
Knowledge-based Verification

of Service Compositions

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

in der

Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

vorgelegt von Sven Walther am

27. Juli 2017

Abstract

As of today, modern software is already provided as-a-service and no longer sold as

monolithic application. Tomorrow, with visions as on-the-fly computing, these services

will be created automatically, composed from existing services according to the request of

a user, based in an actual business domain. Therefore, correctness of such a composition

has to be guaranteed on the fly, as well.

Verifying software in an on-the-fly context leads to a major challenge: It can only yield

results if it is rooted in formal specification. At the same time, verification meets the

domains of service description, composition, and knowledge modeling, all using different

formalisms with different semantics. Therefore, we need a framework which enables

domain knowledge modeling as well as service and composition specification, while at

the same time using a shared theoretical foundation to enable formal verification.

This thesis provides such a framework. It uses predicate logic as a common ground to

build an integrated framework to model knowledge, use this knowledge to create service

descriptions, and to define a workflow, or composition, language. Additionally, it lifts

compositions to templates, and provides a semantics which is parameterized not only in

the logical structures, but also in the possible instantiations of templates in arbitrary

business domains.

It also provides a sound and complete proof calculus to show correctness of templates.

Additionally, it leverages the use of the framework in an on-the-fly context by replac-

ing the need of composition verification with a check of side conditions of a template

during instantiation, and by providing an encoding of correctness checks to make use of

automatic verification using satisfiability solvers.

Zusammenfassung

Software wird heute als Dienstleistung, oder Software-as-a-Service, angeboten und nicht

mehr als monolithische Anwendung. In Visionen wie dem On-The-Fly Computing

werden diese Dienste (Services) automatisch erzeugt, zusammengestellt auf Basis von

konkreten Nutzeranforderungen innerhalb einer Anwendungsdomäne. Das bedeutet,

dass auch die Korrektheit solcher komponierten Dienste automatisch und “on-the-fly”

sichergestellt werden muss.

Software-Verifikation “on-the-fly” durchzuführen ist eine besondere Herausforderung, da

sie nur dann Resultate erzeugt, wenn sie auf formalen Spezifikationen arbeitet. Im On-

The-Fly-Kontext arbeitet sie gleichzeitig auf den Bereichen von Service-Spezifikation,

Komposition und Wissensmodellierung, die jeweils ihre eigenen Formalismen mit un-

terschiedlichen Semantiken mitbringen. Daher benötigen wir ein Gesamtsystem, das

uns einerseits die Modellierung von domänenspezifischem Wissen, Diensten und Kom-

positionen ermöglicht und andererseits die theoretischen Grundlagen für eine formale

Verifikation bereitstellt.

Die vorliegende Arbeit bietet ein solches Gesamtsystem. Auf Basis von Prädikatenlogik

ermöglicht sie die Modellierung von Domänenwissen und nutzt genau dieses Wissen,

um Dienste zu spezifieren und eine Kompositions- oder Ablaufsprache zu definieren.

Zusätzlich ermöglicht sie die Beschreibung von Vorlagen (Templates) und definiert eine

Semantik, die einerseits durch logische Strukturen und andererseits durch mögliche In-

stanziierungen der Vorlagen zu Kompositionen innerhalb beliebiger Wissensdomänen

parametriert ist.

Die Arbeit definiert außerdem einen Beweiskalkül zum Nachweis der Korrektheit von

Vorlagen und zeigt seine Korrektheit und Vollständigkeit. Zusätzlich erleichtert sie die

Anwendung des Systems im On-The-Fly-Kontext, indem sie zeigt, dass ein Korrektheits-

nachweis einer Komposition auf Basis einer korrekten Vorlage durch den Nachweis von

Nebenbedingungen im Rahmen der Instanziierung ersetzt werden kann. Darüber hinaus

bietet sie eine logische Kodierung der Korrektheitseigenschaften, um eine automatische

Verifikation auf Basis von Erfüllbarkeitsprüfern zu ermöglichen.

Acknowledgements

I would like to thank my advisor Prof. Dr. Heike Wehrheim for her support, guidance,

and patience during my years at her group and beyond. I would also like to thank

Prof. Dr. Hans Kleine Büning, Prof. Dr. Eyke Hüllermeier, Jun.-Prof. Dr. Michaela

Geierhos, and Dr. Theo Lettmann for serving as thesis committee members.

Thanks go to my colleagues over the years: Thomas P. Ruhroth, Nils Timm, Daniel

Wonisch, Alexander Schremmer, Dominik Steenken, Galina Besova, Steffen Ziegert, To-

bias Isenberg, Marie-Christine Jakobs, Oleg Travkin, Steffen Beringer, Manuel Töws,

and Elisabeth Schlatt. I thank all the colleagues of the CRC 901, esp. Matthias Becker,

Marie Platenius, Svetlana Arifulina, and Felix Mohr. Thanks go also to Maryam Lexow,

Andreas Krakau, and Siddhartha Moitra, whose theses and code explored some of the

topics of this thesis in their early stages.

At last, I want to thank Saskia, who supported me during all the different stages of

writing – and finishing – this thesis.

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 A Theoretical Framework . 2

1.2 A Practical Implementation . 7

1.3 Structure of this Thesis . 9

I Preliminaries 11

2 Domain Knowledge and Logic 13

2.1 Formalizing Domain Knowledge . 13

2.2 Description Logics, Ontologies, and Knowledge Bases 15

2.2.1 Description Logics as Ontology Semantics 16

2.2.2 Reasoning in DLs: General Concept Inclusion 18

2.2.3 Higher-level Ontology Languages 19

2.2.4 Enhancing Ontologies with Rules 20

2.2.5 A Formal Knowledge Base . 22

II Contributions 29

3 Workflow Descriptions 31

3.1 Related Work . 33

3.2 Syntax and Semantics . 34

3.2.1 Services and Service Compositions 35

3.2.2 States, Configurations, and Semantics of Workflows 39

3.3 Partial and Total Correctness . 42

3.4 Proof Calculus . 43

3.4.1 Axioms and Rules . 44

3.4.2 Soundness . 47

3.4.3 Completeness . 52

4 Workflow Templates 59

4.1 Related Work . 61

4.2 Syntax and Semantics . 63

ix

Contents

4.3 Partial and Total Correctness . 69

4.4 Proof Calculus . 71

4.4.1 Axioms and Rules . 71

4.4.2 Soundness and Completeness . 72

4.5 Correct Instantiations . 84

4.5.1 Ontology Mappings . 85

4.5.2 Template Instantiation . 86

4.5.3 Correctness by Construction . 91

5 Automating Correctness Proofs using First-order Logic 99

5.1 Related Work and the Treatment of Loops 100

5.2 First-order Logic Encodings . 103

5.2.1 Preliminaries . 103

5.2.2 Domain Knowledge and Services 104

5.2.3 Control Flow . 105

5.3 Correspondence of Correctness and Sat Problems 108

5.3.1 Correspondence Theorem . 109

5.3.2 Proofs . 111

5.4 Deriving Invariants and Termination Functions 133

5.4.1 Finding Loop Invariants using Domain Knowledge 133

5.4.2 Finding Termination Functions using Domain Knowledge 134

6 Dealing with Uncertain Service Descriptions 137

6.1 Uncertainty in Service Descriptions . 137

6.2 Verification under Uncertainty . 139

6.3 Special Cases . 141

6.3.1 Loop Proof Obligations . 141

6.3.2 Repetition . 141

6.4 Discussion and Related Work . 142

7 Prototypical Implementation 143

7.1 Overview . 143

7.1.1 Automating Satisfiability Problems 143

7.1.2 Compatibility with SeSAME . 144

7.1.3 Input Models . 145

7.2 Logical Models . 146

7.2.1 Logical Encoding Standard SMT-LIB 146

7.2.2 Encoding Proofs, Sets, and Polymorphic Types 147

7.3 Prototype Architecture . 148

7.4 Evaluation . 150

7.4.1 Approach . 150

7.4.2 Results . 151

7.4.3 Conclusion . 154

III Discussion 155

8 Discussion and Conclusion 157

Contents xi

8.1 Related Approaches . 157

8.2 Conclusion . 160

8.3 Design Decisions . 162

8.4 Future Work . 164

IV Appendix 165

A Template Examples 167

A.1 Produce/Consume . 168

A.2 Choose . 169

A.3 Target Processing . 170

A.4 Filter . 171

B Listings 173

B.1 Counterexample . 173

Bibliography 187

List of Figures

1.1 Joint research: A shared foundation . 6

2.1 Joint research: Knowledge modeling . 14

2.2 Range of ontology formalization . 17

2.3 The Tourism ontology . 25

3.1 Joint research: Service and workflow modeling 32

4.1 Instantiating correct templates . 60

4.2 The Filter template . 70

4.3 Proof outline for correctness of the Filter template 78

4.4 Liskov substitution principle . 88

4.5 A Filter composition to filter restaurants by rating 91

4.6 A Filter composition to filter restaurants by price 92

4.7 Logical structure correspondence . 93

4.8 Placeholder mapping correspondence . 95

4.9 Steps to prove Theorem 4.24 . 96

5.1 Joint research: Formal verification . 100

5.2 Workflow with a conditional loop statement 106

7.1 Process overview on automated verification 144

7.2 Spike API and external models . 146

7.3 Spike implementation layers . 149

8.1 Core contributions (summary) . 161

A.1 The Produce/Consume template . 168

A.2 The Choose template . 169

A.3 The TargetProcessing template . 170

A.4 The Filter template . 171

xiii

List of Tables

2.1 Description logic expressiveness abbreviations 18

2.2 DL concept constructors as rules . 22

7.1 Service composition template examples . 151

7.2 Solver runtimes and results . 152

xv

Chapter 1

Introduction

Research tends to be specialized to produce new insights into complex topics. However,

multidisciplinarity and cross-over research provide new results by mutual inspiration.

While first successes may come from pragmatic approaches to combine different topics,

on the long run a solid foundation is necessary. This thesis aims at providing such a

foundation for three research topics of computer science, which are typically handled

separately or in pairs:

(1) Formal knowledge modeling, where vocabulary and relations of a domain are mod-

eled with mathematical formalisms;

(2) Service specification and composition, where software is delivered as a service and

can be combined to new compositions due to its modularity;

(3) And program verification, where properties of a computer program are mathemat-

ically proved or disproved.

This chapter discusses the joined context of these topics as it can be found in the

paradigm of on-the-fly computing (OTF computing). OTF computing comprises of

the vision of a flexible (economic) market of software, where software services can be

searched, combined, and delivered automatically. It gives rise not only to the motivation

of joining the three topics in one area of application, but it also derives the need of a

shared mathematical foundation, which lies at the heart of this thesis.

This context includes mathematical knowledge modeling as a necessary tool to leverage

rich descriptions of the behavior of software services and paves the way for service

composition. In software engineering, single software services are combined to service

compositions with workflows in the sense of formally defined sequences of actions, or,

in this case, services. The application of program verification – with the meaning as

a rigorous proof technique and not as a validation by means of testing or simulation –

as a technique to guarantee correct service compositions is a consequent result in this

scenario.

1

2 Chapter 1: Introduction

The introduction discusses the overall scenario and motivates the need for a shared

mathematical foundation of the three main topics, thus crystallizing the need of the

contributions of this thesis.

1.1 A Theoretical Framework

Computer science, both as a science and in its applications, is in a constant, fast-paced

evolution. One of the most recent changes includes software which is readily available

everywhere, always, and in every possible configuration necessary. This includes two

remarkable changes in paradigm: Software is no longer a monolithic program with as

much specialized functionality as possible, and it is not purchased once and used until

a user needs a more recent version.

Instead, software is modular. On a technical level, this is anything but new, as modular-

ity is a basic part of any standard software design approach (e.g., Szyperski, 1998). But

today, end users pay only for software they really need, and they no longer purchase it

but rent it. This Software as a Service approach (SaaS, e.g., Armbrust et al., 2010) man-

ifests itself in products like Microsoft’s Office 3651 or Adobe’s Creative Cloud2, where

different tools or combinations thereof can be rented and used anywhere. On a smaller

scale of complexity cloud services like Dropbox3, Trello4, Evernote5, and numerous oth-

ers deliver their services in different options or plans, typically with a free basic version

and extra functionality for monthly fees. This development is recent, but in no way

unexpected, as for business and technical users, computing services have been available

before, e.g., the Amazon Web Services (AWS)6.

Taking the idea of modular, remotely executed mainstream services further leads us to

three core characteristics of software use:

• Modularity of services and as-a-service, or on-demand, use of software suggests

having not only a few, but several service providers. Thus, there will be a het-

erogeneous service market with different roles: Service providers will create and

provide services, others provide repositories, manage service discovery, execution,

and other tasks.

• To discover a specific service on this market, it is necessary to specify the require-

ments to it, both functional and non-functional (e.g., mean runtime, cost, . . .).

To this end, a formal specification used for service description and, consequently,

requirements description is necessary.

1Office suite, https://www.office.com, retrieved July 21, 2017.
2Media Solutions, https://www.adobe.com/creativecloud.html, retrieved July 21, 2017.
3Cloud storage service, https://www.dropbox.com, retrieved July 21, 2017.
4Whiteboard-style organizer, https://trello.com, retrieved July 21, 2017.
5Notebook-style organizer, https://evernote.com, retrieved July 21, 2017.
6Cloud infrastructure, https://aws.amazon.com, retrieved July 21, 2017.

https://www.office.com
https://www.adobe.com/creativecloud.html
https://www.dropbox.com
https://trello.com
https://evernote.com
https://aws.amazon.com

1.1: A Theoretical Framework 3

• With modular services contrasting specific needs, it is improbable to find a fitting

service when functional requirements get more complex. Thus, the need to com-

bine services arises, where suitable existing services are found on the market and

combined to a complex service composition.

The paradigm of on-the-fly computing (OTF computing) summarizes this vision. It

includes several aspects: Economic dynamics on a heterogeneous market with all im-

plications of trust, reputation, and privacy; formal needs to describe and merchandise

services; distributed deployment and execution of composed services, and more (Happe

et al., 2013).

A typical scenario works as follows:

(1) A user – business or end user – creates a formal specification of a service. This

requirements specification is centered on a functional description of the expected

behavior; thus, it describes the semantics of the requested service.

(2) The requirements specification is used by one or more on-the-fly provider(s) (OTF

provider) to search the market for a matching service.

(3) If such a service is not found, the requirements specification serves as a goal for

a service composition process. Here, services from the market are combined in

a workflow to create a service composition, whose overall behavior matches the

user’s initial requirements.

(4) Depending on the composition techniques, the resulting composition is either cor-

rect by construction, or it has to be verified against the requirements in a separate

step.

(5) If one or more verified compositions are found, one of them is selected. This may

happen by non-functional requirements such as price or mean runtime, by some

ranking function, or by the user.

(6) The selected composition (or service) is deployed on compute centers and executed.

Depending on the exact composition, this may range from a one-time execution

to a complex service that is hosted to be used by several end users.

In this thesis, we take a software engineering point of view and focus on step (4), ver-

ification. We restrict the context to the relevant topics to enable verification, namely

service specification and composition. Thus, ignoring economic and deployment topics,

we can distill three core requirements to this scenario:

• We need a means of formal specification of service behavior as well as requirements

towards the same.

4 Chapter 1: Introduction

• Actual services are not abstract, but exist within a specific business domain, or

domains. Thus, to obtain a functional specification, knowledge of this domain and

its internal relations has to be incorporated into the service descriptions.

• To enable services tailored towards specific user requirements, the composition of

services is essential. This way, existing services are used to create complex ones,

ideally in an automatic fashion.

At the heart of these three requirements is knowledge base modeling. Originating from

artificial intelligence research (Davis et al., 1993), it provides the tools to formally specify

knowledge of a specific domain in terms of its vocabulary and the various relations

between terms created from this vocabulary. Additionally, it provides a semantics for

this knowledge. The semantics depend on the exact formalism used; In this thesis, we

formalize knowledge using logic, thus we have semantics based on logical structures.

There are other ways to capture domain knowledge, and not all of them require a

formalization in a mathematical sense. Chapter 2 discusses different approaches of

knowledge base modeling and introduces the formal foundation as used throughout this

thesis.

While a formalized knowledge base can be used to reason about the knowledge within

the modeled domain, its vocabulary can also be used as a means to describe the be-

havior of software. This includes not only “tagging” a software service with keywords,

but first and foremost the specification in terms of pre- and postconditions of a service.

This way, it precisely captures the requirements to the input of the service (the precon-

dition) and the guarantees of its output (the postcondition). In contrast to syntactical

service descriptions, e.g., in terms of method signatures accompanied with an informal,

human-readable text (as in standard Application Programming Interfaces, or APIs), this

approach enables a precise description of the semantics of the service.

In practice, software (or service) specification languages like the Web Service Description

Language (WSDL) (Farrell and Lausen, 2007, Weerawarana et al., 2007) and the OWL-S

ontology (Martin et al., 2005) combine a classical syntactic interface specification with

pre- and postconditions. The latter uses expressions built on vocabulary defined using

the Web Ontology Language (OWL, Patel-Schneider et al., 2012), a predominant knowl-

edge base specification language with a logic semantics. Chapter 3 gives an overview on

current approaches of service specification as well as combinations with knowledge base

descriptions, before giving formal definitions of services for this thesis.

With formal behavior specifications of services in terms of pre- and postconditions,

it is also possible to specify the requirements towards a service. In an OTF scenario,

services are specialized, and requirements are specific to a certain business use case or end

user. Therefore, it is unlikely that there always exists a service which matches existing

requirements. In that case, the process of service composition is responsible to create a

new, complex service to meet the requirements. To do so, the requirement specification is

treated as a goal for a composition problem. Existing services satisfying the requirements

1.1: A Theoretical Framework 5

partially (or enabling other services to do so) are combined in a workflow to create a

new, complex service, or service composition. The behavior of this service, that is, its

semantics, meets the requirements of the user.

Service (or software) composition is an active research topic of its own. Depending on the

complexity of service descriptions, the structure of the workflow of a composition, and the

requirements, the task of finding a composition may or may not be feasible. A prominent

benchmark for composition approaches is the Web Service Challenge (Weise et al., 2014).

Apart from the composition problem itself, the use of a workflow introduces a new aspect

to the black box style description of service semantics. To the user, a composition is

indistinguishable from a service, though it has no explicit pre- and postcondition to

describe its semantics. Instead, its semantics result from its workflow and the services

used in the composition. Therefore, the semantics of the workflow have to be compatible

with the semantics of service – and requirements – specifications, and, consequently, with

the semantics of a formal knowledge base.

Creating a service composition has the intention to create compositions that are correct,

that is, that meet the original requirements. This works in some cases, but not in

others. For example, when the composition process aims at compositions with a complex,

non-sequential workflow, including conditional executions and loops, using a workflow

template is one approach to find a service composition (Mohr and Walther, 2014). In

that case, the template is defined manually by some domain expert, and the composition

process finds services from a domain to replace “placeholders”. Chapter 4 elaborates on

templates formally. Another example is a composition process that makes simplifying

assumptions about the complexity of pre- and postconditions, or the domain knowledge

used to formalize them.

Whenever a composition is created with these techniques, correctness is not necessarily

guaranteed by construction. Instead, it has to be proved in a separate step, step (4) in

the introductory scenario. Program verification is the research topic which covers proof

techniques to show that a certain program meets its specification or avoids error states

(Clarke et al., 1994, Grumberg and Long, 1991). While workflows in a broader sense

are a list of actions to be executed to reach a goal, in a computer science sense they are

formally defined control structures, resembling programming languages. Conceptually,

workflows and programming languages differ only in their area of application: While

programming languages are used to program a computer directly, workflows control ac-

tions on an abstract level. Consequently, the difference between both depends often

on the point of view. Chapter 3 discusses the history of workflows and their relation

to programming languages in more detail. As workflows in a technical sense are con-

trol flow structures controlling atomic actions, being it services or program statements,

techniques from program verification can be used to verify workflows as well. However,

the same prerequisite applies as for knowledge base formalization and service/workflow

description: Verification of service compositions – and their workflows – must rely on

the same semantics as knowledge modeling, services, and workflows.

6 Chapter 1: Introduction

Figure 1.1: Joint research: A shared foundation of knowledge modeling, service and
workflow modeling, and formal verification

To aim at the creation of correct service compositions as in the introductory OTF sce-

nario, we thus identified three core topics, which are closely related: Knowledge base

modeling, service description and composition, and formal verification. To make the

result of a verification (and a composition) reliable in an OTF context, all of them must

be based on the same semantics. This thesis solves this issue by providing a consequent

proof of concept to show an integrated formalism to address all three topics. With log-

ical structures and a logic-based semantics as a foundation for knowledge modeling, we

provide a basis to create domain specific vocabulary. The vocabulary is used to describe

services, with semantics also based on logic. The same is true for workflow semantics of

service compositions. Based on the workflow semantics and a requirements specification,

we define correctness of a service composition. Additionally, we define a Hoare-style proof

calculus and relate its syntax-based proof outlines with the semantic-based correctness

definition. While logic-based program verification as well as knowledge-based service

modeling are active research topics, this thesis combines all three areas (→ Figure 1.1).

The first core contribution provides a theoretical framework. As a complement, the

second one aims at leveraging a practical implementation of the approach.

1.2: A Practical Implementation 7

1.2 A Practical Implementation

Verification in the framework of this thesis is not necessarily automated. However, in

an on-the-fly scenario, the overall process of creating and delivering a correct service

composition has to be, by premise, “fast”. This context requires verification to be at

least automated and at best fast and efficient. In practice, verification problems are

not necessarily decidable, let alone efficient. We provide two steps to leverage practical

verification: On a conceptual level, we enable verification of composition templates and

the creation of service compositions which are correct by construction. On a pragmatic

level, we encode the question whether a composition is correct as a satisfiability problem

of a predicate logic formula. This is the second core contribution of this thesis.

In practice, an OTF provider cannot generate service compositions with arbitrary struc-

tures. However, if the general structure of a workflow is known, a workflow template

can be modeled manually. This may be the case if (a) a task is generic with no regard

to the business domain, or (b) the task is complex, but very specific to the domain and

well understood by domain experts, though the exact implementation depends on actual

requirements.

Case (a) includes all-purpose algorithms like sorting, filtering, or learning. Here, the

actual “knowledge” is reduced to generic data, sets, and basic operations. This thesis

uses a filter workflow as a running example in the following chapters. Case (b) includes

complex tasks like the combination of domain specific classes of services without the

need of selecting a specific service immediately. An example is the processing of data

in several steps: Depending on the exact type of input data, different preprocessing and

processing services are needed, though the overall structure will be the same. As an

example, the input data has to be converted (using a conversion service) to the input of

an appropriate analysis service. In both cases, a template provides the general structure

of a workflow, using “service placeholders” instead of, or in addition to, actual services.

The composition process then replaces the placeholders with services from an actual

business domain.

A composition template can be verified without the timing constraints of an on-the-fly

context. Instead, semi-automated or manual proofs can be used to show correctness.

However, as a template does not use actual services, a proof of correctness has to in-

clude all possible instantiations, that is, compositions that can be generated from this

template. Obviously, this is not possible, as this would include a correct proof for two

alternative services, one having the opposite behavior of the other. Instead, we in-

troduce constraint rules for a template. These constraints summarize the knowledge

that is necessary to prove the template to be correct with respect to its pre- and post-

condition. As they may contain references to service placeholders, the problem of two

antagonistic services for one placeholder can be solved by selecting appropriate con-

straint rules. Therefore, a composition template is correct not only with respect to its

pre- and postconditions, but also to its constraint rules. When it gets instantiated as a

service composition by replacing service placeholders with actual services, it is sufficient

8 Chapter 1: Introduction

to check whether the constraint rules can be concluded from the knowledge base of the

target domain and the actual services used in the composition.

Constraint rules have the same structure as rules in a knowledge base. Checking for

conclusion can therefore be handled within the domain of knowledge base reasoning, as

the structure of the workflow does not have any direct impact. Chapter 4 formalizes the

correspondence between constraint rules and correctness of the instantiation result as a

theorem.

This first step towards automation replaces the need for verification of software com-

positions with a check for easier side conditions, whenever a composition is created by

instantiating a correct template. The second step aims at verifying a template automat-

ically. To this end, we utilize the consequent use of logic throughout our approach and

formalize a theorem to relate provability of correctness of a template (with respect to

its pre- and postcondition) with a logical satisfiability problem. To do this, we translate

the workflow of the composition template and its pre- and postcondition into a logical

formula. We then show that this formula is a tautology if and only if there exists a proof

of correctness using the proof calculus for workflow templates. We also show that this

relation is sound and complete. Chapter 5 elaborates on this encoding. Additionally,

Chapter 7 discusses a prototypical translation into SMT-LIB, a standard solver input

language (Barrett et al., 2015), along with an implementation.

The complete approach of service composition and verification relies on descriptions,

that is, models of services. Therefore, proving correctness of a composition can only

be treated as correctness of the model of the composition: It depends on whether or

not the actual behavior matches the service description. An on-the-fly context provides

two approaches to deal with that issue. From a verification point of view, a single

service can be verified with respect to its description. If the description is true to the

behavior, techniques like proof carrying code (Necula and Lee, 1998) or the generation of

certificates (Jakobs and Wehrheim, 2014) can be used to provide an easily reproducible

proof for the service, and its model can be marked as trustworthy. In that case, a model

indeed reflects the behavior of the service. If this is not possible, economic techniques

can be used to accumulate user feedback about earlier uses of the service, creating a

trust vector or reputation (Mármol and Kuhnen, 2015). While this reputation is not

the same as a measure for correctness, it can serve as a base for adding a probability

value to correctness results: Services with a good reputation are treated as “description

matches behavior”, while lower reputation values translate into a probability of failure

– the service description may contain errors. While this is not the main part of this

thesis, Chapter 6 introduces first ideas to join logic based verification with probabilities

coming from reputation values.

1.3: Structure of this Thesis 9

1.3 Structure of this Thesis

This thesis presents three core contributions:

(1) A shared mathematical foundation for a verification of service compositions based

on a formal knowledge base;

(2) A framework to reduce verification of service compositions to a check of easier

side conditions, if the composition is created (instantiated) based on a correct

composition template;

(3) A correspondence of correctness of a template with a satisfiability problem.

Chapter 2 (Domain Knowledge and Logic) discusses formal knowledge modeling in terms

of ontologies and gives a definition of a knowledge base as used in this thesis. It also

provides the necessary basic definitions of logic in general.

Chapter 3 (Workflow Descriptions) relates to current approaches of service modeling and

workflows and gives formal definitions for both. For workflows, it defines an operational

semantics and a notion of correctness. To prove or disprove correctness, a Hoare-style

proof calculus is defined and proven to be sound and complete.

These chapters are the foundation for contribution (1), and Chapter 4 (Workflow Tem-

plates) introduces contribution (2). Based on workflows, it introduces workflow tem-

plates, a semantics, and a corresponding proof calculus. Core of this chapter is Theo-

rem 4.24 (Constraint Rule Compliance): It reduces the need for composition verification

to the check of constraint rules of a template.

Chapter 5 (Automating Correctness Proofs using First-order Logic) presents contribu-

tion (3) and defines a logical encoding of workflows. With Theorem 5.10 (Provability

corresponds with Tautology), it relates correctness of a template (or composition) with

the tautology of a logical formula, leveraging the automation of the verification process.

Chapter 6 (Dealing with Uncertain Service Descriptions) takes a detour and describes

first ideas to integrate uncertainty of service descriptions into logic-based verification.

The pragmatic aspect of the automation of verification is covered by Chapter 7 (Pro-

totypical Implementation). It documents an implementation of the logical encoding of

Chapter 5.

Finally, the Conclusion summarizes the contributions of this thesis, and the Appendix

provides additional example templates and compositions.

Part I

Preliminaries

11

Chapter 2

Domain Knowledge and Logic

Chapter 1 introduced the setting of on-the-fly service composition and verification in

general. It presented three different research topics, namely (1) formal knowledge mod-

eling, (2) service description and composition, and (3) program verification.

This chapter discusses the formal foundation for topic (1), knowledge modeling (→ Fig-

ure 2.1). As logical structures and predicate logic in general are at the heart of a formal

semantics of our definition of knowledge modeling, it consequently also addresses the

first core contribution of this thesis, a mathematical foundation for a verification of ser-

vice compositions based on a formal knowledge base. To this end, it discusses knowledge

formalization, ontologies in general, and the use of description logics. Description logics

are a subset of first-order logic and are used to model ontologies, and they provide the

template to define the semantics of the Web Ontology Language (OWL). Combined with

an additional rules layer, description logics are a versatile tool for knowledge modeling.

Based on these premises, we define our custom knowledge base for this thesis.

2.1 Formalizing Domain Knowledge

Discussing the formalization of pre- and postconditions of services includes discussing

propositional and predicate logic. Within a fixed context, propositions and predicates

cannot be chosen arbitrarily, but from the point of view of knowledge formalization, as

service descriptions have to be backed by domain knowledge.

Knowledge formalization has its roots in ancient greek philosophy, which is also the

source of the term “ontology”. Aristotle, in his works collectively known as Organon

(Holzinger, 2013), introduced a concept-based logic and coined the term Ontology to

specify the description, and its meaning, of the world. His works became the foundation

for Descartes and Leibnitz, and later Boole, Frege, and Peano, leading to a theory of

predicate logic (Davis et al., 1993, p. 22).

13

14 Chapter 2: Domain Knowledge and Logic

Figure 2.1: Joint research: Knowledge modeling in relation to service and workflow
modeling and formal verification

In computer science, research about artificial intelligence (AI) is a main factor of push-

ing logical research further and further. Davis et al. highlight from an AI perspective

which roles a knowledge representation has to fulfill. They also state that knowledge

representation in AI is not restricted to logic, but also includes frames and semantic nets

as well as rule-based approaches. Consciously choosing a style of representation is an

important part of knowledge modeling, as it affects the way of thinking about knowledge,

and reasoning about this knowledge. For example, in logic, the focus is on single indi-

viduals and their relationship, while with frames we think about prototypical objects,

descriptions, or situations. Contrasting this, rules support an empirical, evidence-based

approach (Davis et al., 1993, p. 20).

By choosing a formal representation, we do not only make a premise about the subjects

of our reasoning, but also about the overall idea of what we consider as meaningful

reasoning. If we, e.g., opt for a logical representation with sound inference rules, we

argue that intelligent reasoning itself actually is sound, logical reasoning, and vice versa:

Only logical, sound reasoning is intelligent and useful. While this is indeed an appro-

priate claim in the context of formal, precise service descriptions, this is in no way the

only possible option to formalize knowledge, and to reason about knowledge. Unsound

reasoning has its applications as well (e.g., as inductive reasoning to generate hypothe-

ses for observed data) and the same is true for completely different approaches, where

knowledge and reasoning is modeled after human experts, involving concepts like goals

and plans. In this scenario, stemming from psychology, “intelligent” reasoning over a

formalized knowledge is treated as a complex, not necessarily completely analyzable,

property of human behavior (Davis et al., 1993, p. 23).

While it is useful to keep these inherent modeling decisions in mind, opting for a logical

knowledge representation comes quite naturally in our scenario, even from this broader

perspective: Service descriptions and requirements have to be described as precise and

2.2: Description Logics, Ontologies, and Knowledge Bases 15

analyzable as possible, with results which transfer between knowledge representation,

service modeling, and verification. On a more technical level, treating data (or variables

holding these data) as “individuals” also seems reasonable, and a formalization using

logic is an appropriate consequence. With this in mind, we choose ontologies (in a

computer science sense) to model knowledge. While ontologies can be (and are) used to

model taxonomies, or tree-shaped classification graphs, their capabilities include more

complex relationships than mere tree-like dependencies between predicates, especially

with additional rules languages. Section 2.2 provides more details.

On a formal level, there are different approaches to model knowledge in terms of ontolo-

gies. However, they share their most basic property: In the end, they define a vocabulary

(concepts and their relations), which have to have an evaluation to decide the question

“Is some expression, written in terms of the ontology’s vocabulary, true or false?” This

evaluation is done by finding a logical interpretation which respects the knowledge mod-

eled in an ontology. At the core of this process are logical structures, which do not only

include the domain of all variables (typically, the Boolean domain, but especially if we

talk about predicates, variables will have additional domains, too), but interpretations

of predicates. Because logical structures are the most basic part of logic, and because

they play a vital role in the latter parts of this thesis, we define them formally.

Logical structures assign an interpretation to variables and constants. Both variables

and constants have an associated type, which defines the available set of values that a

variable or constant can have. This set of values for a type is defined by the universe or

domain of the type, which is part of the logical structure. While the values of variables

can change, the values of constants are fixed. For now, we assume that variables and

constants are sets of unique names.

Definition 2.1 (Variables and Constants). Let Var be a set of unique names which

serves as variable names, and let Const be a set of constant names.

Later in this thesis, we define them with a type association (→ Definition 2.7). Apart

from that, definitions can be found in any textbook about logic; here, we follow Apt,

de Boer, and Olderog (2009, p. 31-33), as we do later as well.

Definition 2.2 (Logical Structure). We call S = (U , I) a logical structure with a uni-

verse (or domain) U and interpretation I, which maps constants c to their value I(c) ∈ U .

We extend the notion of interpretations when we introduce types and terms.

2.2 Description Logics, Ontologies, and Knowledge Bases

While the last section motivated knowledge formalization in general, this section intro-

duces ontologies formally, their representation using description logics, and extending

frameworks for rules to enhance their expressiveness. After that, we formalize a knowl-

edge base in a way that is used throughout the remainder of this thesis.

16 Chapter 2: Domain Knowledge and Logic

2.2.1 Description Logics as Ontology Semantics

Ontologies are a way to formalize knowledge, with different formalizations available.

Gruber formulated the idea of making knowledge “portable”, to share it among differ-

ent AI systems. He gives the archetypical characterization of ontologies (for computer

scientists) in Gruber (1993, p. 199):

An ontology is an explicit specification of a conceptualization.

Basically, every terminological description of the world, or a domain, introduces a con-

ceptualization. An ontology is a formal specification of the set of concepts, roles relating

these concepts, and individuals which may belong to one or more concepts. An impor-

tant difference is the distinction between explicit and implicit conceptualizations, one

stating properties of single individuals, while the other characterizes groups of individu-

als. Explicit and implicit conceptualizations follow two different approaches of describing

knowledge of a world.

Explicit conceptualization is a direct approach. Here, knowledge of every individual of a

world is formalized directly, that is, individuals are uniquely identified (enumerated), and

predicates apply directly to them. As a description of knowledge of a world consists of a

collection of facts about individuals, the complete description changes as soon as a fact

about a person changes. Imagine a person identified as “Bob” is a “team leader” at first

(denoted as isTeamLeader(Bob)). As a team leader he has to respond to “Charlie”, who

is head of department (isHeadOfDepartment(Charlie) and respondsTo(Bob, Charlie)).

Later, he becomes head of department himself (isHeadOfDepartment(Bob)). This causes

additional changes in the set of facts which describe the world, as he now does no longer

respond to Charlie, but to Alice, who is CEO (respondsTo(Bob, Alice)). The reason is

that some predicates (to whom someone has to respond) are modeled explicitly for all

individuals, but they actually depend on the position of an individual in the company,

not the individual itself.

As this is cumbersome for reasoning about knowledge, implicit conceptualizations aim

for a separation of concerns between stating facts about terminology, and individuals. In

the example, respondsTo would relate positions (head of department and CEO) rather

then individuals, so when Bob gets promoted, only his positional predicate is changed.

This way, implicit conceptualizations provide a vocabulary of a domain which can be

used independently of individuals. Guarino, Oberle, and Staab (2009) provide an ex-

cellent step-by-step formalization from explicit to implicit conceptualizations including

the impact on both expressiveness and usability.

To specify ontologies in general it is important to understand these differences between

grades of granularity of an ontological representation. However, this does not automat-

ically decide about a formal representation, or, the ontology language. Guarino et al.

use an ontology language only as a parameter in their formalizations, as different needs

2.2: Description Logics, Ontologies, and Knowledge Bases 17

Figure 2.2: Range of ontology formalization, excerpt from Guarino et al. (2009, p. 13)

call for different languages. These needs range from very informal to very formal lan-

guages (→ Figure 2.2). A collection of terms, or an ordinary glossary (as in textbooks),

mark the informal end of this range, and logical languages, like functional programming

languages, description logics, and predicate logic, mark the formal end (Guarino et al.,

2009, p. 12-14). As our goal is formal specification and reasoning, we need a formal

representation language, more specifically, predicate logic.

For ontologies, logical languages are already common as representation languages, be-

cause formal reasoning is often a goal in knowledge representation. Other goals are

decidability of reasoning problems in general and efficiency of a decision procedure more

specifically. This leads to languages with restricted expressiveness, but good computabil-

ity, and description logics are a modular approach to customize a logic for both of them.

Starting with attributive concept descriptions with complements (ALC), and the paper

with the same title from Schmidt-Schauß and Smolka (1991), description logics (DLs)

provide a modular family of logical languages which are inductively built from concepts

and roles, which relate concepts. Description logics are modular in the sense, that addi-

tional classes of expressiveness can be added explicitly. The “modules” which are part

of a specific description logic are typically denoted by letters. Based on a set of concept

names and a set of role names, new concepts are created based on concept constructors.

These constructors are related to Boolean connectives in propositional or predicate logic.

The following example denotes the concept of a “parent” based on the concept “human”

and the role “hasChild”:

Human u ∃hasChild.Human

Description logics can be translated to predicate logic, using concepts as unary predicates

and roles as binary predicates. Translation of concept constructors is straightforward.

18 Chapter 2: Domain Knowledge and Logic

Table 2.1: Description logic expressiveness abbreviations

Logic Properties

H role hierarchies/subroles

O nominals/named individuals

I inverse roles

N number restrictions

Q qualified number restrictions

(D) concrete domain, e.g., reals, integers

R complex role inclusion

In predicate logic, the example is:

∀h : Human(h) ∧ ∃i : hasChild(h, i) ∧Human(i)

For a complete definition of syntax and semantics of description logics, we refer to

Schmidt-Schauß and Smolka (1991) and Baader et al. (2003, 2008), Guarino et al. (2009).

More complex description logics are created by adding more expressiveness. The most

common extension is to allow for transitive roles, leading to the logic ALCR+, abbre-

viated as S due to its similarity to the modal logic S4 (Baader et al., 2008). Other

properties include the use of named individuals, role hierarchies, number restrictions, or

the use of concrete domains like integers. Table 2.1 lists common extensions.

2.2.2 Reasoning in DLs: General Concept Inclusion

It is possible to create non-trivial concepts where the interpretation is empty, or, in a

predicate logic terminology, which are contradictory, e.g., Room u ¬Room. Schmidt-

Schauß and Smolka define a concept C as coherent, if its interpretation is non-empty:

therefore, Room u ¬Room is incoherent (Schmidt-Schauß and Smolka, 1991, p. 5).

Coherence can be used to express subsumption. A concept description C is subsumed

by a concept description D (denoted as C v D), if the logical interpretation is a subset

of the interpretation of D, which is equivalent to the incoherence of C u ¬D (Schmidt-

Schauß and Smolka, 1991, p. 5). More intuitively, House v Building is a subsumption

in the domain of architectural structures, as every house is indeed a building. The

similarity of the subsumption symbol v to the subset relation symbol ⊆ is intentional.

Subsumption, or general concept inclusion (GCI), is the basic tool to restrict knowledge

within a domain.

As GCIs work solely on the vocabulary of a domain knowledge, that is, concepts of an

ontology, their restrictions work on a terminological level. In ontology reasoning, a set

of GCIs is called a TBox. In description logics which include role hierarchies (H), the

2.2: Description Logics, Ontologies, and Knowledge Bases 19

TBox does not only include general concept inclusions, but also role inclusions to model

these role hierarchies. In contrast to TBoxes, an assertional level of restricting domain

knowledge is called an ABox (e.g., Baader et al., 2009). A TBox restricts relations

between concepts directly, while an ABox reasons about individuals (which is necessary,

e.g., in description logics with the O expressiveness). As the separation into TBox and

ABox is mainly a design choice to classify reasoning problems in description logics, we

will not use the terms in this thesis. We refer to, e.g., Baader et al. for a more detailed

introduction to semantics, exemplified on the DL SHIQ.

To check whether a logical structure is a model of a set of GCIs, the idea of coherence

from above is used. As some logical structure S is a model of a general concept inclusion

C v D if and only if the concept C u¬D is coherent, subsumption checking amounts to

coherence checking, which can be modeled as a satisfiability problem. Depending on the

actual description logic, this satisfiability problem is decidable, and several specialized

ontology reasoners exists to decide coherence problems, e.g., HermiT1 (Glimm et al.,

2014), Pellet2 (Sirin et al., 2007), and FaCT++3 (Tsarkov and Horrocks, 2006).

2.2.3 Higher-level Ontology Languages

With the advent of the Semantic Web (Berners-Lee et al., 2001) it became necessary

to formalize ontologies in a way which was closer to the notations common in software

engineering disciplines. The resource description framework (RDF) provides an XML-

based, structured way to describe relations between concepts (Gandon and Schreiber,

2014). Though initially created as a standard to describe resources (e.g, uniform resource

identifiers/URIs), today it serves as a fundamental base for ontology languages. RDF

statements are triples, which relate two concepts, or RDF types, with an RDF predicate.

RDF types are custom names (just as concepts), and while predicate names are also

custom, they require two types which they link.

RDF triples are the backbone of the Web Ontology Language (OWL, Patel-Schneider

et al., 2012). The Web Ontology Language, a W3C4 recommendation, provides different

syntaxes to formalize knowledge, mainly by introducing syntax elements to conveniently

formulate complex knowledge expressions. The foremost syntax is an RDF-based XML

syntax, which serves as a standard for tool interoperability (Gandon and Schreiber,

2014). Other syntaxes, like Manchester syntax (Horridge and Patel-Schneider, 2012),

provide a more concise notation similar to logic.

As reasoning, and therefore decidability, is always an issue in knowledge representation,

OWL defines two (in earlier versions: three) subsets of language constructs, to cater

different needs of expressiveness, and therefore decidability: OWL Full provides the

complete OWL syntax. Its semantics is based on the semantics of RDF (Hayes and

1HermiT, http://www.hermit-reasoner.com, retrieved on July 21, 2017.
2Pellet, https://github.com/stardog-union/pellet, retrieved on July 21, 2017.
3FaCT++, https://bitbucket.org/dtsarkov/factplusplus, retrieved on July 21, 2017.
4World Wide Web Consortium, https://www.w3.org, retrieved July 21, 2017.

http://www.hermit-reasoner.com
https://github.com/stardog-union/pellet
https://bitbucket.org/dtsarkov/factplusplus
https://www.w3.org

20 Chapter 2: Domain Knowledge and Logic

Patel-Schneider, 2014, Schneider, 2012). OWL DL is a syntactical subset of OWL Full,

and while it can also be interpreted in RDF semantics, it comes with a description logic

style semantics, or direct semantics (Grau et al., 2012). The direct semantics is closely

related to the description logic SROIQ, but to ensure decidability while making use of

features like transitive roles, it comes with additional restrictions, for example, quantified

number restrictions (Q) are not allowed for transitive roles (Patel-Schneider et al., 2012,

Section 11). The expressiveness of OWL Full goes beyond DL compatibility. An example

is the treatment of OWL classes both as (terminological) classes and as individuals at

the same time. Reasoning over OWL Full is undecidable.

OWL (version 2) is a W3C recommendation, and supported by various modeling and rea-

soning tools, like Protégé5 (Horridge et al., 2014, Knublauch et al., 2005), for modeling,

and by the reasoners, e.g., Pellet, HermiT, and FaCT++. This and the incorporation of

XSD standard types like strings, integers, and floating point decimals, lead to OWL be-

ing a common knowledge modeling language in the context of the Semantic Web (W3C,

a,b).

2.2.4 Enhancing Ontologies with Rules

Using ontologies with well researched languages like DLs it is possible to express complex

relationships. This is especially true for more expressive DLs with complex role prop-

erties, which leave the realm of decidability. Because “undecidable in general” does not

necessarily mean “undecidable in practice”, it is possible to extend the expressiveness of

ontologies even further. Depending on the exact knowledge to be modeled, this is even

necessary. A typical relationship which cannot be expressed with a description logic like

ALC is the “uncle problem” (e.g., Parsia et al. 2005, p. 12). Consider the following roles

(or binary predicates) in a DL: parentOf, siblingOf, uncleOf. We try to state the

following equivalence: If my sibling has a child, I am the uncle. It is not possible to

state this kind of triangular relationship in ALC. However, it is no problem at all to

state this in predicate logic:

∀person, sibling , child : siblingOf(person, sibling) ∧ parentOf(sibling , child)

⇒ uncleOf(person, child)

The need to express such properties leads to the addition of rules to DL ontologies.

Generally, rules take the form of logical implications, using predicates (or expressions

based on predicates) as antecedent and consequent. Adding rules does not make the

subsumption problem undecidable by itself – it depends of the exact style of rules. Some

rules can be expressed using GCIs quite easily and therefore are a form of “syntactic

sugar”. Stating that all humans are mammals, using

∀x : Human(x)⇒Mammal(x)

5Protégé, http://protege.stanford.edu, retrieved on July 21, 2017.

http://protege.stanford.edu

2.2: Description Logics, Ontologies, and Knowledge Bases 21

can be expressed as a general concept inclusion as well:

Human vMammal .

There are several approaches to combine a structural knowledge base with rules. Levy

and Rousset combine description logics with Horn rules (Levy and Rousset, 1996).

Donini, Lenzerini, Nardi, and Schaerf use ALC to model the structural part of a knowl-

edge base and Datalog (Gallaire and Minker, 1978, Ullman, 1988) to model a relational

part, resulting in AL-log (Donini et al., 1998). They also limit themselves to Horn

clauses, or positive Datalog. Additionally, they require that variables in the head of a

rule (the consequent) also appear in the body of the rule (the antecedent). This way,

they keep reasoning decidable. Rosati extends their approach to disjunctive Datalog

(Eiter et al., 1997), therefore allowing for negation and disjuncts in the body of a rule

(Rosati, 1999). Motik, Sattler, and Studer do not restrict themselves to ALC, but build

on OWL DL (as they work on OWL version 1, that is basically SHOIN , in contrast

to the current OWL2 SROIQ; Motik et al., 2005). While their description logic is

more expressive than ALC, and therefore a more complex structural knowledge base

is possible, they also restrict themselves to Horn clauses, or positive Datalog, to keep

decidability.

Ultimately, this leads to the semantic web rule language (SWRL), which tightly inte-

grates with OWL (Motik et al., 2009). Though SWRL is not a W3C standard yet (but

a submission6), its tight integration with the OWL modeling tool Protégé leverages its

use in rule-supported ontology modeling. SWRL itself is a subset of Datalog, and more

expressive than OWL DL. In an OWL context, it is restricted by additional constraints

to keep it decidable (Parsia et al., 2005).

Typically, rules are added to a knowledge base language very conservatively, as decidabil-

ity is a major concern. Rosati discusses the complexity of the combination of ontologies

and rules more thoroughly (Rosati, 2005). To ease the comparison between different ap-

proaches to rule languages, Franconi and Tessaris propose a framework to formalize rules

in a general way, including Datalog-based approaches (Franconi and Tessaris, 2004).

Summarizing, decidability of a rule-enhanced ontology results from the underlying de-

scription language as well as the structure of the rules. For the context of this thesis, we

do not restrict the structure of rules, and therefore expressiveness as well as decidability,

in general. Instead, decidability will depend on the concrete domain knowledge, and

the rules necessary to model it, which are part of a concrete use of the approach of this

thesis.

