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Zusammenfassung 

In dieser Arbeit wird die forschungsbasierte (Weiter-) Entwicklung der Lehrveranstaltung „Einführung 

in die Kultur der Mathematik“ beschrieben, welche den Studierenden den Übergang von der 

Schulmathematik in die Mathematik der Hochschule erleichtern soll und hierbei in einem 

besonderen Maße das Themenfeld ‚Begründen und Beweisen‘ unter dem Aspekt der doppelten 

Diskontinuität fokussiert. Im Sinne der Forschungsmethode des Design-Based Research wurden vier 

Durchführungen der Lehrveranstaltung in dem Zeitraum von 2010 bis 2015 begleitend beforscht, 

retrospektiv analysiert und prospektiv ausgewertet. Die Forschung wurde dabei durch die 

Verwendung der Theorien des „Diagrammatischen Schließens“ nach Peirce und der „Sozio-

mathematischen“ Normen nach Yackel und Cobb geleitet. Als Ergebnisse dieser Forschungsarbeit 

ergeben sich der Beitrag zu einer lokalen Instruktionstheorie in der Domäne ‚Begründen und 

Beweisen‘, die Entwicklung verschiedener Testinstrumente, welche die Erforschung zentraler 

Aspekte zum Beweisen bei Lernenden ermöglichen, empirische Ergebnisse bzgl. der 

Beweiskompetenzen von Lehramtsstudierenden (Haupt-, Real und Gesamtschule) zu Beginn ihres 

Studiums und verschiedene Beiträge zur Theoriebildung und Theorieentwicklung in Bezug auf die 

Didaktik des Beweises; darunter: die Diskussion um generische Beweise als vollgültige 

mathematische Beweise, die Darstellung der Enkulturationsfunktion von Beweisen, die Betonung des 

Konstrukts der Beweisakzeptanz für das Erlernen der Beweisaktivität und eine Diskussion der 

Erklärungsfunktion von Beweisen. 

 

Abstract 

The study at hand investigates the development and the refinement of the university course 

“Introduction into the culture of mathematics” as a Design-Based Research project. The course was 

designed as a bridging course at the University of Paderborn with the aim of helping first-year pre-

service teachers to accomplish the transition to higher mathematics, especially concerning 

mathematical proofs. Using the theories of “diagrammatic reasoning” (Peirce) and “socio-

mathematical norms” (Yackel and Cobb), four cycles of the course were accompanied by qualitative 

and quantitative research, evaluating the courses benefits and analyzing students’ learning. As 

output of this research, several findings can be specified. First, a contribution to a local instruction 

theory concerning the learning of mathematical proof for first-year pre-service teachers is 

formulated. Second, various test instruments were developed to examine central aspects of the 

learning of mathematical proof. Third, the previous knowledge concerning proof and proof 

competencies of first-year university students are described. Finally, several theoretical issues and 

discussions can enriched by the outcomes of this project: the discussion of generic proofs as valid 

mathematical proofs, the enculturation function of mathematical proofs, the importance of the 

concept of ‘proof acceptance’ in the learning of proof and the benefits and limits of ‘proofs that 

explain’. 
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1. Einleitung: Problemstellung, Forschungsanliegen und 

Zielsetzung     
 

In der vorliegenden Arbeit wird die (Weiter-) Entwicklung einer universitären Lehrveranstaltung 

beschrieben, theoretisch begründet und im Kontext von Evaluationsstudien kritisch reflektiert, 

welche den Studierenden den Übergang von der Schulmathematik in die Mathematik der Hochschule 

erleichtern soll und hierbei in einem besonderen Maße das Themenfeld ‚Begründen und Beweisen‘ 

unter dem Aspekt der doppelten Diskontinuität fokussiert. Im Zuge dieser Forschungsarbeit wird ein 

Beitrag für die Konstruktion einer adressatenspezifischen lokalen Instruktionstheorie für die Domäne 

‚Begründen und Beweisen‘ geleistet. Die Lehrveranstaltung „Einführung in die Kultur der 

Mathematik“ wurde von Rolf Biehler für Lehramtsstudierende für Haupt-, Real- und Gesamtschule 

konzipiert und im Wintersemester 2011/12 zum ersten Mal an der Universität Paderborn 

durchgeführt. Dieser Durchlauf, wie auch die folgenden drei, wurde von empirischen Studien 

gerahmt, wodurch eine konzeptuelle Weiterentwicklung der Veranstaltung sowohl in theoretischer 

als auch in praktischer Hinsicht im Sinne des Design-Based Research möglich wurde. Grundlegend für 

die Forschungsarbeit ist hierbei die Fragestellung, wie im Rahmen einer universitären 

Lehrveranstaltung der Themenbereich ‚Begründen und Beweisen‘ vor dem Spannungsfeld der 

doppelten Diskontinuität adäquat vermittelt werden kann. 

Für zukünftige Lehrer gilt es, sowohl den Übergang von der Schule zur Hochschule zu meistern, wie 

auch später den Wechsel von der Hochschule in die berufliche Praxis. Die unterschiedlichen 

Probleme und Herausforderungen der Transition kulminieren dabei in dem Themenbereich des 

Beweisens: 

The nature of proofs and proving at tertiary level, with its increased demand for rigour, constitutes a major hurdle 

for many beginning university students. At this level, constructing proofs involves understanding and using both 

formal definitions and previously established theorems, as weIl as considerable creativity and insight. 

Understanding and constructing such proofs entails a major transition for students but one that is often 

supported by relatively little explicit instruction. (Selden 2012, S. 392) 

Hier wird eine Entwicklungs- und Forschungsnotwendigkeit deutlich, welche auch Jahnke und Ufer 

(2015) als ein zentrales Forschungsdesiderat formulieren: 

Besonders die Studienanfangsphase in Studiengängen mit Schwerpunkt Mathematik stellt Studierende vor die 

Herausforderung, Verständnis für die Beweis- und Argumentationskultur der wissenschaftlichen Mathematik zu 

erwerben. Theoretisch fundierte und empirisch evaluierte Ansätze sind hier derzeit kaum verfügbar, haben jedoch 

das Potential für eine nachhaltige Unterstützungsmaßnahme zu Beginn des Studiums. (Jahnke & Ufer 2015, S. 

350) 

Im Folgenden werden zunächst die Übergangsproblematiken in der Mathematikausbildung 

dargestellt (1.1), da diese Problembereiche grundlegend für die weiteren Betrachtungen sind und das 

Spannungsfeld kennzeichnen, in der sich die vorliegende konstruktive Forschung bewegt. 

Anschließend werden verschiedene internationale Kurskonzepte für das Erlernen der Beweisaktivität 

herausgestellt und kritisch gewürdigt, wodurch bereits erste grundlegende Leitprinzipien für die 

Konzipierung und Weiterentwicklung der hier fokussierten Lehrveranstaltung abstrahiert werden 

können (1.2.1 und 1.2.2). In diesem Kontext ist auch das Leitbild der „Elementarmathematik als 

Prozess“ zu sehen (1.2.3), welches die Inhalte und Methoden der Lehrveranstaltung maßgeblich 



11 

 

beeinflusst hat. Die erhaltenen Ergebnisse bezüglich des skizzierten Spannungsfeldes der Forschung 

und der abstrahierten Leitideen für die Konstruktion der hier fokussierten Lehrveranstaltung werden 

in einem Zwischenfazit zusammengefasst (1.3). Zum Abschluss des Kapitels (1.4) werden das 

Forschungsanliegen und die Forschungsziele benannt, die Forschungsfrage formuliert und der Aufbau 

der vorliegenden Arbeit begründet dargestellt. 

1.1 Die Übergangsproblematik in der Mathematik und die doppelte 

Diskontinuität 
 

Die Mathematik, wie sie an der Hochschule unterrichtet und praktiziert wird, unterscheidet sich 

fundamental von der sogenannten Schulmathematik. Die Veränderungen, mit denen sich 

Studienanfängerinnen und Studienanfänger in einem mathematikhaltigen Studiengang bei Eintritt in 

die Universität auseinandersetzen müssen, umfassen u.a. die neuen Inhalte, verbunden mit einem 

neuen theoretischen Anspruch, die zu erreichenden Ziele, neue Darstellungsmittel (veränderte 

Sprech- und Schreibweisen) und neue Argumentationsweisen (Bauer & Partheil 2009; Biehler et al. 

2014; Hefendehl-Hebeker 2016; ein guter, die Literatur zusammenfassender Überblick über 

verschiedene Aspekte des Übergangs wird in Gueudet (2008) gegeben). Zu dieser ersten 

Übergangsproblematik tritt bei Lehramtsstudierenden eine zweite hinzu: der Übergang von der 

Universität in die spätere berufliche Praxis. Wenn Studierende die verschiedenen ‚Mathematiken‘ 

der Schule und der Hochschule als voneinander getrennte Welten wahrnehmen, kann dies dazu 

führen, dass sie später in ihrem eigenen Unterricht denjenigen reproduzieren, den sie selbst als 

Schüler erlebt haben. Felix Klein (1908) prägte für diese Gesamtproblematik den Begriff der 

„doppelten Diskontinuität“ (ebd., S. 1). Vom hochschuldidaktischen Standpunkt aus gilt es somit zwei 

Brückenschläge zu schaffen: einmal von der Schule zur Universität und weiter von der Universität 

zurück in die Schule.  

Diese doppelte Diskontinuität lässt sich im Besonderen im Themenfeld ‚Begründen und Beweisen‘ 

ausmachen: Das Beweisen spielt in der Schule eher eine untergeordnete Rolle, die hier geforderten 

prozessbezogenen Kompetenzen sind: Argumentieren und Kommunizieren (KMK 2012). Die 

Schulabgänger bringen aber dennoch bereits bestimmte Vorstellungen davon mit, wie ein Beweis 

‚funktioniert‘, was als ein solcher zu gelten hat und welche Funktionen er erfüllt. An der Hochschule 

lernen sie dann die ‚beweisende‘ Mathematik kennen und müssen sogenannte formale Beweise 

konstruieren. Doch diese Art des Beweisens kann schon allein aufgrund der abstrakten Darstellungen 

und formalen Ansprüche nicht ohne weiteres in den Schulunterricht übertragen werden. Somit sind 

die abgehenden Studierenden vor allem wieder an die typischen Begründungs- und 

Argumentationsformen der Schulmathematik gebunden, die sie selbst als Schüler erfahren haben. 

Eine weitere Problemlage, die durch die vermeintliche institutionelle und ausbildungsspezifische 

Sozialisation erzeugt wird, ist das unterschiedliche Verständnis der Wissenschaft bzw. des Fachs 

‚Mathematik‘, welches Lernende und Lehrende an den Bildungsinstitutionen haben. 

Wie Dörfler (2003, S. 154) betont, entstammen die meisten Konzepte der heutigen Schulmathematik 

ursprünglich den physischen Aktivitäten der uns umgebenden Realität. Somit gilt es, Hefendehl-

Hebeker (2014) zuzustimmen, wenn sie feststellt:  

 

This may happen in an intellectually demanding way, even with local deductions and rigorous reasoning, but on 

the whole the ontological connection to reality persists. Thus school mathematics in most cases does not exceed 

the conceptual level and the stage of knowledge of the 19th century. (Ebd., S. 26)  
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Im Gegensatz dazu ist die Wissenschaft Mathematik eine kreative und auf neue Erkenntnisse 

ausgelegte Geisteswissenschaft (etwa Heinz 2000). Doch Studierenden der Mathematik bleibt dieser 

Aspekt der Mathematik häufig verborgen: In den universitären Lehrveranstaltungen bewirkt die 

traditionelle Darstellungsfolge von Definition – Satz – Beweise im axiomatisch-deduktiven System 

eine Enthistorisierung des Wissens, wenn nicht gar eine Negierung des Entstehungsprozesses 

(Neubrand 1997). Die späteren Lehrer, die die Mathematik als axiomatisch-durchorganisierten und 

vorgefertigten Lerninhalt erfahren haben, werden vermutlich auch in ihrer Berufspraxis weniger die 

kreativen Momente der Wissenschaft beleuchten können (etwa Bender et al. 1999, S. 303f.; 

Beutelspacher et al. 2011, S. 11f.; Grieser 2015, S. 88ff.). Der kreative, forschende Aspekt der 

Mathematik ist dabei fundamental für ein sachgerechtes Verständnis der Wissenschaft, insbesondere 

des mathematischen Beweises, der zunächst aus Erkundungen und Vermutungen entsteht und als 

fertiges Produkt einen Forschungsprozess beendet und schließlich zur Systematisierung des Wissens 

beiträgt. 

 

Um diesen Übergangsproblematiken zu begegnen, werden in der Literatur verschiedene 

Maßnahmen für die universitäre Lehre empfohlen. Diese werden im Folgenden (nach Beutelspacher 

et al. 2011, S. 10ff.; Hefendehl-Hebeker 2013, S. 9ff.; Neubrand 2015, S. 146) paraphrasierend 

zusammengefasst: 

 

(1) Anknüpfen an schulische Vorerfahrungen1 

Durch das Anknüpfen an schulmathematische Vorerfahrungen kann die 

Hochschulmathematik sinnstiftend als Weiterführung und Vertiefung von Vorwissen erlebt 

werden.  

(2) Akzeptanz und produktive Nutzung von schulischem Vorwissen 

Damit eine Verbindung zwischen den ‚Mathematiken‘ der Schule und der Hochschule erlebt 

werden kann, darf nicht der Eindruck entstehen, dass mit dem Beginn der universitären 

Ausbildung alles vorhandene Schulwissen vergessen werden muss. Selbst bei einer deduktiv-

axiomatischen Neukonstruktion von mathematischen Inhalten kann Vorwissen weder negiert 

noch ‚abgeschaltet‘ werden. Schulisches Vorwissen muss akzeptiert und gleichsam produktiv 

genutzt werden, damit ein Anknüpfen an Vorerfahrungen (s.o.) überhaupt möglich werden 

kann. 

(3) Eventuelle systematische Aufarbeitung des notwendigen Vorwissens 

Wird an Vorwissen angeknüpft, so wird das Vorhandensein dieses Wissens zu einer 

Lernvoraussetzung. Entsprechendes Wissen muss daher systematisch aufgearbeitet werden. 

(4) Explizit-Machen der Unterschiede 

Studienanfängerinnen und Studienanfänger sind fachlich von der Schulmathematik 

sozialisiert worden, wodurch ihr Bild von Mathematik geprägt wurde. Die an der Universität 

auftretenden Unterschiede bzgl. der Wissenschaft Mathematik (s.o.), ihren Arbeitsweisen, 

Elaborationen etc. müssen expliziert werden, damit Lernende sich auf diese einstellen und 

nachvollziehen können.  

 

                                                           
1
 Innerhalb des ersten Kapitels werden verschiedene Leitprinzipien für die Gestaltung der hier fokussierten 

Lehrveranstaltung herausgearbeitet. Diese Leitprinzipien werden dabei durch Unterstreichung hervorgehoben 

und am Ende des Kapitels nochmal zusammengetragen. 
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(5) Einführen in die Arbeitsweisen der Hochschule  

Auf der methodischen Ebene müssen den Studierenden die veränderten Arbeitsweisen, 

Zielsetzungen (etwa der Inhalte und Aufgaben) und Ansprüche explizit verdeutlicht werden. 

Nur so können sie ihre Handlungs- und Arbeitsweisen an die neuen Anforderungen und 

Rahmenbedingungen anpassen und diesen genügen.  

(6) Vorbereitung auf Erfordernisse im Lehrberuf 

Studierende müssen in der universitären Ausbildung auf ihren späteren Lehrberuf 

vorbereitet werden. Dabei muss ein fachlicher „höherer Standpunkt“ (Klein 1908) als 

hilfreich und notwendig erlebt werden, „um schulmathematisches Wissen besser zu 

strukturieren, neu und vertieft zu verstehen und flexibel zu handhaben“ (Hefendehl-Hebeker 

2013, S. 9).  

(7) Schulbezug herstellen 

Übergeordnet gilt es, die Studierenden als ‚Lehrämtler‘ ernst zu nehmen und sie in diesem 

Selbstverständnis zu stärken. Gerade im Hinblick auf die zweite Diskontinuität darf eine 

Lehrveranstaltung für Lehramtsstudierende nicht als einfache verkürzte Fachveranstaltung 

auftreten. Durch die Beachtung der Adressatengruppe und ihrer berechtigten (fachlichen) 

Bedürfnisse werden spezielle Fokusse deutlich, denen es Rechnung zu tragen gilt. Natürlich 

liegt der Schwerpunkt einer universitären Fachveranstaltung im Lehramtsstudiengang nicht 

primär auf den konkreten, später in der Schule zu vermittelnden Inhalten. Trotzdem sollte 

ein Bezug zu der späteren beruflichen Tätigkeit deutlich werden.  

 

Um u.a. diese Maßnahmen in der Hochschullehre umzusetzen und auch um speziell die 

mathematischen Argumentationsformen der Hochschule zu vermitteln, wurden international von 

verschiedenen Fachmathematikern und Fachdidaktikern verschiedene Kurskonzeptionen entwickelt 

und durchgeführt. Auch im Zuge des Bologna-Prozesses und der damit verbundenen 

Bachelorisierung der Studiengänge entstanden neue Lehrveranstaltungen, die im Besonderen den 

Übergang zur Hochschulmathematik fokussieren und explorative und forschende Anteile enthalten. 

Entsprechende Kurskonzepte und Leitideen werden im folgenden Abschnitt dargestellt und 

reflektiert, um bereits erste Leitideen für die Ausgestaltung der hier thematisierten 

Lehrveranstaltung zu erhalten. 

 

1.2 Konzeptionen von Lehrveranstaltungen zur Einführung in die höhere 

Mathematik und der Fokus des Beweisens 
Aufbauend auf der erörterten Problemsituation der doppelten Diskontinuität werden in diesem 

Abschnitt verschiedene Ansätze vergleichend dargestellt und diskutiert, die den Übergang zur 

universitären (höheren) Mathematik fokussieren und die Lernenden in ‚das Beweisen‘ einführen 

sollen. Ein guter Überblick über verschiedene internationale Maßnahmen und Konzepte wird in 

Selden (2012) gegeben. Auf der Basis der zu erstellenden Synopse der Konzepte können erste globale 

Implikationen für die Konzeption der Lehrveranstaltung abstrahiert werden, welche das Themenfeld 

‚Begründen und Beweisen‘ vor dem Hintergrund der doppelten Diskontinuität adäquat vermitteln 

soll. In diesem Rahmen von Spannungsfeld und Leitideen kann schließlich das hier verfolgte 

Forschungsanliegen benannt und verortet werden.  

Im Folgenden wird zunächst das Konzept der traditionellen amerikanischen ‚transition-to-proof‘-

Kurse beschrieben, welche explizit das Beweisen thematisieren (1.2.1). Alternative problem-
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orientierte Konzeptionen (Moore Method und sogenannte ‚inquiry-based approaches‘) betrachten 

dagegen das Beweisen in einem größeren Zusammenhang als nützliches Erkenntnismittel innerhalb 

explorativer Forschungsprozesse und verfolgen nicht nur das Lernziel, einen Beweis korrekt 

aufzuschreiben, sondern thematisieren den gesamten Entstehungsprozess von Beweisen (1.2.2). In 

diesem Kontext sind auch die problemzentrierten Ausführungen von Pólya zu sehen, welche in 

neuerer Zeit durch D. Grieser in seinem Kurskonzept „Mathematisches Problemlösen und Beweisen“ 

(Grieser 2013) aufgegriffen wurden. Bedeutende Reformimpulse für die universitäre 

Lehrerausbildung in Deutschland, zunächst für das Lehramt an Grundschulen, wurden durch das 

‚elementarmathematische Forschungsprogramm‘ (Wittmann und Müller 1988) gegeben (1.2.3). Die 

damit verbundene Leitidee der Elementarmathematik als Prozess, in der das Beweisen sinnstiftend 

und verständig thematisiert werden kann, bildet eine grundlegende  Rahmenidee für die Gestaltung 

der in dieser Arbeit fokussierten Lehrveranstaltung. Nach der Darstellung dieser Grundkonzeption 

werden mit den verschriftlichten Kurskonzepten „Einführung in die Arithmetik“ von M. Neubrand 

und M. Möller (1990) sowie „Erlebnis Arithmetik“ von T. Leuders (2010) zwei exemplarische 

Konzepte besprochen, in denen fachliche Inhalte im Sinne des Leitbildes ‚Elementarmathematik als 

Prozess‘ dargeboten werden. 

1.2.1 Transition-to-proof-Kurse 

In den USA besuchen Studierende von mathematikhaltigen Studiengängen in den ersten beiden 

Semestern zunächst Veranstaltungen (etwa wie ‚Calculus‘), in denen nicht wie in deutschen 

Erstsemesterveranstaltungen eine axiomatische Theorie beweisend konstruiert wird, sondern in 

denen der Schwerpunkt eher auf Rechenverfahren (Ableiten, Integrieren etc.) gelegt wird. Um den 

Studierenden in den späteren Semestern den Einstieg in die höhere Mathematik zu erleichtern, 

werden in den USA so genannte transition-to-proof-Kurse angeboten, deren Teilnehmerzahlen meist 

zwischen 15 und 40 Studierenden liegen. Diese Kurse werden in der Regel nach Lehrbüchern 

gestaltet (etwa Dumas und McCarthy 2007, Fendel und Resek 1990 und Solow 1982), welche häufig 

einen ähnlichen Aufbau haben: Nach Behandlungen von Grundlagen der Mengenlehre und 

Funktionen folgen meist abstrakte Logik, Wahrheitswertetafeln und verschiedene Beweismethoden. 

Im Anschluss daran werden diverse, meist unzusammenhängende mathematische Sachverhalte 

bewiesen.  

Im Gegensatz zu der großen Verbreitung entsprechender Kurse in den USA existiert international nur 

wenig Forschung zu diesem Ansatz (Alcock & Weber 2010, Selden 2012 und Selden et al. 2015). 

Während Marty (1991) von dem Erfolg derjenigen Studierenden berichtet, die an seinem Kurs 

teilgenommen haben, zeugen andere Studien von Schwächen dieser Konzepte. Moore (1994) 

untersucht die Beweisproduktionen von sieben Teilnehmenden eines transition-to-proof-Kurses und 

subsumiert ihre grundlegenden Hürden unter drei Problembereiche: Mangelndes 

Konzeptverständnis der mathematischen Inhalte, Mängel in der Nutzung der fachmathematischen 

Sprache und Notation und Probleme dabei, einen Beweisanfang zu finden. Baker und Campbell 

(2004) berichten von den Problemen der Studierenden ihres Kurses, die zuvor erarbeiteten 

Grundlagen der Logik und erlernte Beweismethoden auf konkrete Problemstellungen zu übertragen. 

Vor diesem Hintergrund resümieren die Autoren: „While a solid understanding of logical arguments 

and their application to proof writing is imperative, it appears that too much emphasis on logic can 

perpetuate a problem/solution mentality.“ (Ebd., S. 351).  

Übergreifend wird kritisiert, dass mit dieser traditionellen Lehrkonzeption häufig nicht der 

gewünschte verständige Umgang mit Beweisen auf Seiten der Studierenden erreicht wird (Baker & 
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Campbell 2004, Alcock & Weber 2010, Moore 1994, Selden & Selden 2003). Aus der genannten 

Literatur können allgemeine Problembereiche dieser Kurskonzepte abstrahiert werden:  

(1) Die primäre Fokussierung auf Wahrheitswertetafeln, Aussagenlogik und 

Aussagenverknüpfungen negiert den Entstehungsprozess von Beweisen und begünstigt eine 

mechanische (syntaktische) Sicht auf das Beweisen.  

(2) Diese eingeschränkte Sichtweise auf das Beweisen geht damit einher, dass sich die 

Lernenden nicht ausreichend mit dem zu beweisenden Sachverhalt vertraut machen; es 

werden keine Beispiele betrachtet oder untersucht, um die Behauptung besser zu verstehen 

oder um eine Beweisidee ausmachen zu können. Dass aber gerade die vorgeschaltete 

Explorationsphase zum Verstehen einer Behauptung, für eine eventuelle Herausbildung eines 

Beweisbedürfnisses und zum Ausmachen einer Beweisidee unverzichtbar ist, wird in der 

fachdidaktischen Literatur vielfach betont (Boero 1999, Hsieh et al. 2012, Sandefur et al. 

2012).  

(3) Das Erlernen der Beweisaktivität an neuen Inhalten der Hochschulmathematik bedingt 

Lernanforderungen auf zwei Stufen. Die Lernenden müssen sich neben dem Lerninhalt 

‚Beweis‘ gleichzeitig mit neuen Konzepten und Inhalten der Hochschulmathematik (etwa 

Mengenlehre) auseinandersetzen. Die notwendige Konzentration auf die neuen Inhalte der 

Hochschulmathematik verstellt dabei die Sicht auf den Lerngegenstand ,Beweis‘. 

(4) Ein mangelndes Verständnis der fachmathematischen Sprache verhindert das 

Operationalisieren und Nutzen von Definitionen und Sätzen und erschwert eine korrekte 

Notation der Beweise. Maier (1999, S. 25f.) weist darauf hin, dass die Verwendung der 

mathematischen Fachsprache – neben dem Erlernen der Beweisaktivität - als ein eigener 

Lerngegenstand begriffen werden muss, da sich sonst entsprechende Probleme überlagern 

und häufig gegenseitig bedingen.  

(5) Die zu erarbeitenden Beweisaufgaben in meist unzusammenhängenden mathematischen 

Inhaltsbereichen begünstigen ein Verständnis von ‚Beweis‘ als künstliche Aufgabenform zur 

nachträglichen Verifikation für bereits als korrekt geltende Sachverhalte. Ein weiter gefasstes 

Verständnis von Beweis als Erkenntnis- und Verständnismittel im Rahmen mathematischer 

Theorien wird somit verhindert.  

Schließlich muss auch angemerkt werden, dass das amerikanische Vorbild der transition-to-proof-

Kurse so in Deutschland nicht umzusetzen wäre, da sich in den universitären Lehrveranstaltungen 

hierzulande (gerade zu Beginn eines Studiums) in der Regel weit über 40 Studierende befinden und 

somit diese Kurs- und Vermittlungsform so nicht ohne weiteres übernommen werden könnte. 

Positiv muss an dieser Art von Kursen zunächst gewürdigt werden, dass die Konstruktion von 

Beweisen mathematisch fundiert vermittelt wird; es werden die notwendigen Grundlagen 

(Aussagenlogik, Mengenlehre etc.) gelegt, um die verschiedenen Beweistypen (direkter Beweis, 

Beweis durch Kontraposition, …) fachlich fundiert verstehen zu können. In der deutschen 

Mathematikdidaktik hat sich für ein solches Vorgehen, in dem mathematische Sachverhalte 

Lernenden auf verschiedenen Stufen zugänglich gemacht werden, ohne diese dabei zu verfälschen, 

nach A. Kirsch der Begriff der „intellektuellen Ehrlichkeit“ (Kirsch 1976) in Anlehnung an Bruner 1973, 

S. 26f.; vgl. hierzu auch die Ausführungen in Kirsch (1977)) etabliert. Dieses Grundanliegen soll bzw. 

muss als Leitidee einer universitären Fachveranstaltung gelten. Weiter geschieht in diesen Kursen 

meist die Vermittlung neuer Inhalte, die den Studierenden das Zurechtkommen in den folgenden 

Lehrveranstaltungen erleichtern sollen. 
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1.2.2 Problemzentrierte Kurskonzepte 

Aufgrund der oben erörterten Probleme der traditionellen transtition-to-proof-Kurse wurde nach 

Alternativen für die Vermittlung der Beweisaktivität gesucht. Einen deutlich kontrastierenden Ansatz 

stellt die sogenannte Moore Method dar, die später als Modified Moore Method (MMM) zu 

allgemeineren problemzentrierten Kurskonzepten führte. Die Problemzentrierung mathematischer 

Aufgabenstellungen wurde stark von G. Pólya (1979) herausgestellt, dessen Herangehensweise an 

das mathematische Arbeiten und Problemlösen in neuerer Zeit durch D. Grieser (2013) für die 

Hochschulausbildung (gymnasiales Lehramt) adaptiert wurde. 

Ansätze aus den USA: Die „Moore Method“ und problemzentrierte Ansätze 

Eine alternative Unterrichtsmethode, um u.a. das Beweisen zu erlernen und als sinnvolle 

mathematische Tätigkeit zu erfahren, stellt die nach dem Mathematiker Robert Lee Moore benannte 

Moore Method dar (etwa Parker 2005, Coppin et al. 2009). In entsprechenden Kursen werden den 

Teilnehmenden nur die relevanten Definitionen und Sätze zur Verfügung gestellt, die Beweise 

müssen von den Studierenden - meist ohne weitere Hilfsmittel - selbst entwickelt werden. Die Moore 

Method war zunächst als eine generelle Kursform für das Mathematikstudium entwickelt worden. 

Dieses Unterrichtskonzept wurde als Modified Moore Method (MMM) weiterentwickelt und in Folge 

als ein speziell problemorientiertes Kurzkonzept zum Beweisen adaptiert (Smith 2005; Yoo 2008). In 

diesen problemzentrierten Kurskonzepten bilden gut ausgewählte Problemstellungen und/oder 

Explorationsaufträge den Ausgangspunkt für eigene Erkundungen und Lösungsansätze. Dieser 

Methodik liegt eine konstruktivistische Ansicht auf das Lernen zu Grunde:  

 

In a problem-based class, students develop their own mathematical knowledge while actively participating in the 

problem-solving activity. Instead of presenting formal mathematics or finished solutions of the problems, a 

teacher guides students’ learning by posing appropriate questions, initiating and facilitating mathematical 

discourse on their own solutions, and rephrasing students’ explanation in more mathematical terms. (Yoo 2008, S. 

35)  

 

Trotz der Vorteile der Moore Method für das Erlernen der formalen Beweisaktivität (etwa Jones 1977 

oder Renz 1999) weist Smith (2005) darauf hin, dass diese Methode bisher nur wenig evaluiert und 

beforscht wurde. In ihrer Fallstudie zeigt Smith (2005) deutliche Unterschiede zwischen 

Teilnehmenden von traditionellen transition-to-proof-Kursen und Teilnehmenden eines problem-

orientierten MMM-Kurses in Bezug auf Beweisverständnis und Beweisproduktion. Die 

Teilnehmenden des problemzentrierten MMM-Kurses fokussieren bei der Beweiskonstruktion mehr 

inhaltliche Aspekte und verfolgen stärker das erklärende Moment von Beweisen. Auch nutzen sie – 

im Gegensatz zu den Studierenden aus dem traditionellen Kurs – deutlich häufiger Beispiele, um die 

Problemsituation zu verstehen, sich einen Zugang zu einem Beweis zu verschaffen und um 

Argumente zu überprüfen. Auch Yoo (2008) konnte in ihrer Studie nachweisen, dass die 

Teilnehmenden ihres problemorientierten Kurses deutlich stärker im Hinblick auf ein gewünschtes 

Beweisverständnis profitieren als Teilnehmende einer traditionellen Kurskonzeption.  

Zu diesen Kurskonzepten muss generell die problemzentrierte Erarbeitung von Inhalten positiv 

hervorgehoben werden: Durch das Voranstellen von Problemsituationen bzw. Erkundungsaufträgen 

wird den Lernenden exemplarisches mathematisches Forschen im Kleinen ermöglicht. Gefundene 

Vermutungen zeichnen sich dann auch durch eine gewisse Unsicherheit bzgl. ihrer (Allgemein-) 

Gültigkeit aus. Das ermöglicht die Bildung eines weiteren Begriffsverständnisses von Beweisen, deren 

sinnstiftender Nutzung im mathematischen Arbeitskontext und begünstigt die Herausbildung eines 
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Beweisbedürfnisses. Dem Produkt ,Beweis‘ geht somit explizit der Prozess der Beweisfindung und 

Beweisentwicklung voraus; anschließende Notation und Bewertungen von Lösungsansätzen können 

dann von den Teilnehmenden erörtert werden. Verschiedene Fragen sind bei diesen Konzepten 

allerdings noch offen: Wodurch zeichnen sich ‚gute‘ Ausgangsfragestellungen aus und welche 

mathematischen Gebiete eignen sich für ein sinnstiftendes Erlernen der Beweisaktivität? Auch muss 

die Bedeutung der fachmathematischen Symbolsprache geklärt werden: Welche Normen gelten für 

die finale Notation von Beweisen? Wie kann bzw. soll in der aktiven Auseinandersetzung mit 

mathematischen Inhalten der Gebrauch der fachmathematischen Symbolsprache erlernt werden und 

welcher Stellenwert soll diesem zukommen? 

Beweisen bei Pólya und das Modul „Mathematisches Problemlösen und Beweisen“ von D. Grieser 

In seinem Buch „Vom Lösen mathematischer Aufgaben“ thematisiert G. Pólya (1979) die 

Lösungsprozesse bei sogenannten Problemaufgaben, also Aufgaben, für deren Lösung i.A. keine 

Lösungsroutine zur Verfügung steht. Im Zentrum der Ausführungen stehen Mittel und Methoden des 

Problemlösens, bezeichnet als „Heuristiken“ (ebd., S. 10). Neben seinen Ausführungen zu 

verschiedenen Heuristiken, wie etwa dem Rekursionsverfahren, sind vor allem seine 

Problemstellungen bemerkenswert, aus denen sich anschließende Erkundungen und Erkenntnisse 

ergeben. So wird z.B. das Rekursionsverfahren über die Geschichte des ‚kleinen Gauss‘ eingeführt, 

indem die Summe der ersten 20 natürlichen Zahlen über Paarbildung ermittelt wird. Diese Technik 

der Paarbildung wird dann verallgemeinert auf die Summe der ersten � natürlichen Zahlen 

übertragen und darüber hinaus auf die Summe der ersten � natürlichen Quadratzahlen und 

Kubikzahlen. Als allgemeines Rekursionsverfahren wird diese Technik dann im Kontext weiterer 

Fragestellungen verwendet. Es ist diese Betrachtung konkreter Fragestellungen und die daraus 

resultierenden übertragbaren allgemeinen Erkenntnisse und Heuristiken, die die Herangehensweise 

Pólyas kennzeichnet. In diesem Kontext muss auch die von Pólya (1969, S. 9f.) vorgenommene 

Unterscheidung von Formen des plausiblen Schließens und Formen des demonstrativen Schließens 

angeführt werden. Während das demonstrative Schließen sicheres Schlussfolgern im Sinne der 

Mathematik beschreibt, meint das plausible Schließen ein nicht sicheres, induktives Schlussfolgern. 

Das Beobachten von Eigenschaften und Auswirkungen von Operationen kann als 

Plausibilitätsbetrachtung die subjektive Überzeugung stärken, dass eine Behauptung gilt. Pólya stellt 

die Bedeutung des plausiblen Schließens für die mathematische Arbeit heraus und erweitert somit 

den Beweisprozess um das Verfolgen verschiedener Ideen und vermeintlicher Lösungsansätze und 

betont somit das kreative Moment des Problemlösens und Beweisens.  

Daniel Grieser entwickelte 2011 an der Universität Oldenburg eine Kurskonzeption zu dem Modul 

‚Mathematisches Problemlösen und Beweisen‘ für Lehramtsstudierende des gymnasialen Lehramts, 

welche sich stark an den Arbeiten von Pólya orientiert. In dieser Lehrveranstaltung wird laut Grieser 

explizit die Übergangsproblematik berücksichtigt: Elementare und intuitiv leicht zugängliche Inhalte 

sollen direkt an die Schulmathematik anschließen, bei neuen Inhalten soll zunächst auf Abstraktion 

verzichtet werden. Die verwendete Sprache knüpft an die Alltagssprache an, welche dann präzisiert 

und zur fachmathematischen Symbolsprache weitergeführt wird. Übergeordnet sollen die 

Studierenden durch eigene Erkundungen zur beweisenden Mathematik geführt werden und diese als 

lebendige Wissenschaft erfahren (vgl. Grieser 2015, S. 89ff.).  

Entsprechend der Arbeit von Pólya sind auch bei Grieser übergreifende mathematische Ideen 

(Rekursion, Vollständige Induktion, Graphen etc.) strukturgebend. Der Nutzen dieser Konzepte wird 
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anhand verschiedener Inhalte aufgezeigt. Die Erörterung von Aussagen, Quantoren, Implikation, 

Äquivalenzen und Negationen bereitet die Grundlage der Thematisierung von Beweisen als „logisch 

vollständige Begründung einer Aussage“ (Grieser 2013, S. 135ff.). Neben den allgemeinen 

Beweisformen direkter und indirekter Beweis, Widerspruchsbeweis, Beweis durch Gegenbeispiel und 

vollständige Induktion werden noch typische Beweismuster unterschieden: Beweise von Formeln, 

Existenzbeweise, Nichtexistenz- und Unmöglichkeitsbeweise. Auffallend ist hierbei, dass Grieser den 

Entstehungsprozess der Beweise explizit darstellt: Den Denkpausen zur eigenen Erarbeitung der 

Problemstellung folgen kommentierte Lösungsansätze. Erst am Ende dieses Prozesses wird der 

erarbeitete Beweis quasi in ‚Reinschrift‘ notiert. 

Bei Pólya und Grieser bilden gut gewählte Ausgangsfragestellungen die Startpunkte zu Erkundungen, 

in denen mathematische Strategien erlernt werden sollen, die anschließend auf weitere 

Problemstellungen übertragen werden. Ein zentraler Aspekt hierbei ist die Vermittlung von 

allgemeinen Heuristiken, mit denen allgemein Problemlöseaufgaben oder auch speziell 

Beweisaufgaben angegangen werden können. Wichtig ist hierbei die explizite Betonung der 

verschiedenen Phasen des mathematischen Erkenntnisprozesses: Exploration eines Sachverhaltes, 

Untersuchung von Gegebenheiten, Lösen des Problems und anschließende Rückschau. Während 

Pólya Lehramtsstudierenden des gymnasialen Lehramts das Problemlösen vermitteln will, steht bei 

Grieser die Hinführung zu den Beweismethoden der Hochschulmathematik und die Einführung in die 

Mathematik der Hochschule im Zentrum. Diese Vermittlung neuer Inhalte, die den Studierenden das 

Zurechtkommen in den folgenden Lehrveranstaltungen erleichtern soll, muss dabei hervorgehoben 

werden und soll im weiteren Verlauf dieser Arbeit als eine Richtlinie zur Gestaltung der hier 

fokussierten Lehrveranstaltung dienen. Offen bleiben jedoch die folgenden Fragen: Wie kann bei der 

Thematik des Beweisens an das schulische Vorwissen von Studienanfängerinnen und 

Studienanfängern angeknüpft werden? Wie wird die Verwendung der fachmathematischen 

Symbolsprache motiviert und vermittelt? Inwiefern werden Beweisformen vermittelt, die die 

Studierenden in ihrer späteren Berufspraxis verwenden können? Schließlich muss noch angemerkt 

werden, dass für die in dieser Arbeit adressierte Zielgruppe der Lehramtsstudierenden für Haupt-, 

Real- und Gesamtschulen die von Grieser vorgestellten Problemaufgaben schnell zu formal und 

abstrakt und daher zu schwer erscheinen. 

1.2.3 Das Leitbild ‚Elementarmathematik als Prozess‘ in der Lehramtsausbildung 

Die Inhalte und Vermittlungsformen der Mathematiklehrerausbildung wurden in der Vergangenheit 

besonders für das Lehramt an Grundschulen (etwa Bender et al. 1999; Müller et al. 2004; Wittmann 

& Müller 1988) und für Gymnasien/Gesamtschulen (etwa Ableitinger et al. 2013; Beutelspacher et al. 

2011; Kroll 1997) kritisch diskutiert. Die verschiedenen in diesen Kontexten erbrachten  

Argumentationsstränge lassen sich dabei in gewissem Maße auch auf das Lehramt für Haupt-, Real- 

und Gesamtschule übertragen. Es ist hierbei gerade die Kritik an der Grundschullehrerausbildung, 

aus der Implikationen für die Lehramtsausbildung für Haupt-, Real- und Gesamtschule abgeleitet 

werden können, da die universitäre Ausbildung der Lehrer der Sekundarstufe II heute noch ungleich 

stärker an der Ausbildung der Fachmathematiker orientiert ist (etwa Führer 1997). 

Der fachwissenschaftliche Anteil der Lehrerausbildung kann nicht separat für sich betrachtet werden, 

sondern muss gerade in Bezug auf seine Beziehung zum späteren Lehrberuf reflektiert werden: „Die 

Qualität der Ausbildung sollte man daran messen, wie gut sie den Menschen auf seinen Beruf 

vorbereitet“ (Kroll 1997, S. 87). Wittmann (2007) führt diesen Gedanken weiter aus: 
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Das Mathematikstudium und der Mathematikunterricht sind keine getrennten Welten. Im Studium wird nicht 

einfach Stoff aufgenommen, der gewissermaßen didaktisch neutral für pädagogisch-didaktische Unterrichts-

maßnahmen zur Verfügung steht. Im Studium werden zwangsläufig auch die Lehr-/Lernauffassungen [und das 

Mathematikbild, L.K.] der Studierenden geprägt, da sie naturgemäß sich selbst als Lernende und die Hochschul-

lehrer als Lehrende erfahren. Reproduktive Lehr-/Lernformen prägen den Studierenden daher Einstellungen und 

Verhaltensweisen auf, die für den Unterricht hinderlich sind. (Ebd., S. 421) 

 

Zwar bezieht sich Wittmann hier auf die Lehramtsausbildung für die Grundschule, doch können diese 

Aspekte, wie auch die folgenden, ebenso auf die Lehramtsausbildung für Haupt-, Real und 

Gesamtschule übertragen werden2. Übergeordnet kann festgehalten werden, dass eine 

Lehrerausbildung die Studierenden dazu befähigen soll, Unterricht im Sinne der Bildungsstandards zu 

gestalten. Hieraus folgt, dass eine Passung zwischen der Fachausbildung und der heutigen 

Vorstellung von Lehren und Lernen an der Schule hergestellt werden muss. Diese Passung wird 

allerdings durch verschiedene Faktoren an der Hochschule behindert. Dazu gehören u.a. die 

Orientierung an einem statischen Wissenschaftsbild, in der fertige, komprimierte Mathematik 

dargeboten wird, das Vorherrschen von reproduktiven Lehr- und Lernformen, die Vermittlung von 

Inhalten der Hochschulmathematik, die zu weit von der Schulmathematik entfernt sind, und die 

Verwendung und Vermittlung von mathematischen Ausdrucksmitteln, die ungeeignet für die 

Kommunikation mit Schülern sind (vgl. Kroll 1997, S. 87; Wittmann 2007, S. 421). 

 

Für die Konstruktion einer entsprechenden Lehrerausbildung, die den oben formulierten Ansprüchen 

genügt, wurden aus fachdidaktischer Perspektive verschiedene Maßnahmen gefordert (vgl. hierzu 

Bender et al. 1999, S. 304; Müller et al. 2004, S. 11; Wittmann 2007, S. 422). Diese in der 

aufgeführten Literatur genannten Aspekte werden im Folgenden zusammenfassend paraphrasiert: 

 

1. Die Lehramtsausbildung muss einen entsprechenden Anteil von Elementarmathematik 

beinhalten. Dies bietet den Studierenden das Feld, sich selbst mathematisch zu betätigen 

und reichhaltige Erfahrungen zu sammeln. Eventuell vorliegende Lücken im 

schulmathematischen Wissen erweisen sich (innerhalb eines gewissen Rahmens) bei 

entsprechenden Betätigungen nicht als hinderlich. Weiter erlangen sie unterrichtsrelevantes 

Fachwissen und die Relevanz der Inhalte wird leichter deutlich. 

 

2. Die Studierenden müssen zu einem sicheren Umgang mit nichtsymbolischen Darstellungen 

befähigt werden, der für die Kommunikation mit Schülern unerlässlich ist. 

 

3. Es gilt den Prozesscharakter der Wissenschaft herauszustellen, um eine genetische 

Sichtweise auf die Wissenschaft ,Mathematik‘ zu erlangen. Hierzu formulieren Bender et al. 

(1999): 

 

Lehramtsstudierende müssen die elementare Mathematik nicht als ein Fertigprodukt, sondern als eine Tätigkeit 

erfahren, die vom experimentierenden Handeln innerhalb sinnvoller mathematischer und realer Problemkontexte 

bis hin zum lokalen (und später auch globalen) Ordnen der dabei gewonnenen Erkenntnisse fortschreitet. 

Wichtiger als die Abarbeitung eines möglichst umfangreichen Stoffes ist daher in der Lehramts-Ausbildung die 

                                                           
2
 Vgl. hierzu Bender et al. (1999, S. 302; Hervorhebungen im Original): „Dabei kommt es uns nicht auf einzelne 

Regelungen an, sondern auf den Geist des Unternehmens. Dieser würde auch Studierenden mit Mathematik als 

Schwerpunktfach bis in die Sekundarstufe II gut anstehen. Deren viel intensivere fachmathematische 

Ausbildung erschöpft sich nämlich häufig in einem verdünnten Aufguß von sinnferner formalistischer 

Mathematiker-Mathematik.“ 
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Entwicklung von Verständnis und Selbständigkeit im selbsttätigen Umgang mit elementarer Mathematik: Die 

Studierenden müssen im Studium möglichst viel selber aktiv werden und Mathematik-Lernen an sich selbst als 

„konstruktiven und zugleich entdeckenden Prozeß“ erleben. (Ebd., S. 304; Hervorhebungen im Original) 

 

4. In diesem Kontext ist schließlich auch die Vermittlung von Meta-Wissen über Mathematik zu 

nennen (vgl. Kirsch 1980, S. 242; Hefendehl-Hebeker 1999 und 2015).  

Lehrende sollen nicht nur über ein bloßes Fachwissen verfügen, sondern auch über ein 

Wissen über die Lerninhalte. Was allgemein unter Metawissen verstanden werden kann, 

wird von der IDM-Arbeitsgruppe Mathematiklehrerbildung (1981) wie folgt formuliert:   

 

Unter "Wissen über Wissen" oder "Metawissen" werden dabei jene allgemeinsten 

erkenntnistheoretischen, wissenschaftsphilosophischen, weltanschaulichen, inhaltslogischen und 

inhaltspsychologischen Orientierungen verstanden, wie sie in impliziter Weise und nicht als Gegenstand 

einer ausgearbeiteten Theorie, nicht als Gegenstand der Philosophie als Profession, das Handeln 

desjenigen, der mit Wissen, in diesem Fall Mathematik, befaßt ist, regulieren. (Ebd., S. 259)  

 

Damit Lernende erfahren können, wie mathematisches Wissen entsteht, was diese Art der 

Wissensbildung auszeichnet und wo ihre Chancen und Grenzen sind, müssen Lehrende dazu 

in der Lage sein, „grundlegende Kategorien mathematischer Wissensbildung in elementarem 

Kontext zu erkennen, zu würdigen und auszuweisen.“ (Hefendehl-Hebeker 1999, S. 106). Ein 

Verständnis um die Genese des mathematischen Wissens und ihrer epistemologischen 

Charakteristika eröffnen die Perspektive einer genetischen Vermittlung von Mathematik. 

Dabei geht es auch um ein weiter gefasstes Bildungsideal: „Zum Verständnis eines Faches 

gehört Bewusstheit über dessen spezifische Denkweisen und die damit verbundenen Formen 

der Wissensbildung und des Zugriffs auf die Realität. Diese Bildungsanteile sollten bleiben, 

wenn die inhaltlichen Details vergessen werden.“ (Ebd., S. 110). 

 

Die Verbindung der Aspekte „Prozesscharakter“ und „Metawissen“ betont dabei die genetische Sicht 

auf das Lernen der Mathematik. Hierfür bieten sich elementarmathematische Anteile an, an und mit 

denen exemplarisch geforscht werden kann. In einem Prozess von Exploration, 

Hypothesengenerierung und Begründungen wird bereits ein adäquateres Bild von Mathematik 

angebahnt. Der Einbezug von inhaltlich-anschaulichen Darstellungen und inhaltlich-anschaulicher 

Beweise trägt zu einem vertieften und vernetzten Wissen bei und trägt zu einem sicheren Umgang 

mit nichtformalsymbolischen Darstellungen bei. Zu einem weiter gefassten (epistemologischen) 

Verständnis von Mathematik gehört dabei auch die Darstellung und Erörterung der Mathematik als 

eine axiomatisch-deduktiv geordnete Theorie.  

 

Bereits 1988 formulieren Wittmann und Müller das ‚elementarmathematische 

Forschungsprogramm‘, in dem sie einen entsprechenden Neuaufbau der Lehrerbildung fordern (s. 

auch Wittmann 1989a, S. 298ff.). Dort gehen die Autoren explizit auf die Rolle von Beweisen (im 

Kontext von Elementarmathematik) ein: 

 

„(1)  Im sozialen Kontext ‚Schule‘ besteht für das Lehren und Lernen von Mathematik eine andere  

  Verstehensgrundlage und ein anderer Kommunikationsrahmen als in der mathematischen Forschung.  

  Eine sinngemäße Übertragung von Beweisaktivitäten in die schulischen Rahmenbedingungen erfordert  

  daher eine Loslösung von formalen, deduktiv durchorganisierten Darstellungen der für die Schule  

  relevanten elementarmathematischen Gebiete zugunsten inhaltlich-anschaulicher Darstellungen.   

  Diese sind gekennzeichnet durch Einbettung in sinnvolle Kontexte, durch Entwicklung von  

  Motivationen, durch ein Vorgehen gemäß heuristischen Strategien, durch die Verwendung  



21 

 

  bedeutungshaltiger präformaler Darstellungen und durch entsprechende inhaltlich-anschauliche  

  Beweise. „Rettet die Phänomene!“ muß auch die Parole der Mathematikdidaktik sein. 

  (2)  Inhaltlich-anschauliche Beweise sollen in erster Linie dem Verstehen von Gesetzmäßigkeiten dienen  

  und müssen daher in den Lernprozeß der Schüler und ihre Verständigung untereinander eingebettet  

  werden. Lakatos’ Buch „Beweise und Widerlegungen“ (Lakatos 1979) bietet hierfür ein sehr schönes   

  Vorbild. 

  (3)  Die mathematische Ausbildung von Lehrerstudenten muß einen je nach Schulstufe angemessenen  

  Anteil von Elementarmathematik in inhaltlich-anschaulicher Darstellung enthalten, damit eine  

  brauchbare Grundlage für den Entwurf und die Umsetzung didaktisch begründeter  

  schulmathematischer Konzeptionen geschaffen wird. Zusammenhängende inhaltlich-anschauliche  

  Darstellungen elementarmathematischer Gebiete bieten den Studenten ein einschlägiges  

  Berufswissen, das um Größenordnungen effektiver ist als das aus formalen Darstellungen abzuleitende  

  „Hintergrundwissen“.“ (Wittmann & Müller 1988, S. 254) 

 

Im weiteren Verlauf der Diskussion (seit 1988) wurden verschiedene Versuche unternommen, quasi 

aus der Didaktik heraus denkend, die Fachmathematikausbildung Lehramtsstudierender neu 

aufzubauen. In dem Buch „Arithmetik als Prozess“ von Müller et al. (2004) werden verschiedene gute 

Umsetzungen dieses Ideals beschrieben. Als zwei weitergreifende Beispiele für solch eine didaktisch 

motivierte Vermittlung fachmathematischer Inhalte für Lehramtsstudierende werden im Folgenden 

die Konzepte „Einführung in die Arithmetik“ von M. Neubrand und M. Möller (1990) und „Erlebnis 

Arithmetik“ von T. Leuders (2010) skizziert. Neben einer Illustration möglicher Umsetzungen der oben 

aufgeführten Anforderungen an eine sinnstiftende Lehramtsausbildung geht es auch um die Frage, 

welche Aspekte dieser Konzepte für die hier thematisierte Fachveranstaltung (ggf. modifiziert) 

übernommen werden können. 

Die „Einführung in die Arithmetik“ von M. Neubrand und M. Möller 

Das Buch „Einführung in die Arithmetik“ von Neubrand und Möller (1990) ist aus einer  

Fachveranstaltung der Grundlagen der Arithmetik für Studienanfänger des Studiengangs „Lehramt 

der Primarstufe“ hervorgegangen. Zu ihrem Ansatz bemerken die Autoren: „Vielmehr dürfte es, 

gerade im Blick auf das Ziel des kommenden Unterrichts in der Primarstufe, von entscheidender 

Bedeutung sein, ein facettenreiches, lebendiges, auf Probleme vielfältiger Art bezogenes, offenes 

Bild mathematischen Arbeitens zu zeigen“ (Neubrand & Möller 1990, S. I).  

Bereits bei der Auflistung der behandelten „Themenkreise“ wird eine Abkehr von traditionellen 

fachlichen Inhalten und einer deduktiv-organisierten Strukturierung der Inhalte deutlich (ebd., S. II): 

- Verwendung von Zahlen in verschiedenen Situationen und zu verschiedenen Zwecken,   

auch einige Bemerkungen zur historischen Entwicklung des Zahlbegriffs    

- mathematische Darstellung von Zahlen, ihre Schreibweisen und die Rechenoperationen, die damit 

durchgeführt werden, 

- Kennenlernen von Strukturen, d.h. Regelmäßigkeiten, Ordnungen, internen Beziehungen, Zusammenhängen 

innerhalb des Bereichs der Zahlen 

Im Verlauf der Ausführungen wird in ausgewiesenen Abschnitten das Dargebotene regelmäßig 

reflektiert und gleichsam das Anschließende motiviert. Begründungen von mathematischen 

Zusammenhängen werden nicht notwendigerweise ‚formal‘ dargeboten, sondern bewegen sich 

explizit zwischen den Polen ,formal‘ und ,inhaltlich‘. Inhaltliche Begründungen werden dabei 

vornehmlich an geometrischen Punktmusterdarstellungen gegeben. Dies passt zu der generellen 

Ausrichtung des Buches, in dem durchgehend mathematische Inhalte auf verschiedene Weise 
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veranschaulicht3 werden. Hierzu passt auch, dass das gesamte Kapitel 4 („Zahlen und Muster“) dem 

Zusammenhang zwischen Arithmetik und Punktmusterdarstellungen (sogenannten figurierten 

Zahlen, etwa: Dreieckszahlen, Quadratzahlen, …) gewidmet ist. 

Neubrand und Möller (1990) nutzen elementarmathematische Sachverhalte der Arithmetik, um die 

u.a. von Wittmann und Müller formulierten Desiderate (s.o.) für eine neugedachte 

Lehramtsausbildung umzusetzen. Allgemeine Zusammenhänge und Sachverhalte werden an 

konkreten Problemsituationen bzw. Beispielbetrachtungen motiviert und abstrahiert, wobei die 

formalen Darstellungen durchgehend mit ikonischen Darstellungen verbunden werden. 

Retrospektive und prospektive Abschnitte ermöglichen eine Betrachtung der Inhalte auf einer 

Metaebene, in deren Kontext auch der Schulbezug der Inhalte deutlich gemacht wird. 

Hervorzuheben ist hierbei auch das Kapitel zum Zusammenhang zwischen Arithmetik und figurierten 

Zahlen: Durch die Betrachtung von Zusammenhängen zwischen den figurierten Zahlen wird es 

möglich, Forschung im Kleinen zu betreiben und die Prozesshaftigkeit der Wissenschaft Mathematik 

zu erfahren. 

T. Leuders „Erlebnis Arithmetik“ 

Leuders (2010) verschriftlicht mit seinem Buch „Erlebnis Arithmetik - zum aktiven Entdecken und 

selbstständigen Erarbeiten“ ebenfalls ein Vorlesungskonzept zu einer Fachveranstaltung der 

Grundlagen der Arithmetik. Neben den entsprechenden fachmathematischen Inhalten (Arithmetik, 

Kombinatorik, Beweistechniken etc.) werden auch heuristische Strategien und Metawissen über 

Mathematik (etwa, wie mathematisches Wissen entsteht) vermittelt. Ausgangspunkt der 

Ausführungen sind dabei Erkundungsaufträge, aus denen heraus Vermutungen gewonnen werden. 

Die Vermutungen werden dann als mathematische Behauptungen formuliert und anschließend 

bewiesen. Diese Erkundungen werden durch strategische Hinweise begleitet, welche starke 

Parallelen zu den Problemlöseheuristiken von Pólya (1967) aufweisen: (systematische) Betrachtung 

von Beispielen, Betrachtung von Teilproblemen, Suche nach Analogien etc. Im Kontext der 

Erkundungen wird das Beweisen als eine mathematikspezifische Arbeitsweise zur Absicherung einer 

Behauptung motiviert.  

Bei der Begründung von mathematischen Sätzen werden durch Leuders verschiedene Beweisformen 

auf verschiedenen Repräsentationsebenen angeboten; der Leser soll dabei zunächst selbst 

entscheiden, welche Beweise er als überzeugend, verständlich und korrekt einstufen würde. Das 

‚formale Beweisen‘ wird schließlich durch die Anmerkung eingeleitet, dass bei sogenannten 

anschaulichen Beweisen noch ein restlicher Zweifel an der Allgemeingültigkeit der Argumentation 

verbleiben könnte.  

Mit den formalen Beweisen wird bei Leuders der Abschnitt „Zahlenforschen und Beweisen“ beendet, 

in dem systematisch und exemplarisch die Wissensgenerierung in der Mathematik aufgezeigt wurde. 

Diese Erarbeitungsweise von Inhalten über Erkundungen, Vermutungen und Beweisen wird in den 

folgenden Kapiteln beibehalten und bewirkt eine aktive Auseinandersetzung mit den 

Themengebieten. Schließlich wird im achten Kapitel „Zahlen verstehen“ die zuvor angesprochene 

Axiomatik der Mathematik vertieft und die axiomatische Methode und Ordnung mathematischen 

Wissens thematisiert. 

                                                           
3
 An dieser Stelle wird der Begriff „veranschaulicht“ in einem gewissen Maß ‚naiv‘ verwendet. Eine genauere 

Erörterung von ‚Anschaulichkeit‘ wird in Abschnitt 8.3.5 erfolgen. 
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Leuders gelingt mit seinen angeleiteten Erkundungen, verbunden mit Exkursen und Reflexionen, eine 

Verzahnung von fachmathematischen Inhalten, Problemlösestrategien und Meta-Wissen über 

Mathematik. Durch die gut gewählten Beweisbeispiele, verbunden mit den Betrachtungsfokussen 

‚Überzeugung‘, ‚Verständlichkeit‘ und ‚Korrektheit‘, wird der Leser dazu angehalten, ein 

Beweisverständnis zu erörtern, in dem zentrale Momente, Funktionen und Fehlvorstellungen von 

Beweisen berücksichtigt werden. Die Motivation von formalen Beweisen – verbunden mit der 

angesprochenen Axiomatik der Mathematik - über potentiell, subjektiv verbleibende Zweifel an 

anschaulichen Begründungen, scheint möglich. Offen bleibt die Frage, inwieweit Studierende zu 

Beginn ihres Studiums die vielfältigen und komprimierten Aspekte der erörterten Beweis- und 

Begründungsformen überhaupt interpretieren, verstehen und akzeptieren können.  

Vor diesem Hintergrund verschiedener Beweisformen, verbunden mit den Aspekten Überzeugung, 

Verständlichkeit und Korrektheit, der Bedeutung bzw. Funktionen der Beweise in der Mathematik 

und der Bedeutung des axiomatisch-deduktiven Aufbaus entzündet sich schließlich die Frage, über 

welches Wissen im Kontext der Thematik ‚Begründen und Beweisen‘ ein Studierender (im 

vorliegenden Fall des Lehramts Mathematik für Haupt-, Real- und Gesamtschule) überhaupt verfügen 

soll? Anders formuliert: Was muss in einem entsprechenden Lehr-/Lernszenario unter einem zu 

erlangenden adäquaten Beweisverständnis gefasst werden? 

1.3 Zwischenfazit 
Der Übergang von der Schule zur Hochschule stellt für Lernende der Mathematik eine enorme Hürde 

dar. Probleme können hier auf verschiedenen Ebenen ausgemacht werden: Inhalte, 

Arbeitsmethoden, Zielsetzungen, Darstellung, Abstraktion, Lehr- und Lernmethoden unterscheiden 

sich fundamental von denjenigen der Schulmathematik. Der Einbezug der Gesamtproblematik der 

doppelten Diskontinuität für Lehramtskandidaten öffnet die Aufmerksamkeit für ein weiteres 

Problemfeld: das nötige Wissen für die spätere Lehrpraxis in der Schule. Die verschiedenen 

Problematiken bündeln sich in besonderem Maße in der Thematik ‚Begründen und Beweisen‘: 

Während in der Schule das explizite ‚Beweisen‘ stagniert, wird es in den Erstsemester-

veranstaltungen an Universitäten prominent behandelt und eine gewisse Vorbildung hierbei 

(mindestens implizit) vorausgesetzt. Auch können die Begründungsformen der Hochschulmathematik 

nur sehr begrenzt im Schulunterricht eingesetzt werden. 

Um dieser Problematik entgegenzuwirken, wurden international verschiedene Kurskonzepte 

entwickelt und durchgeführt. Doch dieses Problem lässt sich nicht durch das bloße Unterrichten von 

Beweistechniken beheben; für ein adäquateres Verständnis der Kulturtechnik ‚Beweis‘ im Kontext 

der Wissenschaft Mathematik ist eine Konzeption nötig, die das Beweisen sinnvoll und sinnstiftend in 

Explorations- und Erkenntnisprozesse integriert und somit gleichzeitig Mathematik als kreative und 

forschende Wissenschaft darstellt. In diesem Sinne wurde das „Elementarmathematische 

Forschungsprogramm“, formuliert in Wittmann und Müller (1988), herangezogen, um unter dem 

Leitbild „Elementarmathematik als Prozess“ weitere Richtlinien für die hier zu entwickelnde 

Lehrveranstaltung zu gewinnen.  

Die im Kontext der bisherigen Erörterungen herausgestellten ersten Leitprinzipien für die Gestaltung 

der Lehrveranstaltung „Einführung in die Kultur der Mathematik“ für Lehramtsstudierende für 

Haupt-, Real- und Gesamtschulen werden in der Abbildung 1 zusammenfassend dargestellt. 
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Vor dem Wissenshintergrund der Problematik der doppelten Diskontinuität, kulminiert in dem 

Bereich des Begründens und Beweisens, und der aus den verschiedenen Sichtweisen auf die 

universitäre Ausbildung gewonnenen Leitprinzipien für die hier thematisierte Lehrveranstaltung 

lassen sich nun das Forschungsanliegen und die Zielsetzung dieser Forschungsarbeit konkretisieren. 

1.4 Forschungsanliegen, Zielsetzung und Aufbau der Arbeit 
In diesem Abschnitt werden zunächst das Forschungsanliegen, die Zielsetzungen dieser Arbeit und 

die globale Forschungsfrage 1 formuliert (1.4.1). Anschließend wird der Aufbau der vorliegenden 

Arbeit begründet dargelegt (1.4.2). 

1.4.1 Forschungsanliegen, Zielsetzungen und Forschungsfrage 

Grundlage der vorliegenden Forschungsarbeit ist die von Rolf Biehler entwickelte und im 

Wintersemester 2011/12 zum ersten Mal durchgeführte Lehrveranstaltung „Einführung in die Kultur 

der Mathematik“. Das übergeordnete Forschungsanliegen dieser Arbeit lässt sich wie folgt 

formulieren: 

Die forschungsbasierte (Weiter-) Entwicklung einer Lehrveranstaltung, welche den 

Studierenden den Übergang von der Schulmathematik in die Mathematik der Hochschule 

erleichtern soll und hierbei in einem besonderen Maße das Themenfeld ‚Begründen und 

Beweisen‘ unter dem Aspekt der doppelten Diskontinuität fokussiert.  

Dabei soll ein Beitrag zu einer empirisch begründeten Instruktionstheorie geleistet werden, 

wie das Lernen in der Domäne „Begründen und Beweisen“ in einer universitären 

Erstsemesterveranstaltung gelingen kann. 

Abbildung 1: Erste Leitprinzipien für die Gestaltung der Lehrveranstaltung „Einführung in die Kultur der Mathematik“ 



25 

 

Hiermit verbunden ist die die Forschungsarbeit leitende Forschungsfrage [1]: 

„Wie kann im Rahmen einer universitären Lehrveranstaltung für Lehramtsstudierende (Haupt-, 

Real- und Gesamtschule) der Themenbereich ‚Begründen und Beweisen‘ vor dem Spannungsfeld 

der doppelten Diskontinuität adäquat vermittelt werden?“  

Um diese Forschungsfrage beantworten zu können, müssen wiederum die folgenden 

Forschungsziele erreicht werden: 

i. Die Entwicklung von Testinstrumenten, welche die Erforschung zentraler Aspekte zum 

Beweisen bei Lernenden ermöglichen. 

ii. Die Erforschung der Beweisvorstellungen, -kompetenzen und -einstellungen von 

Studierenden zu Beginn des Studiums (bzw. zu Beginn der Lehrveranstaltung). 

iii. Die Erforschung der Auswirkungen der Lehrveranstaltung auf die Beweisvorstellungen,            

-kompetenzen und -einstellungen der Teilnehmenden. 

1.4.2 Aufbau der Arbeit 

Ein theoretischer Fokus der vorliegenden Arbeit liegt auf dem Phänomen der doppelten 

Diskontinuität in der Lehramtsausbildung Mathematik und dabei im Speziellen auf der Thematik 

‚Begründen und Beweisen‘. In Kapitel 1 wurde bereits dargestellt, in welchem Spannungsrahmen 

eine Lehrveranstaltung gedacht werden muss, welche den Studierenden den Übergang von der 

Schulmathematik in die Mathematik der Hochschule erleichtern soll und in einem besonderen Maße 

das Themenfeld ‚Begründen und Beweisen‘ unter dem Aspekt der doppelten Diskontinuität 

fokussiert und welche grundlegenden Leitideen für ihre Konstruktion und Weiterentwicklung gelten.  

In Kapitel 2 werden die theoretischen Grundlagen für die Forschungsarbeit gelegt: Zunächst werden 

die zentralen Begriffe und Aspekte im Kontext der Thematik ‚Begründen und Beweisen‘ erörtert und 

die für diese Arbeit wichtigen empirischen Befunde aufgearbeitet und vergleichend diskutiert. Für die 

retrospektiven Analysen und die Weiterentwicklung der Lehrveranstaltung sind zwei Theorien 

leitend: die Theorie sozio-mathematischer Normen (Yackel & Cobb 1996) und die semiotische 

Sichtweise auf das Beweisen als diagrammatisches Schließen nach Pierce (etwa Hoffmann 2005, S. 

123ff.). Diese Theorien werden am Ende des zweiten Kapitels dargelegt und ihre Verwendung 

begründet. 

Die Forschungsmethode des Design-Based Research wird in Kapitel 3 beschrieben und als 

vorliegender Forschungsansatz legitimiert. Die Entwicklung der im Kontext dieser Studie 

verwendeten Testinstrumente zum Beweisen ist ein wesentlicher Bestandteil dieser Arbeit und wird 

im Rahmen des dritten Kapitels dargestellt. 

Die bereits in Kapitel 2 angesprochenen didaktisch-motivierten Beweisformen (operativer und 

generischer Beweis) stehen nicht isoliert für sich, sondern müssen im Kontext einer historischen 

Entwicklung mathematikdidaktischer Ideengeschichte verstanden werden. Für die Verwendung 

entsprechender Beweisformen in der Hochschullehre scheint es angebracht, genauer zu 

hinterfragen, in welchem unterrichtlichen Kontext und mit welchen Zielsetzungen diese 

Beweisformen von ihren ‚Urhebern‘ entwickelt wurden und welche etwaigen Fallstricke damit 

verbunden sein könnten. Diesen Fragestellungen wird in Kapitel 4 in Form einer historischen 

Aufarbeitung didaktischer Leitideen des Beweisens nachgegangen. Es stellt sich dabei auch die Frage, 
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welche (weiteren) Implikationen für den Einsatz entsprechender Beweisformen in der (Hochschul-) 

Lehre aus der historischen Betrachtung der Beweiskonzepte gezogen werden können. 

Ausgangspunkt der Weiterentwicklung der Lehrveranstaltung „Einführung in die Kultur der 

Mathematik“ ist die erste Version der Lehrveranstaltung, wie sie von Rolf Biehler entwickelt und im 

Wintersemester 2011/12 zum ersten Mal an der Universität Paderborn durchgeführt wurde. Im 

Sinne des Forschungsparadigmas wird beschrieben, wie die Lehrveranstaltung im Wechselspiel von 

Empirie, Theorie und Praxis in einem zyklischen Prozess über den Zeitraum von 2011 bis 2014 

weiterentwickelt wurde (Kapitel 5).  

Die finale (vierte) Version der Lehrveranstaltung und ihre Durchführung werden schließlich in Kapitel 

6 vorgestellt. 

Die Passung und der Nutzen der finalen Version der Lehrveranstaltung wurden im Rahmen einer 

Effektivitätsstudie untersucht. Die entsprechenden empirischen Studien werden in Kapitel 7 

dargelegt. Mithilfe dieser Ergebnisse wird es abschließend möglich, den letzten hier thematisierten 

Durchlauf der Lehrveranstaltung retrospektiv zu analysieren.  

In Kapitel 8 werden die in dieser Arbeit erzielten Ergebnisse in drei Bereichen zusammengefasst: 

Design-Ergebnisse, empirische Ergebnisse und Beiträge der Arbeit, die über die Entwicklung einer 

lokalen Instruktionstheorie hinausgehen. Im Rahmen des ersten Abschnitts wird die globale 

Forschungsfrage 1 in Form der Formulierung des geleisteten Beitrags zu einer lokalen und 

adressatenspezifischen Instruktionstheorie in der Domäne ‚Begründen und Beweisen‘ beantwortet. 

Im Anschluss daran werden kurz die in dieser Arbeit entwickelten Testinstrumente und die 

empirischen Ergebnisse aus der Effektivitätsstudie zur letzten in dieser Arbeit betrachteten 

Durchführung der Lehrveranstaltung im Wintersemester 2014/15 zusammengefasst. Schließlich 

werden im dritten Abschnitt weitere Beiträge der Arbeit herausgestellt, die über die 

Instruktionstheorie hinausgehen und als besonders wertvoll für die weitere Diskussion der Thematik 

erscheinen. Schließlich werden das gesamte Forschungsprojekt und die erzielten Ergebnisse kritisch 

reflektiert und Perspektiven für die weitere Forschung aufgezeigt. 

2. Theoretische Grundlagen 
 

In diesem Kapitel werden die theoretischen Grundlagen für die vorliegende Arbeit gelegt. Zunächst 

geht es hierbei um die Frage, was überhaupt unter einem Beweis zu verstehen ist (2.1.1) und was das 

Ideal eines formalen Beweises ausmacht (2.1.2). Diesem Ideal werden dann die in dieser Arbeit 

verwendeten Beweiskonzepte des operativen Beweises und des generischen Beweises 

gegenübergestellt (2.1.3). Als weitere wichtige Grundlagen für den Bereich des Beweisens werden 

das Attribut der Strenge (2.1.4), die Argumentationsgrundlage und das lokale Ordnen (2.1.5), das 

Konzept des Beweisbedürfnisses (2.1.6) und die verschiedenen Funktionen von Beweisen (2.1.7) 

erörtert. Schließlich werden die Zusammenhänge zwischen dem Erlernen der Beweisaktivität und 

dem Konzept der Selbstwirksamkeit (2.2.1) und den sogenannten ‚Einstellungen zur Mathematik‘ 

bzw. ‚Beliefs‘ zur Mathematik beleuchtet (2.2.2). Anschließend wird begründet dargestellt, was in der 

vorliegenden Arbeit unter Argumentation verstanden wird (2.3.1) und wie der Beweisbegriff in 

diesem Kontext eingeordnet wird (2.3.2). Entsprechende Darstellungen folgen zum 

Begründungsbegriff (2.3.3) und dem Verhältnis der drei Begriffe zueinander (2.3.4). 
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Es folgt eine Darstellung der empirischen Erkenntnisse aus der Literatur, die für die vorliegende 

Arbeit von besonderem Interesse sind. Hierbei geht es zunächst um die Beweiskompetenzen von 

Studienanfängern, ihre Vorerfahrungen mit Beweisen und ihre Ansichten zum Beweisen (2.4.1). Von 

Bedeutung ist hierbei weiter, was in der Literatur unter dem Komplex der ‚Beweisakzeptanz‘ 

betrachtet wird (2.4.2) und inwiefern der Zusammenhang von Einstellungen zur Mathematik und 

dem Beweisen bisher untersucht wurde.  

Der in den folgenden Kapiteln dargestellte Forschungsprozess im Sinne des Design-Based Research 

wird durch die Anwendung von zwei Theorien geleitet: Die Theorie des Beweisens als 

diagrammatisches Schließen im Sinne von Charles Sanders Peirce und die Theorie der sozio-

mathematischen Normen von Yackel und Cobb (1996). Diese beiden Leittheorien werden am Ende 

des Kapitels vorgestellt und ihre Passung und Anwendbarkeit für das vorliegende Forschungsprojekt 

erörtert. 

2.1 Der mathematische Beweis 

2.1.1 Der Beweisbegriff 

Der Beweis ist eines der konstituierenden Momente der Wissenschaft Mathematik und zugleich das 

Charakteristikum, welches diese von anderen Wissenschaften unterscheidet (etwa Heintz 2000). Was 

allerdings genau ein ‚Beweis‘ ist, oder was als solcher zu gelten hat, ist normativ schwer zu fassen. Als 

Ausgangspunkt für die vorzunehmende Begriffserörterung soll eine Definition von Jahnke und Ufer 

(2015) dienen, welche die charakteristischen Merkmale des Konstrukts ‚Beweis‘ umfasst: „Unter 

einem mathematischen Beweis versteht man die deduktive Herleitung eines mathematischen Satzes 

aus Axiomen und zuvor bereits bewiesenen Sätzen nach spezifizierten Schlussregeln“ (ebd., S. 331).  

Bereits an dieser Stelle wird eine erste Unterscheidung notwendig: Zunächst beinhaltet ‚Beweis‘ eine 

prozedurale Komponente; hierunter wird im Allgemeinen der gesamte Prozess der Beweisfindung, 

die Beweiserarbeitung und die schrittweise Darlegung des deduktiven Arguments verstanden. Als 

‚Beweis‘ wird allerdings außerdem das Produkt beschrieben, welches das finale Ergebnis des 

Beweisprozesses ist (s.u.). Im Folgenden wird, aufbauend auf dem obigen Zitat, ‚Beweis‘ als die 

schrittweise Darlegung eines deduktiven Arguments beleuchtet. Hieran wird sich eine Betrachtung 

des Phasenmodells des Beweisens von Boero (1999) anschließen, wodurch die Beweisdarlegung in 

einen größeren Zusammenhang der mathematischen Tätigkeit gestellt wird. 

Wie in dem obigen Zitat deutlich wird, wird innerhalb eines Beweises ein mathematischer Satz 

deduktiv hergeleitet, bzw. dessen Gültigkeit deduktiv nachgewiesen. Deduktive Herleitung meint 

dabei ‚notwendiges Schließen‘: der Nachweis, dass die Gültigkeit des mathematischen Satzes aus der 

Gültigkeit der Prämissen durch die Anwendung von Gesetzen (‚spezifizierte Schlussregeln‘) mit 

Notwendigkeit folgt. Als Prämissen dürfen innerhalb eines Beweises nur Sachverhalte verwendet 

werden, die entweder als Axiome als gültig vorausgesetzt oder bereits bewiesen worden sind.  

Einer solchen Darlegung eines (vollständigen) Beweises geht allerdings ein längerer (Beweis-) Prozess 

voraus. Boero (1999, S. 2) unterteilt diesen Beweisprozess in sechs verschiedene Phasen und legt 

somit ein idealisiertes Modell zum Beweisen als Grundlage für didaktische Überlegungen vor. Bei der 

Betrachtung dieses Modells werden die verschiedenen Aspekte deutlich, die den Beweisprozess als 

mathematische Tätigkeit konstituieren und somit auch Lernenden bewusst gemacht werden sollten. 

Aus diesem Grund wurden anhand des Phasenmodells von Boero u.a. heuristisch ausgearbeitete 
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Lösungsbeispiele zum Beweisen entwickelt, an denen Lernende Methoden- und Strategiewissen zum 

Beweisen erlernen sollten (vgl. Reiss & Renkl 2002; Reiss et al. 2008). 

Die von Boero unterteilten Stufen des Beweisprozesses sind (nach Boero 1999, S. 2): 

1. Entwicklung einer Vermutung aufgrund von Exploration und dem Herausfinden von 

Regelmäßigkeiten und ihren Entstehungsbedingungen 

2. Formulierung einer Behauptung („statement“) gemäß geltenden mathematischen Normen 

3. Exploration des spezifischen Gehalts und des Umfelds der These. In dieser Phase werden 

Zusammenhänge, Argumente, Heuristiken etc. für die zu zeigende Aussage gesucht. 

4. Auswahl von Argumenten und deren Aneinanderfügen zu einer Argumentationskette 

5. Aufschreiben des Beweises gemäß mathematischen Standards 

6. Die Annäherung an einen formalen Beweis („approaching a formal proof“) – Hiermit ist die 

(Um-) Gestaltung des Beweises hin zum formalen Ideal eines Beweises gemeint. Es wird 

allerdings angemerkt, dass diese Phase häufig nicht erreicht wird, da eine vollständige 

Formalisierung in der forschenden Mathematik keinen Nutzen habe (vgl. Abschnitt 2.1.2). 

Diese sechs vorgestellten Phasen laufen nicht notwendig linear ab, da etwa auch bei dem 

Aneinanderfügen von Argumenten zur einer Argumentationskette neue Einsichten gewonnen 

werden könnten, die dann zu einer Neukonstruktion des Beweises führen würden. Auch ist eine 

strikte Trennung der verschiedenen Phasen nicht möglich, da z.B. auch Erkenntnisse aus der 

Explorationsphase als Argumente in der vierten Phase dienen können.  

Bei der Betrachtung des Beweisprozesses wird deutlich, aus welchen verschiedenen Teilaspekten und 

Teilkompetenzen sich der Akt des Beweisens zusammensetzt. Selbst wenn eine zu beweisende 

Behauptung bereits gegeben ist, umfasst der vorzunehmende Beweisprozess die Exploration der 

Behauptung und ihres Umfelds, das Ausmachen von Zusammenhängen, die Auswahl von 

Argumenten und Heuristiken, die Organisation dieser Aspekte zu einer Argumentationskette und 

schließlich die Formulierung eines akzeptablen Beweises. 

Was allerdings genau unter einem akzeptablen Beweis zu verstehen ist, d.h. an welchen Normen sich 

eine Beweisende bzw. ein Beweisender zu orientieren hat, ist ein gewichtiges Problem, das auch in 

der aktuellen mathematikphilosophischen Diskussion weiter erörtert wird (vgl. die Beiträge in 

Aberdein und Dove 2013). Trotz der charakteristischen Merkmale des Beweisprozesses und der 

konstituierenden Merkmale der finalen Darlegung des Beweises, gibt es keine allgemein akzeptierten 

Kriterien dafür, wann ein Beweis ein Beweis ist (vgl. Hanna und Jahnke 1996, S. 878 und 884). Im 

Allgemeinen ist es der soziale Prozess der Akzeptanz innerhalb der mathematischen Community, die 

einen Beweis zu einem Beweis macht (Bender & Jahnke 1992, S. 261; Long 1986, S. 616; Manin 1977, 

S. 48). Vor diesem Hintergrund wird eine Grundproblematik der Beweisdidaktik deutlich, die Hersh 

prägnant formuliert hat: „We accuse students of the high crime of „not even knowing what a proof 

is“. Yet we, the math teachers, don’t know it either […]“ (Hersh 1997, S. 49).  

Aber wie kann man Lernenden das Beweisen unterrichten, wenn die Normen im engeren Sinne nicht 

eindeutig sind? In der Fachwissenschaft funktioniert dieser Akzeptanzprozess, weil in den 

verschiedenen Sparten der Mathematik allgemeiner Konsens über diesen herrscht. Wie kann aber 

ein Prozess der Beweisakzeptanz im Lernkontext gelingen? 
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Zunächst ist der Lehrende die Instanz, die als Repräsentant der mathematischen Community (Yackel 

& Cobb 1996) letztlich über die Akzeptanz eines Beweises entscheidet bzw. entscheiden kann. Doch 

werden Richtlinien benötigt, an denen Lernende ihre Beweiskonstruktionen ausrichten können. 

Stylianides (2007a und 2007b) entwickelt in einer Synthese der Sichtweise der Mathematikdidaktik 

und der Philosophie der Mathematik eine Definition für Beweise, in der verschiedene normative 

Aspekte in den Schulkontext relativierend übertragen werden (Stylianides 2007a, S. 291; 

Hervorhebungen im Original): 

Proof is a mathematical argument, a connected sequence of assertions for or against a mathematical claim, with 

the following characteristics:  

1. It uses statements accepted by the classroom community (set of accepted statements) that are true and 

available without further justification;  

2. It employs forms of reasoning (modes of argumentation) that are valid and known to, or within the 

conceptual reach of, the classroom community; and  

3. It is communicated with forms of expression (modes of argument representation) that are appropriate and 

known to, or within the conceptual reach of, the classroom community. 

Die Attribute „true”, „valid” und „appropriate” verweisen auf die (implizit) geltenden bzw. 

etablierten Normen in der entsprechenden mathematischen Community, hier der 

Klassengemeinschaft. Die Zugänglichkeit der verwendeten Argumente, Begründungsmuster und 

Darstellungen eröffnet die Möglichkeit einer Diskussion über die (soziale) Akzeptanz der Beweise 

auch innerhalb einer Lerngruppe. Dabei werden explizit verschiedene Darstellungssysteme 

zugelassen, in denen die Beweise konstruiert bzw. kommuniziert werden können. Bei dieser 

Definition bleibt allerdings offen, welche Rolle der Lehrperson als Repräsentant der 

fachmathematischen Community genau zukommt. Es stellt sich auch die Frage, wie nah die in der 

Klassengemeinschaft zu setzenden Normen an denen der fachmathematischen Community sein 

müssen bzw. sollen.   

In der Beweisdefinition von Stylianides wird deutlich, dass gerade auch aus didaktischer Perspektive 

die drei Aspekte: (1) zu verwendende Argumente, (2) Schlussweisen bzw. Beweistypen und (3) 

Darstellungsmittel, bei der Diskussion um das Beweisen zentral sind. Was die zugelassenen 

Schlussweisen betrifft, wurde bereits angemerkt, dass in Beweisen ausschließlich deduktive Schlüsse 

zugelassen sind. Für eine genauere Betrachtung von Schlussweisen innerhalb von Beweisen wird auf  

Walsch (1975, S. 29ff.) verwiesen. Die Verwendung bzw. Zugänglichkeit verschiedener Beweistypen 

(etwa Beweis durch Widerspruch oder Beweis durch Kontraposition) ist von dem jeweiligen 

Lernkontext (Klassen- bzw. Kursstufe, universitärer Studiengang etc.) abhängig. Die Bedeutungen der 

Aspekte ‚Argument‘ und ‚Darstellungsmittel‘ (bzw. Darstellungssysteme) in Zusammenhang mit ihren 

Tragweiten bedürfen einer theoretischen Betrachtung, da sie, wie sich zeigen wird, von zentraler 

Bedeutung für die hier erfolgende didaktische Diskussion des Konstrukts ‚Beweis‘ sind. Diese Aspekte 

können allerdings nicht in Bezug auf exakt ein theoretisches Konstrukt ‚Beweis‘ diskutiert werden, sie 

erlangen ihre Bedeutung erst im Kontext einer spezifischen Beweisform. Im Folgenden werden daher 

zunächst die Beweisformen formaler Beweis, operativer Beweis und generischer Beweis thematisiert, 

bevor nach einer Erörterung des Aspekts der Strenge eines Beweises auf die Bedeutung der 

Argumentationsbasis und des lokalen Ordnens und des Darstellungssystems eingegangen wird. 

2.1.2 Formale Beweise 

Das Idealbild eines (strengen) mathematischen Beweises ist der formale Beweis. Dieser zeichnet sich 

dadurch aus, dass er innerhalb eines formalen Systems (i.S. von Tarski 1944) stattfindet, in ihm 
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Symbole verwendet werden, die keine semantische Bedeutung tragen und als Schlussweisen nur 

spezielle logische Beziehungen zugelassen sind, welche sich auf Axiomen gründen (Hersh 1993, S. 

390; Larvor 2012, S. 717; Reid & Knipping 2012, S. 141f.).  

Die für das Konstrukt des formalen Beweises charakteristischen Momente: formales System, Axiom, 

Schlussweise und Satz, werden im Folgenden an einem Beispiel aus Hofstadter (2008) illustriert. (Die 

folgende Darstellung entspricht dabei ebd., S. 37ff., ist aber keine wortgetreue Wiedergabe.) 

In dem folgenden formalen System werden nur drei Buchstaben des Alphabets verwendet: „M“, „I“ und „U“. 

Innerhalb des Systems werden Zeichenketten betrachtet, die aus diesen drei Zeichen gebildet werden können, 

wobei die Reihenfolge der Zeichen beachtet wird. Beispiele für solche Zeichenketten sind etwa: MU oder UIIM. 

Zu Beginn besitzen wir ausschließlich die Kette MI. Wir dürfen die Ketten innerhalb des Systems aber nach 

gewissen Regeln umformen: 

Regel 1:  Wenn man eine Kette besitzt, deren letzter Buchstabe I ist, kann man am Schluss ein U zufügen. 

Beispiel: Aus MUUI kann man MUUIU erhalten. 

Regel 2:  Angenommen man hat Mx, wobei x als Platzhalter für ein Zeichen oder eine Zeichenkette steht. Dann 

kann man seiner Sammlung Mxx zufügen. Beispiel: Aus MIU kann man MIUIU erhalten. 

Regel 3: Wenn in einer der Ketten der Sammlung III vorkommt, kann man eine neue Kette mit U anstelle von III 

bilden. Beispiel: Aus MIIII kann man MIU oder auch MUI machen. 

Regel 4: Wenn UU in einer Kette vorkommt, kann man es streichen.    

 Beispiel: Aus MUUI kann man MI machen. 

Diese verschiedenen Regeln können nun nacheinander auf die Ausgangszeichenkette MI angewendet werden. 

Wann man welche Regel anwendet, bleibt dabei der agierenden Person überlassen. Wichtig ist nur, dass die 

betreffende Regel angewendet werden darf. Als mathematisches Problem könnte die Frage formuliert werden, ob 

es möglich ist, auf der Basis der formulierten Regeln die Kette MU zu erzeugen. 

Durch die Anwendung bestimmter Regeln werden neue Zeichenketten gebildet. Solch eine erhaltene 

Zeichenkette wird im Kontext formaler Systeme als ‚Satz‘ bezeichnet. Die Aufgabe der Erzeugung der Kette MU ist 

somit die Frage, ob MU ein Satz dieses formalen Systems ist. Der Beweis dieses Satzes besteht dann aus der 

Erzeugung der Zeichenkette nach bestimmten Regeln für das Rangieren von Symbolen, welche auch als 

‚Schlussweisen‘ bezeichnet werden. Eine Zeichenkette, die schon zu Beginn zur Verfügung steht und keiner 

Herleitung bedarf, wird dabei als Axiom bezeichnet. Anstatt von Beweisen wird in diesem Kontext auch von 

Ableiten gesprochen. Abschließend wird hier die Ableitung des Satzes MUIIU angegeben: 

1) MI  Axiom 

2) MII  aus 1) durch Regel 2 

3) MIIII  aus 2) durch Regel 2 

4) MIIIIU   aus 3) durch Regel 1 

5) MUIU  aus 4) durch Regel 3 

6) MUIUUIU  aus 5) durch Regel 2 

7) MUIIU   aus 6) durch Regel 4 

Entsprechende Beweisprodukte, die innerhalb eines formalen Systems erfolgen, in denen die 

verwendeten Symbole rein syntaktisch, also ohne semantische Bedeutung, verwendet und alle 

Beweisschritte bzw. Schlussweisen expliziert werden, welche wiederum auf Axiomen gründen, 

werden in der Mathematik als formale Beweise bezeichnet. Dieses Idealbild des formalen Beweises 

steht in der Tradition der formalen Logik der Philosophie (etwa Boole, Frege, ...) und ist schließlich in 

der Axiomatisierung der Mathematik begründet, welche von ihren Vertretern zu Beginn des 

zwanzigsten Jahrhunderts vollzogen wurde (etwa Hilbert & Bernays 1986, Whitehead & Russel 1978). 
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Die mathematische Tätigkeit wird hier als regelgeleitetes, syntaktisches Operieren mit Zeichen 

vollzogen, ohne dass eine semantische Bedeutung der Zeichen zum Tragen kommt. Allerdings geht 

mit jeder vollständigen Formalisierung dialektischerweise ein Bedeutungsverlust einher, auch die 

Verständlichkeit leidet unter der angestrebten ‚allumfassenden Transparenz‘ der Beweise. Bei der 

Betrachtung wirklicher formaler Beweise (vgl. etwa die Beweise in den Bänden der Principia 

Mathematica von Whitehead und Russel) wird schnell deutlich, dass dieses theoretische Idealbild 

mathematischer Beweise in der Praxis nicht nur nicht gewünscht, sondern, auch aufgrund der 

benötigten Länge, unerreichbar bzw. nicht möglich ist (Bender & Jahnke 1992, S. 162; Hersh 1993, S. 

390; Thurston 1994, S. 8ff.). 

Aufgrund dieser Unerreichbarkeit und Impraktikabilität formaler Beweise für die fachmathematische 

und unterrichtliche Praxis wurden in der Literatur verschiedene Formalitätsstufen von Beweisen 

unterschieden. Reid (2001) erweitert die von Lakatos (1978, S. 61ff.) herausgestellte Unterscheidung 

von präformalen, formalen und postformalen Beweisen, indem er die formale Stufe in semi-formal 

und vollständig formal unterteilt. Unter präformalen Beweisen werden dabei Beweisproduktionen 

gefasst, die in Notizen oder Konversationen auftreten, in denen implizit Vermutungen verwendet 

werden, und sich informeller Sprache und Notation bedienen. Die formalen Beweise sind dagegen 

die publizierfähigen Beweise. Im Gegensatz zu den vollständigen formalen Beweisen, in denen jeder 

Beweisschritt benannt und begründet wird, werden in semi-formalen Beweisen – wie es in der Praxis 

üblich ist – kleinere Lücken offen gelassen, deren Schließen dem Leser überlassen wird. Als 

postformale Beweise werden die Beweise der Metamathematik bezeichnet, wie etwa das 

Dualitätsprinzip der projektiven Geometrie oder Gödels Beweis über die formale Unentscheidbarkeit 

mathematischer Sätze. 

Vor dieser Unterscheidung wird deutlich, dass ‚formale‘ Beweise, wie sie etwa in der universitären 

Ausbildung auftreten, im engeren Sinne nicht als formale Beweise gelten können. So wäre etwa der 

folgende Beweis der Behauptung, dass die Summe von zwei ungeraden Zahlen immer gerade ist, ein 

semi-formaler Beweis im Sinne von Reid (2001). Innerhalb dieses Beweises werden u.a. nicht alle 

Schlussweisen expliziert (etwa der Schluss aus einer Existenzaussage bei der Einführung und 

Verwendung der Buchstabenvariablen � und � oder der finale implizite Schluss auf eine Allaussage), 

die Zeichen innerhalb des Beweises tragen noch semantische Bedeutung und es werden keine 

Bezüge zu Axiomen, Definitionen und Sätzen expliziert. Da solche oder ähnlich formulierte Beweise 

allerdings in der Praxis üblich sind, werden diese im Allgemeinen auch als formale Beweise 

bezeichnet. 

Beweis: 

Seien �, � ∈ ℕ	beliebige aber feste, ungerade Zahlen. Dann ist � = 2� − 1 für ein � ∈ ℕ und 

	� = 2� − 1 für ein � ∈ ℕ. Weiter gilt:  


2� − 1� + 
2� − 1� = 2� − 1 + 2� − 1 = 2� + 2� − 1 + 
−1� = 2� + 2� − 2	
= 2 ∙ 
� + � − 1�, mit 
� +� − 1� ∈ ℕ.  

Q.e.d. 

Es ist dabei offensichtlich, dass entsprechende Beweise erst ab einer gewissen Ausbildungsstufe im 

unterrichtlichen Kontext sinnvoll eingebunden werden können. Aus der Bemühung heraus, die 

mathematische Beweisaktivität Lernenden auf allen Stufen der Mathematikausbildung zugänglich zu 
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machen, wurden in der Mathematikdidaktik verschiedene Vorschläge unterbreitet, wie Lernende die 

mathematische Beweisaktivität am besten erlernen können bzw. sollen. Die Entwicklungsstränge und 

Querverbindungen und didaktischen Intentionen der von Biehler und Kempen (2016) so 

bezeichneten „didaktisch orientierten Beweiskonzepte“ werden in Kapitel 4 skizziert. Zwei dieser 

Beweiskonzepte sind dabei für die vorliegende Arbeit von besonderer Bedeutung, da die damit 

verbundenen Beweisformen im Kontext der Lehrveranstaltung explizit verwendet wurden: der 

operative Beweis und der generische Beweis.  

2.1.3 Operative und generische Beweise 

Im Kontext der Lehrveranstaltung wurden solche Beweisformen verwendet, die in der Literatur als  

‚operativer Beweis‘ und ‚generischer Beweis‘ bezeichnet werden, da diesen gewisse didaktische 

Vorzüge zugesprochen werden (s.u.). In der Vorlesung zu der Lehrveranstaltung wurde ab dem 

zweiten Durchgang die Bezeichnung ‚generischer Beweis‘ verwendet (s. Abschnitt 5.3.1). Diese 

beiden Beweisformen werden im Folgenden näher dargestellt. 

Operative Beweise 

Wittmann beschreibt 1985 das operative Prinzip der Mathematikdidaktik:  

Objekte erfassen bedeutet, zu erforschen, wie sie konstruiert sind und wie sie sich verhalten, wenn auf sie 

Operationen (Transformationen, Handlungen, …) ausgeübt werden. Daher muß man im Lern- oder 

Erkenntnisprozeß in systematischer Weise: (1) untersuchen, welche Operationen ausführbar und wie sie 

miteinander verknüpft sind, (2) herausfinden, welche Eigenschaften und Beziehungen den Objekten durch 

Konstruktion aufgeprägt werden, (3) beobachten, welche Wirkungen Operationen auf Eigenschaften und 

Beziehungen der Objekte haben (Was geschieht mit …, wenn …?)“ (Wittmann 1985, S. 8; Hervorhebungen im 

Original).  

Im Kontext entsprechender ‚operativer Unterrichtssettings‘ ergeben sich die sogenannten operativen 

Beweise als natürliche Form der Verifikation. Diese beschreibt Wittmann wie folgt: „Beweise, bei 

denen die den Objekten durch Konstruktion aufgeprägten Eigenschaften und Beziehungen sowie 

deren Verhalten bei Operationen explizit ausgenutzt werden, nennt man operative Beweise“ (ebd., S. 

11; Hervorhebung im Original).  

Zur Illustration dieses Prinzips wird ein operativer Beweis zu dem Satz, dass die Summe der ersten � 

ungeraden Zahlen gleich �² ist, aus Wittmann (1985, S. 11), in einen entsprechenden 

Unterrichtszusammenhang gestellt: 

Schülerinnen und Schüler können mit Steinen Quadratzahlen als wirkliche geometrische Quadrate 

legen. Dabei können sie feststellen, dass man zur jeweils nächsten Quadratzahl kommt, indem man 

oben rechts an ein Quadrat immer einen neuen Rand anlegt. Geht man von der �-ten zur 
� + 1�-
ten Quadratzahl, so wird ein Winkel der Form 2� + 1 angelegt (vgl. Abbildung 2). 

 

 

 

 

Abbildung 2: Abbildung zu einem operativen 
Beweis über die Summe der ersten n 
ungeraden Zahlen. (Abbildung ähnlich zu 
Wittmann 1985, S.  11) 
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Dazu heißt es bei Wittmann (ebd., S. 11): 

Dieser Rand, geometrisch eine Figur, die die Differenz zweier Quadrate … darstellt, heißt griechisch Gnomon. Bei 

den Quadratzahlen beträgt beim Übergang von �²	zu	
� + 1�² der Gnomon: � + � + 1 = 2� + 1. Die Reihe der 

Gnomone … besteht also aus den ungeraden Zahlen. 

1 4 9 16 25 36 49 64 81 100 121 144 … n²  (n+1)² 

3 5 7 9 11 13 15 17 19 21 23   2n+1  

  

Umgekehrt ergibt natürlich die Summierung der ungeraden Zahlen die Quadrate … Geometrisch entspricht dem 

die Herumlegung der Gnomone um die 1. 

Hier wird innerhalb eines ‚operativen Unterrichtssettings‘ die Auswirkung der Operation ‚Anlegen 

eines Randes‘ an eine geometrisch dargestellte Quadratzahl festgestellt, dass die jeweils nächst 

größere Quadratzahl entsteht. Dabei werden insbesondere die Eigenschaften der Quadratzahlen und 

ihrer Beziehungen untereinander deutlich. Aus diesen Beobachtungen der Auswirkungen der 

Operationen folgt dann die Erkenntnis, dass die Summe der ersten � ungeraden Zahlen gleich �² ist. 

Bei dieser Form der Verifikation stellt sich allerdings die Frage, wie von einem allgemeingültigen 

Nachweis der Behauptung gesprochen werden kann, wenn nur konkrete einzelne Fälle betrachtet 

werden. Wittmann und Ziegenbalg (2004) bemerken hierzu: 

Selbstverständlich wäre es kein stichhaltiger mathematischer Beweis, wenn die Richtigkeit der Behauptung nur 

für einige Fälle verifiziert würde. Dadurch, dass aber nicht auf einzelne Beispiele, sondern auf allgemein 

ausführbare Operationen und deren „Wirkungen“ zurückgegriffen wird, ist die Allgemeingültigkeit gesichert. Man 

nennt Beweise dieser Art deshalb operative Beweise. Die speziellen Punktmuster, die bei einem operativen 

Beweis gezeichnet oder angedeutet werden, haben selbst nur eine indirekte Bedeutung. Sie dienen lediglich zur 

Demonstration der allgemein ausführbaren Operationen und fungieren als Stellvertreter (Variable) für beliebige 

Muster. (Ebd., S. 38; Hervorhebungen im Original) 

Hierbei gilt es festzustellen, dass nach den Autoren die „allgemein ausführbare[n] Operationen und 

deren „Wirkungen““ (s.o.) die Allgemeingültigkeit des Beweises sichern. Gleichzeitig wird jedoch 

angemerkt, dass die konkreten Beispiele (hier Punktmusterdarstellungen) als Variable fungieren. Um 

die Allgemeingültigkeit dieser Beweise sicherzustellen, wird auch auf die Bedeutung des 

begleitenden Textes hingewiesen:  

 

Wir weisen noch einmal darauf hin, dass die Präsentierung eines suggestiven Musters als „Beweis ohne Worte“ 

nicht ausreicht. Es muss schon durch einen erklärenden Text sichergestellt werden, dass die zur Begründung von 

Beziehungen angewandten Operationen wirklich allgemein ausführbar sind. (Ebd., S. 42; Hervorhebungen im 

Original) 

 

Ein operativer Beweis besteht somit (mindestens) aus den Elementen: (i) allgemein ausführbare 

Operationen an konkreten ‚Objekten‘ (etwa Zahlenbeispiele oder Punktmusterdarstellungen), (ii) 

Feststellen und Nutzen der Auswirkungen dieser Operationen an den Objekten und (iii) 

Versprachlichung der allgemeingültigen Argumentation, die aus dieser Verbindung entspringt. 
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Wittmann beschreibt die charakteristischen Merkmale von operativen Beweisen wie folgt (Wittmann 

2014, S. 226): 

Operative Beweise: 

• ergeben sich aus der Erforschung eines mathematischen Problems, insbesondere im Rahmen eines 

Übungskontextes, und klären einen Sachverhalt, 

• gründen auf Operationen mit „quasi-realen“ mathematischen Objekten, 

• nutzen dazu die Darstellungsmittel, mit denen die Schüler auf der entsprechenden Stufe vertraut sind, und 

• lassen sich in einer schlichten, symbolarmen Sprache führen. 

 

Das operative Prinzip und damit verbunden auch operative Beweise haben in der deutschen 

Mathematikdidaktik viel Beachtung gefunden (vgl. etwa die Arbeiten von Hering 1980, 1986 und 

1988 oder die Beiträge in Müller et al. 2007). Wie Dreyfus et al. (2012, S. 204) ausführen, hat sich 

diese Begrifflichkeit in der internationalen Literatur allerdings nicht durchgesetzt. Selden (2005, S. 

138) weist in Anlehnung an Wittmann (2004) auf den Nutzen von „operative proofs“ für die 

Lehrerausbildung hin, merkt dabei aber eine Ähnlichkeit zum Konzept der generischen Beweise bei 

Rowland (2002a) an.  

Generische Beweise 

In der internationalen Diskussion hat sich der Begriff des generischen Beweises (‚generic proof‘) für 

die Bezeichnung von Beweisen durchgesetzt, die an konkreten Beispielen vollzogen werden, dabei 

aber den Anspruch auf Allgemeingültigkeit erheben können (vgl. Dreyfus et al. 2012, S. 204). 

Grundlegende Beiträge zu der Diskussion um generische Beweise sind u.a. in den folgenden Arbeiten 

enthalten: Bills und Rowland 1999, Dreyfus et al. 20012, Leron & Zaslavsky 2009 und 2013, Rowland 

1998, 2002a und 2002b. Die entsprechenden Grundlagen dieser Beweisform werden im Folgenden 

zusammenfassend dargestellt. 

Die Betrachtung eines (oder mehrerer) konkreter Beispiele kann dazu führen, dass dem Betrachter 

der Grund für die allgemeine Gültigkeit der Behauptung deutlich wird. Solche Beispiele, an denen 

eine beispielübergreifende und damit verallgemeinerbare Struktur deutlich wird, werden in der 

Literatur als „generische Beispiele“ bezeichnet (etwa Mason & Pimm 1984), wobei in der 

internationalen Diskussion bei der Begrifflichkeit nicht deutlich zwischen generischen Beispielen und 

generischen Beweisen unterschieden wird und auch die Verbindung „generic example proof“ 

verwendet wird (vgl. Karunakaran et al. 2014). Wie bereits bei den operativen Beweisen tritt auch 

hier die Frage auf, ob ein generisches Beispiel alleine bereits als allgemeiner Beweis ausreichen kann. 

Dabei wird das Problem deutlich, dass es vom Betrachter eines generischen Beispiels abhängt, ob 

dieser das generische Moment in diesem Beispiel (an-) erkennt oder nicht.  

Um die Unterscheidung von ‚bloßen’ Beispielbetrachtungen und generischen Beweisen zu 

unterstreichen, schlagen Biehler und Kempen (2013) die konzeptuelle Präzisierung vor, dass in 

generischen Beweisen zusätzlich zu generischen Beispielen die verallgemeinerbare Argumentation, 

die in den konkreten Beispielen deutlich wird, expliziert werden muss. Erst in dem Zusammenspiel 

von generischen Beispielen und explizierter Begründung wird dann von einem generischen Beweis 

gesprochen.  
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Zur Illustration dieses Konzepts wird ein generischer Beweis zu dem Satz angegeben, dass für alle 

� ∈ ℕ	die Summe � + �² eine gerade Zahl ist. 

Generischer Beweis 

4 + 4² = 4 ∙ 
1 + 4� = 4 ∙ 5,						7 + 7� = 7 ∙ 
1 + 7� = 7 ∙ 8,					14 + 14² = 14 ∙ 
1 + 14� = 14 ∙ 15	  
Wie in den Beispielen deutlich wird, lässt sich die Summe aus einer natürlichen Zahl und ihrem 

Quadrat immer schreiben als Produkt der natürlichen Zahl und ihrem Nachfolger. Bei zwei 

aufeinanderfolgenden natürlichen Zahlen ist immer genau eine Zahl gerade, somit werden immer eine 

gerade und eine ungerade Zahl miteinander multipliziert. Da das Produkt aus einer geraden und einer 

ungeraden Zahl immer gerade ist, muss das Ergebnis immer gerade sein. 

Operativen und generischen Beweisen ist somit gemein, dass sie mithilfe konkreter Beispiele geführt 

werden, bei denen durch Operationen bzw. Transformationen eine verallgemeinerbare Strategie 

deutlich wird, die begründet für eine allgemeingültige Verifikation der gegebenen Behauptung 

verwendet werden kann. Aufgrund der zentralen Beschäftigung mit konkreten ‚Objekten‘ wird meist 

auf eine symbolische Darstellung verzichtet. Während bei operativen Beweisen aber im eigentlichen 

Sinne das den operativen Beweis rahmende (operative) Unterrichtssetting von Bedeutung ist (vgl. 

Wittmann 2014, S. 226), steht das Konzept des generischen Beweises losgelöst für sich. Dreyfus et al. 

(2012) gehen näher auf die Beziehung zwischen operativen und generischen Beweisen ein: 

A generic proof aims to exhibit a complete chain of reasoning from assumptions to conclusion, just as in a general 

proof; however, as with operative proofs, a generic proof makes the chain of reasoning accessible to students by 

reducing its level of abstraction; it achieves this by examining an example that makes it possible to exhibit the 

complete chain of reasoning without the need to use a symbolism that the student might find incomprehensible. 

In other words, the generic proof, although using an (numerical) example, must not rely on any properties of this 

specific example. Consequently, many operative proofs are generic and vice versa. (Ebd., S. 204) 

 

Im Sinne der obigen Ausführungen gilt es Dreyfus zuzustimmen. Der Aspekt der verallgemeinerbaren 

Operationen in einem operativen Beweis kann als generisches Moment der Beispiele betrachtet 

werden, wodurch entsprechende operative Beweise auch als generische Beweise bezeichnet werden 

können. Entstammen andersherum generische Beweise einem operativen Unterrichtssetting und 

wird das generische Moment durch Operationen konstituiert, so können auch diese generischen 

Beweise als operative Beweise betrachtet werden. Dagegen lassen sich aber auch generische 

Beweise ausmachen, deren generisches Moment nicht auf Operationen (i.S. von Wittmann, s.o.) 

basiert und die daher nicht als operative Beweise bezeichnet werden können. Ein Beispiel hierfür ist 

der Widerspruchsbeweis für die Irrationalität von √2	über den Widerspruch zu der Annahme, dass 

√2 als vollständig gekürzter Bruch dargestellt werden könne. Dieser Beweis kann als generischer 

Beweis für den Satz betrachtet werden, dass die Quadratwurzel einer Primzahl immer irrational ist 

(vgl. Tall 1979). 

Vom Einsatz generischer Beweise wird vor allem in der Hochschulausbildung berichtet (vgl. Bills & 

Rowland 1999; Leron & Zaslavsky 2009 und 2013; Malek & Movshovitz-Hadar 2009 und 2011; 

Rowland 1998, 2002a und 2002b), sie finden aber auch in der Schulmathematik Verwendung (vgl. 

Karunakaran et al. 2014; Stylianides 2010). In der aufgeführten Literatur werden dieser Beweisform 

verschiedene Vorteile zugesprochen, die im Folgenden zusammenfassend dargestellt werden:  

1. Generische Beweise ermöglichen die Konstruktion allgemeingültiger Beweise ohne die 

Verwendung fachmathematischer Symbolsprache. 
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2. Durch generische Beweise wird die Untersuchung von Beispielen explizit in den 

Beweisprozess mit einbezogen, was auch zu einem besseren Verständnis des zu 

beweisenden Sachverhalts führen kann (s. Alcock 2004; Sandefur et al. 2012). Gleichzeitig 

kann dabei der Unterschied von Beweisen zu bloßen Beispielüberprüfungen herausgestellt 

werden (s. Leron & Zaslavsky 2013, S. 27). 

3. Generische Beweise gelten als besonders gut ‚erklärende‘ Beweise (s. Hemmi 2006, S. 44). 

4. Im Kontrast von generischen Beweisen zu formalen Beweisen können die Vorteile und der 

Nutzen der fachmathematischen Symbolsprache herausgestellt bzw. erfahren werden. 

Gleichzeitig sind mit entsprechenden Beweisen, die an konkreten Beispielen geführt werden, aber 

auch verschiedene Probleme verbunden:  

1. Wie kann sichergestellt werden, dass Lernende wirklich das generische Moment erkennen 

und den Beweis nicht als bloße empirische Verifikation falsch verstehen?  

2. Woher soll ein Betrachter überhaupt wissen, für welchen Aspekt die gegebenen Beispiele 

überhaupt exemplarisch stehen sollen? 

3. Welche Argumente sind innerhalb von generischen Beweisen überhaupt zugelassen? Und 

damit einhergehend die Frage, wie entsprechende Beweiskonstruktionen überhaupt 

propädeutisch fungieren können, wenn ein expliziter Bezug auf mathematische Sätze oder 

Definitionen dabei im Allgemeinen nicht gefordert wird? 

Diese Probleme müssen dabei als noch offene Fragen für die mathematikdidaktische Forschung 

betrachtet werden4. 

Die Frage, welche Argumente innerhalb entsprechender Beweise zugelassen werden, bzw. auf 

welche Argumentationsbasis sich der Beweiskonstrukteur überhaupt berufen kann, sind dabei 

Aspekte der häufig geforderten ‚Strenge‘ von Beweisen. Dieser Aspekt von Beweisen wird im 

Anschluss erörtert. 

2.1.4 Strenge beim Beweisen 

‚Strenge‘ ist ein Attribut, welches als notwendiges Kriterium für die Korrektheit und Gültigkeit 

mathematischer Beweise gefordert wird. Was allerdings genau ein strenger Beweis ist, verbleibt 

meist implizit. Freudenthal (1973) umschreibt den Begriff wie folgt: 

Die Mathematik hat vor allen anderen Geistesübungen jedenfalls den Vorzug, daß man da von einer Aussage 

sagen kann, ob sie richtig oder falsch ist. […] Das alles kommt daher, daß eben keiner Wissenschaft sich eine so 

stark deduktive Struktur aufprägen läßt wie der Mathematik. Man weiß in der Mathematik nicht nur ob ein 

Resultat richtig, sondern sogar – oder eigentlich nur – ob es richtig begründet ist. Das nennt man dann Strenge. 

(Ebd., S. 139) 

Dieser ‚strenge‘ Beurteilungsprozess einer Aussage wird deutlich, wenn man Jahnke (2010) folgt: 

Das bekannteste ist das Paradoxon von Achilles und der Schildkröte, demzufolge ein schneller Läufer einen 

langsamen Läufer nicht überholen könne. Um ein solches Paradoxon zu verstehen und zu würdigen, ist eine 

bestimmte geistige Einstellung notwendig […]. Man weiß ja, dass Achilles die Schildkröte überholt. Davon darf 

                                                           
4
 Im Rahmen der Lehrveranstaltung „Einführung in die Kultur der Mathematik” wurde diesen Problemen u.a. 

durch die Einführung der Norm begegnet, dass in einem generischen Beweis das generische Moment immer 

expliziert werden muss (s. Abschnitt 5.3.1). Dabei werden alle Argumente zugelassen, die als ‚intuitiv-einsichtig‘ 

gelten können. Damit stehen nicht die Argumente selbst, sondern deren Verbindung zu einem generischen 

Beweis im Vordergrund. 
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man sich aber nicht ablenken lassen, sondern muss seinem eigenen Denken vertrauen und den in den 

Voraussetzungen angelegten Gedankengang bis zu Ende fortführen. In der Mathematik wird diese Einstellung mit 

dem Begriff ‚Strenge’ bezeichnet.  (Ebd., S. 55) 

Strenge meint das Festhalten am zuvor aufgestellten bzw. konstruierten mathematischen Modell, 

das im idealen Fall durch ein formalisiertes System konstituiert wird. Innerhalb dieses Modells dürfen 

nur zugrunde gelegte Axiome und bereits bewiesene Sachverhalte als Argumente und logisch 

korrekte Schlüsse verwendet werden. Neben diese formalen Aspekte tritt dabei noch eine sozial-

kulturelle Dimension: die Entsprechung der aktuell gültigen Normen der jeweiligen 

fachmathematischen Community. 

Die Vorstellung vollkommener mathematischer Strenge ist parallel zu dem Ideal der vollständig 

formalisierten Theorie zu begreifen: „Thus, the idea of rigour implies both working in the formal 

mode with uninterpreted concepts and the completeness of deduction” (Bender & Jahnke 1992, S. 

261). 

Aus der Unangemessenheit vollkommener formaler Beweise für die Forschungs- und 

Unterrichtspraxis (vgl. Abschnitt 2.1.2) resultiert eine praxisorientierte Adaption von ‚Strenge‘: Die 

Möglichkeit, ‚strenge‘ Beweise im (Schul-)Unterricht auch ohne eine explizit zugrunde gelegte 

axiomatische Struktur durchzuführen, wird durch das Phänomen der lokalen Ordnung (vgl. Abschnitt 

2.1.5) ermöglicht (Freudenthal 1963 und 1973). Vor diesem Hintergrund stellt sich aber die Frage, 

wie bzw. inwiefern Lernende den Aspekt der Strenge lernen können. Hierfür gibt Freudenthal einen 

ersten Ansatz:  

Es ist doch kaum zweifelhaft, daß der Schüler mathematische Strenge nicht anders lernen soll als Mathematik 

überhaupt: durch Nacherfindung. Und auch dies geschehe auf verschiedenen Stufen.  (Freudenthal 1973, S. 140). 

Strenge dient dazu, zu überzeugen, und fertige Mathematik überzeugt nicht. Um in der Strenge fortzuschreiten, 

muß man an der Strenge, die man im Augenblick pflegt, erst einmal zweifeln. Ohne diesen Zweifel hat man wenig 

daran, sich höhere Maßstäbe von Strenge auferlegen zu lassen. (Ebd., S. 142). 

Es folgt aus didaktischer Sicht, dass das ‚strenge‘ Arbeiten auf einer Stufe nur in Verbindung mit einer 

Wertschätzung derselben erlernt werden kann: Der Zweifel an der Aussagekraft einer Begründung 

auf einer Stufe der Strenge eröffnet die Möglichkeit zur Progression. Die Wertschätzung einer 

‚strengen‘ Theorienutzung ist hierbei im Kontext der zu erreichenden Ziele eines Beweises zu 

betrachten. Wie weiter unten noch ausgeführt werden wird, liegen diese Ziele auch in der 

(subjektiven) Überzeugung und dem Verständnis eines Sachverhalts. Somit ergibt sich auch eine 

funktionale Deutung der Strenge, die Hanna (1997) wie folgt auslegt:  

 

Rigour is a question of degree in any case. In the classroom one need provide not absolute rigour, but enough 

rigour to achieve understanding and to convince. An argument presented with sufficient rigour will enlighten and 

convince more students, who in turn may convince their peers. It is the teacher who must judge when it is 

worthwhile insisting on more careful proving to promote the elusive but most important classroom goal of 

understanding. (Ebd., S. 183) 

 

Dabei muss angemerkt werden, dass diese Sicht aus propädeutischer Perspektive diskussionswürdig 

ist. Zum einen erscheint es problematisch, den Grad an Strenge (und damit den Beweisbegriff) an 

den Aspekten ‚Verständnis‘ und ‚Überzeugung‘ auf Schülerseite auszurichten. Im Sinne Freudenthals 

soll der Grad der Strenge im unterrichtlichen Geschehen so lange aufrechterhalten werden, bis 

begründeter Zweifel an diesem aufkommt (s.o.). Der in einem entsprechenden Maße objektive 
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Nachweis der Gültigkeit eines Satzes bildet die Referenz für Strenge und nicht das subjektive 

Empfinden nach Verständnis und Überzeugung, was u.U. auch durch bloße empirische Argumente 

erreicht werden kann5. Durch die funktionale Ausrichtung an Verständnis und Überzeugung rückt der 

hier vorliegende Beweisbegriff stark an den allgemeineren Argumentationsbegriff heran, wie er in 

Abschnitt 2.3.1 dargelegt wurde. 

 

2.1.5 Die Argumentationsgrundlage beim Beweisen und das lokale Ordnen 

Die Argumentationsgrundlage mathematischer Beweise wird durch die Axiome und Schlussregeln 

gebildet, die das jeweilige rahmende mathematische System konstituieren. Des Weiteren können im 

Rahmen von Beweisen Sätze verwendet werden, die auf Grundlage der Axiome bereits bewiesen 

worden sind. Wird im unterrichtlichen Geschehen aber kein axiomatischer Aufbau der Mathematik 

betrieben – wie es in der Schule auch nicht möglich ist –, so stellt sich die Frage, was als gültige 

Argumentationsgrundlage beim Beweisen gelten kann. 

Im schulischen Kontext können Argumente nicht bis auf zu Grunde gelegte Axiome zurückgeführt 

werden; das Verständnis des Beziehungsgefüges innerhalb des aktuell fokussierten und damit 

überschaubaren Feldes ist dennoch wünschenswert, wenn nicht aus propädeutischer Sicht 

notwendig. Freudenthal entwickelte aus dieser Problematik heraus das Konzept des lokalen Ordnens: 

Es blieb eben nichts anders übrig, als die Wirklichkeit zu ordnen, Beziehungsgefüge herzustellen und sie bis zu 

einem Horizont der Evidenz zu führen, der nicht genau festgelegt und recht variabel war. Ich habe diese Tätigkeit 

die des lokalen Ordnens genannt. (Freudenthal 1963, S. 6; Hervorhebungen im Original) 

  

Das lokale Ordnen (eines Feldes) meint eine Analyse der Begriffe und Beziehungen im spezifischen 

Umfeld der aktuellen mathematischen Tätigkeit bis zu einer „recht willkürlichen Grenze, sagen wir, 

bis zu dem Punkte, wo man den Begriffen mit dem bloßen Auge sieht, was sie bedeuten, und von den 

Sätzen, daß sie wahr sind“ (Freudenthal 1973, S. 142). 

Stein (1986) unterscheidet verschiedene ‚Beweiskonzepte‘ (und damit verbundene Niveaustufen) 

und führt dabei das von ihm so bezeichnete Niveau der lokal geordneten Theorie näher aus: Die 

verwendete Sprache lehnt sich meist an die Umgangssprache an und orientiert sich an dem 

betrachteten mathematischen Teilgebiet. Axiome werden nicht explizit angegeben, werden aber 

implizit als inhaltlich klar übernommen. Es werden nur die unbedingt notwendigen Begriffe definiert, 

was auch implizit aus der Bedeutung der verwendeten Begriffe heraus geschehen kann, und an die 

Schlussregeln und Beweise werden meist keine formalen Ansprüche angelegt. Auch können 

Hilfssätze verwendet werden, die intuitiv als korrekt gelten und nicht explizit vorher bewiesen 

wurden. Selbst die implizite Verwendung bestimmter Sachverhalte ist hier möglich (vgl. hierzu ebd., 

S. 12). 

Aus didaktischer Perspektive stellt sich allerdings die Frage, wie explizit die Argumentationsgrundlage 

gemacht bzw. das lokale Ordnen betrieben werden soll. Damit hängt auch unmittelbar die Frage 

zusammen, ob innerhalb eines Beweises nur Sachverhalte verwendet werden dürfen, die bereits als 

‚gültig‘ (bzw. ‚wahr‘) deklariert worden sind, oder ob jegliches intuitiv-korrekte Wissen eingebracht 

werden darf. 

                                                           
5
 „In class, students are all too easily convinced! Two special cases do it.” (Hersh 1997, S. 59) 
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2.1.6 Beweisbedürfnis 

Unter dem Begriff ‚Beweisbedürfnis‘ fasst man im Allgemeinen die „Einsicht des Schülers in die 

Notwendigkeit, daß eine mathematische Aussage […] bewiesen werden muss“ (Winter 1983, S. 64). 

Diese ‚Einsicht‘ umfasst sowohl objektive als auch subjektive Momente: Das objektive 

Beweisbedürfnis ist eine kognitive Angelegenheit: Der Lernende versteht, dass ein mathematischer 

Satz innerhalb eines bestimmten Kontextes eines Beweises bedarf. Dagegen meint das subjektive 

Beweisbedürfnis das intrinsische Verlangen des Lernenden, den Beweis für eine Aussage erfahren zu 

wollen (vgl. hierzu ausführlich Winter 1983). Damit das Beweisen nicht auf eine künstliche Aufgabe 

des Mathematikunterrichts reduziert wird, war und ist es ein Anliegen der Fachdidaktik, ein 

entsprechendes Verlangen bei Lernenden zu erzeugen.  

Folgt man etwa Vollrath (1974, S. 25) oder Walsch (1975, S. 59f.), so sollen optische Täuschungen, 

wunderliche Situationen oder Widersprüchlichkeiten dazu genutzt werden, bei Schülern das 

Vertrauen in die Anschauung zu erschüttern und für ein Verlangen nach (Auf-)Klärung durch Beweise 

zu motivieren. Damit einhergehend soll den Schülern die „Unzulänglichkeit induktiver Methoden 

oder die von Plausibilitätsbetrachtungen für die Erkenntnissicherung in der Mathematik […]“ bewusst 

gemacht werden (Walsch 1975, S. 60). Hier wird das Beweisen über angebliche Defizite anderer 

Methoden motiviert und somit gleichfalls aus einem Negativen heraus bestimmt. Durch diesen 

Ansatz ergeben sich jedoch Probleme auf mehreren Ebenen (vgl. Jahnke 1978, S. 206ff.; Winter 1983, 

S. 65ff.): Zunächst dient - wie bereits auch Walsch (1975, S. 131) anmerkt - das Messen in den 

Naturwissenschaften und gerade auch im Physikunterricht der Schule nicht nur der 

Erkenntnisfindung, sondern auch der Erkenntnissicherung. Es kann deshalb nicht darum gehen, 

Erkenntniswerkzeuge der Naturwissenschaften und gerade auch der Mathematik als unzulänglich 

darzustellen, vielmehr gilt es aus fachdidaktischer Perspektive, die Besonderheit mathematischen 

Wissens über Objekte in den Vordergrund zu stellen, das nicht durch Messen oder singuläre 

Überprüfungen erfasst werden kann (vgl. Jahnke 1978, S. 206ff.). So ist z.B. das Messen im 

schulischen Geometrieunterricht ein adäquates Mittel zur Hypothesengewinnung und -überprüfung. 

Ein mathematisches (allgemeingültiges) Wissen über ‚ideale‘ Objekte kann im Gegensatz dazu nicht 

durch Messen gesichert werden. Weiter gilt es, diesem Ansatz, der Motivation des Beweisens über 

die „Unzugänglichkeit induktiver Methoden“ (s.o.), die Ausführungen von Lakatos (1979) 

entgegenzuhalten, der die Sicht auf Mathematik als quasi-empirische Wissenschaft betont hat. 

Lakatos verdeutlicht ein Bild mathematischer Praxis, das auf Exploration, Hypothesengenerierung, 

empirischen Überprüfungen, Beweisen und Widerlegungen beruht. An dieser Stelle wird die 

Bedeutung empirischer Betrachtungen für die Mathematik evident, was einen Ausschluss derselben 

aus dem mathematischen Erkenntnisprozess bzw. deren Herabwürdigung ad absurdum führen 

würde.  

Folglich kommt in der Mathematik Tätigkeiten wie Beispielüberprüfungen und 

Plausibilitätsbetrachtungen eine große Bedeutung zu (vgl. hierzu das plausible Schließen bei Polya 

1969, S. 9ff.); erst in der Beschäftigung mit der Empirie kann ein Verständnis von Verallgemeinerung 

und Allgemeinheit entstehen: Verallgemeinerung ist, so verstanden, kein Prozess, der sich von der 

Empirie entfernt, sondern sich ihr umgekehrt verstärkt zuwendet (vgl. Jahnke 1978, S. 211). So geht 

es etwa im Kontext der Arithmetik nicht um die Ungenauigkeit von einzelnen Überprüfungen, denn 

konkrete Beispiele liefern exakte Ergebnisse. Die Unzulänglichkeit der ‚Mess-Methode‘, hier der 

Überprüfung konkreter Fälle, besteht darin, behauptete Aussagen über alle Elemente einer 

benannten (häufig unendlichen) Menge verifizieren zu müssen. Und dies ist nicht durch 
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Einzelfallprüfungen zu erreichen. Grundlegend für ein (objektives) Beweisbedürfnis ist es daher, dass 

der Lernende ein „angemessenes (erkenntnistheoretisches) Verständnis mathematischer 

Verallgemeinerung“ erhält (Jahnke 1978, S. 207); anders ausdrückt: Das mathematische Konstrukt 

einer Allaussage verlangt als Gültigkeitsnachweis eine allgemeine Betrachtung, die nicht durch 

Einzelfallüberprüfungen leistbar ist.  

Ein objektives Beweisbedürfnis muss sich folglich auf eine verständige Konzeption von 

Verallgemeinerung und einem angemessenen Verständnis des Verhältnisses von mathematischer 

Theorie und ihren Anwendungen stützen: Der Beweis eines Satzes macht diesen erst für spätere 

Anwendungen nutzbar. In diesem Sinne kann das Beweisen als ‚Beweisen von der Zukunft her‘ 

verstanden werden; die Zukunft der Theorie liegt in der Menge der intendierten Anwendungen (vgl. 

Jahnke 1978, S. 255). Denn erst wenn ein Sachverhalt bewiesen worden ist, kann dieser als Argument 

in anderen Beweisen verwendet werden. Diese Sichtweise betont die Nähe des (objektiven) 

Beweisbedürfnisses zum konzeptuellen Verständnis des Beweisbegriffs (vgl. Abschnitt 2.1.1): Dürfen 

innerhalb eines Beweises nur Axiome und bereits bewiesene Sachverhalte verwendet werden, so 

ergibt sich aus einem entsprechenden Beweisverständnisses die (objektive) Notwendigkeit des 

Beweisens. 

Das subjektive Beweisbedürfnis basiert nach Winter (1983) auf Neugier, Interesse und (intrinsischer) 

Leistungsmotivation. Die Dimensionen ‚Neugier‘ und ‚Interesse‘ lassen sich hierbei mit einem 

Verweis auf das Konzept des „intellectual need“ von Harel (2013) auf Seiten der Studierenden 

genauer fassen. Nach Harel (2013) begünstigt das intrinsische Verlangen nach Gewissheit und 

Kausalität6 („certainty“ und „causality“; ebd, S. 123ff.) die Herausbildung eines subjektiven 

Beweisbedürfnisses (vgl. hierzu auch Zaslavsky et al. 2012, S. 220ff.). Da sich das Bedürfnis nach 

Gewissheit nur vor dem Hintergrund einer unsicheren Situation ausbilden kann, muss der 

Unsicherheit im Lernprozess ein entsprechender Raum gegeben werden: 

A large place must be left for uncertainty in the learning process. Uncertainty in relation to mathematical 

knowledge is institutionalised in the notion of conjecture, the validation of which, and even the production of 

which, is devolved onto the community of students. The conjectures concern those parts of the mathematics 

curriculum that students must learn during the year. We believe that the necessity, the functionality of proof can 

only surface in situations in which the students meet uncertainty about the truth of mathematical propositions. 

(Alibert 1988, S. 32) 

 

Solch ein Grad an Unsicherheit kann z.B. durch Aufgabenstellungen wie „Beweise oder widerlege” 

erreicht werden. Stärkere Unsicherheit ist allerdings gegeben, wenn Lernende im eigenen 

Explorationsprozess Hypothesen selbst bilden und anschließend verifizieren müssen. 

Dieses Bedürfnis nach Gewissheit und Kausalität (i.S. von Harel oben) steht dabei in einem engen 

Zusammenhang mit der Erklärungsfunktion von Beweisen: Beweise können eine Erklärung dafür 

liefern, warum eine Behauptung wahr ist. Somit scheint es angebracht, die ‚Warum-Frage‘ im 

Kontext von Beweisen zu betonen, um die Bildung eines subjektiven Beweisbedürfnisses zu 

begünstigen. 

Insgesamt muss zu der didaktischen Grundintention der Herausbildung eines Beweisbedürfnisses 

angemerkt werden, dass sich generell ein echtes (intrinsisches) Verlangen nur vor der Wertschätzung 

                                                           
6
 „Thus, the need for causality is one’s desire to explain, to determine a cause of a phenomenon.” (Harel 2013, 

S. 126; Hervorhebungen im Original). 
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eines erreichbaren Zieles ausbilden kann. Nur wenn der Beweis eine funktionale Deutung innerhalb 

einer erreichbaren Zielsetzung erfährt, kann sich ein Beweisbedürfnis ausbilden: „Ein 

Beweisbedürfnis kann nur derjenige entwickeln, der prinzipiell auch weiß, wie er es befriedigen 

kann.“ (Jahnke 1978, S. 211). Für ein ‚echtes‘ Bedürfnis muss dieses Ziel für den Lernenden positiv 

konnotiert sein: „[…] daher wird einen Beweis nur schätzen, wer das Positive daran erlebt hat“ 

(Grieser 2015, S. 89). Die Frage nach der Entwicklung eines Beweisbedürfnisses muss somit vor dem 

Hintergrund der verschiedenen Funktionen, die ein Beweis erfüllt bzw. erfüllen kann, betrachtet 

werden. 

2.1.7 Funktionen von Beweisen 

Dem Werkzeug ‚mathematischer Beweis‘ werden im Kontext der Fachmathematik und der 

Fachdidaktik diverse Funktionen zugeschrieben, welche kognitive, soziale und epistemologische 

Aspekte tangieren. Eine Nennung entsprechender Funktionen orientiert sich häufig an der Auflistung 

von de Villier (1990), welche sich wiederum auf Bell (1976) zurückführen lässt. Weitere Funktionen 

von Beweisen wurden u.a. durch Auslander (2008), Hanna und Jahnke (1996), Rav (1999) und Weber 

(2002) in die Diskussion eingebracht. Ein guter Überblick über die verschiedenen Funktionen von 

Beweisen wird in Reid und Knipping (2010, S. 73ff.) gegeben. 

Es herrscht ein allgemeiner Konsens darüber, dass verschiedene Funktionen von Beweisen beim 

Erlernen der Beweisaktivität berücksichtigt bzw. verdeutlicht werden müssen, damit Lernende ein 

adäquates Verständnis von Beweisen erlangen können, auf dessen Basis sich dann auch ein 

Beweisbedürfnis (vgl. Abschnitt 2.1.6) herausbilden kann. Aus diesem Grund werden im Folgenden 

die verschiedenen Funktionen von Beweisen dargestellt, die in dem vorliegenden Kontext von 

Interesse zu sein scheinen7. Der folgende Abschnitt orientiert sich an den Ausführungen in Reid und 

Knipping (2010, S. 73ff.), geht in der Auflistung weiterer Beweisfunktionen bzw. in der 

Ausdifferenzierung verschiedener Funktionen8 aber über diese hinaus. Im Folgenden werden die 

verschiedenen Funktionen von Beweisen dargestellt und anschließend aus didaktischer Perspektive 

reflektiert.  

 

1. Verifikation (Bell 1976, S. 24;  Davis 1986, S. 354; de Villiers 1990, S. 18; Hanna 2000, S. 8) 

In einem Beweis wird die Gültigkeit einer Aussage nachgewiesen. Dieser Nachweis erfolgt mithilfe 

logischer Schlussweisen aus als wahr postulierten Grundannahmen (‚Axiomen‘) und/oder aus bereits 

bewiesenen Sachverhalten. Jeder, der den verwendeten Argumenten und Schlussweisen zustimmt, 

muss zwangsläufig auch dem erhaltenen Resultat zustimmen. Der Nachweis der Gültigkeit kann 

dabei als objektiv festgestellte Gewissheit verstanden werden.  

2. Überzeugung (de Villiers 1990, S. 18; Duval 1990, S. 198 und 2007, S. 139; Hersh 1993; Weber 

& Mejia-Ramos 2015) 

                                                           
7
 Nicht expliziert werden im Folgenden die Beweisfunktionen „to guide us along formally correct paths where 

our intuition may be weak or misleading“ (Renz 1981, S. 87), „to guide computiations” (ebd., S. 88) und das 

Erlangen von Reputation in Form von „theory credits” (Thurston 1994, S. 174). 
8
 Weber und Mejia-Ramos (2015) betonen im Kontext von Beweisen den Unterschied zwischen relativer und 

absoluter Überzeugung („relative and absolute conviction“): Während relative Überzeugung die subjektive 

(unsichere) Überzeugung bzgl. der Gültigkeit einer Aussage beschreibt, meint absolute Überzeugung die 

Gewissheit über deren Gültigkeit. Bei der folgenden Auflistung von Funktionen von Beweisen wird diese 

Unterscheidung aufgegriffen, was dabei zu einer Unterscheidung der Funktionen Verifikation und Überzeugung 

führt. Eine ähnliche Unterteilung der Verifikationsfunktion wird auch in Kuntze (2005) vorgeschlagen. 
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Ein Beweis kann dazu beitragen, dass subjektiv die Überzeugung eines Individuums bzgl. der 

Gültigkeit einer Behauptung gesteigert wird.9 Weber und Mejia-Ramos (2015) weisen darauf hin, 

dass im Kontext von Beweisen zwischen absoluter Gewissheit und relativer (subjektiver) Gewissheit 

unterschieden werden muss. Diese unterschiedlichen Grade an Gewissheit fasst Duval (1990 und 

2007) unter dem Begriff der „epistemic values“ (s.u.) zusammen. Reid und Knipping (2010) bemerken 

hierzu:  

 

[…] it is important to recognise that while logically a statement can only be true or false, psychologically it can 

take on one of many values, which Duval (1990, 2007) calls its "epistemic value". Epistemic value is a personal 

judgement of whether and how the proposition is believed. (Ebd., S. 74) 

 

3. Erklärung (Bell 1976, S. 24; Kidron und Dreyfus 2009; de Villiers 1990, S. 19f. und 2012; Hersh 

1993; Hanna 1989 und 2016; Steiner 1978) 

Ein Beweis kann dem Betrachter erklären bzw. Einblicke geben, warum ein Sachverhalt gilt. Durch 

den Beweis wird somit ein neues bzw. erweitertes Verständnis für den betreffenden Sachverhalt 

erreicht.  Diese Funktion wird in der didaktischen Literatur häufig als besonders bedeutsam für den 

Unterricht hervorgehoben, da hier ein großes Potential für die Entwicklung eines (subjektiven) 

Beweisbedürfnisses gesehen wird. Was allerdings als ‚erklärend‘ betrachtet wird, gilt es genauer zu 

diskutieren. Hierzu schreibt Steiner (1978): 

[…] an explanatory proof makes reference to a characterizing property of an entity or structure mentioned in the 

theorem, such that from the proof it is evident that the results depend on the property. It must be evident, that 

is, that if we substitute in the proof a different object of the same domain, the theorem collapses; more, we 

should be able to see as we vary the object how the theorem changes in respond. (Ebd., S. 143) 

Steiner geht hierbei von den Beziehungen innerhalb des Beweises aus und betont die syntaktische 

und semantische Bedeutung der Argumente für den Nachweis der Gültigkeit der Behauptung. Hanna 

(1989) beschreibt in Anlehnung an Steiner Beweise, die auch erklären, warum ein Sachverhalt gilt als 

‚proof that explains‘ im Gegensatz zu Beweisen, die ‚nur‘ zeigen, dass ein Sachverhalt gilt (‚proof that 

proves‘). Zu dieser Unterscheidung, die in der Fachdidaktik viel Beachtung gefunden hat, bemerkt 

Hanna (1989): 

Yet surely not all proofs have explanatory power. One can even establish the validity of many mathematical 

assertions by purely syntactic means; with such a syntactic proof one essentially demonstrates that a statement is 

true without ever showing what mathematical property makes it true. Thus I prefer to use the term explain only 

when the proof reveals and makes use of mathematical ideas which motivate it. Following Steiner (1978), I will 

say that a proof explains when it shows what “characteristic property” entails the theorem it purports to prove. 

(Ebd., S. 10; Hervorhebung im Original). 

Als Beispiel für einen erklärenden Beweis führt Hanna (1990, S. 11) den folgenden Beweis für den 

Satz an, dass die Summe �
�� der ersten � natürlichen Zahlen gleich  
�
����

�  ist: 

 

 

                                                           
9
 Im Unterschied zu der Funktion Verifikation wird somit intendiert, dass zwischen der mathematisch-

objektiven Feststellung einer Gültigkeit und der subjektiven Überzeugung bzgl. der Gültigkeit einer Behauptung 

auch nach erfolgtem Beweis noch Unterschiede bestehen können. 

Abbildung 3: Punktmusterdarstellung der 
sukzessiven Summenbildung der ersten 
vier natürlichen Zahlen. (Abbildung ähnlich 
zu Hanna 1990, S. 11) 
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The dots form isosceles right triangles containing �
�� = 1 + 2 + 3 +⋯+ � dots. 

Two such sums �
�� + �
��	give a square containing ��	dots and � additional dots because the diagonal of � dots 

is counted twice. Therefore: 

2�
�� = �� + � 

�
�� = �� + �
2 = �
� + 1�

2  

Der Beweis des Satzes mit vollständiger Induktion wäre im Gegensatz dazu nach Hanna (1990, S. 

10) ein ‚proof that proves’. 

Müller-Hill (2017, S. 169) weist darauf hin, dass zwei grundlegende Positionen bzgl. des 

erklärenden Moments von Beweisen  in der Literatur ausgemacht werden können. So schreiben 

etwa Hersh (1993) oder Weber und Verhoeven (2002) Beweisen eine inhärente 

Erklärungsfunktion zu, woraus ein höchstens gradueller Unterschied in Bezug auf die 

Erklärungsqualität von Beweisen abzuleiten wäre (vgl. auch Hanna 2016). Dagegen nehmen 

Steiner (1978) oder auch Celluci (2011) die Position ein, dass auch nicht-erklärende Beweise 

existieren (vgl. Müller-Hill 2017, S. 169f.).  

Der Aspekt des erklärenden Moments von Beweisen wird in Abschnitt 8.3.5 vertiefend diskutiert. 

4. Systematisierung (Bell 1976, S. 24; de Villiers 1990, S. 20; Hanna 2000, S. 8) 

Innerhalb eines Beweises werden mathematische Sachverhalte als Argumente verwendet, um das 

Behauptete als Resultat deduktiver Schlüsse zu zeigen. Somit wird mathematisches Wissen in eine 

Ordnung gebracht, wodurch zunächst eine lokale Ordnung erfolgt (vgl. Abschnitt 2.1.5). Durch einen 

(formalen) Beweis erfolgt eine explizite Einordnung der Resultate in das axiomatisch-deduktive  

System der Mathematik. Zusammengefasst bedeutet dies, dass durch einen Beweis mathematisches 

Wissen systematisiert wird. 

Einhergehend mit dieser Systematisierungsfunktion werden in der Literatur weitere (Sub-)Funktionen 

aufgeführt, die im Folgenden zusammenfassend dargestellt werden:  (i) Ein Beweis kann dabei 

helfen, Inkonsistenzen, Zirkelschlüsse und verborgene bzw. nicht ausdrücklich erwähnte Annahmen 

zu identifizieren, (ii) in Beweisen können mathematische Sachverhalte vereinheitlicht und vereinfacht 

werden, indem nicht-verwandte Aussagen, Theoreme und Konzepte mit einander in Verbindung 

gesetzt werden, woraus eine ökonomische Präsentation der Ergebnisse resultiert, und (iii) ein Beweis 

bietet einen Überblick über die Inhalte zu einem Themenbereich, indem etwa die unterliegende 

(axiomatische) Struktur aufdeckt wird, von der andere Eigenschaften abgeleitet werden (können). 

5. Entdeckung (Auslander 2008, S. 66; Davis 1986, S. 354; de Villiers 1990, S. 21; Komatsu et al. 

2014) 

In einem Beweis(prozess) und bei der Reflektion eines Beweises können neue Entdeckungen 

gemacht werden. Diese Funktion von Beweisen steht in Wechselwirkung mit der Erklärungs- und 

Systematisierungsfunktion.  

In dem Begründungszusammenhang einer Argumentationskette können neue Erkenntnisse 

gewonnen werden, die dann u.a. weiter generalisiert werden können. De Villiers (1990, S. 21) weist 

darauf hin, dass in der Mathematik Beweise nicht nur für die Verifikation einer Behauptung 

verwendet werden, sondern dass gerade die Aspekte von Exploration, Analyse, Entdeckung und 
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Erfindung („exploration, analysis, discovery and invention“; ebd., S. 21) innerhalb des 

Beweisprozesses von großer Bedeutung sind. Nach Komatsu et al. (2014) ist diese Beweisfunktion 

gerade aus didaktischer Sicht von großer Bedeutung, da durch diese Lernenden das Beweisen als 

produktive Tätigkeit und nicht als sinnentleertes Ritual vermittelt werden kann. Zur Illustration dieser 

Funktion soll ein Beispiel aus Reid und Knipping (2010, S. 76) dienen. Im Kontext des Beweises über 

die Summe zweier aufeinander folgender ungerader Zahlen wird von Studierenden die Entdeckung 

gemacht, dass die Summe nicht nur gerade, sondern auch immer ein Vielfaches von vier ist: „The two 

numbers are 2� − 1 and 2� + 1. 2� − 1 + 2� + 1 = 2
2��	which is even. IN FACT it is a multiple of 

FOUR!“ (Reid & Knipping 2010, S. 76). 

 

6. Konstruktion einer empirischen Theorie10 (Hanna und Jahnke 1996, S. 892ff.) 

Betrachtet man die Mathematik als Wissenschaft und Theorie über ideale Objekte, so muss ihr Bezug 

zu der uns umgebenden realen Welt diskutiert werden. Wenn etwa im schulischen 

Geometrieunterricht Lernende dazu angehalten werden, die Innenwinkel eines Dreiecks zu messen 

und diese zu addieren, werden sie Ergebnisse um 180° erhalten. In dem Beweis über den 

Winkelsummensatz im Dreieck werden dann allerdings theoretische ideale Objekte thematisiert, die 

sich wiederum von den konkret vorliegenden (empirischen) Dreiecken unterscheiden. Vor dieser 

Perspektive kann die (euklidische) Geometrie als Wissenschaft, die die räumlichen Beziehungen der 

uns umgebenden Welt beschreibt, als ‚empirische Theorie‘ betrachtet werden.  

Mathematische Sätze über ideale Objekte sind durch deduktive Beziehungen miteinander 

verbunden. In der uns umgebenden Welt erscheinen diese mathematischen Sätze als empirische 

Gesetze. Wird solch ein Gesetz durch einen Beweis zum Teil einer empirischen Theorie, dann wird es 

durch den Beweis gleichsam mit den anderen Gesetzen der Theorie verbunden. In diesem Sinne 

bestätigen und testen nicht nur die konkret auf dieses Gesetz bezogenen Messungen dessen 

Gültigkeit, sondern auch all die Messungen, die Gesetze derselben Theorie bestätigen. Mit Beweisen 

werden somit empirische Theorien für die uns umgebende ‚Realität‘ konstruiert. 

7. Kommunikation (Bell 1976, S. 24; Davis 1986, S. 352; Knuth 2002, S. 381;  de Villiers 1990, S. 

22) 

In einem Beweis wird Wissen kommuniziert und gleichsam ein Forum für einen kritischen Dialog 

geschaffen. Die Kommunikationsfunktion bildet die Grundlage für den sozialen Prozess, der 

konstituierend für die Bewertung und Akzeptanz von Beweisen ist. 

8. Erforschung der Güte bzw. Bedeutung einer Definition, eines Satzes oder Sachverhalts 

und/oder einer axiomatischen Theorie (Auslander 2008, S. 67; Hanna und Jahnke 1996, S. 

896 und 902; Renz 1981, S. 86ff.;  Weber 2002) 

Bei der Konstruktion von Beweisen werden mathematische Definitionen und Sätze im Rahmen von 

Schlussweisen als Argumente verwendet. Dabei werden Eigenschaften von Definitionen, Sätzen und 

eventuell axiomatischen Systemen offenkundig und ihre spezifische Güte ergibt sich durch ihre 

Passung und ihren Nutzen im Beweiskontext. Hierbei kann auch deutlich werden, dass für einen 

                                                           
10

 Die Funktion ‚Konstruktion einer empirischen Theorie‘ wird in der Literatur nur in Hanna und Jahnke (1996, S. 

892ff.) weiter ausgeführt. Der folgende Absatz beinhaltet eine stark zusammengefasste Paraphrase der 

Ausführungen dieser Autoren.  
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Beweis etwa eine alternative bzw. ‚passendere‘ Definition für ein mathematisches Objekt 

herangezogen werden muss. 

Nach Hanna und Jahnke (1996, S. 896) kann das Beweisen von ‚überraschenden‘ Sachverhalten dazu 

führen, dass die verwendeten Definitionen und Sätze kritisch rekapituliert werden. Sie geben als 

Beispiel den Satz über die Gleichmächtigkeit der Menge der natürlichen Zahlen und der Menge der 

Quadratzahlen an, der Lernende dazu bringen kann, die verwendeten Definitionen und Konzepte zu 

hinterfragen. 

Weber (2002) weist darauf hin, dass Beweise, in denen offensichtliche Sachverhalte nachgewiesen 

werden, nicht primär der Verifikationsfunktion und auch nicht der Erklärungsfunktion zugewiesen 

werden können. In solchen Beweisen kann die Verdeutlichung und Anwendung einer axiomatischen 

Theorie im Vordergrund stehen. Als Beispiel führt Weber (2002, S. 15) die Einführung der Peano 

Axiome und die darauf basierenden Beweise an. In einem entsprechenden Beweis über den 

Sachverhalt „2 + 2 = 4“ wird dann weder das Ziel verfolgt festzustellen, dass die Behauptung 

wirklich wahr ist, noch zu erklären, warum diese wahr ist. Mit dem Beweis werden vielmehr der 

Nutzen und die Tragweite des axiomatischen Systems aufgezeigt. 

9. Entwicklung von konzeptuellem Verständnis (Pinto & Tall 1999) 

Pinto und Tall (1999) erörtern, wie das Verstehen einer Definition mit ihrer Verwendung im Kontext 

von Deduktionen zusammenhängt. Dabei wird deutlich, dass die Betrachtung von Sachverhalten, 

Definitionen und logischen Zusammenhängen bei Beweisführenden zu einem konzeptuellen 

Verstehen beitragen kann (s. Weber 2002, S. 2). 

 

10. Übertragung einer bekannten Tatsache in einen neuen Bereich und damit eine Betrachtung 

derselben aus einer neuen Perspektive (Hanna und Jahnke 1996, S. 903; Renz 1981, S. 88) 

 

Wird ein mathematischer Sachverhalt innerhalb eines Beweises als Argument verwendet, so erhält 

dieser eine funktionale Deutung im Gefüge der Schlussweisen und Bezüge zu anderen Sachverhalten 

können dabei deutlich werden. Als ein Beispiel für diese Funktion führen Reid und Knipping (2010) 

den Beweis des Hauptsatzes der Integral- und Differentialrechnung an: „By showing that integrals are 

anti-derivatives, the proof repositions numerous facts about the derivatives of various functions as 

facts about functions whose integrals are known“ (ebd., S. 78). 

 

Renz (1981) führt diese Funktion von Beweisen am Beispiel der ganzen Zahlen aus: 

 

The integers may first be regarded very concretely in terms of counting and arithmetic. Next we may look at them in 

terms of set theory and cardinal and ordinal arithmetic. A change to the axiomatic point of view (Peano) may shed new 

light. Model theory (the work of Skolem and others on the nonstandard integers) may show limitations of the 

axiomatic approach. A hypermodern category theory approach (Peano-Lawvere) may shed still further light and offer 

certain simplifications. (Ebd., S. 88) 

 

11. Intellektuelle Herausforderung/ Selbstrealisierung (de Villiers 1999 S. 8; Renz 1981, S. 87) 

 

Für Mathematiker kann ein Beweis eine intellektuelle Herausforderung darstellen, die nach 

Beendigung eine gewisse Befriedigung verschafft. In diesem Sinne beinhaltet ein Beweis die Funktion 
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einer individuellen Selbstrealisierung und Selbsterfüllung. Ein Beweis ist somit auch ein ‚Prüfstein‘ für 

die geistige Ausdauer und den Einfallsreichtum oder die Kreativität eines Mathematikers.  

Zu dieser Funktion bemerkt de Villiers (1999): 

To mathematicians proof is an intellectual challenge that they find as appealing as other people may find puzzles or 

other creative hobbies or endeavours. Most people have sufficient experience, if only in attempting to solve a 

crossword or jigzaw puzzle, to enable them to understand the exuberance with which Pythagoras and Archimedes are 

said to have celebrated the discovery of their proofs. Doing proofs could also be compared to the physical challenge of 

completing an arduous marathon or triathlon, and the satisfaction that comes afterwards. In this sense, proof serves 

the function of self-realization and fulfillment. Proof is therefore a testing ground for the intellectual stamina and 

ingenuity of the mathematician (compare Davis & Hersh, 1983: 369). (de Villiers 1999, S. 8; Hervorhebungen im 

Original) 

 

12. Ästhetik (de Villiers 1990, S. 23; Inglis & Aberdein 2015; McAllister 2005; Müller-Hill & Spies 

2011) 

Das Attribut Schönheit bzw. Ästhetik wird in Zusammenhang mit verschiedenen Aspekten der 

Mathematik verwendet (s. etwa McAllister 2005 oder Müller-Hill und Spies 2005). Auch Beweise 

werden in der Mathematik unterschiedlich in Bezug auf ihre Ästhetik beurteilt, wobei einige Beweise 

als besonders schön und elegant betrachtet werden (siehe etwa die ausgewählten Beweisbeispiele in 

Aigner und Ziegler 2010 oder in Alsina und Nelsen 2013). Inglis und Aberdein (2015) versuchen im 

Kontext von Beweisen das Konstrukt der Schönheit („beauty“) genauer zu fassen und subsumieren 

unter diesem Aspekt die Teilbereiche Schlichtheit („simplicity“), epistemische Genugtuung 

(„epistemic satisfaction“) und Erleuchtung („enlightenment“) (Inglis & Aberdein 2005, S. 89ff.)11. 

Aufgrund der (Teil-)Eigenschaft der Erleuchtung wird diese Beweisfunktion in der Literatur auch mit 

der Erklärungsfunktion von Beweisen in Verbindung gebracht (vgl. Reid und Knipping 2010, S. 77). 

Die mit dieser ästhetischen Bewertung von Beweisen einhergehende Hierarchie kann dazu führen, 

dass in der Mathematik nach Beweisen gesucht wird, die als besonders ästhetisch bzw. schön gelten. 

13. Beweise als Träger mathematischen Wissens (Hanna und Barbeau 2010, Rav 1999) 

Rav (1999) bezeichnet Beweise als „bearers of mathematical knowledge“ (ebd., S. 20), da in 

Beweisen mathematisches Wissen (in Form von Methoden, Konzepten, Strategien etc.) und dessen 

Anwendung offenbar wird. Die damit einhergehende Funktion von Beweisen wird von Rav als 

epistemische Funktion („epistemic funtion“) beschrieben (ebd., S. 19). Hanna und Barbeau (2010) 

adaptieren diesen Ansatz und führen ihn aus didaktischer Perspektive weiter aus: „proofs could be 

accorded a major role in the secondary-school classroom precisely because of their potential to 

convey to students important elements of mathematical elements such as strategies and methods“ 

(ebd., S. 98). Sie illustrieren diesen Ansatz u.a. an der Erarbeitung der folgenden Lösungsformel für 

quadratische Gleichungen:  

��,� = � ±" ²�#$%
�$  . 

Als Ausgangspunkt kann die Betrachtung verschiedener quadratischer Gleichungen dienen und die 

Frage, welche dieser Gleichungen sich wie lösen lassen. Untersuchungen von Gleichungen der Form 

0 = �² − ' (mit '	(	ℝ) führen zu der Methode des Faktorisierens bzw. zur Anwendung der dritten 

                                                           
11

 Vergleiche hierzu die Kriterien für mathematische Schönheit in Müller-Hill und Spies (2005, S. 263ff.): 

Ökonomie, Klarheit, Tragweite und subjektive Wirksamkeit. 
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binomischen Formel. Bei der Lösung der allgemeinen quadratischen Gleichung ��² + �� + * = 0 mit 

�, �, * 	(	ℝ und �	 ≠ 0 wird dann z.B. noch die Methode der quadratischen Ergänzung angewendet. 

 

14. Rekapitulation von wichtigen Ergebnisses (Renz 1981, S. 87) 

 

Renz (1981) führt „to help us remember important or useful results“ (ebd., S. 87) als eine weitere 

Funktion von Beweisen auf. Er illustriert diese Funktion von Beweisen an dem Additionstheorem des 

Tangens: Wer den Beweis des Additionstheorems kennt, kann sich leicht das Ergebnis bzw. das 

Theorem herleiten. 

 

Kommentierung der betrachteten Beweisfunktionen unter einer didaktischen Perspektive 

Die Verifikation einer Behauptung ist ein zentrales konstituierendes Moment der Beweisaktivität und 

durchzieht als funktionaler Aspekt alle Stadien der Mathematikausbildung. Vor allem aus 

didaktischer Perspektive wird jedoch betont, dass (objektive) Verifikation eines Sachverhalts nicht 

mit  der (subjektiven) Überzeugung von dessen Gültigkeit gleichgesetzt werden darf (de Villiers 1990, 

S. 18; Weber und Mejia-Ramos 2015). Während Verifikation als Nachweis von Gültigkeit nur im 

Rahmen der oben diskutierten ‚Strenge‘ im Kontext einer zugrunde gelegten Theorie erfolgen kann, 

benötigt man für die subjektive Überzeugung i.A. nicht einen vollständigen und gültigen Beweis. 

Weber und Mejia-Ramos (2015) zeigen darüber hinaus Beispiele auf, in denen die Gleichsetzung der 

objektiven und subjektiven Momente zu Verständnisproblemen bei Lernenden und zu 

missverständlichen Forschungsergebnissen führen können. Beide Funktionen von Beweisen 

erscheinen grundlegend für einen verständigen Umgang mit Beweisen. Hieraus folgt, dass diesen 

beiden Aspekten im unterrichtlichen Geschehen ein entsprechender Raum gegeben werden muss: 

dem Beweisen als  objektives Nachweisen der Gültigkeit eines Sachverhalts im Rahmen eines 

Theoriegerüsts und dem Beweisen für die subjektiven Überzeugung bzgl. der Gültigkeit eines 

Sachverhalts. 

In der Literatur wird prominent darauf hingewiesen, dass im Unterrichtsgeschehen das erklärende 

Moment von Beweisen besonders in den Vordergrund gestellt werden sollte (etwa Hersh 1993 und 

1997 oder Hanna 2000). Diese Überzeugung spiegelt sich in der Unterscheidung von „proofs that 

prove and proofs that explain“ (Hanna 1989). Was allerdings einen Beweis zu einem ‚erklärenden‘ 

Beweis macht, wird in der Literatur zwar theoretisch erörtert (vgl. etwa Hanna 1989 in Anlehnung an 

Steiner 1978), empirische Untersuchungen stehen hierzu allerdings noch aus.  

Das Strukturieren von Argumenten zu einer Argumentationskette bedeutet bereits eine erste 

Systematisierung von Wissen im Sinne einer lokalen Theorie. Deren Einordnung in eine axiomatische 

Theorie kann offensichtlich nur erfolgen, wenn ein entsprechendes Theoriegerüst explizit zur 

Verfügung steht. Diesen epistemologischen Funktionen kann somit nur nachgekommen werden, 

wenn sich der Beweisbegriff der Idee des formalen Beweises annähert. Diese Beweisfunktion betont 

somit die Notwendigkeit der Explizierung einer lokalen und in gewisser Weise auch aufzubauenden 

globalen Theorie und eines entsprechenden Konzepts ‚formaler‘ Beweise. 

Die Funktion der Entdeckung im Kontext mathematischer Beweise betont ein aktives und produktives 

Moment von Beweisen und verdeutlicht seine Stellung in Prozessen mathematischer 

Wissensgewinnung. Wie Komatsu et al. (2014) darlegen, scheint u.a. gerade in dieser Funktion das 
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Potential zu liegen, das Beweisen als sinnstiftende Tätigkeit zu erfahren. Hier wird die Notwendigkeit 

deutlich, Beweise nicht als eine Standardaufgabe der Mathematik zu verwenden, sondern im Kontext 

von Erkenntnisprozessen einzugliedern. 

Die Beweisfunktion Konstruktion einer empirischen Theorie tangiert epistemologische und 

philosophische Aspekte der Mathematik. Inwieweit diese Aspekte im unterrichtlichen Geschehen 

thematisiert werden sollen, gilt es vor dem Hintergrund des jeweiligen Lehr-/Lernszenarios und des 

entsprechenden Adressatenkreises zu diskutieren.  

Die Kommunikation mathematischer Sachverhalte, gebündelt in Beweisen, muss einerseits als 

Phänomen der fachmathematischen Praxis betrachtet werden und birgt andererseits didaktische 

Implikationen. Als Phänomen der fachmathematischen Praxis wird in dieser Beweisfunktion eine 

Enkulturationsfunktion (vgl. Abschnitt 8.3.3) von Beweisen evident, da diese Kommunikation 

entsprechend gültiger Normen der jeweiligen fachmathematischen Kommunität erfolgen muss. Aus 

didaktischer Perspektive motiviert diese Funktion die Frage nach Ausführlichkeit von Beweisen und 

der Darstellung von Beweisen, damit diese von anderen Personen gelesen und verstanden werden 

können. 

Die Funktionen Erforschung der Güte bzw. Bedeutung einer Definition, eines Satzes oder Sachverhalts 

und/oder einer axiomatischen Theorie, Entwicklung von konzeptuellem Verständnis und auch die 

Übertragung einer bekannten Tatsache in einen neuen Bereich und damit eine Betrachtung derselben 

aus einer neuen Perspektive wenden den Blick von dem Beweisprodukt auf die verwendeten 

mathematischen Sachverhalte und Methoden und scheinen dabei das Potential zu bieten, den Sinn 

und Nutzen präzise formulierter fachmathematischer Definitionen und Sätzen im Rahmen 

mathematischer Theorien zu verdeutlichen und gleichsam zu motivieren. 

Ästhetik und intellektuelle Herausforderungen erscheinen in erster Linie als subjektive Momente im 

Umgang mit Beweisen. Entsprechende Erfahrungen können von Lernenden gemacht werden, damit 

einhergehende Wertschätzungen von Beweisen scheinen dabei nicht durch Lehrende (von ‚außen‘) 

herbeigeführt werden zu können. 

Die Sichtweise auf Beweise als Träger mathematischen Wissens und auf Beweise zur Rekapitulation 

von wichtigen Ergebnissen scheint vor allem nach erfolgter Beweiskonstruktion in einer Rückschau 

den Nutzen von Beweisen zu betonen. Die Rückschau bzgl. Reflexion eines Beweis- oder 

Problemlöseprozesses gilt als wichtiges Lernmoment entsprechender Lernprozesse (Polya 1967). 

Diese Funktion von Beweisen scheint auch einen Fokus für die Reflexion von Beweisprozessen 

bereitzustellen. 

