gehalt der Argumente im Vordergrund. Im Gegensatz dazu, so Duval (1995, S. 223ff.), steht beim
Beweisen nicht eine Uberzeugung im sozialen Diskurs, sondern der Nachweis einer Giiltigkeit
innerhalb eines Sachkontextes im Zentrum. AusschlielRlich die mit dem gestellten Problem sachlich
zusammenhangenden Aspekte sind hier von Bedeutung. Innerhalb der Mathematik wird den
verschiedenen Aussagen ein theoretischer Status (Axiom, Definition, Satz etc.) zugeordnet, der
zugleich seinen epistemischen Wert konstituiert: Innerhalb von Beweisen bestimmt der theoretische
epistemische Wert den Status eines Arguments, wodurch der semantische epistemische Wert
verdrangt wird (vgl. Knipping 2003, S. 36 nach Duval 1995, S. 225).

Auch Perelman (1970) nutzt die funktionale Ausrichtung von Argumentationen auf die Uberzeugung,
um den Begriff gegen das Beweisen abzugrenzen, und betont die Unsicherheit von Argumentationen:
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Whereas mathematical proof in its most perfect form is a series of structures and of forms whose progression
cannot be challenged, argumentation has a non-constraining character. It leaves to the author hesitation, doubt,
freedom of choice; even when it proposes rational solutions, non is guaranteed to carry the day. (Ebd., S. 41,
zitiert nach Balacheff 1999, S. 1)

Perelman und Olbrechts-Tyteca (1969, S. 13f.) kontrastieren Argumentation mit dem formalen
Beweis der mathematischen Logik®. Gerade in der Darstellung des formalen Beweises als
(individuelles) Zeichenspiel, mit von semantischer Bedeutung befreiten Zeichenketten und
festgelegten Transformationsregeln in prinzipiell frei wahlbaren formalen Systemen, wird der
Unterschied zum sozial eingebundenen Konstrukt Argumentation deutlich. Auch kdnnen im
Gegensatz zum formalen Beweis in einer Argumentation die psychologischen und sozialen
Bedingungen des Diskurses nicht ignoriert werden: ,For all argumentation aims at gaining the
adherence of minds, and, by this very fact, assumes the existence of an intellectual contact” (ebd., S.
14; Hervorhebungen im Original).

Im Gegensatz zu den bisherigen Ansdtzen arbeitet Pedemonte (2007) Gemeinsamkeiten von
(mathematischen) Argumentationen und Beweisen heraus, woraus die Betrachtung von Beweis als
ein Spezialfall von Argumentation resultiert. An gemeinsamen Charakteristika werden dabei die
folgenden Aspekte betrachtet (ebd., S. 26f.): Mathematische Argumentationen und Beweise (1) sind
rationale Begriindungen (,rational justifications”), (2) sollen Uberzeugen, (3) adressieren eine
universelle Zuhorerschaft (,universal audience”) und (4) finden innerhalb entsprechender
Bezugssysteme (Algebra, Geometrie, etc.) statt, in denen die verwendeten Begriffe und Aussagen
ihre Bedeutung erlangen. Auf kognitiver Ebene kénnen sowohl mathematische Argumentationen wie
auch Beweise mithilfe des Toulmin-Schemas (s.o.) strukturiert und nachvollzogen werden, was eine
strukturelle Gemeinsamkeit impliziert.

Weitere Bezugspunkte zwischen Argumentationen und Beweisen werden von Douek (1998) erdrtert.
Fir eine vergleichende Darstellung wird der Begriff Referenzkorpus eingefiihrt: ,The expression
“reference corpus” will include not only reference statements but also visual and, more generally,
experimental evidence, physical constraints, etc. assumed to be unquestionable [...]“ (ebd., S. 130).
Wie herausgestellt wird, kann der Referenzkorpus auch beim Beweisen als teilweise implizit und vor
allem als sozial und historisch determiniert angesehen werden. Ein weiterer Punkt betrifft den
inneren semantischen Zusammenhang des finalen Beweisprodukts. Mit Bezug auf Thurston (1994)
wird dargestellt, dass in einem fertigen Beweis nicht ausschliefRlich die formalen Schlussweisen von
Bedeutung sind: ,,the model of formal proof as described by Duval and based on the “operational
status” of propositions rather than on their “semantic content” does not seem to fit the description
of the activities performed by many working mathematicians when they check the validity of a
statement or a proof” (Douek 1998, S. 134). Die Konzentration auf die formale Prozession in einem
(formalen) Beweis kann somit nicht als Unterscheidungsmerkmal der Konzepte aufgefasst werden.

B »In modern logic, the product of reflection on mathematical reasoning, the formal systems are no longer
related to any rational evidence whatever. The logician is free to elaborate as he pleases the artificial language
of the system he is building, free to fix the symbols and combinations of symbols that may be used. [...] It must
be possible, without hesitation, even mechanically, to establish whether a sequence of symbols is admitted in
the system, whether it is of the same form as another sequence of symbols, whether it is considered valid,
because it is an axiom or an expression deducible from the axioms, in a manner consistent with the rules of
deduction.” (Perelman & Olbrechts-Tyteca 1969, S. 13)
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Es erscheint offensichtlich, dass eine gegeniiberstellende Bewertung der Begriffe Argumentation und
Beweis stark von dem vorliegenden Verstandnis der jeweiligen Begrifflichkeiten abhangt. Wie oben
dargestellt wurde, ist der Argumentationsbegriff offen fir verschiedene Auspragungen und
Interpretationen. Dies trifft in gewisser Weise aber auch fir den Beweisbegriff zu, wie in Abschnitt
2.1.1 bereits gezeigt wurde. Somit muss die Frage erértert werden, ob es sich bei den
epistemologischen, sozialen und kognitiven Unterschieden zwischen den Konzepten um
unlberbriickbare Unterschiede handelt, oder ob diese als charakteristische Auspragungen
interpretiert werden kénnen.

Was die funktionale Ausrichtung betrifft, so kann der dem Beweis obliegende Nachweis der
Gliltigkeit einer Behauptung als strittige Position interpretiert werden. Dariiber hinaus beinhaltet
jeder Beweis die Funktion der Uberzeugung, die er in unterschiedlichem MaR erfiillen kann (vgl.
Abschnitt 2.1.7). Auch der Diskurs-Charakter kann beim Beweisen nicht negiert werden, vor allem,
wenn man die kommunikative Funktion bericksichtigt und bedenkt, dass die Akzeptanz von
Beweisen als sozialer Akt betrachtet wird. Der sichere deduktive Schluss kann auch innerhalb von
Argumentationen auftreten und ist damit kein Alleinstellungsmerkmal von Beweisen. SchlieRlich
stellt sich noch die Frage nach dem epistemisch-theoretischen Status der Argumente innerhalb eines
Beweises. In der Sprache Toulmins entstammen die Stitzungen einer Regel innerhalb eines Beweises
einer mathematischen Theorie (vgl. Durand-Guerrier et al. 2012, S. 356), aus der ihr epistemisch-
theoretischer Wert resultiert (s.0.). Dies ist zwar fiir den formalen mathematischen Beweis korrekt,
muss aber vor dem Hintergrund des oben erdrterten Beweisbegriffs relativiert werden. Offensichtlich
kann allen wahren mathematischen Sachverhalten, die als Argumente verwendet werden, ein
theoretischer Status innerhalb eines mathematischen Systems zugeordnet werden. Es ist aber eine
Frage der jeweiligen Beweisform (formaler Beweis, generischer Beweis etc.), ob der semantische
Gehalt der Argumente explizit im Vordergrund steht oder nicht. Somit konstituiert die Bedeutung des
theoretischen Status eines Arguments nur ein Charakteristikum von verschiedenen Argumentationen
und kein Alleinstellungsmerkmal.

Aufgrund der bisherigen Erdrterungen wird daher in der vorliegenden Arbeit der Standpunkt
vertreten, dass Beweise als eine spezielle Form von Argumentation zu sehen sind. In diesem Sinne
werden spezielle Argumentationen in mathematischen Kontexten mit sicheren Schliissen auf die
Konklusion, die gewisse Normen erfiillen (vgl. Abschnitt 2.1.1), als mathematische Beweise
betrachtet. Diese Sichtweise auf das Beweisen ermdglicht die ,Akzeptanz’ sowohl formaler als auch
didaktisch motivierter Beweisformen (etwa operativer oder generischer Beweise) und die Bewertung
und Betonung des epistemisch-semantischen Werts von Argumenten in verschiedenen
Beweisprodukten. Mit diesem Standpunkt ist weiter die Sicht auf das Beweisen als diagrammatisches
SchlieRen in verschiedenen Diagrammsystemen (Abschnitt 2.5) vereinbar.

2.3.3 Begriinden

Der Begriff ,Begriinden’ wird in der mathematikdidaktischen Literatur meist nicht explizit erlautert,
seine Bedeutung wird allgemein als intuitiv klar angenommen (Brunner 2015, S. 29). Im Folgenden
werden aufbauend auf dem Begriindungsbegriff der Philosophie verschiedene Sichtweisen der
Mathematikdidaktik einander gegeniibergestellt, um schlieBlich eine Eingrenzung der Bedeutung des
Begriffs vornehmen zu kénnen.
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Begriinden kann allgemein als ,,Darlegen von Griinden fiir etwas” verstanden werden (Lumer 1999, S.
149). Die Begriindungsgegenstande konnen dabei vielfdltig sein, als Hauptgruppen lassen sich
(epistemische) Begrindungen von Thesen und (praktische) Begriindungen von Handlungen bzw.
Absichten unterscheiden. Die epistemische Begriindung einer These soll beim Gegeniiber die
Annahme eines Urteils auf kognitive Weise bewirken (vgl. ebd., S. 149). Dabei kdnnen die folgenden
drei erkenntnis- und wissenschaftstheoretisch relevanten Dimensionen unterschieden werden (vgl.
Apel 1989, S. 15): (1) Die Begriindung des Fiihrwahrhaltens von Aussagen [Uberzeugung], (2) die
Begriindung der Moglichkeit objektiv gliltiger Erkenntnis [Verifikation] und (3) Begriindung im Sinne
von Erklarung [Erkldrung].

Die Mathematikdidaktiker Fischer und Malle (1985, S. 178f.) flihren verschiedene Arten an, wie das
Begriinden einer Aussage erfolgen kann: Berufung auf eine Autoritdt, deduktives SchlieRen,
reduktives bzw. induktives Schliefen und Analogieschliisse bzw. Wahrscheinlichkeitsaussagen.
Beweise wollen die Autoren in diesem Sinne als besondere Form des Begriindens verstanden wissen
und schreiben hierzu: ,,Eine Begriindung auf Grund einer vorgegebenen Argumentationsbasis soll als
ein Beweis beziiglich dieser Argumentationsbasis bezeichnet werden.” (ebd., S. 180;

Hervorhebungen im Original). Brunner (2013) halt dieser Definition allerdings entgegen, dass der
Begriff des Begriindens im Gegensatz zu Beweisen einen stdrkeren Einbezug von alltagsnaher und
vorwissenschaftlicher Sprache intendieren wiirde (ebd., S. 109).

Bereits bei der Betrachtung dieser unterschiedlichen Sichtweisen auf das Begriinden wird die
Offenheit des Begriffs deutlich. In der Sicht der Philosophie (in Anlehnung an Lumer 1999 und Apel
1989) riickt der Begriindungsbegriff einerseits als diskursive Tatigkeit an den Argumentationsbegriff
von Habermas heran (vgl. Abschnitt 2.3.1), die verschiedenen Dimensionen der Uberzeugung,
Verifikation und Erklarung verweisen dabei gleichzeitig auf den Beweisbegriff. Der Einbezug von
Schlussweisen (vgl. Fischer und Malle 1985) zeigt eine strukturelle Ahnlichkeit zu Argumentationen
auf (vgl. der Argumentationsbegriff bei Toulmin, Abschnitt 2.3.1). Beweise werden dabei als
besondere Formen von Begriindungen verstanden.

Insgesamt scheint die Position von Brunner vertretbar, dass der Begriindungsbegriff starker dem
alltaglichen Diskurs zugeordnet wird als die Begriffe Argumentieren und Beweisen und somit durch
eine starkere Offenheit als diese beiden Begriffe gepragt ist. In diesem Sinne ware Begriinden dann
mit weniger Anspriichen verbunden als das Argumentieren und Beweisen und somit offener fir
alltagsnahe und vorwissenschaftliche Sprache (s.0.). Diese alltagsnahe Auffassung von ,Begriinden’
wird sich auch in den Formulierungen der Bildungsstandards wiederfinden lassen (s.u.). Es verbleibt
weiter die Frage nach der Beziehung der Begriffe Argumentieren, Begriinden und Beweisen
untereinander.

2.3.4 Argumentieren, Begriinden und Beweisen

Da Uber die Begrifflichkeiten Argumentieren, Begriinden und Beweisen in der Literatur keine
Einigkeit herrscht, wird auch das Verhéltnis der Begriffe untereinander unterschiedlich gewertet. Ein
guter Uberblick Giber verschiedene Positionen wird in Brunner (2013, S. 29ff.) gegeben. Im Folgenden
werden die bisherigen theoretischen Erdrterungen mit den normativen Beschreibungen der
nationalen Bildungsstandards und Anmerkungen zu diesen abgeglichen, um sich dem Verhaltnis der
drei Begriffe zueinander begriindet nahern zu kénnen.
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Im deutschen Mathematikunterricht werden die Begriffe Argumentieren und Begriinden dem des
Beweisens vorgezogen. Linneweber-Lammerskitten (2014, S. 86) weist allerdings darauf hin, dass das
Beweisen jedoch der eigentliche Grund dafir ist, dass diese Begrifflichkeiten in den
Bildungsstandards erwahnt werden. In den Bildungsstandards im Fach Mathematik fir die
Allgemeine Hochschulreife wird ,mathematisch argumentieren” als allgemeine mathematische
Kompetenz aufgefiihrt. Der Kompetenz mathematisch Argumentieren werden dabei einfache
Plausibilitditsargumente, inhaltlich-anschauliche Begriindungen und (formale) Beweise zugeordnet,
wodurch das Argumentieren zu einem Oberbegriff erhoben wird. Hefendehl-Hebeker und Humann
(2003) merken zu dem Verhéltnis der Begriffe zueinander in Anlehnung an Mittelstrass (1995/96) an:
,Eine schlissige Argumentation fiir eine Aussage bzw. Norm heilSt eine Begriindung derselben, im
Falle einer Aussage auch ein Beweis [...]“ (Hefendehl-Hebeker & HuBmann, S. 95; Hervorhebungen im
Original). Folglich wird hier eine Begriindung als eine bestimmte, ndmlich schliissige, Art von
Argumentation betrachtet, die in einem besonderen Fall als Beweis bezeichnet wird. In den
Ausfiihrungen der Bildungsstandards bilden (inhaltlich-anschauliche) Begriindungen dagegen eine
Zwischenstufe zwischen Plausibilitdtsargumenten und (formalen) Beweisen. Die Betrachtung einer
Begriindung als schllssige Argumentation widerspricht dabei den Ausfiihrungen in Fischer und Malle
(1985), wie sie oben ausgefiihrt wurden, die unter Begriindungen auch nicht-sichere Schlussweisen
zulassen.

In den Formulierungen der Bildungsstandards ist weiter auffallig, dass von ,inhaltlich-anschaulichen
Begriindungen” gesprochen wird, obwohl diese Sprachverbindung vermutlich auf die ,inhaltlich-
anschaulichen Beweise” von Wittmann (vgl. Abschnitt 4.2.5) zurlickzufiihren ist. Hier wird der
Beweisbegriff vermieden und im Kontext von ,Inhaltlichkeit’ und ,Anschaulichkeit’ der
Begriindungsbegriff vorgezogen. Diese Zuordnung und ein damit verbundener gewisser Ausdruck von
Wertigkeit kdbnnen auch in den drei Anforderungsbereichen ausgemacht werden. Dort heiRt es unter
Anforderungsbereich 1: ,einfache rechnerische Begriindungen geben oder einfache logische
Schlussfolgerungen ziehen” und ,Argumentationen auf der Basis von Alltagswissen fiihren”, unter
Anforderungsbereich 2: (iberschaubare mehrschrittige Argumentationen und logische Schliisse
nachvollziehen [...] und schliellich unter Anforderungsbereich 3: ,Beweise und anspruchsvolle
Argumentationen nutzen, erldutern oder entwickeln” (KMK 2012, S. 14; vgl. Abschnitt 2.3.1). Im
Kontext der Bildungsstandards scheint implizit eine Sichtweise vorzuliegen, in der mit Begriindung
eine eher kurze Bestdtigung oder Problematisierung von Rechenschritten, Aufgabenlosungen und
Losungswegen auf einer eher weniger formalen Ebene verbunden ist (vgl. die Ausfiihrungen von Ufer
und Kramer (2015)), wohingegen Argumentationen explizit mehrschrittig sein kénnen und in
Verbindung mit logischen Schlissen zu sehen sind und Beweise und ,anspruchsvolle
Argumentationen” (s.0.) dem hochsten Anforderungsbereich zugeordnet werden missen.

Durch die obigen Erdrterungen ist deutlich geworden, wie unterschiedlich die Begrifflichkeiten
Argumentieren, Begriinden und Beweisen verwendet werden, woraus unterschiedliche
Betrachtungsweisen der Begriffe untereinander resultieren. Fir die vorzunehmenden empirischen
Untersuchungen bleibt darauf hinzuweisen, dass sich die Bedeutungen der Begriffe im
unterrichtlichen Geschehen im Zuge sogenannter sozio-mathematischer Normen (vgl. Abschnitt
2.6.2) herausbilden und jeder Studierende somit Gber ein implizites Wissen verfiigt, was er bzw. sie
unter einer Begriindung, einer Argumentation und einem Beweis versteht.
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2.4 Ausgewahlte empirische Befunde zum Themenkomplex Beweisen

In diesem Abschnitt werden die fiir diese Arbeit relevanten empirischen Befunde aus der Literatur
aufgearbeitet und erértert. Gleichsam wird somit das Feld empirischer Forschung aufgezeigt, in dem
sich die vorliegende Arbeit bewegt. Von Interesse sind hierbei die Thematik des Beweisens bei
Studienanfangerinnen und -anfdangern (2.4.1), verschiedene Akzeptanzaspekte im Kontext des
Beweisens (2.4.2) und die Auswirkung von Selbstwirksamkeitserwartung und Einstellungen zur
Mathematik auf das Erlernen der Beweisaktivitat (2.4.3 und 2.4.4).

2.4.1 Beweisen bei Studienanfingerinnen und Studienanfangern

Die mathematischen Fahigkeiten von Studienanfangerinnen und Studienanfiangern geraten aktuell
durch ein starkes Aufkommen hochschuldidaktischer Forschungsarbeiten in den Blickpunkt des
Interesses. Gute Zusammenfassungen aktueller Diskussionen werden u.a. in Bausch et al. (2014) und
Hoppenbrock et al. (2016) gegeben und auch verschiedene Dissertationen beschéftigten sich mit
dieser Thematik (etwa Rach 2014, Reichersdorfer 2013 und Riedl 2015). Auch wenn in der Literatur
an verschiedenen Stellen betont wird, dass Studienanfangerinnen und -anfdanger besonders mit dem
Beweisen Probleme haben (etwa Selden 2012 und Guedeut 2008), wurden die Beweiskompetenzen
von Studienanfangern bisher nur wenig eingehend untersucht. Im Folgenden werden zunachst die
Problembereiche dargestellt, die sowohl national wie auch international bei Studienanfdangerinnen
und Studienanfiangern im Kontext des Beweisens auftreten. AnschlieBend wird die
Dissertationsstudie von Hemmi (2006) herangezogen, um erste Erkenntnisse dariber zu erlangen,
mit welchen Vorerfahrungen Studienanfangerinnen und -anfianger mit Beweisen an die Universitat
kommen und welche generellen Einstellungen sie zum Erlernen der Beweisaktivitdit und dem
Beweisen haben.

In Deutschland wird in verschiedenen Studien bereits von einer eher schlechten Argumentations-
bzw. Beweiskompetenz von Schiilerinnen und Schiilern berichtet. Die Probleme betreffen dabei
neben der Beweiskonstruktion auch die Bewertung und das Verstehen von vorgelegten Beweisen.
Ein guter Uberblick iber entsprechende Studien und Ergebnisse wird u.a. in Brunner (2014, S. 82ff.)
gegeben. Reiss und Heinze (2000) und Reiss et al. (2000) konnten entsprechende Probleme auch bei
Schilerinnen und Schillern der gymnasialen Oberstufe aufzeigen. Die eher schlechten
Argumentations- bzw. Beweiskompetenzen der deutschen Schiilerinnen und Schiiler wurden auch im
Spiegel der groRen Leistungsmessungsstudien PISA (vgl. PISA-Konsortium 2012) und TIMSS (vgl.
Baumert, Lehmann et al., 1997; Baumert, Bos & Lehmann, 2000) deutlich. Es Uberrascht daher nur
wenig, dass in verschiedenen Studien auch von mangelnden Beweiskompetenzen von Studierenden
in Deutschland berichtet wird (etwa Frischemeier et al. 2016; Ostsieker und Biehler 2012;
Sommerhoff et al. 2016).

Entsprechende problematische Ergebnisse bzgl. des Argumentierens und Beweisens lassen sich dabei
auch international feststellen. So resiimiert Gueudet (2008) ihre Literaturrecherche: ,Studies
considering proof in many different countries have shown that only a minority of students are able to
build consistent proofs at the end of high school.” (ebd., S. 243; vgl. hierzu auch Reid und Knipping
2010, S. 68). Selden (2012, S. 398ff.) gibt einen Uberblick tber internationale Studien zu den
Problemen von Studienanfangern zum Beweisen und stellt schlieRlich die folgenden libergreifenden
Problembereiche heraus: die korrekte Verwendung der fachmathematischen Sprache und
Quantoren, ein Umgang mit logischen Schliissen und im Speziellen dem Beweis durch Widerspruch,
Heuristiken bei der Beweiskonstruktion, ein angemessenes Beweisverstandnis, das Verstandnis um
und Wissen Uber mathematische Definitionen und Satze und deren Verwendung in Beweisen,
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Verstindnis der zu beweisenden Behauptung, Auswahl und Verwendung adaquater
Reprisentationen, das Lesen und Uberpriifen von Beweisen. Giiler (2016, S. 146) kommt bei seiner
Literaturlibersicht zu den Problemen von Lehramtsstudierenden zum Beweisen zu vergleichbaren
Ergebnissen.

Hemmi (2006) untersucht in ihrer Dissertation u.a. die Vorerfahrungen von 168 schwedischen
Studienanfangerinnen und Studienanfangern der Mathematik mit Beweisen und ihre Ansichten zum
Beweisen. Im Folgenden werden die fir die vorliegende Arbeit relevanten Ergebnisse der Studie
zusammenfassend dargestellt (vgl. hierzu ebd., S. 128ff.).

In Bezug auf die Vorerfahrungen zum Beweisen kommt Hemmi zu dem Ergebnis, dass die
Studierenden wahrend ihrer Oberstufenzeit zwar haufig Beweise durch ihre Lehrerinnen und Lehrer
gesehen haben, aber kaum Gelegenheit hatten, selbst Beweise zu konstruieren. So gibt etwa die
Halfte der Befragten an, dass ihr Mathematiklehrer in der Oberstufe mindestens einmal in der
Woche einen Sachverhalt bewiesen habe und 36% stimmen der Aussage zu bzw. eher zu
(Bewertungen ,4“ und ,5“ auf einer flinfstufigen Likert-Skala), dass ihr Mathematiklehrer in der
Oberstufe haufig Sachverhalte bewiesen hat. Bzgl. der Eigenkonstruktion von Beweisen geben
allerdings 59% der Befragten an, hochstens ein- oder zweimal im Schulhalbjahr die Gelegenheit
gehabt zu haben, Beweise selbst zu konstruieren, und 60% stimmen der Aussage nicht oder eher
nicht zu (Bewertungen ,1“ und ,2“ auf einer flinfer Likert-Skala), dass sie in der Schule die
Gelegenheit hatten, das Aufschreiben von Beweisen zu tben (,| have had the possibility to practice
proving by writing in school”; ebd., S. 133). Bei den Ansichten zum Beweisen wird allerdings deutlich,
dass die Studierenden dem Beweisen gegeniiber sehr positiv eingestellt sind. So stimmen Gber 80%
der Befragten den Aussagen eher zu oder voll zu, dass sie mehr liber mathematische Beweise lernen
wollen und dass sie in der Schule gerne mehr lber das Beweisen gelernt hatten. Und auch der
Aussage: ,Ich beweise gerne mathematische Sitze” (,| like to show/demonstrate mathematical
statements”; ebd., S. 147) wird von gut 60% der Befragten eher bzw. voll zugestimmt.

SchlieRlich seien hier noch die Ergebnisse angefiihrt, die das Phanomen des Beweisbediirfnisses bei
Studierenden tangieren. Fast 90% der Befragten stimmen der Aussage liberhaupt nicht zu, dass sie
Beweisen keine Bedeutung beimessen wiirden, da die Satze bereits von beriihmten Mathematikern
bewiesen worden waren. Auch stimmen etwa 85% der Aussage eher nicht oder lberhaupt nicht zu,
dass es keinen Sinn machen wiirde, intuitiv richtig erscheinende Satze zu beweisen. SchlieRlich
stimmen ca. 90% der Befragten eher zu oder voll zu, dass Beweise ein essentieller Teil der
Mathematik seien.

2.4.2 Akzeptanzaspekte beim Beweisen

In verschiedenen empirischen Studien werden unterschiedliche Akzeptanzaspekte im Kontext von
Beweisen erortert. Aufgrund der Beweisaktivitdten, die im Kontext der hier fokussierten
Lehrveranstaltung motiviert werden, welche die Exploration von Beispielen und die
Beweiskonstruktion anhand konkreter Beispiele (,generische Beweise’) umfasst, sind fiir die
vorliegende Arbeit drei spezielle Aspekte von Bedeutung: (1) die Akzeptanz von blofRen
Beispielbetrachtungen als Beweis, (2) die Nicht-Akzeptanz von Beweisen als ausreichende Form der
Verifikation und (3) die Nicht-Akzeptanz von Beweisen, die an konkreten Beispielen gefiihrt werden,
dabei aber Allgemeingiiltigkeit beanspruchen kénnen. In Reid und Knipping (2010, S. 59ff.) wird ein
guter Uberblick tiber die empirischen Ergebnisse zu den Punkten (1) und (2) gegeben; es geht daher
im Folgenden nicht darum, entsprechende Befunde der Literatur aufzuarbeiten, sondern gezielt die
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Studien und Ergebnisse zu diskutieren, die sich mit der Zielgruppe der Lehramtsstudierenden oder
auch mit Lehrerinnen und Lehrern der Mathematik befassen. Am Ende des Abschnitts wird die Frage
erortert, wie sich ein Konstrukt ,Beweisakzeptanz’ konzeptualisieren lasst.

(1) Die Akzeptanz von bloRen Beispielbetrachtungen als Beweis

Reid und Knipping (2010) fihren verschiedene Studien auf, die sich mit der Akzeptanz von Beispielen
als gliltige Form der Verifikation befassen, und resiimieren ihre Literaturrecherche wie folgt: , These
results suggest that somewhere between 20% and 80% of students and teachers (depending on age
and mathematical background) consider a set of examples to be sufficient to verify a mathematical
statement” (ebd., S. 59). Dabei weisen die Autoren darauf hin, dass verschiedene Studien in dieser
Hinsicht kritisch bewertet werden missten, da verschiedene Ergebnisse vorsichtiger interpretiert
bzw. Studien ausfiihrlicher referenziert werden missten. So ist etwa ein Ergebnis der in diesem
Kontext haufig angefiihrten Studie von Healy und Hoyles (1998 und 2000), dass ca. 25% der 14- und
15-jahrigen Schiilerinnen und Schiiler ein empirisches Argument als den Ansatz auswahlen, der ihrem
eigenen am nachsten kommt. Die Autoren der Studie merken allerdings hierzu an: , The majority
were also aware that empirical arguments were not general — particularly if the statement to be
proved was not familiar - but they recognized that examples offered a powerful means of gaining
conviction about a statement’s truth” (Healy & Hoyles 1998, S. 425). Die Schiilerinnen und Schiiler
dieser Studie wahlten folglich das empirische Argument aus, um sich zunadchst selbst von der
Gultigkeit (,conviction”) einer Aussage zu vergewissern, nicht, weil sie der Meinung waren, dass
dieser Ansatz einen Beweis konstituieren wiirde. Diese Sichtweise wird allerdings in verschiedenen
Referenzen auf diese Studie nicht bericksichtigt. Auch Stylianides und Stylianides (2009) kommen in
ihrer Studie mit Lehramtsstudierenden zu dem Ergebnis, dass sich die Probanden, die bloRe
Beispielbetrachtungen als Argument anflihren, durchaus der Unzuldnglichkeit dieser
Verifikationsmethode bewusst sind. In diese Richtung weisen auch die Ergebnisse von Chazan (1993).
Dort konnte durch Interviews mit 17 amerikanischen Schiilerinnen und Schiilern (,,secondary school”)
gezeigt werden, dass die Lernenden, die einzelne Beispiele fiir die Verifikation einer Aussage
verwenden, sich sehr wohl Uber die Unzulanglichkeit dieser Methode bewusst sind und singulare
BeispiellUberprifungen somit nicht unbedingt als allgemeingiiltige Form der Verifikation betrachten.
Es kann also als Tatsache festgehalten werden, dass, wenn Lernende bloRe Beispielliberprifungen
anstellen, dies nicht ohne weiteres so gedeutet werden kann, dass diese Beispielbetrachtungen auch
als Beweis akzeptiert werden wiirden. So weist auch Weber (2010, S. 309) in Anlehnung an Vinner
(1997) kritisch darauf hin, dass in verschiedenen Studien von ,Beweiskonstruktionen Lernender, die
nur aus einzelnen Beispielliberpriifungen bestehen, in unzuldssiger Weise darauf geschlossen wird,
dass fiur diese Lernenden Beispiele korrekte Beweise darstellen wiirden. Denn dass Lernende, wenn
sie aufgefordert werden, einen Beweis zu konstruieren, bloRe Beispielliberpriifungen anstellen, kann
verschiedene Griinde haben. So scheint es vernlinftig, dass die Schilerinnen und Schiiler ihren
Beweisprozess mit Beispielbetrachtungen beginnen, um die Behauptung zu verstehen oder zu
explorieren; wissen sie dann nicht weiter, verbleiben nur die bereits notierten konkreten Beispiele.
Auch ist es moglich, dass sie von vornherein wissen, dass sie keinen Beweis konstruieren kénnen, aus
anderen Griinden (etwa, um Teilpunkt zu erhalten) notieren sie dann lieber einzelne Beispiele als gar
nichts. Diese Sichtweise wird ferner durch die Ergebnisse von Knuth et al. (2009) gestiitzt, dass
Schilerinnen und Schiiler der Mittelstufe haufiger empirische Argumente als ,Beweis’ anfiihren,
wenn sie kompliziertere Sachverhalte beweisen sollen. Anscheinend werden Beispiele haufig dann
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angefiihrt, wenn die Lernenden keinen (anderen) Zugang zu einer Begriindungsaufgabe ausmachen
kénnen.

Allerdings lassen sich in der Literatur auch Befunde dafiir finden, dass einzelne Beispielbetrachtungen
durchaus als korrekte Beweise betrachtet werden. So ergab die Studie von Gholamazad et al. (2004),
dass 68% der befragten Lehramtsstudierenden (Grundschule, n=75) die Uberpriifung einer
Allaussage anhand einzelner Beispiele als Beweis akzeptierten. Was die Probanden der Studie
Uberhaupt unter einem (akzeptablen) Beweis verstehen, wurde dabei leider nicht untersucht.

Diese Diskussion kann dabei durch die Ausfiihrungen von Weber und Mejia-Ramos (2015) um eine
Unterscheidung von absoluter und relativer Uberzeugung sinnvoll erweitert werden. Wihrend
absolute Uberzeugung (,absolute conviction“) die objektive Feststellung der Giiltigkeit einer
Behauptung im Sinne der Mathematik meint, beschreibt relative Uberzeugung (,relative conviction)
das subjektive MaR an Uberzeugung, das eine Person bzgl. der Giiltigkeit einer Aussage empfinden
kann. Die Autoren flihren aus, wie die Beriicksichtigung dieser Pole zu einer Neubewertung
empirischer Studien fiihren kann. Denn die Betrachtung von konkreten Beispielen kann durchaus die
subjektive Uberzeugung bzgl. der Giiltigkeit einer Behauptung steigern. Wenn Probanden nun die
Uberzeugungskraft von Beispielbetrachtungen bewerten sollen und dieses Attribut als subjektiv
empfundene Uberzeugung (,relative conviction”) interpretieren, ist es nur folgerichtig, dass sie
Beispielbetrachtungen eine hohe Bewertung geben.

Insgesamt lassen sich auf der Basis der erfolgten Erdrterung die folgenden Anmerkungen bzgl. der
Akzeptanz von Beispielen als allgemeingiiltige Form der Verifikation (bzw. als ,Beweis‘) formulieren:

(i) In verschiedenen Studien lassen sich Befunde dafiir ausmachen, dass einige Lernende
und Lehrende der Mathematik einzelne Beispielliberprifungen als wirkliche ,Beweise’
betrachten. Was diese Probanden dabei unter einem Beweis verstehen, wird dabei leider
nicht untersucht.

(ii) Die Praferenz Lernender fiir konkrete Beispielbetrachtungen, um sich subjektiv von der
Glultigkeit einer Behauptung zu (berzeugen, ist kein Beleg dafiir, dass
Beispielbetrachtungen von diesen Personen als korrekte mathematische Beweise
betrachtet werden.

(iii) Geben Lernende Beispielbetrachtungen an, obwohl sie aufgefordert werden, einen
Beweis zu konstruieren, so kann dies ebenfalls nicht ohne weiteres als Beleg dafir
gewertet werden, dass flir sie Beispielbetrachtungen korrekte mathematische Beweise
darstellen wirden.

(iv) Die Betrachtung von konkreten Beispielen, um sich (subjektiv) von der Giltigkeit einer
Behauptung zu Uiberzeugen, ist eine genuine mathematische Tatigkeit und lasst ebenfalls
keine Rickschlisse auf die Akzeptanz von Beispielen als korrekter mathematischer
Beweis zu.

Insgesamt scheint in diesem Kontext die folgende Ausdifferenzierung der Frage nach einer
eventuellen Akzeptanz von Beispielbetrachtungen bei Lernenden sinnvoll und notwendig:

- Inwiefern kann die Betrachtung von einzelnen Beispielen bei Lernenden (i) die subjektive

Uberzeugung und (ii) die objektive Sicherheit bzgl. der Giiltigkeit einer Behauptung

beeinflussen?
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- Betrachten Lernende die Uberpriifung einzelner Beispiele als wirklichen ,Beweis?

Diese Facetten von Beweisakzeptanz werden am Ende dieses Abschnitts wieder aufgegriffen.
Insgesamt ergibt sich an dieser Stelle das Phanomen der Akzeptanz von Beispielen als
Verifikationsmittel bzw. als mathematischer Beweis bei der Zielgruppe der Studienanfangerinnen
und -anfanger als offene Frage der Forschung. Im Kontext der oben geduBerten Kritik an den
angefiihrten Studien sollen die Ergebnisse dieser Arbeit auch dazu beitragen, die Schwachen
vorheriger Studien zu der Thematik der ,Akzeptanz’ zu beheben.

(2) Die Nicht-Akzeptanz von Beweisen als ausreichende Form der Verifikation

Wie Reid und Knipping (2010, S. 62f.) darlegen, wird in verschiedenen Studien auf das Phianomen
hingewiesen, dass einige Lernende deduktive Beweise nicht als ausreichende Form der Verifikation
akzeptieren. Fir die vorliegende Arbeit scheinen dabei besonders drei Studien von Interesse zu sein:
Martin und Harel (1989) untersuchen das Beweisverstiandnis von Grundschullehramtsstudierenden,
wohingegen Knuth (2002) von Interviews mit 16 Mathematiklehrerinnen und -lehrern (,,secondary
school”) berichtet. SchlieRlich ist hierbei die Studie von Chazan (1993) interessant, deren qualitative
Anlage tiefere Einblicke in etwaige Fehlvorstellungen zur Thematik ermoglicht.

Martin und Harel (1989) erheben in ihrer Studie, wie Grundschullehramtsstudierende verschiedene
Beweise bewerten, und kommen dabei zu dem Ergebnis, dass 26% bis 38% der Probanden korrekten
Beweisen nur eine niedrige Bewertung (Werte von 1 bzw. 2 auf einer Likert-Skala mit vier Stufen) in
Bezug auf ihre Verifikationsleistung geben. In der Studie von Knuth (2002) gaben sechs von 16
Lehrerinnen und Lehrern (,secondary school“) an, dass auch nach einer korrekten
Beweiskonstruktion noch Gegenbeispiele zur der bewiesenen Behauptung existieren kdnnten.

In der Interviewstudie von Chazan (1993) mit 17 Schilerinnen und Schiilern (,,High-School“) wird
deutlich, welche Fehlvorstellungen zum Beweisen in der Geometrie vorliegen kénnen. Fir die
Ansicht, dass auch nach einem konstruierten korrekten Beweis noch Gegenbeispiele existieren
kénnten, konnten die folgenden ,Griinde’ bei den Schilerinnen und Schiilern ausgemacht werden
(Auflistung orientiert an Reid und Knipping 2010, S. 63; vgl. Chazan 1993, S. 368ff.):

(a) Es kdonnte immer noch Félle geben, die durch den Beweis nicht abgedeckt wurden.

(b) Der Beweis bezieht sich nur auf die eine, damit verbundene Beweisfigur und deckt damit
nicht alle zu betrachtenden Falle ab.

(c) Diein dem Beweis verwendeten Argumente kdnnten falsch sein.

(d) Die Formulierungen innerhalb des Beweises sind in der Einzahl gehalten und beziehen sich
damit nicht auf alle moglichen zu betrachtenden Falle.

(e) Es wird generell nicht verstanden, was zu Beginn des Beweises ,Gegeben’ ist.

Insgesamt ldsst sich somit festhalten, dass auch bei Lehramtsstudierenden und selbst bei Lehrkraften
die Fehlvorstellung'® vorliegen kann, dass ein korrekter mathematischer Beweis keine
allgemeingiiltige Verifikation der gegebenen Behauptung leistet. Ursachen fiir diese Ansicht kénnen
dabei auf verschiedenen Ebenen liegen: Probleme mit dem Verstdndnis des vorgelegten Beweises,

% Es bleibt anzumerken, dass an dieser Stelle bei den Probanden keine Fehlvorstellungen vorliegen wiirden,
wenn diese den vorgelegten Beweis als fehlerhaft betrachteten. Eine entsprechende Differenzierung wird in
der Studie von Chazan (1993) aber leider nicht vorgenommen
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den verwendeten Formulierungen und Argumenten, der Struktur des Beweises und Probleme mit
der im Beweis verwendeten Beweisfigur. Das Problem mit der Fehlinterpretation einer Beweisfigur
als singuldarer Fall ist dabei fir die vorliegende Arbeit von besonderem Interesse, da etwa in
generischen Beweisen mit Punktmusterdarstellungen ja tatsachlich konkrete Falle betrachtet
werden, die dabei als generische Beispiele Gber den konkreten Fall hinausweisen. Hierin scheint,
losgelost von der Studie von Chazan, eine mogliche Verstandnishirde der Beweisform, speziell in
Verbindung mit Punktmusterdarstellungen, begriindet zu sein.

(3) Die Nicht-Akzeptanz von Beweisen, die an konkreten Beispielen gefiihrt werden, dabei
aber Allgemeingiiltigkeit beanspruchen kénnen

Einen besonderen Stellenwert nimmt in der vorliegenden Forschungsarbeit die Beweisform des
generischen Beweises (vgl. Abschnitt 2.1.3) ein. Es ist deshalb von besonderem Interesse, inwiefern
Lernende und Lehrende der Mathematik diese Beweisform verstehen bzw. interpretieren. Da solche
Beweise meist narrativ formuliert sind, werden diese an konkreten Beispielen gefiihrten Beweise in
der Literatur teilweise auch als ,narrative Beweise’ bezeichnet.

Aufgrund der im Kontext dieser Forschungsarbeit herausgestellten Konzeption von generischen
Beweisen, die aus generischen Beispielen und einer narrativen Begriindung bestehen (s. Abschnitt
2.1.3), sind an dieser Stelle bzgl. der Akzeptanz von beispielgebundenen Beweisen zwei Aspekte von
Interesse: Die Akzeptanz von Beweisen, die mithilfe konkreter Beispiele gefiihrt werden, und die
Akzeptanz von Beweisen, die narrativ formuliert werden. Im Folgenden werden die
Forschungsergebnisse zu dieser Thematik zusammenfassend dargestellt, die sich mit der Gruppe von
Lehrenden der Mathematik oder mit Lehramtsstudierenden befassen.

Tabach et al. (2011) untersuchen in ihrer Studie u. a. die Bewertung von narrativ gefiihrten Beweisen
durch 50 Mathematiklehrerinnen und -lehrer. Zur lllustration dieser Beweisform wird ein Beispiel zu
der Behauptung zitiert, dass die Summe von fiinf aufeinanderfolgenden Zahlen immer durch finf
teilbar ist (ebd., S. 472):

Moshe claimed: | checked the sum of the first five consecutive numbers: 1 + 2 + 3 + 4 4+ 5 = 15 is divisible by 5.
The sum of the next five consecutive numbers is larger by 5 than this sum (each number is bigger by 1 and
therefore the sum is bigger by 5), and therefore this sum is also divisible by 5. And so on, each time we add 5 to a
sum that is divisible by 5, and therefore we always obtain sums that are divisible by 5. Therefore the statement is
true.

Zunachst sollten die Probanden selbst sechs Behauptungen aus der elementaren Zahlentheorie
verifizieren bzw. widerlegen; die Behauptungen waren dabei wie folgt (s. ebd., S 469):

(1) ,Die Summe von flnf aufeinanderfolgenden Zahlen ist immer durch finf teilbar”
(2) , Die Summe von drei aufeinanderfolgenden Zahlen ist immer durch drei teilbar”
(3) , Die Summe von vier aufeinanderfolgenden Zahlen ist immer durch vier teilbar”
(4) ,Es gibt eine Summe von funf aufeinanderfolgenden Zahlen, die durch funf teilbar ist”
(5) ,Es gibt eine Summe von drei aufeinanderfolgenden Zahlen, die durch drei teilbar ist”
(6) ,Es gibt eine Summe von vier aufeinanderfolgenden Zahlen, die durch vier teilbar ist”.

Anschliefend wurden ihnen insgesamt 41 verschiedene ,Beweise’ zu diesen sechs Behauptungen zur
Bewertung vorgelegt. Diese ,Beweise’ umfassten korrekte und falsche Beweise, die verbal-narrativ
oder symbolisch dargestellt wurden. Innerhalb der verbal-narrativen Argumentationen wurden
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konkrete Zahlenbeispiele als Existenzbeweis, als Gegenbeispiel, als generisches Beispiel und zur
(unbegriindeten) induktiven Verallgemeinerung verwendet. Zu jedem dieser 41 ,Beweise’ sollte ein
Votum abgegeben, ob dieser die gegebene Behauptung korrekt verifiziert (bzw. widerlegt), und
dieses Votum erldutert werden. Von Interesse fiir die vorliegende Forschungsarbeit sind die
Bewertungen der korrekten narrativ geflihrten Beweise durch die Probanden. Neben der bereits
oben zitierten korrekten narrativen Begrindung (,S1-Moshe”) zu der Behauptung (1) wurden in der
Studie von Tabach et al. (2011) auRerdem die folgenden beiden verwendet:

,S1-Mali“ — korrekte Verifikation der Allaussage in Behauptung (1) (ebd., S. 472):

Mali claimed: | first tried the first ten examples of 5 consecutive numbers:

1+2+3+4+5=15 2+3+4+5+6=20 3+4+5+6+7=25
44+5+6+7+8=30 5+6+7+8+9=35 6+7+8+9+10=40
7+8+9+10+ 11 =45 8+9+10+11+12=50
94+10+11+12+13 =55 10+ 11+ 12+ 13 + 14 = 60.

| saw that the statement is true for the first ten. All other sums of five consecutive numbers are obtained by
adding multiples of 10 to one of the listed sums (for instance, the sum 44 + 45 4+ 46 + 47 + 48 is obtained by
adding multiples of 10, 5 times 40, to the sequence: 4 + 5 + 6 + 7 + 8 that | checked before). Since multiples of
10 are also divisible by 5, the statement is true.

»,56-Moshe” — korrekte Falsifizierung der Existenzaussage in Behauptung (6) (ebd., S. 472):

Moshe claimed: | checked the sum of the first four consecutive numbers: 1 + 2 + 3 + 4 = 10; 10 is not divisible
by 4. The sum of the next four consecutive numbers is obtained by adding 4 to this sum (each of the four numbers
in the sum grows by 1, so the sum grows by 4). It is known that adding 4 to a sum that is not divisible by 4 will
yield a sum that is not divisible by 4 either. And so on, each time we add 4 to a sum that is not divisible by 4, and
therefore we always obtain sums that are not divisible by 4. Therefore the statement is not true.

Wie die Autoren darstellen, werden die Begriindungen ,S1-Moshe” und ,S1-Mali“ von 62% der
Probanden richtig bewertet, die Begriindung ,S6-Moshe” von 70%. Als Begriindung fir die
Ablehnung dieser Beweise gaben 16% der Probanden, die diese Beweise abgelehnt hatten, an, dass
diese nicht allgemeingiiltig seien (,,There is no general justification. We can always ask what will
happen for a much larger number; one cannot check all numbers.” (ebd., S. 477)). 10% honorierten,
dass die Beweise durchaus lber bloBe Beispieluntersuchungen hinausgingen, kritisierten aber, dass
innerhalb dieser Beweise trotzdem nicht alle moglichen Falle abgedeckt waren (,,Moshe relied on
specific examples, 1+2+34+4+4+5=10,64+7+ 849+ 10 = 40, but he did not relate to the
numbers in between, like 3 +4 4+ 5+ 6 + 7. He needs to prove it for any number.” (ebd., S. 477)).
6% der Ablehnungen erfolgten aufgrund der narrativ-verbalen Darstellung der Beweise (,,[This is a]
verbal justification which is not written in an acceptable mathematical way.” (ebd., S, 477)). Die
Autoren kommen zu dem Schluss, dass symbolisch dargestellten Beweisen eher Allgemeingiiltigkeit
zugesprochen wird, als narrativ formulierten. Tatsachlich scheint es so zu sein, dass die Darbietung
eines konkreten Beispiels zu Beginn eines Beweises bei einigen Probanden den Eindruck entstehen
lieRe, dass es sich bei der Begriindung nicht um einen allgemeingtltigen Beweis handeln wirde.

Auch Dreyfus (2000) und Knut (2002b) kommen zu dem Ergebnis, dass korrekte Beweise, die narrativ
formuliert und mithilfe konkreter Beispiele gefiihrt werden, von einigen Lehrerinnen und Lehrern als
defizitar bewertet werden. Martin und Harel (1989) untersuchen u.a. die Akzeptanz von Beweisen,
die mithilfe konkreter Beispiele gefiihrt werden, bei 101 Lehramtsstudierenden (Grundschule). In
ihrer Studie erhalten valide Beweise, die narrativ mithilfe konkreter Beispiele gefiihrt werden

68



(,particular proofs“; ebd., S. 45), von 42% der Probanden innerhalb eines bekannten Sachverhalts
und von 46% innerhalb eines unbekannten Zusammenhangs geringe Bewertungen bzgl. ihrer
Verifikationsleistung (Werte ,,1“ oder ,,2“ auf einer vierer Likert-Skala). Auch in diesem Fall scheint
die Verwendung konkreter Beispiele innerhalb eines Beweises negative Auswirkungen auf seine
Bewertung zu haben.

Studienibergreifend kann festgestellt werden, dass narrative Beweise, die mithilfe von konkreten
Beispielen gefiihrt werden, sowohl von einigen Lehrerinnen und Lehrern als auch von einigen
Lehramtsstudierenden (hier: Grundschule) als Beweis abgelehnt werden. Als Begriindung wird dabei
u.a. angefiihrt, dass diese Beweise nicht allgemeingiiltig seien, da nur einzelne Falle betrachtet
wirden bzw. nicht alle moglichen Falle durch diese Beweise abgedeckt seien. Dreyfus (2000) weist
darauf hin, dass auch der Verzicht auf formale Elemente innerhalb der Beweise zu solchen
Fehleinschatzungen fiihren kann.

Herausstellung der theoretischen Grundlagen fiir ein Konstrukt ,Beweisakzeptanz’

Wie aufgezeigt wurde, wird in der Literatur von verschiedenen Faktoren auf eine ,Beweisakzeptanz’
bei Probanden geschlossen. Hierzu zahlen vor allem die Einschdtzung von Beweisprodukten als
,mathematischer Beweis’ (etwa Barkai et al. 2002; Gholamazad et al. 2004; Tabach et al. 2010b) oder
die Bewertung von Beweisprodukten in Bezug auf verschiedene Aspekte, wie Verifikation oder
Erklarungsqualitat (etwa Healy and Hoyles 1989 und 2000; Martin und Harel 1989). Aufbauend auf
diesen Betrachtungen wird in dem folgenden Abschnitt eine grundlegende Konzeptionierung von
,Beweisakzeptanz’ vorgestellt.

Insgesamt erscheint es sinnvoll, diese zwei Facetten von Beweisakzeptanz bei der Betrachtung eines
entsprechenden Konstrukts zu bericksichtigen: die Passung eines vorgelegten Beweisprodukts mit
dem jeweiligen subjektiven Verstandnis von ,Beweis’ und das Ausmal, inwieweit verschiedene
Funktionen von Beweisen (etwa subjektive Uberzeugung, Sicherung der Giiltigkeit, Erkldrung) durch
den Betrachter empfunden werden.

Es sei bereits an dieser Stelle darauf hingewiesen, dass sich diese Sicht auf das Konstrukt auch als
Ergebnis der Instrumententwicklung zur Erfassung von , Beweisakzeptanz” widerspiegeln wird (vgl.
Abschnitt 8.3.4). Beweisakzeptanz wird in dieser Arbeit konzeptualisiert und gleichsam
operationalisiert, als das AusmalR, inwieweit bei einem vorgelegten Beweis vom Betrachter die
Funktionen Verifikation, Uberzeugung™ und Erkldrung empfunden werden und inwieweit der Beweis
durch den Betrachter als ,korrekter und giiltiger Beweis“ bewertet wird™®.

2.4.3 Einstellungen zur Mathematik und das Beweisen

In der Mathematikdidaktik liegen zahlreiche Arbeiten vor, die sich mit Einstellungen zur Mathematik
bzw. Beliefs beschaftigen. Eine Aufarbeitung der bisher erzielten Ergebnisse wiirde an dieser Stelle zu
weit fliihren und erscheint derweil fir die vorliegende Arbeit auch nicht nétig. Fiir einen guten
Uberblick iiber entsprechende Forschungsrichtungen und Forschungsergebnisse wird an dieser Stelle
auf Leder et al. (2006) und Schléglmann und MaaR (2009) verwiesen. Fir die vorliegende Arbeit sind
empirische Ergebnisse auf zwei Ebenen von Interesse: Auswirkungen von Lehrveranstaltungen auf

> Mit dieser separaten Betrachtung von objektiver Verifikation und subjektiver Uberzeugung wird die in
Abschnitt 2.1.7 begriindete und motivierte Aufspaltung der Funktion ,Verifikation/Uberzeugung” aufgegriffen.
'® Diese Begriffsdefinition wird auch in Kempen (2016, S. 1112) verwendet.
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die Einstellungen von Studierenden zur Mathematik und Zusammenhange zwischen Einstellungen
zur Mathematik und Einstellungen zum Beweisen im speziellen.

Auswirkungen von Lehrveranstaltungen auf die Einstellungen von Studierenden zur Mathematik

In diesem Abschnitt werden Studien dargestellt, in denen die Auswirkungen von Lehrveranstaltungen
im Ubergang Schule/Hochschule (Weygandt & Oldenburg 2014 wund 2015) oder von
Lehrveranstaltungen zum Erlernen der Beweisaktivitit (Yoo 2008 und Conner 2011) auf die
Einstellungen der Studierenden zur Mathematik untersucht wurden. Ubergeordnet kann
festgehalten werden, dass in diesen Studien Auswirkungen der jeweiligen Lehrveranstaltung auf die
Einstellungen der Lernenden nachgewiesen werden konnten. Bei den Studien werden sowohl
methodische als auch konzeptuelle Unterschiede deutlich.

Weygandt und Oldenburg (2014 und 2015) untersuchen die Auswirkungen ihrer neu konzipierten
Lehrveranstaltung , Entstehungsprozesse von Mathematik” auf verschiedene Einstellungen von
Lehramtsstudierenden (Gymnasium/Gesamtschule) zur Mathematik. Sie verwenden hierzu 37 Items
aus den Skalen von Grigutsch et al. (1998) zu den Aspekten Formalismus, Anwendung, Prozess und
Schemaorientierung (vgl. Abschnitt 2.4.3) und erweitern den Fragebogen um 60 ltems, mit deren
Hilfe sie finf weitere Skalen bilden (Weygandt & Oldenburg 2014, S. 1308). Alle Iltems werden von
den Probanden auf einer flinfer Likert-Skala bewertet. Aufgrund von 15 gepaarten Testheften (Pre-
/Posttest-Design Gber den Zeitraum eines Semesters) konnen die Autoren eine statistisch signifikante
Abnahme des Mittelwerts bei der Skala Schema-Orientierung und einen statistisch signifikanten
Anstieg des Mittelwerts der Skala Universalitit'’ nachweisen. Beide Veridnderungen werden von den
Autoren positiv im Hinblick auf die Ziele ihrer Lehrveranstaltung bewertet. Fiir die vorliegende Arbeit
ist hierbei relevant, dass durch diese Studie gezeigt werden konnte, dass im Verlauf einer
Lehrveranstaltung durchaus statistisch signifikante Veranderungen bzgl. Einstellungen zur
Mathematik nachgewiesen werden konnen. Es bleibt allerdings kritisch anzumerken, dass eine
Stichprobe von 15 Probanden eher als gering zu bezeichnen ist.

Yoo (2008) untersucht qualitativ und quantitativ die Einstellungen zur Mathematik, zum Lehren von
Mathematik und zum Beweisen bei Teilnehmenden eines traditionellen amerikanischen transition-
to-proof Kurses [n=28] im Vergleich zu Teilnehmenden eines problemzentrierten Modified-Moore-
Method Kurses (MMM) [n=33] (flir eine Beschreibung entsprechender Kursvariante siehe Abschnitt
1.2.1). Hierfuir wird u.a. ein Fragebogen verwendet, in dem die Lehramtsstudierenden (,secondary
school”) jeweils ihre Zustimmung zu zwei entgegengesetzten Aussagen auf einer Skala markieren
sollen. Zur lllustration dieses Fragenformats soll das folgende Item dienen (Yoo 2008, S. 93):

Proof is (a) a tool for doing and understanding mathematics or (b) a tool for demonstrating the correctness of
mathematical statements.

mostly a mostly a and b equally mostly b Neither

1 2 3 4 5 6 7 8

v Weygandt und Oldenburg (2014) illustrieren ihre Skala ,Universalitat’ mithilfe der beiden folgenden Items:
,Die Definitionen der Mathematik verhalten sich wie Naturgesetze, d.h. sie kdnnen von Menschen entdeckt
werden, sind aber nicht verdanderbar” und , Falls es Marsbewohner gédbe, so hatten sie auf jeden Fall dieselbe
Mathematik mit denselben Erkenntnissen” (ebd., S. 1308).
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Aufgrund der vorherigen Bewertungen von 30 Fachmathematikerinnen und Fachmathematikern
werden dabei bestimmte Positionen als ,ideal’ betrachtet (Yoo 2008, S. 91). SchlieBlich wird
ausgewertet, inwiefern sich die Sichtweisen der Studierenden nach Besuch der Kurse denen der
Mathematiker anndhern. (Im obigen Beispielitem wiirde eine Bewertung von ,1“ bis ,4“ einer
idealen Antwort entsprechen und mit 2 Punkten codiert werden, die Bewertung ,,5“ mit einem Punkt
und Bewertungen ,,6“ und ,,7“ mit null Punkten. Insgesamt ware somit bei den 15 zu bewertenden
ltems das Erreichen von bis zu 30 Punkten moglich.) Yoo kommt zu dem Ergebnis, dass sich die
erreichten Punktzahlen in dem Eingangstest in den beiden Vergleichsgruppen nicht unterscheiden.
Bei der Wiederholung des Fragebogens nach den beiden Kursen steigt die Punktzahl des MMM
Kurses um 2,15 Punkte, die des traditionellen Kurses nur um 0,5 Punkte. Die Autorin resiimiert das
Ergebnis wie folgt: , Over the treatment period, the MMM students showed a higher gain from the
pretest to posttest than did students in the traditional sections” (Yoo 2008, S. 94f.). Dieses Ergebnis
wird durch weitere statistische Tests untermauert. In der Studie von Yoo zeigt sich somit, dass auch
eine Kurskonzeption, die besonders den Prozessaspekt der Mathematik in den Vordergrund stellt,
statistisch nachweisbare Auswirkungen auf die Einstellungen der Studierenden zur Mathematik
haben kann.

Conner et al. (2011) verwenden eine modifizierte Version des Fragebogens von Yoo (2008), um die
Veranderungen der Einstellungen zur Mathematik, zum Mathematikunterricht und zum Beweisen bei
sechs Lehramtsstudierenden (,,secondary school”) durch den Besuch zweier Lehrveranstaltungen zu
untersuchen. Auch in ihrer Studie werden Daten in einem Pre- und Posttestdesign erhoben. Die
Autoren gelangen zu den Ergebnissen, dass die Einstellungen der Probanden zur Mathematik und
zum Beweisen stabil sind und sich nur ihre Einstellungen zum Lernen von Mathematik von einer
lehrerzentrierten Sicht zu einer lernerzentrierten Sicht andern. Wahrend in den obigen Studien bei
den Studierenden durch den Besuch entsprechender Lehrveranstaltungen Auswirkungen auf die
Einstellungen zur Mathematik nachgewiesen werden konnten, zeigt sich in der Studie von Conner et
al. (2011), dass sich die Einstellungen zur Mathematik und zum Beweisen als sehr stabil erwiesen
haben. Dagegen konnten Verdnderungen im Kontext der Ansichten bzgl. Lehrer- bzw.
Lernerzentriertheit ausgemacht werden.

Ubergeordnet konnte somit in verschiedenen Studien nachgewiesen werden, dass
Lehrveranstaltungen Auswirkungen auf die Einstellungen zur Mathematik von Lernenden haben
koénnen. Als Problem erweist sich dabei allerdings das Phdanomen, dass Einstellungen zur Mathematik
und zum Beweisen bei Lernenden als relativ stabil zu betrachten und Veranderungen somit nur
bedingt herbeizufiihren sind. Welche Veranderungen dabei allerdings gewiinscht sind und wie sie am
besten methodisch erfasst werden kdnnen, erscheint hierbei als offene Frage.

Zusammenhange zwischen Einstellungen zur Mathematik und Einstellungen zum Beweisen

Unter dem Leitthema ,Einstellungen zum Beweisen” (,Beliefs about proof”) werden in der
mathematikdidaktischen Literatur verschiedene Aspekte zum Beweisen thematisiert. So untersucht
etwa Mingus (1999) die Vorerfahrungen von Studierenden mit Beweisen, ihre Ansichten tber die
Angemessenheit von Beweisen fiir den Mathematikunterricht verschiedener Schulstufen und was
einen Beweis Uberhaupt ausmacht. Dagegen thematisieren z.B. Conner et al. (2011, S. 488) unter
diesem Aspekt auch Beweisakzeptanz, das Verstandnis um Funktionen von Beweisen und die
Bedeutung des Beweisens fiir den schulischen Mathematikunterricht. Es kann daher auch aus
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Forschungsperspektive als offene Frage betrachtet werden, was unter dem Begriff , Einstellungen
zum Beweisen” Gberhaupt gefasst werden kann bzw. soll.

Der Zusammenhang zwischen Einstellungen zur Mathematik und dem Beweisen wurde bisher vor
allem durch Furinghetti und Morselli (2009 und 2011) empirisch untersucht. Sie gehen dabei auch
der Frage nach, welche Einstellungen Lehrende zur Mathematik haben und wie sich diese
Einstellungen auf ihren Umgang mit Beweisen im Mathematikunterricht auswirken.

Furinghetti und Morselli (2009 und 2011) arbeiten in Anlehnung an die von Ernest (1989)
formulierten Beliefs zur Mathematik und zum Lehren von Mathematik anhand von Fallstudien
unterschiedliche Umgangsweisen von Lehrenden mit Beweisen im Schulunterricht heraus. Die dabei
anhand von Interviews erhaltenen Charakteristika bzgl. des Umgangs mit Beweisen im Unterricht
werden dabei aber nicht vor dem Theoriehintergrund der Beliefs von Ernest reflektiert. Die Autoren
merken hierzu an: , This intertwining of elements makes it rather difficult to apply the categorisations
found in the literature.” (Furinghetti & Morselli 2011). Als Ergebnis kann aus diesen Studien
entnommen werden, dass sich die Sichtweise eines Lehrenden auf Mathematik, auf den
Mathematikunterricht und sein Eingehen auf die Bedirfnisse und Wiinsche der Schiilerinnen und
Schiller in seinem Umgang mit Beweisen im Mathematikunterricht widerspiegeln. Weitergehende
(empirisch nachgewiesene) Bezlige zwischen den Beliefs zur Mathematik und Einstellungen zum
Beweisen kdnnen dabei nicht ausgemacht werden.

Die Frage, wie sich Einstellungen zur Mathematik bei Lernenden auf ihre Einstellungen zum Beweisen
auswirken, bzw. wie diese Aspekte miteinander in Wechselwirkung stehen, ergibt sich somit als
offene Forschungsfrage. Die Ergebnisse von Furinghetti und Morselli (s.0.) geben dabei einen
Hinweis darauf, dass sich entsprechende Aspekte gegenseitig beeinflussen kénnen.

2.5 Beweisen als diagrammatisches Schlief3en

In dem folgenden Abschnitt wird der Akt des Beweisens aus einer semiotischen Perspektive
betrachtet. Diese Sichtweise wird als eine Leittheorie bei der Beforschung der Lehrveranstaltung (im
Besonderen der Interpretation von Forschungsergebnissen und der Begriindung von
vorzunehmenden Modifikationen) dienen. Die Theorie des diagrammatischen SchlieRens nach Peirce
erweist sich als gewinnbringend fir die vorliegende Arbeit und weist gegenilber anderen
semiotischen Theorien fiir die vorliegende Forschung verschiedene Vorziige auf. Wahrend andere
semiotische Theorien die Beziehungen zwischen verschiedenen Aspekten bzw. Ebenen von Zeichen
im Kontext von Wissenskonstruktion beschreiben (vgl. etwa die Zeichentheorie von Ferdinand de
Saussure (etwa Presmeg et al. 2016, S. 5f.) oder das epistemologische Dreieck von Steinbring (1989)),
rickt bei Peirce die Tatigkeit mit den Zeichen mit der Ausrichtung auf Erkenntnisentwicklung (i.S. der
Generierung von neuem Wissen) in den Fokus. Mithilfe der Perspektive des diagrammatischen
SchlieBens im Sinne der semiotisch-pragmatischen Erkenntnistheorie von Peirce wird es moglich:

1. die Zeichenaktivitat beim Beweisen in verschiedene Phasen zu untergliedern, zu beschreiben
und zu deuten, was weiter fiir die Beschreibung und Analyse von Beweisproduktionen
genutzt werden kann,

2. verschiedene Notationssysteme (etwa Punktmusterdarstellungen) fir die Konstruktion von
Beweisen zu legitimieren und ihre Vor- und Nachteile vergleichend zu erértern,
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3. das Attribut der Allgemeingiltigkeit von Beweisen zu erortern und auf den
(diagrammatischen) Umgang mit den Zeichen zuriickzufiihren, und

4. die Diskussion um die Akzeptanz von Beweisen um eine semiotische Perspektive sinnstiftend
zu bereichern.

Der Ansatz des diagrammatischen SchlieBens erscheint daher pradestiniert fir diese Arbeit, da die
Aktivitat mit den Zeichen (,,Diagrammen®), die Bedeutung des diese rahmenden Notationssystems
(,Diagrammsystem”) und das dafiir notwendige Wissen (,kollaterales Wissen”) in den Fokus des
Interesses gestellt werden. Zwar ist die Theorie von Peirce auf den mathematischen
Erkenntnisprozess ausgerichtet, doch erscheint eine Ubertragung auf den Prozess der
Wissenssicherung in Form von Verifikation innerhalb von Beweisen moglich. Wie bereits in Abschnitt
2.1.2 dargelegt wurde, zeichnen sich gerade formale Beweise dadurch aus, dass in ihnen die
verwendeten Zeichen syntaktisch verwendet werden. Die entsprechende Syntax wird nun aus
semiotischer Perspektive durch das Diagrammsystem vorgegeben. Schlussweisen, Axiome und Satze
erweisen sich dann als (Transformations-) Regeln im jeweiligen Diagrammsystem.

Die folgenden Ausflihrungen basieren auf der semiotisch-pragmatischen Erkenntnistheorie von
Charles Sanders Peirce. Es ist im Kontext dieser Arbeit nicht moglich, den semiotisch-pragmatischen
Ansatz von Peirce und dessen Zeichentheorie in Ganze zu beschreiben. Im Folgenden werden daher
nur die Aspekte beschrieben, die fiir das Verstandnis dieser Forschungsarbeit notwendig sind. Fir
eine vertiefende Lektlire wird auf Hoffmann (2005) und Stjernfelt (2000) verwiesen.

Grundlegend fir die folgenden Betrachtungen ist der weite Diagrammbegriff, den Peirce verwendet.
So schreibt Hoffmann (2005, S. 127):

Diagramme sind nun nach Peirce eine bestimmte Gruppe ikonischer Zeichen, die er dadurch von anderen
abgrenzt, dass sie ,,gemaR einem vollstdndig konsistenten Darstellungssystem, das auf einer einfachen und leicht
verstandlichen Grundidee aufbaut, ausgefiuhrt werden” (Pierce, 1903b, SEM Il 98).

Bei Diagrammen handelt es sich um gewisse Zeichen innerhalb eines sogenannten
Diagrammsystems, von denen man zum Zeitpunkt der Konstruktion annimmt, dass sie in einem
vermutlich widerspruchsfreien Zusammenhang stehen. Durch das rahmende Diagrammsystem
werden (im Sinne einer ,Gebrauchsanweisung’) die Regeln fiir den Umgang mit den Diagrammen
(Konstruktion, Verwendung, Lesart etc.) festgelegt (vgl. Dorfler 2006, S. 210ff.). Beispielsweise
werden Diagramme der Form ,2n — 1“ im Diagrammsystem der Algebra verwendet, in dessen
Kontext sie gelesen werden koénnen und gewisse Operationen mit ihnen zuldssig sind. Das
Diagrammsystem gibt somit die Regeln vor, wie Ergebnisse gelesen bzw. interpretiert werden
missen.

Aus semiotischer Sicht erscheint mathematisches Tun als eine Zeichentatigkeit, als ein regelgeleitetes
Agieren mit Zeichen in Diagrammsystemen; der Umgang mit und die Erforschung von Diagrammen
stehen somit im Fokus. Mathematisches Schlieffen kann unter dieser Perspektive als
diagrammatisches Schliefen betrachtet werden. Hoffmann (2005, S. 129) zitiert Pierce dazu wie
folgt:

Mit diagrammatischem SchlieRen meine ich SchlieBen, welches gemaR einer in allgemeinen Begriffen
formulierten Vorschrift ein Diagramm konstruiert, Experimente an diesem Diagramm durchfiihrt, deren Resultate
notiert, sich Gewissheit verschafft, dass dhnliche Experimente, die an irgendeinem gemaf der Vorschrift
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konstruierten Diagramm durchgefiihrt werden, die selben Resultate haben wiirden, und dieses in allgemeinen
Begriffen zum Ausdruck bringt. (Peirce 1902a, NEM IV 47 f.)

Diagrammatisches SchlieRen umfasst folglich (i) die Konstruktion von Diagrammen, (ii) das Ausfiihren
von Experimenten an bzw. mit diesen Diagrammen, (iii) das Beobachten und Festhalten der
Resultate des Experimentierens und (iv) die Vergewisserung der allgemeinen Gultigkeit der
Ergebnisse (vgl. Dorfler 2006, S. 211). Fir die Konstruktion eines Diagramms und den Umgang mit
ihm ist ein Wissen um das entsprechende Regelsystem des Diagrammsystems notwendig. Peirce
pragt hierflr den Begriff des kollateralen Wissens, mit dem er alles Wissen bezeichnet, welches
bereits gewusst werden muss, um anderes Wissen verstehen oder ermdglichen zu kénnen
(Hoffmann 2005, S. 38ff.).

Diesem Vorgang des diagrammatischen SchlieRens soll nun weiter nachgegangen werden.

2.5.1 Der Vorgang des diagrammatischen Schlief3ens

Wie bereits oben beschrieben, beinhaltet das diagrammatische SchlieBen die Aspekte (i)
Konstruktion von Diagrammen, (ii) Ausfiihren von Experimenten an bzw. mit diesen Diagrammen, (iii)
Beobachten und Festhalten der Resultate des Experimentierens und (iv) Vergewisserung der
allgemeinen Giiltigkeit der Ergebnisse. Diese Aspekte werden im Folgenden naher beschrieben und
anhand eines Beweises zu der Behauptung illustriert, dass die Summe von zwei ungeraden
nattrlichen Zahlen immer gerade ist.

Die Konstruktion von Diagrammen

Sucht man nach einer Lésung fiir ein mathematisches Problem (etwa einen Beweis zu einer
mathematischen Behauptung), so bietet eine diagrammatische Darstellung (etwa in der
Symbolsprache der Algebra oder mithilfe von Punktmustern) Transformationsmaoglichkeiten, die das
Problem zunehmend handhabbar machen kdnnen. Es muss hier angemerkt werden, dass die Wahl
des Diagrammsystems, innerhalb dessen die Konstruktion des Diagrammes geschieht,
weitreichenden Einfluss auf die jeweiligen Moglichkeiten hat: Die Regeln fir den Umgang mit den
Diagrammen innerhalb des Diagrammsystems determinieren mogliche Erkenntnisse. Damit
entspricht der Vorgang der Diagrammatisierung keiner bloBen Ubersetzung mathematischer
Sachverhalte, sondern muss als das Aufpragen einer mathematischen Struktur verstanden werden.
Denn durch jedes Diagrammsystem werden bestimmte Eigenschaften der mathematischen ,Objekte’
und gewisse Moglichkeiten zur Transformation in den Vordergrund geriickt. Folglich ist bereits bei
der Konstruktion von Diagrammen ein entsprechendes kollaterales Wissen notwendig; bei der
Konstruktion von Diagrammen wird jedoch nicht blof8 kollaterales Wissen explizit gemacht, bereits
hier setzt der eigentliche Erkenntnisprozess an.

Fir den Beweis der Behauptung, dass die Summe von zwei ungeraden natiirlichen Zahlen
immer gerade ist, kdnnen die Diagramme ,2n —1“ und ,2m — 1“ (mitn,meN) im
Diagrammsystem der Algebra konstruiert werden, um das Problem handhabbar zu machen.
Die Auswahl und Zusammensetzung der Zeichen (etwa in Referenz auf eine mathematische
Definition oder einen Satz) sind hierbei dem kollateralen Wissen zuzuordnen. Alternativ
kénnten auch entsprechende Punktmusterdarstellungen im Diagrammsystem der
Punktmuster konstruiert werden. Somit gehort zu dieser Phase auch die Auswahl eines
Diagrammsystems.
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Das Ausfiihren von Experimenten bzw. Transformationen mit den Diagrammen

Bei der Ausflihrung von Experimenten mit den Diagrammen werden diese nicht nur Mittel, sondern
auch Gegenstand der Erkenntnis: ,Wir untersuchen nicht mit Hilfe von Diagrammen von diesen
wesentlich verschiedene Objekte, sondern die Diagramme selbst sind die Gegenstinde der
Untersuchungen und Beobachtungen” (Dérfler 2010., S. 26). Mathematische S&tze erscheinen
hierbei als Aussagen Uber das regelhafte Agieren mit Zeichen. Es ist die geeignete Auswahl der
Operationen bzw. Transformationen, die innerhalb des Diagrammsystems zu Ergebnissen fiihren, die
dann wieder als Aussagen Uber Objekte interpretiert werden koénnen. Ein Wissen um das
entsprechende Regelwerk des Diagrammsystems ist flr die Ausfiihrung der Transformationen und
die Interpretation der so erhaltenen Diagramme im Sinne kollateralen Wissens grundlegend.

An den oben konstruierten Diagrammen (,2n — 1“ und ,,2m — 1“) kénnen nach den Regeln
der Algebra Transformationen vorgenommen werden:

2n-1D+(2m-1)=2n-142m—-1=2n+2m—-1+(-1)=2n+2m—2
=2-(n+tm-1)

In dem Beispiel wird deutlich, dass die geeignete Auswahl der (erlaubten) Operationen den
Erkenntnisgewinn ermdglicht, dass die Summe von zwei ungeraden Zahlen immer gerade ist. Bei
diesen Operationen werden die Diagramme verandert und ihre Eigenschaften untersucht. Schlieflich
kann das resultierende Diagramm ,2-(n+m—1)“ wiederum nach den Regeln des
Diagrammsystems gelesen werden.

Das Beobachten und Festhalten der Resultate des Experimentierens

Die durch Transformation erhaltenen Diagramme kdnnen vom Betrachter als Aussagen (ber
mathematische Objekte verstanden werden. Fir den Erkenntnisgewinn muss das durch
Transformation erhaltene Diagramm schlielRlich in der Lesart des Diagrammsystems interpretiert
werden. Kollaterales Wissen wird hier eine notwendige Bedingung fiir das Verstehen des Ergebnisses
bzw. fir die ,,Mdglichkeit identifizierender Wahrnehmung” (Hoffmann 2005, S. 44).

Das erhaltene Diagramm 2 - (n+ m — 1) kann im Diagrammsystem der Algebra (vor dem
Hintergrund mathematischer Regeln und Satze) interpretiert werden: Da der zweite Faktor
ein Element der natiirlichen Zahlen ist, liegt hier als Ergebnis eine ,gerade Zahl’ vor.

Die Verbindung von Diagramm (hier: 2 - (n + m — 1)) und Objekt (hier: gerade Zahl) wird somit
durch das Diagrammsystem gestiftet.

Die Vergewisserung der allgemeinen Giiltigkeit der Ergebnisse

SchlieB3lich stellt sich die Frage nach der Sicherheit bzw. der allgemeinen Giiltigkeit der Resultate des
diagrammatischen SchlieSens. Die Regeln des Diagrammsystems (bzw. ihre Konsistenz) manifestieren
die Unausweichlichkeit mathematischen Schliefens: ,Da beim mathematischen Schliefen keine
weiteren empirischen Bedingungen zu bericksichtigen sind, garantieren allein die Regeln des
gewahlten Diagrammsystems, dass die Konklusionen des SchlieBens so allgemein sind wie ihre
Pramissen.” (Hoffmann 2005, S. 135). Oder anders formuliert: Es sind die allgemeingtltigen Regeln
und Operationen, aus denen die Sicherheit der Ergebnisse resultiert, und nicht die Diagramme selbst.
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Aus den oben angewendeten zugelassenen allgemeingiltigen Transformationen der
Diagramme, gemaR den Regeln des Diagrammsystems der Algebra, resultiert die allgemeine
Glltigkeit der Erkenntnis, dass die Summe von zwei ungeraden Zahlen immer gerade ist.

Diese Sicht auf den Beweisprozess als diagrammatisches SchlielRen ermdglicht dabei, eine
vergleichende Sicht auf verschiedene Beweisprodukte einzunehmen, die fiir die vorliegende Arbeit
von grolRer Bedeutung ist. Diese Sicht auf Beweisprodukte wird im folgenden Abschnitt in Form eines
Exkurses an verschiedenen Beweisprodukten exemplarisch aufgezeigt.

2.5.2 ExKkurs: Eine semiotische Diskussion verschiedener Beweisprodukte

Die bisher erfolgte Erdrterung semiotischer Aspekte beim Beweisen soll im Folgenden anhand
verschiedener Beweisbeispiele konkretisiert werden. Die zu beweisende Behauptung ist hierbei: Die
Summe aus einer ungeraden natiirlichen Zahl und ihrem Doppelten ist immer ungerade. Nach der
Darstellung von sechs verschiedenen ,Beweisen’ werden diese aus semiotischer Perspektive
vergleichend diskutiert, wobei die Aspekte ,kollaterales Wissen’ und ,Diagrammsystem’ im Zentrum
stehen werden. Ferner wird es darum gehen, die Verwendung von konkreten Zahlen- und
Punktmusterbeispielen innerhalb allgemeingiiltiger Beweise aus semiotischer Perspektive zu
legitimieren.

Beweis (1):
54+2-5=3-5=15 13+4+2-13=3-13=39

Die Summe aus einer ungeraden natiirlichen Zahl und ihrem Doppelten ist immer gleich dem
Dreifachen der Ausgangszahl. Da diese als ungerade vorausgesetzt wurde, erhélt man immer das
Produkt zweier ungerader Zahlen. Da das Produkt von zwei ungeraden Zahlen immer ungerade ist,
muss das Ergebnis immer ungerade sein.

Beweis (2):

Sei a eine beliebige aber feste ungerade natiirliche Zahl. Dann gilt: a + 2-a = 3 - a.
Da das Produkt von zwei ungeraden Zahlen immer ungerade ist, muss das Ergebnis immer ungerade
sein.

Beweis (3):
Seia € N beliebig aber fest. Dann gilt:
a-1)+2-2a-1)=3-2a-1)=6a-3=2Ba-1)-1
=2q—1,mitqg=Ba—-1)eN.
Q.e.d.
Beweis (4):

Abbildung 6: Die Summe aus einer ungeraden Zahl und

oI + - = - ihrem Doppelten dargestellt im Diagrammsystem der

Punktmuster (Variante 1)
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Addiert man zu einer ungeraden nattrlichen Zahl ihr Doppeltes, so ergibt sich durch Aneinanderlegen
der Punktreihen geometrisch ein Rechteck, wobei eine Seitenlange gleich drei und die andere gleich
der Ausgangszahl ist. Da somit beide Seitenlangen des Rechtecks ungerade sind, kann man das
Rechteck weder horizontal noch vertikal durch zwei teilen. Somit ist die Gesamtzahl nicht durch zwei
teilbar, also ungerade.

Beweis (5):
Abbildung 7: Die Summe aus einer ungeraden Zahl und

' + | = ihrem Doppelten dargestellt im Diagrammsystem der
L Punktmuster (Variante 2)

Beweis (6):

Abbildung 8: Die Summe aus einer ungeraden Zahl und ihrem Doppelten dargestellt im Diagrammsystem der
Punktmuster mit ,geometrischen Variablen **

Diskussion der Beweisprodukte unter der eingenommenen semiotischen Perspektive

In Beweis (1) wird narrativ eine allgemeinglltige Argumentation beschrieben, welche anhand zweier
konkreter Zahlenbeispiele (Arithmetik) verdeutlich wird. Die Schlussfolgerung, dass das Ergebnis
immer ungerade sein muss, wird schlieBlich mithilfe des Satzes erreicht, dass das Produkt von zwei
ungeraden Zahlen immer ungerade ist.

Zu den Zahlenbeispielen ist zundchst aus erkenntnistheoretischer Perspektive zu bemerken, dass
durch den narrativen Beweis, mithilfe der Wortvariablen, eine allgemeingililtige Verifikation der
Behauptung vollzogen wird. Aus semiotischer Perspektive wurden ganz bestimmte Transformationen
aus dem Diagrammsystem der Arithmetik ausgewahlt, um den Sachverhalt darzustellen bzw. zu
untersuchen. Die Erkenntnis Uber die Gultigkeit der Behauptung kann hierbei der Transformation der
Diagramme zugeschrieben werden: Die Transformationen wurden gezielt so gewahlt, dass diese mit
allen ungeraden Zahlen genauso durchfiihrbar sind und zu einem entsprechenden Ergebnis fihren
wirden. Zentral ist, dass nicht mithilfe der konkreten Zahl ,3“ die Allgemeingiiltigkeit der
Behauptung nachgewiesen wird, denn es wird ja nur ein konkretes Zahlenbeispiel betrachtet; die
Sicherheit und Allgemeingiltigkeit der beschriebenen Erkenntnis resultiert aus den Umformungen
und der Interpretation der Diagramme, die genauso fiir alle moglichen ungeraden natirlichen Zahlen
durchzufiihren waren. Hier wird deutlich, dass die Verwendung von konkreten Beispielen (etwa
innerhalb generischer Beweise) kein Widerspruch zu der Allgemeingiiltigkeit der Verifikation
darstellt, da diese durch die Transformationen konstituiert wird.

Beweis (2) unterscheidet sich von Beweis (1) durch die Nutzung der als ungerade natirliche Zahl
definierten Buchstabenvariable a. Aus der beschriebenen semiotischen Perspektive gibt es hier fir
den Erkenntnisprozess keinen qualitativen Unterschied zum ersten Beispiel, da das Zeichen a
entsprechend dem Zahlzeichen 3 verwendet wird. Es sind die gezielt ausgewahlten
Transformationen, die mit allen Zahlen bzw. Buchstabenvariablen so durchgefiihrt werden kénnen,

' Die Darstellung und Verwendung der von Biehler und Kempen (2014, S. 132) so genannten ,,geometrischen
Variablen” wird in Abschnitt 6.2 genauer erortert.
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die die Allgemeingiiltigkeit belegen; die GesetzmaRigkeiten der Arithmetik bzw. der Algebra sichern
die Giiltigkeit der Beweisflihrung.

In dem Beweis (3) wird eine algebraische Reprasentation einer ungeraden Zahl als Formalisierung
gewadhlt. Innerhalb des fiir die Konstruktion dieses Diagramms verwendeten Diagrammsytems der
Algebra sind weitere Transformationsmoglichkeiten gegeben. Im Kontext des Diagrammsystems der
Algebra wird die Bedeutung notwendigen kollateralen Wissens evident: das Wissen um die
Reprédsentation einer ungeraden Zahl, etwa als (2a—1) mit aeN, das Wissen um die
(Transformations-) Regeln der Algebra und das notwendige Erreichen eines Diagramms (hier der
Form 2g —1 mit g € N), welches schliellich wieder als Aussage liber das mathematische Objekt
interpretiert werden kann.

In den Beweisen (4), (5) und (6) wird ein Diagrammsystem mit Punktmustern verwendet. Die Regeln
dieses Diagrammsystems werden bei Fischer (2010) wie folgt beschrieben:

Zahlen werden hier als Anzahlen von Punkten repradsentiert, Addition als Zusammenfiigen von zwei Punktmengen,
Multiplikation als Vervielfachen einer Punktmenge. Subtrahieren geschieht durch Wegnehmen (z.B. durch
Durchstreichen, Markieren, Ausradieren). Dividieren ist Teilen einer Punktmenge in gleich groBe Untermengen,
wobei der Divisor sowohl als Anzahl als auch als GroRe der einzelnen Untermengen aufgefasst werden kann. Ein
GroRenvergleich von zwei Punktmustern geschieht durch geeignetes Strukturieren oder Umsortieren der Punkte.
Die Punktmuster bieten aber noch mehr: Die Rechengesetze der natirlichen Zahlen spiegeln sich in den
Operationen an Punktmengen wider. Daher sind die Punktmuster Diagramme im Sinne von Pierce. (Ebd., S. 86)

In Beweis (4) wird durch das Zusammenfiligen der ungeraden Zahl mit ihrem Doppelten ein Rechteck
gebildet. Dieses erhaltene Diagramm muss im Diagrammsystem der Punktmuster interpretiert
werden: Die Seitenlangen des so entstandenen Rechtecks werden immer ungerade sein, da eine
Seitenldange gleich drei und die andere gleich der ungeraden Ausgangszahl ist. Somit kann das
Rechteck nicht in zwei gleichgroRe Untermengen aufgeteilt werden. Daher ist die zu betrachtende
Summe ungerade. Neben der Darstellung einer konkreten ungeraden Zahl (vgl. Beweis (1)) wird auch
in diesem Beispiel die Bedeutung des kollateralen Wissens deutlich: Neben dem Bewusstsein, dass
ein solches Agieren mit Punktmustern liberhaupt zulassig ist, sind das Wissen um die Darstellung als
Punktreihe, das Zusammenfligen der Punktreihen zu einem Rechteck, das Argumentieren Uber die
Seitenlangen und der Nachweis des Attributs ,ungerade’ als ,nicht durch zwei teilbar’ wesentliche
Aspekte desselben.

Das in dem Beweis (4) verwendete Diagramm eines ,Rechtecks mit ungeraden Seitenldngen’ fur die
Darstellung einer ungeraden Zahl unterscheidet sich von denen in den Beweisen (5) und (6) vor allem
dadurch, dass dort eine strukturelle Eigenschaft der ungeraden Zahlen betont wird: In den Beweisen
(5) und (6) wird die ungerade Zahl im Diagrammsystem der Punktmuster mithilfe zweier Punktreihen
dargestellt, wobei eine Reihe um eins langer (bzw. kiirzer) als die andere ist. Hier wird deutlich, dass
ungerade Zahlen immer um eins gréBer (bzw. kleiner) als gerade Zahlen sind. Wahrend in Beweis (5)
die konkrete Zahl 5 betrachtet wird, wird in (6) eine Pinktchen-Notation verwendet, um gleichsam
als ,,geometrische Variable” eine beliebige Anzahl zu reprasentieren (vgl. Biehler und Kempen 2014,
S. 131). Aus semiotischer Perspektive kann jedoch bereits in (5) die Allgemeingiltigkeit der
Verifikation erkannt werden, da diese aus den Operationen und nicht aus den verwendeten
Symbolen resultiert (s.0.).

Insgesamt werden bei obiger Betrachtung verschiedene Aspekte deutlich, die fir die vorliegende
Arbeit von Bedeutung sind:
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1. Die Wahl eines Diagrammsystems hat weitreichende Auswirkungen auf die moglichen
Transformationen und die potentiell zu erreichenden Diagramme, welche schlielRlich wieder
interpretiert werden miussen.

2. Bei jeder Nutzung eines Diagrammsystems und in jedem Schritt des diagrammatischen
SchlieRens ist kollaterales Wissen notwendig.

3. Aus semiotischer Perspektive erweist sich ,Variable’ als ein bestimmter Gebrauch von
Zeichen. Eine konkrete ungerade Zahl kann (als paradigmatische ungerade Zahl) als ,Variable’
fungieren. Allein der Verweis auf die (mathematischen) Objekte geschieht unterschiedlich;
bei Buchstabenvariablen der Algebra als ,Variable mit Wertebereich’ und bei Punktmustern
gef. mit Bezug auf die Struktur der mathematischen Objekte als strukturelle Reprasentation.

4. Die Allgemeingitiltigkeit einer Verifikation griindet sich nicht auf den verwendeten Zeichen,
sondern auf den Umgang mit diesen: Die allgemeinglltigen Transformationen der
Diagramme gemaR bestimmter Regeln eines konkreten Diagrammsystem konstituieren die
Allgemeingiiltigkeit der Verifikation.

Durch obige Betrachtungen werden die Bedeutung des Diagrammsystems und das Vorhandensein
von kollateralem Wissen fir das diagrammatische SchlieRen und somit fliir den Beweisprozess
deutlich. Dabei tauchte auch das Phdnomen auf, dass zusatzlich zu dem diagrammatischen SchlielRen
(Umgangs-) Sprache genutzt wurde, um auf verwendete Transformationen, die Lesart der
Diagramme und die Allgemeingiiltigkeit der Beweise gesondert hinzuweisen. Der Sprache kommt
dabei zunachst keine gesonderte Rolle im Erkenntnisprozess zu, ihr obliegt es, besondere Aspekte fiir
den Lesenden zu betonen. Dies mag fir den Lesenden eines Beweises, abhangig von dem
verwendeten Diagramm und den jeweiligen Vorerfahrungen, angebracht oder auch notwendig zu
sein. Dabei stellt sich jedoch die Frage, welches Diagrammsystem fir die Tatigkeit des
diagrammatischen SchlieRens am besten geeignet ist.

2.5.4 Die Giite eines Diagrammsystems

Die Giite eines Diagrammsystems misst sich nach seinem Nutzen im (Sach-)Kontext, seinem Potential
fir das Gelingen des Erkenntnisprozesses und seiner Les- und Nutzbarkeit fiir den Handelnden (etwa
Stjernfelt 2000, S. 360). Es lasst sich somit festhalten, dass die Giite eines Diagrammsystems nicht
ausschlieBlich objektiv zu bewerten ist, sondern auch oder vor allem dabei subjektive Aspekte
beriicksichtigt werden miussen. Entscheidend erscheint der Grad kollateralen Wissens, (iber den
Handelnde im Umgang mit einem Diagrammsystem zum entsprechenden Zeitpunkt verfiigen.
Folglich ist es von grundlegender Bedeutung, dass Lernende den Umgang mit einem
Diagrammsystem, und dies schlieRt auch die Algebra oder Punktmusterdarstellungen mit ein,
verstandig (iben und eine entsprechende Praxis aufbauen konnen. Wie Dérfler (2006) darlegt, ist das
Erlernen einer diagrammatischen Praxis fiir den Mathematikunterricht von zentraler Bedeutung und
umfasst dabei verschiedene Aspekte, wie den elementaren Umgang mit Diagrammen nach den
Regeln des jeweiligen Systems, das Experimentieren mit Diagrammen und die Erforschung ihrer
Eigenschaften, die Untersuchung der Beziehungen zwischen verschiedenen Typen von Diagrammen,
das Erfinden und Entwerfen von Diagrammen und das Anwenden von fertigen Diagrammen zur
Modellierung (ebd., S. 213f.). Denn wer die (Schluss-) Regeln der Algebra nicht kennt bzw. versteht,
wird auch die Allgemeingiiltigkeit entsprechend gefiihrter algebraischer Beweise nicht verstehen
kénnen. Entsprechend miissen Lernende mit dem Diagrammsystem der Punktmuster vertraut sein,
um mit diesen arbeiten zu kénnen. Auch die Frage nach der Lesart konkreter (paradigmatischer)
Beispielbetrachtungen erscheint nun als eine Frage nach der Interpretation von Diagrammen: In
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welchen Transformationen und Diagrammen ein Betrachter eine Allgemeingiltigkeit des
diagrammatischen SchlieRens erkennt, hangt grundlegend vom vorliegenden kollateralen Wissen ab.

Dennoch hat natirlich die fachmathematische Symbolsprache fiir die mathematische Tatigkeit
verschiedene Vorteile, die Lernenden bewusst gemacht werden sollten. Diese werden im folgenden
Absatz dargestellt und didaktisch motiviert.

2.5.5 Die Rolle der fachmathematischen Sprache

Neben der allgemeinen Betrachtung des Nutzens eines Diagrammsystems flir die mathematische
Erkenntnisentwicklung muss auch die Bedeutung der fachmathematischen Symbolsprache in diesem
Kontext gesondert betrachtet werden. Ohne Zweifel ist das Lesenkdnnen von und der Umgang mit
der fachmathematischen Symbolsprache ein Lernziel jedes mathematikhaltigen Studiengangs.

Auf die Vorteile der fachmathematischen Sprache wird u.a. in Whitehead und Russel (1978, S. 1ff.)
und in Maier (1999) eingegangen. Dazu gehoren die folgenden Aspekte:

- Durch die fachlichen Bezeichnungen werden Informationen geblindelt, was eine verdichtete
und in gewisser Weise auch vereinfachte Sprache zur Folge hat.

- Die Fachsprache ermoglicht erst eine Formalisierung, an der Transformationen vollzogen und
Resultate hervorgebracht werden kénnen.

- Das Bestreben, neue Begriffe bei ihrer ersten Verwendung genau zu definieren, konstituiert
eine begriffsklarende Funktion und Begriffshierarchien und andere Begriffsbeziehungen
bewirken logisch ordnende Funktion der Sprache.

- SchlieRlich ist sie das Kommunikationsmedium der mathematischen Community.

Vorteile kdnnen somit Gbergeordnet auf der Ebene der Begriffsbildung bzw. Begriffsprazisierung und
auf der Ebene einer ,Formalisierung’ ausgemacht werden, welche auch der Kommunikation dienlich
sind. Betrachtet man ,Formalisierung’ aufgrund des in dieser Arbeit interessierenden Kontextes als
,Ubersetzung’ in die algebraische Symbolsprache unter Verwendung von Buchstabenvariablen etc.,
so kénnen verschiedene Vorteile dieses speziellen Diagrammsystems herausgearbeitet werden (vgl.
Mall 1993 und Mason et al. 2005, S. 1ff.):

Die Symbolsprache der Algebra ...

- Ubernimmt eine Kontrollfunktion bzgl. der Giiltigkeit von (rechnerischen) Argumentationen

- vermag bei Argumentationen restlos zu lberzeugen, wo andere Darstellungen einen Zweifel
an der Giiltigkeit hinterlassen kénnen

- ermoglicht die Formulierung allgemeingiltiger Zusammenhange (,expressing generality”;
Mason et al. 2005, S. 2ff.)

- ist das Kommunikationsmittel der mathematischen Community.

Gerade der Aspekt der Formulierung allgemeingiltiger Zusammenhange ermoglicht im Vergleich
generischer und formaler Beweise die Herausstellung des Nutzens der mathematischen
Symbolsprache. Wahrend bei dem hier vertretenen Konzept von generischen Beweisen die
Allgemeingiiltigkeit narrativ dargestellt bzw. expliziert werden muss, wird der Symbolsprache der
Algebra innerhalb formaler Beweise dieses Attribut gleichsam zugesprochen. Denn die oben
angefiihrte Kontrollfunktion der Algebra sichert die Allgemeinglltigkeit der verwendeten
Transformationen bzw. Operationen und damit die Allgemeingiiltigkeit entsprechender Beweise.
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Aus didaktischer Perspektive ist dabei grundlegend, dass auch die Verwendung der
fachmathematischen Symbolsprache als Lerngegenstand aufgefasst werden muss. Daher kann die
Verwendung dieser Fachsprache zunadchst ein Verstehenshindernis fir das Erlernen der
Beweisaktivitdt darstellen. Hierzu schreibt Maier (1999, S. 25):

Angesichts der oben erwadhnten Schwierigkeiten erscheint es nun fragwiirdig, die Schiiler bei [...] Beweisen von
vorne herein und ausschlieBlich auf einen extensiven Symbolgebrauch festzulegen und den Ubergang von einer
betont umgangssprachlichen zu einer betont formalen Darstellung zu friih oder zu rasch zu erzwingen. Mit einer
solchen Festlegung ist die Gefahr verbunden, dass mindestens ein Teil der Schiiler mit der Aufgabe des Beweisens
einfach deshalb Schwierigkeiten bekommt, weil ihm diese Idealform der Kodierung von Beweisgedanken nicht
gelingt und er umgekehrt weitgehend mit Symbolen dargestellte Beweise nicht zu dekodieren und damit nicht zu
verstehen vermag.

Wie bereits zu Beginn des Abschnitts angemerkt wurde, bezieht sich diese semiotische Theorie von
Peirce urspriinglich auf den Prozess mathematischer Erkenntnisgewinnung und nicht auf den Prozess
der Wissenssicherung. Der Vorgang des diagrammatischen SchlieBens vermag es alleine noch nicht,
das Phdanomen ,mathematischer Beweis’ vollstandig zu erfassen. Hinzu kommen die Fragen nach der
Verwendung von mathematischen Argumenten, der Explizierung von Argumenten und
Schlussweisen, generell aller Normen, die an Beweise gestellt werden, damit sie als wirkliche
Beweise gelten konnen (vgl. Abschnitt 2.1.1). Diese Fragen lassen sich fir den Kontext der
Mathematikausbildung mit der Theorie sozio-mathematischer Normen fassen, welche als zweite
Leittheorie fir die vorliegende Forschung gewahlt wurde. Diese Theorie wird im nachsten Abschnitt
dargestellt und begriindet.

2.6 Die Theorie sozio-mathematischer Normen

In diesem Abschnitt wird die Theorie sozio-mathematischer Normen dargestellt, die in der
vorliegenden Arbeit, neben der Theorie des diagrammatischen SchlieBens nach Pierce, als zweite
Leittheorie bei der Beforschung der Lehrveranstaltung verwendet wird. Mithilfe dieser Theorie wird
es moglich, den Prozess zu beschreiben, zu analysieren und zu evaluieren, wie Lernende normative
Aspekte beim Beweisen erlernen. Diese normativen Aspekte tangieren dabei die folgenden Fragen:

1. Was wird im Kontext der Lehrveranstaltung unter einem (generischen, operativen, formalen)
Beweis verstanden?

2. Welche Aspekte missen bei der Konstruktion eines (generischen, operativen, formalen)
Beweises expliziert werden?

3. Inwiefern werden diese Aspekte sozio-mathematischer Normen in den Beweisproduktionen
der Lernenden deutlich?

Die Theorie sozio-mathematischer Normen eignet sich in einem besonderen MaRe fir die
vorliegende Forschung, da sie einen Erklarungsansatz fiir die Herausbildung normativer Aspekte zum
Beweisen innerhalb einer Lerngruppe zur Verfligung stellt, die im Kontext der Lehrveranstaltung
expliziert werden oder auch nur implizit verbleiben. Gerade fiir die Domane des Beweisens ist dieses
Zusammenspiel von zu explizierenden und impliziten Normen von groRer Bedeutung, da eine
,absolute’ Definition dessen, was ein Beweis ist, bzw. was innerhalb einer Lerngruppe unter einem
Beweis verstanden wird, so nicht moglich ist (vgl. Abschnitt). Entsprechende Begriffs- und
Bedeutungskonstruktionen kdnnen dann sinnstiftend als Ergebnisse eines Aushandlungsprozesses im
Sinne sozio-mathematischer Normen begriffen werden. Darliber hinaus wird es mit dieser Theorie
moglich, die Auswirkung der hier thematisierten Lehrveranstaltung theoretisch fassbar zu machen.
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Im Fokus dieser Theorie steht dabei nicht das Hineinwachsen in eine weitergefasste Kommunitat, wie
etwa in der sozio-kulturellen Theorie von Wenger (1998), sondern die konkrete Lehrsituation bzw.
Lehrveranstaltung, in deren Kontext sich normative Aspekte herausbilden.

2.6.1 Theoretische Grundlagen sozio-mathematischer Normen

Yackel und Cobb (1996) pragten den Begriff ,,sozio-mathematische Normen“ fiir normative fachliche
Aspekte im Mathematikunterricht, die sich in einem Aushandlungsprozess zwischen Lehrenden und
Lernenden im Unterrichtsgeschehen herausbilden. Die Autoren zeigen am Beispiel eines
Unterrichtsgesprachs in der Grundschule, wie sich die Bedeutung dessen herausbildet, was als
unterschiedliche Losung (,different solution”; ebd., S. 462) im Unterricht verstanden wird. Diese
Perspektive verbindet somit eine konstruktivistische Sichtweise auf den Lernprozess mit der Sicht auf
das Lernen als sozialen Interaktionsprozess (vgl. Stephan 2014, S. 564). Die Aushandlung normativer
Aspekte ist dabei im Kontext von Beweisen von besonderer Bedeutung.

2.6.2 Sozio-mathematische Normen und Beweise

Eine Grundfrage innerhalb einer Lerngemeinschaft ist, was Uberhaupt unter einer giiltigen
Argumentation bzw. unter einem korrekten mathematischen Beweis verstanden werden darf bzw.
werden soll. Yackel und Cobb (1994) weisen hierbei auf die Bedeutung des Aushandlungsprozesses
zwischen Lehrenden und Lernenden hin:

When students give explanations and arguments in the mathematics classroom their purpose is to describe and
clarify their thinking for others, to convince others of the appropriateness of their solution methods, but not to
establish the veracity of a new mathematical 'truth'... The meaning of what counts as an acceptable mathematical
explanation is interactively constituted by the teacher and the children [...]. (Ebd., S. 3; zitiert nach Hanna und
Jahnke 1996, S. 887)

Doch nicht nur die Bedeutung entsprechender Begriffe kdnnen beim Beweisen als Aspekte sozio-
mathematischer Normen betrachtet werden, in diesem Kontext gilt es im unterrichtlichen
Geschehen weitere Aspekte zu erértern. Dreyfus (1999) weist darauf hin, dass gerade im Erlernen
der Beweisaktivitat sozio-mathematische Normen eine zentrale Rolle spielen. So werden im
unterrichtlichen Geschehen die Normen nicht nur daflir ausgebildet, was als eine giiltige
Argumentation akzeptiert wird, sondern auch welche Art von Antwort von einem Lernenden
erwartet wird, welche Zwischenschritte in einem Beweis offengelassen werden kdnnen bzw. welche
Argumente expliziert werden missen (vgl. auch Blanton & Stylianou 2002; Forman et al. 1998;
McClain 2009, Weber 2002). Dies tangiert auch die Frage, wie Lernende verschiedene Operatoren
zum Beweisen (Zeigen Sie, dass...;, Beweisen Sie, dass; ..) in Aufgabenstellungen {berhaupt
verstehen, bzw. zu verstehen lernen, ob dabei verschiedene Begriindungsmuster implizit
eingefordert (Dreyfus 1999) oder unterschiedliche semiotische Ressourcen aktiviert werden (Herbst
& Dimmel 2014)%. So betrachtet, kann das Erlernen der Beweisaktivitat Giber die Aushandlung und
Ubernahme von sozio-mathematischen Normen als Enkulturationsprozess in die mathematische
Community verstanden werden (Nickerson & Rasmussen 2009). Durch diese Sichtweise auf den
Lernprozess rickt auch die Bedeutung der beteiligten Lehrpersonen in den Vordergrund.
Entsprechende Normen werden durch alle am Lernprozess beteiligten Personen beeinflusst bzw.
ausgehandelt und gleichsam konstituiert.

¥ Neuere Ergebnisse von Kempen et al. (2016) weisen darauf hin, dass Beweisoperatoren verschiedene
Auswirkungen auf die Beweisbearbeitungen von Studienanfangerinnen und Studienanfangern haben kénnen.
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Vor diesem Hintergrund wird auch die Frage nach Beweisakzeptanz bzw. nach Akzeptanzkriterien zu
einem Aspekt sozio-mathematischer Normen (etwa Ufer et al. 2009, S. 33). Heinze und Reiss (2003)
stellen hierzu Methodenwissen zum Beweisen auf drei Ebenen vor, die als Normen im Kontext von
Beweiskonstruktion und Beweisevaluation von Lernenden berticksichtigt werden missen (vgl. hierzu
Ufer et al. 2009, S. 35). Das ,Beweisschema’ betrifft die Verwendung deduktiver Schliisse innerhalb
der einzelnen Beweisschritte. Bei der ,Beweisstruktur’ geht es um die Gesamtkonzeption eines
Beweises: Das Behauptete wird ausgehend von gegebenen Voraussetzungen gezeigt. Der Fokus auf
die ,Beweiskette’ sichert schlieflich das logische Voranschreiten innerhalb der Beweisstruktur. Was
in Bezug auf diese drei Facetten von Methodenwissen nun gefordert bzw. erlaubt ist, kann dabei als
Frage sozio-mathematischer Normen aufgefasst werden.

3. Forschungsmethode

In diesem Kapitel wird zunachst das Konzept des Design-Based Research vorgestellt (Abschnitt 3.1)
und anschlieRend als die hier verwendete Forschungsmethode legitimiert und begriindet (Abschnitt
3.2). Im letzten Abschnitt des Kapitels wird schlieflich die Genese der innerhalb der
Effektivitatsstudie der vierten Durchfihrung der Lehrveranstaltung (WS 2014/15) verwendeten
Testinstrumente beschrieben (Abschnitt 3.3). Hierdurch wird bereits ein Beitrag fiir das in Abschnitt
1.4.1 formulierte Ziel geleistet, Testinstrumente fir die Erforschung zentraler Aspekte zum Beweisen
bei Lernenden zu entwickeln.

3.1 Design-Based Research

Die Forschungsmethode des Design-Based Research (DBR) wird haufig auf die Arbeiten von Brown
(1992) und Collins (1992) zurickgefiihrt, die sich mit der Entwicklung von Designexperimenten und
den damit verbundenen theoretischen und methodischen Belangen auseinandersetzten. Seit den
1980-er Jahren wurden in der Entwicklung dieser Forschungsrichtung immer wieder verschiedene
Begrifflichkeiten gepragt, innerhalb derer verschiedene Aspekte in den Vordergrund gerlickt werden
oder welche sich auch aufgrund ihrer historischen Entwicklung erklaren lassen (s. hierzu Bakker &
van Eerde 2015, S. 436). Ubergreifend kann Design-Based Research als eine Forschungsmethode
beschrieben werden, in der verschiedene (Forschungs-) Ansidtze kombiniert werden, um im Kontext
der Beforschung einer Lehrinnovation diese zu verbessern, Gelingensbedingungen fiir diese zu
beschreiben und zu testen und zu einer entsprechenden Theoriebildung beizutragen (vgl. Barab &
Squire 2004, S. 2; Bakker & van Eerde 2015, S. 431). Plomb (2010) beschreibt diese
Forschungsrichtung wie folgt:

the systematic study of designing, developing and evaluating educational interventions (such as programs,
teaching-learning strategies and materials, products and systems) as solutions for complex problems in
educational practice, which also aims at advancing our knowledge about the characteristics of these interventions
and the processes of designing and developing them. (Ebd., S. 9)

Der Ausgangspunkt entsprechender Forschungen sind komplexe Problemstellungen der
padagogischen Praxis, fr die es bisher keine Loésungen gibt (Barab & Squire 2004, S. 4; Bakker & van
Eerde 2015, S. 430). Hierfur wird ein (innovatives) Lehr-/Lernszenario konstruiert, durchgefihrt,
evaluiert und modifiziert. Im Mittelpunkt steht dabei nicht eine blofRe Evaluation der Lehrinnovation;
das Erkenntnisinteresse liegt in dem Verstehen der Gelingensbedingungen des Lehr-/Lernszenarios,
der (Weiter-) Entwicklung theoretischer Aspekte und dem Herausarbeiten der auf andere
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Lernsituationen (bertragbaren Erkenntnisse (siehe etwa Barab & Squire 2004, S. 11 oder Plomp
2010, S. 18). Diese gleichzeitige Entwicklung praktischer und theoretischer Aspekte erfolgt dabei
innerhalb eines (mehrphasigen) zyklischen Prozesses (vgl. Abbildung 9). Ausgangspunkt stellt die
Vorbereitung und Planung des Lehr-/Lernszenarios dar, welche auf verschiedenen theoretischen
Grundlagen und Hypothesen basiert. Im Kontext der Durchfiihrung werden diese Hypothesen durch
begleitende Forschung und Lehrerfahrung mit neuen Erkenntnissen konfrontiert. In einer
retrospektiven Analyse werden die erhaltenen Erkenntnisse schlieBlich ausgewertet, was in der
Vorbereitung der nachsten Durchfiihrung zu verschiedenen Modifikationen fiihrt. Innerhalb dieses
zyklischen Prozesses werden somit konsequent theoretische und praktische Aspekte beriicksichtigt
und weiterentwickelt.

Retrospektive Retrospektive
Lehrerfahrung, Analyse Lehrerfahrung, Analyse
begleitende begleitende
Forschung Forschung
Vorbereitung des Durchfiihrung des Vorbereitung des Durchfiihrung des
Lehr-/Lernszenarios | ™ | Lehr-/Lernszenarios Lehr-/Lernszenarios | " | Lehr-/Lernszenarios

Abbildung 9: Zyklischer Forschungsprozess im Design-Based Research

Der Ausgangspunkt eines DBR-Projekts lasst sich als eine Art Gedankenexperiment verstehen: Ein
Lehr-/Lernszenario wird auf der Basis von verschiedenen (didaktischen, fachlichen, paddagogischen
etc.) Annahmen und Intentionen geplant. Im Kontext der Durchfiihrung des Szenarios werden diese
Hypothesen mit der konkreten Unterrichtspraxis konfrontiert, wobei aus der begleitenden Forschung
Ergebnisse hervorgehen, auf deren Grundlage die verschiedenen Hypothesen Uberprift und ggf.
verworfen, bestatigt oder modifiziert werden. Ein Charakteristikum dieser Forschungsmethode ist
dabei, dass das Lehrszenario zwar vor dessen Durchfiihrung formuliert wird, dieses aber bereits
wahrend des laufenden Prozesses modifiziert werden kann: Bereits im Rahmen der Durchflihrung
kénnen Anderungen vorgenommen werden, die zu dessen Gelingen beitragen sollen. Der
Forschende kann dabei direkt in das Experiment involviert sein, um entsprechende Anderungen
vornehmen zu kénnen. Daher erweist sich diese Forschungsmethode als besonders praxisorientiert
und adaptiv. Alle im Kontext der Durchfiihrung erhaltenen Erkenntnisse werden schlieRlich im
Rahmen der retrospektiven Analyse ausgewertet und mit den Ausgangsintentionen abgeglichen. Die
daraus resultierenden Theorien, die Erklarungsansatze dafiir liefern, wie und warum ein
entsprechendes Szenario gelingen kann und wie diese Aspekte in andere Bereiche Ubertragen
werden kénnen, zeichnen sich dabei durch eine gewisse Bescheidenheit aus (,,are humble”; Cobb et
al. 2003, S. 9), da sich diese lokalen Theorien auf entsprechende domanenspezifische Lernprozesse
beziehen (vgl. Cobb et al. 2003, S. 9; Plomp 2010, S. 19).

Cobb et al. (2003) fihren finf charakteristische Merkmale des DBR an, welche diese
Forschungsmethode von anderen abgrenzt. Diese Merkmale werden im Folgenden paraphrasiert:

(1) Theorieentwicklung
Das Ziel entsprechender Forschungsarbeiten ist die Entwicklung von Theorien, wie das
Lernen in einer bestimmten Domaidne gelingen kann und welche Mittel zu dessen
Unterstlitzung beitragen konnen.

(2) Der interventionistische Charakter
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(3)

(4)

(5)

Gegenstand der Forschung ist die Durchfiihrung einer Lehrinnovation, deren Erfolg und
Nutzen als Intervention in einem realen Kontext beforscht werden soll. Aus der Fiille
verschiedener Aspekte miissen dann diejenigen ausgewahlt werden, die im Rahmen der
Forschung unter dem Blickwinkel bestimmter Theorien genauer untersucht werden sollen.
Die Verzahnung von prospektiven und retrospektiven Elementen

Prospektive und retrospektive Momente werden in DBR-Studien in besonderer Weise im
Forschungsprozess bericksichtigt. Das Designexperiment wird auf der Basis verschiedener
Theorien und Hypothesen geplant und durchgefiihrt. Hieraus resultieren gleichsam
Annahmen (iber dessen Auswirkungen. Diese vermuteten bzw. vorhergesagten Ergebnisse
werden immer wieder mit aktuell erhaltenen Befunden konfrontiert, was zu einer
retrospektiven (Neu-) Bewertung der zu Grunde gelegten Hypothesen fihrt.
DBR hat somit auch eine erklarende und eine beratende Funktion: Sie liefert theoretische
Einsichten, wie bestimmte Formen des Lehrens und Lernens verbessert werden kdnnen.
Dieser Forschungsprozess mit einer Ubergreifenden vorhersagenden bzw. beratenden
Ausrichtung beinhaltet dabei verschiedene Stufen des Forschungsprozesses, welche
verschiedene Ausrichtungen (deskriptiv, vergleichend, evaluierend) haben kénnen.

Das iterative Design

Die prospektiven und retrospektiven Momente des DBR konstituieren das charakteristische
iterative Design in der Abfolge von (Re-) Design, Durchfiihrung und Analyse. Die stdndige
Neubewertung von bestehenden Annahmen fiihrt zu deren iterativen Ausscharfung bzw.
Verbesserung. Es ergibt sich somit ein iterativer Designprozess, der aus mehreren
Forschungszyklen besteht.

Die pragmatische Ausrichtung der erarbeiteten theoretischen Aspekte

Die in einem DBR-Kontext erarbeiteten Theorien haben eine pragmatische Ausrichtung: Sie
sind domanspezifisch und resultieren aus einem realen Szenario, in dem sie sich bereits
bewahrt haben.

Im Rahmen dieses Forschungsansatzes gilt es allerdings verschiedene Grundprobleme zu
bericksichtigen (vgl. hierzu Barab & Squire 2004, S. 2; Plomp 2010, S. 30ff.; McKenney et al. 2006, S.
83f.), welche nun dargestellt werden.

Die Involviertheit des Forschers

Durch die aktive Rolle des Forschers bei der Entwicklung der Lehrinnovation, ggf. deren

Durchfiihrung, Evaluation und Modifizierung wird die Objektivitat der Forschung in Frage gestellt.

Plomp

(2010, S. 30ff.) fuhrt verschiedene Malnahmen an, um die Qualitdt entsprechender

Forschungen zu erhéhen. Diese werden im Folgenden paraphrasiert:

a)
b)
c)

d)

Die Rolle und der Einfluss des Forschers auf das Projekt miissen offengelegt werden.

Die erhaltenen Forschungsergebnisse miissen durch weitere Forschung bestatigt werden.

Die Interpretation der Forschungsergebnisse sowie die auf deren Basis vorgenommenen
Modifikationen miussen stetig kritisch reflektiert und mit aullenstehenden Personen
diskutiert werden.

Die verschiedenen im Kontext des Gesamtprojekts unternommenen Forschungsprojekte
mussen allgemeinen Gutekriterien genligen und, wenn moglich, verschiedene
Forschungsmethoden umfassen.
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e) Alle zum Verstiandnis des Forschungsprojekts wichtigen Aspekte missen systematisch
dokumentiert, nachvollziehbar dargestellt und reflektiert werden.
f) Der Nutzen und die Effektivitit der Lehrinnovation miissen empirisch getestet werden.

Der reale Kontext der Forschung

Durch die Durchfiihrung der Lehrinnovation in einem realen Kontext haben viele verschiedene
Faktoren Einfluss auf deren Auswirkungen und Gelingen. Wie oben beschrieben wurde, missen die
verschiedenen Aspekte herausgestellt werden, welche im Fokus der Forschungsarbeit stehen.

Anpassungsfahigkeit

Die Weiterentwicklung eines Lehr-/Lernszenarios im Kontext des DBR erfolgt immer in dem
Spannungsfeld von Veranderung und Konstanz. Hierbei werden gezielt bestimmte Aspekte
modifiziert, wahrend andere beibehalten werden. Anpassungsfahigkeit ergibt sich hierbei zunachst
durch die Akzeptanz von notwendigen Abweichungen vom Ausgangsplan. Die Anpassungsfahigkeit
betrifft aber auch den Forscher, da er seine Intentionen mit den Meinungen und Interpretationen
anderer Beteiligter oder Aulenstehender in Einklang bringen bzw. offen fiir eventuell kontrare
Meinungen sein muss.

Nachdem der Forschungsansatz des DBR, seine Ausrichtung, Charakteristika und Problemfelder
beschrieben wurden, wird in dem nachsten Abschnitt dessen Anwendung auf das vorliegende
Forschungsprojekt beschrieben und gleichsam legitimiert.

3.2 Design-Based Research als der vorliegende Forschungsansatz
Die Ubergeordneten Ziele der vorliegenden Forschungsarbeit wurden bereits in Abschnitt 1.4
formuliert:

(1) die forschungsbasierte (Weiter-) Entwicklung einer Lehrveranstaltung, welche den
Studierenden den Ubergang von der Schulmathematik in die Mathematik der Hochschule
erleichtern soll und hierbei in einem besonderen MaRe das Themenfeld ,Begriinden und
Beweisen’ unter dem Aspekt der doppelten Diskontinuitat fokussiert, und

(2) einen Beitrag zu einer empirisch begriindeten Instruktionstheorie fir das Lernen in der
Domaéne ,Begriinden und Beweisen’ an der Universitat zu leisten.

Wie in Abschnitt 1.1 dargestellt wurde, erweist sich das Thema ,Begriinden und Beweisen’ im
Spannungsfeld der doppelten Diskontinuitat als ein komplexes und mehrdimensionales Problemfeld,
in dem verschiedene Aspekte berlicksichtigt werden muissen. Hierzu gehoren u.a. das Einleben in
eine neue Fachkultur der Mathematik, das Erlernen neuer (strenger) Argumentationsweisen und
Beweistechniken, der korrekte Umgang mit der fachmathematischen Symbolsprache und das
Erlernen schuladdquater Begriindungs- und Beweisformen. Folglich wird in dieser Arbeit eine
komplexe Problemstellung der Praxis fokussiert, fiir die es bisher keine Losung gibt.

Neben der durch Forschungsergebnisse und Lehrerfahrung geleiteten (Weiter-) Entwicklung dieser
Lehrveranstaltung stehen ferner die theoretische Analyse und Beschreibung des Wirkprozesses im
Fokus: Welche Faktoren wirken sich wie und warum fir das ,Gelingen’ des Lehr-/Lernszenarios aus?
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Diese Entwicklungsarbeit an der Lehrveranstaltung umfasst dabei konzeptionelle Arbeit, die
Bereitstellung von entsprechenden Lehr-/Lernmaterialien und Testinstrumenten und die (Weiter-)
Entwicklung von theoretischen Aspekten. Der Forschungsansatz des Design-Based Research erweist
sich hier als addaquater Rahmen, da mithilfe dieser Forschungsrichtung komplexe padagogische
Problemstellungen in einem weiteren, ganzheitlichen Sinn in Angriff genommen werden kénnen und
gleichzeitig ein Beitrag zur Theorieentwicklung geleistet wird: , The main objective of design research
ist to develop theories together with instructional materials” (Bakker 2004, S. 38).

Die Gestaltung der Lehrveranstaltung orientiert sich an der Grundidee der , Elementarmathematik als
Prozess“, wie es in Abschnitt 1.2.3 dargestellt wurde. Weitere Leitprinzipien fir die Gestaltung
konnten innerhalb des ersten Kapitels durch die Betrachtung des Phanomens der doppelten
Diskontinuitat im Kontext der Thematik ,Begriinden und Beweisen’ und durch die Erorterung
verschiedener Konzeptionen von Lehrveranstaltungen zur Einfihrung in die hohere Mathematik mit
dem Fokus des Beweisens gewonnen werden.

Diese Forschungsarbeit wird dabei von der Verwendung zweier Theorien geleitet: Die Betrachtung
des Beweisens als ,diagrammatisches SchlieRen’ im Sinne von Ch. S. Peirce und die Theorie der sozio-
mathematischen Normen. Diese Theorien wurden bereits in den Abschnitten 2.5 und 2.6 dargestellt.
Entsprechende theoriegeleitete Analysen und die entsprechende Ableitung geeigneter MalRnahmen
betreffen insgesamt die Weiterentwicklung des Lehr-/Lernszenarios und insbesondere die
Entwicklung und Bereitstellung von Lernmaterialien, die Interpretation von Forschungsergebnissen
und die retrospektiven Analysen der verschiedenen Durchfiihrungen der Lehrveranstaltung.

Neben der Beschreibung und Analyse des komplexen Problemfeldes ,Beweisen und Begriinden’ in
Bezug auf die Doppelte Diskontinuitat (Abschnitt 1.1) und der Herausstellung von Leitprinzipien fir
die Gestaltung der Lehrveranstaltung (Abschnitt 1.2 und 1.3) steht als Ausgangspunkt der Arbeit die
von Rolf Biehler entwickelte erste Version der Lehrveranstaltung. Es sei hier darauf hingewiesen, dass
der Autor dieser Arbeit an der ersten Konzeption der Lehrveranstaltung nicht beteiligt war, sondern
erst im Rahmen von deren Beforschung mit dem Forschungsprojekt begann. Diese Beforschung und
Weiterentwicklung eines bereits bestehenden Konzepts ist dabei eine legitime Variante des DBR
(siehe Plomp 2010, S. 15). Bei den folgenden Durchgédngen arbeitete der Autor als Wissenschaftlicher
Mitarbeiter in der Lehrveranstaltung mit und war somit direkt in das Geschehen involviert. Hierbei ist
nicht ungewohnlich, dass der Forscher selbst aktiv an dem Lehr-/Lernszenario involviert ist; dieser
Aspekt erweist sich als Starke der Forschungsmethode, da mit entsprechenden Justierungen und
Optimierungen der Materialien nicht gewartet werden muss, bis ein Forschungszyklus durchlaufen
ist, sondern zu jedem Zeitpunkt des Projekts effizient vorgenommen werden kann (vgl. Abschnitt
3.1).

Ein Forschungszyklus umfasst in dem vorliegenden Projekt die Lange eines Jahres, da die
Lehrveranstaltung immer im Wintersemester angeboten wurde. Betrachtet werden in dieser Arbeit
die vier Forschungszyklen von 2011 bis 2015 (vgl. Abb. 10). Die verschiedenen Abschnitte der
Forschungszyklen (Vorbereitung der Lehrveranstaltung, ihre Durchfiihrung, die im Kontext der
Durchfiihrung erfolgten Studien und die schlielRlich retrospektive Analyse eines jeden Durchgangs)
werden in Kapitel 5 beschrieben, die letzte hier beschriebene Version der Lehrveranstaltung in
Kapitel 6 dargestellt. Der Nutzen und die Effektivitat dieser finalen Durchfiihrung wurden im Rahmen
einer Effektivitatsstudie umfassend empirisch untersucht und evaluiert. Diese Studie ist Gegenstand
des achten Kapitels.
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Zu den Gitekriterien Validitat und Reliabilitdt im Design-Based Research

Die interne Validitat misst sich an der Qualitdt der Daten und der Schlissigkeit der daraus
abgeleiteten Folgerungen. In Bezug auf die externe Validitat gilt es, die Verallgemeinerbarkeit der
Theorie und die Ubertragbarkeit und den Nutzen der Ergebnisse zu diskutieren. Das innerhalb des
Projekts erarbeitete Lehr-/Lernszenario, die in diesem Kontext entwickelten Materialien und die
herausgearbeiteten Gelingensbedingungen miissen im Hinblick auf ihre Ubertragbarkeit befragt
werden. Durch die Verwendung der theoretischen Aspekte der Semiotik und der sozio-
mathematischen Normen werden die hier erzielten (theoretischen) Ergebnisse bereits in einen
weiteren Rahmen gestellt und somit fiir eine weiter gefasste Adaption geoffnet.

In Bezug auf die durchgefiihrten Studien gilt es, die interne Reliabilitat, also die Unabhangigkeit der
Datenerhebung und Auswertung von der Person des Forschers zu betrachten. Fir die externe
Reliabilitat der Forschung gilt es, die Replizierbarkeit der Ergebnisse unabhangig von der Person des
Forschers zu diskutieren. In Rahmen des DBR wurde hierfiir der Begriff der ,trackability” gepragt, um
die Nachvollziehbarkeit des Erkenntnisverlaufs des Forschers zu beschreiben (Bakker 2004, S. 46).
Freudenthal (1991) beschreibt dies wie folgt: ,Developmental research means: experiencing the
cyclic process of development and research so consciously, and reporting on it so candidly that it
justifies itself, and that this experience can be transmitted to others to become like their own
experience.” (Freudenthal 1991, S. 161 zitiert aus Bakker 2004, S. 46).

Aus diesem Grund wird auf eine nachvollziehbare Darstellung der Forschung und der daraus
gefolgerten MaBnahmen und erhaltenen Erkenntnissen ein entsprechender Wert gelegt. Durch die
Ausfihrungen zu den erfolgten Forschungsprojekten, deren Auswertungen im Rahmen der
retrospektiven Analysen und der Beschreibung und Begriindung der ergriffenen MaRnahmen in der
Lehre soll es dem Leser moglich werden, den Erfahrungsprozess des Autors nachvollziehen zu
kénnen.

Die Einhaltung dieser Gitekriterien wird im Rahmen des Kapitels 8 erértert.

Dass neben den hier aufgeflihrten Gutekriterien aber ein weiterer Aspekt von zentraler Bedeutung
fir die Bewertung des Forschungsprojekts ist, soll an dieser Stelle betont werden: , The products of
DBR are judged on innovativeness and usefulness, not just on the rigor of the research process [...]"
(Bakker & van Eerde 2015, S. 432).
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3.3 Instrumententwicklung

In diesem Abschnitt wird die Genese der Testinstrumente beschrieben, die im Rahmen der
Effektivitatsstudie in der letzten hier thematisierten Durchfiihrung der Lehrveranstaltung im
Wintersemester 2014/15 eingesetzt wurden. Die Testinstrumente lassen sich hierbei den folgenden
Bereichen zuordnen: Erfassung von Begriindungskompetenz (3.3.1.), Beweisbewertung als ,richtiger
Beweis’ (3.3.2), Beweisakzeptanz (3.3.3), Erfassung schulischer Vorerfahrungen zum Beweisen
(3.3.4), Beweispraferenz (3.3.5), Einstellungen zum Beweisen in der Schule, zum Beweisen allgemein
und zur Mathematik (Abschnitte 3.3.6—3.3.8), Funktionen von Beweisen (3.3.9), Motivation zum
Erlernen von Beweisen und die Selbsteinschatzung des Lernzuwachses in Bezug auf das Beweisen
(3.3.10), der Nutzen von Beispielen fir den Beweisprozess (3.3.11) und Selbstwirksamkeitserwartung
und der empfundene Kompetenzzuwachs (3.3.12).

Bereits die dritte Durchfiihrung der Lehrveranstaltung im Wintersemester 2013/14 wurde von einer
Ein- und Ausgangsbefragung gerahmt, welche als Pilotierung der Testinstrumente fir die
Effektivitatsstudie im darauf folgenden Jahr fungierte. Die Ergebnisse aus der Pilotierung der
Testinstrumente im Wintersemester 2013/14 werden im Folgenden nur soweit dargestellt, wie es
zum Nachvollziehen der Entwicklung der Testinstrumente notwendig ist. Die Ergebnisse der
Effektivitatsstudie der vierten Durchfiihrung der Lehrveranstaltung im Wintersemester 2014/15
werden in Kapitel 7 dargestellt.

3.3.1 Erfassung von Begriindungskompetenz zu Beginn des Studiums

Ausgangspunkt fiir die Erfassung der Eingangsvoraussetzungen der Studierenden zu der Thematik
,Begriinden und Beweisen’ war die Frage danach, ,wie’ Studierende liberhaupt begriinden und wie
,gut’ sie dies tun. Diese Aspekte werden unter dem Aspekte ,Begriindungskompetenz’
zusammengefasst, welcher durch die folgende Aufgabenstellung erfasst wurde:

Die Summe 11 + 17 ist eine gerade Zahl.
Gilt dies fiir jede Summe von zwei beliebigen ungeraden Zahlen?
- Begriinden Sie Uberzeugend!

Diese Aufgabe scheint aus verschiedenen Griinden fir die Erfassung einer Begriindungskompetenz
angebracht: (i) Die Beantwortung der Aufgabe ist mit Grundlagenwissen der Arithmetik bzw. der
Algebra moglich, (ii) die Aufgabe ermoglicht unterschiedliche Herangehensweisen und damit
verbunden verschiedene Losungswege unter Nutzung verschiedener Reprasentationsmittel, und (iii)
die Behauptung ist leicht verstandlich, dabei aber nicht so trivial, dass bei Probanden keine Einsicht in
eine zu leistende Verifikation entstehen wirde.

Die Aufgabenstellung ist hierbei explizit so gewahlt, dass auf formale Darstellungen verzichtet wurde,
um nicht den Eindruck entstehen zu lassen, dass hier ein ,Beweis’ unter Nutzung von
Buchstabenvariablen gefordert sei. Die Aufgabenformulierung ist an Brunner (2014, S. 193)
angelehnt, wobei hier der Zusatz ,,Begriinden Sie liberzeugend!“ ergdnzt wurde. Diese Formulierung
Uber die Angabe eines Beispiels verdeutlicht die zu zeigende Behauptung und 6ffnet gleichsam den
Weg zu weiteren Beispielliberpriifungen und Explorationen, wie dies auch durch die folgende Frage
(,,Gilt dies fur jede Summe von zwei beliebigen ungeraden Zahlen?”) impliziert wird. Dabei wird die
der Behauptung immanente Allaussage durch ,jede Summe“ explizit gemacht. SchliefSlich wurde der

14

Operator ,Begriinden Sie Uberzeugend!” gewahlt, um Konnotation mit den Begrifflichkeiten von

Argumentation und Beweisen zu umgehen und mit der Aufforderung ,zu begriinden’ die Art der
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Aufgabenbearbeitung moglichst offen zu lassen® (vgl. Abschnitt 2.3). Der Zusatz , (iberzeugend” soll
dabei implizieren, dass alle notwendigen Teilargumente expliziert werden mussen.

Pilotierung und Auswertung

Die oben beschriebene Aufgabe wurde im Rahmen der Eingangsbefragung zur Lehrveranstaltung im
Wintersemester 2013/2014 pilotiert. Ein Teil der Ergebnisse dieser Pilotierung wurde in Kempen und
Biehler (2014) vero6ffentlicht.
Dimensionen untersucht: (1) Die Qualitdt der Begriindung und (2) die Art der Begriindung und

Die Bearbeitungen wurden dabei nach den folgenden zwei

charakteristische Fehler.
(1) Das Kategoriensystem zur Erfassung der ,Qualitat der Begriindung”

Die Erarbeitung des Kategoriensystems zur Erfassung der ,Qualitat der Begriindung” erfolgte im
Rahmen einer deduktiv-induktiven Kategorienbildung im Sinne der qualitativen Inhaltsanalyse (vgl.
Kuckartz 2012, S. 69). Den Ausgangspunkt bildeten die Kategoriensysteme von Bell (1976) und Recio
und Godino (2001). Deren Kategoriensysteme wurden kombiniert und anschlieRend direkt anhand
der vorliegenden Aufgabenbearbeitungen kombiniert, modifiziert, prazisiert und erweitert. Somit
wurde im Rahmen der Pilotierung der Aufgabe ein differenziertes Kategoriensystem entwickelt (s. die
Spalte Kempen & Biehler (2014) in der Tabelle 1). Fir die Auswertung im Rahmen der Untersuchung
im Wintersemester 2015/16 wurde dieses Kategorienschema wieder vereinfacht, um die
Vergleichbarkeit mit anderen Aufgabenanalysen zu erméglichen. In der Tabelle 1 wird ein Uberblick

Uber die Zusammenhange der verschiedenen Kategoriensysteme gegeben.

Eine ausfihrlichere Darstellung des in dieser Arbeit verwendeten Kategoriensystems, in Verbindung
mit exemplarischen Ankerbeispielen zu jeder Kategorie, erfolgt im Rahmen der Aufgabenauswertung
in Abschnitt 7.2.4.

Recio & Godino in dieser Arbeit

(2001, S. 86)

Bell (1976, S. 28f.;
Hervorhebungen im Original)

Kempen & Biehler
(2014, S. 427ff.)

Diverses
The answer is very deficient KO: Es wird keine Begriindung KO: Es wird keine Begrindung
(confused, incoherent). angegeben angegeben
Empirische Begriindungen
The student checks the K1: Illlustration K1: ,Empirisch”

proposition with examples,
without serious
mistakes.

Die Gultigkeit der Behauptung
wird an verschiedenen
Beispielen illustriert.

Beispiele werden — ohne
weitere (deduktive)
Begriindung - als Beleg fur

Extrapolation: Truth of general The student checks the K2: Empirische Verifikation die allgemeine Gultigkeit der

statement inferred from a subset proposition with examples, and | Die Gultigkeit der Behauptung Behauptung angefiihrt.
of the relevant cases [...]. The basis | asserts its general wird aus der Uberpriifung von
of the inference is clearly validity. Beispielen abgeleitet.
empirical.
Deduktive Begriindungen
Dependence: Attempts to make a K2: ,Pseudo”

deductive link between data and
conclusion, but fails to achieve any
higher category.

Die genannten Begriindungen
bestehen aus Zirkelschllssen,
sind redundant, unpassend

Relevant, general restatement: [...]
represents the situation as a
whole, in general terms, as if
aware that a deductive connection
exists but unable to expose it.

K3: Die Begriindung wird durch
Nennung des Satzes vollzogen,
dass die Summe zweier
ungeraden Zahlen immer gerade
ist.

oder sachlich falsch.

% Neue Ergebnisse von Kempen et al. (2016) belegen, dass die Wahl von Operatoren in Beweisaufgaben
(,Zeigen Sie”, ,Beweisen Sie”“, , Begriinden Sie” etc.) Auswirkungen auf die Bearbeitungen von Studierenden

haben kann.
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K4:

Die Begriindung wird durch die
Paraphrasierung des Satzes
vollzogen, dass die Summe
zweier ungeraden Zahlen immer
gerade ist.

K5:

Die genannten Argumente sind
entweder sachlich falsch oder
irrelevant

Relevant, collateral details: [...]
mentions relevant aspects which
could form part of a proof [...] but
fails to build them into a
connected

argument; is fragmentary.

K6: Es werden relevante Aspekte
genannt, die fir eine
Begriindung genutzt werden
kénnten, ohne dabei eine
Argumentationskette
aufzubauen.

