Ab initio-Berechnung der optischen und phononischen
Eigenschaften von Lithiumniobat und verwandten

ferroelektrischen Materialien

Dissertation

vorgelegt von

Michael Friedrich

L UNIVERSITAT PADERBORN

Die Universitit der Informationsgesellschaft

Fakultat fiir Naturwissenschaften, Department Physik, Theoretische Physik
2018






Ab initio-Berechnung der optischen und phononischen Eigenschaften von
Lithiumniobat und verwandten ferroelektrischen Materialien

von

Michael Friedrich

Eine Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)
vorgelegt dem Department Physik der Fakultét fiir Naturwissenschaften
an der Universitat Paderborn

2018
Priifungskomission
Vorsitzender: Prof. Dr. rer. nat. Artur Zrenner
Erstgutachter: Prof. Arno Schindlmayr, Ph.D.
Zweitgutachter: Prof. Dr. rer. nat. Wolf Gero Schmidt
Beisitzer: Dr. rer. nat. Uwe Gerstmann
Eingereicht am: 26.01.2018

Tag der miindlichen Priifung: 07.03.2018






Kurzfassung

Grundlegende Eigenschaften der isomorphen Volumenkristalle Lithiumniobat (LiNbOsg,
LN) und Lithiumtantalat (LiTaOs, LT) werden mittels ab initio-Methoden untersucht. Im
ersten Teil dieser Dissertation werden die Vibrationseigenschaften von stéchiometrischem
LiNbOj3 und LiTaO3 im Rahmen der Dichtefunktionalstéorungstheorie analysiert, um die
vollsténdige Phononendispersion der beiden Materialien zu generieren. Das Auftreten ima-
gindrer Frequenzen in der paraelektrischen Phase zeigt, dass diese nicht aus einer energe-
tischen Minimumstruktur herriihren und befindet sich im Einklang mit einem Ordnungs-
Unordnungs-Phaseniibergang. Die berechnete Nullpunktsrenormierung der elektronischen
Kohn-Sham-Eigenwerte offenbart eine Vibrationskorrektur der elektronischen Bandliicke
von 0.41 eV bei 0 K, die sich in exzellenter Ubereinstimmung mit extrapolierten tempe-
raturabhéngigen Messungen befindet. Auflerdem belduft sich die zusétzliche temperatu-

rabhéngige Rotverschiebung der Bandliicke auf 0.1 eV bei Raumtemperatur.

Der zweite Teil der Arbeit ist auf die optischen Eigenschaften von LN ausgerichtet. Die
dielektrische Funktion von defektfreiem, kongruentem und Titan-dotiertem Lithiumnio-
bat wird mithilfe der zeitabhéngigen Dichtefunktionaltheorie berechnet, wobei ein mo-
dellhafter langreichweitiger Beitrag fiir das Austauschkorrelationsfunktional verwendet
wird, um die Elektron-Loch-Bindung zu beriicksichtigen. Die Auswirkungen von Polaro-
nen, die an isolierten Niobdefekten angesiedelt sind, und Bipolaronen, welche sich bis
zum benachbarten Niobatom ausdehnen, werden im Detail untersucht. Dabei werden vier
verschiedene Niobpunktdefekte und -defektcluster modelliert und analysiert. Die experi-
mentell beobachteten Absorptionsmerkmale der Polaronen koénnen am besten mit dem
Zwischengitter-Vakanz-Paar Nby—Vy; erklart werden. Weiterhin liegt der Fokus auf dem
Einfluss von Titansubstitutionsatomen, iiberwiegend simuliert auf Lithiumgitterplatzen.
Es wird gezeigt, dass eine steigende Titankonzentration den Brechungsindex und die Re-
flektivitat erhoht.






Abstract

Fundamental bulk properties of the isomorphic ferroelectrics lithium niobate (LiNbOsg,
LN) and lithium tantalate (LiTaOg, LT) are investigated from first principles. In the first
part of the thesis the vibrational properties of stoichiometric LiNbO3 and LiTaOg3 are
analyzed within density-functional perturbation theory in order to obtain the complete
phonon dispersion of the materials. The presence of phonons with imaginary frequencies
for the paraelectric phases reveals that they do not correspond to a minimum-energy
structure, which is compatible with an order-disorder-type phase transition. The calcula-
ted zero-point renormalization of the electronic Kohn-Sham eigenvalues of LN indicates
a vibrational correction of the electronic band gap of 0.41 eV at 0 K, which is in excellent
agreement with the extrapolated temperature-dependent measurements. Also, the addi-
tional temperature-dependent redshift of the band gap is evaluated and amounts up 0.1

eV at room temperature.

The second part of the thesis focuses on the optical properties of LN. The dielectric
function of pristine, congruent and titanium-doped lithium niobate is calculated within
time-dependent density-functional theory. A model long-range contribution is employed
for the exchange-correlation kernel in order to account for the electron-hole binding. The
effects of polarons that occur at isolated niobium defects and bipolarons that extend to
the neighboring regular niobium atom are discussed in detail. Four different niobium point
defects and simple defect structures are modeled and analyzed. The experimentally ob-
served polaron absorption features can be best explained by the interstitial-vacancy pairs
Nby—V1y;. Further studies cover the influence of substitutional titanium atoms primarily
on lithium sites. It is shown that an increasing titanium concentration enhances the values

of the refractive indices and the reflectivity.
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Kapitel 1

Einleitung

Lithiumniobat (LN, LiNbO3) und Lithiumtantalat (LT, LiTaOj3) sind ferroelektrische Ma-
terialien mit einer Vielzahl von verschiedenen Anwendungsmoglichkeiten im Bereich opti-
scher Bauelemente. Aufgrund ihrer doppelbrechenden, akustooptischen, piezoelektrischen,
elektrooptischen, elastischen, photoelastischen, photorefraktiven und nichtlinearen opti-
schen Eigenschaften werden sie unter anderem in akustischen Oberflichenwellen-Geréiten,
Wellenwandlern, Verzogerungsleitern und Filtern, sowie in optischen Amplituden- und
Phasenmodulatoren, in zweite-Harmonische-Generatoren, Giiteschaltern, (Strahl-) Ablenk-
einheiten, Phasenkonjugatoren, dielektrischen Wellenleitern, Speicherelementen und ho-

lografischen Datenverarbeitungsgeréten eingesetzt [1].

Es handelt sich um synthetische Materialien, die spéatestens seit Ende der vierziger Jahre
bekannt sind, aber erst ab 1965 in akzeptabler Qualitdt hergestellt werden konnten: Sie
werden aus einer kongruenten Schmelze mittels des Czochralski-Verfahrens [2] gewonnen
und lassen sich damit in grofler Menge erzeugen. Der Begriff kongruent bezeichnet den
Sachverhalt, dass innerhalb dieses Verfahrens nur Kristalle hergestellt werden konnen, die
ein Lithiumdefizit aufweisen, welches nur bei einem Verhéltnis von etwa Li:(Li+Nb)=0.485
ein homogenes Wachsen des Kristalls garantiert. Stochiometrisches Lithiumniobat (SLN)
ist deutlich schwerer herzustellen, wobei es drei mogliche Verfahren gibt [3], die es auch
erlauben, homogene Kristalle beliebiger kongruenter Komposition herzustellen. Man un-
terscheidet zwischen Methoden, die nach der Kristallzucht von LN angewendet werden
wie die vapor transport equilibration und direkter Zuchtmethoden mithilfe von Fremdma-
terialien wie Kaliumoxid oder der double crucible Czochralski-Methode.

Lithiumniobat gehort zum trigonalen Kristallsystem. Deren einachsige Einheitszelle bein-
haltet zehn Atome, also zwei Formeleinheiten LiNbOj3 pro primitiver rhomboedrischer
Einheitszelle. In der ferroelektrischen Phase gehort es zur R3¢ Raumgruppe mit 3m Sym-
metrie. Die Einheitszelle ist in Abbildung 1.1 zu sehen. Die dreifache Symmetrieachse
dieser Zelle ist vertikal in z-Richtung entlang der Stapelfolge Nb—V-Li-Nb orientiert, mit
V als leeren Gitterplatz. Die ferroelektrischen Eigenschaften und spontane Polarisation



des Materials rithren aus einer Verschiebung der Kationen aus ihrer zentrosymmetrischen
Position innerhalb der Sauerstoffoktaeder, in der Abbildung in positiver z-Richtung dar-

gestellt. Lithiumtantalat weist dieselbe Kristallstruktur wie Lithiumniobat auf.

Kongruentes Lithiumniobat (CLN)

findet in technischen Anwendungen O
weitaus hohere Beriicksichtigung

als stochiometrisches. Die Beschrei-

bung der atomaren Struktur kon- O
gruenten Lithiumniobats ist we- C F)
sentlich komplizierter und bis heute

nicht abschlieend geklart. Das ak-

zeptierteste Szenario ist das Lithi- /2
umvakanzmodell, in dem ein Antisi- d

te Nby;-Defekt durch vier Lithium- O
vakanzen ladungskompensiert wird

[4, 5]. Bekannt ist aber, dass die-

se Defekte grofle Auswirkungen auf O

die genannten physikalischen Eigen- Abbildung 1.1: Einheitszelle von ferroelektrischen Lithium-
schaften haben. Messungen der Ab- niobat. Die Niob- Lithium und Sauerstoffatome sind grau,
sorptionskante, des Brechungsinde- weifl bzw. rot dargestellt.

xes und der Doppelbrechung, des

Einflusses auf die Bildung der zweiten Harmonischen, der Linienbreite von Raman-
Moden, der Lumineszenz, SAW-Geschwindigkeit und weitere kénnen Aufschluss auf die
Stochiometrie der Probe geben. Vielen gewiinschten Eigenschaften von kongruenten LN
sowie den niedrigeren Produktionskosten steht jedoch das Problem der unerwiinschten
Photorefraktivitiat entgegen. Es wird sowohl von (Bi)Polaronen verursacht [6], die sich
an den Antisitedefekten bilden als auch von Eisenverunreinigungen, die herstellungsbe-
dingt auftreten [7]. Dem kann durch Dotierung mit Magnesium entgegnet werden, ist aber
aufwendig. Nicht nur um stérende Einfliisse zu vermindern, sondern auch um optische Ei-
genschaften gezielt zu verbessern, werden Fremdatome in Lithiumniobat eindiffundiert.
Beispielsweise erhoht Titan den ordentlichen und auflerordentlichen Brechungsindex ohne
sich negativ auf das verlustarme Verhalten von Lithiumniobat-Wellenleitern auszuwirken.
Der genaue Ablauf des Diffusionsprozesses und die Besetzung der Gitterplatze sind dabei
immer noch Gegenstand aktueller Forschung und nur unbefriedigend geklért.

Auch die Temperatur des ferroelektrischen—paraelektrischen Phaseniibergangs ist stark
von der Komposition abhéngig [8]. Die Curie-Temperatur von Lithiumniobat liegt bei
etwa 1480 K [9] bzw. 940 K [10] bei LT. Oberhalb dieser Temperatur sind die Materialien
paraelektrisch und besitzen ebenfalls eine rhomboedrische Struktur, die eine hohere Sym-
metrie aufweist und zur R3¢ Raumgruppe mit —3m Symmetrie gehort. Auch hier sind die
Mechanismen des Phaseniibergangs nicht abschliefend geklart. Allgemein akzeptiert ist



ein Phaseniibergang vom Ordnungs-Unordnungs-Typ mit eventuellem displaziven Anteil

beziiglich des Niobatoms.

Die Zusammenfassung der vielfiltigen Anwendungen und der Kenntnisse iiber mikrosko-
pische Prozesse in den ferroelektrischen Materialien soll zeigen, dass trotz ihres enormen
Stellenwertes in der Optik das Verstédndnis iiber sie teilweise noch weit hinter der routi-
neméafigen Verwendung hinterherhinkt. Diese theoretische Arbeit dient dazu, mikroskopi-
sche Zusammenhénge besser zu verstehen. Einerseits soll die elektronische Bandstruktur,
die bisher nicht experimentell bestimmt wurde, und insbesondere die Bandliicke besser
verstanden werden, indem der Einfluss der Gitterschwingungen untersucht wird. Im Zu-
ge dessen bietet sich die Moglichkeit, einiges iiber die phononischen Eigenschaften von
Lithiumniobat und Lithiumtantalat zu lernen. Des Weiteren soll die Kenntnis der Defekt-
struktur von kongruentem und Titan-eindiffundiertem LN und vor allem ihrer optischen
(linearen) Signaturen stark erweitert werden. Insbesondere wird sich ein genaueres Bild
iiber die (Bi)Polaronen und die Titandefekte, welche zu einer Anderung der Brechzahl
fithren, erhofft.

Aufgrund der enormen Fortschritte in der theoretischen Beschreibung von Festkérpern
und der Computertechnik sind physikalische Prozesse wie die Elektron-Phonon-Kopplung
oder die Simulation von Defekten in Superzellen mit hunderten von Atomen mittlerweile
handhabbar. Bevor diese Techniken auf LN und LT angewendet werden, werden sie mit
Fokus auf die bestehenden Schwierigkeiten der ihnen zugrundeliegenden Approximationen
im néchsten Kapitel vorgestellt.



Kapitel 2

Theorie

2.1 Einleitung

Die stationdre Kern- und Elektronenstruktur von Systemen mit einer Anzahl von Ny

Atomen wird mit der Vielteilchen-Schrodinger-Gleichung
HY(Ry, ..., Ry, 11, o, oo, T,) = EU(Ry, oo, R, T1, 1o, o, T, ) (2.1)

beschrieben, wobei der Hamilton-Operator H durch

Nk K2 ) o
— _ZQ_MVRZ Z;Zlﬂ'g()’rz

i=

3 Z Z 47r€0|r —r] Z Z 47T€O|Ri—Rj] (22)

]12 1,i#£j jl’L 1,i#j

gegeben ist. R; steht fiir die Ortsvektoren der Atomkerne und N, und r; fiir die Anzahl
und Positionen der Elektronen. M; und m bezeichnen jeweils die Kern- und Elektronen-
masse. Z; steht fiir die jeweilige Kernladungszahl, e fiir die Elementarladung und ¢, fiir
die dielektrische Feldkonstante. Die Summanden des Hamilton-Operators bedeuten ihrer
Reihenfolge nach die Operatoren der kinetischen Energie der Atomkerne TK, der kineti-
schen Energie der Elektronen Ts, der Elektron-Kern-Wechselwirkung V., der Coulomb-
Wechselwirkung der Elektronen untereinander Vee, sowie der Kern-Kern-Abstoung VKK
Eine géngige Schreibweise fiir den Operator der Kern-Elektron-Wechselwirkung Vi ist

Ne
‘A/eK = Z Uext<ri) (23)
=1



in Abhéngigkeit des externen Potentials vey; mit

Nk

Uext(ri) = - Z ZJ—62 (24)

st 47T€0|I'i — R]| .

Spinfreiheitsgrade sind im Sinne einer einfachen Darstellung der Theorie und wegen ihrer
iiberwiegend untergeordneten Bedeutung in dieser Arbeit konsequent vernachléssigt.

Die analytische und numerische Komplexitéit der Losung dieser Gleichung iiberschreitet
leider schon bei simpelsten Molekiilen die Grenzen des Moglichen. Das liegt alleine schon
an der Diskretisierung der Ortskoordinaten der beteiligten Teilchen in der Gesamtwellen-
funktion und dem damit verbundenen Speicherbedarf. Eine Separation in Einteilchenwel-
lenfunktionen oder andere geeignete vereinfachende Ansétze wéren daher wiinschenswert.
Ein erster Schritt in diese Richtung ist die Trennung der Elektronen- und der Kern-
dynamik. Analytisch exakt ist dies zu vollziehen mit der Entwicklung aus orthonorma-
len elektronischen Wellenfunktionen W¢(ry,ro,...,ry,) als vollstindige Basis, die R; nur
noch implizit als Parameter enthalten, und den Kernwellenfunktionen A, (R, ..., Ry ) als
Entwicklungskoeffizienten. Dies fiihrt fiir das elektronische Problem zu einer einfacheren

elektronischen Schrodinger-Gleichung
HOUC (11,19, ..., TN,) = ESUS (11,10, ..., T, (2.5)
mit dem elektronischen Hamilton-Operator
H® =T, + Vix + Vee (+Vik). (2.6)

Der Operator der Kern-Kern-Wechselwirkung VKK ist im Verlauf dieser Arbeit nicht im-
mer beriicksichtigt, da er nur noch als Konstante in der Losung des elektronischen Pro-
blems auftritt. Auf der anderen Seite ergibt sich fiir die Bestimmungsgleichung der Kern-
koeffizienten ein komplizierter Ausdruck mit vielen Kopplungstermen der elektronischen
Wellenfunktion. Dies wird in Kapitel 2.3 behandelt, wo erste Ndherungen, namentlich die
Born-Oppenheimer-Néherung, eingefithrt werden miissen. Die Behandlung der Kernbe-
wegung in dieser Arbeit liefert letztendlich die phononischen Eigenschaften des Materials

in harmonischer Approximation.

Die weitere Separation der elektronischen Wellenfunktionen hin zu Einteilchenwellenfunk-
tionen ist durch die Coulomb-Wechselwirkung V.o untereinander ausgeschlossen. Diese
massive Einschrankung wird heutzutage bei Molekiilen und Festkorpern unter anderem
durch folgende zwei Ansétze umgangen. In der Hartree-Fock-Naherung wird die elektroni-
sche Wellenfunktion a priori als eine Slaterdeterminante von Einteilchenwellenfunktionen
angenommen, womit dem Pauli-Prinzip Rechnung getragen ist. Diese Einschrinkung be-
deutet in der energetischen Betrachtung jedoch nur eine obere Schranke fiir die Gesamt-

energie, da die elektronische Abschirmung nicht korrekt beschrieben wird (keine Korre-



lationseffekte), und daraus folgend, dass die elektronische Bandliicke stark iiberschétzt
wird. Die zweite Herangehensweise nennt sich Dichtefunktionaltheorie (DFT) [11] und
wird in Kapitel 2.2 ausfiihrlicher behandelt. Die Gesamtenergie wird als Funktional der
Elektronendichte

Ne
n(r) = /drl . /drNe S0 — 1) [ W (ry, T, o) (2.7)
=1

aufgefasst. Dieser Ansatz ist dahingehend bemerkenswert, dass die komplizierte, von N,
Ortsvektoren abhingige Wellenfunktion des elektronischen Problems durch die simple,
nur vom Ort r abhéngende Dichte n(r) ersetzt werden kann. Der Ansatz ist formal ex-
akt und liefert im Gegensatz zur Hartree-Fock-Naherung die Moglichkeit, Naherungen erst
spater einfiihren zu miissen und systematische Verbesserungen zu erzielen. Ein Instrument
zur Bestimmung der Dichte und Gesamtenergie liefert ein Hilfssystem von Schrodinger-
Gleichung &hnlichen Einteilchengleichungen, den sogenannten Kohn-Sham-Gleichungen,
im effektiven Potential [12]. Wechselwirkungen untereinander wie Austausch, Korrela-
tion und Selbstwechselwirkungen werden im sogenannten Austauschkorrelationspotenti-
al (xc-Potential) zusammengefasst, dessen konkrete Form unbekannt ist und wofiir die
erwahnten Ndherungen zu finden sind. Die Eigenwerte und Wellenfunktionen der Kohn-
Sham-Gleichungen liefern selbst a priori keine physikalische Interpretation, werden in der
Praxis aber als elektronische Eigenenergien aufgefasst. Der geringe Rechenaufwand und
die sehr guten Ergebnisse in Bezug auf die Gittergeometrie, Bindungsenergien, phononi-
schen Eigenschaften und vieles mehr machen die Dichtefunktionaltheorie zur Standard-
theorie fiir periodische Festkorper.

Zu beachten ist jedoch, dass es sich hierbei um eine Grundzustandstheorie handelt,
die keine Aussagen iiber angeregte elektronische Zusténde generiert. Die unzureichende
Beriicksichtigung von Vielteilcheneffekten, also der Elektron-Elektron-Wechselwirkung, in
den gingigen Nédherungen fiir das Austauschkorrelationspotential wie die Lokale-Dichte-
Néherung (LDA) oder die Generalisierte Gradienten-Naherung (GGA) ist dafiir verant-
wortlich, dass die elektronische Bandliicke deutlich zu gering abgeschétzt wird. Eine zu-
friedenstellende, aber nicht exakte Moglichkeit zur Korrektur bietet die Beimischung eines
aus der Hartree-Fock-Theorie inspirierten exakten Austauschterms, der direkte Folge der
Auffassung der Gesamtwellenfunktion als Slaterdeterminante von Einteilchenwellenfunk-
tionen ist (Kapitel 2.2.6).

Eine korrektere Behandlung elektronischer Anregungen kann jedoch nur im Rahmen der
Vielteilchenstorungstheorie erfolgen. Mithilfe der GW-Néherung (GWA) von Hedin und
Lundqvist [13] auf Basis der DFT-Wellenfunktionen und -Eigenwerte kann die Selbst-
energie, also die Energie durch Austauschkorrelationseffekte, als Beitrag zur Quasiteil-
chenenergie in teils hervorragender Ubereinstimmung mit experimentellen Elektronenaf-
finitdten und Ionisierungsenergien berechnet werden. Der Begriff Quasiteilchen bedeutet

in dem Zusammenhang, dass sich der teilchenartige Charakter der Anregung auf das Ge-



samtsystem verteilt und nicht mehr nur einem Elektron zugeordnet werden kann. Sowohl
geladene als auch neutrale Anregungen kénnen in diesem Rahmen behandelt werden, wo-
bei zweitere durch die Bethe-Salpeter-Gleichung (BSE) beschrieben werden. Mit ihr sind
die Elektron-Loch-Paare (Exzitonen) beriicksichtigt, die sich als Folge optischer Anregun-
gen bilden. Diese tragen in Halbleitern und Isolatoren durch ihre Bindungsenergie zur
Reduktion der optischen Bandliicke bei, da sie in diesen Materialien wenig voneinander
abgeschirmt sind. Durch die zeitliche und rdumliche Entwicklung eines oder sogar zweier
Teilchen (Zweipunkt- und Vierpunktfunktionen) ist der rechentechnische Aufwand enorm
und auf kleine Systeme beschriankt. Daher konnen GWA und BSE nicht Gegenstand eines
theoretischen Zugangs in dieser Arbeit sein. Effizientere Ansétze wéren wiinschenswert.
Diesen bietet prinzipiell die zeitabhéngige Dichtefunktionaltheorie (TDDFT, Kapitel 2.6).
Auch hier lasst sich das System als Funktional der Elektronendichte beschreiben, leidet
aber unter den gleichen Problemen wie die DF'T: Die Vielteilcheneffekte werden als Funk-
tional der Dichte nur unzureichend beschrieben. Es gibt jedoch vielversprechende Aus-
driicke wie den langreichweitigen Beitrag (LRC), welcher die auftretenden exzitonischen
Effekte im Austauschkorrelationsfunktional approximiert, indem es die wesentliche q~2-
Abhéngigkeit, mit q als Wellenvektor des einfallenden Lichts, die aus der BSE bekannt
ist, nachahmt.

Bisher unterschlagen wurde die Tatsache, dass ausgedehnte Festkorper eine Teilchenzahl
in der GroéBenordnung von 10?* pro cm?® aufweisen. Da es durch die Periodizitit der be-
trachteten Festkorper mithilfe des Bloch-Theorems (Kapitel 2.2.8) moglich ist, die elektro-
nische Wellenfunktion in einen Phasenfaktor und einen gitterperiodischen Teil zu zerlegen,
geniigt es, sich auf die (elementare) Einheitszelle zu konzentrieren. Dies bedeutet gleich-
zeitig eine Einschrinkung fiir groffle Defektstrukturen, die grofle Superzellen verlangen.
Dank der immer grofler gewordenen Rechenleistung und methodischen Fortschritte sind
parameterfreie Dichtefunktionaltheorie-Rechnungen zu einem wichtigen Pfeiler geworden,
experimentelle Beobachtungen zu deuten oder vorherzusagen.

2.2 Dichtefunktionaltheorie

2.2.1 Hohenberg-Kohn-Theorem

Die Dichtefunktionaltheorie legitimiert sich iiber das Hohenberg-Kohn-Theorem [11], wel-
ches besagt, dass das externe Potential vey (r) im Grundzustand bis auf eine additive Kon-
stante durch die Elektronendichte n(r) bestimmt ist. Die elektronische Grundzustands-
energie Fy, die zuvor iiber die Minimierung des Funktionals

(W] He W)

Ey = H}I}n E[V] = m\gn oy (2.8)



berechnet werden konnte, ist nun ein Funktional E[ng| derjenigen Elektronendichte ny,

die es minimiert. Mithilfe der Variationsrechnung kann der stationéire Zustand ng iiber

<ﬂEM—ML/MﬂM—N4}—O (2.9)

bestimmt werden. Die Zwangsbedingung, dass das Volumenintegral iiber die Elektronen-

das Minimieren von

dichte gerade die Anzahl N, der Elektronen ergibt, ist iiber den Lagrange-Parameter pu,
welcher mit dem chemischen Potential identifiziert werden kann, beriicksichtigt, und es
ergibt sich mit der Zerlegung in die einzelnen Energiebeitrige

Eln] = T.n]+ Vee[n] + Vik[n]
= Fuxn| —i—/n(r)vext(r)dr (2.10)

die Euler-Lagrange-Gleichung

JE[n]

H=5n(r)

on(r)

= Vext (I‘) +

(2.11)

Fux[n] = Te[n] 4 Vee[n] ist ein universelles, fiir jedes System und jede Teilchenzahl giiltiges
Funktional, da es nicht von den Kernpositionen, sondern ausschliefllich von der Elektro-
nendichte abhéngt. Problemspezifische Eigenschaften vereinen sich in vey. Einen exakten
oder approximativen Ausdruck fiir das Funktional Fyk[n] zu finden ist notwendig fiir die
Losung der Euler-Lagrange-Gleichung.

2.2.2 Kohn-Sham-Verfahren

Anstatt einen direkt von der Dichte abhéngigen Ausdruck fiir die Summanden von Fyxk[n]
zu finden, was aus der Thomas-Fermi-Theorie [14-16] als unzureichende Approximation
der kinetischen Energie bekannt ist [17], ersannen Kohn und Sham einen Ansatz von N,
nicht wechselwirkenden Einteilchen-Hilfswellenfunktionen ;, welche die exakte Grund-
zustandselektronendichte des wechselwirkenden Systems ergeben [12]. Der klare Vorteil

dieses Ansatzes liegt darin, dass die kinetische Energie

Ticsln Z [ itV (2.12)
mit N
= lp)P (2.13)

die gleiche Groflenordnung aufweist wie die des wechselwirkenden Systems. Sie kann in
Halbleitern und Isolatoren als Summe iiber voll besetzte Orbitale berechnet werden. Wird
nun die komplizierte Elektron-Elektron-Wechselwirkung V.. als ein echtes Funktional iiber



die Dichte ausgedriickt, erhdlt man die sogenannte Hartree-Energie als

247750/ / ‘r_r,| (2.14)

Die Vernachldssigungen, namentlich die Korrelationseffekte durch die kinetische Energie-

differenz des exakten und des nichtwechselwirkenden Systems, sowie die Selbstwechsel-
wirkungs-, Austausch- und Korrelationseffekte durch die klassische elektrostatische Be-
trachtung der Elektronendichte anstelle der quantenmechanischen Beschreibung der Viel-
teilcheneffekte werden in der Austauschkorrelationsenergie Fi.[n] zusammengefasst, die

definiert ist als
Eyc[n] = To[n] — Tks[n] 4+ Vee[n] — Euln]. (2.15)

Damit lasst sich das universelle Funktional Fyy[n| ausdriicken als

Somit lasst sich Gleichung (2.11) umschreiben zu

6TKS [TL]
= v, 2.1
ft = Vesr(T) + 5n(x) (2.17)
mit dem effektiven Potential
Vet (I') = VE(T) + Vext (T) + Vxe(T), (2.18)
dem Hartree-Potential
5E [n] 1 n(r’)
= dr’ 2.1
v (r) = on(r) 47?50/ ' r —r/| (2.19)
und dem Austauschkorrelationspotential
dEyc[n]
P - . 2.2
) = S (220)

Das Umschreiben der Gleichung (2.9) beziiglich der Einteilchenwellenfunktionen ergibt
Ne N.
5 {E[n] -y eij(/wj(r)goi(r)dr _ @-)] 0 (2.21)
j=1 i=1

Die Lagrange-Multiplikatoren ¢;; dienen dabei der Beriicksichtigung der Orthonormalitét
der ;, wobei d;; das Kronecker-Symbol ist. Nach Variation iiber die ¢; mithilfe von (2.12),



(2.13) und (2.18) erhélt man die Euler-Lagrange-Gleichung

Ne
hpi(r) = eijip;(r), (2.22)
i=1
wobel )
h = 2_mev2 + Vet (1) (2.23)

der Einteilchen-Kohn-Sham-Operator ist, der zu seiner Konstruktion allerdings die Dichte
als Losung der Kohn-Sham-Gleichungen benétigt. Gesamtenergie und Elektronendichte
sind invariant unter unitiarer Transformation. Daher gibt es eine unitdre Matrix U mit
Ut = U~!, sodass

Ne
Zi(r) =D Uijip;(x) (2:24)
j=1
und
Ne
Z UlieijUfk = elélk. (2.25)
ij=1

Damit ldsst sich Gl. (2.22) zu einer Einteilchengleichung umformulieren und es liegt ein
System Schrodinger-Gleichung #dhnlicher Differentialgleichungen im effektiven Potential
vor (auf die Markierung der ¢;(r) wurde verzichtet):

hepi(r) = €;0(r). (2.26)

Sie sind gekoppelt {iber die Elektronendichte. Die Lagrange-Multiplikatoren ¢; werden
hier zu den Eigenenergien der unabhéngigen, nicht wechselwirkenden Teilchen. Sie haben
jedoch keine eigentliche physikalische Bedeutung. In der Praxis werden sie dennoch als
Einteilchenenergieniveaus der Elektronen aufgefasst. Gleichung (2.13), (2.18) und (2.26)
bilden die Kohn-Sham-Gleichungen.

Da Vielteilcheneffekte im Austauschkorrelationspotential enthalten sind, entspricht eine
explizite Form fiir Ey.[n] zu finden der Komplexitit, eine exakte analytische Losung der
elektronischen Vielteilchen-Schrédinger-Gleichung zu finden, und ist damit schon aus die-
sem Grund unmoglich. Damit steht und féllt die Aussagekraft der Dichtefunktionaltheorie
mit der Auffindung geeigneter Approximationen fiir das F,.-Funktional.

2.2.3 Lokale-Dichte-Ndherung

Um die Austauschkorrelationsenergie F,. abschéitzen zu konnen, bedient man sich in erster
Linie am Modell des exakt losbaren homogenen freien Elektronengases im konstanten
attraktiven Potential. Dort kann mit dem Hartree-Fock-Ansatz der Slaterdeterminante,
die dem Pauli-Prinzip Rechnung tragt, der Austauschanteil in Abhéngigkeit der Dichte
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analytisch berechnet werden. Um die Austauschkorrelationsenergie, die in einfacher Form

angenommen wird als
Ey[n] = /dr n(r)eg(n(r)), (2.27)

getrennt behandeln zu konnen, wird der Ausdruck der Austausch-Korrelations-Energie
pro Teilchen

Exe(n(r)) = ex(n(r)) + ec(n(r)) (2.28)

aufgespalten in einen Austausch- und einen Korrelationsanteil, was der separaten Gewin-
nung des Austauschanteils aus der Hartree-Fock-Theorie Rechnung tréagt, aber prinzipiell
kiinstlich und irrefithrend sein kann [18]. Damit ergibt sich im Ergebnis des freien Elek-
tronengases der Austauschterm exakt zu
o2
£ (n(r)) = == (37%)n(r) /2, (2.29)
473
ergéinzt um die Ortsabhéngigkeit der Dichte des approximierten realen Systems, was jeder

lokalen Elektronendichte einen Wert zuordnet.

Fiir den Korrelationsanteil sind keine analytischen Ergebnisse vorhanden. Die Grundzu-
standsenergie des freien Elektronengases kann jedoch numerisch mittels Quanten-Monte-
Carlo-Verfahren fiir verschiedene Dichten n des homogenen freien Elektronengases berech-
net werden [19, 20]. Die Korrelationsenergie ergibt sich aus der Differenz aus den Monte-
Carlo-Ergebnissen und denen der HF-Approximation, was zusétzlich eine mogliche Feh-
lerkorrektur der Aufspaltung in Austausch- und Korrelationsanteil beinhaltet. Auf Basis
dieser Ergebnisse parametrisierten Perdew und Zunger [21] 1981 die Korrelationsenergie
pro Teilchen und damit ein xc-Funktional in Abhéngigkeit der lokalen Dichte, das bis

heute — auch in Teilen dieser Arbeit — verwendet wird.

Es ist ein Ergebnis eines Elektronensystems mit konstanter Dichte, welches sich in einem
rdumlich konstanten positiven Hintergrundpotential bewegt, und kann daher als Ndherung
fiir langsam veranderliche Elektronendichten angenommen werden. In der Praxis funktio-
niert diese Naherungen aber auch fiir Systeme mit inhomogener Ladungsverteilung noch
ausgesprochen gut [22]. Diese Approximation des Funktionals wird als Lokale-Dichte-
Néherung (LDA) bezeichnet.

Wichtig ist anzumerken, dass der Fehler durch die Separation von Austausch und Kor-
relationsenergie durch die Gewinnung der Korrelationsenergie in Bezug zu den Hartree-
Fock-Ergebnissen aufgehoben wird. Eine grofie Rolle spielt dabei die Lokalitit EM™[p]
des eigentlich nicht lokalen Austauschterms E™, der damit zwangslidufig implizit einen
Korrelationsanteil erhélt [23]. Eine strikte Verkniipfung der beiden Anteile ist unerlésslich.
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2.2.4 Generalisierte Gradienten-Niherung

Um Verbesserungen der LDA zu erzielen, fiihrte man zusétzliche Freiheitsgrade ein [24],
sodass der Term e, nicht nur von der lokalen Dichte selbst, sondern auch von ihrer
Anderung, genauer ihrem Gradienten Vrn, abhingt und somit semilokal ist, d.h.

Ey[n] = /drn(r)sxc(n(r),Vn(r)). (2.30)

Im Vergleich zur LDA konnte durch diese Funktionale mit Generalisierte Gradienten-
Approximation (GGA) wie zum Beispiel das PW91 [25] mitunter eine deutliche Verbesse-
rung der Grundzustandsenergien, Atomisierungsenergien, Energiebarrieren und struktu-
rellen Energiedifferenzen sowie der Bindungsléingen und Gitterkonstanten erzielt werden,
wobei besonders letztere statt eher zu klein (LDA) nun eher zu grof§ ausfielen. Ab in-
itto-Funktionale konnen unter bekannten Zwangsbedingungen der exakten Funktionale
entwickelt werden. Um die energetisch wichtigsten Effekte in einem moglichst simplen
Funktional zusammenzufiihren, entwickelten Perdew, Burke und Enzerhof 1996 [26] einen
Ausdruck, der das korrekte Verhalten der LDA im Grenzfall konstanter Elektronendichte
und wichtige nicht-lokale Effekte der GGA vereint. Insbesondere wird dabei der Korrela-
tionsanteil der Energie dargestellt als

EPBE[] — / dr n(x) 2 () + H (1, 1)] (2.31)

mit dem Seitz-Radius r, = (3/(47n))/3, dem dimensionslosen Dichtegradienten ¢ =
|Vn|/(8kg/(map)"/?n) und dem Fermi-Vektor kp = (372n)'/3. Der Gradientenbeitrag H
verschwindet im Grenzfall kaum verénderlicher Dichte, sorgt fiir die Ausléschung der Kor-
relation im Grenzfall sehr stark variierender Dichten und beriicksichtigt, dass die Korrela-
tionsenergie bei homogener Skalierung hin zu sehr hohen Dichten konstant werden muss.

Er nimmt daher die Form

H(n,t) = %vlm (1 + th l 1+ A }) (2.32)

14+ At?2 + A2¢2

4= oy () ] o

an, wobei die in den Grenzfillen bestimmten Parameter 8 = 0.0667251 und v = 0.031091
betragen. Der GGA-Term Fy(s) in der Austauschenergie

X

EYBE[n] = /drn(r)ahom(rs)FX(s) (2.34)

mit dem dimensionslosen Dichtegradienten s = |Vn|/(2kgn) wird unter folgenden Bedin-
gungen konstruiert: Er muss den Wert 1 im Limit des homogenen Elektronengases anneh-
men, fiir kleine Dichtedinderungen klein sein und der Lieb-Oxford-Grenze [27] geniigen.
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Unter diesen Bedingungen ergibt sich der Verfeinerungsfaktor Fy zu

Fi(s)=1+K—

T (2.35)

mit den Parametern £ = 0.804 und p = 0.21951. Dieses Funktional ist unter der Abkiirzung
PBE bekannt und aufgrund seiner Einfachheit eines der meist verbreitetsten. Unter Auf-
gabe der Universalitdt der Funktionale kénnen fiir bestimmte Problemstellungen exak-
tere Ergebnisse erzielt werden. Unter Anderung zweier Parameter zu p = 0.1235 und
£ = 0.046 kann eine deutliche Verbesserung der Performance beziiglich Gitterkonstan-
ten in Festkorpern unter leichten Einbuflen in der Genauigkeit bei Atomisierungsenergien
erreicht werden [28]. Das unter dem Namen PBEsol bekannte Funktional wird in dieser
Arbeit getestet, da korrekte Gitterkonstanten bei der Berechnung von Phononenfrequen-
zen eine wichtige Rolle spielen.

Einen ganz anderen Generalisierte Gradienten-Ansatz schlagen Mattsson und Armiento
[29, 30] auf Basis des lokalen Airy-Gas-Modells [31, 32] vor, um Oberflichen besser be-
schreiben zu kénnen. Es handelt sich dabei um ein spezielles Modell fiir Rénder eines Sys-
tems, an denen das Potential bei r = 0 verschwindet und Kohn-Sham-Wellenfunktionen
auflerhalb exponentiell abfallen. Beim Airy-Gas-Modell befinden sich Elektronen in ei-
nem linearen Potential veg(r) = F'z, hier in z-Richtung, mit F' = dveg(r)/dz an der Stelle
r = 0. Die resultierende Einteilchen-Schrodinger-Gleichung wird von der Airy-Funktion
gelost und die daraus erhaltene Dichte mit einem HF-&dhnlichen Austauschterm mit der
Austauschenergie der gewonnenen Wellenfunktionen in Verbindung gebracht. Die Losung
wird mithilfe des Dichtegradienten s parametrisiert und in Bezug zum LDA-Austausch
gesetzt (damit gefittet), sodass folgt

Fi(s) = (es®* +1)/(cs*/FP 4+ 1), (2.36)
mit
Fp = —1/["(A(s))4{[(4/3)"°2m /3] "C(s)* + ¢ ()"} /1], (2.37)
o[ (2]
und ~ (o)
a(s) = 5 53 (2.39)

wobei W die Lambert-Funktion ist und die Parameter durch ¢ = 0.7168 und a = 2.804
gegeben sind. Das System des Airy-Gases und des freien Elektronengases wird verkniipft

iiber X (s) = as?/(1 + as?). Die resultierende Austauschenergie pro Teilchen ist
ex(n) = eg™ (n)[X(s) + (1 — X(s)) Fx(s)]. (2.40)

Die Korrelationsenergie wurde fiir das Airy-Gas nicht exakt berechnet, sondern mithilfe
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hom

o™ aus einem Fit an Elektronengas-Oberfléchenenergien im Ver-

einer Skalierung von e
gleich zu LDA-Ergebnissen bestimmt. Der Parameter ergibt sich dabei zu v = 0.8098. Die
daraus hervorgehende Approximation fiir allgemeine Systeme lésst sich dann schreiben
als

£e = eM[X (s) + (1 — X (s))7]. (2.41)

Cc

Durch die Verwendung des (dimensionslosen) Gradienten in der Parametrisierung Fy(s)
und in X(s) wird dieses AMO05-Funktional faktisch zu einem GGA-Funktional, obwohl
der Ansatz, zwei unterschiedliche Systeme zu verbinden, also unterschiedliche Regionen
miteinzubeziehen, zunéchst ein anderer war. In der Praxis hat es sich gezeigt [33], dass
PBEsol und AMO05 trotz ihrer unterschiedlichen Konstruktion iiber eine weite Breite von
Materialien vergleichbare Resultate erzielen, was allerdings nicht bedeutet, dass die Funk-
tionale gleich sind, sondern lokal durchaus sehr unterschiedlich sein, aber rdumlich gemit-
telt zu den gleichen Ergebnissen kommen kénnen. Auch bei AMO5 liegt das Interesse

dieser Arbeit an moglichst ,,guten Gitterkonstanten.

Die komplett unterschiedlichen Ansétze, Austauschkorrelationsfunktionale ausgehend von
der Lokale-Dichte-Ndherung zu verbessern, fithrt vor Augen, dass es dazu bisher kein
systematisches Verfahren gibt.

2.2.5 Das Bandliickenproblem

Die Einfachheit der DFT-Rechnungen ldsst den Wunsch aufkommen, dass diese nicht nur
fiir Grundzustandsrechnungen, sondern auch fiir angeregte Zustéinde Anwendung finden.
Das bedeutet insbesondere, dass man die Lagrange-Multiplikatoren der Kohn-Sham-Glei-
chungen als unabhéngige Teilchen-Energien ansehen konnen miisste, die die Quasiteilchen-
Energien der Elektronen gut beschreiben. Anhaltspunkte fiir eine physikalische Interpre-
tation der Lagrange-Multiplikatoren liefert das Janak-Theorem

oE
of;’

welches die ¢; als Ableitung der elektronischen Gesamtenergie nach der elektronischen

(2.42)

€ =

Besetzungszahl f; identifiziert.

Einen physikalischen Zusammenhang zwischen Kohn-Sham-Bandliicken bei Isolatoren
und Halbleitern und physikalischen Bandliicken kann man unter anderem mithilfe ei-
ner Erweiterung der DFT auf gebrochene Elektronenbesetzungszahlen fiir offene Sys-
teme (Elektronenbad) im groflkanonischen Ensemble herleiten [34]. Mithilfe des Janak-
Theorems lésst sich die physikalische Bandliicke £, = I — A, die die Differenz aus Ionisa-
tionspotential I und Elektronenaffinitét A ist, auch als E; = en,41(Ne+1') — en,(Ne — 1)
ausdriicken. ey, ist dabei der niedrigste unbesetzte Eigenwert. Die Klammerausdriicke
stehen fiir die gebrochene Anzahl an Elektronen im System mit 0 < 7,7’ < 1. Dabei zeigt
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sich nun, dass die Kohn-Sham-Bandliicke durch eine Unstetigkeit der Funktionalableitung
der Gesamtenergie nach der Elektronendichte bei ganzzahligen Elektronenbesetzungszah-
len hervorgerufen wird [35, 36]. Die exakte Gesamtenergie als Funktion der Elektronen-
zahl ist eine gerade Verbindung zwischen den Gesamtenergien ganzer Besetzungszahlen.
Da die Hartree-Energie und die Energie des externen Potentials kontinuierlich von der
Elektronendichte abhédngen, kommt die Bandliicke durch die kinetische Energie Tkg der
nicht-wechselwirkenden Teilchen und durch das Austauschkorrelationsfunktional zustan-
de. Da F,. in den vorgestellten Ndherungen und auch generell keine solche Unstetigkeit
nur in Abhéngigkeit der Elektronendichte aufweisen kann, ist die Kohn-Sham-Bandliicke
€, eine Konsequenz aus der Orbitalabhéngigkeit von Tkg[n]. Die KS-Bandliicke ist gegeben
durch €, = en,41(Ne) — €n.(Ne) = €n.+1 — €n, als Differenz vom Leitungsbandminimum
en,+1 und Valenzbandmaximum ey,. Die Differenz A, = E, — ¢, zwischen physikali-
scher und Kohn-Sham-Bandliicke verbirgt sich im Austauschkorrelationsfunktional und
ist demnach eine konzeptionelle Schwiiche der Ubertragung der wechselwirkenden Teil-
chen auf ein Kohn-Sham-System nicht-wechselwirkender Teilchen. Wohlgemerkt ist dies

kein Fehler der DFT, da sie lediglich als Grundzustandstheorie konzipiert ist.

