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Kurzfassung

Grundlegende Eigenschaften der isomorphen Volumenkristalle Lithiumniobat (LiNbO3,

LN) und Lithiumtantalat (LiTaO3, LT) werden mittels ab initio-Methoden untersucht. Im

ersten Teil dieser Dissertation werden die Vibrationseigenschaften von stöchiometrischem

LiNbO3 und LiTaO3 im Rahmen der Dichtefunktionalstörungstheorie analysiert, um die

vollständige Phononendispersion der beiden Materialien zu generieren. Das Auftreten ima-

ginärer Frequenzen in der paraelektrischen Phase zeigt, dass diese nicht aus einer energe-

tischen Minimumstruktur herrühren und befindet sich im Einklang mit einem Ordnungs-

Unordnungs-Phasenübergang. Die berechnete Nullpunktsrenormierung der elektronischen

Kohn-Sham-Eigenwerte offenbart eine Vibrationskorrektur der elektronischen Bandlücke

von 0.41 eV bei 0 K, die sich in exzellenter Übereinstimmung mit extrapolierten tempe-

raturabhängigen Messungen befindet. Außerdem beläuft sich die zusätzliche temperatu-

rabhängige Rotverschiebung der Bandlücke auf 0.1 eV bei Raumtemperatur.

Der zweite Teil der Arbeit ist auf die optischen Eigenschaften von LN ausgerichtet. Die

dielektrische Funktion von defektfreiem, kongruentem und Titan-dotiertem Lithiumnio-

bat wird mithilfe der zeitabhängigen Dichtefunktionaltheorie berechnet, wobei ein mo-

dellhafter langreichweitiger Beitrag für das Austauschkorrelationsfunktional verwendet

wird, um die Elektron-Loch-Bindung zu berücksichtigen. Die Auswirkungen von Polaro-

nen, die an isolierten Niobdefekten angesiedelt sind, und Bipolaronen, welche sich bis

zum benachbarten Niobatom ausdehnen, werden im Detail untersucht. Dabei werden vier

verschiedene Niobpunktdefekte und -defektcluster modelliert und analysiert. Die experi-

mentell beobachteten Absorptionsmerkmale der Polaronen können am besten mit dem

Zwischengitter-Vakanz-Paar NbV–VLi erklärt werden. Weiterhin liegt der Fokus auf dem

Einfluss von Titansubstitutionsatomen, überwiegend simuliert auf Lithiumgitterplätzen.

Es wird gezeigt, dass eine steigende Titankonzentration den Brechungsindex und die Re-

flektivität erhöht.





Abstract

Fundamental bulk properties of the isomorphic ferroelectrics lithium niobate (LiNbO3,

LN) and lithium tantalate (LiTaO3, LT) are investigated from first principles. In the first

part of the thesis the vibrational properties of stoichiometric LiNbO3 and LiTaO3 are

analyzed within density-functional perturbation theory in order to obtain the complete

phonon dispersion of the materials. The presence of phonons with imaginary frequencies

for the paraelectric phases reveals that they do not correspond to a minimum-energy

structure, which is compatible with an order-disorder-type phase transition. The calcula-

ted zero-point renormalization of the electronic Kohn-Sham eigenvalues of LN indicates

a vibrational correction of the electronic band gap of 0.41 eV at 0 K, which is in excellent

agreement with the extrapolated temperature-dependent measurements. Also, the addi-

tional temperature-dependent redshift of the band gap is evaluated and amounts up 0.1

eV at room temperature.

The second part of the thesis focuses on the optical properties of LN. The dielectric

function of pristine, congruent and titanium-doped lithium niobate is calculated within

time-dependent density-functional theory. A model long-range contribution is employed

for the exchange-correlation kernel in order to account for the electron-hole binding. The

effects of polarons that occur at isolated niobium defects and bipolarons that extend to

the neighboring regular niobium atom are discussed in detail. Four different niobium point

defects and simple defect structures are modeled and analyzed. The experimentally ob-

served polaron absorption features can be best explained by the interstitial-vacancy pairs

NbV–VLi. Further studies cover the influence of substitutional titanium atoms primarily

on lithium sites. It is shown that an increasing titanium concentration enhances the values

of the refractive indices and the reflectivity.
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Kapitel 1

Einleitung

Lithiumniobat (LN, LiNbO3) und Lithiumtantalat (LT, LiTaO3) sind ferroelektrische Ma-

terialien mit einer Vielzahl von verschiedenen Anwendungsmöglichkeiten im Bereich opti-

scher Bauelemente. Aufgrund ihrer doppelbrechenden, akustooptischen, piezoelektrischen,

elektrooptischen, elastischen, photoelastischen, photorefraktiven und nichtlinearen opti-

schen Eigenschaften werden sie unter anderem in akustischen Oberflächenwellen-Geräten,

Wellenwandlern, Verzögerungsleitern und Filtern, sowie in optischen Amplituden- und

Phasenmodulatoren, in zweite-Harmonische-Generatoren, Güteschaltern, (Strahl-)Ablenk-

einheiten, Phasenkonjugatoren, dielektrischen Wellenleitern, Speicherelementen und ho-

lografischen Datenverarbeitungsgeräten eingesetzt [1].

Es handelt sich um synthetische Materialien, die spätestens seit Ende der vierziger Jahre

bekannt sind, aber erst ab 1965 in akzeptabler Qualität hergestellt werden konnten: Sie

werden aus einer kongruenten Schmelze mittels des Czochralski-Verfahrens [2] gewonnen

und lassen sich damit in großer Menge erzeugen. Der Begriff kongruent bezeichnet den

Sachverhalt, dass innerhalb dieses Verfahrens nur Kristalle hergestellt werden können, die

ein Lithiumdefizit aufweisen, welches nur bei einem Verhältnis von etwa Li:(Li+Nb)=0.485

ein homogenes Wachsen des Kristalls garantiert. Stöchiometrisches Lithiumniobat (SLN)

ist deutlich schwerer herzustellen, wobei es drei mögliche Verfahren gibt [3], die es auch

erlauben, homogene Kristalle beliebiger kongruenter Komposition herzustellen. Man un-

terscheidet zwischen Methoden, die nach der Kristallzucht von LN angewendet werden

wie die vapor transport equilibration und direkter Zuchtmethoden mithilfe von Fremdma-

terialien wie Kaliumoxid oder der double crucible Czochralski-Methode.

Lithiumniobat gehört zum trigonalen Kristallsystem. Deren einachsige Einheitszelle bein-

haltet zehn Atome, also zwei Formeleinheiten LiNbO3 pro primitiver rhomboedrischer

Einheitszelle. In der ferroelektrischen Phase gehört es zur R3c Raumgruppe mit 3m Sym-

metrie. Die Einheitszelle ist in Abbildung 1.1 zu sehen. Die dreifache Symmetrieachse

dieser Zelle ist vertikal in z-Richtung entlang der Stapelfolge Nb–V–Li–Nb orientiert, mit

V als leeren Gitterplatz. Die ferroelektrischen Eigenschaften und spontane Polarisation
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des Materials rühren aus einer Verschiebung der Kationen aus ihrer zentrosymmetrischen

Position innerhalb der Sauerstoffoktaeder, in der Abbildung in positiver z-Richtung dar-

gestellt. Lithiumtantalat weist dieselbe Kristallstruktur wie Lithiumniobat auf.

Abbildung 1.1: Einheitszelle von ferroelektrischen Lithium-
niobat. Die Niob- Lithium und Sauerstoffatome sind grau,
weiß bzw. rot dargestellt.

Kongruentes Lithiumniobat (CLN)

findet in technischen Anwendungen

weitaus höhere Berücksichtigung

als stöchiometrisches. Die Beschrei-

bung der atomaren Struktur kon-

gruenten Lithiumniobats ist we-

sentlich komplizierter und bis heute

nicht abschließend geklärt. Das ak-

zeptierteste Szenario ist das Lithi-

umvakanzmodell, in dem ein Antisi-

te NbLi-Defekt durch vier Lithium-

vakanzen ladungskompensiert wird

[4, 5]. Bekannt ist aber, dass die-

se Defekte große Auswirkungen auf

die genannten physikalischen Eigen-

schaften haben. Messungen der Ab-

sorptionskante, des Brechungsinde-

xes und der Doppelbrechung, des

Einflusses auf die Bildung der zweiten Harmonischen, der Linienbreite von Raman-

Moden, der Lumineszenz, SAW-Geschwindigkeit und weitere können Aufschluss auf die

Stöchiometrie der Probe geben. Vielen gewünschten Eigenschaften von kongruenten LN

sowie den niedrigeren Produktionskosten steht jedoch das Problem der unerwünschten

Photorefraktivität entgegen. Es wird sowohl von (Bi)Polaronen verursacht [6], die sich

an den Antisitedefekten bilden als auch von Eisenverunreinigungen, die herstellungsbe-

dingt auftreten [7]. Dem kann durch Dotierung mit Magnesium entgegnet werden, ist aber

aufwendig. Nicht nur um störende Einflüsse zu vermindern, sondern auch um optische Ei-

genschaften gezielt zu verbessern, werden Fremdatome in Lithiumniobat eindiffundiert.

Beispielsweise erhöht Titan den ordentlichen und außerordentlichen Brechungsindex ohne

sich negativ auf das verlustarme Verhalten von Lithiumniobat-Wellenleitern auszuwirken.

Der genaue Ablauf des Diffusionsprozesses und die Besetzung der Gitterplätze sind dabei

immer noch Gegenstand aktueller Forschung und nur unbefriedigend geklärt.

Auch die Temperatur des ferroelektrischen–paraelektrischen Phasenübergangs ist stark

von der Komposition abhängig [8]. Die Curie-Temperatur von Lithiumniobat liegt bei

etwa 1480 K [9] bzw. 940 K [10] bei LT. Oberhalb dieser Temperatur sind die Materialien

paraelektrisch und besitzen ebenfalls eine rhomboedrische Struktur, die eine höhere Sym-

metrie aufweist und zur R3̄c Raumgruppe mit −3m Symmetrie gehört. Auch hier sind die

Mechanismen des Phasenübergangs nicht abschließend geklärt. Allgemein akzeptiert ist
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ein Phasenübergang vom Ordnungs-Unordnungs-Typ mit eventuellem displaziven Anteil

bezüglich des Niobatoms.

Die Zusammenfassung der vielfältigen Anwendungen und der Kenntnisse über mikrosko-

pische Prozesse in den ferroelektrischen Materialien soll zeigen, dass trotz ihres enormen

Stellenwertes in der Optik das Verständnis über sie teilweise noch weit hinter der routi-

nemäßigen Verwendung hinterherhinkt. Diese theoretische Arbeit dient dazu, mikroskopi-

sche Zusammenhänge besser zu verstehen. Einerseits soll die elektronische Bandstruktur,

die bisher nicht experimentell bestimmt wurde, und insbesondere die Bandlücke besser

verstanden werden, indem der Einfluss der Gitterschwingungen untersucht wird. Im Zu-

ge dessen bietet sich die Möglichkeit, einiges über die phononischen Eigenschaften von

Lithiumniobat und Lithiumtantalat zu lernen. Des Weiteren soll die Kenntnis der Defekt-

struktur von kongruentem und Titan-eindiffundiertem LN und vor allem ihrer optischen

(linearen) Signaturen stark erweitert werden. Insbesondere wird sich ein genaueres Bild

über die (Bi)Polaronen und die Titandefekte, welche zu einer Änderung der Brechzahl

führen, erhofft.

Aufgrund der enormen Fortschritte in der theoretischen Beschreibung von Festkörpern

und der Computertechnik sind physikalische Prozesse wie die Elektron-Phonon-Kopplung

oder die Simulation von Defekten in Superzellen mit hunderten von Atomen mittlerweile

handhabbar. Bevor diese Techniken auf LN und LT angewendet werden, werden sie mit

Fokus auf die bestehenden Schwierigkeiten der ihnen zugrundeliegenden Approximationen

im nächsten Kapitel vorgestellt.
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Kapitel 2

Theorie

2.1 Einleitung

Die stationäre Kern- und Elektronenstruktur von Systemen mit einer Anzahl von NK

Atomen wird mit der Vielteilchen-Schrödinger-Gleichung

ĤΨ(R1, ...,RNK
, r1, r2, ..., rNe) = EΨ(R1, ...,RNK

, r1, r2, ..., rNe) (2.1)

beschrieben, wobei der Hamilton-Operator Ĥ durch

Ĥ = −
NK∑
i=1

~2

2Mi

∇2
Ri
−

Ne∑
i=1

~2

2m
∇2

ri
−

NK∑
j=1

Ne∑
i=1

Zje
2

4πε0|ri −Rj|

+
1

2

Ne∑
j=1

Ne∑
i=1,i 6=j

e2

4πε0|ri − rj|
+

1

2

NK∑
j=1

NK∑
i=1,i 6=j

ZiZje
2

4πε0|Ri −Rj|
(2.2)

gegeben ist. Rj steht für die Ortsvektoren der Atomkerne und Ne und ri für die Anzahl

und Positionen der Elektronen. Mi und m bezeichnen jeweils die Kern- und Elektronen-

masse. Zj steht für die jeweilige Kernladungszahl, e für die Elementarladung und ε0 für

die dielektrische Feldkonstante. Die Summanden des Hamilton-Operators bedeuten ihrer

Reihenfolge nach die Operatoren der kinetischen Energie der Atomkerne T̂K, der kineti-

schen Energie der Elektronen T̂e, der Elektron-Kern-Wechselwirkung V̂eK, der Coulomb-

Wechselwirkung der Elektronen untereinander V̂ee, sowie der Kern-Kern-Abstoßung V̂KK.

Eine gängige Schreibweise für den Operator der Kern-Elektron-Wechselwirkung V̂eK ist

V̂eK =
Ne∑
i=1

vext(ri) (2.3)
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in Abhängigkeit des externen Potentials vext mit

vext(ri) = −
NK∑
j=1

Zje
2

4πε0|ri −Rj|
. (2.4)

Spinfreiheitsgrade sind im Sinne einer einfachen Darstellung der Theorie und wegen ihrer

überwiegend untergeordneten Bedeutung in dieser Arbeit konsequent vernachlässigt.

Die analytische und numerische Komplexität der Lösung dieser Gleichung überschreitet

leider schon bei simpelsten Molekülen die Grenzen des Möglichen. Das liegt alleine schon

an der Diskretisierung der Ortskoordinaten der beteiligten Teilchen in der Gesamtwellen-

funktion und dem damit verbundenen Speicherbedarf. Eine Separation in Einteilchenwel-

lenfunktionen oder andere geeignete vereinfachende Ansätze wären daher wünschenswert.

Ein erster Schritt in diese Richtung ist die Trennung der Elektronen- und der Kern-

dynamik. Analytisch exakt ist dies zu vollziehen mit der Entwicklung aus orthonorma-

len elektronischen Wellenfunktionen Ψe
ν(r1, r2, ..., rNe) als vollständige Basis, die Ri nur

noch implizit als Parameter enthalten, und den Kernwellenfunktionen Λν(R1, ...,RNK
) als

Entwicklungskoeffizienten. Dies führt für das elektronische Problem zu einer einfacheren

elektronischen Schrödinger-Gleichung

ĤeΨe
ν(r1, r2, ..., rNe) = Ee

νΨ
e
ν(r1, r2, ..., rNe) (2.5)

mit dem elektronischen Hamilton-Operator

Ĥe = T̂e + V̂eK + V̂ee (+V̂KK). (2.6)

Der Operator der Kern-Kern-Wechselwirkung V̂KK ist im Verlauf dieser Arbeit nicht im-

mer berücksichtigt, da er nur noch als Konstante in der Lösung des elektronischen Pro-

blems auftritt. Auf der anderen Seite ergibt sich für die Bestimmungsgleichung der Kern-

koeffizienten ein komplizierter Ausdruck mit vielen Kopplungstermen der elektronischen

Wellenfunktion. Dies wird in Kapitel 2.3 behandelt, wo erste Näherungen, namentlich die

Born-Oppenheimer-Näherung, eingeführt werden müssen. Die Behandlung der Kernbe-

wegung in dieser Arbeit liefert letztendlich die phononischen Eigenschaften des Materials

in harmonischer Approximation.

Die weitere Separation der elektronischen Wellenfunktionen hin zu Einteilchenwellenfunk-

tionen ist durch die Coulomb-Wechselwirkung V̂ee untereinander ausgeschlossen. Diese

massive Einschränkung wird heutzutage bei Molekülen und Festkörpern unter anderem

durch folgende zwei Ansätze umgangen. In der Hartree-Fock-Näherung wird die elektroni-

sche Wellenfunktion a priori als eine Slaterdeterminante von Einteilchenwellenfunktionen

angenommen, womit dem Pauli-Prinzip Rechnung getragen ist. Diese Einschränkung be-

deutet in der energetischen Betrachtung jedoch nur eine obere Schranke für die Gesamt-

energie, da die elektronische Abschirmung nicht korrekt beschrieben wird (keine Korre-
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lationseffekte), und daraus folgend, dass die elektronische Bandlücke stark überschätzt

wird. Die zweite Herangehensweise nennt sich Dichtefunktionaltheorie (DFT) [11] und

wird in Kapitel 2.2 ausführlicher behandelt. Die Gesamtenergie wird als Funktional der

Elektronendichte

n(r) =

∫
dr1 · · ·

∫
drNe

Ne∑
i=1

δ(r− ri)|Ψe
ν(r1, r2, ..., rNe)|2 (2.7)

aufgefasst. Dieser Ansatz ist dahingehend bemerkenswert, dass die komplizierte, von Ne

Ortsvektoren abhängige Wellenfunktion des elektronischen Problems durch die simple,

nur vom Ort r abhängende Dichte n(r) ersetzt werden kann. Der Ansatz ist formal ex-

akt und liefert im Gegensatz zur Hartree-Fock-Näherung die Möglichkeit, Näherungen erst

später einführen zu müssen und systematische Verbesserungen zu erzielen. Ein Instrument

zur Bestimmung der Dichte und Gesamtenergie liefert ein Hilfssystem von Schrödinger-

Gleichung ähnlichen Einteilchengleichungen, den sogenannten Kohn-Sham-Gleichungen,

im effektiven Potential [12]. Wechselwirkungen untereinander wie Austausch, Korrela-

tion und Selbstwechselwirkungen werden im sogenannten Austauschkorrelationspotenti-

al (xc-Potential) zusammengefasst, dessen konkrete Form unbekannt ist und wofür die

erwähnten Näherungen zu finden sind. Die Eigenwerte und Wellenfunktionen der Kohn-

Sham-Gleichungen liefern selbst a priori keine physikalische Interpretation, werden in der

Praxis aber als elektronische Eigenenergien aufgefasst. Der geringe Rechenaufwand und

die sehr guten Ergebnisse in Bezug auf die Gittergeometrie, Bindungsenergien, phononi-

schen Eigenschaften und vieles mehr machen die Dichtefunktionaltheorie zur Standard-

theorie für periodische Festkörper.

Zu beachten ist jedoch, dass es sich hierbei um eine Grundzustandstheorie handelt,

die keine Aussagen über angeregte elektronische Zustände generiert. Die unzureichende

Berücksichtigung von Vielteilcheneffekten, also der Elektron-Elektron-Wechselwirkung, in

den gängigen Näherungen für das Austauschkorrelationspotential wie die Lokale-Dichte-

Näherung (LDA) oder die Generalisierte Gradienten-Näherung (GGA) ist dafür verant-

wortlich, dass die elektronische Bandlücke deutlich zu gering abgeschätzt wird. Eine zu-

friedenstellende, aber nicht exakte Möglichkeit zur Korrektur bietet die Beimischung eines

aus der Hartree-Fock-Theorie inspirierten exakten Austauschterms, der direkte Folge der

Auffassung der Gesamtwellenfunktion als Slaterdeterminante von Einteilchenwellenfunk-

tionen ist (Kapitel 2.2.6).

Eine korrektere Behandlung elektronischer Anregungen kann jedoch nur im Rahmen der

Vielteilchenstörungstheorie erfolgen. Mithilfe der GW -Näherung (GWA) von Hedin und

Lundqvist [13] auf Basis der DFT-Wellenfunktionen und -Eigenwerte kann die Selbst-

energie, also die Energie durch Austauschkorrelationseffekte, als Beitrag zur Quasiteil-

chenenergie in teils hervorragender Übereinstimmung mit experimentellen Elektronenaf-

finitäten und Ionisierungsenergien berechnet werden. Der Begriff Quasiteilchen bedeutet

in dem Zusammenhang, dass sich der teilchenartige Charakter der Anregung auf das Ge-
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samtsystem verteilt und nicht mehr nur einem Elektron zugeordnet werden kann. Sowohl

geladene als auch neutrale Anregungen können in diesem Rahmen behandelt werden, wo-

bei zweitere durch die Bethe-Salpeter-Gleichung (BSE) beschrieben werden. Mit ihr sind

die Elektron-Loch-Paare (Exzitonen) berücksichtigt, die sich als Folge optischer Anregun-

gen bilden. Diese tragen in Halbleitern und Isolatoren durch ihre Bindungsenergie zur

Reduktion der optischen Bandlücke bei, da sie in diesen Materialien wenig voneinander

abgeschirmt sind. Durch die zeitliche und räumliche Entwicklung eines oder sogar zweier

Teilchen (Zweipunkt- und Vierpunktfunktionen) ist der rechentechnische Aufwand enorm

und auf kleine Systeme beschränkt. Daher können GWA und BSE nicht Gegenstand eines

theoretischen Zugangs in dieser Arbeit sein. Effizientere Ansätze wären wünschenswert.

Diesen bietet prinzipiell die zeitabhängige Dichtefunktionaltheorie (TDDFT, Kapitel 2.6).

Auch hier lässt sich das System als Funktional der Elektronendichte beschreiben, leidet

aber unter den gleichen Problemen wie die DFT: Die Vielteilcheneffekte werden als Funk-

tional der Dichte nur unzureichend beschrieben. Es gibt jedoch vielversprechende Aus-

drücke wie den langreichweitigen Beitrag (LRC), welcher die auftretenden exzitonischen

Effekte im Austauschkorrelationsfunktional approximiert, indem es die wesentliche q−2-

Abhängigkeit, mit q als Wellenvektor des einfallenden Lichts, die aus der BSE bekannt

ist, nachahmt.

Bisher unterschlagen wurde die Tatsache, dass ausgedehnte Festkörper eine Teilchenzahl

in der Größenordnung von 1023 pro cm3 aufweisen. Da es durch die Periodizität der be-

trachteten Festkörper mithilfe des Bloch-Theorems (Kapitel 2.2.8) möglich ist, die elektro-

nische Wellenfunktion in einen Phasenfaktor und einen gitterperiodischen Teil zu zerlegen,

genügt es, sich auf die (elementare) Einheitszelle zu konzentrieren. Dies bedeutet gleich-

zeitig eine Einschränkung für große Defektstrukturen, die große Superzellen verlangen.

Dank der immer größer gewordenen Rechenleistung und methodischen Fortschritte sind

parameterfreie Dichtefunktionaltheorie-Rechnungen zu einem wichtigen Pfeiler geworden,

experimentelle Beobachtungen zu deuten oder vorherzusagen.

2.2 Dichtefunktionaltheorie

2.2.1 Hohenberg-Kohn-Theorem

Die Dichtefunktionaltheorie legitimiert sich über das Hohenberg-Kohn-Theorem [11], wel-

ches besagt, dass das externe Potential vext(r) im Grundzustand bis auf eine additive Kon-

stante durch die Elektronendichte n(r) bestimmt ist. Die elektronische Grundzustands-

energie E0, die zuvor über die Minimierung des Funktionals

E0 = min
Ψ
E[Ψ] = min

Ψ

〈Ψ| Ĥe |Ψ〉
〈Ψ|Ψ〉

(2.8)
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berechnet werden konnte, ist nun ein Funktional E[n0] derjenigen Elektronendichte n0,

die es minimiert. Mithilfe der Variationsrechnung kann der stationäre Zustand n0 über

das Minimieren von

δ

{
E[n]− µ

[ ∫
n(r)dr−Ne

]}
= 0 (2.9)

bestimmt werden. Die Zwangsbedingung, dass das Volumenintegral über die Elektronen-

dichte gerade die Anzahl Ne der Elektronen ergibt, ist über den Lagrange-Parameter µ,

welcher mit dem chemischen Potential identifiziert werden kann, berücksichtigt, und es

ergibt sich mit der Zerlegung in die einzelnen Energiebeiträge

E[n] = Te[n] + Vee[n] + VeK[n]

= FHK[n] +

∫
n(r)vext(r)dr (2.10)

die Euler-Lagrange-Gleichung

µ =
δE[n]

δn(r)
= vext(r) +

δFHK[n]

δn(r)
. (2.11)

FHK[n] = Te[n]+Vee[n] ist ein universelles, für jedes System und jede Teilchenzahl gültiges

Funktional, da es nicht von den Kernpositionen, sondern ausschließlich von der Elektro-

nendichte abhängt. Problemspezifische Eigenschaften vereinen sich in vext. Einen exakten

oder approximativen Ausdruck für das Funktional FHK[n] zu finden ist notwendig für die

Lösung der Euler-Lagrange-Gleichung.

2.2.2 Kohn-Sham-Verfahren

Anstatt einen direkt von der Dichte abhängigen Ausdruck für die Summanden von FHK[n]

zu finden, was aus der Thomas-Fermi-Theorie [14–16] als unzureichende Approximation

der kinetischen Energie bekannt ist [17], ersannen Kohn und Sham einen Ansatz von Ne

nicht wechselwirkenden Einteilchen-Hilfswellenfunktionen ϕi, welche die exakte Grund-

zustandselektronendichte des wechselwirkenden Systems ergeben [12]. Der klare Vorteil

dieses Ansatzes liegt darin, dass die kinetische Energie

TKS[n] =
Ne∑
i=1

∫
ϕ∗i (r)

−~2

2me

∇2
rϕi(r)dr (2.12)

mit

n(r) =
Ne∑
i=1

|ϕi(r)|2 (2.13)

die gleiche Größenordnung aufweist wie die des wechselwirkenden Systems. Sie kann in

Halbleitern und Isolatoren als Summe über voll besetzte Orbitale berechnet werden. Wird

nun die komplizierte Elektron-Elektron-Wechselwirkung Vee als ein echtes Funktional über
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die Dichte ausgedrückt, erhält man die sogenannte Hartree-Energie als

EH[n] =
1

2

1

4πε0

∫
dr′
∫
dr
n(r′)n(r)

|r− r′|
. (2.14)

Die Vernachlässigungen, namentlich die Korrelationseffekte durch die kinetische Energie-

differenz des exakten und des nichtwechselwirkenden Systems, sowie die Selbstwechsel-

wirkungs-, Austausch- und Korrelationseffekte durch die klassische elektrostatische Be-

trachtung der Elektronendichte anstelle der quantenmechanischen Beschreibung der Viel-

teilcheneffekte werden in der Austauschkorrelationsenergie Exc[n] zusammengefasst, die

definiert ist als

Exc[n] = Te[n]− TKS[n] + Vee[n]− EH[n]. (2.15)

Damit lässt sich das universelle Funktional FHK[n] ausdrücken als

FHK[n] = TKS[n] + EH[n] + Exc[n]. (2.16)

Somit lässt sich Gleichung (2.11) umschreiben zu

µ = veff(r) +
δTKS[n]

δn(r)
(2.17)

mit dem effektiven Potential

veff(r) = vH(r) + vext(r) + vxc(r), (2.18)

dem Hartree-Potential

vH(r) =
δEH[n]

δn(r)
=

1

4πε0

∫
dr′

n(r′)

|r− r′|
(2.19)

und dem Austauschkorrelationspotential

vxc(r) =
δExc[n]

δn(r)
. (2.20)

Das Umschreiben der Gleichung (2.9) bezüglich der Einteilchenwellenfunktionen ergibt

δ

[
E[n]−

Ne∑
j=1

Ne∑
i=1

εij

(∫
ϕ∗j(r)ϕi(r)dr− δij

)]
= 0. (2.21)

Die Lagrange-Multiplikatoren εij dienen dabei der Berücksichtigung der Orthonormalität

der ϕi, wobei δij das Kronecker-Symbol ist. Nach Variation über die ϕj mithilfe von (2.12),
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(2.13) und (2.18) erhält man die Euler-Lagrange-Gleichung

ĥϕi(r) =
Ne∑
i=1

εijϕj(r), (2.22)

wobei

ĥ =
−~2

2me

∇2 + veff(r) (2.23)

der Einteilchen-Kohn-Sham-Operator ist, der zu seiner Konstruktion allerdings die Dichte

als Lösung der Kohn-Sham-Gleichungen benötigt. Gesamtenergie und Elektronendichte

sind invariant unter unitärer Transformation. Daher gibt es eine unitäre Matrix U mit

U† = U−1, sodass

ϕ̃i(r) =
Ne∑
j=1

Uijϕj(r) (2.24)

und
Ne∑
i,j=1

UliεijU
∗
jk = εlδlk. (2.25)

Damit lässt sich Gl. (2.22) zu einer Einteilchengleichung umformulieren und es liegt ein

System Schrödinger-Gleichung ähnlicher Differentialgleichungen im effektiven Potential

vor (auf die Markierung der ϕ̃i(r) wurde verzichtet):

ĥϕi(r) = εiϕi(r). (2.26)

Sie sind gekoppelt über die Elektronendichte. Die Lagrange-Multiplikatoren εi werden

hier zu den Eigenenergien der unabhängigen, nicht wechselwirkenden Teilchen. Sie haben

jedoch keine eigentliche physikalische Bedeutung. In der Praxis werden sie dennoch als

Einteilchenenergieniveaus der Elektronen aufgefasst. Gleichung (2.13), (2.18) und (2.26)

bilden die Kohn-Sham-Gleichungen.

Da Vielteilcheneffekte im Austauschkorrelationspotential enthalten sind, entspricht eine

explizite Form für Exc[n] zu finden der Komplexität, eine exakte analytische Lösung der

elektronischen Vielteilchen-Schrödinger-Gleichung zu finden, und ist damit schon aus die-

sem Grund unmöglich. Damit steht und fällt die Aussagekraft der Dichtefunktionaltheorie

mit der Auffindung geeigneter Approximationen für das Exc-Funktional.

2.2.3 Lokale-Dichte-Näherung

Um die Austauschkorrelationsenergie Exc abschätzen zu können, bedient man sich in erster

Linie am Modell des exakt lösbaren homogenen freien Elektronengases im konstanten

attraktiven Potential. Dort kann mit dem Hartree-Fock-Ansatz der Slaterdeterminante,

die dem Pauli-Prinzip Rechnung trägt, der Austauschanteil in Abhängigkeit der Dichte
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analytisch berechnet werden. Um die Austauschkorrelationsenergie, die in einfacher Form

angenommen wird als

Exc[n] =

∫
drn(r)εxc(n(r)), (2.27)

getrennt behandeln zu können, wird der Ausdruck der Austausch-Korrelations-Energie

pro Teilchen

εxc(n(r)) = εx(n(r)) + εc(n(r)) (2.28)

aufgespalten in einen Austausch- und einen Korrelationsanteil, was der separaten Gewin-

nung des Austauschanteils aus der Hartree–Fock-Theorie Rechnung trägt, aber prinzipiell

künstlich und irreführend sein kann [18]. Damit ergibt sich im Ergebnis des freien Elek-

tronengases der Austauschterm exakt zu

εhom
x (n(r)) = − e2

4π3
(3π2)4/3n(r)1/3, (2.29)

ergänzt um die Ortsabhängigkeit der Dichte des approximierten realen Systems, was jeder

lokalen Elektronendichte einen Wert zuordnet.

Für den Korrelationsanteil sind keine analytischen Ergebnisse vorhanden. Die Grundzu-

standsenergie des freien Elektronengases kann jedoch numerisch mittels Quanten-Monte-

Carlo-Verfahren für verschiedene Dichten n des homogenen freien Elektronengases berech-

net werden [19, 20]. Die Korrelationsenergie ergibt sich aus der Differenz aus den Monte-

Carlo-Ergebnissen und denen der HF-Approximation, was zusätzlich eine mögliche Feh-

lerkorrektur der Aufspaltung in Austausch- und Korrelationsanteil beinhaltet. Auf Basis

dieser Ergebnisse parametrisierten Perdew und Zunger [21] 1981 die Korrelationsenergie

pro Teilchen und damit ein xc-Funktional in Abhängigkeit der lokalen Dichte, das bis

heute – auch in Teilen dieser Arbeit – verwendet wird.

Es ist ein Ergebnis eines Elektronensystems mit konstanter Dichte, welches sich in einem

räumlich konstanten positiven Hintergrundpotential bewegt, und kann daher als Näherung

für langsam veränderliche Elektronendichten angenommen werden. In der Praxis funktio-

niert diese Näherungen aber auch für Systeme mit inhomogener Ladungsverteilung noch

ausgesprochen gut [22]. Diese Approximation des Funktionals wird als Lokale-Dichte-

Näherung (LDA) bezeichnet.

Wichtig ist anzumerken, dass der Fehler durch die Separation von Austausch und Kor-

relationsenergie durch die Gewinnung der Korrelationsenergie in Bezug zu den Hartree-

Fock-Ergebnissen aufgehoben wird. Eine große Rolle spielt dabei die Lokalität Ehom
x [n]

des eigentlich nicht lokalen Austauschterms EHF, der damit zwangsläufig implizit einen

Korrelationsanteil erhält [23]. Eine strikte Verknüpfung der beiden Anteile ist unerlässlich.
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2.2.4 Generalisierte Gradienten-Näherung

Um Verbesserungen der LDA zu erzielen, führte man zusätzliche Freiheitsgrade ein [24],

sodass der Term εxc nicht nur von der lokalen Dichte selbst, sondern auch von ihrer

Änderung, genauer ihrem Gradienten ∇n, abhängt und somit semilokal ist, d.h.

Exc[n] =

∫
drn(r)εxc(n(r),∇n(r)). (2.30)

Im Vergleich zur LDA konnte durch diese Funktionale mit Generalisierte Gradienten-

Approximation (GGA) wie zum Beispiel das PW91 [25] mitunter eine deutliche Verbesse-

rung der Grundzustandsenergien, Atomisierungsenergien, Energiebarrieren und struktu-

rellen Energiedifferenzen sowie der Bindungslängen und Gitterkonstanten erzielt werden,

wobei besonders letztere statt eher zu klein (LDA) nun eher zu groß ausfielen. Ab in-

itio-Funktionale können unter bekannten Zwangsbedingungen der exakten Funktionale

entwickelt werden. Um die energetisch wichtigsten Effekte in einem möglichst simplen

Funktional zusammenzuführen, entwickelten Perdew, Burke und Enzerhof 1996 [26] einen

Ausdruck, der das korrekte Verhalten der LDA im Grenzfall konstanter Elektronendichte

und wichtige nicht-lokale Effekte der GGA vereint. Insbesondere wird dabei der Korrela-

tionsanteil der Energie dargestellt als

EPBE
c [n] =

∫
drn(r)[εhom

c (rs) +H(rs, t)] (2.31)

mit dem Seitz-Radius rs = (3/(4πn))1/3, dem dimensionslosen Dichtegradienten t =

|∇n|/(8kF/(πa0)1/2n) und dem Fermi-Vektor kF = (3π2n)1/3. Der Gradientenbeitrag H

verschwindet im Grenzfall kaum veränderlicher Dichte, sorgt für die Auslöschung der Kor-

relation im Grenzfall sehr stark variierender Dichten und berücksichtigt, dass die Korrela-

tionsenergie bei homogener Skalierung hin zu sehr hohen Dichten konstant werden muss.

Er nimmt daher die Form

H(n, t) =
e2

aB

γ ln

(
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t2

])
(2.32)

mit

A =
β

γ

[
exp

(
aB
−εhom

c (n)

γe2

)
− 1

]−1

(2.33)

an, wobei die in den Grenzfällen bestimmten Parameter β = 0.0667251 und γ = 0.031091

betragen. Der GGA-Term Fx(s) in der Austauschenergie

EPBE
x [n] =

∫
drn(r)εhom

x (rs)Fx(s) (2.34)

mit dem dimensionslosen Dichtegradienten s = |∇n|/(2kFn) wird unter folgenden Bedin-

gungen konstruiert: Er muss den Wert 1 im Limit des homogenen Elektronengases anneh-

men, für kleine Dichteänderungen klein sein und der Lieb-Oxford-Grenze [27] genügen.
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Unter diesen Bedingungen ergibt sich der Verfeinerungsfaktor Fx zu

Fx(s) = 1 + κ− κ

1 + µs2

κ

(2.35)

mit den Parametern κ = 0.804 und µ = 0.21951. Dieses Funktional ist unter der Abkürzung

PBE bekannt und aufgrund seiner Einfachheit eines der meist verbreitetsten. Unter Auf-

gabe der Universalität der Funktionale können für bestimmte Problemstellungen exak-

tere Ergebnisse erzielt werden. Unter Änderung zweier Parameter zu µ = 0.1235 und

β = 0.046 kann eine deutliche Verbesserung der Performance bezüglich Gitterkonstan-

ten in Festkörpern unter leichten Einbußen in der Genauigkeit bei Atomisierungsenergien

erreicht werden [28]. Das unter dem Namen PBEsol bekannte Funktional wird in dieser

Arbeit getestet, da korrekte Gitterkonstanten bei der Berechnung von Phononenfrequen-

zen eine wichtige Rolle spielen.

Einen ganz anderen Generalisierte Gradienten-Ansatz schlagen Mattsson und Armiento

[29, 30] auf Basis des lokalen Airy-Gas-Modells [31, 32] vor, um Oberflächen besser be-

schreiben zu können. Es handelt sich dabei um ein spezielles Modell für Ränder eines Sys-

tems, an denen das Potential bei r = 0 verschwindet und Kohn-Sham-Wellenfunktionen

außerhalb exponentiell abfallen. Beim Airy-Gas-Modell befinden sich Elektronen in ei-

nem linearen Potential veff(r) = Fz, hier in z-Richtung, mit F = dveff(r)/dz an der Stelle

r = 0. Die resultierende Einteilchen-Schrödinger-Gleichung wird von der Airy-Funktion

gelöst und die daraus erhaltene Dichte mit einem HF-ähnlichen Austauschterm mit der

Austauschenergie der gewonnenen Wellenfunktionen in Verbindung gebracht. Die Lösung

wird mithilfe des Dichtegradienten s parametrisiert und in Bezug zum LDA-Austausch

gesetzt (damit gefittet), sodass folgt

Fx(s) = (cs2 + 1)/(cs2/F b
x + 1), (2.36)

mit

F b
x = −1/[εhom

x (ñ(s))4{[(4/3)1/32π/3]4ζ(s)2 + ζ(s)4}1/4], (2.37)

ζ(s) =

[
3

2
W

(
s3/2

2
√

6

)]2/3

(2.38)

und

ñ(s) =
ζ(s)3/2

3π2s3
, (2.39)

wobei W die Lambert-Funktion ist und die Parameter durch c = 0.7168 und α = 2.804

gegeben sind. Das System des Airy-Gases und des freien Elektronengases wird verknüpft

über X(s) = αs2/(1 + αs2). Die resultierende Austauschenergie pro Teilchen ist

εx(n) = εhom
x (n)[X(s) + (1−X(s))Fx(s)]. (2.40)

Die Korrelationsenergie wurde für das Airy-Gas nicht exakt berechnet, sondern mithilfe
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einer Skalierung von γεhom
c aus einem Fit an Elektronengas-Oberflächenenergien im Ver-

gleich zu LDA-Ergebnissen bestimmt. Der Parameter ergibt sich dabei zu γ = 0.8098. Die

daraus hervorgehende Approximation für allgemeine Systeme lässt sich dann schreiben

als

εc = εhom
c [X(s) + (1−X(s))γ]. (2.41)

Durch die Verwendung des (dimensionslosen) Gradienten in der Parametrisierung Fx(s)

und in X(s) wird dieses AM05-Funktional faktisch zu einem GGA-Funktional, obwohl

der Ansatz, zwei unterschiedliche Systeme zu verbinden, also unterschiedliche Regionen

miteinzubeziehen, zunächst ein anderer war. In der Praxis hat es sich gezeigt [33], dass

PBEsol und AM05 trotz ihrer unterschiedlichen Konstruktion über eine weite Breite von

Materialien vergleichbare Resultate erzielen, was allerdings nicht bedeutet, dass die Funk-

tionale gleich sind, sondern lokal durchaus sehr unterschiedlich sein, aber räumlich gemit-

telt zu den gleichen Ergebnissen kommen können. Auch bei AM05 liegt das Interesse

dieser Arbeit an möglichst
”
guten“ Gitterkonstanten.

Die komplett unterschiedlichen Ansätze, Austauschkorrelationsfunktionale ausgehend von

der Lokale-Dichte-Näherung zu verbessern, führt vor Augen, dass es dazu bisher kein

systematisches Verfahren gibt.

2.2.5 Das Bandlückenproblem

Die Einfachheit der DFT-Rechnungen lässt den Wunsch aufkommen, dass diese nicht nur

für Grundzustandsrechnungen, sondern auch für angeregte Zustände Anwendung finden.

Das bedeutet insbesondere, dass man die Lagrange-Multiplikatoren der Kohn-Sham-Glei-

chungen als unabhängige Teilchen-Energien ansehen können müsste, die die Quasiteilchen-

Energien der Elektronen gut beschreiben. Anhaltspunkte für eine physikalische Interpre-

tation der Lagrange-Multiplikatoren liefert das Janak-Theorem

εi =
∂E

∂fi
, (2.42)

welches die εi als Ableitung der elektronischen Gesamtenergie nach der elektronischen

Besetzungszahl fi identifiziert.

Einen physikalischen Zusammenhang zwischen Kohn-Sham-Bandlücken bei Isolatoren

und Halbleitern und physikalischen Bandlücken kann man unter anderem mithilfe ei-

ner Erweiterung der DFT auf gebrochene Elektronenbesetzungszahlen für offene Sys-

teme (Elektronenbad) im großkanonischen Ensemble herleiten [34]. Mithilfe des Janak-

Theorems lässt sich die physikalische Bandlücke Eg = I −A, die die Differenz aus Ionisa-

tionspotential I und Elektronenaffinität A ist, auch als Eg = εNe+1(Ne + η′)− εNe(Ne− η)

ausdrücken. εNe+1 ist dabei der niedrigste unbesetzte Eigenwert. Die Klammerausdrücke

stehen für die gebrochene Anzahl an Elektronen im System mit 0 < η, η′ < 1. Dabei zeigt
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sich nun, dass die Kohn-Sham-Bandlücke durch eine Unstetigkeit der Funktionalableitung

der Gesamtenergie nach der Elektronendichte bei ganzzahligen Elektronenbesetzungszah-

len hervorgerufen wird [35, 36]. Die exakte Gesamtenergie als Funktion der Elektronen-

zahl ist eine gerade Verbindung zwischen den Gesamtenergien ganzer Besetzungszahlen.

Da die Hartree-Energie und die Energie des externen Potentials kontinuierlich von der

Elektronendichte abhängen, kommt die Bandlücke durch die kinetische Energie TKS der

nicht-wechselwirkenden Teilchen und durch das Austauschkorrelationsfunktional zustan-

de. Da Exc in den vorgestellten Näherungen und auch generell keine solche Unstetigkeit

nur in Abhängigkeit der Elektronendichte aufweisen kann, ist die Kohn-Sham-Bandlücke

εg eine Konsequenz aus der Orbitalabhängigkeit von TKS[n]. Die KS-Bandlücke ist gegeben

durch εg = εNe+1(Ne) − εNe(Ne) = εNe+1 − εNe als Differenz vom Leitungsbandminimum

εNe+1 und Valenzbandmaximum εNe . Die Differenz ∆xc = Eg − εg zwischen physikali-

scher und Kohn-Sham-Bandlücke verbirgt sich im Austauschkorrelationsfunktional und

ist demnach eine konzeptionelle Schwäche der Übertragung der wechselwirkenden Teil-

chen auf ein Kohn-Sham-System nicht-wechselwirkender Teilchen. Wohlgemerkt ist dies

kein Fehler der DFT, da sie lediglich als Grundzustandstheorie konzipiert ist.

In der Praxis zeigt sich durchgängig, dass Bandlücken in LDA und GGA gleicherma-

ßen zwischen 30 % und 100 % unterschätzt werden. In welcher Größenordnung einerseits

die Approximation des xc-Funktionals beispielsweise durch LDA und GGA und ande-

rerseits ∆xc für dieses Bandlückenproblem verantwortlich sind, ist in letzter Konsequenz

unklar, da keine exakten xc-Funktionale für realistische Probleme bekannt sind. Es er-

scheint aber wahrscheinlich, dass selbst das exakte xc-Funktional das Bandlückenproblem

nicht entscheidend verbessern würde [37–40], was bedeuten würde, dass ∆xc quantitativ

nicht vernachlässigbar ist und somit weitere Verbesserungen in den Näherungen für das

xc-Funktional vergebens sein werden.

Eine physikalische Deutung der Unstetigkeit in der Ableitung liefert die Erkenntnis, dass

eine gebrochene Elektronenzahl aus dem (falschen) konvexen Verhalten der xc-Funktionale

die Energie des System minimieren würde, was eine inkorrekte Delokalisierung der Elek-

tronen zur Folge hat [41, 42].

2.2.6 Hybridfunktionale

Um eine Verbesserung in der Beschreibung der Einteilchenenergien im Rahmen der DFT

zu erzielen, ist es notwendig, über die (semi)lokalen Näherungen der xc-Funktionale nur in

Abhängigkeit der Elektronendichte (und ihres Gradienten) hinauszugehen. Unter Aufgabe

des strikten Kohn-Sham-Formalismus können nichtlokale Effekte unter Einbeziehung eines

exakten Austauschterms, wie er aus der Hartree-Fock-Theorie bekannt ist, in Abhängigkeit

der Kohn-Sham-Wellenfunktionen mit berücksichtigt werden. Die exakte Austauschener-
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gie

Eexakt
x = −1

2

Ne∑
i=1

Ne∑
j=1

e2

4πε0

∫
dr

∫
dr′ϕ∗i (r)ϕ∗j(r

′)
1

|r− r′|
ϕj(r)ϕi(r

′) (2.43)

ist dabei streng genommen nur für Gesamtwellenfunktionen gültig, die sich als Slaterde-

terminanten aus Einteilchenwellenfunktionen im Rahmen der Hartree-Fock-Theorie be-

rechnen lassen, und wird daher exakter statt Hartree-Fock-Austausch genannt.

