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English Abstract

Water’s ability to form hydrogen bonds is at the core of many of its astounding prop-
erties. Cooperation, or cooperativity, describes the notion that that a molecule forms
additional hydrogen bonds more readily, when it is already hydrogen bonded. How-
ever, to this day the intricacies of cooperation in real water have not been elucidated.
In this work, we set out to improve the current understanding of hydrogen bond co-
operation by using a proper basis for its description, namely, its energy. To this end,
we use data of the energy decomposition analysis of a molecular dynamics simula-
tion of bulk water and the water surface, which has been been tuned to represent
physical properties of real water at ambient temperature as accurately as possible.
The energy decomposition analysis, ALMO EDA, offers a way to uniquely determine
the energies of hydrogen bonds. We find and quantify a direct dependence of the
energy of a hydrogen bond on the energy of other bonds. We further elucidate how
cooperation and bond energy alters features of two surface specific spectroscopic
methods, namely sum-frequency generation and x-ray absorption.
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German Abstract

Die Fähigkeit des Wassers Wasserstoffbrückenbindungen auszubilden, hängt direkt
mit vielen seiner erstaunlichen Eigenschaften zusammen. Kooperation, oder Koope-
rativität, bezeichnet nun die Beobachtung, dass ein Wassermolekül eher weiter Was-
serstoffbrückenbindungen ausbildet, wenn es bereits über solcherart gebunden ist.
Allerdings wurde bis jetzt das Wirken von Kooperation in realem Wasser nicht nach-
vollzogen. In dieser Arbeit gedenken wir das herrschende Verständnis von Koope-
ration zu verbessern, indem wir dessen Beschreibung auf ein solides Fundament
stellen: Der Energie einer Wasserstoffbrückenbindung. Zu diesem Zwecke benut-
zen wir die Daten einer Energieverteilungsanalyse. Diese wurden aus einer Mole-
kulardynamiksimulation gewonnen, welche derart gestaltet war, dass die die phy-
sikalischen Eigenschaften realen Wassers bei Raumtemperatur so gut wie möglich
nachgebildet werden. Die verwendeted Energieverteilungsanalyse, ALMO EDA, bie-
tet eine eindeutige Bestimmung der Energie einer Wasserstoffbrückenbindung. Wir
beobachten und quantifizieren eine direkte Abhängigkeit zwischen der Energie einer
Wasserstoffbrückenbindung und der Energie der sie umgebenden Bindungen. Wei-
ter klären wir, wie Kooperation und Bindungsenergien sich auf die Signale zweier
oberflächen-spezifischer Methoden auswirken.
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1 Introduction

Despite the abundance of literature on the subject [1, 2, 3, 4, 5, 6, 7], the complex
properties of water, which are rooted in its ever shifting hydrogen bond network, are
yet to be fully understood [8]. Among the open questions concerning the hydrogen
bond network are: How the phenomenon of cooperation alters hydrogen bonds, as
well as the influence of the surface on the network and how these changes affect
spectroscopic properties.

Cooperation, also known as cooperativity, between individual bonds is essential to
the strength of the hydrogen bond network. Hence, the description of the liquid wa-
ter state requires a proper understanding of cooperation. The phenomenon was first
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Figure 1.1: Schematic of charge
separation through hydrogen
bonds. Red curved lines show
enhanced H-Bond formation
capabilities

discribed by Frank and Wan [9], who stated the
following: The existence of a hydrogen bond be-
tween two molecules increases the basicity on
the acceptor as well as the acidity on the donor.
Hence, both molecules are more susceptible to
forming further hydrogen bonds, see Fig. 1.1 for
a graphical depiction. Through the study of wa-
ter trimers, Stillinger [10, 11] identified both co-
operative and anti-cooperative behavior. Coop-
eration and anti-cooperation were deduced from
the total energy of the trimers, thus relating the
phenomenon to the bond energy. The former
behavior is found between a donor and an ac-
ceptor bond, whereas the latter is found be-
tween two donor or two acceptor bonds. Since
then, a plethora of articles, both experimen-
tal [12, 13, 14] and theoretical [15, 8, 16, 17] has
been published indicating the influence of coop-
eration on a wide variety of properties. Water
clusters in particular have attained special interest. Due their continually increasing
size, and experimental accessibility, they can be used to monitor the transition of
properties from the single molecule to the bulk value [18]. One well known example
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1 Introduction

of such studies is the length of hydrogen bonds in water. Here, the study of clusters
bridges the gap between the O-O distance in the dimer and bulk water. It was shown
that, at 0 K, water molecules move closer together as the cluster size grows [18, 19].
As the dimer clearly lacks cooperation and the bulk clearly has it [13], the inter-
pretation of these results saw cooperation as their source. Simultaneously, energy
decomposition methods have been used together with static quantum mechanical
calculations to investigate the energetic contributions to the bonding in the entirety
of a cluster [20, 21].

Exploiting the computational efficiency of force fields, hydrogen bond networks have
been investigated under ambient conditions. As its rich phase space demonstrates,
temperature is crucial for the behavior of the hydrogen bond network [15]. Thus, a
finite temperature simulation greatly enhances estimates of the properties of water.
Using the additive AMOEBA [22] force field, Agmon and coworkers have observed
that water molecules with a high amount of acceptor hydrogen bonds also tend to
have a high amount of donor hydrogen bonds [23, 24].

Recently, scientfic interest has turned to the surface of water, not at least because of
its suspected catalytic abilities [25, 26]. The premier experimental tools for investiga-
tion of the surface are Vibrational Sum Frequency Generation (VSFG, SFG) [27, 6, 7]
and X-Ray Absorption (XA) [28, 29]. The surface sensitivity of SFG stems from the
fact that the average orientation of the molecules with respect to the surface must
not be zero [27]. In addition only probing the surface, the quantitiy measured in
SFG, the susceptibility χ, features an imaginary part, which contains information
regarding the average surface orientation of the vibrating groups [28]. The SFG-
spectrum of the pure water surface features broad peaks at around 3200 cm-1 and
3450 cm-1. Since these two frequencies resemble the O-H stretch frequency of ice
and liquid water, respectively, the two SFG signals have been termed “ice-like” and
“liquid-like”. In the wake of this finding the idea of an ice-like layer at the surface had
been brought up [30], but such a layer has not been identified [27, 7]. Furthermore,
even the existence of two distinct signals has been brought into question by groups
around Bonn and Sovago [31, 32, 33, 34]. However, even to date the nature of the
SFG signals remains under debate [7, 28]. Within this debate, Gao and cowork-
ers presented a paper in which they identified a third signal at 3117 cm-1. Through
the imaginary part, they identified this signal as originating from upward facing O-H
bonds in the surface, whereas the signals at 3222 cm-1 supposedly originated from
downward facing molecules at the top of the surface, and the signal at 3450 cm-1

originated from deeper within the slab. The infrared frequency of a O-H vibration
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Figure 1.2: Schematic of an x-ray absorption spectrum of water

can be related to the length of an attached hydrogen bond, such that the longer the
distance, the lower the frequency is [35]. Since the hydrogen bond length is strongly
correlated to the hydrogen bond energy [36], the investigation of hydrogen bond en-
ergies can aid the understanding of the SFG results.

The second powerful tool available to probe the surface is x-ray absorption spec-
troscopy (XAS) [29]. The method is highly sensitive to changes of the virtual orbitals,
which relate closely to the environment around the excited atom [37]. Due to the high
frequency of the molecules, the lifetime of an excited molecule is of the order of a few
femtoseconds, effectively resulting in a static picture of a molecule [38]. Therefore,
this method is destined to monitor the constituency and structural surroundings of
the molecule in a quasi-static setup [38]. Despite the huge prescision of the method,
the interpretation of an XA spectrum is far from trivial [29]. Thus XA experiments
are often accompanied by extensive theoretical work [39]. The water XA spectrum
features three main peaks, titled pre-edge, mid-edge and post-edge. Previous work
has led to increasing consensus that the pre-edge feature of the water XA spectrum
can be related to broken hydrogen bonds. Several interpretations exist for the post
edge feature, which is prominent in ice Ih. Many studies suggest that it is the result
of strong hydrogen bonding, whereas the significance of the mid-edge feature is still
under debate [29]. As previous studies suggest that the acceptor interactions of a
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1 Introduction

molecule have a more significant effect on its XA spectrum [40, 38, 41], this work
will focus on those.

In Chapter 4, we use the energy decomposition method established by Khalliulin
et al [42, 43, 44] in conjunction with an extensive ab-initio molecular dynamics sim-
ulation. The use of ab-initio methods allows for the accurate incorporation of the in-
herently non-additive cooperation effect, while ALMO-EDA enables the separation of
bonding charge-transfer from non-bonding polarization interactions. Additionally MD
ensures that the results hold for expansive water under ambient conditions. Thus,
we here present the first account of the energetic impact hydrogen bonds have on
each other under realistic circumstances. Chapter 5 transfers the newly established
concept of cooperation to the surface and its validity for surface molecules is in-
vestigated. The link between energy and frequency, and the knowledge about the
orientation of molecules relative to the surface, link the underlying energies to the
SFG results. Finally, we make use of the electronic asymmetry parameter γ [45].
Developed to descibe hydrogen bonding in bulk, it was used for the interpretation
of bulk water XA spectra. The usage of this parameter is motivated by the existing
observations for the pre-edge and post-edge peak. The pre-edge peak is associ-
ated with broken molecules that feature broken hydrogen bonds, which necessitates
a high asymmetry on that molecule. Furthermore, the post-edge peak is prominent
in ice Ih and a previous study has indicated that the average asymmetry in ice is
lower than in water [46]. Using the acceptor asymmetry γAcc for the reasons laid out
above, we present a new avenue to the interpretation of surface XA spectra.
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2 Theory

2.1 Theoretical descripton of atomic systems

The analytical solution of the Schrödinger equation can only be obtained for the sim-
plest of systems, where the hydrogen atom belongs to the most complex problems.
Hence, approximate methods have to be applied in order to calculate properties of
real systems. Even then, the quantum mechanical methods become computation-
ally unfeasible for tens of atoms in case of coupled cluster methods, or hundreds of
atoms in case of density-functional theory [47]. The latter will be presented in more
detail in section 2.1.3. However, many physical systems of interest, especially pro-
teins easily contain several hundred thousand atoms, requiring classical parametric
methods for computation. A brief introduction thereof will be given in section 2.1.4.
These methods, by default, cannot capture chemical reactions. Methods coupling
classical systems to quantum systems (QM / MM ) have been developed to circum-
vent the deficiencies and combine the strengths of both former approaches; see
section 2.1.5.

2.1.1 The Schrödinger Equation and the Born-Oppenheimer
Approximation

The outset for every quantum mechanical approach is the non-relativistic, time-
independent Schrödinger equation (SE),

ĤΨeK(r1, · · · ,rN ,R1, · · · ,RM) = EΨeK(r1, · · · ,rN ,R1, · · · ,RM) , (2.1)

obeyed by every stationary quantum mechanical system. Here, Ĥ is the Hamilton-,
or energy operator, E is the observable energy of the system. r,R are the positions
of the electrons and nuclei, respectively and N,M are the number of electrons and
nuclei [48]. Ĥ is a linear operator that can be split up into the following contributions

Ĥ =
M

∑
I<J

ZIZJ

|RI−RJ|
+

M

∑
Ii

N
ZI

RI− ri
+

N

∑
i< j

1
ri− r j

+
M

∑
I
− 1

2MI
∇I +

N

∑
i
−1

2
∇i , (2.2)
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2 Theory

where the capital letters I,J are indexes running over all nuclei, the letters i, j are in-
dexes running over all electrons and MI is the mass of nucleus I. The first two terms
of Eq. 2.2 are the nucleus-nucleus V̂KK and nucleus electron potential interaction V̂Ke,
the third is the electron-electron interaction Û , the fourth the nucleic kinetic energy
T̂K, and the fifth the electron kinetic energy T̂ . The wavefunction Ψ, which depends
on all spacial coordinates of the system describes said system completely, but is
unknown [48]. Nuclei move on timescales much longer than electrons, because of
the different masses. For instance, even the mass of the lightest nucleus mp is about
1830me, where me is the electron mass. Thus, from the electrons’ perspective, the
nuclei appear to be frozen. In contrast, from the nuclei’s perspective, the rapid move-
ment of the electrons averages itself out [48, 49]. This approximate independece of
the motion of the nuclei and electron leads to the following approximate ansatz for
wavefunction

ΨeK(r,R) = Ψ(r;R)X(R) . (2.3)

Here, X is the nucleic wave function and Ψ is the electronic wave function that de-
pends parametrically on the position of the nuclei [49]. This separation leads to the
following set of coupled equations:

(
T̂ +Û +V̂Ke

)
Ψ = EΨ (electronic SE) (2.4)

(T̂K +V̂KK +E)X = EtotX (nucleic-SE) . (2.5)

Here, E is the electronic energy and Etot is the total energy of the system. For fixed
nuclei, the term V̂KKX reduces to a constant and can be combined with V̂Ke into an
external potential operator ν̂ext to obtain the total energy of the system.

2.1.2 Constructing Imaginable Wavefunctions

Even Eq. 2.4 faces the issue of being unsolveable for more than two independent but
inseperable variables [49]. Moreover, the complexity of the wavefunction makes it
hard to imagine it and thus makes it difficult to work with. In the context of a molecular
system, the wavefunction is therefore modeled to be constructed from one-electron
orbitals ϕ, also called molecular orbitals, which can then be considered seperately.
If these ϕ are then used to construct a so-called Slater-Determinant, see Ref [48], a
viable approximation for Ψ is obtained.

Unfortunately, the molecular orbitals ϕ are as obscure as the wavefunction itself [50,
47]. Their form, however, can be rationalized in the following way [51]. Considering
the case of a one electron system, H+

2, if the atom and the proton are far apart, the
electron will only be in the field of one nucleus. Solving Eq. 2.4 for such a system
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2.1 Theoretical descripton of atomic systems

will yield two solutions, each with the electron located at one nucleus, where both
solutions ϕ1 and ϕ2 take the shape of 1s orbital of the hydrogen atom. The energy
EH will be equal to that of the lone hydrogen atom. If the distance of the two nuclei
is reduced slightly , the new solutions will largely retain the characteristics of ϕ1 and
ϕ2. Therefore the new wavefunction may be constructed from the old solutions [49].

Ψ = ϕ1(r1)+ϕ2(r2) . (2.6)

This is known as the Linear Combination of Atomic Orbitals (LCAO) approach [51,
52]. In mathematical phrasing, Ψ is expanded in the basis of ϕ1 and ϕ2. In analogy to
vector algebra, functions like Ψ exist in a special vector space called Hilbert-Space
and can, as any vector, be represented by functions that span the space [?] . A
mathematically rigorous version of Eq. 2.6 thus reads,

Ψ = ∑
i

ciϕi , (2.7)

where the ci account for the fact that not every ϕi may contribute equally to Ψ [?].
The basis set expansion of functions will be encountered again in Sec. 2.1.3.

Solving Eq. 2.4 with Eq. 2.6 gives again two solutions

Es/a = EH +
1

R12

J±K
1± 〈ϕ1 |ϕ2〉

(2.8)

where subscript s, denotes the positve (+-sign) combination of ϕ1 and ϕ2 and sub-
script a denotes the negative combination. EH is the energy of the lone hydrogen
atom, the fraction 1/R12 denotes the Coulomb repulsion between the two nuclei at
distance R12, J the Coulomb attraction between the elctron and the second nucleus,
〈ϕ1 |ϕ2〉 is the overlap of the atomic orbitals, and K is the exchange term [49]. K is
a nonclassical term that can be thought of as the energy gain – K is always neg-
ative when negative means more stable – from the electron having more space to
move in [49]. The state corresponding to Es is referred to as bonding state, the state
corresponding to Ea as anti-bonding state. The difference between Ea and Es is

Ea−Es =
K

1− 〈ϕ1 |ϕ2〉
. (2.9)

The functions ϕ are assumed to be normalized, therefore the overlap is smaller than
1. The value of 1 is only assumed if the two functions are equal. Due to the nega-
tive denominator in Eq. 2.9, the split between bonding and anti-bonding state scales
with the overlap, i.e. the closer the atoms are, the stronger the bonding state is. The
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2 Theory

observant reader will have noticed that despite claiming an intermediate distance for
the nuclei, no restrictions for their relative positions has been put into the equations.
Therefore, the LCAO approach, Eq. 2.6, is also applicable to the H+

2 molecule, i.e.
when both nuclei are in close range.