K3: ,fragmentarisch”

Es werden relevante Aspekte
genannt, die fir eine
Begriindung genutzt werden
kénnten, ohne dabei eine
Argumentationskette
aufzubauen.

Connected, incomplete: Has a
connected argument with
explanatory quality, but is
incomplete.

Connected, S: failing only because
it appeals to facts or principles
which are no more generally
agreed than the proposition itself

(-]

The student justifies the
validity of the proposition, by
using other well-known
theorems or propositions, by
means of partially correct
procedures.

K7: Unvollstandige Begriindung
mit sachlichem Fehler

K8: Unvollstandige Begriindung
mit sachlicher Liicke

K4: ,, Argumentation mit
Lucke”

Es wird eine korrekte
mathematische
Argumentation gegeben,
welche allerdings eine Licke
enthilt, so dass die
Ausgangsbehauptung nicht
allgemeinguiltig verifiziert
wird.

Complete Explanation: Derives the
conclusion by a connected
argument from the data and from
generally agreed facts or
principles.

The student gives a
substantially correct proof,
which includes an appropriate
symbolisation.

K9: Vollstéandige Begriindung mit
kleinen formalen Mangeln

K10: Vollstandige Begriindung

K5: ,Vollst. Argumentation”
Die Gultigkeit der
Behauptung wird deduktiv
mithilfe valider
mathematischer Argumente
hergeleitet.

Tabelle 1: Ubersicht iiber die Entwicklung des Kategoriensystems zur Analyse von gegebenen Begriindungen

(2) Art der Begriindung und charakteristische Fehler

Bei dem Aspekt ,Art der Begriindung’ geht es um die Frage, mithilfe welcher Argumente die
gegebene Behauptung begriindet wird und welche etwaigen Fehler mit diesen verschiedenen
Begriindungsarten verbunden sind. Bei der Betrachtung aller Bearbeitungen konnten verschiedene
Arten von Begrindungen ausgemacht und zu unterschiedlichen Kategorien zusammengefasst
werden. Die in der Pilotierung im Wintersemester 2013/14 herausgearbeiteten ,Arten von
Begriinden’ und damit verbundenen ,charakteristischen Fehler’ konnten auch bei der Auswertung
der Aufgabe im Wintersemester 2014/15 verwendet werden. Die verschiedenen Arten von
Begriindungen und die damit verbundenen charakteristischen Fehler werden im Rahmen der
Auswertung der Aufgabe in Abschnitt 7.2.4 dargestellt.

Die hier beschriebene Aufgabe zur Erfassung von Begriindungskompetenz wurde in der

Eingangsbefragung und in der Modulabschlussklausur im Wintersemester 2014/15 eingesetzt.

3.3.2 Beweisbewertung als ,richtiger Beweis”

Im Kontext des , KLIMAGS“-Projekts (s. Blum et al. 2014) wurden vier Begriindungsformen aus der
Studie von Healy und Hoyles (2000, S. 401) Ubersetzt und als single-Choice Items mit den
Antwortmoglichkeiten ,Beweis”/,kein Beweis” innerhalb eines Tests verwendet. In der KLIMAGS
,Leon” durch weitere

Version wurde die Bearbeitung (einzelne Beispiellberprifungen)

III

Berechnungen und die Schlussfolgerung ,Es stimmt offensichtlich immer!“ ergdnzt und die

Bearbeitung ,Nisha” (korrekte Argumentation mit Buchstabenvariablen) wurde nicht verwendet. Fir
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die vorliegende Studie wurde die Aufgabe aus dem KLIMAGS-Test ibernommen, wobei die folgenden
Anderungen vorgenommen wurden:

1. Die Bearbeitung ,Nisha“ (Healy & Hoyles 2000, S. 401) wurde aus dem Original ibernommen
und so modifiziert, dass sie stark der korrekten narrativen Begriindung (,,Kate“) dhnelte.

2. Die empirisch induktive Begriindung (,,Leon”) wurde aus der Studie von Healy und Hoyles
(2000, S. 401) ilbernommen, da die weiteren Berechnungen aus der KLIMAGS-Version auch
als unzureichender generischer Beweis hatten interpretiert werden kénnen.

3. Die Bewertungskategorien fiir die ,Beweise’ wurden wie folgt formuliert ,richtiger
Beweis“/,kein  richtiger Beweis“. Diese Formulierung sollte Missverstiandnissen
entgegenwirken, die durch die Kategorienbezeichnungen im  KLIMAGS-Projekt
moglicherweise entstehen kénnten. Eine mogliche (falsche) Deutung dieser Kategorien im
Kontext der Aufgabenstellung ware etwa die Frage, ob die Begriindung dem Beweisbild des
Probanden entspricht, ohne dabei etwaige Fehler in der Bearbeitung zu bericksichtigen.

4. Fir alle Bearbeitungstitel wurden deutsche Namen eingesetzt.

5. Schliellich wurde auch die Frage nach der Bearbeitung, die dem eigenen Ansatz am nachsten
kdme und im schulischen Mathematikunterricht (in der Oberstufe) die beste Note
bekommen hatte, aus der Originalstudie (Healy & Hoyles 2000, S. 401) (ibernommen.

Im Folgenden wird die schlieBlich verwendete Aufgabe dargestellt.

In der Oberstufe gab der Mathematiklehrer Katja, Leon, Maria und Nina die Aufgabe, die folgende Behauptung zu
beweisen:

Wenn man drei aufeinanderfolgende natiirliche Zahlen miteinander multipliziert, ist das Ergebnis immer ein
Vielfaches von 6.

Es folgen die Antworten der 4 Schiler(innen):

T o o @
o ‘o S ® D
Katjas Antwort
Ein Vielfaches von 6 muss die Teiler 3 und 2 besitzen.
Wenn man 3 aufeinanderfolgende Zahlen hat, dann ist eine davon ein Vielfaches von 3, denn jede dritte
Zahl ist durch 3 teilbar. AuBerdem ist mindestens eine Zahl gerade, also ein Vielfaches von 2 (da jede zweite |:| I:'

Zahl gerade ist).
Wenn man die drei aufeinanderfolgenden Zahlen multipliziert, besitzt das Ergebnis also sowohl den Teiler 3
als auch den Teiler 2.

Leons Antwort
1.2:3=6

234=24 [] []
4.5-6 =120
6:7-8 =336

Marias Antwort
X ist eine beliebige natirliche Zahl

X-(x+1)-(x+2) = (X2+x)-(x+2) = X3 + x? + 2x* + 2
Kirzenderx'sergibt 1 +1 + 2 +2 =6

Ninas Antwort |:| I:'

Das Produkt von drei aufeinanderfolgenden nattrlichen Zahlen lasst sich darstellen als: n-(n+1):(n+2), wobei
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n eine beliebige natirliche Zahl ist.
Das Produkt ist durch 2 teilbar, denn:

1. Fall: n ist eine gerade Zahl:
Dann ist n durch 2 teilbar und somit ist das Produkt auch durch 2 teilbar.

2. Fall: n ist eine ungerade Zahl:
Dann ist aber (n+1) eine gerade Zahl, also durch 2 teilbar, und somit ist
auch das Produkt durch 2 teilbar.

Das Produkt ist auch durch 3 teilbar, denn bei drei aufeinanderfolgenden natirlichen Zahlen ist immer genau
eine Zahl durch 3 teilbar. Da das Produkt n:(n+1):(n+2) durch 2 und durch 3 teilbar ist, ist es auch
durch 6 teilbar und somit ein Vielfaches von 6.

Welcher der obigen Beweise kdme Ihrer Beweisfiihrung am nachsten?

Flr welchen Beweis hatte Ihr Mathematiklehrer in der Oberstufe die beste Note gegeben?

Diese Aufgabe wurde in der Ein- und Ausgangsbefragung des Wintersemesters 2013/14 erfolgreich
pilotiert und unverdndert in die Ein- und Ausgangsbefragung des Wintersemesters 2014/15
Ubernommen.

3.3.3 Beweisakzeptanz

Die Ausgangslage fiir die Erfassung von Beweisakzeptanz war das Interesse daran, inwiefern
generische Beweise (iberhaupt von den Studierenden akzeptiert werden. Hierflir war die
Neuentwicklung von entsprechenden Items erforderlich. Im Rahmen der Eingangsbefragung im
Wintersemester 2013/14 sollte ein korrekter generischer Beweis anhand der folgenden Merkmale

bewertet werden:

a) Bewerten Sie die folgenden Aussagen.

Die Begriindung ...

... beantwortet die Frage allgemein (generalisiert) und stimmt stimmt

schlissig. gar nicht D D D D D D véllig

... zeigt die Behauptung lediglich fiir einzelne Beispiele, stimmt |:| |:| |:| |:| I:' |:| stimmt

aber nicht allgemein. gar nicht vollig

... setzt voraus, was man zeigen soll. stimmt stimmt
A OO0 0O O OO e

Tabelle 2: Items zur Erfassung der Beweisakzeptanz im Wintersemester 2013/14

b) Die obige Argumentation ist ein Beweis: OJa [ Nein

weil:

Bei der Auswertung der Daten wurde allerdings deutlich, dass die verwendeten Aussagen und das
Bewertungsschema als Beweis (,,ja“/“nein”) fur eine wirkliche Erfassung einer Beweisakzeptanz nicht
differenziert genug erschienen. Bei den Bewertungen der ersten beiden Aussagen durch die
Studierenden wurden teilweise Inkonsistenzen deutlich, die sich durch dieses relativ schlichte
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Fragenformat nicht erklaren lieBen. So stimmten einige Studierenden beiden Aussagen zu, dass die
gegebene Begriindung sowohl die Frage (hier: eine Allaussage) allgemein und schliissig beantwortet
und dass diese die Behauptung lediglich fiir einzelne Beispiele, aber nicht allgemein zeigt. Auch
lieRen sich keine Zusammenhange zwischen den Bewertungen der drei Items zur Bewertung auf den
Likert-Skalen und der Frage, ob die obige Argumentation ein Beweis ist (,,ja“/“nein“) ausmachen. In
den wenigen Freitextantworten, die Uberhaupt gegeben wurden, wurden zu oberflachliche
Antworten gegeben, als dass man sie hatte systematisch auswerten kénnen.

Bei der Weiterentwicklung dieser Items wurden die theoretischen Betrachtungen einbezogen, die in
Abschnitt 2.4.2 dargestellt wurden. Beweisakzeptanz scheint {bergeordnet durch das
Zusammentreffen zweier Aspekte konzeptualisierbar zu sein: Das AusmaRB, inwieweit durch einen
Betrachter verschiedene Funktionen von Beweisen innerhalb eines Beweises wahrgenommen
werden, und inwiefern das vorliegende Beweisprodukt dem subjektiven Bild von ,Beweis’ entspricht.
Die (Weiter-) Entwicklung der Testinstrumente fiir die Erfassung von Beweisakzeptanz orientierte
sich zunachst an der Studie von Healy und Hoyles (2000). Dort sollten die Schiilerinnen und Schiiler
verschiedene Begriindungen u. a. anhand der folgenden Aussagen beurteilen (ebd., S. 403;
Hervorhebungen im Original):

2. Shows that the statement is always true
3. Only shows that the statement is true for some [...] numbers
4, Shows you why the statement is true

Diese drei Aussagen bildeten die Basis flr die Neukonstruktion der Items, die in der
Ausgangsbefragung des Wintersemesters 2013/14 pilotiert wurden. Dort sollten vier Beweise anhand
der folgenden Aussagen auf einer sechsstufigen Likert-Skala (s.0.) bewertet werden:

(1) Der [Name der Beweisform] reicht mir aus, um mich vollig von der Giiltigkeit der Behauptung zu tiberzeugen.
(2) Die Argumentation im [Name der Beweisform] erklart mir, warum die Behauptung gilt.

(3) Der [Name der Beweisform] sichert die Gliltigkeit der Behauptung hundertprozentig fur alle Zeiten.

(4) Ich betrachte den Einsatz dieser Beweisform im schulischen Unterricht als sinnvoll.

Die vorgelegten Beweise waren hierbei die vier verschiedenen Beweisformen der Lehrveranstaltung
(Generischer Beweis mit Zahlen, generischer Beweis mit Punktmustern, Punktmusterbeweis mit
geometrischen Variablen und der formale Beweis), konstruiert zu der Behauptung, dass die Summe
der ersten n ungeraden Zahlen gleich n? ist. Die Reihenfolge dieser vier zu bewertenden Beweise
wurde dabei systematisch permutiert. Durch die Aussagen (1) und (3) wird dabei die in Abschnitt
2.1.7 und 2.4.2 herausgearbeitete Unterscheidung von subjektiver und objektiver Uberzeugung
aufgegriffen.

Bei der Berechnung der Reliabilitatswerte der durch die vier Items gebildeten Skalen wurde deutlich,
dass das vierte Item nicht zu dem durch die ersten drei Items gebildeten Konstrukt der
Beweisakzeptanz beitrdgt. Dies scheint auch inhaltlich nachvollziehbar, da die persénliche Akzeptanz
einer Beweisform nicht mit subjektiven Einstellungen zum Mathematikunterricht in Beziehung
stehen muss. Die Reliabilitdtswerte der durch die Items ein bis drei gebildeten Skalen zur
Beweisakzeptanz werden in der Tabelle 3 dargestellt.
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Akzeptanz des Akzeptanz des Akzeptanz des
generischen Akzeptanz des formalen X P . Beweises mit
Skala Beweises mit Beweises generischen Beweises eometrischen
mit Punktmustern & N
Zahlen Variablen
Cronbachs 0,699 0,767 0,849 0,831
Alpha

Tabelle 3: Reliabilitatswerte der Skalen zur Beweisakzeptanz in der Ausgangsbefragung des Wintersemesters 2013/14

Schlielich  wurden Items formuliert, um auch die funktionalen Aspekte Validitat,
Verifikationsleistung und Passung mit einem vorliegenden Beweisbild abzubilden, und weitere, um
die Fehlinterpretation der Beweise als blofle Beispielbetrachtungen herauszufordern. Insgesamt
wurden zehn Aussagen zur Bewertung auf einer sechsstufigen Likert-Skala ([1] stimme Uberhaupt
nicht zu ... [6] stimme voll zu) formuliert, mit denen die Beweisakzeptanz der Studierenden erfasst
werden sollte:

Die Begriindung ...

... zeigt, dass die Behauptung in allen moglichen Féllen wahr ist.

... zeigt die Behauptung lediglich fiir einzelne Beispiele, aber nicht allgemein.
... ist nicht allgemeingiiltig, da es immer noch Gegenbeispiele geben konnte.
... Uberzeugt mich, dass die Behauptung wahr ist.

... zeigt, dass die Behauptung hundertprozentig fir alle Zeiten wahr ist.
... erklart mir, warum die Behauptung korrekt ist.

1
2
3
4
5. ... ist ohne die Verwendung von Buchstabenvariablen nicht allgemeingdltig.
6
7
8 .. misste formaler dargestellt sein, um mich voll zu iberzeugen.

9

... besteht nur aus der Uberpriifung einzelner Fille, ist aber keine allgemeine Begriindung.
10. ...ist ein korrekter und giiltiger Beweis.

Im Rahmen einer erneuten Pilotierung des Aufgabenformats (innerhalb der Lehrveranstaltung
,Modellieren, GroRen, Daten, Zufall 1“ fur Grundschullehramtsstudierende im Sommersemester
2014; n=73) wurden auch verschiedene Beweise verwendet, um deren Eignung als
Bewertungsgegenstiande zu evaluieren. Es wurden jeweils die drei verschiedenen Beweisformen
(generischer Beweis mit Zahlen, generischer Beweis mit Punktmustern und Punktmusterbeweis mit
geometrischen Variablen) zu den zwei folgenden Behauptungen verwendet: ,,Die Summe aus einer
geraden natirlichen Zahl und ihrem Dreifachen ist immer durch 8 teilbar” und , die Summe von finf
aufeinanderfolgenden Zahlen ist immer durch 5 teilbar”.

Die Ergebnisse der Pilotierung zeigten, dass die Items 1-10 (s.o.) differenzierte Betrachtungen fir
eine Beweisbewertung ermoglichen. Aufgrund einer durchgefiihrten explorativen Faktoranalyse
wurden die Skalen zur Beweisakzeptanz aus den Items 1, 2, 3, 4, 6, 7, 9 und 10 gebildet21. Die daraus
resultierenden Skalen zur Beweisakzeptanz wiesen hohe Reliabilitdtswerte auf (s. Tabelle 4). Im
Rahmen dieser Faktoranalyse wurde auch deutlich, dass durch eben diese Items genau eine Skala
gebildet wird.

*! Die Items zwei, drei und neun wurden bei der Berechnung der entsprechenden Skalenwerte jeweils
umgepolt. Das Auslassen der Items fiinf und acht bei der Konstruktion der Skalen zur Akzeptanz ist auch
inhaltlich schlissig, da die Aussagen ,,ist ohne die Verwendung von Buchstabenvariablen nicht allgemeingiiltig”
(Nummer funf) und ,,miisste formaler dargestellt sein, um mich voll zu iberzeugen” (Nummer acht) eher als
subjektive Momente bei einer Beweisbetrachtung zu bezeichnen sind und nicht als Charakteristika einer
speziellen Beweisform.
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Skala Akzeptanz des generischen Akzeptanz des generischen Akzeptanz des Beweises mit
Beweises mit Zahlen Beweises mit Punktmustern geometrischen Variablen

Cronbachs Alpha 0,893 0,825 0,875

Tabelle 4: Reliabilitdtswerte der Skalen zur Beweisakzeptanz aus der Pilotierung im Sommersemester 2014

Auch in dieser Studie wurden eine Freitextfrage fiir die Nennungen ,Sonstiger Anmerkungen’ gestellt.
Nachdem auch hierbei die Studierenden in den meisten Fallen nur ihre Bewertungen der gegebenen
Aussagen paraphrasierten, wurden Freitextaufgaben im Kontext dieser Aufgabenstellung nicht mehr
verwendet.

SchlieB8lich stellte sich die Frage, ob vier verschiedene Beweisformen zu der gleichen Behauptung
oder zu unterschiedlichen Behauptungen zur Bewertung ausgegeben werden sollten. Die erste
Variante scheint dabei den Vorteil zu bieten, dass die Beweisbewertungen nicht durch
unterschiedliche Sachverhalte beeinflusst werden. Als groRer Nachteil erschien dabei aber die
Moglichkeit, dass sich bei den Probanden durch das Lesen von vier Beweisen zu nur einer
Behauptung automatisch ein gesteigertes Empfinden bzgl. der Giiltigkeit der Behauptung einstellen
konnte und sich somit die Akzeptanten der Beweise gegenseitig beeinflussen wiirden. Diesem
Aspekte hatte man durch Permutation der Beweise in verschiedenen Testheften entgegenwirken
kénnen, was dabei aber die jeweilige StichprobengroBe unglinstig dezimiert hatte. Die zweite
Variante, die vier verschiedenen Beweisformen zu unterschiedlichen Behauptungen anzugeben,
erschien dabei insgesamt als ,kleineres Ubel’. Nun konnte nicht mehr von einer
Akzeptanzbeeinflussung der Beweise untereinander ausgegangen werden; die getatigten
Akzeptanzbewertungen konnen dabei aber nicht ausschlielRlich auf die gegebene Beweisform
zuriickgefiihrt, sondern missen vor dem Hintergrund verschiedener Sachverhalte vorsichtig
interpretiert werden.

SchlieRlich wurden die folgenden vier verschiedenen Beweise fiir die Bewertungen ausgewahlt und
mithilfe von drei Mitarbeitern der Mathematikdidaktik an der Universitat Paderborn erneut pilotiert:

1. Ein generischer Beweis mit Zahlen zu der Behauptung: ,Addiert man zu einer ungeraden
nattrlichen Zahl ihr Doppeltes, so ist die Summe immer ungerade.” (s. Abb. 11 oben links)

2. Ein generischer Beweis mit Punktmustern zu der Behauptung: ,Die Summe von 5
aufeinanderfolgenden natirlichen Zahlen ist immer durch 5 teilbar.” (s. Abb. 11 unten links)

3. Einformaler Beweis zu der Behauptung: ,Fiir alle natlirlichen Zahlen a, b, c gilt: ,Wenn b ein
Vielfaches von a ist und c ein Vielfaches von a ist, dann ist auch (b+c) ein Vielfaches von a.” (s.
Abb. 11 oben rechts)

4. Ein Punktmusterbeweis mit geometrischen Variablen zu der Behauptung: ,Quadriert man
eine gerade Zahl, so ist das Ergebnis immer durch 4 teilbar.” (s. Abb. 11 unten rechts)
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1 +2-1 = 3-1 =3
5 +2-5 = 3.5 =15 Seien a, b, ¢ beliebige, aber feste natiirliche Zahlen. b und ¢ seien Vielfache von a.
13 +2-13 = 3-13 =39
® *5 =9 Da b ein Vielfaches von a ist, gibt es eine natiirliche Zahl n mit: n-a = b.
Da ¢ ein Vielfaches von a ist, gibt es eine natiirliche Zahl m mit: m-a = ¢.
(*) Die Summe aus einer ungeraden natirlichen Zahl und ihrem
Doppelten ist gleich dem Dreifachen der Ausgangszahl. Dann gilt:
(**) Da die Ausgangszahl eine ungerade Zahl ist, erhalt man somit b+c=n-a+m-a=(n+m)-a.
immer das Produkt von zwei ungeraden Zahlen. Da (n + m) eine natiirliche Zahl ist, ist (b + ¢) ein Vielfaches von a.
(***)  Da das Produkt von zwei ungeraden Zahlen immer ungerade q.ed.

ist, muss das Ergebnis immer ungerade sein.

Bei jeder Summe von fiinf aufeinanderfolgenden natiirlichen Zahlen
entsteht immer die gleiche Treppenform, da sich die Kastchenreihen
jeweils um einen Punkt unterscheiden.

Durch Umgruppierung der Punktmuster ( - die untere Ecke wird oben
angelegt - ) entstehen immer 5 gleich lange Kastchenreihen. Somit
muss das Ergebnis immer durch 5 teilbar sein.

Abbildung 11: Die fiir die Beweisbewertungen verwendeten Beweise: oben links: ein generischer Beweis mit Zahlen,
unten links: ein generischer Beweis mit Punktmustern, oben rechts: ein formaler Beweis, unten rechts: ein
Punktmusterbeweis mit geometrischen Variablen

SchlieBlich wurden diese vier verschiedenen Beweise zur Bewertung anhand der zehn oben
aufgefihrten Aussagen in der Ein- und Ausgangsbefragung des Wintersemesters 2014/15
eingesetzt.

3.3.4 Erfassung der schulischen Vorerfahrungen zum Beweisen

Der Frage nach schulischen Vorerfahrungen zum Beweisen wird auch in der Studie von Mingus und
Grassl (1999) und Hemmi (2006) nachgegangen (s. Abschnitt 2.4.1). Wahrend Mingus und Grassl
(1999) erheben, in welchen Kontexten Lehramtsstudierende Beweise in ihrer Schulzeit
kennengelernt haben und fiir welche Schulstufen Beweise geeignet seien, sollen in der Studie von
Hemmi (2006) Studienanfanger Aussagen zu schulischen Vorerfahrungen zum Beweisen auf einer
funfstufigen Likert-Skala bewerten (vgl. Abschnitt 2.4.1). Im Unterschied dazu sollte in der
vorliegenden Untersuchung thematisiert werden, wie viele Beweise die Studierenden nach eigenen
Angaben in ihrer Schulzeit gesehen und ggf. auch selbst entwickelt haben. Fiir die Erfassung der
schulischen Vorerfahrungen zum Beweisen wurden daher in der Pilotierung der Eingangsbefragung
(WS 13/14) die folgenden Fragen gestellt:

(1) Wie viele Beweise haben Sie in der Schule in der Sekundarstufe 1 (Klasse 5 - 9 bzw. Klasse 5 — 10) kennengelernt?
Oo O1s5 Oe10 O11-20 O mehrals20

(2) Wie viele Beweise haben Sie in der Schule in der Sekundarstufe 2 (Klassen 10 - 12 bzw. EF, Q1 und Q2)

kennengelernt?

Oo O1s5 Oe10 O11-20 O mehrals20

(3) Wie viele Beweise haben Sie in Ihrer Schulzeit selbst entwickelt (gefunden und aufgeschrieben)?
Oo O1s Oe10 O11-20 Omehrals20

(4) Nennen Sie mathematische Aussagen/ Sachverhalte, die bei lhnen in der Schule bewiesen wurden: [Freitext]
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In der Tabelle 5 werden die relativen Haufigkeiten der Antworten zu den Items (1) bis (3) dargestellt.

0 1-5 6-10 11-20 mehr als 20
Beweise in Sek. 1 (n=167) 26,35 47,90 19,76 4,19 1,8
Beweise in Sek. 2 (n=169) 8,88 44,38 30,77 10,65 5,33
Beweise selbst entwickelt (n=169) 46,15 39,05 10,65 2,37 1,78

Tabelle 5: Relative Haufigkeiten in Prozent der Angaben zu Beweisen in der Schulzeit

Da der GroRteil der Angaben der Studierenden zu den Fragen (1), (2) und (3) bei den Antwort-
moglichkeiten ,0“ und ,,1-5" lag, wurde fir die Studie im Wintersemester 2014/15 die folgende Skala
zu den Items (1), (2) und (3) verwendet:

Oo Oi12 O35 Oe11 O11-20 O mehrals20.

Die Freitextantworten zu dem Item vier wurden nach mathematischen Sachgebieten gruppiert und
wiederholte Nennungen gezahlt. An dieser Stelle sei genannt, dass in der Pilotierung die folgenden
Nennungen die haufigsten waren: (1) Satz des Pythagoras (40 Nennungen), (2) die pg-Formel (18
Nennungen), (3) die Binomischen Formeln (12 Nennungen) und (4) der Satz des Thales (7
Nennungen). Dieses Freitextitem wurde unverandert in die Eingangsbefragung des Wintersemesters
2014/15 Gbernommen.

Zu den schulischen Vorerfahrungen zum Beweisen gehort hierbei auch die Frage, ob die vier im
Rahmen der Lehrveranstaltung verwendeten Beweisformen (generischer Beweis mit Zahlen,
generischer Beweis mit Punktmustern, Punktmusterbeweis mit geometrischen Variablen und der
formale Beweis) den Studierenden bereits aus ihrer Schulzeit bekannt sind. Fir die Erfassung dieses
Aspekts wurde zu den im Kontext der Beweisakzeptanz angefiihrten Beweisen (vgl. Abbildung 11)
gefragt, ob diese Art der Begriindung den Studierenden aus der Schule bekannt sei (,,Ja“/,Nein“).
Dieses Frageformat wurde in der Eingangsbefragung WS 2013/14 erfolgreich pilotiert und
unverindert in die Eingangsbefragung des Wintersemesters 2014/15 ibernommen.

3.3.5 Beweispriferenz

Ein weiteres (Forschungs-) Interesse galt der Frage, welche der vier behandelten Beweisformen der
Lehrveranstaltung von den Studierenden bevorzugt wird und warum. Hierbei sollte unterschieden
werden, welchen Beweis sie bevorzugen wiirden, wenn sie (a) einen Beweis selbst konstruieren
missen, und (b) wenn sie einen vorgelegten Beweis verstehen wollen. Aus diesem Grund wurden in
der Ausgangsbefragung des Wintersemesters 2013/14 die folgenden Fragen pilotiert:

Wenn Sie selbst einen Beweis konstruieren mussen, welche Beweisform verwenden Sie dann am liebsten?
(Einfachnennung)

[ den generischen Beweis an konkreten Zahlenbeispielen
[ den formalen Beweis mit Mitteln der Algebra

[ den generischen Beweis an konkreten Punktmustern
[ den Punktmusterbeweis mit geometrischen Variablen

Weil: [Freitext]

Wenn Sie selbst den Inhalt eines vorliegenden Beweises verstehen wollen, welche Beweisform wirden Sie
bevorzugen? (Einfachnennung)

[ den generischen Beweis an konkreten Zahlenbeispielen
[ den formalen Beweis mit Mitteln der Algebra
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[ den generischen Beweis an konkreten Punktmustern
[ den Punktmusterbeweis mit geometrischen Variablen

Weil: [Freitext]

Wahrend die Single-Choice Fragen erfolgreich pilotiert wurden, brachten die Auswertungen der
Freitextantworten zur Begriindung der jeweiligen Beweisauswahl keine neuen Erkenntnisse. In den
Antworten wurden ausschlielRlich Charakteristika der verschiedenen Beweisformen paraphrasiert,
wobei es offensichtlich ist, dass die Auswahl eines Beweises aufgrund der subjektiven Bewertung
seiner Spezifika erfolgt. Diese Freitextfragen entfielen daher bei der folgenden Untersuchung.

3.3.6 Einstellungen zum Beweisen in der Schule

Im Kontext der Beforschung der Lehrveranstaltung ist von Interesse, wie Studierende zu Beginn ihres
Studiums den Lerngegenstand ,Beweis’ und seine Relevanz fir den schulischen
Mathematikunterricht einschatzen und inwiefern der Besuch der Lehrveranstaltung ,Einfiihrung in
die Kultur der Mathematik” ihre Einschatzungen beeinflusst.

In dieser Arbeit werden unter dem Komplex ,Einstellungen zum Beweisen in der Schule” die
folgenden drei Teilbereiche zusammengefasst: (1) Die Einschatzung der Relevanz des
Unterrichtsgegenstands ,Beweis” fiir die Schulmathematik, (2) die Bewertung ,géngiger’ Griinde,
warum Beweise im schulischen Mathematikunterricht eine eher untergeordnete Rolle spielen sollten
und (3) die Bewertung der Eignung generischer Beweise fir die Schulmathematik.

Teilaspekt (1): Die Einschatzung der Relevanz des Unterrichtsgegenstands , Beweis” fur die
Schulmathematik

Mit dem folgenden Aufgabenformat sollte der Komplex ,Einstellungen zum Beweisen in der Schule”
im Wintersemester 2013/14 erfasst werden. Fiur die Einschdtzung der Relevanz des
Unterrichtsgegenstands ,Beweis” sollten die Studierenden diese auf einer sechsstufigen Likert-Skala
([1] stimmt gar nicht ... [6] stimmt vollig) bzgl. der verschiedenen Schulformen und Schulstufen
einschatzen:

In der Grundschule sollen Beweise im Mathematikunterricht behandelt werden.

In der Sekundarstufe 1 sollen Beweise im Mathematikunterricht behandelt werden.
In der Sekundarstufe 2 sollen Beweise im Mathematikunterricht behandelt werden.
Beweise sollen im Mathematikunterricht der Hauptschule behandelt werden.
Beweise sollen im Mathematikunterricht der Realschule behandelt werden.

o vk wWwN P

Beweise sollen im Mathematikunterricht auf dem Gymnasium behandelt werden.

Diese Items sind Eigenkonstruktionen und wurden im Rahmen der Ein- und Ausgangsbefragung im
Wintersemester 2013/14 erfolgreich pilotiert und unverandert tbernommen.

Die Teilaspekte (2) und (3)

Da die im Wintersemester 2013/14 durch obige ltems erhaltenen Erkenntnisse als relativ ,grob’ zu
bezeichnen waren, sollte der Themenkomplex , Einstellungen zum Beweisen” prazisiert werden, um
sich dem angestrebten Konstrukt besser ndhern zu kdénnen. Es interessierten hierbei insbesondere
auch die Einstellungen zu den vermeintlichen Griinden, warum Beweise in der Schule eine eher
untergeordnete Rolle spielen, und ob bzw. wie Beweise im Schulunterricht thematisiert werden
sollten.
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Fiir die Konstruktion entsprechender Items wurde an die Teilnehmenden eines Workshops auf der
Fachtagung ,Abiturstandards Mathematik: Bildungsplane und Implementation” (30.09.2014-
01.10.2014) ein Fragebogen mit den folgenden zwei Fragen mit Freitextantworten ausgeteilt.

Beweise spielen im derzeitigen Mathematikunterricht der Schule eine untergeordnete Rolle.

(a) Welche Griinde sehen Sie hierflr? [Freitextantwort]

(b) An der Hochschule gibt es die Position, dass die Rolle des Beweisens in dem Mathematikunterricht an der Schule
wieder verstdrkt werden sollte. Nehmen Sie bitte dazu Stellung, ob Sie diese Forderung fir sinnvoll und
realisierbar halten.

Aus den 25 Antworten wurden die Aspekte und Griinde ausgewahlt, die am haufigsten genannt
wurden, einer ,gangigen’ Meinung zu entsprechen schienen und die fiir Erstsemesterstudierende in
ihrem Umfang und ihrer Elaboriertheit angemessen erschienen. Diese Facetten wurden wiederum so
in Aussagen umformuliert, dass sie als Items eingesetzt werden konnten.

Insgesamt wurde aufgrund dieser Erhebung der Themenkomplex , Einstellungen zum Beweisen in der
Schule” um den folgenden Aspekt (2) ergdnzt: ,Die Bewertung ,géngiger’ Grinde, warum das
Beweisen in der Schule eine eher untergeordnete Rolle spielen sollte”. Die entsprechenden Aussagen
sollten auf einer sechsstufigen Likert-Skala ([1] stimmt gar nicht ... [6] stimmt vollig) bewertet
werden. Die folgenden Items wurden ohne Pilotierung in der Ein- und Ausgangsbefragung des
Wintersemesters 2014/15 eingesetzt:

Bitte bewerten Sie die folgenden Aussagen:
In der Schule sollten Beweise eher eine untergeordnete Rolle spielen, ...

1. .., da es wichtiger ist, dass die fachlichen Inhalte (Funktionen, Differentialrechnung, Integralrechnung, ...)
vermittelt und verstanden werden.

2. ..., da das Beweisen im spateren Leben der Schuler/innen keine Anwendung findet (im Gegensatz etwa zur

Prozentrechnung).

..., da es wichtiger ist, dass die Schiiler/innen Rechenaufgaben richtig |6sen kénnen.

..., da Beweise in der Lebenswelt der Schiiler/innen keine Bedeutung haben.

..., da Beweise fir die Schiiler/innen zu schwer nachzuvollziehen sind.

..., da es die meisten Schiiler/innen Giberfordern wiirde, selbststdndig Beweise zu finden und aufzuschreiben.

No v ke

..., da die Schiler/innen sowieso wissen, dass die mathematischen Regeln und Satze richtig sind und sie
daher nicht zum Beweisen zu motivieren sind.
8. .., da manim Mathematikunterricht lieber Anwendungen im Alltag behandeln sollte.

Teilaspekt (3): die Bewertung der Eignung generischer Beweise fiir die Schulmathematik

Bei der Weiterentwicklung der Lehrveranstaltung waren verschiedene fachdidaktische Aspekte
leitend; hierzu gehorten u.a. die Vermittlung von schuladdquaten Begriindungsformen. Fir die
Evaluation dieses Aspekts wurden die folgenden Items fiir die Bewertung auf einer sechsstufigen
Likert-Skala neu konstruiert und ohne Pilotierung in der Ausgangsbefragung des Wintersemesters
2014/15 eingesetzt:

1. Generische Beweise sind eine gute Moglichkeit, um Schilern das Argumentieren beizubringen.

2. Der generische Beweis ist eine Beweisform, die es ermdglicht, mathematische Beweise auch in der Haupt-
und Realschule zu thematisieren.
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3.3.7 Einstellungen zum Beweisen

Wie in Abschnitt 2.4.3 dargelegt wurde, herrscht in der Literatur kein Konsens dartiber, was unter
,Einstellungen zum Beweisen’ gefasst werden kann bzw. soll. Unter dem Komplex , Einstellungen zum
Beweisen” werden im Kontext dieser Arbeit zwei Teilaspekte betrachtet: (1) das Konstrukt
,Beweisaffinitat” (Items 1-9, s.u.) und ,,Einstellungen zum Erlernen der Beweisaktivitat”.

Im Rahmen der Pilotierung der Items des Bereichs , Einstellungen zum Beweisen”, welche die unten
aufgefiihrten Items 1-11 umfasste, wurde deutlich, dass die Items 10 und 11 einen anderen Aspekt
als die ersten neun Items zu beschreiben schienen. Aus diesem Grund wurde die oben genannte
Zweiteilung des Komplexes ,Einstellungen zum Beweisen” vorgenommen und der zweite Teilaspekt
fur die Erhebung im Wintersemester 2014/15 (ohne weitere Pilotierung) um die Items 12-16 ergdnzt.
Zu den Teilaspekten im Einzelnen:

(1) Beweisaffinitat

Unter dem Teilaspekt ,Beweisaffinitat” wird hier die subjektive Zuneigung einer Person zum
Konstrukt ,Beweis’ gefasst. So untersucht auch Almeida (2000) die Auffassungen (,,perceptions”) von
Mathematikstudierenden zum Beweisen. Die unten aufgefiihrten Items 2, 3 und 5 sind aus dieser
Studie entnommen (Almeida 2000, S. 827; dort: Items 7, 10 und 11). Die ltems 7 und 8 entstammen
Yoo (2008, S. 332), die restlichen Items dieses Teilabschnitts sind Eigenkonstruktionen. Alle Aussagen
sollten auf einer sechsstufigen Likert-Skala ([1] stimmt gar nicht ... [6] stimmt vollig) bewertet
werden.

Teilaspekt (1): Beweisaffinitadt

Ich sehe das Beweisen als eine intellektuelle Herausforderung, der ich mich gerne stelle.

Ich mag Beweise.

Ich sehe keinen Sinn darin, etwas beweisen zu missen, was sowieso richtig ist.

Ich versuche Beweise zu verstehen.

Ich weil}, wie man einen Beweis fuhrt.

Ich habe Beweise in der Schule vermisst.

Beweise werden von Experten konstruiert. Es genligt, wenn man sie nachvollziehen und verstehen kann.
Beweise sind etwas, was man selbst auf Grundlage des eigenen Wissens konstruiert.

W e NOUAEWNR

Das Fuihren von Beweisen ist eine Aufgabe fur fortgeschrittene Mathematiker.

Die durch die neun Items gebildete Skala zur Messung , Beweisaffinitdt” wies einen ausreichend
hohen Reliabilitatswert auf (Cronbachs Alpha = 0,781), weshalb die aufgeflihrten Items unverandert
in die Studien des Wintersemesters 2014/15 ibernommen wurden.

(2) Einstellungen zum Erlernen der Beweisaktivitat

Im Rahmen der Dissertation von Yoo (2008) wurden Lehramtsstudierenden der Mathematik
verschiedene Aussagen zum Beweisen vorgelegt, wobei die Studierenden jeweils ihre eigene Position
auf einer Skala zwischen zwei entgegengesetzten Positionen einschatzen sollten (vgl. Abschnitt
2.4.3).
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Zur Veranschaulichung dieses Frageformats wird ein Item aus der Studie angegeben (Yoo 2008, S.
333):

To prove the truth of a mathematical statement, (a) there is one accepted best way to do it or (b) there could be
several different ways as long as the proof is valid and convincing to your intended audience.

Mostly a Both a and b equally Mostly b Neither

| 1 | 2 3 4 5 6 7 | 8

Aus diesen paarweise entgegengesetzten Aussagen (dort den ltems 4, 5, 10 und 12) wurden durch
Ubersetzung und Anpassung der Formulierungen die folgenden Items 10-16 konstruiert:

Teilaspekt (2): Einstellungen zum Erlernen der Beweisaktivitat

10. Beim Beweisen geht es darum, genau den einen richtigen Weg zu finden, um eine Behauptung zu beweisen.

11. Um einen Beweis zu flihren, gibt es viele verschiedene Méglichkeiten.

12. Das Vergleichen von verschiedenen Beweisen zu einer Behauptung verwirrt mich mehr, als dass es zusatzliches
Verstandnis hervorruft.

13. Durch das Nachvollziehen von vorgegebenen Beweisen kann man am besten das Beweisen lernen.

14. Wenn ich Beweise lese, achte ich besonders auf die Inhalte.

15. Verschiedene Beweise zu vergleichen und zu diskutieren, hilft dabei, besser zu verstehen, warum ein Sachverhalt
gilt.

16. Um das Beweisen zu erlernen, sollte man Vermutungen aufstellen, diese erforschen und beweisen.

Die sieben Items wurden in der Ausgangsbefragung des Wintersemesters 2013/14 pilotiert. Hierbei
ging es nicht um die Konstruktion von reliablen Skalen, sondern um die studentischen Bewertungen
der verschiedenen konkreten Aussagen. Die Items wurden in die Studien des Wintersemesters
2014/15 Gbernommen.

3.3.8 Einstellungen zur Mathematik

Das Konzept und die (didaktische) Bedeutung der ,Einstellungen zur Mathematik’ wurde bereits in
Abschnitt 2.2.2 erortert. Bei der vorliegenden Arbeit ist von Interesse, inwieweit zwischen den
,Einstellungen zur Mathematik’ und verschiedenen Aspekten zum Beweisen (Beweisaffinitét,
Selbstwirksamkeitserwartung, Beweisakzeptanz etc.) ein Zusammenhang ausgemacht werden kann.
Eine Hypothese ist hierbei, dass Lernende mit einer ausgeprdgten formalen Sichtweise von
Mathematik formale Beweise bevorzugen und Lernende mit einer dynamischen Sichtweise auf
Mathematik gerade generische Beweise schatzen.

Ausgangspunkt der Testkonstruktion fiir die Erhebung der Einstellungen zur Mathematik waren die
Arbeiten von Grigutsch et al. (1998) (s. Abschnitt 2.2.2). Aufgrund der noétigen Bearbeitungszeit der
hier thematisierten Fragebogen war die Verwendung aller 77 von Grigutsch et al. veroffentlichten
Iltems zur Erfassung der Einstellungen zur Mathematik nicht moglich. Fiir die Erfassung der
Einstellungen zur Mathematik wurde daher in der Ein- und Ausgangsbefragung des Wintersemesters
2014/15 die Auswahl an Items eingesetzt, die auch im Rahmen des LIMA-Projekts (Biehler et al. 2012,
S. 26ff.) verwendet wurde. Fir die Verbesserung der zu erwartenden Reliabilitatswerte wurde der
Abschnitt ,Mathematik als Toolbox“ um das Item (13) und der Abschnitt , Praktische Relevanz von
Mathematik” um die Items (21) und (23) erweitert (s.u.), da diese Items in der Studie von Grigutsch
et al. die nachst hochsten Faktorladungen aufwiesen. Insgesamt wurden die folgenden vier
Einstellungen zur Mathematik erhoben: Mathematik als System (sieben Items), Mathematik als
Toolbox (sechs Items), Mathematik als Prozess (vier Items) und Praktische Relevanz von
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Mathematik (sechs Items). Alle Aussagen sollten auf einer sechsstufigen Likert-Skala ([1] stimmt gar
nicht ... [6] stimmt vollig) bewertet werden. Die folgenden Items wurden ohne Pilotierung in der Ein-
und Ausgangsbefragung des Wintersemesters 2014/15 eingesetzt.

Items zum Aspekt ,,Mathematik als System*“

(1) Ganz wesentlich fuir die Mathematik sind ihre logische Strenge und Prézision, das heillt das ,objektive’ Denken.

(2) Mathematik ist gekennzeichnet durch Strenge, namlich eine definitorische Strenge und eine formale Strenge der
mathematischen Argumentation.

(3) Kennzeichen von Mathematik sind Klarheit, Exaktheit und Eindeutigkeit.

(4) Unabdingbar fir die Mathematik ist ihre begriffliche Strenge, das heilt eine exakte und prazise mathematische
Fachsprache.

(5) Mathematik ist ein logisch widerspruchsfreies Denkgebdude mit klaren, exakt definierten Begriffen und eindeutig
beweisbaren Aussagen.

(6) Mathematisches Denken wird durch Abstraktion und Logik bestimmt.

(7) Mathematik hat die Asthetik des Formalen.

Items zum Aspekt ,,Mathematik als Toolbox“

(8) Mathematik besteht aus Lernen, Erinnern und Anwenden.

(9) Fast alle mathematischen Probleme kénnen durch direkte Anwendung von bekannten Regeln, Formeln und
Verfahren gel6st werden.

(10) Mathematik ist eine Sammlung von Verfahren und Regeln, die genau angeben, wie man Aufgaben 16st.

(11) Mathematik ist das Behalten und Anwenden von Definitionen und Formeln, von mathematischen Fakten und
Verfahren.

(12) Wenn man eine Mathematikaufgabe l6sen soll, muss man das richtige Verfahren kennen, sonst ist man verloren.

(13) Mathematik-Betreiben verlangt viel Ubung im Befolgen und Anwenden von Rechenroutinen und —schemata.

Items zum Aspekt ,Mathematik als Prozess”

(14) In der Mathematik kann man viele Dinge selber finden und ausprobieren.

(15) Mathematik lebt von Einfallen und neuen Ideen.

(16) Wenn man sich mit mathematischen Problemen auseinandersetzt, kann man oft Neues (Zusammenhéange,
Regeln, Begriffe) entdecken.

(17) Mathematische Aufgaben und Probleme konnen auf verschiedenen Wegen richtig gelést werden.

Items zum Aspekt ,,Praktische Relevanz von Mathematik“

(18) Kenntnisse in Mathematik sind fiir das spatere Leben der Schiler/innen wichtig.

(19) Mathematik hilft, alltagliche Aufgaben und Probleme zu l6sen.

(20) Viele Teile der Mathematik haben einen praktischen Nutzen oder einen direkten Anwendungsbezug.

(21) Mit ihrer Anwendbarkeit und Problemldsekapazitat besitzt die Mathematik eine hohe gesellschaftliche Relevanz.
(22) Mathematik hat einen allgemeinen, grundsatzlichen Nutzen fir die Gesellschaft.

(23) Nur einige wenige Dinge, die man im Mathematikunterricht lernt, kann man spater verwenden.

3.3.9 Funktionen von Beweisen

Die verschiedenen Funktionen von Beweisen wurden bereits in Abschnitt 2.1.7 erortert. Im Kontext
der Begleitforschung der Lehrveranstaltung sollte der Frage nachgegangen werden, welche
Funktionen von Beweisen Studienanfangerinnen und Studienanfangern bewusst sind und welche
Funktionen durch die Lehrveranstaltung ,Einfiihrung in die Kultur der Mathematik” (besonders) in
den Vordergrund gertickt werden.

Flr die quantitative Erfassung dieser Bewusstheit von Funktionen von Beweisen war die Erarbeitung
von geeigneten Testinstrumenten erforderlich. Die verschiedenen Funktionen von Beweisen, die im
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Rahmen dieser Studie untersucht werden sollten, wurden als Aussagen zur Bewertung auf einer
sechsstufigen Likert-Skala ([1] stimmt gar nicht ... [6] stimmt véllig) formuliert.

Im Rahmen der Eingangsbefragung (WS 2013/14) sollte untersucht werden, welche Funktionen von
Beweisen den Studierenden bewusst sind. Aufgrund des (vermuteten) erweiterten
Erfahrungshorizontes der Studierenden in einem héheren Semester wurde der Fragebogenabschnitt
zu ,Funktionen von Beweisen” zweigeteilt: ein erster Abschnitt mit den Aussagen 1-8 (s.u.) und dem
Einleitungssatz: ,Bei den Beweisen, die ich in der Schule kennengelernt habe, habe ich
wahrgenommen, dass Beweis folgende Funktionen haben:“, und ein zweiter Abschnitt mit den Items
1-11 (s.u.) und der Einleitung: ,In meinem bisherigen Studium habe ich wahrgenommen, dass
Beweise folgende Funktionen haben:“. Die elf verwendeten Aussagen waren hierbei wie folgt:

Beweise zeigen, dass bestimmte Sachverhalte und Zusammenhéange sicher gelten.

Beweise zeigen, warum etwas gilt.

Beweise verdeutlichen die Bedeutungen von mathematischen Begriffen.

Beweisen ist eine Standardaufgabe in der Mathematik. Beweise haben sonst keine weitere Bedeutung.
Beweise helfen dabei, sich Zusammenhange und Tatsachen einpragen zu kénnen.

Beweise beenden einen laufenden (Forschungs-) Prozess.

Beweise sollen bei den Studierenden ein Verstandnis erreichen, warum etwas wahr ist.

Beweise erzeugen mathematisches Verstandnis.

L XN AEWNR

In Beweisen wird mathematisches Wissen systematisiert.
In Beweisen wird neues Wissen entdeckt.

=
= O

In Beweisen wird mathematisches Wissen kommuniziert.

In der folgenden Ausgangsbefragung (WS 2013/14) wurde der vollstdndige Abschnitt mit elf Items
allen Studierenden zur Bewertung vorgelegt. Bei der Auswertung der Daten traten die folgenden
Phdanomene auf:

1. Bei den Bewertungen der verschiedenen Funktionen von Beweisen lagen Deckeneffekte vor;
die Studierenden stimmten fast ausschlieBlich mit einer Bewertung von ,5“ oder ,6“ den
Aussagen zu, dass Beweise die verschiedenen Funktionen haben kénnen.

2. Von der Ein- zur Ausgangsbefragung zeigten sich insgesamt nur minimale Veranderungen der
einzelnen Bewertungen, was z.T. auf das Phdanomen der Deckeneffekte der Bewertungen
zurlickgefiihrt werden kann. Auch bei der Betrachtung der gepaarten Daten von der Ein- zur
Ausgangsbefragung wurden keine bzw. nur minimale (systematische) Verdnderungen
deutlich. Dies konnte bedeuten, dass durch die Lehrveranstaltung bei den Studierenden
keine Veranderungen bzgl. der wahrgenommenen Funktionen von Beweisen eingetreten
sind. Naheliegender erschien allerdings die Vermutung, dass die Studierenden am Ende der
Lehrveranstaltung ihre Einschatzungen auf einer anderen Wissensgrundlage vornehmen und
die Bewertungen von Ein- und Ausgangsbefragung somit nicht miteinander in Beziehung
gesetzt werden kdnnen.

Um diesen Effekten entgegenzuwirken, wurden fir die Untersuchungen in der Ein- und
Ausgangsbefragung des Wintersemesters 2014/15 die folgenden Anderungen vorgenommen:

1. Die gesamte Aufgabe wurde umformuliert, um mithilfe der Einleitung ,Ich kann mindestens

“«

je einen Beweis angeben, an dem ich deutlich machen kann, differenziertere

Bewertungen zu erhalten. Insgesamt sah die Aufgabe nun wie folgt aus:
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Bitte bewerten Sie die folgenden Aussagen:

Ich kann mindestens je einen Beweis angeben, an dem ich deutlich machen kann, ...

..., dass Beweise zeigen konnen, dass bestimmte Sachverhalte und Zusammenhénge sicher gelten.
..., dass Beweise zeigen kénnen, warum etwas gilt.

..., dass Beweise die Bedeutungen von mathematischen Begriffen verdeutlichen konnen.

..., dass Beweise mathematisches Verstandnis erzeugen kdnnen.

..., dass Beweise dabei helfen kdnnen, sich Zusammenhange und Tatsachen einpragen zu kdnnen.
..., dass in Beweisen mathematisches Wissen systematisiert werden kann.

..., dass Beweise einen laufenden (Forschungs-) Prozess beenden kénnen.

..., dass man durch Beweise verstehen kann, warum etwas wahr ist.

L X N AEWNR

..., dass in Beweisen neues Wissen entdeckt werden kann.
10. ..., dass in Beweisen mathematisches Wissen kommuniziert werden kann.

2. In der Ausgangsbefragung im Wintersemester 2014/15 wurde zu allen Aussagen neben einer
aktuellen Einschatzung auch eine retrospektive Bewertung verlangt. Somit sollten die
Studierenden ihren eigenen Lernzuwachs implizit selbst einschatzen. Fiir die Illustration
dieses Fragenformats wird exemplarisch das erste Item dieses Komplexes angegeben:

Inwieweit treffen die folgenden Aussagen — aus heutiger Sicht — auf Sie vor der Lehrveranstaltung zu
und inwieweit treffen diese Aussagen heute zu?

Ich kann mindestens einen Beweis angeben, an dem ich deutlich machen kann, ...

..., dass Beweise zeigen kénnen, dass bestimmte Sachverhalte und Zusammenhadnge sicher gelten:

vor der Lehrveranstaltung stimmt |:| |:| I:' I:' I:' |:| stimmt

gar nicht vollig
stimmt stimmt
nach der Lehrveranstaltung gar nicht |:| |:| |:| |:| |:| I:' voliig

Die angewandte Methode entspricht der Herangehensweise einer ,retrospektiven
Kompetenzzuwachsmessung’. Wie in verschiedenen Studien nachgewiesen werden konnte, ist
diese Methode sehr gut dafiir geeignet, Veranderungen bzw. Lernzuwachse valide
dokumentieren zu kdonnen (etwa Coulter 2012; Lam und Bengo 2003; Pratt et al. 2000). Im
vorliegenden Fall wurde die Variante gewahlt, dass beide Einschdtzungen (aktuell und
retrospektiv) zum gleichen Zeitpunkt abgefragt wurden, um eine Einschatzung Uber den
gesamten Zeitraum der Vorlesung zu erhalten. AuBerdem wurden die Items derart formuliert,
dass die Studierenden nicht direkt ihren eigenen Lernzuwachs einschatzen bzw. angeben sollten.
Gefragt wurde ,nur’ nach der Selbsteinschatzung der jeweiligen Kompetenzen zu den beiden
Zeitpunkten. Nach Lam und Bengo (2013) fihrt diese Fragetechnik zu valideren Ergebnissen. Die
mit dieser Methode ggf. verbundenen Probleme der Validitdt der Selbsteinschatzungen werden
in Abschnitt 7.3.4 im Kontext der Beantwortung der Forschungsfrage [7] erortert.

3. Auch den Erstsemesterstudierenden wurden alle Aussagen bereits in der Eingangsbefragung
zur Bewertung vorgelegt.
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3.3.10 Motivation zum Erlernen von Beweisen und Selbsteinschitzung des
Lernzuwachses

In diesem Abschnitt sollte zunachst im Rahmen der Eingangsbefragung ermittelt werden, welche
Aspekte zum Beweisen die Studierenden, im Sinne einer generellen Motivation zum Erlernen der
Beweisaktivitat, Gberhaupt lernen wollen. Ferner war eine Intention hierbei auch, Uber die
Bewertungen einschatzen zu kénnen, welche Aspekte die Studierenden beim Beweisen fiir wichtig
bzw. flr lernenswert erachten. Die folgenden Items sind Eigenkonstruktionen und tangieren
verschiedene Aspekte, die es beim ,Beweisen’ zu erlernen gilt:

Ich mochte im Studium liber das Beweisen lernen ...

... wie man einen Beweis findet.

... wie man einen Beweis aufschreibt.

... wie man einen Beweis liest.

... wie man einen Beweis versteht.

... wie das Beweisen funktioniert.

... warum man Beweise fihrt.

... welche Arten von Beweisen es gibt.

Ich mochte nichts tiber das Beweisen lernen.

©eNOO A ®WN

... wie man Beweise im Schulunterricht einsetzt.
... wie man Schiiler zum Beweisen motivieren kann.

[
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... wie man Schilern ,, das Beweisen“ unterrichten kann.

Als Abgleich zu der Motivation der Studierenden zum Erlernen der Beweisaktivitdt sollte in der
Ausgangsbefragung bewertet werden, inwiefern die Studierenden meinten, dass die verschiedenen
Aspekte zum Beweisen im Rahmen der Lehrveranstaltung vermittelt wurden. Dieser Abschnitt bildet
somit auch eine Evaluation bzgl. der vermittelten Inhalte. Fir diesen Zweck wurden in der
Ausgangsbefragung die oben aufgefiihrten Aussagen den Studierenden wieder zur Bewertung auf
einer sechsstufigen Likert-Skala vorgelegt, wobei die Aufgabeneinleitung nun wie folgt formuliert
wurde:

Ich habe das Gefiihl, in der Veranstaltung ,Einfiihrung in die Kultur der Mathematik” gelernt zu haben,

Alle Items wurden in der Ein- und Ausgangsbefragung des Wintersemesters 2013/14 erfolgreich
pilotiert und unverandert in die Studie des Wintersemesters 2014/15 Gbernommen.

3.3.11 Nutzen von Beispielen fiir den Beweisprozess

Innerhalb der Lehrveranstaltung spielt das dialektische Verhéltnis von konkreten Beispielen (bzw.
BeispiellUberprifungen) und Beweisen eine wichtige Rolle (vgl. Abschnitt 6.2). Es stellte sich somit die
Frage, welchen Nutzen Beispiele in den Augen der Studierenden im Beweisprozess haben. Im
Forschungsinteresse stand auch hier, welche Sicht die Studierenden zu Beginn und zum Ende der
Lehrveranstaltung vertreten und wie sie selbst ihren Erkenntnisgewinn einschatzen. Die folgenden
ltems wurden im Rahmen der Ausgangsbefragung im Wintersemester 2013/14 pilotiert. (Alle
Aussagen sollten auf einer sechsstufigen Likert-Skala ([1] stimmt gar nicht ... [6] stimmt voéllig)
bewertet werden.)

Bitte bewerten Sie die folgenden Aussagen.

1. Die Betrachtung von konkreten Beispielen kann dabei helfen, eine Beweisidee zu finden.
2. Die Betrachtung von konkreten Beispielen hilft dabei, eine Behauptung besser zu verstehen.
3. Die Betrachtung von konkreten Beispielen hat beim Beweisen keinen Nutzen.
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Beispiele konnen dabei helfen, eine Argumentation zu Gberprifen.
Auch nach einem erfolgten Beweis tiberpriife ich die Behauptung zur Sicherheit noch an Beispielen.
Die Uberpriifung von einigen Beispielen reicht als vollstandiger Beweis aus.

N o ok

Beispiele kdnnen mich in meiner Vermutung bestarken, ob eine Behauptung wahr ist.

Die Ergebnisse der Pilotierung legten die Frage nahe, wie entsprechende Bewertungen zu Beginn der
Lehrveranstaltung ausfallen wiirden. Aus diesem Grund wurde dieser Abschnitt in die
Eingangsbefragung des folgenden Wintersemesters (bernommen. Fir aussagekraftigere
Einschdatzungen des eigenen Lernzuwachses wurde in der Ausgangsbefragung zu jeder Aussage
neben einer aktuellen Bewertung auch eine retrospektive Einschatzung verlangt. Zur Illustration wird
das erste Item des Bereichs angegeben:

Inwieweit treffen die folgenden Aussagen — aus heutiger Sicht — auf Sie vor der Lehrveranstaltung zu
und inwieweit treffen diese Aussagen heute zu?

Die Betrachtung von konkreten Beispielen kann dabei helfen, eine Beweisidee zu finden:

vor der Lehrveranstaltung stimmt |:| |:| |:| |:| |:| |:| stimmt

gar nicht vollig
stimmt stimmt
nach der Lehrveranstaltung gar nicht I:' I:' I:' I:' I:' I:' véliig

3.3.12 Selbstwirksamkeitserwartung und der empfundene Kompetenzzuwachs beim
Beweisen

Die Bedeutung von Selbstwirksamkeitserwartung fir das Erlernen der Beweisaktivitat wurde bereits
in Abschnitt 2.2.1 erortert. In diesem Zusammenhang stellt sich die Frage, inwiefern durch die
Lehrveranstaltung  ,Einfilhrung in  die  Kultur der Mathematik” eine  positive
Selbstwirksamkeitserwartung in Bezug auf das Beweisen bei den Studierenden aufgebaut wird und
inwiefern sich Zusammenhange zwischen den erhobenen Werten von Selbstwirksamkeitserwartung
und entsprechenden ,Leistungen’ nachweisen lassen.

Ein Ergebnis der vorherigen Studien darin bestand, dass Studienanfanger nur sehr wenig (Vor-)
Erfahrungen mit dem Beweisen haben und somit Uber keine ,Beweispraxis’ verfligen. Aus diesem
Grund wurden die Items zur Selbstwirksamkeitserwartung in Bezug auf das Beweisen erst in der
Ausgangsbefragung des Wintersemesters 2014/15 eingesetzt. Da in der Literatur keine passenden
Items fiir eine beweisbezogene Selbstwirksamkeitserwartung angefiihrt werden, die allgemein genug
gehalten sind, um die vier verschiedenen Beweisformen der Lehrveranstaltung mitabzudecken,
mussten  entsprechende Items neu  konstruiert werden. Diese beweisspezifische
Selbstwirksamkeitserwartung wurde dabei durch die folgenden Teilkompetenzen zum Beweisen
modelliert: die Konstruktion von Beweisen, das Wissen um die konstituierenden Elemente eines
Beweises, das Wissen um die Stellung des Beweises in der Mathematik, Beweisverstandnis und
Beweisbeurteilung. Hieraus ergab sich die Formulierung der folgenden Aussagen:

Ich kann eine gegebene Behauptung beweisen.

Ich weil}, was einen Beweis ausmacht.

Ich weil}, warum in der Mathematik bewiesen wird.
Ich verstehe Beweise, wenn ich sie lese.

Ich weil}, wie man einen Beweis fuhrt.

o v ke wWwN PR

Ich kann beurteilen, ob ein Beweis richtig oder falsch ist.
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Neben der Bewertung der aktuellen Fahigkeiten zum Beweisen sollte gleichsam der eigene
Lernfortschritt eingeschatzt werden. Aus diesem Grund sollten wiederum die sechs Aussagen aus
aktueller Perspektive und retrospektiv bewertet werden. Zur Illustration des Frageformats wird das

erste Item des Abschnitts angegeben:

Inwieweit treffen die folgenden Aussagen — aus heutiger Sicht — auf Sie vor der Lehrveranstaltung zu
und inwieweit treffen diese Aussagen heute zu?

Ich kann eine gegebene Behauptung beweisen:

stimmt stimmt

vor der Lehrveranstaltung

gar nicht vollig

I I e I e I R B I
stimmt |:| |:| |:| |:| |:| |:| stimmt

nach der Lehrveranstaltung

gar nicht vollig
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4. Betrachtungen zu der historischen Entwicklung didaktisch
orientierter Beweiskonzepte und der mit ihnen verbundenen
Intentionen

Ein zentraler Bestandteil der in dieser Arbeit thematisierten Lehrveranstaltung sind die sogenannten
operativen und generischen Beweise, in denen allgemeingiiltige Verifikationen mit Bezug auf
konkrete Beispiele vollzogen werden. Diese Beweisformen miissen dabei im Rahmen eines
Entwicklungsstranges des zwanzigsten Jahrhunderts gesehen werden, in dessen Kontext der Versuch
unternommen wurde, die mathematische Beweisaktivitdt Lernenden auf allen Stufen der Ausbildung
zuganglich zu machen. Die Entwicklung entsprechender Beweiskonzepte ist dabei immer in den
Kontext eines gewissen Lehr-/Lernszenarios eingebettet und gleichsam mit bestimmten didaktischen
Intentionen verbunden. Biehler und Kempen (2016) pragen fir diese spezifischen, didaktisch
motivierten Beweisformen im Kontext gewisser Lehr-/Lernszenarios den Begriff der ,didaktisch
orientierten Beweiskonzepte”.

In diesem Kapitel werden die historischen Entwicklungsstrange verschiedener didaktisch orientierter
Beweiskonzepte dahingehend befragt, welche Intentionen die entsprechenden Autoren im Kontext
ihrer Beweiskonzepte verfolgen, mit welchen Aktivitaten diese verbunden sind und welche
Vorbehalte gegebenenfalls formuliert werden (4.2). SchlielRlich geht es dabei um die Frage, welche
Grinde flr den Einsatz entsprechender Beweisformen in der Lehrerausbildung herausgearbeitet
werden kénnen, welche Aktivitaten flr das Erlernen der Beweisaktivitat in Verbindung mit den
didaktisch motivierten Beweisformen als besonders gewinnbringend erscheinen und welche
Probleme damit gegebenenfalls verbunden sein kdnnen (4.3).

4.1 Anliegen, Forschungsfragen und Methode

Ein Teil der unternommenen Forschungsarbeit bestand in der Aufarbeitung der Entwicklung der
didaktisch orientierten Beweiskonzepte, der Herausarbeitung ihrer Charakteristika und Beziige
untereinander. Entsprechende Ergebnisse wurden in Biehler und Kempen (2016) veroffentlicht. Dort
wird auch der Frage nach der Giiltigkeit der verschiedenen Beweisformen als wirkliche Beweise im
Sinne der Mathematik nachgegangen, welche im Folgenden nicht thematisiert wird.

Fiir die Konstruktion der in dieser Arbeit thematisierten Lehrveranstaltung sind im Kontext der
didaktisch motivierten Beweiskonzepte die drei folgenden Aspekte von besonderer Bedeutung: Wie
lasst sich der Einsatz didaktisch motivierter Beweisformen in der Lehrerausbildung begriinden bzw.
motivieren? Wie sollen diese Beweisformen in das Unterrichtsgeschehen eingebunden werden und
welche Aktivitditen werden dabei empfohlen, damit Lernende die mathematische Beweisaktivitdt am
besten erlernen kénnen? Welche Probleme konnten bei entsprechenden Unterrichtsszenarien
gegebenenfalls auftreten? Aus diesem Grund werden in dem vorliegenden Kapitel die folgenden
Leitfragen zur Auswertung herangezogen:

Leitfrage zur Auswertung [1]:

Welche Aktivitaten fihren die Urheber der didaktisch orientierten Beweiskonzepte auf, um Lernende
im ,Beweisen’ sinnstiftend zu unterrichten, und welche Implikationen fir das unterrichtliche
Geschehen werden in diesem Kontext herausgestellt?
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Leitfrage zur Auswertung [2]:

Welche Argumente werden durch die Urheber der didaktisch orientierten Beweiskonzepte
angefiihrt, entsprechende Beweisformen in die Lehramtsausbildung zu integrieren?

Leitfrage zur Auswertung [3]:

Welche offenen Fragen bzw. Probleme werden bei den Autoren fiir den Umgang mit entsprechenden
Beweisformen thematisiert?

Fiir die Beantwortung dieser Forschungsfragen werden zunachst die didaktisch orientierten
Beweiskonzepte herausgegriffen, die in einem besonderen Malle zu der Entwicklung des Konzepts
des operativen Beweises und somit auch zu dem Konzept des generischen Beweises beigetragen
haben, welches von Biehler und Kempen (2014) herausgearbeitet wurde und in der vorliegenden
Arbeit vertreten wird. Anhand der Primarliteratur wird dabei untersucht, welche Aspekte zu den
oben formulierten Fragen bei den Urhebern dieser ausgewahlten Beweiskonzepte deutlich werden.

4.2 Kurzdarstellung ausgewadhlter didaktisch orientierter Beweiskonzepte
Im Folgenden werden die didaktisch orientierten Beweiskonzepte thematisiert, deren Konzeptionen
malgeblich zu dem Konzept operativer Beweise bei Wittmann und dem hier vertretenen Konzept
generischer Beweise (Abschnitt 2.1.3) beigetragen haben. Diese ausgewahlten Konzepte werden kurz
beschrieben, anhand eines Beispiels illustriert und dann in Bezug auf die in Abschnitt 4.1
formulierten Forschungsfragen ausgewertet.

In der Entwicklung der verschiedenen Beweiskonzepte bildet die intuitive Beweisstufe bei Branford
eine Grundlage, auf die Wittmann und Miller (1988) spater explizit starken Bezug nehmen. Fir ihre
inhaltlich-anschaulichen Beweise, die zu dem Konzept des operativen Beweises beigetragen haben,
sind weiter die Arbeiten von Freudenthal (,paradigmatische Beweise“) und Semadeni
(,pramathematische Beweise” bzw. ,action proofs“) von grofler Bedeutung (Wittmann & Miiller
1988, S. 249). In dem Kontext um pramathematische Beweise miissen die Ausfiihrungen von Kirsch
(1979) bericksichtigt werden, die spater in den Arbeiten von Blum und Kirsch (1989 und 1991), auch
unter Ruckgriff auf Semadeni, zu dem Konzept praformaler Beweise flihrten. Auf die Entwicklung und
die Konzeption operativer Beweise und generischer Beweise wird in dem vorliegenden Kapitel nicht
eingegangen, da entsprechende Ausfiihrungen bereits in Abschnitt 3.3 erfolgt sind. Allerdings wird in
der Zusammenfassung der Ergebnisse fir die Beantwortung der eingangs formulierten
Forschungsfragen auch auf dortige Ergebnisse zurlickgegriffen.

Die folgenden Darstellungen sind stark gekirzte Versionen der Ausfiihrungen in Biehler und Kempen
(2016), wobei auf eine wortgetreue Darstellung verzichtet wird. Fir eine bessere Lesbarkeit des
folgenden Abschnitts werden inhaltliche Bezlige zu dem genannten Artikel nicht extra ausgewiesen.

4.2.1 Die intuitive Beweisstufe bei Benchara Branford

Das Grundanliegen Branfords (1913) besteht darin, eine Beweisstufe in das unterrichtliche
Geschehen zu integrieren, die zwischen bloBen empirischen Untersuchungen und strengen formalen
Beweisen vermitteln soll (ebd., S. 99). Hierzu beschreibt der Autor (1913, S. 99ff.) die Beweisstufe der
intuitiven Ableitung. Auf dieser Beweisstufe wird der Frage nachgegangen, ob eine bereits an
Einzelfdllen Uberpriifte Vermutung in allen moglichen Fallen richtig sei. Auf der Stufe der intuitiven
Ableitung sollen allgemeingiiltige Betrachtungen erfolgen, die weiter als Anregungen fiir den
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wissenschaftlichen Beweis dienen kdnnen. Hierzu schreibt Branford (1913): ,,Diese Beweisstufe stellt
allgemeine und streng giiltige Wahrheiten auf, beruft sich aber dabei, wenn es nétig wird, auf
Postulate der sinnlichen Erfahrung. Sie stellt die Wahrheit auf eine unabhangige eigene Basis durch
unmittelbare Berufung auf erste Prinzipien” (ebd., S. 103). Der Nachweis der (Allgemein-) Giltigkeit
einer Behauptung erfolgt hierbei also nicht durch den expliziten Bezug auf Axiome und bereits
bewiesene Sachverhalte. Vielmehr geht es um die ,,unmittelbare Berufung auf erste Prinzipien” (s.o0.)
als unmittelbar einsichtige Argumente, die auch ,Postulate der sinnlichen Erfahrung” (s.0.) mit
einschlieBen kann. Branford (1913, S. 103) illustrierte diese Stufenfolge einer Beweisaktivitdt anhand
des Scheitelwinkelsatzes der Geometrie. Dieses Beispiel wird im Folgenden zusammengefasst
wiedergegeben.

Zunichst sollen Lernende auf der ersten Stufe (der ,experimentellen Ableitung) mit dem
Wissensmaterial vertraut gemacht werden. Bei der Betrachtung und Untersuchung von
Scheitelwinkeln kénnen Lernende zu der Vermutung gelangen, dass diese immer gleich groR sind.
Konkrete Messungen kénnen diese Vermutung bestarken. Branford (1913, S. 102) betont dabei die
Bedeutung eines prazisen Sprachgebrauchs zur korrekten Formulierung des aktuellen Stands des
Erkenntnisprozesses. Exemplarisch formuliert er: ,In all den untersuchten Fallen sind, soweit wir
messen kénnen, zwei Scheitelwinkel einander gleich” (Branford 1913, S. 102). Wichtig ist dabei die
Vermittlung einer Einsicht, dass der allgemeine Satz, der fiir alle Scheitelwinkel gelten soll, nicht
durch singuliare Uberpriifungen gesichert werden kann. Das Verlangen nach einer allgemeingiiltigen
Wahrheit soll dann zu der nachsten Stufe fihren.

Auf der zweiten Stufe (der ,intuitiven Ableitung’) sollen ,allgemeine und streng giiltige Wahrheiten”
(s.0.) aufgestellt werden. In diesem Fall kann dies dadurch erfolgen, dass zwei sich kreuzende Stdbe
an ihrem Schnittpunkt zusammengeheftet werden (s. Abbildung 12). Bei der Drehung der Stidbe um
ihren Schnittpunkt kann die folgende Erkenntnis gewonnen werden: Bei der Drehung von AB um B
wird gleichzeitig BC um B in entgegengesetzte Richtung gedreht. Und das AusmaR der Drehung von
AB (iber den Winkel ABE ist das gleiche, wie das der Drehung von BC lber den Winkel CBD. Folglich
miussen, so Branford, die beiden Winkel gleich groR sein. Nachdem dieser Versuch auch mit den
Winkeln ABD und CBE durchgefiihrt wurde, sollen die Schiilerinnen und Schiiler diesen noch einmal
in Gedanken ausfilhren und dann mit ihren eigenen Worten beschreiben: ,Das Endziel ist,
schrittweise Vernunft und Einbildungskraft an die Stelle der sinnlichen Wahrnehmung zu setzen”
(Branford 1913, S. 105).

A D

B Abbildung 12: Beweisfigur der
l, intuitiven Beweisstufe (Abbildung
ahnlich zu Branford 1913, S. 103)

E C

Abbildung 13: Beweisfigur zum

¥ wissenschaftlichen Beweis
a P (Abbildung dhnlich zu Branford 1913,
1)

S.101)

Auf der dritten Stufe wird der strenge wissenschaftliche Beweis formuliert. Dieser allgemeine Beweis

soll durch die Betrachtung einer speziellen Beweisfigur angeregt werden (s. Abbildung 13).
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Ausgangspunkt sind dabei konkrete Werte, mit denen gerechnet wird: Bei einem gemessenen Wert
von a, etwa a = 30°, gilt: y = 180° — 30° = 150°, da a +y = 180°. Weiter ist = 180°—y =
180° — 150° = 30°, und somit: @ = 30° = 6.

Entsprechende Berechnungen anhand konkreter Werte sollen nétigenfalls wiederholt werden, bis die
Lernenden eine Einsicht darin erlangen, dass dieses Ergebnis (a = ) fir alle moglichen
Scheitelwinkel gilt. Erst darauf erfolgt die Formulierung des allgemeinen wissenschaftlichen
Beweises, bei dem der Lehrer die Abhadngigkeit der Argumente zu friiheren Beweisen betonen soll
(ebd., S. 106):

a+y =180° (frither gefundene Wahrheit)

y +f =180° (ebenfalls),
folglicha+y =y +p,
alsoa =pf

SchlieB8lich sollen die Schiilerinnen und Schiiler den symbolischen Beweis mit ihren eigenen Worten
erldutern, da dies eine ,ausgezeichnete, lehrreiche Ubung” darstellt (ebd., S. 106).

Rickblickend konnen die folgenden markanten Aspekte des Beweiskonzepts von Branford
herausgehoben werden:

(B1)  Der Erkenntnisprozess soll mit einer explorativen Phase beginnen, in dem sich die Lernenden
mit dem Wissensmaterial vertraut machen konnen. In dieser Explorationsphase soll eine
Vermutung ausgemacht werden, die dann anhand konkreter Beispiele tiberprift werden soll.

(B2)  Die ausgemachte Vermutung wird derart formuliert, dass auf die Unzulanglichkeit einzelner
Beispieltberprifungen zur Verifikation der Vermutung, aufgrund ihres Allgemeingiltigkeits-
anspruchs, hingewiesen wird.

(B3)  Bei der Konstruktion von intuitiven Beweisen werden Argumente zugelassen, die bei den
Lernenden als intuitiv richtig akzeptiert sein sollen.

(B4)  Die fur den Beweis zu verwendenden Argumente sollen an konkreten ,Objekten’ ausgemacht
und anhand weiterer konkreter Falle getestet werden. Schlielllich soll diese Strategie in
Gedanken ausgefiihrt und gleichsam verinnerlicht werden.

(B5)  Der gefundene intuitive Beweis soll von den Lernenden in ihren eigenen Worten formuliert
werden.

(B6) Der wissenschaftliche Beweis soll erst dann symbolisch dargestellt werden, wenn die
Lernenden anhand konkreter Rechnungen deren Allgemeingiltigkeit eingesehen haben: Das
Ergebnis erweist sich als unabhangig von den konkreten Zahlenwerten. Erst danach erfolgt
eine Formulierung unter Verwendung von Variablen.

(B7) Bei der Formulierung des formalen Beweises soll die Anhdngigkeit der verwendeten
Argumente zu vorherigen Beweisen betont werden.

(B8)  Nach der finalen Beweiskonstruktion auf der letzten Stufe sollen die Lernenden wiederum
das Bewiesene in ihrer eigenen Sprache formulieren.
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4.2.2 Paradigmatische Beispiele bei Hans Freudenthal

In der Literatur um die didaktisch orientierten Beweiskonzepte beziehen sich verschiedene
Mathematikdidaktiker auf die paradigmatischen Beispiele bei Freudenthal (etwa Kirsch 1979, S. 262;
Semadeni 1984, S. 32). Und auch in der aktuellen Diskussion um schuladdquate Beweisformen
werden entsprechende Begriffsbildungen verwendet (siehe der , paradigmatische Ansatz” bei LeiR
und Blum (2006, S. 37) oder ,paradigmatische Beweise” bei Wittmann (2014, S. 50) in Anlehnung an
Fischer und Malle 1985).

In seiner didaktischen Reflexion Uiber den Mathematikunterricht an der Schule betont Freudenthal
(1978, S. 194f.), dass eine bloRe technische Ubung an einer Vielzahl dhnlicher Beispielaufgaben wenig
Lernerfolge mit sich bringt. Vielmehr sollen Lernende an gut gewahlten Beispielen eine Einsicht in
Zusammenhange erlangen, die nicht notwendigerweise explizit gemacht werden missen, sich aber
auf isomorphe Probleme Ubertragen lassen. Als Beispiel fihrt Freudenthal die folgende Aufgabe an:
»lch zeichne ein Kartchen mit drei Orten A, B, C, wo A und B durch drei Wege verbunden sind und B,
C durch zwei. Auf wieviel Arten kann ich von A liber B nach C kommen? - lautet die Frage” (ebd., S.
196, vgl. Abbildung 14).

Lernende konnen hierbei das systematische Zahlen

erlernen ,oder vielmehr die Gewohnheit, das Bedirfnis
und die Gewandtheit, beim Zdhlen systematisch A B C
vorzugehen” (ebd., S. 200).

Isomorphe Problemstellungen ergeben sich z.B. dann, Abbildung 14:lllustration eines
paradigmatischen Beispiels (Abbildung dhnlich

wenn in der ersten Stufe andere als drei und in der zweiten 2u Freudenthal 1978, 5. 196)

Stufe andere als zwei Moglichkeiten gegeben sind. Eine

explizite Formulierung des allgemeinen Produktsatzes der Kombinatorik ist fiir ein (erstes)
Verstandnis hier nicht nétig, die intuitive Einsicht in den allgemeinen Zusammenhang kann am
konkreten Beispiel gewonnen und abstrahiert werden.

Der Fokus des paradigmatischen Beispiels liegt somit urspriinglich nicht auf dem Begriinden von
Sachzusammenhangen, sondern auf dem Erlernen allgemeiner Regeln. Die funktionale Ausrichtung
auf die Ubertragbarkeit von an konkreten Beispielen gewonnen Einsichten auf isomorphe
Problemstellungen bildet aber eine wichtige theoretische Grundlage fiir spatere (beispielgebundene)
Beweiskonzepte.

Von zentraler Bedeutung bei diesem Konzept paradigmatischer Beispiele erscheinen dabei die
folgenden Aspekte:

(F1) Lernende sollen an konkreten Beispielen Einsichten in Zusammenhange gewinnen, die sich
auf andere (isomorphe) Sachverhalte Gbertragen lassen und somit tGber den konkreten Fall
hinausweisen.

(F2) Bei der Betrachtung konkreter Beispiele geht es daher nicht nur um das bloRe Finden einer
Losung, sondern Gbergeordnet um das Ausmachen beispiellibergreifender Aspekte.

Freudenthal (ebd., S. 200 und 204ff.) wirft dabei die folgende Frage auf:

(F3)  Wie findet man ,gute’ paradigmatische Beispiele?
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(Freudenthal weist darauf hin, dass paradigmatische Beispiele nicht zu leicht oder zu stark
vorstrukturiert sein dirfen, damit Lernende das ,Paradigmatische’ an ihnen erkennen
kénnen. Damit antizipiert er bereits die Anforderungen, die von verschiedenen Autoren an
,generische’ Beispiele gestellt werden (s. Abschnitt 2.1.3).)

Im Kontext der paradigmatischen Beispiele geht Freudenthal (1978) nicht explizit auf die
Lehrerausbildung ein.

4.2.3 Der pramathematische Beweis bzw. der action proof bei Zbigniew Semadeni
Semadeni beschreibt 1976 das Konzept der Pramathematik fir den Mathematikunterricht der
Grundschule als einen didaktischen Gegenentwurf zu der abstrakten formalen Mathematik. Im Sinne
Piagets sollen, entsprechend der Entwicklungsstufe der konkreten Operationen, physische
Handlungen mit konkreten Materialien einen bedeutungsstiftenden semantischen Zugang zu
mathematischen Konzepten ermdglichen. Die diesen Lernkontexten entsprechende Beweisform
bezeichnet Semadeni zunachst als ,, pramathematischen Beweis” (Semadeni 1976, S. 16), spater auch
als ,,action proof” (1981 und 1984). Diese Beweisform beschreibt Semadeni anhand eines Satzes S
wie folgt (Semadeni 1984, S. 32, S. 16):

1) Choose a special case of S. The case should be generic (that is without special features), not too complicated,
and not too simple [...]. Choose an enactive and/or iconic representation of this case or a paradigmatic example
(in the sense of Freudenthal [1980]%). Perform certain concrete, physical actions (manipulating objects, drawing
pictures, moving body etc.) so as to verify the statement in the given case.

2) Choose other examples, keeping the general schema permanent but varying the constants involved. In each
case verify the statement, trying to use the same method as in 1).

3) When you no longer need physical actions, continue performing them mentally until you are convinced that
you know how to do the same for many other examples.

Als Beispiel flihrt Semadeni den folgenden Beweis fiir die Kommutativitdat der Multiplikation in den
natlirlichen Zahlen an (vgl. Abbildung 15):

We first choose a pair of numbers, e.g. 3 and 5. We are to show that 3 x 5 = 5 x 3. As the concretization of n x m
we choose n rows with m counters in each. Thus, we begin the action by arranging the counters as in Figure 1a.
We separate them horizontally (Figure 1b) and infer that the number of counters is 3 x 5. Then we separate them
vertically (Figure 1c) and get 5 x 3. The number of counters in Figure 1a must be independent of the way of
counting. Hence 3 x5 =5 x 3. (Semadeni 1984, S. 33)

OO0O0O0O0 OO0O00O0 O|0|0|0|0O
OO0O0O0O0 OO00O0O0 O|0|0 |00
O000O0 0O000O0 OlO|O|0|O |Abbildung 15: Darstellung eines Rechtecks fiir einen
,action proof” der Kommutativitat der Multiplikation
Figure 1a Figure 1b Figure 1c (Abbildung dhnlich zu Semadeni 1984, S. 33)

Dabei wird hervorgehoben, dass sich die verwendeten logischen Argumente auf die konkreten
Objekte beziehen sollen und nicht losgeldst von semantischen Beziehungen rein formal erfolgen
dirfen. Grundlegend fiir den Vollzug dieser Beweise ist dabei der folgende Dreischritt: (i) Ausfliihrung

*? Freudenthal (1980) ist die englische Ausgabe von Freudenthal (1978).
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von (physischen) Handlungen, (ii) Verinnerlichung der Handlung und (iii) deren Verallgemeinerung.
Die Korrektheit und Giltigkeit der Beweise soll durch die Anforderungen an die physischen und
mentalen Handlungen (s.o0.) sichergestellt werden.

Zusammenfassend konnen fiir die vorliegende Arbeit folgende markante Aspekte des
Beweiskonzepts von Semadeni herausgehoben werden:

(S1) Lernende sollen zunachst konkrete Beispiele betrachten, die ikonisch oder enaktiv dargestellt
werden. Diese Beispiele sollen dabei als paradigmatische Beispiele im Sinne Freudenthals
(Abschnitt 4.2.2) fungieren. Anhand dieser ,generischen” (,,generic”, s.0.) Beispiele soll die
gegebene Behauptung zunachst im konkreten Fall verifiziert werden.

(S2) Die bei den konkreten Beispielen verwendete Methode zur Verifikation soll darauf
unverandert auf weitere konkrete Falle (ibertragen werden.

(S3) Nach der Ubertragung dieser Strategie auf weitere Fille und einem dadurch erhaltenen
Verstandnis fiir dessen Durchfiihrung sollen die Lernenden diese Strategie in Gedanken
ausfithren, um sich von ihrer Ubertragbarkeit auf entsprechende Félle zu iiberzeugen.

Neben dem Unterricht an der Grundschule thematisiert Semadeni auch die Lehrerausbildung an der
Universitdt. Nach Semadeni (1981, S. 2) wird u.a. durch die folgenden Aspekte die Einbindung
entsprechender Beweisformen in die Lehramtsausbildung legitimiert:

(54) Der ausschlieliche Umgang mit formalen Beweisen in der Lehramtsausbildung muss als
problematisch angesehen werden: Selbst wenn Studierende diese verstiinden, erschiene
ihnen die Mathematik als etwas Aufgedrangtes und nicht als etwas aktiv Gelerntes.

(S5) Formale Beweise wiirden den Lehramtsstudierenden einen falschen Eindruck vermitteln, wie
man Kindern die Mathematik unterrichten sollte.

(S6) Der Einbezug von pramathematischen Beweisen ermdglicht erst die Diskussion um die
Aspekte von Anschaulichkeit und Strenge.

SchlieBlich wird auch auf verschiedene didaktische bzw. konzeptuelle Probleme dieser Beweisformen
hingewiesen:

(§7)  Wie kann sichergestellt werden, dass Lernende durch entsprechende Betrachtungen
wirklich eine Einsicht in die Allgemeingultigkeit des Beweises und des Satzes erlangen? Dazu
bemerkt Semadeni: ,Without dismissing this criticism we note that it applies to any proofin a
textbook: if the author finds his proof correct and complete, this does not automatically
imply that students understand it” (Semadeni 1984, S. 34).

(S8) Lernende konnen nur begrenzt die Korrektheit entsprechender Beweise beurteilen, , it
requires a competent mathematician to judge whether a given action proof is acceptable”
(ebd., S. 33).

(S9) Semadeni formuliert die Aufgabe an die Mathematikdidaktik, geeignete Unterrichtsszenarien
fiir den Mathematikunterricht zu entwickeln, in denen entsprechende Beweisformen und die
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mit ihnen verbundenen Aktivitaten sinnstiftend integriert werden kdnnen (Semadeni 1981, S.
12).

(510) Eine offene, noch empirisch zu erforschende Frage ist dabei, welche Rolle entsprechenden
Beweisen im Unterricht wirklich zukommt (Semadeni 1984, S. 34f.).

4.2.4 Pramathematische Beweise bei Arnold Kirsch

Fir die mathematikdidaktische Arbeit von Kirsch ist die Grundposition des Zuganglichmachens von
mathematischen Inhalten und Verfahren fir den Schulunterricht auf ,intellektuell ehrliche” Weise
zentral (Kirsch 1976 und 1977, in Anlehnung an Bruner 1973, S. 26f.). Eine ebensolche Moglichkeit,
Beweise bereits im Schulunterricht zu thematisieren sieht Kirsch in den pramathematischen
Beweisen Semadenis, welche er wie folgt beschreibt:

Sie bestehen ,,grob gesagt aus gewissen konkreten Handlungen (Operationen im Sinne von J. Piaget [...]). Diese
Handlungen werden zuerst wirklich ausgefiihrt, dann nur vorgestellt (verinnerlicht). Sie missen korrekten

mathematischen Argumenten entsprechen, die in ihrer psychologisch natirlichen Ordnung aufeinander folgen

[...]. Die Argumente sollen weiter direkt verallgemeinerbar sein [...]. (Kirsch 1979, S. 261; Hervorhebungen im
Original)

Als ein Beispiel Kirsch‘scher pramathematischer Beweise wird der Beweis zu dem folgenden Satz
wiedergegeben: Der Umfang u eines (konvexen) Vierecks ist groRer als die Summe s der beiden
Diagonalenldangen.

Zum Beweis realisieren wir das Viereck mittels vier Nageln. Nun spannen wir langs jeder Diagonalen einen
Gummiring [...] so daR das ,Diagonalenkreuz” doppelt durch Gummifaden bedeckt ist. Sodann dehnen wir beide
Bander so, dal} sie auRen um alle vier Nagel herumlaufen [...]. Danach ist der Rand des Vierecks doppelt bedeckt.
Beim zweiten Schritt muBten wir die Bander dehnen (viermalige Anwendung der Dreiecksungleichung!); also ist
der Rand ldanger als das Diagonalenkreuz; es gilt: u > s. (Kirsch 1979, S. 269f.; Hervorhebungen im Original)

Auch Kirsch betont die Bedeutung konkreter Handlungen und ihre anschlieBende Verinnerlichung,
wie bereits Semadeni vor ihm (Abschnitt 4.2.3). Zentral ist hierbei die Forderung, dass alle
Operationen korrekten mathematischen Argumenten entsprechen sollen. Kirsch ist darum bemiht,
diese Beweise als eine intellektuell-ehrliche Ubertragung der mathematischen Beweisaktivitat fir
Lernende zu legitimieren: ,Pramathematische Beweise sind Beweise, aber in besonderer Art
dargestellt” (Kirsch 1979, S. 262; Hervorhebung im Original). In diesem Sinne sind auch die obigen
fachmathematischen Einschiibe in dem Zitat zu verstehen: Durch diese wird deutlich, dass sich der
Beweis in einem fachmathematischen Sinn exaktifizieren lieRe.

Kirsch (1979) geht in seinen Ausfiihrungen zu pramathematischen Beweisen nicht auf Aktivitaten ein,
die Lernende im Rahmen eines Erkenntnisprozesses vollziehen sollen. Im Zentrum seiner
Ausfiihrungen steht die Illustration des Beweiskonzeptes anhand vielfaltiger Beispiele. Mit explizitem
Bezug auf Semadeni fordert der Autor den Einbezug entsprechender Beweisformen in die
Lehramtsausbildung, formuliert dieses Anliegen jedoch nicht nur fiir die Grundschullehrerausbildung.
Kirsch nennt dafur die folgenden Grinde (ebd., S. 273):

(K1)  Lehramtsstudierende missen in die Lage versetzt werden, entsprechende Schiilerprodukte
zum Beweisen richtig einschdtzen zu kénnen

(K2) Durch pramathematische Beweise wiirde vielen Studierenden erst ,,,,echte” Mathematik [...]
zuganglich” (ebd., S. 273).
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In diesem Kontext wird auch auf die folgenden Probleme hingewiesen:

(K3) Es besteht die Gefahr, dass Studierende entsprechende Beweise als blofle empirische
Verifikationen missverstehen kénnten.

(K4)  Pramathematische Beweise sind nicht per se fiir den Mathematikunterricht geeignet. Es ist
daher eine Aufgabe der Mathematikdidaktik, entsprechende geeignete Beweise fiir den
Unterricht bereitzustellen.

4.2.5 Inhaltlich-anschauliche Beweise nach Erich Wittmann und Gerhard Miiller

In expliziter Anlehnung an die intuitive Beweisstufe bei Branford (Abschnitt 4.2.1) entwickeln
Wittmann und Miiller (1988) das Konzept der inhaltlich-anschaulichen Beweise (ebd., S. 248ff.). Diese
Beweise gelten als ,,anschaulich”, da bei der Beweisfiihrung auf eine formal-symbolische Darstellung
verzichtet wird; haufig wird dabei von geometrischen Visualisierungen Gebrauch gemacht. Innerhalb
der Begriindungen dirfen intuitiv einsichtige Sachverhalte als Argumente verwendete werden, die
nicht notwendigerweise vorher bewiesen worden sein missen. Somit wird gleichsam ,inhaltlich’ auf
einer semantischen Ebene argumentiert. Diese Beweisform ist im Kontext des in Abschnitt 1.2.3
dargestellten ,elementarmathematischen Forschungsprogramms’ zu sehen, in welchem Wittmann
und Miller (1988) einen Neuaufbau der Lehramtsausbildung fordern und Desiderate dafir
formulieren (Wittmann 1989, S. 298ff.; Wittmann & Miiller 1988, S. 254).

Wittmann und Miller fihren als Beispiel (und gleichsam als ,Existenzbeweis’ solcher inhaltlich-
anschaulicher Beweisproduktionen von Lernenden) die Lésung eines Schilers aus einem dritten
Schuljahr fir die folgende Aufgabe an: ,Finde Zahlen, die den Rest 1 ergeben, wenn man sie durch 2
teilt, und den Rest 2, wenn man sie durch 3 teilt” (ebd., S. 241). Der Schiiler gibt die folgende
Antwort:

Wenn ich nur auf den Rest 1 achte, muR ich immer 2 weitergehen und treffe dann nur ungerade Zahlen. Wenn ich
nur auf den Dreierrest achte, mufl ich immer 3 weitergehen. Zusammentreffen kann ich nur nach 3
Zweierspriingen und nach 2 Dreierspriingen. (Wittmann & Muller 1988, S. 241)

Die Autoren weisen schlielllich auf die Vollglltigkeit entsprechender Beweise hin, indem sie die
Ubertragbarkeit der an konkreten Fillen vollzogenen Begriindung herausstellen: , Inhaltlich-
anschauliche, operative Beweise stiitzen sich [...] auf Konstruktionen und Operationen, von denen
erkennbar ist, dal} sie sich auf eine ganze Klasse von Beispielen anwenden lassen und bestimmte
Folgerungen nach sich ziehen” (ebd., S. 247).

Im Sinne ihres elementarmathematischen Forschungsprogramms fordern die Autoren die Einbindung
inhaltlich-anschaulicher Beweise in die Lehramtsausbildung. Sie verbinden damit die folgenden Ziele
(s. hierzu das angefiihrte Zitat aus Wittmann und Miiller (1988) in Abschnitt 1.2.3):

(MW1) Lehramtsstudierenden wird durch den Einbezug entsprechender Beweise ermdglicht, ein
produktives Verhaltnis zur Schulmathematik aufzubauen.

(MW?2) Lehramtsstudierenden kann durch entsprechende Beweise eine vertiefte Einsicht in
mathematische Zusammenhange ermdoglicht werden.
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(MW?2) Lehramtsstudierende missen entsprechende Beweisformen kennen, damit sie die
mathematische Beweisaktivitdit in den schulischen Mathematikunterricht {bertragen
kénnen.

(MW3) Im Kontext entsprechender Beweisformen Uben sich die Lehramtsstudierenden in der
Verwendung anschaulicher Darstellungsmittel und somit in der Kommunikation von
mathematischen Sachverhalten in einer den Schilerinnen und Schiilern angemessenen
Sprache.

Auf bestimmte Aktivitaten der Lernenden oder auf mogliche Probleme im Umgang mit inhaltlich-
anschaulichen Beweisen gehen die Autoren nicht explizit ein.

4.2.6 Praformale Beweise bei Arnold Kirsch und Werner Blum

Blum und Kirsch problematisieren 1989 (bzw. 1991) ein zu einfaches Konzept von inhaltlich-
anschaulichen Beweisen und fordern die prinzipielle Formalisierbarkeit der Beweisschritte als ein
notwendiges Giltekriterium. Hieraus resultiert der Ausdruck prdformaler Beweis, welchen die
Autoren wie folgt definieren:

a chain of correct but not formally represented conclusions which refer to valid, non-formal premises. Particular
examples of such premises include concretely given real objects, geometric-intuitive facts, reality-oriented basic

”ou

ideas, or intuitively evident, “commonly intelligible”, “psychologically obvious” statements [...]. The conclusions
should succeed one another in their “psychologically natural” order. (Blum & Kirsch 1991, S. 187; Hervorhebungen
im Original)

Als ein Beispiel fir die Verwendung geometrischer, intuitiv einsichtiger Sachverhalte fir die
Konstruktion eines praformalen Beweises wird der folgende Beweis fiir die Monotonie der
Integralfunktion bei nicht-negativen Integranden aus Kirsch und Blum (1991) zitiert: ,If definite
integrals are interpreted as areas, then the monotonicity of the integral function of a non-negative
integrand can — as is well-known — be proved by immediately obvious geometric arguments [...]: For

functions f > 0Owe have: (a <)x <y = f;f < f;f”(ebd., S. 188; vgl. Abbildung 16).

Abbildung 16: Graphik zu einem praformalen
Beweis der Monotonie des Integrals bei nicht-
negativen Integranden (Abbildung dhnlich zu Kirsch
a M y und Blum 1991, S. 188)

Die Autoren nehmen somit eine konzeptuelle Weiterentwicklung inhaltlich-anschaulicher Beweise
vor, um diese Beweisformen fachmathematisch abzusichern und gleichsam zu legitimieren. In diesem
Zusammenhang werden allerdings zwei gewichtige Fragen aufgeworfen (Blum & Kirsch 1989, S. 207>
und 1991, S. 199): Inwiefern kdnnen Lernende die Stichhaltigkeit von selbst gefundenen oder
vorgelegten praformalen Beweisen beurteilen? Und wie kénnen Lernende in die Lage versetzt
werden, entsprechende Beweise selbst zu finden?

> In der deutschen Version ihres Artikel (Blum & Kirsch 1989) verwenden die Autoren die Bezeichnung
»praformaler Beweis” als Obergriff fiir die Beweiskonzepte ,Handlungsbezogener Beweis” (,,action proof”) und
»inhaltlich-anschaulicher Beweis” (ebd., S. 203).
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Durch die Eroérterung der ersten Frage machen die Autoren ein didaktisches Problem entsprechender
Beweisformen deutlich, welches hier herausgehoben werden soll:

(KB1) Die Korrektheit mathematischer Schliisse und Argumente kann nur von jemandem beurteilt
werden, ,der Uber ,hohere” Kenntnisse verfligt; diese haben Lernende aber gerade nicht”
(Blum & Kirsch 1989, S. 208). Somit ergibt sich hier eine Grundproblematik, die ,den
didaktischen Stellenwert von nicht-formalen Beweisen notwendig relativiert” (ebd., S. 208),
was nach den Autoren von vielen Beflirwortern entsprechender Beweise nicht gesehen wird.

Um Lernende in die Lage zu versetzen, selbst praformale Beweise finden zu kénnen, fiihren die
Autoren die folgenden Vorschlage an, welche im Folgenden paraphrasierend zusammengefasst
werden (nach ebd., S. 208):

(KB2) im unterrichtlichen Geschehen sollen inhaltliche Grundideen unter Verwendung vielfaltiger
Darstellungsweisen betont und anschauliche Grundvorstellungen vermittelt werden

(KB3) entsprechende Beweise missen in das Unterrichtsgeschehen integriert werden
(KB4) anschauliche Argumente sollen im Unterricht formalisiert werden
(KB5) es sollen auch exemplarische formale Beweise gefiihrt werden

(KB6) die Lernenden sollen lber das Beweisen und Uber das unterrichtliche Geschehen im
Allgemeinen reflektieren

In Bezug auf die gesamte Lehramtsausbildung betonen die Autoren schlieBlich (Kirsch & Blum 1989,
S. 209):

(KB7) Lehramtsstudierende miissen selbst Beweise auf verschiedenen Ebenen kennenlernen und
lernen, entsprechende Beweise selbst zu fiihren und dariber zu reflektieren, damit ein
entsprechender schulischer Mathematikunterricht verwirklicht werden kann.

4.3 Zusammenfassung der in der  historischen Betrachtung
herausgearbeiteten Aspekte zum Umgang mit didaktisch orientierten

Beweiskonzepten

Im Folgenden werden die im Kontext der historischen Betrachtungen herausgearbeiteten
Empfehlungen und Vorbehalte fiir den Umgang mit den didaktisch orientierten Beweiskonzepten
zusammenfassend dargestellt. Hierbei geht es um die drei Themenbereiche: ,Empfohlene Aktivitaten
fir Lernende und Implikationen fiir den Unterricht” (4.3.1), ,Argumente fiir die Einbindung
didaktisch orientierter Beweiskonzepte in die Lehrerausbildung” (4.3.2) und , Probleme und offene
Fragen bzgl. der didaktisch orientierten Beweiskonzepte” (4.3.3). Hinzugenommen werden dabei die
im Rahmen des zweiten Kapitels erérterten Aspekte zu operativen und generischen Beweisen. Hinter
den in den einzelnen Abschnitten aufgefiihrten Aspekten wird angegeben, aus welchen Kontexten
die jeweiligen Nennungen resultieren*. Eine Referenz auf einen der oben thematisierten Autoren

# (B#) steht dabei fiir die Aspekte, die bei der Thematisierung der Ausfiihrungen von Branford

herausgearbeitet wurden (Abschnitt 4.2.1), (F#) entstammt den Darstellungen zu Freudenthal (Abschnitt 4.2.2),

(S#) referenziert auf Semadeni (Abschnitt 4.2.3), (K#) auf Kirsch (Abschnitt 4.2.4), (WM#) auf Wittmann und

Muller (Abschnitt 4.2.5) und (KB#) auf Kirsch und Blum (Abschnitt 4.2.6). Mit Referenz auf das zweite Kapitel
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bedeutet dabei nicht, dass eine entsprechende Nennung in dessen Konzeption von Beweisen keine
Rolle spielen wiirde. Um sich bei der Beantwortung der eingangs formulierten Forschungsfragen aber
nur an den ,harten’ Fakten der Primarliteratur zu orientieren, wird nur auf die Autoren Bezug
genommen, bei denen die jeweiligen Aspekte explizit thematisiert werden.

4.3.1 Empfohlene Aktivititen fiir Lernende und Implikationen fiir den Unterricht
Die Leitfrage zur Auswertung [1] wurde oben wie folgt formuliert:

Welche Aktivititen fiihren die Urheber der didaktisch orientierten Beweiskonzepte auf, um
Lernende im ,Beweisen’ sinnstiftend zu unterrichten, und welche Implikationen fiir das
unterrichtliche Geschehen werden in diesem Kontext herausgestellt?

Diese Frage wird im Folgenden auf Grundlage der in Abschnitt 4.3.2 erfolgten Arbeit an der
Primarliteratur beantwortet. Insgesamt konnten bei der Betrachtung der historischen Genese der
didaktisch orientierten Beweiskonzepte die folgenden Empfehlungen fiir die Vermittlung der
Beweisaktivitdt im Mathematikunterricht herausgearbeitet werden:

(1) Der Beweisprozess sollte mit einer Explorationsphase des Sachverhalts beginnen, in deren
Rahmen sich die Lernenden mit dem Wissensmaterial vertraut machen und selbst eine bzw.
die zu beweisende Vermutung ausmachen kdnnen. Diese Vermutung kann dann durch
weitere konkrete Beispielbetrachtungen Gberprift werden. [(B1)]

(2) Bei der Formulierung der Vermutung (bzw. der zu beweisenden Behauptung) ist darauf zu
achten, dass ihr Allgemeingultigkeitscharakter herausgestellt wird, wodurch gleichsam auf
die Unzulanglichkeit empirischer Verifikationen hingewiesen werden kann. [(B2)]

(3) Fur die Konstruktion von schilleraddquaten Beweisen erscheint die Argumentation an
konkreten (generischen bzw. paradigmatischen) Beispielen angemessen. Hierzu gehoren
insbesondere die folgenden Aspekte.

l. Anhand konkreter Beispiele soll die gegebene Behauptung verifiziert und dabei eine
beispielibergreifende Methode bzw. Strategie ausgemacht werden. [(B4), (F1), (F2),
(S1)]

1. Diese ausgemachte Strategie soll dann auf weitere konkrete Beispiele unverandert
Ubertragen und schlieRlich derart verinnerlicht bzw. mental vollzogen werden, dass
sich die Lernenden (ber die beispieliibergreifende Tragweite dieser Methode
bewusst werden. [(B4), (52), (S3)]

M. Der gefundene allgemeingliltige Beweis soll dann von den Lernenden in eigenen
Worten formuliert werden. [(B5)]

V. Das Zulassen von Argumenten, die von den Lernenden als intuitiv richtig akzeptiert
werden und dabei nicht notwendigerweise vorher bewiesen worden sein mussen
[(B3)]

(4) Der formale Beweis soll nach Moglichkeit erst dann formuliert werden, wenn die Lernenden
eine Einsicht in die Allgemeingiiltigkeit der Rechnung erlangt haben, da sich das Resultat als
unabhangig von der Verwendung von konkreten Zahlenwerten erweist. [(B6)]

(5) Bei der Formulierung des formalen Beweises soll die Abhangigkeit der verwendeten
Argumente zu vorherigen Beweisen betont werden. [(B7)]

bezieht sich (G#) auf den Abschnitt zu generischen Beweisen und (O#) auf den Abschnitt zu operativen
Beweisen (Abschnitt 2.1.3).
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(6)

Am Ende des Prozesses sollen die Lernenden das Bewiesene in ihrer eigenen Sprache
formulieren. [(B8)]

Damit Lernende dazu befahigt werden, entsprechende Beweise selbst zu fiihren, sind folgende

Aspekte zu beachten:

(7)

(8)
(9)

Im Unterricht sollen verschiedene Darstellungsweisen verwendet werden, um inhaltliche
Grundideen herauszustellen und anschauliche Grundvorstellungen zu vermitteln. [(KB2)]
Entsprechende Beweise missen in das Unterrichtsgeschehen einbezogen werden. [(KB3)]
Anschauliche Argumente sollen formalisiert werden. [(KB4)]

(10)Im Unterricht sollen auch formale Beweise gefiihrt werden. [(KB5)]

(11)Im Unterricht soll Uber das Beweisen (in seinen verschiedenen Auspragungen) reflektiert

werden. [(KB6)]

4.3.2 Argumente fiir die Einbindung didaktisch orientierter Beweiskonzepte in die
Lehrerausbildung
Die in diesem Abschnitt thematisierte Leitfrage zur Auswertung [2] lautet:

Welche Argumente werden durch die Urheber der didaktisch orientierten Beweiskonzepte
angefiihrt, entsprechende Beweisformen in die Lehramtsausbildung zu integrieren?

Bei den in Abschnitt 4.3.1 thematisierten Autoren wurden insgesamt die folgenden Argumente fir

die Einbindung didaktisch orientierter Beweiskonzepte in die Lehrerausbildung angefiihrt:

(1)

(2)

(3)

(4)

(5)

(6)

Lehramtsstudierende miissen lernen, entsprechende Beweisproduktionen von Lernenden
richtig einschatzen zu kénnen. [(K1)]

Lehramtsstudierende miissen entsprechende Beweisformen kennen, um die mathematische
Beweisaktivitdit und damit einhergehende Aktivititen in die schulmathematischen
Rahmenbedingungen lGbertragen zu kénnen. [(MW?2), (KB7)]

Lehramtsstudierenden wird durch den Einbezug entsprechender Beweisformen ein Einblick
in die echte Mathematik bzw. eine vertiefte Einsicht in mathematische Zusammenhange
ermoglicht, wodurch sie insbesondere ein produktives Verhaltnis zur Schulmathematik
aufbauen kénnen. [(K2), (MW1), (MW2)]

Lehramtsstudierende (ben bei der Konstruktion entsprechender Beweisformen die
Verwendung anschaulicher Darstellungsmittel und somit die Kommunikation von
mathematischen Sachverhalten in einer den Schiilerinnen und Schiilern angemessenen
Sprache. [(MW3)]

Der Einbezug von pramathematischen Beweisen ermoglicht erst die Diskussion um die
Aspekte von Anschaulichkeit und Strenge. [(S6)]

Der ausschlieBliche Umgang mit formalen Beweisen muss aus verschiedenen Griinden als
problematisch angesehen werden:

I Viele Studierende haben Probleme, formale Beweise zu verstehen, und sie erleben
durch diese die Mathematik als etwas Aufgedrangtes und nicht als etwas aktiv
Gelerntes. [(S4)]

Il. Formale Beweise konnen bei Lehramtsstudierenden einen falschen Eindruck
erwecken, wie man Mathematik unterrichten sollte. [(S5)]
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4.3.3 Probleme und offene Fragen bzgl. der didaktisch orientierten Beweiskonzepte
Um mogliche Probleme und offene Fragen im Umgang mit den didaktisch orientierten
Beweiskonzepten zu identifizieren, wurde eingangs die Leitfrage zur Auswertung [3] formuliert:

Welche offenen Fragen bzw. Probleme werden bei den Autoren fiir den Umgang mit
entsprechenden Beweisformen thematisiert?

Insgesamt kdnnen aus der in diesem Kapitel und der in Abschnitt 2.1.3 thematisierten Literatur die
folgenden Problembereiche im Umgang mit didaktisch orientierten Beweiskonzepten
zusammengetragen werden:

(1) Zunéchst stellt sich die Frage, was lGberhaupt ein gutes generisches Beispiel ausmacht? [(F1)]

(2) Es ist eine offene (auch konzeptionelle) Frage, woher der Betrachter von Beweisen, die
anhand konkreter Beispiele gefiihrt werden, wissen soll, fiir welchen (generischen) Aspekt
die angegebenen Beispiele exemplarisch stehen? [(G1)]

(3) Auch ist es unklar, wie sichergestellt werden kann, dass Lernende bei der Betrachtung
entsprechender Beweisformen eine wirkliche Einsicht in die Allgemeingiltigkeit der
Verifikation erlangen. [(S7)]

(4) Es besteht die Gefahr, dass Lernende entsprechende Beweise als empirische Verifikationen
fehlinterpretieren konnen. [(G2), (K3)]

(5) Lernende koénnen selbst nur begrenzt liber die Korrektheit entsprechender Beweisformen
urteilen, da hierflr teilweise hohere mathematische Kenntnisse notwendig sind. [(KB1), (S8)]

(6) Es gilt, einen gewissen Bestand an entsprechenden geeigneten Beweisen fiir den Unterricht
aufzubauen und Lehrkraften zur Verfligung zu stellen. [(K4)]

(7) Es missen geeignete Unterrichtsszenarien entwickelte werden, in denen entsprechende
Beweisformen sinnstiftend integriert werden konnen. [(S9)]

(8) SchlieRlich wird es als offene Forschungsfrage betrachtet, welche Rolle entsprechenden
Beweisformen im unterrichtlichen Kontext tatsachlich zukommt. [(S10)]
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5. Die verschiedenen Durchfiihrungen der Lehrveranstaltung
»Einfithrung in die Kultur der Mathematik” und die erfolgten Studien

In dem flinften Kapitel werden die verschiedenen Durchfiihrungen der Lehrveranstaltung
,Einflihrung in die Kultur der Mathematik” und die im Kontext dieser Durchfiihrungen erfolgten
Studien beschrieben. Die verschiedenen Durchflihrungen der Lehrveranstaltung, in Verbindung mit
den verschiedenen Untersuchungen bilden die verschiedenen Zyklen des globalen Design-Based-
Research-Projektes. Die hier betrachteten Durchgédnge der Lehrveranstaltung sind die Zyklen eins bis
drei in den Wintersemestern 2011/12 bis 2013/14. Die Version der Lehrveranstaltung, wie sie nach
drei Forschungszyklen durchgefiihrt wurde, wird im Anschluss in Kapitel 6 dargestellt. Die Forschung,
die im Kontext dieser vierten Durchfihrung der Lehrveranstaltung im Wintersemester 2014/15 als
Effektivitatsstudie durchgefiihrt wurde, ist Gegenstand des siebten Kapitels.

Zunachst werden im Folgenden die Entstehung der Lehrveranstaltung, ihre Einbettung in den
Studienverlauf und die entsprechenden Rahmenbedingungen dargelegt, die zu der Konstruktion der
Lehrveranstaltung fihrten (Abschnitt 5.1). AnschlieBend werden in chronologischer Reihenfolge die
verschiedenen Durchfiihrungen der Lehrveranstaltung (WS 2011/12, WS 2012/13 und WS 2013/14)
und die im Kontext dieser Durchfiihrungen erfolgten Studien beschrieben (vgl. Abbildung 17). Jede
Darstellung eines Forschungszyklus (Intention, Durchflihrung und erfolgte Studien) wird mit einer
retrospektiven Analyse beendet. Im Kontext dieser retrospektiven Analyse werden die Aspekte
benannt, die wiederum zu einer Modifikation der Lehrveranstaltung gefiihrt haben.

Uberblick iiber die erfolgten Durchfiihrungen und Forschungsprojekte der
Lehrveranstaltung ,,Einfiihrung in die Kultur der Mathematik” von 2011 bis 2014

Qualitative Analyse Qualitative Analyse Pilotierung der Pilotierung der
von Hausaufgaben- von Hausaufgaben- Eingangs- Ausgangs-
bearbeitungen (1) bearbeitungen (2) befragung befragung

| Staatsarbeit Schilberg | Pilotierung einer i
Interviewstudie ;
Durchfuhrung 2011/12 Durchfuhrung 2012/ 13 m Durchfiihrung 2013/14 m

Bewolslnwertungs Analyu einer A""V“ einer
-test Klausuraufgabe (1) Klausuraufgabe (2)

Abbildung 17: Uberblick iiber die erfolgten Durchfiihrungen und Forschungsprojekte der
Lehrveranstaltung ,Einfithrung in die Kultur der Mathematik” von 2011 bis 2014
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5.1 Die Entstehung der Lehrveranstaltung, deren Einbettung in den

Studienverlauf und die Rahmenbedingungen

In der seit dem Wintersemester 2011/12 giiltigen neuen Studienordnung fir das Bachelorstudium fiir
Lehramt an Haupt-, Real- und Gesamtschulen an der Universitdt Paderborn wird eine neue
Lehrveranstaltung (Vorlesung mit Ubung; 2 + 2 Semesterwochenstunden) mit dem Titel ,Einfiihrung
in die Kultur der Mathematik” vorgesehen, welche sich an die Erstsemesterstudierenden richtet.
Konzeptionell handelt es sich hierbei um eine Briickenkursveranstaltung, die den Studierenden den
Ubergang in die Mathematik der Hochschule erleichtern soll. In der Studienordnung® steht bzgl. der
zu erwerbenden fachlichen Kompetenzen (ebd., S. 10):

Die Studierenden

e verstehen Mathematik in ihren historischen und kulturellen Bezligen,

o erlautern und reflektieren bei mathematischen Begriffsbildungen und Begriindungen an ausgewahlten
Beispielen die Rolle von Alltagssprache, anschaulichen Darstellungsformen, Fachsprache und
Formelsprache und stellen mathematische Sachverhalte in addaquater mindlicher und schriftlicher Form
dar,

e  verstehen die Idee des Beweisens, insbesondere Prinzipien mathematischen Beweisens (z.B. Beweis
durch Konstruktion, durch Widerspruch, durch vollstandige Induktion) und ordnen das mathematische
Beweisen in den Kontext anderer Begriindungsformen (z.B. in Alltag, Natur- oder Kulturwissenschaften)
ein,

e (iberprifen beim Vermuten und Beweisen mathematischer Aussagen fremde Argumente und bauen
eigene Argumentationsketten auf,

e erlautern das Prinzip des lokalen Ordnens und die Prinzipien des Aufbaus mathematischer Theorien
(Axiome, Definitionen, Satze) als Grundlagen mathematischen Tuns,

e nehmen verschiedene Sichtweisen auf mathematisches Modellieren als Prozess zwischen realer
Situation und mathematischem Modell ein,

e modellieren inner- und auRermathematische Situationen.

Als Ubergeordnete Leitidee der Lehrveranstaltung steht die Einflihrung in die Kultur der Mathematik.
Bei der Konstruktion der Lehrveranstaltung stellt sich jedoch die Frage, wie diese fachlichen und
Jkulturellen Aspekte der Mathematik fir die Adressatengruppe der Lehramtsstudierenden fir
Haupt-, Real- und Gesamtschule zu interpretieren sind. Ein Grundanliegen besteht darin, neben der
J[fertigen’ Mathematik auch der Prozesshaftigkeit der Wissenschaft gerecht zu werden. Als adaquater
Inhaltsbereich wurde die Elementarmathematik der elementaren Zahlentheorie ausgewahlt, in deren
Kontext mathematische ,Forschung’ im Kleinen betrieben werden kann (vgl. Abschnitt 1.2.3): In
exemplarischen ,Forschungsprojekten’ sollen die Studierenden Entdeckungen machen, Vermutungen
und Hypothesen formulieren, diese widerlegen bzw. beweisen. Am Ende solcher Arbeitsprozesse
steht schlieRlich ,sicheres’ Wissen in Form von Satzen (vgl. Biehler und Kempen 2014, S. 122f.). Das
Bestehen der Lehrveranstaltung (und damit des entsprechenden Moduls) wird in der Regel durch das
Bestehen einer 120-minitigen Klausur erreicht.

Die Lehrveranstaltung umfasst pro Woche eine Vorlesungssitzung (1,5 Stunden) und eine
Kleingruppenibung mit ca. 30 Personen (1,5 Stunden). Zusatzlich wird einmal pro Woche eine
Zentralibung (1,5 Stunden) angeboten, in der die wochentlichen Hausaufgaben besprochen werden.
Die Teilnahme an der Zentrallibung ist dabei freiwillig.

» http://math.uni-
paderborn.de/fileadmin/mathematik/Didaktik_der_Mathematik/Studienordnungen/BA_MathematiK_HRGe_2
0110928.pdf
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Die im Folgenden beschriebenen Veranderungen der Lehrveranstaltung wurden in gemeinsamer
Diskussion des Autors mit Rolf Biehler entwickelt und basieren auf den bis dato gemachten
Lehrerfahrungen und erhaltenen Forschungsergebnissen. Im Rahmen dieser Forschungsarbeit
wurden zu allen Vorlesungssitzungen Mitschriften angefertigt und in allen Durchgangen ausgewahlte
Hausaufgabenbearbeitungen der Studierenden eingescannt. Auf der Grundlage der Mitschriften der
Vorlesungen wurde nach jeder Durchfiihrung der Lehrveranstaltung ein Skript verfasst. Dieses Skript
diente dann, in Verbindung mit den gemachten Lehrerfahrungen und gewonnenen
Forschungserkenntnissen, als Grundlage fiir die Gestaltung der nachsten Durchfiihrung der
Veranstaltung.

5.2 Die Lehrveranstaltung im Wintersemester 2011/12 und die im Kontext
dieser Durchfithrung erfolgten Studien

In dem vorliegenden Abschnitt wird die Lehrveranstaltung ,Einflihrung in die Kultur der Mathematik”
beschrieben, wie sie im Wintersemester 2011/12 durch Rolf Biehler entwickelt und zusammen mit
zwei wissenschaftlichen Mitarbeitern zum ersten Mal durchgefiihrt wurde. Diese erste Durchflihrung
der Lehrveranstaltung stellt gleichermalRen den Ausgangspunkt der vorliegenden Forschungsarbeit
dar, an der der Autor dieser Arbeit nicht beteiligt war. Im Folgenden werden zunachst die Inhalte der
ersten beiden Kapitel der Vorlesung (,Beweisen und Entdecken in der Arithmetik” und ,Figurierte
Zahlen“)®® skizziert. Da der Fokus dieser Forschungsarbeit auf den Methoden und Inhalten dieser
beiden Kapitel liegt, werden die anderen Kapitel der Lehrveranstaltung nicht besprochen.
Betrachtungsgegenstdande sind weiter die den Studierenden gestellten Haus- und Prasenzaufgaben.
Im Anschluss an diese Darstellungen wird neben der explorativen Analyse von Beweisproduktionen
der Studierenden noch auf eine darauf aufbauende Studie zum operativen und formalen Beweis
eingegangen. Beide Studien hatten, neben der gemachten Lehrerfahrung, Auswirkungen auf die
weitere Gestaltung der Lehrveranstaltung. Der Abschnitt endet mit einer retrospektiven Analyse
dieses ersten Durchgangs der Lehrveranstaltung.

5.2.1 Die erste Durchfiihrung der Lehrveranstaltung im Wintersemester 2011/12

Fiir die Beschreibung der ersten Durchfiihrung der Lehrveranstaltung wird im Sinne der
Forschungsmethode des Design-Based Research zundchst die intentionale Dimension der
Lehrveranstaltung in Verbindung mit ihren Inhalten aufgezeigt.

5.2.1.1 Die intentionale Dimension der ersten Durchfiihrung der Lehrveranstaltung

Die intentionale Dimension der von Rolf Biehler konzipierten Lehrveranstaltung wird anhand der in
Abschnitt 1.3 herausgearbeiteten Leitprinzipien dargestellt. Fiir den Kontext dieser Arbeit sind dabei
die Inhalte der ersten beiden Kapitel der Lehrveranstaltung von Relevanz.

Durch den Einstieg in die Vorlesung mit Teilbarkeitsfragen in den natiirlichen Zahlen (s.u.) soll direkt
an schulische Vorerfahrungen angekniipft werden. Dabei wird zunachst auf die Vorgabe exakter
Definitionen und Satze verzichtet, da das angenommene Vorwissen der Lernenden aus ihrer Schulzeit
akzeptiert und produktiv genutzt werden soll. In Anlehnung an Begrindungsformen der
Schulmathematik werden operative Beweise dazu verwendet, den Studierenden schuladaquate und

’® Die Inhalte der Lehrveranstaltung waren im Wintersemester 2011/12 in die folgenden fuinf Kapitel gegliedert:
(1) ,,Beweisen und Entdecken in der Arithmetik”, (2) , Figurierte Zahlen“, (3) ,Zahlenfolgen und vollstdndige
Induktion”, (4) ,Beweistypen und logisches SchlieBen” und (5) ,Modellieren mit Zahlenfolgen®”.
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nicht-symbolisch dargestellte Begriindungsformen fiir ihre spatere Lehrpraxis zu vermitteln und sie
dann zu den formalen Beweisen der Hochschulmathematik zu fiihren. Der Inhaltsbereich der
Elementarmathematik (hier: Teilbarkeit in den natirlichen Zahlen) soll den Studierenden
mathematisches Arbeiten (,Forschen’) im Kleinen ermdglichen, wobei der Prozesscharakter der
Mathematik verdeutlicht werden soll. Der Einbezug von Punktmusterdarstellungen ist dabei zunachst
als weiteres Betadtigungsfeld des mathematischen Tuns zu verstehen. Hierzu kommt, dass diese
,inhaltlich-anschaulichen’ Darstellungen einerseits den Studierenden selbst bei ihrem Lernfortschritt
helfen, ihnen andererseits als eine schuladdquate Kommunikationsform der Mathematik
ndahergebracht werden sollen. Durch die Themenorientierung an der Teilbarkeit, das Aufgreifen und
Vermitteln von Begriindungsformen der Schulmathematik und den Einbezug von inhaltlich-
anschaulichen Darstellungsmitteln kann ein stetiger Schulbezug hergestellt werden.

Das erste Kapitel ,Beweisen und Entdecken in der Arithmetik” beginnt mit einer expliziten
problemzentrierten Erarbeitung der Thematik. Uber die Frage nach der Teilbarkeit der Summe von
drei aufeinanderfolgenden Zahlen wird der erste ,Forschungsprozess’ initiiert. Die Frage nach der
Teilbarkeit von k € N aufeinander folgenden natirlichen Zahlen durch k (iberspannt dabei das
gesamte erste Kapitel. Im Rahmen der Behandlung dieser Frage sollen den Studierenden u.a.
verschiedene Heuristiken des mathematischen Arbeitens vermittelt werden. Uber die Methode der
,Algebraisierung’ von Sachverhalten soll dann, auch lGber das Medium des operativen Beweises, die
mathematische Symbolsprache sinnstiftend eingefiihrt und vermittelt werden. Im Kontext dieser
mathematischen Tatigkeit, dem Beweisen von Behauptungen und der Formulierung von Definitionen
und Satzen, kann in besonderer Weise Meta-Wissen Uber Mathematik thematisiert und vermittelt
werden. Das Leitprinzip ,intellektueller Ehrlichkeit’ wird im ersten Kapitel besonders dadurch
bericksichtigt, dass bei dem Themengebiet der Teilbarkeit zunachst auf fachmathematische
Definitionen und Satze verzichtet wird, dabei aber zu dem exakten Teilbarkeitsbegriff der
Hochschulmathematik hingefiihrt wird. Auch soll hier betont werden, dass ,operative Beweise’ in
dieser Arbeit als intellektuell-ehrliche Ubertragung der Beweisaktivitit betrachtet werden (vgl.
Abschnitt 8.3.2), wie auch mathematische Tatigkeit im Diagrammsystem der Punktmuster. Die
innerhalb des ersten Kapitels erlernten Arbeitsweisen der Mathematik (Explorieren, Vermutungen
aufstellen, Behauptungen formulieren und beweisen) sollen im zweiten Kapitel im Kontext der
figurierten Zahlen gelibt und vertieft werden.

5.2.1.2 Kapitel 1 ,Beweisen und Entdecken in der Arithmetik“

In diesem Abschnitt wird ein Einblick darin gegeben, welche Inhalte wie in dem ersten Kapitel der
Lehrveranstaltung bei ihrer ersten Durchfliihrung vermittelt wurden und wie diese Inhalte in einen
Prozess mathematischer Wissensgewinnung eingebettet waren. Die Inhalte des ersten Kapitels der
Lehrveranstaltung im Wintersemester 2011/12 werden im Folgenden anhand von
Studierendenmitschriften ,rekonstruiert’. Die durch den Dozenten Rolf Biehler gegebenen
miindlichen Erlduterungen zu diesem Tafelanschrieb kénnen dabei nicht wiedergegeben werden. Bei
den zitierten Auszligen des Anschriebs wird deutlich werden, dass in diesen Vorlesungen bereits
mehr Aspekte, als in ,normalen’ Fachveranstaltungen Ublich, in den Tafelanschrieb ibernommen
wurden (etwa reflektierende Elemente oder Meta-Aspekte zum Vorgehen). Fir eine bessere
Lesbarkeit und Verstandlichkeit der Darstellung der Inhalte werden die Elemente des Tafelanschriebs
in einer kleineren Schriftgrofe und eingerilickt niedergeschrieben, begleitende Kommentare des
Autors sind in der ,normalen’ SchriftgrofRe gesetzt.
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Kapitel 1 ,Beweisen und Entdecken in der Arithmetik“
Die folgende Behauptung bildet den Ausgangspunkt des ersten Kapitels:

»Jemand behauptet: Die Summe von drei aufeinanderfolgenden Zahlen ist immer durch drei teilbar.”
Flr die Untersuchung einer Behauptung werden drei verschiedene Strategien unterschieden:

1. Die Uberpriifung einer Behauptung an einigen Zahlenbeispielen
2. Operative Beweise
3. Beweise mit Variablen

Diese Strategien werden anschlieRend exemplarisch vorgefiihrt:

Strategie 1: Uberpriifung der Behauptung an konkreten Zahlenbeispielen

1+2+3=6 2+3+4=9, 3+4+5=12

10+ 11+ 12 = 33, wobei 33 :3 =11,

500 + 501 + 502 = 1503, wobei 1503 : 3 = 501

Dabei wird die Entdeckung gemacht, dass in den Beispielen nach der Division durch 3 immer die
mittlere Zahl als Ergebnis herauskommt, was zu einer neuen Behauptung fiihrt:

Behauptung (*):
Die Summe von drei aufeinanderfolgenden (natirlichen) Zahlen ist immer durch drei teilbar und der Quotient ist
die mittlere Zahl.

Zur Verifikation dieser Behauptung wird die folgende mogliche Losung eines Schiilers Martin
prasentiert und im Plenum diskutiert.

1+424+3=Q2-1)+2+2+1)=24+2+2=3-2
50+51+52=(51-1)+51+(51+1)=51+51+51=3-51

Das geht genauso mit allen Zahlen.
Als Ergebnis der Diskussion wird diese Begriindung des Schiilers Martin wie folgt gewertet:

Martin stellt Operationen mit Zahlen an, die genauso mit allen anderen Zahlen machbar waren. Damit ist es etwas
anderes als die vorherigen Uberlegungen zu unserem Ausgangsproblem. Es ist ein ,operativer Beweis“ und ist als
allgemeinglltig zu bewerten. Weiter liefert er auch eine Erklarung, warum die mittlere Zahl als Quotient
auftaucht.

Im Kontrast zum Vorgehen im operativen Beweis werden anschlieRend Variablen eingefiihrt, um die
Allgemeingiiltigkeit der Umformungen auszudriicken. Auch werden die ,Leistungen’ dieses Beweises
vermerkt:

mittlere Zahl: n, Startzahl: n — 1, Summe S,
Behauptung: S,, = 3nfirallen > 2.

Beweis
Firallen >2gilt: S, =(m— 1D +n+(n+1) =3n.

Satz 1
Firallen =2giltt(n—1)+n+ (n+1) = 3n.
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Leistung des Beweises:

(1) Verifikation fur allen =2

(2) Die Umformung erklart, warum die mittlere Zahl als Quotient auftaucht.

(3) Die Benutzung von Variablen stellt sicher, dass nur Operationen verwendet werden, die fiir alle Zahlen
moglich sind.

Die Frage nach einer moglichen Verallgemeinerung der gemachten Entdeckung eréffnet den Weg fiir
das weitere Forschungsvorhaben: Wie sieht es mit der Teilbarkeit bei 4, 5, 6, ... aufeinanderfolgenden
Zahlen aus? Diese verschiedenen Falle werden nun sukzessiv untersucht:

n=4:

5+6+7+8=26 istnichtdurch 4 teilbar.

6+7+8+9 =230 istnichtdurch4 teilbar.

Vermutung: Diese Summen sind nie durch 4 teilbar.

n=>5:
3+4+5+6+7=25und25:5=5,2+3+4+5+6=20und20:5=5
Vermutung: Diese Summen sind immer durch 5 teilbar.

n=6: 4+5+6+7+8+9=35 istnichtdurch 6 teilbar

n=7 10+11+12+13+14+15+ 16 =91 istdurch 7 teilbar
n=8 10+11+12+13+14+ 15+ 16 =91 ist nicht durch 8 teilbar
n=9: 10+11+12+13+14+15+16 =91 istdurch9 teilbar
n=2: gerade + ungerade = ungerade,n+ (n+1) =2n+1

Diese Untersuchungen fiihren schlieRlich zu den folgenden Vermutungen, die anschlieBend, nach
Einflhrung einer neuen Notation, als Satz formuliert werden:

Vermutung (*¥*)

(1) Wenn k ungerade ist, dann ist die Summe von k aufeinanderfolgenden Zahlen durch k teilbar.
(2) Wenn k gerade ist, dann ist die Summe von k aufeinanderfolgenden Zahlen nicht durch k teilbar.

Snk: = Summe von k aufeinanderfolgenden Zahlen mit der Startzahl n.

Satz:
Fir alle k = 2 und jede natirliche Startzahl n gilt: S,,  ist genau dann durch k teilbar, wenn k ungerade ist.

Um die Vermutung (**) bestatigen zu konnen, wird mithilfe algebraischer Terme weitergerechnet,
um Strukturen zu erkennen:

Spp=n+m+1)=2n+1

Spz=n+Mm+1)+n+2)=3n+3=3n+1)
SM=n+(n+1)+(n+2)+(n+3)=4n+6=4(n+%)
Sps=n+m+1)+M+2)+(n+3)+(n+4)=5n+10=5(n+2)
Sne=n+@M+1)+M+2)+M+3)+ M +4)+ (n+5) =6n+15=6(n+-)
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k Teilbarkeit durch k
7: 7n + 21 +
8: 8n + 28 -
9: 9n + (28 + 8) +
10: 10n + (36 + 9) -
11: 11n+ (45 + 10) +

Man kann verallgemeinern, esgilt: S, , = k-n+ (1+2+3+ -+ (k— 1))

Die Frage nach der Teilbarkeit von S, ; durch k lenkt den Fokus auf die folgende Summe:
A+243+-+(k-1))

Somit gelangt man zu einem Teilproblem, das es zunachst zu I6sen gilt.

Typisch fir das Beweisen: Man kommt auf ein Teilproblem. Ware das gelost, kime man weiter.

Teilproblem: D,y =14+2+3+ -+ (k= 1) furk =2.
Wir suchen eine Formel fiir D;_1, um die Teilbarkeit durch k zu untersuchen.

D1 = 1 + 2 + 3 + +
+ + + + +
Dy = k—1 + k—2 + k-3 + +

Dg—y+Dy—q = k-(k—1)
2D = k-(k—1)

1
Di-y =5 k- (k= 1)

k(k—1)

Es gilt: Dy_1 = 2

Nach der Losung des Teilproblems kann nun die Ausgangsfrage weiter untersucht werden:

Zwischenstand: S, = k-n + _k(kz_l)

Wann ist diese Zahl durch k teilbar? Beweisstrategie: Man versuche k auszuklammern:

_ (k—1) . Snk _ (k—1)
Spk =k [n+—2 ], also: = Nt

(k;n ist keine nattirliche Zahl.

Fall 1: Fur gerade k ist k — 1 ungerade und

(k;l) ist keine natiirliche Zahl.

Fall 2: Fur ungerade k ist k — 1 gerade und

Fazit:

(1) Falls k ungerade = S,, , ist durch k teilbar fiir alle n € N.
(2) Falls k gerade = S,  ist nicht durch k teilbar fiir alle n € N.

In einer Aussage formuliert: S, , ist durch k teilbar fir alle n € N genau dann, wenn k ungerade ist.
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Noch anders formuliert:

(1) k ungerade = S, fir alle natiirlichen Zahlen n durch k teilbar.
(2) Sy fur alle natiirlichen Zahlen n durch k teilbar = k ungerade.

Begrindung fir (2):

Voraussetzung: S,  ist durch k teilbar firallene N= k-n + @ ist fur alle n € N durch k teilbar

= (k — 1) ist gerade = k ist ungerade

Somit ist der Satz bewiesen und der Forschungsprozess abgeschlossen. Dieser Prozess wird daraufhin
reflektiert. Weiter wird dargestellt, wie in der ,Fachliteratur’ entsprechende Ergebnisse notiert
werden.