Der Ansatz, (anteilig) exakten Austausch zu verwenden, lässt sich einerseits dadurch le-

gitimieren, dass Bandlücken in der Hartree-Fock-Theorie deutlich zu groß abgeschätzt

werden, da dort ein konkaves Verhalten der Gesamtenergie in Abhängigkeit der (gebro-

chenen) Elektronenzahl vorliegt, die elektronischen Zustände überlokalisiert werden und

man in der Summe eine Fehleraufhebung erwartet. Andererseits, wie eben angedeutet,

ist es notwendig, ein nichtlokales Funktional in Abhängigkeit der Kohn-Sham-Orbitale zu

verwenden, um die benötigte Unstetigkeit der Funktionalableitung zu erhalten. Drittens

kann die Verwendung von Hybridfunktionalen als ein Spezialfall der GW -Näherung ge-

sehen werden, die die Selbstenergie eines Vielteilchensystems von Elektronen abschätzt,

solange die Coulomb-Wechselwirkung nicht abgeschirmt wird [13]. Viertens ließe sich eine

exakte Fehlerkorrektur der Selbstwechselwirkung unter ausschließlicher Verwendung des

exakten Austauschs erreichen, da Gleichung (2.43) für i = j ebenfalls eine Selbstwechsel-

wirkung enthält, die vom Hartree-Term subtrahiert wird.

Die naive Herangehensweise Exc = Eexakt
x + Ehom

c führt hier nicht zum Erfolg, wie in

Kapitel 2.2.3 angemerkt. Hinweise auf die Konstruktion eines solchen Hybridfunktionals

liefert die Methode der adiabatischen Verknüpfung zwischen dem nichtwechselwirkenden

System, welches nur Austausch ohne Korrelation enthält, und dem voll wechselwirkenden

System mit derselben Grundzustandsdichte [18]. Die einfachste Approximation dieses An-

satzes, die Halb-und-Halb-Theorie mit Exc = 0.5Eexakt
x + 0.5Ehom

xc , liefert Hinweise, dass

lediglich eine Beimischung approximativen Austauschs notwendig für die Konstruktion

von Hybridfunktionalen ist. Eine elaborierte, semiempirische Gestalt des Hybridfunktio-

nals, die experimentelle Ergebnisse mitberücksichtigen kann, sieht folgendermaßen aus

[23]:

Exc = Ehom
xc + a(Eexakt

x − Ehom
x ) + ax(EGGA

x − Ehom
x ) + ac(E

GGA
c − ELDA

c ). (2.44)

Es ist der einfachste Mix von LDA-, GGA- und exakten Austauschenergien, die den Grenz-

fall des homogenen Elektronengases wiedergibt. Der semiempirische Parameter a ersetzt

anteilsweise Ehom
xc mit exaktem Austausch, während ax und ac Generalisierte Gradienten-

Korrekturen hinzufügen.

Die Auswertung des Integrals (2.43) stellt einen hohen Rechenaufwand dar und limi-

tiert die Einsatzmöglichkeiten der Hybrid-Dichtefunktionaltheorie auf Systeme in der

Größenordnung von 102 Atomen. Vorteilhaft wirkt sich eine Aufspaltung des Coulomb-

16



Operators in (2.43) in einen kurz- (SR) und einen langreichweitigen (LR) Anteil mithilfe

der Fehlerfunktion erf(x) aus [43]:

1

|r− r′|
=

1− erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸

SR

+
erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸

LR

. (2.45)

Mit dieser Formulierung entwickelten Heyd, Scuseria und Enzerhof 2003 (HSE03) ein

abgeschirmtes Funktional

EHSE
xc = EPBE

x + a(Eexakt,SR
x (ω)− EPBE,SR

x (ω)) + EPBE
c (2.46)

mit ax = 1+a, ac = 1, a = 0.25 und ω = 0.11/a0 [44], indem sie auch das PBE-Funktional

in SR- und LR-Anteil aufspalten und annehmen, dass der LR-Anteil vom exakten und

PBE-Austausch sich neutralisieren. Die angegebenen Parameter entsprechen der HSE06-

Formulierung. Im Realraum werden dadurch die Grenzen der Raumintegrale verringert,

während es in der üblichen Ebene-Wellen-Darstellung (siehe Kapitel 2.2.8) möglich ist, die

Konvergenz des exakten Austausches bezüglich des k-Punkt-Gitters erheblich zu beschleu-

nigen, da gröbere Gitter verwendet werden können als bei der zusätzlichen Auswertung

des LR-Anteils (2.43) [45].

Abseits der besseren Beschreibung der Bandenergien konnten Hybridfunktionale, die zu-

nächst entwickelt wurden, um die Grundzustandsenergien kleiner Moleküle zu verbessern

[23], auch Atomisierungsenthalpien [46] sowie Vibrationseigenschaften und Gittergeome-

trien [47] zuverlässiger beschreiben. Was die Bandlücke betrifft, kann durch die Abschir-

mung ein besseres Konvergenzverhalten und eine Modellierung metallischen Verhaltens,

bei dem es in Hartree-Fock-Rechnungen beim Fermi-Niveau die Divergenz der elektroni-

schen Eigenenergien nach dem Wellenvektor k aufgrund des nackten Coulomb-Potentials

gibt, im Vergleich zu anderen Hybridfunktionalen erzielt werden [48].

2.2.7 DFT+U

Systeme, in denen die Unzulänglichkeit der approximativen Austauschkorrelationsfunk-

tionale besonders schwer wiegt, werden als stark korrelierte Systeme bezeichnet. In der

Regel sind dies Systeme mit Übergangsmetallen oder Seltenerdmetallen mit nur teilweise

gefüllten d- oder f -Schalen. Approximationen wie LDA und GGA tendieren dazu, die

eigentlich lokalisierten Zustände über das Material zu überdelokalisieren, was bis hin zu

einer inkorrekten Beschreibung als Metall anstelle eines Halbleiters/Isolators führen kann

[49]. Hybridfunktionale mit ihrer Tendenz, die Elektronen zu (re)lokalisieren, bieten sich

hier als Korrekturmöglichkeit an, wobei jedoch der hohe Rechenaufwand nach Alternati-

ven verlangt.

Diese bietet die LDA+U Methode, bei der die betroffenen d- und f -Elektronen gesondert
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behandelt werden [50–52]. Die betroffenen Orbitale werden dazu mit einem gitterplatzspe-

zifischen attraktiven U -Parameter versehen, der zu einer Relokalisierung führt, während

die übrigen Elektronen im üblichen Kohn-Sham-Formalismus behandelt werden. Die Ge-

samtenergie des DFT+U Formalismus lässt sich schreiben als

EDFT+U [n] = EDFT[n] + EHub[{nIσm,m′}]− EDC[{nI}], (2.47)

bestehend aus der Grundzustandsenergie der DichtefunktionaltheorieEDFT[n], einem Hubb-

ard-ähnlichen Energieterm EHub[{nIσm,m′}], der die lokale Wechselwirkung am Atom I der

zu nIσm,m′ besetzten (d- oder f -) Orbitale mit Magnetquantenzahl m und Spinindex σ

beschreibt, und einem Doppelzählungsterm EDC[{nIσm }], der die doppelt berücksichtigten

Coulomb-Wechselwirkungen in EDFT und EHub wieder abzieht. Die Einträge der Beset-

zungsmatrix sind als Projektion der besetzten Kohn-Sham-Zustände |ϕi〉 auf (willkürlich

wählbare) lokalisierte Basissätze |φIm〉 definiert wie z.B. atomare Orbitale oder (prakti-

scherweise) den atomaren Wellenfunktionen, die verwendet werden, um die Pseudopoten-

tiale zu konstruieren (siehe Kapitel 2.2.9). Es gilt

nIσm,m′ =
∑
i

fσi 〈ϕi|φIm〉 〈φIm′ |ϕi〉 , (2.48)

wobei fσi die Fermi-Dirac-Besetzung der KS-Zustände bezeichnet (also 1 im Falle besetzter

Zustände und 0 bei unbesetzten Zuständen bei Nichtmetallen). Weiterhin gilt

nI =
∑
m,σ

nIσm,m. (2.49)

Cococcioni und de Gironcoli stellten 2005 ein vereinfachtes DFT+U -Schema vor, wel-

ches zusätzlich invariant unter Rotation der atomaren Basissätze ist [53, 54]. In dieser

Methode wurden höhere Multipolterme der Coulomb-Wechselwirkung sowie die korrek-

te Behandlung der magnetischen Wechselwirkung vernachlässigt. Um die Verbindung zu

allgemeinen DFT+U -Schemata herzustellen sei gesagt, dass der hier verwendete Hubbard-

Parameter U einen Effektivwert, also eigentlich eine Differenz aus Hubbard-Parameter U

und Stoner-Parameter J [52], der lokale Austauscheffekte beschreibt, darstellt. Verglei-

che mit Parametern aus anderen Arbeiten sollten also nur unter Berücksichtigung von J

gezogen werden. Der Hubbardenergieterm ergibt sich zu

EHub[{nIσm,m′}] =
∑
I

U I

2

[
(nI)2 −

∑
σ

Tr[(nIσ)2]

]
, (2.50)

wobei der erste Term in der Klammer die Wechselwirkung der besetzten Orbitale un-

tereinander beschreibt und der zweite Term die Selbstwechselwirkung subtrahiert. Die

durchschnittliche Coulomb-Abstoßung wird über den Hubbard-Parameter U des jeweili-
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gen Atoms I kontrolliert. Die Doppelzählung wird mit

EDC[{nI}] =
∑
I

U I

2
nI(nI − 1) (2.51)

unter der Annahme berücksichtigt, dass die xc-Funktionale die korrekte Energie für voll

besetzte und leere Orbitale liefern. Dieser FFL-Ansatz (Abk. für engl: fully-localized limit)

ist die meist verbreitetste Möglichkeit, den unbekannten Anteil der Wechselwirkungen im

xc-Funktional zu beschreiben, der durch den Hubbard-Term abgedeckt wird. Somit lassen

sich die Korrekturen zur DFT zusammenfassen zu

EU [{nIσm,m′}] = EHub[{nIσm,m′}]− EDC[{nI}] =
∑
I,σ

U I

2
Tr[nIσ(1− nIσ)]. (2.52)

Die Diagonalisierung der Besetzungsmatrix zeigt, dass es sich um eine quadratische Kor-

rektur der Energie

EU [{nIσm,m′}] =
∑
I,σ

∑
i

U I

2
λIσi (1− λIσi ) (2.53)

in Abhängigkeit der Besetzungseigenwerte λIσi handelt, womit die Methode in der Lage

ist, das falsche konvexe Verhalten der Gesamtenergie in Abhängigkeit der Besetzungszahl

zu korrigieren. Im Vergleich zur Hartree-Fock-Theorie gibt es dabei den Unterschied, dass

es sich hier um eine durchschnittliche, abgeschirmte Wechselwirkung handelt, die nur auf

ein Untersystem von Zuständen wirkt. Die Rechenzeit reduziert sich dabei dramatisch,

und das Vorgehen bildet nur einen unwesentlichen Mehraufwand zur DFT.

2.2.8 Periodizität und Basissatz

Der ideale Kristall ist unendlich ausgedehnt und periodisch aus seiner Einheitszelle aufge-

baut, wobei die primitive Einheitszelle die kleinstmögliche Zelle ist, die den periodischen

Aufbau beschreiben kann. Somit sind Funktionen wie das externe Potential vext oder die

Elektronendichte translationsinvariant mit

f(r) = f(r + R), (2.54)

wobei R ein Gittervektor ist. Da somit auch der Hamilton-Operator translationsinvariant

ist, folgt direkt, dass sich die Wellenfunktionen, bis auf einen physikalisch unbedeuten-

den Phasenfaktor eik·R, mit dem Wellenvektor k, unter Translation nicht voneinander

unterscheiden:

ϕ(r + R) = ϕ(r)eik·R. (2.55)

Die Folgerung ist, dass die Wellenfunktionen zwar nicht gitterperiodisch sind, sich aber als

Produkt einer gitterperiodischen Funktion uk(r) und eines Phasenfaktors eik·r schreiben

lassen können. Der Wellenvektor k entsteht aus dem Eigenwert eik·R des Translationsope-
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rators und ist daher nicht eindeutig. Durch die Einschränkung auf k-Vektoren, die den

Wertebereich von eix auf eine maximale Intervalllänge von 2π reduzieren, ist die Eindeu-

tigkeit jedoch gegeben. Realisiert werden kann dies, indem man nur Wellenvektoren aus

der 1. Brillouin-Zone zulässt.

In Hinblick auf die Lösung der Kohn-Sham-Gleichung ist es in periodischen Festkörpern

zweckmäßig, den gitterperiodischen Anteil uk der Wellenfunktion ϕk, die hier schon die

Abhängigkeit des gemeinsamen Eigenwertes k des Translations- und des Hamilton-Ope-

rators als Index trägt, in einer Basis ebener Wellen darzustellen. Formal ist dies dasselbe

wie eine Fourier-Reihenentwicklung in den reziproken Raum

ϕk(r) =
1√

(NΩ)
uk(r)eik·r =

1√
(NΩ)

∑
l

uk(Gl)e
i(k+Gl)·r, (2.56)

was ebene Wellen zu einer natürlichen Wahl werden lässt, da sie die Periodizität enthalten.

Normierung erfolgt durch die Wurzel des Volumens NΩ des Gebietes, welches durch die

Born-von-Kármán-Randbedingungen [55] abgesteckt wird, wobei Ω das Volumen der Ein-

heitszelle ist. Die Fourier-Entwicklungskoeffizienten uk(Gl) werden im Folgenden verkürzt

mit ulk bezeichnet. Mit der Reihendarstellung des effektiven Potentials

veff(r) =
∑
l

veff(Gl)e
iGl·r (2.57)

ergibt sich die Kohn-Sham-Gleichung zu

∑
l

~2

2m
(k + Gl)

2ulke
i(k+Gl)·r

+
∑
m

veff(Gm)
∑
l

ulke
i(k+Gl+Gm)·r =

∑
l

εlkulke
i(k+Gl)·r. (2.58)

Das liefert insbesondere eine Bestimmungsgleichung für die Entwicklungskoeffizienten ulk:

∑
l

[
~2

2m
(k + Gn)2δnl + veff(Gn −Gl)

]
ulk = εnkunk. (2.59)

Die Bedingung der Zurückfaltung des Wellenvektors führt zu einer zusätzlichen Quan-

tenzahl, dem Bandindex n. Für jeden k-Vektor, oder auch k-Punkt als Punkt aus der

ersten Brillouin-Zone, ist diese Matrixgleichung zu lösen (n trägt der Länge der Gitter-

vektoren Rechnung). Dies führt zu einer Bandstruktur. Die Dichte der k-Punkte sowie die

Tatsache, dass nur eine begrenzte Anzahl an Gittervektoren Gl zugelassen werden kann,

geben Anlass zu zwei Konvergenzparametern. Im Hinblick auf die Einteilchenenergien, die

bei kaum veränderlichem effektivem Potential direkt mit dem ersten Summanden in der

Klammer identifiziert werden können, führt man dazu die Abschneideenergie

~2

2m
(k + Gn)2 ≤ Ecut (2.60)
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ein. Die Menge der Gittervektoren zu begrenzen ist mathematisch gerechtfertigt, da Bei-

träge an das effektive Potential für große Gittervektoren verschwinden. In der Praxis ist

es viel zu aufwendig und de facto auch nicht nötig, die gesamte Kohn-Sham-Matrix zu

diagonalisieren, da (für Grundzustandsrechnungen) lediglich die Eigenvektoren uk und

ihre Eigenwerte für die besetzten Zustände gebraucht werden, was eine deutlich nied-

rigere Anzahl als die Größe der Matrix bzw. der Anzahl der ebenen Wellen ausmacht.

Vielmehr bieten sich hier iterative Ansätze wie das Verfahren der konjugierten Gradien-

ten oder der Davidson-Algorithmus an, die eine ausgewählte Anzahl an Eigenvektoren

und -werten berechnen [56–58]. Ersteres löst gleichzeitig das Selbstkonsistenzproblem der

Kohn-Sham-Gleichung, indem Band für Band vorgegangen wird und für das darauf fol-

gende Band im neuen Potential Eigenwert und -funktion bestimmt werden.

2.2.9 Pseudopotentiale

Die Entwicklung der Wellenfunktionen in ebene Wellen hat den Nachteil, dass für die

starken Oszillationen der elektronischen Wellenfunktionen nah am Atomkern eine extrem

hohe Abschneideenergie gewählt werden muss, um diese korrekt beschreiben zu können.

Diese Elektronen tragen jedoch nicht zu chemischen Bindungen innerhalb des Kristalls

bei und die Änderung ihrer Wellenfunktion in unterschiedlichen chemischen Umgebungen

ist vernachlässigbar. Daher ist ein Ausschluss dieser Elektronen aus den Kohn-Sham-

Gleichungen wünschenswert. Dies kann umgesetzt werden, indem mit Pseudowellenfunk-

tionen im Pseudopotential gerechnet wird [59]. Dazu wird zunächst eine DFT-Rechnung,

die alle Elektronen umfasst (all electron-Rechnung), für ein einzelnes Atom durchgeführt.

Durch das radialsymmetrische Potential liegt ein System analog zum Wasserstoffproblem

vor, dessen Wellenfunktionen ϕnlm(r) = rRnl(r)Ylm(θ, φ) abhängig von der Drehimpuls-

und der Magnetquantenzahl sind. Die Wellenfunktion ist dabei in Radialanteil Rnl und

Winkelanteil Ylm separiert.

Für die Erzeugung von Pseudopotentialen erfolgt eine nicht unbedingt eindeutige, dem

späteren Einsatzgebiet angepasste Trennung in Rumpfelektronen mit |φc〉 und Valenz-

elektronen mit |ϕv〉, wobei nur letztere explizit in die späteren DFT-Rechnungen in

Festkörpern Einzug halten werden. Da die Wellenfunktionen der Valenzelektronen durch

die Orthogonalitätsbedingung zu den Kernwellenfunktionen ebenfalls großen Schwankun-

gen unterliegen, werden diese
”
pseudisiert“, indem sie mithilfe der Kernwellenfunktionen

entwickelt werden zu

|ϕ̃v〉 = |ϕv〉+
∑
c

acv |φc〉 (2.61)

mit acv = 〈φc|ϕ̃v〉. Die Oszillationen sind somit geglättet, und die Pseudowellenfunktionen

|ϕ̃v〉 erfordern eine verringerte Abschneideenergie. Damit einher geht die Notwendigkeit

der Konstruktion eines Pseudopotentials. Bei normerhaltenden Pseudopotentialen [60]
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wird das Pseudopotential aus den Wellenfunktionen der all electron-Rechnung konstruiert

V̂ PP
nlm =

∑
lm

[
εnlm +

~2l(l + 1)

2mr2
+

~2

2mRnl

d2

dr2
Rnl

]
|Ylm〉 〈Ylm| − vH[nv]− vxc[nv] (2.62)

mit nv als Elektronendichte der Valenzelektronen und |Ylm〉 〈Ylm| als Projektion auf das

l,m’te Drehmoment. Der Ausdruck in Gl. (2.62) ist aufgrund seiner Lokalität im Radial-

anteil und der l-Abhängigkeit im Winkelanteil semilokal. Da vxc[n] 6= vxc[nc]+vxc[nv], mit

nc als Elektronendichte der Kernelektronen, nichtlinear von der Elektronendichte abhängt,

ist die separate Berechnung des Austauschfunktionals in Abhängigkeit von der Valenzelek-

tronendichte nv bei Überlappung von Kern- und Valenzwellenfunktionen problematisch

und bedarf der Korrektur (nichtlokale Kernkorrektur); in dieser Arbeit, falls nötig, durch

einen Ausdruck von Louie et al. [61].

Die Bedingungen an normerhaltende Pseudopotentiale sind [60], dass

(i) Pseudo- und all electron-Wellenfunktionen dieselben Eigenwerte haben,

(ii) der Radialanteil der Pseudowellenfunktionen keine Knoten aufweist und außerhalb

eines Abschneideradius mit dem der all electron-Wellenfunktion übereinstimmt,

(iii) die integrierte all electron- und Pseudoladungsdichte der Valenzelektronen innerhalb

des Abschneideradius übereinstimmen,

(iv) (mehrfache) Ableitungen des Logarithmus der beiden Wellenfunktionen außerhalb

des Abschneideradius gleich sind.

Die Semilokalität des Pseudopotentials sorgt für einen gesteigerten Rechenaufwand, da

in Gl. (2.59) NPW × NPW ebene Wellen miteinander gekoppelt werden und somit N2
PW

Integrale ausgewertet werden müssen. Noch schwerer wiegt eine erhöhte Komplexität

der Implementierung, besonders von Theorien, die über die Dichtefunktionaltheorie hin-

ausgehen [62]. Nach Kleinman und Bylander [63] kann mithilfe des Projektionsvektors

|ζKB
nlm〉 = V̂ PP

nlm |ϕ̃nlm〉 das Pseudopotential so geschrieben werden, dass Integrale über ge-

mischte Wellenfunktionen vermieden werden:

V̂ KB
nlm =

|ζKB
nlm〉 〈ζKB

nlm|
〈ϕ̃nlm|ζKB

nlm〉
. (2.63)

Man überzeugt sich leicht, dass die Anwendung von V̂ KB
nlm auf |ϕ̃nlm〉 auf dasselbe Resul-

tat wie V̂ PP
nlm |ϕ̃nlm〉 führt. Ein Nachteil dieser separablen Form von Kleinman-Bylander

(KB) ist, dass die Streuung der ebenen Wellen am Pseudopotential nur für den Referenz-

energieeigenwert εnlm der Projektionsfunktion korrekt ist. Die in dieser Arbeit benutzten

orthogonalen normerhaltenden Vanderbilt-Pseudopotentiale (ONCV) [64] gehen darüber
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hinaus, indem ein zweiter Projektor eingeführt wird, sodass

V̂ OV =
2∑

ij=1

|ζi〉 〈ζj|
〈ϕ̃i|ζj〉

(2.64)

gilt. Damit zeigt sich eine deutliche Verbesserung der Genauigkeit im Vergleich zum

KB-Ansatz und eine quantitativ gute Übereinstimmung mit all electron-Ergebnissen.

Weiterhin sind die ONCV-Pseudopotentiale in ihrer Genauigkeit bzgl. Gitterkonstan-

ten mit aufwendigeren ultraweichen Pseudopotentialen [66] und der projector augmen-

ted wave-Methode [67] vergleichbar [65]. Außerdem wird ein weiterer Nachteil der KB-

Pseudopotentiale, das mögliche Auftreten von ghost states, abgemildert [68].

2.3 Gitterschwingungen

Viele physikalische Größen in Festkörpern hängen von der Gitterdynamik ab. Dazu gehören

Infrarot-, Raman- und Neutronenbeugungsspektren, spezifische Wärme, thermische Aus-

dehnung, Wärmeleitung sowie diverse Elektron-Phonon-Effekte, wie Widerstands- und

Temperaturabhängigkeit der optischen Spektren sowie Supraleitung [69].

Nachdem in den vorangegangenen Kapiteln ein Weg für die Lösung der elektronischen

Schrödinger-Gleichung aufgezeigt wurde, geht es nun darum, das vollständige Problem

(Gl. 2.1) zu lösen. Dies setzt voraus, dass für die Konstruktion der Gesamtwellenfunktion

Ψ({R}, {r}) =
∑
ν

Λν({R})Ψe
ν({R}, {r}) (2.65)

die elektronische Wellenfunktion Ψe
ν für beliebige Konstellationen {R} = R1, ...,RNK

bekannt ist. Angenommen, dass dies der Fall ist, ist die Schrödinger-Gleichung der Kern-

wellenfunktionen unter Kenntnis der Ψe
ν und zugehörigen Eigenwerten Ee

ν nach Einsetzen

in Gl. (2.1) gegeben durch [70](
T̂K + Ee

ν({R})
)

Λν({R}) +
∑
µ

[∑
k

1

Mk

〈Ψe
µ|P̂k|Ψe

ν〉 P̂k + 〈Ψe
µ|T̂K|Ψe

ν〉
]
Λµ({R})

= EΛν({R}) (2.66)

mit Index k als Summe über Kernkoordinaten Rk und P̂k = −i~∇Rk
. In der adiabati-

schen Näherung wird davon ausgegangen, dass aufgrund des Vorfaktors 1/Mk im zwei-

ten Summanden die Terme für µ 6= ν vernachlässigbar sind und als kleine Störung im

Vergleich zu Ee
ν({R}) in die Gleichung eingehen. Sie beschreiben die Kopplung unter-

schiedlicher elektronischer Wellenfunktionen. Ihre Nichtberücksichtigung führt dazu, dass

die elektronischen Zustände ihren Eigenzustand nicht ändern, also nicht angeregt werden

können durch die Kernbewegung. Die Gesamtwellenfunktion nimmt dann die separable
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Gestalt Ψ({R}, {r}) = Λν({R})Ψe
ν({R}, {r}) an. Zusätzlich nimmt man in der Born-

Oppenheimer-Näherung an, dass das semilokale Potential für µ = ν vernachlässigt wer-

den kann, was für Halbleiter und Isolatoren weniger bedenklich ist als für Metalle. Damit

vereinfacht sich die Schrödinger-Gleichung für die Kerndynamik zu(
T̂K + Ee

ν({R})
)

Λνn({R}) = EνnΛνn({R}), (2.67)

und es findet sich ein Ausdruck für die Grundzustandsgesamtwellenfunktion

Ψ00({R}, {r}) = Λ00({R})Ψe
0({R}, {r}). Die elektronische Gesamtenergie nimmt die Rol-

le eines Potentials ein und wird auch als Potentielle-Energie-Oberfläche bezeichnet. Die

Einflüsse der Kopplung verschiedener Wellenfunktionen (Elektron-Phonon-Kopplung) wer-

den später störungstheoretisch berechnet.

Eine approximative Lösung der Gleichung (2.67) ist möglich, indem ausgenutzt wird, dass

die Kerne nur geringförmig aus ihrer (kräftefreien) Gleichgewichtslage {R(0)} ausgelenkt

werden. In diesem Fall kann die elektronische Gesamtenergie Ee
0 bis zur harmonischen

Näherung Taylor-entwickelt werten: [55]

V harm({R}) = Ee
0({R0}) +

1

2

∑
aµα,bνβ

∂2Ee
0({R})

∂Raµα∂Rbνβ

∣∣∣∣
{R0}

uaµαubνβ. (2.68)

In periodischen Festkörpern ist die Kernauslenkung uaµ = Raµ−Ra0−τµ die Differenz aus

dem Ortsvektors des µ’ten Kerns Raµ der a’ten Einheitszelle und dem Gittervektor zur

a’ten Einheitszelle Ra0, sowie dem Vektor zur Ruhelage des µ’ten Kerns τµ. α bezeichnet

die kartesischen Koordinaten. Die erste Ableitung verschwindet unter der Vorgabe, dass

die Kerne sich in der Gleichgewichtsposition befinden. Quantenmechanisch handelt es sich

dann um einen harmonischen Oszillator.

Aufgrund der Größe der Atomkerne genügt es, das Problem klassisch zu behandeln. Die

entsprechende Bewegungsgleichung lautet

Mµüaµα = −∂V
harm

∂uaµα
= −

∑
bνβ

Φaµα,bνβubνβ (2.69)

mit den Kraftkonstanten

Φaµα,bνβ =
∂2Ee

0({R})
∂Raµα∂Rbνβ

∣∣∣∣
{R(0)}

. (2.70)

Sie wird durch

uaµ =
1√
Mµ

ξµe
i(q·Ra−ωjqt) (2.71)

gelöst, wobei die Eigenwertgleichung zur Bestimmung der Polarisationsvektoren ξµ und

ihren Eigenwerten, den Quadraten der Schwingungsfrequenzen ω2
jq, durch Einsetzen in
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2.69 gewonnen wird und auf

ω2
jqξµβ(ωjq,q) =

∑
νβ

Dµανβ(q)ξνβ(ωjq,q) (2.72)

führt. Dµανβ(q) sind die Einträge der Fourier-transformierten dynamischen Matrix mit

Dµανβ(q) =
∑
a′

Dµανβ(Ra′)e
−iq·Ra′ =

∑
a′

1√
MµMν

Φµανβ(Ra′)e
−iq·Ra′ . (2.73)

Die Indizes a und b wurden hierbei entfernt, da aufgrund der Translationsinvarianz des

Kristalls nur die relative Lage Ra′ = Ra − Rb der Einheitszellen, in denen die Atome

ausgelenkt werden, eine Rollen spielen. Die zugelassene Periodizität von Auslenkungen in

unterschiedlichen Einheitszellen richtet sich nach q, dem Wellenvektor der Gitterschwin-

gungen. Der Index j unterscheidet die verschiedenen Eigenzustände.

Aus der quantenmechanischen Beschreibung des Problems mit

Ĥharm =
1

2
(ptp + utDu), (2.74)

wobei D die dynamische Matrix und p = −i~∇Raµ/
√
Mµ ist, ergibt sich die Gesamtener-

gie zu

E(njq) =
∑
jq

~ωjq
(
njq +

1

2

)
(2.75)

in Abhängigkeit der Besetzungszahl njq ∈ N0 der bosonischen Gitterschwingungen. Diese

Quasiteilchen der quantisierten diskreten Anregungen werden Phononen genannt. Die

Helmholtz’sche freie Energie des Gesamtsystems lässt sich dann berechnen zu

FH = −kBT ln
∑
njq

e
−(E(njq)+Ee

0)

kBT = Ee
0(Ω) +

∑
jq

[
1

2
~ωjq + kBT ln

(
1− e

~ωjq
kBT

)]
. (2.76)

Ee
0(Ω) bezeichnet die elektronische Grundzustandsenergie, normiert auf die Einheitszelle.

Die Generierung der phononischen Eigenfrequenzen und Polarisationsvektoren aus Gl.

(2.73) ist simpel. Die Herausforderung ist die Berechnung der Kraftkonstanten für belie-

bige Wellenvektoren q. Eine mögliche Herangehensweise ist die Verwendung von Super-

zellen, in denen jeweils ein Atom ausgelenkt wird und die Kraftkonstanten durch finite

Differenzbildung gebildet werden. [71] In diesem frozen phonon-Ansatz wird Gebrauch

vom Hellmann-Feynman-Theorem gemacht, welches es erlaubt, die Kräfte Fµ auf die je-

weiligen Atome bei der Auslenkung eines Atoms zu berechnen durch

Fµ = −∇RµE
e
0(R) = −〈Ψe|∇RµĤ

e|Ψe〉 , (2.77)
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was im Rahmen der DFT auf

Fµ = −
∫

drn(r)∇Rµvext(r, {R}) +

NK∑
ν=1,ν 6=µ

ZνZµe
2

4πε0

Rµ −Rν

|Rµ −Rν |3
(2.78)

führt, wobei hier die Kern-Kern-Wechselwirkung im elektronischen Hamilton-Operator

berücksichtigt werden muss (klassische Betrachtung ausreichend). Dies gelingt, da die

Kernkoordinaten nur Parameter darstellen. Die zweite Ableitung der Energie wird durch

den Quotienten der Kräfte Fµ und der Auslenkung des Atoms ν approximiert. Dieses

Verfahren ist durch die Tatsache limitiert, dass nur wenige q-Vektoren durch Superzel-

len dargestellt werden können, in denen mit vertretbarem Aufwand Rechnungen durch-

geführt werden können. Somit beschränkt sich dieses Verfahren auf q = 0 oder zumeist

Hochsymmetriepunkte, die kleine Superzellen erfordern. Ein mächtigeres Verfahren zur

Bildung der Kraftkonstanten, dessen Aufwand q-unabhängig ist, ist die Dichtefunktio-

nalstörungstheorie (DFPT), die im nächsten Kapitel beschrieben wird. Der frozen pho-

non-Ansatz sollte hier dennoch erwähnt werden, da die Hellmann-Feynman-Kräfte in

dieser Arbeit auch zur Optimierung der atomaren Positionen genutzt werden und das

Verfahren außerdem einen intuitiven Zugang bietet.

2.4 Dichtefunktionalstörungstheorie

Ein erster Dichtefunktionalstörungstheorie-Formalismus wurde 1987 von Baroni, Gian-

nozzi und Testa [72] veröffentlicht. Die hier vorgestellte Weiterentwicklung von Gonze et

al. zu Variations- und stationären Ausdrücken für Ableitungen der elektronischen Gesamt-

energie aufbauend auf dem (2n + 1)-Theorem [73] ist in [74, 75] ausführlich dargestellt.

Innerhalb dieses erweiterten Dichtefunktionalformalismus ist es damit möglich, die dy-

namische Matrix in Phononen-Rechnungen, die elastischen Konstanten, die dielektrische

Suszeptibilität, die Born’schen Effektivladungen, die piezoelektrischen Konstanten und

internen Verspannungen aus Ableitungen zweiter Ordnung zu gewinnen. Außerdem be-

deutet es wegen des (2n+1)-Theorems kaum mehr Aufwand, Größen dritter Ordnung wie

die nichtlineare dielektrische Suszeptibilität, die Phonon-Phonon-Wechselwirkung, den

Grüneisenparameter und anharmonische elastische Konstanten zu berechnen.

Externe Einflüsse wie atomare Auslenkungen oder ein elektrisches Feld auf den Hamil-

ton-Operator können, wenn sie geringfügig sind, störungstheoretisch durch den Abbruch

einer Taylor-Reihenentwicklung approximativ behandelt werden. Die Taylor-Reihe

X = X(0) + λX(1) + λ2X(2) + ... (2.79)

des Hamilton-Operators bzw. seiner Einzelterme, sowie der Wellenfunktionen und Eigen-
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werte mit den Entwicklungskoeffizienten

X(i) =
1

i!

diX

dλi

∣∣∣∣
λ=0

(2.80)

wird dabei genutzt, um die elektronische Gesamtenergie in beliebiger Ordnung darzustel-

len. In Hinblick auf die Störungsentwicklung des Variationsausdrucks der elektronischen

Grundzustandsenergie in Gl. (2.8) ist dabei das (2n+1)-Theorem von Bedeutung, welches

aussagt, dass sich aus der n’ten Ableitung der Wellenfunktion die (2n + 1)’te Ableitung

der Energie berechnen lässt. Dies ist deshalb von Bedeutung, da der rechentechnisch

aufwändige Teil die Bestimmung der gestörten Wellenfunktion ist und nicht die Berech-

nung der gestörten Energien. Ein Beispiel ist die Berechnung der Kraft als erste Ableitung

der Gesamtenergie im letzten Kapitel, die lediglich von den ungestörten Wellenfunktio-

nen Gebrauch macht. Nach Potenzreihenentwicklung ist außerdem für die Terme gerader

Ordnung O(λ2n) ein Variationsausdruck nach Hylleraas [76]

E
(2)
0 ≤ E(2)[Ψ(0); Ψ(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(0)〉+ 〈Ψ(1)|Ĥ(0) − E(0)|Ψ(1)〉

+ 〈Ψ(0)|Ĥ(2)|Ψ(0)〉+ 〈Ψ(0)|Ĥ(1)|Ψ(1)〉 (2.81)

zu finden, welcher unter der Bedingung normierter Wellenfunktionen bzw. der Ableitung

der Normierungsbedingung

〈Ψ(0)|Ψ(1)〉+ 〈Ψ(1)|Ψ(0)〉 = 0 (2.82)

minimiert werden kann [77], um Lösungsmethoden ähnlich wie für die ungestörte Grund-

zustandsenergie (2.8) anwenden zu können. Der weitere Vorteil des Variationsprinzips ist

die exaktere Bestimmung der Gesamtenergie, deren Fehler nun vom Quadrat des Fehlers

der Wellenfunktion abhängt.

Im Falle der Dichtefunktionaltheorie ergibt sich der Variationsausdruck für die zweite

Ordnung der Gesamtenergie mit der Nebenbedingung 〈ϕ(1)
i |ϕ

(0)
j 〉+ 〈ϕ(0)

i |ϕ
(1)
j 〉 = 0 zu

E(2)[{ϕ(0)}, {ϕ(1)}] =
Ne∑
i=1

[〈ϕ(1)
i |ĥ(0) − ε(0)

i |ϕ
(1)
i 〉+ 〈ϕ(1)

i |ĥ(1)|ϕ(0)
i 〉

+ 〈ϕ(0)
i |ĥ(1)|ϕ(1)

i 〉+ 〈ϕ(0)
i |ĥ(2)|ϕ(0)

i 〉]. (2.83)

Nach Potenzreihenentwicklung von Gl. (2.22) ergibt sich in erster Ordnung

ĥ(1) |ϕ(0)
i 〉+ ĥ(0) |ϕ(1)

i 〉 =
Ne∑
j=1

[ε
(0)
ij |ϕ

(1)
j 〉+ ε

(1)
ij |ϕ

(0)
j 〉]. (2.84)

Wegen der Eichfreiheit der Wellenfunktionen ist es eine natürliche Wahl, sich der Kohn-
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Sham-Wellenfunktionen für ϕ
(0)
i zu bedienen, sodass ε

(0)
ij = δijεj und

(ĥ(0) − ε(0)
i ) |ϕ(1)

i 〉 = −ĥ(1) |ϕ(0)
i 〉+

Ne∑
j=1

ε
(1)
ij |ϕ

(0)
j 〉 (2.85)

gilt. Da es andererseits mithilfe einfacher Störungstheorie möglich ist, die ϕ
(1)
i auch als

Summe über unendlich viele ungestörte Wellenfunktionen

|ϕ(1)
i 〉 =

∑
j 6=i

|ϕ(0)
j 〉
〈ϕ(0)

j |ĥ(1)|ϕ(0)
i 〉

ε
(0)
j − ε

(0)
i

(2.86)

zu entwickeln, lohnt sich für die Berechnung der ϕ
(1)
i ihre Aufteilung in zwei komple-

mentäre Unterräume, um aus (2.85) eine anwendbare Bestimmungsgleichung für die Wel-

lenfunktionen erster Ordnung zu generieren. Durch die Definition eines Projektionsope-

rators P̂c =
∑no

j |ϕ
(0)
j 〉 〈ϕ

(0)
j | auf die unbesetzten (no) Zustände, das Leitungsband, und

seinem komplementären Operator P̂v = 1̂− P̂c als Projektion auf die besetzten Zustände

kann (2.86) genutzt werden, um den Anteil von |ϕ(1)
i 〉 zu berechnen, der durch die besetz-

ten Zustände P̂v |ϕ(1)
i 〉 aufgespannt wird. Insbesondere entfällt damit die Notwendigkeit

der Summation über unendlich viele Zustände. Der fehlende Anteil kann durch die An-

wendung von P̂c auf |ϕ(1)
i 〉 mithilfe von (2.85) bestimmt werden. Wird die Gleichung

eingeschränkt auf P̂c |ϕ(1)
i 〉, folgt nach Linksmultiplikation von 〈ϕ(o)

j | (j ∈ {1, ..., Ne}) ein

Ausdruck für die Lagrange-Multiplikatoren erster Ordnung

ε
(1)
ij = 〈ϕ(0)

j |ĥ(1)|ϕ(0)
i 〉 , (2.87)

der wieder eingesetzt in (2.85) unter Verwendung der Definition der Projektionsoperatoren

die modifizierte, selbstkonsistente Sternheimer-Gleichung

P̂c(ĥ
(0) − ε(0)

i )P̂c |ϕ(1)
i 〉 = −P̂c ĥ

(1) |ϕ(0)
i 〉 (2.88)

liefert. [78].

Die Eichfreiheit für die gestörte Wellenfunktion erster Ordnung offenbart einen weiteren

Weg, Gl. (2.88) zu erhalten, indem die parallel-transport gauge

〈ϕ(1)
i |ϕ

(0)
j 〉 = 0 (2.89)

eingeführt wird. Diese Wahl bedeutet also eine Verschärfung der ursprünglichen Neben-

bedingung. Die parallel-transport gauge bietet damit im Gegensatz zur einfachen Nor-

mierungsbedingung nun auch eine Bedingung für den Imaginärteil der Wellenfunktionen.

Mit ihr lässt sich durch Variation von Gl. (2.83) nach 〈ϕ(1)
i | ebenfalls die Sternheimer-

Gleichung (2.88) herleiten.
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Zusammenfassend zeigt sich in diesem Vorgehen eine Stärke des Dichtefunktionalstörungs-

theorie-Formalismus, indem die störungstheoretische Summe über unendlich viele unbe-

setzte Zustände umgangen wird. Dies wird noch einmal genauer im Rahmen der Elektron-

Phonon-Kopplung in Kapitel (2.5) thematisiert. Die Summanden des Kohn-Sham-Opera-

tors erster Ordnung sind durch

ĥ(1) = v
(1)
ext(r) +

∫
dr′n(1)(r′)

δEHxc[n]

δn(r)δn(r′)

∣∣∣∣
n(0)

+
d

dλ

δEHxc[n]

δn(r)

∣∣∣∣
n(0)

(2.90)

gegeben mit

n(1)(r) =
Ne∑
i=1

[ϕ
(1)∗
i (r)ϕ

(0)
i (r) + ϕ

(0)∗
i (r)ϕ

(1)
i (r)]. (2.91)

EHxc ist die Summe aus Hartree- und Austauschkorrelationsenergie und n(0) die (un-

gestörte) Grundzustandselektronendichte n0. Mit ebenen Wellen als Basissatz kann Gl.

(2.83) mithilfe der Gleichungen (2.88), (2.90) und (2.91) mit denselben Mitteln wie in der

DFT bei Gl. (2.59) minimiert werden, indem wieder Band für Band mit dem konjugierten-

Gradienten-Algorithmus gearbeitet wird [74]. Das Verfahren ist selbstkonsistent, da die

Wellenfunktionen erster Ordnung bzw. die gestörte Dichte wieder in das Potential von

ĥ(1) und ĥ(2) mit

Ne∑
i=1

〈ϕ(0)
i |ĥ(2)|ϕ(0)

i 〉] =
Ne∑
i=1

〈ϕ(0)
i |v

(2)
ext|ϕ

(0)
i 〉+

1

2

d2EHxc[n]

dλ2

∣∣∣∣
n(0)

(2.92)

eingehen, jedoch geschehen die Selbstkonsistenzschritte und die Lösung der Sternheimer-

Gleichung im konjungierten-Gradienten-Verfahren wieder parallel.

Bisher wurden nur Ableitungen nach der gleichen Störung betrachtet. Da die Nichtdia-

gonalelemente der dynamischen Matrix D oder andere gemischte Ableitungen wie nach

einer bestimmten atomaren Auslenkung und dem homogenen elektrischen Feld mehrere

Störparameter erfordern, ist eine Erweiterung

X = X(0) +
∑
j1

λj1X
(j1) +

∑
j1,j2

λj1λj2X
(j1j2) + ... (2.93)

notwendig, wobei die j1, j2, ... verschiedene Störungen benennen mit

X(j1j2···) =
1

i!

diX

dλj1dλj2 · ··

∣∣∣∣
λj1=λj2=...=0

(2.94)

und i die Gesamtzahl der Ableitungen angibt. Damit folgt ein stationärer Ausdruck für

die zweite gemischte Ableitung der elektronischen Gesamtenergie [75],

E(j1j2) =
1

2
(Ẽ(j1j2) + Ẽ(j2j1)) (2.95)
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mit

Ẽ(j1j2)[{ϕ(0);ϕ(j1), ϕ(j2)}] =
Ne∑
i=1

[〈ϕ(j1)
i |ĥ(0) − ε(0)

i |ϕ
(j2)
i 〉+ 〈ϕ(j1)

i |v
(j2)
ext + v

(j2)
Hxc0|ϕ

(0)
i 〉

+ 〈ϕ(0)
i |v

(j1)
ext + v

(j1)
Hxc0|ϕ

(j2)
i 〉+ 〈ϕ(0)

i |v
(j1j2)
ext |ϕ

(0)
i 〉]

+
1

2

∫ ∫
dr dr′ n(j1)(r)n(j2)(r′)

δ2EHxc[n]

δn(r)δn(r′)

∣∣∣∣
n(0)

+
1

2

d2EHxc[n]

dλj1λj2

∣∣∣∣
n(0)

(2.96)

Hier wurde v
(j1)
Hxc0 definiert als

v
(j1)
Hxc0(r) =

d

dλj1

δEHxc[n]

δn(r)

∣∣∣∣
n(0)

. (2.97)

Unter der Annahme, dass die exakten ϕ
(j1)
i gegeben sind, gilt für sie die Sternheimer-

Gleichung, sodass sie in Abhängigkeit der ungestörten ϕ
(0)
i geschrieben werden können.

Dies führt zu einer nicht-stationären Vereinfachung von Gl. (2.95) zu

E(j1j2) =
Ne∑
i=1

[〈ϕ(0)
i |v

(j1)
ext + v

(j1)
Hxc0|ϕ

(j2)
i 〉+ 〈ϕ(0)

i |v
(j1j2)
ext |ϕ

(0)
i 〉] +

1

2

d2EHxc

dλj1dλj2

∣∣∣∣
n(0)

, (2.98)

welche alternativ die Berechnung von nur einer gestörten Wellenfunktion hinsichtlich eines

Störparameters erfordert anstelle zweier Wellenfunktionen erster Ordnung hinsichtlich

unterschiedlicher Störparameter. Diese einfacheren Ausdrücke sind auch Teil der DFPT-

Formulierung von Baroni et al. Dabei sind die Energien nun jedoch direkt vom Fehler der

gestörten Wellenfunktion abhängig.