6https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/, retrieved July 21, 2017.

https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

22 Chapter 2: Domain Knowledge and Logic

Table 2.2: DL concept constructors as rules, simplified representation of
the construction rules of (Baader et al., 2008, p. 144)

DL Rule

¬C ∀x : ¬C(x)

C uD ∀x : C(x) ∧D(x)

C tD ∀x : C(x) ∨D(x)

∃r.D ∀x∃y : r(x, y) ∧D(y)

∀r.D ∀x, y : r(x, y)⇒ D(y)

2.2.5 A Formal Knowledge Base

Up to now, we introduced the basic formalisms to model domain knowledge using on-

tologies, with a logic-based semantics. Depending on the exact domain knowledge, the

modularity of description logics is an important tool to find the exact level of expres-

siveness which is needed, aiming at decidability of the subsumption problem.

As the goal of this thesis is the union of knowledge modeling, service description, and

program verification, the exact expressiveness of a concrete description logic is not as

important as it may seem. On the contrary, we will define a knowledge base for domain

knowledge in a generic way, without providing an explicit set of different modules with

different expressiveness as in description logics, and allow for a large expressiveness.

This way, decidability, and complexity of the resulting satisfiability problem depends on

the concrete domain knowledge which is formalized, and therefore may vary between

domains. If, e.g., qualified number restrictions (domain logic Q) or cyclic rules are not

necessary to model knowledge of a domain (which is the case for simple taxonomies),

then this is beneficial for decidability.

We roughly follow the notation introduced with description logics, but with some impor-

tant changes: We use the GCI symbol v to model concept inclusions (that is, concept

hierarchies), directly as part of the knowledge base, and we use rules to model any

other additional constraints. This way, we are able to define a knowledge base quite

easily. As another syntactical difference to description logics, we do not use concept

constructors and role quantifiers; see Table 2.2 for their relation to predicate logic. The

translation follows (Baader et al., 2008, p. 144). Instead, we directly define concept and

role predicates, based on concept and role names, to create logical expressions.

Definition 2.3 (Knowledge Base). Let I be a set of individuals. A rule-enhanced

knowledge base (or just knowledge base) K consists of a tupel K = (C,P,v, R), with:

• C a set of (unique) concept names, with A(x) a concept predicate for A ∈ C and

x ∈ I,

• P a set of (unique) role (or predicate) symbols, where every p ∈ P is associated

with a relation p ∈ C × C, and p(x, y) a role predicate for p ∈ P and x, y ∈ I,

2.2: Description Logics, Ontologies, and Knowledge Bases 23

• v a partially ordered subconcept relation v ⊆ C × C,

• R a set of constraint rules.

A constraint rule r ∈ R is a boolean expressions constructed as:

A(x) ∈ R
p(x, y) ∈ R

X ∈ R ⇒ ¬X ∈ R
X,Y ∈ R ⇒ X ∨ Y ∈ R .

In description logics, role names are just names and used by concept constructors to

define new, composed concepts, which use can be expressed in predicate logic as binary

predicate. In practice, this is used to define domain and range of a role, e.g., to restrict

the role “married with” to let only “humans” be married, we write ∃marriedWith v
Human, that is, every concept which has a role “married with” has to be subsumed by

the concept “Human”. If we do the same for the inverse role, we restrict both domain

and range to humans. In the definition above, we included typing of role predicates

directly, to simplify the notation towards usual functional notation, that is, we write

marriedWith : Human×Human to express the same restriction as in the example.

We define the semantics of a knowledge base using logical structures (→ Definition 2.2).

Definition 2.4 (Semantics of a Knowledge Base). Let K = (C,P,v, R) be a knowledge

base. Let Var be a set of variables and Const a set of constants, which serve as set of

individuals I = Var ∪ Const . Let S = (U , I) be a logical structure with an interpretion

I and a universe U , where U = UC1 ∪ · · · ∪ UCn for every C1, . . . , Cn ∈ C. We define the

semantics of K by S, where

I : C1 → 2UC1 with C1 ∈ C
I : p1 → 2UC1

×UC2 with p1 ∈ P and p1 : C1 × C2 .

S satisfies K, that is, S |= K, if and only if it satisfies all subconcept relations A v B

and all constraint rules r ∈ R. For A,B ∈ C and p ∈ P , therefore:

S |= (A v B) ⇔ I(A) ⊆ I(B)

S |= r ⇔


r ≡ A(a) : ∀a ∈ I : I(a) ∈ I(A)

r ≡ p(a, b) : ∀a, b ∈ I :
(
I(a), I(b)

)
∈ I(p)

r ≡ ¬q : S 6|= q

r ≡ q ∨ t : S |= q or S |= t

As v is reflexive (because it is a partial order), every concept is a subconcept of itself,

which matches the notion of GCIs. We use the term rules to denote the constraint rules

24 Chapter 2: Domain Knowledge and Logic

R to follow the convention of ontology formalization, even if they are not necessarily

implications.

Example 2.1 (Tourism Domain: Restaurants). The ontology KD = (CD, PD,vD, RD)

formalizes a small excerpt from a domain of Tourism concepts, which we will use through-

out this thesis. We will use the subscript D for “domain-specific ontology”. The part

formalized in this thesis deals with the relation of restaurants, ratings, and price values

assigned to restaurants, and the predicates relating these concepts. Here, a Snack Bar is

a special kind of Restaurant to demonstrate subtyping.

CD = {Site,Restaurant,SnackBar,

InfoTag,Rating,Michelin,Price,Location,

Distance,Event,Date}
PD = {hasRating : Restaurant×Rating, isMinRating : Rating×Bool,

isRatingLess : Rating×Rating

hasPrice : Restaurant×Price, isMaxPrice : Price×Bool,

goodRestaurant : Restaurant×Bool,

isBetterRestaurant : Restaurant×Restaurant,

cheap : Restaurant×Bool,

hasLocation : Site× Location,

distFrom : Distance× Location,distTo : Distance× Location,

distValue : Distance× Integer,

hasEvent : Site×Event, startsAt : Event×Date}
vD= {(Restaurant,Site), (SnackBar,Restaurant),

(Michelin,Rating), (Rating, InfoTag)}
RD = {hasRating(res, rat) ∧ hasRating(res2 , rat2)

⇒ isRatingLess(rat , rat2) = isBetterRestaurant(res2 , res),

hasRating(res, rat) ∧ isMinRating(rat)⇒ goodRestaurant(res),

hasRating(res, rat) ∧ ¬isMinRating(rat)⇒ ¬goodRestaurant(res),

hasPrice(res, price) ∧ isMaxPrice(price)⇒ cheap(res),

hasPrice(res, price) ∧ ¬isMaxPrice(price)⇒ ¬cheap(res),

trichotomous(isRatingLess), transitive(isRatingLess),

irreflexive(isRatingLess), antisymmetric(isRatingLess),

trichotomous(isBetterRestaurant), transitive(isBetterRestaurant),

irreflexive(isBetterRestaurant), antisymmetric(isBetterRestaurant),

functional(hasRating), functional(hasPrice),

functional(isMinRating), functional(isMaxPrice),

functional(goodRestaurant), functional(cheap),

functional(hasLocation), functional(startsAt),

functional(distFrom), functional(distTo), functional(distValue)}

Figure 2.3 visualizes subset relations and roles of the knowledge base.

2.2: Description Logics, Ontologies, and Knowledge Bases 25

Figure 2.3: Visualization of the knowledge base of tourism (Example 2.1)

The rational behind the subconcept relation v is a polymorphic type system. Con-

cepts and roles from knowledge modeling serve different purposes in service specifica-

tion: While both represent the vocabulary used in service specifications, roles (binary

predicates) are used in pre- and postconditions to describe characteristics of data, and

concepts are used as types. There is no conceptual difference, as type information could

also be encoded using unary predicates in pre- and postconditions and using untyped

signatures for services at the same time. However, as service modeling stems from the

domain of programming and modeling languages, the notion of typed parameters in

method signatures is prevalent. Existing languages like OWL-S (Martin et al., 2005),

which combine the domain of service/software modeling and ontologies, follow the ap-

proach of typed signatures combined with logical pre- and postconditions. Supporting

the same idea, the subconcept relation paves the way for an elegant notation of concept

hierarchies, which directly translate into a simple, hierarchical type system.

Before we define a type system formally, we borrow an additional simplification from

OWL: OWL comes with XSD standard types. Theoretically, we can include any type

as concept in a knowledge base. Practically, we assume that Boolean and Integer are

always included in the set of concepts of a knowledge base. Additionally, we assume

that all relations on Boolean and Integer are part of the roles, and their restrictions

part of the rules. Obviously, this does only cover binary relations and does not cover

functions. In DL-based ontologies, roles are always binary. However, it is possible to

model n-ary roles as well by introducing an additional concept to represent the n-ary

role, and introduce roles to connect it to its operands.

Example 2.2 (N -ary Roles). Let K = (C,P,v, R) be a knowledge base. Assume a

ternary predicate, or role, hasDistance(l1, l2, d) to model the Distance d between two

Locations l1, l2, with

Location,Distance ∈ C .

26 Chapter 2: Domain Knowledge and Logic

Then we introduce a concept HasDistance ∈ C and roles

distFrom,distTo,distValue ∈ P

with

distFrom : HasDistance× Location

distTo : HasDistance× Location

distValue : HasDistance×Distance .

We restrict the new roles appropriately, that is, in this case, they are functional.

Role properties like functionality can be expressed using the rules of a knowledge base.

However, again we follow OWL notation and introduce notational shortcuts for typical

properties of relations. Instead of writing, e.g.,

∀x, y, z : distValue(x, y) ∧ distValue(x, z)⇒ y = z ,

we just write

functional(distValue) .

We do the same for other important properties like transitivity, reflexivity, and so on.

It is relatively easy to include standard types in a knowledge base, and this should be the

same for set types, as long as we restrict ourselves to relations (we will discuss functions

further below). However, the way how we will encode domain knowledge logically later

in this thesis advocates to model sets in addition to a domain knowledge. Instead of

modeling sets as default concepts of a knowledge base, we include them in the set of

types which can be derived from an ontology. This definition is a main connecting

element between ontology modeling and service modeling.

Definition 2.5 (Types). Let K = (C,P,v, R) be a knowledge base. We define the set

of types TK inductively as follows:

t ∈ C → t ∈ TK
T ∈ TK → set T ∈ TK ,

where set T is a set type whose elements are of type T .

With an explicit set of types TK for a knowledge base K, we are able to cover set types.

We include relations on types (e.g., < on integers) implicitly in the roles of K. To

cover relations on sets, we define the set of predicates derived from a knowledge base

analogously to the set of types. Similarly, we define a set of functions on the standard

types and sets.

2.2: Description Logics, Ontologies, and Knowledge Bases 27

Definition 2.6 (Predicates and Functions of a Knowledge Base). Let K = (C,P,v, R)

be a knowledge base and TK the set of derived types. Then PK denotes the set of

predicates and FK the set of functions for K, with

• P ⊂ PK ,

• common relations on Boolean and Integer ⊂ PK ,

• common relations on set types ⊂ PK ,

• common functions on Boolean and Integer ⊂ FK ,

• common functions on set types ⊂ FK .

This definition includes that the set of functions depends only on the standard types

Boolean and Integer, which we included in the domain knowledge for convenience.

Now, we model domain knowledge itself with a knowledge base, and are able to create

expressions built on that knowledge using additional predicates and functions. While

expressions are similar to concept constructors and role assertions in description logics,

they are more expressive by including functions on standard types. As in the definition of

the semantics of description logic and knowledge bases, individuals are used as operands

of predicates. Here, we assume a set of variables Var to be used as individuals and

extend Definition 2.1 with type information.

Definition 2.7 (Set of Variables and Constants). Let Var be a set of unique variable

names with an associated type, defined by type : Var → T . Let Const be a set of

constant names with an associated type, defined by type : Const → T .

We define terms in the usual way.

Definition 2.8 (Terms). Every a ∈ Var is a term of type type(a). Every c ∈ Const

is a term of type type(c). If x, y are terms, then p(x, y) with p ∈ PK and f(x, y) with

f ∈ FK are terms.

Please note that common Boolean and Integer operations are part of the set of func-

tions FK . Expressions used in this thesis are first-order logic expression.

Definition 2.9 (First-order Formulas). Let K be a knowledge base with types TK ,

predicates PK , and functions FK . We define the set of first order formulas over K,

named ΦK , inductively as follows:

• if a, b are terms with type(a) = T1 and type(b) = T2, and p : T1 × T2 ∈ PK , then

p(a, b) ∈ ΦK ;

• if t1, t2 ∈ ΦK , then ¬t1 ∈ ΦK and t1 ∨ t2 ∈ ΦK ;

• if t ∈ ΦK , then ∀x : t ∈ ΦK and ∃x : t ∈ ΦK .

While variables in expressions are generally bound by quantifiers, we use input and

output variables of service descriptions as free variables in expressions (→ Section 3.2.1,

28 Chapter 2: Domain Knowledge and Logic

Services and Service Compositions). For a formula ϕ ∈ ΦK , we use free(ϕ) to denote

the set of free variables of ϕ.

We name a fixation of variable values a state (Apt et al., 2009, p. 34). Later in this

thesis, we use states to describe the control flow of service compositions.

Definition 2.10 (States). For a set of typed variables Var with types TK of a knowledge

base K, a state is a mapping of variables to elements of their respective domain:

σ : Var → UK
with σ(a) ∈ Utype(a)

and a ∈ Var , type(a) ∈ TK ,Utype(a) ⊆ UK

Sometimes we need to describe sets of states depending on the possible valuations of

variables. To do this, we use expressions in first-order logic as assertions. Assertions

evaluate to true or false, depending on the valuation of variables used in the assertion,

that is, depending on a state. We write σ |= p if an assertion holds (evaluates to true) in

a state σ. Assertions are evaluated in the usual way (e.g., Apt et al., p. 41-42), based on

both a state (for variable values) and a logical structure (for predicate interpretations).

We also use assertions to define the set of states in which an assertion holds.

Definition 2.11 (Sets of States). Let p ∈ ΦK be an assertion. We define the set of

states satisfying p with respect to a logical structure S as J p KS :

J p KS = {σ | σ |=S p}

Deciding whether a state satisfies an assertion, or, more interestingly, whether there

exists a logical structure such that there exists a state to satisfy an assertion, can be

automated using existing satisfiability solvers.

The following chapters build on this concept of a knowledge base and the accompanying

definitions.

Part II

Contributions

29

Chapter 3

Workflow Descriptions

Workflows are descriptions of repetitive tasks (Smith, 2007). Imperative programming

languages, flow charts, and business process modeling languages are examples on a scale

of workflow modeling techniques in computer science, spanning a range from defining

lowest-level steps of assigning values to memory registers, to abstract process executions

triggering complex human-based processes in companies. Conceptually, workflow de-

scriptions are about structuring the order and relation of single actions. On this level,

they differ from programming languages mostly in their area of application, and therefore

in abstract, business oriented contexts, we use the term workflow, and in programming

contexts, we use programming language.

There are numerous approaches in computer science literature dealing specifically with

workflow and process modeling, both in general and concerning business processes. If

we add imperative programming languages, we have several ways to model a process

consisting of single steps. Section 3.1 gives an overview. However, in the context of

formalized domain knowledge, and with the goal of formal verification in mind, we have

certain requirements to a workflow specification language which go beyond the mere

structuring of actions. Adding the context of services and On-The-Fly Computing, we

can identify three constraints:

At first, a service call as a single workflow step, or action, is at the core of a workflow,

and therefore the base of inductive workflow definitions. It has to be mapped to a

identifiable service which has to contain a formalized description of its semantics, i.e.,

its behavior. A service call is not only embedded in the control flow of a workflow, but

also in the data flow: The source of its inputs has to be defined as well as the use of its

outputs. We call this the need for semantic service descriptions.

At second, the workflow description itself has to have a formalized semantics. In order to

support a formal verification, it has to be built upon the semantic description of services,

and take the control flow as well as the data flow into account. Also, the semantics must

support a notion of correctness as well as a means to prove or disprove whether or not

a given workflow is correct. We call this the need for rigorous workflow semantics.

31

32 Chapter 3: Workflow Descriptions

Figure 3.1: Joint research: Service and workflow modeling in relation to knowledge
modeling and formal verification

At third, service composition takes place within a specialized business domain. As stated

in Chapter 2, formalized domain knowledge provides syntax and semantics to formalize

knowledge. Therefore, the formalization of service descriptions as well as the semantics

of workflows have to rely on the same mechanisms as the knowledge semantics. This is

the need to incorporate formalized domain knowledge.

As verification is built upon all three elements, a close relation between these three

topics is mandatory to make verification results sound. Without these commonalities,

neither domain knowledge, nor service descriptions, nor results of program verification

can claim to be reliable in an on-the-fly context (→ Figure 3.1).

Chapter 2 (Domain Knowledge and Logic) lays the logical foundation for the context

of this thesis. In this chapter, we build on this foundation. First, we relate to the

most common approaches of workflow- and service-based modeling in the area of com-

puter science (Section 3.1), and identify a core notion of “service”. To address the

aforementioned requirements, we then define a workflow language based on service calls,

consisting of the most common control flow structures. We add an operational semantics

based on states in terms of variable valuations, and therefore continue the use of logical

structures (Section 3.2). We define partial and total correctness for workflows specified

in this language (Section 3.3) and provide a Hoare-style proof calculus as a tool to prove

or disprove correctness of a workflow (Section 3.4). We also show that the calculus is

sound and complete.

3.1: Related Work 33

3.1 Related Work

Formal workflow modeling in a practical context joins the areas of programming, business

process modeling, and service descriptions. On one end of the spectrum of workflow de-

scriptions are programming languages. Assembler-level programming languages describe

highly specialized workflows and are targeted at executing machine-specific calculations.

High-level, general purpose languages are no longer machine-specific and aim at a more

abstract programming approach. On top of that, domain specific languages try to focus

more on the task at hand instead of the intricacies of general computer programming

(van Deursen et al., 2000). These are, however, different levels of abstractions which

share their origin in “making a computer calculate”. They work in a highly restricted

environment with a focus on their execution on a given machine. This does not nec-

essarily mean that they have a formally defined semantics: More often than not, the

semantics of a programming language is defined by an “execution semantics”, that is, it

depends on how the compiler, interpreter, and executing machine handle the language

constructs. This leads to noteworthy behavior like different effects of the same language

constructs on different execution environments. This results from a textual semantics

specification, which may be backed by a reference implementation, e.g., for Java.1

Business process descriptions are located on the other end of the spectrum. They started

with a focus on describing a workflow as a sequence of atomic actions and thus enabled

the division of labor (Smith, 2007). Today, from an economic perspective, this makes

complex processes not only repeatable, but also easier to understand, especially in the

context of the organizational structure of a company (Davenport, 1998). Workflow

management systems integrate a formal description, domain (or company) specific in-

formation, and organizational background of a company. Actions are atomic only with

respect to a chosen abstraction level (van der Aalst and van Hee, 2002).

In computer science, process descriptions on a business level quite naturally incorporate

software systems and data (or documents) which are moved by actors between these sys-

tems. While this can be expressed by flowcharts on both an informal (e.g., “boxes and

arrows”) and semi-formal (e.g., UML activity diagrams2, Dumas and ter Hofstede 2001)

level, the web services business process execution language (WSBPEL) as an OASIS

standard is a major player.3 WSBPEL formalizes executable workflows (or processes)

which use Web services as its atomic actions. While the WSBPEL specification does

not contain a formal semantics, several approaches exist to define a semantics for veri-

fication purposes, e.g., based on abstract state machines (Farahbod et al., 2005), or on

translation to Petri nets (Ouyang et al., 2007). Several workflow execution engines exist

to run BPEL workflows, e.g., Microsofts BizTalk4, Oracle’s BPEL Process Manager5,

1Oracle’s Java SE specifications: https://docs.oracle.com/javase/specs/, retrieved July 21, 2017.
2OMG’s UML specification: http://www.omg.org/spec/UML/, retrieved July 21, 2017.
3OASIS’ WSBPEL specification: https://www.oasis-open.org/committees/wsbpel, retrieved July

21, 2017.
4https://www.microsoft.com/en-us/cloud-platform/biztalk, retrieved July 21, 2017.
5http://www.oracle.com/technetwork/middleware/bpel/overview/index.html, retrieved July 21,

2017.

https://docs.oracle.com/javase/specs/
http://www.omg.org/spec/UML/
https://www.oasis-open.org/committees/wsbpel
https://www.microsoft.com/en-us/cloud-platform/biztalk
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html

34 Chapter 3: Workflow Descriptions

or Apache’s Orchestration Director Engine6. To be usable in a BPEL description, Web

services descriptions have to be given in the web service description language (WSDL,

Weerawarana et al. 2007).

A formal service description in a programming sense exists also for Web-based software,

or Web services. The Service-Oriented-Architecture approach (SOA) aims at a rich

description of Web services (or services in general), to leverage their integration into an,

possibly executable, workflow (van der Aalst et al., 2006). The Web Service Description

Language (WSDL) emerged as an W3C7 standard (Weerawarana et al., 2007). While

it already enables a syntactical description of services and how to call them, a real

advantage is the addition of semantic annotations (SA-WSDL) to include logical pre-

and postconditions in the description (Farrell and Lausen, 2007). The orchestration

languange OWL-S goes a step further and is based on an ontology, that is, a knowledge

base, specialized on the description of services (Martin et al., 2005). OWL-S combines an

abstract, task-oriented view with a technical, orchestration-oriented view, where actual

deployment of services and service compositions is critical.

Adding such semantic annotations is not restricted to the Semantic Web. In program

verification, logical verification conditions are anything but new (Floyd, 1967). They

are also present in modern languages, either built-in as in Eiffel (Meyer, 1997), or by

extensions like the Java Markup Language (JML, Leavens, Baker, and Ruby 1999),

ESC/Java2 (Flanagan et al., 2002), or Spec# (Barnett et al., 2005). However, either

the vocabulary of these semantic annotations is quite restricted (which is the case in

the field of program verification, where it is tailored to predicates concerning variable

values), or the rigorous verification techniques are not applicable because of a lacking

appropriate formal semantics.

So while there is a lot of research combining two of the three topics of workflow semantics,

semantic service description, and formal knowledge base modeling, combining all of them

in a theoretically sound way is still an open issue.

3.2 Syntax and Semantics

Core part of service compositions is the service orchestration or workflow definition,

which comprises of the control and data flow between the composition’s input, output,

and the called services. Basic building blocks are calls to existing services, and the

control structures themselves. In the context of On-The-Fly Computing we distinguish

atomic, “black box” services and to complex, “gray/white box” service compositions.

While it is possible that atomic services are compositions as well, they always include

a service description, and can therefore be treated as atomic services. Additionally, we

identify common control flow structures to compose atomic services into a composition.

6http://ode.apache.org, retrieved July 21, 2017.
7Word Wide Web Consortium, http://w3c.org, retrieved July 21, 2017.

http://ode.apache.org
http://w3c.org

3.2: Syntax and Semantics 35

Section 3.2.1 defines the syntax of service descriptions, workflows, and their relation

to the domain knowledge vocabulary. Section 3.2.2 defines an operational semantics of

workflows, before we continue with a definition of correctness in Section 3.3.

3.2.1 Services and Service Compositions

Every structured workflow is defined inductively, starting with atomic statements, and

continuing with composed control structures. Calls to single services and variable as-

signments are atomic statements. From the modeling point of view, the relevant part of

a service is its service description. Thinking in Web services, a colloquial “service” may

consist of several different methods: A web shop service may consist of methods login,

browse, add to cart, etc., where every method is backed by an actual implementation,

that is, eventually, a method call. The overall collection of these “granular” methods is

considered to represent “the” web shop service.

In order to call a service, a description of its interface is necessary. From a programming

point of view, this implies the use of method signatures, including naming (or addressing

in general) as well as number and type of input and output parameters. Additionally,

a description elaborates the behavior of the method and how to use it. For program-

ming languages, this description typically comes as application programming interface

(API), as for Java8 and C#9. Languages with a more formalized approach, e.g., OWL-S

with SAWSDL for the semantic web, or JML, ESC/Java, or Spec# for programming

languages, provide a logic-based language to formalize the semantic description of its

behavior.

To simplify things, we restrict ourselves to state-less services (in terms of non-observable,

internal states), that is, regardless of how many methods a service offers, every single

one just processes input data and returns output data. This is consistent with, e.g., the

REST (representational state transfer) approach of Web services, where state changes

are always explicit (Fielding and Taylor, 2000). This restriction allows us to simplify our

notion of “services”: As a service (in the sense of Web service) is a collection of methods

(or fine-granular “services”) which are mutually independent, we can (a) assume that

a service has a unique name, and (b) treat every method of a (colloquial) service as a

complete (formal) service for its own sake.

Uniqueness of names can be guaranteed using appropriate names (and namespaces, as

it is done with URIs). Therefore, the most basic requirement to a service description, in

addition to the unique name, is the number (and order) of input and output elements.

As we operate in the context of a formalized description of domain knowledge, we can

rely on formalized types (→ Definition 2.5, Types). Based on types, we define a ser-

vice signature, which essentially defines the signature of the function which the service

represents in a mathematical sense.

8https://docs.oracle.com/javase/8/docs/api/index.html, retrieved July 21, 2017.
9https://docs.microsoft.com/en-us/dotnet/api/, retrieved July 21, 2017.

https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.microsoft.com/en-us/dotnet/api/

36 Chapter 3: Workflow Descriptions

Definition 3.1 (Service Signature). Let K = (C,P,v, R) be the knowledge base of the

current domain, with TK the set of types associated with this domain. Then

Svc : T1 × · · · × Tk → Tk+1 × · · · × Tn

is the service signature SvcSig of the service named Svc, with input types T1, . . . , Tk, and

output types Tk+1, . . . , Tn, where Ti ∈ TK for 1 ≤ i ≤ n.

We combine this mathematical signature with a logical description of input and output

data. On the theoretical side, this dates back to Hoare, while on the practical side, it

became more widespread with the advent of the Semantic Web (Berners-Lee et al., 2001)

and service description languages like SAWSDL (Farrell and Lausen, 2007) and OWL-S

(Martin et al., 2005). In program verification, it is used in the presence of function calls

(JML, Spec#) and code variant verification (e.g., Soleimanifard and Gurov, 2015).

With a mathematical signature alone, it is not possible to use predicates for description

of the input and output of a service. The predicates need parameters to refer to the

exact data handled by the service. As in programming languages and service description

languages we name the variable parameters and use the same names as parameters in

pre- and postconditions, and therefore extend the mathematical service signature with

a service description.

Definition 3.2 (Service Description). Let K = (C,P,v, R) be the knowledge base

of the current domain, with TK the set of types associated with this domain. Let

SSig = S : T1 × · · · × Tk → Tk+1 × · · · × Tn be the signature of a service S. Then

SDesc = (SSig , IS , OS , preS , postS)

denotes the service description of S, with

• the service signature SSig ,

• input variables IS with |IS | = k,

• output variables OS with |OS | = (n− k),

• a precondition preS ∈ ΦK with free(preS) ⊆ IS ,

• a postcondition postS ∈ ΦK with free(postS) ⊆ (IS ∪OS),

• and IS ∩OS = ∅.

We assume IS and OS to be ordered such that variable names uniquely correspond to a

position in SSig . We denote the set of all services of a domain with knowledge base K

as SVCK .

In resemblance of function specifications in programming languages on the one hand,

and of Hoare-triples on the other hand, we write a service description with conditions

in curly brackets, and the signature with additional variable names accompanying the

3.2: Syntax and Semantics 37

variable types:

{pre(i1, . . . , ik)}
Svc(i1 : T1, . . . , ik : Tk, ok+1 : Tk+1, . . . , on : Tn)

{post(i1, . . . , ik, ok+1, . . . , on)}

Example 3.1 (Service: Rating Acquisition). Assume a service in the Tourism domain,

which makes use of the domain knowledge described in Example 2.1. The service Get-

Rating is a lookup service to provide a Rating (which is a concept of the domain, and

therefore also a type generated by the domain) for a given Restaurant. It therefore has

the following signature:

GetRating : Restaurant → Rating

Its description contains one input variable and one output variable, whose names can

be used in the pre- and postconditions. The service does not have a precondition. As a

postcondition, it guarantees that the resulting rating actually belongs to the given restau-

rant,using the predicate hasRating. In tuple notation, we write(
(GetRating : Restaurant → Rating), {restaurant}, {rating},

>, hasRating(restaurant , rating)
)
.

In triple notation, we write

{}
GetRating(restaurant : Restaurant , rating : Rating)

{hasRating(restaurant , rating)} .

For a service S, we use its name to denote the name S itself, the signature SSig of which

it is an integral part, and to refer to the overall service description SDesc . Later, it

will also be used as part of the control flow syntax. This way, we avoid using different

variants of the name to refer to just one service.

In programming, assignment and function calls are basic building blocks of programs.

Analogously, we inductively define a workflow language using the usual control flow

elements, with service calls and variable assignment as induction base cases. Later on, we

need to precisely identify the “position” in a workflow to show correctness automatically.

To this end, we label every workflow statement in a workflow, using a unique label l. We

will come back to these labels only in Chapter 5 (Automating Correctness Proofs using

First-order Logic).

38 Chapter 3: Workflow Descriptions

Definition 3.3 (Workflow). Let K = (C,P,v, R) be the knowledge base of the current

domain. The following rules define the syntax of a workflow W :

W ::= [l] skip

| [l] u := t

| W1;W2

| [l] (uj+1, . . . , uk) := S(i1, . . . , ij)

| [l] if B then W1 else W2 fi

| [l] while B do W1 od

| [l] foreach a ∈ A do W1 od

with u, v, a, A ∈ Var , t ∈ ΦK , type(t) = type(u), type(A) = set T, type(a) = T, T ∈ TK ,

B ∈ ΦK , and S ∈ SVCK . Additionally, we define exactly one final label [end] for a

workflow W .

While Var denotes the set of all variables, we need to refer to free, that is, input variables

of a workflow as well as variables that are changed by a workflow.

Definition 3.4 (Variables of Workflows). Let Var be the set of all variables and

Var(W) ⊆ Var the set of variables which appear in a workflow W . Then change(W) ⊆
Var(W) denotes the set of variables which appear on the left-hand side of an assign-

ment or service call statement. The set of free variables of W is free(W) = Var(W) \
change(W).

We denote the empty workflow as E with the following properties:

E ;E ≡ E

E ;W ≡ W

W ;E ≡ W

A workflow description is the core of a service composition. In an on-the-fly computing

context service compositions are created up to a predefined signature and pre- and

postcondition. The mere description of a service composition is therefore exactly the

same as the description of an atomic service. We define a complete service composition

as follows.

Definition 3.5 (Service Composition). A service composition (ScDesc ,W) consists of

a service description ScDesc = (ScSig , ISc , OSc , preSc , postSc), and a workflow W , with

free(W) ⊆ ISc , OSc ⊆ change(W), and I ∩O = ∅.

The variable restrictions enforce a workflow structure similar to static single assigment

(SSA) form and therefore guarantee that input variables are never written to, and, con-

sequently, output variables can always be compared to original inputs without additional

3.2: Syntax and Semantics 39

computations of data flow graphs (Cytron et al., 1991). While this may seem restrictive

at first, this semi-SSA form can be achieved easily by introducing fresh variables for input

variables, as we require “write once” only for inputs (and not for all free variables) and

therefore avoid the necessity of phi functions to model alternative assignments resulting

from loops.

3.2.2 States, Configurations, and Semantics of Workflows

Based on a syntax definition of service descriptions and service compositions, we want

to define a “correct” composition, and we want to be able to formally reason about

it. To this end, we first need to define what we actually mean when a workflow is

executed. That is, we need a formally defined semantics. The need for a formalized

semantics, in contrast to an intuitive understanding of the meaning of a program, was

proposed by Floyd as early as 1967 (Floyd, 1967). He introduced an interpretation of

syntax elements of programming languages to propositions which hold before and after

the basic syntactic elements. He demonstrates his semantics with a graphical flowchart

language and a subset of ALGOL.

From there, two main approaches to formalize semantics developed. The denotational

approach defines the semantics of a program by associating program statements with

mathematical functions (Scott, 1972). The semantics are then defined by choosing do-

mains (and ranges) for these functions, and restricting their interpretation by mathe-

matical equations. The operational approach, on the other hand, focuses on explicit

state changes caused by program statements (Apt et al., 2009, Plotkin, 1981, 2004).

Here, a program state is represented by a given valuation of variables, and each program

statement modifies a given state as defined by a corresponding transition axiom (or

rule). This view on actual state changes has a close connection to actually interpreting

a program. Additionally, an axiomatic approach defines semantics based on Hoare-style

rules (Hoare, 1969). As Plotkin points out, there is a useful connection between an op-

erational and an axiomatic semantics definition: While axiomatic notations are elegant

and precise, operational semantics with their view on program states can be used to

show that axiomatic systems are sound and complete.

This is how Apt, de Boer, and Olderog simplify reasoning about the correctness of

programs, and why we follow their approach in this thesis. To this end, we proceed

as follows: Based on Apt et al.’s operational semantics for the While language, we

define an operational semantics for workflows to relate the “before” state of a workflow

statement with its “after” state. The state of a program is represented by the valuation of

its variables at a given workflow location. This location can be tracked with a dedicated

program counter variable. In Definition 3.3 (Workflow), we identify locations using

labels, but labels will not become relevant before an actual state encoding in Chapter 5.

However, a valuation of variables always depends on a logical structure: The structure

determines the universes of the variable types, and the exact interpretation of not only

default operations, but also domain-specific predicates. To decide whether a formula is

40 Chapter 3: Workflow Descriptions

satisfied in a given state σ, e.g., σ |= (x > y) ∧Q(x, y), the interpretation of predicates

in addition to a mere valuation of variables is crucial.

As predicates with no exactly defined interpretation are the main ingredient of ontologies,

and therefore knowledge bases, our definitions cannot rely on “standard” interpretations

(as for Integer operations) alone. Therefore, a valuation of a formula in a given state

has to consider the actual logical structure. In contrast to Apt et al., we do not fix

the logical structure (Apt et al., 2009, p. 33). Instead, it has to be a parameter of the

valuation. Without fixing S, we can only ask the question whether a state σ satisfies a

formula for a given structure S:

σ |=S (x > y ∧Q(x, y))

This parameterization enables us to reason about states which satisfy a formula for all

possible structures. The definition of correctness of service compositions in Section 3.3,

p. 42 relies on this fact. Parameterizing logical satisfiability with a logical structure and

then quantifying over all structures seems to be a complicated way to write “tautology”.

However, later on we will quantify only over selected structures, and therefore this

parameterization enables an elegant formulation of later definitions.

We combine states and workflows to define an operational semantics for workflows. As

a workflow is composed of different statements, we can always relate a position in a

workflow with a state σ. Following Apt et al., we define a configuration to represent a

state and the workflow that remains to be executed immediately after the given state

(Apt et al., 2009, p. 58).

Definition 3.6 (Configuration). Let σ be a state, and let W be a workflow. Then,

〈W,σ〉

denotes a configuration, with state σ and workflow W that remains to be executed.

We denote a transition between configurations (and therefore states) as 〈W1, σ1〉 →S
〈W2, σ2〉: When we execute W1, starting in state σ1, then we reach state σ2 and workflow

W2 is the remaining workflow to be executed. As a transition connects states, which

are represented by valuations of variables, it has to be parameterized with the logical

structure. Depending on potential transition sequences, a workflow may terminate,

block, or diverge. The definition follows Apt et al., Def. 3.1, p. 59.

Definition 3.7 (Termination, Blocking, and Divergence of Workflows). A transition

sequence is a finite or infinite sequence of configurations 〈W1, σ1〉 →S · · · →S 〈Wi, σi〉 . . .
A computation of a workflow W starting in σ is a transition sequence which either (a)

cannot be extended, or (b) is infinite. A computation terminates, if it cannot be extended

and ends with 〈E, τ〉, that is, the empty workflow. A computation blocks, if it cannot be

extended, but ends with 〈W ′, τ〉 and W ′ 6≡ E. A computation diverges, if it is infinite.

3.2: Syntax and Semantics 41

We define our semantics by defining state transitions inductively for every workflow

statement. For readability, we assume that services only have exactly one input and one

output, that is, we use

u := S(v)

instead of

(u1, . . . , ui) := S(v1, . . . , vk)

for calling a service S. We assume this only for a simplified notation with generic

services, not in general.

Definition 3.8 (Transition Axioms and Rules for Workflows). For a knowledge base K,

let u, v, a, A ∈ Var , t ∈ ΦK , type(t) = type(u), type(A) = set T, type(a) = T, T ∈ TK ,

B ∈ ΦK , and Svc ∈ SVCK . We define the following transition axioms and rules for a

workflow W and a state σ as follows:

Skip 〈skip, σ〉 →S 〈E, σ〉

Assignment 〈u := t, σ〉 →S 〈E, σ[u := σ(t)]〉

Take 〈take(a,A), σ〉 →S 〈E, σ′〉
if σ′(a) ∈ σ(A), σ′(A) = σ(A) \ {σ′(a)},
and σ(x) = σ′(x) for x 6= A, x 6= a

Sequential comp.
〈W1, σ〉 →S 〈W2, τ〉

〈W1;W,σ〉 →S 〈W2;W, τ〉

Cond. (then) 〈if B then W1 else W2 fi, σ〉 →S 〈W1, σ〉
if σ |=S B

Cond. (else) 〈if B then W1 else W2 fi, σ〉 →S 〈W2, σ〉
if σ |=S ¬B

While (loop) 〈while B do W od, σ〉 →S 〈W ; while B do W od, σ〉
if σ |=S B

While (end) 〈while B do W od, σ〉 →S 〈E, σ〉
if σ |=S ¬B

Foreach (loop) 〈foreach a ∈ A do W od, σ〉
→S 〈take(a,A);W ; foreach a ∈ A do W od, σ〉

if σ |=S A 6= ∅

Foreach (end) 〈foreach a ∈ A do W od, σ〉 →S 〈E, σ〉
if σ |=S A = ∅

Service call 〈u := Svc(v), σ〉 →S 〈E, σ′〉
if σ |=S preSvc [i := v],

σ′ |=S postSvc [i := v, o := u],

and ∀x 6= u : σ′(x) = σ(x)

In this definition, the exact transitions rely on the underlying logical structure, especially

on the interpretation of predicates from the knowledge base. The if clause is an example:

The next workflow is determined by the evaluation of the clause’s condition (B). This

condition may contain an expression with predicates from the knowledge base, and

therefore its interpretation depends on the logical structure. As we do not fix a logical

structure, it has to be a parameter in the definition of the semantics.

42 Chapter 3: Workflow Descriptions

This definition gives us foundations for a workflow semantics. We use the transitive

closure →∗S to denote concatenations of state transitions.

3.3 Partial and Total Correctness

Now, the semantics has to map a state before executing a workflow to a state (or a set

of possible states) after the workflow. Depending on how we treat non-termination, we

define a partial and a total correctness semantics.

The semantics of a workflow is a mapping from a state to the corresponding states which

are reached by applying Definition 3.8 (Transition Axioms and Rules for Workflows) until

the workflow terminates, that is, only the empty workflow E remains. Workflows do not

necessarily terminate. Non-terminating workflows either diverge (e.g., non-terminating

loops as in while true do W od), or block. Workflows can block if the precondition

of a service evaluates to false. In that case, no transition can take place, as Defini-

tion 3.8 does not contain a corresponding transition rule. Therefore, correctness se-

mantics may consider all possible workflows (total correctness) or only (successfully)

terminating workflows (partial correctness). We define correctness semantics for both

cases, and denote the semantics of a workflow W using the semantic parentheses. We

follow the Definitions 3.2 (i) and (ii) from Apt et al. (2009).

Definition 3.9 (Partial Correctness Semantics of Workflows). Let W be a workflow

and σ ∈ Σ be a state. We define the partial correctness semantics as a mapping

JW Kpart ,S : Σ→ 2Σ

with

JW Kpart ,S (σ) = {τ | 〈W,σ〉 →∗S 〈E, τ〉} .

A complementary definition of total correctness includes workflows which do not termi-

nate. To do so, we introduce a failure state ⊥ to denote both diverging and blocking

executions of a workflow.10 In a definition of total correctness, this failure state is a

possible end-state of a sequence of transitions.

Definition 3.10 (Total Correctness Semantics of Workflows). Let W be a workflow and

σ ∈ Σ be a state. We define the total correctness semantics as a mapping

JW Ktot ,S : Σ→ 2Σ∪{⊥}

with

JW Ktot ,S (σ) = JW Kpart ,S (σ) ∪ {⊥ |W diverges or blocks on σ w.r.t. S} .
10In logical formulas, we still use ⊥ to denote false, as we use > to denote true.

3.4: Proof Calculus 43

For easier reading, we use JW KS to refer to both the partial and total correctness

semantics, unless a distinction is necessary. We lift the definition of correctness semantics

from a mapping of single states to a mapping of sets of states.

Definition 3.11 (Correctness Semantics for Sets of States). Let W be a workflow and

σ ∈ Σ be a state, and let p and q be assertions. We define the partial and total correctness

semantics on sets of states as

JW KS (J p KS) = {τ | σ ∈ J p KS ∧ τ ∈ JW KS (σ)} .

With a formally defined semantics, we proceed to define a “correct” composition. When

we consider a service composition (or any other service, for that matter) as correct, we

always do so in the sense that it is correct with respect to its pre- and postconditions.

Correctness in this sense is the guarantee of providing the postcondition after executing

the composition, as long as the precondition holds at the beginning of the execution.

The formal definition of correctness reflects that. As we do not fix a logical structure,

the definition includes quantification over structures.

Definition 3.12 (Correctness of Compositions). Let K = (C,P,v, R) be the knowledge

base of the current domain. Let (ScDesc ,W) be a service composition with a description

ScDesc = (ScSig , ISc , OSc , preSc , postSc). The service composition is correct with respect

to its pre- and postcondition, if and only if

∀S with S |= K : JW KS (J preSc KS) ⊆ J postSc KS .

Correctness is always partial or total correctness (depending on the semantics). Follow-

ing Hoare-style notation, we write |=K {preSc}W {postSc} to denote that a workflow W

is correct with respect to this definition under K.

For easier reading, we will sometimes use the name of the service composition instead

of the workflow, that is, instead of

|=K {preSc}W {postSc} for (ScDesc ,W)

with ScDesc = (ScSig , ISc , OSc , preSc , postSc),

we just write |=K {preSc}Sc {postSc}.

3.4 Proof Calculus

We defined correctness of workflows based on its semantics. Now, to prove correctness

of a given workflow, we have to find chains of transitions from the starting state(s) to

the end state(s). While this approach corresponds with the idea of “interpreting” a

workflow, the resulting proofs are based on an unfamiliar, configuration based notation,

and one needs knowledge of the semantic formalisms to read and understand them.

44 Chapter 3: Workflow Descriptions

In contrast, syntax-based proofs do not require this additional understanding. Hoare

designs his famous syntax-based proof calculus based on two principles: He denotes

which assumptions are true before and after a given program (or workflow) statement,

and how these assumptions change for the various statements of a language. To this end,

he defines proof axioms and rules (Hoare, 1969). Owicki and Gries integrate the resulting

proofs directly into the program, alternating statements and assertions, resulting in

readable proof outlines (Owicki and Gries, 1976). As the calculus is syntax-based, it is

necessary to prove a connection between a proof (outline) and the actual semantics-based

definition of correctness by showing that the calculus is sound and complete.

In this section, we adapt the Hoare calculus to our workflow language. Adapting the

calculus is common in various areas of research. Examples include the verification of

abstract state machines with control states (Gabrisch and Zimmermann, 2012), syn-

chronous languages for reactive systems (Gesell and Schneider, 2012), or concurrent

programs with higher-order concurrency (Turon et al., 2013). With our approach, we

follow Apt, de Boer, and Olderog (2009).

3.4.1 Axioms and Rules

At the core of the calculus are proof axioms and proof rules. There is one axiom or one

rule for every different workflow statement, to enable us to reason about every possible

workflow. We use the rules given in Apt et al. (2009) as a base and adapt them as

necessary to our workflow language. Modifications include not only additional language

constructs (namely the service call and set iteration), but especially the parameterization

with logical structures to introduce the dependency to some given domain knowledge.

3.4: Proof Calculus 45

Definition 3.13 (Parameterized Proof Calculus for Workflows). For a knowledge base

K, let p, q, t, pre, post ∈ ΦK , i, o, u, v, w, a,A ∈ Var , type(t) = type(u), type(A) =

set T, type(a) = T, T ∈ TK , B ∈ ΦK , Svc ∈ SVCK , and W , W1 and W2 workflows.

Then the following axioms and rules define a parameterized proof calculus for workflows.

(1) Skip

{p} skip {p}

(2) Assignment

{p[u := t]}u := t {p}

(3.1) Service Call (for partial correctness)

{∀w s.t. postSvc [i := v, o := w] : q[u := w]}u := Svc(v) {q}

(3.2) Service Call (for total correctness)

{preSvc [i := v] ∧ ∀w s.t. postSvc [i := v, o := w] : q[u := w]}u := Svc(v) {q}

(4.1) Take (for partial correctness)

{∀b ∈ A : q[a := b, A := A \ {b}]} take(a,A) {q}

(4.2) Take (for total correctness)

{A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]} take(a,A) {q}

(5) Sequential composition
{p}W1 {r}, {r}W2 {q}
{p}W1;W2 {q}

(6) Conditional
{p ∧B}W1 {q}, {p ∧ ¬B}W2 {q}
{p} if B then W1 else W2 fi {q}

46 Chapter 3: Workflow Descriptions

(7.1) While (for partial correctness)
{p ∧B}W {p}

{p}while B do W od {p ∧ ¬B}

(7.2) While (for total correctness)
{p ∧B}W {p},
{p ∧B ∧ t = z}W {t < z},
p⇒ t ≥ 0

{p}while B do W od {p ∧ ¬B}

(8) Foreach
{p ∧A 6= ∅} take(a,A);W {p}

{p} foreach a ∈ A do W od {p ∧A = ∅}

(9) Consequence
|=K (p⇒ r), {r}W{s}, |=K (s⇒ q)

{p}W{q}

Depending on whether partial or total correctness of a workflow are relevant, there are

two alternative proof rules for service calls, the take statement, and while loops. The

variants (3.1), (4.1), and (7.1) are sufficient to proof partial correctness, as they consider

only terminating workflows. Rule (7.1) is also applicable to non-terminating loops,

which corresponds with the definition of partial correctness. To prove total correctness,

termination of a loop is relevant, and therefore part of the premise of rule (7.2). Here,

t is an integer expression and z an integer variable (Apt et al., 2009, p. 71). For total

correctness it is also relevant whether or not a service call blocks (rule 3.2) and a set of

elements of a loop actually contains anything (rule 4.2). In contrast, rule (8) is sufficient

to prove both partial and total correctness for foreach loops. From the semantics of

foreach loops and the take statement, we can see that termination is always guaranteed,

as the number of loop executions equals the number of elements of the (finite) set. This

corresponds to the expected behavior of iterator loops in imperative programming.