Als Grundfrage bleibt allerdings, wie man ‚Funktionen von Beweisen‘ unterrichten kann. Da es hier 

mehr um ein Bewusstsein als um rein deklaratives Wissen geht, wird in der vorliegenden Arbeit die 

These vertreten, dass es daher zentral ist, Lernanlässe zu bieten, in denen Studierende die 

verschiedenen Funktionen von Beweisen wiederholt erfahren können. Die Bewusstmachung, 

Diskussion und Reflexion entsprechender Lernhandlungen wird in diesem Kontext als zentral 

erachtet.  
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2.2 Ausgewählte Aspekte zum Erlernen der Beweisaktivität: Das Konzept 

der Selbstwirksamkeit und Einstellungen zur Mathematik und zum 

Beweisen 
In diesem Abschnitt werden zwei ausgewählte Aspekte thematisiert, denen potentielle Einflüsse auf 

das Erlernen der Beweisaktivität zugesprochen werden: das Konzept der Selbstwirksamkeit und die 

Einstellungen zur Mathematik. Es folgt eine Darstellung der theoretischen Grundlagen dieser 

Konzepte, verbunden mit einer Erörterung, inwiefern diese Aspekte auf das Erlernen der 

Beweisaktivität Einfluss nehmen könnten. Es werden diese Aspekte thematisiert, da diese auch bei 

der späteren empirischen Beforschung der hier thematisierten Lehrveranstaltung eine Rolle spielen 

werden. 

2.2.1 Selbstwirksamkeit und Beweisen 

Das Konzept der Selbstwirksamkeit bzw. Selbstwirksamkeitserwartung wurde von Albert Bandura 

entwickelt und beschreibt „Beliefs in one's capabilities to organize and execute the courses of action 

required to manage prospective situations“ (Bandura 1995, S. 2). Aus didaktischer Perspektive ist 

dieses Konzept von großer Bedeutung, da es u.a. einen Erklärungsansatz für motivationale Aspekte 

bietet:  

Efficacy expectations determine how much effort people will expend and how long they will persist in the face of 

obstacles and aversive experiences. The stronger the perceived self-efficacy, the more active the efforts. Those 

who persist in subjectively threatening activities that are in fact relatively safe will gain corrective experiences 

that reinforce their sense of efficacy, thereby eventually eliminating their defensive behavior. Those who cease 

their coping efforts prematurely will retain their self-debilitating expectations and fears for a long time. (Bandura 

1977, S. 194) 

 

Nach Bandura (1977, S. 195ff.) können verschiedene Aspekte die Selbstwirksamkeit einer Person 

beeinflussen. Eigene Erfolgserlebnisse haben, gerade in schwierigen Situationen, einen großen 

Einfluss auf die eigene Selbstwirksamkeitserwartung. Selbst Erfolgserlebnisse anderer, denen man 

ähnliche Fähigkeiten zuschreibt, stärken die eigene Selbstwirksamkeit, was unter dem Begriff der 

stellvertretenden Erfahrung subsumiert wird. Auch verbale Ermutigungen können den Glauben einer 

Person in die eigenen Fähigkeiten stärken. Schließlich hat auch die emotionale Erregung einer Person 

Auswirkungen auf die Selbstwirksamkeit: Stress und ein Gefühl der Überforderung schwächen das 

Vertrauen in die eigene Person und begünstigen Selbstzweifel.  

 

Die Thematik der Selbstwirksamkeit wird aktuell in der Mathematikdidaktik in verschiedenen 

Bereichen umfassend diskutiert. Im Folgenden soll nur der Teilbereich dargestellt werden, der sich 

auf das Beweisen bezieht. 

 

Vor allem Selden und Selden (2012 und 2013) betonen die Bedeutung der 

Selbstwirksamkeitserwartung für das Erlernen der Beweisaktivität. Zentral ist hierbei der Aspekt, 

dass das Beweisen als ein Problemlöseprozess verstanden werden kann, da für die Konstruktion des 

Beweises keine Lösungsroutine zur Verfügung steht und die Beweisschritte als mehrschrittige 

Lösungswege selbst entwickelt werden müssen. Beim Erlernen der Beweisaktivität ist somit, wie auch 

beim Problemlösen, ein gewisses Maß an Durchhaltevermögen unerlässlich, was durch eine hohe 

Selbstwirksamkeitserwartung unterstützt wird. Auf diese Bedeutung der Selbstwirksamkeits-

erwartung beim Problemlösen weist auch Krantz (2012) hin:  

 

You must have adequate faith in yourself to know that you can battle your way through the problems. … Not 
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unrelated to the idea of tenacity is the property of being comfortable with delayed gratification. … Once you are 

challenged to generate your own proofs and counterexamples, you are frequently at odds, and often frustrated. … 

The unifying theme for dealing with the need for tenacity and the need to deal with delayed gratification is self-

confidence. You need to believe in your own abilities, and you need to believe that you can actually do this work. 

(Krantz 2012, S. 97 - 99; zitiert aus Selden & Selden 2012, o. S.; Hervorhebung im Original) 

 

Für die Beweisdidaktik bedeutet dies, dass Lernende überhaupt die Möglichkeit erhalten müssen, 

eine (hohe) Selbstwirksamkeitserwartung zum Beweisen überhaupt aufbauen zu können. Folglich 

sollten Lernende früh mit eigenen Beweiskonstruktionen beginnen und entsprechende 

Beweisaufgaben sollten zunächst so gestellt sein, dass Lernende auch Erfolgserlebnisse haben 

können, um ihre eigene Selbstwirksamkeitserwartung und die ihrer Mitlernenden steigern zu 

können. Schließlich müssen sie an gut gewählten Problemstellungen die Erfahrung machen, dass sich 

Durchhalten auszahlen kann (vgl. Selden & Selden 2013, S. 254). 

 

In der Literatur wird von positiven Auswirkungen der Selbstwirksamkeit auf mathematische 

Leistungen im Allgemeinen (etwa Hackett und Betz 1989) und auch speziell auf die 

Problemlösefähigkeiten hingewiesen (etwa Pajares und Graham 1999, Pajares und Kranzler 1995, 

Pajares und Miller 1994). Entsprechende Befunde bzgl. des Beweisens stehen dabei noch aus. 

 

2.2.2 Einstellungen zur Mathematik und das Beweisen 

In der mathematikdidaktischen Forschung gerieten in der zweiten Hälfte des zwanzigsten 

Jahrhunderts „subjektive Theorie“ bzw. „Einstellungen“ (Grigutsch et al. 1998, S. 3) von Lernenden 

und Lehrenden zur Mathematik in den Fokus des Interesses. Hierbei wird davon ausgegangen, dass 

solche Einstellungen zur Mathematik das Lernen und Lehren von Mathematik beeinflussen und über 

erworbene Einstellungen zur Mathematik der real vorherrschende Mathematikunterricht reflektiert 

werden kann (ebd., S. 3f.; eine umfassende Darstellung der Bedeutung von Einstellungen zur 

Mathematik erfolgt in Leder et al. (2006) und in Schlöglmann und Maaß (2009)). 

 Ein Problem bei der Diskussion um Einstellungen (bzw. ‚Beliefs‘) zur Mathematik sind dabei die 

Verwendung verschiedener Begrifflichkeiten und die teilweise unterschiedlichen Bedeutungen, die 

den Begriffen in verschiedenen Sprachen zugewiesen werden. In der deutschsprachigen 

Mathematikdidaktik werden mit ‚Einstellungen zur Mathematik‘ häufig die von Grigutsch et al. (1998) 

herausgearbeiteten vier verschiedene Facetten von Einstellungen zur Mathematik thematisiert (s.u.), 

welche auch als „Beziehungen zur Mathematik“ (etwa Fischer 2014, elektronischer Anhang, S. 12), 

„epistemologische Überzeugungen zur Natur der Mathematik“ (etwa Laschke und Blömeke 2014, S. 

109) oder als „mathematische Weltbilder“ (Weygandt & Oldenburg 2014, S. 1307) bezeichnet 

werden. Im internationalen Kontext werden unter dem Begriff ‚Beliefs’  auch die von Ernest (1989) 

herausgestellten drei Aspekte zum Wesen der Mathematik verstanden. 

Übergeordnet wird in der vorliegenden Arbeit unter „Einstellungen“ (bzw. „Beliefs“) nach Philipp 

(2007) das Folgende verstanden: 

Psychologically held understandings, premises, or propositions about the world that are thought to be true. 

Beliefs are more cognitive, are felt less intensely, and are harder to change than attitudes. Beliefs might be 

thought of as lenses that affect one’s view of some aspect of the world or as dispositions toward action. Beliefs, 

unlike knowledge, may be held with varying degrees of conviction and are not consensual. Beliefs are more 

cognitive than emotions and attitudes. (Ebd., S. 259) 
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Da ein Verständnis des mathematischen Werkzeuges ‚Beweis‘ (die Konstruktion von Beweisen, ihre 

Bedeutungen und Funktionen etc.) eng mit dem individuellen vorliegenden Verständnis von 

Mathematik (bzw. mit der jeweiligen Einstellung zur Mathematik) verbunden zu sein scheint (vgl. 

etwa Conner et al. 2011, S. 488; Furinghetti & Morselli 2009, S. 60f.; Solomon 2006, S. 377ff.), fanden 

die Einstellungen zur Mathematik auch in verschiedenen Studien zur Beweisdidaktik Beachtung (s. 

Abschnitt 2.4.3). Dabei kann vermutet werden, dass bei einer statischen, sehr formal geprägten 

Sichtweise auf die Mathematik die formalen Aspekte beim Beweisen (entsprechende Darstellung und 

Herausstellung der Schlussweisen) und die Funktion der Verifikation betont werden, während bei 

einer eher dynamischen, prozessorientierten Sicht der Beweisprozess als solcher, verbunden mit den 

Beweisfunktionen Überzeugung und Erklärung, in den Vordergrund rückt. 

In der Forschung zu dieser Thematik lassen sich zwei verschiedene Hauptbetrachtungsweisen 

ausmachen, die sich auf unterschiedliche Grundlagenarbeiten stützen: die „Einstellungen zur 

Mathematik“ nach Grigutsch et al. (1998) und die „Beliefs“ nach Ernest (1989). Um die Ausrichtungen 

dieser beiden Betrachtungsweisen deutlich zu machen, werden im Folgenden die entsprechenden 

Grundlagenarbeiten skizziert. 

„Einstellungen zur Mathematik“ nach Grigutsch et al. (1998) 

Grigutsch et al. (1998) arbeiten bei Mathematiklehrerinnen und -lehrern empirisch verschiedene 

Einstellungen gegenüber der Mathematik heraus. Die Autoren gehen dabei von der folgenden 

Grundunterscheidung von Sichtweisen auf Mathematik aus: In der statischen Sicht auf Mathematik 

steht das (fertige) Theoriegebäude der Mathematik im Vordergrund; hierbei geht es um 

angesammeltes Wissen in Form von Definitionen, Sätzen, Beweisen etc. Demgegenüber wird bei der 

dynamischen Sicht der Prozesscharakter der Mathematik betont: In der Beschäftigung mit 

Mathematik können Erfahrungen gemacht, Zusammenhänge entdeckt und kann somit neues Wissen 

gewonnen werden. Ausgehend von diesen beiden Polen arbeiten die Autoren die folgenden vier 

verschiedenen Einstellungen gegenüber der Mathematik heraus: 

1. Der Formalismus-Aspekt 

Bei dieser Einstellung zur Mathematik wird der Formalismus besonders betont: „Mathematik 

ist gekennzeichnet durch eine Strenge, Exaktheit und Präzision auf der Ebene der Begriffe 

und der Sprache, im Denken (‚logischen‘, ‚objektiven‘ und fehlerlosen Denken), in den 

Argumentationen, Begründungen und Beweisen von Aussagen sowie in der Systematik der 

Theorie (Axiomatik und strenge deduktive Methode)“ (ebd., S. 17). 

 

2. Der Anwendungsaspekt 

Bei einer vorliegenden Betonung dieses Aspekts wird ein direkter Anwendungsbezug oder 

ein praktischer Nutzen in der Mathematik gesehen: „Kenntnisse in Mathematik sind für das 

spätere Leben der Schüler wichtig: Entweder hilft Mathematik, alltägliche Aufgaben und 

Probleme zu lösen, oder sie ist nützlich im Beruf. Daneben hat Mathematik noch einen 

allgemeinen, grundsätzlichen Nutzen für die Gesellschaft“ (ebd., S. 18). 

 

3. Der Prozess-Aspekt 

Im Prozess-Aspekt wird eine dynamische Sicht auf Mathematik ausgedrückt, im Zentrum 

steht der Problemlöseaspekt der Mathematik mit dem Ziel der Erkenntnisgewinnung:  
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Es geht dabei einerseits um das Erschaffen, Erfinden bzw. Nach-Erfinden (Wiederentdecken) von 

Mathematik. Andererseits bedeutet dieser Erkenntnisprozeß auch gleichzeitig das Verstehen von 

Sachverhalten und das Einsehen von Zusammenhängen. Zu diesem problembezogenen Erkenntnis- und 

Verstehensprozeß gehören maßgeblich ein inhaltsbezogenes Denken und Argumentieren sowie Einfälle, 

neue Ideen, Intuition und das Ausprobieren. Der Prozeß-Aspekt drückt die dynamische Sicht von 

Mathematik aus. (Ebd., S. 18f.) 

 

4. Der Schema-Aspekt 

Bei dieser Einstellung zur Mathematik steht der Werkzeugcharakter der Mathematik, 

begründet auf Algorithmen und Schemata, im Vordergrund:  

 

Mathematik wird gekennzeichnet als Sammlung von Verfahren und Regeln, die genau angeben, wie man 

Aufgaben löst. Die Konsequenz für den Umgang mit Mathematik ist: Mathematik-Betreiben besteht 

darin, Definitionen, Regeln, Formeln, Fakten und Verfahren zu behalten und anzuwenden. Mathematik 

besteht aus Lernen (und Lehren!), Üben, Erinnern und Anwenden von Routinen. (Ebd., S. 19) 

 

Diese Einstellungen zur Mathematik und die durch Grigutsch et al. konstruierten Skalen wurden in 

verschiedenen Studien verwendet (etwa in dem Projekt LIMA [Lehrinnovation in der 

Studieneingangsphase „Mathematik“ im Lehramtsstudium“ – Hochschuldidaktische Grundlagen, 

Implementierung und Evaluation] (vgl. Biehler et al. 2013, S. 40), der PISA Studie 2003 (vgl. Pisa-

Konsortium 2006, S. 247) und in dem Projekt TEDS-M [Teacher Education and Development Study—

Learning to Teach Mathematics] (vgl. Laschke & Blömeke 2014, S. 109ff.). 

Die „Beliefs“ nach Ernest (1989) 

Nach Ernest (1989) beeinflussen vor allem drei Bereiche von „Beliefs“ das Lehren von Mathematik: 

das Wesen der Mathematik („the nature of mathematics“), das Wesen des Mathematikunterrichts 

(„the nature of mathematical teaching“) und der Prozess des Mathematiklernens („the process of 

learning mathematics“). Da im Kontext der vorliegenden Arbeit nur der erste Aspekt berücksichtigt 

wird, wird nur dieser im Folgenden weiter ausgeführt. 

Das so bezeichnete ‚Wesen der Mathematik‘12 wird von Ernest (1989) in Anlehnung an Thompson 

(1984) in die drei folgenden philosophischen Sichtweisen auf Mathematik unterteilt: 

1. die problemzentrierte Sicht auf die Mathematik  

„[…] mathematics as a dynamic, continually expanding field of human creation and invention, 

a cultural product. Mathematics is a process of enquiry and coming to know, not a finished 

product, for its results remain open to revision.” (Ernest 1989, o. S.) 

 

2. die platonistische Sicht auf Mathematik  

„mathematics as a static but unified body of certain knowledge. Mathematics is discovered, 

not created.“ (Ebd., o. S.) 

 

 

 

 

                                                           
12

 „The teacher’s conception of the nature of mathematics, is his or her belief system concerning the nature of 

mathematics as a whole” (Ernest 1989, o. S.). 
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3. die instrumentelle Sicht  

„mathematics is an accumulation of facts, rules and skills to be used in the pursuance of 

some external end. Thus mathematics is a set of unrelated but utilitarian rules and facts.“ 

(Ebd., o. S.) 

Diese Konzeptualisierung wurde international auch im Kontext verschiedener Studien zur 

Beweisdidaktik verwendet (etwa Conner 2011; Furinghetti & Moreselli 2009 und 2011; Yoo 2008).  

Forschungsergebnisse zu dem Zusammenhang von Einstellungen zur Mathematik und dem Beweisen 

werden in dem Abschnitt 2.4.3 zusammengetragen. 

2.3 Argumentieren, Begründen und Beweisen 
Drei zentrale Begriffe des theoretischen Umfelds dieser Arbeit sind Argumentieren, Begründen und 

Beweisen. Nachdem bisher die Bedeutung des Beweisbegriffs erörtert wurde, werden im Folgenden 

die Begriffe Argumentieren und Begründen und ihre Beziehungen zum Beweisen genauer betrachtet. 

2.3.1 Argumentieren 

In der Mathematikdidaktik gibt es keine geteilte Definition dessen, was unter ‚Argumentation‘ 

verstanden wird (vgl. Pedemonte 2007, S. 26), weshalb der Begriff in der Literatur mit 

unterschiedlichen Akzentuierungen verwendet wird. Entsprechende Begriffserörterungen sind u.a. in 

folgenden Arbeiten enthalten: Brunner (2014, S. 27ff.), Schwarzkopf (2000, S. 79ff.) und Reid und 

Knipping (2003, S. 153). Als Ausgangspunkt der Begriffserörterung soll im Folgenden der 

Argumentationsbegriff von Habermas dienen, der sich in verschiedenen Arbeiten für die 

Mathematikdidaktik als fruchtbar erwiesen hat (etwa Knipping 2003, S. 34ff.; Brunner 2013, S. 99f.). 

Auf diesem aufbauend werden konstituierende Momente von Argumentationen herausgearbeitet. 

Diese Merkmalsanalyse wird durch die Strukturbeschreibung im Sinne des pragmatischen 

Argumentationsbegriffs von Toulmin (1958) ergänzt. Hierbei wird ein Möglichkeitsspektrum 

aufgezeigt, welches schließlich eine Erörterung des Verhältnisses von Argumentation und Beweis 

ermöglicht. Die Argumentationsbegriffe von Habermas und Toulmin bilden dann den Rahmen, in 

dem anschließend das mathematische Argumentieren betrachtet werden kann. Es sei hierbei 

angemerkt, dass durch die Anlehnung an Habermas und Toulmin zwei verschiedene Sichtweisen auf 

Argumentation miteinander verbunden werden: Argumentieren als diskursive Tätigkeit (nach 

Habermas, vgl. auch Perelman 1970) und Argumentieren als „Generierung, Untersuchung und 

Absicherung von Vermutungen und Hypothesen in Bezug auf deren (objektiven oder individuell 

eingeschätzten) Wahrheitsgehalt“ (Reiss und Ufer 2009, S. 157 in Anlehnung an Balacheff 1999). 

 

Habermas (1999) schreibt: 

Argumentation nennen wir den Typus von Rede, in dem die Teilnehmer strittige Geltungsansprüche thematisieren 

und versuchen, diese mit Argumenten einzulösen oder zu kritisieren. Ein Argument enthält Gründe, die in 

systematischer Weise mit dem Geltungsanspruch einer problematischen Äußerung verknüpft sind. Die „Stärke“ 

eines Arguments bemißt sich, in einem gegebenen Kontext, an der Triftigkeit der Gründe; diese zeigt sich u.a. 

daran, ob ein Argument die Teilnehmer eines Diskurses überzeugen […] kann. (Ebd., S. 38; Hervorhebungen im 

Original) 

Argumentieren findet als ein Typus von Rede, nicht notwendigerweise mündlich, innerhalb einer 

sozialen Interaktion, eines Diskurses statt, in welchem eine strittige Position vorliegt. Argumente 

werden in systematischer Weise vorgebracht, miteinander verknüpft und stützen bzw. kritisieren 

einen problematischen Geltungsanspruch. Ein Argument hat dabei keine in sich fest stehende 
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‚Stärke‘, diese ergibt sich in dem jeweiligen Kontext. Die funktionale Ausrichtung einer 

Argumentation ist die Überzeugung des Gegenübers für die Annahme des strittigen 

Geltungsanspruchs (vgl. hierzu auch die Darstellungen in Brunner 2013, S. 99f.).  

Es sind dies die konstituierenden Elemente und auch charakteristischen Merkmale, die eine 

Argumentation ausmachen. In welchem Ausmaß diese Elemente allerdings verlangt bzw. betont 

werden, bestimmt das vorherrschende Verständnis von Argumentation. Eine Exaktifizierung dieser 

Elemente wird im Folgenden nur bei den Aspekten vorgenommen, die dabei helfen, das Verhältnis 

von Argumentation und Beweis besser charakterisieren zu können. Die Offenheit der anderen 

Aspekte ermöglicht die Verwendung eines weiter gefassten Argumentationsbegriffs. 

Im Weiteren wird die Darstellung der Argumentationsstruktur von Toulmin (1958, S. 94ff.) 

verwendet, um genauer beschreiben zu können, wie die Stützung des (problematischen) 

Geltungsanspruchs geschieht; für eine ausführlichere Darstellung desselben verweise ich auf Meyer 

(2007, S. 84ff.), dessen Übersetzungen der englischen Begriffe auch hier verwendet werden.  

In der Begrifflichkeit Toulmins wird von dem Datum, welches als wahr angesehene Aussagen 

beinhaltet, auf die behauptete Konklusion geschlossen. Als Verbindung zwischen Datum und 

Konklusion wird eine Regel eingesetzt, durch die der Schluss auf die Konklusion legitimiert wird. 

Diese Regel wird in dem konkreten Fall wiederum durch eine Stützung abgesichert. Entsprechend 

dem jeweiligen Datum und der angewandten Schlussregel muss die Konklusion allerdings nicht mit 

‚Sicherheit‘ folgen, dies ist z.B. gerade bei Alltagsargumentationen der Fall, wenn eine unzulässige 

Verallgemeinerung vorgenommen wird. Die Konklusion gilt dann eher ‚vermutlich‘ oder 

‚wahrscheinlich‘. Diese Begrifflichkeiten, die angeben, mit welchem Grad an Sicherheit die 

Konklusion gefolgert werden kann, wird als modaler Operator bezeichnet. Schließlich können für das 

Eintreten der Konklusion noch Ausnahmebedingungen angegeben werden. Das vollständige Toulmin-

Schema wird in Abbildung 4 wiedergegeben, ein entsprechendes Beispiel (nach Toulmin 1958, S. 105) 

wird in Abbildung 5 dargestellt. 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 4: Das allgemeine Toulmin-Schema 

Abbildung 5: Beispiel eines angewendeten Toulmin-Schemas (nach Toulmin 1958, 
S. 105) 
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Es ist, wie oben angemerkt, bei Argumentationen zulässig, dass die Konklusion nicht 

notwendigerweise, also mit Sicherheit aus der Verbindung von Datum und Regel folgt, da z.B. 

Stützungen einer Regel, die auf visuellen Eindrücken oder empirischer Evidenz basieren, hier nicht 

ausgeschlossen sind. Das bedeutet, dass modale Operatoren wie z.B. ‚vermutlich‘ oder 

‚wahrscheinlich‘ durch die Anwendung nicht-deduktiver Schlüsse entstehen können und durchaus  

zulässig sind (vgl. hierzu auch das plausible Schließen bei Polya 1969, S. 9ff.). Und wie Pedemonte 

(2007, S. 31ff.) mithilfe des Toulmin-Schemas oder auch  Boero (1999, S. 4) herausarbeiten, werden 

auch bei mathematischen Argumentationen Schlussweisen verwendet (wie etwa Abduktion oder 

(unvollständige) Induktion), die zu ‚nicht sicheren‘ Folgerungen führen. Weiter ist es an dieser Stelle 

offen, mit welchen sprachlichen Mitteln eine Argumentation stattfindet, wobei diese sowohl 

mündlich als auch schriftlich erfolgen kann.  

Somit eröffnet sich ein Möglichkeitsspektrum bzgl. des Argumentationsbegriffs, durch das 

verschiedene Formen des Argumentierens zuzulassen sind: Schlüsse auf die Konklusion müssen nicht 

mit Notwendigkeit erfolgen, durch entsprechende Verbindung von Regel und Stützung sind auch 

nicht-sichere Schlüsse in Argumentationen zugelassen. Die Ausnahmebedingung kann dabei als 

Ausnahmeregelung eines sonst notwendigen Schlusses oder eines nicht sicheren Schlusses auftreten. 

Auch werden keine expliziten Ansprüche an die Darstellungs- bzw. Kommunikationsmittel erhoben. 

2.3.1.1 Mathematisches Argumentieren 

Da im Kontext der Mathematik spezifische Ansprüche an Argumentationen erhoben werden bzw. ein 

bestimmtes Tätigkeitsbild damit verbunden wird, wird häufig speziell von ‚mathematischem 

Argumentieren‘ gesprochen. Im Folgenden wird zunächst dargestellt, was im Sinne der 

Bildungsstandards (KMK 2012) unter dem Begriff „mathematisch Argumentieren“ verstanden 

werden kann, bevor Diskrepanzen des schulmathematischen Argumentierens zum oben erörterten 

Argumentationsbegriff im Sinn von Habermas aufgezeigt werden. 

Vor dem Hintergrund der Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife 

(KMK 2012) kann ‚mathematisch Argumentieren‘ als Kompetenzbereich aufgefasst werden, unter 

den verschiedene Facetten subsumiert werden (ebd., S. 14; Hervorhebungen im Original): 

Zu dieser Kompetenz gehören sowohl das Entwickeln eigenständiger, situationsangemessener mathematischer 

Argumentationen und Vermutungen als auch das Verstehen und Bewerten gegebener mathematischer Aussagen. 

Das Spektrum reicht dabei von einfachen Plausibilitätsargumenten über inhaltlich-anschauliche Begründungen bis 

zu formalen Beweisen. Typische Formulierungen, die auf die Kompetenz des Argumentierens hinweisen, sind 

beispielsweise „Begründen Sie!“, „Widerlegen Sie!“, „Gibt es?“ oder „Gilt das immer?“.  

 

Die drei Anforderungsbereiche zu dieser Kompetenz lassen sich wie folgt beschreiben: 

 

Anforderungsbereich I: Die Schülerinnen und Schüler können  

• Routineargumentationen (bekannte Sätze, Verfahren, Herleitungen usw.) wiedergeben und anwenden  

• einfache rechnerische Begründungen geben oder einfache logische Schlussfolgerungen ziehen 

• Argumentationen auf der Basis von Alltagswissen führen 

 

Anforderungsbereich II: Die Schülerinnen und Schüler können 

• überschaubare mehrschrittige Argumentationen und logische Schlüsse nachvollziehen, erläutern oder 

entwickeln 
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Anforderungsbereich III: Die Schülerinnen und Schüler können 

• Beweise und anspruchsvolle Argumentationen nutzen, erläutern oder entwickeln 

• verschiedene Argumente nach Kriterien wie Reichweite und Schlüssigkeit bewerten 

 

Es wird hierbei deutlich, welche verschiedenen Aktivitäten und Verifikationsmuster unter der 

Kompetenz  „mathematisch Argumentieren“ gefasst werden, wobei hier auch explizit das Beweisen 

eingeordnet wird. 

Reiss und Ufer (2009) betonen dabei den zusammenhängenden Tätigkeitsprozess, in den 

mathematisches Argumentieren einzuordnen ist: 

Mathematisches Argumentieren ist dabei weit gefasst als eine Tätigkeit, die auf die Untersuchung und 

Absicherung von Hypothesen und offenen Fragen ausgerichtet ist. Insbesondere sind durchaus auch nicht-

deduktive Formen der Argumentation mit eingeschlossen wie Schlüsse durch Analogie, Metaphern, durch 

Abduktion oder durch Induktion. In dieser Form kann mathematisches Argumentieren ergebnisoffen sein in dem 

Sinne, dass in einer bestimmten mathematischen Situation eine als (plausible) Vermutung zu formulierende 

Regelmäßigkeit gesucht oder eine vorgegebene Vermutung auf ihre Plausibilität hin geprüft und gegebenenfalls 

angepasst bzw. korrigiert wird. (Ebd., S. 157) 

 

Betrachtet man die hierbei skizzierte Aktivität mathematischen Argumentierens in der 

Unterrichtspraxis, so werden verschiedene Diskrepanzen zum oben erörterten Argumentations-

begriff im Sinne von Habermas deutlich (vgl. hierzu die Ausführungen  in Brunner 2014, S. 28; Cramer 

2014, S. 293; Knipping 2003, S. 34ff.). Zunächst ist der Ausgangspunkt einer Argumentation im 

Unterricht nur selten durch eine unklare oder strittige Situation gegeben. Somit sind 

Argumentationen im Mathematikunterricht nicht auf Klärung einer strittigen Position ausgelegt, 

Schwarz et al. (2010, S. 119ff.) sprechen daher vom dialektischen Charakter (schulmathematischer) 

Argumentationen. Unterschiedliche Geltungsansprüche entstehen nicht oder eher selten im sozialen 

Miteinander, sondern werden vom Lehrer bzw. durch Aufgabenstellungen initiiert. Die 

diskursbedingte Argumentation lässt sich im Unterricht daher häufig als gemeinsames Problemlösen 

interpretieren: „Schüler (werden) in der Klasse in der Regel in Interaktionsprozesse eingebunden, die 

in der Gesamtheit ihrer Handlungen eine Argumentation erzeugen“ (Krummheuer & Brandt 2001, S. 

18, zitiert nach Knipping 2003, S. 35). Darüber hinaus sind im unterrichtlichen Diskurs weitere 

Prämissen nicht gewährleistet, die Habermas (1983, S. 97ff.) als notwendige 

Entstehungsbedingungen für eine gelingende Argumentation herausgestellt hat, wie etwa die  

Gleichberechtigung aller Beteiligten, die Freiheit von Zwängen und die gemeinsame Festlegung der 

Inhalte (vgl. hierzu Cramer 2014, S. 293f. und 2015, S. 348f.; Habermas 1983, S. 97ff.). 

Insgesamt kann somit festgehalten werden, dass mathematisches Argumentieren allgemein als 

„Untersuchung und Absicherung von Hypothesen und offenen Fragen“ (s.o.) verstanden werden 

kann. Diese Gegenstände der Untersuchung müssen dabei nicht notwendig ‚strittige 

Geltungsansprüche‘ in einem sozialen Miteinander von gleichberechtigten Beteiligten im Sinne von 

Habermas sein, sie können auch durch Dritte (Lehrer, Schulbuch etc.) an einzelne Personen 

herangetragen werden. Die Aktivität des mathematischen Argumentierens kann dabei verschiedene 

Formen von Argumentationen umfassen, welche bereits oben im Kontext der Erörterung des 

Toulmin-Schemas aufgezeigt wurde. Hierunter fallen im Sinne der Bildungsstandards u.a.: einfache 

Plausibilitätsargumente, Schlüsse durch Analogie, durch Abduktion oder durch Induktion, 

Metaphern, inhaltlich-anschauliche Begründungen und auch formale Beweise. 
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2.3.2 Das Verhältnis zwischen Argumentation und Beweis 

Wie oben gezeigt wurde, herrscht über die Bedeutung der Begriffe Argumentation und Beweis kein 

allgemeiner Konsens. Es überrascht daher nicht, dass über das Verhältnis dieser Begriffe zueinander 

in der Literatur keine Einigkeit besteht. Zusammenfassende Beiträge zu dieser Diskussion werden u.a. 

in Brunner (2014, S. 29ff.), Durand-Guerrier et al. (2012, S. 353) und Knipping (2003, S. 34ff.) 

gegeben. Auf der einen Seite werden Argumentieren und Beweisen als zwei unterschiedliche 

Tätigkeiten betrachtet. Diese Sichtweise wird prominent von Balacheff (1991), Duval (1991, 1995 und 

1999), Perelman (1970) und Perelman und Olbrechts-Tyteca (1969) vertreten. Dem gegenüber 

betonen vor allem Douek (2000) und Pedemonte (2007) die Parallelen der Begrifflichkeiten und 

betrachten Beweise als eine spezielle Form der Argumentation. Zunächst wird im Folgenden die erste 

Perspektive skizziert, bevor ausgeführt wird, warum in der vorliegenden Arbeit der zweite 

Standpunkt eingenommen wird. 

Balacheff (1991) begründet den Unterschied zwischen Argumentieren und Beweisen aus einer 

sozialen und epistemologischen Perspektive: 

But we do consider that argumentation and mathematical proof are not of the same nature: The aim of 

argumentation is to obtain the agreement of the partner in the interaction, but not in the first place to establish 

the truth of some statement. As a social behavior it is an open process, in other words it allows the use of any 

kind of means; whereas, for mathematical proofs, we have to fit the requirement for the use of some knowledge 

taken from a common body of knowledge on which people (mathematicians) agree. As outcomes of 

argumentation, problems' solutions are proposed but nothing is ever definitive. (Ebd., S. 188f.) 

 

Als charakteristischer Unterschied wird hier zunächst die funktionale Ausrichtung von Argumentieren 

und Beweisen angeführt. Der Hauptgedanke liegt allerdings in dem sozial-entwickelten Verständnis 

von Argumentation begründet: Im Gegensatz zum Beweis ist der Argumentationsbegriff offen für 

verschiedene Bedeutungen. 

 

Diese Sichtweise auf den Unterschied zwischen Argumentieren und Beweisen durch Betonung der 

unterschiedlichen Funktionen und des sozial-entwickelten Verständnisses von Argumentieren lässt 

sich durch die epistemologischen und kognitiven Perspektiven in Duval (1995 und 1999) ergänzen. 

Die Ausführungen von Knipping (2003, S. 36f.) zu dieser Thematik werden im Folgenden 

zusammenfassend wiedergegeben und durch die Perspektive in Duval (1991) ergänzt.  

 

Argumentationen finden in einem sozialen Kontext statt und haben die Überzeugung eines 

Gegenübers zum Ziel. Der (epistemische) Wert der vorgebrachten Argumente hängt dabei auch von 

den subjektiven Vorstellungen und Überzeugungen der Beteiligten ab; hier steht der semantische 

Gehalt der Argumente im Vordergrund. Im Gegensatz dazu, so Duval (1995, S. 223ff.), steht beim 

Beweisen nicht eine Überzeugung im sozialen Diskurs, sondern der Nachweis einer Gültigkeit 

innerhalb eines Sachkontextes im Zentrum. Ausschließlich die mit dem gestellten Problem sachlich 

zusammenhängenden Aspekte sind hier von Bedeutung. Innerhalb der Mathematik wird den 

verschiedenen Aussagen ein theoretischer Status (Axiom, Definition, Satz etc.) zugeordnet,  der 

zugleich seinen epistemischen Wert konstituiert: Innerhalb von Beweisen bestimmt der theoretische 

epistemische Wert den Status eines Arguments, wodurch der semantische epistemische Wert 

verdrängt wird (vgl. Knipping 2003, S. 36 nach Duval 1995, S. 225). 

Auch Perelman (1970) nutzt die funktionale Ausrichtung von Argumentationen auf die Überzeugung, 

um den Begriff gegen das Beweisen abzugrenzen, und betont die Unsicherheit von Argumentationen: 



58 

 

 

Whereas mathematical proof in its most perfect form is a series of structures and of forms whose progression 

cannot be challenged, argumentation has a non-constraining character. It leaves to the author hesitation, doubt, 

freedom of choice; even when it proposes rational solutions, non is guaranteed to carry the day. (Ebd., S. 41, 

zitiert nach Balacheff 1999, S. 1) 

 

Perelman und Olbrechts-Tyteca (1969, S. 13f.) kontrastieren Argumentation mit dem formalen 

Beweis der mathematischen Logik13. Gerade in der Darstellung des formalen Beweises als 

(individuelles) Zeichenspiel, mit von semantischer Bedeutung befreiten Zeichenketten und 

festgelegten Transformationsregeln in prinzipiell frei wählbaren formalen Systemen, wird der 

Unterschied zum sozial eingebundenen Konstrukt Argumentation deutlich. Auch können im 

Gegensatz zum formalen Beweis in einer Argumentation die psychologischen und sozialen 

Bedingungen des Diskurses nicht ignoriert werden: „For all argumentation aims at gaining the 

adherence of minds, and, by this very fact, assumes the existence of an intellectual contact“ (ebd., S. 

14; Hervorhebungen im Original).  

 

Im Gegensatz zu den bisherigen Ansätzen arbeitet Pedemonte (2007) Gemeinsamkeiten von 

(mathematischen) Argumentationen und Beweisen heraus, woraus die Betrachtung von Beweis als 

ein Spezialfall von Argumentation resultiert. An gemeinsamen Charakteristika werden dabei die 

folgenden Aspekte betrachtet (ebd., S. 26f.): Mathematische Argumentationen und Beweise (1) sind 

rationale Begründungen („rational justifications“), (2) sollen überzeugen, (3) adressieren eine 

universelle Zuhörerschaft („universal audience“) und (4) finden innerhalb entsprechender 

Bezugssysteme (Algebra, Geometrie, etc.) statt, in denen die verwendeten Begriffe und Aussagen 

ihre Bedeutung erlangen. Auf kognitiver Ebene können sowohl mathematische Argumentationen wie 

auch Beweise mithilfe des Toulmin-Schemas (s.o.) strukturiert und nachvollzogen werden, was eine 

strukturelle Gemeinsamkeit impliziert. 

Weitere Bezugspunkte zwischen Argumentationen und Beweisen werden von Douek (1998) erörtert. 

Für eine vergleichende Darstellung wird der Begriff Referenzkorpus eingeführt: „The expression 

“reference corpus“ will include not only reference statements but also visual and, more generally, 

experimental evidence, physical constraints, etc. assumed to be unquestionable […]“ (ebd., S. 130). 

Wie herausgestellt wird, kann der Referenzkorpus auch beim Beweisen als teilweise implizit und vor 

allem als sozial und historisch determiniert angesehen werden. Ein weiterer Punkt betrifft den 

inneren semantischen Zusammenhang des finalen Beweisprodukts. Mit Bezug auf Thurston (1994) 

wird dargestellt, dass in einem fertigen Beweis nicht ausschließlich die formalen Schlussweisen von 

Bedeutung sind: „the model of formal proof as described by Duval and based on the “operational 

status” of propositions rather than on their “semantic content” does not seem to fit the description 

of the activities performed by many working mathematicians when they check the validity of a 

statement or a proof“ (Douek 1998, S. 134). Die Konzentration auf die formale Prozession in einem 

(formalen) Beweis kann somit nicht als Unterscheidungsmerkmal der Konzepte aufgefasst werden.  

                                                           
13

 „In modern logic, the product of reflection on mathematical reasoning, the formal systems are no longer 

related to any rational evidence whatever. The logician is free to elaborate as he pleases the artificial language 

of the system he is building, free to fix the symbols and combinations of symbols that may be used. […] It must 

be possible, without hesitation, even mechanically, to establish whether a sequence of symbols is admitted in 

the system, whether it is of the same form as another sequence of symbols, whether it is considered valid, 

because it is an axiom or an expression deducible from the axioms, in a manner consistent with the rules of 

deduction.” (Perelman & Olbrechts-Tyteca 1969, S. 13) 
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Es erscheint offensichtlich, dass eine gegenüberstellende Bewertung der Begriffe Argumentation und 

Beweis stark von dem vorliegenden Verständnis der jeweiligen Begrifflichkeiten abhängt. Wie oben 

dargestellt wurde, ist der Argumentationsbegriff offen für verschiedene Ausprägungen und 

Interpretationen. Dies trifft in gewisser Weise aber auch für den Beweisbegriff zu, wie in Abschnitt 

2.1.1 bereits gezeigt wurde. Somit muss die Frage erörtert werden, ob es sich bei den 

epistemologischen, sozialen und kognitiven Unterschieden zwischen den Konzepten um 

unüberbrückbare Unterschiede handelt, oder ob diese als charakteristische Ausprägungen 

interpretiert werden können. 

 

Was die funktionale Ausrichtung betrifft, so kann der dem Beweis obliegende Nachweis der 

Gültigkeit einer Behauptung als strittige Position interpretiert werden. Darüber hinaus beinhaltet 

jeder Beweis die Funktion der Überzeugung, die er in unterschiedlichem Maß erfüllen kann (vgl. 

Abschnitt 2.1.7). Auch der Diskurs-Charakter kann beim Beweisen nicht negiert werden, vor allem, 

wenn man die kommunikative Funktion berücksichtigt und bedenkt, dass die Akzeptanz von 

Beweisen als sozialer Akt betrachtet wird. Der sichere deduktive Schluss kann auch innerhalb von 

Argumentationen auftreten und ist damit kein Alleinstellungsmerkmal von Beweisen. Schließlich 

stellt sich noch die Frage nach dem epistemisch-theoretischen Status der Argumente innerhalb eines 

Beweises. In der Sprache Toulmins entstammen die Stützungen einer Regel innerhalb eines Beweises 

einer mathematischen Theorie (vgl. Durand-Guerrier et al. 2012, S. 356), aus der ihr epistemisch-

theoretischer Wert resultiert (s.o.). Dies ist zwar für den formalen mathematischen Beweis korrekt, 

muss aber vor dem Hintergrund des oben erörterten Beweisbegriffs relativiert werden. Offensichtlich 

kann allen wahren mathematischen Sachverhalten, die als Argumente verwendet werden, ein 

theoretischer Status innerhalb eines mathematischen Systems zugeordnet werden. Es ist aber eine 

Frage der jeweiligen Beweisform (formaler Beweis, generischer Beweis etc.), ob der semantische 

Gehalt der Argumente explizit im Vordergrund steht oder nicht. Somit konstituiert die Bedeutung des 

theoretischen Status eines Arguments nur ein Charakteristikum von verschiedenen Argumentationen 

und kein Alleinstellungsmerkmal. 

 

Aufgrund der bisherigen Erörterungen wird daher in der vorliegenden Arbeit der Standpunkt 

vertreten, dass Beweise als eine spezielle Form von Argumentation zu sehen sind. In diesem Sinne 

werden spezielle Argumentationen in mathematischen Kontexten mit sicheren Schlüssen auf die 

Konklusion, die gewisse Normen erfüllen (vgl. Abschnitt 2.1.1), als mathematische Beweise 

betrachtet. Diese Sichtweise auf das Beweisen ermöglicht die ‚Akzeptanz‘ sowohl formaler als auch 

didaktisch motivierter Beweisformen (etwa operativer oder generischer Beweise) und die Bewertung 

und Betonung des epistemisch-semantischen Werts von Argumenten in verschiedenen 

Beweisprodukten. Mit diesem Standpunkt ist weiter die Sicht auf das Beweisen als diagrammatisches 

Schließen in verschiedenen Diagrammsystemen (Abschnitt 2.5) vereinbar. 

2.3.3 Begründen 

Der Begriff ‚Begründen‘ wird in der mathematikdidaktischen Literatur meist nicht explizit erläutert, 

seine Bedeutung wird allgemein als intuitiv klar angenommen (Brunner 2015, S. 29). Im Folgenden 

werden aufbauend auf dem Begründungsbegriff der Philosophie verschiedene Sichtweisen der 

Mathematikdidaktik einander gegenübergestellt, um schließlich eine Eingrenzung der Bedeutung des 

Begriffs vornehmen zu können. 
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Begründen kann allgemein als „Darlegen von Gründen für etwas“ verstanden werden (Lumer 1999, S. 

149). Die Begründungsgegenstände können dabei vielfältig sein, als Hauptgruppen lassen sich  

(epistemische) Begründungen von Thesen und (praktische) Begründungen von Handlungen bzw. 

Absichten unterscheiden. Die epistemische Begründung einer These soll beim Gegenüber die 

Annahme eines Urteils auf kognitive Weise bewirken (vgl. ebd., S. 149). Dabei können die folgenden 

drei erkenntnis- und wissenschaftstheoretisch relevanten Dimensionen unterschieden werden (vgl. 

Apel 1989, S. 15): (1) Die Begründung des Führwahrhaltens von Aussagen [Überzeugung], (2) die 

Begründung der Möglichkeit objektiv gültiger Erkenntnis [Verifikation] und (3) Begründung im Sinne 

von Erklärung [Erklärung].  

Die Mathematikdidaktiker Fischer und Malle (1985, S. 178f.) führen verschiedene Arten an, wie das 

Begründen einer Aussage erfolgen kann: Berufung auf eine Autorität, deduktives Schließen, 

reduktives bzw. induktives Schließen und Analogieschlüsse bzw. Wahrscheinlichkeitsaussagen. 

Beweise wollen die Autoren in diesem Sinne als besondere Form des Begründens verstanden wissen 

und schreiben hierzu: „Eine Begründung auf Grund einer vorgegebenen Argumentationsbasis soll als 

ein Beweis bezüglich dieser Argumentationsbasis bezeichnet werden.“ (ebd., S. 180; 

Hervorhebungen im Original). Brunner (2013) hält dieser Definition allerdings entgegen, dass der 

Begriff des Begründens im Gegensatz zu Beweisen einen stärkeren Einbezug von alltagsnaher und 

vorwissenschaftlicher Sprache intendieren würde (ebd., S. 109).  

Bereits bei der Betrachtung dieser unterschiedlichen Sichtweisen auf das Begründen wird die 

Offenheit des Begriffs deutlich. In der Sicht der Philosophie (in Anlehnung an Lumer 1999 und Apel 

1989) rückt der Begründungsbegriff einerseits als diskursive Tätigkeit an den Argumentationsbegriff 

von Habermas heran (vgl. Abschnitt 2.3.1), die verschiedenen Dimensionen der Überzeugung, 

Verifikation und Erklärung verweisen dabei gleichzeitig auf den Beweisbegriff. Der Einbezug von 

Schlussweisen (vgl. Fischer und Malle 1985) zeigt eine strukturelle Ähnlichkeit zu Argumentationen 

auf (vgl. der Argumentationsbegriff bei Toulmin, Abschnitt 2.3.1). Beweise werden dabei als 

besondere Formen von Begründungen verstanden. 

Insgesamt scheint die Position von Brunner vertretbar, dass der Begründungsbegriff stärker dem 

alltäglichen Diskurs zugeordnet wird als die Begriffe Argumentieren und Beweisen und somit durch 

eine stärkere Offenheit als diese beiden Begriffe geprägt ist. In diesem Sinne wäre Begründen dann 

mit weniger Ansprüchen verbunden als das Argumentieren und Beweisen und somit offener für 

alltagsnahe und vorwissenschaftliche Sprache (s.o.). Diese alltagsnahe Auffassung von ‚Begründen‘ 

wird sich auch in den Formulierungen der Bildungsstandards wiederfinden lassen (s.u.). Es verbleibt 

weiter die Frage nach der Beziehung der Begriffe Argumentieren, Begründen und Beweisen 

untereinander. 

2.3.4 Argumentieren, Begründen und Beweisen 

Da über die Begrifflichkeiten Argumentieren, Begründen und Beweisen in der Literatur keine 

Einigkeit herrscht, wird auch das Verhältnis der Begriffe untereinander unterschiedlich gewertet. Ein 

guter Überblick über verschiedene Positionen wird in Brunner (2013, S. 29ff.) gegeben. Im Folgenden 

werden die bisherigen theoretischen Erörterungen mit den normativen Beschreibungen der 

nationalen Bildungsstandards und Anmerkungen zu diesen abgeglichen, um sich dem Verhältnis der 

drei Begriffe zueinander begründet nähern zu können. 
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Im deutschen Mathematikunterricht werden die Begriffe Argumentieren und Begründen dem des 

Beweisens vorgezogen. Linneweber-Lammerskitten (2014, S. 86) weist allerdings darauf hin, dass das 

Beweisen jedoch der eigentliche Grund dafür ist, dass diese Begrifflichkeiten in den 

Bildungsstandards erwähnt werden. In den Bildungsstandards im Fach Mathematik für die 

Allgemeine Hochschulreife wird „mathematisch argumentieren“ als allgemeine mathematische 

Kompetenz aufgeführt. Der Kompetenz mathematisch Argumentieren werden dabei einfache 

Plausibilitätsargumente, inhaltlich-anschauliche Begründungen und (formale) Beweise zugeordnet, 

wodurch das Argumentieren zu einem Oberbegriff erhoben wird. Hefendehl-Hebeker und Hußmann 

(2003) merken zu dem Verhältnis der Begriffe zueinander in Anlehnung an Mittelstrass (1995/96) an: 

„Eine schlüssige Argumentation für eine Aussage bzw. Norm heißt eine Begründung derselben, im 

Falle einer Aussage auch ein Beweis […]“ (Hefendehl-Hebeker & Hußmann, S. 95; Hervorhebungen im 

Original). Folglich wird hier eine Begründung als eine bestimmte, nämlich schlüssige, Art von 

Argumentation betrachtet, die in einem besonderen Fall als Beweis bezeichnet wird. In den 

Ausführungen der Bildungsstandards bilden (inhaltlich-anschauliche) Begründungen dagegen eine 

Zwischenstufe zwischen Plausibilitätsargumenten und (formalen) Beweisen. Die Betrachtung einer 

Begründung als schlüssige Argumentation widerspricht dabei den Ausführungen in Fischer und Malle 

(1985), wie sie oben ausgeführt wurden, die unter Begründungen auch nicht-sichere Schlussweisen 

zulassen.  

In den Formulierungen der Bildungsstandards ist weiter auffällig, dass von „inhaltlich-anschaulichen 

Begründungen“ gesprochen wird, obwohl diese Sprachverbindung vermutlich auf die „inhaltlich-

anschaulichen Beweise“ von Wittmann (vgl. Abschnitt 4.2.5) zurückzuführen ist. Hier wird der 

Beweisbegriff vermieden und im Kontext von ‚Inhaltlichkeit‘ und ‚Anschaulichkeit‘ der 

Begründungsbegriff vorgezogen. Diese Zuordnung und ein damit verbundener gewisser Ausdruck von 

Wertigkeit können auch in den drei Anforderungsbereichen ausgemacht werden. Dort heißt es unter 

Anforderungsbereich 1: „einfache rechnerische Begründungen geben oder einfache logische 

Schlussfolgerungen ziehen“ und „Argumentationen auf der Basis von Alltagswissen führen“, unter 

Anforderungsbereich 2: überschaubare mehrschrittige Argumentationen und logische Schlüsse 

nachvollziehen […] und schließlich unter Anforderungsbereich 3: „Beweise und anspruchsvolle 

Argumentationen nutzen, erläutern oder entwickeln“ (KMK 2012, S. 14; vgl. Abschnitt 2.3.1). Im 

Kontext der Bildungsstandards scheint implizit eine Sichtweise vorzuliegen, in der mit Begründung 

eine eher kurze Bestätigung oder Problematisierung von Rechenschritten, Aufgabenlösungen und 

Lösungswegen auf einer eher weniger formalen Ebene verbunden ist (vgl. die Ausführungen von Ufer 

und Kramer (2015)), wohingegen Argumentationen explizit mehrschrittig sein können und in 

Verbindung mit logischen Schlüssen zu sehen sind und Beweise und „anspruchsvolle 

Argumentationen“ (s.o.) dem höchsten Anforderungsbereich zugeordnet werden müssen. 

Durch die obigen Erörterungen ist deutlich geworden, wie unterschiedlich die Begrifflichkeiten 

Argumentieren, Begründen und Beweisen verwendet werden, woraus unterschiedliche 

Betrachtungsweisen der Begriffe untereinander resultieren. Für die vorzunehmenden empirischen 

Untersuchungen bleibt darauf hinzuweisen, dass sich die Bedeutungen der Begriffe im 

unterrichtlichen Geschehen im Zuge sogenannter sozio-mathematischer Normen (vgl. Abschnitt 

2.6.2) herausbilden und jeder Studierende somit über ein implizites Wissen verfügt, was er bzw. sie 

unter einer Begründung, einer Argumentation und einem Beweis versteht. 
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2.4 Ausgewählte empirische Befunde zum Themenkomplex Beweisen 
In diesem Abschnitt werden die für diese Arbeit relevanten empirischen Befunde aus der Literatur 

aufgearbeitet und erörtert. Gleichsam wird somit das Feld empirischer Forschung aufgezeigt, in dem 

sich die vorliegende Arbeit bewegt. Von Interesse sind hierbei die Thematik des Beweisens bei 

Studienanfängerinnen und -anfängern (2.4.1), verschiedene Akzeptanzaspekte im Kontext des 

Beweisens (2.4.2) und die Auswirkung von Selbstwirksamkeitserwartung und Einstellungen zur 

Mathematik auf das Erlernen der Beweisaktivität (2.4.3 und 2.4.4).  

2.4.1 Beweisen bei Studienanfängerinnen und Studienanfängern 

Die mathematischen Fähigkeiten von Studienanfängerinnen und Studienanfängern geraten aktuell 

durch ein starkes Aufkommen hochschuldidaktischer Forschungsarbeiten in den Blickpunkt des 

Interesses. Gute Zusammenfassungen aktueller Diskussionen werden u.a. in Bausch et al. (2014) und 

Hoppenbrock et al. (2016) gegeben und auch verschiedene Dissertationen beschäftigten sich mit 

dieser Thematik (etwa Rach 2014, Reichersdorfer 2013 und Riedl 2015). Auch wenn in der Literatur 

an verschiedenen Stellen betont wird, dass Studienanfängerinnen und -anfänger besonders mit dem 

Beweisen Probleme haben (etwa Selden 2012 und Guedeut 2008), wurden die Beweiskompetenzen 

von Studienanfängern bisher nur wenig eingehend untersucht. Im Folgenden werden zunächst die 

Problembereiche dargestellt, die sowohl national wie auch international bei Studienanfängerinnen 

und Studienanfängern im Kontext des Beweisens auftreten. Anschließend wird die 

Dissertationsstudie von Hemmi (2006) herangezogen, um erste Erkenntnisse darüber zu erlangen, 

mit welchen Vorerfahrungen Studienanfängerinnen und -anfänger mit Beweisen an die Universität 

kommen und welche generellen Einstellungen sie zum Erlernen der Beweisaktivität und dem 

Beweisen haben. 

In Deutschland wird in verschiedenen Studien bereits von einer eher schlechten Argumentations- 

bzw. Beweiskompetenz von Schülerinnen und Schülern berichtet. Die Probleme betreffen dabei 

neben der Beweiskonstruktion auch die Bewertung und das Verstehen von vorgelegten Beweisen. 

Ein guter Überblick über entsprechende Studien und Ergebnisse wird u.a. in Brunner (2014, S. 82ff.) 

gegeben.  Reiss und Heinze (2000) und Reiss et al. (2000) konnten entsprechende Probleme auch bei 

Schülerinnen und Schülern der gymnasialen Oberstufe aufzeigen. Die eher schlechten 

Argumentations- bzw. Beweiskompetenzen der deutschen Schülerinnen und Schüler wurden auch im 

Spiegel der großen Leistungsmessungsstudien PISA (vgl. PISA-Konsortium 2012) und TIMSS (vgl. 

Baumert, Lehmann et al., 1997; Baumert, Bos & Lehmann, 2000) deutlich. Es überrascht daher nur 

wenig, dass in verschiedenen Studien auch von mangelnden Beweiskompetenzen von Studierenden 

in Deutschland berichtet wird (etwa Frischemeier et al. 2016; Ostsieker und Biehler 2012; 

Sommerhoff et al. 2016).  

Entsprechende problematische Ergebnisse bzgl. des Argumentierens und Beweisens lassen sich dabei 

auch international feststellen. So resümiert Gueudet (2008) ihre Literaturrecherche: „Studies 

considering proof in many different countries have shown that only a minority of students are able to 

build consistent proofs at the end of high school.“ (ebd., S. 243; vgl. hierzu auch Reid und Knipping 

2010, S. 68). Selden (2012, S. 398ff.) gibt einen Überblick über internationale Studien zu den 

Problemen von Studienanfängern zum Beweisen und stellt schließlich die folgenden übergreifenden 

Problembereiche heraus: die korrekte Verwendung der fachmathematischen Sprache und 

Quantoren, ein Umgang mit logischen Schlüssen und im Speziellen dem Beweis durch Widerspruch, 

Heuristiken bei der Beweiskonstruktion, ein angemessenes Beweisverständnis, das Verständnis um 

und Wissen über mathematische Definitionen und Sätze und deren Verwendung in Beweisen, 
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Verständnis der zu beweisenden Behauptung, Auswahl und Verwendung adäquater 

Repräsentationen, das Lesen und Überprüfen von Beweisen. Güler (2016, S. 146) kommt bei seiner 

Literaturübersicht zu den Problemen von Lehramtsstudierenden zum Beweisen zu vergleichbaren 

Ergebnissen. 

 

Hemmi (2006) untersucht in ihrer Dissertation u.a. die Vorerfahrungen von 168 schwedischen 

Studienanfängerinnen und Studienanfängern der Mathematik mit Beweisen und ihre Ansichten zum 

Beweisen. Im Folgenden werden die für die vorliegende Arbeit relevanten Ergebnisse der Studie 

zusammenfassend dargestellt (vgl. hierzu ebd., S. 128ff.).  

In Bezug auf die Vorerfahrungen zum Beweisen kommt Hemmi zu dem Ergebnis, dass die 

Studierenden während ihrer Oberstufenzeit zwar häufig Beweise durch ihre Lehrerinnen und Lehrer 

gesehen haben, aber kaum Gelegenheit hatten, selbst Beweise zu konstruieren. So gibt etwa die 

Hälfte der Befragten an, dass ihr Mathematiklehrer in der Oberstufe mindestens einmal in der 

Woche einen Sachverhalt bewiesen habe und 36% stimmen der Aussage zu bzw. eher zu 

(Bewertungen „4“ und „5“ auf einer fünfstufigen Likert-Skala), dass ihr Mathematiklehrer in der 

Oberstufe häufig Sachverhalte bewiesen hat. Bzgl. der Eigenkonstruktion von Beweisen geben 

allerdings 59% der Befragten an, höchstens ein- oder zweimal im Schulhalbjahr die Gelegenheit 

gehabt zu haben, Beweise selbst zu konstruieren, und 60% stimmen der Aussage nicht oder eher 

nicht zu (Bewertungen „1“ und „2“ auf einer fünfer Likert-Skala), dass sie in der Schule die 

Gelegenheit hatten, das Aufschreiben von Beweisen zu üben („I have had the possibility to practice 

proving by writing in school“; ebd., S. 133). Bei den Ansichten zum Beweisen wird allerdings deutlich, 

dass die Studierenden dem Beweisen gegenüber sehr positiv eingestellt sind. So stimmen über 80% 

der Befragten den Aussagen eher zu oder voll zu, dass sie mehr über mathematische Beweise lernen 

wollen und dass sie in der Schule gerne mehr über das Beweisen gelernt hätten. Und auch der 

Aussage: „Ich beweise gerne mathematische Sätze“ („I like to show/demonstrate mathematical 

statements“; ebd., S. 147) wird von gut 60% der Befragten eher bzw. voll zugestimmt.  

Schließlich seien hier noch die Ergebnisse angeführt, die das Phänomen des Beweisbedürfnisses bei 

Studierenden tangieren. Fast 90% der Befragten stimmen der Aussage überhaupt nicht zu, dass sie 

Beweisen keine Bedeutung beimessen würden, da die Sätze bereits von berühmten Mathematikern 

bewiesen worden wären. Auch stimmen etwa 85% der Aussage eher nicht oder überhaupt nicht zu, 

dass es keinen Sinn machen würde, intuitiv richtig erscheinende Sätze zu beweisen. Schließlich 

stimmen ca. 90% der Befragten eher zu oder voll zu, dass Beweise ein essentieller Teil der 

Mathematik seien. 

 

2.4.2 Akzeptanzaspekte beim Beweisen 

In verschiedenen empirischen Studien werden unterschiedliche Akzeptanzaspekte im Kontext von 

Beweisen erörtert. Aufgrund der Beweisaktivitäten, die im Kontext der hier fokussierten 

Lehrveranstaltung motiviert werden, welche die Exploration von Beispielen und die 

Beweiskonstruktion anhand konkreter Beispiele (‚generische Beweise‘) umfasst, sind für die 

vorliegende Arbeit drei spezielle Aspekte von Bedeutung: (1) die Akzeptanz von bloßen 

Beispielbetrachtungen als Beweis, (2) die Nicht-Akzeptanz von Beweisen als ausreichende Form der 

Verifikation und (3) die Nicht-Akzeptanz von Beweisen, die an konkreten Beispielen geführt werden, 

dabei aber Allgemeingültigkeit beanspruchen können. In Reid und Knipping (2010, S. 59ff.) wird ein 

guter Überblick über die empirischen Ergebnisse zu den Punkten (1) und (2) gegeben; es geht daher 

im Folgenden nicht darum, entsprechende Befunde der Literatur aufzuarbeiten, sondern gezielt die 
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Studien und Ergebnisse zu diskutieren, die sich mit der Zielgruppe der Lehramtsstudierenden oder 

auch mit Lehrerinnen und Lehrern der Mathematik befassen. Am Ende des Abschnitts wird die Frage 

erörtert, wie sich ein Konstrukt ‚Beweisakzeptanz‘ konzeptualisieren lässt. 

(1) Die Akzeptanz von bloßen Beispielbetrachtungen als Beweis  

 

Reid und Knipping (2010) führen verschiedene Studien auf, die sich mit der Akzeptanz von Beispielen 

als gültige Form der Verifikation befassen, und resümieren ihre Literaturrecherche wie folgt: „These 

results suggest that somewhere between 20% and 80% of students and teachers (depending on age 

and mathematical background) consider a set of examples to be sufficient to verify a mathematical 

statement“ (ebd., S. 59). Dabei weisen die Autoren darauf hin, dass verschiedene Studien in dieser 

Hinsicht kritisch bewertet werden müssten, da verschiedene Ergebnisse vorsichtiger interpretiert 

bzw. Studien ausführlicher referenziert werden müssten. So ist etwa ein Ergebnis der in diesem 

Kontext häufig angeführten Studie von Healy und Hoyles (1998 und 2000), dass ca. 25% der 14- und 

15-jährigen Schülerinnen und Schüler ein empirisches Argument als den Ansatz auswählen, der ihrem 

eigenen am nächsten kommt. Die Autoren der Studie merken allerdings hierzu an: „The majority 

were also aware that empirical arguments were not general – particularly if the statement to be 

proved was not familiar - but they recognized that examples offered a powerful means of gaining 

conviction about a statement’s truth“ (Healy & Hoyles 1998, S. 425). Die Schülerinnen und Schüler 

dieser Studie wählten folglich das empirische Argument aus, um sich zunächst selbst von der 

Gültigkeit („conviction“) einer Aussage zu vergewissern, nicht, weil sie der Meinung waren, dass 

dieser Ansatz einen Beweis konstituieren würde. Diese Sichtweise wird allerdings in verschiedenen 

Referenzen auf diese Studie nicht berücksichtigt. Auch Stylianides und Stylianides (2009) kommen in 

ihrer Studie mit Lehramtsstudierenden zu dem Ergebnis, dass sich die Probanden, die bloße 

Beispielbetrachtungen als Argument anführen, durchaus der Unzulänglichkeit dieser 

Verifikationsmethode bewusst sind. In diese Richtung weisen auch die Ergebnisse von Chazan (1993). 

Dort konnte durch Interviews mit 17 amerikanischen Schülerinnen und Schülern („secondary school“) 

gezeigt werden, dass die Lernenden, die einzelne Beispiele für die Verifikation einer Aussage 

verwenden, sich sehr wohl über die Unzulänglichkeit dieser Methode bewusst sind und singuläre 

Beispielüberprüfungen somit nicht unbedingt als allgemeingültige Form der Verifikation betrachten. 

Es kann also als Tatsache festgehalten werden, dass, wenn Lernende bloße Beispielüberprüfungen 

anstellen, dies nicht ohne weiteres so gedeutet werden kann, dass diese Beispielbetrachtungen auch 

als Beweis akzeptiert werden würden.  So weist auch Weber (2010, S. 309) in Anlehnung an Vinner 

(1997) kritisch darauf hin, dass in verschiedenen Studien von ‚Beweiskonstruktionen‘ Lernender, die 

nur aus einzelnen Beispielüberprüfungen bestehen, in unzulässiger Weise darauf geschlossen wird, 

dass für diese Lernenden Beispiele korrekte Beweise darstellen würden. Denn dass Lernende, wenn 

sie aufgefordert werden, einen Beweis zu konstruieren, bloße Beispielüberprüfungen anstellen, kann 

verschiedene Gründe haben. So scheint es vernünftig, dass die Schülerinnen und Schüler ihren 

Beweisprozess mit Beispielbetrachtungen beginnen, um die Behauptung zu verstehen oder zu 

explorieren; wissen sie dann nicht weiter, verbleiben nur die bereits notierten konkreten Beispiele. 

Auch ist es möglich, dass sie von vornherein wissen, dass sie keinen Beweis konstruieren können, aus 

anderen Gründen (etwa, um Teilpunkt zu erhalten) notieren sie dann lieber einzelne Beispiele als gar 

nichts. Diese Sichtweise wird ferner durch die Ergebnisse von Knuth et al. (2009) gestützt, dass 

Schülerinnen und Schüler der Mittelstufe häufiger empirische Argumente als ‚Beweis‘ anführen, 

wenn sie kompliziertere Sachverhalte beweisen sollen. Anscheinend werden Beispiele häufig dann 
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angeführt, wenn die Lernenden keinen (anderen) Zugang zu einer Begründungsaufgabe ausmachen 

können.  

 

Allerdings lassen sich in der Literatur auch Befunde dafür finden, dass einzelne Beispielbetrachtungen 

durchaus als korrekte Beweise betrachtet werden. So ergab die Studie von Gholamazad et al. (2004), 

dass 68% der befragten Lehramtsstudierenden (Grundschule, n=75) die Überprüfung einer 

Allaussage anhand einzelner Beispiele als Beweis akzeptierten. Was die Probanden der Studie 

überhaupt unter einem (akzeptablen) Beweis verstehen, wurde dabei leider nicht untersucht. 

  

Diese Diskussion kann dabei durch die Ausführungen von Weber und Mejia-Ramos (2015) um eine 

Unterscheidung von absoluter und relativer Überzeugung sinnvoll erweitert werden. Während 

absolute Überzeugung („absolute conviction“) die objektive Feststellung der Gültigkeit einer 

Behauptung im Sinne der Mathematik meint, beschreibt relative Überzeugung („relative conviction“) 

das subjektive Maß an Überzeugung, das eine Person bzgl. der Gültigkeit einer Aussage empfinden 

kann. Die Autoren führen aus, wie die Berücksichtigung dieser Pole zu einer Neubewertung 

empirischer Studien führen kann. Denn die Betrachtung von konkreten Beispielen kann durchaus die 

subjektive Überzeugung bzgl. der Gültigkeit einer Behauptung steigern. Wenn Probanden nun die 

Überzeugungskraft von Beispielbetrachtungen bewerten sollen und dieses Attribut als subjektiv 

empfundene Überzeugung („relative conviction“) interpretieren, ist es nur folgerichtig, dass sie 

Beispielbetrachtungen eine hohe Bewertung geben. 

 

Insgesamt lassen sich auf der Basis der erfolgten Erörterung die folgenden Anmerkungen bzgl. der 

Akzeptanz von Beispielen als allgemeingültige Form der Verifikation (bzw. als ‚Beweis‘) formulieren: 

 

(i) In verschiedenen Studien lassen sich Befunde dafür ausmachen, dass einige Lernende 

und Lehrende der Mathematik einzelne Beispielüberprüfungen als wirkliche ‚Beweise‘ 

betrachten. Was diese Probanden dabei unter einem Beweis verstehen, wird dabei leider 

nicht untersucht. 

(ii) Die Präferenz Lernender für konkrete Beispielbetrachtungen, um sich subjektiv von der 

Gültigkeit einer Behauptung zu überzeugen, ist kein Beleg dafür, dass 

Beispielbetrachtungen von diesen Personen als korrekte mathematische Beweise 

betrachtet werden. 

(iii) Geben Lernende Beispielbetrachtungen an, obwohl sie aufgefordert werden, einen 

Beweis zu konstruieren, so kann dies ebenfalls nicht ohne weiteres als Beleg dafür 

gewertet werden, dass für sie Beispielbetrachtungen korrekte mathematische Beweise 

darstellen würden. 

(iv) Die Betrachtung von konkreten Beispielen, um sich (subjektiv) von der Gültigkeit einer 

Behauptung zu überzeugen, ist eine genuine mathematische Tätigkeit und lässt ebenfalls 

keine Rückschlüsse auf die Akzeptanz von Beispielen als korrekter mathematischer 

Beweis zu. 

 

Insgesamt scheint in diesem Kontext die folgende Ausdifferenzierung der Frage nach einer 

eventuellen Akzeptanz von Beispielbetrachtungen bei Lernenden sinnvoll und notwendig: 

- Inwiefern kann die Betrachtung von einzelnen Beispielen bei Lernenden (i) die subjektive 

Überzeugung und (ii) die objektive Sicherheit bzgl. der Gültigkeit einer Behauptung 

beeinflussen? 
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- Betrachten Lernende die Überprüfung einzelner Beispiele als wirklichen ‚Beweis‘? 

 

Diese Facetten von Beweisakzeptanz werden am Ende dieses Abschnitts wieder aufgegriffen. 

Insgesamt ergibt sich an dieser Stelle das Phänomen der Akzeptanz von Beispielen als 

Verifikationsmittel bzw. als mathematischer Beweis bei der Zielgruppe der Studienanfängerinnen 

und -anfänger als offene Frage der Forschung. Im Kontext der oben geäußerten Kritik an den 

angeführten Studien sollen die Ergebnisse dieser Arbeit auch dazu beitragen, die Schwächen 

vorheriger Studien zu der Thematik der ‚Akzeptanz‘ zu beheben. 

 

(2) Die Nicht-Akzeptanz von Beweisen als ausreichende Form der Verifikation  

Wie Reid und Knipping (2010, S. 62f.) darlegen, wird in verschiedenen Studien auf das Phänomen 

hingewiesen, dass einige Lernende deduktive Beweise nicht als ausreichende Form der Verifikation 

akzeptieren. Für die vorliegende Arbeit scheinen dabei besonders drei Studien von Interesse zu sein: 

Martin und Harel (1989) untersuchen das Beweisverständnis von Grundschullehramtsstudierenden, 

wohingegen Knuth (2002) von Interviews mit 16 Mathematiklehrerinnen und -lehrern („secondary 

school“) berichtet. Schließlich ist hierbei die Studie von Chazan (1993) interessant, deren qualitative 

Anlage tiefere Einblicke in etwaige Fehlvorstellungen zur Thematik ermöglicht.  

Martin und Harel (1989) erheben in ihrer Studie, wie Grundschullehramtsstudierende verschiedene 

Beweise bewerten, und kommen dabei zu dem Ergebnis, dass 26% bis 38% der Probanden korrekten 

Beweisen nur eine niedrige Bewertung (Werte von 1 bzw. 2 auf einer Likert-Skala mit vier Stufen) in 

Bezug auf ihre Verifikationsleistung geben. In der Studie von Knuth (2002) gaben sechs von 16 

Lehrerinnen und Lehrern („secondary school“) an, dass auch nach einer korrekten 

Beweiskonstruktion noch Gegenbeispiele zur der bewiesenen Behauptung existieren könnten.  

In der Interviewstudie von Chazan (1993) mit 17 Schülerinnen und Schülern („High-School“) wird 

deutlich, welche Fehlvorstellungen zum Beweisen in der Geometrie vorliegen können. Für die 

Ansicht, dass auch nach einem konstruierten korrekten Beweis noch Gegenbeispiele existieren 

könnten, konnten die folgenden ‚Gründe‘ bei den Schülerinnen und Schülern ausgemacht werden 

(Auflistung orientiert an Reid und Knipping 2010, S. 63; vgl. Chazan 1993, S. 368ff.):  

(a) Es könnte immer noch Fälle geben, die durch den Beweis nicht abgedeckt wurden. 

(b) Der Beweis bezieht sich nur auf die eine, damit verbundene Beweisfigur und deckt damit 

nicht alle zu betrachtenden Fälle ab. 

(c) Die in dem Beweis verwendeten Argumente könnten falsch sein. 

(d) Die Formulierungen innerhalb des Beweises sind in der Einzahl gehalten und beziehen sich 

damit nicht auf alle möglichen zu betrachtenden Fälle. 

(e) Es wird generell nicht verstanden, was zu Beginn des Beweises ‚Gegeben‘ ist.  

Insgesamt lässt sich somit festhalten, dass auch bei Lehramtsstudierenden und selbst bei Lehrkräften 

die Fehlvorstellung14 vorliegen kann, dass ein korrekter mathematischer Beweis keine 

allgemeingültige Verifikation der gegebenen Behauptung leistet. Ursachen für diese Ansicht können 

dabei auf verschiedenen Ebenen liegen: Probleme mit dem Verständnis des vorgelegten Beweises, 

                                                           
14

 Es bleibt anzumerken, dass an dieser Stelle bei den Probanden keine Fehlvorstellungen vorliegen würden, 

wenn diese den vorgelegten Beweis als fehlerhaft betrachteten. Eine entsprechende Differenzierung wird in 

der Studie von Chazan (1993) aber leider nicht vorgenommen 
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den verwendeten Formulierungen und Argumenten, der Struktur des Beweises und Probleme mit 

der im Beweis verwendeten Beweisfigur. Das Problem mit der Fehlinterpretation einer Beweisfigur 

als singulärer Fäll ist dabei für die vorliegende Arbeit von besonderem Interesse, da etwa in 

generischen Beweisen mit Punktmusterdarstellungen ja tatsächlich konkrete Fälle betrachtet 

werden, die dabei als generische Beispiele über den konkreten Fall hinausweisen. Hierin scheint, 

losgelöst von der Studie von Chazan, eine mögliche Verständnishürde der Beweisform, speziell in 

Verbindung mit Punktmusterdarstellungen, begründet zu sein. 

(3) Die Nicht-Akzeptanz von Beweisen, die an konkreten Beispielen geführt werden, dabei 

aber Allgemeingültigkeit beanspruchen können  

Einen besonderen Stellenwert nimmt in der vorliegenden Forschungsarbeit die Beweisform des 

generischen Beweises (vgl. Abschnitt 2.1.3) ein. Es ist deshalb von besonderem Interesse, inwiefern 

Lernende und Lehrende der Mathematik diese Beweisform verstehen bzw. interpretieren. Da solche 

Beweise meist narrativ formuliert sind, werden diese an konkreten Beispielen geführten Beweise in 

der Literatur teilweise auch als ‚narrative Beweise‘ bezeichnet.  

Aufgrund der im Kontext dieser Forschungsarbeit herausgestellten Konzeption von generischen 

Beweisen, die aus generischen Beispielen und einer narrativen Begründung bestehen (s. Abschnitt 

2.1.3), sind an dieser Stelle bzgl. der Akzeptanz von beispielgebundenen Beweisen zwei Aspekte von 

Interesse: Die Akzeptanz von Beweisen, die mithilfe konkreter Beispiele geführt werden, und die 

Akzeptanz von Beweisen, die narrativ formuliert werden. Im Folgenden werden die 

Forschungsergebnisse zu dieser Thematik zusammenfassend dargestellt, die sich mit der Gruppe von 

Lehrenden der Mathematik oder mit Lehramtsstudierenden befassen. 

Tabach et al. (2011) untersuchen in ihrer Studie u. a. die Bewertung von narrativ geführten Beweisen 

durch 50 Mathematiklehrerinnen und -lehrer. Zur Illustration dieser Beweisform wird ein Beispiel zu 

der Behauptung zitiert, dass die Summe von fünf aufeinanderfolgenden Zahlen immer durch fünf 

teilbar ist (ebd., S. 472): 

Moshe claimed: I checked the sum of the first five consecutive numbers: 1 + 2 + 3 + 4 + 5 = 15 is divisible by 5. 

The sum of the next five consecutive numbers is larger by 5 than this sum (each number is bigger by 1 and 

therefore the sum is bigger by 5), and therefore this sum is also divisible by 5. And so on, each time we add 5 to a 

sum that is divisible by 5, and therefore we always obtain sums that are divisible by 5. Therefore the statement is 

true. 

Zunächst sollten die Probanden selbst sechs Behauptungen aus der elementaren Zahlentheorie 

verifizieren bzw. widerlegen; die Behauptungen waren dabei wie folgt (s. ebd., S 469): 

(1) „Die Summe von fünf aufeinanderfolgenden Zahlen ist immer durch fünf teilbar“  

(2) „Die Summe von drei aufeinanderfolgenden Zahlen ist immer durch drei teilbar“ 

(3) „Die Summe von vier aufeinanderfolgenden Zahlen ist immer durch vier teilbar“ 

(4) „Es gibt eine Summe von fünf aufeinanderfolgenden Zahlen, die durch fünf teilbar ist“ 

(5) „Es gibt eine Summe von drei aufeinanderfolgenden Zahlen, die durch drei teilbar ist“  

(6) „Es gibt eine Summe von vier aufeinanderfolgenden Zahlen, die durch vier teilbar ist“. 

Anschließend wurden ihnen insgesamt 41 verschiedene ‚Beweise‘ zu diesen sechs Behauptungen zur 

Bewertung vorgelegt. Diese ‚Beweise‘ umfassten korrekte und falsche Beweise, die verbal-narrativ 

oder symbolisch dargestellt wurden. Innerhalb der verbal-narrativen Argumentationen wurden 
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konkrete Zahlenbeispiele als Existenzbeweis, als Gegenbeispiel, als generisches Beispiel und zur 

(unbegründeten) induktiven Verallgemeinerung verwendet. Zu jedem dieser 41 ‚Beweise‘ sollte ein 

Votum abgegeben, ob dieser die gegebene Behauptung korrekt verifiziert (bzw. widerlegt), und 

dieses Votum erläutert werden. Von Interesse für die vorliegende Forschungsarbeit sind die 

Bewertungen der korrekten narrativ geführten Beweise durch die Probanden. Neben der bereits 

oben zitierten korrekten narrativen Begründung („S1-Moshe“) zu der Behauptung (1) wurden in der 

Studie von Tabach et al. (2011) außerdem die folgenden beiden verwendet: 

„S1-Mali“ – korrekte Verifikation der Allaussage in Behauptung (1) (ebd., S. 472): 

Mali claimed: I first tried the first ten examples of 5 consecutive numbers: 

1 + 2 + 3 + 4 + 5 = 15													2 + 3 + 4 + 5 + 6 = 20														3 + 4 + 5 + 6 + 7 = 25	
4 + 5 + 6 + 7 + 8 = 30													5 + 6 + 7 + 8 + 9 = 35												6 + 7 + 8 + 9 + 10 = 40	
7 + 8 + 9 + 10 + 11 = 45																																																												8 + 9 + 10 + 11 + 12 = 50	
9 + 10 + 11 + 12 + 13 = 55																																																		10 + 11 + 12 + 13 + 14 = 60.	
I saw that the statement is true for the first ten. All other sums of five consecutive numbers are obtained by 

adding multiples of 10 to one of the listed sums (for instance, the sum 44 + 45 + 46 + 47 + 48 is obtained by 

adding multiples of 10, 5 times 40, to the sequence: 4 + 5 + 6 + 7 + 8 that I checked before). Since multiples of 

10 are also divisible by 5, the statement is true. 

 
 „S6-Moshe“ – korrekte Falsifizierung der Existenzaussage in Behauptung (6) (ebd., S. 472): 

Moshe claimed: I checked the sum of the first four consecutive numbers: 1 + 2 + 3 + 4 = 10; 10 is not divisible 

by 4. The sum of the next four consecutive numbers is obtained by adding 4 to this sum (each of the four numbers 

in the sum grows by 1, so the sum grows by 4). It is known that adding 4 to a sum that is not divisible by 4 will 

yield a sum that is not divisible by 4 either. And so on, each time we add 4 to a sum that is not divisible by 4, and 

therefore we always obtain sums that are not divisible by 4. Therefore the statement is not true. 

 

Wie die Autoren darstellen, werden die Begründungen „S1-Moshe“ und „S1-Mali“ von 62% der 

Probanden richtig bewertet, die Begründung „S6-Moshe“ von 70%. Als Begründung für die 

Ablehnung dieser Beweise gaben 16% der Probanden, die diese Beweise abgelehnt hatten, an, dass 

diese nicht allgemeingültig seien („There is no general justification. We can always ask what will 

happen for a much larger number; one cannot check all numbers.“ (ebd., S. 477)). 10% honorierten, 

dass die Beweise durchaus über bloße Beispieluntersuchungen hinausgingen, kritisierten aber, dass 

innerhalb dieser Beweise trotzdem nicht alle möglichen Fälle abgedeckt wären („Moshe relied on 

specific examples, 1 + 2 + 3 + 4 + 5 = 10, 6 + 7 + 8 + 9 + 10 = 40, but he did not relate to the 

numbers in between, like 3 + 4 + 5 + 6 + 7. He needs to prove it for any number.’’ (ebd., S. 477)). 

6% der Ablehnungen erfolgten aufgrund der narrativ-verbalen Darstellung der Beweise („[This is a] 

verbal justification which is not written in an acceptable mathematical way.“ (ebd., S, 477)). Die 

Autoren kommen zu dem Schluss, dass symbolisch dargestellten Beweisen eher Allgemeingültigkeit 

zugesprochen wird, als narrativ formulierten. Tatsächlich scheint es so zu sein, dass die Darbietung 

eines konkreten Beispiels zu Beginn eines Beweises bei einigen Probanden den Eindruck entstehen 

ließe, dass es sich bei der Begründung nicht um einen allgemeingültigen Beweis handeln würde. 

 

Auch Dreyfus (2000) und Knut (2002b) kommen zu dem Ergebnis, dass korrekte Beweise, die narrativ 

formuliert und mithilfe konkreter Beispiele geführt werden, von einigen Lehrerinnen und Lehrern als 

defizitär bewertet werden. Martin und Harel (1989) untersuchen u.a. die Akzeptanz von Beweisen, 

die mithilfe konkreter Beispiele geführt werden, bei 101 Lehramtsstudierenden (Grundschule). In 

ihrer Studie erhalten valide Beweise, die narrativ mithilfe konkreter Beispiele geführt werden 
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(„particular proofs“; ebd., S. 45), von 42% der Probanden innerhalb eines bekannten Sachverhalts 

und von 46% innerhalb eines unbekannten Zusammenhangs geringe Bewertungen bzgl. ihrer 

Verifikationsleistung (Werte „1“ oder „2“ auf einer vierer Likert-Skala). Auch in diesem Fall scheint 

die Verwendung konkreter Beispiele innerhalb eines Beweises negative Auswirkungen auf seine 

Bewertung zu haben. 

 

Studienübergreifend kann festgestellt werden, dass  narrative Beweise, die mithilfe von konkreten 

Beispielen geführt werden, sowohl von einigen Lehrerinnen und Lehrern als auch von einigen 

Lehramtsstudierenden (hier: Grundschule) als Beweis abgelehnt werden. Als Begründung wird dabei 

u.a. angeführt, dass diese Beweise nicht allgemeingültig seien, da nur einzelne Fälle betrachtet 

würden bzw. nicht alle möglichen Fälle durch diese Beweise abgedeckt seien. Dreyfus (2000) weist 

darauf hin, dass auch der Verzicht auf formale Elemente innerhalb der Beweise zu solchen 

Fehleinschätzungen führen kann. 

Herausstellung der theoretischen Grundlagen für ein Konstrukt ‚Beweisakzeptanz‘ 

Wie aufgezeigt wurde, wird in der Literatur von verschiedenen Faktoren auf eine ‚Beweisakzeptanz‘ 

bei Probanden geschlossen. Hierzu zählen vor allem die Einschätzung von Beweisprodukten als 

‚mathematischer Beweis‘ (etwa Barkai et al. 2002; Gholamazad et al. 2004; Tabach et al. 2010b) oder 

die Bewertung von Beweisprodukten in Bezug auf verschiedene Aspekte, wie Verifikation oder 

Erklärungsqualität (etwa Healy and Hoyles 1989 und 2000; Martin und Harel 1989). Aufbauend auf 

diesen Betrachtungen wird in dem folgenden Abschnitt eine grundlegende Konzeptionierung von 

‚Beweisakzeptanz‘ vorgestellt. 

Insgesamt erscheint es sinnvoll, diese zwei Facetten von Beweisakzeptanz bei der Betrachtung eines 

entsprechenden Konstrukts zu berücksichtigen: die Passung eines vorgelegten Beweisprodukts mit 

dem jeweiligen subjektiven Verständnis von ‚Beweis‘ und das Ausmaß, inwieweit verschiedene 

Funktionen von Beweisen (etwa subjektive Überzeugung, Sicherung der Gültigkeit, Erklärung) durch 

den Betrachter empfunden werden.  

Es sei bereits an dieser Stelle darauf hingewiesen, dass sich diese Sicht auf das Konstrukt auch als 

Ergebnis der Instrumententwicklung zur Erfassung von „Beweisakzeptanz“ widerspiegeln wird (vgl. 

Abschnitt 8.3.4). Beweisakzeptanz wird in dieser Arbeit konzeptualisiert und gleichsam 

operationalisiert, als das Ausmaß, inwieweit bei einem vorgelegten Beweis vom Betrachter die 

Funktionen Verifikation, Überzeugung15 und Erklärung empfunden werden und inwieweit der Beweis 

durch den Betrachter als „korrekter und gültiger Beweis“ bewertet wird16. 

2.4.3 Einstellungen zur Mathematik und das Beweisen 

In der Mathematikdidaktik liegen zahlreiche Arbeiten vor, die sich mit Einstellungen zur Mathematik 

bzw. Beliefs beschäftigen. Eine Aufarbeitung der bisher erzielten Ergebnisse würde an dieser Stelle zu 

weit führen und erscheint derweil für die vorliegende Arbeit auch nicht nötig. Für einen guten 

Überblick über entsprechende Forschungsrichtungen und Forschungsergebnisse wird an dieser Stelle 

auf Leder et al. (2006) und Schlöglmann und Maaß (2009) verwiesen. Für die vorliegende Arbeit sind 

empirische Ergebnisse auf zwei Ebenen von Interesse: Auswirkungen von Lehrveranstaltungen auf 

                                                           
15

 Mit dieser separaten Betrachtung von objektiver Verifikation und subjektiver Überzeugung wird die in 

Abschnitt 2.1.7 begründete und motivierte Aufspaltung der Funktion „Verifikation/Überzeugung“ aufgegriffen. 
16

 Diese Begriffsdefinition wird auch in Kempen (2016, S. 1112) verwendet. 
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die Einstellungen von Studierenden zur Mathematik und Zusammenhänge zwischen Einstellungen 

zur Mathematik und Einstellungen zum Beweisen im speziellen. 

Auswirkungen von Lehrveranstaltungen auf die Einstellungen von Studierenden zur Mathematik  

In diesem Abschnitt werden Studien dargestellt, in denen die Auswirkungen von Lehrveranstaltungen 

im Übergang Schule/Hochschule (Weygandt & Oldenburg 2014 und 2015) oder von 

Lehrveranstaltungen zum Erlernen der Beweisaktivität (Yoo 2008 und Conner 2011) auf die 

Einstellungen der Studierenden zur Mathematik untersucht wurden. Übergeordnet kann 

festgehalten werden, dass in diesen Studien Auswirkungen der jeweiligen Lehrveranstaltung auf die 

Einstellungen der Lernenden nachgewiesen werden konnten. Bei den Studien werden sowohl 

methodische als auch konzeptuelle Unterschiede deutlich.  

Weygandt und Oldenburg (2014 und 2015) untersuchen die Auswirkungen ihrer neu konzipierten 

Lehrveranstaltung „Entstehungsprozesse von Mathematik“ auf verschiedene Einstellungen von 

Lehramtsstudierenden (Gymnasium/Gesamtschule) zur Mathematik. Sie verwenden hierzu 37 Items 

aus den Skalen von Grigutsch et al. (1998) zu den Aspekten Formalismus, Anwendung, Prozess und 

Schemaorientierung (vgl. Abschnitt 2.4.3) und erweitern den Fragebogen um 60 Items, mit deren 

Hilfe sie fünf weitere Skalen bilden (Weygandt & Oldenburg 2014, S. 1308). Alle Items werden von 

den Probanden auf einer fünfer Likert-Skala bewertet. Aufgrund von 15 gepaarten Testheften (Pre-

/Posttest-Design über den Zeitraum eines Semesters) können die Autoren eine statistisch signifikante 

Abnahme  des Mittelwerts bei der Skala Schema-Orientierung und einen statistisch signifikanten 

Anstieg des Mittelwerts der Skala Universalität17 nachweisen. Beide Veränderungen werden von den 

Autoren positiv im Hinblick auf die Ziele ihrer Lehrveranstaltung bewertet. Für die vorliegende Arbeit 

ist hierbei relevant, dass durch diese Studie gezeigt werden konnte, dass im Verlauf einer 

Lehrveranstaltung durchaus statistisch signifikante Veränderungen bzgl. Einstellungen zur 

Mathematik nachgewiesen werden können. Es bleibt allerdings kritisch anzumerken, dass eine 

Stichprobe von 15 Probanden eher als gering zu bezeichnen ist. 

Yoo (2008) untersucht qualitativ und quantitativ die Einstellungen zur Mathematik, zum Lehren von 

Mathematik und zum Beweisen bei Teilnehmenden eines traditionellen amerikanischen transition-

to-proof Kurses [n=28] im Vergleich zu Teilnehmenden eines problemzentrierten Modified-Moore-

Method Kurses (MMM) [n=33] (für eine Beschreibung entsprechender Kursvariante siehe Abschnitt 

1.2.1). Hierfür wird u.a. ein Fragebogen verwendet, in dem die Lehramtsstudierenden („secondary 

school“) jeweils ihre Zustimmung zu zwei entgegengesetzten Aussagen auf einer Skala markieren 

sollen. Zur Illustration dieses Fragenformats soll das folgende Item dienen (Yoo 2008, S. 93):  

Proof is (a) a tool for doing and understanding mathematics or (b) a tool for demonstrating the correctness of 

mathematical statements. 

 

mostly a  mostly a and b equally  mostly b Neither 

1 2 3 4 5 6 7 8 

 

                                                           
17

 Weygandt und Oldenburg (2014) illustrieren ihre Skala ‚Universalität‘ mithilfe der beiden folgenden Items: 

„Die Definitionen der Mathematik verhalten sich wie Naturgesetze, d.h. sie können von Menschen entdeckt 

werden, sind aber nicht veränderbar“ und „Falls es Marsbewohner gäbe, so hätten sie auf jeden Fall dieselbe 

Mathematik mit denselben Erkenntnissen“ (ebd., S. 1308). 
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Aufgrund der vorherigen Bewertungen von 30 Fachmathematikerinnen und Fachmathematikern 

werden dabei bestimmte Positionen als ‚ideal‘ betrachtet (Yoo 2008, S. 91). Schließlich wird 

ausgewertet, inwiefern sich die Sichtweisen der Studierenden nach Besuch der Kurse denen der 

Mathematiker annähern. (Im obigen Beispielitem würde eine Bewertung von „1“ bis „4“ einer 

idealen Antwort entsprechen und mit 2 Punkten codiert werden, die Bewertung „5“ mit einem Punkt 

und Bewertungen „6“ und „7“ mit null Punkten. Insgesamt wäre somit bei den 15 zu bewertenden 

Items das Erreichen von bis zu 30 Punkten möglich.) Yoo kommt zu dem Ergebnis, dass sich die 

erreichten Punktzahlen in dem Eingangstest in den beiden Vergleichsgruppen nicht unterscheiden. 

Bei der Wiederholung des Fragebogens nach den beiden Kursen steigt die Punktzahl des MMM 

Kurses um 2,15 Punkte, die des traditionellen Kurses nur um 0,5 Punkte. Die Autorin resümiert das 

Ergebnis wie folgt: „Over the treatment period, the MMM students showed a higher gain from the 

pretest to posttest than did students in the traditional sections” (Yoo 2008, S. 94f.). Dieses Ergebnis 

wird durch weitere statistische Tests untermauert.  In der Studie von Yoo zeigt sich somit, dass auch 

eine Kurskonzeption, die besonders den Prozessaspekt der Mathematik in den Vordergrund stellt, 

statistisch nachweisbare Auswirkungen auf die Einstellungen der Studierenden zur Mathematik 

haben kann. 

Conner et al. (2011) verwenden eine modifizierte Version des Fragebogens von Yoo (2008), um die 

Veränderungen der Einstellungen zur Mathematik, zum Mathematikunterricht und zum Beweisen bei 

sechs Lehramtsstudierenden („secondary school“) durch den Besuch zweier Lehrveranstaltungen zu 

untersuchen.  Auch in ihrer Studie werden Daten in einem Pre- und Posttestdesign erhoben. Die 

Autoren gelangen zu den Ergebnissen, dass die Einstellungen der Probanden zur Mathematik und 

zum Beweisen stabil sind und sich nur ihre Einstellungen zum Lernen von Mathematik von einer 

lehrerzentrierten Sicht zu einer lernerzentrierten Sicht ändern. Während in den obigen Studien bei 

den Studierenden durch den Besuch entsprechender Lehrveranstaltungen Auswirkungen auf die 

Einstellungen zur Mathematik nachgewiesen werden konnten, zeigt sich in der Studie von Conner et 

al. (2011), dass sich die Einstellungen zur Mathematik und zum Beweisen als sehr stabil erwiesen 

haben. Dagegen konnten Veränderungen im Kontext der Ansichten bzgl. Lehrer- bzw. 

Lernerzentriertheit ausgemacht werden. 

 

Übergeordnet konnte somit in verschiedenen Studien nachgewiesen werden, dass 

Lehrveranstaltungen Auswirkungen auf die Einstellungen zur Mathematik von Lernenden haben 

können. Als Problem erweist sich dabei allerdings das Phänomen, dass Einstellungen zur Mathematik 

und zum Beweisen bei Lernenden als relativ stabil zu betrachten und Veränderungen somit nur 

bedingt herbeizuführen sind. Welche Veränderungen dabei allerdings gewünscht sind und wie sie am 

besten methodisch erfasst werden können, erscheint hierbei als offene Frage. 

 

Zusammenhänge zwischen Einstellungen zur Mathematik und Einstellungen zum Beweisen 

Unter dem Leitthema „Einstellungen zum Beweisen“ („Beliefs about proof“) werden in der 

mathematikdidaktischen Literatur verschiedene Aspekte zum Beweisen thematisiert. So untersucht 

etwa Mingus (1999) die Vorerfahrungen von Studierenden mit Beweisen, ihre Ansichten über die 

Angemessenheit von Beweisen für den Mathematikunterricht verschiedener Schulstufen und was 

einen Beweis überhaupt ausmacht. Dagegen thematisieren z.B. Conner et al. (2011, S. 488) unter 

diesem Aspekt auch Beweisakzeptanz, das Verständnis um Funktionen von Beweisen und die 

Bedeutung des Beweisens für den schulischen Mathematikunterricht. Es kann daher auch aus 
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Forschungsperspektive als offene Frage betrachtet werden, was unter dem Begriff „Einstellungen 

zum Beweisen“ überhaupt gefasst werden kann bzw. soll.  

Der Zusammenhang zwischen Einstellungen zur Mathematik und dem Beweisen wurde bisher vor 

allem durch Furinghetti und Morselli (2009 und 2011) empirisch untersucht. Sie gehen dabei auch 

der Frage nach, welche Einstellungen Lehrende zur Mathematik haben und wie sich diese 

Einstellungen auf ihren Umgang mit Beweisen im Mathematikunterricht auswirken. 

 

Furinghetti und Morselli (2009 und 2011) arbeiten in Anlehnung an die von Ernest (1989) 

formulierten Beliefs zur Mathematik und zum Lehren von Mathematik anhand von Fallstudien 

unterschiedliche Umgangsweisen von Lehrenden mit Beweisen im Schulunterricht heraus. Die dabei 

anhand von Interviews erhaltenen Charakteristika bzgl. des Umgangs mit Beweisen im Unterricht 

werden dabei aber nicht vor dem Theoriehintergrund der Beliefs von Ernest reflektiert. Die Autoren 

merken hierzu an: „This intertwining of elements makes it rather difficult to apply the categorisations 

found in the literature.“ (Furinghetti & Morselli 2011). Als Ergebnis kann aus diesen Studien 

entnommen werden, dass sich die Sichtweise eines Lehrenden auf Mathematik, auf den 

Mathematikunterricht und sein Eingehen auf die Bedürfnisse und Wünsche der Schülerinnen und 

Schüler in seinem Umgang mit Beweisen im Mathematikunterricht widerspiegeln. Weitergehende 

(empirisch nachgewiesene) Bezüge zwischen den Beliefs zur Mathematik und Einstellungen zum 

Beweisen können dabei nicht ausgemacht werden. 

 

Die Frage, wie sich Einstellungen zur Mathematik bei Lernenden auf ihre Einstellungen zum Beweisen  

auswirken, bzw. wie diese Aspekte miteinander in Wechselwirkung stehen, ergibt sich somit als 

offene  Forschungsfrage. Die Ergebnisse von Furinghetti und Morselli (s.o.) geben dabei einen 

Hinweis darauf, dass sich entsprechende Aspekte gegenseitig beeinflussen können. 

 

2.5 Beweisen als diagrammatisches Schließen 
In dem folgenden Abschnitt wird der Akt des Beweisens aus einer semiotischen Perspektive 

betrachtet. Diese Sichtweise wird als eine Leittheorie bei der Beforschung der Lehrveranstaltung (im 

Besonderen der Interpretation von Forschungsergebnissen und der Begründung von 

vorzunehmenden Modifikationen) dienen. Die Theorie des diagrammatischen Schließens nach Peirce 

erweist sich als gewinnbringend für die vorliegende Arbeit und weist gegenüber anderen 

semiotischen Theorien für die vorliegende Forschung verschiedene Vorzüge auf. Während andere 

semiotische Theorien die Beziehungen zwischen verschiedenen Aspekten bzw. Ebenen von Zeichen 

im Kontext von Wissenskonstruktion beschreiben (vgl. etwa die Zeichentheorie von Ferdinand de 

Saussure (etwa Presmeg et al. 2016, S. 5f.) oder das epistemologische Dreieck von Steinbring (1989)), 

rückt bei Peirce die Tätigkeit mit den Zeichen mit der Ausrichtung auf Erkenntnisentwicklung (i.S. der 

Generierung von neuem Wissen) in den Fokus. Mithilfe der Perspektive des diagrammatischen 

Schließens im Sinne der semiotisch-pragmatischen Erkenntnistheorie von Peirce wird es möglich: 

1. die Zeichenaktivität beim Beweisen in verschiedene Phasen zu untergliedern, zu beschreiben 

und zu deuten, was weiter für die Beschreibung und Analyse von Beweisproduktionen 

genutzt werden kann, 

2. verschiedene Notationssysteme (etwa Punktmusterdarstellungen) für die Konstruktion von 

Beweisen zu legitimieren und ihre Vor- und Nachteile vergleichend zu erörtern,  
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3. das Attribut der Allgemeingültigkeit von Beweisen zu erörtern und auf den 

(diagrammatischen) Umgang mit den Zeichen zurückzuführen, und 

4. die Diskussion um die Akzeptanz von Beweisen um eine semiotische Perspektive sinnstiftend 

zu bereichern. 

Der Ansatz des diagrammatischen Schließens erscheint daher prädestiniert für diese Arbeit, da die 

Aktivität mit den Zeichen („Diagrammen“), die Bedeutung des diese rahmenden Notationssystems 

(„Diagrammsystem“) und das dafür notwendige Wissen („kollaterales Wissen“) in den Fokus des 

Interesses gestellt werden. Zwar ist die Theorie von Peirce auf den mathematischen 

Erkenntnisprozess ausgerichtet, doch erscheint eine Übertragung auf den Prozess der 

Wissenssicherung in Form von Verifikation innerhalb von Beweisen möglich. Wie bereits in Abschnitt 

2.1.2 dargelegt wurde, zeichnen sich gerade formale Beweise dadurch aus, dass in ihnen die 

verwendeten Zeichen syntaktisch verwendet werden. Die entsprechende Syntax wird nun aus 

semiotischer Perspektive durch das Diagrammsystem vorgegeben. Schlussweisen, Axiome und Sätze 

erweisen sich dann als (Transformations-) Regeln im jeweiligen Diagrammsystem. 

Die folgenden Ausführungen basieren auf der semiotisch-pragmatischen Erkenntnistheorie von 

Charles Sanders Peirce. Es ist im Kontext dieser Arbeit nicht möglich, den semiotisch-pragmatischen 

Ansatz von Peirce und dessen Zeichentheorie in Gänze zu beschreiben. Im Folgenden werden daher 

nur die Aspekte beschrieben, die für das Verständnis dieser Forschungsarbeit notwendig sind. Für 

eine vertiefende Lektüre wird auf Hoffmann (2005) und Stjernfelt (2000) verwiesen.  

Grundlegend für die folgenden Betrachtungen ist der weite Diagrammbegriff, den Peirce verwendet. 

So schreibt Hoffmann (2005, S. 127): 

Diagramme sind nun nach Peirce eine bestimmte Gruppe ikonischer Zeichen, die er dadurch von anderen 

abgrenzt, dass sie „gemäß einem vollständig konsistenten Darstellungssystem, das auf einer einfachen und leicht 

verständlichen Grundidee aufbaut, ausgeführt werden“  (Pierce, 1903b, SEM II 98).  

Bei Diagrammen handelt es sich um gewisse Zeichen innerhalb eines sogenannten 

Diagrammsystems, von denen man zum Zeitpunkt der Konstruktion annimmt, dass sie in einem 

vermutlich widerspruchsfreien Zusammenhang stehen. Durch das rahmende Diagrammsystem 

werden (im Sinne einer ‚Gebrauchsanweisung‘) die Regeln für den Umgang mit den Diagrammen 

(Konstruktion, Verwendung, Lesart etc.) festgelegt (vgl. Dörfler 2006, S. 210ff.). Beispielsweise 

werden Diagramme der Form „2� − 1“ im Diagrammsystem der Algebra verwendet, in dessen 

Kontext sie gelesen werden können und gewisse Operationen mit ihnen zulässig sind. Das 

Diagrammsystem gibt somit die Regeln vor, wie Ergebnisse gelesen bzw. interpretiert werden 

müssen. 

Aus semiotischer Sicht erscheint mathematisches Tun als eine Zeichentätigkeit, als ein regelgeleitetes 

Agieren mit Zeichen in Diagrammsystemen; der Umgang mit und die Erforschung von Diagrammen 

stehen somit im Fokus. Mathematisches Schließen kann unter dieser Perspektive als 

diagrammatisches Schließen betrachtet werden. Hoffmann (2005, S. 129) zitiert Pierce dazu wie 

folgt: 

Mit diagrammatischem Schließen meine ich Schließen, welches gemäß einer in allgemeinen Begriffen 

formulierten Vorschrift ein Diagramm konstruiert, Experimente an diesem Diagramm durchführt, deren Resultate 

notiert, sich Gewissheit verschafft, dass ähnliche Experimente, die an irgendeinem gemäß der Vorschrift 
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konstruierten Diagramm durchgeführt werden, die selben Resultate haben würden, und dieses in allgemeinen 

Begriffen zum Ausdruck bringt. (Peirce 1902a, NEM IV 47 f.) 

Diagrammatisches Schließen umfasst folglich (i) die Konstruktion von Diagrammen, (ii) das Ausführen 

von Experimenten an bzw. mit diesen Diagrammen, (iii) das Beobachten und Festhalten  der 

Resultate des Experimentierens und (iv) die Vergewisserung der allgemeinen Gültigkeit der 

Ergebnisse (vgl. Dörfler 2006, S. 211). Für die Konstruktion eines Diagramms und den Umgang mit 

ihm ist ein Wissen um das entsprechende Regelsystem des Diagrammsystems notwendig. Peirce 

prägt hierfür den Begriff des kollateralen Wissens, mit dem er alles Wissen bezeichnet, welches 

bereits gewusst werden muss, um anderes Wissen verstehen oder ermöglichen zu können 

(Hoffmann 2005, S. 38ff.). 

Diesem Vorgang des diagrammatischen Schließens soll nun weiter nachgegangen werden. 

2.5.1 Der Vorgang des diagrammatischen Schließens  

Wie bereits oben beschrieben, beinhaltet das diagrammatische Schließen die Aspekte (i) 

Konstruktion von Diagrammen, (ii) Ausführen von Experimenten an bzw. mit diesen Diagrammen, (iii) 

Beobachten und Festhalten der Resultate des Experimentierens und (iv) Vergewisserung der 

allgemeinen Gültigkeit der Ergebnisse. Diese Aspekte werden im Folgenden näher beschrieben und 

anhand eines Beweises zu der Behauptung illustriert, dass die Summe von zwei ungeraden 

natürlichen Zahlen immer gerade ist. 

Die Konstruktion von Diagrammen 

Sucht man nach einer Lösung für ein mathematisches Problem (etwa einen Beweis zu einer  

mathematischen Behauptung), so bietet eine diagrammatische Darstellung (etwa in der 

Symbolsprache der Algebra oder mithilfe von Punktmustern) Transformationsmöglichkeiten, die das 

Problem zunehmend handhabbar machen können. Es muss hier angemerkt werden, dass die Wahl 

des Diagrammsystems, innerhalb dessen die Konstruktion des Diagrammes geschieht, 

weitreichenden Einfluss auf die jeweiligen Möglichkeiten hat: Die Regeln für den Umgang mit den 

Diagrammen innerhalb des Diagrammsystems determinieren mögliche Erkenntnisse. Damit 

entspricht der Vorgang der Diagrammatisierung keiner bloßen Übersetzung mathematischer 

Sachverhalte, sondern muss als das Aufprägen einer mathematischen Struktur verstanden werden. 

Denn durch jedes Diagrammsystem werden bestimmte Eigenschaften der mathematischen ‚Objekte‘ 

und gewisse Möglichkeiten zur Transformation in den Vordergrund gerückt. Folglich ist bereits bei 

der Konstruktion von Diagrammen ein entsprechendes kollaterales Wissen notwendig; bei der 

Konstruktion von Diagrammen wird jedoch nicht bloß kollaterales Wissen explizit gemacht, bereits 

hier setzt der eigentliche Erkenntnisprozess an.  

Für den Beweis der Behauptung, dass die Summe von zwei ungeraden natürlichen Zahlen 

immer gerade ist, können die Diagramme „2� − 1“ und „2� − 1“ (mit	�,�	(	ℕ) im 

Diagrammsystem der Algebra konstruiert werden, um das Problem handhabbar zu machen. 

Die Auswahl und Zusammensetzung der Zeichen (etwa in Referenz auf eine mathematische 

Definition oder einen Satz) sind hierbei dem kollateralen Wissen zuzuordnen. Alternativ 

könnten auch entsprechende Punktmusterdarstellungen im Diagrammsystem der 

Punktmuster konstruiert werden. Somit gehört zu dieser Phase auch die Auswahl eines 

Diagrammsystems. 
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Das Ausführen von Experimenten bzw. Transformationen mit den Diagrammen 

Bei der Ausführung von Experimenten mit den Diagrammen werden diese nicht nur Mittel, sondern 

auch Gegenstand der Erkenntnis: „Wir untersuchen nicht mit Hilfe von Diagrammen von diesen 

wesentlich verschiedene Objekte, sondern die Diagramme selbst sind die Gegenstände der 

Untersuchungen und Beobachtungen“ (Dörfler 2010., S. 26). Mathematische Sätze erscheinen 

hierbei als Aussagen über das regelhafte Agieren mit Zeichen. Es ist die geeignete Auswahl der 

Operationen bzw. Transformationen, die innerhalb des Diagrammsystems zu Ergebnissen führen, die 

dann wieder als Aussagen über Objekte interpretiert werden können. Ein Wissen um das 

entsprechende Regelwerk des Diagrammsystems ist für die Ausführung der Transformationen und 

die Interpretation der so erhaltenen Diagramme im Sinne kollateralen Wissens grundlegend.  

An den oben konstruierten Diagrammen („2� − 1“ und „2� − 1“) können nach den Regeln 

der Algebra Transformationen vorgenommen werden:  


2� − 1� + 
2� − 1� = 2� − 1 + 2� − 1 = 2� + 2� − 1 + 
−1� = 2� + 2� − 2	
= 2 ∙ 
� + � − 1� 

In dem Beispiel wird deutlich, dass die geeignete Auswahl der (erlaubten) Operationen den 

Erkenntnisgewinn ermöglicht, dass die Summe von zwei ungeraden Zahlen immer gerade ist. Bei 

diesen Operationen werden die Diagramme verändert und ihre Eigenschaften untersucht. Schließlich 

kann das resultierende Diagramm „2 ∙ 
� + � − 1�“ wiederum nach den Regeln des 

Diagrammsystems gelesen werden. 

Das Beobachten und Festhalten der Resultate des Experimentierens  

Die durch Transformation erhaltenen Diagramme können vom Betrachter als Aussagen über 

mathematische Objekte verstanden werden. Für den Erkenntnisgewinn muss das durch 

Transformation erhaltene Diagramm schließlich in der Lesart des Diagrammsystems interpretiert 

werden. Kollaterales Wissen wird hier eine notwendige Bedingung für das Verstehen des Ergebnisses 

bzw. für die „Möglichkeit identifizierender Wahrnehmung“ (Hoffmann 2005, S. 44).  

Das erhaltene Diagramm 2 ∙ 
� + � − 1� kann im Diagrammsystem der Algebra (vor dem 

Hintergrund mathematischer Regeln und Sätze) interpretiert werden: Da der zweite Faktor 

ein Element der natürlichen Zahlen ist, liegt hier als Ergebnis eine ‚gerade Zahl‘ vor. 

Die Verbindung von Diagramm (hier: 2 ∙ 
� + � − 1�) und Objekt (hier: gerade Zahl) wird somit 

durch das Diagrammsystem gestiftet. 

Die Vergewisserung der allgemeinen Gültigkeit der Ergebnisse 

Schließlich stellt sich die Frage nach der Sicherheit bzw. der allgemeinen Gültigkeit der Resultate des 

diagrammatischen Schließens. Die Regeln des Diagrammsystems (bzw. ihre Konsistenz) manifestieren 

die Unausweichlichkeit mathematischen Schließens: „Da beim mathematischen Schließen keine 

weiteren empirischen Bedingungen zu berücksichtigen sind, garantieren allein die Regeln des 

gewählten Diagrammsystems, dass die Konklusionen des Schließens so allgemein sind wie ihre 

Prämissen.“ (Hoffmann 2005, S. 135). Oder anders formuliert: Es sind die allgemeingültigen Regeln 

und Operationen, aus denen die Sicherheit der Ergebnisse resultiert, und nicht die Diagramme selbst. 
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Aus den oben angewendeten zugelassenen allgemeingültigen Transformationen der 

Diagramme, gemäß den Regeln des Diagrammsystems der Algebra, resultiert die allgemeine 

Gültigkeit der Erkenntnis, dass die Summe von zwei ungeraden Zahlen immer gerade ist. 

Diese Sicht auf den Beweisprozess als diagrammatisches Schließen ermöglicht dabei, eine 

vergleichende Sicht auf verschiedene Beweisprodukte einzunehmen, die für die vorliegende Arbeit 

von großer Bedeutung ist. Diese Sicht auf Beweisprodukte wird im folgenden Abschnitt in Form eines 

Exkurses an verschiedenen Beweisprodukten exemplarisch aufgezeigt. 

2.5.2 Exkurs: Eine semiotische Diskussion verschiedener Beweisprodukte 

 

Die bisher erfolgte Erörterung semiotischer Aspekte beim Beweisen soll im Folgenden anhand 

verschiedener Beweisbeispiele konkretisiert werden. Die zu beweisende Behauptung ist hierbei: Die 

Summe aus einer ungeraden natürlichen Zahl und ihrem Doppelten ist immer ungerade. Nach der 

Darstellung von sechs verschiedenen ‚Beweisen‘ werden diese aus semiotischer Perspektive 

vergleichend diskutiert, wobei die Aspekte ‚kollaterales Wissen‘ und ‚Diagrammsystem‘ im Zentrum 

stehen werden. Ferner wird es darum gehen, die Verwendung von konkreten Zahlen- und 

Punktmusterbeispielen innerhalb allgemeingültiger Beweise aus semiotischer Perspektive zu 

legitimieren. 

Beweis (1):  

5	 + 	2	ÿ	5	 = 	3	ÿ		5	 = 	15,					13 + 2 ∙ 13 = 3 ∙ 13 = 39    	
Die Summe aus einer ungeraden natürlichen Zahl und ihrem Doppelten ist immer gleich dem 

Dreifachen der Ausgangszahl. Da diese als ungerade vorausgesetzt wurde, erhält man immer das 

Produkt zweier ungerader Zahlen. Da das Produkt von zwei ungeraden Zahlen immer ungerade ist, 

muss das Ergebnis immer ungerade sein. 

Beweis (2): 

Sei � eine beliebige aber feste ungerade natürliche Zahl. Dann gilt: �	 + 	2	ÿ		�	 = 	3	ÿ		�.						 
Da das Produkt von zwei ungeraden Zahlen immer ungerade ist, muss das Ergebnis immer ungerade 

sein. 

Beweis (3): 

Sei �	(	ℕ  beliebig aber fest. Dann gilt: 


2� − 1� + 	2	ÿ		
2� − 1� = 	3	ÿ		
2� − 1� = 	6� − 3 = 	2	
3� − 1� − 1	 
= 2/ − 1,�01	/ = 
3� − 1�	(	ℕ. 

Q.e.d. 

Beweis (4): 

 

 

Abbildung 6: Die Summe aus einer ungeraden Zahl und 
ihrem Doppelten dargestellt im Diagrammsystem der 
Punktmuster (Variante 1) 
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Addiert man zu einer ungeraden natürlichen Zahl ihr Doppeltes, so ergibt sich durch Aneinanderlegen 

der Punktreihen geometrisch ein Rechteck, wobei eine Seitenlänge gleich drei und die andere gleich 

der Ausgangszahl ist. Da somit beide Seitenlängen des Rechtecks ungerade sind, kann man das 

Rechteck weder horizontal noch vertikal durch zwei teilen. Somit ist die Gesamtzahl nicht durch zwei 

teilbar, also ungerade. 

Beweis (5): 

Beweis (6): 

 

Abbildung 8: Die Summe aus einer ungeraden Zahl und ihrem Doppelten dargestellt im Diagrammsystem der 
Punktmuster mit „geometrischen Variablen“

 18
 

Diskussion der Beweisprodukte unter der eingenommenen semiotischen Perspektive 

In Beweis (1) wird narrativ eine allgemeingültige Argumentation beschrieben, welche anhand zweier 

konkreter Zahlenbeispiele (Arithmetik) verdeutlich wird. Die Schlussfolgerung, dass das Ergebnis 

immer ungerade sein muss, wird schließlich mithilfe des Satzes erreicht, dass das Produkt von zwei 

ungeraden Zahlen immer ungerade ist.  

Zu den Zahlenbeispielen ist zunächst aus erkenntnistheoretischer Perspektive zu bemerken, dass 

durch den narrativen Beweis, mithilfe der Wortvariablen, eine allgemeingültige Verifikation der 

Behauptung vollzogen wird. Aus semiotischer Perspektive wurden ganz bestimmte Transformationen 

aus dem Diagrammsystem der Arithmetik ausgewählt, um den Sachverhalt darzustellen bzw. zu 

untersuchen. Die Erkenntnis über die Gültigkeit der Behauptung kann hierbei der Transformation der 

Diagramme zugeschrieben werden: Die Transformationen wurden gezielt so gewählt, dass diese mit 

allen ungeraden Zahlen genauso durchführbar sind und zu einem entsprechenden Ergebnis führen 

würden. Zentral ist, dass nicht mithilfe der konkreten Zahl „3“ die Allgemeingültigkeit der 

Behauptung nachgewiesen wird, denn es wird ja nur ein konkretes Zahlenbeispiel betrachtet; die 

Sicherheit und Allgemeingültigkeit der beschriebenen Erkenntnis resultiert aus den Umformungen 

und der Interpretation der Diagramme, die genauso für alle möglichen ungeraden natürlichen Zahlen 

durchzuführen wären. Hier wird deutlich, dass die Verwendung von konkreten Beispielen (etwa 

innerhalb generischer Beweise) kein Widerspruch zu der Allgemeingültigkeit der Verifikation 

darstellt, da diese durch die Transformationen konstituiert wird. 

Beweis (2) unterscheidet sich von Beweis (1) durch die Nutzung der als ungerade natürliche Zahl 

definierten Buchstabenvariable	�. Aus der beschriebenen semiotischen Perspektive gibt es hier für 

den Erkenntnisprozess keinen qualitativen Unterschied zum ersten Beispiel, da das Zeichen � 

entsprechend dem Zahlzeichen 3 verwendet wird. Es sind die gezielt ausgewählten 

Transformationen, die mit allen Zahlen bzw. Buchstabenvariablen so durchgeführt werden können, 

                                                           
18

 Die Darstellung und Verwendung der von Biehler und Kempen (2014, S. 132) so genannten „geometrischen 

Variablen“ wird in Abschnitt 6.2 genauer erörtert. 

Abbildung 7: Die Summe aus einer ungeraden Zahl und 
ihrem Doppelten dargestellt im Diagrammsystem der 
Punktmuster (Variante 2) 
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die die Allgemeingültigkeit belegen; die Gesetzmäßigkeiten der Arithmetik bzw. der Algebra sichern 

die Gültigkeit der Beweisführung. 

In dem Beweis (3) wird eine algebraische Repräsentation einer ungeraden Zahl als Formalisierung 

gewählt. Innerhalb des für die Konstruktion dieses Diagramms verwendeten Diagrammsytems der 

Algebra sind weitere Transformationsmöglichkeiten gegeben. Im Kontext des Diagrammsystems der 

Algebra wird die Bedeutung notwendigen kollateralen Wissens evident: das Wissen um die 

Repräsentation einer ungeraden Zahl, etwa als 
2� − 1� mit �	(	ℕ, das Wissen um die 

(Transformations-) Regeln der Algebra und das notwendige Erreichen eines Diagramms (hier der 

Form 2/ − 1 mit /	(	ℕ), welches schließlich wieder als Aussage über das mathematische Objekt 

interpretiert werden kann. 

In den Beweisen (4), (5) und (6) wird ein Diagrammsystem mit Punktmustern verwendet. Die Regeln 

dieses Diagrammsystems werden bei Fischer (2010) wie folgt beschrieben: 

Zahlen werden hier als Anzahlen von Punkten repräsentiert, Addition als Zusammenfügen von zwei Punktmengen, 

Multiplikation als Vervielfachen einer Punktmenge. Subtrahieren geschieht durch Wegnehmen (z.B. durch 

Durchstreichen, Markieren, Ausradieren). Dividieren ist Teilen einer Punktmenge in gleich große Untermengen, 

wobei der Divisor sowohl als Anzahl als auch als Größe der einzelnen Untermengen aufgefasst werden kann. Ein 

Größenvergleich von zwei Punktmustern geschieht durch geeignetes Strukturieren oder Umsortieren der Punkte. 

Die Punktmuster bieten aber noch mehr: Die Rechengesetze der natürlichen Zahlen spiegeln sich in den 

Operationen an Punktmengen wider. Daher sind die Punktmuster Diagramme im Sinne von Pierce. (Ebd., S. 86) 

In Beweis (4) wird durch das Zusammenfügen der ungeraden Zahl mit ihrem Doppelten ein Rechteck 

gebildet. Dieses erhaltene Diagramm muss im Diagrammsystem der Punktmuster interpretiert 

werden: Die Seitenlängen des so entstandenen Rechtecks werden immer ungerade sein, da eine 

Seitenlänge gleich drei und die andere gleich der ungeraden Ausgangszahl ist. Somit kann das 

Rechteck nicht in zwei gleichgroße Untermengen aufgeteilt werden. Daher ist die zu betrachtende 

Summe ungerade. Neben der Darstellung einer konkreten ungeraden Zahl (vgl. Beweis (1)) wird auch 

in diesem Beispiel die Bedeutung des kollateralen Wissens deutlich: Neben dem Bewusstsein, dass 

ein solches Agieren mit Punktmustern überhaupt zulässig ist, sind das Wissen um die Darstellung als 

Punktreihe, das Zusammenfügen der Punktreihen zu einem Rechteck, das Argumentieren über die 

Seitenlängen und der Nachweis des Attributs ‚ungerade‘ als ‚nicht durch zwei teilbar‘ wesentliche 

Aspekte desselben.  

Das in dem Beweis (4) verwendete Diagramm eines ‚Rechtecks mit ungeraden Seitenlängen‘ für die 

Darstellung einer ungeraden Zahl unterscheidet sich von denen in den Beweisen (5) und (6) vor allem 

dadurch, dass dort eine strukturelle Eigenschaft der ungeraden Zahlen betont wird: In den Beweisen 

(5) und (6) wird die ungerade Zahl im Diagrammsystem der Punktmuster mithilfe zweier Punktreihen 

dargestellt, wobei eine Reihe um eins länger (bzw. kürzer) als die andere ist. Hier wird deutlich, dass 

ungerade Zahlen immer um eins größer (bzw. kleiner) als gerade Zahlen sind. Während in Beweis (5) 

die konkrete Zahl 5 betrachtet wird, wird in (6) eine Pünktchen-Notation verwendet, um gleichsam 

als „geometrische Variable“ eine beliebige Anzahl zu repräsentieren (vgl. Biehler und Kempen 2014, 

S. 131). Aus semiotischer Perspektive kann jedoch bereits in (5) die Allgemeingültigkeit der 

Verifikation erkannt werden, da diese aus den Operationen und nicht aus den verwendeten 

Symbolen resultiert (s.o.). 

Insgesamt werden bei obiger Betrachtung verschiedene Aspekte deutlich, die für die vorliegende 

Arbeit von Bedeutung sind: 
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1. Die Wahl eines Diagrammsystems hat weitreichende Auswirkungen auf die möglichen 

Transformationen und die potentiell zu erreichenden Diagramme, welche schließlich wieder 

interpretiert werden müssen. 

2. Bei jeder Nutzung eines Diagrammsystems und in jedem Schritt des diagrammatischen 

Schließens ist kollaterales Wissen notwendig. 

3. Aus semiotischer Perspektive erweist sich ‚Variable‘ als ein bestimmter Gebrauch von 

Zeichen. Eine konkrete ungerade Zahl kann (als paradigmatische ungerade Zahl) als ‚Variable‘ 

fungieren. Allein der Verweis auf die (mathematischen) Objekte geschieht unterschiedlich; 

bei Buchstabenvariablen der Algebra als ‚Variable mit Wertebereich‘ und bei Punktmustern 

ggf. mit Bezug auf die Struktur der mathematischen Objekte als strukturelle Repräsentation. 

4. Die Allgemeingültigkeit einer Verifikation gründet sich nicht auf den verwendeten Zeichen, 

sondern auf den Umgang mit diesen: Die allgemeingültigen Transformationen der 

Diagramme gemäß bestimmter Regeln eines konkreten Diagrammsystem konstituieren die 

Allgemeingültigkeit der Verifikation.   

Durch obige Betrachtungen werden die Bedeutung des Diagrammsystems und das Vorhandensein 

von kollateralem Wissen für das diagrammatische Schließen und somit für den Beweisprozess 

deutlich. Dabei tauchte auch das Phänomen auf, dass zusätzlich zu dem diagrammatischen Schließen 

(Umgangs-) Sprache genutzt wurde, um auf verwendete Transformationen, die Lesart der 

Diagramme und die Allgemeingültigkeit der Beweise gesondert hinzuweisen. Der Sprache kommt 

dabei zunächst keine gesonderte Rolle im Erkenntnisprozess zu, ihr obliegt es, besondere Aspekte für 

den Lesenden zu betonen. Dies mag für den Lesenden eines Beweises, abhängig von dem 

verwendeten Diagramm und den jeweiligen Vorerfahrungen, angebracht oder auch notwendig zu 

sein. Dabei stellt sich jedoch die Frage, welches Diagrammsystem für die Tätigkeit des 

diagrammatischen Schließens am besten geeignet ist. 

2.5.4 Die Güte eines Diagrammsystems 

Die Güte eines Diagrammsystems misst sich nach seinem Nutzen im (Sach-)Kontext, seinem Potential 

für das Gelingen des Erkenntnisprozesses und seiner Les- und Nutzbarkeit für den Handelnden (etwa 

Stjernfelt 2000, S. 360). Es lässt sich somit festhalten, dass die Güte eines Diagrammsystems nicht 

ausschließlich objektiv zu bewerten ist, sondern auch oder vor allem dabei subjektive Aspekte 

berücksichtigt werden müssen. Entscheidend erscheint der Grad kollateralen Wissens, über den 

Handelnde im Umgang mit einem Diagrammsystem zum entsprechenden Zeitpunkt verfügen. 

Folglich ist es von grundlegender Bedeutung, dass Lernende den Umgang mit einem 

Diagrammsystem, und dies schließt auch die Algebra oder Punktmusterdarstellungen mit ein, 

verständig üben und eine entsprechende Praxis aufbauen können. Wie Dörfler (2006) darlegt, ist das 

Erlernen einer diagrammatischen Praxis für den Mathematikunterricht von zentraler Bedeutung und 

umfasst dabei verschiedene Aspekte, wie den elementaren Umgang mit Diagrammen nach den 

Regeln des jeweiligen Systems, das Experimentieren mit Diagrammen und die Erforschung ihrer 

Eigenschaften, die Untersuchung der Beziehungen zwischen verschiedenen Typen von Diagrammen, 

das Erfinden und Entwerfen von Diagrammen und das Anwenden von fertigen Diagrammen zur 

Modellierung (ebd., S. 213f.). Denn wer die (Schluss-) Regeln der Algebra nicht kennt bzw. versteht, 

wird auch die Allgemeingültigkeit entsprechend geführter algebraischer Beweise nicht verstehen 

können. Entsprechend müssen Lernende mit dem Diagrammsystem der Punktmuster vertraut sein, 

um mit diesen arbeiten zu können. Auch die Frage nach der Lesart konkreter (paradigmatischer) 

Beispielbetrachtungen erscheint nun als eine Frage nach der Interpretation von Diagrammen: In 
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welchen Transformationen und Diagrammen ein Betrachter eine Allgemeingültigkeit des 

diagrammatischen Schließens erkennt, hängt grundlegend vom vorliegenden kollateralen Wissen ab. 

Dennoch hat natürlich die fachmathematische Symbolsprache für die mathematische Tätigkeit 

verschiedene Vorteile, die Lernenden bewusst gemacht werden sollten. Diese werden im folgenden 

Absatz dargestellt und didaktisch motiviert. 

2.5.5 Die Rolle der fachmathematischen Sprache 

Neben der allgemeinen Betrachtung des Nutzens eines Diagrammsystems für die mathematische 

Erkenntnisentwicklung muss auch die Bedeutung der fachmathematischen Symbolsprache in diesem 

Kontext gesondert betrachtet werden. Ohne Zweifel ist das Lesenkönnen von und der Umgang mit 

der fachmathematischen Symbolsprache ein Lernziel jedes mathematikhaltigen Studiengangs.  

Auf die Vorteile der fachmathematischen Sprache wird u.a. in Whitehead und Russel (1978, S. 1ff.) 

und in Maier (1999) eingegangen. Dazu gehören die folgenden Aspekte: 

- Durch die fachlichen Bezeichnungen werden Informationen gebündelt, was eine verdichtete 

und in gewisser Weise auch vereinfachte Sprache zur Folge hat.  

- Die Fachsprache ermöglicht erst eine Formalisierung, an der Transformationen vollzogen und 

Resultate hervorgebracht werden können.  

- Das Bestreben, neue Begriffe bei ihrer ersten Verwendung genau zu definieren, konstituiert 

eine begriffsklärende Funktion und Begriffshierarchien und andere Begriffsbeziehungen 

bewirken logisch ordnende Funktion der Sprache.  

- Schließlich ist sie das Kommunikationsmedium der mathematischen Community.  

Vorteile können somit übergeordnet auf der Ebene der Begriffsbildung bzw. Begriffspräzisierung und 

auf der Ebene einer ‚Formalisierung‘ ausgemacht werden, welche auch der Kommunikation dienlich 

sind. Betrachtet man ‚Formalisierung‘ aufgrund des in dieser Arbeit interessierenden Kontextes als 

‚Übersetzung‘ in die algebraische Symbolsprache unter Verwendung von Buchstabenvariablen etc., 

so können verschiedene Vorteile dieses speziellen Diagrammsystems herausgearbeitet werden (vgl. 

Mall 1993 und Mason et al. 2005, S. 1ff.): 

Die Symbolsprache der Algebra … 

- übernimmt eine Kontrollfunktion bzgl. der Gültigkeit von (rechnerischen) Argumentationen  

- vermag bei Argumentationen restlos zu überzeugen, wo andere Darstellungen einen Zweifel 

an der Gültigkeit hinterlassen können 

- ermöglicht die Formulierung allgemeingültiger Zusammenhänge („expressing generality“; 

Mason et al. 2005, S. 2ff.) 

- ist das Kommunikationsmittel der mathematischen Community. 

Gerade der Aspekt der Formulierung allgemeingültiger Zusammenhänge ermöglicht im Vergleich 

generischer und formaler Beweise die Herausstellung des Nutzens der mathematischen 

Symbolsprache. Während bei dem hier vertretenen Konzept von generischen Beweisen die 

Allgemeingültigkeit narrativ dargestellt bzw. expliziert werden muss, wird der Symbolsprache der 

Algebra innerhalb formaler Beweise dieses Attribut gleichsam zugesprochen. Denn die oben 

angeführte Kontrollfunktion der Algebra sichert die Allgemeingültigkeit der verwendeten 

Transformationen bzw. Operationen und damit die Allgemeingültigkeit entsprechender Beweise. 
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Aus didaktischer Perspektive ist dabei grundlegend, dass auch die Verwendung der 

fachmathematischen Symbolsprache als Lerngegenstand aufgefasst werden muss. Daher kann die 

Verwendung dieser Fachsprache zunächst ein Verstehenshindernis für das Erlernen der 

Beweisaktivität darstellen. Hierzu schreibt Maier (1999, S. 25):  

Angesichts der oben erwähnten Schwierigkeiten erscheint es nun fragwürdig, die Schüler bei […] Beweisen von 

vorne herein und ausschließlich auf einen extensiven Symbolgebrauch festzulegen und den Übergang von einer 

betont umgangssprachlichen zu einer betont formalen Darstellung zu früh oder zu rasch zu erzwingen. Mit einer 

solchen Festlegung ist die Gefahr verbunden, dass mindestens ein Teil der Schüler mit der  Aufgabe des Beweisens 

einfach deshalb Schwierigkeiten bekommt, weil ihm diese Idealform der Kodierung von Beweisgedanken nicht 

gelingt und er umgekehrt weitgehend mit Symbolen dargestellte Beweise nicht zu dekodieren und damit nicht zu 

verstehen vermag. 

 

Wie bereits zu Beginn des Abschnitts angemerkt wurde, bezieht sich diese semiotische Theorie von 

Peirce ursprünglich auf den Prozess mathematischer Erkenntnisgewinnung und nicht auf den Prozess 

der Wissenssicherung. Der Vorgang des diagrammatischen Schließens vermag es alleine noch nicht, 

das Phänomen ‚mathematischer Beweis‘ vollständig zu erfassen. Hinzu kommen die Fragen nach der 

Verwendung von mathematischen Argumenten, der Explizierung von Argumenten und 

Schlussweisen, generell aller Normen, die an Beweise gestellt werden, damit sie als wirkliche 

Beweise gelten können (vgl. Abschnitt 2.1.1). Diese Fragen lassen sich für den Kontext der 

Mathematikausbildung mit der Theorie sozio-mathematischer Normen fassen, welche als zweite 

Leittheorie für die vorliegende Forschung gewählt wurde. Diese Theorie wird im nächsten Abschnitt 

dargestellt und begründet. 

2.6 Die Theorie sozio-mathematischer Normen 
In diesem Abschnitt wird die Theorie sozio-mathematischer Normen dargestellt, die in der 

vorliegenden Arbeit, neben der Theorie des diagrammatischen Schließens nach Pierce, als zweite 

Leittheorie bei der Beforschung der Lehrveranstaltung verwendet wird. Mithilfe dieser Theorie wird 

es möglich, den Prozess zu beschreiben, zu analysieren und zu evaluieren, wie Lernende normative 

Aspekte beim Beweisen erlernen. Diese normativen Aspekte tangieren dabei die folgenden Fragen: 

1. Was wird im Kontext der Lehrveranstaltung unter einem (generischen, operativen, formalen) 

Beweis verstanden? 

2. Welche Aspekte müssen bei der Konstruktion eines (generischen, operativen, formalen) 

Beweises expliziert werden? 

3. Inwiefern werden diese Aspekte sozio-mathematischer Normen in den Beweisproduktionen 

der Lernenden deutlich? 

Die Theorie sozio-mathematischer Normen eignet sich in einem besonderen Maße für die 

vorliegende Forschung, da sie einen Erklärungsansatz für die Herausbildung normativer Aspekte zum 

Beweisen innerhalb einer Lerngruppe zur Verfügung stellt, die im Kontext der Lehrveranstaltung 

expliziert werden oder auch nur implizit verbleiben. Gerade für die Domäne des Beweisens ist dieses 

Zusammenspiel von zu explizierenden und impliziten Normen von großer Bedeutung, da eine 

‚absolute‘ Definition dessen, was ein Beweis ist, bzw. was innerhalb einer Lerngruppe unter einem 

Beweis verstanden wird,  so nicht möglich ist (vgl. Abschnitt). Entsprechende Begriffs- und 

Bedeutungskonstruktionen können dann sinnstiftend als Ergebnisse eines Aushandlungsprozesses im 

Sinne sozio-mathematischer Normen begriffen werden. Darüber hinaus wird es mit dieser Theorie 

möglich, die Auswirkung der hier thematisierten Lehrveranstaltung theoretisch fassbar zu machen. 
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Im Fokus dieser Theorie steht dabei nicht das Hineinwachsen in eine weitergefasste Kommunität, wie 

etwa in der sozio-kulturellen Theorie von Wenger (1998), sondern die konkrete Lehrsituation bzw. 

Lehrveranstaltung, in deren Kontext sich normative Aspekte herausbilden. 

2.6.1 Theoretische Grundlagen sozio-mathematischer Normen 

Yackel und Cobb (1996) prägten den Begriff „sozio-mathematische Normen“ für normative fachliche 

Aspekte im Mathematikunterricht, die sich in einem Aushandlungsprozess zwischen Lehrenden und 

Lernenden im Unterrichtsgeschehen herausbilden. Die Autoren zeigen am Beispiel eines 

Unterrichtsgesprächs in der Grundschule, wie sich die Bedeutung dessen herausbildet, was als 

unterschiedliche Lösung („different solution“; ebd., S. 462) im Unterricht verstanden wird. Diese 

Perspektive verbindet somit eine konstruktivistische Sichtweise auf den Lernprozess mit der Sicht auf 

das Lernen als sozialen Interaktionsprozess (vgl. Stephan 2014, S. 564). Die Aushandlung normativer 

Aspekte ist dabei im Kontext von Beweisen von besonderer Bedeutung. 

2.6.2 Sozio-mathematische Normen und Beweise 

Eine Grundfrage innerhalb einer Lerngemeinschaft ist, was überhaupt unter einer gültigen 

Argumentation bzw. unter einem korrekten mathematischen Beweis verstanden werden darf bzw. 

werden soll. Yackel und Cobb (1994) weisen hierbei auf die Bedeutung des Aushandlungsprozesses 

zwischen Lehrenden und Lernenden hin: 

When students give explanations and arguments in the mathematics classroom their purpose is to describe and 

clarify their thinking for others, to convince others of the appropriateness of their solution methods, but not to 

establish the veracity of a new mathematical 'truth'... The meaning of what counts as an acceptable mathematical 

explanation is interactively constituted by the teacher and the children […]. (Ebd., S. 3; zitiert nach Hanna und 

Jahnke 1996, S. 887) 

 

Doch nicht nur die Bedeutung entsprechender Begriffe können beim Beweisen als Aspekte sozio-

mathematischer Normen betrachtet werden, in diesem Kontext gilt es im unterrichtlichen 

Geschehen weitere Aspekte zu erörtern. Dreyfus (1999) weist darauf hin, dass gerade im Erlernen 

der Beweisaktivität sozio-mathematische Normen eine zentrale Rolle spielen. So werden im 

unterrichtlichen Geschehen die Normen nicht nur dafür ausgebildet, was als eine gültige 

Argumentation akzeptiert wird, sondern auch welche Art von Antwort von einem Lernenden 

erwartet wird, welche Zwischenschritte in einem Beweis offengelassen werden können bzw. welche 

Argumente expliziert werden müssen (vgl. auch Blanton & Stylianou 2002; Forman et al. 1998; 

McClain 2009, Weber 2002). Dies tangiert auch die Frage, wie Lernende verschiedene Operatoren 

zum Beweisen (Zeigen Sie, dass…; Beweisen Sie, dass; …) in Aufgabenstellungen überhaupt 

verstehen, bzw. zu verstehen lernen, ob dabei verschiedene Begründungsmuster implizit 

eingefordert (Dreyfus 1999) oder unterschiedliche semiotische Ressourcen aktiviert werden (Herbst 

& Dimmel 2014)19. So betrachtet, kann das Erlernen der Beweisaktivität über die Aushandlung und 

Übernahme von sozio-mathematischen Normen als Enkulturationsprozess in die mathematische 

Community verstanden werden (Nickerson & Rasmussen 2009). Durch diese Sichtweise auf den 

Lernprozess rückt auch die Bedeutung der beteiligten Lehrpersonen in den Vordergrund. 

Entsprechende Normen werden durch alle am Lernprozess beteiligten Personen beeinflusst bzw. 

ausgehandelt und gleichsam konstituiert. 

                                                           
19

 Neuere Ergebnisse von Kempen et al. (2016) weisen darauf hin, dass Beweisoperatoren verschiedene 

Auswirkungen auf die Beweisbearbeitungen von Studienanfängerinnen und Studienanfängern haben können. 
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Vor diesem Hintergrund wird auch die Frage nach Beweisakzeptanz bzw. nach Akzeptanzkriterien zu 

einem Aspekt sozio-mathematischer Normen (etwa Ufer et al. 2009, S. 33). Heinze und Reiss (2003) 

stellen hierzu Methodenwissen zum Beweisen auf drei Ebenen vor, die als Normen im Kontext von 

Beweiskonstruktion und Beweisevaluation von Lernenden berücksichtigt werden müssen (vgl. hierzu 

Ufer et al. 2009, S. 35). Das ‚Beweisschema‘ betrifft die Verwendung deduktiver Schlüsse innerhalb 

der einzelnen Beweisschritte. Bei der ‚Beweisstruktur‘ geht es um die Gesamtkonzeption eines 

Beweises: Das Behauptete wird ausgehend  von gegebenen Voraussetzungen gezeigt. Der Fokus auf 

die ‚Beweiskette‘ sichert schließlich das logische Voranschreiten innerhalb der Beweisstruktur. Was 

in Bezug auf diese drei Facetten von Methodenwissen nun gefordert bzw. erlaubt ist, kann dabei als 

Frage sozio-mathematischer Normen aufgefasst werden. 

3. Forschungsmethode 
 

In diesem Kapitel wird zunächst das Konzept des Design-Based Research vorgestellt (Abschnitt 3.1) 

und anschließend als die hier verwendete Forschungsmethode legitimiert und begründet (Abschnitt 

3.2). Im letzten Abschnitt des Kapitels wird schließlich die Genese der innerhalb der 

Effektivitätsstudie der vierten Durchführung der Lehrveranstaltung (WS 2014/15) verwendeten 

Testinstrumente beschrieben (Abschnitt 3.3). Hierdurch wird bereits ein Beitrag für das in Abschnitt 

1.4.1 formulierte Ziel geleistet, Testinstrumente für die Erforschung zentraler Aspekte zum Beweisen 

bei Lernenden zu entwickeln. 

3.1 Design-Based Research 
Die Forschungsmethode des Design-Based Research (DBR) wird häufig auf die Arbeiten von Brown 

(1992) und Collins (1992) zurückgeführt, die sich mit der Entwicklung von Designexperimenten und 

den damit verbundenen theoretischen und methodischen Belangen auseinandersetzten. Seit den 

1980-er Jahren wurden in der Entwicklung dieser Forschungsrichtung immer wieder verschiedene 

Begrifflichkeiten geprägt, innerhalb derer verschiedene Aspekte in den Vordergrund gerückt werden 

oder welche sich auch aufgrund ihrer historischen Entwicklung erklären lassen (s. hierzu Bakker & 

van Eerde 2015, S. 436). Übergreifend kann Design-Based Research als eine Forschungsmethode 

beschrieben werden, in der verschiedene (Forschungs-) Ansätze kombiniert werden, um im Kontext 

der Beforschung einer Lehrinnovation diese zu verbessern, Gelingensbedingungen für diese zu 

beschreiben und zu testen und zu einer entsprechenden Theoriebildung beizutragen (vgl. Barab & 

Squire 2004, S. 2; Bakker & van Eerde 2015, S. 431). Plomb (2010) beschreibt diese 

Forschungsrichtung wie folgt:  

 

the systematic study of designing, developing and evaluating educational interventions (such as programs, 

teaching-learning strategies and materials, products and systems) as solutions for complex problems in 

educational practice, which also aims at advancing our knowledge about the characteristics of these interventions 

and the processes of designing and developing them. (Ebd., S. 9) 

 

Der Ausgangspunkt entsprechender Forschungen sind komplexe Problemstellungen der 

pädagogischen Praxis, für die es bisher keine Lösungen gibt (Barab & Squire 2004, S. 4; Bakker & van 

Eerde 2015, S. 430). Hierfür wird ein (innovatives) Lehr-/Lernszenario konstruiert, durchgeführt, 

evaluiert und modifiziert. Im Mittelpunkt steht dabei nicht eine bloße Evaluation der Lehrinnovation; 

das Erkenntnisinteresse liegt in dem Verstehen der Gelingensbedingungen des Lehr-/Lernszenarios, 

der (Weiter-) Entwicklung theoretischer Aspekte und dem Herausarbeiten der auf andere 
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Lernsituationen übertragbaren Erkenntnisse (siehe etwa Barab & Squire 2004, S. 11 oder Plomp 

2010, S. 18). Diese gleichzeitige Entwicklung praktischer und theoretischer Aspekte erfolgt dabei 

innerhalb eines (mehrphasigen) zyklischen Prozesses (vgl. Abbildung 9). Ausgangspunkt stellt die 

Vorbereitung und Planung des Lehr-/Lernszenarios dar, welche auf verschiedenen theoretischen 

Grundlagen und Hypothesen basiert. Im Kontext der Durchführung werden diese Hypothesen durch 

begleitende Forschung und Lehrerfahrung mit neuen Erkenntnissen konfrontiert. In einer 

retrospektiven Analyse werden die erhaltenen Erkenntnisse schließlich ausgewertet, was in der 

Vorbereitung der nächsten Durchführung zu verschiedenen Modifikationen führt. Innerhalb dieses 

zyklischen Prozesses werden somit konsequent theoretische und praktische Aspekte berücksichtigt 

und weiterentwickelt. 

Der Ausgangspunkt eines DBR-Projekts lässt sich als eine Art Gedankenexperiment verstehen: Ein 

Lehr-/Lernszenario wird auf der Basis von verschiedenen (didaktischen, fachlichen, pädagogischen 

etc.) Annahmen und Intentionen geplant. Im Kontext der Durchführung des Szenarios werden diese 

Hypothesen mit der konkreten Unterrichtspraxis konfrontiert, wobei aus der begleitenden Forschung 

Ergebnisse hervorgehen, auf deren Grundlage die verschiedenen Hypothesen überprüft und ggf. 

verworfen, bestätigt oder modifiziert werden. Ein Charakteristikum dieser Forschungsmethode ist 

dabei, dass das Lehrszenario zwar vor dessen Durchführung formuliert wird, dieses aber bereits 

während des laufenden Prozesses modifiziert werden kann: Bereits im Rahmen der Durchführung 

können Änderungen vorgenommen werden, die zu dessen Gelingen beitragen sollen. Der 

Forschende kann dabei direkt in das Experiment involviert sein, um entsprechende Änderungen 

vornehmen zu können. Daher erweist sich diese Forschungsmethode als besonders praxisorientiert 

und adaptiv. Alle im Kontext der Durchführung erhaltenen Erkenntnisse werden schließlich im 

Rahmen der retrospektiven Analyse ausgewertet und mit den Ausgangsintentionen abgeglichen. Die 

daraus resultierenden Theorien, die Erklärungsansätze dafür liefern, wie und warum ein 

entsprechendes Szenario gelingen kann und wie diese Aspekte in andere Bereiche übertragen 

werden können, zeichnen sich dabei durch eine gewisse Bescheidenheit aus („are humble“; Cobb et 

al. 2003, S. 9), da sich diese lokalen Theorien auf entsprechende domänenspezifische Lernprozesse 

beziehen (vgl. Cobb et al. 2003, S. 9; Plomp 2010, S. 19).  

Cobb et al. (2003) führen fünf charakteristische Merkmale des DBR an, welche diese 

Forschungsmethode von anderen abgrenzt. Diese Merkmale werden im Folgenden paraphrasiert: 

(1) Theorieentwicklung 

Das Ziel entsprechender Forschungsarbeiten ist die Entwicklung von Theorien, wie das 

Lernen in einer bestimmten Domäne gelingen kann und welche Mittel zu dessen 

Unterstützung beitragen können.  

(2) Der interventionistische Charakter 

Abbildung 9: Zyklischer Forschungsprozess im Design-Based Research 
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Gegenstand der Forschung ist die Durchführung einer Lehrinnovation, deren Erfolg und 

Nutzen als Intervention in einem realen Kontext beforscht werden soll. Aus der Fülle 

verschiedener Aspekte müssen dann diejenigen ausgewählt werden, die im Rahmen der 

Forschung unter dem Blickwinkel bestimmter Theorien genauer untersucht werden sollen.  

(3) Die Verzahnung von prospektiven und retrospektiven Elementen 

Prospektive und retrospektive Momente werden in DBR-Studien in besonderer Weise im 

Forschungsprozess berücksichtigt. Das Designexperiment wird auf der Basis verschiedener 

Theorien und Hypothesen geplant und durchgeführt. Hieraus resultieren gleichsam 

Annahmen über dessen Auswirkungen. Diese vermuteten bzw. vorhergesagten Ergebnisse 

werden immer wieder mit aktuell erhaltenen Befunden konfrontiert, was zu einer 

retrospektiven (Neu-) Bewertung der zu Grunde gelegten Hypothesen führt.  

DBR hat somit auch eine erklärende und eine beratende Funktion: Sie liefert theoretische 

Einsichten, wie bestimmte Formen des Lehrens und Lernens verbessert werden können. 

Dieser Forschungsprozess mit einer übergreifenden vorhersagenden bzw. beratenden 

Ausrichtung beinhaltet dabei verschiedene Stufen des Forschungsprozesses, welche 

verschiedene Ausrichtungen (deskriptiv, vergleichend, evaluierend) haben können. 

(4) Das iterative Design 

Die prospektiven und retrospektiven Momente des DBR konstituieren das charakteristische 

iterative Design in der Abfolge von (Re-) Design, Durchführung und Analyse. Die ständige 

Neubewertung von bestehenden Annahmen führt zu deren iterativen Ausschärfung bzw. 

Verbesserung. Es ergibt sich somit ein iterativer Designprozess, der aus mehreren 

Forschungszyklen besteht. 

(5) Die pragmatische Ausrichtung der erarbeiteten theoretischen Aspekte 

Die in einem DBR-Kontext erarbeiteten Theorien haben eine pragmatische Ausrichtung: Sie 

sind domänspezifisch und resultieren aus einem realen Szenario, in dem sie sich bereits 

bewährt haben.  

 

Im Rahmen dieses Forschungsansatzes gilt es allerdings verschiedene Grundprobleme zu 

berücksichtigen (vgl. hierzu Barab & Squire 2004, S. 2; Plomp 2010, S. 30ff.; McKenney et al. 2006, S. 

83f.), welche nun dargestellt werden. 

Die Involviertheit des Forschers 

Durch die aktive Rolle des Forschers bei der Entwicklung der Lehrinnovation, ggf. deren 

Durchführung, Evaluation und Modifizierung wird die Objektivität der Forschung in Frage gestellt. 

Plomp (2010, S. 30ff.) führt verschiedene Maßnahmen an, um die Qualität entsprechender 

Forschungen zu erhöhen. Diese werden im Folgenden paraphrasiert: 

a) Die Rolle und der Einfluss des Forschers auf das Projekt müssen offengelegt werden. 

b) Die erhaltenen Forschungsergebnisse müssen durch weitere Forschung bestätigt werden. 

c) Die Interpretation der Forschungsergebnisse sowie die auf deren Basis vorgenommenen  

Modifikationen müssen stetig kritisch reflektiert und mit außenstehenden Personen 

diskutiert werden.  

d) Die verschiedenen im Kontext des Gesamtprojekts unternommenen Forschungsprojekte 

müssen allgemeinen Gütekriterien genügen und, wenn möglich, verschiedene 

Forschungsmethoden umfassen.  
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e) Alle zum Verständnis des Forschungsprojekts wichtigen Aspekte müssen systematisch 

dokumentiert, nachvollziehbar dargestellt und reflektiert werden. 

f) Der Nutzen und die Effektivität der Lehrinnovation müssen empirisch getestet werden. 

 

Der reale Kontext der Forschung 

Durch die Durchführung der Lehrinnovation in einem realen Kontext haben viele verschiedene 

Faktoren Einfluss auf deren Auswirkungen und Gelingen. Wie oben beschrieben wurde, müssen die 

verschiedenen Aspekte herausgestellt werden, welche im Fokus der Forschungsarbeit stehen. 

Anpassungsfähigkeit 

Die Weiterentwicklung eines Lehr-/Lernszenarios im Kontext des DBR erfolgt immer in dem 

Spannungsfeld von Veränderung und Konstanz. Hierbei werden gezielt bestimmte Aspekte 

modifiziert, während andere beibehalten werden. Anpassungsfähigkeit ergibt sich hierbei zunächst 

durch die Akzeptanz von notwendigen Abweichungen vom Ausgangsplan. Die Anpassungsfähigkeit 

betrifft aber auch den Forscher, da er seine Intentionen mit den Meinungen und Interpretationen 

anderer Beteiligter oder Außenstehender in Einklang bringen bzw. offen für eventuell konträre 

Meinungen sein muss. 

Nachdem der Forschungsansatz des DBR, seine Ausrichtung, Charakteristika und Problemfelder 

beschrieben wurden, wird in dem nächsten Abschnitt dessen Anwendung auf das vorliegende 

Forschungsprojekt beschrieben und gleichsam legitimiert. 

3.2 Design-Based Research als der vorliegende Forschungsansatz 
Die übergeordneten Ziele der vorliegenden Forschungsarbeit wurden bereits in Abschnitt 1.4 

formuliert: 

(1) die forschungsbasierte (Weiter-) Entwicklung einer Lehrveranstaltung, welche den 

Studierenden den Übergang von der Schulmathematik in die Mathematik der Hochschule 

erleichtern soll und hierbei in einem besonderen Maße das Themenfeld ‚Begründen und 

Beweisen‘ unter dem Aspekt der doppelten Diskontinuität fokussiert, und 

(2) einen Beitrag zu einer empirisch begründeten Instruktionstheorie für das Lernen in der 

Domäne ,Begründen und Beweisen‘ an der Universität zu leisten. 

Wie in Abschnitt 1.1 dargestellt wurde, erweist sich das Thema ‚Begründen und Beweisen‘ im 

Spannungsfeld der doppelten Diskontinuität als ein komplexes und mehrdimensionales Problemfeld, 

in dem verschiedene Aspekte berücksichtigt werden müssen. Hierzu gehören u.a. das Einleben in 

eine neue Fachkultur der Mathematik, das Erlernen neuer (strenger) Argumentationsweisen und 

Beweistechniken, der korrekte Umgang mit der fachmathematischen Symbolsprache und das 

Erlernen schuladäquater Begründungs- und Beweisformen. Folglich wird in dieser Arbeit eine 

komplexe Problemstellung der Praxis fokussiert, für die es bisher keine Lösung gibt. 

Neben der durch Forschungsergebnisse und Lehrerfahrung geleiteten (Weiter-) Entwicklung dieser 

Lehrveranstaltung stehen ferner die theoretische Analyse und Beschreibung des Wirkprozesses im 

Fokus: Welche Faktoren wirken sich wie und warum für das ‚Gelingen‘ des Lehr-/Lernszenarios aus?  
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Diese Entwicklungsarbeit an der Lehrveranstaltung umfasst dabei konzeptionelle Arbeit, die 

Bereitstellung von entsprechenden Lehr-/Lernmaterialien und Testinstrumenten und die (Weiter-) 

Entwicklung von theoretischen Aspekten. Der Forschungsansatz des Design-Based Research erweist 

sich hier als adäquater Rahmen, da mithilfe dieser Forschungsrichtung komplexe pädagogische 

Problemstellungen in einem weiteren, ganzheitlichen Sinn in Angriff genommen werden können und 

gleichzeitig ein Beitrag zur Theorieentwicklung geleistet wird: „The main objective of design research 

ist to develop theories together with instructional materials“ (Bakker 2004, S. 38).  

Die Gestaltung der Lehrveranstaltung orientiert sich an der Grundidee der „Elementarmathematik als 

Prozess“, wie es in Abschnitt 1.2.3 dargestellt wurde. Weitere Leitprinzipien für die Gestaltung 

konnten innerhalb des ersten Kapitels durch die Betrachtung des Phänomens der doppelten 

Diskontinuität im Kontext der Thematik ‚Begründen und Beweisen‘ und durch die Erörterung 

verschiedener Konzeptionen von Lehrveranstaltungen zur Einführung in die höhere Mathematik mit 

dem Fokus des Beweisens gewonnen werden. 

Diese Forschungsarbeit wird dabei von der Verwendung zweier Theorien geleitet: Die Betrachtung 

des Beweisens als ‚diagrammatisches Schließen‘ im Sinne von Ch. S. Peirce und die Theorie der sozio-

mathematischen Normen. Diese Theorien wurden bereits in den Abschnitten 2.5 und 2.6 dargestellt. 

Entsprechende theoriegeleitete Analysen und die entsprechende Ableitung geeigneter Maßnahmen 

betreffen insgesamt die Weiterentwicklung des Lehr-/Lernszenarios und insbesondere die 

Entwicklung und Bereitstellung von Lernmaterialien, die Interpretation von Forschungsergebnissen 

und die retrospektiven Analysen der verschiedenen Durchführungen der Lehrveranstaltung.  

Neben der Beschreibung und Analyse des komplexen Problemfeldes ‚Beweisen und Begründen‘ in 

Bezug auf die Doppelte Diskontinuität (Abschnitt 1.1) und der Herausstellung von Leitprinzipien für 

die Gestaltung der Lehrveranstaltung (Abschnitt 1.2 und 1.3) steht als Ausgangspunkt der Arbeit die 

von Rolf Biehler entwickelte erste Version der Lehrveranstaltung. Es sei hier darauf hingewiesen, dass 

der Autor dieser Arbeit an der ersten Konzeption der Lehrveranstaltung nicht beteiligt war, sondern 

erst im Rahmen von deren Beforschung mit dem Forschungsprojekt begann. Diese Beforschung und 

Weiterentwicklung eines bereits bestehenden Konzepts ist dabei eine legitime Variante des DBR 

(siehe Plomp 2010, S. 15). Bei den folgenden Durchgängen arbeitete der Autor als Wissenschaftlicher 

Mitarbeiter in der Lehrveranstaltung mit und war somit direkt in das Geschehen involviert. Hierbei ist 

nicht ungewöhnlich, dass der Forscher selbst aktiv an dem Lehr-/Lernszenario involviert ist; dieser 

Aspekt erweist sich als Stärke der Forschungsmethode, da mit entsprechenden Justierungen und 

Optimierungen der Materialien nicht gewartet werden muss, bis ein Forschungszyklus durchlaufen 

ist, sondern zu jedem Zeitpunkt des Projekts effizient vorgenommen werden kann (vgl. Abschnitt 

3.1).  

Ein Forschungszyklus umfasst in dem vorliegenden Projekt die Länge eines Jahres, da die 

Lehrveranstaltung immer im Wintersemester angeboten wurde. Betrachtet werden in dieser Arbeit 

die vier Forschungszyklen von 2011 bis 2015 (vgl. Abb. 10). Die verschiedenen Abschnitte der 

Forschungszyklen (Vorbereitung der Lehrveranstaltung, ihre Durchführung, die im Kontext der 

Durchführung erfolgten Studien und die schließlich retrospektive Analyse eines jeden Durchgangs) 

werden in Kapitel 5 beschrieben, die letzte hier beschriebene Version der Lehrveranstaltung in 

Kapitel 6 dargestellt. Der Nutzen und die Effektivität dieser finalen Durchführung wurden im Rahmen 

einer Effektivitätsstudie umfassend empirisch untersucht und evaluiert. Diese Studie ist Gegenstand 

des achten Kapitels. 
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Zu den Gütekriterien Validität und Reliabilität im Design-Based Research 

Die interne Validität misst sich an der Qualität der Daten und der Schlüssigkeit der daraus 

abgeleiteten Folgerungen. In Bezug auf die externe Validität gilt es, die Verallgemeinerbarkeit der 

Theorie und die Übertragbarkeit und den Nutzen der Ergebnisse zu diskutieren. Das innerhalb des 

Projekts erarbeitete Lehr-/Lernszenario, die in diesem Kontext entwickelten Materialien und die 

herausgearbeiteten Gelingensbedingungen müssen im Hinblick auf ihre Übertragbarkeit befragt 

werden. Durch die Verwendung der theoretischen Aspekte der Semiotik und der sozio-

mathematischen Normen werden die hier erzielten (theoretischen) Ergebnisse bereits in einen 

weiteren Rahmen gestellt und somit für eine weiter gefasste Adaption geöffnet.  

In Bezug auf die durchgeführten Studien gilt es, die interne Reliabilität, also die Unabhängigkeit der 

Datenerhebung und Auswertung von der Person des Forschers zu betrachten. Für die externe 

Reliabilität der Forschung gilt es, die Replizierbarkeit der Ergebnisse unabhängig von der Person des 

Forschers zu diskutieren. In Rahmen des DBR wurde hierfür der Begriff der „trackability“ geprägt, um 

die Nachvollziehbarkeit des Erkenntnisverlaufs des Forschers zu beschreiben (Bakker 2004, S. 46). 

Freudenthal (1991) beschreibt dies wie folgt: „Developmental research means: experiencing the 

cyclic process of development and research so consciously, and reporting on it so candidly that it 

justifies itself, and that this experience can be transmitted to others to become like their own 

experience.” (Freudenthal 1991, S. 161 zitiert aus Bakker 2004, S. 46). 

Aus diesem Grund wird auf eine nachvollziehbare Darstellung der Forschung und der daraus 

gefolgerten Maßnahmen und erhaltenen Erkenntnissen ein entsprechender Wert gelegt. Durch die 

Ausführungen zu den erfolgten Forschungsprojekten, deren Auswertungen im Rahmen der 

retrospektiven Analysen und der Beschreibung und Begründung der ergriffenen Maßnahmen in der 

Lehre soll es dem Leser möglich werden, den Erfahrungsprozess des Autors nachvollziehen zu 

können.  