Reflexion:

Nach Aufstellen der Behauptung wurde entdeckt und begriindet: ,Mathematik als Prozess”. Ublicherweise
werden solche Ergebnisse beim Aufschreiben des Beweises noch einmal neu geordnet. Und teilweise wird der
Entdeckungsprozess hierbei kaschiert. Das kdnnte in etwa so aussehen:

Definition:
Furallek e Nmitk >2undalleneNsei: Sypi=n+m+ 1D+ 0 +2)+ -+ 1+ (k—1)).

Satz:
Mit obiger Definition gilt: S, j ist genau dann durch k teilbar, wenn k ungerade ist.

Beweis:
Es gilt:

Hilfssatzz14+2+3+ -+ (k—1) = k(k-1)

fur alle k > 2.

FEE Sei k ungerade: Dann folgt: S, = k-n + @ = S;‘{—k = n+ % ist eine naturliche Zahl,
also ein Vielfaches von k.

L, Sei Sy, durch k teilbar, dann gilt: % = n+ % ist eine nattrliche Zahl. = k ist ungerade.

g.e.d.

SchlieRlich soll den Studierenden verdeutlich werden, dass es verschiedene Moglichkeiten gibt, eine
Behauptung zu beweisen.

Oft gibt es nicht nur einen Beweis: Wir hatten bereits die folgende Entdeckung gemacht (jeweils mit der
Startzahl 1):

1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15

RSN
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Wie entstehen daraus Aussagen Uber andere Startzahlen? Fir k = 2 haben wir:

Startzahl Summe

n=1 1 + 2 = 3
L +1 L +1 L +2

n=2 2 + 3 = 5
L +1 L +1 L +2

n=3 3 + 4 = 7
L +1 L +1 L +2
n n + n+1) = 2n+1
L +1 L +1 L +2
n+1 (n+1) + (n+2) = 2n+3

Flr die Startzahl n = 1 ist die Summe ungerade. Bei jedem Schritt zur ndchst héheren Startzahl erhéht sich die
Summe um zwei. Die Summen bleiben somit immer ungerade (und damit nicht durch k = 2 teilbar.)

Diese Betrachtung wird auf die Summen von k aufeinanderfolgenden Zahlen mit Startzahl n (S, ;)
Ubertragen.

Sei k eine beliebige natirliche Zahl. Dann gilt:

n=1 Sik = 1 + 2 + + k
L +k L +1 L +1 L +1
n=2 Sk = 2 + 3 + + (k+1)
n Spk = n + (n+1) + + (n+ (k—1))

Aus diesen Uberlegungen folgt:
Ist S;  durch k teilbar, dannistes auch S, = S + k.
Ist S; ;, nicht durch k teilbar, dann kann es S, = S;x + k auch nicht sein.
Far die Startzahl n gilt dann:
Ist Sy, durch k teilbar, dann ist es klar, dass S, ), = S1x + k- (n — 1) auch durch k teilbar ist.
Ist Sy . nicht durch k teilbar, dannist es S, = Sy + k- (n — 1) auch nicht.

Um den Satz zu beweisen, reicht es also, die Summen mit Startzahl 1 zu betrachten:

Sik=1+2+-+k= @ (das wurde bereits oben gezeigt)
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Snk _ (k+1) (k+1)
Pl n+-——= und -

ist genau dann eine nattrliche Zahl, wenn k ungerade ist.

g.e.d.

5.2.1.3 Kapitel 2 , Figurierte Zahlen”

Im Gegensatz zu der Darstellung des ersten Kapitels (s.0.) werden die Inhalte des zweiten Kapitels fir
eine bessere Nachvollziehbarkeit paraphrasierend zusammengefasst. Im Folgenden wird daher nicht
zwischen gegebenem Tafelanschrieb durch den Dozenten und begleitenden, strukturgebenden
Kommentaren des Autors unterschieden.

Kapitel 2 ,Figurierte Zahlen“
Die Dreieckszahlen

Zu Beginn des zweiten Kapitels werden die Dreieckszahlen eingefiihrt. Neben der Darstellung der

konkreten Dreieckszahlen D, D,, D3 und D, werden auch das ,allgemeine’ Punktmuster zu D;

(k e N) mit geometrischen Variablen und die explizite Formel Dk=@ zur Berechnung

angegeben (vgl. Abbildung 18). Diese Formel wird anschlieRend auch geometrisch hergeleitet.

D,=1: D,=3: D= 6: ° Allgemein: Dy: F k
° o L '
L o0 o0 e ©® - —-—-- °
)
k

Abbildung 18: Die ersten drei Dreieckszahlen (D, D, und D3) und das
,allgemeine’ Punktmuster zu D),

Nachdem zundchst das Zusammenlegen der zwei Dreieckszahlen D, betrachtet wird, wird
anschlieRend eine ,allgemeine’ Begriindung (,operativ-graphisch”) der expliziten Formel fir alle
k € N gegeben (s. Abb. 19).

Begrundung fir alle k im Punktmuster:
(operativ-graphisch)

(Y X X
0000 ) O"Wﬁ:
::gg 4+1 D4=5-4-(4+1) i 4 D" 2 D=k (k+1)
0000 bk
® D
! ° ®

4

Abbildung 19: Herleitung der Summenformel fiir Dreieckszahlen; links liber das
Zusammenlegen zweier konkreter Dreieckszahlen, rechts liber das Zusammenlegen zweier
allgemeiner Dreieckszahlen Dy, als , operativ-graphischer Beweis“.

Die Quadratzahlen

Nach der Einfilhrung der Quadratzahlen (Q, = k2, k e N) wird deren Bezug zu den Dreieckszahlen
verdeutlicht. Dies geschieht durch die Unterteilung des konkreten Punktmusters Qs in D, und
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Ds (Abb. 20). Auch dieser Zusammenhang wird durch
einen ,operativ-graphischen Beweis”  verifiziert.

Qi = Dy + Dye—4
SchlieBlich wird der Zusammenhang auch algebraisch ® oo
nachgewiesen. P D1
b bk
45 56 2’ Dy |
QS=D4+D5‘D4= 7:10‘D5= 7215 | :/_ _______ ’j‘
Fir die allgemeine Darstellung gilt:
k-(k+1) (k=1)k
Dy = - Dyq1 = - Abbildung 20: Unterteilung einer Quadratzahl in zwei
Dreieckszahlen; links: Unterteilung einer konkreten
D, +D _ k1) " (e—Dk _ k(k+D)+k(k—1) _ k((k+1)+(k-1)) _ 2k? Quadratzahl in zwei konkrete Dreieckszahlen, rechts:
k k-1 2 2 2 2 2 ,Allgemeine’ Darstellung
=k*=Q

Bei der Betrachtung der Differenzenfolge d;, == Q; — Q_1 fur k > 2 wird die Entdeckung gemacht,
dass die Differenzen in den betrachteten Fallen immer ungerade Zahlen sind:

Qs 1 4 9 16 25 36 49

dy 3 5 7 9 11 13

Diese Entdeckung wird algebraisch verifiziert:
Qu—Quor =k? —(k—1)? =k*— (k? =2k +1) =2k — 1.

Es folgt hieraus, dass die Summe der ersten k € N ungeraden Zahlen genau gleich k? ist.
Die Sechseckzahlen

Bei den Sechseckzahlen werden zunadchst konkrete Folgenwerte
(1,7,19,37,61) betrachtet. Bei der Betrachtung der Differenzen ..
(6,12,18,24,30) wird die Vermutung aufgestellt, dass diese immer ‘

o oy "o @
um 6 groBer werden. Die Glltigkeit der entsprechenden o P
Rekursionsformel Hp = Hp_;+6(k—1) wird an einem a4,
»allgemeinen Diagramm fiir einen operativen Beweis” (Abb. 21) ! R 3
nachgewiesen. ¢ 3
- \
Zum  Abschluss der Sechseckzahlen wird mithilfe der e

Rekursionsformel noch die explizite Formel fiir die Sechseckzahlen abbildung 21: Graphische

hergeleitet: Hk =3k2 -3k +1. Darstellung des Ubergangs einer
Sechseckzahl zur nachst groReren

Die Kubikzahlen

Bei der Betrachtung der Kubikzahlen (C, = k3, k e N) werden mithilfe einer Tabelle die Differenzen
Cy — Cr_q1 untersucht und die Entdeckung gemacht, dass diese ,anscheinend’ immer die
Sechseckzahlen sind. Diese Frage wird algebraisch beantwortet.

Cpo— Crq=k® — (k=13 = k3 — (k — 1) (k — 1)?
= k3 — (k— 1)(k? — 2k + 1)
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=k3—[k3—2k?2+k—k?+2k—1]
=k3—k34+2k*—k+k?*-2k+1
=3k?-3k+1

AbschlieBend wird anhand einer Grafik besprochen, wie dieses Phanomen anhand der Formel
(,3k? — 3k + 1“) geometrisch interpretiert werden kann.

5.2.1.4 Die verwendeten Ubungsaufgaben

In dem folgenden Abschnitt wird der Frage nachgegangen, inwieweit sich die Anliegen der ersten
beiden Kapitel der Lehrveranstaltung (hierzu zahlen u.a.: Exploration von Sachverhalten, Entdecken
von RegelmaRigkeiten in der Arithmetik und im Kontext der figurierten Zahlen) in den verwendeten
Ubungsaufgaben widerspiegeln?’. Dabei geht es auch um die Frage, inwieweit innerhalb der Prasenz-
und Hausaufgaben Aufgabenstellungen auftraten, in denen sich die Studierenden mit dem Konzept
des operativen Beweises vertraut machen und diese Beweisform einiiben konnten. Diese Fragen
bilden den Fokus, unter deren Perspektive die verwendeten Ubungsaufgaben im Folgenden
betrachtet werden.

Prisenzaufgaben im Wintersemester 2011/12

In den Prasenzaufgaben zu der Lehrveranstaltung wurden im Wintersemester 2011/12 ausschlieRlich
formale Beweise verlangt (Prdsenziibung 1, 2 und 5), wobei zu dem Themenbereich , Figurierte
Zahlen” keine Aufgaben gestellt wurden. Wahrend in den Prasenziibungen Nummer 3 und 4 die
vollstandige Induktion thematisiert wurde, fokussierten die Aufgaben der Prasenziibungen sechs bis
zehn Zahlenfolgen und das Modellieren mit diesen.

Im Rahmen der Thematik der Teilbarkeit wurde eine Aufgabe gestellt, die explorative Elemente
enthalt. Diese ist der Aufgabenteil (b) der ersten Aufgabe des ersten Prasenziibungszettels:

5 i . Bei Teilen von (p-1)(p+1)
Prasenziibung 1, Aufgabe 1: e S ol e
Ergebnis:
Man nehme eine natiirliche Zahl p = 2 und multipliziere den P p-1 Pt 1 D+t | 3 8 24
Vorganger (p — 1) und den Nachfolger (p + 1), so dass man ; : 3 3
eineZahl z=(p —1) - (p + 1) erhilt. 3 5 2 3 1
4 3 5 15 5
(a) Beweisen Sie formal: 2 ‘: (; i‘; 8 3 1
. . . 9
1. Wenn p eine ungerade Zahl ist, dann ist z gerade. 7 5 g 8 3 5 5
2. Wenn z gerade ist, dann ist p ungerade. ) 7 9 53 21
9 8 10 80 10
(b) Schauen Sie sich die Tabelle auf der Riickseite an. Hier i - " i —
- i ) ) 11 10 12 120 40 15 5
werden die Teilbarkeit von z durch 3, 8 und 24 iberprift. 2 T o 3
Leiten Sie aus der Tabelle weitere Aussagen (iber 13 12 14 168 56 21 7
Teilbarkeit von (p — 1) - (p + 1) durch 3, 8 und 24 14 13 15 195 65
her. Formulieren Sie zundchst Vermutungen 15 i s =4 =
: gen. 16 5 7 255 85
AnschlieBend lberprifen Sie die Vermutung an neuen 17 T3 8 588 9% 36 =
Beispielen von p bzw. z, die noch nicht in der Tabelle 18 17 19 323
enthalten sind. [..] Beweisen Sie anschlieRend ihre 19 18 20 360 120 45 15
A 20 19 21 399 133
ussagen. 21 20 2 420 55
22 21 23 483 161
23 22 24 528 176 66 22
24 23 25 575

%’ Fiir die wéchentlich stattfindenden Prasenziibungen in Kleingruppen wurden Aufgabenzettel mit
Prasenzaufgaben erstellt. Darliber hinaus mussten die Studierenden pro Woche einen Hausaufgabenzettel mit
umfangreicheren Aufgaben fur das Erhalten der ,Studienleistung’ bearbeiten.
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Abbildung 22: Tabelle bzgl. der Teilbarkeit des Produkts
(p + 1)(p — 1) durch 3, 8 und 24, wobei p € N\{1}

Als Losung der Teilaufgabe (b) kann dabei z.B. festgestellt werden, dass die folgenden Beziehungen
fur die Zahlen aus der Tabelle (p =1,2,...,24) gelten (i) pungerade=8|(p — D (p + 1), (ii)
24| (p—1D(p+1)= pungerade , (iii) pungerade und3+tp = 24| (p —1)(p +1). Es wurde
anschlieRend die Frage aufgeworfen, ob man diese Aussagen auf alle natirlichen Zahlen
verallgemeinern kann und zu Beweisversuchen motiviert.

Zu den im Wintersemester 2011/12 verwendeten Prdsenzaufgaben kann bereits hier angemerkt
werden, dass innerhalb der Aufgaben vor allem formale Beweise thematisiert wurden. Dies ist wohl
darauf zurickzufiihren, dass der operative Beweis zentraler Bestandteil der ersten
Vorlesungssitzungen gewesen und man der Ansicht war, dass dieses Konzept damit ausreichend
behandelt worden sei.

Die Hausaufgaben im Wintersemester 2011/12

Auch in den Hausaufgaben zu der Lehrveranstaltung wurden im Wintersemester 2011/12 fast
ausschlieBlich formale Beweise verlangt, wobei hier von ,symbolischen’ Beweisen gesprochen wurde.
Im Rahmen der insgesamt 12 Hausaufgabenzettel wurden nur zwei operative Beweise verlangt,
beide auf dem ersten Hausaufgabenzettel:

Hausaufgabenblatt 1, Aufgabe 2

Beweisen Sie die nachfolgenden Behauptungen jeweils operativ und symbolisch. Formulieren Sie vor dem symbolischen
Beweis zunachst die Behauptung mit Variablen.

a) Die Summe aus einer ungeraden natirlichen Zahl und ihrem Doppelten ist immer ungerade.
b) Das Quadrat einer natirlichen Zahl ist gleich dem Produkt aus dem Vorganger und Nachfolger plus eins.

Zu der Thematik ,Figurierte Zahlen’ wurde eine Aufgabe gestellt, in deren Rahmen eine Behauptung
an einem ,allgemeinen Punktmuster” (s.u.) begriindet werden sollte. In einer anderen Aufgabe
wurde die Struktur von einem Zahlenmuster thematisiert (s.u.).

Hausaufgabenblatt 2, Aufgabe 2

Es gibt verschiedene sogenannte figurierte Zahlen. Dazu gehéren neben den Dreieckszahlen D;, auch die Quadratzahlen
Qx:= k? fir ke N (siche Vorlesung). Die Dreieckszahlen lassen sich mittels dreieckiger regelméaRiger Punktmuster
veranschaulichen, die Quadratzahlen durch quadratische regelmaRige Punktmuster - dabei entspricht der Zahlenwert D,
bzw. Qy, jeweils der in der Figur dargestellten Anzahl der Punkte. Fiir Quadratzahlen gilt der folgende mathematische Satz:

(*) Wenn man die ersten n ungeraden Zahlen addiert, erhdlt man die n-te Quadratzahl @Q,,.

a) Begrinden Sie anhand der jeweiligen quadratischen Punktmuster, dass die Aussage aus (*) fur die Fillen = 1,
n = 2,n = 3undn = 4richtigist. (Hinweis: Schauen Sie sich dazu, bevor Sie Ihre Begriindung aufschreiben,
zunéachst die vier zugehdrigen Punktmuster in der obigen Reihenfolge gut an, und vergleichen Sie sie
miteinander.)

b) Begriinden Sie nun fiir den allgemeinen Fall n € N anhand einer geeigneten graphischen Skizze des zugehorigen
allgemeinen Punktmusters die Richtigkeit der Aussage (*).
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c¢) Beweisen Sie den Satz (*) formal. (Hinweis: Es sind verschiedene Beweise moglich. Sie konnen z.B. einen
,Beweistrick”, den Sie aus der Vorlesung kennen, auf diesen Fall Gibertragen.)

Hausaufgabenblatt 2, Aufgabe 3

Es seien die folgenden vier regelmaRigen Punktmuster gegeben:

Abbildung 23: Punktmusterdarstellungen
mit figurierten Zahlen

Das erste Punktmuster (ganz links) geh6re zum Falln = 1, das zweite (also der rechte Nachbar) zum Falln = 2, das dritte
zum Falln = 3 und das vierte zum Fall n = 4 (ganz rechts). Die Anzahl der Punkte des n-ten Musters bezeichnen wir mit
Sn-
a) Bestimmen Sie S3, S5, S3, S4. Geben Sie zum Falln = 5 ein Punktmuster an, das zum Konstruktionsschema der
gegebenen vier Figuren passt, und bestimmen Sie Ss.
b) Analysieren Sie das Konstruktionsprinzip im Ubergang von der n-ten zur (n + 1)-ten Figur, und geben Sie eine
Formel an, mit der man S, aus S,, errechnen kann, also eine Formel vom Typ: S,,+1 = S,, + a,,. Dabei missen
Sie einen geeigneten von n abhangigen Term fir a,, finden.
c) Zerlegen Sie die fertige Figur fiir S,, so geschickt in Teilfiguren, dass Sie daraus fiur S,, eine Formel in Abhédngigkeit
von n angeben kénnen.

Fazit bzgl. der Prasenz- und Hausaufgaben im Wintersemester 2011/12

Insgesamt betrachtet, waren alle Beweisaufgaben im Wintersemester 2011/12 sehr formal gepragt,
nur innerhalb der Hausaufgaben wurden lberhaupt operative Beweise thematisiert. Weiter wurde
von den Studierenden nur zweimal verlangt, mit Punktmustern selbststandig zu agieren: Einmal galt
es zu begrunden, dass die Summe der ersten n ungeraden Zahlen immer die n-te Quadratzahl Q,, ist.
Bei einer anderen Aufgabe sollte zu einer gegebenen Punktmusterfolge die ,allgemeine’ Figur zu
beliebigem n € N skizziert und entsprechend der expliziten Formel unterteilt werden. Explorative
Aufgabenabschnitte waren weiter nur sehr sporadisch vorhanden, und wenn, dann eher formal

gepragt

5.2.2 Die im Kontext dieser Durchfithrung erfolgten Studien
Im Kontext der ersten Durchfiihrung der Lehrveranstaltung sind zwei

Studien zum Beweisen zu nennen (vgl. Abbildung 24). Zunichst Qualitative Analyse
von Hausaufgaben-

bearbeitungen (1)

wurden im Rahmen einer Staatsarbeit Beweisproduktionen von

Studierenden in ihrer ersten abgegebenen Hausaufgabe explorativ

untersucht (Schilberg 2012). Darauf aufbauend wurden in einem

Staatsarbeit Schilberg
weiteren Projekt diese Beweisproduktionen der Studierenden :

qualitativ analysiert und kategorisiert (siehe hierzu Biehler &

Kempen 2013; Kempen 2014). Durchfiihrung 2011/12

Abbildung 24: Uberblick Giber die im
137 Wintersemester 2011/12 erfolgten
Studien



5.2.2.1 Explorative Analyse von Beweisbearbeitungen von Studierenden

Im Rahmen einer Staatsarbeit (Schilberg 2012), welche von Rolf Biehler betreut und durch den Autor
dieser Arbeit mitbetreut wurde, wurden studentische Bearbeitungen zu zwei verschiedenen
Hausaufgaben explorativ untersucht. Innerhalb dieser Aufgaben (s.u.) sollten die Studierenden
Behauptungen mithilfe von Variablen formulieren, diese widerlegen oder mithilfe eines formalen
bzw. operativen Beweises verifizieren. Die genauen Aufgabenstellungen waren hierbei:

Hausaufgabenblatt 1, Aufgaben 1 und 2%

Aufgabe 1
Formulieren Sie zunachst die nachfolgenden Behauptungen formal mit Variablen, beweisen Sie dann die
Behauptungen oder widerlegen Sie sie durch ein Gegenbeispiel!

a) Die Summe von drei aufeinanderfolgenden natirlichen Zahlen ist gerade.

b) Die Differenz einer geraden natiirlichen Zahl und ihrer Halfte ist gerade.

c) Das Produkt zweier gerader Zahlen ist das Vierfache des Produktes der Hélften der beiden
Zahlen.

Aufgabe 2

Beweisen Sie die nachfolgenden Behauptungen jeweils operativ und symbolisch. Formulieren Sie vor dem
symbolischen Beweis zunachst die Behauptung mit Variablen.

a) Die Summe aus einer ungeraden natiirlichen Zahl und ihrem Doppelten ist immer ungerade.
b) Das Quadrat einer natirlichen Zahl ist gleich dem Produkt aus dem Vorganger und Nachfolger
plus eins.

Fir die Analyse der Studierendenbearbeitungen (n=64) wurden diese eingescannt und zunachst
explorativ untersucht. Als Betrachtungsgegenstande wurden dabei die folgenden drei Aspekte
ausgewahlt: (1) der Umgang mit Variablen, (2) Argumentieren und Begriinden und (3) die
Bearbeitungen zum operativen Beweis. Schilberg (2012) arbeitet dabei die folgenden Aspekte
heraus®, die fiir die vorliegende Arbeit von Bedeutung sind:

Zu (1): Die Studierenden haben verschiedene Probleme im richtigen Umgang mit Variablen. Dies
betrifft vor allem die Definition der verwendeten Buchstabenvariablen und die
Verwendung von mehreren Buchstabenvariablen.

Zu (2): Viele Studierende geben mehr als ein Gegenbeispiel an, um eine Allaussage zu widerlegen.
Auch kommt es haufiger vor, dass Studierende nach einem erfolgten korrekten Beweis noch
weitere konkrete Beispiele fir die bewiesene Behauptung anfiihren.

Zu (3): Viele Studierende geben ausschlieRlich konkrete Beispielliberpriifungen als operative
Beweise an, wobei diese Aufgabe zudem noch haufig von den Studierenden ausgelassen
wird.

*® An dieser Stelle wird auf eine Aufgabenanalyse mit der Darstellung exemplarischer Losungswege verzichtet,
da dies fiir das Nachvollziehen der entsprechenden Forschungsergebnisse nicht notwendig erscheint. Eine
Aufgabenanalyse der Aufgabe 2 a) wird in Abschnitt 5.2.2.2 gegeben.
%% Es sei hier angemerkt, dass eine quantitative Auswertung der formulierten Problembereiche im Rahmen der
Staatsarbeit nicht erfolgt ist. Die im Folgenden angefiihrten Adjektive zur ungefdhren Quantifizierung der
Phianomene orientieren sich an den Darstellungen in Schilberg (2012).
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Diskussion der Ergebnisse und Motivation fiir eine Re-Analyse der Beweiskonstruktionen

Durch die explorative Analyse der Studierendenbearbeitungen im Rahmen der Staatsarbeit von
Schilberg (2012) konnten bereits verschiedene Probleme der Studierenden anhand von
Beweisbearbeitungen aufgezeigt werden. Diese Probleme betreffen dabei (u.a.) den Umgang mit
Variablen, die Nutzung von Beispielen und Gegenbeispielen im mathematischen Erkenntnisprozess
und die Konstruktion von operativen Beweisen. Diese Ergebnisse spiegelten dabei die von den
Lehrenden gemachten Erfahrungen aus der Lehrpraxis und damit verbundene Vermutungen bzgl. der
,Beweiskompetenzen’ der Studierenden wider. Besonders beachtenswert erschienen die Probleme
der Studierenden mit dem Konzept des operativen Beweises: Nicht nur, dass viele Studierende die
entsprechende Beweiskonstruktion gar nicht erst versuchten; nach den Angaben von Schilberg
bestanden die meisten Beweiskonstruktionen ausschlieRlich aus bloRen Beispiellberprifungen. Bei
der in Kapitel 4 vorgenommenen Literaturarbeit konnte zwar herausgearbeitet werden, dass in der
Literatur darauf hingewiesen wird, dass Lernende entsprechende Beweise als bloRe empirische
Verifikation fehlinterpretieren kénnten (Abschnitt 4.3.3), doch war die Problematik in diesem
Ausmal} fur die Lehrenden der Veranstaltung Uberraschend. Daher wurde beschlossen, die
Beweisbearbeitungen der Studierenden zum operativen und zum formalen Beweis in einer
Folgestudie tiefergehend qualitativ zu analysieren. Dieses Forschungsprojekt wird im folgenden
Abschnitt beschrieben.

5.2.2.2 Qualitative Analyse von Hausaufgabenbearbeitungen zum operativen und zum
formalen Beweis

Forschungsanliegen und Forschungsfragen

In der explorativen Analyse der Hausaufgabenbearbeitungen (Abschnitt 5.2.2.1) wurden bereits
einige Probleme der Studierenden mit dem Konzept des operativen Beweises und dem Umgang mit
Variablen bei der Formulierung von Behauptungen und bei der Konstruktion von formalen Beweisen
benannt. Die Arbeit von Schilberg (2012) bot somit erste Anhaltspunkte fiir die Untersuchung der
Beweisproduktionen der Studierenden und ihres Umgangs mit mathematischen Behauptungen und
kann somit als Startpunkt der folgenden Untersuchungen betrachtet werden. Die bei dieser
explorativen Analyse offen gebliebenen Fragen sollten durch die Beantwortung der folgenden
Leitfragen zur Auswertung beantwortet werden:

o Leitfragen zur Auswertung [1]: Welche Begriindungen flihren Erstsemesterstudierende an,
wenn sie aufgefordert werden, einen operativen Beweis zu fiihren?

o Leitfragen zur Auswertung [2]: Benutzen die Studierenden das Argument, welches sie im
operativen Beweis verwendet haben, auch in dem darauf folgenden formalen Beweis?

o Leitfragen zur Auswertung [3]: Welche Begriindungen filihren Erstsemesterstudierende an,
wenn sie aufgefordert werden, einen formalen Beweis zu fiihren?

o Leitfragen zur Auswertung [4]: Welche Probleme werden bei den Studierenden im Umgang
mit  Variablen deutlich, wenn sie eine Behauptung formulieren und diese formal beweisen?
Und in welcher Quantitat treten diese auf?
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Darstellungen des Forschungsprojekts wurden in Biehler und Kempen (2013) und Kempen (2014)
veroffentlicht.

Aufgabenanalyse und Forschungsmethode

Der Analysegegenstand dieser Untersuchung waren die 64 eingescannten studentischen
Bearbeitungen der folgenden Hausaufgabe:

Hausaufgabenblatt 1 - Aufgabe 2

Beweisen Sie die nachfolgenden Behauptungen jeweils operativ und symbolisch. Formulieren Sie vor dem
symbolischen Beweis zunachst die Behauptung mit Variablen.

a) Die Summe aus einer ungeraden nattrlichen Zahl und ihrem Doppelten ist immer ungerade.

Im Folgenden werden exemplarisch zwei Lésungsmoglichkeiten fir die Konstruktion des operativen
Beweises angegeben:

Operativer Beweis (1):

1+2-1=3-1=3, 3+2:3=3-3=09, 5+2-5=3-5=15

In den Beispielen wird deutlich, dass die Summe aus einer ungeraden Zahl und ihrem Doppelten immer gleich dem
Dreifachen der (ungeraden) Ausgangszahl ist. Da das Produkt von zwei ungeraden Zahlen immer ungerade ist, muss das
Ergebnis immer ungerade sein.

Operativer Beweis (2):

1+2-1=1+4+2=3, 3+2:3=3+6=09, 5+2-5=5+10=15

In den Beispielen wird deutlich, dass die Summe aus einer ungeraden Zahl und ihrem Doppelten immer geschrieben werden
kann als Summe aus einer ungeraden und einer geraden Zahl, weil das Doppelte einer Zahl immer gerade ist. Da die Summe
aus einer geraden und einer ungeraden Zahl immer ungerade ist, muss das Ergebnis immer ungerade sein.

Fiir die Formulierung der Behauptung mithilfe von Buchstabenvariablen ergeben sich etwa die
folgenden Moglichkeiten:

Formulierung der Behauptung (1): Sei a € N eine beliebige ungerade Zahl. Dann gilt: a + 2a ist eine ungerade Zahl.

Formulierung der Behauptung (2): Fiir alle n € N existiert einm e Nmit: 2n— 1)+ 2-(2n—1) = 2m — 1.

Wadhrend in der Formulierung (1) die Buchstabenvariable bereits als ungerade natirliche Zahl
definiert wird, wird in der Formulierung (2) deren Reprédsentation als ,(2n — 1)“ verwendet,
wodurch die Nutzung einer zweiten Buchstabenvariable nétig wird. In der ersten Formulierung, die
durchaus mit den sozio-mathematischen Normen der Veranstaltung vereinbar ist, wird die implizit
vorhandene Existenzbehauptung nicht ausgefiihrt.

Entsprechend der Formulierung der Behauptung ergeben sich verschiedene Mdglichkeiten fir die
Konstruktion des formalen Beweises:

Formaler Beweis (1), der auf der Formulierung (1) aufbaut und der Argumentation im operativen Beweis (1) entspricht:

Sei a € N eine beliebige ungerade Zahl. Dann gilt: a + 2a = 3a.
Da das Dreifache einer ungeraden Zahl immer ungerade ist, ist damit die Behauptung bewiesen.

Formaler Beweis (2), der auf der Formulierung (2) aufbaut:
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Sein € N beliebig, aber fest. Dann gilt: 2n—1) +2(2n—1)=6n-3=23n-1)—-1=2m—1,
wobeim = (3n — 1)e N. Q.e.d.

Die Kategoriensysteme

Fir die Analyse der Studierendenbearbeitungen war die Konstruktion eines neuen
Kategorienschemas erforderlich, da Bearbeitungen zu operativen Beweisen bislang in der Literatur
nicht eingehend untersucht wurden und entsprechende Kategoriensysteme hier nicht zur Verfligung
standen. Mit der Forschungsmethode der qualitativen Inhaltsanalyse wurde daher eine induktive
Kategorienbildung (Mayring 2010, S. 83ff.) vorgenommen. Auch wurden fiir die Analyse der
Bearbeitungen zum formalen Beweis entsprechende Kategorien formuliert, was einen Vergleich der
Bearbeitungen zu den beiden Beweisformen ermdglichte. Die Kategorienbildung geschah durch den
Autor und wurde in mehreren Besprechungen mit dem Betreuer der Dissertation Rolf Biehler
diskutiert. Nach der Festlegung des Kategoriensystems wurden die Bearbeitungen, die Grenzfille
darstellten, gemeinsam diskutiert, um eine entsprechende Reliabilitdit der Ergebnisse zu
gewahrleisten. Das hierbei entwickelte Kategoriensystem wird im Folgenden dargestellt und mit
Ankerbeispielen illustriert. Eine entsprechende Darstellung wird auch in Kempen (2013, S. 467)
gegeben.

Als Kategoriensystem fir den operativen Beweis wurde das folgende verwendet:

Name | Beschreibung Ankerbeispiel (entnommen aus den
Studierendenbearbeitungen)

EO Der ,operative Beweis” beinhaltet Beispiele, die nicht zu | n=2: (3:2)—3=3
der Behauptung passen. n=4:. (3-4)—-3=9
n=6: (3:6)—3=15

El Der ,operative Beweis” besteht nur aus einer Verifikation | g =7: 7+ (2-7) =21
durch verschiedene Beispiele, ohne dass allgemeingiiltige | ¢ = 11: 11+ (2-11) = 33

Prinzipien benannt werden. gq=3: 3+(2-3) =9
P1 In den Beispielen innerhalb des ,operativen Beweises” | 1.) 7+ 14 = 21 (w)
werden allgemeingiiltige Operationen und Umformungen 7+ 2 7)=7+7+7=3-7=21

deutlich, welche allerdings nicht expliziert werden.
2) 3+6=9(Ww)

3+4(2-3)=3+3+3=3-3=9

P2 In den operativen Beweisen werden allgemeingiltige | a)3+(3-2) =9 Vv
Prinzipien deutlich, die benannt und in der folgenden | b)9+(9:-2) =27 v
Argumentation zum Beweisen der Behauptung genutzt

werden. A7+(7-2) =21V

Die Behauptung stimmt, weil die Verdoppelung
einer ungeraden Zahl zu einer geraden Zahl fiihrt.
Die Addition einer geraden und einer ungeraden
Zahl ergibt eine ungerade Summe.

Tabelle 6: Kategorienschema zur Analyse der Studierendenbearbeitungen zum operativen Beweis im Wintersemester
2011/12
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Das Kategoriensystem fiir den formalen Beweis war dabei wie folgt:

Name | Beschreibung Ankerbeispiel (entnommen aus den
Studierendenbearbeitungen)

P1 Diverses (unverstandlich, falsch, ziellos, ...) [Ein Studierender versuchte eine andere
Behauptung zu  beweisen.  Seine
Bearbeitung wurde in diese Kategorie
eingeteilt.]

P2 Die Beweisfiihrung beinhaltet keine Argumentation. Formaler Beweis:

2n—14+22n-1)=2m-1

P3 Die Argumentation im Beweis enthélt Liicken und/oder es | Beweis:
werden Argumente genutzt, die nicht allgemeingiiltig 2n+1+2@2n+1)=6n+3
sind.

6n ist ein Vielfaches von 2, aber 3 lasst sich nicht
durch 3 teilen.

P4 Die Argumentation im Beweis ist logisch und korrekt. Beweis:
reN:

2r+1+2Q@2r+1)=32r+1) ist ungerade,
denn 2r + 1 ist ungerade, 3 ist ungerade. Also ist
das Produkt 3(2r + 1) ungerade™.

Tabelle 7: Kategorienschema zur Analyse der Studierendenbearbeitungen zum formalen Beweis im Wintersemester
2011/12

Ergebnisse®

Beantwortung der Leitfrage zur Auswertung [1]: Welche Begriindungen fiihren
Erstsemesterstudierende an, wenn sie aufgefordert werden, einen operativen Beweis zu fiihren?

Die Ergebnisse bzgl. der Beweiskonstruktionen der Studierenden zum operativen Beweis werden in
der Tabelle 8 dargestellt. Auffallig ist hierbei, dass von den insgesamt 53 Bearbeitungen zum
operativen Beweis 67,9% aus bloRen Beispieliiberpriifungen (E1) bestehen. Nur in 14 Bearbeitungen
(P2 + P2) wurden Uberhaupt weiterflUhrende Operationen vorgenommen, wobei nur sechs
Bearbeitungen als vollstandige operative Beweise bewertet werden konnten (P2), da in acht Fallen
die Argumentation nicht expliziert worden war (P1).

* Die implizite Verwendung des Satzes, dass das Produkt von zwei ungeraden natirlichen Zahlen immer
ungerade ist, wird dabei nicht als Liicke gewertet.

* Die folgenden Ergebnisse wurden auch in Biehler und Kempen (2013, S. 91ff.) veroffentlicht. Sprachliche
Anlehnungen an diese englischsprachige Publikation werden fiir eine bessere Lesbarkeit der Darstellungen
nicht angemerkt.
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Kategorie Haufigkeit

EO 3(5,7%)
E1 36 (67,9%)
P1 8 (15,1%)
P2 6(11,3%)
Summe 53 (100%)

Tabelle 8: Ergebnisse bzgl. der Bearbeitungen
zum operativen Beweis (WS 2011/12)

Beantwortung der Leitfrage zur Auswertung [2]: Benutzen die Studierenden das Argument, welches
sie im operativen Beweis verwendet haben, auch in dem darauf folgenden formalen Beweis?

Von den 14 Studierenden, deren Bearbeitungen zum operativen Beweis weiterfiihrende Operationen
aufwiesen (P1+P2), bearbeiteten elf die Aufgabe zum formalen Beweis. Bei acht dieser formalen
Beweise konnten parallele algebraische Umformungen zum vorher erfolgten operativen Beweis
ausgemacht werden.

Beantwortung der Leitfragen zur Auswertung [3] und [4]: Welche Begriindungen fiihren
Erstsemesterstudierende an, wenn sie aufgefordert werden, einen formalen Beweis zu fiihren?
Welche Probleme werden bei den Studierenden im Umgang mit Variablen deutlich, wenn sie eine
Behauptung formulieren und diese formal beweisen?

Von den 64 Studierenden, deren Bearbeitungen zur Analyse vorlagen, versuchten nur 34 die
Formulierung der Behauptung. Hierbei formulierten 21 Studierende die Behauptung in der oben
angegebenen Variante (1) und sechs entsprechend der Variante (2). Sieben Bearbeitungen miissen
als Mischform der beiden Varianten betrachtet werden. Bei der Formulierung der Behauptung
entsprechend der zweiten Variante wurde nur in einem Fall die Fiir-Alle-Aussage expliziert, eine
Existenzbehauptung wurde von keinem Studierenden formuliert. Darlber hinaus wiesen alle
Formulierungen formale Fehler im Umgang mit bzw. in der Definition der Variablen auf.

Neben der Einordnung der Studierendenbearbeitungen zum formalen Beweis in das oben genannte
Kategoriensystem wurde hier weiter kategorisiert, ob in den Bearbeitungen auch formale Fehler im
Umgang mit den Variablen vorzufinden sind. Die entsprechenden Ergebnisse werden in der Tabelle 9
dargestellt. Bemerkenswert erscheint hierbei besonders, dass selbst bei dieser grundlegenden
Beweisaufgabe nur 51,8% der Bearbeitungen als vollstandig und korrekte Beweise bewerten werden
konnten (P4). Bei der Betrachtung der formalen Fehler ist darliber hinaus auffallig, dass insgesamt
nur neun Bearbeitungen (16,1%) als formal korrekt betrachtet werden konnten. Es lasst sich hier
festhalten, dass nur in 22 Fallen (39,9%) ein vollstéandiger und korrekter Beweis ohne formale Fehler

vorlag.
Kategorie Haufigkeit formal korrekt mit formalen Fehlern
P1 1(1,8%) 0 1(1,8%)
P2 8 (14,3%) 1(1,8%) 7 (12,5%)
P3 18 (32,1%) 1(1,8%) 17 (30,4%)
P4 29 (51,8%) 7 (12,5%) 22 (39,3%)
Summe 56 (100%) 9 (16,1%) 47 (83,9%)

Tabelle 9: Ergebnisse bzgl. der Bearbeitungen zum formalen Beweis (WS 2011/12)
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Zusammenfassung und Diskussion der Ergebnisse

Ein GroRteil der Studierenden scheint zu dem Zeitpunkt der ersten Hausaufgabenabgabe das Konzept
des operativen Beweises als eine Form allgemeingiiltiger Verifikation noch nicht verstanden zu
haben. Da diese Beweisform im weiteren Verlauf der Veranstaltung auch nicht weiter thematisiert
wurde, kann vermutet werden, dass den Studierenden diese Konzeption auch im weiteren Semester
nicht deutlich wurde. AulRerdem lasst die (liberraschend) geringe Anzahl gelungener operativer
Beweise darauf schlieRen, dass die Konstruktion entsprechender Beweise nicht als triviale Tatigkeit
verstanden werden darf, sondern als wirklicher Lerngegenstand begriffen werden muss.

Bei dieser Analyse der Teilaufgabe zur Formulierung der Behauptung wurde deutlich, welche Aspekte
Studierende beriicksichtigen missen, um eine mathematische Behauptung korrekt zu formulieren.
Neben der Formalisierung der Behauptung mithilfe von Buchstabenvariablen, der korrekten
Definition und Nutzung der Variablen ist auch das Verstehen um die (implizite) All- und
Existenzaussage von Bedeutung. Die (iberhaupt geringe Anzahl von Bearbeitungen dieser Teilaufgabe
in Verbindung mit den schlechten Resultaten macht deutlich, dass auch diese Aufgabe fir
Studienanfanger eine Herausforderung darstellt und entsprechende Anforderungen im Rahmen der
Lehrveranstaltung deutlicher vorbereitet werden missen.

Die Ergebnisse bzgl. der Konstruktion der formalen Beweise lassen darauf schlieRen, dass auch diese
Tatigkeit fur die Studienanfanger keine triviale Tatigkeit ist; nur gut der Halfte der Studierenden
gelingt eine entsprechende Argumentation. Dass insgesamt in 83,9% der Bearbeitungen formale
Fehler auftreten, deutet darauf hin, dass die Studienanfanger wenig Erfahrung im richtigen Umgang
mit Variablen zur Verifikation einer Behauptung zu haben scheinen.

Bei der Durchfiihrung der Untersuchung wurde auf eine Zweitcodierung der Beweisbearbeitungen
verzichtet. Da das Projekt darauf ausgelegt war, erste Erkenntnisse lber die Beweiskonstruktionen
der Studienanfangerinnen und -anfanger und ihr Verstandnis zum operativen Beweis zu erhalten, auf
Grund derer die Lehrveranstaltung begrindet weiterentwickelt werden konnte, wurde der
vorliegende Grad an Reliabilitat (und auch an Objektivitat) fir ausreichend befunden.

5.2.3 Retrospektive Analyse der ersten Durchfithrung der Lehrveranstaltung

Aufgrund der im Rahmen der ersten Durchfiihrung der Lehrveranstaltung erfolgten Forschung
konnten oben bereits drei zentrale Problemfelder herausgearbeitet werden, die fiir die vorliegende
Arbeit von Interesse sind: Die Studierenden haben Probleme (1) mit der Formulierung und mit dem
Verstdandnis von mathematischen Behauptungen, (2) mit der Verwendung von Buchstabenvariablen
bei der Konstruktion von formalen Beweisen und (3) mit dem Konzept des operativen Beweises,
gerade in Abgrenzung zu bloRen Beispielbetrachtungen. Durch die gemachten Lehrerfahrungen des
Dozenten und der Wissenschaftlichen Mitarbeiter konnten weitere Aspekte ausgemacht werden, die
sich wiederum mit den Riickmeldungen der studentischen Hilfskrafte und der Studierenden deckten.
Hierzu z3hlen: (4) Es missen vermehrt passgenaue Aufgaben in den Ubungsbetrieb eingebunden
werden, die starker die grundlegenden Aspekte im Kontext von Behauptungen und (operativen und
formalen) Beweisen fokussieren, (5) selbst die studentischen Hilfskrafte haben Probleme mit dem
Konzept des operativen Beweises und (6) im Rahmen der Lehrveranstaltung werden eine Vielzahl
unterschiedlicher (Meta-) Begriffe im Kontext des Beweisens (,Uberpriifung”, ,Verifikation®,
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,Beweis”, ,operativer Beweis”, ,symbolischer Beweis” ,Begriindung”, ,operativ-graphischer
Beweis”, ,allgemeine Darstellung”, ... ) verwendet.

Diese verschiedenen Punkte werden im Folgenden kurz ausgefiihrt. Am Ende des Abschnitts erfolgen
eine Bewertung derselben unter den Perspektiven ,Beweisen als diagrammatisches SchlieBen” und
,s0zio-mathematische Normen“ und ein Abgleich mit der vor der Durchfihrung der
Lehrveranstaltung aufgezeigten intentionalen Dimension. Die herausgearbeiteten Problemfelder und
daraus abgeleiteten Implikationen bilden den Rahmen fiir die Uberarbeitung und Durchfiihrung der
Lehrveranstaltung, wie sie im folgenden Abschnitt dargestellt wird.

(1) zum Verstidndnis mathematischer Behauptungen
Ein addquates Verstandnis mathematischer Behauptungen ist eine zentrale Voraussetzung fir
die Konstruktion und das Verstandnis von Beweisen. Wie bereits in Abschnitt 2.1.6 dargelegt
wurde, bildet gerade das Verstandnis einer Fiir-Alle-Aussage eine notwendige Voraussetzung fir
die Herausbildung eines addquaten Beweisverstandnisses und die Grundlage fir die
Wahrnehmung verschiedener Funktionen von Beweisen. Zwar wurde in der Vorlesung der
Lehrveranstaltung im Wintersemester 2011/12 auf die Inhalte und Formulierung von
mathematischen Behauptungen eingegangen; der Umfang dieser Bemihungen scheint dabei
nicht ausgereicht zu haben, um bei den Studierenden ein entsprechendes Verstandnis
herauszubilden.

(2) zum Umgang mit Buchstabenvariablen und der Konstruktion von formalen Beweisen
Der Umgang mit Variablen war bereits expliziter Gegenstand der Lehrveranstaltung. Auch
wurden Aufgabenformate eingebunden, die sich speziell mit dieser Thematik beschaftigten; so
sollten die Studierenden Behauptungen zunidchst verbal und dann mithilfe von
Buchstabenvariablen formulieren, bevor sie diese beweisen sollten. Diese MaBhahmen scheinen
noch nicht ausgereicht zu haben, um das gewiinschte Ergebnis zu erzielen. Insgesamt musste
auch festgestellt werden, dass die Beweiskonstruktionen der Studierenden allgemein nicht den
Anspriichen der Lehrenden genligten. Viele ,formale Beweise’ erschienen eher als ungeordnete
Entdeckungsnotizen und nicht als ,saubere’ Reinschrift.

(3) zum Konzept des operativen Beweises
Insgesamt betrachtet, scheint das Konzept des operativen Beweises den Studierenden nicht
ausreichend deutlich geworden zu sein. Die Thematisierung des Konzepts in den ersten beiden
Vorlesungssitzungen und im Rahmen der ersten Hausaufgabe scheint nicht genligt zu haben, um
den Studierenden diese Beweisform zu vermitteln. Die Probleme, die die Studierenden mit dem
Lerngegenstand , operativer Beweis” haben, wurden insgesamt unterschatzt.

(4) zu den verwendeten Ubungsaufgaben
Bereits in der ersten Durchfiihrung der Lehrveranstaltung wurden explizit verschiedene
Aufgabenformate verwendet, die die Verwendung von Variablen bei der Formulierung von
Behauptungen und der Konstruktion von formalen Beweisen thematisierten. Auch wurden
Aufgaben zu der Konstruktion von operativen Beweisen gestellt. Es scheint allerdings notwendig
zu sein, Aufgabenformate in den Ubungsprozess zu integrieren, die spezifischer elementare
Aspekte der Thematik fokussieren. Wenn die Lehrveranstaltung aullerdem den Anspruch
verfolgt, dass die Studierenden in eine prozesshafte Mathematik eingefiihrt werden, dann
missen vermehrt Ubungsaufgaben eingebunden werden, die entsprechenden Raum fiir
Exploration und eigenstandiges ,mathematisches Tun’ schaffen.
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(5) zu den Problemen der studentischen Hilfskrifte mit dem Konzept des operativen Beweises
Bei der Durchsicht der wochentlichen Hausaufgabenkorrekturen der studierenden Hilfskrafte
wurde ein weiteres Problem deutlich: Da diese Studierenden selbst nie in ihrem Studium mit
operativen Beweisen in Kontakt gekommen waren, schienen auch sie grundlegende
Verstandnisschwierigkeiten mit dieser Beweisform zu haben. Es ist offensichtlich, dass die
Korrekturen entsprechender Beweisversuche in den Hausaufgaben zu wiinschen (brig lieRen.
Uber entsprechende Probleme bei den Erdrterungen verschiedener Beweisformen in den
Kleingruppeniibungen kann nur spekuliert werden.
(6) zu den verwendeten Begrifflichkeiten im Kontext von Beweisen

Bei der Betrachtung der gesamten Lehr- und Lernmaterialien der Lehrveranstaltung wurde die
Verwendung einer Vielzahl unterschiedlicher Begriffe (und Aufgabenoperatoren) deutlich, mit
denen die Studierenden konfrontiert wurden. Hierzu gehoren: Operativer Beweis, Beweis mit
Variablen, symbolischer Beweis, formaler Beweis, mathematische Begriindung, operativ-
graphische Begriindung, operativ-graphischer Beweis, allgemeines Diagramm fir einen
operativen Beweis, Begriindung anhand eines Punktmusters und Begriindung an einer
geeigneten Skizze. Es lasst sich hier vermuten, dass die Vielzahl der unterschiedlichen Begriffe
nicht zu einer konzeptuellen Sicherheit auf Seiten der Studierenden beigetragen hat, auch, da
sprachliche Unterschiede nicht thematisiert oder geklart wurden. So weist auch Dreyfus (1999, S.
103) darauf hin, dass die Verwendung von vielen unterschiedlichen Begriffen und Operatoren im
Kontext von Beweisen zu Verwirrung fiihren kann.

Erorterung der Ergebnisse unter der Perspektive des ,, diagrammatischen SchlieBens*

Der Umgang mit Variablen in Beweisen umfasst unter dieser semiotischen Perspektive die
Konstruktion von Diagrammen, das Vornehmen von Transformationen an diesen und das
,Interpretieren’ der erhaltenen Resultate (vgl. Abschnitt 2.5). Fiir den Bereich der formalen Beweise
kann dabei festgehalten werden, dass bereits die erste Phase des diagrammatischen SchlieRens (die
Konstruktion der Diagramme) bei den Studierenden fehlerbehaftet ist, denn Buchstabenvariable
erhalten erst durch eine korrekte Definition ihre ,Bedeutung’ als Diagramme, mit denen agiert
werden kann. Die Definition der Buchstabenvariablen bestimmt dabei auch die Lesart, mit der das
schlielllich erhaltene Diagramm gelesen werden muss. Wahrend die Anwendung von
Transformationen auf die jeweiligen Diagramme (,Termumformungen’) eher kein Problem
darzustellen scheint, missen die Konstruktion und das Lesen der Diagramme als besonderer
Problembereich eingestuft werden. Ein mangelhafter Umgang mit Variablen erweist sich dabei als ein
unzureichendes kollaterales Wissen in Bezug auf das entsprechende Diagrammsystem und eine
unzureichend ausgebildete Praxis im Umgang damit. Folglich sind dies die Lerngegenstande, die es in
dieser Hinsicht in der Lehrveranstaltung deutlicher zu fokussieren gilt und zu denen entsprechende
Ubungsaufgaben konstruiert werden miissen.

Durch die Analyse der Bearbeitungen zum operativen Beweis (Abschnitt 5.2.2) wurde deutlich, dass
bei den Studierenden konzeptionelle Probleme mit dieser Beweisform den Akt eines
allgemeingililtigen diagrammatischen SchlieBens im Kontext der Arithmetik verhindern. Somit gilt es,
zunachst das Konzept operativer Beweise genauer zu erdrtern, damit der Akt des allgemeingiiltigen
diagrammatischen Schliefens aufgrund der verwendeten Operationen thematisiert und verdeutlicht
werden kann.
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Erorterung der Ergebnisse unter der Perspektive ,,sozio-mathematischer Normen*

Die konzeptuellen Probleme der Studierenden mit den operativen Beweisen machen deutlich, dass
ihnen explizit Normen an die Hand gegeben werden missen, an Hand deren sie ihre
Beweiskonstruktionen ausrichten konnen. Dies gilt entsprechend fiir die Konstruktion von formalen
Beweisen. Auch gilt es, entsprechende Normen fiir den Umgang mit Buchstabenvariablen zu
kommunizieren; dies betrifft sowohl die Formulierung von Behauptungen als auch die Konstruktion
formaler Beweise. Somit kann unter der Perspektive sozio-mathematischer Normen festgehalten
werden, dass neben der Etablierung von Normen fiir die Konstruktion von Beweisen auch der
Umgang mit Variablen expliziter Gegenstand der Lehrveranstaltung werden muss®2.

Ein weiteres Thema ,sozio-mathematischer Normen“ ist dabei das Problem einer geteilten ,Meta-
Sprache’ zum Beweisen. Hier muss eine Vereinheitlichung und Normierung vorgenommen werden,
welche Begriffe mit welcher Bedeutung verwendet werden.

Abgleich mit der intentionalen Dimension der ersten Durchfiihrung der Lehrveranstaltung

Der Einstieg in die Vorlesung mit Teilbarkeitsfragen in den natiirlichen Zahlen, zur Anknipfung an
schulische Vorerfahrungen und zur Akzeptanz und produktiven Nutzung von schulischem Vorwissen
erscheint insgesamt sinnvoll und gewinnbringend. Die Vermittlung des Konzepts des operativen
Beweises, gerade als schuladdquate Begriindungsform, hat dabei nicht in dem Umfang funktioniert,
wie es vor der Lehrveranstaltung durch die Lehrenden intendiert gewesen war. Auch die Ergebnisse
zum formalen Beweis waren insgesamt als noch unbefriedigend zu bezeichnen, was auch auf einen
fehlerhaften Umgang der Studierenden mit Buchstabenvariablen zuriickzufiihren ist. Die
Inhaltsbereiche der Elementarmathematik und die Thematik der figurierten Zahlen scheinen sich als
gewinnbringend erwiesen zu haben, um den Studierenden mathematisches Arbeiten zu ermdoglichen
und um den Prozesscharakter der Mathematik herauszustellen. Dabei wurde allerdings nicht
eingehend untersucht, inwieweit die Studierenden nun in der Lage sind, mit ,inhaltlich-
anschaulichen’ Darstellungen umzugehen. Insgesamt konnte durch die Themenorientierung an der
Teilbarkeit, das Aufgreifen und Vermitteln von Begriindungsformen der Schulmathematik und den
Einbezug von inhaltlich-anschaulichen Darstellungsmitteln ein stetiger Schulbezug hergestellt
werden. Als Heuristiken des mathematischen Arbeitens im Rahmen von Exploration und
Verifikationsprozessen wurden den Studierenden drei verschiedene Strategien an die Hand gegeben:
die Uberpriifung einer Behauptung mit Zahlenbeispielen, operative Beweise und Beweise mit
Variablen. Auch diese Unterscheidung erscheint insgesamt sinnvoll, um den Studierenden
mathematisches Tun ndherzubringen, ihnen den Prozesscharakter der Mathematik zu verdeutlichen
und die verschiedenen Verifikationsmethoden sinnvoll in den Erkenntnisprozess zu integrieren.
Inwieweit dabei ein adaquates Beweisverstandnis auf Seiten der Studierenden erreicht werden
konnte, muss an dieser Stelle noch offen gelassen werden.

5.3. Die Lehrveranstaltung im Wintersemester 2012 /13 und die im Kontext

dieser Durchfithrung erfolgten Studien
In diesem Abschnitt werden zunichst die Anderungen der Lehrveranstaltung beschrieben und
begrindet, wie sie im Wintersemester 2012/13 aufgrund der Erfahrungen aus dem vorherigen

%2 Diese Kommunikation von Normen wird daher als Aspekt ,sozio-mathematischer” Normen aufgefasst, da
ihre genaue Bedeutung und Reichweite durch ihre Umsetzung aller am Lernprozess Beteiligten konstituiert
wird.
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Durchgang vorgenommen wurden. AnschlieBend werden die Untersuchungen beschrieben, welche
im Rahmen dieser Durchfihrung erfolgt sind. Hierzu gehoren eine qualitative Analyse der
Beweisproduktionen der Studierenden in ihrer ersten Hausaufgabe (Abschnitt 5.3.2.1), ein
Bewertungstest zu verschiedenen Beweisproduktionen (Abschnitt 5.3.2.2), die Pilotierung einer
Videostudie zum generischen und zum formalen Beweis (Abschnitt 5.3.2.3) und eine Analyse der
Beweiskonstruktionen der Studierenden in der Abschlussklausur der Lehrveranstaltung (Abschnitt
5.3.2.4).

5.3.1 Verdnderungen bei der zweiten Durchfiihrung der Lehrveranstaltung im
Wintersemester 2012/13

In der zweiten Durchfihrung der Lehrveranstaltung wurden im Wintersemester 2012/13 aufgrund
der bisherigen Forschungsergebnisse und Lehrerfahrungen die folgenden Anderungen
vorgenommen: (1) Die Struktur des ersten Kapitels wurde modifiziert, (2) es wurde eine explizite
,Analyse’ einer mathematischen Behauptung vorgefiihrt, in deren Kontext auch der Variablenbegriff
thematisiert wurde, (3) es erfolgte eine Umbenennung des ,operativen Beweises’ zum ,generischen
Beweis’, (4) die drei mathematischen Strategien zum Uberpriifen einer Behauptung wurden
umbenannt, (5) es wurde explizit zwischen logischen und psychologischen Aspekten beim Umgang
mit Beispielbetrachtungen und Beweisen unterschieden, (6) es wurden sozio-mathematische
Normen fir die Konstruktion von generischen Beweisen kommuniziert, (7) bei der Konstruktion
,formaler Beweise’ wurde explizit zwischen der ,Erarbeitung’ und der abschlieBenden ,Reinschrift’
unterschieden, (8) die Rolle von Gegenbeispielen wurde deutlicher herausgestellt, (9) es wurde ein
erster Versuch unternommen, die verschiedenen Begrifflichkeiten zum Beweisen anzugleichen und
(10) die Verbindungen des zweiten Kapitels (,figurierte Zahlen“) zum ersten Kapitel wurden
deutlicher herausgestellt. Neben den Modifikationen, die sich auf die konkrete Durchfiihrung der
Vorlesung beziehen, wurden auch Anderungen im Kontext der Prdsenziibungen vorgenommen.
Grundlegend fiir das Gelingen des Ubungskonzepts erschien hierbei zunachst (9) die Schulung der
Tutoren zu sein. Einhergehend damit wurden auch (10) das Halten der Ubungsgruppen durch
Tutorentandems in die Lehrveranstaltung eingefiihrt und (11) neue Aufgaben und Aufgabenformate
in die Prasenziibungen integriert. Diese Aspekte werden im Folgenden einzeln dargestellt.

Veranderungen im Kontext der Vorlesung
(1) Modifizierung der Struktur des ersten Kapitels der Lehrveranstaltung

Im Wintersemester 2011/12 war das erste Kapitel der Lehrveranstaltung in drei Abschnitte
gegliedert: (i) Die Uberpriifung der Teilbarkeit durch k der Summen von k € N aufeinanderfolgenden
Zahlen, (ii) die Niederschrift des gesamten erlangten Wissens gemaR fachmathematischer Literatur
(Definition, Satz, Beweis) und (iii) eine alternative Erarbeitung eines Beweises fiir den gefundenen
Satz, dass die Summe von k € N aufeinanderfolgenden Zahlen genau dann durch k teilbar ist, wenn k
ungerade ist. Diese Dreiteilung wurde im Wintersemester 2012/13 aufgehoben: Die Frage nach der
Teilbarkeit der Summen aufeinanderfolgender Zahlen bildete nun den durchgehenden roten Faden
fir das gesamte erste Kapitel. Im Rahmen dieses ,Forschungsprojekts’ konnten dabei verschiedene
Aspekte thematisiert werden: Bei der Diskussion der Ausgangsfrage (liber die Teilbarkeit der Summe
dreier aufeinanderfolgender Zahlen) erfolgte eine Thematisierung des Variablenbegriffs und eine
logische Analyse der Behauptung (s. (2) unten). AnschlieBend wurden den Studierenden drei
verschiedene Strategien fiir die Uberpriifung von Behauptungen an die Hand gegeben (s. (4) unten),
in welchem Kontext auch der generische und der formale Beweis eingefiihrt wurden. Bei der
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Konstruktion der Beweise wurde dabei immer zwischen der Erarbeitung und der anschlieRenden
,Reinschrift des Beweises unterschieden (s. (6) unten). Im Rahmen der Uberpriifungen verschiedener
Summen wurde weiter die Rolle von Gegenbeispielen explizit thematisiert und deren Bedeutung fiir
den mathematischen Erkenntnisprozess herausgestellt (s. (7) unten).

(2) Exemplarische Analyse einer mathematischen Behauptung und die explizite
Thematisierung des Variablenbegriffs

Ein Ergebnis der bisherigen Forschung war, dass die korrekte Verwendung und Definition von
Buchstabenvariablen den Studierenden Probleme bereitete und dass es notwendig erschien, die
,Eigenarten’ mathematischer Behauptungen deutlicher herauszustellen (siehe Abschnitt 5.2.2). Da
die Verwendung von Variablen immer in gewisse mathematische Kontexte eingebunden ist, wurde
die Analyse der Eingangsbehauptung auch dazu genutzt, den Variablenbegriff zu thematisieren. Aus
diesem Grund wurde im ersten Kapitel der Lehrveranstaltung im Wintersemester 2012/13 nach der
Eingangsfrage (Uber die Teilbarkeit durch 3 der Summe dreier aufeinanderfolgender Zahlen) eine
»Analyse der Behauptung” eingeschoben, in deren Kontext auch explizit der Gebrauch von Variablen
und den hierzu bendtigten Symbolen thematisiert wurde. Der folgende Abschnitt ist ein Zitat aus der
Vorlesungsmitschrift aus dem Wintersemester 2012/13:

Beispiel 1:
Jemand behauptet, die Summe von 3 aufeinanderfolgenden nattrlichen Zahlen ist immer durch 3 teilbar.

Analyse der Behauptung:

|u

1. Egal mit welcher ,Startzah
durch 3 teilbar.

2.  Far alle Startzahlen gilt:
Die Summe Startzahl + (Startzahl + 1) + (Startzahl + 2)ist durch 3 teilbar.
[Hier wird Startzahl als eine sogenannte ,Wortvariable” verwendet.]

3.  Furalle Startzahlen ngilt: n + (n + 1) + (n + 2) ist durch 3 teilbar.
Bei allen Variablen muss die zuldssige Menge angegeben werden, aus der Werte fiir die Variable
genommen werden kénnen.

man beginnt, die Summe aus dieser und der beiden folgenden Zahlen ist

Sprechweisen:
N ={1,2,3,4, ...} ist die Menge der natirlichen Zahlen
N, ={0,1,2,3,4, ...} ist die Menge der natirlichen Zahlen mit der Null
Man schreibt n € N, wenn n ein Element aus der Menge N ist.
4. Fir alle Startzahlen n € N gilt: Die Summe n + (n + 1) + (n + 2) ist durch 3 teilbar.

Gegenstand dieser Analyse ist zunachst die Bedeutung und die Verwendung von Wortvariablen.
Diese Wortvariablen werden herausgearbeitet und schrittweise durch Buchstabenvariable ersetzt.
Gleichzeitig wird die Norm eingefiihrt, dass bei der Verwendung von Buchstabenvariablen auch
immer deren Grundmenge anzugeben ist, aus der Werte fiir diese enthommen werden dirfen. In
diesem Kontext wird auch die Verwendung der Symbole ,N“, ,{..}¥, ,N,“ und ,€“ thematisiert. Ein
weiterer zentraler Aspekt dieses Abschnitts ist das Herausstellen der Fir-Alle-Aussage. Wie bereits in
Abschnitt 2.1.6 dargelegt wurde, ist das Verstandnis dieser Aussage eine notwendige Grundlage fir
die Konstruktion eines entsprechenden Beweises und die Herausbildung eines addquaten
Beweisverstandnisses.
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(3) Umbenennung der Beweisform ,,operativer Beweis” zu ,,generischer Beweis”

Ein Problem der Studierenden mit dem Konzept des operativen Beweises schien darin zu bestehen,
dass ihnen nicht deutlich geworden war, was bei der Konstruktion dieser Beweisform zu geschehen
hatte, das (iber bloRe Beispieliberprifungen hinausging (vgl. Abschnitt 5.2.2). Dieses
Forschungsergebnis deckte sich mit den Eindriicken der Ubungsgruppenleiter, Korrektoren der
Hausaufgaben und Lehrenden der Veranstaltung. Der Begriff ,,operativer” Beweis erwies sich hierbei
in gewisser Weise als irrefihrend: Wurden bei der Uberpriifung einer Behauptung an einem
konkreten Beispiel die notwendigen Rechenoperationen vorgenommen, so verwiesen die
Studierenden auf diese Umformungen und behaupteten ohne weitere Begriindung, dass diese auch
allgemeingliltig und mit jeder beliebigen Zahl genauso durchfiihrbar seien. Die Notwendigkeit,
weiterflihrende Argumente zu prasentieren, die (berdies eine beispiellibergreifende Struktur
deutlich werden lieRen, um eine allgemeingiiltige Begriindung fiir die Behauptung auszumachen, war
ihnen nur schwer einsichtig zu machen. Ein Grund fiir die Umbenennung zum ,generischen Beweis’
war somit, den Fokus der Betrachtungen auf das generische Moment zu legen, das
beispielibergreifend bei der Untersuchung verschiedener Beispiele ausgemacht und anschlieRend
auch expliziert werden muss (vgl. Punkt (5) unten). Somit standen nicht mehr die Operationen,
sondern der generische Aspekt im Vordergrund. Ein weiterer Grund war die internationale
Anbindung an die aktuelle Forschungs- und Diskussionslage. Im internationalen Kontext ist der
Begriff des ,generic proofs’ weit verbreitet, wogegen der Begriff ,operative proof’ fast ausschlieBlich
in den Veroffentlichungen deutscher Mathematikdidaktiker Verwendung findet (vgl. Abschnitt 2.1.3).

(4) Explizite Unterscheidung von bloRen Beispielbetrachtungen, generischen Beweisen und
formalen Beweisen

Im zweiten Durchgang der Lehrveranstaltung wurden die den Studierenden vorgestellten ,drei
Strategien zum Uberpriifen einer Aussage” umbenannt. Wurden die drei Strategien im vorherigen
Durchgang noch als (1) ,Die Uberpriifung einer Behauptung an einigen Zahlenbeispielen”, (2)
,Operative Beweise” und (3) , Beweise mit Variablen” bezeichnet, wurden diese im Wintersemester
2012/13 wie folgt benannt: (1) ,Testen der Aussage an Zahlenbeispielen”, (2) ,Testen an
Zahlenbeispielen mit dem Erkennen, was an diesen Beispielen verallgemeinerungsfahig (generisch)
ist” und (3) ,Algebraische Umformungen”. Das Anliegen bestand hierbei darin, den Unterschied
zwischen den ersten beiden Strategien deutlicher herauszustellen und die dritte Strategie (das
Vornehmen algebraischer Umformungen) nicht, im Gegensatz zu den ersten beiden Strategien, mit
einem ,Beweis’ gleichzustellen.

(5) Die Unterscheidung zwischen logischen und psychologischen Aspekten bei
Beispielbetrachtungen und Beweisen

Im Kontext der drei Strategien zum Uberpriifen einer Aussage (s.0.) wurde zwischen logischen und
psychologischen Aspekten dieser Strategien unterschieden. Damit kann das bloRe Testen einer
Behauptung an konkreten Beispielen psychologisch positiv gewertet werden, um Klarheit dartiber zu
erlangen, was die genaue Bedeutung und Tragweite einer Aussage ist, und um vielleicht eine Einsicht
darein zu erhalten, warum diese wabhr ist (vgl. hierzu die Phase der Exploration im Beweisprozess,
dargestellt in Abschnitt 2.1.1). Vom logischen Standpunkt muss dabei betont werden, dass die
Uberpriifung konkreter Fille nie ausreichen kann, um eine Allaussage allgemeingiiltig zu beweisen.
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Allerdings kann durch weitere Beispieliiberpriifungen die subjektive (psychologische) Uberzeugung
gestarkt werden, dass eine Vermutung bzw. Behauptung wahr ist.

(6) Kommunikation (sozio-mathematischer) Normen fiir die Konstruktion eines generischen
Beweises

Durch die bisherigen (negativen) Ergebnisse und Erfahrungen aus der Verwendung der (ehemals so
genannten) ,operativen’ Beweise wurde deutlich, dass den Studierenden sozio-mathematische
Normen vermittelt werden missen, an denen sie ihre Beweiskonstruktionen normativ ausrichten
kénnen. Eine solche Explizierung der Normen wurde im Wintersemester 2012/13 gegeben.
(Vergleiche hierzu die Erdrterung dieser Beweiskonzeption in Abschnitt 2.1.3). Die aufgestellten
Normen spiegeln dabei die Aktivitdten wider, die in Abschnitt 4.3.1 anhand der Literaturarbeit als
konstituierende Elemente beispielgebundenen Beweisens herausgearbeitet wurden.

Ein generischer Beweis besteht aus:

(1) Allgemeingiltigen Umformungen an Zahlenbeispielen
(2) Einer Begrindung, warum die Behauptung in den Zahlenbeispielen wahr ist
(3) Einer Begriindung, warum diese Argumentation mit allen Zahlenbeispielen so prinzipiell méglich ist.

Die Forderung nach der narrativen Begriindung in (3) erwies sich auch daher als notwendig, damit
der Leser (und ggf. der Korrektor) generischer Beweise sicherstellen kann, dass der
Beweiskonstrukteur in seinen Beweisen wirklich ein generisches Moment erkannt hat.

(7) Die Unterscheidung zwischen ,Erarbeitung’ und ,Reinschrift’ bei der Konstruktion ,formaler
Beweise’

Nach der ersten Durchfiihrung der Lehrveranstaltung waren sich die Lehrenden dariiber einig, dass
die ,formalen Beweise’ der Studierenden noch einen zu starken explorativen Charakter aufwiesen. Im
Gegensatz dazu sollte der Explorationsprozess vor der finalen Niederschrift des Beweisproduktes
eigentlich abgeschlossen sein, damit der Beweis hoheren Anspriichen in Bezug auf Logik und formale
und sprachliche Darstellungen gentigen kann. Um diesen Anspruch zu kommunizieren, ohne dabei
die explizit gewilinschte Explorationsphase der Beweisbearbeitung zu negieren, wurde im Rahmen
der Lehrveranstaltung im Wintersemester 2012/13 zwischen der Erarbeitung eines Beweises und
dessen Reinschrift unterschieden. Bei der Konstruktion von Beweisen wurde auch in der Vorlesung
der Explorationsprozess dargestellt, dabei explizit ,Voriiberlegungen zu einem Beweis” notiert und
abschlieRend der Beweis in ,,Reinschrift” notiert.

(8) Die erweiterte Thematisierung von Gegenbeispielen fiir den mathematischen
Erkenntnisprozess

Im Rahmen der Untersuchung der Teilbarkeit der Summen aufeinanderfolgender Zahlen wurde in der
zweiten Durchfihrung der Lehrveranstaltung die Rolle von Gegenbeispielen deutlicher
hervorgehoben. Bei der Widerlegung der Vermutung (2) (s.u.) wurden der Nutzen und die Bedeutung
von Gegenbeispielen thematisiert, im Zuge der Vermutung (4) (s.u.) deren Tragweite weiter
ausgefihrt.

Vermutung (2): Die Summe von zwei aufeinanderfolgenden Zahlen ist immer durch zwei teilbar.

1+ 2 = 3 und 3 ist eine ungerade Zahl, also nicht durch 2 teilbar. Dies ist ein Gegenbeispiel. Ein Gegenbeispiel
reicht aus, um die Allaussage (2) zu widerlegen.
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Vermutung (4): Die Summe von vier aufeinanderfolgenden Zahlen ist immer durch vier teilbar.

142+ 344 =10und 10 ist nicht durch 4 teilbar. Die Allaussage (4) ist durch dieses
Gegenbeispiel widerlegt.

Eine offene Frage ist aber die Vermutung (4’): Die Summe von vier aufeinanderfolgenden Zahlen ist nie durch vier
teilbar. (Oder gibt es Startzahlen, bei denen die Summe dann durch 4 teilbar ist?)

Beweis (Reinschrift)

Sein € N beliebig, aber fest. Danngilt: n+ (n+ 1)+ (n+2)+ (n +3) = 4n + 6.

4n ist durch 4 teilbar ist, 6 ist aber nicht durch 4 teilbar ist, ist die Summe 4n + 6 nicht durch 4 teilbar.
g.e.d.

(9) Angleichen der Begrifflichkeiten zum Beweisen

Da im Wintersemester 2011/2012 eine Vielzahl verschiedener Begrifflichkeiten zum Beweisen
verwendet wurde (Abschnitt 5.2.3), sollte im darauffolgenden Jahr ein erster Versuch unternommen
werden, die verschiedenen Begrifflichkeiten zu ordnen. Daher wurde im Kontext des ersten Kapitels
ausschlieBlich von generischen und formalen Beweisen gesprochen. Als generische Beweise wurden
nun auch die Beweise bezeichnet, die mithilfe konkreter Punktmusterdarstellungen erfolgt sind.
Wurden Punktmusterbeweise unter Benutzung geometrischer Variablen (s.u.) verwendet, so wurden
diese in Anlehnung an die formalen Beweise der Algebra als ,formal-geometrische Beweise”
bezeichnet.

(10) Herausstellen der Beziige des zweiten Kapitels zum ersten

In diesem Durchgang wurde gleich zu Beginn des zweiten Kapitels auf den Nutzen von (konkreten)
Punktmusterdarstellungen fiir die Konstruktion generischer Beweise hingewiesen und ,allgemeine’
Punktmusterdarstellungen zur Reprasentation einer beliebigen Anzahl von Punkten in Anlehnung an
die Buchstabenvariablen der Algebra als ,, geometrische Variablen” bezeichnet (s. Abbildung 25). Des
Weiteren wurden die in Kapitel 1 unterschiedenen Strategien fiir die Uberpriifung einer Aussage
(s.0.) im zweiten Kapitel explizit aufgegriffen.

. . Abbildung 25: Eine geometrische Variable zur
Reprdsentation einer beliebigen Anzahl von Punkten

Anderungen im Kontext des Ubungsbetriebs™
(11) Schulung der Tutoren

Bei der Durchsicht der wochentlichen Hausaufgabenkorrekturen war bereits in der ersten
Durchfihrung der Lehrveranstaltung (im Wintersemester 2011/12) auffillig gewesen, dass viele
Korrekturen von (operativen) Beweisen durch studentische Hilfskrafte nicht den Anspriichen der
Mitarbeitenden entsprachen. Vielmehr zeugten die Korrekturen haufig von konzeptionellen
Fehlverstandnissen der Korrektoren. Dies kann dadurch erklart werden, dass diese Studierenden
selbst nie in ihrem Studium mit beispielgebundenen Beweisen in Berithrung gekommen waren und
dementsprechend die gleichen Verstandnisprobleme aufwiesen wie die Studierenden der

* Die Ausgestaltung der Hausaufgaben oblag in diesem Durchgang einem anderen Wissenschaftlichen
Mitarbeiter. Der Autor dieser Arbeit hatte aus diesem Grund keinen Einfluss auf diesen Teil der
Lehrveranstaltung.

152



Lehrveranstaltung. Um eine optimale Korrekturarbeit und Durchfiihrung der Prasenziibungen durch
studentische Hilfskrafte zu ermdglichen, wurden die Tutoren der Lehrveranstaltung vor Beginn des
Semesters einer Tutorenschulung unterzogen. Die Konzeption und Durchfliihrung der Schulung
geschah hierbei nach dem Vorbild des in dem Projekt LIMA erarbeiteten Konzepts (siehe Biehler et
al. 2013, S. 23ff.).

Die Tutorenschulung wurde ganztagig, Uber die Dauer von acht Stunden durchgefiihrt und
beinhaltete einen fachlichen, einen didaktischen und einen methodischen Anteil. Neben der
Erarbeitung der fachlichen Elemente standen hierbei auch die mit den Inhalten verbundenen
didaktischen Ziele, das Vorrechnen vor der Gruppe und das Korrigieren von Hausaufgaben (inkl.
Feedbackgeben) im Zentrum der Schulung.

Im fachlichen Teil der Schulung wurde den Teilnehmenden zunachst eine Einweisung in die Themen
,beispielgebundenes Beweisen’, ,Aussagenlogik’ und ,Beweistypen’ gegeben. Hier wurden auch die
didaktischen Intentionen der beispielgebundenen Beweise, die entsprechenden sozio-
mathematischen Normen und deren fachmathematischer Wert erortert. Nach der anschlieBenden
individuellen Bearbeitung von Beweisaufgaben und deren Besprechung im Plenum galt es fir die
Teilnehmenden, konkrete studentische Aufgabenbearbeitungen zu analysieren, zu diskutieren und
mogliche Implikationen fiir die Lehre abzuleiten. Auch sollten hier gemeinsam Korrekturen erarbeitet
werden, die den Studierenden bestmogliche Hilfestellungen geben sollten. Schlieflich sollte jeder
Teilnehmende eine Einfiihrung in ein bestimmtes Thema der Schulung geben, welche jeweils
videographiert wurde. Eindriicke, Probleme, Fragen und Feedback wurden dann im Plenum
besprochen.

Exkurs: Zu der Bedeutung von Tutorentandems

Eine weitere Veranderung im Kontext der Prasenziibungen der Lehrveranstaltung war deren
Durchfiihrung unter der Leitung von sogenannten Tutorentandems. Im fraglichen Semester leiteten
immer zwei studierende Hilfskrifte zusammen eine Ubungsgruppe. Vorteile dieser MaRnahme
kénnen dabei auf verschiedenen Ebenen ausgemacht werden:

Bei der Vorbereitung einer Prasenziibung kdnnen die studentischen Hilfskrafte ihre Ideen bezliglich

der methodischen Vorgehensweise austauschen. Die zu besprechenden Aufgaben kénnen aufgeteilt
werden, wodurch sich jede Person auf einen Aufgabenteil konzentrieren kann. Wahrend der
Durchfiihrung der Ubung kénnen sich die Ubungsgruppenleiter gegenseitig Sicherheit geben. Bei

Riickfragen konnen beide Tutoren antworten, wobei auch die Ubungsgruppenteilnehmer von
verschiedenen Antwortmaoglichkeiten profitieren. Gerade in der Betreuung der Studierenden in der
Arbeitsphase der Ubung kommt der bessere Betreuungsschliissel zum Tragen. Bei der nachtriglichen
Reflexion der Ubung kénnen sich die Ubungsgruppenleiter gegenseitig ein Feedback geben und sich

dabei Uiberlegen, auf welche Aspekte in den folgenden Ubungen noch einmal eingegangen werden
soll. Diese Informationen wurden dann in der wochentlichen Tutorenbesprechung mit allen Tutoren
und den Mitarbeitern der Lehrveranstaltung besprochen. Diese gemeinsame Reflektion der Ubung
und der Aufgabenbearbeitungen beglinstigt auch eine einheitliche Korrektur der Hausaufgaben.

(12) Neue Aufgabenformate in den Prasenziibungen

Da der Autor dieser Arbeit in dem fraglichen Durchgang ausschlieRlich fir die Durchfiihrung der
Prasenziibungen zustandig war, wurde zunachst versucht, neue Aufgaben und Aufgabenformate
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verstarkt in die Prasenziibungen zu integrieren. Eine Herausforderung bestand hierbei besonders
darin, geeignete Behauptungen fiir die Konstruktion generischer Beweise auszumachen. Bei der
Formulierung der Ubungsaufgaben wurde im Kontext der Pridsenzaufgaben immer darauf geachtet,
dass explizit angemerkt wurde, welche Beweisform (generisch oder formal) von den Studierenden
konstruiert werden sollte. Darliber hinaus wurden auch Aufgaben gestellt, bei denen Behauptungen
mit beiden Beweisformen bewiesen werden sollten oder sich die Studierenden fiir die Konstruktion
einer der beiden Beweisformen und somit fiir die Verwendung eines der beiden Diagrammsysteme
(Arithmetik/Algebra) entscheiden sollten.

5.3.1.1 Die intentionale Dimension der zweiten Durchfiihrung der Lehrveranstaltung

Flr die Darstellung der intentionalen Dimension der zweiten Durchfiihrung der Lehrveranstaltung
lassen sich zunachst auf der ,globalen’ Ebene alle Punkte anfiihren, die bereits an entsprechender
Stelle fur die erste Durchfiihrung formuliert wurden (s. Abschnitt 5.2.1.1). Aufgrund der bei dieser
Durchfiihrung vorgenommenen Modifikationen lassen sich spezielle ,lokale’ Intentionen ausmachen,
die in der zweiten Durchflihrung der Lehrveranstaltung den Fokus der vorgenommenen empirischen
Forschung gesetzt haben. Im Zentrum dieser lokalen Intentionen standen das Verstandnis von
mathematischen Behauptungen, die Bedeutung von (Gegen-) Beispielen fiir den mathematischen
Erkenntnisprozess und die Beweiskonstruktionen der Studierenden zum formalen und zum
generischen Beweis. Die vorgenommenen Modifikationen sollten dazu beitragen, dass den
Studierenden deutlicher wird, was man von ihnen erwartet, wenn die Konstruktion eines formalen
bzw. generischen Beweises gefordert wird. Hierzu wurden konkrete Normen kommuniziert, die
Verwendung von Wort- und Buchstabenvariablen erortert, explizit zwischen Beweiserarbeitung und
Reinschrift unterschieden, der Unterschied zwischen generischen Beweisen und bloRRen
Beispielbetrachtungen und die Bedeutung mathematischer Allaussagen herausgestellt. Die Schulung
der Tutoren sollte sicherstellen, dass die studentischen Hilfskrafte selbst ber das notwendige
fachmathematische Wissen verfiigen und konform der Normen agieren, die im Rahmen der
Vorlesung kommuniziert wurden. Fir die Beforschung des zweiten Durchgangs der Lehrveranstaltung
musste allerding der Beobachtungfokus eingegrenzt werden, da die Summe aller dieser Intentionen
fir eine eingehende Beforschung zu weitreichend erschien. Als (bergeordnete Fragestellungen
wurden fiur die Beforschung der Lehrveranstaltung die folgenden Aspekte ausgewahlt:

e Die vorgenommenen Modifizierungen des ersten Kapitels der Lehrveranstaltung sollten dazu
beitragen, dass den Studierenden die verschiedenen Beweiskonstruktionen besser gelingen.

e Dariber hinaus war es ein Anliegen, den Studierenden das Konzept, die (epistemologische)
Bedeutung und damit verbunden die Vor- und Nachteile der verschiedenen Beweisformen zu
verdeutlichen und diese gleichsam von bloRBen Beispielliberprifungen abzugrenzen.

5.3.2 Die im Kontext dieser Durchfiihrung erfolgten Studien

Im Kontext des zweiten Durchgangs der Lehrveranstaltung wurden im Wintersemester 2012/13 vier
Forschungsprojekte durchgefiihrt (vgl. Abbildung 26). Um direkt Gberprifen zu kénnen, ob die oben
beschriebenen Anderungen im ersten Kapitel der Lehrveranstaltung zum generischen Beweis in die
richtige Richtung wiesen, wurde das bereits im Wintersemester 2011/12 durchgefiihrte
Forschungsprojekt der qualitativen Analyse der Beweiskonstruktionen der Studierenden in der ersten
Hausaufgabe wiederholt (s. Abschnitt 5.3.2.1). In der dritten Vorlesungswoche wurde eine
Interviewstudie pilotiert, deren Ziel es war, den Prozess der Beweiskonstruktionen der Studierenden
genauer analysieren zu kdnnen. Inhalt des Interviews waren die Konstruktion eines formalen und
eines generischen Beweises und die anschlieende Diskussion der konkreten Beweisproduktionen (s.
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Abschnitt 5.3.2.2). Um {berprifen zu kénnen,

welche Probleme die Studierenden genau mit Qualitative Analyse
. . von Hausaufgaben-
dem Konzept des generischen Beweises haben bearbeftungen (2)

bzw. welche Fehlvorstellungen in Bezug auf den

Pilotierung einer

Nutzen von Beispielen im Beweisprozess : :
Interviewstudie

vorliegen, wurde in der vorletzten

Vorlesungssitzung im Wintersemester 2012/13 -

_ . 8 | _ / Durchfiihrung 2012/13 m
ein Bewertungstest durchgefihrt, in deren : :
Kontext die Studierenden verschiedene, auch ) :

fehlerhafte generische Beweise bewerten sollten Beweisbewertungs :l"a'Y’e ei"el'; )
-test
(s. Abschnitt 5.3.2.3). SchlieRlich stellte sich auch e ausuraufgabe (1)

die Frage, inwiefern die Studierenden nach dem Abbildung 26: Uberblick iiber die im Wintersemester
Besuch der Lehrveranstaltung in der Lage waren, 2012/13 erfolgten Studien

generische und formale Beweise zu konstruieren.

Aus diesem Grund wurden die Bearbeitungen einer Aufgabe aus der Modulabschlussklausur

analysiert (s. Abschnitt 5.3.2.4).

5.3.2.1 Qualitative Analyse von Hausaufgabenbearbeitungen zum generischen und zum
formalen Beweis
Forschungsanliegen und Forschungsfragen

Nach den ersten beiden Wochen des Wintersemesters 2012/13 wurde die bereits im Wintersemester
2011/12 durchgefihrte Studie Uber die qualitative Analyse von Hausaufgabenbearbeitungen (vgl.
Abschnitt 5.2.2.2) wiederholt, auch, um dberprifen zu koénnen, ob die vorgenommenen
Modifikationen der Lehrveranstaltung in die richtige Richtung wiesen. Der einzige Unterschied
bestand in dieser Durchflihrung darin, dass entsprechend den Veranderungen der Lehrveranstaltung
in der Aufgabenstellung anstatt von ,operativen Beweisen’ nun von ,generischen Beweisen’
gesprochen wurde. Die Leitfragen zur Auswertung der Studie waren wie folgt:

o Leitfrage zur Auswertung [5]: Welche Begriindungen fiihren Erstsemesterstudierende an,
wenn sie aufgefordert werden, einen generischen Beweis zu fihren? Inwiefern lassen sich
dabei Unterschiede zwischen den Beweisbearbeitungen der Studierenden im
Wintersemester 2011/12 und 2012/13 ausmachen?

o Leitfrage zur Auswertung [6]: Welche Begriindungen fiihren Erstsemesterstudierende an,
wenn sie aufgefordert werden, einen formalen Beweis zu fiihren? Inwiefern lassen sich dabei
Unterschiede zwischen den Beweisbearbeitungen der Studierenden im Wintersemester
2011/12 und 2012/13 ausmachen?

Methode

Den Studierenden wurde in der ersten Hausaufgabe die gleiche Aufgabe (liber die Summe aus einer
ungeraden Zahl und ihrem Doppelten) wie im vorherigen Durchgang gestellt, nachdem sie zwei
Vorlesungssitzungen und eine Kleingruppenibung besucht hatten. Die Aufgabenbearbeitungen
wurden eingescannt und in das in Abschnitt 5.2.2.2 vorgestellte Kategorienschema eingeordnet. Da
der Aufgabenteil der Formulierung der Behauptung mit Buchstabenvariablen (vgl. Aufgabenstellung
in  Abschnitt 5.2.2.2) aufgrund der vorgenommenen Eingrenzung (s.0.) nicht weiter im
Forschungsinteresse stand, wurde diese Teilaufgabe in dieser Studie nicht untersucht.
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Entsprechendes gilt auch fir die Auswertung der formalen Fehler im Umgang mit Variablen in den
Bearbeitungen zum formalen Beweis.

Ergebnisse®

Beantwortung der Leitfrage zur Auswertung [5]: Welche Begriindungen fiihren
Erstsemesterstudierende an, wenn sie aufgefordert werden, einen generischen Beweis zu fiihren?
Inwiefern lassen sich dabei Unterschiede zwischen den Beweisbearbeitungen der Studierenden im
Wintersemester 2011/12 und 2012/13 ausmachen?

Im Wintersemester 2012/13 bestanden 28,1% der Bearbeitungen zum generischen Beweis aus
reinen Beispielbetrachtungen (E1); im vorherigen Durchgang lag der entsprechende Anteil noch bei
67,9% (siehe Tabelle 10). Dementsprechend hat der Anteil mit Bearbeitungen, in denen insgesamt
Argumente deutlich werden (P1 + P2 = 68,4%) im Wintersemester 2012/13 stark zugenommen.
Insgesamt konnten dabei 42,1% Bearbeitungen als vollstindige generische Beweise gewertet
werden, im Wintersemester 2011/12 lag der Anteil dagegen nur bei 11,3 %.

Kategorie Haufigkeiten
WS 11/12 WS 12/13
EO 3(5,7 %) 4(3,5 %)
E1 36 (67,9 %) 32 (28,1 %)
P1 8 (15,1 %) 30 (26,3 %)
P2 6 (11,3 %) 48 (42,1 %)
Summe 53 (100 %) 114 (100 %)

Tabelle 10: Ergebnisse bzgl. der Bearbeitungen zum generischen (bzw.
operativen) Beweis (WS 2011/12 und WS 2012/13)

Beantwortung der Leitfrage zur Auswertung [6]: Welche Begriindungen fiihren
Erstsemesterstudierende an, wenn sie aufgefordert werden, einen formalen Beweis zu fiihren?
Inwiefern lassen sich dabei Unterschiede zwischen den Beweisbearbeitungen der Studierenden im
Wintersemester 2011/12 und 2012/13 ausmachen?

Vergleicht man die Ergebnisse bzgl. der Bearbeitungen zum formalen Beweis, so fallt zunachst auf,
dass der Anteil der Bearbeitungen ohne erkennbare Argumentation (P2) von 14,3 % (Wintersemester
2011/12) auf 32,2% (Wintersemester 2012/13) angestiegen ist (vgl. Tabelle 11). Dementsprechend
liegt der Anteil der Bearbeitungen, die eine Argumentation beinhalten (P3 + P4), im Wintersemester
2012/13 bei 85,5% und 40,7 % der Beweiskonstruktionen konnten als korrekte formale Beweise
gewertet werden.

Kategorie Haufigkeiten
WS 11/12 WS 12/13
P1 1(1,8 %) 11 (9,3 %)
P2 8 (14,3 %) 38 (32,2 %)
P3 18 (32,1 %) 21 (17,8 %)
P4 29 (51,8 %) 48 (40,7 %)
Summe 56 (100 %) 118 (100 %)

Tabelle 11: Ergebnisse bzgl. der Bearbeitungen zum formalen Beweis
(WS 2011/12 und WS 2012/13)

** Die folgenden Ergebnisse wurden auch in Kempen (2013) veroffentlicht.
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Diskussion der Ergebnisse

Vergleicht man die Ergebnisse der Beweisbearbeitungen aus den Wintersemestern 2011/12 und
2012/13, so fallen zunidchst die groRen Unterschiede bzgl. der Anzahl der kategorisierten
Bearbeitungen auf (WS 2011/12: n=53 bzw. n=56, WS 2012/13: n=114 bzw. n=118). Der Unterschied
ist dabei nicht einer unterschiedlichen Teilnehmerzahl der Lehrveranstaltung geschuldet, sondern
darin begriindet, dass im ersten Durchgang der Lehrveranstaltung, als der Verfasser dieser Arbeit
noch nicht in der Veranstaltung mitgearbeitet hat, nicht alle Hausaufgabenbearbeitungen
eingescannt wurden und somit spater nicht fir die Kategorisierung zur Verfligung standen. Aufgrund
dieser grofRen Unterschiede bzgl. der zu betrachtenden Grundgesamtheit erscheint ein Vergleich der
erhaltenen absoluten und relativen Haufigkeiten fragwiirdig. Auch sind in der Zahl der Studierenden
des Wintersemesters 2012/13 diejenigen enthalten, die durch die Modulpriifung im vorherigen Jahr
durchgefallen waren und nun die Veranstaltung zum zweiten Mal besuchten. Solche Begebenheiten
verfalschen offensichtlich die Ergebnisse, wodurch eine entsprechende Interpretation nur mit groRRer
Vorsicht erfolgen kann. Als solch eine vorsichtige Interpretation sei hier aber angemerkt, dass die
Ergebnisse bzgl. der Bearbeitungen zum generischen Beweis dahingehend gedeutet werden kénnen,
dass die in der Lehrveranstaltung vorgenommenen Malnahmen (explizite Kommunikation von
Normen, Diskussion typischer Fehlvorstellungen und Integration entsprechender Aufgaben) in die
richtige Richtung zu deuten scheinen.

Besonders problematisch erscheinen dagegen in diesem Durchgang die Ergebnisse bzgl. der
Konstruktion des formalen Beweises. Dieses Resultat mag der Tatsache geschuldet sein, dass die
Betonung des Konzepts der generischen Beweise zu Beginn der Lehrveranstaltung in gewisser Weise
zu einer Vernachlassigung der Thematik des formalen Beweises gefiihrt hat.

5.3.2.2 Pilotierung einer Interviewstudie zum Beweisen
Forschungsanliegen

Bei der bisherigen Forschung zu den generischen und formalen Beweisen waren die Fragen offen
geblieben, welche Aspekte den Studierenden bei den Beweiskonstruktionen genau Probleme
bereiten und inwiefern sie die verschiedenen Beweiskonzepte liberhaupt verstehen und fir sich
akzeptieren. Aus diesem Grund wurde im Wintersemester 2012/13 eine Videostudie zum Beweisen
pilotiert. Die Hauptdurchfiihrung dieser Studie erfolgte im Wintersemester 2013/14 (vgl. Abschnitt
5.4.2.2). Aus diesem Grund wird bei der folgenden Beschreibung der Pilotierung auf eine detaillierte
Darstellung der erhaltenen Ergebnisse verzichtet. Das Interesse der Ausfiihrungen liegt auf den
Erkenntnissen, die fur die Hauptdurchfliihrung dieser Studie gezogen werden konnten. Aus diesem
Grund wird an dieser Stelle auch auf die explizite Formulierung von Forschungsfragen verzichtet. Im
Fokus des Interesses standen die Beweisansatze und -Konstruktionen der Studierenden bei formalen
und generischen Beweisen.

Durchfiihrung der Pilotierung

Aus jeder Kleingruppeniibung der Lehrveranstaltung wurden unter den Freiwilligen jeweils zwei
Studierende ausgewahlt. Diese sollten zeitgleich zu ihrer Kleingruppeniibung dieselbe Aufgabe
bearbeiten wie ihre Kommilitonen. Somit ergab sich fir die Probanden der Studie kein
Mehraufwand. Die zu bearbeitende Aufgabe war hierbei:

157



Aufgabe
Beweisen Sie die nachfolgende Behauptung mit einem generischen und einem formalen Beweis. Formulieren Sie
vor dem formalen Beweis zundchst die Behauptung mit Variablen.

Eine ungerade Quadratzahl ist immer um 1 gréf3er als ein Vielfaches von 4.

Diese Aufgabe entstammt Leuders (2010, S. 45). Sie wurde fiir die vorliegende Studie ausgewadhlt, da
hier eine Vielzahl verschiedener Beweiskonstruktionen maoglich ist (vgl. hierzu die Beweisbeispiele in
ebd., S. 45ff.). Fir die Erarbeitung der Aufgabe wurde den Studierenden Papier ausgehandigt, das als
,Konzeptpapier” gekennzeichnet war. Fir die anschlieRende Niederschrift ihrer Ergebnisse erhielten

“*> Den Studierenden war es hierbei freigestellt,

sie Papierbogen mit der Aufschrift ,Reinschrift
inwieweit sie die Aufgabe gemeinsam oder alleine bearbeiten wollten; allerdings sollten sie sich vor

der finalen Reinschrift auf eine gemeinsame Losung einigen.

Wahrend des Ablaufs der 90-minttigen Studie wurden alle Beteiligten durch zwei Videokameras
gefilmt. Eine Kamera wurde zwischen den Probanden positioniert, um alles aufzuzeichnen, was von
ihnen geschrieben wurde. Die andere Kamera filmte die Gesamtansicht. Alles Gesprochene wurde
zusatzlich durch ein Mikrophon aufgezeichnet und anschlieRend transkribiert.

Aus der Pilotierung der Studie gewonnene Erkenntnisse

Von den flinf Studierendenpaaren, die an dieser Studie teilnahmen, scheiterten vier an der
Konstruktion des generischen und des formalen Beweises. Bei der Erarbeitung des generischen
Beweises schien den Studierenden nicht klar zu sein, was sie bei dieser Behauptung innerhalb der
Zahlenbeispiele untersuchen sollten, um eine beispiellibergreifende Struktur ausmachen zu kénnen.
Im formalen Beweis kamen die Studierenden dieser vier Gruppen nicht liber eine algebraische
Darstellung des Quadrats einer ungeraden Zahl (,,(2n + 1) = 4n? + 4n + 1“) hinaus. Der fiinften
Gruppe gelang dagegen sowohl die Konstruktion des generischen als auch des formalen Beweises.
Innerhalb der Untersuchung konkreter Beispiele entdeckten sie den Zusammenhang, dass bei der
Quadrierung einer ungeraden Zahl, dargestellt etwa als (2 - 3 + 1), aufgrund der ersten binomischen
Formel immer der Faktor 4 entsteht und am Ende die Zahl 1 addiert wird®*. Diese Erkenntnis
Ubertrugen sie auf den formalen Beweis und verifizierten hier die Behauptung, dass fiir alle n € N:
(2n+ 1)? = 4- b + 1 gilt, wenn b := n? + n gesetzt wird.

Die anschlieBende Besprechung der Beweiskonstruktionen der Studierenden erwies sich als nur
wenig ergiebig. Es fiel den Studierenden offensichtlich schwer, ihre Beweiskonstruktionen eingehend
zu beschreiben und zu reflektieren. Dies kann dem Umstand geschuldet sein, dass sie bereits mehr
als 60 Minuten mit der Bearbeitung der Aufgabe beschéaftigt waren.

Aus der Pilotierung der Studie lieSen sich die folgenden Erkenntnisse ableiten:

(1) Die Unterscheidung der Papierbogen in ,Konzeptpapier” und ,Reinschrift“ erwies sich als
sinnvoll und gewinnbringend fiir die Unterscheidung der Beweiserarbeitung und der finalen
Niederschrift.

* Diese Unterscheidung von ,,Konzeptpapier” und ,Reinschrift” entstammt Ostsieker und Biehler (2012) und
ermoglicht bei der nachtraglichen Analyse eine genaue Betrachtung der Phase der Beweisbearbeitung und
derjenigen Aspekte, die die Probanden fir ihre finale Reinschrift des Beweises auswahlen.
*2:34+41)2=(2"3)%4+2-(2°3)"1+12=4-32+4-3+1=4-(9+3)+1
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(2) Die Verwendung von zwei Videokameras (lokale und globale Sicht) und eines Mikrophons
erwies sich als sinnvoll.

(3) Die vorliegende Aufgabe erwies sich als schwer fiir die Studierenden. Viele hatten bereits mit
dem Quadrieren der algebraischen Darstellung einer ungeraden Zahl Probleme. Auch bietet
die Betrachtung konkreter Beispiele hier nur bedingt Ansatzpunkte fiir die Konstruktion eines
generischen Beweises.

(4) Die Diskussion der Beweisproduktionen der Studierenden am Ende der Studie muss durch
gezielte Impulse angeleitet und strukturiert werden, damit sich diese als gewinnbringend
erweisen kann.

Anmerkung

Da die aus der Pilotierung gewonnenen Erkenntnisse deren methodische Durchflihrung betreffen
und nicht die erhaltenen Resultate im Fokus stehen, wird an dieser Stelle auf eine Diskussion
entsprechender Glitekriterien der Forschung verzichtet werden.

5.3.2.3 Beweisbewertungstest

Forschungsanliegen und Forschungsfragen

Ein Ergebnis der bis dato erfolgten Forschung im Kontext der Lehrveranstaltung waren die
Uberraschend groBen Verstandnisschwierigkeiten, die die Studierenden mit dem Konzept des
generischen Beweises hatten. Welche Aspekte des generischen Beweises hier aber genau als
problematisch anzusehen waren, blieb nach wie vor unklar. Neben den diese Beweiskonzeption
konstituierenden Elementen (generische Beispiele, generisches Argument und narrative Begriindung
(vgl. Abschnitt 2.1.3)), missen dabei auch die in der Literatur angefiihrten Fehlvorstellungen zum
epistemologischen Gehalt von bloRen Beispielbetrachtungen bericksichtigt werden. Auf der
Grundlage dieser Problemsituation wurde ein Fragebogen konstruiert, mit dessen Hilfe die folgende
Leitfrage zur Auswertung beantwortet werden sollte:

o |eitfrage zur Auswertung [7]: Wie bewerten die Studierenden verschiedene
Begriindungstypen (unzuldssige Verallgemeinerungen, unvollstandige generische Beweise,
falsche und korrekte deduktive Schlussfolgerungen) in einem bekannten und einem
unbekannten Sachverhalt?

Theoretischer Hintergrund

In der Literatur werden verschiedene Untersuchungen dargestellt, in denen Lernende und Lehrende
beispielgebundene Beweise bewerten sollen (s. Abschnitt 2.4.2). Hierbei steht meist eine
Ubergeordnete ,Akzeptanz als Beweis’ im Vordergrund. Die Bewertung verschiedener und damit auch
explizit falscher beispielgebundener Beweisproduktionen wurde bislang nicht eingehend untersucht.

Fehlvorstellungen bzgl. der Akzeptanz von bloBen Beispielbetrachtungen als korrekter Beweis
wurden prominent von Martin und Harel (1989) naher untersucht. In ihrer Studie bewerteten 101
Lehramtsstudierende (Grundschule) Beweisbearbeitungen zu einer bekannten Behauptung (,Wenn
die Quersumme einer ganzen Zahl durch drei teilbar ist, dann ist auch die Zahl selbst durch 3 teilbar”)
und einer unbekannten Behauptung (,Wenn a ein Teiler von b und b ein Teiler von c ist, dann ist
auch a ein Teiler von c“). Im Folgenden werden die Auflistung verschiedener Arten von induktiven
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und deduktiven Begrindungen aus Martin und Harel (1989, S. 43f.) wiedergegeben und deren
Charakteristika paraphrasiert. Aufbauend auf diesen verschiedenen Begriindungsformen wurde der
Beweisbewertungstest fiir die vorliegende Studie konstruiert.

In Anlehnung an Anderson (1985) thematisieren die Autoren fiUnf unzureichende induktive
Begriindungen: (1) ,Examples” (Die Giiltigkeit der Behauptung wird an einem konkreten Beispiel
verdeutlicht), (2) ,Pattern” (Durch eine geordnete Auflistung von Beispielliberpriifungen wird
suggeriert, dass die Behauptung auch in allen weiteren (mdoglichen) Fallen korrekt sein muss), (3) ,,Big
Number” (Das Testen eines ,beliebigen’ Zahlenbeispiels mit groBen Zahlen soll den Eindruck
erwecken, dass die Behauptung somit fir alle Zahlen gilt) und (4) ,Example and nonexample”
(Zusatzlich zu konkreten Beispielen, die die Behauptung stiitzen, werden Beispiele angegeben, die
nicht die in der Behauptung angegebenen Voraussetzungen erfiillen und in denen die Behauptung
entsprechend nicht wahr ist). Darliber hinaus nutzen die Autoren der Studie auch drei
Bearbeitungsvarianten, die auf deduktiven Argumenten beruhen (vgl. ebd., S. 44f.): (5) ein korrekter
Beweis, (6) ein fehlerhafter Beweis und (7) ein beispielgebundener Beweis (,particular proof”), in
dem die Variablen durch konkrete Zahlen ersetzt wurden.

In der Studie von Martin und Harel (1989) sollten die Studierenden entsprechende
Beweisbearbeitungen fiir den bekannten und den unbekannten Sachverhalt bewerten; allerdings
wurde fur den unbekannten Sachverhalt keine Bearbeitung entsprechend der Form ,Pattern” (s.o.)
angegeben. Die Bewertungen der Beweise wurden auf einer vierstufigen Likert-Skala vollzogen ([1]
»ist kein mathematischer Beweis”, ..., [4] ,,ist ein mathematischer Beweis”). Fir die Interpretation der
Ergebnisse wurden die Beweisbewertungen nach ,geringer Akzeptanz’ ([1]+[2]) und ,hoher
Akzeptanz’ ([3]+[4]) zusammenfasst.

Bezliglich der induktiven Argumentationen stellen die Autoren fest, dass jede dieser
Begriindungsformen von mindestens 50% der Studierenden als korrekter Beweis bewertet wurde
([31+[4]). Signifikante Bewertungsunterschiede zwischen den verschiedenen induktiven
Begriindungsformen konnten dabei nur im bekannten Sachverhalt nachgewiesen werden. Die
korrekten deduktiven Argumente wurden von mehr als 60% der Studierenden mit hoher Akzeptanz
bewertet ([3]+[4]). Die inkorrekten deduktiven Argumentationen wurden dagegen nur von 38% im
bekannten Sachverhalt bzw. von 52% im unbekannten Sachverhalt akzeptiert. Die Autoren der Studie
gelangen schliefllich zu dem Ergebnis, dass Studierende sowohl von induktiven als auch von
deduktiven Begriindungsformen (berzeugt sein kénnen und dass die Akzeptanz einer dieser
Begriindungsformen die andere nicht ausschlieBt. Diese Akzeptanz ist dabei unabhangig davon, ob
sich die Begriindung auf einen bekannten oder unbekannten Sachverhalt bezieht.

Die Konstruktion des Fragebogens

Fiir die vorliegende Untersuchung wurden die induktiven und deduktiven Begriindungen aus der
Studie von Martin und Harel (1989) (s.0.) Ubernommen und durch weitere ergdnzt. Diese
Erganzungen betreffen fehlerhafte Bearbeitungen zum generischen Beweise, bei denen jeweils ein
geforderter Teilaspekt (generische Beispiele, generisches Argument, narrative Begriindung) nicht
erfullt wird. Zu allen diesen verschiedenen Begriindungsformen wurde je ein Beispiel zu einem
bekannten und einem unbekannten Sachverhalt angegeben, die die Studierenden auf einer
flinfstufigen Likert-Skala bewerten sollten ([1] unzureichend, ..., [5] sehr gut). Beziiglich der

160



deduktiven formalen Begriindungen wurden ein falscher und zwei korrekte Beweise angegeben, die
sich jeweils im Grad ihrer formalen Darstellung unterscheiden.

Im Folgenden werden zu den verschiedenen Begriindungsarten jeweils die Beispiele angegeben, die
den Studierenden fiir den bekannten Sachverhalt (,,Die Summe aus einer ungeraden natirlichen Zahl
und ihrem Doppelten ist immer ungerade®) zur Bewertung gegeben wurden. (Fir die Konstruktion
entsprechender ,Begriindungen’ in dem unbekannten Sachverhalt wurde die entsprechende
Behauptung aus der Studie von Martin und Harel (1989) Gbernommen [(,Wenn a ein Teiler von b
und b ein Teiler von c ist, dann ist auch a ein Teiler von c“]), wobei die jeweiligen zu bewertenden
Begriindungen leicht modifiziert wurden.

Die zu bewertenden ,Begriindungen’ im bekannten Sachverhalt zu der Behauptung: ,Die Summe aus einer
ungeraden natiirlichen Zahl und ihrem Doppelten ist immer ungerade“.

I Induktive Begriindungsformen mit unzuldssiger Verallgemeinerung

1. BloBe Beispiele mit unzuldssiger Verallgemeinerung (,,Beispiele”)

3+42-3=3+6=9 ist ungerade
542:-5=5410=15 istungerade

Also stimmt die Behauptung.
2. Beispielkonstruktion gemaR der Fehlvorstellung ,,Big Number*
Wir Uberprifen die Aussage an einer beliebigen, sehr groBen ungeraden Zahl:
537696125 + 2- 537696125 = 537696125 + 1075392250 = 1613088375 (wahr).
Also gilt die Behauptung auch fiir eine beliebig groRe Zahl. Somit wurde die Behauptung bewiesen.

3. Beispielkonstruktion gemaR der Fehlvorstellung ,Pattern”

1+ 2-1 = 142 =3 ist ungerade
3+ 2:3 = 3+6 =9 ist ungerade
54 25 = 54+10=15 ist ungerade
7+ 27 = 7+14=121 ist ungerade
9+ 2:9 = 9+18=27 ist ungerade
11+2-11=11+22 =33 ist ungerade
13+2-13=13+26 =39 ist ungerade
15+2-15=15+30=45 ist ungerade
174+2-17=17+34 =51 ist ungerade
19+2-19=19+38=57 ist ungerade

Also stimmt die Behauptung.
4. Beispielkonstruktion gemaR der Fehlvorstellung ,,Non example“

1+ 2-1 1+2 =3 ist ungerade
4+ 2-4 = 448 =12 ist gerade

An den Beispielen erkennt man das folgende Prinzip: Addiert man zu einer ungeraden Zahl ihr Doppeltes, so
ergibt sich immer eine ungerade Zahl. Addiert man aber zu einer geraden Zahl ihr Doppeltes, so ergibt sich immer
eine gerade Zahl. Also ist die Behauptung fiir alle ungeraden Zahlen wahr und sie wurde bewiesen.
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1l Bearbeitungen zum generischen Beweis

Paraphrase ohne Begriindung
(In der ,narrativen Begriindung’ des generischen Beweises werden lediglich die in den getesteten Beispielen
ausgefiihrten Operationen paraphrasiert, ohne dass weiterfiihrende Argumente tangiert werden.)

9+4+2:-9=9+18=27
13+2-13=13+26 =39
17+2-17=17+34 =51

An den Beispielen erkennt man das folgende Prinzip: Addiert man zu einer ungeraden Zahl ihr Doppeltes, so
ergibt sich immer eine ungerade Zahl. Dies gilt fir alle natirlichen Zahlen. Also ist die Behauptung fir alle
ungeraden Zahlen wahr und somit wurde die Behauptung bewiesen.

Unvollstindiger generischer Beweis

(In der den generischen Beispielen folgenden narrativen Begriindung fehlt ein Argument, um die Behauptung
vollsténdig und allgemeingiiltig zu verifizieren.)

11+2-11=11+22=3-11
3+42:3=34+46=3-3
74+2:7=7+14=3-7

Vergleicht man die Beispiele miteinander, so erkennt man, dass das Ergebnis immer ungerade ist und auch immer
gleich dem Dreifachen der Ausgangszahl. Da dies fiir alle natirlichen Zahlen gilt, ist somit die Behauptung
bewiesen.

Korrekter und vollstandiger generischer Beweis

11+2-11=11422=33
342:3=346=9
742:7=7+14=21

Vergleicht man die Beispiele miteinander, so erkennt man, dass die Summe immer aus einem ungeraden und
einem geraden Summanden besteht, da das Doppelte einer ungeraden Zahl immer gerade ist. Da die Summe aus
einer ungeraden und einer geraden natirlichen Zahl immer ungerade ist, ist somit das Ergebnis dieser Rechnung
flr alle ungeraden Zahlen eine ungerade Zahl.

1l Bearbeitungen zum formalen Beweis

8.

Falscher formaler Beweis

Sei a € N eine ungerade Zahl, beliebig aber fest. Dann ist a = (2k — 1) fur ein k € N. Also gilt:

= Rk-1)+2-2k-1) = 3-2k—-1)
o 2k — 1+ 4k -2 = 6k — 3
o 6k —3 = 6k — 3
= 0 = 0

Korrekter ,formaler’ Beweis mit groBerem narrativen Anteil

Sei a € N eine beliebige, aber feste ungerade Zahl. Danngilt:a +2-a =3-a.
Da das Dreifache einer ungeraden Zahl immer ungerade ist, ist damit die Behauptung bewiesen.
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10. Korrekter formaler Beweis mit groBerem Anteil algebraischer Umformungen

Sei a € N eine ungerade Zahl, beliebig, aber fest. Dannist a = (2k — 1) fur ein k € N.

Alsogilt: a+2a=Q2k—1)+2-2k—1)=2k—1+42k—2=6k -3 =2-(3k—1) — 1, also eine ungerade
Zahl, da um 1 kleiner als eine gerade Zahl.

g.e.d.

Datenerhebung

Die Durchfiihrung der Befragung fand in der vorletzten Vorlesungssitzung des Wintersemesters
2012/13 statt. Die Studierenden hatten fir das Ausfillen des Fragebogens 45 Minuten Zeit.
Insgesamt nahmen 94 Studierende an dieser Umfrage teil.

Ergebnisse

Beantwortung der Leitfrage zur Auswertung [7]: Wie bewerten die Studierenden verschiedene
Begriindungstypen (unzuldssige Verallgemeinerungen, unvollstindige generische Beweise, falsche
und korrekte deduktive Schlussfolgerungen) in einem bekannten und einem unbekannten
Sachverhalt?

Die Bewertungen der Studierenden wurden fiir die Auswertung der Daten wie folgt
zusammengefasst: Die Bewertungen der Begriindungen mit ,, 1“ und ,,2“ auf der Likert-Skala wurden
als negative Bewertung als Beweis, die Bewertung ,,3“ als neutral und die Bewertungen ,,4“ und ,5“
als positive Bewertung als Beweis zusammengefasst. Die Ergebnisse bzgl. der verschiedenen
Begriindungsformen fiir den bekannten und unbekannten Sachverhalt werden in der Tabelle 12 und
der Abbildung 27 dargestellt.

Bekannter Sachverhalt (n=94) unbekannter Sachverhalt (n=94)
negativ | neutral | positiv negativ | neutral | positiv
Induktive Begriindungsformen
Beispiele 90,3 6,5 3,2 78,3 18,5 3,3
Big Number 89,4 8,5 2,1 90,2 7,6 2,2
Pattern 74,2 15,1 10,8 75,3 18,3 6,5
Non example 66,3 22,5 11,2 83,5 14,3 2,2
Bearbeitungen zum generischen Beweis
Paraphrase 62,8 20,2 17 35,2 37,5 27,3
unvollist. Gen. Bew. 20,2 39,3 40,4 20,7 31,5 47,8
Gen. Bew. 18,3 20,4 61,3 6,5 25 68,5
Bearbeitungen zum formalen Beweis
formal & falsch 63 15,2 21,7 50 20,2 29,8
formal & narrativ 39,1 18,5 42,4 15,4 22 62,6
formal 44 16,7 78,9 8,7 15,2 76,1

Tabelle 12: Ergebnisse bzgl. der studentischen Bewertungen der Begriindungsformen im bekannten und unbekannten
Sachverhalt; Angaben in Prozent, zusammengefasst nach den Kategorien ,negativ” (Bewertungen [1] und [2]), ,neutral”
(Bewertung [3]) und ,positiv” (Bewertungen [4] und [5])

Betrachtet man die Ergebnisse bzgl. der induktiven Begriindungsformen (,Beispiele”, ,Big Number”,
,Pattern” und ,Non example”, vgl. Tabelle 12), so wird deutlich, dass diese Begriindungen sowohl im
bekannten als auch im unbekannten Kontext von der groRen Mehrheit der Studierenden negativ
bewertet wurden. In den Bearbeitungen, die hier dem generischen Beweis zugeordnet werden,
wurde die paraphrasierende Begriindung (,Paraphrase”) im bekannten Sachverhalt von 62,8%,
allerdings nur von 35,2% im unbekannten Sachverhalt negativ bewertet. Im unbekannten Sachverhalt
scheint diese (bloRe) Paraphrasierung der Rechnung die Bearbeitung in den Augen der Studierenden
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aufzuwerten. Dies scheint folgerichtig im Sinne der Normen der Lehrveranstaltung, die fir einen
generischen Beweis neben bloRen Beispielbetrachtungen eine narrative Argumentation vorsehen. In
diesem Sinne sind die Begrindungsformen ,Paraphrase” tatsdchlich besser als die vorherigen
»induktiven Begriindungsformen® zu beurteilen. Der unvollstdndige generische Beweis wurde mit
40,4% im bekannten und mit 47,8% im unbekannten Sachverhalt deutlich besser bewertet als die
paraphrasierende Argumentation (17% im bekannten bzw. 27,3% im unbekannten Sachverhalt). Die
beste Bewertung erhielt der vollstdndige generische Beweis mit 61,3% positiver Zustimmung im
bekannten und mit 68,5% im unbekannten Sachverhalt. Bemerkenswert ist hierbei allerdings, dass
die positiven Bewertungen relativ gering ausfallen, obwohl diese Bearbeitungen als vollstandige
generische Beweise konstruiert wurden.

bekannter Sachverhalt unbekannter Sachverhalt
100%
80% -
60% - ® negativ
40% = neutral
20% - -
positiv
% - T T
Beispiele Big Number Pattern Non Beispiele Big Pattern Non
example Number example
100%
80%
60% _— | )
0% B negativ
6 | |
20% | = = neutral
% ; E\ - == positiv
Paraphrase unvollst. Generischer Paraphrase unvollst. Generischer
Generischer Beweis Generischer Beweis
Beweis Beweis
100%
80%
60% - — —  Binegativ
40% - [ = neutral
20% 1 B = = positiv
formal & falsch formal & formal & formal & formal
narrativ falsch narrativ

Abbildung 27: Ergebnisse bzgl. der studentischen Bewertungen der Begriindungsformen im bekannten und unbekannten
Sachverhalt (n=94); Angaben in Prozent, zusammengefasst nach den Kategorien ,negativ“ (Bewertungen [1] und [2]),
,heutral” (Bewertung [3]) und ,,positiv” (Bewertungen [4] und [5])

Bei den Bearbeitungen zum formalen Beweis wurde der falsche formale Beweis von 63% im
bekannten und von 50% im unbekannten Sachverhalt als negativ bewertet. Die korrekten formalen
Beweise mit hoheren algebraischen Anteilen wurden in beiden Sachverhalten positiver bewertet als
die formalen Beweise mit narrativen Anteilen.
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Diskussion der Ergebnisse

Zunachst muss bei dieser Studie bzgl. der verwendeten Items angemerkt werden, dass nicht sicher
gesagt werden kann, wie diese von den Probanden gelesen bzw. verstanden wurden. So kann der
Betrachter eines Items der Kategorie ,Pattern” bei einer vergleichenden Durchsicht der gegebenen
Beispiele durchaus ein beispielibergreifendes Muster abstrahieren und dementsprechend die
Bearbeitung fir sich als korrekten (unvollstandigen) generischen Beweis akzeptieren. Die erhaltenen
(eher ablehnenden) Ergebnisse sprechen allerdings nicht dafiir, dass von den Studierenden
Erkenntnisse in die Items hereingelesen wurden, die so nicht intendiert waren. Auch muss an dieser
Stelle offen gelassen werden, aufgrund welcher Aspekte die Studierenden ihre jeweiligen
Bewertungen vorgenommen haben. Aus diesen Grinden missen entsprechende Ergebnisse mit
Vorsicht betrachtet werden. Die folgende, entsprechend vorsichtige Interpretation der Ergebnisse
erscheint dabei zuldssig.

Betrachtet man die Ergebnisse, so kann festgehalten werden, dass die bloRen Beispielbetrachtungen
von der groBen Mehrheit der Studierenden eher nicht als ,akzeptabler Beweis’ betrachtet werden.
Die Probleme der Studierenden mit dem Konzept des generischen Beweises scheinen somit nicht in
moglichen Fehlvorstellungen zu bloBen empirisch-induktiven Verifikationen begriindet zu sein. Die
verschiedenen Bearbeitungen, die im Kontext generischer Beweise zu sehen sind, werden mit
steigender Qualitdt (von ,Paraphrase” Uber ,unvollstéandiger generischer Beweis” zu ,vollstandiger
generischer Beweis“) auch besser von den Studierenden bewertet. Es ist allerdings auffallig, dass die
vollstandigen generischen Beweise nur von etwa Zweidritteln der Studierenden als positiv bewertet
werden. Hier stellt sich die Frage, wie innerhalb der Lehrveranstaltung eine Begriindungsform
vermittelt werden kann (bzw. soll), die von den Studierenden nicht als valide Verifikation akzeptiert
wird? Bzgl. der Bewertungen der formalen Beweise lasst sich festhalten, dass die falschen Beweise
von der Mehrheit der Studierenden negativ bewertet werden. Die bloRe Verwendung von
algebraischen Symbolen scheint somit nicht allein die Korrektheit mathematischer Beweise fiir die
Studierenden zu konstituieren. Die korrekten formalen Beweise werden insgesamt von der Mehrheit
der Studierenden positiv bewertet, bzw. sogar am positivsten von allen Bearbeitungen.

Flr die Lehrveranstaltung folgte hieraus, dass der Sinn und Gehalt generischer Beweise thematisiert
werden musste. Dabei durfte es nicht um ein ,Uberreden’ gehen, vielmehr sollten der Mehrwert und
die Grenzen dieser Beweisform erortert werden. Mit diesen Resultaten war gleichzeitig auch ein
Gegenstand fir die weitere Forschung gegeben: Inwiefern (bzw. bzgl. welcher Aspekte) werden
generische Beweise von Studierenden ,akzeptiert’?

5.3.2.4 Analyse der Beweiskonstruktionen der Studierenden in der Modulabschlussklausur
im Wintersemester 2012/13

Forschungsanliegen und Forschungsfrage

Waren in der Analyse der ersten Hausaufgabe der Studierenden schon einige Erkenntnisse Uber
deren Beweiskonstruktionen gewonnen worden, so wurden in der qualitativen Interviewstudie
weitere Probleme der Studierenden bei der Konstruktion von formalen und generischen Beweisen
deutlich. Eine offene Frage blieb aber weiterhin, inwiefern die Studierenden nach der
Lehrveranstaltung in der Lage waren, formale und generische Beweise zu konstruieren.
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o Leitfrage zur Auswertung [8]: Welche Begriindungen fiihren Erstsemesterstudierende nach
der Lehrveranstaltung an, wenn sie aufgefordert werden, einen generischen bzw. einen
formalen Beweis zu fihren?

Fir die Beantwortung dieser Forschungsfrage wurde in die Modulabschlussklausur im
Wintersemester 2012/13 eine Aufgabe eingefigt, in der es galt, eine Behauptung mit einem
generischen und einem formalen Beweis zu verifizieren.

Aufgabe und Aufgabenanalyse

Die hier thematisierte, zu bearbeitende Aufgabe in der Modulabschlussklausur war die folgende:

Aufgabe 4: Generischer und formaler Beweis
[Hinweis: Fiir eine natlirliche Zahl n € N heiRt eine Zahl t € N Teiler von n, wenn ein a € N existiert mitn = t-a.]

Wir betrachten die folgende Behauptung:
Fira,b,c e N gilt: Wenn a ein Teiler von b ist und a auch ein Teiler von c ist, dann ist a ein Teiler von (b + ).

(a) Beweisen Sie die Behauptung mit einem generischen Beweis.
(b) Beweisen Sie die Behauptung mit einem formalen Beweis.

Diese Aufgabe entstammt Padberg (1997, S. 58) und wurde deshalb ausgewahlt, weil die Beweisidee
(Anwendung der Teilerrelation und des Distributivgesetztes, s.u.) bei der Betrachtung von konkreten
Beispielen ,gut’ auszumachen ist (vgl. Padberg 1997, S. 58ff.). Diese fiir den generischen Beweis
nutzbare Strategie entspricht auch dem Vorgehen in dem entsprechenden ,géngigen’ formalen
Beweis (s.u.).

Konstruktion des generischen Beweises

Im Sinne der in der Lehrveranstaltung aufgestellten Normen beginnt ein generischer Beweis mit der
Betrachtung konkreter Beispiele. Bei dieser ersten Uberpriifung der Giiltigkeit der Behauptung soll
weiter nach einem beispiellibergreifenden Schema (i.e. einem generischen Argument) gesucht
werden, durch dessen Anwendung erklart werden kann, warum die Behauptung in allen moglichen
Fallen korrekt ist. Diese Argumentation, welche auf dem generischen Moment aufbaut, muss
schlielilich expliziert werden.

Das generische Argument ergibt sich bei der vorliegenden Behauptung zunachst aus dem Einsetzen
der Teilerrelationen in die zu betrachtende Summe. Als mathematische Argumente werden hierbei
das Distributivgesetz und die Eigenschaft genutzt, dass die Summe zweier natiirlicher Zahlen wieder
eine natdirliche Zahl ist. Diese Argumente missen hier allerdings nicht expliziert werden, da deren
Anwendung im Kontext der Lehrveranstaltung nicht problematisiert worden ist.

Ein korrekter generischer Beweis im Sinne der Lehrveranstaltung ist dann:

Beispiel (1):
10 und 12 sind durch 2 teilbar. 10 = 2-5und 12 = 2-6. Fir die Summe gilt dann:
22=10+12=2-5+2-6 = 2-(5+6).

Beispiel (2):
10 und 40 sind durch 5 teilbar. 10 = 5-2 und 40 = 5- 8. Fiur die Summe gilt dann:
50=104+40=5-2+5-8= 5-(2+8).
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In den Beispielen wird die Summe zweier Zahlen betrachtet, die beide durch eine dritte Zahl teilbar
sind. Die Summanden lassen sich entsprechend immer als Vielfache dieser dritten Zahl schreiben.
Durch obige Umformungen erhdlt man somit immer die Darstellung der Summe als Produkt dieser
dritten Zahlen und einer natlrlichen Zahl. Also ist auch die Summe der beiden Zahlen durch die dritte
Zahl teilbar.

Konstruktion des formalen Beweises

Fir den algebraischen Nachweis, dass unter den gegebenen Voraussetzungen a ein Teiler von
(b + c) ist, gibt es verschiedene Mdglichkeiten. Die Giber der konkreten Aufgabe gegebene Definition
von Teilbarkeit macht deutlich, dass eine Losungsmoglichkeit durch die Anwendung der (aus der
Vorlesung bekannten) Faktorschreibweise der Teilerrelation besteht. Diese gilt es sowohl fiir b als
auch fir ¢ zu benutzen. AnschlieBend miissen die entsprechenden Gleichungen in die Summe
(b + c) eingesetzt werden, wodurch schlieRlich wieder mithilfe der obigen Definition nachgewiesen
werden kann, dass diese Summe ein Vielfaches von a ist. Dies ist gleichbedeutend damit, dass a ein
Teiler von (b + c) ist.

Ein korrekter formaler Beweis im Sinne der Lehrveranstaltung ist dann:

Beweis

Seien a, b, c € N beliebig, aber fest.

Zu b e N existierteint;e Nmit: b = a-t;.
Zu c € N existiert ein t,e Nmit: ¢ = a-t,.

Danngiltb+c=a-t; +a-t, =a- (t +t,) mit (t; + t,) € N. Somit ist a ein Teiler von (b + ¢).
Analyse der Bearbeitungen und Neuauswertung fiir die vorliegende Arbeit

Wahrend der Klausurkorrektur wurden die Bearbeitungen zu der Beweisaufgabe anonymisiert und
eingescannt. Die Ergebnisse bzgl. der Kategorisierung wurden in eine Tabelle eingetragen, so dass
keine personenbezogenen Daten mehr nachvollzogen werden konnten. Fiir die Kategorisierung der
Daten wurde bei Durchfiihrung der Studie zunachst das Kategorienschema verwendet, das in
Abschnitt 5.2.2.2 dargestellt und bereits in vorherigen Studien eingesetzt wurde (s. Abschnitt 5.2.2.2
und Abschnitt 5.3.2.1). Fir die Abfassung dieser Dissertation wurden die Aufgabenbearbeitungen
(Scans) erneut ausgewertet und in ein spater entwickeltes Kategorienschema eingeordnet, um
innerhalb dieser Arbeit eine bessere Vergleichbarkeit der Ergebnisse zu ermdglichen. Das im
Folgenden verwendete Kategoriensystem zur Erfassung der Qualitdt der Begriindungen (bzw.
Beweise) und dessen Entwicklung wurde in Abschnitt 3.3.1 erldutert; fir eine bessere Lesbarkeit der
Darstellungen und die Vermeidung von Redundanzen wird an dieser Stelle auf eine genauere
Darstellung des Kategorienschemas verzichtet. Das Kategorienschema zur Erfassung der ,Qualitat der
Begriindungen” wird in Tabelle 13 erldutert, Ankerbeispiele zu den verschiedenen Kategorien
werden in Abschnitt 7.2.4.1 gegeben.
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Bezeichnung Erlduterung

n.b. Die Aufgabe wurde nicht bearbeitet.

Empirisch In der Bearbeitung findet ausschlieBlich eine induktive Priifung der Behauptung
statt.

Pseudo In der Bearbeitung wird die Behauptung paraphrasiert oder es werden falsche

bzw. irrelevante Fakten genannt.

Fragmentarisch Es werden korrekte und relevante fachliche Aspekte genannt, ohne dass eine
Argumentationskette aufgebaut wird.

Argumentation Es wird eine Argumentationskette mit korrekten und relevanten fachlichen
mit Liicke Aspekten aufgebaut, die allerdings eine Licke enthalt.
Vollstandige Die Behauptung wird mithilfe korrekter Argumente vollstandig verifiziert.

Argumentation

Tabelle 13: Kategorienschema zur Erfassung der , Qualitdt der Begriindungen®, verwendet bei der Analyse der
Beweiskonstruktion der Studierenden in der Modulabschlussklausur des Wintersemesters 2012/13

Bei der Durchsicht der (anonymisierten) Scans fiir die Neukategorisierung der Beweisbearbeitungen
war auffallig, dass die Studierenden ,Teilbarkeit’ unterschiedlich operationalisierten, um ihre Beweise
zu konstruieren. Bei der Beobachtung dieses Phanomens ergab sich die Frage, ob ein Zusammenhang
zwischen der verwendeten Operationalisierung von ,Teilbarkeit’ und der erreichten ,Qualitdt der
Begriindung’ ausgemacht werden kann. Um dieser Frage (quasi explorativ) nachgehen zu koénnen,
wurde neben der Qualitat der Bearbeitungen auRerdem codiert, mit welcher Operationalisierung von
,Teilbarkeit’ die Studierenden innerhalb ihrer Beweiskonstruktionen arbeiteten. Fir diese Analyse
wurden drei verschiedene Kategorien verwendet: (i) Verwendung der Faktorschreibweise, (ii)
Verwendung der Quotientenschreibweise und (iii) Verwendung beider Schreibweisen. Die Kategorien
werden in der Tabelle 14 erldutert.

Kategorienbezeichnung Erlduterung Ankerbeispiel
(entnommen aus
Studierendenbearbeitungen)

Verwendung der Fir die Bearbeitung der Beweisaufgabe wird Seien a,b,ceN mit b= a-m und
Faktorschreibweise (,,Faktor®) die Teilerrelation in eine Faktorschreibweise c =a-nmitmmneN.[.]

Ubersetzt.
Verwendung der Fir die Bearbeitung der Beweisaufgabe wird Seien a, b, c € N beliebig, aber fest. So
Quotientenschreibweise die Teilerrelation in eine gilt: bieo b9 L
(,,Quotient”) Quotientenschreibweise libersetzt. @ @
Verwendung beider Fir die Bearbeitung der Beweisaufgabe b=atc=akb+c)=a-i
Schreibweisen (,beide”) werden die Faktor- und die

. . . . k ,
Quotientenschreibweise verwendet. (at)t% =il.]

Tabelle 14: Kategorienschema zur Erfassung der verwendeten Operationalisierung der Teilbarkeitsrelation

%’ Der Nachweis der Teilbarkeit mithilfe der Bruchdarstellung ist in der Zahlentheorie eher uniiblich. An dieser
. . . b . - . . .
Stelle musste gezeigt werden, dass der Quotient % eine natdirliche Zahl ist, um nachzuweisen, dass a ein

Teiler von (b + c) ist. Im Sinne der Normen der Lehrveranstaltung (etwa , Akzeptanz von Vorwissen®, vgl.
Abschnitt 1.1) erscheint es angebracht, diese Herangehensweise der Studierenden an Fragen der Teilbarkeit
zuzulassen.
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Ergebnisse

Beantwortung der Leitfrage zur Auswertung [8]: Welche Begriindungen fiihren
Erstsemesterstudierende nach der Lehrveranstaltung an, wenn sie aufgefordert werden, einen
generischen bzw. einen formalen Beweis zu fiihren?

Die Ergebnisse zu den Bearbeitungen zum generischen und zum formalen Beweis werden in der
Tabelle 15 dargestellt.

Generischer Beweis Formaler Beweis

(n=98) (n=98)
nicht bearbeitet (,,n.b.”) 6 (6,1%) 14 (14,3%)
empirisch (,,emp.”) 13 (13,3%) 0(0,0%)
Pseudo 37 (37,8%) 38 (38,8%)
fragmentarisch (,frag.”) 11 (11,2%) 12 (12,2%)
Argumentation mit Liicke (,,Arg. mit Liicke”) 14 (14,3%) 23 (23,5%)
vollstandige Argumentation (,vollst. Arg.”) 17 (17,3%) 11 (11,2%)
Summe 98 (100%) 98 (100%)

Tabelle 15: Ergebnisse der Bearbeitungen zum generischen und zum formalen Beweis (absolute
und relative Hiufigkeiten [%]) in der Modulabschussklausur im Wintersemester 2012/13

Bei den Ergebnissen ist auffallig, dass bei der Konstruktion des generischen Beweises nur von 13,3%
der Studierenden bloRe Beispielbetrachtungen (,,emp*) angegeben wurden und korrekte Argumente
dagegen insgesamt bei 42,9% der Bearbeitungen ausgemacht werden konnten (,frag.” + , Arg. mit
Licke” + ,vollst. Arg.”), wobei nur 17,3% aller Bearbeitungen als vollstindige Argumentation
gewertet werden konnten. Bemerkenswert ist hierbei der hohe Anteil von Pseudoantworten von
37,8%, also Antworten, in denen nur irrelevante Aspekte zur Verifikation der Behauptung angefiihrt
wurden. Auch bei den Bearbeitungen zum formalen Beweis ist der Anteil von Pseudoantworten mit
38,8% auffillig. Insgesamt wurden in 46,9% der Bearbeitungen korrekte Argumente benannt (,frag.”
+ ,Arg. mit Licke” + ,vollst. Arg.”), aber nur 11,2% der Bearbeitungen konnten als vollstdndige

Argumentationen gewertet werden.