In der Praxis zeigt sich durchgingig, dass Bandliicken in LDA und GGA gleicherma-
Ben zwischen 30 % und 100 % unterschitzt werden. In welcher Grofienordnung einerseits
die Approximation des xc-Funktionals beispielsweise durch LDA und GGA und ande-
rerseits A,. fiir dieses Bandliickenproblem verantwortlich sind, ist in letzter Konsequenz
unklar, da keine exakten xc-Funktionale fiir realistische Probleme bekannt sind. Es er-
scheint aber wahrscheinlich, dass selbst das exakte xc-Funktional das Bandliickenproblem
nicht entscheidend verbessern wiirde [37-40], was bedeuten wiirde, dass Ay, quantitativ
nicht vernachléssigbar ist und somit weitere Verbesserungen in den Néherungen fiir das

xc-Funktional vergebens sein werden.

Eine physikalische Deutung der Unstetigkeit in der Ableitung liefert die Erkenntnis, dass
eine gebrochene Elektronenzahl aus dem (falschen) konvexen Verhalten der xc-Funktionale
die Energie des System minimieren wiirde, was eine inkorrekte Delokalisierung der Elek-
tronen zur Folge hat [41, 42].

2.2.6 Hybridfunktionale

Um eine Verbesserung in der Beschreibung der Einteilchenenergien im Rahmen der DF'T
zu erzielen, ist es notwendig, iiber die (semi)lokalen Ndherungen der xc-Funktionale nur in
Abhéngigkeit der Elektronendichte (und ihres Gradienten) hinauszugehen. Unter Aufgabe
des strikten Kohn-Sham-Formalismus konnen nichtlokale Effekte unter Einbeziehung eines
exakten Austauschterms, wie er aus der Hartree-Fock-Theorie bekannt ist, in Abhéngigkeit

der Kohn-Sham-Wellenfunktionen mit beriicksichtigt werden. Die exakte Austauschener-
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exa. 1 € * * 1
Bkt — —522 y— / dr / dr'y; (r)wj(r’)mwj(r)%(r’) (2.43)
i=1 j=1

ist dabei streng genommen nur fiir Gesamtwellenfunktionen giiltig, die sich als Slaterde-

terminanten aus Einteilchenwellenfunktionen im Rahmen der Hartree-Fock-Theorie be-

rechnen lassen, und wird daher exakter statt Hartree-Fock-Austausch genannt.

Der Ansatz, (anteilig) exakten Austausch zu verwenden, lasst sich einerseits dadurch le-
gitimieren, dass Bandliicken in der Hartree-Fock-Theorie deutlich zu grof§ abgeschétzt
werden, da dort ein konkaves Verhalten der Gesamtenergie in Abhéngigkeit der (gebro-
chenen) Elektronenzahl vorliegt, die elektronischen Zustédnde iiberlokalisiert werden und
man in der Summe eine Fehleraufhebung erwartet. Andererseits, wie eben angedeutet,
ist es notwendig, ein nichtlokales Funktional in Abhéngigkeit der Kohn-Sham-Orbitale zu
verwenden, um die benotigte Unstetigkeit der Funktionalableitung zu erhalten. Drittens
kann die Verwendung von Hybridfunktionalen als ein Spezialfall der GIW-Néherung ge-
sehen werden, die die Selbstenergie eines Vielteilchensystems von Elektronen abschétzt,
solange die Coulomb-Wechselwirkung nicht abgeschirmt wird [13]. Viertens liee sich eine
exakte Fehlerkorrektur der Selbstwechselwirkung unter ausschlieSlicher Verwendung des
exakten Austauschs erreichen, da Gleichung (2.43) fiir i = j ebenfalls eine Selbstwechsel-
wirkung enthélt, die vom Hartree-Term subtrahiert wird.

Die naive Herangehensweise F,, = E<t 4 phom fijhrt hier nicht zum Erfolg, wie in
Kapitel 2.2.3 angemerkt. Hinweise auf die Konstruktion eines solchen Hybridfunktionals
liefert die Methode der adiabatischen Verkniipfung zwischen dem nichtwechselwirkenden
System, welches nur Austausch ohne Korrelation enthélt, und dem voll wechselwirkenden
System mit derselben Grundzustandsdichte [18]. Die einfachste Approximation dieses An-
satzes, die Halb-und-Halb-Theorie mit E,. = 0.5E%k + 0.5E°m  liefert Hinweise, dass
lediglich eine Beimischung approximativen Austauschs notwendig fiir die Konstruktion
von Hybridfunktionalen ist. Eine elaborierte, semiempirische Gestalt des Hybridfunktio-
nals, die experimentelle Ergebnisse mitberiicksichtigen kann, sieht folgendermafien aus
[23]:

By = BR™ + a( B3 — B2%) + 0, (BSON — BIo) 4 o (ESON — BIPY). (2.44)

Es ist der einfachste Mix von LDA-; GGA- und exakten Austauschenergien, die den Grenz-
fall des homogenen Elektronengases wiedergibt. Der semiempirische Parameter a ersetzt
anteilsweise E1o™ mit exaktem Austausch, wihrend a, und a. Generalisierte Gradienten-

Korrekturen hinzufiigen.

Die Auswertung des Integrals (2.43) stellt einen hohen Rechenaufwand dar und limi-
tiert die Einsatzmoglichkeiten der Hybrid-Dichtefunktionaltheorie auf Systeme in der
GroBenordnung von 10 Atomen. Vorteilhaft wirkt sich eine Aufspaltung des Coulomb-
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Operators in (2.43) in einen kurz- (SR) und einen langreichweitigen (LR) Anteil mithilfe
der Fehlerfunktion erf(x) aus [43]:

1 1-ef(wr—1) erf(wr—r) (2.45)
v —1/| v — /| v — /| '
SR LR

Mit dieser Formulierung entwickelten Heyd, Scuseria und Enzerhof 2003 (HSE03) ein
abgeschirmtes Funktional

E}EICSE — E)I:BE + G(E)‘ixakt’SR(W) . EEBE’SR(Q})) + E(I?BE (2.46)

mit axy = 1+a, a. = 1, a = 0.25 und w = 0.11/qy [44], indem sie auch das PBE-Funktional
in SR- und LR-Anteil aufspalten und annehmen, dass der LR-Anteil vom exakten und
PBE-Austausch sich neutralisieren. Die angegebenen Parameter entsprechen der HSE06-
Formulierung. Im Realraum werden dadurch die Grenzen der Raumintegrale verringert,
wéhrend es in der iiblichen Ebene-Wellen-Darstellung (siehe Kapitel 2.2.8) moglich ist, die
Konvergenz des exakten Austausches beziiglich des k-Punkt-Gitters erheblich zu beschleu-

nigen, da grobere Gitter verwendet werden kénnen als bei der zusétzlichen Auswertung
des LR-Anteils (2.43) [45].

Abseits der besseren Beschreibung der Bandenergien konnten Hybridfunktionale, die zu-
néchst entwickelt wurden, um die Grundzustandsenergien kleiner Molekiile zu verbessern
[23], auch Atomisierungsenthalpien [46] sowie Vibrationseigenschaften und Gittergeome-
trien [47] zuverldssiger beschreiben. Was die Bandliicke betrifft, kann durch die Abschir-
mung ein besseres Konvergenzverhalten und eine Modellierung metallischen Verhaltens,
bei dem es in Hartree-Fock-Rechnungen beim Fermi-Niveau die Divergenz der elektroni-
schen Eigenenergien nach dem Wellenvektor k aufgrund des nackten Coulomb-Potentials
gibt, im Vergleich zu anderen Hybridfunktionalen erzielt werden [48].

2.2.7 DFTHU

Systeme, in denen die Unzulénglichkeit der approximativen Austauschkorrelationsfunk-
tionale besonders schwer wiegt, werden als stark korrelierte Systeme bezeichnet. In der
Regel sind dies Systeme mit Ubergangsmetallen oder Seltenerdmetallen mit nur teilweise
gefiillten d- oder f-Schalen. Approximationen wie LDA und GGA tendieren dazu, die
eigentlich lokalisierten Zustdnde iiber das Material zu iiberdelokalisieren, was bis hin zu
einer inkorrekten Beschreibung als Metall anstelle eines Halbleiters/Isolators fithren kann
[49]. Hybridfunktionale mit ihrer Tendenz, die Elektronen zu (re)lokalisieren, bieten sich
hier als Korrekturmoglichkeit an, wobei jedoch der hohe Rechenaufwand nach Alternati-

ven verlangt.

Diese bietet die LDA4U Methode, bei der die betroffenen d- und f-Elektronen gesondert
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behandelt werden [50-52]. Die betroffenen Orbitale werden dazu mit einem gitterplatzspe-
zifischen attraktiven U-Parameter versehen, der zu einer Relokalisierung fithrt, wihrend
die iibrigen Elektronen im iiblichen Kohn-Sham-Formalismus behandelt werden. Die Ge-

samtenergie des DFT+U Formalismus lésst sich schreiben als
Eprriu(n] = Eper[n] + B [{n ] — Enc[{n'}], (2.47)

bestehend aus der Grundzustandsenergie der Dichtefunktionaltheorie Eppr[n], einem Hubb-
ard-dhnlichen Energieterm Eygp[{n]?,/}], der die lokale Wechselwirkung am Atom I der
zu nf;;m, besetzten (d- oder f-) Orbitale mit Magnetquantenzahl m und Spinindex o
beschreibt, und einem Doppelzihlungsterm Epc[{nl?}], der die doppelt beriicksichtigten
Coulomb-Wechselwirkungen in Fppr und Fy,, wieder abzieht. Die Eintrage der Beset-
zungsmatrix sind als Projektion der besetzten Kohn-Sham-Zusténde |p;) auf (willkiirlich
wihlbare) lokalisierte Basissiitze |¢f ) definiert wie z.B. atomare Orbitale oder (prakti-
scherweise) den atomaren Wellenfunktionen, die verwendet werden, um die Pseudopoten-
tiale zu konstruieren (siehe Kapitel 2.2.9). Es gilt

Pyt = Z 7 (il dm) (Snlei) (2.48)

wobei f7 die Fermi-Dirac-Besetzung der KS-Zusténde bezeichnet (also 1 im Falle besetzter
Zusténde und 0 bei unbesetzten Zustdnden bei Nichtmetallen). Weiterhin gilt

n! = Z nqum (2.49)

Cococcioni und de Gironcoli stellten 2005 ein vereinfachtes DFT+U-Schema vor, wel-
ches zusitzlich invariant unter Rotation der atomaren Basissitze ist [53, 54]. In dieser
Methode wurden hohere Multipolterme der Coulomb-Wechselwirkung sowie die korrek-
te Behandlung der magnetischen Wechselwirkung vernachlissigt. Um die Verbindung zu
allgemeinen DFT+U-Schemata herzustellen sei gesagt, dass der hier verwendete Hubbard-
Parameter U einen Effektivwert, also eigentlich eine Differenz aus Hubbard-Parameter U
und Stoner-Parameter J [52], der lokale Austauscheffekte beschreibt, darstellt. Verglei-
che mit Parametern aus anderen Arbeiten sollten also nur unter Beriicksichtigung von J
gezogen werden. Der Hubbardenergieterm ergibt sich zu

Bunl i} = 2 55 [ (00 = 3l (2.50)

wobei der erste Term in der Klammer die Wechselwirkung der besetzten Orbitale un-
tereinander beschreibt und der zweite Term die Selbstwechselwirkung subtrahiert. Die

durchschnittliche Coulomb-Abstolung wird {iber den Hubbard-Parameter U des jeweili-
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gen Atoms I kontrolliert. Die Doppelzidhlung wird mit
I ur .o
Epc[{n'}] = ; (0’ =1) (2.51)

unter der Annahme beriicksichtigt, dass die xc-Funktionale die korrekte Energie fiir voll
besetzte und leere Orbitale liefern. Dieser FFL-Ansatz (Abk. fiir engl: fully-localized limit)
ist die meist verbreitetste Moglichkeit, den unbekannten Anteil der Wechselwirkungen im
xc-Funktional zu beschreiben, der durch den Hubbard-Term abgedeckt wird. Somit lassen
sich die Korrekturen zur DFT zusammenfassen zu

Eyl{ny ] = Enwl{ng}] — Ecl{n'}] =) %TF[HI“(l —n')]. (2.52)

I,o

Die Diagonalisierung der Besetzungsmatrix zeigt, dass es sich um eine quadratische Kor-

ZZ )\“’ — \l9) (2.53)

in Abhingigkeit der Besetzungseigenwerte A/ handelt, womit die Methode in der Lage

rektur der Energie

ist, das falsche konvexe Verhalten der Gesamtenergie in Abhéngigkeit der Besetzungszahl
zu korrigieren. Im Vergleich zur Hartree-Fock-Theorie gibt es dabei den Unterschied, dass
es sich hier um eine durchschnittliche, abgeschirmte Wechselwirkung handelt, die nur auf
ein Untersystem von Zustdnden wirkt. Die Rechenzeit reduziert sich dabei dramatisch,

und das Vorgehen bildet nur einen unwesentlichen Mehraufwand zur DF'T.

2.2.8 Periodizitit und Basissatz

Der ideale Kristall ist unendlich ausgedehnt und periodisch aus seiner Einheitszelle aufge-
baut, wobei die primitive Einheitszelle die kleinstmdogliche Zelle ist, die den periodischen
Aufbau beschreiben kann. Somit sind Funktionen wie das externe Potential v. oder die
Elektronendichte translationsinvariant mit

f(r)=f(r+R), (2.54)

wobei R ein Gittervektor ist. Da somit auch der Hamilton-Operator translationsinvariant
ist, folgt direkt, dass sich die Wellenfunktionen, bis auf einen physikalisch unbedeuten-
den Phasenfaktor e*® mit dem Wellenvektor k, unter Translation nicht voneinander
unterscheiden:

o(r +R) = p(r)e* R, (2.55)

Die Folgerung ist, dass die Wellenfunktionen zwar nicht gitterperiodisch sind, sich aber als

Produkt einer gitterperiodischen Funktion uy(r) und eines Phasenfaktors e’ schreiben

lassen konnen. Der Wellenvektor k entsteht aus dem Eigenwert e*® des Translationsope-
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rators und ist daher nicht eindeutig. Durch die Einschrankung auf k-Vektoren, die den
Wertebereich von e auf eine maximale Intervalllinge von 27 reduzieren, ist die Eindeu-
tigkeit jedoch gegeben. Realisiert werden kann dies, indem man nur Wellenvektoren aus

der 1. Brillouin-Zone zulasst.

In Hinblick auf die Losung der Kohn-Sham-Gleichung ist es in periodischen Festkorpern
zweckméfBig, den gitterperiodischen Anteil uy, der Wellenfunktion ¢y, die hier schon die
Abhéngigkeit des gemeinsamen Eigenwertes k des Translations- und des Hamilton-Ope-
rators als Index trégt, in einer Basis ebener Wellen darzustellen. Formal ist dies dasselbe

wie eine Fourier-Reihenentwicklung in den reziproken Raum

1 .
uk(r)eZk r=

(NQ) w/ NQ)

was ebene Wellen zu einer natiirlichen Wahl werden lésst, da sie die Periodizitat enthalten.

ok(r) = Zuk (Gy)ei(etCor (2.56)

Normierung erfolgt durch die Wurzel des Volumens N2 des Gebietes, welches durch die
Born-von-Karmén-Randbedingungen [55] abgesteckt wird, wobei €2 das Volumen der Ein-
heitszelle ist. Die Fourier-Entwicklungskoeffizienten uy (G;) werden im Folgenden verkiirzt
mit uy bezeichnet. Mit der Reihendarstellung des effektiven Potentials

Ve ( Zveﬁ (Gp)e'®rr (2.57)

ergibt sich die Kohn-Sham-Gleichung zu

h2
k+G i(k+Gy)-r
Zl: 2m< + l) ulke

+ Z Ueff Z Ulke ikt Gt Gom Z elkulke’( +Gi)r (258)

Das liefert insbesondere eine Bestimmungsgleichung fiir die Entwicklungskoeffizienten
h2
Z [% (k + Gn)z(snl + Ueff(Gn - Gl>‘| Uk = €pkUnk- (259)
l

Die Bedingung der Zuriickfaltung des Wellenvektors fiihrt zu einer zusétzlichen Quan-
tenzahl, dem Bandindex n. Fiir jeden k-Vektor, oder auch k-Punkt als Punkt aus der
ersten Brillouin-Zone, ist diese Matrixgleichung zu losen (n triagt der Lénge der Gitter-
vektoren Rechnung). Dies fithrt zu einer Bandstruktur. Die Dichte der k-Punkte sowie die
Tatsache, dass nur eine begrenzte Anzahl an Gittervektoren G, zugelassen werden kann,
geben Anlass zu zwei Konvergenzparametern. Im Hinblick auf die Einteilchenenergien, die
bei kaum verdnderlichem effektivem Potential direkt mit dem ersten Summanden in der
Klammer identifiziert werden kénnen, fithrt man dazu die Abschneideenergie

h2

o, k+G n)? < Eeut (2.60)
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ein. Die Menge der Gittervektoren zu begrenzen ist mathematisch gerechtfertigt, da Bei-
trage an das effektive Potential fiir grofle Gittervektoren verschwinden. In der Praxis ist
es viel zu aufwendig und de facto auch nicht nétig, die gesamte Kohn-Sham-Matrix zu
diagonalisieren, da (fiir Grundzustandsrechnungen) lediglich die Eigenvektoren uy und
ihre Eigenwerte fiir die besetzten Zustdnde gebraucht werden, was eine deutlich nied-
rigere Anzahl als die Grofle der Matrix bzw. der Anzahl der ebenen Wellen ausmacht.
Vielmehr bieten sich hier iterative Ansétze wie das Verfahren der konjugierten Gradien-
ten oder der Davidson-Algorithmus an, die eine ausgewihlte Anzahl an Eigenvektoren
und -werten berechnen [56-58]. Ersteres 16st gleichzeitig das Selbstkonsistenzproblem der
Kohn-Sham-Gleichung, indem Band fiir Band vorgegangen wird und fiir das darauf fol-

gende Band im neuen Potential Eigenwert und -funktion bestimmt werden.

2.2.9 Pseudopotentiale

Die Entwicklung der Wellenfunktionen in ebene Wellen hat den Nachteil, dass fiir die
starken Ostzillationen der elektronischen Wellenfunktionen nah am Atomkern eine extrem
hohe Abschneideenergie gewéihlt werden muss, um diese korrekt beschreiben zu kénnen.
Diese Elektronen tragen jedoch nicht zu chemischen Bindungen innerhalb des Kristalls
bei und die Anderung ihrer Wellenfunktion in unterschiedlichen chemischen Umgebungen
ist vernachlédssigbar. Daher ist ein Ausschluss dieser Elektronen aus den Kohn-Sham-
Gleichungen wiinschenswert. Dies kann umgesetzt werden, indem mit Pseudowellenfunk-
tionen im Pseudopotential gerechnet wird [59]. Dazu wird zunéchst eine DFT-Rechnung,
die alle Elektronen umfasst (all electron-Rechnung), fiir ein einzelnes Atom durchgefiihrt.
Durch das radialsymmetrische Potential liegt ein System analog zum Wasserstoffproblem
vor, dessen Wellenfunktionen @y, (r) = rRy(r)Y,, (6, ¢) abhingig von der Drehimpuls-
und der Magnetquantenzahl sind. Die Wellenfunktion ist dabei in Radialanteil R,; und
Winkelanteil Y}, separiert.

Fiir die Erzeugung von Pseudopotentialen erfolgt eine nicht unbedingt eindeutige, dem
spateren Einsatzgebiet angepasste Trennung in Rumpfelektronen mit |¢.) und Valenz-
elektronen mit |p,), wobei nur letztere explizit in die spdteren DFT-Rechnungen in
Festkorpern Einzug halten werden. Da die Wellenfunktionen der Valenzelektronen durch
die Orthogonalitdtsbedingung zu den Kernwellenfunktionen ebenfalls grofien Schwankun-
gen unterliegen, werden diese ,,pseudisiert®, indem sie mithilfe der Kernwellenfunktionen

entwickelt werden zu

|B0) = [@0) + ) aev ) (2.61)

mit @, = (@c|@,). Die Oszillationen sind somit gegléttet, und die Pseudowellenfunktionen
|@y) erfordern eine verringerte Abschneideenergie. Damit einher geht die Notwendigkeit
der Konstruktion eines Pseudopotentials. Bei normerhaltenden Pseudopotentialen [60)]
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wird das Pseudopotential aus den Wellenfunktionen der all electron-Rechnung konstruiert

nim 2mr? 2mR,, dr?

. R2(1+1 R:  d?
yeP :Z{Enlm‘f‘ (+ >+ Rt | |Yim) (Yim| — vn[no] — vxe[no] — (2.62)

lm

mit n, als Elektronendichte der Valenzelektronen und |Yy,,) (Y;,| als Projektion auf das
[, m’te Drehmoment. Der Ausdruck in Gl. (2.62) ist aufgrund seiner Lokalitdt im Radial-
anteil und der [-Abhéngigkeit im Winkelanteil semilokal. Da vy [n] # vxc[ne] + Ve [1], mit
n. als Elektronendichte der Kernelektronen, nichtlinear von der Elektronendichte abhéngt,
ist die separate Berechnung des Austauschfunktionals in Abhéngigkeit von der Valenzelek-
tronendichte n, bei Uberlappung von Kern- und Valenzwellenfunktionen problematisch
und bedarf der Korrektur (nichtlokale Kernkorrektur); in dieser Arbeit, falls nétig, durch
einen Ausdruck von Louie et al. [61].

Die Bedingungen an normerhaltende Pseudopotentiale sind [60], dass

(i) Pseudo- und all electron-Wellenfunktionen dieselben Eigenwerte haben,

(ii) der Radialanteil der Pseudowellenfunktionen keine Knoten aufweist und auflerhalb
eines Abschneideradius mit dem der all electron-Wellenfunktion iibereinstimmt,

(iii) die integrierte all electron- und Pseudoladungsdichte der Valenzelektronen innerhalb

des Abschneideradius iibereinstimmen,

(iv) (mehrfache) Ableitungen des Logarithmus der beiden Wellenfunktionen auflerhalb
des Abschneideradius gleich sind.

Die Semilokalitéit des Pseudopotentials sorgt fiir einen gesteigerten Rechenaufwand, da
in Gl. (2.59) Npw x Npw ebene Wellen miteinander gekoppelt werden und somit N3y,
Integrale ausgewertet werden miissen. Noch schwerer wiegt eine erhohte Komplexitét
der Implementierung, besonders von Theorien, die iiber die Dichtefunktionaltheorie hin-
ausgehen [62]. Nach Kleinman und Bylander [63] kann mithilfe des Projektionsvektors

| KB> — PP

. o | Pnim) das Pseudopotential so geschrieben werden, dass Integrale iiber ge-

mischte Wellenfunktionen vermieden werden:

Man iiberzeugt sich leicht, dass die Anwendung von VEB auf |@,,,) auf dasselbe Resul-

tat wie VLY |@upm) fithrt. Ein Nachteil dieser separablen Form von Kleinman-Bylander
(KB) ist, dass die Streuung der ebenen Wellen am Pseudopotential nur fiir den Referenz-
energieeigenwert €,;,, der Projektionsfunktion korrekt ist. Die in dieser Arbeit benutzten

orthogonalen normerhaltenden Vanderbilt-Pseudopotentiale (ONCV) [64] gehen dariiber
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hinaus, indem ein zweiter Projektor eingefiihrt wird, sodass

ov o 16 (¢
v ‘Zwm (264)

ij=1

gilt. Damit zeigt sich eine deutliche Verbesserung der Genauigkeit im Vergleich zum
KB-Ansatz und eine quantitativ gute Ubereinstimmung mit all electron-Ergebnissen.
Weiterhin sind die ONCV-Pseudopotentiale in ihrer Genauigkeit bzgl. Gitterkonstan-
ten mit aufwendigeren ultraweichen Pseudopotentialen [66] und der projector augmen-
ted wave-Methode [67] vergleichbar [65]. Auflerdem wird ein weiterer Nachteil der KB-
Pseudopotentiale, das mégliche Auftreten von ghost states, abgemildert [68].

2.3 Gitterschwingungen

Viele physikalische Grofien in Festkorpern hiingen von der Gitterdynamik ab. Dazu gehoren
Infrarot-, Raman- und Neutronenbeugungsspektren, spezifische Warme, thermische Aus-
dehnung, Warmeleitung sowie diverse Elektron-Phonon-Effekte, wie Widerstands- und

Temperaturabhéngigkeit der optischen Spektren sowie Supraleitung [69].

Nachdem in den vorangegangenen Kapiteln ein Weg fiir die Losung der elektronischen
Schrodinger-Gleichung aufgezeigt wurde, geht es nun darum, das vollstdndige Problem

(Gl. 2.1) zu 16sen. Dies setzt voraus, dass fiir die Konstruktion der Gesamtwellenfunktion
P({R}. {r}) = > AR ({R}, {r}) (2.65)

die elektronische Wellenfunktion W¢ fiir beliebige Konstellationen {R} = Ry, ..., Ry,
bekannt ist. Angenommen, dass dies der Fall ist, ist die Schrodinger-Gleichung der Kern-

wellenfunktionen unter Kenntnis der ¥¢ und zugehorigen Eigenwerten EY nach Einsetzen
in Gl (2.1) gegeben durch [70]

(Tic+ E5GRD JA((RY + X |3 5 (1R195) B (515) [ (R

o
— EA({R}) (2.66)
mit Index k als Summe iiber Kernkoordinaten R, und Pk = —ithVpg,. In der adiabati-

schen Néherung wird davon ausgegangen, dass aufgrund des Vorfaktors 1/Mj im zwei-
ten Summanden die Terme fiir © # v vernachlissigbar sind und als kleine Stérung im
Vergleich zu ES({R}) in die Gleichung eingehen. Sie beschreiben die Kopplung unter-
schiedlicher elektronischer Wellenfunktionen. IThre Nichtberiicksichtigung fiihrt dazu, dass
die elektronischen Zustédnde ihren Eigenzustand nicht d&ndern, also nicht angeregt werden
kénnen durch die Kernbewegung. Die Gesamtwellenfunktion nimmt dann die separable
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Gestalt V({R},{r}) = A,{R})VS({R},{r}) an. Zusétzlich nimmt man in der Born-
Oppenheimer-Néherung an, dass das semilokale Potential fiir 4 = v vernachléssigt wer-
den kann, was fiir Halbleiter und Isolatoren weniger bedenklich ist als fiir Metalle. Damit

vereinfacht sich die Schrédinger-Gleichung fiir die Kerndynamik zu

(TK ' Eﬁ({R}))Am({R}) — B An({R)), (2.67)

und es findet sich ein Ausdruck fiir die Grundzustandsgesamtwellenfunktion

Uoo({R}, {r}) = Apo({R})T5({R}, {r}). Die elektronische Gesamtenergie nimmt die Rol-
le eines Potentials ein und wird auch als Potentielle-Energie-Oberfléche bezeichnet. Die
Einfliisse der Kopplung verschiedener Wellenfunktionen (Elektron-Phonon-Kopplung) wer-
den spéter storungstheoretisch berechnet.

Eine approximative Losung der Gleichung (2.67) ist moglich, indem ausgenutzt wird, dass
die Kerne nur geringformig aus ihrer (kriiftefreien) Gleichgewichtslage {R(®} ausgelenkt
werden. In diesem Fall kann die elektronische Gesamtenergie Ef bis zur harmonischen
Néherung Taylor-entwickelt werten: [55]

PE({R})
v ((RY) = E({R E apia Wby B- 2.68
({ }) { 0} aRauaaRbuﬁ {Ro}u e Up B ( )

a,ua bvp

In periodischen Festkorpern ist die Kernauslenkung u,, = R, —Rqo— 7, die Differenz aus
dem Ortsvektors des p'ten Kerns R,, der a’ten Einheitszelle und dem Gittervektor zur
a’ten Einheitszelle R, sowie dem Vektor zur Ruhelage des pi’'ten Kerns 7,. o bezeichnet
die kartesischen Koordinaten. Die erste Ableitung verschwindet unter der Vorgabe, dass
die Kerne sich in der Gleichgewichtsposition befinden. Quantenmechanisch handelt es sich

dann um einen harmonischen Oszillator.

Aufgrund der Grofle der Atomkerne geniigt es, das Problem klassisch zu behandeln. Die
entsprechende Bewegungsgleichung lautet

. avharm
Myiguo = ———— = — D Do bwstins (2.69)
apa b3
mit den Kraftkonstanten
oo s PE({R}) (2.70)
He aRauaaRbuﬁ {R(O)}
Sie wird durch )
Uy, = §,.e" @ Ra—wjal) (2.71)

VM,
gelost, wobei die Eigenwertgleichung zur Bestimmung der Polarisationsvektoren &, und

ihren Eigenwerten, den Quadraten der Schwingungsfrequenzen w]q, durch Einsetzen in
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2.69 gewonnen wird und auf

w]qguﬁ Wiq> d Z Duocyﬁ 51/6 Wiqs q) (272)

fithrt. D,.5(q) sind die Eintrége der Fourier-transformierten dynamischen Matrix mit

—iaRa (2.73)

D) = 3 D)™ = 3 o)

Die Indizes a und b wurden hierbei entfernt, da aufgrund der Translationsinvarianz des
Kristalls nur die relative Lage R, = R, — R, der Einheitszellen, in denen die Atome
ausgelenkt werden, eine Rollen spielen. Die zugelassene Periodizitit von Auslenkungen in
unterschiedlichen Einheitszellen richtet sich nach q, dem Wellenvektor der Gitterschwin-

gungen. Der Index j unterscheidet die verschiedenen Eigenzusténde.

Aus der quantenmechanischen Beschreibung des Problems mit
rrharm 1 t t
H™™ = o (p'p +u'Du), (2.74)

wobei D die dynamische Matrix und p = —ihVRr,,//M, ist, ergibt sich die Gesamtener-

gie zu
E(njq) Z hwiq (njq ) (2.75)

in Abhéngigkeit der Besetzungszahl n;q € Ny der bosonischen Gitterschwingungen. Diese
Quasiteilchen der quantisierten diskreten Anregungen werden Phononen genannt. Die

Helmholtz’sche freie Energie des Gesamtsystems lésst sich dann berechnen zu

E(n]q)+EO)

fwjiq
= —kpTIny e ®r )+ Z { hwjq + kT In (1 - 6T>] (2.76)

Njq

E¢(Q) bezeichnet die elektronische Grundzustandsenergie, normiert auf die Einheitszelle.

Die Generierung der phononischen Eigenfrequenzen und Polarisationsvektoren aus GI.
(2.73) ist simpel. Die Herausforderung ist die Berechnung der Kraftkonstanten fiir belie-
bige Wellenvektoren q. Eine mogliche Herangehensweise ist die Verwendung von Super-
zellen, in denen jeweils ein Atom ausgelenkt wird und die Kraftkonstanten durch finite
Differenzbildung gebildet werden. [71] In diesem frozen phonon-Ansatz wird Gebrauch
vom Hellmann-Feynman-Theorem gemacht, welches es erlaubt, die Krifte F, auf die je-
weiligen Atome bei der Auslenkung eines Atoms zu berechnen durch

= —Vr, Bj(R) = — (V| Vg, H°[V°), (2.77)
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was im Rahmen der DFT auf

Nk

Z Z,7z,.e* R,—R,

2.
Unzo Ry — R, (2.78)

F,—— / dr () Vi, v (r, {R}) +

v=1,v

fithrt, wobei hier die Kern-Kern-Wechselwirkung im elektronischen Hamilton-Operator
beriicksichtigt werden muss (klassische Betrachtung ausreichend). Dies gelingt, da die
Kernkoordinaten nur Parameter darstellen. Die zweite Ableitung der Energie wird durch
den Quotienten der Krifte F, und der Auslenkung des Atoms v approximiert. Dieses
Verfahren ist durch die Tatsache limitiert, dass nur wenige q-Vektoren durch Superzel-
len dargestellt werden kénnen, in denen mit vertretbarem Aufwand Rechnungen durch-
gefithrt werden konnen. Somit beschrankt sich dieses Verfahren auf q = 0 oder zumeist
Hochsymmetriepunkte, die kleine Superzellen erfordern. Ein méchtigeres Verfahren zur
Bildung der Kraftkonstanten, dessen Aufwand g-unabhingig ist, ist die Dichtefunktio-
nalstorungstheorie (DFPT), die im néchsten Kapitel beschrieben wird. Der frozen pho-
non-Ansatz sollte hier dennoch erwdhnt werden, da die Hellmann-Feynman-Kréfte in
dieser Arbeit auch zur Optimierung der atomaren Positionen genutzt werden und das

Verfahren auflerdem einen intuitiven Zugang bietet.

2.4 Dichtefunktionalstorungstheorie

Ein erster Dichtefunktionalstorungstheorie-Formalismus wurde 1987 von Baroni, Gian-
nozzi und Testa [72] veroffentlicht. Die hier vorgestellte Weiterentwicklung von Gonze et
al. zu Variations- und stationdren Ausdriicken fiir Ableitungen der elektronischen Gesamt-
energie aufbauend auf dem (2n + 1)-Theorem [73] ist in [74, 75] ausfithrlich dargestellt.
Innerhalb dieses erweiterten Dichtefunktionalformalismus ist es damit moglich, die dy-
namische Matrix in Phononen-Rechnungen, die elastischen Konstanten, die dielektrische
Suszeptibilitiat, die Born’schen Effektivladungen, die piezoelektrischen Konstanten und
internen Verspannungen aus Ableitungen zweiter Ordnung zu gewinnen. Auflerdem be-
deutet es wegen des (2n+ 1)-Theorems kaum mehr Aufwand, Groen dritter Ordnung wie
die nichtlineare dielektrische Suszeptibilitdt, die Phonon-Phonon-Wechselwirkung, den
Griineisenparameter und anharmonische elastische Konstanten zu berechnen.

Externe Einfliisse wie atomare Auslenkungen oder ein elektrisches Feld auf den Hamil-
ton-Operator kénnen, wenn sie geringfiigig sind, storungstheoretisch durch den Abbruch
einer Taylor-Reihenentwicklung approximativ behandelt werden. Die Taylor-Reihe

X=XO 4 Ax® 4 X2x@ 4 (2.79)

des Hamilton-Operators bzw. seiner Einzelterme, sowie der Wellenfunktionen und Eigen-
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werte mit den Entwicklungskoeffizienten

v _ LdX
AN |,

(2.80)

wird dabei genutzt, um die elektronische Gesamtenergie in beliebiger Ordnung darzustel-
len. In Hinblick auf die Stérungsentwicklung des Variationsausdrucks der elektronischen
Grundzustandsenergie in Gl. (2.8) ist dabei das (2n+1)-Theorem von Bedeutung, welches
aussagt, dass sich aus der n’ten Ableitung der Wellenfunktion die (2n + 1)’te Ableitung
der Emergie berechnen ldsst. Dies ist deshalb von Bedeutung, da der rechentechnisch
aufwindige Teil die Bestimmung der gestorten Wellenfunktion ist und nicht die Berech-
nung der gestorten Energien. Ein Beispiel ist die Berechnung der Kraft als erste Ableitung
der Gesamtenergie im letzten Kapitel, die lediglich von den ungestérten Wellenfunktio-
nen Gebrauch macht. Nach Potenzreihenentwicklung ist aulerdem fiir die Terme gerader
Ordnung O(\?") ein Variationsausdruck nach Hylleraas [76]

E(()Q) < EQp©. g = (@O FOgOY (g FO — Oy
(WO A EO) 4 (O FO)p0) (2.81)

zu finden, welcher unter der Bedingung normierter Wellenfunktionen bzw. der Ableitung
der Normierungsbedingung

OOy 4 (O EO) =0 (2.82)

minimiert werden kann [77], um Losungsmethoden dhnlich wie fiir die ungestorte Grund-
zustandsenergie (2.8) anwenden zu kénnen. Der weitere Vorteil des Variationsprinzips ist
die exaktere Bestimmung der Gesamtenergie, deren Fehler nun vom Quadrat des Fehlers
der Wellenfunktion abhéngt.

Im Falle der Dichtefunktionaltheorie ergibt sich der Variationsausdruck fiir die zweite

Ordnung der Gesamtenergie mit der Nebenbedingung <¢§1)|go§.0)> + <goz(.0)|gp§,1)> =0 zu

Ne
ED[{o O}, {1 =3[V h® — oY) + (07 RO [
=1
0),7 0),7 0
+ (@D 1eY 4 (0. (2.83)

Nach Potenzreihenentwicklung von Gl. (2.22) ergibt sich in erster Ordnung

Ne
7 0 7 1 0 1 1 0
RO o) + B o) =3 el 017 + €} 3] (2.84)

J=1

Wegen der Eichfreiheit der Wellenfunktionen ist es eine natiirliche Wahl, sich der Kohn-
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(0)

Sham-Wellenfunktionen fiir ¢; ©

zu bedienen, sodass € ) _ = 0;;¢; und

Ne
(hO =) 1"y = =V + D €l 19”) (2.85)
=1
gilt. Da es andererseits mithilfe einfacher Stérungstheorie moglich ist, die gpgl) auch als
Summe iiber unendlich viele ungestorte Wellenfunktionen
(0) J46) (0)
Dy (0) | [y

J#i € i

zu entwickeln, lohnt sich fiir die Berechnung der gpl(-l)

mentére Unterrdume, um aus (2.85) eine anwendbare Bestimmungsgleichung fiir die Wel-

ihre Aufteilung in zwei komple-

lenfunktionen erster Ordnung zu generieren. Durch die Definition eines Projektionsope-
rators P, = > |g0§0)>< 0)| auf die unbesetzten (no) Zustinde, das Leitungsband, und
seinem komplementédren Operator P, =1-P, als PrOJektlon auf die besetzten Zusténde
kann (2.86) genutzt werden, um den Anteil von |goi )} zu berechnen, der durch die besetz-
ten Zustéinde P, ]gpl(»l)> aufgespannt wird. Insbesondere entféllt damit die Notwendigkeit
der Summation iiber unendlich viele Zusténde. Der fehlende Anteil kann durch die An-
wendung von P, auf |g0§1)> mithilfe von (2.85) bestimmt werden. Wird die Gleichung
eingeschriinkt auf P, \gpgl)), folgt nach Linksmultiplikation von (0| (j € {1,..., N.}) ein

J
Ausdruck fiir die Lagrange-Multiplikatoren erster Ordnung

0)(7 0
D <90§ )|h(1)|g01(- )>’ (2.87)

v

der wieder eingesetzt in (2.85) unter Verwendung der Definition der Projektionsoperatoren

die modifizierte, selbstkonsistente Sternheimer-Gleichung

~

P.(hO — N, 1oy = B A o) (2.88)
liefert. [78].

Die Eichfreiheit fiir die gestorte Wellenfunktion erster Ordnung offenbart einen weiteren
Weg, Gl. (2.88) zu erhalten, indem die parallel-transport gauge

(ePlel”) =0 (2.89)

eingefiihrt wird. Diese Wahl bedeutet also eine Verschérfung der urspriinglichen Neben-
bedingung. Die parallel-transport gauge bietet damit im Gegensatz zur einfachen Nor-
mierungsbedingung nun auch eine Bedingung fiir den Imaginérteil der Wellenfunktionen.
Mit ihr l&sst sich durch Variation von Gl. (2.83) nach <g0£1)| ebenfalls die Sternheimer-
Gleichung (2.88) herleiten.
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Zusammenfassend zeigt sich in diesem Vorgehen eine Stérke des Dichtefunktionalstérungs-
theorie-Formalismus, indem die stérungstheoretische Summe iiber unendlich viele unbe-
setzte Zustinde umgangen wird. Dies wird noch einmal genauer im Rahmen der Elektron-
Phonon-Kopplung in Kapitel (2.5) thematisiert. Die Summanden des Kohn-Sham-Opera-

tors erster Ordnung sind durch

- 0 Exe[n] d 0Eyy[n]
1 _ 10 (1) (! HxclT] = ThHxell 2
WO =l [ R e e %)
gegeben mit
Ne
nW(r) = e @)e (r) + o (1) oV (r)]. (2.91)

i=1
Fhye ist die Summe aus Hartree- und Austauschkorrelationsenergie und n(® die (un-
gestorte) Grundzustandselektronendichte ng. Mit ebenen Wellen als Basissatz kann Gl
(2.83) mithilfe der Gleichungen (2.88), (2.90) und (2.91) mit denselben Mitteln wie in der
DFT bei Gl. (2.59) minimiert werden, indem wieder Band fiir Band mit dem konjugierten-
Gradienten-Algorithmus gearbeitet wird [74]. Das Verfahren ist selbstkonsistent, da die
Wellenfunktionen erster Ordnung bzw. die gestorte Dichte wieder in das Potential von
AW und A® mit

=, 0)5.2))0) o, 0@ 0, 14 Bln]
Z (i |h( )|90i ) = Z (@i |Vextls ) + 2 e o (2.92)
i=1 i=1 n(0

eingehen, jedoch geschehen die Selbstkonsistenzschritte und die Losung der Sternheimer-

Gleichung im konjungierten-Gradienten-Verfahren wieder parallel.

Bisher wurden nur Ableitungen nach der gleichen Stérung betrachtet. Da die Nichtdia-
gonalelemente der dynamischen Matrix D oder andere gemischte Ableitungen wie nach
einer bestimmten atomaren Auslenkung und dem homogenen elektrischen Feld mehrere

Storparameter erfordern, ist eine Erweiterung
X =X0 4 Z A X0 4 Z Aj A X2 (2.93)
J1 J1.J2
notwendig, wobei die j;, jo, ... verschiedene Stérungen benennen mit

Gy _ L d'X

== 2.94
X, dA;, - - (2.94)

Aj1=Ajp=.=0

und ¢ die Gesamtzahl der Ableitungen angibt. Damit folgt ein stationdrer Ausdruck fiir

die zweite gemischte Ableitung der elektronischen Gesamtenergie [75],

Eli2) — %(E(jm) + E(j2j1)) (2.95)
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mit
Ne
. _ e oG 0
B0, 00 =3 [ RO = €)oo + vidzolil”)
i=1
J1je)

0
+<>mm+%mwl><%|%tw

vy [ [t S

0l

1 & Eyixe[n] (2.96)
2 d)\j1)\.72 n(0)
Hier wurde UHXCO definiert als
(1) d 6Emx[n]
— el . 2.
UHXCO(r) d)\jl (STL(I') © ( 97)

Unter der Annahme, dass die exakten gp(jl)

;" gegeben sind, gilt fiir sie die Sternheimer-

Gleichung, sodass sie in Abhéngigkeit der ungestorten <p(0)

., geschrieben werden konnen.

Dies fiihrt zu einer nicht-stationédren Vereinfachung von Gl. (2.95) z

1 d? By

- 2.98
2dN\;,dN, |0 (2.98)

Eld2) — ZK |Ue£;) +Uch0|SDzJ2)> +(p 0)|Ueiltjz |901('0)>] +
welche alternativ die Berechnung von nur einer gestorten Wellenfunktion hinsichtlich eines
Storparameters erfordert anstelle zweier Wellenfunktionen erster Ordnung hinsichtlich
unterschiedlicher Storparameter. Diese einfacheren Ausdriicke sind auch Teil der DFPT-
Formulierung von Baroni et al. Dabei sind die Energien nun jedoch direkt vom Fehler der
gestorten Wellenfunktion abhingig.

2.4.1 Periodische Storungen ungleich der Gitterperiodizitit

Der entscheidende Vorteil der DFPT ist die Behandlung von periodischen Stérungen,
die nicht vereinbar mit der Periodizitdt des zugrundeliegenden ungestorten Kristallgitters
sind. Fiir sie gilt

Vintia(r + Ra) = €9l (1), (299)

ext,q

wobei q den Wellenvektor der Stérung darstellt. Damit sind auch die Wellenfunktion und
die Elektronendichte in erster Ordnung periodisch beziiglich der Storung:

P (T + Ry) = @Rl () (2.100)
und
ng)(r+R,) = e Ron)(r). (2.101)
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Wie im Falle der ungestorten Wellenfunktion (2.56) lasst sich der gitterperiodische Anteil

M) und ngl) abspalten mit

VoL ¥, o
(1) 1 —i(k+q)r
Upieq(T) = Wik Prmik,q(T) (2.102)
und
n)(r) = e Tn{D(r), (2.103)
beziehungsweise

o)
Ok Z /BZ r) Uy o (T)dK, (2.104)

sodass der Variationsausdruck in Gl. (2.83) sich nun in gitterperiodische Funktionen
schreiben ldsst als

0 2 0
Ec(12) [{U(O), u 27T2 Z / mk q‘h‘k—s—q k+q mk| Uk q> < £n2<|véxz,k+q,k|u7(ni(>

( (1
+ <umk q|vext k+q,k + UH)ZCO Jk+q,k |umk>

1 1
+ <U |U(£,xi ktqk T Uﬁbzco k+q, k|u£n£<,q>]dk

// drdr’ 5 EHXC[ ] 7(1)*(1,)%&1)(r/>6—iq~(r—r’)

n

(r) n(0) 4
1 d EHXC
2 d\d\*’

(2.105)

wobel natiirlich auch vext Ktqk mit einer Phase faktorisiert werden kann. Variation unter
der Zwangsbedingung
0), (1
(ul [uly) ) = 0 (2.106)

fithrt iiber die Sternheimer-Gleichung

- 7 (0 0 - 1 - 7(1) 0
Pacra(M qrcrq = omera) Pcra [t q) = —Packalilqx [ue) (2.107)

(1)

zur Bestimmung von u,,j ..