From this simple example the essentials of LCAO Theory can already be extracted.
First, atomic orbitals combine to form molecular orbitals. The number of molecular
orbitals always corresponds to the number of atomic orbitals, i.e. from two atomic
orbitals two molecular orbitals are constructed [51]. Second, the energy difference
between the molecular orbitals scales with the overlap of the atomic orbitals [?].

2.1.3 Density-Functional Theory

From its inception in the 1920s [53] Density-Functional Theory (DFT) has developed
into an extremely successful and widely applied method for the quantum mechanical
calculation of micro- and macroscopic properties of real systems [54]. At its core,
DFT is based on the idea that a system in its ground state may be completely de-
scribed by the electron density n(r). As a consequence, a system would turn from an
interacting N-particle problem into an effective one-particle problem. In 1964 Kohn
and Hohenberg proved that such an immense reduction in complexity is indeed pos-
sible [53, 55]. Their findings are summed up in the following two statements:

1. Hohenberg-Kohn-Theorem: The external potential νext is determined,
within a trivial additive constant, by the electron density.
2. Hohenberg-Kohn-Theorem: The energy of the exact electron densityis
always below the energy of any approximate density.

The validity of the first Hohenberg-Kohn (HK) theorem becomes clear, when one
realizes that the external potential is the only part of the Schrödinger equation (2.4)
where external information is fed into it. The external potential defines the nuclear
frame of the system, i.e. position, type and number of atoms, which in turn also
fixes the electron number. These factors alltogether determine all electronic proper-
ties [55]. The proof of the second theorem is straightforward. Any approximate trial
density ñ determines its own wavefunction Ψ̃, approximate to the exact wavefunction
Ψ of the exact density n. Since the variational priciple holds for wavefunctions, and
wavefunctions and densities are bijective, it must hold for densities as well [55].

Using the HK-Theorems, the Schrödinger equation becomes, for any ν - repre-
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2.1 Theoretical descripton of atomic systems

sentable (vide-infra) density n:

E [n(r)] =
∫

νextn(r)dr+F [n(r)] , (2.10)

where F [n(r)] is the universal functional, which encapsulates all electron-electron
interaction. Its name is derived from the fact that it is valid for any electron density
in any system with any external potential, even systems whose external potentials
are not Coulomb potentials [55] . Unfortunately its explicit form is unknown. Hence,
approximations to the functional have to be made, which will be discussed in section
2.1.3.

N-representability and ν-representability

Strictly speaking, the above formulation of the first and second HK theorem is only
valid for ν representable densities. A density ñ is ν-representable if there exists
a potential ν̃ that determines an anti-symmetric ground-state wavefunction Ψ̃ that
produces ñ. [55, 56]. However, densities, even ‘reasonable’ ones that are non-ν-
representable are easily found [56, 57]. This poses a problem, because a non-ν
representable trial density ñ, used in a minimization process for a potential ν of
a system, is not guaranteed to yield the ground state density of the system [55].
Even worse, the mathematical treatment of this quesion is cumbersome and com-
plicated [56]. Luckily, a reformulation of the HK theorems has been achieved that
instead relied only on N-representability [55]. A density is N-representable if the
following conditions are satisfied [58]:

n(r)≥ 0 ,
∫

n(r)dr = N ,
∫ √

|∇n(r) |2 dr < ∞ , (2.11)

which holds true for virtually any density one might apply in practice [55]. We can
therefore safely assume the validity of the HK theorem from here on.

Making DFT Work: The Kohn-Sham equations

The universal functional can be divided into two terms. Both of them are as unknown
as the entire functional:

F [n(r)] = T [n(r)]+U [n(r)] ≡ minΨ 〈Ψ|Û + T̂ |Ψ〉 , (2.12)

where T is the exact interacting electron kinetic energy expression and U the exact
correlated electron-electron exchange. All practical approaches to DFT, from the
Thomas-Fermi model [56] onwards, have tried to find accurate approximations for

9



2 Theory

those functionals. The earliest approaches unfortunately were too simplistic to ac-
curately model concepts such as molecular bonds [47]. In 1965, Kohn and Sham
achieved a breakthrough, laying the foundation for modern DFT [59].

E [n(r)] = Ts [n(r)]+UH +Exc [n(r)]+
∫

νextn(r) dr , (2.13)

where Ts is the non-interacting electron kinetic energy, UH is the continuous form
of the classical Coulomb interaction and Exc = (T − Ts)+ (U −UH) is the so-called
exchange-correlation term, a correction for the approximation made for the other
two terms [56, 60]. Kohn and Sham then showed that for slowly varying densites,
the functional derivative of Eq. 2.13 is precisely equal to Kohn’s original many-body
formulation [53] when applied to a system of non-interacting electrons moving in
an external potential νext + νxc [60]. It is therefore possible to use the one-particle
Schrödinger equation

εiφi = (νext +νH −
1
2

∇
2 +νxc)φi , (2.14)

to determine the density. Here, νH = δUH/δn, νxc = δExc/δn. In combination with νext

they form the effective single-particle Kohn-Sham potential νs [56]. The orbitals φi

and the orbital energy εi have no physical meaning beyond reproducing the density
via n(r) = ∑i φ ?

i φi [47]. The complete set of orbitals forms a Kohn-Sham (slater)
determinant that is unknown. Hence, Eq. 2.14 has to be solved iteratively for all
i [60]. Once such as self-consistent calculation is converged, the energy functional
can be written as

E [n(r)] = ∑
i
〈φi|−

1
2

∇
2 |φi〉

︸ ︷︷ ︸
Ts

+
∫ n(r)n(r′)
|r− r′| dr dr′

︸ ︷︷ ︸
UH

+
∫

n(r)νxc dr
︸ ︷︷ ︸

Exc

. (2.15)

Thy entire complexity of the system is now hidden in νxc. However, the contribution of
Exc to the total energy are comparatively small. Thus, errors made by approximating
Exc are not as grave as errors made by approximating the much larger kinetic energy
T for instance [61].

The meaning of the exchange-correlation functional

The exchange correlation functional can be thought of to encompass two quan-
tum effects, namely exchange Ex and correlation Ec, hence its name. Exchange,
or Fermi-correlation hereby arises from the Pauli principle. Even near the location
of an electron, the probability to find another electron of the same spin is reduced.
Coulomb-correlation on the other hand, arises from the fact that electrons have the
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2.1 Theoretical descripton of atomic systems

same charge and therefore tend to avoid the actual current position of the respective
other electrons. This as well leads to a reduced probability of finding one electron
close to another. However, Coulomb correlation does not prohibit the electrons to be
at the exact same position [48, 61, 55]. The reduced probability to find an electron
in the presence of another can be described with the exchange-correlation hole

nxc(r,r′) =
(
g[n](r,r′)−1

)
n(r) . (2.16)

The term g(r,r′) is the electron-electron pair correlation function [61]. By introducing
a fictitious hamiltonian Hλ this result can be generalized to obtain an average density
n̄xc. Here, 0 ≤ λ ≤ 1 marks the fractional presence of an electron. In the fictitious
system Hλ the potential is modified as such that the fictitious system’s density nλ =

nλ=1 = n(r) for all values of λ [47]. Its significance lies in the fact that n̄xc can describe
Exc exactly. [47]. The exact form of νxc is:

Exc =
1
2

∫
νxc n(r)dr =

1
2

∫ ∫ n̄xc(r,r′)
|r− r′| dr′ dr . (2.17)

The objects n̄xc, Ex, Ec have several known properties that can be used to benchmark
actual approximate functionals [61]. For instance,

∫
nxc dr = −1 and Exc = −UH for

a one-electron system [61]. The last property might be surprising, but it is a direct
consequence of the self-interaction inherently present in UH.

Approximations to the exchange-correlation functional

Since νxc [n(r)] is a functional of n(r) that is expected to be predominantly short-
sighted, one can expand n(r) into a power series.

n(r) = n+nir+
1
2 ∑ni jrir j , (2.18)

where n = n(0) and ni = ∇in(r). This series can be resummed to obtain

E0
xc =

∫
ν̃xc(n(r))n(r) dr (2.19)

E1
xc =

∫
ν̃xc(n(r) , |∇n(r) |)n(r) dr (2.20)

E2
xc =

∫
ν̃xc(n(r) , |∇n(r) |)∇2n(r) dr , (2.21)

where ν̃xc is a nondescript function that mimics the exact potential. Eq. 2.19 de-
scribes the simplest of all functionals, the local-density approximation (LDA). It as-
sumes that the density is (virtually) constant on microscopic distances such as the
Fermi-wavelength λF = [3π2n(r)]−1/3 [47]. Such condition is often violated in molec-
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2 Theory

ular setups [47]. Consequently a wide variety of functionals in the style of Eq. 2.20
have been developed. These so called generalized-gradient-approximation (GGA)
functionals make intricate use of properties of the exact functional [47]. Among the
most successful functionals are the works of Perdew, Burke and Enzerhof [62] and
Becke, Lee Young and Parr [63, 64]. Beyond the GGA approach people have made
use of the kinetic energy density (meta-GGA) [61], or used the exact exchange in a
hybrid approach

Ehyb
xc = αEK

x S+(1−α)EGGA
xc , (2.22)

where EGGA
xc is an appropriate GGA functional and α is a fitting parameter [47].

Implementation of Density-Functional Theory

Molecular orbitals φi are complicated and unknown [50, 47]. An attempt to sample it
numerically leads to the same problem as the attempt to represent the entire wave-
function numerically. As has been discussed in Sec. 2.1.2, a possible way to handle
unknown functions, is to expand them in a basis of known functions χ.

φi = ∑
µ

cµiχµ . (2.23)

This reduces the problem of finding an unknown function to the problem of finding a
set of numbers, namely cµi [48]. Two representations for the description of molecular
orbitals are popular:

Gaussian basis-functions Predominantly popular in computational chemistry, ba-
sis set made of Gaussians are of the form

χm = Nmrmx
x rmy

y rmz
z exp

[
−ξ r2] , (2.24)

where where Nm, mx, my, mz and ξ represent parameters and m represents an angu-
lar momentum quantum number [65]. These functions are modeled after the quan-
tum states of atomic wavefunctions [61] and intend to mimic the atomic orbitals of
chemical elements [65].

12



2.1 Theoretical descripton of atomic systems

Plane-wave basis In solid state physics, plane wave basis sets have been popular
from early on, because of their inherent periodicity and their delocalization [65]. The
properties are ideal to describe electrons in a periodic crystal.

φi = ∑
G

ni(G)eiGr , (2.25)

where G is a wave vector that fits the periodicity of νext and ni(G) is the expansion
coefficient.

In principle, any function can serve as a basis, however, the Hilbert space (see
Sec. 2.1.2) is infinite-dimensional, thus it requires infinite basis functions [48]. The
presented methods are popular, because they allow to truncate the infinite basis
without sacrificing accuracy too much [?]. In mathematical terms, with the right ba-
sis, φi in Eq. 2.23 has only a finite subset of χµ whose cµi are nonzero. This rationale
becomes particularly clear in case of Gaussian basis functions. As the discussion
of LCAO, Sec. 2.1.2 revealed, molecular orbitals retain a lot of characteristics for the
atomic orbitals of the atoms constituting the molecule, hence this finite set is a good
descriptor of a molecular orbital.

With the basis set expansion the electronic structure problem Eq. 2.14 can be re-
modeled into a matrix equation [56], which is given here for Gaussian orbitals

∑
µ

〈ν |νext +νH −
1
2

∇
2 +νxc |µ〉

︸ ︷︷ ︸
Kµν [n(r)]

cµi = ∑
µ

〈ν |µ〉 cµiεii , (2.26)

which is equivalent to
K [n(r)]C = SCε . (2.27)

Here, K represents the Kohn-Sham Matrix, S the overlap matrix and C is the matrix of
coefficients which represents the wavefunction. This equation could be solved using
standard matrix diagonalization techniques, if K wasn’t dependent on the electron
density (via νH and νxc). Instead, solving Eq. 2.26 has to be done with the Self-
Consistent Field (SCF) cycle as depicted in Fig. 2.1 Professional implementations
today offer a wide variety of algorithms to circumvent the SCF problem [66] or reduce
the number of steps required for convergence.
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Figure 2.1: Schematic depiction of a self-consistent field cycle.

Limitations of DFT

From the existence of the universal functional F follows that DFT is mathematically
exact [67]. However, actual DFT calculations suffer from a variety of well-known inac-
curacies. Among those is the underestimation of the band gap, a well-known failure
of current functionals, as well as the overbinding of charge-transfer complexes, the
instability of vdW structures and the overestimation of reaction energies [67, 68].
These errors can be traced to three sources: The locality of functionals, erroneous
delocalization, and static correlation [67, 68].

Local functionals Current exchange-correlation functional only use density val-
ues at a single point r to calculate Exc. This approach reduces the cost of calculation
but it entails the restriction that only local properties can be caputured by the func-
tional [68]. Since popular functionals, for instance all GGA functionals are local, they
cannot capture the non-local long-range electron correlation that is the basis for the
van-der-Waals forces [68]. The neglect of non local correlation results, among other
errors, in the instability of van-der-Waals complexes, such as benzene [68], and a
gross underestimation of the density of water [69].
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2.1 Theoretical descripton of atomic systems

Electron delocalization An important property of the exact functional F is linearity,
i.e.

F [ana +bnb] = aF [na]+bF [nb] , (2.28)

where na, nb are electronic densities. It follows from this property that the energy
for fractional occupations must be a straigt line (See Fig. 2.2). However, existing
LDA and GGA functionals underestimate the energy of fractional orbital occupation
and consequently favor those [70]. The error becomes apparent in molecular reac-
tions, because LDA and GGA functionals are far too willing to distribute an electron
fractionally in a broken bond, leading to an underestimated reaction barrier [67]. In
condensed phases this behavior explains the erroneous electron absorption and ion-
ization energies and hence the famous underestimation of the band gap. Since, in
an infinite system the addition, or removal of an electron does only marginally affect
the total number, the energy change can be written as

E(mN±1) = mE(N)±δ
∂E
∂N
|N+±δ ,δ=1 , (2.29)

where m is a large integer and N is the electron number. As is illustrated in Fig. 2.2,
LDA and GGA functionals predict completely wrong energies at the next integer
points, thus underestimating the band gap [71].

Static Correlation In wavefunction approaches, static correlation arises when more
than one slater-determinant becomes relevant. This is often the case, when two or
more states are near-degenerate. The simplest example of such a system is elon-
gated H2, but near-degeneracy is present in most metallo-organic complexes [67]. In
the case of H2 a realistic representation would be two determinants with all electrons
at one hydrogen, H1 and all electrons at the other hydrogen, H2. This is equivalent to
having half a spin-up and half a spin-down electron at each hydrogen [72]. The exact
functional F is required to yield the same energy for all spin values for one electron
between 1 and −1. [67]. After all, the Hamilton operator Eq. 2.2 does not depend
on spin. It has been shown though that existing functionals violate this condition. In
fact, the error calculated from placing half a spin-up and half a spin-down electron in
one orbital precisely matches the dissociation error of H2 [72, 67].