Die Einhaltung dieser Gütekriterien wird im Rahmen des Kapitels 8 erörtert. 

Dass neben den hier aufgeführten Gütekriterien aber ein weiterer Aspekt von zentraler Bedeutung 

für die Bewertung des Forschungsprojekts ist, soll an dieser Stelle betont werden: „The products of 

DBR are judged on innovativeness and usefulness, not just on the rigor of the research process […]” 

(Bakker & van Eerde 2015, S. 432).  
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Abbildung 10: Schematische Darstellung des 

vorliegenden Forschungsprojekts im Sinne des 

Design-Based Research 
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3.3 Instrumententwicklung 
In diesem Abschnitt wird die Genese der Testinstrumente beschrieben, die im Rahmen der 

Effektivitätsstudie in der letzten hier thematisierten Durchführung der Lehrveranstaltung im 

Wintersemester 2014/15 eingesetzt wurden. Die Testinstrumente lassen sich hierbei den folgenden 

Bereichen zuordnen: Erfassung von Begründungskompetenz (3.3.1.), Beweisbewertung als ‚richtiger 

Beweis‘ (3.3.2), Beweisakzeptanz (3.3.3), Erfassung schulischer Vorerfahrungen zum Beweisen 

(3.3.4), Beweispräferenz (3.3.5), Einstellungen zum Beweisen in der Schule, zum Beweisen allgemein 

und zur Mathematik (Abschnitte 3.3.6–3.3.8), Funktionen von Beweisen (3.3.9), Motivation zum 

Erlernen von Beweisen und die Selbsteinschätzung des Lernzuwachses in Bezug auf das Beweisen 

(3.3.10), der Nutzen von Beispielen für den Beweisprozess (3.3.11) und Selbstwirksamkeitserwartung 

und der empfundene Kompetenzzuwachs (3.3.12).  

Bereits die dritte Durchführung der Lehrveranstaltung im Wintersemester 2013/14 wurde von einer 

Ein- und Ausgangsbefragung gerahmt, welche als Pilotierung der Testinstrumente für die 

Effektivitätsstudie im darauf folgenden Jahr fungierte. Die Ergebnisse aus der Pilotierung der 

Testinstrumente im Wintersemester 2013/14 werden im Folgenden nur soweit dargestellt, wie es 

zum Nachvollziehen der Entwicklung der Testinstrumente notwendig ist. Die Ergebnisse der 

Effektivitätsstudie der vierten Durchführung der Lehrveranstaltung im Wintersemester 2014/15 

werden in Kapitel 7 dargestellt.  

3.3.1 Erfassung von Begründungskompetenz zu Beginn des Studiums 

Ausgangspunkt für die Erfassung der Eingangsvoraussetzungen der Studierenden zu der Thematik 

‚Begründen und Beweisen‘ war die Frage danach, ‚wie‘ Studierende überhaupt begründen und wie 

‚gut‘ sie dies tun. Diese Aspekte werden unter dem Aspekte ‚Begründungskompetenz‘ 

zusammengefasst, welcher durch die folgende Aufgabenstellung erfasst wurde: 

Die Summe 11 + 17 ist eine gerade Zahl.  

Gilt dies für jede Summe von zwei beliebigen ungeraden Zahlen? 

 - Begründen Sie überzeugend! 

Diese Aufgabe scheint aus verschiedenen Gründen für die Erfassung einer Begründungskompetenz 

angebracht: (i) Die Beantwortung der Aufgabe ist mit Grundlagenwissen der Arithmetik bzw. der 

Algebra möglich, (ii) die Aufgabe ermöglicht unterschiedliche Herangehensweisen und damit 

verbunden verschiedene Lösungswege unter Nutzung verschiedener Repräsentationsmittel, und (iii) 

die Behauptung ist leicht verständlich, dabei aber nicht so trivial, dass bei Probanden keine Einsicht in 

eine zu leistende Verifikation entstehen würde. 

Die Aufgabenstellung ist hierbei explizit so gewählt, dass auf formale Darstellungen verzichtet wurde, 

um nicht den Eindruck entstehen zu lassen, dass hier ein ‚Beweis‘ unter Nutzung von 

Buchstabenvariablen gefordert sei. Die Aufgabenformulierung ist an Brunner (2014, S. 193) 

angelehnt, wobei hier der Zusatz „Begründen Sie überzeugend!“ ergänzt wurde. Diese Formulierung 

über die Angabe eines Beispiels verdeutlicht die zu zeigende Behauptung und öffnet gleichsam den 

Weg zu weiteren Beispielüberprüfungen und Explorationen, wie dies auch durch die folgende Frage 

(„Gilt dies für jede Summe von zwei beliebigen ungeraden Zahlen?“) impliziert wird. Dabei wird die 

der Behauptung immanente Allaussage durch „jede Summe“ explizit gemacht. Schließlich wurde der 

Operator „Begründen Sie überzeugend!“ gewählt, um Konnotation mit den Begrifflichkeiten von 

Argumentation und Beweisen zu umgehen und mit der Aufforderung ‚zu begründen‘ die Art der 
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Aufgabenbearbeitung möglichst offen zu lassen20 (vgl. Abschnitt 2.3). Der Zusatz „überzeugend“ soll 

dabei implizieren, dass alle notwendigen Teilargumente expliziert werden müssen. 

Pilotierung und Auswertung 

Die oben beschriebene Aufgabe wurde im Rahmen der Eingangsbefragung zur Lehrveranstaltung im 

Wintersemester 2013/2014 pilotiert. Ein Teil der Ergebnisse dieser Pilotierung wurde in Kempen und 

Biehler (2014) veröffentlicht. Die Bearbeitungen wurden dabei nach den folgenden zwei 

Dimensionen untersucht: (1) Die Qualität der Begründung und (2) die Art der Begründung und 

charakteristische Fehler. 

(1) Das Kategoriensystem zur Erfassung der „Qualität der Begründung“ 

Die Erarbeitung des Kategoriensystems zur Erfassung der „Qualität der Begründung“ erfolgte im 

Rahmen einer deduktiv-induktiven Kategorienbildung im Sinne der qualitativen Inhaltsanalyse (vgl. 

Kuckartz 2012, S. 69). Den Ausgangspunkt bildeten die Kategoriensysteme von Bell (1976) und Recio 

und Godino (2001). Deren Kategoriensysteme wurden kombiniert und anschließend direkt anhand 

der vorliegenden Aufgabenbearbeitungen kombiniert, modifiziert, präzisiert und erweitert. Somit 

wurde im Rahmen der Pilotierung der Aufgabe ein differenziertes Kategoriensystem entwickelt (s. die 

Spalte Kempen & Biehler (2014) in der Tabelle 1). Für die Auswertung im Rahmen der Untersuchung 

im Wintersemester 2015/16 wurde dieses Kategorienschema wieder vereinfacht, um die 

Vergleichbarkeit mit anderen Aufgabenanalysen zu ermöglichen. In der Tabelle 1 wird ein Überblick 

über die Zusammenhänge der verschiedenen Kategoriensysteme gegeben. 

Eine ausführlichere Darstellung des in dieser Arbeit verwendeten Kategoriensystems, in Verbindung 

mit exemplarischen Ankerbeispielen zu jeder Kategorie, erfolgt im Rahmen der Aufgabenauswertung 

in Abschnitt 7.2.4. 

Bell (1976, S. 28f.; 
Hervorhebungen im Original) 

Recio & Godino  
(2001, S. 86) 

Kempen & Biehler  
(2014, S. 427ff.) 

in dieser Arbeit 

Diverses 
 The answer is very deficient 

(confused, incoherent). 
K0: Es wird keine Begründung 
angegeben 

K0: Es wird keine Begründung 
angegeben 

Empirische Begründungen 
 The student checks the 

proposition with examples, 
without serious 
mistakes. 

K1: Illustration 

Die Gültigkeit der Behauptung 
wird an verschiedenen 
Beispielen illustriert. 

K1: „Empirisch“ 

Beispiele werden – ohne 
weitere (deduktive) 
Begründung -  als Beleg für 

die allgemeine Gültigkeit der 
Behauptung angeführt. 

 

Extrapolation: Truth of general 
statement inferred from a subset 

of the relevant cases […]. The basis 
of the inference is clearly 
empirical. 

The student checks the 
proposition with examples, and 

asserts its general 
validity. 

K2: Empirische Verifikation 
Die Gültigkeit der Behauptung 

wird aus der Überprüfung von 
Beispielen abgeleitet. 

Deduktive Begründungen 
Dependence: Attempts to make a 
deductive link between data and 
conclusion, but fails to achieve any 

higher category. 

  K2: „Pseudo“ 
Die genannten Begründungen 
bestehen aus Zirkelschlüssen, 

sind redundant, unpassend 
oder sachlich falsch. Relevant, general restatement: […] 

represents the situation as a 
whole, in general terms, as if 

aware that a deductive connection 
exists but unable to expose it. 

 K3: Die Begründung wird durch 

Nennung des Satzes vollzogen, 
dass die Summe zweier 

ungeraden Zahlen immer gerade 
ist. 

                                                           
20

 Neue Ergebnisse von Kempen et al. (2016) belegen, dass die Wahl von Operatoren in Beweisaufgaben 

(„Zeigen Sie“, „Beweisen Sie“, „Begründen Sie“ etc.) Auswirkungen auf die Bearbeitungen von Studierenden 

haben kann. 
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  K4:  
Die Begründung wird durch die 
Paraphrasierung des Satzes 

vollzogen, dass die Summe 
zweier ungeraden Zahlen immer 
gerade ist. 

  K5:  
Die genannten Argumente sind 

entweder sachlich falsch oder 
irrelevant 

Relevant, collateral details: […] 
mentions relevant aspects which 
could form part of a proof […] but 

fails to build them into a 
connected 

argument; is fragmentary. 

 K6: Es werden relevante Aspekte 
genannt, die für eine 
Begründung genutzt werden 

könnten, ohne dabei eine 
Argumentationskette 

aufzubauen. 

K3: „fragmentarisch“ 
Es werden relevante Aspekte 
genannt, die für eine 

Begründung genutzt werden 
könnten, ohne dabei eine 

Argumentationskette 
aufzubauen. 

Connected, incomplete: Has a 
connected argument with 
explanatory quality, but is 

incomplete. 

The student justifies the 
validity of the proposition, by 
using other well-known 

theorems or propositions, by 
means of partially correct 
procedures. 

K7: Unvollständige Begründung 
mit sachlichem Fehler 

K4: „Argumentation mit 
Lücke“ 
Es wird eine korrekte 

mathematische 
Argumentation gegeben, 
welche allerdings eine Lücke 

enthält, so dass die 
Ausgangsbehauptung nicht 

allgemeingültig verifiziert 
wird.  
 

K8: Unvollständige Begründung 

mit sachlicher Lücke 

Connected, S: failing only because 

it appeals to facts or principles 
which are no more generally 

agreed than the proposition itself 
[…] 

 

Complete Explanation: Derives the 
conclusion by a connected 

argument from the data and from 
generally agreed facts or 
principles. 

The student gives a 
substantially correct proof, 

which includes an appropriate 
symbolisation. 

K9: Vollständige Begründung mit 
kleinen formalen Mängeln 

K5: „Vollst. Argumentation“ 
Die Gültigkeit der 

Behauptung wird deduktiv 
mithilfe valider 
mathematischer Argumente 

hergeleitet. 
 

K10: Vollständige Begründung 

Tabelle 1: Übersicht über die Entwicklung des Kategoriensystems zur Analyse von gegebenen Begründungen  

(2) Art der Begründung und charakteristische Fehler 

Bei dem Aspekt ‚Art der Begründung‘ geht es um die Frage, mithilfe welcher Argumente die 

gegebene Behauptung begründet wird und welche etwaigen Fehler mit diesen verschiedenen 

Begründungsarten verbunden sind. Bei der Betrachtung aller Bearbeitungen konnten verschiedene 

Arten von Begründungen ausgemacht und zu unterschiedlichen Kategorien zusammengefasst 

werden. Die in der Pilotierung im Wintersemester 2013/14 herausgearbeiteten ‚Arten von 

Begründen‘ und damit verbundenen ‚charakteristischen Fehler‘ konnten auch bei der Auswertung 

der Aufgabe im Wintersemester 2014/15 verwendet werden. Die verschiedenen Arten von 

Begründungen und die damit verbundenen charakteristischen Fehler werden im Rahmen der 

Auswertung der Aufgabe in Abschnitt 7.2.4 dargestellt. 

Die hier beschriebene Aufgabe zur Erfassung von Begründungskompetenz wurde in der 

Eingangsbefragung und in der Modulabschlussklausur im Wintersemester 2014/15 eingesetzt. 

3.3.2 Beweisbewertung als „richtiger Beweis” 

Im Kontext des „KLIMAGS“-Projekts (s. Blum et al. 2014) wurden vier Begründungsformen aus der 

Studie von Healy und Hoyles (2000, S. 401) übersetzt und als single-Choice Items mit den 

Antwortmöglichkeiten „Beweis“/„kein Beweis“ innerhalb eines Tests verwendet. In der KLIMAGS 

Version wurde die Bearbeitung „Leon“ (einzelne Beispielüberprüfungen) durch weitere 

Berechnungen und die Schlussfolgerung „Es stimmt offensichtlich immer!“ ergänzt und die 

Bearbeitung „Nisha“ (korrekte Argumentation mit Buchstabenvariablen) wurde nicht verwendet. Für 
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die vorliegende Studie wurde die Aufgabe aus dem KLIMAGS-Test übernommen, wobei die folgenden 

Änderungen vorgenommen wurden: 

1. Die Bearbeitung „Nisha“ (Healy & Hoyles 2000, S. 401) wurde aus dem Original übernommen 

und so modifiziert, dass sie stark der korrekten narrativen Begründung („Kate“) ähnelte.  

2. Die empirisch induktive Begründung („Leon“) wurde aus der Studie von Healy und Hoyles 

(2000, S. 401) übernommen, da die weiteren Berechnungen aus der KLIMAGS-Version auch 

als unzureichender generischer Beweis hätten interpretiert werden können. 

3. Die Bewertungskategorien für die ‚Beweise‘ wurden wie folgt formuliert „richtiger 

Beweis“/„kein richtiger Beweis“. Diese Formulierung sollte Missverständnissen 

entgegenwirken, die durch die Kategorienbezeichnungen im KLIMAGS-Projekt 

möglicherweise entstehen könnten. Eine mögliche (falsche) Deutung dieser Kategorien im 

Kontext der Aufgabenstellung wäre etwa die Frage, ob die Begründung dem Beweisbild des 

Probanden entspricht, ohne dabei etwaige Fehler in der Bearbeitung zu berücksichtigen. 

4. Für alle Bearbeitungstitel wurden deutsche Namen eingesetzt. 

5. Schließlich wurde auch die Frage nach der Bearbeitung, die dem eigenen Ansatz am nächsten 

käme und im schulischen Mathematikunterricht (in der Oberstufe) die beste Note 

bekommen hätte, aus der Originalstudie (Healy & Hoyles 2000, S. 401) übernommen. 

Im Folgenden wird die schließlich verwendete Aufgabe dargestellt. 

In der Oberstufe gab der Mathematiklehrer Katja, Leon, Maria und Nina die Aufgabe, die folgende Behauptung zu 

beweisen:  

Wenn man drei aufeinanderfolgende natürliche Zahlen miteinander multipliziert, ist das Ergebnis immer ein 

Vielfaches von 6. 

Es folgen die Antworten der 4 Schüler(innen): 

 

ri
ch

ti
ge

r 

B
e

w
e

is
 

ke
in

 

ri
ch

ti
ge

r 

B
e

w
e

is
 

Katjas Antwort 

Ein Vielfaches von 6 muss die Teiler 3 und 2 besitzen.  

Wenn man 3 aufeinanderfolgende Zahlen hat, dann ist eine davon ein Vielfaches von 3, denn jede dritte 

Zahl ist durch 3 teilbar. Außerdem ist mindestens eine Zahl gerade, also ein Vielfaches von 2 (da jede zweite 

Zahl gerade ist).  

Wenn man die drei aufeinanderfolgenden Zahlen multipliziert, besitzt das Ergebnis also sowohl den Teiler 3 

als auch den Teiler 2. 

  

Leons Antwort 

1·2·3 = 6 

2·3·4 = 24  

4·5·6 = 120  

6·7·8 = 336  

  

Marias Antwort 

x ist eine beliebige natürliche Zahl  

              x·(x+1)·(x+2)   = (x²+x)·(x+2) = x³ + x² + 2x² + 2x 

Kürzen der x’s ergibt  1  + 1  +   2   +  2  =  6 

  

Ninas Antwort  

Das Produkt von drei aufeinanderfolgenden natürlichen Zahlen lässt sich darstellen als:  n·(n+1)·(n+2), wobei 
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n eine beliebige natürliche Zahl ist. 

Das Produkt ist durch 2 teilbar, denn: 

1. Fall: n ist eine gerade Zahl:  

      Dann ist n durch 2 teilbar und somit ist das Produkt auch durch 2 teilbar. 

2. Fall: n ist eine ungerade Zahl: 

      Dann ist aber (n+1) eine gerade Zahl, also durch 2 teilbar, und somit ist     

      auch das Produkt durch 2 teilbar. 

 Das Produkt ist auch durch 3 teilbar, denn bei drei aufeinanderfolgenden natürlichen Zahlen ist immer genau    

 eine Zahl durch 3 teilbar.  Da das Produkt n·(n+1)·(n+2) durch 2 und durch 3 teilbar ist, ist es auch   

 durch 6 teilbar und somit ein Vielfaches von 6. 

 

Welcher der obigen Beweise käme Ihrer Beweisführung am nächsten?  

 

 

Für welchen Beweis hätte Ihr Mathematiklehrer in der Oberstufe die beste Note gegeben? 

 

Diese Aufgabe wurde in der Ein- und Ausgangsbefragung des Wintersemesters 2013/14 erfolgreich 

pilotiert und unverändert in die Ein- und Ausgangsbefragung des Wintersemesters 2014/15 

übernommen. 

3.3.3 Beweisakzeptanz 

Die Ausgangslage für die Erfassung von Beweisakzeptanz war das Interesse daran, inwiefern 

generische Beweise überhaupt von den Studierenden akzeptiert werden. Hierfür war die 

Neuentwicklung von entsprechenden Items erforderlich. Im Rahmen der Eingangsbefragung im 

Wintersemester 2013/14 sollte ein korrekter generischer Beweis anhand der folgenden Merkmale 

bewertet werden: 

a)  Bewerten Sie die folgenden Aussagen. 

 

Die Begründung …  

… beantwortet die Frage allgemein (generalisiert) und 

schlüssig. 

stimmt 

gar nicht 
      

stimmt 

völlig 

… zeigt die Behauptung lediglich für einzelne Beispiele, 

aber nicht allgemein. 

stimmt 

gar nicht 
      

stimmt 

völlig 

… setzt voraus, was man zeigen soll. stimmt 

gar nicht 
      

stimmt 

völlig 

Tabelle 2: Items zur Erfassung der Beweisakzeptanz im Wintersemester 2013/14 

 

b)  Die obige Argumentation ist ein Beweis:         � Ja  � Nein  

 

  weil:  

 ------------------------------------------------------------------------------------------------------------------------------------------

 ------------------------------------------------------------------------------------------------------------------------------------------ 

Bei der Auswertung der Daten wurde allerdings deutlich, dass die verwendeten Aussagen und das 

Bewertungsschema als Beweis („ja“/“nein“) für eine wirkliche Erfassung einer Beweisakzeptanz nicht 

differenziert genug erschienen. Bei den Bewertungen der ersten beiden Aussagen durch die 

Studierenden wurden teilweise Inkonsistenzen deutlich, die sich durch dieses relativ schlichte 
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Fragenformat nicht erklären ließen. So stimmten einige Studierenden beiden Aussagen zu, dass die 

gegebene Begründung sowohl die Frage (hier: eine Allaussage) allgemein und schlüssig beantwortet 

und dass diese die Behauptung lediglich für einzelne Beispiele, aber nicht allgemein zeigt. Auch 

ließen sich keine Zusammenhänge zwischen den Bewertungen der drei Items zur Bewertung auf den 

Likert-Skalen und der Frage, ob die obige Argumentation ein Beweis ist („ja“/“nein“) ausmachen. In 

den wenigen Freitextantworten, die überhaupt gegeben wurden, wurden zu oberflächliche 

Antworten gegeben, als dass man sie hätte systematisch auswerten können. 

Bei der Weiterentwicklung dieser Items wurden die theoretischen Betrachtungen einbezogen, die in 

Abschnitt 2.4.2 dargestellt wurden. Beweisakzeptanz scheint übergeordnet durch das 

Zusammentreffen zweier Aspekte konzeptualisierbar zu sein: Das Ausmaß, inwieweit durch einen 

Betrachter verschiedene Funktionen von Beweisen innerhalb eines Beweises wahrgenommen 

werden, und inwiefern das vorliegende Beweisprodukt dem subjektiven Bild von ‚Beweis‘ entspricht. 

Die (Weiter-) Entwicklung der Testinstrumente für die Erfassung von Beweisakzeptanz orientierte 

sich zunächst an der Studie von Healy und Hoyles (2000). Dort sollten die Schülerinnen und Schüler 

verschiedene Begründungen u. a. anhand der folgenden Aussagen beurteilen (ebd., S. 403; 

Hervorhebungen im Original):  

  2.  Shows that the statement is always true 

  3.  Only shows that the statement is true for some […] numbers 

  4.  Shows you why the statement is true 

Diese drei Aussagen bildeten die Basis für die Neukonstruktion der Items, die in der 

Ausgangsbefragung des Wintersemesters 2013/14 pilotiert wurden. Dort sollten vier Beweise anhand 

der folgenden Aussagen auf einer sechsstufigen Likert-Skala (s.o.) bewertet werden: 

(1) Der [Name der Beweisform] reicht mir aus, um mich völlig von der Gültigkeit der Behauptung zu überzeugen. 

(2) Die Argumentation im [Name der Beweisform] erklärt mir, warum die Behauptung gilt. 

(3) Der [Name der Beweisform] sichert die Gültigkeit der Behauptung hundertprozentig für alle Zeiten. 

(4) Ich betrachte den Einsatz dieser Beweisform im schulischen Unterricht als sinnvoll. 

Die vorgelegten Beweise waren hierbei die vier verschiedenen Beweisformen der Lehrveranstaltung 

(Generischer Beweis mit Zahlen, generischer Beweis mit Punktmustern, Punktmusterbeweis mit 

geometrischen Variablen und der formale Beweis), konstruiert zu der Behauptung, dass die Summe 

der ersten � ungeraden Zahlen gleich �² ist. Die Reihenfolge dieser vier zu bewertenden Beweise 

wurde dabei systematisch permutiert. Durch die Aussagen (1) und (3) wird dabei die in Abschnitt 

2.1.7 und 2.4.2 herausgearbeitete Unterscheidung von subjektiver und objektiver Überzeugung 

aufgegriffen. 

Bei der Berechnung der Reliabilitätswerte der durch die vier Items gebildeten Skalen wurde deutlich, 

dass das vierte Item nicht zu dem durch die ersten drei Items gebildeten Konstrukt der 

Beweisakzeptanz beiträgt. Dies scheint auch inhaltlich nachvollziehbar, da die persönliche Akzeptanz 

einer Beweisform nicht mit subjektiven Einstellungen zum Mathematikunterricht in Beziehung 

stehen muss. Die Reliabilitätswerte der durch die Items ein bis drei gebildeten Skalen zur 

Beweisakzeptanz werden in der Tabelle 3 dargestellt. 
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Skala 

Akzeptanz des 
generischen 

Beweises mit 
Zahlen 

Akzeptanz des formalen 
Beweises 

Akzeptanz des 
generischen Beweises 

mit Punktmustern 

Akzeptanz des 
Beweises mit 

geometrischen 
Variablen 

Cronbachs 
Alpha 

0,699 0,767 0,849 0,831 

Tabelle 3: Reliabilitätswerte der Skalen zur Beweisakzeptanz in der Ausgangsbefragung des Wintersemesters 2013/14 

Schließlich wurden Items formuliert, um auch die funktionalen Aspekte Validität, 

Verifikationsleistung und Passung mit einem vorliegenden Beweisbild abzubilden, und weitere, um 

die Fehlinterpretation der Beweise als bloße Beispielbetrachtungen herauszufordern. Insgesamt 

wurden zehn Aussagen zur Bewertung auf einer sechsstufigen Likert-Skala ([1] stimme überhaupt 

nicht zu … [6] stimme voll zu) formuliert, mit denen die Beweisakzeptanz der Studierenden erfasst 

werden sollte: 

Die Begründung … 

1. … zeigt, dass die Behauptung in allen möglichen Fällen wahr ist. 

2. … zeigt die Behauptung lediglich für einzelne Beispiele, aber nicht allgemein. 

3. … ist nicht allgemeingültig, da es immer noch Gegenbeispiele geben könnte. 

4. … überzeugt mich, dass die Behauptung wahr ist. 

5. … ist ohne die Verwendung von Buchstabenvariablen nicht allgemeingültig. 

6. … zeigt, dass die Behauptung hundertprozentig für alle Zeiten wahr ist. 

7. … erklärt mir, warum die Behauptung korrekt ist. 

8. ... müsste formaler dargestellt sein, um mich voll zu überzeugen. 

9. … besteht nur aus der Überprüfung einzelner Fälle, ist aber keine allgemeine Begründung. 

10. … ist ein korrekter und gültiger Beweis. 

Im Rahmen einer erneuten Pilotierung des Aufgabenformats (innerhalb der Lehrveranstaltung 

„Modellieren, Größen, Daten, Zufall 1“ für Grundschullehramtsstudierende im Sommersemester 

2014; n=73) wurden auch verschiedene Beweise verwendet, um deren Eignung als 

Bewertungsgegenstände zu evaluieren. Es wurden jeweils die drei verschiedenen Beweisformen 

(generischer Beweis mit Zahlen, generischer Beweis mit Punktmustern und Punktmusterbeweis mit 

geometrischen Variablen) zu den zwei folgenden Behauptungen verwendet: „Die Summe aus einer 

geraden natürlichen Zahl und ihrem Dreifachen ist immer durch 8 teilbar“ und „die Summe von fünf 

aufeinanderfolgenden Zahlen ist immer durch 5 teilbar“.  

Die Ergebnisse der Pilotierung zeigten, dass die Items 1-10 (s.o.) differenzierte Betrachtungen für 

eine Beweisbewertung ermöglichen. Aufgrund einer durchgeführten explorativen Faktoranalyse 

wurden die Skalen zur Beweisakzeptanz aus den Items 1, 2, 3, 4, 6, 7, 9 und 10 gebildet21. Die daraus 

resultierenden Skalen zur Beweisakzeptanz wiesen hohe Reliabilitätswerte auf (s. Tabelle 4). Im 

Rahmen dieser Faktoranalyse wurde auch deutlich, dass durch eben diese Items genau eine Skala 

gebildet wird. 

 

                                                           
21

 Die Items zwei, drei und neun wurden bei der Berechnung der entsprechenden Skalenwerte jeweils 

umgepolt. Das Auslassen der Items fünf und acht bei der Konstruktion der Skalen zur Akzeptanz ist auch 

inhaltlich schlüssig, da die Aussagen „ist ohne die Verwendung von Buchstabenvariablen nicht allgemeingültig“ 

(Nummer fünf) und „müsste formaler dargestellt sein, um mich voll zu überzeugen“ (Nummer acht) eher als 

subjektive Momente bei einer Beweisbetrachtung zu bezeichnen sind und nicht als Charakteristika einer 

speziellen Beweisform. 



97 

 

Skala Akzeptanz des generischen 
Beweises mit Zahlen 

Akzeptanz des generischen 
Beweises mit Punktmustern 

Akzeptanz des Beweises mit 
geometrischen Variablen 

Cronbachs Alpha 0,893 0,825 0,875 

Tabelle 4: Reliabilitätswerte der Skalen zur Beweisakzeptanz aus der Pilotierung im Sommersemester 2014 

Auch in dieser Studie wurden eine Freitextfrage für die Nennungen ‚Sonstiger Anmerkungen‘ gestellt. 

Nachdem auch hierbei die Studierenden in den meisten Fällen nur ihre Bewertungen der gegebenen 

Aussagen paraphrasierten, wurden Freitextaufgaben im Kontext dieser Aufgabenstellung nicht mehr 

verwendet. 

Schließlich stellte sich die Frage, ob vier verschiedene Beweisformen zu der gleichen Behauptung 

oder zu unterschiedlichen Behauptungen zur Bewertung ausgegeben werden sollten. Die erste 

Variante scheint dabei den Vorteil zu bieten, dass die Beweisbewertungen nicht durch 

unterschiedliche Sachverhalte beeinflusst werden. Als großer Nachteil erschien dabei aber die 

Möglichkeit, dass sich bei den Probanden durch das Lesen von vier Beweisen zu nur einer 

Behauptung automatisch ein gesteigertes Empfinden bzgl. der Gültigkeit der Behauptung einstellen 

könnte und sich somit die Akzeptanten der Beweise gegenseitig beeinflussen würden. Diesem 

Aspekte hätte man durch Permutation der Beweise in verschiedenen Testheften entgegenwirken 

können, was dabei aber die jeweilige Stichprobengröße ungünstig dezimiert hätte. Die zweite 

Variante, die vier verschiedenen Beweisformen zu unterschiedlichen Behauptungen anzugeben, 

erschien dabei insgesamt als ‚kleineres Übel‘. Nun konnte nicht mehr von einer 

Akzeptanzbeeinflussung der Beweise untereinander ausgegangen werden; die getätigten 

Akzeptanzbewertungen können dabei aber nicht ausschließlich auf die gegebene Beweisform 

zurückgeführt, sondern müssen vor dem Hintergrund verschiedener Sachverhalte vorsichtig 

interpretiert werden. 

Schließlich wurden die folgenden vier verschiedenen Beweise für die Bewertungen ausgewählt und 

mithilfe von drei Mitarbeitern der Mathematikdidaktik an der Universität Paderborn erneut pilotiert:  

1. Ein generischer Beweis mit Zahlen zu der Behauptung: „Addiert man zu einer ungeraden 

natürlichen Zahl ihr Doppeltes, so ist die Summe immer ungerade.“ (s. Abb. 11 oben links) 

2. Ein generischer Beweis mit Punktmustern zu der Behauptung: „Die Summe von 5 

aufeinanderfolgenden natürlichen Zahlen ist immer durch 5 teilbar.“ (s. Abb. 11 unten links) 

3. Ein formaler Beweis zu der Behauptung: „Für alle natürlichen Zahlen a, b, c gilt: „Wenn b ein 

Vielfaches von a ist und c ein Vielfaches von a ist, dann ist auch (b+c) ein Vielfaches von a.“ (s. 

Abb. 11 oben rechts)    

4. Ein Punktmusterbeweis mit geometrischen Variablen zu der Behauptung: „Quadriert man 

eine gerade Zahl, so ist das Ergebnis immer durch 4 teilbar.“ (s. Abb. 11 unten rechts) 
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Schließlich wurden diese vier verschiedenen Beweise zur Bewertung anhand der zehn oben 

aufgeführten Aussagen in der Ein- und Ausgangsbefragung des Wintersemesters 2014/15 

eingesetzt. 

3.3.4 Erfassung der schulischen Vorerfahrungen zum Beweisen 

Der Frage nach schulischen Vorerfahrungen zum Beweisen wird auch in der Studie von Mingus und 

Grassl (1999) und Hemmi (2006) nachgegangen (s. Abschnitt 2.4.1). Während Mingus und Grassl 

(1999) erheben, in welchen Kontexten Lehramtsstudierende Beweise in ihrer Schulzeit 

kennengelernt haben und für welche Schulstufen Beweise geeignet seien, sollen in der Studie von 

Hemmi (2006) Studienanfänger Aussagen zu schulischen Vorerfahrungen zum Beweisen auf einer 

fünfstufigen Likert-Skala bewerten (vgl. Abschnitt 2.4.1). Im Unterschied dazu sollte in der 

vorliegenden Untersuchung thematisiert werden, wie viele Beweise die Studierenden nach eigenen 

Angaben in ihrer Schulzeit gesehen und ggf. auch selbst entwickelt haben. Für die Erfassung der 

schulischen Vorerfahrungen zum Beweisen wurden daher in der Pilotierung der Eingangsbefragung 

(WS 13/14) die folgenden Fragen gestellt: 

(1) Wie viele Beweise haben Sie in der Schule in der Sekundarstufe 1 (Klasse 5 - 9 bzw. Klasse 5 – 10) kennengelernt?    

  � 0     � 1-5     � 6-10     � 11-20     � mehr als 20 

(2) Wie viele Beweise haben Sie in der Schule in der Sekundarstufe 2  (Klassen 10 - 12 bzw. EF, Q1 und Q2) 

kennengelernt? 

  � 0     � 1-5     � 6-10     � 11-20     � mehr als 20 

(3) Wie viele Beweise haben Sie in Ihrer Schulzeit selbst entwickelt (gefunden und aufgeschrieben)? 

  � 0     � 1-5     � 6-10     � 11-20     � mehr als 20 

(4) Nennen Sie mathematische Aussagen/ Sachverhalte, die bei Ihnen in der Schule bewiesen wurden: [Freitext] 

 

Abbildung 11: Die für die Beweisbewertungen verwendeten Beweise: oben links: ein generischer Beweis mit Zahlen, 
unten links: ein generischer Beweis mit Punktmustern, oben rechts: ein formaler Beweis, unten rechts: ein 
Punktmusterbeweis mit geometrischen Variablen 
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In der Tabelle 5 werden die relativen Häufigkeiten der Antworten zu den Items (1) bis (3) dargestellt.  

 0 1 - 5 6 - 10 11 - 20 mehr als 20 

Beweise in Sek. 1 (n=167)    26,35 47,90 19,76 4,19 1,8 

Beweise in Sek. 2 (n=169) 8,88 44,38 30,77 10,65 5,33 

Beweise selbst entwickelt (n=169) 46,15 39,05 10,65 2,37 1,78 

Tabelle 5: Relative Häufigkeiten in Prozent der Angaben zu Beweisen in der Schulzeit 

Da der Großteil der Angaben der Studierenden zu den Fragen (1), (2) und (3) bei den Antwort-

möglichkeiten „0“ und „1-5“ lag, wurde für die Studie im Wintersemester 2014/15 die folgende Skala 

zu den Items (1), (2) und (3) verwendet:   

� 0     � 1-2     � 3-5     � 6-11     � 11- 20    � mehr als 20. 

Die Freitextantworten zu dem Item vier wurden nach mathematischen Sachgebieten gruppiert und 

wiederholte Nennungen gezählt. An dieser Stelle sei genannt, dass in der Pilotierung die folgenden 

Nennungen die häufigsten waren: (1) Satz des Pythagoras (40 Nennungen), (2) die pq-Formel (18 

Nennungen), (3) die Binomischen Formeln (12 Nennungen) und (4) der Satz des Thales (7 

Nennungen). Dieses Freitextitem wurde unverändert in die Eingangsbefragung des Wintersemesters 

2014/15 übernommen.  

Zu den schulischen Vorerfahrungen zum Beweisen gehört hierbei auch die Frage, ob die vier im 

Rahmen der Lehrveranstaltung verwendeten Beweisformen (generischer Beweis mit Zahlen, 

generischer Beweis mit Punktmustern, Punktmusterbeweis mit geometrischen Variablen und der 

formale Beweis) den Studierenden bereits aus ihrer Schulzeit bekannt sind. Für die Erfassung dieses 

Aspekts wurde zu den im Kontext der Beweisakzeptanz angeführten Beweisen (vgl. Abbildung 11) 

gefragt, ob diese Art der Begründung den Studierenden aus der Schule bekannt sei („Ja“/„Nein“). 

Dieses Frageformat wurde in der Eingangsbefragung WS 2013/14 erfolgreich pilotiert und 

unverändert in die Eingangsbefragung des Wintersemesters 2014/15 übernommen. 

3.3.5 Beweispräferenz 

Ein weiteres (Forschungs-) Interesse galt der Frage, welche der vier behandelten Beweisformen der 

Lehrveranstaltung von den Studierenden bevorzugt wird und warum. Hierbei sollte unterschieden 

werden, welchen Beweis sie bevorzugen würden, wenn sie (a) einen Beweis selbst konstruieren 

müssen, und (b) wenn sie einen vorgelegten Beweis verstehen wollen. Aus diesem Grund wurden in 

der Ausgangsbefragung des Wintersemesters 2013/14 die folgenden Fragen pilotiert: 

Wenn Sie selbst einen Beweis konstruieren müssen, welche Beweisform verwenden Sie dann am liebsten? 

(Einfachnennung) 

� den generischen Beweis an konkreten Zahlenbeispielen 

� den formalen Beweis mit Mitteln der Algebra 

� den generischen Beweis an konkreten Punktmustern 

� den Punktmusterbeweis mit geometrischen Variablen 

Weil: [Freitext] 

Wenn Sie selbst den Inhalt eines vorliegenden Beweises verstehen wollen, welche Beweisform würden Sie  

  bevorzugen? (Einfachnennung) 

� den generischen Beweis an konkreten Zahlenbeispielen 

� den formalen Beweis mit Mitteln der Algebra 
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� den generischen Beweis an konkreten Punktmustern 

� den Punktmusterbeweis mit geometrischen Variablen 

Weil: [Freitext] 

Während die Single-Choice Fragen erfolgreich pilotiert wurden, brachten die Auswertungen der 

Freitextantworten zur Begründung der jeweiligen Beweisauswahl keine neuen Erkenntnisse. In den 

Antworten wurden ausschließlich Charakteristika der verschiedenen Beweisformen paraphrasiert, 

wobei es offensichtlich ist, dass die Auswahl eines Beweises aufgrund der subjektiven Bewertung 

seiner Spezifika erfolgt. Diese Freitextfragen entfielen daher bei der folgenden Untersuchung. 

3.3.6 Einstellungen zum Beweisen in der Schule 

Im Kontext der Beforschung der Lehrveranstaltung ist von Interesse, wie Studierende zu Beginn ihres 

Studiums den Lerngegenstand ‚Beweis‘ und seine Relevanz für den schulischen 

Mathematikunterricht einschätzen und inwiefern der Besuch der Lehrveranstaltung „Einführung in 

die Kultur der Mathematik“ ihre Einschätzungen beeinflusst. 

In dieser Arbeit werden unter dem Komplex „Einstellungen zum Beweisen in der Schule“ die 

folgenden drei Teilbereiche zusammengefasst: (1) Die Einschätzung der Relevanz des 

Unterrichtsgegenstands „Beweis“ für die Schulmathematik, (2) die Bewertung ‚gängiger‘ Gründe, 

warum Beweise im schulischen Mathematikunterricht eine eher untergeordnete Rolle spielen sollten 

und (3) die Bewertung der Eignung generischer Beweise für die Schulmathematik. 

Teilaspekt (1): Die Einschätzung der Relevanz des Unterrichtsgegenstands „Beweis“ für die 

Schulmathematik 

Mit dem folgenden Aufgabenformat sollte der Komplex „Einstellungen zum Beweisen in der Schule“ 

im Wintersemester 2013/14 erfasst werden. Für die Einschätzung der Relevanz des 

Unterrichtsgegenstands „Beweis“ sollten die Studierenden diese auf einer sechsstufigen Likert-Skala 

([1] stimmt gar nicht … [6] stimmt völlig) bzgl. der verschiedenen Schulformen und Schulstufen 

einschätzen: 

1. In der Grundschule sollen Beweise im Mathematikunterricht behandelt werden. 

2. In der Sekundarstufe 1 sollen Beweise im Mathematikunterricht behandelt werden. 

3. In der Sekundarstufe 2 sollen Beweise im Mathematikunterricht behandelt werden. 

4. Beweise sollen im Mathematikunterricht der Hauptschule behandelt werden. 

5. Beweise sollen im Mathematikunterricht der Realschule behandelt werden. 

6. Beweise sollen im Mathematikunterricht auf dem Gymnasium behandelt werden. 

Diese Items sind Eigenkonstruktionen und wurden im Rahmen der Ein- und Ausgangsbefragung im 

Wintersemester 2013/14 erfolgreich pilotiert und unverändert übernommen. 

Die Teilaspekte (2) und (3) 

Da die im Wintersemester 2013/14 durch obige Items erhaltenen Erkenntnisse als relativ ‚grob‘ zu 

bezeichnen waren, sollte der Themenkomplex „Einstellungen zum Beweisen“ präzisiert werden, um 

sich dem angestrebten Konstrukt besser nähern zu können. Es interessierten hierbei insbesondere 

auch die Einstellungen zu den vermeintlichen Gründen, warum Beweise in der Schule eine eher 

untergeordnete Rolle spielen, und ob bzw. wie Beweise im Schulunterricht thematisiert werden 

sollten. 
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Für die Konstruktion entsprechender Items wurde an die Teilnehmenden eines Workshops auf der 

Fachtagung „Abiturstandards Mathematik: Bildungspläne und Implementation“ (30.09.2014–

01.10.2014) ein Fragebogen mit den folgenden zwei Fragen mit Freitextantworten ausgeteilt. 

Beweise spielen im derzeitigen Mathematikunterricht der Schule eine untergeordnete Rolle. 

(a) Welche Gründe sehen Sie hierfür? [Freitextantwort] 

(b) An der Hochschule gibt es die Position, dass die Rolle des Beweisens in dem Mathematikunterricht an der Schule 

wieder verstärkt werden sollte. Nehmen Sie bitte dazu Stellung, ob Sie diese Forderung für sinnvoll und 

realisierbar halten.  

Aus den 25 Antworten wurden die Aspekte und Gründe ausgewählt, die am häufigsten genannt 

wurden, einer ‚gängigen‘ Meinung zu entsprechen schienen und die für Erstsemesterstudierende in 

ihrem Umfang und ihrer Elaboriertheit angemessen erschienen. Diese Facetten wurden wiederum so 

in Aussagen umformuliert, dass sie als Items eingesetzt werden konnten. 

Insgesamt wurde aufgrund dieser Erhebung der Themenkomplex „Einstellungen zum Beweisen in der 

Schule“ um den folgenden Aspekt (2) ergänzt: „Die Bewertung ‚gängiger‘ Gründe, warum das 

Beweisen in der Schule eine eher untergeordnete Rolle spielen sollte“. Die entsprechenden Aussagen 

sollten auf einer sechsstufigen Likert-Skala ([1] stimmt gar nicht … [6] stimmt völlig) bewertet 

werden. Die folgenden Items wurden ohne Pilotierung in der Ein- und Ausgangsbefragung des 

Wintersemesters 2014/15 eingesetzt: 

Bitte bewerten Sie die folgenden Aussagen: 

In der Schule sollten Beweise eher eine untergeordnete Rolle spielen, …  

1. …, da es wichtiger ist, dass die fachlichen Inhalte (Funktionen, Differentialrechnung, Integralrechnung, …) 

vermittelt und verstanden werden. 

2. ..., da das Beweisen im späteren Leben der Schüler/innen keine Anwendung findet (im Gegensatz etwa zur 

Prozentrechnung). 

3. …, da es wichtiger ist, dass die Schüler/innen Rechenaufgaben richtig lösen können. 

4. …, da Beweise in der Lebenswelt der Schüler/innen keine Bedeutung haben. 

5. …, da Beweise für die Schüler/innen zu schwer nachzuvollziehen sind. 

6. …, da es die meisten Schüler/innen überfordern würde, selbstständig Beweise zu finden und aufzuschreiben. 

7. …, da die Schüler/innen sowieso wissen, dass die mathematischen Regeln und Sätze richtig sind und sie 

daher nicht zum Beweisen zu motivieren sind. 

8. …, da man im Mathematikunterricht lieber Anwendungen im Alltag behandeln sollte. 

 

Teilaspekt (3): die Bewertung der Eignung generischer Beweise für die Schulmathematik 

Bei der Weiterentwicklung der Lehrveranstaltung waren verschiedene fachdidaktische Aspekte 

leitend; hierzu gehörten u.a. die Vermittlung von schuladäquaten Begründungsformen. Für die 

Evaluation dieses Aspekts wurden die folgenden Items für die Bewertung auf einer sechsstufigen 

Likert-Skala neu konstruiert und ohne Pilotierung in der Ausgangsbefragung des Wintersemesters 

2014/15 eingesetzt: 

1. Generische Beweise sind eine gute Möglichkeit, um Schülern das Argumentieren beizubringen. 

2. Der generische Beweis ist eine Beweisform, die es ermöglicht, mathematische Beweise auch in der Haupt- 

und Realschule zu thematisieren. 
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3.3.7 Einstellungen zum Beweisen 

Wie in Abschnitt 2.4.3 dargelegt wurde, herrscht in der Literatur kein Konsens darüber, was unter 

‚Einstellungen zum Beweisen‘ gefasst werden kann bzw. soll. Unter dem Komplex „Einstellungen zum 

Beweisen“ werden im Kontext dieser Arbeit zwei Teilaspekte betrachtet: (1) das Konstrukt 

„Beweisaffinität“ (Items 1-9, s.u.) und „Einstellungen zum Erlernen der Beweisaktivität“.  

Im Rahmen der Pilotierung der Items des Bereichs „Einstellungen zum Beweisen“, welche die unten 

aufgeführten Items 1-11 umfasste, wurde deutlich, dass die Items 10 und 11 einen anderen Aspekt 

als die ersten neun Items zu beschreiben schienen. Aus diesem Grund wurde die oben genannte 

Zweiteilung des Komplexes „Einstellungen zum Beweisen“ vorgenommen und der zweite Teilaspekt 

für die Erhebung im Wintersemester 2014/15 (ohne weitere Pilotierung) um die Items 12-16 ergänzt. 

Zu den Teilaspekten im Einzelnen: 

(1) Beweisaffinität 

Unter dem Teilaspekt „Beweisaffinität“ wird hier die subjektive Zuneigung einer Person zum 

Konstrukt ‚Beweis‘ gefasst. So untersucht auch Almeida (2000) die Auffassungen („perceptions“) von 

Mathematikstudierenden zum Beweisen. Die unten aufgeführten Items 2, 3 und 5 sind aus dieser 

Studie entnommen (Almeida 2000, S. 827; dort: Items 7, 10 und 11). Die Items 7 und 8 entstammen 

Yoo (2008, S. 332), die restlichen Items dieses Teilabschnitts sind Eigenkonstruktionen. Alle Aussagen 

sollten auf einer sechsstufigen Likert-Skala ([1] stimmt gar nicht … [6] stimmt völlig) bewertet 

werden. 

Teilaspekt (1): Beweisaffinität 

1. Ich sehe das Beweisen als eine intellektuelle Herausforderung, der ich mich gerne stelle. 

2. Ich mag Beweise.  

3. Ich sehe keinen Sinn darin, etwas beweisen zu müssen, was sowieso richtig ist.  

4. Ich versuche Beweise zu verstehen. 

5. Ich weiß, wie man einen Beweis führt. 

6. Ich habe Beweise in der Schule vermisst. 

7. Beweise werden von Experten konstruiert. Es genügt, wenn man sie nachvollziehen und verstehen kann. 

8. Beweise sind etwas, was man selbst auf Grundlage des eigenen Wissens konstruiert. 

9. Das Führen von Beweisen ist eine Aufgabe für fortgeschrittene Mathematiker. 

Die durch die neun Items gebildete Skala zur Messung „Beweisaffinität“ wies einen ausreichend 

hohen Reliabilitätswert auf (Cronbachs Alpha = 0,781), weshalb die aufgeführten Items unverändert 

in die Studien des Wintersemesters 2014/15 übernommen wurden. 

(2) Einstellungen zum Erlernen der Beweisaktivität 

Im Rahmen der Dissertation von Yoo (2008) wurden Lehramtsstudierenden der Mathematik 

verschiedene Aussagen zum Beweisen vorgelegt, wobei die Studierenden jeweils ihre eigene Position 

auf einer Skala zwischen zwei entgegengesetzten Positionen einschätzen sollten (vgl. Abschnitt 

2.4.3).  
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Zur Veranschaulichung dieses Frageformats wird ein Item aus der Studie angegeben (Yoo 2008, S. 

333): 

To prove the truth of a mathematical statement, (a) there is one accepted best way to do it or (b) there could be 

several different ways as long as the proof is valid and convincing to your intended audience. 

 

Mostly a  Both a and b equally  Mostly b Neither 

1 2 3 4 5 6 7 8 

 

Aus diesen paarweise entgegengesetzten Aussagen (dort den Items 4, 5, 10 und 12) wurden durch 

Übersetzung und Anpassung der Formulierungen die folgenden Items 10-16 konstruiert: 

Teilaspekt (2): Einstellungen zum Erlernen der Beweisaktivität 

10. Beim Beweisen geht es darum, genau den einen richtigen Weg zu finden, um eine Behauptung zu beweisen. 

11. Um einen Beweis zu führen, gibt es viele verschiedene Möglichkeiten.  

12. Das Vergleichen von verschiedenen Beweisen zu einer Behauptung verwirrt mich mehr, als dass es zusätzliches 

Verständnis hervorruft.  

13. Durch das Nachvollziehen von vorgegebenen Beweisen kann man am besten das Beweisen lernen.  

14. Wenn ich Beweise lese, achte ich besonders auf die Inhalte.  

15. Verschiedene Beweise zu vergleichen und zu diskutieren, hilft dabei, besser zu verstehen, warum ein Sachverhalt 

gilt.  

16. Um das Beweisen zu erlernen, sollte man Vermutungen aufstellen, diese erforschen und beweisen. 

Die sieben Items wurden in der Ausgangsbefragung des Wintersemesters 2013/14 pilotiert. Hierbei 

ging es nicht um die Konstruktion von reliablen Skalen, sondern um die studentischen Bewertungen 

der verschiedenen konkreten Aussagen. Die Items wurden in die Studien des Wintersemesters 

2014/15 übernommen. 

3.3.8 Einstellungen zur Mathematik 

Das Konzept und die (didaktische) Bedeutung der ‚Einstellungen zur Mathematik‘ wurde bereits in 

Abschnitt 2.2.2 erörtert. Bei der vorliegenden Arbeit ist von Interesse, inwieweit zwischen den 

‚Einstellungen zur Mathematik‘ und verschiedenen Aspekten zum Beweisen (Beweisaffinität, 

Selbstwirksamkeitserwartung, Beweisakzeptanz etc.) ein Zusammenhang ausgemacht werden kann. 

Eine Hypothese ist hierbei, dass Lernende mit einer ausgeprägten formalen Sichtweise von 

Mathematik formale Beweise bevorzugen und Lernende mit einer dynamischen Sichtweise auf 

Mathematik gerade generische Beweise schätzen. 

Ausgangspunkt der Testkonstruktion für die Erhebung der Einstellungen zur Mathematik waren die 

Arbeiten von Grigutsch et al. (1998) (s. Abschnitt 2.2.2). Aufgrund der nötigen Bearbeitungszeit der 

hier thematisierten Fragebögen war die Verwendung aller 77 von Grigutsch et al. veröffentlichten 

Items zur Erfassung der Einstellungen zur Mathematik nicht möglich. Für die Erfassung der 

Einstellungen zur Mathematik wurde daher in der Ein- und Ausgangsbefragung des Wintersemesters 

2014/15 die Auswahl an Items eingesetzt, die auch im Rahmen des LIMA-Projekts (Biehler et al. 2012, 

S. 26ff.) verwendet wurde. Für die Verbesserung der zu erwartenden Reliabilitätswerte wurde der 

Abschnitt „Mathematik als Toolbox“ um das Item (13) und der Abschnitt „Praktische Relevanz von 

Mathematik“ um die Items (21) und (23) erweitert (s.u.), da diese Items in der Studie von Grigutsch 

et al. die nächst höchsten Faktorladungen aufwiesen. Insgesamt wurden die folgenden vier 

Einstellungen zur Mathematik erhoben: Mathematik als System (sieben Items), Mathematik als 

Toolbox (sechs Items), Mathematik als Prozess (vier Items) und Praktische Relevanz von 
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Mathematik (sechs Items). Alle Aussagen sollten auf einer sechsstufigen Likert-Skala ([1] stimmt gar 

nicht … [6] stimmt völlig) bewertet werden. Die folgenden Items wurden ohne Pilotierung in der Ein- 

und Ausgangsbefragung des Wintersemesters 2014/15 eingesetzt. 

Items zum Aspekt „Mathematik als System“ 

(1) Ganz wesentlich für die Mathematik sind ihre logische Strenge und Präzision, das heißt das ‚objektive’ Denken. 

(2) Mathematik ist gekennzeichnet durch Strenge, nämlich eine definitorische Strenge und eine formale Strenge der 

mathematischen Argumentation. 

(3) Kennzeichen von Mathematik sind Klarheit, Exaktheit und Eindeutigkeit. 

(4) Unabdingbar für die Mathematik ist ihre begriffliche Strenge, das heißt eine exakte und präzise mathematische 

Fachsprache. 

(5) Mathematik ist ein logisch widerspruchsfreies Denkgebäude mit klaren, exakt definierten Begriffen und eindeutig 

beweisbaren Aussagen. 

(6) Mathematisches Denken wird durch Abstraktion und Logik bestimmt. 

(7) Mathematik hat die Ästhetik des Formalen. 

Items zum Aspekt „Mathematik als Toolbox“ 

(8) Mathematik besteht aus Lernen, Erinnern und Anwenden. 

(9) Fast alle mathematischen Probleme können durch direkte Anwendung von bekannten Regeln, Formeln und 

Verfahren gelöst werden. 

(10) Mathematik ist eine Sammlung von Verfahren und Regeln, die genau angeben, wie man Aufgaben löst. 

(11) Mathematik ist das Behalten und Anwenden von Definitionen und Formeln, von mathematischen Fakten und 

Verfahren. 

(12) Wenn man eine Mathematikaufgabe lösen soll, muss man das richtige Verfahren kennen, sonst ist man verloren. 

(13) Mathematik-Betreiben verlangt viel Übung im Befolgen und Anwenden von Rechenroutinen und –schemata. 

Items zum Aspekt „Mathematik als Prozess“ 

(14) In der Mathematik kann man viele Dinge selber finden und ausprobieren. 

(15) Mathematik lebt von Einfällen und neuen Ideen.  

(16) Wenn man sich mit mathematischen Problemen auseinandersetzt, kann man oft Neues (Zusammenhänge, 

Regeln, Begriffe) entdecken. 

(17) Mathematische Aufgaben und Probleme können auf verschiedenen Wegen richtig gelöst werden. 

 

Items zum Aspekt „Praktische Relevanz von Mathematik“ 

 

(18) Kenntnisse in Mathematik sind für das spätere Leben der Schüler/innen wichtig. 

(19) Mathematik hilft, alltägliche Aufgaben und Probleme zu lösen. 

(20) Viele Teile der Mathematik haben einen praktischen Nutzen oder einen direkten Anwendungsbezug. 

(21) Mit ihrer Anwendbarkeit und Problemlösekapazität besitzt die Mathematik eine hohe gesellschaftliche Relevanz. 

(22) Mathematik hat einen allgemeinen, grundsätzlichen Nutzen für die Gesellschaft. 

(23) Nur einige wenige Dinge, die man im Mathematikunterricht lernt, kann man später verwenden. 

3.3.9 Funktionen von Beweisen 

Die verschiedenen Funktionen von Beweisen wurden bereits in Abschnitt 2.1.7 erörtert. Im Kontext 

der Begleitforschung der Lehrveranstaltung sollte der Frage nachgegangen werden, welche 

Funktionen von Beweisen Studienanfängerinnen und Studienanfängern bewusst sind und welche 

Funktionen durch die Lehrveranstaltung „Einführung in die Kultur der Mathematik“ (besonders) in 

den Vordergrund gerückt werden. 

Für die quantitative Erfassung dieser Bewusstheit von Funktionen von Beweisen war die Erarbeitung 

von geeigneten Testinstrumenten erforderlich. Die verschiedenen Funktionen von Beweisen, die im 
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Rahmen dieser Studie untersucht werden sollten, wurden als Aussagen zur Bewertung auf einer 

sechsstufigen Likert-Skala ([1] stimmt gar nicht … [6] stimmt völlig) formuliert.  

Im Rahmen der Eingangsbefragung (WS 2013/14) sollte untersucht werden, welche Funktionen von 

Beweisen den Studierenden bewusst sind. Aufgrund des (vermuteten) erweiterten 

Erfahrungshorizontes der Studierenden in einem höheren Semester wurde der Fragebogenabschnitt 

zu „Funktionen von Beweisen“ zweigeteilt: ein erster Abschnitt mit den Aussagen 1-8 (s.u.) und dem 

Einleitungssatz: „Bei den Beweisen, die ich in der Schule kennengelernt habe, habe ich 

wahrgenommen, dass Beweis folgende Funktionen haben:“, und ein zweiter Abschnitt mit den Items 

1-11 (s.u.) und der Einleitung: „In meinem bisherigen Studium habe ich wahrgenommen, dass 

Beweise folgende Funktionen haben:“. Die elf verwendeten Aussagen waren hierbei wie folgt: 

1. Beweise zeigen, dass bestimmte Sachverhalte und Zusammenhänge sicher gelten. 

2. Beweise zeigen, warum etwas gilt. 

3. Beweise verdeutlichen die Bedeutungen von mathematischen Begriffen. 

4. Beweisen ist eine Standardaufgabe in der Mathematik. Beweise haben sonst keine weitere Bedeutung. 

5. Beweise helfen dabei, sich Zusammenhänge und Tatsachen einprägen zu können. 

6. Beweise beenden einen laufenden (Forschungs-) Prozess. 

7. Beweise sollen bei den Studierenden ein Verständnis erreichen, warum etwas wahr ist. 

8. Beweise erzeugen mathematisches Verständnis. 

9. In Beweisen wird mathematisches Wissen systematisiert. 

10. In Beweisen wird neues Wissen entdeckt. 

11. In Beweisen wird mathematisches Wissen kommuniziert.  

In der folgenden Ausgangsbefragung (WS 2013/14) wurde der vollständige Abschnitt mit elf Items 

allen Studierenden zur Bewertung vorgelegt. Bei der Auswertung der Daten traten die folgenden 

Phänomene auf: 

1. Bei den Bewertungen der verschiedenen Funktionen von Beweisen lagen Deckeneffekte vor; 

die Studierenden stimmten fast ausschließlich mit einer Bewertung von „5“ oder „6“ den 

Aussagen zu, dass Beweise die verschiedenen Funktionen haben können. 

2. Von der Ein- zur Ausgangsbefragung zeigten sich insgesamt nur minimale Veränderungen der 

einzelnen Bewertungen, was z.T. auf das Phänomen der Deckeneffekte der Bewertungen 

zurückgeführt werden kann. Auch bei der Betrachtung der gepaarten Daten von der Ein- zur 

Ausgangsbefragung wurden keine bzw. nur minimale (systematische) Veränderungen 

deutlich. Dies könnte bedeuten, dass durch die Lehrveranstaltung bei den Studierenden 

keine Veränderungen bzgl. der wahrgenommenen Funktionen von Beweisen eingetreten 

sind. Naheliegender erschien allerdings die Vermutung, dass die Studierenden am Ende der 

Lehrveranstaltung ihre Einschätzungen auf einer anderen Wissensgrundlage vornehmen und 

die Bewertungen von Ein- und Ausgangsbefragung somit nicht miteinander in Beziehung 

gesetzt werden können. 

Um diesen Effekten entgegenzuwirken, wurden für die Untersuchungen in der Ein- und 

Ausgangsbefragung des Wintersemesters 2014/15 die folgenden Änderungen vorgenommen: 

1. Die gesamte Aufgabe wurde umformuliert, um mithilfe der Einleitung „Ich kann mindestens 

je einen Beweis angeben, an dem ich deutlich machen kann, …“ differenziertere 

Bewertungen zu erhalten. Insgesamt sah die Aufgabe nun wie folgt aus: 
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Bitte bewerten Sie die folgenden Aussagen: 

Ich kann mindestens je einen Beweis angeben, an dem ich deutlich machen kann, … 

1. …, dass Beweise zeigen können, dass bestimmte Sachverhalte und Zusammenhänge sicher gelten. 

2. …, dass Beweise zeigen können, warum etwas gilt. 

3. …, dass Beweise die Bedeutungen von mathematischen Begriffen verdeutlichen können. 

4. …, dass Beweise mathematisches Verständnis erzeugen können. 

5. …, dass Beweise dabei helfen können, sich Zusammenhänge und Tatsachen einprägen zu können. 

6. …, dass in Beweisen mathematisches Wissen systematisiert werden kann. 

7. …, dass Beweise einen laufenden (Forschungs-) Prozess beenden können. 

8. …, dass man durch Beweise verstehen kann, warum etwas wahr ist. 

9. …, dass in Beweisen neues Wissen entdeckt werden kann. 

10. …, dass in Beweisen mathematisches Wissen kommuniziert werden kann. 

 

2. In der Ausgangsbefragung im Wintersemester 2014/15 wurde zu allen Aussagen neben einer 

aktuellen Einschätzung auch eine retrospektive Bewertung verlangt. Somit sollten die 

Studierenden ihren eigenen Lernzuwachs implizit selbst einschätzen. Für die Illustration 

dieses Fragenformats wird exemplarisch das erste Item dieses Komplexes angegeben: 

Inwieweit  treffen die folgenden Aussagen – aus heutiger Sicht – auf Sie vor der Lehrveranstaltung  zu 

und inwieweit treffen diese Aussagen heute zu? 

 

Ich kann mindestens einen Beweis angeben, an dem ich deutlich machen kann, … 

…, dass Beweise zeigen können, dass bestimmte Sachverhalte und Zusammenhänge sicher gelten:  

vor der Lehrveranstaltung 
stimmt 

gar nicht 
      

stimmt 

völlig 

nach der Lehrveranstaltung 
stimmt 

gar nicht 
      

stimmt 

völlig 

 

Die angewandte Methode entspricht der Herangehensweise einer ‚retrospektiven 

Kompetenzzuwachsmessung‘. Wie in verschiedenen Studien nachgewiesen werden konnte, ist 

diese Methode sehr gut dafür geeignet, Veränderungen bzw. Lernzuwächse valide 

dokumentieren zu können (etwa Coulter 2012; Lam und Bengo 2003; Pratt et al. 2000). Im 

vorliegenden Fall wurde die Variante gewählt, dass beide Einschätzungen (aktuell und 

retrospektiv) zum gleichen Zeitpunkt abgefragt wurden, um eine Einschätzung über den 

gesamten Zeitraum der Vorlesung zu erhalten. Außerdem wurden die Items derart formuliert, 

dass die Studierenden nicht direkt ihren eigenen Lernzuwachs einschätzen bzw. angeben sollten. 

Gefragt wurde ‚nur‘ nach der Selbsteinschätzung der jeweiligen Kompetenzen zu den beiden 

Zeitpunkten. Nach Lam und Bengo (2013) führt diese Fragetechnik zu valideren Ergebnissen. Die 

mit dieser Methode ggf. verbundenen Probleme der Validität der Selbsteinschätzungen werden 

in Abschnitt 7.3.4 im Kontext der Beantwortung der Forschungsfrage [7] erörtert.   

3. Auch den Erstsemesterstudierenden wurden alle Aussagen bereits in der Eingangsbefragung 

zur Bewertung vorgelegt. 
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3.3.10 Motivation zum Erlernen von Beweisen und Selbsteinschätzung des 

Lernzuwachses 

In diesem Abschnitt sollte zunächst im Rahmen der Eingangsbefragung ermittelt werden, welche 

Aspekte zum Beweisen die Studierenden, im Sinne einer generellen Motivation zum Erlernen der 

Beweisaktivität, überhaupt lernen wollen. Ferner war eine Intention hierbei auch, über die 

Bewertungen einschätzen zu können, welche Aspekte die Studierenden beim Beweisen für wichtig 

bzw. für lernenswert erachten. Die folgenden Items sind Eigenkonstruktionen und tangieren 

verschiedene Aspekte, die es beim ‚Beweisen‘ zu erlernen gilt: 

Ich möchte im Studium über das Beweisen lernen … 

1. … wie man einen Beweis findet. 

2. … wie man einen Beweis aufschreibt. 

3. … wie man einen Beweis liest. 

4. … wie man einen Beweis versteht. 

5. … wie das Beweisen funktioniert. 

6. … warum man Beweise führt. 

7. … welche Arten von Beweisen es gibt. 

8. Ich möchte nichts über das Beweisen lernen. 

9. … wie man Beweise im Schulunterricht einsetzt. 

10. … wie man Schüler zum Beweisen motivieren kann. 

11. … wie man Schülern „das Beweisen“ unterrichten kann. 

Als Abgleich zu der Motivation der Studierenden zum Erlernen der Beweisaktivität sollte in der 

Ausgangsbefragung bewertet werden, inwiefern die Studierenden meinten, dass die verschiedenen 

Aspekte zum Beweisen im Rahmen der Lehrveranstaltung vermittelt wurden. Dieser Abschnitt bildet 

somit auch eine Evaluation bzgl. der vermittelten Inhalte. Für diesen Zweck wurden in der 

Ausgangsbefragung die oben aufgeführten Aussagen den Studierenden wieder zur Bewertung auf 

einer sechsstufigen Likert-Skala vorgelegt, wobei die Aufgabeneinleitung nun wie folgt formuliert 

wurde:  

Ich habe das Gefühl, in der Veranstaltung „Einführung in die Kultur der Mathematik“ gelernt zu haben, 

… 

Alle Items wurden in der Ein- und Ausgangsbefragung des Wintersemesters 2013/14 erfolgreich 

pilotiert und unverändert in die Studie des Wintersemesters 2014/15 übernommen. 

3.3.11 Nutzen von Beispielen für den Beweisprozess 

Innerhalb der Lehrveranstaltung spielt das dialektische Verhältnis von konkreten Beispielen (bzw. 

Beispielüberprüfungen) und Beweisen eine wichtige Rolle (vgl. Abschnitt 6.2). Es stellte sich somit die 

Frage, welchen Nutzen Beispiele in den Augen der Studierenden im Beweisprozess haben. Im 

Forschungsinteresse stand auch hier, welche Sicht die Studierenden zu Beginn und zum Ende der 

Lehrveranstaltung vertreten und wie sie selbst ihren Erkenntnisgewinn einschätzen. Die folgenden 

Items wurden im Rahmen der Ausgangsbefragung im Wintersemester 2013/14 pilotiert. (Alle 

Aussagen sollten auf einer sechsstufigen Likert-Skala ([1] stimmt gar nicht … [6] stimmt völlig) 

bewertet werden.)  

Bitte bewerten Sie die folgenden Aussagen. 

1. Die Betrachtung von konkreten Beispielen kann dabei helfen, eine Beweisidee zu finden. 

2. Die Betrachtung von konkreten Beispielen hilft dabei, eine Behauptung besser zu verstehen. 

3. Die Betrachtung von konkreten Beispielen hat beim Beweisen keinen Nutzen. 
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4. Beispiele können dabei helfen, eine Argumentation zu überprüfen. 

5. Auch nach einem erfolgten Beweis überprüfe ich die Behauptung zur Sicherheit noch an Beispielen. 

6. Die Überprüfung von einigen Beispielen reicht als vollständiger Beweis aus. 

7. Beispiele können mich in meiner Vermutung bestärken, ob eine Behauptung wahr ist. 

Die Ergebnisse der Pilotierung legten die Frage nahe, wie entsprechende Bewertungen zu Beginn der 

Lehrveranstaltung ausfallen würden. Aus diesem Grund wurde dieser Abschnitt in die 

Eingangsbefragung des folgenden Wintersemesters übernommen. Für aussagekräftigere 

Einschätzungen des eigenen Lernzuwachses wurde in der Ausgangsbefragung zu jeder Aussage 

neben einer aktuellen Bewertung auch eine retrospektive Einschätzung verlangt. Zur Illustration wird 

das erste Item des Bereichs angegeben: 

Inwieweit  treffen die folgenden Aussagen – aus heutiger Sicht – auf Sie vor der Lehrveranstaltung zu 

und inwieweit treffen diese Aussagen heute zu? 

 

Die Betrachtung von konkreten Beispielen kann dabei helfen, eine Beweisidee zu finden: 

vor der Lehrveranstaltung 
stimmt 

gar nicht 
      

stimmt 

völlig 

nach der Lehrveranstaltung 
stimmt 

gar nicht 
      

stimmt 

völlig 

 

3.3.12 Selbstwirksamkeitserwartung und der empfundene Kompetenzzuwachs beim 

Beweisen 

Die Bedeutung von Selbstwirksamkeitserwartung für das Erlernen der Beweisaktivität wurde bereits 

in Abschnitt 2.2.1 erörtert. In diesem Zusammenhang stellt sich die Frage, inwiefern durch die 

Lehrveranstaltung „Einführung in die Kultur der Mathematik“ eine positive 

Selbstwirksamkeitserwartung in Bezug auf das Beweisen bei den Studierenden aufgebaut wird und 

inwiefern sich Zusammenhänge zwischen den erhobenen Werten von Selbstwirksamkeitserwartung 

und entsprechenden ‚Leistungen‘ nachweisen lassen. 

Ein Ergebnis der vorherigen Studien darin bestand, dass Studienanfänger nur sehr wenig (Vor-) 

Erfahrungen mit dem Beweisen haben und somit über keine ‚Beweispraxis‘ verfügen. Aus diesem 

Grund wurden die Items zur Selbstwirksamkeitserwartung in Bezug auf das Beweisen erst in der 

Ausgangsbefragung des Wintersemesters 2014/15 eingesetzt. Da in der Literatur keine passenden 

Items für eine beweisbezogene Selbstwirksamkeitserwartung angeführt werden, die allgemein genug 

gehalten sind, um die vier verschiedenen Beweisformen der Lehrveranstaltung mitabzudecken, 

mussten entsprechende Items neu konstruiert werden. Diese beweisspezifische 

Selbstwirksamkeitserwartung wurde dabei durch die folgenden Teilkompetenzen zum Beweisen 

modelliert: die Konstruktion von Beweisen, das Wissen um die konstituierenden Elemente eines 

Beweises, das Wissen um die Stellung des Beweises in der Mathematik, Beweisverständnis und 

Beweisbeurteilung. Hieraus ergab sich die Formulierung der folgenden Aussagen: 

1. Ich kann eine gegebene Behauptung beweisen. 

2. Ich weiß, was einen Beweis ausmacht. 

3. Ich weiß, warum in der Mathematik bewiesen wird. 

4. Ich verstehe Beweise, wenn ich sie lese. 

5. Ich weiß, wie man einen Beweis führt. 

6. Ich kann beurteilen, ob ein Beweis richtig oder falsch ist. 
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Neben der Bewertung der aktuellen Fähigkeiten zum Beweisen sollte gleichsam der eigene 

Lernfortschritt eingeschätzt werden. Aus diesem Grund sollten wiederum die sechs Aussagen aus 

aktueller Perspektive und retrospektiv bewertet werden. Zur Illustration des Frageformats wird das 

erste Item des Abschnitts angegeben:  

Inwieweit  treffen die folgenden Aussagen – aus heutiger Sicht – auf Sie vor der Lehrveranstaltung zu 

und inwieweit treffen diese Aussagen heute zu? 

 

Ich kann eine gegebene Behauptung beweisen: 

vor der Lehrveranstaltung 
stimmt 

gar nicht 
      

stimmt 

völlig 

nach der Lehrveranstaltung 
stimmt 

gar nicht 
      

stimmt 

völlig 
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4. Betrachtungen zu der historischen Entwicklung didaktisch 

orientierter Beweiskonzepte und der mit ihnen verbundenen 

Intentionen  
 

Ein zentraler Bestandteil der in dieser Arbeit thematisierten Lehrveranstaltung sind die sogenannten 

operativen und generischen Beweise, in denen allgemeingültige Verifikationen mit Bezug auf 

konkrete Beispiele vollzogen werden. Diese Beweisformen müssen dabei im Rahmen eines 

Entwicklungsstranges des zwanzigsten Jahrhunderts gesehen werden, in dessen Kontext der Versuch 

unternommen wurde, die mathematische Beweisaktivität Lernenden auf allen Stufen der Ausbildung 

zugänglich zu machen. Die Entwicklung entsprechender Beweiskonzepte ist dabei immer in den 

Kontext eines gewissen Lehr-/Lernszenarios eingebettet und gleichsam mit bestimmten didaktischen 

Intentionen verbunden. Biehler und Kempen (2016) prägen für diese spezifischen, didaktisch 

motivierten Beweisformen im Kontext gewisser Lehr-/Lernszenarios den Begriff der „didaktisch 

orientierten Beweiskonzepte“. 

In diesem Kapitel werden die historischen Entwicklungsstränge verschiedener didaktisch orientierter  

Beweiskonzepte dahingehend befragt, welche Intentionen die entsprechenden Autoren im Kontext 

ihrer Beweiskonzepte verfolgen, mit welchen Aktivitäten diese verbunden sind und welche 

Vorbehalte gegebenenfalls formuliert werden (4.2). Schließlich geht es dabei um die Frage, welche 

Gründe für den Einsatz entsprechender Beweisformen in der Lehrerausbildung herausgearbeitet 

werden können, welche Aktivitäten für das Erlernen der Beweisaktivität in Verbindung mit den 

didaktisch motivierten Beweisformen als besonders gewinnbringend erscheinen und welche 

Probleme damit gegebenenfalls verbunden sein können (4.3). 

4.1 Anliegen, Forschungsfragen und Methode 
Ein Teil der unternommenen Forschungsarbeit bestand in der Aufarbeitung der Entwicklung der 

didaktisch orientierten Beweiskonzepte, der Herausarbeitung ihrer Charakteristika und Bezüge 

untereinander. Entsprechende Ergebnisse wurden in Biehler und Kempen (2016) veröffentlicht. Dort 

wird auch der Frage nach der Gültigkeit der verschiedenen Beweisformen als wirkliche Beweise im 

Sinne der Mathematik nachgegangen, welche im Folgenden nicht thematisiert wird. 

Für die Konstruktion der in dieser Arbeit thematisierten Lehrveranstaltung sind im Kontext der 

didaktisch motivierten Beweiskonzepte die drei folgenden Aspekte von besonderer Bedeutung: Wie 

lässt sich der Einsatz didaktisch motivierter Beweisformen in der Lehrerausbildung begründen bzw. 

motivieren? Wie sollen diese Beweisformen in das Unterrichtsgeschehen eingebunden werden und 

welche Aktivitäten werden dabei empfohlen, damit Lernende die mathematische Beweisaktivität am 

besten erlernen können? Welche Probleme könnten bei entsprechenden Unterrichtsszenarien 

gegebenenfalls auftreten? Aus diesem Grund werden in dem vorliegenden Kapitel die folgenden 

Leitfragen zur Auswertung herangezogen: 

Leitfrage zur Auswertung [1]:  

Welche Aktivitäten führen die Urheber der didaktisch orientierten Beweiskonzepte auf, um Lernende 

im ‚Beweisen‘ sinnstiftend zu unterrichten, und welche Implikationen für das unterrichtliche 

Geschehen werden in diesem Kontext herausgestellt? 
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Leitfrage zur Auswertung [2]:  

Welche Argumente werden durch die Urheber der didaktisch orientierten Beweiskonzepte 

angeführt, entsprechende Beweisformen in die Lehramtsausbildung zu integrieren? 

Leitfrage zur Auswertung [3]: 

Welche offenen Fragen bzw. Probleme werden bei den Autoren für den Umgang mit entsprechenden 

Beweisformen thematisiert? 

Für die Beantwortung dieser Forschungsfragen werden zunächst die didaktisch orientierten 

Beweiskonzepte herausgegriffen, die in einem besonderen Maße zu der Entwicklung des Konzepts 

des operativen Beweises und somit auch zu dem Konzept des generischen Beweises beigetragen 

haben, welches von Biehler und Kempen (2014) herausgearbeitet wurde und in der vorliegenden 

Arbeit vertreten wird. Anhand der Primärliteratur wird dabei untersucht, welche Aspekte zu den 

oben formulierten Fragen bei den Urhebern dieser ausgewählten Beweiskonzepte deutlich werden. 

4.2 Kurzdarstellung ausgewählter didaktisch orientierter Beweiskonzepte  
Im Folgenden werden die didaktisch orientierten Beweiskonzepte thematisiert, deren Konzeptionen 

maßgeblich zu dem Konzept operativer Beweise bei Wittmann und dem hier vertretenen Konzept 

generischer Beweise (Abschnitt 2.1.3) beigetragen haben. Diese ausgewählten Konzepte werden kurz 

beschrieben, anhand eines Beispiels illustriert und dann in Bezug auf die in Abschnitt 4.1 

formulierten Forschungsfragen ausgewertet.  

In der Entwicklung der verschiedenen Beweiskonzepte bildet die intuitive Beweisstufe bei Branford 

eine Grundlage, auf die Wittmann und Müller (1988) später explizit starken Bezug nehmen. Für ihre 

inhaltlich-anschaulichen Beweise, die zu dem Konzept des operativen Beweises beigetragen haben, 

sind weiter die Arbeiten von Freudenthal („paradigmatische Beweise“) und Semadeni 

(„prämathematische Beweise“ bzw. „action proofs“) von großer Bedeutung (Wittmann & Müller 

1988, S. 249). In dem Kontext um prämathematische Beweise müssen die Ausführungen von Kirsch 

(1979) berücksichtigt werden, die später in den Arbeiten von Blum und Kirsch (1989 und 1991), auch 

unter Rückgriff auf Semadeni, zu dem Konzept präformaler Beweise führten. Auf die Entwicklung und 

die Konzeption operativer Beweise und generischer Beweise wird in dem vorliegenden Kapitel nicht 

eingegangen, da entsprechende Ausführungen bereits in Abschnitt 3.3 erfolgt sind. Allerdings wird in 

der Zusammenfassung der Ergebnisse für die Beantwortung der eingangs formulierten 

Forschungsfragen auch auf dortige Ergebnisse zurückgegriffen. 

Die folgenden Darstellungen sind stark gekürzte Versionen der Ausführungen in Biehler und Kempen 

(2016), wobei auf eine wortgetreue Darstellung verzichtet wird. Für eine bessere Lesbarkeit des 

folgenden Abschnitts werden inhaltliche Bezüge zu dem genannten Artikel nicht extra ausgewiesen. 

4.2.1 Die intuitive Beweisstufe bei Benchara Branford 

Das Grundanliegen Branfords (1913) besteht darin, eine Beweisstufe in das unterrichtliche 

Geschehen zu integrieren, die zwischen bloßen empirischen Untersuchungen und strengen formalen 

Beweisen vermitteln soll (ebd., S. 99). Hierzu beschreibt der Autor (1913, S. 99ff.) die Beweisstufe der 

intuitiven Ableitung. Auf dieser Beweisstufe wird der Frage nachgegangen, ob eine bereits an 

Einzelfällen überprüfte Vermutung in allen möglichen Fällen richtig sei. Auf der Stufe der intuitiven 

Ableitung sollen allgemeingültige Betrachtungen erfolgen, die weiter als Anregungen für den 
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wissenschaftlichen Beweis dienen können. Hierzu schreibt Branford (1913): „Diese Beweisstufe stellt 

allgemeine und streng gültige Wahrheiten auf, beruft sich aber dabei, wenn es nötig wird, auf 

Postulate der sinnlichen Erfahrung. Sie stellt die Wahrheit auf eine unabhängige eigene Basis durch 

unmittelbare Berufung auf erste Prinzipien“ (ebd., S. 103). Der Nachweis der (Allgemein-) Gültigkeit 

einer Behauptung erfolgt hierbei also nicht durch den expliziten Bezug auf Axiome und bereits 

bewiesene Sachverhalte. Vielmehr geht es um die „unmittelbare Berufung auf erste Prinzipien“ (s.o.) 

als unmittelbar einsichtige Argumente, die auch „Postulate der sinnlichen Erfahrung“ (s.o.) mit 

einschließen kann. Branford (1913, S. 103) illustrierte diese Stufenfolge einer Beweisaktivität anhand 

des Scheitelwinkelsatzes der Geometrie. Dieses Beispiel wird im Folgenden zusammengefasst 

wiedergegeben. 

Zunächst sollen Lernende auf der ersten Stufe (der ‚experimentellen Ableitung‘) mit dem 

Wissensmaterial vertraut gemacht werden. Bei der Betrachtung und Untersuchung von 

Scheitelwinkeln können Lernende zu der Vermutung gelangen, dass diese immer gleich groß sind. 

Konkrete Messungen können diese Vermutung bestärken. Branford (1913, S. 102) betont dabei die 

Bedeutung eines präzisen Sprachgebrauchs zur korrekten Formulierung des aktuellen Stands des 

Erkenntnisprozesses. Exemplarisch formuliert er: „In all den untersuchten Fällen sind, soweit wir 

messen können, zwei Scheitelwinkel einander gleich“ (Branford 1913, S. 102). Wichtig ist dabei die 

Vermittlung einer Einsicht, dass der allgemeine Satz, der für alle Scheitelwinkel gelten soll, nicht 

durch singuläre Überprüfungen gesichert werden kann. Das Verlangen nach einer allgemeingültigen 

Wahrheit soll dann zu der nächsten Stufe führen.  

Auf der zweiten Stufe (der ‚intuitiven Ableitung‘) sollen „allgemeine und streng gültige Wahrheiten“ 

(s.o.) aufgestellt werden. In diesem Fall kann dies dadurch erfolgen, dass zwei sich kreuzende Stäbe 

an ihrem Schnittpunkt zusammengeheftet werden (s. Abbildung 12). Bei der Drehung der Stäbe um 

ihren Schnittpunkt kann die folgende Erkenntnis gewonnen werden: Bei der Drehung von AB um B 

wird gleichzeitig BC um B in entgegengesetzte Richtung gedreht. Und das Ausmaß der Drehung von 

AB über den Winkel ABE ist das gleiche, wie das der Drehung von BC über den Winkel CBD. Folglich 

müssen, so Branford, die beiden Winkel gleich groß sein. Nachdem dieser Versuch auch mit den 

Winkeln ABD und CBE durchgeführt wurde, sollen die Schülerinnen und Schüler diesen noch einmal 

in Gedanken ausführen und dann mit ihren eigenen Worten beschreiben: „Das Endziel ist, 

schrittweise Vernunft und Einbildungskraft an die Stelle der sinnlichen Wahrnehmung zu setzen“ 

(Branford 1913, S. 105). 

 

 

 

 

 

 

 

 

 

 

 

  

Auf der dritten Stufe wird der strenge wissenschaftliche Beweis formuliert. Dieser allgemeine Beweis 

soll durch die Betrachtung einer speziellen Beweisfigur angeregt werden (s. Abbildung 13). 

Abbildung 12: Beweisfigur der 
intuitiven Beweisstufe (Abbildung 
ähnlich zu Branford 1913, S. 103) 

Abbildung 13: Beweisfigur zum 
wissenschaftlichen Beweis 
(Abbildung ähnlich zu Branford 1913, 
S. 101) 
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Ausgangspunkt sind dabei konkrete Werte, mit denen gerechnet wird: Bei einem gemessenen Wert 

von	2, etwa 2 = 30°, gilt: 4 = 180° − 30° = 150°, da 2 + 4 = 180°. Weiter ist	5 = 180° − 4 =
180° − 150° = 30°, und somit: 2 = 30° = 5.  

Entsprechende Berechnungen anhand konkreter Werte sollen nötigenfalls wiederholt werden, bis die 

Lernenden eine Einsicht darin erlangen, dass dieses Ergebnis (2 = 5) für alle möglichen 

Scheitelwinkel gilt. Erst darauf erfolgt die Formulierung des allgemeinen wissenschaftlichen 

Beweises, bei dem der Lehrer die Abhängigkeit der Argumente zu früheren Beweisen betonen soll 

(ebd., S. 106): 

 

2 + 4 = 180°   (früher gefundene Wahrheit) 

4 + 5 = 180°   (ebenfalls),  

folglich 2 + 4 = 4 + 5,  
also 2 = 5  
 

Schließlich sollen die Schülerinnen und Schüler den symbolischen Beweis mit ihren eigenen Worten 

erläutern, da dies eine „ausgezeichnete, lehrreiche Übung“ darstellt (ebd., S. 106).  

Rückblickend können die folgenden markanten Aspekte des Beweiskonzepts von Branford 

herausgehoben werden: 

(B1)  Der Erkenntnisprozess soll mit einer explorativen Phase beginnen, in dem sich die Lernenden 

mit dem Wissensmaterial vertraut machen können. In dieser Explorationsphase soll eine 

Vermutung ausgemacht werden, die dann anhand konkreter Beispiele überprüft werden soll. 

(B2)  Die ausgemachte Vermutung wird derart formuliert, dass auf die Unzulänglichkeit einzelner 

Beispielüberprüfungen zur Verifikation der Vermutung, aufgrund ihres Allgemeingültigkeits-

anspruchs, hingewiesen wird.  

(B3)   Bei der Konstruktion von intuitiven Beweisen werden Argumente zugelassen, die bei den 

Lernenden als intuitiv richtig akzeptiert sein sollen.  

(B4)  Die für den Beweis zu verwendenden  Argumente sollen an konkreten ‚Objekten‘ ausgemacht 

und anhand weiterer konkreter Fälle getestet werden. Schließlich soll diese Strategie in 

Gedanken ausgeführt und gleichsam verinnerlicht werden. 

(B5) Der gefundene intuitive Beweis soll von den Lernenden in ihren eigenen Worten formuliert 

werden. 

(B6) Der wissenschaftliche Beweis soll erst dann symbolisch dargestellt werden, wenn die 

Lernenden anhand konkreter Rechnungen deren Allgemeingültigkeit eingesehen haben: Das 

Ergebnis erweist sich als unabhängig von den konkreten Zahlenwerten. Erst danach erfolgt 

eine Formulierung unter Verwendung von Variablen. 

(B7) Bei der Formulierung des formalen Beweises soll die Anhängigkeit der verwendeten 

Argumente zu vorherigen Beweisen betont werden. 

(B8) Nach der finalen Beweiskonstruktion auf der letzten Stufe sollen die Lernenden wiederum  

  das Bewiesene in ihrer eigenen Sprache formulieren. 
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4.2.2 Paradigmatische Beispiele bei Hans Freudenthal 

In der Literatur um die didaktisch orientierten Beweiskonzepte beziehen sich verschiedene 

Mathematikdidaktiker auf die paradigmatischen Beispiele bei Freudenthal (etwa Kirsch 1979, S. 262; 

Semadeni 1984, S. 32). Und auch in der aktuellen Diskussion um schuladäquate Beweisformen 

werden entsprechende Begriffsbildungen verwendet (siehe der „paradigmatische Ansatz“ bei Leiß 

und Blum (2006, S. 37) oder „paradigmatische Beweise“ bei Wittmann (2014, S. 50) in Anlehnung an 

Fischer und Malle 1985). 

In seiner didaktischen Reflexion über den Mathematikunterricht an der Schule betont Freudenthal 

(1978, S. 194f.), dass eine bloße technische Übung an einer Vielzahl ähnlicher Beispielaufgaben wenig 

Lernerfolge mit sich bringt. Vielmehr sollen Lernende an gut gewählten Beispielen eine Einsicht in 

Zusammenhänge erlangen, die nicht notwendigerweise explizit gemacht werden müssen, sich aber 

auf isomorphe Probleme übertragen lassen. Als Beispiel führt Freudenthal die folgende Aufgabe an: 

„Ich zeichne ein Kärtchen mit drei Orten A, B, C, wo A und B durch drei Wege verbunden sind und B, 

C durch zwei. Auf wieviel Arten kann ich von A über B nach C kommen? - lautet die Frage“ (ebd., S. 

196, vgl. Abbildung 14). 

Lernende können hierbei das systematische Zählen 

erlernen „oder vielmehr die Gewohnheit, das Bedürfnis 

und die Gewandtheit, beim Zählen systematisch 

vorzugehen“ (ebd., S. 200).   

Isomorphe Problemstellungen ergeben sich z.B. dann, 

wenn in der ersten Stufe andere als drei und in der zweiten 

Stufe andere als zwei Möglichkeiten gegeben sind. Eine 

explizite Formulierung des allgemeinen Produktsatzes der Kombinatorik ist für ein (erstes) 

Verständnis hier nicht nötig, die intuitive Einsicht in den allgemeinen Zusammenhang kann am 

konkreten Beispiel gewonnen und abstrahiert werden.  

Der Fokus des paradigmatischen Beispiels liegt somit ursprünglich nicht auf dem Begründen von 

Sachzusammenhängen, sondern auf dem Erlernen allgemeiner Regeln. Die funktionale Ausrichtung 

auf die Übertragbarkeit von an konkreten Beispielen gewonnen Einsichten auf isomorphe 

Problemstellungen bildet aber eine wichtige theoretische Grundlage für spätere (beispielgebundene) 

Beweiskonzepte. 

Von zentraler Bedeutung bei diesem Konzept paradigmatischer Beispiele erscheinen dabei die 

folgenden Aspekte: 

(F1)  Lernende sollen an konkreten Beispielen Einsichten in Zusammenhänge gewinnen, die sich   

  auf andere (isomorphe) Sachverhalte übertragen lassen und somit über den konkreten Fall  

  hinausweisen. 

(F2)  Bei der Betrachtung konkreter Beispiele geht es daher nicht nur um das bloße Finden einer  

  Lösung, sondern übergeordnet um das Ausmachen beispielübergreifender Aspekte. 

Freudenthal (ebd., S. 200 und 204ff.) wirft dabei die folgende Frage auf: 

(F3) Wie findet man ‚gute‘ paradigmatische Beispiele? 

Abbildung 14: Illustration eines 
paradigmatischen Beispiels (Abbildung ähnlich 
zu Freudenthal 1978, S. 196) 
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(Freudenthal weist darauf hin, dass paradigmatische Beispiele nicht zu leicht oder zu stark 

vorstrukturiert sein dürfen, damit Lernende das ‚Paradigmatische‘ an ihnen erkennen 

können. Damit antizipiert er bereits die Anforderungen, die von verschiedenen Autoren an 

‚generische‘ Beispiele gestellt werden (s. Abschnitt 2.1.3).) 

Im Kontext der paradigmatischen Beispiele geht Freudenthal (1978) nicht explizit auf die 

Lehrerausbildung ein. 

4.2.3 Der prämathematische Beweis bzw. der action proof bei Zbigniew Semadeni 

Semadeni beschreibt 1976 das Konzept der Prämathematik für den Mathematikunterricht der 

Grundschule als einen didaktischen Gegenentwurf zu der abstrakten formalen Mathematik. Im Sinne 

Piagets sollen, entsprechend der Entwicklungsstufe der konkreten Operationen, physische 

Handlungen mit konkreten Materialien einen bedeutungsstiftenden semantischen Zugang zu 

mathematischen Konzepten ermöglichen. Die diesen Lernkontexten entsprechende Beweisform 

bezeichnet Semadeni zunächst als „prämathematischen Beweis“ (Semadeni 1976, S. 16), später auch 

als „action proof“ (1981 und 1984). Diese Beweisform beschreibt Semadeni anhand eines Satzes S 

wie folgt (Semadeni 1984, S. 32, S. 16):  

 

1) Choose a special case of S. The case should be generic (that is without special features), not too complicated, 

and not too simple [...]. Choose an enactive and/or iconic representation of this case or a paradigmatic example 

(in the sense of Freudenthal [1980]
22

). Perform certain concrete, physical actions (manipulating objects, drawing 

pictures, moving body etc.) so as to verify the statement in the given case.  

 

2) Choose other examples, keeping the general schema permanent but varying the constants involved. In each 

case verify the statement, trying to use the same method as in 1).  

 

3) When you no longer need physical actions, continue performing them mentally until you are convinced that 

you know how to do the same for many other examples. 

 

Als Beispiel führt Semadeni den folgenden Beweis für die Kommutativität der Multiplikation in den 

natürlichen Zahlen an (vgl. Abbildung 15): 

We first choose a pair of numbers, e.g. 3 and 5. We are to show that 3 x 5 = 5 x 3. As the concretization of n x m 

we choose n rows with m counters in each. Thus, we begin the action by arranging the counters as in Figure 1a. 

We separate them horizontally (Figure 1b) and infer that the number of counters is 3 x 5. Then we separate them 

vertically (Figure 1c) and get 5 x 3. The number of counters in Figure 1a must be independent of the way of 

counting. Hence 3 x 5 = 5 x 3. (Semadeni 1984, S. 33) 

 

 

 

 

Dabei wird hervorgehoben, dass sich die verwendeten logischen Argumente auf die konkreten 

Objekte beziehen sollen und nicht losgelöst von semantischen Beziehungen rein formal erfolgen 

dürfen. Grundlegend für den Vollzug dieser Beweise ist dabei der folgende Dreischritt: (i) Ausführung 

                                                           
22

 Freudenthal (1980) ist die englische Ausgabe von Freudenthal (1978). 

Abbildung 15: Darstellung eines Rechtecks für einen 
„action proof“ der Kommutativität der Multiplikation 
(Abbildung ähnlich zu Semadeni 1984, S. 33) 
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von (physischen) Handlungen, (ii) Verinnerlichung der Handlung und (iii) deren Verallgemeinerung. 

Die Korrektheit und Gültigkeit der Beweise soll durch die Anforderungen an die physischen und 

mentalen Handlungen (s.o.) sichergestellt werden. 

Zusammenfassend können für die vorliegende Arbeit folgende markante Aspekte des 

Beweiskonzepts von Semadeni herausgehoben werden: 

(S1)  Lernende sollen zunächst konkrete Beispiele betrachten, die ikonisch oder enaktiv dargestellt  

werden. Diese Beispiele sollen dabei als paradigmatische Beispiele im Sinne Freudenthals 

(Abschnitt 4.2.2) fungieren. Anhand dieser „generischen“ („generic“, s.o.) Beispiele soll die 

gegebene Behauptung zunächst im konkreten Fall verifiziert werden. 

(S2)  Die bei den konkreten Beispielen verwendete Methode zur Verifikation soll darauf  

  unverändert auf weitere konkrete Fälle übertragen werden. 

(S3)  Nach der Übertragung dieser Strategie auf weitere Fälle und einem dadurch erhaltenen  

  Verständnis für dessen Durchführung sollen die Lernenden diese Strategie in Gedanken  

  ausführen, um sich von ihrer Übertragbarkeit auf entsprechende Fälle zu überzeugen. 

 

Neben dem Unterricht an der Grundschule thematisiert Semadeni auch die Lehrerausbildung an der 

Universität. Nach Semadeni (1981, S. 2) wird u.a. durch die folgenden Aspekte die Einbindung 

entsprechender Beweisformen in die Lehramtsausbildung legitimiert: 

(S4)  Der ausschließliche Umgang mit formalen Beweisen in der Lehramtsausbildung muss als 

problematisch angesehen werden: Selbst wenn Studierende diese verstünden, erschiene 

ihnen die Mathematik als etwas Aufgedrängtes und nicht als etwas aktiv Gelerntes. 

(S5)  Formale Beweise würden den Lehramtsstudierenden einen falschen Eindruck vermitteln, wie 

man Kindern die Mathematik unterrichten sollte. 

(S6)  Der Einbezug von prämathematischen Beweisen ermöglicht erst die Diskussion um die 

Aspekte von Anschaulichkeit und Strenge. 

Schließlich wird auch auf verschiedene didaktische bzw. konzeptuelle Probleme dieser Beweisformen 

hingewiesen:  

(S7)  Wie kann sichergestellt werden, dass Lernende durch entsprechende Betrachtungen  

  wirklich eine Einsicht in die Allgemeingültigkeit des Beweises und des Satzes erlangen? Dazu  

  bemerkt Semadeni: „Without dismissing this criticism we note that it applies to any proof in a  

  textbook: if the author finds his proof correct and complete, this does not automatically  

  imply that students understand it“ (Semadeni 1984, S. 34). 

(S8) Lernende können nur begrenzt die Korrektheit entsprechender Beweise beurteilen, „it 

requires a competent mathematician to judge whether a given action proof is acceptable“ 

(ebd., S. 33). 

(S9)  Semadeni formuliert die Aufgabe an die Mathematikdidaktik, geeignete Unterrichtsszenarien 

für den Mathematikunterricht zu entwickeln, in denen entsprechende Beweisformen und die 
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mit ihnen verbundenen Aktivitäten sinnstiftend integriert werden können (Semadeni 1981, S. 

12). 

(S10) Eine offene, noch empirisch zu erforschende Frage ist dabei, welche Rolle entsprechenden 

Beweisen im Unterricht wirklich zukommt (Semadeni 1984, S. 34f.).  

4.2.4 Prämathematische Beweise bei Arnold Kirsch 

Für die mathematikdidaktische Arbeit von Kirsch ist die Grundposition des Zugänglichmachens von 

mathematischen Inhalten und Verfahren für den Schulunterricht auf „intellektuell ehrliche” Weise 

zentral (Kirsch 1976 und 1977, in Anlehnung an Bruner 1973, S. 26f.). Eine ebensolche Möglichkeit, 

Beweise bereits im Schulunterricht zu thematisieren sieht Kirsch in den prämathematischen 

Beweisen Semadenis, welche er wie folgt beschreibt:  

Sie bestehen „grob gesagt aus gewissen konkreten Handlungen (Operationen im Sinne von J. Piaget […]). Diese 

Handlungen werden zuerst wirklich ausgeführt, dann nur vorgestellt (verinnerlicht). Sie müssen korrekten 

mathematischen Argumenten entsprechen, die in ihrer psychologisch natürlichen Ordnung aufeinander folgen 

[…]. Die Argumente sollen weiter direkt verallgemeinerbar sein […]. (Kirsch 1979, S. 261; Hervorhebungen im 

Original) 

Als ein Beispiel Kirsch‘scher prämathematischer Beweise wird der Beweis zu dem folgenden Satz 

wiedergegeben: Der Umfang u eines (konvexen) Vierecks ist größer als die Summe s der beiden 

Diagonalenlängen. 

Zum Beweis realisieren wir das Viereck mittels vier Nägeln. Nun spannen wir längs jeder Diagonalen einen 

Gummiring […] so daß das „Diagonalenkreuz“ doppelt durch Gummifäden bedeckt ist. Sodann dehnen wir beide 

Bänder so, daß sie außen um alle vier Nägel herumlaufen […]. Danach ist der Rand des Vierecks doppelt bedeckt. 

Beim zweiten Schritt mußten wir die Bänder dehnen (viermalige Anwendung der Dreiecksungleichung!); also ist 

der Rand länger als das Diagonalenkreuz; es gilt: u > s. (Kirsch 1979, S. 269f.; Hervorhebungen im Original) 

Auch Kirsch betont die Bedeutung konkreter Handlungen und ihre anschließende Verinnerlichung, 

wie bereits Semadeni vor ihm (Abschnitt 4.2.3). Zentral ist hierbei die Forderung, dass alle 

Operationen korrekten mathematischen Argumenten entsprechen sollen. Kirsch ist darum bemüht, 

diese Beweise als eine intellektuell-ehrliche Übertragung der mathematischen Beweisaktivität für 

Lernende zu legitimieren: „Prämathematische Beweise sind Beweise, aber in besonderer Art 

dargestellt“ (Kirsch 1979, S. 262; Hervorhebung im Original). In diesem Sinne sind auch die obigen 

fachmathematischen Einschübe in dem Zitat zu verstehen: Durch diese wird deutlich, dass sich der 

Beweis in einem fachmathematischen Sinn exaktifizieren ließe. 

Kirsch (1979) geht in seinen Ausführungen zu prämathematischen Beweisen nicht auf Aktivitäten ein, 

die Lernende im Rahmen eines Erkenntnisprozesses vollziehen sollen. Im Zentrum seiner 

Ausführungen steht die Illustration des Beweiskonzeptes anhand vielfältiger Beispiele. Mit explizitem 

Bezug auf Semadeni fordert der Autor den Einbezug entsprechender Beweisformen in die 

Lehramtsausbildung, formuliert dieses Anliegen jedoch nicht nur für die Grundschullehrerausbildung. 

Kirsch nennt dafür die folgenden Gründe (ebd., S. 273): 

(K1) Lehramtsstudierende müssen in die Lage versetzt werden, entsprechende Schülerprodukte 

zum Beweisen richtig einschätzen zu können 

(K2)  Durch prämathematische Beweise würde vielen Studierenden erst „„echte“ Mathematik […] 

zugänglich“ (ebd., S. 273). 
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In diesem Kontext wird auch auf die folgenden Probleme hingewiesen: 

(K3) Es besteht die Gefahr, dass Studierende entsprechende Beweise als bloße empirische 

Verifikationen missverstehen könnten. 

(K4) Prämathematische Beweise sind nicht per se für den Mathematikunterricht geeignet. Es ist 

daher eine Aufgabe der Mathematikdidaktik, entsprechende geeignete Beweise für den 

Unterricht bereitzustellen. 

4.2.5 Inhaltlich-anschauliche Beweise nach Erich Wittmann und Gerhard Müller 

In expliziter Anlehnung an die intuitive Beweisstufe bei Branford (Abschnitt 4.2.1) entwickeln 

Wittmann und Müller (1988) das Konzept der inhaltlich-anschaulichen Beweise (ebd., S. 248ff.). Diese 

Beweise gelten als „anschaulich“, da bei der Beweisführung auf eine formal-symbolische Darstellung 

verzichtet wird; häufig wird dabei von geometrischen Visualisierungen Gebrauch gemacht. Innerhalb 

der Begründungen dürfen intuitiv einsichtige Sachverhalte als Argumente verwendete werden, die 

nicht notwendigerweise vorher bewiesen worden sein müssen. Somit wird gleichsam ‚inhaltlich‘ auf 

einer semantischen Ebene argumentiert. Diese Beweisform ist im Kontext des in Abschnitt 1.2.3 

dargestellten ‚elementarmathematischen Forschungsprogramms‘ zu sehen, in welchem Wittmann 

und Müller (1988) einen Neuaufbau der Lehramtsausbildung fordern und Desiderate dafür 

formulieren (Wittmann 1989, S. 298ff.; Wittmann & Müller 1988, S. 254).  

 

Wittmann und Müller führen als Beispiel (und gleichsam als ‚Existenzbeweis‘ solcher inhaltlich-

anschaulicher Beweisproduktionen von Lernenden) die Lösung eines Schülers aus einem dritten 

Schuljahr für die folgende Aufgabe an: „Finde Zahlen, die den Rest 1 ergeben, wenn man sie durch 2 

teilt, und den Rest	2, wenn man sie durch 3 teilt“ (ebd., S. 241). Der Schüler gibt die folgende 

Antwort:  

 

Wenn ich nur auf den Rest 1 achte, muß ich immer 2 weitergehen und treffe dann nur ungerade Zahlen. Wenn ich 

nur auf den Dreierrest achte, muß ich immer 3 weitergehen. Zusammentreffen kann ich nur nach 3 

Zweiersprüngen und nach 2 Dreiersprüngen. (Wittmann & Müller 1988, S. 241) 

 

Die Autoren weisen schließlich auf die Vollgültigkeit entsprechender Beweise hin, indem sie die 

Übertragbarkeit der an konkreten Fällen vollzogenen Begründung herausstellen: „Inhaltlich-

anschauliche, operative Beweise stützen sich […] auf Konstruktionen und Operationen, von denen 

erkennbar ist, daß sie sich auf eine ganze Klasse von Beispielen anwenden lassen und bestimmte 

Folgerungen nach sich ziehen“ (ebd., S. 247).  

Im Sinne ihres elementarmathematischen Forschungsprogramms fordern die Autoren die Einbindung 

inhaltlich-anschaulicher Beweise in die Lehramtsausbildung. Sie verbinden damit die folgenden Ziele 

(s. hierzu das angeführte Zitat aus Wittmann und Müller (1988) in Abschnitt 1.2.3): 

(MW1) Lehramtsstudierenden wird durch den Einbezug entsprechender Beweise ermöglicht, ein 

produktives Verhältnis zur Schulmathematik aufzubauen. 

(MW2) Lehramtsstudierenden kann durch entsprechende Beweise eine vertiefte Einsicht in 

mathematische Zusammenhänge ermöglicht werden. 
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(MW2)  Lehramtsstudierende müssen entsprechende Beweisformen kennen, damit sie die 

mathematische Beweisaktivität in den schulischen Mathematikunterricht übertragen 

können.  

(MW3) Im Kontext entsprechender Beweisformen üben sich die Lehramtsstudierenden in der 

Verwendung anschaulicher Darstellungsmittel und somit in der Kommunikation von 

mathematischen Sachverhalten in einer den Schülerinnen und Schülern angemessenen 

Sprache.  

Auf bestimmte Aktivitäten der Lernenden oder auf mögliche Probleme im Umgang mit inhaltlich-

anschaulichen Beweisen gehen die Autoren nicht explizit ein. 

4.2.6 Präformale Beweise bei Arnold Kirsch und Werner Blum 

Blum und Kirsch problematisieren 1989 (bzw. 1991) ein zu einfaches Konzept von inhaltlich-

anschaulichen Beweisen und fordern die prinzipielle Formalisierbarkeit der Beweisschritte als ein 

notwendiges Gütekriterium. Hieraus resultiert der Ausdruck präformaler Beweis, welchen die 

Autoren wie folgt definieren: 

a chain of correct but not formally represented conclusions which refer to valid, non-formal premises. Particular 

examples of such premises include concretely given real objects, geometric-intuitive facts, reality-oriented basic 

ideas, or intuitively evident, “commonly intelligible”, “psychologically obvious” statements […]. The conclusions 

should succeed one another in their “psychologically natural” order. (Blum & Kirsch 1991, S. 187; Hervorhebungen 

im Original) 

Als ein Beispiel für die Verwendung geometrischer, intuitiv einsichtiger Sachverhalte für die 

Konstruktion eines präformalen Beweises wird der folgende Beweis für die Monotonie der 

Integralfunktion bei nicht-negativen Integranden aus Kirsch und Blum (1991) zitiert: „If definite 

integrals are interpreted as areas, then the monotonicity of the integral function of a non-negative 

integrand can – as is well-known – be proved by immediately obvious geometric arguments […]: For 

functions 6 7 0 we have: 
� 8�	� 8 9 ⇒ ; 6 8	; 6<$
=
$ “(ebd., S. 188; vgl. Abbildung 16). 

 

 

 

 

 

Die Autoren nehmen somit eine konzeptuelle Weiterentwicklung inhaltlich-anschaulicher Beweise 

vor, um diese Beweisformen fachmathematisch abzusichern und gleichsam zu legitimieren. In diesem 

Zusammenhang werden allerdings zwei gewichtige Fragen aufgeworfen (Blum & Kirsch 1989, S. 20723 

und 1991, S. 199): Inwiefern können Lernende die Stichhaltigkeit von selbst gefundenen oder 

vorgelegten präformalen Beweisen beurteilen? Und wie können Lernende in die Lage versetzt 

werden, entsprechende Beweise selbst zu finden?  

                                                           
23

 In der deutschen Version ihres Artikel (Blum & Kirsch 1989) verwenden die Autoren die Bezeichnung 

„präformaler Beweis“ als Obergriff für die Beweiskonzepte  „Handlungsbezogener Beweis“ („action proof“) und 

„inhaltlich-anschaulicher Beweis“ (ebd., S. 203). 

Abbildung 16: Graphik zu einem präformalen 
Beweis der Monotonie des Integrals bei nicht-
negativen Integranden (Abbildung ähnlich zu Kirsch 
und Blum 1991, S. 188) 
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Durch die Erörterung der ersten Frage machen die Autoren ein didaktisches Problem entsprechender 

Beweisformen deutlich, welches hier herausgehoben werden soll:  

(KB1) Die Korrektheit mathematischer Schlüsse und Argumente kann nur von jemandem beurteilt 

werden, „der über „höhere“ Kenntnisse verfügt; diese haben Lernende aber gerade nicht“ 

(Blum & Kirsch 1989, S. 208). Somit ergibt sich hier eine Grundproblematik, die „den 

didaktischen Stellenwert von nicht-formalen Beweisen notwendig relativiert“ (ebd., S. 208), 

was nach den Autoren von vielen Befürwortern entsprechender Beweise nicht gesehen wird. 

Um Lernende in die Lage zu versetzen, selbst präformale Beweise finden zu können, führen die 

Autoren die folgenden Vorschläge an, welche im Folgenden paraphrasierend zusammengefasst 

werden (nach ebd., S. 208):  

(KB2) im unterrichtlichen Geschehen sollen inhaltliche Grundideen unter Verwendung vielfältiger 

Darstellungsweisen betont und anschauliche Grundvorstellungen vermittelt werden 

(KB3)   entsprechende Beweise müssen in das Unterrichtsgeschehen integriert werden 

(KB4)  anschauliche Argumente sollen im Unterricht formalisiert werden  

(KB5)  es sollen auch exemplarische formale Beweise geführt werden 

(KB6) die Lernenden sollen über das Beweisen und über das unterrichtliche Geschehen im 

Allgemeinen reflektieren 

In Bezug auf die gesamte Lehramtsausbildung betonen die Autoren schließlich (Kirsch & Blum 1989, 

S. 209): 

(KB7)  Lehramtsstudierende müssen selbst Beweise auf verschiedenen Ebenen kennenlernen und 

lernen, entsprechende Beweise selbst zu führen und darüber zu reflektieren, damit ein 

entsprechender schulischer Mathematikunterricht verwirklicht werden kann. 

4.3 Zusammenfassung der in der historischen Betrachtung 

herausgearbeiteten Aspekte zum Umgang mit didaktisch orientierten 

Beweiskonzepten 
Im Folgenden werden die im Kontext der historischen Betrachtungen herausgearbeiteten 

Empfehlungen und Vorbehalte für den Umgang mit den didaktisch orientierten Beweiskonzepten 

zusammenfassend dargestellt. Hierbei geht es um die drei Themenbereiche: „Empfohlene Aktivitäten 

für Lernende und Implikationen für den Unterricht“ (4.3.1), „Argumente für die Einbindung 

didaktisch orientierter Beweiskonzepte in die Lehrerausbildung“ (4.3.2) und „Probleme und offene 

Fragen bzgl. der didaktisch orientierten Beweiskonzepte“ (4.3.3). Hinzugenommen werden dabei die 

im Rahmen des zweiten Kapitels erörterten Aspekte zu operativen und generischen Beweisen. Hinter 

den in den einzelnen Abschnitten aufgeführten Aspekten wird angegeben, aus welchen Kontexten 

die jeweiligen Nennungen resultieren24. Eine Referenz auf einen der oben thematisierten Autoren 

                                                           
24

 (B#) steht dabei für die Aspekte, die bei der Thematisierung der Ausführungen von Branford 

herausgearbeitet wurden (Abschnitt 4.2.1), (F#) entstammt den Darstellungen zu Freudenthal (Abschnitt 4.2.2), 

(S#) referenziert auf Semadeni (Abschnitt 4.2.3), (K#) auf Kirsch (Abschnitt 4.2.4), (WM#) auf Wittmann und 

Müller (Abschnitt 4.2.5) und (KB#) auf Kirsch und Blum  (Abschnitt 4.2.6). Mit Referenz auf das zweite Kapitel 
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bedeutet dabei nicht, dass eine entsprechende Nennung in dessen Konzeption von Beweisen keine 

Rolle spielen würde. Um sich bei der Beantwortung der eingangs formulierten Forschungsfragen aber 

nur an den ‚harten‘ Fakten der Primärliteratur zu orientieren, wird nur auf die Autoren Bezug 

genommen, bei denen die jeweiligen Aspekte explizit thematisiert werden. 

4.3.1 Empfohlene Aktivitäten für Lernende und Implikationen für den Unterricht 

Die Leitfrage zur Auswertung [1] wurde oben wie folgt formuliert: 

Welche Aktivitäten führen die Urheber der didaktisch orientierten Beweiskonzepte auf, um 

Lernende im ‚Beweisen‘ sinnstiftend zu unterrichten, und welche Implikationen für das 

unterrichtliche Geschehen werden in diesem Kontext herausgestellt? 

Diese Frage wird im Folgenden auf Grundlage der in Abschnitt 4.3.2 erfolgten Arbeit an der 

Primärliteratur beantwortet. Insgesamt konnten bei der Betrachtung der historischen Genese der 

didaktisch orientierten Beweiskonzepte die folgenden Empfehlungen für die Vermittlung der 

Beweisaktivität im Mathematikunterricht herausgearbeitet werden: 

(1) Der Beweisprozess sollte mit einer Explorationsphase des Sachverhalts beginnen, in deren 

Rahmen sich die Lernenden mit dem Wissensmaterial vertraut machen und selbst eine bzw. 

die zu beweisende Vermutung ausmachen können. Diese Vermutung kann dann durch 

weitere konkrete Beispielbetrachtungen überprüft werden. [(B1)] 

(2) Bei der Formulierung der Vermutung (bzw. der zu beweisenden Behauptung) ist darauf zu 

achten, dass ihr Allgemeingültigkeitscharakter herausgestellt wird, wodurch gleichsam auf 

die Unzulänglichkeit empirischer Verifikationen hingewiesen werden kann. [(B2)] 

(3) Für die Konstruktion von schüleradäquaten Beweisen erscheint die Argumentation an 

konkreten (generischen bzw. paradigmatischen) Beispielen angemessen. Hierzu gehören 

insbesondere die folgenden Aspekte. 

I. Anhand konkreter Beispiele soll die gegebene Behauptung verifiziert und dabei eine 

beispielübergreifende Methode bzw. Strategie ausgemacht werden. [(B4), (F1), (F2), 

(S1)] 

II. Diese ausgemachte Strategie soll dann auf weitere konkrete Beispiele unverändert 

übertragen und schließlich derart verinnerlicht bzw. mental vollzogen werden, dass 

sich die Lernenden über die beispielübergreifende Tragweite dieser Methode 

bewusst werden. [(B4), (S2), (S3)] 

III. Der gefundene allgemeingültige Beweis soll dann von den Lernenden in eigenen 

Worten formuliert werden. [(B5)] 

IV. Das Zulassen von Argumenten, die von den Lernenden als intuitiv richtig akzeptiert 

werden und dabei nicht notwendigerweise vorher bewiesen worden sein müssen 

[(B3)] 

(4) Der formale Beweis soll nach Möglichkeit erst dann formuliert werden, wenn die Lernenden 

eine Einsicht in die Allgemeingültigkeit der Rechnung erlangt haben, da sich das Resultat als 

unabhängig von der Verwendung von konkreten Zahlenwerten erweist. [(B6)] 

(5) Bei der Formulierung des formalen Beweises soll die Abhängigkeit der verwendeten 

Argumente zu vorherigen Beweisen betont werden. [(B7)] 

                                                                                                                                                                                     
bezieht sich (G#) auf den Abschnitt zu generischen Beweisen und (O#) auf den Abschnitt zu operativen 

Beweisen (Abschnitt 2.1.3). 
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(6) Am Ende des Prozesses sollen die Lernenden das Bewiesene in ihrer eigenen Sprache 

formulieren. [(B8)] 

Damit Lernende dazu befähigt werden, entsprechende Beweise selbst zu führen, sind folgende 

Aspekte zu beachten: 

(7) Im Unterricht sollen verschiedene Darstellungsweisen verwendet werden, um inhaltliche 

Grundideen herauszustellen und anschauliche Grundvorstellungen zu vermitteln. [(KB2)] 

(8) Entsprechende Beweise müssen in das Unterrichtsgeschehen einbezogen werden. [(KB3)] 

(9) Anschauliche Argumente sollen formalisiert werden. [(KB4)] 

(10) Im Unterricht sollen auch formale Beweise geführt werden. [(KB5)] 

(11) Im Unterricht soll über das Beweisen (in seinen verschiedenen Ausprägungen) reflektiert 

werden. [(KB6)] 

4.3.2 Argumente für die Einbindung didaktisch orientierter Beweiskonzepte in die 

Lehrerausbildung 

Die in diesem Abschnitt thematisierte Leitfrage zur Auswertung [2] lautet: 

Welche Argumente werden durch die Urheber der didaktisch orientierten Beweiskonzepte 

angeführt, entsprechende Beweisformen in die Lehramtsausbildung zu integrieren? 

Bei den in Abschnitt 4.3.1 thematisierten Autoren wurden insgesamt die folgenden Argumente für 

die Einbindung didaktisch orientierter Beweiskonzepte in die Lehrerausbildung angeführt: 

(1) Lehramtsstudierende müssen lernen, entsprechende Beweisproduktionen von Lernenden 

richtig einschätzen zu können. [(K1)] 

(2) Lehramtsstudierende müssen entsprechende Beweisformen kennen, um die mathematische 

Beweisaktivität und damit einhergehende Aktivitäten in die schulmathematischen 

Rahmenbedingungen übertragen zu können. [(MW2), (KB7)] 

(3) Lehramtsstudierenden wird durch den Einbezug entsprechender Beweisformen ein Einblick 

in die echte Mathematik bzw. eine vertiefte Einsicht in mathematische Zusammenhänge 

ermöglicht, wodurch sie insbesondere ein produktives Verhältnis zur Schulmathematik 

aufbauen können. [(K2), (MW1), (MW2)] 

(4) Lehramtsstudierende üben bei der Konstruktion entsprechender Beweisformen die 

Verwendung anschaulicher Darstellungsmittel und somit die Kommunikation von 

mathematischen Sachverhalten in einer den Schülerinnen und Schülern angemessenen 

Sprache. [(MW3)] 

(5) Der Einbezug von prämathematischen Beweisen ermöglicht erst die Diskussion um die 

Aspekte von Anschaulichkeit und Strenge. [(S6)] 

(6) Der ausschließliche Umgang mit formalen Beweisen muss aus verschiedenen Gründen als 

problematisch angesehen werden: 

I. Viele Studierende haben Probleme, formale Beweise zu verstehen, und sie erleben 

durch diese die Mathematik als etwas Aufgedrängtes und nicht als etwas aktiv 

Gelerntes. [(S4)] 

II. Formale Beweise können bei Lehramtsstudierenden einen falschen Eindruck 

erwecken, wie man Mathematik unterrichten sollte. [(S5)] 
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4.3.3 Probleme und offene Fragen bzgl. der didaktisch orientierten Beweiskonzepte 

Um mögliche Probleme und offene Fragen im Umgang mit den didaktisch orientierten 

Beweiskonzepten zu identifizieren, wurde eingangs die Leitfrage zur Auswertung [3] formuliert: 

Welche offenen Fragen bzw. Probleme werden bei den Autoren für den Umgang mit 

entsprechenden Beweisformen thematisiert? 

Insgesamt können aus der in diesem Kapitel und der in Abschnitt 2.1.3 thematisierten Literatur die 

folgenden Problembereiche im Umgang mit didaktisch orientierten Beweiskonzepten 

zusammengetragen werden: 

(1) Zunächst stellt sich die Frage, was überhaupt ein gutes generisches Beispiel ausmacht? [(F1)] 

(2) Es ist eine offene (auch konzeptionelle) Frage, woher der Betrachter von Beweisen, die 

anhand konkreter Beispiele geführt werden, wissen soll, für welchen (generischen) Aspekt 

die angegebenen Beispiele exemplarisch stehen? [(G1)] 

(3) Auch ist es unklar, wie sichergestellt werden kann, dass Lernende bei der Betrachtung 

entsprechender Beweisformen eine wirkliche Einsicht in die Allgemeingültigkeit der 

Verifikation erlangen. [(S7)] 

(4) Es besteht die Gefahr, dass Lernende entsprechende Beweise als empirische Verifikationen 

fehlinterpretieren können. [(G2), (K3)] 

(5) Lernende können selbst nur begrenzt über die Korrektheit entsprechender Beweisformen 

urteilen, da hierfür teilweise höhere mathematische Kenntnisse notwendig sind. [(KB1), (S8)] 

(6) Es gilt, einen gewissen Bestand an entsprechenden geeigneten Beweisen für den Unterricht 

aufzubauen und Lehrkräften zur Verfügung zu stellen. [(K4)] 

(7) Es müssen geeignete Unterrichtsszenarien entwickelte werden, in denen entsprechende 

Beweisformen sinnstiftend integriert werden können. [(S9)] 

(8) Schließlich wird es als offene Forschungsfrage betrachtet, welche Rolle entsprechenden 

Beweisformen im unterrichtlichen Kontext tatsächlich zukommt. [(S10)]  
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5. Die verschiedenen Durchführungen der Lehrveranstaltung 

„Einführung in die Kultur der Mathematik“ und die erfolgten Studien 
 

In dem fünften Kapitel werden die verschiedenen Durchführungen der Lehrveranstaltung 

„Einführung in die Kultur der Mathematik“ und die im Kontext dieser Durchführungen erfolgten 

Studien beschrieben. Die verschiedenen Durchführungen der Lehrveranstaltung, in Verbindung mit 

den verschiedenen Untersuchungen bilden die verschiedenen Zyklen des globalen Design-Based-

Research-Projektes. Die hier betrachteten Durchgänge der Lehrveranstaltung sind die Zyklen eins bis 

drei in den Wintersemestern 2011/12 bis 2013/14. Die Version der Lehrveranstaltung, wie sie nach 

drei Forschungszyklen durchgeführt wurde, wird im Anschluss in Kapitel 6 dargestellt. Die Forschung, 

die im Kontext dieser vierten Durchführung der Lehrveranstaltung im Wintersemester 2014/15 als 

Effektivitätsstudie durchgeführt wurde, ist Gegenstand des siebten Kapitels.  

Zunächst werden im Folgenden die Entstehung der Lehrveranstaltung, ihre Einbettung in den 

Studienverlauf und die entsprechenden Rahmenbedingungen dargelegt, die zu der Konstruktion der 

Lehrveranstaltung führten (Abschnitt 5.1). Anschließend werden in chronologischer Reihenfolge die 

verschiedenen Durchführungen der Lehrveranstaltung (WS 2011/12, WS 2012/13 und WS 2013/14) 

und die im Kontext dieser Durchführungen erfolgten Studien beschrieben (vgl. Abbildung 17). Jede 

Darstellung eines Forschungszyklus (Intention, Durchführung und erfolgte Studien) wird mit einer 

retrospektiven Analyse beendet. Im Kontext dieser retrospektiven Analyse werden die Aspekte 

benannt, die wiederum zu einer Modifikation der Lehrveranstaltung geführt haben. 

 

 

 

 

 

 

 

Abbildung 17: Überblick über die erfolgten Durchführungen und Forschungsprojekte der 
Lehrveranstaltung „Einführung in die Kultur der Mathematik“ von 2011 bis 2014 
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5.1 Die Entstehung der Lehrveranstaltung, deren Einbettung in den 

Studienverlauf und die Rahmenbedingungen 
In der seit dem Wintersemester 2011/12 gültigen neuen Studienordnung für das Bachelorstudium für 

Lehramt an Haupt-, Real- und Gesamtschulen an der Universität Paderborn wird eine neue 

Lehrveranstaltung (Vorlesung mit Übung; 2 + 2 Semesterwochenstunden) mit dem Titel „Einführung 

in die Kultur der Mathematik“ vorgesehen, welche sich an die Erstsemesterstudierenden richtet.  

Konzeptionell handelt es sich hierbei um eine Brückenkursveranstaltung, die den Studierenden den 

Übergang in die Mathematik der Hochschule erleichtern soll. In der Studienordnung25 steht bzgl. der 

zu erwerbenden fachlichen Kompetenzen (ebd., S. 10): 

 

Die Studierenden 

• verstehen Mathematik in ihren historischen und kulturellen Bezügen,  

• erläutern und reflektieren bei mathematischen Begriffsbildungen und Begründungen an ausgewählten 

Beispielen die Rolle von Alltagssprache, anschaulichen Darstellungsformen, Fachsprache und 

Formelsprache und stellen mathematische Sachverhalte in adäquater mündlicher und schriftlicher Form 

dar,  

• verstehen die Idee des Beweisens, insbesondere Prinzipien mathematischen Beweisens (z.B. Beweis 

durch Konstruktion, durch Widerspruch, durch vollständige Induktion) und ordnen das mathematische 

Beweisen in den Kontext anderer Begründungsformen (z.B. in Alltag, Natur- oder Kulturwissenschaften) 

ein, 

• überprüfen beim Vermuten und Beweisen mathematischer Aussagen fremde Argumente und bauen 

eigene Argumentationsketten auf,  

• erläutern das Prinzip des lokalen Ordnens und die Prinzipien des Aufbaus mathematischer Theorien 

(Axiome, Definitionen, Sätze) als Grundlagen mathematischen Tuns, 

• nehmen verschiedene Sichtweisen auf mathematisches Modellieren als Prozess zwischen realer 

Situation und mathematischem Modell ein,  

• modellieren inner- und außermathematische Situationen.  

  

Als übergeordnete Leitidee der Lehrveranstaltung steht die Einführung in die Kultur der Mathematik. 

Bei der Konstruktion der Lehrveranstaltung stellt sich jedoch die Frage, wie diese fachlichen und 

‚kulturellen‘ Aspekte der Mathematik für die Adressatengruppe der Lehramtsstudierenden für 

Haupt-, Real- und Gesamtschule zu interpretieren sind. Ein Grundanliegen besteht darin, neben der 

‚fertigen‘ Mathematik auch der Prozesshaftigkeit der Wissenschaft gerecht zu werden. Als adäquater 

Inhaltsbereich wurde die Elementarmathematik der elementaren Zahlentheorie ausgewählt, in deren 

Kontext mathematische ‚Forschung‘ im Kleinen betrieben werden kann (vgl. Abschnitt 1.2.3): In 

exemplarischen ‚Forschungsprojekten‘ sollen die Studierenden Entdeckungen machen, Vermutungen 

und Hypothesen formulieren, diese widerlegen bzw. beweisen. Am Ende solcher Arbeitsprozesse 

steht schließlich ‚sicheres‘ Wissen in Form von Sätzen (vgl. Biehler und Kempen 2014, S. 122f.). Das 

Bestehen der Lehrveranstaltung (und damit des entsprechenden Moduls) wird in der Regel durch das 

Bestehen einer 120-minütigen Klausur erreicht. 

 

Die Lehrveranstaltung umfasst pro Woche eine Vorlesungssitzung (1,5 Stunden) und eine 

Kleingruppenübung mit ca. 30 Personen (1,5 Stunden). Zusätzlich wird einmal pro Woche eine 

Zentralübung (1,5 Stunden) angeboten, in der die wöchentlichen Hausaufgaben besprochen werden. 

Die Teilnahme an der Zentralübung ist dabei freiwillig. 

                                                           
25

 http://math.uni-

paderborn.de/fileadmin/mathematik/Didaktik_der_Mathematik/Studienordnungen/BA_MathematiK_HRGe_2

0110928.pdf 
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Die im Folgenden beschriebenen Veränderungen der Lehrveranstaltung wurden in gemeinsamer 

Diskussion des Autors mit Rolf Biehler entwickelt und basieren auf den bis dato gemachten 

Lehrerfahrungen und erhaltenen Forschungsergebnissen. Im Rahmen dieser Forschungsarbeit 

wurden zu allen Vorlesungssitzungen Mitschriften angefertigt und in allen Durchgängen ausgewählte 

Hausaufgabenbearbeitungen der Studierenden eingescannt. Auf der Grundlage der Mitschriften der 

Vorlesungen wurde nach jeder Durchführung der Lehrveranstaltung ein Skript verfasst. Dieses Skript 

diente dann, in Verbindung mit den gemachten Lehrerfahrungen und gewonnenen 

Forschungserkenntnissen, als Grundlage für die Gestaltung der nächsten Durchführung der 

Veranstaltung. 

5.2 Die Lehrveranstaltung im Wintersemester 2011/12 und die im Kontext 

dieser Durchführung erfolgten Studien 
 

In dem vorliegenden Abschnitt wird die Lehrveranstaltung „Einführung in die Kultur der Mathematik“ 

beschrieben, wie sie im Wintersemester 2011/12 durch Rolf Biehler entwickelt und zusammen mit 

zwei wissenschaftlichen Mitarbeitern zum ersten Mal durchgeführt wurde. Diese erste Durchführung 

der Lehrveranstaltung stellt gleichermaßen den Ausgangspunkt der vorliegenden Forschungsarbeit 

dar, an der der Autor dieser Arbeit nicht beteiligt war. Im Folgenden werden zunächst die Inhalte der 

ersten beiden Kapitel der Vorlesung („Beweisen und Entdecken in der Arithmetik“ und „Figurierte 

Zahlen“)26 skizziert. Da der Fokus dieser Forschungsarbeit auf den Methoden und Inhalten dieser 

beiden Kapitel liegt, werden die anderen Kapitel der Lehrveranstaltung nicht besprochen. 

Betrachtungsgegenstände sind weiter die den Studierenden gestellten Haus- und Präsenzaufgaben. 

Im Anschluss an diese Darstellungen wird neben der explorativen Analyse von Beweisproduktionen 

der Studierenden noch auf eine darauf aufbauende Studie zum operativen und formalen Beweis 

eingegangen. Beide Studien hatten, neben der gemachten Lehrerfahrung, Auswirkungen auf die 

weitere Gestaltung der Lehrveranstaltung. Der Abschnitt endet mit einer retrospektiven Analyse 

dieses ersten Durchgangs der Lehrveranstaltung. 

5.2.1 Die erste Durchführung der Lehrveranstaltung im Wintersemester 2011/12 

Für die Beschreibung der ersten Durchführung der Lehrveranstaltung wird im Sinne der 

Forschungsmethode des Design-Based Research zunächst die intentionale Dimension der 

Lehrveranstaltung in Verbindung mit ihren Inhalten aufgezeigt. 

5.2.1.1 Die intentionale Dimension der ersten Durchführung der Lehrveranstaltung 

Die intentionale Dimension der von Rolf Biehler konzipierten Lehrveranstaltung wird anhand der in 

Abschnitt 1.3 herausgearbeiteten Leitprinzipien dargestellt. Für den Kontext dieser Arbeit sind dabei 

die Inhalte der ersten beiden Kapitel der Lehrveranstaltung von Relevanz. 

Durch den Einstieg in die Vorlesung mit Teilbarkeitsfragen in den natürlichen Zahlen (s.u.) soll direkt 

an schulische Vorerfahrungen angeknüpft werden. Dabei wird zunächst auf die Vorgabe exakter 

Definitionen und Sätze verzichtet, da das angenommene Vorwissen der Lernenden aus ihrer Schulzeit 

akzeptiert und produktiv genutzt werden soll. In Anlehnung an Begründungsformen der 

Schulmathematik werden operative Beweise dazu verwendet, den Studierenden schuladäquate und 

                                                           
26

 Die Inhalte der Lehrveranstaltung waren im Wintersemester 2011/12 in die folgenden fünf Kapitel gegliedert: 

(1) „Beweisen und Entdecken in der Arithmetik“, (2) „Figurierte Zahlen“, (3) „Zahlenfolgen und vollständige 

Induktion“, (4) „Beweistypen und logisches Schließen“ und (5) „Modellieren mit Zahlenfolgen“. 
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nicht-symbolisch dargestellte Begründungsformen für ihre spätere Lehrpraxis zu vermitteln und sie 

dann zu den formalen Beweisen der Hochschulmathematik zu führen. Der Inhaltsbereich der 

Elementarmathematik (hier: Teilbarkeit in den natürlichen Zahlen) soll den Studierenden 

mathematisches Arbeiten (‚Forschen‘) im Kleinen ermöglichen, wobei der Prozesscharakter der 

Mathematik verdeutlicht werden soll. Der Einbezug von Punktmusterdarstellungen ist dabei zunächst 

als weiteres Betätigungsfeld des mathematischen Tuns zu verstehen. Hierzu kommt, dass diese 

‚inhaltlich-anschaulichen‘ Darstellungen einerseits den Studierenden selbst bei ihrem Lernfortschritt 

helfen, ihnen andererseits als eine schuladäquate Kommunikationsform der Mathematik 

nähergebracht werden sollen. Durch die Themenorientierung an der Teilbarkeit, das Aufgreifen und 

Vermitteln von Begründungsformen der Schulmathematik und den Einbezug von inhaltlich-

anschaulichen Darstellungsmitteln kann ein stetiger Schulbezug hergestellt werden.  

Das erste Kapitel „Beweisen und Entdecken in der Arithmetik“ beginnt mit einer expliziten 

problemzentrierten Erarbeitung der Thematik. Über die Frage nach der Teilbarkeit der Summe von 

drei aufeinanderfolgenden Zahlen wird der erste ‚Forschungsprozess‘ initiiert. Die Frage nach der 

Teilbarkeit von ' ∈ ℕ aufeinander folgenden natürlichen Zahlen durch ' überspannt dabei das 

gesamte erste Kapitel. Im Rahmen der Behandlung dieser Frage sollen den Studierenden u.a. 

verschiedene Heuristiken des mathematischen Arbeitens vermittelt werden. Über die Methode der 

‚Algebraisierung‘ von Sachverhalten soll dann, auch über das Medium des operativen Beweises, die 

mathematische Symbolsprache sinnstiftend eingeführt und vermittelt werden. Im Kontext dieser 

mathematischen Tätigkeit, dem Beweisen von Behauptungen und der Formulierung von Definitionen 

und Sätzen, kann in besonderer Weise Meta-Wissen über Mathematik thematisiert und vermittelt 

werden. Das Leitprinzip ‚intellektueller Ehrlichkeit‘ wird im ersten Kapitel besonders dadurch 

berücksichtigt, dass bei dem Themengebiet der Teilbarkeit zunächst auf fachmathematische 

Definitionen und Sätze verzichtet wird, dabei aber zu dem exakten Teilbarkeitsbegriff der 

Hochschulmathematik hingeführt wird. Auch soll hier betont werden, dass ‚operative Beweise‘ in 

dieser Arbeit als intellektuell-ehrliche Übertragung der Beweisaktivität betrachtet werden (vgl. 

Abschnitt 8.3.2), wie auch mathematische Tätigkeit im Diagrammsystem der Punktmuster. Die 

innerhalb des ersten Kapitels erlernten Arbeitsweisen der Mathematik (Explorieren, Vermutungen 

aufstellen, Behauptungen formulieren und beweisen) sollen im zweiten Kapitel im Kontext der 

figurierten Zahlen geübt und vertieft werden. 

5.2.1.2 Kapitel 1 „Beweisen und Entdecken in der Arithmetik“ 

In diesem Abschnitt wird ein Einblick darin gegeben, welche Inhalte wie in dem ersten Kapitel der 

Lehrveranstaltung bei ihrer ersten Durchführung vermittelt wurden und wie diese Inhalte in einen 

Prozess mathematischer Wissensgewinnung eingebettet waren. Die Inhalte des ersten Kapitels der 

Lehrveranstaltung im Wintersemester 2011/12 werden im Folgenden anhand von 

Studierendenmitschriften ‚rekonstruiert‘. Die durch den Dozenten Rolf Biehler gegebenen 

mündlichen Erläuterungen zu diesem Tafelanschrieb können dabei nicht wiedergegeben werden. Bei 

den zitierten Auszügen des Anschriebs wird deutlich werden, dass in diesen Vorlesungen bereits 

mehr Aspekte, als in ‚normalen‘ Fachveranstaltungen üblich, in den Tafelanschrieb übernommen 

wurden (etwa reflektierende Elemente oder Meta-Aspekte zum Vorgehen). Für eine bessere 

Lesbarkeit und Verständlichkeit der Darstellung der Inhalte werden die Elemente des Tafelanschriebs 

in einer kleineren Schriftgröße und eingerückt niedergeschrieben, begleitende Kommentare des 

Autors sind in der ‚normalen‘ Schriftgröße gesetzt.  
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Kapitel 1 „Beweisen und Entdecken in der Arithmetik“ 

Die folgende Behauptung bildet den Ausgangspunkt des ersten Kapitels: 

„Jemand behauptet: Die Summe von drei aufeinanderfolgenden Zahlen ist immer durch drei teilbar.“  

Für die Untersuchung einer Behauptung werden drei verschiedene Strategien unterschieden: 

1. Die Überprüfung einer Behauptung an einigen Zahlenbeispielen 

2. Operative Beweise 

3. Beweise mit Variablen 

Diese Strategien werden anschließend exemplarisch vorgeführt: 

Strategie 1: Überprüfung der Behauptung an konkreten Zahlenbeispielen 

1 + 2 + 3 = 6,					2 + 3 + 4 = 9,					3 + 4 + 5 = 12  

 

10 + 11 + 12 = 33, wobei  33 ∶ 3 = 11,  

500 + 501 + 502 = 1503, wobei 1503 ∶ 3 = 501 

Dabei wird die Entdeckung gemacht, dass in den Beispielen nach der Division durch 3 immer die 

mittlere Zahl als Ergebnis herauskommt, was zu einer neuen Behauptung führt: 

Behauptung (*): 

Die Summe von drei aufeinanderfolgenden (natürlichen) Zahlen ist immer durch drei teilbar und der Quotient ist 

die mittlere Zahl. 

Zur Verifikation dieser Behauptung wird die folgende mögliche Lösung eines Schülers Martin 

präsentiert und im Plenum diskutiert. 

1 + 2 + 3 = 
2 − 1� + 2 + 
2 + 1� = 2 + 2 + 2 = 3ÿ	2	
50 + 51 + 52 = 
51 − 1� + 51 + 
51 + 1� = 51 + 51 + 51 = 3ÿ	51	

  Das geht genauso mit allen Zahlen. 

Als Ergebnis der Diskussion wird diese Begründung des Schülers Martin wie folgt gewertet: 

Martin stellt Operationen mit Zahlen an, die genauso mit allen anderen Zahlen machbar wären. Damit ist es etwas 

anderes als die vorherigen Überlegungen zu unserem Ausgangsproblem. Es ist ein „operativer Beweis“ und ist als 

allgemeingültig zu bewerten. Weiter liefert er auch eine Erklärung, warum die mittlere Zahl als Quotient 

auftaucht. 

Im Kontrast zum Vorgehen im operativen Beweis werden anschließend Variablen eingeführt, um die 

Allgemeingültigkeit der Umformungen auszudrücken. Auch werden die ‚Leistungen‘ dieses Beweises 

vermerkt: 

 mittlere Zahl: �, Startzahl: � − 1, Summe �� 

Behauptung: �� = 3� für alle �	¥	2. 

Beweis 

Für alle � ¥	2 gilt: �� 	= 
� − 1� + � + 
� + 1� = 3�.  

Satz 1 

Für alle �	¥	2 gilt: 
� − 1� + � + 
� + 1� = 3�. 
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 Leistung des Beweises: 

(1) Verifikation für alle �	¥	2 

(2) Die Umformung erklärt, warum die mittlere Zahl als Quotient auftaucht. 

(3) Die Benutzung von Variablen stellt sicher, dass nur Operationen verwendet werden, die für alle Zahlen 

möglich sind. 

Die Frage nach einer möglichen Verallgemeinerung der gemachten Entdeckung eröffnet den Weg für 

das weitere Forschungsvorhaben: Wie sieht es mit der Teilbarkeit bei 4, 5, 6,… aufeinanderfolgenden 

Zahlen aus? Diese verschiedenen Fälle werden nun sukzessiv untersucht: 

 � = 4: 

 5 + 6 + 7 + 8 = 26    ist nicht durch 4 teilbar. 

 6 + 7 + 8 + 9 = 30    ist nicht durch 4 teilbar. 

 Vermutung: Diese Summen sind nie durch 4 teilbar. 

 � = 5: 

 3 + 4 + 5 + 6 + 7 = 25 und 25 ∶ 5 = 5,  2 + 3 + 4 + 5 + 6 = 20 und 20 ∶ 5 = 5 

 Vermutung: Diese Summen sind immer durch 5 teilbar. 

� = 6:     4 + 5 + 6 + 7 + 8 + 9 = 35    ist nicht durch 6 teilbar 

� = 7:     10 + 11 + 12 + 13 + 14 + 15 + 16 = 91    ist durch 7 teilbar 

� = 8:     10 + 11 + 12 + 13 + 14 + 15 + 16 = 91    ist nicht durch 8 teilbar 

� = 9:     10 + 11 + 12 + 13 + 14 + 15 + 16 = 91    ist durch 9 teilbar 

� = 2:     @AB�CA	 + 	D�@AB�CA = D�@AB�CA, � + 
� + 1� = 2� + 1	

Diese Untersuchungen führen schließlich zu den folgenden Vermutungen, die anschließend, nach 

Einführung einer neuen Notation, als Satz formuliert werden: 

 Vermutung (**) 

(1) Wenn ' ungerade ist, dann ist die Summe von ' aufeinanderfolgenden Zahlen durch ' teilbar. 

(2) Wenn ' gerade ist, dann ist die Summe von ' aufeinanderfolgenden Zahlen nicht durch ' teilbar. 

��,E: =	Summe von ' aufeinanderfolgenden Zahlen mit der Startzahl	�. 

Satz: 

Für alle '	¥	2	und jede natürliche Startzahl � gilt: ��,E ist genau dann durch '	teilbar, wenn ' ungerade ist. 

Um die Vermutung (**) bestätigen zu können, wird mithilfe algebraischer Terme weitergerechnet, 

um Strukturen zu erkennen: 

' = 2:  ��,� = � + 
� + 1� = 2� + 1 

' = 3:  ��,G = � + 
� + 1� + 
� + 2� = 3� + 3 = 3
� + 1�	
' = 4:  ��,# = � + 
� + 1� + 
� + 2� + 
� + 3� = 4� + 6 = 4 H� + G

�I	
' = 5:  ��,J = � + 
� + 1� + 
� + 2� + 
� + 3� + 
� + 4� = 5� + 10 = 5
� + 2�	
' = 6:  ��,K = � + 
� + 1� + 
� + 2� + 
� + 3� + 
� + 4� + 
� + 5� = 6� + 15 = 6
� + �J

� �	 
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'  Teilbarkeit durch ' 

7: 7� + 21 + 

8: 8� + 28 - 

9: 9� + 
28 + 8� + 

10: 10� + 
36 + 9� - 

11: 11� + 
45 + 10� + 

 

Man kann verallgemeinern, es gilt: ��,E = 'ÿ	� + 
1 + 2 + 3 +⋯+ 
' − 1�� 

Die Frage nach der Teilbarkeit von ��,E durch ' lenkt den Fokus auf die folgende Summe: 

 
1 + 2 + 3 +⋯+ 
' − 1�� 

Somit gelangt man zu einem Teilproblem, das es zunächst zu lösen gilt. 

 Typisch für das Beweisen: Man kommt auf ein Teilproblem. Wäre das gelöst, käme man weiter. 

 Teilproblem: LE�� = 1 + 2 + 3 +⋯+ 
' − 1� für '	¥	2. 

 Wir suchen eine Formel für	LE��, um die Teilbarkeit durch ' zu untersuchen. 

LE�� = 1 + 2 + 3 + … + ' − 1 

+  +  +  +  +  + 

LE�� = ' − 1 + ' − 2 + ' − 3 + … + 1 

	
LE�� + LE�� = 	'ÿ	
' − 1�	
											2ÿLE�� = 	'ÿ	
' − 1�	
															LE�� = 1

2 ÿ	'ÿ	
' − 1� 

 Es gilt: 															LE�� = E
E���
� 	 

Nach der Lösung des Teilproblems kann nun die Ausgangsfrage weiter untersucht werden: 

 Zwischenstand: ��,E = 'ÿ	� + E
E���
� 	 

 Wann ist diese Zahl durch ' teilbar? Beweisstrategie: Man versuche ' auszuklammern: 

 ��,E = 'ÿ	[	� + 
E���
� 	], also:  

OP,Q
E = 		� + 
E���

� 	 

 Fall 1: Für gerade ' ist ' − 1 ungerade und  

E���
�  ist keine natürliche Zahl. 

Fall 2: Für ungerade ' ist ' − 1 gerade und  

E���
�  ist keine natürliche Zahl. 

 Fazit: 

(1) Falls ' ungerade fl ��,E ist durch ' teilbar für alle �	(	ℕ. 

(2) Falls ' gerade fl ��,E  ist nicht durch ' teilbar für alle �	(	ℕ. 

In einer Aussage formuliert: ��,E  ist durch ' teilbar für alle �	(	ℕ genau dann, wenn ' ungerade ist. 
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Noch anders formuliert: 

(1) ' ungerade fl ��,E für alle natürlichen Zahlen � durch ' teilbar. 

(2) ��,E für alle natürlichen Zahlen � durch ' teilbar fl ' ungerade. 

Begründung für (2): 

Voraussetzung: ��,E ist durch ' teilbar für alle �	(	ℕ fl 'ÿ	� + E
E���
�   ist für alle �	(	ℕ durch ' teilbar   

  fl 
' − 1� ist gerade fl ' ist ungerade 

Somit ist der Satz bewiesen und der Forschungsprozess abgeschlossen. Dieser Prozess wird daraufhin 

reflektiert. Weiter wird dargestellt, wie in der ‚Fachliteratur‘ entsprechende Ergebnisse notiert 

werden. 

Reflexion: 

Nach Aufstellen der Behauptung wurde entdeckt und begründet: „Mathematik als Prozess“. Üblicherweise 

werden solche Ergebnisse beim Aufschreiben des Beweises noch einmal neu geordnet. Und teilweise wird der 

Entdeckungsprozess hierbei kaschiert. Das könnte in etwa so aussehen: 

Definition:  

Für alle '	(	ℕ mit '	¥	2 und alle �	(	ℕ sei: ��,E: = � + 
� + 1� + 
� + 2� + ⋯+ 
� + 
' − 1��. 

Satz:  

Mit obiger Definition gilt: ��,E 	ist genau dann durch ' teilbar, wenn ' ungerade ist. 

Beweis: 

Es gilt: 

Hilfssatz: 1 + 2 + 3 +⋯+ 
' − 1� = E
E���
�   für alle '	¥	2. 

„fl“:  Sei k ungerade: Dann folgt: ��,E = 'ÿ	� + E
E���
�   fl  

OP,Q
E = 		� + 
E���

� 	 ist eine natürliche Zahl,  

  also ein Vielfaches von '. 

„›“:  Sei ��,E durch ' teilbar, dann gilt: 
OP,Q
E = 		� + 
E���

�  ist eine natürliche Zahl. fl ' ist ungerade. 

q.e.d. 

Schließlich soll den Studierenden verdeutlich werden, dass es verschiedene Möglichkeiten gibt, eine 

Behauptung zu beweisen. 

Oft gibt es nicht nur einen Beweis: Wir hatten bereits die folgende Entdeckung gemacht (jeweils mit der 

Startzahl	1): 

' = 2:							1 + 2 = 3 

' = 3:							1 + 2 + 3 = 6	
' = 4:							1 + 2 + 3 + 4 = 10	
' = 5:							1 + 2 + 3 + 4 + 5 = 15	
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Wie entstehen daraus Aussagen über andere Startzahlen? Für ' = 2 haben wir: 

Startzahl                                                                  Summe 

� = 1 1 + 2 = 3 

 ↓ +1  ↓ +1  ↓ +2 

� = 2 2 + 3 = 5 

 ↓ +1  ↓ +1  ↓ +2 

� = 3 3 + 4 = 7 

 ↓ +1  ↓ +1  ↓ +2 

…      

� � + 
� + 1� = 2� + 1 

 ↓ +1  ↓ +1  ↓ +2 

� + 1 
� + 1� + 
� + 2� = 2� + 3 

 

Für die Startzahl � = 1 ist die Summe ungerade. Bei jedem Schritt zur nächst höheren Startzahl erhöht sich die 

Summe um zwei. Die Summen bleiben somit immer ungerade (und damit nicht durch ' = 2 teilbar.) 

Diese Betrachtung wird auf die Summen von ' aufeinanderfolgenden Zahlen mit Startzahl � (��,E) 

übertragen. 

Sei ' eine beliebige natürliche Zahl. Dann gilt: 

� = 1 ��,E = 1 + 2 + … + ' 

 ↓ +' ↓ +1  ↓ +1    ↓ +1 

� = 2 ��,E = 2 + 3 + … + 
' + 1� 

…         

� ��,E = � + 
� + 1� + … + 
� + 
' − 1�) 

 

Aus diesen Überlegungen folgt: 

Ist ��,E  durch ' teilbar, dann ist es auch	��,E =	��,E + '. 

Ist ��,E  nicht durch ' teilbar, dann kann es ��,E =	��,E + ' auch nicht sein. 

Für die Startzahl � gilt dann: 

Ist ��,E  durch ' teilbar, dann ist es klar, dass ��,E =	��,E + 'ÿ	
� − 1� auch durch ' teilbar ist. 

Ist ��,E  nicht durch ' teilbar, dann ist es ��,E = 	��,E + 'ÿ	
� − 1� auch nicht. 

Um den Satz zu beweisen, reicht es also, die Summen mit Startzahl 1 zu betrachten: 

��,E = 1 + 2 +⋯+ ' = 
E
E���

�    (das wurde bereits oben gezeigt) 
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OP,Q
E = 		� + 
E���

�     und  

E���
�   ist genau dann eine natürliche Zahl, wenn ' ungerade ist. 

q.e.d. 

 

5.2.1.3 Kapitel 2 „Figurierte Zahlen“ 

Im Gegensatz zu der Darstellung des ersten Kapitels (s.o.) werden die Inhalte des zweiten Kapitels für 

eine bessere Nachvollziehbarkeit paraphrasierend zusammengefasst. Im Folgenden wird daher nicht 

zwischen gegebenem Tafelanschrieb durch den Dozenten und begleitenden, strukturgebenden 

Kommentaren des Autors unterschieden. 

Kapitel 2 „Figurierte Zahlen“ 

Die Dreieckszahlen 

Zu Beginn des zweiten Kapitels werden die Dreieckszahlen eingeführt. Neben der Darstellung der 

konkreten Dreieckszahlen	L�,	L�, LG und L# werden auch das ‚allgemeine‘ Punktmuster zu LE 

('	(	ℕ) mit geometrischen Variablen und die explizite Formel LE = E
E���
�  zur Berechnung 

angegeben (vgl. Abbildung 18). Diese Formel wird anschließend auch geometrisch hergeleitet.  

 

 

 

 

Nachdem zunächst das Zusammenlegen der zwei Dreieckszahlen L# betrachtet wird, wird 

anschließend eine ‚allgemeine‘ Begründung („operativ-graphisch“) der expliziten Formel für alle 

'	(	ℕ gegeben (s. Abb. 19). 

 

 

 

 

 

 

 

Die Quadratzahlen 

Nach der Einführung der Quadratzahlen (SE = '�,	'	(	ℕ) wird deren Bezug zu den Dreieckszahlen 

verdeutlicht. Dies geschieht durch die Unterteilung des konkreten Punktmusters SJ in L#	und 

Abbildung 18: Die ersten drei Dreieckszahlen (TU,	TV und	TW) und das 
‚allgemeine‘ Punktmuster zu TX 

Abbildung 19: Herleitung der Summenformel für Dreieckszahlen; links über das 
Zusammenlegen zweier konkreter Dreieckszahlen, rechts über das Zusammenlegen zweier 
allgemeiner Dreieckszahlen TX als „operativ-graphischer Beweis“. 



134 

 

LJ	(Abb. 20). Auch dieser Zusammenhang wird durch 

einen „operativ-graphischen Beweis“ verifiziert. 

Schließlich wird der Zusammenhang auch algebraisch 

nachgewiesen. 

SJ = L# + LJ, L# = 	 #∙J� = 10,LJ = 	 J∙K� = 15 

L# +LJ = 10 + 15 = 25     

Für die allgemeine Darstellung gilt: 

LE = E∙
E���
� 	 , 		LE�� = 
E���∙E

� 				 

LE +LE�� = 
E
E���

� +	 
E���E� = E
E����E
E���
� = EY
E����
E���Z

� = �E[
� 	

= '� = SE  

 

Bei der Betrachtung der Differenzenfolge CE ≔ SE − SE�� für '	¥	2 wird die Entdeckung gemacht, 

dass die Differenzen in den betrachteten Fällen immer ungerade Zahlen sind: 

SE 1  4  9  16  25  36  49 

CE   3  5  7  9  11  13  

 

Diese Entdeckung wird algebraisch verifiziert:  

SE − SE�� = '� − 
' − 1�� = '� − 
'� − 2' + 1� = 2' − 1. 

Es folgt hieraus, dass die Summe der ersten '	(	ℕ ungeraden Zahlen genau gleich '� ist. 

Die Sechseckzahlen 

Bei den Sechseckzahlen werden zunächst konkrete Folgenwerte 

(1, 7, 19, 37, 61) betrachtet. Bei der Betrachtung der Differenzen 

(6, 12, 18, 24, 30) wird die Vermutung aufgestellt, dass diese immer 

um 6 größer werden. Die Gültigkeit der entsprechenden 

Rekursionsformel ]E = ]E�� + 6
' − 1� wird an einem 

„allgemeinen Diagramm für einen operativen Beweis“ (Abb. 21) 

nachgewiesen. 

Zum Abschluss der Sechseckzahlen wird mithilfe der 

Rekursionsformel noch die explizite Formel für die Sechseckzahlen 

hergeleitet: ]E = 3'� − 3' + 1. 

Die Kubikzahlen 

Bei der Betrachtung der Kubikzahlen (^E = 'G, '	(	ℕ) werden mithilfe einer Tabelle die Differenzen 

^E − ^E��	untersucht und die Entdeckung gemacht, dass diese ‚anscheinend‘ immer die 

Sechseckzahlen sind. Diese Frage wird algebraisch beantwortet. 

 ^E − ^E��=	'G − 
' − 1�G = 'G − 
' − 1�
' − 1��	
																= 'G − 
' − 1�
'� − 2' + 1�	

Abbildung 20: Unterteilung einer Quadratzahl in zwei 
Dreieckszahlen; links: Unterteilung einer konkreten 
Quadratzahl in zwei konkrete Dreieckszahlen, rechts: 
‚Allgemeine‘ Darstellung  

Abbildung 21: Graphische 
Darstellung des Übergangs einer 
Sechseckzahl zur nächst größeren 



135 

 

																= 'G − ['G − 2'� + ' − '� + 2' − 1]	
																= 'G − 'G + 2'� − ' + '� − 2' + 1	
																= 3'� − 3' + 1 

Abschließend wird anhand einer Grafik besprochen, wie dieses Phänomen anhand der Formel 

(„3'� − 3' + 1“) geometrisch interpretiert werden kann. 

5.2.1.4 Die verwendeten Übungsaufgaben 

In dem folgenden Abschnitt wird der Frage nachgegangen, inwieweit sich die Anliegen der ersten 

beiden Kapitel der Lehrveranstaltung (hierzu zählen u.a.: Exploration von Sachverhalten, Entdecken 

von Regelmäßigkeiten in der Arithmetik und im Kontext der figurierten Zahlen) in den verwendeten 

Übungsaufgaben widerspiegeln27. Dabei geht es auch um die Frage, inwieweit innerhalb der Präsenz- 

und Hausaufgaben Aufgabenstellungen auftraten, in denen sich die Studierenden mit dem Konzept 

des operativen Beweises vertraut machen und diese Beweisform einüben konnten. Diese Fragen 

bilden den Fokus, unter deren Perspektive die verwendeten Übungsaufgaben im Folgenden 

betrachtet werden. 

Präsenzaufgaben im Wintersemester 2011/12 

In den Präsenzaufgaben zu der Lehrveranstaltung wurden im Wintersemester 2011/12 ausschließlich 

formale Beweise verlangt (Präsenzübung 1, 2 und 5), wobei zu dem Themenbereich „Figurierte 

Zahlen“ keine Aufgaben gestellt wurden. Während in den Präsenzübungen Nummer 3 und 4 die 

vollständige Induktion thematisiert wurde, fokussierten die Aufgaben der Präsenzübungen sechs bis 

zehn Zahlenfolgen und das Modellieren mit diesen. 

Im Rahmen der Thematik der Teilbarkeit wurde eine Aufgabe gestellt, die explorative Elemente 

enthält. Diese ist der Aufgabenteil (b) der ersten Aufgabe des ersten Präsenzübungszettels: 

Präsenzübung 1, Aufgabe 1: 

Man nehme eine natürliche Zahl _	 7 2 und multipliziere den 

Vorgänger 
_ − 1� und den Nachfolger	
_ + 1�, so dass man 

eine Zahl  ` = 
_ − 1� a 
_ + 1� erhält.  

 

(a)  Beweisen Sie formal: 

1. Wenn _ eine ungerade Zahl ist, dann ist ` gerade. 

2. Wenn	` gerade ist, dann ist _ ungerade. 

 

(b) Schauen Sie sich die Tabelle auf der Rückseite an. Hier 

werden die Teilbarkeit von ` durch	3, 8 und 24 überprüft. 

Leiten Sie aus der Tabelle weitere Aussagen über 

Teilbarkeit von 
_ − 1� a 
_ + 1� durch 3, 8 und 24  

her. Formulieren Sie zunächst Vermutungen. 

Anschließend überprüfen Sie die Vermutung an neuen 

Beispielen von _ bzw.	`, die noch nicht in der Tabelle 

enthalten sind. […] Beweisen Sie anschließend ihre 

Aussagen. 

                                                           
27

 Für die wöchentlich stattfindenden Präsenzübungen in Kleingruppen wurden Aufgabenzettel mit 

Präsenzaufgaben erstellt. Darüber hinaus mussten die Studierenden pro Woche einen Hausaufgabenzettel mit 

umfangreicheren Aufgaben für das Erhalten der ‚Studienleistung‘ bearbeiten. 
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Als Lösung der Teilaufgabe (b) kann dabei z.B. festgestellt werden, dass die folgenden Beziehungen 

für die Zahlen aus der Tabelle (_ = 1, 2, … , 24) gelten (i) _	ungerade	⇒ 8	|	
_ − 1�
_ + 1�, (ii) 

24	|	
_ − 1�
_ + 1� ⇒ _	ungerade , (iii) _	ungerade und	3 ∤ _	 ⇒ 	24	|	
_ − 1�
_ + 1�. Es wurde 

anschließend die Frage aufgeworfen, ob man diese Aussagen auf alle natürlichen Zahlen 

verallgemeinern kann und zu Beweisversuchen motiviert.	
Zu den im Wintersemester 2011/12 verwendeten Präsenzaufgaben kann bereits hier angemerkt 

werden, dass innerhalb der Aufgaben vor allem formale Beweise thematisiert wurden. Dies ist wohl 

darauf zurückzuführen, dass der operative Beweis zentraler Bestandteil der ersten 

Vorlesungssitzungen gewesen und man der Ansicht war, dass dieses Konzept damit ausreichend 

behandelt worden sei.  

Die Hausaufgaben im Wintersemester 2011/12 

Auch in den Hausaufgaben zu der Lehrveranstaltung wurden im Wintersemester 2011/12 fast 

ausschließlich formale Beweise verlangt, wobei hier von ‚symbolischen‘ Beweisen gesprochen wurde. 

Im Rahmen der insgesamt 12 Hausaufgabenzettel wurden nur zwei operative Beweise verlangt, 

beide auf dem ersten Hausaufgabenzettel: 

Hausaufgabenblatt 1, Aufgabe 2 

Beweisen Sie die nachfolgenden Behauptungen jeweils operativ und symbolisch. Formulieren Sie vor dem symbolischen 

Beweis zunächst die Behauptung mit Variablen. 

 

a) Die Summe aus einer ungeraden natürlichen Zahl und ihrem Doppelten ist immer ungerade. 

b) Das Quadrat einer natürlichen Zahl ist gleich dem Produkt aus dem Vorgänger und Nachfolger plus eins. 

 

Zu der Thematik ‚Figurierte Zahlen‘ wurde eine Aufgabe gestellt, in deren Rahmen eine Behauptung 

an einem „allgemeinen Punktmuster“ (s.u.) begründet werden sollte. In einer anderen Aufgabe 

wurde die Struktur von einem Zahlenmuster thematisiert (s.u.). 