There are two axioms and one rule which can be considered special. The take axioms do

not refer to a language construct. The take element is only part of the semantics of the

iterator loop, and it serves as a helper construct to do loop unrolling and to iterate over

a finite set of elements. As it is part of the semantics definition, it must also be part of

formal reasoning, and therefore it needs proof axioms. The rule of consequence allows for

the concatenation of single proofs by strengthening and weakening formulas that hold

before or after a workflow statement. It is the only rule that actually needs to evaluate

the formulas in question and does not work on a mere syntactical level. Therefore,

its definition is parameterized with a knowledge base to include every possible logical

structure whose interpretation conforms with the knowledge base itself.

3.4: Proof Calculus 47

As we are not interested in general validity (tautology) of formulas, but only in validity

in the context of a given domain and its formalized domain knowledge, we formalize its

restriction by a knowledge base K.

Definition 3.14 (Restricted Validity). Let K = (C,P,v, R) be a knowledge base, and

let p ∈ ΦK . We call p valid under K, if it is valid (a tautology) for every logical structure

S which adheres to the knowledge base, that is, the following holds:

∀S : S |= R ⇒ S |= p .

In short, we write |=K p.

It is this kind of restricted validity which we employ in the rule of consequence. It guar-

antees validity in every possible logical structure (esp. its interpretation of predicates),

but restricted to interpretations which are valid in the context of the rules of K. Because

of the rule of consequence, a proof created with the proof calculus always works just for

a given knowledge base K.

Definition 3.15 (Provable Properties). Let K = (C,P,v, R) be a knowledge base, and

(ScDesc ,W) a service composition. Then

`K {p}W {q}

denotes that there exists a proof outline for W under K.

Similar to the correctness notation, we use the name of the composition and write

`K {p}Sc {q} for short. We will use this definition to relate provability with correctness

in a semantic sense.

3.4.2 Soundness

We defined an operational semantics based on the valuation of variables for workflows

of service compositions. However, the proof calculus is defined on a syntactical level.

The rational is to simplify proofs of correctness: If a proof is possible on a syntactical

level using proof outlines, there is no need to argue using the semantics directly.

An important relationship between a syntax based proof and the semantically defined

correctness of a workflow is the soundness property of the calculus: Whenever a workflow

can be proved to be correct using the proof calculus, it has to be guaranteed that it

actually is correct with respect to the definition of correctness (as in Definition 3.12).

Correctness is based on the semantics, while the proof calculus as a proof tool is based on

syntax. Therefore, we state a theorem to establish this relationship. We first published

a variation of this theorem as well as its proof in Walther and Wehrheim (2015).11

11More precisely: We published the template version of this theorem, cf. Definition 4.15.

48 Chapter 3: Workflow Descriptions

Theorem 3.16 (Soundness of Proof Calculus). Let K = (C,P,v, R) be a knowledge

base and (ScDesc ,W) with ScDesc = (ScSig , ISc , OSc , preSc , postSc) a service composition.

If Sc can be proved to be correct using the proof calculus, then it is correct according to

the definition of correctness (→ Definition 3.12, Correctness of Compositions):

`K {preSc}W {postSc} ⇒ |=K {preSc}W {postSc}

We prove soundness of the calculus by induction, with axioms as base cases and rules

as induction steps, that is, we show that axioms are true in the semantics, and the

correctness of the premise of rules imply the correctness of their conclusion. As we

follow Apt et al. (2009) with this structure, and as we extend their calculus with axioms

and rules for service calls, take, and foreach statements, and the modified rule of

consequence, we will only treat these here. To make the following proofs more readable,

we use service calls with exactly one input and one output.

Proof of Soundness of Proof Calculus. Let K be a knowledge base, Svc ∈ SVCK , A, a, b,

u, v, w ∈ Var , A of a set type, and q, t ∈ ΦK .

Service Call

For total correctness, we need to show that

Ju := Svc(v) KS (J preSvc [i := v] ∧ ∀w s.t. postSvc [i := v, o := w] : q[u := w] KS)

⊆ J q KS

holds. As a reminder, the conditions of the transition rule are:

σ |=K preSvc [i := v] (3.2)

σ′ |=K postSvc [i := v, o := u] (3.3)

∀x ∈ Var \ {u} : σ(x) = σ′(x) (3.4)

For easier reading, let

p := preSvc [i := v] ∧ ∀w s.t. postSvc [i := v, o := w] : q[u := w] .

Now, let σ, σ′ be states with σ ∈ J p KS and 〈u := Svc(v), σ〉 →S 〈E, σ′〉.

By (3.3), we know that

σ′ |=K postSvc [i := v, o := u] (3.5)

and by (3.4) that the states are equal except for the valuation of u:

∃w : σ′ = σ[u := w] . (3.6)

3.4: Proof Calculus 49

The valuation of u is not arbitrary because of (3.3), therefore we choose w such

that

σ′(w) = σ′(u) (3.7)

and therefore

σ′ |=K postSvc [i := v, o := u][u := w]

⇔ σ′ |=K postSvc [i := v, o := w] .

Now, (3.6) and (3.5) lead to

σ[u := w] |=K postSvc [i := v, o := u]

and

σ |=K postSvc [i := v, o := u][u := w] .

By σ ∈ J p K and our knowledge about w in (3.7),

σ |=K postSvc [i := v, o := u][u := w] ∧ q[u := w]

and again

σ[u := w] |=K postSvc [i := v, o := u] ∧ q ,

therefore by (3.6),

σ′ |=K postSvc [i := v, o := u] ∧ q

Then also

σ′ |=K q

and

σ′ ∈ J q KS .

For partial correctness, we need to show that

Ju := Svc(v) KS (J∀w s.t. postSvc [i := v, o := w] : q[u := w] KS)

⊆ J q KS

holds. Otherwise, the proof is the same.

For total correctness, if σ ∈ J p KS , then by (3.2), (3.3), and (3.4) there always

exists σ′ such that 〈u := Svc(v), σ〉 →S 〈E, σ′〉.

50 Chapter 3: Workflow Descriptions

For partial correctness, if σ ∈ J∀w s.t. postSvc [i := v, o := w] : q[u := w] KS

and σ 6∈ J preS K, then 〈u := Svc(v), σ〉 6→S 〈E, σ′〉, and the workflow blocks:

Ju := Svc(v) Kpart ,S (σ) = ∅, and ∅ ⊆ J q KS .

Take

For total correctness, we need to show that

J take(a,A) KS (J p KS) ⊆ J q KS

with p := A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]. Let σ ∈ J p KS and

〈take(a,A), σ〉 → 〈E, σ′〉. By semantics of take, we get for any b ∈ A:

σ′ = σ[a := b, A := A \ {b}] .

From σ ∈ J p K, we get for all b ∈ A:

σ |=K q[a := b, A := A \ {b}],

therefore, by the Substitution Lemma (Apt et al., 2009, Lemma 2.4, p. 47),

σ[a := b, A := A \ {b}] |=K q

and

σ′ |=K q .

For partial correctness, we need to show the same with p := ∀b ∈ A : q[a := b, A :=

A \ {b}], and the proof is the same.

For total correctness, if σ ∈ J p KS , then by the condition of the transition rule for

take there always exists σ′ such that 〈take(a,A), σ〉 →S 〈E, σ′〉.

For partial correctness, if σ ∈ J∀b ∈ A : q[a := b, A := A \ {b}] KS and σ 6∈ JA 6=
∅ KS , then 〈take(a,A), σ〉 6→S 〈E, σ′〉, and the workflow blocks: J take(a,A) Kpart ,S (σ) =

∅, and ∅ ⊆ J q KS .

Foreach loop

We need to show that the premise of the foreach rule implies its consequence,

that is:

|=K {p ∧A 6= ∅} take(a,A);W {p}
implies |=K {p} foreach a ∈ A do W od {p ∧A = ∅}

In contrast to while loops, foreach loops always have n executions of the loop

body, with |A| = n, that is, the size of the set A, and thus always terminate.

We include |A| = n in the assertions. By the premise, the semantics of take and

3.4: Proof Calculus 51

A /∈ change(W), we get12

J take(a,A);W KS (J p ∧A 6= ∅ ∧ |A| = n KS) ⊆ J p ∧ |A| = n− 1 KS . (3.8)

We use this property to show that J foreach a ∈ A do W od KS (J p KS) ⊆ J p∧A =

∅ KS . The proof proceeds by induction.

Base case |A| = n = 0: By semantics of foreach, we have

J foreach a ∈ A do W od KS (J p ∧A = ∅ KS) = J p ∧A = ∅ KS . (3.9)

Induction step |A| = n+ 1, and thus A 6= ∅. We use monotonicity of semantics

for this proof (Apt et al., 2009, Lemma 3.3, p. 62-63).

J foreach a ∈ A do W od KS (J p ∧ |A| = n+ 1 KS)

= { by semantics of foreach and A 6= ∅ }
J take(a,A);W ; foreach a ∈ A do W od KS (J p ∧ |A| = n+ 1 KS)

= { by Def. of sequential composition }
J foreach a ∈ A do W od KS (J take(a,A);W KS(J p ∧ |A| = n+ 1 KS))

⊆ { by (3.8) and monotonicity of semantics }
J foreach a ∈ A do W od KS (J p ∧#A = n KS)

⊆ { by induction hypothesis }
J p ∧A = ∅ KS

Rule of consequence By the premise of the rule, we have

JW KS (J r KS) ⊆ J s KS ,

as well as valid implications p⇒ r and s⇒ q in K, therefore

JW KS (J p KS) ⊆ JW KS (J r KS) ⊆ J s KS ⊆ J q KS .

Thus, a proof outline constructed according to the proof calculus indeed shows correct-

ness of its workflow.

12Actually, A /∈ change(W) has to be defined more precisely as in Definition 3.4 (Variables of Work-
flows). Otherwise, nesting loops ranging over the same set A does not work as expected. For convenience,
we assume that a set can only be part of at most one foreach loop. In practice, that can easily be
guaranteed by creating a fresh copy of A for every loop, instead of using A directly.

52 Chapter 3: Workflow Descriptions

3.4.3 Completeness

A sound proof calculus guarantees that a (syntax based) proof of correctness obtained

with the calculus is (semantically) correct. Completeness is its complementary property

and shows that, if a workflow is correct, a proof actually exists.

Theorem 3.17 (Completeness of Proof Calculus). Let K = (C,P,v, R) be the knowl-

edge base of the current domain, and let (ScDesc ,W) with ScDesc = (ScSig , ISc , OSc , preSc ,

postSc1) be a service composition. If Sc is correct according to the definition of correct-

ness (→ Definition 3.12), then correctness can be proved using the proof calculus:

|=K {preSc}W {postSc} ⇒ `K {preSc}W {postSc}

Proving completeness takes an intermediate step by defining weakest liberal preconditions

and weakest preconditions. They are defined with respect to a set of target states which

can be reached by executing a workflow W . The difference is their connection to partial

and total correctness semantics: Weakest liberal preconditions are defined based on

partial correctness semantics, while weakest (non-liberal, that is, strict) preconditions

are based on total correctness semantics. We use the usual definition as in Apt et al.,

2009, Def. 3.10, p. 86.

Definition 3.18 (Weakest (Liberal) Preconditions). Set W be a workflow and Φ be a

set of states. We define the weakest liberal precondition of W regarding Φ as follows:

wlp(W,Φ) = {σ | JW Kpart ,S (σ) ⊆ Φ} .

Correspondingly, the weakest precondition of W regarding Φ is:

wp(W,Φ) = {σ | JW Ktot ,S (σ) ⊆ Φ} .

Weakest (liberal) preconditions, according to this definition, define sets of states. Asser-

tions can be used to define sets of states, too, and by the Theorem of Definability there

exists a corresponding assertion for every precondition (Apt et al., 2009, Theorem 3.4,

p. 87). Therefore, for every weakest (liberal) precondition wlp(W, J p KS) there exists a

corresponding assertion wlp(W,p) such that wlp(W, J p KS) = J wlp(W,p) KS . The same

is true for wp(W, J p KS).

Apt et al. prove completeness in two steps:

(1) They show that `K {wlp(W, q)}W {q} holds for every wlp (and wp). This proof

is done for every workflow statement, or, in case of Apt et al.’s work, While

language statement.

(2) They show that whenever a workflow is correct with respect to some p, q, that

is, |=K {p}W {q}, then it is provably so, `K {p}W {q}. This is true because

3.4: Proof Calculus 53

|=K {p}W {q} if and only if p ⇒ wlp(W, q) (Apt et al., 2009, Weakest Liberal

Precondition Lemma, p. 87), `K {wlp(W, q)}W {q} (step 1), and the rule of con-

sequence (Apt et al., 2009, p. 90).

As the proof of completeness (2) does not rely on workflow statements directly, but on

the general argument of `K {wlp(W, q)}W {q} (and wp), it is sufficient for this thesis to

show that argument (1) is indeed true for the new workflow statements, namely service

call and foreach loop. To this end, we define and prove a Weakest (Liberal) Precondition

Lemma to relate the weakest (liberal) preconditions of these statements to assertions.

Then, we prove `K {wlp(W, q)}W {q} (and wp) for the new statements. As this is step

(1) of the overall proof of completeness, this concludes the proof of Theorem 3.17. For

more details on the different steps of this proof and proofs for the standard workflow

statements, we refer to Apt et al. 2009, p. 89-91.

Lemma 3.19 (Weakest (Liberal) Preconditions of Workflow Elements). We use vari-

able, service, and assertion names as before. Then the following statements hold:

Service Call

wlp(u := S(v), q)

⇔ ∀w : postS [i := v, o := w]⇒ q[u := w]

and

wp(u := S(v), q)

⇔ preS [i := v] ∧ ∀w : (postS [i := v, o := w]⇒ q[u := w])

Take

wlp(take(a,A), q)

⇔ ∀b ∈ A : q[a := b, A := A \ {b}]

and

wp(take(a,A), q)

⇔ A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]

54 Chapter 3: Workflow Descriptions

Foreach

wlp(foreach a ∈ A do W od, q) ∧A 6= ∅
⇒ wlp(take(a,A);W,wlp(foreach a ∈ A do W od, q))

and

wlp(foreach a ∈ A do ,W od, q) ∧A = ∅
⇒ q

and

wlp(foreach a ∈ A do ,W od, q)

⇔ wp(foreach a ∈ A do ,W od, q)

Proof. We prove the assertions for all three workflow statements separately.

Service Call

As a reminder, the conditions of the transition rule are:

σ |=K preSvc [i := v] (3.10)

σ′ |=K postSvc [i := v, o := u] (3.11)

∀x ∈ Var \ {u} : σ(x) = σ′(x) (3.12)

For total correctness, by definition,

wp(u := S(v), J q KS) = {σ | Ju := S(v) Ktot ,S (σ) ⊆ J q KS}
and

wp(u := S(v), q)

⇔ preS [i := v] ∧ ∀w : postS [i := v, o := w]⇒ q[u := w] .

Let σ ∈ J preS [i := v] ∧ ∀w : postS [i := v, o := w] ⇒ q[u := w] KS . Then, by the

transition rule for service calls, there is 〈u := S(v), σ〉 →S 〈E, σ′〉 with σ′ ∈ J q KS .

If σ 6∈ J preS [i := v]∧∀w : postS [i := v, o := w]⇒ q[u := w] KS , then we distinguish

two cases: If σ 6∈ J pre[i := v]S KS , by the transition rule, the workflow blocks, that

is, Ju := S(v) Ktot(σ) = {⊥}, and {⊥} 6⊆ J q KS . If σ 6∈ J∀w : postS [i := v, o :=

w] ⇒ q[u := w] KS (but σ ∈ J pre[i := v]S KS), then there exist σ′ and w such that

σ′ |=K postS [i := v, o := w] ∧ ¬q[u := w], and 〈u := S(v), σ〉 →S 〈E, σ′〉, but

σ′ 6∈ J q KS .

3.4: Proof Calculus 55

For partial correctness, by definition,

wlp(u := S(v), J q KS) = {σ | Ju := S(v) Kpart ,S (σ) ⊆ J q KS}
and

wlp(u := S(v), q)

⇔ ∀w : postS [i := v, o := w]⇒ q[u := w] .

Let σ ∈ J ∀w : postS [i := v, o := w] ⇒ q[u := w] KS . Then, we distinguish two

cases: With σ ∈ J pre[i := v]S KS , by the transition rule for service calls, there

is 〈u := S(v), σ〉 →S 〈E, σ′〉 with σ′ ∈ J q KS . With σ 6∈ J pre[i := v]S K, by

the transition rule, the workflow blocks, that is, Ju := S(v) Kpart ,S (σ) = ∅, and

∅ ⊆ J q KS .

If σ 6∈ J ∀w : postS [i := v, o := w] ⇒ q[u := w] KS (but σ ∈ J pre[i := v]S KS),

then there exist σ′ and w such that σ′ |=K postS [i := v, o := w] ∧ ¬q[u := w], and

〈u := S(v), σ〉 →S 〈E, σ′〉, but σ′ 6∈ J q KS .

Take For total correctness, by definition,

wp(take(a,A), J q KS) = {σ | J take(a,A) Ktot ,S (σ) ⊆ J q KS}
and

wp(take(a,A), q)

⇔ A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}] .

Let σ ∈ JA 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}] KS and σ′ a state such that

〈take(a,A), σ〉 →S 〈E, σ′〉. From the transition axiom for take we know that

whenever there is a b such that

σ′(b) ∈ σ(A)

then

σ′(A) = σ(A) \ σ′(b) ,

or, comparing the states directly,

∀b s.t. σ′(b) ∈ σ(A) : σ′ = σ[A := A \ {b}] . (3.13)

Because

σ |=K

(
A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]

)
and therefore also

∀b s.t. σ′(b) ∈ σ(A) :

σ |=K

(
A 6= ∅ ∧ q[a := b, A := A \ {b}]

)

56 Chapter 3: Workflow Descriptions

as well as

∀b s.t. σ′(b) ∈ σ(A) :

σ |=K q[a := b, A := A \ {b}]

by substitution

∀b s.t. σ′(b) ∈ σ(A) :

σ[A := A \ {b}] |=K q[a := b] .

Now by (3.13),

∀b s.t. σ′(b) ∈ σ(A) :

σ′ |=K q[a := b] ,

and because this holds for every b in the set Var , including the original a,

σ′ |=K q

and therefore σ′ ∈ J q KS .

For partial correctness, by definition,

wlp(take(a,A), q)

⇔ ∀b ∈ A : q[a := b, A := A \ {b}] .

Let σ ∈ J∀b ∈ A : q[a := b, A := A \ {b}] KS . Then either σ(A) 6= ∅, and the proof

works the same as for total correctness; or σ = ∅, and by the transition rule the

workflow blocks, that is,

J take(a,A) Kpart ,S (σ) = ∅ ,

and ∅ ⊆ J q KS .

Foreach, empty set By definition of weakest (liberal) preconditions,

wlp(foreach a ∈ A do W od, J q KS)

is

{σ | J foreach a ∈ A do W od KS (σ) ⊆ J q KS}

and by semantics of foreach for an empty set A = ∅,

⊆ J q KS .

3.4: Proof Calculus 57

Therefore

wlp(foreach a ∈ A do W od, J q KS) ∩ JA = ∅ KS ⊆ J q KS .

By the Theorem of Definability (Apt et al., 2009, Theorem 3.4, p. 87), we can

write this as assertion:

wlp(foreach a ∈ A do W od, q) ∧A = ∅ ⇒ q .

Foreach, non-empty set By definition of weakest (liberal) preconditions,

wlp(foreach a ∈ A do W od, J q KS)

is

{σ | J foreach a ∈ A do W od KS (σ) ⊆ J q KS}

and by semantics of foreach for a non-empty set A 6= ∅,

⊆ {σ | J take(a,A);W KS (σ) ⊆ J p KS} ∩ JA 6= ∅ KS
s.t. J p KS = {σ′ | J foreach a ∈ A do W od KS (σ′) ⊆ J q KS} .

Now, by induction hypothesis,

⊆ {σ | J take(a,A);W KS (σ) ⊆ wlp(foreach . . . , J q KS)} ,

which is by definition of weakest (liberal) preconditions

⊆ wlp(take(a,A);W,wlp(foreach . . . , J q KS)) .

By the Theorem of Definability (Apt et al., 2009, Theorem 3.4, p. 87), we can

write this as assertion:

wlp(take(a,A);W,wlp(foreach a ∈ A do W od, q)) .

Now, we show that `K {wlp(W, q)}W {q} (and `K {wp(W, q)}W {q}) for all new pre-

conditions. This concludes the proof of Theorem 3.17. Generally, we need two different

proof calculi to prove partial and total correctness of a workflow (Apt et al., 2009, p. 70–

71). However, as the proof rules are almost the same, we talk about “the” proof calculus

only.

Proof. We prove `K {wlp(W, q)}W {q} (and `K {wp(W, q)}W {q}) by induction, using

workflows with proof axioms as base cases and workflows with proof rules as induction

steps.

58 Chapter 3: Workflow Descriptions

Service Call (wp) To show: `K {wp(u := S(v), q)}u := S(v) {q}. This is by defini-

tion of the weakest precondition for service calls:

`K {preS [i := v] ∧ ∀w : postS [i := v, o := w]⇒ q[u := w]}u := S(v) {q} ,

which is covered by the proof axiom for total correctness for service calls.

Service Call (wlp) To show: `K {wlp(u := S(v), q)}u := S(v) {q}. This is by defini-

tion of the weakest liberal precondition for service calls:

`K {∀w : postS [i := v, o := w]⇒ q[u := w]}u := S(v) {q} ,

which is covered by the proof axiom for partial correctness for service calls.

Take (wp) To show: `K {wp(take(a,A), q)} take(a,A) {q}. By definition of weakest

precondition for take, that is

`K {A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]} take(a,A) {q} ,

which is covered by the proof axiom for total correctness for take.

Take (wlp) To show: `K {wlp(take(a,A), q)} take(a,A) {q}. By definition of weakest

(liberal) precondition for take, that is

`K {∀b ∈ A : q[a := b, A := A \ {b}]} take(a,A) {q} ,

which is covered by the proof axiom for partial correctness for take.

Foreach To show: `K {wlp(foreach a ∈ A do W od, q)} foreach a ∈ A do W od {q}.
By induction hypothesis, we have

`K {wlp(take(a,A);W,wlp(for . . . , q))} take(a,A);W {wlp(for . . . , q)}
⇒ by Lemma 3.19 and rule of consequence

`K {wlp(for . . . , q) ∧A 6= ∅} take(a,A);W {wlp(for . . . , q)}
⇒ by foreach proof rule

`K {wlp(for . . . , q)} for . . . {wlp(for . . . , q) ∧A = ∅}
⇒ by Lemma 3.19, rule of consequence and A = ∅

`K {wlp(for . . . , q)} for . . . {q}

Apt et al. distinguish between proofs for partial and total correctness: For total cor-

rectness, termination has to be proven, that is, the alternate proof rule for while loops

with progress expressions and termination bounds has to be used. In our context, this is

not necessary, as foreach loops terminate by definition, as their semantics include the

reduction of the (finite) iteration set.

Chapter 4

Workflow Templates

Chapter 3 combines classical program verification, a flexible service market and on-

the-fly composition, and formalized domain knowledge. We provide a framework to

prove correctness of a composition, but we elaborate on automatic verification only

in Chapter 5, where we will do verification by solving a satisfiability problem. But

regardless of whether or not the process of verification can be automated, it has – up

to now – the following characteristics: Reasoning always has to include the complete

domain knowledge. As ontologies include predicates with no fixed interpretation, the

definition of correctness of a composition necessarily argues over all possible logical

structures, restricted by its ontology (→ Definition 3.12, Correctness of Compositions),

and therefore all possible interpretations of the predicates of the ontology.

Extrapolating from already existing real-world ontologies, we have to expect formalized

domain knowledge in the order of magnitude of up to tens of thousands of concepts and

predicates: While the QALLME Tourism ontology1 only contains a few dozen concepts

and roles, the e-commerce taxonomy of schema.org2, which is used by, e.g., Google,

contains more than 500 types and 800 properties.3 The prominently known medical

ontology OpenGALEN consists of tens of thousands of concepts and roles.4 These

numbers do neither include additional roles supported natively by OWL (such as sub-

classes, sub-roles, transitivity, and similar properties of roles, . . .) nor additional rule

sets.

From a logical point of view, the number of predicates matters most, as this is the

“uninterpreted” part. From a pragmatic point of view, the number of concepts matters

just as well, as we encode them using predicates. This is necessary to respect the

subtype relations from the ontology (→ Chapters 5 and 7). In comparison to pure

program verification, where verification conditions are often considered to be terms of

propositional variables, and/or consisting of at most linear algebra operators, this makes

1QALLME tourism ontology: http://qallme.fbk.eu, retrieved July 21, 2017.
2Good Relations ontology project: http://www.goodrelations-vocabulary.org, Schema.org e-

commerce taxonomy: http://www.schema.org, both retrieved July 21, 2017.
3http://schema.org/docs/schemas.html, retrieved July 21, 2017.
4OpenGALEN ontology: http://www.opengalen.org, retrieved July 21, 2017.

59

http://qallme.fbk.eu
http://www.goodrelations-vocabulary.org
http://www.schema.org
http://schema.org/docs/schemas.html
http://www.opengalen.org

60 Chapter 4: Workflow Templates

Figure 4.1: Instantiating correct templates replaces the need for composition verifi-
cation with a check for constraint rule compliance during the instantiation process

a huge difference regarding the state space a solver – or any other state space exploration

technique – has to cope with. Additionally, complex domain knowledge paves the way

to complex service descriptions, and, consequently, complex service compositions. But

in complex domains with extensive use of sub-classing, odds are that repeating patterns

of service compositions emerge.

There are two main motivations for such patterns, visualized in Figure 4.1: On the one

hand, the task may be as abstract as a generic sorting service, or a service providing a

learning algorithm. In this case, the composition – or workflow, or algorithm – itself is

even independent of the domain, but it can be used with concrete concepts of the domain.

On the other hand, a composition may be quite complex and comprise the expertise of

domain experts. However, while the overall workflow is very (domain) specific, the exact

services which are used in the composition are not necessarily predetermined. Instead,

it may be sufficient to use “a sorting service” or a “payment processing service”, without

going into the details.

Why is this relevant? In an on-the-fly context, the requirements of a service composition,

that is, the description of the service composition that should be delivered, are quite

specific. A user (end user or business user) would not request a “generic sorting service”

but a “service to sort data XY according to Z”. Therefore, even an abstract composition

is typically matched by a specific request. This leads to the idea of template compositions

(templates for short). In several programming paradigms like object oriented program-

ming (OO) and component-based software engineering (CBSE) the idea of templates is

quite prevalent. In C++, templates are an explicit programming construct to create

blueprints for, e.g., object-oriented classes. Java uses generics to introduce type vari-

ables, which can be used to implement template-style classes and methods. Template

ideas are supported either directly as language construct to create class structures, or

indirectly by using inheritance and subtyping, and are therefore built-in into every lan-

guage with a polymorphic typing system. Section 4.1 gives an introduction to template

approaches in the literature, both in programming and in process modeling.

In summary, we can conjecture the following: (a) The complexity of verification depends

not only on the complexity of the composition, but also on the size (and complexity)

4.1: Related Work 61

of the knowledge base; (b) While there may exist patterns for abstract tasks, concrete

requirements are always specific (instead of generic).

This enables us to make an important simplification in the process of verifying service

compositions: With abstract service compositions or templates, we define the abstract

part of the recurring task. We verify it at an abstract level, before we know any specific

requirements (though we can formalize abstract requirements, of course). To be able to

do that, we collect all side-conditions (or constraints) which are necessary to prove the

correctness of the composition. With a verified template, and a concrete requirements

present, we can instantiate the template with concrete services in the current domain.

While instantiation itself is nothing new, our approach allows for instantiations which

are correct by construction, as long as the collected constraints are not violated. The key

advantage is that the instantiation – a service composition with the full expressiveness of

the knowledge base of the current domain – does not need to be verified again. Instead,

a check of the constraints takes place within the ontology itself, which is a task that

can typically be reduced to a concept-inclusion check of specialized reasoners (Schmidt-

Schauß and Smolka, 1991, and, e.g., Tsarkov and Horrocks, 2006).

We can use this technique not only to model abstract tasks within a domain, but also

domain-independently. Then, we define an abstract domain which only includes the

concepts and rules absolutely necessary to specify and verify the template. After that,

an instantiation to a compatible target domain leverages the reuse of the template, again

with instantiations which are correct by construction.

The remainder of this chapter, after giving an introduction to templates in general

and templates in verification (Section 4.1), supplements the syntax and semantics of

workflows to be able to deal with service placeholders, and therefore defining a template

language (Section 4.2). Section 4.3 defines parameterized correctness for templates,

while Section 4.4 updates the proof calculus, where necessary. Section 4.5 formalizes

the instantiation of templates and elaborates on the constraints, which guarantee a

correctness-by-construction of the instantiated service compositions.

The core elements of this chapter, especially the definitions leading to Theorem 4.24,

the theorem itself and its proof have been published in Walther and Wehrheim (2015)

and its journal version Walther and Wehrheim (2016).

4.1 Related Work

Workflow templates, where certain parameters can be instantiated with actual values

into an actual workflow, are common on the level of programming languages. There,

they take the form of, e.g., C++ Templates or Java Generics, where type variables are

used in code, which are instantiated with concrete types whenever a new object of a

parameterized class is created. Aside from explicit language constructs for template

62 Chapter 4: Workflow Templates

elements, type hierarchies allow for the use of abstract programs and instantiations with

concrete (sub-) types as well.

Design patterns for common programming problems are the most prominent use of this

principle, not only in programming (Gamma et al., 1994), but also in workflow modeling

(van der Aalst and ter Hofstede, 2012). These patterns, as well as function pointers or

the introduction of lambda expressions to (imperative) programming languages, allow

for rather flexible template programs, where not only types, but also function calls can

be substituted by parameters.

Slightly more abstract, but related, is the topic of code variability. Here, function call

placeholders (or contracts) are not only substituted by concrete versions, but they are

also described using pre- and postconditions (e.g., Soleimanifard and Gurov, 2015).

Product line analysis revolves around the same topics, though the ultimate goal is not

template specification but configuration analysis (Apel et al., 2013). Similarly, delta-

oriented programming verifies a “core” program (or template) and different program

refinements (“deltas”), combining the results (Hähnle and Schaefer, 2012).

Sirin, Parsia, and Hendler propose to use the existing service composition language

OWL-S to model templates. To this end, they introduce a new atomic workflow step

to represent an abstract process, in contrast to an atomic process. An OWL-S atomic

process is the equivalent of a service call, and it is used in the process description.

An atomic process itself is linked to a WSDL description and annotated with pre- and

postconditions. Therefore the abstract process is effectively a service placeholder. Using

OWL-S process descriptions, it is possible to define workflow templates mixing both

concrete services, or atomic processes, and service placeholders, or abstract processes

(Sirin et al., 2005).

Gil, Groth, Ratnakar, and Fritz propose workflow templates in the context of executing

computational experiments. While their approach is based on command line applications

as “services”, the principle can be adapted to Web services. However, their focus is on the

treatment of data set collections and workflow repetitions with changing parameter sets.

They build upon ontologies (using OWL) to model a custom workflow template language,

treating complex input and output data as variables and using custom postprocessing

to translate a template into a workflow instance. As an additional restriction, they do

not use loops, but only sequences, conditionals and parallel execution (Gil et al., 2009,

2011).

Fleuren, Götze, and Müller follow a similar approach, without using ontologies but

creating a custom specification language. However, their focus is on instantiating work-

flows with a variable number of parallel sub-processes (or services), thus their workflow

languages revolves around parameterizing parallel execution constructs (Fleuren et al.,

2014).

4.2: Syntax and Semantics 63

Summarizing, for template approaches it is also quite common to cover two of the

three core topics of semantic service descriptions, workflow semantics, and knowledge

formalization, but combining all three with an underlying theory is an open issue.

4.2 Syntax and Semantics

A service composition template is, at a first glance, just another service composition,

but using “placeholders” instead of real service descriptions. However, this is just one

of two differences. From a syntactical point of view, this is indeed correct: A template,

by its very idea, makes use of service placeholders, because the real services will only be

determined in some kind of instantiation. All control from structures remain the same.

But instead of introducing a new workflow statement to deal with service placeholders,

we will define service placeholders as a specific type of regular service descriptions. This

way, the workflow language syntax does not need to be changed.

Definition 4.1 (Service Placeholder). Let K = (C,P,v, R) be the knowledge base

of the current domain, with TK the set of types associated with this domain. Let

SpSig = Sp : T1 × · · · × Tk → Tk+1 × · · · × Tn be the signature of a service Sp. Then

SpDesc = (SpSig , ISp , OSp , preSp , postSp)

denotes the service placeholder Sp, with

• the service placeholder’s signature SpSig ,

• input variables ISp with |ISp | = k,

• output variables OSp with |OSp | = (n− k),

• a predicate preSp with free(preSp) ⊆ ISp ,

• a predicate postSp with free(postSp) ⊆ (ISp ∪OSp),

• and ISp ∩OSp = ∅.

We assume ISp and OSp to be ordered such that variable names uniquely correspond

to a position in SpSig . We denote the set of all services placeholders of a domain with

knowledge base K as SPK .

Pre- and postconditions of service placeholders are predicates, in contrast to the pre-

and postconditions of services, which are terms. These predicates are not part of the

ontology, and therefore cannot be part of terms (as ΦK is defined based on the ontology),

but as they will be an important part of workflow templates, we supplement the set of

formulas by these placeholder predicates.

Definition 4.2 (Formulas with Placeholder Predicates). For a knowledge base K and

a set of formulas ΦK , let

Φsp
K = ΦK ∪ {presp , postsp | sp ∈ SPK} .

64 Chapter 4: Workflow Templates

The following service placeholder denotes a service which retrieves additional data for a

given input.

Example 4.1 (Service Placeholder Example). For readability, we specify the service

placeholder in table structure.

Placeholder Inputs Outputs

Acquire x : InputData y : OutputData

In contrast to services, there are not pre- and postconditions, as they are represented

automatically by the predicates preAcquire and postAcquire .

For services, pre- and postconditions are terms built from the vocabulary of the knowl-

edge base, while for placeholders, they are additional predicates. While the syntax of

workflows can be directly reused, the introduction of service placeholders has a major

impact on the semantics.

Please note, that the definition of service placeholders and actual services differ only in

the pre- and postcondition. The behavior of an (actual) service is determined by its

pre- and postconditions, that is, by logical formulas that capture the characteristics of

the service’s input and output data. A placeholder is different: Here, pre- and post-

condition are predicates. In other words: A service placeholder may accept or generate

basically arbitrary data, as the pre- and postcondition predicates are not derived from

the domain ontology, and they are therefore totally unrestricted when it comes to their

interpretation.

This circumstance leads us to introduce two additional elements: At first, it is of no

use to define correctness for a template with just placeholders. Therefore, we introduce

a mapping π from placeholders to services, which will become useful in the definition

of correctness as well as the definition of template instantiations in Section 4.5. At

second, we introduce workflow templates as a variant of workflows, and define their

semantics using the service mapping π. Using π, we can map a template to every

possible instantiation. Our only assumption about π is that it respects the signature of

the service placeholders.

Definition 4.3 (Service Mapping). Let K = (C,P,v, R) be the knowledge base of the

current domain, with TK the set of types associated with this domain. Then

π : SPK → SVCK

4.2: Syntax and Semantics 65

denotes the service mapping which maps service placeholders to actual services within

the domain of K, with the property that it respects signatures, that is,

if π(sp) = svc and sp : T1 × · · · × Ti → Ti+1 × · · · × Tn
then svc : T ′1 × · · · × T ′i → T ′i+1 × · · · × T ′n
with Tk v T ′k for 1 ≤ k ≤ i
and T ′k v Tk for i < k ≤ n .

The service mapping respects the Liskov substitution principle (Liskov and Wing, 1994).

Section 4.5.2 elaborates this topic in more details, when intra-domain service mapping

is extended to mapping between two different domains.

The syntax of workflows does not change for workflow templates. The only difference

is that service calls do not necessarily use the names of services, but also of service

placeholders.

The service mapping maps descriptions of service placeholders to descriptions of actual

services, but as we reason about formulas we are additionally interested in replacing

pre- and postconditions of service placeholders (in a formula) with their counterparts of

the mapped services. Therefore, we lift the service mapping from service descriptions to

formulas.

Definition 4.4 (Placeholder Predicate Replacement). Let K = (C,P,v, R) be the

knowledge base of the current domain. We lift π from SPK → SVCK to Φsp
K → ΦK

such that for ϕ ∈ Φsp
K

π(ϕ) =



preπ(sp) if ϕ = presp

postπ(sp) if ϕ = postsp

P (x, y) if ϕ = P (x, y) and P ∈ PK
F (x, y) if ϕ = F (x, y) and F ∈ FK
¬π(ϕ1) if ϕ = ¬ϕ1

π(ϕ1) ∨ π(ϕ2) if ϕ = ϕ1 ∨ ϕ2 .

Having a connection of service placeholders and services, we can define a workflow

template.

66 Chapter 4: Workflow Templates

Definition 4.5 (Workflow Template). Let K = (C,P,v, R) be the knowledge base of

the current domain. The following rules define the syntax of a workflow template WT :

WT ::= [l] skip

| [l] u := t

| WT 1; WT 2

| [l] (uj+1, . . . , uk) := S(i1, . . . , ij)

| [l] if B then WT 1 else WT 2 fi

| [l] while B do WT 1 od

| [l] foreach a ∈ A do WT 1 od

with u, v, a, A ∈ Var , t ∈ ΦK , type(t) = type(u), type(A) = set T, type(a) = T, T ∈ TK ,

B ∈ ΦK , and S ∈ SVCK ∪ SPK . Additionally, we define exactly one final label [end]

for a workflow template WT .

The difference to workflow definitions (→ Definition 3.3, Workflow) is that names for

service calls can not only refer to real services, but also to service placeholders. The

semantics of workflow templates, in the presence of service placeholders, now depends

on the actual services which replace the placeholders. Therefore, we change the workflow

semantics from Definition 3.8 by adding the mapping function as an additional parame-

ter. This implies, of course, that the exact semantics is not determined until a concrete

π is given. Additionally, we parameterize transitions with π and use it in the application

condition of some of the rules.

Definition 4.6 (Termination, Blocking, and Divergence of Workflow Templates). A

transition sequence for workflow templates is a finite or infinite sequence of configurations

〈WT 1, σ1〉 →π
S · · · →π

S 〈WT i, σi〉 . . . A computation of a workflow template WT starting

in σ is a transition sequence which either (a) cannot be extended, or (b) is infinite. A

computation terminates, if it cannot be extended and ends with 〈E, τ〉, that is, the empty

workflow. A computation blocks, if it cannot be extended, but ends with 〈WT ′, τ〉 and

WT ′ 6≡ E. A computation diverges, if it is infinite.

As for standard workflows, we use →π∗
S to denote the transitive closure of →π

S .

This implies, that it depends on the actual service placeholder mapping whether or not

a transition rule (or axiom) is valid for a given workflow.

Definition 4.7 (Transition Axioms and Rules for Templates). For a knowledge base

K, let u, v, a, A ∈ Var , t ∈ ΦK , type(t) = type(u), type(A) = set T, type(a) = T, T ∈
TK , B ∈ ΦK , and Svc ∈ SVCK ∪ SPK . We define the operational semantics for a

parameterized workflow template WT and state σ with a service mapping π inductively

as follows:

4.2: Syntax and Semantics 67

Skip 〈skip, σ〉 →π
S 〈E, σ〉

Assignment 〈u := t, σ〉 →π
S 〈E, σ[u := σ(t)]〉

Take 〈take(a,A), σ〉 →π
S 〈E, σ′〉

if σ′(a) ∈ σ(A), σ′(A) = σ(A) \ {σ′(a)},
and σ(x) = σ′(x) for x 6= A, x 6= a

Sequential comp.
〈WT 1, σ〉 →π

S 〈WT 2, τ〉
〈WT 1;WT , σ〉 →π

S 〈WT 2;WT , τ〉

Cond. (then) 〈if B then WT 1 else WT 2 fi, σ〉 →π
S 〈WT 1, σ〉

if σ |=S π(B)

Cond. (else) 〈if B then WT 1 else WT 2 fi, σ〉 →π
S 〈WT 2, σ〉

if σ |=S ¬π(B)

While (loop) 〈while B do W od, σ〉 →π
S 〈WT ; while B do WT od, σ〉

if σ |=S π(B)

While (end) 〈while B do WT od, σ〉 →π
S 〈E, σ〉

if σ |=S ¬π(B)

Foreach (loop) 〈foreach a ∈ A do WT od, σ〉
→π

S 〈take(a,A);WT ; foreach a ∈ A do WT od, σ〉
if σ |=S A 6= ∅

Foreach (end) 〈foreach a ∈ A do WT od, σ〉 →π
S 〈E, σ〉

if σ |=S A = ∅

Service call 〈u := Svc(v), σ〉 →π
S 〈E, σ′〉

if σ |=S π(preSvc [i := v]),

σ′ |=S π(postSvc [i := v, o := u]),

and ∀x 6= u : σ′(x) = σ(x)

The transition rule for service calls uses the pre- and postcondition from SSig of the

service S. As this is a template semantics, “services” include “service placeholders”.

Therefore, if S refers to an actual service, pre and post are terms from the service’s

signature. If S refers to a service placeholder, pre and post are predicates from the

service placeholder’s signature. In the second case, the service mapping π replaces them

with the terms from the actual service which belongs to the placeholder.

With a workflow semantics which is parameterized with a placeholder/service mapping

we can already formalize service composition templates, under one important condition:

Their description stems from a given domain (and is backed by a formalized knowledge

base), and every logical formula contains only vocabulary from the ontology and the

service placeholder predicates (their pre- and postcondition predicates).

For the correctness of templates, it is not possible to show correctness for all possible

instantiations directly. Assume two different services S1 and S2 accept the same input

(have the same precondition), but deliver the opposite output (postS1
= ¬postS2

). A

template is instantiated using service S1, and the resulting composition is correct. As-

sume the correctness depends on the postcondition of S1. Then, another instantiation

of the same template, but with service S2 instead of S1 cannot be correct. Therefore,

correctness proofs directed at “all possible instantiations”, that is, using service place-

holders as real services, will fail. To address this issue, and to make the idea of templates

68 Chapter 4: Workflow Templates

feasible again, we introduce one important element to templates, in comparison to pure

service compositions: Constraints.

Most likely, service placeholders in a workflow are not as arbitrary as they may appear

on a very abstract level. Every service placeholder is part of the workflow on purpose,

so its behavior – therefore, its postcondition – is required to reach the goal of the overall

composition. Using just a generic predicate to represent a placeholder’s postcondition,

this purpose is only very loosely fixed, namely only in terms of a signature. Predicates

in a knowledge base, on the contrary, are limited in their final interpretations by their

context, given by ontology-specific properties (as transitivity), inheritance, or rule com-

pliance. In a template, we add such constraints artificially. We allow for constraint

rules, which relate predicates used in the workflow. Of a special importance are place-

holder pre- and postconditions. Constraint rules are the tools to restrict their possible

interpretation in exactly such ways as the template designer has in mind.

Example 4.2 (Constraint Rule for Service Placeholders). The service placeholder from

Example 4.1 accepts some input and delivers the corresponding output.

Placeholder Inputs Outputs

Acquire x : Element y : Value

Assume a relation hasValue : Element×Value in the template ontology. We want the

placeholder to acquire only outputs which correspond to the input, and use the constraint

rule

∀x, y : preAcquire(x) ∧ postAcquire(x, y)⇒ hasValue(x, y)

to formalize it.

As the example makes clear, constraint rules can be combined with postcondition pred-

icates of service placeholders, and therefore restrict possible interpretations. This will

make a notion of correctness for all possible services for a placeholder feasible again, as

long as the constraint rules are respected.

We now define a service composition template, before the following sections go into the

details of correctness.

Definition 4.8 (Service Composition Template). Let K = (C,P,v, R) be the know-

ledge base of the current domain. A service composition template (or template for short)

(SctDesc ,WT ,CR) consists of a service description SctDesc = (SctSig , ISct , OSct , preSct ,

postSct), a workflow template WT , and a set of constraint rules CR ⊆ Φsp
K .

As Φsp
K also contains the pre- and postcondition predicates of service placeholders, con-

straint formulas can combine placeholders with actual ontological knowledge.

4.3: Partial and Total Correctness 69

The following example represents a generic filtering service, which accepts a set of input

data and returns the subset that matches an arbitrary filter criterion, defined by a service

placeholder. For this example, we create an ontology which contains just the concepts

and roles we need to model the template.

Example 4.3 (Abstract Filter Ontology). Let KT = (CT , PT ,vT , RT) define the tem-

plate’s ontology. The role “is target element” describes the property of the set elements

which shall be used as a filter. The role “is target value” describes the predicate which

provides the actual filter criterion.

CT = {Element,Value}
PT = {hasValue : Element×Value ,

isTargetElement : Element×Bool ,

isTargetValue : Value×Bool}
vT= {}
RT = {functional(hasValue), functional(isTargetElement),

functional(isTargetValue)}

The predicates are functional to guarantee exactly one pair for any given element and

output value.

The template makes use of this ontology.

Example 4.4 (The Filter Service Composition Template). The Filter template ac-

cepts a set of input data and delivers the subset that matches a filter criterion. This

criterion is not directly linked to the input data, but to another type, which has to be

fetched first. Figure 4.2 shows the workflow.

4.3 Partial and Total Correctness

The semantics of workflows and workflow templates differ in the use of the service map-

ping as a parameter. Consequently, we have to adapt the partial and total correctness

semantics of workflow templates. Basically, both semantics are still a mapping from a

set of starting states to a set of possible final states, according to the transitive closure

of the transition relation →π∗
S . Their definitions do not significantly differ from their

workflow counterparts, with the exception that the transition between configurations is

not only parameterized with a logical structure, but also with a service mapping, as this

mapping is part of the template semantics.

Definition 4.9 (Partial Correctness Semantics of Workflow Templates). Let WT be a

workflow template and σ ∈ Σ be a state. We define the partial correctness semantics of

workflow templates as a mapping

J WT Kπpart ,S : Σ→ 2Σ

70 Chapter 4: Workflow Templates

Template Filter

Inputs A : set Element

Outputs B : set Element

Precond. ∀a ∈ A : preAcquire(a)

Postcond. B = {b ∈ A | isTargetElement(b)}

Constraints ∀x, y : postAcquire(x, y) ∧ isTargetValue(y)⇒ isTargetElement(x)

∀x, y : postAcquire(x, y) ∧ ¬isTargetValue(y)⇒ ¬isTargetElement(x)

Workflow

Z := A;
B := ∅ ;
foreach z ∈ Z do

y := Acquire(z) ;
if isTargetValue(y) then

B := B ∪ {z}
else

skip
fi

od

Figure 4.2: The Filter template to filter a set

with

J WT Kπpart ,S(σ) = {τ | 〈WT , σ〉 →π∗
S 〈E, τ〉} .

Definition 4.10 (Total Correctness Semantics of Workflow Templates). Let WT be a

workflow template and σ ∈ Σ be a state. We define the total correctness semantics of

workflow templates as a mapping

J WT Kπtot ,S : Σ→ 2Σ∪{⊥}

with

J WT Kπtot ,S(σ) = J WT Kπpart ,S(σ) ∪ {⊥ |WT diverges or blocks} .

As with semantics of workflows, we write J WT KπS to denote both partial and total

correctness semantics, whenever appropriate.