Die Unterteilung der Ergebnisse nach der jeweilig angewendeten Operationalisierung von Teilbarkeit
ermoglicht dabei weitere Einsichten (siehe Tabelle 16). Im Vergleich der Ergebnisse in
Unterscheidung der Operationalisierungen von Teilbarkeit wird deutlich, dass die Bearbeitungen, in
denen die Faktorschreibweise verwendet wird, deutlich besser ausfallen als diejenigen, in denen
mithilfe der Quotientenschreibweise argumentiert wird. Dies betrifft sowohl die Ergebnisse zum
generischen Beweis wie auch die zum formalen Beweis.
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Generischer Beweis [%] Formaler Beweis [%]

Faktor Quotient beide Faktor Quotient beide

(n=48) (n=36) (n=8) (n=54) (n=27) (n=3)
emp. 8,3 22,2 12,5 0,0 0,0 0,0
pseudo 25,0 52,8 75,0 38,8 59,3 33,3
frag. 16,7 8,3 0,0 5,6 29,6 33,3
Arg. mit 18,7 13,9 0,0 35,2 11,1 33,3

Licke

vollst. Arg. 31,3 2,8 12,5 20,4 0,0 0,0
Summe 100 100 100 100 100 100

Tabelle 16: Relative Haufigkeiten [%] bzgl. der Bearbeitungen zum generischen Beweis (links)
und zum formalen Beweis (rechts), aufgeteilt nach der verwendeten Operationalisierung des
Teilbarkeitsbegriffs

Dieses Resultat ist vor allem dadurch zu erkldaren, dass bei der Verwendung der

Quotientenschreibweise in den entsprechenden (generischen und formalen) Beweisfiihrungen

.. . b+c . 1 . .
begriindet werden muss, warum der Quotient % eine natlrliche Zahl ist, was von keinem

Studierenden getan wurde. Im Gegenteil flihrte diese Operationalisierung haufig zu

(b+c

. . b .
Pseudoantworten, wenn in der Betrachtung der Quotienten o 2 und " ) nicht angemerkt wurde,

dass Teilbarkeit hier bedeutet, dass diese Bruchzahlen Elemente der natirlichen Zahlen sind bzw.
sein mussen.®

Die Beweisbearbeitungen, in denen beide Schreibweisen verwendet werden (,beides”), werden an
dieser Stelle aufgrund der geringen Anzahl der entsprechenden Bearbeitungen (n=8 beim
generischen Beweis und n=3 beim formalen Beweis) nicht weiter betrachtet.

Diskussion der Ergebnisse und Implikationen fiir die Lehrveranstaltung

Die Ergebnisse bzgl. der Bearbeitungen zum generischen Beweis lieRen darauf schlieRen, dass das
Konzept dieser Beweisform vielen Studierenden auch nach dem Semester noch Probleme bereitete;
nur in 42,9% der Bearbeitungen zum generischen Beweis wurden Uberhaupt valide Argumente zur
Verifikation der Behauptung angefiihrt, in 13,3% der Bearbeitungen wurden blofRe Beispiele als
generische Beweise angegeben. Bei den Ergebnissen zum formalen Beweis fiel dagegen auf, dass
14,3% der Studierenden diese Aufgabe Uberhaupt nicht versucht haben, obwohl es sich um eine
Klausuraufgabe handelte. Der Anteil der Pseudoantwort von 38,8% liel dagegen vermuten, dass
diesen Studierenden das Ziel der hier verlangten Nutzung der algebraischen Symbolsprache nicht
deutlich war, welches darin bestand, einen Term bzw. eine Gleichung zu erhalten, mit dessen bzw.
deren Hilfe die Teilbarkeit der Summe (b + ¢) durch die natiirliche Zahl a gezeigt werden konnte.
Weiter musste beachtet werden, dass nur 11,2% der Studierenden bei der Konstruktion des formalen
Beweises eine vollstandige Argumentation gelang.

3 Vgl. hierzu die Thematisierung des Teilbarkeitsbegriffs in der dritten Durchfiihrung der Lehrveranstaltung im
Wintersemester 2013/14 (Abschnitt 5.4.1).
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Diese erhaltenen Ergebnisse lieBen sich besser verstehen, wenn man die verwendete
Operationalisierung des Teilbarkeitsbegriffs in die Analyse mit einbezog. Wurde bei der Konstruktion
der generischen und formalen Beweise die Quotientenschreibweise verwendet, so waren diese
Bearbeitungen insgesamt als weniger erfolgreich einzustufen.

Die Beweisbearbeitungen der Studierenden wurden in dieser Studie nicht zweitcodiert, wodurch die
Reliabilitat dieser Studie nicht gesondert liberprift wurde. Wie bereits bei den entsprechenden
Untersuchungen der Hausaufgabenbearbeitungen der Studierenden (Abschnitt 5.2.2.2 und 5.3.2.1)
ist dies damit begriindet, dass die Intention dieses Forschungsprojekts darin lag, Gberhaupt eine Idee
davon zu bekommen, wie die Beweisbearbeitungen der Studierenden nach der Lehrveranstaltung
ausfallen, und u.a. auf der Grundlage dieser Ergebnisse die Konzeption der Lehrveranstaltung zu
reflektieren. Aus diesem Grund wurde an dieser Stelle der vorliegende Grad an Reliabilitat (und auch
an Objektivitat) flr ausreichend befunden.

5.3.3 Retrospektive Analyse der zweiten Durchfiihrung der Lehrveranstaltung

Bei der retrospektiven Betrachtung der zweiten Durchfiihrung der Lehrveranstaltung und der damit
einhergehenden Forschung wurden die folgenden Aspekte deutlich:

(1) Die vorgenommenen Anderungen im ersten Kapitel der Lehrveranstaltung schienen
insgesamt in die richtige Richtung zu weisen: Die Ergebnisse der erneuten Analyse der
Hausaufgabenbearbeitungen (Abschnitt 5.3.2.1) konnten in dieser Weise interpretiert
werden.

(2) Die Konstruktion von generischen und formalen Beweisen stellte fiir die Studierenden
weiterhin ein Problem dar (vgl. Abschnitt 5.3.2.2 und 5.3.2.4). Neben konzeptuellen
Schwierigkeiten mit diesen Beweisformen missen dabei auch Probleme mit Fachinhalten
(Termumformungen und Teilbarkeit) berlicksichtig werden.

(3) Die Ergebnisse des Beweisbewertungstests (Abschnitt 5.3.2.3) wiesen darauf hin, dass die
Probleme der Studierenden mit generischen Beweisen eher nicht auf Fehlvorstellungen bzgl.
der Bedeutung von bloRen empirischen Verifikationen im Beweisprozess zurlickzuflihren
waren. Es schien aber, dass viele Studierende generische Beweise subjektiv nicht als valides
Mittel zur Verifikation einer Behauptung akzeptieren wirden.

(4) Bei der riickblickenden Betrachtung der Vorlesungen wurde deutlich, dass im Rahmen des
ersten Kapitels mit einer Ausnahme alle Beweise in der Vorlesung formal geflihrt wurden.
Nur flir die Eingangsbehauptung wurde ein generischer Beweis konstruiert, der anschlieRend
auch formal gefiihrt wurde. Dies schien den impliziten Zielen der Lehrveranstaltung entgegen
zu laufen, generische Beweise als ,gleichberechtigt’ neben formale Beweise zu stellen.

Erorterung der Ergebnisse unter der Perspektive des ,,diagrammatischen SchlieBens”

Fiir den fehlerbehafteten Umgang mit generischen Beweisen schienen nach wie vor konzeptuelle
Probleme der Studierende ausschlaggebend zu sein; betrachtet unter dieser semiotischen
Perspektive schien ihnen die Allgemeingiltigkeit nicht deutlich zu werden, die aus den
vorgenommenen Transformationen mit konkreten Zahlzeichen resultiert. Sowohl bei den
generischen, wie auch bei den formalen Beweisen wurde im Rahmen des Inhaltsbereichs ,Teilbarkeit’
die Bedeutung fachlicher Aspekte immanent: Der Teilbarkeitsbegriff ermdglicht den Studierenden

verschiedene Operationalisierungen der Teilbarkeitsrelation, welche jeweils unterschiedliche Arten
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von diagrammatischem SchlieRen erfordern. Wahrend die Quotientenschreibweise den Nachweis
erfordert, dass der erhaltene Quotient ein Element der natirlichen Zahlen ist, wird bei der
Faktorschreibweise die Darstellung eines Produkts gefordert, in der die Faktoren Element der
natirlichen Zahlen sein missen. Folglich hat das Verstandnis der Studierenden von Teilbarkeit
Auswirkungen auf ihr diagrammatisches Schlief3en.

Erorterung der Ergebnisse unter der Perspektive ,,sozio-mathematischer Normen“

Bei den in den verschiedenen Forschungsprojekten erhaltenen Ergebnissen bzgl. des generischen
Beweises wurde deutlich, dass nur noch wenige Studierende bloRRe Beispielbetrachtungen als
,generische Beweise’ anstellten. Insofern schien die Kommunikation der Normen fiir die Konstruktion
generischer Beweise erfolgreich gewesen zu sein. Problematisch erschien allerdings der Aspekt der
zu formulierenden narrativen Begriindung innerhalb dieser Beweise. Den Studierenden schien nicht
bewusst zu sein, welche Aspekte bzw. Argumente hier expliziert werden miissen, was auch durch den
hohen Anteil von Pseudoantworten in ihren Beweiskonstruktionen deutlich wurde (s. Abschnitt
5.3.2.4).

Der fachliche Aspekt der Operationalisierung von Teilbarkeit in Beweisen kann auch als Aspekt sozio-
mathematischer Normen interpretiert werden. Zwar sind beide Operationalisierungen (Quotienten-
und Faktorschreibweise) mathematisch korrekt und legitim, doch lassen sich an dieser Stelle zwei
Aspekte flr eine vornehmliche Verwendung der Faktorschreibweise anfiihren. Zum einen wurde bei
der Analyse der Klausuraufgabe deutlich, dass Bearbeitungen, in denen von der Faktorschreibweise
Gebrauch gemacht wurde, in der Regel besser gelangen. Zum anderen herrscht in der Zahlentheorie
die (implizite) Norm, dass Teilbarkeit liber die Faktorrelation operationalisiert wird. Somit erweist
sich die Vermittlung dieser Operationalisierung auch als ein Aspekt der Enkulturation.
Nichtsdestotrotz darf die Verwendung der Quotientenschreibweise nicht verboten werden; bietet sie
doch die Moglichkeit der Ankniipfung an schulische Vorerfahrungen bzw. an intuitives Vorwissen. Bei
der Verwendung der Quotientenschreibweise muss den Studierenden allerdings die ,Norm’
vermittelt werden, dass hier der Nachweise erfolgen muss, dass der erhaltene Quotient ein Element
der natlrlichen Zahlen ist, auch wenn dies als ,intuitiv klar’ erscheinen mag.

Innerhalb dieser zweiten Durchfiihrung der Lehrveranstaltung wurde bereits ein erster Versuch zur
Angleichung der verschiedenen Begrifflichkeiten zum Beweisen unternommen. Doch herrschte in
einem gewissen Malle immer noch Unklarheit iber die Bezeichnung der Beweise, auch weil in der
Literatur zu der Thematik keine Einigkeit besteht (vgl. Biehler & Kempen 2016, S. 168ff.). Dariber
hinaus war es eine offene Frage, was genau den Studierenden unter dem Begriff ,formaler Beweis’
vermittelt werden sollte, weshalb an einigen Stellen auf Bezeichnungen wie ,symbolischer Beweis’
oder ,algebraischer Beweis’ ausgewichen wurde.

Abgleich mit der intentionalen Dimension der zweiten Durchfiihrung der Lehrveranstaltung

Bei der bisher erfolgten retrospektiven Analyse der zweiten Durchfliihrung der Lehrveranstaltung ist
deutlich geworden, dass die Studierendenbearbeitungen zum generischen und zum formalen Beweis
nun ,besser’ als im ersten Durchgang ausfielen. Die Kommunikation konkreter Normen fiir die
Konstruktion dieser Beweisformen schien somit erfolgreich gewesen zu sein und auch die
Unterscheidung von expliziter ,Beweisbearbeitung’ und ,Reinschrift’ schien dazu beigetragen zu
haben, dass die finalen Beweisprodukte ordentlicher bzw. strukturierter notiert wurden. Es konnte
festgestellt werden, dass die Probleme der Studierenden bei der Konstruktion der generischen
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Beweise eher nicht auf Fehlvorstellungen bzgl. der Bedeutung von bloRen Beispielbetrachtungen
zurtckzufihren waren, ihre Probleme schienen vielmehr in dem Ausmachen der
beispielibergreifenden, generischen Struktur und in der geforderten Verbalisierung zu liegen.

Uber den Zeitraum dieses Wintersemesters wurde weiter deutlich, dass die studentischen Hilfskrafte
selbst sicherer im Umgang und bei der Korrektur der verschiedenen Beweisformen waren. Dies
konnte zum einen auf die durchgefiihrte Tutorenschulung zuriickgefiihrt werden. Zum anderen muss
erwahnt werden, dass nun auch gute Studierende aus der ersten Durchfiihrung der
Lehrveranstaltung als Hilfskrafte mitarbeiteten und die Studierenden die Ubungsgruppen gemeinsam
in Tandems abhielten. Insgesamt waren diese Mallnahmen als erfolgreich zu bewerten.

Aufgrund der vorgenommenen Forschungsfokusse auf die Konstrukte generischer Beweis und
formaler Beweis konnten die MaRnahmen, die sich auf das Verstandnis mathematischer
Behauptungen und Gegenbeispiele konzentrierten, nicht anhand von Forschungsergebnissen
evaluiert und reflektiert werden. Die beteiligten Lehrenden (der Dozent und zwei wissenschaftliche
Mitarbeiter) waren sich jedoch dariiber einig, dass die vorgenommenen Malnahmen in die richtige
Richtung zu weisen schienen.

5.4 Die Lehrveranstaltung im Wintersemester 2013 /14 und die im Kontext

dieser Durchfithrung erfolgten Studien

Im Folgenden werden zunidchst die Anderungen beschrieben und begriindet, wie sie im
Wintersemester 2013/14 aufgrund bisheriger Forschungsergebnisse und Lehrerfahrungen
vorgenommen wurden. AnschlieRend werden die Untersuchungen thematisiert, welche in diesem
Kontext zu nennen sind. Hierzu gehoren: die Pilotierung eines Vor- und Nachtests (Abschnitt 5.4.2.1),
ein Videostudie zu Beweiskonstruktionen und Beweisverstindnis (Abschnitt 5.4.2.2) und eine
Analyse der Beweiskonstruktionen der Studierenden in der Abschlussklausur (Abschnitt 5.4.2.3).

5.4.1 Verdnderungen bei der dritten Durchfiihrung der Lehrveranstaltung im
Wintersemester 2013/14

Aufgrund der bis dato erfolgten Forschung und gemachten Lehrerfahrungen wurden im
Wintersemester 2013/14 die folgenden Modifikationen im Kontext der Vorlesung vorgenommen: (1)
der Teilbarkeitsbegriff wurde vertieft thematisiert, (2) Punktmusterdarstellungen wurden auch in das
erste Kapitel der Lehrveranstaltung verstarkt aufgenommen und Punktmusterbeweise explizit in das
Spektrum der Beweisformen der Lehrveranstaltung eingebunden, (3) Vor- und Nachteile von
formalen Beweisen wurden erortert, (4) generische Beweise wurden starker in den Fortgang der
Vorlesung miteingebunden und alle vier Beweisformen wurden im Rahmen des zweiten Kapitels
explizit aufgegriffen. Durch die Ubernahme der Erstellung der Hausaufgaben durch den Autor der
vorliegenden Arbeit wurde es im Wintersemester 2013/14 auch moglich, (5) neue Aufgabenformate
sowohl in die Prasenziibungen als auch in die Hausaufgaben zu integrieren. Es galt hierbei, solche
Aufgaben zu entwickeln, die den herausgefundenen Studierendenproblemen zum generischen
Beweis gezielt entgegenwirken. Zentrale Aspekte der Aufgabenformate waren somit: (i) Die
Beurteilung fehlerhafter generischer Beweise, (ii) die Vervollstandigung liickenhafter generischer
Beweise, (iii) die eigene Konstruktion generischer Beweise (auch in Verbindung mit
Punktmusterdarstellungen) und (iv) die Formalisierung generischer Beweise; dariiber hinaus (v)
Aufgaben an konkreten Punktmustern, an denen allgemeine Beziehungen abstrahiert, formalisiert
und bewiesen werden sollen, und (vi) explizite Integration von Punktmusterbeweisen und deren
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Formalisierung. (6) SchlieBlich wurde im Rahmen dieser dritten Durchflihrung der Lehrveranstaltung
eine Neukonzipierung der Zentrallibung in Angriff genommen wurde.

Veranderungen im Kontext der Vorlesung
(1) Thematisierung des Teilbarkeitsbegriffs

Bei der Analyse der Klausurbearbeitungen aus dem vorherigen Semester war deutlich geworden,
dass verschiedene Probleme der Studierenden bei der Konstruktion von Beweisen auf ein
unzureichendes Verstindnis der Teilbarkeitsrelation zurlickzufiihren sind (vgl. Abschnitt 5.3.2.4).
Daher wurde zu Beginn des ersten Kapitels, im Kontext der Analyse der Ausgangsbehauptung, eine
»prozedurale Sicht” auf die Teilbarkeit einer Zahl a € N durch eine Zahl b € N eingefiihrt: Die

Teilbarkeit ist gegeben, wenn der Quotient %eine natirliche Zahl ist. Somit konnte die

Quotientenschreibweise aufgegriffen werden, die zundchst besser an das Schulwissen anknipft, in
dem ja auch Briiche ,existierten’. Im Kontext der folgenden ,formalen Beweise’ wurde dann als
dquivalente Aussage fir die Teilbarkeit die Aussage ,Es existiert ein n € N, so dass a=b'n
(,Faktorschreibweise”) als eine flir das Beweisen hilfreiche Umformulierung eingefiihrt.

(2) Die verstarkte Integration von Punktmusterdarstellungen und Punktmusterbeweisen in
das erste Kapitel der Vorlesung

Bei der retrospektiven Analyse des vorherigen Durchgangs der Lehrveranstaltung war das Problem
offen geblieben, wie Studierenden das Konzept von generischen Beweisen (besser) vermittelt
werden kdnnte. Als besonders problematisch wurde hierbei die Verwendung von konkreten Zahlen
als , paradigmatische” Zahlen (i.S. von Freudenthal) betrachtet: Wie kann man Lernende das
Allgemeine im Konkreten vermitteln? (Vgl. hierzu Abschnitt 4.3.3.)

Eine Idee zur Behebung dieses Problems bestand darin, die ,Anschauung’ starker in diesen Prozess
der Verallgemeinerung miteinzubeziehen. Als anschauliche Beweise werden im Allgemeinen solche
verstanden, die ,[...] auch schematisch aufzufassende Zeichnungen enthalten” (Kautschitsch 2015, S.
144). Als ,Veranschaulichung’ der Sachverhalte der Arithmetik wurde das Diagrammsystem der
Punktmuster gewahlt. Dies schien vor aus verschiedenen Griinden nachvollziehbar: Zunachst wurden
Punktmusterdarstellungen sowieso im zweiten Kapitel der Lehrveranstaltung thematisiert. Dartber
hinaus ist die Verwendung von Punktmusterdarstellungen im schulischen Mathematikunterricht
durchaus ublich (siehe fur die Primarstufe etwa Kaput et al. 2008, Steinweg 2013, Wittmann & Miller
1990 und fiir die Sekundarstufe z.B. Blum & LeiR 2006 oder Meyer und Prediger 2009), eine
entsprechende Verwendung von Punktmusterdarstellungen konnte somit als vermutlich bekannt
vorausgesetzt werden. Entsprechenden geometrischen Darstellungen wird auch das Potential
zugesprochen, den Ubergang von der Arithmetik zur Algebra zu erleichtern (etwa Flores 2002).

Aus diesen Griinden wurden Punktmusterdarstellungen und Punktmusterbeweise bereits in das erste
Kapitel integriert. Dem generischen Beweis Uber die Teilbarkeit der Summe von drei
aufeinanderfolgenden natirlichen Zahlen wurden Punktmusterdarstellungen beigestellt (vgl.
Abbildung 28).

00000 ® -0 - Abbildung 28: Punktmusterdarstellungen der Summe
000000 ® 00 von drei aufeinanderfolgenden Zahlen; links im
0000000 ® - 000 konkreten Fall als Andeutung eines generischen

Y Beweises; rechts ,allgemein‘ mit geometrischen
5+6+7 geometrische Variable Variablen



Durch die Umgruppierung der Punkte im konkreten Punktmuster sollte das generische Moment der
Argumentation hervorgehoben werden: Bei jeder Summe von drei aufeinanderfolgenden Zahlen
kénnen durch Umgruppierung der Punkte drei gleich lange Reihen gebildet werden. Mithilfe dieser
Erkenntnis wurde anhand des konkreten Punktmusters ein generischer Beweis ausformuliert. Fir die
geometrische Darstellung einer beliebigen Anzahl wurde die Idee der ,geometrischen Variable”
verwendet.

Insgesamt wurden nun vier verschiedenen Beweisformen im Kontext der Lehrveranstaltung
verwendet: der generische Beweis mit Zahlen, der generische Beweis mit Punktmustern, der
Punktmusterbeweis mit geometrischen Variablen und der sogenannte formale Beweis.

(3) Die Erorterung der Vor- und Nachteile von formalen Beweisen

Neben der Vermittlung des Konzepts eines generischen Beweises sollte im Kontext der
Lehrveranstaltung erneut auch eine Hinflihrung zum formalen Beweis erfolgen. Einhergehend
hiermit sollte die algebraische Symbolsprache als sinnvolles ,Werkzeug’ der Wissenschaft
Mathematik verdeutlicht und vermittelt werden. Es galt somit, neben Vermittlung des generischen
Beweises, auch fiir die formale Fachsprache und den formalen Beweis zu werben. Aus diesem Grund
wurde in dem dritten Durchlauf der Lehrveranstaltung mit dem Plenum eine Erorterung der Vor- und
Nachteile von formalen Beweisen vorgenommen. Zentral erschienen dabei, gerade im Kontrast zum
generischen Beweis, die folgenden Aspekte: (i) Wenn man die Algebra korrekt beherrscht, werden in
formalen Beweisen nur solche Umformungen vorgenommen, die fir alle (natirlichen) Zahlen gelten,
weswegen der Algebra eine Kontrollfunktion zukommt, (ii) bei algebraischen Termumformungen
braucht der Beweisende u.U. keine ,ldee’ wie bei generischen Beweisen, da bloRe
Termumformungen bereits zum Ziel fliihren kénnen, (iii) bei der korrekten Verwendung der Algebra
muss der Aspekt der Allgemeingiltigkeit der Begriindung nicht expliziert werden.

(4) Die starkere Integration von generischen Beweisen in den Fortgang der Vorlesung

Bei der retrospektiven Analyse des vorherigen Durchgangs war aufgefallen, dass im Verlauf des
ersten Kapitels ausschlieBlich der ,formale’ Beweis als mathematisches Erkenntnismittel im
Forschungsprozess um die Frage der Teilbarkeit der Summen aufeinanderfolgender Zahlen eingesetzt
wurde. Dies widerspricht dabei der (impliziten) Werbung fir alternative Beweismethoden. Aus
diesem Grunde wurde nun der Beweis des finalen Satzes des ersten Kapitels (liber die Teilbarkeit der
Summe von k € N aufeinanderfolgenden Zahlen durch k) anhand der generischen Idee der
,mittleren Zahl’ der Vorbetrachtungen entwickelt:

Flr ungerade k ist die Summe

(n—k;—l)+~~+(n—1)+n+(n+1)+-~-+(n+%)=kn

immer durch k teilbar.

Fur gerade k ist die Summe

(n—(;—1))+~~~+(n—1)+n+(n+1)+~--+(n+(§—1))+(n+§)=kn+§

nie durch k teilbar.

Eine andere (generische) Beweisidee wurde anschlieRend anhand von zwei konkreten Punktmustern
erarbeitet (vgl. Abb. 29).
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Diese Heuristik der Untersuchung konkreter Beispiele wurde auch im Rahmen des zweiten Kapitels
verstarkt aufgegriffen. So wurde an konkreten Dreieckszahlen ein generischer Beweis fir die explizite
Formel der Dreieckszahlen entwickelt.

Dieses Wiederaufgreifen vorheriger (generischer) Ideen aus dem Verlauf der Vorlesung verstarkt
dabei den ,roten Faden’ des Erkenntnisprozesses und die Bedeutung der Erkenntnisse, die an
Beispielen gewonnen werden kénnen.

k=5: E k=6: i .
@ o0
X 00
O O ‘ . . O O . . . . nicht durch 6 teilbar
00000 000000
‘ 00000 ‘ 000000
m -‘ oo m a‘ L R durch 6 teilbar
- 00000 - 000000
Im oberen Dreieck sind 10 Punkte, Im oberen Dreieck bleiben 3
also ist das Punktmuster auch Punkte tibrig, also ist das gesamte
insgesamt durch 5 teilbar. Punktmuster nicht durch 6 teilbar.
(Dies gilt fir alle m e N.) (Dies gilt fir alle m e N.)

Idee: Die Teilbarkeit kann man immer anhand der oberen ,,Dreiecke”
entscheiden. Bei ungeradem k lassen sich die Punkte immer um eine
senkrechte mittlere Punktreihe umsortieren. m spielt hierbei keine Rolle, da
das Rechteck (m - k) immer durch k teilbar ist.

Abbildung 29: Entwicklung einer Beweisidee iiber die Teilbarkeit von k € N

aufeinanderfolgenden Zahlen am Punktmuster

Anderungen im Kontext der Priasenziibungen und Hausaufgaben

(5) Die Entwicklung neuer Aufgabenformate

(i) Die Beurteilung fehlerhafter generischer Beweise (Prasenziibung 1, Aufgabe 1)

Studierenden wurde die Aufgabe gegeben, die folgende Behauptung mit einem generischen Beweis zu beweisen: Die
Summe aus einer ungeraden natlrlichen Zahl und ihrem Doppelten ist immer ungerade.
Im Folgenden sind vier verschiedene Losungen dargestellt:

)3 +(33) =8| v
b) 8 v (83): 27 L
c)7‘(‘1)‘M v

BPEIEN E)'S ECIN AN
FORN. TS A

i ﬁdy Die  Behavgrung el wal | die | Vudoppelang

BryYd 913-6)‘3i'="75i 7 t Gres pgedie ant w o | duindan| 2 fha

e 11 1T 7 [ ] 11 \ ‘Jl N“\G\ e (XJB&N\ \.ud \J\%lm Z“‘l
(b)

¥ SCIUE RN A

(a) gl ke, gt | Suren
A)Frdlu =24 (W)
2+ (2:9) = 34943 =3.3 224
2)3+6 = 9 (w 9=% | S F43- 0= Sonpidde
23+(2:°3): 24343:3-3= 9 LB RNES Md,m e _,W
3) S+ 40 =4S (w) Q-1 | ->; sEEN=9

(c) S+ (2:5) = S+54S:3'S =4S (d) H¥$A =] q% @4)= 3t _,Wg.

Abbildung 30: Vier studentische Bearbeitungen zum ,,generischen Beweis”.

Bewerten Sie die vier dargestellten ,generischen Beweise” im Hinblick auf
(i) die getesteten Beispiele,
(ii) ihre dargestellten Argumentationen und
(iii) ihre Allgemeingultigkeit.
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(ii) Die Vervollstiandigung eines liickenhaften generischen Beweises (Hausaufgabenblatt 1,
Aufgabe 1)

Betrachten Sie die folgende  (unvollstdndige)
Schiilerlésung zu einem generischen Beweis:

3 Q
a) Formulieren Sie die Behauptung, die der Schiiler 53 Q— 3= 83 (53 = 4)
hier zu beweisen versucht. 533‘ (= (5 34y (53- ‘)
b) Vervollstdndigen Sie den obigen generischen alys ! SI=SHE SISOk 4) : (SJ~ /1>
Beweis und schreiben Sie ihn auf.
c) Ubernehmen Sie lhre Argumentation aus (b) und
flhren Sie einen Beweis mit Variablen und 3 »
algebraischen Umformungen. Z = F 7 (7 -A)
Q
(7 —4) = (7%4), (7~ /f)
! 3
NN NRCE SCRCD irGE ENGE
Sow\.l il Tofon AN\JJOMJ:{WM Ry
\TI@QA&L O‘(RA_,‘ (‘PVQQ(M/Z“ V Qi okaA
O\M{)Q U ok el #%Mo{}« Vl\'l\“ckv}z,:(_('\ﬂ*
ZQLZ&M 4

]

=g
Abbildung 31: Eine unvollstindige Schiilerlésung Und 0(‘1” Wi ik ol e
zu einem generischen Beweis vy el 6 zfsz JZL;«,V

(iii) Die eigene Konstruktion generischer Beweise (Hausaufgabenblatt 1, Aufgabe 3)
Wir betrachten die folgende Behauptung: Das Quadrat einer ungeraden Zahl ist immer ungerade.

(a) Beweisen Sie die Behauptung durch algebraische Umformungen und mit Verwendung von Variablen.

(b) Die folgende Abbildung strukturiert das Quadrat zu der Zahl 5 in einer Art und Weise, wie es flir eine generische
Argumentation genutzt werden kann. Verbalisieren Sie diese generische Argumentation, die aus der Strukturierung
hervorgeht.

Abbildung 32: Generische Strukturierung
einer ungeraden Quadratzahl (Abbildung
ahnlich zu Rinvold und Lorange 2013, S.
218)

(iv) Die Formalisierung generischer Beweise (Prasenziibung 1, Aufgabe 1)

Sie kennen die Teilbarkeitsregel fur die Zahl 3:

Wenn die Quersumme einer natiirlichen Zahl durch 3 teilbar ist, dann ist auch die Zahl selbst durch 3 teilbar.

Im Folgenden ist ein generischer Beweis fiir die Teilbarkeit durch 3 bei dreistelligen Zahlen gegeben:

Wir betrachten die Zahl 756. Diese Zahl kann wie folgt dargestellt werden: 756 = 7 -100 + 5 - 10 + 6. Dies kann man
dann umformen und erhélt: 756 = (7 - 99 + 7) + (5 - 9 + 5) + 6. Mit dem Kommutativgesetz und dem Assoziativgesetz
erhalten wir dann: 756 = (7-99+5-9) + (7 + 5 + 6). Da der Term in der ersten Klammer durch 9 teilbar ist, ist er auch durch
3 teilbar. Also ist die gegebene Zahl dann durch 3 teilbar, wenn der Ausdruck in der zweiten Klammer (und das ist genau die

Quersumme der Ausgangszahl) durch 3 teilbar ist.

Ubernehmen Sie die gegebene Argumentation und formulieren Sie einen Beweis mit algebraischen Umformungen und
Variablen.
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(v) Aufgaben an konkreten Punktmustern, bei denen allgemeine Beziehungen abstrahiert,
formalisiert und bewiesen werden sollen (Prasenziibung 2, Aufgabe 2)

Abbildung 33: Darstellungen zweier konkreter
Zusammenhange zwischen Dreiecks- und Quadratzahlen
(Abbildung dhnlich zu Conway und Guy 1997, S. 47)

Die beiden Abbildungen verdeutlichen zwei weitere Zusammenhange zwischen Dreieckszahlen und Quadratzahlen.

a) Betrachten Sie die konkreten ,,Punktmuster” und schreiben Sie die jeweils dargestellten konkreten Zusammenhange
zwischen den Dreieckszahlen und den Quadratzahlen auf.

b) Rechnen Sie Ihre unter (a) aufgestellten Zusammenhéange nach.

c¢) Wird lhnen in den beiden konkreten Abbildungen auch der allgemeine Zusammenhang zwischen beliebigen
Dreieckszahlen D,, und Quadratzahlen @Q,, deutlich? Formulieren Sie die Zusammenhange fiir allgemeine Dreicks- und
Quadratzahlen fir n eN.

d) Rechnen Sie lhre unter (c) aufgestellten Zusammenhéange nach.

(vi) Integration von Punktmusterbeweisen und deren Formalisierung (Hausaufgabenblatt 1,
Aufgabe 2)

Wir betrachten die folgenden drei Behauptungen:

(1) Fur alle geraden Zahlen n, m € N gilt, dass die Summe n + m eine gerade Zahl ist.

(2) Fur alle ungeraden Zahlen n,m € N gilt, dass die Summe n + m eine gerade Zahl ist.

(3) Die Summe aus einer geraden Zahl g € N und einer ungeraden Zahl u € N ist eine ungerade Zahl.

Die folgenden drei Abbildungen ,visualisieren’ Beweise zu den obigen Behauptungen.

(a)
HEEE -EEE OO0 -000_ SR -EEEco--00d
EEE--ER (OO0 00 =Ee--Emooo--000o

(b)
EEE BN, 000 O
EEE -EE 0000
(c)

HEE -EER O00---000 EE---000
EER --EER O00---00 EER--00

00

00

Abbildung 34: Drei Punktmusterbeweise mit geometrischen Variablen tber
die Summe gerader und ungerader Zahlen

(i) Ordnen Sie die Abbildungen (a), (b) und (c) den entsprechenden Behauptungen (1), (2) und (3) zu.

(i) Abstrahieren Sie aus den Abbildungen die Eigenschaften gerader und ungerader Zahlen und formulieren Sie diese
Eigenschaften unter dem Gebrauch von Variablen.

(iii) Nutzen Sie Ihre Erkenntnisse aus (ii) und formulieren Sie die Beweise mit algebraischen Umformungen zu den
Behauptungen (1), (2) und (3).
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(6) Die Neukonzipierung der Zentraliibung

In den bisherigen Durchgadngen der Lehrveranstaltung wurden bereits wochentliche Zentrallibungen
abgehalten, in denen den Studierenden die Losungen der wochentlichen Hausaufgaben prasentiert
wurden. Ein Anliegen der Neustrukturierung der Zentralibung bestand darin, Musterldsungen
starker prozessorientiert als eine gemeinsame mathematische Tatigkeit im Plenum zu entwickeln.
Theoretische Grundlagen fiir diese Umstellung der Zentralliibungen bildeten die Arbeiten von
Ableitinger und Herrmann (2011) und Reiss und Renkl (2002), welche auf das Prozessmodell von
Boero (1999) zum Beweisen lbertragen wurde. Ein weiteres Anliegen der Zentrallibung bestand
darin, den Studierenden mehr Raum dafiir zu geben, die Unterschiede bzw. die Vor- und Nachteile
der verschiedenen Beweisformen und Diagrammsysteme diskutieren zu kénnen. Das finale Konzept
der ZentralUbung wird in Abschnitt 6.3.3 dargestellt.

5.4.1.1 Die intentionale Dimension der dritten Durchfiihrung der Lehrveranstaltung
Zusatzlich zu den allgemeinen Zielen der Lehrveranstaltung, die bereits in dem Abschnitt 5.2.1.1
benannt wurden, lassen sich als spezifische Zielsetzungen der dritten Durchfihrung der
Lehrveranstaltung die folgenden Aspekte benennen:

e Der verstarkte Einbezug von Punktmusterdarstellungen sollte den Studierenden als
,Veranschaulichung’ den Umgang mit den elementaren mathematischen Sachverhalten und
den Ubergang zur Algebra erleichtern. Dariiber hinaus sollten die Punktmusterdarstellungen
als ein alternatives Diagrammsystem fiir die Konstruktion generischer Beweise dienen.

e Den Studierenden sollten die Vor- und Nachteile formaler und generischer Beweise
verdeutlich werden, um einen verstandigen Umgang mit den Beweisformen und den
entsprechenden Diagrammsystemen anzubahnen. Diese Erérterung wurde dabei auch als ein
Werben fiir die mathematische Symbolsprache verstanden.

e Durch die starkere Integration von generischen Beweisen in die Vorlesung sollte u.a. deren
,Stellung’ und Ansehen bei den Studierenden gestarkt werden.

e Die verschiedenen neuen Aufgabenformate sollten den Studierenden dabei helfen, das
Konzept generischer Beweise besser zu durchdringen, und damit ihre Beweiskonstruktionen
verbessern.

5.4.2 Die im Kontext dieser Durchfithrung erfolgten Studien
Im Wintersemester 2013/14 wurden im Rahmen der

Lehrveranstaltung die folgenden Studien durchgefiihrt ::::"ie"‘"g dec Pilotierung der
gangs- Ausgangs-

(vgl. Abbildung 35): die Pilotierung einer Ein- und befragung befragung

Ausgangsbefragung zu den Beweiskompetenzen und

Einstellungen zum Beweisen der Studierenden

(Abschnitt  5.4.2.1), eine Interviewstudie zum
. oy . . Durchfithrung 2013/14
Beweisverstandnis der Studierenden (Abschnitt —— d m

5.4.2.2) und schlieBlich die Analyse der Bearbeitungen

. . . . ) A Analyse einer
einer Klausuraufgabe, in der die Studierenden die vier Klausuraufgabe (2)

verschiedenen Beweise der Lehrveranstaltung zu einer Abbildung 35: Uberblick iiber die im
Behauptung konstruieren sollten (Abschnitt 5.4.2.3). Wintersemester 2013/14 erfolgten Studien
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5.4.2.1 Pilotierung einer Ein- und Ausgangsbefragung zu den Beweiskompetenzen der
Studierenden und ihren Einstellungen zum Beweisen

Die dritte Durchfihrung der Lehrveranstaltung wurde im Wintersemester 2013/14 durch eine Ein-
und Ausgangsbefragung gerahmt, die die Studierenden in der ersten und vorletzten
Vorlesungssitzung bearbeiteten. Diese Untersuchung diente zur Pilotierung der Messinstrumente fir
die ,Effektivitatsstudie’ im Wintersemester 2014/15, welche Gegenstand des siebten Kapitels ist. Da
diese Studien im Wintersemester 2013/14 an dieser Stelle als Pilotierung aufgefasst werden und
keine direkten Auswirkungen auf die Weiterentwicklung der Lehrveranstaltung hatten, werden die
entsprechenden Ergebnisse im Rahmen dieser Arbeit nicht weiter besprochen. Resultate, die im
Kontext der Entwicklung der entsprechenden Messinstrumente verwendet wurden, wurden bereits
in Abschnitt 3.3 dargestellt

5.4.2.2 Eine Interviewstudie zum Beweisverstdndnis

Aufbauend auf den Erkenntnissen der Pilotierung der Interviewstudie im Wintersemester 2012/13
(Abschnitt 5.3.2.2) wurde im Wintersemester 2013/14 erneut eine Interviewstudie zum
Beweisverstandnis der Studierenden durchgefiihrt. Diese Studie wird im Folgenden dargestellt.

Forschungsanliegen und Forschungsfragen

Im bisherigen Lehr- und Forschungsprozess war die Frage offen geblieben, welche Wahrnehmung die
Studierenden von den vier Beweisformen der Lehrveranstaltung (dem generischen Beweis mit
Zahlen, dem generischen Beweis mit Punktmustern, dem Punktmusterbeweis mit geometrischen
Variablen und dem sogenannten formalen Beweis) haben. Im Fokus dieser Untersuchung standen
somit nicht die Beweiskonstruktionen der Studierenden, sondern ihre Wahrnehmungen von diesen.
Unter Wahrnehmung wird an dieser Stelle zunachst das Spannungsfeld von logischer Akzeptanz eines
Beweises (,Sicherung der Giiltigkeit“) und (empfundener) subjektiver Uberzeugung bzgl. der
Giltigkeit einer Behauptung (,Uberzeugungskraft”) betrachtet. Hinzu kommen die Aspekte

Ill

»Erklarungspotentia und ,Eignung fir den schulischen Mathematikunterricht”. Diese
Betrachtungsfokusse begriindeten sich zunachst auf der in der Lehrveranstaltung vertretenen
Unterscheidung vom psychologischen und logischen Nutzen von Beispielbetrachtungen und
Beweisen, welche auf die Beweisfunktionen (objektiver) Nachweis von Giiltigkeit und (subjektive)
Uberzeugung verweisen (s. Abschnitt 2.1.7). Die Betrachtung des Erkldrungspotentials der Beweise
ergab sich aus der in der Didaktik vielfach herausgestellten Erklarungsqualitdt von verschiedenen
Beweisformen, die als besonders wertvoll fiir das Erlernen der Beweisaktivitdat angesehen werden. In
diesem Zusammenhang wird in der Literatur gerade generischen Beweisen und
Punktmusterdarstellungen ein besonderes Erklarungspotential zugeschrieben (s. Abschnitt 2.1.3 und
2.1.7). Die Untersuchung der Einschatzung einer Eignung fir den schulischen Mathematikunterricht
ergab sich aus dem Ziel der Lehrveranstaltung, Begriindungsformen zu vermitteln, die die
Studierenden in ihrer spateren Lehrpraxis an der Schule verwenden kénnen. Auch sei an dieser Stelle
erwahnt, dass entsprechende Beweisformen in der Literatur als schuladdaquate Begriindungsformen
fur die Schulmathematik angefiihrt werden (etwa in LeiR und Blum (2006, S. 33ff.) oder Leuders
(2010, S. 53)). Somit sollte auch erforscht werden, wie die Studierenden selbst die Eignung der
verschiedenen Beweisformen fir den schulischen Mathematikunterricht einschatzten. Diese
Wahrnehmungen der Studierenden sollten zunachst mithilfe eines Fragebogens (s.u.) erfasst werden.
Neben dieser basalen Einschdatzung der verschiedenen Beweisformen bestand ein
Forschungsanliegen darin, eben diese angekreuzten Antworten besser verstehen zu wollen. Aus
diesem Grund wurde an die Phase der Fragebogenbearbeitung eine dezidierte Interviewphase mit
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den Studierenden angeschlossen, bei der deren Antworten auf dem Fragebogen als
Gesprachsanldsse verwendet wurden. Im Kontext dieser Studie war auch von Interesse, welche
Beweisform die Studierenden zunachst verwenden, wenn sie eine Behauptung beweisen sollen.
Denn ein Anliegen der Lehrveranstaltung bestand darin, die Bedeutung von Exploration und der
Untersuchung von konkreten Beispielbetrachtungen fiir den mathematischen Erkenntnisprozess
hervorzuheben, welche dann ,in natirlicher Weise’ zu der Konstruktion von generischen Beweisen
flhren sollten (vgl. hierzu den Aspekt des , genetischen Beweisens” in Brunner (2014, S. 20)). Auch
scheint die intuitive (Aus-) Wahl einer Beweisform fiir eine bestimmte Wahrnehmung derselben zu
sprechen.

Die Leitfragen zur Auswertung der Studie waren’”:

e Leitfrage zur Auswertung [9]: Welche Beweisform nutzen die Studierenden spontan, um eine
gegebene Behauptung zu beweisen? Welche Griinde kénnen fir die entsprechende
Beweiswahl ausgemacht werden?

o Leitfrage zur Auswertung [10]: Wie bewerten die Studierenden die vier verschiedenen
Beweisformen der Lehrveranstaltung im Hinblick auf die Aspekte ,Sicherung der Giltigkeit”,

|ll

,Uberzeugungskraft, ,Erkldrungspotentia und ,Eignung fir den schulischen
Mathematikunterricht“?

o Leitfrage zur Auswertung [11]: Wie beschreiben die Studierenden ihre Wahrnehmung bzgl.
des generischen Beweises mit Zahlen im Spannungsfeld von logischer Akzeptanz und
psychologischer Uberzeugung und womit begriinden sie diese?

o Leitfrage zur Auswertung [12]: Wie beschreiben die Studierenden ihre Wahrnehmung bzgl.
des formalen Beweises im Spannungsfeld von logischer Akzeptanz und psychologischer
Uberzeugung und womit begriinden sie diese?

o Leitfrage zur Auswertung [13]: Wie beschreiben die Studierenden ihre Wahrnehmung bzgl.
der Punktmusterbeweise im Spannungsfeld von logischer Akzeptanz und psychologischer

Uberzeugung und womit begriinden sie diese?
Durchfiihrung der Studie

Die Interviewstudie wurde in der vorletzten Vorlesungswoche durchgefiihrt. Aus jeder Ubungsgruppe
wurden unter den Freiwilligen zwei Studierende ausgelost, die zeitgleich zu ihrer eigentlichen
Kleingruppeniibung an der Interviewstudie teilnahmen. In der entsprechenden Ubungsgruppe wurde
dieselbe Aufgabe behandelt, so dass fiir den Teilnehmenden der Studie kein Nachteil und auch kein
Mehraufwand entstand. Auch die Interviews dauerten, genau wie die Kleingruppenibung, 90
Minuten.

Die Teilnehmenden der Studie wurden Uber Eck an einem Tisch platziert (vgl. die Position von ,S1“
und ,,S2“ in Abbildung 36). So konnte eine Videokamera hinter ihnen positioniert werden, damit
samtliche Notizen videographiert werden konnten. Durch ein Mikrophon, das in der Mitte des
Tisches angebracht war, konnten alle AuRerungen der Studierenden aufgenommen werden. Eine
zweite Kamera, etwas abseits aufgestellt, ermdglichte die Aufnahme der Studierenden aus der
Vorderansicht, so dass auch Gesten und Bewegungen aufgezeichnet werden konnten. Der
Interviewer sald etwas abseits an einem Nebentisch, so dass er das Geschehen beobachten konnte,

* Der Aspekt der individuellen Beweisbearbeitungsprozesse und der dabei auftauchenden Hirden ist nicht
Gegenstand der vorliegenden Arbeit; entsprechende Ergebnisse werden an anderer Stelle veroffentlicht.
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ohne die Studierenden (nach Médglichkeit) zu irritieren.
Die Beobachtung des Bearbeitungsprozesses war hierbei El
notwendig, damit in dem anschlieRenden Interview auf
konkrete Momente daraus Bezug genommen werden B
konnte. Der hier beschriebene Aufbau wird in Abbildung
39 dargestellt. Jeder Studierende erhielt einen Stift mit
einer anderen Farbe, so dass nachtraglich unterschieden

werden konnte, welcher Proband was niedergeschrieben Interviewer
hatte.

Abbildung 36: Position der Teilnehmenden, der
Kameras und des Mikrofons bei der

Der Ablauf des Interviews war hierbei wie folgt: Nach der i o
Interviewstudie im WS 2013/14

Information der Studierenden Uber den Ablauf des

Interviews und die anonyme Verwendung der Daten wurde ihnen ein Fragebogen fiir die Erhebung
der personenbezogenen Daten ausgehandigt. Der folgende Hauptteil der Studie gliederte sich in zwei
Abschnitte: (1) die Beweiskonstruktionen der Studierenden mit anschlieBRender Besprechung der
Ergebnisse und (2) eine Diskussion der verschiedenen Beweisformen im Hinblick auf deren
Uberzeugungskraft, Erkldrungspotential, Eignung fiir den schulischen Mathematikunterricht und den
Aspekt der Sicherung der Giiltigkeit. Zu den Phasen im Einzelnen:

(1) Die Phase der Beweiskonstruktionen

Den Studierenden wurde eine Behauptung mit dem Arbeitsauftrag ausgegeben, diese zu beweisen
oder zu widerlegen (s. Aufgabenanalyse unten). Fir die Bearbeitung der Aufgabe wurde ihnen
gekennzeichnetes , Konzeptpapier” ausgegeben und fiir die anschlieBende Niederschrift ihrer
Ergebnisse Papierbogen, die als ,Reinschrift” gekennzeichnet waren. Den Studierenden war es
hierbei freigestellt, inwieweit sie die Aufgabe gemeinsam oder alleine bearbeiten wiirden; allerdings
sollten sie sich vor der finalen Reinschrift der Ergebnisse auf eine gemeinsame Losung einigen. Nach
der Abfassung der (ersten) Reinschrift eines Beweises wurden die Studierenden darum gebeten, auch
die drei anderen Beweisformen zu konstruieren, die sie noch nicht notiert hatten. Somit konnte
untersucht werden, mit welcher Beweisform sie ,spontan’ die gestellte Behauptung verifizierten.
Nach der erfolgten Konstruktion der vier verschiedenen Beweisformen und deren Niederschrift als
»Reinschrift” wurde zunachst gefragt, warum die Studierenden als erstes die jeweilige Beweisform
(formaler Beweis, generischer Beweis mit Zahlen, ..) spontan konstruiert hatten. AnschlieRend
wurden alle vier Beweiskonstruktionen vom Interviewer zusammen mit den Studierenden
besprochen, um herauszufinden, wie sehr die Studierenden mit ihren Beweiskonstruktionen
zufrieden waren, bzw. ob sie sich ggf. (iber eventuelle Liicken in ihren Beweisproduktionen bewusst
waren. Innerhalb dieses Gesprdachs wurden alle Beweiskonstruktionen so verbessert, dass den
Studierenden vier korrekte und giiltige Beweise vorlagen, auf die sie sich im zweiten Teil der Studie
beziehen konnten. (Fir das vorliegende Forschungsinteresse erschien es notwendig, dass die
Studierenden zunachst alle vier Beweisformen selbst konstruieren, damit sie die damit verbundenen
Arbeitsprozesse durchlaufen. Somit konnten sie bei der anschlieRenden Bewertung der
verschiedenen Beweisformen auf ihre eigenen Erfahrungen und ihre eigenen Beweisprodukte
zuriickgreifen und mussten sich nicht in ,fremde’ Beweisprodukte hineindenken.)
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(2) Die Phase der Bewertung der verschiedenen Beweisformen.

Zu Beginn der zweiten Phase des Interviews wurden die Studierenden darum gebeten, einen
Fragebogen (s.u.) auszufiillen. Auf diesem wurden zu jeder der vier Beweisformen die gleichen vier
Aussagen formuliert, die auf einer Sechser-Likert-Skala bewertet werden sollten. Die Fragen
fokussierten die Aspekte ,Uberzeugung’, ,Erklarungsqualitit’, ,Sicherung der Giiltigkeit’ und
,Adidquatheit fiir den schulischen Mathematikunterricht’. Der Einbezug der Aspekte ,Uberzeugung’
und ,Sicherung der Giiltigkeit’ entspricht der in der Vorlesung vorgenommenen Unterscheidung vom
logischen und psychologischen Nutzen von Beispielen und Beweisen. Mit der Abfrage dieser beiden
Aspekte sollte auch (berprift werden, ob sich in den Bewertungen der Studierenden eine
entsprechende Unterscheidung wiederfinden lasst.

In der Tabelle 17 werden die vier Items exemplarisch fiir den generischen Beweis mit Zahlen

aufgefihrt.
Bitte bewerten Sie die folgenden Aussagen zu dem generischen Beweis mit Zahlen:
Der generische Beweis mit Zahlen reicht stimmt I:' I:' |:| |:| I:' I:' stimmt
mir aus, um mich vollig von der Giiltigkeit gar vollig
der Behauptung zu liberzeugen. nicht
Die Argumentation im generischen stimmt stimmt
Beweis mit Zahlen erklart mir, warum die gar |:| |:| |:| |:| |:| D vollig
Behauptung gilt. nicht
Der generische Beweis mit Zahlen sichert stimmt |:| |:| |:| |:| |:| I:' stimmt
die Gultigkeit der Behauptung gar vollig
hundertprozentig fiir alle Zeiten. nicht
Ich betrachte den Einsatz dieser stimmt stimmt
Beweisform im schulischen gar D D D D D D vollig
Mathematikunterricht als sinnvoll. nicht

Tabelle 17: Bewertungsschema fiir die Beweisform generischer Beweis mit Zahlen aus der Interviewstudie im
Wintersemester 2013/14

Die Bewertungen der Studierenden dienten anschlieBend als Gesprachsanlasse fiir die Diskussion der
vier verschiedenen Beweisformen.

Datensammlung und Methode der Auswertung

Die schriftlichen Dokumente der Studierenden (Aufgabenbearbeitungen auf Konzeptpapier und
Reinschrift sowie die ausgefiillten Fragebdgen) wurden nach der Studie einbehalten, wobei den
Studierenden Kopien ihrer Bearbeitungszettel ausgehandigt wurden. Die Gesprache aller Beteiligten
wurden transkribiert.

Flr die Untersuchung der Leitfrage zur Auswertung [9] (,Spontane Wahl der Beweisform und Griinde
fir deren Auswahl“) wurde geschaut, mit welcher Beweisform die Studierenden zunachst
versuchten, die gegebene Behauptung zu beweisen. Anschlieffend wurden aus den Transkripten die
von den Studierenden angegebenen Griinde fiir ihre spontan gewadhlte Beweisform
zusammengetragen.

Fir die Untersuchung der Leitfrage zur Auswertung [10] (,Bewertungen der Beweisformen im

Hinblick auf die Aspekte ,Sicherung der Giiltigkeit“, ,Uberzeugungskraft®, , Erkldrungspotential” und

oo

»Eignung fiir den schulischen Mathematikunterricht““) wurden die Beweisbewertungen der

183



Studierenden, die sie im Rahmen des Fragebogens (vgl. Tabelle 17) getétigt hatten, statistisch
ausgewertet.

Um durch die Untersuchung der Leitfragen zur Auswertung [11], [12] und [13] (,Wahrnehmung der
Beweisformen und Unterscheidung eines logischen und psychologischen Aspekts“) die Antworten
der Studierenden auf dem Fragebogen (s.0.) besser verstehen zu kénnen, wurden zunachst Apriori-
Kategorien gebildet, um eine grobe Vorsortierung der AuBerungen der Studierenden vornehmen zu
kénnen. Im Sinne der Forschungsmethode der ,,quasi-judicial method” fiir Fallstudien (Bromley 1986,
S. 24ff.) wurde dazu der moglichst einfache Zusammenhang der beiden Aspekte ,logische Akzeptanz’
und ,psychologische Uberzeugung’ angenommen. In der Kombination dieser Aspekte ergeben sich,
im Sinne einer Vier-Felder-Tafel, vier mogliche Wahrnehmungen:

Psychologische Uberzeugung
liegt vor liegt nicht vor
liegt vor (1) Logische Akzeptanz und (2) Logische Akzeptanz ohne
Logische psychologische Uberzeugung psychologische Uberzeugung
Akzeptanz liegt nicht vor (3) Keine logische Akzeptanz, aber (4) Weder logische Akzeptanz noch
psychologische Uberzeugung psychologische Uberzeugung

Tabelle 18: Apriori-Kategorisierung zur Grobbestimmung der Wahrnehmung der Studierenden in Bezug auf die Aspekte
Jlogische Akzeptanz" und ,psychologische Uberzeugung"

Zu den Kategorien im Einzelnen:
(1) Logische Akzeptanz und psychologische Uberzeugung:

Ein Studierender mit dieser Wahrnehmung akzeptiert das Konzept des Beweises und erkennt die
logische Konsequenz an, dass aufgrund des Beweises die Giiltigkeit der Behauptung mit
Sicherheit folgt. Auf der psychologischen Ebene ist der Studierende Uberzeugt, dass nach dem
erfolgten Beweis die Behauptung in allen méglichen Fallen wahr sein muss und ein Gegenbeispiel
nicht existieren kann.

(2) Logische Akzeptanz ohne psychologische Uberzeugung:

Ein Studierender mit dieser Wahrnehmung versteht das Konzept der Beweisform und akzeptiert
die damit verbundene Verifikation der Behauptung. Es verbleibt jedoch ein subjektiver, intuitiver
Zweifel, eine psychologische Unsicherheit an der wirklichen Allgemeingilltigkeit der
Argumentation, auch wenn diese rational als eigentlich unnétig bewertet wird.

(3) Keine logische Akzeptanz, aber psychologische Uberzeugung:

Ein Studierender mit dieser Wahrnehmung erfasst nicht die logische (korrekte) Verifikation, die
durch den Beweis geleistet wird. Somit erweist sich fiir den Studierenden die Giltigkeit der
Behauptung nicht als logisch-notwendige Konsequenz aus dem Beweis. In Gegensatz dazu wird
durch den Beweis allerdings die psychologische Uberzeugung erhéht, dass die gegebene
Behauptung wahr ist.

(4) Weder logische Akzeptanz noch psychologische Uberzeugung:

Bei dieser Wahrnehmung eines Beweises wird der erfolgte Beweis bzw. das verwendete
Beweiskonzept augenscheinlich nicht (vollstdndig) verstanden. Weder erfolgt eine logische
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Akzeptanz, dass aufgrund des erfolgten Beweises die Giiltigkeit der Behauptung mit Sicherheit
folgen muss, noch ist durch den Beweis eine subjektive Uberzeugung bzgl. der Giiltigkeit der
Behauptung gegeben.

Anhand dieser vier Kategorien wurde eine erste grobe Vorkategorisierung der Wahrnehmungen der
Studierenden vorgenommen. Dazu wurde in den Transkripten nach AuBerungen gesucht, die die
Existenz bzw. die Abwesenheit von logischer Akzeptanz und psychologischer Uberzeugung belegen.
Auf diese Weise konnten die Studierenden jeweils einer dieser vier Kategorien zugeordnet werden.
Aufbauend auf dieser groben Vorkategorisierung wurden im Kontext der vier Kategorien die
konkreten AuBerungen der Studierenden herausgearbeitet, die die entsprechende Zuordnung
ermoglichten. In der Betrachtung dieser AuRerungen wurde es schlieRlich moglich, genauer zu
beschreiben, wie die Studierenden ihre Wahrnehmung in Bezug auf die verschiedenen Beweisformen
umschreiben bzw. begriinden.

Aufgabenanalyse

Flr die Durchfiihrung dieser Studie musste eine Behauptung gefunden werden, die sich mithilfe aller
vier Beweisformen der Lehrveranstaltung beweisen ldasst und im Rahmen von
Beispieluntersuchungen Moglichkeiten bietet, verschiedene Erkenntnisse fiir die Konstruktion von
(generischen) Beweisen zu verwenden. Aus diesen Griinden wurde die folgende Aufgabe ausgewahlt:

Aufgabe
Beweisen oder widerlegen Sie die folgende Behauptung:

Nimmt man eine beliebige natiirliche Zahl und addiert dazu ihr Quadrat, dann ist diese Summe immer durch 2
teilbar.

Im Folgenden werden verschiedene Losungsmoglichkeiten fiir die Konstruktion der vier
Beweisformen der Lehrveranstaltung aufgezeigt.

Generischer Beweis mit Zahlen, Variante (1):
24+44=6und3+9=12

Da das Quadrat einer geraden Zahl auch gerade und das einer ungeraden Zahl ungerade ist, werden in den obigen
Rechnungen immer entweder zwei gerade oder zwei ungerade Zahlen miteinander addiert. Da die Summe von zwei
geraden Zahlen immer gerade ist und auch die Summe von zwei ungeraden Zahlen immer gerade ist, wird das Ergebnis
immer gerade sein.

Generischer Beweis mit Zahlen, Variante (2):
2+4=2-(14+42)=2-3und5+25=5-(1+5)=5-6

Die Summe aus einer natirlichen Zahl und ihrem Quadrat ist immer gleich dem Produkt von der Ausgangszahl und ihrem
Nachfolger. Da bei zwei aufeinanderfolgenden natirlichen Zahlen immer eine Zahl gerade ist, muss das Produkt den Faktor
2 enthalten, wodurch das Ergebnis immer gerade sein muss.

Formaler Beweis:

1. Fall: Sei neNeine beliebige, aber feste gerade Zahl. Dann ist n=2a fir ein aeN.Weiter gilt:
n+n? = (2a) + (2a)? = 2a + 4a? = 2(a + 2a?). Diese Summe ist durch 2 teilbar, da (a + 2a?) e N.

2. Fall: Sei neNeine beliebige, aber feste ungerade Zahl. Dann ist n=2a—1 fir ein aeN.Weiter gilt:
n+n?=QRa-1)+QRa-1)%?=Qa—-1)+4a?—-4a+1=2(2a%?—a). Diese Summe ist durch 2 teilbar, da
(2a? —a)e N.
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Damit ist alles gezeigt. Q.e.d.
Generischer Punktmusterbeweis:

1. Fall: n ist eine gerade Zahl:

eo00
0000 ) OO O
+ 8 8 8 8 = 8 888 Abbildung 37: Generisches Punktmusterbeispiel fiir
0000 0000 OO?OO die Summe ,n + n?“ bei gerader Ausgangszahl

Wenn man eine gerade Zahl quadriert, dann sind die Seiten des entstehenden Quadrats auch ,,gerade”. Addiert man darauf
an einer Seite die Ausgangszahl, dann bleibt eine Seitenldnge unverdndert gerade. Somit kann man die so entstandene Figur
in zwei gleiche Hdlften teilen, weswegen die Summe gerade ist.

2. Fall: nist eine ungerade Zahl:

000
4+ 000 _ 000
O00 — 000 Abbildung 38: Generisches Punktmusterbeispiel fir die
000 000 000 Summe ,n + n?“ bei ungerader Ausgangszahl

Wenn man eine ungerade Zahl quadriert, dann sind die Seiten des entstehenden Quadrats ,,ungerade”. Addiert man darauf
an einer Seite die Ausgangszahl, dann wird eine Seitenldnge um 1 gréfSer und somit gerade. Also kann man die so
entstandene Figur in zwei gleiche Hdlften teilen, weswegen die Summe gerade ist.

Punktmusterbeweis mit geometrischen Variablen:

1. Fall: n ist eine gerade Zahl

.o
O - O O 4 O
+ nd P ? . n+1
® -0 O .0 o4 0
. — i
n n n
2. Fall: n ist eine ungerade Zahl
® -0 n+1
o - 0 O - 0 p
+ nd: . o= TV n+l ——
PP O .0 o .0 ind Abbildung 39: Punktmusterbeweis mit geometrischen
Y T Y Variablen fiir die Behauptung, dass die Summe ,,n + n“
L n n immer gerade ist
Ergebnisse

Die Ergebnisse bzgl. der primaren Beweiskonstruktion der Studierenden und ihrer Wahrnehmungen
vom generischen Beweis mit Zahlen wurden in Kempen und Biehler (2016) verdéffentlicht. Die
folgenden Darstellungen orientieren sich an der genannten englischsprachigen Publikation,
sprachliche Anlehnungen werden dabei zur besseren Ubersichtlichkeit nicht angemerkt.

Die verschiedenen Ergebnisse werden im Folgenden mithilfe von woértlichen Zitaten belegt, die in
kleinerer Schriftgrole und eingeriickt angegeben werden. Insgesamt nahmen sechs
Studierendenpaare an der Untersuchung teil, davon waren sieben Studierende weiblich und flinf
mannlich. Ein Studierender (,S7“) besuchte die Lehrveranstaltung zum zweiten Mal.
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Beantwortung der Leitfrage zur Auswertung [9]: Welche Beweisform nutzen die Studierenden
spontan, um eine gegebene Behauptung zu beweisen? Welche Griinde kénnen fiir die entsprechende
Beweiswahl ausgemacht werden?

Neun der zwolf Teilnehmenden der Studie begannen die Bearbeitung der Aufgabe unmittelbar mit
der Formalisierung der Aussage und der Konstruktion eines formalen Beweises. Nur in einer Gruppe
Uberpriften die Studierenden die Behauptung zunachst an konkreten Zahlenbeispielen. Einer dieser
Studierenden erldauterte anhand seiner Beispiele, dass solche Summen immer gerade sein missen,
denn bei ungeraden Zahlen sei das Quadrat auch ungerade und die Summe von zwei ungeraden
Zahlen sei immer gerade. Dieses Teilargument wurde von der Gruppe allerdings fiir die Konstruktion
eines generischen Beweises (mit Zahlen) nicht weiterverfolgt, auch sie versuchte anschlieBend die
Konstruktion eines formalen Beweises mithilfe von Buchstabenvariablen.

Bei der anschlieBRenden Befragung der Studierenden nach ihren Motiven fiir die unmittelbare
Konstruktion des formalen Beweises wurden die folgenden Griinde angefiihrt: ihre Sozialisation in
Schule und Universitat, dass der formale Beweis leichter zu konstruieren sei, weil man dafir keine
Idee haben misse, und weil sie dachten, dass die Konstruktion eines formalen Beweises von ihnen
gefordert sei. Nur ein Studierender begann die Aufgabenbearbeitung mit der Niederschrift
»generischer Beweis” und der Untersuchung von konkreten Zahlenbeispielen. Als Griinde fiihrte der
Studierende die folgende Erklarung an:

Ja, also fuir mich ist das einfach eine Stiitze. Ich sehe das so, wenn ich mir das aufschreibe, das ist ja dass ich das
einfach sehe, wie das funktioniert, und dann fange ich erst an, daflir Variablen einzusetzen. Also dann den
formalen Beweis. Ich gucke vielleicht, ob ich da eine RegelmaRigkeit finde, weiB ich nicht. Flir mich ist das immer
einleuchtender, wenn ich zuerst mit dem generischen Beweis beginne und dann eben mit den Variablen.
(Studierender 12)

Beantwortung der Leitfrage zur Auswertung [10]: Wie bewerten die Studierenden die vier
verschiedenen Beweisformen der Lehrveranstaltung im Hinblick auf die Aspekte und , Sicherung der
Giiltigkeit”, , Uberzeugungskraft”, ,Erkldrungspotential” und ,Eignung fiir den schulischen
Mathematikunterricht“?

Die Bewertungen der Studierenden fir die vier verschiedenen Beweisformen werden in der
Abbildung 40 dargestellt. Es zeigte sich, dass die Mehrheit der Probanden den formalen Beweis bzgl.
der Aspekte ,Uberzeugungskraft, , Erkldrungsqualitat” und ,Sicherung der Giltigkeit” insgesamt am
hochsten bewertete. Nur in Bezug auf die Eignung fir den schulischen Mathematikunterricht fielen
die Bewertungen zum formalen Beweis meist niedriger aus als die Bewertungen zu den anderen
Beweisformen.
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Abbildung 40: Die Beweisbewertungen der Studierenden bzgl. der Aspekte ,, Uberzeugungskraft”,
»Erkldarungsqualitat®, ,Sicherung der Giiltigkeit” und ,,Eignung fiir die Schule” ([1] ,,stimmt gar nicht“ ...
[6] stimmt ,,vollig")
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Beantwortung der Leitfrage zur Auswertung [11]: Wie beschreiben die Studierenden ihre
Wahrnehmung bzgl. des generischen Beweises mit Zahlen im Spannungsfeld von logischer Akzeptanz
und psychologischer Uberzeugung und womit begriinden sie diese?

Fiir drei von den oben angegebenen vier Apriori-Kategorien konnten in den Transkripten AuBerungen
ausgemacht werden, die die Existenz dieser Wahrnehmungen belegen. Nur fiir die Existenz der
Wahrnehmung (3) ,Keine logische Akzeptanz, aber psychologische Uberzeugung” konnte kein Beleg
gefunden werden. Bezliglich des generischen Beweises mit Zahlen konnten somit drei verschiedene
Wahrnehmungen ausgemacht werden: (a) ,Logische Akzeptanz und psychologische Uberzeugung”,
(b) ,Logische Akzeptanz ohne psychologische Uberzeugung” und (c) ,Weder logische Akzeptanz noch
psychologische Uberzeugung”. Diese drei verschiedenen Wahrnehmungen werden im Folgenden
kurz beschrieben und deren Existenz mithilfe von Transkriptausziigen belegt. AuRerdem wird
herausgearbeitet, wie die Studierenden ihre Wahrnehmungen beschreiben und ggf. begriinden.

(a) Logische Akzeptanz des generischen Beweises mit Zahlen und psychologische Uberzeugung

In Bezug auf den generischen Beweis mit Zahlen bedeutet diese Wahrnehmung das Folgende:

Ein Studierender mit dieser Wahrnehmung akzeptiert das Konzept des generischen Beweises und
erkennt die logische Konsequenz, dass aufgrund des Beweises die Giiltigkeit der Behauptung folgt.
Auf der psychologischen Ebene ist der Studierende (iberzeugt, dass nach dem erfolgten generischen
Beweis die Behauptung in allen moglichen Fallen wahr sein muss und ein Gegenbeispiel nicht
existieren kann.

Diese Wahrnehmung konnte nur bei einem Studierenden anhand seiner AuRerungen nachgewiesen
werden.

Transkriptauszug [al]; Studierender 10:

Also, ich habe jetzt angekreuzt: stimmt vollig [bei ,Sicherung der Gltigkeit”, L. K.], weil ... wieder Schritt fiir
Schritt, man kann dann mitdenken, z.B. das wird addiert und dann kommt das dazu und man kann immer darauf
aufbauen, jetzt nicht so wie bei dem formalen Beweis. Das steht dann einfach im Raum und das muss man dann
beweisen und das ist dann so. Das [der generische Beweis, L. K.] ist zwar nicht so anschaulich mit den Bildern,
aber man sieht hier genau, was passiert. [...] Das finde ich gerade gut beim generischen. Man kann, wenn man den
sieht, kann man sich sofort denken , Ah“, das wurde sich dabei gedacht. Weil es werden ja immer ein paar
Beispiele gemacht und an denen wird argumentiert und das kann man gut mit einer Argumentation, wenn diese
nicht zu fachlich geschrieben ist, nachvollziehen.

Dieser Studierende stellt als Basis fir seine Wahrnehmung die Schritthaftigkeit der Beweisfiihrung
heraus, die anhand eines konkreten Beispiels entwickelt wird und somit besonders gut nachvollzogen
werden kann. Auch wird positiv angemerkt, dass die die konkreten Beispiele begleitende narrative
Begriindung bzw. Erlauterung besonders gut verstdndlich sei, wenn diese ,nicht zu fachlich
geschrieben ist“. Innerhalb dieses Transkripts werden somit die Vorzlige generischer Beweise
genannt, die bereits auf theoretischer Ebene in Abschnitt 2.1.3 herausgearbeitet wurden: der
mogliche Verzicht auf die fachmathematische Symbolsprache, der Einbezug konkreter Beispiele, was
zu einem besseren Verstandnis des zu beweisenden Sachverhalts filhren kann, und damit verbunden
eine besondere ,Erklarungsqualitat’ der Beweisfiihrung.
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(b) Logische Akzeptanz des generischen Beweises ohne psychologische Uberzeugung

Ein Studierender mit dieser Wahrnehmung des generischen Beweises mit Zahlen versteht das
Konzept der Beweisform und akzeptiert die damit verbundene Verifikation der Behauptung. Es
verbleibt jedoch ein subjektiver, intuitiver Zweifel, eine psychologische Unsicherheit an der
wirklichen Allgemeinglltigkeit der Argumentation, auch wenn diese rational als eigentlich unnotig
bewertet wird.

Die folgenden Transkriptausziige belegen die Existenz dieser Wahrnehmung, die bei vier
Studierenden ausgemacht werden konnte*:

Transkriptauszug [b1]; Studierender 2 (begriindet seine Bewertung [,4“] des generischen Beweises mit Zahlen
bzgl. der ,Uberzeugung’ auf der Sechser-Likert Skala):

S2: Ja, wir haben da ja jetzt nur diese Zahlenbeispiele und wenn’s jetzt ... weill nicht. Also vom
Geflhl her wiirde ich dann sagen, vielleicht im Tausenderbereich oder so stimmt das dann
schon nicht mehr. Also vom Gefiihl jetzt her.

Interviewer: Also kann da doch im Tausenderbereich ein Beispiel kommen, dass es nicht funktioniert.

S2: Eigentlich nicht, aber so vom Gefiihl her finde ich, dass der formale Beweis besser ist. Wiird ich
jetzt [unverstdndlich]

Im Transkriptauszug [b1] wird deutlich, dass nach der Betrachtung des generischen Beweises mit
Zahlen ein subjektiver Zweifel an der Allgemeingiiltigkeit der Behauptung verbleibt, der allerdings
aus logischer Perspektive als unnotig bewertet wird (,,eigentlich nicht, aber vom Gefiihl her”). Dieser
subjektive Zweifel wird in Bezug auf Beispiele im ,Tausenderbereich” ausgedriickt, die fiir den
Studierenden mit einer Unsicherheit behaftet sind. An dieser Stelle kann eine gewisse Verbindung zu
der Fehlvorstellung ,big number” ausgemacht werden: Beispiele mit groRen Zahlen werden
psychologisch anders bewertet als solche mit kleinen Zahlen (vgl. Abschnitt 5.3.2.3).

Transkriptauszug [b2]; Studierender 8:

Aber - das hier [zeigt auf den formalen Beweis] ist flir mich irgendwie allgemeingiiltiger und ein schlissigerer
Beweis. Ich finde, man misste es mit allen ,n“ ausprobieren [zeigt auf den generischen Beweis] — auch wenn’s
Quatsch ist, man sieht ja immer die Form — aber... [...] Das hier ist vollstédndiger fiir mich, wenn man immer ,fur
alle n Element n“, auch wenn man’s hiermit ja auch — die Allgemeingiiltigkeit zeigt. Irgendwie — fehlt noch so’n
Gefuhl.

Auch im Transkriptauszug b2 wird der verbleibende subjektive Zweifel (,,irgendwie — fehlt noch so’n
Geflihl“) aus logischer Perspektive als unnotig bewertet (,,auch wenn’s Quatsch ist“). Die logische
Akzeptanz resultiert aus der ,,Form*, die fiir alle Beispiele genau so gilt; fir ein sicheres Gefiihl wiirde
der Studierende diese Form aber am liebsten ,,mit allen n ausprobieren”. In diesem Fall scheint die
verbleibende Unsicherheit dadurch begriindet zu sein, dass die Argumentation noch zu sehr an dem
betrachteten konkreten Beispiel verhaftet bleibt, eine vollstdndige Ablosung vom konkreten Fall i.S.
einer Allgemeinglltigkeit scheint auf der psychologischen Ebene nicht stattzufinden.

“® Der vierte Studierende mit dieser Wahrnehmung ist Studierender 1. Zu diesem Studierenden wird allerdings
kein Transkriptauszug angegeben, da dieser lediglich die Aussagen von dem Studierenden 2 bejaht bzw.
wiederholt hat.
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Transkriptauszug [b3]; Studierender 9:

Ich weil} nicht. Ich kann’s nicht mal genau erklaren, warum das so fiir mich ist. Ich verstehe auch, dass die
allgemeingiiltig sind, und den Sinn hinter der ganzen Sache. Nur von der Uberzeugungskraft her, wenn mir jemand
so einen Beweis vorlegen wiirde, wirde ich wahrscheinlich sagen, kann ich den nochmal formal haben. Irgendwie
Uberzeugt mich das mehr.

Bei den AuBerungen vom Studierenden 9 wird die logische Akzeptanz (,ich verstehe auch, dass die
allgemeingiiltig sind“) deutlich von einer subjektiven Uberzeugung abgegrenzt. Dabei wird lediglich
angemerkt, dass der Studierende fiir eine gesteigerte Uberzeugungskraft einen formalen Beweis
bevorzugen wiirde.

Insgesamt kann festgehalten werden, dass in Bezug auf den generischen Beweis mit Zahlen in dieser
Studie bei vier von zwolf Studierenden diese Wahrnehmung (b) ausgemacht werden konnte. Der
verbleibende subjektive Zweifel auf der psychologischen Ebene resultiert dabei nach Angaben der
Studierenden aus einer gewissen Unsicherheit (,,so ein Geflihl“), ob nicht doch ,irgendwo’ ein Beispiel
existieren konnte, bei dem das ausgemachte generische Argument nicht funktionieren wiirde. Diese
Unsicherheit wurde einmal in Bezug auf groRe Zahlenbeispiele (,,im Tausenderbereich®) formuliert,
ein anderes Mal dadurch, dass man eigentlich alle Zahlenbeispiele einmal ausprobieren mdchte.
Dieser verbleibende subjektive Zweifel wird allerdings in all diesen Fallen aus logischer Perspektive
als unnotig bewertet.

(c) Weder logische Akzeptanz des generischen Beweises noch psychologische Uberzeugung

Bei dieser Wahrnehmung des generischen Beweises mit Zahlen wird das Beweiskonzept nicht
(vollstandig) verstanden. Bei der Beweisbetrachtung stehen die konkreten Beispiele im Vordergrund,
ohne dass das beispiellibergreifende generische Moment erkannt bzw. gewirdigt wird. Somit wird
der generische Beweis als bloRe empirische Uberpriifung fehlinterpretiert.

Aufgrund ihrer AuRerungen wurde fiinf Studierenden diese Wahrnehmung zugeordnet.
Transkriptauszug [c1]; Studierender 3:

Bei generischen Beweisen ist es ja einfach so, dass man manchmal auch — man hat ja auch in den Hausaufgaben
manchmal gemerkt, dass wir dann Beispiele geben sollen zur Behauptung, dann haben wir ganz viele Beispiele
dazu gefunden, aber es war trotzdem falsch. Also es hat nicht - es gilt nicht fur alle. Deswegen kann man sich ja
nicht immer sicher sein, dass das auch wirklich stimmt, nur weil man Zahlenbeispiele beacht ... sich angeschaut
hat.

Der Studierende 3 nimmt keine Trennung zwischen der Uberpriifung einzelner Beispiele und der
Betrachtung einer beispiellibergreifenden, generischen Argumentation vor. An dieser Stelle wird
deutlich, dass dieser Studierende das Konzept generischer Beweise in Abgrenzung zu unvollstandigen
induktiven Verallgemeinerungen nicht (vollstdndig) verstanden hat. Positiv kdonnte allerdings
angemerkt werden, dass ihm bewusst ist, dass die Giltigkeit eines generischen Beweises von der
(allgemeingiiltigen) Ubertragbarkeit des generischen Arguments abhingt.

Transkriptauszug [c2]; Studierender 7:

Da hat man — also ich selber seh’ darin nur Zahlenbeispiele. Ernsthaft, ich seh’ da nur ... Jetzt von der Vorlesung
und so, hatt’ ich jetzt kein Abitur, hatt ich gesagt, ja locker weg so, wird ausreichen, ne? Aber jetzt, weil wir
wissen, dass man da irgendwie zeigen muss mit Variablen und so, ohne dass man Zahlenbeispiele nimmt, das ist
dann ... schwach ausgedriickt ist, wenn wir das so machen.
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Der Studierende 7 gibt an, dass er in generischen Beweisen nur die Uberpriifung einzelner
Zahlenbeispiele sieht. Mit Bezug auf sein Abitur spricht er weiter davon, dass mit diesem
Bildungsgrad auch die Erkenntnis verbunden sei, dass man richtige Beweise mit Variablen fiihren
musse.

Transkriptauszug [c3]; Studierender 11:

Ja, richtiger in dem Sinne, dass [der formale Beweis, L. K.] zeigt halt die Richtigkeit, also die Giiltigkeit, genau. Und
dass die Behauptung dann halt gilt. Zeigen wir auch zwar im generischen Beweis, aber das ist ja dann nur fir die
paar Zahlen, die wir eingesetzt haben.

Transkriptauszug [c4]; Studierender 12:

Ja. Ich wiird sagen, dass das — also ob’s [der generische Beweis mit Zahlen, L. K.] mir ausreicht weiB ich nicht. Also
ich wiird hier — ob’s jetzt die Giiltigkeit 100% [unverstandlich] wiird ich nicht sagen. Weil wir hatten auch mal ich
glaub irgendwie 'ne Hausaufgabe oder sowas gehabt, wo man das widerlegen musste und beweisen, irgendwie so
was war das. Und dann konnte das auch, musste man Beispiele dazu bringen. Und ich hatte da zwei Beispiele
erwischt, die passen, und vielleicht gibt es noch ein drittes, was nicht passt. Dann reicht mir das nicht aus, also
dann hab ich’s ja im Grunde nicht bewiesen. Dann beweis ich’s nur fiir die zwei Zahlenbeispiele und nicht fur’s
Ganze. Ist nicht die Giiltigkeit da.

Auch die Studierenden 11 und 12 sprechen sich dafiir aus, dass in generischen Beispielen lediglich
einzelne konkrete Beispiele Uberpriift wiirden. Ein Bezug auf das beispiellibergreifende, generische
Argument wird nicht vorgenommen. Die Beweisform wird auch in diesen AuRerungen mit
unzureichender induktiver Verallgemeinerung gleichgesetzt.

Beantwortung der Leitfrage zur Auswertung [12]: Wie beschreiben die Studierenden ihre
Wahrnehmung bzgl. des formalen Beweises im Spannungsfeld von logischer Akzeptanz und
psychologischer Uberzeugung und womit begriinden sie diese?

Im Fall des formalen Beweises konnten anhand der Transkriptausziige keine Evidenzen fiir die
Existenz der Apriori-Kategorien (2), (3) und (4) ausgemacht werden. Die einzige Wahrnehmung, fir
deren Existenz in den Transkripten Belege gefunden werden konnte, entspricht der Kategorie (1)
,Logische Akzeptanz und psychologische Uberzeugung”. Der formale Beweis wird von fast allen
Studierenden als der ,beste” bzw. ,sicherste” Beweis beschrieben. Diese empfundene Sicherheit
wird dabei vor allem im Kontrast zum generischen Beweis ausgedriickt. Begriffe, mit denen die
Studierenden in der Diskussion um die Giltigkeit der Beweisformen diese Vorrangstellung des
formalen Beweises ausdriicken, sind: ,besser”, ,am besten”, ,konkreter”, ,allgemeingltiger”,
,vollstandiger”, ,starker”, ,richtiger” und ,,am sichersten”. Als Grund werden von den Studierenden
die Verwendung der fachmathematischen Symbolsprache und die damit verbundene ,Sicherheit’
angefihrt.

Im Folgenden werden verschiede Transkriptauszlige angegeben, die die Existenz der Wahrnehmung
»logische Akzeptanz und psychologische Uberzeugung” zu belegen scheinen:

Transkriptauszug [a2]; Studierender 2:

Also ich finde den generischen Beweis zum Verstandnis her, also am Anfang, dass man so ein Schema erkennt,
gut, aber dann den formalen Beweis, um das wirklich zu beweisen. Also, dass es wirklich sicher ist, dass es auch so
stimmt.

192



Fir den Studierenden 2 ist es die Beweisform des formalen Beweises, die , wirklich” etwas beweist.
Nur durch diese Beweisform wird wirkliche ,Sicherheit’ hergestellt.

Transkriptauszug [a3]; Studierender 4:

Also ich finde den formalen am besten. Ja, irgendwie ist der vielleicht am sichersten? Also wenn ich nachher
irgendwie rausbekomme ,,2 mal irgendwas — in der Klammer*“, dann ist es vollig egal, was in der Klammer steht,
ich weil}, es ist durch 2 teilbar. So, dann brauche ich nicht noch irgendwie Ausfiihrungen, gucken oder so. Dann ist
das vollig klar.

Der Studierende 4 beschreibt den formalen Beweis als ,,am besten” und als ,,am sichersten”. Das
nach der Anwendung von Termumformungen schlieBlich erhaltene Resultat (,2 mal irgendwas — in
der Klammer®) stellt flr ihn die Glltigkeit der Aussage sicher.

Transkriptauszug [a4]; Studierender 7:

Aber ich find das auch konkreter [zeigt auf den formalen Beweis, L. K.] eben, wenn man mit dem formalen
Algebra-Beweis, also — ja — find ich allgemeinglltiger. Aber vom Geflhl her irgendwie find ich das hier [zeigt auf
den formalen Beweis, L. K.] noch vollstéandiger.

Transkriptauszug [a5]; Studierender 9:

Ich finde irgendwie, die Variablen sind irgendwie, die sind allgemeingiltiger. Das andere ist dann wohl hin und her
erklart. Das ist so ein bisschen Gerederei, sage ich mal. Je nachdem, wie man es formuliert, kdnnte man es
verstehen oder nicht. Aber mit Variablen, wenn die richtig definiert sind, zack so sind die und da gibt es kein
Wenn und Aber.

In den Transkriptauszligen zu den Studierenden 7 und 9 wird der formale Beweis als
yallgemeingiiltiger” bzw. ,vollstandiger” bezeichnet. Interessant erscheint hierbei die sprachliche
Wendung der Steigerung der Absolutadjektive ,allgemeingultig’ und ,vollstandig’. Hierin kann ein
Ausdruck psychologischer Uberzeugung gesehen werden, da vom logischen Standpunkt her beide
Beweisformen (generischer Beweis und formaler Beweis) als allgemeingiiltig und vollstandig
bewertet werden. SchlieRlich hebt der Studierende 9 die Prazision der fachmathematischen
Symbolsprache heraus (,,Aber mit Variablen...“).

Transkriptauszug [a6]; Studierender 12:

Ja, fur mich hat der formale Beweis trotzdem noch mehr Giiltigkeit. Also er sichert die Glltigkeit fir alle Zeiten,
noch besser ab. Ich seh’ das zwar so, aber ich brauch noch dazu den Beweis selbst, den formalen Beweis, damit
das fiir mich hundertprozentig eindeutig ist. Also ich kann sowas meistens auch nur konstruieren, wenn ich den
formalen Beweis habe. So Hundertprozent Uberzeugt mich die Glltigkeit erst, wenn ich den formalen Beweis
sehe, alleine jetzt nicht so.

Wie in den obigen Transkriptausziigen, verwendet auch der Studierende 12 eine besondere
Steigerungsform: Der formale Beweise habe ,noch mehr Giiltigkeit” und ,sichert die Gultigkeit fir
alle Zeiten noch besser ab“.

Nur ein Studierender dulRert sich negativer gegeniliber dem formalen Beweis. Es ist der Studierende
10, der als einziger den generischen Beweis mit Zahlen fiir sich vollstéandig logisch und psychologisch
akzeptiert zu haben schien (vgl. hierzu die Wahrnehmung (a) des generischen Beweises oben).

Ja, weil beim formalen Beweis steigt man nicht sofort durch. Weil, man bekommt entweder einen Sachverhalt
oder das Bewiesene und wenn man jetzt sieht, warum hat er da die Termumformung gemacht und was mochte er
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mir jetzt damit sagen. Was mochte er erreichen? Bei manchen formalen Beweisen reicht es ja, wenn man einfach
nur die Aquivalenzumformungen da stehen hat und noch nicht mal grol® einen Text dazu schreibt, und manchmal
blickt man da nicht sofort durch.

Beantwortung der Leitfrage zur Auswertung [13]: Wie beschreiben die Studierenden ihre
Wahrnehmung bzgl. der Punktmusterbeweise im Spannungsfeld von logischer Akzeptanz und
psychologischer Uberzeugung und womit begriinden sie diese?

Da nicht in allen Gruppen die Zeit ausreichte, um alle Beweisformen zu erértern, kdnnen die in dieser
Studie erhaltenen Informationen zu den Punktmusterbeweisen nicht als ausreichend betrachtet
werden, um Wahrnehmungen von generischen Punktmusterbeweisen und Beweisen mit
geometrischen Variablen abstrahieren und beschreiben zu kénnen. Entsprechend wird an dieser
Stelle auch auf die Unterscheidung bzgl. logischer und psychologischer Aspekte verzichtet. Dennoch
erscheint es wertvoll, verschiedene Auffassungen der Studierenden zumindest zu dokumentieren.
Daher sollen an dieser Stelle Thesen bzgl. verschiedener Wahrnehmungen formuliert werden, die in
AuRerungen der Studierenden deutlich zu werden schienen. Mit der Formulierung dieser Thesen
wird dabei kein Anspruch auf Vollstandigkeit oder Verallgemeinerbarkeit erhoben, sie sollen zur
Skizzierung verschiedener Aspekte von Punktmusterbeweisen und als Diskussionsgrundlage und
Anhaltspunkte fir weitere Forschungen dienen.

These (1) Punktmuster sind schwieriger zu konstruieren, weil man immer erst eine ,Idee’ braucht

Verschiedene Studierende &uRerten den Einwand, dass Punktmusterbeweise schwerer zu
konstruieren seien als andere Beweise, da man bei dem Umgang mit Punktmustern immer zunachst
eine ldee fir deren Anordnung und Umstrukturierung haben misse. Diese These wird durch zwei
Zitate verdeutlicht:

Ja, also weil, ja, der generische, also jetzt im Vergleich zu Punktmuster, aber da [beim Punktmusterbeweis; L. K.]
brauch man dann immer ne Idee erstmal, ne? Deswegen finde ich den, im Vergleich zum formalen Beweis, auf
jeden Fall schlechter, weil man da immer erst irgend ne Idee braucht. (Studierender 4)

Wir wissen ja seit der ersten Klasse, nein Quatsch, wir wissen mit frihem Alter wenn wir eine Zahl mit zwei
multiplizieren, dass es dann logischerweise auch dann durch 2 teilbar ist. Hier [beim Punktmusterbeweis; L. K.]
misste man erstmal Gberlegen waagerecht/senkrecht, gerade Zahl oben/gerade Zahl unten. Das Feeling dabei,
das anzugucken und nachzuvollziehen ist hierbei [beim formalen Beweis; L. K.] einfacher als da. Hierbei zeigt man,
egal welche der natirlichen Zahlen man mit zwei multipliziert und ist logischerweise durch 2 teilbar.
(Studierender 8)

These (2) Durch die Verwendung von Punktmustern und der damit verbundenen ,visuellen’

Darstellung des Sachverhalts wird der Beweis leichter zu verstehen

Ein Studierender in der Untersuchung merkt an, dass durch die ,visuelle” Darstellung des
Sachverhalts die Punktmusterbeweise leichter zu verstehen sind:

Das hat mich so einfach, also klar ich hab jetzt hier [beim generischen Punktmusterbeweis; L. K.], also die
Gliltigkeit hab ich jetzt hier ein bisschen besser angekreuzt, sagen wir mal so. Also man sieht es ja, also es ist noch
mal, also es ist ja ne Kombination aus diesem Punktmusterbeweis und diesem generischen Beweis. Und da es
noch so visuell darstellbar ist, ist die Gliltigkeit, find ich, eher da. Also, weil man das ja fir mehrere Beispiele und
man sieht, dass es eben ja immer gilt sozusagen. Man erkennt da ja irgendwo, dass es zum Beispiel jetzt fur
gerade und ungerade Zahlen oder sowas und dadurch das noch visuell sozusagen begriindet wird. Also es ist
einfach durch die visuelle Begriindung find ich, ist das nochmal eindeutiger. (Studierender 12)
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These (3): Punktmusterbeweise sind fiir die Schule geeignet, weil sie ,anschaulicher’ sind.

Verschiedene Studierende haben angemerkt, dass sie Punktmusterbeweise deshalb fiir die Schule fiir
geeignet halten, weil sie ,anschaulicher” seien. Die folgenden Zitate sollen diese Ansicht
verdeutlichen:

Ich glaube, dass den Schiilern das leichter fallen wiirde, weil’s anschaulicher ist. Man sieht, dass man’s halt
durchteilen kann. Und da [beim formalen Beweis; L. K.] kann man’s halt nicht so sehen. Obwohl man auch hier die
,2“ da stehen hat und man weiR, es ist dann durch 2 teilbar. (Studierender 2)

Ich finde die Punktmusterbeweise auch nicht so toll, obwohl wahrscheinlich kénnen die sich das dann schon
besser vorstellen. Also wenn man einfach mal so’n Beispiel gibt, wobei ich das zum Beispiel schon zu schwierig
eigentlich finde. Wenn man sowas erklaren wirde, finde ich das zu schwierig, aber an leichteren Beispielen, wie
z.B. mit der geraden, wenn’s einfach ne gerade Zahl ist, plus ne gerade Zahl — das ist ja leicht, das ist ja leicht
vorzustellen. Oder ne ungerade plus ungerade — das, sowas ist gut. Dann konnen die erkennen, ok dann wird’s,
dann bleibt ein Punkt Gbrig und die ergdnzen sich, das ist gut. Das ist, glaub ich, kann man ganz gut anwenden.
(Studierender 3)

Ja, Punktmuster ist anschaulicher fir die Schule. (Studierender 7)

These (4) Punktmusterbeweise sind schwerer zu verstehen als formale Beweise

Ich finde, dass [der formale Beweis; L. K.] ist am ehesten nachvollziehbar wirklich fiir alle anderen, wenn sich das
jemand anderes angucken wiirde, wird der das am ehesten nachvollziehen, anstatt so’n Punktmusterbeweis, wo
man erst nochmal Uberlegen misste oder hier [beim generischen Beweis; L. K.], hier misste man jetzt noch nen
Satz hinterher schreiben. (Studierender 6)

Diskussion der Ergebnisse

Alle Studierenden, mit einer Ausnahme, beginnen die vorgelegte Beweisaufgabe mit der
Konstruktion eines formalen Beweises. Es zeigt sich hier, dass der Begriff des Beweisens fiir diese
Studierenden noch stark mit dem Konstrukt des ,formalen Beweises’ verbunden zu sein scheint. Dies
wird auch daran deutlich, dass in der Gruppe, in der zunachst konkrete Beispiele untersucht werden,
das ausgemachte Argument Uber das Quadrat ungerader Zahlen nicht weiterverfolgt wird, um einen
generischen Beweis zu konstruieren. Auch in dieser Gruppe wird die Heuristik der algebraischen
Umformungen fiir die Konstruktion des Beweises gewahlt. Nur einer der zwolf Studierenden beginnt
explizit mit der Konstruktion eines generischen Beweises, da er diese Beweisform als ,Stlitze” (s. Zitat
oben) betrachtet. Diese Verbindung (bzw. Gleichsetzung) der Begrifflichkeiten ,Beweis’ und ,formaler
Beweis’ kann dabei als Aspekt sozio-mathematischer Normen im Sinne einer Sozialisation durch
Schule und Universitat begriffen werden, wie es in den Antworten der Studierenden auf die Frage
nach ihren Motiven fir die Wahl der Beweisform deutlich wird. Dimmel und Hersh (2014, S. 393)
benutzen den Begriff der semiotischen Norm, der einen erganzenden Erkldarungsansatz fiir dieses
Phanomen bietet: Es ist moglich, dass der Aufgabenoperator ,Beweisen Sie” fiir die Studierenden die
Verwendung der algebraischen Sprache impliziert und sich somit eine semiotische Norm
herausgebildet hat*'. Wie sich spater im Laufe des Interviews herausstellte, war diese Beweisform fiir
die Mehrheit der Studierenden am einfachsten zu konstruieren. Dies mag dabei zunachst der
vorliegenden Aufgabe geschuldet sein: Nach Einsetzen der algebraischen Reprasentation einer

2u

geraden oder ungeraden Zahl in den Term ,n+ n*“ ergibt sich die Loésung durch einfache

algebraische Umformungen (vgl. die Aufgabenldésung zum formalen Beweis oben). Es ist allerdings

" Neuere Ergebnisse von Kempen et al. (2016) vermdgen die These zu stiitzen, dass der Aufgabenoperator
,Beweisen Sie ...“ die Verwendung von Variablen beglinstigt.
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auch generell eine offene Frage, ob sich bei entsprechenden Behauptungen in der elementaren
Zahlentheorie die Konstruktion formaler Beweise nicht generell als leichter erweist als die
Konstruktion generischer Beweise bzw. als Beweise mit Punktmustern.

Die Beweisbewertungen der Studierenden in dem Fragebogen scheinen zunachst in der Hinsicht
Uberraschend, dass der formale Beweis auch in Bezug auf die Erklarungsqualitdt haufig die beste
Bewertung erhalt. In der didaktischen Literatur wird dagegen im Allgemeinen generischen Beweisen
oder auch allgemein Beweisen mit Punktmusterdarstellungen ein hoheres Erklarungspotential
zugesprochen (vgl. hierzu die Erorterungen in Abschnitt 8.3.5). Bei den Ergebnissen bzgl. der Eignung
der Beweisformen fiir den schulischen Mathematikunterricht stellt sich die Frage, vor welchem
Hintergrund die Studierenden ihre Beweisbewertungen vornehmen. Denn es erscheint fragwirdig,
dass sie den formalen Beweis fur die Schule schlechter bewerten als die anderen Beweisformen,
obwohl sie selbst mit dieser Beweisform am besten zu Recht kommen (s.0.). Die Zuschreibung einer
Eignung fur den Schulunterricht konnte somit etwa der Tatsache geschuldet sein, dass die Probanden
der Ansicht sind, dass konkrete Zahlenbeispiele oder Punktmusterdarstellungen per se als
,Veranschaulichungen’ gut geeignet fiir die Schule, bzw. dass die Verwendung von Variablen fiir
Schilerinnen und Schiiler zu schwer seien. In dem Interview konnte diesen Fragen aus Zeitgriinden
leider nicht weiter nachgegangen werden. Diese Ergebnisse dirfen dabei aufgrund der niedrigen
Stichprobenzahl von 12 Probanden nicht Giberbewertet werden. Diese Resultate bieten jedoch eine
erste Einsicht in die Beweisbewertungen von Studierenden. Auch gaben diese Befunde den Anlass fir
die weitere Erforschung des Konstrukts der ,Beweisakzeptanz’, welche in dem folgenden Durchgang
der Lehrveranstaltung vorgenommen wurde (vgl. Abschnitt 7.2.4).

Die herausgearbeiteten Wahrnehmungen zum generischen Beweis mit Zahlen und zum formalen
Beweis geben Anlass zu der Diskussion dieser Beweisformen als Verifikationsmittel in der
Hochschullehre bzw. im schulischen Mathematikunterricht und als didaktisches Instrument zum
Erlernen der fachmathematischen Beweisaktivitat. Wenn die Lernenden selbst nicht die (Allgemein-)
Gliltigkeit generischer Beweise einsehen, wie sollen sie dann diese selbst konstruieren kénnen und
mithilfe dieser Beweise ein adaquates Verstdndnis von der mathematischen Beweisaktivitat
erlangen? Die hier erhaltenen qualitativen Ergebnisse geben dabei nur einen Anhaltspunkt fiir die
vorzunehmende quantitative Erforschung dieses Phanomens. Bedeutsam erscheint hierbei weiter,
dass bei der Wahrnehmung des generischen Beweises mit Zahlen zwischen logischer Akzeptanz und
psychologischer Uberzeugung unterschieden werden konnte. Diese Aspekte bilden einen Rahmen, in
dem Beweisakzeptanz geschieht, und sollten somit in entsprechenden Erdrterungen von
Beweiskonzepten mitgedacht werden.

Die formulierten Thesen bzgl. der Punktmusterbeweise geben Anhaltspunkte fir weitere
Forschungsfragen und Studien. Bei der Konstruktion von Punktmusterbeweisen braucht der
Beweisende wirklich eine ,Idee’, wie er im Darstellungssystem der Punktmuster das Behauptete
nachweisen kann. Die geometrische Interpretation von arithmetischen Sachverhalten (und
umgekehrt) ist dabei nicht als ein trivialer Akt anzusehen; auch muss hier das Problem der
Explizierung der Allgemeingiltigkeit (im Falle der generischen Punktmusterbeweise) mitbedacht
werden, denn diese Explizierung muss in gewisser Weise in einer ,Sprache der Punktmuster”
erfolgen, in der von Punktreihen, Ecken, Einteilungen etc. die Rede ist, und dies setzt dabei wiederum
eine gewisse Art von Sprachschulung voraus. Die Verwendung von Punktmusterdarstellungen in
Beweisen kann diese fiir den Leser verstandlicher oder auch unverstdandlicher machen. Hier ist der
(semiotische) Aspekt des kollateralen Wissens (s. Abschnitt 2.5) anzufiihren, das Wissen, das bendtigt
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wird, um im Rahmen eines Darstellungssystems mit den Diagrammen agieren und die Resultate
interpretieren zu kénnen. Auch das Darstellungssystem der Punktmuster ist nicht aus sich heraus
»,anschaulich” oder ,verstandlich®, das Umgehen damit muss gelibt werden (vgl. hierzu Abschnitt
8.3.5).

SchlieRlich sei bereits an dieser Stelle auf den Aspekt der Anschaulichkeit und der angeblich daraus
vermuteten Eignung fir die Schulmathematik eingegangen. Der Aspekt der Anschaulichkeit wird in
Abschnitt 8.3.5 erortert. Ein Ergebnis wird dabei sein, dass Anschauungsmittel weder selbstevident
noch selbsterklarend sind, sondern zunachst erworben werden missen (vgl. Jahnke 1984). Es scheint
dabei aber ein natdrlicher ,Reflex’ der Studierenden zu sein, etwas ,Anschauliches’ als positiv fiir den
schulischen Mathematikunterricht zu bewerten. Kritisch muss natiirlich angemerkt werden, wie die
Studierenden diese Beweisformen als geeignet fiir die Schulmathematik bewerten kénnen, wenn sie
selbst verschiedene Probleme mit dieser Beweisform haben (vgl. hierzu auch die Ergebnisse der
Analyse der Klausurbearbeitungen in Abschnitt 5.4.2.3).

Bezliglich der Gltekriterien dieser Teilstudie muss in Bezug auf die Validitat der Beweisbewertungen
anhand der Aspekte ,Uberzeugung’, ,Erklarungsqualitat’, ,Sicherung der Giiltigkeit’ und ,Addquatheit
fir den schulischen Mathematikunterricht’ angemerkt werden, dass es dem individuellen
Verstandnis der Probanden geschuldet ist, wie sie diese Kategorien (etwa ,erklaren”, ,liberzeugen”,
...) verstehen. Eine (theoretische) Elaboration dieser Konzepte fiir die Studierenden war im Rahmen
dieser Studie nicht moglich. Um eine moglichst groBe Objektivitdat zu gewahrleisten, wurden an den
entsprechenden Stellen der Auswertung und Ergebnisdarstellung die Originalzitate der Studierenden
angebracht.

Da es sich bei diesem Forschungsprojekt um eine Fallstudie handelt, geht es bei diesen Ergebnissen
nicht um eine zu erzielende Verallgemeinerbarkeit der Resultate. Vielmehr standen die Darstellung
moglicher Wahrnehmungen verschiedener Beweisformen und das Herausarbeiten von Belegen und
Begriindungen fir die Existenz dieser Wahrnehmungen im Forschungsinteresse. Vor dieser
Zielsetzung lasst sich dieses Projekt als explorative Forschung verstehen, die neben den erzielten
Ergebnissen auch Anhaltspunkte fiir die weitere Erforschung der Thematik ,Beweisakzeptanz’ bietet.

5.4.2.3 Analyse der Beweiskonstruktionen der Studierenden in der Modulabschlussklausur
im Wintersemester 2013/14
Forschungsanliegen und Forschungsfragen

Die Beweisproduktionen der Studierenden zum generischen Beweis mit Zahlen und zum formalen
Beweis in der Modulabschlussklausur wurden bereits im Wintersemester 2012/13 ausgewertet. Mit
der Analyse der Klausurbearbeitungen im Wintersemester 2013/14 sollte wiederum Uberprift
werden, ob die vorgenommenen Modifikationen der Lehrveranstaltung in die gewiinschte Richtung
wiesen. Auch stellte sich durch die Hinzunahme der Punktmusterbeweise die Frage, wie die
Beweiskonstruktionen der Studierenden im Diagrammsystem der Punktmuster ausfallen wirden.
Dabei ist allerdings ein Vergleich der Ergebnisse der Beweisaufgaben in der Modulabschlussklausur
der Jahrgidnge 2012/13 und 2013/14 nur bedingt moglich; durch die Hinzunahme der
Punktmusterbeweise musste in diesem Jahrgang eine (neue) Behauptung ausgewahlt werden, die
mithilfe aller vier Beweisformen der Lehrveranstaltung ,gut’ bewiesen werden konnte.
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Die Leitfragen zur Auswertung der Studie lauteten somit:

o Leitfrage zur Auswertung [14]: Wie gut gelingen den Studierenden die Beweiskonstruktionen
in der Modulabschlussklausur, wenn sie aufgefordert werden, (a) einen generischen Beweis
mit Zahlen, (b) einen formalen Beweis (mit Mitteln der Algebra), (c) einen generischen
Beweis mit Punktmustern und (d) einen Punktmusterbeweis mit geometrischen Variablen zu
konstruieren.

o Leitfrage zur Auswertung [15]: Welche Unterschiede kénnen bei den Ergebnissen aus dem
Wintersemester 2013/14 zu denjenigen aus dem Vorjahr festgestellt werden?

Fiir die Beantwortung dieser Fragen wurde eine Aufgabe in der Modulabschlussklausur gestellt, in
der eine Behauptung mit den vier verschiedenen Beweisformen der Vorlesung bewiesen werden
sollte. Die Aufgabe, verbunden mit ihren Anforderungen, wird im folgenden Abschnitt naher
dargestellt.

Dabei muss angemerkt werden, dass sich die Ergebnisse bzgl. der Beweiskonstruktionen der
Studierenden in den Modulabschlussklausuren der Wintersemester 2012/13 und 2013/14 auf Grund
verschiedener Faktoren nur bedingt miteinander vergleichen lassen, zumal in den jeweiligen
Aufgaben auch unterschiedliche Behauptungen bewiesen werden sollten (s.0.); auch wurde fiir die
Ergebnisse aus dem Wintersemester 2012/13 auf die Bedeutung der jeweiligen Operationalisierung
von Teilbarkeit hingewiesen. Allerdings konnen die Ergebnisse einen vorsichtigen Aufschluss dariiber
zulassen, ob die Verdanderungen der Lehrveranstaltung in eine ,richtige’ Richtung zu weisen scheinen.

Aufgabe und Aufgabenanalyse
Die in der Modulabschlussklausur im Wintersemester 2013/14 gestellte Aufgabe 2 lautet:

Wir betrachten die folgende Behauptung:
Die Summe von 6 aufeinanderfolgenden natiirlichen Zahlen ist immer ungerade.

Beweisen Sie die Behauptung mit:
(a) einem generischen Beweis mit Zahlen
(b) einem formalen Beweis mit Mitteln der Algebra
(c) einem generischen Punktmusterbeweis
(d) einem Punktmusterbeweis mit geometrischen Variablen.

Es ist hierbei anzumerken, dass Interaktionseffekte zwischen den verschiedenen Beweisen fiir die
gleiche Behauptung nicht auszuschlieRen sind, die im Rahmen dieser Studie auch nicht kontrolliert
werden koénnen. Trotz moglicher Interaktionseffekte scheint aber eine Vergleichbarkeit der
verschiedenen Beweiskonstruktionen der Studierenden bei einer Behauptung eher angebracht zu
sein, als wenn die vier Beweisformen jeweils zu unterschiedlichen Behauptungen hatten konstruiert
werden sollen. Insofern lasst sich dieses Untersuchungsdesign wohl als ,kleineres Ubel’ legitimieren.

Innerhalb des ersten Kapitels der Lehrveranstaltung wurden Teilbarkeitsfragen bzgl. der Summe
aufeinanderfolgender natirlicher Zahlen betrachtet. Die Teilbarkeit der Summe von drei
aufeinanderfolgenden Zahlen durch drei wurde in der Vorlesung mit allen der vier genannten
Beweismoglichkeiten nachgewiesen. Diese galt es nun auf die Summe von sechs
aufeinanderfolgenden Zahlen zu (ibertragen, wobei nun nicht die Teilbarkeit durch 6 gezeigt werden
sollte, sondern dass diese Summe ungerade ist, i.e., dass sie nicht (ohne Rest) durch zwei teilbar ist.
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Im Folgenden werden verschiedene Losungsmaoglichkeiten fiir die vier Beweisarten dargestellt, die
auf dem in der Lehrveranstaltung vermittelten Wissen basieren:

Generischer Beweis mit Zahlen, Variante (1)

1+2+3+4+4+5+ 6 = 21 ist ungerade.
4+54+6+ 7+ 8+ 9 = 39 ist ungerade.

In jeder Summe von 6 aufeinanderfolgenden nattrlichen Zahlen sind immer (genau) drei ungerade Zahlen, deren Summe
ungerade ist. Addiert man dazu die drei geraden Zahlen so bleibt das Ergebnis immer ungerade.

Generischer Beweis mit Zahlen, Variante (2)

1+2+4+34+4+54+6=1+0+D+A+2)+Q+3)+A+49)+1+5)=6-1+(1+2+3+4+5)
44+5+6+7+8+9=4+@+D+A+2)+@+3)+@+4)+(@+5)=6-4+(1+2+3+4+5)

In den Beispielen wird deutlich, dass man jede Summe von sechs aufeinanderfolgenden Zahlen immer schreiben kann als
,6 - Ausgangszahl + (1 4+ 2 + 3 + 4 + 5)“. Der erste Summand ist dabei immer eine gerade Zahl und der zweite immer die
ungerade Zahl 15. Da die Summe aus einer geraden und einer ungeraden Zahl immer ungerade ist, wird das Ergebnis immer
eine ungerade Zahl sein.

Generischer Beweis mit Zahlen, Variante (3)

Wir betrachten die folgenden Beispiele:

1+2+3+4+5+6 =21]
2+3+4+5+6+7 =27
T TR Ve W TR ] Abbildung 41: Generische Zahlenbeispiele zu
3+4+5+6+7+8 =33 der Summe von sechs aufeinanderfolgenden

] b Zahlen

Die erste Summe ist ungerade. Man sieht in den Beispielen, dass, wenn man den Startwert um 1 erhoht, sich die Summe
um 6 (gerade Zahl) vergroRert. Also werden zu der ungeraden Ausgangssumme immer Vielfache von 6, also gerade Zahlen,
addiert, um weitere Summen von anderen 6 aufeinanderfolgenden natirlichen Zahlen zu erhalten. Auf diese Art kénnen
alle moglichen Summen von 6 aufeinanderfolgenden natiirlichen Zahlen erzeugt werden. Da die Summe aus einer
ungeraden Zahl und einer geraden Zahl immer ungerade ist, wird das Ergebnis - und damit das Ergebnis dieser Summen -
immer ungerade sein.

Formaler Beweis:

Sein € N beliebig aber fest. (Auch zugelassen: Fir alle n € N gilt:)
Danngilttn + mn+ D)+ M +2)+ n+3)+m+4)+n+5 =6n+15

Variante 1: ... 6n ist eine gerade Zahl. Da die Summe aus einer geraden und einer ungeraden Zahl immer ungerade ist (Satz
der Vorlesung), ist das Ergebnis immer ungerade.

Variante2: ... = 2(3n + 7) + 1 = 2q + 1mitq := 3n + 7 e N. Also ist das Ergebnis nach Satz 1.3 ungerade.

Variante 3: ... 2(3n + 7) + 1.Da (3n + 7) e Nist die Summe nach Def. 1.1 nicht durch 2 teilbar, also ungerade.

Variante 4: ... = 2(3n) + 15. Da (3n) € Nist 2(3n) nach Satz 1.3 gerade (bzw. nach Def. 1.1’ durch 2 teilbar
und somit gerade ). Da 15 eine ungerade Zahl ist und diese zu der geraden Zahl addiert wird, ist die Summe insgesamt

ungerade.
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Bei den Punktmusterbeweisen kann die Eigenschaft ,,ungerade” durch Aufteilungen der Punktmuster
im Sinne der Grundvorstellungen ,Aufteilen” und ,Verteilen” nachgewiesen werden. Eine
Losungsmoglichkeit fiir den generischen Punktmusterbeweis ware:

Generischer Beweis am Punktmuster:

)

o
o o
o o0O0

{-\ o OO0 e e 0o

{\ ° o o ODOe e o0 o0
00O ® 00000
oz: coeeee EEEEX)

Oe e o000 0 00 00 . . . .
tneeee coolese coolese Abbildung 42: Generische Punktmusterbeispiele zu
: : : : : : eeccecoe ceccecoe der Summe von sechs aufeinanderfolgenden

0 0000 ® 00000 Zahlen

1+2+3+4+5+6=21 3+4+5+6+7+8=33 6+7+8+9+10+11=51

Man sieht in den Beispielen, dass - unabhangig von der Startzahl - bei der Summe von sechs aufeinanderfolgenden
natirlichen Zahlen ,oben” immer ein Dreieck entsteht; im unteren Bereich entstehen immer sechs gleich lange Saulen, die
man in zwei gleich groRe Bereiche einteilen kann. Das obere Dreieck kann man immer so umstrukturieren, dass zwei gleich
groBe Bereiche entstehen, wobei aber immer drei Punkte tibrigbleiben. Somit ist die Gesamtsumme nie durch 2 teilbar.

Punktmusterbeweis mit geometrischen Variablen:

bleiben (ibrig

® ®e0 00O

Abbildung 43: Punktmusterbeweis mit geometrischen
...... Variablen zu der Summe von sechs
------ aufeinanderfolgenden Zahlen

Datenauswertung

Im Rahmen der Pilotierung der Eingangsbefragung im Wintersemester 2013/14 wurde ein
Kategoriensystem fiir die Erfassung von Begriindungskompetenz entwickelt (Abschnitt 3.3.1). Dieses
Kategoriensystem wurde auch fiir die Analyse der Beweisproduktionen der Studierenden in der
Modulabschlussklausur verwendet. Durch den Einbezug der Punktmusterbeweise musste dieses
Kategoriensystem um weitere Erlduterungen (bzw. Spezifizierungen) ergénzt werden. Das
Kategoriensystem und die Spezifizierungen hinsichtlich der Punktmusterbeweise werden in der
Tabelle 19 dargestellt.

Alle Beweisproduktionen der Studierenden wurden doppelt kodiert. Bei einer anschlieBenden
Kodierkonferenz (im Sinne von Mayring 2010, S. 604) wurde bei Nichtlibereinstimmung der
Bewertungen das jeweilige Beweisprodukt noch einmal gemeinsam von beiden Bewertenden
betrachtet. Im Falle einer offensichtlichen Fehlkodierung wurde diese korrigiert, ansonsten blieben
die unterschiedlichen Bewertungen bestehen. Die Interrater-Reliabilitaten bzgl. der Kategorien sind
bei allen Beweisformen in einem guten bis sehr guten Bereich. Die exakten Werte werden in der
Tabelle 20 angegeben.
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Bezeichnung

Erlduterung

Erganzungen fiir den Kontext der
Punktmusterbeweise

n.b. Die Aufgabe wurde nicht bearbeitet --- keine Ergdnzungen ---
Empirisch In der Bearbeitung findet ausschlieBlich --- keine Ergdnzungen ---
eine induktive Prifung der Behauptung
statt.
Pseudo In der Bearbeitung wird die Hierzu gehoren weiter alle Bearbeitungen in denen

Behauptung paraphrasiert oder es
werden falsche bzw. irrelevante Fakten
genannt.

die Punktmuster so dargestellt werden, dass keine
nutzbare geometrische Struktur erkennbar ist.

Fragmentarisch

Es werden korrekte und relevante
fachliche Aspekte genannt, ohne dass
eine Argumentationskette aufgebaut
wird.

Hierzu gehoren weiter alle Bearbeitungen, in denen
die Punktmuster willkiirlich so zusammengestellt
werden, dass eine sinnvolle und nutzbare Anordnung
entsteht.

Argumentation

Es wird eine Argumentationskette mit

Hierzu gehdren weiter alle Bearbeitungen, in denen

mit Liicke korrekten und relevanten fachlichen die Punktmuster nachvollziehbar zusammengefigt
Aspekten aufgebaut, die allerdings eine | werden, sodass eine sinnvolle und nutzbare
Lucke enthilt. Anordnung entsteht.

Volistindige Die Behauptung wird mithilfe korrekter

Argumentation

Argumente vollstandig verifiziert.

--- keine Ergdnzungen ---

Tabelle 19: Kategorienschema fiir die vergleichende Analyse der Beweiskonstruktion der Studierenden zu den vier
Beweisformen der Lehrveranstaltung (Modulabschlussklausur im Wintersemester 2013/14)

Kategorienschema zu der Beweisform...

Interrater-Reliabilitat
Cohens Kappa

generischer Beweis mit Zahlen 0,804
algebraischer Beweis 0,823
generischer Punktmusterbeweis 0,783
Punktmusterbeweis mit geometr. Variablen 0,756

Tabelle 20: Interrater-Reliabilititen (Cohens Kappa) bzgl. Kategorisierungen der vier Beweisformen in der

Modulabschlussklausur des Wintersemesters 2013/14

Flir die Auswertung der Daten wird eine ordinale Skala zugrunde gelegt, damit ein Vergleich der
2012/13 und 2013/14 moglich wird und
Verteilungsverschiebungen interpretiert werden kénnen.

Ergebnisse  der Jahrginge eventuelle

Ergebnisse:

Beantwortung der Leitfrage zur Auswertung [14]: Wie gut gelingen den Studierenden die
Beweiskonstruktionen in der Modulabschlussklausur, wenn sie aufgefordert werden, (a) einen
generischen Beweis mit Zahlen, (b) einen formalen Beweis (mit Mitteln der Algebra), (c) einen
generischen Beweis mit Punktmustern und (d) einen Punktmusterbeweis mit geometrischen Variablen
zu konstruieren.

Die Ergebnisse bzgl. der Kategorisierungen der Beweiskonstruktionen der Studierenden werden in
der Abbildung 44 dargestellt.
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Generischer Beweis mit Zahlen (n=139) Generischer Punktmusterbeweis (n=139)

37%

31%

22% 23% 24% 22%
14%
3% 7% 6% 7% 5%
n.b. emp. pseudo fragment Arg.mit vollst. n.b. emp. pseudo fragment Arg.mit vollst.
Licke Arg. Liicke Arg.
Formaler Beweis (n=139) Beweis mit geom. Var. (n=139)
47% 45%

18% 17%
9% 11%

n.b. emp. pseudo fragment Arg.mit vollst. n.b. emp. pseudo fragment Arg. mit vollst.
Licke Arg. Liicke Arg.

Abbildung 44: Ergebnisse bzgl. der Beweiskonstruktionen der Studierenden in der Modulabschlussklausur im
Wintersemester 2013/14

Bei der Konstruktion des generischen Beweises wurden in 54% aller Bearbeitungen korrekte
Argumentationsketten aufgebaut (,Arg. mit Licke” + ,vollst. Argumentation”) und insgesamt
konnten 31% aller generischen Beweise mit Zahlen als vollstandige Argumentation gewertet werden.
Gut der Halfte der Studierenden gelingt somit eine Argumentation im Kontext dieser Beweisform.
Dagegen ist auffallig, dass der Anteil von Pseudoantworten mit 22% noch relativ hoch ausfallt.

Deutlich besser gelingt den Studierenden dagegen die Konstruktion des formalen Beweises (mit
Mitteln der Algebra): Insgesamt wurden in 79% der Bearbeitungen korrekte Argumente benannt und
32% wurden als vollstandige Argumentationen bewertet.

Problematisch erscheinen dagegen die Ergebnisse bzgl. der Punktmusterbeweise. Davon abgesehen,
dass hier der Anteil der Studierenden am hochsten ist, die diese Beweiskonstruktion Gberhaupt nicht
versuchen, erreichen nur 5% im Fall des generischen Beweises und 11% bei dem Beweis mit
geometrischen Variablen eine vollstandige Argumentation. Es ldsst sich festhalten, dass den
Studierenden eine Argumentation im Diagrammsystem der Punktmuster nur bedingt gelingt. Dabei
fallen in diesen Beweisen die hohen Anteile der Bearbeitungen mit Pseudo-Antworten besonders
auf: 37% der Bearbeitungen beim generischen Punktmusterbeweis und 45% (!) bei dem Beweis mit
geometrischen Variablen.

Beantwortung der Leitfrage zur Auswertung [15]: Welche Unterschiede kénnen bei den Ergebnissen
aus dem Wintersemester 2013/14 zu denjenigen aus dem Vorjahr festgestellt werden?

In der Abbildung 45 werden diese Ergebnisse bzgl. der Beweiskonstruktionen zum formalen Beweis
und zum generischen Beweis mit Zahlen der Jahrginge 2012/13 und 2013/14 vergleichend
dargestellt. Hierbei zeigt sich bei beiden Beweisformen eine deutliche Verschiebung hin zu héheren
Kategorien: Wahrend in beiden Beweisen die Anteile der Pseudoantworten zuriickgehen, nehmen
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die Anteile der Bearbeitungen mit ,Argumentation mit Licke” und ,vollstandige Argumentationen”
deutlich zu.

Formaler Beweis Generischer Beweis mit Zahlen

50%
40%
30%
20%
10%

%

% WS 2012/13 (n=98)

B WS 2013/14 (n=139)

Abbildung 45: Ergebnisse bzgl. der Beweiskonstruktionen der Studierenden zum formalen Beweis (links) und zum generischen
Beweis mit Zahlen (rechts) in den Wintersemestern 2012/13 und 2013/14

Diskussion der Ergebnisse

Das Ergebnis, dass es bei der Konstruktion des generischen Beweises mit Zahlen nur ca. der Halfte
der Studierenden gelang, eine Argumentationskette aufzubauen (,Arg. mit Licke” + ,vollst.
Argumentation”), zeugte von den immer noch existierenden Problemen der Studierenden mit dem
Konzept des generischen Beweises. Nur insgesamt 31% der Studierenden erreichten eine
,vollstandige Argumentation” mit ihrem generischen Beweis mit Zahlen. Dies lieB sich dahin gehend
deuten, dass die geforderte Explizierung der Argumentation und ihrer Allgemeingiiltigkeit fir die
Studierenden noch immer eine Hiirde darstellt.

Am besten fielen in dieser Untersuchung die Ergebnisse zum formalen Beweis aus: 79% der
Bearbeitungen beinhalteten korrekte Argumentationen, wobei nur 32% als ,vollstiandige
Argumentationen” bewertet werden. Der hohe Anteil der Bearbeitungen , Argumentation mit Liicke”
resultiert hierbei zum einen aus Fehlern bei der Definition der Variablen und zum anderen aus einer
lickenhaften Begriindung am finalen algebraischen Term, warum dieser ungerade ist.

Bei den Punktmusterbeweisen lief der erhohte Anteil der Nicht-Bearbeitungen auf ein
grundlegendes Verstandnisproblem der Studierenden im Umgang mit dem Punktmuster schlieRen.
Hiervon zeugte auch der hohe Anteil der Pseudoargumentationen. Der geringe Anteil von
,vollstandigen Argumentationen” bei dem generischen Punktmusterbeweis lielR deutlich werden, wie
schwer es den Studierenden anscheinend fiel, in dem Diagrammsystem der Punktmuster zu arbeiten
und schlieBlich ihre Argumentation in einer ,Sprache der Punktmuster’ zu explizieren. Der Anteil der
vollstandigen Argumentationen beim Beweis mit geometrischen Variablen fiel dementsprechend
etwas besser aus, da hier keine narrative Begriindung erforderlich war.

Bei dem Vergleich der Ergebnisse aus den Wintersemestern 2012/13 und 2013/14 wurden bereits
oben einige relativierende Anmerkungen gemacht. Insgesamt kann aber festgehalten werden, dass
die Beweiskonstruktionen der Studierenden in der Modulabschlussklausur des Wintersemesters
2013/14 ,besser ausfallen als in dem vorherigen Durchgang. Dieses Resultat soll an dieser Stelle als
ein vorsichtiger Beleg dafiir gewertet werden, dass die vorgenommenen Modifikationen der
Lehrveranstaltung positive Auswirkungen auf die Beweiskonstruktionen der Studierenden haben.
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5.4.3 Retrospektive Analyse der dritten Durchfiihrung der Lehrveranstaltung

Fiir die retrospektive Analyse der dritten Durchfilhrung der Lehrveranstaltung wurden vier zentrale
Bereiche ausgemacht: (1) die anscheinend anhaltende Gleichsetzung des Beweisbegriffs mit der
Beweisform des formalen Beweises auf Seiten der Studierenden, (2) die Verstandnisschwierigkeiten,
die die Studierenden mit dem Konzept generischer Beweise zu haben scheinen, und (3) der defizitare
Umgang der Studierenden mit dem Diagrammsystem der Punktmuster. (4) Dariber hinaus erschien
es noch als offene Frage, welches Konzept ,formaler Beweise’ den Studierenden vermittelt werden,
und worin sich dieses explizit von den anderen Beweisformen unterscheiden sollte.

(1) Zur anscheinend anhaltenden Gleichsetzung des Beweisbegriffs mit der Beweisform des
formalen Beweises

Im Rahmen der durchgefiihrten Interviewstudie (Abschnitt 5.4.2.2) wurde deutlich, dass die

‘

Studierenden mit der Formulierung ,Beweisen Sie...” noch immer ein formales Vorgehen zu
verbinden schienen. Dieses Ergebnis war in gewisser Weise kontrdar zu dem Ziel der
Lehrveranstaltung, die dort verwendeten vier Beweisformen den Studierenden als prinzipiell
gleichwertige Instrumente der Verifikation zu vermitteln, auch wenn der Nutzen und der Mehrwert

der algebraischen Symbolsprache gleichzeitig herausgestellt werden sollte.

(2) Zu den Verstandnisschwierigkeiten, die die Studierenden mit dem Konzept eines generischen
Beweises zu haben scheinen

Ein weiteres Ergebnis der durchgefiihrten Interviewstudie war die Erkenntnis, dass zumindest einige
Studierende das Konzept des generischen Beweises nicht vollstandig verstanden zu haben schienen,
und auch nach der Konstruktion korrekter generischer Beweise noch Zweifel auf einer logischen und
einer psychologischen Ebene auszumachen waren (Abschnitt 5.4.2.2). Entsprechend sollten die
MalBnahmen weiterhin verstarkt werden, generische Beweise prominent in der Lehrveranstaltung zu
platzieren und zu erortern. Darliber hinaus sollte das Konzept einer ,Beweisakzeptanz’ auch
qguantitativ erforscht und theoretisch fundiert werden.

(3) Zu dem defizitairen Umgang der Studierenden mit dem Diagrammsystem der Punktmuster

Die Analyse der Beweiskonstruktionen in der Modulabschlussklausur (Abschnitt 5.4.2.3) belegte die
Probleme, die die Studierenden bei der Arbeit mit dem Diagrammsystem der Punktmuster hatten.
Der relativ hohe Anteil von Studierenden, der die entsprechenden Beweiskonstruktionen der Klausur
gar nicht erst versuchte, und der sehr hohe Anteil von Pseudobegriindungen lieRen deutlich werden,
dass einem GrofRteil der Studierenden der Umgang mit den Punktmusterdarstellungen nicht deutlich
geworden war. Dieses Ergebnis war durchaus Uberraschend, da die Punktmusterdarstellungen als
,Hilfe’ fir die Studierenden gedacht waren. Dieses Phanomen galt es sowohl empirisch wie auch
theoretisch weiter zu beforschen.

(4) Zu dem Konzept ,formaler Beweise’ in der Lehrveranstaltung

Als offene Frage blieb zu dem Zeitpunkt der retrospektiven Analyse der dritten Durchfiihrung der
Lehrveranstaltung, was genau den Studierenden unter dem Konzept ,formaler Beweise’ vermittelt
werden soll. Diese Frage wurde in Vorbereitung der vierten Durchfihrung der Lehrveranstaltung
beantwortet (siehe Abschnitt 5.4.4).

204



Erorterung der Ergebnisse unter der Perspektive des ,, diagrammatischen SchlieBens”

Der Aspekt der Gleichsetzung des Beweisbegriffs mit der Beweisform des formalen Beweises kann
unter dieser semiotischen Perspektive auf ein Verstandnis zurlickgefiihrt werden, dass der Akt des
Beweisens im Diagrammsystem der Algebra vollfihrt werden miisse, da nur hier ,gliltige’ Beweise
konstruiert werden kdnnten. Entsprechend wiirde es entsprechend gelten, diese Fehlvorstellung zu
thematisieren und klarzustellen, dass zunachst prinzipiell fiir den Akt der Verifikation die in der
Lehrveranstaltung verwendeten Diagrammsysteme als gleichwertig zu beachten sind (vgl. Abschnitt
2.5.4).

Die (psychologische und logische) Akzeptanz generischer Beweise resultiert unter der Perspektive
des diagrammatischen SchlieBens aus der Erkenntnis, dass die vorgenommenen allgemeingiltigen
Transformationen die Giiltigkeit der Verifikation sichern und nicht die dabei verwendeten Zeichen.
Bei den generischen Beweisen wird in der Lehrveranstaltung bereits (als Norm) gefordert, dass diese
allgemeingiiltigen Transformationen expliziert werden missen. Wie aber bereits bei der Beforschung
dieser Thematik deutlich geworden ist, scheint gerade in der Explizierung dieser Transformationen
und ihrer Allgemeingiltigkeit ein Problem fiir die Studierenden zu liegen. Dabei scheinen sich
sprachliche Probleme und ein Verstindnis um die Benennung und Bewertung entsprechender
Transformationen gegenseitig zu bedingen.

Auch fir den Umgang mit Punktmusterdarstellungen ist das Vorhandensein eines entsprechenden
kollateralen Wissens eine notwendige Voraussetzung. Der Agierende muss wissen, wie
mathematische Sachverhalte in das Diagrammsystem der Punktmuster Gbersetzt werden kdnnen,
wie mit diesen konstruierten Diagrammen umzugehen ist (i.e., welche Transformationen an diesem
durchzufiihren sind) und wie schlieRlich das Nachzuweisende in der Punktmusterdarstellung zu
erreichen ist. Somit galt es, gezielt kollaterales Wissen flir das Diagrammsystem der Punktmuster zu
vermitteln und, damit verbunden, starker eine Praxis des Umgangs mit Punktmusterdarstellungen zu
etablieren.

Erorterung der Ergebnisse unter der Perspektive ,,sozio-mathematischer Normen“

Flr die Gleichsetzung des Beweisbegriffs mit der Beweisform des formalen Beweises stellt sich die
Frage, wie dieser (implizit) vorliegenden Norm entgegengewirkt werden kann. Nach der Konzeption
der Lehrveranstaltung soll der Beweisbegriff offen fiir alternative Beweisformen sein, wie etwa fir
generische Beweise. Diese sozio-mathematische Norm muss folglich im Rahmen der
Lehrveranstaltung deutlicher vertreten werden. Auch stellt sich die Frage, in welchen Kontexten
diese (implizite) Norm der Konstruktion formaler Beweise und der Verwendung von
Buchstabenvariablen, wenn nach Beweisen gefragt ist, herausgebildet wurde.

Die personliche Akzeptanz der generischen Beweise auf Seiten der Studierenden und der Umgang
mit dem Diagrammsystem der Punktmuster erscheinen nicht als Aspekte sozio-mathematischer
Normen. Dagegen ist die Frage danach, welches Konzept des Studierenden fiir die Beweisform des
,formalen Beweises’ vermittelt werden sollte, auch aus dieser Perspektive bedeutsam. Dabei stellt
sich die Frage, welche Normen Studierenden bei der Konstruktion von formalen Beweisen etwa im
Hinblick auf ,Vollstandigkeit’ und ,Formalitdt’ einhalten sollen. Diese normativen Aspekte tangieren
dabei Charakteristika wie Strenge, Argumentationsbasis und Darstellung, was dabei auch ein
gewisses Mal an Axiomatik innerhalb der Lehrveranstaltung implizieren wiirde.
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Abgleich mit der intentionalen Dimension der dritten Durchfiihrung der Lehrveranstaltung

Insgesamt betrachtet, hat der starkere Einbezug von Punktmusterdarstellungen noch nicht zu den
intendierten Ergebnissen gefiihrt. Die Punktmusterdarstellungen scheinen zu diesem Zeitpunkt den
Studierenden noch mehr als Lerngegenstand denn als Hilfe zu begegnen.

Die Vorteile, die die Studierenden dem formalen Beweis in Bezug auf eine hohere
Allgemeingiiltigkeit, Richtigkeit und Vollstdndigkeit zusprechen (Abschnitt 5.4.2.1), kdnnten einem
defizitaren Verstdandnis von generischen Beweisen geschuldet sein. Es ist daher eine offene Frage,
inwiefern die Studierenden die Verwendung der fachmathematischen Symbolsprache als sinnvoll
und nitzlich bewerten und worin sie konkret die verschiedenen Vor- und Nachteile der
verschiedenen Beweisformen sehen. Auch wenn in der dritten Durchfiihrung der Lehrveranstaltung
generische Beweise stirker als bisher in den Fortgang der Vorlesung und in die Ubungsaufgaben
integriert wurden, scheint sich ihre Akzeptanz bei den Studierenden im Vergleich zum formalen
Beweis nicht sonderlich gesteigert zu haben.

Schlielich konnte mithilfe des Vergleichs der Beweiskonstruktionen der Studierenden in den
Modulabschlussklausuren der Wintersemester 2012/13 und 2013/14 die Vermutung gestltzt
werden, dass die vorgenommenen Modifikationen der Lehrveranstaltung in die richtige Richtung
wiesen. Somit kann festgehalten werden, dass das vor der Durchfilhrung der Lehrveranstaltung
formulierte Ziel, dass die Studierenden das Konzept generischer Beweise besser durchdringen und
sich damit ihre Beweiskonstruktionen verbessern sollen, in Bezug auf den generischen Beweis mit
Zahlen erreicht wurde.

5.4.4 Verdnderungen bei der vierten Durchfithrung der Lehrveranstaltung im
Wintersemester 2014/15

Die vierte Durchfiihrung der Lehrveranstaltung wird im sechsten Kapitel der vorliegenden Arbeit
gesondert dargestellt. In dem vorliegenden Abschnitt werden die Modifikationen beschrieben, wie
sie im Ubergang von der dritten zur vierten Durchfiihrung vorgenommen wurden und somit
schlieBlich zu der in dieser Arbeit betrachteten ,finalen’ Version der Lehrveranstaltung fiihrten. Da
die vorgenommenen Modifikationen aus den Erkenntnissen resultieren, die im Rahmen des flinften
Kapitels dargelegt wurden, wird mit diesem Abschnitt das Kapitel 5 abgeschlossen.