2.4.1 Periodische Störungen ungleich der Gitterperiodizität

Der entscheidende Vorteil der DFPT ist die Behandlung von periodischen Störungen,

die nicht vereinbar mit der Periodizität des zugrundeliegenden ungestörten Kristallgitters

sind. Für sie gilt

v
(1)
ext,q(r + Ra) = eiq·Rav

(1)
ext,q(r), (2.99)

wobei q den Wellenvektor der Störung darstellt. Damit sind auch die Wellenfunktion und

die Elektronendichte in erster Ordnung periodisch bezüglich der Störung:

ϕ
(1)
mk,q(r + Ra) = ei(q+k)·Raϕ

(1)
mk,q(r) (2.100)

und

n(1)
q (r + Ra) = eiq·Ran(1)

q (r). (2.101)
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Wie im Falle der ungestörten Wellenfunktion (2.56) lässt sich der gitterperiodische Anteil

von ϕ
(1)
mk,q und n

(1)
q abspalten mit

u
(1)
mk,q(r) =

1√
NΩ

e−i(k+q)·rϕmk,q(r) (2.102)

und

n̄(1)
q (r) = e−iq·rn(1)

q (r), (2.103)

beziehungsweise

n̄(1)
q (r) =

2

(2π)3

Ne∑
m=1

∫
BZ

u
(0)∗
mk (r)u

(1)
mk,q(r)dk, (2.104)

sodass der Variationsausdruck in Gl. (2.83) sich nun in gitterperiodische Funktionen

schreiben lässt als

E(2)
q [{u(0);u(1)}] =

Ω

2π2

Ne∑
m=1

∫
BZ

[〈u(1)
mk,q|ĥ

(0)
k+q,k+q − ε

(0)
mk|u

(1)
mk,q〉+ 〈u(0)

mk|v
(2)
ext,k+q,k|u

(0)
mk〉

+ 〈u(1)
mk,q|v

(1)
ext,k+q,k + v

(1)
Hxc0,k+q,k|u

(0)
mk〉

+ 〈u(0)
mk|v

(1)
ext,k+q,k + v

(1)
Hxc0,k+q,k|u

(1)
mk,q〉]dk

+
1

2

∫ ∫
Ω

drdr′
δ2EHxc[n]

δn(r)δn(r′)

∣∣∣∣
n(0)

n̄(1)∗
q (r)n̄(1)

q (r′)e−iq·(r−r
′)

+
1

2

d2EHxc

dλdλ∗
, (2.105)

wobei natürlich auch v
(1)
ext,k+q,k mit einer Phase faktorisiert werden kann. Variation unter

der Zwangsbedingung

〈u(0)
ik |u

(1)
jk,q〉 = 0 (2.106)

führt über die Sternheimer-Gleichung

P̂ck+q(ĥ
(0)
k+q,k+q − ε

(0)
mk+q)P̂ck+q |u(1)

mk,q〉 = −P̂ck+qĥ
(1)
k+q,k |u

(0)
mk〉 (2.107)

zur Bestimmung von u
(1)
mk,q. c bezeichnet dabei Zustände des Leitungsbandes. Wegen der

parallel-transport gauge müssen nicht nur die u
(0)
mk sondern auch die u

(0)
mk+q zur Berechnung

der gestörten Wellenfunktionen bekannt sein.

Insbesondere handelt es sich bei Phononen um eine kollektive Auslenkung wie die oben

beschriebene Störung. Die periodisch fortgesetzte Auslenkung eines Atoms µ lässt sich

schreiben als

Raµα = Raα + τµα + λeiq·Ra . (2.108)

Man vollzieht leicht nach, dass das gestörte Potential

v
(1)
ext,q(r) =

∑
a

eiq·Ra
∂

∂τµα
vµ(r− τµ −Ra0) (2.109)
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die Bedingung (2.99) erfüllt. Damit sind nun keine Superzellen mehr notwendig, um Aus-

lenkungen gemäß eines Wellenvektors in unterschiedlichen Zellen zu beschreiben. Analog

lassen sich die Kraftkonstanten gemischter Auslenkungen unterschiedlicher Atome bzw.

Richtungen basierend auf Gl. (2.95) oder (2.98) berechnen.

2.4.2 Statische homogene Felder

In polaren Halbleitern und Isolatoren erzeugen longitudinale optische Phononen makro-

skopische elektrische Felder E aufgrund der langreichweitigen Coulomb-Wechselwirkung

für q→ 0 [69]. Die daraus resultierenden zusätzlichen Kräfte auf die Atome geben Anlass

zum sogenannten LO-TO-Splitting zwischen longitudinalen optischen (LO) und trans-

versalen optischen (TO) Phononen. Die Richtung, aus der man sich Γ nähert, ist bei

uniaxialen Materialien entscheidend und kann dort für Unstetigkeiten in der phononi-

schen Bandstruktur sorgen. Problematisch ist, dass die makroskopischen Felder E und

das von ihnen erzeugte elektronische Potential vE(r) = eE · r nicht gitterperiodisch sind

und in den oben beschriebenen Phononen-Rechnungen unberücksichtigt bleiben. Die Aus-

wertung des Operators in Impulsdarstellung umgeht dieses Problem. Man berücksichtigt

die makroskopischen elektrischen Felder, indem die Kraftkonstantenmatrix Φµα,νβ(q = 0)

im Brillouin-Zonen-Zentrum mit einem nicht-analytischen Term Φna
µα,νβ(q→ 0) ergänzt

wird, der sich schreibt als

Φna
µα,νβ(q→ 0) =

4πe2

Ω

(qt · Z∗µ)α(qt · Z∗ν)β
qtε∞q

. (2.110)

Die dabei auftretenden Größen wie die Born’schen Effektivladungen Z∗µ bezüglich Atom

µ und der Tensor der statischen dielektrischen Konstante ε∞ lassen sich ebenfalls mithilfe

der DFPT berechnen. Das * gehört zur gängigen Bezeichnung der Born’schen Effektivla-

dungen und ist stets nicht als komplexe Konjugation aufzufassen. So ist ε∞αβ als zweifache

Ableitung der elektronischen Gesamtenergie nach den elektrischen Feldern zu berechnen:

ε∞αβ = δαβ −
4π

Ω
2E(E∗αEβ). (2.111)
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Dabei ist

E(E∗αEβ)[{u(0);u(Eα), u(Eβ)}] =
Ω

(2π)

∫
BZ

Ne∑
m=1

[〈u(Eα)
mk |ĥ

(0)
k,k − ε

(0)
mk|u

(Eβ)

mk 〉

+
e2

4πε0

(〈u(Eα)
mk |iu

(kβ)

mk 〉+ 〈iu(kα)
mk |u

(Eβ)

mk 〉)]dk

+
1

2

∫
Ω

dvxc

dn

∣∣∣∣
n(0)(r)

[n(Eα)(r)]∗n(Eβ)(r)dr

+
2πΩe2

4πε0

∑
G6=0

[n(Eα)(G)]∗n(Eβ)(G)

|G|2
(2.112)

ein stationärer Ausdruck zur Berechnung der gestörten elektronischen Gesamtenergie

zweiter Ordnung. Der letzte Term ist die zweifach gestörte Hartree-Energie ausgedrückt

in Fourier-Entwicklungskoeffizienten. Die gestörten Wellenfunktionen u
(Eα)
mk können über

Minimierung des obigen Ausdrucks mit α = β sowie Zwangsbedingung (2.89) bestimmt

werden, was selbstverständlich wieder auf die Sternheimer-Gleichung führt. Die zusätzliche

Wellenfunktion erster Ordnung u
(kα)
mk = du

(0)
mk/dkα trägt der Tatsache Rechnung, dass der

Operator i(∂/∂kα) den Ortsoperator in vE(r) ersetzen muss, der nicht gitterperiodisch ist.

Sie kann ebenfalls mit den Mitteln der DFPT über Variationsausdruck und Sternheimer-

Gleichung berechnet werden.

Die zweite auftretende Größe in Gl. (2.110) ist die Born’sche Effektivladung Z∗, deren

Komponenten als

Z∗µ,β,α =
Ω

e

∂Pβ
∂τµα(q = 0)

∣∣∣∣
E=0

, (2.113)

definiert sind also als Änderung der makroskopischen Polarisation P in β-Richtung auf-

grund einer Auslenkung von Atom µ in Richtung α bei E = 0. Die Komponenten lassen

sich berechnen als

Z∗µ,β,α = Zµeδβα + ∆Z∗µ,β,α. (2.114)

Dabei ist ∆Z∗µ,β,α die gemischte Störung bezüglich eines homogenen elektrischen Feldes

und atomarer Auslenkung und schreibt sich als

∆Z∗µ,β,α =
∂Fµα
∂Eβ

= − ∂2E

∂τµα∂Eβ

, (2.115)
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wobei der stationäre Ausdruck für die zweifache Energieableitung

∆Z∗µ,β,α =2

[
Ω

(2π)

∫
BZ

Ne∑
m=1

[〈u(τµα)
m,k,q=0|ĥ

(0)
k,k − ε

(0)
m,k|u

(Eβ)

m,k 〉+ e 〈u(τµα)
m,k,q=0|iu

(kβ)

m,k 〉]dk

+
1

2

∫
Ω

[(v
(τµα)
ext,q=0(r) + v

(τµα)
xc0,q=0(r))(n̄(Eβ)(r))∗]dr

+
1

2

∫
Ω

dvxc

dn

∣∣∣∣
n(0)(r)

[n
(τµα)
q=0 (r)]∗n(Eβ)(r)dr

+
2πΩe2

4πε0

∑
G6=0

[n
(τµα)
q=0 (G)]∗n(Eβ)(G)

|G|2

]
(2.116)

lautet.

2.5 Elektron-Phonon-Kopplung

Die Trennung der Elektronen- und Kerndynamik durch die Born-Oppenheimer-Näherung

sorgt dafür, dass Kopplungseffekte zwischen Elektronen und Phononen ausgeschlossen

werden. Das betrifft die elektronische Bandstruktur, die sich unter Einfluss der Kernvi-

brationen bei 0 K (Nullpunktsschwingungen) oder bei endlicher Temperatur ändert.

Ausgehend von dem Ausdruck

εij = 〈ϕi|ĥ|ϕj〉 , (2.117)

der sich aus Linksmultiplikation von Gl. (2.22) mit |ϕj〉 ergibt, ist es im Rahmen der

DFPT möglich, die elektronischen Eigenwerte bis zur zweiten Ordnung zu entwickeln. So

gilt

ε
(1)
ij = 〈ϕ(0)

i |ĥ(1)|ϕ(0)
j 〉 (2.118)

und

ε
(2)
ii = 〈ϕ(0)

i |ĥ(2)|ϕ(0)
i 〉+ 〈ϕ(1)

i |ĥ(1)|ϕ(0)
j 〉+ 〈ϕ(0)

i |ĥ(1)|ϕ(1)
i 〉+ 〈ϕ(1)

i |ĥ(0) − ε(0)
i |ϕ

(1)
i 〉 . (2.119)

Im Falle von ε
(2)
ij genügt es, für das weitere Vorgehen nur die Diagonalanteile zu be-

trachten. Aufgrund der Tatsache, dass die gestörten ε
(1)
ij und ε

(2)
ij zunächst keine Dia-

gonaldarstellung besitzen, da für die Generierung der Wellenfunktionen erster Ordnung

die parallel-transport gauge und keine für dieses Problem angemessenere Diagonalität /

Orthogonalität der Lagrange-Multiplikatoren ε
(n)
ij gefordert werden kann, muss im Nach-

hinein eine unitäre Transformation der ε
(n)
ij erfolgen, um die Änderung der Kohn-Sham-

Eigenwerte εi angeben zu können. Dazu wird die unitäre Transformation
∑

j εijU
∗
lj = εlU

∗
lk

der ungestörten εij aus Gl. (2.25) nach zweiter Ordnung entwickelt. Dies führt unter der
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Bedingung ε
(0)
ij = ε

(0)
i δij zu einem Ausdruck für ε

(2)
i mit [78]

ε
(2)
i = ε

(2)
ii +

Ne∑
j=1

ε
(1)
ij U

(1)∗
ij − ε(1)

ii U
(1)∗
ii , (2.120)

wobei sich die Diagonalanteile erster Ordnung zu 0 summieren und die Nichtdiagonalele-

mente i 6= j der unitären Matrix erster Ordnung U(1) gegeben sind durch

U
(1)∗
ij =

−ε(1)
ij

ε
(0)
i − ε

(0)
j

. (2.121)

Die Diagonalelemente der unitären Matrix erster Ordnung können als 0 gewählt werden,

sodass formal der letzte Term in Gl. (2.120) wegfällt. Unter Einsetzen von Gl. (2.118),

(2.119) und (2.121) in Gl. (2.120) und der Verwendung der Blochquantenzahlen i = nk

ergibt sich zusammenfassend die zweite Ableitung der elektronischen Eigenwerte nach

unterschiedlichen Kernkoordinaten τµα zu

ε
(τµα(a)τνβ(b))

nk = 〈ϕ(0)
nk |ĥ

(τµα(a)τνβ(b))|ϕ(0)
nk〉+ 〈ϕ(τµα(a))

nk |ĥ(τνβ(b))|ϕ(0)
nk〉

+ 〈ϕ(0)
nk |ĥ

(τµα(a))|ϕτ(νβ(b))

nk 〉+ 〈ϕ(τµα(a))
nk |ĥ(0) − ε(0)

nk |ϕ
(τνβ(b))

nk 〉

−
occ.∑

n′k′ 6=nk

〈ϕ(0)
nk |ĥ(τµα(a))|ϕ(0)

n′k′〉 〈ϕ
(0)
n′k′|ĥ(τνβ(b))|ϕ(0)

nk〉
εnk − εn′k′

, (2.122)

wobei a und b Kernpositionen in unterschiedlichen Einheitszellen berücksichtigen.

Multiplikation der Sternheimer-Gleichung (2.88) mit ϕ
(τµα(a))
nk zeigt, dass der zweite und

vierte Summand sich aufheben. Des Weiteren lässt sich ausgehend von der Darstellung

|ϕ(τνβ(b))

nk 〉 =
nonocc∑
n′k′

|ϕ(0)
n′k′〉 〈ϕ

(0)
n′k′ |ϕ

(τνβ(b))

nk 〉 , (2.123)

mit der die gestörte Wellenfunktion auf Basis der ungestörten Wellenfunktionen entwi-

ckelt wird, die Verwandtschaft des dritten und fünften Summanden zeigen. Aufgrund

der parallel-transport gauge läuft die Summe
”
nur“ über nicht besetzte Zustände. Die

Entwicklungskoeffizienten 〈ϕ(0)
n′k′ |ϕ

(τνβ(b))

nk 〉 sind durch Linksmultiplikation der Sternheimer-

Gleichung mit 〈ϕ(0)
n′k′ | zu erhalten, sodass gilt

|ϕ(τνβ(b))

nk 〉 =
nonocc∑
n′k′

|ϕ(0)
n′k′〉

〈ϕ(0)
n′k′ |ĥ(τνβ(b))|ϕ(0)

nk〉
ε

(0)
n′k′ − ε

(0)
nk

. (2.124)

Der Operator ĥ(τµα(a)) angewandt auf |ϕ(τνβ(b))

nk 〉 und linksmultipliziert mit 〈ϕ(0)
nk | liefert

〈ϕ(0)
nk |ĥ

(τµα(a))|ϕ(τνβ(b))

nk 〉 =
nonocc∑
n′k′

〈ϕ(0)
nk |ĥ(τµα(a))|ϕ(0)

n′k′〉 〈ϕ
(0)
n′k′|ĥ(τνβ(b))|ϕ(0)

nk〉
ε

(0)
n′k′ − ε

(0)
nk

. (2.125)
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Somit ist nun klar, dass der dritte Summand von (2.122) die Notwendigkeit der Summation

über unendlich viele Leitungsbänder mithilfe der gestörten Wellenfunktion umgeht.

Mit der (gedanklichen) Reduktion auf zwei Summanden lässt sich nun der Zusammen-

hang zwischen der Dichtefunktionalstörungstheorie und der Allen-Heine-Cardona-Theorie

(AHC-Theorie) [79, 80] herstellen. Die Autoren vereinheitlichten die folgenden zwei An-

sätze für die Theorie der Temperaturabhängigkeit der elektronischen Bandstruktur und

zeigten, dass sie gleichermaßen in ihre Berechnung mit eingehen. Zum einen glaubte man,

dass die Fan-Theorie [81], die im Rahmen des Quasiteilchen-Formalismus als Beitrag zur

elektronischen Selbstenergie aufgrund der dynamischen Polarisation des Kristallgitters

aufgefasst werden kann, alleinig zur Elektron-Phonon-Wechselwirkung beiträgt. Dieser

Term entspricht ausgedrückt in Kohn-Sham-Zuständen

ε
(τµα(a)τνβ(b)),FAN

nk =
∑

n′k′ 6=nk

〈ϕ(0)
nk |ĥ(τµα(a))|ϕ(0)

n′k′〉 〈ϕ
(0)
n′k′|ĥ(τνβ(b))|ϕ(0)

nk〉
ε

(0)
n′k′ − ε

(0)
nk

. (2.126)

Aus dem zweiten unabhängigen Ansatz [82] geht der Debye-Waller-Beitrag hervor, der

die direkte Änderung der elektronischen Eigenenergien durch die atomaren Vibrationen

beschreibt. Dieser Beitrag entspricht dem ersten Summanden

ε
(τµα(a)τνβ(b)),DW

nk = 〈ϕ(0)
nk |ĥ

(τµα(a)τνβ(b))|ϕ(0)
nk〉 (2.127)

in Gl. (2.122). Die Dichtefunktionalstörungstheorie reproduziert diese Ergebnisse und bie-

tet weiterhin eine Reduktion der rechentechnischen Komplexität durch die Vermeidung

der Summation über alle Leitungsbänder durch die Sternheimer-Gleichung.

Die konkrete Änderung der elektronischen Eigenwerte ergibt sich aus dem thermodynami-

schen Mittel der phononischen Auslenkungen. Die gemittelte Korrektur erster Ordnung

verschwindet dabei. Aus der zweiten Ableitung der elektronischen Einteilchenenergien

lässt sich mithilfe der Bose-Einstein-Verteilung

njq(T ) =
1

e
~ωjq
kBT − 1

(2.128)

die temperaturabhängige Änderung ihrer Eigenenergien berechnen mit

∆εnk(T ) =
1

Nq

∑
q

3NK∑
j=1

∂εnk
∂njq

(
njq(T ) +

1

2

)
. (2.129)

∂εnk/∂njq enthält Fan- und Debye-Waller Beitrag

∂εnk
∂njq

=
∂εFAN

nk

∂njq
+
∂εDW

nk

∂njq
, (2.130)
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die sich wiederum ergeben aus

∂εFAN
nk

∂njq
=

~
ωjq

∑
µανβ

∑
ab

1√
MµMν

ε
(τµα(a)τνβ(b)),FAN

nk e−iq·(Ra−Rb)ξ∗µα(ωjq,q)ξνβ(ωjq,q) (2.131)

und

∂εDW
nk

∂njq
=

~
2ωjq

∑
µανβ

∑
ab

1√
MµMν

ε
(τµα(a)τνβ(b)),DW

nk e−iq·(Ra−Rb)ξ∗µα(ωjq,q)ξνβ(ωjq,q).

(2.132)

Wegen der Nullpunktsvibrationen der Phononen gibt es auch bei T = 0 K eine Null-

punktskorrektur der elektronischen Eigenwerte.

Ähnlich wie im Fall von Phononen, wo es eine akustische Summenregel gibt, die der

Tatsache Rechnung trägt, dass unter Verrückung des gesamten Kristalls die Summe der

zweiten Ableitungen der elektronischen Gesamtenergie verschwinden muss, gilt im Fall der

Elektron-Phonon-Kopplung, dass es unter dieser Translationsinvarianz keine Änderung

der elektronischen Energiezustände geben darf, also

0 =

NK∑
ν=1

[
〈ϕ(0)

nk |ĥ
(τµα(a)τνβ(b))|ϕ(0)

nk〉

+
∑

n′k′ 6=nk

〈ϕ(0)
nk |ĥ(τµα(a))|ϕ(0)

n′k′〉 〈ϕ
(0)
n′k′|ĥ(τνβ(b))|ϕ(0)

nk〉+ 〈ϕ(0)
nk |ĥ(τνβ(b))|ϕ(0)

n′k′〉 〈ϕ
(0)
n′k′ |ĥ(τµα(a))|ϕ(0)

nk〉
ε

(0)
n′k′ − ε

(0)
nk

]
.

(2.133)

Hier wurde gleichzeitig ein symmetrisierter Fan-Term verwendet, da die Reihenfolge der

Ableitungen unerheblich ist. Unter der Voraussetzung, dass alle nicht diagonalen Beiträge

τµα(a) 6= τνβ(b) verschwinden, kann dieser Ausdruck genutzt werden, um die zweite Ablei-

tung des Kohn-Sham-Operators zu umgehen und ihn als das Produkt zweier Ausdrücke

erster Ordnung umzuschreiben. Dies hat den Vorteil, dass numerische Ungenauigkeiten

zwischen Beiträgen erster und zweiter Ordnung beseitigt werden. Dieser Ansatz ist soweit

gerechtfertigt, da die zweite Ableitung des nackten Potentials der Kerne vext nach unter-

schiedlichen Auslenkungen verschwindet und damit lediglich die Einflüsse des Hartree-

und Austauschkorrelationspotentials vernachlässigt werden. Dieses Vorgehen wird Ap-

proximation der festen Kerne genannt. Zur Beschleunigung der Konvergenz bezüglich der

verwendeten q-Punkte wird ein kleiner imaginärer Summand im Nenner ergänzt, da nah

beieinander liegende Eigenwerte sonst sehr hohe Beiträge liefern.

Auch ein finite-Differenzen-Ansatz soll hier kurz Erwähnung finden, da er in dieser Ar-

beit genutzt wird, um die DFPT-Ergebnisse zu verifizieren. Die mit dem DFPT-Ansatz

errechneten phononischen Polarisationsvektoren werden bei kleiner Auslenkung h in das

Kristallgitter eingefroren. Dann ergibt sich die Nullpunktskorrektur der elektronischen

37



Eigenwerte in Abhängigkeit des jeweiligen Phononen-Wellenvektors q durch [83]

∆εFD
nk (q) =

1

2

3NK∑
j=1

~
2ωjq

∂2

∂h2
εnk

[{
R(0)
a,µ + hξµ(ωjq,q)e−iq·Ra

}]∣∣∣∣
h=0

. (2.134)

Die geschweifte Klammer umfasst die Gesamtheit aller Kernauslenkungen und Einheits-

zellen der betreffenden Superzelle.

2.6 Zeitabhängige Dichtefunktionaltheorie

Beim Versuch, eine angemessenere Beschreibung für elektronische Anregungszustände zu

finden, landet man unweigerlich entweder bei der Vielteilchenstörungstheorie oder bei der

zeitabhängigen Dichtefunktionaltheorie (TDDFT), die wie die DFT ebenfalls ermöglicht,

die Komplexität der zeitabhängigen elektronischen Schrödinger-Gleichung

Ĥe(r1, r2, ..., rNe , t)Ψ
e(r1, r2, ..., rNe , t) = i~

∂

∂t
Ψe(r1, r2, ..., rNe , t), (2.135)

wobei Ψe(r1, r2, ..., rNe , t0) am Zeitpunkt t0 als bekannt vorausgesetzt wird, auf ein effek-

tives Einteilchensystem zu reduzieren. Der Hamilton-Operator ist bis auf das externe Po-

tential vext(r, t), welches nun zeitabhängig ist, wie im stationären Fall definiert. Zum Zeit-

punkt t0 gelte die Gleichheit vext(r, t) = v
(0)
ext(r) zwischen dem zeitabhängigen externen Po-

tential und dem externen Potential des stationären Problems sowie Ψe(r1, r2, ..., rNe , t0) =

Ψe(0)(r1, r2, ..., rNe)e
−iE(0)t0/~, wobei Ψ(0) und E(0) Grundzustandswellenfunktion und -

energie des stationären Problems sind.

Analog zur Dichtefunktionaltheorie bewiesen Runge und Gross 1984 folgenden Zusammen-

hang zwischen externen Potential und Dichte: Für jedes Einteilchenpotential vext(r, t),

das um t0 Taylor-entwickelt werden kann, kann mithilfe der Lösung der zeitabhängigen

Schrödinger-Gleichung mit bekannter Wellenfunktion Ψe(r1, r2, ..., rNe , t0) und deren Dich-

te eine Abbildung vext(r, t) → n[vext](r, t) definiert werden. Diese ist bijektiv bis auf eine

additive nur von der Zeit abhängige Funktion des Potentials [84]. Somit liegt auch für

das zeitabhängige System ein eindeutiger Zusammenhang zwischen Elektronendichte und

externem Potential vor. Außerdem stellten sie mit drei weiteren Theoremen ein Kohn-

Sham-ähnliches Einteilchenschema zur Lösung der zeitabhängigen Schrödinger-Gleichung

vor, welches anstelle des Rayleigh-Ritz-Prinzips in der DFT auf ein Funktional der Wir-

kung aufbaut. In dieser Arbeit wird jedoch von einem schwachen zeitabhängigen externen

Störpotential ausgegangen, wofür die folgende Beschreibung angemessen ist.
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2.6.1 Lineare Antwortfunktion

Da das zusätzliche zeitabhängige externe Potential v
(1)
ext(r, t) in vext(r, t) = v

(0)
ext(r) +

v
(1)
ext(r, t), welches die Wechselwirkung von Festkörpern mit Licht beschreibt, verhältnismä-

ßig klein ist, ist es meist eine erste gute Näherung, die lineare Antwortfunktion χ(r, r′, t−t′)
der Elektronendichte bei zeitabhängiger Störung zu betrachten. Die Korrektur der Elek-

tronendichte in erster Ordnung ist gegeben durch

n(1)(r, t) =

∫ ∞
−∞

dt′
∫
dr′ χ(r, r′, t− t′)v(1)

ext(r
′, t′). (2.136)

Das Runge-Gross-Theorem gilt ebenfalls für die Terme erster Ordnung von Elektronen-

dichte und externem Potentials [85]. Daher kann die lineare Dichte-Antwortfunktion aus-

gedrückt werden als [86, 87]

χ(r, r′, t− t′) =
δn[vext](r, t)

δvext(r′, t′)

∣∣∣∣
vext[n(0)](r′,t′)=v

(0)
ext[n

(0)](r′)

, (2.137)

wobei gilt χ(r, r′, t− t′) = 0 für t < t′. Das Runge-Gross-Theorem ist außerdem für nicht-

wechselwirkende Teilchen im effektiven Kohn-Sham-Potential veff(r, t) gültig, sodass die

lineare Dichte-Antwortfunktion unabhängiger Teilchen berechenbar ist als

χKS(r, r′, t− t′) =
δn[veff ](r, t)

δveff(r′, t′)

∣∣∣∣
v

(0)
eff [n(0)](r′)

. (2.138)

veff(r, t) setzt sich wie in Gl. (2.18) zusammen aus

veff(r, t) = vext(r, t) + vH(r, t) + vxc(r, t) (2.139)

mit

vH(r, t) =
e2

4πε0

∫
dr′

n(r′, t)

|r− r′|
. (2.140)

Für das Austauschkorrelationspotential vxc sind später wieder geeignete Näherungen zu

finden. Die Elektronendichten des Vielteilchenproblems sind selbstverständlich identisch

mit denen des Ansatzes unabhängiger Teilchen im effektiven Potential. Mithilfe der Ket-

tenregel für Funktionale kann Gl. (2.137) mit Gl (2.138) umgeschrieben werden zu

χ(r, r′, t− t′) =

∫ ∞
−∞

dt′′
∫
dr′′

δn(r, t)

δveff(r′′, t′′)

δveff(r′′, t′′)

δvext(r′, t′)

∣∣∣∣
v

(0)
ext[n

(0)](r′)

. (2.141)

Ein nochmaliges Anwenden der Kettenregel auf δveff(r′′,t′′)
δvext(r′,t′)

mithilfe der Dichte n

δveff(r′′, t′′)

δvext(r′, t′)
=

∫ ∞
−∞

dt′′′
∫
dr′′′

δveff(r′′, t′′)

δn(r′′′, t′′′)

δn(r′′′, t′′′)

δvext(r′, t′)
(2.142)
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ist sinnvoll für seine Summanden vH und vxc und führt mit

KH(r′′, r′′′, t′′ − t′′′) =
δvH(r′′, t′′)

δn(r′′′, t′′′)
=

e2

4πε0

δ(t′′ − t′′′)
|r′′ − r′′′|

(2.143)

und

fxc(r′′, r′′′, t′′ − t′′′) =
δvxc(r

′′, t′′)

δn(r′′′, t′′′)
(2.144)

und Ausnutzung von Gl. (2.137) und (2.138) auf eine Dyson-Gleichung für χ(r, r′, t− t′)
mit

χ(r, r′, t− t′) =χKS(r, r′, t− t′) +

∫ ∞
−∞

dt′′
∫
dr′′
∫ ∞
−∞

dt′′′
∫
dr′′′ χKS(r, r′′, t− t′′)

×
(
KH(r′′, r′′′, t′′ − t′′′) + fxc(r′′, r′′′, t′′ − t′′′)

)
χ(r′′′, r′, t′′′ − t′). (2.145)

Dieser Ausdruck vereinfacht sich durch Fourier-Transformation in den Frequenzraum zu

χ(r, r′, ω) =χKS(r, r′, ω) +

∫
dr′′
∫
dr′′′ χKS(r, r′′, ω)

×
(
KH(r′′, r′′′, ω) + fxc(r′′, r′′′, ω)

)
χ(r′′′, r′, ω). (2.146)

Die lineare Antwortfunktion in Unabhängige-Teilchen-Approximation (IPA) kann explizit

mithilfe der zeitabhängigen Störungstheorie berechnet werden zu [88, 89]

χKS(r, r′, ω) = lim
η→0+

∞∑
j,k=1

(fj − fk)
ϕ∗j(r)ϕk(r)ϕj(r

′)ϕ∗k(r
′)

~ω − (εk − εj) + iη
, (2.147)

wobei die Besetzungszahlen fj und fk in Halbleitern und Isolatoren gleich 1 für besetzte

und gleich 0 für unbesetzte Zustände zu wählen sind.

Die weitere Transformation in den reziproken Raum liefert

χGG′(q, ω) = χKS
GG′(q, ω) +

∑
G′′G′′′

χKS
GG′′(q, ω)

(
KH

G′′G′′′(q) + fxc
G′′G′′′(q, ω)

)
χG′′′G′(q, ω)

(2.148)

mit

KH
G′′G′′′(q) =

1

4πε0

4π

|q + G′′|2
δG′′G′′′ = KH

G′′(q)δG′′G′′′ , (2.149)

und

χKS
GG′(q, ω) = lim

η→0+

2

Ω

∑
n,n′,k

(fnk − fn′k+q)
〈unk|ei(q+G)·r|un′k+q〉 〈un′k+q|e−i(q+G′)·r′|unk〉

~ω − (εnk − εn′k+q) + iη
.

(2.150)

Die Nichtdiagonalelemente von χKS
GG′ beschreiben eine Abschirmung durch die inhomogene

Dichteverteilung, die lokalen Feldeffekte. Sehr grobe Approximationen können an dieser
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Stelle vorgestellt werden. Die Vernachlässigung des Klammerausdrucks von Gl. (2.148)

führt auf die Unabhängige-Teilchen-Approximation und bedeutet damit (unter anderem)

die Vernachlässigung der Lokale-Feld-Effekte. Die alleinige Berücksichtigung des Coulomb-

Terms mit fxc = 0 nennt sich random-phase-Approximation (RPA) und führt die Lokale-

Feld-Effekte wieder ein.

Die Interaktion mit Licht wird durch den Wellenvektor im optischen Limit (q → 0) be-

schrieben. Besondere Aufmerksamkeit muss dabei den Elementen von χGG′ zuteil werden,

die G oder G′ gleich 0 enthalten, da in diesem Fall der Coulomb-Term KH
G′′G′′′ divergiert.

Hier wird in den Matrixelementen eiq·r in linearer Ordnung entwickelt, so dass gilt [90]:

lim
q→0
〈unk|eiq·r|un′k+q〉 = lim

q→0
iq 〈unk|r|un′k+q〉

= lim
q→0

iq
〈unk|[r, ĥ]|un′k+q〉
εnk − εn′k+q

= lim
q→0

~q
〈unk|p̂|un′k+q〉
εnk − εn′q+k

. (2.151)

Damit ist der führende Beitrag in χKS
GG′(q, ω) für q→ 0 gegeben durch

χKS
00 (q, ω) = lim

η→0+

2~2

Ω

∑
n,n′,k

(fnk − fn′k+q)
|q|2 〈unk|p̂|un′k+q〉 〈un′k+q|p̂|unk〉

(εnk − εn′q+k)2(~ω − (εnk − εn′k+q) + iη)
.

(2.152)

Analog zur Dichtefunktionaltheorie gibt es in praktischen Rechnungen auch hier wieder

Konvergenzparameter. Die bereits bekannten sind die Dichte des k-Punkt-Gitters und

die Anzahl der verwendeten reziproken Gittervektoren G, die hier direkt angegeben wer-

den, da ein direkter Bezug zur Abschneideenergie fehlt. Außerdem fällt dem Bandindex

n nun explizit die Rolle eines Konvergenzparameters zu, der die Anzahl der elektroni-

schen Übergänge zwischen besetzten und unbesetzten Zuständen im unabhängigen Teil-

chen Kohn-Sham-Formalismus kontrolliert. Um Selbstenergieeffekte einer GW -Näherung

auf einfache Weise zu berücksichtigen, kann ein sogenannter scissors shift angewendet

werden, der die Eigenenergien der unbesetzten Kohn-Sham-Zustände in Gl. (2.150) um

einen definierten Wert nach oben verschiebt und somit die Bandlücke öffnet.

Der Zusammenhang zwischen der linearen Dichte-Antwortfunktion und messbaren Größen

wie der makroskopischen dielektrischen Funktion εM kann über die mikroskopische dielek-

trische Matrix, deren Inverse gegeben ist durch

ε−1
GG′(q, ω) = δGG′ +KH

G(q)χGG′(q, ω), (2.153)

hergestellt werden über

εM(ω) = lim
q→0

1

[ε−1
GG′(q, ω)]G=G′=0

. (2.154)
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2.6.2 Austauschkorrelationsfunktional

Da für das zeitabhängige nichtlokale Funktional Näherungen benötigt werden, ist ein ers-

ter naheliegender Schritt, das in der Dichtefunktionaltheorie erfolgreiche LDA-Funktional

zu verwenden. Was im Falle von Atomen und Molekülen durchaus erfolgreich sein kann

[87], ist im Falle periodischer Festkörper ungeeignet, da, wie oben gezeigt, die lineare

Antwortfunktion des effektiven Kohn-Sham-Potentials im Falle q → 0 proportional zu

|q|2 ist . Daher bleibt das lokale Funktional, welches in diesem Fall die Rolle einer Kon-

stanten einnimmt, wirkungslos. Auf der Basis eines direkten Vergleichs zwischen dem

fxc
G′′G′′′-Funktional und der Bethe-Salpeter-Gleichung lässt sich die Gestalt eines nichtlo-

kalen Terms herleiten [91]. Dieser enthält einerseits einen Beitrag, der für eine Verschie-

bung der Kohn-Sham-Einteilchenenergien hin zu den GW -Eigenwerten sorgt, während

ein zweiter Beitrag die Elektron-Loch-Wechselwirkung beschreibt. De facto öffnet der

erste Term im Austauschkorrelationsfunktional fxc
G′′G′′′ also die Bandlücke, während sie

der zweite Term durch die Elektron-Loch-Anziehung wieder reduziert. Während der ers-

te Term durch einen scissors shift der Kohn-Sham-Eigenenergien in der unabhängigen

Teilchen Dichte-Antwortfunktion realisiert werden kann, gibt der Vergleich zur Bethe-

Salpeter-Gleichung Anlass zu einer q−2-Abhängigkeit der Elektron-Loch-Wechselwirkung

im Austauschkorrelationsfunktional, die über einen Parameter α an das jeweilige Material

angepasst werden kann:

fxc,LRC
GG′ (q) = − α

|q + G|2
δGG′ . (2.155)

Hiermit können, zumindest für simple Halbleiter und Isolatoren, exzitonische Effekte in

teils sehr guter Übereinstimmung mit dem Experiment berücksichtigt werden [92]. Ande-

rerseits zeigt sich, dass Pole der IPA-Antwortfunktion nicht verschoben werden können,

sondern Oszillatorstärke umverteilt wird. Das statische Funktional kann dabei um einen

frequenzabhängigen Term erweitert werden, sodass exzitonische Effekte in verschiedenen

Frequenzbereichen mit dem zusätzlichen Parameter β reproduziert werden können [93]:

fxc,LRC
GG′ (q) = −α + βω2

|q + G|2
δGG′ . (2.156)
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Kapitel 3

Vibrationseigenschaften von

Lithiumniobat und Lithiumtantalat

3.1 Einleitung

Die Kenntnis über die Phononenmoden und -frequenzen in LiNbO3 bei Γ war noch bis vor

kurzem unvollständig, bis experimentelle [94] und theoretische [95] Untersuchungen erste

eindeutige Zuordnungen der Phononenfrequenzen zuließen. Bestehende Schwierigkeiten

hängen mit der Sensitivität der Raman-Spektroskopie bei kleinen Strukturänderungen

oder Änderungen in der Stöchiometrie zusammen sowie niedrigen Raman-Intensitäten

und nahe beieinanderliegende Frequenzen einiger Phononenmoden [95, 96]. Während vie-

le experimentelle Messungen [94, 96–102] und theoretische Berechnungen [103–106] zu

Gitterschwingungen in LN durchgeführt wurden, wurde sich dabei jedoch größtenteils auf

das Zentrum der Brillouin-Zone beschränkt. De facto gibt es nur zwei theoretische Studien,

die sich mit der kompletten Phononendispersion von LN auseinandersetzen: Parlinski et

al. [104] berechneten die Phononenfrequenzen und Auslenkungsmuster im frozen phonon-

Ansatz an vier Hochsymmetriepunkten des rhomboedrischen Gitters und interpolierten

die Dispersion auf Grundlage der Kristallsymmetrie. Dasselbe Verfahren wurde von To-

youra et al. [107] mit Punkten aus der ersten Brillouin-Zone, die sich mit einer 2×2×1

Superzelle des hexagonalen Kristallgitters darstellen lassen, angewendet. Das Konvergenz-

verhalten der Phononendispersion hinsichtlich des verwendeten q-Punkt Satzes ist dabei

methodisch bedingt in beiden Fällen noch ungeklärt. Das LO-TO-Splitting wurde entwe-

der mit einem semiempirischen Beitrag zur dynamischen Matrix [104] oder mithilfe von

Gleichung (2.110) im DFPT-Formalismus berücksichtigt [107]. Messungen über Γ hinaus

wurden bisher nicht durchgeführt. Außerdem wurde die winkelaufgelöste Dispersion von

Raman-aktiven Phononenmoden an Γ theoretisch bestimmt in [105].

Das Wissen über die Vibrationseigenschaften in Lithiumtantalat ist sogar noch lückenhafter.
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Während Theorie und Experiment mittlerweile in der Zuordnung der transversalen opti-

schen Moden am Γ Punkt übereinstimmen [94, 95], gibt es nur eine Arbeit von Toyoura

et al. [107], in der die Phononenmoden an verschiedenen Punkten der Brillouin-Zone

im oben genannten frozen phonon-Verfahren bestimmt wurden. Um das Verständnis der

Vibrationseigenschaften der beiden Materialien zu erhöhen, wird die komplette Phononen-

dispersion der ferro- und paraelektrischen Phasen in der ersten Brillouin-Zone innerhalb

des DFPT-Formalismus mit hoher Genauigkeit, insbesondere im Hinblick auf die Kon-

vergenz des q-Punkt Gitters, berechnet. Dabei unterliegt die Genauigkeit nicht mehr der

Güte des verwendeten Interpolationsschemas zwischen den q-Punkten. Darüber hinaus

werden die longitudinalen optischen Phononen ohne Nutzung empirischer Parameter be-

stimmt und mit den zur Verfügung stehenden Daten verglichen. Besonders für LiTaO3

bedeutet dies die erste theoretische Berechnung der LO-Frequenzen. Gemeinsamkeiten

und Unterschiede von LN und LT werden herausgearbeitet.

Die Berechnung der Phononendispersionen dient nicht nur ihrem Selbstzweck, sondern

ermöglicht die Bestimmung weiterer thermodynamischen Größen wie die spezifische Wär-

mekapazität oder die Vibrationsenergie, die die strukturelle Energiedifferenz beider Pha-

sen kompensiert und somit Aufschluss über den Phasenübergang geben kann. Der ferro-

elektrische-paraelektrische Phasenübergang findet in LiNbO3 bei 1480 K statt und ist seit

über fünf Jahrzehnten Gegenstand der Forschung. Verschiedene Untersuchungen inter-

pretierten diesen entweder als displaziv [97, 108, 109] oder vom Ordnungs-Unordnungs-

Typ [99, 110, 111]. Auch ein kombinierter Phasenübergang der beiden Typen wurde auf

Grundlage experimenteller Befunde vorgeschlagen [112] und fand Zuspruch von theoreti-

scher Seite [113–115]. Auch in den theoretischen Untersuchungen gibt es Widersprüche,

indem Toyoura et al. [107] vorschlugen, dass es sich ausschließlich um einen Ordnungs-

Unordnungs-Übergang mit hoher gegenseitiger Abhängigkeit der zwei Kationen unter-

schiedlicher Atomsorte handelt. Ebenso widersprüchliche Resultate existieren für LiTaO3,

welches den ferroelektrischen-paraelektrischen Phasenübergang bei 940 K durchläuft [10].

Während es Untersuchungen gibt, die einen displaziven Übergang favorisieren [116] fan-

den andere Studien einen Ordnungs-Unordnungs-Übergang vor [117]. In dieser Arbeit

werden die berechneten Phononendispersionen beider Phasen verwendet, um die Curie-

Temperatur von LiNbO3 und LiTaO3 mit einem vereinfachten Modell abzuschätzen. Au-

ßerdem wird die spezifische Wärmekapazität als Nachweis der Güte der berechneten Pho-

nonendispersionen theoretisch bestimmt.

Abschließend bietet die Dichtefunktionalstörungstheorie den Zugang zu Korrekturen der

elektronischen Bandstruktur aufgrund der Kernoszillationen. Im Allgemeinen ist die fun-

damentale Bandlücke von Lithiumniobat Gegenstand aktueller Forschung mit hoher Be-

deutung für optische Anwendungen. Während experimentelle Werte zwischen 3.28 [118]

und 4.3 eV [119] schwanken, rangieren theoretische Vorhersagen zwischen 2.62 eV im Ein-

teilchenschema [120] bis 6.53 eV in vereinfachten Quasiteilchen-Rechnungen [106]. Diese

Diskrepanzen können durch die jeweilige (Rechen-)Methode [121], die Stöchiometrie der
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Proben [122], aber auch zusätzlich durch Vibrationseffekte hervorgerufen werden. Im Be-

zug zum letzteren wurde von Redfield und Burke [122] eine temperaturabhängige Ver-

schiebung der fundamentalen Absorptionskante um 0.5 eV im Bereich von 0–667 K fest-

gestellt. Eine Temperaturabhängigkeit wurde ebenfalls beim Brechungsindex beobachtet

[123, 124]. In der theoretischen Beschreibung werden elektronische und optische Anre-

gungen von der Elektron-Phonon-Kopplung beeinflusst. Schon bei 0 K unterliegen die

Kohn-Sham-Eigenwerte einer Kopplung mit den quantisierten Nullpunktsschwingungen

der Atomkerne, die bei endlicher Temperatur weiter ansteigt. In diesem Kapitel werden

die Auswirkungen von Phononeneffekten auf die elektronische Bandstruktur untersucht,

indem die Nullpunktsrenormierung (ZPR) und die temperaturabhängige Änderung der

elektronischen Kohn-Sham-Eigenwerte und damit der Bandlücke innerhalb des DFPT-

Formalismus berechnet werden. Um Fehler der jungen Implementierung in ABINIT so-

wie der verwendeten Approximationen wie der festen Kerne auszuschließen, werden die

Resultate mit der finite-Differenzen-Methode bei fünf verschiedenen phononischen Wel-

lenvektoren verglichen. ZPR und temperaturabhängige Korrekturen können mit Daten,

die aus experimentellen Messungen der fundamentalen Absorptionskante [122] gewonnen

werden, verglichen werden.

3.2 Rechentechnische Details

Die Berechnungen im Rahmen der Dichtefunktionaltheorie bzw. Dichtefunktionalstörungs-

theorie werden mit dem ABINIT Programmpaket [125–127] ausgeführt. Die Approxima-

tion der Austauschkorrelationsenergie erfolgt in Lokale-Dichte-Näherung, parametrisiert

von Perdew und Zunger [21], sowie in den Generalisierte Gradienten-Näherungen von Per-

dew, Burke und Ernzerhof (PBE) [26], von Perdew et al. (PBEsol) [28] und von Armiento

und Mattsson (AM05) [29]. Letztere beiden Funktionale sind dafür bekannt, dass sie expe-

rimentelle Gitterkonstanten gut reproduzieren [128], worauf in dieser Arbeit besonderen

Wert gelegt wird, da die Gittergeometrie interatomare Kraftkonstanten und somit Pho-

nonenfrequenzen stark beeinflusst. Im Gegensatz dazu sind LDA-Gitterkonstanten für

gewöhnlich 1–2 % zu klein, während PBE verglichen mit experimentellen Werten 1–2 %

größere Gitterkonstanten ergibt. Die Elektron-Ion-Wechselwirkung wird mit den optimier-

ten normerhaltenden Vanderbilt-Pseudopotentialen von Hamann [64] modelliert. Dazu

werden die 1s und 2s Orbitale des Lithiums, die 2s und 2p Orbitale des Sauerstoffs, die

4s, 4p, 4d und 5s Orbitale des Niobs und die 5p, 5d und 6s Orbitale des Tantals als

Valenzzustände behandelt. Der Ebene-Wellen-Basissatz ist durch eine Abschneideenergie

von 1250 eV bei Lithiumniobat und 1035 eV bei Lithiumtantalat begrenzt. Ihm liegt

ein Monkhorst-Pack-Gitternetz [129] mit 4×4×4 k-Punkten in der ersten Brillouin-Zone

zugrunde. Damit ist die elektronische Gesamtenergie innerhalb von weniger als 1 meV kon-

vergiert. Atomare Positionen werden mithilfe des effektiven Broyden-Fletcher-Goldfarb-

Shanno-Minimierungsschemas [130] bestimmt, bis die Hellmann-Feynman-Kräfte unter
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10−4 eV/Å fallen.