Correctness of service compositions is defined only over logical structures which adhere

to the rules of the underlying knowledge base, that is, only those structures that allow

for a tautological interpretation of R for a given K = (C,P,v, R) (→ Definition 3.12,

Correctness of Compositions). For service composition templates with the presence

of service placeholders and therefore potentially unrestricted pre- and postcondition

predicates, we introduced constraint rules to add intended relationships between the

behavior of a service and the overall outcome of the composition. When it comes to

correctness, from a designer’s perspective, these constraints have to be treated as facts,

that is, they have the same role as the rules encoded in the knowledge base of the domain.

4.4: Proof Calculus 71

In other words, in a definition of correctness, we only consider logical structures which

adhere not only to the knowledge base, but to the constraint rules of the template as

well. Additionally, correctness can only by defined over all possible instantiations π.

Definition 4.11 (Correctness of Composition Templates). Let K = (C,P,v, R) be the

knowledge base of the current domain. Let (SctDesc ,WT ,CR) be a composition template

from that domain with a description SctDesc = (SctSig , ISct , OSct , preSct , postSct). The

composition template is correct with respect to its pre- and postcondition, if and only if

∀π,∀S with S |= K and S |= CR : J WT KπS(Jπ(preSct) KS) ⊆ Jπ(postSct) KS .

Correctness is always partial or total correctness (depending on the semantics). Follow-

ing Hoare-style notation, we write |=CR
K {preSc}WT {postSc} to denote that a workflow

template WT is correct with respect to this definition under K and the constraint

rules CR.

Again, for easier reading, we will sometimes use the name of the composition template

instead of the workflow template, that is, instead of

|=CR
K {preSct}WT {postSct}

for (SctDesc ,W) with SctDesc = (SctSig , ISct , OSct , preSct , postSct)

we just write

|=CR
K {preSct}Sct {postSct} .

4.4 Proof Calculus

The semantics of service composition templates (or, more precisely, workflow templates)

differs from the semantics of service compositions (or workflows) only slightly. While

the syntax is basically the same (service placeholders are additionally allowed for service

calls, and their pre/post predicates can be used in terms), their semantics are the same

as the semantics of workflows, but parameterized with a service mapping. However,

technically it is a different semantics, and to provide a consequent logical foundation,

we have to adapt our proof rules from Section 3.4. We also have to revise the proofs of

soundness and correctness slightly.

4.4.1 Axioms and Rules

The proof calculus for correctness of workflows is defined on a syntactical level. Work-

flows and workflow templates have the same syntax, with two exceptions: For templates,

service placeholder names can be used for service calls, and service placeholder pre- and

72 Chapter 4: Workflow Templates

postcondition predicates can be used in logical expressions (e.g., in a conditional state-

ment). Therefore, the proof axioms and rules (1)–(8) do not need to change, as they

work completely on syntax (→ Definition 3.13, Parameterized Proof Calculus for Work-

flows). However, the hypothesis of rule (9), the rule of consequence, uses the validity of

implications for a given domain knowledge, and, consequently, under all possible logical

structures which are valid for this domain knowledge.

Correctness of a template is not defined over all logical structures (for a given domain

knowledge K), but restricted to structures which comply with the constraint rules of

the template. To reflect this, we adapt the definition of proof rule (9) as well as the

definition of restricted validity (→ Definition 3.14, Restricted Validity) to include the

constraints CR.

Definition 4.12 (Parameterized Proof Calculus for Workflow Templates). For a knowl-

edge base K, let p, q, t, pre, post ∈ Φsp
K , i, o, u, v, w, a,A ∈ Var , type(t) = type(u),

type(A) = set T, type(a) = T, T ∈ TK , B ∈ Φsp
K , Svc ∈ SVCK ∪ SPK , and W , W1,

W2 and WT workflow templates and CR the constraint rules of WT . Then the axioms

and rules of Definition 3.13 (Parameterized Proof Calculus for Workflows), with rule

(9) replaced by the following rule, define a parameterized proof calculus for workflow

templates.

(9) Consequence

|=CR
K (p⇒ r), {r}WT{s}, |=CR

K (s⇒ q)

{p}WT{q}
Definition 4.13 (Restricted Validity under Constraint Rules). Let K = (C,P,v, R)

be a knowledge base, (SpDesc ,W) ∈ SPK , and let p ∈ Φsp
K . We call p as valid under K

and CR, if it is valid (a tautology) for every logical structure S which adheres to the

knowledge base and the constraint rules CR of Sp, that is, the following holds:

∀S :
(
S |= R

)
∧
(
S |= CR) ⇒ S |= p .

In short, we write |=CR
K p.

Just as for workflows, we denote an existing proof with `CR
K .

Definition 4.14 (Provable Properties). Let K = (C,P,v, R) be a knowledge base, and

(SpDesc ,WT) a service composition template. Then

`CR
K {p}WT {q}

denotes that there exists a proof outline for WT under K and CR.

4.4.2 Soundness and Completeness

As an analogon to Theorem 3.16, we state soundness of the proof calculus for templates:

Whenever we prove a template as correct using the calculus, it is indeed correct by the

semantics-based definition of correctness.

4.4: Proof Calculus 73

Theorem 4.15 (Soundness of Proof Calculus for Templates). Let K = (C,P,v, R)

be the knowledge base of the current domain, and let (SctDesc ,WT ,CR) with SctDesc =

(SctSig , ISct , OSct , preSct , postSct) be a service composition template. If Sct can be proven

to be correct using the proof calculus (→ Definition 4.12), then it is correct according to

the definition of correctness of service composition templates (→ Definition 4.11):

`CR
K {preSct}WT {postSct} ⇒ |=CR

K {preSct}WT {postSct}

Consequently, we also adapt the completeness theorem: Whenever a template is seman-

tically correct, there exists a proof in the calculus.

Theorem 4.16 (Completeness of Proof Calculus). Let K = (C,P,v, R) be the knowl-

edge base of the current domain, and let (SctDesc ,WT ,CR) with SctDesc = (SctSig , ISct ,

OSct , preSct , postSct) be a service composition template. If Sct is correct according to

the definition of correctness of service composition templates (→ Definition 4.11), then

correctness can be proven using the proof calculus (→ Definition 4.12):

|=CR
K {preSct}WT {postSct} ⇒ `CR

K {preSct}WT {postSct}

The proofs of both theorems do not differ structurally from the proofs of the correspond-

ing theorems 3.16 and 3.17 for workflows. Instead of workflows, they work on workflow

templates and, consequently, using the semantics of workflow templates parameterized

with a service mapping π.

The fundamental difference to the corresponding proofs on workflows is the impact of

the service mapping parameter: While correctness of a workflow is always proved or

disproved for exactly one workflow, correctness of a workflow template is always shown

for all possible instantiations of that template. In other words, the proofs have to hold

for all mappings π which satisfy the ontology and the constraint rules CR of the workflow

template.

4.4.2.1 Proof of Soundness

As in the proof of Theorem 3.16 (Soundness of Proof Calculus), we prove soundness

of the calculus by induction. Again, following Apt et al. (2009) and extending their

calculus with axioms and rules for service calls, the take and foreach statements, and

the modified rule of consequence, we will only treat these here. To make the following

proofs more readable, we use service calls with exactly one input and one output.

Proof of Soundness of Proof Calculus for Templates. Let K be a knowledge base, Svc ∈
SVCK∪SPK , A, a, b, u, v, w ∈ Var , A of a set type, and q, t ∈ ΦK . Let π : SVCK → SPK
be a service mapping.

74 Chapter 4: Workflow Templates

Service Call

For total correctness, we need to show that

Ju := Svc(v) Kπtot ,S (J preSvc [i := v] ∧ ∀w s.t. postSvc [i := v, o := w] : q[u := w] KS)

⊆ J q KS

holds. As a reminder, the conditions of the transition rule are:

σ |=CR
K π(preSvc [i := v]) (4.2)

σ′ |=CR
K π(postSvc [i := v, o := u]) (4.3)

∀x ∈ Var \ {u} : σ(x) = σ′(x) (4.4)

For easier reading, let

p := preSvc [i := v] ∧ ∀w s.t. postSvc [i := v, o := w] : q[u := w] .

Now, let π be a service mapping and σ, σ′ be states such that σ |=CR
K π(p) and

〈u := Svc(v), σ〉 →π
S 〈E, σ′〉. By (4.3), we know that

σ′ |=CR
K π(postSvc [i := v, o := u]) (4.5)

and by (4.4) that the states are equal except for the valuation of u:

∃w : σ′ = σ[u := w] . (4.6)

The valuation of u is not arbitrary because of (4.3), therefore we choose w such

that

σ′(w) = σ′(u) (4.7)

and therefore

σ′ |=CR
K π(postSvc [i := v, o := u][u := w])

⇔ σ′ |=CR
K π(postSvc [i := v, o := w]) .

Now, (4.6) and (4.5) lead to

σ[u := w] |=CR
K π(postSvc [i := v, o := u])

and

σ |=CR
K π(postSvc [i := v, o := u][u := w]) .

By σ ∈ J p K and our knowledge about w in (4.7),

σ |=CR
K π(postSvc [i := v, o := u][u := w]) ∧ q[u := w]

4.4: Proof Calculus 75

and again

σ[u := w] |=CR
K π(postSvc [i := v, o := u]) ∧ q ,

therefore by (4.6),

σ′ |=CR
K π(postSvc [i := v, o := u]) ∧ q

Then also

σ′ |=CR
K q

and

σ′ ∈ J q KS .

For partial correctness, we need to show that

Ju := Svc(v) Kπpart ,S (J∀w s.t. postSvc [i := v, o := w] : q[u := w] KS)

⊆ J q KS

holds. Otherwise, the proof is the same.

For total correctness, if σ ∈ J p KS , then by (4.2), (4.3), and (4.4) there always

exists σ′ such that 〈u := Svc(v), σ〉 → 〈E, σ′〉.

For partial correctness, if σ ∈ J∀w s.t. postSvc [i := v, o := w] : q[u := w] KS and

σ 6∈ J pre[i := v]S K, then 〈u := Svc(v), σ〉 6→ 〈E, σ′〉, and the workflow blocks:

Ju := Svc(v) Kπpart ,S(σ) = ∅, and ∅ ⊆ J q KS .

Take

For total correctness, we need to show that

J take(a,A) Kπtot ,S(J p KS) ⊆ J q KS

with p := A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]. Let σ ∈ J p KS and

〈take(a,A), σ〉 →π
S 〈E, σ′〉. By semantics of take, we get for any b ∈ A:

σ′ = σ[a := b, A := A \ {b}] .

From σ ∈ J p KS , we get for all b ∈ A:

σ |=CR
K q[a := b, A := A \ {b}],

therefore, by the Substitution Lemma (Apt et al., 2009, Lemma 2.4, p. 47),

σ[a := b, A := A \ {b}] |=CR
K q

76 Chapter 4: Workflow Templates

and

σ′ |=CR
K q .

For partial correctness, we need to show the same with p := ∀b ∈ A : q[a := b, A :=

A \ {b}], and the proof is the same.

For total correctness, if σ ∈ J p KS , then by the condition of the transition rule for

take there always exists σ′ such that 〈take(a,A), σ〉 → 〈E, σ′〉.

For partial correctness, if σ ∈ J∀b ∈ A : q[a := b, A := A \ {b}] KS and σ 6∈ JA 6=
∅ KS , then 〈take(a,A), σ〉 6→ 〈E, σ′〉, and the workflow blocks: J take(a,A) Kπpart ,S(σ) =

∅, and ∅ ⊆ J q KS .

Foreach

To show: The premise of the foreach rule implies its consequence, that is:

|=CR
K {p ∧A 6= ∅} take(a,A);W {p}

implies |=CR
K {p} foreach a ∈ A do W od {p ∧A = ∅}

In contrast to while loops, foreach loops always have n executions of the loop

body, with |A| = n, that is, the size of the set A, and thus always terminate.

We include |A| = n in the assertions. By the premise, the semantics of take and

A /∈ change(W), we get

J take(a,A);W KπS(J p ∧A 6= ∅ ∧ |A| = n KS) ⊆ J p ∧ |A| = n− 1 KS . (4.8)

We use this property to show that J foreach a ∈ A do W od KπS(J p KS) ⊆ J p∧A =

∅ KS . The proof proceeds by induction.

Base case |A| = n = 0: By semantics of foreach, we have

J foreach a ∈ A do W od KπS(J p ∧A = ∅ KS) = J p ∧A = ∅ KS . (4.9)

Induction step |A| = n+ 1, and thus A 6= ∅. We use monotonicity of semantics

for this proof (Apt et al., 2009, Lemma 3.3, p. 62-63).

J foreach a ∈ A do W od KπS(J p ∧ |A| = n+ 1 KS)

= { by semantics of foreach and A 6= ∅ }
J take(a,A);W ; foreach a ∈ A do W od KπS(J p ∧ |A| = n+ 1 KS)

= { by Def. of sequential composition }
J foreach a ∈ A do W od KπS(J take(a,A);W KS(J p ∧ |A| = n+ 1 KS))

⊆ { by (4.8) and monotonicity of semantics }
J foreach a ∈ A do W od KπS(J p ∧#A = n KS)

⊆ { by induction hypothesis }
J p ∧A = ∅ KS

4.4: Proof Calculus 77

Rule of consequence By the premise of the rule, we have

JW KπS(J r KS) ⊆ J s KS ,

as well as valid implications p⇒ r and s⇒ q in K, therefore

JW KπS(J p KS) ⊆ JW KπS(J r KS) ⊆ J s KS ⊆ J q KS .

Thus, a proof outline constructed according to the proof calculus indeed shows correct-

ness of its workflow template for all possible service mappings π. The proof outline in

Figure 4.3 shows that the Filter template of Example 4.4 is indeed correct.

4.4.2.2 Proof of Completeness

As in the proof of Theorem 3.17 (Completeness of Proof Calculus), we prove complete-

ness with an intermediate step by defining weakest liberal preconditions and weakest

preconditions. Again, the important difference to the corresponding definitions in Chap-

ter 3 is the use of the semantics of workflow templates including its parameterization

with service mappings π.

Definition 4.17 (Weakest (Liberal) Preconditions). Set WT be a workflow template

and Φ be a set of states. We define the weakest liberal precondition of WT regarding Φ

as follows:

wlp(WT ,Φ) = {σ | JW Kπpart ,S(σ) ⊆ Φ} .

Correspondingly, the weakest precondition of WT regarding Φ is:

wp(WT ,Φ) = {σ | JW Kπtot ,S(σ) ⊆ Φ} .

Weakest (liberal) preconditions define sets of states. By the Theorem of Definability

there exists a corresponding assertion for every precondition (Apt et al., 2009, The-

orem 3.4, p. 87), and therefore we can represent weakest (liberal) preconditions with

corresponding assertions (cf. page 52). As in Section 3.4.3, we follow the proof structure

of Apt et al. and prove completeness in two steps:

(1) We show that `CR
K {wlp(WT , q)}WT {q} holds for every wlp (and wp). We do

this for the new service call, take and foreach statements.

(2) Apt et al. show that whenever a workflow is correct with respect to some p, q, then

it is provably so.

78 Chapter 4: Workflow Templates

{∀z ∈ A : preAcquire(z)}
{A ⊆ A ∧

(
∀u ∈ A : preAcquire(u)

)
∧ ∅ = {b ∈ A \A | isTargetElement(b)}}

Z := A;
{Z ⊆ A ∧

(
∀u ∈ Z : preAcquire(u)

)
∧ ∅ = {b ∈ A \ Z | isTargetElement(b)}}

B := ∅;
{inv : Z ⊆ A ∧

(
∀u ∈ Z : preAcquire(u)

)
∧B = {b ∈ A \ Z | isTargetElement(b)}}

foreach z ∈ Z do
{Z 6= ∅ ∧ inv}
{Z 6= ∅ ∧ ∀x ∈ Z :

(
preAcquire(x)∧ x ∈ A∧

(
∀u ∈ Z : preAcquire(u)

)
∧ (Z \ {x}) ⊆

A ∧B ∪ {x} = {b ∈ A \
(
(Z \ {x}) ∪ {x}

)
| isTargetElement(b)} ∪ {x}

)
}

take(z, Z);
{preAcquire(z) ∧ z ∈ A ∧

(
∀u ∈ Z : preAcquire(u)

)
∧ Z ⊆ A ∧B ∪ {z} = {b ∈

A \ (Z ∪ {z}) | isTargetElement(b)}}
y := Acquire(z);
{postAcquire(z, y) ∧ z ∈ A ∧

(
∀u ∈ Z : preAcquire(u)

)
∧ Z ⊆ A ∧B ∪ {z} = {b ∈

A \ (Z ∪ {z}) | isTargetElement(b)} ∪ {z}
if isTargetValue(y) then
{isTargetElement(z) ∧ z ∈ A ∧

(
∀u ∈ Z : preAcquire(u)

)
∧ Z ⊆ A ∧B ∪ {z} =

{b ∈ A \ (Z ∪ {z}) | isTargetElement(b)} ∪ {z}}
B := B ∪ {z}
{isTargetElement(z) ∧ z ∈ A ∧

(
∀u ∈ Z : preAcquire(u)

)
∧ Z ⊆ A ∧B = {b ∈

A \ (Z ∪ {z}) | isTargetElement(b)} ∪ {z}}
{inv}

else
{¬isTargetElement(z) ∧ z ∈ A ∧

(
∀u ∈ Z : preAcquire(u)

)
∧ Z ⊆ A ∧B = {b ∈

A \ (Z ∪ {z}) | isTargetElement(b)}}
{inv}
skip
{inv}

fi
{inv}

od
{Z = ∅ ∧ inv}
{B = {b ∈ A | isTargetElement(b)}}

Figure 4.3: Proof outline for correctness of the Filter template

Again, as the proof of completeness (2) does not rely on workflow template statements

directly, but on the general argument of `CR
K {wlp(WT , q)}WT {q} (and wp), it is

sufficient for this thesis to show that argument (1) is indeed true for the new workflow

statements (cf. page 52 for a summary of the formal argument). As for workflows, we

define and prove a Weakest (Liberal) Precondition Lemma to relate the weakest (liberal)

preconditions of the new workflow template statements with assertions. Then, we prove

`CR
K {wlp(WT , q)}WT {q} (and wp) for the new statements. As this is step (1) of the

overall proof of completeness, it concludes the proof of Theorem 4.16. For more details

on the different steps of this proof and proofs for the standard workflow statements, we

4.4: Proof Calculus 79

refer to Apt et al., 2009, p. 89-91.

Lemma 4.18 (Weakest (Liberal) Preconditions of Workflow Template Elements). We

use variable, service, and assertion names as before, esp. with S ∈ SVCK ∪ SPK and

π : SVCK → SPK . Then the following statements hold:

Service Call

wlp(u := S(v), q)

⇔ ∀w : π(postS [i := v, o := w])⇒ q[u := w]

and

wp(u := S(v), q)

⇔ π(preS [i := v]) ∧ ∀w : (π(postS [i := v, o := w])⇒ q[u := w])

Take

wlp(take(a,A), q)

⇔ ∀b ∈ A : q[a := b, A := A \ {b}]

and

wp(take(a,A), q)

⇔ A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]

Foreach

wlp(foreach a ∈ A do WT od, q) ∧A 6= ∅
⇒ wlp(take(a,A); WT ,wlp(foreach a ∈ A do WT od, q))

and

wlp(foreach a ∈ A do WT od, q) ∧A = ∅
⇒ q

and

wlp(foreach a ∈ A do WT od, q)

⇔ wp(foreach a ∈ A do WT od, q)

80 Chapter 4: Workflow Templates

Proof. We prove the assertions for all three workflow statements separately. For take

and loops, the proofs for wlp and wp are the same, and wlp can be substituted by wp.

For the service call they are slightly different.

Service Call

For total correctness, by definition,

wp(u := S(v), J q KS) = {σ | Ju := S(v) Kπtot ,S (σ) ⊆ J q KS}
and

wp(u := S(v), q)

⇔ π(preS [i := v]) ∧ ∀w : π(postS [i := v, o := w])⇒ q[u := w] .

Let σ ∈ Jπ(preS [i := v]) ∧ ∀w : π(postS [i := v, o := w]) ⇒ q[u := w] KS . Then,

by the transition rule for service calls, there is 〈u := S(v), σ〉 →π
S 〈E, σ′〉 with

σ′ ∈ J q KS .

If σ 6∈ Jπ(preS [i := v]) ∧ ∀w : π(postS [i := v, o := w]) ⇒ q[u := w] KS , then

we distinguish two cases: If σ 6∈ Jπ(pre[i := v]S) KS , by the transition rule, the

workflow blocks, that is, Ju := S(v) Kπtot ,S (σ) = {⊥}, and {⊥} 6⊆ J q KS . If σ 6∈
J∀w : π(postS [i := v, o := w]) ⇒ q[u := w] KS (but σ ∈ Jπ(pre[i := v]S) KS), then

there exist σ′ and w such that σ′ |=CR
K π(postS [i := v, o := w]) ∧ ¬q[u := w], and

〈u := S(v), σ〉 →π
S 〈E, σ′〉, but σ′ 6∈ J q KS .

For partial correctness, by definition,

wlp(u := S(v), J q KS) = {σ | Ju := S(v) Kπpart ,S (σ) ⊆ J q KS}
and

wlp(u := S(v), q)

⇔ ∀w : π(postS [i := v, o := w])⇒ q[u := w] .

Let σ ∈ J∀w : π(postS [i := v, o := w]) ⇒ q[u := w] KS . Then, we distinguish two

cases: With σ ∈ Jπ(pre[i := v]S) KS , by the transition rule for service calls, there

is 〈u := S(v), σ〉 →π
S 〈E, σ′〉 with σ′ ∈ J q KS . With σ 6∈ Jπ(pre[i := v]S) K, by

the transition rule, the workflow blocks, that is, Ju := S(v) Kπpart ,S (σ) = ∅, and

∅ ⊆ J q KS .

If σ 6∈ J∀w : π(postS [i := v, o := w])⇒ q[u := w] KS (but σ ∈ Jπ(pre[i := v]S) KS),

then there exist σ′ and w such that σ′ |=CR
K π(postS [i := v, o := w]) ∧ ¬q[u := w],

and 〈u := S(v), σ〉 →π
S 〈E, σ′〉, but σ′ 6∈ J q KS .

Take For total correctness, by definition,

wp(take(a,A), J q KS) = {σ | J take(a,A) Kπtot ,S (σ) ⊆ J q KS}
and

wp(take(a,A), q)

⇔ A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}] .

4.4: Proof Calculus 81

Let σ ∈ JA 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}] KS and σ′ a state such that

〈take(a,A), σ〉 →π
S 〈E, σ′〉. From the transition axiom for take we know that

whenever there is a b such that

σ′(b) ∈ σ(A)

then

σ′(A) = σ(A) \ σ′(b) ,

or, comparing the states directly,

∀b s.t. σ′(b) ∈ σ(A) : σ′ = σ[A := A \ {b}] . (4.10)

Because

σ |=CR
K

(
A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]

)
and therefore also

∀b s.t. σ′(b) ∈ σ(A) :

σ |=CR
K

(
A 6= ∅ ∧ q[a := b, A := A \ {b}]

)
as well as

∀b s.t. σ′(b) ∈ σ(A) :

σ |=CR
K q[a := b, A := A \ {b}]

by substitution

∀b s.t. σ′(b) ∈ σ(A) :

σ[A := A \ {b}] |=CR
K q[a := b] .

Now by (4.10),

∀b s.t. σ′(b) ∈ σ(A) :

σ′ |=CR
K q[a := b] ,

and because this holds for every b in the set Var , including the original a,

σ′ |=CR
K q

and therefore σ′ ∈ J q KS .

82 Chapter 4: Workflow Templates

For partial correctness, by definition,

wlp(take(a,A), q)

⇔ ∀b ∈ A : q[a := b, A := A \ {b}] .

Let σ ∈ J∀b ∈ A : q[a := b, A := A \ {b}] KS . Then either σ(A) 6= ∅, and the proof

works the same as for total correctness; or σ = ∅, and by the transition rule the

workflow blocks, that is,

J take(a,A) Kπpart ,S (σ) = ∅ ,

and ∅ ⊆ J q KS .

Foreach, empty set By definition of weakest (liberal) preconditions,

wlp(foreach a ∈ A do WT od, J q KS)

is

{σ | J foreach a ∈ A do WT od KπS (σ) ⊆ J q KS}

and by semantics of foreach for an empty set A = ∅,

⊆ J q KS .

Therefore

wlp(foreach a ∈ A do WT od, J q KS) ∩ JA = ∅ KS ⊆ J q KS .

By the Theorem of Definability (Apt et al., 2009, Theorem 3.4, p. 87), we can

write this as assertion:

wlp(foreach a ∈ A do WT od, q) ∧A = ∅ ⇒ q .

Foreach, non-empty set By definition of weakest (liberal) preconditions,

wlp(foreach a ∈ A do WT od, J q KS)

is

{σ | J foreach a ∈ A do WT od KπS (σ) ⊆ J q KS}

and by semantics of foreach for a non-empty set A 6= ∅,

⊆ {σ | J take(a,A); WT KπS (σ) ⊆ J p KS} ∩ JA 6= ∅ KS
s.t. J p KS = {σ′ | J foreach a ∈ A do WT od KπS (σ′) ⊆ J q KS} .

4.4: Proof Calculus 83

Now, by induction hypothesis,

⊆ {σ | J take(a,A); WT KπS (σ) ⊆ wlp(foreach . . . , J q KS)} ,

which is by definition of weakest (liberal) preconditions

⊆ wlp(take(a,A); WT ,wlp(foreach . . . , J q KS)) .

By the Theorem of Definability (Apt et al., 2009, Theorem 3.4, p. 87), we can

write this as assertion:

wlp(take(a,A); WT ,wlp(foreach a ∈ A do WT od, q)) .

Now, we show that `CR
K {wlp(WT , q)}WT {q} (and `CR

K {wp(WT , q)}WT {q}) for all

new preconditions. This concludes the proof of Theorem 4.16.

Again, from a general point of view, we need two different proof calculi to prove partial

and total correctness of a workflow template (Apt et al., 2009, p. 70–71). However, as

the proof rules are almost the same, we use only “the” proof calculus, with alternative

rules for the while loop, depending on the notion of correctness we are aiming at, as we

already do in the proof of Theorem 3.17.

Proof. We prove `CR
K {wlp(WT , q)}WT {q} (and `K {wp(WT , q)}WT {q}) by induc-

tion, using workflows with proof axioms as base cases and workflows with proof rules as

induction steps.

Service Call (wp) To show: `CR
K {wp(u := S(v), q)}u := S(v) {q}. This is by defini-

tion of the weakest precondition for service calls:

`CR
K {π(preS [i := v]) ∧ ∀w : π(postS [i := v, o := w])⇒ q[u := w]}u := S(v) {q} ,

which is covered by the proof axiom for total correctness for service calls.

Service Call (wlp) To show: `CR
K {wlp(u := S(v), q)}u := S(v) {q}. This is by

definition of the weakest liberal precondition for service calls:

`CR
K {∀w : π(postS [i := v, o := w])⇒ q[u := w]}u := S(v) {q} ,

which is covered by the proof axiom for partial correctness for service calls.

Take (wp) To show: `CR
K {wp(take(a,A), q)} take(a,A) {q}. By definition of weakest

precondition for take, that is

`CR
K {A 6= ∅ ∧ ∀b ∈ A : q[a := b, A := A \ {b}]} take(a,A) {q} ,

84 Chapter 4: Workflow Templates

which is covered by the proof axiom for total correctness for take.

Take (wlp) To show: `CR
K {wlp(take(a,A), q)} take(a,A) {q}. By definition of weakest

liberal precondition for take, that is

`CR
K {∀b ∈ A : q[a := b, A := A \ {b}]} take(a,A) {q} ,

which is covered by the proof axiom for partial correctness for take.

Foreach To show:

`CR
K {wlp(foreach a ∈ A do WT od, q)} foreach a ∈ A do WT od {q}. By in-

duction hypothesis, we have

`CR
K {wlp(take(a,A); WT ,wlp(for . . . , q))} take(a,A); WT {wlp(for . . . , q)}

⇒ by Def. 4.18 and rule of consequence

`CR
K {wlp(for . . . , q) ∧A 6= ∅} take(a,A); WT {wlp(for . . . , q)}

⇒ by foreach proof rule

`CR
K {wlp(for . . . , q)} for . . . {wlp(for . . . , q) ∧A = ∅}

⇒ by Def. 4.18, rule of consequence, and A = ∅
`CR
K {wlp(for . . . , q)} for . . . {q}

As it was already the case for workflows, in our context it is not necessary to prove

termination of loops additionally, as foreach loops terminate by definition, because

their semantics include the reduction of the (finite) iteration set.

4.5 Correct Instantiations

Up to now, we defined correctness both for a service composition and a composition

template. Correctness of a template is defined over all possible service mappings, but a

template is not a service composition itself, even if we replace the service placeholders

using a service mapping: A template has its own workflow language with its own seman-

tics, and it has additional constraint rules. To create service compositions with templates

as blueprint (which is their original motivation), we need to formalize an instantiation,

which maps workflow templates to workflows. This instantiation can happen within one

domain, but also map a template from an abstract domain to a concrete target domain.

As constraint rules are part of templates, but not of service compositions, they have to

be treated differently. They serve two main purposes:

4.5: Correct Instantiations 85

(1) They capture the influence of a service placeholder – or, more precisely, the effect

of the service that should replace that placeholder.

(2) They are used as a set of facts in the definition of correctness of a template.

For service compositions, the only collection of facts is the domain knowledge. Therefore,

constraint rules of a template have to be translated into terms built upon the vocabu-

lary of the target knowledge base. This happens implicitly, as service placeholders are

replaced with services, and their pre- and postcondition predicates with terms from the

service description. Thus, constraint rules also become concrete.

The constraint rules are essential to the correctness definition of a template. A key

question is how to move this importance to an instantiation (which has no constraints)

and the target domain (which is fixed and cannot be modified). The main idea is that it

is sufficient to ensure that constraint rules are implied by the existing domain knowledge,

once instantiated. With this in mind, we will see that it is often not necessary to have an

exhaustive domain knowledge to prove correctness of a template. Instead, the domain

knowledge of a template may contain just the knowledge which is necessary to prove the

template’s correctness. Especially if the task at hand is abstract (compare the generic

filter service, → Example 4.4), the necessary domain knowledge is small. We can even

create a specialized knowledge base just to prove correctness of the template, which is

completely independent of any other domain. This is what we did in the abstract filter

example, and this section draws the missing link between the domain specific examples

and the abstract template example.

Before defining an instantiation, we define an ontology mapping. This way, it is possible

to map a small, abstract, template-related ontology to a large, domain-specific one. Us-

ing this ontology mapping, we define an instantiation. As a result, we come up with the

following side condition: During instantiation, the constraint rules of a template have

to comply with the domain knowledge, that is, the “target” of the ontology mapping. If

this side condition is respected, the resulting service composition is correct by construc-

tion. We formalize this as a theorem and give a proof arguing over the interpretations

of the logical structures.

4.5.1 Ontology Mappings

A knowledge base in terms of an ontology describes the vocabulary of a domain, that is,

domain specific concepts, as well as their relations. Mapping one ontology to another

contains therefore a mapping of every concept to its counterpart in the target ontology.

The same is true for roles (predicates). Ontology mapping is not trivial, but a topic

of research on its own. Ontology conflicts occur typically in complex ontologies, where

concepts cannot be mapped to direct counterparts (Kumar and Harding, 2013, Noy,

2009). We assume that ontology conflicts do not occur and a mapping is possible,

whether automatically or manually. We think this assumption is reasonable for both of

86 Chapter 4: Workflow Templates

our “abstract task pattern” scenarios: If a template is designed by domain experts for

recurring tasks within a domain, the mapping is not necessary (that is, it is trivial); if the

task is abstract and the template ontology is generated just for the purpose of template

modeling, it will be typically quite small compared to a domain ontology, resulting in a

low probability for ontology conflicts.

Definition 4.19 (Ontology Mapping). Let KT = (CT , PT ,vT , RT) be a template on-

tology and KD = (CD, PD,vD, RD) a domain ontology. Then KTBfKD is a signature

homomorphous ontology mapping from KT to KD by f , if f is a pair of mappings

f = (fC : CT → CD, fP : PT → PD) such that

• fP preserves signatures with respect to fC , that is ∀p ∈ PT with p : T1 × · · · × Tn
we have fP (p) : fC(T1)× · · · × fC(Tn);

• f preserves the rules RT , that is ∀r ∈ RT there is f(r) ∈ RD with

f(r) =


fP (P)(x, y) if r = P (x, y) and P ∈ PT
f(b1) ∨ f(b2) if r = b1 ∨ b2
¬f(b) if r = ¬b .

We use f to denote the use of the “appropriate” fC or fP .

The following example maps the generic Filter ontology (→ Example 4.3) to the

Tourism ontology excerpt (→ Example 2.1).

Example 4.5 (Mapping Filter to Tourism Ontology). Let KT = (CT , PT ,vT , RT) be the

template ontology from Example 4.3, and KD = (CD, PD,vD, RD) the domain ontology

from Example 2.1. We define a mapping f = (fC , fP) from KT to KD with KTBfKD

as:

fC : Element 7→ Restaurant ,

Value 7→ Rating ,

fP : hasValue 7→ hasRating ,

isTargetValue 7→ isMinRating ,

isTargetElement 7→ goodRestaurant .

Since the template ontology has no rules besides the functionality of predicates, f trivially

preserves them. For our restaurant ontology, we assume the service GetRating to provide

a lookup service for ratings of restaurants.

4.5.2 Template Instantiation

Mapping one ontology to another replaces the vocabulary used in the template with

vocabulary from the domain. By applying this mapping to a service description SDesc =

4.5: Correct Instantiations 87

(SSig , IS , OS , preS , postS), we already get an “instantiated” description. This is espe-

cially true for templates, as their description relies on the abstract vocabulary of a

(probably artificial) template ontology. As a next step, we replace the service place-

holders. In our definition of composition templates we already use a service mapping

(→ Definition 4.3), but it maps placeholders to services within the same domain. Now,

we define a service mapping, or concretion, to replace placeholders with services from the

target domain. Consequently, this mapping makes use of the ontology mapping defined

above.

Definition 4.20 (Service Placeholder Concretion). Let KT = (CT , PT ,vT , RT) and

KD = (CD, PD,vD, RD) be ontologies with KTBfKD. Let SPT be the set of service

placeholders formalized using KT , and SVCD be the set of service descriptions formalized

using KD. Then πf : SPT → SVCD is a concretion of service placeholders from KT to

KD, if it respects signatures with respect to f , that is,

if πf (sp) = svc and sp : T1 → T2 ,

then svc : T ′1 → T ′2

with fC(T1) vD T ′1 and T ′2 vD fC(T2) .

In this definition, πf maps service placeholders to services. Additionally, we want to

replace pre- and postcondition predicates, coming from service placeholders, with pre-

and postcondition formulas, coming from services. Therefore, we lift the definition of

πf to formulas in general.

Definition 4.21 (Placeholder Predicate Replacement with Ontology Mapping). Let

KT = (CT , PT ,vT , RT) and KD = (CD, PD,vD, RD) be ontologies with KTBfKD.

Let SPT be the set of service placeholders formalized using KT , and SVCD be the set

of service descriptions formalized using KD, and let πf : SPT → SVCD be a service

placeholder concretion. We lift πf to Φsp
T → ΦD such that for ϕ ∈ Φsp

T

πf (ϕ) =



preπf (sp) if ϕ = presp

postπf (sp) if ϕ = postsp

fP (P)(x, y) if ϕ = P (x, y) and P ∈ PT
F (x, y) if ϕ = F (x, y) and F ∈ FT
¬πf (ϕ1) if ϕ = ¬ϕ1

πf (ϕ1) ∨ πf (ϕ2) if ϕ = ϕ1 ∨ ϕ2 .

The service placeholder concretion does not require an exact mapping of input and

output types. Instead, it makes use of the subtype relation vD of the target ontol-

ogy KD. The “direction” of subtyping follows closely the Liskov substitution principle,

and, consequently, the ideas of covariance and contravariance from object-oriented pro-

gramming (Liskov and Wing, 1994). The Liskov principle requires, in object-oriented

programming, that everywhere where a general class (or method) is used, a more specific

88 Chapter 4: Workflow Templates

Figure 4.4: Liskov substitution principle with co- and contravariance for classical
programming language specification and with service placeholders and services

class (or method) must be usable as well. Applied to our context, a service placeholder

sp corresponds to a general class, and a concrete service svc to a specific class.

Whether or not the substitution principle is respected depends on the subtyping direction

of the input and output parameters. In object-oriented programming, these are the

parameters and return type(s) of a method; here, these are the inputs and outputs of

services and placeholders. To respect the substitution principle, the input parameter

types of svc have to be contravariant to their sp counterparts, that is, they may be

more general, but not more specific. Similarly, the output parameter types have to be

covariant to the sp’s outputs, that is, they may be more specific, but not more general.

Figure 4.4 visualizes this relationship in comparison to object-oriented programming:

On the left, a type hierarchy and a subclass relation is shown, with Placeholder as the

super- and Service as the subclass. The superclass uses type T both as input and output

type, while the subclass uses type TInput (the more general type) as input and type

TOutput (the more specific type) as output, thus following the Liskov principle. On

the right hand side, the equivalent situation is shown using the notation of this thesis.

Example 4.6 illustrates this principle using our running example.

Example 4.6 (Direction of Subtyping in Service Concretions). Assume the following

service signatures (without conditions) in the Tourism domain as given in Example 2.1.

Placeholder

Acquire : Element → Value

Service

GetRating : Restaurant → Rating

GetStars : Restaurant → Michelin

GetInfo : SnackBar → InfoTag

The service GetRating is, according to the definition of service mapping, a valid substi-

tution for the service placeholder Acquire. The same is true for GetStars, as its output

4.5: Correct Instantiations 89

type, Michelin, is a subtype of the (required) Rating. In contrast, GetInfo is no valid

substitution. Its input, SnackBar is a subtype of Restaurant, though for inputs only more

general types are allowed. Also, its output, InfoTag, is more general than Rating, but

for outputs only more specific types are allowed.

Up to now, we defined service templates, ontology mappings, and service placeholder

concretions. If these three are fixed, we can create a new service composition. Instantiat-

ing a template consists of two major steps: (1) Creating a new description based on the

ontology mapping, and (2) creating a workflow from the workflow template by applying

the service placeholder concretion πf . As a result, we get a new service composition.

This composition is not necessarily correct; correctness depends on the constraints rules.

The next sections gives the details.

Definition 4.22 (Template Instantiation). Let KT = (CT , PT ,vT , RT) be the tem-

plate’s domain ontology and KD = (CD, PD,vD, RD) the target domain ontology, with

KTBfKD. Let (SctDesc ,WT ,CR) be a composition template with

SctDesc = (SctSig , ISct , OSct , preSct , postSct) and SctSig = Sct : T1 × · · · × Tk → Tk+1 ×
· · · × Tn. Let πf : SPT → SVCD be a service placeholder concretion.

The template instantiation of Sct using πf results in a service composition Sc, which is

defined as

(ScDesc ,W)

with

ScDesc = (ScSig , ISc , OSc , preSc , postSc)

such that

ScSig = Sc : fC(T1)× · · · × fC(Tk)→ fC(Tk+1)× · · · × fC(Tn)

and

Sc = a new unique name

ISc =
{
x | x′ ∈ ISct ∧ name(x) = name(x′) ∧ type(x) = fC(x′)

}
OSc =

{
x | x′ ∈ OSct ∧ name(x) = name(x′) ∧ type(x) = fC(x′)

}
preSc = πf (preSct)

postSc = πf (postSct)

90 Chapter 4: Workflow Templates

where Sc is a new name for the composition. The resulting workflow W is defined as

πf (skip) := skip πf (u := t) := u := t

πf (u := Svc(i)) := u := πf (Svc)(i)

πf (W1;W2) := πf (W1);πf (W2)

πf (if B then W1 else W2 fi) := if πf (B) then πf (W1) else πf (W2) fi

πf (while B do W od) := while πf (B) do πf (W) od

πf (foreach a ∈ A do W od) := foreach a ∈ A do πf (W) od .

Formally, workflows and workflow templates have different semantics, though they are

equivalent.

Lemma 4.23 (Same Semantics of Workflow Templates and Instantiations). Let WT

be a workflow template and π : SPK → SVCK an instantiation with services over

ontology K. Then the following holds:

∀ logical structures S : J WT KπS = Jπ(WT) KS .

Proof. The semantics of workflows and workflow templates are both defined on transi-

tions (→ Definitions 3.8 and 4.7). The only difference is the application of instantiation

parameter π. The instantiation replaces service placeholders (and, consequently, their

pre- and postcondition predicates) with services (and concrete pre- and postcondition

formulas). Thus, the Lemma follows directly from Definitions 3.8, 4.7 and 4.22.

The following example takes the abstract Filter template of Example 4.4 and instan-

tiates it into the Tourism domain of Example 2.1.

Example 4.7 (Restaurant Quality Filter Instantiation). The Filter template accepts

a set of input and delivers the subset that matches a filter criterion. We use the fol-

lowing instantiation to create a service composition which filters set of restaurant data

by a quality predicate. We use the ontology mapping from Example 4.5 and the service

mapping πf (Acquire) = GetRating. Figure 4.5 shows the details.

The next example creates a similar instantiation. This time, the filter criterion is still the

rating of a restaurant, but the instantiated service retrieves the price, which leads to a

service composition which fails to fulfill the correctness definition given in Definition 3.12.

Example 4.8 (Restaurant Price Filter Instantiation). Again, we use the ontology map-

ping from Example 4.5, now with the service mapping πf (Acquire) = GetPrice. Fig-

ure 4.6 shows the details.

Now, the price acquired by the service GetPrice is used as parameter for the predicate

isMinRating. As we can see from these examples, a syntactically correct service com-

position, created from a correct template, is not automatically correct itself. However,

4.5: Correct Instantiations 91

Composition FilterRestaurantByRating

Inputs A : set Restaurant

Outputs B : set Restaurant

Precond. ∀a ∈ A : preGetRating(a)

Postcond. B = {b ∈ A | goodRestaurant(b)}

Workflow

Z := A;
B := ∅ ;
foreach z ∈ Z do

y := GetRating(z) ;
if isMinRating(y) then

B := B ∪ {z}
else

skip
fi

od

Figure 4.5: Service composition to filter a set of restaurants, using a filter
goodRestaurant and a service GetRating

if we respect certain side conditions – the instantiated constraint rules in relation to

the target ontology – we can indeed create a composition, which is provably correct by

construction. The next sections elaborates on the details.

4.5.3 Correctness by Construction

As we have seen, deriving a service composition from a provably correct template does

not yield a correct result automatically. The main issue is the treatment of the constraint

rules of the template. The correctness definition of templates (→ Definition 4.11) uses

the constraints as facts, that is, a template can be proven correct under the assumption

that the constraints hold.

The correctness definition of service compositions (→ Definition 3.12) does not contain

any corresponding concept, which is why constraints are not part of the template in-

stantiation directly (→ Definition 4.22). The constraints CR are, however, translated

from the abstract domain KT to the target domain KD = (CD, PD,vD, RD), resulting

in πf (CR). Now, there are two possible scenarios. At first, the resulting constraints

are fully compatible with the knowledge of the target domain and the constraints al-

ways hold in the target ontology, that is, ∀S : S |=D πf (CR). At second, for some

logical structures the constraints contradict the existing domain knowledge, that is,

∃S :
(
S |=D RD

)
∧
(
S 6|=D πf (CR)

)
.

We defined correctness over all logical structures which comply to the domain knowledge

in question. We are therefore interested in the first case, and state a theorem relating

92 Chapter 4: Workflow Templates

Composition FilterRestaurantByRatingByPrice

Inputs A : set Restaurant

Outputs B : set Restaurant

Precond. ∀a ∈ A : preGetPrice(a)

Postcond. B = {b ∈ A | goodRestaurant(b)}

Workflow

Z := A;
B := ∅ ;
foreach z ∈ Z do

y := GetPrice(z) ;
if isMinRating(y) then

B := B ∪ {z}
else

skip
fi

od

Figure 4.6: Service composition to filter a set of restaurants, using a filter
goodRestaurant and a service GetPrice

the validity of the constraint rules and the correctness of the generated composition:

Whenever the (instantiated) constraint rules comply with the target domain (that is,

they are valid for every logical structure which complies with the domain), then the

composition is also correct.

Theorem 4.24 (Constraint Rule Compliance). Let KT = (CT , PT ,vT , RT) be a tem-

plate ontology and KD = (CD, PD,vD, RD) be a domain ontology with KTBfKD. Let

(SctDesc ,WT ,CR) be a correct service composition template, that is,

|=T {preSct}Sct {postSct}. Let πf : SPT → SVCD be a concretion of service placehold-

ers and (ScDesc ,W) the service composition created by πf . If the concretized constraint

rules of the template comply with the domain ontology, then the service composition

obtained from πf (Sct) is correct, that is,

if |=T {preSct}Sct {postSct}
and RD |= πf (CR)

then |=D {preSc}Sc {postSc} .

The proof of this theorem relies on the interpretations I of predicates of the ontologies

and how they are constrained by the concretized constraint rules. To give a formal proof,

we therefore need to state some additional relations between logical structures and the

various mappings.

Up to now, we established a syntactical correspondence between ontologies. However, the

workflow semantics rely on logical structures, and the correctness of workflows is defined

4.5: Correct Instantiations 93

Figure 4.7: By logical structure correspondence, the interpretations of predicates of
the abstract domain and their mapped counterparts of the target domain are the same

over logical structures as well. Therefore, we firstly establish a semantical relation

between two ontologies KTBfKD. Starting from a given logical structure for which the

rules of the target ontology hold, we can always construct a corresponding structure in

the source ontology. The following proposition formalizes this claim.

Proposition 4.25 (Logical Structure Correspondence). Let KT = (CT , PT ,vT , RT)

and KD = (CD, PD,vD, RD) be ontologies with KTBfKD, and let SD = (UD, ID) be a

logical structure over KD. If SD |= RD, then we can construct a corresponding logical

structure SBf , where

SBf = (UT , IT), with UT = Uf(T) and

IT (p) = ID(fP (p)) for p ∈ PT

such that SBf |= RT .

Proof. We construct SBf based on SD, using the identical universe and corresponding

interpretations up to f . By Definition 4.19 (Ontology Mapping), f is rule preserving.

As IT and ID have identical results, for all rules r ∈ RT we have SBf |= r if and only

if SD |= f(r). Because all source ontology rules are translated to the target ontology,

that is, f(RT) ⊆ RD, the proposition holds. Figure 4.7 visualizes the core idea of this

proof.

Constraint rules do not only contain predicates from the ontology, but also predicates

representing the pre- and postconditions of service placeholders used in the template.

Proposition 4.25 relates only logical structures which give interpretations for ontology

predicates. The definitions of correctness for templates (→ Definition 4.11) uses a map-

ping π : SPT → SVCT , which maps service placeholders to the range of possible service

descriptions using KT . To prove Theorem 4.24, we also need a relation between π (used

in the correctness of templates) and πf (based on Bf and used in template instantia-

tions). Again, the general idea is to construct a mapping π for a given concretion πf .