¢ bezeichnet dabei Zustinde des Leitungsbandes. Wegen der

(0) (0)

parallel-transport gauge missen nicht nur die w,,;, sondern auch die u,, , , zur Berechnung

der gestorten Wellenfunktionen bekannt sein.

Insbesondere handelt es sich bei Phononen um eine kollektive Auslenkung wie die oben
beschriebene Stérung. Die periodisch fortgesetzte Auslenkung eines Atoms g lésst sich
schreiben als

Rapa = Raa + Tua + AR, (2.108)

Man vollzieht leicht nach, dass das gestorte Potential

‘ 0
g(% q(r) = Z ezq.Ra?UM(r — 7, — Rao) (2.109)
po

a
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die Bedingung (2.99) erfiillt. Damit sind nun keine Superzellen mehr notwendig, um Aus-
lenkungen geméf eines Wellenvektors in unterschiedlichen Zellen zu beschreiben. Analog
lassen sich die Kraftkonstanten gemischter Auslenkungen unterschiedlicher Atome bzw.
Richtungen basierend auf Gl. (2.95) oder (2.98) berechnen.

2.4.2 Statische homogene Felder

In polaren Halbleitern und Isolatoren erzeugen longitudinale optische Phononen makro-
skopische elektrische Felder E aufgrund der langreichweitigen Coulomb-Wechselwirkung
fir g — 0 [69]. Die daraus resultierenden zusitzlichen Kréfte auf die Atome geben Anlass
zum sogenannten LO-TO-Splitting zwischen longitudinalen optischen (LO) und trans-
versalen optischen (TO) Phononen. Die Richtung, aus der man sich I' néhert, ist bei
uniaxialen Materialien entscheidend und kann dort fiir Unstetigkeiten in der phononi-
schen Bandstruktur sorgen. Problematisch ist, dass die makroskopischen Felder E und
das von ihnen erzeugte elektronische Potential vg(r) = eE - r nicht gitterperiodisch sind
und in den oben beschriebenen Phononen-Rechnungen unberiicksichtigt bleiben. Die Aus-
wertung des Operators in Impulsdarstellung umgeht dieses Problem. Man beriicksichtigt
die makroskopischen elektrischen Felder, indem die Kraftkonstantenmatrix ®,,,3(q = 0)
im Brillouin-Zonen-Zentrum mit einem nicht-analytischen Term &2 . (q — 0) erginzt

posv B
wird, der sich schreibt als

dme? (d' - Z3)a(d - Z)s

Ppna (q - 0) = 0 qtgooq

ua,uﬁ

(2.110)

Die dabei auftretenden Gréfien wie die Born’schen Effektivladungen Z7, beziiglich Atom
p und der Tensor der statischen dielektrischen Konstante £ lassen sich ebenfalls mithilfe
der DFPT berechnen. Das * gehort zur gingigen Bezeichnung der Born’schen Effektivla-
dungen und ist stets nicht als komplexe Konjugation aufzufassen. So ist 57 als zweifache
Ableitung der elektronischen Gesamtenergie nach den elektrischen Feldern zu berechnen:

A .
© — 5.5 — —2EFaEs) 2.111
gaﬁ B 0 ( )
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Dabei ist

* o 7 E
BEE ;) 5 =L S - )

2
(Ea (k E
+ g (G i) = G ) e

L1 / AUy
dn

[ (1) ) () dr

n(0)(r)
2706 [0 (G)] ') (G)
+ 2.112
47T€0 (}27;0 ‘GP ( )

ein stationdrer Ausdruck zur Berechnung der gestorten elektronischen Gesamtenergie
zweiter Ordnung. Der letzte Term ist die zweifach gestorte Hartree-Energie ausgedriickt
in Fourier-Entwicklungskoeffizienten. Die gestérten Wellenfunktionen ufﬁf) koénnen iiber
Minimierung des obigen Ausdrucks mit « =  sowie Zwangsbedingung (2.89) bestimmt
werden, was selbstverstédndlich wieder auf die Sternheimer-Gleichung fiihrt. Die zusétzliche
Wellenfunktion erster Ordnung ugfﬁ) = duggz( /dk, tragt der Tatsache Rechnung, dass der
Operator i(0/0k,) den Ortsoperator in vg(r) ersetzen muss, der nicht gitterperiodisch ist.
Sie kann ebenfalls mit den Mitteln der DFPT {iber Variationsausdruck und Sternheimer-

Gleichung berechnet werden.

Die zweite auftretende Grofie in Gl. (2.110) ist die Born’sche Effektivladung Z*, deren

Komponenten als

Q P
Z o= R__of : (2.113)
! e 0Tua(a =0)|g_q

definiert sind also als Anderung der makroskopischen Polarisation P in S-Richtung auf-
grund einer Auslenkung von Atom g in Richtung o bei E = 0. Die Komponenten lassen
sich berechnen als

Z*

wpa = Zp0pa + DZ, 50 (2.114)

Dabei ist AZ; B

und atomarer Auslenkung und schreibt sich als

die gemischte Storung beziiglich eines homogenen elektrischen Feldes

2
Az, - OFa _ __OE_
K 8E5 8T#Q8E5

(2.115)
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wobei der stationdre Ausdruck fiir die zweifache Energieableitung

N,
* Q - Tha 7 (0 0) 1, (Eg) Tha - (kg)
AZ; 5o =2 {—(%) / D Munea-olidk = i) + e (g olitnid)Jdk
m=1

2mQe? [nq
2.116
e 2 GP (2.116)

lautet.

2.5 Elektron-Phonon-Kopplung

Die Trennung der Elektronen- und Kerndynamik durch die Born-Oppenheimer-Néherung
sorgt dafiir, dass Kopplungseffekte zwischen Elektronen und Phononen ausgeschlossen
werden. Das betrifft die elektronische Bandstruktur, die sich unter Einfluss der Kernvi-

brationen bei 0 K (Nullpunktsschwingungen) oder bei endlicher Temperatur dndert.

Ausgehend von dem Ausdruck
€5 = (pilhles) (2.117)

der sich aus Linksmultiplikation von Gl. (2.22) mit |¢;) ergibt, ist es im Rahmen der
DFPT moglich, die elektronischen Eigenwerte bis zur zweiten Ordnung zu entwickeln. So
gilt

iy = (@) (2.118)

1j
! = (@1 + (RO + (G + (RO = €06) . (2.119)
(2)

]
trachten. Aufgrund der Tatsache, dass die gestorten e

Im Falle von €;;’ geniigt es, fiir das weitere Vorgehen nur die Diagonalanteile zu be-
m )
ij
gonaldarstellung besitzen, da fiir die Generierung der Wellenfunktionen erster Ordnung

2 . : :
und el(j zunéchst keine Dia-

die parallel-transport gauge und keine fiir dieses Problem angemessenere Diagonalitit /

(n
Zj ..

hinein eine unitiare Transformation der eg-l) erfolgen, um die Anderung der Kohn-Sham-

Orthogonalitdat der Lagrange-Multiplikatoren e ) gefordert werden kann, muss im Nach-

Eigenwerte ¢; angeben zu kénnen. Dazu wird die unitére Transformation ) €U}, = eUpj,

der ungestorten €;; aus Gl. (2.25) nach zweiter Ordnung entwickelt. Dies fithrt unter der
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(0)

Bedingung ¢;;" = (—:EO) d;; zu einem Ausdruck fiir 652) mit 78]

Ne
Z Dl — Dol (2.120)

wobei sich die Diagonalanteile erster Ordnung zu 0 summieren und die Nichtdiagonalele-
mente i # j der unitiren Matrix erster Ordnung UM gegeben sind durch

(1) —eiy
* ()
Uy = o (2.121)

Die Diagonalelemente der unitdren Matrix erster Ordnung kénnen als 0 gewahlt werden,
sodass formal der letzte Term in Gl. (2.120) wegfallt. Unter Einsetzen von Gl. (2.118),
(2.119) und (2.121) in Gl (2.120) und der Verwendung der Blochquantenzahlen i = nk
ergibt sich zusammenfassend die zweite Ableitung der elektronischen Eigenwerte nach

unterschiedlichen Kernkoordinaten 7,, zu

Tua(a)Tu(b Tua(a)Ty, 0 Tpa( T,
@78 ®) _ (SO ual@ms @) 5Oy 1 (e @)y Oy
Tual(a T(v )) Taa TIJ )
+ (o hrnalaN| Ty (S Oual@) {0 _ (0)),CraDy

. Tua(a 0 T,
Z (L@ ) (0O | ®)| )
€nk — En/k’ ’

(2.122)

n'k/#nk
wobei a und b Kernpositionen in unterschiedlichen Einheitszellen beriicksichtigen.

Multiplikation der Sternheimer-Gleichung (2.88) mit 4,0( e () zeigt, dass der zweite und
vierte Summand sich aufheben. Des Weiteren lésst sich ausgehend von der Darstellung

nonocc

(Tu b) 0 (rvp(b))
PO = 37 ) (et lom ) (2.123)
/k/

mit der die gestorte Wellenfunktion auf Basis der ungestorten Wellenfunktionen entwi-
ckelt wird, die Verwandtschaft des dritten und fiinften Summanden zeigen. Aufgrund
der parallel-transport gauge lauft die Summe L,nur® iiber nicht besetzte Zustdnde. Die
Entwicklungskoefﬁzienten <<,0£Si(, | o (it > sind durch Linksmultiplikation der Sternheimer-

Gleichung mit <g0n,k,\ zu erhalten, sodass gilt

O = (08 /|h(“‘* o)
’ Z | n’k’ k (0) . (2124)
n'k’ En’k’ — € nk
Der Operator h(7+(®) angewandt auf ](pn ma(b ))> und linksmultipliziert mit <go7(3<)| liefert
nonoce ;- (0)7 (1ua(a)) |, ,(0) 0) 17 (rus(b) ], 50
Taa(@)] (Ts(0) L T R T L )
(Pl AT pie ™) = 7 Sk R KL (2.125)
n’'k’ 6n’k’ - an
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Somit ist nun klar, dass der dritte Summand von (2.122) die Notwendigkeit der Summation

iiber unendlich viele Leitungsbénder mithilfe der gestorten Wellenfunktion umgeht.

Mit der (gedanklichen) Reduktion auf zwei Summanden lésst sich nun der Zusammen-
hang zwischen der Dichtefunktionalstérungstheorie und der Allen-Heine-Cardona-Theorie
(AHC-Theorie) [79, 80] herstellen. Die Autoren vereinheitlichten die folgenden zwei An-
sitze fiir die Theorie der Temperaturabhéngigkeit der elektronischen Bandstruktur und
zeigten, dass sie gleichermaflen in ihre Berechnung mit eingehen. Zum einen glaubte man,
dass die Fan-Theorie [81], die im Rahmen des Quasiteilchen-Formalismus als Beitrag zur
elektronischen Selbstenergie aufgrund der dynamischen Polarisation des Kristallgitters
aufgefasst werden kann, alleinig zur Elektron-Phonon-Wechselwirkung beitrégt. Dieser

Term entspricht ausgedriickt in Kohn-Sham-Zustédnden

0)17 (Tpala))], ,(0) 0) 17 (18(0)],,0)
(Tpa(a)T,5(b)),FAN _ <S0nk|h # |S0n’k’> <Spn’k’|h |S0nk>
e = e . (2.126)
n'k’#nk €k €nk

Aus dem zweiten unabhingigen Ansatz [82] geht der Debye-Waller-Beitrag hervor, der
die direkte Anderung der elektronischen Eigenenergien durch die atomaren Vibrationen

beschreibt. Dieser Beitrag entspricht dem ersten Summanden

Tua(a)T,5(b)),DW 0) (7 (Tua(a)Ty 0
e R B (2127)

in Gl. (2.122). Die Dichtefunktionalstérungstheorie reproduziert diese Ergebnisse und bie-
tet weiterhin eine Reduktion der rechentechnischen Komplexitéit durch die Vermeidung
der Summation iiber alle Leitungsbédnder durch die Sternheimer-Gleichung.

Die konkrete Anderung der elektronischen Eigenwerte ergibt sich aus dem thermodynami-
schen Mittel der phononischen Auslenkungen. Die gemittelte Korrektur erster Ordnung
verschwindet dabei. Aus der zweiten Ableitung der elektronischen Einteilchenenergien
lasst sich mithilfe der Bose-Einstein-Verteilung

1
njo(T) = —og— (2.128)
eksT —1

die temperaturabhingige Anderung ihrer Eigenenergien berechnen mit

A (T)—izgf% (T) 4+ (2.129)
€Enk = Nq = anjq Njq B . .

O€nk/Onjq enthilt Fan- und Debye-Waller Beitrag

FAN DW

- )
8leq 8njq 8njq

(2.130)
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die sich wiederum ergeben aus

o 6FAN

_ Tuoc(a)TuB(b)) FAN —zq (Ra— Rb)f (w )5 ) 2131
- Z Z /— €nk po\Wiqs 4 v8(Wjq, @) (2.131)
an]q uowﬁ ab
und
Oey) _ h L (rua(@ms(®),0W
n — Tpal(@)Ty —zq(Ra Ry) W a(w; )
anjq 2w]q vt MMMV nk g,ua( ]q7q)§ /8( ]q7q)

(2.132)
Wegen der Nullpunktsvibrationen der Phononen gibt es auch bei 7" = 0 K eine Null-
punktskorrektur der elektronischen Eigenwerte.

Ahnlich wie im Fall von Phononen, wo es eine akustische Summenregel gibt, die der
Tatsache Rechnung triagt, dass unter Verriickung des gesamten Kristalls die Summe der
zweiten Ableitungen der elektronischen Gesamtenergie verschwinden muss, gilt im Fall der
Elektron-Phonon-Kopplung, dass es unter dieser Translationsinvarianz keine Anderung
der elektronischen Energiezustéinde geben darf, also

Nk

0)17 (tpa(a)T, 0
0=3" [@@W @] (0

v=1

0)17 (1o (a 0 0 T, 0 0)(7 (, 0 0) 17 (Thala 0
by Lol (oo WD) + (oml D) (el

(0 O
n’k/#nk n'k’ nk

(2.133)

Hier wurde gleichzeitig ein symmetrisierter Fan-Term verwendet, da die Reihenfolge der
Ableitungen unerheblich ist. Unter der Voraussetzung, dass alle nicht diagonalen Beitrige
Tua(@) # T,5(b) verschwinden, kann dieser Ausdruck genutzt werden, um die zweite Ablei-
tung des Kohn-Sham-Operators zu umgehen und ihn als das Produkt zweier Ausdriicke
erster Ordnung umzuschreiben. Dies hat den Vorteil, dass numerische Ungenauigkeiten
zwischen Beitrédgen erster und zweiter Ordnung beseitigt werden. Dieser Ansatz ist soweit
gerechtfertigt, da die zweite Ableitung des nackten Potentials der Kerne v. nach unter-
schiedlichen Auslenkungen verschwindet und damit lediglich die Einfliisse des Hartree-
und Austauschkorrelationspotentials vernachléssigt werden. Dieses Vorgehen wird Ap-
proximation der festen Kerne genannt. Zur Beschleunigung der Konvergenz beziiglich der
verwendeten g-Punkte wird ein kleiner imagindrer Summand im Nenner ergéinzt, da nah

beieinander liegende Eigenwerte sonst sehr hohe Beitrige liefern.

Auch ein finite-Differenzen-Ansatz soll hier kurz Erwahnung finden, da er in dieser Ar-
beit genutzt wird, um die DFPT-Ergebnisse zu verifizieren. Die mit dem DFPT-Ansatz
errechneten phononischen Polarisationsvektoren werden bei kleiner Auslenkung A in das

Kristallgitter eingefroren. Dann ergibt sich die Nullpunktskorrektur der elektronischen
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Eigenwerte in Abhéngigkeit des jeweiligen Phononen-Wellenvektors q durch [83]

FD 1 gl h 82 (0) —iq-R
AEnk (q) = 5 Z 20 Oh2 €nk Ra,u + hsﬂ(wj(b q>€ ¢
j=1 Jqa

(2.134)
h=0

Die geschweifte Klammer umfasst die Gesamtheit aller Kernauslenkungen und Einheits-
zellen der betreffenden Superzelle.

2.6 Zeitabhingige Dichtefunktionaltheorie

Beim Versuch, eine angemessenere Beschreibung fiir elektronische Anregungszustande zu
finden, landet man unweigerlich entweder bei der Vielteilchenstérungstheorie oder bei der
zeitabhéngigen Dichtefunktionaltheorie (TDDFT), die wie die DFT ebenfalls erméglicht,
die Komplexitét der zeitabhéngigen elektronischen Schrodinger-Gleichung

N 0
He(ry,ro,....,rN,, t)Ue(ry, o, ... TN, ) = zhE\IJe(rl, re,...,In,, 1), (2.135)
wobei Ue(ry, ro, ..., Tn., tg) am Zeitpunkt ¢y als bekannt vorausgesetzt wird, auf ein effek-
tives Einteilchensystem zu reduzieren. Der Hamilton-Operator ist bis auf das externe Po-
tential vex (1, t), welches nun zeitabhéngig ist, wie im stationéren Fall definiert. Zum Zeit-
punkt £y gelte die Gleichheit vy (r, £) = v (r) zwischen dem zeitabhéingigen externen Po-

tential und dem externen Potential des stationédren Problems sowie ¥*(ry, 1o, ..., Ty, to) =

—iEO¢y/h

WO (ry, 1y, ..., TN, )e , wobei U und E© Grundzustandswellenfunktion und -

energie des stationdren Problems sind.

Analog zur Dichtefunktionaltheorie bewiesen Runge und Gross 1984 folgenden Zusammen-
hang zwischen externen Potential und Dichte: Fiir jedes FEinteilchenpotential e (r,t),
das um to Taylor-entwickelt werden kann, kann mithilfe der Losung der zeitabhdingigen
Schridinger-Gleichung mit bekannter Wellenfunktion We(ry, v, ..., r ., to) und deren Dich-
te eine Abbildung Ve (r,t) — nlvext](r,t) definiert werden. Diese ist bijektiv bis auf eine
additive nur von der Zeit abhingige Funktion des Potentials [84]. Somit liegt auch fiir
das zeitabhéngige System ein eindeutiger Zusammenhang zwischen Elektronendichte und
externem Potential vor. Aulerdem stellten sie mit drei weiteren Theoremen ein Kohn-
Sham-ahnliches Einteilchenschema zur Losung der zeitabhéngigen Schrodinger-Gleichung
vor, welches anstelle des Rayleigh-Ritz-Prinzips in der DFT auf ein Funktional der Wir-
kung aufbaut. In dieser Arbeit wird jedoch von einem schwachen zeitabhéngigen externen
Storpotential ausgegangen, wofiir die folgende Beschreibung angemessen ist.
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2.6.1 Lineare Antwortfunktion

Da das zusitzliche zeitabhéingige externe Potential vext( 1) N veg(r, ) = végi( ) +
(1)
ext

Big klein ist, ist es meist eine erste gute Ndherung, die lineare Antwortfunktion x(r, r’, t—t')

Vet (I, 1), welches die Wechselwirkung von Festkorpern mit Licht beschreibt, verhaltnismé-
der Elektronendichte bei zeitabhédngiger Storung zu betrachten. Die Korrektur der Elek-
tronendichte in erster Ordnung ist gegeben durch

:/ dt’/dr'x(r,r’,t—t’) o 1), (2.136)

Das Runge-Gross-Theorem gilt ebenfalls fiir die Terme erster Ordnung von Elektronen-
dichte und externem Potentials [85]. Daher kann die lineare Dichte-Antwortfunktion aus-
gedriickt werden als [86, 87]

N [Vexs] (1, )

—_— 2.1
Vet (17, ) (2.137)

x(r, vt —t) =

)
vext [nO](r' ") =v ) [0 ()] (x")

ext

wobei gilt x(r,r',t —t') = 0 fiir ¢ < ¢’. Das Runge-Gross-Theorem ist aulerdem fiir nicht-
wechselwirkende Teilchen im effektiven Kohn-Sham-Potential veg(r, t) giiltig, sodass die
lineare Dichte-Antwortfunktion unabhéngiger Teilchen berechenbar ist als

dnfveg](r,t)
KS / ! e )
X (et —t) = ———= . (2.138)
S 50) o
Vet (1, 1) setzt sich wie in Gl. (2.18) zusammen aus
Vet (T, 1) = Vet (T, 1) + vn (T, £) 4 vxe(r, 1) (2.139)

mit

o t) = - / dr' |”(r/’t>. (2.140)

4meg r—r/|
Fiir das Austauschkorrelationspotential v, sind spéter wieder geeignete Niherungen zu
finden. Die Elektronendichten des Vielteilchenproblems sind selbstverstéandlich identisch
mit denen des Ansatzes unabhéngiger Teilchen im effektiven Potential. Mithilfe der Ket-
tenregel fiir Funktionale kann Gl. (2.137) mit Gl (2.138) umgeschrieben werden zu

[ee] 5 t 5 o Il,t//
X(r,x' t— 1) :/ dt”/dr”(s nlr. ) = al, ) . (2.141)
— oo Ueﬁ(r b ) Uext(r ,t) Ugg[n(o)](r/)
Ein nochmaliges Anwenden der Kettenregel auf % mithilfe der Dichte n
5Ueﬂ' ! t// 5Ueﬁ I.// t//) 5,,,1,( " t///)
5vext I' t/ / dt/ﬂ/d " /// t///) 5Uext(r t/) (2142)
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ist sinnvoll fiir seine Summanden v und vy, und fiithrt mit

6'[} (r// t//) 62 5(t” o t///)
H . H ) _
KH(@" v " — t///) _ S ) = droe P (2.143)

und
5,UXC (r//’ t//)

6n(r///’ t///)
und Ausnutzung von Gl. (2.137) und (2.138) auf eine Dyson-Gleichung fiir x(r,r’,t — ')

mit

x(r, v/t —t) =x*8(r, ', t — ) / dt”/dr”/ dt"’/dr”’xKS (v, 0"t —t")
/// n

< (ER@ x 17— ) 4 o — 7)) (@ — ). (2.145)

fXC(r//’ I‘Hl, t” _ t///) — (2144)

Dieser Ausdruck vereinfacht sich durch Fourier-Transformation in den Frequenzraum zu

X(r, v w) =x(r, 1, w) /dr”/dr’”XKS r, v’ W)

(KH( ' w) 4+ X ))X(r”’,r’,w). (2.146)

Die lineare Antwortfunktion in Unabhéngige-Teilchen-Approximation (IPA) kann explizit
mithilfe der zeitabhéngigen Stérungstheorie berechnet werden zu [88, 89]

KS(r p' w) — lim e m)ek(r)e; () i (r)
NS, w) = 1 Zl(fg L e Py =

: (2.147)

wobei die Besetzungszahlen f; und f; in Halbleitern und Isolatoren gleich 1 fiir besetzte
und gleich 0 fiir unbesetzte Zusténde zu wéhlen sind.

Die weitere Transformation in den reziproken Raum liefert

Xee (4,w) = Xear(@w) + D xear(qw (Kg"G"'(Q)‘|’féC"G”’(%W))XG”’G’(Qaw)
GNG///
(2.148)
mit ] 4
T
KY2, .. (q) = Scarar = K8, (q)0aram 2.149
G'G (q> 471—8(] |q+G//|2 G'G G (q) G'G", ( )
und
. 2 <U k|6 q+G |U 'k ><U 'k |6 q+G |U k>
KS n +a/ \Un’k+q
’ == ]. oy nk — Jn/ .
XGG (q7 w) 7]1>1’(I)1+ Q n;k(f k f k+q) FL&J (Enk en’k—l-q) + Zn
(2.150)

Die Nichtdiagonalelemente von XGG’ beschreiben eine Abschirmung durch die inhomogene

Dichteverteilung, die lokalen Feldeffekte. Sehr grobe Approximationen kénnen an dieser
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Stelle vorgestellt werden. Die Vernachlissigung des Klammerausdrucks von Gl. (2.148)
fithrt auf die Unabhéngige-Teilchen-Approximation und bedeutet damit (unter anderem)
die Vernachlassigung der Lokale-Feld-Effekte. Die alleinige Beriicksichtigung des Coulomb-
Terms mit fy. = 0 nennt sich random-phase-Approximation (RPA) und fiihrt die Lokale-
Feld-Effekte wieder ein.

Die Interaktion mit Licht wird durch den Wellenvektor im optischen Limit (@ — 0) be-
schrieben. Besondere Aufmerksamkeit muss dabei den Elementen von ygq’ zuteil werden,
die G oder G gleich 0 enthalten, da in diesem Fall der Coulomb-Term K&, g divergiert.
Hier wird in den Matrixelementen @™ in linearer Ordnung entwickelt, so dass gilt [90]:

llli_{% (e Unktq) = (l}_r}r(l) i (Unk|T | Uit q)

— lim iq <unk| [I‘, h] |un’k+q>
q—0 €nk — €n’k+q

~ i fig ke Plwcia) (2.151)
q—0 €nk — €n’q+k

Damit ist der fithrende Beitrag in xt¢ (9, w) fiir ¢ — 0 gegeben durch

2h?2 |dl? (unk |P|ticrq) (Unkiq|PlUnk)
s n n'k+q n'k+q|P|Unk
q,w) = lim — nk — Jn’ — +in)’

n,n’ k
(2.152)

Analog zur Dichtefunktionaltheorie gibt es in praktischen Rechnungen auch hier wieder
Konvergenzparameter. Die bereits bekannten sind die Dichte des k-Punkt-Gitters und
die Anzahl der verwendeten reziproken Gittervektoren G, die hier direkt angegeben wer-
den, da ein direkter Bezug zur Abschneideenergie fehlt. Auflerdem fallt dem Bandindex
n nun explizit die Rolle eines Konvergenzparameters zu, der die Anzahl der elektroni-
schen Ubergiinge zwischen besetzten und unbesetzten Zustéinden im unabhéngigen Teil-
chen Kohn-Sham-Formalismus kontrolliert. Um Selbstenergieeffekte einer GW-Néherung
auf einfache Weise zu beriicksichtigen, kann ein sogenannter scissors shift angewendet
werden, der die Eigenenergien der unbesetzten Kohn-Sham-Zusténde in Gl. (2.150) um
einen definierten Wert nach oben verschiebt und somit die Bandliicke 6ffnet.

Der Zusammenhang zwischen der linearen Dichte-Antwortfunktion und messbaren Gréfien
wie der makroskopischen dielektrischen Funktion e\ kann iiber die mikroskopische dielek-
trische Matrix, deren Inverse gegeben ist durch

e (qw) = dae + K (a)xaa (4, w), (2.153)

hergestellt werden iiber

( ) I 1
£ W) = 111m .
. a-0 [egh (4, w)]a—ar—o

(2.154)
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2.6.2 Austauschkorrelationsfunktional

Da fiir das zeitabhéngige nichtlokale Funktional Ndherungen benétigt werden, ist ein ers-
ter naheliegender Schritt, das in der Dichtefunktionaltheorie erfolgreiche LDA-Funktional
zu verwenden. Was im Falle von Atomen und Molekiilen durchaus erfolgreich sein kann
[87], ist im Falle periodischer Festkorper ungeeignet, da, wie oben gezeigt, die lineare
Antwortfunktion des effektiven Kohn-Sham-Potentials im Falle ¢ — 0 proportional zu
|q|? ist . Daher bleibt das lokale Funktional, welches in diesem Fall die Rolle einer Kon-
stanten einnimmt, wirkungslos. Auf der Basis eines direkten Vergleichs zwischen dem
f& qm-Funktional und der Bethe-Salpeter-Gleichung lisst sich die Gestalt eines nichtlo-
kalen Terms herleiten [91]. Dieser enthélt einerseits einen Beitrag, der fiir eine Verschie-
bung der Kohn-Sham-Einteilchenenergien hin zu den GW-Eigenwerten sorgt, wihrend
ein zweiter Beitrag die Elektron-Loch-Wechselwirkung beschreibt. De facto offnet der
erste Term im Austauschkorrelationsfunktional f& g also die Bandliicke, wéhrend sie
der zweite Term durch die Elektron-Loch-Anziehung wieder reduziert. Wahrend der ers-
te Term durch einen scissors shift der Kohn-Sham-Eigenenergien in der unabhéngigen
Teilchen Dichte-Antwortfunktion realisiert werden kann, gibt der Vergleich zur Bethe-
Salpeter-Gleichung Anlass zu einer q~2-Abhéngigkeit der Elektron-Loch-Wechselwirkung
im Austauschkorrelationsfunktional, die {iber einen Parameter a an das jeweilige Material

angepasst werden kann:

XC a
aa (@) = —m5cc'~ (2.155)

Hiermit konnen, zumindest fiir simple Halbleiter und Isolatoren, exzitonische Effekte in
teils sehr guter Ubereinstimmung mit dem Experiment beriicksichtigt werden [92]. Ande-
rerseits zeigt sich, dass Pole der IPA-Antwortfunktion nicht verschoben werden koénnen,
sondern Ostzillatorstirke umverteilt wird. Das statische Funktional kann dabei um einen
frequenzabhéngigen Term erweitert werden, sodass exzitonische Effekte in verschiedenen
Frequenzbereichen mit dem zusétzlichen Parameter /5 reproduziert werden konnen [93]:
xc,LRC( )= — o+ fw?
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Kapitel 3

Vibrationseigenschaften von

Lithiumniobat und Lithiumtantalat

3.1 Einleitung

Die Kenntnis iiber die Phononenmoden und -frequenzen in LiNbOj3 bei I' war noch bis vor
kurzem unvollstdndig, bis experimentelle [94] und theoretische [95] Untersuchungen erste
eindeutige Zuordnungen der Phononenfrequenzen zuliefen. Bestehende Schwierigkeiten
héngen mit der Sensitivitdt der Raman-Spektroskopie bei kleinen Strukturinderungen
oder Anderungen in der Stochiometrie zusammen sowie niedrigen Raman-Intensitéiten
und nahe beieinanderliegende Frequenzen einiger Phononenmoden [95, 96]. Wihrend vie-
le experimentelle Messungen [94, 96-102] und theoretische Berechnungen [103-106] zu
Gitterschwingungen in LN durchgefiihrt wurden, wurde sich dabei jedoch grofitenteils auf
das Zentrum der Brillouin-Zone beschrankt. De facto gibt es nur zwei theoretische Studien,
die sich mit der kompletten Phononendispersion von LN auseinandersetzen: Parlinski et
al. [104] berechneten die Phononenfrequenzen und Auslenkungsmuster im frozen phonon-
Ansatz an vier Hochsymmetriepunkten des rhomboedrischen Gitters und interpolierten
die Dispersion auf Grundlage der Kristallsymmetrie. Dasselbe Verfahren wurde von To-
youra et al. [107] mit Punkten aus der ersten Brillouin-Zone, die sich mit einer 2x2x1
Superzelle des hexagonalen Kristallgitters darstellen lassen, angewendet. Das Konvergenz-
verhalten der Phononendispersion hinsichtlich des verwendeten g-Punkt Satzes ist dabei
methodisch bedingt in beiden Féllen noch ungeklart. Das LO-TO-Splitting wurde entwe-
der mit einem semiempirischen Beitrag zur dynamischen Matrix [104] oder mithilfe von
Gleichung (2.110) im DFPT-Formalismus beriicksichtigt [107]. Messungen iiber I" hinaus
wurden bisher nicht durchgefiihrt. Aulerdem wurde die winkelaufgeloste Dispersion von
Raman-aktiven Phononenmoden an I" theoretisch bestimmt in [105].

Das Wissen iiber die Vibrationseigenschaften in Lithiumtantalat ist sogar noch liickenhafter.
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Wiéhrend Theorie und Experiment mittlerweile in der Zuordnung der transversalen opti-
schen Moden am I' Punkt iibereinstimmen [94, 95|, gibt es nur eine Arbeit von Toyoura
et al. [107], in der die Phononenmoden an verschiedenen Punkten der Brillouin-Zone
im oben genannten frozen phonon-Verfahren bestimmt wurden. Um das Verstandnis der
Vibrationseigenschaften der beiden Materialien zu erhéhen, wird die komplette Phononen-
dispersion der ferro- und paraelektrischen Phasen in der ersten Brillouin-Zone innerhalb
des DFPT-Formalismus mit hoher Genauigkeit, insbesondere im Hinblick auf die Kon-
vergenz des gq-Punkt Gitters, berechnet. Dabei unterliegt die Genauigkeit nicht mehr der
Giite des verwendeten Interpolationsschemas zwischen den q-Punkten. Dariiber hinaus
werden die longitudinalen optischen Phononen ohne Nutzung empirischer Parameter be-
stimmt und mit den zur Verfiigung stehenden Daten verglichen. Besonders fiir LiTaO3
bedeutet dies die erste theoretische Berechnung der LO-Frequenzen. Gemeinsamkeiten

und Unterschiede von LN und LT werden herausgearbeitet.

Die Berechnung der Phononendispersionen dient nicht nur ihrem Selbstzweck, sondern
ermoglicht die Bestimmung weiterer thermodynamischen Groflen wie die spezifische War-
mekapazitédt oder die Vibrationsenergie, die die strukturelle Energiedifferenz beider Pha-
sen kompensiert und somit Aufschluss iiber den Phaseniibergang geben kann. Der ferro-
elektrische-paraelektrische Phaseniibergang findet in LiNbOj3 bei 1480 K statt und ist seit
iiber fiinf Jahrzehnten Gegenstand der Forschung. Verschiedene Untersuchungen inter-
pretierten diesen entweder als displaziv [97, 108, 109] oder vom Ordnungs-Unordnungs-
Typ [99, 110, 111]. Auch ein kombinierter Phaseniibergang der beiden Typen wurde auf
Grundlage experimenteller Befunde vorgeschlagen [112] und fand Zuspruch von theoreti-
scher Seite [113-115]. Auch in den theoretischen Untersuchungen gibt es Widerspriiche,
indem Toyoura et al. [107] vorschlugen, dass es sich ausschliefilich um einen Ordnungs-
Unordnungs-Ubergang mit hoher gegenseitiger Abhiingigkeit der zwei Kationen unter-
schiedlicher Atomsorte handelt. Ebenso widerspriichliche Resultate existieren fiir LiTaOs,
welches den ferroelektrischen-paraelektrischen Phaseniibergang bei 940 K durchlduft [10].
Wiihrend es Untersuchungen gibt, die einen displaziven Ubergang favorisieren [116] fan-
den andere Studien einen Ordnungs-Unordnungs-Ubergang vor [117]. In dieser Arbeit
werden die berechneten Phononendispersionen beider Phasen verwendet, um die Curie-
Temperatur von LiNbO3 und LiTaO3 mit einem vereinfachten Modell abzuschéitzen. Au-
Berdem wird die spezifische Warmekapazitéit als Nachweis der Giite der berechneten Pho-

nonendispersionen theoretisch bestimmt.

Abschlieflend bietet die Dichtefunktionalstorungstheorie den Zugang zu Korrekturen der
elektronischen Bandstruktur aufgrund der Kernoszillationen. Im Allgemeinen ist die fun-
damentale Bandliicke von Lithiumniobat Gegenstand aktueller Forschung mit hoher Be-
deutung fiir optische Anwendungen. Wéhrend experimentelle Werte zwischen 3.28 [118]
und 4.3 eV [119] schwanken, rangieren theoretische Vorhersagen zwischen 2.62 eV im Ein-
teilchenschema [120] bis 6.53 €V in vereinfachten Quasiteilchen-Rechnungen [106]. Diese
Diskrepanzen konnen durch die jeweilige (Rechen-)Methode [121], die Stochiometrie der
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Proben [122], aber auch zusétzlich durch Vibrationseffekte hervorgerufen werden. Im Be-
zug zum letzteren wurde von Redfield und Burke [122] eine temperaturabhéingige Ver-
schiebung der fundamentalen Absorptionskante um 0.5 eV im Bereich von 0-667 K fest-
gestellt. Eine Temperaturabhéingigkeit wurde ebenfalls beim Brechungsindex beobachtet
[123, 124]. In der theoretischen Beschreibung werden elektronische und optische Anre-
gungen von der Elektron-Phonon-Kopplung beeinflusst. Schon bei 0 K unterliegen die
Kohn-Sham-Eigenwerte einer Kopplung mit den quantisierten Nullpunktsschwingungen
der Atomkerne, die bei endlicher Temperatur weiter ansteigt. In diesem Kapitel werden
die Auswirkungen von Phononeneffekten auf die elektronische Bandstruktur untersucht,
indem die Nullpunktsrenormierung (ZPR) und die temperaturabhingige Anderung der
elektronischen Kohn-Sham-FEigenwerte und damit der Bandliicke innerhalb des DFPT-
Formalismus berechnet werden. Um Fehler der jungen Implementierung in ABINIT so-
wie der verwendeten Approximationen wie der festen Kerne auszuschliefen, werden die
Resultate mit der finite-Differenzen-Methode bei fiinf verschiedenen phononischen Wel-
lenvektoren verglichen. ZPR und temperaturabhéngige Korrekturen kénnen mit Daten,
die aus experimentellen Messungen der fundamentalen Absorptionskante [122] gewonnen

werden, verglichen werden.

3.2 Rechentechnische Details

Die Berechnungen im Rahmen der Dichtefunktionaltheorie bzw. Dichtefunktionalstérungs-
theorie werden mit dem ABINIT Programmpaket [125-127] ausgefiihrt. Die Approxima-
tion der Austauschkorrelationsenergie erfolgt in Lokale-Dichte-Nédherung, parametrisiert
von Perdew und Zunger [21], sowie in den Generalisierte Gradienten-N#herungen von Per-
dew, Burke und Ernzerhof (PBE) [26], von Perdew et al. (PBEsol) [28] und von Armiento
und Mattsson (AMO05) [29]. Letztere beiden Funktionale sind dafiir bekannt, dass sie expe-
rimentelle Gitterkonstanten gut reproduzieren [128], worauf in dieser Arbeit besonderen
Wert gelegt wird, da die Gittergeometrie interatomare Kraftkonstanten und somit Pho-
nonenfrequenzen stark beeinflusst. Im Gegensatz dazu sind LDA-Gitterkonstanten fiir
gewohnlich 1-2 % zu klein, wihrend PBE verglichen mit experimentellen Werten 1-2 %
grofere Gitterkonstanten ergibt. Die Elektron-Ion-Wechselwirkung wird mit den optimier-
ten normerhaltenden Vanderbilt-Pseudopotentialen von Hamann [64] modelliert. Dazu
werden die 1s und 2s Orbitale des Lithiums, die 2s und 2p Orbitale des Sauerstoffs, die
4s, 4p, 4d und 5s Orbitale des Niobs und die 5p, 5d und 6s Orbitale des Tantals als
Valenzzusténde behandelt. Der Ebene-Wellen-Basissatz ist durch eine Abschneideenergie
von 1250 eV bei Lithiumniobat und 1035 eV bei Lithiumtantalat begrenzt. IThm liegt
ein Monkhorst-Pack-Gitternetz [129] mit 4x4x4 k-Punkten in der ersten Brillouin-Zone
zugrunde. Damit ist die elektronische Gesamtenergie innerhalb von weniger als 1 meV kon-
vergiert. Atomare Positionen werden mithilfe des effektiven Broyden-Fletcher-Goldfarb-
Shanno-Minimierungsschemas [130] bestimmt, bis die Hellmann-Feynman-Kréfte unter
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10~4eV/A fallen.

Der Gitterbeitrag zur spezifischen Warmekapazitit pro Einheitszelle bei konstanten Vo-

lumen ist gegeben durch

C—3Nk:/ o N (I (w)d (3.1)
v EORKEB [ QT 2k T )9 '

und wird aus der Phononenzustandsdichte g(w) berechnet. Sie wird auf einem 15x15x15

g-Punktgitter mit einer 5 cm~! Frequenzintervallbreite bestimmt, sodass der numerische
Fehler unterhalb von 0.1% liegt. Nk gibt die Anzahl der Atome pro Einheitszelle an. Fiir
die Berechnung des Vibrationsanteils zur freien Energie in Gl. (2.76) wird ein 14x14x14

g-Punktgitter verwendet, was zu einer Ungenauigkeit unterhalb von 1 meV fiihrt.

Wihrend in der Berechnung der phononischen Bandstruktur und Auslenkungen ein 4 x4 x4

I auszukon-

qg-Punktgitter geniigt, um die Schwingungsfrequenzen innerhalb von 1 cm™
vergieren, ist im Falle von Lithiumniobat ein weitaus feineres Gitter erforderlich, um die
Nullpunktsrenormierung und die Temperatureffekte zu simulieren. Die g-abhédngigen Pho-
noneneffekte A€, (q,T) auf die elektronischen Kohn-Sham-Eigenenergien werden mithil-
fe der finite-Differenzen-Technik (Gl. 2.134) sowie der DFPT-Implementierung der Allen,
Heine und Cardona Theorie in ABINIT berechnet. Unter Verwendung eines 8x8x8 g-
Punktgitters sind innerhalb der DFPT Fehlerbalken von durchschnittlich 0.007 eV und
hochstens 0.033 eV fiir die Korrektur der elektronischen Eigenwerte €, zu erreichen. Um
den hohen Rechenaufwand zu reduzieren und trotzdem die hohe g-Punktabhingigkeit
nahe I' korrekt einzubeziehen, werden 98 zusétzliche g-Punkte nahe des Brillouin-Zonen-
zentrums, die einem lokalen 16x16x16 q-Punktgitter entsprechen, einbezogen, sodass

-

7
b, ": b,
L
% I
E

Abbildung 3.1: Brillouin-Zone des rhomboedrischen Gitters mit den primitiven reziproken Gittervek-
toren bl(ﬁ,o, 1), bg(\}—?}a, 11) und bg(\}—gla, =1 1), Die Hochsymmetriepunkte I', L, F und Z, sowie
der Punkt X auf der ersten Koordinatenachse sind mit eingezeichnet.
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sich der maximale Fehler auf 0.015 eV reduziert. In der finite-Differenzen-Methode wird
die Kriimmung 9%e,/0h* ausgewertet, indem €, (h = 0) und €,x(h = 5./m, Bohr) an
eine Parabel gefittet wird. Die Wahl von h fiihrt zu einer Auslenkung von etwa 4x1073
A. Dieses Verfahren wird auf ', die Hochsymmetriepunkte L(0.5;0.0;0.0), F(0.5;0.5;0.0)
und Z(0.5;0.5;0.5), sowie den Punkt L’(0.25;0.0;0.0) zwischen I' und L. angewendet. Die
Koordinaten der Punkte geben Skalierungsfaktoren der jeweiligen reziproken Gittervek-
toren an, also sogenannte reduzierte Koordinaten. Abbildung 3.1 illustriert die Lage der
genannten Punkte und die Gittervektoren in der rhomboedrischen Brillouin-Zone. Frithere
Arbeiten [83, 131, 132] legen starke g-Punkt-Abhéngigkeiten der Korrekturen der elek-

tronischen Eigenenergien in Materialien wie Diamant nahe.

3.3 Atomare Struktur

Fiir Lithiumniobat sind die berechneten optimierten Gitterparameter fiir alle eingesetzten
Funktionale in Tabelle 3.1 aufgefiihrt und verglichen mit Neutronenbeugungsmessungen
bei 300 K fiir die ferroelektrische und bei 1500 K fiir die paraelektrische Phase [5], sowie
dlteren Berechnungen innerhalb der LDA von Veithen und Ghosez [105] und innerhalb
der GGA-PW91 von Schmidt et al. [106]. Obwohl die Berechnungen in der rhomboe-
drischen primitiven Einheitszelle durchgefiihrt werden, ist es gebréauchlicher, strukturelle
Eigenschaften im hexagonalen Gitter mit a und ¢ als Gitterkonstanten und wu, v, w, z,
and z als Freiheitsgrade der atomaren Positionen anzugeben. Die Bedeutung der internen
Parameter u, v, w, z und x ist in Tabelle 3.2 erklart. Wie bereits angedeutet, reprodu-
zieren PBEsol und AMO05 die experimentellen Gitterkonstanten am besten, wihrend sie
innerhalb der LDA und PBE, dhnlich zu #lteren Berechnungen [105, 106], unter- bzw.
iiberschétzt werden. Die internen Parameter stimmen mit Ausnahme der LDA, die deut-
lich kleinere Werte fiir v liefert, generell besser iiberein. In diesem Zusammenhang wurden
zu kleine theoretische Werte fiir v bereits in [106] und [105] berichtet.