2.1.4 Molecular Mechanics

Instead of attempting to accurately describe the electronic structure of a system in
order to learn about its properties, molecular mechanics (MM) aims at an efficient
description of the force field in which the atoms move. The energy expression is
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electron number

en
er

gy

Figure 2.2: Schematic depiction of the relation between energy and number of elec-
trons. The red line shows the exact functional, whereas the blue line
shows the devolution of semilocal functionals such as LDA and GGA.
The dashed black line shows the devolution for large N. Picture based
on [67, 73]

comparatively simple, which makes the method suitable for the calculation of expan-
sive systems over long timescales [74]. In contrast to other parametric methods,
notably machine learning algorithms, MM force fields draw on understandable phys-
ical concepts such as Coulomb interaction and the existence of molecules to build
the potential energy landscape [75]. A general form of the MM energy expression
is [76, 77, 74]

EMM = ∑
bonds

V (RI,RJ) + ∑
angles

Θ(RI,RJ,RK)

+ ∑
dihedrals

Φ(RI,RJ,RK ,RL)

+ ∑
nonbonded

V LJ
IJ (RI,RJ)+

qI qJ

ε|RI−RJ|
.

(2.30)

Here, I, J, K, L are atomic indexes. The potentials V , Θ, Φ are constrained to
atoms belonging to the same molecule. The van der Waals interaction and electro-
static interaction between molecules is represented by a Lennard-Jones and simple
coulomb potential, respectively. qI, qJ are partial charges on the respective atoms ε

is the effective dielectric constant [74]. Each potential depends on parameters spe-
cific to an atomic kind, where atomic kind refers to an element in a specific environ-
ment. For instance, the sp2-carbon atom in a ketone would constitute an individual

16



2.1 Theoretical descripton of atomic systems

atomic kind.

The strategy on how the atomic kind parameters are obtained varies for individ-
ual force fields and is sketched out here for the CHARMM1 method [74]. First, the
intramolecular parameters are optimized such that a calculated structure matches
experimentally obtained gas-phase or crystal structures. Once this process con-
verges, additional data, notably vibrational frequencies, are taken into account. The
intermolecular parameters are fixed at this stage. Second, intermolecular parame-
ters are determined by fitting to interaction energies and structures of model dimer
systems, as well as to macroscopic data of liquids using the previously optimized
intramolecular parameters. This new parameter set is used to reevaluate the in-
tramolecular ones and this process is reiterated until convergence.

2.1.5 QM/MM

Quantum mechanical methods of evaluating the force suffer from an unfavorable
scaling behavior [50] with the system size which limits their applicability to compar-
itvely small systems. Molecular mechanics forcefields, however, are usually inca-
pable of capturing chemical reactions [78]. Especially in biochemistry the systems of
interest are large. For instance, the steric changes of ligand binding in hemoglobin
have been studied extensively [79, 80, 81] The immense size of hemoglobin ( ≈
65 kDa ) [81] clearly prohibits the use of QM methods, while the need to capture a
chemical reaction prohibits the use of MM methods alone.

Although linearly scaling QM methods are in development [42], which might one day
be able to handle expansive systems, the best current method is to model a sys-
tem as large as a protein by a QM system surrounded by a large MM system [82].
This approach, called QM/MM has been introduced by Field, Bash und Karplus in
1990 [76, 83]. Since then, the method has grown so successful and significant that
the Nobel Committee chose to award Karplus in 2013 [84], along with Levitt and
Warshel, who developed many of the concepts used for QM/MM [76].

One of the great challenges when setting up the QM/MM system is the question
of how to model the interaction, especially the electrostatic interaction of MM and
QM molecules[82]. For systems where the division between the QM subsystem and
the MM subsystem is fixed, two general approaches have so far been established

1Chemistry at Harvard Molecular Mechanics
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[76, 85]

Additive QM/MM : H = HQM(QM)+HMM(MM)+HQM−MM (2.31)

Substractive QM/MM : H = HMM(all)+HQM(QM)−HMM(QM) . (2.32)

Here, H is the Hamiltonian of the entire system, HMM(all) is the MM Hamiltonian
evaluated on the entire system and HQM(QM) is the QM Hamiltonian evaluated on
the QM region of the system. In the substractive scheme Eq. 2.32, the entire system
is first calculated on the MM level and then a part of the system is elevated to QM
level. An example of a substractive scheme is the IMMOM /ONIOM method [85]. In
the additive scheme the QM and MM region are calculated separately and a special
interaction term HQM−MM added. Since the majority of implementation use an addi-
tive scheme [76], this text will focus on presenting additive QM/MM methods. There,
the HQM−MM hamiltonian has to encompass methods covering bonds crossing the
QM/MM boundary, electrostatic and van der Waals coupling. This section will focus
on methods that have been implemented in CP2K [86, 87], because this software
package has been used predominantly in this work.

CP2K Multigrid approach

Consider the integral UH from Eq. 2.15

UH =
∫

∑
i

∑
µν

cµicν i χν(r)χµ(r)νH(r) dr , (2.33)

where n has been expanded into basis functions χµ . To evaluate UH numerically,
the χµ have to be expanded on a grid and evaluated at each grid point. The fine-
ness of this grid is determined by the most fluctuating basis function. This results in
slowly varying functions being evaluated unnecessarily often, leading to high com-
putational cost. The solution to this problem is a multigrid approach [82]. Slowly
varying functions are evaluated on coarse grids, quickly varying ones one fine grids.
The function values on the coarse grid are then interpolated to the fine grid, where
the integration is performed [82].

Electrostatic coupling

Analogous to UH (Eq. 2.15) the electrostatic QM-MM interaction can be written as

EQM−MM = ∑
I∈MM

∫ n(r)
|r−RI|

νI(r)dr (2.34)
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Here, νI is the potential generated by an MM-Atom’s charge, n(r) is the QM charge
density. A naive evaluation of all pairs νIni, where ni is the density at a grid point,
would make EQM−MM the costliest term in a QM/MM calculation [82]. While a coarse
graining scheme using a hirarchical set of cutoffs has been used elsewhere [88],
CP2K uses its multigrid framework to reduce the computational burden. To this end
the potentials of every MM atom is expanded into a set of Gaussians [82]

νI(r) =
qIerf

[
r−RI

rcI

]

r−RI
= ∑

k∈NI

Akexp
[
−(r−RI)

2

σ2
k

]
+Rlow(r−RI) . (2.35)

Here, rcI is the width of the error function, qI the charge of atom I, Ak and σ2
k are the

height and width of the gaussian functions, NI is the set of gaussians for atom I and
Rlow a function that retains the long range 1/r behavior of νI. These Gaussians can
now be collocated to the multigrid the same way the functions χµ are. However, the
greater the distance of the MM atoms to the QM zone, the more functions will have
zero value, starting from the fastest varying to the slowliest varying functions. Thus,
for the majority of MM atoms only Rlow has to be evaluated, which can be done on
the coarsest grid [82].

The effects of periodic boundary conditions (PBC) are easily incorporated into this
scheme [89]. Special care has to be taken for the periodic replicas of the QM sub-
system, because the assumed periodicity of the QM subsystem is the length of the
QM cell [89]. Hence, the QM system has to be decoupled from its periodic images
and recoupled at the appropriate MM periodicity. This is achieved by using the Blöchl
scheme [90]. There the QM density is represented by a set of Gaussians

n(r)⇒∑
α

qαAαexp
[
(r− rα)

2

σ2
α

]
, (2.36)

which are placed such that their effect on an external test charge equals that of the
real density [90]. Here, ths subscript α is an arbitrary iterator. The MM charges are
dealt with adaption of the Ewald-method (see 2.2). The MM-Potential νI is split into
a long range and a short range part νI = ν l

I +νs
I , where ν l

I is evaluated in reciprocal
space, and νs

I is evaluated in real space. It is easily understandable that

ν
s
I = ∑

k∈NI

∑
TR

Akexp
[

r−RI +TR

σ2
k

]
(2.37)

ν
l
I = ∑

TR

Rlow(r−RI +TR) , (2.38)

19



2 Theory

because the quick decay of the Gaussian functions was the motivation for using them
as an expansion of the MM charge [89]. The operator TR represents a translation of
an object to its periodic image.

Bonds crossing the QM/MM boundary

In many QM/MM applications, especially when studying biomolecules, chemical
bonds will be cut, creating two unsaturated bridgehead atoms RQM and RMM at the
QM/MM boundary. Senn et al. identify three main issues in that situation. First, the
broken bond has to be saturated. Second, overpolarization due to a point charge
close to the QM zone has to be countered. Third, double counting of forces has
to be elminated [76]. They mention three types of methods to address these: Link
Atoms, Frontier Atoms and Frontier Orbitals

Link Atoms are implemented into CP2K [86] as an IMOMM (integrated molecular
orbital + molecular mechanics) scheme [91]. There, an H atom is placed between
the RQM and RMM and its position Rlink = (1+α)RQM −αRMM, where α is a fixed
scaling factor. This circumvents the common link atom problem of introducing ad-
ditional degrees of freedom [76]. IMOMM assumes that the link atom describes
the QM/MM bond in a satisfactory way. Thus the motion of RMM with respect to
RQM is guided by the scaling relation that defines the Rlink without computing any
force [92, 91]. Overpolarization is avoided due to the gaussian expansion of the MM
potential [82, 76]. There also exists a strategy that uses a link atom in conjunction
with an optimized effective core potential (OECP). The OECP is determined by a
pseudopotential generation routine, such that it reproduces the molecular property
of the group replaced by the link atom [93].

Frontier Atoms which are implemented in CP2K as a generalized hybrid orbital
method [94]. There, assuming the broken bond is a C-C σ bond, a set of 4 hybrid
orbitals is placed at RMM. One of those, the hybrid orbital contains one electron and
acts as a normal atomic orbital in the QM region, while the other three, the auxilary
orbitals are strictly orthogonal to the QM zone’s molecular orbitals. Instead, the latter
are used to smear out the MM atom’s partial charge [94, 76].

Frontier Orbitals are generated in a QM model system that incorporates the bro-
ken bond. This orbital is then transfered to the QM/MM system and reconstructed
from the QM zones atomic orbitals in such a way that the frontier orbitals are orthog-
onal to each other and to all other MOs and AOs of the system. The frontier orbials
are kept frozen during the SCF procedure and contains two electrons [95, 76].
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2.2 Molecular Dynamics

Computational chemistry aims at the calculation of micro- and macroscopic proper-
ties, for instance, vibrational frequencies and dielectric constants. Their calculation
for strongly interacting systems, such as crystals, glass, or single molecules, re-
quires only their equilibrium configuration – i.e. the position of all atoms. Due to the
strong interatomic interaction, thermal activation will result only in a vibration of the
atoms around the equilibrium position [96] which therefore retains a statistical weight
of virtually 1. As a result most properties can be be determined with sufficient accu-
racy from that configuration. However, a wide array of chemistry deals with weakly
interacting systems, for instance solutions with water. In these cases, the depth of
the potential wells of atoms can be overcome by the kinetic energy of the atoms.
Thus, configurations other than the 0 K equilibrium become relevant and have to
be taken into account with appropriate statistical weight [97]. The two most popu-
lar methods that accomplish this are Monte-Carlo [96, 98] and Molecular Dynamics
(MD). The latter will be presented here, based on the exensive literature available on
this topic [98, 99, 65, 97].

The nuclei of molecular systems are in general assumed to behave classically. This
assumption allows the use of simple Newtonian dynamics for calculation. Within this
assumption a system is completely defined by the 6N - dimensional set of positions
R and momenta P of the N particles. The aforementioned set further constitutes a
point in the so-called phase space. The movement of the system through the phase
space in time is called a trajectory. Any point in phase space completely determines
the trajectory, because the equations of motion

∂H

∂R
= Ṗ (2.39)

∂H

∂P
= Ṙ (2.40)

define how to move from one point to another. Here, H = T +V is the Hamiltonian,
or the total energy of the system, and Ṗ and Ṙ are the time derivatives of the mo-
menta and positions, respectively. In reality, the analytic solution to a trajectory is
inaccessible. The two main reasons behind this are: One, the quantum mechan-
ical nature of particles. The uncertainty principle states that the precise values of
R and P cannot be known simultaneously and thus a system cannot be fixed on a
point in phase space. Two, the simple fact that there mathematics cannot provide
an analytical solution for anything involving more than two bodies. [100]. Instead,
an approximate dynamics can be derived through the expansion of R(t) in a Taylor
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series

R(∆t) = R(0)+ Ṙ(0)∆t +
F(0)
2M

∆t2 +
1
3!

˙̈R(0)∆t3 + · · · (2.41)

R(0) = R(∆t)− Ṙ(∆t)∆t +
F(∆t)
2M

∆t2− 1
3!

˙̈R(∆t)∆t3 + · · · (2.42)

These expansions can be terminated at an arbitrary order. A very common approx-
imation for molecular dynamics is to expand them only up to ∆t2. Through insertion
of Eq. 2.42 into Eq. 2.41, a propagation scheme that calculates the velocities and
the positions simultaneously, is obtained, the so-called The Velocity-Verlet algorithm
[98]:

R(∆t) = R(0)+ Ṙ(0)∆t +
F(0)
2M

∆t2

Ṙ(∆t) = Ṙ(0)+
F(0)+F(∆t)

2M
∆t .

(2.43)

Incidentally the Velocity - Verlet integrator is the simplest outcome of a scheme that
systematically produces “good” integrators, which will be explained in the next sec-
tion.

Systematic approach to good integrators

From considerations of symmetry and conservation laws it is known that integration
algorithms for molecular dynamics should have the following features: Besides us-
ing computational resources efficiently they should be time-reversible, symplectic, as
well as sufficiently accurate regarding the nuclear forces and the energy [101, 98].
An algorithm is time-reversible if moving forward and then backwards in time by ∆t

will result in ending at the starting point and it is symplectic if the phase space vol-
ume is preserved. A time-reversible and symplectic algorithm will also be energy
conserving. Since the evaluation of the forces is the most expensive part in an MD
simulation, an efficient algorithm should only require one force evaluation per time
step. The accuracy of forces, as well the computational efficiency are primarily a
concern of the electronic structure method, which were covered in Sec. 2.1. Sym-
plectic and time-reversible algorithms can be obtained from a method devised by
Tuckerman et al. [98, 102]. Let the system state be given by an arbitrary function f ,
of the positions R and the momenta P of its particles. The time derivative of f is

ḟ =
(

Ṙ
∂

∂R
+ Ṗ

∂

∂P

)
f ≡ iL f , (2.44)
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where the center defines the Liouville operator iL. The Liouville operator can be
divided into a part that acts on the positions iLr and one that acts on the momenta
iLp. The state of the system can be obtained by integration of Eq. 2.44.

f (R(t),P(t)) = exp[(iLP + iLR)t] f (R(t = 0),P(t = 0)) . (2.45)

The propagator eiLt = U(t) is unitary, i.e. U−1(t) = U(−t). The inverse propaga-
tor propagates the system back in time and it follows, that the propagator is time-
reversible. It can be shown, that this remains true for all discrete approximations
[102]. The Trotter identity, which is exact only in the case of n→ ∞, can be used to
separate the exponential operator in Eq. 2.45

exp[(iLR + iLP)t]≈
(

eiLPt/(2n)eiLRt/neiLPt/(2n)
)n

= Ũ(t/n) . (2.46)

The formal solution, Eq. 2.45, can now be replaced with a discretized version, in
which the time step ∆t is ∆t = t/n. In the simplest case of n = 1 integration of f with
the discrete operator will give:

f (R(∆t),P(∆t)) = f
([

P(0)+
∆t
2

Ṗ(0)+
∆t
2

Ṗ(∆t)
]
,
[
R(0)+∆tṘ(∆t/2)

])
, (2.47)

where Ṗ is the force acting on a particle and the velocity Ṙ(t) = Ṙ(0)+F(0)/(2M).
If one uses a higher number of propagators n, more accurate integrators and hence
more accurate trajectories can be obtained. This is however not required in molecu-
lar dynamics because of the so called Lyapunov instability, which will be discussed
later. With only one propagator, a single application of the Liouville operator to the
positions and momenta of the particles gives

P(∆t) = P(0)+
F(0)+F(∆t)

2
∆t (2.48)

R(∆t) = R(0)+ Ṙ(0)∆t +
F(0)
2M

∆t2 , (2.49)

which is precisely the Velocity-Verlet algorithm. Since Ṙ is a function of P only and
Ṗ = F(R) is a function of the positions only, the Jacobian of the transformation Ũ(∆t)

is unity and the phase space volume therefore is preserved [98]. This derivation
thus proves that the Velocity-Verlet algorithm is a time-reversible, symplectic algo-
rithm that is accurate up to O(∆t2).