94 Chapter 4: Workflow Templates

Proposition 4.26 (Placeholder Mapping Correspondence). Let KT = (CT , PT ,vT , RT)

be a template ontology and KD = (CD, PD,vD, RD) a target domain ontology with

KTBfKD. Let SD = (UD, ID) be a logical structure over KD. Let Ψ ∈ Φsp
T be a formula

containing placeholders from SPT , and let πf : SPT → SVCD be a concretion with (we

use superscripts T and D to refer to types derived von KT and KD)

sp ∈ SPT with

sp : T T1 × · · · × T Tk → T Tk+1 × · · · × T Tn ,

svc ∈ SVCD with

svc : TD1 × · · · × TDk → TDk+1 × · · · × TDn ,

∀i with 0 < i ≤ k : fC(T Ti) v TDi ,

∀i with k < i ≤ n : TDi v fC(T Ti) ,

πf (sp) = svc .

In other words, svc follows the Liskov substitution principle regarding sp, that is, its

input types are contravariant to the input types of sp, and its output types are covariant

to the output types of sp. If SD satisfies the rules of KD and the concretized formula

πf (Ψ), that is,

S |= RD ∧ πf (Ψ) ,

then we can construct a corresponding concretion π
Bf
f : SPT → SVCT within the tem-

plate ontology in the following way such that

svc′ ∈ SVCT ,

svc : T T1 × · · · × T Tk → T Tk+1 × · · · × T Tn ,

π
Bf
f (sp) = svc′ ,

where svc and svc′ refer to the same name; then we also know, that

presvc′ ∈ ΦT such that πf (presvc′) = presvc ,

postsvc′ ∈ ΦT such that πf (postsvc′) = postsvc ;

and we can conclude SBf |= π
Bf
f (Ψ).

Proof. Consider some state σ |=S πf (Ψ) with Ψ ∈ Φsp
T . Then, the interpretations ID are

defined for every predicate. We can construct SBf by Proposition 4.25 (Logical Structure

Correspondence), where the interpretations of template predicates are by construction

the same as the interpretations of the corresponding (by f) domain predicates. The

only predicates without interpretations are the pre- and postconditions of placeholders.

We can construct π
Bf
f such that πf (π

Bf
f (presp)) = πf (presp) (same for postcondition).

By definition, the interpretations are then mapped to the corresponding predicates,

4.5: Correct Instantiations 95

Figure 4.8: By placeholder mapping correspondence, intra-domain and inter-domain
placeholder concretions correspond by using the same mapping

and σ |=S πf (Ψ) ⇒ σ |=SBf π
Bf
f (Ψ). The same is true for σ 6|=S πf (Ψ), therefore

σ |=S πf (Ψ)⇔ σ |=SBf π
Bf
f (Ψ). Figure 4.8 visualizes the core idea of this proof.

Proposition 4.25 (Logical Structure Correspondence) relates logical structures, and Propo-

sition 4.26 (Placeholder Mapping Correspondence) relates placeholder concretions (with

and without an ontology mapping f of Bf). Given a formula Ψ ∈ Φsp
T , that is, a for-

mula based on the template ontology KT and service placeholder predicates, we can

conclude that we arrive at the same set of states, whether we use the service placeholder

concretion πf or the constructed π
Bf
f to instantiate Ψ.

Lemma 4.27 (Same Set of States). Let KT = (CT , PT ,vT , RT) be a template ontology

and KD = (CD, PD,vD, RD) a domain ontology with KTBfKD. Let πf : SPT → SVCD
be a placeholder concretion, let Ψ ∈ Φsp

T be a formula containing pre- and postcondition

placeholders from SPT , and let S |= πf (Ψ); then

Jπf (Ψ) KS = Jπ
Bf
f (Ψ) KSBf .

Proof. From the proof of Proposition 4.26 (Placeholder Mapping Correspondence) we

already know that for any state σ the following holds:(
σ |=S πf (Ψ)

)
⇔
(
σ |=SBf π

Bf
f (Ψ)

)
By Definition 2.11 (Sets of States), the Lemma holds.

The core statement of Theorem 4.24 (Constraint Rule Compliance) is that whenever an

instantiation πf with an ontology mapping KTBfKD is in accordance with the rules of

the target ontology, especially the instantiation of the constraint rules of the template,

then the resulting service composition is automatically correct. With the help of these

propositions and lemmata given up to now, we are able to proof Theorem 4.24. Figure 4.9

gives an overview of the proof: First, we select a structure which satisfies the concretized

constraints of the template (1). Then, we construct the corresponding structure which

satisfies the original constraints (2). By definition, we know the semantics of the template

(3) and can conclude that its instantiation has the same semantics (4). As the template

is correct, the instantiation is also correct (5). We now give the formal proof.

96 Chapter 4: Workflow Templates

Figure 4.9: Graphical overview of the five steps to prove Theorem 4.24

Proof. Let KT = (CT , PT ,vT , RT) be a template ontology and KD = (CD, PD,vD,
RD) a domain ontology with KTBfKD. Let (SctDesc ,WT ,CR) be a correct service

composition template over KT , and let πf : SPT → SVCD be a concretion. We have

to show that for an arbitrary concretion πf , as long as the target ontology satisfies

the concretized constraint rules of the template, the resulting composition πf (Sct) =

(ScDesc ,W) is indeed correct. Formally, for all structures SD and concretions πf the

following has to hold:

SD |= RD ∧RD |= πf (CR) : Jπf (WT) KSD(Jπf (preSct) KSD) ⊆ Jπf (postSct) KSD ,

or, using (ScDesc ,W) instead of πf (Sct):

SD |= RD ∧RD |= πf (CR) : JW KSD(J preSc KSD) ⊆ J postSc KSD .

The theorem only relates signature homomorphous ontologies KTBfKD and mappings

πf which concretizes the templates’ constraint rules in a way such that they comply

with the target domain knowledge. Therefore we define SD and πf such that

SD |= RD and RD |= πf (CR) .

If SD satisfies the rules of the target ontology, then it also satisfies the subset of rules

which results from the signature homomorphous mapping:

SD |= RD ⇒ SD |= πf (RT)

because by Definition 4.19 (Ontology Mapping) we know

πf (RT) ⊆ RD .

Also, if both RD |= πf (CR) and SD |= RD, then S |= πf (CR). Therefore

SD |= πf (RT) ∧ SD |= πf (CR)

4.5: Correct Instantiations 97

of course also holds. Up to here, we used a logical structure SD, including interpreta-

tions, based on the target ontology. Now, we construct a corresponding logical structure

based on the template ontology: By Proposition 4.25 (Logical Structure Correspon-

dence) we can create a SBf using f of the signature homomorphous mapping KTBfKD.

Additionally, by Proposition 4.26 (Placeholder Mapping Correspondence), we construct

a mapping π
Bf
f : SPT → SVCT within the template ontology such that

SBf |= RT and SBf |= π
Bf
f (CR) .

By Definition 4.11 (Correctness of Composition Templates), and because Sct is correct,

we know

SBf |= RT and SBf |= π
Bf
f (CR)

such that J WT K
π
Bf
f

SBf
(
Jπ

Bf
f (preSct) KSBf

)
⊆ Jπ

Bf
f (postSct) KSBf .

Currenty, we talk about the semantics (and correctness) of the composition template.

From Lemma 4.23 (Same Semantics of Workflow Templates and Instantiations), we

know that a workflow template WT and a workflow π(WT) have the same semantics,

for π : SPT → SVCT . We apply this to WT and π
Bf
f (WT), and therefore

SBf |= RT and SBf |= π
Bf
f (CR)

such that Jπ
Bf
f (WT) KSBf

(
Jπ

Bf
f (preSct) KSBf

)
⊆ Jπ

Bf
f (postSct) KSBf .

Now, we talk about the semantics of the service composition, containing the workflow

π
Bf
f (WT). Using Lemma 4.27 (Same Set of States), because SBf and SD rely on the

same interpretations, the same is true for our original structure SD in the target ontol-

ogy KD:

SD |= RD and SD |= πf (CR)

such that Jπf (WT) KSD
(
Jπf (preSct) KSD

)
⊆ Jπf (postSct) KSD .

It is therefore sufficient to show that RD |= πf (CR), if the template is already proved

to be correct, and KTBfKD holds.

According to this theorem, it is now sufficient to (a) prove correctness of a template and

(b) proof constraint rule compliance of the template with the target domain ontology of

the instantiation.

Checking constraint rule compliance does not rely on the control and data flow of a

composition. Therefore, even large compositions with complex control and data flows

have to be proved to be correct only once, even manually if need be. Depending on

98 Chapter 4: Workflow Templates

the expressiveness of the pre- and postconditions of the services, and their dependencies

encoded in the constraint rules, and the structure of these rules, the check for constraint

rule compliance can even be executed by specialized ontology solvers like HermiT (Glimm

et al., 2014) or Pellet (Sirin et al., 2007).

While this constraint check relies only on an encoding of the domain knowledge and

the instantiated constraint rules (and therefore service descriptions), the next chapter

introduces a method to verify service composition templates automatically.

Chapter 5

Automating Correctness Proofs

using First-order Logic

The previous chapters discuss a technique to derive a correct service composition from

a verified template, by checking side conditions instead of executing a complete verifi-

cation. Depending on the structure of the constraint rules and the capabilities of the

respective solver, the resulting check can be done within the domain of ontology reason-

ing, using standard tools. However, the premise is that the template is already proven

to be correct, using the proof calculus. While it is possible to prove correctness of a

template manually, it is of course more desirable to automate these checks. Especially

in an on-the-fly context, full automation is an important goal, even if a template-based

scenario relaxes timing constraints on template verification.

Section 5.1 elaborates on some of the topics of program verification based on logic.

However, most of these works focus on verification of imperative programs and specific

problems resulting from the use of mathematical expressions, e.g., using linear integer or

floating point arithmetics, or from data structures, e.g., doing verification in the presence

of pointers. The focus of our context is an integrating one. It includes not only encoding

of control and data flow of workflows and the corresponding service descriptions, but also

the context of the relevant domain knowledge, formalized using ontologies. It therefore

is located in the program verification part of the three areas of this thesis, though rooted

in the common logical foundation (→ Figure 5.1).

This chapter presents a logical encoding of service composition templates and defines a

correctness proof as a satisfiability problem. The use of standard SMT solvers makes

inclusion of domain knowledge easy. The core part is the combination of this logical

encoding, the result of the satisfiability check, and the construction of proof outlines as

defined in Section 4.3 (Partial and Total Correctness). To this end, we define a logical

encoding and then prove the equivalence of a satisfiability check result with the fact that

a proof of correctness using the proof calculus can be constructed. In other words, if the

satisfiability check undertaken by a solver succeeds, a formal proof can be constructed;

If it does not succeed, there are two possible reasons:

99

100 Chapter 5: Automating Correctness Proofs using First-order Logic

Figure 5.1: Joint research: Formal verification in relation to knowledg modeling and
service and workflow modeling

• The solver provides a counterexample which shows a violation of the proof obli-

gations. It consists of a variable assignment demonstrating a correct input, which

leads – using the logical encoding of the composition – to an output which violates

the requirements. This result indicates that such a proof is not possible.

• The solver cannot provide an answer. The reason for this is the use of undecidable

theories, e.g., when trying to solve predicate logic formulas (→ Section 7.2).

Section 5.1 gives an overview of logic based verification and the treatment of loops.

Section 5.2 defines the actual logical encoding of workflows, while Section 5.3 states a

correspondence between correctness of a workflow and a satisfiability problem, including

the proofs. Finally, Section 5.4 discusses first steps of how to integrate domain knowl-

edge into existing techniques to automatically discover loop invariants and termination

arguments.

5.1 Related Work and the Treatment of Loops

Generally, model checking is a way to prove or disprove the presence of properties in a

system model (Clarke and Emerson, 1982). Its basic idea is to explore the state space

of a system model and check whether the desired property holds or is violated. If this

is done explicitly, the state explosion problem is immediately obvious: The number of

states of a program grows exponentially in its size with the number of variables. Symbolic

model checking avoids an explicit enumeration of a state space and aims at compact

representations which can be checked more efficiently (Burch et al., 1992). Symbolic

representations both of system properties and the system model itself can be achieved

in terms of logical formulas, which are often encoded as binary decision diagrams (BDDs,

5.1: Related Work and the Treatment of Loops 101

Lee, 1959, Akers, 1978). The efficiency of BDD based model checking algorithms depends

on topics like BDD normalization and appropriate variable ordering. Both have a huge

impact on the size of the BDD representation of a model: Normalization (including

efficient representation) depends on the order of variables, which in turn highly depends

on the formula at hand; an order suitable for efficient representation is not easy to

compute automatically (Biere et al., 1999).

Apart from using BDDs for compact formula representation, it is also possible to use

logical encodings of model checking problems and utilize satisfiability solvers directly.

When we encode states and state transitions by means of assertions on variable values,

it is not immediately clear how we should represent loops. The execution of a loop

body changes the system state, but as it is not a priori known how often a loop will be

executed, it is not possible to replace it with linear constructs. There are two approaches

to address this issue: One is to execute the loop up to a fixed number of times by unrolling

it, the other is to summarize its behavior using a loop invariant.

The basic idea of bounded model checking is to artificially restrict the (potentially) infinite

state space as induced by loops by restricting the number of loop executions. To this

end, the loop is unrolled, that is, the loop is replaced by a repeating sequence of the

loop’s body, up to a fixed bound k. This way, the original behavior of the loop is exactly

represented as long as the loop is executed at most k times (Biere et al., 1999). As

a result, if some property happens to hold (or to be violated) only after k unrollings,

this is naturally not detectable. With Cbmc, or C bounded model checking, there exists

an approach where bounded model checking is applied to C programs, using a logical

encoding of states and state transitions (Clarke et al., 2004). Here, possible program

traces are encoded as logical formula, and reachability of an error state – that is, an

error location in terms of a violated assert statement – as a satisfiability problem. This

problem can be solved by a satisfiability solver.

While Cbmc is not only bounded in terms of loop unrolling, it is also restricted in terms

of data type representation, namely the size of arrays or lists. This is due to their

logical encoding using Boolean formulas. Armando et al. lift some of these restrictions

by applying the the Cbmc approach to an SMT encoding instead of SAT. This way, they

make use of the theories of linear arithmetics, lists, and bitvectors to lift the restriction

of fixed array lengths (Armando et al., 2009). Milicevic and Kugler use the theory of

lists to address the issue of a fixed bound k of bounded model checking. They encode

program states using list variables. As SMT lists are potentially unbounded, this enables

implicit loop unrolling without a fixed bound, covering potentially infinite program traces

(Milicevic and Kugler, 2011). If the solver terminates, the safety property in question is

either disproved or proved without any bound.

The classical representation of loops by loop invariants, as used in the theoretical part of

this thesis, summarizes the overall behavior of a loop, with no regard to a specific number

of executions (Hoare, 1969). While invariants are a convenient representation of loops in

calculi, they are also used in practice. The Java Markup Language (JML), for example,

102 Chapter 5: Automating Correctness Proofs using First-order Logic

uses invariants to annotate not only loops, but complete Java methods (Leavens et al.,

1999). Invariants are used in verification techniques that build upon JML, like ESC/Java

(Cok and Kiniry, 2005, Flanagan et al., 2002). While loop invariants do not restrict the

number of loop executions, they have their own disadvantage: They are usually required

to be given explicitly, that is, to be defined manually.

However, automatically deriving invariants from program code is not a new research

topic by itself. Already Karr as well as Cousot and Halbwachs developed techniques to

find invariant expressions of loops. They take the form of linear inequalities of variable

expressions and a constant (Cousot and Halbwachs, 1978, Karr, 1976). In practice,

with tools like InvGen it is possible to define templates or patterns of loop invariants.

These templates are used to find linear inequalities and Boolean combinations of them

automatically (Gupta and Rybalchenko, 2009). Sharma et al. extend the use of Boolean

combinations to Boolean disjuncts or disjunctive invariants (Sharma et al., 2011). Beyer

et al. synthesize invariants expressed in SMT formulas and combine the theory of linear

arithmetics (to express linear inequalities) with uninterpreted functions (Beyer et al.,

2007). Srivastava and Gulwani also find invariants based on invariant patterns, including

quantified expressions. To this end, they find solutions to the variable part of an invariant

pattern by fix point computation (Srivastava and Gulwani, 2009).

Instead of inspecting the loop body to compute inequalities, invariants can also be

inferred based on the postcondition of a loop. To this end, this postcondition is mutated

to generate invariant candidates, which are then checked for actual invariance (Furia

and Meyer, 2010). Heuristics to generate these mutations include replacing constants

of a postcondition with variables (constant relaxation), replacing two occurrences of a

variable with two different variables (uncoupling), or removing parts of the postcondition

completely (term dropping) (Furia and Meyer, 2010, Gries, 1981, Meyer, 1980)

The tool DynaMate combines these approaches. It is built upon ESC/Java2 and

InvGen and finds invariants both based on patterns and on mutating postconditions.

Invariant candidates are then tested and falsified ones eliminated. The remaining can-

didates are verified whether or not they are invariant and actually useful for the current

verification task. Detectable invariants are not only linear inequalities, but also quan-

tified expressions, as long as these can be generated from the postcondition of a loop

(Galeotti et al., 2014).

With no regard to the exact approach to derive loop invariants there is always one

potential problem to be considered: The assertion inference paradox. The assertion

inference paradox is a potential vicious circle: On the one hand, we need the loop

invariant to prove the correctness of the program with respect to its postcondition. This

includes the loop being part of the program’s behavior. On the other hand, if we derive

the invariant from the program, proving correctness using this invariant may carry no

meaning due to this cyclic dependency (Furia and Meyer, 2010, p. 278). This paradox

is not necessarily a problem, but should be considered by every approach of invariant

generation. The criterion to avoid this paradox is the question of which information

5.2: First-order Logic Encodings 103

is present to begin with: If an invariant is derived, but pre- and postcondition of the

overall program are given in a verification approach, the complete proof is still valid

(Furia and Meyer, 2010).

In this thesis, we assume that invariants are given, with no additional restriction apart

from that they are expressible using the terms built on the vocabulary of the domain

knowledge (→ Definition 2.9, First-order Formulas). However, in Section 5.4 (Deriving

Invariants and Termination Functions) we propose techniques to leverage the inference

of loop invariant candidates by utilizing the existing domain knowledge.

5.2 First-order Logic Encodings

This section defines a logical encoding of workflows and formulates proof obligations

to define a logical formula representing the correctness of a workflow template with

respect to its pre- and postcondition. A theorem establishes a correspondence between

this formula being a tautology and the provability of the correctness of the workflow

template.

5.2.1 Preliminaries

The overall knowledge of a certain domain is formalized using ontologies, whose se-

mantics can be described with description logics, which are subsets of first-order logic.

Additionally, our service descriptions use first-order logical expressions based on the vo-

cabulary derived from the underlying ontology, and our definitions of correctness as well

as the semantics of our workflow definition are based on logic. With pre- and postcon-

ditions encoded using logical formulas, we encode the control and data flow with logical

formulas as well. To this end, we need to identify positions within the control flow of a

service composition (or template). We use labels to identify this position. These labels

are already part of Definition 4.5 (Workflow Template):

WT ::= [l] skip

| [l] u := t

| WT 1; WT 2

| [l] (uj+1, . . . , uk) := S(i1, . . . , ij)

| [l] if B then WT 1 else WT 2 fi

| [l] while B do WT 1 od

| [l] foreach a ∈ A do WT 1 od

Here, all labels l are supposed to be unique, and we define a final label [end]. This way,

every statement has exactly one next label: Either the label of the next statement in

a sequence, the next label of its parent (in case of conditional or loop statements), or

104 Chapter 5: Automating Correctness Proofs using First-order Logic

the end label. By labeling a statement, we are able to exactly determine the current

position in a workflow template the same way as if using a program counter variable.

We write [l] WT [n] to refer to a workflow template WT which is labeled with l and

which has n as the next label.

We make use of this next label when we encode statements as logical formulas, esp. as

indices for variables. We use Var to denote the set of variables of a complete workflow

template (→ Definition 2.7). For every variable in Var , we also assume an indexed

version, and define a corresponding set of variables with a given index.

Definition 5.1 (Indexed Variables). For a set Var of variables, and an index i, we

define a set Var i of indexed variables:

Var i := {xi | x ∈ Var} .

We also make use of syntactic replacement of variable names in expressions, e.g., p[x :=

xi] refers to the expression p where every occurrence of x is replaced by xi. Using labels

as variable indices, we create different versions of each variable corresponding to the

workflow position, similar to the use of versioned variables in static single assignment

form (SSA form, Cytron et al., 1991). In addition to the syntactic replacement of one

variable as in p[x := z], we define a shorthand notation to replace all variables in an

expression or assertion by their indexed versions.

Definition 5.2 (Variable Replacement for all Variables in Expressions). Let p be a

logical expression with free(p) ⊆ Var . We define pi as p with every variable replaced by

its indexed counterpart:

pi := p[x := xi]

with x ∈ Var and xi ∈ Var i for every variable x ∈ free(p).

We will use this shorthand particularly in assignment expressions and conditional ex-

pressions. As the shorthand form of indexed expressions replaces only free variables in

p, quantified variables are never indexed.

Example 5.1 (No Replacement of Bound Variables). Let p := ∀x : x 6= y. Then

free(p) = {y} and pi = (∀x : x 6= yi).

5.2.2 Domain Knowledge and Services

A formal knowledge base as given in Definition 2.3 with its predicate logic semantics is

already a logical encoding of itself.

Definition 5.3 (Knowledge Base Encoding). Let K = (C,P,v, R) be a knowledge base.

We define a locical encoding ϕ as follows: We use concepts C as unary predicates, roles

P as binary predicates, and rules R as all-quantified logical expressions. We encode the

type hierarchy given by C1 v C2 as ∀x : C1(x)⇒ C2(x).

5.2: First-order Logic Encodings 105

To encode typing of predicates, we will add the use of type predicates to every use of a

role predicate. Then, the typed predicate

hasRating : Restaurant×Rating

used as in

hasRating(x, y)

translates to

hasRating(x, y) ∧ Restaurant(x) ∧ Rating(y) .

For easier reading, we will omit this additional notation. Chapter 7 discusses its transla-

tion into SMT-LIB, a standard language for satisfiability solver input. Logical encoding

of services is straightforward, too, as their pre- and postcondition as the relevant parts

of a service are already logical expressions, including the type information from the

signature. Therefore the same technique is applicable.

5.2.3 Control Flow

In the following, we inductively define the logical encoding of statements, relating vari-

able versions of the state before the execution of the statement to the state after the

execution. We refer to these states using the labels from Definition 3.3, especially the

next label of a workflow (which may be the closing end label). In summary, a logical

encoding ϕW of a statement [l] W [n] with label l and next label n uses the labels l and

n as indices in the encoding of variables.

Service calls make use of the pre- and postconditions of service descriptions, which are

expressions using input and output variables as denoted in the service description. As

in the previous chapters, we assume one input (named i) and one output (named o) for

services for easier reading. To make use of pre- and postconditions, the variables have

to be replaced by the actual variables with which a service is called. We denote this by

syntactic replacement, e.g., post [i := x, o := y]. Pre- and postconditions of services refer

to complex expressions (pre, post ∈ ΦK), but range only over variables occurring in the

signature of the service.

To represent loops, we use a logical encoding of loop invariants. However, while all

invariants of a loop reflect its behavior, not all of them can necessarily be used to prove

correctness of a workflow template. The reason is the context, or the set of preceding

statements, of a loop: The facts that hold true for these preceding statements according

to the proof rules (→ Def. 4.12, Parameterized Proof Calculus for Workflow Templates)

must imply the invariant which is actually part of the proof outline and which (after

the loop) implies the following facts. Eventually, this chain of implications leads to the

postcondition of the workflow template, and is implemented by the rule of consequence

(rule 9). Therefore, the invariant used to encode a loop cannot be arbitrary if the

encoding should correspond to the correctness of the workflow. Instead, it must be

106 Chapter 5: Automating Correctness Proofs using First-order Logic

implied by the encoding of the previous statements. To take this relation into account,

we need to show that an invariant holds at the beginning of a loop. If we want to prove

the (partial) workflow in Figure 5.2, this is only possible if the invariant at the while

loop can be implied from the facts that hold true in front of the if statement and the

negated if condition.

[1] y := S1(x);

[2] if B1(y) then

[3] z := S2(y)

else

[4] while ¬B2(x, y) do

[5] y, z := S3(y)

od

fi

[end]

Figure 5.2: Workflow with a conditional loop statement

This is not necessarily true for all possible invariants of the loop. To supplement the

logical encoding of the actual workflow statements, we introduce marker variables for

every position in a workflow. This way, we are able to “track” the control flow which is

used for a variable assignment of the logical encoding.

Definition 5.4 (Position Marker Variables). For every label l used in a workflow tem-

plate, or workflow, we define a marker variable ml of type Bool, and the set of marker

variables of a workflow as

M = {ml | l is a label of the workflow (template)}

and M ∩Var = ∅, that is, M is disjoint with the regular set of variables.

Marker variables are used to explicitly mark whether or not a statement is “active” for a

current state, that is, variable assignment. This way, marker variables indicate whether

for a given variable assignment the then or else branch of a conditional statement is

taken, and whether or not the current statement is taken at all. In other words, they

mark the actually used control flow for a given variable assignment.

Example 5.2 (Marking the else Branch). For the workflow in Figure 5.2, we have the

labels l1 to l5 and an additional label lend . We define the logical encoding of workflow

statements such that if for a given variable assignment the condition B1(y) is false, then

the marker for label l3 will be false, too, but the marker for label l4 will be true.

Marker variables are “routed” through the workflow as part of the logical encoding of

composite statements. Their initial value will be set by the verification conditions which

5.2: First-order Logic Encodings 107

encode the overall correctness, as we will see later on. This way, we will be able to

identify whether or not we actually need to have an invariant to hold true.

For easier reading, we also occasionally use ite(B,WT 1,WT 2) as shorthand to de-

note if B then WT 1 else WT 2 fi. Please note, that a workflow can be treated as a

workflow template without service placeholders and constraint rules.

Definition 5.5 (Logical Encoding of Workflow Templates). Let WT be a workflow

template. We define the logical representation of [l] WT [n], ϕl,nWT , inductively on its

structure, using its labels as indices of the variables. In the encodings, inv denotes an

invariant of the respective loop. For service calls, we use different encodings for total

and partial correctness.

Statement Example Encoding

E (not applicable) ϕE := >

Skip [l] skip [n] ϕl,n
skip :=

∧
x∈Var xl = xn

Assignment [l] u := t [n] ϕl,n
u:=t := un = tl ∧

∧
x∈Var\{u} xn = xl

Service call [l] u := S(v) [n] ϕl,n
u:=S(v) :=

(
post [i := v, o := u]n

(part. corr.) ∧
∧

x∈Var\{u} xn = xl
)

Service call [l] u := S(v) [n] ϕl,n
u:=S(v) := pre[i := v]l ⇒

(
post [i := v, o := u]n

(total corr.) ∧
∧

x∈Var\{u} xn = xl
)

While loop [l] while B do ϕl,n
while B do WT od := invl ∧ (invn ∧ ¬Bn)

[k] WT od [n] ∧
∧

x∈Var\change(WT) xl = xn

Foreach loop [l] foreach a ∈ A do ϕl,n
foreach a∈A do WT od := invl ∧ (invn ∧An = ∅)

[k] WT od [n] ∧
∧

x∈Var\change(WT) xl = xn

Sequence [l] WT 1; [k] WT 2 [n] ϕl,n
WT1;WT2

:= ϕl,k
WT1

∧ ϕk,n
WT2

∧ (mk = ml)

Conditional [l] if B then [k] WT 1 ϕl,n
ite(B,WT1,WT2)

:=

else [h] WT 2 fi [n]
(
ml = mk ∧ ¬mh

∧Bl ∧ ϕk,n
WT1

∧
∧

x∈Var xl = xk
)

∨
(
ml = mh ∧ ¬mk

∧ ¬Bl ∧ ϕh,n
WT2

∧
∧

x∈Var xl = xh
)

In the conditional encoding, each branch inherits its activity information (by the marker

variable m) from the overall statement and at the same time it explicitly “deactivates”

the other branch.

108 Chapter 5: Automating Correctness Proofs using First-order Logic

Example 5.3 (Workflow Template Encoding). We encode the following part of a work-

flow template, using numbers as labels:

[1] if P (a) then

[2] x := a;

[3] y := b;

else

[4] x := b;

[5] y := a;

fi

[6]

Every statement has one label and one next label, e.g., the next label of x := a is 3, the

next label of y := b is 6 (which is also the next label after the if clause). If we apply

Definition 5.5, we get the following formula:((
P (a1) ∧m1 = m2 ∧ ¬m4

∧ a2 = a1 ∧ b2 = b1 ∧ x2 = x1 ∧ y2 = x1

∧ (x3 = a2 ∧ a3 = a2 ∧ b3 = b2 ∧ y3 = y2)

∧ (y6 = b3 ∧ a6 = a3 ∧ b6 = b3 ∧ x6 = x3)
)

∨
(
¬P (a1) ∧m1 = m4 ∧ ¬m2

∧ a4 = a1 ∧ b4 = b1 ∧ x4 = x1 ∧ y4 = y1

∧ (x5 = b4 ∧ a5 = a4 ∧ b5 = b4 ∧ y5 = y4)

∧ (y6 = a5 ∧ a6 = a5 ∧ b6 = b5 ∧ x6 = x5)
))

Variables using label 1 as index represent variables “before” the workflow starts, label 6

“after” the workflow. The marker variables m1,m2,m4 represent which branch of the if

clause is active for a given variable assignment.

Based on logical encodings of workflows, we proceed to the definition of a correspondence

between tautology of a formula and correctness of a workflow template.

5.3 Correspondence of Correctness and Sat Problems

A logical encoding is not an automated application of proof rules according to the proof

calculus of Section 4.4. It is therefore necessary to define, and prove, a correspondence

between a satisfiability problem based on a logical encoding of a template and the formal

proof calculus.

5.3: Correspondence of Correctness and Sat Problems 109

5.3.1 Correspondence Theorem

Instead of creating a proof outline manually, we use an SMT solver to determine whether

or not a workflow template is correct. To do so, we need a correspondence between the

provability of a correct service composition template (→Definition 4.14), and the validity

of a formula which consists of the logical encoding of its workflow (→ Definition 5.5). The

theorem distinguishes between partial and total correctness of a template, depending on

whether or not termination is part of the proof. In practice, this depends on whether

or not a termination function of the while loop is present. To formalize this, we define

the set of loops of a workflow as well as their corresponding invariants and termination

functions.

Definition 5.6 (Loops, Invariants, and Termination Functions). Let WT be the work-

flow of a service composition template. We address each foreach and while loop using

the keyword loop indexed with the label of the loop. We denote the invariant of loopl
as

invl ∈ ΦK

and its termination function as an expression

tl ∈ ΦK with type(tl) = Integer .

We define the set of all loops of WT as

L :=
{

loopl | loopl is a loop in WT labeled [l]
}

and the set of top level loops as

LWT :=


∅ if WT = E, skip, assignment, or service call

{invl} if WT = [l] loop B do [k] W1 od [n]

LW1 ∪ LW2 if WT = W1;W2 or if B then W1 else W2 fi

Please note that the definition of top level loops does not contain nested loops.

As a loop invariant reflects the behavior of the loop, its encoding is a valid representation

to treat the loop as a black box, that is, to ignore the encoding of the actual loop

body. However, not every loop invariant can be used within a proof of correctness, as

loops are no black boxes in proofs. Instead, a loop invariant must be implied by the

preceding statements, hence the rule of consequence must be applicable (→ Def. 4.12,

Parameterized Proof Calculus for Workflow Templates, rule 9). This is not necessarily

true for every possible loop invariant. Therefore, it is not sufficient to use an arbitrary

invariant to encode a loop, but an invariant that is implied by the encoding of the

preceding statements, or its context. One option to do this is to explicitly encode the

sequence that precedes a given loop invariant, in addition to the encoding of the overall

110 Chapter 5: Automating Correctness Proofs using First-order Logic

workflow. This approach has a major drawback: In the proofs of the correspondence

theorem defined below, all possible contexts of a loop have to be considered.

Instead, we utilize the existing encoding of the overall workflow by using the marker

variables. Marker variables are by definition only valid, if a specific path in a workflow

is “active”, that is, the variable assignments are such that the corresponding branch of

a conditional statement is taken. Whenever it is the case that a path to an invariant is

active, we require that the overall encoding implies the invariant.

Definition 5.7 (Verification Condition). Let [l] WT [n] be a workflow template and

p, q ∈ ΦK . We define the verification condition of the workflow template regarding p

and q as

VC (WT , p, q) :=
(
ml ∧ pl ∧ ϕl,nWT

)
⇒
(
qn ∧

∧
loopk∈LWT

(mk ⇒ invk)
)
.

In other words, given a precondition p and a workflow encoding, the postcondition q is

implied. Additionally, for every top level loop in the workflow (that is, without nested

loops), the invariant actually used to encode the loop must be implied at the loop

position, marked by mk.

As loop encodings are black bloxes, errors in the loop body cannot be detected if we

create a verification condition for the overall workflow template of a service composition.

Therefore, we have to prove that a given invariant really is an invariant of a loop. We do

this by creating verification conditions not only for the workflow template of a service

composition, but for every loop of the workflow as well.

Definition 5.8 (Proof Obligation for Partial Correctness). Let (SctDesc ,WT ,CR) be

a service composition template with a workflow labeled with [l] WT [n], precondition

pre, and postcondition post . We define the proof obligation for partial correctness for

the service composition template as

Req := VC (WT , pre, post) ∧∧
loopi∈L

VC (W, inv ∧B, inv)

with [i] loop B do [j] W od [k].

Please note, that in this proof obligation all loops are covered, including nested loops.

In addition to the proof obligation for partial correctness, for total correctness we have

to show termination for every loop.

Definition 5.9 (Proof Obligations for Total Correctness). Let (SctDesc ,WT ,CR) be a

service composition template with loops L. Then, for loopi ∈ L with labels [i] loop B do

5.3: Correspondence of Correctness and Sat Problems 111

[j] W od [k] (and B := A 6= ∅ in case of foreach loops),

T-Progi :=
(
invj ∧Bj ∧ tj = z ∧ ϕj,kW

)
⇒ tk < z

T-Boundi := inv⇒ t ≥ 0

with t ∈ ΦK the termination function expression, z a fresh variable and type(t) =

type(z) = Integer denote the loop-related proof obligations.

Please note that the encodings for partial and total correctness differ not only by the

encoding of loop progress and termination, but also in the encodings of service calls.

With the requirements proof obligation and the loop termination proof obligations we

can formalize a theorem to relate provable correctness in the proof calculus with the

tautology of a logical formula.

Theorem 5.10 (Provability corresponds with Tautology). Let (SctDesc ,WT ,CR) be

a service composition template over a domain ontology K, with [l] WT [n] the labeled

workflow template of Sct and L with loopi ∈ L labeled [i] loop B do [j] W od [k] (and

B := A 6= ∅ in case of foreach loops) the loops of WT .

For partial correctness, the following holds for two expressions p, q:

`CR
K {p}Sct {q}

⇔ |=CR
K Req .

For total correctness, the loops have to terminate:

`CR
K {p}Sct {q}

⇔ |=CR
K

(
Req ∧

∧
loopl∈L

(
T-Progl ∧T-Boundl

))

With this theorem, we can automatically create a logical representation of a given work-

flow and use a satisfiability solver to check for correctness. As the correctness of a

service composition is equivalent to the tautology of the logical encoding, but solvers

check for satisfiability, in practice the encoding is negated and checked for contradic-

tion, as
(
|= P

)
⇔
(
¬P ≡ ⊥

)
. Chapter 7 discusses a prototypical implementation and

a translation into a solver input language, including the details on encoding a tautology

check as a contradiction check.

5.3.2 Proofs

To prove Theorem 5.10 we have to prove two directions: At first, we show that whenever

we have a provably correct service composition template with respect to some pre- and

postcondition, then the logical encoding which results from the theorem is a tautology

(“⇒”). At second, we show that whenever we have a logical encoding according to the

112 Chapter 5: Automating Correctness Proofs using First-order Logic

theorem, and the resulting formula is a tautology, then we are able to construct a proof

outline such that we can prove that the workflow (and therefore the service composition

template) is correct (“⇐”).

Proof. Let (SctDesc ,WT ,CR) be a service composition template with workflow [l] WT [n]

over a knowledge base K. Let p, q ∈ Φsp
K . We show that if Sct is correct regarding p and

q, the resulting logical encoding is a tautology, that is(
`CR
K {p}WT {q}

)
⇒
(
|=CR
K Req

)
.

for partial correctness, and(
`CR
K {p}WT {q}

)
⇒
(
|=CR
K Req ∧

∧
loopl∈L

(
T-Progl ∧T-Boundl

))
for total correctness. We prove this by induction, using skip, assignment, service call,

and loops as induction base cases. Therefore, both L and LWT are empty for the base

cases except the loops.

Skip We know: `CR
K {p} skip {p} with labels [l] skip [n].

ml ∧ pl ∧ ϕl,nskip
⇔ by Def. 5.5 (Skip)

ml ∧ pl ∧
∧

x∈Var
xl = xn

⇒ pn

Assignment We know: `CR
K {p[u := t]}u := t {p} with labels [l] u := t [n], where

u ∈ Var and t ∈ ΦK with type(u) = type(t).

ml ∧ p[u := t]l ∧ ϕl,nu:=t

⇔ by Def. 5.5 (Assignment)

ml ∧ p[u := t]l ∧ un = tl ∧
∧

x∈Var\{u}

xn = xl

⇒ by Def. of Substitution and I(un) = I(tl)

pn

5.3: Correspondence of Correctness and Sat Problems 113

Service call (partial correctness)

We know: `CR
K {∀w : post [i := v, o := w] ⇒ q[u := w]}u := S(v) {q} with labels

[l] u := S(v) [n], where i is an input and o an output variable in the signature,

pre the precondition, and post the postcondition of S. Reminder: According to

Definition 5.2, quantified variables are never indexed.

ml ∧
(
∀w : post [i := v, o := w]⇒ q[u := w]

)
l
∧ ϕl,nu:=S(v)

⇔ by Def. 5.5 (Service Call)

ml ∧
(
∀w : post [i := v, o := w]⇒ q[u := w]

)
l

∧
(
post [i := v, o := u]n ∧

∧
x∈Var\{u}

xn = xl
)

⇒ qn

Service call (total correctness)

We know: `CR
K {pre[i := v] ∧ ∀w : post [i := v, o := w] ⇒ q[u := w]}u := S(v) {q}

with labels [l] u := S(v) [n], where i is an input and o an output variable in

the signature, pre the precondition, and post the postcondition of S. Reminder:

According to Definition 5.2, quantified variables are never indexed.

ml ∧
(
pre[i := v] ∧ ∀w : post [i := v, o := w]⇒ q[u := w]

)
l
∧ ϕl,nu:=S(v)

⇔ by Def. 5.5 (Service Call)

ml ∧
(
pre[i := v] ∧ ∀w : post [i := v, o := w]⇒ q[u := w]

)
l

∧
(
pre[i := v]l ⇒ post [i := v, o := u]n ∧

∧
x∈Var\{u}

xn = xl
)

⇒ modus ponens

ml ∧
(
pre[i := v] ∧ ∀w : post [i := v, o := w]⇒ q[u := w]

)
l

∧ post [i := v, o := u]n ∧
∧

x∈Var\{u}

xn = xl

⇒ qn

114 Chapter 5: Automating Correctness Proofs using First-order Logic

While loop Let B be the loop condition, WT be a workflow template, and ϕWT its log-

ical representation. Let l, k, n be labels as follows: [l] while B do [k] WT od [n].

The premise is `CR
K {inv} while B do WT od {inv ∧ ¬B}, with inv ∈ L be-

ing an invariant of the loop. For partial correctness, it is sufficient to show

|=CR
K Req. For easier reading, we write X = Var \ change(WT). For a given loop

[h] loop B do [i] W od [j] we write VC h instead of VC (W, inv∧B, inv) for partial

correctness, and VC h instead of VC (W, inv∧B, inv)∧T-Progh∧T-Boundh for

total correctness.

((
ml ∧ invl ∧ ϕl,nwhile B do WT od

)
⇒
(
invn ∧ ¬Bn ∧ (ml ⇒ invl)

))
∧∧

loopj∈L
VC j

⇔ by Def. 5.5 (While)((
ml ∧ invl ∧ (invl ∧ invn ∧ ¬Bn ∧

∧
x∈X

xl = xn)
)

⇒
(
invn ∧ ¬Bn ∧ (ml ⇒ invl)

))
∧∧

loopj∈L
VC j

⇔ by
(
A⇒ B ∧ C

)
⇔
(
(A⇒ B) ∧ (A⇒ C)

)((
ml ∧ invl ∧ (invl ∧ invn ∧ ¬Bn ∧

∧
x∈X

xl = xn)
)
⇒
(
invn ∧ ¬Bn

))
∧((

ml ∧ invl ∧ (invl ∧ invn ∧ ¬Bn ∧
∧
x∈X

xl = xn)
)
⇒
(
ml ⇒ invl

))
∧∧

loopj∈L
VC j

⇒ by (A⇒ A) = > and
(
(A ∧B)⇒ (A⇒ B)

)
= >

> ∧> ∧
∧

loopj∈L
VC j

⇔
∧

loopj∈L
VC j

Now, by induction, overall correctness depends on the correctness of inner loops.

For total correctness, we also have to show termination of the loop. While the

premise is the same, from the proof rule for total correctness we can also conclude

that `CR
K {inv∧B ∧ t = z}WT {t < z} and |=CR

K inv⇒ t ≥ 0 hold. Termination

occurs in Theorem 5.10 by T-Prog and T-Bound.(
|=CR
K T-Bound

)
⇔
(
|=CR
K inv⇒ t ≥ 0

)
follows directly from the premise.(

|=CR
K T-Prog

)
⇔
(
|=CR
K

(
invk ∧ Bk ∧ tk = z ∧ ϕk,nWT

)
⇒ tn < z

)
follows from

the premise and the induction hypothesis. Therefore, overall correctness depends

additionally on termination of the nested loops.

5.3: Correspondence of Correctness and Sat Problems 115

Foreach loop See while loop and B replaced with (A 6= ∅).

Sequential composition Let WT 1 and WT 2 be workflow templates with labels

[l] WT 1; [k] WT 2 [n], and ϕl,k1 and ϕk,n2 their respective logical representations.

The premise is `CR
K {p}WT 1; WT 2 {q}. For this premise to be true, we know by

the proof rule for sequential composition that both `CR
K {p}WT 1 {r} and `CR

K

{r}WT 2 {q}, and therefore such an expression r ∈ ΦK has to exist. Let L1 denote

all loops of WT 1 and L2 all loops of WT 2 (and LWT1 and LWT2 the corresponding

top level loops according to definition). For a given loop [h] loop B do [i] W od [j]

we write VC h instead of VC (W, inv ∧ B, inv) for partial correctness, and VC h

instead of VC (W, inv ∧ B, inv) ∧ T-Progh ∧ T-Boundh for total correctness.

Then:

`CR
K {p}WT 1 {r} and `CR

K {r}WT 2 {q}
⇒ by assumption and induction base

|=CR
K

(
ml ∧ pl ∧ ϕl,k1 ⇒ rk ∧

∧
loopi∈LWT1

(mi ⇒ invi)
)
∧

∧
looph∈L1

VC h ∧(
mk ∧ rk ∧ ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)
∧

∧
looph∈L2

VC h

⇔ by
(
A⇒ B ∧ C

)
⇔
(
(A⇒ B) ∧ (A⇒ C)

)
|=CR
K

(
ml ∧ pl ∧ ϕl,k1 ⇒ rk

)
∧(

ml ∧ pl ∧ ϕl,k1 ⇒
∧

loopi∈LWT1

(mi ⇒ invi)
)
∧

(
mk ∧ rk ∧ ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

⇔ by absorption (A⇒ B)⇔ (A⇒ B ∧A)

|=CR
K

(
ml ∧ pl ∧ ϕl,k1 ⇒ rk ∧ml

)
∧(

ml ∧ pl ∧ ϕl,k1 ⇒
∧

loopi∈LWT1

(mi ⇒ invi)
)
∧

(
mk ∧ rk ∧ ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

116 Chapter 5: Automating Correctness Proofs using First-order Logic

⇒ especially for ml = mk

|=CR
K

(
ml = mk

)
∧
(
ml ∧ pl ∧ ϕl,k1 ⇒ rk ∧ml

)
∧(

ml ∧ pl ∧ ϕl,k1 ⇒
∧

loopi∈LWT1

(mi ⇒ invi)
)
∧

(
mk ∧ rk ∧ ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

⇔ by exportation
(
A ∧B ⇒ C

)
⇔
(
A⇒ (B ⇒ C)

)
|=CR
K

(
ml = mk

)
∧
(
ml ∧ pl ∧ ϕl,k1 ⇒ rk ∧ml

)
∧(

ml ∧ pl ∧ ϕl,k1 ⇒
∧

loopi∈LWT1

(mi ⇒ invi)
)
∧

(
mk ∧ rk ⇒

(
ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
))

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

⇔ by transitivity of implication and ml = mk

|=CR
K

(
ml = mk

)
∧
(
ml ∧ pl ∧ ϕl,k1 ⇒

(
ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
))
∧

(
ml ∧ pl ∧ ϕl,k1 ⇒

∧
loopi∈LWT1

(mi ⇒ invi)
)

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

⇔ by exportation
(
A ∧B ⇒ C

)
⇔
(
A⇒ (B ⇒ C)

)
|=CR
K

(
ml = mk

)
∧
(
ml ∧ pl ∧ ϕl,k1 ∧ ϕ

k,n
2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)
∧

(
ml ∧ pl ∧ ϕl,k1 ⇒

∧
loopi∈LWT1

(mi ⇒ invi)
)

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

⇔ |=CR
K

(
ml = mk

)
∧
(
ml ∧ pl ∧ ϕl,k1 ∧ ϕ

k,n
2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj) ∧

∧
loopi∈LWT1

(mi ⇒ invi)
)

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

5.3: Correspondence of Correctness and Sat Problems 117

⇔ |=CR
K

(
ml = mk

)
∧
(
ml ∧ pl ∧ ϕl,k1 ∧ ϕ

k,n
2 ⇒ qn ∧

∧
loopj∈LWT2

∪LWT2

(mj ⇒ invj)
)

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

⇔ by Def. 5.6 (Loops, Invariants, and Termination Functions)

|=CR
K

(
ml = mk

)
∧
(
ml ∧ pl ∧ ϕl,k1 ∧ ϕ

k,n
2 ⇒ qn ∧

∧
loopj∈LWT1;WT2

(mj ⇒ invj)
)

∧
∧

looph∈L1

VC h ∧
∧

looph∈L2

VC h

⇒ |=CR
K

(
(ml = mk) ∧ml ∧ pl ∧ ϕl,k1 ∧ ϕ

k,n
2 ⇒ qn ∧

∧
loopj∈LWT1;WT2

(mj ⇒ invj)
)

∧
∧

looph∈L1∪L2

VC h

⇔ by Def. 5.5 (Logical Encoding of Workflow Templates)

|=CR
K

(
ml ∧ pl ∧ ϕl,nWT1;WT2

⇒ qn ∧
∧

loopj∈LWT1;WT2

(mj ⇒ invj)
)

∧
∧

looph∈L1∪L2

VC h

118 Chapter 5: Automating Correctness Proofs using First-order Logic

Conditional Let WT 1 and WT 2 be workflow templates, ϕi,n1 and ϕk,n2 their respective

logical representations (with free(ϕi,n1) ⊆ Var i ∪ Varn and free(ϕk,n2) ⊆ Vark ∪
Varn), and B a logical expression. Let l, i, k, n be labels as follows:

[l] if B then [i] WT 1 else [k] WT 2 fi [n].