Die in der vierten Durchfiihrung der Lehrveranstaltung vorgenommenen Veranderungen lassen sich
auf der Vorlesungsebene in vier Aspekten zusammenfassen: (1) die Konkretisierung des Konstrukts
,formaler Beweis”, welche zu einer neuen Strukturierung (Definitionen und Satze) der fachlichen
Inhalte und der Thematisierung und Exaktifizierung der Inhalte , Nicht-Teilbarkeit” ,gerade und
ungerade Zahlen” flihrte; (2) die sprachliche Angleichung der Begrifflichkeiten zu den vier
Beweisformen der Lehrveranstaltung; (3) die verstarkte Integration von explorativen Anteilen in die
Vorlesung und (4) die konsequente Verwendung aller vier Beweisformen in der Vorlesung. Die
Veranderungen im Kontext der Ubungsaufgaben betreffen weiter (5) die stirkere Integration von
explorativen Ubungsanteilen, (6) die Verwendung von neuen Aufgabenformaten, sogenannter
,multiple proof tasks” und (7) Beweisaufgaben, in denen den Studierenden die Wahl der Beweisform
freigestellt wurde. Diese Aspekte werden im Folgenden kurz ausgefiihrt; deren konkrete Umsetzung
wird im Rahmen der Darstellung der vierten Durchfiihrung der Lehrveranstaltung in Kapitel 6
beschrieben.
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Modifikationen im Kontext der Vorlesung

(1) Die Konkretisierung des Konstrukts ,formaler Beweis” und die daraus resultierenden
Anderungen in der Vorlesung

Fir das Konzept des ,formalen Beweises” wurde entschieden, dass neben der Verwendung der
fachmathematischen Symbolsprache der explizite Bezug auf eine ,sichere’ Argumentationsbasis (hier
in Form von Definitionen und bereits bewiesenen Satzen) und damit verbunden das Einhalten
geforderter ,Strenge beim Beweisen’ deutlicher herausgestellt werden miisse. Somit sollte einmal
der Aspekt der ,Sicherung der Giltigkeit” in (formalen) Beweisen betont werden. AuBerdem wurde
so die in Abschnitt 4.3.1 herausgearbeitete didaktische Forderung umgesetzt, dass bei der
Konstruktion formaler Beweise stets die Abhangigkeit der verwendeten Argumente zu vorherigen
Beweisen betont werden soll. Diese Betrachtungsweise flihrte dazu, dass alle notwendigen
Definitionen und Satze im Kontext der Lehrveranstaltung explizit formuliert und fiir die
entsprechende Referenz in Beweisen nummeriert werden mussten. Fir die Beweise entsprechender
Teilbarkeitsaussagen wurde es notwendig, auch ,Nicht-Teilbarkeit’ und die Eigenschaften ,gerade’
und ,ungerade’ genauer zu thematisieren und nun auch explizit in Form von Definitionen und Satzen
bereitzustellen. Auch mussten diese Inhalte fir das Diagrammsystem der Punktmuster aufbereitet
werden.

(2) Die sprachliche Angleichung der Begrifflichkeiten zu den vier Beweisformen der
Lehrveranstaltung

In Anlehnung an die formalen Beweise der Algebra wurde im Diagrammsystem der Punktmuster in
den Wintersemestern 2012/13 und 2013/14 von formal-geometrischen Beweisen gesprochen, wenn
in Punktmusterbeweisen geometrische Variablen verwendet wurden. Durch die Konkretisierung des
Konzepts formaler Beweise (s.0.) wurden allerdings die Unterschiede dieser Beweisform zu den
sogenannten formal-geometrischen Beweisen deutlich, wodurch eine sprachliche Anlehnung in
gewisser Weise hinfallig wurde. Durch die Umbenennung dieser Beweisform zu ,,Punktmusterbeweis
mit geometrischen Variablen“ waren nun die vier Bezeichnungen gepragt, die im Kontext der
gesamten Lehrveranstaltung des Wintersemesters 2014/15 durchgehalten wurden: ,generischer
Beweis mit Zahlen”, ,generischer Beweis mit Punktmustern“, ,formaler Beweis“ und
,Punktmusterbeweis mit geometrischen Variablen”.

(3) Die verstarkte Integration von Abschnitten zur Explorationen in die Vorlesung

Offensichtlich stellt es ein didaktisches Problem dar, freie und individuelle Exploration im Kontext
einer Lehrveranstaltung zu initiieren, gerade dann, wenn der fachliche Fortgang einer Vorlesung auf
bestimmte Ergebnisse aus diesem Prozess angewiesen ist. Dennoch war es ein grundlegendes
Anliegen, den Prozesscharakter der Mathematik und damit einhergehend die Phase der Exploration
und die Bildung und Uberpriifung von Hypothesen noch stirker in den Gang der Vorlesung zu
integrieren. SchlieBlich wird somit dem Leitprinzip Rechnung getragen, die Prozesshaftigkeit der
Mathematik herauszustellen (vgl. Abschnitt 1.2.3). Aus diesem Grund wurde im ersten Kapitel ein
neuer Abschnitt zur Exploration eingefiigt, in dem die Studierenden selbst wahre und falsche
Aussagen Uber gerade und ungerade Zahlen finden und formulieren sollten. Auch in das zweite
Kapitel wurde ein Abschnitt eingefiigt, in dem die Studierenden selbst die figurierten Zahlen der
,Treppenzahlen” erforschen sollten (vgl. Abschnitt 6.2).
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(4) Die konsequente Verwendung aller vier Beweisformen in der Vorlesung

Im Wintersemester 2013/14 war die Tatsache, dass die Summe dreier aufeinanderfolgender Zahlen
immer durch 3 teilbar ist, mit einem generischen Beweis mit Zahlen, mit einem formalen Beweis und
auch durch die beiden Punktmusterbeweise bewiesen worden. Im weiteren ,Forschungsprozess’
Uber die Teilbarkeitsfrage der Summe aufeinanderfolgender Zahlen wurden allerdings fiir die
Verifikation einer Behauptung nur algebraische Mittel verwendet. AusschlieRlich der Beweis des
finalen Satzes wurde anhand einer generischen Idee entwickelt und diese Idee auch an Punktmustern
verdeutlicht. Im Wintersemester 2014/15 wurden nun alle vier Beweisformen gleichberechtigt im
Laufe des ersten und des zweiten Kapitels verwendet. Auf diese Weise sollten die Giiltigkeit der
verschiedenen Beweisformen betont und ihre Charakteristika und Vor- und Nachteile verdeutlicht
werden.

Modifikationen im Kontext der Ubungsaufgaben
(5) Die Integration von explorativen Anteilen in Ubungsaufgaben

Der Aspekt von Exploration und dem Aufstellen von Vermutungen (bzw. Behauptungen) sollte auch
im Kontext der Ubungsaufgaben stirker betont werden. Aus diesem Grund wurde eine gesamte
Prasenzlibung der Erforschung der Quadratzahlen gewidmet (s. hierzu Abschnitt 6.3.1). Explorative
Anteile wurden auch dadurch in Ubungsaufgaben integriert, dass die zu beweisende Behauptung erst
von den Studierenden anhand konkreter Beispiele selbst herausgefunden und formuliert werden
musste (vgl. Abschnitt 6.3.2).

(6) Die Verwendung von neuen Aufgabenformaten, sogenannter ,,multiple proof tasks”

Fiir einen vergleichenden Umgang mit den vier Beweisformen der Veranstaltung und den
verschiedenen Diagrammsystemen wurden den Studierenden Behauptungen gegeben, die sie mit
allen vier Beweisformen beweisen sollten. Mit diesen so genannten , multiple proof tasks” sollten die
Studierenden die Vor- und Nachteile der verschiedenen Beweisformen und der verschiedenen
Diagrammsysteme und auch den Nutzen und die ,Macht’ des algebraischen Kalkiils und somit der
fachmathematischen Symbolsprache erfahren (vgl. Abschnitt 6.3.2). Auch ging es darum, zu allen in
der Lehrveranstaltung verwendeten Diagrammsystemen eine Praxis des Umgangs damit zu
erarbeiten.

(7) Beweisaufgaben, in denen den Studierenden die Wahl der Beweisform freigestellt ist

Schlielich wurden den Studierenden Behauptungen gegeben, zu deren Verifikation sie die
Beweisform frei wahlen konnten. Natlrlich bieten sich je nach Behauptung unterschiedliche
Beweisformen an, aber diese Entscheidung fiir eine Beweisform in einem bestimmten
Diagrammsystem sollte von den Studierenden selbst getroffen werden. Auch galt es mit diesem
Aufgabenformat, die Vor- und Nachteile der verschiedenen Beweisformen und Diagrammsysteme
weiter herauszustellen (vgl. Abschnitt 6.3.2).
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6. Die Lehrveranstaltung ,Einfiihrung in die Kultur der Mathematik”
im Wintersemester 2014/2015

In diesem Kapitel wird das Konzept der Lehrveranstaltung ,Einfiihrung in die Kultur der Mathematik”
beschrieben, wie sie nach drei Forschungszyklen im Wintersemester 2014/15 durchgefiihrt wurde.
Ausgangspunkt der Beschreibungen ist die intentionale Dimension dieser letzten hier thematisierten
Durchfiihrung der Lehrveranstaltung, die sich als Summe der in Abschnitt 1.3 herausgestellten
Leitprinzipien flr die Gestaltung der Lehrveranstaltungen und der im Rahmen des filinften Kapitels
entwickelten ,lokalen’ Intentionen fiir bestimmte Facetten der Lehrveranstaltung ergeben haben
(6.1)*. AnschlieRend wird die Umsetzung dieser Intentionen im Rahmen der ersten beiden Kapitel
der Vorlesung (6.2), des Ubungsbetriebs (6.3) und speziell in der Zentraliibung (6.4) beschrieben. Die
Beforschung dieser Durchfiihrung der Lehrveranstaltung wird als ,Effektivitatsstudie’ im Rahmen des
siebten Kapitels dargestellt, in dessen Anschluss die retrospektive Analyse der vierten Durchfihrung
der Lehrveranstaltung erfolgt.

Im Wintersemester 2014/15 bestand die Lehrveranstaltung wochentlich, wie auch in den vorherigen
Durchgdngen, aus einer Vorlesung (1,5 h), einer Prasenziibung (eine anderthalbstiindige
Kleingruppenibung mit ca. 30 Studierenden, in der Prasenzaufgaben bearbeitet wurden) und einer
nicht verpflichtenden Zentrallibung, in der die wochentlichen Hausaufgaben besprochen wurden.

6.1 Die intentionale Dimension der vierten Durchfiihrung der

Lehrveranstaltung im Wintersemester 2014/15

Das Grundanliegen der Lehrveranstaltung ,Einfihrung in die Kultur der Mathematik” besteht darin,
Erstsemesterstudierende des Lehramts Mathematik fir Haupt-, Real- und Gesamtschulen in die
Mathematik der Hochschule bzw. in die dortige ,Kultur der Mathematik’ einzufiihren. In diesem
Sinne wird diese Veranstaltung als Briickenkursveranstaltung verstanden, die den Studierenden den
Ubergang von der Schule zur Hochschule erleichtern soll. Ein inhaltlicher Schwerpunkt wird dabei auf
die Domane ,Begriinden und Beweisen’ unter der Perspektive der doppelten Diskontinuitat gelegt
(vgl. Kapitel 1).

Im Rahmen des ersten Kapitels dieser Arbeit wurden verschiedene ,globale Leitprinzipien fiir die
Konstruktion der Lehrveranstaltung herausgearbeitet, die hier gleichsam als Intentionen betrachtet
werden kdnnen (vgl. Abschnitt 1.3):

Leitprinzipien aus dem Phanomen der doppelten Diskontinuitat

(1) AnknUpfen an schulische Vorerfahrungen

(2) Akzeptanz und produktive Nutzung von schulischem Vorwissen
(3) Aufarbeitung des notwendigen Vorwissens

(4) Explizit-Machen der Unterschiede

(5) EinfUhren in die Arbeitsweisen der Hochschulmathematik

(6) Vorbereitung auf Erfordernisse im Lehrberuf

(7) Herstellen eines Schulbezugs

Leitprinzipien aus dem Ansatz ,Elementarmathematik als Prozess’

(8) Einbezug von Elementarmathematik

* Um fiir die Leserin bzw. den Leser ein eigenstandiges Lesen dieses Kapitels zu ermdglichen, seien an dieser
Stelle gewisse Redundanzen zu den Betrachtungen in Kapitel 1 und Kapitel 5 erlaubt.
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(9) Umgang mit nichtsymbolischen Darstellungen

(10) Verdeutlichen des Prozesscharakters der Mathematik
(11) Einbezug inhaltlich-anschaulicher Darstellungen

(12) Einbezug inhaltlich-anschaulicher Beweise

(13) Vermittlung von Meta-Wissen Gber Mathematik

Weitere Leitprinzipien

(14) Intellektuelle Ehrlichkeit

(15) Problemzentrierte Erarbeitung von Inhalten

(16) Vermittlung von Inhalten, die den Studierenden das Zurechtkommen in den folgenden Lehrveranstaltungen an
der Universitat erleichtern sollen

(17) Sinnstiftende Einfiihrung und Verwendung der mathematischen Symbolsprache

(18) Vermittlung allgemeiner Heuristiken

(19) Vermittlung eines addquaten Beweisverstandnisses

Im Rahmen der Beforschung der ersten drei Durchfiihrungen der Lehrveranstaltung (Kapitel 5)
konnten verschiedene ,lokale’ Intentionen fiir die Lehrveranstaltung herausgearbeitet werden. Die
folgenden Zielsetzungen gelten dabei auch fiir diese vierte Durchflihrung der Lehrveranstaltung:

(20) Den Studierenden soll der Unterschied zwischen bloRen Beispielbetrachtungen und generischen Beweisen
deutlich werden.

(21) Die Studierenden sollen ein Verstandnis fir die Reichweite generischer Beweise entwickeln.

(22) Die Studierenden sollen dazu befihigt werden, die vier verschiedenen Beweisformen der Lehrveranstaltung
(formaler Beweis, generische Beweise (mit Zahlen und mit Punktmustern) und Punktmusterbeweis mit
geometrischen Variablen) zu konstruieren.

SchlieRlich sei an dieser Stelle auf die in Abschnitt 4.3.1 herausgearbeiteten, in der Literatur
,empfohlenen Aktivitaten’ fir das Erlernen der Beweisaktivitat verwiesen.

6.2 Die Gestaltung der ersten beiden Kapitel der Lehrveranstaltung im
Wintersemester 2014/15

Im Folgenden wird die Umsetzung der in Abschnitt 6.1 herausgestellten Intentionen im Rahmen der
ersten beiden Kapitel der Lehrveranstaltung beschrieben, da nur diese, aufgrund des
vorgenommenen Forschungsfokus’, in dieser Arbeit von Bedeutung sind. Auch wird angedeutet, an
welchen Stellen die in Abschnitt 4.3.1 herausgearbeiteten ,empfohlenen Aktivitaten’ fir das Erlernen
der Beweisaktivitdt umgesetzt wurden. Dazu werden die Teile aus dem Skript von Rolf Biehler (2015)
zitiert und zusammengefasst, die flr das Nachvollziehen dieser Umsetzung nétig erscheinen. Fir eine
bessere Lesbarkeit und Verstandlichkeit der Darstellung der Inhalte werden die Zitate aus dem Skript
zu der Lehrveranstaltung in einer kleineren SchriftgréBe und eingeriickt niedergeschrieben,
erlauternde Kommentare des Autors sind in der ,normalen’ SchriftgroRe gesetzt. Das vollstandige
Skript zu den ersten beiden Kapiteln der Lehrveranstaltung befindet sich im Anhang.

Im ersten Kapitel wird ausgehend von der Eingangsfrage Uber die Teilbarkeit der Summe von drei
aufeinanderfolgenden natlrlichen Zahlen die Frage nach der Teilbarkeit von keN
aufeinanderfolgenden natirlichen Zahlen durch k ,erforscht’. Im Folgenden wird mithilfe von
erlauterten Skriptausziigen dargestellt, wie im Rahmen dieses ,Forschungsprozesses’ die in Abschnitt
6.1 formulierten Intentionen umgesetzt werden.
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Kapitel 1 ,,Entdecken und Beweisen in der Arithmetik“

Innerhalb des ersten Kapitels wird durch den Fachinhalt der Teilbarkeit bewusst
,Elementarmathematik’ in den Vordergrund gestellt, wodurch direkt an schulische Vorerfahrungen
angekniipft werden kann. Das Kapitel wird durch die folgende Frage eingeleitet:

Jemand behauptet: Die Summe von drei aufeinanderfolgenden natirlichen Zahlen ist immer durch 3 teilbar.

— Stimmt das? Wenn ja, warum?

Im Kontext einer Begriffsklarung wird der Teilbarkeitsbegriff aufgearbeitet. Als intuitiv klar kann hier
angesehen werden, dass etwa die Zahl 6 durch 3 teilbar ist, da6 : 3 = 2. Dieser (prozedurale)

Teilbarkeitsbegriff wird an dem Beispiel 11:3 = % problematisiert. Denn einhergehend mit der

Bruchdarstellung kann auch der Standpunkt vertreten werden, dass 11 durch 3 ,teilbar’ sei. Es wird
herausgestellt, dass hier zwei verschiedene Teilbarkeitsbegriffe zugrunde liegen: einmal ,Teilbarkeit
in den natlrlichen Zahlen’ und einmal ,Teilbarkeit in den rationalen Zahlen’. Diese Diskrepanz liefert
die Maoglichkeit fiir eine erste Prazisierung des schulischen Vorwissens®: Unter Teilbarkeit soll in der
Lehrveranstaltung ,Teilbarkeit innerhalb der natiirlichen Zahlen’ verstanden werden. Mit diesem
Aufgreifen einer ,prozeduralen Sicht’ auf Teilbarkeit wird schulisches Vorwissen akzeptiert und
produktiv genutzt, denn aus dieser Diskussion erwachst die erste Definition, mit der gleichsam das
notwendige Vorwissen aufgearbeitet wird, um den Ausfiihrungen im ersten Kapitel folgen zu kénnen.

Definition 1.1 (Teilbarkeit):

Eine natlrliche Zahl a ist genau dann* durch eine natirliche Zahl b teilbar, wenn% € Nist.*

Im Rahmen einer logischen Analyse der Eingangsbehauptung werden zunachst die Aspekte der
Wortvariablen und die Nutzung von Buchstabenvariablen thematisiert. Ein Schwerpunkt dieser
Analyse liegt auf dem Herausarbeiten der Allaussage. Diese Betonung folgt der didaktischen
Malinahme, dass bei der Formulierung einer Vermutung bzw. Behauptung darauf zu achten ist, dass
ihr Allgemeinglltigkeitscharakter herausgestellt wird, wodurch gleichsam auf die Unzulanglichkeit
empirischer Verifikationen hingewiesen wird (Abschnitt 4.3.1). Auch wird mit der Betrachtung der
Allaussage die Besonderheit des mathematischen Erkenntnisprozesses herausgestellt, auf dessen
Grundlage sich ein objektives Beweisbediirfnis herausbilden kann (vgl. Abschnitt 2.1.6).

Anschliefend werden den Studierenden drei verschiedene Strategien an die Hand gegeben, mit
denen sie Aussagen Uberprifen kénnen:

* Der Fachinhalt der Teilbarkeit ist dem schulmathematischen Vorwissen der Studierenden zuzuordnen.
Allerdings wurde in diesem Kontext nicht erforscht, welches Vorwissen bzw. welches Verstandnis die
Studierenden von Teilbarkeit genau mit sich bringen. Wohl konnte im Kontext der Analyse der
Beweiskonstruktion der Studierenden im Wintersemester 2012/13 herausgearbeitet werden, dass die
Studierenden fir die Darstellung von Teilbarkeit haufig von einer Quotientenschreibweise Gebrauch machen
(Abschnitt 5.3.2.4), was auf eine prozedurale Sicht auf Teilbarkeit hindeutet.

“ Die Bedeutung der genau-dann-wenn Konstruktion wird an dieser Stelle noch nicht mithilfe der
Aussagenlogik konkretisiert.
* Bei dieser Definition wird die Existenz bzw. die Verwendung der rationalen Zahlen implizit vorausgesetzt. Die
in der Zahlentheorie ,lbliche’ Teilbarkeitsrelation wird spater eingefiihrt.

211



Drei Strategien zum Testen einer Aussage:

(1) Testen der Aussage an Zahlenbeispielen
(ziel: Prifen, ob es stimmt.)
(2) Testen der Aussage an Zahlenbeispielen mit dem Ziel zu erkennen, was an diesen Beispielen
verallgemeinerungsfahig (generisch) ist
(Ziel: Kann man an den Beispielen verstehen, warum die Aussage allgemein gilt?)
(3) Formalisierung der Aussage und algebraische Umformungen
(Ziel: Einsatz der Algebra, um Richtigkeit der Aussage zu begriinden.)

Diese Strategien sollen den Studierenden im weiteren Verlauf als Heuristiken dienen. Mit der ersten
Strategie wird dabei die in Abschnitt 4.3.1 herausgearbeitete Aktivitdt umgesetzt, dass der
Beweisprozess mit einer Explorationsphase des Sachverhalts beginnen sollte, in deren Rahmen sich
die Lehrenden mit dem Wissensmaterial vertraut machen (vgl. hierzu auch den Beweisprozess nach
Boero (1999), dargestellt in Abschnitt 2.1.1). Mit der Unterscheidung der Strategien (1) und (2) wird
bereits an dieser Stelle der Unterschied zwischen bloBen Beispieliberprifungen und
allgemeingiiltigen generischen Beweisen angedeutet.

Die Umsetzung und Aussagekraft dieser drei Strategien werden an der Ausgangsfrage exemplarisch
durchgefiihrt und reflektiert. Im Kontext dieser Strategien wird die Rolle von Beispielen fiir den
Erkenntnisprozess erortert, wobei zwischen psychologischen und logischen Aspekten unterschieden
wird. Aus psychologischer Sicht kann das Testen von konkreten Beispielen positiv gewertet werden,
um ein Verstandnis fur die Behauptung zu entwickeln und eine Vorstellung davon zu bekommen, ob
diese wahr sein konnte. Neben dem fachlichen Verstandnis einer Aussage wird hier bereits der
psychologische Aspekt der (subjektiven) Uberzeugung fiir das Gelten der Behauptung tangiert.
Logisch betrachtet, muss betont werden, dass noch so viele Beispielliberpriifungen nicht ausreichen,
um eine mathematische Allaussage Uber unendlich viele Falle verifizieren zu kénnen. Ebenso ist es
logisch betrachtet lberfllssig, eine bewiesene Behauptung an konkreten Beispielen zu verifizieren.
Allerdings konnen nachtragliche Beispiellberpriifungen wiederum als Kontrolle fiir die algebraischen
Umformungen fungieren, die den Beweis konstituieren.

Im Zuge des Testens der Aussage an Zahlenbeispielen wird eine Entdeckung gemacht:

Als Summe der drei Zahlen kommt immer ein Vielfaches von 3 heraus:

1+2+3=6=3-2, 2+3+4=9=3-3, 500+ 501+502=1503 =3-501

Das Ausmachen einer (beispielliibergreifenden) Erklarung fiir dieses Phdnomen erdffnet die
Moglichkeit der Konstruktion eines generischen Beweises fiir die Eingangsbehauptung:

Generischer Beweis
142+3=2-1D)+2+2+1)=3-2

500+ 501 + 502 = (501 —1) + 501+ (501 + 1) = 3-501

In den Beispielen wird deutlich, dass man die Summe von drei aufeinanderfolgenden natiirlichen Zahlen immer
schreiben kann als: (,mittlere Zahl“ — 1) + (,mittlere Zahl“) + (,mittlere Zahl“ + 1).

Diese Summe lasst sich dann umschreiben als dreimal die ,mittlere Zahl“. Folglich ist die Summe von drei
aufeinanderfolgenden natirlichen Zahlen immer gleich dem Dreifachen der mittleren Zahl und somit durch 3
teilbar.
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Nach dieser Ausarbeitung des generischen Beweises (unter der Nutzung von Wortvariablen) werden
die entsprechenden Normen fiir generische Beweise innerhalb der Lehrveranstaltung explizit gesetzt,
durch die gleichsam die in Abschnitt 4.3.1 herausgearbeiteten empfohlenen Aktivitdten fir die
Konstruktion generischer Beweise umgesetzt werden.

Ein giiltiger generischer Beweis soll die folgenden Aspekte umfassen:

1. Mitallgemeingiiltigen Umformungen wird an konkreten Zahlenbeispielen untersucht, was diese gemeinsam
haben. Diese beispieliibergreifende Idee muss dann in einen Zusammenhang mit der aufgestellten
Behauptung gebracht werden.

2. Esfolgt eine Begriindung, warum die Behauptung in den betrachteten Zahlenbeispielen wahr ist.

3. SchlieBlich muss begriindet werden, warum diese Argumentation auch fiir alle méglichen (zu betrachtenden)
Falle korrekt ist.

Durch die Verwendung generischer Beweise soll eine den Studierenden bekannte Begriindungsform
der Schulmathematik® aufgegriffen und ihnen gleichsam eine schuladidquate Begrindungsform
vermittelt werden. Somit wird ein expliziter Schulbezug hergestellt und den Studierenden wird
relevantes Wissen fiir ihre spatere Schulpraxis vermittelt®’.

Bei der Durchfiihrung der Strategie (3) (,Formalisierung der Aussage und algebraische
Umformungen”) kann durch die Einflihrung von (Buchstaben-) Variablen der generische Beweis
direkt formalisiert werden®:

Wir ersetzen die Zahlen und Wortvariablen durch Buchstabenvariablen: Wir bezeichnen die ,mittlere Zahl“ als m.
m soll dann eine beliebige natirliche Zahl sein. Sie darf aber nicht die ,1“ sein, denn dann ware der Vorganger
keine natrliche Zahl.

Sei m e N\{1} beliebig, aber fest. Dann gilt: (m —1) + m + (m + 1) = 3m. Diese Zahl ist durch 3 teilbar,
dameN.

g.e.d.

Als Vorteil dieser Herangehensweise kann verdeutlich werden, dass bei Umformungen mit Variablen
nur solche Operationen angewendet werden, die genauso auch fir alle entsprechenden Zahlen

*® Die Vermutung, dass entsprechende Begriindungsformen im schulischen Mathematikunterricht Verwendung
finden, wird durch verschiedene Darstellungen in der Literatur gestitzt (etwa LeiR und Blum (2006, S. 37f.)
oder Meyer und Prediger (2009)). Ob die Studierenden allerdings selbst angeben, solche oder &dhnliche
Begriindungsformen bereits aus ihrem Mathematikunterricht an der Schule zu kennen, ist an dieser Stelle noch
offen. Empirische Ergebnisse zu dieser Thematik werden in Abschnitt 7.2.3 thematisiert.

* Die Lehrveranstaltung ,Einfihrung in die Kultur der Mathematik” ist explizit als eine mathematische
Fachveranstaltung in den Studienverlaufsplan integriert. Hieraus folgt, dass im Kontext dieser
Lehrveranstaltung vor allem fachlich relevantes Wissen fiir den Lehrberuf vermittelt werden soll. Es ist dabei
auch die Uberzeugung des Autors, dass die Fachinhalte generischer und formaler Beweise schulrelevantes
Wissen fir die Lehrpraxis an Schulen darstellen, wie auch der Umgang mit Punktmusterdarstellungen. Das
Verfligen Uber diese fachlichen Inhalte erméglicht es Giberhaupt erst, die in den Bildungsstandards geforderten
Aspekte der Prozesskompetenz ,Mathematisch Argumentieren” im schulischen Mathematikunterricht
umzusetzen (vgl. Abschnitt 2.3.1.1).

*® Diese ,genetische’ Erarbeitung der verschiedenen Beweise (vgl. Brunner 2014, S. 20ff.) entspricht dabei der in
Abschnitt 4.3.1 empfohlenen Aktivitdt, dass der formale Beweis erst dann formuliert werden soll, wenn die
Lernenden eine Einsicht in die Allgemeingiltigkeit der Rechnung erlangt haben, da sich das Resultat als
unabhangig von der Verwendung von konkreten Zahlenwerten erweist.
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durchfiihrbar sind, wobei diese Sicherheit auf einer fehlerfreien Anwendung des algebraischen
Kalkiils basiert. Gleichsam wird die Norm eingefiihrt, dass bei der Nutzung einer Buchstabenvariablen
immer ihre Grundmenge anzugeben ist.

Im Anschluss wird der erfolgte Prozess reflektiert, in dem wu.a. ausgehend von der
Eingangsbehauptung und einer Begriffsklarung der Teilbarkeit eine Definition erarbeitet wurde.
BeispielUberprifungen fiihrten dann zu einer beispiellibergreifenden (,,generischen”) Idee, die fir
den Beweis der Behauptung verwendet werden konnte. Diese Beweisidee aus dem generischen
Beweis wurde anschlieBend auch fiir die Konstruktion des formalen Beweises genutzt, welcher hier
noch nicht als solcher benannt wurde. Bei der Besprechung der drei Strategien wurden Normen fir
entsprechende Beweiskonstruktionen kommuniziert, wobei durch den erhohten Anspruch an
Darstellung, Vollstandigkeit etc. Unterschiede zwischen der Schul- und der Hochschulmathematik
thematisiert wurden.

Als eine alternative Strategie wird das direkte, gleichsam ,experimentelle’ Umformen der formalen
Darstellung vorgestellt. Das Ziel ist dann (eventuell ohne vorherige Beispielbetrachtungen), die
Summe so umzuformen, dass man am Term die Teilbarkeit durch 3 erkennen kann. Somit erhalt man
die folgende Variante der Begriindung:

Bezeichnet man die Startzahl als m, wobei m eine natlrliche Zahl ist, so erhalt man als
Summe:m+ (m+ 1) + (m+ 2) = 3m + 3 = 3(m + 1). Diese Summe ist durch 3 teilbar,
da (m + 1) eine natirliche Zahl ist®.

Diese Herangehensweise der (sofortigen) Umformung einer formalen Darstellung wird als eine
mogliche Strategie flir die Konstruktion eines formalen Beweises herausgestellt, dessen Konzept
spater konkretisiert wird.

Anhand obiger Rechnung wird noch einmal der Teilbarkeitsbegriff aufgegriffen, denn die Tatsache,
dass das Ergebnis 3(m+ 1)ein Vielfaches von 3 ist, entspricht nicht unmittelbar der
vorgenommenen Definition 1.1. (s.0.). Allerdings kann die Definition 1.1 fiir ein ,erweitertes
Verstandnis’ der Teilbarkeit genutzt werden:

Definition 1.1 besagt, dass eine natirliche Zahl a etwa durch 3 teilbar ist, wenn %ENiSt,

z.B.%=qu.DanngiIt:§=q S a=3-q.

Hieraus resultiert eine ,neue’ Definition fiir Teilbarkeit, die ohne Division auskommt:

Definition 1.1' (Teilbarkeit):
Eine natlrliche Zahl a ist genau dann durch eine natirliche Zahl b teilbar, wenn eine natirliche Zahl q existiert
mit: a=b-q.

Die Definition 1.1"' wird an dieser Stelle aus verschiedenen Griinden thematisiert (und auch explizit im
Plenum reflektiert): Im Sinne einer Akzeptanz von Vorwissen wurde fiir die Teilbarkeit zunachst die
Definition 1.1 erarbeitet (s.0.). Innerhalb der elementaren Zahlentheorie wird die Teilbarkeit zweier
Zahlen allerdings entsprechend der Definition 1.1' definiert. Diese relationale Charakterisierung ist

* Dies ist eine exemplarische Stelle, an der ein intuitiv einsichtiger Sachverhalt (wenn m € N dann ist auch
(m + 1) € N) nicht weiter thematisiert bzw. problematisiert wird.
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fur Studienanfangerinnen und -anfanger neu, die Teilbarkeit von a durch b (a, b € N) wird von ihnen
eher prozedural betrachtet, etwa als das ,Aufgehen’ ohne Rest bei wiederholter Subtraktion von b
ausgehend von a. Auf der Basis der bekannten Division mit rationalen Zahlen wurde eingangs

formuliert, dass b die Zahl a teilt, wenn die Operation % eine natlirliche Zahl liefert. Dagegen ist die

Definition 1.1' in den meisten Sachverhalten, in denen nach Teilbarkeit gefragt wird, leichter
anzuwenden, da keine explizite Division stattfindet. Die Anwendung dieser Teilbarkeitsdefinition
erweist sich auch als weniger fehleranfallig, da bei Termumformungen keine Bruchrechnung bendtigt
wird. Diese damit einhergehende Definition wird dabei als ,sinnvolle Charakterisierung’ von
Teilbarkeit aus der vorherigen Sichtweise auf Teilbarkeit entwickelt, wodurch diese an der
Hochschule ,gebrduchliche’ Sicht auf Teilbarkeit gleichsam motiviert und legitimiert wird. Der
fachmathematische Status der Definition wird erst spater im Kontext formaler Beweise aufgegriffen.

Nach der Klarung der Ausgangsfrage Uber die Summe dreier aufeinanderfolgender natirlicher Zahlen
in der Symbolsprache der Algebra wird der Sachverhalt im Diagrammsystem der Punktmuster
aufgegriffen. Auch hier kann die Summe von drei aufeinanderfolgenden natirlichen Zahlen
dargestellt und ,umgeformt’ werden (vgl. Abbildung 46).

===. ===. ‘ ===E Abbildung 46: Darstellung der Summe 3+4+5 im
EEEER EEEER B EE N Diagrammsystem der Punktmuster

Es stellt sich allerdings die Frage, wie Teilbarkeit im Darstellungssystem der Punktmuster verstanden
bzw. (nach erfolgter Transformation) nachgewiesen werden soll, was anhand der Grundvorstellungen
,Aufteilen’ und ,Verteilen’ beantwortet wird:

Teilbarkeit im Darstellungssystem der Punktmuster

(1) Verteilen:
Wir teilen das Punktmuster in drei gleichgroRe Teile (hier: Zeilen) ein. Wenn dies ,ohne Rest’ moglich ist,
dann ist die Summe durch 3 teilbar (vgl. Abbildung 47 links).

(2) Aufteilen:
Wir teilen das Punktmuster in Dreiergruppen (hier: Spalten) ein. Wenn dies ,ohne Rest’ moglich ist, dann ist
die Summe durch 3 teilbar (vgl. Abbildung 47 rechts).

-

' Abbildung 47: Darstellung der Teilbarkeit durch 3 in der
:. . . . Punktmusterdarstellung; links: gemaf der Grundvorstellung ,verteilen”,

t—Lomle=L=== | rechts: gemadR der Grundvorstellung ,,aufteilen”
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Der Frage nach der Ubertragbarkeit der obigen Strategie (Transformation der Punkte und Teilung
durch 3) wird anhand weiterer konkreter Beispiele nachgegangen. Die Einsicht, dass unabhangig von
der Startzahl an der rechten Seite immer die gleiche Treppenform entsteht, ermdoglicht die
Konstruktion eines generischen Punktmusterbeweises:

Generischer Punktmusterbeweis

EEN HEE -

EEEN EEEN

EEEEn EEEER Abbildung 48: Generische
Punktmusterbeispiele fiir die Summe

EEEER ] dreier aufeinanderfolgender Zahlen




Bei jeder Summe von drei aufeinanderfolgenden natirlichen Zahlen entsteht immer die gleiche Treppenform, da
sich die Punktlinien jeweils um einen Punkt unterscheiden. Durch Umgruppierung der Punkte (s. Beispiele)
entstehen immer drei gleich lange Punktereihen. Also ist die Summe immer durch 3 teilbar.

Wahrend bei der Formalisierung des generischen Beweises mit Zahlen Buchstabenvariablen
verwendet wurden, um eine beliebige Startzahl (oder mittlere Zahl) zu reprasentieren, wird in dem
Darstellungssystem der Punktmuster entsprechend eine geometrische Variable verwendet (s.
Abbildung 49). Eine geometrische Variable muss dabei nicht notwendigerweise mit einem
Buchstaben versehen werden, dies kann allerdings innerhalb mancher Beweisfiihrungen nitzlich
sein.

Abbildung 49: Eine ,,geometrische Variable” zur Reprasentation
- . einer beliebigen Anzahl von Punkten

Somit kann auch im Punktmustersystem ein Beweis mit (geometrischen) Variablen konstruiert
werden:

Beweis mit geometrischen Variablen:

;T_J

n durch 3 teilbar

Abbildung 50: Punktmusterbeweis mit geometrischen Variablen fiir die
Behauptung, dass die Summe dreier aufeinanderfolgender Zahlen immer durch
3 teilbar ist

Die Nutzung des Diagrammsystems der Punktmuster versteht sich dabei als Einbezug einer inhaltlich-
anschaulichen Darstellung, die Konstruktion entsprechender Beweise als Einbezug inhaltlich-
anschaulicher Beweise. Hierdurch sollen die Studierenden auch dazu befdhigt werden, in einer
weiteren, ,schuladaquaten Sprache’ Mathematik kommunizieren zu kénnen.

Anhand der bisherigen Formen der Verifikation lassen sich verschiedene Aspekte von Beweisen
unterscheiden und diskutieren. So werden die verschiedenen Beweisfunktionen Verifikation (als
objektive Sicherung der Giiltigkeit), (subjektive) Uberzeugung und Erklarung im Plenum in Bezug auf
die verschiedenen Beweisformen erortert. Als zentrale Aspekte fiir die Bewertung von Beweisen
werden aber die mathematische Korrektheit und die soziale Akzeptanz herausgestellt.

SchlielRlich wird das Konzept des formalen Beweises genauer betrachtet. Neben der Nutzung der
fachmathematischen Symbolsprache und dem ,sicheren’ SchlieBen ist es vor allem der explizite
Bezug auf die verwendeten mathematischen Argumente (Definitionen und Satze) der
Argumentationsbasis, die diesen konstituieren. Bei der Konstruktion formaler Beweise wird zwischen
deren ,Erarbeitung’ und der finalen ,Reinschrift’ unterschieden, wodurch zunachst der Prozess des
Beweisens in den Vordergrund geriickt werden soll. Mit der expliziten Forderung einer ,Reinschrift’
wird aulRerdem betont, dass bei der finalen Niederschrift des Beweisprodukts gewissen Anspriichen
(in Bezug auf Logik und formale und sprachliche Darstellungen) Genlige getan werden muss. Im
Ubergang zu den formalen Beweisen wird es dabei moglich, die fachmathematische Symbolsprache
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sinnstiftend einzufiihren, um damit die folgenden Aktivitaten auszufiihren, wie es von Malle (1993, S.
6ff.) und Mason et al. (2005, S. 1ff.) empfohlen wird: (i) um Allgemeingiltigkeit auszudriicken, (ii) um
allgemeine Zusammenhénge zur kommunizieren, (iii) um Zusammenhange weiter zu erforschen und
(iv) um Beweise zu konstruieren zu kénnen. Ein aus obiger Formalisierung konstruierter formaler
Beweis ist dann:

Formaler Beweis (Reinschrift):

Sein € N beliebig, aber fest. Danngilt: n+ (n+ 1)+ (n+2)=3n+1+4+2=3n+3 =3(n+1).
Da (n + 1) e N ist, ist das Ergebnis nach Definition (1.1’) durch 3 teilbar.

g.e.d.

Im Rahmen einer ,Anmerkung’ werden dabei die folgenden Aspekte thematisiert: Zu Beginn des
formalen Beweises wird die verwendete Variable definiert und entsprechend fiir die Verifikation
einer Fur-Alle-Aussage als ,beliebig, aber fest” gesetzt. Der durch Formalisierung entstandene Term
wird dann mithilfe zuldssiger Operationen umgeformt, bis man einen Term erhalt, an dem man
mithilfe einer Definition oder eines Satzes den Nachweis der geforderten Eigenschaft vollziehen
kann. An dieser Stelle wird auch das Konstrukt der Argumentationsbasis erortert. Als Norm wird dazu
festgehalten, dass die in einem formalen Beweis (neben den Umformungen) verwendeten
Argumente (Satze, Definition) immer angegeben werden sollen. Allerdings missen die Regeln fir die
verwendeten Termumformungen, wie etwa das Kommutativgesetz, nicht extra angemerkt werden.
In diesem Kontext werden auch die Vor- und Nachteile von formalen Beweisen erortert.

Die Konvention, dass innerhalb eines formalen Beweises der Nachweis der zu zeigenden Eigenschaft
durch den expliziten Verweis auf eine Definition oder einen Satz geschehen muss, macht es fir
spatere Beweisaufgaben notwendig, dass auch ,Nicht-Teilbarkeit’ thematisiert werden muss. Dieser
Inhalt mag ,intuitiv klar’ sein, wenn bereits definiert wurde, was unter Teilbarkeit zu verstehen ist.
Jedoch wird bei der Erarbeitung eines entsprechenden Satzes deutlich, welcher ,Mehraufwand’ fur
eine Konzeption von Nicht-Teilbarkeit betrieben werden muss:

Eine natirliche Zahl a ist nicht durch eine natiirliche Zahl b teilbar, wenn es keine natirliche Zahl q mit % = q gibt.

Der Bruch % hat dann einen ganzzahligen Anteil g € Ny und einen Rest R zwischen 0 und 1, den man als % mit
einer Zahl 0 < r < b schreiben kann.
a

c=q+ Eist dquivalentzua=q-b+r.

Satz 1.2 (Nicht-Teilbarkeit):
Eine Zahl a € N ist genau dann nicht durch eine Zahl b € N teilbar, wenn es Zahlen e Ny und reN,0 <r <b,
gibtmita=q-b+r.

Bemerkung:

Wenn a < b ist, dann gilt% =0-b+ %, wobei r = a ist.

In dem folgenden Abschnitt werden die Inhalte ,gerade und ungerade Zahlen’ thematisiert und
gleichsam fiir eine Verwendung in formalen Beweisen aufbereitet. Dazu wird eine Definition
erarbeitet und der folgende Satz formuliert und bewiesen:

Satz 1.5 (gerade und ungerade Zahlen)
(a) g e Nistgenaudann gerade, wenn es ein n € N gibt mit g = 2n.
(b) u € Nist genau dann ungerade, wenn es einm € N gibt mit u = 2m + 1.
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Als Abschluss dieses Exkurses zur Thematik ,gerade und ungerade Zahlen’ wird eine
Explorationsphase in die Vorlesung integriert. Die Studierenden sollen selbst wahre und falsche
Aussagen Uber gerade und ungerade Zahlen formulieren. AnschlieBend werden die verschiedenen
Aussagen gesammelt und im Plenum widerlegt bzw. verifiziert.

Aufbauend auf der Erkenntnis Uber die Teilbarkeit der Summe von drei aufeinanderfolgenden Zahlen
wird im weiteren Verlauf des Kapitels ,mathematische Forschung’ im Kleinen betrieben. Untersucht
werden dabei die folgenden Behauptungen:

(B2) Die Summe von 2 aufeinanderfolgenden natiirlichen Zahlen ist immer durch 2 teilbar.
(B4) Die Summe von 4 aufeinanderfolgenden natiirlichen Zahlen ist immer durch 4 teilbar.
(B5) Die Summe von 5 aufeinanderfolgenden natiirlichen Zahlen ist immer durch 5 teilbar.
(B6) Die Summe von 6 aufeinanderfolgenden natiirlichen Zahlen ist immer durch 6 teilbar.

(Bk) Die Summe von k € N aufeinanderfolgenden natiirlichen Zahlen ist immer durch k teilbar.

Im Rahmen der Uberpriifung der Behauptungen (B2) und (B4) wird die Bedeutung und Tragweite von
Gegenbeispielen fiir den mathematischen Erkenntnisprozess thematisiert. Als Weiterfilhrung dieser
Widerlegungen wird gezeigt, dass die Summe von zwei aufeinanderfolgenden natirlichen Zahlen nie
durch 2 teilbar und die Summe von vier aufeinanderfolgenden natirlichen Zahlen nie durch 4 teilbar
ist.

Bei der Untersuchung der verschiedenen Behauptungen wird zum einen darauf geachtet, dass
zwischen einer explorativen Untersuchungsphase und einer Reinschrift der Beweise unterschieden
wird. Zum anderen werden die vier verschiedenen Beweisformen (generischer Beweis mit Zahlen,
generischer Beweis mit Punktmustern, Punktmusterbeweis mit geometrischen Variablen und der
formale Beweis) der Vorlesung ,gleichberechtigt’ dazu verwendet, die wahren Behauptungen zu
beweisen. Gerade in dieser vergleichenden Nutzung der vier verschiedenen Beweisformen kdnnen
deren Vor- und Nachteile erfahren werden. Fiir das Widerlegen von Teilbarkeitsaussagen mithilfe
von Punktmusterdarstellungen muss dabei auch die Nicht-Teilbarkeit in diesem Diagrammsystem
betrachtet werden. Am Ende dieses Prozesses steht die folgende Behauptung als Verallgemeinerung
der erhaltenen Ergebnisse:

Die Summe von k € N aufeinanderfolgenden natiirlichen Zahlen ist genau dann durch k teilbar, wenn k ungerade
ist.

Diese Behauptung wird zum Abschluss des ersten Kapitels mithilfe verschiedener Beweise verifiziert.
In diesem Rahmen findet auch ein kurzer Exkurs lber die ,Geschichte des kleinen GauR’ statt, in
dessen Kontext die generische Idee der Paarbildung von Summanden um eine ,mittlere Zahl* herum
vertieft und die folgende Formel fiir die Summe der ersten n aufeinanderfolgenden natirlichen
Zahlen erarbeitet und bewiesen wird:

Hilfssatz ()
Fur die Summe der ersten n aufeinanderfolgenden natiirlichen Zahlen gilt:

142+ 4n="2000
2
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Durch diese forschungsgeleitete bzw. problemzentrierte Erarbeitung der fachlichen Inhalte kann der
Entstehungsprozess der Mathematik verdeutlicht und somit Meta-Wissen vermittelt werden®. Des
Weiteren werden mit der Formulierung von Definitionen, Behauptungen und Satzen und der
Konstruktion von Beweisen zentrale Arbeitsweisen der Hochschulmathematik eingefiihrt.

In dem zweiten Kapitel der Lehrveranstaltung werden geometrische Veranschaulichungen von
bestimmten Punktmustern, sogenannte ,figurierte Zahlen’, als weiterer Aspekt einer
Elementarmathematik betrachtet. Bei der Beschreibung der Strukturen und Bildungsvorschriften der
verschiedenen figurierten Zahlen wird der Begriff der Zahlenfolge eingefiihrt und zu deren
Beschreibung zwischen expliziten und rekursiven Bildungsvorschriften unterschieden. Bei der
Untersuchung der verschiedenen figurierten Zahlen (,Dreieckszahlen”, ,Quadratzahlen”,
»,Sechseckzahlen” etc.) konnen Vermutungen (ber die Bildungsgesetze der einzelnen Muster
aufgestellt und Zusammenhange zwischen den verschiedenen Mustern entdeckt werden. Die in
Kapitel 1 erarbeiteten Strategien fiir die Uberpriifung von Aussagen werden dabei weitergefiihrt und
die vier verschiedenen Beweisformen der Lehrveranstaltung konsequent als Erkenntnismittel
verwendet. Wahrend im ersten Kapitel Fragestellungen aus der Arithmetik und Algebra im
Vordergrund standen, die auch mithilfe von Punktmustern begriindet wurden, wird nun im zweiten
Kapitel innerhalb des Darstellungssystems der Punktmuster ,Forschung’ betrieben, wobei die
Bereiche der Arithmetik und Algebra als alternative Darstellungssysteme herangezogen werden
kénnen.

Als ein Betatigungsfeld zur Exploration werden den Studierenden zusatzlich die figurierten Zahlen der
,U-Treppenzahlen” (vgl. die Darstellungen im Anhang) an die Hand gegeben. Hier sollen die
Studierenden in einer freien Explorationsphase selbst Bildungsvorschriften finden und Bezlige zu
anderen figurierten Zahlen herausarbeiten.

Neben dieser ,aktiven Betdtigung’ im Gebiet der figurierten Zahlen soll dieses Kapitel auch dazu
dienen, die Studierenden zum Umgang mit entsprechenden Punktmusterdarstellungen zu befahigen.
Aus der in dieser Arbeit vorgenommenen semiotischen Perspektive wird an dieser Stelle kollaterales
Wissen fir das Diagrammsystem der Punktmuster aufgebaut und eine Praxis des Agierens in diesem
Diagrammsystem eingelibt. Bei der vergleichenden Nutzung der vier Beweisformen der
Lehrveranstaltung konnen die Vor- und Nachteile der Beweisformen und der verschiedenen
Diagrammsysteme erfahren werden. Damit ist auch die Intention verbunden, dass die Studierenden
die Vorteile der mathematischen Symbolsprache wiederholt wahrnehmen. Durch diese
vergleichende Nutzung der verschiedenen Begriindungsformen werden gleichsam die folgenden
didaktischen MaBnahmen umgesetzt, die im Rahmen von Abschnitt 4.3.1 herausgearbeitet wurden:
Es werden verschiedene Darstellungsweisen verwendet werden, um inhaltliche Grundideen
herauszustellen und anschauliche Grundvorstellungen zu vermitteln, die verschiedenen
Beweisformen werden in das Unterrichtsgeschehen einbezogen, anschauliche Argumente werden

*% Das hier ausgewahlte Konzept einer ,Kultur der Mathematik’ determiniert die Art von Meta-Wissen, welche
im Rahmen der Lehrveranstaltung vermittelt werden kann. Im vorliegenden Fall konnte Meta-Wissen in dem
Sinne thematisiert werden, wie es in Abschnitt 1.2.3 vor allem in Anlehnung an Hefendehl-Hebeker (1999) und
(2015) konzeptualisiert wurde, als ein Verstandnis von der Genese mathematischen Wissens, ihrer
epistemologischen Charakteristika und als ein Bewusstsein (ber mathematikspezifische Denk- und
Arbeitsweisen. Dabei ware prinzipiell auch die Thematisierung anderer Aspekte von Meta-Wissen denkbar
gewesen, wie etwa weltanschauliche bzw. ideologische Aspekte (etwa Ullmann 2008) oder etwa die Erorterung
bildungstheoretischer Aspekte von Mathematik (etwa Heymann 2013).
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formalisiert, es werden auch explizit formale Beweise gefiihrt und es wird Uber das Beweisen (in
seinen verschiedenen Ausprdgungen) reflektiert.

Im Kontext verschiedener Beweiskonstruktionen wird innerhalb des zweiten Kapitels die Erfahrung
gemacht, dass sich die ,,... - Darstellung” (als abkirzende Schreibweise fiir Summen) als sehr miihsam
erweist. Als eine vereinfachte Darstellung entsprechender Schreibweisen wird die Notation mit dem
Summenzeichen eingefiihrt, entsprechende Rechengesetze bewiesen und der Umgang mit diesem
gelibt. Im Kontext der ersten beiden Kapitel der Lehrveranstaltung werden den Studierenden somit
verschiedene Inhalte vermittelt, die ihnen das Zurechtkommen in den folgenden
Lehrveranstaltungen an der Universitat erleichtern sollen, hierzu zdhlen vor allem: formale Beweise,
Zahlenfolgen und das Summenzeichen. (Weitere entsprechende Inhalte der Veranstaltung lassen sich
bereits an den Kapiteliberschriften ablesen: ,Vollstandige Induktion”, ,Aussagenlogik, Logisches
SchlieBen und Beweistypen”, ,Mengen und Aussageformen” und , Funktionen und Abbildungen®.)
Somit wurde auch dieser Leitgedanke einer Briickenkursveranstaltung eingeldst.

Die Umsetzung dieser verschiedenen Leitprinzipien (vgl. Abschnitt 6.1) wurde auch durch die
Gestaltung des Ubungsbetriebs umgesetzt. Im Fokus der Bemiihungen stehen dabei das
Herausstellen des Prozesscharakters der Mathematik, die Konstruktion der vier verschiedenen
Beweisformen der Lehrveranstaltung und ein verstandiger Umgang mit den Diagrammsystemen der
Arithmetik, Algebra und der Punktmuster. Die Frage, inwieweit durch die Lehrveranstaltung ein
,addquates Beweisverstandnis‘ auf Seiten der Studierenden erzielt werden konnte, ist (u.a.)
Gegenstand des siebten Kapitels.

6.3 Der Ubungsbetrieb

Als wichtige Bestandteile des Ubungsbetriebs der Lehrveranstaltung im Wintersemester 2014/15
werden im Folgenden die Prasenziibungen (6.3.1), spezifische Aufgabenformate (6.3.2) und die
Konzeption der Zentraliibung (6.3.3) dargestellt.

6.3.1 Die Prasenziibungen

Die wochentlichen Prasenziibungen zur Lehrveranstaltung (Kleingruppenibungen mit ca. 30
Studierenden) wurden durch sogenannte Tutorentandems (vgl. Abschnitt 5.3.1) von studentischen
Hilfskraften geleitet®™. Nachdem im Wintersemester 2012/13 eine Schulung der Tutoren
stattgefunden hatte, um die Hilfskrafte mit dem Konzept beispielgebundener Beweise vertraut zu
machen, erschien dies in den folgenden Durchgangen nicht mehr notig, da man fir Tutoren auf
fachlich gute bis sehr gute Studierende aus vorherigen Durchlaufen der Lehrveranstaltung
zurlickgreifen konnte, die dementsprechend mit den Inhalten der Lehrveranstaltung, insbesondere
mit dem Konzept generischer Beweise sehr gut vertraut waren und entsprechend der Normen der
Lehrveranstaltung agieren konnten. Im Rahmen dieser Tutorien wurden ausschliefllich sogenannte
Prasenzaufgaben zur Lehrveranstaltung bearbeitet und besprochen, da die Besprechung der
Hausaufgaben® in die wochentlich stattfindende Zentraliibung (Abschnitt 6.3.3) ausgelagert wurde.

1 Nur die Tutorien, die durch Wissenschaftliche Mitarbeiter betreut wurden, wurden ohne ,Tandempartner’
abgehalten.
>? Die Studierenden mussten im Rahmen der Lehrveranstaltung wéchentlich Hausaufgaben abgeben, um die
,Studienleistung’ und damit die Zulassung fiir die Klausurteilnahme zu erhalten.
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6.3.2 Spezifische Ubungsaufgaben

Fiir das Erreichen der formulierten Ziele der Lehrveranstaltung kommt den verwendeten
Ubungsaufgaben eine besondere Rolle zu. Wie im Rahmen des fiinften Kapitels herausgearbeitet
wurde, mussten gezielt solche Ubungsformate entwickelt werden, die den Studierenden dabei
helfen, ein konzeptuelles Verstandnis zu den verschiedenen Beweisformen der Lehrveranstaltung
aufzubauen und einen Umgang mit den verschiedenen Diagrammsystemen zu entwickeln. Ebenfalls
sollte gezielt der Herausbildung von Fehlvorstellungen entgegengewirkt werden. In Abschnitt 5.4.1
wurden dazu bereits entsprechende Aufgabenformate vorgestellt, die die folgenden Aspekte
thematisierten:

(i) Die Beurteilung fehlerhafter generischer Beweise (mit Zahlen)

(ii) Die Vervollstandigung lickenhafter generischer Beweise (mit Zahlen)

(iii) Die Konstruktion generischer Beweise

(iv) Die Formalisierung generischer Beweise

(v) Aufgaben an konkreten Punktmustern, bei denen allgemeine Beziehungen abstrahiert,

formalisiert und bewiesen werden mussten
(vi) Integration von Punktmusterbeweisen und deren Formalisierung

Im Folgenden sollen die entwickelten Aufgabenformate dargestellt werden, die auf der Basis der
retrospektiven Analyse der dritten Durchfiihrung der Lehrveranstaltung im Wintersemester 2013/14
entwickelt wurden. Diese umfassen verschiedene Aufgaben mit verstarkt explorativen Anteilen und
sogenannte ,multiple proof tasks” (Abschnitt 6.3.2).

6.3.2.1 Aufgaben mit explorativen Anteilen

Um den Studierenden einen Einblick in die ,forschende Mathematik’ zu ermdglichen, sollten
Aufgaben mit verstirkten explorativen Anteilen in den Ubungsbetrieb eingebunden werden. Neben
der Verdeutlichung der Prozesshaftigkeit der Wissenschaft Mathematik sollte damit die Phase der
Exploration im Beweis- bzw. Erkenntnisprozess deutlicher herausgestellt werden. Das eigene
Herausarbeiten von Hypothesen, verbunden mit der Formulierung von Behauptungen, ist dabei auch
mit dem Ziel verbunden, ein Beweisbediirfnis bei den Studierenden zu entwickeln. Wie bereits in
Abschnitt 2.1.6 dargelegt, muss der Unsicherheit in der Mathematikausbildung ein entsprechender
Raum eingerichtet werden, damit Beweise Uberhaupt ihre Funktion von Erkenntnissicherung und
Uberzeugung erlangen kénnen. Der explorative Anteil kann dabei in Aufgaben durchaus variieren,
wie mit der folgenden Unterscheidung in , Aufgaben zur ,freien’ Exploration” und , Aufgaben zum
Herauslesen einer Behauptung” verdeutlicht werden soll.

Aufgaben zur ,freien’ Exploration

Ein Inhaltsgebiet, das sich sehr gut fiir eine ,freie’ Exploration zu eignen scheint, sind die
Quadratzahlen. Diese Thematik ist den Studierenden bekannt, bei deren Untersuchung kénnen aber
durchaus neue Erkenntnisse gewonnen werden, deren Verifikation dem Niveau von
Studienanfangerinnen und -anfangern zu entsprechen scheint. Die folgende Aufgabe fir eine ,freie’
Exploration entstammt Leuders (2010, S. 41) und wurde fir die Gestaltung der zweiten Prasenziibung
verwendet:
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Prasenziibung 2

Wir gut kennen Sie eigentlich die Quadratzahlen?

Sicher, die Folge der Quadratzahlen ist Ihnen hinlanglich vertraut:
1,4,9,16, 25, ..

Aber steckt in dieser Zahlenliste noch mehr als die Tatsache, dass es Quadrate sind? Gibt es noch mehr
Strukturen, Muster und Zusammenhdnge? Untersuchen Sie die Quadratzahlen daraufhin und schreiben Sie
moglichst viele verschiedene Vermutungen auf. Falls Sie nicht wissen, wo Sie anfangen sollen - hier einige
Aspekte, die Sie betrachten kdnnen: Summen, Differenzen, bestimmte Ziffern, Teilbarkeiten durch 2, 3, 4 usw.

Solche Aufgaben verlangen eine sehr gute Vorbereitung auf Seiten der Ubungsgruppenleiter. Den
studentischen Hilfskraften wurde eine Liste mit verschiedenen Vermutungen ausgehandigt, an denen
mogliche Begriindungsformen diskutiert wurden. Aus erkenntnistheoretischer Perspektive gilt es bei
der Diskussion der gefundenen Behauptungen, den entsprechenden Status von verschiedenen
Argumenten (Beispielliberprifungen, Plausibilitdtsbetrachtungen, Beweise etc.) herauszuarbeiten.

Aufgaben zum ,Herauslesen von Behauptungen’

Explorative Anteile kdnnen in Aufgaben auch damit erreicht werden, dass Lernende dazu angehalten
werden, Gemeinsamkeiten in Strukturen selbst ausfindig zu machen, diese als Behauptung zu
formulieren und anschlieBend zu widerlegen oder ggf. zu beweisen. Diese Idee ist nicht neu,
entsprechende Formate finden sich etwa bei Wittmann (2009, S. 252), Flores (2002) oder prominent
auch bei Polya (1979, S. 100ff.). Innovativ ist bei der vorliegenden Adaption die Ubertragung in die
Hochschullehre mit dem Ziel, vergleichende Erfahrungen mit Beweisformen und Diagrammsystemen
zu ermoglichen. Dieses Aufgabenformat wird im Folgenden an zwei Aufgaben illustriert, die beide auf
den Ausfiihrungen von Flores (2002) basieren.

Hausaufgabenblatt 3, Aufgabe 3
Wir betrachten die folgenden Gleichungen:
32-1=8 =8-1

52— 1 =8
72-1=48=8-6

I
PN
|
oo}
w

Verallgemeinern Sie das Prinzip, das in den Beispielen deutlich wird.

a) Formulieren Sie dieses Prinzip als Behauptung tber alle natirlichen Zahlen mithilfe von Wortvariablen.
b) Beweisen Sie die Behauptung mit einer Beweismethode hrer Wahl.

Hausaufgabenblatt 4, Aufgabe 2

Wir betrachten die folgenden Gleichungen:

1+2 =3 =3.D,
4+5+6 =15 =5.D,
9 + 10 + 11 + 12 =42 = 7D,

16 + 17 + 18 + 19 + 20 = 90

9.D,

Verallgemeinern Sie das Prinzip, das in den Beispielen deutlich wird.
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a) Formulieren Sie dieses Prinzip als Behauptung tber alle natirlichen Zahlen mithilfe von Wortvariablen.
b) Beweisen Sie die Behauptung mit einer Beweismethode lhrer Wahl.

Mit der MalRnahme, den Studierenden die Wahl der Beweismethode freizustellen, sind dabei
verschiedene Zielsetzungen verbunden. Zunachst wird damit die Intention verfolgt, den
Studierenden deutlich zu machen, dass die verschiedenen Beweismethoden der Lehrveranstaltung,
wie auch die damit verbundenen Diagrammsysteme, gleichberechtigt fir die Verifikation einer
Behauptung nebeneinanderstehen. Durch das bewusste Entscheiden fiir eine Beweismethode und
ein Diagrammsystem konnen die Studierenden eigenen Praferenzen folgen bzw. solche entwickeln.

6.3.2.2 Multiple-proof tasks

Als multiple-proof tasks werden in der Mathematikdidaktik Beweisaufgaben verstanden, in denen
explizit nach verschiedenen Beweisen fiir eine Behauptung gefragt wird (etwa Leikin 2009, S. 31). Sun
(2009, S. 178ff.) spricht auch von ,,one problem multiple solution”. Die geforderten Beweise kbnnen
sich hierbei bzgl. verschiedener Aspekte unterscheiden (ebd., S. 31): in Bezug auf die gewahlte
Reprasentation, die zu nutzenden Eigenschaften der zu betrachtenden Objekte oder die
verwendeten Argumente (Definitionen, Satze etc.), seien sie mathematischer oder nicht-
mathematischer Natur. Bei der vorliegenden Adaption dieses Aufgabenformats geht es darum, eine
Behauptung mit den verschiedenen Beweisformen der Lehrveranstaltung zu verifizieren.

Der Nutzen von multiple-proof tasks ist hierbei vielfdltig: Zunachst wird durch die Frage nach
verschiedenen Beweisen eine gewisse Explorationsphase in den Beweisprozess integriert, da nach
weiteren Beweismoglichkeiten gesucht werden muss (Sun 2009, S. 179). Es ist hier auch der kreative
Aspekt des Suchens nach alternativen Losungswegen, der eine prozesshafte Sicht auf die Mathematik
beglinstigt (Leikin 2009, S. 31). Durch das Wissen um verschiedene Beweise fiir einen Sachverhalt
wird ein sogenannter ,,example space” (im Sinne von Mason und Watson 2004, S. 59) aufgebaut, vor
dessen Hintergrund etwa Lehrende fachdidaktische Entscheidungen treffen konnen (Leikin 2009, S.
33; Leikin & Levav-Waynberg 2009, S. 218f.).

Der Begriff ,multiple” wird an dieser Stelle auch als Ausdruck fiir das Agieren in verschiedenen
Diagrammsystem gedeutet. Aus semiotischer Sicht gilt es hier zu betonen, dass durch die Nutzung
verschiedener Diagrammsysteme jeweils unterschiedliche Aspekte der Objekte und des gesamten
Sachverhalts hervorgehoben werden; die unterschiedlichen Betrachtungsweisen beglinstigen somit
ein erweitertes Verstandnis des Sachverhalts (Lenhard 2003). Durch das Arbeiten in verschiedenen
Diagrammsystemen werden auch deren Vor- und Nachteile deutlich. Hierbei konnen Lernende u.a.
die Vorteile der fachmathematischen Symbolsprache unmittelbar erfahren: deren universelle
Anwendbarkeit, die ,Macht’ des algebraischen Kalkiils, die Sicherung der Allgemeingultigkeit der
Argumentation durch die Nutzung entsprechender Variablen, die Kompaktheit der Argumentation
und die leichte Kommunizierbarkeit der Ergebnisse. Schlieflich geht es auch um die Einlibung in das
Arbeiten mit den verschiedenen Diagrammsystemen. Das Aufgabenformat ,multiple-proof task” wird
im Folgenden anhand von zwei Aufgaben aus der Lehrveranstaltung illustriert.

Hausaufgabenblatt 1, Aufgabe 2

Wir betrachten die folgende Behauptung:

Die Summe von vier aufeinanderfolgenden natiirlichen Zahlen ist immer durch 2 teilbar.
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Beweisen Sie die Behauptung:
(a) mit einem generischen Beweis mit Zahlen.
(b) mit einem formalen Beweis mit Buchstabenvariablen. (Nennen Sie die Argumente, die Sie verwenden.)
(c) mit einem generischen Beweis mit Punktmustern.
(d) mit einem Beweis mit geometrischen Variablen.

Prasenziibung 1, Aufgabe 2:

Wir betrachten die folgenden Gleichungen:

12 +1 + 2 = 2?2
22 4243 =32
32+ 3+ 4 =42

Verallgemeinern Sie das Prinzip, das in den Beispielen deutlich wird.

(a) Formulieren Sie dieses Prinzip als Behauptung liber alle natirlichen Zahlen mithilfe von Wortvariablen.
(b) Beweisen Sie die Behauptung mit einem generischen Beweis mit Punktmustern.

(c) Beweisen Sie die Behauptung mit einem Beweis mit geometrischen Variablen.

(d) Beweisen Sie die Behauptung mit einem formalen Beweis mithilfe von Buchstabenvariablen.

6.3.3 Die Zentraliibung

In diesem Abschnitt wird das Konzept der Zentralliibung der Lehrveranstaltung , Einfihrung in die
Kultur der Mathematik” beschrieben, wie es durch den Autor dieser Arbeit in dem Zeitraum vom
Wintersemester 2013/14 bis zum Wintersemester 2014/15 entwickelt wurde. Dieses Konzept der
Erarbeitung von Musterlosungen basiert auf dem Modell von Musterlésungen von Ableitinger und
Herrmann (2011) und der Adaption des von Boero (1999) herausgearbeiteten Prozessmodells zum
Beweisen zur Konstruktion von ausgearbeiteten Losungsbeispielen, wie es in Reiss und Renkl (2002)
und Reiss et al. (2008) beschrieben wird. Die Darstellung des Losungsprozesses und die Diskussion
der verschiedenen Beweisformen und Diagrammsysteme stellen dabei zentrale Momente dieses
Konzepts fiir die Umsetzung der intentionalen Dimension der Lehrveranstaltung dar.

Das didaktische Modell von Musterlosungen nach Ableitinger und Herrmann (2011) und dessen
Ubertragung auf die Beweisaktitivit

Ableitinger und Herrmann (2011) gehen in ihrem Buch , Lernen aus Musterlésungen zur Analysis und
Linearen Algebra“ auf die Problematik von Studienanfangerinnen und -anfangern mathematikhaltiger
Studiengdnge beim Bearbeiten der haufig sehr anspruchsvollen Hausaufgaben ein. Sie beschreiben
ein Modell von Musterlosungen, in denen der gesamte Bearbeitungsprozess von Aufgaben in den
Blick genommen und den Lernenden explizit gemacht wird. Ableitinger und Herrmann (2011, S. 13ff.)
unterteilen diesen Bearbeitungsprozess von Musterlésungen in sieben Phasen, die im Folgenden
paraphrasierend zusammengefasst werden:

(1) Ein Problembewusstsein schaffen
(u.a.: Verstehen der Aufgabe; Zuordnung in ein Themenfeld; Erkennen der Fragestellung;
Ausmachen eines Zieles)

(2) Klarung der Handlungsoptionen
(u.a.: Klarung der Handlungsoptionen bzw. Ausmachen von Definitionen oder Satzen, die
angewendet werden kénnen; Ausmachen von Strategien; )
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(3)

(4)

(5)

(6)

(7)

Einen Zugriff herstellen, die Aufgabe handhabbar machen

(u.a.: Ausgangspunkt erkennen; Wahl einer Reprasentation bzw. Vollziehen eines
Reprasentationswechsels)

Anpassen oder Priifen der Passung

(u.a.: Uberpriifen von notwendigen Voraussetzungen fiir die zuldssige Anwendung eines
Werkzeugs (Satz, Methode, Kalkiil etc.) und ggf. Vornehmen entsprechender Modifikationen
der Problemstellung)

Handwerk

(Ausfiihren von ,Handwerk’, etwa das Manipulieren von Termen)

Tricks

(explizite Klarung von Tricks, die quasi vom Himmel fallen; Erklarung deren
Zustandekommens und deren Reichweite)

Begleitende, strukturierende Kommentare und Erlduterungen

(u.a.: Aufschreiben und Reflektieren einzelner Abschnitte der Aufgaben; Einfligen von
strukturverdeutlichenden Kommentaren und Erlduterungen)

Dieses Modell des Explizit-Machens der verschiedenen Aspekte des Bearbeitungsprozesses, einer Art

schriftlichen ,Lauten-Denkens’ des Bearbeiters im Sinne des ,cognitive apprenticeship” (s. ebd., S.

9ff.) und die ausfiihrliche Reflexion Uber das Getane wurde fiir das Konzept der Zentrallibung

Ubernommen und entsprechend an das Themenfeld des Beweisens und die Inhalte angepasst. Das

Konzept des Sieben-Phasenmodells ldsst sich (modifiziert) auf die Aufgabensituation in der hier

beschriebenen Lehrveranstaltung Ubertragen, wodurch eine Parallele zur bereits behandelten

mathematischen Tatigkeit des , diagrammatischen SchlieBens” (vgl. Abschnitt 2.5) deutlich wird. Die

jeweiligen Phasen spiegeln sich im Kontext der hier behandelten Beweisaufgaben wie folgt wider:

(1)

(2)

Ein Problembewusstsein schaffen

Am Anfang steht das Verstehen der Aufgabe bzw. der Problemstellung. Es muss verstanden
werden, was Uberhaupt ,zu zeigen’ ist. Da in den gestellten Beweisaufgaben haufig die zu
beweisende Behauptung erst von den Lernenden herausgearbeitet werden muss (vgl.
Abschnitt 6.3.2), gewinnt die Phase hier deutlich an Gewicht. Das Ausmachen des Zieles muss
im Kontext des zu nutzenden Diagrammsystems (vgl. Abschnitt 2.5) und der geforderten
Beweisform betrachtet werden. Der Nachweis, etwa von Teilbarkeit, gestaltet sich in jedem
Diagrammsystem und im Kontext der verschiedenen Beweisformen der Veranstaltung
(generischer Beweis etc.) jeweils unterschiedlich. Aus semiotischer Sicht (vgl. Abschnitt 2.5.)
geht es um das zu erreichende Diagramm, an dem die nachzuweisende Eigenschaft
,abgelesen’ werden kann. Die Satze und Definitionen der Vorlesung stecken hierbei den
Rahmen fir die moglichen Zielsetzungen ab. Die Klarung des Ziels muss als zentrales Element
der zu erfolgenden Beweiskonstruktion verstanden werden.

Klarung der Handlungsoptionen

Die Handlungsoptionen ergeben sich aus dem ausgemachten Ziel, also aus dem zu
erreichenden Diagramm und den zugelassenen Transformationsregeln des jeweiligen
Diagrammsystems. Hier wird wiederum die Bedeutung kollateralen Wissens (vgl. Abschnitt
2.5) evident: Erst das Wissen um die Handhabung eines Diagrammsystems ermdoglicht ein
konformes Agieren. Dariber hinaus geht es in dieser Phase um die Auswahl geeigneter

Heuristiken (i.S. von Polya 1967).
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(3)

(4)

(6)

Einen Zugriff herstellen, die Aufgabe handhabbar machen

Fiir die Beweiskonstruktion gilt es, dasjenige Diagrammsystem zu wahlen, innerhalb dessen
der Beweis konstruiert werden soll. (Wenn dies bereits durch die Aufgabenstellungen
vorgegeben ist, entfallt dieser Aspekt). Wurde dieser Ausgangspunkt der
Aufgabenbearbeitung ausgemacht, so muss die vorliegende bzw. gegebene Situation in das
entsprechende Diagrammsystem Ubertragen werden; hier erfolgt die Konstruktion der
Diagramme.

Anpassen oder Priifen der Passung:

Die Form der konstruierten Diagramme hat weitreichende Auswirkungen auf die moglichen
erreichbaren Ziele. Soll z.B. eine beliebige gerade Zahl im Diagrammsystem der Punktmuster
mithilfe geometrischer Variablen dargestellt werden, so ergeben sich hier (mindestens) zwei
verschiedene Moglichkeiten (vgl. Abbildung 51).

Abbildung 51: Zwei verschiedene Moglichkeiten fiir die Darstellung einer beliebigen

geraden Zahl mithilfe geometrischer Variablen

In dieser Phase gilt es somit, die konstruierten Diagramme auf ihren aktuellen Nutzen fir das
Erreichen des Ziels zu hinterfragen.

Handwerk

Hier geht es um das Ausfiihren von zuldssigen Transformationen an bzw. mit den
Diagrammen nach den Regeln des jeweiligen Diagrammsystems. Dabei missen erhaltene
Zwischenresultate ausgewertet und weiter genutzt werden.

Tricks
Innerhalb vieler (auch basaler) Beweise werden ,Ideen’ verwendet, die zunédchst nicht
offensichtlich erscheinen. Diese ,Tricks’ gilt es als solche herauszustellen.

Begleitende, strukturierende Kommentare und Erlduterungen

Gerade bei der Konstruktion von generischen Beweisen kommt der Versprachlichung von
Argumenten eine groRe Bedeutung zu. Aber auch bei formalen Beweisen werden
Kommentierungen und Erlauterungen haufig ausgelassen. Diese Aspekte gilt es zu betonen,
bzw. das Verbalisieren entsprechender Momente einzuliben.

Heuristische Lésungsbeispiele in der Beweisdidaktik

Reiss und Renkl (2002) lbertragen das Konzept des Lernens aus Musterlésungen (,learning from
worked-out examples”) in die Beweisdidaktik. Die Autoren legitimieren diesen Ansatz durch einen
Bezug auf die ,cognitive load theory’ und die Besonderheit des Problemldseprozesses beim
Beweisen:

The superiority of example-based learning is explained by the argument that problem solving requires such a large
amount of working memory capacity when the learning contents are new to the students that it interferes with
learning in the sense of schema acquisition. More specifically, it is argued, that in order to solve problems, novices

226



(i.e., learners) employ means-ends-analyses. This implies that the learner has to simultaneously focus on the
following aspects: actual problem state, desired problem state, difference between actual and desired problem
states, relevant operators, and sub-goals. Given this load, there are few resources left for the processes of
understanding and for inducing abstract and generalizable problem solving schemata [...]. (Reiss & Renkl 2002, S.
31)

Flr die Konstruktion ihrer ,worked-examples” nutzen Reiss und Renkl (2002) das Prozessmodell des
Beweisens nach Beoro (1999) (s. Abschnitt 2.1.1). Dieses Modell wird als Rahmen fiir die Gliederung
der Problemléseprozesse genutzt, die die Lernenden durchlaufen sollen.

Das Konzept didaktisch aufbereiteter ,Musterlésungen’ in der Zentraliibung

Die bisher dargestellten theoretischen fachdidaktischen Betrachtungen zu Musterldsungen wurden
durch den Autor dieser Arbeit fiir die Durchfiihrung der Zentrallibung adaptiert und zum Erstellen
von Musterlosungsprozessen genutzt, die in der Zentralibung (zusammen mit den Teilnehmenden)
erarbeitet und reflektiert wurden. Hierbei bieten die Phasen von Musterlésungen (Ableitinger und
Herrmann 2011) und die Adaption der Phasen des Beweisprozesses von Boero durch Reiss und Renkl
(2002) einen Orientierungsrahmen fiir die Erarbeitung einer Musterlosung, in der neben der
Darstellung der Losung auch die entsprechenden herausgearbeiteten fachdidaktischen Aspekte des
Losungsprozesses berlicksichtigt werden.

An der folgenden Aufgabe soll exemplarisch die Konstruktion einer didaktisch-orientierten
Musterlosung dargestellt werden. Dafiir wird die Umsetzung der Aufgabenlésung tabellarisch in
Bezug zu den Bearbeitungsphasen von Ableitinger und Hermann (2011) und den Phasen des
Beweisprozesses von Boero (1999) gesetzt. Durch diese Analyse wird illustriert, welche Aspekte bei
der Erarbeitung einer Musterlosung in der Zentrallibung bericksichtigt und in welcher Weise die
verschiedenen Phasen von Losungsprozessen bzw. Beweiskonstruktionen und notwendige Aspekte
des jeweiligen kollateralen Wissens in Bezug auf ein Diagrammsystem herausgestellt wurden. Die
Phasen von Boero (,Entwicklung einer Vermutung”, ,Formulierung einer Behauptung”, ...)waren
dabei in der Zentrallibung fiir den Rahmen strukturgebend, in dem die Musterlésungen gemeinsam
mit den Studierenden erarbeitet wurden. Die Studierenden wurden dabei konsequent in die
Erarbeitung der Musterl6sung eingebunden, Fragen konnten zu jeder Zeit gestellt werden.

Hausaufgabenblatt 2, Aufgabe 1

Aus einem Schulbuch:

Denk dir eine natiirliche Zahl, multipliziere ihren Vorgénger mit ihrem Nachfolger und zéhle 1 dazu. Probiere dies
auch mit anderen Ausgangszahlen und vergleiche die Ergebnisse miteinander. Was fdllt dir auf?

a) Was fallt Ihnen auf? - Was haben die Ergebnisse gemeinsam?

b) Beweisen Sie dieses Phanomen mithilfe eines generischen Beweises mit Zahlen.

c) Beweisen Sie dieses Phanomen mithilfe eines generischen Beweises mit Punktmustern.

d) Beweisen Sie dieses Phanomen mithilfe eines Beweises mit geometrischen Variablen.

e) Beweisen Sie dieses Phdnomen mithilfe eines formalen Beweises mit Buchstabenvariablen.
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Bearbeitungsphase
bei Ableitinger und
Herrmann (2011)

Umsetzung in der Zentraliibung anhand der konkreten Aufgabe

Phase des Beweis-
prozesses bei Boero
(1999)

Ein
Problembewusst-
sein schaffen

Innerhalb der Aufgabenstellung ist eine Handlungsanleitung mithilfe von
Wortvariablen gegeben. Deren Umsetzung in konkrete Zahlenbeispiele
flhrt etwa zu den folgenden Gleichungen:

2:22-1D)-Q+1D)+1=13+1=4
3:3-1)-B+1D)+1=24+1=9
7:(7-1)-(7+1)+1=6-8+1=49

Laut Aufgabenstellung sollen nun die Ergebnisse der Gleichungen
miteinander verglichen und eine Gemeinsamkeit erkannt werden. Im
Vergleich der Zahlen 1, 9 und 49 kann vermutet werden, dass es sich bei
den Ergebnissen immer um Quadratzahlen handelt. Diese Vermutung
kann anhand weiterer Beispiele Uberprift und gestitzt werden.

Entwicklung einer
Vermutung

AnschlieBend soll die ,Auffélligkeit’ benannt werden, was schlieBlich als
Vermutung zu einer Behauptung fuhrt: ,Die Ergebnisse solcher
Rechnungen sind immer Quadratzahlen®.

Formulierung einer
Behauptung

Kldrung der
Handlungsoptionen

Einen Zugriff
herstellen, die
Aufgabe
handhabbar
machen

[Je nach Aufgabenabschnitt wird nun die Situation in einem bestimmten
Darstellungssystem betrachtet. Exemplarisch wird an dieser Stelle
Aufgabenteil (c) betrachtet:]

Eine Ausgangszahl ist gegeben. Von dieser wird eins subtrahiert bzw.
eins addiert und diese beiden erhaltenen Zahlen werden miteinander
multipliziert. Als Reprasentation dienen dabei Punktereihen, die um
einen Punkt verlangert bzw. verkiirzt werden. Die Multiplikation zweier
Zahlen wird im Punktmustersystem durch die Konstruktion eines
Rechtecks verdeutlicht. Nach Hinzufligen eines Punktes soll als Summe
eine Quadratzahl entstehen; im Diagrammsystem der Punktmuster soll
also die Form eines Quadrats erreicht werden.

Die Handlungsoptionen sind dabei durch die Transformationsregeln des
Diagrammsystems der Punktmuster gegeben.

Exploration des
spezifischen Gehalts
und des Umfelds der
These

Anpassen oder
Priifen der Passung

Die Ausgangssituation ist durch zwei Punktereihen gegeben.

Durch die ,Multiplikation‘ entsteht ein Rechteck, bei der ,Addition‘ wird
ein weiterer Punkt hinzugefugt. SchlieRlich soll ein Quadrat entstehen
(Abbildung 52):

n=3:

Punktereihen: o0® 0000

Multiplikation: . .. .
0000

A1 o

Abbildung 52:
Bearbeitungsschritte der
Beweisaufgabe mit
Punktmusternim Falln = 3

Ziel: Quadrat(-zahl):

000
000
cee
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Handwerk

Dabei ist die Frage nach dem Zustandekommen des Quadrats noch
ungeklart. Zwar reicht die Punkteanzahl genau aus, um ein Quadrat zu
konstruieren, aber eine beispieliibergreifende Bildungs- bzw.
Transformationsvorschrift muss noch gefunden werden.

Das Quadrat erhalt man durch das Umlegen einer Reihe des Rechtecks
an die anliegende Seite, wobei der ,freie’ Punkt (,,+1) in die leere Ecke
platziert wird (Abbildung 53).

n=3: n=4:
Abbildung 53: Umstrukturierung
der Punktmuster fiir die
Konstruktion eines Quadrats
Die einzelnen Transformationen gilt es nun als Argumente zu bewerten Auswahl von
und zu einer Argumentationskette zusammenzufiigen. Argumenten und deren
Aneinanderfigen zu
einer
Argumentationskette
Was hier Studierenden zunachst als Tricks erscheinen mag, sind die
zuldssigen Operationen und Darstellungsmoglichkeiten bei den
Punktmustern: das Aneinanderfiigen und Wegstreichen von Punkten,
Tricks die Ausfihrung der Multiplikation als Konstruktion eines Rechtecks und
die regelgeleitete Umstrukturierung zur Bildung eines Quadrats als
Reprasentation einer Quadratzahl. Es muss aber deutlich werden, dass
dies die (Rechen-) Operationen sind, die im Diagrammsystem der
Punktmuster vorgenommen werden.
Das Aufschreiben der Beweise ist dabei an den Normen der Aufschreiben des
Lehrveranstaltung ausgerichtet. Das bedeutet fir die Konstruktion eines | Beweises gemal
generischen Punktmusterbeweises, dass an konkreten Punktmustern mathematischer
deutlich gemacht werden muss, warum die Behauptung in den Standards
konkreten Fallen wahr ist und warum diese Argumentation fir alle zu
betrachtenden Falle wahr ist. Somit werden die begleitenden
Kommentare und Erlauterungen in diesem Fall im Zuge der aufgestellten
Beweisnormen gefordert.
n=3 n=4
Begleitende,

strukturierende
Kommentare und
Erlduterungen

Abbildung 54: Generische
Punktmusterbeispiele fiir die
Fillen =3 undn =4

Multipliziert man den Vorgdnger und den Nachfolger einer natiirlichen
Zahl, so ldsst sich dies durch ein Rechteck darstellen, wobei sich die
Seitenldngen immer um zwei Punkte unterscheiden. Legt man nun eine
Reihe der langen Seite an die kurze an, so wird die lange Seite um 1
verkiirzt, die kurze Seite um 1 vergréfert. SchliefSlich fehlt somit immer
genau ein Punkt, um das Quadrat zur Ausgangszahl zu bilden.

- Diese Phase entfillt. -

Annaherung an einen
formalen Beweis

Tabelle 21: Exemplarische Darstellung einer didaktisch-orientierten Musterlosung
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7. Die empirischen Studien zur Lehrveranstaltung im Wintersemester 2014/15

Die empirischen Studien im Kontext der vierten Durchfiihrung der Lehrveranstaltung , Einfihrung in
die Kultur der Mathematik” im Wintersemester 2014/15 lassen sich als eine Evaluation der
Lehrveranstaltung und gleichsam als eine Effektivitatsmessung derselben verstehen. Im Folgenden
wird ein formaler Uberblick iiber die Messzeitpunkte, die angesprochenen Themenkomplexe und
verwendeten Messinstrumente gegeben. Eine Einordnung der entsprechenden Forschungsfragen
erfolgt im Kontext der gesondert aufgefiihrten Teilstudien.

Die erfolgten Studien umfassen insgesamt drei Messzeitpunkte:

Messzeitpunkt 1: Eingangsbefragung zu Beginn der Lehrveranstaltung
Messzeitpunkt 2: Ausgangsbefragung zum Ende der Lehrveranstaltung
Messzeitpunkt 3: Die Modulklausur einen Monat nach Ende der Lehrveranstaltung

Im Fokus der Studien stehen dabei die folgenden Themenkomplexe:

(1) Vorerfahrungen der Studierenden mit dem Beweisen aus ihrer Schulzeit

(2) Kompetenzaspekte zum Beweisen (Qualitidt der Begriindung, Beweishewertung,
Beweiskonstruktion, Akzeptanz verschiedener Beweisformen und wahrgenommene
Funktionen von Beweisen)

(3) Einstellungen zum Themenkomplex des Beweisens und zur Mathematik

Wahrend die Vorerfahrungen zum Beweisen in der Schulzeit in der Eingangsbefragung untersucht
werden, zielen die Aspekte (2) und (3) neben der Erfassung der Eingangsvoraussetzung auch auf
mogliche Veranderungen durch die Lehrveranstaltung und wurden dementsprechend zu
verschiedenen Messzeitpunkten erhoben. Bei der Auflistung der verschiedenen Messzeitpunkte und
der dort thematisierten Themenkomplexe in Abbildung 55 wird deutlich, dass zu den verschiedenen
Messzeitpunkten bestimme Themenkomplexe wiederholt abgefragt wurden. An diesen Stellen
wurden bewusst Items eingesetzt, die im Sinne einer Vorher-Nachher-Erhebung ,Effekte’ der
Lehrveranstaltung messen sollten.”

7.1. Datenerhebung und Messzeitpunkte

Innerhalb der oben aufgefiihrten drei verschiedenen Messzeitpunkte wurden unterschiedliche Daten
erhoben. Die Datenerhebung der Messzeitpunkte 1 und 2 geschah mithilfe eines Fragebogens
innerhalb der Vorlesungszeit der Lehrveranstaltung. Die Studierenden hatten fiir die Bearbeitung der
Fragebogen jeweils 45 Minuten Zeit. In beiden Fragebdogen wurde ein personenbezogener
vierstelliger Code abgefragt, so dass es moglich wurde, die jeweiligen Ergebnisse anonym zu
verbinden. Ein zusatzliches Deckblatt der Modulklausur (Messzeitpunkt 3) beinhaltete ebenfalls die
freiwillige Angabe dieses personenbezogenen Codes. Auf diesem zusatzlichen Deckblatt wurden nach
der Bearbeitung der Klausur auch die Ergebnisse notiert, die im Kontext dieser Studie fir die

>3 Themenkomplexe i.S. einer Vorher-Nachher-Erhebung zwischen der Eingangsbefragung und der
Ausgangsbefragung: Kompetenzaspekte zum Beweisen: (a) Beweisbewertung und (c) Beweisakzeptanz,
Einstellungen zum Themenkomplex des Beweisens und zur Mathematik: (a)Einstellungen zum Beweisen in der
Schule, (b) Einstellungen zum Beweisen, (c) Nutzen von Beispielen beim Beweisen, (d) Funktionen von
Beweisen und (e) Einstellungen zur Mathematik; Themenkomplexe i.S. einer Vorher-Nachher-Erhebung
zwischen der Eingangsbefragung und der Modulabschlussklausur: Kompetenzaspekte zum Beweisen: (a)
Qualitat der Begriindung
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Beantwortung der Forschungsfragen bendtigt wurden. Nach dem Eintragen der Ergebnisse wurde

das Deckblatt von der Klausur entfernt, so dass eine personenbezogene und doch anonyme

Verwendung der Daten aller drei Messzeitpunkte moglich wurde.

uoIP|ruIsuoystamag (p)

8unpunu3dag Japiey|enp (e)
uasemagunz appdsezuajadwoy (2)

(433S2Was Wap yoeu Jeuop uauil)
ansnepjssn|yasqy 21q
£ Pjundyazssay

dunyemuasydwesImisq|as (p)
S3SYIRMNZUII] SIp Sunzieydsulalsq|as (2)
U3sIamag wiaq uapaidsiag uoAuazZInN (q)
3513M3g UOA uauoIpjund (e)
Ssyoemnzwa| sap 3unzieydsuialsqRs (s)

yIIewWayiew anz uadun|aisuil (2)
uasiamag wnz 3unjj33suil (q)
3NYIS "p "1 uasiamag wnz 3unj|ajsuil (e)
YQEWDYIL INZ PUN SUISIIMIG

sap xajdwoyuaway ] wnz uadunjRisul (g)

zueydaznyesiamag (2)
dunyamaqsiamag (q)

uasPmMagunz appdsezualadwo) (z)

uajeQ auadozaquauosiad (0)

(8unzyss3unsa|i0/ 31233]40A)
3un3deuyaqs3uedsny aiq
ZPundyazssapy

U3S1aMag UOA UaW3|J3 WNZUOIIRAIIOW ()
uISIIMag sep Jnepiquiy wildpRrzuId] (b)

yIeWayiew 1nz uadun|asuil (3)
U3S1aMag UoA uauoiIpjund (p)

U3sIamag wiaq uapaidsiag uoA uazIny (2)
uasiamag wnz 3unjasuil (q)

3NYIS "p "1 uasiamag wnz 3unj|ajsuil (e)
)OeWRYe INZ pun suasiomag

sap xa|dwoyuRWwaYy | wnz uadun|iRisul

zueydazyesiamag (2)

dunyamagsiamag (q)

8unpunu3ag Japiey|en (e)
uasemagunz appdsezualadwo)y (2)

U3PJNM U3S3IMaq
3NYIS J3p Ul 31p ‘33eysanydes(q)
(23S puUn T 3§35) 3INY2s P!
U3S13M3g UOA UWWONJIOA (e)
uasEMag wnz u3uniyeaioA (1)

ualeQ aua30zaquauosiad (0)
(8unzyss8unsajiopn 33513)

3un3desyaqsdueduil ai1q
TPjundyazssay

axa|dwoyusway] pun apjundyiazssa|p

GT/PTOZ493s8WasIajul )\ Wi Sunyjjeisuesaniysnz usipnis usyasuidws aiqg

Abbildung 55: Die empirischen Studien zur Lehrveranstaltung im Wintersemester 2014/15: Messzeitpunkte und

Themenkomplexe
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7.1.2 Messzeitpunkt 1: Die Eingangsbefragung zu Beginn der Lehrveranstaltung
Die Eingangsbefragung umfasste die folgenden Bereiche:

(0) Erhebung personenbezogener Daten>
(1) Die Vorerfahrungen der Studierenden mit Beweisen aus ihrer Schulzeit
a. Vorkommen von Beweisen in der Schule (Sek. 1 und Sek. 2)
b. Sachverhalte, die in der Schule bewiesen wurden
(2) Kompetenzaspekte zum Beweisen
a. Qualitat der Begriindung
b. Beweisbewertung
c. Beweisakzeptanz
(3) Einstellungen zum Themenkomplex des Beweisens und zur Mathematik
a. Einstellungen zum Beweisen in der Schule
b. Einstellungen zum Beweisen
¢. Nutzen von Beispielen
d. Funktionen von Beweisen
e. Einstellungen zur Mathematik
(4) Lernziele in Bezug auf das Beweisen in der Lehrveranstaltung
a. Motivation zum Erlernen von Beweisen

Die Eingangsbefragung fand in der ersten Sitzung der Lehrveranstaltung statt, die Teilnehmenden
hatten fiir die Bearbeitung 45 Minuten Zeit. Die Instrumente zur Erfassung der oben aufgefiihrten
Aspekte (1)-(4) und ihre Genese wurden bereits in Abschnitt 3.3 dargestellt.

7.1.3 Messzeitpunkt 2: Die Ausgangsbefragung zum Ende der Lehrveranstaltung

In der Ausgangsbefragung wurden fast alle Themenbereiche abgefragt, die bereits in der
Eingangsbefragung thematisiert wurden. Als neuer Komplex wurde der Bereich Selbstwirksamkeit in
Bezug auf das Beweisen aufgenommen; der Abschnitt ,Lernziele in Bezug auf die Lehrveranstaltung”
wurde durch den Bereich Selbsteinschatzung des Lernzuwachses ersetzt. Nur der Bereich ,Qualitat
der Begriindung” in dem Abschnitt ,Kompetenzaspekte zum Beweisen” wurde in dem dritten
Messzeitpunkt erhoben. Somit ergeben sich in der Ausgangsbefragung die folgenden Bereiche:

(0) Erhebung personenbezogener Daten
(1) Kompetenzaspekte zum Beweisen
a. Beweisbewertung

> Die Erhebung der personenbezogenen Daten umfasst zwei Abschnitte: (i) allgemeine Angaben zur Person
und (ii) Angaben zum Studium. Die Eingangsbefragung beinhaltet unter dem Komplex , Allgemeine Angaben zur
Person” neun Items: die Abfrage eines personenbezogenen Codes, Geschlecht, Alter, Art und Jahr der
Hochschulreife, Note im Abitur, letzter schulischer Mathematikkurs, Abschlussnote in Mathematik und
Teilnahme an einem Mathematikwettbewerb. Diese Items entstammen den Vorkursbefragungen, die im
Rahmen des VEMINT Projekts (www.vemint.de) verwendet werden. Die Angaben zum Studium umfassen
sieben Items: vorheriges Studium, vorherige Berufsausbildung, Anzahl Fachsemester, Anzahl
Hochschulsemester, Teilnahme an einem Mathematikvorkurs, Variante des Vorkurses (nur bei Teilnahme an
Vorkurs in Paderborn) und erfolgte Teilnahme an der Lehrveranstaltung ,Einfihrung in die Kultur der
Mathematik“.

232



b. Beweisakzeptanz
(2) Einstellungen zum Themenkomplex des Beweisens und zur Mathematik
a. Einstellungen zum Beweisen in der Schule
b. Einstellungen zum Beweisen
c. Einstellungen zur Mathematik
d. Selbstwirksamkeit in Bezug auf das Beweisen
(3) Selbsteinschatzung des Lernzuwachses
a. Funktionen von Beweisen
b. Nutzen von Beispielbetrachtungen fiir das Beweisen
c. die Konstruktion und den Umgang mit Beweisen
d. Selbstwirksamkeitserwartung zum Beweisen

Im Vergleich zu der Eingangsbefragung wurden dabei die folgenden Anderungen vorgenommen:

Die Erhebung der personenbezogenen Daten wurde stark gekiirzt; neben der Abfrage des
personenbezogenen Codes wurden nur weitere sieben Items aus dem Bereich , Allgemeine Angaben
zur Person” abgefragt, um nachtraglich eine richtige Zuordnung der Testhefte gewahrleisten zu
kénnen. In dem Komplex Beweiskompetenzen fehlt die Aufgabe ,Summer zweier ungerader Zahlen”
bzgl. der Qualitdit der Begrindung, da diese, zugunsten hoherer Verbindlichkeit, in der
Modulabschlussklausur (Messzeitpunkt 3) gestellt wurde. In dem Komplex Beweiskompetenzen
wurde der Abschnitt zur Beweisakzeptanz in der Ausgangsbefragung um zwei Items ergdnzt: Die
Studierenden sollten angeben, fiir welche Beweisform (Generischer Beweis mit Zahlen, Generischer
Beweis am Punktmuster, Punktmusterbeweis mit geometrischen Variablen oder formaler Beweis) Sie
sich entscheiden wirden, wenn sie selbst einen Beweis konstruieren missten, und welche
Beweisform sie wahlen wiirden, wenn sie den Inhalt eines vorliegenden Beweisen verstehen wollen
wirden. Die Vorerfahrungen zum Beweisen in der Schule entfielen in der Ausgangsbefragung. Die
Einstellungen zum Beweisen in der Schule, die Einstellungen zum Beweisen und die Einstellungen
zur Mathematik wurden parallel zu der Eingangsbefragung abgefragt. Statt des Fragenkomplexes zu
Lernzielen in Bezug auf das Beweisen in der Lehrveranstaltung wurde die Thematik
Selbsteinschitzung des Lernzuwachses in der Ausgangsbefragung angesprochen. Dazu wurden die
Iltems aus den Abschnitten zu Nutzen von Beispielen und Funktionen von Beweisen aus der
Eingangsbefragung Glbernommen, allerding wurde in der Ausgangsbefragung neben einer aktuellen
Bewertung der Items zusatzlich nach einer retrospektiven Einschatzung (,zu Beginn der
Lehrveranstaltung”) gefragt. Die in der Eingangsbefragung eingesetzten Items bzgl. der Lernziele zum
Beweisen wurden fir die Ausgangsbefragung als Einschatzung des Lernzuwachses umformuliert.
Schlief8lich sollten die Studierenden in dem Bereich der Selbstwirksamkeit in Bezug auf das
Beweisen ihre eigenen Kompetenzen aus heutiger Sicht vor und nach der Lehrveranstaltung
einschatzen.

In dem Bereich Selbstwirksamkeit in Bezug auf das Beweisen sollten die Studierenden ihre eigenen
Kompetenzen in Bezug auf das Beweisen aus heutiger Sicht vor und nach der Lehrveranstaltung
einschatzen. Die zehn Items des Abschnittes zu den Lernzielen wurden entsprechend umformuliert.

7.1.4. Messzeitpunkt 3: Die Modulklausur einen Monat nach Ende der Lehrveranstaltung
Der Messzeitpunkt 3 besteht aus der Modulabschlussklausur der Lehrveranstaltung. Im Kontext
dieser Studie sind dabei die folgenden zwei Punkte zentral:
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(1) Die Qualitat der Begriindung
(2) Die Kompetenz der Studierenden in Bezug auf die Konstruktion der vier verschiedenen
Beweisformen der Vorlesung

Die Modulabschlussklausur der Lehrveranstaltung im Wintersemester 2014/15 umfasste sechs
Aufgaben. Als erste Aufgabe wurde die Aufgabe ,Summer zweier ungerader Zahlen” aus der
Eingangsbefragung gestellt, um wiederum die Qualitdt der gegebenen Begriindungen erfassen und
vergleichen zu konnen. In der zweiten Aufgabe sollten die Studierenden die vier verschiedenen
Beweisformen der Vorlesung (Generischer Beweis mit Zahlen, Generischer Beweis am Punktmuster,
Beweis am Punktmuster mit geometrischen Variablen und formaler Beweis) zu der Behauptung
konstruieren, dass die Summe von sechs aufeinanderfolgenden natiirlichen Zahlen immer ungerade
ist. Somit konnte die Kompetenz der Studierenden in Bezug auf die Konstruktion der jeweiligen
Beweisformen erfasst werden. In den weiteren Aufgaben wurden die Bereiche ,Figurierte Zahlen”,
,vollstandige Induktion”, ,Nutzung des Summenzeichens”, ,Beweismethoden” (Kontraposition bzw.
Widerspruchsbeweis) und ,, Aussagenlogik” thematisiert.

7.2. Teilstudie 1: Vorerfahrungen und Kompetenzen der Studierenden zum
Beweisen und deren Einstellungen zum Beweisen und zur Mathematik zu Beginn

der Lehrveranstaltung (bzw. zu Beginn des Studiums)

Zu Beginn des Wintersemesters 2014/15 wurde in der ersten Sitzung der Lehrveranstaltung eine
Eingangsbefragung mithilfe eines Fragebogens durchgefiihrt; die Teilnehmenden hatten fiir die
Bearbeitung 45 Minuten Zeit. Ziel war es zunachst, die Eingangsvoraussetzungen und Einstellungen
der Teilnehmenden zu Beginn der Lehrveranstaltung (bzw. bei den Erstsemesterstudierenden zu
Beginn ihres Studiums) genauer zu erfassen. Dariber hinaus konnten durch die Erfassung der Daten
zu Beginn der Lehrveranstaltung spatere Veranderungen und Zusammenhange identifiziert werden.
Somit ergibt sich Gibergeordnet ein Pre-/Posttestdesign, dessen Ergebnisse in Abschnitt 7.2 er6rtert
werden.

Nachdem in Abschnitt 3.3 die im Zuge der Effektivitatsstudie verwendeten Testinstrumente
beschrieben worden sind, werden im Folgenden die Forschungsfragen der vorliegenden
Untersuchung motiviert und formuliert.

7.2.1 Forschungsanliegen und Forschungsfragen

Um zunéchst die Passung der Lehrveranstaltung fur die Zielgruppe der (Erstsemester-) Studierenden
bewerten zu konnen, stellt sich die Frage, welche Vorerfahrungen zur Thematik ,Begriinden und
Beweisen’ die Studierenden zu Beginn der Lehrveranstaltung mit sich bringen.® Diese
Eingangsvoraussetzungen der Studierenden miissen dabei einmal fir die Gesamtgruppe der
Studierenden als Eingangsvoraussetzungen fiir die Lehrveranstaltung ,Einflihrung in die Kultur der
Mathematik” verstanden werden. Fir die Erstsemesterstudierenden erweisen sich die
Eingangsvoraussetzungen zur Lehrveranstaltung gleichsam als Eingangsvoraussetzungen fiir ihr
Studium und ergeben sich aus ihrem schulischen Mathematikunterricht. Aus diesem Grund werden
bei der Betrachtung der Eingangsvoraussetzungen der Studierenden die Ergebnisse auch getrennt

> Um auf eine groBere Stichprobe zuriickgreifen zu konnen, werden diese Vorerfahrungen auf der

Datengrundlage aller an der Eingangsbefragung teilgenommenen Studierenden herausgearbeitet.

Demgegeniiber werden bei der Betrachtung der Veranderungen von der Ein- zur Ausgangsbefragung (Abschnitt

7.3) nur die Studierenden betrachtet, die nachverfolgbar an beiden Messzeitpunkten teilgenommen haben.
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nach den Subgruppen , Erstsemester” und ,H6here Semester” unterschieden. Zunachst geht es bei
diesen Eingangsvoraussetzungen um die Vorerfahrungen mit dem Beweisen, die die Studierenden
aus ihrer Schulzeit mitbringen. Wie in Abschnitt 2.4.1 herausgearbeitet wurde, liegen fir Finnland
Befunde aus der Studie von Hemmi (2006) vor, dass Beweise im Mathematikunterricht der Oberstufe
zwar haufig vorkommen, die Schiilerinnen und Schiiler selbst aber nur sehr wenig Gelegenheit dazu
haben, Beweise selbst zu konstruieren. Entsprechende (quantitative) Untersuchungen fehlen bislang
fir den Mathematikunterricht in Deutschland.

0 Forschungsfrage® [2]: Wie lassen sich die Vorerfahrungen der Studierenden mit Beweisen
aus ihrer Schulzeit beschreiben?

Neben dieser quantitativen Betrachtung gilt es auch die Eingangsvoraussetzungen der Studierenden
zum ,Begriinden und Beweisen’ qualitativ zu erfassen. Es wurde bereits dargestellt, dass in
verschiedenen Studien von den eher als schlecht zu bezeichnenden Argumentations- bzw.
Beweiskompetenzen deutscher Schilerinnen und Schiiler berichtet wird (s. Abschnitt 2.4.1).
Entsprechende empirische Untersuchungen fehlen bislang fiir die Beweiskompetenzen von
Studienanfangerinnen und -anfangern. In Anlehnung an Mejia-Ramos und Inglis (2009) und Selden
und Selden (2017) wird dabei ,Beweiskompetenz’ als Summe der Teilbereiche ,Konstruieren von
Beweisen” und ,Lesen/Verstehen von Beweisen” konzeptualisiert. Selden und Selden (2017, S.
340ff.) fassen unter Beweiskompetenz die Facetten , Beweiskonstruktion” (,proof construction),
Beweisvalidierung  (,proof validation”), ,Beweisevaluation” (,proof evaluation“) und
,Beweisverstandnis“ (,proof comprehension”). Im Folgenden werden diese Facetten von
Beweiskompetenz aufgegriffen und es wird kurz erldutert, warum an dieser Stelle von
Begriindungskonstruktion, Beweisbewertung und Beweisakzeptanz gesprochen wird.

Unter Beweiskonstruktion wird allgemein die Konstruktion eines korrekten Beweises entsprechend
den an einer Universitat giltigen (fachmathematischen) Normen verstanden (etwa ebd., S. 339). Da
eine entsprechende Beweiskonstruktion von Studienanfangerinnen und —anfangern nicht erwartet
werden kann, wird stattdessen die Kompetenz Begriindungskonstruktion betrachtet, die mit weniger
formalen Ansprichen verbunden ist (s. Abschnitt 2.3.4). Im Gegensatz zur Kompetenz der
Beweisvalidierung, die die Bewertung der Korrektheit mathematischer Beweise beschreibt (etwa
Inglis & Alcock, 2012), umfasst Beweisevaluation nach Pfeiffer (2011, S. 5) neben der Korrektheit von
Beweisen auch die Betrachtung weiterer Aspekte, wie Uberzeugungskraft oder Erklarungspotential
(Selden & Selden 2017, S. 340ff.). An dieser Stelle wird die Bewertung der Korrektheit von Beweisen
als Beweisbewertung separiert. Die Betrachtung spezieller Aspekte in Beweisen (wie
Uberzeugungskraft, Erklarungspotential und Sicherung der Giiltigkeit) wird zusammen mit dem
Verstdndnis der durch einen Beweis gesicherten Allgemeingiltigkeit einer Argumentation (im Sinne
eines Beweisverstandnisses) als Beweisakzeptanz betrachtet.

Fiir die Erfassung der Kompetenz der Begriindungskonstruktion stellt sich zunachst die Frage, wie
,gut’ und ,auf welche Weise’ die Studierenden zu Beginn der Lehrveranstaltung begriinden und
welche Rolle dabei die fachmathematische Symbolsprache spielt. Fir die Beweisbewertung wird

*® In dieser Arbeit werden die groReren bzw. Gbergeordneten Forschungsfragen durchnummeriert. Die
Forschungsfrage [1] war die in Abschnitt 1.4.1 formulierte, rahmengebende Forschungsfrage des hier
thematisierten Design-Based Research Projekts. Kleinere ,Forschungsfragen’, die im Kontext der Teilstudien
formuliert werden, werden als , Leitfragen zur Auswertung” bezeichnet und gesondert durch die gesamte
Arbeit hindurch durchnummeriert.
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betrachtet, wie die Studierenden verschiedene Begriindungsformen (,narrativ und korrekt”,
,empirisch-induktiv®, ,formal und falsch”, ,korrekt mit Variablen“) bewerten bzw. welche dieser
Begriindungsformen von den Studierenden als ,richtiger Beweis’ bewertet wird. Um darlber hinaus
die Vorpragung der Studierenden in Bezug auf die Thematik zu ergriinden, soll betrachtet werden,
von welcher Begriindungsform die Studierenden angeben, dass sie ihrem eigenen Ansatz am
nachsten komme. So kann auch ermittelt werden, ob die Studierenden fiir ihren eigenen Ansatz die
Verwendung der mathematischen Symbolsprache praferieren. AuRerdem wird in diesem Kontext die
Frage gestellt, fir welche der Begriindungsformen der Mathematiklehrer in der Oberstufe die beste
Note gegeben hitte, um sich weiter der schulmathematischen Sozialisation in Bezug auf das
Beweisen anzundhern. SchlieRlich wird die Beweisakzeptanz der Studierenden in Bezug auf die vier
verschiedenen Beweisformen der Lehrveranstaltung (generischer Beweis mit Zahlen, generischer
Beweis mit Punktmustern, Punktmusterbeweis mit geometrischen Variablen und formaler Beweis)
betrachtet. Zentral ist hierbei die Frage, inwieweit die Studierenden in der Lage sind, das
allgemeingiiltige Moment in diesen Beweisformen zu erkennen®®. Um ein ,ganzheitliches’ Bild des
Verstandnisses dieser Beweisformen bei den Studierenden abstrahieren zu kdnnen, werden auch die
Aspekte ,,Sicherung der Giiltigkeit”, ,subjektive Uberzeugung” und ,Erkldrungspotential” betrachtet.
Zusammengefasst wird durch diese Aspekte das Konstrukt der ,Beweisakzeptanz’ erfasst. In Bezug
auf die zu erfassende Beweiskompetenz der Studierenden zu Beginn der Lehrveranstaltung ergibt
sich die folgende Forschungsfrage:

e Forschungsfrage [3]: Wie lassen sich die Kompetenzen der Studierenden im Kontext der
Thematik des ,Begriindens und Beweisens’ zu Beginn der Lehrveranstaltung beschreiben?
a) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden
in ihrem ersten Hochschulsemester und den Studierenden in einem hdheren
Semester ausmachen?

Fiir die Beantwortung der Forschungsfrage [3] sollen die folgenden Leitfragen zur Auswertung als
Richtlinien dienen:

0 Leitfrage zur Auswertung [16]: Wie begriinden die Studierenden zu Beginn der
Lehrveranstaltung, wenn sie einen Sachverhalt der elementaren Arithmetik verifizieren
sollen, und welche charakteristischen Fehler im Umgang mit Variablen lassen sich dabei
feststellen?

a) Inwiefern lassen sich dabei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

0 Leitfrage zur Auswertung [17]: Welche Begriindungsformen (,narrativ und korrekt”,
,empirisch-induktiv”, ,formal und falsch“, ,korrekt mit Variablen“) werden von den
Studierenden zu Beginn der Lehrveranstaltung als , richtiger Beweis” bewertet?

a) Welche dieser Begriindungsformen kommt nach Angabe der Studierenden ihrem
potentiellen eigenen Ansatz am nachsten?

b) Welche Begrindungsform hatte nach Angabe der Studierenden durch ihren
Mathematiklehrer in der Oberstufe die beste Note erhalten?

>’ Somit werden an dieser Stelle die Begriindungsformen und Fragen aus der Studie von Healy und Hoyles
(1998) aufgegriffen (s. Abschnitt 3.3.2).
*% Aus diesem Grund wird der Aspekt der ,,Beweisakzeptanz” auch unter die Kompetenzaspekte gefasst. Die
Akzeptanz der Allgemeingiiltigkeit korrekter beispielgebundener Beweise (hier generischer Beweise) wird hier
als Kompetenz betrachtet, die die Studierenden herausbilden sollen.
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¢) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in
ihrem ersten Hochschulsemester und den Studierenden in einem hoheren Semester
ausmachen?

Leitfrage zur Auswertung [18]: Wie bewerten die Studierenden die vier Beweisformen der

Lehrveranstaltung zu Beginn der Lehrveranstaltung in Bezug auf die Aspekte ,Sicherung der

und , Allgemeinglltigkeit”?

Ill

Gultigkeit”, , subjektive Uberzeugung®, , Erklarungspotentia
a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem hoheren Semester ausmachen?

Leitfrage zur Auswertung [19]: Wie lasst sich die Beweisakzeptanz der Studierenden zu den

vier Beweisformen der Lehrveranstaltung zu Beginn der Lehrveranstaltung (bzw. zu Beginn

ihres Studiums) beschreiben?

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Neben den Vorerfahrungen der Studierenden und den aufgefiihrten Beweiskompetenzen ist es auch
entscheidend, welche Einstellungen die Studierenden zur Thematik ,Begriinden und Beweisen’ und
zur Mathematik allgemein zu Beginn der Lehrveranstaltung aufweisen. Unter dieser Perspektive von

,Einstellungen’ sind die folgenden Facetten von Interesse: die Einstellungen der Studierenden zur

Bedeutung des Lerngegenstandes ,Beweisen’ fiir die Schulmathematik, die Einstellung der

Studierenden zum Beweisen an sich und die Einstellungen der Studierenden zur Mathematik. Somit

ergibt sich die folgende Forschungsfrage:

Forschungsfrage [4]: Wie lassen sich die Einstellungen der Studierenden zur Thematik des

Beweisens und zur Mathematik zu Beginn der Lehrveranstaltung beschreiben?

a) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in
ihrem ersten Hochschulsemester und den Studierenden in einem hoéheren Semester
ausmachen?

Flr die Beantwortung der Forschungsfrage [4] sollen die folgenden Leitfragen zur Auswertung als

Richtlinien dienen:

(0]

Leitfrage zur Auswertung [20]: Wie bewerten die Studierenden die Relevanz des

Unterrichtsgegenstandes ,Beweis” flir verschiedene Schultypen und Schulstufen zu Beginn

der Lehrveranstaltung?

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Leitfrage zur Auswertung [21]: Wie bewerten die Studierenden ,gédngige’ Griinde, warum

Beweise im schulischen Mathematikunterricht eine eher untergeordnete Rolle spielen

sollten, zu Beginn der Lehrveranstaltung?

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Leitfrage zur Auswertung [22]: Wie bewerten die Studierenden Aussagen zu motivationalen

Aspekten zum Beweisen zu Beginn der Lehrveranstaltung?

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und Studierenden in einem hoheren Semester ausmachen?
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0 Leitfrage zur Auswertung [23]: Wie lasst sich die Beweisaffinitat der Studierenden zu Beginn
der Lehrveranstaltung beschreiben?

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

0 Leitfrage zur Auswertung [24]: Wie schitzen die Studierenden zu Beginn der
Lehrveranstaltung ihre eigene Motivation zum Erlernen verschiedener Aspekte der
mathematischen Beweisaktivitat ein?

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

0 Leitfrage zur Auswertung [25]: Welche Einstellungen zur Mathematik kénnen bei den
Studierenden zu Beginn der Lehrveranstaltung in welchem Malf$ ausgemacht werden?

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem
ersten Hochschulsemester und den Studierenden in einem hoheren Semester
ausmachen?

Bevor die einzelnen Forschungsfragen beantwortet werden, gilt es zunachst, die hier betrachteten
Studierenden ndher zu beschreiben. Neben der Gesamtgruppe werden im Folgenden auch die
Subgruppen Studierende in ihrem ersten Hochschulsemester (,Erstsemester”) und Studierende in
einem héheren Semester (,Hohere Semester”) betrachtet. Dazu ist es notig, die Subgruppen auf ihre
Zusammensetzung und mogliche charakteristische Unterschiede hin zu untersuchen, um spatere
Ergebnisse besser einordnen und speziell die Wirkung der Vorlesung differenziert nach den
Subgruppen erértern zu kénnen.

7.2.2 Ergebnisse bzgl. der Zusammensetzungen der Studierenden

Die folgenden Auswertungen beziehen sich auf alle Studierenden, die an der Eingangsbefragung
teilgenommen haben (N = 149). Darlber hinaus werden auch die Subgruppen Studierende in ihrem
ersten Hochschulsemester (,Erstsemester”) [n = 71] und Studierende in einem héheren Semester
(,Hohere Semester”) [n = 78]*° betrachtet.

Alter und Jahr der Hochschulzugangsberechtigung

Bei der Gesamtstichprobe der Eingangsbefragung liegt das mittlere Alter bei 21,14 Jahren (SD
2,938; Median = 20), der Median bei dem Jahr der Hochschulzugangsberechtigung bei 2013 (SD
2,575). In der Abbildung 56 werden die Verteilungen der beiden Merkmale dargestellt.

% In dieser Gruppe befinden sich 27 Studierende, die die Lehrveranstaltung bereits einmal besucht haben, und
51 weitere Studierende, die sich wie folgt zusammensetzen: Drei Personen mit einem abgeschlossenen
Studium (Bachelor of Commerce, Diplomfinanzwirt und Wirtschaftsinformatik), 26 Personen, die den
Studiengang gewechselt haben (Lehramt Mathematik flir Gymnasium und Gesamtschule [14],
Wirtschaftsingenieurwesen [2], Wirtschaftswissenschaften [4], Mathematik Bachelor [2], Physik Bachelor [1],
Rechtswissenschaften [1], Lehramt Primarstufe [1] und Lehramt Mathematik fir Berufskolleg [1]), 11
Studierende, die die Lehrveranstaltung erst in einem spateren Semester besuchen, und 11 Studierende, die zu
ihrem héheren Hochschulsemester keine Angaben machen.
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Abbildung 56: Verteilungsdiagramme fiir die Merkmale , Alter” und ,Jahr der Hochschulzugangsberechtigung”

Bezliglich der Subgruppen erhalten wir die folgenden Ergebnisse:

N M Median SD
Erstsemester 70 19,73 19 1,693
Hohere Semester 78 22,40 22 3,241
Gesamt 148 21,14 20 2,938

Tabelle 22: Ergebnisse bzgl. des Merkmals ,Alter” (Alle und Subgruppen)

N Median
Erstsemester 71 2014
Hohere Semester 77 2012
Gesamt 148 2013

Tabelle 23: Ergebnisse bzgl. des Merkmals ,Jahr der Hochschulzugangsberechtigung” (Alle und Subgruppen)

Entsprechend der Semesteranzahl sind die Erstsemesterstudierenden im Durchschnitt jinger. Mit
dem Median 2014 fiir das Jahr der Hochschulzugangsberechtigung liegt deren Schulabschluss auch
weniger weit zurick als bei den anderen Studierenden. Die groReren Standardabweichungen in der
Gruppe der ,hoheren Semester” bezliglich des Alters verdeutlichen die Heterogenitdt dieser
Subgruppe.

Geschlecht

Von den Teilnehmern der Eingangsbefragung sind 37% mannlich und 63% weiblich. In der Tabelle 24
werden die prozentualen Verteilungen des Merkmals ,,Geschlecht” wiedergegeben. Dabei lassen sich
keine statistisch signifikanten Unterschiede des Merkmals ,Geschlecht” in Bezug auf die
betrachteten Subgruppen ausmachen (Chi?-Test).

N mannlich [%] weiblich [%]
Erstsemester 71 39 61
Hohere Semester 78 35 65
Gesamt 149 37 63

Tabelle 24: Prozentuale Verteilung des Merkmals ,,Geschlecht” (Alle und Subgruppen)

Im Geschlechtervergleich kénnen keine nennenswerten Unterschiede bzgl. der Merkmale , Alter” und
»Jahr der Hochschulzugangsberechtigung” ausgemacht werden (vgl. Tabelle 25).

Geschlecht
mannlich weiblich
N M Median SD N M Median SD
Alter 55 21,33 20 3,031 93 21,02 20 2,893
Jahr der HZB 55 2012,49 2013 2,387 93 2012,53 2013 2,693

Tabelle 25: Vergleich der Merkmale ,, Alter” und ,Jahr der Hochschulzugangsberechtigung” mit dem Merkmal
»,Geschlecht”
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Art der Hochschulzugangsberechtigung

98,7% der Teilnehmenden haben die allgemeine Hochschulreife. An sonstigen Nennungen wurden
einmal die Fachoberschulreife und einmal Matric, ein Abschluss der slidafrikanischen Highschool,
genannt.

Letzter schulischer Mathematikkurs

Die Betrachtung des letzten schulischen Mathematikkurses ist fir die Beschreibung der
Teilnehmenden daher von Bedeutung, als die mathematische Vorbildung und fachspezifische
Sozialisation hierdurch beeinflusst werden. Auch wird durch entsprechende Kenntnisse die

Bedeutung der letzten Mathematiknote (s.u.) relativiert.

Betrachtet man alle Teilnehmenden, so haben 52,7% einen Leistungskurs und 46,6% einen Grundkurs
besucht (s. Tabelle 26). Die Nennung unter ,Sonstige” ist ,mathematics SG“, eine siidafrikanische

Kursbezeichnung. Zwischen den Subgruppen lassen sich keine signifikanten Unterschiede ausmachen
(Chi%-Test).

N Leistungskurs [%] Grundkurs [%] Sonstige [%]
Erstsemester 70 50 50 ---
Hohere Semester 78 55,1 43,6 1,3
Gesamt 148 52,7 46,6 0,7

Tabelle 26: Prozentuale Verteilung des letzten schulischen Mathematikkurses (Alle und Subgruppen)

In der Tabelle 27 wird die Verteilung der Geschlechter unterteilt nach Subgruppen auf die
schulischen Mathematikkurse (Leistungskurs/Grundkurs) dargestellt. Auch hier lassen sich keine
signifikanten Unterschiede in Bezug auf den letzten schulischen Mathematikkurs ausmachen (Chi?-
Test). Im Vergleich der Subgruppen ist dabei auffillig, dass bei den weiblichen Studierenden im
ersten Semester 45,2% einen Leistungskurs und 54,8% einen Grundkurs besucht haben, bei den
weiblichen Studierenden in einem hoheren Semester die Anteile dagegen bei 58% und 42% liegen.
Eine Erklarung fur dieses Phanomen kann an dieser Stelle allerdings nicht ausgemacht werden.

N Leistungskurs [%] Grundkurs [%]
Erstsemester weiblich 42 45,2 54,8
mannlich 28 57,1 42,9
Hohere Semester weiblich 50 58 42
mannlich 27 51,9 48,1
Gesamt weiblich 92 52 48
mannlich 55 55 45

Tabelle 27: Prozentuale Verteilung der Geschlechter auf die schulischen Mathematikkurse (Alle und Subgruppen)

Leistungsbezogene Daten: Abiturnote und Note aus dem letzten schulischen Mathematikkurs in
Punkten

Betrachtet man die Gesamtgruppe, so liegt der Mittelwert der Abiturnote bei 2,86 (Median: 3, SD =
0,47). In Abbildung 57 wird die entsprechende Verteilung dargestellt.
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Bezlglich des Merkmals , Abiturnote” ist in den Subgruppen die Homogenitat der Varianzen gegeben
(Levene-Test nicht signifikant), der Mittelwert der Abiturnote der Erstsemester liegt mit 2,97
statistisch hoch signifikant Gber dem der restlichen Studierenden mit 2,764 (t-Test; p=0,01 bei einer
kleinen bis mittleren Effektstarke von Cohens d=0,44).

N M Median SD
Erstsemester 67 2,97 3,1 0,4223
Hohere Semester 77 2,77 2,9 0,4912
Gesamt 144 2,86 3,0 0,4697

Tabelle 28: Ergebnisse des Merkmals ,,Abiturnote” (Alle und Subgruppen)
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Abbildung 58: Boxplot zur Verteilung des Merkmals
»Abiturnote” (Subgruppen)

Betrachtet man in der Gesamtstichprobe die letzte schulische Mathematiknote auf der Punkteskala
,0“ (mangelhaft) bis ,15“ (sehr gut), so liegt der Mittelwert bei 9,19 Punkten (Median: 9, SD = 2,621).
Dieses Ergebnis ist daher erstaunlich, da sich diese Studierenden fiir das Fachstudium Mathematik
fiir Lehramt an Haupt-, Real und Gesamtschulen entschieden haben.
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Die Ergebnisse der Subgruppen werden in Tabelle 29 dargestellt. Beziiglich der letzten schulischen
Mathematiknote ist bei den Subgruppen die Homogenitat der Varianzen gegeben (Levene-Test nicht
signifikant), der Mittelwert der schulischen Mathematiknote der Erstsemester liegt mit 8,54 hoch
signifikant unter dem der restlichen Studierenden mit 9,80 (t-Test; p=0,004 mit einer mittleren
Effektstarte von Cohens d=0,5).

N M Median SD
Erstsemester 69 8,54 9 2,368
Hohere 75 9,80 10 2,711
Insgesamt 144 9,19 9 2,621

Tabelle 29: Ergebnisse des Merkmals , Letzte schulische Mathematiknote“ (Alle und Subgruppen)
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Abbildung 60: Boxplots zur Verteilung des Merkmals Abbildung 61: Scatterplot zur Veranschaulichung des
,Letzte schulische Mathematiknote” beziiglich der Zusammenhangs zwischen den Merkmalen , Letzte
Subgruppen schulische Mathematiknote” und , Note im Abitur”

(Alle).

Die schlechteren Ergebnisse in der Subgruppe der Erstsemester bezliglich der Note im Abitur und der
letzten schulischen Mathematiknote lassen sich dahingehend deuten, dass bei den Studierenden in
einem hoheren Semester vermutlich bereits ein Selektionsprozess innerhalb des Studiums
stattgefunden hat. Dieser steht den Studierenden im ersten Semester erst noch bevor. Dieses
Ergebnis kann dahingehend gedeutet werden, dass die Abiturnote fiir den Erfolg im Studium (bzw. im

ersten Semester) eine gewisse Rolle spielen kdnnte.

SchlieBlich soll hier noch betrachtet werden, ob ein Zusammenhang zwischen der letzten schulischen
Mathematiknote und der Abiturnote nachvollzogen werden kann. Die Korrelation ist hierbei mit r=-
0,462 nur mittelmaRig hoch, wenn auch mit p<0,001 statistisch hoch signifikant auf dem 0,1%-Niveau
(vgl. hierzu den Scatterplot in Abbildung 60).

Weiter stellt sich die Frage, ob in Bezug auf die leistungsbezogenen Daten charakteristische
Unterschiede zwischen den Geschlechtern auszumachen sind (vgl. Tabelle 30). Im
Geschlechtervergleich ist bei dem Merkmal , Abiturnote” die Homogenitdt der Varianzen gegeben
(Levene-Test nicht signifikant). Der Mittelwert der Abiturnote liegt bei den Mannern statistisch hoch
signifikant auf dem 1%-Niveau Gber dem der Frauen (t-Test; p=0,003 bei einer mittleren Effektstarke
von Cohens d=0,52). Der Unterschied der Mittelwerte bezlglich der letzten schulischen
Mathematiknote ist nicht signifikant (t-Test), weist aber in dieselbe Richtung, dass die weiblichen
Studierenden die besseren Noten hatten.
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Geschlecht
mannlich weiblich
N M Median SD N M Median SD
Note Abi 55 3,005* 3,1 0,3739 89 2,767* 2,9 0,5009
Note Mathe 55 8,82 9 2,763 89 9,43 9 2,518

Tabelle 30: Vergleich der Merkmale ,, Alter” und ,,Jahr der Hochschulzugangsberechtigung” mit dem Merkmal
»Geschlecht” (Alle)

Teilnahme an einem Vorkurs

Bei der Durchfiihrung eines Eingangstests zu Beginn des Studiums ist es wichtig, ob die
Teilnehmenden zuvor einen Mathematikvorkurs besucht haben; neben der Schulbildung kann auch
ein Vorkurs entscheidenden Einfluss auf das Vorwissen der Studierenden haben.

Insgesamt haben 40,1% der Studierenden an einem Mathematikvorkurs teilgenommen. In der
Tabelle 31 werden die Ergebnisse bzgl. der Subgruppen dargestellt.

Teilnahme an einem Vorkurs
N Nein [%] Ja [%]
Erstsemester 69 59,4 40,6
Hohere Semester 78 60,3 39,7
Gesamt 147 59,9 40,1

Tabelle 31: Prozentuale Verteilung des Merkmals ,, Teilnahme an einem Vorkurs” (Alle und Subgruppen)

Hierbei muss auch betrachtet werden, an welcher Universitat und an welcher Art von Vorkurs
teilgenommen wurde®. In den Paderborner Vorkursen wurde fiir das Lehramt Haupt-, Real- und
Gesamtschule in den hier in Frage kommenden Durchgidngen das Themenfeld ,Begriinden und
Beweisen’ nicht von den Dozenten behandelt. Den Teilnehmenden stand es allerdings frei, sich
selbststandig online mit entsprechenden Inhalten aus den verwendeten VEMINT-Lernmaterialien
vertraut zu machen. Wahrend in dem Prasenzkurs die Inhalte durch den Dozenten ausgewahlt
wurden, stand es den Teilnehmenden des E-Kurses frei, sich ihre Lerninhalte selbst auszuwahlen.
Allerdings wurden die entsprechenden Lernmodule zu der Thematik des Beweisens in den
Lernempfehlungen nicht explizit empfohlen.

Alle 28 Erstsemesterstudierenden, die an einem Vorkurs teilgenommen haben, taten dies an der
Universitat Paderborn, wobei der Prasenzkurs von 46,4% und der E-Learningkurs von 53,6% besucht
wurde. Bei den 30 Studierenden in einem hoheren Semester, die einen Vorkurs besucht haben, taten
dies 29 in Paderborn (P-Kurs: 76,7% und E-Kurs 20%), nur ein Student besuchte einen Vorkurs an
einer anderen Universitat. Es ist in dieser Gruppe moglich, dass einzelne Studierende an dem Vorkurs
flr gymnasiales Lehramt teilgenommen haben und sich dadurch ihr Vorwissen zum Begriinden und
Beweisen erweitert hat. Allerdings tragt dieses Phanomen nur weiter zu der auch oben aufgezeigten
sehr heterogenen Zusammensetzung dieser Subgruppe bei, sie wird nicht hierdurch konstituiert.

N P-Kurs [%] E-Kurs [%] Vorkurs nicht in Paderborn [%]
Erstsemester 28 46,4 53,6 0
Hohere Semester 30 76,7 20 3,3
Gesamt 58 62,1 36,2 1,7

Tabelle 32: Prozentuale Verteilung der Teilnahme an den Vorkursvarianten (Alle und Subgruppen)

% An der Universitit Paderborn werden die Mathematikvorkurse im Rahmen des VEMINT-Projekts
(www.vemint.de) durchgefiihrt. Die Teilnehmenden kénnen sich hierbei zwischen einer E-Learning-Variante
(,,E-Kurs“) und einer Prasenzvariante (,,P-Kurs“) entscheiden. Beide Kursvarianten sind Blended-Learning-
Szenarien und unterscheiden sich hinsichtlich der Gewichtung der Prasenz- und E-Learning-Anteile.
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Teilnahme an einem Mathematikwettbewerb

Da in Mathematikwettbewerben vor allem Problemlése- und Beweisaufgaben gegeben werden, gilt
es zu untersuchen, ob Studierende an entsprechenden Wettbewerben teilgenommen haben. Dies
wirde ein besonderes Training im Problemlésen und Beweisen implizieren.

Insgesamt haben 29,5% der Studierenden bereits an einem Mathematikwettbewerb teilgenommen.
In der Tabelle 33 werden die Verteilungen nach Subgruppen angegeben.

N Teilnahme an einem Mathematikwettbewerb
Nein [%] Ja [%]
Erstsemester 70 70 30
Hohere Semester 76 71,1 28,9
Gesamt 146 70,5 29,5

Tabelle 33: Prozentuale Verteilung des Merkmals , Teilnahme an einem Mathematikwettbewerb” (Alle und Subgruppen)

Beziiglich der Teilnahme an Mathematikwettbewerben lassen sich keine signifikanten Unterschiede
zwischen den Subgruppen ausmachen (Chi?-Test).

Zusammenfassend lasst sich an dieser Stelle festhalten, dass 98,7% der betrachteten Studierenden
die allgemeine Hochschulreife besitzen. Die eher als moderat zu bezeichnenden Ergebnisse bzgl. der
Abiturnote (arithmetisches Mittel: 2,86 und Median: 3) und der letzten schulischen Mathematiknote
in Punkten (arithmetisches Mittel: 9,19 und Median: 9) sind hierbei bemerkenswert.

Bei der Betrachtung der Subgruppen konnte gezeigt werden, dass die Erstsemesterstudierenden im
Durchschnitt (statistisch signifikant) schlechtere Ergebnisse in der Abiturnote und in der letzten
schulischen Mathematiknote aufweisen, was vermutlich auf eine erfolgte Selektion bei den
Studierenden in einem hoheren Semester zurlickzufiihren ist. Keine (statistisch) signifikanten
Unterschiede konnten an dieser Stelle bzgl. der Merkmale ,Geschlecht”, ,Schulischer
Mathematikkurs®, ,Vorkursteilnahme“ und ,Teilnahme an einem Mathematikwettbewerb”
nachgewiesen werden. Somit kdnnen die Unterschiede der Leistungsmerkmale in den Subgruppen
nicht durch unterschiedliche Verteilungen dieser Merkmale relativiert werden.

SchlieRlich kann vermutet werden, dass die Beweisvorstellungen und die Kompetenzaspekte zur
Thematik des Beweisens mindestens bei den Studienanfangern nicht in einem beachtenswerten
Male durch die Teilnahmen an Vorkurs oder Mathematikwettbewerben beeinflusst wurden.

7.2.3 Ergebnisse bzgl. der Vorerfahrungen der Studierenden mit Beweisen aus ihrer Schulzeit

Bzgl. der Vorerfahrungen der Studierenden mit Beweisen aus ihrer Schulzeit wurden die folgenden
Aspekte untersucht: (i) die Anzahl kennengelernter und selbst entwickelter Beweise in ihrer
Schulzeit, (ii) Sachverhalte, die nach Angaben der Studierenden in ihrer Schulzeit bewiesen worden
sind, und (iii) ob den Studierenden die vier in der Lehrveranstaltung , Einfihrung in die Kultur der
Mathematik” verwendeten Beweisformen (generischer Beweis mit Zahlen, generischer Beweis mit
Punktmustern, Punktmusterbeweis mit geometrischen Variablen und der formale Beweis) bereits
aus der Schule bekannt sind. Im Folgenden werden zunachst die Ergebnisse bzgl. dieser drei Aspekte
separat aufgefiihrt, bevor im Anschluss anhand der erhaltenen Ergebnisse die oben formulierte
Forschungsfrage [5] beantwortet wird. Bei den Ergebnissen wird dabei nicht zwischen den
Subgruppen ,Erstsemester” und , Hohere Semester” unterschieden, da dies bei der Thematik nicht
sinnvoll erscheint.
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(i) Anzahl kennengelernter und selbst entwickelter Beweise in der Schulzeit

Die Ergebnisse bzgl. der Angaben der Studierenden zu Beweisen in ihrer Schulzeit werden in der
Abbildung 62 dargestellt.