Although time-reversible and symplectic, the algorithm does not strictly conserve
the energy, because the finite time step of the integrator Ũ(∆t), produces erroneous
forces, that result in an always positive energy drift [103]. In quantum mechanical
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methods errors in the forces also arise from the fact that the wavefunction is never
truly converged, which gives rise to an extra term in the derivative that is not calcu-
lated [101].

These erroneous dynamics generated by Ũ(∆t) can be expressed with a pseudo
Liouville operator iLpseudo that is related to the iL by an error operator ε

iLpseudo = iL+ ε∆t . (2.50)

The pseudo Liouville operator corresponds to a pseudo Hamiltonian that differs from
the true Hamiltonian, i.e. the energy conserving, correspondent of iL, in the order
of ∆t2 [98]. However, the pseudo Hamiltonian itself is rigorously conserved by Verlet
style algorithms [98, 104]. If ∆t is small, the difference to the dynamics of the true
Hamiltonian will be small too, and the drift smaller than inherent fluctuations of the
energy.

To conclude this section, the Lyapunov instability is discussed, which will offer an
explanation why only the lowest order algorithms are used. To this end, two sys-
tems are considered [98], where the initial velocity of a single particle I is slightly
perturbed by εP

RI(t) = f (R(0),P(0), t) , R′I(t) = f (R(0),P(0)+ εP, t) . (2.51)

The difference between their positions at time t, RI and R′I is denoted by ∆RI(t) It
can be shown that their motion diverges exponentially

|∆RI| ∝ εPeλ t , (2.52)

Here, λ is the largest of the 6N Lyapunov exponents; due to the exponential relation,
it dominates the divergence. Frenkel and Smit illustrated the effect for two 1000 par-
ticle systems in which they perturbed the velocity of a single particle by 10−10 PI(0).
To evaluate the two systems divergence, the squares of the differences of positions
were summed up and monitored

1000

∑
I=1
|R′I(t)−RI(t)|2 . (2.53)

After only 1000 time steps this sum had increased by 14 orders of magnitude, indi-
cating that the two systems were in no way correlated to each other any more [98].
Since typical molecular dynamics simulations run for hundreds of thousands of time
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steps, it becomes obvious why there is no need for high precision integrators: The
exact positions and the exact momenta cannot be known, because of the uncertainty
principle. Even if they could be known, with the finite precision arithmetic used upon
integration, simulated trajectories would bear no resemblance to actual trajectories
long before any observables could be calculated.

The effect of the Lyapurnov instability might appear disastrous to the usefulness of
molecular dynamics. However, for atoms a ”real” trajectory is not important. Instead,
only the correct time averages are relevant as they link the microscopic system to
macroscopic, observable properties [98]. It should be noted here that for this to be
valid, the system under study has to have the ability to reach every point in phase
space, i.e. be ergodic [98]. The Lyapurnov instability also easily explains the popu-
larity of the Velocity-Verlet algorithm: It is simple and sufficient for the calculation of
atomic systems.

Ab-inito MD: Propagating the wave function through time

In ab-inito molecular dynamics (AIMD) the force on the particles is evaluated quan-
tum mechanically. In this case the question of how to recalculate the wavefunction af-
ter one MD step arises immediately. In one approach, called Born-Oppenheimer MD
(BOMD), the particles traverse on the Born-Oppenheimer surface, i. e. the potential
energy surface of the electronic ground state. Naturally, this requires the iterative
convergence of the electronic structure at each time step, a costly procedure. Thus
AIMD had only limited usefulness due to the high computational cost especially in the
absence of methods to transfer electronic information between timesteps [65, 105].

In 1985 Car and Parrinello presented a way of making AIMD actually feasible by
combining DFT with MD [106]. They introduced a fictitious electron dynamics:

L (R,φ) =
1
2 ∑

I
MIṘ

2
I +

1
2 ∑

i
µ

∂

∂ t
〈φi |φi〉 −V (R,φ) , (2.54)

where L is the Lagrangian of the system, φ an orthonormal set of molecular orbitals
with elements φi, V the potential energy, M the atomic mass, and µ a fictitious elec-
tron mass. By relinquishing the requirement that electrons must be confined in their
ground state (and thus have a temperature of 0 ) there was no need to iteratively op-
timize the wavefunctions. Instead the electrons were propagated through time at low
electron temperature (i.e. very close to the ground state). The drawback of this ap-
proach were the introduction of high electron resonance frequencies which requires
a very short timestep for successful calculations [107]. This can be alleviated to a
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certain degree by tuning the ficticious mass [107].

A different approach, which allows for timesteps as large as BOMD, was introduced
by Kühne et al. in 2007 [108]. It uses the always-stable predictor-corrector (ASPC)
by Kolafa [109]. That method allows for the extrapolation of the wavefunction in a
polynomial of order K, using the K + 1 previous wavefunctions as support. In their
adaption of the ASPC, Kühne et al. chose to extrapolate not the wavefunction C but
the density CCT S, because the latter evolves far more smoothly [108].

Cp (tn)∼=




K

∑
m=1

(−1)m+1 m

( 2K
K−m

)
(2K−2

K−1

) C(tn−m)CT (tn−m)︸ ︷︷ ︸
P(tn−m)

S(tn−m)


C(tn−1) , (2.55)

where P is the density kernel. Within the square brackets of Eq. 2.55 the new density
CCT S for the timestep tn is extrapolated from the K + 1 previous densities. The
density is then back transformed to the wavefunction using C(tn−1). The extrapolated
wavefunction is not idempotent. Thus the back transformation with C(tn−1) is not
exact, and the error made by the back transformation adds to the error made by
the extrapolation [108]. To reduce the approximation errors, the predictor step is
followed by a corrector step to improve convergence towards the ground state.

C(tn) = ω MIN [Cp (tn)]+(1−ω) Cp (tn) , (2.56)

where
ω =

K
2K−1

and K ≥ 2 , (2.57)

Due to the approximative extrapolation in Eq. 2.55 the orthonormality of the molecu-
lar orbitals φi =∑µ Cµi is violated. In order to restore it, the corrector step is preceded
by a matrix purfication step [110]. Furthermore, iteration to convergence is avoided
by considering the error resulting in the forces as a random noise ΞI acting upon the
converged force FBO

I

MIR̈I = FBO
I − γDMIṘI +ΞI. (2.58)

In this case, the effect of the ΞI can be compensated through a Langevin dynamics
Eq. 2.58 on the forces, using a damping parameter γD. The damping parameter can
be evaluated using a separate MD simulation [107]. It should be noted, that this
approach turns into a BO method, when one chooses to apply the corrector step to
convergence.
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Periodic Boundaries

Due to the high computational cost, the simulated systems are in general far smaller
than realistic systems. In these dimensions, a disproportionate amount of molecules
resides at the surface rather than inside the bulk. It is easy to see that simulations
of such small scale systems cannot reproduce properties found in experiment. An
extended body is therefore mimicked by periodic boundary conditions (PBC). For
calculations with PBC, the particles are placed in a box, which is surrounded by an
infinite number of images of itself (see Fig. 2.3 for a two dimensional schematic). The
vector TR is the translational displacement at which any content of the original cell is
repeated. A particle at distance TR from a particle in the primary cell therefore has
the same properties as the original particle. Thus only the particles of the original
cell have to be propagated. In the event that one particle crosses the cell boundary,
it is replaced by one of its images. If, for instance, a particle will leave the box on
the right side, it will be replaced by a particle that moves into the box on the left
side. Contrary to the isolated system, not only (N-1) interactions with other particles,
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Figure 2.3: Example of a two dimensional simulation cell (black) with periodic images
(gray). The black arrows depict the movement of a particle out of the
simulation box. The red arrows show parts of the interactions that have
to be calculated for a particle.

but also the infinitely many interactions with all the replicated particles in the images
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must be calculated. Here, it is helpful to know that the potential is also periodic,
because every image has exactly the same environment as the original cell:

V (r+TR) =V (r) . (2.59)

However, the fact remains that, in principle, an infinite number of electrons has to
be dealt with. The approaches to this problem in quantum mechanics and classical
mechanics are fundamentally different. Since we used both quantum mechanical
and classical methods, both approaches will be covered here.

Periodic boundary conditions for quantum mechanical forces The answer on
how to approach periodic boundary conditions depends heavily on the choice of the
atomic basis set. The approach presented here uses plane waves, because their
regularity and infinite expansion make them naturally suited for replicated systems
[50]. This suitableness stems from the fact that the wavefunction at r+TR,

Ψ(r+TR) = eikTR Ψ(r) , (2.60)

differs from the one at r only by a phase factor [111]. Every one-electron orbital is
expanded into a basis that has the periodicity of the system.

φnk(r) = eikr
∑
G

nk(G)eiGr . (2.61)

Here, n and k are quantum numbers. k is a continuous vector that lies within the
first Brillouin zone and it is associated with the crystal momentum [65]. G is a basis
vector of the reciprocal lattice with a periodicity commensurate to that of the lattice
[111]. The electronic structure can be calculated from the first n functions, where
n corresponds to the number of electrons, on a discrete grid of k-points. Since φ

converges rapidly with G, only vectors with an energy below a cutoff energy have to
be taken into account [65].

Periodic boundary conditions for classical forces In classical systems the long
range terms that are affected by periodic boundary conditions are the coulomb and
Lennard-Jones interaction. Both take the form of pair potentials VIJ between the
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atoms I and J [76, 112].

V =

unit
cell

∑
I<J

∑
TR

VIJ(RI−RJ +TR) . (2.62)

In earliest simulations, all long range forces were cut-off to save computing time [113].
In order to keep either the energy or the force continuous, switching functions were
employed such that ṼIJ(RIJ) = S(RIJ) ·VIJ. The switching function S could reach from
a simple truncation, a shift

S(RIJ) =

[
1−
(

RIJ

Rc

)2
]2

(2.63)

where Rc is the cutoff radius, to elaborate cubic switching [114]. Improvements upon
the truncation approach have provided an averaged description of the Lennard-
Jones and Coulomb interaction. For instance, Coulomb interactions could be ap-
proximated by a multipole field [113]. More modern implementations have refrained
from cutting off the very long ranging Coulomb interaction, and instead used sophis-
ticated methods, in particular the Ewald summation [98]. In the following paragraph,
the Ewald summation is presented for coulomb potentials.

For Coulomb interaction the term VIJ of Eq. 2.62 takes the form VIJ = qIqJ/ RI −
RJ +TR and the charge of the atom I is ρI = qIδ (R−RI) [115, 116]. This charge
ρI can be split into a long-range ρL

I and a short-range ρS
I component by adding and

substracting a gaussian G function centered at I with an unspecified standard devi-
ation [115].

ρ
L
I = qIG(R−RI) (2.64)

ρ
S
I = qIδ (R−RI) (2.65)

By virtue of the poisson law, ∇2φ = −ρ the potential fields experienced by I, φI,
generated by I and the energy can be split into long and short-ranged terms as well.
The integration of the charge density yields

φ
S
I = qI (1− erf

[
R−RI√

2σ

]
) . (2.66)

φ
L
I = qI erf

[
R−RI√

2σ

]
. (2.67)
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The usefulness of introducing the Gaussian functions now becomes clear. Upon
integration, the gaussians turn into the error function. In the short range term this
leads to a gradual decay of φ S

I at a finite distance while the long-range part only
exists at long ranges. Therefore the long range potential, contrary to the coulomb
potential , does not posess a singularity [115]. Due to its finite reach the energy
from the short-range potential can now be calculated directly. Due to the loss of the
singularity, the long range potential can be calculated by transforming the charge
density into Fourier space and calculating the Fourier transformed potential F[φ L

I ],
now depending on the reciprocal space vectors k

F[φ L
I ](k) = ∑

J=1
q je
−ikr j

e−0.5σ2k2

k2 . (2.68)

Here, in the reciprocal space the potential length is truncated by the Fourier trans-
formed gaussian exp(−0.5σ2k2) [115]. φ L

I is obtained by back transformation from
the Fourier space and the energy can be calculated. Finally, the potential energy
can be written as

V =V S +V L +V sel f (2.69)

=
1
2 ∑

TR

∑
I,J=1

qiq j

RI−RJ +TR
(1− erf

[ |RI−RJ +TR|√
2σ

]
)

+
1

2Ω
∑
k

e−0.5σ2k2

k2 −|S(k)|2 1√
2πσ

∑
I

q2
I ,

(2.70)

where V sel f is a self introduction term introduced for formal reasons, Ω is the su-
percell volume, S is the structure factor, the Fourier transform of the charge density
[115].

In summary, PBC removes unwanted surface effects and allows to simulate bulk
phases. However, only effects that exist on scales smaller than the size of the box
can be observed. Likewise, only dynamic properties with a correlation time smaller
than the time it takes for spacial translations to become periodic can be sampled
and in any case the tails of the correlation functions will contain artifacts. Fortu-
nately, most properties of interest, like thermodynamics and local structures have
sufficiently small scales [99]. It should further be noted, that with the introduction of
periodic boundaries not all conserved quantities remain conserved. The remainder
of this paragraph will be used to account how periodic boundary conditions affect
the mass, the energy, and the linear and angular momentum. The mass and the
center of mass motion are conserved, because every particle that leaves the box is
replaced by its image, which has the same velocity as the original particle. The total
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energy

E = ∑
I

1
2

MIṘ2
I +V , (2.71)

is conserved too, because the kinetic energy of the particles is unaffected by the pe-
riodic boundary and the potential is evaluated over the complete real space anyway.
The angular momentum

L = ∑
I

RI×PI (2.72)

depends on the particles’ position with respect to the box’s center. If a particle leaves
the box on the right side, it is replaced by one on the left side. Therefore, L cannot
be conserved at that point. Luckily, L fluctuates around its supposedly constrained
value, because particles leave and enter the box on all sides [99].

Sampling at Constant Temperature

Standard molecular dynamics solves Newton’s equations of motion assuming con-
stant volume (V), constant particle count (N) and constant energy (E). This is called
a microcanonical or NVE ensemble. However, most expermiments are conducted
under constant pressure (P) and temperature (T), i.e. in an NPT ensemble. Due to
the limited system size and simulation time, thermodynamic averages obtained in a
different ensemble do differ [117]. An NPT system can be simulated by adding a
barostat and a thermostat to the system. Unfortunately, the density in an NPT sys-
tem converges horribly slowly [118]. Simulations that include a quantum mechanical
region are therefore, often only run with a thermostat attached, thus an NVT system.
The simplest method of enforcing a temperature is to simply rescale the velocities
of each atom to one corresponding to the target temperature at each timestep [100]
This method, however, does not reproduce any known ensemble and may produce
complications with various MD extensions [98, 117]. The Canonical-Sampling by
Velocity-Rescaling (CSVR) is a more elaborate variant [117]. Instead of forcing a
fixed target temperature T0, the target kinetic energy K0 is drawn from a canonical
distribution.

P̄(K0)dK0 ∝ K3N/2−1
0 e−

K0
kBT dK0 . (2.73)

that represents the probability P of a system of size N to have an instantaneous ki-
netic energy of K0 at an average temperature T .

The dynamics of the system are smoothed by choosing K0 from the previous target
value via a stochastic dynamic, effectively distributing the regression to the average
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temperature over several timesteps [117].

dK = (K̄−K)
dt
τ
+2

√
KK̄
3N

dW√
τ

. (2.74)

Here, dW is a stochastic Wiener process, and τ a parameter that determines the
time until an energy difference is thermostated. A key advantage of CSVR is that all
particles are subject to the same rescaling factor. Thus, this methods preserves the
total linear momentum, the total angular momentum for non-periodic systems, and
constraints, for instance on bond lengths.