Der Gitterbeitrag zur spezifischen Wärmekapazität pro Einheitszelle bei konstanten Vo-

lumen ist gegeben durch

CV = 3NKkB

∫ (
~ω

2kBT

)2

csch2

(
~ω

2kBT

)
g(ω) dω, (3.1)

und wird aus der Phononenzustandsdichte g(ω) berechnet. Sie wird auf einem 15×15×15

q-Punktgitter mit einer 5 cm−1 Frequenzintervallbreite bestimmt, sodass der numerische

Fehler unterhalb von 0.1% liegt. NK gibt die Anzahl der Atome pro Einheitszelle an. Für

die Berechnung des Vibrationsanteils zur freien Energie in Gl. (2.76) wird ein 14×14×14

q-Punktgitter verwendet, was zu einer Ungenauigkeit unterhalb von 1 meV führt.

Während in der Berechnung der phononischen Bandstruktur und Auslenkungen ein 4×4×4

q-Punktgitter genügt, um die Schwingungsfrequenzen innerhalb von 1 cm−1 auszukon-

vergieren, ist im Falle von Lithiumniobat ein weitaus feineres Gitter erforderlich, um die

Nullpunktsrenormierung und die Temperatureffekte zu simulieren. Die q-abhängigen Pho-

noneneffekte ∆εnk(q, T ) auf die elektronischen Kohn-Sham-Eigenenergien werden mithil-

fe der finite-Differenzen-Technik (Gl. 2.134) sowie der DFPT-Implementierung der Allen,

Heine und Cardona Theorie in ABINIT berechnet. Unter Verwendung eines 8×8×8 q-

Punktgitters sind innerhalb der DFPT Fehlerbalken von durchschnittlich 0.007 eV und

höchstens 0.033 eV für die Korrektur der elektronischen Eigenwerte εnk zu erreichen. Um

den hohen Rechenaufwand zu reduzieren und trotzdem die hohe q-Punktabhängigkeit

nahe Γ korrekt einzubeziehen, werden 98 zusätzliche q-Punkte nahe des Brillouin-Zonen-

zentrums, die einem lokalen 16×16×16 q-Punktgitter entsprechen, einbezogen, sodass

1

b3

b2

Γ

L

X

F

Z

b

Abbildung 3.1: Brillouin-Zone des rhomboedrischen Gitters mit den primitiven reziproken Gittervek-
toren b1( 2√

3a
, 0, 1

c ), b2( −1√
3a
, 1
a ,

1
c ) und b3( −1√

3a
, −1

a ,
1
c ). Die Hochsymmetriepunkte Γ, L, F und Z, sowie

der Punkt X auf der ersten Koordinatenachse sind mit eingezeichnet.
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sich der maximale Fehler auf 0.015 eV reduziert. In der finite-Differenzen-Methode wird

die Krümmung ∂2εnk/∂h
2 ausgewertet, indem εnk(h = 0) und εnk(h = 5

√
me Bohr) an

eine Parabel gefittet wird. Die Wahl von h führt zu einer Auslenkung von etwa 4×10−3

Å. Dieses Verfahren wird auf Γ, die Hochsymmetriepunkte L(0.5; 0.0; 0.0), F(0.5; 0.5; 0.0)

und Z(0.5; 0.5; 0.5), sowie den Punkt L’(0.25; 0.0; 0.0) zwischen Γ und L angewendet. Die

Koordinaten der Punkte geben Skalierungsfaktoren der jeweiligen reziproken Gittervek-

toren an, also sogenannte reduzierte Koordinaten. Abbildung 3.1 illustriert die Lage der

genannten Punkte und die Gittervektoren in der rhomboedrischen Brillouin-Zone. Frühere

Arbeiten [83, 131, 132] legen starke q-Punkt-Abhängigkeiten der Korrekturen der elek-

tronischen Eigenenergien in Materialien wie Diamant nahe.

3.3 Atomare Struktur

Für Lithiumniobat sind die berechneten optimierten Gitterparameter für alle eingesetzten

Funktionale in Tabelle 3.1 aufgeführt und verglichen mit Neutronenbeugungsmessungen

bei 300 K für die ferroelektrische und bei 1500 K für die paraelektrische Phase [5], sowie

älteren Berechnungen innerhalb der LDA von Veithen und Ghosez [105] und innerhalb

der GGA-PW91 von Schmidt et al. [106]. Obwohl die Berechnungen in der rhomboe-

drischen primitiven Einheitszelle durchgeführt werden, ist es gebräuchlicher, strukturelle

Eigenschaften im hexagonalen Gitter mit a und c als Gitterkonstanten und u, v, w, z,

and x als Freiheitsgrade der atomaren Positionen anzugeben. Die Bedeutung der internen

Parameter u, v, w, z und x ist in Tabelle 3.2 erklärt. Wie bereits angedeutet, reprodu-

zieren PBEsol und AM05 die experimentellen Gitterkonstanten am besten, während sie

innerhalb der LDA und PBE, ähnlich zu älteren Berechnungen [105, 106], unter- bzw.

überschätzt werden. Die internen Parameter stimmen mit Ausnahme der LDA, die deut-

lich kleinere Werte für v liefert, generell besser überein. In diesem Zusammenhang wurden

zu kleine theoretische Werte für v bereits in [106] und [105] berichtet.

In der paraelektrischen Phase ist kein Funktional befähigt, die experimentell beobachte-

ten Gitterkonstanten vorherzusagen. Dies ist nicht verwunderlich, da die DFT als Grund-

zustandstheorie die thermische Expansion nicht voraussagen kann. Außerdem wird der

interne Parameter x, der die Rolle von v aus der ferroelektrischen Phase einnimmt, kon-

sequent unterschätzt. PBE zeigt aufgrund einer Fehleraufhebung mit der PBE-inhärenten

Überschätzung der Gitterkonstanten die beste Übereinstimmung mit [5]. Um die ther-

mische Expansion zu simulieren, werden zusätzliche Strukturbestimmungen für die Ein-

heitszelle und die atomaren Positionen, also für die internen Parameter, durchgeführt,

bei denen das Zellvolumen auf den experimentellen Wert bei 1500 K [5] fixiert wird. Die

entsprechenden Resultate sind mit ΩPE
Expt gekennzeichnet. In diesem Fall liegen nicht nur

die Gitterkonstanten, sondern auch der interne Parameter x sehr nah bei den experi-

mentellen Werten. Offensichtlich unterschätzen die anderen theoretischen Resultate den
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Ferroelektrische Phase a/Å c/Å u v w z

LDA 5.060 13.707 0.0130 0.0273 0.0177 0.0337
PBE 5.194 14.030 0.0094 0.0378 0.0202 0.0317
PBEsol 5.149 13.860 0.0111 0.0355 0.0187 0.0325
PBEsol (ΩPE

Expt) 5.251 14.050 0.0088 0.0480 0.0193 0.0328

AM05 5.171 13.902 0.0103 0.0387 0.0191 0.0323

Expt. [5] 5.151 13.876 0.0095 0.0383 0.0192 0.0329
Theorie [105] 5.067 13.721 0.0125 0.0302 0.0183 0.0350
Theorie [106] 5.161 13.901 0.0121 0.0278 0.0191 0.0339

Paraelektrische Phase a/Å c/Å x

LDA 5.116 13.595 0.039
PBE 5.231 13.817 0.047
PBEsol 5.199 13.688 0.046
PBEsol (ΩPE

Expt) 5.285 13.869 0.055

AM05 5.215 13.712 0.048

Expt. [5] 5.289 13.848 0.060
Theorie [105] 5.125 13.548 0.042
Theorie [106] 5.219 13.756 0.041

Tabelle 3.1: Berechnete LiNbO3 Gitterparameter im Vergleich mit experimentellen Daten für die fer-
roelektrische Phase bei 300 K, für die paraelektrische Phase bei 1500 K und mit früheren Berechnun-
gen. PBEsol (ΩPE

Expt) bezeichnet Berechnungen bei festgehaltenem gemessenen Einheitszellenvolumen bei
1500 K.

Ferroelektrische Phase Paraelektrische Phase

Li (0, 0, 1
4 + z) (0, 0, 1

4)

Nb (0, 0, 0) (0, 0, 0)

O (−1
3 + v,−1

3 − u,
7
12 − w) (−1

3 + x,−1
3 ,

7
12)

O (1
3 + u, u+ v, 7

12 − w) (1
3 , x,

7
12)

O (−u− v, 1
3 − v,

7
12 − w) (−x, 1

3 − x,
7
12)

Li (0, 0, 3
4 + z) (0, 0, 3

4)

Nb (0, 0, 1
2) (0, 0, 1

2)

O (1
3 − u− v,

1
3 − u,

5
12 − w) (1

3 − x,
1
3 ,

5
12)

O (−1
3 + u,−v, 5

12 − w) (−1
3 ,−x,

5
12)

O (v,−1
3 + u+ v, 5

12 − w) (x,−1
3 + x, 5

12)

Tabelle 3.2: Reduzierte hexagonale Koordinaten der zehn Atome der rhomboedrischen Einheitszelle von
Lithiumniobat und Lithiumtantalat. Für die eindeutige Bestimmung aller Atompositionen genügt die An-
gabe der ersten drei Atomkoordinaten. Alle anderen Koordinaten sind dann durch Symmetrieoperationen
der Raumgruppe R3c bzw. R3̄c festgelegt. v und x nehmen in ihren jeweiligen Strukturen dieselbe Rolle
ein.
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Ferroelektrische Phase a/Å c/Å u v w z

PBEsol 5.129 13.678 0.0094 0.0421 0.0125 0.0327
PBEsol( ΩPE

Expt) 5.211 13.810 0.0082 0.0525 0.0130 0.0328

Experiment 5.154 13.783 0.0103 0.0398 0.0146 0.0290

Paraelektrische Phase a/Å c/Å x

PBEsol 5.169 13.568 0.0501
PBEsol (ΩPE

Expt) 5.234 13.692 0.0570

Experiment 5.220 13.763 0.0531

Tabelle 3.3: Berechnete LiTaO3 Gitterparameter. Zum Vergleich sind experimentelle Daten von Abra-
hams et al. [117] bei 297 K für die ferroelektrische Phase und bei 940 K für die paraelektrische Phase
aufgelistet. ΩPE

Expt beschreibt wie bei LN das Ergebnis von Gitterrelaxationen, die bei einem gemessenen
Einheitszellvolumen bei 940 K durchgeführt werden, um Auswirkungen der thermischen Expansion zu
simulieren.

internen Parameter aufgrund des zu kleinen theoretischen Volumens. Da es keinen Hinweis

auf eine Volumenänderung während des Phasenübergangs gibt [9], wird dasselbe Volumen

ΩPE
Expt, welches bei 1500 K in der paraelektrischen Phase gemessen wurde, verwendet, um

die Struktur von ferroelektrischen LN bei hohen Temperaturen zu bestimmen. Daher be-

zeichnet ΩPE
Expt beide Volumen der ferroelektrischen und der paraelektrischen Phase bei

1500 K. Auch hierfür werden Gitter- und interne Parameter relaxiert. Konsistent mit den

Beobachtungen für x bei der paraelektrischen Phase vergrößert sich der interne Parameter

v. Im Vergleich zum Experiment ist das Verhältnis c/a gut wiedergegeben.

Da in den ausführlichen Tests der Austauschkorrelationsfunktionale an LN das PBEsol-

Funktional im Weiteren bei Struktur und Phononenfrequenzen die besten Ergebnisse er-

zielt, wird die Studie im Falle von LT auf PBEsol beschränkt. Die berechneten Struktur-

parameter der Einheitszelle sind in Tabelle 3.3 dargestellt. Sie werden mit experimentellen

Daten von Abrahams et al. [117] verglichen, gewonnen aus Neutronenstreuungsmessungen

bei 297 K und 940 K. Die Gitterparameter des ferroelektrischen LT befinden sich in gu-

ter Übereinstimmung mit den experimentellen Befunden, die innerhalb einer Abweichung

von 0.7 % nach unten reproduziert wurden. Im Vergleich mit LN wird praktisch dersel-

be Abstand 0.25 + z der Lithiumatome zum Niob bzw. Tantal vorhergesagt, im leichten

Unterschied zum Experiment, bei dem der Abstand sich minimal reduziert. Beide wie-

derum rücken im Vergleich mit LN etwas in Richtung der zentrosymmetrischen Position

in den Sauerstoffoktaedern, da sich der Parameter w vermindert. Die Abweichung zu den

experimentellen Daten ist hier geringer.

Die Diskrepanz zwischen Experiment und Theorie vergrößert sich bei der paraelektrischen

Phase aus denselben Gründen wie für LN und ist am höchsten für den Parameter c, der um

1.4 % unterschätzt wird. Aus diesem Grund werden für beide Phasen wieder zusätzliche

Berechnungen bei ΩPE
Expt durchgeführt, da auch hier keine Anzeichen einer schlagartigen

Volumenänderungen beim Phasenübergang vorliegen. Innerhalb dieses Ansatzes ist die

berechnete Einheitszellengeometrie gegenüber den Daten von Abrahams et al. [117] etwas
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verzerrt. Somit werden auch die internen Parameter etwas überschätzt. Das liegt daran,

dass der Parameter x schon beim theoretischen Zellvolumen sehr nah am experimen-

tellen Wert lag. Durch das höhere experimentelle Volumen bei 940 K wird dieser Wert,

wie bei LN gesehen, deutlich gesteigert. Da LT eine hohe Defektdichte aufweist, ist es

auch möglich, dass große Unsicherheiten in der experimentellen Bestimmung der inneren

Parameter vorliegen.

3.4 Phononen bei Γ

Die transversalen optischen Phononenfrequenzen (TO) im Brillouin-Zonenzentrum sind

für die ferroelektrische Phase von Lithiumniobat in Tabelle 3.4 dargestellt. Laut Grup-

pentheorie gibt es in der R3c Raumgruppe bei Γ 18 Moden, die in vier A1, fünf A2 und

neun (zweifach entartete) E Moden aufgeteilt sind [96]. Aktuelle Resultate werden mit

Raman-Messungen an fast stöchiometrischem Lithiumniobat bei Raumtemperatur [94]

verglichen, die ihrerseits in guter Übereinstimmung mit [96–98, 100–102] sind. Anders

als die E Moden sind die A1 und A2 Moden symmetrieerhaltend. Bei den A2 Moden

schwingen Atome gleicher Sorte entlang der c-Achse gegeneinander und sind daher Ra-

man und infrarot inaktiv. Eine der wenigen Messungen an A2 Moden von Chowdhury

et al. [99] mittels Neutronenstreuung dient als Vergleich mit den theoretisch berechneten

Frequenzen.

Es zeigt sich, dass die berechneten Frequenzen in sehr guter Übereinstimmung mit den

zur Verfügung stehenden Messungen liegen. Die Abweichungen zu den experimentellen

Phononenfrequenzen bei Γ sind für alle getesteten Funktionale in Abb. 3.2 visualisiert.

Zu beobachten ist eine leichte systematische Unterschätzung von durchschnittlich 4.0% bei

PBEsol und 5.2% bei AM05 verglichen mit Ref. [94]. Dieses Resultat ist konsistent mit den

Befunden von He et al. [133] bezüglich DFPT-Phononenberechnungen mit verschiedenen

Austauschkorrelationsfunktionalen, wobei ebenfalls festgestellt wurde, dass innerhalb der

DFPT systematisch Phononenfrequenzen unterschätzt werden. Das Problem ist jedoch

nicht speziell auf die Dichtefunktionalstörungstheorie zurückzuführen, sondern tritt auch

beim frozen phonon-Ansatz auf, hier verdeutlicht durch die Ergebnisse von Schmidt et al.

[106]. Als Folge daraus kann die LDA durch eine Fehlerkorrektur (kleinere Gitterparameter

erhöhen Kraftkonstanten und somit Phononenfrequenzen) zu besseren Resultaten führen,

während PBEsol und AM05 etwas schlechter abschneiden.

Größere Abweichungen treten laut He et al. für das PBE-Funktional auf. Dies ist in

Übereinstimmung mit den aktuellen Befunden, jedoch ist wahrscheinlich aufgrund der

höheren Ungenauigkeit der LDA-Werte für die internen Parameter, besonders v, eine

Über- und Unterschätzung der betreffenden Phononenfrequenzen zu verzeichnen. Die sys-

tematische Frequenzunterschätzung innerhalb PBEsol bzw. AM05 im Vergleich zu dem

weniger systematischen Verhalten der LDA wird jedoch die Interpretation weiterer Er-
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Mode Aktuelle Theorie Frühere Theorie Experiment
PBEsol AM05 Ref. [105] Ref. [106]

A1 239 (332) 241 (263) 243 (287) 238 253 (276)
272 (272) 263 (325) 288 (348) 279 277 (334*)
335 (403) 326 (404) 355 (413) 350 334 (421)
607 (839) 611 (836) 617 (855) 605 632 (871)

A2 213 212 218 212 224*
287 281 297 298 314*
397 390 412 406
441 438 454 443 455*
876 875 892 868

E 148 (198) 147 (185) 155 (197) 147 155 (199)
217 (222) 219 (222) 218 (224) 216 240 (241)
257 (290) 255 (285) 264 (298) 260 265 (298)
317 (334) 306 (323) 330 (349) 321 322 (343)
352 (410) 335 (402) 372 (423) 364 (426)
364 (364) 347 (347) 384 (384) 384 370 (370)
418 (438) 415 (434) 428 (452) 421 433 (457)
570 (660) 566 (659) 585 (675) 573 580 (659*)
662 (846) 662 (845) 677 (863) 662 660–667* (879)

Tabelle 3.4: Berechnete TO (LO) Γ Frequenzen der ferroelektrischen Phase von LN verglichen mit
früheren theoretischen Resultaten und experimentellen Messungen. Die Frequenzen der A1 und E Mo-
den stammen aus Infrarot- und Raman-Messungen an stöchiometrischen LN von Margueron et al. [94],
während die A2 Moden für diese Verfahren unsichtbar sind und deren Frequenzen via Neutronenstreuung
bestimmt wurden [99]. Die mit * gekennzeichneten Frequenzen wurden an kongruenten Lithiumniobat
gemessen.
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Abbildung 3.2: Abweichungen der theoretischen Phononenfrequenzen von den experimentellen Daten
bei Γ für die vier getesteten Austauschkorrelationsfunktionale.
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gebnisse, die die Phononendispersion mit einbeziehen, erleichtern. Außerdem ist es für die

Berechnung der elektronischen Eigenwerte von Vorteil, die korrekten Gitterparameter zu

verwenden. Aus diesem Grund wird die LDA wie PBE nicht für weitere Berechnungen

verwendet.

Auf der theoretischen Seite können die aktuellen Ergebnisse mit früheren DFPT-Rech-

nungen von Veithen et al. [105] sowie Daten aus dem frozen phonon-Ansatz von Schmidt et

al. [106] verglichen werden (siehe Tabelle 3.4). Die leichten Abweichungen zu den früheren

Berechnungen können teilweise durch die unterschiedliche Implementierung der verschie-

denen Methoden erklärt werden aber hauptsächlich durch die verschiedenen theoretischen

Gitterparameter, die diesen Arbeiten zugrunde liegen. Dies wird durch die Tatsache ver-

deutlicht, dass die aktuellen PEBsol Resultate nahe bei denen aus [106] liegen, wo ähnliche

Gitterparameter verwendet wurden, obwohl ein anderer Ansatz gewählt wurde. Anderer-

seits verursacht der kleine Wert für v aus [106] einige Abweichungen zu den aktuellen

Daten. Dies ist ein Befund, der im Vergleich mit den Werten von Veithen et al. [105]

geteilt wird, die auch ein zu kleines v berechneten.

In Tabelle 3.4 sind zusätzlich zu den TO-Frequenzen die berechneten longitudinalen op-

tischen Phononenfrequenzen (LO) aufgelistet. Wie in Kapitel 2.4.2 beschrieben, erfolgt

ein LO-TO-Splitting der infrarot aktiven A1 und E Moden im Brillouin-Zonenzentrum,

die durch den additiven Term für die dynamische Matrix mithilfe der Bornschen Effek-

tivladungen berücksichtigt werden können. In Übereinstimmung mit dem Experiment

und früheren Rechnungen wird praktisch kein LO-TO-Splitting für die zweite A1 und

die sechste E Mode in Tabelle 3.4 beobachtet. Diese Identifikation kann aus dem ho-

hen Überlapp
∑

µ,αMµξ
LO
µα (ωj0,0)ξTO

µα (ωj′0,0) der zugehörigen Polarisationsvektoren ξµα

der LO- und TO-Phononen gefolgert werden, der 95% (A1) und 100% (E) beträgt, in

Übereinstimmung mit Hermet et al. [134]. Damit zeigt sich, dass das makroskopische

elektrische Feld diese Auslenkungsvektoren kaum oder gar nicht beeinflusst.

Tabelle 3.5 enthält die TO- und LO-Phononenfrequenzen der paraelektrischen Phase von

Lithiumniobat. Sie sind in guter Übereinstimmung mit den zwei früheren theoretischen

Untersuchungen [105, 106], die ebenfalls auf zu kleinen Werten für a, c, und x basieren

als die experimentell bestimmten. Leider gibt es keine Messungen zu Phononenfrequenzen

bei 1500 K. Da die paraelektrische Phase nur bei sehr hohen Temperaturen stabil ist, ist

die Messung der Vibrationseigenschaften äußert anspruchsvoll und wurde bisher weder

für LN noch für LT durchgeführt. Zudem wären die anharmonischen Beiträge so bedeu-

tend, dass der Vergleich mit der Theorie schwierig wäre. Beim Vergleich vom theoretischen

und experimentellen Zellvolumen ist eine deutliche Änderung zu verzeichnen. Dabei gibt

es keinen einheitlichen Abfall der Frequenzen aufgrund des größeren Volumens, sondern

es zeigt sich, dass manche Frequenzen fallen, während andere unverändert bleiben oder

sogar steigen. Diese Tatsache kann mit der Änderung des x Parameters und des c/a

Verhältnisses in Verbindung gebracht werden. Obwohl manche Frequenzen für ΩPE
Expt star-
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Mode Aktuelle Ergebnisse Frühere Ergebnisse
PBEsol PBEsol (ΩPE

Expt) AM05 Ref. [105] Ref. [106]

A1g 379 334 369 403 406

A1u 273 262 271 279 283
418 386 411 435 432

A2g 104i 91i 101i 115i 92i
404 404 407 405 410
873 846 870 889 868

A2u 198i (76i) 203i (58i) 202i (74i) 201i 183i
79 (347) 31 (357) 61 (350) 94 47
468 (825) 454 (797) 464 (822) 478 476

Eg 170 161 169 175 204
409 345 398 425 436
471 433 459 501 481
569 525 560 589 578

Eu 78i (179) 133i (190) 103i (181) 53i 18
182 (275) 195 (273) 185 (275) 177 207
382 (400) 336 (345) 378 (389) 393 384
424 (481) 363 (438) 403 (468) 460 443
516 (826) 484 (793) 508 (821) 532 533

Tabelle 3.5: Berechnete Γ TO (LO) Phononenfrequenzen der paraelektrischen Phase von LN im Vergleich
mit früheren theoretischen Resultaten. Außer in der mit ΩPE

Expt gekennzeichneten Spalte wurden alle
Frequenzen bei theoretischem Gleichgewichtsvolumen bestimmt.

ke Abweichungen zu den früheren theoretischen Resultaten zeigen, können die aktuellen

Werte als verlässlicher angesehen werden, da sie die Gitterexpansion berücksichtigen.

Das Auftreten von imaginären Frequenzen ist eine Folge der Tatsache, dass das Modell

für die paraelektrische Phase als zur Raumgruppe R3̄c gehörigen Struktur sogar beim

experimentellen Volumen einen energetischen Sattelpunkt darstellt. Dass im Gegensatz

dazu die paraelektrische Phase als zeitliches Mittel einer zufälligen Verteilung der Li-

thiumatome ober- und unterhalb der Sauerstoffflächen aufgefasst werden kann (mit ei-

ner durchschnittlichen Polarisation von null), zeigen Berechnungen von Phillpot et al.

[113] und Sanna et al. [115]. Die Anwesenheit der imaginären Frequenzen gilt als wei-

tere Bestätigung dieses Bildes. Weitere imaginäre Frequenzen wie eine instabile kleinste

Eu Mode treten in Übereinstimmung mit Veithen et al. [105] auf, während keine solche

Instabilitäten bei Parlinski et al. [104], Schmidt et al. [106] und eigenen Testrechnungen

mit LDA- und GGA-Troullier-Martins-Pseudopotentialen [135] auftreten. Offensichtlich

hängt die Stabilität dieser Eu Mode empfindlich von der Wahl der Pseudopotentiale und

der rechentechnischen Details ab. Diese Annahme wird von Grundzustandsrechnungen

mit einer Auslenkung der Atome entlang der instabilen Eu Mode bestätigt, wobei nur

eine sehr kleine Verringerung der elektronischen Gesamtenergie vorliegt.

53



Die Phononenfrequenzen der ferroelektrischen Phase von LT bei Γ sind in Tabelle 3.6

aufgeführt. Die transversalen und longitudinalen optischen Frequenzen werden dabei mit

den von Sanna et al. [95] veröffentlichten experimentellen Daten verglichen. Im Falle der

TO-Frequenzen liegt eine exzellente Übereinstimmung mit den Raman-Daten vor, wobei

eine Unterschätzung der gemessenen Werte von durchschnittlich 2 % auftritt. Die Verbes-

serung der durchschnittlichen Abweichung bezüglich LN ist auf die Unterschätzung der

Gitterkonstanten im Vergleich zum Experiment und die daraus folgende Fehleraufhebung

zurückzuführen. Die größte Abweichung von etwa 20 cm−1 lässt sich für die A1 TO4 Mo-

de feststellen. Unerwartet aufgrund der Beobachtungen an LN führt die Abweichung bei

den internen Parametern nicht zu einer Streuung der Frequenzen um die experimentel-

len Werte. Leider liegen keine Messwerte aus Neutronenstreuungsexperimenten zu den

Raman inaktiven A2 Moden vor, mit denen die Werte in Tabelle 3.6 verglichen werden

können.

Zusätzlich zu den transversalen Moden bietet die DFPT die Möglichkeit, die longitudina-

len optischen Phononen bei Γ für LT zum ersten Mal zu berechnen. Wie in Tabelle 3.6 zu

sehen ist, liegt auch hier eine sehr gute Übereinstimmung mit den experimentellen Daten

vor. Dabei lassen sich zwei E Moden identifizieren, die zwar nicht von Sanna et al. [95]

bestimmt werden konnten, aber experimentell von Margueron et al. [94] bestätigt wurden.

Die LO- und TO-Moden wurden in der Tabelle wieder so einander zugeordnet, dass der

Überlapp der phononischen Polarisationsvektoren am größten ist. Konkret beträgt die-

ser 99.94 % für die zweite und 81.18 % für die dritte A1 Mode, was auch hier zeigt, dass

die Moden nicht oder nur geringfügig vom makroskopischen elektrischen Feld beeinflusst

werden. Obwohl zu erwarten ist, dass die zusätzlichen Kräfte durch das makroskopische

elektrische Feld zu höheren Phononenfrequenzen führen, ist die dritte LO-Mode etwas

kleiner als die dritte TO-Mode, wodurch dieser verhältnismäßig kleinere Überlapp zu er-

klären ist. Im Fall der E Moden liegt kein Splitting der Moden 2, 6 und 9 vor, da ihr

Überlapp 100% beträgt, im grundsätzlicher Übereinstimmung mit [94, 95]. Ihre niedrigen

Raman-Intensitäten sind dafür verantwortlich, dass einige Moden zuvor nicht experimen-

tell beobachtet werden konnten. Die vierte LO E Mode konnte lediglich mithilfe von

Infrarot-Messungen von Margueron et al. [94] identifiziert werden. Ein experimenteller

Nachweis der zweiten E Mode fehlt bislang.

In Tabelle 3.6 sind außerdem die berechneten TO-Frequenzen der paraelektrischen Phase

unter Verwendung des theoretisch bestimmten und experimentellen Zellvolumens auf-

geführt. Wie in LN weist auch hier die Anwesenheit von imaginären Frequenzen darauf

hin, dass diese Phase bei 0 K nicht stabil ist. Es liegen zwei imaginäre Moden vor, die bei

phononischer Auslenkung einen energetischen Sattelpunkt der potentiellen Energieober-

fläche offenbaren. Es sind dieselben zwei A2u und A2g Moden, die auch in Lithiumniobat

imaginär sind. Für beide Materialien ist der Verlauf der elektronischen Gesamtenergie

in Abhängigkeit der Auslenkung der Atome entlang der Polarisationsvektoren der bei-

den Moden in Abb. 3.3 illustriert. Ähnlich wie in LN ist das Auslenkungsmuster der
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Ferroelektrische Phase Paraelektrische Phase
Mode Theorie Expt. Mode Theorie (ΩPE

Theorie) Theorie (ΩPE
Expt)

A1 204 (396) 209–210 (403) A1g 377 344
258 (258) 256–257 (255) A2g 95i 88i
356 (352) 359–360 (355) 426 426
581 (842) 600 (866) 910 890

A2 180 A1u 232 229
283 384 355
379 A2u 163i (8i) 152i (35)
448 162 (360) 144 (344)
908 522 (834) 507 (814)

E 144 (191) 143 (190) Eg 178 170
196 (196) 210 413 359
248 (277) 254–257 (279) 481 458
312 (334) 315–317 (344*) 632 601
360 (444) 383–384 (453) Eu 118 (185) 102 (190)
373 (373) 383–384 (381) 201 (245) 208 (246)
456 (465) 460–465 (476*) 325 (367) 310 (334)
579 (838) 592 (866) 419 (486) 351 (447)
660 (660) 661–662 (660) 560 (834) 536 (811)

Tabelle 3.6: Berechnete TO (LO) Γ Frequenzen in cm−1 für LT. Linke Spalten: A1, A2 und E Moden
der ferroelektrischen Phase verglichen mit experimentellen Messungen [95]. Die mit * gekennzeichneten
experimentellen Werte konnten nur von Margueron et al. [94] gefunden werden. Rechte Spalten: A1g,
A2g, A1u, A2u, Eg und Eu Moden der paraelektrischen Phase mit theoretischen Gitterkonstanten bei
theoretischem Gleichgewichtsvolumen (ΩPE

Theorie) und experimentellem Volumen (ΩPE
Expt).
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Abbildung 3.3: Änderung der DFT elektronischen Gesamtenergie mit der atomaren Auslenkung der
Eigenvektoren der instabilen A2u and A2g Phononenmoden. Der energetische Nullpunkt ist bei der un-
gestörten Gesamtenergie gewählt.
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kleinsten A2u Mode in LT fast identisch mit dem paraelektrischen–ferroelektrischen Pha-

senübergang mit den Werten 0.0101, 0.0441, 0.0139, und 0.0319 für die Parameter u, v,

w, und z. Sie korrespondieren mit dem Minimum der Gesamtenergie bei einer Verrückung

der Atome um 175
√
me Bohr mal dem phononischen Eigenvektor der kleinsten A2u Mo-

de. Wie in Abb. 3.3 zu sehen, ist die Energiedifferenz des instabilen Sattelpunktes und

dem energetischen Minimum bei beiden Materialien, LN und LT, fast zehn mal größer für

die A2u Mode als für die A2g Mode, was wieder zeigt, dass vor allem die A2u Mode den

Phasenübergang antreibt. Für LN ergibt sich im Energieminimum bei einer Auslenkung

von 200
√
me Bohr ein Muster, welches den Werten 0.0053, 0.0432, 0.0179 und 0.0247 für

die Parameter u, v, w, und z entspricht. Auch in diesen Parametern ist die ferroelek-

trische Verschiebung noch gut zu erkennen. Die genaue Größe der Parameter ist dabei

stark strukturabhängig und eine Eins-zu-eins-Übereinstimmung mit der ungestörten fer-

roelektrischen Struktur kann nicht erwartet werden. Mit den PBEsol Gitterkonstanten

der ferroelektrischen Phase für LN ergeben sich die Parameter u und v zu 0.0086 und

0.0404.

3.5 Phononendispersion

Unter den in diesem Kapitel berücksichtigten Austauschkorrelationsfunktionalen ist die

Übereinstimmung mit den experimentellen Daten der Phononenfrequenzen an Γ für PBE-

sol am besten. Daher wird im weiteren nur noch dieses Funktional verwendet. Unter diesem

Aspekt ist es erwähnenswert, dass He et al. [133] feststellten, dass das PBEsol-Funktional

allgemein bessere Ergebnisse zeigt als das AM05, wenn Phononenfrequenzen mit den ex-

perimentellen Gitterkonstanten berechnet werden. Die Studie wird nun erweitert auf die

vollen Phononendispersionen für beide betrachteten Materialien, die experimentell bisher

nicht bestimmt wurden. Da schon bei den Phononenfrequenzen an Γ offensichtlich wurde,

dass thermische Expansion einen großen Einfluss hat und somit auch auf spätere thermo-

dynamische Berechnungen, werden außerdem die Dispersionskurven für das ausgedehnte

Gitter bei T = 1500 K, bezeichnet mit PBEsol (ΩPE
Expt), berechnet. Der Pfad X–Γ–Z–F–

L–Γ wird gewählt, um die phononische Bandstruktur zu visualisieren. Dies ist derselbe

Pfad, den Parlinski et al. [104] und Toyoura et al. [107] wählten, um ihre Dispersions-

kurven darzustellen. Dabei wurden die Phononenfrequenzen von beiden Gruppen mithilfe

der Hellmann-Feynman Kräfte innerhalb des frozen phonon-Ansatzes berechnet. Bei Par-

linski et al. geschieht dies an den vier Hochsymmetrie q-Punkten, was einem 2×2×2

q-Punktgitter in der aktuellen Rechnung entspricht. Wie auch im hier benutzten Verfah-

ren wird für Zwischenpunkte innerhalb dieses Gitters ein Interpolationsschema verwendet,

welches die Kristallsymmetrie ausnutzt.

Die Phononendispersionen der ferro- und paraelektrische Phase von Lithiumniobat sind

in Abb. 3.4 zusammen mit der zugehörigen Zustandsdichte dargestellt. Wie zu erwar-
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Abbildung 3.4: Mit dem PBEsol Funktional berechnete Phononendispersion und phononische Zustands-
dichte von ferroelektrischem (oben) und paraelektrischem (unten) LiNbO3.

ten war, sind die Frequenzen bezüglich ΩPE
Expt überwiegend kleiner als die des theoreti-

schen Volumens bei 0 K, da die Kräfte, die aus der Phononenauslenkung resultieren, im

größeren Zellvolumen kleiner sind. Die Änderung ist überwiegend proportional zur Fre-

quenz. Nichtsdestotrotz kann zum Beispiel an den Phononenzweigen um 350 cm−1 und

nahe Γ beobachtet werden, dass dies nicht durchgehend der Fall sein muss. Das hängt

mit den internen Parametern zusammen, die sich ebenfalls aufgrund der Volumenexpan-

sion ändern. Für beide Phasen sind zwei Phononenzweige um 850 cm−1 zu beobachten.

Die vier (teilweise entarteten) Zweige um 600 cm−1 der ferroelektrischen Phase fallen

beim Übergang zur paraelektrischen Phase um etwa 100 cm−1, sodass zwei phononische

Bandlücken im ferroelektrischen und eine größere Lücke in den Dispersionskurven im pa-

raelektrischen LN existieren. Die höhere Symmetrie der paraelektrischen Phase führt zu
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einer höheren Anzahl entarteter Moden bei Z. Die berechnete Phononendispersion zeigt

weiterhin, dass imaginäre Frequenzen nicht nur bei Γ auftreten, sondern in der gesamten

Brillouin-Zone präsent sind. Die Resultate von Parlinski et al. stimmen generell gut mit

den aktuellen überein, unterscheiden sich jedoch insoweit, dass die Dispersion einiger we-

niger Phononenbänder deutlich stärker ist. Die Breite der obersten in [104] berechneten

Bänder ist zum Beispiel fünf mal größer als in Abb. 3.4 zu sehen ist. Daher findet sich

auch im deutlichen Gegensatz zu den aktuellen Befunden keine Bandlücke vor. Dies ist

mit hoher Wahrscheinlichkeit ein Artefakt des verwendeten Interpolationsschemas, wel-

ches auf wenigen q-Punkten basiert. Insbesondere kann das Ergebnis in [104] reproduziert

werden, wenn das q-Punkt Sampling auf ein grobes 2×2×2 Gitter reduziert wird. Die-

selben Befunde, die bei Parlinki et al. beobachtet wurden, treffen prinzipiell auch auf die

Arbeit von Toyoura et al. zu. Auffällige Differenzen sind bezüglich des LO-TO-Splittings

zu verzeichnen, wobei das experimentell nachgewiesene Splitting der höchsten A1 und E

Mode zu Frequenzen um 850 cm−1 von ihnen theoretisch nicht beschrieben wird. Ander-

seits zeigen sich in der paraelektrischen Phase außer der A2g und A2u Moden wie in den

aktuellen Kurven ebenfalls weitere imaginäre Moden (vermutlich ebenfalls E Moden) an

Γ und F.

Der Pfad X–Γ–Z–F–L–Γ innerhalb der Brillouin-Zone wird ebenfalls verwendet, um die

Phononendispersion der ferroelektrischen und paraelektrischen Phase von LiTaO3 in Abb.

3.5 darzustellen und um damit den Vergleich mit LiNbO3 und den früheren Arbeiten zu

erleichtern [104, 107]. Die berechnete Phononendispersion von LT ähnelt dabei stark der

von LN. Dies ist soweit aufgrund der sehr ähnlichen Kristallstruktur beider Materialien

nicht verwunderlich. Der größte Unterschied fällt besonders in der Zustandsdichte der

ferroelektrischen Phase um 200 cm−1 auf, bei der sich im Gegensatz zu Lithiumniobat

fast eine Lücke ergibt. Dies kann der hohen Unausgeglichenheit der Massen zwischen den

schweren Tantal- und den leichten Lithium- bzw. Sauerstoffatomen zugeschrieben werden,

die die Bewegungen der Atome weiter entkoppeln. In Abbildung 3.6 kann dies im Vergleich

der nach Atomsorte aufgelösten phononischen Zustandsdichte beider betrachteten Mate-

rialien noch einmal verdeutlicht werden. Die Abbildung zeigt allgemein, dass in beiden

Materialien die zu Sauerstoff gehörige Zustandsdichte einen Großteil der höchsten Fre-

quenzen ausmacht, während das leichtere aber schwächer im Material gebundene Lithium

im mittleren bis unteren Frequenzbereich schwingt. Die Zustandsdichte der Lithiumvibra-

tionen weist äußerst geringe Änderungen in Abhängigkeit davon auf, ob Niob oder Tantal

als zweites Kation im Material vorhanden ist.

Anders als im Fall von LN werden in der paraelektrischen Phase keine instabilen E Mo-

den bei Γ und F beobachtet. Sogar die A2g Moden werden aufgrund des makroskopischen

elektrischen Feldes, also aufgrund des LO-TO-Splittings, teilweise stabil. Das kann mit

der Relaxation hin zu verschiedenen Gitterparametern der beiden Materialien zusam-

menhängen. Wie experimentell und in den aktuellen theoretischen Strukturparametern

beoachtet, ist die ferroelektrische Verschiebung der Lithium- und Tantalatome etwas we-
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niger stark ausgeprägt als bei den Lithium- und Niobatomen in LN, sodass die Differenz

zwischen ferroelektrischer und paraelektrischer Phase geringer ist. Die berechnete Disper-

sion von LT mit dem experimentellen Volumen ΩPE
Expt ist ebenfalls in Abb. 3.5 dargestellt.

Wie erwartet, sind diese Frequenzen wegen der größeren Gitterkonstanten niedriger, aber

auch hier sind wie bei LN leichte Abweichungen vom konsistenten Verhalten aufgrund

der internen Parameter zu verzeichnen. Im Vergleich zu Toyoura et al. [107] zeigt sich

in der paraelektrischen Phase übereinstimmend, dass dort ebenfalls keine imaginären E

Moden mehr vorkommen. Die aktuellen Befunde für das Volumen bei 1500 K befinden

sich dabei näher an denen von Toyoura et al., da das PBE-Funktional, was in ihrer Ar-

beit verwendet wurde, zu große Gitterkonstanten lieferte. Die Abweichungen bezüglich

des LO-TO-Splittings und des unterschiedlichen q-Punkt-Samplings berücksichtigt, sind
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Abbildung 3.5: Mit dem PBEsol Funktional berechnete Phononendispersion und phononische Zustands-
dichte von ferroelektrischem (oben) und paraelektrischem (unten) LiTaO3.
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beide komplementären Methoden in guter Übereinstimmung.

Wie bereits erwähnt wurde, sind die imaginären Frequenzen, die überall im reziproken

Raum auftreten, ein Zeichen dafür, dass das gängige Modell für die paraelektrische Pha-

se keine Minimumgrundzustandsstruktur verkörpert. Da besonders für die A2g und A2u

Moden über den gesamten Bereich der Brillouin-Zone imaginäre Frequenzen vorkommen,

kann dies als ein Ordnungs-Unordnungs-Phasenübergang ausgelegt werden [107]. Je nach

Periodizität des Wellenvektors kommt es dabei zu Verschiebungen in die eine oder an-

dere Richtung entlang der c-Achse. Im Gegensatz dazu würde das Auftreten von ima-

ginären Frequenzen ausschließlich an Γ für einen displaziven Phasenübergang sprechen,

da das ferroelektrische Auslenkungsmuster Einheitszellen-periodisch fortgesetzt würde. Es

soll an dieser Stelle angemerkt werden, dass ab initio-Molekulardynamikrechnungen [107,

115] auf einen ferroelektrischen Übergang zweiter Ordnung hinweisen, der (überwiegend)

Ordnungs-Unordnungs-Charakter besitzt.

3.5.1 Spezifische Wärmekapazität

Die aktuellen Berechnungen zur spezifischen Wärmekapazität CV bei konstantem Volu-

men mittels Gl. (3.1) für LN und LT sind zusammen mit experimentellen Daten in Abb.

3.7 abgebildet. Im Falle von LN werden Messungen der spezifischen Wärmekapazität bei

konstantem Druck Cp an einer fast stöchiometrischen Probe im Temperaturbereich von

4.2–100 K, die mit einem automatischen adiabatischen Kaloriemeter durchgeführt wur-

den und eine dort angegebene Genauigkeit von 1% aufwiesen [136], mit den aktuellen
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Abbildung 3.7: Theoretische Resultate für die spezifische Wärmekapazität für LN und LT im Vergleich
mit experimentellen Messungen von Villar et al. [136], Nakamura et al. [137] und Yao et al. [138] (LN)
bzw. Glass [141] (LT).

Ergebnissen verglichen. Außerdem stehen mittels Differentialkalorimetrie gemessene spe-

zifische Wärmekapazitäten Cp bei Raumtemperatur (651 J kg−1 K−1, stöchiometrisches

LN) [137] und bei 328.15 K (699.5 J kg−1 K−1, fast stöchiometrisches LN) [138] zur

Verfügung. Zur Fehlerabschätzung ist in [139] ein genereller Fehler dieser Messungen von

1.5 % vermerkt. Da die spezifische Wärmekapazität in [137] und [138] für kongruentes LN

höher angegeben werden als für stöchiometrisches, werden weitere Messungen [140] nicht

berücksichtigt, da deren Proben vermutlich eine hohe Konzentration von Gitterdefekten

oder Verunreinigungen aufwiesen [136]. Die berechnete Wärmekapazität für LiNbO3 weist

eine sehr gute Übereinstimmung mit den experimentellen Daten auf. Kleinere Abweichun-

gen können mit der Tatsache erklärt werden, dass die Proben in [136] nicht vollkommen

stöchiometrisch waren. Außerdem sind die Messungen bei konstanten Druck und nicht bei

konstanten Volumen erfolgt, sodass die Effekte durch Volumenexpansion einen deutlichen

Unterschied zu den aktuellen Berechnungen ausmachen können. Diese Tatsache zeigt sich

später bei LT deutlicher. Für höhere Temperaturen können die als zu niedrig berechneten

Phononenfrequenzen außerdem zu kleineren Werten für die spezifische Wärmekapazität

führen als in [137] und [138]. Nichtsdestotrotz betragen die Abweichungen zu den beiden

experimentellen Werten nur 1.5 % bzw. 4.2 %.

Im Fall von Lithiumtantalat ergibt die theoretisch berechnete Wärmekapazität CV einen

Wert von 402 J kg−1 K−1 bei 298 K, was im Bereich der experimentellen Unsicherheit zum

von Glass [141] bestimmten Wert von (426±36) J kg−1 K−1 liegt, der mittels Lichtpulsen

induzierte Temperaturänderungen in LT bestimmt wurde. Dieser Wert ist im Vergleich zu
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LN (651 J kg−1 K−1) aufgrund der unterschiedlichen Atommassen von LN und LT nied-

riger. Die Wärmekapazität in Abhängigkeit der molaren Masse beträgt 193 J kg−1 mol−1

(LN) und 190 J kg−1 mol−1 (LT), was die Ähnlichkeit in den Phononendispersionen der

beiden Materialien unterstreicht. Die theoretische CV -Kurve in Abhängigkeit der Tempe-

ratur ist im Vergleich zu den Messungen von Glass im Temperaturbereich von 298–1000 K

ebenfalls in Abb. 3.7 dargestellt. Die größere Abweichung bei sich erhöhender Temperatur

lässt sich neben den oben angegeben Gründen durch in [141] ab 650 K klar identifizierbare

bis zum Phasenübergang sich verstärkende anharmonische Effekte in der gemessenen CP -

Kurve erklären. Insgesamt sind die dargelegten Befunde für beide Materialien ein klarer,

indirekter Beweis für die Korrektheit der berechneten Phononendispersionen bei 0 K.

3.5.2 Phasenübergang

Die strukturelle Phase einer Verbindung wird bei einer gegebenen Temperatur durch die

Phase mit der niedrigsten freien Energie F bestimmt. Der Punkt, in dem die Energie-

differenzen zweier freier Energien von verschiedenen Phasen verschwindet, markiert die

Temperatur des Phasenübergangs. Diese wird bei einem paraelektrischen-ferroelektrischen

Phasenübergang Curie-Temperatur genannt. Mittels DFT konnten freie Energien ver-

schiedener struktureller Phasen mit Erfolg berechnet werden und kritische Temperatu-

ren für den Phasenübergang für eine große Bandbreite von Strukturen wie ausgedehnte

Festkörper [142], Oberflächen [143] und Quasi-eindimensionale Strukturen [144] ermit-

telt werden. Innerhalb des auch in dieser Arbeit verwendeten Ansatzes konnte bereits

die Übergangstemperatur des ferroelektrischen-paraelektrischen Phasenübergangs in Ba-

riumtitanat bestimmt werden [145].