In der paraelektrischen Phase ist kein Funktional befahigt, die experimentell beobachte-
ten Gitterkonstanten vorherzusagen. Dies ist nicht verwunderlich, da die DFT als Grund-
zustandstheorie die thermische Expansion nicht voraussagen kann. Auflerdem wird der
interne Parameter x, der die Rolle von v aus der ferroelektrischen Phase einnimmt, kon-
sequent unterschéitzt. PBE zeigt aufgrund einer Fehlerauthebung mit der PBE-inhérenten
Uberschitzung der Gitterkonstanten die beste Ubereinstimmung mit [5]. Um die ther-
mische Expansion zu simulieren, werden zusétzliche Strukturbestimmungen fiir die Ein-
heitszelle und die atomaren Positionen, also fiir die internen Parameter, durchgefiihrt,
bei denen das Zellvolumen auf den experimentellen Wert bei 1500 K [5] fixiert wird. Die
entsprechenden Resultate sind mit QEF, gekennzeichnet. In diesem Fall liegen nicht nur
die Gitterkonstanten, sondern auch der interne Parameter = sehr nah bei den experi-
mentellen Werten. Offensichtlich unterschétzen die anderen theoretischen Resultate den
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c/A

Ferroelektrische Phase a/A U v w z

LDA 5.060 13.707 0.0130 0.0273 0.0177 0.0337
PBE 5.194 14.030 0.0094 0.0378 0.0202 0.0317
PBEsol 5.149 13.860 0.0111 0.0355 0.0187 0.0325
PBEsol (ngpt) 5.251 14.050 0.0088 0.0480 0.0193 0.0328
AMO5 5.171 13.902 0.0103 0.0387 0.0191 0.0323
Expt. [5] 5.151 13.876 0.0095 0.0383 0.0192 0.0329
Theorie [105] 5.067 13.721 0.0125 0.0302 0.0183 0.0350
Theorie [106] 5.161 13.901 0.0121 0.0278 0.0191 0.0339
Paraelektrische Phase a/A c/A x

LDA 5.116 13.595 0.039
PBE 5.231 13.817 0.047
PBEsol 5.199 13.688 0.046
PBEsol (Qf5) 5.285 13.869 0.055
AMO5 5.215 13.712 0.048
Expt. [5] 5.289 13.848 0.060
Theorie [105] 5.125 13.548 0.042
Theorie [106] 5.219 13.756 0.041

Tabelle 3.1: Berechnete LiNbO3 Gitterparameter im Vergleich mit experimentellen Daten fiir die fer-
roelektrische Phase bei 300K, fiir die paraelektrische Phase bei 1500 K und mit fritheren Berechnun-
gen. PBEsol (ngpt) bezeichnet Berechnungen bei festgehaltenem gemessenen Einheitszellenvolumen bei

1500 K.

Ferroelektrische Phase

Paraelektrische Phase

Li (0,0,% +2) (0,0,7)

Nb (0,0,0) (0,0,0)

0 (jrudougow hre b
o) G +uutv, 5 —w) (3,2, %)

O (—u—v,%—v,l—z—w) (—m,%—x,l—z)
Li (0,0,2 +z) (0,0,3)

Nb (0,0,3) (0,0,3)

o) (F-—u—v1%—u 3 —w) (3-2,%5)
O (-3 +u,—v, & —w) (—13, x%)
0) (v, -3 +u+v, 5 —w) (z,—%+2z,3)

Tabelle 3.2: Reduzierte hexagonale Koordinaten der zehn Atome der rhomboedrischen Einheitszelle von
Lithiumniobat und Lithiumtantalat. Fiir die eindeutige Bestimmung aller Atompositionen geniigt die An-
gabe der ersten drei Atomkoordinaten. Alle anderen Koordinaten sind dann durch Symmetrieoperationen
der Raumgruppe R3c bzw. R3c festgelegt. v und x nehmen in ihren jeweiligen Strukturen dieselbe Rolle

ein.
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Ferroelektrische Phase a/A c/A u v w z

PBEsol 5.120 13.678 0.0094 0.0421 0.0125 0.0327
PBEsol( Q%) 5.211 13.810 0.0082 0.0525 0.0130 0.0328
Experiment 5.154 13.783 0.0103 0.0398 0.0146 0.0290
Paraelektrische Phase a/ A c/ A x

PBEsol 5.169 13.568 0.0501
PBEsol (Qp5) 5.234 13.692 0.0570
Experiment 5.220 13.763 0.0531

Tabelle 3.3: Berechnete LiTaO3 Gitterparameter. Zum Vergleich sind experimentelle Daten von Abra-
hams et al. [117] bei 297K fiir die ferroelektrische Phase und bei 940K fiir die paraelektrische Phase

aufgelistet. ngpt beschreibt wie bei LN das Ergebnis von Gitterrelaxationen, die bei einem gemessenen

Einheitszellvolumen bei 940 K durchgefithrt werden, um Auswirkungen der thermischen Expansion zu
simulieren.

internen Parameter aufgrund des zu kleinen theoretischen Volumens. Da es keinen Hinweis
auf eine Volumenénderung wihrend des Phaseniibergangs gibt [9], wird dasselbe Volumen
QEEPU welches bei 1500 K in der paraelektrischen Phase gemessen wurde, verwendet, um
die Struktur von ferroelektrischen LN bei hohen Temperaturen zu bestimmen. Daher be-
zeichnet Qg beide Volumen der ferroelektrischen und der paraelektrischen Phase bei
1500 K. Auch hierfiir werden Gitter- und interne Parameter relaxiert. Konsistent mit den
Beobachtungen fiir « bei der paraelektrischen Phase vergrofiert sich der interne Parameter

v. Im Vergleich zum Experiment ist das Verhéltnis ¢/a gut wiedergegeben.

Da in den ausfiihrlichen Tests der Austauschkorrelationsfunktionale an LN das PBEsol-
Funktional im Weiteren bei Struktur und Phononenfrequenzen die besten Ergebnisse er-
zielt, wird die Studie im Falle von LT auf PBEsol beschrinkt. Die berechneten Struktur-
parameter der Einheitszelle sind in Tabelle 3.3 dargestellt. Sie werden mit experimentellen
Daten von Abrahams et al. [117] verglichen, gewonnen aus Neutronenstreuungsmessungen
bei 297 K und 940 K. Die Gitterparameter des ferroelektrischen LT befinden sich in gu-
ter Ubereinstimmung mit den experimentellen Befunden, die innerhalb einer Abweichung
von 0.7 % nach unten reproduziert wurden. Im Vergleich mit LN wird praktisch dersel-
be Abstand 0.25 + z der Lithiumatome zum Niob bzw. Tantal vorhergesagt, im leichten
Unterschied zum Experiment, bei dem der Abstand sich minimal reduziert. Beide wie-
derum riicken im Vergleich mit LN etwas in Richtung der zentrosymmetrischen Position
in den Sauerstoffoktaedern, da sich der Parameter w vermindert. Die Abweichung zu den

experimentellen Daten ist hier geringer.

Die Diskrepanz zwischen Experiment und Theorie vergréflert sich bei der paraelektrischen
Phase aus denselben Griinden wie fiir LN und ist am hochsten fiir den Parameter ¢, der um
1.4 % unterschétzt wird. Aus diesem Grund werden fiir beide Phasen wieder zusétzliche
Berechnungen bei Q¥ durchgefiihrt, da auch hier keine Anzeichen einer schlagartigen
Volumenénderungen beim Phaseniibergang vorliegen. Innerhalb dieses Ansatzes ist die
berechnete Einheitszellengeometrie gegeniiber den Daten von Abrahams et al. [117] etwas
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verzerrt. Somit werden auch die internen Parameter etwas iiberschétzt. Das liegt daran,
dass der Parameter x schon beim theoretischen Zellvolumen sehr nah am experimen-
tellen Wert lag. Durch das hohere experimentelle Volumen bei 940 K wird dieser Wert,
wie bei LN gesehen, deutlich gesteigert. Da LT eine hohe Defektdichte aufweist, ist es
auch moglich, dass groffe Unsicherheiten in der experimentellen Bestimmung der inneren

Parameter vorliegen.

3.4 Phononen bei I

Die transversalen optischen Phononenfrequenzen (TO) im Brillouin-Zonenzentrum sind
fiir die ferroelektrische Phase von Lithiumniobat in Tabelle 3.4 dargestellt. Laut Grup-
pentheorie gibt es in der R3¢ Raumgruppe bei I' 18 Moden, die in vier Ay, fiinf Ay und
neun (zweifach entartete) £ Moden aufgeteilt sind [96]. Aktuelle Resultate werden mit
Raman-Messungen an fast stochiometrischem Lithiumniobat bei Raumtemperatur [94]
verglichen, die ihrerseits in guter Ubereinstimmung mit [96-98, 100-102] sind. Anders
als die £ Moden sind die A; und A; Moden symmetrieerhaltend. Bei den Ay Moden
schwingen Atome gleicher Sorte entlang der c-Achse gegeneinander und sind daher Ra-
man und infrarot inaktiv. Eine der wenigen Messungen an Ay Moden von Chowdhury
et al. [99] mittels Neutronenstreuung dient als Vergleich mit den theoretisch berechneten

Frequenzen.

Es zeigt sich, dass die berechneten Frequenzen in sehr guter Ubereinstimmung mit den
zur Verfiigung stehenden Messungen liegen. Die Abweichungen zu den experimentellen
Phononenfrequenzen bei I' sind fiir alle getesteten Funktionale in Abb. 3.2 visualisiert.
Zu beobachten ist eine leichte systematische Unterschitzung von durchschnittlich 4.0% bei
PBEsol und 5.2% bei AMO05 verglichen mit Ref. [94]. Dieses Resultat ist konsistent mit den
Befunden von He et al. [133] beziiglich DFPT-Phononenberechnungen mit verschiedenen
Austauschkorrelationsfunktionalen, wobei ebenfalls festgestellt wurde, dass innerhalb der
DFPT systematisch Phononenfrequenzen unterschitzt werden. Das Problem ist jedoch
nicht speziell auf die Dichtefunktionalstorungstheorie zuriickzufiithren, sondern tritt auch
beim frozen phonon-Ansatz auf, hier verdeutlicht durch die Ergebnisse von Schmidt et al.
[106]. Als Folge daraus kann die LDA durch eine Fehlerkorrektur (kleinere Gitterparameter
erhohen Kraftkonstanten und somit Phononenfrequenzen) zu besseren Resultaten fiihren,
wéihrend PBEsol und AMO05 etwas schlechter abschneiden.

Grolere Abweichungen treten laut He et al. fiir das PBE-Funktional auf. Dies ist in
Ubereinstimmung mit den aktuellen Befunden, jedoch ist wahrscheinlich aufgrund der
hoheren Ungenauigkeit der LDA-Werte fiir die internen Parameter, besonders v, eine
Uber- und Unterschiitzung der betreffenden Phononenfrequenzen zu verzeichnen. Die sys-
tematische Frequenzunterschiatzung innerhalb PBEsol bzw. AMO05 im Vergleich zu dem
weniger systematischen Verhalten der LDA wird jedoch die Interpretation weiterer Er-
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Mode Aktuelle Theorie Friithere Theorie Experiment
PBEsol AMO5 Ref. [105] Ref. [106]
Aq 239 (332) 241 (263) 243 (287) 238 253 (276)
272 (272) 263 (325) 288 (348) 279 277 (334%)
335 (403) 326 (404) 355 (413) 350 334 (421)
607 (839) 611 (836) 617 (855) 605 632 (871)
Ag 213 212 218 212 224*
287 281 297 298 314%*
397 390 412 406
441 438 454 443 455*
876 875 892 868
E 148 (198) 147 (185) 155 (197) 147 155 (199)
217 (222) 219 (222) 218 (224) 216 240 (241)
257 (290) 255 (285) 264 (298) 260 265 (298)
317 (334) 306 (323) 330 (349) 321 322 (343)
352 (410) 335 (402) 372 (423) 364 (426)
364 (364) 347 (347) 384 (384) 384 370 (370)
418 (438) 415 (434) 428 (452) 421 433 (457)
570 (660) 566 (659) 585 (675) 573 580 (659*)
662 (846) 662 (845) 677 (863) 662 660-667* (879)

Tabelle 3.4: Berechnete TO (LO) T' Frequenzen der ferroelektrischen Phase von LN verglichen mit
fritheren theoretischen Resultaten und experimentellen Messungen. Die Frequenzen der A; und E Mo-
den stammen aus Infrarot- und Raman-Messungen an stéchiometrischen LN von Margueron et al. [94],
wihrend die A Moden fiir diese Verfahren unsichtbar sind und deren Frequenzen via Neutronenstreuung
bestimmt wurden [99]. Die mit * gekennzeichneten Frequenzen wurden an kongruenten Lithiumniobat

gemessen.
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Abbildung 3.2: Abweichungen der theoretischen Phononenfrequenzen von den experimentellen Daten
bei T fiir die vier getesteten Austauschkorrelationsfunktionale.
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gebnisse, die die Phononendispersion mit einbeziehen, erleichtern. Auflerdem ist es fiir die
Berechnung der elektronischen Eigenwerte von Vorteil, die korrekten Gitterparameter zu
verwenden. Aus diesem Grund wird die LDA wie PBE nicht fiir weitere Berechnungen

verwendet.

Auf der theoretischen Seite kénnen die aktuellen Ergebnisse mit fritheren DFPT-Rech-
nungen von Veithen et al. [105] sowie Daten aus dem frozen phonon-Ansatz von Schmidt et
al. [106] verglichen werden (siehe Tabelle 3.4). Die leichten Abweichungen zu den friitheren
Berechnungen konnen teilweise durch die unterschiedliche Implementierung der verschie-
denen Methoden erkléart werden aber hauptséchlich durch die verschiedenen theoretischen
Gitterparameter, die diesen Arbeiten zugrunde liegen. Dies wird durch die Tatsache ver-
deutlicht, dass die aktuellen PEBsol Resultate nahe bei denen aus [106] liegen, wo &dhnliche
Gitterparameter verwendet wurden, obwohl ein anderer Ansatz gewédhlt wurde. Anderer-
seits verursacht der kleine Wert fiir v aus [106] einige Abweichungen zu den aktuellen
Daten. Dies ist ein Befund, der im Vergleich mit den Werten von Veithen et al. [105]
geteilt wird, die auch ein zu kleines v berechneten.

In Tabelle 3.4 sind zusétzlich zu den TO-Frequenzen die berechneten longitudinalen op-
tischen Phononenfrequenzen (LO) aufgelistet. Wie in Kapitel 2.4.2 beschrieben, erfolgt
ein LO-TO-Splitting der infrarot aktiven A; und £ Moden im Brillouin-Zonenzentrum,
die durch den additiven Term fiir die dynamische Matrix mithilfe der Bornschen Effek-
tivladungen beriicksichtigt werden kénnen. In Ubereinstimmung mit dem Experiment
und fritheren Rechnungen wird praktisch kein LO-TO-Splitting fiir die zweite A; und
die sechste E Mode in Tabelle 3.4 beobachtet. Diese Identifikation kann aus dem ho-
hen Uberlapp Y, , M,&5Q (wjo, 0)640 (wjra, 0) der zugehdrigen Polarisationsvektoren &,
der LO- und TO-Phononen gefolgert werden, der 95% (A;) und 100% (E) betrigt, in
Ubereinstimmung mit Hermet et al. [134]. Damit zeigt sich, dass das makroskopische
elektrische Feld diese Auslenkungsvektoren kaum oder gar nicht beeinflusst.

Tabelle 3.5 enthélt die TO- und LO-Phononenfrequenzen der paraelektrischen Phase von
Lithiumniobat. Sie sind in guter Ubereinstimmung mit den zwei fritheren theoretischen
Untersuchungen [105, 106], die ebenfalls auf zu kleinen Werten fiir a, ¢, und x basieren
als die experimentell bestimmten. Leider gibt es keine Messungen zu Phononenfrequenzen
bei 1500 K. Da die paraelektrische Phase nur bei sehr hohen Temperaturen stabil ist, ist
die Messung der Vibrationseigenschaften duflert anspruchsvoll und wurde bisher weder
fiir LN noch fiir LT durchgefiihrt. Zudem wéren die anharmonischen Beitrége so bedeu-
tend, dass der Vergleich mit der Theorie schwierig wére. Beim Vergleich vom theoretischen
und experimentellen Zellvolumen ist eine deutliche Anderung zu verzeichnen. Dabei gibt
es keinen einheitlichen Abfall der Frequenzen aufgrund des grofleren Volumens, sondern
es zeigt sich, dass manche Frequenzen fallen, wihrend andere unveréndert bleiben oder
sogar steigen. Diese Tatsache kann mit der Anderung des z Parameters und des c/a
Verhiltnisses in Verbindung gebracht werden. Obwohl manche Frequenzen fiir Qp%, star-
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Mode Aktuelle Ergebnisse Friithere Ergebnisse

PBEsol  PBEsol (Qpf,)  AMO5 Ref. [105] Ref. [106]
Ay 379 334 369 403 406
Ay 273 262 271 279 283
418 386 411 435 432
Agg 1044 914 1014 115 92i
404 404 407 405 410
873 846 870 889 868
Agy  198i (764) 203i (58i) 202i (744) 2014 183
79 (347) 31 (357) 61 (350) 94 47
468 (825) 454 (797) 464 (822) 478 476
E, 170 161 169 175 204
409 345 398 425 436
471 433 459 501 481
569 525 560 589 578
E, 78i (179) 133i (190) 1037 (181) 53i 18
182 (275) 195 (273) 185 (275) 177 207
382 (400) 336 (345) 378 (389) 393 384
424 (481) 363 (438) 403 (468) 460 443
516 (826) 484 (793) 508 (821) 532 533

Tabelle 3.5: Berechnete I' TO (LO) Phononenfrequenzen der paraelektrischen Phase von LN im Vergleich

mit fritheren theoretischen Resultaten. Aufler in der mit ngpt gekennzeichneten Spalte wurden alle

Frequenzen bei theoretischem Gleichgewichtsvolumen bestimmt.

ke Abweichungen zu den friitheren theoretischen Resultaten zeigen, kénnen die aktuellen

Werte als verldsslicher angesehen werden, da sie die Gitterexpansion beriicksichtigen.

Das Auftreten von imagindren Frequenzen ist eine Folge der Tatsache, dass das Modell
fiir die paraelektrische Phase als zur Raumgruppe R3c gehorigen Struktur sogar beim
experimentellen Volumen einen energetischen Sattelpunkt darstellt. Dass im Gegensatz
dazu die paraelektrische Phase als zeitliches Mittel einer zufilligen Verteilung der Li-
thiumatome ober- und unterhalb der Sauerstoffflichen aufgefasst werden kann (mit ei-
ner durchschnittlichen Polarisation von null), zeigen Berechnungen von Phillpot et al.
[113] und Sanna et al. [115]. Die Anwesenheit der imaginédren Frequenzen gilt als wei-
tere Bestétigung dieses Bildes. Weitere imaginére Frequenzen wie eine instabile kleinste
E, Mode treten in Ubereinstimmung mit Veithen et al. [105] auf, wihrend keine solche
Instabilitdten bei Parlinski et al. [104], Schmidt et al. [106] und eigenen Testrechnungen
mit LDA- und GGA-Troullier-Martins-Pseudopotentialen [135] auftreten. Offensichtlich
héngt die Stabilitat dieser E, Mode empfindlich von der Wahl der Pseudopotentiale und
der rechentechnischen Details ab. Diese Annahme wird von Grundzustandsrechnungen
mit einer Auslenkung der Atome entlang der instabilen E, Mode bestétigt, wobei nur
eine sehr kleine Verringerung der elektronischen Gesamtenergie vorliegt.
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Die Phononenfrequenzen der ferroelektrischen Phase von LT bei I' sind in Tabelle 3.6
aufgefiihrt. Die transversalen und longitudinalen optischen Frequenzen werden dabei mit
den von Sanna et al. [95] verdffentlichten experimentellen Daten verglichen. Im Falle der
TO-Frequenzen liegt eine exzellente Ubereinstimmung mit den Raman-Daten vor, wobei
eine Unterschitzung der gemessenen Werte von durchschnittlich 2 % auftritt. Die Verbes-
serung der durchschnittlichen Abweichung beziiglich LN ist auf die Unterschiatzung der
Gitterkonstanten im Vergleich zum Experiment und die daraus folgende Fehleraufhebung
zuriickzufiihren. Die grofite Abweichung von etwa 20 cm ™! liisst sich fiir die A; TO, Mo-
de feststellen. Unerwartet aufgrund der Beobachtungen an LN fiihrt die Abweichung bei
den internen Parametern nicht zu einer Streuung der Frequenzen um die experimentel-
len Werte. Leider liegen keine Messwerte aus Neutronenstreuungsexperimenten zu den
Raman inaktiven Ay Moden vor, mit denen die Werte in Tabelle 3.6 verglichen werden

konnen.

Zusétzlich zu den transversalen Moden bietet die DFPT die Moglichkeit, die longitudina-
len optischen Phononen bei I fiir LT zum ersten Mal zu berechnen. Wie in Tabelle 3.6 zu
sehen ist, liegt auch hier eine sehr gute Ubereinstimmung mit den experimentellen Daten
vor. Dabei lassen sich zwei £ Moden identifizieren, die zwar nicht von Sanna et al. [95]
bestimmt werden konnten, aber experimentell von Margueron et al. [94] bestétigt wurden.
Die LO- und TO-Moden wurden in der Tabelle wieder so einander zugeordnet, dass der
Uberlapp der phononischen Polarisationsvektoren am gréfiten ist. Konkret betrégt die-
ser 99.94 % fiir die zweite und 81.18 % fiir die dritte A; Mode, was auch hier zeigt, dass
die Moden nicht oder nur geringfiigig vom makroskopischen elektrischen Feld beeinflusst
werden. Obwohl zu erwarten ist, dass die zusétzlichen Kréfte durch das makroskopische
elektrische Feld zu hoheren Phononenfrequenzen fiithren, ist die dritte LO-Mode etwas
kleiner als die dritte TO-Mode, wodurch dieser verhéltnisméBig kleinere Uberlapp zu er-
klaren ist. Im Fall der £ Moden liegt kein Splitting der Moden 2, 6 und 9 vor, da ihr
Uberlapp 100% betrigt, im grundsétzlicher Ubereinstimmung mit (94, 95]. Thre niedrigen
Raman-Intensitéiten sind dafiir verantwortlich, dass einige Moden zuvor nicht experimen-
tell beobachtet werden konnten. Die vierte LO E Mode konnte lediglich mithilfe von
Infrarot-Messungen von Margueron et al. [94] identifiziert werden. Ein experimenteller
Nachweis der zweiten £ Mode fehlt bislang.

In Tabelle 3.6 sind auflerdem die berechneten TO-Frequenzen der paraelektrischen Phase
unter Verwendung des theoretisch bestimmten und experimentellen Zellvolumens auf-
gefithrt. Wie in LN weist auch hier die Anwesenheit von imaginéren Frequenzen darauf
hin, dass diese Phase bei 0 K nicht stabil ist. Es liegen zwei imaginire Moden vor, die bei
phononischer Auslenkung einen energetischen Sattelpunkt der potentiellen Energieober-
fliche offenbaren. Es sind dieselben zwei Ay, und Ay, Moden, die auch in Lithiumniobat
imagindr sind. Fiir beide Materialien ist der Verlauf der elektronischen Gesamtenergie
in Abhéngigkeit der Auslenkung der Atome entlang der Polarisationsvektoren der bei-
den Moden in Abb. 3.3 illustriert. Ahnlich wie in LN ist das Auslenkungsmuster der
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Ferroelektrische Phase Paraelektrische Phase

Mode  Theorie Expt. Mode Theorie (QXE . )  Theorie (ngpt)
A, 204 (396) 209210 (403) A, 377 341
258 (258) 256257 (255) Ay, 95i 88i
356 (352)  359-360 (355) 426 426
581 (842) 600 (866) 910 890
As 180 Ay 232 229
283 384 355
379 A, 1637 (84) 152i (35)
448 162 (360) 144 (344)
908 522 (834) 507 (814)
E 144 (191) 143 (190) E, 178 170
196 (196) 210 413 359
248 (277)  254-257 (279) 481 458
312 (334) 315317 (344%) 632 601
360 (444) 383384 (453) By, 118 (185) 102 (190)
373 (373)  383-384 (381) 201 (245) 208 (246)
456 (465)  460-465 (476%) 325 (367) 310 (334)
579 (838) 592 (866) 419 (486) 351 (447)
660 (660) 661662 (660) 560 (834) 536 (811)

Tabelle 3.6: Berechnete TO (LO) I' Frequenzen in cm~! fiir LT. Linke Spalten: Ay, Ay und E Moden
der ferroelektrischen Phase verglichen mit experimentellen Messungen [95]. Die mit * gekennzeichneten
experimentellen Werte konnten nur von Margueron et al. [94] gefunden werden. Rechte Spalten: A,
Asg, Ary, Aoy, B4 und E, Moden der paraelektrischen Phase mit theoretischen Gitterkonstanten bei

theoretischem Gleichgewichtsvolumen (Q7y,;,) und experimentellem Volumen (Qg}, ).

0.2
0.1

& 400 -200 0 200 400

\ \ \
-200 -100 0 100 200
Auslenkung (m.’ Bohr)

Abbildung 3.3: Anderung der DFT elektronischen Gesamtenergie mit der atomaren Auslenkung der
Eigenvektoren der instabilen Ay, and Ay, Phononenmoden. Der energetische Nullpunkt ist bei der un-
gestorten Gesamtenergie gewéhlt.
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kleinsten A,, Mode in LT fast identisch mit dem paraelektrischen—ferroelektrischen Pha-
seniibergang mit den Werten 0.0101, 0.0441, 0.0139, und 0.0319 fiir die Parameter u, v,
w, und z. Sie korrespondieren mit dem Minimum der Gesamtenergie bei einer Verriickung
der Atome um 175,/m, Bohr mal dem phononischen Eigenvektor der kleinsten Ay, Mo-
de. Wie in Abb. 3.3 zu sehen, ist die Energiedifferenz des instabilen Sattelpunktes und
dem energetischen Minimum bei beiden Materialien, LN und LT, fast zehn mal grofler fiir
die Ay, Mode als fiir die Ay, Mode, was wieder zeigt, dass vor allem die Aj, Mode den
Phaseniibergang antreibt. Fiir LN ergibt sich im Energieminimum bei einer Auslenkung
von 200,/m, Bohr ein Muster, welches den Werten 0.0053, 0.0432, 0.0179 und 0.0247 fiir
die Parameter u, v, w, und z entspricht. Auch in diesen Parametern ist die ferroelek-
trische Verschiebung noch gut zu erkennen. Die genaue Grofle der Parameter ist dabei
stark strukturabhingig und eine Eins-zu-eins-Ubereinstimmung mit der ungestorten fer-
roelektrischen Struktur kann nicht erwartet werden. Mit den PBEsol Gitterkonstanten
der ferroelektrischen Phase fiir LN ergeben sich die Parameter v und v zu 0.0086 und
0.0404.

3.5 Phononendispersion

Unter den in diesem Kapitel beriicksichtigten Austauschkorrelationsfunktionalen ist die
Ubereinstimmung mit den experimentellen Daten der Phononenfrequenzen an I fiir PBE-
sol am besten. Daher wird im weiteren nur noch dieses Funktional verwendet. Unter diesem
Aspekt ist es erwidhnenswert, dass He et al. [133] feststellten, dass das PBEsol-Funktional
allgemein bessere FErgebnisse zeigt als das AMO05, wenn Phononenfrequenzen mit den ex-
perimentellen Gitterkonstanten berechnet werden. Die Studie wird nun erweitert auf die
vollen Phononendispersionen fiir beide betrachteten Materialien, die experimentell bisher
nicht bestimmt wurden. Da schon bei den Phononenfrequenzen an I' offensichtlich wurde,
dass thermische Expansion einen grofien Einfluss hat und somit auch auf spétere thermo-
dynamische Berechnungen, werden auflerdem die Dispersionskurven fiir das ausgedehnte
Gitter bei T = 1500 K, bezeichnet mit PBEsol (QiF,), berechnet. Der Pfad X T'-Z-F-
L-T" wird gewéhlt, um die phononische Bandstruktur zu visualisieren. Dies ist derselbe
Pfad, den Parlinski et al. [104] und Toyoura et al. [107] wihlten, um ihre Dispersions-
kurven darzustellen. Dabei wurden die Phononenfrequenzen von beiden Gruppen mithilfe
der Hellmann-Feynman Kréfte innerhalb des frozen phonon-Ansatzes berechnet. Bei Par-
linski et al. geschieht dies an den vier Hochsymmetrie g-Punkten, was einem 2x2x2
g-Punktgitter in der aktuellen Rechnung entspricht. Wie auch im hier benutzten Verfah-
ren wird fiir Zwischenpunkte innerhalb dieses Gitters ein Interpolationsschema verwendet,
welches die Kristallsymmetrie ausnutzt.

Die Phononendispersionen der ferro- und paraelektrische Phase von Lithiumniobat sind
in Abb. 3.4 zusammen mit der zugehorigen Zustandsdichte dargestellt. Wie zu erwar-
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Abbildung 3.4: Mit dem PBEsol Funktional berechnete Phononendispersion und phononische Zustands-
dichte von ferroelektrischem (oben) und paraelektrischem (unten) LiNbOs.

ten war, sind die Frequenzen beziiglich ngpt iiberwiegend kleiner als die des theoreti-
schen Volumens bei 0K, da die Kréfte, die aus der Phononenauslenkung resultieren, im
groferen Zellvolumen kleiner sind. Die Anderung ist iiberwiegend proportional zur Fre-

I und

quenz. Nichtsdestotrotz kann zum Beispiel an den Phononenzweigen um 350 cm™
nahe I' beobachtet werden, dass dies nicht durchgehend der Fall sein muss. Das héngt
mit den internen Parametern zusammen, die sich ebenfalls aufgrund der Volumenexpan-

I zu beobachten.

sion dndern. Fiir beide Phasen sind zwei Phononenzweige um 850 cm™
Die vier (teilweise entarteten) Zweige um 600 cm™! der ferroelektrischen Phase fallen
beim Ubergang zur paraelektrischen Phase um etwa 100 cm™!, sodass zwei phononische
Bandliicken im ferroelektrischen und eine groflere Liicke in den Dispersionskurven im pa-

raelektrischen LN existieren. Die hohere Symmetrie der paraelektrischen Phase fiihrt zu
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einer hoheren Anzahl entarteter Moden bei Z. Die berechnete Phononendispersion zeigt
weiterhin, dass imaginére Frequenzen nicht nur bei I' auftreten, sondern in der gesamten
Brillouin-Zone présent sind. Die Resultate von Parlinski et al. stimmen generell gut mit
den aktuellen iiberein, unterscheiden sich jedoch insoweit, dass die Dispersion einiger we-
niger Phononenbénder deutlich stérker ist. Die Breite der obersten in [104] berechneten
Béander ist zum Beispiel fiinf mal grofler als in Abb. 3.4 zu sehen ist. Daher findet sich
auch im deutlichen Gegensatz zu den aktuellen Befunden keine Bandliicke vor. Dies ist
mit hoher Wahrscheinlichkeit ein Artefakt des verwendeten Interpolationsschemas, wel-
ches auf wenigen gq-Punkten basiert. Insbesondere kann das Ergebnis in [104] reproduziert
werden, wenn das g-Punkt Sampling auf ein grobes 2x2x2 Gitter reduziert wird. Die-
selben Befunde, die bei Parlinki et al. beobachtet wurden, treffen prinzipiell auch auf die
Arbeit von Toyoura et al. zu. Auffillige Differenzen sind beziiglich des LO-TO-Splittings
zu verzeichnen, wobei das experimentell nachgewiesene Splitting der hochsten A; und E
Mode zu Frequenzen um 850 cm™! von ihnen theoretisch nicht beschrieben wird. Ander-
seits zeigen sich in der paraelektrischen Phase aufier der Ay, und Ay, Moden wie in den
aktuellen Kurven ebenfalls weitere imaginidre Moden (vermutlich ebenfalls £ Moden) an
I' und F.

Der Pfad X-I'-Z-F-L-I" innerhalb der Brillouin-Zone wird ebenfalls verwendet, um die
Phononendispersion der ferroelektrischen und paraelektrischen Phase von LiTaO3 in Abb.
3.5 darzustellen und um damit den Vergleich mit LiNbO3 und den fritheren Arbeiten zu
erleichtern [104, 107]. Die berechnete Phononendispersion von LT #dhnelt dabei stark der
von LN. Dies ist soweit aufgrund der sehr dhnlichen Kristallstruktur beider Materialien
nicht verwunderlich. Der gréfite Unterschied fillt besonders in der Zustandsdichte der
ferroelektrischen Phase um 200 cm™! auf, bei der sich im Gegensatz zu Lithiumniobat
fast eine Liicke ergibt. Dies kann der hohen Unausgeglichenheit der Massen zwischen den
schweren Tantal- und den leichten Lithium- bzw. Sauerstoffatomen zugeschrieben werden,
die die Bewegungen der Atome weiter entkoppeln. In Abbildung 3.6 kann dies im Vergleich
der nach Atomsorte aufgelosten phononischen Zustandsdichte beider betrachteten Mate-
rialien noch einmal verdeutlicht werden. Die Abbildung zeigt allgemein, dass in beiden
Materialien die zu Sauerstoff gehorige Zustandsdichte einen Grofiteil der hochsten Fre-
quenzen ausmacht, wihrend das leichtere aber schwécher im Material gebundene Lithium
im mittleren bis unteren Frequenzbereich schwingt. Die Zustandsdichte der Lithiumvibra-
tionen weist duferst geringe Anderungen in Abhingigkeit davon auf, ob Niob oder Tantal
als zweites Kation im Material vorhanden ist.

Anders als im Fall von LN werden in der paraelektrischen Phase keine instabilen £ Mo-
den bei I" und F beobachtet. Sogar die A3, Moden werden aufgrund des makroskopischen
elektrischen Feldes, also aufgrund des LO-TO-Splittings, teilweise stabil. Das kann mit
der Relaxation hin zu verschiedenen Gitterparametern der beiden Materialien zusam-
menhéngen. Wie experimentell und in den aktuellen theoretischen Strukturparametern
beoachtet, ist die ferroelektrische Verschiebung der Lithium- und Tantalatome etwas we-
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niger stark ausgepréigt als bei den Lithium- und Niobatomen in LN, sodass die Differenz
zwischen ferroelektrischer und paraelektrischer Phase geringer ist. Die berechnete Disper-
sion von LT mit dem experimentellen Volumen QY ist ebenfalls in Abb. 3.5 dargestellt.
Wie erwartet, sind diese Frequenzen wegen der gréfleren Gitterkonstanten niedriger, aber
auch hier sind wie bei LN leichte Abweichungen vom konsistenten Verhalten aufgrund
der internen Parameter zu verzeichnen. Im Vergleich zu Toyoura et al. [107] zeigt sich
in der paraelektrischen Phase iibereinstimmend, dass dort ebenfalls keine imagindren F
Moden mehr vorkommen. Die aktuellen Befunde fiir das Volumen bei 1500 K befinden
sich dabei ndher an denen von Toyoura et al., da das PBE-Funktional, was in ihrer Ar-
beit verwendet wurde, zu grofle Gitterkonstanten lieferte. Die Abweichungen beziiglich
des LO-TO-Splittings und des unterschiedlichen g-Punkt-Samplings beriicksichtigt, sind
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Abbildung 3.5: Mit dem PBEsol Funktional berechnete Phononendispersion und phononische Zustands-
dichte von ferroelektrischem (oben) und paraelektrischem (unten) LiTaOs.
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Abbildung 3.6: Vergleich der nach Atomsorte aufgeldsten phononischen Zustandsdichte (DOS) der
ferroelektrischen Phase von LN und LT.

beide komplementiren Methoden in guter Ubereinstimmung.

Wie bereits erwdhnt wurde, sind die imagindren Frequenzen, die iiberall im reziproken
Raum auftreten, ein Zeichen dafiir, dass das géngige Modell fiir die paraelektrische Pha-
se keine Minimumgrundzustandsstruktur verkérpert. Da besonders fiir die Ay und As,
Moden iiber den gesamten Bereich der Brillouin-Zone imaginére Frequenzen vorkommen,
kann dies als ein Ordnungs-Unordnungs-Phaseniibergang ausgelegt werden [107]. Je nach
Periodizitdt des Wellenvektors kommt es dabei zu Verschiebungen in die eine oder an-
dere Richtung entlang der c-Achse. Im Gegensatz dazu wiirde das Auftreten von ima-
gindren Frequenzen ausschliefSlich an I' fiir einen displaziven Phaseniibergang sprechen,
da das ferroelektrische Auslenkungsmuster Einheitszellen-periodisch fortgesetzt wiirde. Es
soll an dieser Stelle angemerkt werden, dass ab initio-Molekulardynamikrechnungen [107,
115] auf einen ferroelektrischen Ubergang zweiter Ordnung hinweisen, der (iiberwiegend)
Ordnungs-Unordnungs-Charakter besitzt.

3.5.1 Spezifische Wiarmekapazitit

Die aktuellen Berechnungen zur spezifischen Warmekapazitat Cy bei konstantem Volu-
men mittels Gl. (3.1) fiir LN und LT sind zusammen mit experimentellen Daten in Abb.
3.7 abgebildet. Im Falle von LN werden Messungen der spezifischen Warmekapazitat bei
konstantem Druck C), an einer fast stochiometrischen Probe im Temperaturbereich von
4.2-100 K, die mit einem automatischen adiabatischen Kaloriemeter durchgefiihrt wur-
den und eine dort angegebene Genauigkeit von 1% aufwiesen [136], mit den aktuellen
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Abbildung 3.7: Theoretische Resultate fiir die spezifische Wiarmekapazitét fiir LN und LT im Vergleich
mit experimentellen Messungen von Villar et al. [136], Nakamura et al. [137] und Yao et al. [138] (LN)
bzw. Glass [141] (LT).

Ergebnissen verglichen. Aulerdem stehen mittels Differentialkalorimetrie gemessene spe-
zifische Wirmekapazititen C, bei Raumtemperatur (651 J kg~ K1, stochiometrisches
LN) [137] und bei 328.15 K (699.5 J kg=! K~!, fast stochiometrisches LN) [138] zur
Verfiigung. Zur Fehlerabschitzung ist in [139] ein genereller Fehler dieser Messungen von
1.5 % vermerkt. Da die spezifische Warmekapazitat in [137] und [138] fiir kongruentes LN
hoher angegeben werden als fiir stochiometrisches, werden weitere Messungen [140] nicht
beriicksichtigt, da deren Proben vermutlich eine hohe Konzentration von Gitterdefekten
oder Verunreinigungen aufwiesen [136]. Die berechnete Warmekapazitét fiir LINbO3 weist
eine sehr gute Ubereinstimmung mit den experimentellen Daten auf. Kleinere Abweichun-
gen konnen mit der Tatsache erkldrt werden, dass die Proben in [136] nicht vollkommen
stochiometrisch waren. Aulerdem sind die Messungen bei konstanten Druck und nicht bei
konstanten Volumen erfolgt, sodass die Effekte durch Volumenexpansion einen deutlichen
Unterschied zu den aktuellen Berechnungen ausmachen konnen. Diese Tatsache zeigt sich
spater bei LT deutlicher. Fiir hohere Temperaturen konnen die als zu niedrig berechneten
Phononenfrequenzen aulerdem zu kleineren Werten fiir die spezifische Warmekapazitét
fithren als in [137] und [138]. Nichtsdestotrotz betragen die Abweichungen zu den beiden
experimentellen Werten nur 1.5 % bzw. 4.2 %.

Im Fall von Lithiumtantalat ergibt die theoretisch berechnete Wéarmekapazitéat Cy einen
Wert von 402 J kg=! K= bei 298 K, was im Bereich der experimentellen Unsicherheit zum
von Glass [141] bestimmten Wert von (426 +36) J kg=! K™! liegt, der mittels Lichtpulsen
induzierte Temperaturdnderungen in LT bestimmt wurde. Dieser Wert ist im Vergleich zu
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LN (651 J kg™! K™1) aufgrund der unterschiedlichen Atommassen von LN und LT nied-
riger. Die Warmekapazitit in Abhéingigkeit der molaren Masse betrigt 193 J kg=! mol ™!
(LN) und 190 J kg~! mol~" (LT), was die Ahnlichkeit in den Phononendispersionen der
beiden Materialien unterstreicht. Die theoretische Cy-Kurve in Abhéngigkeit der Tempe-
ratur ist im Vergleich zu den Messungen von Glass im Temperaturbereich von 298-1000 K
ebenfalls in Abb. 3.7 dargestellt. Die groflere Abweichung bei sich erhhender Temperatur
lasst sich neben den oben angegeben Griinden durch in [141] ab 650 K klar identifizierbare
bis zum Phaseniibergang sich verstérkende anharmonische Effekte in der gemessenen C'p-
Kurve erkldren. Insgesamt sind die dargelegten Befunde fiir beide Materialien ein klarer,

indirekter Beweis fiir die Korrektheit der berechneten Phononendispersionen bei 0 K.

3.5.2 Phaseniibergang

Die strukturelle Phase einer Verbindung wird bei einer gegebenen Temperatur durch die
Phase mit der niedrigsten freien Energie F' bestimmt. Der Punkt, in dem die Energie-
differenzen zweier freier Energien von verschiedenen Phasen verschwindet, markiert die
Temperatur des Phaseniibergangs. Diese wird bei einem paraelektrischen-ferroelektrischen
Phaseniibergang Curie-Temperatur genannt. Mittels DF'T konnten freie Energien ver-
schiedener struktureller Phasen mit Erfolg berechnet werden und kritische Temperatu-
ren fiir den Phaseniibergang fiir eine grofle Bandbreite von Strukturen wie ausgedehnte
Festkorper [142], Oberflichen [143] und Quasi-eindimensionale Strukturen [144] ermit-
telt werden. Innerhalb des auch in dieser Arbeit verwendeten Ansatzes konnte bereits
die Ubergangstemperatur des ferroelektrischen-paraelektrischen Phaseniibergangs in Ba-
riumtitanat bestimmt werden [145].

Es werden nun die temperaturabhéngigen freien Energien der ferroelektrischen und pa-
raelektrischen Phase fiir Lithiumniobat und Lithiumtantalat berechnet und in Abb. 3.8
dargestellt. Es werden dabei die freien Energien beider Phasen mit dem theoretisch be-
stimmten Volumen (Q55, .. bzw. QFF. ) sowie mit dem experimentell gemessenen Vo-
lumen QY bei 1500 K (LN) bzw. 940 K (LT) berechnet und miteinander in Beziehung
gesetzt. Damit konnen zusétzlich die Auswirkungen der thermischen Ausdehnung im Be-
reich des Phaseniibergangs mit berticksichtigt werden.

Im Fall von Lithiumniobat belduft sich die Differenz der elektronischen Grundzustands-
energien zwischen ferroelektrischer und paraelektrischer Phase auf 0.259 eV, was einen
vergleichbaren Wert zu fritheren Studien reprasentiert [106, 146]. Dieser Wert ist gleich-
zeitig die Anfangsenergiedifferenz, die im zweiten Schritt mit der freien Vibrationsenergie
ergéinzt wird. Dies fiihrt zu einer Aufthebung des Energieunterschieds bei etwa 1000 K, was
480 K geringer ist als die gemessene Temperatur des Phaseniibergangs. Ein Teil der Dis-
krepanz kann durch die thermische Ausdehnung verursacht werden. Das hier verwendete

experimentelle Volumen der paraelektrischen Phase wurde bei 1500 K ermittelt, eine Tem-

62



[ T T T T T T T T [ T T T T :l_

FE (R3c¢) PE (R3¢)

o
[

-0 FE/PE — Ferroelektrisches LN
Theorie — Paraelektrisches LN

= | | | | | | | | | I: | - | | | |'

{ :
Theorie : Expt.
TE : ]E :

e \S}
[

Freie Energie (eV o™

2 FE (R3¢) . PE (R3¢)
O |
| PE
-2 ngxpL I I : 3
0 500 1000 1500
Temperatur (K)
2 — T T T T T T T T T —]

FE (R3¢)

)

e

5 i FE/PE — Ferroelektrisches LT

0 QTheory — Paraelektrisches LT :

%0 2 : : : : I : : : .=Theorie =Ex t
[f] B : TC p 7
5 1 FE (R3c) . PE (R3c¢):

|
0 500
Temperatur (K)
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mentelle (jeweils das untere Panel) Volumen. Der Schnittpunkt der freien Energien zwischen ferro- und
paraelektrischer Phasen ist als Energienullpunkt gewihlt. Die jeweiligen theoretischen bzw. experimen-
tellen Ubergangstemperaturen sind durch die vertikalen rot bzw. schwarz gepunkteten Linien angedeutet.
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peratur die sehr nah bei der Curie-Temperatur liegt. Die zugehorige Grundzustandsener-
giedifferenz der beiden Phasen bei experimentellen Volumen bleibt fast unveréndert bei
0.262 eV. Unter Verwendung der entsprechenden Phononendispersion fiir QY in der Be-
rechnung der freien Energie verschiebt sich die vorhergesagte Phaseniibergangstemperatur
damit um 160 K nach oben. Bei Lithiumtantalat betréagt die elektronische Grundzustand-

senergiedifferenz 0.127 bzw. 0.115 eV fiir die primitive Einheitszelle mit den theoretisch
(FE/PE

bestimmten Volumina 2y /50

bzw. fiir Q. Die freie Energiedifferenz kompensiert diese
Werte in beiden Fillen bei etwa 800 K. Der experimentell bestimmte Wert liegt in diesem

Fall bei 958 K [10].