2.2.1 Emulating Nuclear Quantum Effects through a thermostat

Nuclei are quantum objects, yet they are simulated classically. The neglect of the
quantum nature of nuclei thus entails the omission of the quantum mechanical zero
point energy and tunneling effects [119]. These effects are of particular importance
for the lightest atom, hydrogen, and the hydrogen bonds formed in water [119, 120,
121]. Feynman discovered the relation between a quantum partition function and
path integrals [122]. This lead to the development of so-called path-integral meth-
ods, which are reviewed here [123, 124]. In these methods the quantum nucleus is
replaced by N classical beads, connected via springs. These methods allow for the
accurate simulation of quantum nuclei, albeit at N times the cost of a standard MD
simulation. However, a shortcut method has been proposed by Michele Ceriotti et
al. It aims at reproducing the quantum postition and momentum distribution through
a Generalized-Langevin-Equation (GLE) thermostat [125].

A conventional Langevin equation reads

q̈I = FI +ΞI− γq̇I , (2.75)

where q̇I is the momentum of particle I and q̈I the second time derivative of its mass-
weighted position [103, 126] and γI a friction parameter. In the original presentation,
the exact force FI would be 0, then γq̇I would be the viscous drag experienced by
a particle moving through a liquid and ΞI a random agitation force transmitted from
the heat bath [127]. Clearly, the concept has been transposed to other areas, for
instance noise-cancellation in MD forces [108, 128, 103, 126]. Another application
is using Langevin dynamics to thermostat a system. Then, FI is the force derived
from the system’s potential and, Ξ and γq̈I model the interaction with the thermo-
stat [129]. The formulation still assumes that the interaction with the heat bath con-
stitues a “white noise”, i.e. it is randomized and instantaneous [129].
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In a GLE, the assumption that the interaction is a white noise is lifted. Thus, a
GLE thermostat models an interaction between system and heat bath, where the
interaction at any time tn depends on past events. Ceriotti et al.’s formulation circum-
vents the ensuing complexities by replacing the non-markovian dynamics of the 3N-
dimensional system, with the markovian dynamics of a fictitious 3N +n-dimensional
system, where n represents the number of additional degrees of freedom s. The
equations of motion for this system then read:

q̇ = p
(

q̈
ṡ

)
=

(
−F(q)

0

)
−
(

app aT
p

ap A

)

︸ ︷︷ ︸
Ap

(
q̇
s

)
+

(
bpp bT

p

bp B

)

︸ ︷︷ ︸
Bp

(
Ξ

)
, (2.76)

where q are the mass-weighted position vectors, and s the additional degrees of
freedom, app is the Langevin friction coefficient and bpp the intensity of the random
force. If n is set to zero, then app = γ and bpp = 1 retains Eq. 2.75. The letters a, A
and, a represent friction, while b, B and b represent diffusion. A subscript p on these
matrices indicates that the respective matrix acts also on the p,s states of the state
vector x = (q, p,s)T , a subscript pq indicates a matrix over the whole state vector and
no subscript indicates a matrix acting only on the s states [129]. It can be shown that
Eq. 2.76 holds for generic potentials. In order to determine the parameters Ap, Bp a
generic system is assumed to be a collection of one-dimensional harmonic oszilla-
tors. Furthermore, since the fluctuation-dissipation-theorem has to be satisfied the
following relation can be set up [129].

kBT (Ap +AT
p ) = BpBT

p . (2.77)

The entries of Ap are then fitted to guarantee a high sampling efficiency and minimal
hindrance of diffusion [129].

In order to emulate nuclear quantum behavior, the GLE thermostats specific fre-
quencies such that the atoms’ position and momentum distribution closely obey
the relations 〈q̇〉 = ω2 and 〈q〉 = h̄ω

2 coth( h̄ω

2kBT ). Since the relation Eq. 2.77 cannot
be used, these distribution functions are used to determine the entries of Ap and
Bp [125]. Due to the representation of a system as a collection of generic harmonic
oscillators, these parameters don’t need to be evaluated for each system, but can
be calculated once and then reused for a wide variety of applications [129].
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2.2.2 Sampling the Free Energy Surface

A vast variety of important chemical properties, such as the reaction rates and solu-
ability are determined by the free-energy differences between chemical states, i.e.
their relative position on the free energy surface (FES) [130]. Unfortunately, the FES
scales with the number of atoms in a system, making unimaginably expansive in
most practical cases. The sampling of any event that requires a system to pass a
barrier that is greater than the kinetic energy available to the system becomes com-
putationally unfeasible [131], because, not only is such a barrier-crossing extremely
unlikely, the system is inclined to explore any direction with a lower barrier first. Thus,
if one intends to study a so-called rare event in the time alloted to accomplish the
average PhD or PostDoc, he is required to force the system in the direction of the
rare-event of interest.

The first task is accomplished by defining arbitrary reaction coordinates ξ , which
is a subset of the dimensions of the system. For instance, ξ could be the distance
between two molecules, if one is interested in a binary reaction. The second task,
restated, means to modify the systems probability distribution P(ξ ) along the reac-
tion coordinate. A method to obtain the probability distribution is equivalent of finding
the free energy, because the two are directly connected

F(ξ ) =−kbT ln [P(ξ )]+ f . (2.78)

Here, T is the system’s temperature and f is a negligible constant [132]. The respec-
tive means of how these methods modify P(ξ ) and then arrive at F , however, vary
greatly. The simplest method, known as thermodynamic integration or blue moon
method [133], is to modify the systems Lagrangian

L̃i = L +λi(ξ −ξi) , (2.79)

to constrain the ξ to a set of targets ξi, perform an MD at each constrained ξi and
then integrate numerically over the average value of the Lagrangian multipliers λi

[134]. However, more sophisticated approaches have been developed, two of which
are Metadynamics (MTD) [131, 135] and Umbrella Sampling (US) [133]. They are
advantageous over a constrained MD, because they allow to sample P(ξ ) at every
value of ξ , not only at ξi.
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In MTD, a biasing potential is added to the reaction coordinate space such that

V b(ξ , t) = ∑
i<t

wi exp
[

ξ −ξi√
2σ

]2

, (2.80)

where wi is the height of the biasing gaussian and σ is its width. The variable t

indicates, that the biasing gaussians are added one by one over the course of the
simulation [132]. In Well-Tempered MTD the height wi of any new Gaussian not yet
included in the bias potential V b is calculated by

wi = ω0i0exp
[
−V b(ξ , t)

kB∆T

]
, (2.81)

where ω0 is the initial deposition rate of the bias potential, i0 is the time step at which
gaussians are added to the bias potential and ∆T is a temperature tuning parameter
that limits the exploration range of the FES [132, 135]. Thus, over time the growth
of the bias potential decreases such that the system can reach an equilibrium state
[135]. Then the free energy

F(ξ ) =−T +∆T
∆T

lim
t→∞

V b(ξ , t)+ f , (2.82)

with f being an immaterial constant [132].

At the outset, Umbrella Sampling is similar to a constrained MD. The reaction co-
ordinate is discretized into several bins at ξi The sampling in each bin is biased by a
potential

V b
i (ξ ) =

1
2

K(ξ −ξi)
2 , (2.83)

where K is the spring constant [133]. In principle potentials other than the harmonic
can be also be used. For a sufficently large value of K the system is now forced to
follow the bias potential instead of the FES, sampling all directions orthogonal to ξ

at ξi. This procedure generates a set of biased probability distributions Pb
i (ξ ). The

challenge now consists in finding a way to extract the original P(ξ ) from this set.

Pu
i (ξ ) = Pb

i (ξ )exp
[

V b
i (ξ )

kBT

]
exp
[
− Fi

kBT

]
. (2.84)

Usually, if more than one sampling bin is used the value of Fi cannot be extracted
from the simulations directly. Instead specialized method to analyze the Umbrella
Sampling have to be used. Two of them, which are presented here [133], are called
the weighted histogram analysis method (WHAM) and umbrella integration (UI)
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The weighted histogram analysis method attempts to find the optimal global
unbiased distribution, i.e. the bin weighting procedure should be constructed such
that ∂σ2[P(ξ )]/∂ pi = 0 [136, 137, 133]:

P(ξ ) = ∑
i

pi(ξ )Pu
i (ξ ) (2.85)

pi(ξ ) =
Ni [−β (V b

i (ξ )+Fi)]

∑ j N j exp[−β (V b
j (ξ )+Fj)]

, (2.86)

where β = 1/kBT is the inverse temperature and Ni is the number of samples in bin
i. The Fi depend on P(ξ ) requiring Eq. 2.85 to be solved iteratively [133]. Since Fi is
defined as

exp[−βFi] =
∫

P(ξ )exp
[
−βV b

i (ξ )
]

dξ , (2.87)

Pu
i can be eliminated from Eq. 2.85 and the optimization now turns into an iterative

search for the optimal Fi [137]

exp[−βFi] =
∫

∑
i

Ni exp[−βV b
i (ξ )]P

b
i (ξ )

∑ j N j exp[−β (V b
j (ξ )+Fj)]

dξ . (2.88)

Umbrella integration circumvents the calculation of Fi by averaging the mean
force instead of Pu

i [133].

∂Fi(ξ )

∂ξ
=−kBT

ln[Pb
i (ξ )]

∂ξ
− dV b

i
dξ

(2.89)

The biased probability distribution is then expanded into a cumulant series that is
truncated after the second term, effectively assuming a gaussian distribution for
Pb

i .[133]. The global force is obtained by using a weighted sum over the bin forces

∂F(ξ )

∂ξ
= ∑

i

NiPb
i (ξ )

∑ j N jPb
j (ξ )

∂Fi(ξ )

∂ξ
. (2.90)

Here Ni is the number of samples in bin i. The unbiased force now only has to be
integrated to obtain the free energy. One of the great advantages of UI is that the
error of F(ξ ) can be calulated [133, 138]. Furthermore, this sampling technique
allow the use of statistical methods that ascertain that ξ̄ b

i and σb
i don’t suffer from

statistical errors or unequilibrated trajectories [138].
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2.3 ALMO-EDA

2.3.1 Absolutely localized MOs

Fragmentation schemes are used to divide the wavefunction into local parts that
can be computed independently. The motivation for this is twofold: a) Localizing a
wavefunction effectively reduces the computational cost of large systems, enabling
the implementation of linearly scaling methods and b) providing an intuitive picture
of the quantum system [139, 140].

One of those methods is called self-consistend-field for molecular interactions
(SCF-MI) [141]. There, the system of electrons is grouped into molecular fragments
x. The condition for the creation of fragments is that the interaction within a fragment
is strong in comparison to the interaction between fragments [141]. In this method,
molecular orbitals are forced to reside within a localization domain. The domain en-
compasses all atomic orbitals of fragments within a distance Rc of the fragment the
electron forming the MO belongs to.

|φxi〉= ∑
y∈U

ny

∑
µ

∣∣χyµ

〉
cyµ

yi . (2.91)

Here, φxi is the MO i of fragment x, χyµ is the AO µ in the localization domain and
cyµ

yi is the domain specific MO coefficient. U is the set of all fragments within Rc of
fragment x. Obviously, the domains overlap, which leads to a slow convergence of
the wavefunction [42]. As a remedy, the implementation of Khalliullin et al. [42] sets
Rc to zero in a preliminary optimization step, which limits the expansion of MOs to a
single fragment. These can then be optimized independently. Next, the constraint on
Rc is relaxed and the wavefunction is diagonalized once. In a variant method the di-
agonalization can be repeated, which is useful for linearly scaling QM methods [42].

2.3.2 Energy Decompositon

The true strength of the method is however revealed, when the steps of the ALMO
procedure are coupled with energy decomposition analysis, hence assigning them
a physical meaning.

∆E = ∆EFRZ +∆EPOL +∆ECT , (2.92)

where ∆E is the entire energy reduction obtained from placing a fragment in the sys-
tem. It is subdivided into to the frozen-core energy ∆EFRZ, the polarization energy
∆EPOL and the charge transfer energy ∆ECT [43] ∆EFRZ is the energy obtained distort-
ing the atoms of fragment x from its isolated equilibrium position. ∆EPOL the energy
from calculating the molecular orbitals of fragment x in the vicinity of other fragments.
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The term ECT is of particular interest, because, for instance the strength of hydrogen
bonds can be linked to it [43]. Furthermore, ECT can be split into individual donation
and back-donation terms between atoms

∆ECT = ∑
I,J

= EI→J +EJ→I +∆EHO , (2.93)

where EI→J is the energy obtained from transferring charge from an occupied orbital
of I to a virtual orbital of J and EHO contains the difference to the converged solution
of the unconstrained system. The calculation of the individual terms requires switch-
ing to a biorthogonal basis set where a molecular orbitals of x have no overlap with
neither other MOs from the same fragment, nor with any MO from any other frag-
ment [44]. The individual CT energy between two molecules can then be denoted
as

EI→J =
oI

∑
i

v j

∑
j

F Ii
JaXJa

Ii , (2.94)

where i is an orbital from the set of occupied orbitals oI on I , and a is an orbital
from the set of virtual orbitals vJ on J. F Ii

Ja is the biorthogonal representation of
the Fock matrix and is associated with the energy obtained from transferring one
electron between the two orbitals, whereas XJa

Ii is an amplitude that denotes how
much charge is actually transferred [43]. The EDA method also accounts for the
basis set superposition error (BSSE), although it has been found to be negligible for
the medium to large basis sets regularly used in DFT calculations [140].
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Configurations for ALMO EDA were obtained from ab initio molecular dynamics sim-
ulations [98] , whereas forces were calculated by DFT with a DZVP basis set. The
exact simulation details may be taken from [142]. The simulations were designed to
reproduce the dispersion interactions between the water molecules, which improves
the local description and the overall density of water [143, 144]. The simulation of
the water surface was performed at constant temperature and constant volume in
a 15.604 15.604 84.000 Å box containing 384 water molecules. Periodic boundary
conditions were applied in all three dimensions. ALMO EDA was carried out using
the BLYP [63, 64] functional for 700 snapshots evenly distributed over a trajectory of
70 ps. A detailed description of the simulations can be found in Ref. [145].

Throughout the paper ‘donor’ describes a molecule donating electrons to another
molecule, while ‘acceptor’ describes a molecule receiving electrons from another
molecule. In this fashion ED→A denotes a donor bond from a specific donor molecule
to a specific acceptor molecule, whereas EA←D denotes an acceptor bond between
two specific molecules. In contrast, ED→J and EA←J describe donor, or acceptor
bonds with generic partners. Furthermore EDon and EAcc describe all donor and
acceptor interactions of a molecule

EDon = ∑
J

ED→J EAcc = ∑
J

EA←J , (3.1)

with all neighboring molecules J as defined by the ALMO procedure [42, 43, 44].
Since only few neighbors, mostly 2, contribute significantly to EDon or EAcc [45], only
the 5 strongest interactions were actually considered.

The definition of bond asymmetry by Kühne and coworker was used and is given
here for the reader’s convenience

γDon = 1− ∆E1st
D→A

∆E2nd
D→A

, γAcc = 1− ∆E1st
A←D

∆E2nd
A←D

, (3.2)

where ∆E1st and ∆E2ndare the energies of the strongest and second strongest donor,
or acceptor bond respectively [45]. In case of geometric hydrogen bonds, these were
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3 Computational Details

identified by utilizing the concept of Luzar and Chandler [146] with the enhanced cut-
off parameters based on the PMF of hydrogen bonds [145]. The mass-density ρ was
used to define the positon of the dividing surface plane, such that ρsurf =

1
2 ρbulk. The

actual surface positions were calculated with the instantaneous surface definition of
Willard and Chandler [147]. The surface volume was divided into indiviual layers
following the categorization of Kessler et al. [119], where the first, second and third
surface layer ended at 0.5 Å, 3.5 Å, and 6.5 Å below the dividing surface, respec-
tively. All water molecules farther than 6.5 Å from the surface were considered bulk
like.