Hausaufgabenblatt 2, Aufgabe 2 

Es gibt verschiedene sogenannte figurierte Zahlen. Dazu gehören neben den Dreieckszahlen LE auch die Quadratzahlen 

SE:= 	'� für '	(	ℕ (siehe Vorlesung). Die Dreieckszahlen lassen sich mittels dreieckiger regelmäßiger Punktmuster 

veranschaulichen, die Quadratzahlen durch quadratische regelmäßige Punktmuster - dabei entspricht der Zahlenwert LE 

bzw. SE jeweils der in der Figur dargestellten Anzahl der Punkte. Für Quadratzahlen gilt der folgende mathematische Satz: 

 

(*) Wenn man die ersten n ungeraden Zahlen addiert, erhält man die �-te Quadratzahl	S�. 

 

a) Begründen Sie anhand der jeweiligen quadratischen Punktmuster, dass die Aussage aus (*) für die Fälle �	 = 	1, 

�	 = 	2, �	 = 	3 und �	 = 	4 richtig ist. (Hinweis: Schauen Sie sich dazu, bevor Sie Ihre Begründung aufschreiben, 

zunächst die vier zugehörigen Punktmuster in der obigen Reihenfolge gut an, und vergleichen Sie sie 

miteinander.) 

b) Begründen Sie nun für den allgemeinen Fall �	(	ℕ anhand einer geeigneten graphischen Skizze des zugehörigen 

allgemeinen Punktmusters die Richtigkeit der Aussage (*). 

Abbildung 22: Tabelle bzgl. der Teilbarkeit des Produkts 

d + U�
d − U� durch 3, 8 und 24, wobei d ∈ ℕ\{U} 
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c) Beweisen Sie den Satz (*) formal. (Hinweis: Es sind verschiedene Beweise möglich. Sie können z.B. einen 

„Beweistrick“, den Sie aus der Vorlesung kennen, auf diesen Fall übertragen.) 

 

 

 

Hausaufgabenblatt 2, Aufgabe 3 

Es seien die folgenden vier regelmäßigen Punktmuster gegeben: 

 

 

 

 

 

 

 

 
 

Das erste Punktmuster (ganz links) gehöre zum Fall �	 = 	1, das zweite (also der rechte Nachbar) zum Fall �	 = 	2, das dritte 

zum Fall �	 = 	3	und das vierte zum Fall �	 = 	4 (ganz rechts). Die Anzahl der Punkte des �-ten Musters bezeichnen wir mit 

��. 

a) Bestimmen Sie ��, ��, �G, �#. Geben Sie zum Fall �	 = 	5 ein Punktmuster an, das zum Konstruktionsschema der 

gegebenen vier Figuren passt, und bestimmen Sie �J. 

b) Analysieren Sie das Konstruktionsprinzip im Übergang von der �-ten zur 
� + 1�-ten Figur, und geben Sie eine 

Formel an, mit der man ����	aus �� errechnen kann, also eine Formel vom Typ: ���� = �� + ��. Dabei müssen 

Sie einen geeigneten von � abhängigen Term für �� finden. 

c) Zerlegen Sie die fertige Figur für �� so geschickt in Teilfiguren, dass Sie daraus für �� eine Formel in Abhängigkeit 

von � angeben können. 

 
Fazit bzgl. der Präsenz- und Hausaufgaben im Wintersemester 2011/12 
 
Insgesamt betrachtet, waren alle Beweisaufgaben im Wintersemester 2011/12 sehr formal geprägt, 

nur innerhalb der Hausaufgaben wurden überhaupt operative Beweise thematisiert. Weiter wurde 

von den Studierenden nur zweimal verlangt, mit Punktmustern selbstständig zu agieren: Einmal galt 

es zu begründen, dass die Summe der ersten � ungeraden Zahlen immer die �-te Quadratzahl S� ist. 

Bei einer anderen Aufgabe sollte zu einer gegebenen Punktmusterfolge die ‚allgemeine‘ Figur zu 

beliebigem �	(	ℕ skizziert und entsprechend der expliziten Formel unterteilt werden. Explorative 

Aufgabenabschnitte waren weiter nur sehr sporadisch vorhanden, und wenn, dann eher formal 

geprägt 

 

5.2.2 Die im Kontext dieser Durchführung erfolgten Studien 

Im Kontext der ersten Durchführung der Lehrveranstaltung sind zwei 

Studien zum Beweisen zu nennen (vgl. Abbildung 24). Zunächst 

wurden im Rahmen einer Staatsarbeit Beweisproduktionen von 

Studierenden in ihrer ersten abgegebenen Hausaufgabe explorativ 

untersucht (Schilberg 2012). Darauf aufbauend wurden in einem 

weiteren Projekt diese Beweisproduktionen der Studierenden 

qualitativ analysiert und kategorisiert (siehe hierzu Biehler & 

Kempen 2013; Kempen 2014).  

 

Abbildung 23: Punktmusterdarstellungen 
mit figurierten Zahlen 

Abbildung 24: Überblick über die im 
Wintersemester 2011/12 erfolgten 
Studien 
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5.2.2.1 Explorative Analyse von Beweisbearbeitungen von Studierenden 

Im Rahmen einer Staatsarbeit (Schilberg 2012), welche von Rolf Biehler betreut und durch den Autor 

dieser Arbeit mitbetreut wurde, wurden studentische Bearbeitungen zu zwei verschiedenen 

Hausaufgaben explorativ untersucht. Innerhalb dieser Aufgaben (s.u.) sollten die Studierenden 

Behauptungen mithilfe von Variablen formulieren, diese widerlegen oder mithilfe eines formalen 

bzw. operativen Beweises verifizieren. Die genauen Aufgabenstellungen waren hierbei: 

Hausaufgabenblatt 1, Aufgaben 1 und 2
28

 

Aufgabe 1 

Formulieren Sie zunächst die nachfolgenden Behauptungen formal mit Variablen, beweisen Sie dann die 

Behauptungen oder widerlegen Sie sie durch ein Gegenbeispiel! 

 

a) Die Summe von drei aufeinanderfolgenden natürlichen Zahlen ist gerade. 

b) Die Differenz einer geraden natürlichen Zahl und ihrer Hälfte ist gerade. 

c) Das Produkt zweier gerader Zahlen ist das Vierfache des Produktes der Hälften der beiden  

  Zahlen. 

 

Aufgabe 2 

Beweisen Sie die nachfolgenden Behauptungen jeweils operativ und symbolisch. Formulieren Sie vor dem 

symbolischen Beweis zunächst die Behauptung mit Variablen. 

 

a) Die Summe aus einer ungeraden natürlichen Zahl und ihrem Doppelten ist immer ungerade. 

b) Das Quadrat einer natürlichen Zahl ist gleich dem Produkt aus dem Vorgänger und Nachfolger  

  plus eins. 

Für die Analyse der Studierendenbearbeitungen (n=64) wurden diese eingescannt und zunächst 

explorativ untersucht. Als Betrachtungsgegenstände wurden dabei die folgenden drei Aspekte 

ausgewählt: (1) der Umgang mit Variablen, (2) Argumentieren und Begründen und (3) die 

Bearbeitungen zum operativen Beweis. Schilberg (2012) arbeitet dabei die folgenden Aspekte 

heraus29, die für die vorliegende Arbeit von Bedeutung sind: 

Zu (1):  Die Studierenden haben verschiedene Probleme im richtigen Umgang mit Variablen. Dies   

  betrifft vor allem die Definition der verwendeten Buchstabenvariablen und die  

  Verwendung von mehreren Buchstabenvariablen. 

Zu (2):  Viele Studierende geben mehr als ein Gegenbeispiel an, um eine Allaussage zu widerlegen.  

  Auch kommt es häufiger vor, dass Studierende nach einem erfolgten korrekten Beweis noch  

  weitere konkrete Beispiele für die bewiesene Behauptung anführen. 

Zu (3):  Viele Studierende geben ausschließlich konkrete Beispielüberprüfungen als operative  

  Beweise an, wobei diese Aufgabe zudem noch häufig von den Studierenden ausgelassen  

  wird. 

                                                           
28

 An dieser Stelle wird auf eine Aufgabenanalyse mit der Darstellung exemplarischer Lösungswege verzichtet, 

da dies für das Nachvollziehen der entsprechenden Forschungsergebnisse nicht notwendig erscheint. Eine 

Aufgabenanalyse der Aufgabe 2 a) wird in Abschnitt 5.2.2.2 gegeben. 
29

 Es sei hier angemerkt, dass eine quantitative Auswertung der formulierten Problembereiche im Rahmen der 

Staatsarbeit nicht erfolgt ist. Die im Folgenden angeführten Adjektive zur ungefähren Quantifizierung der 

Phänomene orientieren sich an den Darstellungen in Schilberg (2012). 
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Diskussion der Ergebnisse und Motivation für eine Re-Analyse der Beweiskonstruktionen 

 

Durch die explorative Analyse der Studierendenbearbeitungen im Rahmen der Staatsarbeit von 

Schilberg (2012) konnten bereits verschiedene Probleme der Studierenden anhand von 

Beweisbearbeitungen aufgezeigt werden. Diese Probleme betreffen dabei (u.a.) den Umgang mit 

Variablen, die Nutzung von Beispielen und Gegenbeispielen im mathematischen Erkenntnisprozess 

und die Konstruktion von operativen Beweisen. Diese Ergebnisse spiegelten dabei die von den 

Lehrenden gemachten Erfahrungen aus der Lehrpraxis und damit verbundene Vermutungen bzgl. der 

‚Beweiskompetenzen‘ der Studierenden wider. Besonders beachtenswert erschienen die Probleme 

der Studierenden mit dem Konzept des operativen Beweises: Nicht nur, dass viele Studierende die 

entsprechende Beweiskonstruktion gar nicht erst versuchten; nach den Angaben von Schilberg 

bestanden die meisten Beweiskonstruktionen ausschließlich aus bloßen Beispielüberprüfungen. Bei 

der in Kapitel 4 vorgenommenen Literaturarbeit konnte zwar herausgearbeitet werden, dass in der 

Literatur darauf hingewiesen wird, dass Lernende entsprechende Beweise als bloße empirische 

Verifikation fehlinterpretieren könnten (Abschnitt 4.3.3), doch war die Problematik in diesem 

Ausmaß für die Lehrenden der Veranstaltung überraschend. Daher wurde beschlossen, die 

Beweisbearbeitungen der Studierenden zum operativen und zum formalen Beweis in einer 

Folgestudie tiefergehend qualitativ zu analysieren. Dieses Forschungsprojekt wird im folgenden 

Abschnitt beschrieben. 

5.2.2.2 Qualitative Analyse von Hausaufgabenbearbeitungen zum operativen und zum 

formalen Beweis 

 

Forschungsanliegen und Forschungsfragen 

In der explorativen Analyse der Hausaufgabenbearbeitungen (Abschnitt 5.2.2.1) wurden bereits 

einige Probleme der Studierenden mit dem Konzept des operativen Beweises und dem Umgang mit 

Variablen bei der Formulierung von Behauptungen und bei der Konstruktion von formalen Beweisen 

benannt.  Die Arbeit von Schilberg (2012) bot somit erste Anhaltspunkte für die Untersuchung der 

Beweisproduktionen der Studierenden und ihres Umgangs mit mathematischen Behauptungen und 

kann somit als Startpunkt der folgenden Untersuchungen betrachtet werden. Die bei dieser 

explorativen Analyse offen gebliebenen Fragen sollten durch die Beantwortung der folgenden 

Leitfragen zur Auswertung beantwortet werden: 

• Leitfragen zur Auswertung [1]: Welche Begründungen führen Erstsemesterstudierende an, 

wenn sie aufgefordert werden, einen operativen Beweis zu führen? 

• Leitfragen zur Auswertung [2]: Benutzen die Studierenden das Argument, welches sie im 

operativen Beweis verwendet haben, auch in dem darauf folgenden formalen Beweis? 

• Leitfragen zur Auswertung [3]: Welche Begründungen führen Erstsemesterstudierende an, 

wenn sie aufgefordert werden, einen formalen Beweis zu führen? 

• Leitfragen zur Auswertung [4]: Welche Probleme werden bei den Studierenden im Umgang 

mit     Variablen deutlich, wenn sie eine Behauptung formulieren und diese formal beweisen? 

Und in welcher Quantität treten diese auf? 
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Darstellungen des Forschungsprojekts wurden in Biehler und Kempen (2013) und Kempen (2014) 

veröffentlicht. 

Aufgabenanalyse und Forschungsmethode 

Der Analysegegenstand dieser Untersuchung waren die 64 eingescannten studentischen 

Bearbeitungen der folgenden Hausaufgabe: 

Hausaufgabenblatt 1 - Aufgabe 2 

Beweisen Sie die nachfolgenden Behauptungen jeweils operativ und symbolisch. Formulieren Sie vor dem 

symbolischen Beweis zunächst die Behauptung mit Variablen. 

 

a) Die Summe aus einer ungeraden natürlichen Zahl und ihrem Doppelten ist immer ungerade. 

 

Im Folgenden werden exemplarisch zwei Lösungsmöglichkeiten für die Konstruktion des operativen 

Beweises angegeben: 

Operativer Beweis (1):  

1 + 2 ∙ 1 = 3 ∙ 1 = 3,									3 + 2 ∙ 3 = 3 ∙ 3 = 9,									5 + 2 ∙ 5 = 3 ∙ 5 = 15 

In den Beispielen wird deutlich, dass die Summe aus einer ungeraden Zahl und ihrem Doppelten immer gleich dem 

Dreifachen der (ungeraden) Ausgangszahl ist. Da das Produkt von zwei ungeraden Zahlen immer ungerade ist, muss das 

Ergebnis immer ungerade sein. 

Operativer Beweis (2): 

1 + 2 ∙ 1 = 1 + 2 = 3,									3 + 2 ∙ 3 = 3 + 6 = 9,									5 + 2 ∙ 5 = 5 + 10 = 15 

In den Beispielen wird deutlich, dass die Summe aus einer ungeraden Zahl und ihrem Doppelten immer geschrieben werden 

kann als Summe aus einer ungeraden und einer geraden Zahl, weil das Doppelte einer Zahl immer gerade ist.  Da die Summe 

aus einer geraden und einer ungeraden Zahl immer ungerade ist, muss das Ergebnis immer ungerade sein. 

Für die Formulierung der Behauptung mithilfe von Buchstabenvariablen ergeben sich etwa die 

folgenden Möglichkeiten:  

Formulierung der Behauptung (1): Sei �	(	ℕ eine beliebige ungerade Zahl. Dann gilt: � + 2� ist eine ungerade Zahl. 

Formulierung der Behauptung (2): Für alle �	(	ℕ existiert ein �	(	ℕ mit: 
2� − 1� + 2ÿ	
2� − 1� = 2� − 1. 

Während in der Formulierung (1) die Buchstabenvariable bereits als ungerade natürliche Zahl 

definiert wird, wird in der Formulierung (2) deren Repräsentation als „
2� − 1�“ verwendet, 

wodurch die Nutzung einer zweiten Buchstabenvariable nötig wird. In der ersten Formulierung, die 

durchaus mit den sozio-mathematischen Normen der Veranstaltung vereinbar ist, wird die implizit 

vorhandene Existenzbehauptung nicht ausgeführt. 

Entsprechend der Formulierung der Behauptung ergeben sich verschiedene Möglichkeiten für die 

Konstruktion des formalen Beweises: 

Formaler Beweis (1), der auf der Formulierung (1) aufbaut und der Argumentation im operativen Beweis (1) entspricht:  

Sei �	(	ℕ eine beliebige ungerade Zahl. Dann gilt: � + 2� = 3�.  

Da das Dreifache einer ungeraden Zahl immer ungerade ist, ist damit die Behauptung bewiesen. 

Formaler Beweis (2), der auf der Formulierung (2) aufbaut:  
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Sei �	(	ℕ beliebig, aber fest. Dann gilt: 
2� − 1� + 2ÿ
2� − 1� = 6� − 3 = 2
3� − 1� − 1 = 2� − 1,  

wobei � ≔ 
3� − 1�(	ℕ.	 Q.e.d. 

Die Kategoriensysteme 

Für die Analyse der Studierendenbearbeitungen war die Konstruktion eines neuen 

Kategorienschemas erforderlich, da Bearbeitungen zu operativen Beweisen bislang in der Literatur 

nicht eingehend untersucht wurden und entsprechende Kategoriensysteme hier nicht zur Verfügung 

standen. Mit der Forschungsmethode der qualitativen Inhaltsanalyse wurde daher eine induktive 

Kategorienbildung (Mayring 2010, S. 83ff.) vorgenommen. Auch wurden für die Analyse der 

Bearbeitungen zum formalen Beweis entsprechende Kategorien formuliert, was einen Vergleich der 

Bearbeitungen zu den beiden Beweisformen ermöglichte. Die Kategorienbildung geschah durch den 

Autor und wurde in mehreren Besprechungen mit dem Betreuer der Dissertation Rolf Biehler 

diskutiert. Nach der Festlegung des Kategoriensystems wurden die Bearbeitungen, die Grenzfälle 

darstellten, gemeinsam diskutiert, um eine entsprechende Reliabilität der Ergebnisse zu 

gewährleisten. Das hierbei entwickelte Kategoriensystem wird im Folgenden dargestellt und mit 

Ankerbeispielen illustriert. Eine entsprechende Darstellung wird auch in Kempen (2013, S. 467) 

gegeben. 

Als Kategoriensystem für den operativen Beweis wurde das folgende verwendet:  

Name Beschreibung Ankerbeispiel (entnommen aus den 

Studierendenbearbeitungen) 

E0 Der „operative Beweis” beinhaltet Beispiele, die nicht zu 

der Behauptung passen. 

� = 2:						
3 ∙ 2� − 3 = 3	
� = 4:						
3 ∙ 4� − 3 = 9	
� = 6:						
3 ∙ 6� − 3 = 15 

E1 Der „operative Beweis” besteht nur aus einer Verifikation 

durch verschiedene Beispiele, ohne dass allgemeingültige 

Prinzipien benannt werden. 

/ = 7:						7 + 
2 ∙ 7� 			= 21	
/ = 11:	11 + 
2 ∙ 11� = 33	
/ = 3:						3 + 
2 ∙ 3� 			= 9 

P1 In den Beispielen innerhalb des „operativen Beweises“ 

werden allgemeingültige Operationen und Umformungen 

deutlich, welche allerdings nicht expliziert werden. 

1.) 7 + 14 = 21	
h�	
7 + 
2 ∙ 7� = 7 + 7 + 7 = 3 ∙ 7 = 21 
 

2.) 3 + 6 = 9	
h�	
3 + 
2 ∙ 3� = 3 + 3 + 3 = 3 ∙ 3 = 9 
 

P2 In den operativen Beweisen werden allgemeingültige 

Prinzipien deutlich, die benannt und in der folgenden 

Argumentation zum Beweisen der Behauptung genutzt 

werden. 

��	3 + 
3 ∙ 2� 			= 9     �	
��	9 + 
9 ∙ 2� 			= 27   � 

*�	7 + 
7 ∙ 2� 			= 21   � 

Die Behauptung stimmt, weil die Verdoppelung 

einer ungeraden Zahl zu einer geraden Zahl führt. 

Die Addition einer geraden und einer ungeraden 

Zahl ergibt eine ungerade Summe. 

Tabelle 6: Kategorienschema zur Analyse der Studierendenbearbeitungen zum operativen Beweis im Wintersemester 
2011/12 
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Das Kategoriensystem für den formalen Beweis war dabei wie folgt: 

Name Beschreibung Ankerbeispiel (entnommen aus den 

Studierendenbearbeitungen) 

P1 Diverses (unverständlich, falsch, ziellos, ...) 

 

[Ein Studierender versuchte eine andere 

Behauptung zu beweisen. Seine 

Bearbeitung wurde in diese Kategorie 

eingeteilt.] 

P2 Die Beweisführung beinhaltet keine Argumentation. 

 

Formaler Beweis: 

2� − 1 + 2
2� − 1� = 2� − 1 

P3 Die Argumentation im Beweis enthält Lücken und/oder es 

werden Argumente genutzt, die nicht allgemeingültig 

sind. 

 

Beweis: 

2� + 1 + 2
2� + 1� = 6� + 3 

 

6� ist ein Vielfaches von 2, aber 3 lässt sich nicht 

durch 3 teilen. 

P4 Die Argumentation im Beweis ist logisch und korrekt. Beweis: 

B	(	i: 
2B + 1 + 2
2B + 1� = 3
2B + 1� ist ungerade, 

denn 2B + 1 ist ungerade, 3 ist ungerade. Also ist 

das Produkt 3
2B + 1� ungerade
30

. 

Tabelle 7: Kategorienschema zur Analyse der Studierendenbearbeitungen zum formalen Beweis im Wintersemester 
2011/12 

Ergebnisse31 

Beantwortung der Leitfrage zur Auswertung [1]: Welche Begründungen führen 

Erstsemesterstudierende an, wenn sie aufgefordert werden, einen operativen Beweis zu führen? 

Die Ergebnisse bzgl. der Beweiskonstruktionen der Studierenden zum operativen Beweis werden in 

der Tabelle 8 dargestellt. Auffällig ist hierbei, dass von den insgesamt 53 Bearbeitungen zum 

operativen Beweis 67,9% aus bloßen Beispielüberprüfungen (E1) bestehen. Nur in 14 Bearbeitungen 

(P1 + P2) wurden überhaupt weiterführende Operationen vorgenommen, wobei nur sechs 

Bearbeitungen als vollständige operative Beweise bewertet werden konnten (P2), da in acht Fällen 

die Argumentation nicht expliziert worden war (P1). 

 

 

                                                           
30

 Die implizite Verwendung des Satzes, dass das Produkt von zwei ungeraden natürlichen Zahlen immer 

ungerade ist, wird dabei nicht als Lücke gewertet. 
31 Die folgenden Ergebnisse wurden auch in Biehler und Kempen (2013, S. 91ff.) veröffentlicht. Sprachliche 

Anlehnungen an diese englischsprachige Publikation werden für eine bessere Lesbarkeit der Darstellungen 

nicht angemerkt. 
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Kategorie Häufigkeit 

E0 3 (5,7%) 

E1 36 (67,9%) 

P1 8 (15,1%) 

P2 6 (11,3%) 

Summe 53 (100%) 

Tabelle 8: Ergebnisse bzgl. der Bearbeitungen  
zum operativen Beweis (WS 2011/12) 

Beantwortung der Leitfrage zur Auswertung [2]: Benutzen die Studierenden das Argument, welches 

sie im operativen Beweis verwendet haben, auch in dem darauf folgenden formalen Beweis? 

Von den 14 Studierenden, deren Bearbeitungen zum operativen Beweis weiterführende Operationen 

aufwiesen (P1+P2), bearbeiteten elf die Aufgabe zum formalen Beweis. Bei acht dieser formalen 

Beweise konnten parallele algebraische Umformungen zum vorher erfolgten operativen Beweis 

ausgemacht werden.  

Beantwortung der Leitfragen zur Auswertung [3] und [4]: Welche Begründungen führen 

Erstsemesterstudierende an, wenn sie aufgefordert werden, einen formalen Beweis zu führen? 

Welche Probleme werden bei den Studierenden im Umgang mit Variablen deutlich, wenn sie eine 

Behauptung formulieren und diese formal beweisen? 

Von den 64 Studierenden, deren Bearbeitungen zur Analyse vorlagen, versuchten nur 34 die 

Formulierung der Behauptung. Hierbei formulierten 21 Studierende die Behauptung in der oben 

angegebenen Variante (1) und sechs entsprechend der Variante (2). Sieben Bearbeitungen müssen 

als Mischform der beiden Varianten betrachtet werden. Bei der Formulierung der Behauptung 

entsprechend der zweiten Variante wurde nur in einem Fall die Für-Alle-Aussage expliziert, eine 

Existenzbehauptung wurde von keinem Studierenden formuliert. Darüber hinaus wiesen alle 

Formulierungen formale Fehler im Umgang mit bzw. in der Definition der Variablen auf. 

Neben der Einordnung der Studierendenbearbeitungen zum formalen Beweis in das oben genannte 

Kategoriensystem wurde hier weiter kategorisiert, ob in den Bearbeitungen auch formale Fehler im 

Umgang mit den Variablen vorzufinden sind. Die entsprechenden Ergebnisse werden in der Tabelle 9 

dargestellt. Bemerkenswert erscheint hierbei besonders, dass selbst bei dieser grundlegenden 

Beweisaufgabe nur 51,8% der Bearbeitungen als vollständig und korrekte Beweise bewerten werden 

konnten (P4). Bei der Betrachtung der formalen Fehler ist darüber hinaus auffällig, dass insgesamt 

nur neun Bearbeitungen (16,1%) als formal korrekt betrachtet werden konnten. Es lässt sich hier 

festhalten, dass nur in 22 Fällen (39,9%) ein vollständiger und korrekter Beweis ohne formale Fehler 

vorlag. 

Kategorie Häufigkeit formal korrekt mit formalen Fehlern 

P1 1 (1,8%) 0 1 (1,8%) 

P2 8 (14,3%) 1 (1,8%) 7 (12,5%) 

P3 18 (32,1%) 1 (1,8%) 17 (30,4%) 

P4 29 (51,8%) 7 (12,5%) 22 (39,3%) 

Summe 56 (100%) 9 (16,1%) 47 (83,9%) 

Tabelle 9: Ergebnisse bzgl. der Bearbeitungen zum formalen Beweis (WS 2011/12) 
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Zusammenfassung und Diskussion der Ergebnisse  

Ein Großteil der Studierenden scheint zu dem Zeitpunkt der ersten Hausaufgabenabgabe das Konzept 

des operativen Beweises als eine Form allgemeingültiger Verifikation noch nicht verstanden zu 

haben. Da diese Beweisform im weiteren Verlauf der Veranstaltung auch nicht weiter thematisiert 

wurde, kann vermutet werden, dass den Studierenden diese Konzeption auch im weiteren Semester 

nicht deutlich wurde. Außerdem lässt die (überraschend) geringe Anzahl gelungener operativer 

Beweise darauf schließen, dass die Konstruktion entsprechender Beweise nicht als triviale Tätigkeit 

verstanden werden darf, sondern als wirklicher Lerngegenstand begriffen werden muss.  

Bei dieser Analyse der Teilaufgabe zur Formulierung der Behauptung wurde deutlich, welche Aspekte 

Studierende berücksichtigen müssen, um eine mathematische Behauptung korrekt zu formulieren. 

Neben der Formalisierung der Behauptung mithilfe von Buchstabenvariablen, der korrekten 

Definition und Nutzung der Variablen ist auch das Verstehen um die (implizite) All- und 

Existenzaussage von Bedeutung. Die überhaupt geringe Anzahl von Bearbeitungen dieser Teilaufgabe 

in Verbindung mit den schlechten Resultaten macht deutlich, dass auch diese Aufgabe für 

Studienanfänger eine Herausforderung darstellt und entsprechende Anforderungen im Rahmen der 

Lehrveranstaltung deutlicher vorbereitet werden müssen. 

Die Ergebnisse bzgl. der Konstruktion der formalen Beweise lassen darauf schließen, dass auch diese 

Tätigkeit für die Studienanfänger keine triviale Tätigkeit ist; nur gut der Hälfte der Studierenden 

gelingt eine entsprechende Argumentation. Dass insgesamt in 83,9% der Bearbeitungen formale 

Fehler auftreten, deutet darauf hin, dass die Studienanfänger wenig Erfahrung im richtigen Umgang 

mit Variablen zur Verifikation einer Behauptung zu haben scheinen.  

Bei der Durchführung der Untersuchung wurde auf eine Zweitcodierung der Beweisbearbeitungen 

verzichtet. Da das Projekt darauf ausgelegt war, erste Erkenntnisse über die Beweiskonstruktionen 

der Studienanfängerinnen und -anfänger und ihr Verständnis zum operativen Beweis zu erhalten, auf 

Grund derer die Lehrveranstaltung begründet weiterentwickelt werden konnte, wurde der 

vorliegende Grad an Reliabilität (und auch an Objektivität) für ausreichend befunden. 

5.2.3 Retrospektive Analyse der ersten Durchführung der Lehrveranstaltung 

 

Aufgrund der im Rahmen der ersten Durchführung der Lehrveranstaltung erfolgten Forschung 

konnten oben bereits drei zentrale Problemfelder herausgearbeitet werden, die für die vorliegende 

Arbeit von Interesse sind: Die Studierenden haben Probleme (1) mit der Formulierung und mit dem 

Verständnis von mathematischen Behauptungen, (2) mit der Verwendung von Buchstabenvariablen 

bei der Konstruktion von formalen Beweisen und (3) mit dem Konzept des operativen Beweises, 

gerade in Abgrenzung zu bloßen Beispielbetrachtungen. Durch die gemachten Lehrerfahrungen des 

Dozenten und der Wissenschaftlichen Mitarbeiter konnten weitere Aspekte ausgemacht werden, die 

sich wiederum mit den Rückmeldungen der studentischen Hilfskräfte und der Studierenden deckten. 

Hierzu zählen: (4) Es müssen vermehrt passgenaue Aufgaben in den Übungsbetrieb eingebunden 

werden, die stärker die grundlegenden Aspekte im Kontext von Behauptungen und (operativen und 

formalen) Beweisen fokussieren, (5) selbst die studentischen Hilfskräfte haben Probleme mit dem 

Konzept des operativen Beweises und (6) im Rahmen der Lehrveranstaltung werden eine Vielzahl 

unterschiedlicher (Meta-) Begriffe im Kontext des Beweisens („Überprüfung“, „Verifikation“, 
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„Beweis“, „operativer Beweis“, „symbolischer Beweis“ „Begründung“, „operativ-graphischer 

Beweis“, „allgemeine Darstellung“, … ) verwendet.  

Diese verschiedenen Punkte werden im Folgenden kurz ausgeführt. Am Ende des Abschnitts erfolgen 

eine Bewertung derselben unter den Perspektiven „Beweisen als diagrammatisches Schließen“ und 

„sozio-mathematische Normen“ und ein Abgleich mit der vor der Durchführung der 

Lehrveranstaltung aufgezeigten intentionalen Dimension. Die herausgearbeiteten Problemfelder und 

daraus abgeleiteten Implikationen bilden den Rahmen für die Überarbeitung und Durchführung der 

Lehrveranstaltung, wie sie im folgenden Abschnitt dargestellt wird. 

(1) zum Verständnis mathematischer Behauptungen 

Ein adäquates Verständnis mathematischer Behauptungen ist eine zentrale Voraussetzung für 

die Konstruktion und das Verständnis von Beweisen. Wie bereits in Abschnitt 2.1.6 dargelegt 

wurde, bildet gerade das Verständnis einer Für-Alle-Aussage eine notwendige Voraussetzung für 

die Herausbildung eines adäquaten Beweisverständnisses und die Grundlage für die 

Wahrnehmung verschiedener Funktionen von Beweisen. Zwar wurde in der Vorlesung der 

Lehrveranstaltung im Wintersemester 2011/12 auf die Inhalte und Formulierung von 

mathematischen Behauptungen eingegangen; der Umfang dieser Bemühungen scheint dabei 

nicht ausgereicht zu haben, um bei den Studierenden ein entsprechendes Verständnis 

herauszubilden.  

(2) zum Umgang mit Buchstabenvariablen und der Konstruktion von formalen Beweisen 

Der Umgang mit Variablen war bereits expliziter Gegenstand der Lehrveranstaltung. Auch 

wurden Aufgabenformate eingebunden, die sich speziell mit dieser Thematik beschäftigten; so 

sollten die Studierenden Behauptungen zunächst verbal und dann mithilfe von 

Buchstabenvariablen formulieren, bevor sie diese beweisen sollten. Diese Maßnahmen scheinen 

noch nicht ausgereicht zu haben, um das gewünschte Ergebnis zu erzielen. Insgesamt musste 

auch festgestellt werden, dass die Beweiskonstruktionen der Studierenden allgemein nicht den 

Ansprüchen der Lehrenden genügten. Viele ‚formale Beweise‘ erschienen eher als ungeordnete 

Entdeckungsnotizen und nicht als ‚saubere‘ Reinschrift.  

(3) zum Konzept des operativen Beweises 

Insgesamt betrachtet, scheint das Konzept des operativen Beweises den Studierenden nicht 

ausreichend deutlich geworden zu sein. Die Thematisierung des Konzepts in den ersten beiden 

Vorlesungssitzungen und im Rahmen der ersten Hausaufgabe scheint nicht genügt zu haben, um 

den Studierenden diese Beweisform zu vermitteln. Die Probleme, die die Studierenden mit dem 

Lerngegenstand „operativer Beweis“ haben, wurden insgesamt unterschätzt.  

(4) zu den verwendeten Übungsaufgaben 

Bereits in der ersten Durchführung der Lehrveranstaltung wurden explizit verschiedene 

Aufgabenformate verwendet, die die Verwendung von Variablen bei der Formulierung von 

Behauptungen und der Konstruktion von formalen Beweisen thematisierten. Auch wurden 

Aufgaben zu der Konstruktion von operativen Beweisen gestellt. Es scheint allerdings notwendig 

zu sein, Aufgabenformate in den Übungsprozess zu integrieren, die spezifischer elementare 

Aspekte der Thematik fokussieren. Wenn die Lehrveranstaltung außerdem den Anspruch 

verfolgt, dass die Studierenden in eine prozesshafte Mathematik eingeführt werden, dann 

müssen vermehrt Übungsaufgaben eingebunden werden, die entsprechenden Raum für 

Exploration und eigenständiges ‚mathematisches Tun‘ schaffen.  

 



146 

 

(5) zu den Problemen der studentischen Hilfskräfte mit dem Konzept des operativen Beweises 

Bei der Durchsicht der wöchentlichen Hausaufgabenkorrekturen der studierenden Hilfskräfte 

wurde ein weiteres Problem deutlich: Da diese Studierenden selbst nie in ihrem Studium mit 

operativen Beweisen in Kontakt gekommen waren, schienen auch sie grundlegende 

Verständnisschwierigkeiten mit dieser Beweisform zu haben. Es ist offensichtlich, dass die 

Korrekturen entsprechender Beweisversuche in den Hausaufgaben zu wünschen übrig ließen. 

Über entsprechende Probleme bei den Erörterungen verschiedener Beweisformen in den 

Kleingruppenübungen kann nur spekuliert werden. 

(6) zu den verwendeten Begrifflichkeiten im Kontext von Beweisen 

Bei der Betrachtung der gesamten Lehr- und Lernmaterialien der Lehrveranstaltung wurde die 

Verwendung einer Vielzahl unterschiedlicher Begriffe (und Aufgabenoperatoren) deutlich, mit 

denen die Studierenden konfrontiert wurden. Hierzu gehören: Operativer Beweis, Beweis mit 

Variablen, symbolischer Beweis, formaler Beweis, mathematische Begründung, operativ-

graphische Begründung, operativ-graphischer Beweis, allgemeines Diagramm für einen 

operativen Beweis, Begründung anhand eines Punktmusters und Begründung an einer 

geeigneten Skizze. Es lässt sich hier vermuten, dass die Vielzahl der unterschiedlichen Begriffe 

nicht zu einer konzeptuellen Sicherheit auf Seiten der Studierenden beigetragen hat, auch, da 

sprachliche Unterschiede nicht thematisiert oder geklärt wurden. So weist auch Dreyfus (1999, S. 

103) darauf hin, dass die Verwendung von vielen unterschiedlichen Begriffen und Operatoren im 

Kontext von Beweisen zu Verwirrung führen kann. 

Erörterung der Ergebnisse unter der Perspektive des „diagrammatischen Schließens“ 

Der Umgang mit Variablen in Beweisen umfasst unter dieser semiotischen Perspektive die 

Konstruktion von Diagrammen, das Vornehmen von Transformationen an diesen und das 

‚Interpretieren‘ der erhaltenen Resultate (vgl. Abschnitt 2.5). Für den Bereich der formalen Beweise 

kann dabei festgehalten werden, dass bereits die erste Phase des diagrammatischen Schließens (die 

Konstruktion der Diagramme) bei den Studierenden fehlerbehaftet ist, denn Buchstabenvariable 

erhalten erst durch eine korrekte Definition ihre ‚Bedeutung‘ als Diagramme, mit denen agiert 

werden kann. Die Definition der Buchstabenvariablen bestimmt dabei auch die Lesart, mit der das 

schließlich erhaltene Diagramm gelesen werden muss. Während die Anwendung von 

Transformationen auf die jeweiligen Diagramme (‚Termumformungen‘) eher kein Problem 

darzustellen scheint, müssen die Konstruktion und das Lesen der Diagramme als besonderer 

Problembereich eingestuft werden. Ein mangelhafter Umgang mit Variablen erweist sich dabei als ein 

unzureichendes kollaterales Wissen in Bezug auf das entsprechende Diagrammsystem und eine 

unzureichend ausgebildete Praxis im Umgang damit. Folglich sind dies die Lerngegenstände, die es in 

dieser Hinsicht in der Lehrveranstaltung deutlicher zu fokussieren gilt und zu denen entsprechende 

Übungsaufgaben konstruiert werden müssen. 

Durch die Analyse der Bearbeitungen zum operativen Beweis (Abschnitt 5.2.2) wurde deutlich, dass 

bei den Studierenden konzeptionelle Probleme mit dieser Beweisform den Akt eines 

allgemeingültigen diagrammatischen Schließens im Kontext der Arithmetik verhindern. Somit gilt es, 

zunächst das Konzept operativer Beweise genauer zu erörtern, damit der Akt des allgemeingültigen 

diagrammatischen Schließens aufgrund der verwendeten Operationen thematisiert und verdeutlicht 

werden kann. 

 



147 

 

Erörterung der Ergebnisse unter der Perspektive „sozio-mathematischer Normen“ 

Die konzeptuellen Probleme der Studierenden mit den operativen Beweisen machen deutlich, dass 

ihnen explizit Normen an die Hand gegeben werden müssen, an Hand deren sie ihre 

Beweiskonstruktionen ausrichten können. Dies gilt entsprechend für die Konstruktion von formalen 

Beweisen. Auch gilt es, entsprechende Normen für den Umgang mit Buchstabenvariablen zu 

kommunizieren; dies betrifft sowohl die Formulierung von Behauptungen als auch die Konstruktion 

formaler Beweise. Somit kann unter der Perspektive sozio-mathematischer Normen festgehalten 

werden, dass neben der Etablierung von Normen für die Konstruktion von Beweisen auch der 

Umgang mit Variablen expliziter Gegenstand der Lehrveranstaltung werden muss32.  

Ein weiteres Thema „sozio-mathematischer Normen“ ist dabei das Problem einer geteilten ‚Meta-

Sprache‘ zum Beweisen. Hier muss eine Vereinheitlichung und Normierung vorgenommen werden, 

welche Begriffe mit welcher Bedeutung verwendet werden. 

Abgleich mit der intentionalen Dimension der ersten Durchführung der Lehrveranstaltung 

Der Einstieg in die Vorlesung mit Teilbarkeitsfragen in den natürlichen Zahlen, zur Anknüpfung an 

schulische Vorerfahrungen und zur Akzeptanz und produktiven Nutzung von schulischem Vorwissen 

erscheint insgesamt sinnvoll und gewinnbringend. Die Vermittlung des Konzepts des operativen 

Beweises, gerade als schuladäquate Begründungsform, hat dabei nicht in dem Umfang funktioniert, 

wie es vor der Lehrveranstaltung durch die Lehrenden intendiert gewesen war. Auch die Ergebnisse 

zum formalen Beweis waren insgesamt als noch unbefriedigend zu bezeichnen, was auch auf einen 

fehlerhaften Umgang der Studierenden mit Buchstabenvariablen zurückzuführen ist. Die 

Inhaltsbereiche der Elementarmathematik und die Thematik der figurierten Zahlen scheinen sich als 

gewinnbringend erwiesen zu haben, um den Studierenden mathematisches Arbeiten zu ermöglichen 

und um den Prozesscharakter der Mathematik herauszustellen. Dabei wurde allerdings nicht 

eingehend untersucht, inwieweit die Studierenden nun in der Lage sind, mit ‚inhaltlich-

anschaulichen‘ Darstellungen umzugehen. Insgesamt konnte durch die Themenorientierung an der 

Teilbarkeit, das Aufgreifen und Vermitteln von Begründungsformen der Schulmathematik und den 

Einbezug von inhaltlich-anschaulichen Darstellungsmitteln ein stetiger Schulbezug hergestellt 

werden. Als Heuristiken des mathematischen Arbeitens im Rahmen von Exploration und 

Verifikationsprozessen wurden den Studierenden drei verschiedene Strategien an die Hand gegeben: 

die Überprüfung einer Behauptung mit Zahlenbeispielen, operative Beweise und Beweise mit 

Variablen. Auch diese Unterscheidung erscheint insgesamt sinnvoll, um den Studierenden 

mathematisches Tun näherzubringen, ihnen den Prozesscharakter der Mathematik zu verdeutlichen 

und die verschiedenen Verifikationsmethoden sinnvoll in den Erkenntnisprozess zu integrieren. 

Inwieweit dabei ein adäquates Beweisverständnis auf Seiten der Studierenden erreicht werden 

konnte, muss an dieser Stelle noch offen gelassen werden. 

5.3. Die Lehrveranstaltung im Wintersemester 2012/13 und die im Kontext 

dieser Durchführung erfolgten Studien 
In diesem Abschnitt werden zunächst die Änderungen der Lehrveranstaltung beschrieben und 

begründet, wie sie im Wintersemester 2012/13 aufgrund der Erfahrungen aus dem vorherigen 

                                                           
32

 Diese Kommunikation von Normen wird daher als Aspekt „sozio-mathematischer“ Normen aufgefasst, da 

ihre genaue Bedeutung und Reichweite durch ihre Umsetzung aller am Lernprozess Beteiligten konstituiert 

wird. 
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Durchgang vorgenommen wurden. Anschließend werden die Untersuchungen beschrieben, welche 

im Rahmen dieser Durchführung erfolgt sind. Hierzu gehören eine qualitative Analyse der 

Beweisproduktionen der Studierenden in ihrer ersten Hausaufgabe (Abschnitt 5.3.2.1), ein 

Bewertungstest zu verschiedenen Beweisproduktionen (Abschnitt 5.3.2.2), die Pilotierung einer 

Videostudie zum generischen und zum formalen Beweis (Abschnitt 5.3.2.3) und eine Analyse der 

Beweiskonstruktionen der Studierenden in der Abschlussklausur der Lehrveranstaltung (Abschnitt 

5.3.2.4). 

5.3.1 Veränderungen bei der zweiten Durchführung der Lehrveranstaltung im 

Wintersemester 2012/13 

In der zweiten Durchführung der Lehrveranstaltung wurden im Wintersemester 2012/13 aufgrund 

der bisherigen Forschungsergebnisse und Lehrerfahrungen die folgenden Änderungen 

vorgenommen: (1) Die Struktur des ersten Kapitels wurde modifiziert, (2) es wurde eine explizite 

‚Analyse‘ einer mathematischen Behauptung vorgeführt, in deren Kontext auch der Variablenbegriff 

thematisiert wurde, (3) es erfolgte eine Umbenennung des ‚operativen Beweises‘ zum ‚generischen 

Beweis‘, (4) die drei mathematischen Strategien zum Überprüfen einer Behauptung wurden 

umbenannt, (5) es wurde explizit zwischen logischen und psychologischen Aspekten beim Umgang 

mit Beispielbetrachtungen und Beweisen unterschieden, (6) es wurden sozio-mathematische 

Normen für die Konstruktion von generischen Beweisen kommuniziert, (7) bei der Konstruktion 

‚formaler Beweise‘ wurde explizit zwischen der ‚Erarbeitung‘ und der abschließenden ‚Reinschrift‘ 

unterschieden, (8) die Rolle von Gegenbeispielen wurde deutlicher herausgestellt, (9) es wurde ein 

erster Versuch unternommen, die verschiedenen Begrifflichkeiten zum Beweisen anzugleichen und 

(10) die Verbindungen des zweiten Kapitels („figurierte Zahlen“) zum ersten Kapitel wurden 

deutlicher herausgestellt. Neben den Modifikationen, die sich auf die konkrete Durchführung der 

Vorlesung beziehen, wurden auch Änderungen im Kontext der Präsenzübungen vorgenommen. 

Grundlegend für das Gelingen des Übungskonzepts erschien hierbei zunächst (9) die Schulung der 

Tutoren zu sein. Einhergehend damit wurden auch (10) das Halten der Übungsgruppen durch 

Tutorentandems in die Lehrveranstaltung eingeführt und (11) neue Aufgaben und Aufgabenformate 

in die Präsenzübungen integriert. Diese Aspekte werden im Folgenden einzeln dargestellt. 

Veränderungen im Kontext der Vorlesung 

(1) Modifizierung der Struktur des ersten Kapitels der Lehrveranstaltung 

Im Wintersemester 2011/12 war das erste Kapitel der Lehrveranstaltung in drei Abschnitte 

gegliedert: (i) Die Überprüfung der Teilbarkeit durch ' der Summen von '	(	ℕ aufeinanderfolgenden 

Zahlen, (ii) die Niederschrift des gesamten erlangten Wissens gemäß fachmathematischer Literatur 

(Definition, Satz, Beweis) und (iii) eine alternative Erarbeitung eines Beweises für den gefundenen 

Satz, dass die Summe von '	(	ℕ aufeinanderfolgenden Zahlen genau dann durch ' teilbar ist, wenn ' 

ungerade ist. Diese Dreiteilung wurde im Wintersemester 2012/13 aufgehoben: Die Frage nach der 

Teilbarkeit der Summen aufeinanderfolgender Zahlen bildete nun den durchgehenden roten Faden 

für das gesamte erste Kapitel. Im Rahmen dieses ‚Forschungsprojekts‘ konnten dabei verschiedene 

Aspekte thematisiert werden: Bei der Diskussion der Ausgangsfrage (über die Teilbarkeit der Summe 

dreier aufeinanderfolgender Zahlen) erfolgte eine Thematisierung des Variablenbegriffs und eine 

logische Analyse der Behauptung (s. (2) unten). Anschließend wurden den Studierenden drei 

verschiedene Strategien für die Überprüfung von Behauptungen an die Hand gegeben (s. (4) unten), 

in welchem Kontext auch der generische und der formale Beweis eingeführt wurden. Bei der 
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Konstruktion der Beweise wurde dabei immer zwischen der Erarbeitung und der anschließenden 

‚Reinschrift‘ des Beweises unterschieden (s. (6) unten). Im Rahmen der Überprüfungen verschiedener 

Summen wurde weiter die Rolle von Gegenbeispielen explizit thematisiert und deren Bedeutung für 

den mathematischen Erkenntnisprozess herausgestellt (s. (7) unten).  

(2) Exemplarische Analyse einer mathematischen Behauptung und die explizite 

Thematisierung des Variablenbegriffs  

Ein Ergebnis der bisherigen Forschung war, dass die korrekte Verwendung und Definition von 

Buchstabenvariablen den Studierenden Probleme bereitete und dass es notwendig erschien, die 

‚Eigenarten‘ mathematischer Behauptungen deutlicher herauszustellen (siehe Abschnitt 5.2.2). Da 

die Verwendung von Variablen immer in gewisse mathematische Kontexte eingebunden ist, wurde 

die Analyse der Eingangsbehauptung auch dazu genutzt, den Variablenbegriff zu thematisieren. Aus 

diesem Grund wurde im ersten Kapitel der Lehrveranstaltung im Wintersemester 2012/13 nach der 

Eingangsfrage (über die Teilbarkeit durch 3 der Summe dreier aufeinanderfolgender Zahlen) eine 

„Analyse der Behauptung“ eingeschoben, in deren Kontext auch explizit der Gebrauch von Variablen 

und den hierzu benötigten Symbolen thematisiert wurde. Der folgende Abschnitt ist ein Zitat aus der 

Vorlesungsmitschrift aus dem Wintersemester 2012/13:  

Beispiel 1:  

Jemand behauptet, die Summe von 3 aufeinanderfolgenden natürlichen Zahlen ist immer durch 3 teilbar. 

Analyse der Behauptung: 

1. Egal mit welcher „Startzahl“ man beginnt, die Summe aus dieser und der beiden folgenden Zahlen ist 

durch	3 teilbar. 

2. Für alle Startzahlen gilt: 

Die Summe �1�B1`�ℎk	 +	
�1�B1`�ℎk	 + 	1� 	+ 	
�1�B1`�ℎk	 + 	2� ist durch 3 teilbar. 

[Hier wird �1�B1`�ℎk als eine sogenannte „Wortvariable“ verwendet.] 

3. Für alle Startzahlen � gilt: � + 
� + 1� + 
� + 2� ist durch 3 teilbar. 

Bei allen Variablen muss die zulässige Menge angegeben werden, aus der Werte für die Variable 

genommen werden können. 

Sprechweisen: 	
ℕ = {1, 2, 3, 4,… } ist die Menge der natürlichen Zahlen 

ℕl = {0, 1, 2, 3, 4,… } ist die Menge der natürlichen Zahlen mit der Null 

Man schreibt	� ∈ ℕ, wenn �	ein Element aus der Menge ℕ ist. 

4. Für alle Startzahlen � ∈ ℕ gilt: Die Summe � + 
� + 1� + 
� + 2� ist durch 3 teilbar. 

Gegenstand dieser Analyse ist zunächst die Bedeutung und die Verwendung von Wortvariablen. 

Diese Wortvariablen werden herausgearbeitet und schrittweise durch Buchstabenvariable ersetzt. 

Gleichzeitig wird die Norm eingeführt, dass bei der Verwendung von Buchstabenvariablen auch 

immer deren Grundmenge anzugeben ist, aus der Werte für diese entnommen werden dürfen. In 

diesem Kontext wird auch die Verwendung der Symbole „ℕ“, „{…}“, „ℕl“ und „∈“ thematisiert. Ein 

weiterer zentraler Aspekt dieses Abschnitts ist das Herausstellen der Für-Alle-Aussage. Wie bereits in 

Abschnitt 2.1.6 dargelegt wurde, ist das Verständnis dieser Aussage eine notwendige Grundlage für 

die Konstruktion eines entsprechenden Beweises und die Herausbildung eines adäquaten 

Beweisverständnisses.  
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(3) Umbenennung der Beweisform „operativer Beweis“ zu „generischer Beweis“ 

Ein Problem der Studierenden mit dem Konzept des operativen Beweises schien darin zu bestehen, 

dass ihnen nicht deutlich geworden war, was bei der Konstruktion dieser Beweisform zu geschehen 

hatte, das über bloße Beispielüberprüfungen hinausging (vgl. Abschnitt 5.2.2). Dieses 

Forschungsergebnis deckte sich mit den Eindrücken der Übungsgruppenleiter, Korrektoren der 

Hausaufgaben und Lehrenden der Veranstaltung. Der Begriff „operativer“ Beweis erwies sich hierbei 

in gewisser Weise als irreführend: Wurden bei der Überprüfung einer Behauptung an einem 

konkreten Beispiel die notwendigen Rechenoperationen vorgenommen, so verwiesen die 

Studierenden auf diese Umformungen und behaupteten ohne weitere Begründung, dass diese auch 

allgemeingültig und mit jeder beliebigen Zahl genauso durchführbar seien. Die Notwendigkeit, 

weiterführende Argumente zu präsentieren, die überdies eine beispielübergreifende Struktur 

deutlich werden ließen, um eine allgemeingültige Begründung für die Behauptung auszumachen, war 

ihnen nur schwer einsichtig zu machen. Ein Grund für die Umbenennung zum ‚generischen Beweis‘ 

war somit, den Fokus der Betrachtungen auf das generische Moment zu legen, das 

beispielübergreifend bei der Untersuchung verschiedener Beispiele ausgemacht und anschließend 

auch expliziert werden muss (vgl. Punkt (5) unten). Somit standen nicht mehr die Operationen, 

sondern der generische Aspekt im Vordergrund. Ein weiterer Grund war die internationale 

Anbindung an die aktuelle Forschungs- und Diskussionslage. Im internationalen Kontext ist der 

Begriff des ‚generic proofs‘ weit verbreitet, wogegen der Begriff ‚operative proof‘ fast ausschließlich 

in den Veröffentlichungen deutscher Mathematikdidaktiker Verwendung findet (vgl. Abschnitt 2.1.3). 

(4) Explizite Unterscheidung von bloßen Beispielbetrachtungen, generischen Beweisen und 

formalen Beweisen 

Im zweiten Durchgang der Lehrveranstaltung wurden die den Studierenden vorgestellten „drei 

Strategien zum Überprüfen einer Aussage“ umbenannt. Wurden die drei Strategien im vorherigen 

Durchgang noch als (1) „Die Überprüfung einer Behauptung an einigen Zahlenbeispielen“, (2) 

„Operative Beweise“ und (3) „Beweise mit Variablen“ bezeichnet, wurden diese im Wintersemester 

2012/13 wie folgt benannt: (1) „Testen der Aussage an Zahlenbeispielen“, (2) „Testen an 

Zahlenbeispielen mit dem Erkennen, was an diesen Beispielen verallgemeinerungsfähig (generisch) 

ist“ und (3) „Algebraische Umformungen“. Das Anliegen bestand hierbei darin, den Unterschied 

zwischen den ersten beiden Strategien deutlicher herauszustellen und die dritte Strategie (das 

Vornehmen algebraischer Umformungen) nicht, im Gegensatz zu den ersten beiden Strategien, mit 

einem ‚Beweis‘ gleichzustellen. 

(5) Die Unterscheidung zwischen logischen und psychologischen Aspekten bei 

Beispielbetrachtungen und Beweisen 

Im Kontext der drei Strategien zum Überprüfen einer Aussage (s.o.) wurde zwischen logischen und 

psychologischen Aspekten dieser Strategien unterschieden. Damit kann das bloße Testen einer 

Behauptung an konkreten Beispielen psychologisch positiv gewertet werden, um Klarheit darüber zu 

erlangen, was die genaue Bedeutung und Tragweite einer Aussage ist, und um vielleicht eine Einsicht 

darein zu erhalten, warum diese wahr ist (vgl. hierzu die Phase der Exploration im Beweisprozess, 

dargestellt in Abschnitt 2.1.1). Vom logischen Standpunkt muss dabei betont werden, dass die 

Überprüfung konkreter Fälle nie ausreichen kann, um eine Allaussage allgemeingültig zu beweisen. 
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Allerdings kann durch weitere Beispielüberprüfungen die subjektive (psychologische) Überzeugung 

gestärkt werden, dass eine Vermutung bzw. Behauptung wahr ist. 

(6) Kommunikation (sozio-mathematischer) Normen für die Konstruktion eines generischen 

Beweises 

Durch die bisherigen (negativen) Ergebnisse und Erfahrungen aus der Verwendung der (ehemals so 

genannten) ‚operativen‘ Beweise wurde deutlich, dass den Studierenden sozio-mathematische 

Normen vermittelt werden müssen, an denen sie ihre Beweiskonstruktionen normativ ausrichten 

können. Eine solche Explizierung der Normen wurde im Wintersemester 2012/13 gegeben. 

(Vergleiche hierzu die Erörterung dieser Beweiskonzeption in Abschnitt 2.1.3). Die aufgestellten 

Normen spiegeln dabei die Aktivitäten wider, die in Abschnitt 4.3.1 anhand der Literaturarbeit als 

konstituierende Elemente beispielgebundenen Beweisens herausgearbeitet wurden. 

 Ein generischer Beweis besteht aus: 

(1) Allgemeingültigen Umformungen an Zahlenbeispielen  

(2) Einer Begründung, warum die Behauptung in den Zahlenbeispielen wahr ist 

(3) Einer Begründung, warum diese Argumentation mit allen Zahlenbeispielen so prinzipiell möglich ist. 

Die Forderung nach der narrativen Begründung in (3) erwies sich auch daher als notwendig, damit 

der Leser (und ggf. der Korrektor) generischer Beweise sicherstellen kann, dass der 

Beweiskonstrukteur in seinen Beweisen wirklich ein generisches Moment erkannt hat. 

(7) Die Unterscheidung zwischen ‚Erarbeitung‘ und ‚Reinschrift‘ bei der Konstruktion ‚formaler 

Beweise‘ 

Nach der ersten Durchführung der Lehrveranstaltung waren sich die Lehrenden darüber einig, dass 

die ‚formalen Beweise‘ der Studierenden noch einen zu starken explorativen Charakter aufwiesen. Im 

Gegensatz dazu sollte der Explorationsprozess vor der finalen Niederschrift des Beweisproduktes 

eigentlich abgeschlossen sein, damit der Beweis höheren Ansprüchen in Bezug auf Logik und formale 

und sprachliche Darstellungen genügen kann. Um diesen Anspruch zu kommunizieren, ohne dabei 

die explizit gewünschte Explorationsphase der Beweisbearbeitung zu negieren, wurde im Rahmen 

der Lehrveranstaltung im Wintersemester 2012/13 zwischen der Erarbeitung eines Beweises und 

dessen Reinschrift unterschieden. Bei der Konstruktion von Beweisen wurde auch in der Vorlesung 

der Explorationsprozess dargestellt, dabei explizit „Vorüberlegungen zu einem Beweis“ notiert und 

abschließend der Beweis in „Reinschrift“ notiert.  

(8) Die erweiterte Thematisierung von Gegenbeispielen für den mathematischen 

Erkenntnisprozess 

Im Rahmen der Untersuchung der Teilbarkeit der Summen aufeinanderfolgender Zahlen wurde in der 

zweiten Durchführung der Lehrveranstaltung die Rolle von Gegenbeispielen deutlicher 

hervorgehoben. Bei der Widerlegung der Vermutung (2) (s.u.) wurden der Nutzen und die Bedeutung 

von Gegenbeispielen thematisiert, im Zuge der Vermutung (4) (s.u.) deren Tragweite weiter 

ausgeführt. 

 Vermutung (2): Die Summe von zwei aufeinanderfolgenden Zahlen ist immer durch zwei teilbar. 

1 + 2 = 3 und 3 ist eine ungerade Zahl, also nicht durch 2 teilbar. Dies ist ein Gegenbeispiel. Ein Gegenbeispiel 

reicht aus, um die Allaussage (2) zu widerlegen.  
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Vermutung (4): Die Summe von vier aufeinanderfolgenden Zahlen ist immer durch vier teilbar. 

1 + 2 + 3 + 4 = 10 und 10 ist nicht durch 4 teilbar. Die Allaussage (4) ist durch dieses  

  Gegenbeispiel widerlegt. 

Eine offene Frage ist aber die Vermutung (4’): Die Summe von vier aufeinanderfolgenden Zahlen ist nie durch vier 

teilbar. (Oder gibt es Startzahlen, bei denen die Summe dann durch 4 teilbar ist?) 

Beweis (Reinschrift) 

Sei �	(	ℕ	beliebig, aber fest. Dann gilt: � + 
� + 1� + 
� + 2� + 
� + 3� = 4� + 6. 

4� ist durch 4 teilbar ist, 6 ist aber nicht durch 4 teilbar ist, ist die Summe 4� + 6 nicht durch 4 teilbar. 

q.e.d. 

(9) Angleichen der Begrifflichkeiten zum Beweisen 

Da im Wintersemester 2011/2012 eine Vielzahl verschiedener Begrifflichkeiten zum Beweisen 

verwendet wurde (Abschnitt 5.2.3), sollte im darauffolgenden Jahr ein erster Versuch unternommen 

werden, die verschiedenen Begrifflichkeiten zu ordnen. Daher wurde im Kontext des ersten Kapitels 

ausschließlich von generischen und formalen Beweisen gesprochen. Als generische Beweise wurden 

nun auch die Beweise bezeichnet, die mithilfe konkreter Punktmusterdarstellungen erfolgt sind. 

Wurden Punktmusterbeweise unter Benutzung geometrischer Variablen (s.u.) verwendet, so wurden 

diese in Anlehnung an die formalen Beweise der Algebra als „formal-geometrische Beweise“ 

bezeichnet. 

(10) Herausstellen der Bezüge des zweiten Kapitels zum ersten 

In diesem Durchgang wurde gleich zu Beginn des zweiten Kapitels auf den Nutzen von (konkreten) 

Punktmusterdarstellungen für die Konstruktion generischer Beweise hingewiesen und ‚allgemeine‘ 

Punktmusterdarstellungen zur Repräsentation einer beliebigen Anzahl von Punkten in Anlehnung an 

die Buchstabenvariablen der Algebra als „geometrische Variablen“ bezeichnet (s. Abbildung 25). Des 

Weiteren wurden die in Kapitel 1 unterschiedenen Strategien für die Überprüfung einer Aussage 

(s.o.) im zweiten Kapitel explizit aufgegriffen. 

 

 

Änderungen im Kontext des Übungsbetriebs33 

(11) Schulung der Tutoren 

Bei der Durchsicht der wöchentlichen Hausaufgabenkorrekturen war bereits in der ersten 

Durchführung der Lehrveranstaltung (im Wintersemester 2011/12) auffällig gewesen, dass viele 

Korrekturen von (operativen) Beweisen durch studentische Hilfskräfte nicht den Ansprüchen der 

Mitarbeitenden entsprachen. Vielmehr zeugten die Korrekturen häufig von konzeptionellen 

Fehlverständnissen der Korrektoren. Dies kann dadurch erklärt werden, dass diese Studierenden 

selbst nie in ihrem Studium mit beispielgebundenen Beweisen in Berührung gekommen waren und 

dementsprechend die gleichen Verständnisprobleme aufwiesen wie die Studierenden der 

                                                           
33

 Die Ausgestaltung der Hausaufgaben oblag in diesem Durchgang einem anderen Wissenschaftlichen 

Mitarbeiter. Der Autor dieser Arbeit hatte aus diesem Grund keinen Einfluss auf diesen Teil der 

Lehrveranstaltung. 

Abbildung 25: Eine geometrische Variable zur 
Repräsentation einer beliebigen Anzahl von Punkten 
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Lehrveranstaltung. Um eine optimale Korrekturarbeit und Durchführung der Präsenzübungen durch 

studentische Hilfskräfte zu ermöglichen, wurden die Tutoren der Lehrveranstaltung vor Beginn des 

Semesters einer Tutorenschulung unterzogen. Die Konzeption und Durchführung der Schulung 

geschah hierbei nach dem Vorbild des in dem Projekt LIMA erarbeiteten Konzepts (siehe Biehler et 

al. 2013, S. 23ff.). 

 

Die Tutorenschulung wurde ganztägig, über die Dauer von acht Stunden durchgeführt und 

beinhaltete einen fachlichen, einen didaktischen und einen methodischen Anteil. Neben der 

Erarbeitung der fachlichen Elemente standen hierbei auch die mit den Inhalten verbundenen 

didaktischen Ziele, das Vorrechnen vor der Gruppe und das Korrigieren von Hausaufgaben (inkl. 

Feedbackgeben) im Zentrum der Schulung. 

Im fachlichen Teil der Schulung wurde den Teilnehmenden zunächst eine Einweisung in die Themen 

‚beispielgebundenes Beweisen‘, ‚Aussagenlogik‘ und ‚Beweistypen‘ gegeben. Hier wurden auch die 

didaktischen Intentionen der beispielgebundenen Beweise, die entsprechenden sozio-

mathematischen Normen und deren fachmathematischer Wert erörtert. Nach der anschließenden 

individuellen Bearbeitung von Beweisaufgaben und deren Besprechung im Plenum galt es für die 

Teilnehmenden, konkrete studentische Aufgabenbearbeitungen zu analysieren, zu diskutieren und 

mögliche Implikationen für die Lehre abzuleiten. Auch sollten hier gemeinsam Korrekturen erarbeitet 

werden, die den Studierenden bestmögliche Hilfestellungen geben sollten. Schließlich sollte jeder 

Teilnehmende eine Einführung in ein bestimmtes Thema der Schulung geben, welche jeweils 

videographiert wurde. Eindrücke, Probleme, Fragen und Feedback wurden dann im Plenum 

besprochen. 

 

Exkurs: Zu der Bedeutung von Tutorentandems 

 

Eine weitere Veränderung im Kontext der Präsenzübungen der Lehrveranstaltung war deren 

Durchführung unter der Leitung von sogenannten Tutorentandems. Im fraglichen Semester leiteten 

immer zwei studierende Hilfskräfte zusammen eine Übungsgruppe. Vorteile dieser Maßnahme 

können dabei auf verschiedenen Ebenen ausgemacht werden: 

Bei der Vorbereitung einer Präsenzübung können die studentischen Hilfskräfte ihre Ideen bezüglich 

der methodischen Vorgehensweise austauschen. Die zu besprechenden Aufgaben können aufgeteilt 

werden, wodurch sich jede Person auf einen Aufgabenteil konzentrieren kann. Während der 

Durchführung der Übung können sich die Übungsgruppenleiter gegenseitig Sicherheit geben. Bei 

Rückfragen können beide Tutoren antworten, wobei auch die Übungsgruppenteilnehmer von 

verschiedenen Antwortmöglichkeiten profitieren. Gerade in der Betreuung der Studierenden in der 

Arbeitsphase der Übung kommt der bessere Betreuungsschlüssel zum Tragen. Bei der nachträglichen 

Reflexion der Übung können sich die Übungsgruppenleiter gegenseitig ein Feedback geben und sich 

dabei überlegen, auf welche Aspekte in den folgenden Übungen noch einmal eingegangen werden 

soll. Diese Informationen wurden dann in der wöchentlichen Tutorenbesprechung mit allen Tutoren 

und den Mitarbeitern der Lehrveranstaltung besprochen. Diese gemeinsame Reflektion der Übung 

und der Aufgabenbearbeitungen begünstigt auch eine einheitliche Korrektur der Hausaufgaben. 

(12) Neue Aufgabenformate in den Präsenzübungen 

Da der Autor dieser Arbeit in dem fraglichen Durchgang ausschließlich für die Durchführung der 

Präsenzübungen zuständig war, wurde zunächst versucht, neue Aufgaben und Aufgabenformate 
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verstärkt in die Präsenzübungen zu integrieren. Eine Herausforderung bestand hierbei besonders 

darin, geeignete Behauptungen für die Konstruktion generischer Beweise auszumachen. Bei der 

Formulierung der Übungsaufgaben wurde im Kontext der Präsenzaufgaben immer darauf geachtet, 

dass explizit angemerkt wurde, welche Beweisform (generisch oder formal) von den Studierenden 

konstruiert werden sollte. Darüber hinaus wurden auch Aufgaben gestellt, bei denen Behauptungen 

mit beiden Beweisformen bewiesen werden sollten oder sich die Studierenden für die Konstruktion 

einer der beiden Beweisformen und somit für die Verwendung eines der beiden Diagrammsysteme 

(Arithmetik/Algebra) entscheiden sollten.  

5.3.1.1 Die intentionale Dimension der zweiten Durchführung der Lehrveranstaltung 

Für die Darstellung der intentionalen Dimension der zweiten Durchführung der Lehrveranstaltung 

lassen sich zunächst auf der ‚globalen‘ Ebene alle Punkte anführen, die bereits an entsprechender 

Stelle für die erste Durchführung formuliert wurden (s. Abschnitt 5.2.1.1). Aufgrund der bei dieser 

Durchführung vorgenommenen Modifikationen lassen sich spezielle ‚lokale‘ Intentionen ausmachen, 

die in der zweiten Durchführung der Lehrveranstaltung den Fokus der vorgenommenen empirischen 

Forschung gesetzt haben. Im Zentrum dieser lokalen Intentionen standen das Verständnis von 

mathematischen Behauptungen, die Bedeutung von (Gegen-) Beispielen für den mathematischen 

Erkenntnisprozess und die Beweiskonstruktionen der Studierenden zum formalen und zum 

generischen Beweis. Die vorgenommenen Modifikationen sollten dazu beitragen, dass den 

Studierenden deutlicher wird, was man von ihnen erwartet, wenn die Konstruktion eines formalen 

bzw. generischen Beweises gefordert wird. Hierzu wurden konkrete Normen kommuniziert, die 

Verwendung von Wort- und Buchstabenvariablen erörtert, explizit zwischen Beweiserarbeitung und 

Reinschrift unterschieden, der Unterschied zwischen generischen Beweisen und bloßen 

Beispielbetrachtungen und die Bedeutung mathematischer Allaussagen herausgestellt. Die Schulung 

der Tutoren sollte sicherstellen, dass die studentischen Hilfskräfte selbst über das notwendige 

fachmathematische Wissen verfügen und konform der Normen agieren, die im Rahmen der 

Vorlesung kommuniziert wurden. Für die Beforschung des zweiten Durchgangs der Lehrveranstaltung 

musste allerding der Beobachtungfokus eingegrenzt werden, da die Summe aller dieser Intentionen 

für eine eingehende Beforschung zu weitreichend erschien. Als übergeordnete Fragestellungen 

wurden für die Beforschung der Lehrveranstaltung die folgenden Aspekte ausgewählt:  

• Die vorgenommenen Modifizierungen des ersten Kapitels der Lehrveranstaltung sollten dazu 

beitragen, dass den Studierenden die verschiedenen Beweiskonstruktionen besser gelingen. 

• Darüber hinaus war es ein Anliegen, den Studierenden das Konzept, die (epistemologische) 

Bedeutung und damit verbunden die Vor- und Nachteile der verschiedenen Beweisformen zu 

verdeutlichen und diese gleichsam von bloßen Beispielüberprüfungen abzugrenzen. 

5.3.2 Die im Kontext dieser Durchführung erfolgten Studien 

Im Kontext des zweiten Durchgangs der Lehrveranstaltung wurden im Wintersemester 2012/13 vier 

Forschungsprojekte durchgeführt (vgl. Abbildung 26). Um direkt überprüfen zu können, ob die oben 

beschriebenen Änderungen im ersten Kapitel der Lehrveranstaltung zum generischen Beweis in die 

richtige Richtung wiesen, wurde das bereits im Wintersemester 2011/12 durchgeführte 

Forschungsprojekt der qualitativen Analyse der Beweiskonstruktionen der Studierenden in der ersten 

Hausaufgabe wiederholt (s. Abschnitt 5.3.2.1). In der dritten Vorlesungswoche wurde eine 

Interviewstudie pilotiert, deren Ziel es war, den Prozess der Beweiskonstruktionen der Studierenden 

genauer analysieren zu können. Inhalt des Interviews waren die Konstruktion eines formalen und 

eines generischen Beweises und die anschließende Diskussion der konkreten Beweisproduktionen (s. 
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Abschnitt 5.3.2.2). Um überprüfen zu können, 

welche Probleme die Studierenden genau mit 

dem Konzept des generischen Beweises haben 

bzw. welche Fehlvorstellungen in Bezug auf den 

Nutzen von Beispielen im Beweisprozess 

vorliegen, wurde in der vorletzten 

Vorlesungssitzung im Wintersemester 2012/13 

ein Bewertungstest durchgeführt, in deren 

Kontext die Studierenden verschiedene, auch 

fehlerhafte generische Beweise bewerten sollten 

(s. Abschnitt 5.3.2.3). Schließlich stellte sich auch 

die Frage, inwiefern die Studierenden nach dem 

Besuch der Lehrveranstaltung in der Lage waren, 

generische und formale Beweise zu konstruieren. 

Aus diesem Grund wurden die Bearbeitungen einer Aufgabe aus der Modulabschlussklausur 

analysiert (s. Abschnitt 5.3.2.4). 

5.3.2.1 Qualitative Analyse von Hausaufgabenbearbeitungen zum generischen und zum 

formalen Beweis 

Forschungsanliegen und Forschungsfragen 

Nach den ersten beiden Wochen des Wintersemesters 2012/13 wurde die bereits im Wintersemester 

2011/12 durchgeführte Studie über die qualitative Analyse von Hausaufgabenbearbeitungen (vgl. 

Abschnitt 5.2.2.2) wiederholt, auch, um überprüfen zu können, ob die vorgenommenen 

Modifikationen der Lehrveranstaltung in die richtige Richtung wiesen. Der einzige Unterschied 

bestand in dieser Durchführung darin, dass entsprechend den Veränderungen der Lehrveranstaltung 

in der Aufgabenstellung anstatt von ‚operativen Beweisen‘ nun von ‚generischen Beweisen‘ 

gesprochen wurde. Die Leitfragen zur Auswertung der Studie waren wie folgt:  

• Leitfrage zur Auswertung [5]: Welche Begründungen führen Erstsemesterstudierende an, 

wenn sie aufgefordert werden, einen generischen Beweis zu führen? Inwiefern lassen sich 

dabei Unterschiede zwischen den Beweisbearbeitungen der Studierenden im 

Wintersemester 2011/12 und 2012/13 ausmachen?  

• Leitfrage zur Auswertung [6]: Welche Begründungen führen Erstsemesterstudierende an, 

wenn sie aufgefordert werden, einen formalen Beweis zu führen? Inwiefern lassen sich dabei 

Unterschiede zwischen den Beweisbearbeitungen der Studierenden im Wintersemester 

2011/12 und 2012/13 ausmachen?  

Methode  

Den Studierenden wurde in der ersten Hausaufgabe die gleiche Aufgabe (über die Summe aus einer 

ungeraden Zahl und ihrem Doppelten) wie im vorherigen Durchgang gestellt, nachdem sie zwei 

Vorlesungssitzungen und eine Kleingruppenübung besucht hatten. Die Aufgabenbearbeitungen 

wurden eingescannt und in das in Abschnitt 5.2.2.2 vorgestellte Kategorienschema eingeordnet. Da 

der Aufgabenteil der Formulierung der Behauptung mit Buchstabenvariablen (vgl. Aufgabenstellung 

in Abschnitt 5.2.2.2) aufgrund der vorgenommenen Eingrenzung (s.o.) nicht weiter im 

Forschungsinteresse stand, wurde diese Teilaufgabe in dieser Studie nicht untersucht. 

Abbildung 26: Überblick über die im Wintersemester 
2012/13 erfolgten Studien 
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Entsprechendes gilt auch für die Auswertung der formalen Fehler im Umgang mit Variablen in den 

Bearbeitungen zum formalen Beweis.  

Ergebnisse34  

Beantwortung der Leitfrage zur Auswertung [5]: Welche Begründungen führen 

Erstsemesterstudierende an, wenn sie aufgefordert werden, einen generischen Beweis zu führen? 

Inwiefern lassen sich dabei Unterschiede zwischen den Beweisbearbeitungen der Studierenden im 

Wintersemester 2011/12 und 2012/13 ausmachen?  

Im Wintersemester 2012/13 bestanden 28,1% der Bearbeitungen zum generischen Beweis aus 

reinen Beispielbetrachtungen (E1); im vorherigen Durchgang lag der entsprechende Anteil noch bei 

67,9% (siehe Tabelle 10). Dementsprechend hat der Anteil mit Bearbeitungen, in denen insgesamt 

Argumente deutlich werden (P1 + P2 = 68,4%) im Wintersemester 2012/13 stark zugenommen. 

Insgesamt konnten dabei 42,1% Bearbeitungen als vollständige generische Beweise gewertet 

werden, im Wintersemester 2011/12 lag der Anteil dagegen nur bei 11,3 %. 

Kategorie Häufigkeiten 

WS 11/12 WS 12/13 

E0 3 (5,7 %) 4 (3,5 %) 

E1 36 (67,9 %) 32 (28,1 %) 

P1 8 (15,1 %) 30 (26,3 %) 

P2 6 (11,3 %) 48 (42,1 %) 

Summe 53 (100 %) 114 (100 %) 

Tabelle 10: Ergebnisse bzgl. der Bearbeitungen zum generischen (bzw.  
operativen) Beweis (WS 2011/12 und WS 2012/13) 

Beantwortung der Leitfrage zur Auswertung [6]: Welche Begründungen führen 

Erstsemesterstudierende an, wenn sie aufgefordert werden, einen formalen Beweis zu führen? 

Inwiefern lassen sich dabei Unterschiede zwischen den Beweisbearbeitungen der Studierenden im 

Wintersemester 2011/12 und 2012/13 ausmachen?  

Vergleicht man die Ergebnisse bzgl. der Bearbeitungen zum formalen Beweis, so fällt zunächst auf, 

dass der Anteil der Bearbeitungen ohne erkennbare Argumentation (P2) von 14,3 % (Wintersemester 

2011/12) auf 32,2% (Wintersemester 2012/13) angestiegen ist (vgl. Tabelle 11). Dementsprechend 

liegt der Anteil der Bearbeitungen, die eine Argumentation beinhalten (P3 + P4), im Wintersemester 

2012/13 bei 85,5% und 40,7 % der Beweiskonstruktionen konnten als korrekte formale Beweise 

gewertet werden. 

Kategorie Häufigkeiten 

WS 11/12 WS 12/13 

P1 1 (1,8 %) 11 (9,3 %) 

P2 8 (14,3 %) 38 (32,2 %) 

P3 18 (32,1 %) 21 (17,8 %) 

P4 29 (51,8 %) 48 (40,7 %) 

Summe 56 (100 %) 118 (100 %) 

Tabelle 11: Ergebnisse bzgl. der Bearbeitungen zum formalen Beweis  
(WS 2011/12 und WS 2012/13) 

                                                           
34

 Die folgenden Ergebnisse wurden auch in Kempen (2013) veröffentlicht. 
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Diskussion der Ergebnisse 

Vergleicht man die Ergebnisse der Beweisbearbeitungen aus den Wintersemestern 2011/12 und 

2012/13, so fallen zunächst die großen Unterschiede bzgl. der Anzahl der kategorisierten 

Bearbeitungen auf (WS 2011/12: n=53 bzw. n=56, WS 2012/13: n=114 bzw. n=118). Der Unterschied 

ist dabei nicht einer unterschiedlichen Teilnehmerzahl der Lehrveranstaltung geschuldet, sondern 

darin begründet, dass im ersten Durchgang der Lehrveranstaltung, als der Verfasser dieser Arbeit 

noch nicht in der Veranstaltung mitgearbeitet hat, nicht alle Hausaufgabenbearbeitungen 

eingescannt wurden und somit später nicht für die Kategorisierung zur Verfügung standen. Aufgrund 

dieser großen Unterschiede bzgl. der zu betrachtenden Grundgesamtheit erscheint ein Vergleich der 

erhaltenen absoluten und relativen Häufigkeiten fragwürdig. Auch sind in der Zahl der Studierenden 

des Wintersemesters 2012/13 diejenigen enthalten, die durch die Modulprüfung im vorherigen Jahr 

durchgefallen waren und nun die Veranstaltung zum zweiten Mal besuchten. Solche Begebenheiten 

verfälschen offensichtlich die Ergebnisse, wodurch eine entsprechende Interpretation nur mit großer 

Vorsicht erfolgen kann. Als solch eine vorsichtige Interpretation sei hier aber angemerkt, dass die 

Ergebnisse bzgl. der Bearbeitungen zum generischen Beweis dahingehend gedeutet werden können, 

dass die in der Lehrveranstaltung vorgenommenen Maßnahmen (explizite Kommunikation von 

Normen, Diskussion typischer Fehlvorstellungen und Integration entsprechender Aufgaben) in die 

richtige Richtung zu deuten scheinen.  

Besonders problematisch erscheinen dagegen in diesem Durchgang die Ergebnisse bzgl. der 

Konstruktion des formalen Beweises. Dieses Resultat mag der Tatsache geschuldet sein, dass die 

Betonung des Konzepts der generischen Beweise zu Beginn der Lehrveranstaltung in gewisser Weise 

zu einer Vernachlässigung der Thematik des formalen Beweises geführt hat. 

5.3.2.2 Pilotierung einer Interviewstudie zum Beweisen 

Forschungsanliegen  

Bei der bisherigen Forschung zu den generischen und formalen Beweisen waren die Fragen offen 

geblieben, welche Aspekte den Studierenden bei den Beweiskonstruktionen genau Probleme 

bereiten und inwiefern sie die verschiedenen Beweiskonzepte überhaupt verstehen und für sich 

akzeptieren. Aus diesem Grund wurde im Wintersemester 2012/13 eine Videostudie zum Beweisen 

pilotiert. Die Hauptdurchführung dieser Studie erfolgte im Wintersemester 2013/14 (vgl. Abschnitt 

5.4.2.2). Aus diesem Grund wird bei der folgenden Beschreibung der Pilotierung auf eine detaillierte 

Darstellung der erhaltenen Ergebnisse verzichtet. Das Interesse der Ausführungen liegt auf den 

Erkenntnissen, die für die Hauptdurchführung dieser Studie gezogen werden konnten. Aus diesem 

Grund wird an dieser Stelle auch auf die explizite Formulierung von Forschungsfragen verzichtet. Im 

Fokus des Interesses standen die Beweisansätze und -Konstruktionen der Studierenden bei formalen 

und generischen Beweisen. 

Durchführung der Pilotierung 

Aus jeder Kleingruppenübung der Lehrveranstaltung wurden unter den Freiwilligen jeweils zwei 

Studierende ausgewählt. Diese sollten zeitgleich zu ihrer Kleingruppenübung dieselbe Aufgabe 

bearbeiten wie ihre Kommilitonen. Somit ergab sich für die Probanden der Studie kein 

Mehraufwand. Die zu bearbeitende Aufgabe war hierbei: 
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Aufgabe 

Beweisen Sie die nachfolgende Behauptung mit einem generischen und einem formalen Beweis. Formulieren Sie 

vor dem formalen Beweis zunächst die Behauptung mit Variablen. 

 

Eine ungerade Quadratzahl ist immer um 1 größer als ein Vielfaches von 4. 

Diese Aufgabe entstammt Leuders (2010, S. 45). Sie wurde für die vorliegende Studie ausgewählt, da 

hier eine Vielzahl verschiedener Beweiskonstruktionen möglich ist (vgl. hierzu die Beweisbeispiele in 

ebd., S. 45ff.). Für die Erarbeitung der Aufgabe wurde den Studierenden Papier ausgehändigt, das als 

„Konzeptpapier“ gekennzeichnet war. Für die anschließende Niederschrift ihrer Ergebnisse erhielten 

sie Papierbögen mit der Aufschrift „Reinschrift“35. Den Studierenden war es hierbei freigestellt, 

inwieweit sie die Aufgabe gemeinsam oder alleine bearbeiten wollten; allerdings sollten sie sich vor 

der finalen Reinschrift auf eine gemeinsame Lösung einigen.  

Während des Ablaufs der 90-minütigen Studie wurden alle Beteiligten durch zwei Videokameras 

gefilmt. Eine Kamera wurde zwischen den Probanden positioniert, um alles aufzuzeichnen, was von 

ihnen geschrieben wurde. Die andere Kamera filmte die Gesamtansicht. Alles Gesprochene wurde 

zusätzlich durch ein Mikrophon aufgezeichnet und anschließend transkribiert.  

Aus der Pilotierung der Studie gewonnene Erkenntnisse 

Von den fünf Studierendenpaaren, die an dieser Studie teilnahmen, scheiterten vier an der 

Konstruktion des generischen und des formalen Beweises. Bei der Erarbeitung des generischen 

Beweises schien den Studierenden nicht klar zu sein, was sie bei dieser Behauptung innerhalb der 

Zahlenbeispiele untersuchen sollten, um eine beispielübergreifende Struktur ausmachen zu können. 

Im formalen Beweis kamen die Studierenden dieser vier Gruppen nicht über eine algebraische 

Darstellung des Quadrats einer ungeraden Zahl („
2� + 1�� = 4�² + 4� + 1“) hinaus. Der fünften 

Gruppe gelang dagegen sowohl die Konstruktion des generischen als auch des formalen Beweises. 

Innerhalb der Untersuchung konkreter Beispiele entdeckten sie den Zusammenhang, dass bei der 

Quadrierung einer ungeraden Zahl, dargestellt etwa als	
2 ∙ 3 + 1�, aufgrund der ersten binomischen 

Formel immer der Faktor 4 entsteht und am Ende die Zahl 1 addiert wird36. Diese Erkenntnis 

übertrugen sie auf den formalen Beweis und verifizierten hier die Behauptung, dass für alle �	(	ℕl: 

2� + 1�� = 4 ∙ � + 1 gilt, wenn � ≔ �² + � gesetzt wird. 

Die anschließende Besprechung der Beweiskonstruktionen der Studierenden erwies sich als nur 

wenig ergiebig. Es fiel den Studierenden offensichtlich schwer, ihre Beweiskonstruktionen eingehend 

zu beschreiben und zu reflektieren. Dies kann dem Umstand geschuldet sein, dass sie bereits mehr 

als 60 Minuten mit der Bearbeitung der Aufgabe beschäftigt waren. 

Aus der Pilotierung der Studie ließen sich die folgenden Erkenntnisse ableiten: 

(1) Die Unterscheidung der Papierbögen in „Konzeptpapier“ und „Reinschrift“ erwies sich als 

sinnvoll und gewinnbringend für die Unterscheidung der Beweiserarbeitung und der finalen 

Niederschrift. 

                                                           
35

 Diese Unterscheidung von „Konzeptpapier“ und „Reinschrift“ entstammt Ostsieker und Biehler (2012) und 

ermöglicht bei der nachträglichen Analyse eine genaue Betrachtung der Phase der Beweisbearbeitung und 

derjenigen Aspekte, die die Probanden für ihre finale Reinschrift des Beweises auswählen. 
36

 
2 ∙ 3 + 1�� = 
2 ∙ 3�² + 2 ∙ 
2 ∙ 3� ∙ 1 + 1² = 4 ∙ 3² + 4 ∙ 3 + 1 = m ∙ 
9 + 3� + U 
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(2) Die Verwendung von zwei Videokameras (lokale und globale Sicht) und eines Mikrophons 

erwies sich als sinnvoll. 

(3) Die vorliegende Aufgabe erwies sich als schwer für die Studierenden. Viele hatten bereits mit 

dem Quadrieren der algebraischen Darstellung einer ungeraden Zahl Probleme. Auch bietet 

die Betrachtung konkreter Beispiele hier nur bedingt Ansatzpunkte für die Konstruktion eines 

generischen Beweises. 

(4) Die Diskussion der Beweisproduktionen der Studierenden am Ende der Studie muss durch 

gezielte Impulse angeleitet und strukturiert werden, damit sich diese als gewinnbringend 

erweisen kann. 

Anmerkung 

Da die aus der Pilotierung gewonnenen Erkenntnisse deren methodische Durchführung betreffen 

und nicht die erhaltenen Resultate im Fokus stehen, wird an dieser Stelle auf eine Diskussion 

entsprechender Gütekriterien der Forschung verzichtet werden. 

5.3.2.3 Beweisbewertungstest 

 

Forschungsanliegen und Forschungsfragen 

Ein Ergebnis der bis dato erfolgten Forschung im Kontext der Lehrveranstaltung waren die 

überraschend großen Verständnisschwierigkeiten, die die Studierenden mit dem Konzept des 

generischen Beweises hatten. Welche Aspekte des generischen Beweises hier aber genau als 

problematisch anzusehen waren, blieb nach wie vor unklar. Neben den diese Beweiskonzeption 

konstituierenden Elementen (generische Beispiele, generisches Argument und narrative Begründung 

(vgl. Abschnitt 2.1.3)), müssen dabei auch die in der Literatur angeführten Fehlvorstellungen zum 

epistemologischen Gehalt von bloßen Beispielbetrachtungen berücksichtigt werden. Auf der 

Grundlage dieser Problemsituation wurde ein Fragebogen konstruiert, mit dessen Hilfe die folgende 

Leitfrage zur Auswertung beantwortet werden sollte: 

• Leitfrage zur Auswertung [7]: Wie bewerten die Studierenden verschiedene 

Begründungstypen (unzulässige Verallgemeinerungen, unvollständige generische Beweise, 

falsche und korrekte deduktive Schlussfolgerungen) in einem bekannten und einem 

unbekannten Sachverhalt? 

Theoretischer Hintergrund 

In der Literatur werden verschiedene Untersuchungen dargestellt, in denen Lernende und Lehrende 

beispielgebundene Beweise bewerten sollen (s. Abschnitt 2.4.2). Hierbei steht meist eine 

übergeordnete ‚Akzeptanz als Beweis‘ im Vordergrund. Die Bewertung verschiedener und damit auch 

explizit falscher beispielgebundener Beweisproduktionen wurde bislang nicht eingehend untersucht. 

Fehlvorstellungen bzgl. der Akzeptanz von bloßen Beispielbetrachtungen als korrekter Beweis 

wurden prominent von Martin und Harel (1989) näher untersucht. In ihrer Studie bewerteten 101 

Lehramtsstudierende (Grundschule) Beweisbearbeitungen zu einer bekannten Behauptung („Wenn 

die Quersumme einer ganzen Zahl durch drei teilbar ist, dann ist auch die Zahl selbst durch 3 teilbar“) 

und einer unbekannten Behauptung („Wenn � ein Teiler von � und � ein Teiler von * ist, dann ist 

auch � ein Teiler von *“). Im Folgenden werden die Auflistung verschiedener Arten von induktiven 
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und deduktiven Begründungen aus Martin und Harel (1989, S. 43f.) wiedergegeben und deren 

Charakteristika paraphrasiert. Aufbauend auf diesen verschiedenen Begründungsformen wurde der 

Beweisbewertungstest für die vorliegende Studie konstruiert. 

In Anlehnung an Anderson (1985) thematisieren die Autoren fünf unzureichende induktive 

Begründungen: (1) „Examples“ (Die Gültigkeit der Behauptung wird an einem konkreten Beispiel 

verdeutlicht), (2) „Pattern“ (Durch eine geordnete Auflistung von Beispielüberprüfungen wird 

suggeriert, dass die Behauptung auch in allen weiteren (möglichen) Fällen korrekt sein muss), (3) „Big 

Number“ (Das Testen eines ‚beliebigen‘ Zahlenbeispiels mit großen Zahlen soll den Eindruck 

erwecken, dass die Behauptung somit für alle Zahlen gilt) und (4) „Example and nonexample“ 

(Zusätzlich zu konkreten Beispielen, die die Behauptung stützen, werden Beispiele angegeben, die 

nicht die in der Behauptung angegebenen Voraussetzungen erfüllen und in denen die Behauptung 

entsprechend nicht wahr ist). Darüber hinaus nutzen die Autoren der Studie auch drei 

Bearbeitungsvarianten, die auf deduktiven Argumenten beruhen (vgl. ebd., S. 44f.): (5) ein korrekter 

Beweis, (6) ein fehlerhafter Beweis und (7) ein beispielgebundener Beweis („particular proof“), in 

dem die Variablen durch konkrete Zahlen ersetzt wurden. 

In der Studie von Martin und Harel (1989) sollten die Studierenden entsprechende 

Beweisbearbeitungen für den bekannten und den unbekannten Sachverhalt bewerten; allerdings 

wurde für den unbekannten Sachverhalt keine Bearbeitung entsprechend der Form „Pattern“ (s.o.) 

angegeben. Die Bewertungen der Beweise wurden auf einer  vierstufigen Likert-Skala vollzogen ([1] 

„ist kein mathematischer Beweis“, …, [4] „ist ein mathematischer Beweis“). Für die Interpretation der 

Ergebnisse wurden die Beweisbewertungen nach ‚geringer Akzeptanz‘ ([1]+[2]) und ‚hoher 

Akzeptanz‘ ([3]+[4]) zusammenfasst.  

Bezüglich der induktiven Argumentationen stellen die Autoren fest, dass jede dieser 

Begründungsformen von mindestens 50% der Studierenden als korrekter Beweis bewertet wurde 

([3]+[4]). Signifikante Bewertungsunterschiede zwischen den verschiedenen induktiven 

Begründungsformen konnten dabei nur im bekannten Sachverhalt nachgewiesen werden. Die 

korrekten deduktiven Argumente wurden von mehr als 60% der Studierenden mit hoher Akzeptanz 

bewertet ([3]+[4]). Die inkorrekten deduktiven Argumentationen wurden dagegen nur von 38% im 

bekannten Sachverhalt bzw. von 52% im unbekannten Sachverhalt akzeptiert. Die Autoren der Studie 

gelangen schließlich zu dem Ergebnis, dass Studierende sowohl von induktiven als auch von 

deduktiven Begründungsformen überzeugt sein können und dass die Akzeptanz einer dieser 

Begründungsformen die andere nicht ausschließt. Diese Akzeptanz ist dabei unabhängig davon, ob 

sich die Begründung auf einen bekannten oder unbekannten Sachverhalt bezieht.  

Die Konstruktion des Fragebogens 

Für die vorliegende Untersuchung wurden die induktiven und deduktiven Begründungen aus der 

Studie von Martin und Harel (1989) (s.o.) übernommen und durch weitere ergänzt. Diese 

Ergänzungen betreffen fehlerhafte Bearbeitungen zum generischen Beweise, bei denen jeweils ein 

geforderter Teilaspekt (generische Beispiele, generisches Argument, narrative Begründung) nicht 

erfüllt wird. Zu allen diesen verschiedenen Begründungsformen wurde je ein Beispiel zu einem 

bekannten und einem unbekannten Sachverhalt angegeben, die die Studierenden auf einer  

fünfstufigen Likert-Skala bewerten sollten ([1] unzureichend, …, [5] sehr gut). Bezüglich der 
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deduktiven formalen Begründungen wurden ein falscher und zwei korrekte Beweise angegeben, die 

sich jeweils im Grad ihrer formalen Darstellung unterscheiden.  

Im Folgenden werden zu den verschiedenen Begründungsarten jeweils die Beispiele angegeben, die 

den Studierenden für den bekannten Sachverhalt („Die Summe aus einer ungeraden natürlichen Zahl 

und ihrem Doppelten ist immer ungerade“) zur Bewertung gegeben wurden. (Für die Konstruktion 

entsprechender ‚Begründungen‘ in dem unbekannten Sachverhalt wurde die entsprechende 

Behauptung aus der Studie von Martin und Harel (1989) übernommen [(„Wenn � ein Teiler von � 

und � ein Teiler von * ist, dann ist auch � ein Teiler von *“]), wobei die jeweiligen zu bewertenden 

Begründungen leicht modifiziert wurden. 

Die zu bewertenden ‚Begründungen‘ im bekannten Sachverhalt zu der Behauptung: „Die Summe aus einer 

ungeraden natürlichen Zahl und ihrem Doppelten ist immer ungerade“. 

I Induktive Begründungsformen mit unzulässiger Verallgemeinerung 

1. Bloße Beispiele mit unzulässiger Verallgemeinerung („Beispiele“) 

 

3 + 2 ∙ 3 = 3 + 6 = 9	 ist ungerade 

5 + 2 ∙ 5 = 5 + 10 = 15	 ist ungerade 

 

Also stimmt die Behauptung. 

 

2. Beispielkonstruktion gemäß der Fehlvorstellung „Big Number“ 

 

Wir überprüfen die Aussage an einer beliebigen, sehr großen ungeraden Zahl: 

 

537696125 + 2 ∙ 537696125 = 537696125 + 1075392250 = 1613088375 (wahr). 

 

Also gilt die Behauptung auch für eine beliebig große Zahl. Somit wurde die Behauptung bewiesen. 

 

3. Beispielkonstruktion gemäß der Fehlvorstellung „Pattern“ 

 

1 + 		2 ∙ 1		 = 			1 + 2		 = 3   ist ungerade 

3 + 		2 ∙ 3		 = 			3 + 6		 = 9   ist ungerade 

5 + 		2 ∙ 5		 = 			5 + 10 = 15  ist ungerade 

7 + 		2 ∙ 7		 = 			7 + 14 = 21  ist ungerade 

9 + 		2 ∙ 9		 = 			9 + 18 = 27  ist ungerade 

11 + 2 ∙ 11 = 11 + 22 = 33  ist ungerade 

13 + 2 ∙ 13 = 13 + 26 = 39  ist ungerade 

15 + 2 ∙ 15 = 15 + 30 = 45  ist ungerade 

17 + 2 ∙ 17 = 17 + 34 = 51 ist ungerade 

19 + 2 ∙ 19 = 19 + 38 = 57 ist ungerade 

… 

Also stimmt die Behauptung. 

 

4. Beispielkonstruktion gemäß der Fehlvorstellung „Non example“ 

 

1 + 		2 ∙ 1		 = 			1 + 2		 = 3   ist ungerade 

4 + 		2 ∙ 4		 = 			4 + 8		 = 12  ist gerade 

 

An den Beispielen erkennt man das folgende Prinzip: Addiert man zu einer ungeraden Zahl ihr Doppeltes, so 

ergibt sich immer eine ungerade Zahl. Addiert man aber zu einer geraden Zahl ihr Doppeltes, so ergibt sich immer 

eine gerade Zahl. Also ist die Behauptung für alle ungeraden Zahlen wahr und sie wurde bewiesen. 
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II Bearbeitungen zum generischen Beweis 

5. Paraphrase ohne Begründung 

(In der ‚narrativen Begründung‘ des generischen Beweises werden lediglich die in den getesteten Beispielen 

ausgeführten Operationen paraphrasiert, ohne dass weiterführende Argumente tangiert werden.) 

 

9 + 2 ∙ 9 = 9 + 18 = 27	 
13 + 2 ∙ 13 = 13 + 26 = 39	  

17 + 2 ∙ 17 = 17 + 34 = 51 

 

An den Beispielen erkennt man das folgende Prinzip: Addiert man zu einer ungeraden Zahl ihr Doppeltes, so 

ergibt sich immer eine ungerade Zahl. Dies gilt für alle natürlichen Zahlen. Also ist die Behauptung für alle 

ungeraden Zahlen wahr und somit wurde die Behauptung bewiesen. 

6. Unvollständiger generischer Beweis 

(In der den generischen Beispielen folgenden narrativen Begründung fehlt ein Argument, um die Behauptung 

vollständig und allgemeingültig zu verifizieren.) 

 

11 + 2 ∙ 11 = 11 + 22 = 3 ∙ 11	 
3 + 2 ∙ 3 = 3 + 6 = 3 ∙ 3	  

7 + 2 ∙ 7 = 7 + 14 = 3 ∙ 7 

 

Vergleicht man die Beispiele miteinander, so erkennt man, dass das Ergebnis immer ungerade ist und auch immer 

gleich dem Dreifachen der Ausgangszahl. Da dies für alle natürlichen Zahlen gilt, ist somit die Behauptung 

bewiesen. 

 

7. Korrekter und vollständiger generischer Beweis 

 

11 + 2 ∙ 11 = 11 + 22 = 33	 
3 + 2 ∙ 3 = 3 + 6 = 9	  

7 + 2 ∙ 7 = 7 + 14 = 21 

 

Vergleicht man die Beispiele miteinander, so erkennt man, dass die Summe immer aus einem ungeraden und 

einem geraden Summanden besteht, da das Doppelte einer ungeraden Zahl immer gerade ist. Da die Summe aus 

einer ungeraden und einer geraden natürlichen Zahl immer ungerade ist, ist somit das Ergebnis dieser Rechnung 

für alle ungeraden Zahlen eine ungerade Zahl. 

III Bearbeitungen zum formalen Beweis 

8. Falscher formaler Beweis 

 

Sei �	(	i eine ungerade Zahl, beliebig aber fest. Dann ist � = 
2' − 1� für ein '	(	ℕ. Also gilt: 

 

‹ 
2' − 1� + 2 ∙ 
2' − 1� = 3 ∙ 
2' − 1� 
‹ 2' − 1 + 4' − 2 = 6' − 3 

‹ 6' − 3 = 6' − 3 

‹ 0 = 0 

 

 

9. Korrekter ‚formaler‘ Beweis mit größerem narrativen Anteil 

 

Sei �	(	ℕ eine beliebige, aber feste ungerade Zahl. Dann gilt: � + 2 ∙ � = 3 ∙ �. 

Da das Dreifache einer ungeraden Zahl immer ungerade ist, ist damit die Behauptung bewiesen. 
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10. Korrekter formaler Beweis mit größerem Anteil algebraischer Umformungen 

 

Sei �	(	ℕ eine ungerade Zahl, beliebig, aber fest. Dann ist � = 
2' − 1� für ein '	(	ℕ.  

Also gilt: � + 2� = 
2' − 1� + 2 ∙ 
2' − 1� = 2' − 1 + 2' − 2 = 6' − 3 = 2 ∙ 
3' − 1� − 1, also eine ungerade 

Zahl, da um 1 kleiner als eine gerade Zahl. 

q.e.d. 

 

Datenerhebung 

Die Durchführung der Befragung fand in der vorletzten Vorlesungssitzung des Wintersemesters 

2012/13 statt. Die Studierenden hatten für das Ausfüllen des Fragebogens 45 Minuten Zeit. 

Insgesamt nahmen 94 Studierende an dieser Umfrage teil. 

Ergebnisse 

Beantwortung der Leitfrage zur Auswertung [7]: Wie bewerten die Studierenden verschiedene 

Begründungstypen (unzulässige Verallgemeinerungen, unvollständige generische Beweise, falsche 

und korrekte deduktive Schlussfolgerungen) in einem bekannten und einem unbekannten 

Sachverhalt? 

Die Bewertungen der Studierenden wurden für die Auswertung der Daten wie folgt 

zusammengefasst: Die Bewertungen der Begründungen mit „1“ und „2“ auf der Likert-Skala wurden 

als negative Bewertung als Beweis, die Bewertung „3“ als neutral und die Bewertungen „4“ und „5“ 

als positive Bewertung als Beweis zusammengefasst. Die Ergebnisse bzgl. der verschiedenen 

Begründungsformen für den bekannten und unbekannten Sachverhalt werden in der Tabelle 12 und 

der Abbildung 27 dargestellt.  

 
Bekannter Sachverhalt (n=94) unbekannter Sachverhalt (n=94) 

 
negativ neutral positiv negativ neutral positiv 

Induktive Begründungsformen 

Beispiele 90,3 6,5 3,2 78,3 18,5 3,3 

Big Number 89,4 8,5 2,1 90,2 7,6 2,2 

Pattern 74,2 15,1 10,8 75,3 18,3 6,5 

Non example 66,3 22,5 11,2 83,5 14,3 2,2 

Bearbeitungen zum generischen Beweis 

Paraphrase 62,8 20,2 17 35,2 37,5 27,3 

unvollst. Gen. Bew. 20,2 39,3 40,4 20,7 31,5 47,8 

Gen. Bew. 18,3 20,4 61,3 6,5 25 68,5 

Bearbeitungen zum formalen Beweis 

formal & falsch 63 15,2 21,7 50 20,2 29,8 

formal & narrativ 39,1 18,5 42,4 15,4 22 62,6 

formal 4,4 16,7 78,9 8,7 15,2 76,1 

Tabelle 12: Ergebnisse bzgl. der studentischen Bewertungen der Begründungsformen im bekannten und unbekannten 
Sachverhalt; Angaben in Prozent, zusammengefasst nach den Kategorien „negativ“ (Bewertungen [1] und [2]), „neutral“ 
(Bewertung [3]) und „positiv“ (Bewertungen [4] und [5]) 

Betrachtet man die Ergebnisse bzgl. der induktiven Begründungsformen („Beispiele“, „Big Number“, 

„Pattern“ und „Non example“, vgl. Tabelle 12), so wird deutlich, dass diese Begründungen sowohl im 

bekannten als auch im unbekannten Kontext von der großen Mehrheit der Studierenden negativ 

bewertet wurden. In den Bearbeitungen, die hier dem generischen Beweis zugeordnet werden, 

wurde die paraphrasierende Begründung („Paraphrase“) im bekannten Sachverhalt von 62,8%, 

allerdings nur von 35,2% im unbekannten Sachverhalt negativ bewertet. Im unbekannten Sachverhalt 

scheint diese (bloße) Paraphrasierung der Rechnung die Bearbeitung in den Augen der Studierenden 
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aufzuwerten. Dies scheint folgerichtig im Sinne der Normen der Lehrveranstaltung, die für einen 

generischen Beweis neben bloßen Beispielbetrachtungen eine narrative Argumentation vorsehen. In 

diesem Sinne sind die Begründungsformen „Paraphrase“ tatsächlich besser als die vorherigen 

„induktiven Begründungsformen“ zu beurteilen. Der unvollständige generische Beweis wurde mit 

40,4% im bekannten und mit 47,8% im unbekannten Sachverhalt deutlich besser bewertet als die 

paraphrasierende Argumentation (17% im bekannten bzw. 27,3% im unbekannten Sachverhalt). Die 

beste Bewertung erhielt der vollständige generische Beweis mit 61,3% positiver Zustimmung im 

bekannten und mit 68,5% im unbekannten Sachverhalt. Bemerkenswert ist hierbei allerdings, dass 

die positiven Bewertungen relativ gering ausfallen, obwohl diese Bearbeitungen als vollständige 

generische Beweise konstruiert wurden. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bei den Bearbeitungen zum formalen Beweis wurde der falsche formale Beweis von 63% im 

bekannten und von 50% im unbekannten Sachverhalt als negativ bewertet. Die korrekten formalen 

Beweise mit höheren algebraischen Anteilen wurden in beiden Sachverhalten positiver bewertet als 

die formalen Beweise mit narrativen Anteilen. 

 

 

Abbildung 27: Ergebnisse bzgl. der studentischen Bewertungen der Begründungsformen im bekannten und unbekannten 
Sachverhalt (n=94); Angaben in Prozent, zusammengefasst nach den Kategorien „negativ“ (Bewertungen [1] und [2]), 
„neutral“ (Bewertung [3]) und „positiv“ (Bewertungen [4] und [5]) 
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Diskussion der Ergebnisse 

Zunächst muss bei dieser Studie bzgl. der verwendeten Items angemerkt werden, dass nicht sicher 

gesagt werden kann, wie diese von den Probanden gelesen bzw. verstanden wurden. So kann der 

Betrachter eines Items der Kategorie „Pattern“ bei einer vergleichenden Durchsicht der gegebenen 

Beispiele durchaus ein beispielübergreifendes Muster abstrahieren und dementsprechend die 

Bearbeitung für sich als korrekten (unvollständigen) generischen Beweis akzeptieren. Die erhaltenen 

(eher ablehnenden) Ergebnisse sprechen allerdings nicht dafür, dass von den Studierenden 

Erkenntnisse in die Items hereingelesen wurden, die so nicht intendiert waren. Auch muss an dieser 

Stelle offen gelassen werden, aufgrund welcher Aspekte die Studierenden ihre jeweiligen 

Bewertungen vorgenommen haben. Aus diesen Gründen müssen entsprechende Ergebnisse mit 

Vorsicht betrachtet werden. Die folgende, entsprechend vorsichtige Interpretation der Ergebnisse 

erscheint dabei zulässig. 

Betrachtet man die Ergebnisse, so kann festgehalten werden, dass die bloßen Beispielbetrachtungen 

von der großen Mehrheit der Studierenden eher nicht als ‚akzeptabler Beweis‘ betrachtet werden. 

Die Probleme der Studierenden mit dem Konzept des generischen Beweises scheinen somit nicht in 

möglichen Fehlvorstellungen zu bloßen empirisch-induktiven Verifikationen begründet zu sein. Die 

verschiedenen Bearbeitungen, die im Kontext generischer Beweise zu sehen sind, werden mit 

steigender Qualität (von „Paraphrase“ über „unvollständiger generischer Beweis“ zu „vollständiger 

generischer Beweis“) auch besser von den Studierenden bewertet. Es ist allerdings auffällig, dass die 

vollständigen generischen Beweise nur von etwa Zweidritteln der Studierenden als positiv bewertet 

werden. Hier stellt sich die Frage, wie innerhalb der Lehrveranstaltung eine Begründungsform 

vermittelt werden kann (bzw. soll), die von den Studierenden nicht als valide Verifikation akzeptiert 

wird? Bzgl. der Bewertungen der formalen Beweise lässt sich festhalten, dass die falschen Beweise 

von der Mehrheit der Studierenden negativ bewertet werden. Die bloße Verwendung von 

algebraischen Symbolen scheint somit nicht allein die Korrektheit mathematischer Beweise für die 

Studierenden zu konstituieren. Die korrekten formalen Beweise werden insgesamt von der Mehrheit 

der Studierenden positiv bewertet, bzw. sogar am positivsten von allen Bearbeitungen. 

Für die Lehrveranstaltung folgte hieraus, dass der Sinn und Gehalt generischer Beweise thematisiert 

werden musste. Dabei durfte es nicht um ein ‚Überreden‘ gehen, vielmehr sollten der Mehrwert und 

die Grenzen dieser Beweisform erörtert werden. Mit diesen Resultaten war gleichzeitig auch ein 

Gegenstand für die weitere Forschung gegeben: Inwiefern (bzw. bzgl. welcher Aspekte) werden 

generische Beweise von Studierenden ‚akzeptiert‘?  

5.3.2.4 Analyse der Beweiskonstruktionen der Studierenden in der Modulabschlussklausur 

im Wintersemester 2012/13 

 

Forschungsanliegen und Forschungsfrage 

Waren in der Analyse der ersten Hausaufgabe der Studierenden schon einige Erkenntnisse über 

deren Beweiskonstruktionen gewonnen worden, so wurden in der qualitativen Interviewstudie 

weitere Probleme der Studierenden bei der Konstruktion von formalen und generischen Beweisen 

deutlich. Eine offene Frage blieb aber weiterhin, inwiefern die Studierenden nach der 

Lehrveranstaltung in der Lage waren, formale und generische Beweise zu konstruieren.  
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• Leitfrage zur Auswertung [8]: Welche Begründungen führen Erstsemesterstudierende nach 

der Lehrveranstaltung an, wenn sie aufgefordert werden, einen generischen bzw. einen 

formalen Beweis zu führen? 

Für die Beantwortung dieser Forschungsfrage wurde in die Modulabschlussklausur im 

Wintersemester 2012/13 eine Aufgabe eingefügt, in der es galt, eine Behauptung mit einem 

generischen und einem formalen Beweis zu verifizieren. 

Aufgabe und Aufgabenanalyse 

Die hier thematisierte, zu bearbeitende Aufgabe in der Modulabschlussklausur war die folgende: 

Aufgabe 4: Generischer und formaler Beweis  
[Hinweis: Für eine natürliche Zahl n	(	ℕ	heißt eine Zahl t	(	ℕ	Teiler von n, wenn ein a	(	ℕ existiert mit �	 = 	1 ∙ �.] 

 

Wir betrachten die folgende Behauptung: 

Für a, b, c	(	ℕ	gilt: Wenn � ein Teiler von � ist und � auch ein Teiler von * ist, dann ist � ein Teiler von 
� + *�. 
 

(a) Beweisen Sie die Behauptung mit einem generischen Beweis. 

(b) Beweisen Sie die Behauptung mit einem formalen Beweis. 
 

Diese Aufgabe entstammt Padberg (1997, S. 58) und wurde deshalb ausgewählt, weil die Beweisidee 

(Anwendung der Teilerrelation und des Distributivgesetztes, s.u.) bei der Betrachtung von konkreten 

Beispielen ‚gut‘ auszumachen ist (vgl. Padberg 1997, S. 58ff.). Diese für den generischen Beweis 

nutzbare Strategie entspricht auch dem Vorgehen in dem entsprechenden ‚gängigen‘ formalen 

Beweis (s.u.). 

Konstruktion des generischen Beweises 

Im Sinne der in der Lehrveranstaltung aufgestellten Normen beginnt ein generischer Beweis mit der 

Betrachtung konkreter Beispiele. Bei dieser ersten Überprüfung der Gültigkeit der Behauptung soll 

weiter nach einem beispielübergreifenden Schema (i.e. einem generischen Argument) gesucht 

werden, durch dessen Anwendung erklärt werden kann, warum die Behauptung in allen möglichen 

Fällen korrekt ist. Diese Argumentation, welche auf dem generischen Moment aufbaut, muss 

schließlich expliziert werden.  

Das generische Argument ergibt sich bei der vorliegenden Behauptung zunächst aus dem Einsetzen 

der Teilerrelationen in die zu betrachtende Summe. Als mathematische Argumente werden hierbei 

das Distributivgesetz und die Eigenschaft genutzt, dass die Summe zweier natürlicher Zahlen wieder 

eine natürliche Zahl ist. Diese Argumente müssen hier allerdings nicht expliziert werden, da deren 

Anwendung im Kontext der Lehrveranstaltung nicht problematisiert worden ist. 

Ein korrekter generischer Beweis im Sinne der Lehrveranstaltung ist dann: 

Beispiel (1):  

10 und 12 sind durch 2 teilbar. 10 = 2ÿ	5 und  12 = 2ÿ	6. Für die Summe gilt dann: 

22 = 10 + 12 = 2ÿ	5 + 2ÿ	6 = 	2ÿ	
5 + 6�. 
Beispiel (2):  

10 und 40 sind durch 5 teilbar. 10 = 5ÿ	2 und  40 = 5ÿ	8. Für die Summe gilt dann: 

50 = 10 + 40 = 5ÿ	2 + 5ÿ	8 = 	5ÿ	
2 + 8�. 
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In den Beispielen wird die Summe zweier Zahlen betrachtet, die beide durch eine dritte Zahl teilbar 

sind. Die Summanden lassen sich entsprechend immer als Vielfache dieser dritten Zahl schreiben. 

Durch obige Umformungen erhält man somit immer die Darstellung der Summe als Produkt dieser 

dritten Zahlen und einer natürlichen Zahl. Also ist auch die Summe der beiden Zahlen durch die dritte 

Zahl teilbar. 

Konstruktion des formalen Beweises 

Für den algebraischen Nachweis, dass unter den gegebenen Voraussetzungen � ein Teiler von 


� + *� ist, gibt es verschiedene Möglichkeiten. Die über der konkreten Aufgabe gegebene Definition 

von Teilbarkeit macht deutlich, dass eine Lösungsmöglichkeit durch die Anwendung der (aus der 

Vorlesung bekannten) Faktorschreibweise der Teilerrelation besteht. Diese gilt es sowohl für	� als 

auch für * zu benutzen. Anschließend müssen die entsprechenden Gleichungen in die Summe  


� + *� eingesetzt werden, wodurch schließlich wieder mithilfe der obigen Definition nachgewiesen 

werden kann, dass diese Summe ein Vielfaches von � ist. Dies ist gleichbedeutend damit, dass � ein 

Teiler von 
� + *� ist.  

Ein korrekter formaler Beweis im Sinne der Lehrveranstaltung ist dann: 

Beweis 

Seien a, b, c	(	ℕ	beliebig, aber fest.  

Zu  b	(	ℕ existiert ein t�(	ℕ mit: �	 = 	� ∙ t�. 

Zu  c	(	ℕ existiert ein t�(	ℕ mit: *	 = 	� ∙ t�. 

Dann gilt: � + * = � ∙ t� + � ∙ t� = � ∙ 
t� + t�� mit 
t� + t��	(	ℕ.	Somit ist � ein Teiler von 
� + *�. 

Analyse der Bearbeitungen und Neuauswertung für die vorliegende Arbeit 

Während der Klausurkorrektur wurden die Bearbeitungen zu der Beweisaufgabe anonymisiert und 

eingescannt. Die Ergebnisse bzgl. der Kategorisierung wurden in eine Tabelle eingetragen, so dass 

keine personenbezogenen Daten mehr nachvollzogen werden konnten. Für die Kategorisierung der 

Daten wurde bei Durchführung der Studie zunächst das Kategorienschema verwendet, das in 

Abschnitt 5.2.2.2 dargestellt und bereits in vorherigen Studien eingesetzt wurde (s. Abschnitt 5.2.2.2 

und Abschnitt 5.3.2.1). Für die Abfassung dieser Dissertation wurden die Aufgabenbearbeitungen 

(Scans) erneut ausgewertet und in ein später entwickeltes Kategorienschema eingeordnet, um 

innerhalb dieser Arbeit eine bessere Vergleichbarkeit der Ergebnisse zu ermöglichen. Das im 

Folgenden verwendete Kategoriensystem zur Erfassung der Qualität der Begründungen (bzw. 

Beweise) und dessen Entwicklung wurde in Abschnitt 3.3.1 erläutert; für eine bessere Lesbarkeit der 

Darstellungen und die Vermeidung von Redundanzen wird an dieser Stelle auf eine genauere 

Darstellung des Kategorienschemas verzichtet. Das Kategorienschema zur Erfassung der „Qualität der 

Begründungen“ wird in Tabelle 13 erläutert, Ankerbeispiele zu den verschiedenen Kategorien 

werden in Abschnitt 7.2.4.1 gegeben. 
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Bezeichnung Erläuterung 

n.b. Die Aufgabe wurde nicht bearbeitet. 

Empirisch In der Bearbeitung findet ausschließlich eine induktive Prüfung der Behauptung 

statt. 

Pseudo In der Bearbeitung wird die Behauptung paraphrasiert oder es werden falsche 

bzw. irrelevante Fakten genannt. 

Fragmentarisch Es werden korrekte und relevante fachliche Aspekte genannt, ohne dass eine 

Argumentationskette aufgebaut wird. 

Argumentation  

mit Lücke 

Es wird eine Argumentationskette mit korrekten und relevanten fachlichen 

Aspekten aufgebaut, die allerdings eine Lücke enthält. 

Vollständige  

Argumentation 

Die Behauptung wird mithilfe korrekter Argumente vollständig verifiziert. 

Tabelle 13: Kategorienschema zur Erfassung der „Qualität der Begründungen“, verwendet bei der Analyse der 
Beweiskonstruktion der Studierenden in der Modulabschlussklausur des Wintersemesters 2012/13 

Bei der Durchsicht der (anonymisierten) Scans für die Neukategorisierung der Beweisbearbeitungen 

war auffällig, dass die Studierenden ‚Teilbarkeit‘ unterschiedlich operationalisierten, um ihre Beweise 

zu konstruieren. Bei der Beobachtung dieses Phänomens ergab sich die Frage, ob ein Zusammenhang 

zwischen der verwendeten Operationalisierung von ‚Teilbarkeit‘ und der erreichten ‚Qualität der 

Begründung‘ ausgemacht werden kann. Um dieser Frage (quasi explorativ) nachgehen zu können, 

wurde neben der Qualität der Bearbeitungen außerdem codiert, mit welcher Operationalisierung von 

‚Teilbarkeit‘ die Studierenden innerhalb ihrer Beweiskonstruktionen arbeiteten. Für diese Analyse 

wurden drei verschiedene Kategorien verwendet: (i) Verwendung der Faktorschreibweise, (ii) 

Verwendung der Quotientenschreibweise und (iii) Verwendung beider Schreibweisen. Die Kategorien 

werden in der Tabelle 14 erläutert. 

Kategorienbezeichnung Erläuterung Ankerbeispiel 

(entnommen aus 

Studierendenbearbeitungen) 

Verwendung der 

Faktorschreibweise („Faktor“) 

Für die Bearbeitung der Beweisaufgabe wird 

die Teilerrelation in eine Faktorschreibweise 

übersetzt. 

Seien �, �, *	(	ℕ mit � = 	� ∙ � und 

*	 = 	� ∙ � mit	�, �	(	ℕ. […]   

Verwendung der 

Quotientenschreibweise 

(„Quotient“)  

Für die Bearbeitung der Beweisaufgabe wird 

die Teilerrelation in eine 

Quotientenschreibweise übersetzt. 

Seien �, �, *	(	ℕ beliebig, aber fest. So 

gilt:  
 
$ +	

%
$ =	


 �%�
$  […]

37
 

Verwendung beider 

Schreibweisen („beide“) 

Für die Bearbeitung der Beweisaufgabe 

werden die Faktor- und die 

Quotientenschreibweise verwendet. 

�	 = 	� ∙ 1, *	 = 	� ∙ ', 
� + *� 	= 	� ∙ 0, 

$∙s��
$∙E�

$ = 0 […] 

Tabelle 14: Kategorienschema zur Erfassung der verwendeten Operationalisierung der Teilbarkeitsrelation 

 

                                                           
37

 Der Nachweis der Teilbarkeit mithilfe der Bruchdarstellung ist in der Zahlentheorie eher unüblich. An dieser 

Stelle müsste gezeigt werden, dass der Quotient 

 �%�
$  eine natürliche Zahl ist, um nachzuweisen, dass � ein 

Teiler von 
� + *� ist. Im Sinne der Normen der Lehrveranstaltung (etwa „Akzeptanz von Vorwissen“, vgl. 

Abschnitt 1.1) erscheint es angebracht, diese Herangehensweise der Studierenden an Fragen der Teilbarkeit 

zuzulassen. 
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Ergebnisse 

Beantwortung der Leitfrage zur Auswertung [8]: Welche Begründungen führen 

Erstsemesterstudierende nach der Lehrveranstaltung an, wenn sie aufgefordert werden, einen 

generischen bzw. einen formalen Beweis zu führen? 

Die Ergebnisse zu den Bearbeitungen zum generischen und zum formalen Beweis werden in der 

Tabelle 15 dargestellt. 

Generischer Beweis  
(n = 98) 

Formaler Beweis    
(n = 98) 

nicht bearbeitet („n.b.“) 6 (6,1%) 14 (14,3%) 

empirisch („emp.“) 13 (13,3%) 0 (0,0%) 

Pseudo 37 (37,8%) 38 (38,8%) 

fragmentarisch („frag.“) 11 (11,2%) 12 (12,2%) 
 
Argumentation mit Lücke („Arg. mit Lücke“) 14 (14,3%) 23 (23,5%) 
 
vollständige Argumentation („vollst. Arg.“) 17 (17,3%) 11 (11,2%) 

Summe 98 (100%) 98 (100%) 
 
Tabelle 15: Ergebnisse der Bearbeitungen zum generischen und zum formalen Beweis (absolute  
und relative Häufigkeiten [%]) in der Modulabschussklausur im Wintersemester 2012/13 

Bei den Ergebnissen ist auffällig, dass bei der Konstruktion des generischen Beweises nur von 13,3% 

der Studierenden bloße Beispielbetrachtungen („emp“) angegeben wurden und korrekte Argumente 

dagegen insgesamt bei 42,9% der Bearbeitungen ausgemacht werden konnten („frag.“ + „Arg. mit 

Lücke“ + „vollst. Arg.“), wobei nur 17,3% aller Bearbeitungen als vollständige Argumentation 

gewertet werden konnten. Bemerkenswert ist hierbei der hohe Anteil von Pseudoantworten von 

37,8%, also Antworten, in denen nur irrelevante Aspekte zur Verifikation der Behauptung angeführt 

wurden. Auch bei den Bearbeitungen zum formalen Beweis ist der Anteil von Pseudoantworten mit 

38,8% auffällig. Insgesamt wurden in 46,9% der Bearbeitungen korrekte Argumente benannt („frag.“ 

+ „Arg. mit Lücke“ + „vollst. Arg.“), aber nur 11,2% der Bearbeitungen konnten als vollständige 

Argumentationen gewertet werden. 

Die Unterteilung der Ergebnisse nach der jeweilig angewendeten Operationalisierung von Teilbarkeit 

ermöglicht dabei weitere Einsichten (siehe Tabelle 16). Im Vergleich der Ergebnisse in 

Unterscheidung der Operationalisierungen von Teilbarkeit wird deutlich, dass die Bearbeitungen, in 

denen die Faktorschreibweise verwendet wird, deutlich besser ausfallen als diejenigen, in denen 

mithilfe der Quotientenschreibweise argumentiert wird. Dies betrifft sowohl die Ergebnisse zum 

generischen Beweis wie auch die zum formalen Beweis. 
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Dieses Resultat ist vor allem dadurch zu erklären, dass bei der Verwendung der 

Quotientenschreibweise in den entsprechenden (generischen und formalen) Beweisführungen 

begründet werden muss, warum der Quotient 

 �%�
$  eine natürliche Zahl ist, was von keinem 

Studierenden getan wurde. Im Gegenteil führte diese Operationalisierung häufig zu 

Pseudoantworten, wenn in der Betrachtung der Quotienten 
 
$	, 

%
$  und 


 �%�
$  nicht angemerkt wurde, 

dass Teilbarkeit hier bedeutet, dass diese Bruchzahlen Elemente der natürlichen Zahlen sind bzw. 

sein müssen.38 

Die Beweisbearbeitungen, in denen beide Schreibweisen verwendet werden („beides“), werden an 

dieser Stelle aufgrund der geringen Anzahl der entsprechenden Bearbeitungen (n=8 beim 

generischen Beweis und n=3 beim formalen Beweis) nicht weiter betrachtet.  

Diskussion der Ergebnisse  und Implikationen für die Lehrveranstaltung 

Die Ergebnisse bzgl. der Bearbeitungen zum generischen Beweis ließen darauf schließen, dass das 

Konzept dieser Beweisform vielen Studierenden auch nach dem Semester noch Probleme bereitete; 

nur in 42,9% der Bearbeitungen zum generischen Beweis wurden überhaupt valide Argumente zur 

Verifikation der Behauptung angeführt, in 13,3% der Bearbeitungen wurden bloße Beispiele als 

generische Beweise angegeben. Bei den Ergebnissen zum formalen Beweis fiel dagegen auf, dass 

14,3% der Studierenden diese Aufgabe überhaupt nicht versucht haben, obwohl es sich um eine 

Klausuraufgabe handelte. Der Anteil der Pseudoantwort von 38,8% ließ dagegen vermuten, dass 

diesen Studierenden das Ziel der hier verlangten Nutzung der algebraischen Symbolsprache nicht 

deutlich war, welches darin bestand, einen Term bzw. eine Gleichung zu erhalten, mit dessen bzw. 

deren Hilfe die Teilbarkeit der Summe 
� + *� durch die natürliche Zahl � gezeigt werden konnte. 

Weiter musste beachtet werden, dass nur 11,2% der Studierenden bei der Konstruktion des formalen 

Beweises eine vollständige Argumentation gelang. 

                                                           
38

 Vgl. hierzu die Thematisierung des Teilbarkeitsbegriffs in der dritten Durchführung der Lehrveranstaltung im 

Wintersemester 2013/14 (Abschnitt 5.4.1).  

 
Generischer Beweis [%] Formaler Beweis [%] 

 
Faktor  

(n = 48) 
Quotient 
(n = 36) 

beide     
(n = 8) 

Faktor  
(n = 54) 

Quotient 
(n = 27) 

beide  
(n = 3) 

emp. 8,3 22,2 12,5 0,0 0,0 0,0 

pseudo 25,0 52,8 75,0 38,8 59,3 33,3 

frag. 16,7 8,3 0,0 5,6 29,6 33,3 

Arg. mit 
Lücke 

18,7 13,9 0,0 35,2 11,1 33,3 

vollst. Arg. 31,3 2,8 12,5 20,4 0,0 0,0 

Summe 100 100 100 100 100 100 

Tabelle 16: Relative Häufigkeiten [%] bzgl. der Bearbeitungen zum generischen Beweis (links) 
und zum formalen Beweis (rechts), aufgeteilt nach der verwendeten Operationalisierung des 
Teilbarkeitsbegriffs 
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Diese erhaltenen Ergebnisse ließen sich besser verstehen, wenn man die verwendete 

Operationalisierung des Teilbarkeitsbegriffs in die Analyse mit einbezog. Wurde bei der Konstruktion 

der generischen und formalen Beweise die Quotientenschreibweise verwendet, so waren diese 

Bearbeitungen insgesamt als weniger erfolgreich einzustufen.  

Die Beweisbearbeitungen der Studierenden wurden in dieser Studie nicht zweitcodiert, wodurch die 

Reliabilität dieser Studie nicht gesondert überprüft wurde. Wie bereits bei den entsprechenden 

Untersuchungen der Hausaufgabenbearbeitungen der Studierenden (Abschnitt 5.2.2.2 und 5.3.2.1) 

ist dies damit begründet, dass die Intention dieses Forschungsprojekts darin lag, überhaupt eine Idee 

davon zu bekommen, wie die Beweisbearbeitungen der Studierenden nach der Lehrveranstaltung 

ausfallen, und u.a. auf der Grundlage dieser Ergebnisse die Konzeption der Lehrveranstaltung zu 

reflektieren. Aus diesem Grund wurde an dieser Stelle der vorliegende Grad an Reliabilität (und auch 

an Objektivität) für ausreichend befunden. 

5.3.3 Retrospektive Analyse der zweiten Durchführung der Lehrveranstaltung 

 

Bei der retrospektiven Betrachtung der zweiten Durchführung der Lehrveranstaltung und der damit 

einhergehenden Forschung wurden die folgenden Aspekte deutlich: 

(1) Die vorgenommenen Änderungen im ersten Kapitel der Lehrveranstaltung schienen 

insgesamt in die richtige Richtung zu weisen: Die Ergebnisse der erneuten Analyse der 

Hausaufgabenbearbeitungen (Abschnitt 5.3.2.1) konnten in dieser Weise interpretiert 

werden.  

(2) Die Konstruktion von generischen und formalen Beweisen stellte für die Studierenden 

weiterhin ein Problem dar (vgl. Abschnitt 5.3.2.2 und 5.3.2.4). Neben konzeptuellen 

Schwierigkeiten mit diesen Beweisformen müssen dabei auch Probleme mit Fachinhalten 

(Termumformungen und Teilbarkeit) berücksichtig werden. 

(3) Die Ergebnisse des Beweisbewertungstests (Abschnitt 5.3.2.3) wiesen darauf hin, dass die 

Probleme der Studierenden mit generischen Beweisen eher nicht auf Fehlvorstellungen bzgl. 

der Bedeutung von bloßen empirischen Verifikationen im Beweisprozess zurückzuführen 

waren. Es schien aber, dass viele Studierende generische Beweise subjektiv nicht als valides 

Mittel zur Verifikation einer Behauptung akzeptieren würden.  

(4) Bei der rückblickenden Betrachtung der Vorlesungen wurde deutlich, dass im Rahmen des 

ersten Kapitels mit einer Ausnahme alle Beweise in der Vorlesung formal geführt wurden. 

Nur für die Eingangsbehauptung wurde ein generischer Beweis konstruiert, der anschließend 

auch formal geführt wurde. Dies schien den impliziten Zielen der Lehrveranstaltung entgegen 

zu laufen, generische Beweise als ‚gleichberechtigt‘ neben formale Beweise zu stellen. 

Erörterung der Ergebnisse unter der Perspektive des „diagrammatischen Schließens“ 

Für den fehlerbehafteten Umgang mit generischen Beweisen schienen nach wie vor konzeptuelle 

Probleme der Studierende ausschlaggebend zu sein; betrachtet unter dieser semiotischen 

Perspektive schien ihnen die Allgemeingültigkeit nicht deutlich zu werden, die aus den 

vorgenommenen Transformationen mit konkreten Zahlzeichen resultiert. Sowohl bei den 

generischen, wie auch bei den formalen Beweisen wurde im Rahmen des Inhaltsbereichs ‚Teilbarkeit‘ 

die Bedeutung fachlicher Aspekte immanent: Der Teilbarkeitsbegriff ermöglicht den Studierenden 

verschiedene Operationalisierungen der Teilbarkeitsrelation, welche jeweils unterschiedliche Arten 
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von diagrammatischem Schließen erfordern. Während die Quotientenschreibweise den Nachweis 

erfordert, dass der erhaltene Quotient ein Element der natürlichen Zahlen ist, wird bei der 

Faktorschreibweise die Darstellung eines Produkts gefordert, in der die Faktoren Element der 

natürlichen Zahlen sein müssen. Folglich hat das Verständnis der Studierenden von Teilbarkeit 

Auswirkungen auf ihr diagrammatisches Schließen.  

Erörterung der Ergebnisse unter der Perspektive „sozio-mathematischer Normen“ 

Bei den in den verschiedenen Forschungsprojekten erhaltenen Ergebnissen bzgl. des generischen 

Beweises wurde deutlich, dass nur noch wenige Studierende bloße Beispielbetrachtungen als 

‚generische Beweise‘ anstellten. Insofern schien die Kommunikation der Normen für die Konstruktion 

generischer Beweise erfolgreich gewesen zu sein. Problematisch erschien allerdings der Aspekt der 

zu formulierenden narrativen Begründung innerhalb dieser Beweise. Den Studierenden schien nicht 

bewusst zu sein, welche Aspekte bzw. Argumente hier expliziert werden müssen, was auch durch den 

hohen Anteil von Pseudoantworten in ihren Beweiskonstruktionen deutlich wurde (s. Abschnitt 

5.3.2.4). 

Der fachliche Aspekt der Operationalisierung von Teilbarkeit in Beweisen kann auch als Aspekt sozio-

mathematischer Normen interpretiert werden. Zwar sind beide Operationalisierungen (Quotienten- 

und Faktorschreibweise) mathematisch korrekt und legitim, doch lassen sich an dieser Stelle zwei 

Aspekte für eine vornehmliche Verwendung der Faktorschreibweise anführen. Zum einen wurde bei 

der Analyse der Klausuraufgabe deutlich, dass Bearbeitungen, in denen von der Faktorschreibweise 

Gebrauch gemacht wurde, in der Regel besser gelangen. Zum anderen herrscht in der Zahlentheorie 

die (implizite) Norm, dass Teilbarkeit über die Faktorrelation operationalisiert wird. Somit erweist 

sich die Vermittlung dieser Operationalisierung auch als ein Aspekt der Enkulturation. 

Nichtsdestotrotz darf die Verwendung der Quotientenschreibweise nicht verboten werden; bietet sie 

doch die Möglichkeit der Anknüpfung an schulische Vorerfahrungen bzw. an intuitives Vorwissen. Bei 

der Verwendung der Quotientenschreibweise muss den Studierenden allerdings die ‚Norm‘ 

vermittelt werden, dass hier der Nachweise erfolgen muss, dass der erhaltene Quotient ein Element 

der natürlichen Zahlen ist, auch wenn dies als ‚intuitiv klar‘ erscheinen mag. 

Innerhalb dieser zweiten Durchführung der Lehrveranstaltung wurde bereits ein erster Versuch zur 

Angleichung der verschiedenen Begrifflichkeiten zum Beweisen unternommen. Doch herrschte in 

einem gewissen Maße immer noch Unklarheit über die Bezeichnung der Beweise, auch weil in der 

Literatur zu der Thematik keine Einigkeit besteht (vgl. Biehler & Kempen 2016, S. 168ff.). Darüber 

hinaus war es eine offene Frage, was genau den Studierenden unter dem Begriff ‚formaler Beweis‘ 

vermittelt werden sollte, weshalb an einigen Stellen auf Bezeichnungen wie ‚symbolischer Beweis‘ 

oder ‚algebraischer Beweis‘ ausgewichen wurde. 

Abgleich mit der intentionalen Dimension der zweiten Durchführung der Lehrveranstaltung 

Bei der bisher erfolgten retrospektiven Analyse der zweiten Durchführung der Lehrveranstaltung ist 

deutlich geworden, dass die Studierendenbearbeitungen zum generischen und zum formalen Beweis 

nun ‚besser‘ als im ersten Durchgang ausfielen. Die Kommunikation konkreter Normen für die 

Konstruktion dieser Beweisformen schien somit erfolgreich gewesen zu sein und auch die 

Unterscheidung von expliziter ‚Beweisbearbeitung‘ und ‚Reinschrift‘ schien dazu beigetragen zu 

haben, dass die finalen Beweisprodukte ordentlicher bzw. strukturierter notiert wurden. Es konnte 

festgestellt werden, dass die Probleme der Studierenden bei der Konstruktion der generischen 
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Beweise eher nicht auf Fehlvorstellungen bzgl. der Bedeutung von bloßen Beispielbetrachtungen 

zurückzuführen waren, ihre Probleme schienen vielmehr in dem Ausmachen der 

beispielübergreifenden, generischen Struktur und in der geforderten Verbalisierung zu liegen. 

Über den Zeitraum dieses Wintersemesters wurde weiter deutlich, dass die studentischen Hilfskräfte 

selbst sicherer im Umgang und bei der Korrektur der verschiedenen Beweisformen waren. Dies 

konnte zum einen auf die durchgeführte Tutorenschulung zurückgeführt werden. Zum anderen muss 

erwähnt werden, dass nun auch gute Studierende aus der ersten Durchführung der 

Lehrveranstaltung als Hilfskräfte mitarbeiteten und die Studierenden die Übungsgruppen gemeinsam 

in Tandems abhielten. Insgesamt waren diese Maßnahmen als erfolgreich zu bewerten. 

Aufgrund der vorgenommenen Forschungsfokusse auf die Konstrukte generischer Beweis und 

formaler Beweis konnten die Maßnahmen, die sich auf das Verständnis mathematischer 

Behauptungen und Gegenbeispiele konzentrierten, nicht anhand von Forschungsergebnissen 

evaluiert und reflektiert werden. Die beteiligten Lehrenden (der Dozent und zwei wissenschaftliche 

Mitarbeiter) waren sich jedoch darüber einig, dass die vorgenommenen Maßnahmen in die richtige 

Richtung zu weisen schienen. 

5.4 Die Lehrveranstaltung im Wintersemester 2013/14 und die im Kontext 

dieser Durchführung erfolgten Studien 
Im Folgenden werden zunächst die Änderungen beschrieben und begründet, wie sie im 

Wintersemester 2013/14 aufgrund bisheriger Forschungsergebnisse und Lehrerfahrungen 

vorgenommen wurden. Anschließend werden die Untersuchungen thematisiert, welche in diesem 

Kontext zu nennen sind. Hierzu gehören: die Pilotierung eines Vor- und Nachtests (Abschnitt 5.4.2.1), 

ein Videostudie zu Beweiskonstruktionen und Beweisverständnis (Abschnitt 5.4.2.2) und eine 

Analyse der Beweiskonstruktionen der Studierenden in der Abschlussklausur (Abschnitt 5.4.2.3). 

5.4.1 Veränderungen bei der dritten Durchführung der Lehrveranstaltung im 

Wintersemester 2013/14 

 

Aufgrund der bis dato erfolgten Forschung und gemachten Lehrerfahrungen wurden im 

Wintersemester 2013/14 die folgenden Modifikationen im Kontext der Vorlesung vorgenommen: (1) 

der Teilbarkeitsbegriff wurde vertieft thematisiert, (2) Punktmusterdarstellungen wurden auch in das 

erste Kapitel der Lehrveranstaltung verstärkt aufgenommen und Punktmusterbeweise explizit in das 

Spektrum der Beweisformen der Lehrveranstaltung eingebunden, (3) Vor- und Nachteile von 

formalen Beweisen wurden erörtert, (4) generische Beweise wurden stärker in den Fortgang der 

Vorlesung miteingebunden und alle vier Beweisformen wurden im Rahmen des zweiten Kapitels 

explizit aufgegriffen. Durch die Übernahme der Erstellung der Hausaufgaben durch den Autor der 

vorliegenden Arbeit wurde es im Wintersemester 2013/14 auch möglich, (5) neue Aufgabenformate 

sowohl in die Präsenzübungen als auch in die Hausaufgaben zu integrieren. Es galt hierbei, solche 

Aufgaben zu entwickeln, die den herausgefundenen Studierendenproblemen zum generischen 

Beweis gezielt entgegenwirken. Zentrale Aspekte der Aufgabenformate waren somit: (i) Die 

Beurteilung fehlerhafter generischer Beweise, (ii) die Vervollständigung lückenhafter generischer 

Beweise, (iii) die eigene Konstruktion generischer Beweise (auch in Verbindung mit 

Punktmusterdarstellungen) und (iv) die Formalisierung generischer Beweise; darüber hinaus (v) 

Aufgaben an konkreten Punktmustern, an denen allgemeine Beziehungen abstrahiert, formalisiert 

und bewiesen werden sollen, und (vi) explizite Integration von Punktmusterbeweisen und deren 
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Formalisierung. (6) Schließlich wurde im Rahmen dieser dritten Durchführung der Lehrveranstaltung 

eine Neukonzipierung der Zentralübung in Angriff genommen wurde. 

Veränderungen im Kontext der Vorlesung 

(1) Thematisierung des Teilbarkeitsbegriffs 

Bei der Analyse der Klausurbearbeitungen aus dem vorherigen Semester war deutlich geworden, 

dass verschiedene Probleme der Studierenden bei der Konstruktion von Beweisen auf ein 

unzureichendes Verständnis der Teilbarkeitsrelation zurückzuführen sind (vgl. Abschnitt 5.3.2.4). 

Daher wurde zu Beginn des ersten Kapitels, im Kontext der Analyse der Ausgangsbehauptung, eine 

„prozedurale Sicht“ auf die Teilbarkeit einer Zahl �	 ∈ ℕ	durch eine Zahl �	 ∈ ℕ	eingeführt: Die 

Teilbarkeit ist gegeben, wenn der Quotient 
$
 	eine natürliche Zahl ist. Somit konnte die 

Quotientenschreibweise aufgegriffen werden, die zunächst besser an das Schulwissen anknüpft, in 

dem ja auch Brüche ‚existierten‘. Im Kontext der folgenden ‚formalen Beweise‘ wurde dann als 

äquivalente Aussage für die Teilbarkeit die Aussage „Es existiert ein �	 ∈ i, so dass � = � ∙ � 

(„Faktorschreibweise“) als eine für das Beweisen hilfreiche Umformulierung eingeführt. 

(2)  Die verstärkte Integration von Punktmusterdarstellungen und Punktmusterbeweisen in 

das erste Kapitel der Vorlesung 

Bei der retrospektiven Analyse des vorherigen Durchgangs der Lehrveranstaltung war das Problem 

offen geblieben, wie Studierenden das Konzept von generischen Beweisen (besser) vermittelt 

werden könnte. Als besonders problematisch wurde hierbei die Verwendung von konkreten Zahlen 

als „paradigmatische“ Zahlen (i.S. von Freudenthal) betrachtet: Wie kann man Lernende das 

Allgemeine im Konkreten vermitteln? (Vgl. hierzu Abschnitt 4.3.3.) 

Eine Idee zur Behebung dieses Problems bestand darin, die ‚Anschauung‘ stärker in diesen Prozess 

der Verallgemeinerung miteinzubeziehen. Als anschauliche Beweise werden im Allgemeinen solche 

verstanden, die „[…] auch schematisch aufzufassende Zeichnungen enthalten“ (Kautschitsch 2015, S. 

144). Als ‚Veranschaulichung‘ der Sachverhalte der Arithmetik wurde das Diagrammsystem der 

Punktmuster gewählt. Dies schien vor aus verschiedenen Gründen nachvollziehbar: Zunächst wurden 

Punktmusterdarstellungen sowieso im zweiten Kapitel der Lehrveranstaltung thematisiert. Darüber 

hinaus ist die Verwendung von Punktmusterdarstellungen im schulischen Mathematikunterricht 

durchaus üblich (siehe für die Primarstufe etwa Kaput et al. 2008, Steinweg 2013, Wittmann & Müller 

1990 und für die Sekundarstufe z.B. Blum & Leiß 2006 oder Meyer und Prediger 2009), eine 

entsprechende Verwendung von Punktmusterdarstellungen konnte somit als vermutlich bekannt 

vorausgesetzt werden. Entsprechenden geometrischen Darstellungen wird auch das Potential 

zugesprochen, den Übergang von der Arithmetik zur Algebra zu erleichtern (etwa Flores 2002).  

Aus diesen Gründen wurden Punktmusterdarstellungen und Punktmusterbeweise bereits in das erste 

Kapitel integriert. Dem generischen Beweis über die Teilbarkeit der Summe von drei 

aufeinanderfolgenden natürlichen Zahlen wurden Punktmusterdarstellungen beigestellt (vgl. 

Abbildung 28).  

 

 

Abbildung 28: Punktmusterdarstellungen der Summe 
von drei aufeinanderfolgenden Zahlen; links im 
konkreten Fall als Andeutung eines generischen 
Beweises; rechts ‚allgemein‘ mit geometrischen 
Variablen 
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Durch die Umgruppierung der Punkte im konkreten Punktmuster sollte das generische Moment der 

Argumentation hervorgehoben werden: Bei jeder Summe von drei aufeinanderfolgenden Zahlen 

können durch Umgruppierung der Punkte drei gleich lange Reihen gebildet werden. Mithilfe dieser 

Erkenntnis wurde anhand des konkreten Punktmusters ein generischer Beweis ausformuliert. Für die 

geometrische Darstellung einer beliebigen Anzahl wurde die Idee der „geometrischen Variable“ 

verwendet. 

Insgesamt wurden nun vier verschiedenen Beweisformen im Kontext der Lehrveranstaltung 

verwendet: der generische Beweis mit Zahlen, der generische Beweis mit Punktmustern, der 

Punktmusterbeweis mit geometrischen Variablen und der sogenannte formale Beweis. 

(3) Die Erörterung der Vor- und Nachteile von formalen Beweisen 

Neben der Vermittlung des Konzepts eines generischen Beweises sollte im Kontext der 

Lehrveranstaltung erneut auch eine Hinführung zum formalen Beweis erfolgen. Einhergehend 

hiermit sollte die algebraische Symbolsprache als sinnvolles ‚Werkzeug‘ der Wissenschaft 

Mathematik verdeutlicht und vermittelt werden. Es galt somit, neben Vermittlung des generischen 

Beweises, auch für die formale Fachsprache und den formalen Beweis zu werben. Aus diesem Grund 

wurde in dem dritten Durchlauf der Lehrveranstaltung mit dem Plenum eine Erörterung der Vor- und 

Nachteile von formalen Beweisen vorgenommen. Zentral erschienen dabei, gerade im Kontrast zum 

generischen Beweis, die folgenden Aspekte: (i) Wenn man die Algebra korrekt beherrscht, werden in 

formalen Beweisen nur solche Umformungen vorgenommen, die für alle (natürlichen) Zahlen gelten, 

weswegen der Algebra eine Kontrollfunktion zukommt, (ii) bei algebraischen Termumformungen 

braucht der Beweisende u.U. keine ‚Idee‘ wie bei generischen Beweisen, da bloße 

Termumformungen bereits zum Ziel führen können, (iii) bei der korrekten Verwendung der Algebra 

muss der Aspekt der Allgemeingültigkeit der Begründung nicht expliziert werden. 

(4) Die stärkere Integration von generischen Beweisen in den Fortgang der Vorlesung  

Bei der retrospektiven Analyse des vorherigen Durchgangs war aufgefallen, dass im Verlauf des 

ersten Kapitels ausschließlich der ‚formale‘ Beweis als mathematisches Erkenntnismittel im 

Forschungsprozess um die Frage der Teilbarkeit der Summen aufeinanderfolgender Zahlen eingesetzt 

wurde. Dies widerspricht dabei der (impliziten) Werbung für alternative Beweismethoden. Aus 

diesem Grunde wurde nun der Beweis des finalen Satzes des ersten Kapitels (über die Teilbarkeit der 

Summe von ' ∈ ℕ aufeinanderfolgenden Zahlen durch	') anhand der generischen Idee der 

‚mittleren Zahl‘ der Vorbetrachtungen entwickelt: 

Für ungerade k ist die Summe 

tn − k − 1
2 v +⋯+ 
n − 1� + n + 
n + 1� + ⋯+ tn + k − 1

2 v = kn 

immer durch k teilbar.  

 

Für gerade k ist die Summe	
tn − 
k2 − 1�v + ⋯+ 
n − 1� + n + 
n + 1� + ⋯+ 
n + 
'2 − 1�� + tn + k

2v = kn + k
2 

nie durch k teilbar. 

 

Eine andere (generische) Beweisidee wurde anschließend anhand von zwei konkreten Punktmustern 

erarbeitet (vgl. Abb. 29). 
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Abbildung 30: Vier studentische Bearbeitungen zum „generischen Beweis“. 

Diese Heuristik der Untersuchung konkreter Beispiele wurde auch im Rahmen des zweiten Kapitels 

verstärkt aufgegriffen. So wurde an konkreten Dreieckszahlen ein generischer Beweis für die explizite 

Formel der Dreieckszahlen entwickelt. 

Dieses Wiederaufgreifen vorheriger (generischer) Ideen aus dem Verlauf der Vorlesung verstärkt 

dabei den ‚roten Faden‘ des Erkenntnisprozesses und die Bedeutung der Erkenntnisse, die an 

Beispielen gewonnen werden können. 

 

 

 

 

 

 

 

 

 

 

Änderungen im Kontext der Präsenzübungen und Hausaufgaben 

(5) Die Entwicklung neuer Aufgabenformate 

 

(i) Die Beurteilung fehlerhafter generischer Beweise (Präsenzübung 1, Aufgabe 1) 

Studierenden wurde die Aufgabe gegeben, die folgende Behauptung mit einem generischen Beweis zu beweisen: Die 

Summe aus einer ungeraden natürlichen Zahl und ihrem Doppelten ist immer ungerade.  

Im Folgenden sind vier verschiedene Lösungen dargestellt: 

 

 

 

 

 

 

 

 

 

Bewerten Sie die vier dargestellten „generischen Beweise“ im Hinblick auf  

(i) die getesteten Beispiele,  

(ii) ihre dargestellten Argumentationen und  

(iii) ihre Allgemeingültigkeit. 

Abbildung 29: Entwicklung einer Beweisidee über die Teilbarkeit von X	w	ℕ 
aufeinanderfolgenden Zahlen am Punktmuster 
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(ii) Die Vervollständigung eines lückenhaften generischen Beweises (Hausaufgabenblatt 1, 

Aufgabe 1) 

 
 

Betrachten Sie die folgende (unvollständige) 

Schülerlösung zu einem generischen Beweis: 

 

a) Formulieren Sie die Behauptung, die der Schüler 

hier zu beweisen versucht.  

b) Vervollständigen Sie den obigen generischen 

Beweis und schreiben Sie ihn auf.  

c) Übernehmen Sie Ihre Argumentation aus (b) und 

führen Sie einen Beweis mit Variablen und 

algebraischen Umformungen. 

 

 

 

 
 

 

 

 

 

 

 

 

(iii) Die eigene Konstruktion generischer Beweise (Hausaufgabenblatt 1, Aufgabe 3) 

Wir betrachten die folgende Behauptung: Das Quadrat einer ungeraden Zahl ist immer ungerade. 

 

(a) Beweisen Sie die Behauptung durch algebraische Umformungen und mit Verwendung von Variablen. 

(b) Die folgende Abbildung strukturiert das Quadrat zu der Zahl 5 in einer Art und Weise, wie es für eine generische 

Argumentation genutzt werden kann. Verbalisieren Sie diese generische Argumentation, die aus der Strukturierung 

hervorgeht. 

 

 

 

 

 

 

 

 

(iv) Die Formalisierung generischer Beweise (Präsenzübung 1, Aufgabe 1)  

Sie kennen die Teilbarkeitsregel für die Zahl 3: 

 

Wenn die Quersumme einer natürlichen Zahl durch 3 teilbar ist, dann ist auch die Zahl selbst durch 3 teilbar.  

 

Im Folgenden ist ein generischer Beweis für die Teilbarkeit durch 3 bei dreistelligen Zahlen gegeben: 

 

Wir betrachten die Zahl 756. Diese Zahl kann wie folgt dargestellt werden: 756	 = 	7	 ∙ 100	 + 	5	 ∙ 	10	 + 	6. Dies kann man 

dann umformen und erhält: 756 = (7 ∙ 99 + 7) + (5 ∙ 9 + 5) + 6. Mit dem Kommutativgesetz und dem Assoziativgesetz 

erhalten wir dann: 756 = (7 ∙ 99 + 5 ∙ 9) + (7 + 5 + 6). Da der Term in der ersten Klammer durch 9 teilbar ist, ist er auch durch 

3 teilbar. Also ist die gegebene Zahl dann durch 3 teilbar, wenn der Ausdruck in der zweiten Klammer (und das ist genau die 

Quersumme der Ausgangszahl) durch	3 teilbar ist. 

 

Übernehmen Sie die gegebene Argumentation und formulieren Sie einen Beweis mit algebraischen Umformungen und 

Variablen. 

 

Abbildung 31: Eine unvollständige Schülerlösung 
zu einem generischen Beweis 

Abbildung 32: Generische Strukturierung 
einer ungeraden Quadratzahl (Abbildung 
ähnlich zu Rinvold und Lorange 2013, S. 
218) 
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(v) Aufgaben an konkreten Punktmustern, bei denen allgemeine Beziehungen abstrahiert, 
formalisiert und bewiesen werden sollen (Präsenzübung 2, Aufgabe 2) 

 

 

 

 

 

 

 

Die beiden Abbildungen verdeutlichen zwei weitere Zusammenhänge zwischen Dreieckszahlen und Quadratzahlen. 

 

a) Betrachten Sie die konkreten „Punktmuster“ und schreiben Sie die jeweils dargestellten konkreten Zusammenhänge 

zwischen den Dreieckszahlen und den Quadratzahlen auf. 

b) Rechnen Sie Ihre unter (a) aufgestellten Zusammenhänge nach. 

c) Wird Ihnen in den beiden konkreten Abbildungen auch der allgemeine Zusammenhang zwischen beliebigen 

Dreieckszahlen L� und Quadratzahlen S� deutlich? Formulieren Sie die Zusammenhänge für allgemeine Dreicks- und 

Quadratzahlen für	�	(ℕ. 

d) Rechnen Sie Ihre unter (c) aufgestellten Zusammenhänge nach. 

 

 

(vi) Integration von Punktmusterbeweisen und deren Formalisierung (Hausaufgabenblatt 1, 

Aufgabe 2) 

 

Wir betrachten die folgenden drei Behauptungen: 

(1) Für alle geraden Zahlen �,�	(	ℕ gilt, dass die Summe �	 + 	� eine gerade Zahl ist. 

(2) Für alle ungeraden Zahlen �,�	(	ℕ gilt, dass die Summe �	 + 	� eine gerade Zahl ist. 

(3) Die Summe aus einer geraden Zahl @	(	ℕ und einer ungeraden Zahl D	(	ℕ ist eine ungerade Zahl. 

 

Die folgenden drei Abbildungen ‚visualisieren‘ Beweise zu den obigen Behauptungen. 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

(i) Ordnen Sie die Abbildungen (a), (b) und (c) den entsprechenden Behauptungen (1), (2) und (3) zu.  

(ii) Abstrahieren Sie aus den Abbildungen die Eigenschaften gerader und ungerader Zahlen und formulieren Sie diese 

Eigenschaften unter dem Gebrauch von Variablen.  

(iii) Nutzen Sie Ihre Erkenntnisse aus (ii) und formulieren Sie die Beweise mit algebraischen Umformungen zu den 

Behauptungen (1), (2) und (3). 

 

 

 

 

Abbildung 33: Darstellungen zweier konkreter 
Zusammenhänge zwischen Dreiecks- und Quadratzahlen 
(Abbildung ähnlich zu Conway und Guy 1997, S. 47) 

Abbildung 34: Drei Punktmusterbeweise mit geometrischen Variablen über 
die Summe gerader und ungerader Zahlen 
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(6) Die Neukonzipierung der Zentralübung 
 

In den bisherigen Durchgängen der Lehrveranstaltung wurden bereits wöchentliche Zentralübungen 

abgehalten, in denen den Studierenden die Lösungen der wöchentlichen Hausaufgaben präsentiert 

wurden. Ein Anliegen der Neustrukturierung der Zentralübung bestand darin, Musterlösungen 

stärker prozessorientiert als eine gemeinsame mathematische Tätigkeit im Plenum zu entwickeln. 

Theoretische Grundlagen für diese Umstellung der Zentralübungen bildeten die Arbeiten von 

Ableitinger und Herrmann (2011) und Reiss und Renkl (2002), welche auf das Prozessmodell von 

Boero (1999) zum Beweisen übertragen wurde. Ein weiteres Anliegen der Zentralübung bestand 

darin, den Studierenden mehr Raum dafür zu geben, die Unterschiede bzw. die Vor- und Nachteile 

der verschiedenen Beweisformen und Diagrammsysteme diskutieren zu können. Das finale Konzept 

der Zentralübung wird in Abschnitt 6.3.3 dargestellt. 

 

5.4.1.1 Die intentionale Dimension der dritten Durchführung der Lehrveranstaltung 

Zusätzlich zu den allgemeinen Zielen der Lehrveranstaltung, die bereits in dem Abschnitt 5.2.1.1 

benannt wurden, lassen sich als spezifische Zielsetzungen der dritten Durchführung der 

Lehrveranstaltung die folgenden Aspekte benennen: 

• Der verstärkte Einbezug von Punktmusterdarstellungen sollte den Studierenden als 

‚Veranschaulichung‘ den Umgang mit den elementaren mathematischen Sachverhalten und 

den Übergang zur Algebra erleichtern. Darüber hinaus sollten die Punktmusterdarstellungen 

als ein alternatives Diagrammsystem für die Konstruktion generischer Beweise dienen. 

• Den Studierenden sollten die Vor- und Nachteile formaler und generischer Beweise 

verdeutlich werden, um einen verständigen Umgang mit den Beweisformen und den 

entsprechenden Diagrammsystemen anzubahnen. Diese Erörterung wurde dabei auch als ein 

Werben für die mathematische Symbolsprache verstanden. 

• Durch die stärkere Integration von generischen Beweisen in die Vorlesung sollte u.a. deren 

‚Stellung‘ und Ansehen bei den Studierenden gestärkt werden. 

• Die verschiedenen neuen Aufgabenformate sollten den Studierenden dabei helfen, das 

Konzept generischer Beweise besser zu durchdringen, und damit ihre Beweiskonstruktionen 

verbessern. 

5.4.2 Die im Kontext dieser Durchführung erfolgten Studien 

Im Wintersemester 2013/14 wurden im Rahmen der 

Lehrveranstaltung die folgenden Studien durchgeführt 

(vgl. Abbildung 35): die Pilotierung einer Ein- und 

Ausgangsbefragung zu den Beweiskompetenzen und 

Einstellungen zum Beweisen der Studierenden 

(Abschnitt 5.4.2.1), eine Interviewstudie zum 

Beweisverständnis der Studierenden (Abschnitt 

5.4.2.2) und schließlich die Analyse der Bearbeitungen 

einer Klausuraufgabe, in der die Studierenden die vier 

verschiedenen Beweise der Lehrveranstaltung zu einer 

Behauptung konstruieren sollten (Abschnitt 5.4.2.3). 
Abbildung 35: Überblick über die im 
Wintersemester 2013/14 erfolgten Studien 
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5.4.2.1 Pilotierung einer Ein- und Ausgangsbefragung zu den Beweiskompetenzen der 

Studierenden und ihren Einstellungen zum Beweisen  

Die dritte Durchführung der Lehrveranstaltung wurde im Wintersemester 2013/14 durch eine Ein- 

und Ausgangsbefragung gerahmt, die die Studierenden in der ersten und vorletzten 

Vorlesungssitzung bearbeiteten. Diese Untersuchung diente zur Pilotierung der Messinstrumente für 

die ‚Effektivitätsstudie‘ im Wintersemester 2014/15, welche Gegenstand des siebten Kapitels ist. Da 

diese Studien im Wintersemester 2013/14 an dieser Stelle als Pilotierung aufgefasst werden und 

keine direkten Auswirkungen auf die Weiterentwicklung der Lehrveranstaltung hatten, werden die 

entsprechenden Ergebnisse im Rahmen dieser Arbeit nicht weiter besprochen. Resultate, die im 

Kontext der Entwicklung der entsprechenden Messinstrumente verwendet wurden, wurden bereits 

in Abschnitt 3.3 dargestellt 

5.4.2.2 Eine Interviewstudie zum Beweisverständnis 

Aufbauend auf den Erkenntnissen der Pilotierung der Interviewstudie im Wintersemester 2012/13 

(Abschnitt 5.3.2.2) wurde im Wintersemester 2013/14 erneut eine Interviewstudie zum 

Beweisverständnis der Studierenden durchgeführt. Diese Studie wird im Folgenden dargestellt. 

Forschungsanliegen und Forschungsfragen 

Im bisherigen Lehr- und Forschungsprozess war die Frage offen geblieben, welche Wahrnehmung die 

Studierenden von den vier Beweisformen der Lehrveranstaltung (dem generischen Beweis mit 

Zahlen, dem generischen Beweis mit Punktmustern, dem Punktmusterbeweis mit geometrischen 

Variablen und dem sogenannten formalen Beweis) haben. Im Fokus dieser Untersuchung standen 

somit nicht die Beweiskonstruktionen der Studierenden, sondern ihre Wahrnehmungen von diesen. 