The premise is `CR
K {p} ite(B,WT 1,WT 2) {q}. For the premise to be true, we

know by the proof rule that `CR
K {p∧B}WT 1 {q} and `CR

K {p∧¬B}WT 2 {q}. Let

L1 denote all loops of WT 1 and L2 all loops of WT 2 (and LWT1 and LWT2 the cor-

responding top level loops according to definition). For a given loop [h] loop B do

[i] W od [j] we write VC h instead of VC (W, inv ∧ B, inv) for partial correct-

ness, and VC h instead of VC (W, inv ∧B, inv) ∧T-Progh ∧T-Boundh for total

correctness.

`CR
K {p ∧B}WT 1 {q} and `CR

K {p ∧ ¬B}WT 2 {q}
⇒ by premise and induction base

|=CR
K

(
mi ∧ pi ∧Bi ∧ ϕi,n ⇒ qn ∧

∧
loopj∈LWT1

(mj ⇒ invj)
)
∧

∧
loopj∈L1

VC j ∧

(
mk ∧ pk ∧ ¬Bk ∧ ϕk,n ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)
∧

∧
loopj∈L2

VC j

⇒ we introduce ml,Var l, such that by Def. 5.2 (Variable Replacement . . .) :

|=CR
K

(
ml ∧ml = mi ∧ pl ∧Bl ∧

∧
x∈Var

xl = xi ∧ ϕi,n

⇒ qn ∧
∧

loopj∈LWT1

(mj ⇒ invj)
)

∧
(
ml ∧ml = mk ∧ pl ∧ ¬Bl ∧

∧
x∈Var

xl = xk ∧ ϕk,n

⇒ qn ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L1

VC j ∧
∧

loopj∈L2

VC j

5.3: Correspondence of Correctness and Sat Problems 119

⇒ by (A⇒ B)⇒ (A ∧ C ⇒ B) :

|=CR
K

(
ml ∧ml = mi ∧ ¬mk ∧ pl ∧Bl ∧

∧
x∈Var

xl = xi ∧ ϕi,n

⇒ qn ∧
∧

loopj∈LWT1

(mj ⇒ invj)
)

∧
(
ml ∧ml = mk ∧ ¬mi ∧ pl ∧ ¬Bl ∧

∧
x∈Var

xl = xk ∧ ϕk,n

⇒ qn ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L1

VC j ∧
∧

loopj∈L2

VC j

⇒ by Def. 5.6 (Loops), we know ¬mk ⇒
∧

loopj∈LWT2

¬mj (same for mi):

|=CR
K

(
ml ∧ml = mi ∧ ¬mk ∧ pl ∧Bl ∧

∧
x∈Var

xl = xi ∧ ϕi,n

⇒ qn ∧
∧

loopj∈LWT1

(mj ⇒ invj) ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
(
ml ∧ml = mk ∧ ¬mi ∧ pl ∧ ¬Bl ∧

∧
x∈Var

xl = xk ∧ ϕk,n

⇒ qn ∧
∧

loopj∈LWT2

(mj ⇒ invj) ∧
∧

loopj∈LWT1

(mj ⇒ invj)
)

∧
∧

loopj∈L1

VC j ∧
∧

loopj∈L2

VC j

⇔ by Def. of implication and distribution

|=CR
K

((
ml ∧ml = mi ∧ ¬mk ∧ pl ∧Bl ∧

∧
x∈Var

xl = xi ∧ ϕi,n
)

∨
(
ml ∧ml = mk ∧ ¬mi ∧ pl ∧ ¬Bl ∧

∧
x∈Var

xl = xk ∧ ϕk,n
))

⇒
(
qn ∧

∧
loopj∈LWT1∪WT2

(mj ⇒ invj)
)

∧
∧

loopj∈L1∪L2

VC j

⇔ pull ml ∧ pl by distribution:

|=CR
K ml ∧ pl ∧

((
ml = mi ∧ ¬mk ∧Bl ∧

∧
x∈Var

xl = xi ∧ ϕi,n
)

∨
(
ml = mk ∧ ¬mi ∧ ¬Bl ∧

∧
x∈Var

xl = xk ∧ ϕk,n
))

⇒
(
qn ∧

∧
loopj∈LWT1∪WT2

(mj ⇒ invj)
)

∧
∧

loopj∈L1∪L2

VC j

120 Chapter 5: Automating Correctness Proofs using First-order Logic

⇔ by Def. 5.5 (Logical Encoding of Workflow Templates)

|=CR
K ml ∧ pl ∧ ϕl,nite(B,WT1,WT2) ⇒ qn ∧

∧
loopj∈Lite...

(mj ⇒ invj)

∧
∧

loopj∈L1∪L2

VC j

This proves the forward direction.

Now, we prove the other direction of Theorem 5.10 (Provability corresponds with Tau-

tology). We show that given a tautological formula |=CR
K Req based on a service compo-

sition template Sct with a workflow encoding ϕWT implies a provably correct workflow

`CR
K {p}WT {q} using labels [l] WT [n].

We make use of the weakest (and weakest liberal) precondition of a workflow. We know

that `CR
K {wlp(WT , q)}WT {q}, and the same for wp (Apt et al., 2009, and proof of

Theorem 3.17). Therefore, it is sufficient to show that for a tautology |=CR
K Req with

verification conditions VC of the structure ml ∧ pl ∧ ϕl,nWT ⇒ qn ∧
∧

loopj∈LWT
(mj ⇒

invj), the formula pl ⇒ wlp(WT , q)l is also a tautology. We use the weakest (liberal)

preconditions as defined in Lemma 3.19. For the proofs of the sequence and conditional

statements we need the following lemma.

Lemma 5.11 (Variable Independence). Let p, q ∈ ΦK over a set of variables Var. If

|=CR
K pi ∧ pk ⇒ qi, then also |=CR

K pi ⇒ qi.

Proof. Be prove the lemma by contradiction. Assume that the lemma does not hold,

that is, if |=CR
K pi ∧ pk ⇒ qi, then not necessarily |=CR

K pi ⇒ qi. If pi ⇒ qi is not valid,

then there has to be a valuation such that pi ∧ ¬qi is true (and pi ⇒ qi is false). With

this valuation, the only way for pi ∧ pk ⇒ qi to be valid is that pk is false for every

possible valuation. As Var i ∩Vark = ∅, there are no common variables between pi and

pk and their valuations are independent. Therefore, if pk is not contradictory, then there

exists a valuation such that pk is true. As p ∈ ΦK , pk is not necessarily contradictory.

Therefore, 6|=CR
K pi ∧ pk ⇒ qi, and the lemma holds.

Now, we continue with the remaining proof of Theorem 5.10 (Provability corresponds

with Tautology).

Proof. Let [l] WT [n] be a workflow template and ϕl,nWT its logical encoding. We show

that whenever Req is a tautology, p ⇒ wlp(WT , q) (for partial correctness) and p ⇒
wp(WT , q) (for total correctness) are also. We show this by induction on the structure

of WT , using skip, assignment, service call, and loops as base cases, as the encoding of

the latter is not defined inductively. For the base cases (except loops), LWT is empty,

so
∧

loopj∈LWT
(mj ⇒ invj) is always true and we omit this part of the formula for easier

reading.

5.3: Correspondence of Correctness and Sat Problems 121

Skip

|=CR
K ml ∧ pl ∧ ϕl,nskip ⇒ qn

⇒ we are only interested in active workflows (Def. 5.4, Position Markers)

|=CR
K

(
ml ∧ pl ∧ ϕl,nskip ⇒ qn

)
∧ml

⇔ |=CR
K pl ∧ ϕl,nskip ⇒ qn

⇔ by Def. 5.5 (Logical Encoding of Workflow Templates)

|=CR
K pl ∧

∧
x∈Var

xl = xn ⇒ qn

⇔ |=CR
K pl ⇒ ql

⇔ by Lemma 4.18 (wlp of Skip)

|=CR
K pl ⇒ wlp(skip, q)l

The same is true for wp(skip, q).

Assignment

|=CR
K ml ∧ pl ∧ ϕl,nu:=t ⇒ qn

⇒ we are only interested in active workflows (Def. 5.4, Position Markers)

|=CR
K

(
ml ∧ pl ∧ ϕl,nu:=t ⇒ qn

)
∧ml

⇔ |=CR
K pl ∧ ϕl,nu:=t ⇒ qn

⇔ by Def. 5.5 (Logical Encoding of Workflow Templates)

|=CR
K

(
pl ∧ un = tl ∧

∧
x∈Var\{u}

xl = xn
)
⇒ qn

⇔ by Def. of Substitution and I(un) = I(tl)

|=CR
K pl ⇒ q[u := t]l

⇔ by Lemma 4.18 (wlp of Assignment)

|=CR
K pl ⇒ wlp(u := t, q)l

The same is true for wp(u := t, q).

122 Chapter 5: Automating Correctness Proofs using First-order Logic

Service Call (partial correctness)

|=CR
K ml ∧ pl ∧ ϕu:=S(v) ⇒ qn

⇒ we are only interested in active workflows (Def. 5.4, Position Markers)

|=CR
K

(
ml ∧ pl ∧ ϕl,nu:=S(v) ⇒ qn

)
∧ml

⇔ |=CR
K pl ∧ ϕl,nu:=S(v) ⇒ qn

⇔ by Def. 5.5 (Service Call)

|=CR
K

(
pl ∧ (post [i := v, o := u]n ∧

∧
x∈Var\{u}

xl = xn)
)
⇒ qn

⇔ by exportation
(
A ∧B ⇒ C

)
⇔
(
A⇒ (B ⇒ C)

)
|=CR
K pl ⇒

(
(post [i := v, o := u]n ∧

∧
x∈Var\{u}

xl = xn)⇒ qn

)
⇒ because un 6∈ free(pl), un 6∈ free(pre[i := v]l) by Def. 5.2

|=CR
K pl ⇒((
∀w : post [i := v, o := w]n ∧

∧
x∈Var\{u}

xl = xn
)
⇒ q[u := w]n

)
⇒ because u is no longer part of any formula

|=CR
K pl ⇒

(
∀w : post [i := v, o := w]l ⇒ q[u := w]l

)
⇔ by Lemma 4.18

|=CR
K pl ⇒ wlp(u := S(v), q)l

5.3: Correspondence of Correctness and Sat Problems 123

Service Call (total correctness)

|=CR
K ml ∧ pl ∧ ϕu:=S(v) ⇒ qn

⇒ we are only interested in active workflows (Def. 5.4, Position Markers)

|=CR
K

(
ml ∧ pl ∧ ϕl,nu:=S(v) ⇒ qn

)
∧ml

⇔ |=CR
K pl ∧ ϕl,nu:=S(v) ⇒ qn

⇔ by Def. 5.5 (Service Call)

|=CR
K

(
pl ∧

(
pre[i := v]l ⇒ (post [i := v, o := u]n ∧

∧
x∈Var\{u}

xl = xn)
))
⇒ qn

⇔ by exportation
(
A ∧B ⇒ C

)
⇔
(
A⇒ (B ⇒ C)

)
|=CR
K pl ⇒

((
pre[i := v]l ⇒ (post [i := v, o := u]n ∧

∧
x∈Var\{u}

xl = xn)
)
⇒ qn

)
⇒ by

(
(A⇒ B)⇒ C

)
⇒
(
A ∧B ⇒ C

)
|=CR
K pl ⇒

(
(pre[i := v]l ∧ post [i := v, o := u]n ∧

∧
x∈Var\{u}

xl = xn)⇒ qn
)

⇒ because un 6∈ free(pl), un 6∈ free(pre[i := v]l) by Def. 5.2

|=CR
K pl ⇒((

pre[i := v]l ∧ ∀w : post [i := v, o := w]n ∧
∧

x∈Var\{u}

xl = xn
)
⇒ q[u := w]n

)
⇒ because u is no longer part of any formula

|=CR
K pl ⇒

(
pre[i := v]l ∧ ∀w : post [i := v, o := w]l ⇒ q[u := w]l

)
⇔ by Lemma 4.18

|=CR
K pl ⇒ wp(u := S(v), q)l

124 Chapter 5: Automating Correctness Proofs using First-order Logic

While loop Let WT be a workflow and B a loop condition. We choose l 6= k 6= n

as labels as in [l] while B do [k] WT od [n]. Also, let while be a short-hand

for while B do WT od, and X := Var \ change(WT), and W the body of inner

loops. For a given loop [h] loop B do [i] W od [j] we write VC h instead of

VC (W, inv ∧ B, inv) for partial correctness, and VC h instead of VC (W, inv ∧
B, inv) ∧T-Progh ∧T-Boundh for total correctness.

|=CR
K

(
ml ∧ pl ∧ ϕl,nwhile ⇒ qn ∧

∧
loopj∈LWT

(mj ⇒ invj)
)
∧

∧
loopj∈L

VC j

⇔ because the loop is the single element of LWT (Def. 5.6)

|=CR
K

(
ml ∧ pl ∧ ϕl,nwhile ⇒ qn ∧ (ml ⇒ invl)

)
∧

∧
loopj∈L

VC j

⇒ we are only interested in active workflows (Def. 5.4, Position Markers)

|=CR
K

(
ml ∧ pl ∧ ϕl,nwhile ⇒ qn ∧ (ml ⇒ invl)

)
∧ml ∧

∧
loopj∈L

VC j

⇔ |=CR
K

(
pl ∧ ϕl,nwhile ⇒ qn ∧ invl

)
∧

∧
loopj∈L

VC j

⇔ by
(
A⇒ B ∧ C

)
⇔
(
(A⇒ B) ∧ (A⇒ C)

)
|=CR
K

(
pl ∧ ϕl,nwhile ⇒ qn

)
∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧

∧
loopj∈L

VC j

⇔ by Def. 5.5 (While)

|=CR
K

(
pl ∧ invl ∧ invn ∧ ¬Bn ∧

∧
x∈X

(xl = xn)⇒ qn
)

∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧

∧
loopj∈L

VC j

⇒ from ` {inv} while . . . {inv ∧ ¬B},` {p}W {q} and |= p⇒ wp(W, q) :

|=CR
K

(
pl ∧ invl ∧ invn ∧ ¬Bn ∧

∧
x∈X

(xl = xn)⇒ qn
)

∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧
(
invl ⇒ wp(while . . ., invn ∧ ¬Bn)

)
∧

∧
loopj∈L

VC j

5.3: Correspondence of Correctness and Sat Problems 125

⇔ by exportation
(
A ∧B ⇒ C

)
⇔
(
A⇒ (B ⇒ C)

)
|=CR
K

(
pl ∧ invl ∧

∧
x∈X

(xl = xn)⇒ (invn ∧ ¬Bn ⇒ qn)
)

∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧
(
invl ⇒ wp(while . . ., invn ∧ ¬Bn)

)
∧

∧
loopj∈L

VC j

⇒ |=CR
K

(
pl ∧ invl ∧

∧
x∈X

(xl = xn)⇒

(
(invn ∧ ¬Bn ⇒ qn) ∧ wp(while . . ., invn ∧ ¬Bn)

))
∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧

∧
loopj∈L

VC j

⇒ |=CR
K

(
pl ∧ invl ∧

∧
x∈X

(xl = xn)⇒ wp(while . . ., qn)
)

∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧

∧
loopj∈L

VC j

⇒ especially true for l = n

|=CR
K

(
pl ∧ invl ⇒ wp(while . . ., ql)

)
∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧

∧
loopj∈L

VC j

As we can see, p does not always imply the weakest precondition, as we need

to prove. The proof depends on whether or not we chose a “useful” invariant

to encode the loop statement. However, concerning p ⇒ wp(. . . , q), we are only

interested in the cases where the variable assignment represents an actual workflow.

More precisely, if ϕwhile is false, it is irrelevant whether p implies the weakest

precondition. In contrast, if ϕwhile is true, p has to imply wp. Therefore:

126 Chapter 5: Automating Correctness Proofs using First-order Logic

|=CR
K

(
pl ∧ invl ⇒ wp(while . . ., ql)

)
∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧

∧
loopj∈L

VC j

⇒ we are only interested in the case ϕl,nwhile = >

|=CR
K

(
pl ∧ invl ⇒ wp(while . . ., ql)

)
∧
(
pl ∧ ϕl,nwhile ⇒ invl

)
∧ ϕl,nwhile

∧
∧

loopj∈L
VC j

⇔ |=CR
K

(
pl ∧ invl ⇒ wp(while . . ., ql)

)
∧
(
pl ⇒ invl

)
∧

∧
loopj∈L

VC j

⇔ |=CR
K

(
pl ⇒ wp(while . . ., ql)

)
∧

∧
loopj∈L

VC j

Foreach loop See while loop, with B replaced by A 6= ∅.

5.3: Correspondence of Correctness and Sat Problems 127

Sequential composition Let WT 1 and WT 2 be workflow templates, and ϕl,k1 and

ϕk,n2 their respective logical representations. We use l 6= k 6= n as labels as in

[l] WT 1; [k] WT 2 [n]. Let L1 denote all loops of WT 1 and L2 all loops of WT 2 (and

LWT1 and LWT2 the corresponding top level loops according to definition). For a

given loop [h] loop B do [i] W od [j] we write VC h instead of VC (W, inv∧B, inv)

for partial correctness, and VC h instead of VC (W, inv ∧ B, inv) ∧ T-Progh ∧
T-Boundh for total correctness.

|=CR
K

(
ml ∧ pl ∧ ϕl,nWT1;WT2

⇒ qn ∧
∧

loopj∈LWT1;WT2

(mj ⇒ invj)
)

∧
∧

loopj∈LWT1;WT2

VC j

⇔ by Def. 5.5

|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

∧ml = mk ∧ ϕk,nWT2
⇒ qn ∧

∧
loopj∈LWT1;WT2

(mj ⇒ invj)
)

∧
∧

loopj∈LWT1;WT2

VC j

⇔ by Def. 5.6 (Loops, Invariants, and Termination Functions), two times

|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

∧ml = mk ∧ ϕk,nWT2

⇒ qn ∧
∧

loopj∈LWT1

(mj ⇒ invj)
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈LWT1

VC j

∧
loopj∈LWT2

VC j

⇔ by (A⇒ B ∧ C)⇔ (A⇒ B) ∧ (A⇒ C)

|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

∧ml = mk ∧ ϕk,nWT2

⇒
∧

loopj∈LWT1

(mj ⇒ invj)
)

∧
(
ml ∧ pl ∧ ϕl,kWT1

∧ml = mk ∧ ϕk,nWT2
(1)

⇒ qn ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

(1)

∧
∧

loopj∈LWT1

VC j

∧
loopj∈LWT2

VC j

Now, for conjunct (1), we apply Craig interpolation.

128 Chapter 5: Automating Correctness Proofs using First-order Logic

|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

∧ml = mk ∧ ϕk,nWT2

⇒ qn ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

⇔ by ml ∧ml = mk and (|=CR
K p)⇔ (¬p Unsat)(

ml ∧ pl ∧ ϕl,kWT1
∧mk ∧ ϕk,nWT2

∧ ¬
(
qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
))

Unsat

⇒ by Craig interpolation ∃rk such that:(
|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

⇒ rk
))

and
(
rk ∧mk ∧ ϕk,nWT2

∧ ¬
(
qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
))

Unsat

⇔ by (|=CR
K p)⇔ (¬p Unsat)

|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

⇒ rk
)

∧
(
rk ∧mk ∧ ϕk,nWT2

⇒
(
qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
))

We combine this result for (1) with the overall proof:

⇒ by Craig interpolation

|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

∧ml = mk ∧ ϕk,nWT2
(2)

⇒
∧

loopj∈LWT1

(mj ⇒ invj)
)

(2)

∧
(
ml ∧ pl ∧ ϕl,kWT1

⇒ rk
)

(1)

∧
(
rk ∧mk ∧ ϕk,nWT2

⇒
(
qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
))

(1)

∧
∧

loopj∈LWT1

VC j

∧
loopj∈LWT2

VC j

For conjunct (2), from the structure and labeling of the sequential workflow we

know that the consequent does not include any variable xk ∈ Vark. Therefore we

can apply Lemma 5.11 (Variable Independence) and simplify the antecedent.

5.3: Correspondence of Correctness and Sat Problems 129

⇒ by Lemma 5.11 (Variable Independence)

|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

⇒
∧

loopj∈LWT1

(mj ⇒ invj)
)

(2)

∧
(
ml ∧ pl ∧ ϕl,kWT1

⇒ rk
)

∧
(
rk ∧mk ∧ ϕk,nWT2

⇒
(
qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
))

∧
∧

loopj∈LWT1

VC j

∧
loopj∈LWT2

VC j

⇔ by (A⇒ B) ∧ (A⇒ C)⇔ (A⇒ B ∧ C)

|=CR
K

(
ml ∧ pl ∧ ϕl,kWT1

⇒ rk ∧
∧

loopj∈LWT1

(mj ⇒ invj)
)

∧
(
rk ∧mk ∧ ϕk,nWT2

⇒
(
qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
))

∧
∧

loopj∈LWT1

VC j

∧
loopj∈LWT2

VC j

⇔ by induction hypothesis

{p}WT 1 {r}, {r}WT 2 {q}
⇒ by rule of composition

{p}WT 1; WT 2 {q}

130 Chapter 5: Automating Correctness Proofs using First-order Logic

Conditional Let WT 1, WT 2 be workflow templates, ϕh,n1 , ϕk,n2 their respective logical

representations, and B the logical condition. We choose l 6= h 6= k 6= n as labels

as in

[l] if B then [h] WT 1 else [k] WT 2 fi [n]. Also, let if be a short-hand for

if B then WT 1 else WT 2 fi, and W the body of an inner loop. For a given loop

[h] loop B do [i] W od [j] we write VC h instead of VC (W, inv∧B, inv) for partial

correctness, and VC h instead of VC (W, inv∧B, inv)∧T-Progh∧T-Boundh for

total correctness.

|=CR
K

(
ml ∧ pl ∧ ϕl,nif ⇒ qn ∧

∧
loopj∈LWT

(mj ⇒ invj)
)

∧
∧

loopj∈L
VC j

⇔ by Def. 5.6

|=CR
K

(
ml ∧ pl ∧ ϕl,nif ⇒ qn ∧

∧
loopj∈LWT1∪WT2

(mj ⇒ invj)
)

∧
∧

loopj∈L
VC j

⇔ |=CR
K

(
ml ∧ pl ∧ ϕl,nif ⇒ qn ∧

∧
loopj∈LWT1

(mj ⇒ invj) ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L
VC j

⇔ by Def. 5.5 (Conditional)

|=CR
K

((
(ml ∧ pl ∧ml = mh ∧ ¬mk ∧Bl ∧

∧
x∈Var

(xl = xh) ∧ ϕh,n1)

∨ (ml ∧ pl ∧ml = mk ∧ ¬mh ∧Bl ∧
∧

x∈Var
(xl = xh) ∧ ϕk,n2)

)
⇒ qn ∧

∧
loopj∈LWT1

(mj ⇒ invj) ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L
VC j

⇔ by (A ∨B ⇒ C)⇔ (A⇒ C) ∧ (B ⇒ C)

|=CR
K

(
ml ∧ pl ∧ml = mh ∧ ¬mk ∧Bl ∧

∧
x∈Var

(xl = xh) ∧ ϕh,n1

⇒ qn ∧
∧

loopj∈LWT1

(mj ⇒ invj) ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
(
ml ∧ pl ∧ml = mk ∧ ¬mh ∧Bl ∧

∧
x∈Var

(xl = xh) ∧ ϕk,n2

⇒ qn ∧
∧

loopj∈LWT1

(mj ⇒ invj) ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L
VC j

5.3: Correspondence of Correctness and Sat Problems 131

⇒ by (A⇒ B ∧ C)⇒ (A⇒ B)

|=CR
K

(
ml ∧ pl ∧ml = mh ∧ ¬mk ∧Bl ∧

∧
x∈Var

(xl = xh) ∧ ϕh,n1

⇒ qn ∧
∧

loopj∈LWT1

(mj ⇒ invj)
)

∧
(
ml ∧ pl ∧ml = mk ∧ ¬mh ∧Bl ∧

∧
x∈Var

(xl = xh) ∧ ϕk,n2

⇒ qn ∧
∧

loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L
VC j

⇔ |=CR
K

(
mh ∧ ph ∧ ¬mk ∧Bh ∧ ϕh,n1 ⇒ qn ∧

∧
loopj∈LWT1

(mj ⇒ invj)
)

∧
(
mk ∧ pk ∧ ¬mh ∧Bk ∧ ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L
VC j

⇒ by Lemma 5.11 (Variable Independence) we can omit ¬mk,¬mh

|=CR
K

(
mh ∧ ph ∧Bh ∧ ϕh,n1 ⇒ qn ∧

∧
loopj∈LWT1

(mj ⇒ invj)
)

∧
(
mk ∧ pk ∧Bk ∧ ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L
VC j

⇔ by Def 5.6 (Loops, Invariants, and Termination Functions)

|=CR
K

(
mh ∧ ph ∧Bh ∧ ϕh,n1 ⇒ qn ∧

∧
loopj∈LWT1

(mj ⇒ invj)
)

∧
(
mk ∧ pk ∧Bk ∧ ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L1

VC j ∧
∧

loopj∈L2

VC j

132 Chapter 5: Automating Correctness Proofs using First-order Logic

⇔ |=CR
K

(
mh ∧ ph ∧Bh ∧ ϕh,n1 ⇒ qn ∧

∧
loopj∈LWT1

(mj ⇒ invj)
)

∧
∧

loopj∈L1

VC j ,

|=CR
K

(
mk ∧ pk ∧Bk ∧ ϕk,n2 ⇒ qn ∧

∧
loopj∈LWT2

(mj ⇒ invj)
)

∧
∧

loopj∈L2

VC j

⇒ by induction

`CR
K {p ∧B}WT 1 {q},`CR

K {p ∧ ¬B}WT 2 {q}
⇒ by conditional rule

{p} if B then WT 1 else WT 2 fi {q}

This concludes the proof of Theorem 5.10 (Provability corresponds with Tautology)

and therefore establishes a connection between solving a satisfiability problem and the

constructibility of a formal proof of correctness.

5.4: Deriving Invariants and Termination Functions 133

5.4 Deriving Invariants and Termination Functions

Automatically discovering loop invariants and termination functions is a well researched

topic and not part of this thesis. However, as the integration of formalized domain

knowledge in the process of verification of service compositions is the core part of this

thesis, we present first strategies to utilize a knowledge base in the process of finding

invariants and termination functions.

5.4.1 Finding Loop Invariants using Domain Knowledge

Section 5.1 provides an overview of invariant generation techniques, with two main

topics: Invariants formalize either linear inequalities between (numerical) variables and

a constant, or they are derived from an existing postcondition of the loop by mutation,

utilizing heuristics. A third approach is the use of invariant templates, where a pattern

of the invariant formula is already given and the use of actual predicates is computed

dynamically. As an example, Srivastava and Gulwani provide three example patterns of

invariants:

ν1

∀y : ν1 ⇒ ν2

∀y∃x : ν1 ⇒ ν2

Here, ν is a variable representing a set (treated as conjunction) of predicates, which

is determined by actual invariant inference algorithms (Srivastava and Gulwani, 2009).

However, the predicates are given manually by the user and take the form of linear

inequalities (x < 5, y < n) or array access (A[j] = 0), that is, these are not predicates

in the sense of a knowledge base in this thesis. Due to the nature of the predicates,

this approach does not seem to be directly applicable to the invariants needed in this

thesis. However, the actual computation of ν depends on fix point computations which

rely on an SMT solver. Therefore, this approach is not per se limited in the form of

the predicates as long as there exists a representation which can be handled by the

underlying solver.

There are two main differences between the predicates handled by the approach of

Srivastava and Gulwani and this thesis: One is the use of real first-order logic predicates,

the other is the use of a type system for variables, including set types. Therefore,

defining ν as ν ∈ 2P , the first difference is already balanced. To compensate for the

second difference, namely the use of set types, we can use invariant templates. Invariant

templates are not necessarily as abstract and simply structured as in the example above.

Instead, they incorporate structural knowledge of the loop designer about an invariant,

even if the exact invariant is not known.

Considering the Filter template (→ Example 4.4), where the output is a subset of the

input for which a certain predicate holds, we know the following about the loop:

134 Chapter 5: Automating Correctness Proofs using First-order Logic

• There is an input set A, an output set B, and a temporary set Z, which serves as

the loop variable.

• The temporary set is always a subset of the input set.

• The output set contains all elements of the input set which have already been

processed by the loop, as long as the target predicate holds.

• From the precondition of the template we also know that an additional predicate

holds for every element of the input set.

This knowledge leads to the invariant which is used in the manual proof of correctness

(→ Figure 4.3):

Z ⊆ A ∧
(
∀u ∈ Z : preAcquire(u)

)
∧B = {b ∈ A \ Z | isTargetElement(b)}

While this invariant is specific to the loop of the Filter template, its structure follows

a pattern outlined textually above:

Z ⊆ A Relate loop set with a set variable,

∀u ∈ Z : p(u) assert a property p ∈ P for all set elements,

B = {b ∈ A \ Z | q(b)} relate the output set with the input set by a predicate q.

Patterns with this or a similar structure rely on the set of (first-order) predicates as well

as set operations. Template-based invariant inference as in the approach of Srivastava

and Gulwani, which is inherently agnostic of the exact type of predicates used, are then

applicable to find invariants based on the knowledge base and terms defined in this

thesis. This is due to the fact that the underlying solver handles both the theory of

uninterpreted functions, quantification, and there is an encoding of the handling of set

types.

5.4.2 Finding Termination Functions using Domain Knowledge

Whenever verification of a workflow with respect to its postcondition includes verifi-

cation of a loop, proving termination is an important issue. Termination of loops is

typically shown by giving a termination argument, also called termination function, or,

in this thesis, termination expression. A basic idea of proving termination of a program

dates back to Turing. He suggests to represent the progress between program states as

decreasing and eventually “vanishing” ordinal numbers (Morris and Jones, 1984). The

mathematical idea behind this is to define ranking functions to map relations between

program states to relations on a well ordered set, where a well ordered set is a set with

a total order and a bound (Bradley et al., 2005, Chawdhary et al., 2008, Dams et al.,

2000, Podelski and Rybalchenko, 2004). This is often done by using the non-negative

Integers.

Using the notation of the logical encoding introduced in this chapter, a termination

argument t is modified by each loop iteration such that it decreases, that is, if t = z

5.4: Deriving Invariants and Termination Functions 135

for some z before the execution of the loop body, then t < z holds after executing the

loop body. Additionally, t is bounded (t ≥ k for some k) such that it cannot decrease

(or progress) indefinitely. In this thesis, termination arguments are defined manually,

if necessary, and are expressions with t ∈ ΦK and type(t) = T . While T is often

represented as Integer, it can be any range with an equality relation = and a relation

< that induces a strict order on T . Note that the bound k is not necessarily a greatest

lower bound in terms of a lattice, but can also be derived either from the type (e.g., zero

for non-negative Integers), the domain knowledge, or the statements in the loop body.

Both, progress and boundedness, are part of the proof rule for while loops in case of

the proof system for total correctness (→ Definition 4.12, Parameterized Proof Calculus

for Workflow Templates, rule 7.2). The foreach loop does not need a termination

function, as its termination is implicitly included in its definition. This follows from

the semantics of the take statement and the restriction of loop variables: For a loop

foreach a ∈ A do W od, the set A cannot be modified except by the semantics of the

loop and, consequently, the take statement. Then, the termination argument t is the

size of A and therefore progressing (by the semantics of take) towards a bound (the

empty set).

The integration of domain knowledge follows the same principles. At first, termination

argument candidates are found, at second, they are either validated or invalidated as

termination argument. Candidates are derived from predicates and functions of the

domain knowledge K. Any type T ∈ TK with a relation F ∈ FK or predicate P ∈
PK inducing a strict order is a potential type of t. Using the Tourism domain as an

example (→ Example 2.1), the concept Rating is accompanied by a role isRatingLess :

Rating × Rating, with properties that induce a strict order on Rating (with the

equality relation =). Then, isRatingLess corresponds with the order-inducing relation

< used in t < z. Consequently, type(t) = Rating. Not only predicates from the domain

knowledge, but relations from PK and FK are also eligible candidates for order-inducing

relations, e.g., the subset relation for any set type.

Following this pattern, a number of candidates for termination expression types, cor-

responding relations, and (simple) expression candidates can be derived directly from

the knowledge base. Then, composite expression candidates can be built based on com-

bining applicable predicates, functions, and variables. Simple heuristics would involve

the use of variables in the loop body, and building expressions involving them and the

relations and functions applicable to their type(s).

As this heuristic aims at identifying a well-founded structure in the domain knowledge

and derived types, it should be relatively easy to adapt existing approaches to find

termination arguments, as long as they are also based on well-foundedness, as, e.g.,

Dams et al. (2000).

Chapter 6

Dealing with Uncertain Service

Descriptions

In service-oriented computing, especially OTF computing, services used in a service

composition originate typically from third-party developers. The orchestration process,

and, consequently, formal verification of the resulting service composition model, rely

on their black-box descriptions. This poses the problem of services whose behavior

may deviate from their description. In this thesis, we have the general assumption

that service descriptions always reflect their actual behavior. This results from either

the service being a composition itself (and being verified against its description), or an

atomic service or piece of software. The latter can be treated using classical program

verification.

This chapter discusses an approach to deal with uncertain, or deceptive, service com-

positions. It is based on the master’s thesis of Maryam Lexow (née Sanati) and an

unpublished paper of its results (Sanati, 2014).

6.1 Uncertainty in Service Descriptions

On a service market, we assume that service descriptions accurately reflect the actual

behavior of the service. This can be achieved by techniques like proof carrying code

(Necula and Lee, 1998) or programs from proofs (Wonisch et al., 2013a, 2014), which

both create a proof of correctness which can be easily verified and thus serves as a

certificate. Then, verification as presented in this thesis, works on the model of the

behavior of the service. However, if services are not certified, then a correspondence

between their model and their actual behavior cannot be guaranteed. Consequently,

using their description to verify service compositions may lead to incorrect results, as

the descriptions of single services may be unsound and do not represent their actual

behavior. This raises the question of whether we can extend our verification framework

such that it accounts for unreliability of formal descriptions.

137

138 Chapter 6: Dealing with Uncertain Service Descriptions

A way to handle uncertainty in the correspondence of service models and their actual

behavior is the use of probabilities. It raises two main questions:

(1) How is uncertainty modeled (and, especially, what is the source of this model)?

(2) What is its impact on verification?

In the context of on-the-fly computing, statistics are a potential source of probabilities

to quantify the model/behavior correspondence. Services and service compositions are

run on compute centers, and non-functional metrics like mean runtime, mean number of

users, or mean failure rate can be tracked. If we consider runtime statistics as a source

to quantify model/behavior correspondence statistics, the main questions are:

(1) Are they relevant in comparison to the goal of verification?

(2) Are they available in the verification process?

(3) Are they created independently of the original service provider (and not biased by

it)?

However, our verification framework is focused on functional models describing the be-

havior of a service. The users of a service (or composition) are another source which

can testify whether or not the service met the initial requirements. Typically, users

provide feedback utilizing feedback systems, which in the end accumulate a reputation

for a service or a service provider. In general, reputation systems (Mármol and Kuhnen,

2015) provide a value (or a vector of values) representing the experiences of former uses

of the services. They serve as a means of decision making to select services for a com-

position. While reputation values do not rely on measurable statistics comparable to,

e.g., runtime values, they include a direct feedback of customer satisfaction.

Both approaches, using statistical runtime data and subjective satisfaction feedback,

have one thing in common: They both try to quantify a sliding scale of model/behavior

correspondence. However, if services of a composition are not rigorously certified, but

selected on the basis of statistical (empirical or subjectiv) data, the results of formal

verification cannot be taken at face value. The reason for this is that, e.g., non-optimal

reputation may include the fact that the service’s behavior deviated from its published

description, depending on the exact type of reputation value.

While uncertain verification results in general are well understood in Markov-based

service models (e.g., state-based model checking with Prism, Kwiatkowska and Parker,

2012), or in the domain of quality-of-service analysis (Gallotti et al., 2008), Sat-based

analysis of service compositions still relies on correct service descriptions. However,

while it is out of scope of this thesis to define a verification framework which includes

statistics, we will present an idea of combining a statistical approach with Sat-based

analysis.

6.2: Verification under Uncertainty 139

6.2 Verification under Uncertainty

To combine uncertain (or unreliable) service descriptions with formal verification the

following steps are necessary:

(1) Based on empirical data, determine a probability of correctness of a service descrip-

tion;

(2) determine a service representation if it is not correct, that is, it does not match

the actual behavior of the service;

(3) use the probability of correctness as part of formal verification.

Step (1) is the most flexible step. Its core is a (reliable) relation between empirical data

with a probability of whether or not a service description can be trusted. Defining such

a relation is not straightforward and not part of this thesis. However, the choices made

in this step have major implications on the interpretation of verification results. With

no regard to the exact mapping, a probability of correctness (PC) maps empirical data

(e.g., aggregated reputation values, as in Jungmann et al. 2014, or failure statistics) to

a probability value:

PC : empirical data→ [0; 1] .

It defines the probability that a service description actually represents the service be-

havior. The logical encoding ϕW of a service composition’s workflow W is defined

inductively (→ Definition 5.5, Logical Encoding of Workflow Templates), representing

the service call [l] u := S(v) [k]. To include a probability of correctness, such a fixed

definition can be replaced by a variable to represent different service call encodings.

For example, for a service call [l]u := S(v) [k], the special variable ϕ◦S may replace the

encoding of a service call of Definition 5.5:

ϕl,kS := ϕ◦,l,kS .

As a result, the logical representation ϕSc of a service composition Sc contains only

placeholder variables as service representations. With a logical representation of a com-

position using service placeholders, we are able to define a domain for the placeholder

variables. As part of step (2), a minimal domain would contain the original service call

encoding and an additional encoding to represent the service behavior if it is not true

to its description. In

U(ϕ◦S) := {ϕX
S , ϕ

S} ,

ϕX
S represents the service call encoding which represents the correct behavior, and ϕ S

represents a deviating behavior. As an example, a deviating service behavior may be

modeled as the correct service, but with negated postcondition. That way, we get

140 Chapter 6: Dealing with Uncertain Service Descriptions

different representations for ϕ◦S :

ϕ
X,l,k
u:=S(v) := pre[i := v]l ⇒

(
post [i := v, o := u]k ∧

∧
x∈Var\{u}

xk = xl
)

ϕ ,l,ku:=S(v) := pre[i := v]l ⇒
(
¬post [i := v, o := u]k ∧

∧
x∈Var\{u}

xk = xl
)

Other logical representations for ϕ S are also possible. Different logical encodings for ϕ◦S
combined with the probability of correctness enable a probability distribution DS for

ϕ◦S valuations:

DS :=
{(
ϕX
S ,PC(S)

)
,
(
ϕ S , 1− PC(S)

)}
.

Using variables to represent logical service encodings, an encoding ϕWT for a given

workflow template cannot be verified directly. Instead, service call variables ϕ◦S have to

be instantiated before an actual verification can be executed. The general approach to

step (3) is to create logical workflow template encodings by instantiating all possible per-

mutations of ϕ◦S valuations. Every single permutation is a complete workflow template

encoding with service call representations and therefore it can be automatically verified

as discussed in Chapter 5 (Automating Correctness Proofs using First-order Logic).

Based on the probability distribution DS , the probability of occurrence of every permu-

tation can be computed. Additionally, the verification of every permutation yields a

verification result. The goal would be to aggregate both information to an overall prob-

ability of correctness of the workflow template. However, it is not possible to weigh the

results (that is, “correct”, “not correct”, or “unknown”) with the probability of occur-

rence, because there are two different notions of probability involved: The probability

of correctness of service descriptions quantifies the correctness of a single service rep-

resentation. Based on that, we can compute the probability of occurrence of a specific

workflow template encoding as a permutation of service call representations.

To compute an overall probability of correctness, Littman et al. with Stochastic SAT

and, based on their work, Fränzle et al. for Stochastic SMT extend satisfiability prob-

lems with probabilites (Fränzle et al., 2008, Littman et al., 2001). They introduce a

probability of satisfiability for SMT formulas with placeholder variables and probability

distributions DS . They define aggregation functions to aggregate probabilities of satis-

fiability both for variables with probability distributions and for existentially quantified

variables without probability distributions (regular variables). If a (sub-) formula is sat-

isfiable, they use its probability value for multiplication. If a formula does not contain

probability distributions, that is, it just contains regular existentially quantified vari-

ables, they aggregate probabilities of subformulas by selecting the maximum probability

value.

However, choosing aggregation functions like a weighted average or maximum value is not

trivial. Therefore, we recommend this as a starting point for future work if uncertainty,

and therefore probabilities, should be incorporated into the verification framework of

this thesis.

6.3: Special Cases 141

6.3 Special Cases

The previous section introduces the idea of including a probability of correctness of a ser-

vice composition into verification. In sequential compositions, there is exactly one proof

obligation, but for service compositions with loops, we have to consider the loop-based

proof obligations as well (→ Definition 5.9, Proof Obligations for Total Correctness,

→ Theorem 5.10, Provability corresponds with Tautology).

6.3.1 Loop Proof Obligations

One way to formalize the behavior of loops is to unroll a fixed number k of loop exe-

cutions, as done by bounded model-checking (BMC) approaches (Armando et al., 2009,

Biere et al., 1999). While unrolling captures the exact behavior of the loop, it is by defi-

nition bound to k steps. Instead of BMC, we capture the behavior of the loop by a loop

invariant and assume that it is already given for every loop (→ Definition 5.6, Loops,

Invariants, and Termination Functions,→ Section 5.1, Related Work and the Treatment

of Loops). To prove correctness automatically, this results in having additional proof

obligations to show termination.

There are two ways to integrate additional proof obligations into the probability of cor-

rectness of a service composition. At first, the original proof obligation can be replaced

by a set of proof obligations that have to hold; the combined obligation only holds, if

every obligation in the set holds. At second, the probability of correctness of a com-

position can be defined for every proof obligation. This way, a more fine-grained result

can be achieved, and errors of a service composition can be tracked down to, e.g., an

invariant that is too weak, or a termination function which does not hold.

6.3.2 Repetition

In the sketch to include uncertainty into verification as described above, every call

to a single service S is handled by exactly the same service description variable ϕ◦S .

This reflects that we make a decision whether to use the “correct” or the “faulty”

representation of a service once. Depending on the circumstances, we may want to have

this uncertainty for every occurrence of S separately, e.g., if a service is called twice

in the same composition. In that case, every occurrence of ϕ◦S in a workflow template

encoding gets a separate probability distribution.

A major drawback of this approach is that loops cannot be handled without further

knowledge, as the number of loop executions has to be known in advance. However, it

is possible to use techniques from bounded model checking to unroll the loop for a fixed

number k of loop iterations.

Whether or not several occurrences of ϕ◦S should be handled independently, depends

on the original source of the probability of correctness. While computing a PC value

142 Chapter 6: Dealing with Uncertain Service Descriptions

of a service composition works with both versions (with the exception of loops), its

interpretation is closely related to the original modeling intentions. For example, if

the source of PC is related to reputation, it seems reasonable to evaluate every service

description variable of the same service S only once; if the source is related to non-

functional properties, separate evaluations seem to be more appropriate.

6.4 Discussion and Related Work

In this chapter, we presented an idea to combine uncertainty of service descriptions with

a formal verification of service compositions. We do this by providing a generic notion of

probability of correctness (PC) of service descriptions. As a result we identified the need

to further investigate means to aggregate PC values and verification results of all possible

workflow template encodings. With such an aggregation method we get a probability

of correctness of an overall composition which is backed by concrete verification results.

The interpretation of this probability, however, depends heavily on the computation

of the original PC values. As an example, we may use simplified reputation (or trust)

values (e.g., Erickson, 2009). Other approaches are based on Fuzzy sets (Wu and Weaver,

2006), or provide a configurable framework by itself (Jungmann et al., 2014). Generally,

and in contrast to our approach, reputation-based notions of uncertainty have no impact

on verification of functional properties.

Another promising source of PC values is the monitoring of violations of described

behavior, as done using runtime monitoring (e.g., Wonisch et al., 2013b), where a mon-

itor observes whether a program violates a formally specified property during runtime.

Other formal verification techniques, which are combined with probabilistic behavior,

typically aim at quality of service properties, e.g., the model checker Prism (Gallotti

et al., 2008, Kwiatkowska et al., 2011). However, these approaches are built on sound

service descriptions, that is, service descriptions are always trusted. Littman et al. and

Fränzle et al. combine uncertainty with satisfiability problems in general, but they focus

on probabilistic determination of variable values (Fränzle et al., 2008, Littman et al.,

2001).

While functional verification has moved from classical program verification (e.g., Lahiri

and Qadeer, 2008) to the world of Semantic Web (e.g., Ankolekar et al., 2005), the

notion of uncertain service descriptions is, as far as we know, not treated yet in SAT-

based verification.

Chapter 7

Prototypical Implementation

This thesis provides two theorems related to satisfiability: Theorem 5.10 (Provability

corresponds with Tautology) states the equivalence of correctness of a service composi-

tion template with the tautology of a corresponding logical formula, and Theorem 4.24

(Constraint Rule Compliance) states the equivalence of creating a correct instantiation

of a service composition template with the compliance of its instantiated contraint rules

with the target domain ontology. Both theorems relate central topics of this thesis with

satisfiability problems, claiming that tautology of a formula can be solved by exist-

ing satisfiability solvers. This chapter introduces a prototypical implementation called

Spike to automate these satisfiability checks.

Section 7.1 gives an overview about the overall process of automating satisfiability checks

for service composition templates and its relation to the CRC 901 tool set SeSAME. Sec-

tion 7.2 introduces the SMT-LIB standard to encode satisfiability problems. Section 7.3

presents the architecture of the prototype implementation, and Section 7.4 continues

with an evaluation.

7.1 Overview

This section gives an overview on the overall encoding workflow, the relation to SeSAME,

and the input of Spike.

7.1.1 Automating Satisfiability Problems

The important practical consequence of the theorems relating correctness to satisfiability

of logical formulas is that solving satisfiability of the latter is already supported by tools.

While there exist solvers for specialized domains as well as for propositional satisfiability

(e.g., MiniSAT/CHAFF, Eén and Sörensson, 2004) or subsets of predicate logic (e.g.,

MathSAT, Cimatti et al., 2013, Microsoft’s Z3, de Moura and Bjørner, 2008), we con-

centrate on solvers for satisfiability modulo theories (→ Section 7.2). With automated

143

144 Chapter 7: Prototypical Implementation

Figure 7.1: Process overview on automated verification

tool support for solving satisfiability problems available, it is sufficient to translate the

question of whether or not a composition is correct into a logical formula and then utilize

existing solvers (→ Chapter 5). The solver result – a formula is tautological or not – can

then be translated back into correctness properties using the theorems. This approach

consists of three steps (→ Figure 7.1).

(1) The knowledge base, service descriptions, compositions, and templates, includ-

ing workflows, have to be translated into their logical representation as defined

in Chapter 5. This representation has to be encoded using a language that is

compatible with the accepted input of a given solver. For this thesis, we choose

SMT-LIB 2.5, a standard language for satisfiability modulo theories (Barrett et al.,

2015).1

(2) The resulting SMT-LIB representation is used as input to an SMT solver, in our

context Microsoft’s Z3.2

(3) The solver then produces a result, either a successful execution of the proof by

showing tautology, or a counterexample.