X-ray absorption spectra were obtained with CP2K [87, 86], using the GAPW ap-
proach [148, 149], within CP2Ks QM/MM framework. The MM atoms of the slab
were represented by the flexible TIP3P [150] model and the interaction was mod-
eled using the multigrid approach by Laino et al. [82, 89], expanding the interaction
into 12 gaussians. The MM-radii of O and H were set in accordance with the find-
ings in [82]. The QM region was selected by including every molecule within a 6.0 Å
distance of the excited molecule and simulated using unrestricted Kohn-Sham DFT.
The wavefunction was expanded in the IGLO-III basis set [151], while the auxiliary
plain-wave grid was cut off at 320 Ry. The QM zone was decoupled from its periodic
images using the the multipole decoupling scheme [90]. Calculations were carried
out for 700 of the 3501 snapshots available.

The x-ray photon acting on the 1s orbital of oxygen was emulated with the half core-
hole transition potential [152, 153]. In this method the XAS signal is calculated by
removing a fraction of an electron – exactly half an electron for the half-core-hole
potential – from the orbital absorbing the exciting photon. This electron is delocal-
ized in the conduction band, i.e. it is not promoted into a specific orbital. All orbitals
are optimized in presence of the core-hole and the absorption frequencies are cal-
culated from the energy differences between the core orbital and all virtual orbitals.
The absorption intensity can be calculated from the dipole transition element

I ∝ |
〈
ψ
′
f

∣∣ED̂
∣∣ψ ′i
〉
|2 , (3.3)

where I is the absorption intensity, E is the electric field that represents the incoming
photon, D̂ is the dipole operator [41, 153]. Line broadening is manually applied after-
wards [154] The transition potential method is known to overestimate the post-edge
and underestimate the pre-edge peak [45, 154], but despite this these methods have
been found to semiquantitavely reproduce the XAS spectrum of water. [154, 39].
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Error values and their corresponding error bars were determined by integrating the
corresponding student t-function for the sample’s degrees of freedom with standard
numerical techniques [155]. The errors reported below thus represent the 95%
confidence interval for the mean [156, 157]. All graphs were produced with mat-
plotlib [158] and fitting procedures were conducted with scipy [159, 160]. In all fits
data points with a confidence interval greater than 2 times the respective error of
the mean were omitted. Data points in plots, except for the two dimensional dis-
tributions, were assumed to be averages over normal distributions. The validity
of the assumption was tested by fitting the distribution over each fixed value to a
gaussian with scipy and assuring the significance of the fit with an F-test [157] us-
ing α = 0.05. Fitting procedures were performed using the Levenberg-Marquardt
algorithm [161] implemented in SciPy and the statistical computations were accom-
plished using SciPy [159, 160].
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4 Energetic Cooperation in Hydrogen
Bond Formation

Cooperation describes the interrelation of hydrogen bonds. It has been known to
exist for decades but its extent has never been measured. Here, we use a novel
approach. Instead of relying on geometric definitions, we relate the interaction en-
ergies of a water molecule. A first insight into cooperative behavior is given by the
joint distribution function p(EDon|EAcc) in Fig. 4.1.
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Figure 4.1: Distribution of the EDon versus EAcc of a bulk molecule. Its symmetry
with respect to the isoenergetic line as well as the elongation along it,
suggests an interrelation between the two quantities. Figure gives the
raw molecule count over all snapshots.

Clearly, the distribution is symmetric with regards to the iso-energetic line with the
maximum being placed directly on that line. Furthermore, the distribution is slightly
elongated regarding said iso-energetic line. Even though the approach is rather sim-
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4 Energetic Cooperation in Hydrogen Bond Formation

do
no

rs

acceptors

D\A 1 2 3

1 23.4(1) 25.09(5) 24.9(4)
2 17.32(3) 18.99(1) 18.8(1)
3 11.71(8) 12.87(2) 12.3(3)

Table 4.1: Change of 〈ED→J〉 with the number of cooperative and anti-cooperative
bonds. Values are given in kJ

mol .

ple, this zeroth-order approach to cooperation so to speak, it already indicates an
interrelation between EDon and EAcc.

As hydrogen bonds are the carriers of molecular water interaction each bond should
carry a part of the total energy depicted in Fig. 4.1. One may presume that mol-
ecules with few bonds tend to be located in the lower left of that figure, i.e. they
have a low EAcc. Since acceptor and donor energy are related, these molecules can
be expected to have a low EDon as well. This in turn entails a low number of donor
bonds. The resulting relation between the number of acceptor and the number of
donor bonds is already a well known fact [23]. Instead, the relation between the
number of bonds and their energy will be investigated. The corresponding data is
presented in Tab. 4.1 which gives the donor energies with respect to the number of
bonds attached to a molecule. The bond energy reduces roughly by half between
one and three donor bonds, indicating a fair amount of competition between donor
bonds. The number of acceptors affects the donor bond energy as well. In contrast
to the linear progression found for donor bonds, here the highest bond energy is
found at two acceptors; an observation that is in contradiction with the assumption
presented above.

These observations suggest the following model to describe hydrogen bonds. In
this model, a water molecule attempts to balance the hydrogen bond energies. In
order to get acceptor and donor energies balanced, energy received by a molecule
through its acceptor bonds is pushed to its donor bonds. In turn, acceptor bonds
pull energy from the donor bonds. If a molecule has many acceptor and only few
donor bonds then the energy of two bonds is redistributed to a single bond, which
consequently becomes stronger. In contrast, if a molecule has many donor and few
acceptor bonds, then the energy of the donor bonds have to be redistributed to two
bonds, leaving fewer energy for each of them. Furthermore, addition of a coopera-
tive bond will increase the bond strength, while addition of an anti-cooperative bond
will diminish it. The model presented here neatly explains the reduction of the en-
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D12

A21
B

Figure 4.2: Schematic of a molecule pair connected by a bond ‘B’ whose donor ‘D12’
has 1 donor and 2 acceptor bonds and whose acceptor ‘A21’ has 2 donor
and 1 acceptor bond. Picture rendered with vmd [162].

ergy in Tab 4.1, but does not explain the loss of energy in the third column. However,
as any hydrogen bond connects two molecules, its strength is determined by all the
bonds these two molecules engage in. Therefore, in order to properly test how a hy-
drogen bond reacts to other bonds in its vicinity, molecule pairs have to be observed.

The bond energies of ED→A of pairs of water molecules with the most common
numbers of donor and acceptor bonds are presented in Tab. 4.2. The entries are
ordered in such a way that ED→A, when moving from top left to bottom right in-
creases in Tab. 4.2a and decreases in Tab. 4.2b. In Tab. 4.2a we see that ED→A

increases between the first and second column. Pairs in the second column have an
additional acceptor bond at ‘D’. This extra bond transfers extra energy to ‘D’ which
gets pushed into ’B’. Likewise, the transition from A22 to A21 strengthens ‘B’ as well,
because it becomes the only bond on which the pull from A’s two donor bonds is
exerted. When these observations are generalized, one finds that every addition of
an acceptor bond to ‘D’ and every addition of a donor bond to ‘A’ increases ED→A.
These bonds will be henceforth called cooperative bonds. Likewise, every addition
of a donor bond to ‘D’ or every addition of an acceptor bond to ‘A’ decreases ED→A,
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4 Energetic Cooperation in Hydrogen Bond Formation

D21 D22 D11

A11 17.0(2) 18(2) 22.8(7)
A22 17.65(5) 19.30(2) 23.3(1)
A21 19.0(2) 20.68(8) 25.4(4)

(a)

D12 D11 D22

A22 25.10(6) 23.3(1) 19.30(2)
A11 23.9(4) 22.8(7) 18(2)
A12 22.4(1) 21.2(2) 17.16(3)

(b)

Table 4.2: Variation of 〈ED→A〉 between the most common pair configurations. Values
are given in kJ

mol . An illustration of the labels’ meaning can be found in
Fig. 4.2.

and these bonds will be called anti-cooperative. A more intricate behavior is obtained
when one looks at the simultaneous addition of a cooperative and anti-cooperative
bond. In cases involving only acceptor bonds the energy remains unchanged, as
one would expect. In cases involving donor bonds one finds an increase and a de-
crease of the bond energy. For instance, at the transition from A11 to A22 the added
pull from the donor bond supersedes the anti-cooperative effect from the acceptor
bond. The addition of two bonds to ‘D’ shows the opposite effect. It appears as
if the addition of an anti-cooperative bond to ’D’ interferes with the orbitals partici-
pating in ’B’, thus weakening the bond. This kind of orbital interference appears to
be of minor significance in the case of anti-cooperative acceptor bonds. Thus the
cooperative behavior observed, i.e. the change of a bonds energy with respect to
the change number of donor /acceptor bonds appears to be modulated by steric hin-
drance when the additional bond is added to the oxygen where ‘B’ resides. Overall,
these data clearly show the increase in a bond’s energy upon addition of a cooper-
ative bond in the most common molecules.

In order to ease quantification of this cooperative effect and incorporate all possi-
ble pairs in an easily readable manner we use a measure introduced by Ohno et.
al [14]. The hydrogen bond offset

oH = DAcc +ADon−DDon−AAcc , (4.1)

gives the surplus of energy increasing bonds over energy reducing bonds. Here,
DAcc is the number of acceptor bonds connected to molecule ‘D’ and ADon is the num-
ber of donor bonds connected to ‘A’. The negative terms represent anti-cooperative
contributions, the positive represent cooperative bonds.

Within this picture, the example schematic Fig. 4.2 represents a pair denoted
‘D21A12’, which is a strong pair with an offset oH = +2. In fact, the average ED→A =
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Figure 4.3: a) effect of cooperation on the strength of a bond. b) average amount
of energy on a molecule not balanced by hydrogen bonds.

26.9(1) kJ
mol , a value well above any of the values presented in Tab. 4.2. The most

common pair ‘D22A22’ has an offset oH = 0. With a lower offset the average bond
energy of the latter pair is well below that of ‘D21A12’, as ‘D22A22 has two additional
energy reducing bonds. oH is depicted in Fig. 4.3a. As can be seen, the increase
of ‘B’s strength is perfectly linear over the entire range of offsets. On a side note,
a slight asymmetry in Fig. 4.3a exists in the form of the presence of an offset of -5
but the absence of an offset of +5. This is an artifact of the definition, because the
mere presence of ‘B’ produces an offset of -2. Due to this shift fewer combinations
for high positive offsets exist. It should be noted that ED→A continues to increase
for molecules with high offsets, in contrast the donor energies of single molecules in
Tab. 4.1. Offsets are pair quantities and do not apply to single molecules. In order to
enable a comparison, the average offset of all pairs containing a donor D13 and D12

has been calculated. The average offset of D13 is oH = 2.09, compared to oH = 1.06

for D12, suggesting a higher value for ED→J for the former. Tab 4.1 however reads
E(D13 = 24.9 kJ

mol , while E(D12 = 25.1 kJ
mol . Furthermore the reduction of ED→A when

moving from D12 to D13 can also be observed for specific pairs, i.e. when the num-
ber of bonds at ‘A’ is controlled. From a physical perspective, three acceptor bonds
require two of them to be bound to the same hydrogen atom. Due to its size, both
bonds will not be positioned optimally, thus possibly reducing the amount of charge
actually transferred, resulting in weaker bonds. From the fact that this does not show
in Fig. 4.3a, it can be inferred that these pairs are comparatively rare.
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4 Energetic Cooperation in Hydrogen Bond Formation

Despite the fact that oH can only have integer values, a regression through the
data points can be made to obtain information about the devolution of the energy
of ‘B’ upon addition or removal of a bond. A linear fit f (x) = a · x+ b, is produced
for the graph Fig. 4.3a, which returns the following values: a = 3.272± 2 · 10−7 and
b = 19.437±1 ·10−6. These numbers imply the following physical picture of a hydro-
gen bond energy; namely that it consists of a cooperative part and an inherent en-
ergy. The cooperative part, represented by the incline a, adds≈ 3 kJ

mol to the hydrogen
bond energy per cooperative bond and reduces the energy by the same amount per
anti-cooperative bond. The inherent hydrogen bond energy would then be the value
b. However, with the current definition, oH = 0, encompasses predominantly the pair
‘D22A22’ From the amount of bonds, and the fact that this is the default configuration
in water, one can induce that cooperative effects make up a considerable portion of
ED→A. In contrast, the only pair that is with absolute certainty not influenced by coop-
eration is the water dimer ‘D10A01’. Unfortunately, even the long trajectory used here
only has four of such pairs, all in the second surface layer. Instead of pairs without
cooperation we look for pairs in which the cooperative and the anti-cooperative effect
even out, i.e. where the number of energy increasing bonds equals the number of
energy reducing bonds. These pairs can be found at oH = −2. Because ‘B’ alone
contributes -2 to oH , the net effect of all other bonds is zero. The energy of pairs with
this offset is 12.99(5) kJ

mol for the bulk phase; a value which is reasonably close to to
the binding energy of the water dimer which is given as 13.0(4) kJ

mol [13, 163, 164].

The reason why ED→A depends on other bonds was that a water molecule seeks
to balance its donor and acceptor energies. If this assumption is true then for all val-
ues of oH , the values of EDon and EAcc must even out at each molecule constituting a
pair. A glance at Fig. 4.1 indicates that this is not perfectly true at all times. But that
distribution is centered at equal values of EDon and EAcc, hence the magnitude of the
imbalance is expected to be small for the majority of molecules. This imbalance is
measured by

∆E =
1
2

(
∑
J

ED→J−∑
J

ED←J +∑
J

EA→J−∑
J

EA←J

)
, (4.2)

where the first tho terms give the difference between donor and acceptor energies
at ‘D’ and the second two terms give the difference between donor and acceptor
energies at ‘A’. As Fig. 4.3b reveals, the imbalance between donor and acceptor
energies on a molecule has no clear relation to the energy of the central bond or the
offset of the pairs. For most offsets the imbalance is small compared to the bond
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strengths and it is virtually zero for the most common pairs at oH = 0. The fact that
∆E is low for most pairs is interpreted as a result of the fact that molecules want to
remain neutral, and it can be concluded that energy balancing is indeed the motiva-
tor for cooperation.

The previous discussion established a quantitative measure for using the geometric
definition of hydrogen bonds as a basis. However, this geometric definition has two
shortcomings. One, it does not account for the individual hydrogen bond strengths,
and two it is inherently arbitrary. The uniquely determined ALMO energies can be
used to overcome these two issues [44]. In order to incorporate these advantages
into our offset, an alternative measure to oH is proposed.

In the definition of oH , Eq. 4.1, four bond types were identified and the number of
bonds of each type was summed up to give the offset value. The improved de-
scription oE replaces the amount of each bond type by their respective energetic
contribution. Hence,

oE =

≡DAcc︷ ︸︸ ︷
∑
J

ED←J +

≡ADon︷ ︸︸ ︷
∑
J

EA→J−
≡DDon︷ ︸︸ ︷

∑
J

ED→J−
≡AAcc︷ ︸︸ ︷

∑
J

EA←J +2ED→A , (4.3)

where, ED←J gives the energy of an acceptor bond at ‘D’, EA→J that of a donor bond
at ‘A’, ED→J gives the energy of an donor bond at ‘D’ and EA←J that of an accep-
tor bond at ‘A’. The set of partners J is different for each sum, but always includes
all partners of the respective type. The braces give the equivalent contribution in
Eq. 4.1. The term 2ED→A removes the energy of ‘B’ from the equation, to avoid the
trivial dependence of ED→A on oE . Given that the desired behavior of oE is equal to
that of oH , i.e. oE ∝ ED→A, inclusion of ED→A must be avoided.