Flr die Sekundarstufe 1 fallt auf, dass 29% der Befragten angeben, keinen Beweis kennengelernt zu
haben. Mehr als die Halfte (62%) der Studierenden sind insgesamt der Ansicht, hochstens zwei
Beweise in der Sekundarstufe 1 gesehen zu haben. Fiir die Sekundarstufe 2 zeigt sich, dass insgesamt
31% der Studierenden der Auffassung sind, hochstens zwei Beweise kennengelernt zu haben;
immerhin 35% meinen drei bis funf und noch 22% sprechen von vier bis zehn Beweisen. Die
Unterschiede der beiden Verteilungen sind statistisch hoch signifikant auf dem 0,1%-Niveau (Chi?-
Test: p<0,001), wie auch der Unterschied der Mediane (Beweise in der Sek. 1: Median: ,1-2
Beweise”, SD=1,121; Beweise in der Sek. 2: Median: ,3-5 Beweise”, SD=1,236; Wilcoxon-Test:
p<0,001). Somit meinen die Studierenden, signifikant mehr Beweise in der Sekundarstufe 2 als in der
Sekundarstufe 1 kennengelernt zu haben.

Bezliglich der Eigenentwicklung von Beweisen lasst sich festhalten, dass 39% der Teilnehmenden
angeben, in ihrer Schulzeit nie einen Beweis selbst entwickelt (gefunden und aufgeschrieben) zu
haben. Insgesamt sind 74% der Befragten der Ansicht, in ihrer gesamten Schulzeit hochstens zwei
Beweise selbst entwickelt haben.

Beweise in Sek. 1 (Alle)
0,
29% 33% 23% )
||
lloll Il1_2ll II3_5II II4_10II "11'20“Imehr als 20"
Beweise in Sek. 2 (Alle)
35% 229
13%  18% . ® %,
(1)
mm N Bl
IIOII Il1_2ll II3_5II II4_10II II11_20Illmehr als 20"
39% Beweise selbst entwickelt (A"e) Abbildung 62: Angaben der Studierenden
° 35% zum Vorkommen von Beweisen in ihrer
16% o Schulzeit (Alle, n=149)
8% 1% 1%
-
lloll Il1_2ll II3_5II II4_10II "11'20“Imehr als 20"

(ii) Sachverhalte, die nach Angaben der Studierenden in der Schule bewiesen worden sind

Auf die Frage, welche mathematischen Sachverhalte in der Schule bewiesen wurden, waren die
folgenden Nennungen die haufigsten: Satz des Pythagoras (37x), PQ-Formel (14x), Ableitungsregeln®
(13x), Satz des Thales (8x) und die binomischen Formeln (6x). Insgesamt konnten 48 Nennungen dem

®! Unter dem Begriff ,,Ableitungsregeln” wurden auch all diejenigen Antworten zusammengefasst, in denen
konkrete Ableitungsregeln genannt wurden.
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Bereich der Geometrie, 19 dem Bereich der Analysis, 12 dem Bereich der Arithmetik und jeweils zwei
der Nennungen der Linearen Algebra und der Stochastik bzw. Statistik zugeordnet werden.

(iii) Kenntnis der vier verschiedenen Beweisformen der Lehrveranstaltung aus der Schulzeit

In der Eingangsbefragung wurden den Studierenden vier verschiedene konkrete Beweise vorgelegt
(ein generischer Beweis mit Zahlen, ein generischer Beweis mit Punktmustern, ein
Punktmusterbeweis mit geometrischen Variablen und ein formaler Beweis), die sie fiir die Erfassung
von ,Beweisakzeptanz‘ anhand verschiedener Items bewerten sollten. Dabei sollten die Studierenden
auch angeben, ob ihnen diese Begriindungsform aus ihrer Schulzeit bekannt ist. Die konkreten
Beweisprodukte, bzgl. derer die Studierenden die Bewertungen vornehmen sollten, wurden in
Abschnitt 3.3.3 angegeben.

Die Ergebnisse bzgl. der Angaben der Studierenden, ob ihnen diese Begriindungsformen aus ihrer
Schulzeit bekannt sind, werden in der Tabelle 34 angegeben. Beachtenswert erscheinen dabei
insgesamt die niedrigen Werte der Zustimmungen.

| Genz | GenP | GV | FB
Alle
n 121 127 122 126
Anteil "ja" [%] 20,7 14,2 5,7 51,6

Tabelle 34: Prozentuale Anteile der Antworten ,ja“ bzgl. der Frage, ob die jeweilige Begriindungsform den Studierenden
bereits aus der Schule bekannt ist (Alle) [,,GenZ“: generischer Beweis mit Zahlen, ,GenP“: generischer Beweis mit
Punktmustern, ,,GV“: Beweis mit geometrischen Variablen, ,FB“: formaler Beweis]

Flr die Beantwortung der Forschungsfrage [2] werden im Folgenden die erhaltenen Ergebnisse aus
Abschnitt 7.2.3. zusammenfassend ausgewertet.

Beantwortung der Forschungsfrage [2]: Wie lassen sich die Vorerfahrungen der Studierenden mit
Beweisen aus ihrer Schulzeit beschreiben?

Die Studierenden hatten nach eigenen Angaben in ihrer Schulzeit insgesamt nur wenig Kontakt mit
Beweisen. Fir den Zeitraum der Sekundarstufe 1 sind 62% der Studierenden der Ansicht, hochstens
zwei Beweise kennengelernt zu haben. Fir den Zeitraum der Sekundarstufe 2 geben 31% der
Studierenden an, hochstens zwei Beweise kennengelernt zu haben, 35% meinen drei bis finf, 22%
vier bis zehn Beweise. Es zeigt sich, dass die Studierenden hier angeben, (statistisch signifikant) mehr
Beweise in der Sekundarstufe 2 als in der Sekundarstufe 1 kennengelernt zu haben.

39% der Studierenden haben nach eigenen Angaben in ihrer Schulzeit nie einen Beweis selbst
entwickelt (gefunden und aufgeschrieben), von hochstens zwei Beweisen sprechen insgesamt 74%.

Dabei muss kritisch angemerkt werden, dass die von den Studierenden angegebenen Anzahlen nicht
mit der tatsachlichen Anzahl von vorgekommenen Beweisen im Schulunterricht gleichgesetzt werden
kénnen. Auch missen die Ergebnisse vor dem Hintergrund relativiert werden, dass nicht mit

%2 Bei der Zustimmung bzgl. des formalen Beweises (insgesamt 51,6%) ist der Unterschied in den Subgruppen
(Erstsemester: 67,8% und Hohere Semester: 37,3%) statistisch hoch signifikant (Chi®-Test, p<0,001). Dieser
Unterschied kann dahingehend interpretiert werden, dass sich bei den ,Ho6heren Semestern” ein Verstandnis
von formalen Beweisen herausgebildet hat, welches sich von den in der Schule kennengelernten formalen
Beweisen unterscheidet.
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Sicherheit gesagt werden kann, was von den Studierenden unter einem ,Beweis’ verstanden wird. Bei
den Ergebnissen bzgl. der Akzeptanz der verschiedenen Beweisformen (vgl. Abschnitt 7.2.4) wird
deutlich werden, dass Begriindungsformen ohne formale Darstellungen von den Studierenden eher
nicht als (korrekte und richtige) Beweise betrachtet werden. Die erhaltenen Ergebnisse lassen
allerdings einen Aufschluss dariiber zu, welche Rolle das Beweisen in der Schule nach den
Erinnerungen der Studierenden gespielt hat.

Diese Ergebnisse entsprechen den Ergebnissen von Hemmi (2006), in deren Studie 59% (n=168) der
finnischen Studienanfangerinnen und -anfdnger angaben, in der Oberstufe (,upper secondary
school”) hochstens ein- oder zweimal in einem Schulhalbjahr (,,term®) Beweise selbst konstruiert zu
haben (ebd., S. 132f.). Allerdings meinte in der Studie von Hemmi gut die Halfte der Studierenden,
dass ihr Mathematiklehrer in der Oberstufe mindestens einmal in der Woche einen Sachverhalt
bewiesen habe (ebd., S. 128f.). Diese Diskrepanz konnte dabei mit dem Fragenformat
zusammenhéngen, da in der Studie von Hemmi (2006) kiirzere Zeitintervalle besprochen wurden
(,jede Stunde”, ,einmal die Woche”, ..), in der vorliegenden Studie aber die gesamte
Sekundarstufenzeit in den Blick genommen wurde.

Bei den Nennungen von Sachverhalten, die in der Schule bewiesen wurden, wurde deutlich, dass der
Bereich der Geometrie am stdrksten mit dem Beweisen verbunden zu sein scheint: Der Satz des
Pythagoras wird mit 39 Nennungen deutlich am haufigsten genannt, der Satz des Thales noch
achtmal. Dieses Resultat entspricht den Ergebnissen von Mingus (1999, S. 439). Die néachst
hdufigeren Nennungen waren hierbei die PQ-Formel (14x), Ableitungsregeln (13x) und die
binomischen Formeln (6x). Interessant erscheint dabei der Gegensatz zum obigen Ergebnis, dass
nach Angaben der Studierenden in der Sekundarstufe 2 (signifikant) mehr Beweise thematisiert
wurden als in der Sekundarstufe 1. Die am haufigsten genannten Sachverhalte sind allerdings fast
ausschlieBlich der Sekundarstufe 1 zuzuordnen. Hierflr lassen sich zwei mogliche Erklarungen
anfiihren: Zunachst kann mit dem Pradikat ,Beweis” ein hoéherer mathematischer Anspruch
verbunden sein, wodurch diese Begrifflichkeit intuitiv eher den hdheren Schulstufen zugewiesen
wird. Zudem konnten Sachverhalte wie der Satz des Pythagoras oder die PQ-Formel als schulische
Prototypen fiir das Beweisen gesehen werden, welche den Studierenden zunachst im Kontext des
Beweisens in den Sinn kommen. Interessanterweise fehlen bei den Nennungen zentrale Satze der
Oberstufenmathematik, wie der Hauptsatz der Differential- und Integralrechnung. Es muss dabei
angemerkt werden, dass die Nichtnennung von Inhalten natirlich nicht bedeutet, dass diese in der
Schulzeit wirklich nicht bewiesen wurden.

Geht man von den aufgefiihrten haufigsten Nennungen bzgl. bewiesener Sachverhalte aus, so lasst
sich auch in einem gewissen Malle abstrahieren, welche Aktivititen die Studierenden mit dem
Begriff ,Beweisen’ assoziieren. In der Schulgeometrie sind Beweise auf verschiedenen Niveaustufen
bzw. auf verschiedenen Stufen der Strenge fiihrbar (vgl. etwa Holland 1996, S. 51ff. oder Hefendehl-
Hebeker und HuBmann 2003, S. 99ff.), die Argumentationen verlaufen hierbei hdufig im Wechselspiel
mit einer ,Beweisfigur’. Beinhalten die Beweise zu den aufgefiihrten geometrischen Satzen
deduktives SchlieRen, so werden die Beweise der genannten algebraischen Zusammenhange durch
Termumformungen konstituiert. Der Beweis von algebraischen Zusammenhangen, wie etwa den
binomischen Formeln, besteht nicht aus explizit deduktiven Schliissen, sondern aus sinnvoll
angewendeten Termumformungen (vgl. den Begriff des ,manipulative proof” in Tall 1995, S. 34).
Dabei werden keine innermathematischen Argumente (Sidtze o. &.) benutzt, die Uber zuldssige
algebraische Operationen hinausgehen. Die am haufigsten genannten Sachverhalte, die nach
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Auskunft der Studierenden in der Schule bewiesen worden sind, verlangen folglich Beweisaktivitaten
wie (schlichte) Termumformungen und die Nutzung mathematischer Satze bzgl. ,konkreter
geometrischer Objekte’ (Gerade, Winkel, ...) in Verbindung mit einer Beweisfigur. Wie und auf
welchem fachmathematischen Niveau die verschiedenen Ableitungsregeln in der Sekundarstufe 2
bewiesen wurden, muss hier offen gelassen werden. Beweise in traditionellen
Erstsemesterveranstaltungen der Mathematik basieren dagegen auf anderen Aktivitaten, wie der
Operationalisierung von Definition, der Nutzung mathematischer Satze bzgl. abstrakter Objekte und
deduktives SchlieBen (etwa Selden & Selden 2015).

Bei den Angaben der Studierenden, welche Begriindungsformen ihnen aus ihrer Schulzeit bekannt
sind, zeigt sich, dass nur etwa die Halfte der Studierenden im Fall des formalen Beweises zustimmen.
Die Zustimmungen zu den anderen Begriindungsformen fallen noch deutlich niedriger aus (s.o.).
Interessanterweise geben die Studierenden an, dass ihnen die Begriindungsformen, die in der
Literatur gerade als schuladdquate Begriindungsformen aufgefiihrt werden (etwa LeiR & Blum 2006,
S. 33ff.; Leuders 2010, S. 53; Meyer & Prediger 2009; Ufer & Kramer 2015, S. 86ff.), noch deutlich
weniger bekannt sind als der formale Beweis. An dieser Stelle muss angemerkt werden, dass die
Bewertungen auch mit den konkret angegebenen Beweisen zusammenhangen und die Angaben der
Studierenden folglich nicht direkt auf die generelle Begriindungsform zuriickgespiegelt werden
kénnen; die generelle (starke) Tendenz der Ergebnisse verbleibt aber.

Insgesamt werden somit groRe Diskrepanzen zwischen der Mathematik der Schule und der
Hochschule deutlich: Spielten Beweise in der Schule eine eher untergeordnete Rolle, werden sie in
der Hochschulmathematik zu einem zentralen mathematischen Werkzeug; auch verandern sich die
Aktivitaiten, die die Beweise konstituieren. Es muss festgehalten werden, dass die
Studienanfangerinnen und -anfanger in ihrem schulischen Mathematikunterricht anscheinend keine
Moglichkeiten hatten, ein Verstandnis von ,Beweisen’ aufzubauen, das dem an einer Universitat
entspricht.

7.2.4 Ergebnisse bzgl. der Kompetenzaspekte zum Beweisen
Die in diesem Abschnitt thematisierten Kompetenzaspekte zum Beweisen betreffen die Bereiche
,Begrindungskonstruktion”, ,, Beweisbewertung” und , Beweisakzeptanz”.

7.2.4.1 Qualitat der Begriindung
In der Eingangsbefragung sollten die Studierenden die folgende Aufgabenstellung bearbeiten:

Die Summe 11 + 17 ist eine gerade Zahl.
Gilt dies fiir jede Summe von zwei beliebigen ungeraden Zahlen?
- Begriinden Sie Gberzeugend.

Im Kontext dieser Aufgabe wurden die Bearbeitungen der Studierenden im Hinblick auf die Qualitdt
der Begriindung untersucht (,,Wie ,gut’ wird begriindet?“) und die verschiedenen Begriindungsarten
(,Wie wird begriindet?”) und charakteristischen Fehler im Umgang mit Variablen herausgearbeitet.
Die Entwicklung des fiir die Bewertung verwendeten Kategoriensystems wurde bereits in Abschnitt
3.3.1 dargestellt. Im Folgenden werden die verwendeten Kategorien benannt, erldutert und mit
entsprechenden Ankerbeispielen illustriert.
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Name Beschreibung Ankerbeispiel
(Wortliche Zitate aus Bearbeitungen
der Studierenden)
KO: Keine Die Aufgabe wird bearbeitet, ohne dass ein Beleg Ja.
Begriindung oder ein Grund fur die Glltigkeit angegeben wird.
K1: Empirisch Beispiele werden - ohne weitere (deduktive) Ich habe die Aussage mit anderen
Begriindung - als Beleg fiir die allgemeine Gltigkeit Zahlen ausprobiert:
der Behauptung angefihrt.
3+ 3 = 6 gerade
7 4+ 5 =12 gerade
13+ 7 = 20 gerade
Die Summe von zwei beliebigen
ungeraden Zahlen ist immer gerade.
K2: Pseudo Die genannten Begriindungen bestehen aus Ja, es gilt fiir jede Summe von zwei

Zirkelschllssen, sind redundant, unpassend oder
sachlich falsch.

beliebigen ungeraden Zahlen, weil sie
immer durch 2 teilbar ist.

K3: Fragmentarisch

Es werden relevante Aspekte benannt, die allerdings
nicht fiir eine Begriindung genutzt werden.

Eine ungerade Zahl kann als 2n + 1
dargestellt werden.

K4: Argumentation
mit Liicke

Es wird eine korrekte mathematische Argumentation
gegeben, welche allerdings eine Liicke enthélt, so
dass die Ausgangsbehauptung nicht allgemeingliltig
verifiziert wird.

Ja, weil eine ungerade Zahl durch
2n + 1 dargestellt wird und

@n+1D)+ @2n+1)=2-2n+1)
gerade ist.

K5: Vollstdndige
Argumentation

Die Gultigkeit der Behauptung wird deduktiv mithilfe
valider mathematischer Argumente hergeleitet.

Eine ungerade Zahl Idsst sich darstellen
als 2n+ 1 mit n € N.

@Cn+1D)+02m+1)=2n+2m+2
=2n+m+1)

Also ist das Ergebnis eine gerade Zahl.

Tabelle 35: Das Kategoriensystem zur Erfassung der ,Qualitat der Begriindung” mit Erlduterungen und Ankerbeispielen

Ergebnisse

Beantwortung der Leitfrage zur Auswertung [16]: Wie begriinden die Studierenden zu Beginn der
Lehrveranstaltung, wenn sie einen Sachverhalt der elementaren Arithmetik verifizieren sollen, und
welche charakteristischen Fehler im Umgang mit Variablen lassen sich dabei feststellen? Und:

a) Inwiefern lassen sich dabei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?
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Ergebnisse bzgl. der Qualitit der Begriindungen zu Beginn der Lehrveranstaltung (,,Wie ,gut’ wird
begriindet?“)

Die Ergebnisse bzgl. der ,Qualitdt der Begriindungen” werden in der Abbildung 63 dargestellt.
Beachtenswert erscheint dabei besonders, dass insgesamt nur 19,5% der Bearbeitungen als
vollstindige Argumentationen gewertet werden konnten, wobei immerhin noch 22,8% liickenhafte
Argumentationen sind. Auffallend ist weiter der groBe Anteil von Pseudoantworten mit 25,5%.
Dieses Phdanomen wird bei der Betrachtung der verschiedenen Begriindungsarten (s.u.) naher
betrachtet. Bei den Erstsemesterstudierenden fallen die Anteile der rein empirischen Begriindungen
(14,1%) und der Pseudoantworten (32,4%) deutlich hoher als in der Subgruppe der Hoheren
Semester aus. In der Subgruppe der Erstsemester werden nur in insgesamt 19,7% der Bearbeitungen
Uberhaupt korrekte Aspekte angefiihrt [,frag.” + , Arg. mit Licke” + ,vollst. Arg.”], bei den H6heren
Semestern liegt dieser Anteil dagegen bei 67,9%. Bemerkenswert erscheinen die niedrigen Anteile
der vollstandigen Argumentationen in den Subgruppen.

Qualitdt der Begriindung [%] — Eingangsbefragung
(Alle und Subgruppen)

Alle (n=149)

25,5%
’ 22,8%  19,5%
12,7%

0, 70
I == ==

Erstsemester (n=71)
32,4%

0,
19,6% 14,1% 14,1%

. 8,5% 9,9%
H = = 1% e

Hohere Semester (n=78)

35,9%
28,2%
19,2%
6’5% 2’6% 3’8% 3’8% l
I e = —
n.b. keine emp. pseudo frag. Arg. mit  volist. Arg.
Begriindung Licke

Abbildung 63: Prozentuale Verteilung der Ergebnisse der , Qualitat der
Begriindung” in der Eingangsbefragung (Alle und Subgruppen)

Vergleicht man die Ergebnisse der Subgruppen miteinander, so ist der Anteil der vollstdndigen
Argumentationen bei den Studierenden in einem hdheren Semester statistisch signifikant auf dem
1%-Niveau hoéher als bei den Erstsemesterstudierenden bei schwacher Effektstirke (Chi-Test,
p=0,005; Cramers V*=0,231). Betrachtet man die Bewertungen der Qualitat der Begriindungen auf

® Innerhalb dieser Arbeit wird als MaR der Effektstirke bei einem Chi?-Test der Zusammenhangskoeffizient
,Cramers V“ verwendet. Fir die Werte von Cramers V gelten die folgenden Einteilungen:
0 < Cramers V < 0,1: kein Zusammenhang, 0,1 < Cramers V < 0,3: geringer Zusammenhang,
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einer ordinalen Skala (mit den entsprechenden Werten 0 bis 5), so zeigt sich, dass in der Gruppe der
,Hoheren Semester’ der Median von 4 statistisch hoch signifikant auf dem 1%-Niveau Uber dem
Median von 2 der Erstsemesterstudierenden liegt (Mann-Whitney-U-Test, p=0,006; hohe
Effektstirke: Cohens d**=0,98; vgl. Abbildung 64). Die Qualitit der Begriindung korreliert in der
Gesamtstichprobe leicht mit der letzten schulischen Mathematiknote (Spearman-Rho=0,278 mit
p=0,002). Die Studierenden, die schon einmal an einem Mathematikwettbewerb teilgenommen
haben, sind mit einem Median von 4 statistisch signifikant auf dem 5%-Niveau besser als die
Studierenden ohne eine Teilnahme mit einem Median 2 (Mann-Whitney-U-Test, p=0,046; schwache
Effektstarke: Cohens d=0,43). Beziiglich der Merkmale ,,Geschlecht”, ,Schulischer Mathematikkurs”
und , Teilnahme am Vorkurs” lassen sich keine signifikanten Unterschiede bzgl. der Mediane der
»Qualitat der Begriindungen” ausmachen.

5 <]
4 o
-
=2
[
@ 3 ==
®
3
G
o0
w
1+
o € Abbildung 64: Boxplots zu den Verteilungen der Ergebnisse zur

»,Qualitat der Begriindung” in der Eingangsbefragung

T T
Erstsemester Hohere Semester [,EB_Qual_Begr*] (Subgruppen)

Subgruppen

Die verwendeten Begriindungsarten (,,Wie wird begriindet?“)

In der Betrachtung aller Bearbeitungen konnten insgesamt neun verschiedene Begriindungsarten
ausgemacht werden (A1-A9, vgl. Tabelle 36)%. Diese Begriindungsarten, die teilweise korrekt und
teilweise falsch sind, werden im Folgenden kurz erlautert, worauf die entsprechenden Verteilungen
auf die Studierendengruppen angegeben werden.

0,3 < Cramers V < 0,5: mittlerer Zusammenhang, 0,5 < Cramers V < 0,7: hoher Zusammenhang und

0,7 < Cramers V < 1: sehr hoher Zusammenhang (vgl. Kuckartz et al. 2013, S. 98). Innerhalb der Auswertungen
des Kapitels 7 werden die Effektstarken der durchgefiihrten statistischen Tests nur dann angegeben, wenn dies
im Rahmen der jeweiligen Forschungsperspektive sinnvoll erscheint.

* Im Rahmen der Auswertung der Eingangsbefragung wird als MaR fiir die Effektstarke beim Mann-Whitney-U-
Test auf Grund des GroRenunterschieds der Subgruppen ,,Cohens d“ verwendet. Fiir die Werte von Cohens d
gelten die folgenden Einteilungen: 0,2 < d < 0,5: , kleine Effektstarke”, 0,5 < d < 0,8: ,, mittlere Effektstarke”
und 0,8 < d: ,starke Effektstarke” (vgl. Cohen 1992, S. 157).

® Die Kategorie ,,induktiv“ entspricht dabei der Kategorie ,,empirisch” aus dem Kategoriensystem zur Erfassung
der Qualitat der Begriindung. Diese Kategorie sowie die Kategorien ,Nicht bearbeitet” und , Keine Begriindung”
wurden in das vorliegende Kategoriensystem Gbernommen, damit sich die entsprechenden Prozentwerte auf
die gleiche Grundgesamtheit beziehen. Die Kategorie der , Pseudobegriindungen” aus dem Kategorienschema
der Qualitat der Begriindungen wurde hierbei in die Kategorien ,Nennung des Satzes” und ,redundant,

irrelevant, falsch” aufgeteilt.

251



Bezeichnung Kategorienname Beschreibung
n. b. Nicht bearbeitet Die Aufgabe wurde nicht bearbeitet.
A0 Keine Begriindung Es wird keine Begriindung angegeben
Aus der Glltigkeit einzelner konkreter Beispiele wird ohne
Al induktiv . . . S
weitere (deduktive) Begriindung auf die Gliltigkeit der
Behauptung geschlossen.
Als Argument wird der Satz genannt oder paraphrasiert, dass
A2 Nennung des Satzes . . . .
] die Summe zweier ungerader Zahlen immer gerade ist.
S 3
é ,,g,, Redundant, irrelevant, Die Argumentation erfolgt mithilfe von Argumenten, die
[-% 5 A3 . .
falsch entweder redundant, irrelevant oder mathematisch falsch
sind
In der Argumentation wird der folgende Sachverhalt
umschrieben: Jede ungerade Zahl hat den ,,Abstand” eins zur
. X vorherigen geraden Zahl. Addiert man zwei ungerade Zahlen,
A4 ,Abstdnde heben sich auf” ] . . ) B
so werden auch die Absténde addiert. Somit erhdlt man
immer eine gerade Summe als Ergebnis dreier gerader
Summanden.
Q In der Argumentation wird der folgende Sachverhalt
G o umschrieben: Bei der Addition von ungeraden Zahlen reicht
é g A5 Betrachtung der Endziffern | es, die letzte Ziffer der Summe zu betrachten. Diese ergibt
'*§ % sich in diesem Fall aus der Summe zweier ungerader Zahlen
é g zwischen 1 und 9 und ist daher immer gerade.
uzo '8
< In der Argumentation wird der folgende Sachverhalt
umschrieben: In den nattiirlichen Zahlen wechseln sich die
Gerade und ungerade geraden und die ungeraden Zahlen immer ab. Die Addition
A6 Zahlen (g & u) wechseln sich | von zwei ungeraden Zahlen kann man nun so interpretieren,
ab dass ich auf dem Zahlenstrahl bei einer ungeraden Zahl
starte und eine ungerade Anzahl an Schritten nach rechts
gehe. Somit lande ich immer auf einer geraden Zahl.
Formalisierung der Form Die ungeraden Zahlen werden in der Form ,,2n +
-‘é A7 »on +1“ 1“dargestellt und die Addition dann als Termumformung
< 4 ausgefihrt.
_5 E AS Formalisierung der Form Die ungeraden Zahlen werden in der Form ,n + 1“, wobein
E -‘_ﬂ“ on+1 eine gerade Zahl ist, dargestellt und die Addition dann als
é £ Termumformung ausgefiihrt.
3 2 A9 Formalisierung der Form Die ungeraden Zahlen werden in der Form ,n“ dargestellt
< Jn+n=2n" und die Addition dann als Termumformung ausgefiihrt.

Tabelle 36: Vorgekommene Begriindungsarten bei der Argumentationsaufgabe ,Summe zweier ungerader Zahlen“

Die Ergebnisse bzgl. der verschiedenen Begriindungsarten werden in der Tabelle 37 und der

Abbildung 65 dargestellt.
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Art der Begriindung [%] — Eingangsbefragung (Alle und Subgruppen)

12,8% g19%  8,7%
Ml == =
197% 141% 14,1%
64% 6% 3,8%
_-_—___
. e .

(\? ‘.é}(‘ .\(\b

Alle (n=149)
181% 11,4% | 12,1% 16,1%  10,7%
2,7% 2% ' 1,3%
1 B B Bl e
Erstsemester (n=71)
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19,7% 12,7%
2,8% 2,8% 2,8% 2,8% 4,% %
Hohere Semester (n=78)
28,2%
20,5%
9% 10,3%
- B
‘(.1:.-" \.\‘-" ' be’ ‘Q Q“‘
< q}‘,& ‘;@o @‘{& o
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Pseudo EBegrﬁndung ohne Formal. Begriindung mit Formal.

Abbildung 65: Prozentuale Verteilung der Begriindungsarten in Aufgabe ,,Summe zweier ungerader Zahlen” (Alle und

Subgruppen)

Alle (n=149) Erstsemester (n=71) | Hohere Sem. (n=78)

[%] [%] [%]

n. b. | nicht bearbeitet 12,8 19,7 6,4

AO keine Begriindung 8,1 14,1 2,6

Al induktiv 8,7 14,1 3,8

Pseudo A2 Satz: Summe ungerade 14,1 19,7 9,0

A3 | falsch/irrelevant 11,4 12,7 10,3

Begriindungen A4 | Abstinde 12,1 2,8 20,5

ohne A5 | Endziffern 2,7 2,8 2,6

Formalisierung A6 | g & uwechseln ab 2,0 2,8 1,3

Begriindungen A7 | "2n+1" 16,1 2,8 28,2

mit A8 | "n+1" 10,7 4,0 12,8

Formalisierung A9 "n+n=2n" 1,3 0,0 2,6

Summe 100 100 100

Summe Begr. ,ohne Form.” [A4+A5+A6] 16,8 8,5 24,4

Summe Begr. ,mit Form.” [A7+A8+A9] 28,1 6,8 43,6

Tabelle 37: Prozentuale Verteilung der Begriindungsarten in der Aufgabe ,,Summe zweier ungerader Zahlen“ (Alle und

Subgruppen)

In der Gesamtgruppe wird am haufigsten eine Begriindung mithilfe einer Darstellung der Art ,,2n+1“

versucht ([A7]: 16,1%), der Anteil der Begriindungen mit Formalisierung liegt insgesamt bei 28,1%. In

der Subgruppe der Erstsemester ist auffallig, dass 19,7% der Studierenden die Begriindungsaufgabe

durch Nennung oder Paraphrase des Satzes beantworten, dass die Summe von zwei ungeraden

Zahlen immer gerade ist [A2]. Nur in 6,8% der Bearbeitungen dieser Subgruppe wird eine

Formalisierung vorgenommen, dabei am haufigsten in der Gestalt ,,n+1“ ([A8]: 4,0%). Betrachtet man

die Studierenden in einem hoheren Semester, so bearbeiten dagegen insgesamt 43,6% die Aufgabe

mithilfe einer Formalisierung; die Reprdsentation geschieht hierbei am haufigsten mithilfe einer

Darstellung der Art ,,2n+1“ (28,2%). Valide Begriindungen ohne Formalisierung werden vor allem bei
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den hoéheren Semestern verwendet; dabei ist am haufigsten die Begriindung Uber die Abstande zu
den geraden Zahlen ([A4]: 20,5%).

Die Erstsemesterstudierenden arbeiten statistisch signifikant weniger mithilfe einer Formalisierung
als die restlichen Studierenden (Chi?-Test; p<0,001; mittlere Effektstirke: Cramers V=0,377). In der
Subgruppe der Hoheren Semester verwenden die mannlichen Studierenden statistisch signifikant
haufiger eine Formalisierung als die weiblichen (Chi*>-Test, p=0,044; geringe Effektstirke: Cramers
V=0,236).

Merkmale Mathematikkurs®, einem

Mathematikwettbewerb” und ,Teilnahme an einem Vorkurs” lassen sich keine statistisch

Beziiglich der ,Schulischer ,Teilnahme an
signifikanten Zusammenhinge zu der Nutzung der Formalisierung nachweisen (Chi%-Test). Fur die
Gruppe der Erstsemester sind entsprechende Untersuchungen aufgrund des geringen Anteils von

Bearbeitungen mit Formalisierungen zu vernachlassigen.
Charakteristische Fehler im Umgang mit Variablen

Nach der Beschreibung der verschiedenen Arten, wie die Studierenden begriindet haben, wird im
folgenden Abschnitt der Frage nachgegangen, welche charakteristischen Fehler im Umgang mit
Variablen dabei auftauchen und wie haufig diese Fehler aufgetreten sind. Insgesamt konnten drei
verschiedene charakteristische Fehlertypen ausgemacht werden.

Fehlertyp (1): Bei der Formalisierung der Art ,2n + 1“ wird nur eine Buchstabenvariable verwendet,
um zwei beliebige ungerade Zahlen darzustellen.

Von den 24 Studierenden, die diesen Zugang wahlen, verwenden 14 (58,3%) nur eine
Buchstabenvariable, um zwei beliebige ungerade Zahlen darzustellen. In der Tabelle 38 werden die
Ergebnisse bzgl. der Gesamtgruppe und der Subgruppen dargestellt. Dieser Fehler wurde von beiden
Erstsemesterstudierenden begangen, die diese Reprasentation gewdhlt haben; bei den ,H6heren
Semestern”von 12 der 22 Studierenden.

p2n+1“ Alle Erstsemester Hohere Sem.
Haufigkeit der Begriindung (abs.) 24 2 22
Haufigkeit des Fehlertyps (abs.) 14 2 12
Haufigkeit des Fehlertyps [%] 58,3 100,00 54,5

Tabelle 38: Ergebnisse bzgl. des Fehlertyps (1) (Alle und Subgruppen)

Fehlertyp (2): Bei der Formalisierung der Art ,n+1“ wird nur eine Buchstabenvariable verwendet, um
zwei beliebige ungerade Zahlen darzustellen.

Von den 17 Studierenden, die die Reprasentation ,n + 1“ fir eine ungerade Zahl gewahlt haben,
verwenden 75,6% nur eine Buchstabenvariable; bei den Erstsemesterstudierenden liegt der Anteil
bei 57,1%, bei den Hoheren Semestern bei 80,0% (vgl. Tabelle 39).

n+1" Alle Erstsemester Hohere Sem.
Haufigkeit der Begriindung (abs.) 17 7 10
Haufigkeit des Fehlertyp (2) (abs.) 12 4 8
Haufigkeit des Fehlertyp (2) [%] 75,6 57,1 80,0
Haufigkeit des Fehlertyp (3) (abs.) 1 0 1
Haufigkeit des Fehlertyp (3) [%] 5,9 0 10,0

Tabelle 39: Ergebnisse bzgl. der Fehlertypen (2) (3) (Alle und Subgruppen)
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Fehlertyp (3): Bei der Formalisierung der Art ,n + 1“ wird die Buchstabenvariable nicht als gerade
Zahl definiert.

Dieser Fehler wird nur von einem Studierenden begangen, welcher in einem héheren Semester ist
(vgl. Tabelle 39). Alle anderen Studierenden mit diesem Zugang merken explizit an, dass die
verwendete Buchstabenvariable eine gerade Zahl reprasentieren soll.

7.2.4.2 Beweisbewertung zu Beginn der Lehrveranstaltung

In der Eingangsbefragung sollten die Studierenden bei vier konkreten ,Beweisen’ angeben, ob es sich
hierbei um ,richtige Beweise” handelt oder nicht. Die verwendeten Beweisbeispiele stammen aus
Healy und Hoyles (2000) und umfassen eine korrekte narrative Argumentation [,narrativ“], eine
induktive Begriindung (bloRe Betrachtung einzelner Beispiele) [, Beispiele”], eine formal dargestellte
falsche Begriindung [,formal & falsch”] und schlieflich die oben erwdhnte narrative Begriindung,
dargestellt mithilfe von Buchstabenvariablen [,korrekt mit Variablen“]. Die Beweisbeispiele wurden
Ubersetzt und mit entsprechenden Multiple-Choice-Antworten versehen (vgl. Abschnitt 3.3.2).
AnschlieBend sollten die Studierenden aus den vier ,Beweisen’ je einen aussuchen, der dem eigenen
Ansatz am nachsten kommt und der bei dem eigenen Mathematiklehrer in der Oberstufe die beste
Note bekommen hatte.

Beantwortung der Leitfrage zur Auswertung [17]: Welche Begriindungsformen (,narrativ und

korrekt”, ,,empirisch-induktiv”, ,formal und falsch”, ,korrekt mit Variablen”) werden von den
Studierenden zu Beginn der Lehrveranstaltung als ,richtiger Beweis” bewertet? Und:

a) Welche dieser Begriindungsformen kommt nach Angabe der Studierenden ihrem potentiellen
eigenen Ansatz am ndchsten?

b) Welche Begriindungsform hdtte nach Angabe der Studierenden durch ihren
Mathematiklehrer in der Oberstufe die beste Note erhalten?

c) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in ihrem
ersten Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Die relativen Haufigkeiten der Bewertungen als ,richtiger Beweis” werden in der Tabelle 40

dargestellt.
Alle Erstsemester Hohere Semester Signifikanzen der Unterschiede in Effektstarke
(n=149) [%] (n=71) [%] (n=78) [%] den Subgruppen (Chi-Test) (Cramers V)
narrativ 73,8 77,5 70,5
Beispiele 18,8 33,8 51 <0,001 0,377
formal & falsch 29,5 32,4 26,9 — —
korrekt mit Var. 89,3 80,3 97,4 0,002 0,256

Tabelle 40: Relative Haufigkeiten der Beweisbewertungen als , richtiger Beweis” (Alle und Subgruppen) und Signifikanzen
der Unterschiede in den Subgruppen mit Effektstarke

Es zeigte sich, dass die Mehrheit der Studierenden korrekte Beweise als solche erkennt, wobei ein
narrativ gefiihrter Beweis statistisch hoch signifikant auf dem 0,1%-Niveau weniger als ,richtiger
Beweis” bewertet wird (73,8%) als die gleiche Argumentation mithilfe von Buchstabenvariablen
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(89,3%) (McNemar-Test, p<0,001; odds ratio®=0,65). BloRe Beispielbetrachtungen werden zu Beginn
der Lehrveranstaltung von 18,8% der Studierenden als ,richtiger Beweis” bewertet, wobei der
Bewertungsunterschied zwischen den Erstsemestern (33,8%) und den ,Hoheren Semestern’ (5,1%)
statistisch hoch signifikant auf dem 0,1%-Niveau ist (Chi®-Test; p<0,001; mittlere Effektstérke:
Cramers V=0,377).

Im Eingangstest zeigt sich hier, dass die Erstsemesterstudierenden mit einer Vorpragung an die
Universitdit kommen, mit der gut ein Drittel blofSe Beispieliiberprifungen als richtigen Beweis
bewertet®. Es lasst sich allerdings vermuten, dass durch die Ausbildung und Sozialisation an der
Universitdt diese Fehlvorstellung abnimmt (siehe die Ergebnisse der ,Hoéheren Semester”).
Beachtenswert ist schlieRlich die durchaus hohe Akzeptanzrate der formal-dargestellten und falschen
Begriindung (,formal & falsch”), diese wird von beiden Subgruppen von ca. 30% der Studierenden als
richtiger Beweis gewertet. Die Akzeptanz der falschen und formal dargestellten Argumentation als
richtiger Beweis von knapp einem Drittel der Studierenden kann dahin interpretiert werden, dass
hier ein Beweisverstandnis vorliegt, welches durch Oberflachenmerkmale gepragt sein kénnte. Auch
kann ein Grund fiir die Bewertungen als ,richtiger Beweis” darin liegen, dass die hier vorkommenden
algebraischen Regeln und Potenzgesetze von den Studierenden nicht ausreichend beherrscht
werden, um die fehlerhaften Umformungen (iberhaupt zu bemerken. Dass sich die Werte beziiglich
der Akzeptanz dieser Argumentation in den Subgruppen nicht unterscheiden, spricht dafiir, dass
entsprechend Probleme und/oder Fehlvorstellung persistent sind.

Die Ndahe zum eigenen Ansatz und beste Note durch den Mathematiklehrer

Die relativen Haufigkeiten der Beweiswahl fiir die grolRte Nahe zum eigenen Ansatz und fiir die beste
Note durch den Mathematiklehrer in der Oberstufe werden in der Tabelle 41 dargestellt.

Ndhe zum eigenen Ansatz beste Note durch Mathematiklehrer
alle Erstsemester Hohere Sem. alle Erstsemester Hohere Sem.
(n=139) (n=64) (n=75) (n=149) (n=65) (n=74)
narrativ 33,8 32,8 34,7 7,9 9,2 6,8
Beispiele 10,1 15,6 5,3 0,7 0,0 1,4
formal & falsch 11,5 15,6 8,0 7,9 7,7 8,1
korrekt mit Var. 44,6 35,9 52 83,5 83,1 83,8

Tabelle 41: Prozentuale Verteilungen der Beweiswahl fiir die gr68te Ndhe zum eigenen Ansatz und fiir die beste Note
durch den Mathematiklehrer in der Oberstufe (Alle und Subgruppen)

® Im Rahmen dieser Arbeit wird als MaR fiir die Effektstérke bei einem McNemar-Test das Quotenverhiltnis
,0dds Ratio” verwendet. Das Quotenverhaltnis ,,odds ratio” nimmt Werte zwischen 0 und o an und beschreibt
das Verhaltnis der Verdnderungen bzw. Gegensatze (,,odds”) (vgl. O’Brian 2002). Der hier vorliegende Wert von
0,65 bedeutet etwa, dass 0,65-mal so viele Studierende einen narrativen Beweis als ,,richtigen Beweis”
bewerten und den korrekten Beweis mit Variablen als , keinen richtigen Beweis”, als umgekehrt.

®7 Durch einen Abgleich der Daten mit der Begriindungsaufgabe ,,Summe zweier ungerader Zahlen” lassen sich
weitere Erkenntnisse gewinnen: Von den 13 Studierenden, die in ihrer Begriindung bloRe
Beispieliberprifungen angaben (Abschnitt 7.2.4.1), werteten vier Erstsemesterstudierende in der
Bewertungsaufgabe die bloRen Beispiele als ,richtigen Beweis”. Es kann vermutet werden, dass bei diesen vier
Studierenden eine Fehlvorstellung bzgl. der Akzeptanz von bloRen empirischen Uberpriifungen als korrekter
Beweis vorliegt. Interessanterweise wahlte von diesen vier Studierenden aber niemand den empirischen Ansatz
als denjenigen aus, der der eigenen Herangehensweise am nachsten kommt.
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Als Begrindungsform mit der groBten Nahe zum eigenen Ansatz wird am haufigsten die korrekte
Begriindung mit Variablen gewahlt. Interessant erscheint dabei der Unterschied in den Subgruppen:
Wadhrend in den héheren Semestern die korrekte Begriindung mit Variablen mit 52% deutlich der
narrativen Begriindung (34,7%) vorgezogen wird, liegt bei den Erstsemesterstudierenden kein
nennenswerter Unterscheid vor. Insgesamt werden die bloBen Beispielbetrachtungen und die
formale und falsche Begriindung bzgl. der Nahe zum eigenen Ansatz nur von wenigen Studierenden
ausgewahlt.

Als ,Beweis’ fiir die vermeintlich beste Note durch den Mathematiklehrer wird am haufigsten die
korrekte Argumentation mit Variablen (83,5%) gewahlt. An dieser Stelle sei betont, dass sich diese
Begriindung von der narrativen (hier nur von 7,9% gewadbhlt) nicht inhaltlich, sondern nur in der Art
ihrer Darstellung unterscheidet. Es scheint hierbei also die Darstellung des Beweises (unter Einbezug
von Buchstabenvariablen) fir die Auswahl der Studierenden ausschlaggebend zu sein. Der geringe
Anteil an bloRen Beispielbetrachtungen bei der Auswahl der Argumentation fiir die beste Note kann
dahin gedeutet werden, dass den Studierenden bewusst ist, dass in der Schule bloRe empirische
Uberpriifungen nicht als giiltiger Beweis gegolten haben.

Im Vergleich der Begriindungsbewertungen der Studierenden bzgl. der Ndhe zum eigenen Ansatz und
der besten Note durch den Mathematiklehrer der Oberstufe wird deutlich, dass hier ein Unterschied
zwischen der eigenen Herangehensweise und vermuteten externen Anspriichen zu bestehen scheint.
Wahrend die Studierenden etwa zu einem Drittel angeben, dass die narrative Begriindung ihrem
eigenen Ansatz am nachsten komme, liegt der Prozentsatz der Auswahl dieser Beweisform fiir die
vermeintlich beste Note bei unter 10%. Der Unterschied der Anteile der Begriindungswahl fiir den
eigenen Ansatz und fir die beste Note durch den Mathematiklehrer ist im Fall der narrativen
Begriindung (33,8% und 7,9%; McNemar-Test, p<0,001 mit odds ratio=5,876) und der korrekten
Begriindung mit Variablen (44,6% und 83,5%; McNemar-Test, p<0,001 mit odds ratio=0,150)
statistisch hoch signifikant auf dem 0,1%-Niveau.

Der Grof3teil der Studierenden scheint sich darin einig zu sein, dass die korrekte Begriindung mit
Variablen durch ihren Mathematiklehrer in der Oberstufe die beste Note erhalten hatte.

7.2.4.3 Beweisbewertung und Beweisakzeptanz zu Beginn der Lehrveranstaltung

Fir die Erfassung der Beweisakzeptanz sollten die Studierenden vier vorgelegte Beweise (einen
generischen Beweis mit Zahlen, einen generischen Beweis mit Punktmustern, einen
Punktmusterbeweis mit geometrischen Variablen und einen formalen Beweis) anhand der unten
aufgefiihrten Aussagen auf einer sechsstufigen Likert-Skala ([1] stimme (iberhaupt nicht zu ... [6]
stimme voll zu) bewerten (s. Tabelle 42). Die zu bewertenden konkreten Beweisprodukte wurden in
Abschnitt 3.3.3 vorgestellt; dort wurde auch das Problem erortert, dass die unterschiedlichen
Behauptungen zu den jeweiligen Beweisen die Akzeptanzurteile der Studierenden beeinflusst haben
kénnten.
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Formulierung Abkiirzung

... zeigt, dass die Behauptung in allen moglichen Féllen wahr ist. ,wahr”

... Uberzeugt mich, dass die Behauptung wahr ist. ,uberz”

... zeigt, dass die Behauptung hundertprozentig fir alle Zeiten wahr ist. ,100proz”

... erklart mir, warum die Behauptung korrekt ist. Lerklar”

... ist ein korrekter und glltiger Beweis. ,korr_Beweis”
... zeigt die Behauptung lediglich fiir einzelne Beispiele, aber nicht allgemein. ,Bsp”

... ist nicht allgemeingiiltig, da es immer noch Gegenbeispiele geben konnte. ,Gegenbsp”

... besteht nur aus der Uberpriifung einzelner Fille, ist aber keine allgemeine Begriindung. »einz_Falle”

... ist ohne die Verwendung von Buchstabenvariablen nicht allgemeingiiltig. ,Buchstabenvar”
... musste formaler dargestellt sein, um mich voll zu iberzeugen. ,formaler”

Tabelle 42: Die zur Erfassung der Beweisakzeptanz zu bewertenden Aussagen

Beantwortung der Leitfrage zur Auswertung [18]: Wie bewerten die Studierenden die vier
Beweisformen der Lehrveranstaltung zu Beginn der Lehrveranstaltung in Bezug auf die Aspekte
Sicherung der Giiltigkeit, subjektive Uberzeugung, Erklérungspotential und Allgemeingiiltigkeit? Und:

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Bewertung des generischen Beweises mit Zahlen

Die statistischen Daten bzgl. der Akzeptanzitems zum generischen Beweis mit Zahlen werden in der
Tabelle 43 fir die Gesamtgruppe und die Subgruppen angegeben. Die Mediane zu den einzelnen
Iltems werden fiir die Subgruppen zusatzlich in der Abbildung 66 dargestellt.

Insgesamt betrachtet, bewerten die Studierenden den generischen Beweis mit Zahlen eher als eine
Uberpriifung einzelner Beispiele und nicht als eine allgemeingiiltige Begriindung. Die Sicherung der
Gultigkeit der Behauptung (,,GenZ_100proz“) wird mit einem Median von 1 stark abgelehnt, wobei
die Uberzeugungskraft und die Erkldrungsqualitit mit einem Median von 4 eher zustimmend
bewertet werden. Trotz der Zustimmung bzgl. dieser Aspekte wird der generische Beweis mit Zahlen
nicht als korrekter und giltiger Beweis betrachtet (,GenZ_korr_Beweis”, Median: 2). Diese
Beweisform wird von den Studierenden eher als Uberpriifung einzelner konkreter Beispiele
interpretiert (,,GenZ_Bsp“ und , GenZ_einz_Félle”: Median 5), weswegen die Moglichkeit der Existenz
eines Gegenbeispiels noch gesehen wird (,GenZ_Gegenbeisp”: Median 5). Auch wird den Aspekten
zugestimmt, dass der Gebrauch von Buchstabenvariablen bzw. eine formalere Darstellung die
Allgemeingiiltigkeit bzw. die  Uberzeugungskraft des Beweises verbessern wiirden
(,GenZ_Buchstabenvar” und ,GenZ_formaler”, Median: 5).
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Akzeptanz als Beweis Interpretation als singuldre Beispielpriifung
GenZ_ wahr | iiberz | 100proz | erkldr | korr_Bew | Bsp Gegen- | einz_Fille | Buchstaben- | formaler
bsp var
Alle
n 145 145 147 147 147 148 147 147 146 147
M 3,08 3,41 2,01 3,74 2,66 4,51 4,22 4,86 4,32 4,59
Median | 3,00 4,00 1,00 4,00 2,00 5,00 4,00 5,00 5,00 5,00
SD 1,797 1,656 1,397 1,508 1,585 1,744 1,690 1,448 1,733 1,583
Erstsemester
n 68 68 70 70 70 71 70 70 70 70
M 3,10 3,49 1,97 3,74 2,81 4,39 4,10 4,91 4,47 4,69
Median 2,00 4,00 1,00 4,00 3,00 5,00 4,00 5,00 5,00 5,00
SD 1,694 1,634 1,262 1,431 1,427 1,719 1,625 1,294 1,481 1,450
Hohere Semester
n 77 77 77 77 77 77 77 77 76 77
M 3,06 3,34 2,04 3,74 2,52 4,62 4,32 4,81 4,17 4,49
Median | 3,00 3,50 1,00 4,00 2,00 5,00 5,00 6,00 5,00 5,00
SD 1,894 1,683 1,517 1,584 1,714 1,770 1,751 1,581 1,935 1,698

Tabelle 43: Statistische Daten zu den Akzeptanzitems zum generischen Beweis mit Zahlen (Alle und Subgruppen)
([1] ,,stimme Gberhaupt nicht zu“ ... [6] ,,stimme voll zu®)

Mediane bzgl. der Akzeptanzitems zum generischen Beweis
mit Zahlen (Subgruppen)
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Abbildung 66: Mediane bzgl. der Akzeptanzitems zum generischen
Beweis mit Zahlen (Subgruppen) ([1] ,,stimme {iberhaupt nicht zu“
... [6] ,,stimme voll zu“)

zoadoo
JeAuaqejsyong

Bei der Betrachtung der Subgruppen sind insgesamt keine groRen Unterschiede auszumachen und
auch die Medianunterschiede zwischen diesen Gruppen sind nicht statistisch signifikant (Mann-
Whitney-U-Test®®).

Bewertung des generischen Beweises mit Punktmustern

Im Gegensatz zum generischen Beweis mit Zahlen wird beim generischen Beweis mit Punktmuster
eher zugestimmt, dass aufgrund dieses Beweises die Behauptung wahr sein muss (,GenP_wahr*,
Median: 4; vgl. Tabelle 44 und Abbildung 67). Mit einem Median von 5 wird auch einer geleisteten
Uberzeugung (,GenP_uberz“) und Erkldrung (,GenP_erkldr”) zugestimmt, die Verifikation aber eher
abgelehnt (,,GenP_100pro”“, Median: 2). Insgesamt wird diese Beweisform mit einem Median von 5
als korrekter und giiltiger Beweis bewertet (,GenP_korr_Beweis”). Doch auch bei diesem
generischen Beweis wird die Begriindung eher als singuliare Uberpriifung einzelner Beispiele gesehen

® |m Rahmen des siebten Kapitels werden im Zuge der durchgefiihrten statistischen Tests alle P-Werte
angegeben, die kleiner-gleich als 0,1 sind. Sollten P-Werte nicht angegeben werden, so bedeutet dies folglich,
dass der entsprechende Wert tiber 0,1 liegt.
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(,GenP_Bsp“, ,,GenP_einz_Falle”), wodurch die Existenz eines Gegenbeispiels nicht ausgeschlossen
werden kann (,GenP_Gegenbsp“, Median: 4). Die Bewertungen bzgl. des Wunsches nach
Buchstabenvariablen fiir eine Verbesserung der Allgemeingiiltigkeit und einer insgesamt formaleren
Darstellung lassen mit den Medianen von 3 und 4 keine klare Tendenz erkennen.

Der generische Beweis mit Punktmustern wird bzgl. der positiven Akzeptanzaspekte (,zeigt, dass die
Behauptung in allen moglichen Fallen wahr ist”, ,lGberzeugt mich, dass die Behauptung wahr ist”,
»Zeigt, dass die Behauptung hundertprozentig fur alle Zeiten wahr ist”, ,erklart mir, warum die
Behauptung korrekt ist, ist ein korrekter und giiltiger Beweis”) statistisch hoch signifikant auf dem
0,1%-Niveau besser bewertet als der generische Beweis mit Zahlen (Wilcoxon-Test, p<0,001).

Akzeptanz als Beweis Interpretation als singuldre Beispielpriifung
GenP_ wahr liberz | 100proz | erkldr | korr_Bew Bsp Gegen- | einz_Fille | Buchstaben- | formaler
bsp var
Alle
n 146 146 146 145 146 147 146 146 146 145
M 4,01 4,25 2,79 4,39 3,42 3,68 3,57 4,09 3,54 4,00
Median 4,00 5,00 2,00 5,00 3,00 4,00 4,00 4,00 3,50 4,00
SD 1,700 1,503 1,631 1,356 1,548 1,771 1,714 1,588 1,702 1,646
Erstsemester
n 68 68 68 68 68 69 68 68 68 67
M 4,26 4,38 2,91 4,40 3,44 3,77 3,54 4,07 3,43 3,81
Median | 5,00 5,00 3,00 5,00 3,00 4,00 4,00 4,00 3,00 4,00
SD 1,482 1,425 1,590 1,317 1,429 1,783 1,670 1,605 1,548 1,617
Hohere Semester
n 78 78 78 77 78 78 78 78 78 78
M 3,78 4,14 2,69 4,39 3,40 3,60 3,59 4,10 3,64 4,17
Median 4,00 4,00 2,00 5,00 3,00 4,00 4,00 4,00 4,00 4,00
SD 1,849 1,569 1,669 1,397 1,654 1,768 1,761 1,584 1,830 1,663

Tabelle 44: Statistische Daten zu den Akzeptanzitems zum generischen Beweis mit Punktmustern (Alle und Subgruppen)
([1] ,,stimme Gberhaupt nicht zu“ ... [6] ,,stimme voll zu®)

Mediane bzgl. der Akzeptanzitems zum generischen Beweis
mit Punktmustern (Subgruppen)
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g9 2 Abbildung 67: Mediane bzgl. der Akzeptanzitems zum
© '§ |: ;:" generischen Beweis mit Punktmuster (Subgruppen)
§ = s.f. ([1] ,,stimme Gberhaupt nicht zu“ ... [6] ,,stimme voll zu®)
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In den Subgruppen sind die Medianunterschiede in den einzelnen Items nicht statistisch signifikant
(Mann-Whitney-U-Test).
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Bewertung des Beweises mit geometrischen Variablen

Die statistischen Daten bzgl. der Akzeptanzitems zum Beweis mit geometrischen Variablen werden in
der Tabelle 45 fiir die Gesamtgruppe und die Subgruppen angegeben. Die Mediane zu den einzelnen
Items werden fir die Subgruppen zusatzlich in der Abbildung 68 dargestellt.

Fiir die Studierenden wird durch den Beweis mit geometrischen Variablen eher nicht gezeigt, dass
aufgrund dieses Beweises die Behauptung wahr sein muss (,GV_wahr”, Median: 4). Auch die Aspekte
Uberzeugung (,GV_uberz“: Median: 3), Verifikation (GV_100proz: Median: 2), Erkldrung und
Betrachtung als korrekter und giltiger Beweis (Mediane: 2) werden eher abgelehnt. Diese
Beweisform wird von den Studierenden eher als singuldre Uberpriifung einzelner Beispiele gesehen
(,GV_Bsp“, ,GV_einz_Falle“, Median: 4) wodurch die Existenz eines Gegenbeispiels nicht
ausgeschlossen werden kann (,,GV_Gegenbsp“, Median: 4). Eine formalere Darstellung des Beweises
wird von der Mehrheit der Studierenden gefordert (,,GV_formaler”, Median: 5).

Akzeptanz als Beweis Interpretation als singuldre Beispielpriifung
V- wahr | iiberz | 100proz | erkldr | korr_Bew | Bsp Gegen- | einz_Fille | Buchstaben- | formaler
bsp var
Alle

n 137 138 137 138 137 135 137 135 137 136

M 3,08 3,02 2,48 2,96 2,82 3,74 3,88 3,97 3,83 4,56
Median | 3,00 3,00 2,00 3,00 3,00 4,00 4,00 4,00 4,00 5,00
SD 1,815 1,672 1,558 1,736 1,554 1,723 1,667 1,607 1,692 1,504

Erstsemester

n 64 65 64 65 64 62 64 63 64 63

M 2,97 2,78 2,47 2,72 2,73 3,87 3,98 4,16 4,08 4,78
Median 2,00 3,00 2,00 3,00 3,00 4,00 4,00 4,00 4,00 5,00
SD 1,773 1,474 1,490 1,556 1,394 1,563 1,558 1,450 1,567 1,288

Hohere Semester

n 73 73 73 73 73 73 73 72 73 73

M 3,18 3,23 2,49 3,18 2,89 3,63 3,79 3,81 3,62 4,37
Median | 3,00 3,00 2,00 3,00 3,00 4,00 4,00 4,00 3,00 5,00
SD 1,858 1,814 1,626 1,866 1,688 1,852 1,764 1,725 1,777 1,654

Tabelle 45: Statistische Daten zu den Akzeptanzitems zum Beweis mit geometrischen Variablen (Alle und Subgruppen)
([1] ,,stimme Gberhaupt nicht zu“ ... [6] ,,stimme voll zu®)

Mediane bzgl. der Akzeptanzitems zum Beweis mit ...
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In den Subgruppen sind die Medianunterschiede in den einzelnen Items nicht statistisch signifikant
(Mann-Whitney-U-Test).
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Bewertung des formalen Beweises

Zu Beginn der Lehrveranstaltung wird beim formalen Beweis von der groRen Mehrheit der
Studierenden bzgl. der Aspekte ,zeigt, dass die Behauptung wahr ist, ,,Uberzeugung”, , Verifikation“
und ,korrekter und giltiger Beweis” zugestimmt (vgl. Tabelle 46 und Abbildung 69). Entsprechend
diesen Zustimmungen, wird die Beweisform nicht als Uberpriifung einzelner Beispiele
fehlinterpretiert (,FB_Bsp“ und ,FB_einz_Fille”, Median: 1) und auch die Existenz moglicher
Gegenbeispiele wird ausgeschlossen (,,FB_Gegenbeisp”, Median: 1).

Alle positiven Akzeptanzaspekte werden beim formalen Beweis im Mittel statistisch hoch signifikant
héher bewertet als bei den anderen drei Beweisformen (Wilcoxon-Test, p<0,001).

Akzeptanz als Beweis Interpretation als singuldre
FB_ Beispielpriifung
wahr tiberz | 100proz | erkldr | korr_Bew Bsp Gegen- | einz_Fille
bsp
Alle
n 145 145 145 145 145 145 145 145
M 5,46 5,48 4,88 5,34 5,39 1,57 1,72 1,76
Median 6,00 6,00 5,00 6,00 6,00 1,00 1,00 1,00
SD 0,93 0,92 1,34 1,09 1,06 1,05 1,08 1,23
Erstsemester
n 67 67 67 67 67 67 67 67
M 5,19 5,24 4,54 5,16 5,18 1,85 2,04 1,94
Median 6,00 6,00 5,00 6,00 6,00 1,00 2,00 2,00
SD 1,15 1,09 1,32 1,20 1,18 1,21 1,17 1,22
Hohere Semester
n 78 78 78 78 78 78 78 78
M 5,69 5,68 5,18 5,49 5,58 1,32 1,45 1,60
Median 6,00 6,00 6,00 6,00 6,00 1,00 1,00 1,00
SD 0,61 0,69 1,29 0,96 0,91 0,83 0,91 1,22

Tabelle 46: Statistische Daten zu den Akzeptanzitems beim formalen Beweis (Alle und Subgruppen)
([1] ,,stimme Gberhaupt nicht zu“ ... [6] ,,stimme voll zu®)

Mediane bzgl. der Akzeptanzitems zum formalen Beweis
(Subgruppen)
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Bei der Betrachtung der Ergebnisse der Subgruppen ist auffdllig, dass bei den
Erstsemesterstudierenden die Standardabweichungen bzgl. der verschiedenen Items hoher ausfallen,
diese Studierenden also weniger haufig den Aussagen vollstandig zustimmen bzw. sie nicht in dem
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Male ablehnen wie die hoheren Semester. Bei den Studierenden in einem hoheren Semester zeigen
sich hier somit deutlichere Positionen.

Ergebnisse zur ,Beweisakzeptanz’

Fir die Erfassung der ,Beweisakzeptanz’ wurde zu jeder der vier Beweisarten durch
Mittelwertbildung der Werte der oben aufgefiihrten Items (1)—(8) (bei entsprechender Umpolung
der negativ formulierten ltems (6)—(8)) eine Skala zur Beweisakzeptanz konstruiert. Die Kennwerte
der konstruierten Skalen zur Beweisakzeptanz werden in der Tabelle 47 dargestellt. Bei den vier
Skalen sind in der Gesamtgruppe und den Subgruppen die Reliabilitdtswerte durchgehend sehr hoch
(Cronbachs Alpha>0,835) und die korrigierten Trennscharfen der Items sind mit einer Ausnahme in
einem guten bis sehr guten Bereich (Spannweite r; > 0,536).

Kennwerte | Akz_GenZ | Akz_GenP | Akz_GV | Akz_FB
Alle
n 146 147 138 145
M 2,77 3,53 2,98 5,31
SD 1,22 1,30 1,29 0,88
Cronbachs Alpha 0,891 0,906 0,896 0,922
Spannweite r;; 0,536-0,781 0,660 - 0,766 0,574-0,758 0,679 - 0,804
Erstsemester
n 69 69 65 67
M 2,80 3,55 2,86 5,04
SD 1,13 1,33 1,12 0,95
Cronbachs Alpha 0,868 0,917 0,835 0,912
Spannweite r; 0,496 - 0,769 0,602 - 0,777 0,253 -0,670 0,613 -0,810
Hohere Semester
n 77 78 73 78
M 2,74 3,51 3,09 5,53
SD 1,31 1,29 1,425 0,77
Cronbachs Alpha 0,905 0,899 0,922 0,922
Spannweite r; 0,524 - 0,800 0,575-0,773 0,676 - 0,816 0,596 - 0,864

Tabelle 47: Kennwerte der Skalen zur Beweisakzeptanz in der Eingangsbefragung (Alle und Subgruppen) [,,Akz_GenZ“:
Akzeptanzskala zum generischen Beweise mit Zahlen, ,,Akz_GenP*“: Akzeptanzskala zum generischen Beweise mit
Punktmustern, ,,Akz_GV*“: Akzeptanzskala zum Beweise mit geometrischen Variablen, ,,Akz_FB“: Akzeptanzskala zum
formalen Beweis]

Beantwortung der Leitfrage zur Auswertung [19]: Wie ldsst sich die Beweisakzeptanz der
Studierenden zu den vier Beweisformen der Lehrveranstaltung zu Beginn der Lehrveranstaltung (bzw.
zu Beginn ihres Studiums) beschreiben? Und:

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Durch Mittelwertbildung der verwendeten Items fiir die Bewertung der Aspekte ,Sicherung der
Giltigkeit’, ,Uberzeugung’, ,Erklarungsqualitit’ und ,Allgemeingiiltig’ konnten fiir die vier
verschiedenen Beweisformen der Lehrveranstaltung reliable Skalen konstruiert werden (s. 0.).

Die Ergebnisse bzgl. der Beweisakzeptanz der Studierenden in Bezug auf die vier Beweisformen der
Lehrveranstaltung werden in der Tabelle 47 angegeben. Betrachtet man die Verteilungen der
einzelnen Skalenwerte, so ist zunachst der Unterschied der Mittelwerte zwischen dem formalen
Beweis und den anderen drei Beweisformen auffillig (s. Tabelle 47 und Abbildung 70). Wahrend der
formale Beweis von der Gesamtgruppe sehr hohe Akzeptanzwerte erhdlt (M: 5,31 mit einer
Standardabweichung von 0,88), erreichen die restlichen Beweisformen statistisch signifikant
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Abbildung 70: Boxplots zu den Akzeptanzskalen in der Eingangsbefragung (links: Alle, rechts: Subgruppen)

niedrigere Werte. Alle Mittelwertunterschiede zwischen den vier Akzeptanzskalen sind in der
Gesamtgruppe paarweise statistisch hoch signifikant auf dem 0,1%-Niveau (t-Test, p<0,001) mit
Ausnahme des Mittelwertunterschieds zwischen der Akzeptanz des generischen Beweises mit Zahlen
und dem Beweis mit geometrischen Variablen. In der Tabelle 48 werden die Signifikanzwerte und
Effektstarken der paarweisen Mittelwertunterschiede der Akzeptanzskalen fiir die Gesamtgruppe
angegeben (t-Test).

Akz_GenZ (M=2,77) | Akz_GenP (M=3,53) Akz_GV (M=2,98) Akz_FB (M=5,31)

Akz_GenZ p<0,001 p=0,123 p<0,001
(M=2,77) Cohens d=0,62 Cohens d=2,48
Akz_GenP p<0,001 p<0,001 p<0,001
(M=3,53) Cohens d=0,62 Cohens d=0,41 Cohens d=1,58

Akz_GV 0=0,123 p<0,001 p<0,001
(M=2,98) Cohens d=0,41 Cohens d=2,1

Akz_FB p<0,001 p<0,001 p<0,001

(M=5,31) Cohens d=2,48 Cohens d=1,58 Cohens d=2,1

Tabelle 48: Signifikanzwerte und Effektstarke der Mittelwertunterschiede bzgl. der Akzeptanzskalen in der
Gesamtgruppe in der Eingangsbefragung (t-Test; Effektstirke: Cohens d69)

In der Gesamtgruppe liegt zwischen den Akzeptanzskalen zu den beiden generischen Beweisen eine
statistisch signifikante Korrelation auf dem 1%-Niveau vor (p=0,005), welche allerdings mit r=0,180
sehr gering ausfdllt. Dieses Ergebnis koénnte dahingehend interpretiert werden, dass eine

Ubergreifende Beweisakzeptanz zu generischen Beweisen ausgemacht werden kdnnte.

Bei der Betrachtung der Subgruppen erscheinen die dhnlichen Ergebnisse aufgrund der bis dato
stattgefundenen unterschiedlichen mathematischen Sozialisation bemerkenswert (vgl. Tabelle 47
und Abbildung 70). Nur der Mittelwertunterschied der Akzeptanzskala zum formalen Beweis
zwischen den Erstsemesterstudierenden (5,05) und den ,Hoheren Semestern‘ (5,53) ist bei mittlerer
Effektstarke statistisch hoch signifikant auf dem 0,1%-Niveau (t-Test, p<0,001 mit Cohens d=0,56).

% Fir Cohens d gelten die folgenden Bewertungen: 0,2 < d < 0,5:, kleine Effektstarke”, 0,5 < d < 0,8:
»mittlere Effektstarke” und 0,8 < d: ,starke Effektstarke” (vgl. Cohen 1992, S. 157).
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Bei den ,HOoheren Semestern’ liegt folglich eine signifikant héhere Akzeptanz bzgl. des formalen
Beweises vor.

In der Subgruppe der Erstsemesterstudierenden korreliert die Akzeptanz des generischen Beweises
mit Zahlen schwach negativ mit der Akzeptanz des formalen Beweises (r,=-0,273, p<0,005). Hier
scheint die Akzeptanz der einen Beweisform (i. S. einer Beweispraferenz) der Akzeptanz der anderen
entgegenzuwirken.

In der Gesamtgruppe wie auch innerhalb der Subgruppen (,Erstsemester’ und ,Hohere Semester’)
lassen sich unter der Beriicksichtigung der Merkmale ,,Geschlecht”, ,Schulischer Mathematikkurs®,
,Teilnahme an einem Mathematikwettbewerb” und , Teilnahme an einem Mathematikvorkurs” keine
statistisch signifikanten Unterschiede bzgl. der Mittelwerte der Akzeptanzskalen der vier
Beweisformen ausmachen (t-Test). Auch zwischen den Merkmalen , Abiturnote” und ,Schulische
Mathematiknote” und den vier Akzeptanzskalen werden keine statistisch signifikanten
Zusammenhange deutlich.

Flr die Beantwortung der Forschungsfrage [3] werden im Folgenden die erhaltenen Ergebnisse aus
Abschnitt 7.2.4. unter Berlicksichtigung der Leitfragen zur Auswertung 16-19 zusammenfassend
ausgewertet.

Beantwortung der Forschungsfrage [3]: Wie lassen sich die Kompetenzen der Studierenden im
Kontext der Thematik des ,Begriindens und Beweisens’ zu Beginn der Lehrveranstaltung beschreiben?

Bzgl. der Begriindungskompetenz wurde im Kontext der Begriindungsaufgabe ,Summe zweier
ungerader Zahlen” deutlich, dass nur 19,5% der Studierenden eine Begriindung formulierten, die als
vollstandig gewertet werden konnte. Wahrend 22,8% als ,,Argumentationen mit Liicke” kategorisiert
wurden, galten 25,5% der Bearbeitungen als Pseudobegriindungen (falsche Argumente oder
Nennung/Paraphrase des Satzes Uber die Summe zweier ungerader Zahlen). Rein empirisch-induktive
Begriindungen wurden dabei nur von 8,7% der Studierenden gegeben.

Bei der Bearbeitung dieser Aufgabe verwenden nur 28,1% der Studierenden eine Formalisierung des
Sachverhalts mit Buchstabenvariablen, wobei in etwa der Halfte der Falle der Fehler gemacht wird,
dass nur eine Buchstabenvariable verwendet wird, um zwei beliebige ungerade Zahlen zu
reprasentieren.

Diese eher schwachen Ergebnisse der Studierenden in Bezug auf die Konstruktion einer Begriindung
entsprechen den Berichten (iber die schlechten Argumentations- bzw. Beweiskompetenzen
deutscher Schiilerinnen und Schiiler. Mit dem vorliegenden Ergebnis konnte aufgezeigt werden, dass
auch die Begrindungskompetenz von Studienanfangerinnen und -anfingern als eher basal
betrachtet werden muss. Auch die Ergebnisse bzgl. des mangelhaften Umgangs von
Studienanfangerinnen und -anfangern mit Buchstabenvariablen entsprechen den Berichten in der
Literatur (etwa Ostsieker und Biehler 2012 und Trigueros & Ursini 2003).

Der hohe Anteil von Begriindungen ohne Nennung korrekter Argumente lasst sich dahingehend

deuten, dass die (Erstsemester-) Studierenden mit dieser Art von Aufgaben nicht vertraut sind. Diese

Befunde bestéatigen die Ergebnisse von Edwards (1998), der zehn Schiilerinnen und Schiilern einer

amerikanischen High School entsprechende Begriindungsaufgaben vorlegte. Nachdem zunéachst alle
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Probanden empirisch-induktive Begriindungen anfiihrten, konnten auch auf Nachfrage nur drei von
ihnen valide Argumente anfiihren. Keiner der Probanden verwendete in seiner Begriindung eine
algebraische Notation. Auch scheint ihnen die fachmathematische Symbolsprache nicht als
heuristisches Mittel zur Verfigung zu stehen. Bei der (seltenen) Verwendung von
Buchstabenvariablen wurde dagegen ein mangelhafter Umgang mit diesen auf Seiten der
Erstsemesterstudierenden deutlich, was den Berichten in der Literatur (etwa Ostsieker und Biehler
2012; Mingus 1999, S. 438; Trigueros & Ursini 2003) entspricht.

Im Kontext der Bewertung von Beweisen konnte gezeigt werden, dass die Mehrheit der
Studierenden korrekte Beweise als solche erkennt. Dabei wurde die korrekte Begriindung mithilfe
von Buchstabenvariablen von der Gesamtgruppe mit 89,3% statistisch hoch signifikant auf dem 0,1%-
Niveau haufiger als richtiger Beweis bewertet als die gleiche Begriindung in einer narrativen
Formulierung mit 73,8% (McNemar-Test; p<0,001). Hier scheint somit die Darstellung einer
Begriindung Auswirkungen auf die Beweisbewertung der Studierenden zu haben. Knapp ein Drittel
der Gesamtgruppe (29,5%) bewertet die formal dargestellte und falsche Begriindung als richtigen
Beweis, im Falle der rein empirisch-induktive Begriindung liegt die Quote noch bei 18,8%.

Wahrend bzgl. des eigenen Begriindungsansatzes die korrekte Begriindung mit Variablen von 44,6%
und die entsprechende narrative Begriindung von 33,8% der Studierenden ausgewahlt wird, meinen
83,5%, dass die Begriindung mit Variablen die beste Note durch ihren Mathematiklehrer in der
Oberstufe erhalten hatte. Somit wird auch hier deutlich, dass die Studierenden, aufgrund ihrer
schulmathematischen Sozialisation, das Beweisen mit der Nutzung von Buchstabenvariablen zu
verbinden scheinen.

Das Phanomen, dass formal dargestellte Begriindungen in einem hoheren Mal als korrekte Beweise
betrachtet werden, wurde von Reiss und Heinze (2000, S. 251f.) an deutschen Abiturientinnen und
Abiturienten aufgezeigt und konnte in dieser Studie fiir Erstsemesterstudierende bestatigt werden.
Healy und Hoyles (2000, S. 407) berichten in ihrer Studie von den groRen Diskrepanzen zwischen den
Begriindungen, die Schilerinnen und Schiler fir ihren eigenen Ansatz auswahlen, im Gegensatz zu
der Wahl fiir die vermeintlich beste Note. Die Autoren stellen folglich den Unterschied zwischen
eigenem Vorgehen der Lernenden und (vermuteten) externen Anspriichen heraus. In
abgeschwachter Form kann dieses Resultat hier fiir Studierende bestatigt werden: Wahrend die
korrekte narrative Begriindung mit 33,8% bzgl. der Ndhe zum eigenen Ansatz ausgewahlt wird, fallt
der Anteil von 7,9% als Auswahl fir die beste Note statistisch hoch signifikant auf 0,1%-Niveau
geringer aus (McNemar-Test, p<0,001). Genau anderes herum verhélt es sich fiir die korrekte
Begriindung mit Variablen: Wahrend 44,6% diese fiir die Nahe zum eigenen Ansatz auswadhlen, geben
83,5% an, dass diese Begriindung die beste Note durch den Lehrer erhalten hitte (McNemar-Test,
p<0,001).

In Bezug auf die Beweisakzeptanz konnte gezeigt werden, dass die Studierenden den generischen
Beweis mit Zahlen und den generischen Beweis mit Punktmustern eher als singuldre
BeispielUberprifung betrachten als eine allgemeingiiltige Begriindung. Wahrend die Studierenden
bei beiden generischen Beweisen der Uberzeugungskraft der Begriindung mit einem Median von 4
bzw. 5 (eher) zustimmen, werden auch die Aussagen hoch bewertet, die die Begriindung als
Uberpriifung einzelner Beispiele darstellen, weswegen auch weiterhin Gegenbeispiele zu der
(verifizierten) Behauptung existieren kénnten. Auch stimmen die Studierenden den Aussagen (eher)
zu, dass die Begriindung mit Buchstabenvariablen bzw. formaler dargestellt werden miisste, um voll
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zu Uberzeugen. Insgesamt betrachtet, erkennen bzw. akzeptieren die Studierenden somit eher nicht
das allgemeine generische Moment, dass in den konkreten Beispielbetrachtungen zum Ausdruck
kommt und zusatzlich verbalisiert wird, sondern missinterpretieren diese Beweisformen zu Beginn
der Lehrveranstaltung als singuldare Beispielliberprifungen. Die Aussage, dass es sich hierbei um
einen korrekten und giiltigen Beweis handelt, wird von den Studierenden mit einem Median von 2
bzw. 3 abgelehnt. In Bezug auf den Punktmusterbeweis mit geometrischen Variablen werden bei den
Studierenden keine klaren Positionen deutlich, die Mediane der einzelnen Items bewegen sich fast
ausschlieBlich in der Mitte der Skala. Wahrend die positiven Akzeptanzitems mit einem Median von 3
und 2 eher abgelehnt werden, wird den Aussagen bzgl. der konkreten EinzellUberprifungen mit
einem Median von 4 eher zugestimmt. Diese unklare Position der studentischen Bewertungen kann
dahingehend interpretiert werden, dass ihnen die Form der Darstellung mit ,geometrischen
Variablen’ bzw. diese Beweisform bisher nicht bekannt ist und sie Probleme damit haben, diese
Darstellung zu lesen bzw. zu interpretieren. Diese Interpretation wird durch das in Abschnitt 7.2.2
erhaltene Ergebnis gestilitzt, dass nur 5,7% der Studierenden angeben, dass ihnen diese
Begriindungsform bereits aus der Schule bekannt sei. Der formale Beweis wird von den Studierenden
bzgl. der Aspekte ,Sicherung der Giiltigkeit’, ,Uberzeugung’, ,Erkldrungsqualitit’ und
,Allgemeingiltigkeit’ mit einem Median von 5 bzw. 6 deutlich am hochsten bewertet. Folglich
stimmen die Studierenden der Aussage mit einem Median von 6 zu, dass dies ein korrekter und
glltiger Beweis sei.

Durch die Konstruktionen der Skalen zur ,Beweisakzeptanz’ wurde es auch moglich, die
studentischen Beweisakzeptanzen der vier Beweisformen direkt miteinander in Beziehung zu setzen.
Wahrend der generische Beweis mit Zahlen mit einem Mittelwert von 2,77 und der
Punktmusterbeweis mit geometrischen Variablen mit 2,98 eher niedrige Akzeptanzwerte erhalten,
wird der generische Beweis mit Punktmustern mit einem Mittelwert von 3,53 statistisch hoch
signifikant besser bewertet. Die hochste Akzeptanz erhalt der formale Beweis mit einem Mittelwert
von 5,31, der statistisch hoch signifikant Giber dem der anderen Beweisformen liegt.

Zusammenfassend kann fir den Bereich der Beweisakzeptanz formuliert werden, dass die
Studierenden zu Beginn der Lehrveranstaltung die generischen Beweise eher nicht als
allgemeingiiltige Begriindung verstanden, sondern als singulare Beispielliberprifung interpretierten.
Dementsprechend werden diese Beweisformen von den Studierenden auch eher nicht als (korrekte
und giiltige) Beweise betrachtet. In Bezug auf den Punktmusterbeweis mit geometrischen Variablen
kann vermutet werden, dass die Studierenden nicht mit dieser Art der Darstellung vertraut sind und
dementsprechend bzgl. der Beweisakzeptanz dieser Beweisform keine Interpretation der
empirischen Ergebnisse zuldssig erscheint. Dagegen scheint der formale Beweis fiir die Studierenden
als ,Prototyp’ eines korrekten und giiltigen mathematischen Beweises zu gelten, der in der Lage ist,
die Giiltigkeit der Behauptung sicher nachzuweisen und die Studierenden auch vollstandig zu
Uberzeugen. Diese Ergebnisse gelten sowohl fiir die Erstsemesterstudierenden wie auch fir die
Hoheren Semester.

Bzgl. der Akzeptanz generischer Beweise konnten somit insgesamt die Berichte aus der Literatur

bestatigt werden, dass narrativ gefiihrte Beweise mithilfe konkreter Beispiele von Studierenden

haufig nicht als allgemeingiiltig betrachtet werden (vgl. 2.4.2). Dabei scheint die Hypothese von

Dreyfus (2000) zuzutreffen, dass der Verzicht auf formale Elemente entsprechende

Fehleinschatzungen beglinstigen kann. In Bezug auf den schulischen Mathematikunterricht muss

somit die kritische Frage formuliert werden, inwiefern entsprechende Beweisprodukte bei den
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Schilerinnen und Schiilern zu der Ausbildung eines addquaten Beweisverstindnisses beitragen
kénnen, wenn diese von den Studierenden nicht als allgemeingiltige Begriindungen verstanden
werden?

a) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in ihrem
ersten Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Bzgl. der Begriindungskompetenz wurde im Rahmen der Aufgabe ,,Summe zweier ungerader Zahlen”
deutlich, dass die Begriindungen der Erstsemesterstudierenden statistisch signifikant schlechter
ausfallen als die der Studierenden in einem hoheren Semester: Der Unterschied bzgl. der Anteile
vollstandiger Argumentationen ist auf dem 1%-Niveau statistisch hoch signifikant bei schwacher
Effektstarke (Chi®-Test, p=0,005; Cramers V=0,231). Nur 9,9% der Erstsemester gelingt eine
,vollstandige Argumentation’ und 32,4% der Bearbeitungen mussten als ,Pseudoantworten’ gewertet
werden. Dagegen gelten 28,2% der Bearbeitungen der ,Hoheren Semester als vollstandig und nur
19,2% als ,Pseudoantworten’. Bei der Betrachtung der Bewertungen der Qualitdt der Begriindungen
als ordinalskalierte Daten zeigte sich, dass die Subgruppe der ,Hoheren Semester’ statistisch hoch
signifikant auf dem 1%-Niveau bessere Ergebnisse erzielt als die Erstsemester (Mann-Whitney-U-
Test, p=0,006; starke Effektstarke: Cohens d=0,98).

Dabei verwenden die Erstsemesterstudierenden seltener Buchstabenvariable in ihren Begriindungen
(6,8%) als die Hoheren Semester (43,6%); dieser Unterschied ist bei mittlerer Effektstdrke statistisch
hoch signifikant auf dem 0,1%-Niveau (Chi*>-Test; p<0,001; Cramers V=0,377). Von diesen neun
Studierenden im ersten Semester, die eine Formalisierung wahlen, nutzen nur zwei die
Repradsentation einer ungeraden Zahl der Form ,2n+1“, sieben dagegen die Form ,,n+1“. In sechs
dieser neun Falle wird nur eine Buchstabenvariable fiir die Reprasentation der beiden beliebigen
ungeraden Zahlen verwendet.

Bei der Bewertung von Beweisen konnte gezeigt werden, dass die ,Hoheren Semester’ mit 97,4%
haufiger die korrekte Begriindung mit Variablen als ,richtigen Beweis” bewerten als die Erstsemester
mit 80,3%; dieser Unterschied ist bei schwacher Effektstdrke statistisch signifikant auf dem 1%-
Niveau (Chi*>-Test; p=0,002; Cramers V=0,256). Leider kann an dieser Stelle nicht geklart werden,
warum dieser Unterschied bei der Eingangsbefragung auftritt. Interessant ist weiter, dass der Anteil
der Bewertung der rein empirisch-induktiven Begriindung als ,richtiger Beweis” bei den
Erstsemestern mit 33,8% statistisch hoch signifikant auf dem 0,1%-Niveau bei mittlerer Effektstarke
hoéher ausfillt, als bei den ,Hoheren Semestern’ mit 5,1% (Chi?>-Test; p<0,001; Cramers V=0,377).
Etwa ein Drittel der Studienanfangerinnen und -anfidnger betrachtet somit einzelne
BeispiellUberprifungen zu Beginn der Lehrveranstaltung als richtige Beweise.

Bei der Auswahl einer Begriindungsform mit der gréBten Nahe zum eigenen Ansatz zeigte sich ein
weiterer Unterschied zwischen den Subgruppen: Wahrend in den hoheren Semestern die korrekte
Begriindung mit Variablen mit 52% deutlich der narrativen Begriindung (34,7%) vorgezogen wird,
fallt dieser Unterschied bei den Erstsemesterstudierenden deutlich geringer aus: korrekte
Begriindung mit Variablen: 35,9% und narrative Begrindung: 32,8%. Folglich hat sich bei den
Hoheren Semestern bereits eine Hinwendung zur Verwendung von Buchstabenvariablen eingestellt.

Im Rahmen der erhobenen Beweisakzeptanzen konnte festgestellt werden, dass der

Mittelwertunterschied bzgl. der Akzeptanzskala zum formalen Beweis zwischen den Hoheren

Semestern mit 5,53 und den Erstsemestern mit 5,05 bei mittlerer Effektstdrke statistisch hoch
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signifikant auf dem 0,1%-Niveau ist (t-Test, p<0,001; Cohens d=0,56). In Bezug auf die anderen
Akzeptanzskalen und auch bei der Betrachtung der einzelnen Items konnten dagegen keine
(statistisch) signifikanten Subgruppenunterschiede ausgemacht werden.

7.2.5 Ergebnisse bzgl. der Einstellungen zum Themenkomplex des Beweisens und zur Mathematik

7.2.5.1 Einstellungen zum Beweisen in der Schule

In diesem Abschnitt werden die Ergebnisse zu den folgenden Themenbereichen aus der
Eingangsbefragung des Wintersemesters 2014/15 dargestellt: (i) die Einschatzung der Relevanz des
Unterrichtsgegenstands ,Beweis” fir verschiedene Schultypen und Schulstufen und (ii) die
Bewertung ,gangiger’ Griinde, warum Beweise im schulischen Mathematikunterricht eine eher
untergeordnete Rolle spielen sollten.

(i) Die Einschdatzung der Relevanz des Unterrichtsgegenstands ,Beweis” fiir verschiedene
Schultypen und Schulstufen

Die folgenden Aussagen sollten von den Studierenden auf einer sechsstufigen Likert-Skala ([1]
,Sstimmt gar nicht” ... [6] ,,stimmt vollig“) bewertet werden:

Formulierung Abkiirzung
In der Sekundarstufe 1 sollen Beweise im Mathematikunterricht behandelt werden. ,Bew_Sekl“
In der Sekundarstufe 2 sollen Beweise im Mathematikunterricht behandelt werden. ,Bew_Sek2“
In der Grundschule sollen Beweise im Mathematikunterricht behandelt werden. ,Bew_GS”
Beweise sollen im Mathematikunterricht der Hauptschule behandelt werden. ,Bew_HS“
Beweise sollen im Mathematikunterricht der Realschule behandelt werden. ,Bew_RS”
Beweise sollen im Mathematikunterricht auf dem Gymnasium behandelt werden. ,Bew_GY“

Tabelle 49: Items zur Erfassung der Einschdtzung der Relevanz des Unterrichtsgegenstands ,,Beweis” fiir verschiedene
Schultypen und Schulstufen

Beantwortung der Leitfrage zur Auswertung [20]: Wie bewerten die Studierenden die Relevanz des
Unterrichtsgegenstands ,Beweis” fiir verschiedene Schultypen und Schulstufen zu Beginn der
Lehrveranstaltung? Und:

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Die statistischen Daten bzgl. der verwendeten Items werden fir die Gesamtgruppe und die
Subgruppen in Tabelle 50 angegeben. Zusatzlich werden die Boxplots zu den Items fir die
Gesamtgruppe in Abbildung 72 und die Mediane bzgl. der Items fiir die Subgruppen in der Abbildung
73 dargestellt.

Nach Ansicht der Studierenden sollten Beweise eher in der Sekundarstufe 2 (Median: 6) als in der
Sekundarstufe 1 (Median: 4) eine Rolle spielen; hier ist der Medianunterschied statistisch hoch
signifikant auf dem 0,1%-Niveau bei starker Effektstdarke (Wilcoxon-Test, p<0,001; r7°:0,78). Eine

" Innerhalb der vorliegenden Arbeit wird als MaR fir die Effektstarke beim Wilcoxon-Test der
Korrelationskoeffizient (r) von Pearson verwendet. Fiir die Beurteilung der GroRRe der Effektstarken dient dabei
269




Behandlung von Beweisen in der Grundschule wird von den Studierenden insgesamt abgelehnt
(Median von 1),
verschiedenen Schulformen sind die Medianunterschiede paarweise statistisch hoch signifikant auf
dem 0,1%-Niveau bei starker Effektstarke (Wilcoxon-Test, p<0,001; r>0,68). Zwischen den
Subgruppen sind die einzelnen Medianunterschiede nicht statistisch signifikant (Mann-Whitney-U-
Test; s. Abbildung 73).

hingegen bei den weiterfilhrenden Schulformen beflirwortet. Bzgl. der

Kennwerte| Sekundarst. 1 | Sekundarst. 2 | Grundschule | Hauptschule | Realschule | Gymnasium
Alle
n 147 148 148 148 148 148
M 3,93 5,34 2,01 3,60 4,48 5,59
Median 4 6 1 4 5 6
SD 1,39 0,956 1,44 1,53 1,11 0,71
Erstsemester
n 69 70 70 70 70 70
M 4,01 5,31 2,01 3,71 4,56 5,63
Median 4 6 1 4 5 6
SD 1,23 0,99 1,37 1,39 1,07 0,66
Hohere Semester
n 78 78 78 78 78 78
M 3,86 5,36 2,00 3,50 4,41 5,56
Median 4 6 1 3 4 6
SD 1,45 0,94 1,51 1,66 1,15 0,75

Tabelle 50: Ergebnisse der Items zur Relevanz des Unterrichtsgegenstands ,Beweis” fiir verschiedene Schultypen und
Schulstufen in der Eingangsbefragung (Alle und Subgruppen) ([1] ,,stimmt gar nicht” ... [6] ,,stimmt vollig”)

67 Mediane der Items zur Relevanz des Unterrichtsgegenstands
»Beweis“ fur verschiedene Schultypen und Schulstufen in
der Eingangsbefragung (Subgruppen)
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Abbildung 72: Boxplots zu den Verteilungen der Items zu der
Relevanz des Beweisens in verschiedenen Schulstufen und
Schulformen (Alle) ([1] ,,stimmt gar nicht” ... [6] ,stimmt
vollig“)

Abbildung 73: Mediane der Items zu der Relevanz des
Beweisens in verschiedenen Schulstufen und Schulformen
(Subgruppen) ([1] ,,stimmt gar nicht“ ... [6] ,,stimmt vollig“)

Bei der Betrachtung der Boxplots in Abbildung 72 ist die groRe Streuung der Daten beachtenswert,
wodurch deutlich wird, dass auf Seiten der Studierenden durchaus unterschiedliche Ansichten bzgl.
der Relevanz von Beweisen fiir die Schulmathematik vorliegen. Auffallend ist dariiber hinaus der
groBe Interquartilsabstand im Falle des Boxplots zu dem Item ,, Beweisen in der Hauptschule” [Q1: 2
und Q3: 5]; bzgl. dieser Schulform scheint keine Einigkeit der Studierenden in Bezug auf die Relevanz
von Beweisen zu herrschen. Im Gegensatz dazu bezeugen die kleinen Interquartilsabstiande der

die Einteilung von Cohen (1992, S. 157): Werte ab r=0,1 entsprechen einem schwachen Effekt, Werte ab r=0,25
einem mittleren Effekt und Werte r=0,4 entsprechen einem starken Effekt.
270



Boxplots zu den Items ,Beweisen in der Sekundarstufe 2“, ,Beweisen in der Realschule” und
,Beweisen im Gymnasium”“ und deren Lage in dem oberen Bereich der Skala die allgemeine
Beflirwortung des Beweisens fiir diese Schulstufe und Schulformen.

(ii) Die Bewertung ,gangiger’ Griinde, warum Beweise im schulischen Mathematikunterricht eine
eher untergeordnete Rolle spielen sollten

Die zu bewertenden Aussagen dieses Fragebogenabschnitts werden in der Tabelle 51 angegeben.

Formulierung Abkiirzung

In der Schule sollten Beweise eher eine untergeordnete Rolle spielen, ...

.., da es wichtiger ist, dass die fachlichen Inhalte (Funktionen, Differentialrechnung, | ,fachl. Inhalte”
Integralrechnung, ...) vermittelt und verstanden werden.

..., da es wichtiger ist, dass die Schiler/innen Rechenaufgaben richtig I6sen kénnen. ,Rechenaufgaben”

..., da man im Mathematikunterricht lieber Anwendungen im Alltag behandeln sollte. lieber
Anwendungen”

..., da Beweise fiir die Schuler/innen zu schwer nachzuvollziehen sind. ,Zu schwer”

..., da es die meisten Schuler/innen Uberfordern wirde, selbststindig Beweise zu finden und | ,tberfordern”
aufzuschreiben.

..., da die Schuler/innen sowieso wissen, dass die mathematischen Regeln und Satze richtig sind | ,Sédtze sowieso

und sie daher nicht zum Beweisen zu motivieren sind. richtig”

..., da das Beweisen im spateren Leben der Schiler/innen keine Anwendung findet (im | ,keine Anwendung
Gegensatz etwa zur Prozentrechnung). im Leben”

..., da Beweise in der Lebenswelt der Schiiler/innen keine Bedeutung haben. ,keine Bedeutung

fiir Lebenswelt”

Tabelle 51: Items zur Erfassung der Einschdtzung ,gangiger’ Griinde, warum Beweise im schulischen
Mathematikunterricht eine eher untergeordnete Rolle spielen sollten

Beantwortung der Leitfrage zur Auswertung [21]: Wie bewerten die Studierenden ,gdngige’ Griinde,
warum Beweise im schulischen Mathematikunterricht eine eher untergeordnete Rolle spielen sollten,
zu Beginn der Lehrveranstaltung? Und:

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

In diesem Abschnitt wird bei der Angabe der Ergebnisse auf eine tabellarische Ubersicht verzichtet,
da hier die Darstellung in Boxplots (Abbildung 74) ausreichend erscheint.

Es zeigt sich, dass die Studierenden allen aufgefiihrten Griinden mit einem Median von 4 eher
zustimmen, mit Ausnahme der Griinde ,Sitze sowieso richtig” und ,keine Bedeutung fir
Lebenswelt”, die mit einem Median von 3 im Vergleich zu allen héher bewerteten Griinden
statistisch hoch signifikant auf dem 0,1%-Niveau geringer bewertet werden (Wilcoxon-Test, p<0,001;
mittlere bis starke Effektstarke: 0,3<r<0,5). Es deutet sich hier an, dass eine Ablehnung des
Unterrichtsinhalts ,,Beweisen” anscheinend nicht auf ein mangelndes Beweisbediirfnis auf Seiten der
Studierenden oder auf das Argument eines fehlenden Lebensweltbezugs zuriickgefiihrt werden kann.
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In Subgruppen lassen sich keine signifikanten Unterschiede bzgl. der Items ausmachen (Mann-
Whitney-U-Test).

6

Abbildung 72: Boxplots zu den Items des Komplexes
»Einschdtzung ,gangiger’ Griinde, warum Beweise im
schulischen Mathematikunterricht eine eher untergeordnete
Rolle spielen sollten” (Alle, n=143) ([1] ,,stimmt gar nicht“ ...
[6] ,,stimmt vollig”)
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7.2.5.2 Einstellungen zum Beweisen

In diesem Abschnitt zu ,Einstellungen zum Beweisen” werden die Aspekte (i) ,Einschatzung
motivationaler Aspekte zum Beweisen®, (ii) ,Beweisaffinitat” und (iii) ,Motivation zum Erlernen der
Beweisaktivitdt” betrachtet. Bei der Darstellung der Ergebnisse bzgl. der konstruierten Skala der
»,Beweisaffinitat” werden auch Zusammenhange zu personenbezogenen Merkmalen und den bisher
erhoben Skalen der Beweisakzeptanz thematisiert, um das Konstrukt der ,Beweisaffinitdat” besser
einordnen zu kénnen.

(i) Einschatzung motivationaler Aspekte zum Beweisen

Die zu bewertenden Aussagen fir die Erfassung der , Einschatzung motivationaler Aspekte zum
Beweisen” werden in der Tabelle 52 aufgelistet.

# Formulierung Abkiirzung

1 Ich sehe das Beweisen als eine intellektuelle Herausforderung, der ich mich gerne stelle. ,Herausforderung“

2 Ich mag Beweise. ,mag Beweise”

3 Ich sehe keinen Sinn darin, etwas beweisen zu miissen, was sowieso richtig ist. ,keinen Sinn“

4 Ich versuche, Beweise zu verstehen. ,verstehen”

5 Ich weilk, wie man einen Beweis fiihrt. ,wie fihrt”

6 Beweise werden von Experten konstruiert. Es genligt, wenn man sie nachvollziehen und ,Experten”
verstehen kann.

Tabelle 52: Items zu motivationalen Aspekten zum Beweisen

Beantwortung der Leitfrage zur Auswertung [22]: Wie bewerten die Studierenden Aussagen zu
motivationalen Aspekten zum Beweisen zu Beginn der Lehrveranstaltung? Und:

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Die Ergebnisse bzgl. der Items zu motivationalen Aspekten zum Beweisen (Alle und Subgruppen)
werden in der Tabelle 53 angegeben, die Mediane der Items zu den Subgruppen zusatzlich in der
Abbildung 73 dargestellt. Bei den Ergebnissen der Einzelitems wird deutlich, dass die Studierenden
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dem Beweisen gegeniber insgesamt eher neutral bis positiv gegeniliber stehen. Die Mediane der
Items ,Herausforderung” und ,,mag Beweise” liegen mit einem Wert von 4 und 3 in einem mittleren
Bereich der Likert-Skala, die negativ formulierte Aussage ,keinen Sinn“ wird von den Studierenden
mit einem Median von 2 abgelehnt. In der Gesamtgruppe erfahrt die grofSte Zustimmung die Aussage
»lch versuche, Beweise zu verstehen” [,,verstehen”] mit einem Median von 6.

In den Subgruppen unterscheidet sich die Bewertung der Aussage ,Ich wei}, wie man einen Beweis
flihrt” der Erstsemester mit einem Median von 3 statistisch hoch signifikant auf dem 0,1%-Niveau
von der der ,Hoheren Semester’ mit einem Median von 4 (Mann-Whitney-U-Test, p<0,001; mittlere
Effektstarke des Subgruppenunterschieds: Cohens d=0,68). Dagegen ist der Medianunterschied bzgl.
des Items ,lIch versuche, Beweise zu verstehen“ mit p=0,105 nicht statistisch signifikant (Mann-
Whitney-U-Test). Die Erstsemester scheinen sich insgesamt jedoch weniger kompetent bzgl. der
Konstruktion von Beweisen zu fiihlen als die ,Hoheren Semester".

Herausforderung mag Beweise keinen Sinn verstehen wie fiihrt Experten
#1 #2 #3 #4 #5 #6
Alle

n 149 148 149 149 147 148
M 4,03 3,16 2,48 5,34 3,61 3,16
Median 4,00 3,00 2,00 6,00 4,00 3,00
SD 1,46 1,51 1,45 0,80 1,30 1,40

Erstsemester

n 71 70 71 71 69 70
M 4,01 3,19 2,52 5,23 3,17 3,39
Median 4,00 3,00 2,00 5,00 3,00 3,00
SD 1,41 1,47 1,45 0,87 1,16 1,28

Hohere Semester

n 78 78 78 78 78 78
M 4,05 3,14 2,45 5,45 4,00 2,95
Median 4,00 3,00 2,00 6,00 4,00 3,00
SD 1,51 1,56 1,46 0,71 1,29 1,49

Tabelle 53: Kennwerte der Items zu motivationalen Aspekten zum Beweisen (Alle und Subgruppen)
([1] ,,stimmt gar nicht” ... [6] ,,stimmt véllig“)

Mediane der Items zu motivationalen Aspekten zum Beweisen
(Subgruppen)

MErst ter
*Hohere_Sem

Median

Abbildung 73: Mediane der Items zu motivationalen Aspekten
zum Beweisen in der Eingangsbefragung (Subgruppen) ([1]
,stimmt gar nicht” ... [6] ,,stimmt vollig”)
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(ii) , Beweisaffinitat”

Die Skala , Beweisaffinitdat” wurde durch Mittelwertbildung der in der Tabelle 52 aufgelisteten sechs
ltems zur Erfassung der ,Einschdtzung motivationaler Aspekte zum Beweisen” gebildet, wobei die
Werte der ltems Nummer 3 und 6 umgepolt wurden.

In der Tabelle 54 werden die statistischen Kennwerte der Skala zur Beweisaktivitat angegeben. Die
Reliabilitat der Skala zur Beweisaffinitat ist dabei insgesamt in einem ausreichenden Bereich,
allerdings wird bei der Betrachtung der korrigierten Trennscharfen der Items deutlich, dass hier
gewisse Schwachen der Skala auf der Itemebene vorliegen. Es erscheint daher angebracht, diese
Ergebnisse vorsichtig zu betrachten und entsprechend zu interpretieren.

Kennwerte Skala Beweisaffinitat in der Eingangsbefragung (,EB_Aff_Bew*)

Alle Erstsemester Hohere Semester
n 149 71 78
M 4,09 3,96 4,21
Median 4,00 4,00 4,17
SD 0,84 0,84 0,84
Cronbachs Alpha 0,703 0,742 0,666
Spannweite r;; 0,339-0,577 0,373-0,584 0,212-0,614

Tabelle 54: Kennwerte der Skalen zur Beweisaffinitat (Alle und Subgruppen)

Beantwortung der Leitfrage zur Auswertung [23]: Wie ldsst sich die Beweisaffinitdt der Studierenden
zu Beginn der Lehrveranstaltung beschreiben? Und:

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Mit einem arithmetischen Mittel von 4 liegen die Skalenwerte im Durchschnitt in einem leicht
positiven Bereich. Der Mittelwertunterschied zwischen den Erstsemestern (M=3,96) und den
Hoheren Semestern (M=4,21) ist statistisch schwach signifikant auf dem 7%-Niveau bei kleiner
Effektstarke (t-Test, p=0,069; Cohens d=0,3).

Von Interesse erscheint an dieser Stelle auch die Frage, inwiefern Zusammenhange zwischen der
Skala zur Beweisaffinitdt, den personenbezogenen Daten und den erhobenen Skalen zur
Beweisakzeptanz ausgemacht werden konnen.

In der Subgruppe der Erstsemester korreliert die Skala zur Beweisaffinitdt schwach mit der
schulischen Mathematiknote (Spearmans-Rho=0,270), wobei dieser Zusammenhang statistisch
signifikant auf dem 5%-Niveau ist (p=0,025). Dieses Ergebnis wird durch die entsprechende
Darstellung im Scatterplot (Abbildung 74) verdeutlicht. Es erscheint plausibel, dass Schiiler/innen mit
einer besseren Note in Mathematik einen héheren Wert in Beweisaffinitat erreichen, i. e., positiver
gegeniiber dem Beweisen eingestellt sind. Zwischen der Skala , Beweisaffinitat” und den erhobenen
Skalen zur Beweisakzeptanz konnten dagegen keine statistisch signifikanten Zusammenhange
ausgemacht werden, weder in der Gesamtgruppe, noch in den Subgruppen.

Unter Bericksichtigung der personenbezogenen Merkmale ,Geschlecht”, ,Schulischer
Mathematikkurs“, ,Teilnahme an einem  Vorkurs“ und ,Teilnahme an einem
Mathematikwettbewerb” lassen sich keine signifikanten Mittelwertunterschiede bzgl. der Skala
,Beweisaffinitat” ausmachen (t-Test).
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(iii) Motivation zum Erlernen der Beweisaktivitat

In dem Fragebogenabschnitt ,,Motivation zum Erlernen der Beweisaktivitat” sollten die Studierenden
die folgenden Aussagen auf einer sechsstufigen Likert-Skala ([1] ,stimmt gar nicht” ... [6] ,stimmt
vollig”) bewerten:

Formulierung Abkiirzung

Ich mochte im Studium UGber das Beweisen lernen...

...wie man einen Beweis findet. finden”

...wie man einen Beweis aufschreibt. ,aufschreiben”
...wie man einen Beweis liest. Jlesen”

...wie man einen Beweis versteht. ,verstehen”
...wie das Beweisen funktioniert. Hfunktioniert”
... warum man Beweise fuhrt. ,warum®

... welche Arten von Beweisen es gibt. JArten”

... wie man Beweise im Schulunterricht einsetzt. ,wie_in_Schule”
... wie man Schuler zum Beweisen motivieren kann. ,SuS_motiv“

... wie man Schulern ,das Beweisen” unterrichten kann. ,Wie_unterr”
Ich mochte nichts Uber das Beweisen lernen. ,hichts”

Tabelle 55: Items zu dem Komplex ,,Motivation zum Erlernen der Beweisaktivitat”

Beantwortung der Leitfrage zur Auswertung [24]: Wie schdtzen die Studierenden zu Beginn der
Lehrveranstaltung ihre eigene Motivation zum Erlernen verschiedener Aspekte der mathematischen
Beweisaktivitét ein? Und:

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Die statistischen Kennwerte der Items zum Komplex , Motivation zum Erlernen der Beweisaktivitat”
werden in der Tabelle 56 angegeben (Alle und Subgruppen), die Mediane der Items werden fiir die
Subgruppen zusatzlich in der Abbildung 75 dargestellt.

Bei der Betrachtung der Ergebnisse ist zunachst auffillig, dass alle Aspekte in beiden Subgruppen
generell sehr hoch bewertet werden. Die niedrigen Bewertungen des Kontrollitems ,Ich méchte
nichts Gber das Beweisen lernen” [,nichts“] zeigt, dass die Items nicht einfach nur pauschal hoch
bewertet wurden.
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verste- | funktio- wie_in_ | SuS_mo- | wie_un-
finden aufschr. lesen hen niert warum Arten Schule tiv. terr. nichts
Alle

n 136 136 136 135 135 135 136 136 136 136 133

M 5,10 5,28 5,04 5,39 5,42 4,91 5,10 5,43 5,43 5,40 1,79
Median 5,00 5,00 5,00 6,00 6,00 5,00 5,50 6,00 6,00 6,00 1,00
SD 1,19 0,92 1,02 0,85 1,02 1,26 1,16 0,88 0,90 0,84 1,53

Erstsemester

n 60 60 60 59 59 60 60 60 60 60 58

M 5,02 5,07 4,87 5,24 5,31 4,75 5,08 5,40 5,33 5,33 1,64
Median 5,00 5,00 5,00 5,00 6,00 5,00 5,00 6,00 6,00 6,00 1,00
SD 1,16 0,99 0,93 0,88 1,15 1,20 1,18 0,96 1,00 0,91 1,27

Hohere Semester

n 76 76 76 76 76 75 76 76 76 76 75

M 5,17 5,45 5,18 5,50 5,51 5,04 5,12 5,45 5,51 5,46 1,91
Median 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 1,00
SD 1,23 0,84 1,07 0,81 0,90 1,30 1,15 0,82 0,81 0,77 1,70

Tabelle 56: Statistische Kennwerte der Items zum Komplex ,,Motivation zum Erlernen der Beweisaktivitat” in der
Eingangsbefragung (Alle und Subgruppen) ([1] ,,stimmt gar nicht“ ... [6] ,,stimmt vollig“)

Mediane der Items zu "Motivation zum Erlernen der
Beweisaktivitat" (Subgruppen)
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vollig”)
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In der Subgruppe der Erstsemesterstudierenden ist interessant, dass gerade die Aussagen zum
Vermitteln von Beweisen in der Schule [,,wie_in_Schule”, ,SuS_motiv.” und , wie_unterr.“] mit einem
Median von 6 hoher als die rein fachlichen Aspekte bewertet werden (mit Ausnahme des Items
yfunktioniert”). Fir die statistische Signifikanz dieses Medianunterschieds seien exemplarisch die
entsprechenden Werte fir den Medianunterschied dieser drei Items zum Item ,,... wie man einen
Beweis findet” (Median: 5) aufgefiihrt (Wilcoxon-Test): ,finden” vs. , wie_in_Schule”: p=0,006 bei
mittlerer Effektstarke (r=0,46), ,finden“ vs. ,SuS_motiv“: p=0,091 bei schwacher Effektstarke (r=0,22)
und ,finden“ vs. ,wie_unterr”: p=0,059 bei schwacher Effektstarke (r=0,24).

Es zeigt sich somit, dass die Motivation der Erstsemesterstudierenden zum Erlernen verschiedener
Aspekte der Beweisaktivitdt generell sehr hoch ist, die groRte Motivation aber bei den Aspekten
vorliegt, die ihre spatere Lehrtatigkeit tangiert. Bei den Hoheren Semestern kann an dieser Stelle kein
statistisch signifikanter Unterschied ausgemacht werden.

Zwischen den Subgruppen sind die Medianunterschiede bzgl. der Items ,, aufschreiben”, ,lesen” und

»sverstehen” bei kleiner Effektstarke statistisch signifikant (s. Tabelle 57). Die Héheren Semester

geben bzgl. dieser Aspekte signifikant hohere Bewertungen bzgl. ihrer Motivation an. Auch wenn an
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dieser Stelle ein gewisser Grad an ,sozialer Erwilinschtheit’ nicht ausgeschlossen werden kann, lassen
sich die Ergebnisse doch als Beleg fiir eine grundlegende Motivation zum Erlernen der
Beweisaktivitat deuten. Diese groRe Motivation auf Seiten der Studierenden bzgl. von Beweisen

entspricht den Ergebnissen von Hemmi (2006, S. 141ff.).

»finden” paufschreib.” »lesen” »verstehen” ,warum* »Arten”
Median Erstsemester 5 5 5 5 5 5
Median Hohere Sem. 6 6 6 6 6 6
Signifikanz p=0,204 p=0,007 p=0,012 p=0,030 p=0,064 p=0,827
Effektstarke --- d=0,42 d=0,31 d=0,31 d=0,23 -

Tabelle 57: Signifikanzen und Effektstdrken (Cohens d) der Medianunterschiede in den Subgruppen bzgl. der Items zur
»Motivation zum Erlernen der Beweisaktivitdt" in der Eingangsbefragung (Mann-Whitney-U-Test)

7.2.5.3 Einstellungen zur Mathematik

Bzgl. der Einstellungen zur Mathematik wurden in der Eingangsbefragung die vier folgenden Skalen
erhoben: ,Mathematik als System”, ,Mathematik als Toolbox”, ,,Mathematik als Prozess” und
,Praktische Relevanz von Mathematik”. Im Fokus stehen mogliche Unterschiede zwischen den
Subgruppen und Zusammenhange zwischen diesen Skalen und den oben beschriebenen Skalen zur
Beweisakzeptanz und zur Beweisaffinitat.

Beantwortung der Leitfrage zur Auswertung [25]: Welche Einstellungen zur Mathematik kénnen bei
den Studierenden zu Beginn der Lehrveranstaltung in welchem Maf ausgemacht werden? Und:

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

In der Tabelle 58 werden die statistischen Kennwerte der erhobenen Skalen angegeben’’. In der
Abbildung 76 werden zusatzlich die arithmetischen Mittel der Skalen fiir die Gesamtgruppe und die
Subgruppen dargestellt.

In der Gesamtgruppe liegen die Mittelwerte der vier Skalen zu den verschiedenen Einstellungen zur
Mathematik sehr nah beieinander, so dass nicht von einer Vorrangstellung bestimmter Einstellungen
gesprochen werden kann (s. Abbildung 76). Innerhalb der Gruppe der Erstsemesterstudierenden liegt
dagegen der Mittelwert der Skala ,Mathematik als Toolbox” mit 4,66 statistisch (hoch) signifikant
Uber dem der anderen Skalen, im Falle der ,Hoheren Semester’ liegt der Mittelwert dieser Skala
unter den anderen (s. Tabelle 59 und Abbildung 76.

" In Bezug auf die Reliabilititswerte von Skalen (,Cronbachs Alpha“) werden bei Lienert und Raatz (1994)
Werte groRer-gleich 0,5 als ,,vertretbar” angegeben (vgl. Riedl 2015, S. 45), bei Schnell et al. (2013, S. 413) liegt
die Grenze allerdings bei 0,8, wobei die Autoren anmerken, dass in der Praxis meist auch niedrigere Werte
akzeptiert werden. Bei den vorliegenden Skalen sind auch die Werte der korrigierten Trennscharfen der Items
in einem eher unteren Bereich. Es wird deutlich, dass die Ergebnisse dieses Abschnittes vorsichtig betrachtet
und interpretiert werden miissen.
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Mathematik als Mathematik als Mathematik als Praktische Relevanz
System Toolbox Prozess von Mathematik
[MaSy] [MaTo] [MaPro] [PraRel]
Alle
n 146 146 146 146
M 4,37 4,45 4,41 4,46
SD 0,66 0,76 0,80 0,89
Cronbachs Alpha 0,643 0,660 0,608 0,790
Spannweite r;; 0,298 -0,431 0,302 -0,513 0,350-0,447 0,532-0,614
Erstsemester
n 68 68 68 68
M 4,34 4,66 4,32 4,37
SD 0,68 0,72 0,86 0,92
Cronbachs Alpha 0,634 0,692 0,665 0,828
Spannweite ryy 0,301-0,394 0,359 - 0,540 0,439 - 0,485 0,475-0,719
Hohere Semester
n 78 78 78 78
M 4,40 4,27 4,49 4,53
SD 0,65 0,76 0,74 0,86
Cronbachs Alpha 0,650 0,608 0,546 0,748
Spannweite ryy 0,277 - 0,401 0,186-0,484 0,223 -0,447 0,457 - 0,591

Tabelle 58: Statistische Kennwerte der Skalen zu ,,Einstellungen zur Mathematik” in der Eingangsbefragung (Alle und

Subgruppen)

Arithmetische Mittel der Skalen zur Einstellung zur
Mathematik (Alle und Subgruppen)
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40 Abbildung 76: Arithmetische Mittel der Skalen zur
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MaPro MaSy MaTo PraRel

Einstellung zur Mathematik in der
Eingangsbefragung (Alle und Subgruppen)

Erstsemester (n=68)

»MaSy“ »,MaPro* »PraRel”
M 4,34 4,32 4,37
Signifikanz des Mittelwertunterschieds zur Skala ,MaTo* (M=4,66) p=0,001 p=0,01 p=0,046
Effektstdrke (Cohens d) 0,45 0,43 0,35
Hohere Semester (n=78)
»MaSy“ »,MaPro* »PraRel”
M 4,40 4,49 4,53
Signifikanz des Mittelwertunterschieds zur Skala ,,MaTo* (M=4,27) n.s. p=0,056 p=0,022
Effektstdrke (Cohens d) 0,29 0,32

Tabelle 59: Signifikanzen und Effektstarken Mittelwertunterschiede der drei Skalen zur Mathematik ,,MaSy“, ,,MaPro“

und ,,PraRel” im Vergleich zu der Skala ,,Mathematik als Toolbox" ["MaTo"] in der Eingangsbefragung (t-Test)

(Subgruppen)
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Innerhalb der Subgruppen ist der Mittelwertunterschied der Skala ,Mathematik als Toolbox”
zwischen den Erstsemestern (4,66) und den Hoheren Semestern 4,27 bei mittlerer Effektstarke
statistisch hoch signifikant auf dem 1%-Niveau (t-Test, p=0,002 mit Cohens d=0,53). Hier zeigt sich,
dass die Erstsemesterstudierenden ein Bild von Mathematik zu haben scheinen, dass mehr als bei
den ,Hoheren Semestern’ durch Auswendiglernen und direktes Anwenden von Verfahren und Regeln
gepragt ist. Andere signifikante Mittelwertunterschiede liegen zwischen den Subgruppen nicht vor (t-
Test).

Betrachtet man die Zusammenhange der Skalen der Einstellungen zur Mathematik zu den bisher
erhobenen Skalen (,,Beweisakzeptanz und ,Beweisaffinitat”), so zeigt sich, dass die Skala der
»Praktischen Relevanz von Mathematik” in beiden Subgruppen statistisch hoch signifikant auf dem
0,1%-Niveau mit der Skala zur Beweisaffinitat korreliert (Erstsemester: r,=0,343 mit p=0,004; Hohere
Semester: rp=0,356 und p=0,001). Studierende, die der Mathematik einen hoéheren praktischen
Nutzen fiir den Alltag zuschreiben, haben demnach eine positivere Einstellung zur Beweisaktivitat.

Bzgl. der konstruierten Skalen zur Beweisakzeptanz lasst sich nur in der Subgruppe der
Erstsemesterstudierenden ein Zusammenhang zwischen den Skalen ,Mathematik als System” und
der Akzeptanzskala zum formalen Beweis ausmachen (r=0,315)"%, der statistisch signifikant auf dem
5%-Niveau ist (p=0,011). In der Gruppe der Erstsemesterstudierenden bewahrheitet sich somit die
Hypothese, dass eine starkere Auspragung einer Sicht auf Mathematik als formales System mit einer
hoheren Akzeptanz des formalen Beweises einhergeht. Die aufgezeigten Zusammenhdnge werden
durch die entsprechende Darstellung im Scatterplot bestatigt (vgl. Abbildung 77).
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Abbildung 77: Der Zusammenhang der Skalen ,,Praktische Relevanz von Mathematik“ [,,EB_PraRel“] und der Skala zur
,Beweisaffinitat” [,EB_Aff_Bew“] in der Eingangsbefragung (Erstsemester und héhere Semester, links) und der
Zusammenhang der Skalen ,,Mathematik als System“ [,,EB_MaSy“] und , Akzeptanz des formalen Beweises“
[EB_,,Akz_FB“] in der Eingangsbefragung (nur Erstsemester, rechts)

Fiir die Beantwortung der Forschungsfrage [4] werden im Folgenden die erhaltenen Ergebnisse aus
Abschnitt 7.2.5. unter Berticksichtigung der Leitfragen zur Auswertung 20-25 zusammenfassend

ausgewertet.

2 In der Gruppe der Héheren Semester liegt der Korrelationskoeffizient bei r,=0,145 mit p=0,205. Dieses
(statistisch nicht signifikante) Ergebnis kdnnte einem ,Deckeneffekt’ der Akzeptanzwerte zum formalen Beweis
geschuldet sein.
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Beantwortung der Forschungsfrage [4]: Wie lassen sich die Einstellungen der Studierenden zur
Thematik des Beweisens und zur Mathematik zu Beginn der Lehrveranstaltung beschreiben? Und:

a) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in ihrem
ersten Hochschulsemester und Studierenden in einem h6heren Semester ausmachen?

Bzgl. der Einstellung zum Beweisen in der Schule wurde deutlich, dass die Studierenden den
Lerngegenstand ,Beweis’ eher in der Sekundarstufe 2 als in der Sekundarstufe 1 verorten (Wilcoxon-
Test, p<0,001 bei groRer Effektstirke von r=0,78). Wahrend Beweise als Unterrichtsinhalt fur die
Grundschule abgelehnt werden, wird deren Verwendung in der Realschule und dem Gymnasium
deutlich beflirwortet. Dabei stimmen die Studierenden den Begriindungen (eher) zu, dass Beweise
im Unterricht eine eher untergeordnete Rolle spielen sollten, da es wichtiger sei, fachliche Inhalte zu
vermitteln, Rechenaufgaben richtig 16sen zu kdnnen und Anwendungen der Mathematik im Alltag zu
thematisieren. Das Argument, dass Lernende sowieso wiissten, dass die mathematischen Satze
richtig seien, wird dagegen statistisch signifikant weniger bedeutsam eingeschatzt. Ein mangelndes
Beweisbedirfnis auf Seiten der Lernenden scheint hierbei nach Ansicht der Studierenden also
weniger ausschlaggebend zu sein.

Zwischen den Subgruppen der Erstsemester und der Hoheren Semester lieRen sich in diesem Bereich
keine (statistisch) signifikanten Unterschiede ausmachen.

Bei den Einstellungen zum Beweisen konnte gezeigt werden, dass die Studierenden dem Beweisen
gegenlber im Allgemeinen neutral bis positiv eingestellt sind. Der Mittelwert der konstruierten Skala
zur ,,Beweisaffinitat” liegt mit 4,09 in der oberen Halfte der Skala und verdeutlicht diese eher positive
Einstellung der Studierenden gegeniiber dem Beweisen. SchlieBlich wurde die hohe Motivation der
Studierenden in Bezug auf das Erlernen der Beweisaktivitdt deutlich: Allen formulierten Items bzgl.
der verschiedenen Aspekte der Beweisaktivitat wird von der Gesamtgruppe deutlich zugestimmt (alle
Mediane sind groRer-gleich 5). Es wurde somit insgesamt deutlich, dass die Studierenden gegeniiber
dem Beweisen positiv eingestellt sind und eine hohe Motivation in Bezug auf das Erlernen der
Beweisaktivitdit aufweisen. Dies entspricht den Ergebnissen von Hemmi (2006, S. 140ff.) mit
finnischen Studienanfangerinnen und —anfangern der Mathematik.

In Bezug auf die Subgruppen konnten im Rahmen der Einstellungen zum Beweisen zunachst
Unterschiede auf der Itemebene herausgearbeitet werden: Bzgl. des Items ,Ich weil3, wie man einen
Beweis flihrt“ liegt der Median der Erstsemester (3) statistisch hoch signifikant auf dem 0,1%-Niveau
unter dem der Hoheren Semester (4) (Mann-Whitney-U-Test, p<0,001; mittlere Effektstdrke des
Subgruppenunterschieds: Cohens d=0,68). Bei der konstruierten Skala zur , Beweisaffinitat” ist der
Mittelwertunterschied zwischen den Erstsemestern (3,96) und den Hoheren Semester (4,21)
statistisch schwach signifikant auf dem 7%-Niveau bei kleiner Effektstarke ist (t-Test, p=0,069;
Cohens d=0,3). An dieser Stelle kann festgehalten werden, dass sich die Hoheren Semester
kompetenter bzgl. der Konstruktion von Beweisen fiihlen und dem Beweisen auch mehr zugeneigt
sind. Im Rahmen der Motivation der Studierenden zum Erlernen der Beweisaktivitdt wurden weitere
Unterschiede zwischen den Subgruppen deutlich. Die Bewertung bzgl. dem Erlernen der fachlichen
Aspekte des Beweisens fallen bei den Erstsemestern mit einem Median von 5 statistisch signifikant
geringer aus, als bei den hoheren Semestern mit einem Median von 6. AuBerdem zeigte sich, dass die
Erstsemesterstudierenden ihre Motivation zum Erlernen der unterrichtspraktischen Aspekte zum
Beweisen hoher bewerten, als ihre Motivation bzgl. der fachlichen Aspekte zum Beweisen.
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Bei den Einstellungen zur Mathematik konnte in der Gesamtgruppe keine Vorrangstellung einer
bestimmten ,Einstellung zur Mathematik” ausgemacht werden. In der Gruppe der
Erstsemesterstudierenden liegt der Mittelwert der Skala ,Mathematik als Toolbox“ (M=4,66)
statistisch signifikant iber den Mittelwerten der anderen Skalen (Mittelwertunterschiede durch t-
test: ,Mathematik als System”: M=4,34, p=0,001, schwache Effektstarke: Cohens d=0,45;
,Mathematik als Prozess”: M=4,32, p=0,01, schwache Effektstarke: Cohens d=0,43 und , Praktische
Relevanz von Mathematik”: M=4,32, p=0,046, schwache Effektstdarke: Cohens d=0,35). Bei den
Hoheren Semestern liegt der Mittelwert der Skala ,,Mathematik als Toolbox” mit M=4,27 dagegen
statistisch (schwach) signifikant unter dem der Skala ,,Mathematik als Prozess” (M=4,49, p=0,056,
schwache Effektstarke: Cohens d=0,29) und unter dem der Skala ,Praktische Relevanz von
Mathematik” (M=4,53, p=0,022, schwache Effektstadrke: Cohens d=0,32). Dies lasst sich dahingehend
interpretieren, dass die Studienanfanger noch eher einem Bild von Mathematik verhaftet sind, das
durch Auswendiglernen und direktes Anwenden von Verfahren und Regeln gepragt ist. Von einer
entsprechenden Betonung des ,Toolbox-Aspekts” bei Studienanfangerinnen und -anfdangern
sprechen auch Toérner und Grigutsch (1994, S. 225): ,,Beim Umgang mit Mathematik ist der Tool-
Aspekt dominanter: der Umgang mit Mathematik besteht fir zwei Drittel der Studenten aus Lernen,
Erinnern und Anwenden, fiir ein Flinftel ist er damit sogar vollstandig erfalt”.

Die Skala ,Praktische Relevanz von Mathematik” korreliert in beiden Subgruppen mit der Skala zur
,Beweisaffinitat” (Erstsemester: rp=0,343 mit p=0,004; Hohere Semester: r,=0,356 und p=0,001), was
bedeutet, dass die Studierenden, die eher den Ansichten zustimmen, dass Mathematik im Alltag von
Bedeutung ist und einen Nutzen fiir die Gesellschaft hat, im Allgemeinen auch dem Beweisen
gegeniber eher zugeneigt sind.

Im Vergleich der Subgruppen wurde deutlich, dass der Mittelwert der Skala ,Mathematik als
Toolbox“ bei den Erstsemestern (4,66) statistisch hoch signifikant auf dem 1%-Niveau bei mittlerer
Effektstarke Gber dem der Hoheren Semestern (4,27) liegt (t-Test, p=0,002 mit Cohens d=0,53).
SchlieBlich konnte nur fiir die Gruppe der Erstsemesterstudierenden eine (schwache) positive
Korrelation zwischen der Skala ,Mathematik als System” und der Akzeptanzskala zum formalen
Beweis nachgewiesen werden, die statistisch signifikant auf dem 5%-Niveau ist (rp=0,315 und
p=0,011)"%. Eine Vorstellung der Mathematik als formales System entspricht somit einer hohen
(Akzeptanz-) Bewertung des formalen Beweises.

7.3. Teilstudie 2: Ergebnisse der Ausgangsbefragung: Veranderungen durch die
Lehrveranstaltung und wahrgenommener Lernzuwachs bzgl. des Beweisens bei den
Studierenden

In der vorletzten Sitzung der Lehrveranstaltung wurde im Wintersemester 2014/15 mithilfe eines
Fragebogens eine Ausgangsbefragung durchgefiihrt; die Teilnehmenden hatten fiir die Bearbeitung
45 Minuten Zeit. Im Kontext dieser Erhebung sollten im Sinne eines Pre-/Post-Testdesigns
Veranderungen in Bezug auf die folgenden in der Eingangsbefragung erfassten Daten untersucht
werden: Beweisbewertung, Auswahl und Praferenz einer Begriindungsform, Beweisakzeptanz,

7 Dass in den ,H&heren Semestern” hier kein signifikanter Zusammenhang vorliegt, konnte durch die
Deckeneffekte in der Akzeptanzskala zum formalen Beweis in dieser Subgruppe erklart werden.
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Einstellungen zu Beweisen und Einstellungen zur Mathematik. Beide Befragungen waren mit der
Abfrage eines anonymen personalisierten Codes versehen, so dass die Testhefte entsprechend
anonym zugeordnet werden konnten. Die in der Ausgangsbefragung erhaltenen Ergebnisse erflllen
damit zwei Zielsetzungen: Einmal werden durch diese Ergebnisse die Kompetenzen und Einstellungen
der Studierenden nach dem Besuch der Lehrveranstaltung dokumentiert, auBerdem wird es mit
diesen Ergebnissen moglich, entsprechende Veranderungen zur Eingangsbefragung festzustellen und
auch statistisch auszuwerten. Dementsprechend beziehen sich die folgenden Auswertungen auf alle
Teilnehmenden, die nachverfolgbar an der Eingangs- und Ausgangsbefragung teilgenommen haben
(N=74). Im Gegensatz zu den Darstellungen der Ergebnisse der Teilstudie 1 werden im Rahmen der
Teilstudie 2 die Ergebnisse nicht mehr nach den Subgruppen ,Erstsemester’ und ,Hohere Semester’
unterschieden, da das Forschungsinteresse hier auf den Verdanderungen durch die Lehrveranstaltung
von der Ein- zur Ausgangsbefragung liegt und nicht in der Herausarbeitung vermeintlicher
Charakteristika der Subgruppen.

In  Abschnitt 2.4.3 wurden verschiedene Befunde angefiihrt, dass problemorientierte
Lehrveranstaltungen, bei denen ein Schwerpunkt auf die Prozesshaftigkeit der Mathematik gelegt
wird, zu Veranderungen bzgl. der Einstellungen der Studierenden zur Mathematik fithren kénnen.
Aufbauend auf diesen Ergebnissen kann hier die grundlegende Hypothese formuliert werden, dass
auch die Lehrveranstaltung , Einfihrung in die Kultur der Mathematik”, wie sie im Wintersemester
2014/15 nach drei durchlaufenden Forschungszyklen im Sinne des Design-Based Research
durchgefiihrt wurde (Kapitel 6), zu Veranderungen im Kontext des Beweisens bei den Studierenden
fihren wird. Da die Lehrveranstaltung auf der Umsetzung verschiedener Leitprinzipien basiert (s.
Abschnitt 1.3) und durch mehrere Teilkomponenten konstituiert wird (s. Kapitel 6), kénnen keine
singuldaren Wirkmechanismen in Bezug auf einzelne MalRnahmen erhoben werden. Bedeutsam
erscheint dabei aber libergeordnet die Betonung der Prozesshaftigkeit der Mathematik (innerhalb
der Vorlesung, der Tutorien, der Zentralibung und der entwickelten Aufgabenformate) und der
konsequente Einbezug der verschiedenen Beweisformen der Lehrveranstaltung (generischer Beweis
mit Zahlen, generischer Beweis mit Punktmustern, Beweis mit geometrischen Variablen und formaler
Beweis) und das parallele Agieren in den verschiedenen Diagrammsystemen.

Es bleibt dabei anzumerken, dass die Lehrveranstaltung auch zu Veranderungen bei den
Studierenden gefiihrt haben kénnte, die durch die hier verwendeten Testinstrumente nicht erfasst
werden. Auch ist es moglich, dass das Ausmal} eventueller Veranderungen bei den Studierenden mit
ihrem Engagement im Rahmen der Lehrveranstaltung zusammenhangen kdnnte. Dieser Frage wurde
allerdings nicht nachgegangen, da nicht die Auswirkung der Motivation der Studierenden, sondern
die Auswirkungen der Lehrveranstaltung im Fokus des Forschungsinteresses stehen.

7.3.1 Forschungsanliegen und Forschungsfragen

Im Zentrum des Interesses der Teilstudie 2 stehen zunachst die Verdanderungen, die sich in Bezug auf
die Teilbereiche (i) Kompetenzaspekte zum Beweisen und (ii) Einstellungen zum Beweisen und zur
Mathematik von der Ein- zur Ausgangsbefragung ausgemacht werden kdnnen. Im Rahmen der
Ausgangsbefragung wird es darlber hinaus moéglich, neue Aspekte abzufragen, deren Thematisierung
aus verschiedenen Griinden in der Eingangsbefragung keinen Sinn ergeben hatte. Zu diesen
Aspekten, die neu in der Ausgangsbefragung untersucht werden, gehoren: Beweispraferenz (vgl.
Leitfrage zur Auswertung 26b) und der neue Fragenkomplex (iii), der selbstwahrgenommene
Lernzuwachs der Studierenden in Bezug auf das Beweisen durch die Lehrveranstaltung. Die Frage der
Beweispraferenz der Studierenden fokussiert dabei nicht primar die Auswirkungen der Vorlesung.
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Ziel des Themenkomplexes ist die subjektive Bewertung der Studierenden: Welchen Beweisform

verwenden die Studierenden am liebsten, wenn sie einen Beweis selbst konstruieren bzw.

vorgelegten Beweis verstehen wollen? Aus dieser Perspektive ergeben sich die folgenden

Forschungsfragen und damit verbundenen Leitfragen zur Auswertung, die die folgenden

Ausfihrungen leiten:

Forschungsfrage [5]: Inwiefern verandern sich die Kompetenzen der Studierenden im Kontext der

Thematik ,Begriinden und Beweisen’ von der Ein- zur Ausgangsbefragung

(0]

574

Leitfrage zur Auswertung [26]: Inwiefern verandern sich die studentischen Bewertungen der
verschiedenen Begriindungsformen (,narrativ und korrekt”, ,,empirisch-induktiv®, ,formal
und falsch“, ,korrekt mit Variablen”) als ,richtiger Beweis” wvon der Ein- zur
Ausgangsbefragung?
a) Inwiefern verandert sich die Auswahl der Begriindungsform, die ihrem eigenen
Ansatz am ndchsten kame?
b) Welche der vier Beweisformen der Lehrveranstaltung bevorzugen die Studierenden,
wenn es darum geht, (i) Beweise selbst zu konstruieren bzw. (ii) einen vorgelegten
Beweis verstehen zu wollen?”
Leitfrage zur Auswertung [27]: Inwiefern verandern sich die studentischen Bewertungen der
vier Beweisformen der Lehrveranstaltung in Bezug auf die Aspekte ,Sicherung der

IM

Gultigkeit”, ,subjektive Uberzeugung”, ,Erklarungspotential“ und ,Allgemeingiiltigkeit” von
der Ein- zur Ausgangsbefragung?

Leitfrage zur Auswertung [28]: Inwiefern verdndern sich die Beweisakzeptanzen der
Studierenden bzgl. der vier Beweisformen der Lehrveranstaltung von der Ein- zur

Ausgangsbefragung?

Forschungsfrage [6]: Inwiefern verdandern sich die Einstellungen der Studierenden zur Thematik

des Beweisens und zur Mathematik von der Ein- zur Ausgangsbefragung bzw. welche neuen

Ansichten der Studierenden zum (generischen und formalen) Beweisen kdnnen in der

Ausgangsbefragung herausgearbeitet werden?

0 Leitfrage zur Auswertung [29]: Inwiefern verandern sich die studentischen Bewertungen der

Relevanz des Unterrichtsgegenstandes ,Beweis” fiir verschiedene Schultypen und
Schulstufen von der Ein- zur Ausgangsbefragung?

Leitfrage zur Auswertung [30]: Inwiefern verdandern sich die studentischen Bewertungen
,gangiger’ Griinde, warum Beweise im schulischen Mathematikunterricht eine eher
untergeordnete Rolle spielen sollten, von der Ein- zur Ausgangsbefragung?

Leitfrage zur Auswertung [31]: Wie bewerten die Studierenden die Eignung generischer
Beweise fur die Schulmathematik?