Die bessere Ubereinstimmung mit den experimentellen Befunden bei LT im Vergleich
mit LN ist zumindest teilweise mit der niedrigeren Curie-Temperatur zu erklédren: Bei
einer Temperatur von 800 K ist davon auszugehen, dass die Gitterschwingungen weit
weniger von Anharmonizitdten beeinflusst werden als bei LN um 1500 K, was mit Si-
cherheit die Fehleranfilligkeit der aktuellen Berechnungen reduziert. Die aktuellen Be-
rechnungen vernachléassigen Effekte hoherer Ordnung wie die Phonon-Phonon-Kopplung,
die iiber die harmonische Approximation hinausgehen und bei den hoheren Temperatu-
ren, die beim Phaseniibergang vorliegen, relevant werden. Eine weitere erhebliche aber
ebenfalls schwer abzuschétzende Unsicherheit in den vorgestellten Ergebnissen macht die
Behandlung der imaginédren Phononenfrequenzen in den paraelektrischen Phasen aus, die
durch die Bewegung der Atome in einem anharmonischen Doppelmuldenpotential auftre-
ten. Diese konnen innerhalb der harmonischen Néherung und somit grundséitzlich nicht
in Gl. (2.76) beriicksichtigt werden. Aufgrund einer hohen Anzahl von g-Punkten, die
zur Konvergenz der freien Energie benotigt werden, sind typische Ansétze, die diese Fre-
quenzen angemessen erfassen [147], hier nicht anwendbar. Daher werden alle Frequenzen,
eingeschlossen die imaginéren, als harmonisch approximiert, also ihr Absolutbetrag in GI.
(2.76) verwendet.

Trotz der Tatsache, dass die theoretischen Curie-Temperaturen von LiNbO3 und LiTaOs3
in qualitativer Ubereinstimmung mit den gemessenen Werten liegen, sollte das nicht
dariiber hinwegtéduschen, dass es sich bei der gewahlten Approximation hinsichtlich der
imagindren Frequenzen um ein Vorgehen handelt, welches keine direkte theoretische Grund-
lage besitzt. Die Anwendung ist erfolgreich, da niedrigere Beitrage der Phononenfrequen-
zen hohere Beitrage zur freien Energie liefern (siehe Gleichung (2.76)). Damit kompen-
sieren die niedrigen Betrdge der imagindren Frequenzen einen Grofiteil des strukturel-
len Energieunterschieds zwischen ferro- und paraelektrischer Phase. Deshalb diirfen die
theoretischen Werte lediglich als grobe Abschitzung einer unteren Grenze der Ubergangs-
temperatur angesehen werden. Die Beispiele Bariumtitanat [145], Lithiumniobat und Li-
thiumtantalat rechtfertigen die Anwendung dieses Verfahrens nachtréglich durch seinen
Erfolg. Die Anwendung bei weiteren Materialen sollte aber in jedem Einzelfall deutlich
hinterfragt und gepriift werden. Eine grofler angelegte Studie an einer grofleren Bandbreite
von Materialien kénnte weiteren Aufschluss iiber die Sinnhaftigkeit geben.
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3.6 Nullpunktsrenormierung und Temperaturabhingigkeit
der Bandliicke

Die theoretischen Phononendispersionen und Auslenkungsmuster werden nun genutzt,
um die Nullpunktsrenormierung und Temperaturabhéngigkeit der elektronischen Kohn-
Sham-FEigenenergien in Abhéngigkeit des phononischen Wellenvektors q zu bestimmen. Zu
diesem Zweck werden DFPT- und finite-Differenzen-Rechnungen durchgefiihrt, um beide
Ansiitze gegeneinander abzuschétzen. Die DFT-Bandstruktur ist in Abbildung 3.9 abge-
bildet. Wie dort zu erkennen ist, verlaufen die elektronischen Bénder sehr flach, besonders
die oberen Valenzbénder. Die Bandliicke von 3.46 eV ist (fast) direkt bei I' angesiedelt.
Auf der ersten Hilfte des Pfades I'-Z wird sie minimal um 13 meV reduziert. Da es mit
dem regulédren 4x4x4 k-Punkt-Sampling nicht moglich ist, den entsprechenden k-Punkt
zwischen I' und Z zu beschreiben, wird sich im Folgenden auf die direkte Bandliicke bezo-
gen. Bei I sind die obersten zwei Valenzbénder und die niedrigsten zwei Leitungsbénder

entartet.

Da die Elektron-Phonon-Korrekturen bekanntermaflen stark g-Punkt abhéngig sind, lohnt
es sich in Abb. 3.10 einen Blick auf die Beitréige zur Nullpunktsrenormierung Ae’ " (q) der
Bandkantenzusténde bei I' zu werfen. Die Korrekturen der zwei hochsten entarteten Va-
lenzbénder und der zwei niedrigsten entarteten Leitungsbédnder werden dort dargestellt.
Sie sind mit teilweise etwa 6 eV von betriachtlicher Grofle und wie erwartet stark vom
phononischen Wellenvektor q abhéngig. Mitunter variiert sogar ihr Vorzeichen. Leichte-

6,

0 — PBEsol
---- PBEsol + ZPR

Energie (eV)

Abbildung 3.9: Berechnete DFT-PBEsol Bandstruktur von LN. Die gestrichelten roten Linien entstehen
durch Addition des Betrags der jeweiligen Nullpunktsrenormierung auf die einzelnen Bénder. Fiir die
duBersten Zustidnde der gezeigten Valenz- und Leitungsbénder fillt die ZPR im Allgemeinen héher aus.
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re Ausschldge der Korrekturen sind bei den Valenzbédndern zwischen I' und Z und bei
den Leitungsbédndern an F bzw. zwischen F und L festzustellen. Dies wird dadurch her-
vorgerufen, dass durch das Auftreten flacher Bander mit sehr dhnlichen elektronischen
Eigenenergien wie an [' mehr elektronische Zustédnde durch die Phononen miteinander
gekoppelt werden, die nur von der (praktisch vernachlissigbaren) Energie der Phononen
voneinander getrennt sind. Die Phononen miissen dabei einen Wellenvektor aufweisen, der
der Differenz der verschiedenen k-Punkte entspricht. Im Hinblick auf die Bandstruktur
weisen folgerichtig die k-Punkte zwischen I' und Z bei den oberen Valenzbéndern und
zwischen F und L bei den unteren Leitungsbéndern nahezu die gleichen elektronischen
Eigenwerte wie an I' auf. Insbesondere fiihrt dieses Verhalten auch zu der divergierenden
Elektron-Phonon-Korrektur fiir ¢ — 0, da mit steigender Néhe benachbarter k-Punkte
die Differenz der elektronischen Eigenwerte selbstverstdndlich auch beliebig klein wird.
Nichtsdestotrotz verschwindet die Elektron-Phonon-Kopplung bei q = 0, da in diesem
Fall keine Kopplung der elektronischen Zusténde mit sich selbst moglich ist und die Pho-

nonenenergie zu klein fiir eine Interbandkopplung ist.

LB

4o Finite-Differenzen
— DFPT

e
in

> of :
2 - -
20-05:_ = '25 5_:
= ] . S3E =]
O L ] E 4 4
= -1F E “E EE
E | E se | 4
= -1.51 E ) S
= - L~ I —Ff
£ - | | -
é | | | | T T3
a2 L VB 43 EE
= = \ EE
“ 05 = B S

L— SF]

@)
|||||||\’{IIII|IIII|IIII
v

_1E | | | | | |
I Z F L r F L

N

Abbildung 3.10: Beitrage zur Nullpunktsrenormierung der zwei hochsten entarteten Valenzzusténde
(unten) und der beiden niedrigsten entarteten Leitungsbandzustdnde (oben) bei T' in Abhéngigkeit ver-
schiedener phononischer Wellenvektoren q der ersten Brillouin-Zone.
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Die starke g-Punktabhéngigkeit der ZPR, besonders um I', zeigt, dass eine genaue Kennt-
nis der phononischen Bandstruktur vorausgesetzt werden muss, um den Elektron-Phonon-
Kopplungs-Einfluss auf die elektronische Bandstruktur in LN zuverlassig zu bestimmen.
Mit Einfithrung eines dichteren q-Punkt-Samplings nahe I'; wie in Kapitel 3.2 beschrieben,

wird diese Variation in dieser Region beriicksichtigt.

Die Ubereinstimmung der beiden Rechenmethoden, DFPT und finite-Differenzen, ist
sehr gut. Die Differenzen bei F decken eine wesentliche Schwiche des finite-Differenzen-
Ansatzes auf: Die phononischen Auslenkungen brechen die Kristallsymmetrie. Dadurch
splitten insbesondere die zuvor entarteten elektronischen Eigenwerte der Bandkanten-
zustdnde bei I' auf und verkomplizieren dabei die Zuordnung der geédnderten Eigen-
werte untereinander bei 30 verschiedenen Phononenmoden. Dieses Problem ldsst sich
zunéchst 16sen, indem bei den zwei d&uflersten entarteten Bandkantenzustanden jeweils alle
Anderungen gemittelt werden. Dies ist in diesem Falle unproblematisch, da die DFPT-
Ergebnisse zeigen, dass bei den meisten mit der finite-Differenzen-Technik berechneten
g-Punkten keine grofl voneinander abweichenden Korrekturen zu erwarten sind. Dies ge-
schieht in Ubereinstimmung mit [132, 148]. AuBerdem ergibt sich integriert iiber alle
g-Punkte der Brilloin-Zone derselbe ZPR-Wert fiir die jeweiligen zwei Valenz- oder Lei-
tungsbandkantenzustédnde bei k = I'. Leider werden durch die Bildung von Superzellen
Eigenwerte duflerer k-Punkte der ersten Brillouin-Zone auf k-Punkte der neu entstande-
nen kleineren Brillouin-Zone der Superzelle zuriickgefaltet. Beim Blick auf die Bandstruk-
tur in Abbildung 3.9 lésst sich erkennen, dass die Bandkanten des Leitungsbandes bei I'
und F sehr nah beieinander liegen. Die Darstellung des F q-Phononen-Wellenvektors er-
fordert eine Superzelle, in der die Eigenwerte des F k-Punktes auf I' gefaltet werden. Das
bedeutet, dass Anderungen der Eigenwerte im F-Punkt nicht mehr von denen im I'-Punkt
zu trennen sind. Um dennoch ein Ergebnis angeben zu konnen, ist die in Abb. 3.10 ge-
zeigte ZPR der Leitungsbinder bei F die gemittelte Korrektur der drei nah beieinander
liegenden Eigenwerte. Wird der Elektron-Phonon-Beitrag aus der DFPT des F-Punktes
mit +0.221 eV miteinbezogen und alles gemittelt, ergibt sich eine Gesamtkorrektur von
0.047 eV in guter Ubereinstimmung mit den 0.038 eV der finite-Differenzen-Methode.

Die energetisch zweithochste Phononenmode ist eine transversale optische £ Mode (TOy)
und liefert den Hauptbeitrag der Phononenmoden zur ZPR. Insgesamt werden die obers-
ten Phononenzweige durch Vibrationen der Sauerstoffatome verursacht (vgl. Abb. 3.6).
So fiihrt diese Mode zu einer Verzerrung des Sauerstoffoktaeders wie in Abb. 3.11 dar-
gestellt. Daher ist es naheliegend, dass gerade diese Mode die Bandkantenzusténde, die
hauptsédchlich durch O 2p und Nb 4p Zusténde gebildet werden [149], stark von dieser
E Mode betroffen sind, da Niob sich im Sauerstoffoktaeder befindet. Die Gréfle ihres
Beitrags zur ZPR entspricht damit an manchen g-Punkten der Summe der anderen 29

Phononenmoden.

Die in der ersten Brillouin-Zone aufintegrierten Beitrage zur Nullpunktsrenormierung der
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Abbildung 3.11: Die Visualisierung der hochsten E Mode an I' (E TOg) zeigt die Verzerrung des
Sauerstoffoktaeders, von der Seite (links) und von oben (rechts) betrachtet. Sauerstoffatome sind rot,
Niobatome grau und Lithiumatome weif3 eingezeichnet.

Bandkantenzustéande ist in Abb. 3.9 fiir alle k-Punkte eines I'-zentrierten 4 x4 x4-Gitters
dargestellt. So liefert insbesondere die q-Punkt aufgeloste ZPR in Abb. 3.10 integriert
in der ersten Brillouin-Zone die gesamte Nullpunktsrenormierung in k = I'. Die ZPR
zwischen den Punkten des 4x4x4 k-Punktgitters wird fiir den Plot der Bandstruktur
linear interpoliert. Die direkte Bandliicke bleibt dabei bei I'; sie wird durch die ZPR um
0.41 eV reduziert. Aufgrund des Verlaufs der Valenzbander ist es plausibel, dass dieser
Wert fiir die ZPR auch eine sehr gute Approximation fiir die indirekte Bandliicke darstellt.

Im Experiment ist es moglich, die ZPR aus temperaturabhéngigen Messungen der funda-
mentalen Absorptionskante abzuschétzen [122]. Offensichtlich kann die Nullpunktsrenor-
mierung nicht direkt gemessen werden. Jedoch kann sie mittels Isotopensubstitution oder
mittels des asymptotischen Grenzfalls der temperaturabhéngigen Reduktion der elektro-
nischen Bandliicke fiir T' > Tp, abgeleitet werden [150], wobei T, die Debye-Temperatur
ist. Daten fiir letzteres Verfahren stehen durch Redfield et al. [122] zur Verfiigung, die
die temperaturabhingige Anderung der fundamentalen Absorptionskante im Bereich von
0-667 K bestimmten. Die Messungen sind aufgrund der Verbreiterung des optischen Spek-
trums auf diesen Temperaturbereich beschrénkt. Wie in [150, 151] vorgeschlagen, werden

die experimentellen Werte an den empirischen Ausdruck

am ) =21 (2] 2

mit den Parametern «, p, und T gefittet. Die ZPR wird dabei aus Gl. (3.2) extrahiert,
indem das lineare Verhalten fiir T > Tp extrapoliert wird. Mit @ = 1.25929 meV /K,
p = 2.57023, and Tp = 637.466 K erhélt man eine Nullpunktsrenormierung der elektroni-
schen Bandliicke von a7 /2 = 0.40 eV. Dabei wird empfohlen, die Debye-Temperatur Tp
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Abbildung 3.12: Theoretische Anderung der LiNbO3 Bandliicke mit der Temperatur innerhalb des ak-
tuellen DFPT-AHC-Formalismus und mittels Molekulardynamik [154]. Die Nullpunktsrenormierung ist
durch die Absenkung der theoretischen DFPT-AHC-Kurve um 0.41 eV angedeutet. Gleichung (3.2) wird
an die experimentellen Daten aus der Messung der temperaturabhéngigen fundamentalen Absorptions-
kante von Redfield et al. [122] gefittet, die aus Konsistenzgriinden ebenfalls mit dem ZPR-Offset versehen
werden. Die lineare Asymptote, die nicht akkurat aus den limitierten experimentellen Daten extrahiert
werden kann, bestimmt den experimentellen Wert der ZPR, bei 0 K.

als Fit-Parameter zu verwenden, um bessere Resultate zu erzielen [151] (siche Abb. 3.12).
Dieselbe Methode wurde von Cardona [152] angewendet, um die ZPR von Germanium
und Silizium aus Messungen der Absorptionskante abzuschétzen, ebenfalls mit experi-
mentellen Daten aus einem begrenzten Temperaturbereich. Die erzielten Resultate sind
in guter Ubereinstimmung mit Ergebnissen, die aus Isotopeneffekten geschlossen wurden.
Die Anwendung elaborierterer Methoden [153] ist aufgrund der mangelnden Messpunkte

nicht méoglich.

Die Ubereinstimmung des extrapolierten Wertes, also der Differenz aus den Schnitt-
punkten der gestrichelten Linie mit der y-Achse und des experimentellen Fits mit der
y-Achse in Abb. 3.12, mit dem aktuellen theoretischen Resultat der ZPR fiir LN ist ex-
zellent. Dennoch bleibt zu erwidhnen, dass beide Werte Unsicherheiten unterliegen; auf
der einen Seite durch die Fitprozedur und zum anderen durch fehlende Selbstenergie-
effekte in der DFT [132, 148]. Durch Anwendung des Fits auf die aktuelle theoreti-
sche Temperaturabhéngigkeitskurve der Bandliicke erhélt man eine ZPR von 0.31 eV.
Eine Fehlerabschitzung beziiglich der Elektron-Elektron-Wechselwirkung kann mithil-
fe von Hybridfunktionalen innerhalb der finite-Differenzen-Methode erfolgen. Da es re-
chentechnisch sehr aufwendig ist, 30 DFT-Rechnungen pro g-Punkt mit einem Hybrid-
Austauschkorrelationsfunktional in einer Superzelle durchzufiihren, stellt es einen gu-
ten Kompromiss dar, sich auf den L. Punkt zu beschrianken, da der Aufwand hier am
niedrigsten ist, da die Einheitszelle nur verdoppelt wird und die Methode innerhalb
der gewohnlichen DFT, wie zuvor gesehen, dort funktioniert. Wie in Abb. 3.4 zu se-

69



hen ist, sind bei L alle Phononenzweige zweifach entartet, was die Anzahl der erfor-
derlichen Grundzustandsrechnungen mit den eingefrorenen Phononenauslenkungen in der
doppelten 2x1x1 Superzelle halbiert. Hybridfunktionale sind im Quantum Espresso (QE)
Programmpaket implementiert. Rechentechnische Details sind in Kapitel 4.2.1 nachzu-
lesen. Alle Rechnungen erfolgen auf einem 2x4x4 k-Punkt Gitter fiir die Losung der
Kohn-Sham-Gleichung und auf einem 1x2x2 Gitter fiir die Auswertung des exakten
Austauschfunktionals. Berechnungen der phononischen Frequenzen und Polarisationsvek-
toren erfolgen aus Konsistenzgriinden innerhalb des QE-Programmpaketes im DFPT-
Formalismus mit dem PBEsol-Funktional. Tests mit den PBEsol-Auslenkungsmustern der
beiden hochsten entarteten Phononenmoden zeigen, dass ihr ZPR-Beitrag auch bei den
HSEO06-Hybridfunktionalen nicht voneinander abweicht (unter 0.1 meV) und die PBEsol-
Moden somit eine sehr gute Naherung fiir die HSE06-Auslenkungsvektoren liefern. Die
Phononenfrequenzen an L weichen durchschnittlich um 2.6 und héchstens um 4.7 cm™?
von den mit ABINIT und demselben Formalismus berechneten ab. Der mit dem PBEsol-
Funktional berechnete Beitrag zur ZPR an I' aufgrund des L. g-Punktes betragt 0.154 eV
fiir das oberste Valenzband und -0.085 eV fiir das unterste Leitungsband. Die Beitrige
sind um 21 meV niedriger bzw. 2 meV hoher ist als die Werte desselben Verfahrens in
ABINIT. Damit ist die Konsistenz der Rechnungen innerhalb der beiden Programmpakete
hinreichend zufriedenstellend, wobei die leichten Abweichungen durch die Verwendung un-
terschiedlicher Pseudopotentiale und leicht abweichender Gitterkonstanten erkléirt werden

konnen.

Mit dem HSE06-Hybridfunktional und den mit den PBEsol-Funktional berechneten pho-
nonischen Auslenkungen und Eigenfrequenzen erhoht sich der Beitrag zur ZPR der Band-
kantenzustdnde um 0.229 eV fiir die beiden entarteten obersten Valenzbénder und um
-0.120 eV fiir die beiden untersten Leitungsbidnder. Die Erhéhung um 49 % bzw. 41 %
entspricht den Beobachtungen von Antonius et al. [132], die den Vergleich von DFPT und
finite-Differenzen-Methode innerhalb der selbstkonsistenten G'W-Néaherung vollzogen ha-
ben und einen Anstieg der ZPR bei Diamant um mehr als 40 % vorhersagten. Allerdings
stellt der mit HSE06 berechnete Wert nur eine obere Schranke der Korrektur dar, da
Abschirmungseffekte aufgrund der mit Hybridfunktionalen unzureichend beschriebenen
Korrelation nicht korrekt beriicksichtigt sind [132]. Insgesamt lassen sich daher die Feh-
lerbalken der DFPT-AHC und der experimentellen Extrapolation auf mindestens 0.1 eV
abschétzen, wobei die Abweichung in beiden Féllen nach oben stattfindet. Es ist daher
nicht unwahrscheinlich, dass die tatséchliche Nullpunktsrenormierung bei etwa 0.5 eV
liegt.

Mithilfe der Bose-Einstein-Verteilung ist es einfach, neben der ZPR auch die Tempera-
turabhéngigkeit der Elektron-Phonon-Kopplung zu beriicksichtigen. Die aktuelle tempe-
raturabhingige Anderung der Bandliicke ist in Abb. 3.12 zusammen mit den ab initio-
Molekulardynamik-Ergebnissen (AIMD) von Riefer et al. in einer 3x3x3 Superzelle [154]
und den Messungen der fundamentalen Absorptionskante von Redfield et al. dargestellt.
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Abbildung 3.13: Elekronische Zustandsdichte ohne Elektron-Phononen-Kopplung (e-Ph) und mit ZPR
und temperaturabhingigen Korrekturen.

Die Kurve von Riefer et al. kann methodisch bedingt keine Nullpunktsschwingungen der
Atome miteinbeziehen, jedoch anharmonische Effekte, die der aktuellen AHC-Methode
verborgen bleiben. Daher vermogen die Ergebnisse aus der Molekulardynamiksimulati-
on die experimentellen Ergebnisse fiir niedrige Temperaturen nicht zu beschreiben. Im
Gegensatz dazu stellen die aktuellen Ergebnisse eine sehr gute Approximation fiir (rela-
tiv) niedrige Temperaturen bis etwa 500 K dar. Bei Raumtemperatur kann man somit
von einer Reduzierung der PBEsol-Bandliicke von 0.5 eV ausgehen. Fiir hohe steigende
Temperaturen weichen die aktuellen Ergebnisse zunehmend von der experimentellen Kur-
ve bzw. dem Fit ab, da anharmonische Effekte stirker zum Tragen kommen. Dies wird
dadurch verdeutlicht, dass die sich Beschreibung der anharmonischen Effekte durch die
AIMD bei 900 K als kompatibler mit dem experimentellen Fit erweist. Die Anderung der
elektronischen Zustandsdichte aufgrund der Elektron-Phonon-Kopplung ist in Abbildung
3.13 illustriert. Die Reduktion der Bandliicke ist Folge der allgemeinen Verbreiterung der
elektronischen Béander.

3.7 Zusammenfassung

In diesem Kapitel wurden Rechnungen innerhalb der Dichtefunktionaltheorie und Dichte-
funktionalstorungstheorie durchgefiihrt, um die strukturellen Eigenschaften und die pho-
nonische Bandstruktur von LiNbOj; und LiTaOj zu bestimmen. Die Genauigkeit von
LDA- sowie PBE-, PBEsol- und AMO05-Austauschkorrelationsfunktionalen beziiglich der
LN-Gitterparameter und Phononenfrequenzen wurde getestet. Unter ihnen war insbeson-
dere das PBEsol-Funktional fahig, experimentelle Gitterkonstanten und interne Parame-
ter zu reproduzieren und Phononenfrequenzen bei I' zuverlassig zu beschreiben. Durch
Fehleraufhebung aufgrund zu kleiner Gitterkonstanten bei LiTaO3 stimmten die Phono-
nenfrequenzen besser mit den experimentellen Werten iiberein als bei LiNbOg3. Im Fall
von LiTaO3 wurden zum ersten Mal die longitudinalen optischen Frequenzen bei I' be-
stimmt und somit die experimentell gefolgerte Zuordnung dieser Moden bestétigt [94].

Des Weiteren wurde bei beiden Materialien die volle Phononendispersion fiir die ferro-
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und paraelektrischen Phasen bei theoretischem Einheitszellvolumen sowie beim gréfieren
experimentellen Volumen nahe des Phaseniibergangs berechnet. Mit dem expandierten
Gitter ging eine Erhchung des internen x Parameters in der paraelektrischen Phase ein-
her, der im Fall von LN den im Vergleich zum Experiment zu kleinen Wert erhohte.
Das Vorliegen von imagindren Moden im gesamten reziproken Raum in der paraelektri-
schen Phase, wie es schon in fritheren Rechnungen vorausgesagt wurde [104, 107], ist ein
Zeichen eines Ordnung-Unordnungs-Phaseniibergangs bei beiden Materialien [107]. Der
Phaseniibergang wird von der niedrigsten imagindren A,, Mode getrieben, deren Aus-
lenkung ein Minimum in der elektronischen Gesamtenergie offenbart, die einen Grofteil
der strukturellen Energiedifferenz zwischen ferroelektrischer und paraelektrischer Phase
kompensiert. Thr Auslenkungsmuster gleicht dem der ferroelektrischen Verschiebung aller

Atome.

Die theoretisch berechnete spezifische Warmekapazitiat Cy, als Funktion der Temperatur
validiert die Resultate fiir die Phononendispersion in der ersten Brillouin-Zone. Bei LN
ist Oy in einem ausgedehnten Temperaturbereich in sehr guter Ubereinstimmung mit den
experimentellen Werten [136-138]. Auch die berechnete spezifische Warmekapazitét von
402 J kgt K~! fiir LiTaO3 [141] befand sich bei Raumtemperatur nah bei den experi-
mentellen Messungen, wobei sich jedoch die Grenzen der harmonischen Approximation

bei steigender Temperatur offenbarten.

Im Weiteren wurde die Phononendispersion verwendet, um die temperaturabhédngigen
freien Energien der ferro- und paraelektrischen Phase von LiNbO3 und LiTaO3 zu bestim-
men. Ein pragmatisches Modell, welches die Betrage der imaginédren Frequenzen in der
paraelektrischen Phase einbezieht, fand dabei Anwendung. Damit konnten untere Tempe-
raturgrenzen fiir die Phaseniibergéinge berechnet werden, die etwa 320 K (LN) bzw. 160 K
(LT) niedriger liegen als die experimentell bestimmten Curie-Temperaturen [9, 10].

Zum Schluss konnte die Kenntnis der Vibrationseffekte auf die elektronischen Eigenwerte
stark erweitert werden. Es wurde gezeigt, dass die Nullpunktsrenormierung der elektro-
nischen Bandstruktur betrachtlich ist und besonders nahe des Brillouin-Zonenzentrums
stark (sogar im Vorzeichen) vom phononischen Wellenvektor abhéngt. Die gut auskonver-
gierten Resultate fiir die ZPR offenbarten eine Reduktion der Bandliicke von LiNbO3 um
0.41 eV, die in exzellenter Ubereinstimmung mit dem Wert 0.40 ¢V war, der aus der tem-
peraturabhéngigen Verschiebung der fundamentalen Absorptionskante in [122] extrapo-
liert wurde. Sorgfiltige Fehleranalyse, die die Anwendung des HSE06-Hybrid-Austausch-
korrelationfunktionals einschloss, welches die Elektron-Elektron-Wechselwirkung besser
beschreiben sollte, ergab, dass dieser Wert sogar um bis zu 40 % hoher ausfallen konnte.
Wird die Temperaturabhéngigkeit in die aktuellen Ergebnisse mit einbezogen, ergibt
sich bei Raumtemperatur eine Verringerung der elektronischen Bandliicke aufgrund der
Elektron-Phonon-Kopplung von 0.5 eV mit dem PBEsol-xc-Funktional.

Die DFPT-AHC-Methode wird bisher nicht standardméflig angewendet. Der Grund dafiir
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liegt in dem teilweise enormen Aufwand, die Korrekturen der elektronischen Kohn-Sham-
Eigenwerte beziiglich der phononischen Wellenvektoren auszukonvergieren. Die Anzahl der
Arbeiten ist iibersichtlich und meistens auf einfachere Verbindungen beschriankt [155].
Die erfolgreiche Anwendung auf LiNbOj3 wird durch das freundliche Verhalten der g-

abhéangigen Korrekturen mit einem divergenten Verhalten lediglich bei I' begiinstigt.
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Kapitel 4

Defektstruktur und optische
Eigenschaften intrinsischer und

extrinsischer Punktdefekte in

Lithiumniobat

4.1 Einleitung

Kongruentes Lithiumniobat, welches durch die Czochralski-Methode gewonnen wird, weist
ein Li:Nb Verhéltnis von of 48.4:51.6 auf [156]. Somit liegt eine sehr hohe Konzentration
an intrinsischen Defekten vor, bei denen die Anwesenheit von Nb>T Substitutionsatomen
(Antisites) als direkte Ursache des Lithiummangels eindeutig bestétigt ist [157-159]. Um
Ladungsneutralitat zu gewéhrleisten, miissen eine Anzahl weiterer Defekte existieren, die
die iiberschiissigen positiven Ladungen kompensieren. Da ein Lif; Ton mit einer Nb?F An-
tisite ersetzt wird, liegen vier iiberschiissige negative Ladungen vor. Die Mechanismen der
Ladungskompensation und die genaue Zusammensetzung aller moglichen Typen intrinsi-
scher Defekte sind bis heute in letzter Konsequenz unklar. Verschiedene Ansétze wurden

in den letzten Jahrzehnten vorgestellt.

Auf Grundlage von Dichtemessungen schlugen Lerner et al. [4] 1968 vor, dass vier Lithium-
vakanzen (Vi;+) die Ladungsiiberschiisse einer Nb?T Antisite kompensieren (Li-Vakanz-
Modell). Kurz darauf wurde 1972 von Peterson et al. [157] ein weiteres Defektmodell auf
der Grundlage von Kernspinresonanzspektren (NMR) abgeleitet. In diesem sogenannten
Nb-Vakanz-Modell werden fiinf Nb?! Antisites von vier Niobvakanzen (Vi) kompensiert.
Neuere NMR-Messungen sowie Neudeutungen der alten NMR-Ergebnisse kamen wieder-
um zu dem Resultat, dass das Li-Vakanz-Modell wahrscheinlicher ist [160]. Strukturelle

Analyse mittels Rontgen- und/oder Neutronenpulverbeugung favorisierten entweder das
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Li-Vakanz- [159, 161, 162] oder das Nb-Vakanz-Modell [158].

Um die beiden widerspriichlichen experimentellen Befunde zu vereinen, schlug Smyth 1983
eine dquivalente Struktur fiir LN vor, in der es Regionen mit einer [lmenit-dhnlichen Stape-
lung der Kationen gibt [163]. Die Idee beruht darauf, dass das Nb-Vakanz-Modell, in dem
6 % der Lithiumpliatze durch Niobatome besetzt sind, mit dem dazu widerspriichlichen
Li-Vakanz-Modell, in dem nur 1% Antisites vorkommen, mithilfe der unterschiedlichen
Stapelfolgen in Ilmenit und normalen LN in Einklang gebracht wird. In Ilmenitregio-
nen, die bei der Auswertung von Messergebnissen (filschlicherweise) mit normalen LN
identifiziert werden, erscheint demnach ein Niobatom auf seinem regulédren Platz als ein
Antisiteatom. Aufbauend darauf untersuchten Donnerberg et al. [164] mittels semiem-
pirischer Rechnungen verschiedene Defektcluster und bestétigten die Moglichkeit dieses
Defekts. Kalorimetrische Messungen zeigen, dass diese Stapelfolge nur 0.1eV pro For-
meleinheit energetisch ungiinstiger als stochiometrisches Lithiumniobat ist [165]. Damit
wurde auch experimentell gezeigt, dass Regionen einer Ilmenit-dhnlichen Stapelung in

stochiometrischem LN prinzipiell vorkommen kénnen.

Ein alternatives Modell, welches neben den Antisites auch Zwischengitter-Niobatome im
nicht besetzten Sauerstoffoktaeder (Nb3") vorsieht und in dem wiederum Lithiumvakan-
zen der Ladungskompensation dienen, wurde 1994 von Zotov et al. [159, 166] vorgeschla-
gen. Unter verschiedenen untersuchten Modellen beschreibt dieses sowie das Li-Vakanz-
Modell in Réntgen- oder Neutronenpulverbeugungsmessungen die Struktur mit demselben
Signifikanzniveau des Bestimmtheitsmafles. Des Weiteren ist die Beobachtung von Leroux
et al. auf Bildern hochauflésender Elektronenmikroskopie erwahnenswert, auf denen klei-
ne, etwa 1 nm grofle Defektstrukturen zu sehen sind, die durch kleine NbyO5 Cluster
oder dem Nb-Vakanz-Modell erklért werden konnen. Eine Mischung der beiden Vakanz
Modelle schlugen Adbi et al. [167] vor, was die Auswirkung auf Phononenfrequenzen und
-ddmpfung in Raman-Messungen bei unterschiedlicher Stochiometrie erklért.

Heutzutage ist das Li-Vakanz-Modell als hauptséchliche Defektstruktur in CLN iiber-
wiegend akzeptiert. Es wird aulerdem von Dichtefunktionaltheorie-Rechnungen sowohl
unter Verwendung eines GGA [168] als auch eines Hybridfunktionals [169], welches die Be-
schreibung der Austauschkorrelationsenergie verbessern soll, unterstiitzt. Die Bildung von
Niobvakanzen kann jedoch nicht ausgeschlossen werden [170, 171] und einen zusétzlichen
Mechanismus zur Ladungskompensation ausmachen. Die Anzahl der Studien zeigt die
Schwierigkeit einer genauen Strukturbestimmung auf mikroskopischer Ebene. Wie auch
immer die tatsédchlichen Defektcluster beschafften sind, ist zumindest die Tatsache gewiss,
dass die Defektstruktur des kongruenten Materials klar vom idealen stéchiometrischen LN
abweicht und die optischen Eigenschaften beeinflusst. Letztere werden gewhnlich mit dem
Polaronenmodell beschrieben [6].

Kleine elektronische Polaronen bilden sich, wenn ein Elektron durch die kurzreichweitige
Wechselwirkung des Ladungstrigers mit dem umliegenden Gitter an einer Stelle einge-
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fangen wird. Durch die Coulomb-Wechselwirkung werden gebundene Polaronen vor allem
an positiv geladenen Gitterdefekten lokalisiert, wo die zusétzliche Stabilisierung durch
Gitterverzerrungen ihren polaronischen Charakter ausmachen. Sowohl die metastabilen
gebundenen Polaronen mit einem thermisch induzierten oder photoangeregten Peak um
1.64 eV als auch die gebundenen Bipolaronen, die durch einen breiten Peak im Absorpti-
onsspektrum um 2.5eV charakterisiert sind, dominieren die optischen Eigenschaften von
Lithiumniobat [6, 172, 173]. Schirmer et al. untermauern diese Identifikation mit einer
Vielzahl von Anhaltspunkten, die andere alternative Erkldrungen dieser Absorptionspeaks
unwahrscheinlich erscheinen lassen [6]. Dabei wird angenommen, dass Nby; Antisites bzw.
Nbp;—Nbyy, Paare fiir die Bildung von Polaronen bzw. Bipolaronen verantwortlich sind.
Diese Zuordnung kann jedoch im Falle der Bipolaronen experimentell nicht direkt nachge-
wiesen werden, da die diamagnetischen Bipolaronen in den (paramagnetischen) Elektron-
spinresonanzmessungen unsichtbar sind. Auflerdem fehlt bisher eine vollstéindige theo-
retische Untersuchung der intrinsischen Defekte mit ihren optischen Eigenschaften, die
iiber die Unabhéngige-Teilchen-Approximation (IPA) hinausgeht. Bisherige Rechnungen
beschrankten sich auf reine DFT-Berechnungen der Elektronenstruktur gebundener Po-
laronen an Nby; Antisites im idealen Gitter [174], wobei das géngige Polaronenszenario
von Schirmer et al. bestétigt wurde. Optische Antwortfunktionen innerhalb der TPA wei-
sen auflerdem eine optische Absorption durch Polaronen nach [169], jedoch fehlen in der
theoretischen Beschreibung die starken Vielteilcheneffekte in Lithiumniobat [149] oder an
lokalisierten Defektzustédnden im Allgemeinen [175]. Die theoretische Auseinandersetzung
mit den strukturellen und elektronischen Eigenschaften der Punktdefekte in LN hinkt den

technologischen Anwendungen somit weit hinterher.

Neben den intrinsischen Defekten sind auch extrinsische Verunreinigungen von Lithium-
niobat von Interesse. Diese werden gezielt herbeigefiihrt, um die optischen Eigenschaften
zu justieren. Um die Anwendung von LN als Wellenleiter moglich zu machen, kénnen
eine Menge verschiedener Metalle in das Material eindiffundiert werden. Diese Arbeit fo-
kussiert sich dabei auf Titan, da es als einziger bekannter Dopand den ordentlichen und
auBerordentlichen Brechungsindex anhebt [176], wobei die photorefraktive Empfindlich-
keit jedoch nicht direkt erh6ht wird. Damit sind Anwendungen wie verlustarme Wellenlei-
ter fiir eine Polarisation parallel und orthogonal zur Oberfliche der Wellenleiterstruktur
realisierbar. Die Einbringung von Titan hat einen grofien Effekt auf die optischen und
elektro-optischen Eigenschaften in Wellenleitern [6]. Trotz dieser technischen Anwendun-
gen sind die mikroskopischen Eigenschaften vieler Dotierungsstoffe wie Ti, Fe, usw. un-
bekannt. Elektronenspinresonanz- und Elektron-Kern-Doppelresonanz-Messungen in re-
duzierten Proben zeigen Signale, die Ti** Ionen auf Nb Gitterplitzen zugeordnet werden
kénnen [177, 178], wiahrend Rontgenabsorptionsmessungen direkt bei (XANES) oder fer-
ner (ENDOR) der Absorptionskante auf Ti*" Tonen auf Li Plitzen hinweist [179]. Auch
weitere experimentelle Studien favorisieren entweder das Tiy, [180, 181] oder das Tiyy;
[182] Substitutionmodell, bzw. eine Kombination der beiden [183]. Es wurde spekuliert,
dass die Abhéngigkeit des gewohnlichen Brechungsindexes von der Ti-Konzentration von
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einer konzentrationsabhingigen Verschiebung der Titanionen in der xy-Ebene beeinflusst
wird [184], ein eindeutiger Beweis fehlt jedoch. Ein akzeptiertes (theoretisches) Modell fiir
die Titaneinbringung in LN fehlt immer noch [185].

Aufgrund der Notwendigkeit von grofien Superzellen bei der Modellierung von Punkt-
defekten ist die Berechnung von Quasiteilchenenergien und exzitonischen Effekten in-
nerhalb der GW-Néherung bzw. durch Losung der Bethe-Salpeter-Gleichung unmdoglich.
Die Berechnung von optischen Spektren mittels TDDFT, die fiir dieses Szenario und
allgemein den rechnerischen Aufwand stark reduziert, ist hier eine ernstzunehmende Al-
ternative, da durch die Einfithrung des LRC-Kernels exzitonische Effekte in qualitati-
ver Ubereinstimmung mit der Bethe-Salpeter-Gleichung beschrieben werden konnen [92].
Ziel dieses Kapitels ist es, die atomare und Elektronenstruktur der intrinsischen und
extrinsischen Defekte in unterschiedlich grofien Superzellen zu berechnen, wobei diese
durch isolierte Punktdefekte modelliert werden. Explizit sind dies in stochiometrischen
LN Nby; Antisites, Nby Zwischengitteratome, optional gepaart mit einer benachbarten
Lithiumvakanz sowie Nby; Antisites in LN mit Ilmenitstruktur fiir die intrinsischen Defek-
te. AuBerdem ermoglichen Tiy; Substitutionsatome die Modellierung des Ti-dotierten LNs.
Damit entfillt es, komplette Defektcluster zu modellieren und eine uniibersichtliche Viel-
zahl an moglichen Ladungskompensationsszenarien zu beriicksichtigen. Als zweiter Schritt
werden die optischen Eigenschaften mittels TDDFT-LRC untersucht. Dies ermdglicht
den Vergleich mit optischen Messungen und damit mit experimentellen Daten zur (fre-
quenzabhéngigen) dielektrischen Funktion, optischen Absorption, Reflexion und zum Bre-
chungsindex. Somit kann ein vollstindiges atomistisches Bild iiber Polaronen und Bi-
polaronen gezeichnet werden und die Plausibilitat der grofitenteils akzeptierten Theorie
diesbeziiglich von Schirmer et al. iiberpriift werden. Des Weiteren soll das Verstédndnis
von nicht reduzierten, Titan eindiffundierten Lithiumniobat, das den Einsatz in optischen
Wellenleitern ermdoglicht und welches primér mit der Tip; Ersetzung arbeitet, auf mikro-
skopischer Ebene erweitert werden. Ti*T Ionen auf Niob-Gitterplitzen spielen in dieser
Betrachtung eine untergeordnete Rolle, da schnell gezeigt werden kann, dass dieses Sze-
nario selbst bei hoher Ti-Konzentration entgegen den experimentellen Beobachtungen bei
Ti-Eindiffusion fast zu keinem Anstieg des Brechungsindexes fiihrt.

4.2 Struktur der Einheitszelle und der Punktdefekte

4.2.1 Rechentechnische Detalils

Da einige Parameter fiir die Erzeugung der Pseudopotentiale, die in ABINIT verwendet
wurden, unbekannt sind, werden fiir die Rechnungen im Quantum Espresso (QE) Pro-
grammpaket [57] andere orthogonalisierte normerhaltende Vanderbilt-Pseudopotentiale

nach Hamann verwendet. Bei ihrer Konstruktion werden jedoch dieselben Zustédnde als
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Valenzelektronen beschrieben wie im letzten Kapitel vorgestellt. Zusétzlich werden fiir
Titan die 3s, 3p, 3d und 4s Orbitale explizit in die Rechnungen mit eingebunden. Das

PBEsol-Austauschkorrelationsfunktional wird fiir die weiteren Rechnungen beibehalten.

Auch bei den folgenden Rechnungen wird wieder sorgfiltig auf die Konvergenz der re-
levanten Groflen geachtet. Die elektronische Gesamtenergie éndert sich bei einer Ab-
schneideenergie von 1150 Elektronenvolt im Bereich von 5 meV beziiglich des auskon-
vergierten Wertes. Insbesondere variieren die relaxierten Gitterkonstanten und atomaren
Positionen bei diesem Konvergenzparameter im Bereich kleiner als 10~ A. Der k-Punkt
Satz besteht aus einem 4x4x4 Monkhorst-Pack-Gitter, mit dem sich die elektronische
Gesamtenergie hin zu héheren Punktdichten praktisch nicht mehr dndert. Fiir die Si-
mulation von Punktdefekten wird auf Superzellen verschiedener Grofle zuriickgegriffen,
um unterschiedliche Defektkonzentrationen zu realisieren. Dabei ergibt ein Defektatom
in der 80 atomigen 2x2x2 Superzelle eine Defektkonzentration von 1.16 x10*' Atomen
pro Kubikzentimeter, wiahrend durch ein Defektatom in der 270 atomigen 3x3x3 Su-
perzelle eine Konzentration von 0.35x10*! Atomen pro Kubikzentimeter erreicht werden
kann. Zusétzlich kann mit drei Fremdatomen in der 3x3x3 Superzelle die Konzentration
von 1.05x10?" Atomen pro Kubikzentimeter umgesetzt werden. Fiir das Sampling der
nun kleineren Brillouin-Zone wird in beiden Fiéllen ein 2x2x2 k-Punkt-Gitter fiir beide
Superzellgrofien verwendet. Eine Superzellenkorrektur fiir geladene Defekte, welche die
kiinstliche Defekt-Defekt-Wechselwirkung korrigiert, wird nicht verwendet.