Unter Wahrnehmung wird an dieser Stelle zunächst das Spannungsfeld von logischer Akzeptanz eines 

Beweises („Sicherung der Gültigkeit“) und (empfundener) subjektiver Überzeugung bzgl. der 

Gültigkeit einer Behauptung („Überzeugungskraft“) betrachtet. Hinzu kommen die Aspekte 

„Erklärungspotential“ und „Eignung für den schulischen Mathematikunterricht“. Diese 

Betrachtungsfokusse begründeten sich zunächst auf der in der Lehrveranstaltung vertretenen 

Unterscheidung vom psychologischen und logischen Nutzen von Beispielbetrachtungen und 

Beweisen, welche auf die Beweisfunktionen (objektiver) Nachweis von Gültigkeit und (subjektive) 

Überzeugung verweisen (s. Abschnitt 2.1.7). Die Betrachtung des Erklärungspotentials der Beweise 

ergab sich aus der in der Didaktik vielfach herausgestellten Erklärungsqualität von verschiedenen 

Beweisformen, die als besonders wertvoll für das Erlernen der Beweisaktivität angesehen werden. In 

diesem Zusammenhang wird in der Literatur gerade generischen Beweisen und 

Punktmusterdarstellungen ein besonderes Erklärungspotential zugeschrieben (s. Abschnitt 2.1.3 und 

2.1.7). Die Untersuchung der Einschätzung einer Eignung für den schulischen Mathematikunterricht 

ergab sich aus dem Ziel der Lehrveranstaltung, Begründungsformen zu vermitteln, die die 

Studierenden in ihrer späteren Lehrpraxis an der Schule verwenden können. Auch sei an dieser Stelle 

erwähnt, dass entsprechende Beweisformen in der Literatur als schuladäquate Begründungsformen 

für die Schulmathematik angeführt werden (etwa in Leiß und Blum (2006, S. 33ff.) oder Leuders 

(2010, S. 53)). Somit sollte auch erforscht werden, wie die Studierenden selbst die Eignung der 

verschiedenen Beweisformen für den schulischen Mathematikunterricht einschätzten. Diese 

Wahrnehmungen der Studierenden sollten zunächst mithilfe eines Fragebogens (s.u.) erfasst werden. 

Neben dieser basalen Einschätzung der verschiedenen Beweisformen bestand ein 

Forschungsanliegen darin, eben diese angekreuzten Antworten besser verstehen zu wollen. Aus 

diesem Grund wurde an die Phase der Fragebogenbearbeitung eine dezidierte Interviewphase mit 
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den Studierenden angeschlossen, bei der deren Antworten auf dem Fragebogen als 

Gesprächsanlässe verwendet wurden. Im Kontext dieser Studie war auch von Interesse, welche 

Beweisform die Studierenden zunächst verwenden, wenn sie eine Behauptung beweisen sollen. 

Denn ein Anliegen der Lehrveranstaltung bestand darin, die Bedeutung von Exploration und der 

Untersuchung von konkreten Beispielbetrachtungen für den mathematischen Erkenntnisprozess 

hervorzuheben, welche dann ‚in natürlicher Weise‘ zu der Konstruktion von generischen Beweisen 

führen sollten (vgl. hierzu den Aspekt des „genetischen Beweisens“ in Brunner (2014, S. 20)). Auch 

scheint die intuitive (Aus-) Wahl einer Beweisform für eine bestimmte Wahrnehmung derselben zu 

sprechen. 

Die Leitfragen zur Auswertung der Studie waren39: 

• Leitfrage zur Auswertung [9]: Welche Beweisform nutzen die Studierenden spontan, um eine 

gegebene Behauptung zu beweisen? Welche Gründe können für die entsprechende 

Beweiswahl ausgemacht werden? 

• Leitfrage zur Auswertung [10]: Wie bewerten die Studierenden die vier verschiedenen 

Beweisformen der Lehrveranstaltung im Hinblick auf die Aspekte „Sicherung der Gültigkeit“, 

„Überzeugungskraft“, „Erklärungspotential“ und „Eignung für den schulischen 

Mathematikunterricht“? 

• Leitfrage zur Auswertung [11]: Wie beschreiben die Studierenden ihre Wahrnehmung bzgl. 

des generischen Beweises mit Zahlen im Spannungsfeld von logischer Akzeptanz und 

psychologischer Überzeugung und womit begründen sie diese? 

• Leitfrage zur Auswertung [12]: Wie beschreiben die Studierenden ihre Wahrnehmung bzgl. 

des formalen Beweises im Spannungsfeld von logischer Akzeptanz und psychologischer 

Überzeugung und womit begründen sie diese? 

• Leitfrage zur Auswertung [13]: Wie beschreiben die Studierenden ihre Wahrnehmung bzgl. 

der Punktmusterbeweise im Spannungsfeld von logischer Akzeptanz und psychologischer 

Überzeugung und womit begründen sie diese? 

Durchführung der Studie 

Die Interviewstudie wurde in der vorletzten Vorlesungswoche durchgeführt. Aus jeder Übungsgruppe 

wurden unter den Freiwilligen zwei Studierende ausgelost, die zeitgleich zu ihrer eigentlichen 

Kleingruppenübung an der Interviewstudie teilnahmen. In der entsprechenden Übungsgruppe wurde 

dieselbe Aufgabe behandelt, so dass für den Teilnehmenden der Studie kein Nachteil und auch kein 

Mehraufwand entstand. Auch die Interviews dauerten, genau wie die Kleingruppenübung, 90 

Minuten. 

Die Teilnehmenden der Studie wurden über Eck an einem Tisch platziert (vgl. die Position von „S1“ 

und „S2“ in Abbildung 36). So konnte eine Videokamera hinter ihnen positioniert werden, damit 

sämtliche Notizen videographiert werden konnten. Durch ein Mikrophon, das in der Mitte des 

Tisches angebracht war, konnten alle Äußerungen der Studierenden aufgenommen werden. Eine 

zweite Kamera, etwas abseits aufgestellt, ermöglichte die Aufnahme der Studierenden aus der 

Vorderansicht, so dass auch Gesten und Bewegungen aufgezeichnet werden konnten. Der 

Interviewer saß etwas abseits an einem Nebentisch, so dass er das Geschehen beobachten konnte, 

                                                           
39

 Der Aspekt der individuellen Beweisbearbeitungsprozesse und der dabei auftauchenden Hürden ist nicht 

Gegenstand der vorliegenden Arbeit; entsprechende Ergebnisse werden an anderer Stelle veröffentlicht. 
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ohne die Studierenden (nach Möglichkeit) zu irritieren. 

Die Beobachtung des Bearbeitungsprozesses war hierbei 

notwendig, damit in dem anschließenden Interview auf 

konkrete Momente daraus Bezug genommen werden 

konnte. Der hier beschriebene Aufbau wird in Abbildung 

39 dargestellt. Jeder Studierende erhielt einen Stift mit 

einer anderen Farbe, so dass nachträglich unterschieden 

werden konnte, welcher Proband was niedergeschrieben 

hatte.  

 

Der Ablauf des Interviews war hierbei wie folgt: Nach der 

Information der Studierenden über den Ablauf des 

Interviews und die anonyme Verwendung der Daten wurde ihnen ein Fragebogen für die Erhebung 

der personenbezogenen Daten ausgehändigt. Der folgende Hauptteil der Studie gliederte sich in zwei 

Abschnitte: (1) die Beweiskonstruktionen der Studierenden mit anschließender Besprechung der 

Ergebnisse und (2) eine Diskussion der verschiedenen Beweisformen im Hinblick auf deren 

Überzeugungskraft, Erklärungspotential, Eignung für den schulischen Mathematikunterricht und den 

Aspekt der Sicherung der Gültigkeit. Zu den Phasen im Einzelnen: 

(1) Die Phase der Beweiskonstruktionen 

Den Studierenden wurde eine Behauptung mit dem Arbeitsauftrag ausgegeben, diese zu beweisen 

oder zu widerlegen (s. Aufgabenanalyse unten). Für die Bearbeitung der Aufgabe wurde ihnen 

gekennzeichnetes „Konzeptpapier“ ausgegeben und für die anschließende Niederschrift ihrer 

Ergebnisse Papierbögen, die als „Reinschrift“ gekennzeichnet waren. Den Studierenden war es 

hierbei freigestellt, inwieweit sie die Aufgabe gemeinsam oder alleine bearbeiten würden; allerdings 

sollten sie sich vor der finalen Reinschrift der Ergebnisse auf eine gemeinsame Lösung einigen. Nach 

der Abfassung der (ersten) Reinschrift eines Beweises wurden die Studierenden darum gebeten, auch 

die drei anderen Beweisformen zu konstruieren, die sie noch nicht notiert hatten. Somit konnte 

untersucht werden, mit welcher Beweisform sie ‚spontan‘ die gestellte Behauptung verifizierten. 

Nach der erfolgten Konstruktion der vier verschiedenen Beweisformen und deren Niederschrift als 

„Reinschrift“ wurde zunächst gefragt, warum die Studierenden als erstes die jeweilige Beweisform 

(formaler Beweis, generischer Beweis mit Zahlen, …) spontan konstruiert hatten. Anschließend 

wurden alle vier Beweiskonstruktionen vom Interviewer zusammen mit den Studierenden 

besprochen, um herauszufinden, wie sehr die Studierenden mit ihren Beweiskonstruktionen 

zufrieden waren, bzw. ob sie sich ggf. über eventuelle Lücken in ihren Beweisproduktionen bewusst 

waren. Innerhalb dieses Gesprächs wurden alle Beweiskonstruktionen so verbessert, dass den 

Studierenden vier korrekte und gültige Beweise vorlagen, auf die sie sich im zweiten Teil der Studie 

beziehen konnten. (Für das vorliegende Forschungsinteresse erschien es notwendig, dass die 

Studierenden zunächst alle vier Beweisformen selbst konstruieren, damit sie die damit verbundenen 

Arbeitsprozesse durchlaufen. Somit konnten sie bei der anschließenden Bewertung der 

verschiedenen Beweisformen auf ihre eigenen Erfahrungen und ihre eigenen Beweisprodukte 

zurückgreifen und mussten sich nicht in ‚fremde‘ Beweisprodukte hineindenken.) 

 

Abbildung 36: Position der Teilnehmenden, der 
Kameras und des Mikrofons bei der 
Interviewstudie im WS 2013/14  
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(2) Die Phase der Bewertung der verschiedenen Beweisformen. 

Zu Beginn der zweiten Phase des Interviews wurden die Studierenden darum gebeten, einen 

Fragebogen (s.u.) auszufüllen. Auf diesem wurden zu jeder der vier Beweisformen die gleichen vier 

Aussagen formuliert, die auf einer Sechser-Likert-Skala bewertet werden sollten. Die Fragen 

fokussierten die Aspekte ‚Überzeugung‘, ‚Erklärungsqualität‘, ‚Sicherung der Gültigkeit‘ und 

‚Adäquatheit für den schulischen Mathematikunterricht‘. Der Einbezug der Aspekte ‚Überzeugung‘ 

und ‚Sicherung der Gültigkeit‘ entspricht der in der Vorlesung vorgenommenen Unterscheidung vom 

logischen und psychologischen Nutzen von Beispielen und Beweisen. Mit der Abfrage dieser beiden 

Aspekte sollte auch überprüft werden, ob sich in den Bewertungen der Studierenden eine 

entsprechende Unterscheidung wiederfinden lässt.  

In der Tabelle 17 werden die vier Items exemplarisch für den generischen Beweis mit Zahlen 

aufgeführt. 

Bitte bewerten Sie die folgenden Aussagen zu dem generischen Beweis mit Zahlen: 

Der generische Beweis mit Zahlen reicht 

mir aus, um mich völlig von der Gültigkeit 

der Behauptung zu überzeugen. 

stimmt 

gar 

nicht 

      
stimmt 

völlig 

Die Argumentation im generischen 

Beweis mit Zahlen erklärt mir, warum die 

Behauptung gilt. 

stimmt 

gar 

nicht 

      
stimmt 

völlig 

Der generische Beweis mit Zahlen sichert 

die Gültigkeit der Behauptung 

hundertprozentig für alle Zeiten.  

stimmt 

gar 

nicht 

      
stimmt 

völlig 

Ich betrachte den Einsatz dieser 

Beweisform im schulischen 

Mathematikunterricht als sinnvoll. 

stimmt 

gar 

nicht 

      
stimmt 

völlig 

Tabelle 17: Bewertungsschema für die Beweisform generischer Beweis mit Zahlen aus der Interviewstudie im 
Wintersemester 2013/14 

Die Bewertungen der Studierenden dienten anschließend als Gesprächsanlässe für die Diskussion der 

vier verschiedenen Beweisformen. 

Datensammlung und Methode der Auswertung 

Die schriftlichen Dokumente der Studierenden (Aufgabenbearbeitungen auf Konzeptpapier und 

Reinschrift sowie die ausgefüllten Fragebögen) wurden nach der Studie einbehalten, wobei den 

Studierenden Kopien ihrer Bearbeitungszettel ausgehändigt wurden. Die Gespräche aller Beteiligten 

wurden transkribiert. 

Für die Untersuchung der Leitfrage zur Auswertung [9] („Spontane Wahl der Beweisform und Gründe 

für deren Auswahl“) wurde geschaut, mit welcher Beweisform die Studierenden zunächst 

versuchten, die gegebene Behauptung zu beweisen. Anschließend wurden aus den Transkripten die 

von den Studierenden angegebenen Gründe für ihre spontan gewählte Beweisform 

zusammengetragen. 

Für die Untersuchung der Leitfrage zur Auswertung [10] („Bewertungen der Beweisformen im 

Hinblick auf die Aspekte „Sicherung der Gültigkeit“, „Überzeugungskraft“, „Erklärungspotential“ und 

„Eignung für den schulischen Mathematikunterricht““) wurden die Beweisbewertungen der 
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Studierenden, die sie im Rahmen des Fragebogens (vgl. Tabelle 17) getätigt hatten, statistisch 

ausgewertet. 

Um durch die Untersuchung der Leitfragen zur Auswertung [11], [12] und [13] („Wahrnehmung der 

Beweisformen und Unterscheidung eines logischen und psychologischen Aspekts“) die Antworten 

der Studierenden auf dem Fragebogen (s.o.) besser verstehen zu können, wurden zunächst Apriori-

Kategorien gebildet, um eine grobe Vorsortierung der Äußerungen der Studierenden vornehmen zu 

können. Im Sinne der Forschungsmethode der „quasi-judicial method“ für Fallstudien (Bromley 1986, 

S. 24ff.) wurde dazu der möglichst einfache Zusammenhang der beiden Aspekte ‚logische Akzeptanz‘ 

und ‚psychologische Überzeugung‘ angenommen. In der Kombination dieser Aspekte ergeben sich, 

im Sinne einer Vier-Felder-Tafel, vier mögliche Wahrnehmungen: 

 Psychologische Überzeugung 

liegt vor liegt nicht vor 

Logische 

Akzeptanz 

liegt vor (1) Logische Akzeptanz und 

psychologische Überzeugung 

(2) Logische Akzeptanz ohne 

psychologische Überzeugung 

liegt nicht vor (3) Keine logische Akzeptanz, aber 

psychologische Überzeugung 

(4) Weder logische Akzeptanz noch 

psychologische Überzeugung 

Tabelle 18: Apriori-Kategorisierung zur Grobbestimmung der Wahrnehmung der Studierenden in Bezug auf die Aspekte 
„logische Akzeptanz"  und „psychologische Überzeugung" 

Zu den Kategorien im Einzelnen: 

(1) Logische Akzeptanz und psychologische Überzeugung:  

Ein Studierender mit dieser Wahrnehmung akzeptiert das Konzept des Beweises und erkennt die 

logische Konsequenz an, dass aufgrund des Beweises die Gültigkeit der Behauptung mit 

Sicherheit folgt. Auf der psychologischen Ebene ist der Studierende überzeugt, dass nach dem 

erfolgten Beweis die Behauptung in allen möglichen Fällen wahr sein muss und ein Gegenbeispiel 

nicht existieren kann.  

(2) Logische Akzeptanz ohne psychologische Überzeugung:   

Ein Studierender mit dieser Wahrnehmung versteht das Konzept der Beweisform und akzeptiert 

die damit verbundene Verifikation der Behauptung. Es verbleibt jedoch ein subjektiver, intuitiver 

Zweifel, eine psychologische Unsicherheit an der wirklichen Allgemeingültigkeit der 

Argumentation, auch wenn diese rational als eigentlich unnötig bewertet wird.  

(3) Keine logische Akzeptanz, aber psychologische Überzeugung:   

Ein Studierender mit dieser Wahrnehmung erfasst nicht die logische (korrekte) Verifikation, die 

durch den Beweis geleistet wird. Somit erweist sich für den Studierenden die Gültigkeit der 

Behauptung nicht als logisch-notwendige Konsequenz aus dem Beweis. In Gegensatz dazu wird 

durch den Beweis allerdings die psychologische Überzeugung erhöht, dass die gegebene 

Behauptung wahr ist. 

(4) Weder logische Akzeptanz noch psychologische Überzeugung:  

Bei dieser Wahrnehmung eines Beweises wird der erfolgte Beweis bzw. das verwendete 

Beweiskonzept augenscheinlich nicht (vollständig) verstanden. Weder erfolgt eine logische 
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Akzeptanz, dass aufgrund des erfolgten Beweises die Gültigkeit der Behauptung mit Sicherheit 

folgen muss, noch ist durch den Beweis eine subjektive Überzeugung bzgl. der Gültigkeit der 

Behauptung gegeben. 

Anhand dieser vier Kategorien wurde eine erste grobe Vorkategorisierung der Wahrnehmungen der 

Studierenden vorgenommen. Dazu wurde in den Transkripten nach Äußerungen gesucht, die die 

Existenz bzw. die Abwesenheit von logischer Akzeptanz und psychologischer Überzeugung belegen. 

Auf diese Weise konnten die Studierenden jeweils einer dieser vier Kategorien zugeordnet werden. 

Aufbauend auf dieser groben Vorkategorisierung wurden im Kontext der vier Kategorien die 

konkreten Äußerungen der Studierenden herausgearbeitet, die die entsprechende Zuordnung 

ermöglichten. In der Betrachtung dieser Äußerungen wurde es schließlich möglich, genauer zu 

beschreiben, wie die Studierenden ihre Wahrnehmung in Bezug auf die verschiedenen Beweisformen 

umschreiben bzw. begründen. 

Aufgabenanalyse 

Für die Durchführung dieser Studie musste eine Behauptung gefunden werden, die sich mithilfe aller 

vier Beweisformen der Lehrveranstaltung beweisen lässt und im Rahmen von 

Beispieluntersuchungen Möglichkeiten bietet, verschiedene Erkenntnisse für die Konstruktion von 

(generischen) Beweisen zu verwenden. Aus diesen Gründen wurde die folgende Aufgabe ausgewählt: 

Aufgabe  
Beweisen oder widerlegen Sie die folgende Behauptung: 

 

Nimmt man eine beliebige natürliche Zahl und addiert dazu ihr Quadrat, dann ist diese Summe immer durch 2 

teilbar. 

 

Im Folgenden werden verschiedene Lösungsmöglichkeiten für die Konstruktion der vier 

Beweisformen der Lehrveranstaltung aufgezeigt. 

Generischer Beweis mit Zahlen, Variante (1): 

2 + 4 = 6 und 3 + 9 = 12 

Da das Quadrat einer geraden Zahl auch gerade und das einer ungeraden Zahl ungerade ist, werden in den obigen 

Rechnungen immer entweder zwei gerade oder zwei ungerade Zahlen miteinander addiert. Da die Summe von zwei 

geraden Zahlen immer gerade ist und auch die Summe von zwei ungeraden Zahlen immer gerade ist, wird das Ergebnis 

immer gerade sein. 

Generischer Beweis mit Zahlen, Variante (2): 

2 + 4 = 2 ∙ 
1 + 2� = 2 ∙ 3 und 5 + 25 = 5 ∙ 
1 + 5� = 5 ∙ 6  

Die Summe aus einer natürlichen Zahl und ihrem Quadrat ist immer gleich dem Produkt von der Ausgangszahl und ihrem 

Nachfolger. Da bei zwei aufeinanderfolgenden natürlichen Zahlen immer eine Zahl gerade ist, muss das Produkt den Faktor 

2 enthalten, wodurch das Ergebnis immer gerade sein muss. 

Formaler Beweis: 

1. Fall: Sei n	(	ℕ	eine beliebige, aber feste gerade Zahl. Dann ist n = 2a für ein a	(	ℕ.	Weiter gilt: 

� + �� = 
2�� + 
2��� = 2� + 4�� = 2
� + 2���. Diese Summe ist durch 2 teilbar, da 
� + 2���	(	ℕ. 

2. Fall: Sei n	(	ℕ	eine beliebige, aber feste ungerade Zahl. Dann ist n = 2a − 1 für ein a	(	ℕ.	Weiter gilt: 

� + �� = 
2� − 1� + 
2� − 1�� = 
2� − 1� + 4�� − 4� + 1 = 2
2�� − ��. Diese Summe ist durch 2 teilbar, da            


2�� − ��(	ℕ. 
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Damit ist alles gezeigt. Q.e.d. 

Generischer Punktmusterbeweis: 

1. Fall: � ist eine gerade Zahl:  

 

 

 

 

Wenn man eine gerade Zahl quadriert, dann sind die Seiten des entstehenden Quadrats auch „gerade“. Addiert man darauf 

an einer Seite die Ausgangszahl, dann bleibt eine Seitenlänge unverändert gerade. Somit kann man die so entstandene Figur 

in zwei gleiche Hälften teilen, weswegen die Summe gerade ist. 

2. Fall: � ist eine ungerade Zahl: 

 

 

 

Wenn man eine ungerade Zahl quadriert, dann sind die Seiten des entstehenden Quadrats „ungerade“. Addiert man darauf 

an einer Seite die Ausgangszahl, dann wird eine Seitenlänge um 1 größer und somit gerade. Also kann man die so 

entstandene Figur in zwei gleiche Hälften teilen, weswegen die Summe gerade ist. 

Punktmusterbeweis mit geometrischen Variablen: 

 

 

 

 

 

  

 

 

Ergebnisse 

Die Ergebnisse bzgl. der primären Beweiskonstruktion der Studierenden und ihrer Wahrnehmungen 

vom generischen Beweis mit Zahlen wurden in Kempen und Biehler (2016) veröffentlicht. Die 

folgenden Darstellungen orientieren sich an der genannten englischsprachigen Publikation, 

sprachliche Anlehnungen werden dabei zur besseren Übersichtlichkeit nicht angemerkt. 

Die verschiedenen Ergebnisse werden im Folgenden mithilfe von wörtlichen Zitaten belegt, die in 

kleinerer Schriftgröße und eingerückt angegeben werden. Insgesamt nahmen sechs 

Studierendenpaare an der Untersuchung teil, davon waren sieben Studierende weiblich und fünf 

männlich. Ein Studierender („S7“) besuchte die Lehrveranstaltung zum zweiten Mal. 

Abbildung 37: Generisches Punktmusterbeispiel für 

die Summe „x + xV“ bei gerader Ausgangszahl 

Abbildung 38: Generisches Punktmusterbeispiel für die 

Summe „x + xV“ bei ungerader Ausgangszahl 

Abbildung 39: Punktmusterbeweis mit geometrischen 

Variablen für  die Behauptung, dass die Summe „x + x²“ 
immer gerade ist 
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Beantwortung der Leitfrage zur Auswertung [9]: Welche Beweisform nutzen die Studierenden 

spontan, um eine gegebene Behauptung zu beweisen?  Welche Gründe können für die entsprechende 

Beweiswahl ausgemacht werden? 

Neun der zwölf Teilnehmenden der Studie begannen die Bearbeitung der Aufgabe unmittelbar mit 

der Formalisierung der Aussage und der Konstruktion eines formalen Beweises. Nur in einer Gruppe 

überprüften die Studierenden die Behauptung zunächst an konkreten Zahlenbeispielen. Einer dieser 

Studierenden erläuterte anhand seiner Beispiele, dass solche Summen immer gerade sein müssen, 

denn bei ungeraden Zahlen sei das Quadrat auch ungerade und die Summe von zwei ungeraden 

Zahlen sei immer gerade. Dieses Teilargument wurde von der Gruppe allerdings für die Konstruktion 

eines generischen Beweises (mit Zahlen) nicht weiterverfolgt, auch sie versuchte anschließend die 

Konstruktion eines formalen Beweises mithilfe von Buchstabenvariablen. 

Bei der anschließenden Befragung der Studierenden nach ihren Motiven für die unmittelbare 

Konstruktion des formalen Beweises wurden die folgenden Gründe angeführt: ihre Sozialisation in 

Schule und Universität, dass der formale Beweis leichter zu konstruieren sei, weil man dafür keine 

Idee haben müsse, und weil sie dachten, dass die Konstruktion eines formalen Beweises von ihnen 

gefordert sei. Nur ein Studierender begann die Aufgabenbearbeitung mit der Niederschrift 

„generischer Beweis“ und der Untersuchung von konkreten Zahlenbeispielen. Als Gründe führte der 

Studierende die folgende Erklärung an:  

Ja, also für mich ist das einfach eine Stütze. Ich sehe das so, wenn ich mir das aufschreibe, das ist ja dass ich das 

einfach sehe, wie das funktioniert, und dann fange ich erst an, dafür Variablen einzusetzen. Also dann den 

formalen Beweis. Ich gucke vielleicht, ob ich da eine Regelmäßigkeit finde, weiß ich nicht. Für mich ist das immer 

einleuchtender, wenn ich zuerst mit dem generischen Beweis beginne und dann eben mit den Variablen. 

(Studierender 12) 

Beantwortung der Leitfrage zur Auswertung [10]: Wie bewerten die Studierenden die vier 

verschiedenen Beweisformen der Lehrveranstaltung im Hinblick auf die Aspekte und „Sicherung der 

Gültigkeit“, „Überzeugungskraft“, „Erklärungspotential“ und „Eignung für den schulischen 

Mathematikunterricht“? 

Die Bewertungen der Studierenden für die vier verschiedenen Beweisformen werden in der 

Abbildung 40 dargestellt. Es zeigte sich, dass die Mehrheit der Probanden den formalen Beweis bzgl. 

der Aspekte „Überzeugungskraft“, „Erklärungsqualität“ und „Sicherung der Gültigkeit“ insgesamt am 

höchsten bewertete. Nur in Bezug auf die Eignung für den schulischen Mathematikunterricht fielen 

die Bewertungen zum formalen Beweis meist niedriger aus als die Bewertungen zu den anderen 

Beweisformen. 



188 

 

1

2

3

4

5

6

Studierender 1 Studierender 2

Gen. Beweis

Form. Beweis

Gen. Pktm.

Bew. G.V.

1

2

3

4

5

6

Studierender 3 Studierender 4

Gen. Beweis

Form. Beweis

Gen. Pktm.

Bew. G.V.

1

2

3

4

5

6

Studierender 5 Studierender 6

Gen. Beweis

Form. Beweis

Gen. Pktm.

Bew. G.V.

1

2

3

4

5

6

Studierender 7
Studierender 8

Gen. Beweis

Form. Beweis

Gen. Pktm.

Bew. G.V.

1

2

3

4

5

6

Studierender 9 Studierender 10

Gen. Beweis

Form. Beweis

Gen. Pktm.

Bew. G.V.

1

2

3

4

5

6

Studierender 11

Beweisbewertungen der Studierenden 

Studierender 12

Gen. Beweis

Form. Beweis

Gen. Pktm.

Bew. G.V.

Ü
b

e
rzeu

gu
n

g 

g Erkläru
n

g 

g G
ü

ltigke
it 

t Sch
u

le 

e 

Ü
b

e
rzeu

gu
n

g 

g Erkläru
n

g 

g G
ü

ltigke
it 

t Sch
u

le 

e 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 40: Die Beweisbewertungen der Studierenden bzgl. der Aspekte „Überzeugungskraft“, 
„Erklärungsqualität“, „Sicherung der Gültigkeit“ und „Eignung für die Schule“ ([1] „stimmt gar nicht“ … 
[6] stimmt „völlig“) 
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Beantwortung der Leitfrage zur Auswertung [11]: Wie beschreiben die Studierenden ihre 

Wahrnehmung bzgl. des generischen Beweises mit Zahlen im Spannungsfeld von logischer Akzeptanz 

und psychologischer Überzeugung und womit begründen sie diese? 

Für drei von den oben angegebenen vier Apriori-Kategorien konnten in den Transkripten Äußerungen 

ausgemacht werden, die die Existenz dieser Wahrnehmungen belegen. Nur für die Existenz der 

Wahrnehmung (3) „Keine logische Akzeptanz, aber psychologische Überzeugung“ konnte kein Beleg 

gefunden werden. Bezüglich des generischen Beweises mit Zahlen konnten somit drei verschiedene 

Wahrnehmungen ausgemacht werden: (a) „Logische Akzeptanz und psychologische Überzeugung“, 

(b) „Logische Akzeptanz ohne psychologische Überzeugung“ und (c) „Weder logische Akzeptanz noch 

psychologische Überzeugung“. Diese drei verschiedenen Wahrnehmungen werden im Folgenden 

kurz beschrieben und deren Existenz mithilfe von Transkriptauszügen belegt. Außerdem wird 

herausgearbeitet, wie die Studierenden ihre Wahrnehmungen beschreiben und ggf. begründen. 

(a) Logische Akzeptanz des generischen Beweises mit Zahlen und psychologische Überzeugung 

In Bezug auf den generischen Beweis mit Zahlen bedeutet diese Wahrnehmung das Folgende: 

Ein Studierender mit dieser Wahrnehmung akzeptiert das Konzept des generischen Beweises und 

erkennt die logische Konsequenz, dass aufgrund des Beweises die Gültigkeit der Behauptung folgt. 

Auf der psychologischen Ebene ist der Studierende überzeugt, dass nach dem erfolgten generischen 

Beweis die Behauptung in allen möglichen Fällen wahr sein muss und ein Gegenbeispiel nicht 

existieren kann.  

Diese Wahrnehmung konnte nur bei einem Studierenden anhand seiner Äußerungen nachgewiesen 

werden.  

Transkriptauszug [a1]; Studierender 10: 

Also, ich habe jetzt angekreuzt: stimmt völlig [bei „Sicherung der Gültigkeit“, L. K.], weil … wieder Schritt für 

Schritt, man kann dann mitdenken, z.B. das wird addiert und dann kommt das dazu und man kann immer darauf 

aufbauen, jetzt nicht so wie bei dem formalen Beweis. Das steht dann einfach im Raum und das muss man dann 

beweisen und das ist dann so. Das [der generische Beweis, L. K.] ist zwar nicht so anschaulich mit den Bildern, 

aber man sieht hier genau, was passiert. […] Das finde ich gerade gut beim generischen. Man kann, wenn man den 

sieht, kann man sich sofort denken „Ah“, das wurde sich dabei gedacht. Weil es werden ja immer ein paar 

Beispiele gemacht und an denen wird argumentiert und das kann man gut mit einer Argumentation, wenn diese 

nicht zu fachlich geschrieben ist, nachvollziehen. 

Dieser Studierende stellt als Basis für seine Wahrnehmung die Schritthaftigkeit der Beweisführung 

heraus, die anhand eines konkreten Beispiels entwickelt wird und somit besonders gut nachvollzogen 

werden kann. Auch wird positiv angemerkt, dass die die konkreten Beispiele begleitende narrative 

Begründung bzw. Erläuterung besonders gut verständlich sei, wenn diese „nicht zu fachlich 

geschrieben ist“. Innerhalb dieses Transkripts werden somit die Vorzüge generischer Beweise 

genannt, die bereits auf theoretischer Ebene in Abschnitt 2.1.3 herausgearbeitet wurden: der 

mögliche Verzicht auf die fachmathematische Symbolsprache, der Einbezug konkreter Beispiele, was 

zu einem besseren Verständnis des zu beweisenden Sachverhalts führen kann, und damit verbunden 

eine besondere ‚Erklärungsqualität‘ der Beweisführung. 
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(b) Logische Akzeptanz des generischen Beweises ohne psychologische Überzeugung 

Ein Studierender mit dieser Wahrnehmung des generischen Beweises mit Zahlen versteht das 

Konzept der Beweisform und akzeptiert die damit verbundene Verifikation der Behauptung. Es 

verbleibt jedoch ein subjektiver, intuitiver Zweifel, eine psychologische Unsicherheit an der 

wirklichen Allgemeingültigkeit der Argumentation, auch wenn diese rational als eigentlich unnötig 

bewertet wird.  

Die folgenden Transkriptauszüge belegen die Existenz dieser Wahrnehmung, die bei vier 

Studierenden ausgemacht werden konnte40: 

Transkriptauszug [b1]; Studierender 2 (begründet seine Bewertung [„4“] des generischen Beweises mit Zahlen 

bzgl. der ‚Überzeugung‘ auf der Sechser-Likert Skala): 

S2:   Ja, wir haben da ja jetzt nur diese Zahlenbeispiele und wenn’s jetzt … weiß nicht. Also vom  

   Gefühl her würde ich dann sagen, vielleicht im Tausenderbereich oder so stimmt das dann  

   schon nicht mehr. Also vom Gefühl jetzt her. 

Interviewer:  Also kann da doch im Tausenderbereich ein Beispiel kommen, dass es nicht funktioniert. 

S2:   Eigentlich nicht, aber so vom Gefühl her finde ich, dass der formale Beweis besser ist. Würd ich  

   jetzt [unverständlich] 

Im Transkriptauszug [b1] wird deutlich, dass nach der Betrachtung des generischen Beweises mit 

Zahlen ein subjektiver Zweifel an der Allgemeingültigkeit der Behauptung verbleibt, der allerdings 

aus logischer Perspektive als unnötig bewertet wird („eigentlich nicht, aber vom Gefühl her“). Dieser 

subjektive Zweifel wird in Bezug auf Beispiele im „Tausenderbereich“ ausgedrückt, die für den 

Studierenden mit einer Unsicherheit behaftet sind. An dieser Stelle kann eine gewisse Verbindung zu 

der Fehlvorstellung „big number“ ausgemacht werden:  Beispiele mit großen Zahlen werden 

psychologisch anders bewertet als solche mit kleinen Zahlen (vgl. Abschnitt 5.3.2.3). 

Transkriptauszug [b2]; Studierender 8: 

Aber - das hier [zeigt auf den formalen Beweis] ist für mich irgendwie allgemeingültiger und ein schlüssigerer 

Beweis. Ich finde, man müsste es mit allen „n“ ausprobieren [zeigt auf den generischen Beweis] – auch wenn’s 

Quatsch ist, man sieht ja immer die Form – aber… […] Das hier ist vollständiger für mich, wenn man immer „für 

alle n Element n“, auch wenn man’s hiermit ja auch – die Allgemeingültigkeit zeigt. Irgendwie – fehlt noch so’n 

Gefühl. 

Auch im Transkriptauszug b2 wird der verbleibende subjektive Zweifel („irgendwie – fehlt noch so’n 

Gefühl“) aus logischer Perspektive als unnötig bewertet („auch wenn’s Quatsch ist“). Die logische 

Akzeptanz resultiert aus der „Form“, die für alle Beispiele genau so gilt; für ein sicheres Gefühl würde 

der Studierende diese Form aber am liebsten „mit allen n ausprobieren“. In diesem Fall scheint die 

verbleibende Unsicherheit dadurch begründet zu sein, dass die Argumentation noch zu sehr an dem 

betrachteten konkreten Beispiel verhaftet bleibt, eine vollständige Ablösung vom konkreten Fall i.S. 

einer Allgemeingültigkeit scheint auf der psychologischen Ebene nicht stattzufinden. 
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 Der vierte Studierende mit dieser Wahrnehmung ist Studierender 1. Zu diesem Studierenden wird allerdings 

kein Transkriptauszug angegeben, da dieser lediglich die Aussagen von dem Studierenden 2 bejaht bzw. 

wiederholt hat. 
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Transkriptauszug [b3]; Studierender 9: 

Ich weiß nicht. Ich kann’s nicht mal genau erklären, warum das so für mich ist. Ich verstehe auch, dass die 

allgemeingültig sind, und den Sinn hinter der ganzen Sache. Nur von der Überzeugungskraft her, wenn mir jemand 

so einen Beweis vorlegen würde, würde ich wahrscheinlich sagen, kann ich den nochmal formal haben. Irgendwie 

überzeugt mich das mehr. 

Bei den Äußerungen vom Studierenden 9 wird die logische Akzeptanz („ich verstehe auch, dass die 

allgemeingültig sind“) deutlich von einer subjektiven Überzeugung abgegrenzt. Dabei wird lediglich 

angemerkt, dass der Studierende für eine gesteigerte Überzeugungskraft einen formalen Beweis 

bevorzugen würde. 

Insgesamt kann festgehalten werden, dass in Bezug auf den generischen Beweis mit Zahlen in dieser 

Studie bei vier von zwölf Studierenden diese Wahrnehmung (b) ausgemacht werden konnte. Der 

verbleibende subjektive Zweifel auf der psychologischen Ebene resultiert dabei nach Angaben der 

Studierenden aus einer gewissen Unsicherheit („so ein Gefühl“), ob nicht doch ‚irgendwo‘ ein Beispiel 

existieren könnte, bei dem das ausgemachte generische Argument nicht funktionieren würde. Diese 

Unsicherheit wurde einmal in Bezug auf große Zahlenbeispiele („im Tausenderbereich“) formuliert, 

ein anderes Mal dadurch, dass man eigentlich alle Zahlenbeispiele einmal ausprobieren möchte. 

Dieser verbleibende subjektive Zweifel wird allerdings in all diesen Fällen aus logischer Perspektive 

als unnötig bewertet. 

(c) Weder logische Akzeptanz des generischen Beweises noch psychologische Überzeugung 

Bei dieser Wahrnehmung des generischen Beweises mit Zahlen wird das Beweiskonzept nicht 

(vollständig) verstanden. Bei der Beweisbetrachtung stehen die konkreten Beispiele im Vordergrund, 

ohne dass das beispielübergreifende generische Moment erkannt bzw. gewürdigt wird. Somit wird 

der generische Beweis als bloße empirische Überprüfung fehlinterpretiert.  

Aufgrund ihrer Äußerungen wurde fünf Studierenden diese Wahrnehmung zugeordnet. 

Transkriptauszug [c1]; Studierender 3: 

Bei generischen Beweisen ist es ja einfach so, dass man manchmal auch – man hat ja auch in den Hausaufgaben 

manchmal gemerkt, dass wir dann Beispiele geben sollen zur Behauptung, dann haben wir ganz viele Beispiele 

dazu gefunden, aber es war trotzdem falsch. Also es hat nicht - es gilt nicht für alle. Deswegen kann man sich ja 

nicht immer sicher sein, dass das auch wirklich stimmt, nur weil man Zahlenbeispiele beacht … sich angeschaut 

hat.  

Der Studierende 3 nimmt keine Trennung zwischen der Überprüfung einzelner Beispiele und der 

Betrachtung einer beispielübergreifenden, generischen Argumentation vor. An dieser Stelle wird 

deutlich, dass dieser Studierende das Konzept generischer Beweise in Abgrenzung zu unvollständigen 

induktiven Verallgemeinerungen nicht (vollständig) verstanden hat. Positiv könnte allerdings 

angemerkt werden, dass ihm bewusst ist, dass die Gültigkeit eines generischen Beweises von der 

(allgemeingültigen) Übertragbarkeit des generischen Arguments abhängt. 

Transkriptauszug [c2]; Studierender 7: 

Da hat man – also ich selber seh’ darin nur Zahlenbeispiele. Ernsthaft, ich seh’ da nur … Jetzt von der Vorlesung 

und so, hätt’ ich jetzt kein Abitur, hätt ich gesagt, ja locker weg so, wird ausreichen, ne? Aber jetzt, weil wir 

wissen, dass man da irgendwie zeigen muss mit Variablen und so, ohne dass man Zahlenbeispiele nimmt, das ist 

dann ... schwach ausgedrückt ist, wenn wir das so machen. 
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Der Studierende 7 gibt an, dass er in generischen Beweisen nur die Überprüfung einzelner 

Zahlenbeispiele sieht. Mit Bezug auf sein Abitur spricht er weiter davon, dass mit diesem 

Bildungsgrad auch die Erkenntnis verbunden sei, dass man richtige Beweise mit Variablen führen 

müsse. 

Transkriptauszug [c3]; Studierender 11: 

Ja, richtiger in dem Sinne, dass [der formale Beweis, L. K.] zeigt halt die Richtigkeit, also die Gültigkeit, genau. Und 

dass die Behauptung dann halt gilt. Zeigen wir auch zwar im generischen Beweis, aber das ist ja dann nur für die 

paar Zahlen, die wir eingesetzt haben.  

Transkriptauszug [c4]; Studierender 12: 

Ja. Ich würd sagen, dass das – also ob’s [der generische Beweis mit Zahlen, L. K.] mir ausreicht weiß ich nicht. Also 

ich würd hier – ob’s jetzt die Gültigkeit 100% [unverständlich] würd ich nicht sagen. Weil wir hatten auch mal ich 

glaub irgendwie ’ne Hausaufgabe oder sowas gehabt, wo man das widerlegen musste und beweisen, irgendwie so 

was war das. Und dann konnte das auch, musste man Beispiele dazu bringen. Und ich hatte da zwei Beispiele 

erwischt, die passen, und vielleicht gibt es noch ein drittes, was nicht passt. Dann reicht mir das nicht aus, also 

dann hab ich’s ja im Grunde nicht bewiesen. Dann beweis ich’s nur für die zwei Zahlenbeispiele und nicht für’s 

Ganze. Ist nicht die Gültigkeit da.  

Auch die Studierenden 11 und 12 sprechen sich dafür aus, dass in generischen Beispielen lediglich 

einzelne konkrete Beispiele überprüft würden. Ein Bezug auf das beispielübergreifende, generische 

Argument wird nicht vorgenommen. Die Beweisform wird auch in diesen Äußerungen mit 

unzureichender induktiver Verallgemeinerung gleichgesetzt. 

Beantwortung der Leitfrage zur Auswertung [12]: Wie beschreiben die Studierenden ihre 

Wahrnehmung bzgl. des formalen Beweises im Spannungsfeld von logischer Akzeptanz und 

psychologischer Überzeugung und womit begründen sie diese? 

Im Fall des formalen Beweises konnten anhand der Transkriptauszüge keine Evidenzen für die 

Existenz der Apriori-Kategorien (2), (3) und (4) ausgemacht werden. Die einzige Wahrnehmung, für 

deren Existenz in den Transkripten Belege gefunden werden konnte, entspricht der Kategorie (1) 

„Logische Akzeptanz und psychologische Überzeugung“. Der formale Beweis wird von fast allen 

Studierenden als der „beste“ bzw. „sicherste“ Beweis beschrieben. Diese empfundene Sicherheit 

wird dabei vor allem im Kontrast zum generischen Beweis ausgedrückt. Begriffe, mit denen die 

Studierenden in der Diskussion um die Gültigkeit der Beweisformen diese Vorrangstellung des 

formalen Beweises ausdrücken, sind: „besser“, „am besten“, „konkreter“, „allgemeingültiger“, 

„vollständiger“, „stärker“, „richtiger“ und „am sichersten“. Als Grund werden von den Studierenden 

die Verwendung der fachmathematischen Symbolsprache und die damit verbundene ‚Sicherheit‘ 

angeführt. 

Im Folgenden werden verschiede Transkriptauszüge angegeben, die die Existenz der Wahrnehmung 

„logische Akzeptanz und psychologische Überzeugung“ zu belegen scheinen: 

Transkriptauszug [a2]; Studierender 2: 

Also ich finde den generischen Beweis zum Verständnis her, also am Anfang, dass man so ein Schema erkennt, 

gut, aber dann den formalen Beweis, um das wirklich zu beweisen. Also, dass es wirklich sicher ist, dass es auch so 

stimmt.  
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Für den Studierenden 2 ist es die Beweisform des formalen Beweises, die „wirklich“ etwas beweist. 

Nur durch diese Beweisform wird wirkliche ‚Sicherheit‘ hergestellt. 

Transkriptauszug [a3]; Studierender 4: 

Also ich finde den formalen am besten. Ja, irgendwie ist der vielleicht am sichersten? Also wenn ich nachher 

irgendwie rausbekomme „2 mal irgendwas – in der Klammer“, dann ist es völlig egal, was in der Klammer steht, 

ich weiß, es ist durch 2 teilbar. So, dann brauche ich nicht noch irgendwie Ausführungen, gucken oder so. Dann ist 

das völlig klar.  

Der Studierende 4 beschreibt den formalen Beweis als „am besten“ und als „am sichersten“. Das 

nach der Anwendung von Termumformungen schließlich erhaltene Resultat („2 mal irgendwas – in 

der Klammer“) stellt für ihn die Gültigkeit der Aussage sicher. 

Transkriptauszug [a4]; Studierender 7: 

Aber ich find das auch konkreter [zeigt auf den formalen Beweis, L. K.] eben, wenn man mit dem formalen 

Algebra-Beweis, also – ja – find ich allgemeingültiger. Aber vom Gefühl her irgendwie find ich das hier [zeigt auf 

den formalen Beweis, L. K.] noch vollständiger.  

Transkriptauszug [a5]; Studierender 9: 

Ich finde irgendwie, die Variablen sind irgendwie, die sind allgemeingültiger. Das andere ist dann wohl hin und her 

erklärt. Das ist so ein bisschen Gerederei, sage ich mal. Je nachdem, wie man es formuliert, könnte man es 

verstehen oder nicht. Aber mit Variablen, wenn die richtig definiert sind, zack so sind die und da gibt es kein 

Wenn und Aber. 

In den Transkriptauszügen zu den Studierenden 7 und 9 wird der formale Beweis als 

„allgemeingültiger“ bzw. „vollständiger“ bezeichnet. Interessant erscheint hierbei die sprachliche 

Wendung der Steigerung der Absolutadjektive ‚allgemeingültig‘ und ‚vollständig‘. Hierin kann ein 

Ausdruck psychologischer Überzeugung gesehen werden, da vom logischen Standpunkt her beide 

Beweisformen (generischer Beweis und formaler Beweis) als allgemeingültig und vollständig 

bewertet werden. Schließlich hebt der Studierende 9 die Präzision der fachmathematischen 

Symbolsprache heraus („Aber mit Variablen…“). 

Transkriptauszug [a6]; Studierender 12: 

Ja, für mich hat der formale Beweis trotzdem noch mehr Gültigkeit. Also er sichert die Gültigkeit für alle Zeiten, 

noch besser ab. Ich seh’ das zwar so, aber ich brauch noch dazu den Beweis selbst, den formalen Beweis, damit 

das für mich hundertprozentig eindeutig ist. Also ich kann sowas meistens auch nur konstruieren, wenn ich den 

formalen Beweis habe. So Hundertprozent überzeugt mich die Gültigkeit erst, wenn ich den formalen Beweis 

sehe, alleine jetzt nicht so. 

Wie in den obigen Transkriptauszügen, verwendet auch der Studierende 12 eine besondere 

Steigerungsform: Der formale Beweise habe „noch mehr Gültigkeit“ und „sichert die Gültigkeit für 

alle Zeiten noch besser ab“.  

 

Nur ein Studierender äußert sich negativer gegenüber dem formalen Beweis. Es ist der Studierende 

10, der als einziger den generischen Beweis mit Zahlen für sich vollständig logisch und psychologisch 

akzeptiert zu haben schien (vgl. hierzu die Wahrnehmung (a) des generischen Beweises oben). 

Ja, weil beim formalen Beweis steigt man nicht sofort durch. Weil, man bekommt entweder einen Sachverhalt 

oder das Bewiesene und wenn man jetzt sieht, warum hat er da die Termumformung gemacht und was möchte er 
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mir jetzt damit sagen. Was möchte er erreichen? Bei manchen formalen Beweisen reicht es ja, wenn man einfach 

nur die Äquivalenzumformungen da stehen hat und noch nicht mal groß einen Text dazu schreibt, und manchmal 

blickt man da nicht sofort durch.  

Beantwortung der Leitfrage zur Auswertung [13]: Wie beschreiben die Studierenden ihre 

Wahrnehmung bzgl. der Punktmusterbeweise im Spannungsfeld von logischer Akzeptanz und 

psychologischer Überzeugung und womit begründen sie diese? 

Da nicht in allen Gruppen die Zeit ausreichte, um alle Beweisformen zu erörtern, können die in dieser 

Studie erhaltenen Informationen zu den Punktmusterbeweisen nicht als ausreichend betrachtet 

werden, um Wahrnehmungen von generischen Punktmusterbeweisen und Beweisen mit 

geometrischen Variablen abstrahieren und beschreiben zu können. Entsprechend wird an dieser 

Stelle auch auf die Unterscheidung bzgl. logischer und psychologischer Aspekte verzichtet. Dennoch 

erscheint es wertvoll, verschiedene Auffassungen der Studierenden zumindest zu dokumentieren. 

Daher sollen an dieser Stelle Thesen bzgl. verschiedener Wahrnehmungen formuliert werden, die in 

Äußerungen der Studierenden deutlich zu werden schienen. Mit der Formulierung dieser Thesen 

wird dabei kein Anspruch auf Vollständigkeit oder Verallgemeinerbarkeit erhoben, sie sollen zur 

Skizzierung verschiedener Aspekte von Punktmusterbeweisen und als Diskussionsgrundlage und 

Anhaltspunkte für weitere Forschungen dienen. 

These (1) Punktmuster sind schwieriger zu konstruieren, weil man immer erst eine ‚Idee‘ braucht 

Verschiedene Studierende äußerten den Einwand, dass Punktmusterbeweise schwerer zu 

konstruieren seien als andere Beweise, da man bei dem Umgang mit Punktmustern immer zunächst 

eine Idee für deren Anordnung und Umstrukturierung haben müsse. Diese These wird durch zwei 

Zitate verdeutlicht: 

Ja, also weil, ja, der generische, also jetzt im Vergleich zu Punktmuster, aber da [beim Punktmusterbeweis; L. K.] 

brauch man dann immer ne Idee erstmal, ne? Deswegen finde ich den, im Vergleich zum formalen Beweis, auf 

jeden Fall schlechter, weil man da immer erst irgend ne Idee braucht. (Studierender 4) 

Wir wissen ja seit der ersten Klasse, nein Quatsch, wir wissen mit frühem Alter wenn wir eine Zahl mit zwei 

multiplizieren, dass es dann logischerweise auch dann durch 2 teilbar ist. Hier [beim Punktmusterbeweis; L. K.] 

müsste man erstmal überlegen waagerecht/senkrecht, gerade Zahl oben/gerade Zahl unten. Das Feeling dabei, 

das anzugucken und nachzuvollziehen ist hierbei [beim formalen Beweis; L. K.] einfacher als da. Hierbei zeigt man, 

egal welche der natürlichen Zahlen man mit zwei multipliziert und ist logischerweise durch 2 teilbar. 

(Studierender 8) 

These (2) Durch die Verwendung von Punktmustern und der damit verbundenen ‚visuellen‘ 

Darstellung des Sachverhalts wird der Beweis leichter zu verstehen 

Ein Studierender in der Untersuchung merkt an, dass durch die „visuelle“ Darstellung des 

Sachverhalts die Punktmusterbeweise leichter zu verstehen sind:  

Das hat mich so einfach, also klar ich hab jetzt hier [beim generischen Punktmusterbeweis; L. K.], also die 

Gültigkeit hab ich jetzt hier ein bisschen besser angekreuzt, sagen wir mal so. Also man sieht es ja, also es ist noch 

mal, also es ist ja ne Kombination aus diesem Punktmusterbeweis und diesem generischen Beweis. Und da es 

noch so visuell darstellbar ist, ist die Gültigkeit, find ich, eher da. Also, weil man das ja für mehrere Beispiele und 

man sieht, dass es eben ja immer gilt sozusagen. Man erkennt da ja irgendwo, dass es zum Beispiel jetzt für 

gerade und ungerade Zahlen oder sowas und dadurch das noch visuell sozusagen begründet wird. Also es ist 

einfach durch die visuelle Begründung find ich, ist das nochmal eindeutiger. (Studierender 12) 
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These (3): Punktmusterbeweise sind für die Schule geeignet, weil sie ‚anschaulicher‘ sind. 

Verschiedene Studierende haben angemerkt, dass sie Punktmusterbeweise deshalb für die Schule für 

geeignet halten, weil sie „anschaulicher“ seien. Die folgenden Zitate sollen diese Ansicht 

verdeutlichen: 

Ich glaube, dass den Schülern das leichter fallen würde, weil’s anschaulicher ist. Man sieht, dass man’s halt 

durchteilen kann. Und da [beim formalen Beweis; L. K.] kann man’s halt nicht so sehen. Obwohl man auch hier die 

„2“ da stehen hat und man weiß, es ist dann durch 2 teilbar. (Studierender 2) 

Ich finde die Punktmusterbeweise auch nicht so toll, obwohl wahrscheinlich können die sich das dann schon 

besser vorstellen. Also wenn man einfach mal so’n Beispiel gibt, wobei ich das zum Beispiel schon zu schwierig 

eigentlich finde. Wenn man sowas erklären würde, finde ich das zu schwierig, aber an leichteren Beispielen, wie 

z.B. mit der geraden, wenn’s einfach ne gerade Zahl ist, plus ne gerade Zahl – das ist ja leicht, das ist ja leicht 

vorzustellen. Oder ne ungerade plus ungerade – das, sowas ist gut. Dann können die erkennen, ok dann wird’s, 

dann bleibt ein Punkt übrig und die ergänzen sich, das ist gut. Das ist, glaub ich, kann man ganz gut anwenden. 

(Studierender 3) 

Ja, Punktmuster ist anschaulicher für die Schule. (Studierender 7) 

These (4) Punktmusterbeweise sind schwerer zu verstehen als formale Beweise 

Ich finde, dass [der formale Beweis; L. K.] ist am ehesten nachvollziehbar wirklich für alle anderen, wenn sich das 

jemand anderes angucken würde, wird der das am ehesten nachvollziehen, anstatt so’n Punktmusterbeweis, wo 

man erst nochmal überlegen müsste oder hier [beim generischen Beweis; L. K.], hier müsste man jetzt noch nen 

Satz hinterher schreiben. (Studierender 6) 

Diskussion der Ergebnisse 

Alle Studierenden, mit einer Ausnahme, beginnen die vorgelegte Beweisaufgabe mit der 

Konstruktion eines formalen Beweises. Es zeigt sich hier, dass der Begriff des Beweisens für diese 

Studierenden noch stark mit dem Konstrukt des ‚formalen Beweises‘ verbunden zu sein scheint. Dies 

wird auch daran deutlich, dass in der Gruppe, in der zunächst konkrete Beispiele untersucht werden, 

das ausgemachte Argument über das Quadrat ungerader Zahlen nicht weiterverfolgt wird, um einen 

generischen Beweis zu konstruieren. Auch in dieser Gruppe wird die Heuristik der algebraischen 

Umformungen für die Konstruktion des Beweises gewählt. Nur einer der zwölf Studierenden beginnt 

explizit mit der Konstruktion eines generischen Beweises, da er diese Beweisform als „Stütze“ (s. Zitat 

oben) betrachtet. Diese Verbindung (bzw. Gleichsetzung) der Begrifflichkeiten ‚Beweis‘ und ‚formaler 

Beweis‘ kann dabei als Aspekt sozio-mathematischer Normen im Sinne einer Sozialisation durch 

Schule und Universität begriffen werden, wie es in den Antworten der Studierenden auf die Frage 

nach ihren Motiven für die Wahl der Beweisform deutlich wird. Dimmel und Hersh (2014, S. 393) 

benutzen den Begriff der semiotischen Norm, der einen ergänzenden Erklärungsansatz für dieses 

Phänomen bietet: Es ist möglich, dass der Aufgabenoperator „Beweisen Sie“ für die Studierenden die 

Verwendung der algebraischen Sprache impliziert und sich somit eine semiotische Norm 

herausgebildet hat41. Wie sich später im Laufe des Interviews herausstellte, war diese Beweisform für 

die Mehrheit der Studierenden am einfachsten zu konstruieren. Dies mag dabei zunächst der 

vorliegenden Aufgabe geschuldet sein: Nach Einsetzen der algebraischen Repräsentation einer 

geraden oder ungeraden Zahl in den Term „� + ��“ ergibt sich die Lösung durch einfache 

algebraische Umformungen (vgl. die Aufgabenlösung zum formalen Beweis oben). Es ist allerdings 

                                                           
41

 Neuere Ergebnisse  von Kempen et al. (2016) vermögen die These zu stützen, dass der Aufgabenoperator 

„Beweisen Sie …“ die Verwendung von Variablen begünstigt. 
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auch generell eine offene Frage, ob sich bei entsprechenden Behauptungen in der elementaren 

Zahlentheorie die Konstruktion formaler Beweise nicht generell als leichter erweist als die 

Konstruktion generischer Beweise bzw. als Beweise mit Punktmustern. 

Die Beweisbewertungen der Studierenden in dem Fragebogen scheinen zunächst in der Hinsicht 

überraschend, dass der formale Beweis auch in Bezug auf die Erklärungsqualität häufig die beste 

Bewertung erhält. In der didaktischen Literatur wird dagegen im Allgemeinen generischen Beweisen 

oder auch allgemein Beweisen mit Punktmusterdarstellungen ein höheres Erklärungspotential 

zugesprochen (vgl. hierzu die Erörterungen in Abschnitt 8.3.5). Bei den Ergebnissen bzgl. der Eignung 

der Beweisformen für den schulischen Mathematikunterricht stellt sich die Frage, vor welchem 

Hintergrund die Studierenden ihre Beweisbewertungen vornehmen. Denn es erscheint fragwürdig, 

dass sie den formalen Beweis für die Schule schlechter bewerten als die anderen Beweisformen, 

obwohl sie selbst mit dieser Beweisform am besten zu Recht kommen (s.o.). Die Zuschreibung einer 

Eignung für den Schulunterricht könnte somit etwa der Tatsache geschuldet sein, dass die Probanden 

der Ansicht sind, dass konkrete Zahlenbeispiele oder Punktmusterdarstellungen per se als 

‚Veranschaulichungen‘ gut geeignet für die Schule, bzw. dass die Verwendung von Variablen für 

Schülerinnen und Schüler zu schwer seien. In dem Interview konnte diesen Fragen aus Zeitgründen 

leider nicht weiter nachgegangen werden. Diese Ergebnisse dürfen dabei aufgrund der niedrigen 

Stichprobenzahl von 12 Probanden nicht überbewertet werden. Diese Resultate bieten jedoch eine 

erste Einsicht in die Beweisbewertungen von Studierenden. Auch gaben diese Befunde den Anlass für 

die weitere Erforschung des Konstrukts der ‚Beweisakzeptanz‘, welche in dem folgenden Durchgang 

der Lehrveranstaltung vorgenommen wurde (vgl. Abschnitt 7.2.4). 

Die herausgearbeiteten Wahrnehmungen zum generischen Beweis mit Zahlen und zum formalen 

Beweis geben Anlass zu der Diskussion dieser Beweisformen als Verifikationsmittel in der 

Hochschullehre bzw. im schulischen Mathematikunterricht und als didaktisches Instrument zum 

Erlernen der fachmathematischen Beweisaktivität. Wenn die Lernenden selbst nicht die (Allgemein-) 

Gültigkeit generischer Beweise einsehen, wie sollen sie dann diese selbst konstruieren können und 

mithilfe dieser Beweise ein adäquates Verständnis von der mathematischen Beweisaktivität 

erlangen? Die hier erhaltenen qualitativen Ergebnisse geben dabei nur einen Anhaltspunkt für die 

vorzunehmende quantitative Erforschung dieses Phänomens. Bedeutsam erscheint hierbei weiter, 

dass bei der Wahrnehmung des generischen Beweises mit Zahlen zwischen logischer Akzeptanz und 

psychologischer Überzeugung unterschieden werden konnte. Diese Aspekte bilden einen Rahmen, in 

dem Beweisakzeptanz geschieht, und sollten somit in entsprechenden Erörterungen von 

Beweiskonzepten mitgedacht werden. 

Die formulierten Thesen bzgl. der Punktmusterbeweise geben Anhaltspunkte für weitere 

Forschungsfragen und Studien. Bei der Konstruktion von Punktmusterbeweisen braucht der 

Beweisende wirklich eine ‚Idee‘, wie er im Darstellungssystem der Punktmuster das Behauptete 

nachweisen kann. Die geometrische Interpretation von arithmetischen Sachverhalten (und 

umgekehrt) ist dabei nicht als ein trivialer Akt anzusehen; auch muss hier das Problem der 

Explizierung der Allgemeingültigkeit (im Falle der generischen Punktmusterbeweise) mitbedacht 

werden, denn diese Explizierung muss in gewisser Weise in einer „Sprache der Punktmuster“ 

erfolgen, in der von Punktreihen, Ecken, Einteilungen etc. die Rede ist, und dies setzt dabei wiederum 

eine gewisse Art von Sprachschulung voraus. Die Verwendung von Punktmusterdarstellungen in 

Beweisen kann diese für den Leser verständlicher oder auch unverständlicher machen. Hier ist der 

(semiotische) Aspekt des kollateralen Wissens (s. Abschnitt 2.5) anzuführen, das Wissen, das benötigt 
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wird, um im Rahmen eines Darstellungssystems mit den Diagrammen agieren und die Resultate 

interpretieren zu können. Auch das Darstellungssystem der Punktmuster ist nicht aus sich heraus 

„anschaulich“ oder „verständlich“, das Umgehen damit muss geübt werden (vgl. hierzu Abschnitt 

8.3.5).  

Schließlich sei bereits an dieser Stelle auf den Aspekt der Anschaulichkeit und der angeblich daraus 

vermuteten Eignung für die Schulmathematik eingegangen. Der Aspekt der Anschaulichkeit wird in 

Abschnitt 8.3.5 erörtert. Ein Ergebnis wird dabei sein, dass Anschauungsmittel weder selbstevident 

noch selbsterklärend sind, sondern zunächst erworben werden müssen (vgl. Jahnke 1984). Es scheint 

dabei aber ein natürlicher ‚Reflex‘ der Studierenden zu sein, etwas ‚Anschauliches‘ als positiv für den 

schulischen Mathematikunterricht zu bewerten. Kritisch muss natürlich angemerkt werden, wie die 

Studierenden diese Beweisformen als geeignet für die Schulmathematik bewerten können, wenn sie 

selbst verschiedene Probleme mit dieser Beweisform haben (vgl. hierzu auch die Ergebnisse der 

Analyse der Klausurbearbeitungen in Abschnitt 5.4.2.3). 

Bezüglich der Gütekriterien dieser Teilstudie muss in Bezug auf die Validität der Beweisbewertungen 

anhand der Aspekte ‚Überzeugung‘, ‚Erklärungsqualität‘, ‚Sicherung der Gültigkeit‘ und ‚Adäquatheit 

für den schulischen Mathematikunterricht‘ angemerkt werden, dass es dem individuellen 

Verständnis der Probanden geschuldet ist, wie sie diese Kategorien (etwa „erklären“, „überzeugen“, 

…) verstehen. Eine (theoretische) Elaboration dieser Konzepte für die Studierenden war im Rahmen 

dieser Studie nicht möglich. Um eine möglichst große Objektivität zu gewährleisten, wurden an den 

entsprechenden Stellen der Auswertung und Ergebnisdarstellung die Originalzitate der Studierenden 

angebracht. 

Da es sich bei diesem Forschungsprojekt um eine Fallstudie handelt, geht es bei diesen Ergebnissen 

nicht um eine zu erzielende Verallgemeinerbarkeit der Resultate. Vielmehr standen die Darstellung 

möglicher Wahrnehmungen verschiedener Beweisformen und das Herausarbeiten von Belegen und 

Begründungen für die Existenz dieser Wahrnehmungen im Forschungsinteresse. Vor dieser 

Zielsetzung lässt sich dieses Projekt als explorative Forschung verstehen, die neben den erzielten 

Ergebnissen auch Anhaltspunkte für die weitere Erforschung der Thematik ‚Beweisakzeptanz‘ bietet. 

5.4.2.3 Analyse der Beweiskonstruktionen der Studierenden in der Modulabschlussklausur 

im Wintersemester 2013/14 

Forschungsanliegen und Forschungsfragen 

Die Beweisproduktionen der Studierenden zum generischen Beweis mit Zahlen und zum formalen 

Beweis in der Modulabschlussklausur wurden bereits im Wintersemester 2012/13 ausgewertet. Mit 

der Analyse der Klausurbearbeitungen im Wintersemester 2013/14 sollte wiederum überprüft 

werden, ob die vorgenommenen Modifikationen der Lehrveranstaltung in die gewünschte Richtung 

wiesen. Auch stellte sich durch die Hinzunahme der Punktmusterbeweise die Frage, wie die 

Beweiskonstruktionen der Studierenden im Diagrammsystem der Punktmuster ausfallen würden. 

Dabei ist allerdings ein Vergleich der Ergebnisse der Beweisaufgaben in der Modulabschlussklausur 

der Jahrgänge 2012/13 und 2013/14 nur bedingt möglich; durch die Hinzunahme der 

Punktmusterbeweise musste in diesem Jahrgang eine (neue) Behauptung ausgewählt werden, die 

mithilfe aller vier Beweisformen der Lehrveranstaltung ‚gut‘ bewiesen werden konnte. 
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Die Leitfragen zur Auswertung der Studie lauteten somit: 

• Leitfrage zur Auswertung [14]: Wie gut gelingen den Studierenden die Beweiskonstruktionen 

in der Modulabschlussklausur, wenn sie aufgefordert werden, (a) einen generischen Beweis 

mit Zahlen, (b) einen formalen Beweis (mit Mitteln der Algebra), (c) einen generischen 

Beweis mit Punktmustern und (d) einen Punktmusterbeweis mit geometrischen Variablen zu 

konstruieren. 

• Leitfrage zur Auswertung [15]: Welche Unterschiede können bei den Ergebnissen aus dem 

Wintersemester 2013/14 zu denjenigen aus dem Vorjahr festgestellt werden? 

Für die Beantwortung dieser Fragen wurde eine Aufgabe in der Modulabschlussklausur gestellt, in 

der eine Behauptung mit den vier verschiedenen Beweisformen der Vorlesung bewiesen werden 

sollte. Die Aufgabe, verbunden mit ihren Anforderungen, wird im folgenden Abschnitt näher 

dargestellt. 

Dabei muss angemerkt werden, dass sich die Ergebnisse bzgl. der Beweiskonstruktionen der 

Studierenden in den Modulabschlussklausuren der Wintersemester 2012/13 und 2013/14 auf Grund 

verschiedener Faktoren nur bedingt miteinander vergleichen lassen, zumal in den jeweiligen 

Aufgaben auch unterschiedliche Behauptungen bewiesen werden sollten (s.o.); auch wurde für die 

Ergebnisse aus dem Wintersemester 2012/13 auf die Bedeutung der jeweiligen Operationalisierung 

von Teilbarkeit hingewiesen. Allerdings können die Ergebnisse einen vorsichtigen Aufschluss darüber 

zulassen, ob die Veränderungen der Lehrveranstaltung in eine ‚richtige‘ Richtung zu weisen scheinen.  

Aufgabe und Aufgabenanalyse 

Die in der Modulabschlussklausur im Wintersemester 2013/14 gestellte Aufgabe 2 lautet: 

 

Wir betrachten die folgende Behauptung: 

Die Summe von 6 aufeinanderfolgenden natürlichen Zahlen ist immer ungerade. 

 

Beweisen Sie die Behauptung mit: 

(a) einem generischen Beweis mit Zahlen 

(b) einem formalen Beweis mit Mitteln der Algebra 

(c) einem generischen Punktmusterbeweis 

(d) einem Punktmusterbeweis mit geometrischen Variablen. 

 

Es ist hierbei anzumerken, dass Interaktionseffekte zwischen den verschiedenen Beweisen für die 

gleiche Behauptung nicht auszuschließen sind, die im Rahmen dieser Studie auch nicht kontrolliert 

werden können. Trotz möglicher Interaktionseffekte scheint aber eine Vergleichbarkeit der 

verschiedenen Beweiskonstruktionen der Studierenden bei einer Behauptung eher angebracht zu 

sein, als wenn die vier Beweisformen jeweils zu unterschiedlichen Behauptungen hätten konstruiert 

werden sollen. Insofern lässt sich dieses Untersuchungsdesign wohl als ‚kleineres Übel‘ legitimieren. 

Innerhalb des ersten Kapitels der Lehrveranstaltung wurden Teilbarkeitsfragen bzgl. der Summe 

aufeinanderfolgender natürlicher Zahlen betrachtet. Die Teilbarkeit der Summe von drei 

aufeinanderfolgenden Zahlen durch drei wurde in der Vorlesung mit allen der vier genannten 

Beweismöglichkeiten nachgewiesen. Diese galt es nun auf die Summe von sechs 

aufeinanderfolgenden Zahlen zu übertragen, wobei nun nicht die Teilbarkeit durch 6 gezeigt werden 

sollte, sondern dass diese Summe ungerade ist, i.e., dass sie nicht (ohne Rest) durch zwei teilbar ist. 
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Im Folgenden werden verschiedene Lösungsmöglichkeiten für die vier Beweisarten dargestellt, die 

auf dem in der Lehrveranstaltung vermittelten Wissen basieren: 

Generischer Beweis mit Zahlen, Variante (1) 

1	 + 	2	 + 	3	 + 	4	 + 	5	 + 	6	 = 	21  ist  ungerade. 

4	 + 	5	 + 	6	 + 	7	 + 	8	 + 	9	 = 	39  ist  ungerade. 

 

In jeder Summe von 6 aufeinanderfolgenden natürlichen Zahlen sind immer (genau) drei ungerade Zahlen, deren Summe 

ungerade ist. Addiert man dazu die drei geraden Zahlen so bleibt das Ergebnis immer ungerade. 

 

Generischer Beweis mit Zahlen, Variante (2) 

1	 + 	2	 + 	3	 + 	4	 + 	5	 + 	6	 = 1 + 
1 + 1� + 
1 + 2� + 
1 + 3� + 
1 + 4� + 
1 + 5� = 	6 ∙ 1 + 
1 + 2 + 3 + 4 + 5� 
4	 + 	5	 + 	6	 + 	7	 + 	8	 + 	9	 = 4 + 
4 + 1� + 
4 + 2� + 
4 + 3� + 
4 + 4� + 
4 + 5� = 	6 ∙ 4 + 
1 + 2 + 3 + 4 + 5� 
 

In den Beispielen wird deutlich, dass man jede Summe von sechs aufeinanderfolgenden Zahlen immer schreiben kann als 

„6 ∙	Ausgangszahl +	
1 + 2 + 3 + 4 + 5�“. Der erste Summand ist dabei immer eine gerade Zahl und der zweite immer die 

ungerade Zahl	15. Da die Summe aus einer geraden und einer ungeraden Zahl immer ungerade ist, wird das Ergebnis immer 

eine ungerade Zahl sein.  

Generischer Beweis mit Zahlen, Variante (3) 

Wir betrachten die folgenden Beispiele: 

 

 

 

 

 

 

 

 

 

Die erste Summe ist ungerade. Man sieht in den Beispielen, dass, wenn man den Startwert um 1 erhöht, sich die Summe 

um 6 (gerade Zahl) vergrößert. Also werden zu der ungeraden Ausgangssumme immer Vielfache von 6, also gerade Zahlen, 

addiert, um weitere Summen von anderen 6 aufeinanderfolgenden natürlichen Zahlen zu erhalten. Auf diese Art können 

alle möglichen Summen von 6 aufeinanderfolgenden natürlichen Zahlen erzeugt werden. Da die Summe aus einer 

ungeraden Zahl und einer geraden Zahl immer ungerade ist, wird das Ergebnis - und damit das Ergebnis dieser Summen - 

immer ungerade sein. 

 

Formaler Beweis: 

Sei �	(	i beliebig aber fest. (Auch zugelassen: Für alle �	(	ℕ gilt:) 

Dann gilt: �	 + 	
�	 + 	1�	+	
�	 + 	2�	+	
�	 + 	3�	+	
�	 + 	4� 	+	
�	 + 	5� 	= 	6�	 + 	15	
 

Variante 1: 	… 6� ist eine gerade Zahl. Da die Summe aus einer geraden und einer ungeraden Zahl immer ungerade ist (Satz   

der Vorlesung), ist das Ergebnis immer ungerade. 
 
Variante 2: 	… 	= 	2
3�	 + 	7� 	+ 	1	 = 	2/	 + 	1 mit / ∶= 	3�	 + 	7 (	ℕ. Also ist das Ergebnis nach Satz 1.3 ungerade.  

 

Variante 3:  …	= 	2
3�	 + 	7�	+ 	1. Da 
3�	 + 	7� (	ℕ ist die Summe nach Def. 1.1 nicht durch	2 teilbar, also ungerade. 

 

Variante 4:  …	= 	2
3�� 	+ 	15. Da 
3��	(	ℕ ist 2
3�� nach Satz 1.3 gerade (bzw. nach Def. 1.1’ durch 2 teilbar 

 und somit gerade ). Da 15 eine ungerade Zahl ist und diese zu der geraden Zahl addiert wird, ist die Summe insgesamt 

ungerade. 

Abbildung 41: Generische Zahlenbeispiele zu 
der Summe von sechs aufeinanderfolgenden 
Zahlen 
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Bei den Punktmusterbeweisen kann die Eigenschaft „ungerade“ durch Aufteilungen der Punktmuster 

im Sinne der Grundvorstellungen „Aufteilen“ und „Verteilen“ nachgewiesen werden. Eine 

Lösungsmöglichkeit für den generischen Punktmusterbeweis wäre: 

Generischer Beweis am Punktmuster: 

 

 

 

 

Man sieht in den Beispielen, dass - unabhängig von der Startzahl - bei der Summe von sechs aufeinanderfolgenden 

natürlichen Zahlen „oben“  immer ein Dreieck entsteht; im unteren Bereich entstehen immer sechs gleich lange Säulen, die 

man in zwei gleich große Bereiche einteilen kann. Das obere Dreieck kann man immer so umstrukturieren, dass zwei gleich 

große Bereiche entstehen, wobei aber immer drei Punkte übrigbleiben. Somit ist die Gesamtsumme nie durch 2 teilbar. 

 

Punktmusterbeweis mit geometrischen Variablen: 

 

 

 

 

 

 

 

 

Datenauswertung 

Im Rahmen der Pilotierung der Eingangsbefragung im Wintersemester 2013/14 wurde ein 

Kategoriensystem für die Erfassung von Begründungskompetenz entwickelt (Abschnitt 3.3.1). Dieses 

Kategoriensystem wurde auch für die Analyse der Beweisproduktionen der Studierenden in der 

Modulabschlussklausur verwendet. Durch den Einbezug der Punktmusterbeweise musste dieses 

Kategoriensystem um weitere Erläuterungen (bzw. Spezifizierungen) ergänzt werden. Das 

Kategoriensystem und die Spezifizierungen hinsichtlich der Punktmusterbeweise werden in der 

Tabelle 19 dargestellt. 

Alle Beweisproduktionen der Studierenden wurden doppelt kodiert. Bei einer anschließenden 

Kodierkonferenz (im Sinne von Mayring 2010, S. 604) wurde bei Nichtübereinstimmung der 

Bewertungen das jeweilige Beweisprodukt noch einmal gemeinsam von beiden Bewertenden 

betrachtet. Im Falle einer offensichtlichen Fehlkodierung wurde diese korrigiert, ansonsten blieben 

die unterschiedlichen Bewertungen bestehen. Die Interrater-Reliabilitäten bzgl. der Kategorien sind 

bei allen Beweisformen in einem guten bis sehr guten Bereich. Die exakten Werte werden in der 

Tabelle 20 angegeben. 

 

 

Abbildung 42: Generische Punktmusterbeispiele zu 
der Summe von sechs aufeinanderfolgenden 
Zahlen 

Abbildung 43: Punktmusterbeweis mit geometrischen 
Variablen zu der Summe von sechs 
aufeinanderfolgenden Zahlen 
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Bezeichnung Erläuterung Ergänzungen für den Kontext der 

Punktmusterbeweise 

n.b. Die Aufgabe wurde nicht bearbeitet --- keine Ergänzungen --- 

Empirisch In der Bearbeitung findet ausschließlich 

eine induktive Prüfung der Behauptung 

statt. 

--- keine Ergänzungen --- 

Pseudo In der Bearbeitung wird die 

Behauptung paraphrasiert oder es 

werden falsche bzw. irrelevante Fakten 

genannt. 

Hierzu gehören weiter alle Bearbeitungen in denen 

die Punktmuster so dargestellt werden, dass keine 

nutzbare geometrische Struktur erkennbar ist. 

Fragmentarisch Es werden korrekte und relevante 

fachliche Aspekte genannt, ohne dass 

eine Argumentationskette aufgebaut 

wird. 

Hierzu gehören weiter alle Bearbeitungen, in denen 

die Punktmuster willkürlich so zusammengestellt 

werden, dass eine sinnvolle und nutzbare Anordnung 

entsteht. 

Argumentation  

mit Lücke 

Es wird eine Argumentationskette mit 

korrekten und relevanten fachlichen 

Aspekten aufgebaut, die allerdings eine 

Lücke enthält. 

Hierzu gehören weiter alle Bearbeitungen, in denen 

die Punktmuster nachvollziehbar zusammengefügt 

werden, sodass eine sinnvolle und nutzbare 

Anordnung entsteht. 

Vollständige  

Argumentation 

Die Behauptung wird mithilfe korrekter 

Argumente vollständig verifiziert. 
--- keine Ergänzungen --- 

Tabelle 19: Kategorienschema für die vergleichende Analyse der Beweiskonstruktion der Studierenden zu den vier 
Beweisformen der Lehrveranstaltung (Modulabschlussklausur im Wintersemester 2013/14) 

 

Kategorienschema zu der Beweisform… Interrater-Reliabilität  

Cohens Kappa 

generischer Beweis mit Zahlen 0,804 

algebraischer Beweis 0,823 

generischer Punktmusterbeweis 0,783 

Punktmusterbeweis mit geometr. Variablen 0,756 

Tabelle 20: Interrater-Reliabilitäten (Cohens Kappa) bzgl. Kategorisierungen der vier Beweisformen in der 
Modulabschlussklausur des Wintersemesters 2013/14 

Für die Auswertung der Daten wird eine ordinale Skala zugrunde gelegt, damit ein Vergleich der 

Ergebnisse der Jahrgänge 2012/13 und 2013/14 möglich wird und eventuelle 

Verteilungsverschiebungen interpretiert werden können.  

Ergebnisse: 

Beantwortung der Leitfrage zur Auswertung [14]: Wie gut gelingen den Studierenden die 

Beweiskonstruktionen in der Modulabschlussklausur, wenn sie aufgefordert werden, (a) einen 

generischen Beweis mit Zahlen, (b) einen formalen Beweis (mit Mitteln der Algebra), (c) einen 

generischen Beweis mit Punktmustern und (d) einen Punktmusterbeweis mit geometrischen Variablen 

zu konstruieren. 

Die Ergebnisse bzgl. der Kategorisierungen der Beweiskonstruktionen der Studierenden werden in 

der Abbildung 44 dargestellt. 



202 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bei der Konstruktion des generischen Beweises wurden in 54% aller Bearbeitungen korrekte 

Argumentationsketten aufgebaut („Arg. mit Lücke“ + „vollst. Argumentation“) und insgesamt 

konnten 31% aller generischen Beweise mit Zahlen als vollständige Argumentation gewertet werden. 

Gut der Hälfte der Studierenden gelingt somit eine Argumentation im Kontext dieser Beweisform. 

Dagegen ist auffällig, dass der Anteil von Pseudoantworten mit 22% noch relativ hoch ausfällt.  

Deutlich besser gelingt den Studierenden dagegen die Konstruktion des formalen Beweises (mit 

Mitteln der Algebra): Insgesamt wurden in 79% der Bearbeitungen korrekte Argumente benannt und 

32% wurden als vollständige Argumentationen bewertet. 

Problematisch erscheinen dagegen die Ergebnisse bzgl. der Punktmusterbeweise. Davon abgesehen, 

dass hier der Anteil der Studierenden am höchsten ist, die diese Beweiskonstruktion überhaupt nicht 

versuchen, erreichen nur 5% im Fall des generischen Beweises und 11% bei dem Beweis mit 

geometrischen Variablen eine vollständige Argumentation. Es lässt sich festhalten, dass den 

Studierenden eine Argumentation im Diagrammsystem der Punktmuster nur bedingt gelingt. Dabei   

fallen in diesen Beweisen die hohen Anteile der Bearbeitungen mit Pseudo-Antworten besonders 

auf: 37% der Bearbeitungen beim generischen Punktmusterbeweis und 45% (!) bei dem Beweis mit 

geometrischen Variablen.  

Beantwortung der Leitfrage zur Auswertung [15]: Welche Unterschiede können bei den Ergebnissen 

aus dem Wintersemester 2013/14 zu denjenigen aus dem Vorjahr festgestellt werden? 

In der Abbildung 45 werden diese Ergebnisse bzgl. der Beweiskonstruktionen zum formalen Beweis 

und zum generischen Beweis mit Zahlen der Jahrgänge 2012/13 und 2013/14 vergleichend 

dargestellt. Hierbei zeigt sich bei beiden Beweisformen eine deutliche Verschiebung hin zu höheren 

Kategorien: Während in beiden Beweisen die Anteile der Pseudoantworten zurückgehen, nehmen 

3%
7%

22%
14%

23%
31%

n.b. emp. pseudo fragment Arg. mit
Lücke

vollst.
Arg.

Generischer Beweis mit Zahlen (n=139)

6% 7%

37%

24% 22%

5%

n.b. emp. pseudo fragment Arg. mit
Lücke

vollst.
Arg.

Generischer Punktmusterbeweis (n=139)

3% %

15%

3%

47%

32%

n.b. emp. pseudo fragment Arg. mit
Lücke

vollst.
Arg.

Formaler Beweis (n=139)

18%

%

45%

9%
17%

11%

n.b. emp. pseudo fragment Arg. mit
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Beweis mit geom. Var. (n=139)

Abbildung 44: Ergebnisse bzgl. der Beweiskonstruktionen der Studierenden in der Modulabschlussklausur im 
Wintersemester 2013/14 
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die Anteile der Bearbeitungen mit „Argumentation mit Lücke“ und „vollständige Argumentationen“ 

deutlich zu. 

 

 

 

 

 

 

 

Diskussion der Ergebnisse 

Das Ergebnis, dass es bei der Konstruktion des generischen Beweises mit Zahlen nur ca. der Hälfte 

der Studierenden gelang, eine Argumentationskette aufzubauen („Arg. mit Lücke“ + „vollst. 

Argumentation“), zeugte von den immer noch existierenden Problemen der Studierenden mit dem 

Konzept des generischen Beweises. Nur insgesamt 31% der Studierenden erreichten eine 

„vollständige Argumentation“ mit ihrem generischen Beweis mit Zahlen. Dies ließ sich dahin gehend 

deuten, dass die geforderte Explizierung der Argumentation und ihrer Allgemeingültigkeit für die 

Studierenden noch immer eine Hürde darstellt. 

Am besten fielen in dieser Untersuchung die Ergebnisse zum formalen Beweis aus: 79% der 

Bearbeitungen beinhalteten korrekte Argumentationen, wobei nur 32% als „vollständige 

Argumentationen“  bewertet werden. Der hohe Anteil der Bearbeitungen „Argumentation mit Lücke“ 

resultiert hierbei zum einen aus Fehlern bei der Definition der Variablen und zum anderen aus einer 

lückenhaften Begründung am finalen algebraischen Term, warum dieser ungerade ist. 

Bei den Punktmusterbeweisen ließ der erhöhte Anteil der Nicht-Bearbeitungen auf ein 

grundlegendes Verständnisproblem der Studierenden im Umgang mit dem Punktmuster schließen. 

Hiervon zeugte auch der hohe Anteil der Pseudoargumentationen. Der geringe Anteil von 

„vollständigen Argumentationen“ bei dem generischen Punktmusterbeweis ließ deutlich werden, wie 

schwer es den Studierenden anscheinend fiel, in dem Diagrammsystem der Punktmuster zu arbeiten 

und schließlich ihre Argumentation in einer ‚Sprache der Punktmuster‘ zu explizieren. Der Anteil der 

vollständigen Argumentationen beim Beweis mit geometrischen Variablen fiel dementsprechend 

etwas besser aus, da hier keine narrative Begründung erforderlich war. 

Bei dem Vergleich der Ergebnisse aus den Wintersemestern 2012/13 und 2013/14 wurden bereits 

oben einige relativierende Anmerkungen gemacht. Insgesamt kann aber festgehalten werden, dass 

die Beweiskonstruktionen der Studierenden in der Modulabschlussklausur des Wintersemesters 

2013/14 ‚besser‘ ausfallen als in dem vorherigen Durchgang. Dieses Resultat soll an dieser Stelle als 

ein vorsichtiger Beleg dafür gewertet werden, dass die vorgenommenen Modifikationen der 

Lehrveranstaltung positive Auswirkungen auf die Beweiskonstruktionen der Studierenden haben.  

%
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Formaler Beweis

WS 2012/13 (n=98)

WS 2013/14 (n=139)

Generischer Beweis mit Zahlen

WS 2012/13 (n=98)

WS 2013/14 (n=139)

Abbildung 45: Ergebnisse bzgl. der Beweiskonstruktionen der Studierenden zum formalen Beweis (links) und zum generischen 
Beweis mit Zahlen (rechts) in den Wintersemestern 2012/13 und 2013/14 
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5.4.3 Retrospektive Analyse der dritten Durchführung der Lehrveranstaltung 

Für die retrospektive Analyse der dritten Durchführung der Lehrveranstaltung wurden vier zentrale 

Bereiche ausgemacht: (1) die anscheinend anhaltende Gleichsetzung des Beweisbegriffs mit der 

Beweisform des formalen Beweises auf Seiten der Studierenden, (2) die Verständnisschwierigkeiten, 

die die Studierenden mit dem Konzept generischer Beweise zu haben scheinen, und (3) der defizitäre 

Umgang der Studierenden mit dem Diagrammsystem der Punktmuster. (4) Darüber hinaus erschien 

es noch als offene Frage, welches Konzept ‚formaler Beweise‘ den Studierenden vermittelt werden, 

und worin sich dieses explizit von den anderen Beweisformen unterscheiden sollte. 

(1) Zur anscheinend anhaltenden Gleichsetzung des Beweisbegriffs mit der Beweisform des 

formalen Beweises 

Im Rahmen der durchgeführten Interviewstudie (Abschnitt 5.4.2.2) wurde deutlich, dass die 

Studierenden mit der Formulierung „Beweisen Sie…“ noch immer ein formales Vorgehen zu 

verbinden schienen. Dieses Ergebnis war in gewisser Weise konträr zu dem Ziel der 

Lehrveranstaltung, die dort verwendeten vier Beweisformen den Studierenden als prinzipiell 

gleichwertige Instrumente der Verifikation zu vermitteln, auch wenn der Nutzen und der Mehrwert 

der algebraischen Symbolsprache gleichzeitig herausgestellt werden sollte. 

(2) Zu den Verständnisschwierigkeiten, die die Studierenden mit dem Konzept eines generischen 

Beweises zu haben scheinen  

Ein weiteres Ergebnis der durchgeführten Interviewstudie war die Erkenntnis, dass zumindest einige 

Studierende das Konzept des generischen Beweises nicht vollständig verstanden zu haben schienen, 

und auch nach der Konstruktion korrekter generischer Beweise noch Zweifel auf einer logischen und 

einer psychologischen Ebene auszumachen waren (Abschnitt 5.4.2.2). Entsprechend sollten die 

Maßnahmen weiterhin verstärkt werden, generische Beweise prominent in der Lehrveranstaltung zu 

platzieren und zu erörtern. Darüber hinaus sollte das Konzept einer ‚Beweisakzeptanz‘ auch 

quantitativ erforscht und theoretisch fundiert werden. 

(3) Zu dem defizitären Umgang der Studierenden mit dem Diagrammsystem der Punktmuster 

Die Analyse der Beweiskonstruktionen in der Modulabschlussklausur (Abschnitt 5.4.2.3) belegte die 

Probleme, die die Studierenden bei der Arbeit mit dem Diagrammsystem der Punktmuster hatten. 

Der relativ hohe Anteil von Studierenden, der die entsprechenden Beweiskonstruktionen der Klausur 

gar nicht erst versuchte, und der sehr hohe Anteil von Pseudobegründungen ließen deutlich werden, 

dass einem Großteil der Studierenden der Umgang mit den Punktmusterdarstellungen nicht deutlich 

geworden war. Dieses Ergebnis war durchaus überraschend, da die Punktmusterdarstellungen als 

‚Hilfe‘ für die Studierenden gedacht waren. Dieses Phänomen galt es sowohl empirisch wie auch 

theoretisch weiter zu beforschen. 

(4) Zu dem Konzept ‚formaler Beweise‘ in der Lehrveranstaltung 

Als offene Frage blieb zu dem Zeitpunkt der retrospektiven Analyse der dritten Durchführung der 

Lehrveranstaltung, was genau den Studierenden unter dem Konzept ‚formaler Beweise‘ vermittelt 

werden soll. Diese Frage wurde in Vorbereitung der vierten Durchführung der Lehrveranstaltung 

beantwortet (siehe Abschnitt 5.4.4).  
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Erörterung der Ergebnisse unter der Perspektive des „diagrammatischen Schließens“ 

Der Aspekt der Gleichsetzung des Beweisbegriffs mit der Beweisform des formalen Beweises kann 

unter dieser semiotischen Perspektive auf ein Verständnis zurückgeführt werden, dass der Akt des 

Beweisens im Diagrammsystem der Algebra vollführt werden müsse, da nur hier ‚gültige‘ Beweise 

konstruiert werden könnten. Entsprechend würde es entsprechend gelten, diese Fehlvorstellung zu 

thematisieren und klarzustellen, dass zunächst prinzipiell für den Akt der Verifikation die in der 

Lehrveranstaltung verwendeten Diagrammsysteme als gleichwertig zu beachten sind (vgl. Abschnitt 

2.5.4).  

Die (psychologische und logische) Akzeptanz generischer Beweise resultiert unter der Perspektive 

des diagrammatischen Schließens aus der Erkenntnis, dass die vorgenommenen allgemeingültigen 

Transformationen die Gültigkeit der Verifikation sichern und nicht die dabei verwendeten Zeichen. 

Bei den generischen Beweisen wird in der Lehrveranstaltung bereits (als Norm) gefordert, dass diese 

allgemeingültigen Transformationen expliziert werden müssen. Wie aber bereits bei der Beforschung 

dieser Thematik deutlich geworden ist, scheint gerade in der Explizierung dieser Transformationen 

und ihrer Allgemeingültigkeit ein Problem für die Studierenden zu liegen. Dabei scheinen sich 

sprachliche Probleme und ein Verständnis um die Benennung und Bewertung entsprechender 

Transformationen gegenseitig zu bedingen. 

Auch für den Umgang mit Punktmusterdarstellungen ist das Vorhandensein eines entsprechenden 

kollateralen Wissens eine notwendige Voraussetzung. Der Agierende muss wissen, wie 

mathematische Sachverhalte in das Diagrammsystem der Punktmuster übersetzt werden können, 

wie mit diesen konstruierten Diagrammen umzugehen ist (i.e., welche Transformationen an diesem 

durchzuführen sind) und wie schließlich das Nachzuweisende in der Punktmusterdarstellung zu 

erreichen ist. Somit galt es, gezielt kollaterales Wissen für das Diagrammsystem der Punktmuster zu 

vermitteln und, damit verbunden, stärker eine Praxis des Umgangs mit Punktmusterdarstellungen zu 

etablieren. 

Erörterung der Ergebnisse unter der Perspektive „sozio-mathematischer Normen“ 

Für die Gleichsetzung des Beweisbegriffs mit der Beweisform des formalen Beweises stellt sich die 

Frage, wie dieser (implizit) vorliegenden Norm entgegengewirkt werden kann. Nach der Konzeption 

der Lehrveranstaltung soll der Beweisbegriff offen für alternative Beweisformen sein, wie etwa für 

generische Beweise. Diese sozio-mathematische Norm muss folglich im Rahmen der 

Lehrveranstaltung deutlicher vertreten werden. Auch stellt sich die Frage, in welchen Kontexten 

diese (implizite) Norm der Konstruktion formaler Beweise und der Verwendung von 

Buchstabenvariablen, wenn nach Beweisen gefragt ist, herausgebildet wurde. 

Die persönliche Akzeptanz der generischen Beweise auf Seiten der Studierenden und der Umgang 

mit dem Diagrammsystem der Punktmuster erscheinen nicht als Aspekte sozio-mathematischer 

Normen. Dagegen ist die Frage danach, welches Konzept des Studierenden für die Beweisform des 

‚formalen Beweises‘ vermittelt werden sollte, auch aus dieser Perspektive bedeutsam. Dabei stellt 

sich die Frage, welche Normen Studierenden bei der Konstruktion von formalen Beweisen etwa im 

Hinblick auf ‚Vollständigkeit‘ und ‚Formalität‘ einhalten sollen. Diese normativen Aspekte tangieren 

dabei Charakteristika wie Strenge, Argumentationsbasis und Darstellung, was dabei auch ein 

gewisses Maß an Axiomatik innerhalb der Lehrveranstaltung implizieren würde. 
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Abgleich mit der intentionalen Dimension der dritten Durchführung der Lehrveranstaltung 

Insgesamt betrachtet, hat der stärkere Einbezug von Punktmusterdarstellungen noch nicht zu den 

intendierten Ergebnissen geführt. Die Punktmusterdarstellungen scheinen zu diesem Zeitpunkt den 

Studierenden noch mehr als Lerngegenstand denn als Hilfe zu begegnen. 

Die Vorteile, die die Studierenden dem formalen Beweis in Bezug auf eine höhere 

Allgemeingültigkeit, Richtigkeit und Vollständigkeit zusprechen (Abschnitt 5.4.2.1), könnten einem 

defizitären Verständnis von generischen Beweisen geschuldet sein. Es ist daher eine offene Frage, 

inwiefern die Studierenden die Verwendung der fachmathematischen Symbolsprache als sinnvoll 

und nützlich bewerten und worin sie konkret die verschiedenen Vor- und Nachteile der 

verschiedenen Beweisformen sehen. Auch wenn in der dritten Durchführung der Lehrveranstaltung 

generische Beweise stärker als bisher in den Fortgang der Vorlesung und in die Übungsaufgaben 

integriert wurden, scheint sich ihre Akzeptanz bei den Studierenden im Vergleich zum formalen 

Beweis nicht sonderlich gesteigert zu haben. 

Schließlich konnte mithilfe des Vergleichs der Beweiskonstruktionen der Studierenden in den 

Modulabschlussklausuren der Wintersemester 2012/13 und 2013/14 die Vermutung gestützt 

werden, dass die vorgenommenen Modifikationen der Lehrveranstaltung in die richtige Richtung 

wiesen. Somit kann festgehalten werden, dass das vor der Durchführung der Lehrveranstaltung 

formulierte Ziel, dass die Studierenden das Konzept generischer Beweise besser durchdringen und 

sich damit ihre Beweiskonstruktionen verbessern sollen, in Bezug auf den generischen Beweis mit 

Zahlen erreicht wurde. 

5.4.4 Veränderungen bei der vierten Durchführung der Lehrveranstaltung im 

Wintersemester 2014/15 

Die vierte Durchführung der Lehrveranstaltung wird im sechsten Kapitel der vorliegenden Arbeit 

gesondert dargestellt. In dem vorliegenden Abschnitt werden die Modifikationen beschrieben, wie 

sie im Übergang von der dritten zur vierten Durchführung vorgenommen wurden und somit 

schließlich zu der in dieser Arbeit betrachteten ‚finalen‘ Version der Lehrveranstaltung führten. Da 

die vorgenommenen Modifikationen aus den Erkenntnissen resultieren, die im Rahmen des fünften 

Kapitels dargelegt wurden, wird mit diesem Abschnitt das Kapitel 5 abgeschlossen. 

Die in der vierten Durchführung der Lehrveranstaltung vorgenommenen Veränderungen lassen sich 

auf der Vorlesungsebene in vier Aspekten zusammenfassen: (1) die Konkretisierung des Konstrukts 

„formaler Beweis“, welche zu einer neuen Strukturierung (Definitionen und Sätze) der fachlichen 

Inhalte und der Thematisierung und Exaktifizierung der Inhalte „Nicht-Teilbarkeit“ „gerade und 

ungerade Zahlen“ führte; (2) die sprachliche Angleichung der Begrifflichkeiten zu den vier 

Beweisformen der Lehrveranstaltung; (3) die verstärkte Integration von explorativen Anteilen in die 

Vorlesung und (4) die konsequente Verwendung aller vier Beweisformen in der Vorlesung. Die 

Veränderungen im Kontext der Übungsaufgaben betreffen weiter (5) die stärkere Integration von 

explorativen Übungsanteilen, (6) die Verwendung von neuen Aufgabenformaten, sogenannter 

„multiple proof tasks“ und (7) Beweisaufgaben, in denen den Studierenden die Wahl der Beweisform 

freigestellt wurde. Diese Aspekte werden im Folgenden kurz ausgeführt; deren konkrete Umsetzung 

wird im Rahmen der Darstellung der vierten Durchführung der Lehrveranstaltung in Kapitel 6 

beschrieben. 
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Modifikationen im Kontext der Vorlesung 

(1) Die Konkretisierung des Konstrukts „formaler Beweis“ und die daraus resultierenden 

Änderungen in der Vorlesung 

Für das Konzept des „formalen Beweises“ wurde entschieden, dass neben der Verwendung der 

fachmathematischen Symbolsprache der explizite Bezug auf eine ‚sichere‘ Argumentationsbasis (hier 

in Form von Definitionen und bereits bewiesenen Sätzen) und damit verbunden das Einhalten 

geforderter ‚Strenge beim Beweisen‘ deutlicher herausgestellt werden müsse. Somit sollte einmal 

der Aspekt der „Sicherung der Gültigkeit“ in (formalen) Beweisen betont werden. Außerdem wurde 

so die in Abschnitt 4.3.1 herausgearbeitete didaktische Forderung umgesetzt, dass bei der 

Konstruktion formaler Beweise stets die Abhängigkeit der verwendeten Argumente zu vorherigen 

Beweisen betont werden soll. Diese Betrachtungsweise führte dazu, dass alle notwendigen 

Definitionen und Sätze im Kontext der Lehrveranstaltung explizit formuliert und für die 

entsprechende Referenz in Beweisen nummeriert werden mussten. Für die Beweise entsprechender 

Teilbarkeitsaussagen wurde es notwendig, auch ‚Nicht-Teilbarkeit‘ und die Eigenschaften ‚gerade‘ 

und ‚ungerade‘ genauer zu thematisieren und nun auch explizit in Form von Definitionen und Sätzen 

bereitzustellen. Auch mussten diese Inhalte für das Diagrammsystem der Punktmuster aufbereitet 

werden.  

(2) Die sprachliche Angleichung der Begrifflichkeiten zu den vier Beweisformen der 

Lehrveranstaltung 

In Anlehnung an die formalen Beweise der Algebra wurde im Diagrammsystem der Punktmuster in 

den Wintersemestern 2012/13 und 2013/14 von formal-geometrischen Beweisen gesprochen, wenn 

in Punktmusterbeweisen geometrische Variablen verwendet wurden. Durch die Konkretisierung des 

Konzepts formaler Beweise (s.o.) wurden allerdings die Unterschiede dieser Beweisform zu den 

sogenannten formal-geometrischen Beweisen deutlich, wodurch eine sprachliche Anlehnung in 

gewisser Weise hinfällig wurde. Durch die Umbenennung dieser Beweisform zu „Punktmusterbeweis 

mit geometrischen Variablen“ waren nun die vier Bezeichnungen geprägt, die im Kontext der 

gesamten Lehrveranstaltung des Wintersemesters 2014/15 durchgehalten wurden: „generischer 

Beweis mit Zahlen“, „generischer Beweis mit Punktmustern“, „formaler Beweis“ und 

„Punktmusterbeweis mit geometrischen Variablen“. 

(3) Die verstärkte Integration von Abschnitten zur Explorationen in die Vorlesung 

Offensichtlich stellt es ein didaktisches Problem dar, freie und individuelle Exploration im Kontext 

einer Lehrveranstaltung zu initiieren, gerade dann, wenn der fachliche Fortgang einer Vorlesung auf 

bestimmte Ergebnisse aus diesem Prozess angewiesen ist. Dennoch war es ein grundlegendes 

Anliegen, den Prozesscharakter der Mathematik und damit einhergehend die Phase der Exploration 

und die Bildung und Überprüfung von Hypothesen noch stärker in den Gang der Vorlesung zu 

integrieren. Schließlich wird somit dem Leitprinzip Rechnung getragen, die Prozesshaftigkeit der 

Mathematik herauszustellen (vgl. Abschnitt 1.2.3). Aus diesem Grund wurde im ersten Kapitel ein 

neuer Abschnitt zur Exploration eingefügt, in dem die Studierenden selbst wahre und falsche 

Aussagen über gerade und ungerade Zahlen finden und formulieren sollten. Auch in das zweite 

Kapitel wurde ein Abschnitt eingefügt, in dem die Studierenden selbst die figurierten Zahlen der 

„Treppenzahlen“ erforschen sollten (vgl. Abschnitt 6.2). 
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(4) Die konsequente Verwendung aller vier Beweisformen in der Vorlesung 

Im Wintersemester 2013/14 war die Tatsache, dass die Summe dreier aufeinanderfolgender Zahlen 

immer durch 3 teilbar ist, mit einem generischen Beweis mit Zahlen, mit einem formalen Beweis und 

auch durch die beiden Punktmusterbeweise bewiesen worden. Im weiteren ‚Forschungsprozess‘ 

über die Teilbarkeitsfrage der Summe aufeinanderfolgender Zahlen wurden allerdings für die 

Verifikation einer Behauptung nur algebraische Mittel verwendet. Ausschließlich der Beweis des 

finalen Satzes wurde anhand einer generischen Idee entwickelt und diese Idee auch an Punktmustern 

verdeutlicht. Im Wintersemester 2014/15 wurden nun alle vier Beweisformen gleichberechtigt im 

Laufe des ersten und des zweiten Kapitels verwendet. Auf diese Weise sollten die Gültigkeit der 

verschiedenen Beweisformen betont und ihre Charakteristika und Vor- und Nachteile verdeutlicht 

werden. 

Modifikationen im Kontext der Übungsaufgaben 

(5) Die Integration von explorativen Anteilen in Übungsaufgaben 

Der Aspekt von Exploration und dem Aufstellen von Vermutungen (bzw. Behauptungen) sollte auch 

im Kontext der Übungsaufgaben stärker betont werden. Aus diesem Grund wurde eine gesamte 

Präsenzübung der Erforschung der Quadratzahlen gewidmet (s. hierzu Abschnitt 6.3.1). Explorative 

Anteile wurden auch dadurch in Übungsaufgaben integriert, dass die zu beweisende Behauptung erst 

von den Studierenden anhand konkreter Beispiele selbst herausgefunden und formuliert werden 

musste (vgl. Abschnitt 6.3.2). 

(6) Die Verwendung von neuen Aufgabenformaten, sogenannter „multiple proof tasks“ 

Für einen vergleichenden Umgang mit den vier Beweisformen der Veranstaltung und den 

verschiedenen Diagrammsystemen wurden den Studierenden Behauptungen gegeben, die sie mit 

allen vier Beweisformen beweisen sollten. Mit diesen so genannten „multiple proof tasks“ sollten die 

Studierenden die Vor- und Nachteile der verschiedenen Beweisformen und der verschiedenen 

Diagrammsysteme und auch den Nutzen und die ‚Macht‘ des algebraischen Kalküls und somit der 

fachmathematischen Symbolsprache erfahren (vgl. Abschnitt 6.3.2). Auch ging es darum, zu allen in 

der Lehrveranstaltung verwendeten Diagrammsystemen eine Praxis des Umgangs damit zu 

erarbeiten. 

(7) Beweisaufgaben, in denen den Studierenden die Wahl der Beweisform freigestellt ist 

Schließlich wurden den Studierenden Behauptungen gegeben, zu deren Verifikation sie die 

Beweisform frei wählen konnten. Natürlich bieten sich je nach Behauptung unterschiedliche 

Beweisformen an, aber diese Entscheidung für eine Beweisform in einem bestimmten 

Diagrammsystem sollte von den Studierenden selbst getroffen werden. Auch galt es mit diesem 

Aufgabenformat, die Vor- und Nachteile der verschiedenen Beweisformen und Diagrammsysteme 

weiter herauszustellen (vgl. Abschnitt 6.3.2). 
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6. Die Lehrveranstaltung „Einführung in die Kultur der Mathematik“ 

im Wintersemester 2014/2015 
 

In diesem Kapitel wird das Konzept der Lehrveranstaltung „Einführung in die Kultur der Mathematik“ 

beschrieben, wie sie nach drei Forschungszyklen im Wintersemester 2014/15 durchgeführt wurde. 

Ausgangspunkt der Beschreibungen ist die intentionale Dimension dieser letzten hier thematisierten 

Durchführung der Lehrveranstaltung, die sich als Summe der in Abschnitt 1.3 herausgestellten 

Leitprinzipien für die Gestaltung der Lehrveranstaltungen und der im Rahmen des fünften Kapitels 

entwickelten ‚lokalen‘ Intentionen für bestimmte Facetten der Lehrveranstaltung ergeben haben 

(6.1)42. Anschließend wird die Umsetzung dieser Intentionen im Rahmen der ersten beiden Kapitel 

der Vorlesung (6.2), des Übungsbetriebs (6.3) und speziell in der Zentralübung (6.4) beschrieben. Die 

Beforschung dieser Durchführung der Lehrveranstaltung wird als ‚Effektivitätsstudie‘ im Rahmen des 

siebten Kapitels dargestellt, in dessen Anschluss die retrospektive Analyse der vierten Durchführung 

der Lehrveranstaltung erfolgt. 

Im Wintersemester 2014/15 bestand die Lehrveranstaltung wöchentlich, wie auch in den vorherigen 

Durchgängen, aus einer Vorlesung (1,5 h), einer Präsenzübung (eine anderthalbstündige 

Kleingruppenübung mit ca. 30 Studierenden, in der Präsenzaufgaben bearbeitet wurden) und einer 

nicht verpflichtenden Zentralübung, in der die wöchentlichen Hausaufgaben besprochen wurden.  

6.1 Die intentionale Dimension der vierten Durchführung der 

Lehrveranstaltung im Wintersemester 2014/15 
Das Grundanliegen der Lehrveranstaltung „Einführung in die Kultur der Mathematik“ besteht darin, 

Erstsemesterstudierende des Lehramts Mathematik für Haupt-, Real- und Gesamtschulen in die 

Mathematik der Hochschule bzw. in die dortige ‚Kultur der Mathematik‘ einzuführen. In diesem 

Sinne wird diese Veranstaltung als Brückenkursveranstaltung verstanden, die den Studierenden den 

Übergang von der Schule zur Hochschule erleichtern soll. Ein inhaltlicher Schwerpunkt wird dabei auf 

die Domäne ‚Begründen und Beweisen‘ unter der Perspektive der doppelten Diskontinuität gelegt 

(vgl. Kapitel 1). 

Im Rahmen des ersten Kapitels dieser Arbeit wurden verschiedene ‚globale‘ Leitprinzipien für die 

Konstruktion der Lehrveranstaltung herausgearbeitet, die hier gleichsam als Intentionen betrachtet 

werden können (vgl. Abschnitt 1.3): 

Leitprinzipien aus dem Phänomen der doppelten Diskontinuität 

(1) Anknüpfen an schulische Vorerfahrungen 

(2) Akzeptanz und produktive Nutzung von schulischem Vorwissen 

(3) Aufarbeitung des notwendigen Vorwissens 

(4) Explizit-Machen der Unterschiede 

(5) Einführen in die Arbeitsweisen der Hochschulmathematik 

(6) Vorbereitung auf Erfordernisse im Lehrberuf 

(7) Herstellen eines Schulbezugs 

Leitprinzipien aus dem Ansatz ‚Elementarmathematik als Prozess‘ 

(8) Einbezug von Elementarmathematik 

                                                           
42

 Um für die Leserin bzw. den Leser ein eigenständiges Lesen dieses Kapitels zu ermöglichen, seien an dieser 

Stelle gewisse Redundanzen zu den Betrachtungen in Kapitel 1 und Kapitel 5 erlaubt. 
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(9) Umgang mit nichtsymbolischen Darstellungen 

(10) Verdeutlichen des Prozesscharakters der Mathematik 

(11) Einbezug inhaltlich-anschaulicher Darstellungen  

(12) Einbezug inhaltlich-anschaulicher Beweise 

(13) Vermittlung von Meta-Wissen über Mathematik 

Weitere Leitprinzipien 

(14) Intellektuelle Ehrlichkeit 

(15) Problemzentrierte Erarbeitung von Inhalten 

(16) Vermittlung von Inhalten, die den Studierenden das Zurechtkommen in den folgenden Lehrveranstaltungen an 

der Universität erleichtern sollen 

(17) Sinnstiftende Einführung und Verwendung der mathematischen Symbolsprache 

(18) Vermittlung allgemeiner Heuristiken 

(19) Vermittlung eines adäquaten Beweisverständnisses 

Im Rahmen der Beforschung der ersten drei Durchführungen der Lehrveranstaltung (Kapitel 5) 

konnten verschiedene ‚lokale‘ Intentionen für die Lehrveranstaltung herausgearbeitet werden. Die 

folgenden Zielsetzungen gelten dabei auch für diese vierte Durchführung der Lehrveranstaltung: 

(20) Den Studierenden soll der Unterschied zwischen bloßen Beispielbetrachtungen und generischen Beweisen 

deutlich werden.  

(21) Die Studierenden sollen ein Verständnis für die Reichweite generischer Beweise entwickeln. 

(22) Die Studierenden sollen dazu befähigt werden, die vier verschiedenen Beweisformen der Lehrveranstaltung 

(formaler Beweis, generische Beweise (mit Zahlen und mit Punktmustern) und Punktmusterbeweis mit 

geometrischen Variablen) zu konstruieren. 

Schließlich sei an dieser Stelle auf die in Abschnitt 4.3.1 herausgearbeiteten, in der Literatur 

‚empfohlenen Aktivitäten‘ für das Erlernen der Beweisaktivität verwiesen. 

6.2 Die Gestaltung der ersten beiden Kapitel der Lehrveranstaltung im 

Wintersemester 2014/15 
Im Folgenden wird die Umsetzung der in Abschnitt 6.1 herausgestellten Intentionen im Rahmen der 

ersten beiden Kapitel der Lehrveranstaltung beschrieben, da nur diese, aufgrund des 

vorgenommenen Forschungsfokus‘, in dieser Arbeit von Bedeutung sind. Auch wird angedeutet, an 

welchen Stellen die in Abschnitt 4.3.1 herausgearbeiteten ‚empfohlenen Aktivitäten‘ für das Erlernen 

der Beweisaktivität umgesetzt wurden. Dazu werden die Teile aus dem Skript von Rolf Biehler (2015) 

zitiert und zusammengefasst, die für das Nachvollziehen dieser Umsetzung nötig erscheinen. Für eine 

bessere Lesbarkeit und Verständlichkeit der Darstellung der Inhalte werden die Zitate aus dem Skript 

zu der Lehrveranstaltung in einer kleineren Schriftgröße und eingerückt niedergeschrieben, 

erläuternde Kommentare des Autors sind in der ‚normalen‘ Schriftgröße gesetzt. Das vollständige 

Skript zu den ersten beiden Kapiteln der Lehrveranstaltung befindet sich im Anhang. 

Im ersten Kapitel wird ausgehend von der Eingangsfrage über die Teilbarkeit der Summe von drei 

aufeinanderfolgenden natürlichen Zahlen die Frage nach der Teilbarkeit von '	(	ℕ 

aufeinanderfolgenden natürlichen Zahlen durch ' ‚erforscht‘. Im Folgenden wird mithilfe von 

erläuterten Skriptauszügen dargestellt, wie im Rahmen dieses ‚Forschungsprozesses‘ die in Abschnitt 

6.1 formulierten Intentionen umgesetzt werden. 
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 Kapitel 1 „Entdecken und Beweisen in der Arithmetik“ 

Innerhalb des ersten Kapitels wird durch den Fachinhalt der Teilbarkeit bewusst 

‚Elementarmathematik‘ in den Vordergrund gestellt, wodurch direkt an schulische Vorerfahrungen 

angeknüpft werden kann. Das Kapitel wird durch die folgende Frage eingeleitet: 

Jemand behauptet: Die Summe von drei aufeinanderfolgenden natürlichen Zahlen ist immer durch 3 teilbar. 

 – Stimmt das? Wenn ja, warum? 

Im Kontext einer Begriffsklärung wird der Teilbarkeitsbegriff aufgearbeitet. Als intuitiv klar kann hier 

angesehen werden, dass etwa die Zahl 6 durch 3 teilbar ist, da	6 ∶ 3 = 2. Dieser (prozedurale) 

Teilbarkeitsbegriff wird an dem Beispiel  11: 3 = ��
G  problematisiert. Denn einhergehend mit der 

Bruchdarstellung kann auch der Standpunkt vertreten werden, dass 11 durch 3 ‚teilbar‘ sei. Es wird 

herausgestellt, dass hier zwei verschiedene Teilbarkeitsbegriffe zugrunde liegen: einmal ‚Teilbarkeit 

in den natürlichen Zahlen‘ und einmal ‚Teilbarkeit in den rationalen Zahlen‘. Diese Diskrepanz liefert 

die Möglichkeit für eine erste Präzisierung des schulischen Vorwissens43: Unter Teilbarkeit soll in der 

Lehrveranstaltung ‚Teilbarkeit innerhalb der natürlichen Zahlen‘ verstanden werden. Mit diesem 

Aufgreifen einer ‚prozeduralen Sicht‘ auf Teilbarkeit wird schulisches Vorwissen akzeptiert und 

produktiv genutzt, denn aus dieser Diskussion erwächst die erste Definition, mit der gleichsam das 

notwendige Vorwissen aufgearbeitet wird, um den Ausführungen im ersten Kapitel folgen zu können. 

Definition 1.1 (Teilbarkeit): 

Eine natürliche Zahl a ist genau dann
44

 durch eine natürliche Zahl b teilbar, wenn 
y
z 	 ∈ ℕ ist.

45
 

Im Rahmen einer logischen Analyse der Eingangsbehauptung werden zunächst die Aspekte der 

Wortvariablen und die Nutzung von Buchstabenvariablen thematisiert. Ein Schwerpunkt dieser 

Analyse liegt auf dem Herausarbeiten der Allaussage. Diese Betonung folgt der didaktischen 

Maßnahme, dass bei der Formulierung einer Vermutung bzw. Behauptung darauf zu achten ist, dass 

ihr Allgemeingültigkeitscharakter herausgestellt wird, wodurch gleichsam auf die Unzulänglichkeit 

empirischer Verifikationen hingewiesen wird (Abschnitt 4.3.1). Auch wird mit der Betrachtung der 

Allaussage die Besonderheit des mathematischen Erkenntnisprozesses herausgestellt, auf dessen 

Grundlage sich ein objektives Beweisbedürfnis herausbilden kann (vgl. Abschnitt 2.1.6). 

Anschließend werden den Studierenden drei verschiedene Strategien an die Hand gegeben, mit 

denen sie Aussagen überprüfen können: 

 

 

                                                           
43

 Der Fachinhalt der Teilbarkeit ist dem schulmathematischen Vorwissen der Studierenden zuzuordnen. 

Allerdings wurde in diesem Kontext nicht erforscht, welches Vorwissen bzw. welches Verständnis die 

Studierenden von Teilbarkeit genau mit sich bringen. Wohl konnte im Kontext der Analyse der 

Beweiskonstruktion der Studierenden im Wintersemester 2012/13 herausgearbeitet werden, dass die 

Studierenden für die Darstellung von Teilbarkeit häufig von einer Quotientenschreibweise Gebrauch machen 

(Abschnitt 5.3.2.4), was auf eine prozedurale Sicht auf Teilbarkeit hindeutet. 

44
 Die Bedeutung der genau-dann-wenn Konstruktion wird an dieser Stelle noch nicht mithilfe der 

Aussagenlogik konkretisiert. 
45

 Bei dieser Definition wird die Existenz bzw. die Verwendung der rationalen Zahlen implizit vorausgesetzt. Die 

in der Zahlentheorie ‚übliche‘ Teilbarkeitsrelation wird später eingeführt. 
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Drei Strategien zum Testen einer Aussage: 

(1) Testen der Aussage an Zahlenbeispielen  

(Ziel: Prüfen, ob es stimmt.) 

(2) Testen der Aussage an Zahlenbeispielen mit dem Ziel zu erkennen, was an diesen Beispielen 

verallgemeinerungsfähig (generisch) ist 

(Ziel: Kann man an den Beispielen verstehen, warum die Aussage allgemein gilt?) 

(3) Formalisierung der Aussage und algebraische Umformungen 

(Ziel: Einsatz der Algebra, um Richtigkeit der Aussage zu begründen.) 

Diese Strategien sollen den Studierenden im weiteren Verlauf als Heuristiken dienen. Mit der ersten 

Strategie wird dabei die in Abschnitt 4.3.1 herausgearbeitete Aktivität umgesetzt, dass der 

Beweisprozess mit einer Explorationsphase des Sachverhalts beginnen sollte, in deren Rahmen sich 

die Lehrenden mit dem Wissensmaterial vertraut machen (vgl. hierzu auch den Beweisprozess nach 

Boero (1999), dargestellt in Abschnitt 2.1.1). Mit der Unterscheidung der Strategien (1) und (2) wird 

bereits an dieser Stelle der Unterschied zwischen bloßen Beispielüberprüfungen und 

allgemeingültigen generischen Beweisen angedeutet. 

 

Die Umsetzung und Aussagekraft dieser drei Strategien werden an der Ausgangsfrage exemplarisch 

durchgeführt und reflektiert. Im Kontext dieser Strategien wird die Rolle von Beispielen für den 

Erkenntnisprozess erörtert, wobei zwischen psychologischen und logischen Aspekten unterschieden 

wird. Aus psychologischer Sicht kann das Testen von konkreten Beispielen positiv gewertet werden, 

um ein Verständnis für die Behauptung zu entwickeln und eine Vorstellung davon zu bekommen, ob 

diese wahr sein könnte. Neben dem fachlichen Verständnis einer Aussage wird hier bereits der 

psychologische Aspekt der (subjektiven) Überzeugung für das Gelten der Behauptung tangiert. 

Logisch betrachtet, muss betont werden, dass noch so viele Beispielüberprüfungen nicht ausreichen, 

um eine mathematische Allaussage über unendlich viele Fälle verifizieren zu können. Ebenso ist es 

logisch betrachtet überflüssig, eine bewiesene Behauptung an konkreten Beispielen zu verifizieren. 

Allerdings können nachträgliche Beispielüberprüfungen wiederum als Kontrolle für die algebraischen 

Umformungen fungieren, die den Beweis konstituieren. 

 

Im Zuge des Testens der Aussage an Zahlenbeispielen wird eine Entdeckung gemacht:  

 

Als Summe der drei Zahlen kommt immer ein Vielfaches von 3 heraus: 

 

1 + 2 + 3 = 6 = 3ÿ	2,					2 + 3 + 4 = 9 = 3ÿ	3,					500 + 501 + 502 = 1503 = 3ÿ	501	
 

Das Ausmachen einer (beispielübergreifenden) Erklärung für dieses Phänomen eröffnet die 

Möglichkeit der Konstruktion eines generischen Beweises für die Eingangsbehauptung: 

 

  Generischer Beweis 

1 + 2 + 3 = 
2 − 1� + 2 + 
2 + 1� = 3ÿ	2 

 

500 + 501 + 502 = 
501 − 1� + 501 + 
501 + 1� = 3ÿ	501	
	 

In den Beispielen wird deutlich, dass man die Summe von drei aufeinanderfolgenden natürlichen Zahlen immer 

schreiben kann als:  
„mittlere	Zahl“ − 1� +	
„mittlere	Zahl“� + 
„mittlere	Zahl“ + 1�.  
Diese Summe lässt sich dann umschreiben als dreimal die	„mittlere	Zahl“. Folglich ist die Summe von drei 

aufeinanderfolgenden natürlichen Zahlen immer gleich dem Dreifachen der mittleren Zahl und somit durch 3 

teilbar. 
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Nach dieser Ausarbeitung des generischen Beweises (unter der Nutzung von Wortvariablen) werden 

die entsprechenden Normen für generische Beweise innerhalb der Lehrveranstaltung explizit gesetzt, 

durch die gleichsam die in Abschnitt 4.3.1 herausgearbeiteten empfohlenen Aktivitäten für die 

Konstruktion generischer Beweise umgesetzt werden.  

 

Ein gültiger generischer Beweis soll die folgenden Aspekte umfassen:  

 

1. Mit allgemeingültigen Umformungen wird an konkreten Zahlenbeispielen untersucht, was diese gemeinsam 

haben. Diese beispielübergreifende Idee muss dann in einen Zusammenhang mit der aufgestellten 

Behauptung gebracht werden. 

2. Es folgt eine Begründung, warum die Behauptung in den betrachteten Zahlenbeispielen wahr ist. 

3. Schließlich muss begründet werden, warum diese Argumentation auch für alle möglichen (zu betrachtenden) 

Fälle korrekt ist. 

 

Durch die Verwendung generischer Beweise soll eine den Studierenden bekannte Begründungsform 

der Schulmathematik46 aufgegriffen und ihnen gleichsam eine schuladäquate Begründungsform 

vermittelt werden. Somit wird ein expliziter Schulbezug hergestellt und den Studierenden wird 

relevantes Wissen für ihre spätere Schulpraxis vermittelt47. 

 

Bei der Durchführung der Strategie (3) („Formalisierung der Aussage und algebraische 

Umformungen“) kann durch die Einführung von (Buchstaben-) Variablen der generische Beweis 

direkt formalisiert werden48:  

Wir ersetzen die Zahlen und Wortvariablen durch Buchstabenvariablen: Wir bezeichnen die „mittlere Zahl“ als	�. 

� soll dann eine beliebige natürliche Zahl sein. Sie darf aber nicht die „1“ sein, denn dann wäre der Vorgänger 

keine natürliche Zahl. 

Sei �	(	ℕ\{1} beliebig, aber fest. Dann gilt: 
� − 1� +� + 
� + 1� = 3�. Diese Zahl ist durch 3 teilbar, 

da	�	(	ℕ. 

q.e.d. 

Als Vorteil dieser Herangehensweise kann verdeutlich werden, dass bei Umformungen mit Variablen 

nur solche Operationen angewendet werden, die genauso auch für alle entsprechenden Zahlen 

                                                           
46

 Die Vermutung, dass entsprechende Begründungsformen im schulischen Mathematikunterricht Verwendung 

finden, wird durch verschiedene Darstellungen in der Literatur gestützt (etwa Leiß und Blum (2006, S. 37f.) 

oder Meyer und Prediger (2009)). Ob die Studierenden allerdings selbst angeben, solche oder ähnliche 

Begründungsformen bereits aus ihrem Mathematikunterricht an der Schule zu kennen, ist an dieser Stelle noch 

offen. Empirische Ergebnisse zu dieser Thematik werden in Abschnitt 7.2.3 thematisiert. 

47
 Die Lehrveranstaltung „Einführung in die Kultur der Mathematik“ ist explizit als eine mathematische 

Fachveranstaltung in den Studienverlaufsplan integriert. Hieraus folgt, dass im Kontext dieser 

Lehrveranstaltung vor allem fachlich relevantes Wissen für den Lehrberuf vermittelt werden soll. Es ist dabei 

auch die Überzeugung des Autors, dass die Fachinhalte generischer und formaler Beweise schulrelevantes 

Wissen für die Lehrpraxis an Schulen darstellen, wie auch der Umgang mit Punktmusterdarstellungen. Das 

Verfügen über diese fachlichen Inhalte ermöglicht es überhaupt erst, die in den Bildungsstandards geforderten 

Aspekte der Prozesskompetenz „Mathematisch Argumentieren“ im schulischen Mathematikunterricht 

umzusetzen (vgl. Abschnitt 2.3.1.1). 

48
 Diese ‚genetische‘ Erarbeitung der verschiedenen Beweise (vgl. Brunner 2014, S. 20ff.) entspricht dabei der in 

Abschnitt 4.3.1 empfohlenen Aktivität, dass der formale Beweis erst dann formuliert werden soll, wenn die 

Lernenden eine Einsicht in die Allgemeingültigkeit der Rechnung erlangt haben, da sich das Resultat als 

unabhängig von der Verwendung von konkreten Zahlenwerten erweist. 
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durchführbar sind, wobei diese Sicherheit auf einer fehlerfreien Anwendung des algebraischen 

Kalküls basiert. Gleichsam wird die Norm eingeführt, dass bei der Nutzung einer Buchstabenvariablen 

immer ihre Grundmenge anzugeben ist.  

Im Anschluss wird der erfolgte Prozess reflektiert, in dem u.a. ausgehend von der 

Eingangsbehauptung und einer Begriffsklärung der Teilbarkeit eine Definition erarbeitet wurde. 

Beispielüberprüfungen führten dann zu einer beispielübergreifenden („generischen“) Idee, die für 

den Beweis der Behauptung verwendet werden konnte. Diese Beweisidee aus dem generischen 

Beweis wurde anschließend auch für die Konstruktion des formalen Beweises genutzt, welcher hier 

noch nicht als solcher benannt wurde. Bei der Besprechung der drei Strategien wurden Normen für 

entsprechende Beweiskonstruktionen kommuniziert, wobei durch den erhöhten Anspruch an 

Darstellung, Vollständigkeit etc. Unterschiede zwischen der Schul- und der Hochschulmathematik 

thematisiert wurden. 

Als eine alternative Strategie wird das direkte, gleichsam ‚experimentelle‘ Umformen der formalen 

Darstellung vorgestellt. Das Ziel ist dann (eventuell ohne vorherige Beispielbetrachtungen), die 

Summe so umzuformen, dass man am Term die Teilbarkeit durch 3 erkennen kann. Somit erhält man 

die folgende Variante der Begründung: 

Bezeichnet man die Startzahl als	�, wobei � eine natürliche Zahl ist, so erhält man als  

  Summe: � + 
� + 1� + 
� + 2� = 3� + 3 = 3
� + 1�. Diese Summe ist durch 3 teilbar,  

  da 
� + 1� eine natürliche Zahl ist
49

. 

 

Diese Herangehensweise der (sofortigen) Umformung einer formalen Darstellung wird als eine 

mögliche Strategie für die Konstruktion eines formalen Beweises herausgestellt, dessen Konzept 

später konkretisiert wird. 

 

Anhand obiger Rechnung wird noch einmal der Teilbarkeitsbegriff aufgegriffen, denn die Tatsache, 

dass das Ergebnis 3
� + 1�	ein Vielfaches von 3 ist, entspricht nicht unmittelbar der 

vorgenommenen Definition 1.1. (s.o.). Allerdings kann die Definition 1.1 für ein ‚erweitertes 

Verständnis‘ der Teilbarkeit genutzt werden:  

 

Definition 1.1 besagt, dass eine natürliche Zahl � etwa durch 3 teilbar ist, wenn 
$
G 	(	ℕ	ist,  

z.B.	$G = /	(	ℕ.	Dann gilt:	$G = /	 ⟺ � = 3ÿ	/. 
 

Hieraus resultiert eine ‚neue‘ Definition für Teilbarkeit, die ohne Division auskommt: 

 

Definition 1.1' (Teilbarkeit): 

Eine natürliche Zahl a	ist genau dann durch eine natürliche Zahl b teilbar, wenn eine natürliche Zahl q	existiert 

mit:		a = b	ÿ	q . 

 

Die Definition 1.1' wird an dieser Stelle aus verschiedenen Gründen thematisiert (und auch explizit im 

Plenum reflektiert): Im Sinne einer Akzeptanz von Vorwissen wurde für die Teilbarkeit zunächst die 

Definition 1.1 erarbeitet (s.o.). Innerhalb der elementaren Zahlentheorie wird die Teilbarkeit zweier 

Zahlen allerdings entsprechend der Definition 1.1' definiert. Diese relationale Charakterisierung ist 

                                                           
49

 Dies ist eine exemplarische Stelle, an der ein intuitiv einsichtiger Sachverhalt (wenn �	(	ℕ dann ist auch 


� + 1�	(	ℕ) nicht weiter thematisiert bzw. problematisiert wird. 
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für Studienanfängerinnen und -anfänger neu, die Teilbarkeit von � durch � (�, �	(	ℕ) wird von ihnen 

eher prozedural betrachtet, etwa als das ‚Aufgehen‘ ohne Rest bei wiederholter Subtraktion von � 

ausgehend von	�. Auf der Basis der bekannten Division mit rationalen Zahlen wurde eingangs 

formuliert, dass � die Zahl � teilt, wenn die Operation 
$
  eine natürliche Zahl liefert. Dagegen ist die 

Definition 1.1' in den meisten Sachverhalten, in denen nach Teilbarkeit gefragt wird, leichter 

anzuwenden, da keine explizite Division stattfindet. Die Anwendung dieser Teilbarkeitsdefinition 

erweist sich auch als weniger fehleranfällig, da bei Termumformungen keine Bruchrechnung benötigt 

wird. Diese damit einhergehende Definition wird dabei als ‚sinnvolle Charakterisierung‘ von 

Teilbarkeit aus der vorherigen Sichtweise auf Teilbarkeit entwickelt, wodurch diese an der 

Hochschule ‚gebräuchliche‘ Sicht auf Teilbarkeit gleichsam motiviert und legitimiert wird. Der 

fachmathematische Status der Definition wird erst später im Kontext formaler Beweise aufgegriffen. 

 

Nach der Klärung der Ausgangsfrage über die Summe dreier aufeinanderfolgender natürlicher Zahlen 

in der Symbolsprache der Algebra wird der Sachverhalt im Diagrammsystem der Punktmuster 

aufgegriffen. Auch hier kann die Summe von drei aufeinanderfolgenden natürlichen Zahlen 

dargestellt und ‚umgeformt‘ werden (vgl. Abbildung 46).  

 

 

 

 

Es stellt sich allerdings die Frage, wie Teilbarkeit im Darstellungssystem der Punktmuster verstanden 

bzw. (nach erfolgter Transformation) nachgewiesen werden soll, was anhand der Grundvorstellungen 

‚Aufteilen‘ und ‚Verteilen‘ beantwortet wird: 

 

Teilbarkeit im Darstellungssystem der Punktmuster 

 

(1) Verteilen: 

Wir teilen das Punktmuster in drei gleichgroße Teile (hier: Zeilen) ein. Wenn dies ‚ohne Rest‘ möglich ist, 

dann ist die Summe durch 3 teilbar (vgl. Abbildung 47 links). 

(2) Aufteilen: 

Wir teilen das Punktmuster in Dreiergruppen (hier: Spalten) ein. Wenn dies ‚ohne Rest‘ möglich ist, dann ist 

die Summe durch 3 teilbar (vgl. Abbildung 47 rechts). 

 

    

 

 

 

Der Frage nach der Übertragbarkeit der obigen Strategie (Transformation der Punkte und Teilung 

durch 3) wird anhand weiterer konkreter Beispiele nachgegangen. Die Einsicht, dass unabhängig von 

der Startzahl an der rechten Seite immer die gleiche Treppenform entsteht, ermöglicht die 

Konstruktion eines generischen Punktmusterbeweises: 

 

Generischer Punktmusterbeweis 

 

 

 

 

 

Abbildung 47: Darstellung der Teilbarkeit durch 3 in der 
Punktmusterdarstellung; links: gemäß der Grundvorstellung „verteilen“, 
rechts: gemäß der Grundvorstellung „aufteilen“ 

Abbildung 48: Generische 
Punktmusterbeispiele für die Summe 
dreier aufeinanderfolgender Zahlen 

Abbildung 46: Darstellung der Summe 3+4+5 im 
Diagrammsystem der Punktmuster 
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Bei jeder Summe von drei aufeinanderfolgenden natürlichen Zahlen entsteht immer die gleiche Treppenform, da 

sich die Punktlinien jeweils um einen Punkt unterscheiden. Durch Umgruppierung der Punkte (s. Beispiele) 

entstehen immer drei gleich lange Punktereihen. Also ist die Summe immer durch 3 teilbar. 

 

Während bei der Formalisierung des generischen Beweises mit Zahlen Buchstabenvariablen 

verwendet wurden, um eine beliebige Startzahl (oder mittlere Zahl) zu repräsentieren, wird in dem 

Darstellungssystem der Punktmuster entsprechend eine geometrische Variable verwendet (s. 

Abbildung 49). Eine geometrische Variable muss dabei nicht notwendigerweise mit einem 

Buchstaben versehen werden, dies kann allerdings innerhalb mancher Beweisführungen nützlich 

sein. 

 

 

    

 

 

Somit kann auch im Punktmustersystem ein Beweis mit (geometrischen) Variablen konstruiert 

werden: 

 

Beweis mit geometrischen Variablen: 

 

 

 

 

 

 

 

Die Nutzung des Diagrammsystems der Punktmuster versteht sich dabei als Einbezug einer inhaltlich-

anschaulichen Darstellung, die Konstruktion entsprechender Beweise als Einbezug inhaltlich-

anschaulicher Beweise. Hierdurch sollen die Studierenden auch dazu befähigt werden, in einer 

weiteren, ‚schuladäquaten Sprache‘ Mathematik kommunizieren zu können. 

 

Anhand der bisherigen Formen der Verifikation lassen sich verschiedene Aspekte von Beweisen 

unterscheiden und diskutieren. So werden die verschiedenen Beweisfunktionen Verifikation (als 

objektive Sicherung der Gültigkeit), (subjektive) Überzeugung und Erklärung im Plenum in Bezug auf 

die verschiedenen Beweisformen erörtert. Als zentrale Aspekte für die Bewertung von Beweisen 

werden aber die mathematische Korrektheit und die soziale Akzeptanz herausgestellt. 

 

Schließlich wird das Konzept des formalen Beweises genauer betrachtet. Neben der Nutzung der 

fachmathematischen Symbolsprache und dem ‚sicheren‘ Schließen ist es vor allem der explizite 

Bezug auf die verwendeten mathematischen Argumente (Definitionen und Sätze) der 

Argumentationsbasis, die diesen konstituieren. Bei der Konstruktion formaler Beweise wird zwischen 

deren ‚Erarbeitung‘ und der finalen ‚Reinschrift‘ unterschieden, wodurch zunächst der Prozess des 

Beweisens in den Vordergrund gerückt werden soll. Mit der expliziten Forderung einer ‚Reinschrift‘ 

wird außerdem betont, dass bei der finalen Niederschrift des Beweisprodukts gewissen Ansprüchen 

(in Bezug auf Logik und formale und sprachliche Darstellungen) Genüge getan werden muss. Im 

Übergang zu den formalen Beweisen wird es dabei möglich, die fachmathematische Symbolsprache 

Abbildung 49: Eine „geometrische Variable“ zur Repräsentation 
einer beliebigen Anzahl von Punkten 

Abbildung 50: Punktmusterbeweis mit geometrischen Variablen für die 
Behauptung, dass die Summe dreier aufeinanderfolgender Zahlen immer durch 
W teilbar ist 
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sinnstiftend einzuführen, um damit die folgenden Aktivitäten auszuführen, wie es von Malle (1993, S. 

6ff.) und Mason et al. (2005, S. 1ff.) empfohlen wird: (i) um Allgemeingültigkeit auszudrücken, (ii) um 

allgemeine Zusammenhänge zur kommunizieren, (iii) um Zusammenhänge weiter zu erforschen und 

(iv) um Beweise zu konstruieren zu können. Ein aus obiger Formalisierung konstruierter formaler 

Beweis ist dann: 

 

Formaler Beweis (Reinschrift): 

Sei n	(	ℕ	beliebig, aber fest. Dann gilt: n + 
n + 1� + 
n + 2� = 3n + 1 + 2 = 3n + 3 = 3
n + 1�.  
Da 
n + 1�	(	ℕ ist, ist das Ergebnis nach Definition (1.1’) durch 3 teilbar. 

q.e.d. 

 

Im Rahmen einer ‚Anmerkung‘ werden dabei die folgenden Aspekte thematisiert: Zu Beginn des 

formalen Beweises wird die verwendete Variable definiert und entsprechend für die Verifikation 

einer Für-Alle-Aussage als „beliebig, aber fest“ gesetzt. Der durch Formalisierung entstandene Term 

wird dann mithilfe zulässiger Operationen umgeformt, bis man einen Term erhält, an dem man 

mithilfe einer Definition oder eines Satzes den Nachweis der geforderten Eigenschaft vollziehen 

kann. An dieser Stelle wird auch das Konstrukt der Argumentationsbasis erörtert. Als Norm wird dazu 

festgehalten, dass die in einem formalen Beweis (neben den Umformungen) verwendeten 

Argumente (Sätze, Definition) immer angegeben werden sollen. Allerdings müssen die Regeln für die 

verwendeten Termumformungen, wie etwa das Kommutativgesetz, nicht extra angemerkt werden. 

In diesem Kontext werden auch die Vor- und Nachteile von formalen Beweisen erörtert.  

Die Konvention, dass innerhalb eines formalen Beweises der Nachweis der zu zeigenden Eigenschaft 

durch den expliziten Verweis auf eine Definition oder einen Satz geschehen muss, macht es für 

spätere Beweisaufgaben notwendig, dass auch ‚Nicht-Teilbarkeit‘ thematisiert werden muss. Dieser 

Inhalt mag ‚intuitiv klar‘ sein, wenn bereits definiert wurde, was unter Teilbarkeit zu verstehen ist. 

Jedoch wird bei der Erarbeitung eines entsprechenden Satzes deutlich, welcher ‚Mehraufwand‘ für 

eine Konzeption von Nicht-Teilbarkeit betrieben werden muss: 

 

Eine natürliche Zahl a ist nicht durch eine natürliche Zahl b teilbar, wenn es keine natürliche Zahl q mit 
y
z = q	gibt. 

Der Bruch 
y
z hat dann einen ganzzahligen Anteil /	(	ℕl und einen Rest � zwischen 0 und 1, den man als 

�
z mit 

einer Zahl 0 < B < �  schreiben kann.  

 
y
z = q +	 �z	ist äquivalent zu a = q	ÿ	b + r. 

 

Satz 1.2 (Nicht-Teilbarkeit): 

Eine Zahl a	ϵ	ℕ ist genau dann nicht durch eine Zahl b	ϵ	ℕ teilbar, wenn es Zahlen q	ϵ	ℕl und r	ϵ	ℕ, 0 < r < b,	 
gibt mit	a = q	ÿ	b + r. 
 

Bemerkung: 

Wenn � < � ist, dann gilt 
y
z = 0 ∙ b +	 �z, wobei 	r = a		ist. 

 

In dem folgenden Abschnitt werden die Inhalte ‚gerade und ungerade Zahlen‘ thematisiert und 

gleichsam für eine Verwendung in formalen Beweisen aufbereitet. Dazu wird eine Definition 

erarbeitet und der folgende Satz formuliert und bewiesen: 

 

Satz 1.5 (gerade und ungerade Zahlen) 

(a) @	(	ℕ	ist genau dann gerade, wenn es ein �	(	ℕ	gibt mit @ = 2�. 

(b) D	(	ℕ	ist genau dann ungerade, wenn es ein �	(	ℕl	gibt mit D = 2� + 1. 
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Als Abschluss dieses Exkurses zur Thematik ‚gerade und ungerade Zahlen‘ wird eine 

Explorationsphase in die Vorlesung integriert. Die Studierenden sollen selbst wahre und falsche 

Aussagen über gerade und ungerade Zahlen formulieren. Anschließend werden die verschiedenen 

Aussagen gesammelt und im Plenum widerlegt bzw. verifiziert. 

 

Aufbauend auf der Erkenntnis über die Teilbarkeit der Summe von drei aufeinanderfolgenden Zahlen 

wird im weiteren Verlauf des Kapitels ‚mathematische Forschung‘ im Kleinen betrieben. Untersucht 

werden dabei die folgenden Behauptungen: 

 

(B2) Die Summe von 2 aufeinanderfolgenden natürlichen Zahlen ist immer durch 2 teilbar. 

(B4) Die Summe von 4 aufeinanderfolgenden natürlichen Zahlen ist immer durch 4 teilbar. 

(B5) Die Summe von 5 aufeinanderfolgenden natürlichen Zahlen ist immer durch 5 teilbar. 

(B6) Die Summe von 6 aufeinanderfolgenden natürlichen Zahlen ist immer durch 6 teilbar. 

 … 

(Bk) Die Summe von '	(	ℕ aufeinanderfolgenden natürlichen Zahlen ist immer durch ' teilbar. 

 

Im Rahmen der Überprüfung der Behauptungen (B2) und (B4) wird die Bedeutung und Tragweite von 

Gegenbeispielen für den mathematischen Erkenntnisprozess thematisiert. Als Weiterführung dieser 

Widerlegungen wird gezeigt, dass die Summe von zwei aufeinanderfolgenden natürlichen Zahlen nie 

durch 2 teilbar und die Summe von vier aufeinanderfolgenden natürlichen Zahlen nie durch 4 teilbar 

ist. 

 

Bei der Untersuchung der verschiedenen Behauptungen wird zum einen darauf geachtet, dass 

zwischen einer explorativen Untersuchungsphase und einer Reinschrift der Beweise unterschieden 

wird. Zum anderen werden die vier verschiedenen Beweisformen (generischer Beweis mit Zahlen, 

generischer Beweis mit Punktmustern, Punktmusterbeweis mit geometrischen Variablen und der 

formale Beweis) der Vorlesung ‚gleichberechtigt‘ dazu verwendet, die wahren Behauptungen zu 

beweisen. Gerade in dieser vergleichenden Nutzung der vier verschiedenen Beweisformen können 

deren Vor- und Nachteile erfahren werden. Für das Widerlegen von Teilbarkeitsaussagen mithilfe 

von Punktmusterdarstellungen muss dabei auch die Nicht-Teilbarkeit in diesem Diagrammsystem 

betrachtet werden. Am Ende dieses Prozesses steht die folgende Behauptung als Verallgemeinerung 

der erhaltenen Ergebnisse:  

  

Die Summe von '	(	ℕ aufeinanderfolgenden natürlichen Zahlen ist genau dann durch ' teilbar, wenn ' ungerade 

ist. 

 

Diese Behauptung wird zum Abschluss des ersten Kapitels mithilfe verschiedener Beweise verifiziert. 

In diesem Rahmen findet auch ein kurzer Exkurs über die ‚Geschichte des kleinen Gauß‘ statt, in 

dessen Kontext die generische Idee der Paarbildung von Summanden um eine ‚mittlere Zahl‘ herum 

vertieft und die folgende Formel für die Summe der ersten � aufeinanderfolgenden natürlichen 

Zahlen erarbeitet und bewiesen wird: 

 

Hilfssatz (∗) 

Für die Summe der ersten � aufeinanderfolgenden natürlichen Zahlen gilt:  

 1 + 2 +⋯+ � = �
����
� . 
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Durch diese forschungsgeleitete bzw. problemzentrierte Erarbeitung der fachlichen Inhalte kann der 

Entstehungsprozess der Mathematik verdeutlicht und somit Meta-Wissen vermittelt werden50. Des 

Weiteren werden mit der Formulierung von Definitionen, Behauptungen und Sätzen und der 

Konstruktion von Beweisen zentrale Arbeitsweisen der Hochschulmathematik eingeführt. 

 

In dem zweiten Kapitel der Lehrveranstaltung werden geometrische Veranschaulichungen von 

bestimmten Punktmustern, sogenannte ‚figurierte Zahlen‘, als weiterer Aspekt einer 

Elementarmathematik betrachtet. Bei der Beschreibung der Strukturen und Bildungsvorschriften der 

verschiedenen figurierten Zahlen wird der Begriff der Zahlenfolge eingeführt und zu deren 

Beschreibung zwischen expliziten und rekursiven Bildungsvorschriften unterschieden. Bei der 

Untersuchung der verschiedenen figurierten Zahlen („Dreieckszahlen“, „Quadratzahlen“, 

„Sechseckzahlen“ etc.) können Vermutungen über die Bildungsgesetze der einzelnen Muster 

aufgestellt und Zusammenhänge zwischen den verschiedenen Mustern entdeckt werden. Die in 

Kapitel 1 erarbeiteten Strategien für die Überprüfung von Aussagen werden dabei weitergeführt und 

die vier verschiedenen Beweisformen der Lehrveranstaltung konsequent als Erkenntnismittel 

verwendet. Während im ersten Kapitel Fragestellungen aus der Arithmetik und Algebra im 

Vordergrund standen, die auch mithilfe von Punktmustern begründet wurden, wird nun im zweiten 

Kapitel innerhalb des Darstellungssystems der Punktmuster ‚Forschung‘ betrieben, wobei die 

Bereiche der Arithmetik und Algebra als alternative Darstellungssysteme herangezogen werden 

können. 

Als ein Betätigungsfeld zur Exploration werden den Studierenden zusätzlich die figurierten Zahlen der 

„U-Treppenzahlen“ (vgl. die Darstellungen im Anhang) an die Hand gegeben. Hier sollen die 

Studierenden in einer freien Explorationsphase selbst Bildungsvorschriften finden und Bezüge zu 

anderen figurierten Zahlen herausarbeiten. 

  

Neben dieser ‚aktiven Betätigung‘ im Gebiet der figurierten Zahlen soll dieses Kapitel auch dazu 

dienen, die Studierenden zum Umgang mit entsprechenden Punktmusterdarstellungen zu befähigen. 

Aus der in dieser Arbeit vorgenommenen semiotischen Perspektive wird an dieser Stelle kollaterales 

Wissen für das Diagrammsystem der Punktmuster aufgebaut und eine Praxis des Agierens in diesem 

Diagrammsystem eingeübt. Bei der vergleichenden Nutzung der vier Beweisformen der 

Lehrveranstaltung können die Vor- und Nachteile der Beweisformen und der verschiedenen 

Diagrammsysteme erfahren werden. Damit ist auch die Intention verbunden, dass die Studierenden 

die Vorteile der mathematischen Symbolsprache wiederholt wahrnehmen. Durch diese 

vergleichende Nutzung der verschiedenen Begründungsformen werden gleichsam die folgenden 

didaktischen Maßnahmen umgesetzt, die im Rahmen von Abschnitt 4.3.1 herausgearbeitet wurden: 

Es werden verschiedene Darstellungsweisen verwendet werden, um inhaltliche Grundideen 

herauszustellen und anschauliche Grundvorstellungen zu vermitteln, die verschiedenen 

Beweisformen werden in das Unterrichtsgeschehen einbezogen, anschauliche Argumente werden 

                                                           
50

 Das hier ausgewählte Konzept einer ‚Kultur der Mathematik‘ determiniert die Art von Meta-Wissen, welche 

im Rahmen der Lehrveranstaltung vermittelt werden kann. Im vorliegenden Fall konnte Meta-Wissen in dem 

Sinne thematisiert werden, wie es in Abschnitt 1.2.3 vor allem in Anlehnung an Hefendehl-Hebeker (1999) und 

(2015) konzeptualisiert wurde, als ein Verständnis von der Genese mathematischen Wissens, ihrer 

epistemologischen Charakteristika und als ein Bewusstsein über mathematikspezifische Denk- und 

Arbeitsweisen. Dabei wäre prinzipiell auch die Thematisierung anderer Aspekte von Meta-Wissen denkbar 

gewesen, wie etwa weltanschauliche bzw. ideologische Aspekte (etwa Ullmann 2008) oder etwa die Erörterung 

bildungstheoretischer Aspekte von Mathematik (etwa Heymann 2013). 



220 

 

formalisiert, es werden auch explizit formale Beweise geführt und es wird über das Beweisen (in 

seinen verschiedenen Ausprägungen) reflektiert. 

Im Kontext verschiedener Beweiskonstruktionen wird innerhalb des zweiten Kapitels die Erfahrung 

gemacht, dass sich die „… - Darstellung“ (als abkürzende Schreibweise für Summen) als sehr mühsam 

erweist. Als eine vereinfachte Darstellung entsprechender Schreibweisen wird die Notation mit dem 

Summenzeichen eingeführt, entsprechende Rechengesetze bewiesen und der Umgang mit diesem 

geübt. Im Kontext der ersten beiden Kapitel der Lehrveranstaltung werden den Studierenden somit 

verschiedene Inhalte vermittelt, die ihnen das Zurechtkommen in den folgenden 

Lehrveranstaltungen an der Universität erleichtern sollen, hierzu zählen vor allem: formale Beweise, 

Zahlenfolgen und das Summenzeichen. (Weitere entsprechende Inhalte der Veranstaltung lassen sich 

bereits an den Kapitelüberschriften ablesen: „Vollständige Induktion“, „Aussagenlogik, Logisches 

Schließen und Beweistypen“, „Mengen und Aussageformen“ und „Funktionen und Abbildungen“.) 

Somit wurde auch dieser Leitgedanke einer Brückenkursveranstaltung eingelöst. 

 

Die Umsetzung dieser verschiedenen Leitprinzipien (vgl. Abschnitt 6.1) wurde auch durch die 

Gestaltung des Übungsbetriebs umgesetzt. Im Fokus der Bemühungen stehen dabei das 

Herausstellen des Prozesscharakters der Mathematik, die Konstruktion der vier verschiedenen 

Beweisformen der Lehrveranstaltung und ein verständiger Umgang mit den Diagrammsystemen der 

Arithmetik, Algebra und der Punktmuster. Die Frage, inwieweit durch die Lehrveranstaltung ein 

‚adäquates Beweisverständnis‘ auf Seiten der Studierenden erzielt werden konnte, ist (u.a.) 

Gegenstand des siebten Kapitels. 

6.3 Der Übungsbetrieb 
Als wichtige Bestandteile des Übungsbetriebs der Lehrveranstaltung im Wintersemester 2014/15 

werden im Folgenden die Präsenzübungen (6.3.1), spezifische Aufgabenformate (6.3.2) und die 

Konzeption der Zentralübung (6.3.3) dargestellt. 

6.3.1 Die Präsenzübungen 

Die wöchentlichen Präsenzübungen zur Lehrveranstaltung (Kleingruppenübungen mit ca. 30 

Studierenden) wurden durch sogenannte Tutorentandems (vgl. Abschnitt 5.3.1) von studentischen 

Hilfskräften geleitet51. Nachdem im Wintersemester 2012/13 eine Schulung der Tutoren 

stattgefunden hatte, um die Hilfskräfte mit dem Konzept beispielgebundener Beweise vertraut zu 

machen, erschien dies in den folgenden Durchgängen nicht mehr nötig, da man für Tutoren auf 

fachlich gute bis sehr gute Studierende aus vorherigen Durchläufen der Lehrveranstaltung 

zurückgreifen konnte, die dementsprechend mit den Inhalten der Lehrveranstaltung, insbesondere 

mit dem Konzept generischer Beweise sehr gut vertraut waren und entsprechend der Normen der 

Lehrveranstaltung agieren konnten. Im Rahmen dieser Tutorien wurden ausschließlich sogenannte 

Präsenzaufgaben zur Lehrveranstaltung bearbeitet und besprochen, da die Besprechung der 

Hausaufgaben52 in die wöchentlich stattfindende Zentralübung (Abschnitt 6.3.3) ausgelagert wurde. 

                                                           
51

 Nur die Tutorien, die durch Wissenschaftliche Mitarbeiter betreut wurden, wurden ohne ‚Tandempartner‘ 

abgehalten. 
52

 Die Studierenden mussten im Rahmen der Lehrveranstaltung wöchentlich Hausaufgaben abgeben, um die 

‚Studienleistung‘ und damit die Zulassung für die Klausurteilnahme zu erhalten. 
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6.3.2 Spezifische Übungsaufgaben 

Für das Erreichen der formulierten Ziele der Lehrveranstaltung kommt den verwendeten 

Übungsaufgaben eine besondere Rolle zu. Wie im Rahmen des fünften Kapitels herausgearbeitet 

wurde, mussten gezielt solche Übungsformate entwickelt werden, die den Studierenden dabei 

helfen, ein konzeptuelles Verständnis zu den verschiedenen Beweisformen der Lehrveranstaltung 

aufzubauen und einen Umgang mit den verschiedenen Diagrammsystemen zu entwickeln. Ebenfalls 

sollte gezielt der Herausbildung von Fehlvorstellungen entgegengewirkt werden. In Abschnitt 5.4.1 

wurden dazu bereits entsprechende Aufgabenformate vorgestellt, die die folgenden Aspekte 

thematisierten:  

(i) Die Beurteilung fehlerhafter generischer Beweise (mit Zahlen) 

(ii) Die Vervollständigung lückenhafter generischer Beweise (mit Zahlen) 

(iii) Die Konstruktion generischer Beweise 

(iv) Die Formalisierung generischer Beweise 

(v) Aufgaben an konkreten Punktmustern, bei denen allgemeine Beziehungen abstrahiert, 

formalisiert und bewiesen werden mussten 

(vi) Integration von Punktmusterbeweisen und deren Formalisierung 

Im Folgenden sollen die entwickelten Aufgabenformate dargestellt werden, die auf der Basis der 

retrospektiven Analyse der dritten Durchführung der Lehrveranstaltung im Wintersemester 2013/14 

entwickelt wurden. Diese umfassen verschiedene Aufgaben mit verstärkt explorativen Anteilen und 

sogenannte „multiple proof tasks“ (Abschnitt 6.3.2). 

6.3.2.1 Aufgaben mit explorativen Anteilen 

Um den Studierenden einen Einblick in die ‚forschende Mathematik‘ zu ermöglichen, sollten 

Aufgaben mit verstärkten explorativen Anteilen in den Übungsbetrieb eingebunden werden. Neben 

der Verdeutlichung der Prozesshaftigkeit der Wissenschaft Mathematik sollte damit die Phase der 

Exploration im Beweis- bzw. Erkenntnisprozess deutlicher herausgestellt werden. Das eigene 

Herausarbeiten von Hypothesen, verbunden mit der Formulierung von Behauptungen, ist dabei auch 

mit dem Ziel verbunden, ein Beweisbedürfnis bei den Studierenden zu entwickeln. Wie bereits in 

Abschnitt 2.1.6 dargelegt, muss der Unsicherheit in der Mathematikausbildung ein entsprechender 

Raum eingerichtet werden, damit Beweise überhaupt ihre Funktion von Erkenntnissicherung und 

Überzeugung erlangen können. Der explorative Anteil kann dabei in Aufgaben durchaus variieren, 

wie mit der folgenden Unterscheidung in „Aufgaben zur ‚freien‘ Exploration“ und „Aufgaben zum 

Herauslesen einer Behauptung“ verdeutlicht werden soll. 

Aufgaben zur ‚freien‘ Exploration 

Ein Inhaltsgebiet, das sich sehr gut für eine ‚freie‘ Exploration zu eignen scheint, sind die 

Quadratzahlen. Diese Thematik ist den Studierenden bekannt, bei deren Untersuchung können aber 

durchaus neue Erkenntnisse gewonnen werden, deren Verifikation dem Niveau von 

Studienanfängerinnen und -anfängern zu entsprechen scheint. Die folgende Aufgabe für eine ‚freie‘ 

Exploration entstammt Leuders (2010, S. 41) und wurde für die Gestaltung der zweiten Präsenzübung 

verwendet: 
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Präsenzübung 2 

Wir gut kennen Sie eigentlich die Quadratzahlen? 

Sicher, die Folge der Quadratzahlen ist Ihnen hinlänglich vertraut: 

1, 4, 9, 16, 25, … 

Aber steckt in dieser Zahlenliste noch mehr als die Tatsache, dass es Quadrate sind? Gibt es noch mehr 

Strukturen, Muster und Zusammenhänge? Untersuchen Sie die Quadratzahlen daraufhin und schreiben Sie 

möglichst viele verschiedene Vermutungen auf. Falls Sie nicht wissen, wo Sie anfangen sollen - hier einige 

Aspekte, die Sie betrachten können: Summen, Differenzen, bestimmte Ziffern, Teilbarkeiten durch 2, 3, 4 usw. 

Solche Aufgaben verlangen eine sehr gute Vorbereitung auf Seiten der Übungsgruppenleiter. Den 

studentischen Hilfskräften wurde eine Liste mit verschiedenen Vermutungen ausgehändigt, an denen 

mögliche Begründungsformen diskutiert wurden. Aus erkenntnistheoretischer Perspektive gilt es bei 

der Diskussion der gefundenen Behauptungen, den entsprechenden Status von verschiedenen 

Argumenten (Beispielüberprüfungen, Plausibilitätsbetrachtungen, Beweise etc.) herauszuarbeiten. 

Aufgaben zum ‚Herauslesen von Behauptungen‘ 

Explorative Anteile können in Aufgaben auch damit erreicht werden, dass Lernende dazu angehalten 

werden, Gemeinsamkeiten in Strukturen selbst ausfindig zu machen, diese als Behauptung zu 

formulieren und anschließend zu widerlegen oder ggf. zu beweisen. Diese Idee ist nicht neu, 

entsprechende Formate finden sich etwa bei Wittmann (2009, S. 252), Flores (2002) oder prominent 

auch bei Polya (1979, S. 100ff.). Innovativ ist bei der vorliegenden Adaption die Übertragung in die 

Hochschullehre mit dem Ziel, vergleichende Erfahrungen mit Beweisformen und Diagrammsystemen 

zu ermöglichen. Dieses Aufgabenformat wird im Folgenden an zwei Aufgaben illustriert, die beide auf 

den Ausführungen von Flores (2002) basieren. 

Hausaufgabenblatt 3, Aufgabe 3  

 

Wir betrachten die folgenden Gleichungen: 

 

3� − 	1	 = 	8		 = 	8	ÿ	1	
5� − 	1	 = 	24 = 	8	ÿ	3	
7� − 	1	 = 	48 = 	8	ÿ	6	
 

Verallgemeinern Sie das Prinzip, das in den Beispielen deutlich wird. 

 

a) Formulieren Sie dieses Prinzip als Behauptung über alle natürlichen Zahlen mithilfe von Wortvariablen. 

b) Beweisen Sie die Behauptung mit einer Beweismethode Ihrer Wahl. 

 

Hausaufgabenblatt 4, Aufgabe 2 

 

Wir betrachten die folgenden Gleichungen: 

 

1	 + 	2																																											 = 	3			 = 	3	ÿ	L�	
4	 + 	5	 + 	6																																	 = 	15	 = 	5	ÿ	L�	
9	 + 	10	 + 	11	 + 	12																 = 	42	 = 	7	ÿ	LG	
16	 + 	17	 + 	18	 + 	19	 + 	20	 = 	90	 = 	9	ÿ	L#	
 

Verallgemeinern Sie das Prinzip, das in den Beispielen deutlich wird. 
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a) Formulieren Sie dieses Prinzip als Behauptung über alle natürlichen Zahlen mithilfe von Wortvariablen. 

b) Beweisen Sie die Behauptung mit einer Beweismethode Ihrer Wahl. 