The desired properties stated at the beginning of this section require the inclusion
of non-bonded water interactions into the calculation of oE . Non-bonded interactions
are ALMO-EDA charge transfer energies, that do not correspond to a geometric hy-
drogen bond. As such, their energy is significantly below that of hydrogen bonds.
In the resulting figure, Fig. 4.4a the monotonous increase of ED→A is retained, how-
ever, the incline is decidedly non-linear. A comparison of ED→A at oH = 0 and oE = 0

reveals that the interaction energies at oE = 0 are only about a third of the bond
energy observed in Fig. 4.3a. Furthermore, the interaction energies for oE < 0 are
virtually zero. These properties indicate that oE is to be interpreted differently than
oH (Eq. 4.1). Where oH gave the cooperative enhancement of a bond, starting from
a base value, oE cannot be interpreted in the same manner.
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4 Energetic Cooperation in Hydrogen Bond Formation

Before the discussion of Fig. 4.4 is continued, we make a few remarks on the scale of
oE . First, given that oE has the dimension kJ

mol , values of oE > 100 appear to be rather
large. However, Fig. 4.1 shows that the difference between a molecule’s donor and
acceptor energy and acceptor energies of a molecule can easily amount to approx-
imately 30 kJ/mol. Since such a difference can compound in a pair, and the energy
of ’B’ is taken out of the equation, values that large can easily occur.

Fig. 4.4a is easiest explained in terms of transferred charge, even though energies
have been plotted. This is possible because of the proportionality between charges
and energy [165]. At large positive offsets oE the cooperative bonds are significantly
stronger then the anti-cooperative bonds, leading to the accumulation of negative
charge at ‘D’ and positive charge at ‘A’ In turn, values of oE < 0 indicate that for this
pair the anti-cooperative bonds dominate the oE , leading to the accumulation of neg-
ative charge on ‘A’ and positive charge on ‘D’. The formation of a bond would only
transport more electrons – negative charge – to ‘A’. That negative charge is con-
sequently a strong disincentive towards the formation of a hydrogen bond in those
pairs. Instead of interpreting oE as cooperative enhancement, like oH , it is better to
interpret oE as an incentive to a pair to form a hydrogen bond between them. At very
low values of oE , the charges on donor ‘D’ and acceptor ‘A’ are such that a hydro-
gen bond would do nothing to reduce the charge on either molecule, and no bond
is formed. At high oE the opposite is the case, and the hydrogen bonds are con-
sequently strong. Thus, oE provides a quantified description of the hydrogen bond
cooperation in water.

This idea is corroborated by the energy imbalance residual in a molecule pair, given
in Fig. 4.4b. At variance to the definition, Eq. 4.2, all interactions have been included
in the calculation. Contrary to Fig. 4.3b, ∆E shows a clear trend here. Compari-
son of Eq. 4.3 and Eq. 4.2 shows that this can only be the case if ∑J ED←J grows
faster than ∑J ED→J. The negative value for high offsets may be explained by the
high volatitlity of the donor position [46]. It further can be expected that the amount
of energy carried is not infinite. The imbalance is thus the result of two acceptor
bonds simply being able to deliver more energy than can be funneled by the donor
bond, which additionally blocks formation of another donor bond. Given that at low
offsets oE ≤ 0 a bond is rarely formed, the reason for the imbalance there is more
difficult to grasp. It may possibly be the result of a strong bond between another
pair involving of the molecules. Despite the constant drift it is worth noticing, that
the value of ∆E over the entire range of oE is small compared to the bond strengths
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Figure 4.4: a) The increase of ED→A upon heightened cooperative demand; b) The
capability of ‘B’ to cancel EDon and EAcc on the connected molecules.
c) The likelihood of a bond being present between two molecules.

indicating that the assumption of a charge compensation mechanism remains valid.
A few notes should be added on the nature of the non-bonding interactions. One,
the average oxygen-oxygen distance of 4.94(1) Å between the interacting molecules,
suggests that many of these interactions occur with second shell neighbors. While
this explains the weakness of the interaction, further conclusions cannot be drawn at
this point. Two, earlier versions of ALMO-EDA did not cut off interaction at vanishing
overlap. In such a case a phenomenal amount of non-bonded interactions would
be added, whose physical significance is questionable. However, their contribution
to oE is marginal. It is hence to be expected that the large cooperative and anti-
cooperative contributions in ‘D’ and ‘A’ even out. Therefore, it is unlikely that such an
interaction would reach large positive values of oE , just as the distribution of the now
recorded interactions already indicates. Therefore, our conclusions are not affected
by the number of non-bonded interactions.

In going from oH to oE , the measure for cooperative enhancement of bonds is lost.
However, relating the ED→A to energies rather than bond numbers is certainly desir-
able, as the energy, not the bond number determines how much charge is neutral-
ized. If the evaluation of Eq. 4.3 is restricted to geometric hydrogen bonds, Fig. 4.5a
is obtained. The graph retains the linear dependence of Fig. 4.3a, as well as the
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Figure 4.5: a) average strength of a geometric bond ‘B’ with respect to the offset
oE . b) pair energy imbalance of geometric bonds.

small incline ED→A/oE . The question remains, whether Fig. 4.5a should be inter-
preted in terms of Fig. 4.4a, or in terms of Fig. 4.3a. In essence, should oE be
interpreted as cooperative enhancement like oH , or should it be interpreted as the
incentive to form bonds. Since ED→A has a significant value at oE = 0 and the energy
does not go to zero even for relatively large negative values of oE , it is apparent,
that it is more readily interpreted as a measure for the cooperative enhancement of
bonds. As such, a link between the values of oE and oH can be established. With
an energy of ≈ 13 kJ

mol the value oE = 0 is energetically as well as conceptually equiv-
alent to oH =−2. Furthermore ED→A at oE = 94,51 kJ

mol corresponds best to the value
at oH = 2. The resulting link between the two offsets then reads

oH = 23.6295 ·oE −2 (4.4)

In short, the restriction of oE on geometric bond offer sort of a compromise definition
between oH and the oE of Fig. 4.4a. It gives a cooperative enhancement to bonds,
but contrary to oH it also takes the energy of the hydrogen bonds into account and
is thus, in principle, more precise.

In this chapter, cooperation in water is elucidated. Cooperative bonds are always
defined relative to a hydrogen bond. They deliver charge to a donor or take charge
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from an acceptor, while anti-cooperative bonds do the opposite. Molecules want to
balance the charges that are received and given via hydrogen bonds. If all relevant
hydrogen bonds are accounted for, then the strength a hydrogen bond can be di-
rectly determined from the difference between the energies of all cooperative bonds
and the energies of all anti-cooperative bonds.
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5 Cooperative Effects at the Water
Surface

In the previous chapter, the interrelation of hydrogen bond energies in bulk has been
elucidated. Hydrogen bond energies are proportional to charges transported from
a donor to an acceptor, and molecules prefer to have zero charge. This tendency
of molecules is the cause for the interrelation of hydrogen bond energies. Molecule
pairs were studied to obtain a measure oE (Eq. 4.3) for how much a bond is affected
by cooperation. A molecule pair (see illustration Fig. 4.2), consisting of a donor and
an acceptor, are connected by a central hydrogen bond. With respect to that central
bond, cooperative bonds are defined as bonds that fulfill the opposite role. If the
central bond is a donor bond on one of the molecules, then a cooperative bond is
an acceptor bond on that molecule. Likewise, a bond that is anti-cooperative with
respect to the central bond fulfills the same role, i.e. if the central bond is a donor
bond, then the anti-cooperative bond is also a donor bond.

It turned out that bulk water is highly cooperative, with cooperation accounting for
up to 50% of a bond’s strength. As one approaches the surface of water, the hydro-
gen bond network becomes increasingly disturbed. This shows, for instance, in the
coordination number of water [119]. The number of hydrogen bonds a molecule is
coordinated to drops from an average of 3.70 hydrogen bonds in bulk, to 1.86 in the
1st surface layer. Furthermore a preferential ordering with respect to the surface nor-
mal emerges. The incidence of hydrogen bonds fluctuates with increasing intensity
for all orientations upon approaching the surface from the bulk. The fluctuation of
the density here is consistent with density fluctuations at the surface that have been
reported for water [119], as well as other liquid surfaces [166, 167]. A graphical de-
piction of the occurrence of various hydrogen bond orientations can be found in the
appendix, Fig. 5.1. Moreover, it shows that the molecules which reside very close

1 2 3 4
ED→A 15.25 18.65 19.42 19.58

Table 5.1: reduction of average bond energy towards the surface
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Figure 5.1: Propensity of O-H bond orientation at the surface. Molecules aligned
with surface normal (cosΘ≈ 1) are preferentially found in the first surface
layer. O-H bond facing the bulk (cosΘ≈−1) are found below them.

to the dividing surface, i.e. at a distance value of 0, they preferably have an O-H
bond aligned with the surface normal (cosΘ ≈ 1). In contrast to these molecules,
those that are situated below them, i.e. at a distance value of 2, have one O-H pref-
erentially oriented towards the bulk (cosΘ≈−1). Despite the severe disorder of the
hydrogen bond network, cooperation remains a relevant factor to the bond energy.
Fig. 5.2 shows that the bond energy in bulk is directly dependent on the cooperative
energy offset oE , where ,the stronger the offset, the stronger the bond energy. This
is as true for the bulk phase as for the 2nd surface layer, which is evident from their
virtually overlapping graphs. The similarity of the graphs ascertain that the physics
of cooperation have not changed. In essence, water molecules at the surface are
motivated to have neutral charge as the molecules in bulk. Furthermore, they pass
on received charges to the same extent through hydrogen bonds as molecules in
the bulk do.

The inset of Fig. 5.2 shows that the distribution of bonds over oE averages at 0

for the 1st layer. This is a considerable reduction in comparison to the bulk value
of 15 indicating that bonds in this layer are significantly less enhanced by coopera-

56



−150 −100 −50 0 50 100 150

cooperative energy offset oE

(
kJ

mol

)

0

5

10

15

20

25

30

35

40

en
er

gy
E

D
→

A
of

ce
nt

ra
l

b
on

d
‘B

’(
k
J

m
ol

)

−100 −50 0 50 100
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

bulk

2nd layer

1st layer

Figure 5.2: similarity in the dependence of ED→A on oE for different surface layers.
Inset shows the distribution of bonds in each layer normalized to 1.

tive interaction. In contrast, the 2nd surface layer shows only little deviation from the
bulk distribution. This suggests that the cooperative enhancement here is almost as
strong as in bulk, despite the aforementioned reduction of the number of bonds. As
the inset shows, the average distribution of oE does not change much from bulk to
the 2nd surface layer, corroborating the surprisingly strong bond energies. These re-
sults are consistent with Tab. 5.1, as the bonds’ energy is only significantly reduced
directly in the first layer. Up to then, despite the lower number of bonds, the bond
energy holds up quite well. In the 2nd surface layer the number of bonds has reduced
by ≈ 14% per molecule, whereas the energy has only reduced by ≈ 5%. To explain
why the bond energy holds up rather well, despite the reduction of the bonds, oE is
split up into its cooperative and anti-cooperative contributions. Then, the distribu-
tion of pairs with respect to these two contributions is studied. The inset of Fig. 5.3
shows that in bulk, the pairs are distributed elliptically around the maximum. The
maximum of the distribution is thus considered to be an appropriate stand-in for the
entire distribution, and the discussion is continued with the maxima alone.

The comparison of the cooperative and anti-cooperative energies of the bulk max-
imum and layer 2 maximum in Fig. 5.3 give the following energy changes. Upon
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Figure 5.3: concerted shift to lower cooperative and anti-cooperative energies in the
2nd surface layer. Inset shows bulk distribution for comparison.

transition from bulk to the 2nd layer the cooperative energy reduces by 15.75 kJ
mol ,

the anti-cooperative energy reduces by 11.82 kJ
mol . Thus, relative to their values in

bulk, the anti-cooperative energy loses more. Moreover, one can see that in the
second surface layer there exists a significant amount of molecule pairs where the
contribution of anti-cooperative interactions to the offset oE is virtually zero. In terms
of bonds this corresponds at least to a molecule pair that has been depicted in
Fig. 4.2, i.e. a pair with a central bond only enhanced by cooperative bonds. How-
ever, given the generally lower amount of cooperative energy of this group, these
pairs likely miss cooperative bonds as well. This indicates that at the surface the
hydrogen bond network is reduced to fewer pathways with less branches through
which charge is transported from molecule to molecule. Hence, the charge that is
transported through hydrogen bonds does not have to be shared that often between
two anti-cooperative bonds, which is why the energy of hydrogen bonds is affected
to a rather small extent in the 2nd surface layer.

The sudden competitiveness of molecules without anti-cooperative can be traced
to the a shift in the energy balance landscape. Fig. 5.4 shows the average pair en-
ergy imbalance, i.e. how well the molecules in a pair neutralize the charges they
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Figure 5.4: Difference between the efficacy of balancing donor and acceptor ener-
gies in bulk (main) and 2nd surface layer (inset).

receive from hydrogen bonds. A value of 0 thereby signifies that a molecule pair is
well able to do so and thus, that the bonds it maintains constitute a desirable state.
The higher the value, the less desirable the state is. The highest values of ∆E are
a result of the low molecule count at the fringes of the distribution. Comparison of
the bulk distribution with the surface distribution reveals that the energies at which
∆E is zero, shift towards lower values when going to the surface. In the bulk phase,
the area where no anti-cooperative interaction is measurable has a high imbalance
1− 3 kJ

mol . At the surface however, this imbalance reduces to < 1 kJ
mol indicating, that

these configurations have become far more viable. The existence of these pairs
that have no anti-cooperative bonds is related to the change of a different parameter
characterizing water, the bond asymmetry γ.

The study of the surface revealed another effect, namely that the strength of a
hydrogen bond becomes dependent on the orientation of the associated O-H bond.
Fig. 5.5 shows that beyond the surface, at distances < 0, the bond energy is low
for all orientations. There, as evidenced by Fig. 5.1 the density is very low, meaning
that barely any molecule is present. Hydrogen bonds cannot experience cooperative
enhancement, because there are only few partners with which a hydrogen bonded
pair could form additional bonds. However, hydrogen bonds of molecules with O-H
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mol .

oriented towards are weak at far greater depths than molecules where the corre-
sponding O-H points in the opposite direction. This weakness extends well into the
2nd surface layer if their corresponding O-H group is oriented towards the surface.

6
n

ED→A EA←D
6
n

ΘD

ΘA

Figure 5.6: Model of hydrogen bonding
between molecules at the water surface.
n is the surface normal and Θ are angles
to the surface normal.

In order to investigate this feature we
use a common [119, 168] model of
how water molecules are arranged at
the surface, that is based on preferred
surface orientations, as discussed in
Fig. 5.1. In this picture, the topmost wa-
ter molecules have one O-H bond facing
the surface. The molecules form hydro-
gen bonds into the water slab, to mol-
ecules that have one O-H bond pointing
towards the bulk. A graphical depiction
can be found in Fig. 5.6. The two bond
types in this model can be distinguished by their angles. The angle correspond-
ing to the bond ED→A is cosΘD = 0.52, whereas the angle corresponding to EA← is
cosΘA = −0.44. These orientations connect our model to the continuous distribu-
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Figure 5.7: Depiction of the lower cooperative offset of bonds ED→A compared to
EA←D, which entails a lower average energy (light colors).

tion in Fig. 5.5. A look at the bonding pattern reveals that molecules in the first
surface layer form 1.021(5) donor and 0.840(5) acceptor bonds, revealing a great
imbalance between the number of donor and acceptor bonds. Of those bonds, 80%
are bonds between the 1st and the 2nd surface layer [119]. In molecules that form
bonds between layers, this imbalance is retained. The 1st layer molecule donates
1.239(5) bonds while accepting 1.102(4). This imbalance is easily understandable
in our model. With one O-H bond pointing towards the vacuum, a 1st layer molecule
has can still donate two bonds, but accept only one.