Um die Lokalisierung der Elektronen der d-Orbitale in die Rechnungen einzubeziehen, die
insbesondere bei den Niob- und Titandefektatomen von Interesse sind, wird die DET+U
Methode verwendet. Damit wird die bekanntermafien problematische Behandlung der
korrelierten Elektronen in der DFT als Mittelfeldtheorie korrigiert und somit auch die
Unterschitzung polaronischer Effekte [174, 186, 187]. Die Anpassung des U-Parameters
erfolgt im Vergleich zu vorhergehenden Arbeiten, in denen die Gitter- und Elektronen-
struktur in Abhéngigkeit verschiedener U bestimmt wurde [174, 187, 188]. Diese legen die
Verwendung von U = 4 fiir die beiden Defektatome nahe. Normalerweise ergibt sich durch
die Lokalisierung eines Defektenergieniveaus eine Verschiebung zu hoheren Energien auf-
grund der Coulomb-Abstoflung. Im Falle von Polaronen wird dieser Effekt aufgehoben und
sogar umgekehrt, da die frei werdende Energie aufgrund der mit der Lokalisierung ein-
hergehenden Gitterrelaxation die Polaronenniveaus absenkt. Die DFT+U Methode wird
in dieser Arbeit ausschliefllich auf das Defektatom und, im Falle von Bipolaronen, seines
nichsten Nachbarn angewendet. Rechnungen ohne DF'THU erzielen bereits sehr gute Re-
sultate beziiglich der atomaren Struktur, weshalb eine zusétzliche Korrektur aller Niob
d Niveaus nicht als zielfithrend erachtet wird. Um die Beschreibung der elektronischen
Bandstruktur zu verbessern, wird das HSEO6-Hybridfunktional verwendet. Unter Beibe-
haltung der Konvergenzparameter ist die elektronische Gesamtenergie auskonvergiert bis
zu einem Wert kleiner als 35 meV und innere atomare Koordinaten lassen sich bis auf
eine Genauigkeit von 1073 A bestimmen. Die Wahl des k-Punkt-Gitters fiir die Auswer-
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Methode a/A c/A u v w z

PBEsol 5.133 13.828 0.0108 0.0357 0.0191 0.0324
HSE06 5.133 13.828 0.0098 0.0376 0.0195 0.0308
Expt. [5] 5.151 13.876 0.0095 0.0383 0.0192 0.0329
ABINIT,PBEsol 5.149 13.860 0.0111 0.0355 0.0187 0.0325

Tabelle 4.1: Berechnete Gitterkonstanten von stochiometrischen LN im Vergleich zu experimentellen
Befunden von Boysen et al. [5] und zu den Ergebnissen, die mit ABINIT erzielt wurden (vgl. Kapitel
3.3).

tung des exakten Austausches féllt auf ein 2x2x2 Untergitter der Einheitszelle, welches
in der Superzelle erlaubt, die Berechnung auf den jeweiligen k-Punkt zu beschranken und
auf diese Weise den enormen Rechenaufwand handhabbar zu machen. Dies gelingt, da
die Grole der Brillouin-Zone auf ein Achtel reduziert wird und elektronische Eigenwerte
der neuen k-Punkte aus der Zusammenfaltung von acht unterschiedlichen k-Punkten der
alten Brillouin-Zone der Einheitszelle entstehen. Die DFT- und Hybrid-DFT-Rechnungen
werden fiir das einfach besetzte Polaronenniveau spinpolarisiert durchgefiihrt.

Mittels des BFGS-Algorithmus bzw. gedampfter Molekulardynamik bei den grofiere Zel-
len werden die relaxierten Gitterkonstanten und atomaren Koordinaten ermittelt. Um
mogliche Auswirkungen von Defekten auf die Gitterkonstanten zu vermeiden und bes-
sere Vergleichbarkeit zwischen Einheitszelle und Superzellen zu gewéhrleisten, werden in
den Superzellen lediglich die internen Koordinaten der Atome relaxiert. Bei allen HSE0G-
Rechnungen findet ebenfalls lediglich die Relaxation der Atome unter Verwendung der
PBEsol4+U Gitterkonstanten von SLN statt. Die Auffindung der Gleichgewichtsgeometrie
wird stets mit einer Genauigkeit von mindestens 1072 eV/A beziiglich der Konvergenz

der Hellmann-Feynman-Kréfte durchgefiihrt.

4.2.2 Einheitszelle

Das Ergebnis der Strukturbestimmung fiir die Einheitszelle fiir stochiometrisches Lithium-
niobat (SLN) ist in Tab. 4.1 zusammengefasst. Es zeigt sich, dass die Gitterparameter im
Vergleich zu experimentellen Messungen minimal zu klein abgeschétzt werden (-0.35%),
das Verhéltnis a : ¢ aber korrekt wiedergegeben wird und es keine Verzerrungen gibt. Das
zeigt sich an den internen Parametern u, v, w und z, die in sehr guter Ubereinstimmung

zum Experiment und den ABINIT-Rechnungen aus Kapitel 3.3 stehen.

Die strukturellen Ergebnisse auf Basis der Hybridfunktional-Rechnungen weisen im Ver-
gleich ebenfalls sehr gute Ubereinstimmungen beziiglich der inneren Parameter auf. Die
elektronische Bandstruktur ist in Abb. 4.1 dargestellt. Die direkte (indirekte) Bandliicke
betrigt 3.53 (3.50) eV bei PBEsol und 5.17 (5.15) eV bei HSE06, was einer Offnung
der Bandliicke um 1.7 eV entspricht. Dies sind fast dieselben Werte wie aus einer ver-
gleichbaren HSE06-Rechnung, die eine Bandliicke von 5.16 (5.15) eV lieferte [154]. Des

79



Energie (eV)

Abbildung 4.1: Elektronische Bandstruktur von stéchiometrischem Lithiumniobat. Das HSE06-Hybrid-
Austauschkorrelationsfunktional 6ffnet die fundamentale Bandliicke beziiglich PBEsol, weist jedoch eine
fast identische Dispersion auf.

Weiteren liegt dieser Wert in sehr guter Ubereinstimmung mit dem Ergebnis elaborierter
HSE06+QSGW, Rechnungen, die unter Einbeziehung der Elektron-Phonon-Kopplung bei
Raumtemperatur eine Bandliicke von 5.4 eV ergaben [154].

4.2.3 Intrinsische Punktdefekte

Die intrinsischen Defekte in Lithiumniobat weisen eine so hohe Anzahl an Nby; Antisites
auf — vermutlich im Bereich von 1% [5] — 6% [158] — dass Simulationen mit realistischen De-
fektkonzentrationen in iiberschaubaren Superzellgrofien moglich sind. Die zwei verwende-
ten Superzellen erméglichen die Konzentrationen von 6.7% (2x2x2) und 1.9% (3x3x3).
Wenn man die Superzellen mit Punktdefekten mit dem kongruenten Material identifizie-
ren mochte, ist in der Literatur die Angabe des Verhéltnisses Li:Nb bzw. Li:(Li+Nb) der
Anzahl der betreffenden Atome geldufig. Es sei noch einmal angemerkt, dass beim Ver-
gleich mit dem kongruenten Material Achtsamkeit geboten ist, da im realistischen Material
weitere Defektarten auftreten, die eine Ladungskompensation erméglichen, die hier aber
vernachlissigt werden. Um Ubersicht iiber die verschiedenen Zahlenwerte zu bewahren,
die denselben Sachverhalt beschreiben, befindet sich in Tab. 4.2 eine Zusammenfassung.
Ein exaktes Li:Nb Verhéltnis beziiglich experimenteller Ergebnisse wird somit am ehes-
ten mit einem Atom in der 3x3x3 Zelle modelliert. Je nach Anzahl tatsidchlicher Nby;
Antisites bietet ein Atom in der 2x2x2 Superzelle jedoch auch einen zutreffenden Blick
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Anzahl Defektatome pro Superzelle Expt.
1in 2x2x2 3 in 3x3x3 1in 3x3x3

Li:Nb 88.24% 89.47% 96.36% 93.72% [156]
Li:(Li+Nb) 46.88% 47.22% 49.07% 48.84% [156]
Nbry,;:Li 6.67% 5.88% 1.89% 1% [5] bzw. 6% [158]
Defekte pro cm? 1.16 x10?%! 1.05 x102%! 0.35 x10%!

Tabelle 4.2: Defektkonzentrationen in unterschiedlichen Darstellungsvarianten. Die unterschiedlichen
experimentellen Angaben beziiglich Nby,;:Li ist den unterschiedlichen Mechanismen der Ladungskompen-
sation — also Nb-Vakanz- oder Li-Vakanz-Modell — geschuldet. Die letzten beiden Zeilen kénnen fiir die
Umrechnung der Titankonzentration in Lithiumniobat genutzt werden, wobei dort auch mit 3 Atomen
in 3 der 3x3x3 Zelle gerechnet wird. Die Angabe der intrinsischen Defekte in Anzahl pro Raumeinheit
ist nicht iiblich.

auf das Material.

Da sich friih abzeichnete, dass Modelle, die nur auf den Nby; Antisitedefekten basieren, im
Rahmen der verwendeten Theorie nicht konsistent die experimentellen Befunde beschrei-
ben konnten, findet hier eine Erweiterung der Studie auf alle in der Literatur vermerk-
ten Defekte, die die Bildung von Polaronen und Bipolaronen zulassen, statt. Zusétzliche
Moglichkeiten sind dabei Nby; Antisitedefekte in LN mit einer Ilmenit-dhnlichen Stape-
lung der Atome (Nb—V-Nb-Li-V-Li) — im weiteren als Ilmenit LN (ILN) bezeichnet —
sowie ein Niob Zwischengitteratom auf einer strukturellen Vakanz V. V ist hier nicht
als Fehlstelle des Kristallgitters aufzufassen, sondern als nicht besetzter Sauerstoffokta-
eder. Im Falle des Zwischengitteratoms ist es aufgrund des Li Mangels im kongruenten
LN sinnvoll, nicht nur den Nby Punktdefekt selbst, sondern auch ein Nby—Vy,; Defekt-
paar zu betrachten, in Ubereinstimmung mit Zotov et al. [159]. Zur Ubersicht iiber die
analysierten Defektmodelle siehe Abb. 4.2.

Dank der Ahnlichkeit von SLN und ILN kann defektfreies ILN innerhalb der zehnatomi-
gen Finheitszelle von SLN simuliert werden. Die Ergebnisse der Strukturrelaxation zeigen
aufgrund der unterschiedlichen atomaren Anordnung deutlich hohere Gitterkonstanten
von ay = 5.198 A und cy = 14.197 A. Dies bedeutet einen Anstieg von 1.3% fiir ay und
2.7% for cy im Vergleich zu SLN. Das HSE06-Funktional 6ffnet die direkte Bandliicke vom
PBEsol-Wert von 4.0eV auf 5.6 eV. Hinsichtlich der Gesamtenergie von SLN und ILN er-
gibt sich eine Grundzustandsenergiedifferenz von 0.24 eV (PBEsol) und 0.21 eV (HSE06)
pro Einheitszelle. Dies ist in sehr guter Ubereinstimmung zu experimentellen Ergebnis-
sen von Mehta et al. [165], die den Enthalpieunterschied auf 0.20 + 0.08 eV bestimmten,
wéahrend frithere Rechnungen auf Grundlage eines ionischen Schalenmodells 0.1eV pro
Einheitszelle ergaben [164].

Der Ladungszustand des Lithiumatoms in Lithiumniobat betragt +1, da das 2s Valenz-
elektron an die umliegenden Sauerstoffatome abgegeben wird. Die Substitution mit einem
Niobatom unter der Bedingung des gleichen Valenzzustandes erfordert ein +5-fach gelade-
nes Niobatom Nb>T. Damit ergeben sich vier iiberschiissige Elektronen, die aus der Super-

zelle entfernt werden. Insbesondere sind die 4d-Orbitale des Niobatoms damit unbesetzt
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(d)

Abbildung 4.2: Defektfreies stéchiometrisches LN (a) ist charakterisiert durch die Nb—V-Li Stapelung
(von unten nach oben) der Kationen innerhalb der Sauerstoff Oktaeder. Intrinsische Defekte konnen
(b) isolierte Nby; Antisites und (c) Nby Zwischengitteratome auf strukturellen Vakanzen V im leeren
auerstoff Oktaeder, sowie (d) ein Defektpaar aus dem Zwischengitteratom und einer Li Vakanz (Nby—

S

VL

Stapelung der Kationen, die jeweils zwei benachbarte Atome einer Sorte beinhaltet. Als intrinsische
Defekte werden dort Nby; Antisites untersucht (f). Die Oktaeder, auf die sich Tabellen 4.3, 4.4 und 4.5
bezichen, sind zur besseren Ubersicht mit einem Pfeil markiert.

) sein. Die Ilmenitstruktur (e) ist &hnlich der Struktur von Lithiumniobat, jedoch mit einer anderen
P
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(4d%). Da die Superzelle nun +4-fach geladen ist, wird eine homogene negative Hinter-
grundladung, die sich iiber die Superzelle zu -4e integriert, zur Ladungskompensation ein-
gefithrt. Damit entféllt die Notwendigkeit, ganze Defektcluster zur Ladungskompensation
zu modellieren. Derselbe Mechanismus gilt fiir das Nby—Vy; Defektpaar. Fiir den Fall des
Zwischengitteratom-Punktdefekts Nby wird ebenfalls der 4d° Ladungszustand angenom-
men. Hierbei entfillt allerdings die +1-fache Teilkompensation der Uberschussladungen
durch eine Lithiumvakanz und es wird mit einer +5-fach geladenen Superzelle gerechnet,

wobei der Ladungsiiberschuss wieder durch Hintergrundladung kompensiert wird.

Die Ergebnisse der Strukturbestimmung sind in Tab. 4.3 zusammengefasst. Diese Werte
beziehen sich auf die 2x2x2 Superzelle; Berechnungen mit dem PBEsol-Funktional fiir
die grofere 3x3x3 Superzelle ergeben lediglich kleine Anderungen, was bestéitigt, dass
die lokalen Deformationen des Kristallgitters nicht wesentlich von der Zellgrofie abhéngig
sind. Im Vergleich mit den Lij;~O; und Li;;~O4 Abstdnden in SLN ist es zu beobachten,
dass die Sauerstoffatome in defektbehafteten Systemen an die Nby; Antisites bzw. die
Zwischengitteratome Nby heranriicken. Die resultierenden Absténde und somit auch die
Volumenkontraktion des Sauerstoffoktaeders sind praktisch identisch fiir Nby; und Nby—
Vi, sowie fiir Nby; in ILN. Dies ist hinsichtlich der Zwischengitteratome bemerkenswert,
da in der Literatur oft angenommen wird, dass schlicht zu wenig Platz fiir die Bildung
dieses Defektes herrscht [189]. Dies gilt auch fiir den Nby Punktdefekt, dessen Abstédnde
1.980 und 1.970 A zu den Sauerstoffatomen nicht kleiner sind als die 1.916 A des Nbry;
Defekts. Auflerdem ist der Lij;—O; Abstand im stochiometrischen Ilmenit LN deutlich
grofer als in der normalen SLN Stapelung, was unter den betrachteten Strukturen zum

grofften Sauerstoffoktaeder fiihrt.

Das néchstgelegene Niobatom Nb,., in der letzten Spalte von Tabelle 4.3 ist fiir alle
Konfigurationen iiber dem Nb Defektatom angesiedelt mit Ausnahme der Strukturen mit
einem Nby Zwischengitteratom (siehe Abb. 4.2). Dort ist es unterhalb gelegen, da es sich
in einer anderen Stapelschicht befindet. Damit sind die Rollen der O und O Atome ober-
und unterhalb des Defekts ebenfalls vertauscht. Werden alle Defektstrukturen miteinander
verglichen, verzeichnen die Nb—Nb,,.,, Paare der Zwischengitteratome kleinere Absténde
als die der Antisites. Das liegt daran, dass sich die Niobatome in der ungestérten Struk-
tur entlang der c-Achse aus der zentrosymmetrischen Position des Sauerstoffoktaeders in
Richtung des leeren Sauerstoffoktaeders anordnen. Dieses ist jedoch nun mit einem Zwi-
schengitteratom besetzt. Die Situation wird im Falle des Nby Punktdefekts verschérft, da
sich ein zusétzliches Atom entlang der c-Achse befindet und somit der Raum zusétzlich
beengter wird.

Die interatomaren Absténde, die mit dem HSE06-Funktional berechnet werden, stimmen
gut mit den PBEsol-Werten {iberein, wohlbemerkt, dass dieselben Gitterkonstanten ver-
wendet werden. Auflerdem stimmen die berechneten Werte, wie oben anhand der internen

Parameter u bis z gesehen, gut mit den experimentellen Werten fiir SLN [9], sowie mit
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PBEsol X-0, X-O4 X-Nbpan

Lir; (SLN) 2.050 2.238 3.009
2.068 2.238 3.010 [9]
Nbr; (SLN) 1.916 2.086 3.084
3.032 [174]
Nby 1.980 1.970 2.801
Nby—VLi 2.092 1.918 2.927
Lir; (ILN) 2.141 2.240 3.014
Nbr; (ILN) 1.935 2.069 3.058
HSE06 X-0, X-O X-Nbyan
Lir; (SLN) 2.051 2.251 3.031
Nby; (SLN) 1.906 2.088 3.105
Nby 1.974 1.966 2.811
Nby-Vi 2.088 1.911 2.927
Lir; (ILN) 2.138 2.268 3.042
Nby; (ILN) 1.919 2.080 3.074

Tabelle 4.3: Mit den PBEsol- und HSEO06-Funktionalen berechnete interatomare Abstédnde in der 2x2x2
Superzelle in A, verglichen mit experimentellen Werten. X bezeichnet Lip; im Fall von SLN und ILN und
fiir die Antisites Nby; bzw. Zwischengitteratome Nby bei den anderen beiden Defekten. Die gelisteten
Atome sind im Oktaeder von Abb. 4.2 mit einem Pfeil markiert. Die Symbole O, O und Nbyay, bezeich-
nen, bezogen auf Abb. 4.2, Sauerstoffatome unterhalb und oberhalb von X, sowie das néchstliegendste
Niobatom. Die elektronische Konfiguration des Niob Defektatoms ist Nb5T (4d°). Zum Vergleich sind die
Werte aus Neutronenstreuungsexperimenten [9] und DFT+U mit Ueg = 4€V [174] angegeben.

den DFT+U Ergebnissen von Nahm und Park [174] fiir die Nby; Antisites in SLN iiberein.
Bei allen Defekten tritt eine teils deutliche Reduktion der HSE06-Bandliicke auf, da die
Leitungsbandkante Nb-4d-Charakter hat. Sie betrigt fiir die Nby; (SLN), Nby, Nby—Vy;
bzw. Nby; (ILN) Defekte 4.90, 4.60, 4.68 bzw. 4.89¢V.

4.2.4 Polaronen

Ein Polaron entsteht, indem ein Ladungstréger unter kurzreichweitiger Wechselwirkung
an einer Stelle im Kristallgitter eingefangen wird. Dieser kann mit einer bestimmten Wahr-
scheinlichkeit zu einer anderen Gitterstelle wechseln (hopping). Bei kleinen Polaronen ist
die sich daraus ergebende Gitterverzerrung lokal auf eine Einheitszelle begrenzt. In Li-
thiumniobat kommen zwei Arten von Polaronen vor. Das freie Polaron kann sich durch
die selbstinduzierte Gitterverzerrung und die resultierende Potentialmulde an einem re-
guldren Niobatom bilden (self-trapping) und wird in dieser Arbeit nicht weiter betrachtet.
Beim gebundenen Polaron wird ein Elektron von einem positiv geladenen Defektion durch
sein Defektpotential eingefangen, wobei es wiederum zusétzlich durch die Gitterdeforma-
tion stabilisiert wird [6]. Wegen der Kopplung an einen Gitterdefekt liegt hier eine sehr
weitgefasste Definition des Polaronenbegriffs vor, der aufferhalb der Anwendung in Lithi-
umniobat weniger gebréauchlich ist. Es liegt jedoch eine starke Verwandtschaft der beiden

Mechanismen in LN vor, sodass sich dieselben physikalischen Grundlagen anwenden lassen
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PBEsol X-0, X-O4 X-Nbpan

Nby; (SLN) 2.000 2.097 2.977
2.890 [174]
Nby 2.004 2.028 2.629
Nby-Vi 2.088 1.981 2.720
Nbr; (ILN) 2.036 2.093 3.053
HSE06 X-0, X-Or X-Nbypan
Nby; (SLN) 1.997 2.096 3.001
Nby 1.989 2.026 2.611
Nby—Vy, 2.080 1.968 2.694
Nby; (ILN) 2.028 2.092 3.060

Tabelle 4.4: Interatomare Abstinde intrinsischer Defekte in SLN and ILN in A mit der elektronischen
Konfiguration Nb** (4d'). Die Notationen sind in Tab. 4.3 erklirt. Der Referenzwert fiir Nby; (SLN)
wurde ebenfalls mit einer DFT4+U-Rechnung mit Ueg = 4 eV generiert [174].

[6].

Durch die polaronische Lokalisierung eines Elektrons an einem Niobdefekt wird dieser zu
einem vierfach positiv geladenen Defektion reduziert, das nun einen besetzten 4d-Zustand
aufweist (4d"). Das Einfangen eines Polarons entspricht dem Ubergang Nb®* (4d°) — Nb**
(4d"). Alle Defekte werden unter Verwendung der PBEsol- und HSE06-Funktionale ana-
lysiert. Die Simulation des Polarons erfolgt durch das Einbringen einer negativen Ladung
in die Superzelle. Daher erfolgen die Berechnungen fiir die Nby; und Nby—Vy; Punkt-
defekte in einer dreifach positiv geladenen Superzelle, bzw. in einer vierfach geladenen
Zelle im Falle von Nby. Wegen der einhergehenden Gitterdeformation ist es notwendig,
eine Strukturrelaxation durchzufithren. Das Ergebnis dieser Strukturbestimmung ist in
Tab. 4.4 aufgefiithrt. Die Rechnungen werden mit spinpolarisierter Dichtefunktionaltheo-
rie durchgefiihrt.

Aufgrund der Lokalisierung des Elektrons am Defekt verringern sich die Nb—Nb,., Ab-
stinde um Werte zwischen 0.11 A bei Nbr; (SLN) bis 0.21 A bei Nby—Vy;. Dabei liegt
nun fiir Nby der kleinste und fiir Nby; (ILN) der grofite Wert vor. Die groflere Abwei-
chung zu dem berechneten Abstand von Nahm und Park [174] im Falle des Nby; (SLN)
Antisitedefekts kann auf die Tatsache zuriickzufiihrt werden, dass deren Berechnungen
die Auswirkung der Spinpolarisation vernachléssigt oder die DF'T+U Methode auf alle
Nb Atome angewendet wurde. Die deutliche Gitterrelaxation als Folge der Formation ei-
nes Polarons ist beim kationischen und anionischen Untergitter unterschiedlicher Natur.
Wihrend zum Beispiel die Nb—Nb,,.;, Abstdnde, wie in der Tabelle 4.4 zu sehen, reduziert
werden, vergroffern sich die Nb—O Abstédnde. Dabei liegen wieder vergleichbare Nb—O
Absténde fiir Nby; (SLN), Nby—Vy; und auch Nby; (ILN) vor. Das unterschiedliche Ver-
halten ist auf die Tatsache zuriickzufiithren, dass die lokalisierte negative Ladung Atome
aus dem positiven kationischen Untergitter anzieht und aus dem negativen anionischen
Untergitter abstoit. Stellvertretend fiir alle betrachteten Strukturen zeigt Abbildung 4.3
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Abbildung 4.3: (a) Ladungsdichte am Niobdefektatom Nby;, die mit dem Polaronniveau (4d') assoziert
werden kann. Fiir die Defekte, die Nby beinhalten, gehort die Darstellung gedanklich um 180° gedreht.
(b) Elektronenladungsdichte des Bipolarons (4d*-4d'), welche sich iiber das niichste Niob Nachbaratom
erstreckt. Auch diese Abbildung ist reprisentativ fiir alle Defekttypen. Die verwendete Isofldche fiir die
Darstellung der Ladungsdichte befindet sich bei 0.0044 ¢/ A3 im Fall vom Polaron und bei 0.0026 e/ A3
beim Bipolaron, was zeigt, dass jeweils die meiste Ladung dort lokalisiert ist und die Identifikation als
kleine Polaronen gerechtfertigt ist.

noch einmal deutlich, dass die Ladungsdichte, die dem besetzten 4d' Zustand innerhalb
der Bandliicke zuzuordnen ist, stark lokalisiert am Defekt angesiedelt ist, was die Deutung
als kleines Polaron bekraftigt.

Auch bei der elektronischen Bandstruktur in Abb. 4.4 zeigt sich bei allen betrachteten
Defekten, dass das Polaronenniveau aufgrund der Energie der Gitterrelaxation innerhalb
der Bandliicke deutlich von den Valenz- und Leitungsbéndern abgegrenzt ist. In dieser Ab-
bildung wurden die PBEsol-Bénder um die Differenz der HSE06- und PBEsol-Bandliicken
nach oben verschoben, um aufwendige Bandstrukturrechnungen nur zum Zwecke der
Darstellung zu vermeiden. Dies ist, wie in Abb. 4.1 zu sehen, legitim, da die Dispersi-
on der Bénder vergleichbar ist. Genauso wurde mit den Polaronenniveaus als Differenz
der Polaronlevel und der Valenzbandoberkante verfahren. Die Energieniveaus, die vor
der Bildung des Polarons noch resonant mit den Leitungsbdndern waren, sind auf die
mit dem HSEO06-Hybridfunktional berechneten Werte von 1.37, 2.08, 1.66 bzw. 1.61eV
unterhalb der Leitungsbandkante bei Nby; (SLN), Nby, Nby—Vy; bzw. Nby; (ILN) ab-
gerutscht. Dabei ist festzustellen, dass sich die Energieniveaus fiir gleiche Defektarten
aufgrund der unterschiedlichen direkten chemischen Umgebung besonders fiir Nby mit
0.42eV und 0.24 €V fiir Nby; relativ stark unterscheiden. Im Vergleich zu den Ergebnis-
sen, die unter Verwendung des PBEsol-Funktionals erzielt werden, verschieben sich die
Energieniveaus um weitere 0.60, 0.98, 0.85 und 0.45eV fiir Nby; (SLN), Nby, Nby—Vy;
bzw. Nbr; (ILN) von der Leitungsbandkante weg. Das stark unterschiedliche Verhalten
ist hauptséchlich mit der Tatsache zu erkliren, dass die DF'T+U Methode auf Grundlage
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Abbildung 4.4: Elektronische Bandstruktur mit besetztem Polaronenniveau (4d*) fiir alle betrachteten
Defekte. Es wird nur der Spin-up Kanal gezeigt; im Spin-down Kanal treten keine Defektzustéinde in der
Bandliicke auf, bzw. sind knapp unterhalb der Leitungsbandkante angesiedelt. Die schwarzen, grauen und
griilnen Bander représentieren das Ergebnis der DFT+U-Rechnungen mit dem PBEsol-Funktional. Das
HSE06-Hybridfunktional schiebt die blauen Polaronenlevel und die rot gestrichelten Leitungsbénder etwa
um 1.5eV nach oben. Um eine iibersichtlichere Darstellung zu gewéhrleisten werden die Pfeile, die je-
weils fiir beide Funktionale die Energiedifferenzen der Polaronenniveaus und der Leitungsbandunterkante
markieren, nicht in jedem Teilbild verwendet.

des PBEsol-Funktionals und das HSEO6-Funktional unterschiedlich auf die verschiedenen
Defektstrukturen wirken. Im ersten Fall ist der U-Parameter eine Konstante und lokali-
siert die Elektronendichte der Defektzusténde in unterschiedlichen System gleichermaflen,
wohingegen das kompliziertere exakte Austauschfunktional durch die Beriicksichtigung
aller elektronischen Zustdnde systemspezifischere Energiebeitrige liefert. Auflerdem ist
die Lage der PBEsol-Defektniveaus teilweise schon sehr unterschiedlich (sieche Nby im
Vergleich zu den anderen) und wird bei Anwendung des HSE06-Hybridfunktionals weiter
auseinanderskaliert.

4.2.5 Bipolaronen

In Lithiumniobat entsteht ein Bipolaron, wenn ein Niob Nachbarpaar im Ladungszustand
NbT-NbF (4d°-4d°) zwei Elektronen aufnimmt. Die zwei zusitzlichen Ladungstriiger
sind somit nicht komplett am Defektatom mit der méglichen Konfiguration NbiT (4d?)
lokalisiert, sondern bilden ein Hybridorbital in der Konfiguration Nbyf-Nbyi (4d'-4d),
wobei diese Anordnung durch die Relaxation der beiden beteiligten Niobatome zueinander
stabilisiert wird [6]. In dieser Arbeit findet eine Erweiterung des Konzepts auf Ilmenit
LN und Nbf-Nb{ (4d'-4d') in den zwei betrachteten Nby Strukturen statt, da diese
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PBEsol X-0, X-O4 X-Nbpan

Nby; (SLN) 2.051 2.070 2.639
2.639 [174]
Nby 2.016 2.066 2.469
Nby-Vi 2.066 2.037 2.519
Nbr; (ILN) 2.085 2.067 2.691
HSE06 X-0, X-Or X-Nbypan
Nby; (SLN) 2.047 2.068 2.626
Nby 2.004 2.074 2.452
Nby—Vy, 2.056 2.045 2.494
Nby; (ILN) 2.095 2.054 2.656

Tabelle 4.5: Interatomare Abstinde intrinsischer Defekte in SLN and ILN in A mit der elektronischen
Konfiguration Nbii*be‘LNTD. Die Notationen sind in Tab. 4.3 erkldrt. Da das Bipolaron sich {iber das
néichste Niobatom Nb,,y, erstreckt, findet eine starke Kontraktion des dazugehorigen Abstands statt. Der
Referenzwert fiir Nby; (SLN) wurde ebenfalls mit einer DFT+U-Rechnung mit Ueg = 4€V generiert
[174].

Strukturen selbstversténdlich auch fiir die Bildung eines Bipolarons infrage kommen. Die
Simulation erfolgt wie im Falle des Polarons durch Einbringen eines weiteren Elektrons
in die fiir alle Defekte nun +2-fach bzw. 3+fach (Nby) geladene Superzelle.

Wie an den berechneten interatomaren Abstdnden in Tabelle 4.5 zu erkennen ist, fin-
det im Vergleich zum Polaron eine weitere massive Kontraktion des Nb—Nb,.;, Abstands
aufgrund des zusétzlichen lokalisierten Elektrons statt. Das legt nahe, dass eine Bindung
(Hybridorbital) zwischen den Nb-Ionen entsteht (sieche Abb. 4.3(b)). Die Verkiirzung die-
ser Bindungslidnge reicht bei den PBEsol-Werten von 0.16 A fiir Nby bis 0.36 A fiir Nby;
(ILN). Dabei fallen die Verkiirzungen bei den Zwischengitterdefekten etwa halb so gro8
aus wie bei den Antisitedefekten. Dies scheint darin begriindet zu liegen, dass die Bin-
dungslange der Zwischengitteratome zum néchsten Niobatom durch die Anordnung in
unterschiedlichen Atomlagen bereits einen deutlich niedrigeren Ausgangswert ohne Po-
laron bzw. Bipolaron aufweist und die Repulsion zwischen beiden Niobatomen bei den
schon geringen Abstédnden einen grofler werdenden Anteil ausmacht. In absoluten Zahlen
fallen die Nb—Nb, ., Abstdnde der Zwischengitteratome immer noch deutlich kleiner aus
als die der Antisitedefekte. Beziiglich der Absténde des Defektatoms zu den Sauerstoffa-
tomen fallt auf, dass eine Angleichung dieser Absténde des Nby Defekts zu den anderen
Defekten stattfindet. Auler der starken Gitterrelaxation zeigt Abb. 4.3 (b) wieder, dass
die Elektronendichte, die dem Defektniveau zugeordnet werden kann, stark an den beiden
Niobatomen lokalisiert ist.

Die elektronische Bandstruktur mit den besetzten Bipolaronzustdnden ist in Abb. 4.5 zu
sehen. Bei der Betrachtung ist es wichtig, die absolute Lage der Bipolaronenenergieni-
veaus und die Anderung im Vergleich zu der 4d" Polaronenstruktur hervorzuheben. Die
absolute Lage der HSE06-Defektniveaus betragt 1.57, 2.26, 2.08 und 1.63eV unterhalb
der Leitungsbandkante fiir Nby; (SLN), Nby, Nby—Vy; bzw. Nby; (ILN), was jeweils ei-
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Abbildung 4.5: Elektronische Bandstruktur aller beriicksichtigten Defektarten nach Formation eines
Bipolarons (4d'-4d'). Das Darstellungsschema und Erliuterungen sind Abb. 4.4 zu entnehmen. Vergli-
chen mit dem Polaronenniveau 4d' weist das Zwischengitterdefektpaar Nby—Vy; unter allen betrachteten
Strukturen die groBte Anderung des Defektniveaus auf. Allgemein zeigen beide Strukturen, die das Zwi-
schengitteratom Nby enthalten, die grofite Energiedifferenz zwischen Defektniveau und Leitungsband-
kante.

ne Absenkung um 0.20, 0.18, 0.42 und 0.02eV bedeutet. Damit liegt fiir das Nby—Vy;
Defektpaar die grofte Anderung vor, was im weiteren in Hinblick auf die spétere Be-
rechnung der jeweiligen optischen Eigenschaften bedeutsam ist. Die optischen Absorp-
tionspeaks, die in experimentellen Messungen den Polaronen und Bipolaronen zugeord-
net werden, unterscheiden sich um einen Wert von 0.9eV. Ein direkter Vergleich zu den
Ubergangsenergien in der HSEQ6-Bandstruktur ist aufgrund der nicht beriicksichtigten
Elektron-Loch-Wechselwirkung und der Auswahlregeln jedoch nur eingeschrankt moglich.
Eine vorsichtige Analyse der Ergebnisse zeigt, dass die Nby—Vy; Struktur diesen experi-
mentellen Befund am besten beschreibt unter der Voraussetzung, dass die vernachléssigten
Effekte dieselbe Grofienordnung aufweisen. Ebenso interessant ist in dieser Hinsicht die
absolute Lage der Defektniveaus unterhalb der Bandkante. Der in optischen Experimenten
bestimmte Absorptionspeak von 2.5¢eV erfordert Ubergangsenergien in der Bandstruktur
in derselben GroBenordnung, vorausgesetzt diese Uberginge finden statt. Das Ergebnis
der Hybridfunktional-Bandstrukturrechnungen legt somit nahe, dass die Zwischengitter-
defekte in diesem Energiebereich liegen, wihrend die Antisitedefekte energetisch deutlich
niedriger angesiedelt sind.

Die Tatsache, dass die Energieniveaus der Bipolaronen niedriger liegen, ist eine Folge
des geringeren Nb—Nb,.;, Abstands. Wie bereits Nahm und Park durch ihre DFT+U
Rechnungen gezeigt haben, werden die Defektlevel umso stéirker abgesenkt, je ndher die
zwel Niobatome zueinander verschoben werden [174]. Des Weiteren kann an dieser Stelle
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Konfiguration 4d° 4d* 4d"-4d"

PBEsol (2x2x2) —0.619 —0.695 —0.164
PBEsol (3x3x3) —0.669 —0.683 —0.140
HSE06 (2x2x2) —0.694 —0.676 —0.132

Tabelle 4.6: Relative elektronische Gesamtenergie eines Nby; (SLN) Antisitedefekts in eV in Bezug zum
Nby—Vy; Defektpaar, die mit dem PBEsol (DFT+U) und HSE06 Funktional berechnet wurden. Groere
Superzellen oder unterschiedliche Austauschkorrelationsfunktionale indern das Ergebnis qualitativ nicht.

darauf hingewiesen werden, dass die Gitterrelaxation aufgrund der Bildung des Bipolarons
nicht nur das ehemalige Polaronenniveau leicht absenkt, sondern auch zu einer starken
Absenkung des vorher unbesetzten 4d* Orbitals des Nachbaratoms Nb,.;, fiihrt.

4.2.6 Energetische Betrachtung der intrinsischen Defekte

Der energetische Vergleich der betrachteten Defekttypen soll weiteren Aufschluss iiber die
Wahrscheinlichkeit ihres Auftretens geben. Ein direkter Vergleich der elektronischen Ge-
samtenergien fiir Nby; (SLN), Nby—Vy; und Nby; (ILN) ist aufgrund derselben jeweiligen
Anzahl von Lithium-, Niob- und Sauerstoffatomen moglich. Es zeigt sich durchgéngig, dass
die Nby; (SLN) Struktur energetisch am giinstigsten ist. Die Energiedifferenz ist abhingig
von der Besetzung der Polaronenniveaus und in Tab. 4.6 aufgefithrt. Wahrend sich die
Gesamtenergien der 4d° und 4d* Strukturen um Werte um 0.65 eV unterscheiden, schwin-
det diese Differenz auf Werte um 0.15eV fiir die 4d'-4d' Niveaus. Die Energiedifferenzen
zwischen den Nbp; (SLN) und Nby; (ILN) Strukturen sind hier nicht explizit aufgefiihrt,
da sie im besten Fall (4d%) auf einen Wert von 3.52 eV mit dem PBEsol Austauschkorre-
lationsfunktional fiir die 2x2x2 Superzelle fithren. Um den Effekt der unterschiedlichen
Umgebungen (SLN vs. ILN) herauszurechnen, sollte die achtfache Differenz der Gesamt-
energien der defektfreien Einheitszellen von SLN und ILN, i.e. 8x0.21 eV, abgezogen wer-
den. Damit ist Struktur von SLN immer noch um 1.84 eV energetisch giinstiger als die
von ILN, wonach letztere dementsprechend mit geringer Wahrscheinlichkeit vorkommt.

Da die Superzellen, die den Nby; (SLN) Antisitedefekt und das Nby—Vy; Defektpaar ent-
halten, energetisch nah beieinander liegen, ist davon auszugehen, dass sich das Defektpaar
wie Nbyp; ebenfalls spontan bei der Synthese von LN bilden wird. Um diesen Umstand
allgemein fiir alle Punktdefekte genauer untersuchen zu konnen, sind die absoluten For-
mationsenergien E¥™ aller Punktdefekte zu betrachten, die sich wie folgt berechnen
[190]:

E"™[X) = Eg[X?] — Eo[LN,bulk] — > " np; + q[Er + Ey + AE]. (4.1)

Xq bezeichnet dabei einen g-fach geladenen Punktdefekt oder ein g-fach geladenes De-
fektcluster. Ey ist die HSEO6 elektronische Gesamtenergie der Defektstruktur Ey[X]
und entweder der reinen SLN oder der reinen ILN Struktur Ey[LN, bulk]. Des Weiteren
tritt die Summe {iiber das chemische Potential p; der jeweiligen Defekte auf, die entfernt
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aktuelle Theorie  frithere Theorie [191] Experiment

AH [LiNbOs3] —14.629 —14.624 —14.149 [192]
AH [Liy0] —6.282 —6.239 —6.139 [193]
AH [Nby0s] —21.871 —20.251 —19.687 [193]

Tabelle 4.7: Vergleich von aktuellen theoretischen Reaktionswarmen von Lithiumniobat und seinen Aus-
gangsprodukten Lithiumoxid und Niobpentoxid und fritheren Daten von Sanna et al. [191]. Experimentelle
Ergebnisse stammen von Knacke et al. [192] und Barin et al. [193].

(n; < 0) oder hinzugefiigt (n; > 0) werden. Die Ladungszustéinde finden iiber den letzten
Summanden Beriicksichtigung, wobei die Fermi-Energie Fr variabel ist, Fy das Valenz-
bandmaximum des bulks darstellt und AFE eine Korrektur ist, die die Verschiebung der
elektronischen Eigenwerte durch das Defektpotential korrigiert. Die Angleichung AE der
elektronischen Eigenwerte wird in dieser Arbeit mithilfe der untersten, mindestens 40
eV unter dem Valenzbandmaximum liegenden elektronischen Eigenwerte vorgenommen,
die fast keine Dispersion aufweisen. Die Einschrankung auf die 80 atomige Superzelle lie-
fert, begrenzt durch die Defekt-Defekt-Wechselwirkung, eine Genauigkeit der berechneten
Defektformationsenergien von etwa 0.5 eV [168].

Die Bestimmung der chemischen Potentiale erfolgt iiber die Berechnung der elektronischen
Gesamtenergie von Nba, Liy (fest) und Os (gasformig), sowie SLN und seiner Herstellungs-
materialien NbyOs und LiO. Das genaue Vorgehen ist der Literatur zu entnehmen [168,
170, 191]. Fiir die Berechnung der Formationsenergien werden in Ubereinstimmung mit Li
et al. [170] Niob-reiche Bedingungen angenommen, da selbst fiir fast stochiometrisches LN
ein Lithiumdefizit besteht. Wahrend die absoluten Gesamtenergien aufgrund der Verwen-
dung der normerhaltenden Pseudopotentiale keine physikalische Aussagekraft besitzen,
sondern nur Energiedifferenzen, kénnen lediglich die Reaktionswiarmen von SLN, NbyOs
und LisO direkt mit fritheren theoretischen und experimentellen Ergebnissen in Tabelle

4.7 verglichen werden. Diese stimmen sehr gut miteinander iiberein.

Die Defektenergien der Antisitepunktdefekte wurden als einer der wichtigsten Defekte in
LN schon héaufig untersucht [168, 170, 185]. Studien iiber den Antisitedefekt in ILN und
das Nby—Vy; Defektpaar fehlen bislang. Araujo et al. [185] und Xu et al. [168] unter-
suchten zwar den Zwischengitter Niobdefekt, nahmen jedoch fiir ihn nur eine Position in
der Mitte des leeren Sauerstoffoktaeders an, ohne eine Strukturrelaxation durchzufiihren.
Beide Arbeiten sagten eine hohe Formationsenergie voraus. Die hier vorgestellten Ergeb-
nisse beschréanken sich auf die fiir die Bildung von Polaronen relevanten Ladungszusténde
sowie den Fall leerer Defekt-d-Orbitale (4d°). Die Formationsenergien sind in Abbildung
4.6 abgebildet.

In Ubereinstimmung mit den fritheren theoretischen Erkenntnissen kann gefolgert werden,
dass sich der Antisitedefekt aufgrund der negativen Formationsenergie spontan bildet. Auf
den ersten Blick iiberraschend wirkt im Vergleich zum SLN seine niedrigere Defektenergie
in ILN, obwohl dieser bei der Betrachtung der elektronischen Gesamtenergie energetisch
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Abbildung 4.6: Formationsenergien der vier betrachteten Punktdefekte und Defektpaare in den Niob-
defektzustinden 4d°, 4d' und 4d'-4d'. Weitere Ladungszustinde der Superzellen, die bei steigender
Fermi-Energie energetisch giinstiger sein kénnen als die hier betrachteten, werden nicht beriicksichtigt,
was durch die gestrichelten Linien angedeutet ist. Abschnitte mit gleicher Steigung besitzen denselben
Ladungszustand. Die vertikale gepunktete Linie zeigt die Position des Leitungsbandminimums in reinem
SLN an. Das Ende der Skala markiert das Leitungsbandminimum in reinem ILN.

ungiinstig war. Formal liegt dieser Befund an der niedrigeren Position des Valenzband-
maximums in ILN. Auflerdem soll hier darauf hingewiesen werden, dass die energetisch
ungiinstigere defektfreie Ilmenit-bulk-Struktur mit Eo[ILN, bulk] als Referenz dient. Wie
anhand der Gesamtenergien erwartet, liegt die Formationsenergie von Nby—Vr; leicht iiber
der von Nby; (SLN), und es reduziert sich der Abstand beim Ubergang vom Ladungszu-
stand 4+ zu 2+. Dieser findet bei Erhéhung der Fermi-Energie etwas friither fiir Nby—Vy;
als fiir Nby; statt. Die Bildung des Nby Defekts ist insbesondere fiir niedrigere Fermi-
Energien sehr giinstig. Wéhrend der Polaronenzustand bei den Zwischengitterdefekten
nur metastabil ist, gibt es fiir die Antisitedefekte einen kleinen Bereich, in dem der 3+
Ladungszustand, bei dem sich das Polaron bei ihnen bildet, energetisch am giinstigsten
ist. Die Ergebnisse sind auch hier stets unter dem Vorbehalt der Notwendigkeit der Model-
lierung ladungskompensatorischer Defekte zu werten. Jedoch zeigen diese Erkenntnisse,
dass alle studierten Defektarten grundsétzlich auftreten konnen.