 

Mit der Maßnahme, den Studierenden die Wahl der Beweismethode freizustellen, sind dabei 

verschiedene Zielsetzungen verbunden. Zunächst wird damit die Intention verfolgt, den 

Studierenden deutlich zu machen, dass die verschiedenen Beweismethoden der Lehrveranstaltung, 

wie auch die damit verbundenen Diagrammsysteme, gleichberechtigt für die Verifikation einer 

Behauptung nebeneinanderstehen. Durch das bewusste Entscheiden für eine Beweismethode und 

ein Diagrammsystem können die Studierenden eigenen Präferenzen folgen bzw. solche entwickeln. 

6.3.2.2 Multiple-proof tasks 

Als multiple-proof tasks werden in der Mathematikdidaktik Beweisaufgaben verstanden, in denen 

explizit nach verschiedenen Beweisen für eine Behauptung gefragt wird (etwa Leikin 2009, S. 31). Sun 

(2009, S. 178ff.) spricht auch von „one problem multiple solution“. Die geforderten Beweise können 

sich hierbei bzgl. verschiedener Aspekte unterscheiden (ebd., S. 31): in Bezug auf die gewählte 

Repräsentation, die zu nutzenden Eigenschaften der zu betrachtenden Objekte oder die 

verwendeten Argumente (Definitionen, Sätze etc.), seien sie mathematischer oder nicht-

mathematischer Natur. Bei der vorliegenden Adaption dieses Aufgabenformats geht es darum, eine 

Behauptung mit den verschiedenen Beweisformen der Lehrveranstaltung zu verifizieren. 

Der Nutzen von multiple-proof tasks ist hierbei vielfältig: Zunächst wird durch die Frage nach 

verschiedenen Beweisen eine gewisse Explorationsphase in den Beweisprozess integriert, da nach 

weiteren Beweismöglichkeiten gesucht werden muss (Sun 2009, S. 179). Es ist hier auch der kreative 

Aspekt des Suchens nach alternativen Lösungswegen, der eine prozesshafte Sicht auf die Mathematik 

begünstigt (Leikin 2009, S. 31). Durch das Wissen um verschiedene Beweise für einen Sachverhalt 

wird ein sogenannter „example space“ (im Sinne von Mason und Watson 2004, S. 59) aufgebaut, vor 

dessen Hintergrund etwa Lehrende fachdidaktische Entscheidungen treffen können (Leikin 2009, S. 

33; Leikin & Levav-Waynberg 2009, S. 218f.).  

Der Begriff „multiple“ wird an dieser Stelle auch als Ausdruck für das Agieren in verschiedenen 

Diagrammsystem gedeutet. Aus semiotischer Sicht gilt es hier zu betonen, dass durch die Nutzung 

verschiedener Diagrammsysteme jeweils unterschiedliche Aspekte der Objekte und des gesamten 

Sachverhalts hervorgehoben werden; die unterschiedlichen Betrachtungsweisen begünstigen somit 

ein erweitertes Verständnis des Sachverhalts (Lenhard 2003). Durch das Arbeiten in verschiedenen 

Diagrammsystemen werden auch deren Vor- und Nachteile deutlich. Hierbei können Lernende u.a. 

die Vorteile der fachmathematischen Symbolsprache unmittelbar erfahren: deren universelle 

Anwendbarkeit, die ‚Macht‘ des algebraischen Kalküls, die Sicherung der Allgemeingültigkeit der 

Argumentation durch die Nutzung entsprechender Variablen, die Kompaktheit der Argumentation 

und die leichte Kommunizierbarkeit der Ergebnisse. Schließlich geht es auch um die Einübung in das 

Arbeiten mit den verschiedenen Diagrammsystemen. Das Aufgabenformat „multiple-proof task“ wird 

im Folgenden anhand von zwei Aufgaben aus der Lehrveranstaltung illustriert. 

Hausaufgabenblatt 1, Aufgabe 2 

Wir betrachten die folgende Behauptung: 

 

Die Summe von vier aufeinanderfolgenden natürlichen Zahlen ist immer durch 2 teilbar. 
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Beweisen Sie die Behauptung: 

(a) mit einem generischen Beweis mit Zahlen. 

(b) mit einem formalen Beweis mit Buchstabenvariablen. (Nennen Sie die Argumente, die Sie verwenden.) 

(c) mit einem generischen Beweis mit Punktmustern. 

(d) mit einem Beweis mit geometrischen Variablen. 

 

Präsenzübung 1, Aufgabe 2: 

Wir betrachten die folgenden Gleichungen: 

 

1� 	+ 	1	 + 	2	 = 	2�	
2� 	+ 	2	 + 	3	 = 	3�	
3� 	+ 	3	 + 	4	 = 	4�	
 

Verallgemeinern Sie das Prinzip, das in den Beispielen deutlich wird. 

 

(a) Formulieren Sie dieses Prinzip als Behauptung über alle natürlichen Zahlen mithilfe von Wortvariablen. 

(b) Beweisen Sie die Behauptung mit einem generischen Beweis mit Punktmustern. 

(c) Beweisen Sie die Behauptung mit einem Beweis mit geometrischen Variablen. 

(d) Beweisen Sie die Behauptung mit einem formalen Beweis mithilfe von Buchstabenvariablen. 

 

6.3.3 Die Zentralübung 

In diesem Abschnitt wird das Konzept der Zentralübung der Lehrveranstaltung „Einführung in die 

Kultur der Mathematik“ beschrieben, wie es durch den Autor dieser Arbeit in dem Zeitraum vom 

Wintersemester 2013/14 bis zum Wintersemester 2014/15 entwickelt wurde. Dieses Konzept der 

Erarbeitung von Musterlösungen basiert auf dem Modell von Musterlösungen von Ableitinger und 

Herrmann (2011) und der Adaption des von Boero (1999) herausgearbeiteten Prozessmodells zum 

Beweisen zur Konstruktion von ausgearbeiteten Lösungsbeispielen, wie es in Reiss und Renkl (2002) 

und Reiss et al. (2008) beschrieben wird. Die Darstellung des Lösungsprozesses und die Diskussion 

der verschiedenen Beweisformen und Diagrammsysteme stellen dabei zentrale Momente dieses 

Konzepts für die Umsetzung der intentionalen Dimension der Lehrveranstaltung dar. 

 

Das didaktische Modell von Musterlösungen nach Ableitinger und Herrmann (2011) und dessen 

Übertragung auf die Beweisaktitivät 

Ableitinger und Herrmann (2011) gehen in ihrem Buch „Lernen aus Musterlösungen zur Analysis und 

Linearen Algebra“ auf die Problematik von Studienanfängerinnen und -anfängern mathematikhaltiger 

Studiengänge beim Bearbeiten der häufig sehr anspruchsvollen Hausaufgaben ein. Sie beschreiben 

ein Modell von Musterlösungen, in denen der gesamte Bearbeitungsprozess von Aufgaben in den 

Blick genommen und den Lernenden explizit gemacht wird. Ableitinger und Herrmann (2011, S. 13ff.) 

unterteilen diesen Bearbeitungsprozess von Musterlösungen in sieben Phasen, die im Folgenden 

paraphrasierend zusammengefasst werden:  

 

(1) Ein Problembewusstsein schaffen 

(u.a.: Verstehen der Aufgabe; Zuordnung in ein Themenfeld; Erkennen der Fragestellung; 

Ausmachen eines Zieles) 

(2) Klärung der Handlungsoptionen 

(u.a.: Klärung der Handlungsoptionen bzw. Ausmachen von Definitionen oder Sätzen, die 

angewendet werden können; Ausmachen von Strategien; ) 
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(3) Einen Zugriff herstellen, die Aufgabe handhabbar machen 

(u.a.: Ausgangspunkt erkennen; Wahl einer Repräsentation bzw. Vollziehen eines 

Repräsentationswechsels) 

(4) Anpassen oder Prüfen der Passung 

(u.a.: Überprüfen von notwendigen Voraussetzungen für die zulässige Anwendung eines 

Werkzeugs (Satz, Methode, Kalkül etc.) und ggf. Vornehmen entsprechender Modifikationen 

der Problemstellung) 

(5) Handwerk 

(Ausführen von ‚Handwerk‘, etwa das Manipulieren von Termen)  

(6) Tricks 

(explizite Klärung von Tricks, die quasi vom Himmel fallen; Erklärung deren 

Zustandekommens und deren Reichweite) 

(7) Begleitende, strukturierende Kommentare und Erläuterungen 

(u.a.: Aufschreiben und Reflektieren einzelner Abschnitte der Aufgaben; Einfügen von 

strukturverdeutlichenden Kommentaren und Erläuterungen) 

 

Dieses Modell des Explizit-Machens der verschiedenen Aspekte des Bearbeitungsprozesses, einer Art 

schriftlichen ‚Lauten-Denkens‘ des Bearbeiters im Sinne des „cognitive apprenticeship“ (s. ebd., S. 

9ff.) und die ausführliche Reflexion über das Getane wurde für das Konzept der Zentralübung 

übernommen und entsprechend an das Themenfeld des Beweisens und die Inhalte angepasst. Das 

Konzept des Sieben-Phasenmodells lässt sich (modifiziert) auf die Aufgabensituation in der hier 

beschriebenen Lehrveranstaltung übertragen, wodurch eine Parallele zur bereits behandelten 

mathematischen Tätigkeit des „diagrammatischen Schließens“ (vgl. Abschnitt 2.5) deutlich wird. Die 

jeweiligen Phasen spiegeln sich im Kontext der hier behandelten Beweisaufgaben wie folgt wider: 

 

(1) Ein Problembewusstsein schaffen 

Am Anfang steht das Verstehen der Aufgabe bzw. der Problemstellung. Es muss verstanden 

werden, was überhaupt ‚zu zeigen‘ ist. Da in den gestellten Beweisaufgaben häufig die zu 

beweisende Behauptung erst von den Lernenden herausgearbeitet werden muss (vgl. 

Abschnitt 6.3.2), gewinnt die Phase hier deutlich an Gewicht. Das Ausmachen des Zieles muss 

im Kontext des zu nutzenden Diagrammsystems (vgl. Abschnitt 2.5) und der geforderten 

Beweisform betrachtet werden. Der Nachweis, etwa von Teilbarkeit, gestaltet sich in jedem 

Diagrammsystem und im Kontext der verschiedenen Beweisformen der Veranstaltung 

(generischer Beweis etc.) jeweils unterschiedlich. Aus semiotischer Sicht (vgl. Abschnitt 2.5.) 

geht es um das zu erreichende Diagramm, an dem die nachzuweisende Eigenschaft 

‚abgelesen‘ werden kann. Die Sätze und Definitionen der Vorlesung stecken hierbei den 

Rahmen für die möglichen Zielsetzungen ab. Die Klärung des Ziels muss als zentrales Element 

der zu erfolgenden Beweiskonstruktion verstanden werden. 

 

(2) Klärung der Handlungsoptionen 

Die Handlungsoptionen ergeben sich aus dem ausgemachten Ziel, also aus dem zu 

erreichenden Diagramm und den zugelassenen Transformationsregeln des jeweiligen 

Diagrammsystems. Hier wird wiederum die Bedeutung kollateralen Wissens (vgl. Abschnitt 

2.5) evident: Erst das Wissen um die Handhabung eines Diagrammsystems ermöglicht ein 

konformes Agieren. Darüber hinaus geht es in dieser Phase um die Auswahl geeigneter 

Heuristiken (i.S. von Polya 1967). 
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(3) Einen Zugriff herstellen, die Aufgabe handhabbar machen 

Für die Beweiskonstruktion gilt es, dasjenige Diagrammsystem zu wählen, innerhalb dessen 

der Beweis konstruiert werden soll. (Wenn dies bereits durch die Aufgabenstellungen 

vorgegeben ist, entfällt dieser Aspekt). Wurde dieser Ausgangspunkt der 

Aufgabenbearbeitung ausgemacht, so muss die vorliegende bzw. gegebene Situation in das 

entsprechende Diagrammsystem übertragen werden; hier erfolgt die Konstruktion der 

Diagramme. 

 

(4) Anpassen oder Prüfen der Passung:  

Die Form der konstruierten Diagramme hat weitreichende Auswirkungen auf die möglichen 

erreichbaren Ziele. Soll z.B. eine beliebige gerade Zahl im Diagrammsystem der Punktmuster 

mithilfe geometrischer Variablen dargestellt werden, so ergeben sich hier (mindestens) zwei 

verschiedene Möglichkeiten (vgl. Abbildung 51). 

 

 

 

 

 

In dieser Phase gilt es somit, die konstruierten Diagramme auf ihren aktuellen Nutzen für das 

Erreichen des Ziels zu hinterfragen.  

 

(5) Handwerk 

Hier geht es um das Ausführen von zulässigen Transformationen an bzw. mit den 

Diagrammen nach den Regeln des jeweiligen Diagrammsystems. Dabei müssen erhaltene 

Zwischenresultate ausgewertet und weiter genutzt werden. 

 

(6) Tricks 

Innerhalb vieler (auch basaler) Beweise werden ‚Ideen‘ verwendet, die zunächst nicht 

offensichtlich erscheinen. Diese ‚Tricks‘ gilt es als solche herauszustellen. 

 

(7) Begleitende, strukturierende Kommentare und Erläuterungen 

Gerade bei der Konstruktion von generischen Beweisen kommt der Versprachlichung von 

Argumenten eine große Bedeutung zu. Aber auch bei formalen Beweisen werden 

Kommentierungen und Erläuterungen häufig ausgelassen. Diese Aspekte gilt es zu betonen, 

bzw. das Verbalisieren entsprechender Momente einzuüben. 

 

Heuristische Lösungsbeispiele in der Beweisdidaktik 

Reiss und Renkl (2002) übertragen das Konzept des Lernens aus Musterlösungen („learning from 

worked-out examples“) in die Beweisdidaktik. Die Autoren legitimieren diesen Ansatz durch einen 

Bezug auf die ‚cognitive load theory‘ und die Besonderheit des Problemlöseprozesses beim 

Beweisen: 

 
The superiority of example-based learning is explained by the argument that problem solving requires such a large 

amount of working memory capacity when the learning contents are new to the students that it interferes with 

learning in the sense of schema acquisition. More specifically, it is argued, that in order to solve problems, novices 

Abbildung 51: Zwei verschiedene Möglichkeiten für die Darstellung einer beliebigen 
geraden Zahl mithilfe geometrischer Variablen 
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(i.e., learners) employ means-ends-analyses. This implies that the learner has to simultaneously focus on the 

following aspects: actual problem state, desired problem state, difference between actual and desired problem 

states, relevant operators, and sub-goals. Given this load, there are few resources left for the processes of 

understanding and for inducing abstract and generalizable problem solving schemata […]. (Reiss & Renkl 2002, S. 

31) 

 

Für die Konstruktion ihrer „worked-examples“ nutzen Reiss und Renkl (2002) das Prozessmodell des 

Beweisens nach Beoro (1999) (s. Abschnitt 2.1.1). Dieses Modell wird als Rahmen für die Gliederung 

der Problemlöseprozesse genutzt, die die Lernenden durchlaufen sollen. 

 

Das Konzept didaktisch aufbereiteter ‚Musterlösungen‘ in der Zentralübung 

Die bisher dargestellten theoretischen fachdidaktischen Betrachtungen zu Musterlösungen wurden 

durch den Autor dieser Arbeit für die Durchführung der Zentralübung adaptiert und zum Erstellen 

von Musterlösungsprozessen genutzt, die in der Zentralübung (zusammen mit den Teilnehmenden) 

erarbeitet und reflektiert wurden. Hierbei bieten die Phasen von Musterlösungen (Ableitinger und 

Herrmann 2011) und die Adaption der Phasen des Beweisprozesses von Boero durch Reiss und Renkl 

(2002) einen Orientierungsrahmen für die Erarbeitung einer Musterlösung, in der neben der 

Darstellung der Lösung auch die entsprechenden herausgearbeiteten fachdidaktischen Aspekte des 

Lösungsprozesses berücksichtigt werden. 

An der folgenden Aufgabe soll exemplarisch die Konstruktion einer didaktisch-orientierten 

Musterlösung dargestellt werden. Dafür wird die Umsetzung der Aufgabenlösung tabellarisch in 

Bezug zu den Bearbeitungsphasen von Ableitinger und Hermann (2011) und den Phasen des 

Beweisprozesses von Boero (1999) gesetzt. Durch diese Analyse wird illustriert, welche Aspekte bei 

der Erarbeitung einer Musterlösung in der Zentralübung berücksichtigt und in welcher Weise die 

verschiedenen Phasen von Lösungsprozessen bzw. Beweiskonstruktionen und notwendige Aspekte 

des jeweiligen kollateralen Wissens in Bezug auf ein Diagrammsystem herausgestellt wurden. Die 

Phasen von Boero („Entwicklung einer Vermutung“, „Formulierung einer Behauptung“, …)waren 

dabei in der Zentralübung für den Rahmen strukturgebend, in dem die Musterlösungen gemeinsam 

mit den Studierenden erarbeitet wurden. Die Studierenden wurden dabei konsequent in die 

Erarbeitung der Musterlösung eingebunden, Fragen konnten zu jeder Zeit gestellt werden. 

 

Hausaufgabenblatt 2, Aufgabe 1 

Aus einem Schulbuch: 

 

Denk dir eine natürliche Zahl, multipliziere ihren Vorgänger mit ihrem Nachfolger und zähle 1 dazu. Probiere dies 

auch mit anderen Ausgangszahlen und vergleiche die Ergebnisse miteinander. Was fällt dir auf? 

 

a) Was fällt Ihnen auf? - Was haben die Ergebnisse gemeinsam? 

b) Beweisen Sie dieses Phänomen mithilfe eines generischen Beweises mit Zahlen. 

c) Beweisen Sie dieses Phänomen mithilfe eines generischen Beweises mit Punktmustern. 

d) Beweisen Sie dieses Phänomen mithilfe eines Beweises mit geometrischen Variablen. 

e) Beweisen Sie dieses Phänomen mithilfe eines formalen Beweises mit Buchstabenvariablen. 
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Bearbeitungsphase 

bei Ableitinger und 

Herrmann (2011) 

Umsetzung in der Zentralübung anhand der konkreten Aufgabe Phase des Beweis-

prozesses bei Boero 

(1999) 

Ein 

Problembewusst-

sein schaffen 

Innerhalb der Aufgabenstellung ist eine Handlungsanleitung mithilfe von 

Wortvariablen gegeben. Deren Umsetzung in konkrete Zahlenbeispiele 

führt etwa zu den folgenden Gleichungen: 

2:	
2 − 1�ÿ	
2 + 1� + 1 = 1ÿ	3 + 1 = 4	
3:	
3 − 1�ÿ	
3 + 1� + 1 = 2ÿ	4 + 1 = 9	
7:	
7 − 1�ÿ	
7 + 1� + 1 = 6ÿ	8 + 1 = 49	
Laut Aufgabenstellung sollen nun die Ergebnisse der Gleichungen 

miteinander verglichen und eine Gemeinsamkeit erkannt werden. Im 

Vergleich der Zahlen	1, 9 und 49 kann vermutet werden, dass es sich bei 

den Ergebnissen immer um Quadratzahlen handelt. Diese Vermutung 

kann anhand weiterer Beispiele überprüft und gestützt werden. 

Entwicklung einer 

Vermutung 

Anschließend soll die ‚Auffälligkeit‘ benannt werden, was schließlich als 

Vermutung zu einer Behauptung führt: „Die Ergebnisse solcher 

Rechnungen sind immer Quadratzahlen“. 

Formulierung einer 

Behauptung 

 

 

 

Klärung der 

Handlungsoptionen 

Einen Zugriff 

herstellen, die 

Aufgabe 

handhabbar 

machen 

 

[Je nach Aufgabenabschnitt wird nun die Situation in einem bestimmten 

Darstellungssystem betrachtet. Exemplarisch wird an dieser Stelle 

Aufgabenteil (c) betrachtet:] 

Eine Ausgangszahl ist gegeben. Von dieser wird eins subtrahiert bzw. 

eins addiert und diese beiden erhaltenen Zahlen werden miteinander 

multipliziert. Als Repräsentation dienen dabei Punktereihen, die um 

einen Punkt verlängert bzw. verkürzt werden. Die Multiplikation zweier 

Zahlen wird im Punktmustersystem durch die Konstruktion eines 

Rechtecks verdeutlicht. Nach Hinzufügen eines Punktes soll als Summe 

eine Quadratzahl entstehen; im Diagrammsystem der Punktmuster soll 

also die Form eines Quadrats erreicht werden. 

Die Handlungsoptionen sind dabei durch die Transformationsregeln des 

Diagrammsystems der Punktmuster gegeben. 

Exploration des 

spezifischen Gehalts 

und des Umfelds der 

These 

Anpassen oder 

Prüfen der Passung 

 

Die Ausgangssituation ist durch zwei Punktereihen gegeben. 

Durch die ‚Multiplikation‘ entsteht ein Rechteck, bei der ‚Addition‘ wird 

ein weiterer Punkt hinzugefügt. Schließlich soll ein Quadrat entstehen 

(Abbildung 52): 

 

 

 

 

 

Abbildung 52: 
Bearbeitungsschritte der 
Beweisaufgabe mit 
Punktmustern im Fall x = W				
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Handwerk 

Dabei ist die Frage nach dem Zustandekommen des Quadrats noch 

ungeklärt. Zwar reicht die Punkteanzahl genau aus, um ein Quadrat zu 

konstruieren, aber eine beispielübergreifende Bildungs- bzw. 

Transformationsvorschrift muss noch gefunden werden.  

Das Quadrat erhält man durch das Umlegen einer Reihe des Rechtecks 

an die anliegende Seite, wobei der ‚freie‘ Punkt („+1“) in die leere Ecke 

platziert wird (Abbildung 53). 

 

 

 

 

Die einzelnen Transformationen gilt es nun als Argumente zu bewerten 

und zu einer Argumentationskette zusammenzufügen. 

Auswahl von 

Argumenten und deren 

Aneinanderfügen zu 

einer 

Argumentationskette 

Tricks 

Was hier Studierenden zunächst als Tricks erscheinen mag, sind die 

zulässigen Operationen und Darstellungsmöglichkeiten bei den 

Punktmustern: das Aneinanderfügen und Wegstreichen von Punkten, 

die Ausführung der Multiplikation als Konstruktion eines Rechtecks und 

die regelgeleitete Umstrukturierung zur Bildung eines Quadrats als 

Repräsentation einer Quadratzahl. Es muss aber deutlich werden, dass 

dies die (Rechen-) Operationen sind, die im Diagrammsystem der 

Punktmuster vorgenommen werden. 

 

 

Begleitende, 

strukturierende 

Kommentare und 

Erläuterungen 

Das Aufschreiben der Beweise ist dabei an den Normen der 

Lehrveranstaltung ausgerichtet. Das bedeutet für die Konstruktion eines 

generischen Punktmusterbeweises, dass an konkreten Punktmustern 

deutlich gemacht werden muss, warum die Behauptung in den 

konkreten Fällen wahr ist und warum diese Argumentation für alle zu 

betrachtenden Fälle wahr ist. Somit werden die begleitenden 

Kommentare und Erläuterungen in diesem Fall im Zuge der aufgestellten 

Beweisnormen gefordert. 

 

 

 

 

Multipliziert man den Vorgänger und den Nachfolger einer natürlichen 

Zahl, so lässt sich dies durch ein Rechteck darstellen, wobei sich die 

Seitenlängen immer um zwei Punkte unterscheiden. Legt man nun eine 

Reihe der langen Seite an die kurze an, so wird die lange Seite um 1 

verkürzt, die kurze Seite um 1 vergrößert. Schließlich fehlt somit immer 

genau ein Punkt, um das Quadrat zur Ausgangszahl zu bilden. 

Aufschreiben des 

Beweises gemäß 

mathematischer 

Standards 

 - Diese Phase entfällt. - Annäherung an einen 

formalen Beweis 

Tabelle 21: Exemplarische Darstellung einer didaktisch-orientierten Musterlösung 

Abbildung 53: Umstrukturierung 
der Punktmuster für die 
Konstruktion eines Quadrats 

Abbildung 54: Generische 
Punktmusterbeispiele für die 
Fälle x = W und x = m 
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7. Die empirischen Studien zur Lehrveranstaltung im Wintersemester 2014/15 
 

Die empirischen Studien im Kontext der vierten Durchführung der Lehrveranstaltung „Einführung in 

die Kultur der Mathematik“ im Wintersemester 2014/15 lassen sich als eine Evaluation der 

Lehrveranstaltung und gleichsam als eine Effektivitätsmessung derselben verstehen. Im Folgenden 

wird ein formaler Überblick über die Messzeitpunkte, die angesprochenen Themenkomplexe und 

verwendeten Messinstrumente gegeben. Eine Einordnung der entsprechenden Forschungsfragen 

erfolgt im Kontext der gesondert aufgeführten Teilstudien.  

Die erfolgten Studien umfassen insgesamt drei Messzeitpunkte: 

Messzeitpunkt 1: Eingangsbefragung zu Beginn der Lehrveranstaltung 

Messzeitpunkt 2: Ausgangsbefragung zum Ende der Lehrveranstaltung 

Messzeitpunkt 3: Die Modulklausur einen Monat nach Ende der Lehrveranstaltung 

Im Fokus der Studien stehen dabei die folgenden Themenkomplexe: 

(1) Vorerfahrungen der Studierenden mit dem Beweisen aus ihrer Schulzeit 

(2) Kompetenzaspekte zum Beweisen (Qualität der Begründung, Beweisbewertung, 

Beweiskonstruktion, Akzeptanz verschiedener Beweisformen und wahrgenommene 

Funktionen von Beweisen) 

(3) Einstellungen zum Themenkomplex des Beweisens und zur Mathematik 

Während die Vorerfahrungen zum Beweisen in der Schulzeit in der Eingangsbefragung untersucht 

werden, zielen die Aspekte (2) und (3) neben der Erfassung der Eingangsvoraussetzung auch auf 

mögliche Veränderungen durch die Lehrveranstaltung und wurden dementsprechend zu 

verschiedenen Messzeitpunkten erhoben. Bei der Auflistung der verschiedenen Messzeitpunkte und 

der dort thematisierten Themenkomplexe in Abbildung 55 wird deutlich, dass zu den verschiedenen 

Messzeitpunkten bestimme Themenkomplexe wiederholt abgefragt wurden. An diesen Stellen 

wurden bewusst Items eingesetzt, die im Sinne einer Vorher-Nachher-Erhebung ‚Effekte‘ der 

Lehrveranstaltung messen sollten.53 

7.1. Datenerhebung und Messzeitpunkte 

Innerhalb der oben aufgeführten drei verschiedenen Messzeitpunkte wurden unterschiedliche Daten 

erhoben. Die Datenerhebung der Messzeitpunkte 1 und 2 geschah mithilfe eines Fragebogens 

innerhalb der Vorlesungszeit der Lehrveranstaltung. Die Studierenden hatten für die Bearbeitung der 

Fragebögen jeweils 45 Minuten Zeit. In beiden Fragebögen wurde ein personenbezogener 

vierstelliger Code abgefragt, so dass es möglich wurde, die jeweiligen Ergebnisse anonym zu 

verbinden. Ein zusätzliches Deckblatt der Modulklausur (Messzeitpunkt 3) beinhaltete ebenfalls die 

freiwillige Angabe dieses personenbezogenen Codes. Auf diesem zusätzlichen Deckblatt wurden nach 

der Bearbeitung der Klausur auch die Ergebnisse notiert, die im Kontext dieser Studie für die 

                                                           
53

 Themenkomplexe i.S. einer Vorher-Nachher-Erhebung zwischen der Eingangsbefragung und der 

Ausgangsbefragung: Kompetenzaspekte zum Beweisen: (a) Beweisbewertung und (c) Beweisakzeptanz, 

Einstellungen zum Themenkomplex des Beweisens und zur Mathematik: (a)Einstellungen zum Beweisen in der 

Schule, (b) Einstellungen zum Beweisen, (c) Nutzen von Beispielen beim Beweisen, (d) Funktionen von 

Beweisen und (e) Einstellungen zur Mathematik; Themenkomplexe i.S. einer Vorher-Nachher-Erhebung 

zwischen der Eingangsbefragung und der Modulabschlussklausur: Kompetenzaspekte zum Beweisen: (a) 

Qualität der Begründung  
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Beantwortung der Forschungsfragen benötigt wurden. Nach dem Eintragen der Ergebnisse wurde 

das Deckblatt von der Klausur entfernt, so dass eine personenbezogene und doch anonyme 

Verwendung der Daten aller drei Messzeitpunkte möglich wurde. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Abbildung 55: Die empirischen Studien zur Lehrveranstaltung im Wintersemester 2014/15: Messzeitpunkte und 
Themenkomplexe 
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7.1.2 Messzeitpunkt 1: Die Eingangsbefragung zu Beginn der Lehrveranstaltung 

Die Eingangsbefragung umfasste die folgenden Bereiche: 

(0) Erhebung personenbezogener Daten54 

(1) Die Vorerfahrungen der Studierenden mit Beweisen aus ihrer Schulzeit 

a. Vorkommen von Beweisen in der Schule (Sek. 1 und Sek. 2) 

b. Sachverhalte, die in der Schule bewiesen wurden 

(2) Kompetenzaspekte zum Beweisen  

a. Qualität der Begründung 

b.  Beweisbewertung 

c. Beweisakzeptanz 

(3) Einstellungen zum Themenkomplex des Beweisens und zur Mathematik 

a. Einstellungen zum Beweisen in der Schule 

b. Einstellungen zum Beweisen  

c. Nutzen von Beispielen 

d. Funktionen von Beweisen 

e. Einstellungen zur Mathematik 

(4) Lernziele in Bezug auf das Beweisen in der Lehrveranstaltung 

a. Motivation zum Erlernen von Beweisen 

Die Eingangsbefragung fand in der ersten Sitzung der Lehrveranstaltung statt, die Teilnehmenden 

hatten für die Bearbeitung 45 Minuten Zeit. Die Instrumente zur Erfassung der oben aufgeführten 

Aspekte (1)-(4) und ihre Genese wurden bereits in Abschnitt 3.3 dargestellt.  

7.1.3 Messzeitpunkt 2: Die Ausgangsbefragung zum Ende der Lehrveranstaltung 

In der Ausgangsbefragung wurden fast alle Themenbereiche abgefragt, die bereits in der 

Eingangsbefragung thematisiert wurden. Als neuer Komplex wurde der Bereich Selbstwirksamkeit in 

Bezug auf das Beweisen aufgenommen; der Abschnitt „Lernziele in Bezug auf die Lehrveranstaltung“ 

wurde durch den Bereich Selbsteinschätzung des Lernzuwachses ersetzt. Nur der Bereich „Qualität 

der Begründung“ in dem Abschnitt „Kompetenzaspekte zum Beweisen“ wurde in dem dritten 

Messzeitpunkt erhoben. Somit ergeben sich in der Ausgangsbefragung die folgenden Bereiche: 

(0) Erhebung personenbezogener Daten 

(1) Kompetenzaspekte zum Beweisen  

a. Beweisbewertung 

                                                           
54 Die Erhebung der personenbezogenen Daten umfasst zwei Abschnitte: (i) allgemeine Angaben zur Person 

und (ii) Angaben zum Studium. Die Eingangsbefragung beinhaltet unter dem Komplex „Allgemeine Angaben zur 

Person“ neun Items: die Abfrage eines personenbezogenen Codes, Geschlecht, Alter, Art und Jahr der 

Hochschulreife, Note im Abitur, letzter schulischer Mathematikkurs, Abschlussnote in Mathematik und 

Teilnahme an einem Mathematikwettbewerb. Diese Items entstammen den Vorkursbefragungen, die im 

Rahmen des VEMINT Projekts (www.vemint.de) verwendet werden. Die Angaben zum Studium umfassen 

sieben Items: vorheriges Studium, vorherige Berufsausbildung, Anzahl Fachsemester, Anzahl 

Hochschulsemester, Teilnahme an einem Mathematikvorkurs, Variante des Vorkurses (nur bei Teilnahme an 

Vorkurs in Paderborn) und erfolgte Teilnahme an der Lehrveranstaltung „Einführung in die Kultur der 

Mathematik“. 
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b. Beweisakzeptanz 

(2) Einstellungen zum Themenkomplex des Beweisens und zur Mathematik 

a. Einstellungen zum Beweisen in der Schule 

b. Einstellungen zum Beweisen  

c. Einstellungen zur Mathematik 

d. Selbstwirksamkeit in Bezug auf das Beweisen 

(3) Selbsteinschätzung des Lernzuwachses  

a. Funktionen von Beweisen 

b. Nutzen von Beispielbetrachtungen für das Beweisen 

c. die Konstruktion und den Umgang mit Beweisen 

d. Selbstwirksamkeitserwartung zum Beweisen 

Im Vergleich zu der Eingangsbefragung wurden dabei die folgenden Änderungen vorgenommen: 

Die Erhebung der personenbezogenen Daten wurde stark gekürzt; neben der Abfrage des 

personenbezogenen Codes wurden nur weitere sieben Items aus dem Bereich „Allgemeine Angaben 

zur Person“ abgefragt, um nachträglich eine richtige Zuordnung der Testhefte gewährleisten zu 

können. In dem Komplex Beweiskompetenzen fehlt die Aufgabe „Summer zweier ungerader Zahlen“ 

bzgl. der Qualität der Begründung, da diese, zugunsten höherer Verbindlichkeit, in der 

Modulabschlussklausur (Messzeitpunkt 3) gestellt wurde. In dem Komplex Beweiskompetenzen 

wurde der Abschnitt zur Beweisakzeptanz in der Ausgangsbefragung um zwei Items ergänzt: Die 

Studierenden sollten angeben, für welche Beweisform (Generischer Beweis mit Zahlen, Generischer 

Beweis am Punktmuster, Punktmusterbeweis mit geometrischen Variablen oder formaler Beweis) Sie 

sich entscheiden würden, wenn sie selbst einen Beweis konstruieren müssten, und welche 

Beweisform sie wählen würden, wenn sie den Inhalt eines vorliegenden Beweisen verstehen wollen 

würden. Die Vorerfahrungen zum Beweisen in der Schule entfielen in der Ausgangsbefragung. Die 

Einstellungen zum Beweisen in der Schule, die Einstellungen zum Beweisen und die Einstellungen 

zur Mathematik wurden parallel zu der Eingangsbefragung abgefragt. Statt des Fragenkomplexes zu 

Lernzielen in Bezug auf das Beweisen in der Lehrveranstaltung wurde die Thematik 

Selbsteinschätzung des Lernzuwachses in der Ausgangsbefragung angesprochen. Dazu wurden die 

Items aus den Abschnitten zu Nutzen von Beispielen und Funktionen von Beweisen aus der 

Eingangsbefragung übernommen, allerding wurde in der Ausgangsbefragung neben einer aktuellen 

Bewertung der Items zusätzlich nach einer retrospektiven Einschätzung („zu Beginn der 

Lehrveranstaltung“) gefragt. Die in der Eingangsbefragung eingesetzten Items bzgl. der Lernziele zum 

Beweisen wurden für die Ausgangsbefragung als Einschätzung des Lernzuwachses umformuliert. 

Schließlich sollten die Studierenden in dem Bereich der Selbstwirksamkeit in Bezug auf das 

Beweisen ihre eigenen Kompetenzen aus heutiger Sicht vor und nach der Lehrveranstaltung 

einschätzen. 

In dem Bereich Selbstwirksamkeit in Bezug auf das Beweisen sollten die Studierenden ihre eigenen 

Kompetenzen in Bezug auf das Beweisen aus heutiger Sicht vor und nach der Lehrveranstaltung 

einschätzen. Die zehn Items des Abschnittes zu den Lernzielen wurden entsprechend umformuliert. 

7.1.4. Messzeitpunkt 3: Die Modulklausur einen Monat nach Ende der Lehrveranstaltung 

Der Messzeitpunkt 3 besteht aus der Modulabschlussklausur der Lehrveranstaltung. Im Kontext 

dieser Studie sind dabei die folgenden zwei Punkte zentral: 
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(1) Die Qualität der Begründung 

(2) Die Kompetenz der Studierenden in Bezug auf die Konstruktion der vier verschiedenen  

Beweisformen der Vorlesung 

Die Modulabschlussklausur der Lehrveranstaltung im Wintersemester 2014/15 umfasste sechs 

Aufgaben. Als erste Aufgabe wurde die Aufgabe „Summer zweier ungerader Zahlen“ aus der 

Eingangsbefragung gestellt, um wiederum die Qualität der gegebenen Begründungen erfassen und 

vergleichen zu können. In der zweiten Aufgabe sollten die Studierenden die vier verschiedenen 

Beweisformen der Vorlesung (Generischer Beweis mit Zahlen, Generischer Beweis am Punktmuster, 

Beweis am Punktmuster mit geometrischen Variablen und formaler Beweis) zu der Behauptung 

konstruieren, dass die Summe von sechs aufeinanderfolgenden natürlichen Zahlen immer ungerade 

ist. Somit konnte die Kompetenz der Studierenden in Bezug auf die Konstruktion der jeweiligen 

Beweisformen erfasst werden. In den weiteren Aufgaben wurden die Bereiche „Figurierte Zahlen“, 

„vollständige Induktion“, „Nutzung des Summenzeichens“, „Beweismethoden“ (Kontraposition bzw. 

Widerspruchsbeweis) und „Aussagenlogik“ thematisiert. 

7.2. Teilstudie 1: Vorerfahrungen und Kompetenzen der Studierenden zum 

Beweisen und deren Einstellungen zum Beweisen und zur Mathematik zu Beginn 

der Lehrveranstaltung (bzw. zu Beginn des Studiums) 

Zu Beginn des Wintersemesters 2014/15 wurde in der ersten Sitzung der Lehrveranstaltung eine 

Eingangsbefragung mithilfe eines Fragebogens durchgeführt; die Teilnehmenden hatten für die 

Bearbeitung 45 Minuten Zeit. Ziel war es zunächst, die Eingangsvoraussetzungen und Einstellungen 

der Teilnehmenden zu Beginn der Lehrveranstaltung (bzw. bei den Erstsemesterstudierenden zu 

Beginn ihres Studiums) genauer zu erfassen. Darüber hinaus konnten durch die Erfassung der Daten 

zu Beginn der Lehrveranstaltung spätere Veränderungen und Zusammenhänge identifiziert werden. 

Somit ergibt sich übergeordnet ein Pre-/Posttestdesign, dessen Ergebnisse in Abschnitt 7.2 erörtert 

werden. 

Nachdem in Abschnitt 3.3 die im Zuge der Effektivitätsstudie verwendeten Testinstrumente 

beschrieben worden sind, werden im Folgenden die Forschungsfragen der vorliegenden 

Untersuchung motiviert und formuliert. 

7.2.1 Forschungsanliegen und Forschungsfragen 

Um zunächst die Passung der Lehrveranstaltung für die Zielgruppe der (Erstsemester-) Studierenden 

bewerten zu können, stellt sich die Frage, welche Vorerfahrungen zur Thematik ‚Begründen und 

Beweisen‘ die Studierenden zu Beginn der Lehrveranstaltung mit sich bringen.55 Diese 

Eingangsvoraussetzungen der Studierenden müssen dabei einmal für die Gesamtgruppe der 

Studierenden als Eingangsvoraussetzungen für die Lehrveranstaltung „Einführung in die Kultur der 

Mathematik“ verstanden werden. Für die Erstsemesterstudierenden erweisen sich die 

Eingangsvoraussetzungen zur Lehrveranstaltung gleichsam als Eingangsvoraussetzungen für ihr 

Studium und ergeben sich aus ihrem schulischen Mathematikunterricht. Aus diesem Grund werden 

bei der Betrachtung der Eingangsvoraussetzungen der Studierenden die Ergebnisse auch getrennt 

                                                           
55

 Um auf eine größere Stichprobe zurückgreifen zu können, werden diese Vorerfahrungen auf der 

Datengrundlage aller an der Eingangsbefragung teilgenommenen Studierenden herausgearbeitet. 

Demgegenüber werden bei der Betrachtung der Veränderungen von der Ein- zur Ausgangsbefragung (Abschnitt 

7.3) nur die Studierenden betrachtet, die nachverfolgbar an beiden Messzeitpunkten teilgenommen haben. 
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nach den Subgruppen „Erstsemester“ und „Höhere Semester“ unterschieden. Zunächst geht es bei 

diesen Eingangsvoraussetzungen um die Vorerfahrungen mit dem Beweisen, die die Studierenden 

aus ihrer Schulzeit mitbringen. Wie in Abschnitt 2.4.1 herausgearbeitet wurde, liegen für Finnland 

Befunde aus der Studie von Hemmi (2006) vor, dass Beweise im Mathematikunterricht der Oberstufe 

zwar häufig vorkommen, die Schülerinnen und Schüler selbst aber nur sehr wenig Gelegenheit dazu 

haben, Beweise selbst zu konstruieren. Entsprechende (quantitative) Untersuchungen fehlen bislang 

für den Mathematikunterricht in Deutschland. 

o Forschungsfrage56 [2]: Wie lassen sich die Vorerfahrungen der Studierenden mit Beweisen 

aus ihrer Schulzeit beschreiben? 

Neben dieser quantitativen Betrachtung gilt es auch die Eingangsvoraussetzungen der Studierenden 

zum ‚Begründen und Beweisen‘ qualitativ zu erfassen. Es wurde bereits dargestellt, dass in 

verschiedenen Studien von den eher als schlecht zu bezeichnenden Argumentations- bzw. 

Beweiskompetenzen deutscher Schülerinnen und Schüler berichtet wird (s. Abschnitt 2.4.1). 

Entsprechende empirische Untersuchungen fehlen bislang für die Beweiskompetenzen von  

Studienanfängerinnen und -anfängern. In Anlehnung an Mejia-Ramos und Inglis (2009) und Selden 

und Selden (2017) wird dabei ‚Beweiskompetenz‘ als Summe der Teilbereiche „Konstruieren von 

Beweisen“ und „Lesen/Verstehen von Beweisen“ konzeptualisiert. Selden und Selden (2017, S. 

340ff.) fassen unter Beweiskompetenz die Facetten „Beweiskonstruktion“ („proof construction“), 

Beweisvalidierung („proof validation“), „Beweisevaluation“ („proof evaluation“) und 

„Beweisverständnis“ („proof comprehension“). Im Folgenden werden diese Facetten von 

Beweiskompetenz aufgegriffen und es wird kurz erläutert, warum an dieser Stelle von 

Begründungskonstruktion, Beweisbewertung und Beweisakzeptanz gesprochen wird. 

Unter Beweiskonstruktion wird allgemein die Konstruktion eines korrekten Beweises entsprechend 

den an einer Universität gültigen (fachmathematischen) Normen verstanden (etwa ebd., S. 339). Da 

eine entsprechende Beweiskonstruktion von Studienanfängerinnen und –anfängern nicht erwartet 

werden kann, wird stattdessen die Kompetenz Begründungskonstruktion betrachtet, die mit weniger 

formalen Ansprüchen verbunden ist (s. Abschnitt 2.3.4). Im Gegensatz zur Kompetenz der 

Beweisvalidierung, die die Bewertung der Korrektheit mathematischer Beweise beschreibt (etwa 

Inglis & Alcock, 2012), umfasst Beweisevaluation nach Pfeiffer (2011, S. 5) neben der Korrektheit von 

Beweisen auch die Betrachtung weiterer Aspekte, wie Überzeugungskraft oder Erklärungspotential 

(Selden & Selden 2017, S. 340ff.). An dieser Stelle wird die Bewertung der Korrektheit von Beweisen 

als Beweisbewertung separiert. Die Betrachtung spezieller Aspekte in Beweisen (wie 

Überzeugungskraft, Erklärungspotential und Sicherung der Gültigkeit) wird zusammen mit dem 

Verständnis der durch einen Beweis gesicherten Allgemeingültigkeit einer Argumentation (im Sinne 

eines Beweisverständnisses) als Beweisakzeptanz betrachtet. 

Für die Erfassung der Kompetenz der Begründungskonstruktion stellt sich zunächst die Frage, wie 

‚gut‘ und ‚auf welche Weise‘ die Studierenden zu Beginn der Lehrveranstaltung begründen und 

welche Rolle dabei die fachmathematische Symbolsprache spielt. Für die Beweisbewertung wird 

                                                           
56

 In dieser Arbeit werden die größeren bzw. übergeordneten Forschungsfragen durchnummeriert. Die 

Forschungsfrage [1] war die in Abschnitt 1.4.1 formulierte, rahmengebende Forschungsfrage des hier 

thematisierten Design-Based Research Projekts. Kleinere ‚Forschungsfragen‘, die im Kontext der Teilstudien 

formuliert werden, werden als „Leitfragen zur Auswertung“ bezeichnet und gesondert durch die gesamte 

Arbeit hindurch durchnummeriert. 
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betrachtet, wie die Studierenden verschiedene Begründungsformen („narrativ und korrekt“, 

„empirisch-induktiv“, „formal und falsch“, „korrekt mit Variablen“) bewerten bzw. welche dieser 

Begründungsformen von den Studierenden als ‚richtiger Beweis‘ bewertet wird. Um darüber hinaus 

die Vorprägung der Studierenden in Bezug auf die Thematik zu ergründen, soll betrachtet werden, 

von welcher Begründungsform die Studierenden angeben, dass sie ihrem eigenen Ansatz am 

nächsten komme. So kann auch ermittelt werden, ob die Studierenden für ihren eigenen Ansatz die 

Verwendung der mathematischen Symbolsprache präferieren. Außerdem wird in diesem Kontext die 

Frage gestellt, für welche der Begründungsformen der Mathematiklehrer in der Oberstufe die beste 

Note gegeben hätte57, um sich weiter der schulmathematischen Sozialisation in Bezug auf das 

Beweisen anzunähern. Schließlich wird die Beweisakzeptanz der Studierenden in Bezug auf die vier 

verschiedenen Beweisformen der Lehrveranstaltung (generischer Beweis mit Zahlen, generischer 

Beweis mit Punktmustern, Punktmusterbeweis mit geometrischen Variablen und formaler Beweis) 

betrachtet. Zentral ist hierbei die Frage, inwieweit die Studierenden in der Lage sind, das 

allgemeingültige Moment in diesen Beweisformen zu erkennen58. Um ein ‚ganzheitliches‘ Bild des 

Verständnisses dieser Beweisformen bei den Studierenden abstrahieren zu können, werden auch die 

Aspekte „Sicherung der Gültigkeit“, „subjektive Überzeugung“ und „Erklärungspotential“ betrachtet. 

Zusammengefasst wird durch diese Aspekte das Konstrukt der ‚Beweisakzeptanz‘ erfasst. In Bezug 

auf die zu erfassende Beweiskompetenz der Studierenden zu Beginn der Lehrveranstaltung ergibt 

sich die folgende Forschungsfrage: 

• Forschungsfrage [3]: Wie lassen sich die Kompetenzen der Studierenden im Kontext der 

Thematik des ‚Begründens und Beweisens‘ zu Beginn der Lehrveranstaltung beschreiben? 

a) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden 

in ihrem ersten Hochschulsemester und den Studierenden in einem höheren 

Semester ausmachen? 

Für die Beantwortung der Forschungsfrage [3] sollen die folgenden Leitfragen zur Auswertung als 

Richtlinien dienen: 

o Leitfrage zur Auswertung [16]: Wie begründen die Studierenden zu Beginn der 

Lehrveranstaltung, wenn sie einen Sachverhalt der elementaren Arithmetik verifizieren 

sollen, und welche charakteristischen Fehler im Umgang mit Variablen lassen sich dabei 

feststellen? 

a) Inwiefern lassen sich dabei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

o Leitfrage zur Auswertung [17]: Welche Begründungsformen („narrativ und korrekt“, 

„empirisch-induktiv“, „formal und falsch“, „korrekt mit Variablen“) werden von den 

Studierenden zu Beginn der Lehrveranstaltung als „richtiger Beweis“ bewertet?  

a) Welche dieser Begründungsformen kommt nach Angabe der Studierenden ihrem 

potentiellen eigenen Ansatz am nächsten? 

b) Welche Begründungsform hätte nach Angabe der Studierenden durch ihren 

Mathematiklehrer in der Oberstufe die beste Note erhalten? 

                                                           
57

 Somit werden an dieser Stelle die Begründungsformen und Fragen aus der Studie von Healy und Hoyles 

(1998) aufgegriffen (s. Abschnitt 3.3.2). 
58

 Aus diesem Grund wird der Aspekt der „Beweisakzeptanz“ auch unter die Kompetenzaspekte gefasst. Die 

Akzeptanz der Allgemeingültigkeit korrekter beispielgebundener Beweise (hier generischer Beweise) wird hier 

als Kompetenz betrachtet, die die Studierenden herausbilden sollen. 
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c) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in 

ihrem ersten Hochschulsemester und den Studierenden in einem höheren Semester 

ausmachen? 

o Leitfrage zur Auswertung [18]: Wie bewerten die Studierenden die vier Beweisformen der 

Lehrveranstaltung zu Beginn der Lehrveranstaltung in Bezug auf die Aspekte „Sicherung der 

Gültigkeit“, „subjektive Überzeugung“, „Erklärungspotential“ und „Allgemeingültigkeit“? 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

 

o Leitfrage zur Auswertung [19]: Wie lässt sich die Beweisakzeptanz der Studierenden zu den 

vier Beweisformen der Lehrveranstaltung zu Beginn der Lehrveranstaltung (bzw. zu Beginn 

ihres Studiums) beschreiben?  

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Neben den Vorerfahrungen der Studierenden und den aufgeführten Beweiskompetenzen ist es auch 

entscheidend, welche Einstellungen die Studierenden zur Thematik ‚Begründen und Beweisen‘ und 

zur Mathematik allgemein zu Beginn der Lehrveranstaltung aufweisen. Unter dieser Perspektive von 

‚Einstellungen‘ sind die folgenden Facetten von Interesse: die Einstellungen der Studierenden zur 

Bedeutung des Lerngegenstandes ‚Beweisen‘ für die Schulmathematik, die Einstellung der 

Studierenden zum Beweisen an sich und die Einstellungen der Studierenden zur Mathematik. Somit 

ergibt sich die folgende Forschungsfrage: 

• Forschungsfrage [4]: Wie lassen sich die Einstellungen der Studierenden zur Thematik des 

Beweisens und zur Mathematik zu Beginn der Lehrveranstaltung beschreiben? 

a) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in 

ihrem ersten Hochschulsemester und den Studierenden in einem höheren Semester 

ausmachen? 

Für die Beantwortung der Forschungsfrage [4] sollen die folgenden Leitfragen zur Auswertung als 

Richtlinien dienen: 

o Leitfrage zur Auswertung [20]: Wie bewerten die Studierenden die Relevanz des 

Unterrichtsgegenstandes „Beweis“ für verschiedene Schultypen und Schulstufen zu Beginn 

der Lehrveranstaltung? 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

o Leitfrage zur Auswertung [21]: Wie bewerten die Studierenden ‚gängige‘ Gründe, warum 

Beweise im schulischen Mathematikunterricht eine eher untergeordnete Rolle spielen 

sollten, zu Beginn der Lehrveranstaltung? 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

o Leitfrage zur Auswertung [22]: Wie bewerten die Studierenden Aussagen zu motivationalen 

Aspekten zum Beweisen zu Beginn der Lehrveranstaltung?  

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und Studierenden in einem höheren Semester ausmachen? 
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o Leitfrage zur Auswertung [23]: Wie lässt sich die Beweisaffinität der Studierenden zu Beginn 

der Lehrveranstaltung beschreiben?  

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

o Leitfrage zur Auswertung [24]: Wie schätzen die Studierenden zu Beginn der 

Lehrveranstaltung ihre eigene Motivation zum Erlernen verschiedener Aspekte der 

mathematischen Beweisaktivität ein?  

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

o Leitfrage zur Auswertung [25]: Welche Einstellungen zur Mathematik können bei den 

Studierenden zu Beginn der Lehrveranstaltung in welchem Maß ausgemacht werden? 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem 

ersten Hochschulsemester und den Studierenden in einem höheren Semester 

ausmachen? 

Bevor die einzelnen Forschungsfragen beantwortet werden, gilt es zunächst, die hier betrachteten 

Studierenden näher zu beschreiben. Neben der Gesamtgruppe werden im Folgenden auch die 

Subgruppen Studierende in ihrem ersten Hochschulsemester („Erstsemester“) und Studierende in 

einem höheren Semester („Höhere Semester“) betrachtet. Dazu ist es nötig, die Subgruppen auf ihre 

Zusammensetzung und mögliche charakteristische Unterschiede hin zu untersuchen, um spätere 

Ergebnisse besser einordnen und speziell die Wirkung der Vorlesung differenziert nach den 

Subgruppen erörtern zu können. 

7.2.2 Ergebnisse bzgl. der Zusammensetzungen der Studierenden 

Die folgenden Auswertungen beziehen sich auf alle Studierenden, die an der Eingangsbefragung 

teilgenommen haben (N = 149). Darüber hinaus werden auch die Subgruppen Studierende in ihrem 

ersten Hochschulsemester („Erstsemester“) [n = 71] und Studierende in einem höheren Semester 

(„Höhere Semester“) [n = 78]59 betrachtet.  

Alter und Jahr der Hochschulzugangsberechtigung 

Bei der Gesamtstichprobe der Eingangsbefragung liegt das mittlere Alter bei 21,14 Jahren (SD = 

2,938; Median = 20), der Median bei dem Jahr der Hochschulzugangsberechtigung bei 2013 (SD = 

2,575). In der Abbildung 56 werden die Verteilungen der beiden Merkmale dargestellt. 

                                                           
59

 In dieser Gruppe befinden sich 27 Studierende, die die Lehrveranstaltung bereits einmal besucht haben, und 

51 weitere Studierende, die sich wie folgt zusammensetzen: Drei Personen mit einem abgeschlossenen 

Studium (Bachelor of Commerce, Diplomfinanzwirt und Wirtschaftsinformatik), 26 Personen, die den 

Studiengang gewechselt haben (Lehramt Mathematik für Gymnasium und Gesamtschule [14], 

Wirtschaftsingenieurwesen [2], Wirtschaftswissenschaften [4], Mathematik Bachelor [2], Physik Bachelor [1], 

Rechtswissenschaften [1], Lehramt Primarstufe [1] und Lehramt Mathematik für Berufskolleg [1]), 11 

Studierende, die die Lehrveranstaltung erst in einem späteren Semester besuchen, und 11 Studierende, die zu 

ihrem höheren Hochschulsemester keine Angaben machen. 
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Bezüglich der Subgruppen erhalten wir die folgenden Ergebnisse:  

 N M Median SD 

Erstsemester  70 19,73 19 1,693 

Höhere Semester 78 22,40 22 3,241 

Gesamt 148 21,14 20 2,938 

Tabelle 22:  Ergebnisse bzgl. des Merkmals „Alter“ (Alle und Subgruppen) 

 N Median 

Erstsemester  71 2014 

Höhere Semester 77 2012 

Gesamt 148 2013 

Tabelle 23: Ergebnisse bzgl. des Merkmals „Jahr der Hochschulzugangsberechtigung“ (Alle und Subgruppen) 

Entsprechend der Semesteranzahl sind die Erstsemesterstudierenden im Durchschnitt jünger. Mit 

dem Median 2014 für das Jahr der Hochschulzugangsberechtigung liegt deren Schulabschluss auch 

weniger weit zurück als bei den anderen Studierenden. Die größeren Standardabweichungen in der 

Gruppe der „höheren Semester“ bezüglich des Alters verdeutlichen die Heterogenität dieser 

Subgruppe. 

Geschlecht 

Von den Teilnehmern der Eingangsbefragung sind 37% männlich und 63% weiblich. In der Tabelle 24 

werden die prozentualen Verteilungen des Merkmals „Geschlecht“ wiedergegeben. Dabei lassen sich 

keine statistisch signifikanten Unterschiede des Merkmals „Geschlecht“ in Bezug auf die 

betrachteten Subgruppen ausmachen (Chi²-Test). 

 N männlich [%]  weiblich [%] 

Erstsemester  71 39 61 

Höhere Semester  78 35 65 

Gesamt 149 37 63 

Tabelle 24: Prozentuale Verteilung des Merkmals „Geschlecht“ (Alle und Subgruppen) 

Im Geschlechtervergleich können keine nennenswerten Unterschiede bzgl. der Merkmale „Alter“ und 

„Jahr der Hochschulzugangsberechtigung“ ausgemacht werden (vgl. Tabelle 25). 

 Geschlecht 

männlich weiblich 

N M Median SD N M Median SD 

Alter 55 21,33 20 3,031 93 21,02 20 2,893 

Jahr der HZB 55 2012,49 2013 2,387 93 2012,53 2013 2,693 

Tabelle 25: Vergleich der Merkmale „Alter“ und „Jahr der Hochschulzugangsberechtigung“ mit dem Merkmal 
„Geschlecht“ 

Abbildung 56: Verteilungsdiagramme für die Merkmale „Alter“ und „Jahr der Hochschulzugangsberechtigung“ 
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Art der Hochschulzugangsberechtigung 

98,7% der Teilnehmenden haben die allgemeine Hochschulreife. An sonstigen Nennungen wurden 

einmal die Fachoberschulreife und einmal Matric, ein Abschluss der südafrikanischen Highschool, 

genannt. 

Letzter schulischer Mathematikkurs 

Die Betrachtung des letzten schulischen Mathematikkurses ist für die Beschreibung der 

Teilnehmenden daher von Bedeutung, als die mathematische Vorbildung und fachspezifische 

Sozialisation hierdurch beeinflusst werden. Auch wird durch entsprechende Kenntnisse die 

Bedeutung der letzten Mathematiknote (s.u.) relativiert. 

Betrachtet man alle Teilnehmenden, so haben 52,7% einen Leistungskurs und 46,6% einen Grundkurs 

besucht (s. Tabelle 26). Die Nennung unter „Sonstige“ ist „mathematics SG“, eine südafrikanische 

Kursbezeichnung. Zwischen den Subgruppen lassen sich keine signifikanten Unterschiede ausmachen 

(Chi²-Test). 

 N Leistungskurs [%] Grundkurs [%] Sonstige [%] 

Erstsemester  70 50 50 --- 

Höhere Semester  78 55,1 43,6 1,3 

Gesamt 148 52,7 46,6 0,7 

Tabelle 26:  Prozentuale Verteilung des letzten schulischen Mathematikkurses (Alle und Subgruppen) 

In der Tabelle 27 wird die Verteilung der Geschlechter unterteilt nach Subgruppen auf die 

schulischen Mathematikkurse (Leistungskurs/Grundkurs) dargestellt. Auch hier lassen sich keine 

signifikanten Unterschiede in Bezug auf den letzten schulischen Mathematikkurs ausmachen (Chi²-

Test). Im Vergleich der Subgruppen ist dabei auffällig, dass bei den weiblichen Studierenden im 

ersten Semester 45,2% einen Leistungskurs und 54,8% einen Grundkurs besucht haben, bei den 

weiblichen Studierenden in einem höheren Semester die Anteile dagegen bei 58% und 42% liegen. 

Eine Erklärung für dieses Phänomen kann an dieser Stelle allerdings nicht ausgemacht werden.  

  N Leistungskurs [%] Grundkurs [%] 

Erstsemester 

 

weiblich 42 45,2 54,8 

männlich 28 57,1 42,9 

Höhere Semester 

 

weiblich 50 58 42 

männlich 27 51,9 48,1 

Gesamt 

 

weiblich 92 52 48 

männlich 55 55 45 

Tabelle 27:  Prozentuale Verteilung der Geschlechter auf die schulischen Mathematikkurse (Alle und Subgruppen) 

Leistungsbezogene Daten: Abiturnote und Note aus dem letzten schulischen Mathematikkurs in 

Punkten 

Betrachtet man die Gesamtgruppe, so liegt der Mittelwert der Abiturnote bei 2,86 (Median: 3, SD = 

0,47). In Abbildung 57 wird die entsprechende Verteilung dargestellt.  
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Bezüglich des Merkmals „Abiturnote“ ist in den Subgruppen die Homogenität der Varianzen gegeben 

(Levene-Test nicht signifikant), der Mittelwert der Abiturnote der Erstsemester liegt mit 2,97 

statistisch hoch signifikant über dem der restlichen Studierenden mit 2,764 (t-Test; p=0,01 bei einer 

kleinen bis mittleren Effektstärke von Cohens d=0,44).  

 N M Median SD 

Erstsemester  67 2,97 3,1 0,4223 

Höhere Semester 77 2,77 2,9 0,4912 

Gesamt 144 2,86 3,0 0,4697 

Tabelle 28: Ergebnisse des Merkmals „Abiturnote“ (Alle und Subgruppen) 

 

 

 

 

 

 

 

Betrachtet man in der Gesamtstichprobe die letzte schulische Mathematiknote auf der Punkteskala 

„0“ (mangelhaft) bis „15“ (sehr gut), so liegt der Mittelwert bei 9,19 Punkten (Median: 9, SD = 2,621). 

Dieses Ergebnis ist daher erstaunlich, da sich diese Studierenden für das Fachstudium Mathematik 

für Lehramt an Haupt-, Real und Gesamtschulen entschieden haben. 

  

 

 

 
 

 

 

 

Abbildung 57: Verteilung des Merkmals „Abiturnote“ in der Gesamtstichprobe 

Abbildung 58: Boxplot zur Verteilung des Merkmals 
„Abiturnote“ (Subgruppen) 

Abbildung 59:Verteilung des Merkmals „Letzte schulische Mathematiknote“ bzgl. der Gesamtstichprobe 
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Die Ergebnisse der Subgruppen werden in Tabelle 29 dargestellt. Bezüglich der letzten schulischen 

Mathematiknote ist bei den Subgruppen die Homogenität der Varianzen gegeben (Levene-Test nicht 

signifikant), der Mittelwert der schulischen Mathematiknote der Erstsemester liegt mit 8,54 hoch 

signifikant unter dem der restlichen Studierenden mit 9,80 (t-Test; p=0,004 mit einer mittleren 

Effektstärte von Cohens d=0,5).  

 N M Median SD 

Erstsemester  69 8,54 9 2,368 

Höhere 75 9,80 10 2,711 

Insgesamt 144 9,19 9 2,621 

Tabelle 29: Ergebnisse des Merkmals „Letzte schulische Mathematiknote“ (Alle und Subgruppen) 

 

 

  

 

 

 

 

Die schlechteren Ergebnisse in der Subgruppe der Erstsemester bezüglich der Note im Abitur und der 

letzten schulischen Mathematiknote lassen sich dahingehend deuten, dass bei den Studierenden in 

einem höheren Semester vermutlich bereits ein Selektionsprozess innerhalb des Studiums 

stattgefunden hat. Dieser steht den Studierenden im ersten Semester erst noch bevor. Dieses 

Ergebnis kann dahingehend gedeutet werden, dass die Abiturnote für den Erfolg im Studium (bzw. im 

ersten Semester) eine gewisse Rolle spielen könnte. 

Schließlich soll hier noch betrachtet werden, ob ein Zusammenhang zwischen der letzten schulischen 

Mathematiknote und der Abiturnote nachvollzogen werden kann. Die Korrelation ist hierbei mit r=-

0,462 nur mittelmäßig hoch, wenn auch mit p<0,001 statistisch hoch signifikant auf dem 0,1%-Niveau 

(vgl. hierzu den Scatterplot in Abbildung 60). 

Weiter stellt sich die Frage, ob in Bezug auf die leistungsbezogenen Daten charakteristische 

Unterschiede zwischen den Geschlechtern auszumachen sind (vgl. Tabelle 30). Im 

Geschlechtervergleich ist bei dem Merkmal „Abiturnote“ die Homogenität der Varianzen gegeben 

(Levene-Test nicht signifikant). Der Mittelwert der Abiturnote liegt bei den Männern statistisch hoch 

signifikant auf dem 1%-Niveau über dem der Frauen (t-Test; p=0,003 bei einer mittleren Effektstärke 

von Cohens d=0,52). Der Unterschied der Mittelwerte bezüglich der letzten schulischen 

Mathematiknote ist nicht signifikant (t-Test), weist aber in dieselbe Richtung, dass die weiblichen 

Studierenden die besseren Noten hatten. 

Abbildung 60: Boxplots zur Verteilung des Merkmals 
„Letzte schulische Mathematiknote“ bezüglich der 
Subgruppen 

Abbildung 61: Scatterplot zur Veranschaulichung des 
Zusammenhangs zwischen den Merkmalen „Letzte 
schulische Mathematiknote“ und „Note im Abitur“ 
(Alle). 
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 Geschlecht 

männlich weiblich 

N M Median SD N M Median SD 

Note Abi 55 3,005* 3,1 0,3739 89 2,767* 2,9 0,5009 

Note Mathe 55 8,82 9 2,763 89 9,43 9 2,518 

Tabelle 30: Vergleich der Merkmale „Alter“ und „Jahr der Hochschulzugangsberechtigung“ mit dem Merkmal 
„Geschlecht“ (Alle) 

Teilnahme an einem Vorkurs 

Bei der Durchführung eines Eingangstests zu Beginn des Studiums ist es wichtig, ob die 

Teilnehmenden zuvor einen Mathematikvorkurs besucht haben; neben der Schulbildung kann auch 

ein Vorkurs entscheidenden Einfluss auf das Vorwissen der Studierenden haben. 

Insgesamt haben 40,1% der Studierenden an einem Mathematikvorkurs teilgenommen. In der 

Tabelle 31 werden die Ergebnisse bzgl. der Subgruppen dargestellt. 

 Teilnahme an einem Vorkurs 

 N Nein [%] Ja [%] 

Erstsemester  69 59,4 40,6 

Höhere Semester  78 60,3 39,7 

Gesamt 147 59,9 40,1 

Tabelle 31: Prozentuale Verteilung des Merkmals „Teilnahme an einem Vorkurs“ (Alle und Subgruppen) 

Hierbei muss auch betrachtet werden, an welcher Universität und an welcher Art von Vorkurs 

teilgenommen wurde60. In den Paderborner Vorkursen wurde für das Lehramt Haupt-, Real- und 

Gesamtschule in den hier in Frage kommenden Durchgängen das Themenfeld ‚Begründen und 

Beweisen‘ nicht von den Dozenten behandelt. Den Teilnehmenden stand es allerdings frei, sich 

selbstständig online mit entsprechenden Inhalten aus den verwendeten VEMINT-Lernmaterialien 

vertraut zu machen. Während in dem Präsenzkurs die Inhalte durch den Dozenten ausgewählt 

wurden, stand es den Teilnehmenden des E-Kurses frei, sich ihre Lerninhalte selbst auszuwählen. 

Allerdings wurden die entsprechenden Lernmodule zu der Thematik des Beweisens in den 

Lernempfehlungen nicht explizit empfohlen. 

Alle 28 Erstsemesterstudierenden, die an einem Vorkurs teilgenommen haben, taten dies an der 

Universität Paderborn, wobei der Präsenzkurs von 46,4% und der E-Learningkurs von 53,6% besucht 

wurde. Bei den 30 Studierenden in einem höheren Semester, die einen Vorkurs besucht haben, taten 

dies 29 in Paderborn (P-Kurs: 76,7% und E-Kurs 20%), nur ein Student besuchte einen Vorkurs an 

einer anderen Universität. Es ist in dieser Gruppe möglich, dass einzelne Studierende an dem Vorkurs 

für gymnasiales Lehramt teilgenommen haben und sich dadurch ihr Vorwissen zum Begründen und 

Beweisen erweitert hat. Allerdings trägt dieses Phänomen nur weiter zu der auch oben aufgezeigten 

sehr heterogenen Zusammensetzung dieser Subgruppe bei, sie wird nicht hierdurch konstituiert. 

 N P-Kurs [%] E-Kurs [%] Vorkurs nicht in Paderborn [%] 

Erstsemester  28 46,4 53,6 0 

Höhere Semester 30 76,7 20 3,3 

Gesamt 58 62,1 36,2 1,7 

Tabelle 32: Prozentuale Verteilung der Teilnahme an den Vorkursvarianten (Alle und Subgruppen) 

                                                           
60

 An der Universität Paderborn werden die Mathematikvorkurse im Rahmen des VEMINT-Projekts 

(www.vemint.de) durchgeführt. Die Teilnehmenden können sich hierbei zwischen einer E-Learning-Variante 

(„E-Kurs“) und einer Präsenzvariante („P-Kurs“) entscheiden. Beide Kursvarianten sind Blended-Learning-

Szenarien und unterscheiden sich hinsichtlich der Gewichtung der Präsenz- und E-Learning-Anteile. 
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Teilnahme an einem Mathematikwettbewerb 

Da in Mathematikwettbewerben vor allem Problemlöse- und Beweisaufgaben gegeben werden, gilt 

es zu untersuchen, ob Studierende an entsprechenden Wettbewerben teilgenommen haben. Dies 

würde ein besonderes Training im Problemlösen und Beweisen implizieren. 

Insgesamt haben 29,5% der Studierenden bereits an einem Mathematikwettbewerb teilgenommen. 

In der Tabelle 33 werden die Verteilungen nach Subgruppen angegeben. 

 N Teilnahme an einem Mathematikwettbewerb 

Nein [%] Ja [%] 

Erstsemester  70 70 30 

Höhere Semester 76 71,1 28,9 

Gesamt 146 70,5 29,5 

Tabelle 33: Prozentuale Verteilung des Merkmals „Teilnahme an einem Mathematikwettbewerb“ (Alle und Subgruppen) 

Bezüglich der Teilnahme an Mathematikwettbewerben lassen sich keine signifikanten Unterschiede 

zwischen den Subgruppen ausmachen (Chi²-Test). 

Zusammenfassend lässt sich an dieser Stelle festhalten, dass 98,7% der betrachteten Studierenden 

die allgemeine Hochschulreife besitzen. Die eher als moderat zu bezeichnenden Ergebnisse bzgl. der 

Abiturnote (arithmetisches Mittel: 2,86 und Median: 3) und der letzten schulischen Mathematiknote 

in Punkten (arithmetisches Mittel: 9,19 und Median: 9) sind hierbei bemerkenswert.  

Bei der Betrachtung der Subgruppen konnte gezeigt werden, dass die Erstsemesterstudierenden im 

Durchschnitt (statistisch signifikant) schlechtere Ergebnisse in der Abiturnote und in der letzten 

schulischen Mathematiknote aufweisen, was vermutlich auf eine erfolgte Selektion bei den 

Studierenden in einem höheren Semester zurückzuführen ist. Keine (statistisch) signifikanten 

Unterschiede konnten an dieser Stelle bzgl. der Merkmale „Geschlecht“, „Schulischer 

Mathematikkurs“, „Vorkursteilnahme“ und „Teilnahme an einem Mathematikwettbewerb“ 

nachgewiesen werden. Somit können die Unterschiede der Leistungsmerkmale in den Subgruppen 

nicht durch unterschiedliche Verteilungen dieser Merkmale relativiert werden. 

Schließlich kann vermutet werden, dass die Beweisvorstellungen und die Kompetenzaspekte zur 

Thematik des Beweisens mindestens bei den Studienanfängern nicht in einem beachtenswerten 

Maße durch die Teilnahmen an Vorkurs oder Mathematikwettbewerben beeinflusst wurden. 

7.2.3 Ergebnisse bzgl. der Vorerfahrungen der Studierenden mit Beweisen aus ihrer Schulzeit 

Bzgl. der Vorerfahrungen der Studierenden mit Beweisen aus ihrer Schulzeit wurden die folgenden 

Aspekte untersucht: (i) die Anzahl kennengelernter und selbst entwickelter Beweise in ihrer 

Schulzeit, (ii) Sachverhalte, die nach Angaben der Studierenden in ihrer Schulzeit bewiesen worden 

sind, und (iii) ob den Studierenden die vier in der Lehrveranstaltung „Einführung in die Kultur der 

Mathematik“ verwendeten Beweisformen (generischer Beweis mit Zahlen, generischer Beweis mit 

Punktmustern, Punktmusterbeweis mit geometrischen Variablen und der formale Beweis) bereits 

aus der Schule bekannt sind. Im Folgenden werden zunächst die Ergebnisse bzgl. dieser drei Aspekte 

separat aufgeführt, bevor im Anschluss anhand der erhaltenen Ergebnisse die oben formulierte 

Forschungsfrage [5] beantwortet wird. Bei den Ergebnissen wird dabei nicht zwischen den 

Subgruppen „Erstsemester“ und „Höhere Semester“ unterschieden, da dies bei der Thematik nicht 

sinnvoll erscheint. 
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(i) Anzahl kennengelernter und selbst entwickelter Beweise in der Schulzeit 

Die Ergebnisse bzgl. der Angaben der Studierenden zu Beweisen in ihrer Schulzeit werden in der 

Abbildung 62 dargestellt.  

Für die Sekundarstufe 1 fällt auf, dass 29% der Befragten angeben, keinen Beweis kennengelernt zu 

haben. Mehr als die Hälfte (62%) der Studierenden sind insgesamt der Ansicht, höchstens zwei 

Beweise in der Sekundarstufe 1 gesehen zu haben. Für die Sekundarstufe 2 zeigt sich, dass insgesamt 

31% der Studierenden der Auffassung sind, höchstens zwei Beweise kennengelernt zu haben; 

immerhin 35% meinen drei bis fünf und noch 22% sprechen von vier bis zehn Beweisen. Die 

Unterschiede der beiden Verteilungen sind statistisch hoch signifikant auf dem 0,1%-Niveau (Chi²-

Test: p<0,001), wie auch der Unterschied der Mediane (Beweise in der Sek. 1: Median: „1–2 

Beweise“, SD=1,121; Beweise in der Sek. 2: Median: „3-5 Beweise“, SD=1,236; Wilcoxon-Test: 

p<0,001). Somit meinen die Studierenden, signifikant mehr Beweise in der Sekundarstufe 2 als in der 

Sekundarstufe 1 kennengelernt zu haben. 

Bezüglich der Eigenentwicklung von Beweisen lässt sich festhalten, dass 39% der Teilnehmenden 

angeben, in ihrer Schulzeit nie einen Beweis selbst entwickelt (gefunden und aufgeschrieben) zu 

haben. Insgesamt sind 74% der Befragten der Ansicht, in ihrer gesamten Schulzeit höchstens zwei 

Beweise selbst entwickelt haben.  

 

 

 

 

 

 

 

 

(ii) Sachverhalte, die nach Angaben der Studierenden in der Schule bewiesen worden sind 

Auf die Frage, welche mathematischen Sachverhalte in der Schule bewiesen wurden, waren die 

folgenden Nennungen die häufigsten: Satz des Pythagoras (37x), PQ-Formel (14x), Ableitungsregeln61 

(13x), Satz des Thales (8x) und die binomischen Formeln (6x). Insgesamt konnten 48 Nennungen dem 

                                                           
61

 Unter dem Begriff „Ableitungsregeln“ wurden auch all diejenigen Antworten zusammengefasst, in denen 

konkrete Ableitungsregeln genannt wurden. 

Abbildung 62: Angaben der Studierenden 
zum Vorkommen von Beweisen in ihrer 
Schulzeit (Alle, n=149) 



246 

 

Bereich der Geometrie, 19 dem Bereich der Analysis, 12 dem Bereich der Arithmetik und jeweils zwei 

der Nennungen der Linearen Algebra und der Stochastik bzw. Statistik zugeordnet werden. 

(iii) Kenntnis der vier verschiedenen Beweisformen der Lehrveranstaltung aus der Schulzeit 

In der Eingangsbefragung wurden den Studierenden vier verschiedene konkrete Beweise vorgelegt 

(ein generischer Beweis mit Zahlen, ein generischer Beweis mit Punktmustern, ein 

Punktmusterbeweis mit geometrischen Variablen und ein formaler Beweis), die sie für die Erfassung 

von ‚Beweisakzeptanz‘ anhand verschiedener Items bewerten sollten. Dabei sollten die Studierenden 

auch angeben, ob ihnen diese Begründungsform aus ihrer Schulzeit bekannt ist. Die konkreten 

Beweisprodukte, bzgl. derer die Studierenden die Bewertungen vornehmen sollten, wurden in 

Abschnitt 3.3.3 angegeben.  

Die Ergebnisse bzgl. der Angaben der Studierenden, ob ihnen diese Begründungsformen aus ihrer 

Schulzeit bekannt sind, werden in der Tabelle 34 angegeben. Beachtenswert erscheinen dabei 

insgesamt die niedrigen Werte der Zustimmungen. 

  GenZ GenP GV FB 

Alle 

n 121 127 122 126 

Anteil "ja" [%] 20,7 14,2 5,7 51,6
62

 

Tabelle 34: Prozentuale Anteile der Antworten „ja“ bzgl. der Frage, ob die jeweilige Begründungsform den Studierenden 
bereits aus der Schule bekannt ist (Alle) [„GenZ“: generischer Beweis mit Zahlen, „GenP“: generischer Beweis mit 
Punktmustern, „GV“: Beweis mit geometrischen Variablen, „FB“: formaler Beweis] 

Für die Beantwortung der Forschungsfrage [2] werden im Folgenden die erhaltenen Ergebnisse aus 

Abschnitt 7.2.3. zusammenfassend ausgewertet. 

Beantwortung der Forschungsfrage [2]: Wie lassen sich die Vorerfahrungen der Studierenden mit 

Beweisen aus ihrer Schulzeit beschreiben? 

Die Studierenden hatten nach eigenen Angaben in ihrer Schulzeit insgesamt nur wenig Kontakt mit 

Beweisen. Für den Zeitraum der Sekundarstufe 1 sind 62% der Studierenden der Ansicht, höchstens 

zwei Beweise kennengelernt zu haben. Für den Zeitraum der Sekundarstufe 2 geben 31% der 

Studierenden an, höchstens zwei Beweise kennengelernt zu haben, 35% meinen drei bis fünf, 22% 

vier bis zehn Beweise. Es zeigt sich, dass die Studierenden hier angeben, (statistisch signifikant) mehr 

Beweise in der Sekundarstufe 2 als in der Sekundarstufe 1 kennengelernt zu haben.  

39% der Studierenden haben nach eigenen Angaben in ihrer Schulzeit nie einen Beweis selbst 

entwickelt (gefunden und aufgeschrieben), von höchstens zwei Beweisen sprechen insgesamt 74%. 

Dabei muss kritisch angemerkt werden, dass die von den Studierenden angegebenen Anzahlen nicht 

mit der tatsächlichen Anzahl von vorgekommenen Beweisen im Schulunterricht gleichgesetzt werden 

können. Auch müssen die Ergebnisse vor dem Hintergrund relativiert werden, dass nicht mit 

                                                           
62 Bei der Zustimmung bzgl. des formalen Beweises (insgesamt 51,6%) ist der Unterschied in den Subgruppen 

(Erstsemester: 67,8% und Höhere Semester: 37,3%) statistisch hoch signifikant (Chi²-Test, p<0,001). Dieser 

Unterschied kann dahingehend interpretiert werden, dass sich bei den „Höheren Semestern“ ein Verständnis 

von formalen Beweisen herausgebildet hat, welches sich von den in der Schule kennengelernten formalen 

Beweisen unterscheidet. 
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Sicherheit gesagt werden kann, was von den Studierenden unter einem ‚Beweis‘ verstanden wird. Bei 

den Ergebnissen bzgl. der Akzeptanz der verschiedenen Beweisformen (vgl. Abschnitt 7.2.4) wird 

deutlich werden, dass Begründungsformen ohne formale Darstellungen von den Studierenden eher 

nicht als (korrekte und richtige) Beweise betrachtet werden. Die erhaltenen Ergebnisse lassen 

allerdings einen Aufschluss darüber zu, welche Rolle das Beweisen in der Schule nach den 

Erinnerungen der Studierenden gespielt hat.  

Diese Ergebnisse entsprechen den Ergebnissen von Hemmi (2006), in deren Studie 59% (n=168) der 

finnischen Studienanfängerinnen und -anfänger angaben, in der Oberstufe („upper secondary 

school“) höchstens ein- oder zweimal in einem Schulhalbjahr („term“) Beweise selbst konstruiert zu 

haben (ebd., S. 132f.). Allerdings meinte in der Studie von Hemmi gut die Hälfte der Studierenden, 

dass ihr Mathematiklehrer in der Oberstufe mindestens einmal in der Woche einen Sachverhalt 

bewiesen habe (ebd., S. 128f.). Diese Diskrepanz könnte dabei mit dem Fragenformat 

zusammenhängen, da in der Studie von Hemmi (2006) kürzere Zeitintervalle besprochen wurden 

(„jede Stunde“, „einmal die Woche“, …), in der vorliegenden Studie aber die gesamte 

Sekundarstufenzeit in den Blick genommen wurde. 

Bei den Nennungen von Sachverhalten, die in der Schule bewiesen wurden, wurde deutlich, dass der 

Bereich der Geometrie am stärksten mit dem Beweisen verbunden zu sein scheint: Der Satz des 

Pythagoras wird mit 39 Nennungen deutlich am häufigsten genannt, der Satz des Thales noch 

achtmal. Dieses Resultat entspricht den Ergebnissen von Mingus (1999, S. 439). Die nächst 

häufigeren Nennungen waren hierbei die PQ-Formel (14x), Ableitungsregeln (13x) und die 

binomischen Formeln (6x). Interessant erscheint dabei der Gegensatz zum obigen Ergebnis, dass 

nach Angaben der Studierenden in der Sekundarstufe 2 (signifikant) mehr Beweise thematisiert 

wurden als in der Sekundarstufe 1. Die am häufigsten genannten Sachverhalte sind allerdings fast 

ausschließlich der Sekundarstufe 1 zuzuordnen. Hierfür lassen sich zwei mögliche Erklärungen 

anführen: Zunächst kann mit dem Prädikat „Beweis“ ein höherer mathematischer Anspruch 

verbunden sein, wodurch diese Begrifflichkeit intuitiv eher den höheren Schulstufen zugewiesen 

wird. Zudem könnten Sachverhalte wie der Satz des Pythagoras oder die PQ-Formel als schulische 

Prototypen für das Beweisen gesehen werden, welche den Studierenden zunächst im Kontext des 

Beweisens in den Sinn kommen. Interessanterweise fehlen bei den Nennungen zentrale Sätze der 

Oberstufenmathematik, wie der Hauptsatz der Differential- und Integralrechnung. Es muss dabei 

angemerkt werden, dass die Nichtnennung von Inhalten natürlich nicht bedeutet, dass diese in der 

Schulzeit wirklich nicht bewiesen wurden. 

Geht man von den aufgeführten häufigsten Nennungen bzgl. bewiesener Sachverhalte aus, so lässt 

sich auch in einem gewissen Maße abstrahieren, welche Aktivitäten die Studierenden mit dem 

Begriff ‚Beweisen‘ assoziieren. In der Schulgeometrie sind Beweise auf verschiedenen Niveaustufen 

bzw. auf verschiedenen Stufen der Strenge führbar (vgl. etwa Holland 1996, S. 51ff. oder Hefendehl-

Hebeker und Hußmann 2003, S. 99ff.), die Argumentationen verlaufen hierbei häufig im Wechselspiel 

mit einer ‚Beweisfigur‘. Beinhalten die Beweise zu den aufgeführten geometrischen Sätzen 

deduktives Schließen, so werden die Beweise der genannten algebraischen Zusammenhänge durch 

Termumformungen konstituiert. Der Beweis von algebraischen Zusammenhängen, wie etwa den 

binomischen Formeln, besteht nicht aus explizit deduktiven Schlüssen, sondern aus sinnvoll 

angewendeten Termumformungen (vgl. den Begriff des „manipulative proof“ in Tall 1995, S. 34). 

Dabei werden keine innermathematischen Argumente (Sätze o. ä.) benutzt, die über zulässige 

algebraische Operationen hinausgehen. Die am häufigsten genannten Sachverhalte, die nach 



248 

 

Auskunft der Studierenden in der Schule bewiesen worden sind, verlangen folglich Beweisaktivitäten 

wie (schlichte) Termumformungen und die Nutzung mathematischer Sätze bzgl. ‚konkreter 

geometrischer Objekte‘ (Gerade, Winkel, …) in Verbindung mit einer Beweisfigur. Wie und auf 

welchem fachmathematischen Niveau die verschiedenen Ableitungsregeln in der Sekundarstufe 2 

bewiesen wurden, muss hier offen gelassen werden. Beweise in traditionellen 

Erstsemesterveranstaltungen der Mathematik basieren dagegen auf anderen Aktivitäten, wie der 

Operationalisierung von Definition, der Nutzung mathematischer Sätze bzgl. abstrakter Objekte und 

deduktives Schließen (etwa Selden & Selden 2015).  

Bei den Angaben der Studierenden, welche Begründungsformen ihnen aus ihrer Schulzeit bekannt 

sind, zeigt sich, dass nur etwa die Hälfte der Studierenden im Fall des formalen Beweises zustimmen. 

Die Zustimmungen zu den anderen Begründungsformen fallen noch deutlich niedriger aus (s.o.). 

Interessanterweise geben die Studierenden an, dass ihnen die Begründungsformen, die in der 

Literatur gerade als schuladäquate Begründungsformen aufgeführt werden (etwa Leiß & Blum 2006, 

S. 33ff.; Leuders 2010, S. 53; Meyer & Prediger 2009; Ufer & Kramer 2015, S. 86ff.), noch deutlich 

weniger bekannt sind als der formale Beweis. An dieser Stelle muss angemerkt werden, dass die 

Bewertungen auch mit den konkret angegebenen Beweisen zusammenhängen und die Angaben der 

Studierenden folglich nicht direkt auf die generelle Begründungsform zurückgespiegelt werden 

können; die generelle (starke) Tendenz der Ergebnisse verbleibt aber. 

Insgesamt werden somit große Diskrepanzen zwischen der Mathematik der Schule und der 

Hochschule deutlich: Spielten Beweise in der Schule eine eher untergeordnete Rolle, werden sie in 

der Hochschulmathematik zu einem zentralen mathematischen Werkzeug; auch verändern sich die 

Aktivitäten, die die Beweise konstituieren. Es muss festgehalten werden, dass die 

Studienanfängerinnen und -anfänger in ihrem schulischen Mathematikunterricht anscheinend keine 

Möglichkeiten hatten, ein Verständnis von ‚Beweisen‘ aufzubauen, das dem an einer Universität 

entspricht. 

7.2.4 Ergebnisse bzgl. der Kompetenzaspekte zum Beweisen 

Die in diesem Abschnitt thematisierten Kompetenzaspekte zum Beweisen betreffen die Bereiche 

„Begründungskonstruktion“, „Beweisbewertung“ und „Beweisakzeptanz“. 

7.2.4.1 Qualität der Begründung 

In der Eingangsbefragung sollten die Studierenden die folgende Aufgabenstellung bearbeiten: 

Die Summe 11 + 17 ist eine gerade Zahl. 

Gilt dies für jede Summe von zwei beliebigen ungeraden Zahlen? 

 - Begründen Sie überzeugend. 

Im Kontext dieser Aufgabe wurden die Bearbeitungen der Studierenden im Hinblick auf die Qualität 

der Begründung untersucht („Wie ‚gut‘ wird begründet?“) und die verschiedenen Begründungsarten 

(„Wie wird begründet?“) und charakteristischen Fehler im Umgang mit Variablen herausgearbeitet. 

Die Entwicklung des für die Bewertung verwendeten Kategoriensystems wurde bereits in Abschnitt 

3.3.1 dargestellt. Im Folgenden werden die verwendeten Kategorien benannt, erläutert und mit 

entsprechenden Ankerbeispielen illustriert. 
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Name Beschreibung Ankerbeispiel 

(Wörtliche Zitate aus Bearbeitungen 

der Studierenden) 

K0: Keine 

Begründung 

Die Aufgabe wird bearbeitet, ohne dass ein Beleg 

oder ein Grund für die Gültigkeit angegeben wird. 

 

Ja. 

K1: Empirisch Beispiele werden - ohne weitere (deduktive) 

Begründung - als Beleg für die allgemeine Gültigkeit 

der Behauptung angeführt. 

Ich habe die Aussage mit anderen 

Zahlen ausprobiert: 

3 + 3 = 6 gerade 

7 + 5 = 12 gerade 

13 + 7 = 20 gerade 

 

Die Summe von zwei beliebigen 

ungeraden Zahlen ist immer gerade. 

K2: Pseudo Die genannten Begründungen bestehen aus 

Zirkelschlüssen, sind redundant, unpassend oder 

sachlich falsch. 

Ja, es gilt für jede Summe von zwei 

beliebigen ungeraden Zahlen, weil sie 

immer durch 2 teilbar ist. 

K3: Fragmentarisch Es werden relevante Aspekte benannt, die allerdings 

nicht für eine Begründung genutzt werden. 

Eine ungerade Zahl kann als 2� + 1 

dargestellt werden. 

K4: Argumentation 

mit Lücke 

Es wird eine korrekte mathematische Argumentation 

gegeben, welche allerdings eine Lücke enthält, so 

dass die Ausgangsbehauptung nicht allgemeingültig 

verifiziert wird.  

 

Ja, weil eine ungerade Zahl durch 

2� + 1 dargestellt wird und  


2� + 1� +	
2� + 1� = 2 ∙ 
2� + 1� 
gerade ist. 

K5: Vollständige 

Argumentation 

Die Gültigkeit der Behauptung wird deduktiv mithilfe 

valider mathematischer Argumente hergeleitet. 

 

Eine ungerade Zahl lässt sich darstellen 

als 2� + 1 mit  n (	ℕl.  

2� + 1� + 
2� + 1� = 2� + 2� + 2	
= 2
� + � + 1� 

Also ist das Ergebnis eine gerade Zahl. 

Tabelle 35: Das Kategoriensystem zur Erfassung der „Qualität der Begründung“ mit Erläuterungen und Ankerbeispielen 

Ergebnisse 

Beantwortung der Leitfrage zur Auswertung [16]: Wie begründen die Studierenden zu Beginn der 

Lehrveranstaltung, wenn sie einen Sachverhalt der elementaren Arithmetik verifizieren sollen, und 

welche charakteristischen Fehler im Umgang mit Variablen lassen sich dabei feststellen? Und: 

a) Inwiefern lassen sich dabei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 
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Abbildung 63: Prozentuale Verteilung der Ergebnisse der „Qualität der 
Begründung“ in der Eingangsbefragung (Alle und Subgruppen) 

Qualität der Begründung [%] – Eingangsbefragung  

(Alle und Subgruppen) 

12,7%
8,1% 8,7%

25,5%

2,7%

22,8% 19,5%

n.b. keine
Begründung

emp. pseudo frag. Arg. mit
Lücke

vollst. Arg.

Alle (n=149)

19,6%
14,1% 14,1%

32,4%

1,4%
8,5% 9,9%

n.b. keine
Begründung

emp. pseudo frag. Arg. mit
Lücke

vollst. Arg.

Erstsemester (n=71)

6,5%
2,6% 3,8%

19,2%

3,8%

35,9%
28,2%

n.b. keine
Begründung

emp. pseudo frag. Arg. mit
Lücke

vollst. Arg.

Höhere Semester (n=78)

Ergebnisse bzgl. der Qualität der Begründungen zu Beginn der Lehrveranstaltung („Wie ‚gut‘ wird 

begründet?“) 

Die Ergebnisse bzgl. der „Qualität der Begründungen“ werden in der Abbildung 63 dargestellt. 

Beachtenswert erscheint dabei besonders, dass insgesamt nur 19,5% der Bearbeitungen als 

vollständige Argumentationen gewertet werden konnten, wobei immerhin noch 22,8% lückenhafte 

Argumentationen sind. Auffallend ist weiter der große Anteil von Pseudoantworten mit 25,5%. 

Dieses Phänomen wird bei der Betrachtung der verschiedenen Begründungsarten (s.u.) näher 

betrachtet. Bei den Erstsemesterstudierenden fallen die Anteile der rein empirischen Begründungen 

(14,1%) und der Pseudoantworten (32,4%) deutlich höher als in der Subgruppe der Höheren 

Semester aus. In der Subgruppe der Erstsemester werden nur in insgesamt 19,7% der Bearbeitungen 

überhaupt korrekte Aspekte angeführt [„frag.“ + „Arg. mit Lücke“ + „vollst. Arg.“], bei den Höheren 

Semestern liegt dieser Anteil dagegen bei 67,9%. Bemerkenswert erscheinen die niedrigen Anteile 

der vollständigen Argumentationen in den Subgruppen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vergleicht man die Ergebnisse der Subgruppen miteinander, so ist der Anteil der vollständigen 

Argumentationen bei den Studierenden in einem höheren Semester statistisch signifikant auf dem 

1%-Niveau höher als bei den Erstsemesterstudierenden bei schwacher Effektstärke (Chi²-Test, 

p=0,005; Cramers V63=0,231). Betrachtet man die Bewertungen der Qualität der Begründungen auf 

                                                           
63

 Innerhalb dieser Arbeit wird als Maß der Effektstärke bei einem Chi²-Test der Zusammenhangskoeffizient 

„Cramers V“ verwendet. Für die Werte von Cramers V gelten die folgenden Einteilungen: 

 0 8 Cramers V < 0,1: kein Zusammenhang, 0,1 8 Cramers V < 0,3: geringer Zusammenhang, 
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einer ordinalen Skala (mit den entsprechenden Werten 0 bis 5), so zeigt sich, dass in der Gruppe der 

‚Höheren Semester‘ der Median von 4 statistisch hoch signifikant auf dem 1%-Niveau über dem 

Median von 2 der Erstsemesterstudierenden liegt (Mann-Whitney-U-Test, p=0,006; hohe 

Effektstärke: Cohens d64=0,98; vgl. Abbildung 64). Die Qualität der Begründung korreliert in der 

Gesamtstichprobe leicht mit der letzten schulischen Mathematiknote (Spearman-Rho=0,278 mit 

p=0,002). Die Studierenden, die schon einmal an einem Mathematikwettbewerb teilgenommen 

haben, sind mit einem Median von 4 statistisch signifikant auf dem 5%-Niveau besser als die 

Studierenden ohne eine Teilnahme mit einem Median 2 (Mann-Whitney-U-Test, p=0,046; schwache 

Effektstärke: Cohens d=0,43). Bezüglich der Merkmale „Geschlecht“, „Schulischer Mathematikkurs“ 

und „Teilnahme am Vorkurs“ lassen sich keine signifikanten Unterschiede bzgl. der Mediane der 

„Qualität der Begründungen“ ausmachen.  

 

 

 

 

 

 

Die verwendeten Begründungsarten („Wie wird begründet?“) 

In der Betrachtung aller Bearbeitungen konnten insgesamt neun verschiedene Begründungsarten 

ausgemacht werden (A1–A9, vgl. Tabelle 36)65. Diese Begründungsarten, die teilweise korrekt und 

teilweise falsch sind, werden im Folgenden kurz erläutert, worauf die entsprechenden Verteilungen 

auf die Studierendengruppen angegeben werden.  

 

                                                                                                                                                                                     
0,3 8 Cramers V < 0,5: mittlerer Zusammenhang, 0,5 8 Cramers V < 0,7: hoher Zusammenhang und 

0,7 8 Cramers V < 1: sehr hoher Zusammenhang (vgl. Kuckartz et al. 2013, S. 98). Innerhalb der Auswertungen 

des Kapitels 7 werden die Effektstärken der durchgeführten statistischen Tests nur dann angegeben, wenn dies 

im Rahmen der jeweiligen Forschungsperspektive sinnvoll erscheint. 
64

 Im Rahmen der Auswertung der Eingangsbefragung wird als Maß für die Effektstärke beim Mann-Whitney-U-

Test auf Grund des Größenunterschieds der Subgruppen „Cohens d“ verwendet. Für die Werte von Cohens d 

gelten die folgenden Einteilungen: 0,2 8 C < 0,5: „kleine Effektstärke“, 0,5 8 C < 0,8: „mittlere Effektstärke“ 

und 0,8 < C: „starke Effektstärke“ (vgl. Cohen 1992, S. 157).  
65 Die Kategorie „induktiv“ entspricht dabei der Kategorie „empirisch“ aus dem Kategoriensystem zur Erfassung 

der Qualität der Begründung. Diese Kategorie sowie die Kategorien „Nicht bearbeitet“ und „Keine Begründung“ 

wurden in das vorliegende Kategoriensystem übernommen, damit sich die entsprechenden Prozentwerte auf 

die gleiche Grundgesamtheit beziehen. Die Kategorie der „Pseudobegründungen“ aus dem Kategorienschema 

der Qualität der Begründungen wurde hierbei in die Kategorien „Nennung des Satzes“ und „redundant, 

irrelevant, falsch“ aufgeteilt. 

Abbildung 64: Boxplots zu den Verteilungen der Ergebnisse zur 
„Qualität der Begründung“ in der Eingangsbefragung 
[„EB_Qual_Begr“] (Subgruppen) 
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 Bezeichnung Kategorienname Beschreibung 
 

n. b. Nicht bearbeitet Die Aufgabe wurde nicht bearbeitet. 

A0 Keine Begründung Es wird keine Begründung angegeben 

A1 induktiv 
Aus der Gültigkeit einzelner konkreter Beispiele wird ohne 

weitere (deduktive) Begründung auf die Gültigkeit der 

Behauptung geschlossen. 

P
se

u
d

o
-

A
rg

u
m

e
n

te
 A2 Nennung des Satzes 

Als Argument wird der Satz genannt oder paraphrasiert, dass 

die Summe zweier ungerader Zahlen immer gerade ist. 

A3 
Redundant, irrelevant, 

falsch 

Die Argumentation erfolgt mithilfe von Argumenten, die 

entweder redundant, irrelevant oder mathematisch falsch 

sind 

A
rg

u
m

e
n

ta
ti

o
n

e
n

 o
h

n
e

  

Fo
rm

al
is

ie
ru

n
g 

A4 „Abstände heben sich auf“ 

In der Argumentation wird der folgende Sachverhalt 

umschrieben: Jede ungerade Zahl hat den „Abstand“ eins zur 

vorherigen geraden Zahl. Addiert man zwei ungerade Zahlen, 

so werden auch die Abstände addiert. Somit erhält man 

immer eine gerade Summe als Ergebnis dreier gerader 

Summanden. 

A5 Betrachtung der Endziffern 

In der Argumentation wird der folgende Sachverhalt 

umschrieben: Bei der Addition von ungeraden Zahlen reicht 

es, die letzte Ziffer der Summe zu betrachten. Diese ergibt 

sich in diesem Fall aus der Summe zweier ungerader Zahlen 

zwischen 1 und 9 und ist daher immer gerade. 

A6 

Gerade und ungerade 

Zahlen (g & u) wechseln sich 

ab 

In der Argumentation wird der folgende Sachverhalt 

umschrieben: In den natürlichen Zahlen wechseln sich die 

geraden und die ungeraden Zahlen immer ab. Die Addition 

von zwei ungeraden Zahlen kann man nun so interpretieren, 

dass ich auf dem Zahlenstrahl bei einer ungeraden Zahl 

starte und eine ungerade Anzahl an Schritten nach rechts 

gehe. Somit lande ich immer auf einer geraden Zahl. 

A
rg

u
m

e
n

ta
ti

o
n

e
n

 m
it

 

Fo
rm

a
lis

ie
ru

n
g 

A7 
Formalisierung der Form 

„Vx + U“ 

Die ungeraden Zahlen werden in der Form „2� +
1“dargestellt und die Addition dann als Termumformung 

ausgeführt. 

A8 
Formalisierung der Form 

„x + U“ 

Die ungeraden Zahlen werden in der Form „� + 1“, wobei n 

eine gerade Zahl ist, dargestellt und die Addition dann als 

Termumformung ausgeführt. 

A9 
Formalisierung der Form 

„x + x = Vx“ 

Die ungeraden Zahlen werden in der Form „�“ dargestellt 

und die Addition dann als Termumformung ausgeführt. 

Tabelle 36: Vorgekommene Begründungsarten bei der Argumentationsaufgabe „Summe zweier ungerader Zahlen“ 

Die Ergebnisse bzgl. der verschiedenen Begründungsarten werden in der Tabelle 37 und der 

Abbildung 65 dargestellt. 
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 Alle (n=149)  

[%] 

Erstsemester (n=71) 

[%] 

Höhere Sem. (n=78) 

[%] 

 n. b. nicht bearbeitet 12,8 19,7 6,4 

A0 keine Begründung 8,1 14,1 2,6 

A1 induktiv 8,7 14,1 3,8 

Pseudo A2 Satz: Summe ungerade 14,1 19,7 9,0 

A3 falsch/irrelevant 11,4 12,7 10,3 
Begründungen 

ohne  

Formalisierung 

A4 Abstände 12,1 2,8 20,5 

A5 Endziffern 2,7 2,8 2,6 

A6 g & u wechseln ab 2,0 2,8 1,3 
Begründungen  

mit  

Formalisierung 

A7 "2n+1" 16,1 2,8 28,2 

A8 "n+1" 10,7 4,0 12,8 

A9 "n+n=2n" 1,3 0,0 2,6 

Summe 100 100 100 

Summe Begr. „ohne Form.“ [A4+A5+A6] 16,8 8,5 24,4 

Summe Begr. „mit Form.“ [A7+A8+A9] 28,1 6,8 43,6 

Tabelle 37: Prozentuale Verteilung der Begründungsarten in der Aufgabe „Summe zweier ungerader Zahlen“ (Alle und 
Subgruppen) 

In der Gesamtgruppe wird am häufigsten eine Begründung mithilfe einer Darstellung der Art „2n+1“ 

versucht ([A7]: 16,1%), der Anteil der Begründungen mit Formalisierung liegt insgesamt bei 28,1%. In 

der Subgruppe der Erstsemester ist auffällig, dass 19,7% der Studierenden die Begründungsaufgabe 

durch Nennung oder Paraphrase des Satzes beantworten, dass die Summe von zwei ungeraden 

Zahlen immer gerade ist [A2]. Nur in 6,8% der Bearbeitungen dieser Subgruppe wird eine 

Formalisierung vorgenommen, dabei am häufigsten in der Gestalt „n+1“ ([A8]: 4,0%). Betrachtet man 

die Studierenden in einem höheren Semester, so bearbeiten dagegen insgesamt 43,6% die Aufgabe 

mithilfe einer Formalisierung; die Repräsentation geschieht hierbei am häufigsten mithilfe einer 

Darstellung der Art „2n+1“ (28,2%). Valide Begründungen ohne Formalisierung werden vor allem bei 

Abbildung 65: Prozentuale Verteilung der Begründungsarten in Aufgabe „Summe zweier ungerader Zahlen“ (Alle und 
Subgruppen) 

12,8% 8,1% 8,7% 14,1% 11,4% 12,1%
2,7% 2,%

16,1% 10,7%
1,3%

Alle (n=149)

Alle (n=149)
19,7% 14,1% 14,1% 19,7%
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Höhere Semester (n=78)

          Pseudo              Begründung ohne Formal.        Begründung mit Formal. 

Art der Begründung [%] – Eingangsbefragung (Alle und Subgruppen) 
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den höheren Semestern verwendet; dabei ist am häufigsten die Begründung über die Abstände zu 

den geraden Zahlen ([A4]: 20,5%). 

Die Erstsemesterstudierenden arbeiten statistisch signifikant weniger mithilfe einer Formalisierung 

als die restlichen Studierenden (Chi²-Test; p<0,001; mittlere Effektstärke: Cramers V=0,377). In der 

Subgruppe der Höheren Semester verwenden die männlichen Studierenden statistisch signifikant 

häufiger eine Formalisierung als die weiblichen (Chi²-Test, p=0,044; geringe Effektstärke: Cramers 

V=0,236). 

Bezüglich der Merkmale „Schulischer Mathematikkurs“, „Teilnahme an einem 

Mathematikwettbewerb“ und „Teilnahme an einem Vorkurs“ lassen sich keine statistisch 

signifikanten Zusammenhänge zu der Nutzung der Formalisierung nachweisen (Chi²-Test). Für die 

Gruppe der Erstsemester sind entsprechende Untersuchungen aufgrund des geringen Anteils von 

Bearbeitungen mit Formalisierungen zu vernachlässigen. 

Charakteristische Fehler im Umgang mit Variablen  

Nach der Beschreibung der verschiedenen Arten, wie die Studierenden begründet haben, wird im 

folgenden Abschnitt der Frage nachgegangen, welche charakteristischen Fehler im Umgang mit 

Variablen dabei auftauchen und wie häufig diese Fehler aufgetreten sind. Insgesamt konnten drei 

verschiedene charakteristische Fehlertypen ausgemacht werden. 

Fehlertyp (1): Bei der Formalisierung der Art „2� + 1“ wird nur eine Buchstabenvariable verwendet, 

um zwei beliebige ungerade Zahlen darzustellen. 

Von den 24 Studierenden, die diesen Zugang wählen, verwenden 14 (58,3%) nur eine 

Buchstabenvariable, um zwei beliebige ungerade Zahlen darzustellen. In der Tabelle 38 werden die 

Ergebnisse bzgl. der Gesamtgruppe und der Subgruppen dargestellt. Dieser Fehler wurde von beiden 

Erstsemesterstudierenden begangen, die diese Repräsentation gewählt haben; bei den „Höheren 

Semestern“ von 12 der 22 Studierenden. 

„Vx + U“ Alle  Erstsemester  Höhere Sem. 

Häufigkeit der Begründung (abs.) 24 2 22 

Häufigkeit des Fehlertyps (abs.) 14 2 12 

Häufigkeit des Fehlertyps [%] 58,3 100,00 54,5 

Tabelle 38: Ergebnisse bzgl. des Fehlertyps (1) (Alle und Subgruppen) 

Fehlertyp (2): Bei der Formalisierung der Art „n+1“ wird nur eine Buchstabenvariable verwendet, um 

zwei beliebige ungerade Zahlen darzustellen. 

Von den 17 Studierenden, die die Repräsentation „� + 1“ für eine ungerade Zahl gewählt haben, 

verwenden 75,6% nur eine Buchstabenvariable; bei den Erstsemesterstudierenden liegt der Anteil 

bei 57,1%, bei den Höheren Semestern bei 80,0% (vgl. Tabelle 39). 

„x + U" Alle  Erstsemester  Höhere Sem. 

Häufigkeit der Begründung (abs.) 17 7 10 

Häufigkeit des Fehlertyp (2) (abs.) 12 4 8 

Häufigkeit des Fehlertyp (2) [%] 75,6 57,1 80,0 

Häufigkeit des Fehlertyp (3) (abs.) 1 0 1 

Häufigkeit des Fehlertyp (3) [%] 5,9 0 10,0 

Tabelle 39: Ergebnisse bzgl. der Fehlertypen (2) (3) (Alle und Subgruppen) 
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Fehlertyp (3): Bei der Formalisierung der Art „� + 1“ wird die Buchstabenvariable nicht als gerade 

Zahl definiert. 

Dieser Fehler wird nur von einem Studierenden begangen, welcher in einem höheren Semester ist 

(vgl. Tabelle 39). Alle anderen Studierenden mit diesem Zugang merken explizit an, dass die 

verwendete Buchstabenvariable eine gerade Zahl repräsentieren soll. 

7.2.4.2 Beweisbewertung zu Beginn der Lehrveranstaltung 

In der Eingangsbefragung sollten die Studierenden bei vier konkreten ‚Beweisen‘ angeben, ob es sich 

hierbei um „richtige Beweise“ handelt oder nicht. Die verwendeten Beweisbeispiele stammen aus 

Healy und Hoyles (2000) und umfassen eine korrekte narrative Argumentation [„narrativ“], eine 

induktive Begründung (bloße Betrachtung einzelner Beispiele) [„Beispiele“], eine formal dargestellte 

falsche Begründung [„formal & falsch“] und schließlich die oben erwähnte narrative Begründung, 

dargestellt mithilfe von Buchstabenvariablen [„korrekt mit Variablen“]. Die Beweisbeispiele wurden 

übersetzt und mit entsprechenden Multiple-Choice-Antworten versehen (vgl. Abschnitt 3.3.2). 

Anschließend sollten die Studierenden aus den vier ‚Beweisen‘ je einen aussuchen, der dem eigenen 

Ansatz am nächsten kommt und der bei dem eigenen Mathematiklehrer in der Oberstufe die beste 

Note bekommen hätte. 

Beantwortung der Leitfrage zur Auswertung [17]: Welche Begründungsformen („narrativ und 

korrekt“, „empirisch-induktiv“, „formal und falsch“, „korrekt mit Variablen“) werden von den 

Studierenden zu Beginn der Lehrveranstaltung als „richtiger Beweis“ bewertet? Und: 

a) Welche dieser Begründungsformen kommt nach Angabe der Studierenden ihrem potentiellen 

eigenen Ansatz am nächsten? 

b) Welche Begründungsform hätte nach Angabe der Studierenden durch ihren 

Mathematiklehrer in der Oberstufe die beste Note erhalten?  

c) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in ihrem 

ersten Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Die relativen Häufigkeiten der Bewertungen als „richtiger Beweis“ werden in der Tabelle 40 

dargestellt. 

 

Es zeigte sich, dass die Mehrheit der Studierenden korrekte Beweise als solche erkennt, wobei ein 

narrativ geführter Beweis statistisch hoch signifikant auf dem 0,1%-Niveau weniger als „richtiger 

Beweis“ bewertet wird (73,8%) als die gleiche Argumentation mithilfe von Buchstabenvariablen 

Tabelle 40: Relative Häufigkeiten der Beweisbewertungen als „richtiger Beweis“ (Alle und Subgruppen) und Signifikanzen 
der Unterschiede in den Subgruppen mit Effektstärke 

 Alle  

(n=149) [%] 

Erstsemester 

(n=71) [%] 

Höhere Semester 

(n=78) [%] 

Signifikanzen der Unterschiede in  

den Subgruppen (Chi²-Test) 

Effektstärke  

(Cramers V) 

narrativ 73,8 77,5 70,5 --- --- 

Beispiele 18,8 33,8 5,1 < 0,001 0,377 

formal & falsch 29,5 32,4 26,9 --- --- 

korrekt mit Var. 89,3 80,3 97,4 0,002 0,256 
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(89,3%) (McNemar-Test, p<0,001; odds ratio66=0,65). Bloße Beispielbetrachtungen werden zu Beginn 

der Lehrveranstaltung von 18,8% der Studierenden als „richtiger Beweis“ bewertet, wobei der 

Bewertungsunterschied zwischen den Erstsemestern (33,8%) und den ‚Höheren Semestern‘ (5,1%) 

statistisch hoch signifikant auf dem 0,1%-Niveau ist (Chi²-Test; p<0,001; mittlere Effektstärke: 

Cramers V=0,377).  

Im Eingangstest zeigt sich hier, dass die Erstsemesterstudierenden mit einer Vorprägung an die 

Universität kommen, mit der gut ein Drittel bloße Beispielüberprüfungen als richtigen Beweis 

bewertet67. Es lässt sich allerdings vermuten, dass durch die Ausbildung und Sozialisation an der 

Universität diese Fehlvorstellung abnimmt (siehe die Ergebnisse der „Höheren Semester“). 

Beachtenswert ist schließlich die durchaus hohe Akzeptanzrate der formal-dargestellten und falschen 

Begründung („formal & falsch“), diese wird von beiden Subgruppen von ca. 30% der Studierenden als 

richtiger Beweis gewertet. Die Akzeptanz der falschen und formal dargestellten  Argumentation als 

richtiger Beweis von knapp einem Drittel der Studierenden kann dahin interpretiert werden, dass 

hier ein Beweisverständnis vorliegt, welches durch Oberflächenmerkmale geprägt sein könnte. Auch 

kann ein Grund für die Bewertungen als „richtiger Beweis“ darin liegen, dass die hier vorkommenden 

algebraischen Regeln und Potenzgesetze von den Studierenden nicht ausreichend beherrscht 

werden, um die fehlerhaften Umformungen überhaupt zu bemerken. Dass sich die Werte bezüglich 

der Akzeptanz dieser Argumentation in den Subgruppen nicht unterscheiden, spricht dafür, dass 

entsprechend Probleme und/oder Fehlvorstellung persistent sind. 

Die Nähe zum eigenen Ansatz und beste Note durch den Mathematiklehrer 

Die relativen Häufigkeiten der Beweiswahl für die größte Nähe zum eigenen Ansatz und für die beste 

Note durch den Mathematiklehrer in der Oberstufe werden in der Tabelle 41 dargestellt. 

                                                           
66

 Im Rahmen dieser Arbeit wird als Maß für die Effektstärke bei einem McNemar-Test das Quotenverhältnis 

„odds Ratio“ verwendet. Das Quotenverhältnis „odds ratio“ nimmt Werte zwischen 0 und ∞ an und beschreibt 

das Verhältnis der Veränderungen bzw. Gegensätze („odds“) (vgl. O’Brian 2002). Der hier vorliegende Wert von 

0,65 bedeutet etwa, dass 0,65-mal so viele Studierende einen narrativen Beweis als „richtigen Beweis“ 

bewerten und den korrekten Beweis mit Variablen als „keinen richtigen Beweis“, als umgekehrt.  
67 Durch einen Abgleich der Daten mit der Begründungsaufgabe „Summe zweier ungerader Zahlen“ lassen sich 

weitere Erkenntnisse gewinnen: Von den 13 Studierenden, die in ihrer Begründung bloße 

Beispielüberprüfungen angaben (Abschnitt 7.2.4.1), werteten vier Erstsemesterstudierende in der 

Bewertungsaufgabe die bloßen Beispiele als „richtigen Beweis“. Es kann vermutet werden, dass bei diesen vier 

Studierenden eine Fehlvorstellung bzgl. der Akzeptanz von bloßen empirischen Überprüfungen als korrekter 

Beweis vorliegt. Interessanterweise wählte von diesen vier Studierenden aber niemand den empirischen Ansatz 

als denjenigen aus, der der eigenen Herangehensweise am nächsten kommt. 

 

Nähe zum eigenen Ansatz beste Note durch Mathematiklehrer 

alle  

(n=139) 

Erstsemester  

(n=64) 

Höhere Sem.  

(n=75) 

alle  

(n=149) 

Erstsemester 

(n=65) 

Höhere Sem. 

(n=74) 

narrativ 33,8 32,8 34,7 7,9 9,2 6,8 

Beispiele 10,1 15,6 5,3 0,7 0,0 1,4 

formal & falsch 11,5 15,6 8,0 7,9 7,7 8,1 

korrekt mit Var. 44,6 35,9 52 83,5 83,1 83,8 

       

Tabelle 41: Prozentuale Verteilungen der Beweiswahl für die größte Nähe zum eigenen Ansatz und für die beste Note 
durch den Mathematiklehrer in der Oberstufe (Alle und Subgruppen) 
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Als Begründungsform mit der größten Nähe zum eigenen Ansatz wird am häufigsten die korrekte 

Begründung mit Variablen gewählt. Interessant erscheint dabei der Unterschied in den Subgruppen: 

Während in den höheren Semestern die korrekte Begründung mit Variablen mit 52% deutlich der 

narrativen Begründung (34,7%) vorgezogen wird, liegt bei den Erstsemesterstudierenden kein 

nennenswerter Unterscheid vor. Insgesamt werden die bloßen Beispielbetrachtungen und die 

formale und falsche Begründung bzgl. der Nähe zum eigenen Ansatz nur von wenigen Studierenden 

ausgewählt. 

Als ‚Beweis‘ für die vermeintlich beste Note durch den Mathematiklehrer wird am häufigsten die 

korrekte Argumentation mit Variablen (83,5%) gewählt. An dieser Stelle sei betont, dass sich diese 

Begründung von der narrativen (hier nur von 7,9% gewählt) nicht inhaltlich, sondern nur in der Art 

ihrer Darstellung unterscheidet. Es scheint hierbei also die Darstellung des Beweises (unter Einbezug 

von Buchstabenvariablen) für die Auswahl der Studierenden ausschlaggebend zu sein. Der geringe 

Anteil an bloßen Beispielbetrachtungen bei der Auswahl der Argumentation für die beste Note kann 

dahin gedeutet werden, dass den Studierenden bewusst ist, dass in der Schule bloße empirische 

Überprüfungen nicht als gültiger Beweis gegolten haben.  

Im Vergleich der Begründungsbewertungen der Studierenden bzgl. der Nähe zum eigenen Ansatz und 

der besten Note durch den Mathematiklehrer der Oberstufe wird deutlich, dass hier ein Unterschied 

zwischen der eigenen Herangehensweise und vermuteten externen Ansprüchen zu bestehen scheint. 

Während die Studierenden etwa zu einem Drittel angeben, dass die narrative Begründung ihrem 

eigenen Ansatz am nächsten komme, liegt der Prozentsatz der Auswahl dieser Beweisform für die 

vermeintlich beste Note bei unter 10%. Der Unterschied der Anteile der Begründungswahl für den 

eigenen Ansatz und für die beste Note durch den Mathematiklehrer ist im Fall der narrativen 

Begründung (33,8% und 7,9%; McNemar-Test, p<0,001 mit odds ratio=5,876) und der korrekten 

Begründung mit Variablen (44,6% und 83,5%; McNemar-Test, p<0,001 mit odds ratio=0,150) 

statistisch hoch signifikant auf dem 0,1%-Niveau. 

Der Großteil der Studierenden scheint sich darin einig zu sein, dass die korrekte Begründung mit 

Variablen durch ihren Mathematiklehrer in der Oberstufe die beste Note erhalten hätte.  

7.2.4.3 Beweisbewertung und Beweisakzeptanz zu Beginn der Lehrveranstaltung 

Für die Erfassung der Beweisakzeptanz sollten die Studierenden vier vorgelegte Beweise (einen 

generischen Beweis mit Zahlen, einen generischen Beweis mit Punktmustern, einen 

Punktmusterbeweis mit geometrischen Variablen und einen formalen Beweis) anhand der unten 

aufgeführten Aussagen auf einer sechsstufigen Likert-Skala ([1] stimme überhaupt nicht zu … [6] 

stimme voll zu) bewerten (s. Tabelle 42). Die zu bewertenden konkreten Beweisprodukte wurden in 

Abschnitt 3.3.3 vorgestellt; dort wurde auch das Problem erörtert, dass die unterschiedlichen 

Behauptungen zu den jeweiligen Beweisen die Akzeptanzurteile der Studierenden beeinflusst haben 

könnten. 
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Formulierung 

Die Begründung … 

Abkürzung 

… zeigt, dass die Behauptung in allen möglichen Fällen wahr ist. „wahr“ 

… überzeugt mich, dass die Behauptung wahr ist. „überz“ 

… zeigt, dass die Behauptung hundertprozentig für alle Zeiten wahr ist. „100proz“ 

… erklärt mir, warum die Behauptung korrekt ist. „erklär“ 

… ist ein korrekter und gültiger Beweis. „korr_Beweis“ 

… zeigt die Behauptung lediglich für einzelne Beispiele, aber nicht allgemein. „Bsp“ 

… ist nicht allgemeingültig, da es immer noch Gegenbeispiele geben könnte. „Gegenbsp“ 

… besteht nur aus der Überprüfung einzelner Fälle, ist aber keine allgemeine Begründung. „einz_Fälle“ 

… ist ohne die Verwendung von Buchstabenvariablen nicht allgemeingültig. „Buchstabenvar“ 

... müsste formaler dargestellt sein, um mich voll zu überzeugen. „formaler“ 

Tabelle 42: Die zur Erfassung der Beweisakzeptanz zu bewertenden Aussagen 

Beantwortung der Leitfrage zur Auswertung [18]: Wie bewerten die Studierenden die vier 

Beweisformen der Lehrveranstaltung zu Beginn der Lehrveranstaltung in Bezug auf die Aspekte 

Sicherung der Gültigkeit, subjektive Überzeugung, Erklärungspotential und Allgemeingültigkeit? Und: 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Bewertung des generischen Beweises mit Zahlen 

Die statistischen Daten bzgl. der Akzeptanzitems zum generischen Beweis mit Zahlen werden in der 

Tabelle 43 für die Gesamtgruppe und die Subgruppen angegeben. Die Mediane zu den einzelnen 

Items werden für die Subgruppen zusätzlich in der Abbildung 66 dargestellt.  

Insgesamt betrachtet, bewerten die Studierenden den generischen Beweis mit Zahlen eher als eine 

Überprüfung einzelner Beispiele und nicht als eine allgemeingültige Begründung. Die Sicherung der 

Gültigkeit der Behauptung („GenZ_100proz“) wird mit einem Median von 1 stark abgelehnt, wobei 

die Überzeugungskraft und die Erklärungsqualität mit einem Median von 4 eher zustimmend 

bewertet werden. Trotz der Zustimmung bzgl. dieser Aspekte wird der generische Beweis mit Zahlen 

nicht als korrekter und gültiger Beweis betrachtet („GenZ_korr_Beweis“, Median: 2). Diese 

Beweisform wird von den Studierenden eher als Überprüfung einzelner konkreter Beispiele 

interpretiert („GenZ_Bsp“ und „GenZ_einz_Fälle“: Median 5), weswegen die Möglichkeit der Existenz 

eines Gegenbeispiels noch gesehen wird („GenZ_Gegenbeisp“: Median 5). Auch wird den Aspekten 

zugestimmt, dass der Gebrauch von Buchstabenvariablen bzw. eine formalere Darstellung die 

Allgemeingültigkeit bzw. die Überzeugungskraft des Beweises verbessern würden 

(„GenZ_Buchstabenvar“ und „GenZ_formaler“, Median: 5).  
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GenZ_ 
Akzeptanz als Beweis Interpretation als singuläre Beispielprüfung 

wahr überz 100proz erklär korr_Bew Bsp Gegen-

bsp 

einz_Fälle Buchstaben-

var 

formaler 

Alle  

n 145 145 147 147 147 148 147 147 146 147 

M 3,08 3,41 2,01 3,74 2,66 4,51 4,22 4,86 4,32 4,59 

Median 3,00 4,00 1,00 4,00 2,00 5,00 4,00 5,00 5,00 5,00 

SD 1,797 1,656 1,397 1,508 1,585 1,744 1,690 1,448 1,733 1,583 

Erstsemester  

n 68 68 70 70 70 71 70 70 70 70 

M 3,10 3,49 1,97 3,74 2,81 4,39 4,10 4,91 4,47 4,69 

Median 2,00 4,00 1,00 4,00 3,00 5,00 4,00 5,00 5,00 5,00 

SD 1,694 1,634 1,262 1,431 1,427 1,719 1,625 1,294 1,481 1,450 

Höhere Semester  

n 77 77 77 77 77 77 77 77 76 77 

M 3,06 3,34 2,04 3,74 2,52 4,62 4,32 4,81 4,17 4,49 

Median 3,00 3,50 1,00 4,00 2,00 5,00 5,00 6,00 5,00 5,00 

SD 1,894 1,683 1,517 1,584 1,714 1,770 1,751 1,581 1,935 1,698 

Tabelle 43: Statistische Daten zu den Akzeptanzitems zum generischen Beweis mit Zahlen (Alle und Subgruppen)  
([1] „stimme überhaupt nicht zu“ ... [6] „stimme voll zu“) 

 

 

 

 

 
 

 

 

Bei der Betrachtung der Subgruppen sind insgesamt keine großen Unterschiede auszumachen und 

auch die Medianunterschiede zwischen diesen Gruppen sind nicht statistisch signifikant (Mann-

Whitney-U-Test68).  

Bewertung des generischen Beweises mit Punktmustern 

Im Gegensatz zum generischen Beweis mit Zahlen wird beim generischen Beweis mit Punktmuster 

eher zugestimmt, dass aufgrund dieses Beweises die Behauptung wahr sein muss („GenP_wahr“, 

Median: 4; vgl. Tabelle 44 und Abbildung 67). Mit einem Median von 5 wird auch einer geleisteten 

Überzeugung  („GenP_überz“) und Erklärung („GenP_erklär“) zugestimmt, die Verifikation aber eher 

abgelehnt („GenP_100pro“, Median: 2). Insgesamt wird diese Beweisform mit einem Median von 5 

als korrekter und gültiger Beweis bewertet („GenP_korr_Beweis“). Doch auch bei diesem 

generischen Beweis wird die Begründung eher als singuläre Überprüfung einzelner Beispiele gesehen 

                                                           
68

 Im Rahmen des siebten Kapitels werden im Zuge der durchgeführten statistischen Tests alle P-Werte 

angegeben, die kleiner-gleich als 0,1 sind. Sollten P-Werte nicht angegeben werden, so bedeutet dies folglich, 

dass der entsprechende Wert über 0,1 liegt. 

Abbildung 66: Mediane bzgl. der Akzeptanzitems zum generischen 
Beweis mit Zahlen (Subgruppen) ([1] „stimme überhaupt nicht zu“ 
... [6] „stimme voll zu“) 
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(„GenP_Bsp“, „GenP_einz_Fälle“), wodurch die Existenz eines Gegenbeispiels nicht ausgeschlossen 

werden kann („GenP_Gegenbsp“, Median: 4). Die Bewertungen bzgl. des Wunsches nach 

Buchstabenvariablen für eine Verbesserung der Allgemeingültigkeit und einer insgesamt formaleren 

Darstellung lassen mit den Medianen von 3 und 4 keine klare Tendenz erkennen. 

Der generische Beweis mit Punktmustern wird bzgl. der positiven Akzeptanzaspekte („zeigt, dass die 

Behauptung in allen möglichen Fällen wahr ist“, „überzeugt mich, dass die Behauptung wahr ist“, 

„zeigt, dass die Behauptung hundertprozentig für alle Zeiten wahr ist“, „erklärt mir, warum die 

Behauptung korrekt ist, ist ein korrekter und gültiger Beweis“) statistisch hoch signifikant auf dem 

0,1%-Niveau besser bewertet als der generische Beweis mit Zahlen (Wilcoxon-Test, p<0,001). 

GenP_ 
Akzeptanz als Beweis Interpretation als singuläre Beispielprüfung 

wahr überz 100proz erklär korr_Bew Bsp Gegen-

bsp 

einz_Fälle Buchstaben-

var 

formaler 

Alle  

n 146 146 146 145 146 147 146 146 146 145 

M 4,01 4,25 2,79 4,39 3,42 3,68 3,57 4,09 3,54 4,00 

Median 4,00 5,00 2,00 5,00 3,00 4,00 4,00 4,00 3,50 4,00 

SD 1,700 1,503 1,631 1,356 1,548 1,771 1,714 1,588 1,702 1,646 

Erstsemester  

n 68 68 68 68 68 69 68 68 68 67 

M 4,26 4,38 2,91 4,40 3,44 3,77 3,54 4,07 3,43 3,81 

Median 5,00 5,00 3,00 5,00 3,00 4,00 4,00 4,00 3,00 4,00 

SD 1,482 1,425 1,590 1,317 1,429 1,783 1,670 1,605 1,548 1,617 

Höhere Semester  

n 78 78 78 77 78 78 78 78 78 78 

M 3,78 4,14 2,69 4,39 3,40 3,60 3,59 4,10 3,64 4,17 

Median 4,00 4,00 2,00 5,00 3,00 4,00 4,00 4,00 4,00 4,00 

SD 1,849 1,569 1,669 1,397 1,654 1,768 1,761 1,584 1,830 1,663 

Tabelle 44: Statistische Daten zu den Akzeptanzitems zum generischen Beweis mit Punktmustern (Alle und Subgruppen) 
([1] „stimme überhaupt nicht zu“ ... [6] „stimme voll zu“) 

 

 

 

 

 

 

 

In den Subgruppen sind die Medianunterschiede in den einzelnen Items nicht statistisch signifikant 

(Mann-Whitney-U-Test).  

 

Abbildung 67: Mediane bzgl. der Akzeptanzitems zum 
generischen Beweis mit Punktmuster (Subgruppen)  
([1] „stimme überhaupt nicht zu“ ... [6] „stimme voll zu“) 
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Bewertung des Beweises mit geometrischen Variablen 

Die statistischen Daten bzgl. der Akzeptanzitems zum Beweis mit geometrischen Variablen werden in 

der Tabelle 45 für die Gesamtgruppe und die Subgruppen angegeben. Die Mediane zu den einzelnen 

Items werden für die Subgruppen zusätzlich in der Abbildung 68 dargestellt.  

Für die Studierenden wird durch den Beweis mit geometrischen Variablen eher nicht gezeigt, dass 

aufgrund dieses Beweises die Behauptung wahr sein muss („GV_wahr“, Median: 4). Auch die Aspekte 

Überzeugung („GV_überz“: Median: 3), Verifikation (GV_100proz: Median: 2), Erklärung und 

Betrachtung als korrekter und gültiger Beweis (Mediane: 2) werden eher abgelehnt. Diese 

Beweisform wird von den Studierenden eher als singuläre Überprüfung einzelner Beispiele gesehen 

(„GV_Bsp“, „GV_einz_Fälle“, Median: 4) wodurch die Existenz eines Gegenbeispiels nicht 

ausgeschlossen werden kann („GV_Gegenbsp“, Median: 4). Eine formalere Darstellung des Beweises 

wird von der Mehrheit der Studierenden gefordert („GV_formaler“, Median: 5). 

GV_ 
Akzeptanz als Beweis Interpretation als singuläre Beispielprüfung 

wahr überz 100proz erklär korr_Bew Bsp Gegen-

bsp 

einz_Fälle Buchstaben-

var 

formaler 

Alle  

n 137 138 137 138 137 135 137 135 137 136 

M 3,08 3,02 2,48 2,96 2,82 3,74 3,88 3,97 3,83 4,56 

Median 3,00 3,00 2,00 3,00 3,00 4,00 4,00 4,00 4,00 5,00 

SD 1,815 1,672 1,558 1,736 1,554 1,723 1,667 1,607 1,692 1,504 

Erstsemester  

n 64 65 64 65 64 62 64 63 64 63 

M 2,97 2,78 2,47 2,72 2,73 3,87 3,98 4,16 4,08 4,78 

Median 2,00 3,00 2,00 3,00 3,00 4,00 4,00 4,00 4,00 5,00 

SD 1,773 1,474 1,490 1,556 1,394 1,563 1,558 1,450 1,567 1,288 

Höhere Semester  

n 73 73 73 73 73 73 73 72 73 73 

M 3,18 3,23 2,49 3,18 2,89 3,63 3,79 3,81 3,62 4,37 

Median 3,00 3,00 2,00 3,00 3,00 4,00 4,00 4,00 3,00 5,00 

SD 1,858 1,814 1,626 1,866 1,688 1,852 1,764 1,725 1,777 1,654 

Tabelle 45: Statistische Daten zu den Akzeptanzitems zum Beweis mit geometrischen Variablen (Alle und Subgruppen) 
([1] „stimme überhaupt nicht zu“ ... [6] „stimme voll zu“) 

 

 

 

 

 

 

 

In den Subgruppen sind die Medianunterschiede in den einzelnen Items nicht statistisch signifikant 

(Mann-Whitney-U-Test).  

Abbildung 68: Mediane bzgl. der Akzeptanzitems zum Beweis mit 
geometrischen Variablen (Subgruppen) ([1] „stimme überhaupt 
nicht zu“ ... [6] „stimme voll zu“) 
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Bewertung des formalen Beweises 

Zu Beginn der Lehrveranstaltung wird beim formalen Beweis von der großen Mehrheit der 

Studierenden bzgl. der Aspekte „zeigt, dass die Behauptung wahr ist“, „Überzeugung“, „Verifikation“ 

und „korrekter und gültiger Beweis“ zugestimmt (vgl. Tabelle 46 und Abbildung 69). Entsprechend 

diesen Zustimmungen, wird die Beweisform nicht als Überprüfung einzelner Beispiele 

fehlinterpretiert („FB_Bsp“ und „FB_einz_Fälle“, Median: 1) und auch die Existenz möglicher 

Gegenbeispiele wird ausgeschlossen („FB_Gegenbeisp“, Median: 1). 

Alle positiven Akzeptanzaspekte werden beim formalen Beweis im Mittel statistisch hoch signifikant 

höher bewertet als bei den anderen drei Beweisformen (Wilcoxon-Test, p<0,001).  

FB_ 

Akzeptanz als Beweis Interpretation als singuläre 

Beispielprüfung 

wahr überz 100proz erklär korr_Bew Bsp Gegen-

bsp 

einz_Fälle 

Alle 

n 145 145 145 145 145 145 145 145 

M 5,46 5,48 4,88 5,34 5,39 1,57 1,72 1,76 

Median 6,00 6,00 5,00 6,00 6,00 1,00 1,00 1,00 

SD 0,93 0,92 1,34 1,09 1,06 1,05 1,08 1,23 

Erstsemester 

n 67 67 67 67 67 67 67 67 

M 5,19 5,24 4,54 5,16 5,18 1,85 2,04 1,94 

Median 6,00 6,00 5,00 6,00 6,00 1,00 2,00 2,00 

SD 1,15 1,09 1,32 1,20 1,18 1,21 1,17 1,22 

Höhere Semester 

n 78 78 78 78 78 78 78 78 

M 5,69 5,68 5,18 5,49 5,58 1,32 1,45 1,60 

Median 6,00 6,00 6,00 6,00 6,00 1,00 1,00 1,00 

SD 0,61 0,69 1,29 0,96 0,91 0,83 0,91 1,22 

Tabelle 46: Statistische Daten zu den Akzeptanzitems beim formalen Beweis (Alle und Subgruppen) 
([1] „stimme überhaupt nicht zu“ ... [6] „stimme voll zu“) 

 

 

 

 

 

 

 

Bei der Betrachtung der Ergebnisse der Subgruppen ist auffällig, dass bei den 

Erstsemesterstudierenden die Standardabweichungen bzgl. der verschiedenen Items höher ausfallen, 

diese Studierenden also weniger häufig den Aussagen vollständig zustimmen bzw. sie nicht in dem 

Abbildung 69: Mediane bzgl. der Akzeptanzitems zum 
formalen Beweis (Subgruppen) ([1] „stimme 
überhaupt nicht zu“ ... [6] „stimme voll zu“) 
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Maße ablehnen wie die höheren Semester. Bei den Studierenden in einem höheren Semester zeigen 

sich hier somit deutlichere Positionen.   

Ergebnisse zur ‚Beweisakzeptanz‘ 

Für die Erfassung der ‚Beweisakzeptanz’ wurde zu jeder der vier Beweisarten durch 

Mittelwertbildung der Werte der oben aufgeführten Items (1)–(8) (bei entsprechender Umpolung 

der negativ formulierten Items (6)–(8)) eine Skala zur Beweisakzeptanz konstruiert. Die Kennwerte 

der konstruierten Skalen zur Beweisakzeptanz werden in der Tabelle 47 dargestellt. Bei den vier 

Skalen sind in der Gesamtgruppe und den Subgruppen die Reliabilitätswerte durchgehend sehr hoch 

(Cronbachs Alpha>0,835) und die korrigierten Trennschärfen der Items sind mit einer Ausnahme in 

einem guten bis sehr guten Bereich (Spannweite rit > 0,536). 

Kennwerte Akz_GenZ Akz_GenP Akz_GV Akz_FB 

Alle 

n 146 147 138 145 

M 2,77 3,53 2,98 5,31 

SD 1,22 1,30 1,29 0,88 

Cronbachs Alpha 0,891 0,906 0,896 0,922 

Spannweite rIT 0,536 - 0,781 0,660 - 0,766 0,574 - 0,758 0,679 - 0,804 

Erstsemester 

n 69 69 65 67 

M 2,80 3,55 2,86 5,04 

SD 1,13 1,33 1,12 0,95 

Cronbachs Alpha 0,868 0,917 0,835 0,912 

Spannweite rIT 0,496 - 0,769 0,602 - 0,777 0,253 – 0,670 0,613 - 0,810 

Höhere Semester 

n 77 78 73 78 

M 2,74 3,51 3,09 5,53 

SD 1,31 1,29 1,425 0,77 

Cronbachs Alpha 0,905 0,899 0,922 0,922 

Spannweite rIT 0,524 - 0,800 0,575 - 0,773 0,676 - 0,816 0,596 - 0,864 

Tabelle 47: Kennwerte der Skalen zur Beweisakzeptanz in der Eingangsbefragung (Alle und Subgruppen) [„Akz_GenZ“: 
Akzeptanzskala zum generischen Beweise mit Zahlen, „Akz_GenP“: Akzeptanzskala zum generischen Beweise mit 
Punktmustern, „Akz_GV“: Akzeptanzskala zum Beweise mit geometrischen Variablen, „Akz_FB“: Akzeptanzskala zum 
formalen Beweis] 

Beantwortung der Leitfrage zur Auswertung [19]: Wie lässt sich die Beweisakzeptanz der 

Studierenden zu den vier Beweisformen der Lehrveranstaltung zu Beginn der Lehrveranstaltung (bzw. 

zu Beginn ihres Studiums) beschreiben? Und:  

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Durch Mittelwertbildung der verwendeten Items für die Bewertung der Aspekte ‚Sicherung der 

Gültigkeit‘, ‚Überzeugung‘, ‚Erklärungsqualität‘ und ‚Allgemeingültig‘ konnten für die vier 

verschiedenen Beweisformen der Lehrveranstaltung reliable Skalen konstruiert werden (s. o.). 

Die Ergebnisse bzgl. der Beweisakzeptanz der Studierenden in Bezug auf die vier Beweisformen der 

Lehrveranstaltung werden in der Tabelle 47 angegeben. Betrachtet man die Verteilungen der 

einzelnen Skalenwerte, so ist zunächst der Unterschied der Mittelwerte zwischen dem formalen 

Beweis und den anderen drei Beweisformen auffällig (s. Tabelle 47 und Abbildung 70). Während der 

formale Beweis von der Gesamtgruppe sehr hohe Akzeptanzwerte erhält (M: 5,31 mit einer 

Standardabweichung von 0,88), erreichen die restlichen Beweisformen statistisch signifikant 
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niedrigere Werte. Alle Mittelwertunterschiede zwischen den vier Akzeptanzskalen sind in der 

Gesamtgruppe paarweise statistisch hoch signifikant auf dem 0,1%-Niveau (t-Test, p<0,001) mit 

Ausnahme des Mittelwertunterschieds zwischen der Akzeptanz des generischen Beweises mit Zahlen 

und dem Beweis mit geometrischen Variablen. In der Tabelle 48 werden die Signifikanzwerte und 

Effektstärken der paarweisen Mittelwertunterschiede der Akzeptanzskalen für die Gesamtgruppe 

angegeben (t-Test). 

 Akz_GenZ (M=2,77) Akz_GenP (M=3,53) Akz_GV (M=2,98) Akz_FB (M=5,31) 

Akz_GenZ 

(M=2,77) 
 p<0,001 

Cohens d=0,62 
p=0,123 p<0,001 

Cohens d=2,48 

Akz_GenP 

(M=3,53) 

p<0,001 

Cohens d=0,62 
 p<0,001 

Cohens d=0,41 

p<0,001 

Cohens d=1,58 

Akz_GV 

(M=2,98) 
p=0,123 p<0,001 

Cohens d=0,41 
 p<0,001 

Cohens d=2,1 

Akz_FB 

(M=5,31) 

p<0,001 

Cohens d=2,48 

p<0,001 

Cohens d=1,58 

p<0,001 

Cohens d=2,1 
 

Tabelle 48: Signifikanzwerte und Effektstärke der Mittelwertunterschiede bzgl. der Akzeptanzskalen in der 
Gesamtgruppe in der Eingangsbefragung (t-Test; Effektstärke: Cohens d

69
) 

In der Gesamtgruppe liegt zwischen den Akzeptanzskalen zu den beiden generischen Beweisen eine 

statistisch signifikante Korrelation auf dem 1%-Niveau vor (p=0,005), welche allerdings mit r=0,180 

sehr gering ausfällt. Dieses Ergebnis könnte dahingehend interpretiert werden, dass eine 

übergreifende Beweisakzeptanz zu generischen Beweisen ausgemacht werden könnte. 

Bei der Betrachtung der Subgruppen erscheinen die ähnlichen Ergebnisse aufgrund der bis dato 

stattgefundenen unterschiedlichen mathematischen Sozialisation bemerkenswert (vgl. Tabelle 47 

und Abbildung 70). Nur der Mittelwertunterschied der Akzeptanzskala zum formalen Beweis 

zwischen den Erstsemesterstudierenden (5,05) und den ‚Höheren Semestern‘ (5,53) ist bei mittlerer 

Effektstärke statistisch hoch signifikant auf dem 0,1%-Niveau (t-Test, p<0,001 mit Cohens d=0,56). 

                                                           
69

 Für Cohens d gelten die folgenden Bewertungen: 0,2 8 C < 0,5: „kleine Effektstärke“, 0,5 8 C < 0,8: 

„mittlere Effektstärke“ und 0,8 < C: „starke Effektstärke“ (vgl. Cohen 1992, S. 157).  

Abbildung 70: Boxplots zu den Akzeptanzskalen in der Eingangsbefragung  (links: Alle, rechts: Subgruppen) 
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Bei den ‚Höheren Semestern‘ liegt folglich eine signifikant höhere Akzeptanz bzgl. des formalen 

Beweises vor. 

In der Subgruppe der Erstsemesterstudierenden korreliert die Akzeptanz des generischen Beweises 

mit Zahlen schwach negativ mit der Akzeptanz des formalen Beweises (rp=-0,273, p<0,005). Hier 

scheint die Akzeptanz der einen Beweisform (i. S. einer Beweispräferenz) der Akzeptanz der anderen 

entgegenzuwirken. 

In der Gesamtgruppe wie auch innerhalb der Subgruppen (‚Erstsemester‘ und ‚Höhere Semester‘) 

lassen sich unter der Berücksichtigung der Merkmale „Geschlecht“, „Schulischer Mathematikkurs“, 

„Teilnahme an einem Mathematikwettbewerb“ und „Teilnahme an einem Mathematikvorkurs“ keine 

statistisch signifikanten Unterschiede bzgl. der Mittelwerte der Akzeptanzskalen der vier 

Beweisformen ausmachen (t-Test). Auch zwischen den Merkmalen „Abiturnote“ und „Schulische 

Mathematiknote“ und den vier Akzeptanzskalen werden keine statistisch signifikanten 

Zusammenhänge deutlich. 

 

Für die Beantwortung der Forschungsfrage [3] werden im Folgenden die erhaltenen Ergebnisse aus 

Abschnitt 7.2.4. unter Berücksichtigung der Leitfragen zur Auswertung 16-19  zusammenfassend 

ausgewertet. 

Beantwortung der Forschungsfrage [3]: Wie lassen sich die Kompetenzen der Studierenden im 

Kontext der Thematik des ‚Begründens und Beweisens‘ zu Beginn der Lehrveranstaltung beschreiben? 

Bzgl. der Begründungskompetenz wurde im Kontext der Begründungsaufgabe „Summe zweier 

ungerader Zahlen“ deutlich, dass nur 19,5% der Studierenden eine Begründung formulierten, die als 

vollständig gewertet werden konnte. Während 22,8% als „Argumentationen mit Lücke“ kategorisiert 

wurden, galten 25,5% der Bearbeitungen als Pseudobegründungen (falsche Argumente oder 

Nennung/Paraphrase des Satzes über die Summe zweier ungerader Zahlen). Rein empirisch-induktive 

Begründungen wurden dabei nur von 8,7% der Studierenden gegeben. 

Bei der Bearbeitung dieser Aufgabe verwenden nur 28,1% der Studierenden eine Formalisierung des 

Sachverhalts mit Buchstabenvariablen, wobei in etwa der Hälfte der Fälle der Fehler gemacht wird, 

dass nur eine Buchstabenvariable verwendet wird, um zwei beliebige ungerade Zahlen zu 

repräsentieren. 

Diese eher schwachen Ergebnisse der Studierenden in Bezug auf die Konstruktion einer Begründung 

entsprechen den Berichten über die schlechten Argumentations- bzw. Beweiskompetenzen 

deutscher Schülerinnen und Schüler. Mit dem vorliegenden Ergebnis konnte aufgezeigt werden, dass 

auch die Begründungskompetenz von Studienanfängerinnen und -anfängern als eher basal 

betrachtet werden muss. Auch die Ergebnisse bzgl. des mangelhaften Umgangs von 

Studienanfängerinnen und -anfängern mit Buchstabenvariablen entsprechen den Berichten in der 

Literatur (etwa Ostsieker und Biehler 2012 und Trigueros & Ursini 2003). 

Der hohe Anteil von Begründungen ohne Nennung korrekter Argumente lässt sich dahingehend 

deuten, dass die (Erstsemester-) Studierenden mit dieser Art von Aufgaben nicht vertraut sind. Diese 

Befunde bestätigen die Ergebnisse von Edwards (1998), der zehn Schülerinnen und Schülern einer 

amerikanischen High School entsprechende Begründungsaufgaben vorlegte. Nachdem zunächst alle 
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Probanden empirisch-induktive Begründungen anführten, konnten auch auf Nachfrage nur drei von 

ihnen valide Argumente anführen. Keiner der Probanden verwendete in seiner Begründung eine 

algebraische Notation. Auch scheint ihnen die fachmathematische Symbolsprache nicht als 

heuristisches Mittel zur Verfügung zu stehen. Bei der (seltenen) Verwendung von 

Buchstabenvariablen wurde dagegen ein mangelhafter Umgang mit diesen auf Seiten der 

Erstsemesterstudierenden deutlich, was den Berichten in der Literatur (etwa Ostsieker und Biehler 

2012; Mingus 1999, S. 438; Trigueros & Ursini 2003) entspricht. 

Im Kontext der Bewertung von Beweisen konnte gezeigt werden, dass die Mehrheit der 

Studierenden korrekte Beweise als solche erkennt. Dabei wurde die korrekte Begründung mithilfe 

von Buchstabenvariablen von der Gesamtgruppe mit 89,3% statistisch hoch signifikant auf dem 0,1%-

Niveau häufiger als richtiger Beweis bewertet als die gleiche Begründung in einer narrativen 

Formulierung mit 73,8% (McNemar-Test; p<0,001). Hier scheint somit die Darstellung einer 

Begründung Auswirkungen auf die Beweisbewertung der Studierenden zu haben. Knapp ein Drittel 

der Gesamtgruppe (29,5%) bewertet die formal dargestellte und falsche Begründung als richtigen 

Beweis, im Falle der rein empirisch-induktive Begründung liegt die Quote noch bei 18,8%. 

Während bzgl. des eigenen Begründungsansatzes die korrekte Begründung mit Variablen von 44,6% 

und die entsprechende narrative Begründung von 33,8% der Studierenden ausgewählt wird, meinen 

83,5%, dass die Begründung mit Variablen die beste Note durch ihren Mathematiklehrer in der 

Oberstufe erhalten hätte. Somit wird auch hier deutlich, dass die Studierenden, aufgrund ihrer 

schulmathematischen Sozialisation, das Beweisen mit der Nutzung von Buchstabenvariablen zu 

verbinden scheinen. 

Das Phänomen, dass formal dargestellte Begründungen in einem höheren Maß als korrekte Beweise 

betrachtet werden, wurde von Reiss und Heinze (2000, S. 251f.) an deutschen Abiturientinnen und 

Abiturienten aufgezeigt und konnte in dieser Studie für Erstsemesterstudierende bestätigt werden. 

Healy und Hoyles (2000, S. 407) berichten in ihrer Studie von den großen Diskrepanzen zwischen den 

Begründungen, die Schülerinnen und Schüler für ihren eigenen Ansatz auswählen, im Gegensatz zu 

der Wahl für die vermeintlich beste Note. Die Autoren stellen folglich den Unterschied zwischen 

eigenem Vorgehen der Lernenden und (vermuteten) externen Ansprüchen heraus. In 

abgeschwächter Form kann dieses Resultat hier für Studierende bestätigt werden: Während die 

korrekte narrative Begründung mit 33,8% bzgl. der Nähe zum eigenen Ansatz ausgewählt wird, fällt 

der Anteil von 7,9% als Auswahl für die beste Note statistisch hoch signifikant auf 0,1%-Niveau 

geringer aus (McNemar-Test, p<0,001). Genau anderes herum verhält es sich für die korrekte 

Begründung mit Variablen: Während 44,6% diese für die Nähe zum eigenen Ansatz auswählen, geben 

83,5% an, dass diese Begründung die beste Note durch den Lehrer erhalten hätte (McNemar-Test, 

p<0,001). 

In Bezug auf die Beweisakzeptanz konnte gezeigt werden, dass die Studierenden den generischen 

Beweis mit Zahlen und den generischen Beweis mit Punktmustern eher als singuläre 

Beispielüberprüfung betrachten als eine allgemeingültige Begründung. Während die Studierenden 

bei beiden generischen Beweisen der Überzeugungskraft der Begründung mit einem Median von 4 

bzw. 5 (eher) zustimmen, werden auch die Aussagen hoch bewertet, die die Begründung als 

Überprüfung einzelner Beispiele darstellen, weswegen auch weiterhin Gegenbeispiele zu der 

(verifizierten) Behauptung existieren könnten. Auch stimmen die Studierenden den Aussagen (eher) 

zu, dass die Begründung mit Buchstabenvariablen bzw. formaler dargestellt werden müsste, um voll 
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zu überzeugen. Insgesamt betrachtet, erkennen bzw. akzeptieren die Studierenden somit eher nicht 

das allgemeine generische Moment, dass in den konkreten Beispielbetrachtungen zum Ausdruck 

kommt und zusätzlich verbalisiert wird, sondern missinterpretieren diese Beweisformen zu Beginn 

der Lehrveranstaltung als singuläre Beispielüberprüfungen. Die Aussage, dass es sich hierbei um 

einen korrekten und gültigen Beweis handelt, wird von den Studierenden mit einem Median von 2 

bzw. 3 abgelehnt. In Bezug auf den Punktmusterbeweis mit geometrischen Variablen werden bei den 

Studierenden keine klaren Positionen deutlich, die Mediane der einzelnen Items bewegen sich fast 

ausschließlich in der Mitte der Skala. Während die positiven Akzeptanzitems mit einem Median von 3 

und 2 eher abgelehnt werden, wird den Aussagen bzgl. der konkreten Einzelüberprüfungen mit 

einem Median von 4 eher zugestimmt. Diese unklare Position der studentischen Bewertungen kann 

dahingehend interpretiert werden, dass ihnen die Form der Darstellung mit ‚geometrischen 

Variablen‘ bzw. diese Beweisform bisher nicht bekannt ist und sie Probleme damit haben, diese 

Darstellung zu lesen bzw. zu interpretieren. Diese Interpretation wird durch das in Abschnitt 7.2.2 

erhaltene Ergebnis gestützt, dass nur 5,7% der Studierenden angeben, dass ihnen diese 

Begründungsform bereits aus der Schule bekannt sei. Der formale Beweis wird von den Studierenden 

bzgl. der Aspekte ‚Sicherung der Gültigkeit‘, ‚Überzeugung‘, ‚Erklärungsqualität‘ und 

‚Allgemeingültigkeit‘ mit einem Median von 5 bzw. 6 deutlich am höchsten bewertet. Folglich 

stimmen die Studierenden der Aussage mit einem Median von 6 zu, dass dies ein korrekter und 

gültiger Beweis sei. 

Durch die Konstruktionen der Skalen zur ‚Beweisakzeptanz‘ wurde es auch möglich, die 

studentischen Beweisakzeptanzen der vier Beweisformen direkt miteinander in Beziehung zu setzen. 

Während der generische Beweis mit Zahlen mit einem Mittelwert von 2,77 und der 

Punktmusterbeweis mit geometrischen Variablen mit 2,98 eher niedrige Akzeptanzwerte erhalten, 

wird der generische Beweis mit Punktmustern mit einem Mittelwert von 3,53 statistisch hoch 

signifikant besser bewertet. Die höchste Akzeptanz erhält der formale Beweis mit einem Mittelwert 

von 5,31, der statistisch hoch signifikant über dem der anderen Beweisformen liegt. 

Zusammenfassend kann für den Bereich der Beweisakzeptanz formuliert werden, dass die 

Studierenden zu Beginn der Lehrveranstaltung die generischen Beweise eher nicht als 

allgemeingültige Begründung verstanden, sondern als singuläre Beispielüberprüfung interpretierten. 

Dementsprechend werden diese Beweisformen von den Studierenden auch eher nicht als (korrekte 

und gültige) Beweise betrachtet. In Bezug auf den Punktmusterbeweis mit geometrischen Variablen 

kann vermutet werden, dass die Studierenden nicht mit dieser Art der Darstellung vertraut sind und 

dementsprechend bzgl. der Beweisakzeptanz dieser Beweisform keine Interpretation der 

empirischen Ergebnisse zulässig erscheint. Dagegen scheint der formale Beweis für die Studierenden 

als ‚Prototyp‘ eines korrekten und gültigen mathematischen Beweises zu gelten, der in der Lage ist, 

die Gültigkeit der Behauptung sicher nachzuweisen und die Studierenden auch vollständig zu 

überzeugen. Diese Ergebnisse gelten sowohl für die Erstsemesterstudierenden wie auch für die 

Höheren Semester. 

Bzgl. der Akzeptanz generischer Beweise konnten somit insgesamt die Berichte aus der Literatur 

bestätigt werden, dass narrativ geführte Beweise mithilfe konkreter Beispiele von Studierenden 

häufig nicht als allgemeingültig betrachtet werden (vgl. 2.4.2). Dabei scheint die Hypothese von 

Dreyfus (2000) zuzutreffen, dass der Verzicht auf formale Elemente entsprechende 

Fehleinschätzungen begünstigen kann. In Bezug auf den schulischen Mathematikunterricht muss 

somit die kritische Frage formuliert werden, inwiefern entsprechende Beweisprodukte bei den 
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Schülerinnen und Schülern zu der Ausbildung eines adäquaten Beweisverständnisses beitragen 

können, wenn diese von den Studierenden nicht als allgemeingültige Begründungen verstanden 

werden? 

a) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in ihrem 

ersten Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Bzgl. der Begründungskompetenz wurde im Rahmen der Aufgabe „Summe zweier ungerader Zahlen“ 

deutlich, dass die Begründungen der Erstsemesterstudierenden statistisch signifikant schlechter 

ausfallen als die der Studierenden in einem höheren Semester: Der Unterschied bzgl. der Anteile 

vollständiger Argumentationen ist auf dem 1%-Niveau statistisch hoch signifikant bei schwacher 

Effektstärke (Chi²-Test, p=0,005; Cramers V=0,231). Nur 9,9% der Erstsemester gelingt eine 

‚vollständige Argumentation‘ und 32,4% der Bearbeitungen mussten als ‚Pseudoantworten‘ gewertet 

werden. Dagegen gelten 28,2% der Bearbeitungen der ‚Höheren Semester‘ als vollständig und nur 

19,2% als ‚Pseudoantworten‘. Bei der Betrachtung der Bewertungen der Qualität der Begründungen 

als ordinalskalierte Daten zeigte sich, dass die Subgruppe der ‚Höheren Semester‘ statistisch hoch 

signifikant auf dem 1%-Niveau bessere Ergebnisse erzielt als die Erstsemester (Mann-Whitney-U-

Test, p=0,006; starke Effektstärke: Cohens d=0,98). 

Dabei verwenden die Erstsemesterstudierenden seltener Buchstabenvariable in ihren Begründungen 

(6,8%) als die Höheren Semester (43,6%); dieser Unterschied ist bei mittlerer Effektstärke statistisch 

hoch signifikant auf dem 0,1%-Niveau (Chi²-Test; p<0,001; Cramers V=0,377). Von diesen neun 

Studierenden im ersten Semester, die eine Formalisierung wählen, nutzen nur zwei die 

Repräsentation einer ungeraden Zahl der Form „2n+1“, sieben dagegen die Form „n+1“. In sechs 

dieser neun Fälle wird nur eine Buchstabenvariable für die Repräsentation der beiden beliebigen 

ungeraden Zahlen verwendet. 

Bei der Bewertung von Beweisen konnte gezeigt werden, dass die ‚Höheren Semester‘ mit 97,4% 

häufiger die korrekte Begründung mit Variablen als „richtigen Beweis“ bewerten als die Erstsemester 

mit 80,3%; dieser Unterschied ist bei schwacher Effektstärke statistisch signifikant auf dem 1%-

Niveau (Chi²-Test; p=0,002; Cramers V=0,256). Leider kann an dieser Stelle nicht geklärt werden, 

warum dieser Unterschied bei der Eingangsbefragung auftritt. Interessant ist weiter, dass der Anteil 

der Bewertung der rein empirisch-induktiven Begründung als „richtiger Beweis“ bei den 

Erstsemestern mit 33,8% statistisch hoch signifikant auf dem 0,1%-Niveau bei mittlerer Effektstärke 

höher ausfällt, als bei den ‚Höheren Semestern‘ mit 5,1% (Chi²-Test; p<0,001; Cramers V=0,377). 

Etwa ein Drittel der Studienanfängerinnen und -anfänger betrachtet somit einzelne 

Beispielüberprüfungen zu Beginn der Lehrveranstaltung als richtige Beweise.  

Bei der Auswahl einer Begründungsform mit der größten Nähe zum eigenen Ansatz zeigte sich ein 

weiterer Unterschied zwischen den Subgruppen: Während in den höheren Semestern die korrekte 

Begründung mit Variablen mit 52% deutlich der narrativen Begründung (34,7%) vorgezogen wird, 

fällt dieser Unterschied bei den Erstsemesterstudierenden deutlich geringer aus: korrekte 

Begründung mit Variablen: 35,9% und narrative Begründung: 32,8%. Folglich hat sich bei den 

Höheren Semestern bereits eine Hinwendung zur Verwendung von Buchstabenvariablen eingestellt.  

Im Rahmen der erhobenen Beweisakzeptanzen konnte festgestellt werden, dass der 

Mittelwertunterschied bzgl. der Akzeptanzskala zum formalen Beweis zwischen den Höheren 

Semestern mit 5,53 und den Erstsemestern mit 5,05 bei mittlerer Effektstärke statistisch hoch 
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signifikant auf dem 0,1%-Niveau ist (t-Test, p<0,001; Cohens d=0,56). In Bezug auf die anderen 

Akzeptanzskalen und auch bei der Betrachtung der einzelnen Items konnten dagegen keine 

(statistisch) signifikanten Subgruppenunterschiede ausgemacht werden.  

 

7.2.5 Ergebnisse bzgl. der Einstellungen zum Themenkomplex des Beweisens und zur Mathematik 

 

7.2.5.1 Einstellungen zum Beweisen in der Schule 

In diesem Abschnitt werden die Ergebnisse zu den folgenden Themenbereichen aus der 

Eingangsbefragung des Wintersemesters 2014/15 dargestellt: (i) die Einschätzung der Relevanz des 

Unterrichtsgegenstands „Beweis“ für verschiedene Schultypen und Schulstufen und (ii) die 

Bewertung ‚gängiger‘ Gründe, warum Beweise im schulischen Mathematikunterricht eine eher 

untergeordnete Rolle spielen sollten. 

(i) Die Einschätzung der Relevanz des Unterrichtsgegenstands „Beweis“ für verschiedene 

Schultypen und Schulstufen  

Die folgenden Aussagen sollten von den Studierenden auf einer sechsstufigen Likert-Skala ([1] 

„stimmt gar nicht“ … [6] „stimmt völlig“) bewertet werden: 

Formulierung Abkürzung 

In der Sekundarstufe 1 sollen Beweise im Mathematikunterricht behandelt werden. „Bew_Sek1“ 

In der Sekundarstufe 2 sollen Beweise im Mathematikunterricht behandelt werden. „Bew_Sek2“ 

In der Grundschule sollen Beweise im Mathematikunterricht behandelt werden. „Bew_GS“ 

Beweise sollen im Mathematikunterricht der Hauptschule behandelt werden. „Bew_HS“ 

Beweise sollen im Mathematikunterricht der Realschule behandelt werden. „Bew_RS“ 

Beweise sollen im Mathematikunterricht auf dem Gymnasium behandelt werden. „Bew_GY“ 

Tabelle 49: Items zur Erfassung der Einschätzung der Relevanz des Unterrichtsgegenstands „Beweis“ für verschiedene 
Schultypen und Schulstufen 

Beantwortung der Leitfrage zur Auswertung [20]: Wie bewerten die Studierenden die Relevanz des 

Unterrichtsgegenstands „Beweis“ für verschiedene Schultypen und Schulstufen zu Beginn der 

Lehrveranstaltung? Und: 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Die statistischen Daten bzgl. der verwendeten Items werden für die Gesamtgruppe und die 

Subgruppen in Tabelle 50 angegeben. Zusätzlich werden die Boxplots zu den Items für die 

Gesamtgruppe in Abbildung 72 und die Mediane bzgl. der Items für die Subgruppen in der Abbildung 

73 dargestellt. 