With the Service composition Prover with Integration of Knowledge base Encodings

(Spike), we provide a prototypical implementation of this process.

7.1.2 Compatibility with SeSAME

In the context of CRC 901 On-The-Fly Computing exists the SeSAME tool kit (Ar-

ifulina et al., 2014). SeSAME is a collection of tools to model services and service

compositions and to handle tasks related to these models, e.g., service matching. To

this end, SeSAME defines a Service Specification Language (SSL) based on the Palladio

Component Model (PCM, Becker et al., 2009). SSL provides language features to model

service signatures, pre- and postconditions, and service compositions. Service compo-

sitions use service effect specifications (SEFFs) as workflow language (Arifulina et al.,

2015). An early prototype of Spike implementing first steps of the verification process

of this thesis exists within the SeSAME tool set as part of the Functional Analysis Tools

1http://www.smtlib.org, retrieved July 21, 2017.
2https://github.com/Z3Prover/z3, retrieved July 21, 2017.

http://www.smtlib.org
https://github.com/Z3Prover/z3

7.1: Overview 145

(FAT).3 However, there exist some incompatibilities between the specification language

presented in this thesis and the capabilities of SSL. These incompatibilities are:

(1) SSL is specialized to model service workflows. Consequently, the only atomic

workflow element is the service call. It is therefore not possible (it is even con-

trary to the strategic goal of SSL) to model variable assignments as defined in the

assignment statement of the modeling language of this thesis (→ Definitions 3.3,

Workflow, and 4.5, Workflow Template).

(2) SSL relies on the Web Ontology Language (OWL) as modeled by Stanford’s ontol-

ogy editor Protégé (Horridge et al., 2014). However, OWL does not provide native

support for modeling set-based data types, and SSL does not add additional sup-

port. The approach of this thesis handles this limitation by deriving data types

from ontologies and not requiring them to be defined solely within the ontological

knowledge (→ Section 2.2.5, A Formal Knowledge Base).

(3) SSL supports logical expressions to be used in pre- and postconditions, but the

corresponding sublanguage only supports logical and linear arithmetics operands

and not set operands. While the language can be extended with set support in

principle, this contradicts topic (2).

As a result, the early prototype demonstrates general integration into SeSAME, but is

limited to non-set types. Additionally, it does not support loops, as the use of invariants

typically relies on relating old and new variable values, which is done by introducing new

variables, contradicting topic (1). Therefore, the final prototype of Spike as described in

this chapter is not integrated into SeSAME, but developed as a stand-alone application.

7.1.3 Input Models

In SeSAME, SSL is the integrated modeling language to model services and composi-

tions. It refers to OWL with SWRL rules to model ontologies and directly derives the

allowed data types from the domain knowledge. In Spike, the data structure for knowl-

edge base modeling directly reflects the knowledge base definition (→ Definition 2.3)

and can therefore easily serve as adapter for ontology languages like OWL. Additionally,

this extends the capabilities of SWRL by allowing for arbitrary logical expressions as

rules, instead of restricting rules to Horn clauses. Service representations consist of a

signature with pre- and postconditions, both in SSL, Spike and in the formal definition.

In SSL, modeling of workflows with SEFFs does not follow the relatively free form of

UML activity diagrams, but it directly adapts the restricted structure of PCM. This re-

sults in a consistent workflow structure where self-contained blocks are central elements.

Therefore, nested workflows are easily modeled. For details on SSL, we refer to Arifulina,

3http://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/sesame.

html, retrieved July 21, 2017.

http://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/sesame.html
http://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/sesame.html

146 Chapter 7: Prototypical Implementation

Platenius, Becker, Engels, and Schäfer (2015). Because of the incompatibilities above

Spike does not support SSL. Instead, the input model of Spike follows Definition 4.5

(Workflow Template) and therefore uses a block-based structure. This makes a later

integration with SeSAME easy. In contrast to SSL, it supports a dedicated variable as-

signment element, and data types are based on the knowledge base model, but extended

with set types.

From a technical point of view, the input model can be used as adapter layer, following

the Adapter design pattern (Gamma et al., 1994), to couple the prototype to a future

version of SSL (Figure 7.2).

7.2 Logical Models

This section introduces the SMT-LIB standard and dedicated SMT encodings.

7.2.1 Logical Encoding Standard SMT-LIB

Solving a logical formula is the process of finding a model which satisfies the formula,

or, an assignment for which a formula evaluates to true. This process can be automated,

and Davis, Putnam, Logemann and Loveland gave an algorithm to solve propositional

formulas already in the 1960s (Davis and Putnam, 1960, Davis et al., 1962). Since then,

their algorithm, dubbed as DPLL, serves as foundation for several satisfiability (SAT)

solvers. Tinelli and Ganzinger et al. extend DPLL by integrating (in principle arbitrary)

theories (Ganzinger et al., 2004, Tinelli, 2002). This is done by lifting the DPLL calculus

from propositional formulas to more complex expressions by changing the definition of

literals. In DPLL with Theories, or DPLL(T), a literal is an arbitrary expression which

can be entailed (or proved to be unsatisfiable) by way of using an additional theory.

This approach is the foundation of satisfiability modulo theories (SMT).

To leverage the development of solvers, a notational standard for SMT expressions, both

for core SMT and a selection of theories, evolved: the SMT-LIB 2.5 standard (Barrett

et al., 2015). The standard includes theories like linear arithmetics, equality, and bitvec-

tors. An important theory for the scenario of this thesis is the theory of uninterpreted

functions (UF). Uninterpreted functions allow for the use of function symbols in logical

expressions without fixing an interpretation. As a result, a solver supporting UF tries to

Figure 7.2: Spike provides an API which can be used to adapt external input models

7.2: Logical Models 147

solve not only for a satisfying model in terms of variable evaluation, but additionally in

terms of finding an interpretation for said function symbols, which result in a satisfying

evaluation of the formula in question. This is done by treating function symbols as

literals with regard to standard DPLL, but using the underlying theory of uninterpreted

functions to find a model (including an interpretation for the function symbol) which

entails the remaining part of the DPLL problem. In practice, this enables us to auto-

matically solve predicate logic expressions (combined with linear arithmetic). This leads

to a class of problems which is undecidable in general, and while quantifiers are not part

of the SMT-LIB standard, some solvers (like Microsoft’s Z3) support them to a certain

extend. On a practical level, satisfiability of quantified expressions is often solvable.

On a conceptual level, uninterpreted functions, and finding their logical interpretation,

provide the link between the domains of ontology modeling (and subsumption check-

ing) and both formal verification and modeling of service compositions (→ Figure 1.1).

Finding interpretations, and therefore logical structures, which satisfy a formula, is at

the core of the theoretical foundation of this thesis.

Although dedicated ontology solvers exist, encoding description logics and subsumption

problems for SAT solvers does also exist. Sebastiani and Vescovi translated the basic

DL ALC as satisfiability problem and proved the soundness and correctness of their

encoding using Kripke structures (Sebastiani and Vescovi, 2006, 2009). Also, they gave

an SMT encoding for DLs with quantified role restrictions (ALCQ, Haarslev et al. 2011),

and Vescovi discussed the application of SMT to ontology reasoning in general in his

PhD thesis (Vescovi, 2011). Core idea is the translation of ALCQ into SMT with the

theory of costs, to handle the linear arithmetic part of role quantification. However,

these approaches do not provide a general translation for SHOIN or sROIQ, which

are used to define the semantics of OWL and OWL2 (→ Chapter 2).

7.2.2 Encoding Proofs, Sets, and Polymorphic Types

The theorems of this thesis rely on the tautology of logical formulas in the form of

|=CR
K Req (→ Definition 5.10). As SMT solvers cannot show tautology directly, in

practice any check for tautology is translated into its corresponding check of contradic-

tion, as for every logical formula p holds that if and only if p is a tautology, then its

negation ¬p is unsatisfiable. Therefore, every proof obligation which requires tautology

to show that a proof exists is negated and a contradiction (or Unsat) is the solver result

which indicates a successful proof.

Another core element of our expressions is the use of sets. There is no theory of sets for

SMT yet, though Kröning, Rümmer, and Weissenbacher (2009) propose a notation, but

not a corresponding decision procedure. Instead, de Moura and Bjørner propose to use

the extended theory of arrays to encode sets of arbitrary size (de Moura and Bjørner,

2009). Formally, a set variable is an array with an element as index and a boolean

148 Chapter 7: Prototypical Implementation

constant as value, indicating whether or not the element is part of the set. The set

encoding of Spike is based on this proposal.

A third key element concerns the encoding of a knowledge base. SMT-LIB supports only

a monomorphic type system, while our definition of domain knowledge allows for type

hierarchies. We solve this issue by using a single unique data type T for scalar types in

SMT-LIB and introducing a type predicate for every type in our type system. Andreas

Krakau evaluated this approach in his bachelor’s thesis (Krakau, 2014). Based on type

predicates, he modeled subtype relations using implications. In Spike, we do not use

implications, but encode subtype relations based on arrays. The subtype relations of a

type T1 are stored in boolean arrays with the unique ID of the potential supertype as

index, effectively providing a lookup table.

7.3 Prototype Architecture

The prototype implementation of Spike follows a layered architecture (Figure 7.3). The

top layer consists of an application programming interface (API) to specify the input

models for knowledge bases, service descriptions, and service composition specifications,

including templates and workflows. Knowledge base modeling follows closely the def-

inition in Chapter 2, providing means to handle concepts, roles, and rules. Set types

are included, but optional. Service descriptions also follow the pattern of signatures

(including typed input and output parameters) with pre- and postconditions. Service

compositions and templates re-use service descriptions with additional workflows. Work-

flow specifications follow their formal definition.

The prototype implementation layer consists of the following parts:

• The API layer provides an interface to define knowledge base models, service

definitions, and compositions and templates. The API can be used directly by,

e.g., test scripts or a graphical user interface, or by serving as a backend for

adapters to, e.g., SeSAME.

• The model created by the API layer is decoupled from the original input model

(e.g., OWL or SSL) to value the principle of separation of concerns. It closely

follows the formal definition as defined in this thesis.

• The code generation modules generate SMT-LIB axioms for their associated data

models.

• The solver control module connects to the API of the actual SMT solver. We use

Microsoft’s Z3 because of its support of quantification.

• The statistics module collects runtime information.

7.3: Prototype Architecture 149

Figure 7.3: Spike implementation layers

Without a SeSAME integration, input models have to be defined programmatically.

The input data model provides an intuitive API oriented on the definitions in this thesis

and similar to the Z3 Python API. Due to the separation of input data and the use of

an external solver, the prototype can easily be integrated with other tools.

• As mentioned before, integration into SeSAME by utilizing the structural similar-

ity of the input data model to SSL SEFFs is straightforward, as soon as SeSAME

supports set modeling and variable assignment actions.

• An example of an additional postprocessing step is the counterexample visualiza-

tion, which translates the satisfying assignment of a failed proof (the counterexam-

ple) into a graph-based visualization. The counterexample visualization is part of

the Functional Analysis Tools of SeSAME, but works on satisfying assignments

in general and was implemented by Siddharta Moitra.4

Being developed as a set of Python scripts, the prototype has no dependencies to external

frameworks apart from the Z3 solver and can be directly re-used and modified. It is

available on Bitbucket by request.5

4His implementation is part of the SeSAME Functional Analysis Tools: http://sfb901.

uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/sesame.html, retrieved July
21, 2017.

5https://bitbucket.org/swalther/spike, as of July 21, 2017.

http://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/sesame.html
http://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/sesame.html
https://bitbucket.org/swalther/spike

150 Chapter 7: Prototypical Implementation

7.4 Evaluation

The Spike prototype is a proof of concept to show the following:

(1) One of the core contributions is the correspondence of correctness of a template

to the satisfiability of a logical formula (contribution 3, p. 9). Using the logical

encoding of a correctness check of a template as given in Chapter 5 works in

general.

(2) Another core contribution is the ability to check the instantiated template con-

straints instead of the complete composition (contribution 2, p. 2). The check of

constraint instantiation is especially useful if a template cannot be verified auto-

matically.

As a service market in the understanding of the vision of the CRC 901 does not exist yet,

especially in the level of formality as required by this thesis, we do not do a quantitative

evaluation. Instead, we use Spike to answer the given questions exemplarily. In the

following, we give an overview about the evaluation approach and draw a conclusion.

7.4.1 Approach

The overall process of creating a service composition from a service composition template

consists of two main steps related to correctness: verifying a template and instantiating

it as an actual composition. Spike implements the logical encoding as formalized in

Chapter 5. We use Spike

(1) to verify exemplary templates,

(2) to execute constraint checks,

(3) and to demonstrate how a failed constraint check can be utilized to correct an

instantiation.

The following templates represent simple patterns that can be used for structurally sim-

ilar tasks in different domains. The template names reflect a typical usage pattern. All

templates use sequences and service calls in addition to complex statements. Table 7.1

gives an overview of the templates; the complete definitions are listed in the appendix.

The ontologies used for the templates are small and contain only the concepts and roles

which are necessary for template definition. The key functionality of the template is

defined by constraint rules, relating postconditions of service placeholders to roles (or

properties) of the ontology. The Filter template uses the example ontology from ex-

ample 4.3, which we repeat here:

7.4: Evaluation 151

Table 7.1: Service composition template examples

Template Complex
Stmts

Purpose Page

Produce/Consume Creates intermediate data based on some input,
which is consumed again for some output

168

Choose Conditional Selects one of two inputs based on the result of a
service call on both of the inputs

169

Target Processing While-loop,
Conditional

Processes an input until a given target property
is reached; after that, uses the processed value as
output

170

Filter Foreach-loop,
Conditional

Selects a subset of an input set as the output,
based on a property that is obtained using a ser-
vice call

171

CT = {Element,Value}
PT = {hasValue : Element×Value ,

isTargetElement : Element×Bool ,

isTargetValue : Value×Bool}
vT= {}
RT = {functional(hasValue), functional(isTargetElement),

functional(isTargetValue)}

The ontologies needed to verify the other templates are of comparable complexity and

can be found in the appendix at the description of the respective template.

7.4.2 Results

To verify templates, their pre- and postconditions serve as requirements. All templates

have been automatically verified against their pre- and postcondition, with the exception

of the Filter template. Table 7.2 shows the overall runtime of Z3. We use the mean of

100 runs (rounded to milliseconds), executed on an Intel Atom x7-Z8700 with 1.6 GHz

with Windows 10 and 4 GB RAM, using Z3 version 4.5.0-x86.

For the Filter template, the solver cannot find a solution and returns “unknown” after

the indicated time. To analyze the cause of this result, we break down the logical encod-

ing of the overall correctness formula into sub-formulas, as it consists of a conjunction

of different verification conditions (→ Definitions 5.8 and 5.9), namely one representing

the requirements and the overall workflow and more for every loop. If we check tautol-

ogy for all of them separately, we find that VC (inv ∧ B,W, inv) cannot be solved by

the solver (with W the loop body, inv the invariant, and B the loop condition). For

152 Chapter 7: Prototypical Implementation

Table 7.2: Solver runtimes and results

Template Complex Stmts Result Z3 Rt [ms]

Produce/Consume proved 12

Choose Conditional proved 14

Target Processing While-loop, Conditional proved 12

Filter For-loop, Conditional unknown 9,010

foreach loops, the “condition” to enter the loop is that there are still elements in the

loop set (→ semantics of loops in Def. 4.7), that is, A 6= ∅ with A being the loop set.

With the current set encoding, this cannot be proven, as the extended theory of arrays

is based on unbounded arrays (de Moura and Bjørner, 2009).

From this we learn two things:

• If we are able to prove the invariant manually for foreach loops, proving overall

correctness may still be possible. This is especially true for templates where loops

are only a small part of the overall workflow.

• We chose the extended theory of arrays deliberately. If we set decidability first,

we could use an alternative encoding, e.g., using bit vectors. While the general

approach of encoding set membership does not change, proofs only hold true for

a given maximum size of sets and may become false for larger sets.

As we proved the Filter template to be correct manually (→ Figure 4.3), we are still

able to utilize the constraint check to verify the correctness of an actual composition.

Here, we replace service placeholders with actual services from the domain of tourism

(→ Example 2.1) for the following example instantiations. In both examples, the con-

straints of the template are translated to the target ontology, using the service’s pre- and

postcondition instead of the service placeholder predicates. As these constraints have to

be implied by the knowledge base, we use the same technique as for template verification.

We add the negated constraints to the knowledge base and check for contradiction.

Example 7.1 (Correct Filter Instantiation). For easier reading, we give a tabular

instantiation view.

Template Ontology Domain Ontology

Concepts Element Restaurant

Value Rating

Roles isTargetElement goodRestaurant

isTargetValue isMinRating

hasValue isRating

Service Acquire GetRating

7.4: Evaluation 153

The service GetRating has the following signature and pre- and postcondition (→ Ex-

ample 3.1):

{}
GetRating(restaurant : Restaurant , rating : Rating)

{hasRating(restaurant , rating)} .

In the first example, the check succeeded: The instantiation yields a correct composition

according to Theorem 4.24 (Constraint Rule Compliance).

Example 7.2 (Wrong Filter Instantiation). Do demonstrate a wrong instantiation,

we use the same mappings as in the example above, but we map to a slightly different

ontology. We also use the Tourism domain, but we do not assume that a “good restau-

rant” is in any way related to a formal rating, that is, we omit the following rules from

the ontology on page 24:

hasRating(res, rat) ∧ isMinRating(rat)⇒ goodRestaurant(res),

hasRating(res, rat) ∧ ¬isMinRating(rat)⇒ ¬goodRestaurant(res)

In the second example, the instantiated constraints cannot be concluded from the knowl-

edge base. The satisfying model generated by the solver indicates variable assignments

and predicate interpretations such that the domain knowledge is respected, but the

instantiated constraints are violated (because their negations are satisfied). For illustra-

tion, we simplified the satisfying model; the complete model is part of the appendix on

page 173.

Example 7.3 (Satisfying Model for Template Analysis). When analyzing a satisfying

model representing a counterexample, we first look at predicate interpretations which

are related to violated instantiated constraints. Here, the instantiation of constraint

predicates are goodRestaurant and isMinRating. The satisfying model produces

very simple interpretations for these predicates:

isMinRating(r) = >
goodRestaurant(r) = ⊥

Therefore, regardless of the variable assignment, we can have restaurants with minimal

ratings which are not necessarily good. This aligns with the intention of the knowledge

base, but violates the constraints of the instantiated template.

The analysis of template verification counterexamples works the same way.

154 Chapter 7: Prototypical Implementation

7.4.3 Conclusion

We have shown that the automatic verification of service composition templates by

means of solving a logical formula as proposed in Chapter 5 works in principle. How-

ever, the use of sets in combination with foreach loops can already lead to unsolvable

formulas. In this case, we can prove the template manually to be correct and apply

the constraint check also proposed in Chapter 5. Using this check, we need to check

satisfiability not of the complete template representation, but of the instantiated tem-

plate constraints in the target ontology. This worked in the given example. We also

demonstrated the use of counterexamples.

While the templates are generic and can be applied in various domains, their specification

detail in terms of formula size is quite small. We therefore propose to re-evaluate the

applicability of automatic verification as soon as a larger set of formally specified services

and templates is available.

Part III

Discussion

155

Chapter 8

Discussion and Conclusion

This chapter discusses approaches related to the contributions of this thesis, either in

providing an integrated verification framework, dealing with correctness by construction

similar to our service composition instance checks, automating verification, or combina-

tions thereof. After the discussion, the chapter provides a concise summary of our core

contributions, and it concludes with some remarks about possible future work.

8.1 Related Approaches

The core contributions of this thesis are threefold: We provide a formal proof framework

spanning the domains of knowledge representation, service and workflow modeling, and

program verification; we ease the task of verifying service compositions based on tem-

plates by reducing the verification task to a knowledge representation check; and we

provide a logical representation of the correctness properties of templates to leverage

automatic verification. These contributions lie at the very heart of these domains, and

combining the three different research topics is an important key characteristic. How-

ever, a lot of approaches are concerned with one or two of the topics. The different

chapters of this thesis discuss related work in the context of their respective focus; now,

we discuss some approaches which come particularly close to some of the contributions

of this thesis.

At first, we focus on formal correctness of programs and means to automatically prove

it. Theoretical approaches date back to Hoare (Hoare, 1969) and Floyd (Floyd, 1967).

Especially approaches like CSP (Hoare, 1978, 1985) or the B method (Abrial et al., 1991)

are based on defining programs by refining their formal specifications, thus following a

correctness-by-construction principle. In practice, functional programming languages

follow a similar paradigm, as they define the problem to be solved logically and not

the actual actions needed to solve it. The Design-by-Contract principle and the Eiffel

language brought the idea of pre- and postconditions and invariants to the domain of

imperative and object-oriented, non-functional programming (Meyer, 1992, 1997). The

157

158 Chapter 8: Discussion and Conclusion

formal definition properties of imperative programs, or – taking a modular viewpoint –

single methods are part of the basic foundation of automatic verification of programs.

Other approaches like JML (Java Modeling Language, Leavens et al., 1999) add those

annotation capabilities to Java and pave the way for static analyses as, e.g., the Extended

Static Checker for Java (ESC/Java, Cok and Kiniry, 2005, Flanagan et al., 2002).

Languages to specify annotations to method calls, programs, or services are one pre-

requisite of automatic verification; tool support is the other. With the progress in the

development of SAT and SMT solvers and standards like SMT-LIB2 (Barrett et al.,

2015), existing SMT solvers like Z3 (de Moura and Bjørner, 2008), MathSAT (Cimatti

et al., 2013), or CVC (Barrett et al., 2011) are capable of providing a backend to auto-

mate current verification techniques. Tools like Dafny (Leino and M., 2010) and VeriFast

(Jacobs et al., 2011) are built on top of SMT solvers to ease the modeling of SAT/SMT

problems. As SMT solvers are not dedicated verification tools, they serve as foundational

tooling for other logic-related tasks, from inferring program and loop invariants, weak-

est preconditions and strongest postconditions (e.g., Gulwani et al., 2008) to program

synthesis based on formal specifications (e.g., Srivastava et al., 2010).

In the following, we discuss two approaches which define intermediate verification lan-

guages as an intermediate step between specification of a program’s (or method’s) prop-

erties and an SMT solver’s input language.

The Why3 approach addresses the issue of providing automatic verification indepen-

dently of both the specification or programming language to be verified and the un-

derlying theorem provers or solvers (Filliâtre, 2013, Filliâtre and Paskevich, 2013). To

this end, Why3 provides a logic-based semantics for its specification language WhyML,

which is self-contained. WhyML can be used to formalize conditions and properties of

programming languages, which are then used to generate logical verification conditions

which can serve as input to automatic solvers or theorem provers. WhyML, e.g., serves

as logical language for proof obligations generated by the verifier Krakatoa (Marché

et al., 2004), which verifies Java programs annotated with JML. As Why3 is generic and

language-independent, it serves as an intermediate verification language and framework.

While this is its strength, it also means that using it for a concrete language always

means close inspection of the compatibility of its semantics with the semantics of the

verified language.

Another framework, which is tightly integrated with a modern programming language,

is Spec# (Barnett et al., 2005). Drawing inspirations from Eiffel and JML, it adds new

language constructs for formal specification to Microsoft’s popular C# programming

language, with the ability to define pre- and postconditions for methods, or method

contracts, as the main feature. Spec# can be used in two ways: During runtime, the

.NET framework (which compiles and executes .NET based languages like C# just as

a Java Runtime Environment does for Java) generates runtime checks to provide run-

time monitoring of the specified pre- and postconditions. If the conditions of a method

are violated during a given run of the program, the framework throws an exception.

8.1: Related Approaches 159

Instead of runtime monitoring, the static checker Boogie (Barnett et al., 2006) can be

used to verify that the conditions cannot be violated during a program run, if possi-

ble. In contrast to Why3, Spec# builds directly on the C# programming language.

While this ensures a practically relevant context, there is no formal semantics of the C#

programming language and therefore no formally defined semantics in the sense of this

thesis.

From a direction of verification of templates and creating correct instances, there is a

close connection to refinement approaches like CSP or B on the one hand, and to any

approach built on modular verification on the other hand, as templates in general can

be seen as a specific use case of modularity: In an on-the-fly context, a template differs

from a service composition only in the sense that it does not use existing services but

service placeholders. We highlight three approaches, coming from different directions,

which have similarities to our treatment of templates and correctness.

While the use of templates is common in software design – either explicitly by dedicated

modeling constructs or implicitly by applying design patterns –, verification of templates

is not necessarily covered. Compositional model checking deals with the verification of

modular systems, as in, e.g., Grumberg and Long (1991). While they use temporal logic

specifications and Moore automata, the approach is based on refinement. Conceptually

closer to the template specifications and instantiation checks of this thesis is the CARE

approach (Hemer and Lindsay, 1996, 1997). CARE follows a refinement-based approach

of modeling using the Z modeling language (Woodcock and Davies, 1996), and generates

correct service compositions. In CARE, fragments are used for modeling: primitives with

black-box descriptions, which are proven to be correct externally; and composites, which

are used to model complex algorithms. Based on the multi-set theoretic semantics of Z,

several proof obligations can be derived from specification of a composition. The CARE

approach also supports a notion of templates, where parts of the specification – types

and primitive fragments – are represented by parameters, that is, specifications without

corresponding implementations (Hemer and Lindsay, 1997). This way, the concrete

implementation can be instantiated later, as long as it meets the formal description

used in the composition. In contrast to CARE, we define correctness for an incomplete

(not instantiated) template. Once proven correct, we show that it is sufficient to proof

that an instantiation adheres to some constraints, while in CARE, proof obligations

derived from a final instantiation always contain a complete proof for the complete

instantiation.

Other approaches of modular analysis are rooted in the domain of software product lines.

Soleimanifard and Gurov (2015) define a language with pointer datatypes to model code

variability. They do this by defining pre- and postconditions of code sections and method

calls which may be replaced by different code (or calls), which has to oblige the pre-

and postconditions defined before. This approach, though targeted at code variant

analysis and working on temporal safety properties, is conceptually similar to template

verification. Another approach addresses templates from a direction of defining concrete

program instances by variants of a “core” program. Hähnle and Schaefer (2012) base

160 Chapter 8: Discussion and Conclusion

their approach of variant verification on delta programming, where the core program gets

verified and concrete programs can be proved to be correct by analyzing the difference,

or delta, in comparison to the core.

Both approaches provide interesting views on template verification, Soleimanifard and

Gurov’s from a perspective of product line analysis, and Hähnle and Schaefer’s from a

perspective of refinement and piece-wise analysis. However, both share a missing core

feature with the previously discussed approaches: They lack the connection to a formally

specified knowledge base.

In the Introduction, we identified three core requirements in the context of verification

in an on-the-fly scenario:

(1) A means to formally specify the behavior of services;

(2) Formalized domain knowledge as a foundation for service specifications, both to

provide the available vocabulary (predicates) and additional restrictions on its

interpretation;

(3) Combination of services into service compositions.

To address these requirements, this thesis provides the three core contributions of an

integrated verification framework, the creation of correct compositions based on verified

templates, and the use of SMT solvers by giving a logical representation of verification

conditions.

Some of the approaches provide similar contributions, especially Why3 with a generic

verification framework including a formally defined semantics and its independence of

concrete solvers. However, its generality also requires additional adaptation to integrate

it into an on-the-fly context, including the application to a service (and workflow) spec-

ification language. Spec#, on the other hand, is tightly integrated with a programming

language (and thus workflow language), but integration with a formal knowledge base is

not straightforward, at it is not based on logic – in contrast to Why3. The software vari-

ability approaches have similar characteristics, as the connection of a knowledge model

is not common in program verification.

Summarizing, it shows that none of the related approaches completely addresses all

requirements of verification in an on-the-fly scenario, expecially requirement (2).

8.2 Conclusion

The paradigm of On-The-Fly Computing provides a vision of a flexible, heterogenous

market of software services, where a user does not buy off-the-shelf software, but highly

specific, personalized software services tailored to her needs on demand. This market in-

cludes the infrastructure for an economic market, for search and combination of services,

8.2: Conclusion 161

Figure 8.1: The core contributions: Theoretical framework (top left), reduction of
composition verification to constraint checks (top right), automated verification (below)

and their deployment and execution. Mandatory ingredients to enable such a market

are, among others, (1) a formalized knowledge base of the domain(s) of application, (2) a

method to formally specify functional (and non-functional) behavior of software services

based on this knowledge base, and (3) the techniques to create and deliver compositional

services based on the requirements of a user (→ Introduction).

Part of this vision is the goal to deliver only correct services to the request of the user:

To this end, formal verification is to be employed to ensure that an automatically gener-

ated service composition matches the original requirements. To provide a framework for

formal verification in an on-the-fly context, three research topics have to be addressed:

knowledge base modeling; modeling of services, compositions and workflows; and pro-

gram verification. As these aspects are research topics of their own and typically handled

in isolation or in pairs, they provide their own sets of formalisms and, especially, seman-

tics. The challenge to combine them therefore includes to ensure that their modeling

formalisms and semantics are compatible, or, ideally, rooted in the same framework.

If these apsects are combined in a pragmatic way only, we cannot draw a reliable con-

clusion from, e.g., verification results of a service composition. The reason is that the

semantics may not be compatible, e.g., the domain knowledge may be modeled by a

taxonomy graph, service descriptions by syntactical signatures and accompanying API

texts, and compositions by UML activity diagrams. Therefore, in order to make verifi-

cation results usable, a shared theoretical basis for all three aspects is mandatory.

Figure 8.1 gives an overview about the three core contributions of this thesis. The first

core contribution addresses the challenge of a shared theoretical framework and combines

knowledge base modeling, service and service composition descriptions (including work-

flows), and verification by defining their semantics on a common ground. We do this by

starting with a knowledge base model based on logical structures (→ Chapter 2). While

162 Chapter 8: Discussion and Conclusion

this is common, we then define service (and service requirements) descriptions based on

the resulting vocabulary and therefore give their semantics a formal root in knowledge

modeling. Additionally, we parameterize the operational semantics of workflows as used

in service compositions with logical structures, whose interpretations are restricted by

the knowledge base. A definition of correctness and a sound and complete Hoare-style

proof calculus based on the same parameters complement the framework (→ Chapter 3).

The second core contribution takes another aspect of on-the-fly scenarios into account:

As the process of creating service compositions is an active research topic by itself,

and creating arbitrary compositions automatically is not solved, we address the use

of composition templates. With templates, the overall structure of a composition can

be defined by domain experts, with service placeholders instead of existing services.

A template, however, can already be verified when it is constructed. To this end, we

introduce additional constraint rules for templates, which enable a proof of templates. As

a result, when a service composition is created by instantiating a template, its correctness

can be shown by showing that the constraint rules can be entailed from the domain of

the service composition (→ Chapter 4).

The third core contribution aims at leveraging an automatic verification. The semantics

of services and service compositions is rooted in a common logical framework. Based on

this framework, we define their logical representation and a correspondence of a correct

service composition (and template) with the satisfiability of a logical formula. While this

representation is based on predicate logic, and therefore undecidable in general, existing

solvers are often able to deal with practical examples (→ Chapter 5). A prototypical

implementation puts automatic verification into practice (→ Chapter 7).

Summarizing, we provide a solid theoretical framework to integrate all three relevant

aspects of functional verification in an on-the-fly context as well as providing two ap-

proaches to ease the verification process.

8.3 Design Decisions

During the development of this thesis, especially in the first phase, several design deci-

sions where made. Starting with the requirements of an on-the-fly context and the focus

of functional verification based on pre- and postconditions, utilizing satisfiability solvers

to target an automatic verification (in contrast to the use of interactive theorem provers)

was the first decision. After experiments with propositional logic and the SAT solver

Alloy (Jackson, 2002) it became clear that in the context of domain knowledge modeling

the use of predicates and their relations is mandatory. While descriptions logics provide

this expressiveness and keep decidability at the same time (→ Chapter 2), we decided

against them and chose first-order logic and, as a modeling language, SMT-LIB. The

rationale behind this decision was to avoid restrictions on the expressiveness of the au-

tomation part of the thesis, as this would have restricted the logical formulas we allow to

specify services. In practice, decidability now depends on the complexity of the actual

8.3: Design Decisions 163

domain knowledge and the service specifications, and is not a priori restricted by our

formalism.

Using SMT was a decision about the automation of verification of service compositions

and templates. As a modeling language of those compositions we chose the While

language of Apt et al. (2009) over service effect specifications (SEFFs, Becker et al.,

2009), prominent programming languages, and other visual modeling approaches. The

reasons are that the While language is well understood, comes with a formal semantics

based on logical structures, and easily supports formal proofs.

Both SMT-LIB and While are standards or at least well understood languages. To

represent domain knowledge, or ontologies, there exist several well-researched modeling

and reasoning approaches, too (→ Chapter 2). However, we chose to define our own

ontology language instead of using OWL (Patel-Schneider et al., 2012) or a description

language like sROIQ, which is the formal foundation of OWL2. The main goal of this

thesis is the creation of a framework for service composition verification. Automation,

and decidability, is a secondary goal. To provide a generic framework, expressiveness

of our formalisms is more important than decidability, and as the decision for an ac-

tual domain modeling approach like sROIQ would include decidability, and therefore

restrictions in terms of expressiveness, we decided against it. Instead, our definition of

knowledge bases leaves all degrees of freedom, and if decidability is an issue, additional

restrictions can keep a knowledge base decidable.

In our first publication we proposed a logical encoding that is based on the input and

output of statements (Walther and Wehrheim, 2013). Here, every statement was rep-

resented by an encoding with a dedicated set of input and output variables, similar to

service calls. For the thesis, we generalized this approach and switched to a state based

encoding, where every state of the workflow is identified by its own set of variables. The

main difference is that in the thesis, a state l is always characterized by its own, l-labeled

set of variable versions for all variables. In the previous approach, only variables actually

used in an input or output set were covered, which makes data flow modeling of complex

workflows tedious at least. Additionally, invariants would be treated as having inputs

and outputs as well, which works on a theoretical level, but finding invariants that can

be modeled as I/O block in practice is counter-intuitive.

To avoid the encoding of invariants would have been another option. Instead, unrolling

loops for a given number of iterations, as in bounded model checking approaches (Biere

et al., 1999), is an alternative encoding. However, as the goal of the framework is

provability, invariants fit easily into the scheme of Hoare-style proof rules, while providing

correctness proofs without restriction to a number of loop unrollings.

164 Chapter 8: Discussion and Conclusion

8.4 Future Work

We see three main directions for future work. At first, the automatic verification is based

on predicate logic. While this makes satisfiability problems undecidable in principle, we

believe that – on the scale of on-the-fly service compositions – many problems will be

practically solvable. However, as we learned from the evaluation, already the use of sets

may force us to make concessions. Further investigations may include

• the use of an alternative SMT-LIB set encoding, e.g., using bitvectors to model

sets of a finite size. This solves the problem of undecidable encodings for foreach

loops, and may be combined with an iterative approach to find a suitable size of

the sets;

• the combination of the approach with invariant generation techniques to automat-

ically find invariants based on the loop body;

• the use of bounded model checking to replace invariants. This introduces a flex-

ibility both if invariants may lead to undecidable formulas, and if invariants are

are not present to begin with.

On-the-fly service markets and service composition is still a vision in progress, so the

claim of solvability has to be analyzed more closely. Additionally, it remains an open

issue whether or not a completely formal service description will become accepted. This

will probably rely on automatic generation of formal description from informal ones,

with automated or semi-automated support. From a computational point of view, formal

service descriptions may also be categorized into complexity classes of decidability to

leverage appropriate encoding techniques.

At second, the workflow language used in this thesis includes typical workflow state-

ments, but it is not a language used in practice. To make the framework usable, concrete

languages – like SSL SEFFs or OWL-S – have to be mapped explicitly to it. To do this,

it is important to ensure the compatibility of the underlying semantics.

At third, an on-the-fly context does not only model business software services, but also

platform and infrastructure services to provide runtime environments, both hard- and

software, for the service compositions of this thesis. Modeling those services layers and

integrating them into this theoretical framework would enable a more detailed reasoning

in the OTF domain.

Part IV

Appendix

165

Appendix A

Template Examples

This chapter summarizes the template examples used in the evaluation part of the thesis.

167

168 Chapter A: Template Examples

A.1 Produce/Consume

The ontology KT = (CT , PT , RT) has three concepts, one predicate, and no custom

rules:

CT = {Plan,Product,Profit},
PT = {isHigh : Profit×Bool}
RT = {} .

The template accepts one input and produces one output. It acquires a result value

for the given input plan (“produce”). This input is then traded for some profit (“con-

sume”). It uses two service placeholders, Produce : Plan → Product and Consume :

Product→ Profit.

Template Produce/Consume

Inputs x : Plan

Outputs z : Profit

Precond. preProduce(x)

Postcond. isHigh(z)

Constraints ∀a, b : postProduce(a, b)⇒ preConsume(b)
∀a, b : postConsume(a, b)⇒ isHigh(b)

Workflow

y := Produce(x);
z := Consume(y);

Figure A.1: The Produce/Consume template: Produces an abstract product and
consumes it for an abstract profit

A.2: Choose 169

A.2 Choose

The ontology KT = (CT , PT , RT) has two concepts, two predicates, and some custom

rules:

CT = {Element,Property},
PT = {isEBetter : Element×Element,

isPBetter : Property×Property}
RT = {irreflexive(isEBetter), antisymmetric(isEBetter),

transitive(isEBetter), trichotomous(isEBetter),

irreflexive(isPBetter), antisymmetric(isPBetter),

transitive(isPBetter), trichotomous(isPBetter)} .

The template accepts two inputs and produces one output. It selects one of the two

inputs based on a quality predicate. It uses one service placeholder, Fetch : Element→
Property, to access this predicate.

Template Choose

Inputs x, y : Element

Outputs z : Element

Precond. preFetch(x) ∧ preFetch(y)

Postcond. isEBetter(x, y) ∧ z = x ∨ z = y

Constraints ∀i1, i2, k1, k2 : postFetch(i1, k1) ∧ postFetch(i2, k2) ∧ isPBetter(k1, k2)
⇒ isEBetter(i1, i2)

Workflow

u := Fetch(x);
v := Fetch(y);
if isPBetter(u, v) then

z := x;
else

z := y;
fi

Figure A.2: The Choose template: Selects the better of two inputs

170 Chapter A: Template Examples

A.3 Target Processing

The ontology KT = (CT , PT , RT) has one concept, one predicate, and some custom

rules:

CT = {T},
PT = { <: T × T},
RT = {irreflexive(<), antisymmetric(<),

transitive(<), trichotomous(<),

∃b : ∀x : b < x} ,

Here, < has a lower bound b.

The template accepts two inputs, a value x and a target value t (according to the

comparison predicate), and produces one output. It uses one service placeholder Process,

which refines the input values by some property which can be compared using the <

predicate. The input of the template is processed until the target value is (at least)

met. The invariant of the loop is target < output ∨ target = output , the termination

expression is output . Here, the type of output is not Integer, but T . However, < and =

induce an order on T . It uses a service Process : T × T → T .

Template TargetProcessing

Inputs input , target : T

Outputs output : T

Precond. target < input

Postcond. (output = target ∨ output < target)

Constraints ∀x, y, z : postProcess(x, y, z)⇒ z < x
∀x, y : y < x⇒ preProcess(x, y)

Workflow

output = input ;
while target < output do

output := Process(output , target);
od

Figure A.3: The TargetProcessing template: Processes its input
until a target value is reached

A.4: Filter 171

A.4 Filter

The ontology KT = (CT , PT , RT) has two concepts, three predicates, and three custom

rules:

CT = {Element,Value}
PT = {hasValue : Element×Value ,

isTargetElement : Element×Bool ,

isTargetValue : Value×Bool}
vT= {}
RT = {functional(hasValue), functional(isTargetElement),

functional(isTargetValue)}

The template filters a list of inputs by a predicate which has to be obtained using a

service Acquire : Element→ Value. Figure 4.3 shows the proof of correctness.

Template Filter

Inputs A : set Element

Outputs B : set Element

Precond. ∀a ∈ A : preAcquire(a)

Postcond. B = {b ∈ A | isTargetElement(b)}

Constraints ∀x, y : postAcquire(x, y) ∧ isTargetValue(y)⇒ isTargetElement(x)

∀x, y : postAcquire(x, y) ∧ ¬isTargetValue(y)⇒ ¬isTargetElement(x)

Workflow

Z := A;
B := ∅ ;
foreach z ∈ Z do

y := Acquire(z) ;
if isTargetValue(y) then

B := B ∪ {z}
else

skip
fi

od

Figure A.4: The Filter template to filter a set

Appendix B

Listings

B.1 Counterexample

Counterexamples for automated proofs are variable assignments and predicate interpre-

tations that hint to specification errors. On page 153, a counterexample for a failed proof

of the Filter template is discussed in shortened form. This is the complete output of

the Z3 solver for the failed proof.