Um die relative Stabilitdt des Nby—Vy; Defektpaars bezogen auf Nby; (SLN) zu bestim-
men, wird die nudged elastic band-Methode [194] angewendet, um die Diffusionsbarriere
zu berechnen. Dabei werden zehn Bilder entlang eines zu berechnenden Pfades verwendet,
dessen Anfang und Endpunkt die jeweiligen Konfigurationen von Nby; (SLN) und Nby—
V1 markieren. Sie sind mit Federkonstanten zwischen 310 und 470 kg/ s? verbunden. Trotz
der Tatsache, dass Nby; energetisch etwas giinstiger ist, wird das Niobdefektatom Nby
nicht die Gitterposition wechseln, da die Energiebarriere mit 0.86, 0.84 und 1.61eV fiir
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Material X*Oi X*OT X*Nb¢ X*NbT
SLN 2.0560 2.238  3.905 3.009
Ti:SLN (2X2><2) 1.928 2.056 3.982 3.012
Ti:SLN (3x3x3) 1.922 2.052  3.986 3.004

Tabelle 4.8: Bindungsldngen zwischen X und benachbarten Atomen in A, wobei X ein Platzhalter fiir Li
(SLN) oder Tir; Substitutionsatome (Ti:SLN) ist. Fiir Ti:SLN sind die Resultate der zwei verschiedenen
Superzellgréflen gezeigt. Die Oy und Nb; Symbole bezeichnen, bezogen auf Abb. 4.7, Sauerstoff- bzw.
Niobatome unterhalb des Li or Tip; Platzes, wihrend O4 und Nb; fiir die Atome oberhalb stehen.

die 4d°, 4d* und 4d'-4d' Ladungszustinde hoch ist.

4.2.7 Titanpunktdefekte

Die Modellierung der Titanpunktdefekte geschieht fiir alle in Tabelle 4.2 aufgefiihrten
Konzentrationen. Insbesondere wird die Anwesenheit von Titan im stochiometrischen
(Abb. 4.7 (b)) sowie im kongruenten (Abb. 4.7 (c¢)) Lithiumniobat simuliert. Letzteres
wird néherungsweise abgebildet, indem auf der Symmetrieachse der Superzelle zusétzlich
ein Antisitedefekt platziert wird. Die unterschiedlichen Ansétze werden fortan als Ti:SLN
und Ti:CLN bezeichnet. Insbesondere bietet es sich an, drei Titanatome in der 3x3x3
Superzelle anstelle eines Titanatoms in der 2x2x2 Zelle zu platzieren, um verschieden-
artige Wechselwirkungen der Defekte bei dhnlicher Titankonzentration besser untersu-
chen zu koénnen. So wird es ermoglicht, Defekt-Defekt-Wechselwirkungen fiir die zwei
hoheren Konzentrationen ab 10! Titanatomen pro cm? auf zweierlei Weise zu betrach-
ten. In der 2x2x2 Superzelle liegen die Titan Defektatome auf der c-Achse nahe bei-
einander, wiahrend die Distanzen in der 3x3x3 Superzelle in der z-y-Ebene klein sind.
Der Verlust von Symmetrien und die damit einhergehende Steigerung der rechentechni-
schen Anforderungen erschweren die beliebige Anordnung der Titandefekte sehr. Es ist
davon auszugehen, dass die quantitativen Ergebnisse von der Defektanordnung und von
der Unmoglichkeit, wirklich separate Defekte modellieren zu konnen, stark beeinflusst
sind. Die zwei unterschiedlichen Modellierungen werden jedoch méglicherweise eine Be-
wertung der weiteren Ergebnisse erleichtern. Zuletzt sei angemerkt, dass die Titanfremd-
atome bei kongruenten LN aufgrund unterschiedlicher Superzellgrofien unterschiedlichen
Li:Nb Verhiltnissen ausgesetzt sind (vgl. Tab. 4.2). Diese Tatsache muss bei der spéteren
Analyse der optischen Spektren ebenfalls beriicksichtigt werden.

Die Ergebnisse der strukturellen Relaxation von Ti:SLN sind in Tabelle 4.8 fiir beide
Superzellgrofien aufgelistet. Die Gitterparameter a und ¢ bleiben dabei wieder auf die
Werte des stochiometrischen Lithiumniobats fixiert. Die atomaren Verschiebungen sind
in der Vergroflerung von Abbildung 4.7 verdeutlicht: Im Vergleich zur stochiometrischen
Konfiguration sind das Niob- und Titanatom nach oben verschoben, wéahrend die Sauer-
stoffatome sich zum Titanplatz bewegen. Dies ldasst sich mit dem kleineren Atomradius

von vierfach positiv geladenen Titan erkléren, der oktaedrisch koordiniert mit 0.745 A
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Abbildung 4.7: (a) Stéchiometrisches Lithiumniobat. (b) Das Li* Ton wird mit einem Ti** Ton ersetzt.
(c) Zusétzlich wird zur Simulation von Titandefekten in kongruentem LN eine Nby; Antisite eingebracht.
Das Niob- und das Titanatom befinden sich nur fiir diese komprimierte Darstellung in derselben Ein-
heitszelle. Der Ausschnitt zwischen (b) und (c) zeigt das Titandefektatom und das benachbarte Niobatom
vergroflert. Die Verschiebungen relativ zum reinen Material sind mit schwarzen Pfeilen markiert.

kleiner ist als das einfach positiv geladene Lithiumatom mit 0.90 A. Auftillig ist die
geringe Differenz der relaxierten Absténde zwischen 2x2x2 und 3x3x3 Superzelle. Das
bedeutet, dass die lokale Stérung des Gitters durch das Titansubstitutionsatom kaum von
der Zellgrofie beeinflusst wird. Die Bindungslange des Defektplatzes zu den benachbarten
Sauerstoffatomen ist im Vergleich zum stochiometrischen Material um 7-8 % reduziert und
zum benachbarten Niobatom um 2.5 % vergroflert. Nachste Nachbarniobatome in der z-y-
Ebene werden um 4 % der Bindungslinge nach auBen gedriickt. Uber einen Abstand von
3.2 A hinaus ist vor allem das kationische Untergitter betroffen, welches sich im Gegensatz
zu dem in Abbildung 4.7 dargestellten Defekt—néchster-Nachbar-Paar iiberwiegend nach
unten bewegt. Dies geschieht nicht nur auf der c-Achse, auf der sich der Defekt befin-
det, sondern in der gesamten 2x2x2 Superzelle und wird durch die Coulomb-Repulsion
verursacht. Das Verhalten des kationischen Untergitters klingt mit der Zellgrofie und wach-
sendem Abstand zum Defekt ab, bleibt in der gesamten 3x3x3 Superzelle jedoch présent.

Fiir die spéitere Analyse der optischen Funktionen ist es von grofler Bedeutung, heraus-
zustellen, wie sich der Einfluss von Nb?! auf die gesamte atomare Struktur von Tif un-
terscheidet, was wegen der {ibersichtlicheren Anzahl an Atomen am besten in der 2x2x2
Superzelle gelingt. Allgemein treten fiir beide Defekte dieselben Gitterverzerrungen auf,
wobei nur die Auspridgungen unterschiedlich sind. Dies lasst sich aus dem Vergleich der

Abweichungen der Atompositionen in der stéchiometrischen Superzelle und der jeweiligen
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Abbildung 4.8: Elektronische Bandstruktur der Ti:SLN 2x2x2 Superzelle. Die Titan zugeordneten
Bénder sind rot (a; Symmetrie) und griin (e Symmetrie) hervorgehoben. Die Inset-Bilder zeigen um das
Titanatom (blau) die Elektronendichte (grau) der Kohn-Sham-Orbitale der lokalisierten Defektzustinde
eines ausgewéhlten Punktes der Brillouin-Zone.

Defektsuperzelle folgern. Die atomaren Relaxationen im kationischen Untergitter fallen
dabei fiir Nby; um 20 bis teilweise 70 % deutlich stiarker aus als fiir Tip;. Gleichwohl sind
die Anderungen im Sauerstoffuntergitter vergleichbar. Das einzige komplett abweichen-
de Verhalten ist beziiglich des Titandefektatoms selbst festzustellen: Im Gegensatz zum
Niobdefektatom wird es deutlich nach oben entlang der c-Achse verschoben.

Die elektronische Bandstruktur von Ti:SLN, modelliert in der 2x2x2 Superzelle, ist
in Abb. 4.8 abgebildet. Die Titan-3d-Zustédnde splitten sich aufgrund der nicht-zentro-
symmetrischen Position innerhalb des Sauerstoffoktaeders und des damit verbundenen
elektrischen Feldes auf, dhnlich wie es von Sanson et al. [187] fiir Eisensubstitutions-
atome beschrieben wurde. Das Einbringen eines Ti-Atoms pro Superzelle fiithrt zu drei
zusatzlichen leeren Bandern nahe oberhalb des Leitungsbandminimums, eines mit a; und
zwei mit e Symmetrie. Die Ergebnisse zeigen, dass die Defektzustdnde resonant mit dem
Leitungsband sind, was vorab die experimentellen Befunde erklért, in denen Titanverun-
reinigungen keine Absorptionsbanden in Wellenleitern verursachen [176, 195]. Das Ergeb-
nis ist reprasentativ fiir Modellierung in der 3x3x3 Superzelle, die ebenfalls leitungsban-
dresonante Titanzustinde hervorbringen. Die PBEsol indirekte elektronische Bandliicke
von 3.52 eV in SLN wird bei Ti:SLN (2x2x2) auf 3.33 eV reduziert. Ein fast identischer
Wert von 3.31 eV tritt im Falle fiir CLN mit Nby; Antisitedefekt auf, ebenfalls in der
2x2x2 Superzelle. Beide Defekte kombiniert (Ti:CLN) in der 2x2x2 Superzelle ergeben
die hochste Titan- und Antisitekonzentration (vgl. Tab. 4.2) und liefern eine Bandliicke,
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die weiter auf 3.28 eV absinkt. Dennoch erhélt man fiir die Konfiguration mit einem Li:Nb

3 einen

Verhiltnis von 96 % und der Titankonzentration von 1.05 x 102! Atomen pro cm
Wert, der um weitere 0.2 eV kleiner ist. Dies kann der Tatsache zugeschrieben werden, dass
die Defektatome unterschiedlich angeordnet sind. Selbstversténdlich unterschétzen die an-
gegebenen Werte die experimentellen Bandliicken aufgrund des Bandliickenproblems. Da
in diesem Fall jedoch keine Defektzustinde innerhalb der Bandliicke vorkommen, deren
exakte Energieniveaus von Interesse wéren, werden an dieser Stelle keine spezifischen
Korrekturen der elektronischen Energieniveaus vorgenommen. Die Bandliicke wird im
Weiteren durch einen scissors shift von 1.4 eV auf Grundlage aufwendiger GW- und

BSE-Rechnungen [149, 154] im stochiometrischen LN korrigiert.

4.3 Optische Eigenschaften von LN und Punktdefekten

4.3.1 Rechentechnische Details

Die TDDFT-Rechnungen unter Verwendung des LRC-Kernels werden mit dem Yambo-
Programmpaket [196] durchgefiihrt. Die Kohn-Sham-Orbitale und -Eigenenergien bilden
die Grundlage der TDDFT-Rechnungen. Dazu ist es erforderlich, den nun I'-zentrierten k-
Punktsatz der Einheitszelle auf 6 x6x6 Punkte zu erhchen. Dies ist dquivalent mit einem
3x3x3 Gitter in der 80 atomigen Superzelle und einem 2x2x2 Gitter in der 270 atomigen
Superzelle. Im Vergleich zu DFT-Rechnungen, in denen die Abschneideenergie von 1150
eV aquivalent zu ca. 6300 reziproken Gittervektoren ist, kann die Anzahl der G-Vektoren
auf 1500 abgesenkt werden. In allen Rechnungen wird eine Verbreiterung von n = 0.15eV
angewendet. Weiterhin werden 350 elektronische Bénder verwendet, um auskonvergierte
optische Funktionen zu erhalten. Da die Rechenzeit und der Speicherbedarf unter der
Verwendung von Superzellen stark ansteigen, miissen die Anzahl der G-Vektoren und der
Béander im Verhéltnis deutlich reduziert werden. Fiir die 80 atomige Superzelle geniigen
640 Bénder und 4000 reziproke Gittervektoren, um die numerischen Ungenauigkeiten un-
ter 1.0% fiir den Imaginérteil der dielektrischen Funktion und den Brechungsindex sowie
unter 1.5% fiir den Realteil der dielektrischen Funktion und der Reflektivitéit zu driicken.
Dies entspricht 80 Béndern und 500 G-Vektoren in der Einheitszelle. Weiterhin werden
1620 Bander und 2700 reziproke Gittervektoren in der 270 atomigen Superzelle verwen-
det, wofiir die genannten Gréfien innerhalb von 1.5% bzw. 3.3% konvergiert sind. In der
Einheitszelle entspricht dies Konvergenzparametern von 60 Béandern und 100 reziproken

Gittervektoren.

Quantitative Vergleichbarkeit zwischen Ergebnissen unterschiedlicher Zellgroflen kann ge-
wéhrleistet werden, indem TDDFT-Rechnungen in der Einheitszelle mit den geringeren
oben angegebenen Konvergenzparametern durchgefiihrt werden. Die frequenzabhéngige

Differenz der jeweiligen dielektrischen Funktionen zu den konvergierten Resultaten be-
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stimmt einen von den Konvergenzparametern der jeweiligen Superzellgrofle abhéingigen
(frequenzabhéngigen) Offset. Dieser kann auf die dielektrische Funktion der defektbehaf-
teten Superzellen aufaddiert werden. Da die Defekte als Storung der optischen Funktionen
auftreten ohne sie grundlegend zu verdndern, kann der Offset auch fiir die Simulation der
Punktedefekte eine klare Korrektur der Ergebnisse darstellen. Weiterhin positiv ist bei
diesen Vorgehen die Tatsache hervorzuheben, dass das Konvergenzverhalten im Frequenz-
bereich von 0 bis 4 eV bei unterschiedlichen Konvergenzparametern fast identisch ist, also

der Offset als konstant angesehen werden kann.

Die Giite der Offsetkorrektur ldsst sich mit hundertprozentiger Sicherheit nur bestimmen,
wenn auskonvergierte Funktionen in den Superzellen zur Verfiigungen sténden, was wegen
der rechentechnischen Beschrinkungen nicht moglich ist. Um dennoch eine Einschétzung
dariiber zu erhalten, werden Testrechnungen mit Nbr; und Ti;; Punktdefekten in der
2x2x2 Superzelle mit Konvergenzparametern durchgefiihrt, die denen der 3x3x3 Super-
zelle entsprechen. Die Abweichungen der somit erhaltenen dielektrischen Funktionen zu
den respektiven Funktionen, die mit den oben angegebenen Konvergenzparametern der
2x2x2 Superzelle zu erhalten sind, betragen 0.9% fiir den Imaginérteil und 1.8 % fiir
den Realteil. Damit kommen die Fehlerabschitzungen hier und in der Einheitszelle zu
demselben Ergebnis, was deren Plausibilitdt untermauert. Verwendet man nun die Off-
setkorrektur (genauer gesagt die Differenz des 3x3x3-Offsets und des 2x2x2-Offsets)
und addiert sie auf die unterkonvergierten dielektrischen Funktionen der 3x3x3 Konver-
genzparameter, reduzieren sich die genannten Fehler unabhéngig vom Punktdefekt um
den Faktor 100 bei dem fiir die Berechnung des Brechungsindex besonders relevanten
Realteils der dielektrischen Funktion. Faktisch bedeutet dies, dass die somit korrigierten
Ergebnisse unterschiedlicher Konvergenzparameter vergleichbar gemacht werden kénnen
und die Punktdefekt-induzierten Anderungen, die sonst im Bereich der oben angegebenen
Fehler liegen wiirden, verléssliche Angaben darstellen, bei denen der Fehler um bis zu zwei
Zehnerpotenzen reduziert ist. Das Verfahren ist vor allem fiir die Analyse der quantitati-
ven Anderung des Brechungsindexes n bei Einbringung von Defekten bedeutend.

Neben diesen grundlegenden Konvergenzparametern ist es weiterhin erforderlich, das
LRC-a und ggf. das LRC-# auf Lithiumniobat abzustimmen. In dem Zusammenhang
ist es wichtig, dass LRC und scissors shift A der Kohn-Sham-Eigenwerte als getrenn-
te Approximationen zweier unabhédngigen Komponenten des exakten Austauschkorre-
lationskernels f,. angesehen werden konnen [87]. Damit ist die Anwendung des LRC-
Kernels so festgelegt, dass zunéchst der scissors shift als Differenz der GW- und DFT-
Bandliicke gebildet wird. Als Referenzwert wird der 2.03 eV Shift verwendet, der in der
Arbeit von Riefer et al. [149] zwei IPA-Spektren auf Grundlage der dort verwendeten
G oW, Niherung bzw. der DET-PW91-Ergebnisse in exzellente Ubereinstimmung gebracht
hat. Unter Beriicksichtigung von Nullpunkts- und Temperaturkorrekturen stimmen diese
GWA-Ergebnisse aulerdem mit der Selbstenergiekorrektur iiberein, die in der selbstkon-
sistenten GWy (QSGW,) Approximation auf Grundlage des HSE06- Austauschkorrelation-
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funktionals berechnet wurde [154]. Weiterhin sind die GoWy-Ergebnisse Grundlage fiir die
BSE-Rechnungen [149], mit denen die folgenden TDDFT-LRC-Spektren verglichen und
gepriift werden. Daraufthin erfolgt die Anpassung des o und [ Parameters. Empirische
Anhaltspunkte, wie a zu wéhlen ist, liefert ein Fit verschiedener v Werte, die zur besten
Ubereinstimmung mit experimentell gemessenen Spektren fithren, meist von Halbleitern
mit sp*-Bindungen. Dieser ergibt eine antiproportionale Abh#ingigkeit zur jeweiligen ma-
kroskopischen Dielektrizitdtskonstanten e, = ¢(w = 0) [92] mit

a = 4.615/e0 — 0.213, (4.2)

was der Tatsache Rechnung trégt, dass eine steigende Abschirmung der Elektron-Loch-
Wechselwirkung die Stirke der exzitonischen Effekte reduziert.

Versuchshalber werden empirisch hergeleitete Alternativen zum LRC-Kernel in Betracht
gezogen, sogenannte bootstrap-Ansétze [197-199], in denen das fy.-Kernel mithilfe der
dielektrischen Funktion ausgedriickt wird und ohne justierbaren Parameter auskommt.
Obwohl die bootstrap-Ansétze einen anderen Ansatz verfolgen, geniigen sie denselben Prin-
zipien wie das LRC-Kernel. Im optischen Limit q — 0 ist der dominierende Ausdruck
derselbe wie beim LRC, wihrend der Zéhler sich invers proportional zur makroskopischen
Dielektrizitédtskonstanten verhélt, sowohl in der urspriinglichen Version (BO) von Sharma
et al. [197] als auch in der iiberarbeiteten Version (RBO) von Rigamonti et al. [198], die auf
die random-phase-Approximation vertraut. Die Rechnungen mit den bootstrap-Kerneln
werden mit dem Elk-Code [200] ausgefiihrt. Um optimale Vergleichbarkeit der Ergebnisse
unterschiedlicher Codes zu gewéhrleisten, werden dieselben Gitterparameter und, wenn
immer moglich, dieselben Konvergenzparameter gewéhlt. Trotz konzeptioneller Unter-
schiede zwischen dem all electron FPLAPW-Code (Abk. fiir engl. full-potential linearised
augmented-plane wave) und den hier iiberwiegend verwendeten Pseudopotential-Codes
zeigen Testrechnungen im Elk-Code mit dem LRC-Kernel, dass sich diese Ergebnisse in
sehr guter Ubereinstimmung mit den mit QE und YAMBO erzielten Ergebnissen befinden
und somit die Vergleichbarkeit der Ergebnisse zusétzlich verifiziert ist.

4.3.2 Stochiometrisches Lithiumniobat

Verschiedene Anwendungsweisen des scissors shifts und des LRC-Kernels sind in Abb.
4.9 dargestellt. Die oberen Panele zeigen den Imaginérteil der dielektrischen Funktion,
verglichen mit den BO-Ansétzen. Die dort gezeigte TDDFT-LRC Kurve entsteht un-
ter Beriicksichtigung der in Kapitel 4.3.1 vorgestellten strikten unabhéngigen Aufteilung
des fyi.-Kernels als scissors shift mit A = 2.03eV und LRC mit o = 0.75 nach For-
mel (4.2). Trotz ihrer verschiedenen Herkunft weisen LRC und BO bzw. RBO wegen der
genannten Griinde dhnliche Resultate auf, wobei mit BO die Oszillatorstéirke des Haupt-
absorptionspeaks noch am besten beschrieben ist. Alle gezeigten Kurven werden mit BSE-
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Rechnungen von Riefer et al. als Bezugsmarke verglichen. Dabei zeigt sich jedoch, dass
alle drei TDDFT-Kurven blauverschoben sind und stark iiberh6hte Oszillatorstéarken of-
fenbaren. Der Grund fiir diese Diskrepanz liegt darin, dass das statische LRC-Kernel aus-
schliefllich Oszillatorstédrken zwischen schon existierenden Peaks umverteilen kann und
nicht die Anregungsenergien selbst verschieben kann [92]. Dies ist eine Einschrinkung,
die es mit den BO- und RBO-Kerneln teilt. Wihrend dies ohne Konsequenz fiir einfache
Halbleiter mit sp3-Bindungen mit schwach gebundenen Exzitonen bleibt, verursacht die-
se Tatsache Probleme in Materialien wie LN, wo die optische Bandliicke stark von der

elektronischen Bandliicke abweicht.

Um dieser Schwiche zu begegnen, werden die zuvor getrennten Approximationen des Aus-
tauschkorrelationskernels nun aufeinander abgestimmt. Dazu wird der Quasiteilchenshift
nun nur anteilig als expliziter scissors shift in XIéSG, (Gl 2.150) behandelt, wiahrend die
Differenz als Beitrag zu fy. gewertet wird, was einem LRC-Term mit positivem Vorfaktor
entspricht [87, 91, 92], in Addition also zu einer Reduktion des o Parameters fithrt. Der
scissors shift vermindert sich konkret um 0.6 eV. In den unteren Panelen von Abb. 4.9
ist die mit TDDFT-LRC berechnete dielektrische Funktion zu sehen, die mit A = 1.4eV
und o = 0.44 berechnet wurde. Da die bootstrap-Ansétze diese Justierungsmoglichkeiten
nicht aufweisen und keine systematischen Verbesserungen der LRC-Ergebnisse liefern,
werden sie nicht weiter verfolgt. Durch die Aufteilung des scissors shifts befindet sich
die dielektrische Funktion nun in guter Ubereinstimmung mit der BSE-Rechnung und
mit experimentellen Messungen von Wiesendanger et al. [201] und Mamedov et al. [202]

beziiglich der Peakpositionen und der spektralen Gewichte.

Mithilfe des Parameters 3 kann eine einfache Frequenzabhingigkeit des LRC-Kernel ein-
gefiithrt werden. Dies kann zur besseren Beschreibungen exzitonischer Effekte an mehreren
Peaks im Absorptionsspektrum dienen. Neben dem Hauptabsorptionspeak um 5eV weist
das LN-Absorptionsspektrum noch einen weiteren Peak um 10eV auf. Im Vergleich zum
BSE-Spektrum ist der zweite Absorptionspeak des TDDFT-LRC-Spektrums mit o = 0.44
blauverschoben. Uber den Zusammenhang o = o + Bw? kann das neue o fiir das LRC-
a, f-Kernel angepasst werden mit w,, als Position des Hauptabsorptionspeaks, fiir den der
a-Wert von 0.44 eine gute Beschreibung war. Die Position und die Gestalt des zweiten Ab-
sorptionspeaks kann mit den Werten o/ = —0.322 und 8 = 18.0 in gute Ubereinstimmung
mit den BSE-Ergebnissen gebracht werden.

Die quantitativen Auswirkungen verschiedener Approximationen werden anhand des Bre-
chungsindexes analysiert. In Tabelle 4.9 sind der ordentliche (n,) und der aufierordent-
liche (n)) Brechungsindex unter Verwendung der Unabhéngige-Teilchen-Approximation,
der random-phase-Approximation, des LRC-a- und des LRC-a, f-Kernels im Vergleich zu
experimentell bestimmten Werten bei A = 633 nm [124] aufgelistet. Der frequenzabhéngige
Brechungsindex bestimmt sich aus dem Real- und Imaginérteil der dielektrischen Funktion
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Abbildung 4.9: Imaginirteil der dielektrischen Funktion fiir die ordentliche (¢, ) und auerordentliche
(¢)) Polarisationsrichtung von stéchiometrischem Lithiumniobat im Vergleich zur BSE-Rechnung von
Riefer et al. [149] (gepunktete Kurven). Die oberen zwei Graphen zeigen die dielektrischen Funktionen
unter Verwendung verschiedener fy.-Kernel. Diese TDDFT-Rechnungen werden mit einem scissors shift
von A = 2.03 eV versehen. Das LRC-Kernel wird mit o« = 0.75 verwendet. Die unteren Panele zeigen
Ergebnisse der TDDFT-Rechnungen mit einem scissors shift von A = 1.4 eV. Die schwarze Linie zeigt das
LRC-Kernel mit o = 0.44, die violette das LRC-a, f-Kernel mit a« = —0.322 und 8 = 18.0. Experimentelle
Daten stammen von Wiesendanger et al. [201] (a) und Mamedov et al. [202] (b).
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Brechungsindex IP  RPA LRC-a LRC-a,8 Expt.[124]
ny 2.35  2.20 2.35 2.13 2.29
n| 2.26 2.16 2.30 2.10 2.19

Tabelle 4.9: Berechneter ordentlicher (n.) und auBerordentlicher (n)) Brechungsindex von
stochiometrischem LN in verschiedenen Approximationen bei einer Wellenlinge von 633 nm. Zum Ver-
gleich werden experimentelle Brechungsindizes von fast stéchiometrischen Lithiumniobat, hergestellt mit-
tels vapor transport equilibration, angegeben.

iber

(4.3)

n(w) =

le(w)] + Ree(w) "
()
Die Anwendung der RPA duflert sich im Vergleich zur Unabhéngige-Teilchen- Approxima-
tion durch eine leichte Blauverschiebung des Spektrums, bzw. einer Umverteilung von Os-
zillatorstiarke zu hoheren Energien, sowohl fiir den Real- als auch fiir den Imaginérteil der
dielektrischen Funktion. Die Verwendung der RPA liefert folglich niedrigere Brechungsin-
dizes. Dadurch, dass K% und das LRC-Kernel dieselbe q~2-Abhingigkeit besitzen, lassen
sie sich in ihrer Wirkung direkt vergleichen. So entspricht die Anwendung der RPA der des
LRC-Kernels mit positivem a. Wie bereits erwéhnt, ist dieses Verhalten eher geeignet,
um GW-Ergebnisse zu reproduzieren und fithrt an dieser Stelle nicht zu Verbesserun-
gen des Spektrums. Die Doppelbrechung von LN wird quantitativ am besten durch die
unterste Stufe der Approximationen (IPA) beschrieben. Dies kénnte daran liegen, dass
den iibrigen Ndherungen eine komplizierte Frequenzabhéngigkeit in f,. fehlt, die mehr als
nur eine Umverteilung von Oszillatorstiarke bewirken. Das wird im Falle vom LRC-a,
bekréftigt, da durch den hohen S-Parameter viel Oszillatorstdrke zu héheren Frequenzen
verschoben wird, was sich im niedrigeren Frequenzbereich in stark reduzierten Brechungs-
indizes dulert und zu einer weiteren Verschlechterung der quantitativen Beschreibung der
Doppelbrechung fiithrt. Da im Weiteren vor allem der Frequenzbereich innerhalb der op-
tischen Bandliicke von Interesse ist, wird in allen weiteren Rechnungen mit der o = 0.44
Variante des LRC-Kernels gearbeitet.

4.3.3 Kongruentes Lithiumniobat

Kongruentes Lithiumniobat wird in dieser Arbeit durch isovalente NbyT Punktdefekte im
Zustand 4d° in der 2x2x2 und in der 3x3x3 Superzelle simuliert. Da die Niobdefekte die
Bandliicke relativ gering beeinflussen und es angenommen werden kann, dass die exzito-
nische Bindungsenergie annéhernd gleich bleibt, ist auch hier ein scissors shift von 1.4eV
und o = 0.44 angemessen. Abbildung 4.10 zeigt den Imaginérteil der dielektrischen Funk-
tion von kongruentem LN mit den zwei verschiedenen Nby; Antisitedefektkonzentrationen
im Vergleich zu stéchiometrischem LN und den experimentellen Messungen. Auswirkun-
gen von Zwischengitteratomen auf das optische Absorptionsspektrum sind an dieser Stelle
von geringerem Interesse, da sie quantitativ hochstens 10 % der Anzahl der Nby; Defek-

te ausmachen [166] und somit eine untergeordnete Rolle spielen. Um zu zeigen, dass die

101



Zwischengitterdefekte die dielektrische Funktion nicht stérker im Vergleich zu den Antisi-
tedefekten beeinflussen, ist die entsprechende dielektrische Funktion des Nby Modells in
hoher Defektkonzentration ebenfalls abgebildet. Er beeinflusst die dielektrische Funktion
im vergleichbaren Mafle wie der Antisitedefekt und kann somit bei realistischen Konzen-

trationen vernachléssigt werden.

Es zeigt sich allgemein, dass die Strukturen im Absorptionspeak ausgewaschen werden.
Dies wurde auch in fritheren theoretischen Studien auf Grundlage der Unabhéngige-
Teilchen-Approximation [149, 169] beobachtet und liegt daran, dass die einzelnen elektro-
nischen Bénder homogener im Leitungsband verteilt sind. Somit werden die berechneten
Spektren je nach Nby; Konzentration in bessere Ubereinstimmung mit den gemessenen
Spektren gebracht. Die deutliche Spitze im Absorptionspeak der auflerordentlichen di-
elektrischen Funktion wird mit zunehmender Defektkonzentration abgeflacht, so dass die
Form qualitativ besser mit dem Experiment iibereinstimmt. Die Absorptionskante der be-
rechneten Spektren ist unter 0.1eV (e.) bis unter 0.2eV (g)) fiir CLN (88 %) gegeniiber
SLN rotverschoben, withrend diese Anderungen fiir CLN (96 %) wesentlich geringer aus-
fallen. Die Reduktion des Beginns des Absorptionspeaks héingt direkt mit der kleineren
theoretischen elektronischen Bandliicke im kongruenten Material zusammen. Dieses Ver-
halten ist bekannt und kann in der Praxis angewendet werden, um die Stochiometrie
unbekannter LN-Proben zu bestimmen. Dies geschah in Messungen der fundamentalen
Absorptionskante in Abhéngigkeit der stéchiometrischen Zusammensetzung [203]. Dort
ist eine Reduktion der Bandliicke von 0.15 eV fiir CLN (96 %) bzw. 0.3 eV fiir CLN
(88 %) zu beobachten, was vermuten lésst, dass weitere (ladungskompensierende) Defekte
einen zusitzlichen Effekt auf das Absorptionsspektrum herbeifithren. Die Tatsache, dass
das hohere Li:Nb Verhéltnis die Form der experimentellen Kurve am besten beschreibt,
sollte daher nicht als Hinweis auf das Nb-Vakanz-Modell angesehen werden, da weitere
Defekte wie Lithium- oder Niobfehlstellen hier aufler Acht gelassen wurden.

Der Vergleich der frequenzabhingigen Brechungsindizes mit experimentell bestimmten
Brechungsindizes [124] kann in Abb. 4.11 gezogen werden. Dort wurden Brechungsindizes
bei unterschiedlicher Temperatur, Wellenldnge und Stochiometrie ermittelt und an die
generalisierte Sellmeier-Gleichung gefittet. Die Verwendung dieser Gleichung erleichtert
hier die Darstellung der dort numerisch nicht aufgelisteten Werte und eine Extrapolation
der experimentellen Befunde auf die hier verwendeten Defektkonzentrationen iiber einen
kontinuierlichen Frequenzbereich von 1 bis 4eV. Die Messungen verdeutlichen, dass das
variierende Li:Nb Verhiltnis einen sehr geringen Einfluss auf n, hat, wihrend sich n) stark
andert und sich dem héheren Wert von n, néhert, also die Doppelbrechung reduziert.

Die theoretischen Ergebnisse reproduzieren dieses Verhalten ausgesprochen gut. Damit
zeigt sich, dass die Korrektur der im Prinzip unzureichend konvergierten optischen Funk-
tion in den Superzellen exzellent funktioniert. Damit kénnen auch verlassliche quantitati-
ve Aussagen zu ihnen getroffen werden. Im Falle des auflerordentlichen Brechungsindexes
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Abbildung 4.10: Berechneter Imaginirteil der ordentlichen (¢,) und auflerordentlichen (g)) dielek-
trischen Funktion in Abhéngigkeit der Nby; Antisite Konzentration, welches im weiteren als einfaches
Modell fiir kongruentes Lithiumniobat verwendet wird. Die ausgewaschenere Form der CLN Spektren in
Vergleich zu SLN stimmt besser mit dem Experiment von Wiesendanger et al. iiberein. Zusétzlich ist der
Imaginérteil der dielektrischen Funktion des Zwischengitterdefekts Nby, abgebildet.

Wellenlidnge (nm)

) 00 800 600 400 1200 800 600 400 )3
i | | | = ISLN "lfheorie | 1
2.7 —— CLN 96% Theorie 27

. It CLN 88% Theorie
2.6 /" - ---- SLN Expt. 2.6

1t --— CLN 96% Expt.
—---- CLN 88% Expt.

,
;
7,
- 24
:
,
g

325

4253
<24 3
2.3 -12.3

22F I +2.2

1 | 1 | 1 1 | 1 | 1
2'11 2 3 41 2 3 42'1

Abbildung 4.11: Ordentlicher (ny) und auBerordentlicher (n)) Brechungsindex von stéchiometrischen
und kongruenten LN mit zwei unterschiedlichen Li:Nb Konzentrationen. Der Vergleich zum Experiment
erfolgt iiber einen Fit an gemessene Brechungsindizes [124] und Extrapolation auf die hier verwendeten
Li:Nb Verhéltnisse.
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sind die jeweiligen Anstiege des Brechungsindexes von SLN zu CLN (96 %) und von CLN
(96 %) zu CLN (88 %) édquidistant. Der Unterschied zum Experiment kann damit erklirt
werden, dass die Defektatome bei Simulation in der 2x2x2 Superzelle periodisch dicht
auf der optischen Achse liegen und Wechselwirkungen untereinander auftreten, wihrend
in der 3x3x3 Superzelle Gitterrelaxationen durch ein Defektatom weitreichender be-
schrieben werden kénnen. Dadurch ist ein hoherer Anstieg des Brechungsindexes vermut-
lich simulationstechnisch begrenzt. Das Verhalten der Brechungsindizes konnte vorsichtig
im Sinne des Li-Vakanz-Modells gedeutet werden: Wiren wie im Nb-Vakanz-Modell 6 %
der Lithiumplitze mit Niob besetzt, so miisste die Anderung von n) sehr viel stérker
ausfallen, als die experimentellen Befunde offenbaren. Diese Deutung ist unter der Ein-
schrankung zu verstehen, dass ladungskompensierende Defekte oder andere Effekte kei-
nen erheblichen entgegengesetzten Effekt auf die Brechungsindizes erzeugen. Da im Nb-
Vakanz-Modell jedoch eine grofle Anzahl an Niobvakanzen vorliegt, diirften diese einen
nicht vernachléssigbaren zusétzlichen Einfluss auf die optischen Funktionen ausmachen.
Beim ordentlichen Brechungsindex weichen die theoretischen Kurven von CLN leicht von
SLN und somit von dem Trend der experimentellen Ergebnisse ab, indem ein leichter
Anstieg zu verzeichnen ist. Die Anderungen sind jedoch deutlich kleiner als beim auferor-
dentlichen Brechungsindex und zeigen, dass die einfache Fokussierung auf Punktdefekte
die Physik schon sehr gut beschreibt.

4.3.4 Polaronen

Die TDDFT-Rechnungen werden auf alle fiir die Bildung von Polaronen in Betracht ge-
zogenen Strukturen ausgeweitet. Die Analyse fokussiert sich auf den fiir die Polaronen-
absorption relevanten Bereich innerhalb der optischen Bandliicke. Der scissors shift muss
zu diesem Zweck neu angepasst werden, da das Augenmerk nun nicht mehr auf die kor-
rekte Beschreibung der Bandliicke und exzitonischen Effekte des Hauptabsorptionspeaks
liegt, sondern auf den (weitaus geringeren) energetischen Abstand zu den elektronischen
Leitungsbandern und der exzitonischen Bindungsenergie des Polaronenlevels. Daher wird
der scissors shift so angewendet, dass die PBEsol-Energieliicke zwischen den besetzten
Defektlevel und den unbesetzten Leitungsbandern (gelber Pfeil in Abb. 4.4) auf den ent-
sprechenden Wert des HSE06-Hybridfunktionals (Roter Pfeil in Abb. 4.4) gedffnet wird.
Deshalb entsprechen die scissors shifts von 0.60, 0.85, 0.98 und 0.45eV fiir Nby; (SLN),
Nby—Vyi, Nby bzw. Nby; (ILN) den in Kapitel 4.2.4 genannten Werten. Die Erfahrungen
durch die Anpassung des LRC-Kernels in Kapitel 4.3.2 nur auf Grundlage von GW-
Quasiteilchenenergien und der empirischen Formel zeigen, dass diese Wahl nicht unpro-
blematisch ist, da exzitonische Effekte moglicherweise stark unterschéitzt werden. Dies
muss bei der Analyse der Ergebnisse beachtet werden. Fiir alle Defekte werden TDDFT-
Rechnungen in der 2x2x2 Superzelle durchgefiihrt. Da sich an jedem Defekt ein Polaron
bildet, sind Defekt- und Polaronenkonzentration dquivalent. Fiir die kleine Superzelle liegt
damit eine hohe Konzentration vor, die mit H gekennzeichnet ist.
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Abbildung 4.12: Imaginérteil der dielektrischen Funktion aus TDDFT-Rechnungen. Die durchgezoge-
nen Linien markieren die Rechnungen mithilfe des LRC-Kernels. Zum Vergleich werden alle Daten mit
Ergebnissen der Unabhéngige-Teilchen-Approximation, die gestrichelt gekennzeichnet sind, ergédnzt. Fiir
Nby; und Nby—Vy,; wird neben den Berechnungen in der 2x2x2 Superzelle, die durch eine hohe Kon-
zentration an Polaronen charakterisiert ist (gekennzeichnet mit H) auch die 3x3x3 Superzelle verwendet
(L). Daher riihren die unterschiedliche Oszillatorstérken von L und H. Die vertikalen gepunkteten Linien
zeigen die gemessene Position des polaronischen Absorptionspeaks [173].
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Die TDDFT-Resultate werden in Abb. 4.12 gezeigt. In den Simulationen fithren alle De-
fekte zu Polaronenabsorption innerhalb der Bandliicke. Fiir Nby; (SLN) und Nby—Vy;
liegen die Absorptionspeaks zwischen 1.5 und 2.0eV, aber da die energetische Trennung
zwischen Defektlevel und Leitungsbéndern fiir Nby; (SLN) niedriger ist als fiir Nby—Vy;,
beginnt die Absorption dort bei leicht niedrigeren Energien. Aus demselben Grund ist
der Absorptionspeak von Nby im Vergleich zu diesen Ergebnissen deutlich blauverscho-
ben. Damit sind die Positionen der Absorptionspeaks dieser Struktur mit denen von ILN
vergleichbar, obwohl das Defektlevel vom letzteren deutlich ndher am Leitungsband liegt.
Dies kann daran liegen, dass Ubergénge zu den beiden untersten Leitungsbandleveln,
die ebenfalls aufgrund ihrer Elektronendichtelokalisierung mit Defektzustdnden assoziiert
werden konnen, verboten sind (sieche Abb. 4.4, ILN).

Einzig Nby; (SLN) und Nby—Vy; sind zu den verfiigbaren Messungen kompatibel, die einen
Polaronenpeak bei 1.64 ¢V nahelegen [173]. Experimentell sind die Peakpositionen bei or-
dentlicher und auBerordentlicher Polarisation identisch [6], was fiir Nby—Vy; etwas besser
zutrifft als fiir Nby; (SLN), da beim letzteren die Maxima der ordentlichen dielektrischen
Funktion im Vergleich mit der auflerordentlichen dielektrischen Funktion leicht rotverscho-
ben sind. Erginzende, sehr aufwendige Berechnungen mit niedrigerer Polaronendichte in
der 3x3x3 Superzelle (L) beschrinken sich aufgrund der besseren Ubereinstimmung mit
dem Experiment auf die beiden genannten Modelle. Als direkte Folge der verschiede-
nen Defekt- bzw. Polaronenkonzentrationen reduziert sich die Oszillatorstéarke gleich dem
Verhiltnis dieser Konzentrationen in den beiden Zellen. Es zeigt sich, dass die Peakposi-
tionen der niedrigeren Polaronenkonzentrationen nicht so klar zu identifizieren sind wie
bei den hoheren Konzentrationen, da sie meist in ein Absorptionskontinuum miinden.
Wihrend die Absorptionspeaks der beiden Defektstrukturen bei H nahe beieinander sind,
ergeben sich nun stéirkere Abweichungen fiir L. Dies liegt an weiteren Strukturrelaxationen
in der nun deutlich groeren Superzelle. Die Absorptionspeaks der Nby; (SLN) Struktur
mit der niedrigeren Defektkonzentration liegt somit leicht unter dem gemessenen Wert,
wéhrend die anderen Modelle eine Blauverschiebung aufweisen. Trotz der Verschiebungen
kann jedoch festgehalten werden, dass die polaronischen Absorptionspeaks schon in der
kleineren Superzelle mit guter Genauigkeit vorhergesagt werden konnen, da die Positi-
onsdnderung in allen Féllen mit weniger als 0.15eV relativ gering ausfallt.

Im Experiment ist die Absorption leicht stérker fiir die ordentliche Polarisationsrichtung
[6]. Dies trifft bei den TDDFT-Spektren fiir die Defekte zu, die Nby; beinhalten. Ande-
rerseits liegt bei den Defekten, die Zwischengitteratome aufweisen, der entgegengesetzte
Befund vor: Bei g)(w) ist die Polaronenabsorption generell breiter und offenbart eine Os-
zillatorstérke, die mehr als das doppelte ausmacht als bei e (w). Diese Beobachtung wird
etwas abgemildert fiir die realistischere niedrigere Polaronenkonzentration L.

Die Wirkungsweise des LRC-Kernels lésst sich im Vergleich mit der Unabhéingige-Teilchen-
Approximation evaluieren. Es wird dabei deutlich, dass das Kernel {iberwiegend fiir erhchte
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Oszillatorstérke sorgt, sodass als Folge daraus auch die polaronischen Absorptionskanten
um bis zu 0.08 eV rotverschoben werden. Dies trifft allgemein fiir £, (w) zu, wéhrend fur
g)(w) auBer fiir Nby; sogar eine Blauverschiebung stattfindet. Das LRC-Kernel sorgt in
letzteren Fiéllen eher fiir eine Ausbildung einer Doppelpeakstruktur. Damit zeigt sich,
dass besonders hier eine Simulation der erwarteten exzitonischen Bindungsenergie aus-
bleibt. Die Wirkung ist geringer fiir L, was wiederum an der bloflen Umverteilung von
Oszillatorstérke des dort kleineren Absorptionspeaks liegt.

Zusammenfassend lésst sich festhalten, dass die Nby; (SLN) und Nby—Vy; Modelle auf
Grundlage der hier angewendeten Methoden die experimentellen Daten am ehesten re-
produzieren, wobei Nby; (SLN) wegen der leicht besseren Ubereinstimmung der Peakposi-
tionen die experimentellen Befunde noch etwas besser beschreibt, jedoch unter Vorbehalt
der korrekten theoretischen Beschreibung der exzitonischen Effekte. Des Weiteren zeigt
dieses Modell das korrekte Verhalten der Oszillatorstérken. Nby und Nby; (ILN) weisen

deutliche Unterschiede im Vergleich zum Experiment auf.

4.3.5 Bipolaronen

Fiir alle betrachteten Strukturen werden die TDDFT-Rechnungen im Einklang mit der
Beschreibung fiir die Polaronen im vorangegangenen Kapitel ausgefiihrt. Dabei werden
scissors shifts von 0.66, 0.73, 0.79 bzw. 0.46eV auf Nby; (SLN), Nby—Vy;, Nby bzw.
Nby; (ILN) angewendet. Damit streut aufler fiir ILN der Anstieg der Energiedifferenzen
zwischen HSEO6 und PBEsol weniger als es bei den Polaronen beobachtet wurde. Im
Gegensatz zu Abb. 4.12 treten nun klare Unterschiede zwischen Nbp; (SLN) und Nby—
V1 in den berechneten Spektren in Abb. 4.13 auf. Generell sind die Absorptionspeaks
von Nby—Vp; beziiglich Nby; (SLN) um mindestens 0.5 eV blauverschoben mit Ausnahme
der ordentlichen dielektrischen Funktion €, (w) im Falle der hoheren Defektkonzentration.
Dort zeigt das Nby—Vy,; Defektpaar eine Absorption in einem breiten Bereich um 2.4¢eV.
Wihrend das Absorptionsmaximum fiir das Bipolaron am Antisitedefekt verglichen mit
dem Peak des Polarons in SLN nur leicht blauverschoben ist, ist der entsprechende Shift
fiir Nby—Vy,; klar erkennbar. Quantitativ betrédgt dieser je nach Konzentration und Pola-
risationsrichtung 0.5 bis 0.7eV. Vergleichbar mit den Peakpositionen von Nby—Vry; sind
auBerdem die der Defekte Nby und Nby; (ILN). Diese sind im Gegensatz beziiglich der
Polaronenabsorptionspeaks jedoch nur leicht blauverschoben.