Nach Ansicht der Studierenden sollten Beweise eher in der Sekundarstufe 2 (Median: 6) als in der 

Sekundarstufe 1 (Median: 4) eine Rolle spielen; hier ist der Medianunterschied statistisch hoch 

signifikant auf dem 0,1%-Niveau bei starker Effektstärke (Wilcoxon-Test, p<0,001; r70=0,78). Eine 

                                                           
70

 Innerhalb der vorliegenden Arbeit wird als Maß für die Effektstärke beim  Wilcoxon-Test der 

Korrelationskoeffizient (r) von Pearson verwendet. Für die Beurteilung der Größe der Effektstärken dient dabei 
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Behandlung von Beweisen in der Grundschule wird von den Studierenden insgesamt abgelehnt 

(Median von 1), hingegen bei den weiterführenden Schulformen befürwortet. Bzgl. der 

verschiedenen Schulformen sind die Medianunterschiede paarweise statistisch hoch signifikant auf 

dem 0,1%-Niveau bei starker Effektstärke (Wilcoxon-Test, p<0,001; r>0,68). Zwischen den 

Subgruppen sind die einzelnen Medianunterschiede nicht statistisch signifikant (Mann-Whitney-U-

Test; s. Abbildung 73). 

Kennwerte Sekundarst. 1 Sekundarst. 2 Grundschule Hauptschule Realschule Gymnasium 

Alle 

n 147 148 148 148 148 148 

M 3,93 5,34 2,01 3,60 4,48 5,59 

Median 4 6 1 4 5 6 

SD 1,39 0,956 1,44 1,53 1,11 0,71 

Erstsemester 

n 69 70 70 70 70 70 

M 4,01 5,31 2,01 3,71 4,56 5,63 

Median 4 6 1 4 5 6 

SD 1,23 0,99 1,37 1,39 1,07 0,66 

Höhere Semester 

n 78 78 78 78 78 78 

M 3,86 5,36 2,00 3,50 4,41 5,56 

Median 4 6 1 3 4 6 

SD 1,45 0,94 1,51 1,66 1,15 0,75 

Tabelle 50: Ergebnisse der Items zur Relevanz des Unterrichtsgegenstands „Beweis“ für verschiedene Schultypen und 
Schulstufen in der Eingangsbefragung (Alle und Subgruppen) ([1] „stimmt gar nicht“ … [6] „stimmt völlig“) 

  
 

 

 

 

 

 

 

Bei der Betrachtung der Boxplots in Abbildung 72 ist die große Streuung der Daten beachtenswert, 

wodurch deutlich wird, dass auf Seiten der Studierenden durchaus unterschiedliche Ansichten bzgl. 

der Relevanz von Beweisen für die Schulmathematik vorliegen. Auffallend ist darüber hinaus der 

große Interquartilsabstand im Falle des Boxplots zu dem Item „Beweisen in der Hauptschule“ [Q1: 2 

und Q3: 5]; bzgl. dieser Schulform scheint keine Einigkeit der Studierenden in Bezug auf die Relevanz 

von Beweisen zu herrschen. Im Gegensatz dazu bezeugen die kleinen Interquartilsabstände der 

                                                                                                                                                                                     
die Einteilung von Cohen (1992, S. 157): Werte ab r=0,1 entsprechen einem schwachen Effekt, Werte ab r=0,25 

einem mittleren Effekt und Werte r=0,4 entsprechen einem starken Effekt. 

Abbildung 72: Boxplots zu den Verteilungen der Items zu der 
Relevanz des Beweisens in verschiedenen Schulstufen und 
Schulformen (Alle) ([1] „stimmt gar nicht“ … [6] „stimmt 
völlig“) 

Abbildung 73: Mediane der Items zu der Relevanz des 
Beweisens in verschiedenen Schulstufen und Schulformen 
(Subgruppen) ([1] „stimmt gar nicht“ … [6] „stimmt völlig“) 
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Boxplots zu den Items „Beweisen in der Sekundarstufe 2“, „Beweisen in der Realschule“ und 

„Beweisen im Gymnasium“ und deren Lage in dem oberen Bereich der Skala die allgemeine 

Befürwortung des Beweisens für diese Schulstufe und Schulformen. 

 

(ii) Die Bewertung ‚gängiger‘ Gründe, warum Beweise im schulischen Mathematikunterricht eine 

eher untergeordnete Rolle spielen sollten 

Die zu bewertenden Aussagen dieses Fragebogenabschnitts werden in der Tabelle 51 angegeben. 

Formulierung Abkürzung 

In der Schule sollten Beweise eher eine untergeordnete Rolle spielen, …  

 …, da es wichtiger ist, dass die fachlichen Inhalte (Funktionen, Differentialrechnung, 

Integralrechnung, …) vermittelt und verstanden werden. 

„fachl. Inhalte“ 

…, da es wichtiger ist, dass die Schüler/innen Rechenaufgaben richtig lösen können. „Rechenaufgaben“ 

…, da man im Mathematikunterricht lieber Anwendungen im Alltag behandeln sollte. „lieber 

Anwendungen“ 

…, da Beweise für die Schüler/innen zu schwer nachzuvollziehen sind. „zu schwer“ 

…, da es die meisten Schüler/innen überfordern würde, selbstständig Beweise zu finden und 

aufzuschreiben. 

„überfordern“ 

…, da die Schüler/innen sowieso wissen, dass die mathematischen Regeln und Sätze richtig sind 

und sie daher nicht zum Beweisen zu motivieren sind. 

„Sätze sowieso 

richtig“ 

..., da das Beweisen im späteren Leben der Schüler/innen keine Anwendung findet (im 

Gegensatz etwa zur Prozentrechnung). 

„keine Anwendung 

im Leben“ 

…, da Beweise in der Lebenswelt der Schüler/innen keine Bedeutung haben. „keine Bedeutung 

für Lebenswelt“ 

Tabelle 51: Items zur Erfassung der Einschätzung ‚gängiger‘ Gründe, warum Beweise im schulischen 
Mathematikunterricht eine eher untergeordnete Rolle spielen sollten 

Beantwortung der Leitfrage zur Auswertung [21]: Wie bewerten die Studierenden ‚gängige‘ Gründe, 

warum Beweise im schulischen Mathematikunterricht eine eher untergeordnete Rolle spielen sollten, 

zu Beginn der Lehrveranstaltung? Und: 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

In diesem Abschnitt wird bei der Angabe der Ergebnisse auf eine tabellarische Übersicht verzichtet, 

da hier die Darstellung in Boxplots (Abbildung 74) ausreichend erscheint. 

Es zeigt sich, dass die Studierenden allen aufgeführten Gründen mit einem Median von 4 eher 

zustimmen, mit Ausnahme der Gründe „Sätze sowieso richtig“ und „keine Bedeutung für 

Lebenswelt“, die mit einem Median von 3 im Vergleich zu allen höher bewerteten Gründen 

statistisch hoch signifikant auf dem 0,1%-Niveau geringer bewertet werden (Wilcoxon-Test, p<0,001; 

mittlere bis starke Effektstärke: 0,3<r<0,5). Es deutet sich hier an, dass eine Ablehnung des 

Unterrichtsinhalts „Beweisen“ anscheinend nicht auf ein mangelndes Beweisbedürfnis auf Seiten der 

Studierenden oder auf das Argument eines fehlenden Lebensweltbezugs zurückgeführt werden kann. 
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In Subgruppen lassen sich keine signifikanten Unterschiede bzgl. der Items ausmachen (Mann-

Whitney-U-Test). 

 

 

 

 

 

 
7.2.5.2 Einstellungen zum Beweisen 

In diesem Abschnitt zu „Einstellungen zum Beweisen“ werden die Aspekte (i) „Einschätzung 

motivationaler Aspekte zum Beweisen“, (ii) „Beweisaffinität“ und (iii) „Motivation zum Erlernen der 

Beweisaktivität“ betrachtet. Bei der Darstellung der Ergebnisse bzgl. der konstruierten Skala der 

„Beweisaffinität“ werden auch Zusammenhänge zu personenbezogenen Merkmalen und den bisher 

erhoben Skalen der Beweisakzeptanz thematisiert, um das Konstrukt der „Beweisaffinität“ besser 

einordnen zu können. 

(i) Einschätzung motivationaler Aspekte zum Beweisen 

Die zu bewertenden Aussagen für die Erfassung der „Einschätzung motivationaler Aspekte zum 

Beweisen“ werden in der Tabelle 52 aufgelistet. 

# Formulierung Abkürzung 

1 Ich sehe das Beweisen als eine intellektuelle Herausforderung, der ich mich gerne stelle. „Herausforderung“ 

2 Ich mag Beweise.  „mag Beweise“ 

3 Ich sehe keinen Sinn darin, etwas beweisen zu müssen, was sowieso richtig ist.  „keinen Sinn“ 

4 Ich versuche, Beweise zu verstehen. „verstehen“ 

5 Ich weiß, wie man einen Beweis führt. „wie führt“ 

6 Beweise werden von Experten konstruiert. Es genügt, wenn man sie nachvollziehen und 

verstehen kann. 

„Experten“ 

Tabelle 52: Items zu motivationalen Aspekten zum Beweisen 

Beantwortung der Leitfrage zur Auswertung [22]: Wie bewerten die Studierenden Aussagen zu 

motivationalen Aspekten zum Beweisen zu Beginn der Lehrveranstaltung? Und: 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Die Ergebnisse bzgl. der Items zu motivationalen Aspekten zum Beweisen (Alle und Subgruppen) 

werden in der Tabelle 53 angegeben, die Mediane der Items zu den Subgruppen zusätzlich in der 

Abbildung 73 dargestellt. Bei den Ergebnissen der Einzelitems wird deutlich, dass die Studierenden 

Abbildung 72: Boxplots zu den Items des Komplexes 
„Einschätzung ‚gängiger‘ Gründe, warum Beweise im 
schulischen Mathematikunterricht eine eher untergeordnete 
Rolle spielen sollten“ (Alle, n=143) ([1] „stimmt gar nicht“ … 
[6] „stimmt völlig“) 
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dem Beweisen gegenüber insgesamt eher neutral bis positiv gegenüber stehen. Die Mediane der 

Items „Herausforderung“ und „mag Beweise“ liegen mit einem Wert von 4 und 3 in einem mittleren 

Bereich der Likert-Skala, die negativ formulierte Aussage „keinen Sinn“ wird von den Studierenden 

mit einem Median von 2 abgelehnt. In der Gesamtgruppe erfährt die größte Zustimmung die Aussage 

„Ich versuche, Beweise zu verstehen“ [„verstehen“] mit einem Median von 6.  

In den Subgruppen unterscheidet sich die Bewertung der Aussage „Ich weiß, wie man einen Beweis 

führt“ der Erstsemester mit einem Median von 3 statistisch hoch signifikant auf dem 0,1%-Niveau 

von der der ‚Höheren Semester‘ mit einem Median von 4 (Mann-Whitney-U-Test, p<0,001; mittlere 

Effektstärke des Subgruppenunterschieds: Cohens d=0,68). Dagegen ist der Medianunterschied bzgl. 

des Items „Ich versuche, Beweise zu verstehen“ mit p=0,105 nicht statistisch signifikant (Mann-

Whitney-U-Test). Die Erstsemester scheinen sich insgesamt jedoch weniger kompetent bzgl. der 

Konstruktion von Beweisen zu fühlen als die ‚Höheren Semester‘. 

Herausforderung 

#1 

mag Beweise 

#2 

keinen Sinn 

#3 

verstehen 

#4 

wie führt 

#5 

Experten 

#6 

Alle 

n 149 148 149 149 147 148 

M 4,03 3,16 2,48 5,34 3,61 3,16 

Median 4,00 3,00 2,00 6,00 4,00 3,00 

SD 1,46 1,51 1,45 0,80 1,30 1,40 

Erstsemester 

n 71 70 71 71 69 70 

M 4,01 3,19 2,52 5,23 3,17 3,39 

Median 4,00 3,00 2,00 5,00 3,00 3,00 

SD 1,41 1,47 1,45 0,87 1,16 1,28 

Höhere Semester 

n 78 78 78 78 78 78 

M 4,05 3,14 2,45 5,45 4,00 2,95 

Median 4,00 3,00 2,00 6,00 4,00 3,00 

SD 1,51 1,56 1,46 0,71 1,29 1,49 

Tabelle 53: Kennwerte der Items zu motivationalen Aspekten zum Beweisen (Alle und Subgruppen) 
([1] „stimmt gar nicht“ … [6] „stimmt völlig“) 

 

 

 

 

 

 

 

 

Abbildung 73: Mediane der Items zu motivationalen Aspekten 
zum Beweisen in der Eingangsbefragung (Subgruppen) ([1] 
„stimmt gar nicht“ … [6] „stimmt völlig“) 
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(ii) „Beweisaffinität“ 

Die Skala „Beweisaffinität“ wurde durch Mittelwertbildung der in der Tabelle 52 aufgelisteten sechs 

Items zur Erfassung der „Einschätzung motivationaler Aspekte zum Beweisen“ gebildet, wobei die 

Werte der Items Nummer 3 und 6 umgepolt wurden. 

In der Tabelle 54 werden die statistischen Kennwerte der Skala zur Beweisaktivität angegeben. Die 

Reliabilität der Skala zur Beweisaffinität ist dabei insgesamt in einem ausreichenden Bereich, 

allerdings wird bei der Betrachtung der korrigierten Trennschärfen der Items deutlich, dass hier 

gewisse Schwächen der Skala auf der Itemebene vorliegen. Es erscheint daher angebracht, diese 

Ergebnisse vorsichtig zu betrachten und entsprechend zu interpretieren. 

Kennwerte Skala Beweisaffinität in der Eingangsbefragung („EB_Aff_Bew“) 

 Alle Erstsemester Höhere Semester 

n 149 71 78 

M 4,09 3,96 4,21 

Median 4,00 4,00 4,17 

SD 0,84 0,84 0,84 

Cronbachs Alpha 0,703 0,742 0,666 

Spannweite rIT 0,339 - 0,577 0,373 - 0,584 0,212 - 0,614 

Tabelle 54: Kennwerte der Skalen zur Beweisaffinität (Alle und Subgruppen) 

Beantwortung der Leitfrage zur Auswertung [23]: Wie lässt sich die Beweisaffinität der Studierenden 

zu Beginn der Lehrveranstaltung beschreiben? Und: 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Mit einem arithmetischen Mittel von 4 liegen die Skalenwerte im Durchschnitt in einem leicht 

positiven Bereich. Der Mittelwertunterschied zwischen den Erstsemestern (M=3,96) und den 

Höheren Semestern (M=4,21) ist statistisch schwach signifikant auf dem 7%-Niveau bei kleiner 

Effektstärke (t-Test, p=0,069; Cohens d=0,3). 

Von Interesse erscheint an dieser Stelle auch die Frage, inwiefern Zusammenhänge zwischen der 

Skala zur Beweisaffinität, den personenbezogenen Daten und den erhobenen Skalen zur 

Beweisakzeptanz ausgemacht werden können. 

In der Subgruppe der Erstsemester korreliert die Skala zur Beweisaffinität schwach mit der 

schulischen Mathematiknote (Spearmans-Rho=0,270), wobei dieser Zusammenhang statistisch 

signifikant auf dem 5%-Niveau ist (p=0,025). Dieses Ergebnis wird durch die entsprechende 

Darstellung im Scatterplot (Abbildung 74) verdeutlicht. Es erscheint plausibel, dass Schüler/innen mit 

einer besseren Note in Mathematik einen höheren Wert in Beweisaffinität erreichen, i. e., positiver 

gegenüber dem Beweisen eingestellt sind. Zwischen der Skala „Beweisaffinität“ und den erhobenen 

Skalen zur Beweisakzeptanz konnten dagegen keine statistisch signifikanten Zusammenhänge 

ausgemacht werden, weder in der Gesamtgruppe, noch in den Subgruppen.  

Unter Berücksichtigung  der  personenbezogenen Merkmale „Geschlecht“, „Schulischer 

Mathematikkurs“, „Teilnahme an einem Vorkurs“ und „Teilnahme an einem 

Mathematikwettbewerb“ lassen sich keine signifikanten Mittelwertunterschiede bzgl. der Skala 

„Beweisaffinität“ ausmachen (t-Test).  
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(iii) Motivation zum Erlernen der Beweisaktivität 

In dem Fragebogenabschnitt „Motivation zum Erlernen der Beweisaktivität“ sollten die Studierenden 

die folgenden Aussagen auf einer sechsstufigen Likert-Skala ([1] „stimmt gar nicht“ … [6] „stimmt 

völlig“) bewerten: 

Formulierung Abkürzung 

Ich möchte im Studium über das Beweisen lernen…  

…wie man einen Beweis findet. „finden“ 

…wie man einen Beweis aufschreibt. „aufschreiben“ 

…wie man einen Beweis liest. „lesen“ 

…wie man einen Beweis versteht. „verstehen“ 

…wie das Beweisen funktioniert. „funktioniert“ 

… warum man Beweise führt. „warum“ 

… welche Arten von Beweisen es gibt. „Arten“ 

… wie man Beweise im Schulunterricht einsetzt. „wie_in_Schule“ 

… wie man Schüler zum Beweisen motivieren kann. „SuS_motiv“ 

… wie man Schülern „das Beweisen“ unterrichten kann. „wie_unterr“ 

Ich möchte nichts über das Beweisen lernen. „nichts“ 

Tabelle 55: Items zu dem Komplex „Motivation zum Erlernen der Beweisaktivität“ 

Beantwortung der Leitfrage zur Auswertung [24]: Wie schätzen die Studierenden zu Beginn der 

Lehrveranstaltung ihre eigene Motivation zum Erlernen verschiedener Aspekte der mathematischen 

Beweisaktivität ein? Und: 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Die statistischen Kennwerte der Items zum Komplex „Motivation zum Erlernen der Beweisaktivität“ 

werden in der Tabelle 56 angegeben (Alle und Subgruppen), die Mediane der Items werden für die 

Subgruppen zusätzlich in der Abbildung 75 dargestellt. 

Bei der Betrachtung der Ergebnisse ist zunächst auffällig, dass alle Aspekte in beiden Subgruppen 

generell sehr hoch bewertet werden. Die niedrigen Bewertungen des Kontrollitems „Ich möchte 

nichts über das Beweisen lernen“ [„nichts“] zeigt, dass die Items nicht einfach nur pauschal hoch 

bewertet wurden.  

Abbildung 74: Scatterplot zu den Skalen „Beweisaffinität“ 
[EB_Aff_Bew] und „Letzte schulische Mathematiknote“ 
[Note_Mathe] (Eingangsbefragung, Erstsemester [n=71]) 



276 

 

 
finden aufschr. lesen 

verste-

hen 

funktio-

niert warum Arten 

wie_in_ 

Schule 

SuS_mo-

tiv. 

wie_un-

terr. nichts 

Alle 

n 136 136 136 135 135 135 136 136 136 136 133 

M 5,10 5,28 5,04 5,39 5,42 4,91 5,10 5,43 5,43 5,40 1,79 

Median 5,00 5,00 5,00 6,00 6,00 5,00 5,50 6,00 6,00 6,00 1,00 

SD 1,19 0,92 1,02 0,85 1,02 1,26 1,16 0,88 0,90 0,84 1,53 

Erstsemester 

n 60 60 60 59 59 60 60 60 60 60 58 

M 5,02 5,07 4,87 5,24 5,31 4,75 5,08 5,40 5,33 5,33 1,64 

Median 5,00 5,00 5,00 5,00 6,00 5,00 5,00 6,00 6,00 6,00 1,00 

SD 1,16 0,99 0,93 0,88 1,15 1,20 1,18 0,96 1,00 0,91 1,27 

Höhere Semester 

n 76 76 76 76 76 75 76 76 76 76 75 

M 5,17 5,45 5,18 5,50 5,51 5,04 5,12 5,45 5,51 5,46 1,91 

Median 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 1,00 

SD 1,23 0,84 1,07 0,81 0,90 1,30 1,15 0,82 0,81 0,77 1,70 

Tabelle 56: Statistische Kennwerte der Items zum Komplex „Motivation zum Erlernen der Beweisaktivität“ in der 
Eingangsbefragung (Alle und Subgruppen) ([1] „stimmt gar nicht“ … [6] „stimmt völlig“) 

 

 

 

 

 

 

 

In der Subgruppe der Erstsemesterstudierenden ist interessant, dass gerade die Aussagen zum 

Vermitteln von Beweisen in der Schule [„wie_in_Schule“, „SuS_motiv.“ und „wie_unterr.“] mit einem 

Median von 6 höher als die rein fachlichen Aspekte bewertet werden (mit Ausnahme des Items 

„funktioniert“). Für die statistische Signifikanz dieses Medianunterschieds seien exemplarisch die 

entsprechenden Werte für den Medianunterschied dieser drei Items zum Item „… wie man einen 

Beweis findet“ (Median: 5) aufgeführt (Wilcoxon-Test): „finden“ vs. „wie_in_Schule“: p=0,006 bei 

mittlerer Effektstärke (r=0,46), „finden“ vs. „SuS_motiv“: p=0,091 bei schwacher Effektstärke (r=0,22)  

und „finden“ vs. „wie_unterr“: p=0,059 bei schwacher Effektstärke (r=0,24). 

Es zeigt sich somit, dass die Motivation der Erstsemesterstudierenden zum Erlernen verschiedener 

Aspekte der Beweisaktivität generell sehr hoch ist, die größte Motivation aber bei den Aspekten 

vorliegt, die ihre spätere Lehrtätigkeit tangiert. Bei den Höheren Semestern kann an dieser Stelle kein 

statistisch signifikanter Unterschied ausgemacht werden.  

Zwischen den Subgruppen sind die Medianunterschiede bzgl. der Items „aufschreiben“, „lesen“ und 

„verstehen“ bei kleiner Effektstärke statistisch signifikant (s. Tabelle 57). Die Höheren Semester 

geben bzgl. dieser Aspekte signifikant höhere Bewertungen bzgl. ihrer Motivation an. Auch wenn an 

Abbildung 75: Mediane der Items zu "Motivation zum 
Erlernen der Beweisaktivität" in der Eingangsbefragung 
(Subgruppen) ([1] „stimmt gar nicht“ … [6] „stimmt 
völlig“) 
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dieser Stelle ein gewisser Grad an ‚sozialer Erwünschtheit‘ nicht ausgeschlossen werden kann, lassen 

sich die Ergebnisse doch als Beleg für eine grundlegende Motivation zum Erlernen der 

Beweisaktivität deuten. Diese große Motivation auf Seiten der Studierenden bzgl. von Beweisen 

entspricht den Ergebnissen von Hemmi (2006, S. 141ff.). 

 „finden“ „aufschreib.“ „lesen“ „verstehen“ „warum“ „Arten“ 

Median Erstsemester 5 5 5 5 5 5 

Median Höhere Sem. 6 6 6 6 6 6 

Signifikanz  p=0,204 p=0,007 p=0,012 p=0,030 p=0,064 p=0,827 

Effektstärke  --- d=0,42 d=0,31 d=0,31 d=0,23 --- 

Tabelle 57: Signifikanzen und Effektstärken (Cohens d) der Medianunterschiede in den Subgruppen bzgl. der Items zur 
„Motivation zum Erlernen der Beweisaktivität" in der Eingangsbefragung (Mann-Whitney-U-Test) 

 

7.2.5.3 Einstellungen zur Mathematik 

Bzgl. der Einstellungen zur Mathematik wurden in der Eingangsbefragung die vier folgenden Skalen 

erhoben: „Mathematik als System“, „Mathematik als Toolbox“, „Mathematik als Prozess“ und 

„Praktische Relevanz von Mathematik“. Im Fokus stehen mögliche Unterschiede zwischen den 

Subgruppen und Zusammenhänge zwischen diesen Skalen und den oben beschriebenen Skalen zur 

Beweisakzeptanz und zur Beweisaffinität. 

Beantwortung der Leitfrage zur Auswertung [25]: Welche Einstellungen zur Mathematik können bei 

den Studierenden zu Beginn der Lehrveranstaltung in welchem Maß ausgemacht werden? Und: 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

In der Tabelle 58 werden die statistischen Kennwerte der erhobenen Skalen angegeben71. In der 

Abbildung 76 werden zusätzlich die arithmetischen Mittel der Skalen für die Gesamtgruppe und die 

Subgruppen dargestellt. 

In der Gesamtgruppe liegen die Mittelwerte der vier Skalen zu den verschiedenen Einstellungen zur 

Mathematik sehr nah beieinander, so dass nicht von einer Vorrangstellung bestimmter Einstellungen 

gesprochen werden kann (s. Abbildung 76). Innerhalb der Gruppe der Erstsemesterstudierenden liegt 

dagegen der Mittelwert der Skala „Mathematik als Toolbox“ mit 4,66 statistisch (hoch) signifikant 

über dem der anderen Skalen, im Falle der ‚Höheren Semester‘ liegt der Mittelwert dieser Skala 

unter den anderen (s. Tabelle 59 und Abbildung 76. 

                                                           
71

 In Bezug auf die Reliabilitätswerte von Skalen („Cronbachs Alpha“) werden bei Lienert und Raatz (1994) 

Werte größer-gleich 0,5 als „vertretbar“ angegeben (vgl. Riedl 2015, S. 45), bei Schnell et al. (2013, S. 413) liegt 

die Grenze allerdings bei 0,8, wobei die Autoren anmerken, dass in der Praxis meist auch niedrigere Werte 

akzeptiert werden. Bei den vorliegenden Skalen sind auch die Werte der korrigierten Trennschärfen der Items 

in einem eher unteren Bereich. Es wird deutlich, dass die Ergebnisse dieses Abschnittes vorsichtig betrachtet 

und interpretiert werden müssen. 
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Abbildung 76: Arithmetische Mittel der Skalen zur 
Einstellung zur Mathematik in der 
Eingangsbefragung (Alle und Subgruppen) 

 

 Mathematik als 

System 

[MaSy] 

Mathematik als 

Toolbox 

[MaTo] 

Mathematik als 

Prozess 

[MaPro] 

Praktische Relevanz 

von Mathematik 

[PraRel] 

Alle 

n 146 146 146 146 

M 4,37 4,45 4,41 4,46 

SD 0,66 0,76 0,80 0,89 

Cronbachs Alpha 0,643 0,660 0,608 0,790 

Spannweite rIT 0,298 - 0,431 0,302 - 0,513 0,350 - 0,447 0,532 - 0,614 

Erstsemester 

n 68 68 68 68 

M 4,34 4,66 4,32 4,37 

SD 0,68 0,72 0,86 0,92 

Cronbachs Alpha 0,634 0,692 0,665 0,828 

Spannweite rIT 0,301 - 0,394 0,359 - 0,540 0,439 - 0,485 0,475 - 0,719 

Höhere Semester 

n 78 78 78 78 

M 4,40 4,27 4,49 4,53 

SD 0,65 0,76 0,74 0,86 

Cronbachs Alpha 0,650 0,608 0,546 0,748 

Spannweite rIT 0,277 - 0,401 0,186 - 0,484 0,223 - 0,447 0,457 - 0,591 

Tabelle 58: Statistische Kennwerte der Skalen zu „Einstellungen zur Mathematik“ in der Eingangsbefragung (Alle und 
Subgruppen) 

 

 

 

 

Erstsemester (n=68) 

 „MaSy“ „MaPro“ „PraRel“ 

M 4,34 4,32 4,37 

Signifikanz des Mittelwertunterschieds zur Skala „MaTo“ (M=4,66) p=0,001 p=0,01 p=0,046 

Effektstärke (Cohens d) 0,45 0,43 0,35 

Höhere Semester (n=78) 

 „MaSy“ „MaPro“ „PraRel“ 

M 4,40 4,49 4,53 

Signifikanz des Mittelwertunterschieds zur Skala „MaTo“ (M=4,27) n. s. p=0,056 p=0,022 

Effektstärke (Cohens d) --- 0,29 0,32 

Tabelle 59: Signifikanzen und Effektstärken Mittelwertunterschiede der drei Skalen zur Mathematik „MaSy“, „MaPro“ 
und „PraRel“ im Vergleich zu der Skala „Mathematik als Toolbox" ["MaTo"] in der Eingangsbefragung (t-Test) 
(Subgruppen) 
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Abbildung 77: Der Zusammenhang der Skalen „Praktische Relevanz von Mathematik“ [„EB_PraRel“] und der Skala zur 
„Beweisaffinität“ [„EB_Aff_Bew“] in der Eingangsbefragung (Erstsemester und höhere Semester, links) und der 
Zusammenhang der Skalen „Mathematik als System“ [„EB_MaSy“] und „Akzeptanz des formalen Beweises“ 
[EB_„Akz_FB“] in der Eingangsbefragung (nur Erstsemester, rechts) 

Innerhalb der Subgruppen ist der Mittelwertunterschied der Skala „Mathematik als Toolbox“ 

zwischen den Erstsemestern (4,66) und den Höheren Semestern  4,27 bei mittlerer Effektstärke 

statistisch hoch signifikant auf dem 1%-Niveau (t-Test, p=0,002 mit Cohens d=0,53). Hier zeigt sich, 

dass die Erstsemesterstudierenden ein Bild von Mathematik zu haben scheinen, dass mehr als bei 

den ‚Höheren Semestern‘ durch Auswendiglernen und direktes Anwenden von Verfahren und Regeln 

geprägt ist. Andere signifikante Mittelwertunterschiede liegen zwischen den Subgruppen nicht vor (t-

Test).  

Betrachtet man die Zusammenhänge der Skalen der Einstellungen zur Mathematik zu den bisher 

erhobenen Skalen („Beweisakzeptanz“ und „Beweisaffinität“), so zeigt sich, dass die Skala der 

„Praktischen Relevanz von Mathematik“ in beiden Subgruppen statistisch hoch signifikant auf dem 

0,1%-Niveau mit der Skala zur Beweisaffinität korreliert (Erstsemester: rP=0,343 mit p=0,004; Höhere 

Semester: rP=0,356 und p=0,001). Studierende, die der Mathematik einen höheren praktischen 

Nutzen für den Alltag zuschreiben, haben demnach eine positivere Einstellung zur Beweisaktivität.  

Bzgl. der konstruierten Skalen zur Beweisakzeptanz lässt sich nur in der Subgruppe der 

Erstsemesterstudierenden ein Zusammenhang zwischen den Skalen „Mathematik als System“ und 

der Akzeptanzskala zum formalen Beweis ausmachen (rP=0,315)72, der statistisch signifikant auf dem 

5%-Niveau ist (p=0,011). In der Gruppe der Erstsemesterstudierenden bewahrheitet sich somit die 

Hypothese, dass eine stärkere Ausprägung einer Sicht auf Mathematik als formales System mit einer 

höheren Akzeptanz des formalen Beweises einhergeht. Die aufgezeigten Zusammenhänge werden 

durch die entsprechende Darstellung im Scatterplot bestätigt (vgl. Abbildung 77). 

Für die Beantwortung der Forschungsfrage [4] werden im Folgenden die erhaltenen Ergebnisse aus 

Abschnitt 7.2.5. unter Berücksichtigung der Leitfragen zur Auswertung 20-25  zusammenfassend 

ausgewertet. 

                                                           
72

 In der Gruppe der Höheren Semester liegt der Korrelationskoeffizient bei rp=0,145 mit p=0,205. Dieses 

(statistisch nicht signifikante) Ergebnis könnte einem ‚Deckeneffekt‘ der Akzeptanzwerte zum formalen Beweis 

geschuldet sein. 
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Beantwortung der Forschungsfrage [4]: Wie lassen sich die Einstellungen der Studierenden zur 

Thematik des Beweisens und zur Mathematik zu Beginn der Lehrveranstaltung beschreiben? Und:  

a) Inwiefern lassen sich bzgl. dieser Aspekte Unterschiede zwischen den Studierenden in ihrem 

ersten Hochschulsemester und Studierenden in einem höheren Semester ausmachen? 

Bzgl. der Einstellung zum Beweisen in der Schule wurde deutlich, dass die Studierenden den 

Lerngegenstand ‚Beweis‘ eher in der Sekundarstufe 2 als in der Sekundarstufe 1 verorten (Wilcoxon-

Test, p<0,001 bei großer Effektstärke von r=0,78). Während Beweise als Unterrichtsinhalt für die 

Grundschule abgelehnt werden, wird deren Verwendung in der Realschule und dem Gymnasium 

deutlich befürwortet. Dabei stimmen die Studierenden den Begründungen (eher) zu, dass Beweise 

im Unterricht eine eher untergeordnete Rolle spielen sollten, da es wichtiger sei, fachliche Inhalte zu 

vermitteln, Rechenaufgaben richtig lösen zu können und Anwendungen der Mathematik im Alltag zu 

thematisieren. Das Argument, dass Lernende sowieso wüssten, dass die mathematischen Sätze 

richtig seien, wird dagegen statistisch signifikant weniger bedeutsam eingeschätzt. Ein mangelndes 

Beweisbedürfnis auf Seiten der Lernenden scheint hierbei nach Ansicht der Studierenden also 

weniger ausschlaggebend zu sein.  

Zwischen den Subgruppen der Erstsemester und der Höheren Semester ließen sich in diesem Bereich 

keine (statistisch) signifikanten Unterschiede ausmachen.  

Bei den Einstellungen zum Beweisen konnte gezeigt werden, dass die Studierenden dem Beweisen 

gegenüber im Allgemeinen neutral bis positiv eingestellt sind. Der Mittelwert der konstruierten Skala 

zur „Beweisaffinität“ liegt mit 4,09 in der oberen Hälfte der Skala und verdeutlicht diese eher positive 

Einstellung der Studierenden gegenüber dem Beweisen. Schließlich wurde die hohe Motivation der 

Studierenden in Bezug auf das Erlernen der Beweisaktivität deutlich: Allen formulierten Items bzgl. 

der verschiedenen Aspekte der Beweisaktivität wird von der Gesamtgruppe deutlich zugestimmt (alle 

Mediane sind größer-gleich 5). Es wurde somit insgesamt deutlich, dass die Studierenden gegenüber 

dem Beweisen positiv eingestellt sind und eine hohe Motivation in Bezug auf das Erlernen der 

Beweisaktivität aufweisen. Dies entspricht den Ergebnissen von Hemmi (2006, S. 140ff.) mit 

finnischen Studienanfängerinnen und –anfängern der Mathematik. 

In Bezug auf die Subgruppen konnten im Rahmen der Einstellungen zum Beweisen zunächst 

Unterschiede auf der Itemebene herausgearbeitet werden: Bzgl. des Items „Ich weiß, wie man einen 

Beweis führt“ liegt der Median der Erstsemester (3) statistisch hoch signifikant auf dem 0,1%-Niveau 

unter dem der Höheren Semester (4) (Mann-Whitney-U-Test, p<0,001; mittlere Effektstärke des 

Subgruppenunterschieds: Cohens d=0,68). Bei der konstruierten Skala zur „Beweisaffinität“ ist der 

Mittelwertunterschied zwischen den Erstsemestern (3,96) und den Höheren Semester (4,21) 

statistisch schwach signifikant auf dem 7%-Niveau bei kleiner Effektstärke ist (t-Test, p=0,069; 

Cohens d=0,3). An dieser Stelle kann festgehalten werden, dass sich die Höheren Semester 

kompetenter bzgl. der Konstruktion von Beweisen fühlen und dem Beweisen auch mehr zugeneigt 

sind. Im Rahmen der Motivation der Studierenden zum Erlernen der Beweisaktivität wurden weitere 

Unterschiede zwischen den Subgruppen deutlich. Die Bewertung bzgl. dem Erlernen der fachlichen 

Aspekte des Beweisens fallen bei den Erstsemestern mit einem Median von 5 statistisch signifikant 

geringer aus, als bei den höheren Semestern mit einem Median von 6. Außerdem zeigte sich, dass die 

Erstsemesterstudierenden ihre Motivation zum Erlernen der unterrichtspraktischen Aspekte zum 

Beweisen höher bewerten, als ihre Motivation bzgl. der fachlichen Aspekte zum Beweisen. 
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Bei den Einstellungen zur Mathematik konnte in der Gesamtgruppe keine Vorrangstellung einer 

bestimmten „Einstellung zur Mathematik“ ausgemacht werden. In der Gruppe der 

Erstsemesterstudierenden liegt der Mittelwert der Skala „Mathematik als Toolbox“ (M=4,66)  

statistisch signifikant über den Mittelwerten der anderen Skalen (Mittelwertunterschiede durch t-

test: „Mathematik als System“: M=4,34, p=0,001, schwache Effektstärke: Cohens d=0,45; 

„Mathematik als Prozess“: M=4,32, p=0,01, schwache Effektstärke: Cohens d=0,43 und „Praktische 

Relevanz von Mathematik“: M=4,32, p=0,046, schwache Effektstärke: Cohens d=0,35). Bei den 

Höheren Semestern liegt der Mittelwert der Skala „Mathematik als Toolbox“ mit M=4,27 dagegen 

statistisch (schwach) signifikant unter dem der Skala „Mathematik als Prozess“ (M=4,49, p=0,056, 

schwache Effektstärke: Cohens d=0,29) und unter dem der Skala „Praktische Relevanz von 

Mathematik“ (M=4,53, p=0,022, schwache Effektstärke: Cohens d=0,32).  Dies lässt sich dahingehend 

interpretieren, dass die Studienanfänger noch eher einem Bild von Mathematik verhaftet sind, das 

durch Auswendiglernen und direktes Anwenden von Verfahren und Regeln geprägt ist. Von einer 

entsprechenden Betonung des „Toolbox-Aspekts“ bei Studienanfängerinnen und -anfängern 

sprechen auch Törner und Grigutsch (1994, S. 225): „Beim Umgang mit Mathematik ist der Tool-

Aspekt dominanter: der Umgang mit Mathematik besteht für zwei Drittel der Studenten aus Lernen, 

Erinnern und Anwenden, für ein Fünftel ist er damit sogar vollständig erfaßt“.  

Die Skala „Praktische Relevanz von Mathematik“ korreliert in beiden Subgruppen mit der Skala zur 

„Beweisaffinität“ (Erstsemester: rP=0,343 mit p=0,004; Höhere Semester: rP=0,356 und p=0,001), was 

bedeutet, dass die Studierenden, die eher den Ansichten zustimmen, dass Mathematik im Alltag von 

Bedeutung ist und einen Nutzen für die Gesellschaft hat, im Allgemeinen auch dem Beweisen 

gegenüber eher zugeneigt sind.  

Im Vergleich der Subgruppen wurde deutlich, dass der Mittelwert der Skala „Mathematik als 

Toolbox“ bei den Erstsemestern (4,66) statistisch hoch signifikant auf dem 1%-Niveau bei mittlerer 

Effektstärke über dem der Höheren Semestern (4,27) liegt (t-Test, p=0,002 mit Cohens d=0,53). 

Schließlich konnte nur für die Gruppe der Erstsemesterstudierenden eine (schwache) positive 

Korrelation zwischen der Skala „Mathematik als System“ und der Akzeptanzskala zum formalen 

Beweis nachgewiesen werden, die statistisch signifikant auf dem 5%-Niveau ist (rP=0,315 und 

p=0,011)73. Eine Vorstellung der Mathematik als formales System entspricht somit einer hohen 

(Akzeptanz-) Bewertung des formalen Beweises. 

 

7.3. Teilstudie 2: Ergebnisse der Ausgangsbefragung: Veränderungen durch die 

Lehrveranstaltung und wahrgenommener Lernzuwachs bzgl. des Beweisens bei den 

Studierenden 

 

In der vorletzten Sitzung der Lehrveranstaltung wurde im Wintersemester 2014/15 mithilfe eines 

Fragebogens eine Ausgangsbefragung durchgeführt; die Teilnehmenden hatten für die Bearbeitung 

45 Minuten Zeit. Im Kontext dieser Erhebung sollten im Sinne eines Pre-/Post-Testdesigns 

Veränderungen in Bezug auf die folgenden in der Eingangsbefragung erfassten Daten untersucht 

werden: Beweisbewertung, Auswahl und Präferenz einer Begründungsform, Beweisakzeptanz, 

                                                           
73

 Dass in den ‚Höheren Semestern‘ hier kein signifikanter Zusammenhang vorliegt, könnte durch die 

Deckeneffekte in der Akzeptanzskala zum formalen Beweis in dieser Subgruppe erklärt werden. 
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Einstellungen zu Beweisen und Einstellungen zur Mathematik. Beide Befragungen waren mit der 

Abfrage eines anonymen personalisierten Codes versehen, so dass die Testhefte entsprechend 

anonym zugeordnet werden konnten. Die in der Ausgangsbefragung erhaltenen Ergebnisse erfüllen 

damit zwei Zielsetzungen: Einmal werden durch diese Ergebnisse die Kompetenzen und Einstellungen 

der Studierenden nach dem Besuch der Lehrveranstaltung dokumentiert, außerdem wird es mit 

diesen Ergebnissen möglich, entsprechende Veränderungen zur Eingangsbefragung festzustellen und 

auch statistisch auszuwerten. Dementsprechend beziehen sich die folgenden Auswertungen auf alle 

Teilnehmenden, die nachverfolgbar an der Eingangs- und Ausgangsbefragung teilgenommen haben 

(N=74). Im Gegensatz zu den Darstellungen der Ergebnisse der Teilstudie 1 werden im Rahmen der 

Teilstudie 2 die Ergebnisse nicht mehr nach den Subgruppen ‚Erstsemester‘ und ‚Höhere Semester‘ 

unterschieden, da das Forschungsinteresse hier auf den Veränderungen durch die Lehrveranstaltung 

von der Ein- zur Ausgangsbefragung liegt und nicht in der Herausarbeitung vermeintlicher 

Charakteristika der Subgruppen.   

In Abschnitt 2.4.3 wurden verschiedene Befunde angeführt, dass problemorientierte 

Lehrveranstaltungen, bei denen ein Schwerpunkt auf die Prozesshaftigkeit der Mathematik gelegt 

wird, zu Veränderungen bzgl. der Einstellungen der Studierenden zur Mathematik führen können. 

Aufbauend auf diesen Ergebnissen kann hier die grundlegende Hypothese formuliert werden, dass 

auch die Lehrveranstaltung „Einführung in die Kultur der Mathematik“, wie sie im Wintersemester 

2014/15 nach drei durchlaufenden Forschungszyklen im Sinne des Design-Based Research 

durchgeführt wurde (Kapitel 6), zu Veränderungen im Kontext des Beweisens bei den Studierenden 

führen wird. Da die Lehrveranstaltung auf der Umsetzung verschiedener Leitprinzipien basiert (s. 

Abschnitt 1.3) und durch mehrere Teilkomponenten konstituiert wird (s. Kapitel 6), können keine 

singulären Wirkmechanismen in Bezug auf einzelne Maßnahmen erhoben werden. Bedeutsam 

erscheint dabei aber übergeordnet die Betonung der Prozesshaftigkeit der Mathematik (innerhalb 

der Vorlesung, der Tutorien, der Zentralübung und der entwickelten Aufgabenformate) und der 

konsequente Einbezug der verschiedenen Beweisformen der Lehrveranstaltung (generischer Beweis 

mit Zahlen, generischer Beweis mit Punktmustern, Beweis mit geometrischen Variablen und formaler 

Beweis) und das parallele Agieren in den verschiedenen Diagrammsystemen.  

Es bleibt dabei anzumerken, dass die Lehrveranstaltung auch zu Veränderungen bei den 

Studierenden geführt haben könnte, die durch die hier verwendeten Testinstrumente nicht erfasst 

werden. Auch ist es möglich, dass das Ausmaß eventueller Veränderungen bei den Studierenden mit 

ihrem Engagement im Rahmen der Lehrveranstaltung zusammenhängen könnte. Dieser Frage wurde 

allerdings nicht nachgegangen, da nicht die Auswirkung der Motivation der Studierenden, sondern 

die Auswirkungen der Lehrveranstaltung im Fokus des Forschungsinteresses stehen.  

7.3.1 Forschungsanliegen und Forschungsfragen 

Im Zentrum des Interesses der Teilstudie 2 stehen zunächst die Veränderungen, die sich in Bezug auf 

die Teilbereiche (i) Kompetenzaspekte zum Beweisen und (ii) Einstellungen zum Beweisen und zur 

Mathematik von der Ein- zur Ausgangsbefragung ausgemacht werden können. Im Rahmen der 

Ausgangsbefragung wird es darüber hinaus möglich, neue Aspekte abzufragen, deren Thematisierung 

aus verschiedenen Gründen in der Eingangsbefragung keinen Sinn ergeben hätte. Zu diesen 

Aspekten, die neu in der Ausgangsbefragung untersucht werden, gehören: Beweispräferenz (vgl. 

Leitfrage zur Auswertung 26b) und der neue Fragenkomplex (iii), der selbstwahrgenommene 

Lernzuwachs der Studierenden in Bezug auf das Beweisen durch die Lehrveranstaltung. Die Frage der 

Beweispräferenz der Studierenden fokussiert dabei nicht primär die Auswirkungen der Vorlesung. 
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Ziel des Themenkomplexes ist die subjektive Bewertung der Studierenden: Welchen Beweisform 

verwenden die Studierenden am liebsten, wenn sie einen Beweis selbst konstruieren bzw. 

vorgelegten Beweis verstehen wollen?  Aus dieser Perspektive ergeben sich die folgenden 

Forschungsfragen und damit verbundenen Leitfragen zur Auswertung, die die folgenden 

Ausführungen leiten: 

• Forschungsfrage [5]: Inwiefern verändern sich die Kompetenzen der Studierenden im Kontext der 

Thematik ‚Begründen und Beweisen‘ von der Ein- zur Ausgangsbefragung?74 

 

o Leitfrage zur Auswertung [26]: Inwiefern verändern sich die studentischen Bewertungen der 

verschiedenen Begründungsformen („narrativ und korrekt“, „empirisch-induktiv“, „formal 

und falsch“, „korrekt mit Variablen“) als „richtiger Beweis“ von der Ein- zur 

Ausgangsbefragung?  

a) Inwiefern verändert sich die Auswahl der Begründungsform, die ihrem eigenen 

Ansatz am nächsten käme? 

b) Welche der vier Beweisformen der Lehrveranstaltung bevorzugen die Studierenden, 

wenn es darum geht, (i) Beweise selbst zu konstruieren bzw. (ii) einen vorgelegten 

Beweis verstehen zu wollen?75 

o Leitfrage zur Auswertung [27]: Inwiefern verändern sich die studentischen Bewertungen der 

vier Beweisformen der Lehrveranstaltung in Bezug auf die Aspekte „Sicherung der 

Gültigkeit“, „subjektive Überzeugung“, „Erklärungspotential“ und „Allgemeingültigkeit“ von 

der Ein- zur Ausgangsbefragung? 

o Leitfrage zur Auswertung [28]: Inwiefern verändern sich die Beweisakzeptanzen der 

Studierenden bzgl. der vier Beweisformen der Lehrveranstaltung von der Ein- zur 

Ausgangsbefragung?  

 

• Forschungsfrage [6]: Inwiefern verändern sich die Einstellungen der Studierenden zur Thematik 

des Beweisens und zur Mathematik von der Ein- zur Ausgangsbefragung bzw. welche neuen 

Ansichten der Studierenden zum (generischen und formalen) Beweisen können in der 

Ausgangsbefragung herausgearbeitet werden? 

o Leitfrage zur Auswertung [29]: Inwiefern verändern sich die studentischen Bewertungen der 

Relevanz des Unterrichtsgegenstandes „Beweis“ für verschiedene Schultypen und 

Schulstufen von der Ein- zur Ausgangsbefragung? 

o Leitfrage zur Auswertung [30]: Inwiefern verändern sich die studentischen Bewertungen 

‚gängiger‘ Gründe, warum Beweise im schulischen Mathematikunterricht eine eher 

untergeordnete Rolle spielen sollten, von der Ein- zur Ausgangsbefragung? 

o Leitfrage zur Auswertung [31]: Wie bewerten die Studierenden die Eignung generischer 

Beweise für die Schulmathematik? 

o Leitfrage zur Auswertung [32]: Inwiefern verändern sich die studentischen Bewertungen zu 

motivationalen Aspekten zum Beweisen von der Ein- zur Ausgangsbefragung? 

                                                           
74

 Die Teilkompetenzen der Konstruktion von Begründungen und Beweisen wird in der Teilstudie 3 (Abschnitt 

7.4) aufgegriffen. 
75

 Diese Frage dient als Konkretisierung der Frage nach dem eigenen Begründungsansatz. Nach der 

Lehrveranstaltung geht es nun nicht mehr bloß um die Frage, ob die Studierenden einen empirischen, 

narrativen oder formalen Ansatz verfolgen (vgl. Abschnitt 7.2.4.2), sondern auch, welche Beweisform in 

welchem Diagrammsystem die Studierenden präferieren. 
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o Leitfrage zur Auswertung [33]: Inwiefern verändert sich die „Beweisaffinität“ der 

Studierenden von der Ein- zur Ausgangsbefragung? 

o Leitfrage zur Auswertung [34]: Inwiefern verändern sich die Einstellungen der Studierenden 

zur Mathematik von der Ein- zur Ausgangsbefragung? 

 

• Forschungsfrage [7]: Wie schätzen die Studierenden selbst ihren Lernzuwachs in Bezug auf das 

Beweisen durch die Lehrveranstaltung ein?  

o Leitfrage zur Auswertung [35]: Wie schätzen die Studierenden ihren eigenen 

Lernzuwachs in Bezug auf die Funktionen von Beweisen ein?  

o Leitfrage zur Auswertung [36]: Wie schätzen die Studierenden ihren eigenen 

Lernzuwachs in Bezug auf den Nutzen von Beispielbetrachtungen für den Beweisprozess 

ein?  

o Leitfrage zur Auswertung [37]: Wie schätzen die Studierenden ihren eigenen 

Lernzuwachs in Bezug auf das Beweisen durch die Lehrveranstaltung ein?  

o Leitfrage zur Auswertung [38]: Wie lässt sich die Selbstwirksamkeitserwartung zum 

Beweisen auf Seiten der Studierenden beschreiben? 

7.3.2 Kompetenzaspekte zum Beweisen: Ergebnisse der Ausgangsbefragung und  Veränderungen 

durch die Lehrveranstaltung 

 

7.3.2.1 Die Beweisbewertungen und Beweispräferenzen der Studierenden 

Entsprechend der Aufgabenstellung in der Eingangsbefragung sollten die Studierenden auch in der 

Ausgangsbefragung bei den vier konkreten ‚Beweisen‘ angeben, ob es sich hierbei um „richtige 

Beweise“ handelt oder nicht (vgl. Abschnitt 3.3.2 und Abschnitt 7.2.4.2). Die vorgelegten 

„Beweisprodukte“ umfassen eine korrekte narrative Argumentation [„narrativ“], eine induktive 

Begründung (bloße Betrachtung einzelner Beispiele) [„Beispiele“], eine formal dargestellte falsche 

Begründung [„formal & falsch“] und schließlich die obige narrative Begründung, dargestellt mithilfe 

von Buchstabenvariablen [„korrekt mit Variablen“]. Wie bereits in der Eingangsbefragung wurde 

auch in der Ausgangsbefragung die Frage gestellt, welche der verschiedenen Begründungsformen 

dem eigenen Ansatz der Studierenden am nächsten komme. Die Frage bzgl. der besten Note durch 

den Mathematiklehrer der Oberstufe konnte dabei entfallen, da in Bezug auf diese Frage keine 

nachträgliche Veränderung zu erwarten war. 

Beantwortung der Leitfrage zur Auswertung [26]: Inwiefern verändern sich die studentischen 

Bewertungen der verschiedenen Begründungsformen („narrativ und korrekt“, „empirisch-induktiv“, 

„formal und falsch“, „korrekt mit Variablen“) als „richtiger Beweis“ von der Ein- zur 

Ausgangsbefragung?  

Die relativen Häufigkeiten der Bewertungen als „richtiger Beweis“ werden in der Tabelle 60 für die 

Ein- und Ausgangsbefragung dargestellt. 
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Alle (n=74) Signifikanz (McNemar-Test) Quotenverhältnis 

EB AB   

narrativ („narrativ und korrekt“) 74,3 73 --- --- 

Beispiele („empirisch-induktiv“) 17,6 5,4 0,012 0,1 

formal & falsch 27 13,5 0,078 --- 

korrekt mit Var. 89,2 95,9 0,289 --- 

Tabelle 60: Relative Häufigkeiten der Beweisbewertungen als „richtiger Beweis“ in der Eingangsbefragungen [EB] und der 
Ausgangsbefragung [AB] und Signifikanzen der Unterschiede von der Ein- zur Ausgangsbefragung (McNemar-Test) mit 
Effektstärken durch Quotenverhältnis (odds-Ratio) (alle ‚nachverfolgbaren‘ Studierenden) 

Im Vergleich der Ergebnisse der Ein- und Ausgangsbefragung wird deutlich, dass die Bewertung der 

bloßen empirisch-induktiven Begründung [„Beispiele“] als „richtiger Beweis“ statistisch signifikant 

auf dem 5%-Niveau von 17,6% auf 5,4% zurückgeht (p=0,012). (Das Quotenverhältnis von 0,1 (odds 

ratio) sagt hierbei aus, dass 10-mal so viele Studierende von der Ein- zur Ausgangsbefragung ihre 

Bewertung von „richtiger Beweis“ zu „kein richtiger Beweis“ geändert haben, als umgekehrt.) Der 

Rückgang der Bewertung im Falle der formal dargestellten und falschen Begründung ist dagegen mit 

p=0,078 nicht mehr statistisch signifikant. Es ist dabei auffällig, dass selbst nach der 

Lehrveranstaltung die formal dargestellte und falsche Begründung noch von 13,5% der Studierenden 

als richtiger Beweis bewertet wird. Und wie bereits in der Eingangsbefragung wird auch in der 

Ausgangsbefragung die korrekte Begründung mit Variablen mit 95,9% statistisch hoch signifikant auf 

dem 0,1%-Niveau häufiger als richtiger Beweis bewertet als die entsprechende narrative Begründung 

ohne Variablen (73%) (McNemar-Test, p<0,001; odds ratio=9,5).  

 

Beantwortung der Leitfrage zur Auswertung [26a]: Inwiefern verändert sich die Auswahl der 

Begründungsform, die ihrem eigenen Ansatz am nächsten käme? 

Die relativen Häufigkeiten der Begründungsauswahl für den eigenen Ansatz werden in der Tabelle 61 

angegeben. 

Alle (n=74) Signifikanz (McNemar-Test) Quotenverhältnis 

EB AB   

narrativ 33,7 21,5 0,031 0,37 

Beispiele 10,8 1,4 0,041 ---
76

 

formal & falsch 9,5 6,8 --- --- 

korrekt mit Var. 36,5 63,5 <0,001 10,5 

fehlende Werte 9,5 6,8 ---  

Tabelle 61: Prozentuale Verteilung der Beweiswahl für die größte Nähe zum eigenen Ansatz in der Eingangsbefragungen 
[EB] und der Ausgangsbefragung [AB], Signifikanzen der Unterschiede zwischen den Befragungszeitpunkten und 
Effektstärken als Quotenverhältnis („odds Ratio“) (alle ‚nachverfolgbaren‘ Studierenden) 

Die Abnahme der Auswahl der narrativen Begründung von der Eingangsbefragung (33,7%) zur 

Ausgangsbefragung (21,5%) ist mit p=0,031 statistisch signifikant auf dem 5%-Niveau, wie auch der 

Rückgang der Auswahl der empirisch-induktiven Begründungsform [„Beispiele“] von 10,8% auf 1,4% 

(p=0,041). Der Anteil der Auswahl der korrekten Begründung mit Variablen steigt dagegen statistisch 

hoch signifikant auf dem 0,1%-Niveau von 36,5% auf 63,5% an (p<0,001). Das Quotenverhältnis von 

10,5 sagt dabei aus, dass von der Ein- zur Ausgangsbefragung 10,5-mal so viele Studierende ihre 

Wahl hin zur korrekten Begründung mit Variablen geändert haben, als von dieser weg. Es zeigt sich 

                                                           
76

 An dieser Stelle kann das entsprechende Quotenverhältnis nicht berechnet werden, da es keinen 

Studierenden gibt, der die empirisch-induktive Begründung nicht in der Eingangsbefragung als „eigenen 

Ansatz“ gewählt hat, doch aber in der Ausgangsbefragung. 
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somit, dass sich der Ansatz der Studierenden vermehrt zu einer Verwendung von Variablen 

hinwendet und eine Abkehr von bloßen empirisch-induktiven Betrachtungen erfolgt. 

Beantwortung der Leitfrage zur Auswertung [26b]: Welche der vier Beweisformen der 

Lehrveranstaltung bevorzugen die Studierenden, wenn es darum geht, (i) Beweise selbst zu 

konstruieren bzw. (ii) einen vorgelegten Beweis verstehen zu wollen? 

In der Ausgangsbefragung sollten die Studierenden angeben, welche der vier Beweisformen der 

Lehrveranstaltung sie bevorzugen würden, wenn (a) sie selbst einen Beweis konstruieren müssen 

und (b) sie einen vorgelegten Beweis verstehen wollten („Single-Choice Item“). 

In der Tabelle 62 werden die prozentualen Verteilungen der Ergebnisse dargestellt.  

 Beweispräferenz für Eigenkonstruktion Beweispräferenz für das Verstehen eines Beweises 

Alle (n=68) Alle (n=66) 

GenZ 25,0 36,4 

FB 64,7 50,0 

GenP 7,4 10,6 

GV 2,9 3,0 

Summe 100,0 100,0 

Tabelle 62: Prozentuale Verteilung der Beweispräferenzen der Studierenden in der Ausgangsbefragung (alle 
‚nachverfolgbaren‘ Studierenden) 

In Bezug auf die Eigenkonstruktion von Beweisen und das Verstehen eines vorgelegten Beweises 

werden von der Gesamtgruppe jeweils der formale Beweis mit 64,7% bzw. 50% am häufigsten 

ausgewählt. Bzgl. beider Aspekte wird der generische Beweis mit Zahlen mit 25% bzw. mit 36,4% 

noch deutlich häufiger gewählt als die Punktmusterbeweise.  

Die Unterschiede zwischen der Auswahl einer Beweisform für die Eigenkonstruktion und für das 

Verstehen eines Beweises sind jeweils nicht statistisch signifikant (McNemar-Test). 

7.3.2.2 Die Beweisakzeptanz der Studierenden 

Beantwortung der Leitfrage zur Auswertung [27]: Inwiefern verändern sich die studentischen 

Bewertungen der vier Beweisformen der Lehrveranstaltung in Bezug auf die Aspekte „Sicherung der 

Gültigkeit“, „subjektive Überzeugung“, „Erklärungspotential“ und „Allgemeingültigkeit“ von der Ein- 

zur Ausgangsbefragung? 

Die Akzeptanz der generischen Beweise 

Bei der Akzeptanz der generischen Beweise zeigt sich insgesamt, dass die Bewertungen der positiven 

Akzeptanzaspekte [„wahr“, „überz“, „100proz“, „erklär“ und „korr_Beweis“]77 statistisch hoch 

signifikant auf dem 0,1%-Niveau zunehmen, wohingegen die Bewertungen der Interpretation der 

Beweise als bloße Überprüfung einzelner konkreter Fälle [„Bsp“, „Gegenbsp“ und „einz_Fälle“]78 

abnehmen. Auch gehen die Zustimmungen bzgl. des Verlangens nach formaleren Darstellungen für 

                                                           
77

 „wahr“: „… zeigt, dass die Behauptung in allen möglichen Fällen wahr ist.“; „überz“: „… überzeugt mich, dass 

die Behauptung wahr ist.“; „100proz“: „… zeigt, dass die Behauptung hundertprozentig für alle Zeiten wahr 

ist.“; „erklär“: „… erklärt mir, warum die Behauptung korrekt ist“ und „korr_Beweis“: „… ist ein korrekter und 

gültiger Beweis.“  
78

 „Bsp“: „… zeigt die Behauptung lediglich für ein paar Beispiele, aber nicht allgemein.“; „Gegenbsp“: „… ist 

nicht allgemeingültig, da es immer noch Gegenbeispiele geben könnte.“ und „einz_Fälle“: „… besteht nur aus 

der Überprüfung einzelner Fälle, ist aber keine allgemeine Begründung.“ 
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die Verbesserung der Begründung [„Buchstabenvar“ und „formaler“]79 zurück. Dabei sind alle 

Medianunterschiede von der Ein- zur Ausgangsbefragung statistisch hoch signifikant auf dem 0,1%-

Niveau bei mittlerer bis starker Effektstärke (Wilcoxon-Test; vgl. Tabelle 63 und Abbildung 78). 

GenZ_ Alle (n=74) Effektstärke  GenP_ Alle (n=74) Effektstärke (r) 

EB AB  EB AB  

wahr 3,0 5,0** 0,46 wahr 4,5 6,0** 0,5 

überz 3,0 5,0** 0,51 überz 5,0 6,0** 0,46 

100proz 2,0 4,0** 0,57 100proz 2,5 5,0** 0,58 

erklär 4,0 5,0** 0,51 erklär 5,0 6,0** 0,60 

korr_Beweis 2,5 5,0** 0,68 korr_Beweis 3,0 6,0** 0,61 

Bsp 5,0 2,0** 0,51 Bsp 4,0 2,0** 0,57 

Gegenbsp 5,0 2,0** 0,53 Gegenbsp 3,5 2,0** 0,57 

einz_Fälle 5,0 3,0** 0,68 einz_Fälle 4,0 2,0** 0,60 

Buchstabenvar 5,0 2,0** 0,54 Buchstabenv 3,5 2,0** 0,39 

formaler 5,0 4,0** 0,47 formaler 4,0 2,0** 0,49 

         
Tabelle 63: Mediane der Akzeptanzitems zum generischen Beweis mit Zahlen (links) und zum generischen Beweis mit 
Punktmustern (rechts) in der Eingangsbefragung [EB] und Ausgangsbefragung [AB] mit Effektstärke (r) der 
Medianunterschiede (Wilcoxon-Test); **: p<0,001 (alle ‚nachverfolgbaren‘ Studierenden)  

 

 

 

 

 
 

 

 

 

 

 

Die Akzeptanz des Beweises mit geometrischen Variablen und des formalen Beweises 

Bei dem Beweis mit geometrischen Variablen steigen die Bewertungen bzgl. der positiven 

Akzeptanzaspekte [„wahr“, „überz“, „100proz“, „erklär“ und „korr_Beweis“] und die Bewertungen 

der Aussagen zur Interpretation der Begründung als bloße singuläre Überprüfung konkreter Fälle 

[„Bsp“, „Gegenbsp“ und „einz_Fälle“] nehmen in der Ausgangsbefragung ab. Auch die Zustimmungen 

bzgl. des Verlangens nach formaleren Darstellungen für die Verbesserung der Begründung 

[„Buchstabenvar“ und „formaler“] gehen zurück. Alle Medianunterschiede von der Ein- zur 

Ausgangsbefragung sind statistisch hoch signifikant auf dem 0,1%-Niveau bei starker Effektstärke mit 

Ausnahme des Items „Gegenbeispiele“, bei dem der Medianunterschied statistisch signifikant auf 

dem 1%-Niveau bei schwacher Effektstärke ist (vgl. Tabelle 64 und Abbildung 79). 

                                                           
79

 „Buchstabenvar“: „… ist ohne die Verwendung von Buchstabenvariablen nicht allgemeingültig.“ und 

„formaler“: „… müsste formaler dargestellt sein, um mich voll zu überzeugen.“ 

Abbildung 78: Mittelwerte der Akzeptanzitems zum generischen Beweis mit Zahlen (links) und zum generischen Beweis mit 
Punktmustern (rechts) in der Eingangsbefragung [„EB“] und Ausgansbefragung [„AB“] (alle ‚nachverfolgbaren‘ Studierenden) 
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Da die entsprechenden Bewertungen der Akzeptanzitems beim formalen Beweis bereits in der 

Eingangsbefragung deutliche Positionen erkennen ließen, können bei den Ergebnissen der 

Ausgangsbefragung keine großen Veränderungen auftreten. Allerdings werden nun bei allen Items 

die Außenwerte der Skala als Median angenommen (vgl. Tabelle 64) und der Mediananstieg bzgl. des 

Items „100proz“ von 5 auf 6 ist statistisch signifikant auf dem 5%-Niveau bei mittlerer Effektstärke. 

GV Alle (n=74) Effektstärke  FB Alle (n=74) Effektstärke (r) 

EB AB  EB AB  

wahr 3,0 5,0** 0,55 wahr 6,0 6,0 --- 

überz 3,0 5,0** 0,56 überz 6,0 6,0 --- 

100proz 2,0 4,0** 0,55 100proz 5,0 6,0 (*) 0,3 

erklär 3,0 5,0** 0,49 erklär 6,0 6,0 --- 

korr_Beweis 3,0 5,0** 0,55 korr_Beweis 6,0 6,0 --- 

Bsp 4,0 2,0** 0,52 Bsp 1,0 1,0 --- 

Gegenbsp 4,0 2,0* 0,38 Gegenbsp 1,0 1,0 --- 

einz_Fälle 4,0 2,0** 0,58 einz_Fälle 1,0 1,0 --- 

Buchstabenvar 4,0 2,0** 0,50     

formaler 5,0 3,0** 0,53     

         

Tabelle 64: Mediane der Akzeptanzitems zum Beweis mit geometrischen Variablen (links) und zum formalen Beweis 
(rechts) in der Eingangsbefragung [EB] und Ausgangsbefragung [AB] mit Effektstärke (r) der Medianunterschiede 
(Wilcoxon-Test); **: p<0,001; *: p<0,01, (*): p<0,05 (alle ‚nachverfolgbaren‘ Studierenden) 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

Die Ergebnisse bzgl. der Skalen zur Beweisakzeptanz in der Ein- und Ausgangsbefragung 

Die statistischen Kennwerte der Skalen zur Beweisakzeptanz zu den Erhebungszeitpunkten Ein- und 

Ausgangsbefragung werden für die Gesamtgruppe in der Tabelle 65 angegeben. Dabei wird deutlich, 

dass alle Reliabilitätswerte in einem sehr guten Bereich liegen (Cronbachs Alpha>0,886) und auch die 

Werte der korrigierten Trennschärfen der verwendeten Items liegen alle in einem guten bis sehr 

guten Bereich (rit>0,505). 

 

Abbildung 79: Mittelwerte der Akzeptanzitems zum Beweis mit geometrischen Variablen (links) und zum formalen Beweis 
(rechts) in der Eingangsbefragung [„EB“] und Ausgansbefragung [„AB“] (alle ‚nachverfolgbaren‘ Studierenden) 
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Kennwerte Akz_GenZ Akz_GenP Akz_GV Akz_FB 

EB AB EB AB EB AB EB AB 

n 74 74 74 74 67 67 72 72 

M 2,79 4,27 3,67 4,85 2,96 4,34 5,15 5,50 

SD 1,18 1,45 1,27 1,27 1,27 1,36 1,02 0,80 

Cronbachs Alpha 0,886 0,938 0,912 0,928 0,896 0,930 0,939 0,951 

Spannweite rIT 0,622 - 

0,784 

0,749 - 

0,822 

0,605 - 

0,789 

0,603 - 

0,851 

0,505 - 

0,756 

0,647 - 

0,842 

0,727 - 

0,873 

0,707 - 

0,909 
Tabelle 65: Kennwerte der Skalen zur Beweisakzeptanz in der Ein- und Ausgangsbefragung (alle ‚nachverfolgbaren‘ 
Studierenden) 

Beantwortung der Leitfrage zur Auswertung [28]: Inwiefern verändern sich die Beweisakzeptanzen 

der Studierenden bzgl. der vier Beweisformen der Lehrveranstaltung von der Ein- zur 

Ausgangsbefragung?  

Bei allen Akzeptanzskalen ist ein Anstieg des Mittelwertes von der Ein- zur Ausgangsbefragung zu 

verzeichnen. Dieser Anstieg ist bei allen Beweisformen statistisch hoch signifikant bei starker 

Effektstärke, mit Ausnahme des formalen Beweises (s. Tabelle 66).  

 n EB AB p-Wert Cohens d 

Akz_GenZ 74 2,79 4,27 <0,001 1,13 

Akz_GenP 74 3,67 4,85 <0,001 0,94 

Akz_GV 67 2,96 4,34 <0,001 1,06 

Akz_FB 72 5,15 5,50 0,003 0,37 

Tabelle 66: Arithmetische Mittel der Skalen zur Beweisakzeptanz, p-Werte und Effektstärke der Mittelwertunterschiede 
(t-Test) in der Ein- und Ausgangsbefragung (alle ‚nachverfolgbaren‘ Studierenden) 

In der Tabelle 67 werden die Signifikanzen der Mittelwertunterschiede der Akzeptanzskalen in der 

Ausgangsbefragung untereinander angegeben. Hier zeigt sich, dass der generische Beweis mit Zahlen 

mit einem (Mittelwert von 4,27) statistisch hoch signifikant auf dem 0,1%-Niveau bei kleiner 

Effektstärke weniger Akzeptanz erfährt als der generische Beweis mit Punktmustern (mit 4,85). 

Während zwischen dem generischen Beweis mit Zahlen und dem Punktmusterbeweis mit 

geometrischen Variablen keine signifikanten Unterschiede auszumachen sind, wird der generische 

Beweis mit Punktmustern statistisch signifikant auf dem 5%-Niveau bei kleiner Effektstärke höher 

bewertet als der Punktmusterbeweis mit geometrischen Variablen. Die Akzeptanzunterschiede des 

formalen Beweises zu den anderen Beweisformen sind paarweise statistisch hoch signifikant auf dem 

0,1%-Niveau bei mittlerer bis starker Effektstärke. 

 Akz_GenZ 

(M=4,27) 

Akz_GenP 

(M=4,85) 

Akz_GV 

(M=4,34) 

Akz_FB 

(M=5,59) 

Akz_GenZ 

(M=4,27) 

--- <0,001 

d=0,43 

0,419 <0,001 

d=1,08 

Akz_GenP 

(M=4,85) 

<0,001 

d=0,43 

--- 0,025 

d=0,35 

<0,001 

d=0,57 

Akz_GV 

(M=4,34) 

0,419 0,025 

d=0,35 

--- <0,001 

d=0,98 

Akz_FB 

(M=5,59) 

<0,001 

d=1,08 

<0,001 

d=0,57 

<0,001 

d=0,98 

--- 

Tabelle 67: Signifikanzen der Mittelwertunterschiede (t-Test) und Effektstärken (Cohens d) der Akzeptanzskalen in der 
Ausgangsbefragung (Alle) 

Um neben den globalen Änderungen der Skalenwerte auch die Veränderungen der Akzeptanzwerte 

auf der individuellen Personenebene nachvollziehen zu können, wurde über die Subtraktion der 

Akzeptanzskalenwerte der Eingangsbefragung von dem Akzeptanzskalenwert der Ausgangsbefragung 
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Abbildung 80: Boxplots der 
personenbezogenen Veränderungswerte der 
Akzeptanzskalen (alle ‚nachverfolgbaren‘ 
Studierenden) 

ein personenbezogener Veränderungswert bzgl. der Beweisakzeptanz der vier Beweisformen 

berechnet. Die somit berechneten Differenzen können (theoretisch) Werte zwischen  

-5 und 5 annehmen, wobei 0 keine Veränderung des Akzeptanzwertes von der Ein- zur 

Ausgangsbefragung bedeutet und positive Werte einen Zuwachs der Akzeptanz anzeigen. Die 

Ergebnisse dieser personenbezogenen Veränderungswerte der Beweisakzeptanz werden in der 

Abbildung 80 dargestellt.  

 

 

 

 

 

 

 

 
Bei der Betrachtung der Boxplots wird deutlich, dass bei der Mehrheit der Studierenden eine 

deutliche Zunahme der Beweisakzeptanzen von der Ein- zur Ausgangsbefragung stattfindet, wobei 

diese Zunahmen bis zu fünf Skalenwerte (das Maximum der Skala) umfassen. Nur im Falle des 

formalen Beweises liegt der Median bei null, was keine Veränderung der Akzeptanz bedeutet. Dieser 

große Anteil der gleichbleibenden Akzeptanzwerte beim formalen Beweis ergibt sich durch den 

häufig erhaltenen maximalen Akzeptanzwert von 6, den Studierende in der Ein- und 

Ausgangsbefragung erzielten. 

Für eine genauere Darstellung der Gewichtung der Zu- und Abnahme der Beweisakzeptanzen werden 

die Ergebnisse in der Tabelle 68 noch zusammengefasst nach den Bereichen „Abnahme“ [Summe der  

Anzahl aller negativen Werte], „keine Veränderung“ [Summe der Werte gleich Null] und „Zunahme“ 

[Summe der Anzahl aller positiven Werte] aufgeführt. Beachtenswert ist, dass die Beweisakzeptanz 

bei den verschiedenen Beweisen bei knapp einem Viertel der Studierenden abnimmt. Dies könnte so 

interpretiert werden, dass eine erhöhte Beweisakzeptanz bei einer Beweisform sich in einer 

niedrigeren Bewertung einer anderen niederschlägt.  

 

 

 

 

Tabelle 68: Personenbezogene Veränderungswerte der  
Beweisakzeptanzen, zusammengefasst in den Kategorien  
„Abnahme“, „keine Veränderung“ und „Zunahme“   
(alle ‚nachverfolgbaren‘ Studierenden) 

n Abnahme keine Zunahme 

Alle 

Zuw_GenZ 74 23,3 5,5 71,2 

Zuw_GenP 74 23,3 4,1 72,6 

Zuw_GV 67 25,0 2,9 72,1 

Zuw_FB 72 16,4 34,2 49,3 
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Abbildung 81: Scatterplots zu den Zusammenhängen der Akzeptanzskalen in der Ausgangsbefragung (links: die 
Akzeptanzskalen zu den generischen Beweisen, rechts: die Akzeptanzskalen zu den Punktmusterbeweisen) (alle 
‚nachverfolgbaren‘ Studierenden mit Hervorhebungen der Subgruppen) 

Als ein kleiner Exkurs sei an dieser Stelle den Fragen nachgegangen, ob sich ein Zusammenhang 

zwischen den Akzeptanzskalen der beiden generischen Beweise ausmachen lässt, was als eine 

übergeordnete Akzeptanz generischer Beweise aufgefasst werden könnte, und ob im Vergleich der 

Akzeptanzskalen zu den Punktmusterbeweisen eine übergeordnete Akzeptanz von 

Punktmusterbeweisen ausgemacht werden kann.  

In der Ausgangsbefragung korrelieren die Akzeptanzskalen zu den generischen Beweisen in der 

Gesamtgruppe mittelstark (rp=0,527 mit p<0,001; Erstsemester: rp=0,542 mit p<0,001 und Höhere 

Semester: rp=0,545 mit p=0,001; dieser positive Zusammenhang wird auch bei der Betrachtung des 

linken Scatterplots in Abbildung 81 deutlich). Diese Ergebnisse können dahingehen interpretiert 

werden, dass eine übergreifende Akzeptanz von generischen Beweisen vorliegen könnte.  

Bei den Zusammenhängen zwischen den Akzeptanzskalen zu den Punktmusterbeweisen werden in 

den Subgruppen die folgenden Unterschiede deutlich: Während bei den Erstsemestern kein 

Zusammenhang nachgewiesen werden kann (rp=-0,006, p=0,973), liegt die Korrelation in den 

Höheren Semestern bei rp=0,495 und ist mit p=0,003 statistisch hoch signifikant auf dem 1%-Niveau 

(vgl. hierzu den rechten Scatterplot in Abbildung 81). Dieser Unterschied könnte dahingehend 

gedeutet werden, dass die Erstsemester noch keine ausreichende Zeit hatten, sich in den Umgang 

mit Punktmustern einzuarbeiten bzw. sich daran zu gewöhnen.  

 

 

 

 

 

 

 

 

Für die Beantwortung der Forschungsfrage [5] werden im Folgenden die erhaltenen Ergebnisse aus 

Abschnitt 7.3.2. unter Berücksichtigung der Leitfragen zur Auswertung 26-28  zusammenfassend 

ausgewertet. 

Beantwortung der Forschungsfrage [5]: Inwiefern verändern sich die Kompetenzen der Studierenden 

im Kontext der Thematik ‚Begründen und Beweisen‘ von der Ein- zur Ausgangsbefragung? 

Bzgl. der Teilkompetenz der Beweisbewertung konnte gezeigt werden, dass die Bewertung der 

Studierenden der bloßen empirisch-induktiven Begründung von der Ein- zur Ausgangsbefragung als 

„richtiger Beweis“ statistisch hoch signifikant von 17,6% auf 5,4% abnimmt (McNemar-Test, p<0,012 



292 

 

mit odds ratio=0,1). Und auch der Anteil der Fehlbewertung der formal-dargestellten und falschen 

Begründung geht von 27% auf 13,5% zurück (McNemar-Test, p=0,078). Die Studierenden scheinen 

somit durch die Lehrveranstaltung gelernt zu haben, dass bloße Beispielbetrachtungen keinen Beweis 

konstituieren, und auch die fehlerhafte Begründung wird in der Ausgangsbefragung von ihnen als 

solche erkannt.  

Bzgl. der Wahl einer Begründungsform als potentieller eigener Ansatz wird die korrekte Begründung 

mit Buchstabenvariablen in der Ausgangsbefragung mit 63,5% statistisch hoch signifikant auf dem 

0,1%-Niveau häufiger ausgewählt als in der Eingangsbefragung (McNemar-Test, p<0,001 mit odds 

ratio=10,5). Demgegenüber nimmt der Anteil der Wahl der empirisch-induktiven Begründung von 

10,8% auf 1,4% statistisch signifikant auf dem 5%-Niveau ab (McNemar-Test, p=0,041). Hier zeigt 

sich, dass sich die Studierenden bzgl. ihres eigenen Begründungsansatzes von bloßen 

Beispielbetrachtungen abwenden und nun verstärkt zu einer Verwendung von Buchstabenvariablen 

tendieren. Bei der Frage nach der Beweispräferenz der Studierenden wird der formale Beweis in 

Bezug auf die Eigenkonstruktion und das Verstehen eines Beweises am häufigsten gewählt. Auch hier 

zeigt sich somit die Hinwendung zu einer Nutzung von Buchstabenvariablen. Während bzgl. der 

Eigenkonstruktion 25% der Studierenden den generischen Beweis mit Zahlen bevorzugen, liegt dieser 

Anteil für das Verstehen eines Beweises bei 36,4%. Auch wenn dieser Anstieg nicht statistisch 

signifikant ist (McNemar-Test), so wird doch deutlich, dass die Studierenden den generischen Beweis 

in Bezug auf die Eigenkonstruktion und das Verständnis unterschiedlich bewerten. Die 

Punktmusterbeweise werden bzgl. beider Aspekte nur marginal ausgewählt. 

In Bezug auf die Beweisakzeptanz sind bzgl. der generischen Beweise deutliche Unterschiede von der 

Ein- zur Ausgangsbefragung zu verzeichnen. In der Ausgangsbefragung stimmen die Studierenden 

den verschiedenen positiven Akzeptanzaspekten (Sicherung der Gültigkeit, Überzeugung, 

Erklärungsqualität und Bezeichnung als ‚korrekter und gültiger Beweis‘) statistisch hoch signifikant 

auf dem 0,1%-Niveau höher zu als in der Eingangsbefragung (Wilcoxon-Test, p<0,001 mit mittleren 

bis starken Effektstärken: 0,46<Cohens d<0,68). Dementsprechend wird den Items bzgl. der 

Interpretation der Beweise als bloße Beispielüberprüfungen statistisch hoch signifikant auf dem 

0,1%-Niveau weniger zugestimmt (Wilcoxon-Test, p<0,001 mit mittleren bis starken Effektstärken: 

0,39<Cohens d<0,68). Einen vergleichbaren Akzeptanzzuwachs erfährt auch der Punktmusterbeweis 

mit geometrischen Variablen. Auch bei dieser Beweisform steigen die Zustimmungen bzgl. der 

positiven Akzeptanzaspekte statistisch hoch signifikant auf dem 0,1%-Niveau an, wohingegen die 

Fehlinterpretationen als singuläre Beispielüberprüfungen in der Ausgangsbefragung deutlicher 

abgelehnt werden. Beim formalen Beweis werden in der Ausgangsbefragung die hohen 

Akzeptanzbewertungen bzgl. der verschiedenen Aspekte aus der Eingangsbefragung reproduziert. 

Dieser Anstieg der Beweisakzeptanzen zeigt sich auch in den statistisch hoch signifikanten 

Mittelwertanstiegen (t-Test) der Akzeptanzskalen zu den vier Beweisformen, bei den generischen 

Beweisen und dem Beweis mit geometrischen Variablen mit hoher Effektstärke (generischer Beweis 

mit Zahlen: Cohens d=1,13, generischer Beweis mit Punktmustern: Cohens d=0,94 und Beweis mit 

geometrischen Variablen: Cohens d=1,06). Während die einzelnen Akzeptanzwerte bzgl. der vier 

Beweisformen steigen, ergibt sich in der Ausgangsbefragung die gleiche Akzeptanzhierarchie wie in 

der Eingangsbefragung: Während der generische Beweis mit Zahlen und der Punktmusterbeweis mit 

geometrischen Variablen mit einem Mittelwert von 4,27 bzw. 4,34 am wenigsten Akzeptanz 

erfahren, erreicht der generische Beweis mit Punktmustern mit einem Mittelwert von 4,85 statistisch 
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signifikant höhere Akzeptanzwerte. Am höchsten wird jedoch der formale Beweis mit einem 

Mittelwert von 5,50 bewertet.  

Die Akzeptanzzunahme in Bezug auf die vier Beweisformen der Lehrveranstaltung konnten durch die 

Betrachtung der personenbezogenen Veränderungswerte konkretisiert werden: Bzgl. der beiden 

generischen Beweise und des Punktmusterbeweises mit geometrischen Variablen ist bei gut 70% der 

Studierenden ein Akzeptanzzuwachs zu verzeichnen. 

Die Veränderungen der Teilkompetenz der Konstruktion von Begründungen (bzw. von Beweisen) 

werden im Rahmen der Teilstudie 3 untersucht (s. Abschnitt 7.4). 

7.3.3 Ergebnisse bzgl. der Einstellungen zum Themenkomplex des Beweisens und zur 

Mathematik 

 

7.3.3.1 Einstellungen zum Beweisen in der Schule 

In diesem Abschnitt werden die Ergebnisse zu den folgenden Themenbereichen dargestellt: (i) die 

Einschätzung der Relevanz des Unterrichtsgegenstands „Beweis“ für verschiedene Schultypen und 

Schulstufen, (ii) die Bewertung ‚gängiger‘ Gründe, warum Beweise im schulischen 

Mathematikunterricht eine eher untergeordnete Rolle spielen sollten, (iii) die Einstellungen zur 

Nutzung von Buchstabenvariablen und zu formalen Beweisen, zur Eignung generischer Beweise für 

die Schulmathematik und die Rolle der Lehrveranstaltung „Einführung in die Kultur der Mathematik“. 

(i) Die Einschätzung der Relevanz des Unterrichtsgegenstands „Beweis“ für verschiedene 

Schultypen und Schulstufen 

Die Ergebnisse bzgl. der Items zur Relevanz von Beweisen für verschiedene Schultypen und 

Schulstufen in der Ein- und Ausgangsbefragung werden in der Tabelle 69 angegeben. 

Sek_1 Sek_2 GS HS RS GY 

EB AB EB AB EB AB EB AB EB AB EB AB 

Alle (n=74) 

n 74 74 74 74 74 74 74 74 74 74 74 74 

M 3,93 3,62 5,32 5,18 2,05 1,72 3,57 3,11 4,41 4,07 5,54 5,20 

Median 4,00 4,00 6,00 5,00 1,00 1,00 4,00 3,00* 4,00 4,00 6,00 6,00 

SD 1,34 1,36 0,89 1,00 1,49 1,31 1,44 1,48 1,08 1,25 0,76 1,09 

Tabelle 69: Ergebnisse der Items zur Relevanz von Beweisen für verschiedene Schultypen und Schulstufen in der Ein- und 
Ausgangsbefragung (alle ‚nachverfolgbaren‘ Studierenden) [Signifikanzen der Medianunterschiede (Wilcoxon-Test): *: 
p<0,05]  

Beantwortung der Leitfrage zur Auswertung [29]: Inwiefern verändern sich die studentischen 

Bewertungen der Relevanz des Unterrichtsgegenstandes „Beweis“ für verschiedene Schultypen und 

Schulstufen von der Ein- zur Ausgangsbefragung? 

Im Vergleich der Ergebnisse der Ein- und Ausgangsbefragung ist der Medianunterschied bzgl. des 

Aspekts „Beweise in der Hauptschule“ [„HS“] statistisch signifikant, die Befürwortung des Lerninhalts 

„Beweisen“ nimmt somit für die Hauptschule statistisch signifikant ab. Der Medianunterschied bzgl. 

des Aspekts „Beweisen in der Sekundarstufe 2“ [„Sek_2“] ist dagegen mit p=0,710 nicht statistisch 

signifikant (Wilcoxon-Test). 

Wie bereits in der Eingangsbefragung zeigt sich auch in der Ausgangsbefragung, dass nach Ansicht 

der Studierenden Beweise eher in der Sekundarstufe 2 als in der Sekundarstufe 1 eine Rolle spielen 
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sollten. In Bezug auf die Schulformen ergibt sich, wie bereits in der Eingangsbefragung, die 

hierarchische Ordnung von Grundschule, Hauptschule, Realschule und Gymnasium, wobei die 

Medianunterschiede paarweise statistisch hoch signifikant auf dem 0,1%-Niveau bei starker 

Effektstärke sind (Wilcoxon-Test, p<0,001 mit r>0,65). 

(ii) Die Bewertung ‚gängiger‘ Gründe, warum Beweise im schulischen Mathematikunterricht 

eine eher untergeordnete Rolle spielen sollten 

In der Tabelle 70 werden die Items zur Thematik „motivationale Aspekte zum Beweisen“ und die 

Medianveränderungen der studentischen Bewertungen von der Ein- und zur Ausgangsbefragung mit 

den dazugehörigen Signifikanzwerten (Wilcoxon-Test) und Effektstärken angegeben. 

Formulierung EB AB Signifikanz (Effektstärke) 

In der Schule sollten Beweise eher eine untergeordnete Rolle spielen, …    

…, da es wichtiger ist, dass die fachlichen Inhalte (Funktionen, 

Differentialrechnung, Integralrechnung, …) vermittelt und verstanden 

werden. 

5 5 --- 

…, da es wichtiger ist, dass die Schüler/innen Rechenaufgaben richtig 

lösen können. 

4 5 p=0,011 

(r=0,3) 

…, da man im Mathematikunterricht lieber Anwendungen im Alltag 

behandeln sollte. 

4 5 p=0,026 

(r=0,26) 

…, da Beweise für die Schüler/innen zu schwer nachzuvollziehen sind. 4 4 --- 

…, da es die meisten Schüler/innen überfordern würde, selbstständig 

Beweise zu finden und aufzuschreiben. 

4 4 --- 

…, da die Schüler/innen sowieso wissen, dass die mathematischen 

Regeln und Sätze richtig sind, und sie daher nicht zum Beweisen zu 

motivieren sind. 

3 4 p=0,015 

(r=0,29) 

..., da das Beweisen im späteren Leben der Schüler/innen keine 

Anwendung findet (im Gegensatz etwa zur Prozentrechnung). 

4 5 n.s. 

…, da Beweise in der Lebenswelt der Schüler/innen keine Bedeutung 

haben. 

3 4 n.s. 

Tabelle 70: Ergebnisse bzgl. der Items zur Bewertung „gängiger“ Gründe, warum Beweise im schulischen 
Mathematikunterricht eine eher untergeordnete Rolle spielen sollten, in der Ein- und Ausgangsbefragung [sechsstufige 
Likert-Skala: [1] „trifft überhaupt nicht zu“ … [6] „trifft voll zu“]; Signifikanzen der Medianunterschiede (Wilcoxon-Test) 
mit Effektstärken  (alle ‚nachverfolgbaren‘ Studierenden) 

Beantwortung der Leitfrage zur Auswertung [30]: Inwiefern verändern sich die studentischen 

Bewertungen ‚gängiger‘ Gründe, warum Beweise im schulischen Mathematikunterricht eine eher 

untergeordnete Rolle spielen sollten, von der Ein- zur Ausgangsbefragung? 

Insgesamt betrachtet, wird durch den Besuch der Lehrveranstaltung die Zustimmung gängiger 

Gründe auf Seiten der Studierenden, warum Beweisen in der Schule eine eher untergeordnete Rolle 

spielen sollte, nicht abgeschwächt. Im Gegenteil wird den Gründen „Lösen von Rechenaufgaben“, 

„Anwendungen im Alltag“ und „das Wissen um die Gültigkeit von mathematischen Sätzen und 

Regeln“ (s.o.) nach der Lehrveranstaltung signifikant höher zugestimmt als vor der Lehrveranstaltung. 

(iii) Die Bewertung der Eignung generischer Beweise für die Schulmathematik 

In der Ausgangsbefragung sollten die Studierenden die folgenden Aussagen auf einer Sechser-Likert-

Skala ([1] „trifft überhaupt nicht zu“ … [6] „trifft voll zu“) bewerten: 
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# Formulierung Abkürzung 

1 Generische Beweise sind eine gute Möglichkeit, um Schülern das Argumentieren beizubringen. „GB_gut_SuS“ 

2 Der generische Beweis ist eine Beweisform, die es ermöglicht, mathematische Beweise auch in 

der Haupt- und Realschule zu thematisieren. 

„GB_HS_RS“ 

Tabelle 71: Items für die Bewertung der Eignung generischer Beweise für die Schulmathematik 

Ergebnisse 

Die Ergebnisse der hier thematisierten Items werden in Tabelle 72 und der Abbildung 82 angegeben. 

 

Eignung generischer 

Beweise für die 

Schulmathematik 

GB_gut_SuS GB_HS_RS 

n 74 73 

M 4,73 4,32 

Median 5,00 4,00 

SD 1,17 1,28 

Tabelle 72: Ergebnisse bzgl. der Items zur  
Bewertung der Eignung generischer Beweise für  
die Schulmathematik (alle ‚nachverfolgbaren‘ 
Studierenden) (Bewertung auf einer 
sechsstufigen Likert-Skala: [1] „trifft überhaupt 
nicht zu“ … [6] „trifft voll zu“) 

 

 

Beantwortung der Leitfrage zur Auswertung [31]: Wie bewerten die Studierenden die Eignung 

generischer Beweise für die Schulmathematik? 

Die große Mehrheit der Studierenden bewertet die Eignung generischer Beweise für die 

Schulmathematik insgesamt positiv: Der Aussage „Generische Beweise sind eine gute Möglichkeit, 

um Schülern das Argumentieren beizubringen“ („Gen_gut_SuS“) wird mit einem Median von 5 

deutlich zugestimmt, dem Item „Der generische Beweis ist eine Beweisform, die es ermöglicht, 

mathematische Beweise auch in der Haupt- und Realschule zu thematisieren“ („Gen_HS_RS“) noch 

mit einem Median von 4. Bei der Betrachtung der Boxplots (Abbildung 82) zeigt sich, dass zu beiden 

Items die Boxen innerhalb der oberen Hälfte der Likert-Skala und somit im Bereich der ‚Zustimmung‘ 

liegen.  

Einstellungen zum Beweisen 

In diesem Abschnitt werden die Aspekte (i) Einschätzung motivationaler Aspekte zum Beweisen und  

(ii) „Beweisaffinität“ betrachtet. (Der in der Eingangsbefragung vorhandene Bereich der „Motivation 

zum Erlernen der Beweisaktivität“ entfiel in der Ausgangsbefragung.) 

(i) Motivationale Aspekte zum Beweisen 

In der Tabelle 73 werden die Items zur Thematik „motivationale Aspekte zum Beweisen“ und die 

Mediane der studentischen Bewertungen von der Ein- und Ausgangsbefragung angegeben. 

Abbildung 82: Boxplots bzgl. der Items zur Bewertung der Eignung 
generischer Beweise für die Schulmathematik (alle ‚nachverfolgbaren‘ 
Studierenden) [sechsstufige Likert-Skala: [1] „trifft überhaupt nicht zu“ 
… [6] „trifft voll zu“] 
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Item EB AB Signifikanz des Medianunterschieds 

(Effektstärke) 

Ich sehe das Beweisen als eine intellektuelle Herausforderung, 

der ich mich gerne stelle. 

4 4 --- 

Ich mag Beweise.  3 4 p=0,067 

(r=0,22) 

Ich sehe keinen Sinn darin, etwas beweisen zu müssen, was 

sowieso richtig ist.  

2 2 --- 

Ich versuche, Beweise zu verstehen. 5 6 p=0,003 

(r=0,34) 

Ich weiß, wie man einen Beweis führt. 4 5 p<0,001 

(r=0,67) 

Beweise werden von Experten konstruiert. Es genügt, wenn man 

sie nachvollziehen und verstehen kann. 

3 3 --- 

Tabelle 73: Items zu motivationalen Aspekten zum Beweisen [Beweisaffinität] und Mediane der Ein- und 
Ausgangsbefragung (alle ‚nachverfolgbaren‘ Studierenden) mit Signifikanzwerten der Medianunterschiede (Wilcoxon-
Test) und Effektstärke [Bewertung der Items auf einer sechsstufigen Likert-Skala: [1] „trifft überhaupt nicht zu“ … [6] 
„trifft voll zu“] 

Beantwortung der Leitfrage zur Auswertung [32]: Inwiefern verändern sich die studentischen 

Bewertungen zu motivationalen Aspekten zum Beweisen von der Ein- zur Ausgangsbefragung? 

Im Vergleich der Bewertungen der Aussagen von der Ein- zur Ausgangsbefragung zeigen sich bei 

Betrachtung der Mediane bei den folgenden Items keine Veränderungen: „Ich sehe das Beweisen als 

eine intellektuelle Herausforderung, der ich mich gerne stelle.“, „Ich sehe keinen Sinn darin, etwas 

beweisen zu müssen, was sowieso richtig ist.“ und „Beweise werden von Experten konstruiert. Es 

genügt, wenn man sie nachvollziehen und verstehen kann.“. Dagegen steigt die Bewertung der 

Aussage „Ich mag Beweise“ statistisch schwach signifikant auf dem 7% Niveau bei schwacher 

Effektstärke an. Stärkere Signifikanzen und Effektstärken zeigen sich bzgl. der Medianunterschiede 

bei der Bewertung der Items „Ich versuche, Beweise zu verstehen“ (Mediane 5 und 6; p=0,003 bei 

mittlerer Effektstärke) und „Ich weiß, wie man einen Beweis führt“ (Mediane 4 und 5; p<0,001 bei 

starker Effektstärke). 

(ii) Beweisaffinität 

In der Tabelle 74 werden die statistischen Kennwerte der Skala zur Beweisaktivität für die Ein- und 

Ausgangsbefragung angegeben. Die konstruierte Skala hat zu allen Messzeitpunkten ausreichend 

hohe Reliabilitätswerte (a>0,728). Bei der Betrachtung der korrigierten Trennschärfe der 

verwendeten Items wird allerdings deutlich, dass diese Skala noch weiter optimiert werden könnte.  

Kennwerte der Skala Beweisaffinität („Aff_Bew“) 

 Alle 

 EB AB 

n 74 74 

M 4,00 4,27 

SD 0,90 0,88 

Cronbachs Alpha 0,753 0,728 

Spannweite rIT 0,338 - 0,646 0,278 - 0,689 

Tabelle 74: Kennwerte der Skala zur Beweisaffinität in der Ein- und Ausgangsbefragung (alle ‚nachverfolgbaren‘ 
Studierenden) 
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Beantwortung der Leitfrage zur Auswertung [33]: Inwiefern verändert sich die „Beweisaffinität“ der 

Studierenden von der Ein- zur Ausgangsbefragung? 

Im Vergleich der Skalenmittelwerte der Ein- und Ausgangsbefragung zeigt sich in der Gesamtgruppe 

ein Anstieg des Mittelwertes von 4,0 auf 4,27, der bei kleiner Effektstärke statistisch signifikant auf 

dem 5%-Niveau ist (t-Test, p=0,018 mit Cohens d=0,3).  

7.3.3.3 Einstellungen zur Mathematik 

In der Tabelle 75 werden die statistischen Kennwerte der vier Skalen des Bereichs „Einstellungen zur 

Mathematik“ für die Ein- und die Ausgangsbefragung angegeben. Da alle Reliabilitätswerte echt 

größer als 0,5 sind, erscheint eine (gegebenenfalls entsprechend vorsichtige) Betrachtung der 

Ergebnisse zulässig. Durch die teilweise noch sehr niedrigen korrigierten Trennschärfen in den Items 

wird deutlich, dass diese Skalenkonstruktionen durchaus noch als verbesserungswürdig bezeichnet 

werden müssen. Die Skalenmittelwerte in der Ein- und Ausgangsbefragung werden zusätzlich in der 

Abbildung 83 dargestellt. 

 Mathematik als System 

[MaSy] 

Mathematik als 

Toolbox 

[MaTo] 

Mathematik als Prozess 

[MaPro] 

Praktische Relevanz 

von Mathematik 

[PraRel] 

 EB AB EB AB EB AB EB AB 

Alle 

n 70 70 70 70 70 70 70 70 
M 4,34 4,44 4,48 4,36 4,42 4,70 4,41 4,51 

SD 0,74 0,69 0,09 0,10 0,09 0,11 0,12 0,12 

Cronbachs 

Alpha 

0,701 0,698 0,614 0,716 0,555 0,711 0,781 0,783 

Spannweite 

rIT 

0,328 - 

0,541 

0,357 - 

0,485 

0,272 - 

0,484 

0,433 - 

0,511 

0,248 - 

0,438 

0,399 - 

0,585 

0,464 - 

0,667 

0,283 - 

0,687 

Tabelle 75: Statistische Kennwerte der Skalen zur Einstellungen zur Mathematik in der Ein- und Ausgangsbefragung (alle 
‚nachverfolgbaren‘ Studierenden und Subgruppen)  

 

 

 
 

 

 

 

 

 

 

Abbildung 83: Arithmetische Mittel der Skalen 
zur Einstellung zur Mathematik in der Ein- und 
Ausgangsbefragung (alle ‚nachverfolgbaren‘ 
Studierenden) 
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Beantwortung der Leitfrage zur Auswertung [34]: Inwiefern verändern sich die Einstellungen der 

Studierenden zur Mathematik von der Ein- zur Ausgangsbefragung? 

Die Mittelwerte der Skalen zu den Einstellungen „Mathematik als System“80, „Mathematik als 

Toolbox“81 und „Praktische Relevanz von Mathematik“ steigen von der Ein- zur Ausgangsbefragung 

geringfügig und nicht statistisch signifikant an. Dagegen ist der Mittelwertunterschied bzgl. der Skala 

„Mathematik als Prozess“ bei kleiner Effektstärke statistisch hoch signifikant auf dem 1%-Niveau (t-

Test, p=0,009 mit Cohens d=0,34).   

Als Exkurs sei an dieser Stelle der Frage nachgegangen, inwiefern sich Zusammenhänge zwischen den 

„Einstellungen zur Mathematik“ und den erhobenen Skalen zur Beweisakzeptanz ausmachen lassen. 

Dabei scheint die Hypothese angebracht, dass positive Korrelationen zwischen der Einstellung 

„Mathematik als System“ und der Akzeptanz des formalen Beweises sowie positive Korrelationen 

zwischen der Einstellung „Mathematik als Prozess“ und der Akzeptanz der generischen Beweise 

vorliegen könnten. 

Zwischen den in der Ausgangsbefragung erhobenen Skalen zu den „Einstellungen zur Mathematik“ 

und den dort erhobenen Skalen zur Beweisakzeptanz lassen sich jedoch keine statistisch signifikanten 

Zusammenhänge nachweisen. Dieses rechnerische Ergebnis wird dabei durch die Darstellung der 

Zusammenhänge im Scatterplot gestützt (s. Abbildung 83). 

 

 

                                                           
80 Anmerkung: Bzgl. der Skala „Mathematik als System“ ist der Mittelwertanstieg in der Gruppe der 

Erstsemester statistisch signifikant auf dem 5%-Niveau (t-Test, gepaarte Stichprobe (n=35): Mittelwert EB: 4,22 

und Mittelwert AB: 4,47; p=0,02 mit Cohens d= 0,35).  

81
 Anmerkung: In der Eingangsbefragung konnte gezeigt werden, dass bzgl. der Skala „Mathematik als Toolbox“ 

der Mittelwert der Erstsemesterstudierenden statistisch signifikant über dem der Höheren Semester liegt. 

Dieser Subgruppenunterschied lässt sich auch in der Eingangsbefragung ausmachen. Hier liegt der Mittelwert 

der Erstsemesterstudierenden mit 4,61 statistisch signifikant auf dem 5%-Niveau über dem der Höheren 

Semester mit 4,14 (t-Test, p=0,016).  

Abbildung 84: Scatterplot zu den in der Ausgangsbefragung erhobenen Skalen „Akzeptanz des formalen Beweises“ 
[„AB_Akz_FB“] und „Mathematik als System“ [„Ma_Sy“] (links) und Scatterplot zu den in der Ausgangsbefragung erhobenen 
Skalen „Akzeptanz des generischen Beweises mit Zahlen“ [„AB_Akz_GenZ“] und „Mathematik als Prozess“ [„Ma_Sy“] (rechts) 
(alle ‚nachverfolgbaren‘ Studierenden) 
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Für die Beantwortung der Forschungsfrage [6] werden im Folgenden die erhaltenen Ergebnisse aus 

Abschnitt 7.3.3. unter Berücksichtigung der Leitfragen zur Auswertung 29-34 zusammenfassend 

ausgewertet. 

Beantwortung der Forschungsfrage [6]: Inwiefern verändern sich die Einstellungen der Studierenden 

zur Thematik des Beweisens und zur Mathematik von der Ein- zur Ausgangsbefragung bzw. welche 

neuen Ansichten der Studierenden zum (generischen und formalen Beweisen) können in der 

Ausgangsbefragung herausgearbeitet werden? 

Bei dem Teilaspekt der Einstellungen zum Beweisen in der Schule zeigte sich, dass die Studierenden 

in der Ausgangsbefragung die Bedeutung des Beweisens für die Hauptschule (statistisch signifikant 

auf dem 5%-Niveau) geringer bewerten als in der Eingangsbefragung. Dieses Ergebnis kann 

dahingehend interpretiert werden, dass die Studierenden ‚das Beweisen‘ als einen nicht trivialen 

Lerngegenstand erfahren haben und deswegen in Bezug auf dessen Relevanz für die Hauptschule 

etwas zurückhaltender agieren. In Bezug auf die anderen Schulformen konnten keine statistisch 

signifikanten Veränderungen von der Ein- zur Ausgangsbefragung nachgewiesen werden. Wie bereits 

in der Eingangsbefragung zeigt sich auch in der Ausgangsbefragung, dass nach Ansicht der 

Studierenden Beweise eher in der Sekundarstufe 2 als in der Sekundarstufe 1 thematisiert werden 

sollten. Dabei ergibt sich auch zu diesem Messzeitpunkt eine hierarchische Anordnung der 

Schulformen (Grundschule, Hauptschule, Realschule und Gymnasium), wobei die 

Medianunterschiede paarweise statistisch hoch signifikant auf dem 0,1%-Niveau bei starker 

Effektstärke sind (Wilcoxon-Test, p<0,001 mit r>0,65). Nach der Lehrveranstaltung wird den 

Aussagen statistisch signifikant höher zugestimmt, dass Beweise im schulischen 

Mathematikunterricht zu Gunsten des Lösens von Rechenaufgaben (Wilcoxon-Test; p=0,011 mit 

r=0,3) und der Behandlung von Anwendungen aus dem Alltag (Wilcoxon-Test; p=0,026 mit r=0,26) 

eine eher untergeordnete Rolle spielen sollten. Auch steigt die Zustimmung bzgl. der Begründung „…, 

da die Schüler/innen sowieso wissen, dass die mathematischen Regeln und Sätze richtig sind, und sie 

daher nicht zum Beweisen zu motivieren sind.“ (Wilcoxon-Test; p=0,015 mit r=0,29). Die 

Relevanzbewertung des Lerninhalts ‚Beweis‘ für die Schulmathematik scheint sich somit bei den 

Studierenden nicht gesteigert zu haben. 

Dagegen kann bei den Einstellungen zum Beweisen auf Seiten der Studierenden eine Hinwendung 

zum Beweisen ausgemacht werden: Den Aussagen „Ich mag Beweise“ (Wilcoxon-Test; p=0,067 mit 

r=0,22), „Ich versuche, Beweise zu verstehen“ (Wilcoxon-Test; p=0,003 mit r=0,34) und „Ich weiß, wie 

man einen Beweis führt“ (Wilcoxon-Test; p<0,001 mit r=0,67) wird nach der Lehrveranstaltung 

statistisch (schwach) signifikant höher zugestimmt. Dementsprechend steigt der Mittelwert der Skala 

zur Beweisaffinität von der Ein- zur Ausgangsbefragung statistisch hoch signifikant bei kleiner 

Effektstärke an (EB: 4,0; AB: 4,27; t-Test, p=0,018 mit Cohens d=0,3). Im Rahmen dieser Thematik 

konnte auch herausgestellt werden, dass die Studierenden den Aussagen zustimmen, dass 

generische Beweise eine gute Möglichkeit sind, um Schülern das Argumentieren beizubringen 

(Median von 5 auf einer sechsstufigen Likert-Skala), und dass der generische Beweis eine Beweisform 

ist, die es ermöglicht, mathematische Beweise auch in der Haupt- und Realschule zu thematisieren 

(Median von 4 auf einer sechststufigen Likert-Skala). 

Bzgl. der Einstellungen zur Mathematik zeigte sich ein statistisch hoch signifikanter 

Mittelwertanstieg bei der Skala „Mathematik als Prozess“ (EB: 4,42; AB: 4,70; t-Test, p=0,009 mit 

Cohens d=0,34). Das Bewusstsein der Studierenden über die Prozesshaftigkeit hat sich demnach 
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(statistisch hoch signifikant auf dem 1%-Niveau) gesteigert. (Dabei muss kritisch angemerkt werden, 

dass die Reliabilität der Skala in der Eingangsbefragung nur Cronbachs Alpha=0,555 beträgt und die 

Verwendung dieser Skala diskussionswürdig ist. Das errechnete Resultat muss dementsprechend 

vorsichtig interpretiert werden.) 

Übergeordnet lässt sich somit bei den Studierenden allgemein eine Hinwendung zum Fachinhalt 

‚Beweis‘ feststellen, wohingegen die Bewertung der Relevanz als Lerngegenstand für die 

Schulmathematik stagniert. Von der Ein- zur Ausgangsbefragung konnte außerdem ein Anstieg bzgl. 

der Bewusstheit des Prozesscharakters der Mathematik nachgewiesen werden, der bei kleiner 

Effektstärke statistisch signifikant auf dem 1%-Niveau ist (t-Test, p=0,009 mit Cohens d=0,34). 

7.3.4 Die Selbsteinschätzung der Studierenden bzgl. ihres Lernzuwachses in Bezug auf die 

Funktionen von Beweisen, auf den Nutzen von Beispielbetrachtungen für den 

Beweisprozess, auf die Konstruktion und den Umgang mit Beweisen und der Aspekt der 

Selbstwirksamkeitserwartung beim Beweisen 

 

In diesem Abschnitt werden die folgenden Aspekte thematisiert: der selbst eingeschätzte 

Lernzuwachs der Studierenden in Bezug auf (i) Funktionen von Beweisen, (ii) den Nutzen von 

Beispielbetrachtungen für den Beweisprozess und (iii) die Konstruktion un den Umgang mit 

allgemein. Schließlich wird die in der Ausgangsbefragung konstruierte Skala der 

„Selbstwirksamkeitserwartung zum Beweisen“ betrachtet (iv). Im Kontext der 

„Selbstwirksamkeitserwartung zum Beweisen“ wird auch überprüft, ob sich ein Zusammenhang 

zwischen dieser Skala und der Skala der „Beweisaffinität“ ausmachen lässt, da diese beiden Konzepte 

miteinander in Verbindung stehen könnten. Am Ende des Abschnitts wird die Forschungsfrage [7] 

beantwortet. 

(i) Der selbst eingeschätzte Lernzuwachs der Studierenden in Bezug auf die Funktionen 

von Beweisen 

Für die Erfassung des selbst eingeschätzten Lernzuwachses der Studierenden in Bezug auf Funktionen 

von Beweisen wurden in der Ausgangsbefragung zu jeder der folgenden Aussagen eine aktuelle und 

eine retrospektive Einschätzung („vor dem Besuch der Lehrveranstaltung“) auf einer sechsstufigen 

Likert-Skala abgefragt (vgl. hierzu die Ausführungen zur retrospektiven Kompetenzzuwachsmessung 

in Abschnitt 3.3.9):  

# Formulierung 

Ich kann mindestens je einen Beweis angeben, an dem ich deutlich man kann, … 

Abkürzung 

1 …, dass Beweise zeigen können, dass bestimmte Sachverhalte und Zusammenhänge sicher 

gelten. 

„Gültigkeit“ 

2 …, dass Beweise zeigen können, warum etwas gilt. „zeigen_warum“ 

3 …, dass Beweise die Bedeutungen von mathematischen Begriffen verdeutlichen können. „Bedeutung“ 

4 …, dass Beweise mathematisches Verständnis erzeugen können. „Verständnis“ 

5 …, dass Beweise dabei helfen können, sich Zusammenhänge und Tatsachen einprägen zu 

können. 

„Zusammenhänge“ 

6 …, dass in Beweisen mathematisches Wissen systematisiert werden kann. „Systematisierung“ 

7 …, dass Beweise einen laufenden (Forschungs-) Prozess beenden können. „Ende_Prozess“ 

8 …, dass man durch Beweise verstehen kann, warum etwas wahr ist. „verstehen_warum“ 

9 …, dass in Beweisen neues Wissen entdeckt werden kann. „Entdeckung“ 

10 …, dass in Beweisen mathematisches Wissen kommuniziert werden kann. „Kommunikation“ 

Tabelle 76: Items für die Bewertung des selbst eingeschätzten Lernzuwachses in Bezug auf Funktionen von Beweisen 
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Durch die Differenzbildung dieser Werte („aktuelle Einschätzung“ – „retrospektive Einschätzung“) 

wird der selbst eingeschätzte Lernzuwachs abgebildet. Somit ergeben sich „Veränderungswerte“, die 

Werte zwischen -5 und 5 annehmen können, wobei positive Werte eine Zunahme und negative 

Werte eine Abnahme implizieren; der Wert Null entspricht hierbei keiner Veränderung. 

Die Ergebnisse dieser errechneten personenbezogenen Veränderungswerte bzgl. der Funktionen von 

Beweisen werden in der Tabelle 77 und der Abbildung 85 dargestellt. 

 Veränderung_ 

Gültigkeit zeigen_ 

warum 

Bedeutung Verständ-

nis 

Zusammen

-hänge 

Systemati-

sierung 

Ende_ 

Prozess 

verstehen_ 

warum 

Entde-

ckung 

Kommu-

nikation 

Alle 

N 73 73 72 72 73 73 73 73 72 73 

M 2,60 2,55 2,19 2,26 2,05 2,03 1,42 2,14 1,93 1,77 

Median 3 3 2 2 2 2 1 2 2 2 

SD 1,4 1,472 1,57 1,50 1,62 1,55 1,46 1,58 1,51 1,39 

Tabelle 77: Statistische Daten zu den errechneten Veränderungswerten bzgl. der Items zu „Funktionen von Beispielen“ 
(alle ‚nachverfolgbaren Studierenden‘) 

Beantwortung der Leitfrage zur Auswertung [35]: Wie schätzen die Studierenden ihren eigenen 

Lernzuwachs in Bezug auf die Funktionen von Beweisen ein?  

Insgesamt geben die Studierenden mehrheitlich an, bzgl. aller aufgeführten Funktionen von 

Beweisen durch die Lehrveranstaltung einen Lernzuwachs gehabt zu haben. Die Mediane von 1 bis 3 

der Veränderungswerte und die bzgl. aller Funktionen auch erreichten Maximalwerte von 5 (vgl. 

Abbildung 85) verdeutlichen diese selbst eingeschätzten Lernzuwächse. Dabei fällt jedoch auf, dass 

mit Ausnahme der Items „Gültigkeit“, „zeigen_warum“, „Entdeckung“ und „Kommunikation“ eine 

besonders breite Streuung der Ergebnisse vorliegt, die auch negative Werte umfasst. Es sei dazu 

angemerkt, die absolute Häufigkeit der negativen Veränderungswerte bei diesen Items jeweils 

kleiner gleich 3 beträgt und diese Ergebnisse aus statistischer Sicht wohl vernachlässigt werden 

können. 

 

 

 

 

 
 

 

 

 

 

 

 

Abbildung 85: Boxplots zu den errechneten Veränderungswerten bzgl. der Items zu 
den Funktionen von Beweisen (alle ‚nachverfolgbaren‘ Studierenden) 
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(ii) Der selbst eingeschätzte Lernzuwachs der Studierenden in Bezug auf den Nutzen von 

Beispielbetrachtungen für den Beweisprozess 

Wie bereits bei dem Komplex „Funktionen von Beweisen“ wurden auch in dem Abschnitt zu „Nutzen 

von Beispielen“ von den Studierenden aktuelle und retrospektive Bewertungen der Aussagen von 

den Studierenden verlangt („Inwieweit  treffen die folgenden Aussagen – aus heutiger Sicht – auf Sie 

vor der Lehrveranstaltung  zu und inwieweit treffen diese Aussagen heute zu?“). Analog zum 

Vorgehen bei den „Funktionen von Beweisen“ wurden auch hier personenbezogene 

Veränderungswerte berechnet, die Werte zwischen -5 und 5 annehmen können, wobei der Wert Null 

keine Veränderung bedeutet, positive Werte die Zunahme der Zustimmung bzgl. einer Aussage 

beschreiben und negative Werte deren Abnahme. Die zu bewertenden Aussagen werden in der 

Tabelle 78 angegeben.  

# Formulierung Abkürzung 

1 Die Betrachtung von konkreten Beispielen kann dabei helfen, eine Beweisidee zu finden. „Beweisidee_finden“ 

2 Die Betrachtung von konkreten Beispielen hilft dabei, eine Behauptung besser zu 

verstehen. 

„Behauptung_verstehen“ 

3 Die Betrachtung von konkreten Beispielen hat beim Beweisen keinen Nutzen. „kein_Nutzen“ 

4 Beispiele können dabei helfen, eine Argumentation zu überprüfen. „Arg_überpr“ 

6 Auch nach einem erfolgten Beweis überprüfe ich die Behauptung zur Sicherheit noch an 

Beispielen. 

„nachträgl“ 

7 Die Überprüfung von einigen Beispielen reicht als vollständiger Beweis aus. „vollst_Bew“ 

8 Beispiele können mich in meiner Vermutung bestärken, ob eine Behauptung wahr ist. „Vermut_best“ 

Tabelle 78: Items bzgl. des selbst eingeschätzten Lernzuwachses der Studierenden in Bezug auf den Nutzen von 
Beispielen für den Beweisprozess 

Die Ergebnisse bzgl. der errechneten personenbezogenen Veränderungswerte werden in der Tabelle 

79 und der Abbildung 86 dargestellt.  

Veränderungswerte bzgl. des Nutzens von Beispielbetrachtungen 

Beweisidee_ 

finden 

Behauptung_ 

verstehen 

kein_ 

Nutzen 

Arg_ 

überpr 

nachträgl vollst_ 

Bew 

Vermut_ 

best 

Alle 

n 72 74 72 73 74 74 74 

M 2,10 1,66 0,25 1,34 1,04 -0,16 0,99 

Median 2,00 2,00 0,00 1,00 1,00 0,00 1,00 

SD 1,43 1,39 1,67 1,34 1,72 1,72 1,35 

Tabelle 79: Statistische Daten zu den errechneten Veränderungswerten bzgl. der Items zum Nutzen von Beispielen im 
Beweisprozess (alle ‚nachverfolgbaren‘ Studierenden) 

Beantwortung der Leitfrage zur Auswertung [36]: Wie schätzen die Studierenden ihren eigenen 

Lernzuwachs in Bezug auf den Nutzen von Beispielbetrachtungen für den Beweisprozess ein?  

Es zeigt sich, dass die Studierenden der Ansicht sind, dass sich ihre Bewusstheit über die 

konstruktiven Aspekte von Beispielbetrachtungen für den Beweisprozess („Beweisidee finden“, 

„Behauptung verstehen“, „Argumentation überprüfen“ und „Vermutung bestätigen“) im Laufe der 

Lehrveranstaltung gesteigert hat. Bzgl. der Bewertung der Aussage „Die Betrachtung von konkreten 

Beispielen hat beim Beweisen keinen Nutzen“ („kein Nutzen“) liegt eine größere Streuung der 

Ergebnisse vor, wobei die Lage der Box (1. Quartil: 0 und 3. Quartil: 1) einen leichten Lernzuwachs 

anzeigt. Allerdings wird in der Rücksicht eine Schwäche dieses Items deutlich: Die dort verwendete 

negative Formulierung („hat keinen Nutzen“) erscheint besonders in der Verbindung zu der 

verlangten aktuellen und retrospektiven Einschätzung problematisch. Bei den Veränderungswerten 

bzgl. des Items „vollst_Bew“ wird durch die Lage der Box (1. Quartil: -1 und 3. Quartil: 0) deutlich, 
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dass die Studierenden nur wenig selbst eingeschätzte Veränderung zum Ausdruck bringen. Doch 

weisen diese negativen Werte in 

die richtige Richtung: Ein negativer 

Wert bedeutet hier, dass dem 

Studierenden nach Besuch der 

Lehrveranstaltung bewusster 

geworden ist, dass die Überprüfung 

einzelner Beispiele nicht als 

vollständiger Beweis ausreicht.  

 

 
 

 

(iii) Der selbst empfundene Lernzuwachs der Studierenden in Bezug auf die Konstruktion 

und den Umgang mit Beweisen 

Um den von den Studierenden selbst empfundenen Lernzuwachs bzgl. des Beweisens zu erheben, 

sollten die Studierenden die folgenden Aussagen auf einer sechsstufigen Likert-Skala ([1] „stimmt gar 

nicht“ … [6] „stimmt völlig“) bewerten: 

Item # Formulierung Abkürzung 

 Ich habe in der Lehrveranstaltung „Einführung in die Kultur der Mathematik“ gelernt, …  

1 … wie man einen Beweis findet. „Bew_finden“ 

2 … wie man einen Beweis aufschreibt „Bew_aufschreiben“ 

3 … wie man einen Beweis liest. „Bew_lesen“ 

4 … wie man einen Beweis versteht. „Bew_verstehen“ 

5 … wie das Beweisen funktioniert. „Bew_funktioniert“ 

6 … warum man Beweise führt. „Bew_führen“ 

7 … welche Arten von Beweisen es gibt. „Arten_Bew“ 

8 … wie man Beweise im Schulunterricht einsetzen kann. „wie_in_Schule“ 

9 … wie man Schüler zum Beweisen motivieren kann. „SuS_motiv“ 

10 … wie man Schülern „das Beweisen“ unterrichten kann. „Bew_unterrichten“ 

11 Ich habe in der Lehrveranstaltung gelernt, wie ich den Schülern besser verdeutlichen 

kann, wie und warum man Variablen in der Mathematik verwendet. 

„warum_Var“ 

12 Durch die Lehrveranstaltung „Einführung in die Kultur der Mathematik“ hat sich meine 

Einstellung zur Benutzung von Buchstabenvariablen positiv entwickelt. 

„BuVar_pos“ 

13 Durch die Lehrveranstaltung „Einführung in die Kultur der Mathematik“ hat sich meine 

Einstellung zum formalen Beweis positiv entwickelt. 

„FB_pos“ 

14 Durch die Lehrveranstaltung „Einführung in die Kultur der Mathematik“ hat sich meine 

Einstellung zum Einsatz von Beweisen in der Schule positiv entwickelt. 

„Bew_S_pos“ 

15 Durch die Lehrveranstaltung „Einführung in die Kultur der Mathematik“ ist mir klar 

geworden, dass man Beweise besser nicht in der Schule behandeln sollte. 

„Bew_nicht_S“ 

Tabelle 80: Items zur Erfassung des selbst empfundenen Lernzuwachses bzgl. der Beweisaktivität durch die 
Lehrveranstaltung 

Abbildung 86: Boxplots zu den errechneten 
Veränderungswerten bzgl. der Items zu den 
Funktionen von Beweisen (alle 
‚nachverfolgbaren‘ Studierenden) 
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Die Ergebnisse bzgl. dieser Items zum selbstempfundenen Lernzuwachs durch die Lehrveranstaltung 

werden in der Tabelle 81 und der Abbildung 87 dargestellt.  

Selbst empfundener Lernzuwachs durch die Lehrveranstaltung 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 

Alle 

n 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 

M 4,65 5,31 5,09 5,14 5,18 4,92 5,64 3,12 2,64 2,76 4,45 4,36 4,55 3,96 2,97 

Med. 5 5 5 5 5 5 6 3 2,5 3 5,00 5,00 5,00 4,00 3,00 

SD 1,19 0,76 0,88 0,83 1,01 1,13 0,56 1,55 1,41 1,46 1,26 1,42 1,37 1,45 1,45 

Tabelle 81: Statistische Daten zu den errechneten Veränderungswerten bzgl. der Items zum Nutzen von Beispielen im 
Beweisprozess (alle ‚nachverfolgbaren‘ Studierenden) 

Beantwortung der Leitfrage zur Auswertung [37]: Wie schätzen die Studierenden ihren eigenen 

Lernzuwachs in Bezug auf das Beweisen durch die Lehrveranstaltung ein?  

Die Studierenden bewerten ihren eigenen Lernzuwachs bzgl. der fachlichen Aspekte des Beweisens 

(Items 1-7, s. Tabelle 80) durch die Lehrveranstaltung mit einem Median von 5 bzw. 6 insgesamt sehr 

hoch. Dieses Ergebnis wird durch die Betrachtung der Boxplots (vgl. die Lage der Quartile in 

Abbildung 87) noch untermauert. Die Aussagen bzgl. der in der Lehrveranstaltung weniger explizit 

thematisierten didaktischen Aspekte zum Beweisen (Items 8 bis 10) werden dagegen von den 

Studierenden mit einem Median von 3 bzw. 2,5 eher abgelehnt. Anhand der Items 11, 12 und 13 wird 

deutlich, dass sich die Einstellungen der Studierenden zur Nutzung von Buchstabenvariablen und zum 

formalen Beweisen nach eigenen Angaben deutlich verbessert haben. Schließlich stimmen die 

Studierenden mit einem Median von 4 auch der Aussage zu, dass sich durch die Lehrveranstaltung 

ihre Einstellung zum Einsatz von Beweisen in der Schule positiv entwickelt hat, das negativ 

formulierte Item wird entsprechend niedrig bewertet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 87: Boxplots zu den Items „Selbst empfundener Lernzuwachs bzgl. der 
Beweisaktivität“ (alle ‚nachverfolgbaren‘ Studierenden) 
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(iv) Selbstwirksamkeitserwartung zum Beweisen 

In dem Fragebogenabschnitt „Selbstwirksamkeitserwartung zum Beweisen“ sollten die Studierenden 

die folgenden Aussagen auf einer sechsstufigen Likert-Skala ([1] „stimmt gar nicht“ … [6] „stimmt 

völlig“) bewerten: 

Formulierung Abkürzung 

Ich kann eine gegebene Behauptung beweisen „Beh_beweisen“ 

Ich weiß, was einen Beweis ausmacht. „was_ausmacht“ 

Ich weiß, warum in der Mathematik bewiesen wird. „warum_beweisen“ 

Ich verstehe Beweise, wenn ich sie lese. „verstehe_Bew“ 

Ich weiß, wie man einen Beweis führt. „wie_führen“ 

Ich kann beurteilen, ob ein Beweis richtig oder falsch ist. „Bew_beurteilen“ 

Tabelle 82: Aussagen zur Erfassung der Selbstwirksamkeitserwartung zum Beweisen 

Durch Mittelwertbildung der sechs Items wurde die Skala „Selbstwirksamkeitserwartung zum 

Beweisen“ konstruiert. Die statistischen Kennwerte dieser Skala werden in der Tabelle 83 dargestellt. 

Die Skala genügt sowohl den Ansprüchen an Reliabilität als auch an die korrigierten Trennschärfen 

der verwendeten Items.  

 

 
Skala „Selbstwirksamkeitserwartung 

zum Beweisen" 

Alle 

N 74 

M 5,09 

Median 5,17 

SD 0,67 

Cronbachs Alpha 0,83 

Spannweite rIT 0,491 - 0,700 

Tabelle 83: Statistische Kennwerte zur Skala  
„Selbstwirksamkeitserwartung zum Beweisen“  
in der Ausgangsbefragung (alle ‚nachverfolgbaren‘ 
Studierenden) 

 

 

Beantwortung der Leitfrage zur Auswertung [38]: Wie lässt sich die Selbstwirksamkeitserwartung zum 

Beweisen auf Seiten der Studierenden beschreiben? 

Durch die verwendeten Items konnte eine reliable Skala zur Erfassung der 

„Selbstwirksamkeitserwartung zum Beweisen“ konstruiert werden. Der Skalenmittelwert von 5,09 in 

der Gesamtgruppe verdeutlicht die allgemein hohe Selbstwirksamkeitserwartung der Studierenden 

zum Beweisen. Bei der Betrachtung des entsprechenden Boxplots wird deutlich, dass alle Werte in 

der oberen Hälfte der Skala liegen (s. Abbildung 88). Insgesamt kann somit von einer eher hohen 

Selbstwirksamkeitserwartung zum Beweisen auf Seiten der Studierenden gesprochen werden. 

Schließlich sei hier der Frage nachgegangen, ob sich Zusammenhänge zwischen der Skala 

„Selbstwirksamkeitserwartung zum Beweisen“ und „Beweisaffinität“ ausmachen lassen. Die 

Hypothese bei dieser Fragestellung ist ein vermuteter Zusammenhang zwischen motivationalen 

Abbildung 88: Boxplot zur Skala „Selbstwirksamkeitserwartung 
zum Beweisen“ (alle ‚nachverfolgbaren‘ Studierenden) 
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Aspekten und der Selbsteinschätzung der Kompetenz. In der Gesamtgruppe der ‚nachverfolgbaren‘ 

Studierenden ergibt sich ein mittelstarker Zusammenhang zwischen den Skalen 

„Selbstwirksamkeitserwartung zum Beweisen“ und „Beweisaffinität“, der statistisch hoch signifikant 

ist (rP=0,336 und p=0,003; vgl. Abbildung 89)82.  

 

 

 

 

 

 

 

 
 

 

Für die Beantwortung der Forschungsfrage [7] werden im Folgenden die erhaltenen Ergebnisse aus 

Abschnitt 7.3.4. unter Berücksichtigung der Leitfragen zur Auswertung 35-38  zusammenfassend 

ausgewertet. 

Beantwortung der Forschungsfrage [7]: Wie schätzen die Studierenden selbst ihren Lernzuwachs in 

Bezug auf das Beweisen durch die Lehrveranstaltung ein?  

Die Studierenden geben in der Ausgangsbefragung an, in Bezug auf die verschiedenen Funktionen 

von Beweisen83 durch die Lehrveranstaltung einen Lernzuwachs gehabt zu haben. Dieser 

Lernzuwachs konnte über die Erfassung der aktuellen und retrospektiven Einschätzung der 

Studierenden herausgearbeitet werden, die verschiedenen Funktionen von Beweisen anhand 

konkreter Beweiskonstruktion verdeutlichen zu können. Aus aktueller Perspektive schätzen sich die 

Studierenden dabei im Mittel um zwei Werte auf einer Sechser-Likert-Skala besser ein als 

retrospektiv vor dem Besuch der Lehrveranstaltung. Ebenfalls durch die Abfrage einer aktuellen und 

retrospektiven Einschätzung konnte ein Lernzuwachs in Bezug auf Nutzen von 

Beispielbetrachtungen für den Beweisprozess erfasst werden. Ein Lernzuwachs von zwei Punkten 

auf der Likert-Skala ergibt sich bzgl. der Aspekte der Beispielbetrachtung zum Finden einer 

Beweisidee und zum Verstehen einer Behauptung.  

Bei den konkreten Fragen zum Lernzuwachs bzgl. der fachlichen Aspekte zum Beweisen (Finden, 

Aufschreiben, Lesen und Verstehen von Beweisen) bewerten die Studierenden ihren eigenen 

                                                           
82

 Dieser Zusammenhang ist auch in der Subgruppe der ‚Höheren Semester‘ gegeben (rP=0,467 und p=0,004 mit 

n=36), nicht jedoch in der Gruppe der Erstsemester (rp=0,189, p=0,189 mit n=38). 
83

 In diesem Kontext wurden die folgenden Funktionen von Beweisen thematisiert: „Sicherung der Gültigkeit“, 

„Erklärung eines Sachverhalts“, „Verdeutlichung der Bedeutung mathematischer Begriffe“, „Erzeugung von 

mathematischem Verständnis“, „Hilfe beim Einprägen von Zusammenhängen und Tatsachen“, 

„Systematisierung von Wissen“, „Beendigung eines laufenden (Forschungs-) Prozesses“, „Entdeckung von 

neuem Wissen“ und „Kommunikation“ (vgl. Abschnitt 3.3.9 und 7.3.4). 

Abbildung 89: Scatterplots bzgl. des Zusammenhangs 
der Skalen „Selbstwirksamkeitserwartung zum 
Beweisen“ [„Selbstwirk_Bew“] und „Beweisaffinität“ 
[„AB_Aff_Bew“] in der Ausgangsbefragung (alle 
‚nachverfolgbaren‘ Studierenden) 
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Lernzuwachs durch die Lehrveranstaltung mit einem Median von 5 sehr hoch. Ein Median von 6 

erreicht dabei der Aspekt um das Wissen verschiedener Arten von Beweisen. Die didaktischen 

Aspekte von Beweisen (Motivieren von Schülerinnen und Schülern und das Unterrichten von 

Beweisen) werden dagegen eher niedrig bewertet. (Dieses Ergebnis zeugt dabei von ‚ehrlichen‘ 

Bewertungen der Studierenden, denn diese didaktischen Aspekte wurden im Rahmen dieser 

expliziten Fachveranstaltung höchstens implizit tangiert.) Darüber hinaus geben die Studierenden 

jeweils mit einem Median von 5 an, dass sich ihre Einstellung zur Nutzung von Buchstabenvariablen 

und zum formalen Beweisen positiv entwickelt habe, auch hätten sie durch die Lehrveranstaltung 

gelernt, wie man Schülerinnen und Schülern besser verdeutlichen kann, wie und warum man 

Variablen in der Mathematik verwendet. Aus diesem Ergebnis kann geschlossen werden, dass sich 

auch ihre eigene Bewusstheit über diesen Aspekt gesteigert hat. Schließlich stimmen die 

Studierenden mit einem Median von 4 der Aussage (eher) zu, dass sich durch die Lehrveranstaltung 

ihre Einstellung zum Beweisen positiv entwickelt hätte. 

An dieser Stelle sollen kurz Probleme der Herangehensweise der retrospektiven 

Kompetenzzuwachsmessung angebracht werden. Grundlegend für die Diskussion dieser Ergebnisse 

ist die Frage nach der Validität der Selbsteinschätzung der Studierenden, gerade in der Retrospektive 

(vgl. Sprangers und Hoogstraten 1989). Wie Pratt et al. (2000, S. 347ff.) betonen, kann gerade die 

retrospektive Selbsteinschätzung aufgrund der zurückliegenden Zeit und einer möglichen 

‚Verklärung‘ der Vergangenheit zu Fehleinschätzungen führen. Hinzu kommt das Problem einer 

gewissen personalen Erwünschtheit, dass jede Person das Gefühl haben möchte, etwas gelernt zu 

haben, was dazu führen kann, dass der Kompetenzzuwachs als zu hoch eingeschätzt wird. Dazu muss 

zunächst angemerkt werden, dass mit der hier verwendeten Fragemethode nach einer 

retrospektiven und einer aktuellen Einschätzung gerade nicht direkt nach dem empfundenen 

Lernzuwachs gefragt wurde, was nach Lam und Bengo (2003) zu den valideren Ergebnissen führt. 

Weiter belegen die Ergebnisse von Coulter (2012), dass diese Herangehensweise über eine 

retrospektive Einschätzung besser geeignet ist, um (empfundene) Lernzuwächse valide beschreiben 

zu können als herkömmliche Pre-Post-Tests. Schließlich konnten Townsend und Wilkon (2003) 

zeigen, dass Studierende ihre Kompetenzen in einer Eingangsbefragung durchaus in der 

Retrospektiven korrekt einschätzen können. Allerdings verbleibt das Problem der sozialen 

Erwünschtheit bei den Antworten der Studierenden, welches an dieser Stelle nicht ausgeschlossen 

werden kann. Dieses grundlegende Problem, dass in dieser Forschung gerade auch durch die 

Involviertheit des Forschers bedingt wird, wird in Abschnitt 8.4.1.1 genauer erörtert.  

In der Ausgangsbefragung konnte durch Mittelwertbildung von sechs Items die reliable Skala der 

„Selbstwirksamkeitserwartung zum Beweisen“ (mit Werten zwischen 1 und 6) konstruiert werden. 

Dabei verdeutlich der Skalenmittelwert von 5,09 die hohe Selbstwirksamkeitserwartung der 

Studierenden. Die Lehrveranstaltung hat folglich dazu beigetragen, bei den Studierenden eine hohe 

Selbstwirksamkeitserwartung zum Beweisen auszubilden. 

 

7.4 Teilstudie 3: Die Begründungen und Beweisproduktionen der Studierenden in 

der Modulabschlussklausur 

 

im Rahmen der Effektivitätsstudie zur vierten Durchführung der Lehrveranstaltung „Einführung in die 

Kultur der Mathematik“ stellt die Modulabschlussklausur des Wintersemesters 2014/15 den dritten 



308 

 

Messzeitpunkt dar. Im Rahmen dieser Klausur wurden zwei Aufgaben gestellt, mit denen die 

Begründungs- und Beweiskompetenz der Studierenden erfasst werden konnten: eine 

Begründungsaufgabe über die Summe zweier gerader Zahlen und eine Beweisaufgabe zu der Summe 

von sechs aufeinander folgenden natürlichen Zahlen. Die anderen Aufgaben in der Klausur umfassten 

die Themenbereiche: figurierte Zahlen, Beweis durch vollständige Induktion, Beweis durch 

Kontraposition und Aussagenverknüpfungen. Die Bearbeitungen zu diesen Aufgaben wurden im 

Rahmen dieses Forschungsprojekts allerdings nicht ausgewertet, da sie außerhalb des speziellen 

Fokus dieser Arbeit liegen. 

7.4.1 Forschungsanliegen und Forschungsfragen 

 

Am Ende der Effektivitätsstudie zur vierten Durchführung der Lehrveranstaltung „Einführung in die 

Kultur der Mathematik“ steht die Frage, inwiefern sich die Begründungskompetenz der Studierenden 

verändert hat, wie gut es den Studierenden nach dem Besuch der Lehrveranstaltung gelingt, die vier 

Beweisformen der Lehrveranstaltung (den generischen Beweis mit Zahlen, den generischen Beweis 

mit Punktmustern, den Punktmusterbeweis mit geometrischen Variablen und den formalen Beweis) 

selbst zu konstruieren, und welche Unterschiede sich zu den Ergebnissen aus dem vorherigen 

Durchgang zeigen. Bei der Untersuchung der Begründungskompetenz der Studierenden zu Beginn 

der Lehrveranstaltung wurden neben der Qualität der Begründungen auch die Begründungsarten 

und dabei auftretende charakteristische Fehler untersucht. Diese Aspekte sollen in der Analyse der 

Aufgabenbearbeitungen aus der Modulklausur wieder aufgegriffen werden, um die Bearbeitungen 

besser vergleichen zu können. Bei der Untersuchung der Begründungs- und Beweiskompetenz der 

Studierenden ist dabei auch von Interesse, inwiefern die Studierenden dabei in der Lage sind, ihre 

eigenen Fähigkeiten in Bezug auf die Konstruktion von Beweisen richtig einzuschätzen. Aus diesem 

Grund werden die erhaltenen Ergebnisse zu den Beweiskonstruktionen mit den Ergebnissen der 

konstruierten Skalen zur „Beweisaffinität“ und „Selbstwirksamkeitserwartung zum Beweisen“ in 

Beziehung gesetzt.  

Bei der Begründungsaufgabe „Summe zweier ungerader Zahlen“ (s.u.) können direkt die 

personenbezogenen Veränderungen von der Ein- zur Ausgangsbefragung betrachtet werden, da es 

sich hier um die gleiche Kohorte handelt. Bei den Beweiskonstruktionen der Studierenden in der 

Modulklausur müssen die Ergebnisse mit denen aus dem Vorjahr in Beziehung gesetzt werden; an 

dieser Stelle können also keine personenbezogenen Auswertungen erfolgen. Wohl aber können 

eventuelle Unterschiede zwischen diesen beiden Jahrgängen genutzt werden, um die Auswirkung der 

Veränderungen der Lehrveranstaltung bewerten zu können. Die Leitfragen zur Auswertung sind 

dementsprechend wie folgt:  

o Leitfrage zur Auswertung [39]: Inwiefern gelingt den Studierenden die Bearbeitung der 

bereits in der Eingangsbefragung gestellten Begründungsaufgabe der „Summe zweier 

ungerader Zahlen“ in der Modulklausur nach dem Besuch der Lehrveranstaltung und welche 

Begründungsart verwenden die Studierenden, um ihre Begründung zu konstruieren?  

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem 

ersten Hochschulsemester und den Studierenden in einem höheren Semester 

ausmachen? 

b) Welche Unterschiede zeigen sich im Vergleich zu den Ergebnissen der 

Eingangsbefragung? 
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o Leitfrage zur Auswertung [40]: Inwiefern gelingt den Studierenden die Konstruktion der vier 

verschiedenen Beweisformen „generischer Beweis mit Zahlen, generischer Beweis mit 

Punktmustern, Punktmusterbeweis mit geometrischen Variablen und formaler Beweis“ in 

der Modulabschlussklausur des Wintersemesters 2014/15?  

a) Inwiefern unterscheiden sich diese Ergebnisse von denen aus dem Vorjahr?  

b) Inwiefern lassen sich Zusammenhänge zwischen den Beweiskonstruktionen der 

Studierenden ausmachen?  

c) Inwiefern lassen sich Zusammenhänge zwischen den Beweiskonstruktionen der 

Studierenden und den in der Ausgangsbefragung erhobenen Skalen zur „Beweisaffinität“ 

und zur „Selbstwirksamkeitserwartung zum Beweisen“ ausmachen? 

 

7.4.2 Methode und verwendete Aufgaben 

 

Um bei den Studierenden eine möglichst hohe Motivation für die Bearbeitung der folgenden 

Aufgaben zu erzeugen und somit möglichst aussagekräftige Begründungs- und Beweiskonstruktionen 

zu erhalten, wurden die zu bearbeitenden Aufgaben (s.u.) in der Modulabschlussklausur, einen 

Monat nach Semesterende, gestellt. Der Klausur wurde ein Deckblatt angefügt, auf dem auf 

freiwilliger Basis der bereits in der Ein- und Ausgangsbefragung verwendete  personenbezogene 

Code abgefragt wurde. Ebenfalls waren auf diesem Deckblatt Eintragungen für die für die Forschung 

relevanten Daten vorgesehen. Nach der Klausurkorrektur wurden die entsprechenden Daten 

eingetragen und die Deckblätter von den Klausurbögen entfernt, so dass eine anonyme Nutzung der 

Daten sichergestellt wurde. 

Die erste hier betrachtete Aufgabe ist die Begründungsaufgabe „Summe zweier ungerader Zahlen“, 

die bereits in der Eingangsbefragung eingesetzt wurde (vgl. Abschnitt 7.2.4.1): 

Aufgabe 1 

Die Summe 11 + 17 ist eine gerade Zahl. 

Gilt dies für jede Summe von zwei beliebigen ungeraden Zahlen? 

 - Begründen Sie überzeugend. 

Entsprechend der Auswertung der Aufgabe im Rahmen der Eingangsbefragung wurde auch die 

Auswertung der Bearbeitungen in der Modulklausur mit dem bereits dort angewendeten 

Kategorienschema vorgenommen (vgl. Abschnitt 7.2.4.1). Ebenso wurden die in Abschnitt 7.2.4.1 

herausgearbeiteten Begründungsarten und die damit verbundenen charakteristischen Fehler für die 

Analyse der Daten herangezogen, um bessere Einblicke in die Bearbeitungen der Studierenden zu 

ermöglichen. 

Für die Konstruktion der vier Beweisformen der Lehrveranstaltung wurde die folgende Aufgabe 

verwendet, die bereits in der Modulabschlussklausur des vorherigen Durchgangs eingesetzt wurde 

(vgl. Abschnitt 5.4.2.3 für eine didaktische Erörterung der Aufgabe und entsprechende 

Lösungsbeispiele): 

Aufgabe 2 

Wir betrachten die folgende Behauptung: 

Die Summe von 6 aufeinanderfolgenden natürlichen Zahlen ist immer ungerade. 
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Beweisen Sie die Behauptung mit: 

a) einem generischen Beweis mit Zahlen. 

b) einem formalen Beweis mit Mitteln der Algebra. 

c) einem generischen Punktmusterbeweis. 

d) einem Punktmusterbeweis mit geometrischen Variablen. 

Für die Analyse der Begründungen und der Beweiskonstruktionen der Studierenden wurde dabei das 

gleiche Kategorienschema wie bei der Analyse der Klausuraufgaben im Wintersemester 2013/14 und 

in der Eingangsbefragung (Wintersemester 2014/15) verwendet. Zur Erinnerung seien hier kurz die 

entsprechenden Kategorien aufgeführt (eine ausführliche Darstellung des Kategoriensystems mit 

Ankerbeispielen befindet sich in Abschnitt 7.2.4.1): 

Bezeichnung Erläuterung 

n.b. nicht bearbeitet 

Keine Begründung Antwort ohne Begründung 

Empirisch induktive Prüfung 

Pseudo Paraphrasierung der Behauptung; Nennung falscher oder irrelevanter Fakten 

Fragmentarisch Es werden korrekte und relevante fachliche Aspekte genannt, ohne dass eine 

Argumentationskette aufgebaut wird. 

Argumentation  

mit Lücke 

Es wird eine Argumentationskette mit korrekten und relevanten fachlichen Aspekten 

aufgebaut, die allerdings eine Lücke enthält. 

vollständige  

Argumentation 

Die Behauptung wird mithilfe korrekter Argumente vollständig verifiziert. 

Tabelle 84: Kurzdarstellung des Kategoriensystems zur vergleichenden Analyse der Begründungen und 
Beweiskonstruktionen der Studierenden in der Modulabschlussklausur des Wintersemesters 2014/15 

7.4.3 Ergebnisse 

In diesem Abschnitt werden die Ergebnisse der Klausuraufgaben „Summe zweier ungerader Zahlen“ 

und „Summe sechs aufeinanderfolgender Zahlen“ darstellt. Neben den in der Klausur erhaltenen 

Ergebnissen geht es dabei auch um die Veränderungen, die sich im Vergleich zu den Ergebnissen der 

Eingangsbefragung (Aufgabe „Summer zweier ungerader Zahlen“) und zu den Ergebnissen aus der 

Modulklausur des vorherigen Wintersemesters (Aufgabe „Summe sechs aufeinanderfolgender 

Zahlen“) ergeben. Die im Folgenden dargestellten Ergebnisse beziehen sich auf die Daten von 107 

Studierenden, die mithilfe der Abfrage eines anonymen Codes von der Eingangsbefragung zur 

Modulklausur nachverfolgt werden konnte. 

7.4.3.1 Ergebnisse bzgl. der Begründungsaufgabe „Summe zweier ungerader Zahlen“ und der 

Abgleich mit den Ergebnissen aus der Eingangsbefragung 

 

Für die Auswertung der Qualität der Begründung wurde das gleiche Kategoriensystem wie in der 

Eingangsbefragung verwendet (s.o.). Für die Erfassung der verschiedenen Begründungsarten wurden 

zunächst diejenigen wieder aufgegriffen, die bei der Analyse der entsprechenden Aufgabe in der 

Eingangsbefragung herausgearbeitet werden konnten.  

Für den Vergleich der Ergebnisse aus der Eingangsbefragung und der Modulabschlussklausur werden 

im Folgenden nur die Ergebnisse bzgl. der Studierenden verwendet, die nachverfolgbar an beiden 

Messzeitpunkten teilgenommen haben. Die prozentuale Verteilung der Kategorien der „Qualität der 

Begründung“ in der Modulklausur [„MK“] werden in der Tabelle 85 und der Abbildung 90 

vergleichend mit den Ergebnissen aus der Eingangsbefragung [„EB“] dargestellt. 
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Alle (n=107) Erstsemester (n=51) Höhere Semester (n=56) 

EB MK EB MK EB MK 

n.b.: Nicht bearbeitet 10,3 0 17,2 0 3,5 0 
K0: Keine Begründung 14,0 0 21,2 0 7,3 0 
K1: Empirisch 3,7 0 5,8 0 1,8 0 
K2: Pseudo 26,2 6,5 32,7 7,8 20 5,4 

K3: Fragmentarisch 3,7 1,9 1,9 2,0 5,5 1,8 

K4: Argumentation mit Lücke 26,2 39,3 15,4 52,9 36,4 26,8 

K5: Vollständige Argumentation 15,9 52,3 5,8 37,3 25,5 66,1 

Summe: 100 100 100 100 100 100 

Tabelle 85: Ergebnisse zur „Qualität der Begründung“ in der Eingangsbefragung [„EB“] und der Modulabschlussklausur 
[„MK“] in Prozent (Alle und Subgruppen) 
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Beantwortung der Leitfrage zur Auswertung [39]: Inwiefern gelingt den Studierenden die Bearbeitung 

der bereits in der Eingangsbefragung gestellten Begründungsaufgabe der „Summe zweier ungerader 

Zahlen“ in der Modulklausur nach dem Besuch der Lehrveranstaltung und welche Begründungsart 

verwenden die Studierenden, um ihre Begründung zu konstruieren? 

Bei der Bearbeitung der Begründungsaufgabe „Summe zweier ungerader Zahlen“ werden in der 

Modulabschlussklausur in 91,6% der Bearbeitungen Argumentationen mit korrekten Argumenten 

konstruiert [K4+K5]. Allerdings konnten nur 52,3% aller Begründungen als vollständig gewertet 

werden [K5], da in den restlichen Argumentationen diverse Lücken auftraten. Aus normativer Sicht 

muss hier angemerkt werden, dass der Anteil vollständiger Argumentationen für solch eine basale 

Begründungsaufgabe doch eher gering ausfällt.   

Die Untersuchung der verwendeten Begründungsarten und der damit verbundenen 

charakteristischen Fehler vermag dieses Phänomen genauer zu erklären. 

Insgesamt konnten bei den Bearbeitungen der Begründungsaufgabe in der Modulabschlussklausur 

die folgenden Begründungsarten ausgemacht werden:  (A2) Nennung oder Paraphrase des Satzes, 

dass die Summe zweier ungerader Zahlen immer ungerade ist, (A3) Nennung falscher bzw. 

irrelevanter Fakten, (A4) Begründung über die ‚Abstände‘ von geraden zu ungeraden Zahlen, (A7) 

Repräsentation einer ungeraden Zahl durch „2� + 1“, (A8) Repräsentation einer ungeraden Zahl 

durch „� + 1“ und (A10) Verwendung von geometrischen Variablen. 

Die prozentualen Verteilungen dieser Begründungsarten werden in der Tabelle 86 angegeben. 

  Alle (n=107)  Erstsemester (n=51)  Höhere Sem. (n=56)  

n. b. nicht bearbeitet - - - 

A0 keine Begründung - - - 

A1 induktiv - - - 

Pseudo A2 Satz: Summe ungerade 5,6 5,9 5,4 

A3 falsch/irrelevant 0,9 2 - 

Argumentationen 

ohne  

Formalisierung 

A4 Abstände 6,5 5,9 7,1 

A5 Endziffern - - - 

A6 g & u wechseln ab - - - 

Argumentationen 

mit  

Formalisierung 

A7 "2n+1" 85,0 84,3 85,7 

A8 "n+1" 0,9 2 1,8 

A9 "n+n=2n" - - - 

 A10 Mithilfe geometrischer 

Variablen 

0,9 - 1,8 

  Summe 100 100 100 

  Summe „mit Form.“ 85,9 86,3 83,6 

Tabelle 86: Prozentuale Verteilung der „Begründungsarten“ zur Aufgabe „Summer zweier ungerader Zahlen“ in der 
Modulabschlussklausur (Alle und Subgruppen) 

In der Modulabschlussklausur verwendet die deutliche Mehrheit der Studierenden (85,0%) in ihren 

Begründungen die Repräsentation einer ungeraden Zahl der Form „2�+1“.  

In Verbindung mit den herausgearbeiteten Begründungsarten lässt sich nun der Frage nachgehen, 

warum der Anteil von „vollständigen Argumentationen“ in der Auswertung der studentischen 

Bearbeitungen relativ gering ausfällt. Um diese Frage zu klären, wurden die Bearbeitungen des 

Begründungstyps [A7] (Begründungen mithilfe einer Repräsentation der Form „2�+1“) im Hinblick 
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auf die begangenen Fehler untersucht. Als charakteristische Fehler konnten hierbei die folgenden 

ausgemacht werden: (1) für die Repräsentation der beiden ungeraden Zahlen wird nur eine 

Buchstabenvariable verwendet und (2) bei dem erhaltenen Term der Art „
2� + 1� + 
2� + 1� =	
2 ∙ 
� + � + 1�“ wird für den Nachweis des Attributs ‚gerade‘ nicht angemerkt, dass der zweite 

Faktor („� +� + 1“) ein Element der natürlichen Zahlen ist. In der Tabelle 87 wird die prozentuale 

Verteilung dieser charakteristischen Fehlertypen für die Gesamtgruppe und die Subgruppen 

angegeben. 

 Alle Erstsemester Höhere Semester 

Absolute Anzahl der Bearbeitungen  

mit Begründungsformen der Art „2x+1“ 
83 40 43 

Anteil korrekter Bearbeitungen 53,0% 32,5% 72,1% 

Fehlertyp  

(1) Es wird nur eine Buchstabenvariable 

verwendet 

31,3% 47,5% 16,3% 

(2) Der zweite Faktor wird nicht als 

Element der natürlichen Zahlen 

ausgewiesen 

10,8% 17,5% 4,7% 

(3) Sonstige Fehler 4,8% 2,5% 7,0% 

Summe 100% 100% 100% 

Tabelle 87: Prozentuale Verteilung der Fehlertypen bei Bearbeitungen der Begründungsaufgabe „Summe zweier 
ungerader Zahlen“ mithilfe der Repräsentation „2n+1“ in der Modulabschlussklausur (WS 2014/15) 

Es zeigt sich hier, dass nur gut der Hälfte der Studierenden, die mithilfe einer Begründungsform der 

Art „2� + 1“ agieren, eine vollständig korrekte Bearbeitung gelingt. Die ausgemachten häufigsten 

Fehlertypen sind somit einmal einem unzureichendem Umgang mit Variablen (31,3%) und einem 

unvollständigen Nachweis der Teilbarkeit durch 2 zuzuschreiben (10,8%). 

a) Inwiefern lassen sich hierbei Unterschiede zwischen den Studierenden in ihrem ersten 

Hochschulsemester und den Studierenden in einem höheren Semester ausmachen? 

Vergleicht man die Ergebnisse aus der Modulklausur in den Subgruppen, so zeigt sich, dass in beiden 

Subgruppen der Anteil der Bearbeitungen mit korrekten Argumenten bei ca. 91% liegt [K4+K5]. 

Unterschiede zeigen sich jedoch in den unterschiedlichen Anteilen von Argumentationen mit Lücke 

[K4] (Erstsemester: 52,9% und Höhere Semester 26,8%) und vollständigen Argumentationen [K5] 

(Erstsemester: 37,3% und Höhere Semester 66,1%). Dabei liegt ein mittelstarker Zusammenhang vor, 

der statistisch hoch signifikant auf dem 1%-Niveau ist (Chi²-Test; p=0,003; Cramers V=0,301). Dieses 

Phänomen ist dabei nicht der Wahl unterschiedlicher Begründungsarten geschuldet (beide 

Subgruppen formulieren in ca. 85% der Fälle eine Begründung mithilfe einer Repräsentation der 

Form „2� + 1“, vgl. Tabelle 87), sondern kann durch das Auftreten von charakteristischen Fehlern in 

den Subgruppen erklärt werden. Der Fehlertyp (1), dass nur eine Buchstabenvariable verwendet 

wird, um zwei beliebige ungerade Zahlen zu repräsentieren, tritt bei den Erstsemesterstudierenden 

in 47,5% der Fälle auf, dagegen liegt der Anteil bei den Höheren Semester nur bei 16,3%. Auch der 

Anteil der Fehler, dass der zweite Faktor nicht als Element der natürlichen Zahlen ausgewiesen wird, 

tritt bei den Erstsemestern mit 17,5% häufiger auf, als bei den Höheren Semestern mit nur 4,7%. 

b) Welche Unterschiede zeigen sich im Vergleich zu den Ergebnissen der Eingangsbefragung? 

Im Vergleich zu den Ergebnissen der Eingangsbefragung wird deutlich, dass der Anteil „vollständiger 

Argumentationen“ [K5] von 15,9% auf 52,3% gestiegen ist. Darüber hinaus ist der Anteil von Pseudo-
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Begründungen [K2] von 26,2% auf 6,5% zurückgegangen und rein empirisch-induktive Begründungen 

[K1] werden in der Modulabschlussklausur überhaupt nicht mehr gegeben.  

Bzgl. der verwendeten Begründungsarten ist eine deutliche Hinwendung zu der Verwendung von 

Variablen festzustellen: Lag der Anteil von Bearbeitungen, in denen Buchstabenvariablen verwendet 

wurden, in der Eingangsbefragung bei 28,1%, so verwenden in der Modulabschlussklausur 85,9% der 

Studierenden Buchstabenvariablen. Waren in der Eingangsbefragung noch verschiedene 

Repräsentationen für die ungeraden Zahlen verwendet worden („2� + 1“ (16,1%), „� + 1“ (10,7%) 

oder „�“ (1,3%)), so wird in der Modulklausur fast ausschließlich die Repräsentation „2� + 1“ 

(85%)gewählt. Entsprechend dem Anstieg der Bearbeitungen mit formalen Repräsentationen ist der 

Anteil der Begründungen ohne Formalisierungen (Begründungen über die ‚Abstände‘ zu den geraden 

Zahlen, über die Endziffern oder über die Tatsache, dass gerade und ungerader Zahlen sich 

abwechseln; vgl. Abschnitt 7.2.4.1) von 16,8% auf 6,5% zurückgegangen, wobei hier nur noch die 

Begründungsart über die ‚Abstände‘ der ungeraden zu geraden Zahlen auftaucht. 

Auch zeigte sich bei der Analyse der Bearbeitungen der Eingangsbefragung, dass 10,7% der 

Studierenden eine ungerade Zahl in der Form „�+1“ darstellten, wobei a als gerade Zahl definiert 

werden muss. In den Bearbeitungen in der Modulabschlussklausur liegt dieser Anteil nur noch bei 

0,9%.   

Es kann somit insgesamt festgestellt werden, dass sich die Begründungen der Studierenden von der 

Eingangsbefragung zur Modulabschlussklausur verbessert haben und eine klare Hinwendung zu der 

Verwendung von Buchstabenvariablen erfolgt ist. Der relativ hohe Anteil von Bearbeitungen, in 

denen nur eine Buchstabenvariable verwendet wird, verdeutlicht allerdings die Probleme der 

Studierenden und besonders der Studienanfängerinnen und -anfänger, mit mehreren 

Buchstabenvariablen korrekt umzugehen. 

Dabei muss einschränkend angemerkt werden, dass die Studierenden bei der Bearbeitung der 

Modulabschlussklausur deutlich (extrinsisch) motivierter und an besseren Ergebnissen interessiert 

waren als bei der Bearbeitung der Eingangsbefragung zu Beginn des Semesters. Allerdings wurde 

anscheinend auch in der Eingangsbefragung diese Begründungsaufgabe gewissenhaft bearbeitet, 

wovon die ausführlichen Antworten der Studierenden zeugen. 

7.4.3.2  Die Beweiskonstruktionen der Studierenden nach dem Besuch der Lehrveranstaltung und 

der Abgleich mit den Ergebnissen aus dem vorherigen Durchgang 

In der Modulabschlussklausur sollten die Studierenden die vier Beweisformen der Lehrveranstaltung 

(generischer Beweis mit Zahlen, generischer Beweis mit Punktmustern, Punktmusterbeweis mit 

geometrischen Variablen und formaler Beweis), wie bereits in der Modulklausur des 

Wintersemesters 2013/14, zu der folgenden Behauptung konstruieren: „Die Summe von sechs 

aufeinanderfolgenden natürlichen Zahlen ist immer ungerade“. Für die Auswertung der 

Studierendenbearbeitungen wurde das gleiche Kategoriensystem verwendet wie bereits bei der 

Klausuranalyse im Wintersemester 2013/14 (s. Abschnitt 5.4.2.3). Dieses Kategoriensystem ist auch 

das gleiche, wie es oben für die Analyse der Klausuraufgabe „Summe zweier ungerader Zahlen“ 

verwendet wurde. Die Kategorie „K0: Keine Begründung“ kann dabei entfallen, da in keinem der 

beiden Durchgänge Beweise formuliert wurden, die überhaupt keinen Begründungsansatz 

beinhalteten. 
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Auch in diesem Durchgang wurden alle Beweisproduktionen der Studierenden doppelt kodiert, 

offensichtliche Fehlkodierungen wurden auch hier im Rahmen einer Kodierkonferenz korrigiert (vgl. 

Abschnitt 5.4.2.3). Die Interrater-Reliabilitäten bzgl. der Kategorien sind bei allen Beweisformen in 

einem akzeptablen bis sehr guten Bereich. Die exakten Werte werden in der Tabelle 88 angegeben. 

Kategorienschema zu der Beweisform… Interrater-Reliabilität  

Cohens Kappa 

generischer Beweis mit Zahlen 0,640 

formaler Beweis 0,661 

generischer Punktmusterbeweis 0,803 

Punktmusterbeweis mit geometr. Variablen 0,849 

Tabelle 88: Interrater-Reliabilitäten (Cohens Kappa) bzgl. Kategorisierungen der vier Beweisformen in der 
Modulabschlussklausur des Wintersemesters 2014/15 

In der Tabelle 89 und der Abbildung 91 werden die Ergebnisse der Gesamtgruppe des 

Wintersemesters 2014/15 vergleichend mit den Ergebnissen aus dem Wintersemester 2013/14 

angegeben. 