Es werden nun die temperaturabhängigen freien Energien der ferroelektrischen und pa-

raelektrischen Phase für Lithiumniobat und Lithiumtantalat berechnet und in Abb. 3.8

dargestellt. Es werden dabei die freien Energien beider Phasen mit dem theoretisch be-

stimmten Volumen (ΩFE
Theorie bzw. ΩPE

Theorie) sowie mit dem experimentell gemessenen Vo-

lumen ΩPE
Expt bei 1500 K (LN) bzw. 940 K (LT) berechnet und miteinander in Beziehung

gesetzt. Damit können zusätzlich die Auswirkungen der thermischen Ausdehnung im Be-

reich des Phasenübergangs mit berücksichtigt werden.

Im Fall von Lithiumniobat beläuft sich die Differenz der elektronischen Grundzustands-

energien zwischen ferroelektrischer und paraelektrischer Phase auf 0.259 eV, was einen

vergleichbaren Wert zu früheren Studien repräsentiert [106, 146]. Dieser Wert ist gleich-

zeitig die Anfangsenergiedifferenz, die im zweiten Schritt mit der freien Vibrationsenergie

ergänzt wird. Dies führt zu einer Aufhebung des Energieunterschieds bei etwa 1000 K, was

480 K geringer ist als die gemessene Temperatur des Phasenübergangs. Ein Teil der Dis-

krepanz kann durch die thermische Ausdehnung verursacht werden. Das hier verwendete

experimentelle Volumen der paraelektrischen Phase wurde bei 1500 K ermittelt, eine Tem-
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peratur die sehr nah bei der Curie-Temperatur liegt. Die zugehörige Grundzustandsener-

giedifferenz der beiden Phasen bei experimentellen Volumen bleibt fast unverändert bei

0.262 eV. Unter Verwendung der entsprechenden Phononendispersion für ΩPE
Expt in der Be-

rechnung der freien Energie verschiebt sich die vorhergesagte Phasenübergangstemperatur

damit um 160 K nach oben. Bei Lithiumtantalat beträgt die elektronische Grundzustand-

senergiedifferenz 0.127 bzw. 0.115 eV für die primitive Einheitszelle mit den theoretisch

bestimmten Volumina Ω
FE/PE
Theorie bzw. für ΩPE

Expt. Die freie Energiedifferenz kompensiert diese

Werte in beiden Fällen bei etwa 800 K. Der experimentell bestimmte Wert liegt in diesem

Fall bei 958 K [10].

Die bessere Übereinstimmung mit den experimentellen Befunden bei LT im Vergleich

mit LN ist zumindest teilweise mit der niedrigeren Curie-Temperatur zu erklären: Bei

einer Temperatur von 800 K ist davon auszugehen, dass die Gitterschwingungen weit

weniger von Anharmonizitäten beeinflusst werden als bei LN um 1500 K, was mit Si-

cherheit die Fehleranfälligkeit der aktuellen Berechnungen reduziert. Die aktuellen Be-

rechnungen vernachlässigen Effekte höherer Ordnung wie die Phonon-Phonon-Kopplung,

die über die harmonische Approximation hinausgehen und bei den höheren Temperatu-

ren, die beim Phasenübergang vorliegen, relevant werden. Eine weitere erhebliche aber

ebenfalls schwer abzuschätzende Unsicherheit in den vorgestellten Ergebnissen macht die

Behandlung der imaginären Phononenfrequenzen in den paraelektrischen Phasen aus, die

durch die Bewegung der Atome in einem anharmonischen Doppelmuldenpotential auftre-

ten. Diese können innerhalb der harmonischen Näherung und somit grundsätzlich nicht

in Gl. (2.76) berücksichtigt werden. Aufgrund einer hohen Anzahl von q-Punkten, die

zur Konvergenz der freien Energie benötigt werden, sind typische Ansätze, die diese Fre-

quenzen angemessen erfassen [147], hier nicht anwendbar. Daher werden alle Frequenzen,

eingeschlossen die imaginären, als harmonisch approximiert, also ihr Absolutbetrag in Gl.

(2.76) verwendet.

Trotz der Tatsache, dass die theoretischen Curie-Temperaturen von LiNbO3 und LiTaO3

in qualitativer Übereinstimmung mit den gemessenen Werten liegen, sollte das nicht

darüber hinwegtäuschen, dass es sich bei der gewählten Approximation hinsichtlich der

imaginären Frequenzen um ein Vorgehen handelt, welches keine direkte theoretische Grund-

lage besitzt. Die Anwendung ist erfolgreich, da niedrigere Beiträge der Phononenfrequen-

zen höhere Beiträge zur freien Energie liefern (siehe Gleichung (2.76)). Damit kompen-

sieren die niedrigen Beträge der imaginären Frequenzen einen Großteil des strukturel-

len Energieunterschieds zwischen ferro- und paraelektrischer Phase. Deshalb dürfen die

theoretischen Werte lediglich als grobe Abschätzung einer unteren Grenze der Übergangs-

temperatur angesehen werden. Die Beispiele Bariumtitanat [145], Lithiumniobat und Li-

thiumtantalat rechtfertigen die Anwendung dieses Verfahrens nachträglich durch seinen

Erfolg. Die Anwendung bei weiteren Materialen sollte aber in jedem Einzelfall deutlich

hinterfragt und geprüft werden. Eine größer angelegte Studie an einer größeren Bandbreite

von Materialien könnte weiteren Aufschluss über die Sinnhaftigkeit geben.
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3.6 Nullpunktsrenormierung und Temperaturabhängigkeit

der Bandlücke

Die theoretischen Phononendispersionen und Auslenkungsmuster werden nun genutzt,

um die Nullpunktsrenormierung und Temperaturabhängigkeit der elektronischen Kohn-

Sham-Eigenenergien in Abhängigkeit des phononischen Wellenvektors q zu bestimmen. Zu

diesem Zweck werden DFPT- und finite-Differenzen-Rechnungen durchgeführt, um beide

Ansätze gegeneinander abzuschätzen. Die DFT-Bandstruktur ist in Abbildung 3.9 abge-

bildet. Wie dort zu erkennen ist, verlaufen die elektronischen Bänder sehr flach, besonders

die oberen Valenzbänder. Die Bandlücke von 3.46 eV ist (fast) direkt bei Γ angesiedelt.

Auf der ersten Hälfte des Pfades Γ–Z wird sie minimal um 13 meV reduziert. Da es mit

dem regulären 4×4×4 k-Punkt-Sampling nicht möglich ist, den entsprechenden k-Punkt

zwischen Γ und Z zu beschreiben, wird sich im Folgenden auf die direkte Bandlücke bezo-

gen. Bei Γ sind die obersten zwei Valenzbänder und die niedrigsten zwei Leitungsbänder

entartet.

Da die Elektron-Phonon-Korrekturen bekanntermaßen stark q-Punkt abhängig sind, lohnt

es sich in Abb. 3.10 einen Blick auf die Beiträge zur Nullpunktsrenormierung ∆εZPR
nk (q) der

Bandkantenzustände bei Γ zu werfen. Die Korrekturen der zwei höchsten entarteten Va-

lenzbänder und der zwei niedrigsten entarteten Leitungsbänder werden dort dargestellt.

Sie sind mit teilweise etwa 6 eV von beträchtlicher Größe und wie erwartet stark vom

phononischen Wellenvektor q abhängig. Mitunter variiert sogar ihr Vorzeichen. Leichte-
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Abbildung 3.9: Berechnete DFT-PBEsol Bandstruktur von LN. Die gestrichelten roten Linien entstehen
durch Addition des Betrags der jeweiligen Nullpunktsrenormierung auf die einzelnen Bänder. Für die
äußersten Zustände der gezeigten Valenz- und Leitungsbänder fällt die ZPR im Allgemeinen höher aus.
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re Ausschläge der Korrekturen sind bei den Valenzbändern zwischen Γ und Z und bei

den Leitungsbändern an F bzw. zwischen F und L festzustellen. Dies wird dadurch her-

vorgerufen, dass durch das Auftreten flacher Bänder mit sehr ähnlichen elektronischen

Eigenenergien wie an Γ mehr elektronische Zustände durch die Phononen miteinander

gekoppelt werden, die nur von der (praktisch vernachlässigbaren) Energie der Phononen

voneinander getrennt sind. Die Phononen müssen dabei einen Wellenvektor aufweisen, der

der Differenz der verschiedenen k-Punkte entspricht. Im Hinblick auf die Bandstruktur

weisen folgerichtig die k-Punkte zwischen Γ und Z bei den oberen Valenzbändern und

zwischen F und L bei den unteren Leitungsbändern nahezu die gleichen elektronischen

Eigenwerte wie an Γ auf. Insbesondere führt dieses Verhalten auch zu der divergierenden

Elektron-Phonon-Korrektur für q → 0, da mit steigender Nähe benachbarter k-Punkte

die Differenz der elektronischen Eigenwerte selbstverständlich auch beliebig klein wird.

Nichtsdestotrotz verschwindet die Elektron-Phonon-Kopplung bei q ∼= 0, da in diesem

Fall keine Kopplung der elektronischen Zustände mit sich selbst möglich ist und die Pho-

nonenenergie zu klein für eine Interbandkopplung ist.
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Abbildung 3.10: Beiträge zur Nullpunktsrenormierung der zwei höchsten entarteten Valenzzustände
(unten) und der beiden niedrigsten entarteten Leitungsbandzustände (oben) bei Γ in Abhängigkeit ver-
schiedener phononischer Wellenvektoren q der ersten Brillouin-Zone.
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Die starke q-Punktabhängigkeit der ZPR, besonders um Γ, zeigt, dass eine genaue Kennt-

nis der phononischen Bandstruktur vorausgesetzt werden muss, um den Elektron-Phonon-

Kopplungs-Einfluss auf die elektronische Bandstruktur in LN zuverlässig zu bestimmen.

Mit Einführung eines dichteren q-Punkt-Samplings nahe Γ, wie in Kapitel 3.2 beschrieben,

wird diese Variation in dieser Region berücksichtigt.

Die Übereinstimmung der beiden Rechenmethoden, DFPT und finite-Differenzen, ist

sehr gut. Die Differenzen bei F decken eine wesentliche Schwäche des finite-Differenzen-

Ansatzes auf: Die phononischen Auslenkungen brechen die Kristallsymmetrie. Dadurch

splitten insbesondere die zuvor entarteten elektronischen Eigenwerte der Bandkanten-

zustände bei Γ auf und verkomplizieren dabei die Zuordnung der geänderten Eigen-

werte untereinander bei 30 verschiedenen Phononenmoden. Dieses Problem lässt sich

zunächst lösen, indem bei den zwei äußersten entarteten Bandkantenzuständen jeweils alle

Änderungen gemittelt werden. Dies ist in diesem Falle unproblematisch, da die DFPT-

Ergebnisse zeigen, dass bei den meisten mit der finite-Differenzen-Technik berechneten

q-Punkten keine groß voneinander abweichenden Korrekturen zu erwarten sind. Dies ge-

schieht in Übereinstimmung mit [132, 148]. Außerdem ergibt sich integriert über alle

q-Punkte der Brilloin-Zone derselbe ZPR-Wert für die jeweiligen zwei Valenz- oder Lei-

tungsbandkantenzustände bei k = Γ. Leider werden durch die Bildung von Superzellen

Eigenwerte äußerer k-Punkte der ersten Brillouin-Zone auf k-Punkte der neu entstande-

nen kleineren Brillouin-Zone der Superzelle zurückgefaltet. Beim Blick auf die Bandstruk-

tur in Abbildung 3.9 lässt sich erkennen, dass die Bandkanten des Leitungsbandes bei Γ

und F sehr nah beieinander liegen. Die Darstellung des F q-Phononen-Wellenvektors er-

fordert eine Superzelle, in der die Eigenwerte des F k-Punktes auf Γ gefaltet werden. Das

bedeutet, dass Änderungen der Eigenwerte im F-Punkt nicht mehr von denen im Γ-Punkt

zu trennen sind. Um dennoch ein Ergebnis angeben zu können, ist die in Abb. 3.10 ge-

zeigte ZPR der Leitungsbänder bei F die gemittelte Korrektur der drei nah beieinander

liegenden Eigenwerte. Wird der Elektron-Phonon-Beitrag aus der DFPT des F-Punktes

mit +0.221 eV miteinbezogen und alles gemittelt, ergibt sich eine Gesamtkorrektur von

0.047 eV in guter Übereinstimmung mit den 0.038 eV der finite-Differenzen-Methode.

Die energetisch zweithöchste Phononenmode ist eine transversale optische E Mode (TO9)

und liefert den Hauptbeitrag der Phononenmoden zur ZPR. Insgesamt werden die obers-

ten Phononenzweige durch Vibrationen der Sauerstoffatome verursacht (vgl. Abb. 3.6).

So führt diese Mode zu einer Verzerrung des Sauerstoffoktaeders wie in Abb. 3.11 dar-

gestellt. Daher ist es naheliegend, dass gerade diese Mode die Bandkantenzustände, die

hauptsächlich durch O 2p und Nb 4p Zustände gebildet werden [149], stark von dieser

E Mode betroffen sind, da Niob sich im Sauerstoffoktaeder befindet. Die Größe ihres

Beitrags zur ZPR entspricht damit an manchen q-Punkten der Summe der anderen 29

Phononenmoden.

Die in der ersten Brillouin-Zone aufintegrierten Beiträge zur Nullpunktsrenormierung der
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Abbildung 3.11: Die Visualisierung der höchsten E Mode an Γ (E TO9) zeigt die Verzerrung des
Sauerstoffoktaeders, von der Seite (links) und von oben (rechts) betrachtet. Sauerstoffatome sind rot,
Niobatome grau und Lithiumatome weiß eingezeichnet.

Bandkantenzustände ist in Abb. 3.9 für alle k-Punkte eines Γ-zentrierten 4×4×4-Gitters

dargestellt. So liefert insbesondere die q-Punkt aufgelöste ZPR in Abb. 3.10 integriert

in der ersten Brillouin-Zone die gesamte Nullpunktsrenormierung in k = Γ. Die ZPR

zwischen den Punkten des 4×4×4 k-Punktgitters wird für den Plot der Bandstruktur

linear interpoliert. Die direkte Bandlücke bleibt dabei bei Γ; sie wird durch die ZPR um

0.41 eV reduziert. Aufgrund des Verlaufs der Valenzbänder ist es plausibel, dass dieser

Wert für die ZPR auch eine sehr gute Approximation für die indirekte Bandlücke darstellt.

Im Experiment ist es möglich, die ZPR aus temperaturabhängigen Messungen der funda-

mentalen Absorptionskante abzuschätzen [122]. Offensichtlich kann die Nullpunktsrenor-

mierung nicht direkt gemessen werden. Jedoch kann sie mittels Isotopensubstitution oder

mittels des asymptotischen Grenzfalls der temperaturabhängigen Reduktion der elektro-

nischen Bandlücke für T � TD abgeleitet werden [150], wobei TD die Debye-Temperatur

ist. Daten für letzteres Verfahren stehen durch Redfield et al. [122] zur Verfügung, die

die temperaturabhängige Änderung der fundamentalen Absorptionskante im Bereich von

0–667 K bestimmten. Die Messungen sind aufgrund der Verbreiterung des optischen Spek-

trums auf diesen Temperaturbereich beschränkt. Wie in [150, 151] vorgeschlagen, werden

die experimentellen Werte an den empirischen Ausdruck

∆Eg(T ) = −αTD

2

[(
1 +

(
2T

TD

)p)1/p

− 1

]
(3.2)

mit den Parametern α, p, und TD gefittet. Die ZPR wird dabei aus Gl. (3.2) extrahiert,

indem das lineare Verhalten für T � TD extrapoliert wird. Mit α = 1.25929 meV/K,

p = 2.57023, and TD = 637.466 K erhält man eine Nullpunktsrenormierung der elektroni-

schen Bandlücke von αTD/2 = 0.40 eV. Dabei wird empfohlen, die Debye-Temperatur TD
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Abbildung 3.12: Theoretische Änderung der LiNbO3 Bandlücke mit der Temperatur innerhalb des ak-
tuellen DFPT-AHC-Formalismus und mittels Molekulardynamik [154]. Die Nullpunktsrenormierung ist
durch die Absenkung der theoretischen DFPT-AHC-Kurve um 0.41 eV angedeutet. Gleichung (3.2) wird
an die experimentellen Daten aus der Messung der temperaturabhängigen fundamentalen Absorptions-
kante von Redfield et al. [122] gefittet, die aus Konsistenzgründen ebenfalls mit dem ZPR-Offset versehen
werden. Die lineare Asymptote, die nicht akkurat aus den limitierten experimentellen Daten extrahiert
werden kann, bestimmt den experimentellen Wert der ZPR bei 0 K.

als Fit-Parameter zu verwenden, um bessere Resultate zu erzielen [151] (siehe Abb. 3.12).

Dieselbe Methode wurde von Cardona [152] angewendet, um die ZPR von Germanium

und Silizium aus Messungen der Absorptionskante abzuschätzen, ebenfalls mit experi-

mentellen Daten aus einem begrenzten Temperaturbereich. Die erzielten Resultate sind

in guter Übereinstimmung mit Ergebnissen, die aus Isotopeneffekten geschlossen wurden.

Die Anwendung elaborierterer Methoden [153] ist aufgrund der mangelnden Messpunkte

nicht möglich.

Die Übereinstimmung des extrapolierten Wertes, also der Differenz aus den Schnitt-

punkten der gestrichelten Linie mit der y-Achse und des experimentellen Fits mit der

y-Achse in Abb. 3.12, mit dem aktuellen theoretischen Resultat der ZPR für LN ist ex-

zellent. Dennoch bleibt zu erwähnen, dass beide Werte Unsicherheiten unterliegen; auf

der einen Seite durch die Fitprozedur und zum anderen durch fehlende Selbstenergie-

effekte in der DFT [132, 148]. Durch Anwendung des Fits auf die aktuelle theoreti-

sche Temperaturabhängigkeitskurve der Bandlücke erhält man eine ZPR von 0.31 eV.

Eine Fehlerabschätzung bezüglich der Elektron-Elektron-Wechselwirkung kann mithil-

fe von Hybridfunktionalen innerhalb der finite-Differenzen-Methode erfolgen. Da es re-

chentechnisch sehr aufwendig ist, 30 DFT-Rechnungen pro q-Punkt mit einem Hybrid-

Austauschkorrelationsfunktional in einer Superzelle durchzuführen, stellt es einen gu-

ten Kompromiss dar, sich auf den L Punkt zu beschränken, da der Aufwand hier am

niedrigsten ist, da die Einheitszelle nur verdoppelt wird und die Methode innerhalb

der gewöhnlichen DFT, wie zuvor gesehen, dort funktioniert. Wie in Abb. 3.4 zu se-
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hen ist, sind bei L alle Phononenzweige zweifach entartet, was die Anzahl der erfor-

derlichen Grundzustandsrechnungen mit den eingefrorenen Phononenauslenkungen in der

doppelten 2×1×1 Superzelle halbiert. Hybridfunktionale sind im Quantum Espresso (QE)

Programmpaket implementiert. Rechentechnische Details sind in Kapitel 4.2.1 nachzu-

lesen. Alle Rechnungen erfolgen auf einem 2×4×4 k-Punkt Gitter für die Lösung der

Kohn-Sham-Gleichung und auf einem 1×2×2 Gitter für die Auswertung des exakten

Austauschfunktionals. Berechnungen der phononischen Frequenzen und Polarisationsvek-

toren erfolgen aus Konsistenzgründen innerhalb des QE-Programmpaketes im DFPT-

Formalismus mit dem PBEsol-Funktional. Tests mit den PBEsol-Auslenkungsmustern der

beiden höchsten entarteten Phononenmoden zeigen, dass ihr ZPR-Beitrag auch bei den

HSE06-Hybridfunktionalen nicht voneinander abweicht (unter 0.1 meV) und die PBEsol-

Moden somit eine sehr gute Näherung für die HSE06-Auslenkungsvektoren liefern. Die

Phononenfrequenzen an L weichen durchschnittlich um 2.6 und höchstens um 4.7 cm−1

von den mit ABINIT und demselben Formalismus berechneten ab. Der mit dem PBEsol-

Funktional berechnete Beitrag zur ZPR an Γ aufgrund des L q-Punktes beträgt 0.154 eV

für das oberste Valenzband und -0.085 eV für das unterste Leitungsband. Die Beiträge

sind um 21 meV niedriger bzw. 2 meV höher ist als die Werte desselben Verfahrens in

ABINIT. Damit ist die Konsistenz der Rechnungen innerhalb der beiden Programmpakete

hinreichend zufriedenstellend, wobei die leichten Abweichungen durch die Verwendung un-

terschiedlicher Pseudopotentiale und leicht abweichender Gitterkonstanten erklärt werden

können.

Mit dem HSE06-Hybridfunktional und den mit den PBEsol-Funktional berechneten pho-

nonischen Auslenkungen und Eigenfrequenzen erhöht sich der Beitrag zur ZPR der Band-

kantenzustände um 0.229 eV für die beiden entarteten obersten Valenzbänder und um

-0.120 eV für die beiden untersten Leitungsbänder. Die Erhöhung um 49 % bzw. 41 %

entspricht den Beobachtungen von Antonius et al. [132], die den Vergleich von DFPT und

finite-Differenzen-Methode innerhalb der selbstkonsistenten GW -Näherung vollzogen ha-

ben und einen Anstieg der ZPR bei Diamant um mehr als 40 % vorhersagten. Allerdings

stellt der mit HSE06 berechnete Wert nur eine obere Schranke der Korrektur dar, da

Abschirmungseffekte aufgrund der mit Hybridfunktionalen unzureichend beschriebenen

Korrelation nicht korrekt berücksichtigt sind [132]. Insgesamt lassen sich daher die Feh-

lerbalken der DFPT-AHC und der experimentellen Extrapolation auf mindestens 0.1 eV

abschätzen, wobei die Abweichung in beiden Fällen nach oben stattfindet. Es ist daher

nicht unwahrscheinlich, dass die tatsächliche Nullpunktsrenormierung bei etwa 0.5 eV

liegt.

Mithilfe der Bose-Einstein-Verteilung ist es einfach, neben der ZPR auch die Tempera-

turabhängigkeit der Elektron-Phonon-Kopplung zu berücksichtigen. Die aktuelle tempe-

raturabhängige Änderung der Bandlücke ist in Abb. 3.12 zusammen mit den ab initio-

Molekulardynamik-Ergebnissen (AIMD) von Riefer et al. in einer 3×3×3 Superzelle [154]

und den Messungen der fundamentalen Absorptionskante von Redfield et al. dargestellt.
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Abbildung 3.13: Elekronische Zustandsdichte ohne Elektron-Phononen-Kopplung (e-Ph) und mit ZPR
und temperaturabhängigen Korrekturen.

Die Kurve von Riefer et al. kann methodisch bedingt keine Nullpunktsschwingungen der

Atome miteinbeziehen, jedoch anharmonische Effekte, die der aktuellen AHC-Methode

verborgen bleiben. Daher vermögen die Ergebnisse aus der Molekulardynamiksimulati-

on die experimentellen Ergebnisse für niedrige Temperaturen nicht zu beschreiben. Im

Gegensatz dazu stellen die aktuellen Ergebnisse eine sehr gute Approximation für (rela-

tiv) niedrige Temperaturen bis etwa 500 K dar. Bei Raumtemperatur kann man somit

von einer Reduzierung der PBEsol-Bandlücke von 0.5 eV ausgehen. Für hohe steigende

Temperaturen weichen die aktuellen Ergebnisse zunehmend von der experimentellen Kur-

ve bzw. dem Fit ab, da anharmonische Effekte stärker zum Tragen kommen. Dies wird

dadurch verdeutlicht, dass die sich Beschreibung der anharmonischen Effekte durch die

AIMD bei 900 K als kompatibler mit dem experimentellen Fit erweist. Die Änderung der

elektronischen Zustandsdichte aufgrund der Elektron-Phonon-Kopplung ist in Abbildung

3.13 illustriert. Die Reduktion der Bandlücke ist Folge der allgemeinen Verbreiterung der

elektronischen Bänder.

3.7 Zusammenfassung

In diesem Kapitel wurden Rechnungen innerhalb der Dichtefunktionaltheorie und Dichte-

funktionalstörungstheorie durchgeführt, um die strukturellen Eigenschaften und die pho-

nonische Bandstruktur von LiNbO3 und LiTaO3 zu bestimmen. Die Genauigkeit von

LDA- sowie PBE-, PBEsol- und AM05-Austauschkorrelationsfunktionalen bezüglich der

LN-Gitterparameter und Phononenfrequenzen wurde getestet. Unter ihnen war insbeson-

dere das PBEsol-Funktional fähig, experimentelle Gitterkonstanten und interne Parame-

ter zu reproduzieren und Phononenfrequenzen bei Γ zuverlässig zu beschreiben. Durch

Fehleraufhebung aufgrund zu kleiner Gitterkonstanten bei LiTaO3 stimmten die Phono-

nenfrequenzen besser mit den experimentellen Werten überein als bei LiNbO3. Im Fall

von LiTaO3 wurden zum ersten Mal die longitudinalen optischen Frequenzen bei Γ be-

stimmt und somit die experimentell gefolgerte Zuordnung dieser Moden bestätigt [94].

Des Weiteren wurde bei beiden Materialien die volle Phononendispersion für die ferro-
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und paraelektrischen Phasen bei theoretischem Einheitszellvolumen sowie beim größeren

experimentellen Volumen nahe des Phasenübergangs berechnet. Mit dem expandierten

Gitter ging eine Erhöhung des internen x Parameters in der paraelektrischen Phase ein-

her, der im Fall von LN den im Vergleich zum Experiment zu kleinen Wert erhöhte.

Das Vorliegen von imaginären Moden im gesamten reziproken Raum in der paraelektri-

schen Phase, wie es schon in früheren Rechnungen vorausgesagt wurde [104, 107], ist ein

Zeichen eines Ordnung-Unordnungs-Phasenübergangs bei beiden Materialien [107]. Der

Phasenübergang wird von der niedrigsten imaginären A2u Mode getrieben, deren Aus-

lenkung ein Minimum in der elektronischen Gesamtenergie offenbart, die einen Großteil

der strukturellen Energiedifferenz zwischen ferroelektrischer und paraelektrischer Phase

kompensiert. Ihr Auslenkungsmuster gleicht dem der ferroelektrischen Verschiebung aller

Atome.

Die theoretisch berechnete spezifische Wärmekapazität CV als Funktion der Temperatur

validiert die Resultate für die Phononendispersion in der ersten Brillouin-Zone. Bei LN

ist CV in einem ausgedehnten Temperaturbereich in sehr guter Übereinstimmung mit den

experimentellen Werten [136–138]. Auch die berechnete spezifische Wärmekapazität von

402 J kg−1 K−1 für LiTaO3 [141] befand sich bei Raumtemperatur nah bei den experi-

mentellen Messungen, wobei sich jedoch die Grenzen der harmonischen Approximation

bei steigender Temperatur offenbarten.

Im Weiteren wurde die Phononendispersion verwendet, um die temperaturabhängigen

freien Energien der ferro- und paraelektrischen Phase von LiNbO3 und LiTaO3 zu bestim-

men. Ein pragmatisches Modell, welches die Beträge der imaginären Frequenzen in der

paraelektrischen Phase einbezieht, fand dabei Anwendung. Damit konnten untere Tempe-

raturgrenzen für die Phasenübergänge berechnet werden, die etwa 320 K (LN) bzw. 160 K

(LT) niedriger liegen als die experimentell bestimmten Curie-Temperaturen [9, 10].

Zum Schluss konnte die Kenntnis der Vibrationseffekte auf die elektronischen Eigenwerte

stark erweitert werden. Es wurde gezeigt, dass die Nullpunktsrenormierung der elektro-

nischen Bandstruktur beträchtlich ist und besonders nahe des Brillouin-Zonenzentrums

stark (sogar im Vorzeichen) vom phononischen Wellenvektor abhängt. Die gut auskonver-

gierten Resultate für die ZPR offenbarten eine Reduktion der Bandlücke von LiNbO3 um

0.41 eV, die in exzellenter Übereinstimmung mit dem Wert 0.40 eV war, der aus der tem-

peraturabhängigen Verschiebung der fundamentalen Absorptionskante in [122] extrapo-

liert wurde. Sorgfältige Fehleranalyse, die die Anwendung des HSE06-Hybrid-Austausch-

korrelationfunktionals einschloss, welches die Elektron-Elektron-Wechselwirkung besser

beschreiben sollte, ergab, dass dieser Wert sogar um bis zu 40 % höher ausfallen könnte.

Wird die Temperaturabhängigkeit in die aktuellen Ergebnisse mit einbezogen, ergibt

sich bei Raumtemperatur eine Verringerung der elektronischen Bandlücke aufgrund der

Elektron-Phonon-Kopplung von 0.5 eV mit dem PBEsol-xc-Funktional.

Die DFPT-AHC-Methode wird bisher nicht standardmäßig angewendet. Der Grund dafür
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liegt in dem teilweise enormen Aufwand, die Korrekturen der elektronischen Kohn-Sham-

Eigenwerte bezüglich der phononischen Wellenvektoren auszukonvergieren. Die Anzahl der

Arbeiten ist übersichtlich und meistens auf einfachere Verbindungen beschränkt [155].

Die erfolgreiche Anwendung auf LiNbO3 wird durch das freundliche Verhalten der q-

abhängigen Korrekturen mit einem divergenten Verhalten lediglich bei Γ begünstigt.
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Kapitel 4

Defektstruktur und optische

Eigenschaften intrinsischer und

extrinsischer Punktdefekte in

Lithiumniobat

4.1 Einleitung

Kongruentes Lithiumniobat, welches durch die Czochralski-Methode gewonnen wird, weist

ein Li:Nb Verhältnis von of 48.4:51.6 auf [156]. Somit liegt eine sehr hohe Konzentration

an intrinsischen Defekten vor, bei denen die Anwesenheit von Nb5+
Li Substitutionsatomen

(Antisites) als direkte Ursache des Lithiummangels eindeutig bestätigt ist [157–159]. Um

Ladungsneutralität zu gewährleisten, müssen eine Anzahl weiterer Defekte existieren, die

die überschüssigen positiven Ladungen kompensieren. Da ein Li+Li Ion mit einer Nb5+
Li An-

tisite ersetzt wird, liegen vier überschüssige negative Ladungen vor. Die Mechanismen der

Ladungskompensation und die genaue Zusammensetzung aller möglichen Typen intrinsi-

scher Defekte sind bis heute in letzter Konsequenz unklar. Verschiedene Ansätze wurden

in den letzten Jahrzehnten vorgestellt.

Auf Grundlage von Dichtemessungen schlugen Lerner et al. [4] 1968 vor, dass vier Lithium-

vakanzen (VLi+) die Ladungsüberschüsse einer Nb5+
Li Antisite kompensieren (Li-Vakanz-

Modell). Kurz darauf wurde 1972 von Peterson et al. [157] ein weiteres Defektmodell auf

der Grundlage von Kernspinresonanzspektren (NMR) abgeleitet. In diesem sogenannten

Nb-Vakanz-Modell werden fünf Nb5+
Li Antisites von vier Niobvakanzen (V4+

Nb) kompensiert.

Neuere NMR-Messungen sowie Neudeutungen der alten NMR-Ergebnisse kamen wieder-

um zu dem Resultat, dass das Li-Vakanz-Modell wahrscheinlicher ist [160]. Strukturelle

Analyse mittels Röntgen- und/oder Neutronenpulverbeugung favorisierten entweder das
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Li-Vakanz- [159, 161, 162] oder das Nb-Vakanz-Modell [158].

Um die beiden widersprüchlichen experimentellen Befunde zu vereinen, schlug Smyth 1983

eine äquivalente Struktur für LN vor, in der es Regionen mit einer Ilmenit-ähnlichen Stape-

lung der Kationen gibt [163]. Die Idee beruht darauf, dass das Nb-Vakanz-Modell, in dem

6 % der Lithiumplätze durch Niobatome besetzt sind, mit dem dazu widersprüchlichen

Li-Vakanz-Modell, in dem nur 1 % Antisites vorkommen, mithilfe der unterschiedlichen

Stapelfolgen in Ilmenit und normalen LN in Einklang gebracht wird. In Ilmenitregio-

nen, die bei der Auswertung von Messergebnissen (fälschlicherweise) mit normalen LN

identifiziert werden, erscheint demnach ein Niobatom auf seinem regulären Platz als ein

Antisiteatom. Aufbauend darauf untersuchten Donnerberg et al. [164] mittels semiem-

pirischer Rechnungen verschiedene Defektcluster und bestätigten die Möglichkeit dieses

Defekts. Kalorimetrische Messungen zeigen, dass diese Stapelfolge nur 0.1 eV pro For-

meleinheit energetisch ungünstiger als stöchiometrisches Lithiumniobat ist [165]. Damit

wurde auch experimentell gezeigt, dass Regionen einer Ilmenit-ähnlichen Stapelung in

stöchiometrischem LN prinzipiell vorkommen können.

Ein alternatives Modell, welches neben den Antisites auch Zwischengitter-Niobatome im

nicht besetzten Sauerstoffoktaeder (Nb5+
V ) vorsieht und in dem wiederum Lithiumvakan-

zen der Ladungskompensation dienen, wurde 1994 von Zotov et al. [159, 166] vorgeschla-

gen. Unter verschiedenen untersuchten Modellen beschreibt dieses sowie das Li-Vakanz-

Modell in Röntgen- oder Neutronenpulverbeugungsmessungen die Struktur mit demselben

Signifikanzniveau des Bestimmtheitsmaßes. Des Weiteren ist die Beobachtung von Leroux

et al. auf Bildern hochauflösender Elektronenmikroskopie erwähnenswert, auf denen klei-

ne, etwa 1 nm große Defektstrukturen zu sehen sind, die durch kleine Nb2O5 Cluster

oder dem Nb-Vakanz-Modell erklärt werden können. Eine Mischung der beiden Vakanz

Modelle schlugen Adbi et al. [167] vor, was die Auswirkung auf Phononenfrequenzen und

-dämpfung in Raman-Messungen bei unterschiedlicher Stöchiometrie erklärt.

Heutzutage ist das Li-Vakanz-Modell als hauptsächliche Defektstruktur in CLN über-

wiegend akzeptiert. Es wird außerdem von Dichtefunktionaltheorie-Rechnungen sowohl

unter Verwendung eines GGA [168] als auch eines Hybridfunktionals [169], welches die Be-

schreibung der Austauschkorrelationsenergie verbessern soll, unterstützt. Die Bildung von

Niobvakanzen kann jedoch nicht ausgeschlossen werden [170, 171] und einen zusätzlichen

Mechanismus zur Ladungskompensation ausmachen. Die Anzahl der Studien zeigt die

Schwierigkeit einer genauen Strukturbestimmung auf mikroskopischer Ebene. Wie auch

immer die tatsächlichen Defektcluster beschafften sind, ist zumindest die Tatsache gewiss,

dass die Defektstruktur des kongruenten Materials klar vom idealen stöchiometrischen LN

abweicht und die optischen Eigenschaften beeinflusst. Letztere werden gewöhnlich mit dem

Polaronenmodell beschrieben [6].

Kleine elektronische Polaronen bilden sich, wenn ein Elektron durch die kurzreichweitige

Wechselwirkung des Ladungsträgers mit dem umliegenden Gitter an einer Stelle einge-
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fangen wird. Durch die Coulomb-Wechselwirkung werden gebundene Polaronen vor allem

an positiv geladenen Gitterdefekten lokalisiert, wo die zusätzliche Stabilisierung durch

Gitterverzerrungen ihren polaronischen Charakter ausmachen. Sowohl die metastabilen

gebundenen Polaronen mit einem thermisch induzierten oder photoangeregten Peak um

1.64 eV als auch die gebundenen Bipolaronen, die durch einen breiten Peak im Absorpti-

onsspektrum um 2.5 eV charakterisiert sind, dominieren die optischen Eigenschaften von

Lithiumniobat [6, 172, 173]. Schirmer et al. untermauern diese Identifikation mit einer

Vielzahl von Anhaltspunkten, die andere alternative Erklärungen dieser Absorptionspeaks

unwahrscheinlich erscheinen lassen [6]. Dabei wird angenommen, dass NbLi Antisites bzw.

NbLi–NbNb Paare für die Bildung von Polaronen bzw. Bipolaronen verantwortlich sind.

Diese Zuordnung kann jedoch im Falle der Bipolaronen experimentell nicht direkt nachge-

wiesen werden, da die diamagnetischen Bipolaronen in den (paramagnetischen) Elektron-

spinresonanzmessungen unsichtbar sind. Außerdem fehlt bisher eine vollständige theo-

retische Untersuchung der intrinsischen Defekte mit ihren optischen Eigenschaften, die

über die Unabhängige-Teilchen-Approximation (IPA) hinausgeht. Bisherige Rechnungen

beschränkten sich auf reine DFT-Berechnungen der Elektronenstruktur gebundener Po-

laronen an NbLi Antisites im idealen Gitter [174], wobei das gängige Polaronenszenario

von Schirmer et al. bestätigt wurde. Optische Antwortfunktionen innerhalb der IPA wei-

sen außerdem eine optische Absorption durch Polaronen nach [169], jedoch fehlen in der

theoretischen Beschreibung die starken Vielteilcheneffekte in Lithiumniobat [149] oder an

lokalisierten Defektzuständen im Allgemeinen [175]. Die theoretische Auseinandersetzung

mit den strukturellen und elektronischen Eigenschaften der Punktdefekte in LN hinkt den

technologischen Anwendungen somit weit hinterher.

Neben den intrinsischen Defekten sind auch extrinsische Verunreinigungen von Lithium-

niobat von Interesse. Diese werden gezielt herbeigeführt, um die optischen Eigenschaften

zu justieren. Um die Anwendung von LN als Wellenleiter möglich zu machen, können

eine Menge verschiedener Metalle in das Material eindiffundiert werden. Diese Arbeit fo-

kussiert sich dabei auf Titan, da es als einziger bekannter Dopand den ordentlichen und

außerordentlichen Brechungsindex anhebt [176], wobei die photorefraktive Empfindlich-

keit jedoch nicht direkt erhöht wird. Damit sind Anwendungen wie verlustarme Wellenlei-

ter für eine Polarisation parallel und orthogonal zur Oberfläche der Wellenleiterstruktur

realisierbar. Die Einbringung von Titan hat einen großen Effekt auf die optischen und

elektro-optischen Eigenschaften in Wellenleitern [6]. Trotz dieser technischen Anwendun-

gen sind die mikroskopischen Eigenschaften vieler Dotierungsstoffe wie Ti, Fe, usw. un-

bekannt. Elektronenspinresonanz- und Elektron-Kern-Doppelresonanz-Messungen in re-

duzierten Proben zeigen Signale, die Ti3+ Ionen auf Nb Gitterplätzen zugeordnet werden

können [177, 178], während Röntgenabsorptionsmessungen direkt bei (XANES) oder fer-

ner (ENDOR) der Absorptionskante auf Ti4+ Ionen auf Li Plätzen hinweist [179]. Auch

weitere experimentelle Studien favorisieren entweder das TiNb [180, 181] oder das TiLi

[182] Substitutionmodell, bzw. eine Kombination der beiden [183]. Es wurde spekuliert,

dass die Abhängigkeit des gewöhnlichen Brechungsindexes von der Ti-Konzentration von
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einer konzentrationsabhängigen Verschiebung der Titanionen in der xy-Ebene beeinflusst

wird [184], ein eindeutiger Beweis fehlt jedoch. Ein akzeptiertes (theoretisches) Modell für

die Titaneinbringung in LN fehlt immer noch [185].

Aufgrund der Notwendigkeit von großen Superzellen bei der Modellierung von Punkt-

defekten ist die Berechnung von Quasiteilchenenergien und exzitonischen Effekten in-

nerhalb der GW -Näherung bzw. durch Lösung der Bethe-Salpeter-Gleichung unmöglich.

Die Berechnung von optischen Spektren mittels TDDFT, die für dieses Szenario und

allgemein den rechnerischen Aufwand stark reduziert, ist hier eine ernstzunehmende Al-

ternative, da durch die Einführung des LRC-Kernels exzitonische Effekte in qualitati-

ver Übereinstimmung mit der Bethe-Salpeter-Gleichung beschrieben werden können [92].

Ziel dieses Kapitels ist es, die atomare und Elektronenstruktur der intrinsischen und

extrinsischen Defekte in unterschiedlich großen Superzellen zu berechnen, wobei diese

durch isolierte Punktdefekte modelliert werden. Explizit sind dies in stöchiometrischen

LN NbLi Antisites, NbV Zwischengitteratome, optional gepaart mit einer benachbarten

Lithiumvakanz sowie NbLi Antisites in LN mit Ilmenitstruktur für die intrinsischen Defek-

te. Außerdem ermöglichen TiLi Substitutionsatome die Modellierung des Ti-dotierten LNs.

Damit entfällt es, komplette Defektcluster zu modellieren und eine unübersichtliche Viel-

zahl an möglichen Ladungskompensationsszenarien zu berücksichtigen. Als zweiter Schritt

werden die optischen Eigenschaften mittels TDDFT-LRC untersucht. Dies ermöglicht

den Vergleich mit optischen Messungen und damit mit experimentellen Daten zur (fre-

quenzabhängigen) dielektrischen Funktion, optischen Absorption, Reflexion und zum Bre-

chungsindex. Somit kann ein vollständiges atomistisches Bild über Polaronen und Bi-

polaronen gezeichnet werden und die Plausibilität der größtenteils akzeptierten Theorie

diesbezüglich von Schirmer et al. überprüft werden. Des Weiteren soll das Verständnis

von nicht reduzierten, Titan eindiffundierten Lithiumniobat, das den Einsatz in optischen

Wellenleitern ermöglicht und welches primär mit der TiLi Ersetzung arbeitet, auf mikro-

skopischer Ebene erweitert werden. Ti3+ Ionen auf Niob-Gitterplätzen spielen in dieser

Betrachtung eine untergeordnete Rolle, da schnell gezeigt werden kann, dass dieses Sze-

nario selbst bei hoher Ti-Konzentration entgegen den experimentellen Beobachtungen bei

Ti-Eindiffusion fast zu keinem Anstieg des Brechungsindexes führt.

4.2 Struktur der Einheitszelle und der Punktdefekte

4.2.1 Rechentechnische Details

Da einige Parameter für die Erzeugung der Pseudopotentiale, die in ABINIT verwendet

wurden, unbekannt sind, werden für die Rechnungen im Quantum Espresso (QE) Pro-

grammpaket [57] andere orthogonalisierte normerhaltende Vanderbilt-Pseudopotentiale

nach Hamann verwendet. Bei ihrer Konstruktion werden jedoch dieselben Zustände als
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Valenzelektronen beschrieben wie im letzten Kapitel vorgestellt. Zusätzlich werden für

Titan die 3s, 3p, 3d und 4s Orbitale explizit in die Rechnungen mit eingebunden. Das

PBEsol-Austauschkorrelationsfunktional wird für die weiteren Rechnungen beibehalten.

Auch bei den folgenden Rechnungen wird wieder sorgfältig auf die Konvergenz der re-

levanten Größen geachtet. Die elektronische Gesamtenergie ändert sich bei einer Ab-

schneideenergie von 1150 Elektronenvolt im Bereich von 5 meV bezüglich des auskon-

vergierten Wertes. Insbesondere variieren die relaxierten Gitterkonstanten und atomaren

Positionen bei diesem Konvergenzparameter im Bereich kleiner als 10−4 Å. Der k-Punkt

Satz besteht aus einem 4×4×4 Monkhorst-Pack-Gitter, mit dem sich die elektronische

Gesamtenergie hin zu höheren Punktdichten praktisch nicht mehr ändert. Für die Si-

mulation von Punktdefekten wird auf Superzellen verschiedener Größe zurückgegriffen,

um unterschiedliche Defektkonzentrationen zu realisieren. Dabei ergibt ein Defektatom

in der 80 atomigen 2×2×2 Superzelle eine Defektkonzentration von 1.16 ×1021 Atomen

pro Kubikzentimeter, während durch ein Defektatom in der 270 atomigen 3×3×3 Su-

perzelle eine Konzentration von 0.35×1021 Atomen pro Kubikzentimeter erreicht werden

kann. Zusätzlich kann mit drei Fremdatomen in der 3×3×3 Superzelle die Konzentration

von 1.05×1021 Atomen pro Kubikzentimeter umgesetzt werden. Für das Sampling der

nun kleineren Brillouin-Zone wird in beiden Fällen ein 2×2×2 k-Punkt-Gitter für beide

Superzellgrößen verwendet. Eine Superzellenkorrektur für geladene Defekte, welche die

künstliche Defekt-Defekt-Wechselwirkung korrigiert, wird nicht verwendet.