Leitfrage zur Auswertung [32]: Inwiefern verdandern sich die studentischen Bewertungen zu
motivationalen Aspekten zum Beweisen von der Ein- zur Ausgangsbefragung?

’* Die Teilkompetenzen der Konstruktion von Begriindungen und Beweisen wird in der Teilstudie 3 (Abschnitt
7.4) aufgegriffen.

” Diese Frage dient als Konkretisierung der Frage nach dem eigenen Begriindungsansatz. Nach der
Lehrveranstaltung geht es nun nicht mehr blo8 um die Frage, ob die Studierenden einen empirischen,
narrativen oder formalen Ansatz verfolgen (vgl. Abschnitt 7.2.4.2), sondern auch, welche Beweisform in
welchem Diagrammsystem die Studierenden praferieren.
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0 Leitfrage zur Auswertung [33]: Inwiefern verandert sich die ,Beweisaffinitat” der
Studierenden von der Ein- zur Ausgangsbefragung?

0 Leitfrage zur Auswertung [34]: Inwiefern verdandern sich die Einstellungen der Studierenden
zur Mathematik von der Ein- zur Ausgangsbefragung?

e Forschungsfrage [7]: Wie schatzen die Studierenden selbst ihren Lernzuwachs in Bezug auf das
Beweisen durch die Lehrveranstaltung ein?

0 Leitfrage zur Auswertung [35]: Wie schatzen die Studierenden ihren eigenen
Lernzuwachs in Bezug auf die Funktionen von Beweisen ein?

0 Leitfrage zur Auswertung [36]: Wie schatzen die Studierenden ihren eigenen
Lernzuwachs in Bezug auf den Nutzen von Beispielbetrachtungen fiir den Beweisprozess
ein?

0 Leitfrage zur Auswertung [37]: Wie schatzen die Studierenden ihren eigenen
Lernzuwachs in Bezug auf das Beweisen durch die Lehrveranstaltung ein?

0 Leitfrage zur Auswertung [38]: Wie lasst sich die Selbstwirksamkeitserwartung zum
Beweisen auf Seiten der Studierenden beschreiben?

7.3.2 Kompetenzaspekte zum Beweisen: Ergebnisse der Ausgangsbefragung und Veranderungen
durch die Lehrveranstaltung

7.3.2.1 Die Beweisbewertungen und Beweispraferenzen der Studierenden

Entsprechend der Aufgabenstellung in der Eingangsbefragung sollten die Studierenden auch in der
Ausgangsbefragung bei den vier konkreten ,Beweisen’ angeben, ob es sich hierbei um ,richtige
Beweise” handelt oder nicht (vgl. Abschnitt 3.3.2 und Abschnitt 7.2.4.2). Die vorgelegten
,Beweisprodukte” umfassen eine korrekte narrative Argumentation [,narrativ’], eine induktive
Begriindung (bloRe Betrachtung einzelner Beispiele) [, Beispiele”], eine formal dargestellte falsche
Begriindung [,formal & falsch”] und schlieRlich die obige narrative Begriindung, dargestellt mithilfe
von Buchstabenvariablen [,korrekt mit Variablen“]. Wie bereits in der Eingangsbefragung wurde
auch in der Ausgangsbefragung die Frage gestellt, welche der verschiedenen Begriindungsformen
dem eigenen Ansatz der Studierenden am nachsten komme. Die Frage bzgl. der besten Note durch
den Mathematiklehrer der Oberstufe konnte dabei entfallen, da in Bezug auf diese Frage keine
nachtragliche Veranderung zu erwarten war.

Beantwortung der Leitfrage zur Auswertung [26]: Inwiefern verdndern sich die studentischen
Bewertungen der verschiedenen Begriindungsformen (,,narrativ und korrekt”, ,empirisch-induktiv”,
Jformal und falsch”, ,korrekt mit Variablen“) als ,richtiger Beweis“ von der Ein- zur

Ausgangsbefragung?

Die relativen Haufigkeiten der Bewertungen als ,richtiger Beweis” werden in der Tabelle 60 fir die
Ein- und Ausgangsbefragung dargestellt.
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Alle (n=74) Signifikanz (McNemar-Test) | Quotenverhaltnis
EB AB
narrativ (,,narrativ und korrekt*) 74,3 73
Beispiele (,,empirisch-induktiv®) 17,6 5,4 0,012 0,1
formal & falsch 27 13,5 0,078 -—-
korrekt mit Var. 89,2 95,9 0,289

Tabelle 60: Relative Haufigkeiten der Beweisbewertungen als , richtiger Beweis” in der Eingangsbefragungen [EB] und der
Ausgangsbefragung [AB] und Signifikanzen der Unterschiede von der Ein- zur Ausgangsbefragung (McNemar-Test) mit
Effektstarken durch Quotenverhiltnis (odds-Ratio) (alle ,nachverfolgbaren’ Studierenden)

Im Vergleich der Ergebnisse der Ein- und Ausgangsbefragung wird deutlich, dass die Bewertung der
bloRen empirisch-induktiven Begriindung [,,Beispiele”] als ,richtiger Beweis” statistisch signifikant
auf dem 5%-Niveau von 17,6% auf 5,4% zuriickgeht (p=0,012). (Das Quotenverhaltnis von 0,1 (odds
ratio) sagt hierbei aus, dass 10-mal so viele Studierende von der Ein- zur Ausgangsbefragung ihre
Bewertung von ,richtiger Beweis” zu ,kein richtiger Beweis” gedndert haben, als umgekehrt.) Der
Rickgang der Bewertung im Falle der formal dargestellten und falschen Begriindung ist dagegen mit
p=0,078 nicht mehr statistisch signifikant. Es ist dabei auffallig, dass selbst nach der
Lehrveranstaltung die formal dargestellte und falsche Begriindung noch von 13,5% der Studierenden
als richtiger Beweis bewertet wird. Und wie bereits in der Eingangsbefragung wird auch in der
Ausgangsbefragung die korrekte Begriindung mit Variablen mit 95,9% statistisch hoch signifikant auf
dem 0,1%-Niveau haufiger als richtiger Beweis bewertet als die entsprechende narrative Begriindung
ohne Variablen (73%) (McNemar-Test, p<0,001; odds ratio=9,5).

Beantwortung der Leitfrage zur Auswertung [26a]: Inwiefern verdndert sich die Auswahl der
Begriindungsform, die ihrem eigenen Ansatz am ndchsten kéme?

Die relativen Haufigkeiten der Begriindungsauswahl fiir den eigenen Ansatz werden in der Tabelle 61

angegeben.
Alle (n=74) Signifikanz (McNemar-Test) Quotenverhaltnis
EB AB

narrativ 33,7 21,5 0,031 0,37

Beispiele 10,8 1,4 0,041 -7
formal & falsch 9,5 6,8
korrekt mit Var. 36,5 63,5 <0,001 10,5
fehlende Werte 9,5 6,8

Tabelle 61: Prozentuale Verteilung der Beweiswabhl fiir die groBte Nahe zum eigenen Ansatz in der Eingangsbefragungen
[EB] und der Ausgangsbefragung [AB], Signifikanzen der Unterschiede zwischen den Befragungszeitpunkten und
Effektstarken als Quotenverhiltnis (,,odds Ratio“) (alle ,nachverfolgbaren’ Studierenden)

Die Abnahme der Auswahl der narrativen Begriindung von der Eingangsbefragung (33,7%) zur
Ausgangsbefragung (21,5%) ist mit p=0,031 statistisch signifikant auf dem 5%-Niveau, wie auch der
Rickgang der Auswahl der empirisch-induktiven Begriindungsform [, Beispiele”] von 10,8% auf 1,4%
(p=0,041). Der Anteil der Auswahl der korrekten Begriindung mit Variablen steigt dagegen statistisch
hoch signifikant auf dem 0,1%-Niveau von 36,5% auf 63,5% an (p<0,001). Das Quotenverhéltnis von
10,5 sagt dabei aus, dass von der Ein- zur Ausgangsbefragung 10,5-mal so viele Studierende ihre
Wahl hin zur korrekten Begriindung mit Variablen gedndert haben, als von dieser weg. Es zeigt sich

’® An dieser Stelle kann das entsprechende Quotenverhéltnis nicht berechnet werden, da es keinen
Studierenden gibt, der die empirisch-induktive Begriindung nicht in der Eingangsbefragung als , eigenen
Ansatz” gewahlt hat, doch aber in der Ausgangsbefragung.
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somit, dass sich der Ansatz der Studierenden vermehrt zu einer Verwendung von Variablen
hinwendet und eine Abkehr von blofsen empirisch-induktiven Betrachtungen erfolgt.

Beantwortung der Leitfrage zur Auswertung [26b]: Welche der vier Beweisformen der
Lehrveranstaltung bevorzugen die Studierenden, wenn es darum geht, (i) Beweise selbst zu
konstruieren bzw. (ii) einen vorgelegten Beweis verstehen zu wollen?

In der Ausgangsbefragung sollten die Studierenden angeben, welche der vier Beweisformen der
Lehrveranstaltung sie bevorzugen wirden, wenn (a) sie selbst einen Beweis konstruieren missen
und (b) sie einen vorgelegten Beweis verstehen wollten (,,Single-Choice Item®).

In der Tabelle 62 werden die prozentualen Verteilungen der Ergebnisse dargestellt.

Beweispraferenz fiir Eigenkonstruktion Beweispraferenz fiir das Verstehen eines Beweises
Alle (n=68) Alle (n=66)
GenZ 25,0 36,4
FB 64,7 50,0
GenP 7,4 10,6
GV 2,9 3,0
Summe 100,0 100,0

Tabelle 62: Prozentuale Verteilung der Beweispriferenzen der Studierenden in der Ausgangsbefragung (alle
,nachverfolgbaren’ Studierenden)

In Bezug auf die Eigenkonstruktion von Beweisen und das Verstehen eines vorgelegten Beweises
werden von der Gesamtgruppe jeweils der formale Beweis mit 64,7% bzw. 50% am haufigsten
ausgewahlt. Bzgl. beider Aspekte wird der generische Beweis mit Zahlen mit 25% bzw. mit 36,4%
noch deutlich haufiger gewahlt als die Punktmusterbeweise.

Die Unterschiede zwischen der Auswahl einer Beweisform fiir die Eigenkonstruktion und fir das
Verstehen eines Beweises sind jeweils nicht statistisch signifikant (McNemar-Test).

7.3.2.2 Die Beweisakzeptanz der Studierenden

Beantwortung der Leitfrage zur Auswertung [27]: Inwiefern verdndern sich die studentischen
Bewertungen der vier Beweisformen der Lehrveranstaltung in Bezug auf die Aspekte , Sicherung der

Giiltigkeit”, ,subjektive Uberzeugung®, ,Erkldrungspotential” und ,Allgemeingiiltigkeit” von der Ein-
zur Ausgangsbefragung?

Die Akzeptanz der generischen Beweise

Bei der Akzeptanz der generischen Beweise zeigt sich insgesamt, dass die Bewertungen der positiven
Akzeptanzaspekte [,wahr”, ,lberz“, ,100proz”“, ,erklar” und ,,korr_Beweis”]77 statistisch hoch
signifikant auf dem 0,1%-Niveau zunehmen, wohingegen die Bewertungen der Interpretation der
Beweise als bloRe Uberpriifung einzelner konkreter Fille [,Bsp“, ,Gegenbsp” und ,,einz_FéIIe”]78
abnehmen. Auch gehen die Zustimmungen bzgl. des Verlangens nach formaleren Darstellungen fir

»wahr: ... zeigt, dass die Behauptung in allen moglichen Fallen wahr ist.; ,Gberz": ... Gberzeugt mich, dass

die Behauptung wahr ist.”; ,100proz“: ,,... zeigt, dass die Behauptung hundertprozentig fiir alle Zeiten wahr
ist.“; ,erklar”: ,... erklart mir, warum die Behauptung korrekt ist“ und , korr_Beweis“: ,,... ist ein korrekter und
giiltiger Beweis.”
78 »,Bsp“: ... zeigt die Behauptung lediglich fiir ein paar Beispiele, aber nicht allgemein.”; ,,Gegenbsp“: ,,... ist
nicht allgemeingiltig, da es immer noch Gegenbeispiele geben kénnte.” und ,einz_Falle”: ,,... besteht nur aus
der Uberpriifung einzelner Fille, ist aber keine allgemeine Begriindung.“
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die Verbesserung der Begriindung [,Buchstabenvar” und formaler]”® zuriick. Dabei sind alle
Medianunterschiede von der Ein- zur Ausgangsbefragung statistisch hoch signifikant auf dem 0,1%-
Niveau bei mittlerer bis starker Effektstarke (Wilcoxon-Test; vgl. Tabelle 63 und Abbildung 78).

GenZ_ Alle (n=74) Effektstarke GenP_ Alle (n=74) Effektstarke (r)
EB AB EB AB

wahr 3,0 5,0%* 0,46 wahr 4,5 6,0** 0,5
tiberz 3,0 5,0%* 0,51 tiberz 5,0 6,0%* 0,46
100proz 2,0 4,0%* 0,57 100proz 2,5 5,0%* 0,58
erklar 4,0 5,0%* 0,51 erklar 5,0 6,0** 0,60
korr_Beweis 2,5 5,0%* 0,68 korr_Beweis 3,0 6,0** 0,61
Bsp 5,0 2,0%* 0,51 Bsp 4,0 2,0%* 0,57
Gegenbsp 5,0 2,0%* 0,53 Gegenbsp 3,5 2,0%* 0,57
einz_Fille 5,0 3,0%* 0,68 einz_Fille 4,0 2,0%* 0,60
Buchstabenvar 5,0 2,0%* 0,54 Buchstabenv 3,5 2,0%* 0,39
formaler 5,0 4,0%* 0,47 formaler 4,0 2,0%* 0,49

Tabelle 63: Mediane der Akzeptanzitems zum generischen Beweis mit Zahlen (links) und zum generischen Beweis mit
Punktmustern (rechts) in der Eingangsbefragung [EB] und Ausgangsbefragung [AB] mit Effektstarke (r) der

Medianunterschiede (Wilcoxon-Test); **: p<0,001 (alle ,nachverfolgbaren’ Studierenden)
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Abbildung 78: Mittelwerte der Akzeptanzitems zum generischen Beweis mit Zahlen (links) und zum generischen Beweis mit
Punktmustern (rechts) in der Eingangsbefragung [,,EB“] und Ausgansbefragung [,,AB“] (alle ,nachverfolgbaren’ Studierenden)

Die Akzeptanz des Beweises mit geometrischen Variablen und des formalen Beweises

Bei dem Beweis mit geometrischen Variablen steigen die Bewertungen bzgl. der positiven
Akzeptanzaspekte [,wahr”, ,berz”, , 100proz“, ,erklar” und ,korr_Beweis“] und die Bewertungen
der Aussagen zur Interpretation der Begriindung als bloRe singuldre Uberpriifung konkreter Fille
[,,Bsp”, ,,Gegenbsp” und ,einz_Falle“] nehmen in der Ausgangsbefragung ab. Auch die Zustimmungen
bzgl. des Verlangens nach formaleren Darstellungen fir die Verbesserung der Begriindung
[,,Buchstabenvar” und ,formaler“] gehen zuriick. Alle Medianunterschiede von der Ein- zur
Ausgangsbefragung sind statistisch hoch signifikant auf dem 0,1%-Niveau bei starker Effektstarke mit
Ausnahme des Items , Gegenbeispiele”, bei dem der Medianunterschied statistisch signifikant auf
dem 1%-Niveau bei schwacher Effektstarke ist (vgl. Tabelle 64 und Abbildung 79).

79 . . . . . vy
,Buchstabenvar”: ,,... ist ohne die Verwendung von Buchstabenvariablen nicht allgemeingltig.” und
,formaler”: ... misste formaler dargestellt sein, um mich voll zu tGberzeugen.”
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Da die entsprechenden Bewertungen der Akzeptanzitems beim formalen Beweis bereits in der
Eingangsbefragung deutliche Positionen erkennen lieBen, konnen bei den Ergebnissen der
Ausgangsbefragung keine groRen Veranderungen auftreten. Allerdings werden nun bei allen Items
die AuRenwerte der Skala als Median angenommen (vgl. Tabelle 64) und der Mediananstieg bzgl. des
Iltems ,100proz”“ von 5 auf 6 ist statistisch signifikant auf dem 5%-Niveau bei mittlerer Effektstarke.

GV Alle (n=74) Effektstarke FB Alle (n=74) Effektstarke (r)
EB AB EB AB

wahr 3,0 5,0%* 0,55 wahr 6,0 6,0 -

tiberz 3,0 5,0%* 0,56 tiberz 6,0 6,0

100proz 2,0 4,0%* 0,55 100proz 5,0 6,0 (*) 0,3

erklar 3,0 5,0%* 0,49 erklar 6,0 6,0 -

korr_Beweis 3,0 5,0%* 0,55 korr_Beweis 6,0 6,0

Bsp 4,0 2,0%* 0,52 Bsp 1,0 1,0

Gegenbsp 4,0 2,0* 0,38 Gegenbsp 1,0 1,0

einz_Falle 4,0 2,0%* 0,58 einz_Falle 1,0 1,0
Buchstabenvar 4,0 2,0%* 0,50
formaler 5,0 3,0%* 0,53

Tabelle 64: Mediane der Akzeptanzitems zum Beweis mit geometrischen Variablen (links) und zum formalen Beweis
(rechts) in der Eingangsbefragung [EB] und Ausgangsbefragung [AB] mit Effektstarke (r) der Medianunterschiede
(Wilcoxon-Test); **: p<0,001; *: p<0,01, (*): p<0,05 (alle ,nachverfolgbaren‘ Studierenden)
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Abbildung 79: Mittelwerte der Akzeptanzitems zum Beweis mit geometrischen Variablen (links) und zum formalen Beweis
(rechts) in der Eingangsbefragung [,,EB“] und Ausgansbefragung [,,AB“] (alle ,nachverfolgbaren’ Studierenden)

Die Ergebnisse bzgl. der Skalen zur Beweisakzeptanz in der Ein- und Ausgangsbefragung

Die statistischen Kennwerte der Skalen zur Beweisakzeptanz zu den Erhebungszeitpunkten Ein- und
Ausgangsbefragung werden fiir die Gesamtgruppe in der Tabelle 65 angegeben. Dabei wird deutlich,
dass alle Reliabilitatswerte in einem sehr guten Bereich liegen (Cronbachs Alpha>0,886) und auch die
Werte der korrigierten Trennscharfen der verwendeten Items liegen alle in einem guten bis sehr
guten Bereich (r;>0,505).
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Kennwerte Akz_GenZ Akz_GenP Akz_GV Akz_FB
EB AB EB AB EB AB EB AB
n 74 74 74 74 67 67 72 72

M 2,79 4,27 3,67 4,85 2,96 4,34 5,15 5,50

SD 1,18 1,45 1,27 1,27 1,27 1,36 1,02 0,80
Cronbachs Alpha 0,886 0,938 0,912 0,928 0,896 0,930 0,939 0,951
Spannweite r; 0,622 - 0,749 - 0,605 - 0,603 - 0,505 - 0,647 - 0,727 - 0,707 -
0,784 0,822 0,789 0,851 0,756 0,842 0,873 0,909

Tabelle 65: Kennwerte der Skalen zur Beweisakzeptanz in der Ein- und Ausgangsbefragung (alle ,nachverfolgbaren’
Studierenden)

Beantwortung der Leitfrage zur Auswertung [28]: Inwiefern verdndern sich die Beweisakzeptanzen

der Studierenden bzgl. der vier Beweisformen der Lehrveranstaltung von der Ein- zur

Ausgangsbefragung?

Bei allen Akzeptanzskalen ist ein Anstieg des Mittelwertes von der Ein- zur Ausgangsbefragung zu
verzeichnen. Dieser Anstieg ist bei allen Beweisformen statistisch hoch signifikant bei starker

Effektstarke, mit Ausnahme des formalen Beweises (s. Tabelle 66).

n EB AB p-Wert Cohens d
Akz_GenZ 74 2,79 4,27 <0,001 1,13
Akz_GenP 74 3,67 4,85 <0,001 0,94
Akz_GV 67 2,96 4,34 <0,001 1,06
Akz_FB 72 5,15 5,50 0,003 0,37

Tabelle 66: Arithmetische Mittel der Skalen zur Beweisakzeptanz, p-Werte und Effektstarke der Mittelwertunterschiede
(t-Test) in der Ein- und Ausgangsbefragung (alle ,nachverfolgbaren’ Studierenden)

In der Tabelle 67 werden die Signifikanzen der Mittelwertunterschiede der Akzeptanzskalen in der
Ausgangsbefragung untereinander angegeben. Hier zeigt sich, dass der generische Beweis mit Zahlen
mit einem (Mittelwert von 4,27) statistisch hoch signifikant auf dem 0,1%-Niveau bei kleiner
Effektstarke weniger Akzeptanz erfahrt als der generische Beweis mit Punktmustern (mit 4,85).
Wahrend zwischen dem generischen Beweis mit Zahlen und dem Punktmusterbeweis mit
geometrischen Variablen keine signifikanten Unterschiede auszumachen sind, wird der generische
Beweis mit Punktmustern statistisch signifikant auf dem 5%-Niveau bei kleiner Effektstarke héher
bewertet als der Punktmusterbeweis mit geometrischen Variablen. Die Akzeptanzunterschiede des
formalen Beweises zu den anderen Beweisformen sind paarweise statistisch hoch signifikant auf dem
0,1%-Niveau bei mittlerer bis starker Effektstarke.

Akz_GenZ Akz_GenP Akz_GV Akz_FB
(M=4,27) (M=4,85) (M=4,34) (M=5,59)
Akz_GenZz --- <0,001 0,419 <0,001
(M=4,27) d=0,43 d=1,08
Akz_GenP <0,001 --- 0,025 <0,001
(M=4,85) d=0,43 d=0,35 d=0,57
Akz_GV 0,419 0,025 --- <0,001
(M=4,34) d=0,35 d=0,98
Akz_FB <0,001 <0,001 <0,001 -
(M=5,59) d=1,08 d=0,57 d=0,98

Tabelle 67: Signifikanzen der Mittelwertunterschiede (t-Test) und Effektstdrken (Cohens d) der Akzeptanzskalen in der

Ausgangsbefragung (Alle)

Um neben den globalen Anderungen der Skalenwerte auch die Veranderungen der Akzeptanzwerte
auf der individuellen Personenebene nachvollziehen zu kdnnen, wurde Uber die Subtraktion der

Akzeptanzskalenwerte der Eingangsbefragung von dem Akzeptanzskalenwert der Ausgangsbefragung
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ein personenbezogener Verdnderungswert bzgl. der Beweisakzeptanz der vier Beweisformen
berechnet. Die somit berechneten Differenzen koénnen (theoretisch) Werte zwischen
-5 und 5 annehmen, wobei 0 keine Verdnderung des Akzeptanzwertes von der Ein- zur
Ausgangsbefragung bedeutet und positive Werte einen Zuwachs der Akzeptanz anzeigen. Die
Ergebnisse dieser personenbezogenen Veranderungswerte der Beweisakzeptanz werden in der
Abbildung 80 dargestellt.

3 o
1
o
Q Abbildung 80: Boxplots der
3 personenbezogenen Veranderungswerte der

Akzeptanzskalen (alle ,nachverfolgbaren’
Studierenden)
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Bei der Betrachtung der Boxplots wird deutlich, dass bei der Mehrheit der Studierenden eine
deutliche Zunahme der Beweisakzeptanzen von der Ein- zur Ausgangsbefragung stattfindet, wobei
diese Zunahmen bis zu finf Skalenwerte (das Maximum der Skala) umfassen. Nur im Falle des
formalen Beweises liegt der Median bei null, was keine Veranderung der Akzeptanz bedeutet. Dieser
groRe Anteil der gleichbleibenden Akzeptanzwerte beim formalen Beweis ergibt sich durch den
haufig erhaltenen maximalen Akzeptanzwert von 6, den Studierende in der Ein- und
Ausgangsbefragung erzielten.

Fiir eine genauere Darstellung der Gewichtung der Zu- und Abnahme der Beweisakzeptanzen werden
die Ergebnisse in der Tabelle 68 noch zusammengefasst nach den Bereichen ,,Abnahme” [Summe der
Anzahl aller negativen Werte], , keine Veranderung” [Summe der Werte gleich Null] und ,Zunahme”
[Summe der Anzahl aller positiven Werte] aufgefiihrt. Beachtenswert ist, dass die Beweisakzeptanz
bei den verschiedenen Beweisen bei knapp einem Viertel der Studierenden abnimmt. Dies kdnnte so
interpretiert werden, dass eine erhohte Beweisakzeptanz bei einer Beweisform sich in einer
niedrigeren Bewertung einer anderen niederschlagt.

| n | Abnahme | keine | Zunahme
Alle
Zuw_GenZ 74 23,3 5,5 71,2
Zuw_GenP 74 23,3 4,1 72,6
Zuw_GV 67 25,0 2,9 72,1
Zuw_FB 72 16,4 34,2 49,3

Tabelle 68: Personenbezogene Veranderungswerte der
Beweisakzeptanzen, zusammengefasst in den Kategorien
»Abnahme“, ,keine Veranderung” und ,, Zunahme*

(alle ,nachverfolgbaren’ Studierenden)
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Als ein kleiner Exkurs sei an dieser Stelle den Fragen nachgegangen, ob sich ein Zusammenhang
zwischen den Akzeptanzskalen der beiden generischen Beweise ausmachen lasst, was als eine
Ubergeordnete Akzeptanz generischer Beweise aufgefasst werden kénnte, und ob im Vergleich der
Akzeptanzskalen zu den Punktmusterbeweisen eine (ibergeordnete Akzeptanz von
Punktmusterbeweisen ausgemacht werden kann.

In der Ausgangsbefragung korrelieren die Akzeptanzskalen zu den generischen Beweisen in der
Gesamtgruppe mittelstark (r,=0,527 mit p<0,001; Erstsemester: r,=0,542 mit p<0,001 und Hoéhere
Semester: r,=0,545 mit p=0,001; dieser positive Zusammenhang wird auch bei der Betrachtung des
linken Scatterplots in Abbildung 81 deutlich). Diese Ergebnisse konnen dahingehen interpretiert
werden, dass eine (ibergreifende Akzeptanz von generischen Beweisen vorliegen konnte.

Bei den Zusammenhangen zwischen den Akzeptanzskalen zu den Punktmusterbeweisen werden in
den Subgruppen die folgenden Unterschiede deutlich: Wahrend bei den Erstsemestern kein
Zusammenhang nachgewiesen werden kann (r,=-0,006, p=0,973), liegt die Korrelation in den
Hoheren Semestern bei r,=0,495 und ist mit p=0,003 statistisch hoch signifikant auf dem 1%-Niveau
(vgl. hierzu den rechten Scatterplot in Abbildung 81). Dieser Unterschied konnte dahingehend
gedeutet werden, dass die Erstsemester noch keine ausreichende Zeit hatten, sich in den Umgang
mit Punktmustern einzuarbeiten bzw. sich daran zu gewdéhnen.
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Abbildung 81: Scatterplots zu den Zusammenhangen der Akzeptanzskalen in der Ausgangsbefragung (links: die
Akzeptanzskalen zu den generischen Beweisen, rechts: die Akzeptanzskalen zu den Punktmusterbeweisen) (alle
,nachverfolgbaren’ Studierenden mit Hervorhebungen der Subgruppen)

Fiir die Beantwortung der Forschungsfrage [5] werden im Folgenden die erhaltenen Ergebnisse aus
Abschnitt 7.3.2. unter Berlcksichtigung der Leitfragen zur Auswertung 26-28 zusammenfassend

ausgewertet.

Beantwortung der Forschungsfrage [5]: Inwiefern verdndern sich die Kompetenzen der Studierenden
im Kontext der Thematik ,Begriinden und Beweisen’von der Ein- zur Ausgangsbefragung?

Bzgl. der Teilkompetenz der Beweisbewertung konnte gezeigt werden, dass die Bewertung der
Studierenden der bloRen empirisch-induktiven Begriindung von der Ein- zur Ausgangsbefragung als
yrichtiger Beweis” statistisch hoch signifikant von 17,6% auf 5,4% abnimmt (McNemar-Test, p<0,012
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mit odds ratio=0,1). Und auch der Anteil der Fehlbewertung der formal-dargestellten und falschen
Begriindung geht von 27% auf 13,5% zuriick (McNemar-Test, p=0,078). Die Studierenden scheinen
somit durch die Lehrveranstaltung gelernt zu haben, dass blof3e Beispielbetrachtungen keinen Beweis
konstituieren, und auch die fehlerhafte Begriindung wird in der Ausgangsbefragung von ihnen als
solche erkannt.

Bzgl. der Wahl einer Begriindungsform als potentieller eigener Ansatz wird die korrekte Begriindung
mit Buchstabenvariablen in der Ausgangsbefragung mit 63,5% statistisch hoch signifikant auf dem
0,1%-Niveau haufiger ausgewahlt als in der Eingangsbefragung (McNemar-Test, p<0,001 mit odds
ratio=10,5). Demgegeniliber nimmt der Anteil der Wahl der empirisch-induktiven Begriindung von
10,8% auf 1,4% statistisch signifikant auf dem 5%-Niveau ab (McNemar-Test, p=0,041). Hier zeigt
sich, dass sich die Studierenden bzgl. ihres eigenen Begriindungsansatzes von bloRRen
Beispielbetrachtungen abwenden und nun verstarkt zu einer Verwendung von Buchstabenvariablen
tendieren. Bei der Frage nach der Beweispraferenz der Studierenden wird der formale Beweis in
Bezug auf die Eigenkonstruktion und das Verstehen eines Beweises am haufigsten gewahlt. Auch hier
zeigt sich somit die Hinwendung zu einer Nutzung von Buchstabenvariablen. Wahrend bzgl. der
Eigenkonstruktion 25% der Studierenden den generischen Beweis mit Zahlen bevorzugen, liegt dieser
Anteil fir das Verstehen eines Beweises bei 36,4%. Auch wenn dieser Anstieg nicht statistisch
signifikant ist (McNemar-Test), so wird doch deutlich, dass die Studierenden den generischen Beweis
in Bezug auf die Eigenkonstruktion und das Verstindnis unterschiedlich bewerten. Die
Punktmusterbeweise werden bzgl. beider Aspekte nur marginal ausgewahlt.

In Bezug auf die Beweisakzeptanz sind bzgl. der generischen Beweise deutliche Unterschiede von der
Ein- zur Ausgangsbefragung zu verzeichnen. In der Ausgangsbefragung stimmen die Studierenden
den verschiedenen positiven Akzeptanzaspekten (Sicherung der Giiltigkeit, Uberzeugung,
Erklarungsqualitdat und Bezeichnung als ,korrekter und glltiger Beweis‘) statistisch hoch signifikant
auf dem 0,1%-Niveau hoher zu als in der Eingangsbefragung (Wilcoxon-Test, p<0,001 mit mittleren
bis starken Effektstarken: 0,46<Cohens d<0,68). Dementsprechend wird den Items bzgl. der
Interpretation der Beweise als bloRe Beispielliberprifungen statistisch hoch signifikant auf dem
0,1%-Niveau weniger zugestimmt (Wilcoxon-Test, p<0,001 mit mittleren bis starken Effektstarken:
0,39<Cohens d<0,68). Einen vergleichbaren Akzeptanzzuwachs erfdhrt auch der Punktmusterbeweis
mit geometrischen Variablen. Auch bei dieser Beweisform steigen die Zustimmungen bzgl. der
positiven Akzeptanzaspekte statistisch hoch signifikant auf dem 0,1%-Niveau an, wohingegen die
Fehlinterpretationen als singuldre Beispielliberprifungen in der Ausgangsbefragung deutlicher
abgelehnt werden. Beim formalen Beweis werden in der Ausgangsbefragung die hohen
Akzeptanzbewertungen bzgl. der verschiedenen Aspekte aus der Eingangsbefragung reproduziert.
Dieser Anstieg der Beweisakzeptanzen zeigt sich auch in den statistisch hoch signifikanten
Mittelwertanstiegen (t-Test) der Akzeptanzskalen zu den vier Beweisformen, bei den generischen
Beweisen und dem Beweis mit geometrischen Variablen mit hoher Effektstarke (generischer Beweis
mit Zahlen: Cohens d=1,13, generischer Beweis mit Punktmustern: Cohens d=0,94 und Beweis mit
geometrischen Variablen: Cohens d=1,06). Wahrend die einzelnen Akzeptanzwerte bzgl. der vier
Beweisformen steigen, ergibt sich in der Ausgangsbefragung die gleiche Akzeptanzhierarchie wie in
der Eingangsbefragung: Wahrend der generische Beweis mit Zahlen und der Punktmusterbeweis mit
geometrischen Variablen mit einem Mittelwert von 4,27 bzw. 4,34 am wenigsten Akzeptanz
erfahren, erreicht der generische Beweis mit Punktmustern mit einem Mittelwert von 4,85 statistisch
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signifikant hohere Akzeptanzwerte. Am hochsten wird jedoch der formale Beweis mit einem
Mittelwert von 5,50 bewertet.

Die Akzeptanzzunahme in Bezug auf die vier Beweisformen der Lehrveranstaltung konnten durch die
Betrachtung der personenbezogenen Veranderungswerte konkretisiert werden: Bzgl. der beiden
generischen Beweise und des Punktmusterbeweises mit geometrischen Variablen ist bei gut 70% der
Studierenden ein Akzeptanzzuwachs zu verzeichnen.

Die Veranderungen der Teilkompetenz der Konstruktion von Begriindungen (bzw. von Beweisen)
werden im Rahmen der Teilstudie 3 untersucht (s. Abschnitt 7.4).

7.3.3 Ergebnisse bzgl. der Einstellungen zum Themenkomplex des Beweisens und zur
Mathematik

7.3.3.1 Einstellungen zum Beweisen in der Schule

In diesem Abschnitt werden die Ergebnisse zu den folgenden Themenbereichen dargestellt: (i) die
Einschatzung der Relevanz des Unterrichtsgegenstands ,Beweis” fiir verschiedene Schultypen und
Schulstufen, (ii) die Bewertung ,gangiger’ Griinde, warum Beweise im schulischen
Mathematikunterricht eine eher untergeordnete Rolle spielen sollten, (iii) die Einstellungen zur
Nutzung von Buchstabenvariablen und zu formalen Beweisen, zur Eignung generischer Beweise fir
die Schulmathematik und die Rolle der Lehrveranstaltung ,Einfiihrung in die Kultur der Mathematik”.

(i) Die Einschatzung der Relevanz des Unterrichtsgegenstands ,Beweis” fiir verschiedene
Schultypen und Schulstufen

Die Ergebnisse bzgl. der Items zur Relevanz von Beweisen fiir verschiedene Schultypen und
Schulstufen in der Ein- und Ausgangsbefragung werden in der Tabelle 69 angegeben.

Sek_1 sek_2 GS HS RS GY
EB | AB EB | AB EB | AB EB | AB EB | AB EB AB
Alle (n=74)
n 74 74 74 74 74 74 74 74 74 74 74 74
M 3,93 3,62 5,32 5,18 2,05 1,72 3,57 3,11 4,41 4,07 5,54 5,20
Median | 4,00 4,00 6,00 5,00 1,00 1,00 4,00 | 3,00* | 4,00 4,00 6,00 6,00
sD 1,34 1,36 0,89 1,00 1,49 1,31 1,44 1,48 1,08 1,25 0,76 1,09

Tabelle 69: Ergebnisse der Items zur Relevanz von Beweisen fiir verschiedene Schultypen und Schulstufen in der Ein- und
Ausgangsbefragung (alle ,nachverfolgbaren’ Studierenden) [Signifikanzen der Medianunterschiede (Wilcoxon-Test): *:
p<0,05]

Beantwortung der Leitfrage zur Auswertung [29]: Inwiefern verdndern sich die studentischen
Bewertungen der Relevanz des Unterrichtsgegenstandes ,,Beweis” fiir verschiedene Schultypen und
Schulstufen von der Ein- zur Ausgangsbefragung?

Im Vergleich der Ergebnisse der Ein- und Ausgangsbefragung ist der Medianunterschied bzgl. des
Aspekts ,Beweise in der Hauptschule” [,HS”] statistisch signifikant, die Befirwortung des Lerninhalts
,Beweisen” nimmt somit fiir die Hauptschule statistisch signifikant ab. Der Medianunterschied bzgl.
des Aspekts ,Beweisen in der Sekundarstufe 2“ [,Sek 2“] ist dagegen mit p=0,710 nicht statistisch
signifikant (Wilcoxon-Test).

Wie bereits in der Eingangsbefragung zeigt sich auch in der Ausgangsbefragung, dass nach Ansicht
der Studierenden Beweise eher in der Sekundarstufe 2 als in der Sekundarstufe 1 eine Rolle spielen
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sollten. In Bezug auf die Schulformen ergibt sich, wie bereits in der Eingangsbefragung, die
hierarchische Ordnung von Grundschule, Hauptschule, Realschule und Gymnasium, wobei die
Medianunterschiede paarweise statistisch hoch signifikant auf dem 0,1%-Niveau bei starker
Effektstarke sind (Wilcoxon-Test, p<0,001 mit r>0,65).

(ii) Die Bewertung ,gangiger’ Griinde, warum Beweise im schulischen Mathematikunterricht
eine eher untergeordnete Rolle spielen sollten

In der Tabelle 70 werden die Items zur Thematik ,, motivationale Aspekte zum Beweisen” und die
Medianveranderungen der studentischen Bewertungen von der Ein- und zur Ausgangsbefragung mit
den dazugehorigen Signifikanzwerten (Wilcoxon-Test) und Effektstarken angegeben.

Formulierung EB AB | Signifikanz (Effektstdrke)

In der Schule sollten Beweise eher eine untergeordnete Rolle spielen, ...

.., da es wichtiger ist, dass die fachlichen Inhalte (Funktionen, 5 5 -
Differentialrechnung, Integralrechnung, ...) vermittelt und verstanden

werden.

..., da es wichtiger ist, dass die Schiiler/innen Rechenaufgaben richtig 4 5 p=0,011
|6sen konnen. (r=0,3)
..., da man im Mathematikunterricht lieber Anwendungen im Alltag 4 5 p=0,026
behandeln sollte. (r=0,26)
..., da Beweise fiir die Schuler/innen zu schwer nachzuvollziehen sind. 4 4 -

..., da es die meisten Schiler/innen Uberfordern wirde, selbststandig 4 4 -
Beweise zu finden und aufzuschreiben.

..., da die Schiler/innen sowieso wissen, dass die mathematischen 3 4 p=0,015
Regeln und Satze richtig sind, und sie daher nicht zum Beweisen zu (r=0,29)

motivieren sind.

..., da das Beweisen im spateren Leben der Schiiler/innen keine 4 5 n.s.
Anwendung findet (im Gegensatz etwa zur Prozentrechnung).

..., da Beweise in der Lebenswelt der Schiler/innen keine Bedeutung 3 4 n.s.

haben.

Tabelle 70: Ergebnisse bzgl. der Items zur Bewertung ,,gingiger” Griinde, warum Beweise im schulischen
Mathematikunterricht eine eher untergeordnete Rolle spielen sollten, in der Ein- und Ausgangsbefragung [sechsstufige
Likert-Skala: [1] ,trifft iberhaupt nicht zu“ ... [6] , trifft voll zu“]; Signifikanzen der Medianunterschiede (Wilcoxon-Test)
mit Effektstarken (alle ,nachverfolgbaren’ Studierenden)

Beantwortung der Leitfrage zur Auswertung [30]: Inwiefern verdndern sich die studentischen
Bewertungen ,géngiger’ Griinde, warum Beweise im schulischen Mathematikunterricht eine eher
untergeordnete Rolle spielen sollten, von der Ein- zur Ausgangsbefragung?

Insgesamt betrachtet, wird durch den Besuch der Lehrveranstaltung die Zustimmung gangiger
Griinde auf Seiten der Studierenden, warum Beweisen in der Schule eine eher untergeordnete Rolle
spielen sollte, nicht abgeschwéacht. Im Gegenteil wird den Griinden ,Lésen von Rechenaufgaben”,
»Anwendungen im Alltag” und , das Wissen um die Giiltigkeit von mathematischen Satzen und
Regeln” (s.0.) nach der Lehrveranstaltung signifikant hoher zugestimmt als vor der Lehrveranstaltung.

(iii) Die Bewertung der Eignung generischer Beweise fiir die Schulmathematik

In der Ausgangsbefragung sollten die Studierenden die folgenden Aussagen auf einer Sechser-Likert-
Skala ([1] ,trifft Gberhaupt nicht zu“ ... [6] , trifft voll zu“) bewerten:
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# Formulierung Abkiirzung

Generische Beweise sind eine gute Moglichkeit, um Schiilern das Argumentieren beizubringen. ,GB_gut_SuS*“

2 Der generische Beweis ist eine Beweisform, die es ermoglicht, mathematische Beweise auch in | ,GB_HS_RS“

der Haupt- und Realschule zu thematisieren.

Tabelle 71: Items fiir die Bewertung der Eignung generischer Beweise fiir die Schulmathematik

Ergebnisse

Die Ergebnisse der hier thematisierten Items werden in Tabelle 72 und der Abbildung 82 angegeben.

Eignung generischer 6 ==
Beweise fiir die
Schulmathematik 5
GB_gut_SuS GB_HS_RS
n 74 73 4
M 4,73 4,32
Median 5,00 4,00 3 —4
SD 1,17 1,28
2 o
Tabelle 72: Ergebnisse bzgl. der Iltems zur
Bewertung der Eignung generischer Beweise fiir
die Schulmathematik (alle ,nachverfolgbaren’ 1 - °
Studierenden) (Bewertung auf einer GB_gut_Sus GB_HS_RS

sechsstufigen Likert-Skala: [1] , trifft {iberhaupt

nicht zu® ... [6] , trifft voll zu®) Abbildung 82: Boxplots bzgl. der Items zur Bewertung der Eignung

generischer Beweise fiir die Schulmathematik (alle ,nachverfolgbaren’
Studierenden) [sechsstufige Likert-Skala: [1] ,trifft Giberhaupt nicht zu“
... [6] ,,trifft voll zu“]

Beantwortung der Leitfrage zur Auswertung [31]: Wie bewerten die Studierenden die Eignung
generischer Beweise fiir die Schulmathematik?

Die grolRe Mehrheit der Studierenden bewertet die Eignung generischer Beweise fir die
Schulmathematik insgesamt positiv: Der Aussage ,Generische Beweise sind eine gute Moglichkeit,
um Schilern das Argumentieren beizubringen” (,Gen_gut_SuS“) wird mit einem Median von 5
deutlich zugestimmt, dem Item ,Der generische Beweis ist eine Beweisform, die es ermdoglicht,
mathematische Beweise auch in der Haupt- und Realschule zu thematisieren” (,Gen_HS RS“) noch
mit einem Median von 4. Bei der Betrachtung der Boxplots (Abbildung 82) zeigt sich, dass zu beiden
Items die Boxen innerhalb der oberen Halfte der Likert-Skala und somit im Bereich der ,Zustimmung’
liegen.

Einstellungen zum Beweisen

In diesem Abschnitt werden die Aspekte (i) Einschatzung motivationaler Aspekte zum Beweisen und
(ii) ,Beweisaffinitat” betrachtet. (Der in der Eingangsbefragung vorhandene Bereich der ,,Motivation
zum Erlernen der Beweisaktivitat” entfiel in der Ausgangsbefragung.)

(i) Motivationale Aspekte zum Beweisen

In der Tabelle 73 werden die Items zur Thematik ,motivationale Aspekte zum Beweisen” und die
Mediane der studentischen Bewertungen von der Ein- und Ausgangsbefragung angegeben.
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Item EB AB Signifikanz des Medianunterschieds
(Effektstarke)

Ich sehe das Beweisen als eine intellektuelle Herausforderung, 4 4 —

der ich mich gerne stelle.

Ich mag Beweise. 3 4 p=0,067
(r=0,22)

Ich sehe keinen Sinn darin, etwas beweisen zu miissen, was 2 2 —

sowieso richtig ist.

Ich versuche, Beweise zu verstehen. 5 6 p=0,003
(r=0,34)

Ich weil}, wie man einen Beweis fihrt. 4 5 p<0,001
(r=0,67)

Beweise werden von Experten konstruiert. Es gentigt, wenn man 3 3

sie nachvollziehen und verstehen kann.

Tabelle 73: Items zu motivationalen Aspekten zum Beweisen [Beweisaffinitat] und Mediane der Ein- und
Ausgangsbefragung (alle ,nachverfolgbaren’ Studierenden) mit Signifikanzwerten der Medianunterschiede (Wilcoxon-
Test) und Effektstirke [Bewertung der Items auf einer sechsstufigen Likert-Skala: [1] , trifft GUberhaupt nicht zu“ ... [6]
Htrifft voll zu“]

Beantwortung der Leitfrage zur Auswertung [32]: Inwiefern verdndern sich die studentischen
Bewertungen zu motivationalen Aspekten zum Beweisen von der Ein- zur Ausgangsbefragung?

Im Vergleich der Bewertungen der Aussagen von der Ein- zur Ausgangsbefragung zeigen sich bei
Betrachtung der Mediane bei den folgenden Items keine Veranderungen: ,Ich sehe das Beweisen als
eine intellektuelle Herausforderung, der ich mich gerne stelle.”, ,Ich sehe keinen Sinn darin, etwas
beweisen zu miissen, was sowieso richtig ist.“ und , Beweise werden von Experten konstruiert. Es
genilgt, wenn man sie nachvollziehen und verstehen kann.”. Dagegen steigt die Bewertung der
Aussage ,Ilch mag Beweise” statistisch schwach signifikant auf dem 7% Niveau bei schwacher
Effektstarke an. Starkere Signifikanzen und Effektstarken zeigen sich bzgl. der Medianunterschiede
bei der Bewertung der Items ,Ich versuche, Beweise zu verstehen” (Mediane 5 und 6; p=0,003 bei
mittlerer Effektstdrke) und ,Ich weil}, wie man einen Beweis fiihrt“ (Mediane 4 und 5; p<0,001 bei
starker Effektstarke).

(ii) Beweisaffinitat

In der Tabelle 74 werden die statistischen Kennwerte der Skala zur Beweisaktivitat fir die Ein- und
Ausgangsbefragung angegeben. Die konstruierte Skala hat zu allen Messzeitpunkten ausreichend
hohe Reliabilitatswerte (a>0,728). Bei der Betrachtung der korrigierten Trennscharfe der
verwendeten Items wird allerdings deutlich, dass diese Skala noch weiter optimiert werden kénnte.

Kennwerte der Skala Beweisaffinitat (, Aff_Bew*)
Alle
EB AB
n 74 74
M 4,00 4,27
SD 0,90 0,88
Cronbachs Alpha 0,753 0,728
Spannweite ryy 0,338 - 0,646 0,278 - 0,689

Tabelle 74: Kennwerte der Skala zur Beweisaffinitat in der Ein- und Ausgangsbefragung (alle ,nachverfolgbaren’
Studierenden)
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Beantwortung der Leitfrage zur Auswertung [33]: Inwiefern verédindert sich die , Beweisaffinitéit” der
Studierenden von der Ein- zur Ausgangsbefragung?

Im Vergleich der Skalenmittelwerte der Ein- und Ausgangsbefragung zeigt sich in der Gesamtgruppe
ein Anstieg des Mittelwertes von 4,0 auf 4,27, der bei kleiner Effektstarke statistisch signifikant auf
dem 5%-Niveau ist (t-Test, p=0,018 mit Cohens d=0,3).

7.3.3.3 Einstellungen zur Mathematik

In der Tabelle 75 werden die statistischen Kennwerte der vier Skalen des Bereichs ,Einstellungen zur
Mathematik” flir die Ein- und die Ausgangsbefragung angegeben. Da alle Reliabilitatswerte echt
groRer als 0,5 sind, erscheint eine (gegebenenfalls entsprechend vorsichtige) Betrachtung der
Ergebnisse zuldssig. Durch die teilweise noch sehr niedrigen korrigierten Trennscharfen in den Items
wird deutlich, dass diese Skalenkonstruktionen durchaus noch als verbesserungswiirdig bezeichnet
werden mussen. Die Skalenmittelwerte in der Ein- und Ausgangsbefragung werden zusatzlich in der
Abbildung 83 dargestellt.

Mathematik als System Mathematik als Mathematik als Prozess Praktische Relevanz

[MaSy] Toolbox [MaPro] von Mathematik

[MaTo] [PraRel]
EB | AB EB | AB EB AB EB | AB
Alle

n 70 70 70 70 70 70 70 70

M 4,34 4,44 4,48 4,36 4,42 4,70 4,41 4,51

SD 0,74 0,69 0,09 0,10 0,09 0,11 0,12 0,12
Cronbachs 0,701 0,698 0,614 0,716 0,555 0,711 0,781 0,783

Alpha

Spannweite 0,328 - 0,357 - 0,272 - 0,433 - 0,248 - 0,399 - 0,464 - 0,283 -
Ny 0,541 0,485 0,484 0,511 0,438 0,585 0,667 0,687

Tabelle 75: Statistische Kennwerte der Skalen zur Einstellungen zur Mathematik in der Ein- und Ausgangsbefragung (alle
,nachverfolgbaren’ Studierenden und Subgruppen)

50 —EB

48

5 46
2
]
S 44
42
Abbildung 83: Arithmetische Mittel der Skalen
40 zur Einstellung zur Mathematik in der Ein- und

MaPro MaSy MaTo PraRel

Studierenden)
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Beantwortung der Leitfrage zur Auswertung [34]: Inwiefern verdndern sich die Einstellungen der
Studierenden zur Mathematik von der Ein- zur Ausgangsbefragung?

“80 " Mathematik als

und ,Praktische Relevanz von Mathematik” steigen von der Ein- zur Ausgangsbefragung

Die Mittelwerte der Skalen zu den Einstellungen ,Mathematik als System
Toolbox“®!
geringfligig und nicht statistisch signifikant an. Dagegen ist der Mittelwertunterschied bzgl. der Skala
»Mathematik als Prozess” bei kleiner Effektstarke statistisch hoch signifikant auf dem 1%-Niveau (t-

Test, p=0,009 mit Cohens d=0,34).

Als Exkurs sei an dieser Stelle der Frage nachgegangen, inwiefern sich Zusammenhange zwischen den
»Einstellungen zur Mathematik” und den erhobenen Skalen zur Beweisakzeptanz ausmachen lassen.
Dabei scheint die Hypothese angebracht, dass positive Korrelationen zwischen der Einstellung
»Mathematik als System” und der Akzeptanz des formalen Beweises sowie positive Korrelationen
zwischen der Einstellung ,,Mathematik als Prozess” und der Akzeptanz der generischen Beweise
vorliegen kdnnten.

Zwischen den in der Ausgangsbefragung erhobenen Skalen zu den ,Einstellungen zur Mathematik”
und den dort erhobenen Skalen zur Beweisakzeptanz lassen sich jedoch keine statistisch signifikanten
Zusammenhange nachweisen. Dieses rechnerische Ergebnis wird dabei durch die Darstellung der
Zusammenhange im Scatterplot gestiitzt (s. Abbildung 83).
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Abbildung 84: Scatterplot zu den in der Ausgangsbefragung erhobenen Skalen ,, Akzeptanz des formalen Beweises”
[,,AB_Akz_FB“] und ,Mathematik als System* [,,Ma_Sy“] (links) und Scatterplot zu den in der Ausgangsbefragung erhobenen
Skalen ,,Akzeptanz des generischen Beweises mit Zahlen“ [,,AB_Akz_GenZ“] und ,,Mathematik als Prozess” [,,Ma_Sy“] (rechts)
(alle ,nachverfolgbaren’ Studierenden)

80 Anmerkung: Bzgl. der Skala ,,Mathematik als System” ist der Mittelwertanstieg in der Gruppe der
Erstsemester statistisch signifikant auf dem 5%-Niveau (t-Test, gepaarte Stichprobe (n=35): Mittelwert EB: 4,22
und Mittelwert AB: 4,47; p=0,02 mit Cohens d=0,35).

“

8t Anmerkung: In der Eingangsbefragung konnte gezeigt werden, dass bzgl. der Skala ,,Mathematik als Toolbox
der Mittelwert der Erstsemesterstudierenden statistisch signifikant ber dem der Hoheren Semester liegt.
Dieser Subgruppenunterschied lasst sich auch in der Eingangsbefragung ausmachen. Hier liegt der Mittelwert
der Erstsemesterstudierenden mit 4,61 statistisch signifikant auf dem 5%-Niveau tGber dem der Hoheren
Semester mit 4,14 (t-Test, p=0,016).
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Fiir die Beantwortung der Forschungsfrage [6] werden im Folgenden die erhaltenen Ergebnisse aus
Abschnitt 7.3.3. unter Berlcksichtigung der Leitfragen zur Auswertung 29-34 zusammenfassend
ausgewertet.

Beantwortung der Forschungsfrage [6]: Inwiefern verdndern sich die Einstellungen der Studierenden
zur Thematik des Beweisens und zur Mathematik von der Ein- zur Ausgangsbefragung bzw. welche
neuen Ansichten der Studierenden zum (generischen und formalen Beweisen) kénnen in der
Ausgangsbefragung herausgearbeitet werden?

Bei dem Teilaspekt der Einstellungen zum Beweisen in der Schule zeigte sich, dass die Studierenden
in der Ausgangsbefragung die Bedeutung des Beweisens fiir die Hauptschule (statistisch signifikant
auf dem 5%-Niveau) geringer bewerten als in der Eingangsbefragung. Dieses Ergebnis kann
dahingehend interpretiert werden, dass die Studierenden ,das Beweisen’ als einen nicht trivialen
Lerngegenstand erfahren haben und deswegen in Bezug auf dessen Relevanz fiir die Hauptschule
etwas zuriickhaltender agieren. In Bezug auf die anderen Schulformen konnten keine statistisch
signifikanten Veranderungen von der Ein- zur Ausgangsbefragung nachgewiesen werden. Wie bereits
in der Eingangsbefragung zeigt sich auch in der Ausgangsbefragung, dass nach Ansicht der
Studierenden Beweise eher in der Sekundarstufe 2 als in der Sekundarstufe 1 thematisiert werden
sollten. Dabei ergibt sich auch zu diesem Messzeitpunkt eine hierarchische Anordnung der
Schulformen  (Grundschule, Hauptschule, Realschule und Gymnasium), wobei die
Medianunterschiede paarweise statistisch hoch signifikant auf dem 0,1%-Niveau bei starker
Effektstarke sind (Wilcoxon-Test, p<0,001 mit r>0,65). Nach der Lehrveranstaltung wird den
Aussagen  statistisch  signifikant hoher zugestimmt, dass Beweise im  schulischen
Mathematikunterricht zu Gunsten des Lésens von Rechenaufgaben (Wilcoxon-Test; p=0,011 mit
r=0,3) und der Behandlung von Anwendungen aus dem Alltag (Wilcoxon-Test; p=0,026 mit r=0,26)
eine eher untergeordnete Rolle spielen sollten. Auch steigt die Zustimmung bzgl. der Begriindung ,,...,
da die Schiiler/innen sowieso wissen, dass die mathematischen Regeln und Satze richtig sind, und sie
daher nicht zum Beweisen zu motivieren sind.” (Wilcoxon-Test; p=0,015 mit r=0,29). Die
Relevanzbewertung des Lerninhalts ,Beweis’ fiir die Schulmathematik scheint sich somit bei den
Studierenden nicht gesteigert zu haben.

Dagegen kann bei den Einstellungen zum Beweisen auf Seiten der Studierenden eine Hinwendung
zum Beweisen ausgemacht werden: Den Aussagen ,Ich mag Beweise” (Wilcoxon-Test; p=0,067 mit
r=0,22), ,Ich versuche, Beweise zu verstehen” (Wilcoxon-Test; p=0,003 mit r=0,34) und ,,Ich weiB, wie
man einen Beweis flhrt“ (Wilcoxon-Test; p<0,001 mit r=0,67) wird nach der Lehrveranstaltung
statistisch (schwach) signifikant hoher zugestimmt. Dementsprechend steigt der Mittelwert der Skala
zur Beweisaffinitdit von der Ein- zur Ausgangsbefragung statistisch hoch signifikant bei kleiner
Effektstarke an (EB: 4,0; AB: 4,27; t-Test, p=0,018 mit Cohens d=0,3). Im Rahmen dieser Thematik
konnte auch herausgestellt werden, dass die Studierenden den Aussagen zustimmen, dass
generische Beweise eine gute Moglichkeit sind, um Schiilern das Argumentieren beizubringen
(Median von 5 auf einer sechsstufigen Likert-Skala), und dass der generische Beweis eine Beweisform
ist, die es ermoglicht, mathematische Beweise auch in der Haupt- und Realschule zu thematisieren
(Median von 4 auf einer sechststufigen Likert-Skala).

Bzgl. der Einstellungen zur Mathematik zeigte sich ein statistisch hoch signifikanter
Mittelwertanstieg bei der Skala ,Mathematik als Prozess” (EB: 4,42; AB: 4,70; t-Test, p=0,009 mit
Cohens d=0,34). Das Bewusstsein der Studierenden Uber die Prozesshaftigkeit hat sich demnach
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(statistisch hoch signifikant auf dem 1%-Niveau) gesteigert. (Dabei muss kritisch angemerkt werden,
dass die Reliabilitat der Skala in der Eingangsbefragung nur Cronbachs Alpha=0,555 betragt und die
Verwendung dieser Skala diskussionswiirdig ist. Das errechnete Resultat muss dementsprechend
vorsichtig interpretiert werden.)

Ubergeordnet l3sst sich somit bei den Studierenden allgemein eine Hinwendung zum Fachinhalt
,Beweis’ feststellen, wohingegen die Bewertung der Relevanz als Lerngegenstand fir die
Schulmathematik stagniert. Von der Ein- zur Ausgangsbefragung konnte aullerdem ein Anstieg bzgl.
der Bewusstheit des Prozesscharakters der Mathematik nachgewiesen werden, der bei kleiner
Effektstarke statistisch signifikant auf dem 1%-Niveau ist (t-Test, p=0,009 mit Cohens d=0,34).

7.3.4 Die Selbsteinschitzung der Studierenden bzgl. ihres Lernzuwachses in Bezug auf die
Funktionen von Beweisen, auf den Nutzen von Beispielbetrachtungen fiir den
Beweisprozess, auf die Konstruktion und den Umgang mit Beweisen und der Aspekt der
Selbstwirksamkeitserwartung beim Beweisen

In diesem Abschnitt werden die folgenden Aspekte thematisiert: der selbst eingeschatzte
Lernzuwachs der Studierenden in Bezug auf (i) Funktionen von Beweisen, (ii) den Nutzen von
Beispielbetrachtungen fiir den Beweisprozess und (iii) die Konstruktion un den Umgang mit
allgemein. SchlieBlich wird die in der Ausgangsbefragung konstruierte Skala der
»Selbstwirksamkeitserwartung zum Beweisen” betrachtet (iv). Im Kontext der
»Selbstwirksamkeitserwartung zum Beweisen” wird auch Uberpriift, ob sich ein Zusammenhang
zwischen dieser Skala und der Skala der ,,Beweisaffinitat“ ausmachen lasst, da diese beiden Konzepte
miteinander in Verbindung stehen kdnnten. Am Ende des Abschnitts wird die Forschungsfrage [7]
beantwortet.

(i) Der selbst eingeschatzte Lernzuwachs der Studierenden in Bezug auf die Funktionen
von Beweisen

Fir die Erfassung des selbst eingeschatzten Lernzuwachses der Studierenden in Bezug auf Funktionen
von Beweisen wurden in der Ausgangsbefragung zu jeder der folgenden Aussagen eine aktuelle und
eine retrospektive Einschatzung (,,vor dem Besuch der Lehrveranstaltung”) auf einer sechsstufigen
Likert-Skala abgefragt (vgl. hierzu die Ausfihrungen zur retrospektiven Kompetenzzuwachsmessung
in Abschnitt 3.3.9):

# Formulierung Abkiirzung
Ich kann mindestens je einen Beweis angeben, an dem ich deutlich man kann, ...

1 ..., dass Beweise zeigen konnen, dass bestimmte Sachverhalte und Zusammenhange sicher ,Glltigkeit”

2 ..., dass Beweise zeigen kdnnen, warum etwas gilt. ,Zeigen_warum®

3 ..., dass Beweise die Bedeutungen von mathematischen Begriffen verdeutlichen kénnen. ,Bedeutung”

4 ..., dass Beweise mathematisches Verstandnis erzeugen kénnen. ,Verstandnis”

5 ..., dass Beweise dabei helfen kdnnen, sich Zusammenhange und Tatsachen einpragen zu ,2Zusammenhange”
kénnen.

6 ..., dass in Beweisen mathematisches Wissen systematisiert werden kann. ,Systematisierung”

7 ..., dass Beweise einen laufenden (Forschungs-) Prozess beenden kénnen. ,Ende_Prozess“

8 ..., dass man durch Beweise verstehen kann, warum etwas wahr ist. ,verstehen_warum®

9 ..., dass in Beweisen neues Wissen entdeckt werden kann. ,Entdeckung”

10 | ..., dass in Beweisen mathematisches Wissen kommuniziert werden kann. ,Kommunikation”

Tabelle 76: Items fiir die Bewertung des selbst eingeschitzten Lernzuwachses in Bezug auf Funktionen von Beweisen
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Durch die Differenzbildung dieser Werte (,,aktuelle Einschdatzung” — ,retrospektive Einschatzung”)
wird der selbst eingeschatzte Lernzuwachs abgebildet. Somit ergeben sich ,Veranderungswerte”, die
Werte zwischen -5 und 5 annehmen kdnnen, wobei positive Werte eine Zunahme und negative
Werte eine Abnahme implizieren; der Wert Null entspricht hierbei keiner Veranderung.

Die Ergebnisse dieser errechneten personenbezogenen Verdanderungswerte bzgl. der Funktionen von
Beweisen werden in der Tabelle 77 und der Abbildung 85 dargestellt.

Veranderung_
Giiltigkeit zeigen_ Bedeutung | Verstdnd- | Zusammen | Systemati- Ende_ verstehen_ Entde- Kommu-
warum nis -hdnge sierung Prozess warum ckung nikation
Alle
N 73 73 72 72 73 73 73 73 72
M 2,60 2,55 2,19 2,26 2,05 2,03 1,42 2,14 1,93 1,77
Median 3 3 2 2 2 2 1 2 2
SD 1,4 1,472 1,57 1,50 1,62 1,55 1,46 1,58 1,51 1,39

Tabelle 77: Statistische Daten zu den errechneten Veranderungswerten bzgl. der Items zu ,,Funktionen von Beispielen”
(alle ,nachverfolgbaren Studierenden’)

Beantwortung der Leitfrage zur Auswertung [35]: Wie schdéitzen die Studierenden ihren eigenen
Lernzuwachs in Bezug auf die Funktionen von Beweisen ein?

Insgesamt geben die Studierenden mehrheitlich an, bzgl. aller aufgefiihrten Funktionen von
Beweisen durch die Lehrveranstaltung einen Lernzuwachs gehabt zu haben. Die Mediane von 1 bis 3
der Verdnderungswerte und die bzgl. aller Funktionen auch erreichten Maximalwerte von 5 (vgl.
Abbildung 85) verdeutlichen diese selbst eingeschatzten Lernzuwachse. Dabei fillt jedoch auf, dass
mit Ausnahme der Items ,Gliltigkeit”, ,zeigen_warum®, ,Entdeckung” und ,Kommunikation” eine
besonders breite Streuung der Ergebnisse vorliegt, die auch negative Werte umfasst. Es sei dazu
angemerkt, die absolute Haufigkeit der negativen Verdanderungswerte bei diesen Items jeweils
kleiner gleich 3 betrdgt und diese Ergebnisse aus statistischer Sicht wohl vernachlassigt werden
kénnen.
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Abbildung 85: Boxplots zu den errechneten Verdanderungswerten bzgl. der Items zu
den Funktionen von Beweisen (alle ,nachverfolgbaren’ Studierenden)
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(ii) Der selbst eingeschatzte Lernzuwachs der Studierenden in Bezug auf den Nutzen von
Beispielbetrachtungen fiir den Beweisprozess

Wie bereits bei dem Komplex ,Funktionen von Beweisen” wurden auch in dem Abschnitt zu ,Nutzen
von Beispielen” von den Studierenden aktuelle und retrospektive Bewertungen der Aussagen von
den Studierenden verlangt (,Inwieweit treffen die folgenden Aussagen — aus heutiger Sicht — auf Sie
vor der Lehrveranstaltung zu und inwieweit treffen diese Aussagen heute zu?“). Analog zum
Vorgehen bei den ,Funktionen von Beweisen” wurden auch hier personenbezogene
Veranderungswerte berechnet, die Werte zwischen -5 und 5 annehmen kdénnen, wobei der Wert Null
keine Verdanderung bedeutet, positive Werte die Zunahme der Zustimmung bzgl. einer Aussage
beschreiben und negative Werte deren Abnahme. Die zu bewertenden Aussagen werden in der
Tabelle 78 angegeben.

# | Formulierung Abkiirzung

1 Die Betrachtung von konkreten Beispielen kann dabei helfen, eine Beweisidee zu finden. ,Beweisidee_finden“

2 Die Betrachtung von konkreten Beispielen hilft dabei, eine Behauptung besser zu ,Behauptung_verstehen”
3 Die Betrachtung von konkreten Beispielen hat beim Beweisen keinen Nutzen. ,kein_Nutzen”

4 Beispiele konnen dabei helfen, eine Argumentation zu tberprifen. ,Arg_uberpr”

6 Auch nach einem erfolgten Beweis Uiberpriife ich die Behauptung zur Sicherheit noch an ,hachtragl”

7 Die Uberpriifung von einigen Beispielen reicht als vollstandiger Beweis aus. ,vollst_Bew”

8 Beispiele konnen mich in meiner Vermutung bestérken, ob eine Behauptung wabhr ist. ,Vermut_best”

Tabelle 78: Items bzgl. des selbst eingeschatzten Lernzuwachses der Studierenden in Bezug auf den Nutzen von
Beispielen fiir den Beweisprozess

Die Ergebnisse bzgl. der errechneten personenbezogenen Verdanderungswerte werden in der Tabelle
79 und der Abbildung 86 dargestellt.

Veranderungswerte bzgl. des Nutzens von Beispielbetrachtungen
Beweisidee_ | Behauptung_ kein_ Arg_ nachtragl vollst_ Vermut_
finden verstehen Nutzen tiberpr Bew best
Alle

n 72 74 72 73 74 74 74
M 2,10 1,66 0,25 1,34 1,04 -0,16 0,99
Median 2,00 2,00 0,00 1,00 1,00 0,00 1,00
SD 1,43 1,39 1,67 1,34 1,72 1,72 1,35

Tabelle 79: Statistische Daten zu den errechneten Veranderungswerten bzgl. der Items zum Nutzen von Beispielen im
Beweisprozess (alle ,nachverfolgbaren’ Studierenden)

Beantwortung der Leitfrage zur Auswertung [36]: Wie schdtzen die Studierenden ihren eigenen
Lernzuwachs in Bezug auf den Nutzen von Beispielbetrachtungen fiir den Beweisprozess ein?

Es zeigt sich, dass die Studierenden der Ansicht sind, dass sich ihre Bewusstheit (ber die
konstruktiven Aspekte von Beispielbetrachtungen fiir den Beweisprozess (,Beweisidee finden”,
»Behauptung verstehen”, ,,Argumentation Uberprifen” und ,Vermutung bestatigen”) im Laufe der
Lehrveranstaltung gesteigert hat. Bzgl. der Bewertung der Aussage ,Die Betrachtung von konkreten
Beispielen hat beim Beweisen keinen Nutzen” (,kein Nutzen”) liegt eine groRere Streuung der
Ergebnisse vor, wobei die Lage der Box (1. Quartil: 0 und 3. Quartil: 1) einen leichten Lernzuwachs
anzeigt. Allerdings wird in der Riicksicht eine Schwache dieses Items deutlich: Die dort verwendete
negative Formulierung (,hat keinen Nutzen”) erscheint besonders in der Verbindung zu der
verlangten aktuellen und retrospektiven Einschdtzung problematisch. Bei den Verdanderungswerten
bzgl. des Items ,vollst_ Bew” wird durch die Lage der Box (1. Quartil: -1 und 3. Quartil: 0) deutlich,

302



dass die Studierenden nur wenig selbst eingeschatzte Veranderung zum Ausdruck bringen. Doch
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Abbildung 86: Boxplots zu den errechneten
Veranderungswerten bzgl. der Items zu den
Funktionen von Beweisen (alle
,nachverfolgbaren’ Studierenden)

Der selbst empfundene Lernzuwachs der Studierenden in Bezug auf die Konstruktion

und den Umgang mit Beweisen

Um den von den Studierenden selbst empfundenen Lernzuwachs bzgl. des Beweisens zu erheben,
sollten die Studierenden die folgenden Aussagen auf einer sechsstufigen Likert-Skala ([1] ,,stimmt gar

nicht” ... [6] ,,stimmt vollig“) bewerten:

Item # | Formulierung Abkiirzung

Ich habe in der Lehrveranstaltung ,,Einfiihrung in die Kultur der Mathematik” gelernt, ...

1 ... wie man einen Beweis findet. ,Bew_finden“

2 ... wie man einen Beweis aufschreibt ,Bew_aufschreiben”

3 ... wie man einen Beweis liest. ,Bew_lesen”

4 ... wie man einen Beweis versteht. ,Bew_verstehen”

5 ... wie das Beweisen funktioniert. ,Bew_funktioniert”

6 ... warum man Beweise fuhrt. ,Bew_fiihren”

7 ... welche Arten von Beweisen es gibt. ,Arten_Bew"

8 ... wie man Beweise im Schulunterricht einsetzen kann. ,wie_in_Schule”

9 ... wie man Schiler zum Beweisen motivieren kann. ,SuS_motiv“

10 ... wie man Schulern ,, das Beweisen” unterrichten kann. ,Bew_unterrichten”

11 Ich habe in der Lehrveranstaltung gelernt, wie ich den Schiilern besser verdeutlichen | ,warum_Var”
kann, wie und warum man Variablen in der Mathematik verwendet.

12 Durch die Lehrveranstaltung ,Einfiihrung in die Kultur der Mathematik” hat sich meine | ,,BuVar_pos“
Einstellung zur Benutzung von Buchstabenvariablen positiv entwickelt.

13 Durch die Lehrveranstaltung ,Einfihrung in die Kultur der Mathematik” hat sich meine | ,,FB_pos“
Einstellung zum formalen Beweis positiv entwickelt.

14 Durch die Lehrveranstaltung ,Einfihrung in die Kultur der Mathematik” hat sich meine | ,Bew_S_pos”
Einstellung zum Einsatz von Beweisen in der Schule positiv entwickelt.

15 Durch die Lehrveranstaltung ,Einfiihrung in die Kultur der Mathematik” ist mir klar | ,Bew_nicht_S“

geworden, dass man Beweise besser nicht in der Schule behandeln sollte.

Tabelle 80: Items zur Erfassung des selbst empfundenen Lernzuwachses bzgl. der Beweisaktivitdt durch die
Lehrveranstaltung
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Die Ergebnisse bzgl. dieser Items zum selbstempfundenen Lernzuwachs durch die Lehrveranstaltung
werden in der Tabelle 81 und der Abbildung 87 dargestellt.

Selbst empfundener Lernzuwachs durch die Lehrveranstaltung

| #1 | #2 | #3 | #a | #5 | #6 | #7 | #8 | #9 | #10 [ #11 | #12 | #13 | #m14 [ #15

Alle

n 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74

M 4,65 | 531 | 509 | 514 | 518 | 492 | 564 | 3,12 | 2,64 | 2,76 | 445 | 436 | 455 | 3,9 | 2,97

Med. 5 5 5 5 5 5 6 3 2,5 3 5,00 | 5,00 | 500 | 4,00 | 3,00

SD 1,19 1 076 | 0,88 | 083 | 1,01 | 1,13 | 0,56 | 155 | 1,41 | 146 | 1,26 | 1,42 | 1,37 | 1,45 | 1,45

Tabelle 81: Statistische Daten zu den errechneten Verdanderungswerten bzgl. der Iltems zum Nutzen von Beispielen im
Beweisprozess (alle ,nachverfolgbaren’ Studierenden)

Beantwortung der Leitfrage zur Auswertung [37]: Wie schdtzen die Studierenden ihren eigenen
Lernzuwachs in Bezug auf das Beweisen durch die Lehrveranstaltung ein?

Die Studierenden bewerten ihren eigenen Lernzuwachs bzgl. der fachlichen Aspekte des Beweisens
(Iltems 1-7, s. Tabelle 80) durch die Lehrveranstaltung mit einem Median von 5 bzw. 6 insgesamt sehr
hoch. Dieses Ergebnis wird durch die Betrachtung der Boxplots (vgl. die Lage der Quartile in
Abbildung 87) noch untermauert. Die Aussagen bzgl. der in der Lehrveranstaltung weniger explizit
thematisierten didaktischen Aspekte zum Beweisen (ltems 8 bis 10) werden dagegen von den
Studierenden mit einem Median von 3 bzw. 2,5 eher abgelehnt. Anhand der Items 11, 12 und 13 wird
deutlich, dass sich die Einstellungen der Studierenden zur Nutzung von Buchstabenvariablen und zum
formalen Beweisen nach eigenen Angaben deutlich verbessert haben. SchlieBlich stimmen die
Studierenden mit einem Median von 4 auch der Aussage zu, dass sich durch die Lehrveranstaltung
ihre Einstellung zum Einsatz von Beweisen in der Schule positiv entwickelt hat, das negativ
formulierte Item wird entsprechend niedrig bewertet.
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Abbildung 87: Boxplots zu den Items ,,Selbst empfundener Lernzuwachs bzgl. der
Beweisaktivitat” (alle ,nachverfolgbaren’ Studierenden)
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(iv) Selbstwirksamkeitserwartung zum Beweisen

In dem Fragebogenabschnitt ,Selbstwirksamkeitserwartung zum Beweisen” sollten die Studierenden
die folgenden Aussagen auf einer sechsstufigen Likert-Skala ([1] ,stimmt gar nicht” ... [6] ,stimmt
vollig”) bewerten:

Formulierung Abkiirzung

Ich kann eine gegebene Behauptung beweisen ,Beh_beweisen”
Ich weil}, was einen Beweis ausmacht. ,was_ausmacht”
Ich weil, warum in der Mathematik bewiesen wird. ,warum_beweisen”
Ich verstehe Beweise, wenn ich sie lese. ,verstehe_Bew”

Ich weil}, wie man einen Beweis fuhrt. ,wie_fiuhren”

Ich kann beurteilen, ob ein Beweis richtig oder falsch ist. ,Bew_beurteilen”

Tabelle 82: Aussagen zur Erfassung der Selbstwirksamkeitserwartung zum Beweisen

Durch Mittelwertbildung der sechs Items wurde die Skala ,Selbstwirksamkeitserwartung zum
Beweisen” konstruiert. Die statistischen Kennwerte dieser Skala werden in der Tabelle 83 dargestellt.
Die Skala genligt sowohl den Anspriichen an Reliabilitat als auch an die korrigierten Trennscharfen
der verwendeten ltems.

6 _I_
Skala ,,Selbstwirksamkeitserwartung
zum Beweisen" 5
Alle
N 74 4 ]
M 5,09
Median 5,17 3
SD 0,67
Cronbachs Alpha 0,83
Spannweite r; 0,491 - 0,700 2
Tabelle 83: Statistische Kennwerte zur Skala
»Selbstwirksamkeitserwartung zum Beweisen”
in der Ausgangsbefragung (alle ,nachverfolgbaren’ 1

Studierenden) Selbstwirk_Bew

Abbildung 88: Boxplot zur Skala ,,Selbstwirksamkeitserwartung
zum Beweisen” (alle ,nachverfolgbaren’ Studierenden)

Beantwortung der Leitfrage zur Auswertung [38]: Wie léisst sich die Selbstwirksamkeitserwartung zum
Beweisen auf Seiten der Studierenden beschreiben?

Durch die verwendeten Items konnte eine reliable Skala zur Erfassung der
»Selbstwirksamkeitserwartung zum Beweisen” konstruiert werden. Der Skalenmittelwert von 5,09 in
der Gesamtgruppe verdeutlicht die allgemein hohe Selbstwirksamkeitserwartung der Studierenden
zum Beweisen. Bei der Betrachtung des entsprechenden Boxplots wird deutlich, dass alle Werte in
der oberen Halfte der Skala liegen (s. Abbildung 88). Insgesamt kann somit von einer eher hohen
Selbstwirksamkeitserwartung zum Beweisen auf Seiten der Studierenden gesprochen werden.

SchlieBlich sei hier der Frage nachgegangen, ob sich Zusammenhidnge zwischen der Skala

»Selbstwirksamkeitserwartung zum Beweisen” und ,Beweisaffinitdat” ausmachen lassen. Die

Hypothese bei dieser Fragestellung ist ein vermuteter Zusammenhang zwischen motivationalen
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Aspekten und der Selbsteinschatzung der Kompetenz. In der Gesamtgruppe der ,nachverfolgbaren’
Studierenden  ergibt sich ein mittelstarker Zusammenhang zwischen den Skalen
»Selbstwirksamkeitserwartung zum Beweisen” und ,Beweisaffinitat”, der statistisch hoch signifikant
ist (r,=0,336 und p=0,003; vgl. Abbildung 89)%.
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2 Abbildung 89: Scatterplots bzgl. des Zusammenhangs
der Skalen ,Selbstwirksamkeitserwartung zum
Beweisen” [,,Selbstwirk_Bew“] und , Beweisaffinitat"
1 [,,AB_Aff_Bew*“] in der Ausgangsbefragung (alle
1 2 3 4 5 6 ,nachverfolgbaren’ Studierenden)
AB_Aff_Bew

Fiir die Beantwortung der Forschungsfrage [7] werden im Folgenden die erhaltenen Ergebnisse aus
Abschnitt 7.3.4. unter Berlcksichtigung der Leitfragen zur Auswertung 35-38 zusammenfassend
ausgewertet.

Beantwortung der Forschungsfrage [7]: Wie schdéitzen die Studierenden selbst ihren Lernzuwachs in
Bezug auf das Beweisen durch die Lehrveranstaltung ein?

Die Studierenden geben in der Ausgangsbefragung an, in Bezug auf die verschiedenen Funktionen
von Beweisen®> durch die Lehrveranstaltung einen Lernzuwachs gehabt zu haben. Dieser
Lernzuwachs konnte Uber die Erfassung der aktuellen und retrospektiven Einschatzung der
Studierenden herausgearbeitet werden, die verschiedenen Funktionen von Beweisen anhand
konkreter Beweiskonstruktion verdeutlichen zu kdnnen. Aus aktueller Perspektive schatzen sich die
Studierenden dabei im Mittel um zwei Werte auf einer Sechser-Likert-Skala besser ein als
retrospektiv vor dem Besuch der Lehrveranstaltung. Ebenfalls durch die Abfrage einer aktuellen und
retrospektiven  Einschatzung konnte ein Lernzuwachs in Bezug auf Nutzen von
Beispielbetrachtungen fiir den Beweisprozess erfasst werden. Ein Lernzuwachs von zwei Punkten
auf der Likert-Skala ergibt sich bzgl. der Aspekte der Beispielbetrachtung zum Finden einer
Beweisidee und zum Verstehen einer Behauptung.

Bei den konkreten Fragen zum Lernzuwachs bzgl. der fachlichen Aspekte zum Beweisen (Finden,
Aufschreiben, Lesen und Verstehen von Beweisen) bewerten die Studierenden ihren eigenen

% Dieser Zusammenhang ist auch in der Subgruppe der ,Héheren Semester’ gegeben (rp=0,467 und p=0,004 mit
n=36), nicht jedoch in der Gruppe der Erstsemester (r,=0,189, p=0,189 mit n=38).
 In diesem Kontext wurden die folgenden Funktionen von Beweisen thematisiert: ,Sicherung der Giiltigkeit”,
,Erklarung eines Sachverhalts”, ,Verdeutlichung der Bedeutung mathematischer Begriffe”, , Erzeugung von
mathematischem Verstandnis“, ,Hilfe beim Einpragen von Zusammenhangen und Tatsachen”,
»Systematisierung von Wissen”, ,,Beendigung eines laufenden (Forschungs-) Prozesses”, ,, Entdeckung von
neuem Wissen” und ,Kommunikation” (vgl. Abschnitt 3.3.9 und 7.3.4).
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Lernzuwachs durch die Lehrveranstaltung mit einem Median von 5 sehr hoch. Ein Median von 6
erreicht dabei der Aspekt um das Wissen verschiedener Arten von Beweisen. Die didaktischen
Aspekte von Beweisen (Motivieren von Schilerinnen und Schilern und das Unterrichten von
Beweisen) werden dagegen eher niedrig bewertet. (Dieses Ergebnis zeugt dabei von ,ehrlichen’
Bewertungen der Studierenden, denn diese didaktischen Aspekte wurden im Rahmen dieser
expliziten Fachveranstaltung hochstens implizit tangiert.) Dariiber hinaus geben die Studierenden
jeweils mit einem Median von 5 an, dass sich ihre Einstellung zur Nutzung von Buchstabenvariablen
und zum formalen Beweisen positiv entwickelt habe, auch hatten sie durch die Lehrveranstaltung
gelernt, wie man Schilerinnen und Schilern besser verdeutlichen kann, wie und warum man
Variablen in der Mathematik verwendet. Aus diesem Ergebnis kann geschlossen werden, dass sich
auch ihre eigene Bewusstheit (ber diesen Aspekt gesteigert hat. SchlieRlich stimmen die
Studierenden mit einem Median von 4 der Aussage (eher) zu, dass sich durch die Lehrveranstaltung
ihre Einstellung zum Beweisen positiv entwickelt hatte.

An dieser Stelle sollen kurz Probleme der Herangehensweise der retrospektiven
Kompetenzzuwachsmessung angebracht werden. Grundlegend fiir die Diskussion dieser Ergebnisse
ist die Frage nach der Validitat der Selbsteinschatzung der Studierenden, gerade in der Retrospektive
(vgl. Sprangers und Hoogstraten 1989). Wie Pratt et al. (2000, S. 347ff.) betonen, kann gerade die
retrospektive Selbsteinschatzung aufgrund der zuriickliegenden Zeit und einer moglichen
,Verklarung’ der Vergangenheit zu Fehleinschatzungen fiihren. Hinzu kommt das Problem einer
gewissen personalen Erwiinschtheit, dass jede Person das Geflihl haben mochte, etwas gelernt zu
haben, was dazu fiihren kann, dass der Kompetenzzuwachs als zu hoch eingeschatzt wird. Dazu muss
zunachst angemerkt werden, dass mit der hier verwendeten Fragemethode nach einer
retrospektiven und einer aktuellen Einschatzung gerade nicht direkt nach dem empfundenen
Lernzuwachs gefragt wurde, was nach Lam und Bengo (2003) zu den valideren Ergebnissen fihrt.
Weiter belegen die Ergebnisse von Coulter (2012), dass diese Herangehensweise (iber eine
retrospektive Einschatzung besser geeignet ist, um (empfundene) Lernzuwéachse valide beschreiben
zu koénnen als herkdmmliche Pre-Post-Tests. SchlielRlich konnten Townsend und Wilkon (2003)
zeigen, dass Studierende ihre Kompetenzen in einer Eingangsbefragung durchaus in der
Retrospektiven korrekt einschdatzen koénnen. Allerdings verbleibt das Problem der sozialen
Erwiinschtheit bei den Antworten der Studierenden, welches an dieser Stelle nicht ausgeschlossen
werden kann. Dieses grundlegende Problem, dass in dieser Forschung gerade auch durch die
Involviertheit des Forschers bedingt wird, wird in Abschnitt 8.4.1.1 genauer erortert.

In der Ausgangsbefragung konnte durch Mittelwertbildung von sechs Items die reliable Skala der
»Selbstwirksamkeitserwartung zum Beweisen” (mit Werten zwischen 1 und 6) konstruiert werden.
Dabei verdeutlich der Skalenmittelwert von 5,09 die hohe Selbstwirksamkeitserwartung der
Studierenden. Die Lehrveranstaltung hat folglich dazu beigetragen, bei den Studierenden eine hohe
Selbstwirksamkeitserwartung zum Beweisen auszubilden.

7.4 Teilstudie 3: Die Begriindungen und Beweisproduktionen der Studierenden in
der Modulabschlussklausur

im Rahmen der Effektivitatsstudie zur vierten Durchfiihrung der Lehrveranstaltung ,Einflihrung in die
Kultur der Mathematik” stellt die Modulabschlussklausur des Wintersemesters 2014/15 den dritten
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Messzeitpunkt dar. Im Rahmen dieser Klausur wurden zwei Aufgaben gestellt, mit denen die
Begriindungs- und Beweiskompetenz der Studierenden erfasst werden konnten: eine
Begriindungsaufgabe Uber die Summe zweier gerader Zahlen und eine Beweisaufgabe zu der Summe
von sechs aufeinander folgenden natiirlichen Zahlen. Die anderen Aufgaben in der Klausur umfassten
die Themenbereiche: figurierte Zahlen, Beweis durch vollstdndige Induktion, Beweis durch
Kontraposition und Aussagenverknlpfungen. Die Bearbeitungen zu diesen Aufgaben wurden im
Rahmen dieses Forschungsprojekts allerdings nicht ausgewertet, da sie aullerhalb des speziellen
Fokus dieser Arbeit liegen.

7.4.1 Forschungsanliegen und Forschungsfragen

Am Ende der Effektivitatsstudie zur vierten Durchfliihrung der Lehrveranstaltung ,Einfiihrung in die
Kultur der Mathematik” steht die Frage, inwiefern sich die Begriindungskompetenz der Studierenden
verandert hat, wie gut es den Studierenden nach dem Besuch der Lehrveranstaltung gelingt, die vier
Beweisformen der Lehrveranstaltung (den generischen Beweis mit Zahlen, den generischen Beweis
mit Punktmustern, den Punktmusterbeweis mit geometrischen Variablen und den formalen Beweis)
selbst zu konstruieren, und welche Unterschiede sich zu den Ergebnissen aus dem vorherigen
Durchgang zeigen. Bei der Untersuchung der Begriindungskompetenz der Studierenden zu Beginn
der Lehrveranstaltung wurden neben der Qualitat der Begriindungen auch die Begriindungsarten
und dabei auftretende charakteristische Fehler untersucht. Diese Aspekte sollen in der Analyse der
Aufgabenbearbeitungen aus der Modulklausur wieder aufgegriffen werden, um die Bearbeitungen
besser vergleichen zu kdnnen. Bei der Untersuchung der Begriindungs- und Beweiskompetenz der
Studierenden ist dabei auch von Interesse, inwiefern die Studierenden dabei in der Lage sind, ihre
eigenen Fahigkeiten in Bezug auf die Konstruktion von Beweisen richtig einzuschatzen. Aus diesem
Grund werden die erhaltenen Ergebnisse zu den Beweiskonstruktionen mit den Ergebnissen der
konstruierten Skalen zur ,Beweisaffinitat” und ,Selbstwirksamkeitserwartung zum Beweisen” in
Beziehung gesetzt.

Bei der Begriindungsaufgabe ,Summe zweier ungerader Zahlen” (s.u.) konnen direkt die
personenbezogenen Veranderungen von der Ein- zur Ausgangsbefragung betrachtet werden, da es
sich hier um die gleiche Kohorte handelt. Bei den Beweiskonstruktionen der Studierenden in der
Modulklausur miissen die Ergebnisse mit denen aus dem Vorjahr in Beziehung gesetzt werden; an
dieser Stelle konnen also keine personenbezogenen Auswertungen erfolgen. Wohl aber kénnen
eventuelle Unterschiede zwischen diesen beiden Jahrgangen genutzt werden, um die Auswirkung der
Veranderungen der Lehrveranstaltung bewerten zu konnen. Die Leitfragen zur Auswertung sind
dementsprechend wie folgt:

0 Leitfrage zur Auswertung [39]: Inwiefern gelingt den Studierenden die Bearbeitung der
bereits in der Eingangsbefragung gestellten Begriindungsaufgabe der ,Summe zweier
ungerader Zahlen” in der Modulklausur nach dem Besuch der Lehrveranstaltung und welche
Begriindungsart verwenden die Studierenden, um ihre Begriindung zu konstruieren?

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem
ersten Hochschulsemester und den Studierenden in einem hoheren Semester
ausmachen?

b) Welche Unterschiede zeigen sich im Vergleich zu den Ergebnissen der
Eingangsbefragung?
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0 Leitfrage zur Auswertung [40]: Inwiefern gelingt den Studierenden die Konstruktion der vier
verschiedenen Beweisformen ,generischer Beweis mit Zahlen, generischer Beweis mit
Punktmustern, Punktmusterbeweis mit geometrischen Variablen und formaler Beweis” in
der Modulabschlussklausur des Wintersemesters 2014/157?

a) Inwiefern unterscheiden sich diese Ergebnisse von denen aus dem Vorjahr?

b) Inwiefern lassen sich Zusammenhdnge zwischen den Beweiskonstruktionen der
Studierenden ausmachen?

¢) Inwiefern lassen sich Zusammenhdnge zwischen den Beweiskonstruktionen der
Studierenden und den in der Ausgangsbefragung erhobenen Skalen zur , Beweisaffinitat”
und zur ,Selbstwirksamkeitserwartung zum Beweisen” ausmachen?

7.4.2 Methode und verwendete Aufgaben

Um bei den Studierenden eine moglichst hohe Motivation fiir die Bearbeitung der folgenden
Aufgaben zu erzeugen und somit moglichst aussagekraftige Begriindungs- und Beweiskonstruktionen
zu erhalten, wurden die zu bearbeitenden Aufgaben (s.u.) in der Modulabschlussklausur, einen
Monat nach Semesterende, gestellt. Der Klausur wurde ein Deckblatt angefiigt, auf dem auf
freiwilliger Basis der bereits in der Ein- und Ausgangsbefragung verwendete personenbezogene
Code abgefragt wurde. Ebenfalls waren auf diesem Deckblatt Eintragungen fiir die fiir die Forschung
relevanten Daten vorgesehen. Nach der Klausurkorrektur wurden die entsprechenden Daten
eingetragen und die Deckblatter von den Klausurbdgen entfernt, so dass eine anonyme Nutzung der
Daten sichergestellt wurde.

Die erste hier betrachtete Aufgabe ist die Begriindungsaufgabe ,Summe zweier ungerader Zahlen”,
die bereits in der Eingangsbefragung eingesetzt wurde (vgl. Abschnitt 7.2.4.1):

Aufgabe 1

Die Summe 11 + 17 ist eine gerade Zahl.

Gilt dies fir jede Summe von zwei beliebigen ungeraden Zahlen?
- Begriinden Sie Uberzeugend.

Entsprechend der Auswertung der Aufgabe im Rahmen der Eingangsbefragung wurde auch die
Auswertung der Bearbeitungen in der Modulklausur mit dem bereits dort angewendeten
Kategorienschema vorgenommen (vgl. Abschnitt 7.2.4.1). Ebenso wurden die in Abschnitt 7.2.4.1
herausgearbeiteten Begriindungsarten und die damit verbundenen charakteristischen Fehler fir die
Analyse der Daten herangezogen, um bessere Einblicke in die Bearbeitungen der Studierenden zu
ermoglichen.

Fir die Konstruktion der vier Beweisformen der Lehrveranstaltung wurde die folgende Aufgabe
verwendet, die bereits in der Modulabschlussklausur des vorherigen Durchgangs eingesetzt wurde
(vgl. Abschnitt 5.4.2.3 fir eine didaktische Erorterung der Aufgabe und entsprechende
Losungsbeispiele):

Aufgabe 2
Wir betrachten die folgende Behauptung:

Die Summe von 6 aufeinanderfolgenden natiirlichen Zahlen ist immer ungerade.
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Beweisen Sie die Behauptung mit:

a) einem generischen Beweis mit Zahlen.

b) einem formalen Beweis mit Mitteln der Algebra.

c) einem generischen Punktmusterbeweis.

d) einem Punktmusterbeweis mit geometrischen Variablen.

Fiir die Analyse der Begriindungen und der Beweiskonstruktionen der Studierenden wurde dabei das
gleiche Kategorienschema wie bei der Analyse der Klausuraufgaben im Wintersemester 2013/14 und
in der Eingangsbefragung (Wintersemester 2014/15) verwendet. Zur Erinnerung seien hier kurz die
entsprechenden Kategorien aufgefiihrt (eine ausfiihrliche Darstellung des Kategoriensystems mit
Ankerbeispielen befindet sich in Abschnitt 7.2.4.1):

Bezeichnung Erlduterung

n.b. nicht bearbeitet

Keine Begriindung Antwort ohne Begriindung

Empirisch induktive Prifung

Pseudo Paraphrasierung der Behauptung; Nennung falscher oder irrelevanter Fakten

Fragmentarisch Es werden korrekte und relevante fachliche Aspekte genannt, ohne dass eine
Argumentationskette aufgebaut wird.

Argumentation Es wird eine Argumentationskette mit korrekten und relevanten fachlichen Aspekten

mit Liicke aufgebaut, die allerdings eine Liicke enthalt.

vollstéandige Die Behauptung wird mithilfe korrekter Argumente vollstandig verifiziert.

Argumentation

Tabelle 84: Kurzdarstellung des Kategoriensystems zur vergleichenden Analyse der Begriindungen und
Beweiskonstruktionen der Studierenden in der Modulabschlussklausur des Wintersemesters 2014/15

7.4.3 Ergebnisse

In diesem Abschnitt werden die Ergebnisse der Klausuraufgaben ,Summe zweier ungerader Zahlen”
und ,,Summe sechs aufeinanderfolgender Zahlen” darstellt. Neben den in der Klausur erhaltenen
Ergebnissen geht es dabei auch um die Veranderungen, die sich im Vergleich zu den Ergebnissen der
Eingangsbefragung (Aufgabe ,Summer zweier ungerader Zahlen“) und zu den Ergebnissen aus der
Modulklausur des vorherigen Wintersemesters (Aufgabe ,Summe sechs aufeinanderfolgender
Zahlen”) ergeben. Die im Folgenden dargestellten Ergebnisse beziehen sich auf die Daten von 107
Studierenden, die mithilfe der Abfrage eines anonymen Codes von der Eingangsbefragung zur
Modulklausur nachverfolgt werden konnte.

7.4.3.1 Ergebnisse bzgl. der Begriindungsaufgabe ,,Summe zweier ungerader Zahlen“ und der
Abgleich mit den Ergebnissen aus der Eingangsbefragung

Fiir die Auswertung der Qualitét der Begriindung wurde das gleiche Kategoriensystem wie in der
Eingangsbefragung verwendet (s.o.). Fiir die Erfassung der verschiedenen Begriindungsarten wurden
zunachst diejenigen wieder aufgegriffen, die bei der Analyse der entsprechenden Aufgabe in der
Eingangsbefragung herausgearbeitet werden konnten.

Fiir den Vergleich der Ergebnisse aus der Eingangsbefragung und der Modulabschlussklausur werden
im Folgenden nur die Ergebnisse bzgl. der Studierenden verwendet, die nachverfolgbar an beiden
Messzeitpunkten teilgenommen haben. Die prozentuale Verteilung der Kategorien der ,,Qualitat der
Begriindung” in der Modulklausur [,MK“] werden in der Tabelle 85 und der Abbildung 90
vergleichend mit den Ergebnissen aus der Eingangsbefragung [,,EB“] dargestellt.
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Alle (n=107) Erstsemester (n=51) Hohere Semester (n=56)

EB MK EB MK EB MK
n.b.: Nicht bearbeitet 10,3 0 17,2 0 3,5 0
KO: Keine Begriindung 14,0 0 21,2 0 7,3 0
K1: Empirisch 3,7 0 5,8 0 1,8 0
K2: Pseudo 26,2 6,5 32,7 7,8 20 5,4
K3: Fragmentarisch 3,7 1,9 1,9 2,0 5,5 1,8
K4: Argumentation mit Liicke 26,2 39,3 15,4 52,9 36,4 26,8
K5: Vollstdndige Argumentation 15,9 52,3 5,8 37,3 25,5 66,1
Summe: 100 100 100 100 100 100

Tabelle 85: Ergebnisse zur ,,Qualitat der Begriindung” in der Eingangsbefragung [,,EB“] und der Modulabschlussklausur

[,,MK“] in Prozent (Alle und Subgruppen)
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“in der Eingangsbefragung [,,EB“] und der
Modulabschlussklausur [,,MK“] (Alle und
Subgruppen)



Beantwortung der Leitfrage zur Auswertung [39]: Inwiefern gelingt den Studierenden die Bearbeitung
der bereits in der Eingangsbefragung gestellten Begriindungsaufgabe der ,Summe zweier ungerader
Zahlen” in der Modulklausur nach dem Besuch der Lehrveranstaltung und welche Begriindungsart
verwenden die Studierenden, um ihre Begriindung zu konstruieren?

Bei der Bearbeitung der Begriindungsaufgabe ,Summe zweier ungerader Zahlen” werden in der
Modulabschlussklausur in 91,6% der Bearbeitungen Argumentationen mit korrekten Argumenten
konstruiert [K4+K5]. Allerdings konnten nur 52,3% aller Begriindungen als vollstandig gewertet
werden [K5], da in den restlichen Argumentationen diverse Liicken auftraten. Aus normativer Sicht
muss hier angemerkt werden, dass der Anteil vollstandiger Argumentationen fiir solch eine basale
Begriindungsaufgabe doch eher gering ausfallt.

Die Untersuchung der verwendeten Begriindungsarten und der damit verbundenen
charakteristischen Fehler vermag dieses Phanomen genauer zu erklaren.

Insgesamt konnten bei den Bearbeitungen der Begriindungsaufgabe in der Modulabschlussklausur
die folgenden Begriindungsarten ausgemacht werden: (A2) Nennung oder Paraphrase des Satzes,
dass die Summe zweier ungerader Zahlen immer ungerade ist, (A3) Nennung falscher bzw.
irrelevanter Fakten, (A4) Begriindung Uber die ,Abstdnde’ von geraden zu ungeraden Zahlen, (A7)
Reprdsentation einer ungeraden Zahl durch ,2n + 1“, (A8) Reprdsentation einer ungeraden Zahl
durch ,n + 1“ und (A10) Verwendung von geometrischen Variablen.

Die prozentualen Verteilungen dieser Begriindungsarten werden in der Tabelle 86 angegeben.

Alle (n=107) Erstsemester (n=51) Hohere Sem. (n=56)
n. b. | nicht bearbeitet - - -
AO | keine Begriindung - - -
Al | induktiv - - -
Pseudo A2 | Satz: Summe ungerade 5,6 5,9 5,4
A3 | falsch/irrelevant 0,9 2 -
Argumentationen A4 | Abstinde 6,5 5,9 7,1
ohne A5 | Endziffern - - -
Formalisierung A6 | g & uwechseln ab - - -
Argumentationen A7 "2n+1" 85,0 84,3 85,7
mit A8 | "n+1" 0,9 2 1,8
Formalisierung
A9 | "n+n=2n" - - -
A10 | Mithilfe geometrischer 0,9 - 1,8
Variablen
Summe 100 100 100
Summe ,,mit Form.” 85,9 86,3 83,6

Tabelle 86: Prozentuale Verteilung der ,,Begriindungsarten” zur Aufgabe ,Summer zweier ungerader Zahlen“ in der
Modulabschlussklausur (Alle und Subgruppen)

In der Modulabschlussklausur verwendet die deutliche Mehrheit der Studierenden (85,0%) in ihren
Begriindungen die Reprasentation einer ungeraden Zahl der Form ,,2n+1".

In Verbindung mit den herausgearbeiteten Begriindungsarten lasst sich nun der Frage nachgehen,
warum der Anteil von ,vollstindigen Argumentationen” in der Auswertung der studentischen
Bearbeitungen relativ gering ausfallt. Um diese Frage zu klaren, wurden die Bearbeitungen des
Begriindungstyps [A7] (Begriindungen mithilfe einer Reprdsentation der Form ,2n+1“) im Hinblick
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auf die begangenen Fehler untersucht. Als charakteristische Fehler konnten hierbei die folgenden
ausgemacht werden: (1) fur die Reprasentation der beiden ungeraden Zahlen wird nur eine
Buchstabenvariable verwendet und (2) bei dem erhaltenen Term der Art ,(2n+ 1)+ (2m+1) =
2-(n+m+ 1) wird fur den Nachweis des Attributs ,gerade’ nicht angemerkt, dass der zweite
Faktor (,n + m + 1) ein Element der natirlichen Zahlen ist. In der Tabelle 87 wird die prozentuale
Verteilung dieser charakteristischen Fehlertypen fiir die Gesamtgruppe und die Subgruppen

angegeben.
Alle Erstsemester Hohere Semester
Absolute Anzahl der Bearbeitungen 83 40 43
mit Begriindungsformen der Art ,,2n+1“
Anteil korrekter Bearbeitungen 53,0% 32,5% 72,1%
Fehlertyp
(1) Es wird nur eine Buchstabenvariable 31,3% 47,5% 16,3%
(2) Der zweite Faktor wird nicht als 10,8% 17,5% 4,7%
Element der natiirlichen Zahlen
(3) Sonstige Fehler 4,8% 2,5% 7,0%
Summe 100% 100% 100%

Tabelle 87: Prozentuale Verteilung der Fehlertypen bei Bearbeitungen der Begriindungsaufgabe ,,Summe zweier
ungerader Zahlen“ mithilfe der Représentation ,,2n+1“ in der Modulabschlussklausur (WS 2014/15)

Es zeigt sich hier, dass nur gut der Halfte der Studierenden, die mithilfe einer Begriindungsform der
Art ,2n + 1" agieren, eine vollstandig korrekte Bearbeitung gelingt. Die ausgemachten haufigsten
Fehlertypen sind somit einmal einem unzureichendem Umgang mit Variablen (31,3%) und einem
unvollstandigen Nachweis der Teilbarkeit durch 2 zuzuschreiben (10,8%).

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten
Hochschulsemester und den Studierenden in einem héheren Semester ausmachen?

Vergleicht man die Ergebnisse aus der Modulklausur in den Subgruppen, so zeigt sich, dass in beiden
Subgruppen der Anteil der Bearbeitungen mit korrekten Argumenten bei ca. 91% liegt [K4+K5].
Unterschiede zeigen sich jedoch in den unterschiedlichen Anteilen von Argumentationen mit Liicke
[K4] (Erstsemester: 52,9% und Hohere Semester 26,8%) und vollstindigen Argumentationen [K5]
(Erstsemester: 37,3% und Hohere Semester 66,1%). Dabei liegt ein mittelstarker Zusammenhang vor,
der statistisch hoch signifikant auf dem 1%-Niveau ist (Chi%-Test; p=0,003; Cramers V=0,301). Dieses
Phianomen ist dabei nicht der Wahl unterschiedlicher Begriindungsarten geschuldet (beide
Subgruppen formulieren in ca. 85% der Falle eine Begriindung mithilfe einer Reprasentation der
Form ,2n + 1“, vgl. Tabelle 87), sondern kann durch das Auftreten von charakteristischen Fehlern in
den Subgruppen erklart werden. Der Fehlertyp (1), dass nur eine Buchstabenvariable verwendet
wird, um zwei beliebige ungerade Zahlen zu reprasentieren, tritt bei den Erstsemesterstudierenden
in 47,5% der Falle auf, dagegen liegt der Anteil bei den Hoheren Semester nur bei 16,3%. Auch der
Anteil der Fehler, dass der zweite Faktor nicht als Element der natiirlichen Zahlen ausgewiesen wird,
tritt bei den Erstsemestern mit 17,5% haufiger auf, als bei den Hoheren Semestern mit nur 4,7%.

b) Welche Unterschiede zeigen sich im Vergleich zu den Ergebnissen der Eingangsbefragung?
Im Vergleich zu den Ergebnissen der Eingangsbefragung wird deutlich, dass der Anteil ,vollstandiger

Argumentationen” [K5] von 15,9% auf 52,3% gestiegen ist. Darliber hinaus ist der Anteil von Pseudo-
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Begriindungen [K2] von 26,2% auf 6,5% zurlickgegangen und rein empirisch-induktive Begriindungen
[K1] werden in der Modulabschlussklausur Gberhaupt nicht mehr gegeben.

Bzgl. der verwendeten Begriindungsarten ist eine deutliche Hinwendung zu der Verwendung von
Variablen festzustellen: Lag der Anteil von Bearbeitungen, in denen Buchstabenvariablen verwendet
wurden, in der Eingangsbefragung bei 28,1%, so verwenden in der Modulabschlussklausur 85,9% der
Studierenden Buchstabenvariablen. Waren in der Eingangsbefragung noch verschiedene
Reprasentationen fir die ungeraden Zahlen verwendet worden (,,2n + 1 (16,1%), ,n + 1“ (10,7%)
oder ,n" (1,3%)), so wird in der Modulklausur fast ausschlieRlich die Reprasentation ,2n 4+ 1
(85%)gewahlt. Entsprechend dem Anstieg der Bearbeitungen mit formalen Reprasentationen ist der
Anteil der Begriindungen ohne Formalisierungen (Begriindungen Uber die ,Abstédnde’ zu den geraden
Zahlen, (ber die Endziffern oder Uber die Tatsache, dass gerade und ungerader Zahlen sich
abwechseln; vgl. Abschnitt 7.2.4.1) von 16,8% auf 6,5% zurlickgegangen, wobei hier nur noch die
Begriindungsart liber die ,Abstande’ der ungeraden zu geraden Zahlen auftaucht.

Auch zeigte sich bei der Analyse der Bearbeitungen der Eingangsbefragung, dass 10,7% der
Studierenden eine ungerade Zahl in der Form ,n+1“ darstellten, wobei a als gerade Zahl definiert
werden muss. In den Bearbeitungen in der Modulabschlussklausur liegt dieser Anteil nur noch bei
0,9%.

Es kann somit insgesamt festgestellt werden, dass sich die Begriindungen der Studierenden von der
Eingangsbefragung zur Modulabschlussklausur verbessert haben und eine klare Hinwendung zu der
Verwendung von Buchstabenvariablen erfolgt ist. Der relativ hohe Anteil von Bearbeitungen, in
denen nur eine Buchstabenvariable verwendet wird, verdeutlicht allerdings die Probleme der
Studierenden und besonders der Studienanfiangerinnen und -anfinger, mit mehreren
Buchstabenvariablen korrekt umzugehen.

Dabei muss einschrankend angemerkt werden, dass die Studierenden bei der Bearbeitung der
Modulabschlussklausur deutlich (extrinsisch) motivierter und an besseren Ergebnissen interessiert
waren als bei der Bearbeitung der Eingangsbefragung zu Beginn des Semesters. Allerdings wurde
anscheinend auch in der Eingangsbefragung diese Begriindungsaufgabe gewissenhaft bearbeitet,
wovon die ausfiihrlichen Antworten der Studierenden zeugen.

7.4.3.2 Die Beweiskonstruktionen der Studierenden nach dem Besuch der Lehrveranstaltung und
der Abgleich mit den Ergebnissen aus dem vorherigen Durchgang

In der Modulabschlussklausur sollten die Studierenden die vier Beweisformen der Lehrveranstaltung
(generischer Beweis mit Zahlen, generischer Beweis mit Punktmustern, Punktmusterbeweis mit
geometrischen Variablen und formaler Beweis), wie bereits in der Modulklausur des
Wintersemesters 2013/14, zu der folgenden Behauptung konstruieren: ,Die Summe von sechs
aufeinanderfolgenden natirlichen Zahlen ist immer ungerade”. Fir die Auswertung der
Studierendenbearbeitungen wurde das gleiche Kategoriensystem verwendet wie bereits bei der
Klausuranalyse im Wintersemester 2013/14 (s. Abschnitt 5.4.2.3). Dieses Kategoriensystem ist auch
das gleiche, wie es oben fiir die Analyse der Klausuraufgabe ,Summe zweier ungerader Zahlen”
verwendet wurde. Die Kategorie ,KO: Keine Begriindung” kann dabei entfallen, da in keinem der
beiden Durchgiange Beweise formuliert wurden, die {berhaupt keinen Begrindungsansatz
beinhalteten.
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Auch in diesem Durchgang wurden alle Beweisproduktionen der Studierenden doppelt kodiert,
offensichtliche Fehlkodierungen wurden auch hier im Rahmen einer Kodierkonferenz korrigiert (vgl.
Abschnitt 5.4.2.3). Die Interrater-Reliabilitdten bzgl. der Kategorien sind bei allen Beweisformen in
einem akzeptablen bis sehr guten Bereich. Die exakten Werte werden in der Tabelle 88 angegeben.

Kategorienschema zu der Beweisform... Interrater-Reliabilitat
Cohens Kappa

generischer Beweis mit Zahlen 0,640
formaler Beweis 0,661
generischer Punktmusterbeweis 0,803
Punktmusterbeweis mit geometr. Variablen 0,849

Tabelle 88: Interrater-Reliabilitdten (Cohens Kappa) bzgl. Kategorisierungen der vier Beweisformen in der
Modulabschlussklausur des Wintersemesters 2014/15

In der Tabelle 89 und der Abbildung 91 werden die Ergebnisse der Gesamtgruppe des
Wintersemesters 2014/15 vergleichend mit den Ergebnissen aus dem Wintersemester 2013/14

angegeben.
Wintersemester 2013/14 (n=139) Wintersemester 2014/15 (n=107)
GenZ FB GenP GV GenZ FB GenP GV
n.b. 3 3 6 18 0 2 1 4
K1: Empirisch 7 0 7 0 1 0 0 0
K2: Pseudo 22 15 37 45 6 8 14 34
K3: Fragm. 14 3 24 9 11 6 36 10
K4: Arg. Liicke 23 47 22 17 24 40 30 14
K5: Volist. Arg. 31 32 5 11 58 44 20 38
Summe 100 100 100 100 100 100 100 100

Tabelle 89: Ergebnisse bzgl. der vier Beweiskonstruktionen der Studierenden in der Modulabschlussklausur im
Wintersemester 2013/14 und 2014/15 in Prozent (Alle)

Bei den Ergebnissen zum generischen Beweis mit Punktmustern zeichnet sich insgesamt ein
problematischer Umgang der Studierenden mit dem Diagramm der Punktmuster ab. Auffallig ist
zundchst der relativ hohe Anteil von Pseudobearbeitungen [K2] mit 14% und fragmentarischen
Argumentationen [K3] mit 36%. In der Halfte alle Fdlle wurde eine sinnvolle Argumentation
konstruiert [K4+K5] und insgesamt konnten lediglich 20% der Beweise als vollstandige
Argumentationen gewertet werden [K5]. Ahnlich verhélt es sich bei dem Beweis mit geometrischen
Variablen. Hier liegt mit 34% der hochste Anteil von Pseudobearbeitungen vor und noch 10% der
Bearbeitungen sind nur als fragmentarisch zu bezeichnen. Auch hier werden nur in gut der Halfte der
Falle (52%) sinnvolle Argumentationen konstruiert [K4+K5] und nur 38% der Studierenden erreichen
eine vollstandige Argumentation [K5]. Somit sind die Ergebnisse bzgl. der Beweiskonstruktionen im
Diagrammsystem der Punktmuster als insgesamt enttduschend zu bezeichnen, da es sich hierbei um
eine relative leichte Beweisaufgaben handelt, die durch entsprechende Ubungsaufgaben iber die
Betrachtung verschiedener Summen aufeinander folgender Zahlen vorbereitet wurde.

Zu den formalen Beweisen im Wintersemester 2014/15 kann positiv angemerkt werden, dass in 84%
aller Bearbeitungen sinnvolle Argumentationen angefiihrt werden [K4+K5]. Insgesamt gelingt knapp
der Hélfte der Studierenden (44%) eine vollstindige Argumentation [K5].
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Abbildung 91: Ergebnisse bzgl. der vier Beweiskonstruktionen der Studierenden in der Modulabschlussklausur im Wintersemester
2013/14 (n=139) und 2014/15 (n=107) in Prozent (Alle)

a) Inwiefern unterscheiden sich diese Ergebnisse von denen aus dem Vorjahr?

Im Fall des generischen Beweises mit Zahlen ist ein deutlicher Anstieg des Anteils der vollstdandigen
Argumentationen vom Wintersemester 2013/14 von 31% auf 58% im Wintersemester 2014/15 zu
verzeichnen. Dagegen ist der Anteil von rein empirischen Bearbeitungen von 7% auf 1% gesunken,
wie auch der Anteil von Pseudobearbeitungen von 22% auf 6%. Insgesamt kann an dieser Stelle also
eine deutliche Hinwendung zu sinnvollen Beweiskonstruktionen festgestellt werden (vgl. Abbildung
91). Auch bzgl. des generischen Beweises mit Punktmustern haben sich die Ergebnisse im Vergleich
zum Vorjahr verbessert. Wahrend der Anteil von Pseudobearbeitungen von 37% auf 14% gefallen ist,
steigt der Anteil der Argumentationen mit Licke von 22% auf 30% und der vollstandiger
Argumentationen von 5% auf 20%. Auch hier ist eine deutliche Rechtsverschiebung der Verteilung
erkennbar (Abbildung 91). Ein deutlicher Zuwachs der Bearbeitungen mit vollstiandigen
Argumentationen kann auch bzgl. des Beweises mit geometrischen Variablen verzeichnet werden
(Wintersemester 2013/14: 11% und Wintersemester 2014/15: 38%). Auffallig sind hierbei der
Rickgang der Pseudobearbeitungen von 45% auf 34% und der Anteil der nicht bearbeiteten
Aufgaben von 18% auf 4%. Die Studierenden scheinen im Wintersemester 2014/15 deutlich besser
mit Punktmustern umgehen zu kénnen, als dies im Vorjahr der Fall war. Wenige Anderungen zeigen
sich dagegen bei den Bearbeitungen zum formalen Beweis. Doch ist auch bei dieser Beweisform der
Anteil der vollstindigen Argumentationen von 32% (Wintersemester 2013/14) auf 44%
(Wintersemester 2014/15) leicht gestiegen.
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Doch missen an dieser Stelle einige Relativierungen der erhaltenen Ergebnisse formuliert werden.
Zunichst ist die Kohorte im Wintersemester 2014/15 ein andere als im Vorjahr. Uber die
Vergleichbarkeit dieser zwei Kohorten kann an dieser Stelle keine Aussage getroffen werden. Somit
kénnen diese Ergebnisse nicht eins-zu-eins vergleichen werden. Auch muss bei diesen Betrachtungen
beriicksichtig werden, dass in der Kohorte des Wintersemesters 2014/15 auch 27 Studierende
enthalten sind, die die Veranstaltung bereits einmal besucht haben. Doch auch wenn keine strengen
Vergleiche angebracht sind, so werden durch die Ergebnisse doch Tendenzen der Entwicklung
deutlich.

b) Inwiefern lassen sich Zusammenhdnge zwischen den Beweiskonstruktionen der Studierenden
ausmachen?

Im Folgenden werden die Ergebnisse bzgl. der Beweiskonstruktionen der Studierenden jeweils als
ordinalskaliert mit den Auspragungen 0 bis 5 interpretiert, nicht bearbeitete Aufgaben werden dabei
als fehlende Werte betrachtet. Mit dieser Interpretation der Daten koénnen weiterfliihrende
Korrelationsberechnungen durchgefiihrt werden. Dabei interessieren zunachst die Zusammenhéinge
zwischen den Ergebnissen bzgl. der Beweiskonstruktionen untereinander. In der Tabelle 90 werden
die Korrelationen zwischen den Beweiskonstruktionen fiir die Gesamtgruppe aufgefiihrt.

GenZ FB GenP GV AB_Aff Bew Selbstwirk Bew
Spearman  GenZ Korrelationskoeff. 1,000 ,190 419”7 ,166 ,325" ,260°
-Rho Sig. (2-seitig) . ,053 ,000 ,095 ,006 ,030
N 107 105 106 103 70 70
FB Korrelationskoeff. ,190 1,000 ,369" 327" ,120 -,003
Sig. (2-seitig) ,053 : ,000 ,001 ,329 ,982
N 105 105 104 101 68 68
GenP Korrelationskoeff. 419" ,369" 1,000 4137 ,358" ,202
Sig. (2-seitig) ,000 ,000 . ,000 ,003 ,095
N 106 104 106 103 69 69
GV Korrelationskoeff. ,166 327" 413" 1,000 ,295' ,051
Sig. (2-seitig) ,095 ,001 ,000 . ,015 ,682
N 103 101 103 103 67 67
AB_Aff_ Korrelationskoeff. 325" ,120 ,358" ,295° 1,000 ,329"
Bew Sig. (2-seitig) ,006 ,329 ,003 ,015 ,004
N 70 68 69 67 74 74
Selbstwirk_ Korrelationskoeff. ,260° -,003 1202 ,051 ,329" 1,000
Bew Sig. (2-seitig) ,030 ,982 ,095 ,682 ,004
N 70 68 69 67 74 74

Tabelle 90: Korrelationstabelle bzgl. der Zusammenhange der Beweiskonstruktionen in der Modulklausur [GenZ, FB,
GenP und GV] und der Skalen zur Beweisaffinitat [AB_Aff_Bew] und zur Selbstwirksamkeitserwartung zum Beweisen aus
der Ausgangsbefragung [Selbstwirk_Bew] (Alle); ,,**“: Die Korrelation ist auf dem 1%-Niveau statistisch signifikant
(zweiseitig), ,*“: Die Korrelation ist auf dem 5%-Niveau statistisch signifikant (zweiseitig)
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In der Gesamtgruppe liegt ein mittlerer Zusammenhang zwischen den Ergebnissen der beiden
generischen Beweise (r,=0,419) vor, wie auch zwischen den beiden Punktmusterbeweisen (r,=0,413),
die auf dem 1%-Niveau statistisch signifikant sind. Die Ergebnisse zum formalen Beweis korrelieren in
der Gesamtgruppe mit denen zum generischen Beweis mit Punktmustern (r,=0,369) und denen zum
Beweis mit geometrischen Variablen (r,=0,327) statistisch signifikant auf dem 1%-Niveau. Die
Korrelation zu den Ergebnissen des generischen Beweises mit Zahlen fallt dagegen deutlich
schwdcher aus (r,=0,019) und ist noch schwach signifikant auf dem 7%-Niveau.

Diese Ergebnisse konnten dahingehend interpretiert werden, dass eine libergeordnete Kompetenz
fir die Konstruktion generischer Beweise und fiir den Umgang mit dem Diagrammsystem der
Punktmuster existieren konnte. Diese Interpretation sei an dieser Stelle aber ausdriicklich als These
verstanden, die im Rahmen weiterer Forschungsprojekte tGberprift werden musste.

c) Inwiefern lassen sich Zusammenhdnge zwischen den Beweiskonstruktionen der Studierenden
und den in der Ausgangsbefragung erhobenen Skalen zur ,Beweisaffinitdt” und zur
,Selbstwirksamkeitserwartung zum Beweisen” ausmachen?

Bzgl. der Skala zur Beweisaffinitdit [AB_Aff Bew] liegt in der Gesamtgruppe ein mittlerer
Zusammenhang zu den Ergebnissen des generischen Beweises mit Zahlen (r=0,325) und des
generischen Beweises mit Punktmustern (r,=0,358) vor, die jeweils auf dem 1%-Niveau statistisch
signifikant sind. Des Weiteren ergibt sich ein mittlerer Zusammenhang dieser Skala zu den
Ergebnissen des Beweises mit geometrischen Variablen (r,=0,295), der auf dem 5%-Niveau statistisch
signifikant ist.

Die Skala zur Selbstwirksamkeitserwartung zum Beweisen korreliert ausschlieflich mit den
Ergebnissen zum generischen Beweis mit Zahlen (r,=0,295), dieser leichte Zusammenhang ist auf
dem 5%-Niveau statistisch signifikant.

Hier zeigt sich, dass die Beweisaffinitat der Studierenden in einem grofReren Zusammenhang zu ihren
Fahigkeiten einen Beweis zu stehen scheint, als in ihrer Selbstwirksamkeitserwartung zum Beweisen.
Dabei ist doch {(iberraschend, dass fast keine Zusammenhadnge zwischen der erhobenen
Selbstwirksamkeitserwartung der Studierenden und ihren Beweiskonstruktionen auszumachen sind.
Eine Erklarung kdnnte hierfir sein, dass bei der Konstruktion der Selbstwirksamkeitserwartung zum
Beweisen ein breiteres Spektrum rund um die Thematik des Beweisens abgefragt wurde (vgl.
Abschnitt 3.3.12) und bei diesen Aufgaben nur punktuelle Beweiskonstruktionen gefordert waren.
Auch ware es denkbar, dass eine Selbstwirksamkeitserwartung zum Beweisen getrennt nach den vier
Beweisformen erhoben werden miisste.

7.5 Retrospektive Analyse der vierten Durchfiihrung der Lehrveranstaltung im

Wintersemester 2014/15

Die retrospektive Analyse der vierten Durchflihrung der Lehrveranstaltung , Einfliihrung in die Kultur
der Mathematik” entspricht der retrospektiven Analyse des letzten in dieser Arbeit thematisierten
Forschungszyklus’ des vorliegenden Design-Based Research Projekts. Die Umsetzung der in Abschnitt
1.3 herausgearbeiteten Leitprinzipien fir die Konstruktion der Lehrveranstaltung wurde bereits in
Abschnitt 6.2 ausfiihrlich anhand der Inhalte der ersten beiden Kapitel der Lehrveranstaltung
dargestellt. Fiir die retrospektive Analyse der vierten Durchflihrung verbleibt somit die Diskussion der
,Effektivitat’ der Lehrveranstaltung anhand der bisher in Kapitel 7 dargestellten empirischen
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Ergebnisse. Fir die Diskussion der ,Effektivitat’ sind dabei die Fragen leitend, die sich aus den in
Abschnitt 1.3 formulierten Leitprinzipien ergeben, die mithilfe empirischer Ergebnisse beantwortet
werden miissen:

1.) Inwiefern wurde die Lehrveranstaltung ihrem Anspruch gerecht, die fachmathematische
Symbolsprache sinnstiftend einzufiihren und fir ihre Verwendung zu werben?

2.) Inwiefern werden die Studierenden dazu befdhigt, mit nichtsymbolischen Darstellungen
umzugehen?

3.) Inwiefern kann im Rahmen der Lehrveranstaltung den Studierenden der Prozesscharakter
der Mathematik verdeutlicht werden?

4.) Inwiefern hat die Lehrveranstaltung dazu beigetragen, bei den Studierenden ein ,addquates
Beweisverstandnis’ auszubilden?

Zum Abschluss des Kapitels wird eine kurze Zusammenfassung der retrospektiven Analyse gegeben.

751 Zu dem Aspekt der sinnstiftenden Vermittlung der fachmathematischen
Symbolsprache durch die Lehrveranstaltung

Im Rahmen des in Kapitel 1 der Lehrveranstaltung initiierten ,Forschungsprozesses’ Uber die
Teilbarkeit der Summen aufeinanderfolgender Zahlen wurde es moglich, die fachmathematische
Symbolsprache derart einzufiihren, dass die verschiedenen Vorteile dieses Mediums in den
Vordergrund geriickt werden konnten: (i) Allgemeingltigkeit auszudriicken, (ii) allgemeine
Zusammenhédnge zu kommunizieren, (iii) Zusammenhdnge weiter zu erforschen und (iv) Beweise zu
konstruieren (Malle 1993, S. 6ff.; Mason et al. 2005, S. 1ff.). Auch im Kontrast zu der Beweisform des
generischen Beweises, bei deren Konstruktion die Explizierung der Allgemeingiltigkeit der
Begriindung verlangt wurde, sollte die Vorteile der Symbolsprache weiter erfahren werden.
SchlieBlich wurden verschiedene Aufgabenformate in die Lehrveranstaltung integriert, in denen die
Studierenden allgemeine Zusammenhdnge (etwa zwischen verschiedenen figurierten Zahlen)
ausfindig machen und mithilfe der Symbolsprache formulieren sollten. Auch hierdurch sollte der
Nutzen des Mediums betont werden.

In Abschnitt 7.3.4 (iii) konnte gezeigt werden, dass sich die Einstellungen der Studierenden zur
Nutzung von Buchstabenvariablen und zum formalen Beweisen nach eigenen Angaben durch die
Lehrveranstaltung deutlich verbessert haben; beiden Aussagen wird in der Ausgangsbefragung mit
einem Median von 5 deutlich zugestimmt. Darliber hinaus konnte im Kontext der ,Bewertung von
Beweisen” in Abschnitt 7.3.2.1 herausgearbeitet werden, dass sich der Begriindungsansatz der
Studierenden nach eigenen Angaben von der Ein- zur Ausgangsbefraung statistisch hoch signifikant
zur Nutzung von Buchstabenvariablen hinwendet. Dieses Ergebnis spiegelt sich auch in den durch die
Studierenden angegebenen Beweispraferenzen: Fir die Eigenkonstruktion von Beweisen wird der
formale Beweis von 64,7% der Studierenden den anderen Beweisformen der Lehrveranstaltung
vorgezogen, fiir das Verstehen eines Beweises von 50% der Studierenden. Diese anhand von
Selbstauskiinften der Studierenden erhaltenen Resultate konnten durch die vergleichende Analyse
der Begriindungsaufgabe ,Summe zweier ungerader Zahlen” aus der Eingangsbefragung und der
Modulabschlussklausur gestitzt werden. Wahrend in der Eingangsbefragung nur 16,1% der
Studierenden Buchstabenvariablen fiir die Konstruktion ihrer Begriindung verwendeten, steigt der
Anteil in der Modulabschlussklausur auf 85,9%. Als Ergebnis kann somit formuliert werden, dass den
Studierenden die fachmathematische Symbolsprache als ein sinnvolles Arbeits- und
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Kommunikationsmedium der Mathematik bewusst geworden ist, womit dieses Ziel der
Lehrveranstaltung erreicht worden ist.

7.5.2 Zur Befihigung der Studierenden im Umgang mit nichtsymbolischen Darstellungen

Im Rahmen der Lehrveranstaltung sollten die Studierenden einen verstandigen Umgang mit
Punktmusterdarstellungen erreichen. Aus semiotischer Perspektive wird dabei das Diagrammsystem
der Punktmuster betrachtet, fir dessen Nutzung ein Wissen um den Umgang mit diesem
Diagrammsystem notwendig ist (vgl. Abschnitt 2.5). Die Studierenden sollten dabei
Punktmusterdarstellungen verwenden, um generische Beweise mit Punktmustern und
Punktmusterbeweise mit geometrischen Variablen zu konstruieren. Betrachtet man allerdings die
Ergebnisse bzgl. der entsprechenden Beweiskonstruktionen in der Modulabschlussklausur zur vierten
Durchfiihrung der Lehrveranstaltung, so wird deutlich, dass nur etwa die Halfte der Studierenden
Punkmusterdarstellungen als mathematisches Arbeitsmittel nutzen kénnen. Im Falle des generischen
Beweises mit Punktmustern formulieren Uberhaupt nur 50% der Studierenden Argumentationen
[,,Argumentationen mit Licke” und ,vollstdndige Argumentation”], von denen 20% als vollsténdig
gewertet werde konnten. Bei dem Punktmusterbeweis mit geometrischen Variablen liegt der Anteil
von Argumentationen insgesamt bei 52%, eine vollstédndige Argumentation gelingt 38%. Es ist an
dieser Stelle nicht moglich aufzuklaren, bzgl. welcher Aspekte von Punktmusterdarstellungen bei den
Studierenden Probleme vorliegen. Insgesamt scheint die Verwendung von Punktmusterdarstellungen
als mathematisches Arbeitsmittel (im Sinne eines Diagrammsystems bei Peirce) den Studierenden
doch gréRere Probleme zu bereiten, als dies vorherzusehen war. Es muss an dieser Stelle festgestellt
werden, dass das Ziel der Befahigung der Studierenden im Umgang mit diesen nichtsymbolischen
Darstellungen nicht in dem MaRe erreicht wurde, wie es durch die Lehrveranstaltung intendiert
gewesen war.

7.5.3 Zur Verdeutlichung des Prozesscharakters der Mathematik

Fiir die Erfassung der Bewusstheit der Studierenden Uber die Prozesshaftigkeit der Mathematik
wurden in der Ein- und Ausgangsbefragung die Einstellungen der Studierenden zur Mathematik
erhoben. Von der Ein- zur Ausgangsbefragung zeigte sich dabei ein statistisch hoch signifkanter
Anstieg bzgl. der Einstellung zur ,,Mathematik als Prozess” bei kleiner Effektstarke (EB: 4,42; AB: 4,70;
T-Test, p=0,009 mit Cohens d=0,34). Das Bewusstsein der Studierenden Uber die Prozesshaftigkeit
hat sich demnach statistisch signifikant gesteigert. Da diese Skala in der Eingangsbefragung bei der
Gruppe der hier betrachteten nachverfolgbaren Studierenden allerdings nur einen Reliabilitatswert
von Cronbachs Alpha=0,555 erreicht, kann dieses Ergebnis in diesem Rahmen nur als Indiz flr das
Gelingen dieser Zielsetzung der Lehrveranstaltung betrachtet werden. Weitere Untersuchungen
wurden in Bezug auf diese Zielsetzung nicht vorgenommen.

7.54 Zu der Herausbildung eines adidquaten Beweisverstindnisses durch die
Lehrveranstaltung

Unter dem Konstrukt ,addquates Beweisverstandnis’ wird zundchst das Vorhandensein der
Teilkompetenzen der in Abschnitt 7.2.4 herausgearbeiteten Aspekte von Beweiskompetenz
(Beweiskonstruktion, Beweisbewertung und Beweisakzeptanz) verstanden. Dabei muss sich ein
entsprechendes Verstandnis an einem Wissen um die (epistemologische) Bedeutung von
mathematischen Beweisen messen lassen, welches sich im Wissen um die Bedeutung der
Besonderheit mathematischen Wissens (im Sinne von Allaussagen) und der Bewusstheit Gber die
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verschiedenen Funktionen von Beweisen manifestiert (vgl. Abschnitt 2.1.6 und 2.1.7)%. In diesem
Kontext sollen schlieBlich auch die subjektiven motivationalen Einstellungen der Studierenden zum
Beweisen betrachtet werden.

Im Rahmen der Teilstudie 3 (Abschnitt 7.4.3) konnte gezeigt werden, dass sich die
Begriindungskompetenzen der Studierenden durch die Lehrveranstaltung deutlich verbesserten:
Erreichten in der Eingangsbefragung nur 15,9% der Studierenden eine ,vollstandige Argumentation”
bei der Begriindungsaufgabe ,Summe zweier ungerader Zahlen”, lag dieser Anteil bei der gleichen
Aufgabenstellung in der Modulabschlussklusur bei 52,3%. Waren in der Eingangsbefragung in nur
42,1% der Bearbeitungen tberhaupt korrekte Argumentationsansdtze vorhanden [,Argumentation
mit Licke” und ,vollstandige Argumentationen”], betraf dies 91,6% in der Klausur (s. Abschnitt
7.4.3.1). In Bezug auf die Konstruktion der vier Beweisformen der Lehrveranstaltung (generischer
Beweis mit Zahlen, generischer Beweis mit Punktmustern, Punktmusterbeweis mit geometrischen
Variablen und der formale Beweis) wurde deutlich, dass den Studierenden ein verstandiger Umgang
mit generischen Beweisen und formalen Beweisen im Allgemeinen gelingt, wobei Probleme im
Umgang mit Variablen die Beweiskonstruktionen der Studierenden zum formalen Beweisen
schmalern. Auf die Probleme der Studierenden bei der Konstruktion von Beweisen mit Punktmustern
wurde bereits oben eingegangen. Allerdings muss erwahnt werden, dass die Beweiskonstruktionen
der Studierenden in der Modulabschlussklausur des Wintersemesters 2014/15 deutlich besser
ausfielen als im Vorjahr (s. Abschnitt 7.4.3.2). Insgesamt wurden die Studierenden durch die
Lehrveranstaltung dazu befahigt, korrekte Begriindungen zu formulieren und verschiedene Beweise
bzw. Beweisformen zu konstruieren. Dass dabei bessere Ergebnisse bzgl. der Beweiskonstruktionen
der Studierenden durch die Lehrenden erhofft waren, verbleibt dabei als kleiner Makel der Resultate.

Bei den Beweisbewertungen der Studierenden zeigte sich, dass der Anteil der Bewertung bloRer
Beispiebetrachtungen als ,richtiger Beweis” statistisch hoch signifikant von 17,6% bei der
Eingangsbefragung auf 5,4% bei der Ausgangsbefragung zurlickging (Abschnitt 7.3.2.1). Den
Studierenden ist somit bewusst geworden, dass bloRe Beispieliberpriifungen keinen richtigen
Beweis konstituieren. Auch wurde der formale dargestellte und falsche Beweis in der
Ausgangsbefragung nur noch von 13,5% der Studierenden als richtiger Beweis gewertet, in der
Eingangsbefragung lag der Anteil bei 27%. Dieser Unterschied ist dabei mit p=0,078 nicht statistisch
signifikant (McNemar-Test).