A hydrogen bond’s strength relates to the amount of excess charge on the respec-
tive donor and acceptor molecule, as has been shown in Sec. 4. A hydrogen bond
was strongest when the donor molecule had accepted many bonds and the acceptor
had donated many bonds. As discussed in Fig. 5.2 the energy of surface hydrogen
bonds depends in the same way on the cooperative offset oE as in bulk. Therefore,
we expect that one bond, EA←D, see Fig. 5.6, is stronger than the other, ED→A. We
find this to be the case, with ED→A = 16.1(1) kJ

mol and EA←D = 17.5(1) kJ
mol . Using our

measure for the extent of cooperation to plot the bond energy, Fig. 5.7, we see that
the graphs for ED→A and EA←D have virtually equal inclines and effectively overlap
over entire range of oE . It can thus be stated, not unexpectedly, that ED→A and EA←D
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5 Cooperative Effects at the Water Surface

depend in the same way on oE , because the two graphs overlap. The property in
which they differ, is their Gaussian distribution. The molecules molecules connected
via ED→A average at lower values of oE . At those values the need of molecules to
neutralize charge via that bond is reduced and the bond’s energy is consequently
lower. Thus, the energy difference between ED→A and EA←D can entirely be ex-
plained by cooperation.

Overall, the study of hydrogen bonds at the surface brought to major results. First,
maintaining many bonds at the surface does not balance the energy of a molecule.
Instead, these molecules are connected by fewer bonds. These bonds are to a
higher degree cooperative to one another. Second, cooperation at the surface leads
to an orientation dependence of hydrogen bond energies. This is the result of the
preferancial surface orientation of molecules and cooperation. The topmost molec-
ules, with one O-H pointing to the vacuum, must have fewer acceptor bonds, there-
fore they have weaker donors than acceptors.
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6 Relating X-Ray Absorption to
Hydrogen Bonds

At the surface of water, molecules exhibit a preferential orientation of their O-H
bonds [119]. The phenomenon of cooperation, as shown in chapter 5, makes the
energy of hydrogen bonds become dependent on the orientation of the molecules O-
H bond. Here, we discuss how surface orientation, and the electronic effects linked
to it affect the X-Ray absorption (XA) spectrum of water. In order to remain clear and
concise, we will incorporate the molecules of the first 1st and 2st surface layer under
the label surface.

One aspect of the aforementioned preferential surface orientation is that the mol-
ecules in the 1st surface layer tend to have one O-H bond aligned with the sur-
face normal (cosΘ ≈ 1). This means they point into the vacuum and as such lack
the potential partners to form hydrogen bonds with. As we have shown previously,
the preferential surface orientation brings about an orientation dependent hydrogen
bond energy. As XAS is sensitive towards the local environment of a molecule, we
find that also the XA response is sensitive to the orientation of a molecule, Fig 6.1.

Most notable is the decline of the pre-edge peak at 536 eV with increasing sur-
face angle. It is prominent when the O-H bond is aligned with the surface normal.
As has been stated above, these molecules exist predominantly in the first surface
layer. Thus, the existence of the peak at cosΘ ≈ 1 corresponds well to the associ-
ation of the peak with broken hydrogen bonds. On the other hand, at angles where
both O-H face downward (cosΘ < 0), a strong signal at 542 eV, which will be called
post-edge signal, appears. The post-edge signal is associated with the strong bonds
of ice. The average bond in ice is significantly stronger than even the bond of bulk
water [46], which in turn have a higher energy (19.58 kJ

mol ), than downward facing
O-H bonds at the surface. The hydrogen bonds associated with downward facing
O-H bonds have an energy below 19 kJ

mol and are the strongest bonds found at the
surface; as a glance at Fig. 5.5 reveals. Independently of the XA spectra, another
property of a molecule, the hydrogen bond asymmetry γ also changes with molecule
orientation at the surface. The asymmetry describes the relative strength of the two
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Figure 6.1: The intensity of pre-, mid- and post-edge peak depends on the orienta-
tion of the absorbing molecule. Spectra are normalized to the number of
molecules, cosΘ describes a molecules smallest angle.

strongest donor or acceptor bonds, see Eq. 3.2 for the exact definition. Of the two
possible asymmetry values, only γAcc is used here, because changes of the electron
density at the hydrogen atoms have a greater effect on the XA spectrum [38]. The
asymmetry is the highest for molecules with O-H aligned with the surface normal and
the lowest at the opposite end. A graphical representation of the relation between
asymmetry and surface angles is given in Fig 6.2. Molecules with O-H aligned to the
surface normal (cosΘ = 1) point to the vacuum and therefore lack potential bonding
partners, intuitively explaining their high asymmetry γ. For molecules where both
O-H point away from the surface (cosΘ≈−0.4), γ is low, simply by virtue of the mol-
ecules being most able to form two bonds. While the molecules where both surface
angles are virtually equal, appear to have high asymmetry, this feature can be at-
tributed to a low molecule count at the fringes of the molecule distribution.

The asymmetry increases as cosΘ of the surface angle gets larger – meaning smaller
surface angles – and at large cosΘ, an intense pre-edge peak is expected. There-
fore, it is well possible that the orientation dependence of the XA signal is a result
of the underlying changes in the asymmetry γ of the molecules. Consequently, in-
stead of continuing the analysis of the XA spectrum’s orientation dependence, the
spectrum’s dependence on γ is now investigated. Using asymmetry to describe the
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Figure 6.2: The asymmetry γAcc of molecules coincides with their alignment to the
surface vector.

spectra has the advantage that, contrary to the surface orientation, the asymmetry is
a relevant descriptor in the bulk as well. The surface molecules are divided accord-
ing to their asymmetry from most symmetric (γAcc = 0) to most asymmetric (γAcc = 1).
Fig. 6.3 depicts the XA spectra for each group. For the most asymmetric molec-
ules, we find, in accordance with Fig. 6.1 and Fig. 6.2 a dominant pre-edge peak at
536 eV. The spectrum of the most symmetric molecules, is dominated by post-edge
peak at 542 eV. In addition to these features, the prominence of the mid-edge peak
at 539 eV appears to also vary with the asymmetry. Indeed, Fig 6.3 suggests that
the post edge peak gains intensity at the cost of the mid-edge peak and the signal at
542 eV. The first five graphs, which are in the range of γAcc = 0 to 0.83 show a contin-
uous decrease of the post-edge signal, as well as slight increases of the mid-edge
and pre-edge signals, as well as heightened intensity beyond 541 eV. With increas-
ing asymmetry, a dip between the mid-edge and the post-edge signal is formed. In
addition, an increasing signal intensity beyond 542 eV is observed.

In going from the group with γAcc ≤ 0.83̄ to the group with the highest asymmetry,
drastic changes in the spectrum are observed. The intensity of mid- and post-edge
is reduced, a pre-edge peak emerges and intensity beyond 542 eV is greatly in-
creased. However, despite the overall reduced intensity, the mid-edge peak con-
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Figure 6.3: Devolution of the XA-Spectra of the 1st and 2nd layer with γAcc. Increasing
γ causes the mid-egde peak to rise at the cost of the post-edge peak.

tinues to increase relative to the post-edge intensity. The spectrum of the most
asymmetric molecules is thus considered to follow the same pattern as all the other
spectra. The relative intensity changes of mid- and post-edge are interpreted as
the redistribution of intensity from the signal at 541 eV the signals at 539 eV and
542 eV. Where the intensity of the pre-edge peaks goes in case of symmetric molec-
ules is not entirely clear, it is possibly buried beneath the main and post-edge signal.
The signals in XAS stem the promotion of a 1s electron into a virtual orbital, and
the intensity redistribution is interpreted as two distinct virtual orbitals, whose en-
ergy difference is mirrored by the electronic asymmetry: For high asymmetry values
two separate maxima are found, reflecting a strongly and a weakly interacting bond.
Invoking LCAO1 splitting, the virtual orbital corresponding to the strong hydrogen
bond, has an incredibly high energy, whereas the virtual orbital to the weakly inter-
acting bond is considerably lower. When the asymmetry is reduced, the two states
move together. This reduces the intensity beyond 542 eV and the intensity of the
mid-edge peak, until only the singular post-edge peak is produced by two bonds of
similar strength.

1Linear Combination of Atomic Orbitals, see Sec. 2.1.2
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γAcc 0.16̄ 0.3̄ 0.5 0.6̄ 0.83̄ 1.0

E1st
A←D 17.1(2) 18.9(2) 20.6(2) 22.6(3) 22.0(3) 20.1(1)

E2nd
A←D 15.6(2) 14.1(1) 12.0(1) 9.4(1) 5.53(9) 0.72(1)

∑
2
i=1 E i−th

A←D 32.7(3) 33.0(3) 32.7(3) 32.0(3) 27.5(3) 20.8(1)

Table 6.1: Changes of the strongest (E1st
A→D) and second strongest (E2nd

A←D) bond at
the surface. All energies are given in kJ

mol .

At variance to our interpretation based on asymmetry, the XA-signal has been linked
to the energy of hydrogen bonds in previous publications [169, 29]. The continuous
change of the water XA spectrum with asymmetry could be the result of continuous
change of the underlying bond energies. Indeed, Tab. 6.1 shows that both bond
energies, as well as their sum devolve in a largely monotonous fashion. However,
the fact remains that molecules with a strong post-edge feature and relatively weak
bonds exist; this has been observed for downward facing bonds in the discussion of
Fig. 6.1. Furthermore, the sum of bond energies in Tab. 6.1 is equal for two differ-
ent values of the asymmetry. The XA spectra, follow the asymmetry uniformly, and
they show different intensities for equal sums of bond energies. Therefore, it can
be stated with confidence that the asymmetry is a better descriptor of surface XA
spectra, than bond energy.

The propsed dependence between XA signals and the γ is qualitatively applied to
other spectra, by comparing the height of mid- and post-edge signals of ice and bulk
water. In ice Ih, the spectrum features a prominent post-edge and a semi-merged
mid edge peak [29, 169]. Hydrogen bonds in ice Ih are far more symmetric than
those in water, where the average acceptor asymmetry γAcc ≈ 0.34 and it is molec-
ules with asymmetry values > 0.6̄ are extremely rare [46]. The XA spectrum of bulk
water exhibits a greater intensity for the post-edge signal than for the mid-edge sig-
nal. The average asymmetry γAcc = 0.50 is also lower than the average asymmetry
of the 2nd surface layer γAcc = 0.61. At the surface, the intensity of mid-edge signal
exceeds the intensity of the post-edge signal. Despite the preceeding considerations
being cursory to some extent the following trend can be seen. The relative intensities
of mid- and post edge peaks follows the magnitude of the average asymmetry γAcc

in all three environments. This implies that indeed a low asymmetry value causes a
strong symmetric peak, whereas a high asymmetry value causes a strong mid-edge
peak.
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6 Relating X-Ray Absorption to Hydrogen Bonds

The surface of water not only has a wide array of hydrogen bonds, but also of
asymmetries. Especially high asymmetry species are prevalent here, while they are
harder to come by in bulk. This wide array of hydrogen bond energies and asymme-
tries allows to distinguish the possible causes for the presence of a peak in an XA
spectrum. The new explanation of the XA signals interprets the relative intensities
of mid-edge and post-edge signals as the result of two virtual states whose energy
difference increases with asymmetry. It is argued that γAcc offers a more consistent
description of water’s XAS peaks that does not only work at the surface but appears
to be applicable to bulk water and ice as well.
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7 Conclusions

In this work, we have investigated hydrogen bond energies. The study encompassed
their interrelation in bulk and at the surface as well as the question how hydrogen
bonds relate to X-Ray Absorption.

The first major conclusion that can be drawn is that this work presents for the first
time a quantitative description of the hydrogen bond cooperation in water. We found
that a bond’s energy linearly depends on the amount of energy received by and given
to other bonds. We have further shown that the origin of cooperative behavior lies
in the need of water molecules to reduce the charge imbalance that is introduced by
the formation of hydrogen bonds. An additional investigation of the surface revealed
that cooperative behavior is unchanged by the distortions caused to hydrogen bond
network in close proximity to the surface. We further found that the distortion of the
hydrogen bond network does not affect oE much, an effect that could be traced to
the occurrence of pairs without anti-cooperative bonds. It thus appears that at the
surface less charge has to be neutralized, consequently there are fewer bonds.

With this knowledge, the many observations attributed to cooperation can now be
backed by relative bond strengths. For instance, the relationship between the num-
ber of donor and acceptor bonds is now a direct result of the energetic gain a bond
receives in the presence of another hydrogen bond. Previous approaches to coop-
eration that relied on hydrogen bonds were not easily applied to the surface due to
disturbed hydrogen bond network. However, as the physics behind cooperation can
be expected to be equal, our model based on the bond energies of pairs can be an-
ticipated to provide compatible results at the surface. There the method provides an
avenue for the investigation of the effect of cooperation on surface properties. The
idea of energy balancing futhermore raises questions about the time correlation of
the energy of cooperative bonds. This may also shed more light on the role of water
wires, which were identified by Hassanali et al. [170]. We have further demonstrated
that the orientational dependence of hydrogen bond energies to be a cooperative
effect driven is by the fact that the first layer can donate more bonds into the second
layer than it can accept. The orientational dependence of the hydrogen bond energy
entails that molecules of different orientation absorb at different frequencies when
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probed with SFG spectra. Thus, with a map of hydrogen bond strengths, and the
known connection between frequency and energy [35, 36], it must be possible to
identify the number and location of all group that give rise to the SFG spectrum of
the water surface. Additionally, as hydrogen bond formation is essential to waters
reorientation time [171, 172], the noticeable difference of bond strengths for various
orientations implies different correlation lengths with respect to the starting orienta-
tion.

Our work shows that three signals of the water XA signals consistently follow the
change of the asymmetry parameter. Contrary to interpretation using hydrogen
bond strength, the asymmetry parameter can correctly predict the relative heights
of the mid-edge and post-edge feature, whether it is bulk water, water surface or
ice. At variance to the usage of bond numbers, γAcc provides a continuous measure
on which the XA result depends. Moreover, as this dependence includes also the
disputed mid-edge peak, γAcc might offer the avenue to a comprehensive interpreta-
tion of the water XA spectrum. As the current excitation method is semi-quantitative,
future work should include all slabs of water and ice, as well as more sophiticated
methods to model the exitation, such as time-dependent density functional theory
or approximations based on Green’s functions [29]. Furthermore, an explicit inves-
tigation of the orbitals involved in the absorption process can verify the role virtual
orbitals in the dependency of XA spectra on the asymmetry. From our findings a
unified interpretation of water XA spectrum then becomes available, that enables re-
searchers to link XA spectra of certain asymmetry groups to other water properties.
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[69] Jue Wang, G. Román-Pérez, Jose M. Soler, Emilio Artacho, and M.-V.
Fernández-Serra. Density, structure, and dynamics of water: The effect of
van der Waals interactions. TJ. Chem. Phys., 134(2):024516, 2011.

[70] Weitao Yang, Yingkai Zhang, and Paul W. Ayers. Degenerate Ground States
and a Fractional Number of Electrons in Density and Reduced Density Matrix
Functional Theory. Phys. Rev. Lett., 84(22):5172 – 5175, 2000.

[71] Paula Mori-Sánchez, Aron J. Cohen, and Weitao Yang. Localization and Delo-
calization Errors in Density Functional Theory and Implications for Band-Gap
Prediction. Phys. Rev. Lett., 100(14):146401, 2008.

77



Bibliography

[72] Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang. Fractional Spins and
Static Correlation Error in Density Functional Theory, 2008.

[73] Matteo Cococcioni. A LDA+U Study of Selected Iron Compounds, 2002.

[74] A. D. et al. MacKerell Jr. All-Atom Empirical Potential for Molecular Modeling
and Dynamics Studies of Proteins. J. Phys. Chem. B, 102:3586 – 3616, 1998.

[75] Jörg Behler. Constructing high-dimensional neural network potentials: A tuto-
rial review. Intl. J. Quant. Chem., 115(16):1032 – 1050, 2015.

[76] Hans Martin Senn and Walter Thiel. QM/MM-Methoden für biomolekulare
Systeme. Angew. Chem., 121(7):1220 – 1254, 2009.

[77] Thom Vreven, Suzie K. Byun, István Komáomi, Dapprich Stefan, John A.
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