Hinsichtlich des experimentell gemessenen Absorptionsmaximums bei 2.5eV [172] sind
die Modelle, die Zwischengitteratome enthalten und mit Einschrénkung das Antisiteatom
in ILN, welches eine breitgefacherte zwei- oder dreifach Peakstruktur besitzt, geeignete
Konfigurationen, um diesen Umstand zu beschreiben. Die Peakmaxima von Nby; (SLN)
sind im Vergleich mit dem Experiment dagegen deutlich rotverschoben. Leichte Abwei-
chungen von 0.25eV nach unten (¢, (w) bei Nby—Vy;) oder nach oben (g(w) bei Nby)
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Abbildung 4.13: Imaginirteil der dielektrischen Funktion aus LRC-TDDFT-Rechnungen (durchge-
zogene Linien). Zum Vergleich sind jeweils TDDFT-Ergebnisse mithilfe der Unabhéngige-Teilchen-
Approximation abgebildet. Die Bipolaronabsorption setzt bei Nby; (SLN) vor allem fiir & (w) am friihsten
ein. H bezeichnet eine hohe Defektkonzentration mit Li:Nb = 88 % und L eine niedrige Konzentration von
Li:Nb = 96 %. Unterschiedliche Zellgréfen und Defektkonzentrationen erkliren die verschiedenen Oszilla-
torstidrken zwischen L und H. Die gepunkteten vertikalen Linien markieren das experimentell beobachtete
Peakmaximum bei 2.5eV [172].
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beriicksichtigt, werden die Peakmaxima bei den restlichen Modellen exakt beschrieben,
wobei in ILN die Absorptionspeaks deutlich breiter sind als bei den Modellen mit Zwi-
schengitterdefekten. Bei Kombination der beiden Befunde beziiglich Polaronen und Bi-
polaronen zeigt sich, dass eine geringere Separation der jeweiligen Peakmaxima nicht den
experimentellen Ergebnissen entspricht, die einen Wert von 0.86 eV ergaben. Das bedeutet,
dass die TDDFT-Ergebnisse das Zwischengitter—Lithiumvakanz-Defektmodell als einzige
Konfiguration ausweisen, die im Einklang mit den Messungen steht. Das schliefit ins-
besondere das in der Literatur verbreitete Modell des Nb;-Nbyi (4d'-4d") Bipolarons
aus. Auch hier gilt, dass experimentell gemessene Absorptionsspektren in ordentlicher
und auflerordentlicher Polarisationsrichtung dieselbe Peakposition aufweisen, wobei das
ordentliche Spektrum ein wenig hoher liegt. Dies trifft bezogen auf die TDDFT-Ergebnisse
am ehesten auf die llmenitstruktur zu, wobei Unterschiede in den iibrigen Strukturen bei

nachlassender Polaronenkonzentration schwinden.

Der Effekt, den das LRC-Kernel auf den Imaginérteil der dielektrischen Funktion hat, ist
in Stédrke und Ausprédgung mit der Wirkung des LRC-Kernels auf das Polaronenspektrum
vergleichbar. Einzig bei g(w) in ILN findet eine ungewthnliche Absenkung der Oszilla-
torstiarke unter Verwendung des LRC-Kernels statt. Die Griinde dafiir sind unklar.

4.3.6 Titan

Die berechneten Resultate fiir den Imaginérteil der dielektrischen Funktion sind in Abb.
4.14 dargestellt. Wie im Fall von CLN wird bei den TDDFT-Rechnungen ein scissors shift
von 1.4eV und a = 0.44 verwendet, da wieder davon ausgegangen werden kann, dass die
Defektatome die exzitonische Bindungsenergie und Bandliicke nicht fundamental &ndern
werden. Es werden weiterhin die drei Ti-Defektkonzentrationen im stéchiometrischen und
kongruenten LN betrachtet. In der Abbildung zeigt sich, dass die Struktur des Hauptab-
sorptionspeaks im Vergleich mit SLN durch die Titandefekte groBitenteils ausgewaschen
wird, wie es auch bei CLN zu beobachten war. Ebenfalls wird der Beginn des Hauptab-
sorptionspeaks bei 5 eV zu niedrigeren Energien transferiert, was aus der Verschiebung
der Leitungsbiander nach unten resultiert.

Im Fall von SLN ist es interessant festzustellen, dass die optische Absorption keine mo-
notone Funktion der Titankonzentration ist: Bei Energien innerhalb der Bandliicke, ver-
groflert in den Insets von Abb. 4.14, fillt die dielektrische Funktion zunéchst deutlich,
wenn Titanatome in das Material eingebracht werden. Steigt die Titankonzentration wei-
ter, steigt auch die dielektrische Funktion. Dieses Verhalten gilt nicht ausschlieBlich fiir
die Titaneindiffundierung, sondern kann auch bei CLN im Vergleich zu SLN beobachtet
werden. Die Einbettung von Titan in CLN hat mit wachsender Konzentration von Tir;
Substitutionsatomen ohne Ausnahme einen Anstieg der Absorption zur Folge. Generell

ist hier anzumerken, dass die Anderungen in der dielektrischen Funktion durch die Ver-
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breiterung 7 in der Kohn-Sham-Antwortfunktion iiberbetont werden. Der grofie Sprung
zwischen SLN und defektbehafteten LN ist in seiner Ausprédgung in erster Linie ein Ar-
tefakt dieser Verbreiterung. Wird die Verbreiterung gegen null reduziert, tendiert die
imaginére dielektrische Funktion innerhalb der Bandliicke gegen null. Die Tatsache, dass
sich das Absorptionsverhalten durch (steigende) Titandotierung kaum #ndert, bestétigt

die exzellenten Wellenleitereigenschaften von Ti:LN auf Grundlage der Tiy; Modellierung.

Weiterhin ist es wichtig, anzumerken, dass die Anderungen der dielektrischen Funktionen
durch Titaneindiffusion im Bereich der absoluten Genauigkeit der dielektrischen Funk-
tionen liegen. Wie in Kapitel 4.2.1 beschrieben wurde, ist dieses Problem durch das Hin-
zufiigen der Konvergenzoffsets weitgehend entschérft. Dies gilt selbstverstéindlich auch fiir

die anderen optischen Funktionen, die im Weiteren hier betrachtet werden.
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Abbildung 4.14: Imaginirteil der dielektrischen Funktion bei Konzentrationen von 0.35, 1.05 und
1.16x10%! Titanatomen pro cm?® im stéchiometrischen (obere Panele) und kongruenten (untere Pane-
le) Lithiumniobat. Die Komponenten des elektrischen Feldes orthogonal (links, 1) und parallel (rechts,
|) zur c-Achse sind separat dargestellt. Die Konzentrationen von 0.35 und 1.05x10%! Ti Atomen pro
cm? sind in der 3x3x3 Superzellen verwirklicht, wo sie im kongruenten Fall einem Li:Nb Verhiltnis von
96 % ausgesetzt sind. Die Konfiguration mit 1.16x 102! Ti Atomen pro cm? ist in der 2x2x2 Superzelle
modelliert, wobei bei kongruenten LN zusétzlich ein niedrigeres Li:Nb Verhiltnisses von 88 % vorliegt,
was durch die Strichelung der Linien betont werden soll. Die Vergroflerung in den Insets zeigt den Ener-
giebereich von 1.0-1.2 eV und ist représentativ fiir die Lage der dielektrischen Funktionen innerhalb der
optischen Bandliicke. Auf die SLN-Kurven in den oberen Insets wird im Sinne einer besseren Auflosung
verzichtet. Sie verlaufen knapp oberhalb von 0.08.
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Es gibt leider nur wenig experimentelle Daten fiir die Reflektivitdt von Titan-eindiffun-
diertem Lithiumniobat, die direkt mit den aktuellen Resultaten verglichen werden kénnen.
Die frequenzabhingige Reflektivitdt R(w) kann mithilfe des Brechungsindexes n(w) und

() = ( le(w)] — Rea(w)) i (0.4)

berechnet werden, wobei gilt

des Absorptionsindexes

(4.5)

Suche et al. [195] haben das Verhéltnis der Reflektivitdten von Titan-eindiffundiertem
und kongruentem LN parallel zur c¢-Achse, also das Verhéltnis Rri.con(w)/Rern(w), an
einer Probe mit unbekannter Verunreinigungskonzentration zwischen 0.1 und 1.5x 10%! Ti-
tanatomen pro cm?® gemessen. In Abb. 4.15 sind die experimentellen Befunde zusammen
mit den aktuellen Resultaten fiir Rrisin(w)/Rsin(w) und Rryicon(w)/Rern(w) darge-
stellt. Es zeigt sich, dass die experimentelle Defektkonzentration durch die vergleichbare
GroBenordnung der Anderungen innerhalb des theoretisch modellierten Bereichs von 0.35
bis 1.16x10%' Titanatomen pro cm?® liegen kénnte.

Die qualitativen Charakteristika der experimentellen Kurve konnen gut reproduziert wer-
den. Das auffilligste Merkmal ist der Peak in der relativen Reflektivitiat zwischen 4.5 und
5eV. Dieser wird durch die Reduktion der Bandliicke mit wachsender Fremdatomkonzen-
tration im Material verursacht und hat damit dieselbe Ursache wie die Rotverschiebung
des Absorptionspeaks in der imaginédren dielektrischen Funktion von kongruentem LN.
Daher ist der Peak der relativen Reflektivitdat keine direkte Signatur der Titanfremdat-
ome sondern ein indirekter Effekt, dessen Peakposition jedoch Aufschluss iiber die Verun-
reinigungskonzentration geben kann: Mit steigender Anzahl an Fremdatomen verschiebt
sich der Peak zu niedrigeren Energien. Des Weiteren héngt die Grofle der Reflektivitét
von der Titankonzentration ab. Sie wird durch die Anzahl an zusétzlichen elektronischen
Zustéanden bestimmt, die resonant mit den Leitungsbédndern sind und sich mit der Konzen-
tration erhchen. Die Inkonsistenzen bei den zwei hoheren Titankonzentrationen ergeben
sich aus der Anordnung der Punktdefekte, was im Fall von kongruentem LN noch einmal

ausfithrlich diskutiert wird.

Bei CLN muss beachtet werden, dass Titandotierungen in Konfigurationen mit verschie-
denen Li:Nb Verhéltnissen, also 88 % in Rechnungen in der 80 atomigen Superzelle und
96% in der 270 atomigen Superzelle, realisiert werden. Das Verhalten der optischen Funk-
tionen ist stark von der Modellierung der Punktdefekte, insbesondere der Wechselwirkung
unter ihnen, geprégt. Dies wird am offensichtlichsten fiir Ti:CLN in der 2x2x2 Superzelle
mit ey = 1.16x10%! em™3. Dort befinden sich die Tip; und Nby; Substitutionsatome in
benachbarten Einheitszellen entlang der c-Achse. Da Niob- und Titandefekte an Lithi-
umpositionen fiir sehr dhnliche Gitterverzerrungen entlang der c-Achse im kationischen
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Untergitter iiber die gesamte Einheitszelle sorgen, treten weitere Relaxationen fiir kon-
gruentes LN nach Substitution des Lithiumatoms mit Titan aufgrund der begrenzten
Zellgrole kaum auf. Dies erkléart, dass sich die Reflektivitat im parallelen Fall innerhalb
der Bandliicke nicht éndert. Die Struktur nach 4.5 eV ist wiederum mit der Anderung der
Bandliicke und elektronischen Struktur zu begriinden. Die Reflektivitdtsdnderung ortho-

gonal zur c-Achse ist dagegen kaum von der geringen Superzellgrofie betroffen.

Abweichungen vom erwarteten Verhalten sind auflerdem fiir die Konzentrationen von 1.05
und 1.16x10%! Ti Atomen pro cm?® zu beobachten: Die zu erwartende Reihenfolge einer
steigenden relativen Reflektivitét ist vertauscht. Auch hier héngt dieser Befund von der
begrenzten Superzellgrofie und zusétzlich von der unterschiedlichen Modellierung der De-
fekte ab. Wie im Strukturvergleich zwischen 2x2x2 und 3x3x3 Superzelle angemerkt
wurde, finden weitere atomare Verschiebungen iiber die Grenze der 2x2x2 Superzel-
le, die fiir die Konzentration von 1.16x10?' cm™ benétigt wird, hinaus statt. Durch

die Présenz eines Defektatoms in jeder zweiten Superzelle entlang der c-Achse tritt so-
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Abbildung 4.15: Relative Reflektivitit Rri.sun/Rsin (oben) und Ri.crn/Rern (unten) im Vergleich
mit experimentellen Daten aus [195] fiir CLN bei einer unbekannten Titankonzentration cr; zwischen 0.1
und 1.5. Die Komponenten des elektrischen Feldes orthogonal und (L) und parallel (||) zur ¢-Achse werden
getrennt dargestellt. Die gestrichelte rote Linie bei CLN verdeutlicht die unterschiedliche Antisitekonzen-
tration zu den beiden anderen Kurven. Weitere Informationen iiber die Verunreinigungskonzentrationen
und Li:Nb Verhéltnisse sind der Beschreibung von Abb. 4.14 zu entnehmen.

112



mit eine teilweise Redundanz der Gitterrelaxationen auf, die den entscheidenden Einfluss
auf die optischen Funktionen aufweisen. Die Konzentration von 1.05x10%! cm™2 ist zwar
dhnlich zu 1.16x10*' cm™3, jedoch bietet die 3x3x3 Superzelle andere Mdoglichkeiten
der Defektanordnung. Hier duflert sich die verwendete Modellierung dahingehend, dass
ein Titan-Defektcluster in der z-y-Ebene um die c-Achse herum angeordnet ist, wobei
trotz oder gerade aufgrund der Néhe zueinander groflere optische Effekte erzielt werden
konnen. Die Fille zeigen, dass vergleichbare Defektkonzentrationen durch unterschiedliche
Anordnung der Atome unterschiedliche Wirkung auf die optischen Funktionen aufweisen
konnen. Damit ist, wie anfangs vermutet, bewiesen, dass die Bewertung der Ergebnisse

unter Vorbehalt des Einflusses der Modellierung zu vollziehen ist.

Quantitative Messungen der Anderung des Brechungsindexes kénnen weitere Erkennt-
nisse iiber die Plausibilitdt der verwendeten Defektmodelle bieten. Laut experimentellen
Messungen induziert die Titaneindiffusion in LN eine absolute Anderung des Brechungsin-
dexes im Bereich von 1073 bis 1072 [176, 195], die unterhalb der numerischen Genauigkeit
liegt, die in den Berechnungen in den fiir die Simulation dieser Defekte benétigten Su-
perzellen erzielt werden kann. Diese Situation wird durch das Offsetverfahren entschérft,

welches die Genauigkeit um etwa den Faktor 100 erhoht.

Die berechneten Brechungsindizes werden in Abb. 4.16 préasentiert. Auch hier muss bei
CLN beachtet werden, dass Titandefekte in Konfigurationen mit verschiedenen Li:Nb
Verhiéltnissen eingebracht werden. Diese Tatsache ist beim Vergleich der Brechungsindi-
zes von Ti:CLN zu beriicksichtigen, insbesondere fiir die auflerordentliche Einfallsrich-
tung n|(w). Mit steigender Konzentration an Titanfremdatomen steigt dabei der Wert
von ny(w), jedoch kehrt eine hohe Konzentration von Nby; Antisites und Tiy; Substituti-
onsatomen diesen Effekt um. Dies geschieht aufgrund der Defekt-Defekt-Wechselwirkung,
wie es im Falle der Reflektivitéit bereits dargelegt wurde.

Es zeigt sich, dass der Versuch einer realitétsndheren Beschreibung der Titaneindiffusi-
on unter Beriicksichtigung der Antisitedefekte fiir eine genauere Analyse der Anderung
des Brechungsindexes eher zu Problemen fiihrt als mehr Klarheit zu verschaffen. Dieser
Eindruck ist jedoch nicht durchgéingig giiltig. Da bei der Simulation der Titaneindiffusi-
on in CLN in der 2x2x2 Superzelle die optischen Effekte in aulerordentlicher Richtung
yausgeschaltet werden, ldsst sich nun genauer analysieren, welche Gitterverzerrungen
dafiir verantwortlich sind, dass es beim Tip; Defekt zu einer deutlichen Erhohung des
gewoOhnlichen Brechungsindexes kommt und beim Nby; Defekt nicht. Die zusétzliche Ein-
bringung des Titandefektatoms in CLN in der 2x2x2 Superzelle verursacht weiterhin
die starke Kontraktion des umgebenden Sauerstoffoktaeders und weitere Verschiebungen
in der z-y-Ebene, die nicht im Niobdefekt begriindet sind. Dass lediglich Gitterverzer-
rungen fiir die Anderung des Brechungsindexes verantwortlich sind, kann durch Resub-
stitution anderer Defektatome auf den Tip; Gitterplatz bewiesen werden. Interessanter-
weise fiithrt die erneute Ersetzung von Tip; mit Niob ohne eine Gitterrelaxation durch-

113



zufithren zu ununterscheidbaren Kurven des Brechungsindexes von der von Tip;. Sogar
die Riicksubstitution mit Lithium sorgt fiir die Erhchung des gewdhnlichen und aufler-
gewohnlichen Brechungsindexes. Damit ist der grofle Unterschied der Auswirkung von Tig;
und Nby; auf den gewohnlichen Brechungsindexes klar auf den photoelastischen Effekt
durch die unterschiedliche Relaxation der umgebenden Atome zuriickzufithren und nicht
etwa durch die verschiedene Polarisierbarkeit der Defektatome oder den elektrooptischen
Effekt, in Ubereinstimmung mit den Erkenntnissen in [181], die aus experimentellen Beob-
achtungen hergeleitet wurden. Die Elektronendichte, die mit den Titanorbitalen assoziiert
werden kann, ist an den Titanplédtzen lokalisiert, so wie es bereits im Zusammenhang mit
der Bandstruktur (Abb. 4.8) diskutiert wurde. Dies kann als Hinweis aufgefasst werden,

dass die Titanzusténde stark atomaren Orbitalen dhneln, die kaum mit den Hostzusténden

hybridisieren.
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Abbildung 4.16: Brechungsindizes n(w) von stéchiometrischen (obere Panele) und kongruenten (un-
tere Panele) LN mit verschiedenen Titankonzentrationen. Die ordentliche n; und auBlerordentliche n
Komponenten des Brechungsindexes sind separat in den linken bzw. rechten Panelen dargestellt. Weitere
Informationen iiber die Verunreinigungskonzentrationen und Li:Nb Verhéltnisse sind der Beschreibung
von Abb. 4.14 zu entnehmen.
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An

Titankonzentration

Abbildung 4.17: Qualitativer Verlauf der Brechungsindexdnderungen mit zunehmender Titankonzen-
tration, wie sie von Suche et al. und Minakata et al. beobachtet wurden. Sattigungseffekte in den expe-
rimentellen Daten von Caccavale et al. sind hier nicht beriicksichtigt. Die gestrichelte Linie deutet die
Abweichung vom linearen Verhalten des auflerordentlichen Brechungsindexes an, welche von Suche et al.
und Caccavale et al. beschrieben wurde.

Experimentelle Messungen bei einer Wellenldnge von 630 nm (1.97 eV) zeigen, dass der
auBerordentliche Brechungsindex fast linear mit der Titankonzentration steigt, wihrend
der ordentliche Brechungsindex eine konkave aber monoton steigende Kurve bildet, deren
spéterer Verlauf linear ist [176, 195, 204]. Ein qualitativer Verlauf der experimentellen
Kurven ist in Abbildung 4.17 nachgebildet. Des Weiteren liegt die Anderung von n
wahrend des konkaven Verhaltens oberhalb der vom auferordentlichen Brechungsindex.
Bei grofleren Titankonzentrationen, die im Bereich der hier modellierten Konzentratio-
nen liegen, betrigt die Steigung der Anderung des gewohnlichen Brechungsindexes etwa
die Hélfte des auflergewohnlichen Brechungsindexes. Dies zeigt sich beim Blick auf Abb.
4.16 auch in den aktuellen theoretischen Daten, die die obere Grenze der experimentell
betrachteten Titankonzentrationen bilden, indem die auflerordentlichen Brechungsindi-
zes weiter auffachern als die ordentlichen. Die einzige Ausnahme, Ti:CLN in der 2x2x2
Superzelle, kann mit der durch die Grenzen der Modellierung unrealistische Lage der
Defektatome unberiicksichtigt bleiben. Die Defekt-Defekt-Wechselwirkung, die bei ho-
hen Konzentrationen vorliegt, erlaubt jedoch keine Aussagen iiber den genauen Verlauf
des Brechungsindex-Konzentration-Profils. Es kann jedoch festgehalten werden, dass der
Brechungsindex mit zunehmender Titankonzentration steigt. Was die Auswirkungen des
Umstandes betrifft, ob Titan in stéchiometrischem oder kongruentem LN simuliert wird,

kann ausgesagt werden, dass ein Anstieg der Brechungsindizes in CLN etwas gedampfter
ausfillt als in SLN.

Die experimentellen Befunde sind uneindeutig, bis zu welcher Konzentration das konkave
Verhalten vorliegt und wie lange die Anderung An, oberhalb der Anderung Any liegt.
Wihrend Suche et al. [195] einen Schnittpunkt bei etwa 0.38x 10*! cm ™3 beobachteten, be-
stimmten Minakata et al. [176] diesen bei etwa 0.14x10?! cm™3. Dies kann moglicherweise
auf die verschiedenen Messmethoden und auf die verwendeten Proben zuriickzufiihren
sein. Wahrend die Hohe der (extrapolierten) Brechungsindexédnderung von Minakata et

al. mit den aktuellen theoretischen Werten iibereinstimmt, ist sie bei Suche et al. etwa
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doppelt so hoch. Andererseits sahen Caccavale et al. [204] eine Saturierung der Brechungs-
indexénderung bei lediglich An; = 0.0111 und Anj = 0.0284, d.h. Gré8enordnungen, die
bei den aktuellen Ergebnissen schon in der 3x3x3 Superzelle bei geringer Konzentration
von etwa 0.25x10%! cm =2 auftreten, was einen Widerspruch zu den Messungen von Suche
et al. darstellt.

Diese stark schwankenden quantitativen Ergebnisse zeigen ihrerseits eine hohe Unsicher-
heit in den Messungen auf, in denen Konzentrationsprofil und Brechungsindex separat
bestimmt und aufeinander kalibriert werden miissen. Die theoretischen konzentrations-
abhingigen Anderungen der Brechungsindizes sind in einem Bereich modelliert, in dem
das experimentell beobachtete konkave Verhalten nicht mehr (deutlich) auftritt. Es er-
scheint jedoch weniger plausibel, dass sich bei der Verwendung noch gréflerer Superzellen
ein Effekt offenbart, der den ordentlichen Brechungsindex deutlich stérker ansteigen lasst
als den auflerordentlichen. Dies legt der Blick auf die Gitterverzerrungen der 2x2x2 und
3x3x3 Superzelle nahe, die sich lokal dhneln und damit von der Zellgrée unabhingig
sind.

In der Literatur wurden Szenarien diskutiert, bei denen die Nbyr; Antisites entscheidend bei
der Einbindung von Titan in das Kristallgitter von kongruentem Lithiumniobat mitwirken
[183, 205-208]. Im Hinblick auf die gesammelten theoretischen Daten ist dabei ein Mo-
dell von Kollewe et al. [183] erwahnenswert, in dem bei niedrigeren Titankonzentrationen
im Bereich der Antisitekonzentration (etwa 0.2x10*' cm ™ im Li-Vakanz-Modell) vorwie-
gend eine Ersetzung von Nbp; durch Tip; stattfindet. Die aktuellen Daten unterstiitzen
im Wesentlichen dieses Modell, wobei jedoch neben einer Ersetzung der Antisites durch
Titanatome auch eine Substitution der Lip; Lithiumatome erfolgen miisste: Die optische
Signatur der Nby; Antisites zeigt sich in den aktuellen Berechnungen fast ausschliefilich
durch die Erhohung des auflerordentlichen Brechungsindexes. Die Ersetzung der Antisites
durch Titanatome hétte somit einen Anstieg des ordentlichen Brechungsindex zu bedeu-
ten, wihrend n| eher sinkt. Dies kann aus dem Vergleich von n(w) fiir Tir;:SLN und CLN
gefolgert werden. Somit ist der alleinige Mechanismus, dass nur die Antisiteatome durch
Titanatome ausgetauscht werden, unwahrscheinlich, da dies nicht zu einem Anstieg des
aulerordentlichen Brechungsindexes fiihrt. Finden beide Prozesse, Lithium- und Antisi-
tesubstitution durch Titan, wahrend der Titaneindiffundierung statt, konnte das zu den
experimentell beobachteten Kurven der Brechungsindexénderung fithren, wobei sich das
lineare Verhalten bei Verringerung der zur Verfiigung stehenden Antisites einstellt.

Beziiglich der von Caccavale et al. experimentell festgestellten Saturierung des Brechungs-
indexes bei etwa 0.25x10%' cm™ besteht im Hinblick auf die aktuellen theoretischen Er-
gebnisse besonders fiir den aufferordentlichen Brechungsindex bei dieser Konzentration die
Moglichkeit, dass aufgrund der Defekt-Defekt-Wechselwirkung keine Anderung mehr auf-
tritt. Dies ist im Rahmen der betrachteten Modelle jedoch eher unwahrscheinlich, da dies
nicht oder eventuell deutlich spéter zur Saturierung von n fithren wiirde. Ausgehend von
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den experimentellen Befunden, welche Ti auf einen Nb Gitterplatz nachweisen, kann auch
eine vermehrte Besetzung dieser Gitterplidtze bei erhhter Konzentration stattfinden. Die
optische Signatur dieses Defektes zeigt sich in Abbildung 4.16, wo er in héchster Konzen-

tration von 1.16x10%'¢m =3

in einer einfach negativ geladenen Superzelle modelliert ist, da
das Nbﬁg Atom durch ein dreiwertiges Atom ersetzt wird. Auch bei hoher Konzentration
andert sich der ordentliche Brechungsindex nicht, wihrend der aulerordentliche sich nur
marginal und weit weniger als in den anderen Modellen dndert. Dies wiirde sich mit der
Interpretation von Kollewe et al. decken, die folgerten, dass bei 0.6x102! Titanatomen
pro cm?® die Besetzung von Lithiumgitterplitzen und bei 1.7x10?! Titanatomen pro cm?
von Lithium- und Niobplitzen wahrscheinlich ist. Hinsichtlich dieser Uberlegungen kann
die frithe Saturierung, die von Caccavale et al. beobachtet wurde, darauf zuriickzufithren
sein, dass dort eventuell eine defektarme Probe mit wenig Antisites verwendet wurde.
Andere Griinde, die hier nicht simuliert wurden, kénnen Versetzungen und Risse in der

Diffusionsschicht sein [181].

Es kann zusammenfassend festgehalten werden, dass eine Besetzung des Lithiumgitter-
platzes durch Titan beide Brechungsindizes erhoht. Aussagen iiber den genauen Verlauf
der Brechungsindexédnderung kénnen nicht getroffen werden, da dieser stark von der kon-
kreten Modellierung der Punktdefekte beeinflusst wird. Zur allgemeinen Diskussion, ob
Titan entweder Niob- oder Lithiumpldtze in Lithiumniobat einnimmt [208], konnen je-
doch eindeutigere Aussagen getroffen werden. Aus den aktuellen Daten fiir Tiy; und Tiyy,
im Vergleich zum experimentell beobachteten Ausmafi der Anderung der Brechungsin-
dizes kann gefolgert werden, dass aufgrund des mangelnden Einflusses von Tiy, auf n
eindeutig die Besetzung von Lithiumgitterplatzen durch Titan als Ursache ausgemacht
werden kann. Dariiber hinaus kann im hier verwendeten Modell der Punktdefekte die
alleinige Ersetzung von Nbp; nicht als Ursache fiir die Anstiege beider Brechungsindizes
ausgemacht werden, sondern es miissen ein erheblicher Anteil der Liy; Platze durch Titan

eingenommen werden.

4.4 Diskussion und Zusammenfassung

In diesem Kapitel wurde die ionische und elektronische Struktur verschiedener intrin-
sischer und extrinsischer Punktdefekte und einfacher Defektcluster in Lithiumniobat be-
rechnet. Im kongruenten Lithiumniobat war zusétzlich die Betrachtung der elektronischen
Polaronen und Bipolaronen ein wesentlicher Aspekt dieser Arbeit. Im Rahmen dessen
wurden verschiedene Defektmodelle wie Nby; (SLN), Nby, Nby—Vy; und Nby; (ILN) be-
trachtet, die allesamt die Bildung von (Bi)Polaronen am Defekt selbst (Polaron) oder bis
zum benachbarten Niobatom hinaus (Bipolaron) zulielen. Die Position ihrer Defektlevel
innerhalb der Bandliicke wurde analysiert und ihr Absorptionsverhalten anhand der ima-
gindren dielektrischen Funktion innerhalb der optischen Bandliicke bestimmt. Konkret
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konnte fiir die polaronische Absorption festgestellt werden, dass die beiden Modelle Nby;
(SLN) und Nby—Vy,; Peakpositionen in der imagindren dielektrischen Funktion aufwiesen,
die im Bereich des von Koppitz et al. [173] experimentell beobachteten Absorptionspeak
von 1.64 eV lagen. Im Fall der Bipolaronen zeigten die Modelle mit einem Zwischengit-
terniobatom Nby und Nby—Vy;, sowie Nby; (ILN) Absorptionspeaks nahe 2.5eV, die den
experimentell gemessenen Werten entsprachen [172]. In Kombination konnte somit nur
das Nby—Vy; Modell klar unterscheidbare Absorptionspeaks von Polaronen und Bipolaro-
nen in der dielektrischen Funktion liefern und zeigte daher die beste Ubereinstimmung zu
allen verfiigharen experimentellen Daten. Uberraschenderweise konnte insbesondere das
Nbyr; (SLN) Antisitemodell, welches in der Literatur bisher fiir die Bildung von Polaronen
und Bipolaronen verantwortlich gemacht wurde [6], die Trennung der Absorptionspeaks

von 0.9 eV nicht erklaren.

Die getroffenen Voraussagen stehen unter dem Vorbehalt, dass die Elektron-Loch-Wechsel-
wirkung korrekt beschrieben wurde. Es ist nicht unwahrscheinlich, dass die exzitonische
Bindungsenergie mit meist deutlich unter 0.1 eV als zu gering abgeschétzt wurde. Ein-
zige Anhaltspunkte fiir die Gréfenordnung solcher Effekte im Falle von Defektzusténden
liefern Rinke et al. [175], die die Bindungsenergie von einfach bzw. zweifach negativ ge-
ladenen Sauerstoffvakanzen in Magnesiumoxid (MgO) auf um die 0.5 eV mithilfe der
Bethe-Salpeter-Gleichung bestimmten. Dieser Wert muss jedoch relativiert werden durch
a) die groflere Bandliicke bzw. hohere Defektlevel in MgO und b) der Tatsache, dass die
Defektzustande an anionischen Fehlstellen anstatt an kationischen Defekten gebildet wer-
den. Wie grof§ die vernachléssigten Bindungseffekte auch immer sein mogen, werden sie
nicht die zu geringe Peakposition im Falle des Bipolarons beim Antisitedefekt in SLN
nach oben korrigieren kénnen. Somit bleibt die Haupterkenntnis, das Nby; (SLN) Mo-
dell auf Grundlage von Punktdefekten ausschlieen zu konnen, unangetastet. Auch wenn
in Testrechnungen Defektcluster im Sinne des Li-Vakanz-Modells nach Li et al. [169]
beriicksichtigt werden, bleibt die Lage des Bipolaronenniveaus nahezu unveréndert. Nby;
Antisites in ILN sind weiterhin denkbar, sofern sich erhebliche polaronische Bindungsener-
gien im Falle des Polarons ergeben. Voraussetzung waren ausgedehnte Ilmenitsequenzen
im kongruenten Lithiumniobat, die starken Einfluss auf die elektronische Bandstruktur
haben.

Da trotz diverser betrachteten Defektmodelle Nby; als einer der Hauptdefekte in Lithi-
umniobat gilt, stand seine Auswirkung auf die optischen Spektren weiter im Mittelpunkt.
Mit ihm als Punktdefekt wurde kongruentes LN modelliert. Kleine Strukturen in der ima-
gindren dielektrischen Funktion wurden mit zunehmender Defektkonzentration ausgewa-
schen. Ebenso konnte mit wachsender Konzentration an Antisites gezeigt werden, dass der
auflerordentliche Brechungsindex weiter anstieg, wihrend sich der ordentliche Brechungs-
index kaum anderte. Dies und die damit einhergehende Verminderung der Doppelbrechung
entsprach den experimentellen Befunden. Auch die Ersetzung von Lithium durch Titan
konnte die optischen Funktionen in dhnlicher Weise beeinflussen. Ein zentraler Unter-

118



schied zum Antisitemodell war der klare Anstieg des ordentlichen Brechungsindexes mit
der Titankonzentration im Einklang mit den experimentellen Daten. Auch die Tatsache,
dass sich die Brechungsindexdnderung stérker fiir den auflerordentlichen Brechungsindex
vollzog, war fiir die betrachteten Titankonzentrationen in Ubereinstimmung mit dem ex-
perimentellen Messungen. Insgesamt zeigte sich, dass sich trotz der unterschiedlichen von
der Superzellgrofie abhéingigen Qualitét der optischen Funktionen ein konsistentes Ver-
halten ergab und die Anwendung einer Offsetkorrektur erfolgreich war. So konnte gezeigt
werden, dass wachsende Defektkonzentrationen wachsende Anderungen der Brechungs-
indizes induzierten. Die deutlich unterschiedlichen Auspriagungen der Anderungen bei
Titan bei den beiden hohen Defektkonzentrationen ging auf die verschiedenen Defekt-
modelle zuriick und offenbarte die Grenzen einer wechselwirkungsfreien Defektsimulation.
Daher konnten unter dem Strich nur qualitative Aussagen getroffen werden. Die Anwesen-
heit eines zusétzlichen Antisitedefekts fiir die Simulation von Ti:CLN verursachte in der
Regel dasselbe qualitative Verhalten der Brechungsindizes wie Ti:SLN beziiglich der Ti-
tankonzentration, fallt jedoch quantitativ gedampfter aus. Nur die hochsten Antisite- und
Titankonzentrationen verursachten Abweichungen von diesem Verhalten, was als Artefakt

der Modellierung angesehen werden konnte.

Um sicherzustellen, dass ein Ti4NJg Defekt nicht denselben Effekt auf die optischen Funktio-
nen aufweisen konnte wie das Tiﬁr Substitutionsatom, wurde dieser in hoher Konzentra-
tion simuliert, womit gezeigt werden konnte, dass die durch ihn induzierten Anderungen
marginal waren. Alle gesammelten Befunde stimmten am ehesten mit dem Modell von
Kollewe et al. [183] iiberein, dass eine Besetzung von Antisites bei niedrigen und von
Nbnp, Plédtzen bei hohen Titankonzentrationen vorsieht. Jedoch legte der Vergleich der
Brechungsindizes von Tip; und Nby; nahe, dass eine erhebliche Menge an Lithium Plédtzen
durch Titan bei geringerer Konzentration besetzt werden miisste, da sonst die experi-
mentell beobachtete Anderung der Brechungsindizes, insbesondere des auBerordentlichen
Brechungsindexes, nicht stattfinden kann.
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Kapitel 5

Ausblick

In den vorangegangenen Kapiteln konnten verschiedene Ergebnisse présentiert werden,
die mehr Klarheit in den einzelnen Fragestellungen im Rahmen der Verwendung von LN
als optisches Material bringen konnten. Die heutigen theoretischen und rechentechnischen
Moglichkeiten wurden dabei oft ausgereizt. Dies fiihrte im Allgemeinen zu sehr soliden
Abschétzungen von realistischen Effekten in Lithiumniobat und Lithiumtantalat. Da es
wie im Allgemeinen so auch hier immer Moglichkeiten der Verbesserung gibt, soll hier

eine kurze Bewertung der verwendeten Methoden und ein Ausblick gegeben werden.

Die Berechnungen der Vibrationseffekte auf die elektronische Bandliicke entsprechen dem
aktuellsten Stand der Forschung: Bessere Approximationen erfordern die konsequente
Einbindung von elektronischen Selbstenergieeffekten im Rahmen des Quasiteilchenfor-
malismus. Dies ist nach derzeitigen Kenntnisstand nur innerhalb einer GW-DFPT-AHC-
Theorie zu erreichen [132]. Selbst wenn ein solcher Formalismus existierte, wiirde dieser
hochstwahrscheinlich rechentechnisch zu anspruchsvoll sein.

Fiir eine quantitative Betrachtung des Phaseniibergangs war der in dieser Arbeit prasen-
tierte Ansatz aufgrund des Auftretens von anharmonischen Effekten nur eine ungefihre
Approximation. Anharmonische Effekte lassen sich innerhalb der Dichtefunktionaltheorie
gut mit Molekulardynamikmethoden beschreiben, wobei reine Molekulardynamik eine
kaum erreichbare Vielzahl an Simulationsschritten (106 — 107 [209]) im Falle von Li-
thiumniobat und Lithiumtantalat in der notigen 3x3x3 Superzelle [154] beanspruchen
wiirde. Alternative Methoden sollen an dieser Stelle kurz skizziert werden. Die UP-
TILD-Methode (upsampled thermodynamic integration using Langevin dynamics) [209]
vertraut auf die thermodynamische Integration einer A-anteiligen Verbindung freier Vi-
brationsenergie, deren eine Grenze das komplett quasiharmonische System ist und die
andere Seite durch das komplett anharmonische System gebildet wird, welches mittels
Langevin-Molekulardynamik simuliert wird. Damit kann die Anzahl der nétigen Moleku-
lardynamikschritte, die innerhalb des Langevin-Formalismus um eine zuféllige Komponen-
te ergénzt sind und im UP-TILD-Formalismus keine voll auskonvergierten Konvergenzpa-
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rameter bendtigen, um etwa zwei Groflenordnungen reduziert werden, ist jedoch im Fall
der hier betrachteten Materialien immer noch sehr aufwendig. Eine weitere signifikante
Effizienzsteigerung kann mithilfe der Konstruktion von interatomaren Potentialen inner-
halb der TU-TILD-Methode (two-stage UP-TILD) [210] erfolgen, die aus einer Langevin-
Molekulardynamik (LD) Simulation extrahiert werden. Der oben beschriebene Schritt
wird nun mit den interatomaren Potentialen durchgefiihrt. Eine zweite thermodynami-
sche Integration zwischen diesem Hilfssystem und einer LD-Simulation liefert schlieflich
den anharmonischen freien Vibrationsenergiebeitrag mit deutlich reduzierter Anzahl an
notigen LD-Schritten. Damit kommt die Anwendung auch fiir LN und LT in Reichweite.
Im Hinblick auf diesen dargelegten Aufwand ist die approximative Anwendung des vorge-
stellten pragmatischen Formalismus, der nur auf die verhaltnisméfig leicht zu berechnende

Phononendispersion beruht, fiir eine Vielzahl von Systemen eine deutliche Erleichterung.

Die Simulation der Punktdefekte wurde in verschieden groflen Superzellen vorgenom-
men. Die atomare Struktur um die Punktdefekte herum konnte schon in der kleinen 80
atomigen Superzelle gut beschrieben werden. Durch genauere Analyse zeigte es sich je-
doch, dass weitreichendere Effekte vermutlich noch in der 270 atomigen Superzelle durch
die endliche Grofle beschrankt waren, sodass dort immer noch schwache Defekt-Defekt-
Wechselwirkungen auftraten. Die elektronische Struktur offenbarte, dass die Dispersi-
on der Polaronenniveaus in der 3x3x3 Superzelle verschwand, sodass die elektronische
Struktur keine offensichtlichen Wechselwirkungseffekte mehr offenbarte und somit eine
vertrauensvolle Basis fiir weitere Rechnungen darstellte. Eine Erhohung der Superzelle
auf 480 Atome stellt in den DFT-Rechnungen keine iibergrofie Hiirde dar [169], ist im
Hinblick auf die optischen Berechnungen im TDDFT-Formalismus jedoch problematisch.
Die 3x3x3 Superzelle offenbarte groflere Schwierigkeiten, voll konvergierte Rechnungen
durchzufithren, da Speicherbedarf und Rechenzeit enge Grenzen setzten. Aufgrund der
iiberzeugenden Ergebnisse und der rechentechnischen Beschrinkungen entspricht die in
dieser Arbeit betrachtete Defektkonzentration den derzeitigen Moglichkeiten.

Der Einsatz der Hybridfunktionale ist selbstverstédndlich ein Kompromiss weitaus aufwen-
digere Quasiteilchen-Berechnungen zu vermeiden. GoIWjy- und HSE06-Bandliicken sind in
hervorragender Ubereinstimmung und die Lage der Polaronenniveaus werden durch das
HSEO6-Funktional im Vergleich zur experimentellen Lage der polaronischen Absorpti-
onspeaks plausibel beschrieben, sodass auch ohne GW-Approximation sehr gute Ergeb-
nisse erzielt werden konnten. Als Ausblick bietet es sich an, Polaronenniveaus aus HSE06-
und GW- Rechnungen zu vergleichen, um besseren Einblick in deren Giite zu erhalten.

Die grofite Unsicherheit in den TDDFT-Rechnungen in dieser Arbeit gehen aus der LRC-
Approximation der exzitonischen Effekte im Austauschkorrelationsfunktional hervor. An
dieser Stelle sind weitergehende Studien in erster Linie wiinschenswert. Obwohl wahr-
scheinlich eine der grundlegenden Erkenntnisse, dass Polaronen und Bipolaronen am Nby;
Antisitedefekt im Gegensatz zu den experimentellen Befunden keine klar unterscheidba-
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ren Absorptionspeaks liefern, sich durch die Beriicksichtigung der exzitonische Bindungs-
energie nicht &ndern wird, wére es hochst interessant, diese Effekte weiter zu untersuchen.
Leider stellt dieses Unterfangen derzeit eine enorme Hiirde dar. Die Arbeit von Rinke et al.
[175] zeigt, dass BSE-Rechnungen in einer 64 atomigen Superzelle erfolgreich sein konnen.
Da die TDDFT-Ergebnisse in der 80 atomigen Superzelle schon in guter Ubereinstimmung
mit denen der 270 atomigen Superzelle waren, liefle sich die exzitonische Bindungsenergie
sehr genau abschéatzen. Dennoch ist es fraglich, ob dies in absehbarer Zeit moglich sein
wird, da BSE-Rechnungen in LN deutlich komplexer sind als in MgO, welches Rinke et

al. betrachteten.

Wie gesagt, wurden alle Erkenntnisse aus der Modellierung von Punktdefekten gewonnen,
die die experimentell gemessenen atomaren Abstdnde und Charakteristika der optischen
Funktionen schon erstaunlich gut beschrieben. Weitere Verbesserungen konnen durch die
Modellierung von Defektclustern erzielt werden [169]. Anderseits sind dort grofiere Su-
perzellen fiir eine realistische Simulation notwendig, was folglich die TDDFT-Rechnungen
verkompliziert. Dennoch waren die hier veroffentlichten Rechnungen auf Grundlage der
Punktdefekte bereits so erfolgreich, dass die wesentlichen Effekte kompletter Cluster schon
beschrieben werden konnten. Weiterhin kann der Einfluss von Ladungskorrekturen, die
dafiir sorgen, dass die elektrostatische Energie geladener Defekte deutlich schneller mit
der Superzellgrée konvergiert, mitberiicksichtigt werden. Ebenfalls nicht untersucht wur-
de der Einfluss des Ti-Konzentrationsgradienten, der in realen Systemen durch die Technik
der Eindiffusion entsteht und fiir eine zusitzliche Anderung der Brechungsindizes sorgen
kann. Auch hier erschweren neben der aufzuwendenden Superzellgrofie auch die Periodi-
zitit der Superzellen und das damit verbundene Sadgezahnprofil der Konzentration eine

mogliche Simulation.
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