Um die Lokalisierung der Elektronen der d-Orbitale in die Rechnungen einzubeziehen, die

insbesondere bei den Niob- und Titandefektatomen von Interesse sind, wird die DFT+U

Methode verwendet. Damit wird die bekanntermaßen problematische Behandlung der

korrelierten Elektronen in der DFT als Mittelfeldtheorie korrigiert und somit auch die

Unterschätzung polaronischer Effekte [174, 186, 187]. Die Anpassung des U -Parameters

erfolgt im Vergleich zu vorhergehenden Arbeiten, in denen die Gitter- und Elektronen-

struktur in Abhängigkeit verschiedener U bestimmt wurde [174, 187, 188]. Diese legen die

Verwendung von U = 4 für die beiden Defektatome nahe. Normalerweise ergibt sich durch

die Lokalisierung eines Defektenergieniveaus eine Verschiebung zu höheren Energien auf-

grund der Coulomb-Abstoßung. Im Falle von Polaronen wird dieser Effekt aufgehoben und

sogar umgekehrt, da die frei werdende Energie aufgrund der mit der Lokalisierung ein-

hergehenden Gitterrelaxation die Polaronenniveaus absenkt. Die DFT+U Methode wird

in dieser Arbeit ausschließlich auf das Defektatom und, im Falle von Bipolaronen, seines

nächsten Nachbarn angewendet. Rechnungen ohne DFT+U erzielen bereits sehr gute Re-

sultate bezüglich der atomaren Struktur, weshalb eine zusätzliche Korrektur aller Niob

d Niveaus nicht als zielführend erachtet wird. Um die Beschreibung der elektronischen

Bandstruktur zu verbessern, wird das HSE06-Hybridfunktional verwendet. Unter Beibe-

haltung der Konvergenzparameter ist die elektronische Gesamtenergie auskonvergiert bis

zu einem Wert kleiner als 35 meV und innere atomare Koordinaten lassen sich bis auf

eine Genauigkeit von 10−3 Å bestimmen. Die Wahl des k-Punkt-Gitters für die Auswer-
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Methode a/Å c/Å u v w z

PBEsol 5.133 13.828 0.0108 0.0357 0.0191 0.0324
HSE06 5.133 13.828 0.0098 0.0376 0.0195 0.0308

Expt. [5] 5.151 13.876 0.0095 0.0383 0.0192 0.0329
ABINIT,PBEsol 5.149 13.860 0.0111 0.0355 0.0187 0.0325

Tabelle 4.1: Berechnete Gitterkonstanten von stöchiometrischen LN im Vergleich zu experimentellen
Befunden von Boysen et al. [5] und zu den Ergebnissen, die mit ABINIT erzielt wurden (vgl. Kapitel
3.3).

tung des exakten Austausches fällt auf ein 2×2×2 Untergitter der Einheitszelle, welches

in der Superzelle erlaubt, die Berechnung auf den jeweiligen k-Punkt zu beschränken und

auf diese Weise den enormen Rechenaufwand handhabbar zu machen. Dies gelingt, da

die Größe der Brillouin-Zone auf ein Achtel reduziert wird und elektronische Eigenwerte

der neuen k-Punkte aus der Zusammenfaltung von acht unterschiedlichen k-Punkten der

alten Brillouin-Zone der Einheitszelle entstehen. Die DFT- und Hybrid-DFT-Rechnungen

werden für das einfach besetzte Polaronenniveau spinpolarisiert durchgeführt.

Mittels des BFGS-Algorithmus bzw. gedämpfter Molekulardynamik bei den größere Zel-

len werden die relaxierten Gitterkonstanten und atomaren Koordinaten ermittelt. Um

mögliche Auswirkungen von Defekten auf die Gitterkonstanten zu vermeiden und bes-

sere Vergleichbarkeit zwischen Einheitszelle und Superzellen zu gewährleisten, werden in

den Superzellen lediglich die internen Koordinaten der Atome relaxiert. Bei allen HSE06-

Rechnungen findet ebenfalls lediglich die Relaxation der Atome unter Verwendung der

PBEsol+U Gitterkonstanten von SLN statt. Die Auffindung der Gleichgewichtsgeometrie

wird stets mit einer Genauigkeit von mindestens 10−2 eV/Å bezüglich der Konvergenz

der Hellmann-Feynman-Kräfte durchgeführt.

4.2.2 Einheitszelle

Das Ergebnis der Strukturbestimmung für die Einheitszelle für stöchiometrisches Lithium-

niobat (SLN) ist in Tab. 4.1 zusammengefasst. Es zeigt sich, dass die Gitterparameter im

Vergleich zu experimentellen Messungen minimal zu klein abgeschätzt werden (-0.35%),

das Verhältnis a : c aber korrekt wiedergegeben wird und es keine Verzerrungen gibt. Das

zeigt sich an den internen Parametern u, v, w und z, die in sehr guter Übereinstimmung

zum Experiment und den ABINIT-Rechnungen aus Kapitel 3.3 stehen.

Die strukturellen Ergebnisse auf Basis der Hybridfunktional-Rechnungen weisen im Ver-

gleich ebenfalls sehr gute Übereinstimmungen bezüglich der inneren Parameter auf. Die

elektronische Bandstruktur ist in Abb. 4.1 dargestellt. Die direkte (indirekte) Bandlücke

beträgt 3.53 (3.50) eV bei PBEsol und 5.17 (5.15) eV bei HSE06, was einer Öffnung

der Bandlücke um 1.7 eV entspricht. Dies sind fast dieselben Werte wie aus einer ver-

gleichbaren HSE06-Rechnung, die eine Bandlücke von 5.16 (5.15) eV lieferte [154]. Des

79



F Γ L Γ Z

-4

-2

0

2

4

6

8

10

12

E
n
er

g
ie

 (
eV

)

HSE06
PBEsol

Abbildung 4.1: Elektronische Bandstruktur von stöchiometrischem Lithiumniobat. Das HSE06-Hybrid-
Austauschkorrelationsfunktional öffnet die fundamentale Bandlücke bezüglich PBEsol, weist jedoch eine
fast identische Dispersion auf.

Weiteren liegt dieser Wert in sehr guter Übereinstimmung mit dem Ergebnis elaborierter

HSE06+QSGW0 Rechnungen, die unter Einbeziehung der Elektron-Phonon-Kopplung bei

Raumtemperatur eine Bandlücke von 5.4 eV ergaben [154].

4.2.3 Intrinsische Punktdefekte

Die intrinsischen Defekte in Lithiumniobat weisen eine so hohe Anzahl an NbLi Antisites

auf – vermutlich im Bereich von 1% [5] – 6% [158] – dass Simulationen mit realistischen De-

fektkonzentrationen in überschaubaren Superzellgrößen möglich sind. Die zwei verwende-

ten Superzellen ermöglichen die Konzentrationen von 6.7% (2×2×2) und 1.9% (3×3×3).

Wenn man die Superzellen mit Punktdefekten mit dem kongruenten Material identifizie-

ren möchte, ist in der Literatur die Angabe des Verhältnisses Li:Nb bzw. Li:(Li+Nb) der

Anzahl der betreffenden Atome geläufig. Es sei noch einmal angemerkt, dass beim Ver-

gleich mit dem kongruenten Material Achtsamkeit geboten ist, da im realistischen Material

weitere Defektarten auftreten, die eine Ladungskompensation ermöglichen, die hier aber

vernachlässigt werden. Um Übersicht über die verschiedenen Zahlenwerte zu bewahren,

die denselben Sachverhalt beschreiben, befindet sich in Tab. 4.2 eine Zusammenfassung.

Ein exaktes Li:Nb Verhältnis bezüglich experimenteller Ergebnisse wird somit am ehes-

ten mit einem Atom in der 3×3×3 Zelle modelliert. Je nach Anzahl tatsächlicher NbLi

Antisites bietet ein Atom in der 2×2×2 Superzelle jedoch auch einen zutreffenden Blick
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Anzahl Defektatome pro Superzelle Expt.
1 in 2×2×2 3 in 3×3×3 1 in 3×3×3

Li:Nb 88.24% 89.47% 96.36% 93.72% [156]
Li:(Li+Nb) 46.88% 47.22% 49.07% 48.84% [156]
NbLi:Li 6.67% 5.88% 1.89% 1% [5] bzw. 6% [158]
Defekte pro cm3 1.16 ×1021 1.05 ×1021 0.35 ×1021

Tabelle 4.2: Defektkonzentrationen in unterschiedlichen Darstellungsvarianten. Die unterschiedlichen
experimentellen Angaben bezüglich NbLi:Li ist den unterschiedlichen Mechanismen der Ladungskompen-
sation – also Nb-Vakanz- oder Li-Vakanz-Modell – geschuldet. Die letzten beiden Zeilen können für die
Umrechnung der Titankonzentration in Lithiumniobat genutzt werden, wobei dort auch mit 3 Atomen
in 3 der 3×3×3 Zelle gerechnet wird. Die Angabe der intrinsischen Defekte in Anzahl pro Raumeinheit
ist nicht üblich.

auf das Material.

Da sich früh abzeichnete, dass Modelle, die nur auf den NbLi Antisitedefekten basieren, im

Rahmen der verwendeten Theorie nicht konsistent die experimentellen Befunde beschrei-

ben konnten, findet hier eine Erweiterung der Studie auf alle in der Literatur vermerk-

ten Defekte, die die Bildung von Polaronen und Bipolaronen zulassen, statt. Zusätzliche

Möglichkeiten sind dabei NbLi Antisitedefekte in LN mit einer Ilmenit-ähnlichen Stape-

lung der Atome (Nb–V–Nb–Li–V–Li) – im weiteren als Ilmenit LN (ILN) bezeichnet –

sowie ein Niob Zwischengitteratom auf einer strukturellen Vakanz V. V ist hier nicht

als Fehlstelle des Kristallgitters aufzufassen, sondern als nicht besetzter Sauerstoffokta-

eder. Im Falle des Zwischengitteratoms ist es aufgrund des Li Mangels im kongruenten

LN sinnvoll, nicht nur den NbV Punktdefekt selbst, sondern auch ein NbV–VLi Defekt-

paar zu betrachten, in Übereinstimmung mit Zotov et al. [159]. Zur Übersicht über die

analysierten Defektmodelle siehe Abb. 4.2.

Dank der Ähnlichkeit von SLN und ILN kann defektfreies ILN innerhalb der zehnatomi-

gen Einheitszelle von SLN simuliert werden. Die Ergebnisse der Strukturrelaxation zeigen

aufgrund der unterschiedlichen atomaren Anordnung deutlich höhere Gitterkonstanten

von aH = 5.198 Å und cH = 14.197 Å. Dies bedeutet einen Anstieg von 1.3% für aH und

2.7% for cH im Vergleich zu SLN. Das HSE06-Funktional öffnet die direkte Bandlücke vom

PBEsol-Wert von 4.0 eV auf 5.6 eV. Hinsichtlich der Gesamtenergie von SLN und ILN er-

gibt sich eine Grundzustandsenergiedifferenz von 0.24 eV (PBEsol) und 0.21 eV (HSE06)

pro Einheitszelle. Dies ist in sehr guter Übereinstimmung zu experimentellen Ergebnis-

sen von Mehta et al. [165], die den Enthalpieunterschied auf 0.20 ± 0.08 eV bestimmten,

während frühere Rechnungen auf Grundlage eines ionischen Schalenmodells 0.1 eV pro

Einheitszelle ergaben [164].

Der Ladungszustand des Lithiumatoms in Lithiumniobat beträgt +1, da das 2s Valenz-

elektron an die umliegenden Sauerstoffatome abgegeben wird. Die Substitution mit einem

Niobatom unter der Bedingung des gleichen Valenzzustandes erfordert ein +5-fach gelade-

nes Niobatom Nb5+. Damit ergeben sich vier überschüssige Elektronen, die aus der Super-

zelle entfernt werden. Insbesondere sind die 4d-Orbitale des Niobatoms damit unbesetzt
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(a) (b) (c)

(d) (e) (f)

Nb
O

Li

Abbildung 4.2: Defektfreies stöchiometrisches LN (a) ist charakterisiert durch die Nb–V–Li Stapelung
(von unten nach oben) der Kationen innerhalb der Sauerstoff Oktaeder. Intrinsische Defekte können
(b) isolierte NbLi Antisites und (c) NbV Zwischengitteratome auf strukturellen Vakanzen V im leeren
Sauerstoff Oktaeder, sowie (d) ein Defektpaar aus dem Zwischengitteratom und einer Li Vakanz (NbV–
VLi) sein. Die Ilmenitstruktur (e) ist ähnlich der Struktur von Lithiumniobat, jedoch mit einer anderen
Stapelung der Kationen, die jeweils zwei benachbarte Atome einer Sorte beinhaltet. Als intrinsische
Defekte werden dort NbLi Antisites untersucht (f). Die Oktaeder, auf die sich Tabellen 4.3, 4.4 und 4.5
beziehen, sind zur besseren Übersicht mit einem Pfeil markiert.
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(4d0). Da die Superzelle nun +4-fach geladen ist, wird eine homogene negative Hinter-

grundladung, die sich über die Superzelle zu -4e integriert, zur Ladungskompensation ein-

geführt. Damit entfällt die Notwendigkeit, ganze Defektcluster zur Ladungskompensation

zu modellieren. Derselbe Mechanismus gilt für das NbV–VLi Defektpaar. Für den Fall des

Zwischengitteratom-Punktdefekts NbV wird ebenfalls der 4d0 Ladungszustand angenom-

men. Hierbei entfällt allerdings die +1-fache Teilkompensation der Überschussladungen

durch eine Lithiumvakanz und es wird mit einer +5-fach geladenen Superzelle gerechnet,

wobei der Ladungsüberschuss wieder durch Hintergrundladung kompensiert wird.

Die Ergebnisse der Strukturbestimmung sind in Tab. 4.3 zusammengefasst. Diese Werte

beziehen sich auf die 2×2×2 Superzelle; Berechnungen mit dem PBEsol-Funktional für

die größere 3×3×3 Superzelle ergeben lediglich kleine Änderungen, was bestätigt, dass

die lokalen Deformationen des Kristallgitters nicht wesentlich von der Zellgröße abhängig

sind. Im Vergleich mit den LiLi–O↓ und LiLi–O↑ Abständen in SLN ist es zu beobachten,

dass die Sauerstoffatome in defektbehafteten Systemen an die NbLi Antisites bzw. die

Zwischengitteratome NbV heranrücken. Die resultierenden Abstände und somit auch die

Volumenkontraktion des Sauerstoffoktaeders sind praktisch identisch für NbLi und NbV–

VLi, sowie für NbLi in ILN. Dies ist hinsichtlich der Zwischengitteratome bemerkenswert,

da in der Literatur oft angenommen wird, dass schlicht zu wenig Platz für die Bildung

dieses Defektes herrscht [189]. Dies gilt auch für den NbV Punktdefekt, dessen Abstände

1.980 und 1.970 Å zu den Sauerstoffatomen nicht kleiner sind als die 1.916 Å des NbLi

Defekts. Außerdem ist der LiLi–O↓ Abstand im stöchiometrischen Ilmenit LN deutlich

größer als in der normalen SLN Stapelung, was unter den betrachteten Strukturen zum

größten Sauerstoffoktaeder führt.

Das nächstgelegene Niobatom Nbnah in der letzten Spalte von Tabelle 4.3 ist für alle

Konfigurationen über dem Nb Defektatom angesiedelt mit Ausnahme der Strukturen mit

einem NbV Zwischengitteratom (siehe Abb. 4.2). Dort ist es unterhalb gelegen, da es sich

in einer anderen Stapelschicht befindet. Damit sind die Rollen der O↓ und O↑ Atome ober-

und unterhalb des Defekts ebenfalls vertauscht. Werden alle Defektstrukturen miteinander

verglichen, verzeichnen die Nb–Nbnah Paare der Zwischengitteratome kleinere Abstände

als die der Antisites. Das liegt daran, dass sich die Niobatome in der ungestörten Struk-

tur entlang der c-Achse aus der zentrosymmetrischen Position des Sauerstoffoktaeders in

Richtung des leeren Sauerstoffoktaeders anordnen. Dieses ist jedoch nun mit einem Zwi-

schengitteratom besetzt. Die Situation wird im Falle des NbV Punktdefekts verschärft, da

sich ein zusätzliches Atom entlang der c-Achse befindet und somit der Raum zusätzlich

beengter wird.

Die interatomaren Abstände, die mit dem HSE06-Funktional berechnet werden, stimmen

gut mit den PBEsol-Werten überein, wohlbemerkt, dass dieselben Gitterkonstanten ver-

wendet werden. Außerdem stimmen die berechneten Werte, wie oben anhand der internen

Parameter u bis z gesehen, gut mit den experimentellen Werten für SLN [9], sowie mit

83



PBEsol X–O↓ X–O↑ X–Nbnah

LiLi (SLN) 2.050 2.238 3.009
2.068 2.238 3.010 [9]

NbLi (SLN) 1.916 2.086 3.084
3.032 [174]

NbV 1.980 1.970 2.801
NbV–VLi 2.092 1.918 2.927
LiLi (ILN) 2.141 2.240 3.014
NbLi (ILN) 1.935 2.069 3.058

HSE06 X–O↓ X–O↑ X–Nbnah

LiLi (SLN) 2.051 2.251 3.031
NbLi (SLN) 1.906 2.088 3.105
NbV 1.974 1.966 2.811
NbV–VLi 2.088 1.911 2.927
LiLi (ILN) 2.138 2.268 3.042
NbLi (ILN) 1.919 2.080 3.074

Tabelle 4.3: Mit den PBEsol- und HSE06-Funktionalen berechnete interatomare Abstände in der 2×2×2
Superzelle in Å, verglichen mit experimentellen Werten. X bezeichnet LiLi im Fall von SLN und ILN und
für die Antisites NbLi bzw. Zwischengitteratome NbV bei den anderen beiden Defekten. Die gelisteten
Atome sind im Oktaeder von Abb. 4.2 mit einem Pfeil markiert. Die Symbole O↓, O↑ und Nbnah bezeich-
nen, bezogen auf Abb. 4.2, Sauerstoffatome unterhalb und oberhalb von X, sowie das nächstliegendste
Niobatom. Die elektronische Konfiguration des Niob Defektatoms ist Nb5+ (4d0). Zum Vergleich sind die
Werte aus Neutronenstreuungsexperimenten [9] und DFT+U mit Ueff = 4 eV [174] angegeben.

den DFT+U Ergebnissen von Nahm und Park [174] für die NbLi Antisites in SLN überein.

Bei allen Defekten tritt eine teils deutliche Reduktion der HSE06-Bandlücke auf, da die

Leitungsbandkante Nb-4d-Charakter hat. Sie beträgt für die NbLi (SLN), NbV, NbV–VLi

bzw. NbLi (ILN) Defekte 4.90, 4.60, 4.68 bzw. 4.89 eV.

4.2.4 Polaronen

Ein Polaron entsteht, indem ein Ladungsträger unter kurzreichweitiger Wechselwirkung

an einer Stelle im Kristallgitter eingefangen wird. Dieser kann mit einer bestimmten Wahr-

scheinlichkeit zu einer anderen Gitterstelle wechseln (hopping). Bei kleinen Polaronen ist

die sich daraus ergebende Gitterverzerrung lokal auf eine Einheitszelle begrenzt. In Li-

thiumniobat kommen zwei Arten von Polaronen vor. Das freie Polaron kann sich durch

die selbstinduzierte Gitterverzerrung und die resultierende Potentialmulde an einem re-

gulären Niobatom bilden (self-trapping) und wird in dieser Arbeit nicht weiter betrachtet.

Beim gebundenen Polaron wird ein Elektron von einem positiv geladenen Defektion durch

sein Defektpotential eingefangen, wobei es wiederum zusätzlich durch die Gitterdeforma-

tion stabilisiert wird [6]. Wegen der Kopplung an einen Gitterdefekt liegt hier eine sehr

weitgefasste Definition des Polaronenbegriffs vor, der außerhalb der Anwendung in Lithi-

umniobat weniger gebräuchlich ist. Es liegt jedoch eine starke Verwandtschaft der beiden

Mechanismen in LN vor, sodass sich dieselben physikalischen Grundlagen anwenden lassen
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PBEsol X–O↓ X–O↑ X–Nbnah

NbLi (SLN) 2.000 2.097 2.977
2.890 [174]

NbV 2.004 2.028 2.629
NbV–VLi 2.088 1.981 2.720
NbLi (ILN) 2.036 2.093 3.053

HSE06 X–O↓ X–O↑ X–Nbnah

NbLi (SLN) 1.997 2.096 3.001
NbV 1.989 2.026 2.611
NbV–VLi 2.080 1.968 2.694
NbLi (ILN) 2.028 2.092 3.060

Tabelle 4.4: Interatomare Abstände intrinsischer Defekte in SLN and ILN in Å mit der elektronischen
Konfiguration Nb4+ (4d1). Die Notationen sind in Tab. 4.3 erklärt. Der Referenzwert für NbLi (SLN)
wurde ebenfalls mit einer DFT+U -Rechnung mit Ueff = 4 eV generiert [174].

[6].

Durch die polaronische Lokalisierung eines Elektrons an einem Niobdefekt wird dieser zu

einem vierfach positiv geladenen Defektion reduziert, das nun einen besetzten 4d-Zustand

aufweist (4d1). Das Einfangen eines Polarons entspricht dem Übergang Nb5+(4d0)→ Nb4+

(4d1). Alle Defekte werden unter Verwendung der PBEsol- und HSE06-Funktionale ana-

lysiert. Die Simulation des Polarons erfolgt durch das Einbringen einer negativen Ladung

in die Superzelle. Daher erfolgen die Berechnungen für die NbLi und NbV–VLi Punkt-

defekte in einer dreifach positiv geladenen Superzelle, bzw. in einer vierfach geladenen

Zelle im Falle von NbV. Wegen der einhergehenden Gitterdeformation ist es notwendig,

eine Strukturrelaxation durchzuführen. Das Ergebnis dieser Strukturbestimmung ist in

Tab. 4.4 aufgeführt. Die Rechnungen werden mit spinpolarisierter Dichtefunktionaltheo-

rie durchgeführt.

Aufgrund der Lokalisierung des Elektrons am Defekt verringern sich die Nb–Nbnah Ab-

stände um Werte zwischen 0.11 Å bei NbLi (SLN) bis 0.21 Å bei NbV–VLi. Dabei liegt

nun für NbV der kleinste und für NbLi (ILN) der größte Wert vor. Die größere Abwei-

chung zu dem berechneten Abstand von Nahm und Park [174] im Falle des NbLi (SLN)

Antisitedefekts kann auf die Tatsache zurückzuführt werden, dass deren Berechnungen

die Auswirkung der Spinpolarisation vernachlässigt oder die DFT+U Methode auf alle

Nb Atome angewendet wurde. Die deutliche Gitterrelaxation als Folge der Formation ei-

nes Polarons ist beim kationischen und anionischen Untergitter unterschiedlicher Natur.

Während zum Beispiel die Nb–Nbnah Abstände, wie in der Tabelle 4.4 zu sehen, reduziert

werden, vergrößern sich die Nb–O Abstände. Dabei liegen wieder vergleichbare Nb–O

Abstände für NbLi (SLN), NbV–VLi und auch NbLi (ILN) vor. Das unterschiedliche Ver-

halten ist auf die Tatsache zurückzuführen, dass die lokalisierte negative Ladung Atome

aus dem positiven kationischen Untergitter anzieht und aus dem negativen anionischen

Untergitter abstößt. Stellvertretend für alle betrachteten Strukturen zeigt Abbildung 4.3
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Abbildung 4.3: (a) Ladungsdichte am Niobdefektatom NbLi, die mit dem Polaronniveau (4d1) assoziert
werden kann. Für die Defekte, die NbV beinhalten, gehört die Darstellung gedanklich um 180◦ gedreht.
(b) Elektronenladungsdichte des Bipolarons (4d1–4d1), welche sich über das nächste Niob Nachbaratom
erstreckt. Auch diese Abbildung ist repräsentativ für alle Defekttypen. Die verwendete Isofläche für die
Darstellung der Ladungsdichte befindet sich bei 0.0044 e/Å3 im Fall vom Polaron und bei 0.0026 e/Å3

beim Bipolaron, was zeigt, dass jeweils die meiste Ladung dort lokalisiert ist und die Identifikation als
kleine Polaronen gerechtfertigt ist.

noch einmal deutlich, dass die Ladungsdichte, die dem besetzten 4d1 Zustand innerhalb

der Bandlücke zuzuordnen ist, stark lokalisiert am Defekt angesiedelt ist, was die Deutung

als kleines Polaron bekräftigt.

Auch bei der elektronischen Bandstruktur in Abb. 4.4 zeigt sich bei allen betrachteten

Defekten, dass das Polaronenniveau aufgrund der Energie der Gitterrelaxation innerhalb

der Bandlücke deutlich von den Valenz- und Leitungsbändern abgegrenzt ist. In dieser Ab-

bildung wurden die PBEsol-Bänder um die Differenz der HSE06- und PBEsol-Bandlücken

nach oben verschoben, um aufwendige Bandstrukturrechnungen nur zum Zwecke der

Darstellung zu vermeiden. Dies ist, wie in Abb. 4.1 zu sehen, legitim, da die Dispersi-

on der Bänder vergleichbar ist. Genauso wurde mit den Polaronenniveaus als Differenz

der Polaronlevel und der Valenzbandoberkante verfahren. Die Energieniveaus, die vor

der Bildung des Polarons noch resonant mit den Leitungsbändern waren, sind auf die

mit dem HSE06-Hybridfunktional berechneten Werte von 1.37, 2.08, 1.66 bzw. 1.61 eV

unterhalb der Leitungsbandkante bei NbLi (SLN), NbV, NbV–VLi bzw. NbLi (ILN) ab-

gerutscht. Dabei ist festzustellen, dass sich die Energieniveaus für gleiche Defektarten

aufgrund der unterschiedlichen direkten chemischen Umgebung besonders für NbV mit

0.42 eV und 0.24 eV für NbLi relativ stark unterscheiden. Im Vergleich zu den Ergebnis-

sen, die unter Verwendung des PBEsol-Funktionals erzielt werden, verschieben sich die

Energieniveaus um weitere 0.60, 0.98, 0.85 und 0.45 eV für NbLi (SLN), NbV, NbV–VLi

bzw. NbLi (ILN) von der Leitungsbandkante weg. Das stark unterschiedliche Verhalten

ist hauptsächlich mit der Tatsache zu erklären, dass die DFT+U Methode auf Grundlage
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Abbildung 4.4: Elektronische Bandstruktur mit besetztem Polaronenniveau (4d1) für alle betrachteten
Defekte. Es wird nur der Spin-up Kanal gezeigt; im Spin-down Kanal treten keine Defektzustände in der
Bandlücke auf, bzw. sind knapp unterhalb der Leitungsbandkante angesiedelt. Die schwarzen, grauen und
grünen Bänder repräsentieren das Ergebnis der DFT+U -Rechnungen mit dem PBEsol-Funktional. Das
HSE06-Hybridfunktional schiebt die blauen Polaronenlevel und die rot gestrichelten Leitungsbänder etwa
um 1.5 eV nach oben. Um eine übersichtlichere Darstellung zu gewährleisten werden die Pfeile, die je-
weils für beide Funktionale die Energiedifferenzen der Polaronenniveaus und der Leitungsbandunterkante
markieren, nicht in jedem Teilbild verwendet.

des PBEsol-Funktionals und das HSE06-Funktional unterschiedlich auf die verschiedenen

Defektstrukturen wirken. Im ersten Fall ist der U -Parameter eine Konstante und lokali-

siert die Elektronendichte der Defektzustände in unterschiedlichen System gleichermaßen,

wohingegen das kompliziertere exakte Austauschfunktional durch die Berücksichtigung

aller elektronischen Zustände systemspezifischere Energiebeiträge liefert. Außerdem ist

die Lage der PBEsol-Defektniveaus teilweise schon sehr unterschiedlich (siehe NbV im

Vergleich zu den anderen) und wird bei Anwendung des HSE06-Hybridfunktionals weiter

auseinanderskaliert.

4.2.5 Bipolaronen

In Lithiumniobat entsteht ein Bipolaron, wenn ein Niob Nachbarpaar im Ladungszustand

Nb5+
Nb–Nb5+

Li (4d0–4d0) zwei Elektronen aufnimmt. Die zwei zusätzlichen Ladungsträger

sind somit nicht komplett am Defektatom mit der möglichen Konfiguration Nb3+
Li (4d2)

lokalisiert, sondern bilden ein Hybridorbital in der Konfiguration Nb4+
Nb–Nb4+

Li (4d1–4d1),

wobei diese Anordnung durch die Relaxation der beiden beteiligten Niobatome zueinander

stabilisiert wird [6]. In dieser Arbeit findet eine Erweiterung des Konzepts auf Ilmenit

LN und Nb4+
Nb–Nb4+

V (4d1–4d1) in den zwei betrachteten NbV Strukturen statt, da diese
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PBEsol X–O↓ X–O↑ X–Nbnah

NbLi (SLN) 2.051 2.070 2.639
2.639 [174]

NbV 2.016 2.066 2.469
NbV–VLi 2.066 2.037 2.519
NbLi (ILN) 2.085 2.067 2.691

HSE06 X–O↓ X–O↑ X–Nbnah

NbLi (SLN) 2.047 2.068 2.626
NbV 2.004 2.074 2.452
NbV–VLi 2.056 2.045 2.494
NbLi (ILN) 2.095 2.054 2.656

Tabelle 4.5: Interatomare Abstände intrinsischer Defekte in SLN and ILN in Å mit der elektronischen
Konfiguration Nb4+

Li –Nb4+
Nb. Die Notationen sind in Tab. 4.3 erklärt. Da das Bipolaron sich über das

nächste Niobatom Nbnah erstreckt, findet eine starke Kontraktion des dazugehörigen Abstands statt. Der
Referenzwert für NbLi (SLN) wurde ebenfalls mit einer DFT+U -Rechnung mit Ueff = 4 eV generiert
[174].

Strukturen selbstverständlich auch für die Bildung eines Bipolarons infrage kommen. Die

Simulation erfolgt wie im Falle des Polarons durch Einbringen eines weiteren Elektrons

in die für alle Defekte nun +2-fach bzw. 3+fach (NbV) geladene Superzelle.

Wie an den berechneten interatomaren Abständen in Tabelle 4.5 zu erkennen ist, fin-

det im Vergleich zum Polaron eine weitere massive Kontraktion des Nb–Nbnah Abstands

aufgrund des zusätzlichen lokalisierten Elektrons statt. Das legt nahe, dass eine Bindung

(Hybridorbital) zwischen den Nb-Ionen entsteht (siehe Abb. 4.3(b)). Die Verkürzung die-

ser Bindungslänge reicht bei den PBEsol-Werten von 0.16 Å für NbV bis 0.36 Å für NbLi

(ILN). Dabei fallen die Verkürzungen bei den Zwischengitterdefekten etwa halb so groß

aus wie bei den Antisitedefekten. Dies scheint darin begründet zu liegen, dass die Bin-

dungslänge der Zwischengitteratome zum nächsten Niobatom durch die Anordnung in

unterschiedlichen Atomlagen bereits einen deutlich niedrigeren Ausgangswert ohne Po-

laron bzw. Bipolaron aufweist und die Repulsion zwischen beiden Niobatomen bei den

schon geringen Abständen einen größer werdenden Anteil ausmacht. In absoluten Zahlen

fallen die Nb–Nbnah Abstände der Zwischengitteratome immer noch deutlich kleiner aus

als die der Antisitedefekte. Bezüglich der Abstände des Defektatoms zu den Sauerstoffa-

tomen fällt auf, dass eine Angleichung dieser Abstände des NbV Defekts zu den anderen

Defekten stattfindet. Außer der starken Gitterrelaxation zeigt Abb. 4.3 (b) wieder, dass

die Elektronendichte, die dem Defektniveau zugeordnet werden kann, stark an den beiden

Niobatomen lokalisiert ist.

Die elektronische Bandstruktur mit den besetzten Bipolaronzuständen ist in Abb. 4.5 zu

sehen. Bei der Betrachtung ist es wichtig, die absolute Lage der Bipolaronenenergieni-

veaus und die Änderung im Vergleich zu der 4d1 Polaronenstruktur hervorzuheben. Die

absolute Lage der HSE06-Defektniveaus beträgt 1.57, 2.26, 2.08 und 1.63 eV unterhalb

der Leitungsbandkante für NbLi (SLN), NbV, NbV–VLi bzw. NbLi (ILN), was jeweils ei-
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Abbildung 4.5: Elektronische Bandstruktur aller berücksichtigten Defektarten nach Formation eines
Bipolarons (4d1–4d1). Das Darstellungsschema und Erläuterungen sind Abb. 4.4 zu entnehmen. Vergli-
chen mit dem Polaronenniveau 4d1 weist das Zwischengitterdefektpaar NbV–VLi unter allen betrachteten
Strukturen die größte Änderung des Defektniveaus auf. Allgemein zeigen beide Strukturen, die das Zwi-
schengitteratom NbV enthalten, die größte Energiedifferenz zwischen Defektniveau und Leitungsband-
kante.

ne Absenkung um 0.20, 0.18, 0.42 und 0.02 eV bedeutet. Damit liegt für das NbV–VLi

Defektpaar die größte Änderung vor, was im weiteren in Hinblick auf die spätere Be-

rechnung der jeweiligen optischen Eigenschaften bedeutsam ist. Die optischen Absorp-

tionspeaks, die in experimentellen Messungen den Polaronen und Bipolaronen zugeord-

net werden, unterscheiden sich um einen Wert von 0.9 eV. Ein direkter Vergleich zu den

Übergangsenergien in der HSE06-Bandstruktur ist aufgrund der nicht berücksichtigten

Elektron-Loch-Wechselwirkung und der Auswahlregeln jedoch nur eingeschränkt möglich.

Eine vorsichtige Analyse der Ergebnisse zeigt, dass die NbV–VLi Struktur diesen experi-

mentellen Befund am besten beschreibt unter der Voraussetzung, dass die vernachlässigten

Effekte dieselbe Größenordnung aufweisen. Ebenso interessant ist in dieser Hinsicht die

absolute Lage der Defektniveaus unterhalb der Bandkante. Der in optischen Experimenten

bestimmte Absorptionspeak von 2.5 eV erfordert Übergangsenergien in der Bandstruktur

in derselben Größenordnung, vorausgesetzt diese Übergänge finden statt. Das Ergebnis

der Hybridfunktional-Bandstrukturrechnungen legt somit nahe, dass die Zwischengitter-

defekte in diesem Energiebereich liegen, während die Antisitedefekte energetisch deutlich

niedriger angesiedelt sind.

Die Tatsache, dass die Energieniveaus der Bipolaronen niedriger liegen, ist eine Folge

des geringeren Nb–Nbnah Abstands. Wie bereits Nahm und Park durch ihre DFT+U

Rechnungen gezeigt haben, werden die Defektlevel umso stärker abgesenkt, je näher die

zwei Niobatome zueinander verschoben werden [174]. Des Weiteren kann an dieser Stelle

89



Konfiguration 4d0 4d1 4d1–4d1

PBEsol (2×2×2) −0.619 −0.695 −0.164
PBEsol (3×3×3) −0.669 −0.683 −0.140
HSE06 (2×2×2) −0.694 −0.676 −0.132

Tabelle 4.6: Relative elektronische Gesamtenergie eines NbLi (SLN) Antisitedefekts in eV in Bezug zum
NbV–VLi Defektpaar, die mit dem PBEsol (DFT+U) und HSE06 Funktional berechnet wurden. Größere
Superzellen oder unterschiedliche Austauschkorrelationsfunktionale ändern das Ergebnis qualitativ nicht.

darauf hingewiesen werden, dass die Gitterrelaxation aufgrund der Bildung des Bipolarons

nicht nur das ehemalige Polaronenniveau leicht absenkt, sondern auch zu einer starken

Absenkung des vorher unbesetzten 4d1 Orbitals des Nachbaratoms Nbnah führt.

4.2.6 Energetische Betrachtung der intrinsischen Defekte

Der energetische Vergleich der betrachteten Defekttypen soll weiteren Aufschluss über die

Wahrscheinlichkeit ihres Auftretens geben. Ein direkter Vergleich der elektronischen Ge-

samtenergien für NbLi (SLN), NbV–VLi und NbLi (ILN) ist aufgrund derselben jeweiligen

Anzahl von Lithium-, Niob- und Sauerstoffatomen möglich. Es zeigt sich durchgängig, dass

die NbLi (SLN) Struktur energetisch am günstigsten ist. Die Energiedifferenz ist abhängig

von der Besetzung der Polaronenniveaus und in Tab. 4.6 aufgeführt. Während sich die

Gesamtenergien der 4d0 und 4d1 Strukturen um Werte um 0.65 eV unterscheiden, schwin-

det diese Differenz auf Werte um 0.15 eV für die 4d1–4d1 Niveaus. Die Energiedifferenzen

zwischen den NbLi (SLN) und NbLi (ILN) Strukturen sind hier nicht explizit aufgeführt,

da sie im besten Fall (4d2) auf einen Wert von 3.52 eV mit dem PBEsol Austauschkorre-

lationsfunktional für die 2×2×2 Superzelle führen. Um den Effekt der unterschiedlichen

Umgebungen (SLN vs. ILN) herauszurechnen, sollte die achtfache Differenz der Gesamt-

energien der defektfreien Einheitszellen von SLN und ILN, i.e. 8×0.21 eV, abgezogen wer-

den. Damit ist Struktur von SLN immer noch um 1.84 eV energetisch günstiger als die

von ILN, wonach letztere dementsprechend mit geringer Wahrscheinlichkeit vorkommt.

Da die Superzellen, die den NbLi (SLN) Antisitedefekt und das NbV–VLi Defektpaar ent-

halten, energetisch nah beieinander liegen, ist davon auszugehen, dass sich das Defektpaar

wie NbLi ebenfalls spontan bei der Synthese von LN bilden wird. Um diesen Umstand

allgemein für alle Punktdefekte genauer untersuchen zu können, sind die absoluten For-

mationsenergien EForm aller Punktdefekte zu betrachten, die sich wie folgt berechnen

[190]:

EForm[Xq] = E0[Xq]− E0[LN, bulk]−
∑
i

niµi + q[EF + EV + ∆E]. (4.1)

Xq bezeichnet dabei einen q-fach geladenen Punktdefekt oder ein q-fach geladenes De-

fektcluster. E0 ist die HSE06 elektronische Gesamtenergie der Defektstruktur E0[Xq]

und entweder der reinen SLN oder der reinen ILN Struktur E0[LN, bulk]. Des Weiteren

tritt die Summe über das chemische Potential µi der jeweiligen Defekte auf, die entfernt
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aktuelle Theorie frühere Theorie [191] Experiment

∆H [LiNbO3] −14.629 −14.624 −14.149 [192]
∆H [Li2O] −6.282 −6.239 −6.139 [193]
∆H [Nb2O5] −21.871 −20.251 −19.687 [193]

Tabelle 4.7: Vergleich von aktuellen theoretischen Reaktionswärmen von Lithiumniobat und seinen Aus-
gangsprodukten Lithiumoxid und Niobpentoxid und früheren Daten von Sanna et al. [191]. Experimentelle
Ergebnisse stammen von Knacke et al. [192] und Barin et al. [193].

(ni < 0) oder hinzugefügt (ni > 0) werden. Die Ladungszustände finden über den letzten

Summanden Berücksichtigung, wobei die Fermi-Energie EF variabel ist, EV das Valenz-

bandmaximum des bulks darstellt und ∆E eine Korrektur ist, die die Verschiebung der

elektronischen Eigenwerte durch das Defektpotential korrigiert. Die Angleichung ∆E der

elektronischen Eigenwerte wird in dieser Arbeit mithilfe der untersten, mindestens 40

eV unter dem Valenzbandmaximum liegenden elektronischen Eigenwerte vorgenommen,

die fast keine Dispersion aufweisen. Die Einschränkung auf die 80 atomige Superzelle lie-

fert, begrenzt durch die Defekt-Defekt-Wechselwirkung, eine Genauigkeit der berechneten

Defektformationsenergien von etwa 0.5 eV [168].

Die Bestimmung der chemischen Potentiale erfolgt über die Berechnung der elektronischen

Gesamtenergie von Nb2, Li2 (fest) und O2 (gasförmig), sowie SLN und seiner Herstellungs-

materialien Nb2O5 und Li2O. Das genaue Vorgehen ist der Literatur zu entnehmen [168,

170, 191]. Für die Berechnung der Formationsenergien werden in Übereinstimmung mit Li

et al. [170] Niob-reiche Bedingungen angenommen, da selbst für fast stöchiometrisches LN

ein Lithiumdefizit besteht. Während die absoluten Gesamtenergien aufgrund der Verwen-

dung der normerhaltenden Pseudopotentiale keine physikalische Aussagekraft besitzen,

sondern nur Energiedifferenzen, können lediglich die Reaktionswärmen von SLN, Nb2O5

und Li2O direkt mit früheren theoretischen und experimentellen Ergebnissen in Tabelle

4.7 verglichen werden. Diese stimmen sehr gut miteinander überein.

Die Defektenergien der Antisitepunktdefekte wurden als einer der wichtigsten Defekte in

LN schon häufig untersucht [168, 170, 185]. Studien über den Antisitedefekt in ILN und

das NbV–VLi Defektpaar fehlen bislang. Araujo et al. [185] und Xu et al. [168] unter-

suchten zwar den Zwischengitter Niobdefekt, nahmen jedoch für ihn nur eine Position in

der Mitte des leeren Sauerstoffoktaeders an, ohne eine Strukturrelaxation durchzuführen.

Beide Arbeiten sagten eine hohe Formationsenergie voraus. Die hier vorgestellten Ergeb-

nisse beschränken sich auf die für die Bildung von Polaronen relevanten Ladungszustände

sowie den Fall leerer Defekt-d-Orbitale (4d0). Die Formationsenergien sind in Abbildung

4.6 abgebildet.

In Übereinstimmung mit den früheren theoretischen Erkenntnissen kann gefolgert werden,

dass sich der Antisitedefekt aufgrund der negativen Formationsenergie spontan bildet. Auf

den ersten Blick überraschend wirkt im Vergleich zum SLN seine niedrigere Defektenergie

in ILN, obwohl dieser bei der Betrachtung der elektronischen Gesamtenergie energetisch
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Abbildung 4.6: Formationsenergien der vier betrachteten Punktdefekte und Defektpaare in den Niob-
defektzuständen 4d0, 4d1 und 4d1–4d1. Weitere Ladungszustände der Superzellen, die bei steigender
Fermi-Energie energetisch günstiger sein können als die hier betrachteten, werden nicht berücksichtigt,
was durch die gestrichelten Linien angedeutet ist. Abschnitte mit gleicher Steigung besitzen denselben
Ladungszustand. Die vertikale gepunktete Linie zeigt die Position des Leitungsbandminimums in reinem
SLN an. Das Ende der Skala markiert das Leitungsbandminimum in reinem ILN.

ungünstig war. Formal liegt dieser Befund an der niedrigeren Position des Valenzband-

maximums in ILN. Außerdem soll hier darauf hingewiesen werden, dass die energetisch

ungünstigere defektfreie Ilmenit-bulk -Struktur mit E0[ILN, bulk] als Referenz dient. Wie

anhand der Gesamtenergien erwartet, liegt die Formationsenergie von NbV–VLi leicht über

der von NbLi (SLN), und es reduziert sich der Abstand beim Übergang vom Ladungszu-

stand 4+ zu 2+. Dieser findet bei Erhöhung der Fermi-Energie etwas früher für NbV–VLi

als für NbLi statt. Die Bildung des NbV Defekts ist insbesondere für niedrigere Fermi-

Energien sehr günstig. Während der Polaronenzustand bei den Zwischengitterdefekten

nur metastabil ist, gibt es für die Antisitedefekte einen kleinen Bereich, in dem der 3+

Ladungszustand, bei dem sich das Polaron bei ihnen bildet, energetisch am günstigsten

ist. Die Ergebnisse sind auch hier stets unter dem Vorbehalt der Notwendigkeit der Model-

lierung ladungskompensatorischer Defekte zu werten. Jedoch zeigen diese Erkenntnisse,

dass alle studierten Defektarten grundsätzlich auftreten können.

Um die relative Stabilität des NbV–VLi Defektpaars bezogen auf NbLi (SLN) zu bestim-

men, wird die nudged elastic band -Methode [194] angewendet, um die Diffusionsbarriere

zu berechnen. Dabei werden zehn Bilder entlang eines zu berechnenden Pfades verwendet,

dessen Anfang und Endpunkt die jeweiligen Konfigurationen von NbLi (SLN) und NbV–

VLi markieren. Sie sind mit Federkonstanten zwischen 310 und 470 kg/s2 verbunden. Trotz

der Tatsache, dass NbLi energetisch etwas günstiger ist, wird das Niobdefektatom NbV

nicht die Gitterposition wechseln, da die Energiebarriere mit 0.86, 0.84 und 1.61 eV für
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Material X–O↓ X–O↑ X–Nb↓ X–Nb↑
SLN 2.050 2.238 3.905 3.009
Ti:SLN (2×2×2) 1.928 2.056 3.982 3.012
Ti:SLN (3×3×3) 1.922 2.052 3.986 3.004

Tabelle 4.8: Bindungslängen zwischen X und benachbarten Atomen in Å, wobei X ein Platzhalter für Li
(SLN) oder TiLi Substitutionsatome (Ti:SLN) ist. Für Ti:SLN sind die Resultate der zwei verschiedenen
Superzellgrößen gezeigt. Die O↓ und Nb↓ Symbole bezeichnen, bezogen auf Abb. 4.7, Sauerstoff- bzw.
Niobatome unterhalb des Li or TiLi Platzes, während O↑ und Nb↑ für die Atome oberhalb stehen.

die 4d0, 4d1 und 4d1–4d1 Ladungszustände hoch ist.

4.2.7 Titanpunktdefekte

Die Modellierung der Titanpunktdefekte geschieht für alle in Tabelle 4.2 aufgeführten

Konzentrationen. Insbesondere wird die Anwesenheit von Titan im stöchiometrischen

(Abb. 4.7 (b)) sowie im kongruenten (Abb. 4.7 (c)) Lithiumniobat simuliert. Letzteres

wird näherungsweise abgebildet, indem auf der Symmetrieachse der Superzelle zusätzlich

ein Antisitedefekt platziert wird. Die unterschiedlichen Ansätze werden fortan als Ti:SLN

und Ti:CLN bezeichnet. Insbesondere bietet es sich an, drei Titanatome in der 3×3×3

Superzelle anstelle eines Titanatoms in der 2×2×2 Zelle zu platzieren, um verschieden-

artige Wechselwirkungen der Defekte bei ähnlicher Titankonzentration besser untersu-

chen zu können. So wird es ermöglicht, Defekt-Defekt-Wechselwirkungen für die zwei

höheren Konzentrationen ab 1021 Titanatomen pro cm3 auf zweierlei Weise zu betrach-

ten. In der 2×2×2 Superzelle liegen die Titan Defektatome auf der c-Achse nahe bei-

einander, während die Distanzen in der 3×3×3 Superzelle in der x-y-Ebene klein sind.