Wintersemester 2013/14 (n=139) Wintersemester 2014/15 (n=107) 

GenZ FB GenP GV GenZ FB GenP GV 

n.b. 3 3 6 18 0 2 1 4 

K1: Empirisch 7 0 7 0 1 0 0 0 

K2: Pseudo 22 15 37 45 6 8 14 34 

K3: Fragm. 14 3 24 9 11 6 36 10 

K4: Arg. Lücke 23 47 22 17 24 40 30 14 

K5: Vollst. Arg. 31 32 5 11 58 44 20 38 

Summe 100 100 100 100 100 100 100 100 
Tabelle 89: Ergebnisse bzgl. der vier Beweiskonstruktionen der Studierenden in der Modulabschlussklausur im 
Wintersemester 2013/14 und 2014/15 in Prozent (Alle) 

 

Bei den Ergebnissen zum generischen Beweis mit Punktmustern zeichnet sich insgesamt ein 

problematischer Umgang der Studierenden mit dem Diagramm der Punktmuster ab. Auffällig ist 

zunächst der relativ hohe Anteil von Pseudobearbeitungen [K2] mit 14% und fragmentarischen 

Argumentationen [K3] mit 36%. In der Hälfte alle Fälle wurde eine sinnvolle Argumentation 

konstruiert [K4+K5] und insgesamt konnten lediglich 20% der Beweise als vollständige 

Argumentationen gewertet werden [K5]. Ähnlich verhält es sich bei dem Beweis mit geometrischen 

Variablen. Hier liegt mit 34% der höchste Anteil von Pseudobearbeitungen vor und noch 10% der 

Bearbeitungen sind nur als fragmentarisch zu bezeichnen. Auch hier werden nur in gut der Hälfte der 

Fälle (52%) sinnvolle Argumentationen konstruiert [K4+K5] und nur 38% der Studierenden erreichen 

eine vollständige Argumentation [K5]. Somit sind die Ergebnisse bzgl. der Beweiskonstruktionen im 

Diagrammsystem der Punktmuster als insgesamt enttäuschend zu bezeichnen, da es sich hierbei um 

eine relative leichte Beweisaufgaben handelt, die durch entsprechende Übungsaufgaben über die 

Betrachtung verschiedener Summen aufeinander folgender Zahlen vorbereitet wurde. 

Zu den formalen Beweisen im Wintersemester 2014/15 kann positiv angemerkt werden, dass in 84% 

aller Bearbeitungen sinnvolle Argumentationen angeführt werden [K4+K5]. Insgesamt gelingt knapp 

der Hälfte der Studierenden (44%) eine vollständige Argumentation [K5].  
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a) Inwiefern unterscheiden sich diese Ergebnisse von denen aus dem Vorjahr? 

Im Fall des generischen Beweises mit Zahlen ist ein deutlicher Anstieg des Anteils der vollständigen 

Argumentationen vom Wintersemester 2013/14 von 31% auf 58% im Wintersemester 2014/15 zu 

verzeichnen. Dagegen ist der Anteil von rein empirischen Bearbeitungen von 7% auf 1% gesunken, 

wie auch der Anteil von Pseudobearbeitungen von 22% auf 6%. Insgesamt kann an dieser Stelle also 

eine deutliche Hinwendung zu sinnvollen Beweiskonstruktionen festgestellt werden (vgl. Abbildung 

91). Auch bzgl. des generischen Beweises mit Punktmustern haben sich die Ergebnisse im Vergleich 

zum Vorjahr verbessert. Während der Anteil von Pseudobearbeitungen von 37% auf 14% gefallen ist, 

steigt der Anteil der Argumentationen mit Lücke von 22% auf 30% und der vollständiger 

Argumentationen von 5% auf 20%. Auch hier ist eine deutliche Rechtsverschiebung der Verteilung 

erkennbar (Abbildung 91). Ein deutlicher Zuwachs der Bearbeitungen mit vollständigen 

Argumentationen kann auch bzgl. des Beweises mit geometrischen Variablen verzeichnet werden 

(Wintersemester 2013/14: 11% und Wintersemester 2014/15: 38%).  Auffällig sind hierbei der 

Rückgang der Pseudobearbeitungen von 45% auf 34% und der Anteil der nicht bearbeiteten 

Aufgaben von 18% auf 4%. Die Studierenden scheinen im Wintersemester 2014/15 deutlich besser 

mit Punktmustern umgehen zu können, als dies im Vorjahr der Fall war. Wenige Änderungen zeigen 

sich dagegen bei den Bearbeitungen zum formalen Beweis. Doch ist auch bei dieser Beweisform der 

Anteil der vollständigen Argumentationen  von 32% (Wintersemester 2013/14) auf 44% 

(Wintersemester 2014/15) leicht gestiegen.  
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Abbildung 91: Ergebnisse bzgl. der vier Beweiskonstruktionen der Studierenden in der Modulabschlussklausur im Wintersemester 
2013/14 (n=139) und 2014/15 (n=107) in Prozent (Alle) 
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Doch müssen an dieser Stelle einige Relativierungen der erhaltenen Ergebnisse formuliert werden. 

Zunächst ist die Kohorte im Wintersemester 2014/15 ein andere als im Vorjahr. Über die 

Vergleichbarkeit dieser zwei Kohorten kann an dieser Stelle keine Aussage getroffen werden.  Somit 

können diese Ergebnisse nicht eins-zu-eins vergleichen werden. Auch muss bei diesen Betrachtungen 

berücksichtig werden, dass in der Kohorte des Wintersemesters 2014/15 auch 27 Studierende 

enthalten sind, die die Veranstaltung bereits einmal besucht haben. Doch auch wenn keine strengen 

Vergleiche angebracht sind, so werden durch die Ergebnisse doch Tendenzen der Entwicklung 

deutlich.  

b) Inwiefern lassen sich Zusammenhänge zwischen den Beweiskonstruktionen der Studierenden 

ausmachen?  

Im Folgenden werden die Ergebnisse bzgl. der Beweiskonstruktionen der Studierenden jeweils als 

ordinalskaliert mit den Ausprägungen 0 bis 5 interpretiert, nicht bearbeitete Aufgaben werden dabei 

als fehlende Werte betrachtet. Mit dieser Interpretation der Daten können weiterführende 

Korrelationsberechnungen durchgeführt werden. Dabei interessieren zunächst die Zusammenhänge 

zwischen den Ergebnissen bzgl. der Beweiskonstruktionen untereinander. In der Tabelle 90 werden 

die Korrelationen zwischen den Beweiskonstruktionen für die Gesamtgruppe aufgeführt. 

 GenZ FB GenP GV AB_Aff_Bew Selbstwirk_Bew 

Spearman 

-Rho 

GenZ Korrelationskoeff. 1,000 ,190 ,419
**
 ,166 ,325

**
 ,260

*
 

Sig. (2-seitig) . ,053 ,000 ,095 ,006 ,030 

N 107 105 106 103 70 70 

FB Korrelationskoeff. ,190 1,000 ,369
**
 ,327

**
 ,120 -,003 

Sig. (2-seitig) ,053 . ,000 ,001 ,329 ,982 

N 105 105 104 101 68 68 

GenP Korrelationskoeff. ,419
**
 ,369

**
 1,000 ,413

**
 ,358

**
 ,202 

Sig. (2-seitig) ,000 ,000 . ,000 ,003 ,095 

N 106 104 106 103 69 69 

GV Korrelationskoeff. ,166 ,327
**
 ,413

**
 1,000 ,295

*
 ,051 

Sig. (2-seitig) ,095 ,001 ,000 . ,015 ,682 

N 103 101 103 103 67 67 

AB_Aff_ 

Bew 

Korrelationskoeff. ,325
**
 ,120 ,358

**
 ,295

*
 1,000 ,329

**
 

Sig. (2-seitig) ,006 ,329 ,003 ,015 . ,004 

N 70 68 69 67 74 74 

Selbstwirk_ 

Bew 

Korrelationskoeff. ,260
*
 -,003 ,202 ,051 ,329

**
 1,000 

Sig. (2-seitig) ,030 ,982 ,095 ,682 ,004 . 

N 70 68 69 67 74 74 

Tabelle 90: Korrelationstabelle bzgl. der Zusammenhänge der Beweiskonstruktionen in der Modulklausur [GenZ, FB, 
GenP und GV] und der Skalen zur Beweisaffinität [AB_Aff_Bew] und zur Selbstwirksamkeitserwartung zum Beweisen aus 
der Ausgangsbefragung [Selbstwirk_Bew] (Alle); „**“: Die Korrelation ist auf dem 1%-Niveau statistisch signifikant 
(zweiseitig), „*“: Die Korrelation ist auf dem 5%-Niveau statistisch signifikant (zweiseitig) 
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In der Gesamtgruppe liegt ein mittlerer Zusammenhang zwischen den Ergebnissen der beiden 

generischen Beweise (rs=0,419) vor, wie auch zwischen den beiden Punktmusterbeweisen (rs=0,413), 

die auf dem 1%-Niveau statistisch signifikant sind. Die Ergebnisse zum formalen Beweis korrelieren in 

der Gesamtgruppe mit denen zum generischen Beweis mit Punktmustern (rs=0,369) und denen zum 

Beweis mit geometrischen Variablen (rs=0,327) statistisch signifikant auf dem 1%-Niveau. Die 

Korrelation zu den Ergebnissen des generischen Beweises mit Zahlen fällt dagegen deutlich 

schwächer aus  (rs=0,019) und ist noch schwach signifikant auf dem 7%-Niveau. 

Diese Ergebnisse könnten dahingehend interpretiert werden, dass eine übergeordnete Kompetenz 

für die Konstruktion generischer Beweise und für den Umgang mit dem Diagrammsystem der 

Punktmuster existieren könnte. Diese Interpretation sei an dieser Stelle aber ausdrücklich als These 

verstanden, die im Rahmen weiterer Forschungsprojekte überprüft werden müsste. 

c) Inwiefern lassen sich Zusammenhänge zwischen den Beweiskonstruktionen der Studierenden 

und den in der Ausgangsbefragung erhobenen Skalen zur „Beweisaffinität“ und zur 

„Selbstwirksamkeitserwartung zum Beweisen“ ausmachen? 

Bzgl. der Skala zur Beweisaffinität [AB_Aff_Bew] liegt in der Gesamtgruppe ein mittlerer 

Zusammenhang zu den Ergebnissen des generischen Beweises mit Zahlen (rs=0,325) und des 

generischen Beweises mit Punktmustern (rs=0,358) vor, die jeweils auf dem 1%-Niveau statistisch 

signifikant sind. Des Weiteren ergibt sich ein mittlerer Zusammenhang dieser Skala zu den 

Ergebnissen des Beweises mit geometrischen Variablen (rs=0,295), der auf dem 5%-Niveau statistisch 

signifikant ist. 

Die Skala zur Selbstwirksamkeitserwartung zum Beweisen korreliert ausschließlich mit den 

Ergebnissen zum generischen Beweis mit Zahlen (rs=0,295), dieser leichte Zusammenhang ist auf 

dem 5%-Niveau statistisch signifikant. 

Hier zeigt sich, dass die Beweisaffinität der Studierenden in einem größeren Zusammenhang zu ihren 

Fähigkeiten einen Beweis zu stehen scheint, als in ihrer Selbstwirksamkeitserwartung zum Beweisen. 

Dabei ist doch überraschend, dass fast keine Zusammenhänge zwischen der erhobenen 

Selbstwirksamkeitserwartung der Studierenden und ihren Beweiskonstruktionen auszumachen sind. 

Eine Erklärung könnte hierfür sein, dass bei der Konstruktion der Selbstwirksamkeitserwartung zum 

Beweisen ein breiteres Spektrum rund um die Thematik des Beweisens abgefragt wurde (vgl. 

Abschnitt 3.3.12) und bei diesen Aufgaben nur punktuelle Beweiskonstruktionen gefordert waren. 

Auch wäre es denkbar, dass eine Selbstwirksamkeitserwartung zum Beweisen getrennt nach den vier 

Beweisformen erhoben werden müsste.  

7.5 Retrospektive Analyse der vierten Durchführung der Lehrveranstaltung im 

Wintersemester 2014/15 

Die retrospektive Analyse der vierten Durchführung der Lehrveranstaltung „Einführung in die Kultur 

der Mathematik“ entspricht der retrospektiven Analyse des letzten in dieser Arbeit thematisierten 

Forschungszyklus‘ des vorliegenden Design-Based Research Projekts. Die Umsetzung der in Abschnitt 

1.3 herausgearbeiteten Leitprinzipien für die Konstruktion der Lehrveranstaltung wurde bereits in 

Abschnitt 6.2 ausführlich anhand der Inhalte der ersten beiden Kapitel der Lehrveranstaltung 

dargestellt. Für die retrospektive Analyse der vierten Durchführung verbleibt somit die Diskussion der 

‚Effektivität‘ der Lehrveranstaltung anhand der bisher in Kapitel 7 dargestellten empirischen 
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Ergebnisse. Für die Diskussion der ‚Effektivität‘ sind dabei die Fragen leitend, die sich aus den in 

Abschnitt 1.3 formulierten Leitprinzipien ergeben, die mithilfe empirischer Ergebnisse beantwortet 

werden müssen: 

1.) Inwiefern wurde die Lehrveranstaltung ihrem Anspruch gerecht, die fachmathematische 

Symbolsprache sinnstiftend einzuführen und für ihre Verwendung zu werben? 

2.) Inwiefern werden die Studierenden dazu befähigt, mit nichtsymbolischen Darstellungen 

umzugehen? 

3.) Inwiefern kann im Rahmen der Lehrveranstaltung den Studierenden der Prozesscharakter 

der Mathematik verdeutlicht werden? 

4.) Inwiefern hat die Lehrveranstaltung dazu beigetragen, bei den Studierenden ein ‚adäquates 

Beweisverständnis‘ auszubilden? 

Zum Abschluss des Kapitels wird eine kurze Zusammenfassung der retrospektiven Analyse gegeben. 

7.5.1 Zu dem Aspekt der sinnstiftenden Vermittlung der fachmathematischen 

Symbolsprache durch die Lehrveranstaltung 

Im Rahmen des in Kapitel 1 der Lehrveranstaltung initiierten ‚Forschungsprozesses‘ über die 

Teilbarkeit der Summen aufeinanderfolgender Zahlen wurde es möglich, die fachmathematische 

Symbolsprache derart einzuführen, dass die verschiedenen Vorteile dieses Mediums in den 

Vordergrund gerückt werden konnten: (i) Allgemeingültigkeit auszudrücken, (ii) allgemeine 

Zusammenhänge zu kommunizieren, (iii) Zusammenhänge weiter zu erforschen und (iv) Beweise zu 

konstruieren (Malle 1993, S. 6ff.; Mason et al. 2005, S. 1ff.). Auch im Kontrast zu der Beweisform des 

generischen Beweises, bei deren Konstruktion die Explizierung der Allgemeingültigkeit der 

Begründung verlangt wurde, sollte die Vorteile der Symbolsprache weiter erfahren werden. 

Schließlich wurden verschiedene Aufgabenformate in die Lehrveranstaltung integriert, in denen die 

Studierenden allgemeine Zusammenhänge (etwa zwischen verschiedenen figurierten Zahlen) 

ausfindig machen und mithilfe der Symbolsprache formulieren sollten. Auch hierdurch sollte der 

Nutzen des Mediums betont werden.   

In Abschnitt 7.3.4 (iii) konnte gezeigt werden, dass sich die Einstellungen der Studierenden zur 

Nutzung von Buchstabenvariablen und zum formalen Beweisen nach eigenen Angaben durch die 

Lehrveranstaltung deutlich verbessert haben; beiden Aussagen wird in der Ausgangsbefragung mit 

einem Median von 5 deutlich zugestimmt. Darüber hinaus konnte im Kontext der „Bewertung von 

Beweisen“ in Abschnitt 7.3.2.1 herausgearbeitet werden, dass sich der Begründungsansatz der 

Studierenden nach eigenen Angaben von der Ein- zur Ausgangsbefraung statistisch hoch signifikant 

zur Nutzung von Buchstabenvariablen hinwendet. Dieses Ergebnis spiegelt sich auch in den durch die 

Studierenden angegebenen Beweispräferenzen: Für die Eigenkonstruktion von Beweisen wird der 

formale Beweis von 64,7% der Studierenden den anderen Beweisformen der Lehrveranstaltung 

vorgezogen, für das Verstehen eines Beweises von 50% der Studierenden. Diese anhand von 

Selbstauskünften der Studierenden erhaltenen Resultate konnten durch die vergleichende Analyse 

der Begründungsaufgabe „Summe zweier ungerader Zahlen“ aus der Eingangsbefragung und der 

Modulabschlussklausur gestützt werden. Während in der Eingangsbefragung nur 16,1% der 

Studierenden Buchstabenvariablen für die Konstruktion ihrer Begründung verwendeten, steigt der 

Anteil in der Modulabschlussklausur auf 85,9%. Als Ergebnis kann somit formuliert werden, dass den 

Studierenden die fachmathematische Symbolsprache als ein sinnvolles Arbeits- und 
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Kommunikationsmedium der Mathematik bewusst geworden ist, womit dieses Ziel der 

Lehrveranstaltung erreicht worden ist. 

7.5.2 Zur Befähigung der Studierenden im Umgang mit nichtsymbolischen Darstellungen 

Im Rahmen der Lehrveranstaltung sollten die Studierenden einen verständigen Umgang mit 

Punktmusterdarstellungen erreichen. Aus semiotischer Perspektive wird dabei das Diagrammsystem 

der Punktmuster betrachtet, für dessen Nutzung ein Wissen um den Umgang mit diesem 

Diagrammsystem notwendig ist (vgl. Abschnitt 2.5). Die Studierenden sollten dabei 

Punktmusterdarstellungen verwenden, um generische Beweise mit Punktmustern und 

Punktmusterbeweise mit geometrischen Variablen zu konstruieren. Betrachtet man allerdings die 

Ergebnisse bzgl. der entsprechenden Beweiskonstruktionen in der Modulabschlussklausur zur vierten 

Durchführung der Lehrveranstaltung, so wird deutlich, dass nur etwa die Hälfte der Studierenden 

Punkmusterdarstellungen als mathematisches Arbeitsmittel nutzen können. Im Falle des generischen 

Beweises mit Punktmustern formulieren überhaupt nur 50% der Studierenden Argumentationen 

[„Argumentationen mit Lücke“ und „vollständige Argumentation“], von denen 20% als vollständig 

gewertet werde konnten. Bei dem Punktmusterbeweis mit geometrischen Variablen liegt der Anteil 

von Argumentationen insgesamt bei 52%, eine vollständige Argumentation gelingt 38%. Es ist an 

dieser Stelle nicht möglich aufzuklären, bzgl. welcher Aspekte von Punktmusterdarstellungen bei den 

Studierenden Probleme vorliegen. Insgesamt scheint die Verwendung von Punktmusterdarstellungen 

als mathematisches Arbeitsmittel (im Sinne eines Diagrammsystems bei Peirce) den Studierenden 

doch größere Probleme zu bereiten, als dies vorherzusehen war. Es muss an dieser Stelle festgestellt 

werden, dass das Ziel der Befähigung der Studierenden im Umgang mit diesen nichtsymbolischen 

Darstellungen nicht in dem Maße erreicht wurde, wie es durch die Lehrveranstaltung intendiert 

gewesen war. 

7.5.3 Zur Verdeutlichung des Prozesscharakters der Mathematik 

Für die Erfassung der Bewusstheit der Studierenden über die Prozesshaftigkeit der Mathematik 

wurden in der Ein- und Ausgangsbefragung die Einstellungen der Studierenden zur Mathematik 

erhoben. Von der Ein- zur Ausgangsbefragung zeigte sich dabei ein statistisch hoch signifkanter 

Anstieg bzgl. der Einstellung zur „Mathematik als Prozess“ bei kleiner Effektstärke (EB: 4,42; AB: 4,70; 

T-Test, p=0,009 mit Cohens d=0,34). Das Bewusstsein der Studierenden über die Prozesshaftigkeit 

hat sich demnach statistisch signifikant gesteigert. Da diese Skala in der Eingangsbefragung bei der 

Gruppe der hier betrachteten nachverfolgbaren Studierenden allerdings nur einen Reliabilitätswert 

von Cronbachs Alpha=0,555 erreicht, kann dieses Ergebnis in diesem Rahmen nur als Indiz für das 

Gelingen dieser Zielsetzung der Lehrveranstaltung betrachtet werden. Weitere Untersuchungen 

wurden in Bezug auf diese Zielsetzung nicht vorgenommen. 

7.5.4 Zu der Herausbildung eines adäquaten Beweisverständnisses durch die 

Lehrveranstaltung 

Unter dem Konstrukt ‚adäquates Beweisverständnis‘ wird zunächst das Vorhandensein der 

Teilkompetenzen der in Abschnitt 7.2.4 herausgearbeiteten Aspekte von Beweiskompetenz 

(Beweiskonstruktion, Beweisbewertung und Beweisakzeptanz) verstanden. Dabei muss sich ein 

entsprechendes Verständnis an einem Wissen um die (epistemologische) Bedeutung von 

mathematischen Beweisen messen lassen, welches sich im Wissen um die Bedeutung der 

Besonderheit mathematischen Wissens (im Sinne von Allaussagen) und der Bewusstheit über die 
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verschiedenen Funktionen von Beweisen manifestiert (vgl. Abschnitt 2.1.6 und 2.1.7)84. In diesem 

Kontext sollen schließlich auch die subjektiven motivationalen Einstellungen der Studierenden zum 

Beweisen betrachtet werden. 

Im Rahmen der Teilstudie 3 (Abschnitt 7.4.3) konnte gezeigt werden, dass sich die 

Begründungskompetenzen der Studierenden durch die Lehrveranstaltung deutlich verbesserten: 

Erreichten in der Eingangsbefragung nur 15,9% der Studierenden eine „vollständige Argumentation“ 

bei der Begründungsaufgabe „Summe zweier ungerader Zahlen“, lag dieser Anteil bei der gleichen 

Aufgabenstellung in der Modulabschlussklusur bei 52,3%. Waren in der Eingangsbefragung in nur 

42,1% der Bearbeitungen überhaupt korrekte Argumentationsansätze vorhanden [„Argumentation 

mit Lücke“ und „vollständige Argumentationen“], betraf dies 91,6% in der Klausur (s. Abschnitt 

7.4.3.1). In Bezug auf die Konstruktion der vier Beweisformen der Lehrveranstaltung (generischer 

Beweis mit Zahlen, generischer Beweis mit Punktmustern, Punktmusterbeweis mit geometrischen 

Variablen und der formale Beweis) wurde deutlich, dass den Studierenden ein verständiger Umgang 

mit generischen Beweisen und formalen Beweisen im Allgemeinen gelingt, wobei Probleme im 

Umgang mit Variablen die Beweiskonstruktionen der Studierenden zum formalen Beweisen 

schmälern. Auf die Probleme der Studierenden bei der Konstruktion von Beweisen mit Punktmustern 

wurde bereits oben eingegangen. Allerdings muss erwähnt werden, dass die Beweiskonstruktionen 

der Studierenden in der Modulabschlussklausur des Wintersemesters 2014/15 deutlich besser 

ausfielen als im Vorjahr (s. Abschnitt 7.4.3.2). Insgesamt wurden die Studierenden durch die 

Lehrveranstaltung dazu befähigt, korrekte Begründungen zu formulieren und verschiedene Beweise 

bzw. Beweisformen zu konstruieren. Dass dabei bessere Ergebnisse bzgl. der Beweiskonstruktionen 

der Studierenden durch die Lehrenden erhofft waren, verbleibt dabei als kleiner Makel der Resultate. 

Bei den Beweisbewertungen der Studierenden zeigte sich, dass der Anteil der Bewertung bloßer 

Beispiebetrachtungen als „richtiger Beweis“ statistisch hoch signifikant von 17,6% bei der 

Eingangsbefragung auf 5,4% bei der Ausgangsbefragung zurückging (Abschnitt 7.3.2.1). Den 

Studierenden ist somit bewusst geworden, dass bloße Beispielüberprüfungen keinen richtigen 

Beweis konstituieren. Auch wurde der formale dargestellte und falsche Beweis in der 

Ausgangsbefragung nur noch von 13,5% der Studierenden als richtiger Beweis gewertet, in der 

Eingangsbefragung lag der Anteil bei 27%. Dieser Unterschied ist dabei mit p=0,078 nicht statistisch 

signifikant (McNemar-Test).  

In Bezug auf die Beweisakzeptanz wurde in der Ausgangsbefragung deutlich, dass die Studierenden 

nach Besuch der Lehrveranstaltung die Allgemeingültigkeit generischer Beweise nun statistisch hoch 

signifikant besser bewerten als in der Eingangsbefragung. In der Ausgangsbefragung werden diese 

Beweise nun nicht mehr als singuläre Beispielüberprüfungen fehlinterpretiert, die Mehrheit der 

Studierenden stimmt dagegen den Aspekten der Sicherung der Gültigkeit, der Verifikation der 

Behauptung und der Gültigkeit als ‚korrekter Beweis‘ zu. Diese Entwicklung spiegelt sich auch in den 

Akzeptanzbewertungen für den Punktmusterbeweis mit geometrischen Variablen wider. Der formale 

Beweis wurde bereits in der Eingangsbefragung sehr hoch bewertet, weswegen keine wesentlichen 

Entwicklungen von der Ein- zur Ausgangsbefragung ausgemacht werden konnten. 

                                                           
84

 In diesem Kontext wäre sicherlich auch eine qualitative Studie zur Beschreibung des ‚Beweisbedürfnisses‘ der 

Studierenden nach dem Besuch der Lehrveranstaltung gewinnbringend gewesen. Eine entsprechende 

Untersuchung wurde allerdings nicht durchgeführt. 



322 

 

Auf der Basis dieser Ergebnisse kann zusammenfassend festgehalten werden, dass sich bei den 

Studierenden die verschiedenen hier betrachteten Kompetenzen im Umgang mit Beweisen 

(Begründungskompetenz, Beweisbewertung und Beweisakzeptanz) verbessert haben. 

Insbesondere stellt sich die Frage, ob den Studierenden die Besonderheit mathematischen Wissens 

als Allaussage über Objekte bewusst geworden ist und sie vor diesem Hintergrund die 

(epistemologische) Bedeutung mathematischer Beweise überhaupt verstehen können (vgl. Abschnitt 

2.1.6). Es war ein zuvor dargestelltes Ergebnis, dass die Studierenden in der Ausgangsbefragung zu 

94,6% bloße Beispielbetrachtungen als korrekten Beweis ablehnen.  Bei den studentischen 

Bewertungen der verschiedenen Akzeptanzitems in der Ausgangsbefragung zeigt sich, dass die 

Studierenden die positiven Akzeptanzaspekte (Sicherung der Gültigkeit etc.) jeweils konträr zu den 

Items bewerten, die die Fehlinterretation als singuläre Beispielüberprüfungen thematisieren 

(Abschnitt 7.3.2.2). Vor diesem Hintergrund kann nun begründet die These formuliert werden, dass 

den Studierenden die Bedeutung mathematischer Allaussagen bewusst geworden ist, die für ihre 

Verifikation nach einem allgemeingültigen Beweis verlangen, da singuläre Beispielüberprüfungen 

keine Allaussage zu verifizieren vermögen. In Bezug auf die Funktionen von Beweisen konnte durch 

die aktuelle und retrospektive Einschätzung der Studierenden über ihre Fähigkeit, verschiedene 

Funktionen anhand konkreter Beweiskonstruktionen zu verdeutlichen, ein selbst empfundener 

Lernzuwachs bei den Studierenden herausgearbeitet werden (s. Abschnitt 7.3.4). Es kann somit 

festgehalten werden, dass die Studierenden der Ansicht sind, durch die Lehrveranstaltung in Bezug 

auf die verschiedenen Funktionen von Beweisen einen Kompetenzzuwachs erhalten zu haben.  

In Bezug auf die subjektiven motivationalen Einstellungen der Studierenden konnte im Vergleich der 

Ergebnisse der Ein- und Ausgangsbefragung eine Hinwendung zum Beweisen festgestellt werden. Bei 

der konstruierten Skala zur „Beweisaffinität“ konnte ein statistisch hoch signifikanter 

Mittelwertanstieg bei kleiner Effektstärke verzeichnet werden (EB: 4,0; AB: 4,27; T-Test, p=0,018 mit 

Cohens d=0,3; vgl. Abschnitt 7.3.3.2). Diesem Ergebnis entspricht auch der hohe Mittelwert von 5,09, 

den Studierende auf der Skala „der Selbstwirksamkeitserwartung zum Beweisen“ in der 

Augsangsbefragung erreichen (vgl. Abschnitt 7.3.4). Allerdings konnte ein statistisch signifikanter 

Zusammenhang zwischen dieser Selbsteinschätzung der Studierenden und ihren 

Beweiskonstruktionen, interpretiert als ordinalskalierte Variable, nur für den Fall des generischen 

Beweises ausgemacht werden (rs =0,259 mit p=0,032; vgl. Abschnitt 7.5.2). Hier stellt sich die Frage, 

ob die Studierenden vielleicht nicht in der Lage sind, ihre eigenen Fähigkeiten passend einzuschätzen, 

oder ob sie ggf. die Ansprüche der Bewertung ihrer Beweiskonstruktionen so nicht teilen. Diese Frage 

kann an dieser Stelle jedoch nicht beantwortet werden. 

In Bezug auf die Herausbildung eines adäquaten Beweisverständnisses kann schließlich formuliert 

werden, dass dem Großteil der Studierenden (58% bzw. 44%) nach dem Besuch der 

Lehrveranstaltung die Konstruktion des generischen Beweises mit Zahlen bzw. des formalen 

Beweises vollständig gelingt. Probleme im Umgang bzw. im Verständnis mit dem Diagrammsystem 

der Punktmuster scheint ein Gelingen entsprechender Beweiskonstruktionen in diesem 

Diagrammsystem zu verhindern. Durch die Betrachtung der Ergebnisse der Begründungsaufgabe 

„Summe zweier ungerader Zahlen“ konnte dabei der große Kompetenzzuwachs der Studierenden 

ausgemacht werden. Bei der Bewertung von Beweisen wurde deutlich, dass den Studierenden durch 

die Lehrveranstaltung bewusst geworden ist, dass bloße Beispielüberprüfungen keine 

mathematischen Beweise für Allaussagen konstituieren, und im Rahmen der Untersuchungen zur 

Beweisakzeptanz konnte festgestellt werden, dass die Mehrheit der Studierenden in der 
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Ausgangsbefragung in der Lage zu sein scheint, das allgemeingültige Moment in generischen 

Beweisen zu verstehen und zu würdigen. Nach Angabe der Studierenden empfanden diese einen 

großen Lernzuwachs in Bezug auf das Beweisen allgemein durch die Lehrveranstaltung und in Bezug 

auf die verschiedenen Funktionen von Beweisen im Speziellen. Schließlich hat sich im Laufe der 

Lehrveranstaltung die „Beweisaffinität“ der Studierenden gesteigert. Vor diesem Hintergrund kann 

abschließend die These formuliert werden, dass die Lehrveranstaltung dazu beigetragen hat, ein 

adäquates Beweisverständnis bei den Studierenden herauszubilden. 

7.5.5 Fazit der retrospektiven Analyse 

Vor dem Hintergrund der konzeptionellen Umsetzung der in Abschnitt 1.3 herausgearbeiteten 

Leitprinzipien, wie sie in Abschnitt 6.2 dargestellt wurde, und der in den Abschnitten 7.5.1–7.5.4 

dargelegten empirischen Ergebnisse in Bezug auf die Zielsetzungen der Lehrveranstaltung kann nun 

formuliert werden, dass die vierte Durchführung der Lehrveranstaltung im Wintersemester 2014/15 

erfolgreich gewesen ist. Allerdings muss kritisch angemerkt werden, dass die Beweiskonstruktionen 

der Studierenden in der Modulabschlussklausur dieses Wintersemesters nicht den Hoffnungen der 

Lehrenden gerecht wurden, gerade was die Beweiskonstruktionen der Studierenden mithilfe von 

Punktmusterdarstellungen betrifft. Aus diesem Grund bleibt zunächst anzumerken, dass die 

Thematik ‚Begründen und Beweisen‘ als Herausforderung für den Übergang Schule-Hochschule 

verbleibt. Die vorliegende Forschungsarbeit versteht sich dabei als ein exemplarischer 

Lösungsvorschlag für das Angehen dieses Problemfelds für die Adressatengruppe der 

Lehramtsstudierenden, der theoretisch fundiert und empirisch evaluiert ist.  

Es verbleibt, das Forschungsprojekt in Gänze zu reflektieren und die erhaltenen (theoretischen und 

empirischen) Erkenntnisse in das bestehende Feld der mathematikdidaktischen Forschung 

einzugliedern. Diese Anliegen werden abschließend im achten Kapitel betrachtet.     
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8. Zusammenfassung, Diskussion und Ausblick 
Das übergeordnete Ziel der vorliegenden Arbeit wurde zu Beginn wie folgt formuliert: 

Die forschungsbasierte (Weiter-) Entwicklung einer Lehrveranstaltung, welche den Studierenden den 

Übergang von der Schulmathematik in die Mathematik der Hochschule erleichtern soll und hierbei in 

einem besonderen Maße das Themenfeld „Begründen und Beweisen“ unter der Perspektive der 

doppelten Diskontinuität fokussiert.  

Für die Beantwortung der mit der Zielformulierung verbundenen Forschungsfrage [1] („Wie kann im 

Rahmen einer universitären Lehrveranstaltung für Lehramtsstudierende (Haupt-, Real- und 

Gesamtschule) der Themenbereich ‚Begründen und Beweisen‘ vor dem Spannungsfeld der doppelten 

Diskontinuität adäquat vermittelt werden?“) wurden drei weitere Forschungsziele angegeben (vgl. 

Abschnitt 1.4.1): 

(i) Die Entwicklung von Testinstrumenten, welche die Erforschung zentraler Aspekte zum 

Beweisen bei Lernenden ermöglichen. 

(ii) Die Erforschung der Beweisvorstellungen, -kompetenzen und -einstellungen von 

Studierenden zu Beginn des Studiums (bzw. zu Beginn der Lehrveranstaltung). 

(iii) Die Erforschung der Auswirkungen der Lehrveranstaltung auf die Beweisvorstellungen,            

-kompetenzen und -einstellungen der Teilnehmenden. 

Am Ende dieser Bemühungen soll ein Beitrag für die Entwicklung einer lokalen Instruktionstheorie für 

die Domäne ‚Begründen und Beweisen‘ für Studienanfängerinnen und -anfänger des Lehramts (für 

Haupt-, Real- und Gesamtschule) im Spannungsfeld der doppelten Diskontinuität geleistet werden. 

In dem achten Kapitel dieser Arbeit wird das Erreichen der formulierten Zielsetzungen anhand der 

erzielten Ergebnisse diskutiert. Dabei werden die Resultate in drei Bereiche unterteilt: Ergebnisse der 

Design-Forschung und der Beitrag zu einer lokalen Instruktionstheorie in der Domäne ‚Begründen 

und Beweisen‘ (Abschnitt 8.1), empirische Ergebnisse (Abschnitt 8.2) und Beiträge zur Theoriebildung 

und Theorieentwicklung (Abschnitt 8.3). Schließlich gilt es, das vorgenommene Forschungsprojekt 

und die erhaltenen Ergebnisse anhand der in Abschnitt 3.2 herausgearbeiteten Gütekriterien kritisch 

zu diskutieren (Abschnitt 8.4) und Perspektiven für die weitere Forschung aufzuzeigen (Abschnitt 

8.5). 

8.1 Ergebnisse der Design-Forschung und der Beitrag zu einer lokalen 

Instruktionstheorie in der Domäne ‚Begründen und Beweisen‘ 
 

Die übergeordnete Forschungsfrage [1] dieser Forschungsarbeit ist: 

„Wie kann im Rahmen einer universitären Lehrveranstaltung für Lehramtsstudierende 

(Haupt-, Real- und Gesamtschule) der Themenbereich ‚Begründen und Beweisen‘ vor dem 

Spannungsfeld der doppelten Diskontinuität adäquat vermittelt werden?“ 

Diese Forschungsfrage wurde im ersten Kapitel dieser Arbeit motiviert und in die aktuelle 

hochschuldidaktische Diskussion eingebettet. Aufgrund der verwendeten Forschungsmethode des 

Design-Based Research (vgl. Kapitel 3) wird diese Frage durch die Darstellung des herausgearbeiteten 

Beitrags zu der Entwicklung einer lokalen Instruktionstheorie für die Domäne ‚Begründen und 
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Beweisen‘ für Studienanfänger des Lehramts (für Haupt-, Real- und Gesamtschule) beantwortet. 

Dieser Beitrag ergibt sich als Summe der im Kontext der retrospektiven Analysen der verschiedenen 

Durchführungen der Lehrveranstaltung gewonnenen Erkenntnisse, gleichsam als empfohlene 

Designprinzipien. Für die retrospektiven Analysen der verschiedenen Durchführungen der 

Lehrveranstaltungen waren dabei die Theorien „Beweisen als diagrammatisches Schließen“ und 

„Sozio-mathematische Normen“ leitend. Diese beiden theoretischen Ebenen wurden dabei durch die 

dritte Diskussionsebene der ‚Mathematischen Inhalte‘ ergänzt. Diese drei Betrachtungsebenen 

werden im Folgenden weitergeführt, weshalb der Beitrag zu der lokalen Instruktionstheorie geteilt in 

die Bereiche „Mathematische Inhalte“, „Semiotische Aspekte“ und „Aspekte sozio-mathematischer 

Normen“ dargestellt wird. Das in dieser Arbeit erarbeitete Designprodukt der ersten beiden Kapitel 

der Lehrveranstaltung „Einführung in die Kultur der Mathematik“ wurde in Abschnitt 6.2 erörtert, 

eine Verschriftlichung dieser Kapitel befindet sich im Anhang. Zu den erhaltenen Designergebnissen 

dieser Arbeit zählt darüber hinaus die in der Zielformulierung (i) geforderte Entwicklung von 

Testinstrumenten, welche die Erforschung zentraler Aspekte zum Beweisen bei Lernenden 

ermöglichen. Dieses Designergebnis wird am Ende dieses Abschnitts dargestellt. 

8.1.2 Der Beitrag zu einer lokalen Instruktionstheorie in der Domäne ‚Begründen und 

Beweisen‘ – die Formulierung von Designprinzipien 

In Weiterführung der die retrospektiven Analysen der vier Forschungszyklen leitenden Aspekte 

„Mathematische Inhalte“, „Semiotische Aspekte: Beweisen als diagrammatisches Schließen“ und 

„Aspekte sozio-mathematischer Normen“ werden auch die herausgearbeiteten Designprinzipien 

getrennt nach diesen drei Bereichen dargestellt.  

Designprinzipien bzgl. „Mathematischer Inhalte“: 

1. Unter dem Gesichtspunkt der doppelten Diskontinuität gilt es, einerseits schulisches 

Vorwissen zum Begründen und Beweisen aufzugreifen und weiterzuführen, andererseits 

Begründungs- und Beweisformen zu vermitteln, mit denen die Studierenden als spätere 

Lehrkräfte im schulischen Mathematikunterricht agieren können. Innerhalb des 

Ausbildungsabschnitts an der Universität muss es jedoch auch gelten, das Beweisen den 

Studierenden als spezifische und charakteristische Arbeitsweise der Mathematik ‚intellektuell-

ehrlich‘ zu vermitteln. 

Diese Forderung ergibt sich zunächst aus der Verbindung der in Abschnitt 1.3 

herausgearbeiteten Leitprinzipien aus dem Phänomen der doppelten Diskontinuität und der 

hier fokussierten Thematik ‚Begründen und Beweisen‘. Die Frage nach dem schulischen 

Vorwissen der Erstsemesterstudierenden in Bezug auf das Begründen und Beweisen wurde 

im Rahmen der Effektivitätsstudie der Lehrveranstaltung in Abschnitt 7.2 thematisiert. Dabei 

konnte herausgestellt werden, dass die Studienanfängerinnen und -anfänger nur über 

marginale Vorerfahrungen zu der Thematik ‚Begründen und Beweisen‘ verfügen, die nur 

bedingt mit den Beweisaktivitäten an einer Hochschule vergleichbar sind (Abschnitt 7.2.3). 

Der Anschluss an schulisches Vorwissen scheint dabei vor allem in der Weiterführung 

algebraischer Ansätze zu liegen, da den Studierenden nach eigenen Angaben Beweisformen 

wie generische Beweise oder Beweise mit Punktmusterdarstellungen nicht aus ihrer Schulzeit 

bekannt sind (Abschnitt 7.2.3). Bei der Analyse einer Begründungsaufgabe konnte gezeigt 

werden, dass nur 8,5% der Erstsemesterstudierenden von algebraischen Ansätzen Gebrauch 

machen, die dabei häufig fehlerhaft sind (Abschnitt 7.2.4). Die Verwendung der 
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fachmathematischen Symbolsprache steht Erstsemesterstudierenden folglich nur bedingt als 

heuristisches Mittel der Verifikation zur Verfügung. 

Für die Vermittlung schuladäquater Begründungsformen wurde in dieser Arbeit das Konzept 

der generischen Beweise herausgestellt (Abschnitt 2.1.3) und durch das Aufstellen expliziter 

Normen für den Unterricht fruchtbar gemacht (Abschnitt 6.2). Der Einbezug generischer 

Beweise ermöglichte es dabei einerseits, die Phase der Exploration und den Nutzen von 

Beispielbetrachtungen für den Beweisprozess zu betonen. Darüber hinaus kann gerade in der 

Thematisierung dieser Beweisform die Unzulänglichkeit singulärer Beispielüberprüfungen 

herausgestellt und im Vergleich zum formalen Beweis für die fachmathematische 

Symbolsprache sinnstiftend geworben werden (Abschnitt 6.2). Somit konnte ein Nutzen 

generischer Beweise für die Hochschullehre aufgezeigt werden, der über eine ‚bloße 

Hilfestellung‘ für das Erlernen der Beweisaktivität hinausgeht. 

 

2. Die Konstruktion von generischen Beweisen ist für Lernende keine triviale Tätigkeit und auch 

ein Verständnis um die Tragweite dieser Beweisform ist nicht unmittelbar gegeben. Dies 

bedeutet, dass entsprechende Beweisformen didaktisch gezielt und passend in einen 

größeren Rahmen mathematischer Arbeitsweisen eingebettet werden müssen, indem ihr 

Nutzen und eventuelle Vor- und Nachteile zur Geltung kommen und sinnstiftend erörtert 

werden können. 

Bei der Beforschung der Lehrveranstaltung wurde zunächst deutlich, dass die Studierenden 

Probleme mit der Konstruktion generischer Beweise haben (Abschnitt 5.2.2.2, 5.3.2.1 und 

5.3.2.4). Im Rahmen der Eingangsbefragung zu der vierten Durchführung der 

Lehrveranstaltung konnte gezeigt werden, dass die Studierenden das allgemeine Moment 

generischer Beweise nicht wahrnehmen, im Gegenteil generische Beweise als singuläre 

Beispielüberprüfungen fehlinterpretieren (Abschnitt 7.2.4.3). Aus diesem Grund muss der 

Vermittlung generischer Beweise im unterrichtlichen Geschehen eine besondere 

Aufmerksamkeit zukommen. Es muss hierbei gelten, generische Beweise derart in 

mathematische Erkenntnisprozesse einzubinden, dass deren Vor- und Nachteile deutlich 

werden. In der hier thematisierten Lehrveranstaltung wurde dies dadurch erreicht, dass bei 

der Untersuchung konkreter Beispiele zunächst eine beispielübergreifende Erklärung für das 

Phänomen ausgemacht wurde, warum die Summe von drei aufeinanderfolgenden 

natürlichen Zahlen immer durch drei teilbar ist. Dieses generische Moment wurde dann für 

die Konstruktion eines generischen Beweises verwendet und auf weitere Summen 

aufeinanderfolgender Zahlen übertragen (Abschnitt 6.2). Schließlich wurden verschiedene 

Aufgabenformate entwickelt, in denen bewusst die Vor- und Nachteile generischer Beweise 

in den Vordergrund gestellt wurden und in denen gezielt entsprechenden Fehlvorstellungen 

entgegengewirkt wurde (Abschnitt 5.4.1 und 6.3.2).   

 

3. Für eine sinnstiftende Vermittlung verschiedener Beweisformen und die Herausstellung des 

Prozesscharakters der Mathematik muss der Prozess der mathematischen Wissensgewinnung 

(Exploration - Vermutungen ausmachen, formulieren, überprüfen und ggf. verwerfen - 

Behauptungen aufstellen - Beweisen) im Kontext des Lehr-/Lernszenarios eine prominente 

Rolle spielen. 

Mathematische ‚Forschungsprojekte‘ sollen sowohl in die Vorlesungen, als auch in die 

Präsenzübungen und Hausaufgaben integriert werden. Dabei geht es auch darum, dass in 

entsprechenden Einbettungen, vor dem Hintergrund einer gewissen Unsicherheit (Abschnitt 
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2.1.6), die verschiedenen Funktionen von Beweisen erfahrbar werden, was dabei als eine 

Voraussetzung für die Herausbildung eines Beweisbedürfnisses angesehen werden muss 

(Abschnitt 2.1.6 und 2.1.7). 

Dieser Aspekt der sinnstiftenden Einbettung in Erkenntnisprozesse soll bei der Konstruktion 

von Aufgaben und der Besprechung entsprechender Lösungen bedacht werden. In der hier 

betrachteten Lehrveranstaltung wurden dazu entsprechende Aufgabenformate konstruiert 

(Abschnitt 5.4.1 und 6.3.2) und ein Konzept für die Besprechung von Musterlösungen im 

Rahmen einer Zentralübung erarbeitet (Abschnitt 6.3.3). 

 

4. Der Sinn mathematischer Arbeitsweisen (Verwendung adäquater Fachsprache, Formulierung 

und Nutzung exakter Definitionen und Sätze) muss im Rahmen der Lehrveranstaltung explizit 

thematisiert und erörtert werden.  

Die fachmathematische (Symbol-) Sprache ist eines der wichtigsten Werkzeuge der 

Mathematik. Ihre Vorteile müssen den Lernenden erlebbar und damit nachvollziehbar 

gemacht werden: Nur wer die Vorteile dieser Sprache erlebt hat, kann sie auch zu würdigen 

wissen. Gleiches gilt für den axiomatisch-deduktiven Aufbau der Mathematik. Das 

mathematische Theoriegebäude erhält seine Legitimation auch durch seine 

Wechselbeziehung zum ‚formalen‘ Beweis, denn eine entsprechende Konzeption des 

formalen Beweises verlangt nach einer zumindest lokalen Ordnung der Inhalte. Es ist dieser 

in Abschnitt 2.1.6 herausgearbeitete Aspekt des ‚Beweisens von der Zukunft her‘, der das 

(formale) Beweisen im Rahmen einer mathematischen Theorie legitimiert und motiviert. Aus 

dieser engen Verzahnung von mathematischem Theoriegebäude und Konstrukt des formalen 

Beweises folgt, dass für eine Vermittlung dieser Beweisform auch die Besonderheit 

mathematischer Theoriebildung im Zusammenspiel von Definitionen, Sätzen und Beweisen 

verdeutlicht werden muss. Dies wurde in der vierten Durchführung der Lehrveranstaltung 

dadurch erreicht, dass alle notwendigen Definitionen und Sätze im Kontext der 

Lehrveranstaltung explizit formuliert und für die entsprechende Referenz in Beweisen 

strukturiert bzw. nummeriert wurden (Abschnitt 5.4.4). Definitionen wurden dabei als 

‚hilfreiche Charakterisierungen‘ und Sätze als durch Beweise abgesichertes mathematisches 

Wissen verdeutlicht. 

 

5. Der Nutzen von Beispielbetrachtungen im mathematischen Erkenntnisprozess und deren 

potentielle Vor- und Nachteile müssen explizit erörtert werden. 

Es folgt bereits aus den in der Literatur aufgeführten Fehlvorstellungen zu der Bedeutung von 

Beispielen im Beweisprozess (Abschnitt 2.4.2), dass Beispielbetrachtungen im Kontext von 

Beweisen differenziert betrachtet werden müssen. Dabei kann die Bedeutung von 

Beispielbetrachtungen im gesamten mathematischen Erkenntnisprozess zunächst positiv 

gewürdigt werden, wobei auch auf deren Unzulänglichkeiten hingewiesen werden muss. In 

der Lehrveranstaltung wurde mit der Unterscheidung von psychologischen und logischen 

Aspekten ein deutlicher Schritt in diese Richtung gegangen: Beispielbetrachtungen können 

psychologisch die subjektive Überzeugung stärken, dass eine Behauptung wahr ist, logisch 

betrachtet ist es aber egal, ob man die Behauptung an weiteren Beispielen verifizieren 

konnte (Abschnitt 5.3.1). Der Nutzen, Mehrwert und die Grenzen von Beispielbetrachtungen 

müssen durch die Lernenden erfahren werden. Aus diesem Grund wurden neben der 

Thematisierung der psychologischen und logischen Bewertung von Beispielbetrachtungen in 
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der Lehrveranstaltung verschiedene Aufgabenformate entwickelt, durch die die Lernenden 

die verschiedenen Aspekte von Beispielbetrachtungen erfahren konnten (Abschnitt 5.4.1). 

 

6. Die verschiedenen Kompetenzaspekte, die Lernende im Kontext der Thematik des Beweisens 

herausbilden sollen, müssen in konkreten Aufgabenstellungen thematisiert und somit geübt 

werden. 

Das Erlernen der Beweisaktivität beinhaltet verschiedene (Kompetenz-) Aspekte. Wie in 

Abschnitt 7.2.1 begründet dargelegt wurde, werden in dieser Arbeit unter Beweiskompetenz 

die Teilkompetenzen Beweiskonstruktion, Beweisbewertung und Beweisakzeptanz gefasst. 

Diesen verschiedenen Facetten von Beweiskompetenz gilt es im unterrichtlichen Geschehen 

gerecht zu werden und den Studierenden entsprechende Übungsmöglichkeiten 

bereitzustellen. In der Lehrveranstaltung wurden diese Aspekte im Kontext verschiedener 

Aufgabenformate aufgegriffen (Abschnitt 5.4.1) und im Rahmen der Vorlesung und der 

Zentralübung diskutiert. 

Designprinzipien bzgl. der Theorie „Beweisen als diagrammatisches Schließen“ 

7. Der Umgang mit einem Diagrammsystem muss zunächst als Lerngegenstand aufgefasst 

werden. Das Arbeiten in Diagrammsystemen muss daher geübt werden, damit sich das 

notwendige kollaterale Wissen auf Seiten der Lernenden herausbilden kann. 

Mathematisches Beweisen setzt einen kompetenten Umgang mit entsprechenden Zeichen 

voraus. Peirce prägte für einen kompetenten Umgang mit Zeigen im Kontext eines 

bestimmten Zeichensystems (‚Diagrammsystems‘) den Begriff des kollateralen Wissens (s. 

Abschnitt 2.5). Dieses Wissen zeigt sich u.a. bei der Konstruktion eines Diagramms, dessen 

Verwendung, dem Vornehmen von Transformation und bei der richtigen Interpretation des 

schließlich erhaltenen Diagramms. Dieses kollaterale Wissen muss bei Lernenden ausgebildet 

und geübt werden. Dies betrifft sowohl ‚anschauliche‘ Diagrammsysteme wie Punktmuster 

wie auch die Symbolsprache der Algebra. Wichtig ist somit, dass Lernende entsprechende 

Möglichkeiten zur Übung erhalten, um kollaterales Wissen ausbilden und kompetent in den 

verschiedenen Diagrammen agieren zu können. 

 

8. Damit Lernende den Sinn und die Vor- und Nachteile verschiedener Beweisformen und 

verschiedener Diagrammsysteme erleben und somit verstehen können, müssen (Beweis-) 

Aufgaben gestellt werden, in denen die verschiedenen Beweisformen und Diagrammsysteme 

vergleichend verwendet werden sollen.  

Durch einen direkten Vergleich von Diagrammsystem und Beweisformen werden erst die 

verschiedenen charakteristischen Elemente und auch die (subjektiven) Vor- und Nachteile 

deutlich. Dieser Vergleich muss dabei durch Aufgabenstellungen direkt angebahnt werden. 

Dies bedeutet weiter, dass auch Beweisaufgaben gestellt werden, in denen die Verwendung 

der Beweisformen und des damit verbundenen Diagrammsystems für die 

Aufgabenbearbeitenden freigestellt ist. Die eigene Entscheidung für die Konstruktion einer 

Beweisform im Kontext eines bestimmten Diagrammsystems bedingt die begründete 

Herausbildung entsprechender Ansichten. Exemplarische Aufgabenstellungen wurden in 

Abschnitt 5.4.1 und 6.3.2 angegeben. 
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Designprinzipien bzgl. der Theorie „Sozio-mathematischer Normen“ 

9. Im Rahmen einer Lehrveranstaltung müssen sich die Lehrenden über die Normen im Klaren 

sein, die im Kontext bestimmter fachlicher und methodischer Inhalte für die Lernenden im 

Vordergrund stehen sollen. Diese zu vermittelnden bzw. angesetzten Normen sollten nach 

Möglichkeit den Lernenden transparent gemacht und expliziert werden. 

Anzusetzende, gesetzte bzw. zu vermittelnde Normen betreffen u.a. die Darstellung von 

Inhalten, die Art und Weise und Ausführlichkeit von Aufgabenbearbeitungen, die Bedeutung 

und Verwendung sprachlicher Mittel und z.B. die Frage, was für die Konstruktion eines 

Beweises bzw. einer Beweisform gefordert wird. Entsprechende Normen werden zwar in 

einem Miteinander aller Beteiligten herausgebildet, es muss aber davon ausgegangen 

werden, dass diese bei den verschiedenen Teilnehmenden unterschiedlich stark ausgeprägt 

werden. Im Sinne einer Lernzieltransparenz müssen die fokussierten Normen expliziert 

werden, damit Lernende sich an diesen orientieren und sich bewusst darauf einlassen 

können. In der hier thematisierten Lehrveranstaltung wurden daher explizit Normen für die 

Konstruktion der verschiedenen Beweisformen aufgestellt und kommuniziert (s. Abschnitt 

5.4.4 und 6.2).  

 

10. Im Kontext sozio-mathematischer Normen muss auch die Ausbildung einer entsprechenden 

Meta-Sprache zum jeweiligen Fachinhalt mitbedacht werden. Über die verwendeten Fach- 

und Metabegriffe muss eine möglichst hohe Einigkeit bei allen am Lernprozess Beteiligten 

herrschen. 

Im Kontext des Begründens und Beweisens werden verschiedene Begrifflichkeiten 

verwendet, über deren genaue Bedeutung in der Theorie teilweise keine Einigkeit besteht 

(vgl. etwa die Erörterung der Begriffe Argumentieren, Begründen und Beweisen in Abschnitt 

2.3). Da solche Begrifflichkeiten aber im unterrichtlichen Kontext als unverzichtbar 

erscheinen, müssen sie von den Lehrenden entsprechend umsichtig verwendet werden. Dies 

betrifft auch die Verwendung verschiedener Aufgabenoperatoren (begründen Sie, beweisen 

Sie, zeigen Sie, …), denen sich Lernende ausgesetzt sehen (vgl. hierzu die Ergebnisse in 

Kempen et al. 2016). Aus diesem Grund wurde in der Lehrveranstaltung eine Angleichung der 

Begrifflichkeiten vorgenommen, um eine möglichst hohe Einigkeit und Transparenz zu 

erzielen (Abschnitt 5.4.4). 

 

11. Die in der Lehrveranstaltung gesetzten Normen müssen im Rahmen der Lehrveranstaltung 

durch alle beteiligten Lehrenden vertreten und umgesetzt werden. Wird von diesen Normen 

abgewichen, etwa bei der Angabe einer bloßen ‚Beweisskizze‘ anstatt eines vollständigen 

Beweises, muss dies explizit thematisiert werden. 

Der Aspekt der Herausbildung von Normen im unterrichtlichen Geschehen, als Resultat eines 

Aushandlungsprozesses aller Beteiligten, macht deutlich, dass alle Momente des 

unterrichtlichen Geschehens Auswirkung auf diese Herausbildung von Normen haben. Dies 

bedeutet, dass die fokussierten Normen von allen beteiligten Lehrenden (Dozenten, 

Mitarbeitenden, studentischen Hilfskräften) umgesetzt und ‚vorgelebt‘ werden müssen. 

Etwaige Abweichungen oder Verstöße sollten explizit thematisiert werden, damit der 

Herausbildung entsprechender Normen nicht entgegengewirkt wird. Aus diesem Grund 

wurde auch eine Tutorenschulung der studentischen Hilfskräfte vorgenommen, um 

sicherzustellen, dass diese konform mit den Normen der Lehrveranstaltung agieren 
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(Abschnitt 5.3.1). Auch wurde in der Vorlesung explizit unterschieden, ob ein vollständiger 

Beweis in ‚Reinschrift‘ notiert oder lediglich eine Beweisidee angegeben wurde (s. Abschnitt 

6.2). 

 

12. Für die Akzeptanz verschiedener Beweisformen und ihr Erlernen ist es notwendig, dass die 

verschiedenen Beweisformen nach Möglichkeit konsequent und ‚gleichberechtigt‘ in die 

Lehrveranstaltung einbezogen werden.  

In Bezug auf das Beweisen muss auch die Herausbildung subjektiver Momente bei 

Lernenden, wie Nutzen, Wertschätzung und Akzeptanz von Beweisen als Aspekte Sozio-

mathematischer Normen, betrachtet werden. Im Rahmen der retrospektiven Analysen der 

Durchführungen der Lehrveranstaltung wurde deutlich, dass zunächst im Rahmen der 

Vorlesung und der Übungsaufgaben fast ausschließlich formale Beweise verwendet wurden 

(Abschnitt 5.2.1.4 und 5.4.1). Für die Vermittlung alternativer Beweisformen und das Erzielen 

einer ‚Akzeptanz‘ dieser Beweisformen auf Seiten der Lernenden erscheint es notwendig, 

dass diese Beweise ‚gleichberechtig‘ im Fortgang des Lehr-/Lernszenarios eingebunden 

werden. Schließlich sollen Vor- und Nachteile erfahrbar werden, die gerade im Kontrast zu 

anderen Beweisformen deutlich werden.  

 

8.1.3 Die Entwicklung von Testinstrumenten 

Für das Erreichen der Zielsetzung dieser Arbeit, wie es auch zu Beginn dieses Kapitels formuliert 

wurde, war die Entwicklung von Testinstrumenten notwendig, die die Erforschung zentraler Aspekte 

zum Beweisen bei Lernenden ermöglichen. Die im Rahmen dieser Arbeit entwickelten 

Testinstrumente stellen ein weiteres Design-Ergebnis der vorliegenden Forschungsarbeit dar und 

sollen im Folgenden getrennt nach den Bereichen „Erfassung der schulischen Vorerfahrungen zum 

Beweisen“, „Bewertung von Beweiskonstruktionen“, „Beweisbewertung und Beweisakzeptanz“, 

„Beschreibung der Einstellungen zum Beweisen“ und „Selbsteinschätzung des Lernzuwachses“ 

zusammengefasst dargestellt werden. 

8.1.3.1 Testinstrumente zur Erfassung der schulischen Vorerfahrungen zum Beweisen 

Für die Erfassung der quantitativen schulischen Vorerfahrungen der Studierenden zum Beweisen 

wurden verschiedene Items konstruiert und mithilfe der Erkenntnisse aus der Pilotierung 

ausgeschärft (Abschnitt 3.3.4). Im Kontext dieser Items wird zwischen dem Kennenlernen von 

Beweisen in der Schulzeit und der Eigenkonstruktion von Beweisen unterschieden, was sich bei der 

Betrachtung der Ergebnisse als gewinnbringend herausgestellt hat (Abschnitt 7.2.3). Durch die 

Abfrage von Sachverhalten, die in der Schule bewiesen worden sind, konnte ein ungefähres Bild 

dessen abstrahiert werden, was die Erstsemesterstudierenden mit dem Begriff ‚Beweis‘ zu verbinden 

scheinen (Abschnitt 7.2.3). 

8.1.3.2 Testinstrumente zur Bewertung von Beweiskonstruktionen 

Um zunächst die Begründungskonstruktionen der Studierenden analysieren und bewerten zu 

können, wurde ein differenziertes Kategorienschema entwickelt und angewendet (Abschnitt 3.3.1; 

Kempen & Biehler 2014). Auch wurde ein Kategoriensystem entwickelt, das die Bewertung 

studentischer Beweiskonstruktionen zum generischen Beweis ermöglicht (Abschnitt 5.2.2.2). 

Schließlich wurde auf der Grundlage dieser beiden Kategoriensysteme ein neues Kategoriensystem 
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entwickelt, das die vergleichende differenzierte Bewertung formulierter Begründungen und  

konstruierter generischer und formaler Beweise ermöglicht (Abschnitt 3.3.1). Erhobene Interrater-

Reliabilitäten bezeugen dabei die Güte dieses Forschungsinstruments (Abschnitt 5.4.2.3). Dieses 

entwickelte Kategoriensystem wurde schließlich im Rahmen der Effektivitätsstudie der 

Lehrveranstaltung in Kapitel 7 eingesetzt.   

8.1.3.3 Testinstrumente zu dem Bereich der Beweisbewertung und Beweisakzeptanz 

Für die Erfassung der Beweisbewertung der Studierenden wurden in Weiterentwicklung der Items 

aus dem „KLIMAGS“-Projekt (s. Blum et al. 2014) vier Begründungsformen aus der Studie von Healy 

und Hoyles (2000, S. 401) zu Multiple-Choice-Items mit den Bewertungskategorien „richtiger 

Beweis“/„kein richtiger Beweis“ umformuliert. Damit wurde es zunächst möglich, die studentische 

Bewertung von bloßen Beispielbetrachtungen und formal dargestellten und falschen Begründungen  

zu erfassen. Im Vergleich der beiden inhaltlich gleichen Begründungen konnte auch herausgearbeitet 

werden, dass die Studierenden eine Begründung mit Buchstabenvariablen statistisch signifikant 

häufiger als richtigen Beweis bewerten als die gleiche Begründung in narrativer Form (Abschnitt 

7.2.4.2 und 7.3.2.1). Darüber hinaus wurde der Bereich der Beweisbewertung um den Bereich der 

„Beweispräferenz“ (in Bezug auf die Konstruktion und das Verstehen eines Beweises) erweitert, um 

die studentischen Präferenzen in Bezug auf die vier Beweisformen der Lehrveranstaltung zu erfassen. 

Für die Erfassung des Konstrukts der ‚Beweisakzeptanz‘ wurde aufbauend auf verschiedenen 

Funktionen von Beweisen eine Skala konstruiert (Abschnitt 3.3.3). Diese Skala erreicht in der 

Pilotierung wie auch im Rahmen der Effektivitätsstudie der Lehrveranstaltung (Abschnitt 7.2.3 und 

7.3.2) hohe Reliabilitätswerte, was die Güte des Forschungsinstruments belegt. 

8.1.3.4 Testinstrumente zu dem Bereich Einstellungen zum Beweisen 

Im Kontext der Thematik „Einstellungen zum Beweisen“ wurden zunächst Instrumente zur 

Beschreibung der studentischen „Einstellungen zum Beweisen in der Schule“ konstruiert. Die Items 

thematisieren die Relevanz, die die Studierenden dem Inhalt ‚Beweisen‘ je nach Schulform und 

Schulstufe beimessen, die Bewertung ‚gängiger‘ Gründe, warum Beweise in der Schule eher eine 

untergeordnete Rolle spielen sollten, und die Bewertung der Eignung generischer Beweise für die 

Schulmathematik. 

In Bezug auf die „Einstellungen zum Beweisen“ der Studierenden wurden motivationale Aspekte zum 

Beweisen durch verschiedene Items thematisiert, wodurch es möglich wurde, eine Skala zu dem 

Konstrukt der „Beweisaffinität“ zu konstruieren. Diese Skala erreicht im Rahmen der 

Effektivitätsstudie der Lehrveranstaltung ausreichend hohe Reliabilitätswerte (Abschnitt 7.3.3), 

wobei allerdings Optimierungsmöglichkeiten auf Itemebene ausgemacht werden konnten. 

8.1.3.5 Testinstrumente zur Erfassung des selbsteingeschätzten Lernzuwachses 

Für die Beforschung der Lehrveranstaltung war es von Interesse zu erfahren, wie die Studierenden 

selbst ihren Lernzuwachs durch die Lehrveranstaltung einschätzen. Im Kontext der Funktionen von 

Beweisen und des Nutzens von Beispielbetrachtungen für den Beweisprozess wurde ein Frageformat 

verwendet, in dem die Studierenden die verschiedenen Aussagen aus ihrer aktuellen Perspektive und 

retrospektiv („vor dem Besuch der Lehrveranstaltung“) bewerten sollten. Durch Differenzbildung 

dieser Werte wurde es möglich, den Lernzuwachs der Studierenden beschreiben zu können 



332 

 

(Abschnitt 7.3.4). (Neben der Beschreibung des Lernzuwachses wird es bei diesem Frageformat 

außerdem möglich, die retrospektive Einschätzung der eigenen Kompetenz zu erheben. Auf diesen 

Aspekt wurde allerdings bei der Auswertung der Ergebnisse nicht weiter eingegangen.) 

Durch die gezielte Abfrage verschiedener Kompetenzaspekte zur Beweiskonstruktion wurde es 

schließlich möglich, eine Skala zur „Selbstwirksamkeitserwartung zum Beweisen“ zu konstruieren, 

welche im Rahmen der Effektivitätsstudie statistischen Ansprüchen an Reliabilität und korrigierte 

Trennschärfen der Items genügte (Abschnitt 7.3.4). 

8.2 Empirische Ergebnisse aus der Effektivitätsstudie zur letzten in dieser 

Arbeit betrachteten Durchführung der Lehrveranstaltung im 

Wintersemester 2014/15 
Mithilfe der im vorherigen Kapitel dargestellten Forschungsinstrumente wurde es im Rahmen dieser 

Arbeit möglich, die Vorerfahrungen der Studierenden mit dem Beweisen aus ihrer Schulzeit zu 

beschreiben (Abschnitt 7.2.3), ihre Eingangsvoraussetzungen zur Thematik ‚Begründen und 

Beweisen‘ zu erheben (Abschnitt 7.2.4 und 7.2.5) und die Änderungen diesbezüglich zu erfassen, die 

sich von der Ein- zur Ausgangsbefragung (bzw. zur Modulabschlussklausur) ergaben (Abschnitt 7.3 

und 7.4). Schließlich wurde die Selbsteinschätzung der Studierenden bzgl. ihres Lernzuwachses durch 

die Lehrveranstaltung erhoben (Abschnitt 7.3.4). Diese Ergebnisse sollen im Folgenden kurz 

zusammenfassend dargestellt werden. 

In Abschnitt 7.2.3 wurde die Forschungsfrage [2] („Wie lassen sich die Vorerfahrungen der 

Studierenden mit Beweisen aus ihrer Schulzeit beschreiben?“) beantwortet. Dabei konnte gezeigt 

werden, dass die Studierenden nach eigenen Angaben quantitativ nur wenig Beweise in ihrer 

Schulzeit kennengelernt haben: Für den Zeitraum der Sekundarstufe 1 sind 62% der Studierenden 

der Ansicht, insgesamt höchstens zwei Beweise kennengelernt zu haben, für die Sekundarstufe 2 

meinen dies 31%. 35% der Studierenden meinen, in der Sekundarstufe 2 drei bis fünf Beweise, 

weitere 22% meinen, vier bis zehn Beweise kennengelernt zu haben. Überhaupt nie einen Beweis in 

ihrer Schulzeit konstruiert zu haben, meinen 39% der Befragten, 74% sprechen von höchstens zwei 

Beweisen. Bei den Nennungen, welche Sachverhalte in der Schule bewiesen wurden, waren der Satz 

des Pythagoras mit 37 Nennungen, die PQ-Formel mit 14 Nennungen, Ableitungsregeln mit 13 

Nennungen, der Satz des Thales mit acht Nennungen und die binomischen Formeln mit sechs 

Nennungen die häufigsten Antworten. Dabei zeigt sich, dass das Beweisen in der Erinnerung der 

Studierenden vor allem mit dem Bereich der Geometrie verbunden zu sein scheint. Auf der Basis 

dieser Nennungen konnten Unterschiede bzgl. der für die Konstruktion eines Beweises zu 

vollziehenden Aktivitäten in der Schule und der Hochschule beschrieben werden. Schließlich konnte 

gezeigt werden, dass nur knapp die Hälfte der Studierenden angab, dass ihnen die Begründungsform 

des formalen Beweises bereits aus der Schule bekannt war. Weitaus weniger Studierende gaben dies 

in Bezug auf den generischen Beweis mit Zahlen (20,7%) den generischen Beweis mit Punktmustern 

(14,2%) und den Beweis mit geometrischen Variablen an (5,7%). 

Die Eingangsvoraussetzungen der Studierenden zum Beweisen wurden in Abschnitt 7.2.4 und 7.2.5 

beschrieben. Dort wurden die folgenden Forschungsfragen [3] („Wie lassen sich die Kompetenzen 

der Studierenden im Kontext der Thematik des ‚Begründens und Beweisens‘ zu Beginn der 

Lehrveranstaltung beschreiben?“) und [4] („Wie lassen sich die Einstellungen der Studierenden zur 

Thematik des Beweisens und zur Mathematik zu Beginn der Lehrveranstaltung beschreiben?“) 

beantwortet.  
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Bzgl. der Kompetenzaspekte zum Beweisen konnte gezeigt werden, dass nur 19,5% der Studierenden 

einen Sachverhalt der elementaren Arithmetik derart zu begründen vermochten, dass dies als 

‚vollständig‘ gewertet werden konnte. Während 8,7% der Studierenden reine empirisch-induktive 

Argumente formulierten, um die Behauptung zu verifizieren, dass die Summe zweier ungerader 

Zahlen immer gerade ist, beantworteten 14,1% der Studierenden die Frage durch Nennung oder 

Paraphrase des Satzes, dass die Summe zweier ungerader Zahlen immer gerade sei. Der geringe 

Anteil von Begründungen mit fachlich korrekten Argumenten führte dabei zu der Interpretation, dass 

die Studierenden mit solcherlei Begründungsaufgaben nicht vertraut zu sein scheinen. Auch 

verdeutlicht der Anteil von 28,1% der Bearbeitungen, in denen Buchstabenvariablen verwendet 

wurden (bei den Erstsemesterstudierenden 6,8%), dass nur wenige Studierende überhaupt von 

Buchstabenvariablen Gebrauch machen. Im Kontext der Bewertung von Beweisen konnte gezeigt 

werden, dass die Studierenden eine korrekte Begründung mithilfe von Buchstabenvariablen mit 

89,3% statistisch hoch signifikant häufiger als ‚richtigen Beweis‘ bewerten als die gleiche Begründung 

in einer narrativen Formulierung. Darüber hinaus bewerteten 18,8% der Studierenden eine rein 

empirisch-induktive Begründung als richtigen Beweis, wobei der Anteil der Erstsemesterstudierenden 

mit 33,8% statistisch hoch signifikant über dem der Höheren Semester mit nur 5,1% liegt. Etwa ein 

Drittel der Studienanfänger betrachtet somit einzelne Beispielüberprüfungen als korrekte Beweise. 

Im Rahmen der Erfassung der Beweisakzeptanz wurde deutlich, dass die Mehrheit der Studierenden 

zu Beginn der Lehrveranstaltung generische Beweise als bloße singuläre Beispielüberprüfungen 

fehlinterpretiert und nicht den Aspekt der Allgemeingültigkeit der Begründung wahrnimmt. Der 

formale Beweis wird dagegen bereits zu Beginn der Lehrveranstaltung von den Studierenden (nahezu 

vollständig) ‚akzeptiert‘. 

Im Bereich der Einstellungen zum Beweisen in der Schule wurde deutlich, dass die Studierenden die 

Thematik des Beweisens eher mit dem Mathematikunterricht in der Sekundarstufe 2 als dem in der 

Sekundarstufe 1 und eher mit dem Gymnasium als mit der Real- oder Hauptschule verbinden. Die 

Thematisierung von Beweisen in der Grundschule wird insgesamt abgelehnt. Dabei stimmen die 

Studierenden den Aussagen (eher) zu, dass Beweise im Unterricht eine eher untergeordnete Rolle 

spielen sollten, da es wichtiger sei, fachliche Inhalte zu vermitteln, Rechenaufgaben richtig lösen zu 

können und Anwendungen der Mathematik im Alltag zu thematisieren. In Bezug auf die 

Einstellungen der Studierenden zum Beweisen wurde deutlich, dass sie diesem Lerninhalt gegenüber 

nicht negativ eingestellt sind und dass sie generell eine sehr hohe Motivation angeben, die 

mathematische Beweisaktivität zu erlernen. 

Die Veränderungen der Kenntnisse bei den Studierenden durch die Lehrveranstaltung werden in den 

Abschnitten 7.3.2, 7.3.3 und 7.4.3 durch die Beantwortung der Forschungsfrage [5] („Inwiefern 

verändern sich die Kompetenzen der Studierenden im Kontext der Thematik ‚Begründen und 

Beweisen‘ von der Ein- zur Ausgangsbefragung?“) und der Forschungsfrage [6] („Inwiefern verändern 

sich die Einstellungen der Studierenden zur Thematik des Beweisens und zur Mathematik von der 

Ein- zur Ausgangsbefragung bzw. welche neuen Ansichten der Studierenden zum (generischen und 

formalen Beweisen) können in der Ausgangsbefragung herausgearbeitet werden?“) beschrieben. 

Dabei zeigte sich, dass sich die verschiedenen Teilkompetenzen der Studierenden zum Beweisen 

(Beweiskonstruktion, Beweisbewertung und Beweisakzeptanz) durch die Lehrveranstaltung 

verbessern (vgl. auch Abschnitt 7.5.4). In der Modulabschlussklausur gelingt 52,3% der Studierenden 

die vollständige Begründung der Behauptung über die Summe zweier ungerader Zahlen und im 

Bereich der Beweisbewertung geht die Fehlbewertung der empirisch-induktiven Begründung 
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statistisch hoch signifikant von 17,6% auf 5,4% zurück. Bzgl. der Einstellungen der Studierenden ist 

dabei sogar eine Hinwendung zum Beweisen zu verzeichnen: Der Mittelwert der Skala 

„Beweisaffinität“ steigt von der Ein- zur Ausgangsbefragung statistisch hoch signifikant bei kleiner 

Effektstärke an (t-Test, p=0,018 mit Cohens d=0,3). Darüber hinaus ließ sich auch eine Zunahme in 

Bezug auf die Einstellung zur Mathematik „Mathematik als Prozess“ feststellen: Die Studierenden 

bewerten in der Ausgangsbefragung den Prozesscharakter der Mathematik statistisch signifikant 

höher als in der Eingangsbefragung. 

Die Selbsteinschätzung des Lernzuwachses der Studierenden durch die Lehrveranstaltung wurde in 

Abschnitt 7.3.4 anhand der Forschungsfrage [7] („Wie schätzen die Studierenden selbst ihren 

Lernzuwachs in Bezug auf das Beweisen durch die Lehrveranstaltung ein?“) beantwortet. Hier zeigte 

sich, dass die Studierenden der Meinung sind, in Bezug auf die verschiedenen Funktionen von 

Beweisen und bzgl. des Nutzens von Beispielbetrachtungen für den Beweisprozess einen (großen) 

Lernzuwachs durch die Lehrveranstaltung gehabt zu haben. Diesen Lernzuwachs empfinden die 

Studierenden besonders im Hinblick auf die verschiedenen fachlichen Aspekte zum Beweisen. 

Interessant ist dabei auch das Ergebnis, dass sich die Einstellungen der Studierenden zur Nutzung von 

Buchstabenvariablen und zum formalen Beweis nach eigenen Angaben durch die Lehrveranstaltung 

positiv entwickelt haben. Schließlich konnte durch die Skala „Selbstwirksamkeitserwartung zum 

Beweisen“ gezeigt werden, dass die Lehrveranstaltung dazu beigetragen hat, dass sich bei den 

Studierenden eine positive Selbstwirksamkeitserwartung zum Beweisen ausgebildet hat. 

8.3 Weitere Beiträge der Arbeit über die Entwicklung einer lokalen 

Instruktionstheorie hinaus 
Mit den oben formulierten Designprinzipien zur Lehrveranstaltung wurde die die Forschungsarbeit 

überspannende Forschungsfrage 1 beantwortet und ein Beitrag für die Entwicklung einer lokalen 

Instruktionstheorie für die Domäne ‚Begründen und Beweisen‘ für Studienanfängerinnen und  

-anfänger des Lehramts (für Haupt-, Real- und Gesamtschule) im Spannungsfeld der doppelten 

Diskontinuität geleistet, wodurch bereits der Aspekt der Theoriebildung tangiert wurde. Neben 

diesem Beitrag für die Entwicklung einer lokalen Instruktionstheorie wurden im Kontext der Arbeit 

weitere Beiträge für die mathematikdidaktische Forschung zur Thematik des Beweisens geleistet. An 

dieser Stelle sollen fünf Aspekte herausgestellt werden, die besonders wertvoll für die aktuelle 

internationale Diskussion zur Thematik erscheinen: die Verbindung der Theorien des 

diagrammatischen Schließens und der sozio-mathematischen Normen (Abschnitt 8.3.1), die 

Betrachtung generischer Beweise als vollgültige mathematische Beweise (Abschnitt 8.3.2), die 

Enkulturationsfunktion von Beweisen (Abschnitt 8.3.3),  die Wahrnehmung bzw. Akzeptanz von 

Beweisen (Abschnitt 8.3.4) und eine Diskussion des Konzepts der proofs that explain (Abschnitt 

8.3.5). 

8.3.1 Die Verbindung der Theorien „Diagrammatisches Schließen“ und „Sozio-

mathematische Normen“ 

Ein Beitrag dieser Arbeit besteht in der konstruktiven Verbindung der Theorien des 

„Diagrammatischen Schließens“ und der „Sozio-mathematischen Normen“. Die Verbindung dieser 

beiden Theorien hat sich u.a. im Rahmen der erfolgten retrospektiven Analysen der verschiedenen 

Durchführungen der Lehrveranstaltung aus verschiedenen Gründen als wertvoll erwiesen. Neben 

den oben beschriebenen Gelingensbedingungen, die mithilfe dieser Perspektiven abstrahiert werden 
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konnten, sollen im Folgenden weitere Aspekte benannt werden, die mithilfe dieser theoretischen 

Sichtweisen und ihrer Verbindung herausgearbeitet werden konnten. 

(1) Die semiotische Perspektive ermöglicht über das Konstrukt der ‚Diagrammsysteme‘ eine 

vergleichende Diskussion der in dieser Arbeit thematisierten unterschiedlichen 

Beweisformen. Die Erörterung der Beweiskonzepte richtete sich dabei nicht nach den Polen 

formal/anschaulich o.ä., sondern thematisiert die Bedeutung des Diagrammsystems für den 

Beweis- und damit den Erkenntnisprozess. Die damit einhergehende Fokusverschiebung von 

den Zeichen auf die Bedeutung der vorgenommenen Transformationen birgt ein mögliches 

Legitimationsargument für nicht-formal dargestellte und beispielgebundene Beweisformen 

(Abschnitt 8.3.2). 

(2) Die Perspektive des diagrammatischen Schließens auf den Beweisprozess (nach Boero 

(1999): Entwicklung einer Vermutung, Formulierung einer Behauptung, Exploration des 

spezifischen Gehalts und des Umfelds der These, Auswahl von Argumenten und deren 

Aneinanderfügen zu einer Argumentationskette, Aufschreiben des Beweises gemäß 

mathematischer Standards und die Annäherung an einen formalen Beweis, vgl. Abschnitt 

2.1.1) machte diesen über die Aspekte „Diagrammkonstruktion“, „Transformation“, 

„Beobachten/Festhalten der Resultate“ und „Vergewisserung der allgemeinen Gültigkeit der 

Ergebnisse“ gleichsam handhabbar und operationalisierbar. Diese Sichtweise war 

grundlegend für die Konstruktion der Kategoriensysteme, die Interpretation der Ergebnisse 

und somit für die Weiterentwicklung der Lehrveranstaltung.  

(3) Die Tatsache, dass die Akzeptanz von Beweisen innerhalb einer bestimmten Kommunität vor 

dem Hintergrund gewisser (nicht immer explizierter) Normen stattfindet (Abschnitt 2.1.1), 

macht das Problem offenkundig, dass mit dem diagrammatischen Schließen zwar ein Teil des 

(mathematischen) Erkenntnisprozesses beschrieben werden kann, nicht aber der Prozess der 

Beweiskonstruktion im Spannungsfeld geltender Normen. Diese Lücke in der 

Theorieanbindung des diagrammatischen Schließens konnte durch den Einbezug der Theorie 

der sozio-mathematischen Normen geschlossen werden. So betrachtet, sind es jene sozio-

mathematischen Normen, die festlegen, wie das diagrammatische Schließen gerahmt sein 

muss, um als ‚Beweis‘ in einer Kommunität zu gelten, und wann diagrammatisches Schließen 

als Beweisen sein ‚Ende‘ gefunden hat, i.e. welche Endkonstellationen von Diagrammen 

gefordert werden bzw. durch welche sprachlichen Mittel diese diagrammatischen Resultate 

weiter erläutert werden müssen. Die Theorien „Diagrammatisches Schließen“ und „Sozio-

mathematische Normen“ bilden somit einen (theoretischen) Gestaltungsrahmen, in dem 

Beweiskonstruktionen betrachtet, beschrieben und analysiert werden können (vgl. 

Abbildung 92).  
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8.3.2 Die Betrachtung generischer Beweise als vollgültige mathematische Beweise 

Die oben aufgezeigte (semiotische) Sicht auf das Beweisen als regelkonforme und zielgeleitete 

Transformation von Diagrammen entsprechend gewisser (sozio-mathematischer) Normen vermag 

die Diskussion um die Gültigkeit generischer Beweise als vollgültige mathematische Beweise zu 

erweitern. Wie Reid und Vallejo (2016) darlegen, herrscht bis heute keine Einigkeit über die 

Gültigkeit generischer Beweise als ‚wirkliche mathematische Beweise‘. So formulieren Leron und 

Zaslavsky (2013, S. 27): „The main weakness of a generic proof is, obviously, that it does not really 

prove the theorem. The “fussiness” of the full, formal, deductive proof is necessary to ensure that 

the theorem’s conclusion infallibly follows from its premises“85. Im Folgenden wird dargelegt, warum 

in dieser Arbeit die Ansicht vertreten wird, dass generische Beweise als vollgültige mathematische 

Beweise betrachtet werden können. 

 

Betrachtet man den Beweisprozess als regelgeleitetes Agieren mit Diagrammen in einem 

Diagrammsystem, so muss festgestellt werden, dass die Auswahl eines Diagrammsystem zwar 

Auswirkungen auf die möglichen Transformationen und die potentiell zu erreichenden Diagramme 

hat, das Diagrammsystem als solches aber nicht über die Güte des Erkenntnisprozesses entscheidet, 

da die Allgemeingültigkeit der Verifikation durch die allgemeingültigen Transformationen der 

Diagramme nach den Regeln eines Diagrammsystem konstituiert wird (Abschnitt 2.5.3 und 2.5.4). 

Aus dieser semiotischen Perspektive gilt es daher festzuhalten, dass der Verzicht auf die 

fachmathematische Symbolsprache nicht als Argument gelten kann, warum generische Beweise 

(etwa mit Zahlen oder Punktmusterdarstellungen) nicht als gültige Beweise gelten können.     

Vor dem Hintergrund mathematischer Normen stellt sich die Frage, wie in generischen Beweisen ein 

verlangter Grad an ‚Vollständigkeit‘ der Argumentation erreicht werden kann, wie es auch im Zitat 

von Leron und Zaslavsky oben gefordert wird. Dazu sei zunächst angemerkt, dass auch in den in der 

Praxis üblichen ‚strengen Beweisen‘ keine Vollständigkeit erreicht wird (Abschnitt 2.1.2). Akzeptiert 

man die ‚Unvollständigkeit‘ gültiger mathematischer Beweise, so kann die Sichtweise der parallelen 

Struktur in mathematischen Begründungen von Aberdein (2013) herangezogen werden, um die 

                                                           
85

 Leider führen die Autoren nicht aus, was sie genau mit „obviously“ meinen, bzw. warum generische Beweise 

nicht wirklich das jeweilige Theorem beweisen. Mit „fussiness“ beziehen sich die Autoren auf die lückenlose 

Vollständigkeit der Argumentationsketten in mathematischen Beweisen (vgl. hierzu die Ausführungen in Reid 

und Vallejo 2016). 

Abbildung 92: Beweiskonstruktionen im Rahmen diagrammatischen Schließens und sozio-
mathematischer Normen 
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Diskussion handhabbar zu machen (vgl. Biehler und Kempen 2016, S. 174ff.; Reid und Vallejo 2016. S. 

2). Nach Aberdein (2013, S. 362ff.) kann ein Beweisprodukt als das Zusammenkommen zweier 

Ebenen betrachtet werden: Hinter dem Beweisprodukt liegt eine inferentielle Struktur verborgen, in 

der das Behauptete lückenlos und vollständig im Sinne eines formalen Beweises verifiziert wird. Das 

vorliegende Beweisprodukt zeigt dabei nur eine argumentative Struktur, welche die Leserin bzw. den 

Leser davon überzeugen soll, dass eine inferentielle Struktur für den Beweis (theoretisch) existiert. 

Für diese Art von Überzeugung muss der Betrachtende im vorliegenden Beweisprodukt die Momente 

erkennen, die für ihn die Existenz einer inferentiellen Struktur belegen. Die ‚Unvollständigkeit‘ von 

generischen Beweisprodukten stellt sich demnach nicht als Problem für die vorliegende Diskussion 

dar, da das Auslassen gewisser Argumente nicht die Gewissheit über die theoretische Existenz einer 

inferentiellen Struktur verhindern muss. Die notwendige Akzeptanz des vorliegenden 

Beweisprodukts als ausreichende argumentative Struktur betont die Bedeutung des subjektiven 

Moments des Betrachters: Da auch in sogenannten formalen Beweisen der Mathematik keine 

Vollständigkeit bzw. Lückenlosigkeit erreicht wird (vgl. Abschnitt 2.1.2), stellt sich für jeden 

Betrachtenden eines Beweises die Frage, ob ihm das vorliegende Produkt ausreicht, um daraus auf 

die Existenz einer inferentiellen Struktur schließen können. Welche Art der Verschriftlichung und 

welchen Grad an Explizierung jemand als ausreichend betrachtet, ist dabei stark von der jeweiligen 

Person abhängig. Vor diesem Hintergrund müsste die gewichtige Frage „Wann ist ein Beweis ein 

Beweis?“ eigentlich lauten: „Wann ist ein Beweis ein Beweis für den Betrachter?“. 

Reid und Vallejo (2016, S. 2) betonen, dass bei der Diskussion um generische Beweise die Sichtweise 

des Beweiskonstrukteurs und die des Beweisbetrachtenden unterschieden werden müssen. Denn 

wie kann der Betrachtende sich davon überzeugen, welches generische Moment in konkreten 

Beispielen verdeutlicht werden soll? Dieses Bewusstsein ist dabei für die Entscheidung zentral, ob die 

Begründung eine bloße Beispielüberprüfung oder eine allgemeingültige Verifikation mithilfe eines 

beispielübergreifenden generischen Moments darstellt. Um dieser Problematik entgegenzuwirken, 

wurde im Rahmen der vorliegenden Arbeit das Konzept generischer Beweise entwickelt, in der das 

generische Moment, das in konkreten Beispielen dargestellt wird, im Hinblick auf seine 

Übertragbarkeit bzw. Allgemeingültigkeit expliziert werden muss. Mit dieser Konzeption generischer 

Beweise wird die von Reid und Vallejo (2016) dargestellte mögliche Diskrepanz zwischen 

Beweiskonstrukteur und Betrachtendem abgeschwächt: Durch die Verbalisierung der 

beispielübergreifenden Begründung und ihrer Allgemeingültigkeit werden direkt die Argumente 

benannt, die – im Sinne von Aberdein (2013) – die Existenz der inferentiellen Struktur belegen sollen. 

 

Vor diesem Hintergrund kann bereits festgehalten werden, dass korrekte generische Beweise als 

intellektuell ehrliche Form der mathematischen Beweisaktivität verstanden werden können, 

wodurch gezeigt ist, dass mit der Integration dieser Beweisform in die Lehrveranstaltung „Einführung 

in die Kultur der Mathematik“ auch das Leitprinzip der ‚intellektuellen Ehrlichkeit‘ eingehalten 

worden ist (vgl. Abschnitt 1.3). 

 

Als letztes Argument soll hier auf die Bedeutung der sozialen Akzeptanz von Beweisen eingegangen 

werden. Wie in Abschnitt 2.1.1 beschrieben wurde, ist es der Prozess der sozialen Akzeptanz eines 

Beweises innerhalb der mathematischen Community, der einen Beweis zu einem Beweis macht. 

Daher könnte formuliert werden, dass ein generischer Beweis nicht als Beweis akzeptiert wird, da er 

keine Akzeptanz von der fachmathematischen Community erfährt. Dabei erscheint allerdings bereits 

die dichotome Unterscheidung ‚Beweis‘/‚kein Beweis‘ problematisch, wenn man bedenkt, dass keine 

allgemein akzeptierten Kriterien dafür existieren, wann ein Beweis ein Beweis ist (vgl. Abschnitt 
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2.1.1). Demgegenüber benennt Weber (2014, S. 357ff.) verschiedene Kriterien, die die Akzeptanz von 

Beweisen als solche begünstigen (also keinesfalls garantieren), wodurch die Bewertung von 

Beweisakzeptanz zu einem Kontinuum von möglichen Ausprägungen zwischen Ablehnung und 

Zustimmung wird. Und auch Heinze (2010) stellt heraus, welche unterschiedlichen Kriterien 

Mathematiker bei der Bewertung von Beweisen anlegen. Aus diesem Grund scheint eine generelle 

Ablehnung der Gültigkeit generischer Beweise als wirkliche Beweise aus einer rein ‚sozialen 

Perspektive‘ als unangebracht. Zwar können in unterschiedlichen mathematischen Kommunitäten 

unterschiedliche Normen in Bezug auf das Beweisen gelten, die sich wiederum ändern oder auch 

einem historischen Wandel unterliegen können; dieses Phänomen rechtfertigt allerdings nicht eine 

generelle Verwerfung des Beweiskonzepts. So betont auch Stylianides (2007, S. 15):  

 

[…] an argument that could count as proof in a classroom community should be accepted as proof by the 

community – and, thus, it should be convincing to the students – on the basis of socially accepted rules of 

discourse that are compatible with those of wider society. 

 

Insgesamt betrachtet, erscheint es somit angebracht, dass der mathematische Beweisbegriff auch für 

generische Beweise geöffnet wird bzw. geöffnet bleibt. Der generische Beweis erhält seine Gültigkeit 

durch die Allgemeingültigkeit der vorgenommenen Transformationen in einem Diagrammsystem; in 

ihm werden Argumente verwendet, die dabei den Verweis auf eine inferentielle Beweisstruktur zu 

stiften vermögen, und durch die Akzeptanz dieses Verweises durch den Betrachter wird schließlich 

seine Gültigkeit als Beweis konstituiert.  

 

8.3.3 Die Enkulturationsfunktion von Beweisen86 

Eine theoretische Grundannahme dieser Arbeit bestand darin, dass die Bedeutungskonstruktion zum 

Beweisbegriff und die Vermittlung damit einhergehender Normen in einem (mindestens impliziten) 

Aushandlungsprozess aller Beteiligten im Unterrichtsgeschehen erfolgen. Vor diesem theoretischen 

Hintergrund sozio-mathematischer Normen wurde deutlich, dass das Erlernen der Beweisaktivität 

selbst als Enkulturationsprozess verstanden werden kann (vgl. Abschnitt 2.6.2). Der namensgebende 

Leitgedanke der hier thematisierten Lehrveranstaltung ist die „Einführung in die Kultur der 

Mathematik“. Diese Einführung in eine Kultur ist dabei selbst als Enkulturation zu bezeichnen, da das 

Individuum im Laufe eines Prozesses Teil dieser Kultur wird. Die Übernahme der diese Kultur 

konstituierenden Normen erfolgte dabei vor allem im Kontext des Erlernen der Beweisaktivität, 

wodurch eine sozio-mathematische Funktion des Beweisens offenkundig wird: die 

Enkulturationsfunktion von Beweisen.  

Das Beweisen findet im Rahmen von (nicht immer explizierten) Normen einer Kommunität statt. 

Unterschiede bzgl. dieser Normen resultieren dabei daher, dass diese Kommunitäten jeweils 

verschiedene Kulturen der Mathematik ausprägen. Zwischen Kommunitäten können teilweise 

unterschiedliche Normen in Bezug auf das Mathematiktreiben herrschen und auf der Grundlage 

dieser Normen werden u.a. auch die dort konstruierten bzw. publizierten Beweise beurteilt. Wer das 

Beweisen erlernt, lernt dabei, im Rahmen der an ihn herangetragenen Normen zu agieren, welche 

wiederum als Ausschnitte aus einer weiter gefassten Kultur der Mathematik verstanden werden 

müssen. Somit findet durch das Erlernen der Beweisaktivität im Rahmen geltender Normen 
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 Dieser Abschnitt wurde maßgeblich durch die Kommunikation und Diskussion des Autors mit E. Müller-Hill 

beeinflusst. Die hier aufgezeigte Thematik wird in Müller-Hill und Kempen (in Vorbereitung) ausgeführt und in 

weitere (theoretische) Zusammenhänge eingeordnet. 



339 

 

gleichsam eine Enkulturation des Lernenden in die ihn umgebende Kultur der Mathematik statt. Das 

Beweisen erhält somit eine Enkulturationsfunktion. Der Enkulturationsbegriff soll dabei 

verdeutlichen, dass dieses Hereinwachsen in eine Kultur als Teil eines Sozialisationsprozesses 

verstanden werden muss und somit Aspekte beinhaltet, die über (intentionale) Erziehung im Sinne 

einer Akkulturation hinausgeht87. Hierbei kommt wiederum der Aspekt der sozio-mathematischen 

Normen zum Tragen, da Normen nicht bloß vermittelt bzw. übernommen, sondern im Miteinander 

ausgehandelt werden. 

Die hier herausgestellte Enkulturationsfunktion von Beweisen lässt sich auch in weiteren Bereichen 

der Mathematikdidaktik ausmachen. Im Folgenden sollen zwei solcher Bezüge dargestellt werden, 

um diese sozio-mathematische Sicht auf das Beweisen auch theoretisch exemplarisch zu vernetzen.  

Der Aspekt der Enkulturation durch Beweise, wie er in Bezug auf die Theorie sozio-mathematischer 

Normen von Yackel und Cobb (1996) oben dargestellt wurde, wird auch in der Arbeit von Hemmi 

(2006) deutlich. Die Autorin untersucht den Vorgang, wie Lernende durch das kulturelle Artefakt des 

Beweisens zu einem Teil der mathematischen Community werden. Auch in diesem 

Entwicklungsprozess der Studierenden wird der mathematische Beweis, verbunden mit den 

entsprechend geltenden Regeln für seine Konstruktion, Notation etc., zu einem zentralen Medium 

der Enkulturation. Müller-Hill (2013) überträgt das Konzept der „meta-discursive rules“ von Sfard 

(2001 und 2002) auf die Thematik des Beweisens. Versteht man das Beweisen als einen Akt der 

Kommunikation, so verweisen die „meta-discursive rules“ auf die mit dem Beweisen (implizit) 

verbundenen Normen: „In concert with meta-discursive rules, people undertake actions that count 

as appropriate in a given context and refrain from behaviours that would look out of place” (Sfard 

2002, S. 30). Auch beim Beweisen müssen Aktivitäten vollzogen bzw. Regeln beachtet werden, die in 

diesem Kontext (bzw. der rahmenden Kultur) von den beteiligten Personen als angemessen 

betrachtet werden (Müller-Hill 2013, S. 192). Beispiele hierfür sind etwa das Auslassen von 

‚einfachen‘ Rechenschritten bzw. Argumenten oder Standards für die Verschriftlichung von 

Beweisen. So wird auch unter dieser theoretischen Perspektive das ‚Hereinwachsen‘ in die 

entsprechende Kultur der Mathematik durch das Erlernen der dabei geltenden kulturellen Ansprüche 

bzw. angesetzten Normen an ‚das Beweisen‘ deutlich; das Erlernen der Beweisaktivität scheint 

unmittelbar mit dem Prozess der Enkulturation verbunden zu sein. 

Schließlich sollen im Folgenden noch drei spezifische Aspekte aufgezeigt werden, um die 

(didaktische) Bedeutung der Enkulturationsfunktion von Beweisen hervorzuheben: (1) das Erlernen 

der Beweisaktivität als Akkulturation in eine Kultur der Mathematik, (2) das Erlernen der 

Beweisaktivität als Konstruktion einer lokalen Kultur der Mathematik im Lehr-/Lernkontext und (3) 

das Herauslesen einer Kultur an Beweisprodukten. 

(1) Beweisen als Akkulturation in eine Kultur der Mathematik 

Wer das Beweisen unterrichtet, vermittelt gleichsam Normen für deren Konstruktion und Akzeptanz. 

Diese Vermittlung hat einen intentionalen Charakter und muss im Sinne einer Erziehung als 

Akkulturation in eine bestimmte Kultur der Mathematik verstanden werden: Die Lernenden sollen 

derart ‚erzogen‘ werden, dass sie zunächst den Ansprüchen im Studium gerecht werden und später 
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 Unter Akkulturation wird an dieser Stelle das bewusste bzw. gesteuerte Hineinwachsen einer Person in eine 

Kultur durch ‚Erziehung‘ verstanden. Der Begriff der Enkulturation geht darüber hinaus: hierunter werden die 

intentionalen Beeinflussungen durch Erziehung und die Summe aller nicht-intentionalen Einflüsse gefasst. 
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als Mathematiker oder als Repräsentanten der mathematischen Community (im Falle von 

Lehramtsstudierenden) in der jeweiligen (Fach-) Kultur entsprechend geltenden Normen agieren 

können. Für eine gelingende Akkulturation ist es entscheidend, dass Lehrenden bewusst ist, in 

welche Kultur die Lernenden wie eingeführt werden sollen, bzw. welche Normen diese Kultur 

konstituieren. Hieraus leiten sich in einem gewissen Maß auch die Normen ab, die im Kontext des 

Erlernens der Beweisaktivität angelegt und somit vermittelt werden müssen. 

(2) Beweisen als Konstruktion einer lokalen Kultur der Mathematik 

Wie bereits angemerkt, werden Normen weder unmittelbar vermittelt noch unverändert 

übernommen. Wenn im unterrichtlichen Geschehen entsprechende Normen ausgehandelt werden, 

dann bedeutet dies weiter, dass durch diese Normen in der jeweiligen Lerngruppe gleichsam 

individuelle ‚lokale‘ Kulturen der Mathematik konstruiert werden, innerhalb derer die Lernenden 

agieren können. (Man bedenke hierbei etwa verschiedene mathematische Lehrveranstaltungen an 

der Universität für verschiedene Adressatengruppen wie Fachmathematiker, Lehramtsstudierende, 

Ingenieure, …) Somit bildet sich innerhalb einer Lerngruppe eine eigene lokale Kultur der Mathematik 

heraus, die in einem gewissen Sinne ein Abbild der ‚globalen‘ Kultur der Mathematik ist, die durch 

die Kommunität der Fachmathematik konstituiert wird. Die Konstruktion einer lokalen Kultur ist 

somit als Voraussetzung für das Vollziehen der mathematischen Beweisaktivität zu betrachten. Es 

stellt sich jedoch die noch unbeantwortete Frage, wie nah eine im Unterricht ausgebildete Kultur an 

einer (globalen) mathematischen Kultur der Fachkommunität sein muss bzw. soll. 

(3) Das Herauslesen einer Kultur an Beweisprodukten  

Das Lesen und Verstehen von Beweisen ist ein in der internationalen mathematikdidaktischen 

Forschung ein vielbeachteter Forschungsgegenstand (siehe hierzu etwa Hodds et al. 2014; Inglis und 

Alcock 2012; Mejia-Ramos et al. 2012; Selden und Selden 2017). Im Folgenden soll es um den 

Teilaspekt beim Lesen von Beweisen gehen, der die Enkulturationsfunktion von Beweisen tangiert.  

Beim Lesen eines Beweises macht der Betrachtende bewusst und unbewusst Erfahrungen über „das 

Beweisen“ im Rahmen einer Kultur der Mathematik. Diese Erfahrungen umfassen dabei etwa die 

Notation von Beweisen, das Explizieren von Teilschritten oder das Verständnis um die Rolle von 

Beweisen. Führen diese Erfahrungen beim Betrachter zu ausreichend kohärenten 

Schlussfolgerungen, so findet gleichsam Enkulturation statt. Das Verständnis einer Kultur ergibt sich 

dabei als Ergebnis kohärenter Erfahrungen mit Beweisprodukten. Gelingt Lernenden diese 

Konstruktion kohärenter Erfahrungen nicht, so bleibt ihnen die Kultur der Mathematik verschlossen. 

Das Medium des Beweises wird so betrachtet zu einem zentralen Aspekt des Erlernens der 

Mathematik und des Eintretens in eine Kultur der Mathematik, die diese Prozesse im Sinne einer 

Enkulturation ermöglichen wie auch verhindern kann.  

Durch diese verschiedenen Facetten einer Enkulturationsfunktion von Beweisen wird deutlich, wie 

wichtig diese Funktion für das Erlernen der Beweisaktivität ist. Je gezielter bzw. intendierter die 

Enkulturation durch das Beweisen stattfindet, desto besser kann diese gelingen. 

8.3.4 Wahrnehmung bzw. Akzeptanz von Beweisen 

Ein zentraler Gegenstand dieser Forschungsarbeit ist die Erörterung, Konzeptualisierung und 

Operationalisierung von Beweiswahrnehmung und Beweisakzeptanz. In diesem Abschnitt werden die 

entsprechenden Ergebnisse zusammenfassend dargestellt und deren Bedeutung herausgestellt.  
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Funktionen von Beweisen und ein damit verbundenes Beweisbedürfnis sind häufiger Gegenstand 

didaktischer Erörterungen zum Erlernen der Beweisaktivität und werden als wichtige 

Voraussetzungen für die Herausbildung entsprechender Beweiskompetenzen beschrieben. 

Offensichtlich muss aber für ein Verständnis entsprechender Aspekte zum Beweis bzw. für deren 

Herausbildung ein Beweis vom Betrachter ‚verstanden‘ werden. Im Rahmen der erfolgten Forschung 

wurde sich diesem ‚Verstehen‘ von Beweisen zunächst mit der Beschreibung der Wahrnehmung von 

Beweisen genähert (s. Abschnitt 5.4.2.2). Hierbei wurde deutlich, dass bei einer Wahrnehmung von 

Beweisen zwischen einer psychologischen Ebene und einer logischen Ebene unterschieden werden 

kann und dass eine vom Beweiskonstrukteur intendierte Wahrnehmung von Beweisprodukten durch 

den Betrachtenden nicht per se gegeben ist.  

Im weiteren Verlauf der Forschungsarbeit wurde der Aspekt der Wahrnehmung von Beweisen 

weiterentwickelt, woraus eine Erörterung von Beweisakzeptanz resultierte. Beweisakzeptanz wurde 

in der vorliegenden Arbeit konzeptualisiert und operationalisiert als das Ausmaß, inwieweit bei 

einem vorgelegten Beweis vom Betrachter die Funktionen „Verifikation“, „Überzeugung“ und 

„Erklärung“ empfunden werden und inwieweit der Beweis durch den Betrachter als „korrekter und 

gültiger Beweis“ bewertet wird. Im Kontext der empirischen Studien zu der Lehrveranstaltung konnte 

unter Nutzung der explorativen Faktoranalyse ein Konstrukt abstrahiert werden, welches dieser 

Konzeptualisierung von Beweisakzeptanz entspricht. Die dabei konstruierten Skalen wiesen sehr 

hohe Reliabilitätswerte auf. Bei der Auswertung der Ergebnisse wurde schließlich deutlich, wie 

differenziert ‚Beweisakzeptanz‘ betrachtet werden muss, da verschiedene Teilaspekte einer 

Beweisakzeptanz (Verifikation, Erklärungsqualität etc.) von Lernenden unterschiedlich 

wahrgenommen werden. 

Diese differenzierte Sichtweise auf das ‚Verständnis‘ von Beweisen als ‚Beweisakzeptanz‘, das auf der 

subjektiven Wahrnehmung verschiedener Aspekte bei Beweisen basiert, sollte in der (didaktischen) 

Forschung zum Beweisen weiterverfolgt bzw. mitgedacht werden. Denn die Betonung verschiedener 

Teilaspekte der Beweisaktivität, wie etwa Funktionen von Beweisen oder die Herausbildung eines 

Beweisbedürfnisses, können nur sinnstiftend und konstruktiv zu der Herausbildung einer 

Beweiskompetenz beitragen, wenn die entsprechenden Aspekte von den Lernenden auch subjektiv 

wahrgenommen und schließlich wertgeschätzt werden. 

8.3.5 Proofs that explain – eine Diskussion88 

In der (didaktischen) Literatur wird häufig auf die Erklärungsfunktionen von Beweisen hingewiesen, 

worauf die Betonung des Konzepts der ‚proofs that explain‘ basiert. Die in dieser Arbeit gewonnenen 

Erkenntnisse zu der Erklärungsqualität von Beweisen geben dazu Anlass, Aspekte dieses Konzepts 

kritisch zu hinterfragen. Nach einer theoretischen Exaktifizierung des Erklärungsbegriffs wird das 

Konzept ‚erklärender Beweise‘ mit empirischen Ergebnissen aus dieser Arbeit abgeglichen und 

anhand theoretischer Betrachtungen zu Anschauungsmitteln, zur Semiotik und zur 

Kognitionspsychologie kritisch diskutiert. Ziel wird es dabei sein, Möglichkeiten und 

Gelingensbedingungen für erklärende Beweise genauer zu beschreiben.  

Neben der Verifikationsfunktion wird in der Literatur die Erklärungsfunktion von Beweisen als zweite 

Hauptfunktion von Beweisen aufgeführt (Brunner 2013, S. 13 in Anlehnung an Hersh 1993). Diese 

gründet sich u.a. auf der von Hanna vorgenommenen Unterscheidung von „proofs that prove“ und 

                                                           
88

 Für die Anregung zu einer vertieften Diskussion des Konzepts der „proofs that explain“ danke ich H. N. 

Jahnke. 
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„proofs that explain“ (1989), welche in der didaktischen Literatur große Beachtung gefunden hat. Im 

Allgemeinen soll im unterrichtlichen Geschehen den „proofs that explain“ der Vorzug gegeben 

werden, da Lernende meist schon vor der Beweisführung von der Gültigkeit einer Behauptung 

überzeugt seien (etwa Hanna 2000, S. 8 oder Hersh 1993, S. 396f.). Im Fokus des Beweisprozesses 

steht dann die Frage nach dem ‚Warum‘. Dieses erklärende Moment von Beweisen beschreibt Hanna 

(1989, S. 47) wie folgt: „I will say that proof explains when it shows what ‘characteristic property’ 

entails the theorem it purports to prove”. Hanna (1995, S. 48) weist darauf hin, dass erklärende 

Beweise je nach Kontext (Klassenstufe, Vorbildung etc.) andere Gestalt annehmen können. 

In den folgenden Ausführungen wird der Erklärungsbegriff in Abgrenzung zum philosophischen 

Erklärungsbegriff in einer pädagogischen Deutung betrachtet: Erklärung soll zu einem Verstehen 

führen, warum etwas wahr ist (vgl. Hanna 2016 und Müller-Hill 2016 für eine vertiefte Diskussion des 

Erklärungsbegriffs). 

In der Literatur werden verschiedene Beispiele für erklärende Beweise angegeben, wobei häufig 

geometrische Repräsentationen mit Punktmusterdarstellungen o.ä. als sogenannte 

Anschauungsmittel verwendet werden (vgl. die Beispiele in Hanna und Jahnke 1996, S. 904f.; Reiss 

und Hammer 2013, S. 50). Diese Beweise bzw. Beweisdarstellungen entsprechen Vorschlägen zu 

schuladäquaten Beweisformen, die in der (didaktischen) Literatur zu finden sind (vgl. Leiß und Blum 

2006, S. 37f.; Leuders 2010, S. 53; Meyer und Prediger 2009). Hierbei werden symbolisch-

algebraische Darstellungen nicht ausgeschlossen, durch den Gebrauch alternativer Darstellungsmittel 

soll allerdings häufig durch ein Mehr an ‚Anschaulichkeit‘ die Erklärungsqualität von Beweisen 

gesteigert werden.  

In der in dieser Arbeit dargestellten Forschung sollten Studierende verschiedene Beweisformen 

(generischer Beweis mit Zahlen, generischer Beweis mit Punktmustern, Punktmusterbeweis mit 

geometrischen Variablen und formaler Beweis) in Form konkreter Beweisprodukte auch hinsichtlich 

ihrer Erklärungsqualität auf einer sechsstufigen Likert-Skala bewerten. Zu beiden Messzeitpunkten 

(Ein- und Ausgangsbefragung der Lehrveranstaltung im Wintersemester 2014/15) wurde die 

Erklärungsqualität des formalen Beweises statistisch hoch signifikant am höchsten bewertet 

(Abschnitt 7.2.4.3 und 7.3.2.2). Diese Ergebnisse zeugen davon, dass das Konzept von erklärenden 

Beweisen nicht auf die Nutzung sogenannter ‚Anschauungsmittel‘ verkürzt werden darf. Im Gegenteil 

sollte der Erklärungsqualität der algebraischen Symbolsprache größere Beachtung geschenkt werden. 

Dieses Zwischenergebnis entspricht dabei auch den Forderungen in Jahnke (1984). 

Es gilt somit zu hinterfragen, ob sogenannte ‚erklärende Beweise‘ wirklich ‚erklärend‘ sind, bzw. 

wann sie als solche wahrgenommen werden? Eine entsprechende (kritische) Sichtweise auf 

erklärende Beweise soll im Folgenden exemplarisch anhand von drei Perspektiven diskutiert werden: 

eine mathematikdidaktische Sicht auf den Gebrauch von ‚Anschauungsmitteln‘ in Anlehnung an 

Krauthausen (1989), Krauthausen und Scherer (2007), Söbbeke (2005) und Wittmann (1993), die 

semiotische Sicht auf Erkenntnis durch Zeichengebrauch nach Peirce und eine 

kognitionspsychologische Sicht auf das ‚Verstehen‘ in Anlehnung an Steiner (1996) und Stern (1992). 

Der Fokus wird bei der kognitionspsychologischen Perspektive von der Erklärung auf das „Verstehen“ 

verlagert, da Erklären in diesem Kontext nicht als diskursive Praktik verstanden wird: In Beweisen, die 

erklären, warum etwas gilt, soll vom Betrachter etwas verstanden werden, was dann als ‚Erklärung‘ 

für ein Phänomen beschrieben werden kann. Diese Fokusverschiebung ermöglicht eine weiter 

gefasste Erörterung der ‚proofs that explain‘. 
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Die Diskussion um den Nutzen von Anschauungsmitteln kann dabei durch die Ausführungen von 

Krauthausen (1989), Krauthausen und Scherer (2007), Söbbeke (2005) und Wittmann (1993) sinnvoll 

erweitert werden.  

Mit dem Begriff der Anschauungsmittel soll an dieser Stelle bereits ein aktivistisches Lernverständnis 

des Sachverhalts ‚erklärende Beweise‘ eingenommen werden: Die Anschauungsmittel bzw. 

„Darstellungen mathematischer Ideen [sind] in der Hand der Lernenden zu sehen, als Werkzeuge 

ihres eigenen Mathematiktreibens, d.h. zur (Re-) Konstruktion mathematischen Verstehens“ 

(Krauthausen und Scherer 2007, S. 242), sie müssen somit mehr als epistemologische Werkzeuge 

statt als ‚bloße‘ didaktische Hilfsmittel betrachtet werden (Wittmann 1993). Wichtig ist hierbei, dass 

sich aus dieser Perspektive der Wahrnehmende das Objekt in einem aktiven kognitiven Vorgang 

aneignen muss, die bloße Repräsentation eines Sachverhalts bedingt noch kein ‚Verständnis‘ 

desselben. Das Ziel dieses Wahrnehmungsprozesses ist der „Aufbau von Vorstellungs- oder 

Anschauungsbildern“ (ebd., S. 244), auch, um mit den Darstellungen (mental) operieren zu können. 

Krauthausen (1989) führt verschiedene Kernpunkte für den Umgang mit Anschauungsmitteln auf, 

von denen vier für die vorliegende Diskussion besonders bedeutsam erscheinen. Diese Aspekte 

werden im Folgenden nach Krauthausen (1989, S. 40ff.) zusammenfassend paraphrasiert (vgl. hierzu 

auch die Ausführungen in Söbbeke 2005, S. 21ff.). 

 

(i) Von vorrangiger Bedeutung sind weniger die konkreten Repräsentanten als vielmehr ihre 

mentalen (inneren) Vorstellungsbilder 

Anschauungsmittel in Form konkreter Repräsentationen führen einen Betrachter nicht unmittelbar 

zu den angestrebten Vorstellungsbildern und dem damit intendierten ‚Verständnis‘ des 

entsprechenden Sachverhalts. Als Zwischenstufe müssen die Ausbildung visueller Vorstellungsbilder 

und ein mentales visuelles Operieren in der Anschauung mit den verwendeten Mitteln erfolgen (vgl. 

Lorenz 1992, S. 2). Die Bewältigung dieser Zwischenstufe braucht Zeit, die man Lernenden geben 

muss. Die dabei auszubildenden Vorstellungsbilder sind nicht deckungsgleich mit dem 

Wahrgenommenen, da bei jeder Person weitere (individuelle) Informationen in die 

Vorstellungsbilder miteinfließen. Eine Ähnlichkeit des Vorstellungsbildes mit dem Gegenstand ist 

dann eine Folge der Repräsentation, die etwa der Lehrende dem Lernenden anbietet. Ein 

Wissensunterschied zwischen Lehrendem und Lernendem kann dabei dafür ausschlaggebend sein, 

dass dieser die Ähnlichkeit nicht erkennt (vgl. Igl 1995, S. 10). Hieraus folgert Krauthausen (1998, S. 

41), „dass die mentalen Prozesse zur Ausbildung von Vorstellungsbildern ebenso wie die mentalen 

visuellen Operationen durch (geeignete!) Anschauungsmittel zwar (unterschiedlich gut) unterstützt 

werden können, sie lassen sich aber keinesfalls zwingend bestimmen oder garantieren“. 

(ii) Mentale Vorstellungsbilder sind keine bloße Abbildung der Realität; sie entstehen durch 

aktive Konstruktionsprozesse der Lernenden 

Der Betrachter konstruiert selbst den Sinngehalt und damit die Tragweite des von ihm Betrachteten, 

denn die unspezifischen Wahrnehmungsreize erlangen erst im Gehirn durch einen aktiven 

Konstruktionsprozess eine Bedeutung. Somit können gleiche Objekte von verschiedenen Betrachtern 

unterschiedlich ‚verstanden‘ werden. 

(iii) Wahrnehmung ist abhängig vom Individuum (idiosynkratisch) und bestimmt durch sein 

Wissen von der Wirklichkeit und seinen individuellen Wahrnehmungserfahrungen 



344 

 

Aus dem unter (ii) beschriebenen Aspekt folgt, dass Wahrnehmung immer abhängig vom Individuum 

und dabei von seinem Wissen und Vorerfahrungen bestimmt ist. Somit können Anschauungsmittel 

bei verschiedenen Personen zu (mindestens teilweise) unterschiedlichen Vorstellungsbildern führen 

(iv) Veranschaulichungsmittel wirken nicht selbsterklärend 

Anschauungsmittel sind nicht selbsterklärend bzw. selbstevident, sie müssen im Gegenteil zunächst 

als Lerngegenstände betrachtet werden:  

„Veranschaulichungshilfen sind für die Mehrzahl der Kinder keine aus sich heraus „sprechenden Bilder“ 

sondern Unterrichtsstoff, wie jeder andere. Damit unterliegen auch diese Darstellungen den 

Gesetzmäßigkeiten jedes Unterrichtsstoffes: Je besser sie geübt werden, desto häufiger werden sie wieder 

erkannt, und je länger die Übung zurückliegt, desto eher geraten sie in Vergessenheit.“ (Schipper 1982, S. 

109). 

 

Schließlich muss auch der symbolische Charakter von Anschauungsmitteln mitbedacht werden. Wie 

Söbbeke (2005, S. 21) in Anlehnung an Jahnke (1984) ausführt, beschränkt sich der Bedeutungsgehalt 

von Anschauungsmitteln nicht auf ihre direkt ablesbaren Eigenschaften: Da Anschauungsmittel „als 

Mittel zur Verallgemeinerung dienen, bleibt das, was sie aussagen, implizit“ (Jahnke 1984, S. 41). 

Söbbeke (2005, S. 21) spricht daher von der essentiellen „Symbolfunktion“ von Anschauungsmitteln. 

Durch diesen Symbolcharakter wird das Verstehen und Anwenden von Anschauungsmitteln zu einem 

symbolischen Akt. In diesem Sinne sind Anschauungsmittel „ikonisch verschlüsselte Informationen 

über abstrakte mathematische Begriffe und Operationen“ (Schipper 1995, S. 13, zitiert aus Söbbeke 

2005, S. 21). Die damit verbundenen mathematischen Sachverhalte müssen von den Lernenden in 

einem Akt der Interpretation selbst konstruiert werden. 

 

Aus der Erkenntnis, dass Veranschaulichungsmittel zunächst als Unterrichtsgegenstand gelernt 

werden müssen, folgt, dass im Unterricht nur wenige Mittel eingesetzt und deren Chancen und 

Möglichkeiten (im Sinne einer Reichhaltigkeit) ausgiebig erkundet und erlernt werden sollten. 

 

Der Aspekt des Aneignens von Veranschaulichungsmitteln weist dabei deutliche Bezüge zu dem 

Konstrukt des notwendigen kollateralen Wissens für den Umgang mit einem Diagrammsystem von 

Peirce auf (vgl. Abschnitt 2.5). Folgt man der oben formulierten Ansicht, dass Anschauungsmittel als 

epistemologische Werkzeuge betrachtet und verwendet werden müssen, so ist dies verbunden mit 

einer Fokusverschiebung von Veranschaulichungen als bloßen Visualisierungen hin zu 

Veranschaulichungen als Diagrammen (i.S. von Peirce, vgl. 2.5), mit denen im Kontext eines 

Diagrammsystems agiert wird. Verschiedenen Diagrammen wird dabei, verstanden als 

‚Visualisierung‘, häufig eine den Lernprozess begünstigende bzw. unterstützende Rolle zugeschrieben 

(Dörfler 2008, S. 1): 

The term “visualization” generally is used in opposition to algebraic or (so-called) formal ways of notation. 

Thus, visualization uses a rather geometric and graphic-like mode and it is predominantly two-dimensional 

(i.e. non-linear and non-sequential). […] Mostly, to visualizations is attributed a supportive role for 

understanding, for insight and for intuitive thinking but also for invention and detection. This is based on 

the assumption of a more direct accessibility and intelligibility of those visualizations: formal and algebraic 

symbolic mathematics can purportedly be explained by visualizing it in a different graphic-geometric 

mode. The faculties of vision for detecting patterns and regularities will serve this purpose. 
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Aus der Perspektive der semiotischen Erkenntnistheorie von Peirce muss festgehalten werden, dass 

uns Diagramme nur dann als Mittel der Erkenntnis zur Verfügung stehen, wenn wir mit ihnen soweit 

vertraut sind, „dass wir gleichsam durch diese Zeichen hindurch direkt das von ihnen Repräsentierte 

wahrnehmen“ (Hoffmann 2005, S. 35). Für einen Erkenntnisakt ist dabei immer kollaterales Wissen 

erforderlich, Wissen, das nicht im Fokus der Aufmerksamkeit steht, aber implizit verwendet wird und 

somit vorausgesetzt werden muss. Im Kontext von Diagrammsystemen müssen hierunter u.a. das 

Wissen um die Konstruktion der Diagramme, die zugelassenen Transformationsregeln und die Lesart 

der erhaltenen Diagramme gefasst werden. Solch ein Wissen um den Umgang mit Diagrammen muss 

für das gewinnbringende Lesen entsprechender Darstellungen bereits als Vorwissen vorhanden sein. 

Erst dann können Darstellungen (und damit auch erklärende Beweise) gewinnbringend gelesen 

werden. 

 

Wie Dörfler (2006, S. 212) ausführt, muss daher im Unterricht durch verschiedene Tätigkeiten eine 

Praxis des Umgangs mit (den zu verwendenden) Diagrammen ausgebildet werden. Diese Tätigkeiten 

umfassen u.a. das Einüben eines elementaren Umgangs (‚Rechnungen‘) mit Diagrammen nach den 

jeweiligen Regeln eines Diagrammsystems, das Experimentieren mit Diagrammen und das Erforschen 

ihrer Eigenschaften, die Untersuchung der Beziehungen zwischen verschiedenen Typen von 

Diagrammen, das Erfinden und Entwerfen von Diagrammen und das Anwenden von fertigen 

Diagrammen zur Modellierung (ebd., S. 213ff.). 

 

Zum Abschluss dieser Diskussion um ‚erklärende Beweise‘ soll das Themenfeld durch einen kurzen 

Exkurs in die Kognitionspsychologie sinnstiftend erweitert werden. Da beim Lesen ‚erklärender 

Beweise‘ das Erklären nicht als eine diskursive Tätigkeit stattfindet, scheint der Vorgang des 

Verstehens adäquat für die Beschreibung des Erkenntnisaktes des Betrachtenden zu sein (vgl. hierzu 

den pädagogischen Erklärungsbegriff von Hanna 2016 oben). So wird auch in der 

Kognitionspsychologie die Notwendigkeit des ‚Verstehens‘ für den Wissenserwerb aus einer 

Darstellung betont (etwa Steiner 1996, S. 195ff.). Verstehen kann dabei als ein Integrieren von neuen 

Informationen in die Struktur des Vorwissens, als Konstruktion eines sogenannten mentalen Modells, 

interpretiert werden: 

Lernen […] beginnt mit einem Aktivieren von Vorwissen, in das die neue Textinformation integriert 

wird, wobei diese Integration zu einer Veränderung des Vorwissens, d.h. zum Aufbau neuer 

Wissensstrukturen oder Wissensrepräsentationen führt. (Ebd., S. 195) 

Ein Lernender benötigt Vorwissen, um Informationen verarbeiten zu können. Zu diesem Vorwissen 

gehören u.a. sach- bzw. fachbezogene Kenntnisse und Wissen über die Semantik und Syntax der 

dabei verwendeten Repräsentation der Inhalte. Das Verstehen von neuen Informationen geschieht 

dabei nicht rein additiv, sondern erfolgt über Integration in das vorhandene Vorwissen. In einem 

Prozess der Elaboration werden aufgrund des vorhandenen Vorwissens die neuen Informationen so 

verarbeitet, dass sich diese darin einfügen können, wodurch ein sogenanntes inneres mentales 

Modell konstruiert wird (ebd. S. 208, nach Collins et al. 1980). Stern (1992) diskutiert das Verstehen 

als Konstruktion eines mentalen Modells für die Mathematik und betont: „Wie dieses mentale 

Modell aussieht, hängt vom verfügbaren mathematischen Vorwissen ab“ (ebd., S. 9). Da dieses 

verfügbare mathematische Vorwissen individuell unterschiedlich ist, wird hierbei die Subjektivität 

und Relativität des ‚Verstehens‘ deutlich. Vor diesem Hintergrund kann „erklärenden Beweisen“ 

somit nicht pauschal das Attribut ‚erklärend‘ zugesprochen werden. Das Verstehen bestimmter 
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Darstellungen bzw. Beweise als Konstruktion mentaler Modelle ist ein individueller Prozess und 

hängt vom individuellen Vorwissen einer Person ab.  

Zusammenfassung: Anschaulichkeit und proofs that explain 

In den verschiedenen, oben aufgezeigten Perspektiven werden die Notwendigkeit von 

entsprechendem Vorwissen und der aktive Prozess der Verarbeitung von Darstellungen betont, um 

in einem Akt des Verstehens Informationen daraus zu gewinnen. Dadurch wird deutlich, dass die 

durch Anschauungsmittel intendierte ‚Anschauung‘ nichts per se Gegebenes bzw. Primitives, sondern 

etwas Erworbenes ist. Anschauungsmittel müssen in diesem Sinn zunächst als Lerngegenstände 

aufgefasst werden, sie sind Arbeitsmittel, die erst erworben werden müssen. Entsprechende 

‚erklärende‘ Darstellungen müssen vom Betrachter gelesen und in einem Prozess des Verstehens 

aktiv verarbeitet werden. Hierzu ist ein gewisses Vorwissen („kollaterales Wissen“ im Sinne von 

Peirce, s.o.) notwendig. Der aktive Konstruktionsprozess eines Sinngehalts auf der Basis eigenen 

Vorwissens betont die Subjektivität und Relativität des Verstehens entsprechender Darstellungen, 

welche folglich weder selbstevident noch selbsterklärend sind (vgl. Jahnke 1984, S. 33). Es folgt 

hieraus, dass Anschauungsmittel als Arbeitsmittel in systematischen Lernumgebungen erarbeitet 

bzw. gelernt werden müssen (Lorenz 1992, S. 7) und dass nicht zu viele Anschauungsmittel im 

Unterricht verwendet werden dürfen (etwa Wittmann 1993). 

Für das Konzept der erklärenden Beweise bedeutet dies, dass Beweise, in denen ‚anschauliche‘ 

Darstellungen verwendet werden, nicht per se als erklärend bezeichnet werden können. Das 

Verstehen von Darstellungen, was zu einem erklärenden Moment des Beweises führen bzw. 

beitragen soll, ist ein subjektiver Akt, der vom Individuum auf der Basis seines Vorwissens vollführt 

werden muss. Beweise können erklärend wirken, sie tun dies nicht per se.  

Bei der Diskussion anschaulicher Darstellungsmittel muss dabei das erklärende Potential der 

Symbolsprache der Algebra mitbedacht werden. Dies scheint auch daher notwendig, da dieses 

‚Diagrammsystem‘ wohl dasjenige ist, welches in den höheren Schulstufen am häufigsten verwendet 

und somit geübt wird. Andere Darstellungen, wie etwa Punktmuster, werden dagegen weniger 

verwendet, wodurch das notwendige Wissen für das Verstehen entsprechender Darstellungen 

schwinden kann und Darstellungen ihr Erklärungspotential einbüßen (vgl. hierzu das Zitat aus 

Schipper (1982) oben). Wie Hanna (1995) betont, unterscheiden sich erklärende Beweise je nach 

Kontext der Lernenden und ihrem Vorwissen. Dieser Fakt der Variabilität ‚erklärender Beweise‘ sollte 

in der allgemeinen mathematikdidaktischen Literatur mehr Aufmerksamkeit erfahren, in der 

gewöhnlich Beweise mit ‚anschaulichen‘ Darstellungen bereits als „proofs that explain“ betrachtet 

werden. 

8.4 Diskussion des Forschungsprojekts anhand der aufgezeigten 

Gütekriterien 
In diesem Abschnitt werden die in dieser Arbeit verwendete Forschungsmethode des Design-Based 

Research (7.3.1) und die damit erzielten Ergebnisse (7.3.2) diskutiert. Grundlage der Diskussion sind 

die in Abschnitt 3.2 dargelegten Güte- und Qualitätskriterien entsprechender Forschungsprojekte. 

8.4.1 Diskussion der Forschungsmethode 

In diesem Abschnitt wird die erfolgte Anwendung der Forschungsmethode des Design-Based 

Research diskutiert. Dazu werden die in Kapitel 4 aufgeworfenen Fragen beantwortet und 
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angeführten Gütekriterien erörtert. Dabei geht es im Besonderen um die Involviertheit des Forschers 

und die Validität und Reliabilität der erfolgten Forschung. 

8.4.1.1 Involviertheit des Forschers 

Der Verfasser dieser Arbeit war in den Wintersemestern 2012/13, 2013/14 und 2014/15 bei der 

Durchführung der Lehrveranstaltung „Einführung in die Kultur der Mathematik“ als 

Wissenschaftlicher Mitarbeiter beteiligt. Zu seinen Aufgabenbereichen gehörten die Organisation des 

Übungsbetriebs, das Abhalten einer Kleingruppenübung und der Zentralübung, woraus auch Kontakt 

mit den Studierenden resultierte, die gleichsam als Probanden in den verschiedenen Studien 

fungierten. Somit war der Autor als Vertreter der hochschulmathematischen Kommunität an der 

Herausbildung entsprechender sozio-mathematischer Normen in verschiedenen 

Unterrichtssituationen beteiligt. Die stets sehr guten Bewertungen seiner Lehrveranstaltungen im 

Rahmen der durch die Fachschaft durchgeführten Veranstaltungsevaluation zeugen dabei von einer 

hohen Akzeptanz bzw. Beliebtheit bei den Studierenden. Insofern muss kritisch diskutiert werden, 

inwiefern die Ausbildung verschiedener Ansichten zum Beweisen (Wahrnehmung, Akzeptanz etc.) 

bzw. die Übernahme verschiedener Normen im Kontext des Beweises durch die Studierenden auch 

durch die Involviertheit des Forschers beeinflusst wurden.  

Bei der Erörterung einer möglichen Beeinflussung der Studierenden durch den Forscher ist dabei 

grundlegend, dass es in der vorliegenden Forschungsarbeit nicht darum ging, bestimmte Ansichten 

zum Beweisen oder zu Beweisformen den Studierenden aufzuoktroyieren. Im Zentrum des Interesses 

standen die verschiedenen Wahrnehmungen der Studierenden zum Beweisen und ihre Akzeptanz zu 

verschiedenen Beweisformen, wie sie zu Beginn und zum Ende der Lehrveranstaltung vorlagen. Vor 

diesem Hintergrund wurden im Rahmen der Lehrveranstaltung verschiedene Beweisformen und 

Diagrammsysteme vergleichend diskutiert und somit entsprechende Vor- und Nachteile erörtert. 

Aufgrund der vorgenommenen Operationalisierung von Beweisakzeptanz und Beweispräferenz 

sollten diese Forschungsergebnisse höchstens marginal durch die Involviertheit des Forschers 

beeinflusst worden sein. In Bezug auf die Herausbildung sozio-mathematischer Normen muss 

angemerkt werden, dass gerade die Aushandlung dieser Normen zwischen Lernenden und 

Lehrenden ein zentraler Aspekt dieser theoretischen Sichtweise ist. Für die vorliegende Forschung 

war es daher von grundlegender Bedeutung, dass sich die Lehrenden (Professor, Wissenschaftlicher 

Mitarbeiter und studentische Hilfskräfte) über die zu vertretenden Normen im Klaren sind und diese 

gemeinsam in allen Bereichen der Lehrveranstaltung (Vorlesung, Zentralübung und 

Kleingruppenübungen) gegenüber den Studierenden vertreten. Im Sinne der Theorie der sozio-

mathematischen Normen ist diese ‚Beeinflussung durch den Forscher‘ somit intendiert. Generell 

können Auswirkungen der Involviertheit des Forschers auf die Bewertungen der Studierenden (etwa 

im Rahmen der Effektivitätsstudie, vgl. Kapitel 7) auch im Sinne sozialer Erwünschtheit aber nicht 

gänzlich ausgeschlossen werden. 

Neben der Involviertheit des Forschers als beteiligter Lehrender gilt es zudem, seine Involviertheit als 

tatsächlicher ‚Forscher‘ bei dem Design der Forschungsprojekte, der Datensammlung, 

Datenauswertung und Interpretation zu betrachten. In Abschnitt 3.1 wurden nach Plomp (2010, S. 

30ff.) verschiedene Maßnahmen aufgeführt, um gerade aufgrund der Involviertheit des Forschers die 

Objektivität der Forschung sicherzustellen. Im Folgenden wird beschrieben, inwiefern diese 

Maßnahmen bei der vorliegenden Forschung berücksichtigt und umgesetzt wurden: 
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a) Die Rolle und der Einfluss des Forschers auf das Projekt wurden im vorliegenden Abschnitt 

offengelegt und diskutiert. Auf mögliche Einschränkungen der Ergebnisse wurde 

hingewiesen. 

b) Die erhaltenen Forschungsergebnisse wurden nicht isoliert betrachtet, sondern im Kontext 

mehrerer Forschungsergebnisse, auch innerhalb verschiedener Durchführungen der 

Lehrveranstaltung, diskutiert und neu interpretiert, wodurch Fehlentscheidungen 

entgegengewirkt werden konnte. 

c) Verschiedene Teilforschungen wurden in nachfolgenden Durchläufen der Lehrveranstaltung 

wiederholt und somit erneut überprüft und reflektiert. Über die verschiedenen 

Teilergebnisse der Forschung wurde während des gesamten Forschungsprojektes 

kontinuierlich mit projektunbeteiligten Wissenschaftlern diskutiert (vgl. Abschnitt 8.4.1.3). 

d) Bei der durchgeführten Forschung wurden die Gütekriterien der Reliabilität und Validität 

stets mitbetrachtet und diskutiert. Außerdem umfasste die Forschung sowohl qualitative als 

auch quantitative Forschungsmethoden, um eine umfassendere Sicht auf das 

Forschungsprojekt zu ermöglichen. 

e) Der Nutzen und die Effektivität der Lehrinnovation wurden im Rahmen einer 

Effektivitätsstudie zur vierten Durchführung der Lehrveranstaltung empirisch getestet (s. 

Kapitel 7). 

 

8.4.1.2 Validität der Forschung 

Für die Sicherstellung der internen Validität wurden im Kontext der Beschreibungen der 

verschiedenen Durchführungen der Lehrveranstaltung die damit verbundenen Teilstudien gesondert 

aufgeführt und diskutiert, auch, um die Motive für die theoretischen Ableitungen darzustellen und 

diese Ableitungen gleichsam aus der Praxis heraus zu begründen (Kapitel 5). Die hierbei erhaltenen 

Ergebnisse und die daraus skizzierten Problemfelder wurden im Rahmen der jeweiligen 

retrospektiven Analysen erörtert. Die auf der Basis dieser Analysen erfolgten Maßnahmen zur 

Verbesserung der Lehre wurden anschließend dargelegt, um eine möglichst große Transparenz zu 

gewährleisten. In den folgenden Durchgängen wurde nach Evidenzen gesucht, die den Erfolg der 

vorgenommenen Modifikationen belegten oder ggf. in Frage stellten.  

Für das Gütekriterium der externen Validität werden in Abschnitt 8.4.2 die Verallgemeinerbarkeit 

der Theorie und die Übertragbarkeit und der Nutzen der Ergebnisse diskutiert. 

8.4.1.3 Reliabilität der Forschung 

Für die interne Reliabilität der Forschung wurden bei der Darstellung der Teilstudien die 

Datenerhebungen und Datenauswertungen nachvollziehbar dargelegt. Die Reliabilität der 

Messinstrumente wurde an den entsprechenden Stellen herausgestellt bzw. diskutiert. Im Prozess 

der Weiterentwicklung der Lehrveranstaltung wurden die Interpretationen der Studienergebnisse 

und die damit begründeten Schlussfolgerungen und Modifikationen im Rahmen der retrospektiven 

Analysen diskutiert. Diese Interpretationen und Schlussfolgerungen wurden während des gesamten 

Forschungsprojektes kontinuierlich mit projektunbeteiligten Wissenschaftlern diskutiert, hierzu 

gehören u.a. zwei anderthalbstündige Sitzungen pro Semester der Paderborner Gruppe des 

Kompetenzzentrums Hochschuldidaktik Mathematik, monatliche Dissertationsbesprechungen mit 

dem Betreuer dieser Arbeit und verschiedene Vorträge auf (inter-) nationalen Tagungen (die 
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Jahrestagungen der Gesellschaft der Didaktik der Mathematik in den Jahren 2013 bis einschließlich 

2016, die Tagungen der Gruppe der „European Research in Mathematics Education“ (CERME) in den 

Jahren 2013 und 2015, die Tagung des Vereins „Psychology of Mathematics Education“ 2014 und die 

hochschuldidaktischen Tagungen in Oberwolfach 2014 und in Hannover-Herrenhausen 2015). 

Für die externe Reliabilität wurde bereits oben die Involviertheit des Forschers im Gesamtprojekt 

erörtert. Auch wurde bei der Darstellung des Forschungsprojekts darauf geachtet, dass jeder 

Forschungszyklus so beschrieben wird, dass jede Designentscheidung nachvollziehbar wird. Im 

diesem Sinn ist die Nachvollziehbarkeit des Erkenntnisverlaufs im Sinne einer ‚trackability‘ 

sichergestellt. 

8.4.2 Diskussion der Güte der Ergebnisse 

Im Zentrum der Diskussion der Güte der erhaltenen Ergebnisse stehen die Aspekte 

„Verallgemeinerbarkeit der erhaltenen theoretischen Ergebnisse“ (7.3.2.1), „Allgemeingültigkeit und 

Replizierbarkeit der empirischen Ergebnisse“ (7.3.2.2) und „Übertragbarkeit und Nutzen der erzielten 

Ergebnisse“ (7.3.2.3). 

8.4.2.1 Verallgemeinerbarkeit der erhaltenen theoretischen Ergebnisse 

In dem oben dargestellten Beitrag zu einer lokalen Instruktionstheorie in der Domäne ‚Begründen 

und Beweisen‘ wird keine absolute Gültigkeit der formulierten Designprinzipien beansprucht. 

Vielmehr handelt es sich dabei prospektiv betrachtet um empirisch begründete Empfehlungen und 

auf das Lernen ausgerichtete antizipierende Behauptungen, die in der weiteren Praxis getestet und 

modifiziert werden sollen (vgl. Bakker 2004, S. 39ff.). Folglich wird nicht behauptet, dass das Lernen 

in dieser Domäne unter Anwendung der aufgestellten Designprinzipien im Hinblick auf jede 

Adressatengruppe genauso verlaufen wird, wie es in diesem Fall geschehen ist, sondern dass deren 

Anwendung bzw. Berücksichtigung entsprechende Lernprozesse begünstigen wird. 

Verallgemeinerbarkeit versteht sich somit nicht als unveränderte Übertragung von Empfehlungen, 

sondern in einer entsprechenden Adaption.  

Die durch die Kombination der Theorien des diagrammatischen Schließens und der sozio-

mathematischen Normen entstehenden Perspektiven für die Beweisdidaktik sind aus der Praxis der 

Forschung heraus entstanden und wurden in ihrer allgemeinen Formulierung für die allgemeine 

Theorie fruchtbar gemacht. Dieses Zusammenspiel von Zeichentätigkeit im Kontext auszuhandelnder 

Normen muss perspektivisch weiter erörtert werden. Auch die mit diesen im Kontext von Beweisen 

auszuhandelnden Normen einhergehende Enkulturationsfunktion von Beweisen ist nicht an die 

vorliegende Situation der Adressaten oder der Bildungseinrichtung gebunden. Diese funktionale 

Sichtweise auf das Beweisen tangiert alle Bereiche der Mathematikausbildung. Die herausgestellte 

Bedeutung von einem Konstrukt ‚Beweisakzeptanz‘, exemplarisch vertieft bei der Diskussion des 

Konzepts der erklärenden Beweise, muss ebenfalls situationsunabhängig betrachtet werden: Ein so 

betrachtetes ‚Verstehen‘ von Beweisen gilt es in der Beweisdidaktik weiter zu erforschen. 

8.4.2.2 Allgemeingültigkeit und Replizierbarkeit der empirischen Ergebnisse 

Im Kontext dieser Forschungsarbeit wird zunächst kein Anspruch auf Verallgemeinerbarkeit bzw. auf 

Replizierbarkeit der Ergebnisse erhoben. Die erhaltenen Ergebnisse beziehen sich auf die spezielle 

Klientel der Lehramtsstudierenden (Haupt-, Real- und Gesamtschule) an der Universität Paderborn in 

den Jahren 2011 bis 2015. Allerdings kann vermutet werden, dass entsprechend konzipierte 
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Lehrveranstaltungen mit Lehramtsstudierenden für Haupt-, Real und Gesamtschule zu ähnlichen 

Ergebnissen führen werden. Dabei sind die in diesen Teilforschungen betrachteten Probandenzahlen 

zu gering, um Ergebnisse verallgemeinern zu können. Dem Aspekt der Replizierbarkeit der 

empirischen Ergebnisse in anderen Kontexten (Bildungsstätten und Klientel), wurde bei der 

empirischen Forschung durch die Berücksichtigung der Gütekriterien Objektivität (i. S. der 

Involviertheit des Forschers), Validität und Reliabilität Rechnung getragen. Die Replikation der 

erhaltenen Ergebnisse und die damit einhergehende Validierung bzw. Erweiterung der gewonnenen 

Theorie erweist sich hierbei als Perspektive für die weitere Forschung. 

8.4.2.3 Übertragbarkeit und Nutzen der Ergebnisse 

Der oben formulierte Beitrag zu einer lokalen Instruktionstheorie für die Domäne „Begründen und 

Beweisen“ im Übergang Schule/Hochschule stellt zunächst eine empirisch begründete und 

theoriebasierte Empfehlung dar, welche sich in der Praxis bereits einmal bewährt hat. Da dieser 

Beitrag bewusst stark an die Adressaten und ihre Bedürfnisse angepasst wurde, bedürfen 

verschiedene Aspekte bzw. Schwerpunkte bei ihrer Übertragung in andere Kontexte einer 

entsprechenden Modifikation. Mit der exemplarischen Bereitstellung von Lehrempfehlungen (vgl. die 

oben formulierten Designprinzipien), Arbeitsmaterialien (konkreten Aufgaben und exemplarischen 

Aufgabenformaten) und der Adaption theoretischer Rahmentheorien (diagrammatisches Schließen 

und sozio-mathematische Normen) wurde die Grundlage dafür geschaffen, die hier erzielten 

Ergebnisse zu adaptieren und in andere Kontexte (Institutionen, Lerngruppen etc.) zu übertragen. 

Der unmittelbare Nutzen der in diesem Forschungsprojekt erarbeiteten Ergebnissen liegt zunächst in 

der empirisch begründeten (Weiter-) Entwicklung einer neuen und innovativen Lehrveranstaltung für 

Lehramtsstudierende (Haupt-, Real- und Gesamtschule). Diese begründete Weiterentwicklung der 

Lehrveranstaltung, begleitet durch die Theorien des diagrammatischen Schließens und der sozio-

mathematischen Normen, kann dabei als exemplarisch für weitere (hochschul-) didaktische 

Forschungsprojekte im Sinne des Design-Based Research betrachtet werden. Im Rahmen dieses 

Forschungsprozesses wurden dabei weitere Ziele erreicht, hierzu gehören (u.a.) (i) die Entwicklung 

von Testinstrumenten für die Erforschung zentraler Aspekte zum Beweisen, (ii) die Erforschung der 

Beweisvorstellungen, -kompetenzen und -einstellungen von Studierenden zu Beginn des Studiums 

(bzw. zum Beginn der Lehrveranstaltung) und (iii) die Erforschung der Auswirkungen der 

Lehrveranstaltung auf die Beweisvorstellungen, -kompetenzen und -einstellungen der 

Teilnehmenden. Weitere erreichte Ziele wurden oben im Abschnitt „Weitere Beiträge zur 

Theorieentwicklung“ dargestellt. Diese Ziele umfassten (iv) die Verbindung der Theorie des 

diagrammatischen Schließens und der sozio-mathematischen Normen, (v) die Herausstellung und 

Formulierung der Enkulturationsfunktion von Beweisen, (vi) die Herausstellung und 

Konzeptualisierung von Beweiswahrnehmung und Beweisakzeptanz und schließlich (vii) eine 

Diskussion des Konzepts der ‚erklärenden Beweise‘. An dieser Stelle scheint die Hoffnung angebracht, 

dass die hier erreichten Ziele auf verschiedenen Ebenen der Didaktik der Mathematik von Nutzen für 

die weitere Forschung in diesen Gebiet sein werden. Dieser potentielle Nutzen wird im folgenden 

Abschnitt in Form von Perspektiven für die Forschung weiter beschrieben. 

8.5 Perspektiven für die Forschung 
Durch diese Arbeit lassen sich übergeordnet auf zwei Ebenen Perspektiven für die weitere Forschung 

angeben: zum einen bzgl. der adressatenspezifischen Vermittlung von Lerninhalten und zum anderen 

bzgl. der Domäne der Beweisdidaktik. 
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8.5.1 Perspektiven für eine adressatenspezifische Vermittlung von Lerninhalten 

Im Zentrum dieser Forschungsarbeit stand die (Weiter-) Entwicklung einer Lehrveranstaltung für 

Lehramtsstudierende für Haupt-, Real- und Gesamtschule, in welcher das Beweisen unter der 

Perspektive der doppelten Diskontinuität eine besondere Rolle spielen sollte. Vor diesem 

Hintergrund wurden in einem ersten Schritt entsprechende adressatengerechte Fachinhalte und 

Leitprinzipien erörtert, welche für die Lehrveranstaltung konstituierend waren (Abschnitt 1.3). 

Aufgrund beschriebener normativer Ansprüche konnten verschiedene Aspekte der Lehrveranstaltung 

evaluiert werden, was im Rahmen retrospektiver Analysen im Sinne des Design-Based Research zu 

Modifikationen der Lehrveranstaltung führte.  

Es stellt sich die Frage, wie eine entsprechende Brückenkursveranstaltung als ‚Einführung in die 

Kultur der Mathematik‘ für einen anderen Adressatenkreis aussehen würde: Welche Inhalte im 

Kontext welcher Normen würden dabei in den Vordergrund bzw. in den Hintergrund rücken? Eine 

mögliche Antwort auf diese Frage bilden die Konzepte von Grieser (2013) und Hilgert und Hilgert 

(2012) für die Lehramtsstudierenden des gymnasialen Lehramts. Gerade aus hochschuldidaktischer 

Perspektive erscheint diese Frage virulent, wo doch das Beweisen oder weitergefasst der Übergang 

von der Schule zur Hochschule (international) als ein zentrales Problemfeld der 

Mathematikausbildung betrachtet wird und sich die Zielsetzungen von Lehrveranstaltungen aufgrund 

der verschiedenen Adressatenkreise (Studierende der Studiengänge Bachelor Mathematik, Lehramt 

mit verschiedenen Ausprägungen und für verschiedene Schultypen, Ingenieure, Maschinenbauer 

etc.) doch grundlegend unterscheiden (müssten). Die theoretische Ausarbeitung und praktische 

Ausgestaltung universitärer Lehrerausbildungen mit entsprechender Begleitforschung stellt einen 

zentralen Anspruch an die Hochschuldidaktik der Mathematik dar.  

Die Frage nach einer adressatenspezifisch ausgerichteten universitären Lehrveranstaltung gilt es 

dabei auch losgelöst von der Übergangsproblematik und der Thematik des Beweisens zu betrachten. 

Diesen Leitgedanken der forschungsbasierten Weiterentwicklung universitärer Lehrveranstaltungen 

unter Beachtung der Vermittlung fachlicher Aspekte im Rahmen sozio-mathematischer Normen gilt 

es auch auf die höheren Semester der Universitätsausbildung zu übertragen. Dafür muss 

offensichtlich ein ‚allgemeiner‘ Konsens über die Zielsetzungen von Lehrveranstaltungen in den 

verschiedenen Studiengängen herbeigeführt werden. Entsprechende universitätsübergreifende bzw. 

(inter-) nationale Erörterungen stehen dabei noch aus. 

Aus dieser Perspektive heraus lassen sich die folgenden Forschungsdesiderate formulieren: 

1. Wie kann bzw. sollte das Themenfeld ‚Begründen und Beweisen‘ im Übergang von der Schule 

zur Hochschule für andere Studiengänge adressatenspezifisch handhabbar gemacht werden? 

2. Inwiefern können universitäre Lehrveranstaltungen in höheren Semestern zum Gegenstand 

ähnlicher Forschungsprojekte werden?  

3. Welche Aspekte sozio-mathematischer Normen werden im Kontext anderer Fachinhalte 

virulent? 

4. Welchen Zielsetzungen sollen fachliche und fachdidaktische Lehrveranstaltungen an der 

Universität im Hinblick auf das Attribut ‚adressatengerecht‘ bzw. ‚adressatenspezifisch‘ 

folgen? 

Diese weitgreifenden Forschungsanliegen sollen dabei nicht global bearbeitet werden. Vielmehr 

verlangen die aufgeführten Punkte nach weiteren exemplarischen Forschungsprojekten, die als 
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Diskussionsgrundlage für weitere Perspektiven fachdidaktischer (Entwicklungs-) Forschung dienen 

können. 

8.5.2 Perspektiven für die Beweisdidaktik 

Weitere Perspektiven für die Forschung ergeben sich aus den in dieser Arbeit thematisierten 

Aspekten einer Didaktik des Beweisens. 

Im Kontext der vorliegenden Forschung wurden u.a. die folgenden Aspekte zum ‚Begründen und 

Beweisen‘ behandelt: der Beweis-, Argumentations- und Begründungsbegriff, didaktisch-orientierte 

Beweiskonzepte, die Frage: „Wann ist ein Beweis ein Beweis?“, Beweisbedürfnis, Funktionen von 

Beweisen, Einstellungen zum Beweisen (Beliefs, Selbstwirksamkeitserwartung und Beweisaffinität) 

und Beweisakzeptanz. Jeder einzelne dieser Aspekte eröffnet weitreichende Perspektiven für weitere 

Forschungsprojekte. Im Folgenden werden entsprechende Möglichkeiten in Form von 

Forschungsdesideraten skizziert. Dabei kann kein Anspruch auf Vollständigkeit erhoben werden, 

vielmehr geht es um die Darstellung von Forschungsschwerpunkten, die sich als Fortsetzung der 

vorliegenden Arbeit herauskristallisieren: 

1. Über die genaue Bedeutung der Begriffe „Beweis“, „Argumentation“ und „Begründung“ 

herrscht in der Mathematikdidaktik national wie international keine Einigung. Reid (2005) 

betont zu Recht, dass erst durch die Einigkeit über zentrale Begriffe im Kontext des 

Beweisens die Möglichkeit einer gelingenden Didaktik und Forschung zum Beweisen 

entsteht. In der vorliegenden Arbeit wurden verschiedene Standpunkte über die Bedeutung 

der Begrifflichkeiten erörtert und schließlich begründet der eigene formuliert (Abschnitt 2.3). 

Es scheint hierbei zentral, dass die formulierten Ergebnisse nicht als weiterer separater 

Standpunkt in der Diskussion betrachtet werden sollen. Vielmehr sollen die vertretenen 

Ansichten zu einer Diskussion beitragen, die schließlich zur Begriffsklärung beiträgt. 

 

2. Einen inhaltlichen Schwerpunkt der hier thematisierten Lehrveranstaltung bildeten die so 

genannten didaktisch-orientierten Beweiskonzepte (Kapitel 4). Eine Darstellung der 

historischen Entwicklung der verschiedenen Konzepte, ihrer Charakteristika und didaktischen 

Einbettungen ist bereits in Biehler und Kempen (2016) erfolgt. Allerdings ist bis heute das 

Themenfeld um die verschiedenen Beweiskonzepte nur sehr wenig empirisch erforscht 

worden. Doch gerade im Kontext der verschiedenen Beweiskonzepte werden offene Fragen 

einer Beweisdidaktik deutlich:  

 

a. Wie nehmen Lernende die verschiedenen Beweiskonzepte wahr? 

b. Welche Fehlvorstellungen treten in Bezug auf die verschiedenen Konzepte in der 

Praxis auf? 

c. Inwiefern sind Lernende in der Lage, entsprechende Beweise selbst zu konstruieren? 

(Auf diese Frage wurde für eine bestimmte Klientel in dieser Arbeit eine Antwort 

gegeben.) 

d. Wie werden die verschiedenen Beweiskonzepte in der Fachmathematik warum 

bewertet? Inwiefern muss dabei ein Konsens mit der Perspektive der Fachdidaktik 

herbeigeführt werden? 

e. Inwiefern sind die verschiedenen Beweiskonzepte wissenschaftspropädeutisch 

sinnvoll und können als anschlussfähig für spätere universitäre Beweisformen 

gelten? 
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3. Die Frage: „Wann ist ein Beweis ein Beweis?“ ist Gegenstand aktueller, auch 

mathematikphilosophischer Erörterungen. In der vorliegenden Arbeit wurde der Aspekt des 

diagrammatischen Schließens verwendet, um sich der Frage aus einer semiotischen 

Perspektive anzunähern. Die damit einhergehende Fokusverschiebung von der Darstellung 

eines Beweises zu der Bedeutung der verwendeten Schlüsse vermochte dabei die Diskussion 

um die Frage: „Wann ist ein Beweis ein Beweis?“ sinnstiftend zu erweitern, beantwortet 

diese aber nicht. Denn auch unter semiotischer Perspektive ist bisher ungeklärt, was den 

besonderen Schluss ‚Beweis‘ ausmacht89. Die Theorie sozio-mathematischer Normen vermag 

dabei in der Alltagspraxis diese Lücke zu beheben, denn die Frage, was einen Beweis 

ausmacht, wird im Lehr-/Lernkontext im Rahmen einer angelegter ‚Strenge‘ stetig neu 

bewertet und ausgehandelt. Für eine Erörterung allgemeiner Charakteristika müssen damit 

andere Perspektiven ausgemacht werden. Exemplarisch sei hier auf die Sichtweise von 

Aberdein (2013) auf die parallele Struktur in mathematischen Begründungen hingewiesen, 

die bereits in Abschnitt 8.3.2 thematisiert wurde. Es ist offensichtlich, dass für eine 

gelingende Beweisdidaktik ein Konsens über die Bedeutung des Begriffs „Beweis“ 

herbeigeführt werden muss (vgl. Punkt 5 oben). Dabei sollte auch diskutiert werden, ob 

überhaupt an einer dichotomen Unterscheidung (Beweis/kein Beweis) festgehalten werden 

kann.  

 

4. Wie in Abschnitt 2.1.6 dargelegt wurde, ist das Vorhandensein eines (subjektiven oder 

objektiven) Beweisbedürfnisses eine notwendige Voraussetzung für ein verständiges Lernen 

der Beweisaktivität. Es sind noch heute von der Didaktik unbeantwortete Fragen, inwiefern 

Lernende auf verschiedenen Stufen der Ausbildung ein Beweisbedürfnis ausbilden und 

inwieweit dies Auswirkung auf die Beweiskonstruktion hat. 

 

5. Ein Beweisbedürfnis agiert vor dem Hintergrund der Wertschätzung eines Beweises, welche 

wiederum auf wahrgenommenen Funktionen von Beweisen basiert (vgl. Abschnitt 2.1.7). Es 

scheint hierbei notwendig, sich qualitativ der Frage zu widmen, welche Funktionen von 

Beweisen von Lernenden wie wahrgenommen werden und wie bedeutsam diese aus 

subjektiver und objektiver Perspektive einzuschätzen sind. In der Literatur wurden bereits 

viele verschiedene Funktionen von Beweisen mit unterschiedlichen Tragweiten beschrieben 

(vgl. Abschnitt 2.1.7), eine eingehende empirische Beforschung dieser Funktionen steht 

allerdings noch aus. 

 

6. Betrachtet man das Beweisen unter dem Aspekt der Enkulturationsfunktion (s. Abschnitt 

8.3.3), so wird deutlich, wie sehr die Beweisaktivität mit einer Kultur der Mathematik bzw. 

des Mathematiktreibens verbunden ist. Es liegt dabei auf der Hand, dass Vorstellungen einer 

Kultur der Mathematik mit den in der Literatur häufig genannten „Einstellungen zur 

Mathematik“ (sogenannte Beliefs) verbunden sind. In dieser Arbeit wurde ein erster Versuch 

unternommen, Wechselwirkungen dieser Einstellungen zur Mathematik und 

Beweiskonstruktionen von Lernenden und ihren Einstellungen zum Beweisen auszumachen 

(Abschnitt 7.3.3). Geht man davon aus, dass die Einstellungen Lernender zur Mathematik für 

das unterrichtliche Geschehen von Bedeutung sind, dann trifft dies ebenso für das Beweisen 

                                                           
89
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zu. Folglich gilt es, theoretisch und empirisch weiter zu beforschen, inwiefern Einstellungen 

zur Mathematik mit Vorstellungen zum Beweisen zusammenhängen.  

 

7. Mit den konstruierten Skalen „Selbstwirksamkeitserwartung zum Beweisen“ und 

„Beweisaffinität“ wurden in der vorliegenden Arbeit zwei weitere theoretische Aspekte für 

die empirische Forschung fruchtbar gemacht. Es war dabei ein Ergebnis, dass die (subjektive) 

Beweisaffinität ein stärkerer Prädiktor für gelingende Beweiskonstruktionen ist als die eigene 

Selbstwirksamkeitserwartung (Abschnitt 7.4.3.2). Vor diesem Hintergrund sollen zwei Fragen 

für die weitere Forschung aufgeworfen werden: Welche Bedeutung kommt (auch noch in der 

universitären Mathematikausbildung) dem subjektiven Empfinden eines Lernenden zum 

Lerngegenstand zu? Wie ermöglicht man Lernenden die Ausbildung einer adäquaten 

Selbstwirksamkeitserwartung zum Beweisen, wenn ihre (normativen) Vorstellungen zum 

Beweisen im Übergang Schule–Hochschule einem gravierenden Wandel unterzogen sind? 

 

8. Die Bedeutung des Aspekts der Beweisakzeptanz wurde bereits oben (Abschnitt 8.3.4) weiter 

ausgeführt. Es soll an dieser Stelle wiederholt betont werden, wie stark eine Vermittlung der 

Beweisaktivität mit einer entsprechenden Wahrnehmung bzw. Akzeptanz von Beweisen 

verbunden zu sein scheint. Entsprechende Zusammenhänge gilt es weiter zu erforschen. 

 

 

8.5.3 Schlussbemerkung 

In dieser Arbeit wurden alle verwendeten Forschungs- bzw. Messinstrumente ausführlich 

beschrieben und angegeben. Ich möchte damit explizit zu mehr Transparenz und Offenheit in der 

Forschung beitragen und für diese plädieren. Forschungsarbeit, verstanden als Beitrag zu einem 

gemeinsamen Anliegen, kann nur dann in größeren Zusammenhängen gewinnbringend wirken, wenn 

verwendete Messinstrumente offengelegt und die Ergebnisse damit interpretierbar und Gegenstand 

öffentlicher Diskussion werden können. So verstandene Forschung ist kein Selbstzweck, sondern 

gewinnt ihre Bedeutung in der kritischen Auseinandersetzung mit ihr. 
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