In Bezug auf die Beweisakzeptanz wurde in der Ausgangsbefragung deutlich, dass die Studierenden
nach Besuch der Lehrveranstaltung die Allgemeingiiltigkeit generischer Beweise nun statistisch hoch
signifikant besser bewerten als in der Eingangsbefragung. In der Ausgangsbefragung werden diese
Beweise nun nicht mehr als singuldre Beispielliberpriifungen fehlinterpretiert, die Mehrheit der
Studierenden stimmt dagegen den Aspekten der Sicherung der Giltigkeit, der Verifikation der
Behauptung und der Giiltigkeit als ,korrekter Beweis’ zu. Diese Entwicklung spiegelt sich auch in den
Akzeptanzbewertungen fir den Punktmusterbeweis mit geometrischen Variablen wider. Der formale
Beweis wurde bereits in der Eingangsbefragung sehr hoch bewertet, weswegen keine wesentlichen
Entwicklungen von der Ein- zur Ausgangsbefragung ausgemacht werden konnten.

 In diesem Kontext wire sicherlich auch eine qualitative Studie zur Beschreibung des ,Beweisbediirfnisses’ der
Studierenden nach dem Besuch der Lehrveranstaltung gewinnbringend gewesen. Eine entsprechende
Untersuchung wurde allerdings nicht durchgefiihrt.
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Auf der Basis dieser Ergebnisse kann zusammenfassend festgehalten werden, dass sich bei den
Studierenden die verschiedenen hier betrachteten Kompetenzen im Umgang mit Beweisen
(Begrindungskompetenz, Beweisbewertung und Beweisakzeptanz) verbessert haben.

Insbesondere stellt sich die Frage, ob den Studierenden die Besonderheit mathematischen Wissens
als Allaussage (iber Objekte bewusst geworden ist und sie vor diesem Hintergrund die
(epistemologische) Bedeutung mathematischer Beweise liberhaupt verstehen kénnen (vgl. Abschnitt
2.1.6). Es war ein zuvor dargestelltes Ergebnis, dass die Studierenden in der Ausgangsbefragung zu
94,6% bloRRe Beispielbetrachtungen als korrekten Beweis ablehnen. Bei den studentischen
Bewertungen der verschiedenen Akzeptanzitems in der Ausgangsbefragung zeigt sich, dass die
Studierenden die positiven Akzeptanzaspekte (Sicherung der Glltigkeit etc.) jeweils kontrar zu den
ltems bewerten, die die Fehlinterretation als singuldre Beispieliberprifungen thematisieren
(Abschnitt 7.3.2.2). Vor diesem Hintergrund kann nun begriindet die These formuliert werden, dass
den Studierenden die Bedeutung mathematischer Allaussagen bewusst geworden ist, die fir ihre
Verifikation nach einem allgemeingiiltigen Beweis verlangen, da singuldre Beispielliberprifungen
keine Allaussage zu verifizieren vermdgen. In Bezug auf die Funktionen von Beweisen konnte durch
die aktuelle und retrospektive Einschatzung der Studierenden (iber ihre Fahigkeit, verschiedene
Funktionen anhand konkreter Beweiskonstruktionen zu verdeutlichen, ein selbst empfundener
Lernzuwachs bei den Studierenden herausgearbeitet werden (s. Abschnitt 7.3.4). Es kann somit
festgehalten werden, dass die Studierenden der Ansicht sind, durch die Lehrveranstaltung in Bezug
auf die verschiedenen Funktionen von Beweisen einen Kompetenzzuwachs erhalten zu haben.

In Bezug auf die subjektiven motivationalen Einstellungen der Studierenden konnte im Vergleich der
Ergebnisse der Ein- und Ausgangsbefragung eine Hinwendung zum Beweisen festgestellt werden. Bei
der konstruierten Skala zur ,Beweisaffinitdt” konnte ein statistisch hoch signifikanter
Mittelwertanstieg bei kleiner Effektstarke verzeichnet werden (EB: 4,0; AB: 4,27; T-Test, p=0,018 mit
Cohens d=0,3; vgl. Abschnitt 7.3.3.2). Diesem Ergebnis entspricht auch der hohe Mittelwert von 5,09,
den Studierende auf der Skala ,der Selbstwirksamkeitserwartung zum Beweisen” in der
Augsangsbefragung erreichen (vgl. Abschnitt 7.3.4). Allerdings konnte ein statistisch signifikanter
Zusammenhang  zwischen dieser Selbsteinschatzung der  Studierenden und ihren
Beweiskonstruktionen, interpretiert als ordinalskalierte Variable, nur fir den Fall des generischen
Beweises ausgemacht werden (r, =0,259 mit p=0,032; vgl. Abschnitt 7.5.2). Hier stellt sich die Frage,
ob die Studierenden vielleicht nicht in der Lage sind, ihre eigenen Fahigkeiten passend einzuschatzen,
oder ob sie ggf. die Anspriiche der Bewertung ihrer Beweiskonstruktionen so nicht teilen. Diese Frage
kann an dieser Stelle jedoch nicht beantwortet werden.

In Bezug auf die Herausbildung eines adaquaten Beweisverstandnisses kann schlieflich formuliert
werden, dass dem GroRteil der Studierenden (58% bzw. 44%) nach dem Besuch der
Lehrveranstaltung die Konstruktion des generischen Beweises mit Zahlen bzw. des formalen
Beweises vollstandig gelingt. Probleme im Umgang bzw. im Verstandnis mit dem Diagrammsystem
der Punktmuster scheint ein Gelingen entsprechender Beweiskonstruktionen in diesem
Diagrammsystem zu verhindern. Durch die Betrachtung der Ergebnisse der Begriindungsaufgabe
»Summe zweier ungerader Zahlen” konnte dabei der groRe Kompetenzzuwachs der Studierenden
ausgemacht werden. Bei der Bewertung von Beweisen wurde deutlich, dass den Studierenden durch
die Lehrveranstaltung bewusst geworden ist, dass blolRe Beispielliberprifungen keine
mathematischen Beweise fir Allaussagen konstituieren, und im Rahmen der Untersuchungen zur
Beweisakzeptanz konnte festgestellt werden, dass die Mehrheit der Studierenden in der
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Ausgangsbefragung in der Lage zu sein scheint, das allgemeingiltige Moment in generischen
Beweisen zu verstehen und zu wiirdigen. Nach Angabe der Studierenden empfanden diese einen
grofRen Lernzuwachs in Bezug auf das Beweisen allgemein durch die Lehrveranstaltung und in Bezug
auf die verschiedenen Funktionen von Beweisen im Speziellen. SchlielRlich hat sich im Laufe der
Lehrveranstaltung die ,Beweisaffinitat” der Studierenden gesteigert. Vor diesem Hintergrund kann
abschlieRend die These formuliert werden, dass die Lehrveranstaltung dazu beigetragen hat, ein
addquates Beweisverstandnis bei den Studierenden herauszubilden.

7.5.5 Fazit der retrospektiven Analyse

Vor dem Hintergrund der konzeptionellen Umsetzung der in Abschnitt 1.3 herausgearbeiteten
Leitprinzipien, wie sie in Abschnitt 6.2 dargestellt wurde, und der in den Abschnitten 7.5.1-7.5.4
dargelegten empirischen Ergebnisse in Bezug auf die Zielsetzungen der Lehrveranstaltung kann nun
formuliert werden, dass die vierte Durchfiihrung der Lehrveranstaltung im Wintersemester 2014/15
erfolgreich gewesen ist. Allerdings muss kritisch angemerkt werden, dass die Beweiskonstruktionen
der Studierenden in der Modulabschlussklausur dieses Wintersemesters nicht den Hoffnungen der
Lehrenden gerecht wurden, gerade was die Beweiskonstruktionen der Studierenden mithilfe von
Punktmusterdarstellungen betrifft. Aus diesem Grund bleibt zunachst anzumerken, dass die
Thematik ,Begriinden und Beweisen’ als Herausforderung fiir den Ubergang Schule-Hochschule
verbleibt. Die vorliegende Forschungsarbeit versteht sich dabei als ein exemplarischer
Losungsvorschlag fir das Angehen dieses Problemfelds fiir die Adressatengruppe der
Lehramtsstudierenden, der theoretisch fundiert und empirisch evaluiert ist.

Es verbleibt, das Forschungsprojekt in Ganze zu reflektieren und die erhaltenen (theoretischen und
empirischen) Erkenntnisse in das bestehende Feld der mathematikdidaktischen Forschung
einzugliedern. Diese Anliegen werden abschliefend im achten Kapitel betrachtet.
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8. Zusammenfassung, Diskussion und Ausblick

Das Ubergeordnete Ziel der vorliegenden Arbeit wurde zu Beginn wie folgt formuliert:

Die forschungsbasierte (Weiter-) Entwicklung einer Lehrveranstaltung, welche den Studierenden den
Ubergang von der Schulmathematik in die Mathematik der Hochschule erleichtern soll und hierbei in
einem besonderen Mafse das Themenfeld , Begriinden und Beweisen” unter der Perspektive der
doppelten Diskontinuitdt fokussiert.

Flr die Beantwortung der mit der Zielformulierung verbundenen Forschungsfrage [1] (,,Wie kann im
Rahmen einer universitiren Lehrveranstaltung fir Lehramtsstudierende (Haupt-, Real- und
Gesamtschule) der Themenbereich ,Begriinden und Beweisen’ vor dem Spannungsfeld der doppelten
Diskontinuitat adaquat vermittelt werden?“) wurden drei weitere Forschungsziele angegeben (vgl.
Abschnitt 1.4.1):

(i) Die Entwicklung von Testinstrumenten, welche die Erforschung zentraler Aspekte zum
Beweisen bei Lernenden ermoglichen.

(ii) Die Erforschung der Beweisvorstellungen, -kompetenzen und -einstellungen von
Studierenden zu Beginn des Studiums (bzw. zu Beginn der Lehrveranstaltung).

(iii) Die Erforschung der Auswirkungen der Lehrveranstaltung auf die Beweisvorstellungen,
-kompetenzen und -einstellungen der Teilnehmenden.

Am Ende dieser Bemiihungen soll ein Beitrag fir die Entwicklung einer lokalen Instruktionstheorie fiir
die Domane ,Begriinden und Beweisen’ flir Studienanfangerinnen und -anfanger des Lehramts (fur
Haupt-, Real- und Gesamtschule) im Spannungsfeld der doppelten Diskontinuitat geleistet werden.

In dem achten Kapitel dieser Arbeit wird das Erreichen der formulierten Zielsetzungen anhand der
erzielten Ergebnisse diskutiert. Dabei werden die Resultate in drei Bereiche unterteilt: Ergebnisse der
Design-Forschung und der Beitrag zu einer lokalen Instruktionstheorie in der Domane ,Begriinden
und Beweisen’ (Abschnitt 8.1), empirische Ergebnisse (Abschnitt 8.2) und Beitrage zur Theoriebildung
und Theorieentwicklung (Abschnitt 8.3). Schlielllich gilt es, das vorgenommene Forschungsprojekt
und die erhaltenen Ergebnisse anhand der in Abschnitt 3.2 herausgearbeiteten Giitekriterien kritisch
zu diskutieren (Abschnitt 8.4) und Perspektiven fiir die weitere Forschung aufzuzeigen (Abschnitt
8.5).

8.1 Ergebnisse der Design-Forschung und der Beitrag zu einer lokalen
Instruktionstheorie in der Domine ,Begriinden und Beweisen’

Die Gbergeordnete Forschungsfrage [1] dieser Forschungsarbeit ist:

,Wie kann im Rahmen einer universitidren Lehrveranstaltung fiir Lehramtsstudierende
(Haupt-, Real- und Gesamtschule) der Themenbereich ,Begriinden und Beweisen’ vor dem
Spannungsfeld der doppelten Diskontinuitit addquat vermittelt werden?“

Diese Forschungsfrage wurde im ersten Kapitel dieser Arbeit motiviert und in die aktuelle
hochschuldidaktische Diskussion eingebettet. Aufgrund der verwendeten Forschungsmethode des
Design-Based Research (vgl. Kapitel 3) wird diese Frage durch die Darstellung des herausgearbeiteten

Beitrags zu der Entwicklung einer lokalen Instruktionstheorie fir die Doméane ,Begriinden und
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Beweisen’ fur Studienanfanger des Lehramts (fir Haupt-, Real- und Gesamtschule) beantwortet.
Dieser Beitrag ergibt sich als Summe der im Kontext der retrospektiven Analysen der verschiedenen
Durchfihrungen der Lehrveranstaltung gewonnenen Erkenntnisse, gleichsam als empfohlene
Designprinzipien. Fir die retrospektiven Analysen der verschiedenen Durchfiihrungen der
Lehrveranstaltungen waren dabei die Theorien ,Beweisen als diagrammatisches SchlieRen” und
,Sozio-mathematische Normen“ leitend. Diese beiden theoretischen Ebenen wurden dabei durch die
dritte Diskussionsebene der ,Mathematischen Inhalte’ ergdnzt. Diese drei Betrachtungsebenen
werden im Folgenden weitergefiihrt, weshalb der Beitrag zu der lokalen Instruktionstheorie geteilt in
die Bereiche ,Mathematische Inhalte”, ,,Semiotische Aspekte” und ,Aspekte sozio-mathematischer
Normen“ dargestellt wird. Das in dieser Arbeit erarbeitete Designprodukt der ersten beiden Kapitel
der Lehrveranstaltung ,Einflihrung in die Kultur der Mathematik” wurde in Abschnitt 6.2 erdrtert,
eine Verschriftlichung dieser Kapitel befindet sich im Anhang. Zu den erhaltenen Designergebnissen
dieser Arbeit zahlt dariber hinaus die in der Zielformulierung (i) geforderte Entwicklung von
Testinstrumenten, welche die Erforschung zentraler Aspekte zum Beweisen bei Lernenden
ermoglichen. Dieses Designergebnis wird am Ende dieses Abschnitts dargestellt.

8.1.2 Der Beitrag zu einer lokalen Instruktionstheorie in der Domine ,Begriinden und
Beweisen’ - die Formulierung von Designprinzipien

In Weiterflihrung der die retrospektiven Analysen der vier Forschungszyklen leitenden Aspekte
»Mathematische Inhalte”, ,Semiotische Aspekte: Beweisen als diagrammatisches Schlieen® und
»Aspekte sozio-mathematischer Normen” werden auch die herausgearbeiteten Designprinzipien
getrennt nach diesen drei Bereichen dargestellt.

Designprinzipien bzgl. ,,Mathematischer Inhalte“:

1. Unter dem Gesichtspunkt der doppelten Diskontinuitdt gilt es, einerseits schulisches
Vorwissen zum Begriinden und Beweisen aufzugreifen und weiterzufiihren, andererseits
Begriindungs- und Beweisformen zu vermitteln, mit denen die Studierenden als spditere
Lehrkréifte im schulischen Mathematikunterricht agieren kénnen. Innerhalb des
Ausbildungsabschnitts an der Universitédt muss es jedoch auch gelten, das Beweisen den
Studierenden als spezifische und charakteristische Arbeitsweise der Mathematik ,intellektuell-
ehrlich’ zu vermitteln.

Diese Forderung ergibt sich zunachst aus der Verbindung der in Abschnitt 1.3
herausgearbeiteten Leitprinzipien aus dem Phanomen der doppelten Diskontinuitat und der
hier fokussierten Thematik ,Begriinden und Beweisen’. Die Frage nach dem schulischen
Vorwissen der Erstsemesterstudierenden in Bezug auf das Begriinden und Beweisen wurde
im Rahmen der Effektivitatsstudie der Lehrveranstaltung in Abschnitt 7.2 thematisiert. Dabei
konnte herausgestellt werden, dass die Studienanfiangerinnen und -anfanger nur (iber
marginale Vorerfahrungen zu der Thematik ,Begriinden und Beweisen’ verfiigen, die nur
bedingt mit den Beweisaktivitdten an einer Hochschule vergleichbar sind (Abschnitt 7.2.3).
Der Anschluss an schulisches Vorwissen scheint dabei vor allem in der Weiterflihrung
algebraischer Ansatze zu liegen, da den Studierenden nach eigenen Angaben Beweisformen
wie generische Beweise oder Beweise mit Punktmusterdarstellungen nicht aus ihrer Schulzeit
bekannt sind (Abschnitt 7.2.3). Bei der Analyse einer Begriindungsaufgabe konnte gezeigt
werden, dass nur 8,5% der Erstsemesterstudierenden von algebraischen Ansdtzen Gebrauch
machen, die dabei héaufig fehlerhaft sind (Abschnitt 7.2.4). Die Verwendung der
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fachmathematischen Symbolsprache steht Erstsemesterstudierenden folglich nur bedingt als
heuristisches Mittel der Verifikation zur Verfligung.

Fiir die Vermittlung schuladaquater Begriindungsformen wurde in dieser Arbeit das Konzept
der generischen Beweise herausgestellt (Abschnitt 2.1.3) und durch das Aufstellen expliziter
Normen fir den Unterricht fruchtbar gemacht (Abschnitt 6.2). Der Einbezug generischer
Beweise ermoglichte es dabei einerseits, die Phase der Exploration und den Nutzen von
Beispielbetrachtungen fir den Beweisprozess zu betonen. Dariber hinaus kann gerade in der
Thematisierung dieser Beweisform die Unzuldnglichkeit singularer Beispieliiberpriifungen
herausgestellt und im Vergleich zum formalen Beweis fiir die fachmathematische
Symbolsprache sinnstiftend geworben werden (Abschnitt 6.2). Somit konnte ein Nutzen
generischer Beweise flir die Hochschullehre aufgezeigt werden, der Uber eine ,bloRe
Hilfestellung’ fir das Erlernen der Beweisaktivitat hinausgeht.

Die Konstruktion von generischen Beweisen ist fiir Lernende keine triviale Tétigkeit und auch
ein Versténdnis um die Tragweite dieser Beweisform ist nicht unmittelbar gegeben. Dies
bedeutet, dass entsprechende Beweisformen didaktisch gezielt und passend in einen
gréfseren Rahmen mathematischer Arbeitsweisen eingebettet werden miissen, indem ihr
Nutzen und eventuelle Vor- und Nachteile zur Geltung kommen und sinnstiftend erértert
werden kdnnen.

Bei der Beforschung der Lehrveranstaltung wurde zunachst deutlich, dass die Studierenden
Probleme mit der Konstruktion generischer Beweise haben (Abschnitt 5.2.2.2, 5.3.2.1 und
5.3.2.4). Im Rahmen der Eingangsbefragung zu der vierten Durchfiihrung der
Lehrveranstaltung konnte gezeigt werden, dass die Studierenden das allgemeine Moment
generischer Beweise nicht wahrnehmen, im Gegenteil generische Beweise als singulare
BeispielUberprifungen fehlinterpretieren (Abschnitt 7.2.4.3). Aus diesem Grund muss der
Vermittlung generischer Beweise im unterrichtlichen Geschehen eine besondere
Aufmerksamkeit zukommen. Es muss hierbei gelten, generische Beweise derart in
mathematische Erkenntnisprozesse einzubinden, dass deren Vor- und Nachteile deutlich
werden. In der hier thematisierten Lehrveranstaltung wurde dies dadurch erreicht, dass bei
der Untersuchung konkreter Beispiele zunachst eine beispieliibergreifende Erklarung fir das
Phianomen ausgemacht wurde, warum die Summe von drei aufeinanderfolgenden
natirlichen Zahlen immer durch drei teilbar ist. Dieses generische Moment wurde dann fiir
die Konstruktion eines generischen Beweises verwendet und auf weitere Summen
aufeinanderfolgender Zahlen Ubertragen (Abschnitt 6.2). SchlieBlich wurden verschiedene
Aufgabenformate entwickelt, in denen bewusst die Vor- und Nachteile generischer Beweise
in den Vordergrund gestellt wurden und in denen gezielt entsprechenden Fehlvorstellungen
entgegengewirkt wurde (Abschnitt 5.4.1 und 6.3.2).

Fiir eine sinnstiftende Vermittlung verschiedener Beweisformen und die Herausstellung des
Prozesscharakters der Mathematik muss der Prozess der mathematischen Wissensgewinnung
(Exploration - Vermutungen ausmachen, formulieren, (iberpriifen und ggf. verwerfen -
Behauptungen aufstellen - Beweisen) im Kontext des Lehr-/Lernszenarios eine prominente
Rolle spielen.

Mathematische ,Forschungsprojekte’ sollen sowohl in die Vorlesungen, als auch in die
Prasenziibungen und Hausaufgaben integriert werden. Dabei geht es auch darum, dass in

entsprechenden Einbettungen, vor dem Hintergrund einer gewissen Unsicherheit (Abschnitt
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2.1.6), die verschiedenen Funktionen von Beweisen erfahrbar werden, was dabei als eine
Voraussetzung flir die Herausbildung eines Beweisbedirfnisses angesehen werden muss
(Abschnitt 2.1.6 und 2.1.7).

Dieser Aspekt der sinnstiftenden Einbettung in Erkenntnisprozesse soll bei der Konstruktion
von Aufgaben und der Besprechung entsprechender Lésungen bedacht werden. In der hier
betrachteten Lehrveranstaltung wurden dazu entsprechende Aufgabenformate konstruiert
(Abschnitt 5.4.1 und 6.3.2) und ein Konzept fiir die Besprechung von Musterldsungen im
Rahmen einer Zentrallibung erarbeitet (Abschnitt 6.3.3).

Der Sinn mathematischer Arbeitsweisen (Verwendung addquater Fachsprache, Formulierung
und Nutzung exakter Definitionen und Sdtze) muss im Rahmen der Lehrveranstaltung explizit
thematisiert und erértert werden.

Die fachmathematische (Symbol-) Sprache ist eines der wichtigsten Werkzeuge der
Mathematik. Ihre Vorteile missen den Lernenden erlebbar und damit nachvollziehbar
gemacht werden: Nur wer die Vorteile dieser Sprache erlebt hat, kann sie auch zu wirdigen
wissen. Gleiches gilt flir den axiomatisch-deduktiven Aufbau der Mathematik. Das
mathematische Theoriegebdude erhdlt seine Legitimation auch durch seine
Wechselbeziehung zum ,formalen’ Beweis, denn eine entsprechende Konzeption des
formalen Beweises verlangt nach einer zumindest lokalen Ordnung der Inhalte. Es ist dieser
in Abschnitt 2.1.6 herausgearbeitete Aspekt des ,Beweisens von der Zukunft her’, der das
(formale) Beweisen im Rahmen einer mathematischen Theorie legitimiert und motiviert. Aus
dieser engen Verzahnung von mathematischem Theoriegebdude und Konstrukt des formalen
Beweises folgt, dass fir eine Vermittlung dieser Beweisform auch die Besonderheit
mathematischer Theoriebildung im Zusammenspiel von Definitionen, Satzen und Beweisen
verdeutlicht werden muss. Dies wurde in der vierten Durchfiihrung der Lehrveranstaltung
dadurch erreicht, dass alle notwendigen Definitionen und Satze im Kontext der
Lehrveranstaltung explizit formuliert und fiir die entsprechende Referenz in Beweisen
strukturiert bzw. nummeriert wurden (Abschnitt 5.4.4). Definitionen wurden dabei als
,hilfreiche Charakterisierungen’ und Satze als durch Beweise abgesichertes mathematisches
Wissen verdeutlicht.

Der Nutzen von Beispielbetrachtungen im mathematischen Erkenntnisprozess und deren
potentielle Vor- und Nachteile miissen explizit erértert werden.

Es folgt bereits aus den in der Literatur aufgefiihrten Fehlvorstellungen zu der Bedeutung von
Beispielen im Beweisprozess (Abschnitt 2.4.2), dass Beispielbetrachtungen im Kontext von
Beweisen differenziert betrachtet werden miissen. Dabei kann die Bedeutung von
Beispielbetrachtungen im gesamten mathematischen Erkenntnisprozess zunachst positiv
gewlrdigt werden, wobei auch auf deren Unzulanglichkeiten hingewiesen werden muss. In
der Lehrveranstaltung wurde mit der Unterscheidung von psychologischen und logischen
Aspekten ein deutlicher Schritt in diese Richtung gegangen: Beispielbetrachtungen kénnen
psychologisch die subjektive Uberzeugung stdrken, dass eine Behauptung wahr ist, logisch
betrachtet ist es aber egal, ob man die Behauptung an weiteren Beispielen verifizieren
konnte (Abschnitt 5.3.1). Der Nutzen, Mehrwert und die Grenzen von Beispielbetrachtungen
missen durch die Lernenden erfahren werden. Aus diesem Grund wurden neben der
Thematisierung der psychologischen und logischen Bewertung von Beispielbetrachtungen in
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der Lehrveranstaltung verschiedene Aufgabenformate entwickelt, durch die die Lernenden
die verschiedenen Aspekte von Beispielbetrachtungen erfahren konnten (Abschnitt 5.4.1).

6. Die verschiedenen Kompetenzaspekte, die Lernende im Kontext der Thematik des Beweisens

herausbilden sollen, miissen in konkreten Aufgabenstellungen thematisiert und somit gelibt
werden.
Das Erlernen der Beweisaktivitdt beinhaltet verschiedene (Kompetenz-) Aspekte. Wie in
Abschnitt 7.2.1 begriindet dargelegt wurde, werden in dieser Arbeit unter Beweiskompetenz
die Teilkompetenzen Beweiskonstruktion, Beweisbewertung und Beweisakzeptanz gefasst.
Diesen verschiedenen Facetten von Beweiskompetenz gilt es im unterrichtlichen Geschehen
gerecht zu werden und den Studierenden entsprechende Ubungsmoglichkeiten
bereitzustellen. In der Lehrveranstaltung wurden diese Aspekte im Kontext verschiedener
Aufgabenformate aufgegriffen (Abschnitt 5.4.1) und im Rahmen der Vorlesung und der
ZentralUbung diskutiert.

Designprinzipien bzgl. der Theorie ,Beweisen als diagrammatisches SchlieBen”

7. Der Umgang mit einem Diagrammsystem muss zundchst als Lerngegenstand aufgefasst

werden. Das Arbeiten in Diagrammsystemen muss daher gelibt werden, damit sich das
notwendige kollaterale Wissen auf Seiten der Lernenden herausbilden kann.
Mathematisches Beweisen setzt einen kompetenten Umgang mit entsprechenden Zeichen
voraus. Peirce pragte fiir einen kompetenten Umgang mit Zeigen im Kontext eines
bestimmten Zeichensystems (,Diagrammsystems’) den Begriff des kollateralen Wissens (s.
Abschnitt 2.5). Dieses Wissen zeigt sich u.a. bei der Konstruktion eines Diagramms, dessen
Verwendung, dem Vornehmen von Transformation und bei der richtigen Interpretation des
schlieBlich erhaltenen Diagramms. Dieses kollaterale Wissen muss bei Lernenden ausgebildet
und gelibt werden. Dies betrifft sowohl ,anschauliche’ Diagrammsysteme wie Punktmuster
wie auch die Symbolsprache der Algebra. Wichtig ist somit, dass Lernende entsprechende
Méglichkeiten zur Ubung erhalten, um kollaterales Wissen ausbilden und kompetent in den
verschiedenen Diagrammen agieren zu konnen.

8. Damit Lernende den Sinn und die Vor- und Nachteile verschiedener Beweisformen und

verschiedener Diagrammsysteme erleben und somit verstehen kénnen, miissen (Beweis-)
Aufgaben gestellt werden, in denen die verschiedenen Beweisformen und Diagrammsysteme
vergleichend verwendet werden sollen.
Durch einen direkten Vergleich von Diagrammsystem und Beweisformen werden erst die
verschiedenen charakteristischen Elemente und auch die (subjektiven) Vor- und Nachteile
deutlich. Dieser Vergleich muss dabei durch Aufgabenstellungen direkt angebahnt werden.
Dies bedeutet weiter, dass auch Beweisaufgaben gestellt werden, in denen die Verwendung
der Beweisformen und des damit verbundenen Diagrammsystems fliir die
Aufgabenbearbeitenden freigestellt ist. Die eigene Entscheidung fir die Konstruktion einer
Beweisform im Kontext eines bestimmten Diagrammsystems bedingt die begriindete
Herausbildung entsprechender Ansichten. Exemplarische Aufgabenstellungen wurden in
Abschnitt 5.4.1 und 6.3.2 angegeben.
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Designprinzipien bzgl. der Theorie ,,Sozio-mathematischer Normen“

9.

10.

11.

Im Rahmen einer Lehrveranstaltung miissen sich die Lehrenden (iiber die Normen im Klaren
sein, die im Kontext bestimmter fachlicher und methodischer Inhalte fiir die Lernenden im
Vordergrund stehen sollen. Diese zu vermittelnden bzw. angesetzten Normen sollten nach
Méglichkeit den Lernenden transparent gemacht und expliziert werden.

Anzusetzende, gesetzte bzw. zu vermittelnde Normen betreffen u.a. die Darstellung von
Inhalten, die Art und Weise und Ausfihrlichkeit von Aufgabenbearbeitungen, die Bedeutung
und Verwendung sprachlicher Mittel und z.B. die Frage, was fiir die Konstruktion eines
Beweises bzw. einer Beweisform gefordert wird. Entsprechende Normen werden zwar in
einem Miteinander aller Beteiligten herausgebildet, es muss aber davon ausgegangen
werden, dass diese bei den verschiedenen Teilnehmenden unterschiedlich stark ausgepragt
werden. Im Sinne einer Lernzieltransparenz missen die fokussierten Normen expliziert
werden, damit Lernende sich an diesen orientieren und sich bewusst darauf einlassen
kénnen. In der hier thematisierten Lehrveranstaltung wurden daher explizit Normen fir die
Konstruktion der verschiedenen Beweisformen aufgestellt und kommuniziert (s. Abschnitt
5.4.4 und 6.2).

Im Kontext sozio-mathematischer Normen muss auch die Ausbildung einer entsprechenden
Meta-Sprache zum jeweiligen Fachinhalt mitbedacht werden. Uber die verwendeten Fach-
und Metabegriffe muss eine méglichst hohe Einigkeit bei allen am Lernprozess Beteiligten
herrschen.

Im Kontext des Begriindens und Beweisens werden verschiedene Begrifflichkeiten
verwendet, Gber deren genaue Bedeutung in der Theorie teilweise keine Einigkeit besteht
(vgl. etwa die Erorterung der Begriffe Argumentieren, Begriinden und Beweisen in Abschnitt
2.3). Da solche Begrifflichkeiten aber im unterrichtlichen Kontext als unverzichtbar
erscheinen, missen sie von den Lehrenden entsprechend umsichtig verwendet werden. Dies
betrifft auch die Verwendung verschiedener Aufgabenoperatoren (begriinden Sie, beweisen
Sie, zeigen Sie, ...), denen sich Lernende ausgesetzt sehen (vgl. hierzu die Ergebnisse in
Kempen et al. 2016). Aus diesem Grund wurde in der Lehrveranstaltung eine Angleichung der
Begrifflichkeiten vorgenommen, um eine moglichst hohe Einigkeit und Transparenz zu
erzielen (Abschnitt 5.4.4).

Die in der Lehrveranstaltung gesetzten Normen miissen im Rahmen der Lehrveranstaltung
durch alle beteiligten Lehrenden vertreten und umgesetzt werden. Wird von diesen Normen
abgewichen, etwa bei der Angabe einer blofien ,Beweisskizze’ anstatt eines vollstéindigen
Beweises, muss dies explizit thematisiert werden.

Der Aspekt der Herausbildung von Normen im unterrichtlichen Geschehen, als Resultat eines
Aushandlungsprozesses aller Beteiligten, macht deutlich, dass alle Momente des
unterrichtlichen Geschehens Auswirkung auf diese Herausbildung von Normen haben. Dies
bedeutet, dass die fokussierten Normen von allen beteiligten Lehrenden (Dozenten,
Mitarbeitenden, studentischen Hilfskrdften) umgesetzt und ,vorgelebt’ werden miussen.
Etwaige Abweichungen oder VerstoBe sollten explizit thematisiert werden, damit der
Herausbildung entsprechender Normen nicht entgegengewirkt wird. Aus diesem Grund
wurde auch eine Tutorenschulung der studentischen Hilfskrafte vorgenommen, um
sicherzustellen, dass diese konform mit den Normen der Lehrveranstaltung agieren

329



(Abschnitt 5.3.1). Auch wurde in der Vorlesung explizit unterschieden, ob ein vollstiandiger
Beweis in ,Reinschrift’ notiert oder lediglich eine Beweisidee angegeben wurde (s. Abschnitt
6.2).

12. Fiir die Akzeptanz verschiedener Beweisformen und ihr Erlernen ist es notwendig, dass die

verschiedenen Beweisformen nach Mdéglichkeit konsequent und ,gleichberechtigt’ in die
Lehrveranstaltung einbezogen werden.
In Bezug auf das Beweisen muss auch die Herausbildung subjektiver Momente bei
Lernenden, wie Nutzen, Wertschatzung und Akzeptanz von Beweisen als Aspekte Sozio-
mathematischer Normen, betrachtet werden. Im Rahmen der retrospektiven Analysen der
Durchfiihrungen der Lehrveranstaltung wurde deutlich, dass zunadchst im Rahmen der
Vorlesung und der Ubungsaufgaben fast ausschlieRlich formale Beweise verwendet wurden
(Abschnitt 5.2.1.4 und 5.4.1). Fir die Vermittlung alternativer Beweisformen und das Erzielen
einer ,Akzeptanz’ dieser Beweisformen auf Seiten der Lernenden erscheint es notwendig,
dass diese Beweise ,gleichberechtig’ im Fortgang des Lehr-/Lernszenarios eingebunden
werden. SchlieRlich sollen Vor- und Nachteile erfahrbar werden, die gerade im Kontrast zu
anderen Beweisformen deutlich werden.

8.1.3 Die Entwicklung von Testinstrumenten

Fiir das Erreichen der Zielsetzung dieser Arbeit, wie es auch zu Beginn dieses Kapitels formuliert
wurde, war die Entwicklung von Testinstrumenten notwendig, die die Erforschung zentraler Aspekte
zum Beweisen bei Lernenden ermoglichen. Die im Rahmen dieser Arbeit entwickelten
Testinstrumente stellen ein weiteres Design-Ergebnis der vorliegenden Forschungsarbeit dar und
sollen im Folgenden getrennt nach den Bereichen ,Erfassung der schulischen Vorerfahrungen zum
Beweisen”, ,Bewertung von Beweiskonstruktionen”, , Beweisbewertung und Beweisakzeptanz”,
,Beschreibung der Einstellungen zum Beweisen” und ,Selbsteinschatzung des Lernzuwachses”
zusammengefasst dargestellt werden.

8.1.3.1 Testinstrumente zur Erfassung der schulischen Vorerfahrungen zum Beweisen

Fiir die Erfassung der quantitativen schulischen Vorerfahrungen der Studierenden zum Beweisen
wurden verschiedene Items konstruiert und mithilfe der Erkenntnisse aus der Pilotierung
ausgescharft (Abschnitt 3.3.4). Im Kontext dieser Items wird zwischen dem Kennenlernen von
Beweisen in der Schulzeit und der Eigenkonstruktion von Beweisen unterschieden, was sich bei der
Betrachtung der Ergebnisse als gewinnbringend herausgestellt hat (Abschnitt 7.2.3). Durch die
Abfrage von Sachverhalten, die in der Schule bewiesen worden sind, konnte ein ungefahres Bild
dessen abstrahiert werden, was die Erstsemesterstudierenden mit dem Begriff ,Beweis’ zu verbinden
scheinen (Abschnitt 7.2.3).

8.1.3.2 Testinstrumente zur Bewertung von Beweiskonstruktionen

Um zunadchst die Begriindungskonstruktionen der Studierenden analysieren und bewerten zu
kénnen, wurde ein differenziertes Kategorienschema entwickelt und angewendet (Abschnitt 3.3.1;
Kempen & Biehler 2014). Auch wurde ein Kategoriensystem entwickelt, das die Bewertung
studentischer Beweiskonstruktionen zum generischen Beweis ermoglicht (Abschnitt 5.2.2.2).
SchlieRlich wurde auf der Grundlage dieser beiden Kategoriensysteme ein neues Kategoriensystem
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entwickelt, das die vergleichende differenzierte Bewertung formulierter Begriindungen und
konstruierter generischer und formaler Beweise ermdoglicht (Abschnitt 3.3.1). Erhobene Interrater-
Reliabilitdten bezeugen dabei die Giite dieses Forschungsinstruments (Abschnitt 5.4.2.3). Dieses
entwickelte Kategoriensystem wurde schlielllich im Rahmen der Effektivitatsstudie der
Lehrveranstaltung in Kapitel 7 eingesetzt.

8.1.3.3 Testinstrumente zu dem Bereich der Beweisbewertung und Beweisakzeptanz

Flr die Erfassung der Beweisbewertung der Studierenden wurden in Weiterentwicklung der Items
aus dem ,KLIMAGS“-Projekt (s. Blum et al. 2014) vier Begriindungsformen aus der Studie von Healy
und Hoyles (2000, S. 401) zu Multiple-Choice-ltems mit den Bewertungskategorien ,richtiger
Beweis"/, kein richtiger Beweis” umformuliert. Damit wurde es zundchst moglich, die studentische
Bewertung von bloRen Beispielbetrachtungen und formal dargestellten und falschen Begriindungen
zu erfassen. Im Vergleich der beiden inhaltlich gleichen Begriindungen konnte auch herausgearbeitet
werden, dass die Studierenden eine Begriindung mit Buchstabenvariablen statistisch signifikant
haufiger als richtigen Beweis bewerten als die gleiche Begriindung in narrativer Form (Abschnitt
7.2.4.2 und 7.3.2.1). Darlber hinaus wurde der Bereich der Beweisbewertung um den Bereich der
,Beweispraferenz” (in Bezug auf die Konstruktion und das Verstehen eines Beweises) erweitert, um
die studentischen Praferenzen in Bezug auf die vier Beweisformen der Lehrveranstaltung zu erfassen.

Fiir die Erfassung des Konstrukts der ,Beweisakzeptanz’ wurde aufbauend auf verschiedenen
Funktionen von Beweisen eine Skala konstruiert (Abschnitt 3.3.3). Diese Skala erreicht in der
Pilotierung wie auch im Rahmen der Effektivitdtsstudie der Lehrveranstaltung (Abschnitt 7.2.3 und
7.3.2) hohe Reliabilitdtswerte, was die Glte des Forschungsinstruments belegt.

8.1.3.4 Testinstrumente zu dem Bereich Einstellungen zum Beweisen

Im Kontext der Thematik ,Einstellungen zum Beweisen” wurden zunadchst Instrumente zur
Beschreibung der studentischen , Einstellungen zum Beweisen in der Schule” konstruiert. Die ltems
thematisieren die Relevanz, die die Studierenden dem Inhalt ,Beweisen’ je nach Schulform und
Schulstufe beimessen, die Bewertung ,gangiger’ Griinde, warum Beweise in der Schule eher eine
untergeordnete Rolle spielen sollten, und die Bewertung der Eignung generischer Beweise fiir die
Schulmathematik.

In Bezug auf die , Einstellungen zum Beweisen” der Studierenden wurden motivationale Aspekte zum
Beweisen durch verschiedene Items thematisiert, wodurch es moglich wurde, eine Skala zu dem
Konstrukt der ,Beweisaffinitdt” zu konstruieren. Diese Skala erreicht im Rahmen der
Effektivitatsstudie der Lehrveranstaltung ausreichend hohe Reliabilitditswerte (Abschnitt 7.3.3),
wobei allerdings Optimierungsmoglichkeiten auf ltemebene ausgemacht werden konnten.

8.1.3.5 Testinstrumente zur Erfassung des selbsteingeschatzten Lernzuwachses

Fiir die Beforschung der Lehrveranstaltung war es von Interesse zu erfahren, wie die Studierenden
selbst ihren Lernzuwachs durch die Lehrveranstaltung einschatzen. Im Kontext der Funktionen von
Beweisen und des Nutzens von Beispielbetrachtungen fiir den Beweisprozess wurde ein Frageformat
verwendet, in dem die Studierenden die verschiedenen Aussagen aus ihrer aktuellen Perspektive und
retrospektiv (,vor dem Besuch der Lehrveranstaltung”) bewerten sollten. Durch Differenzbildung
dieser Werte wurde es moglich, den Lernzuwachs der Studierenden beschreiben zu koénnen
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(Abschnitt 7.3.4). (Neben der Beschreibung des Lernzuwachses wird es bei diesem Frageformat
auBerdem moglich, die retrospektive Einschatzung der eigenen Kompetenz zu erheben. Auf diesen
Aspekt wurde allerdings bei der Auswertung der Ergebnisse nicht weiter eingegangen.)

Durch die gezielte Abfrage verschiedener Kompetenzaspekte zur Beweiskonstruktion wurde es
schlielllich moglich, eine Skala zur ,Selbstwirksamkeitserwartung zum Beweisen” zu konstruieren,
welche im Rahmen der Effektivitatsstudie statistischen Anspriichen an Reliabilitdt und korrigierte
Trennscharfen der Items genigte (Abschnitt 7.3.4).

8.2 Empirische Ergebnisse aus der Effektivitatsstudie zur letzten in dieser
Arbeit  betrachteten Durchfithrung der Lehrveranstaltung im
Wintersemester 2014/15

Mithilfe der im vorherigen Kapitel dargestellten Forschungsinstrumente wurde es im Rahmen dieser
Arbeit moglich, die Vorerfahrungen der Studierenden mit dem Beweisen aus ihrer Schulzeit zu
beschreiben (Abschnitt 7.2.3), ihre Eingangsvoraussetzungen zur Thematik ,Begriinden und
Beweisen’ zu erheben (Abschnitt 7.2.4 und 7.2.5) und die Anderungen diesbeziiglich zu erfassen, die
sich von der Ein- zur Ausgangsbefragung (bzw. zur Modulabschlussklausur) ergaben (Abschnitt 7.3
und 7.4). SchlieBlich wurde die Selbsteinschatzung der Studierenden bzgl. ihres Lernzuwachses durch
die Lehrveranstaltung erhoben (Abschnitt 7.3.4). Diese Ergebnisse sollen im Folgenden kurz
zusammenfassend dargestellt werden.

In Abschnitt 7.2.3 wurde die Forschungsfrage [2] (,Wie lassen sich die Vorerfahrungen der
Studierenden mit Beweisen aus ihrer Schulzeit beschreiben?“) beantwortet. Dabei konnte gezeigt
werden, dass die Studierenden nach eigenen Angaben quantitativ nur wenig Beweise in ihrer
Schulzeit kennengelernt haben: Fir den Zeitraum der Sekundarstufe 1 sind 62% der Studierenden
der Ansicht, insgesamt hochstens zwei Beweise kennengelernt zu haben, fir die Sekundarstufe 2
meinen dies 31%. 35% der Studierenden meinen, in der Sekundarstufe 2 drei bis fiinf Beweise,
weitere 22% meinen, vier bis zehn Beweise kennengelernt zu haben. Uberhaupt nie einen Beweis in
ihrer Schulzeit konstruiert zu haben, meinen 39% der Befragten, 74% sprechen von héchstens zwei
Beweisen. Bei den Nennungen, welche Sachverhalte in der Schule bewiesen wurden, waren der Satz
des Pythagoras mit 37 Nennungen, die PQ-Formel mit 14 Nennungen, Ableitungsregeln mit 13
Nennungen, der Satz des Thales mit acht Nennungen und die binomischen Formeln mit sechs
Nennungen die haufigsten Antworten. Dabei zeigt sich, dass das Beweisen in der Erinnerung der
Studierenden vor allem mit dem Bereich der Geometrie verbunden zu sein scheint. Auf der Basis
dieser Nennungen konnten Unterschiede bzgl. der fiir die Konstruktion eines Beweises zu
vollziehenden Aktivitdten in der Schule und der Hochschule beschrieben werden. SchlieBlich konnte
gezeigt werden, dass nur knapp die Halfte der Studierenden angab, dass ihnen die Begriindungsform
des formalen Beweises bereits aus der Schule bekannt war. Weitaus weniger Studierende gaben dies
in Bezug auf den generischen Beweis mit Zahlen (20,7%) den generischen Beweis mit Punktmustern
(14,2%) und den Beweis mit geometrischen Variablen an (5,7%).

Die Eingangsvoraussetzungen der Studierenden zum Beweisen wurden in Abschnitt 7.2.4 und 7.2.5
beschrieben. Dort wurden die folgenden Forschungsfragen [3] (,Wie lassen sich die Kompetenzen
der Studierenden im Kontext der Thematik des ,Begriindens und Beweisens’ zu Beginn der
Lehrveranstaltung beschreiben?”) und [4] (,,Wie lassen sich die Einstellungen der Studierenden zur
Thematik des Beweisens und zur Mathematik zu Beginn der Lehrveranstaltung beschreiben?)

beantwortet.
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Bzgl. der Kompetenzaspekte zum Beweisen konnte gezeigt werden, dass nur 19,5% der Studierenden
einen Sachverhalt der elementaren Arithmetik derart zu begriinden vermochten, dass dies als
,vollstandig’ gewertet werden konnte. Wahrend 8,7% der Studierenden reine empirisch-induktive
Argumente formulierten, um die Behauptung zu verifizieren, dass die Summe zweier ungerader
Zahlen immer gerade ist, beantworteten 14,1% der Studierenden die Frage durch Nennung oder
Paraphrase des Satzes, dass die Summe zweier ungerader Zahlen immer gerade sei. Der geringe
Anteil von Begriindungen mit fachlich korrekten Argumenten fiihrte dabei zu der Interpretation, dass
die Studierenden mit solcherlei Begriindungsaufgaben nicht vertraut zu sein scheinen. Auch
verdeutlicht der Anteil von 28,1% der Bearbeitungen, in denen Buchstabenvariablen verwendet
wurden (bei den Erstsemesterstudierenden 6,8%), dass nur wenige Studierende (iberhaupt von
Buchstabenvariablen Gebrauch machen. Im Kontext der Bewertung von Beweisen konnte gezeigt
werden, dass die Studierenden eine korrekte Begriindung mithilfe von Buchstabenvariablen mit
89,3% statistisch hoch signifikant haufiger als ,richtigen Beweis’ bewerten als die gleiche Begriindung
in einer narrativen Formulierung. Darlber hinaus bewerteten 18,8% der Studierenden eine rein
empirisch-induktive Begriindung als richtigen Beweis, wobei der Anteil der Erstsemesterstudierenden
mit 33,8% statistisch hoch signifikant iber dem der Hoheren Semester mit nur 5,1% liegt. Etwa ein
Drittel der Studienanfanger betrachtet somit einzelne Beispielliberpriifungen als korrekte Beweise.
Im Rahmen der Erfassung der Beweisakzeptanz wurde deutlich, dass die Mehrheit der Studierenden
zu Beginn der Lehrveranstaltung generische Beweise als bloBe singuldre Beispielliberpriifungen
fehlinterpretiert und nicht den Aspekt der Allgemeingiltigkeit der Begriindung wahrnimmt. Der
formale Beweis wird dagegen bereits zu Beginn der Lehrveranstaltung von den Studierenden (nahezu
vollstandig) ,akzeptiert’.

Im Bereich der Einstellungen zum Beweisen in der Schule wurde deutlich, dass die Studierenden die
Thematik des Beweisens eher mit dem Mathematikunterricht in der Sekundarstufe 2 als dem in der
Sekundarstufe 1 und eher mit dem Gymnasium als mit der Real- oder Hauptschule verbinden. Die
Thematisierung von Beweisen in der Grundschule wird insgesamt abgelehnt. Dabei stimmen die
Studierenden den Aussagen (eher) zu, dass Beweise im Unterricht eine eher untergeordnete Rolle
spielen sollten, da es wichtiger sei, fachliche Inhalte zu vermitteln, Rechenaufgaben richtig I6sen zu
kéonnen und Anwendungen der Mathematik im Alltag zu thematisieren. In Bezug auf die
Einstellungen der Studierenden zum Beweisen wurde deutlich, dass sie diesem Lerninhalt gegentiber
nicht negativ eingestellt sind und dass sie generell eine sehr hohe Motivation angeben, die
mathematische Beweisaktivitat zu erlernen.

Die Veranderungen der Kenntnisse bei den Studierenden durch die Lehrveranstaltung werden in den
Abschnitten 7.3.2, 7.3.3 und 7.4.3 durch die Beantwortung der Forschungsfrage [5] (,Inwiefern
verandern sich die Kompetenzen der Studierenden im Kontext der Thematik ,Begriinden und
Beweisen’ von der Ein- zur Ausgangsbefragung?“) und der Forschungsfrage [6] (, Inwiefern verdndern
sich die Einstellungen der Studierenden zur Thematik des Beweisens und zur Mathematik von der
Ein- zur Ausgangsbefragung bzw. welche neuen Ansichten der Studierenden zum (generischen und
formalen Beweisen) kdnnen in der Ausgangsbefragung herausgearbeitet werden?“) beschrieben.
Dabei zeigte sich, dass sich die verschiedenen Teilkompetenzen der Studierenden zum Beweisen
(Beweiskonstruktion, Beweisbewertung und Beweisakzeptanz) durch die Lehrveranstaltung
verbessern (vgl. auch Abschnitt 7.5.4). In der Modulabschlussklausur gelingt 52,3% der Studierenden
die vollstandige Begriindung der Behauptung liber die Summe zweier ungerader Zahlen und im
Bereich der Beweisbewertung geht die Fehlbewertung der empirisch-induktiven Begriindung
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statistisch hoch signifikant von 17,6% auf 5,4% zuriick. Bzgl. der Einstellungen der Studierenden ist
dabei sogar eine Hinwendung zum Beweisen zu verzeichnen: Der Mittelwert der Skala
,Beweisaffinitat” steigt von der Ein- zur Ausgangsbefragung statistisch hoch signifikant bei kleiner
Effektstarke an (t-Test, p=0,018 mit Cohens d=0,3). Dariber hinaus lieB sich auch eine Zunahme in
Bezug auf die Einstellung zur Mathematik ,,Mathematik als Prozess” feststellen: Die Studierenden
bewerten in der Ausgangsbefragung den Prozesscharakter der Mathematik statistisch signifikant
hoher als in der Eingangsbefragung.

Die Selbsteinschatzung des Lernzuwachses der Studierenden durch die Lehrveranstaltung wurde in
Abschnitt 7.3.4 anhand der Forschungsfrage [7] (,Wie schatzen die Studierenden selbst ihren
Lernzuwachs in Bezug auf das Beweisen durch die Lehrveranstaltung ein?“) beantwortet. Hier zeigte
sich, dass die Studierenden der Meinung sind, in Bezug auf die verschiedenen Funktionen von
Beweisen und bzgl. des Nutzens von Beispielbetrachtungen fiir den Beweisprozess einen (groRen)
Lernzuwachs durch die Lehrveranstaltung gehabt zu haben. Diesen Lernzuwachs empfinden die
Studierenden besonders im Hinblick auf die verschiedenen fachlichen Aspekte zum Beweisen.
Interessant ist dabei auch das Ergebnis, dass sich die Einstellungen der Studierenden zur Nutzung von
Buchstabenvariablen und zum formalen Beweis nach eigenen Angaben durch die Lehrveranstaltung
positiv entwickelt haben. SchlieRlich konnte durch die Skala ,Selbstwirksamkeitserwartung zum
Beweisen” gezeigt werden, dass die Lehrveranstaltung dazu beigetragen hat, dass sich bei den
Studierenden eine positive Selbstwirksamkeitserwartung zum Beweisen ausgebildet hat.

8.3 Weitere Beitrige der Arbeit iiber die Entwicklung einer lokalen

Instruktionstheorie hinaus

Mit den oben formulierten Designprinzipien zur Lehrveranstaltung wurde die die Forschungsarbeit
Uberspannende Forschungsfrage 1 beantwortet und ein Beitrag fir die Entwicklung einer lokalen
Instruktionstheorie fiir die Domane ,Begriinden und Beweisen’ fiir Studienanfangerinnen und
-anfanger des Lehramts (fir Haupt-, Real- und Gesamtschule) im Spannungsfeld der doppelten
Diskontinuitat geleistet, wodurch bereits der Aspekt der Theoriebildung tangiert wurde. Neben
diesem Beitrag fiir die Entwicklung einer lokalen Instruktionstheorie wurden im Kontext der Arbeit
weitere Beitrage fur die mathematikdidaktische Forschung zur Thematik des Beweisens geleistet. An
dieser Stelle sollen fiinf Aspekte herausgestellt werden, die besonders wertvoll fir die aktuelle
internationale Diskussion zur Thematik erscheinen: die Verbindung der Theorien des
diagrammatischen SchlieRens und der sozio-mathematischen Normen (Abschnitt 8.3.1), die
Betrachtung generischer Beweise als vollglltige mathematische Beweise (Abschnitt 8.3.2), die
Enkulturationsfunktion von Beweisen (Abschnitt 8.3.3), die Wahrnehmung bzw. Akzeptanz von
Beweisen (Abschnitt 8.3.4) und eine Diskussion des Konzepts der proofs that explain (Abschnitt
8.3.5).

8.3.1 Die Verbindung der Theorien ,Diagrammatisches Schlief3en“ und ,Sozio-
mathematische Normen*

Ein Beitrag dieser Arbeit besteht in der konstruktiven Verbindung der Theorien des
,Diagrammatischen Schliefens” und der ,Sozio-mathematischen Normen“. Die Verbindung dieser
beiden Theorien hat sich u.a. im Rahmen der erfolgten retrospektiven Analysen der verschiedenen
Durchfiihrungen der Lehrveranstaltung aus verschiedenen Griinden als wertvoll erwiesen. Neben
den oben beschriebenen Gelingensbedingungen, die mithilfe dieser Perspektiven abstrahiert werden
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konnten, sollen im Folgenden weitere Aspekte benannt werden, die mithilfe dieser theoretischen

Sichtweisen und ihrer Verbindung herausgearbeitet werden konnten.

(1)

(2)

(3)

Die semiotische Perspektive ermoglicht lber das Konstrukt der ,Diagrammsysteme’ eine
vergleichende Diskussion der in dieser Arbeit thematisierten unterschiedlichen
Beweisformen. Die Erorterung der Beweiskonzepte richtete sich dabei nicht nach den Polen
formal/anschaulich 0.4., sondern thematisiert die Bedeutung des Diagrammsystems fiir den
Beweis- und damit den Erkenntnisprozess. Die damit einhergehende Fokusverschiebung von
den Zeichen auf die Bedeutung der vorgenommenen Transformationen birgt ein mogliches
Legitimationsargument flr nicht-formal dargestellte und beispielgebundene Beweisformen
(Abschnitt 8.3.2).

Die Perspektive des diagrammatischen Schliefens auf den Beweisprozess (nach Boero
(1999): Entwicklung einer Vermutung, Formulierung einer Behauptung, Exploration des
spezifischen Gehalts und des Umfelds der These, Auswahl von Argumenten und deren
Aneinanderfligen zu einer Argumentationskette, Aufschreiben des Beweises gemaR
mathematischer Standards und die Annaherung an einen formalen Beweis, vgl. Abschnitt
2.1.1) machte diesen Uber die Aspekte ,Diagrammkonstruktion”, ,Transformation”,
,Beobachten/Festhalten der Resultate” und ,Vergewisserung der allgemeinen Giiltigkeit der
Ergebnisse” gleichsam handhabbar und operationalisierbar. Diese Sichtweise war
grundlegend fiir die Konstruktion der Kategoriensysteme, die Interpretation der Ergebnisse
und somit flr die Weiterentwicklung der Lehrveranstaltung.

Die Tatsache, dass die Akzeptanz von Beweisen innerhalb einer bestimmten Kommunitat vor
dem Hintergrund gewisser (nicht immer explizierter) Normen stattfindet (Abschnitt 2.1.1),
macht das Problem offenkundig, dass mit dem diagrammatischen SchlieBen zwar ein Teil des
(mathematischen) Erkenntnisprozesses beschrieben werden kann, nicht aber der Prozess der
Beweiskonstruktion im Spannungsfeld geltender Normen. Diese Licke in der
Theorieanbindung des diagrammatischen SchlieRens konnte durch den Einbezug der Theorie
der sozio-mathematischen Normen geschlossen werden. So betrachtet, sind es jene sozio-
mathematischen Normen, die festlegen, wie das diagrammatische SchlieBen gerahmt sein
muss, um als ,Beweis’ in einer Kommunitat zu gelten, und wann diagrammatisches SchlieBen
als Beweisen sein ,Ende’ gefunden hat, i.e. welche Endkonstellationen von Diagrammen
gefordert werden bzw. durch welche sprachlichen Mittel diese diagrammatischen Resultate
weiter erldutert werden miussen. Die Theorien ,Diagrammatisches Schliefen” und ,Sozio-
mathematische Normen“ bilden somit einen (theoretischen) Gestaltungsrahmen, in dem
Beweiskonstruktionen betrachtet, beschrieben und analysiert werden kénnen (vgl.
Abbildung 92).
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Perspektive des Perspektive der sozio-

diagrammatischen SchlieRens mathematischen Normen:
Wie funktioniert das Beweisen?“
Konstruktion von Diagrammen Welche Diagrammsysteme sind
zugelassen?

Ausfiihren von Experimenten bzw.
Transformationen mit den
Diagrammen ’ Beweiskonstruktion l
Beobachten und Festhalten der
Resultate des Experimentierens

Welche Transformationsregeln sind
erlaubt bzw. missen expliziert
werden?

Welches ,Endergebnis’ muss im

. . Beweis erreicht werden?
Vergewisserung der allgemeinen

Gilltigkeit der Ergebnisse Wie wird (implizit oder explizit) die

Allgemeingiiltigkeit der
Begriindung sichergestellt?

Abbildung 92: Beweiskonstruktionen im Rahmen diagrammatischen SchlieBens und sozio-
mathematischer Normen

8.3.2 Die Betrachtung generischer Beweise als vollgiiltige mathematische Beweise

Die oben aufgezeigte (semiotische) Sicht auf das Beweisen als regelkonforme und zielgeleitete
Transformation von Diagrammen entsprechend gewisser (sozio-mathematischer) Normen vermag
die Diskussion um die Glltigkeit generischer Beweise als vollgliltige mathematische Beweise zu
erweitern. Wie Reid und Vallejo (2016) darlegen, herrscht bis heute keine Einigkeit Gber die
Gultigkeit generischer Beweise als ,wirkliche mathematische Beweise’. So formulieren Leron und
Zaslavsky (2013, S. 27): ,,The main weakness of a generic proof is, obviously, that it does not really
prove the theorem. The “fussiness” of the full, formal, deductive proof is necessary to ensure that

> |m Folgenden wird dargelegt, warum

the theorem’s conclusion infallibly follows from its premises”
in dieser Arbeit die Ansicht vertreten wird, dass generische Beweise als vollgiiltige mathematische

Beweise betrachtet werden kénnen.

Betrachtet man den Beweisprozess als regelgeleitetes Agieren mit Diagrammen in einem
Diagrammsystem, so muss festgestellt werden, dass die Auswahl eines Diagrammsystem zwar
Auswirkungen auf die moglichen Transformationen und die potentiell zu erreichenden Diagramme
hat, das Diagrammsystem als solches aber nicht lber die Glite des Erkenntnisprozesses entscheidet,
da die Allgemeingiltigkeit der Verifikation durch die allgemeingtltigen Transformationen der
Diagramme nach den Regeln eines Diagrammsystem konstituiert wird (Abschnitt 2.5.3 und 2.5.4).
Aus dieser semiotischen Perspektive gilt es daher festzuhalten, dass der Verzicht auf die
fachmathematische Symbolsprache nicht als Argument gelten kann, warum generische Beweise
(etwa mit Zahlen oder Punktmusterdarstellungen) nicht als giiltige Beweise gelten kénnen.

Vor dem Hintergrund mathematischer Normen stellt sich die Frage, wie in generischen Beweisen ein
verlangter Grad an ,Vollstandigkeit’ der Argumentation erreicht werden kann, wie es auch im Zitat
von Leron und Zaslavsky oben gefordert wird. Dazu sei zundchst angemerkt, dass auch in den in der
Praxis liblichen ,strengen Beweisen’ keine Vollstandigkeit erreicht wird (Abschnitt 2.1.2). Akzeptiert
man die ,Unvollstéandigkeit’ giltiger mathematischer Beweise, so kann die Sichtweise der parallelen
Struktur in mathematischen Begriindungen von Aberdein (2013) herangezogen werden, um die

% Leider filhren die Autoren nicht aus, was sie genau mit ,obviously” meinen, bzw. warum generische Beweise
nicht wirklich das jeweilige Theorem beweisen. Mit ,,fussiness” beziehen sich die Autoren auf die liickenlose
Vollstandigkeit der Argumentationsketten in mathematischen Beweisen (vgl. hierzu die Ausfiihrungen in Reid
und Vallejo 2016).
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Diskussion handhabbar zu machen (vgl. Biehler und Kempen 2016, S. 174ff.; Reid und Vallejo 2016. S.
2). Nach Aberdein (2013, S. 362ff.) kann ein Beweisprodukt als das Zusammenkommen zweier
Ebenen betrachtet werden: Hinter dem Beweisprodukt liegt eine inferentielle Struktur verborgen, in
der das Behauptete llickenlos und vollstandig im Sinne eines formalen Beweises verifiziert wird. Das
vorliegende Beweisprodukt zeigt dabei nur eine argumentative Struktur, welche die Leserin bzw. den
Leser davon Uberzeugen soll, dass eine inferentielle Struktur fir den Beweis (theoretisch) existiert.
Fiir diese Art von Uberzeugung muss der Betrachtende im vorliegenden Beweisprodukt die Momente
erkennen, die fiir ihn die Existenz einer inferentiellen Struktur belegen. Die ,Unvollstdndigkeit’ von
generischen Beweisprodukten stellt sich demnach nicht als Problem fiir die vorliegende Diskussion
dar, da das Auslassen gewisser Argumente nicht die Gewissheit (iber die theoretische Existenz einer
inferentiellen  Struktur verhindern muss. Die notwendige Akzeptanz des vorliegenden
Beweisprodukts als ausreichende argumentative Struktur betont die Bedeutung des subjektiven
Moments des Betrachters: Da auch in sogenannten formalen Beweisen der Mathematik keine
Vollstandigkeit bzw. Lickenlosigkeit erreicht wird (vgl. Abschnitt 2.1.2), stellt sich fir jeden
Betrachtenden eines Beweises die Frage, ob ihm das vorliegende Produkt ausreicht, um daraus auf
die Existenz einer inferentiellen Struktur schlieRen kénnen. Welche Art der Verschriftlichung und
welchen Grad an Explizierung jemand als ausreichend betrachtet, ist dabei stark von der jeweiligen
Person abhangig. Vor diesem Hintergrund miusste die gewichtige Frage ,,Wann ist ein Beweis ein
Beweis?“ eigentlich lauten: ,Wann ist ein Beweis ein Beweis fir den Betrachter?”.

Reid und Vallejo (2016, S. 2) betonen, dass bei der Diskussion um generische Beweise die Sichtweise
des Beweiskonstrukteurs und die des Beweisbetrachtenden unterschieden werden missen. Denn
wie kann der Betrachtende sich davon Uberzeugen, welches generische Moment in konkreten
Beispielen verdeutlicht werden soll? Dieses Bewusstsein ist dabei fiir die Entscheidung zentral, ob die
Begriindung eine bloBe Beispielliberpriifung oder eine allgemeingiiltige Verifikation mithilfe eines
beispielibergreifenden generischen Moments darstellt. Um dieser Problematik entgegenzuwirken,
wurde im Rahmen der vorliegenden Arbeit das Konzept generischer Beweise entwickelt, in der das
generische Moment, das in konkreten Beispielen dargestellt wird, im Hinblick auf seine
Ubertragbarkeit bzw. Allgemeingiiltigkeit expliziert werden muss. Mit dieser Konzeption generischer
Beweise wird die von Reid und Vallejo (2016) dargestellte mogliche Diskrepanz zwischen
Beweiskonstrukteur und Betrachtendem abgeschwacht: Durch die Verbalisierung der
beispielibergreifenden Begriindung und ihrer Allgemeingiltigkeit werden direkt die Argumente
benannt, die —im Sinne von Aberdein (2013) — die Existenz der inferentiellen Struktur belegen sollen.

Vor diesem Hintergrund kann bereits festgehalten werden, dass korrekte generische Beweise als
intellektuell ehrliche Form der mathematischen Beweisaktivitat verstanden werden koénnen,
wodurch gezeigt ist, dass mit der Integration dieser Beweisform in die Lehrveranstaltung ,Einflihrung
in die Kultur der Mathematik” auch das Leitprinzip der ,intellektuellen Ehrlichkeit’ eingehalten
worden ist (vgl. Abschnitt 1.3).

Als letztes Argument soll hier auf die Bedeutung der sozialen Akzeptanz von Beweisen eingegangen
werden. Wie in Abschnitt 2.1.1 beschrieben wurde, ist es der Prozess der sozialen Akzeptanz eines
Beweises innerhalb der mathematischen Community, der einen Beweis zu einem Beweis macht.
Daher konnte formuliert werden, dass ein generischer Beweis nicht als Beweis akzeptiert wird, da er
keine Akzeptanz von der fachmathematischen Community erfahrt. Dabei erscheint allerdings bereits
die dichotome Unterscheidung ,Beweis‘/,kein Beweis’ problematisch, wenn man bedenkt, dass keine

allgemein akzeptierten Kriterien dafiir existieren, wann ein Beweis ein Beweis ist (vgl. Abschnitt
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2.1.1). Demgegeniiber benennt Weber (2014, S. 357ff.) verschiedene Kriterien, die die Akzeptanz von
Beweisen als solche beginstigen (also keinesfalls garantieren), wodurch die Bewertung von
Beweisakzeptanz zu einem Kontinuum von moglichen Auspragungen zwischen Ablehnung und
Zustimmung wird. Und auch Heinze (2010) stellt heraus, welche unterschiedlichen Kriterien
Mathematiker bei der Bewertung von Beweisen anlegen. Aus diesem Grund scheint eine generelle
Ablehnung der Giiltigkeit generischer Beweise als wirkliche Beweise aus einer rein ,sozialen
Perspektive’ als unangebracht. Zwar kdénnen in unterschiedlichen mathematischen Kommunitaten
unterschiedliche Normen in Bezug auf das Beweisen gelten, die sich wiederum andern oder auch
einem historischen Wandel unterliegen kénnen; dieses Phanomen rechtfertigt allerdings nicht eine
generelle Verwerfung des Beweiskonzepts. So betont auch Stylianides (2007, S. 15):

[...] an argument that could count as proof in a classroom community should be accepted as proof by the
community — and, thus, it should be convincing to the students — on the basis of socially accepted rules of
discourse that are compatible with those of wider society.

Insgesamt betrachtet, erscheint es somit angebracht, dass der mathematische Beweisbegriff auch fir
generische Beweise gedffnet wird bzw. getffnet bleibt. Der generische Beweis erhilt seine Glltigkeit
durch die Allgemeingiiltigkeit der vorgenommenen Transformationen in einem Diagrammsystem; in
ihm werden Argumente verwendet, die dabei den Verweis auf eine inferentielle Beweisstruktur zu
stiften vermoégen, und durch die Akzeptanz dieses Verweises durch den Betrachter wird schlieflich
seine Glltigkeit als Beweis konstituiert.

8.3.3 Die Enkulturationsfunktion von Beweisens8é

Eine theoretische Grundannahme dieser Arbeit bestand darin, dass die Bedeutungskonstruktion zum
Beweisbegriff und die Vermittlung damit einhergehender Normen in einem (mindestens impliziten)
Aushandlungsprozess aller Beteiligten im Unterrichtsgeschehen erfolgen. Vor diesem theoretischen
Hintergrund sozio-mathematischer Normen wurde deutlich, dass das Erlernen der Beweisaktivitat
selbst als Enkulturationsprozess verstanden werden kann (vgl. Abschnitt 2.6.2). Der namensgebende
Leitgedanke der hier thematisierten Lehrveranstaltung ist die ,Einflihrung in die Kultur der
Mathematik“. Diese Einflihrung in eine Kultur ist dabei selbst als Enkulturation zu bezeichnen, da das
Individuum im Laufe eines Prozesses Teil dieser Kultur wird. Die Ubernahme der diese Kultur
konstituierenden Normen erfolgte dabei vor allem im Kontext des Erlernen der Beweisaktivitat,
wodurch eine sozio-mathematische Funktion des Beweisens offenkundig wird: die
Enkulturationsfunktion von Beweisen.

Das Beweisen findet im Rahmen von (nicht immer explizierten) Normen einer Kommunitat statt.
Unterschiede bzgl. dieser Normen resultieren dabei daher, dass diese Kommunitdaten jeweils
verschiedene Kulturen der Mathematik auspragen. Zwischen Kommunitdten koénnen teilweise
unterschiedliche Normen in Bezug auf das Mathematiktreiben herrschen und auf der Grundlage
dieser Normen werden u.a. auch die dort konstruierten bzw. publizierten Beweise beurteilt. Wer das
Beweisen erlernt, lernt dabei, im Rahmen der an ihn herangetragenen Normen zu agieren, welche
wiederum als Ausschnitte aus einer weiter gefassten Kultur der Mathematik verstanden werden
mussen. Somit findet durch das Erlernen der Beweisaktivitit im Rahmen geltender Normen

¥ Dieser Abschnitt wurde malgeblich durch die Kommunikation und Diskussion des Autors mit E. Miller-Hill
beeinflusst. Die hier aufgezeigte Thematik wird in Muller-Hill und Kempen (in Vorbereitung) ausgefiihrt und in
weitere (theoretische) Zusammenhange eingeordnet.
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gleichsam eine Enkulturation des Lernenden in die ihn umgebende Kultur der Mathematik statt. Das
Beweisen erhdlt somit eine Enkulturationsfunktion. Der Enkulturationsbegriff soll dabei
verdeutlichen, dass dieses Hereinwachsen in eine Kultur als Teil eines Sozialisationsprozesses
verstanden werden muss und somit Aspekte beinhaltet, die Gber (intentionale) Erziehung im Sinne
einer Akkulturation hinausgeht®’. Hierbei kommt wiederum der Aspekt der sozio-mathematischen
Normen zum Tragen, da Normen nicht blo vermittelt bzw. ibernommen, sondern im Miteinander
ausgehandelt werden.

Die hier herausgestellte Enkulturationsfunktion von Beweisen lasst sich auch in weiteren Bereichen
der Mathematikdidaktik ausmachen. Im Folgenden sollen zwei solcher Bezlige dargestellt werden,
um diese sozio-mathematische Sicht auf das Beweisen auch theoretisch exemplarisch zu vernetzen.

Der Aspekt der Enkulturation durch Beweise, wie er in Bezug auf die Theorie sozio-mathematischer
Normen von Yackel und Cobb (1996) oben dargestellt wurde, wird auch in der Arbeit von Hemmi
(2006) deutlich. Die Autorin untersucht den Vorgang, wie Lernende durch das kulturelle Artefakt des
Beweisens zu einem Teil der mathematischen Community werden. Auch in diesem
Entwicklungsprozess der Studierenden wird der mathematische Beweis, verbunden mit den
entsprechend geltenden Regeln fir seine Konstruktion, Notation etc., zu einem zentralen Medium
der Enkulturation. Miiller-Hill (2013) Ubertragt das Konzept der ,meta-discursive rules” von Sfard
(2001 und 2002) auf die Thematik des Beweisens. Versteht man das Beweisen als einen Akt der
Kommunikation, so verweisen die ,meta-discursive rules” auf die mit dem Beweisen (implizit)
verbundenen Normen: ,In concert with meta-discursive rules, people undertake actions that count
as appropriate in a given context and refrain from behaviours that would look out of place” (Sfard
2002, S. 30). Auch beim Beweisen missen Aktivitaten vollzogen bzw. Regeln beachtet werden, die in
diesem Kontext (bzw. der rahmenden Kultur) von den beteiligten Personen als angemessen
betrachtet werden (Mdller-Hill 2013, S. 192). Beispiele hierfiir sind etwa das Auslassen von
,einfachen’ Rechenschritten bzw. Argumenten oder Standards fir die Verschriftlichung von
Beweisen. So wird auch unter dieser theoretischen Perspektive das ,Hereinwachsen’ in die
entsprechende Kultur der Mathematik durch das Erlernen der dabei geltenden kulturellen Anspriiche
bzw. angesetzten Normen an ,das Beweisen’ deutlich; das Erlernen der Beweisaktivitdt scheint
unmittelbar mit dem Prozess der Enkulturation verbunden zu sein.

SchlieRlich sollen im Folgenden noch drei spezifische Aspekte aufgezeigt werden, um die
(didaktische) Bedeutung der Enkulturationsfunktion von Beweisen hervorzuheben: (1) das Erlernen
der Beweisaktivitat als Akkulturation in eine Kultur der Mathematik, (2) das Erlernen der
Beweisaktivitdt als Konstruktion einer lokalen Kultur der Mathematik im Lehr-/Lernkontext und (3)
das Herauslesen einer Kultur an Beweisprodukten.

(1) Beweisen als Akkulturation in eine Kultur der Mathematik

Wer das Beweisen unterrichtet, vermittelt gleichsam Normen fiir deren Konstruktion und Akzeptanz.
Diese Vermittlung hat einen intentionalen Charakter und muss im Sinne einer Erziehung als
Akkulturation in eine bestimmte Kultur der Mathematik verstanden werden: Die Lernenden sollen
derart ,erzogen’ werden, dass sie zunachst den Anspriichen im Studium gerecht werden und spater

¥ Unter Akkulturation wird an dieser Stelle das bewusste bzw. gesteuerte Hineinwachsen einer Person in eine

Kultur durch ,Erziehung’ verstanden. Der Begriff der Enkulturation geht darlber hinaus: hierunter werden die

intentionalen Beeinflussungen durch Erziehung und die Summe aller nicht-intentionalen Einfllisse gefasst.
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als Mathematiker oder als Reprasentanten der mathematischen Community (im Falle von
Lehramtsstudierenden) in der jeweiligen (Fach-) Kultur entsprechend geltenden Normen agieren
kénnen. Fir eine gelingende Akkulturation ist es entscheidend, dass Lehrenden bewusst ist, in
welche Kultur die Lernenden wie eingefiihrt werden sollen, bzw. welche Normen diese Kultur
konstituieren. Hieraus leiten sich in einem gewissen MaR auch die Normen ab, die im Kontext des
Erlernens der Beweisaktivitat angelegt und somit vermittelt werden mussen.

(2) Beweisen als Konstruktion einer lokalen Kultur der Mathematik

Wie bereits angemerkt, werden Normen weder unmittelbar vermittelt noch unverandert
Ubernommen. Wenn im unterrichtlichen Geschehen entsprechende Normen ausgehandelt werden,
dann bedeutet dies weiter, dass durch diese Normen in der jeweiligen Lerngruppe gleichsam
individuelle ,lokale’ Kulturen der Mathematik konstruiert werden, innerhalb derer die Lernenden
agieren kénnen. (Man bedenke hierbei etwa verschiedene mathematische Lehrveranstaltungen an
der Universitat flir verschiedene Adressatengruppen wie Fachmathematiker, Lehramtsstudierende,
Ingenieure, ...) Somit bildet sich innerhalb einer Lerngruppe eine eigene lokale Kultur der Mathematik
heraus, die in einem gewissen Sinne ein Abbild der ,globalen’ Kultur der Mathematik ist, die durch
die Kommunitdt der Fachmathematik konstituiert wird. Die Konstruktion einer lokalen Kultur ist
somit als Voraussetzung fir das Vollziehen der mathematischen Beweisaktivitdt zu betrachten. Es
stellt sich jedoch die noch unbeantwortete Frage, wie nah eine im Unterricht ausgebildete Kultur an
einer (globalen) mathematischen Kultur der Fachkommunitat sein muss bzw. soll.

(3) Das Herauslesen einer Kultur an Beweisprodukten

Das Lesen und Verstehen von Beweisen ist ein in der internationalen mathematikdidaktischen
Forschung ein vielbeachteter Forschungsgegenstand (siehe hierzu etwa Hodds et al. 2014; Inglis und
Alcock 2012; Mejia-Ramos et al. 2012; Selden und Selden 2017). Im Folgenden soll es um den
Teilaspekt beim Lesen von Beweisen gehen, der die Enkulturationsfunktion von Beweisen tangiert.

Beim Lesen eines Beweises macht der Betrachtende bewusst und unbewusst Erfahrungen Uber ,,das
Beweisen” im Rahmen einer Kultur der Mathematik. Diese Erfahrungen umfassen dabei etwa die
Notation von Beweisen, das Explizieren von Teilschritten oder das Verstindnis um die Rolle von
Beweisen. Fihren diese Erfahrungen beim Betrachter zu ausreichend koharenten
Schlussfolgerungen, so findet gleichsam Enkulturation statt. Das Verstandnis einer Kultur ergibt sich
dabei als Ergebnis kohdrenter Erfahrungen mit Beweisprodukten. Gelingt Lernenden diese
Konstruktion koharenter Erfahrungen nicht, so bleibt ihnen die Kultur der Mathematik verschlossen.
Das Medium des Beweises wird so betrachtet zu einem zentralen Aspekt des Erlernens der
Mathematik und des Eintretens in eine Kultur der Mathematik, die diese Prozesse im Sinne einer
Enkulturation ermdglichen wie auch verhindern kann.

Durch diese verschiedenen Facetten einer Enkulturationsfunktion von Beweisen wird deutlich, wie
wichtig diese Funktion flir das Erlernen der Beweisaktivitat ist. Je gezielter bzw. intendierter die
Enkulturation durch das Beweisen stattfindet, desto besser kann diese gelingen.

8.3.4 Wahrnehmung bzw. Akzeptanz von Beweisen

Ein zentraler Gegenstand dieser Forschungsarbeit ist die Erdrterung, Konzeptualisierung und
Operationalisierung von Beweiswahrnehmung und Beweisakzeptanz. In diesem Abschnitt werden die
entsprechenden Ergebnisse zusammenfassend dargestellt und deren Bedeutung herausgestellt.
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Funktionen von Beweisen und ein damit verbundenes Beweisbedirfnis sind haufiger Gegenstand
didaktischer Erorterungen zum Erlernen der Beweisaktivitit und werden als wichtige
Voraussetzungen fir die Herausbildung entsprechender Beweiskompetenzen beschrieben.
Offensichtlich muss aber fiir ein Verstandnis entsprechender Aspekte zum Beweis bzw. fiir deren
Herausbildung ein Beweis vom Betrachter ,verstanden’ werden. Im Rahmen der erfolgten Forschung
wurde sich diesem ,Verstehen’ von Beweisen zunachst mit der Beschreibung der Wahrnehmung von
Beweisen genahert (s. Abschnitt 5.4.2.2). Hierbei wurde deutlich, dass bei einer Wahrnehmung von
Beweisen zwischen einer psychologischen Ebene und einer logischen Ebene unterschieden werden
kann und dass eine vom Beweiskonstrukteur intendierte Wahrnehmung von Beweisprodukten durch
den Betrachtenden nicht per se gegeben ist.

Im weiteren Verlauf der Forschungsarbeit wurde der Aspekt der Wahrnehmung von Beweisen
weiterentwickelt, woraus eine Erérterung von Beweisakzeptanz resultierte. Beweisakzeptanz wurde
in der vorliegenden Arbeit konzeptualisiert und operationalisiert als das Ausmal3, inwieweit bei
einem vorgelegten Beweis vom Betrachter die Funktionen ,Verifikation“, ,Uberzeugung” und
,Erklarung” empfunden werden und inwieweit der Beweis durch den Betrachter als ,korrekter und
glltiger Beweis” bewertet wird. Im Kontext der empirischen Studien zu der Lehrveranstaltung konnte
unter Nutzung der explorativen Faktoranalyse ein Konstrukt abstrahiert werden, welches dieser
Konzeptualisierung von Beweisakzeptanz entspricht. Die dabei konstruierten Skalen wiesen sehr
hohe Reliabilitdtswerte auf. Bei der Auswertung der Ergebnisse wurde schlieflich deutlich, wie
differenziert ,Beweisakzeptanz’ betrachtet werden muss, da verschiedene Teilaspekte einer
Beweisakzeptanz (Verifikation, Erklarungsqualitdit etc.) von Lernenden unterschiedlich
wahrgenommen werden.

Diese differenzierte Sichtweise auf das ,Verstandnis’ von Beweisen als ,Beweisakzeptanz’, das auf der
subjektiven Wahrnehmung verschiedener Aspekte bei Beweisen basiert, sollte in der (didaktischen)
Forschung zum Beweisen weiterverfolgt bzw. mitgedacht werden. Denn die Betonung verschiedener
Teilaspekte der Beweisaktivitat, wie etwa Funktionen von Beweisen oder die Herausbildung eines
Beweisbedirfnisses, konnen nur sinnstiftend und konstruktiv zu der Herausbildung einer
Beweiskompetenz beitragen, wenn die entsprechenden Aspekte von den Lernenden auch subjektiv
wahrgenommen und schlielRlich wertgeschatzt werden.

8.3.5 Proofs that explain - eine Diskussion3s

In der (didaktischen) Literatur wird haufig auf die Erklarungsfunktionen von Beweisen hingewiesen,
worauf die Betonung des Konzepts der ,proofs that explain‘ basiert. Die in dieser Arbeit gewonnenen
Erkenntnisse zu der Erklarungsqualitdt von Beweisen geben dazu Anlass, Aspekte dieses Konzepts
kritisch zu hinterfragen. Nach einer theoretischen Exaktifizierung des Erklarungsbegriffs wird das
Konzept ,erklarender Beweise’ mit empirischen Ergebnissen aus dieser Arbeit abgeglichen und
anhand theoretischer Betrachtungen zu Anschauungsmitteln, zur Semiotik und zur
Kognitionspsychologie kritisch  diskutiert. Ziel wird es dabei sein, Maoglichkeiten und
Gelingensbedingungen fir erklarende Beweise genauer zu beschreiben.

Neben der Verifikationsfunktion wird in der Literatur die Erklarungsfunktion von Beweisen als zweite
Hauptfunktion von Beweisen aufgefiihrt (Brunner 2013, S. 13 in Anlehnung an Hersh 1993). Diese
grindet sich u.a. auf der von Hanna vorgenommenen Unterscheidung von , proofs that prove” und

% Fir die Anregung zu einer vertieften Diskussion des Konzepts der , proofs that explain“ danke ich H. N.
Jahnke.
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,proofs that explain“ (1989), welche in der didaktischen Literatur groRe Beachtung gefunden hat. Im
Allgemeinen soll im unterrichtlichen Geschehen den ,proofs that explain“ der Vorzug gegeben
werden, da Lernende meist schon vor der Beweisfilhrung von der Giiltigkeit einer Behauptung
Uberzeugt seien (etwa Hanna 2000, S. 8 oder Hersh 1993, S. 396f.). Im Fokus des Beweisprozesses
steht dann die Frage nach dem ,Warum’. Dieses erklarende Moment von Beweisen beschreibt Hanna
(1989, S. 47) wie folgt: ,| will say that proof explains when it shows what ‘characteristic property’
entails the theorem it purports to prove”. Hanna (1995, S. 48) weist darauf hin, dass erkldarende
Beweise je nach Kontext (Klassenstufe, Vorbildung etc.) andere Gestalt annehmen kénnen.

In den folgenden Ausfiihrungen wird der Erklarungsbegriff in Abgrenzung zum philosophischen
Erklarungsbegriff in einer padagogischen Deutung betrachtet: Erklarung soll zu einem Verstehen
flhren, warum etwas wahr ist (vgl. Hanna 2016 und Miiller-Hill 2016 fir eine vertiefte Diskussion des
Erklarungsbegriffs).

In der Literatur werden verschiedene Beispiele firr erklirende Beweise angegeben, wobei haufig
geometrische  Reprdsentationen  mit  Punktmusterdarstellungen 0.3. als sogenannte
Anschauungsmittel verwendet werden (vgl. die Beispiele in Hanna und Jahnke 1996, S. 904f.; Reiss
und Hammer 2013, S. 50). Diese Beweise bzw. Beweisdarstellungen entsprechen Vorschlagen zu
schuladaquaten Beweisformen, die in der (didaktischen) Literatur zu finden sind (vgl. Lei und Blum
2006, S. 37f.; Leuders 2010, S. 53; Meyer und Prediger 2009). Hierbei werden symbolisch-
algebraische Darstellungen nicht ausgeschlossen, durch den Gebrauch alternativer Darstellungsmittel
soll allerdings haufig durch ein Mehr an ,Anschaulichkeit’ die Erklarungsqualitat von Beweisen
gesteigert werden.

In der in dieser Arbeit dargestellten Forschung sollten Studierende verschiedene Beweisformen
(generischer Beweis mit Zahlen, generischer Beweis mit Punktmustern, Punktmusterbeweis mit
geometrischen Variablen und formaler Beweis) in Form konkreter Beweisprodukte auch hinsichtlich
ihrer Erklarungsqualitat auf einer sechsstufigen Likert-Skala bewerten. Zu beiden Messzeitpunkten
(Ein- und Ausgangsbefragung der Lehrveranstaltung im Wintersemester 2014/15) wurde die
Erklarungsqualitat des formalen Beweises statistisch hoch signifikant am hochsten bewertet
(Abschnitt 7.2.4.3 und 7.3.2.2). Diese Ergebnisse zeugen davon, dass das Konzept von erklarenden
Beweisen nicht auf die Nutzung sogenannter ,Anschauungsmittel’ verkirzt werden darf. Im Gegenteil
sollte der Erklarungsqualitat der algebraischen Symbolsprache groRere Beachtung geschenkt werden.
Dieses Zwischenergebnis entspricht dabei auch den Forderungen in Jahnke (1984).

Es gilt somit zu hinterfragen, ob sogenannte ,erklarende Beweise’ wirklich ,erklarend’ sind, bzw.
wann sie als solche wahrgenommen werden? Eine entsprechende (kritische) Sichtweise auf
erklarende Beweise soll im Folgenden exemplarisch anhand von drei Perspektiven diskutiert werden:
eine mathematikdidaktische Sicht auf den Gebrauch von ,Anschauungsmitteln’ in Anlehnung an
Krauthausen (1989), Krauthausen und Scherer (2007), Sobbeke (2005) und Wittmann (1993), die
semiotische Sicht auf Erkenntnis durch Zeichengebrauch nach Peirce und eine
kognitionspsychologische Sicht auf das ,Verstehen’ in Anlehnung an Steiner (1996) und Stern (1992).
Der Fokus wird bei der kognitionspsychologischen Perspektive von der Erklarung auf das ,Verstehen”
verlagert, da Erklaren in diesem Kontext nicht als diskursive Praktik verstanden wird: In Beweisen, die
erklaren, warum etwas gilt, soll vom Betrachter etwas verstanden werden, was dann als ,Erklarung’
flir ein Phdanomen beschrieben werden kann. Diese Fokusverschiebung ermoglicht eine weiter
gefasste Erorterung der ,proofs that explain’.
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Die Diskussion um den Nutzen von Anschauungsmitteln kann dabei durch die Ausfiihrungen von
Krauthausen (1989), Krauthausen und Scherer (2007), S6bbeke (2005) und Wittmann (1993) sinnvoll
erweitert werden.

Mit dem Begriff der Anschauungsmittel soll an dieser Stelle bereits ein aktivistisches Lernverstandnis
des Sachverhalts ,erklarende Beweise’ eingenommen werden: Die Anschauungsmittel bzw.
,Darstellungen mathematischer Ideen [sind] in der Hand der Lernenden zu sehen, als Werkzeuge
ihres eigenen Mathematiktreibens, d.h. zur (Re-) Konstruktion mathematischen Verstehens”
(Krauthausen und Scherer 2007, S. 242), sie missen somit mehr als epistemologische Werkzeuge
statt als ,bloRRe’ didaktische Hilfsmittel betrachtet werden (Wittmann 1993). Wichtig ist hierbei, dass
sich aus dieser Perspektive der Wahrnehmende das Objekt in einem aktiven kognitiven Vorgang
aneignen muss, die bloBe Reprdsentation eines Sachverhalts bedingt noch kein ,Verstandnis’
desselben. Das Ziel dieses Wahrnehmungsprozesses ist der ,Aufbau von Vorstellungs- oder
Anschauungsbildern” (ebd., S. 244), auch, um mit den Darstellungen (mental) operieren zu kénnen.
Krauthausen (1989) fiihrt verschiedene Kernpunkte fir den Umgang mit Anschauungsmitteln auf,
von denen vier fiir die vorliegende Diskussion besonders bedeutsam erscheinen. Diese Aspekte
werden im Folgenden nach Krauthausen (1989, S. 40ff.) zusammenfassend paraphrasiert (vgl. hierzu
auch die Ausfihrungen in Sobbeke 2005, S. 21ff.).

(i) Von vorrangiger Bedeutung sind weniger die konkreten Représentanten als vielmehr ihre
mentalen (inneren) Vorstellungsbilder

Anschauungsmittel in Form konkreter Reprasentationen fiihren einen Betrachter nicht unmittelbar
zu den angestrebten Vorstellungsbildern und dem damit intendierten ,Verstdndnis’ des
entsprechenden Sachverhalts. Als Zwischenstufe missen die Ausbildung visueller Vorstellungsbilder
und ein mentales visuelles Operieren in der Anschauung mit den verwendeten Mitteln erfolgen (vgl.
Lorenz 1992, S. 2). Die Bewaltigung dieser Zwischenstufe braucht Zeit, die man Lernenden geben
muss. Die dabei auszubildenden Vorstellungsbilder sind nicht deckungsgleich mit dem
Wahrgenommenen, da bei jeder Person weitere (individuelle) Informationen in die
Vorstellungsbilder miteinflieBen. Eine Ahnlichkeit des Vorstellungsbildes mit dem Gegenstand ist
dann eine Folge der Reprdsentation, die etwa der Lehrende dem Lernenden anbietet. Ein
Wissensunterschied zwischen Lehrendem und Lernendem kann dabei dafiir ausschlaggebend sein,
dass dieser die Ahnlichkeit nicht erkennt (vgl. Igl 1995, S. 10). Hieraus folgert Krauthausen (1998, S.
41), ,dass die mentalen Prozesse zur Ausbildung von Vorstellungsbildern ebenso wie die mentalen
visuellen Operationen durch (geeignete!) Anschauungsmittel zwar (unterschiedlich gut) unterstitzt
werden kdnnen, sie lassen sich aber keinesfalls zwingend bestimmen oder garantieren”.

(ii) Mentale Vorstellungsbilder sind keine blofie Abbildung der Realitéit; sie entstehen durch
aktive Konstruktionsprozesse der Lernenden

Der Betrachter konstruiert selbst den Sinngehalt und damit die Tragweite des von ihm Betrachteten,
denn die unspezifischen Wahrnehmungsreize erlangen erst im Gehirn durch einen aktiven
Konstruktionsprozess eine Bedeutung. Somit kdnnen gleiche Objekte von verschiedenen Betrachtern
unterschiedlich ,verstanden’ werden.

(iii) Wahrnehmung ist abhdngig vom Individuum (idiosynkratisch) und bestimmt durch sein
Wissen von der Wirklichkeit und seinen individuellen Wahrnehmungserfahrungen
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Aus dem unter (ii) beschriebenen Aspekt folgt, dass Wahrnehmung immer abhéngig vom Individuum
und dabei von seinem Wissen und Vorerfahrungen bestimmt ist. Somit kbnnen Anschauungsmittel
bei verschiedenen Personen zu (mindestens teilweise) unterschiedlichen Vorstellungsbildern flihren

(iv) Veranschaulichungsmittel wirken nicht selbsterkldrend

Anschauungsmittel sind nicht selbsterklarend bzw. selbstevident, sie miissen im Gegenteil zunachst
als Lerngegenstande betrachtet werden:

,Veranschaulichungshilfen sind fir die Mehrzahl der Kinder keine aus sich heraus ,sprechenden Bilder”
sondern Unterrichtsstoff, wie jeder andere. Damit unterliegen auch diese Darstellungen den
GesetzmaRigkeiten jedes Unterrichtsstoffes: Je besser sie gelibt werden, desto hdufiger werden sie wieder
erkannt, und je langer die Ubung zuriickliegt, desto eher geraten sie in Vergessenheit.” (Schipper 1982, S.
109).

SchlieRlich muss auch der symbolische Charakter von Anschauungsmitteln mitbedacht werden. Wie
Sébbeke (2005, S. 21) in Anlehnung an Jahnke (1984) ausfiihrt, beschrankt sich der Bedeutungsgehalt
von Anschauungsmitteln nicht auf ihre direkt ablesbaren Eigenschaften: Da Anschauungsmittel ,,als
Mittel zur Verallgemeinerung dienen, bleibt das, was sie aussagen, implizit“ (Jahnke 1984, S. 41).
Sébbeke (2005, S. 21) spricht daher von der essentiellen ,,Symbolfunktion” von Anschauungsmitteln.
Durch diesen Symbolcharakter wird das Verstehen und Anwenden von Anschauungsmitteln zu einem
symbolischen Akt. In diesem Sinne sind Anschauungsmittel ,ikonisch verschlisselte Informationen
Uber abstrakte mathematische Begriffe und Operationen” (Schipper 1995, S. 13, zitiert aus S6bbeke
2005, S. 21). Die damit verbundenen mathematischen Sachverhalte missen von den Lernenden in
einem Akt der Interpretation selbst konstruiert werden.

Aus der Erkenntnis, dass Veranschaulichungsmittel zunachst als Unterrichtsgegenstand gelernt
werden missen, folgt, dass im Unterricht nur wenige Mittel eingesetzt und deren Chancen und
Moglichkeiten (im Sinne einer Reichhaltigkeit) ausgiebig erkundet und erlernt werden sollten.

Der Aspekt des Aneignens von Veranschaulichungsmitteln weist dabei deutliche Beziige zu dem
Konstrukt des notwendigen kollateralen Wissens fiir den Umgang mit einem Diagrammsystem von
Peirce auf (vgl. Abschnitt 2.5). Folgt man der oben formulierten Ansicht, dass Anschauungsmittel als
epistemologische Werkzeuge betrachtet und verwendet werden missen, so ist dies verbunden mit
einer Fokusverschiebung von Veranschaulichungen als bloBen Visualisierungen hin zu
Veranschaulichungen als Diagrammen (i.S. von Peirce, vgl. 2.5), mit denen im Kontext eines
Diagrammsystems agiert wird. Verschiedenen Diagrammen wird dabei, verstanden als
,Visualisierung’, haufig eine den Lernprozess begiinstigende bzw. unterstiitzende Rolle zugeschrieben
(Dorfler 2008, S. 1):

The term “visualization” generally is used in opposition to algebraic or (so-called) formal ways of notation.
Thus, visualization uses a rather geometric and graphic-like mode and it is predominantly two-dimensional
(i.e. non-linear and non-sequential). [...] Mostly, to visualizations is attributed a supportive role for
understanding, for insight and for intuitive thinking but also for invention and detection. This is based on
the assumption of a more direct accessibility and intelligibility of those visualizations: formal and algebraic
symbolic mathematics can purportedly be explained by visualizing it in a different graphic-geometric
mode. The faculties of vision for detecting patterns and regularities will serve this purpose.
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Aus der Perspektive der semiotischen Erkenntnistheorie von Peirce muss festgehalten werden, dass
uns Diagramme nur dann als Mittel der Erkenntnis zur Verfligung stehen, wenn wir mit ihnen soweit
vertraut sind, ,,dass wir gleichsam durch diese Zeichen hindurch direkt das von ihnen Reprasentierte
wahrnehmen” (Hoffmann 2005, S. 35). Fiir einen Erkenntnisakt ist dabei immer kollaterales Wissen
erforderlich, Wissen, das nicht im Fokus der Aufmerksamkeit steht, aber implizit verwendet wird und
somit vorausgesetzt werden muss. Im Kontext von Diagrammsystemen missen hierunter u.a. das
Wissen um die Konstruktion der Diagramme, die zugelassenen Transformationsregeln und die Lesart
der erhaltenen Diagramme gefasst werden. Solch ein Wissen um den Umgang mit Diagrammen muss
fiir das gewinnbringende Lesen entsprechender Darstellungen bereits als Vorwissen vorhanden sein.
Erst dann kénnen Darstellungen (und damit auch erklarende Beweise) gewinnbringend gelesen
werden.

Wie Dorfler (2006, S. 212) ausfiihrt, muss daher im Unterricht durch verschiedene Tatigkeiten eine
Praxis des Umgangs mit (den zu verwendenden) Diagrammen ausgebildet werden. Diese Tatigkeiten
umfassen u.a. das Einliben eines elementaren Umgangs (,Rechnungen‘) mit Diagrammen nach den
jeweiligen Regeln eines Diagrammsystems, das Experimentieren mit Diagrammen und das Erforschen
ihrer Eigenschaften, die Untersuchung der Beziehungen zwischen verschiedenen Typen von
Diagrammen, das Erfinden und Entwerfen von Diagrammen und das Anwenden von fertigen
Diagrammen zur Modellierung (ebd., S. 213ff.).

Zum Abschluss dieser Diskussion um ,erklarende Beweise’ soll das Themenfeld durch einen kurzen
Exkurs in die Kognitionspsychologie sinnstiftend erweitert werden. Da beim Lesen ,erklarender
Beweise’ das Erklaren nicht als eine diskursive Tatigkeit stattfindet, scheint der Vorgang des
Verstehens adaquat fiir die Beschreibung des Erkenntnisaktes des Betrachtenden zu sein (vgl. hierzu
den padagogischen Erklarungsbegriff von Hanna 2016 oben). So wird auch in der
Kognitionspsychologie die Notwendigkeit des ,Verstehens’ fiir den Wissenserwerb aus einer
Darstellung betont (etwa Steiner 1996, S. 195ff.). Verstehen kann dabei als ein Integrieren von neuen
Informationen in die Struktur des Vorwissens, als Konstruktion eines sogenannten mentalen Modells,
interpretiert werden:

Lernen [...] beginnt mit einem Aktivieren von Vorwissen, in das die neue Textinformation integriert
wird, wobei diese Integration zu einer Verdnderung des Vorwissens, d.h. zum Aufbau neuer
Wissensstrukturen oder Wissensreprasentationen fiihrt. (Ebd., S. 195)

Ein Lernender bendétigt Vorwissen, um Informationen verarbeiten zu kénnen. Zu diesem Vorwissen
gehoren u.a. sach- bzw. fachbezogene Kenntnisse und Wissen tber die Semantik und Syntax der
dabei verwendeten Reprasentation der Inhalte. Das Verstehen von neuen Informationen geschieht
dabei nicht rein additiv, sondern erfolgt lber Integration in das vorhandene Vorwissen. In einem
Prozess der Elaboration werden aufgrund des vorhandenen Vorwissens die neuen Informationen so
verarbeitet, dass sich diese darin einfliigen kdnnen, wodurch ein sogenanntes inneres mentales
Modell konstruiert wird (ebd. S. 208, nach Collins et al. 1980). Stern (1992) diskutiert das Verstehen
als Konstruktion eines mentalen Modells fiir die Mathematik und betont: , Wie dieses mentale
Modell aussieht, hangt vom verfligbaren mathematischen Vorwissen ab“ (ebd., S. 9). Da dieses
verfligbare mathematische Vorwissen individuell unterschiedlich ist, wird hierbei die Subjektivitat
und Relativitat des ,Verstehens’ deutlich. Vor diesem Hintergrund kann ,erklarenden Beweisen”
somit nicht pauschal das Attribut ,erklarend’ zugesprochen werden. Das Verstehen bestimmter
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Darstellungen bzw. Beweise als Konstruktion mentaler Modelle ist ein individueller Prozess und
hangt vom individuellen Vorwissen einer Person ab.

Zusammenfassung: Anschaulichkeit und proofs that explain

In den verschiedenen, oben aufgezeigten Perspektiven werden die Notwendigkeit von
entsprechendem Vorwissen und der aktive Prozess der Verarbeitung von Darstellungen betont, um
in einem Akt des Verstehens Informationen daraus zu gewinnen. Dadurch wird deutlich, dass die
durch Anschauungsmittel intendierte ,Anschauung’ nichts per se Gegebenes bzw. Primitives, sondern
etwas Erworbenes ist. Anschauungsmittel missen in diesem Sinn zunachst als Lerngegenstande
aufgefasst werden, sie sind Arbeitsmittel, die erst erworben werden missen. Entsprechende
,erklarende’ Darstellungen miissen vom Betrachter gelesen und in einem Prozess des Verstehens
aktiv verarbeitet werden. Hierzu ist ein gewisses Vorwissen (,kollaterales Wissen” im Sinne von
Peirce, s.0.) notwendig. Der aktive Konstruktionsprozess eines Sinngehalts auf der Basis eigenen
Vorwissens betont die Subjektivitdt und Relativitdt des Verstehens entsprechender Darstellungen,
welche folglich weder selbstevident noch selbsterklarend sind (vgl. Jahnke 1984, S. 33). Es folgt
hieraus, dass Anschauungsmittel als Arbeitsmittel in systematischen Lernumgebungen erarbeitet
bzw. gelernt werden missen (Lorenz 1992, S. 7) und dass nicht zu viele Anschauungsmittel im
Unterricht verwendet werden dirfen (etwa Wittmann 1993).

Fiir das Konzept der erklarenden Beweise bedeutet dies, dass Beweise, in denen ,anschauliche’
Darstellungen verwendet werden, nicht per se als erklarend bezeichnet werden kdnnen. Das
Verstehen von Darstellungen, was zu einem erklarenden Moment des Beweises flihren bzw.
beitragen soll, ist ein subjektiver Akt, der vom Individuum auf der Basis seines Vorwissens vollfihrt
werden muss. Beweise konnen erklarend wirken, sie tun dies nicht per se.

Bei der Diskussion anschaulicher Darstellungsmittel muss dabei das erkldrende Potential der
Symbolsprache der Algebra mitbedacht werden. Dies scheint auch daher notwendig, da dieses
,Diagrammsystem’ wohl dasjenige ist, welches in den héheren Schulstufen am haufigsten verwendet
und somit gelibt wird. Andere Darstellungen, wie etwa Punktmuster, werden dagegen weniger
verwendet, wodurch das notwendige Wissen fir das Verstehen entsprechender Darstellungen
schwinden kann und Darstellungen ihr Erklarungspotential einbiiBen (vgl. hierzu das Zitat aus
Schipper (1982) oben). Wie Hanna (1995) betont, unterscheiden sich erklarende Beweise je nach
Kontext der Lernenden und ihrem Vorwissen. Dieser Fakt der Variabilitat ,erklarender Beweise’ sollte
in der allgemeinen mathematikdidaktischen Literatur mehr Aufmerksamkeit erfahren, in der
gewohnlich Beweise mit ,anschaulichen’ Darstellungen bereits als ,proofs that explain® betrachtet
werden.

8.4 Diskussion des Forschungsprojekts anhand der aufgezeigten
GiiteKkriterien

In diesem Abschnitt werden die in dieser Arbeit verwendete Forschungsmethode des Design-Based
Research (7.3.1) und die damit erzielten Ergebnisse (7.3.2) diskutiert. Grundlage der Diskussion sind
die in Abschnitt 3.2 dargelegten Giite- und Qualitatskriterien entsprechender Forschungsprojekte.

8.4.1 Diskussion der Forschungsmethode
In diesem Abschnitt wird die erfolgte Anwendung der Forschungsmethode des Design-Based
Research diskutiert. Dazu werden die in Kapitel 4 aufgeworfenen Fragen beantwortet und
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angeflihrten Gutekriterien erdrtert. Dabei geht es im Besonderen um die Involviertheit des Forschers
und die Validitat und Reliabilitat der erfolgten Forschung.

8.4.1.1 Involviertheit des Forschers

Der Verfasser dieser Arbeit war in den Wintersemestern 2012/13, 2013/14 und 2014/15 bei der
Durchfihrung der Lehrveranstaltung ,Einfihrung in die Kultur der Mathematik” als
Wissenschaftlicher Mitarbeiter beteiligt. Zu seinen Aufgabenbereichen gehorten die Organisation des
Ubungsbetriebs, das Abhalten einer Kleingruppeniibung und der Zentraliibung, woraus auch Kontakt
mit den Studierenden resultierte, die gleichsam als Probanden in den verschiedenen Studien
fungierten. Somit war der Autor als Vertreter der hochschulmathematischen Kommunitat an der
Herausbildung entsprechender sozio-mathematischer Normen in verschiedenen
Unterrichtssituationen beteiligt. Die stets sehr guten Bewertungen seiner Lehrveranstaltungen im
Rahmen der durch die Fachschaft durchgefiihrten Veranstaltungsevaluation zeugen dabei von einer
hohen Akzeptanz bzw. Beliebtheit bei den Studierenden. Insofern muss kritisch diskutiert werden,
inwiefern die Ausbildung verschiedener Ansichten zum Beweisen (Wahrnehmung, Akzeptanz etc.)
bzw. die Ubernahme verschiedener Normen im Kontext des Beweises durch die Studierenden auch
durch die Involviertheit des Forschers beeinflusst wurden.

Bei der Erdrterung einer moglichen Beeinflussung der Studierenden durch den Forscher ist dabei
grundlegend, dass es in der vorliegenden Forschungsarbeit nicht darum ging, bestimmte Ansichten
zum Beweisen oder zu Beweisformen den Studierenden aufzuoktroyieren. Im Zentrum des Interesses
standen die verschiedenen Wahrnehmungen der Studierenden zum Beweisen und ihre Akzeptanz zu
verschiedenen Beweisformen, wie sie zu Beginn und zum Ende der Lehrveranstaltung vorlagen. Vor
diesem Hintergrund wurden im Rahmen der Lehrveranstaltung verschiedene Beweisformen und
Diagrammsysteme vergleichend diskutiert und somit entsprechende Vor- und Nachteile erortert.
Aufgrund der vorgenommenen Operationalisierung von Beweisakzeptanz und Beweispraferenz
sollten diese Forschungsergebnisse hochstens marginal durch die Involviertheit des Forschers
beeinflusst worden sein. In Bezug auf die Herausbildung sozio-mathematischer Normen muss
angemerkt werden, dass gerade die Aushandlung dieser Normen zwischen Lernenden und
Lehrenden ein zentraler Aspekt dieser theoretischen Sichtweise ist. Fiir die vorliegende Forschung
war es daher von grundlegender Bedeutung, dass sich die Lehrenden (Professor, Wissenschaftlicher
Mitarbeiter und studentische Hilfskrafte) Gber die zu vertretenden Normen im Klaren sind und diese
gemeinsam in allen Bereichen der Lehrveranstaltung (Vorlesung, Zentralibung und
Kleingruppenibungen) gegeniiber den Studierenden vertreten. Im Sinne der Theorie der sozio-
mathematischen Normen ist diese ,Beeinflussung durch den Forscher’ somit intendiert. Generell
kénnen Auswirkungen der Involviertheit des Forschers auf die Bewertungen der Studierenden (etwa
im Rahmen der Effektivitatsstudie, vgl. Kapitel 7) auch im Sinne sozialer Erwiinschtheit aber nicht
ganzlich ausgeschlossen werden.

Neben der Involviertheit des Forschers als beteiligter Lehrender gilt es zudem, seine Involviertheit als
tatsachlicher ,Forscher’ bei dem Design der Forschungsprojekte, der Datensammlung,
Datenauswertung und Interpretation zu betrachten. In Abschnitt 3.1 wurden nach Plomp (2010, S.
30ff.) verschiedene MalRnahmen aufgefiihrt, um gerade aufgrund der Involviertheit des Forschers die
Objektivitdt der Forschung sicherzustellen. Im Folgenden wird beschrieben, inwiefern diese
Malnahmen bei der vorliegenden Forschung bertlicksichtigt und umgesetzt wurden:
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a) Die Rolle und der Einfluss des Forschers auf das Projekt wurden im vorliegenden Abschnitt
offengelegt und diskutiert. Auf mogliche Einschrankungen der Ergebnisse wurde
hingewiesen.

b) Die erhaltenen Forschungsergebnisse wurden nicht isoliert betrachtet, sondern im Kontext
mehrerer Forschungsergebnisse, auch innerhalb verschiedener Durchfiihrungen der
Lehrveranstaltung, diskutiert und neu interpretiert, wodurch Fehlentscheidungen
entgegengewirkt werden konnte.

c) Verschiedene Teilforschungen wurden in nachfolgenden Durchlaufen der Lehrveranstaltung
wiederholt und somit erneut (Uberpriift und reflektiert. Uber die verschiedenen
Teilergebnisse der Forschung wurde wahrend des gesamten Forschungsprojektes
kontinuierlich mit projektunbeteiligten Wissenschaftlern diskutiert (vgl. Abschnitt 8.4.1.3).

d) Bei der durchgefiihrten Forschung wurden die Gutekriterien der Reliabilitdt und Validitat
stets mitbetrachtet und diskutiert. AuBerdem umfasste die Forschung sowohl qualitative als
auch quantitative Forschungsmethoden, um eine umfassendere Sicht auf das
Forschungsprojekt zu ermoglichen.

e) Der Nutzen und die Effektivitdit der Lehrinnovation wurden im Rahmen einer
Effektivitatsstudie zur vierten Durchfiihrung der Lehrveranstaltung empirisch getestet (s.
Kapitel 7).

8.4.1.2 Validitit der Forschung

Fir die Sicherstellung der internen Validitdit wurden im Kontext der Beschreibungen der
verschiedenen Durchfiihrungen der Lehrveranstaltung die damit verbundenen Teilstudien gesondert
aufgefuhrt und diskutiert, auch, um die Motive fiir die theoretischen Ableitungen darzustellen und
diese Ableitungen gleichsam aus der Praxis heraus zu begriinden (Kapitel 5). Die hierbei erhaltenen
Ergebnisse und die daraus skizzierten Problemfelder wurden im Rahmen der jeweiligen
retrospektiven Analysen erortert. Die auf der Basis dieser Analysen erfolgten Mallnahmen zur
Verbesserung der Lehre wurden anschliefend dargelegt, um eine moglichst grolRe Transparenz zu
gewadhrleisten. In den folgenden Durchgiangen wurde nach Evidenzen gesucht, die den Erfolg der
vorgenommenen Modifikationen belegten oder ggf. in Frage stellten.

Fir das Gutekriterium der externen Validitdt werden in Abschnitt 8.4.2 die Verallgemeinerbarkeit
der Theorie und die Ubertragbarkeit und der Nutzen der Ergebnisse diskutiert.

8.4.1.3 Reliabilitat der Forschung

Fir die interne Reliabilitait der Forschung wurden bei der Darstellung der Teilstudien die
Datenerhebungen und Datenauswertungen nachvollziehbar dargelegt. Die Reliabilitat der
Messinstrumente wurde an den entsprechenden Stellen herausgestellt bzw. diskutiert. Im Prozess
der Weiterentwicklung der Lehrveranstaltung wurden die Interpretationen der Studienergebnisse
und die damit begriindeten Schlussfolgerungen und Modifikationen im Rahmen der retrospektiven
Analysen diskutiert. Diese Interpretationen und Schlussfolgerungen wurden wahrend des gesamten
Forschungsprojektes kontinuierlich mit projektunbeteiligten Wissenschaftlern diskutiert, hierzu
gehoren u.a. zwei anderthalbstiindige Sitzungen pro Semester der Paderborner Gruppe des
Kompetenzzentrums Hochschuldidaktik Mathematik, monatliche Dissertationsbesprechungen mit
dem Betreuer dieser Arbeit und verschiedene Vortrage auf (inter-) nationalen Tagungen (die
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Jahrestagungen der Gesellschaft der Didaktik der Mathematik in den Jahren 2013 bis einschlieBlich
2016, die Tagungen der Gruppe der ,European Research in Mathematics Education” (CERME) in den
Jahren 2013 und 2015, die Tagung des Vereins ,,Psychology of Mathematics Education” 2014 und die
hochschuldidaktischen Tagungen in Oberwolfach 2014 und in Hannover-Herrenhausen 2015).

Fir die externe Reliabilitdt wurde bereits oben die Involviertheit des Forschers im Gesamtprojekt
erortert. Auch wurde bei der Darstellung des Forschungsprojekts darauf geachtet, dass jeder
Forschungszyklus so beschrieben wird, dass jede Designentscheidung nachvollziehbar wird. Im
diesem Sinn ist die Nachvollziehbarkeit des Erkenntnisverlaufs im Sinne einer ,trackability’
sichergestellt.

8.4.2 Diskussion der Giite der Ergebnisse

Im Zentrum der Diskussion der Gite der erhaltenen Ergebnisse stehen die Aspekte
,Verallgemeinerbarkeit der erhaltenen theoretischen Ergebnisse” (7.3.2.1), , Allgemeingiltigkeit und
Replizierbarkeit der empirischen Ergebnisse” (7.3.2.2) und ,,Ubertragbarkeit und Nutzen der erzielten
Ergebnisse” (7.3.2.3).

8.4.2.1 Verallgemeinerbarkeit der erhaltenen theoretischen Ergebnisse

In dem oben dargestellten Beitrag zu einer lokalen Instruktionstheorie in der Doméane ,Begriinden
und Beweisen’ wird keine absolute Giiltigkeit der formulierten Designprinzipien beansprucht.
Vielmehr handelt es sich dabei prospektiv betrachtet um empirisch begriindete Empfehlungen und
auf das Lernen ausgerichtete antizipierende Behauptungen, die in der weiteren Praxis getestet und
modifiziert werden sollen (vgl. Bakker 2004, S. 39ff.). Folglich wird nicht behauptet, dass das Lernen
in dieser Domane unter Anwendung der aufgestellten Designprinzipien im Hinblick auf jede
Adressatengruppe genauso verlaufen wird, wie es in diesem Fall geschehen ist, sondern dass deren
Anwendung  bzw. Berlicksichtigung entsprechende Lernprozesse beglinstigen  wird.
Verallgemeinerbarkeit versteht sich somit nicht als unveranderte Ubertragung von Empfehlungen,
sondern in einer entsprechenden Adaption.

Die durch die Kombination der Theorien des diagrammatischen SchlieBens und der sozio-
mathematischen Normen entstehenden Perspektiven fiir die Beweisdidaktik sind aus der Praxis der
Forschung heraus entstanden und wurden in ihrer allgemeinen Formulierung fir die allgemeine
Theorie fruchtbar gemacht. Dieses Zusammenspiel von Zeichentatigkeit im Kontext auszuhandelnder
Normen muss perspektivisch weiter erortert werden. Auch die mit diesen im Kontext von Beweisen
auszuhandelnden Normen einhergehende Enkulturationsfunktion von Beweisen ist nicht an die
vorliegende Situation der Adressaten oder der Bildungseinrichtung gebunden. Diese funktionale
Sichtweise auf das Beweisen tangiert alle Bereiche der Mathematikausbildung. Die herausgestellte
Bedeutung von einem Konstrukt ,Beweisakzeptanz’, exemplarisch vertieft bei der Diskussion des
Konzepts der erklarenden Beweise, muss ebenfalls situationsunabhangig betrachtet werden: Ein so
betrachtetes ,Verstehen von Beweisen gilt es in der Beweisdidaktik weiter zu erforschen.

8.4.2.2 Allgemeingiiltigkeit und Replizierbarkeit der empirischen Ergebnisse

Im Kontext dieser Forschungsarbeit wird zunachst kein Anspruch auf Verallgemeinerbarkeit bzw. auf
Replizierbarkeit der Ergebnisse erhoben. Die erhaltenen Ergebnisse beziehen sich auf die spezielle
Klientel der Lehramtsstudierenden (Haupt-, Real- und Gesamtschule) an der Universitat Paderborn in
den Jahren 2011 bis 2015. Allerdings kann vermutet werden, dass entsprechend konzipierte
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Lehrveranstaltungen mit Lehramtsstudierenden fiir Haupt-, Real und Gesamtschule zu dhnlichen
Ergebnissen flihren werden. Dabei sind die in diesen Teilforschungen betrachteten Probandenzahlen
zu gering, um Ergebnisse verallgemeinern zu kdnnen. Dem Aspekt der Replizierbarkeit der
empirischen Ergebnisse in anderen Kontexten (Bildungsstatten und Klientel), wurde bei der
empirischen Forschung durch die Beriicksichtigung der Gutekriterien Objektivitdt (i. S. der
Involviertheit des Forschers), Validitdt und Reliabilitit Rechnung getragen. Die Replikation der
erhaltenen Ergebnisse und die damit einhergehende Validierung bzw. Erweiterung der gewonnenen
Theorie erweist sich hierbei als Perspektive fiir die weitere Forschung.

8.4.2.3 Ubertragbarkeit und Nutzen der Ergebnisse

Der oben formulierte Beitrag zu einer lokalen Instruktionstheorie fiir die Domane , Begriinden und
Beweisen” im Ubergang Schule/Hochschule stellt zunichst eine empirisch begriindete und
theoriebasierte Empfehlung dar, welche sich in der Praxis bereits einmal bewdhrt hat. Da dieser
Beitrag bewusst stark an die Adressaten und ihre Bedirfnisse angepasst wurde, bedirfen
verschiedene Aspekte bzw. Schwerpunkte bei ihrer Ubertragung in andere Kontexte einer
entsprechenden Modifikation. Mit der exemplarischen Bereitstellung von Lehrempfehlungen (vgl. die
oben formulierten Designprinzipien), Arbeitsmaterialien (konkreten Aufgaben und exemplarischen
Aufgabenformaten) und der Adaption theoretischer Rahmentheorien (diagrammatisches SchlieRen
und sozio-mathematische Normen) wurde die Grundlage dafiir geschaffen, die hier erzielten
Ergebnisse zu adaptieren und in andere Kontexte (Institutionen, Lerngruppen etc.) zu tGbertragen.

Der unmittelbare Nutzen der in diesem Forschungsprojekt erarbeiteten Ergebnissen liegt zunachst in
der empirisch begriindeten (Weiter-) Entwicklung einer neuen und innovativen Lehrveranstaltung fur
Lehramtsstudierende (Haupt-, Real- und Gesamtschule). Diese begriindete Weiterentwicklung der
Lehrveranstaltung, begleitet durch die Theorien des diagrammatischen SchlieBens und der sozio-
mathematischen Normen, kann dabei als exemplarisch flir weitere (hochschul-) didaktische
Forschungsprojekte im Sinne des Design-Based Research betrachtet werden. Im Rahmen dieses
Forschungsprozesses wurden dabei weitere Ziele erreicht, hierzu gehoéren (u.a.) (i) die Entwicklung
von Testinstrumenten fur die Erforschung zentraler Aspekte zum Beweisen, (ii) die Erforschung der
Beweisvorstellungen, -kompetenzen und -einstellungen von Studierenden zu Beginn des Studiums
(bzw. zum Beginn der Lehrveranstaltung) und (iii) die Erforschung der Auswirkungen der
Lehrveranstaltung auf die Beweisvorstellungen, -kompetenzen und -einstellungen der
Teilnehmenden. Weitere erreichte Ziele wurden oben im Abschnitt ,Weitere Beitrdage zur
Theorieentwicklung” dargestellt. Diese Ziele umfassten (iv) die Verbindung der Theorie des
diagrammatischen Schliefens und der sozio-mathematischen Normen, (v) die Herausstellung und
Formulierung der Enkulturationsfunktion von Beweisen, (vi) die Herausstellung und
Konzeptualisierung von Beweiswahrnehmung und Beweisakzeptanz und schlieRlich (vii) eine
Diskussion des Konzepts der ,erklarenden Beweise‘. An dieser Stelle scheint die Hoffnung angebracht,
dass die hier erreichten Ziele auf verschiedenen Ebenen der Didaktik der Mathematik von Nutzen fir
die weitere Forschung in diesen Gebiet sein werden. Dieser potentielle Nutzen wird im folgenden
Abschnitt in Form von Perspektiven fiir die Forschung weiter beschrieben.

8.5 Perspektiven fiir die Forschung

Durch diese Arbeit lassen sich (ibergeordnet auf zwei Ebenen Perspektiven fiir die weitere Forschung
angeben: zum einen bzgl. der adressatenspezifischen Vermittlung von Lerninhalten und zum anderen
bzgl. der Domane der Beweisdidaktik.
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8.5.1 Perspektiven fiir eine adressatenspezifische Vermittlung von Lerninhalten

Im Zentrum dieser Forschungsarbeit stand die (Weiter-) Entwicklung einer Lehrveranstaltung fir
Lehramtsstudierende fiir Haupt-, Real- und Gesamtschule, in welcher das Beweisen unter der
Perspektive der doppelten Diskontinuitdt eine besondere Rolle spielen sollte. Vor diesem
Hintergrund wurden in einem ersten Schritt entsprechende adressatengerechte Fachinhalte und
Leitprinzipien erortert, welche fir die Lehrveranstaltung konstituierend waren (Abschnitt 1.3).
Aufgrund beschriebener normativer Anspriiche konnten verschiedene Aspekte der Lehrveranstaltung
evaluiert werden, was im Rahmen retrospektiver Analysen im Sinne des Design-Based Research zu
Modifikationen der Lehrveranstaltung flihrte.

Es stellt sich die Frage, wie eine entsprechende Briickenkursveranstaltung als ,Einfihrung in die
Kultur der Mathematik’ fiir einen anderen Adressatenkreis aussehen wiirde: Welche Inhalte im
Kontext welcher Normen wiirden dabei in den Vordergrund bzw. in den Hintergrund riicken? Eine
mogliche Antwort auf diese Frage bilden die Konzepte von Grieser (2013) und Hilgert und Hilgert
(2012) fur die Lehramtsstudierenden des gymnasialen Lehramts. Gerade aus hochschuldidaktischer
Perspektive erscheint diese Frage virulent, wo doch das Beweisen oder weitergefasst der Ubergang
von der Schule zur Hochschule (international) als ein zentrales Problemfeld der
Mathematikausbildung betrachtet wird und sich die Zielsetzungen von Lehrveranstaltungen aufgrund
der verschiedenen Adressatenkreise (Studierende der Studiengdnge Bachelor Mathematik, Lehramt
mit verschiedenen Auspragungen und fir verschiedene Schultypen, Ingenieure, Maschinenbauer
etc.) doch grundlegend unterscheiden (missten). Die theoretische Ausarbeitung und praktische
Ausgestaltung universitdrer Lehrerausbildungen mit entsprechender Begleitforschung stellt einen
zentralen Anspruch an die Hochschuldidaktik der Mathematik dar.

Die Frage nach einer adressatenspezifisch ausgerichteten universitaren Lehrveranstaltung gilt es
dabei auch losgeldst von der Ubergangsproblematik und der Thematik des Beweisens zu betrachten.
Diesen Leitgedanken der forschungsbasierten Weiterentwicklung universitarer Lehrveranstaltungen
unter Beachtung der Vermittlung fachlicher Aspekte im Rahmen sozio-mathematischer Normen gilt
es auch auf die hoheren Semester der Universitatsausbildung zu Ubertragen. Daflir muss
offensichtlich ein ,allgemeiner’ Konsens Uber die Zielsetzungen von Lehrveranstaltungen in den
verschiedenen Studiengdngen herbeigefiihrt werden. Entsprechende universitatsiibergreifende bzw.
(inter-) nationale Erorterungen stehen dabei noch aus.

Aus dieser Perspektive heraus lassen sich die folgenden Forschungsdesiderate formulieren:

1. Wie kann bzw. sollte das Themenfeld ,Begriinden und Beweisen’ im Ubergang von der Schule
zur Hochschule fiir andere Studiengange adressatenspezifisch handhabbar gemacht werden?

2. Inwiefern kénnen universitdre Lehrveranstaltungen in héheren Semestern zum Gegenstand
dhnlicher Forschungsprojekte werden?

3. Welche Aspekte sozio-mathematischer Normen werden im Kontext anderer Fachinhalte
virulent?

4. Welchen Zielsetzungen sollen fachliche und fachdidaktische Lehrveranstaltungen an der
Universitdt im Hinblick auf das Attribut ,adressatengerecht’ bzw. ,adressatenspezifisch’
folgen?

Diese weitgreifenden Forschungsanliegen sollen dabei nicht global bearbeitet werden. Vielmehr
verlangen die aufgefiihrten Punkte nach weiteren exemplarischen Forschungsprojekten, die als
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Diskussionsgrundlage fiir weitere Perspektiven fachdidaktischer (Entwicklungs-) Forschung dienen
kdénnen.

8.5.2 Perspektiven fiir die Beweisdidaktik
Weitere Perspektiven fiir die Forschung ergeben sich aus den in dieser Arbeit thematisierten
Aspekten einer Didaktik des Beweisens.

Im Kontext der vorliegenden Forschung wurden u.a. die folgenden Aspekte zum ,Begriinden und
Beweisen’ behandelt: der Beweis-, Argumentations- und Begriindungsbegriff, didaktisch-orientierte
Beweiskonzepte, die Frage: ,,Wann ist ein Beweis ein Beweis?“, Beweisbedirfnis, Funktionen von
Beweisen, Einstellungen zum Beweisen (Beliefs, Selbstwirksamkeitserwartung und Beweisaffinitat)
und Beweisakzeptanz. Jeder einzelne dieser Aspekte eréffnet weitreichende Perspektiven fiir weitere
Forschungsprojekte. Im Folgenden werden entsprechende Moglichkeiten in  Form von
Forschungsdesideraten skizziert. Dabei kann kein Anspruch auf Vollstandigkeit erhoben werden,
vielmehr geht es um die Darstellung von Forschungsschwerpunkten, die sich als Fortsetzung der
vorliegenden Arbeit herauskristallisieren:

1. Uber die genaue Bedeutung der Begriffe ,Beweis”, , Argumentation” und ,Begriindung”
herrscht in der Mathematikdidaktik national wie international keine Einigung. Reid (2005)
betont zu Recht, dass erst durch die Einigkeit Uber zentrale Begriffe im Kontext des
Beweisens die Moglichkeit einer gelingenden Didaktik und Forschung zum Beweisen
entsteht. In der vorliegenden Arbeit wurden verschiedene Standpunkte Uber die Bedeutung
der Begrifflichkeiten erortert und schlieBlich begriindet der eigene formuliert (Abschnitt 2.3).
Es scheint hierbei zentral, dass die formulierten Ergebnisse nicht als weiterer separater
Standpunkt in der Diskussion betrachtet werden sollen. Vielmehr sollen die vertretenen
Ansichten zu einer Diskussion beitragen, die schlieflich zur Begriffsklarung beitragt.

2. Einen inhaltlichen Schwerpunkt der hier thematisierten Lehrveranstaltung bildeten die so
genannten didaktisch-orientierten Beweiskonzepte (Kapitel 4). Eine Darstellung der
historischen Entwicklung der verschiedenen Konzepte, ihrer Charakteristika und didaktischen
Einbettungen ist bereits in Biehler und Kempen (2016) erfolgt. Allerdings ist bis heute das
Themenfeld um die verschiedenen Beweiskonzepte nur sehr wenig empirisch erforscht
worden. Doch gerade im Kontext der verschiedenen Beweiskonzepte werden offene Fragen
einer Beweisdidaktik deutlich:

a. Wie nehmen Lernende die verschiedenen Beweiskonzepte wahr?

Welche Fehlvorstellungen treten in Bezug auf die verschiedenen Konzepte in der
Praxis auf?

c. Inwiefern sind Lernende in der Lage, entsprechende Beweise selbst zu konstruieren?
(Auf diese Frage wurde fiir eine bestimmte Klientel in dieser Arbeit eine Antwort
gegeben.)

d. Wie werden die verschiedenen Beweiskonzepte in der Fachmathematik warum
bewertet? Inwiefern muss dabei ein Konsens mit der Perspektive der Fachdidaktik
herbeigefiihrt werden?

e. Inwiefern sind die verschiedenen Beweiskonzepte wissenschaftspropadeutisch
sinnvoll und kdnnen als anschlussfahig flr spatere universitire Beweisformen
gelten?
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3. Die Frage: ,Wann ist ein Beweis ein Beweis?” ist Gegenstand aktueller, auch
mathematikphilosophischer Erérterungen. In der vorliegenden Arbeit wurde der Aspekt des
diagrammatischen Schlielens verwendet, um sich der Frage aus einer semiotischen
Perspektive anzunahern. Die damit einhergehende Fokusverschiebung von der Darstellung
eines Beweises zu der Bedeutung der verwendeten Schliisse vermochte dabei die Diskussion
um die Frage: ,,Wann ist ein Beweis ein Beweis?” sinnstiftend zu erweitern, beantwortet
diese aber nicht. Denn auch unter semiotischer Perspektive ist bisher ungeklart, was den
besonderen Schluss ,Beweis’ ausmacht®. Die Theorie sozio-mathematischer Normen vermag
dabei in der Alltagspraxis diese Licke zu beheben, denn die Frage, was einen Beweis
ausmacht, wird im Lehr-/Lernkontext im Rahmen einer angelegter ,Strenge’ stetig neu
bewertet und ausgehandelt. Fiir eine Erorterung allgemeiner Charakteristika missen damit
andere Perspektiven ausgemacht werden. Exemplarisch sei hier auf die Sichtweise von
Aberdein (2013) auf die parallele Struktur in mathematischen Begriindungen hingewiesen,
die bereits in Abschnitt 8.3.2 thematisiert wurde. Es ist offensichtlich, dass fiir eine
gelingende Beweisdidaktik ein Konsens Uber die Bedeutung des Begriffs ,Beweis”
herbeigefiihrt werden muss (vgl. Punkt 5 oben). Dabei sollte auch diskutiert werden, ob
Uberhaupt an einer dichotomen Unterscheidung (Beweis/kein Beweis) festgehalten werden
kann.

4. Wie in Abschnitt 2.1.6 dargelegt wurde, ist das Vorhandensein eines (subjektiven oder
objektiven) Beweisbedirfnisses eine notwendige Voraussetzung fiir ein verstindiges Lernen
der Beweisaktivitat. Es sind noch heute von der Didaktik unbeantwortete Fragen, inwiefern
Lernende auf verschiedenen Stufen der Ausbildung ein Beweisbediirfnis ausbilden und
inwieweit dies Auswirkung auf die Beweiskonstruktion hat.

5. Ein Beweisbediirfnis agiert vor dem Hintergrund der Wertschatzung eines Beweises, welche
wiederum auf wahrgenommenen Funktionen von Beweisen basiert (vgl. Abschnitt 2.1.7). Es
scheint hierbei notwendig, sich qualitativ der Frage zu widmen, welche Funktionen von
Beweisen von Lernenden wie wahrgenommen werden und wie bedeutsam diese aus
subjektiver und objektiver Perspektive einzuschatzen sind. In der Literatur wurden bereits
viele verschiedene Funktionen von Beweisen mit unterschiedlichen Tragweiten beschrieben
(vgl. Abschnitt 2.1.7), eine eingehende empirische Beforschung dieser Funktionen steht
allerdings noch aus.

6. Betrachtet man das Beweisen unter dem Aspekt der Enkulturationsfunktion (s. Abschnitt
8.3.3), so wird deutlich, wie sehr die Beweisaktivitdt mit einer Kultur der Mathematik bzw.
des Mathematiktreibens verbunden ist. Es liegt dabei auf der Hand, dass Vorstellungen einer
Kultur der Mathematik mit den in der Literatur haufig genannten ,Einstellungen zur
Mathematik” (sogenannte Beliefs) verbunden sind. In dieser Arbeit wurde ein erster Versuch
unternommen, Wechselwirkungen dieser Einstellungen zur Mathematik und
Beweiskonstruktionen von Lernenden und ihren Einstellungen zum Beweisen auszumachen
(Abschnitt 7.3.3). Geht man davon aus, dass die Einstellungen Lernender zur Mathematik fir
das unterrichtliche Geschehen von Bedeutung sind, dann trifft dies ebenso fiir das Beweisen

¥ Fiir den Hinweis auf diesen Aspekt danke ich C. Knipping.
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zu. Folglich gilt es, theoretisch und empirisch weiter zu beforschen, inwiefern Einstellungen
zur Mathematik mit Vorstellungen zum Beweisen zusammenhangen.

7. Mit den konstruierten Skalen ,Selbstwirksamkeitserwartung zum Beweisen” und
,Beweisaffinitat” wurden in der vorliegenden Arbeit zwei weitere theoretische Aspekte fir
die empirische Forschung fruchtbar gemacht. Es war dabei ein Ergebnis, dass die (subjektive)
Beweisaffinitat ein starkerer Pradiktor fiir gelingende Beweiskonstruktionen ist als die eigene
Selbstwirksamkeitserwartung (Abschnitt 7.4.3.2). Vor diesem Hintergrund sollen zwei Fragen
flr die weitere Forschung aufgeworfen werden: Welche Bedeutung kommt (auch noch in der
universitairen Mathematikausbildung) dem subjektiven Empfinden eines Lernenden zum
Lerngegenstand zu? Wie ermoglicht man Lernenden die Ausbildung einer addquaten
Selbstwirksamkeitserwartung zum Beweisen, wenn ihre (normativen) Vorstellungen zum
Beweisen im Ubergang Schule—Hochschule einem gravierenden Wandel unterzogen sind?

8. Die Bedeutung des Aspekts der Beweisakzeptanz wurde bereits oben (Abschnitt 8.3.4) weiter
ausgefihrt. Es soll an dieser Stelle wiederholt betont werden, wie stark eine Vermittlung der
Beweisaktivitdit mit einer entsprechenden Wahrnehmung bzw. Akzeptanz von Beweisen
verbunden zu sein scheint. Entsprechende Zusammenhange gilt es weiter zu erforschen.

8.5.3 Schlussbemerkung

In dieser Arbeit wurden alle verwendeten Forschungs- bzw. Messinstrumente ausfiihrlich
beschrieben und angegeben. Ich mochte damit explizit zu mehr Transparenz und Offenheit in der
Forschung beitragen und fiir diese pladieren. Forschungsarbeit, verstanden als Beitrag zu einem
gemeinsamen Anliegen, kann nur dann in groBeren Zusammenhangen gewinnbringend wirken, wenn
verwendete Messinstrumente offengelegt und die Ergebnisse damit interpretierbar und Gegenstand
offentlicher Diskussion werden kdnnen. So verstandene Forschung ist kein Selbstzweck, sondern
gewinnt ihre Bedeutung in der kritischen Auseinandersetzung mit ihr.
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