Der Verlust von Symmetrien und die damit einhergehende Steigerung der rechentechni-

schen Anforderungen erschweren die beliebige Anordnung der Titandefekte sehr. Es ist

davon auszugehen, dass die quantitativen Ergebnisse von der Defektanordnung und von

der Unmöglichkeit, wirklich separate Defekte modellieren zu können, stark beeinflusst

sind. Die zwei unterschiedlichen Modellierungen werden jedoch möglicherweise eine Be-

wertung der weiteren Ergebnisse erleichtern. Zuletzt sei angemerkt, dass die Titanfremd-

atome bei kongruenten LN aufgrund unterschiedlicher Superzellgrößen unterschiedlichen

Li:Nb Verhältnissen ausgesetzt sind (vgl. Tab. 4.2). Diese Tatsache muss bei der späteren

Analyse der optischen Spektren ebenfalls berücksichtigt werden.

Die Ergebnisse der strukturellen Relaxation von Ti:SLN sind in Tabelle 4.8 für beide

Superzellgrößen aufgelistet. Die Gitterparameter a und c bleiben dabei wieder auf die

Werte des stöchiometrischen Lithiumniobats fixiert. Die atomaren Verschiebungen sind

in der Vergrößerung von Abbildung 4.7 verdeutlicht: Im Vergleich zur stöchiometrischen

Konfiguration sind das Niob- und Titanatom nach oben verschoben, während die Sauer-

stoffatome sich zum Titanplatz bewegen. Dies lässt sich mit dem kleineren Atomradius

von vierfach positiv geladenen Titan erklären, der oktaedrisch koordiniert mit 0.745 Å
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Abbildung 4.7: (a) Stöchiometrisches Lithiumniobat. (b) Das Li+ Ion wird mit einem Ti4+ Ion ersetzt.
(c) Zusätzlich wird zur Simulation von Titandefekten in kongruentem LN eine NbLi Antisite eingebracht.
Das Niob- und das Titanatom befinden sich nur für diese komprimierte Darstellung in derselben Ein-
heitszelle. Der Ausschnitt zwischen (b) und (c) zeigt das Titandefektatom und das benachbarte Niobatom
vergrößert. Die Verschiebungen relativ zum reinen Material sind mit schwarzen Pfeilen markiert.

kleiner ist als das einfach positiv geladene Lithiumatom mit 0.90 Å. Auffällig ist die

geringe Differenz der relaxierten Abstände zwischen 2×2×2 und 3×3×3 Superzelle. Das

bedeutet, dass die lokale Störung des Gitters durch das Titansubstitutionsatom kaum von

der Zellgröße beeinflusst wird. Die Bindungslänge des Defektplatzes zu den benachbarten

Sauerstoffatomen ist im Vergleich zum stöchiometrischen Material um 7–8 % reduziert und

zum benachbarten Niobatom um 2.5 % vergrößert. Nächste Nachbarniobatome in der x-y-

Ebene werden um 4 % der Bindungslänge nach außen gedrückt. Über einen Abstand von

3.2 Å hinaus ist vor allem das kationische Untergitter betroffen, welches sich im Gegensatz

zu dem in Abbildung 4.7 dargestellten Defekt–nächster-Nachbar-Paar überwiegend nach

unten bewegt. Dies geschieht nicht nur auf der c-Achse, auf der sich der Defekt befin-

det, sondern in der gesamten 2×2×2 Superzelle und wird durch die Coulomb-Repulsion

verursacht. Das Verhalten des kationischen Untergitters klingt mit der Zellgröße und wach-

sendem Abstand zum Defekt ab, bleibt in der gesamten 3×3×3 Superzelle jedoch präsent.

Für die spätere Analyse der optischen Funktionen ist es von großer Bedeutung, heraus-

zustellen, wie sich der Einfluss von Nb5+
Li auf die gesamte atomare Struktur von Ti4+

Li un-

terscheidet, was wegen der übersichtlicheren Anzahl an Atomen am besten in der 2×2×2

Superzelle gelingt. Allgemein treten für beide Defekte dieselben Gitterverzerrungen auf,

wobei nur die Ausprägungen unterschiedlich sind. Dies lässt sich aus dem Vergleich der

Abweichungen der Atompositionen in der stöchiometrischen Superzelle und der jeweiligen
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Abbildung 4.8: Elektronische Bandstruktur der Ti:SLN 2×2×2 Superzelle. Die Titan zugeordneten
Bänder sind rot (a1 Symmetrie) und grün (e Symmetrie) hervorgehoben. Die Inset-Bilder zeigen um das
Titanatom (blau) die Elektronendichte (grau) der Kohn-Sham-Orbitale der lokalisierten Defektzustände
eines ausgewählten Punktes der Brillouin-Zone.

Defektsuperzelle folgern. Die atomaren Relaxationen im kationischen Untergitter fallen

dabei für NbLi um 20 bis teilweise 70 % deutlich stärker aus als für TiLi. Gleichwohl sind

die Änderungen im Sauerstoffuntergitter vergleichbar. Das einzige komplett abweichen-

de Verhalten ist bezüglich des Titandefektatoms selbst festzustellen: Im Gegensatz zum

Niobdefektatom wird es deutlich nach oben entlang der c-Achse verschoben.

Die elektronische Bandstruktur von Ti:SLN, modelliert in der 2×2×2 Superzelle, ist

in Abb. 4.8 abgebildet. Die Titan-3d-Zustände splitten sich aufgrund der nicht-zentro-

symmetrischen Position innerhalb des Sauerstoffoktaeders und des damit verbundenen

elektrischen Feldes auf, ähnlich wie es von Sanson et al. [187] für Eisensubstitutions-

atome beschrieben wurde. Das Einbringen eines Ti-Atoms pro Superzelle führt zu drei

zusätzlichen leeren Bändern nahe oberhalb des Leitungsbandminimums, eines mit a1 und

zwei mit e Symmetrie. Die Ergebnisse zeigen, dass die Defektzustände resonant mit dem

Leitungsband sind, was vorab die experimentellen Befunde erklärt, in denen Titanverun-

reinigungen keine Absorptionsbanden in Wellenleitern verursachen [176, 195]. Das Ergeb-

nis ist repräsentativ für Modellierung in der 3×3×3 Superzelle, die ebenfalls leitungsban-

dresonante Titanzustände hervorbringen. Die PBEsol indirekte elektronische Bandlücke

von 3.52 eV in SLN wird bei Ti:SLN (2×2×2) auf 3.33 eV reduziert. Ein fast identischer

Wert von 3.31 eV tritt im Falle für CLN mit NbLi Antisitedefekt auf, ebenfalls in der

2×2×2 Superzelle. Beide Defekte kombiniert (Ti:CLN) in der 2×2×2 Superzelle ergeben

die höchste Titan- und Antisitekonzentration (vgl. Tab. 4.2) und liefern eine Bandlücke,
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die weiter auf 3.28 eV absinkt. Dennoch erhält man für die Konfiguration mit einem Li:Nb

Verhältnis von 96 % und der Titankonzentration von 1.05 × 1021 Atomen pro cm3 einen

Wert, der um weitere 0.2 eV kleiner ist. Dies kann der Tatsache zugeschrieben werden, dass

die Defektatome unterschiedlich angeordnet sind. Selbstverständlich unterschätzen die an-

gegebenen Werte die experimentellen Bandlücken aufgrund des Bandlückenproblems. Da

in diesem Fall jedoch keine Defektzustände innerhalb der Bandlücke vorkommen, deren

exakte Energieniveaus von Interesse wären, werden an dieser Stelle keine spezifischen

Korrekturen der elektronischen Energieniveaus vorgenommen. Die Bandlücke wird im

Weiteren durch einen scissors shift von 1.4 eV auf Grundlage aufwendiger GW - und

BSE-Rechnungen [149, 154] im stöchiometrischen LN korrigiert.

4.3 Optische Eigenschaften von LN und Punktdefekten

4.3.1 Rechentechnische Details

Die TDDFT-Rechnungen unter Verwendung des LRC-Kernels werden mit dem Yambo-

Programmpaket [196] durchgeführt. Die Kohn-Sham-Orbitale und -Eigenenergien bilden

die Grundlage der TDDFT-Rechnungen. Dazu ist es erforderlich, den nun Γ-zentrierten k-

Punktsatz der Einheitszelle auf 6×6×6 Punkte zu erhöhen. Dies ist äquivalent mit einem

3×3×3 Gitter in der 80 atomigen Superzelle und einem 2×2×2 Gitter in der 270 atomigen

Superzelle. Im Vergleich zu DFT-Rechnungen, in denen die Abschneideenergie von 1150

eV äquivalent zu ca. 6300 reziproken Gittervektoren ist, kann die Anzahl der G-Vektoren

auf 1500 abgesenkt werden. In allen Rechnungen wird eine Verbreiterung von η = 0.15 eV

angewendet. Weiterhin werden 350 elektronische Bänder verwendet, um auskonvergierte

optische Funktionen zu erhalten. Da die Rechenzeit und der Speicherbedarf unter der

Verwendung von Superzellen stark ansteigen, müssen die Anzahl der G-Vektoren und der

Bänder im Verhältnis deutlich reduziert werden. Für die 80 atomige Superzelle genügen

640 Bänder und 4000 reziproke Gittervektoren, um die numerischen Ungenauigkeiten un-

ter 1.0% für den Imaginärteil der dielektrischen Funktion und den Brechungsindex sowie

unter 1.5% für den Realteil der dielektrischen Funktion und der Reflektivität zu drücken.

Dies entspricht 80 Bändern und 500 G-Vektoren in der Einheitszelle. Weiterhin werden

1620 Bänder und 2700 reziproke Gittervektoren in der 270 atomigen Superzelle verwen-

det, wofür die genannten Größen innerhalb von 1.5% bzw. 3.3% konvergiert sind. In der

Einheitszelle entspricht dies Konvergenzparametern von 60 Bändern und 100 reziproken

Gittervektoren.

Quantitative Vergleichbarkeit zwischen Ergebnissen unterschiedlicher Zellgrößen kann ge-

währleistet werden, indem TDDFT-Rechnungen in der Einheitszelle mit den geringeren

oben angegebenen Konvergenzparametern durchgeführt werden. Die frequenzabhängige

Differenz der jeweiligen dielektrischen Funktionen zu den konvergierten Resultaten be-
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stimmt einen von den Konvergenzparametern der jeweiligen Superzellgröße abhängigen

(frequenzabhängigen) Offset. Dieser kann auf die dielektrische Funktion der defektbehaf-

teten Superzellen aufaddiert werden. Da die Defekte als Störung der optischen Funktionen

auftreten ohne sie grundlegend zu verändern, kann der Offset auch für die Simulation der

Punktedefekte eine klare Korrektur der Ergebnisse darstellen. Weiterhin positiv ist bei

diesen Vorgehen die Tatsache hervorzuheben, dass das Konvergenzverhalten im Frequenz-

bereich von 0 bis 4 eV bei unterschiedlichen Konvergenzparametern fast identisch ist, also

der Offset als konstant angesehen werden kann.

Die Güte der Offsetkorrektur lässt sich mit hundertprozentiger Sicherheit nur bestimmen,

wenn auskonvergierte Funktionen in den Superzellen zur Verfügungen ständen, was wegen

der rechentechnischen Beschränkungen nicht möglich ist. Um dennoch eine Einschätzung

darüber zu erhalten, werden Testrechnungen mit NbLi und TiLi Punktdefekten in der

2×2×2 Superzelle mit Konvergenzparametern durchgeführt, die denen der 3×3×3 Super-

zelle entsprechen. Die Abweichungen der somit erhaltenen dielektrischen Funktionen zu

den respektiven Funktionen, die mit den oben angegebenen Konvergenzparametern der

2×2×2 Superzelle zu erhalten sind, betragen 0.9 % für den Imaginärteil und 1.8 % für

den Realteil. Damit kommen die Fehlerabschätzungen hier und in der Einheitszelle zu

demselben Ergebnis, was deren Plausibilität untermauert. Verwendet man nun die Off-

setkorrektur (genauer gesagt die Differenz des 3×3×3-Offsets und des 2×2×2-Offsets)

und addiert sie auf die unterkonvergierten dielektrischen Funktionen der 3×3×3 Konver-

genzparameter, reduzieren sich die genannten Fehler unabhängig vom Punktdefekt um

den Faktor 100 bei dem für die Berechnung des Brechungsindex besonders relevanten

Realteils der dielektrischen Funktion. Faktisch bedeutet dies, dass die somit korrigierten

Ergebnisse unterschiedlicher Konvergenzparameter vergleichbar gemacht werden können

und die Punktdefekt-induzierten Änderungen, die sonst im Bereich der oben angegebenen

Fehler liegen würden, verlässliche Angaben darstellen, bei denen der Fehler um bis zu zwei

Zehnerpotenzen reduziert ist. Das Verfahren ist vor allem für die Analyse der quantitati-

ven Änderung des Brechungsindexes n bei Einbringung von Defekten bedeutend.

Neben diesen grundlegenden Konvergenzparametern ist es weiterhin erforderlich, das

LRC-α und ggf. das LRC-β auf Lithiumniobat abzustimmen. In dem Zusammenhang

ist es wichtig, dass LRC und scissors shift ∆ der Kohn-Sham-Eigenwerte als getrenn-

te Approximationen zweier unabhängigen Komponenten des exakten Austauschkorre-

lationskernels fxc angesehen werden können [87]. Damit ist die Anwendung des LRC-

Kernels so festgelegt, dass zunächst der scissors shift als Differenz der GW - und DFT-

Bandlücke gebildet wird. Als Referenzwert wird der 2.03 eV Shift verwendet, der in der

Arbeit von Riefer et al. [149] zwei IPA-Spektren auf Grundlage der dort verwendeten

G0W0 Näherung bzw. der DFT-PW91-Ergebnisse in exzellente Übereinstimmung gebracht

hat. Unter Berücksichtigung von Nullpunkts- und Temperaturkorrekturen stimmen diese

GWA-Ergebnisse außerdem mit der Selbstenergiekorrektur überein, die in der selbstkon-

sistenten GW0 (QSGW0) Approximation auf Grundlage des HSE06-Austauschkorrelation-
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funktionals berechnet wurde [154]. Weiterhin sind die G0W0-Ergebnisse Grundlage für die

BSE-Rechnungen [149], mit denen die folgenden TDDFT-LRC-Spektren verglichen und

geprüft werden. Daraufhin erfolgt die Anpassung des α und β Parameters. Empirische

Anhaltspunkte, wie α zu wählen ist, liefert ein Fit verschiedener α Werte, die zur besten

Übereinstimmung mit experimentell gemessenen Spektren führen, meist von Halbleitern

mit sp3-Bindungen. Dieser ergibt eine antiproportionale Abhängigkeit zur jeweiligen ma-

kroskopischen Dielektrizitätskonstanten ε∞ = ε(ω = 0) [92] mit

α = 4.615/ε∞ − 0.213, (4.2)

was der Tatsache Rechnung trägt, dass eine steigende Abschirmung der Elektron-Loch-

Wechselwirkung die Stärke der exzitonischen Effekte reduziert.

Versuchshalber werden empirisch hergeleitete Alternativen zum LRC-Kernel in Betracht

gezogen, sogenannte bootstrap-Ansätze [197–199], in denen das fxc-Kernel mithilfe der

dielektrischen Funktion ausgedrückt wird und ohne justierbaren Parameter auskommt.

Obwohl die bootstrap-Ansätze einen anderen Ansatz verfolgen, genügen sie denselben Prin-

zipien wie das LRC-Kernel. Im optischen Limit q → 0 ist der dominierende Ausdruck

derselbe wie beim LRC, während der Zähler sich invers proportional zur makroskopischen

Dielektrizitätskonstanten verhält, sowohl in der ursprünglichen Version (BO) von Sharma

et al. [197] als auch in der überarbeiteten Version (RBO) von Rigamonti et al. [198], die auf

die random-phase-Approximation vertraut. Die Rechnungen mit den bootstrap-Kerneln

werden mit dem Elk-Code [200] ausgeführt. Um optimale Vergleichbarkeit der Ergebnisse

unterschiedlicher Codes zu gewährleisten, werden dieselben Gitterparameter und, wenn

immer möglich, dieselben Konvergenzparameter gewählt. Trotz konzeptioneller Unter-

schiede zwischen dem all electron FPLAPW-Code (Abk. für engl. full-potential linearised

augmented-plane wave) und den hier überwiegend verwendeten Pseudopotential-Codes

zeigen Testrechnungen im Elk-Code mit dem LRC-Kernel, dass sich diese Ergebnisse in

sehr guter Übereinstimmung mit den mit QE und YAMBO erzielten Ergebnissen befinden

und somit die Vergleichbarkeit der Ergebnisse zusätzlich verifiziert ist.

4.3.2 Stöchiometrisches Lithiumniobat

Verschiedene Anwendungsweisen des scissors shifts und des LRC-Kernels sind in Abb.

4.9 dargestellt. Die oberen Panele zeigen den Imaginärteil der dielektrischen Funktion,

verglichen mit den BO-Ansätzen. Die dort gezeigte TDDFT-LRC Kurve entsteht un-

ter Berücksichtigung der in Kapitel 4.3.1 vorgestellten strikten unabhängigen Aufteilung

des fxc-Kernels als scissors shift mit ∆ = 2.03 eV und LRC mit α = 0.75 nach For-

mel (4.2). Trotz ihrer verschiedenen Herkunft weisen LRC und BO bzw. RBO wegen der

genannten Gründe ähnliche Resultate auf, wobei mit BO die Oszillatorstärke des Haupt-

absorptionspeaks noch am besten beschrieben ist. Alle gezeigten Kurven werden mit BSE-
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Rechnungen von Riefer et al. als Bezugsmarke verglichen. Dabei zeigt sich jedoch, dass

alle drei TDDFT-Kurven blauverschoben sind und stark überhöhte Oszillatorstärken of-

fenbaren. Der Grund für diese Diskrepanz liegt darin, dass das statische LRC-Kernel aus-

schließlich Oszillatorstärken zwischen schon existierenden Peaks umverteilen kann und

nicht die Anregungsenergien selbst verschieben kann [92]. Dies ist eine Einschränkung,

die es mit den BO- und RBO-Kerneln teilt. Während dies ohne Konsequenz für einfache

Halbleiter mit sp3-Bindungen mit schwach gebundenen Exzitonen bleibt, verursacht die-

se Tatsache Probleme in Materialien wie LN, wo die optische Bandlücke stark von der

elektronischen Bandlücke abweicht.

Um dieser Schwäche zu begegnen, werden die zuvor getrennten Approximationen des Aus-

tauschkorrelationskernels nun aufeinander abgestimmt. Dazu wird der Quasiteilchenshift

nun nur anteilig als expliziter scissors shift in χKS
GG′ (Gl. 2.150) behandelt, während die

Differenz als Beitrag zu fxc gewertet wird, was einem LRC-Term mit positivem Vorfaktor

entspricht [87, 91, 92], in Addition also zu einer Reduktion des α Parameters führt. Der

scissors shift vermindert sich konkret um 0.6 eV. In den unteren Panelen von Abb. 4.9

ist die mit TDDFT-LRC berechnete dielektrische Funktion zu sehen, die mit ∆ = 1.4 eV

und α = 0.44 berechnet wurde. Da die bootstrap-Ansätze diese Justierungsmöglichkeiten

nicht aufweisen und keine systematischen Verbesserungen der LRC-Ergebnisse liefern,

werden sie nicht weiter verfolgt. Durch die Aufteilung des scissors shifts befindet sich

die dielektrische Funktion nun in guter Übereinstimmung mit der BSE-Rechnung und

mit experimentellen Messungen von Wiesendanger et al. [201] und Mamedov et al. [202]

bezüglich der Peakpositionen und der spektralen Gewichte.

Mithilfe des Parameters β kann eine einfache Frequenzabhängigkeit des LRC-Kernel ein-

geführt werden. Dies kann zur besseren Beschreibungen exzitonischer Effekte an mehreren

Peaks im Absorptionsspektrum dienen. Neben dem Hauptabsorptionspeak um 5 eV weist

das LN-Absorptionsspektrum noch einen weiteren Peak um 10 eV auf. Im Vergleich zum

BSE-Spektrum ist der zweite Absorptionspeak des TDDFT-LRC-Spektrums mit α = 0.44

blauverschoben. Über den Zusammenhang α = α′ + βω2
m kann das neue α′ für das LRC-

α, β-Kernel angepasst werden mit ωm als Position des Hauptabsorptionspeaks, für den der

α-Wert von 0.44 eine gute Beschreibung war. Die Position und die Gestalt des zweiten Ab-

sorptionspeaks kann mit den Werten α′ = −0.322 und β = 18.0 in gute Übereinstimmung

mit den BSE-Ergebnissen gebracht werden.

Die quantitativen Auswirkungen verschiedener Approximationen werden anhand des Bre-

chungsindexes analysiert. In Tabelle 4.9 sind der ordentliche (n⊥) und der außerordent-

liche (n‖) Brechungsindex unter Verwendung der Unabhängige-Teilchen-Approximation,

der random-phase-Approximation, des LRC-α- und des LRC-α, β-Kernels im Vergleich zu

experimentell bestimmten Werten bei λ = 633 nm [124] aufgelistet. Der frequenzabhängige

Brechungsindex bestimmt sich aus dem Real- und Imaginärteil der dielektrischen Funktion
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Abbildung 4.9: Imaginärteil der dielektrischen Funktion für die ordentliche (ε⊥) und außerordentliche
(ε‖) Polarisationsrichtung von stöchiometrischem Lithiumniobat im Vergleich zur BSE-Rechnung von
Riefer et al. [149] (gepunktete Kurven). Die oberen zwei Graphen zeigen die dielektrischen Funktionen
unter Verwendung verschiedener fxc-Kernel. Diese TDDFT-Rechnungen werden mit einem scissors shift
von ∆ = 2.03 eV versehen. Das LRC-Kernel wird mit α = 0.75 verwendet. Die unteren Panele zeigen
Ergebnisse der TDDFT-Rechnungen mit einem scissors shift von ∆ = 1.4 eV. Die schwarze Linie zeigt das
LRC-Kernel mit α = 0.44, die violette das LRC-α, β-Kernel mit α = −0.322 und β = 18.0. Experimentelle
Daten stammen von Wiesendanger et al. [201] (a) und Mamedov et al. [202] (b).
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Brechungsindex IP RPA LRC-α LRC-α, β Expt.[124]

n⊥ 2.35 2.20 2.35 2.13 2.29
n‖ 2.26 2.16 2.30 2.10 2.19

Tabelle 4.9: Berechneter ordentlicher (n⊥) und außerordentlicher (n‖) Brechungsindex von
stöchiometrischem LN in verschiedenen Approximationen bei einer Wellenlänge von 633 nm. Zum Ver-
gleich werden experimentelle Brechungsindizes von fast stöchiometrischen Lithiumniobat, hergestellt mit-
tels vapor transport equilibration, angegeben.

über

n(ω) =

(
|ε(ω)|+ Re ε(ω)

2

)1/2

. (4.3)

Die Anwendung der RPA äußert sich im Vergleich zur Unabhängige-Teilchen-Approxima-

tion durch eine leichte Blauverschiebung des Spektrums, bzw. einer Umverteilung von Os-

zillatorstärke zu höheren Energien, sowohl für den Real- als auch für den Imaginärteil der

dielektrischen Funktion. Die Verwendung der RPA liefert folglich niedrigere Brechungsin-

dizes. Dadurch, dass KH und das LRC-Kernel dieselbe q−2-Abhängigkeit besitzen, lassen

sie sich in ihrer Wirkung direkt vergleichen. So entspricht die Anwendung der RPA der des

LRC-Kernels mit positivem α. Wie bereits erwähnt, ist dieses Verhalten eher geeignet,

um GW -Ergebnisse zu reproduzieren und führt an dieser Stelle nicht zu Verbesserun-

gen des Spektrums. Die Doppelbrechung von LN wird quantitativ am besten durch die

unterste Stufe der Approximationen (IPA) beschrieben. Dies könnte daran liegen, dass

den übrigen Näherungen eine komplizierte Frequenzabhängigkeit in fxc fehlt, die mehr als

nur eine Umverteilung von Oszillatorstärke bewirken. Das wird im Falle vom LRC-α, β

bekräftigt, da durch den hohen β-Parameter viel Oszillatorstärke zu höheren Frequenzen

verschoben wird, was sich im niedrigeren Frequenzbereich in stark reduzierten Brechungs-

indizes äußert und zu einer weiteren Verschlechterung der quantitativen Beschreibung der

Doppelbrechung führt. Da im Weiteren vor allem der Frequenzbereich innerhalb der op-

tischen Bandlücke von Interesse ist, wird in allen weiteren Rechnungen mit der α = 0.44

Variante des LRC-Kernels gearbeitet.

4.3.3 Kongruentes Lithiumniobat

Kongruentes Lithiumniobat wird in dieser Arbeit durch isovalente Nb5+
Li Punktdefekte im

Zustand 4d0 in der 2×2×2 und in der 3×3×3 Superzelle simuliert. Da die Niobdefekte die

Bandlücke relativ gering beeinflussen und es angenommen werden kann, dass die exzito-

nische Bindungsenergie annähernd gleich bleibt, ist auch hier ein scissors shift von 1.4 eV

und α = 0.44 angemessen. Abbildung 4.10 zeigt den Imaginärteil der dielektrischen Funk-

tion von kongruentem LN mit den zwei verschiedenen NbLi Antisitedefektkonzentrationen

im Vergleich zu stöchiometrischem LN und den experimentellen Messungen. Auswirkun-

gen von Zwischengitteratomen auf das optische Absorptionsspektrum sind an dieser Stelle

von geringerem Interesse, da sie quantitativ höchstens 10 % der Anzahl der NbLi Defek-

te ausmachen [166] und somit eine untergeordnete Rolle spielen. Um zu zeigen, dass die
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Zwischengitterdefekte die dielektrische Funktion nicht stärker im Vergleich zu den Antisi-

tedefekten beeinflussen, ist die entsprechende dielektrische Funktion des NbV Modells in

hoher Defektkonzentration ebenfalls abgebildet. Er beeinflusst die dielektrische Funktion

im vergleichbaren Maße wie der Antisitedefekt und kann somit bei realistischen Konzen-

trationen vernachlässigt werden.

Es zeigt sich allgemein, dass die Strukturen im Absorptionspeak ausgewaschen werden.

Dies wurde auch in früheren theoretischen Studien auf Grundlage der Unabhängige-

Teilchen-Approximation [149, 169] beobachtet und liegt daran, dass die einzelnen elektro-

nischen Bänder homogener im Leitungsband verteilt sind. Somit werden die berechneten

Spektren je nach NbLi Konzentration in bessere Übereinstimmung mit den gemessenen

Spektren gebracht. Die deutliche Spitze im Absorptionspeak der außerordentlichen di-

elektrischen Funktion wird mit zunehmender Defektkonzentration abgeflacht, so dass die

Form qualitativ besser mit dem Experiment übereinstimmt. Die Absorptionskante der be-

rechneten Spektren ist unter 0.1 eV (ε⊥) bis unter 0.2 eV (ε‖) für CLN (88 %) gegenüber

SLN rotverschoben, während diese Änderungen für CLN (96 %) wesentlich geringer aus-

fallen. Die Reduktion des Beginns des Absorptionspeaks hängt direkt mit der kleineren

theoretischen elektronischen Bandlücke im kongruenten Material zusammen. Dieses Ver-

halten ist bekannt und kann in der Praxis angewendet werden, um die Stöchiometrie

unbekannter LN-Proben zu bestimmen. Dies geschah in Messungen der fundamentalen

Absorptionskante in Abhängigkeit der stöchiometrischen Zusammensetzung [203]. Dort

ist eine Reduktion der Bandlücke von 0.15 eV für CLN (96 %) bzw. 0.3 eV für CLN

(88 %) zu beobachten, was vermuten lässt, dass weitere (ladungskompensierende) Defekte

einen zusätzlichen Effekt auf das Absorptionsspektrum herbeiführen. Die Tatsache, dass

das höhere Li:Nb Verhältnis die Form der experimentellen Kurve am besten beschreibt,

sollte daher nicht als Hinweis auf das Nb-Vakanz-Modell angesehen werden, da weitere

Defekte wie Lithium- oder Niobfehlstellen hier außer Acht gelassen wurden.

Der Vergleich der frequenzabhängigen Brechungsindizes mit experimentell bestimmten

Brechungsindizes [124] kann in Abb. 4.11 gezogen werden. Dort wurden Brechungsindizes

bei unterschiedlicher Temperatur, Wellenlänge und Stöchiometrie ermittelt und an die

generalisierte Sellmeier-Gleichung gefittet. Die Verwendung dieser Gleichung erleichtert

hier die Darstellung der dort numerisch nicht aufgelisteten Werte und eine Extrapolation

der experimentellen Befunde auf die hier verwendeten Defektkonzentrationen über einen

kontinuierlichen Frequenzbereich von 1 bis 4 eV. Die Messungen verdeutlichen, dass das

variierende Li:Nb Verhältnis einen sehr geringen Einfluss auf n⊥ hat, während sich n‖ stark

ändert und sich dem höheren Wert von n⊥ nähert, also die Doppelbrechung reduziert.

Die theoretischen Ergebnisse reproduzieren dieses Verhalten ausgesprochen gut. Damit

zeigt sich, dass die Korrektur der im Prinzip unzureichend konvergierten optischen Funk-

tion in den Superzellen exzellent funktioniert. Damit können auch verlässliche quantitati-

ve Aussagen zu ihnen getroffen werden. Im Falle des außerordentlichen Brechungsindexes
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Abbildung 4.10: Berechneter Imaginärteil der ordentlichen (ε⊥) und außerordentlichen (ε‖) dielek-
trischen Funktion in Abhängigkeit der NbLi Antisite Konzentration, welches im weiteren als einfaches
Modell für kongruentes Lithiumniobat verwendet wird. Die ausgewaschenere Form der CLN Spektren in
Vergleich zu SLN stimmt besser mit dem Experiment von Wiesendanger et al. überein. Zusätzlich ist der
Imaginärteil der dielektrischen Funktion des Zwischengitterdefekts NbV abgebildet.
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Abbildung 4.11: Ordentlicher (n⊥) und außerordentlicher (n‖) Brechungsindex von stöchiometrischen
und kongruenten LN mit zwei unterschiedlichen Li:Nb Konzentrationen. Der Vergleich zum Experiment
erfolgt über einen Fit an gemessene Brechungsindizes [124] und Extrapolation auf die hier verwendeten
Li:Nb Verhältnisse.
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sind die jeweiligen Anstiege des Brechungsindexes von SLN zu CLN (96 %) und von CLN

(96 %) zu CLN (88 %) äquidistant. Der Unterschied zum Experiment kann damit erklärt

werden, dass die Defektatome bei Simulation in der 2×2×2 Superzelle periodisch dicht

auf der optischen Achse liegen und Wechselwirkungen untereinander auftreten, während

in der 3×3×3 Superzelle Gitterrelaxationen durch ein Defektatom weitreichender be-

schrieben werden können. Dadurch ist ein höherer Anstieg des Brechungsindexes vermut-

lich simulationstechnisch begrenzt. Das Verhalten der Brechungsindizes könnte vorsichtig

im Sinne des Li-Vakanz-Modells gedeutet werden: Wären wie im Nb-Vakanz-Modell 6 %

der Lithiumplätze mit Niob besetzt, so müsste die Änderung von n‖ sehr viel stärker

ausfallen, als die experimentellen Befunde offenbaren. Diese Deutung ist unter der Ein-

schränkung zu verstehen, dass ladungskompensierende Defekte oder andere Effekte kei-

nen erheblichen entgegengesetzten Effekt auf die Brechungsindizes erzeugen. Da im Nb-

Vakanz-Modell jedoch eine große Anzahl an Niobvakanzen vorliegt, dürften diese einen

nicht vernachlässigbaren zusätzlichen Einfluss auf die optischen Funktionen ausmachen.

Beim ordentlichen Brechungsindex weichen die theoretischen Kurven von CLN leicht von

SLN und somit von dem Trend der experimentellen Ergebnisse ab, indem ein leichter

Anstieg zu verzeichnen ist. Die Änderungen sind jedoch deutlich kleiner als beim außeror-

dentlichen Brechungsindex und zeigen, dass die einfache Fokussierung auf Punktdefekte

die Physik schon sehr gut beschreibt.

4.3.4 Polaronen

Die TDDFT-Rechnungen werden auf alle für die Bildung von Polaronen in Betracht ge-

zogenen Strukturen ausgeweitet. Die Analyse fokussiert sich auf den für die Polaronen-

absorption relevanten Bereich innerhalb der optischen Bandlücke. Der scissors shift muss

zu diesem Zweck neu angepasst werden, da das Augenmerk nun nicht mehr auf die kor-

rekte Beschreibung der Bandlücke und exzitonischen Effekte des Hauptabsorptionspeaks

liegt, sondern auf den (weitaus geringeren) energetischen Abstand zu den elektronischen

Leitungsbändern und der exzitonischen Bindungsenergie des Polaronenlevels. Daher wird

der scissors shift so angewendet, dass die PBEsol-Energielücke zwischen den besetzten

Defektlevel und den unbesetzten Leitungsbändern (gelber Pfeil in Abb. 4.4) auf den ent-

sprechenden Wert des HSE06-Hybridfunktionals (Roter Pfeil in Abb. 4.4) geöffnet wird.

Deshalb entsprechen die scissors shifts von 0.60, 0.85, 0.98 und 0.45 eV für NbLi (SLN),

NbV–VLi, NbV bzw. NbLi (ILN) den in Kapitel 4.2.4 genannten Werten. Die Erfahrungen

durch die Anpassung des LRC-Kernels in Kapitel 4.3.2 nur auf Grundlage von GW -

Quasiteilchenenergien und der empirischen Formel zeigen, dass diese Wahl nicht unpro-

blematisch ist, da exzitonische Effekte möglicherweise stark unterschätzt werden. Dies

muss bei der Analyse der Ergebnisse beachtet werden. Für alle Defekte werden TDDFT-

Rechnungen in der 2×2×2 Superzelle durchgeführt. Da sich an jedem Defekt ein Polaron

bildet, sind Defekt- und Polaronenkonzentration äquivalent. Für die kleine Superzelle liegt

damit eine hohe Konzentration vor, die mit H gekennzeichnet ist.
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Abbildung 4.12: Imaginärteil der dielektrischen Funktion aus TDDFT-Rechnungen. Die durchgezoge-
nen Linien markieren die Rechnungen mithilfe des LRC-Kernels. Zum Vergleich werden alle Daten mit
Ergebnissen der Unabhängige-Teilchen-Approximation, die gestrichelt gekennzeichnet sind, ergänzt. Für
NbLi und NbV–VLi wird neben den Berechnungen in der 2×2×2 Superzelle, die durch eine hohe Kon-
zentration an Polaronen charakterisiert ist (gekennzeichnet mit H) auch die 3×3×3 Superzelle verwendet
(L). Daher rühren die unterschiedliche Oszillatorstärken von L und H. Die vertikalen gepunkteten Linien
zeigen die gemessene Position des polaronischen Absorptionspeaks [173].
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Die TDDFT-Resultate werden in Abb. 4.12 gezeigt. In den Simulationen führen alle De-

fekte zu Polaronenabsorption innerhalb der Bandlücke. Für NbLi (SLN) und NbV–VLi

liegen die Absorptionspeaks zwischen 1.5 und 2.0 eV, aber da die energetische Trennung

zwischen Defektlevel und Leitungsbändern für NbLi (SLN) niedriger ist als für NbV–VLi,

beginnt die Absorption dort bei leicht niedrigeren Energien. Aus demselben Grund ist

der Absorptionspeak von NbV im Vergleich zu diesen Ergebnissen deutlich blauverscho-

ben. Damit sind die Positionen der Absorptionspeaks dieser Struktur mit denen von ILN

vergleichbar, obwohl das Defektlevel vom letzteren deutlich näher am Leitungsband liegt.

Dies kann daran liegen, dass Übergänge zu den beiden untersten Leitungsbandleveln,

die ebenfalls aufgrund ihrer Elektronendichtelokalisierung mit Defektzuständen assoziiert

werden können, verboten sind (siehe Abb. 4.4, ILN).

Einzig NbLi (SLN) und NbV–VLi sind zu den verfügbaren Messungen kompatibel, die einen

Polaronenpeak bei 1.64 eV nahelegen [173]. Experimentell sind die Peakpositionen bei or-

dentlicher und außerordentlicher Polarisation identisch [6], was für NbV–VLi etwas besser

zutrifft als für NbLi (SLN), da beim letzteren die Maxima der ordentlichen dielektrischen

Funktion im Vergleich mit der außerordentlichen dielektrischen Funktion leicht rotverscho-

ben sind. Ergänzende, sehr aufwendige Berechnungen mit niedrigerer Polaronendichte in

der 3×3×3 Superzelle (L) beschränken sich aufgrund der besseren Übereinstimmung mit

dem Experiment auf die beiden genannten Modelle. Als direkte Folge der verschiede-

nen Defekt- bzw. Polaronenkonzentrationen reduziert sich die Oszillatorstärke gleich dem

Verhältnis dieser Konzentrationen in den beiden Zellen. Es zeigt sich, dass die Peakposi-

tionen der niedrigeren Polaronenkonzentrationen nicht so klar zu identifizieren sind wie

bei den höheren Konzentrationen, da sie meist in ein Absorptionskontinuum münden.

Während die Absorptionspeaks der beiden Defektstrukturen bei H nahe beieinander sind,

ergeben sich nun stärkere Abweichungen für L. Dies liegt an weiteren Strukturrelaxationen

in der nun deutlich größeren Superzelle. Die Absorptionspeaks der NbLi (SLN) Struktur

mit der niedrigeren Defektkonzentration liegt somit leicht unter dem gemessenen Wert,

während die anderen Modelle eine Blauverschiebung aufweisen. Trotz der Verschiebungen

kann jedoch festgehalten werden, dass die polaronischen Absorptionspeaks schon in der

kleineren Superzelle mit guter Genauigkeit vorhergesagt werden können, da die Positi-

onsänderung in allen Fällen mit weniger als 0.15 eV relativ gering ausfällt.

Im Experiment ist die Absorption leicht stärker für die ordentliche Polarisationsrichtung

[6]. Dies trifft bei den TDDFT-Spektren für die Defekte zu, die NbLi beinhalten. Ande-

rerseits liegt bei den Defekten, die Zwischengitteratome aufweisen, der entgegengesetzte

Befund vor: Bei ε‖(ω) ist die Polaronenabsorption generell breiter und offenbart eine Os-

zillatorstärke, die mehr als das doppelte ausmacht als bei ε⊥(ω). Diese Beobachtung wird

etwas abgemildert für die realistischere niedrigere Polaronenkonzentration L.

Die Wirkungsweise des LRC-Kernels lässt sich im Vergleich mit der Unabhängige-Teilchen-

Approximation evaluieren. Es wird dabei deutlich, dass das Kernel überwiegend für erhöhte
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Oszillatorstärke sorgt, sodass als Folge daraus auch die polaronischen Absorptionskanten

um bis zu 0.08 eV rotverschoben werden. Dies trifft allgemein für ε⊥(ω) zu, während für

ε‖(ω) außer für NbLi sogar eine Blauverschiebung stattfindet. Das LRC-Kernel sorgt in

letzteren Fällen eher für eine Ausbildung einer Doppelpeakstruktur. Damit zeigt sich,

dass besonders hier eine Simulation der erwarteten exzitonischen Bindungsenergie aus-

bleibt. Die Wirkung ist geringer für L, was wiederum an der bloßen Umverteilung von

Oszillatorstärke des dort kleineren Absorptionspeaks liegt.

Zusammenfassend lässt sich festhalten, dass die NbLi (SLN) und NbV–VLi Modelle auf

Grundlage der hier angewendeten Methoden die experimentellen Daten am ehesten re-

produzieren, wobei NbLi (SLN) wegen der leicht besseren Übereinstimmung der Peakposi-

tionen die experimentellen Befunde noch etwas besser beschreibt, jedoch unter Vorbehalt

der korrekten theoretischen Beschreibung der exzitonischen Effekte. Des Weiteren zeigt

dieses Modell das korrekte Verhalten der Oszillatorstärken. NbV und NbLi (ILN) weisen

deutliche Unterschiede im Vergleich zum Experiment auf.

4.3.5 Bipolaronen

Für alle betrachteten Strukturen werden die TDDFT-Rechnungen im Einklang mit der

Beschreibung für die Polaronen im vorangegangenen Kapitel ausgeführt. Dabei werden

scissors shifts von 0.66, 0.73, 0.79 bzw. 0.46 eV auf NbLi (SLN), NbV–VLi, NbV bzw.

NbLi (ILN) angewendet. Damit streut außer für ILN der Anstieg der Energiedifferenzen

zwischen HSE06 und PBEsol weniger als es bei den Polaronen beobachtet wurde. Im

Gegensatz zu Abb. 4.12 treten nun klare Unterschiede zwischen NbLi (SLN) und NbV–

VLi in den berechneten Spektren in Abb. 4.13 auf. Generell sind die Absorptionspeaks

von NbV–VLi bezüglich NbLi (SLN) um mindestens 0.5 eV blauverschoben mit Ausnahme

der ordentlichen dielektrischen Funktion ε⊥(ω) im Falle der höheren Defektkonzentration.

Dort zeigt das NbV–VLi Defektpaar eine Absorption in einem breiten Bereich um 2.4 eV.

Während das Absorptionsmaximum für das Bipolaron am Antisitedefekt verglichen mit

dem Peak des Polarons in SLN nur leicht blauverschoben ist, ist der entsprechende Shift

für NbV–VLi klar erkennbar. Quantitativ beträgt dieser je nach Konzentration und Pola-

risationsrichtung 0.5 bis 0.7 eV. Vergleichbar mit den Peakpositionen von NbV–VLi sind

außerdem die der Defekte NbV und NbLi (ILN). Diese sind im Gegensatz bezüglich der

Polaronenabsorptionspeaks jedoch nur leicht blauverschoben.

Hinsichtlich des experimentell gemessenen Absorptionsmaximums bei 2.5 eV [172] sind

die Modelle, die Zwischengitteratome enthalten und mit Einschränkung das Antisiteatom

in ILN, welches eine breitgefächerte zwei- oder dreifach Peakstruktur besitzt, geeignete

Konfigurationen, um diesen Umstand zu beschreiben. Die Peakmaxima von NbLi (SLN)

sind im Vergleich mit dem Experiment dagegen deutlich rotverschoben. Leichte Abwei-

chungen von 0.25 eV nach unten (ε⊥(ω) bei NbV–VLi) oder nach oben (ε‖(ω) bei NbV)
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Abbildung 4.13: Imaginärteil der dielektrischen Funktion aus LRC-TDDFT-Rechnungen (durchge-
zogene Linien). Zum Vergleich sind jeweils TDDFT-Ergebnisse mithilfe der Unabhängige-Teilchen-
Approximation abgebildet. Die Bipolaronabsorption setzt bei NbLi (SLN) vor allem für ε‖(ω) am frühsten
ein. H bezeichnet eine hohe Defektkonzentration mit Li:Nb = 88 % und L eine niedrige Konzentration von
Li:Nb = 96 %. Unterschiedliche Zellgrößen und Defektkonzentrationen erklären die verschiedenen Oszilla-
torstärken zwischen L und H. Die gepunkteten vertikalen Linien markieren das experimentell beobachtete
Peakmaximum bei 2.5 eV [172].
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berücksichtigt, werden die Peakmaxima bei den restlichen Modellen exakt beschrieben,

wobei in ILN die Absorptionspeaks deutlich breiter sind als bei den Modellen mit Zwi-

schengitterdefekten. Bei Kombination der beiden Befunde bezüglich Polaronen und Bi-

polaronen zeigt sich, dass eine geringere Separation der jeweiligen Peakmaxima nicht den

experimentellen Ergebnissen entspricht, die einen Wert von 0.86 eV ergaben. Das bedeutet,

dass die TDDFT-Ergebnisse das Zwischengitter–Lithiumvakanz–Defektmodell als einzige

Konfiguration ausweisen, die im Einklang mit den Messungen steht. Das schließt ins-

besondere das in der Literatur verbreitete Modell des Nb4+
Li –Nb4+

Nb (4d1–4d1) Bipolarons

aus. Auch hier gilt, dass experimentell gemessene Absorptionsspektren in ordentlicher

und außerordentlicher Polarisationsrichtung dieselbe Peakposition aufweisen, wobei das

ordentliche Spektrum ein wenig höher liegt. Dies trifft bezogen auf die TDDFT-Ergebnisse

am ehesten auf die Ilmenitstruktur zu, wobei Unterschiede in den übrigen Strukturen bei

nachlassender Polaronenkonzentration schwinden.

Der Effekt, den das LRC-Kernel auf den Imaginärteil der dielektrischen Funktion hat, ist

in Stärke und Ausprägung mit der Wirkung des LRC-Kernels auf das Polaronenspektrum

vergleichbar. Einzig bei ε‖(ω) in ILN findet eine ungewöhnliche Absenkung der Oszilla-

torstärke unter Verwendung des LRC-Kernels statt. Die Gründe dafür sind unklar.

4.3.6 Titan

Die berechneten Resultate für den Imaginärteil der dielektrischen Funktion sind in Abb.

4.14 dargestellt. Wie im Fall von CLN wird bei den TDDFT-Rechnungen ein scissors shift

von 1.4 eV und α = 0.44 verwendet, da wieder davon ausgegangen werden kann, dass die

Defektatome die exzitonische Bindungsenergie und Bandlücke nicht fundamental ändern

werden. Es werden weiterhin die drei Ti-Defektkonzentrationen im stöchiometrischen und

kongruenten LN betrachtet. In der Abbildung zeigt sich, dass die Struktur des Hauptab-

sorptionspeaks im Vergleich mit SLN durch die Titandefekte größtenteils ausgewaschen

wird, wie es auch bei CLN zu beobachten war. Ebenfalls wird der Beginn des Hauptab-

sorptionspeaks bei 5 eV zu niedrigeren Energien transferiert, was aus der Verschiebung

der Leitungsbänder nach unten resultiert.

Im Fall von SLN ist es interessant festzustellen, dass die optische Absorption keine mo-

notone Funktion der Titankonzentration ist: Bei Energien innerhalb der Bandlücke, ver-

größert in den Insets von Abb. 4.14, fällt die dielektrische Funktion zunächst deutlich,

wenn Titanatome in das Material eingebracht werden. Steigt die Titankonzentration wei-

ter, steigt auch die dielektrische Funktion. Dieses Verhalten gilt nicht ausschließlich für

die Titaneindiffundierung, sondern kann auch bei CLN im Vergleich zu SLN beobachtet

werden. Die Einbettung von Titan in CLN hat mit wachsender Konzentration von TiLi

Substitutionsatomen ohne Ausnahme einen Anstieg der Absorption zur Folge. Generell

ist hier anzumerken, dass die Änderungen in der dielektrischen Funktion durch die Ver-

109



breiterung η in der Kohn-Sham-Antwortfunktion überbetont werden. Der große Sprung

zwischen SLN und defektbehafteten LN ist in seiner Ausprägung in erster Linie ein Ar-

tefakt dieser Verbreiterung. Wird die Verbreiterung gegen null reduziert, tendiert die

imaginäre dielektrische Funktion innerhalb der Bandlücke gegen null. Die Tatsache, dass

sich das Absorptionsverhalten durch (steigende) Titandotierung kaum ändert, bestätigt

die exzellenten Wellenleitereigenschaften von Ti:LN auf Grundlage der TiLi Modellierung.

Weiterhin ist es wichtig, anzumerken, dass die Änderungen der dielektrischen Funktionen

durch Titaneindiffusion im Bereich der absoluten Genauigkeit der dielektrischen Funk-

tionen liegen. Wie in Kapitel 4.2.1 beschrieben wurde, ist dieses Problem durch das Hin-

zufügen der Konvergenzoffsets weitgehend entschärft. Dies gilt selbstverständlich auch für

die anderen optischen Funktionen, die im Weiteren hier betrachtet werden.
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Abbildung 4.14: Imaginärteil der dielektrischen Funktion bei Konzentrationen von 0.35, 1.05 und
1.16×1021 Titanatomen pro cm3 im stöchiometrischen (obere Panele) und kongruenten (untere Pane-
le) Lithiumniobat. Die Komponenten des elektrischen Feldes orthogonal (links, ⊥) und parallel (rechts,
‖) zur c-Achse sind separat dargestellt. Die Konzentrationen von 0.35 und 1.05×1021 Ti Atomen pro
cm3 sind in der 3×3×3 Superzellen verwirklicht, wo sie im kongruenten Fall einem Li:Nb Verhältnis von
96 % ausgesetzt sind. Die Konfiguration mit 1.16×1021 Ti Atomen pro cm3 ist in der 2×2×2 Superzelle
modelliert, wobei bei kongruenten LN zusätzlich ein niedrigeres Li:Nb Verhältnisses von 88 % vorliegt,
was durch die Strichelung der Linien betont werden soll. Die Vergrößerung in den Insets zeigt den Ener-
giebereich von 1.0–1.2 eV und ist repräsentativ für die Lage der dielektrischen Funktionen innerhalb der
optischen Bandlücke. Auf die SLN-Kurven in den oberen Insets wird im Sinne einer besseren Auflösung
verzichtet. Sie verlaufen knapp oberhalb von 0.08.
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Es gibt leider nur wenig experimentelle Daten für die Reflektivität von Titan-eindiffun-

diertem Lithiumniobat, die direkt mit den aktuellen Resultaten verglichen werden können.

Die frequenzabhängige Reflektivität R(ω) kann mithilfe des Brechungsindexes n(ω) und

des Absorptionsindexes

κ(ω) =

(
|ε(ω)| − Re ε(ω)

2

)1/2

(4.4)

berechnet werden, wobei gilt

R(ω) =
[n(ω)− 1]2 + κ(ω)2

[n(ω) + 1]2 + κ(ω)2
. (4.5)

Suche et al. [195] haben das Verhältnis der Reflektivitäten von Titan-eindiffundiertem

und kongruentem LN parallel zur c-Achse, also das Verhältnis RTi:CLN(ω)/RCLN(ω), an

einer Probe mit unbekannter Verunreinigungskonzentration zwischen 0.1 und 1.5×1021 Ti-

tanatomen pro cm3 gemessen. In Abb. 4.15 sind die experimentellen Befunde zusammen

mit den aktuellen Resultaten für RTi:SLN(ω)/RSLN(ω) und RTi:CLN(ω)/RCLN(ω) darge-

stellt. Es zeigt sich, dass die experimentelle Defektkonzentration durch die vergleichbare

Größenordnung der Änderungen innerhalb des theoretisch modellierten Bereichs von 0.35

bis 1.16×1021 Titanatomen pro cm3 liegen könnte.

Die qualitativen Charakteristika der experimentellen Kurve können gut reproduziert wer-

den. Das auffälligste Merkmal ist der Peak in der relativen Reflektivität zwischen 4.5 und

5 eV. Dieser wird durch die Reduktion der Bandlücke mit wachsender Fremdatomkonzen-

tration im Material verursacht und hat damit dieselbe Ursache wie die Rotverschiebung

des Absorptionspeaks in der imaginären dielektrischen Funktion von kongruentem LN.

Daher ist der Peak der relativen Reflektivität keine direkte Signatur der Titanfremdat-

ome sondern ein indirekter Effekt, dessen Peakposition jedoch Aufschluss über die Verun-

reinigungskonzentration geben kann: Mit steigender Anzahl an Fremdatomen verschiebt

sich der Peak zu niedrigeren Energien. Des Weiteren hängt die Größe der Reflektivität

von der Titankonzentration ab. Sie wird durch die Anzahl an zusätzlichen elektronischen

Zuständen bestimmt, die resonant mit den Leitungsbändern sind und sich mit der Konzen-

tration erhöhen. Die Inkonsistenzen bei den zwei höheren Titankonzentrationen ergeben

sich aus der Anordnung der Punktdefekte, was im Fall von kongruentem LN noch einmal

ausführlich diskutiert wird.

Bei CLN muss beachtet werden, dass Titandotierungen in Konfigurationen mit verschie-

denen Li:Nb Verhältnissen, also 88 % in Rechnungen in der 80 atomigen Superzelle und

96% in der 270 atomigen Superzelle, realisiert werden. Das Verhalten der optischen Funk-

tionen ist stark von der Modellierung der Punktdefekte, insbesondere der Wechselwirkung

unter ihnen, geprägt. Dies wird am offensichtlichsten für Ti:CLN in der 2×2×2 Superzelle

mit cTi = 1.16×1021 cm−3. Dort befinden sich die TiLi und NbLi Substitutionsatome in

benachbarten Einheitszellen entlang der c-Achse. Da Niob- und Titandefekte an Lithi-

umpositionen für sehr ähnliche Gitterverzerrungen entlang der c-Achse im kationischen
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Untergitter über die gesamte Einheitszelle sorgen, treten weitere Relaxationen für kon-

gruentes LN nach Substitution des Lithiumatoms mit Titan aufgrund der begrenzten

Zellgröße kaum auf. Dies erklärt, dass sich die Reflektivität im parallelen Fall innerhalb

der Bandlücke nicht ändert. Die Struktur nach 4.5 eV ist wiederum mit der Änderung der

Bandlücke und elektronischen Struktur zu begründen. Die Reflektivitätsänderung ortho-

gonal zur c-Achse ist dagegen kaum von der geringen Superzellgröße betroffen.

Abweichungen vom erwarteten Verhalten sind außerdem für die Konzentrationen von 1.05

und 1.16×1021 Ti Atomen pro cm3 zu beobachten: Die zu erwartende Reihenfolge einer

steigenden relativen Reflektivität ist vertauscht. Auch hier hängt dieser Befund von der

begrenzten Superzellgröße und zusätzlich von der unterschiedlichen Modellierung der De-

fekte ab. Wie im Strukturvergleich zwischen 2×2×2 und 3×3×3 Superzelle angemerkt

wurde, finden weitere atomare Verschiebungen über die Grenze der 2×2×2 Superzel-

le, die für die Konzentration von 1.16×1021 cm−3 benötigt wird, hinaus statt. Durch

die Präsenz eines Defektatoms in jeder zweiten Superzelle entlang der c-Achse tritt so-
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Abbildung 4.15: Relative Reflektivität RTi:SLN/RSLN (oben) und RTi:CLN/RCLN (unten) im Vergleich
mit experimentellen Daten aus [195] für CLN bei einer unbekannten Titankonzentration cTi zwischen 0.1
und 1.5. Die Komponenten des elektrischen Feldes orthogonal und (⊥) und parallel (‖) zur c-Achse werden
getrennt dargestellt. Die gestrichelte rote Linie bei CLN verdeutlicht die unterschiedliche Antisitekonzen-
tration zu den beiden anderen Kurven. Weitere Informationen über die Verunreinigungskonzentrationen
und Li:Nb Verhältnisse sind der Beschreibung von Abb. 4.14 zu entnehmen.
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mit eine teilweise Redundanz der Gitterrelaxationen auf, die den entscheidenden Einfluss

auf die optischen Funktionen aufweisen. Die Konzentration von 1.05×1021 cm−3 ist zwar

ähnlich zu 1.16×1021 cm−3, jedoch bietet die 3×3×3 Superzelle andere Möglichkeiten

der Defektanordnung. Hier äußert sich die verwendete Modellierung dahingehend, dass

ein Titan-Defektcluster in der x-y-Ebene um die c-Achse herum angeordnet ist, wobei

trotz oder gerade aufgrund der Nähe zueinander größere optische Effekte erzielt werden

können. Die Fälle zeigen, dass vergleichbare Defektkonzentrationen durch unterschiedliche

Anordnung der Atome unterschiedliche Wirkung auf die optischen Funktionen aufweisen

können. Damit ist, wie anfangs vermutet, bewiesen, dass die Bewertung der Ergebnisse

unter Vorbehalt des Einflusses der Modellierung zu vollziehen ist.

Quantitative Messungen der Änderung des Brechungsindexes können weitere Erkennt-

nisse über die Plausibilität der verwendeten Defektmodelle bieten. Laut experimentellen

Messungen induziert die Titaneindiffusion in LN eine absolute Änderung des Brechungsin-

dexes im Bereich von 10−3 bis 10−2 [176, 195], die unterhalb der numerischen Genauigkeit

liegt, die in den Berechnungen in den für die Simulation dieser Defekte benötigten Su-

perzellen erzielt werden kann. Diese Situation wird durch das Offsetverfahren entschärft,

welches die Genauigkeit um etwa den Faktor 100 erhöht.

Die berechneten Brechungsindizes werden in Abb. 4.16 präsentiert. Auch hier muss bei

CLN beachtet werden, dass Titandefekte in Konfigurationen mit verschiedenen Li:Nb

Verhältnissen eingebracht werden. Diese Tatsache ist beim Vergleich der Brechungsindi-

zes von Ti:CLN zu berücksichtigen, insbesondere für die außerordentliche Einfallsrich-

tung n‖(ω). Mit steigender Konzentration an Titanfremdatomen steigt dabei der Wert

von n‖(ω), jedoch kehrt eine hohe Konzentration von NbLi Antisites und TiLi Substituti-

onsatomen diesen Effekt um. Dies geschieht aufgrund der Defekt-Defekt-Wechselwirkung,

wie es im Falle der Reflektivität bereits dargelegt wurde.

Es zeigt sich, dass der Versuch einer realitätsnäheren Beschreibung der Titaneindiffusi-

on unter Berücksichtigung der Antisitedefekte für eine genauere Analyse der Änderung

des Brechungsindexes eher zu Problemen führt als mehr Klarheit zu verschaffen. Dieser

Eindruck ist jedoch nicht durchgängig gültig. Da bei der Simulation der Titaneindiffusi-

on in CLN in der 2×2×2 Superzelle die optischen Effekte in außerordentlicher Richtung

”
ausgeschaltet“ werden, lässt sich nun genauer analysieren, welche Gitterverzerrungen

dafür verantwortlich sind, dass es beim TiLi Defekt zu einer deutlichen Erhöhung des

gewöhnlichen Brechungsindexes kommt und beim NbLi Defekt nicht. Die zusätzliche Ein-

bringung des Titandefektatoms in CLN in der 2×2×2 Superzelle verursacht weiterhin

die starke Kontraktion des umgebenden Sauerstoffoktaeders und weitere Verschiebungen

in der x-y-Ebene, die nicht im Niobdefekt begründet sind. Dass lediglich Gitterverzer-

rungen für die Änderung des Brechungsindexes verantwortlich sind, kann durch Resub-

stitution anderer Defektatome auf den TiLi Gitterplatz bewiesen werden. Interessanter-

weise führt die erneute Ersetzung von TiLi mit Niob ohne eine Gitterrelaxation durch-
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zuführen zu ununterscheidbaren Kurven des Brechungsindexes von der von TiLi. Sogar

die Rücksubstitution mit Lithium sorgt für die Erhöhung des gewöhnlichen und außer-

gewöhnlichen Brechungsindexes. Damit ist der große Unterschied der Auswirkung von TiLi

und NbLi auf den gewöhnlichen Brechungsindexes klar auf den photoelastischen Effekt

durch die unterschiedliche Relaxation der umgebenden Atome zurückzuführen und nicht

etwa durch die verschiedene Polarisierbarkeit der Defektatome oder den elektrooptischen

Effekt, in Übereinstimmung mit den Erkenntnissen in [181], die aus experimentellen Beob-

achtungen hergeleitet wurden. Die Elektronendichte, die mit den Titanorbitalen assoziiert

werden kann, ist an den Titanplätzen lokalisiert, so wie es bereits im Zusammenhang mit

der Bandstruktur (Abb. 4.8) diskutiert wurde. Dies kann als Hinweis aufgefasst werden,

dass die Titanzustände stark atomaren Orbitalen ähneln, die kaum mit den Hostzuständen

hybridisieren.
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Abbildung 4.16: Brechungsindizes n(ω) von stöchiometrischen (obere Panele) und kongruenten (un-
tere Panele) LN mit verschiedenen Titankonzentrationen. Die ordentliche n⊥ und außerordentliche n‖
Komponenten des Brechungsindexes sind separat in den linken bzw. rechten Panelen dargestellt. Weitere
Informationen über die Verunreinigungskonzentrationen und Li:Nb Verhältnisse sind der Beschreibung
von Abb. 4.14 zu entnehmen.
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Abbildung 4.17: Qualitativer Verlauf der Brechungsindexänderungen mit zunehmender Titankonzen-
tration, wie sie von Suche et al. und Minakata et al. beobachtet wurden. Sättigungseffekte in den expe-
rimentellen Daten von Caccavale et al. sind hier nicht berücksichtigt. Die gestrichelte Linie deutet die
Abweichung vom linearen Verhalten des außerordentlichen Brechungsindexes an, welche von Suche et al.
und Caccavale et al. beschrieben wurde.

Experimentelle Messungen bei einer Wellenlänge von 630 nm (1.97 eV) zeigen, dass der

außerordentliche Brechungsindex fast linear mit der Titankonzentration steigt, während

der ordentliche Brechungsindex eine konkave aber monoton steigende Kurve bildet, deren

späterer Verlauf linear ist [176, 195, 204]. Ein qualitativer Verlauf der experimentellen

Kurven ist in Abbildung 4.17 nachgebildet. Des Weiteren liegt die Änderung von n⊥

während des konkaven Verhaltens oberhalb der vom außerordentlichen Brechungsindex.

Bei größeren Titankonzentrationen, die im Bereich der hier modellierten Konzentratio-

nen liegen, beträgt die Steigung der Änderung des gewöhnlichen Brechungsindexes etwa

die Hälfte des außergewöhnlichen Brechungsindexes. Dies zeigt sich beim Blick auf Abb.

4.16 auch in den aktuellen theoretischen Daten, die die obere Grenze der experimentell

betrachteten Titankonzentrationen bilden, indem die außerordentlichen Brechungsindi-

zes weiter auffächern als die ordentlichen. Die einzige Ausnahme, Ti:CLN in der 2×2×2

Superzelle, kann mit der durch die Grenzen der Modellierung unrealistische Lage der

Defektatome unberücksichtigt bleiben. Die Defekt-Defekt-Wechselwirkung, die bei ho-

hen Konzentrationen vorliegt, erlaubt jedoch keine Aussagen über den genauen Verlauf

des Brechungsindex-Konzentration-Profils. Es kann jedoch festgehalten werden, dass der

Brechungsindex mit zunehmender Titankonzentration steigt. Was die Auswirkungen des

Umstandes betrifft, ob Titan in stöchiometrischem oder kongruentem LN simuliert wird,

kann ausgesagt werden, dass ein Anstieg der Brechungsindizes in CLN etwas gedämpfter

ausfällt als in SLN.

Die experimentellen Befunde sind uneindeutig, bis zu welcher Konzentration das konkave

Verhalten vorliegt und wie lange die Änderung ∆n⊥ oberhalb der Änderung ∆n‖ liegt.

Während Suche et al. [195] einen Schnittpunkt bei etwa 0.38×1021 cm−3 beobachteten, be-

stimmten Minakata et al. [176] diesen bei etwa 0.14×1021 cm−3. Dies kann möglicherweise

auf die verschiedenen Messmethoden und auf die verwendeten Proben zurückzuführen

sein. Während die Höhe der (extrapolierten) Brechungsindexänderung von Minakata et

al. mit den aktuellen theoretischen Werten übereinstimmt, ist sie bei Suche et al. etwa
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doppelt so hoch. Andererseits sahen Caccavale et al. [204] eine Saturierung der Brechungs-

indexänderung bei lediglich ∆n⊥ = 0.0111 und ∆n‖ = 0.0284, d.h. Größenordnungen, die

bei den aktuellen Ergebnissen schon in der 3×3×3 Superzelle bei geringer Konzentration

von etwa 0.25×1021 cm−3 auftreten, was einen Widerspruch zu den Messungen von Suche

et al. darstellt.

Diese stark schwankenden quantitativen Ergebnisse zeigen ihrerseits eine hohe Unsicher-

heit in den Messungen auf, in denen Konzentrationsprofil und Brechungsindex separat

bestimmt und aufeinander kalibriert werden müssen. Die theoretischen konzentrations-

abhängigen Änderungen der Brechungsindizes sind in einem Bereich modelliert, in dem

das experimentell beobachtete konkave Verhalten nicht mehr (deutlich) auftritt. Es er-

scheint jedoch weniger plausibel, dass sich bei der Verwendung noch größerer Superzellen

ein Effekt offenbart, der den ordentlichen Brechungsindex deutlich stärker ansteigen lässt

als den außerordentlichen. Dies legt der Blick auf die Gitterverzerrungen der 2×2×2 und

3×3×3 Superzelle nahe, die sich lokal ähneln und damit von der Zellgröße unabhängig

sind.

In der Literatur wurden Szenarien diskutiert, bei denen die NbLi Antisites entscheidend bei

der Einbindung von Titan in das Kristallgitter von kongruentem Lithiumniobat mitwirken

[183, 205–208]. Im Hinblick auf die gesammelten theoretischen Daten ist dabei ein Mo-

dell von Kollewe et al. [183] erwähnenswert, in dem bei niedrigeren Titankonzentrationen

im Bereich der Antisitekonzentration (etwa 0.2×1021 cm−3 im Li-Vakanz-Modell) vorwie-

gend eine Ersetzung von NbLi durch TiLi stattfindet. Die aktuellen Daten unterstützen

im Wesentlichen dieses Modell, wobei jedoch neben einer Ersetzung der Antisites durch

Titanatome auch eine Substitution der LiLi Lithiumatome erfolgen müsste: Die optische

Signatur der NbLi Antisites zeigt sich in den aktuellen Berechnungen fast ausschließlich

durch die Erhöhung des außerordentlichen Brechungsindexes. Die Ersetzung der Antisites

durch Titanatome hätte somit einen Anstieg des ordentlichen Brechungsindex zu bedeu-

ten, während n‖ eher sinkt. Dies kann aus dem Vergleich von n(ω) für TiLi:SLN und CLN

gefolgert werden. Somit ist der alleinige Mechanismus, dass nur die Antisiteatome durch

Titanatome ausgetauscht werden, unwahrscheinlich, da dies nicht zu einem Anstieg des

außerordentlichen Brechungsindexes führt. Finden beide Prozesse, Lithium- und Antisi-

tesubstitution durch Titan, während der Titaneindiffundierung statt, könnte das zu den

experimentell beobachteten Kurven der Brechungsindexänderung führen, wobei sich das

lineare Verhalten bei Verringerung der zur Verfügung stehenden Antisites einstellt.

Bezüglich der von Caccavale et al. experimentell festgestellten Saturierung des Brechungs-

indexes bei etwa 0.25×1021 cm−3 besteht im Hinblick auf die aktuellen theoretischen Er-

gebnisse besonders für den außerordentlichen Brechungsindex bei dieser Konzentration die

Möglichkeit, dass aufgrund der Defekt-Defekt-Wechselwirkung keine Änderung mehr auf-

tritt. Dies ist im Rahmen der betrachteten Modelle jedoch eher unwahrscheinlich, da dies

nicht oder eventuell deutlich später zur Saturierung von n⊥ führen würde. Ausgehend von
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den experimentellen Befunden, welche Ti auf einen Nb Gitterplatz nachweisen, kann auch

eine vermehrte Besetzung dieser Gitterplätze bei erhöhter Konzentration stattfinden. Die

optische Signatur dieses Defektes zeigt sich in Abbildung 4.16, wo er in höchster Konzen-

tration von 1.16×1021cm−3 in einer einfach negativ geladenen Superzelle modelliert ist, da

das Nb4+
Nb Atom durch ein dreiwertiges Atom ersetzt wird. Auch bei hoher Konzentration

ändert sich der ordentliche Brechungsindex nicht, während der außerordentliche sich nur

marginal und weit weniger als in den anderen Modellen ändert. Dies würde sich mit der

Interpretation von Kollewe et al. decken, die folgerten, dass bei 0.6×1021 Titanatomen

pro cm3 die Besetzung von Lithiumgitterplätzen und bei 1.7×1021 Titanatomen pro cm3

von Lithium- und Niobplätzen wahrscheinlich ist. Hinsichtlich dieser Überlegungen kann

die frühe Saturierung, die von Caccavale et al. beobachtet wurde, darauf zurückzuführen

sein, dass dort eventuell eine defektarme Probe mit wenig Antisites verwendet wurde.

Andere Gründe, die hier nicht simuliert wurden, können Versetzungen und Risse in der

Diffusionsschicht sein [181].

Es kann zusammenfassend festgehalten werden, dass eine Besetzung des Lithiumgitter-

platzes durch Titan beide Brechungsindizes erhöht. Aussagen über den genauen Verlauf

der Brechungsindexänderung können nicht getroffen werden, da dieser stark von der kon-

kreten Modellierung der Punktdefekte beeinflusst wird. Zur allgemeinen Diskussion, ob

Titan entweder Niob- oder Lithiumplätze in Lithiumniobat einnimmt [208], können je-

doch eindeutigere Aussagen getroffen werden. Aus den aktuellen Daten für TiLi und TiNb

im Vergleich zum experimentell beobachteten Ausmaß der Änderung der Brechungsin-

dizes kann gefolgert werden, dass aufgrund des mangelnden Einflusses von TiNb auf n

eindeutig die Besetzung von Lithiumgitterplätzen durch Titan als Ursache ausgemacht

werden kann. Darüber hinaus kann im hier verwendeten Modell der Punktdefekte die

alleinige Ersetzung von NbLi nicht als Ursache für die Anstiege beider Brechungsindizes

ausgemacht werden, sondern es müssen ein erheblicher Anteil der LiLi Plätze durch Titan

eingenommen werden.

4.4 Diskussion und Zusammenfassung

In diesem Kapitel wurde die ionische und elektronische Struktur verschiedener intrin-

sischer und extrinsischer Punktdefekte und einfacher Defektcluster in Lithiumniobat be-

rechnet. Im kongruenten Lithiumniobat war zusätzlich die Betrachtung der elektronischen

Polaronen und Bipolaronen ein wesentlicher Aspekt dieser Arbeit. Im Rahmen dessen

wurden verschiedene Defektmodelle wie NbLi (SLN), NbV, NbV–VLi und NbLi (ILN) be-

trachtet, die allesamt die Bildung von (Bi)Polaronen am Defekt selbst (Polaron) oder bis

zum benachbarten Niobatom hinaus (Bipolaron) zuließen. Die Position ihrer Defektlevel

innerhalb der Bandlücke wurde analysiert und ihr Absorptionsverhalten anhand der ima-

ginären dielektrischen Funktion innerhalb der optischen Bandlücke bestimmt. Konkret

117



konnte für die polaronische Absorption festgestellt werden, dass die beiden Modelle NbLi

(SLN) und NbV–VLi Peakpositionen in der imaginären dielektrischen Funktion aufwiesen,

die im Bereich des von Koppitz et al. [173] experimentell beobachteten Absorptionspeak

von 1.64 eV lagen. Im Fall der Bipolaronen zeigten die Modelle mit einem Zwischengit-

terniobatom NbV und NbV–VLi, sowie NbLi (ILN) Absorptionspeaks nahe 2.5 eV, die den

experimentell gemessenen Werten entsprachen [172]. In Kombination konnte somit nur

das NbV–VLi Modell klar unterscheidbare Absorptionspeaks von Polaronen und Bipolaro-

nen in der dielektrischen Funktion liefern und zeigte daher die beste Übereinstimmung zu

allen verfügbaren experimentellen Daten. Überraschenderweise konnte insbesondere das

NbLi (SLN) Antisitemodell, welches in der Literatur bisher für die Bildung von Polaronen

und Bipolaronen verantwortlich gemacht wurde [6], die Trennung der Absorptionspeaks

von 0.9 eV nicht erklären.

Die getroffenen Voraussagen stehen unter dem Vorbehalt, dass die Elektron-Loch-Wechsel-

wirkung korrekt beschrieben wurde. Es ist nicht unwahrscheinlich, dass die exzitonische

Bindungsenergie mit meist deutlich unter 0.1 eV als zu gering abgeschätzt wurde. Ein-

zige Anhaltspunkte für die Größenordnung solcher Effekte im Falle von Defektzuständen

liefern Rinke et al. [175], die die Bindungsenergie von einfach bzw. zweifach negativ ge-

ladenen Sauerstoffvakanzen in Magnesiumoxid (MgO) auf um die 0.5 eV mithilfe der

Bethe-Salpeter-Gleichung bestimmten. Dieser Wert muss jedoch relativiert werden durch

a) die größere Bandlücke bzw. höhere Defektlevel in MgO und b) der Tatsache, dass die

Defektzustände an anionischen Fehlstellen anstatt an kationischen Defekten gebildet wer-

den. Wie groß die vernachlässigten Bindungseffekte auch immer sein mögen, werden sie

nicht die zu geringe Peakposition im Falle des Bipolarons beim Antisitedefekt in SLN

nach oben korrigieren können. Somit bleibt die Haupterkenntnis, das NbLi (SLN) Mo-

dell auf Grundlage von Punktdefekten ausschließen zu können, unangetastet. Auch wenn

in Testrechnungen Defektcluster im Sinne des Li-Vakanz-Modells nach Li et al. [169]

berücksichtigt werden, bleibt die Lage des Bipolaronenniveaus nahezu unverändert. NbLi

Antisites in ILN sind weiterhin denkbar, sofern sich erhebliche polaronische Bindungsener-

gien im Falle des Polarons ergeben. Voraussetzung wären ausgedehnte Ilmenitsequenzen

im kongruenten Lithiumniobat, die starken Einfluss auf die elektronische Bandstruktur

haben.

Da trotz diverser betrachteten Defektmodelle NbLi als einer der Hauptdefekte in Lithi-

umniobat gilt, stand seine Auswirkung auf die optischen Spektren weiter im Mittelpunkt.

Mit ihm als Punktdefekt wurde kongruentes LN modelliert. Kleine Strukturen in der ima-

ginären dielektrischen Funktion wurden mit zunehmender Defektkonzentration ausgewa-

schen. Ebenso konnte mit wachsender Konzentration an Antisites gezeigt werden, dass der

außerordentliche Brechungsindex weiter anstieg, während sich der ordentliche Brechungs-

index kaum änderte. Dies und die damit einhergehende Verminderung der Doppelbrechung

entsprach den experimentellen Befunden. Auch die Ersetzung von Lithium durch Titan

konnte die optischen Funktionen in ähnlicher Weise beeinflussen. Ein zentraler Unter-
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schied zum Antisitemodell war der klare Anstieg des ordentlichen Brechungsindexes mit

der Titankonzentration im Einklang mit den experimentellen Daten. Auch die Tatsache,

dass sich die Brechungsindexänderung stärker für den außerordentlichen Brechungsindex

vollzog, war für die betrachteten Titankonzentrationen in Übereinstimmung mit dem ex-

perimentellen Messungen. Insgesamt zeigte sich, dass sich trotz der unterschiedlichen von

der Superzellgröße abhängigen Qualität der optischen Funktionen ein konsistentes Ver-

halten ergab und die Anwendung einer Offsetkorrektur erfolgreich war. So konnte gezeigt

werden, dass wachsende Defektkonzentrationen wachsende Änderungen der Brechungs-

indizes induzierten. Die deutlich unterschiedlichen Ausprägungen der Änderungen bei

Titan bei den beiden hohen Defektkonzentrationen ging auf die verschiedenen Defekt-

modelle zurück und offenbarte die Grenzen einer wechselwirkungsfreien Defektsimulation.

Daher konnten unter dem Strich nur qualitative Aussagen getroffen werden. Die Anwesen-

heit eines zusätzlichen Antisitedefekts für die Simulation von Ti:CLN verursachte in der

Regel dasselbe qualitative Verhalten der Brechungsindizes wie Ti:SLN bezüglich der Ti-

tankonzentration, fällt jedoch quantitativ gedämpfter aus. Nur die höchsten Antisite- und

Titankonzentrationen verursachten Abweichungen von diesem Verhalten, was als Artefakt

der Modellierung angesehen werden konnte.

Um sicherzustellen, dass ein Ti4+
Nb Defekt nicht denselben Effekt auf die optischen Funktio-

nen aufweisen konnte wie das Ti4+
Li Substitutionsatom, wurde dieser in hoher Konzentra-

tion simuliert, womit gezeigt werden konnte, dass die durch ihn induzierten Änderungen

marginal waren. Alle gesammelten Befunde stimmten am ehesten mit dem Modell von

Kollewe et al. [183] überein, dass eine Besetzung von Antisites bei niedrigen und von

NbNb Plätzen bei hohen Titankonzentrationen vorsieht. Jedoch legte der Vergleich der

Brechungsindizes von TiLi und NbLi nahe, dass eine erhebliche Menge an Lithium Plätzen

durch Titan bei geringerer Konzentration besetzt werden müsste, da sonst die experi-

mentell beobachtete Änderung der Brechungsindizes, insbesondere des außerordentlichen

Brechungsindexes, nicht stattfinden kann.
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Kapitel 5

Ausblick

In den vorangegangenen Kapiteln konnten verschiedene Ergebnisse präsentiert werden,

die mehr Klarheit in den einzelnen Fragestellungen im Rahmen der Verwendung von LN

als optisches Material bringen konnten. Die heutigen theoretischen und rechentechnischen

Möglichkeiten wurden dabei oft ausgereizt. Dies führte im Allgemeinen zu sehr soliden

Abschätzungen von realistischen Effekten in Lithiumniobat und Lithiumtantalat. Da es

wie im Allgemeinen so auch hier immer Möglichkeiten der Verbesserung gibt, soll hier

eine kurze Bewertung der verwendeten Methoden und ein Ausblick gegeben werden.

Die Berechnungen der Vibrationseffekte auf die elektronische Bandlücke entsprechen dem

aktuellsten Stand der Forschung: Bessere Approximationen erfordern die konsequente

Einbindung von elektronischen Selbstenergieeffekten im Rahmen des Quasiteilchenfor-

malismus. Dies ist nach derzeitigen Kenntnisstand nur innerhalb einer GW-DFPT-AHC-

Theorie zu erreichen [132]. Selbst wenn ein solcher Formalismus existierte, würde dieser

höchstwahrscheinlich rechentechnisch zu anspruchsvoll sein.

Für eine quantitative Betrachtung des Phasenübergangs war der in dieser Arbeit präsen-

tierte Ansatz aufgrund des Auftretens von anharmonischen Effekten nur eine ungefähre

Approximation. Anharmonische Effekte lassen sich innerhalb der Dichtefunktionaltheorie

gut mit Molekulardynamikmethoden beschreiben, wobei reine Molekulardynamik eine

kaum erreichbare Vielzahl an Simulationsschritten (106 – 107 [209]) im Falle von Li-

thiumniobat und Lithiumtantalat in der nötigen 3×3×3 Superzelle [154] beanspruchen

würde. Alternative Methoden sollen an dieser Stelle kurz skizziert werden. Die UP-

TILD-Methode (upsampled thermodynamic integration using Langevin dynamics) [209]

vertraut auf die thermodynamische Integration einer λ-anteiligen Verbindung freier Vi-

brationsenergie, deren eine Grenze das komplett quasiharmonische System ist und die

andere Seite durch das komplett anharmonische System gebildet wird, welches mittels

Langevin-Molekulardynamik simuliert wird. Damit kann die Anzahl der nötigen Moleku-

lardynamikschritte, die innerhalb des Langevin-Formalismus um eine zufällige Komponen-

te ergänzt sind und im UP-TILD-Formalismus keine voll auskonvergierten Konvergenzpa-
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rameter benötigen, um etwa zwei Größenordnungen reduziert werden, ist jedoch im Fall

der hier betrachteten Materialien immer noch sehr aufwendig. Eine weitere signifikante

Effizienzsteigerung kann mithilfe der Konstruktion von interatomaren Potentialen inner-

halb der TU-TILD-Methode (two-stage UP-TILD) [210] erfolgen, die aus einer Langevin-

Molekulardynamik (LD) Simulation extrahiert werden. Der oben beschriebene Schritt

wird nun mit den interatomaren Potentialen durchgeführt. Eine zweite thermodynami-

sche Integration zwischen diesem Hilfssystem und einer LD-Simulation liefert schließlich

den anharmonischen freien Vibrationsenergiebeitrag mit deutlich reduzierter Anzahl an

nötigen LD-Schritten. Damit kommt die Anwendung auch für LN und LT in Reichweite.

Im Hinblick auf diesen dargelegten Aufwand ist die approximative Anwendung des vorge-

stellten pragmatischen Formalismus, der nur auf die verhältnismäßig leicht zu berechnende

Phononendispersion beruht, für eine Vielzahl von Systemen eine deutliche Erleichterung.

Die Simulation der Punktdefekte wurde in verschieden großen Superzellen vorgenom-

men. Die atomare Struktur um die Punktdefekte herum konnte schon in der kleinen 80

atomigen Superzelle gut beschrieben werden. Durch genauere Analyse zeigte es sich je-

doch, dass weitreichendere Effekte vermutlich noch in der 270 atomigen Superzelle durch

die endliche Größe beschränkt waren, sodass dort immer noch schwache Defekt-Defekt-

Wechselwirkungen auftraten. Die elektronische Struktur offenbarte, dass die Dispersi-

on der Polaronenniveaus in der 3×3×3 Superzelle verschwand, sodass die elektronische

Struktur keine offensichtlichen Wechselwirkungseffekte mehr offenbarte und somit eine

vertrauensvolle Basis für weitere Rechnungen darstellte. Eine Erhöhung der Superzelle

auf 480 Atome stellt in den DFT-Rechnungen keine übergroße Hürde dar [169], ist im

Hinblick auf die optischen Berechnungen im TDDFT-Formalismus jedoch problematisch.

Die 3×3×3 Superzelle offenbarte größere Schwierigkeiten, voll konvergierte Rechnungen

durchzuführen, da Speicherbedarf und Rechenzeit enge Grenzen setzten. Aufgrund der

überzeugenden Ergebnisse und der rechentechnischen Beschränkungen entspricht die in

dieser Arbeit betrachtete Defektkonzentration den derzeitigen Möglichkeiten.

Der Einsatz der Hybridfunktionale ist selbstverständlich ein Kompromiss weitaus aufwen-

digere Quasiteilchen-Berechnungen zu vermeiden. G0W0- und HSE06-Bandlücken sind in

hervorragender Übereinstimmung und die Lage der Polaronenniveaus werden durch das

HSE06-Funktional im Vergleich zur experimentellen Lage der polaronischen Absorpti-

onspeaks plausibel beschrieben, sodass auch ohne GW -Approximation sehr gute Ergeb-

nisse erzielt werden konnten. Als Ausblick bietet es sich an, Polaronenniveaus aus HSE06-

und GW - Rechnungen zu vergleichen, um besseren Einblick in deren Güte zu erhalten.

Die größte Unsicherheit in den TDDFT-Rechnungen in dieser Arbeit gehen aus der LRC-

Approximation der exzitonischen Effekte im Austauschkorrelationsfunktional hervor. An

dieser Stelle sind weitergehende Studien in erster Linie wünschenswert. Obwohl wahr-

scheinlich eine der grundlegenden Erkenntnisse, dass Polaronen und Bipolaronen am NbLi

Antisitedefekt im Gegensatz zu den experimentellen Befunden keine klar unterscheidba-
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ren Absorptionspeaks liefern, sich durch die Berücksichtigung der exzitonische Bindungs-

energie nicht ändern wird, wäre es höchst interessant, diese Effekte weiter zu untersuchen.

Leider stellt dieses Unterfangen derzeit eine enorme Hürde dar. Die Arbeit von Rinke et al.

[175] zeigt, dass BSE-Rechnungen in einer 64 atomigen Superzelle erfolgreich sein können.

Da die TDDFT-Ergebnisse in der 80 atomigen Superzelle schon in guter Übereinstimmung

mit denen der 270 atomigen Superzelle waren, ließe sich die exzitonische Bindungsenergie

sehr genau abschätzen. Dennoch ist es fraglich, ob dies in absehbarer Zeit möglich sein

wird, da BSE-Rechnungen in LN deutlich komplexer sind als in MgO, welches Rinke et

al. betrachteten.

Wie gesagt, wurden alle Erkenntnisse aus der Modellierung von Punktdefekten gewonnen,

die die experimentell gemessenen atomaren Abstände und Charakteristika der optischen

Funktionen schon erstaunlich gut beschrieben. Weitere Verbesserungen können durch die

Modellierung von Defektclustern erzielt werden [169]. Anderseits sind dort größere Su-

perzellen für eine realistische Simulation notwendig, was folglich die TDDFT-Rechnungen

verkompliziert. Dennoch waren die hier veröffentlichten Rechnungen auf Grundlage der

Punktdefekte bereits so erfolgreich, dass die wesentlichen Effekte kompletter Cluster schon

beschrieben werden konnten. Weiterhin kann der Einfluss von Ladungskorrekturen, die

dafür sorgen, dass die elektrostatische Energie geladener Defekte deutlich schneller mit

der Superzellgröße konvergiert, mitberücksichtigt werden. Ebenfalls nicht untersucht wur-

de der Einfluss des Ti-Konzentrationsgradienten, der in realen Systemen durch die Technik

der Eindiffusion entsteht und für eine zusätzliche Änderung der Brechungsindizes sorgen

kann. Auch hier erschweren neben der aufzuwendenden Superzellgröße auch die Periodi-

zität der Superzellen und das damit verbundene Sägezahnprofil der Konzentration eine

mögliche Simulation.
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sprechungen mit und Ratschläge von Prof. Dr. Arno Schindlmayr, Prof. Dr. Wolf Gero

Schmidt und Prof. Dr. Simone Sanna bildeten den Grundstein für das Gelingen dieser

Arbeit.

Weiterhin danke ich Dr. Arthur Riefer für die anfängliche Unterstützung in Softwarefra-
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sen, A. Marini, M. Côté und X. Gonze: Temperature dependence of electronic

eigenenergies in the adiabatic harmonic approximation. Phys. Rev. B, 90:214304,

2014.

[84] Runge, E. und E. K. U. Gross: Density-Functional Theory for Time-Dependent

Systems. Phys. Rev. Lett., 52:997–1000, 1984.

[85] Gross, E.K.U. und W. Kohn: Time-Dependent Density-Functional Theory. Adv.

Quantum Chem., 21:255 – 291, 1990. Density Functional Theory of Many-Fermion

Systems.

[86] Petersilka, M., U. J. Gossmann und E. K. U. Gross: Excitation Energies

from Time-Dependent Density-Functional Theory. Phys. Rev. Lett., 76:1212–1215,

1996.

[87] Botti, S., A. Schindlmayr, R. Del Sole und L. Reining: Time-dependent

density-functional theory for extended systems. Rep. Prog. Phys., 70(3):357, 2007.

[88] Adler, S. L.: Quantum Theory of the Dielectric Constant in Real Solids. Phys.

Rev., 126:413–420, 1962.

[89] Wiser, N.: Dielectric Constant with Local Field Effects Included. Phys. Rev.,

129:62–69, 1963.

[90] Hybertsen, M. S. und S. G. Louie: Ab initio static dielectric matrices from the

density-functional approach. II. Calculation of the screening response in diamond,

Si, Ge, and LiCl. Phys. Rev. B, 35:5585–5601, 1987.

[91] Reining, L., V. Olevano, A. Rubio und G. Onida: Excitonic Effects in So-

lids Described by Time-Dependent Density-Functional Theory. Phys. Rev. Lett.,

88:066404, 2002.

[92] Botti, S., F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C. Weissker,

A. Rubio, G. Onida, R. Del Sole und R. W. Godby: Long-range contribution

to the exchange-correlation kernel of time-dependent density functional theory. Phys.

Rev. B, 69:155112, 2004.

[93] Botti, S., A. Fourreau, F. Nguyen, Y.-O. Renault, F. Sottile und L. Rei-

ning: Energy dependence of the exchange-correlation kernel of time-dependent den-

sity functional theory: A simple model for solids. Phys. Rev. B, 72:125203, 2005.

[94] Margueron, S., A. Bartasyte, A. M. Glazer, E. Simon, J. Hlinka, I. Gre-

gora und J. Gleize: Resolved E-symmetry zone-centre phonons in LiTaO3 and

LiNbO3. J. Appl. Phys., 111(10):104105, 2012.

132
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E. Rauls, F. Fuchs, C. Rödl, J. Furthmüller und A. Hermann: LiNbO3

ground- and excited-state properties from first-principles calculations. Phys. Rev. B,

77:035106, 2008.

[107] Toyoura, K.i, M. Ohta, A. Nakamura und K. Matsunaga: First-principles

study on phase transition and ferroelectricity in lithium niobate and tantalate. J.

Appl. Phys., 118(6):064103, 2015.

[108] Johnston, W. D. und I. P. Kaminow: Temperature Dependence of Raman and

Rayleigh Scattering in LiNbO3 and LiTaO3. Phys. Rev., 168:1045–1054, 1968.

133



[109] Servoin, J. L. und F. Gervais: Soft vibrational mode in LiNbO3 and LiTaO3.

Solid State Commun., 31(5):387 – 391, 1979.

[110] Okamoto, Y., P. Wang und J. F. Scott: Analysis of quasielastic light scattering

in LiNbO3 near TC . Phys. Rev. B, 32:6787–6792, 1985.

[111] Kojima, S.: Order-disorder nature of ferroelectric phase transition in stoichiometric

LiNbO3 Crystals. Ferroelectrics, 223(1):63–70, 1999.

[112] Lehnert, H., H. Boysen, F. Frey, A. Hewat und P. Radaelli: A neutron

powder investigation of the high-temperature structure and phase transition in stoi-

chiometric LiNbO3. Z. Kristallogr., 212(10):712–719, 1997.

[113] Phillpot, S. R. und V. Gopalan: Coupled displacive and order–disorder dyna-

mics in LiNbO3 by molecular-dynamics simulation. Appl. Phys. Lett., 84(11):1916–

1918, 2004.

[114] Lee, D., H. Xu, V. Dierolf, V. Gopalan und S. R. Phillpot: Structure and

energetics of ferroelectric domain walls in LiNbO3 from atomic-level simulations.

Phys. Rev. B, 82:014104, 2010.

[115] Sanna, S. und W. G. Schmidt: Ferroelectric phase transition in LiNbO3: Insights

from molecular dynamics. IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, 59(9):1925–1928, 2012.

[116] Samuelsen, E. J. und A. P. Grande: The ferroelectric phase transition in

LiTaO3 studied by neutron scattering. Z. Phys. B Condensed Matter, 24(2):207–

210, 1976.

[117] Abrahams, S.C., E. Buehler, W.C. Hamilton und S.J. Laplaca: Ferroelec-

tric lithium tantalate–III. Temperature dependence of the structure in the ferroelec-

tric phase and the paraelectric structure at 940̊ K. J. Phys. Chem. Solids, 34(3):521

– 532, 1973.

[118] Jiangou, Z., Z. Shipin, X. Dingquan, W. Xiu und X. Guanfeng: Optical

absorption properties of doped lithium niobate crystals. J. Phys.: Condens. Matter,

4(11):2977, 1992.

[119] Kase, S. und K. Ohi: Optical absorption and interband faraday rotation in LiTaO3

and LiNbO3. Ferroelectrics, 8(1):419–420, 1974.

[120] Ching, W. Y., Z.-Q. Gu und Y.-N. Xu: First-principles calculation of the elec-

tronic and optical properties of LiNbO3. Phys. Rev. B, 50:1992–1995, 1994.

[121] Thierfelder, C., S. Sanna, Arno Schindlmayr und W. G. Schmidt: Do we

know the band gap of lithium niobate? Phys. Status Solidi (c), 7(2):362–365, 2010.

134



[122] Redfield, D. und W. J. Burke: Optical absorption edge of LiNbO3. J. Appl.

Phys., 45(10):4566–4571, 1974.

[123] Hobden, M.V. und J. Warner: The temperature dependence of the refractive

indices of pure lithium niobate. Phys. Lett., 22(3):243 – 244, 1966.

[124] Schlarb, U. und K. Betzler: Refractive indices of lithium niobate as a functi-

on of temperature, wavelength, and composition: A generalized fit. Phys. Rev. B,

48:15613–15620, 1993.

[125] Gonze, X., G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon,

R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez,

M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby,

G. Onida, D.R. Hamann und D.C. Allan: A brief introduction to the ABINIT

software package. Z. Kristallogr., 220:558–562, 2005.

[126] Gonze, X., B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Bou-

langer, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch,
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[195] Lüdtke, H., W. Sohler und H. Suche: Characterization of Ti:LiNbO3 Optical

Wavequides. In: Kersten, R. T. und R. Ulrich (Herausgeber): Dig. Workshop

Integrated Optics, Seiten 122–126. Technische Universität Berlin, 1980.
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