;; universe for T:

;; T!val!12 T!val!6 T!val!8 T!val!5 T!val!10 T!val!11 T!val!3 T!val !14 T!val!0

T!val!4 T!val!2 T!val !13 T!val!15 T!val!9 T!val!7 T!val!1

;; -----------

;; definitions for universe elements:

(declare -fun T!val !12 () T)

(declare -fun T!val!6 () T)

(declare -fun T!val!8 () T)

(declare -fun T!val!5 () T)

(declare -fun T!val !10 () T)

(declare -fun T!val !11 () T)

(declare -fun T!val!3 () T)

(declare -fun T!val !14 () T)

(declare -fun T!val!0 () T)

(declare -fun T!val!4 () T)

(declare -fun T!val!2 () T)

(declare -fun T!val !13 () T)

(declare -fun T!val !15 () T)

(declare -fun T!val!9 () T)

(declare -fun T!val!7 () T)

(declare -fun T!val!1 () T)

;; cardinality constraint:

(forall ((x T))

(or (= x T!val !12)

(= x T!val !6)

(= x T!val !8)

(= x T!val !5)

(= x T!val !10)

(= x T!val !11)

(= x T!val !3)

(= x T!val !14)

(= x T!val !0)

(= x T!val !4)

173

174 Chapter B: Listings

(= x T!val !2)

(= x T!val !13)

(= x T!val !15)

(= x T!val !9)

(= x T!val !7)

(= x T!val !1)))

;; -----------

(define -fun AXIOM_VT_s_rat () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TSnackBar () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TLocation () Bool

true)

(define -fun cs2_x () T

T!val !11)

(define -fun AX_TH_TRating_NoSubOf_TMichelin () Bool

true)

(define -fun AX_TH_TMichelin_NoSubOf_TDistance () Bool

true)

(define -fun AX_TH_TSnackBar_NoSubOf_TRating () Bool

true)

(define -fun AX_TH_TEvent_SubOf_TEvent () Bool

true)

(define -fun AX_TH_TRating_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AX_TH_UNIQUE_TSnackBar () Bool

true)

(define -fun AX_TH_TDate_NoSubOf_TLocation () Bool

true)

(define -fun AXIOM_VT_r2_rest () Bool

true)

(define -fun RULE_BOUND_isBetterRestaurant () Bool

true)

(define -fun s_rest () T

T!val !7)

(define -fun AX_TH_TRating_NoSubOf_TDate () Bool

true)

(define -fun AX_TH_TRestaurant_SubOf_TRestaurant () Bool

true)

(define -fun AX_TH_UNIQUE_TSite () Bool

true)

(define -fun AX_TH_UNIQUE_TMichelin () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TSnackBar () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TDistance () Bool

true)

(define -fun cs1_y () T

T!val !10)

(define -fun AX_TH_TMichelin_SubOf_TRating () Bool

true)

(define -fun cs2_y () T

T!val !12)

(define -fun AX_TH_TRating_NoSubOf_TPrice () Bool

true)

(define -fun AX_TH_TPrice_SubOf_TPrice () Bool

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TDate () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TLocation () Bool

true)

(define -fun AX_TH_TPrice_NoSubOf_TSite () Bool

B.1: Counterexample 175

true)

(define -fun AXIOM_SETOPS_OR () Bool

true)

(define -fun s_rat () T

T!val !8)

(define -fun RULE_RATINGs_AND_RESTAURANTS () Bool

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TSnackBar () Bool

true)

(define -fun AX_TH_TEvent_NoSubOf_TSnackBar () Bool

true)

(define -fun AX_TH_UNIQUE_TEvent () Bool

true)

(define -fun AX_TH_TDate_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TSnackBar () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TPrice () Bool

true)

(define -fun bound_isBetterRestaurant_other () T

T!val !0)

(define -fun AX_TH_TPrice_NoSubOf_TDate () Bool

true)

(define -fun AX_TH_TDate_NoSubOf_TRating () Bool

true)

(define -fun AX_TH_TSnackBar_SubOf_TSite () Bool

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TEvent () Bool

true)

(define -fun arr_TRating_supertypes () (Array Int Bool)

(_ as-array k!917))

(define -fun AX_TH_TPrice_NoSubOf_TSnackBar () Bool

true)

(define -fun AX_TH_TEvent_NoSubOf_TRestaurant () Bool

true)

(define -fun AXIOM_PP_isRatingLess_IS_IRREFLEXIVE () Bool

true)

(define -fun AX_TH_TDate_NoSubOf_TEvent () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TPrice () Bool

true)

(define -fun AXIOM_SETOPS_NOT () Bool

true)

(define -fun bound_isRatingLess () T

T!val !5)

(define -fun AXIOM_PP_hasPrice_IS_FUNCTIONAL () Bool

true)

(define -fun AX_TH_TSnackBar_NoSubOf_TDistance () Bool

true)

(define -fun AXIOM_SETOPS_AND () Bool

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TMichelin () Bool

true)

(define -fun AX_TH_TDate_NoSubOf_TPrice () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TRestaurant () Bool

true)

(define -fun AXIOM_VT_r1_e2 () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AX_TH_TDate_NoSubOf_TSite () Bool

176 Chapter B: Listings

true)

(define -fun AXIOM_PP_hasLocation_IS_FUNCTIONAL () Bool

true)

(define -fun arr_TMichelin_supertypes () (Array Int Bool)

(_ as-array k!918))

(define -fun AX_TH_TEvent_NoSubOf_TDistance () Bool

true)

(define -fun r1_e2 () T

T!val !2)

(define -fun AX_TH_UNIQUE_TPrice () Bool

true)

(define -fun cs1_y !0 () T

T!val !14)

(define -fun AX_TH_TMichelin_NoSubOf_TSite () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TPrice () Bool

true)

(define -fun AX_TH_TDate_NoSubOf_TDistance () Bool

true)

(define -fun arr_TPrice_supertypes () (Array Int Bool)

(_ as-array k!919))

(define -fun AXIOM_VT_r3_rat () Bool

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TDistance () Bool

true)

(define -fun AXIOM_PP_startsAt_IS_FUNCTIONAL () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TRestaurant () Bool

true)

(define -fun AXIOM_PP_distFrom_IS_FUNCTIONAL () Bool

true)

(define -fun arr_TDate_supertypes () (Array Int Bool)

(_ as-array k!923))

(define -fun CONSTRAINT_INSTANTIATION () Bool

true)

(define -fun AX_TH_TPrice_NoSubOf_TLocation () Bool

true)

(define -fun AXIOM_VT_bound_isBetterRestaurant () Bool

true)

(define -fun AX_TH_TRating_NoSubOf_TDistance () Bool

true)

(define -fun AXIOM_PP_isRatingLess_IS_ANTISYMMETRIC () Bool

true)

(define -fun r1_p1 () T

T!val !3)

(define -fun AX_TH_TSnackBar_NoSubOf_TLocation () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TSite () Bool

true)

(define -fun AXIOM_PP_distTo_IS_FUNCTIONAL () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TMichelin () Bool

true)

(define -fun AX_TH_TRating_NoSubOf_TSite () Bool

true)

(define -fun AX_TH_TLocation_SubOf_TLocation () Bool

true)

(define -fun AXIOM_VT_bound_isRatingLess_other () Bool

true)

(define -fun AXIOM_VT_r3_rest () Bool

true)

(define -fun AX_TH_TRating_NoSubOf_TEvent () Bool

B.1: Counterexample 177

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AX_TH_TMichelin_NoSubOf_TPrice () Bool

true)

(define -fun AX_TH_TEvent_NoSubOf_TMichelin () Bool

true)

(define -fun AXIOM_VT_bound_isRatingLess () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AXIOM_PP_isRatingLess_IS_TRICHOTOMOUS () Bool

true)

(define -fun AX_TH_TSnackBar_NoSubOf_TEvent () Bool

true)

(define -fun AX_TH_TSnackBar_NoSubOf_TDate () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TDate () Bool

true)

(define -fun AXIOM_PP_isBetterRestaurant_IS_ANTISYMMETRIC () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TRating () Bool

true)

(define -fun AXIOM_VT_r1_p1 () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TEvent () Bool

true)

(define -fun r1_e1 () T

T!val !1)

(define -fun AX_TH_TMichelin_NoSubOf_TEvent () Bool

true)

(define -fun AX_TH_TMichelin_NoSubOf_TDate () Bool

true)

(define -fun AX_TH_TPrice_NoSubOf_TDistance () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TEvent () Bool

true)

(define -fun AX_TH_UNIQUE_TRating () Bool

true)

(define -fun AX_TH_TMichelin_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AX_TH_TSnackBar_NoSubOf_TMichelin () Bool

true)

(define -fun AX_TH_TRating_SubOf_TRating () Bool

true)

(define -fun AX_TH_TPrice_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AX_TH_TEvent_NoSubOf_TLocation () Bool

true)

(define -fun arr_TRestaurant_supertypes () (Array Int Bool)

(_ as-array k!915))

(define -fun cs2_y !2 () T

T!val !15)

(define -fun AX_TH_TMichelin_NoSubOf_TRestaurant () Bool

true)

(define -fun AX_TH_UNIQUE_TDistance () Bool

true)

(define -fun AX_TH_TSnackBar_SubOf_TRestaurant () Bool

true)

(define -fun AX_TH_TSnackBar_NoSubOf_TPrice () Bool

true)

(define -fun r2_rest () T

178 Chapter B: Listings

T!val !4)

(define -fun AX_TH_TMichelin_NoSubOf_TLocation () Bool

true)

(define -fun AX_TH_TMichelin_SubOf_TMichelin () Bool

true)

(define -fun AXIOM_VT_r2_rat () Bool

true)

(define -fun r2_rat () T

T!val !5)

(define -fun AX_TH_TPrice_NoSubOf_TRating () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TEvent () Bool

true)

(define -fun AX_TH_TRating_NoSubOf_TSnackBar () Bool

true)

(define -fun AX_TH_TEvent_NoSubOf_TPrice () Bool

true)

(define -fun AXIOM_VT_bound_isBetterRestaurant_other () Bool

true)

(define -fun AXIOM_VT_r1_e1 () Bool

true)

(define -fun AX_TH_TDistance_SubOf_TDistance () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TDistance () Bool

true)

(define -fun AXIOM_PP_isBetterRestaurant_IS_IRREFLEXIVE () Bool

true)

(define -fun AX_TH_TEvent_NoSubOf_TSite () Bool

true)

(define -fun arr_TSite_supertypes () (Array Int Bool)

(_ as-array k!914))

(define -fun arr_TLocation_supertypes () (Array Int Bool)

(_ as-array k!920))

(define -fun AX_TH_UNIQUE_TDate () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TMichelin () Bool

true)

(define -fun AX_TH_TSnackBar_SubOf_TSnackBar () Bool

true)

(define -fun AX_TH_UNIQUE_TLocation () Bool

true)

(define -fun AX_TH_TRating_NoSubOf_TRestaurant () Bool

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TRating () Bool

true)

(define -fun AX_TH_TDate_NoSubOf_TMichelin () Bool

true)

(define -fun AXIOM_VT_cs2_y () Bool

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TLocation () Bool

true)

(define -fun AX_TH_UNIQUE_TRestaurant () Bool

true)

(define -fun AX_TH_TSite_NoSubOf_TDate () Bool

true)

(define -fun AX_TH_TPrice_NoSubOf_TEvent () Bool

true)

(define -fun AX_TH_TRating_NoSubOf_TLocation () Bool

true)

(define -fun AX_TH_TDate_SubOf_TDate () Bool

B.1: Counterexample 179

true)

(define -fun arr_TSnackBar_supertypes () (Array Int Bool)

(_ as-array k!916))

(define -fun AX_TH_TSite_SubOf_TSite () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TMichelin () Bool

true)

(define -fun AX_TH_TEvent_NoSubOf_TRating () Bool

true)

(define -fun arr_TEvent_supertypes () (Array Int Bool)

(_ as-array k!922))

(define -fun r3_rest () T

T!val !2)

(define -fun AX_TH_TDate_NoSubOf_TRestaurant () Bool

true)

(define -fun AXIOM_PP_isBetterRestaurant_IS_TRANSITIVE () Bool

true)

(define -fun cs1_x () T

T!val !9)

(define -fun cs1_x !1 () T

T!val !13)

(define -fun AXIOM_VT_cs1_x () Bool

true)

(define -fun arr_TDistance_supertypes () (Array Int Bool)

(_ as-array k!921))

(define -fun AX_TH_TSnackBar_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AX_TH_TRestaurant_NoSubOf_TPrice () Bool

true)

(define -fun AX_TH_TPrice_NoSubOf_TMichelin () Bool

true)

(define -fun AXIOM_VT_r1_p2 () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TDate () Bool

true)

(define -fun AXIOM_VT_cs2_x () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TSite () Bool

true)

(define -fun AX_TH_TDistance_NoSubOf_TRating () Bool

true)

(define -fun AXIOM_PP_isBetterRestaurant_IS_TRICHOTOMOUS () Bool

true)

(define -fun RULE_BOUND_isRatingLess () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TRestaurant () Bool

true)

(define -fun bound_isRatingLess_other () T

T!val !12)

(define -fun r1_p2 () T

T!val !5)

(define -fun cs2_x !3 () T

T!val !2)

(define -fun bound_isBetterRestaurant () T

T!val !9)

(define -fun AX_TH_TDate_NoSubOf_TSnackBar () Bool

true)

(define -fun AXIOM_PP_hasRating_IS_FUNCTIONAL () Bool

true)

(define -fun AXIOM_VT_cs1_y () Bool

true)

(define -fun AX_TH_TPrice_NoSubOf_TRestaurant () Bool

180 Chapter B: Listings

true)

(define -fun AX_TH_TEvent_NoSubOf_TSetOfRestaurants () Bool

true)

(define -fun AXIOM_PP_isRatingLess_IS_TRANSITIVE () Bool

true)

(define -fun AXIOM_VT_s_rest () Bool

true)

(define -fun r3_rat () T

T!val !6)

(define -fun AX_TH_TRestaurant_SubOf_TSite () Bool

true)

(define -fun AX_TH_TLocation_NoSubOf_TRating () Bool

true)

(define -fun AX_TH_TMichelin_NoSubOf_TSnackBar () Bool

true)

(define -fun AX_TH_TEvent_NoSubOf_TDate () Bool

true)

(define -fun k!919 ((x!0 Int)) Bool

(ite (= x!0 7) true

false))

(define -fun setops_and ((x!0 Bool) (x!1 Bool)) Bool

(not (or (not x!0) (not x!1))))

(define -fun IsOfTypeTSite ((x!0 T)) Bool

false)

(define -fun k!918 ((x!0 Int)) Bool

(ite (= x!0 5) true

(ite (= x!0 6) true

false)))

(define -fun IsOfTypeTDate ((x!0 T)) Bool

false)

(define -fun Pred_hasLocation ((x!0 T) (x!1 T)) Bool

false)

(define -fun k!917 ((x!0 Int)) Bool

(ite (= x!0 5) true

false))

(define -fun k!925 ((x!0 T)) T

(ite (= x!0 T!val !11) T!val!11

(ite (= x!0 T!val!2) T!val!2

(ite (= x!0 T!val!5) T!val!5

(ite (= x!0 T!val!4) T!val!4

(ite (= x!0 T!val!8) T!val!8

(ite (= x!0 T!val!7) T!val!7

(ite (= x!0 T!val!0) T!val!0

(ite (= x!0 T!val!9) T!val!9

(ite (= x!0 T!val!1) T!val!1

(ite (= x!0 T!val!3) T!val!3

(ite (= x!0 T!val !13) T!val!13

(ite (= x!0 T!val!6) T!val!6

(ite (= x!0 T!val !14) T!val!14

(ite (= x!0 T!val !10) T!val!10

(ite (= x!0 T!val !15) T!val!15

T!val !12))))))))))))))))

(define -fun k!928 ((x!0 T)) T

(ite (= x!0 T!val!2) T!val!2

(ite (= x!0 T!val !12) T!val!12

(ite (= x!0 T!val!5) T!val!5

(ite (= x!0 T!val!4) T!val!4

(ite (= x!0 T!val!9) T!val!9

(ite (= x!0 T!val!8) T!val!8

(ite (= x!0 T!val!7) T!val!7

(ite (= x!0 T!val!0) T!val!0

(ite (= x!0 T!val!1) T!val!1

B.1: Counterexample 181

(ite (= x!0 T!val!3) T!val!3

(ite (= x!0 T!val !13) T!val!13

(ite (= x!0 T!val!6) T!val!6

(ite (= x!0 T!val !14) T!val!14

(ite (= x!0 T!val !10) T!val!10

(ite (= x!0 T!val !15) T!val!15

T!val !11))))))))))))))))

(define -fun Pred_hasRating !937 ((x!0 T) (x!1 T)) Bool

(ite (and (= x!0 T!val!2) (= x!1 T!val !15)) true

false))

(define -fun Pred_hasRating ((x!0 T) (x!1 T)) Bool

(Pred_hasRating !937 (k!928 x!0) (k!925 x!1)))

(define -fun IsOfTypeTMichelin ((x!0 T)) Bool

false)

(define -fun IsOfTypeTRating !938 ((x!0 T)) Bool

(ite (= x!0 T!val!3) true

(ite (= x!0 T!val!5) true

(ite (= x!0 T!val!6) true

(ite (= x!0 T!val!8) true

(ite (= x!0 T!val !10) true

(ite (= x!0 T!val !12) true

false)))))))

(define -fun k!916 ((x!0 Int)) Bool

(ite (= x!0 3) true

(ite (= x!0 4) true

(ite (= x!0 2) true

false))))

(define -fun k!915 ((x!0 Int)) Bool

(ite (= x!0 3) true

(ite (= x!0 2) true

false)))

(define -fun IsOfTypeTSnackBar ((x!0 T)) Bool

false)

(define -fun Pred_hasPrice ((x!0 T) (x!1 T)) Bool

false)

(define -fun k!914 ((x!0 Int)) Bool

(ite (= x!0 2) true

false))

(define -fun IsOfTypeTPrice ((x!0 T)) Bool

false)

(define -fun Pred_isGoodRestaurant ((x!0 T)) Bool

true)

(define -fun setops_or ((x!0 Bool) (x!1 Bool)) Bool

(or x!0 x!1))

(define -fun k!924 ((x!0 T)) T

(ite (= x!0 T!val !12) T!val!12

(ite (= x!0 T!val!5) T!val!5

(ite (= x!0 T!val!4) T!val!4

(ite (= x!0 T!val!9) T!val!9

(ite (= x!0 T!val!2) T!val!2

(ite (= x!0 T!val!7) T!val!7

(ite (= x!0 T!val!0) T!val!0

(ite (= x!0 T!val!8) T!val!8

(ite (= x!0 T!val!1) T!val!1

(ite (= x!0 T!val!3) T!val!3

(ite (= x!0 T!val!6) T!val!6

(ite (= x!0 T!val !10) T!val!10

T!val !11)))))))))))))

(define -fun IsOfTypeTRating ((x!0 T)) Bool

(IsOfTypeTRating !938 (k!924 x!0)))

(define -fun Pred_isBetterRestaurant !939 ((x!0 T) (x!1 T)) Bool

(ite (and (= x!0 T!val !14) (= x!1 T!val !11)) true

182 Chapter B: Listings

(ite (and (= x!0 T!val!9) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!5)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val!5)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!1)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!5)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !0)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val!2)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !3)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val!8)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!6)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!8)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!7) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val!1)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !3)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!7) (= x!1 T!val !5)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!0)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!7) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!7) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !0)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!8)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !5)) true

B.1: Counterexample 183

(ite (and (= x!0 T!val !14) (= x!1 T!val!5)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!2)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!2)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!1)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !5)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!8)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!2)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!1)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !5)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !5)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!7) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!3)) true

(ite (and (= x!0 T!val!4) (= x!1 T!val !3)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !3)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !5)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!7) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !11)) true

false))

)))

(define -fun IsOfTypeTDistance ((x!0 T)) Bool

false)

(define -fun IsOfTypeTEvent ((x!0 T)) Bool

184 Chapter B: Listings

false)

(define -fun Pred_isMinRating ((x!0 T)) Bool

false)

(define -fun Pred_distFrom ((x!0 T) (x!1 T)) Bool

false)

(define -fun IsOfTypeTRestaurant !940 ((x!0 T)) Bool

(ite (= x!0 T!val!3) false

(ite (= x!0 T!val!5) false

(ite (= x!0 T!val!6) false

(ite (= x!0 T!val!8) false

(ite (= x!0 T!val !10) false

(ite (= x!0 T!val !12) false

true)))))))

(define -fun Pred_isRatingLess !941 ((x!0 T) (x!1 T)) Bool

(ite (and (= x!0 T!val !11) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!2)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!2)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!9)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !13)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !0)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !3)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!8)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!6)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !9)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !1)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val!0)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !9)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!0)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !3)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !12)) true

B.1: Counterexample 185

(ite (and (= x!0 T!val!8) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val!4)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !12) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!6) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val !11)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!7) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !3)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!5) (= x!1 T!val !9)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !9)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !9)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!1)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!8)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!6)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!9)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!3)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val !15)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val!2)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !14)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !12)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!2)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val !10)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !6)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !8)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !9)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val!1) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val!0) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val !13) (= x!1 T!val!4)) true

(ite (and (= x!0 T!val !15) (= x!1 T!val!4)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!8) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val!3) (= x!1 T!val !2)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!4)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !4)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!4)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val!4)) true

(ite (and (= x!0 T!val !10) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val!9) (= x!1 T!val !7)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!7)) true

186 Chapter B: Listings

(ite (and (= x!0 T!val !11) (= x!1 T!val!7)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val!1)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val!8)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val!6)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val!9)) true

(ite (and (= x!0 T!val !11) (= x!1 T!val!3)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!9)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!8)) true

(ite (and (= x!0 T!val !14) (= x!1 T!val!6)) true

(ite (and (= x!0 T!val!2) (= x!1 T!val !9)) true

false))

)))

(define -fun Pred_distTo ((x!0 T) (x!1 T)) Bool

false)

(define -fun Pred_startsAt ((x!0 T) (x!1 T)) Bool

false)

(define -fun setops_not ((x!0 Bool)) Bool

(not x!0))

(define -fun k!923 ((x!0 Int)) Bool

(ite (= x!0 11) true

false))

(define -fun IsOfTypeTRestaurant ((x!0 T)) Bool

(IsOfTypeTRestaurant !940 (k!924 x!0)))

(define -fun k!922 ((x!0 Int)) Bool

(ite (= x!0 10) true

false))

(define -fun Pred_isBetterRestaurant ((x!0 T) (x!1 T)) Bool

(Pred_isBetterRestaurant !939 (k!928 x!0) (k!928 x!1)))

(define -fun k!921 ((x!0 Int)) Bool

(ite (= x!0 9) true

false))

(define -fun IsOfTypeTLocation ((x!0 T)) Bool

false)

(define -fun Pred_isRatingLess ((x!0 T) (x!1 T)) Bool

(Pred_isRatingLess !941 (k!925 x!0) (k!925 x!1)))

(define -fun k!920 ((x!0 Int)) Bool

(ite (= x!0 8) true

false))

Bibliography

Good relations ontology project. http://www.goodrelations-vocabulary.org.

OpenGALEN ontology. http://www.opengalen.org.

Qallme tourism ontology. http://qallme.fbk.eu.

Schema.org e-commerce taxonomy. http://www.schema.org.

Jean-Raymond Abrial, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H. Sørensen.

The B-method. In Søren Prehn and Hans Toetenel, editors, VDM ’91 Formal Soft-

ware Development Methods: 4th International Symposium of VDM Europe Noordwi-

jkerhout, The Netherlands, October 21–25, 1991 Proceedings, pages 398–405, Berlin,

Heidelberg, 1991. Springer Berlin Heidelberg.

S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27(6):

509–516, June 1978.

Anupriya Ankolekar, Massimo Paolucci, and Katia Sycara. Towards a formal verification

of OWL-S process models. In Yolanda Gil, Enrico Motta, V.Richard Benjamins, and

MarkA. Musen, editors, The Semantic Web – ISWC 2005, volume 3729 of Lecture

Notes in Computer Science, pages 37–51. Springer Berlin Heidelberg, 2005.

Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk Beyer.

Strategies for product-line verification: Case studies and experiments. In Proceedings

of the 2013 International Conference on Software Engineering, ICSE ’13, pages 482–

491, Piscataway, NJ, USA, 2013. IEEE Press.

K. Apt, F. de Boer, and E.-R. Olderog. Verification of sequential and concurrent pro-

grams. Springer, 2009.

Svetlana Arifulina, Matthias Becker, Marie Platenius, and Sven Walther. SeSAME:

Modeling and analyzing high-quality service compositions. In Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering, pages 839–

842. ACM, 2014.

Svetlana Arifulina, Marie Christin Platenius, Matthias Becker, Gregor Engels, and Wil-

helm Schäfer. An overview of service specification language and matching in on-the-

fly computing. Technical Report tr-ri-15-347, Heinz Nixdorf Institute, University of

Paderborn, July 2015.

187

http://www.goodrelations-vocabulary.org
http://www.opengalen.org
http://qallme.fbk.eu
http://www.schema.org

Bibliography BIBLIOGRAPHY

Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model check-

ing of software using SMT solvers instead of SAT solvers. International Journal on

Software Tools for Technology Transfer, 11(1):69–83, February 2009.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.

A view of cloud computing. Commun. ACM, 53(4):50–58, April 2010.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,

and Applications. Cambridge University Press, New York, NY, USA, 2003.

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. In Frank van Harme-

len, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge Represen-

tation, volume 3 of Foundations of Artificial Intelligence, pages 135 – 179. Elsevier,

2008.

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Steffen Staab and

Rudi Studer, editors, Handbook on Ontologies, International Handbooks on Informa-

tion Systems, pages 21–43. Springer Berlin Heidelberg, 2009.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming

system: An overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis

Lanet, and Traian Muntean, editors, Construction and Analysis of Safe, Secure,

and Interoperable Smart Devices: International Workshop, CASSIS 2004, Marseille,

France, March 10-14, 2004, Revised Selected Papers, pages 49–69, Berlin, Heidelberg,

2005. Springer Berlin Heidelberg.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.

Leino. Boogie: A modular reusable verifier for object-oriented programs. In Frank S.

de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors,

Formal Methods for Components and Objects: 4th International Symposium, FMCO

2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures, pages

364–387, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-

vanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakr-

ishnan and Shaz Qadeer, editors, Computer Aided Verification: 23rd International

Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages

171–177, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version

2.5. Technical report, Department of Computer Science, The University of Iowa, 2015.

Available at www.SMT-LIB.org.

Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model for

model-driven performance prediction. Journal of Systems and Software, 82(1):3 – 22,

2009. Special Issue: Software Performance - Modeling and Analysis.

Bibliography 189

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific

American, May 2001.

Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Invari-

ant synthesis for combined theories. In Byron Cook and Andreas Podelski, editors,

Verification, Model Checking, and Abstract Interpretation: 8th International Confer-

ence, VMCAI 2007, Nice, France, January 14-16, 2007. Proceedings, pages 378–394,

Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model

checking without BDDs. In W. Rance Cleaveland, editor, Tools and Algorithms for

the Construction and Analysis of Systems: 5th International Conference, TACAS’99

Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS’99 Amsterdam, The Netherlands, March 22–28, 1999 Proceedings, pages 193–

207, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polynomial

programs. In Radhia Cousot, editor, Verification, Model Checking, and Abstract In-

terpretation: 6th International Conference, VMCAI 2005, Paris, France, January

17-19, 2005. Proceedings, pages 113–129, Berlin, Heidelberg, 2005. Springer Berlin

Heidelberg.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98(2):142 – 170,

1992.

Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and Hongseok Yang.

Ranking abstractions. In Sophia Drossopoulou, editor, Programming Languages and

Systems: 17th European Symposium on Programming, ESOP 2008, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,

Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages 148–162, Berlin, Hei-

delberg, 2008. Springer Berlin Heidelberg.

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebas-

tiani. The MathSAT5 SMT solver. In TACAS 2013, pages 93–107, 2013.

Edmund Clarke, Daniel Kröning, and Flavio Lerda. A tool for checking ansi-c programs.

In Kurt Jensen and Andreas Podelski, editors, TACAS 2004, pages 168–176, Berlin,

Heidelberg, 2004. Springer Berlin Heidelberg.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization

skeletons using branching time temporal logic. In Dexter Kozen, editor, Logics of

Programs: Workshop, Yorktown Heights, New York, May 1981, pages 52–71, Berlin,

Heidelberg, 1982. Springer Berlin Heidelberg.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-

tion. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, September 1994.

Bibliography BIBLIOGRAPHY

David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Gilles

Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, edi-

tors, Construction and Analysis of Safe, Secure, and Interoperable Smart Devices: In-

ternational Workshop, CASSIS 2004, Marseille, France, March 10-14, 2004, Revised

Selected Papers, pages 108–128, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages, POPL ’78, pages 84–96, New York, NY,

USA, 1978. ACM.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control depen-

dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

Dennis Dams, Rob Gerth, and Orna Grumberg. A heuristic for the automatic generation

of ranking functions. In Workshop on Advances in Verification, pages 1–8, 2000.

Thomas H. Davenport. Process innovation : reengineering work though information

technology. Boston, Mass. : Harvard Business School Press, [reprint] edition, 1998.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J.

ACM, 7(3):201–215, July 1960.

Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowledge representa-

tion? AI Magazine, 14(1):17–33, 1993.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ra-

makrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and

Analysis of Systems: 14th International Conference, TACAS 2008, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,

Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages 337–340, Berlin, Hei-

delberg, 2008. Springer Berlin Heidelberg.

Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision procedures.

In Formal Methods in Computer-Aided Design, 2009. FMCAD 2009, pages 45–52, Nov

2009.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Al-log:

Integrating datalog and description logics. J. Intell. Inf. Syst., 10(3):227–252, 1998.

Marlon Dumas and Arthur H. M. ter Hofstede. Uml activity diagrams as a workflow

specification language. In Martin Gogolla and Cris Kobryn, editors, UML 2001 —

The Unified Modeling Language. Modeling Languages, Concepts, and Tools: 4th Inter-

national Conference Toronto, Canada, October 1–5, 2001 Proceedings, pages 76–90,

Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Bibliography 191

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and

Armando Tacchella, editors, Theory and Applications of Satisfiability Testing: 6th

International Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003,

Selected Revised Papers, pages 502–518, Berlin, Heidelberg, 2004. Springer Berlin

Heidelberg.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM Trans.

Database Syst., 22(3):364–418, 1997.

J. Erickson. Trust metrics. In Collaborative Technologies and Systems, 2009. CTS ’09.

International Symposium on, pages 93–97, May 2009.

Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. A formal semantics for the busi-

ness process execution language for web services. In Savitri Bevinakoppa, Lúıs Ferreira

Pires, and Slimane Hammoudi, editors, Web Services and Model-Driven Enterprise

Information Services, Proceedings of the Joint Workshop on Web Services and Model-

Driven Enterprise Information Services, WSMDEIS 2005, In conjunction with ICEIS

2005, Miami, USA, May 2005, pages 122–133. INSTICC Press, 2005.

Joel Farrell and Holger Lausen. Semantic annotations for WSDL and XML schema. W3C

recommendation, W3C, August 2007. http://www.w3.org/TR/2007/REC-sawsdl-

20070828/.

Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architec-

ture. In Proceedings of the 22Nd International Conference on Software Engineering,

ICSE ’00, pages 407–416, New York, NY, USA, 2000. ACM.

Jean-Christophe Filliâtre. One logic to use them all. In Maria Paola Bonacina, editor,

Automated Deduction – CADE-24: 24th International Conference on Automated De-

duction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, pages 1–20, Berlin,

Heidelberg, 2013. Springer Berlin Heidelberg.

Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers.

In Matthias Felleisen and Philippa Gardner, editors, Programming Languages and

Systems: 22nd European Symposium on Programming, ESOP 2013, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,

Rome, Italy, March 16-24, 2013. Proceedings, pages 125–128, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,

and Raymie Stata. Extended static checking for java. In Proceedings of the ACM

SIGPLAN 2002 Conference on Programming Language Design and Implementation,

PLDI ’02, pages 234–245, New York, NY, USA, 2002. ACM.

T. Fleuren, J. Götze, and P. Müller. Workflow skeletons: A non-intrusive approach for

facilitating scientific workflow modeling. In 2014 40th EUROMICRO Conference on

Software Engineering and Advanced Applications, pages 459–466, Aug 2014.

Bibliography BIBLIOGRAPHY

Robert W. Floyd. Assigning meanings to programs. volume 19, pages 19–32. American

Mathematical Society, 1967.

Enrico Franconi and Sergio Tessaris. Rules and queries with ontologies: A unified logical

framework. In Hans Jürgen Ohlbach and Sebastian Schaffert, editors, Principles and

Practice of Semantic Web Reasoning, volume 3208 of Lecture Notes in Computer

Science, pages 50–60. Springer Berlin Heidelberg, 2004.

Martin Fränzle, Holger Hermanns, and Tino Teige. Stochastic satisfiability modulo

theory: A novel technique for the analysis of probabilistic hybrid systems. In Mag-

nus Egerstedt and Bud Mishra, editors, Hybrid Systems: Computation and Control,

number 4981 in Lecture Notes in Computer Science, pages 172–186. Springer Berlin

Heidelberg, 2008.

Carlo Alberto Furia and Bertrand Meyer. Inferring loop invariants using postconditions.

In Andreas Blass, Nachum Dershowitz, and Wolfgang Reisig, editors, Fields of Logic

and Computation: Essays Dedicated to Yuri Gurevich on the Occasion of His 70th

Birthday, pages 277–300, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Werner Gabrisch and Wolf Zimmermann. A hoare-style verification calculus for control

state ASMs. In Proceedings of the Fifth Balkan Conference in Informatics, BCI ’12,

pages 205–210, New York, NY, USA, 2012. ACM.

Juan Pablo Galeotti, Carlo A. Furia, Eva May, Gordon Fraser, and Andreas Zeller.

Dynamate: Dynamically inferring loop invariants for automatic full functional verifi-

cation. In Eran Yahav, editor, Hardware and Software: Verification and Testing: 10th

International Haifa Verification Conference, HVC 2014, Haifa, Israel, November 18-

20, 2014. Proceedings, pages 48–53, Cham, 2014. Springer International Publishing.

Hervé Gallaire and Jack Minker, editors. Logic and Data Bases, Symposium on Logic

and Data Bases, Centre d’études et de recherches de Toulouse, 1977, Advances in

Data Base Theory, New York, 1978. Plemum Press.

Stefano Gallotti, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. Quality

prediction of service compositions through probabilistic model checking. In Quality

of Software Architectures. Models and Architectures, pages 119–134. Springer, 2008.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Fabien Gandon and Guus Schreiber. RDF 1.1 XML syntax. W3C recommenda-

tion, W3C, February 2014. http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-

20140225/.

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare

Tinelli. DPLL(T): Fast decision procedures. In Rajeev Alur and Doron A. Peled, edi-

tors, Computer Aided Verification: 16th International Conference, CAV 2004, Boston,

MA, USA, July 13-17, 2004. Proceedings, pages 175–188, Berlin, Heidelberg, 2004.

Springer Berlin Heidelberg.

Bibliography 193

Manuel Gesell and Klaus Schneider. A Hoare calculus for the verification of synchronous

languages. In Proceedings of the Sixth Workshop on Programming Languages Meets

Program Verification, PLPV ’12, pages 37–48, New York, NY, USA, 2012. ACM.

Y. Gil, P. Groth, V. Ratnakar, and C. Fritz. Expressive reusable workflow templates.

In e-Science, 2009. e-Science ’09. Fifth IEEE International Conference on, pages

344–351, Dec 2009.

Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody, and E. Deel-

man. Wings: Intelligent workflow-based design of computational experiments. IEEE

Intelligent Systems, 26(1):62–72, Jan 2011.

Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. HermiT: An

OWL 2 reasoner. Journal of Automated Reasoning, 53(3):245–269, 2014.

Bernardo Cuenca Grau, Peter Patel-Schneider, and Boris Motik. OWL 2 web ontology

language direct semantics (second edition). W3C recommendation, W3C, December

2012. http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/.

David Gries. The Science of Programming. Texts and Monographs in Computer Science.

Springer, 1981.

Object Management Group. UML specification. http://www.omg.org/spec/UML/, re-

trieved 2016, June 9.

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl-

edge Acquisition, 5(2):199 – 220, 1993.

Orna Grumberg and DavidE. Long. Model checking and modular verification. In

JosC.M. Baeten and JanFrisco Groote, editors, CONCUR ’91, volume 527 of Lec-

ture Notes in Computer Science, pages 250–265. Springer Berlin Heidelberg, 1991.

Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an ontology? In Steffen

Staab and Rudi Studer, editors, Handbook on Ontologies, International Handbooks

on Information Systems, pages 1–17. Springer Berlin Heidelberg, 2009.

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program analysis

as constraint solving. In Proceedings of the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’08, pages 281–292, New

York, NY, USA, 2008. ACM.

Ashutosh Gupta and Andrey Rybalchenko. InvGen: An efficient invariant generator.

In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification: 21st

International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Pro-

ceedings, pages 634–640, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Volker Haarslev, Roberto Sebastiani, and Michele Vescovi. Automated reasoning in

ALCQ via SMT. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, Au-

tomated Deduction – CADE-23, volume 6803 of Lecture Notes in Computer Science,

pages 283–298. Springer Berlin Heidelberg, 2011.

http://www.omg.org/spec/UML/

Bibliography BIBLIOGRAPHY

M. Happe, F. Meyer auf der Heide, P. Kling, M. Platzner, and C. Plessl. On-the-fly com-

puting: A novel paradigm for individualized it services. In Object/Component/Service-

Oriented Real-Time Distributed Computing (ISORC), 2013 IEEE 16th International

Symposium on, pages 1–10, June 2013.

Patrick Hayes and Peter Patel-Schneider. RDF 1.1 semantics. W3C recommendation,

W3C, February 2014. http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.

David Hemer and Peter A. Lindsay. An industrial-strength method for the construction

of formally verified software. Australian Software Engineering Conference, page 27,

1996.

David Hemer and Peter A. Lindsay. Reuse of verified design templates through extended

pattern matching. In John Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME

’97: Industrial Applications and Strengthened Foundations of Formal Methods, volume

1313 of LNCS, pages 495–514. Springer, 1997.

Reiner Hähnle and Ina Schaefer. A Liskov principle for delta-oriented programming.

In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of For-

mal Methods, Verification and Validation. Technologies for Mastering Change, volume

7609 of Lecture Notes in Computer Science, pages 32–46. Springer Berlin Heidelberg,

2012.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12

(10):576–580, October 1969.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,

August 1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

Michael Holzinger, editor. Aristoteles: Organon. CreateSpace Independent Publishing

Platform, 2013.

Matthew Horridge and Peter Patel-Schneider. OWL 2 web ontology lan-

guage manchester syntax (second edition). W3C note, W3C, December 2012.

http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/.

Matthew Horridge, Tania Tudorache, Csongor Nyulas, and Mark A. Musen. Webprotégé:

a web-based development environment for OWL ontologies. In C. Maria Keet and

Valentina A. M. Tamma, editors, Proceedings of the 11th International Workshop on

OWL: Experiences and Directions (OWLED 2014) co-located with 13th International

Semantic Web Conference on (ISWC 2014), Riva del Garda, Italy, October 17-18,

2014., volume 1265 of CEUR Workshop Proceedings, pages 109–120. CEUR-WS.org,

2014.

Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol., 11(2):256–290, April 2002.

Bibliography 195

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and

Frank Piessens. Verifast: A powerful, sound, predictable, fast verifier for c and java.

In Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors,

NASA Formal Methods: Third International Symposium, NFM 2011, Pasadena, CA,

USA, April 18-20, 2011. Proceedings, pages 41–55, Berlin, Heidelberg, 2011. Springer

Berlin Heidelberg.

Marie-Christine Jakobs and Heike Wehrheim. Certification for configurable program

analysis. In Proceedings of the 21st International Symposium on Model Checking of

Software (SPIN), SPIN 2014, pages 30–39. ACM, 2014.

Alexander Jungmann, Sonja Brangewitz, Ronald Petrlic, and Marie Christin Platenius.

Towards a flexible and privacy-preserving reputation system for markets of composed

services. In SERVICE COMPUTATION 2014, The Sixth International Conferences

on Advanced Service Computing, pages 49–57, 2014.

Michael Karr. Affine relationships among variables of a program. Acta Informatica, 6

(2):133–151, 1976.

Holger Knublauch, Matthew Horridge, Mark A. Musen, Alan L. Rector, Robert Stevens,

Nick Drummond, Phillip W. Lord, Natalya Fridman Noy, Julian Seidenberg, and Hai

Wang. The protege OWL experience. In Bernardo Cuenca Grau, Ian Horrocks,

Bijan Parsia, and Peter F. Patel-Schneider, editors, Proceedings of the OWLED*05

Workshop on OWL: Experiences and Directions, Galway, Ireland, November 11-12,

2005, volume 188 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

Andreas Krakau. Entwicklung eines Konzeptes zur Kodierung eines objektorientierten

Typsystems in SMT, 2014. Bachelor’s thesis, University of Paderborn.

Daniel Kröning, Philipp Rümmer, and Georg Weissenbacher. A proposal for a theory

of finite sets, lists, and maps for the SMT-Lib standard. In Informal proceedings, 7th

International Workshop on Satisfiability Modulo Theories at CADE 22, 2009.

Sri Krishna Kumar and J. A. Harding. Ontology mapping using description logic and

bridging axioms. Computers in Industry, 64(1):19–28, 2013.

Marta Kwiatkowska and David Parker. Advances in probabilistic model checking. Proc.

2011 Marktoberdorf Summer School: Tools for Analysis and Verification of Software

Safety and Security IOS Press, 2012.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification

of probabilistic real-time systems. In Computer Aided Verification, pages 585–591.

Springer, 2011.

Shuvendu Lahiri and Shaz Qadeer. Back to the future: revisiting precise program

verification using smt solvers. ACM SIGPLAN Notices, 43(1):171–182, 2008.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed

design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral

Bibliography BIBLIOGRAPHY

Specifications of Businesses and Systems, pages 175–188, Boston, MA, 1999. Springer

US.

C. Y. Lee. Representation of switching circuits by binary-decision programs. The Bell

System Technical Journal, 38(4):985–999, July 1959.

K. Leino and Rustan M. Dafny: An automatic program verifier for functional correct-

ness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Ar-

tificial Intelligence, and Reasoning: 16th International Conference, LPAR-16, Dakar,

Senegal, April 25–May 1, 2010, Revised Selected Papers, pages 348–370, Berlin, Hei-

delberg, 2010. Springer Berlin Heidelberg.

Alon Y. Levy and Marie-Christine Rousset. The limits on combining recursive horn rules

with description logics. In William J. Clancey and Daniel S. Weld, editors, Proceedings

of the Thirteenth National Conference on Artificial Intelligence and Eighth Innova-

tive Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland,

Oregon, August 4-8, 1996, Volume 1., pages 577–584. AAAI Press / The MIT Press,

1996.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM

Trans. Program. Lang. Syst., 16(6):1811–1841, November 1994.

Michael L Littman, Stephen M Majercik, and Toniann Pitassi. Stochastic boolean

satisfiability. Journal of Automated Reasoning, 27(3):251–296, 2001.

C. Marché, C. Paulin-Mohring, and X. Urbain. The KRAKATOA tool for certificationof

JAVA/JAVACARD programs annotated in JML. The Journal of Logic and Algebraic

Programming, 58(1):89 – 106, 2004.

Félix Gómez Mármol and Marcus Quintino Kuhnen. Reputation-based web service

orchestration in cloud computing: A survey. Concurrency and Computation: Practice

and Experience, 27(9):2390–2412, 2015.

David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew McDermott,

Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika Solanki,

Naveen Srinivasan, and Katia Sycara. Bringing semantics to web services: The OWL-

S approach. In Jorge Cardoso and Amit Sheth, editors, Semantic Web Services and

Web Process Composition, volume 3387 of Lecture Notes in Computer Science, pages

26–42. Springer Berlin Heidelberg, 2005.

Bertrand Meyer. A basis for the constructive approach to programming. In IFIP

Congress, pages 293–298, 1980.

Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40–51, Oct 1992.

Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,

1997.

Bibliography 197

Aleksandar Milicevic and Hillel Kugler. Model checking using SMT and theory of lists.

In Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, edi-

tors, NASA Formal Methods: Third International Symposium, NFM 2011, Pasadena,

CA, USA, April 18-20, 2011. Proceedings, pages 282–297, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg.

Felix Mohr and Sven Walther. Template-based generation of semantic services. In

Proceedings of the 14th International Conference on Software Reuse (ICSR), LNCS,

pages 188–203. Springer, 2014.

F. L. Morris and C. B. Jones. An early program proof by Alan Turing. Annals of the

History of Computing, 6(2):139–143, April 1984.

Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL with rules.

J. Web Sem., 3(1):41–60, 2005.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, and Ulrike Sattler. Representing on-

tologies using description logics, description graphs, and rules. Artificial Intelligence,

173(14):1275 – 1309, 2009.

George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL, pages 106–119,

New York, NY, USA, 1997. ACM.

George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying code. In

Giovanni Vigna, editor, Mobile Agents and Security, pages 61–91, Berlin, Heidelberg,

1998. Springer Berlin Heidelberg.

Natalya F. Noy. Ontology mapping. In Steffen Staab and Rudi Studer, editors, Hand-

book on Ontologies, International Handbooks on Information Systems, pages 573–590.

Springer, 2009.

OASIS. Web services business process execution language. https://www.oasis-open.

org/committees/wsbpel, retrieved July 21, 2017.

Chun Ouyang, Eric Verbeek, Wil M.P. van der Aalst, Stephan Breutel, Marlon Dumas,

and Arthur H.M. ter Hofstede. Formal semantics and analysis of control flow in ws-

bpel. Science of Computer Programming, 67(2):162 – 198, 2007.

Susan Owicki and David Gries. An axiomatic proof technique for parallel programs I.

Acta Informatica, 6(4):319–340, 1976.

Bijan Parsia, Evren Sirin, Bernardo Grau, Edna Ruckhaus, and Daniel Hewlett. Cau-

tiously approaching SWRL. 2005. Preprint submitted to Elsevier Science.

Peter Patel-Schneider, Bijan Parsia, and Boris Motik. OWL 2 web ontology language

structural specification and functional-style syntax (second edition). W3C recom-

mendation, W3C, December 2012. http://www.w3.org/TR/2012/REC-owl2-syntax-

20121211/.

https://www.oasis-open.org/committees/wsbpel
https://www.oasis-open.org/committees/wsbpel

Bibliography BIBLIOGRAPHY

Gordon D. Plotkin. A structural approach to operational semantics. DAIMI FN-19,

Computer Science Department, Aarhus University, 1981.

Gordon D. Plotkin. The origins of structural operational semantics. J. Log. Algebr.

Program., 60-61:3–15, 2004.

Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of

linear ranking functions. In Bernhard Steffen and Giorgio Levi, editors, Verification,

Model Checking, and Abstract Interpretation: 5th International Conference, VMCAI

2004 Venice, Italy, January 11-13, 2004 Proceedings, pages 239–251, Berlin, Heidel-

berg, 2004. Springer Berlin Heidelberg.

Riccardo Rosati. Towards expressive KR systems integrating datalog and description

logics: preliminary report. In Patrick Lambrix, Alexander Borgida, Maurizio Lenz-

erini, Ralf Möller, and Peter F. Patel-Schneider, editors, Proceedings of the 1999

International Workshop on Description Logics (DL’99), Linköping, Sweden, July 30

- August 1, 1999, volume 22 of CEUR Workshop Proceedings. CEUR-WS.org, 1999.

Riccardo Rosati. On the decidability and complexity of integrating ontologies and rules.

J. Web Sem., 3(1):61–73, 2005.

Maryam Sanati. Formal semantics of probalistic SMT solving in verification of service

compositions, 2014. Master’s thesis, University of Paderborn.

Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with com-

plements. Artificial Intelligence, 48(1):1 – 26, 1991.

Michael Schneider. OWL 2 web ontology language RDF-based seman-

tics (second edition). W3C recommendation, W3C, December 2012.

http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/.

Dana S. Scott. Mathematical concepts in programming language semantics. In American

Federation of Information Processing Societies: AFIPS Conference Proceedings: 1972

Spring Joint Computer Conference, Atlantic City, NJ, USA, May 16-18, 1972, pages

225–234, 1972.

Roberto Sebastiani and Michele Vescovi. Encoding the satisfiability of modal and de-

scription logics into SAT: the case study of K(m)/ALC. In Theory and Applications

of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA, USA,

August 12-15, 2006, Proceedings, pages 130–135, 2006.

Roberto Sebastiani and Michele Vescovi. Automated reasoning in modal and description

logics via SAT encoding: the case study of K(m)/ALC-satisfiability. J. Artif. Intell.

Res. (JAIR), 35:343–389, 2009.

Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying loop invariant gen-

eration using splitter predicates. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,

Computer Aided Verification: 23rd International Conference, CAV 2011, Snowbird,

Bibliography 199

UT, USA, July 14-20, 2011. Proceedings, pages 703–719, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg.

Evren Sirin, Bijan Parsia, and James Hendler. Template-based composition of semantic

web services. 2005.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.

Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents

on the World Wide Web, 5(2):51 – 53, 2007. Software Engineering and the Semantic

Web.

Adam Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. MetaL-

ibri, 2007.

Siavash Soleimanifard and Dilian Gurov. Algorithmic verification of procedural programs

in the presence of code variability. In Ivan Lanese and Eric Madelaine, editors, Formal

Aspects of Component Software, volume 8997 of Lecture Notes in Computer Science,

pages 327–345. Springer International Publishing, 2015.

Saurabh Srivastava and Sumit Gulwani. Program verification using templates over pred-

icate abstraction. In Proceedings of the 30th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’09, pages 223–234, New York, NY,

USA, 2009. ACM.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verification

to program synthesis. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’10, pages 313–326, New

York, NY, USA, 2010. ACM.

Clemens A. Szyperski. Component software - beyond object-oriented programming.

Addison-Wesley-Longman, 1998.

Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In

Sergio Flesca, Sergio Greco, Giovambattista Ianni, and Nicola Leone, editors, Log-

ics in Artificial Intelligence: 8th European Conference, JELIA 2002 Cosenza, Italy,

September 23–26, 2002 Proceedings, pages 308–319, Berlin, Heidelberg, 2002. Springer

Berlin Heidelberg.

Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System descrip-

tion. In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning: Third

International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006.

Proceedings, pages 292–297, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and hoare-style

reasoning in a logic for higher-order concurrency. In Proceedings of the 18th ACM

SIGPLAN International Conference on Functional Programming, ICFP ’13, pages

377–390, New York, NY, USA, 2013. ACM.

Bibliography BIBLIOGRAPHY

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I.

Computer Science Press, 1988.

W. M. P. van der Aalst and A. H. M. ter Hofstede. Workflow patterns put into context.

Software & Systems Modeling, 11(3):319–323, 2012.

Wil van der Aalst and Kees Max van Hee. Workflow management : models, methods,

and systems. Cooperative information systems. Cambridge, Mass. [u.a.] : MIT Press,

2002.

Wil van der Aalst, Michael Beisiegel, Kees van Hee, Dieter König, and Christian Stahl.

A SOA-based architecture framework. In Frank Leymann, Wolfgang Reisig, Satish R.

Thatte, and Wil van der Aalst, editors, The Role of Business Processes in Service

Oriented Architectures, number 06291 in Dagstuhl Seminar Proceedings, Dagstuhl,

Germany, 2006. Internationales Begegnungs- und Forschungszentrum für Informatik

(IBFI), Schloss Dagstuhl, Germany.

Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An anno-

tated bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

Michele Vescovi. Exploiting SAT and SMT techniques for automated reasoning and

ontology manipulation in description logics, 2011. PhD thesis, University of Trento.

W3C. W3C Data Activities, a. https://www.w3.org/2013/data/.

W3C. W3C Semantic Web Activities, b. https://www.w3.org/2001/sw/.

Sven Walther and Heike Wehrheim. Knowledge-based verification of service compositions

– an SMT approach. In Engineering of Complex Computer Systems (ICECCS), 2013

18th International Conference on, pages 24–32. IEEE, 2013.

Sven Walther and Heike Wehrheim. Verified service compositions by template-based

construction. In Ivan Lanese and Eric Madelaine, editors, Formal Aspects of Com-

ponent Software, volume 8997 of Lecture Notes in Computer Science, pages 31–48.

Springer International Publishing, 2015.

Sven Walther and Heike Wehrheim. On-the-fly construction of provably correct service

compositions – templates and proofs. Science of Computer Programming, 127:2 –

23, 2016. Special issue of the 11th International Symposium on Formal Aspects of

Component Software.

Sanjiva Weerawarana, Arthur Ryman, Jean-Jacques Moreau, and Roberto Chinnici.

Web services description language (WSDL) version 2.0 part 1: Core language.

W3C recommendation, W3C, June 2007. http://www.w3.org/TR/2007/REC-wsdl20-

20070626.

Thomas Weise, M. Brian Blake, and Steffen Bleul. Semantic web service composition:

The web service challenge perspective. In Athman Bouguettaya, Z. Quan Sheng, and

Florian Daniel, editors, Web Services Foundations, pages 161–187, New York, NY,

2014. Springer New York.

https://www.w3.org/2013/data/
https://www.w3.org/2001/sw/

Bibliography 201

D. Wonisch, A. Schremmer, and H. Wehrheim. Programs from proofs – a PCC alter-

native. In H. Veith N. Sharygina, editor, Computer Aided Verification, volume 8044,

pages 912–927. Springer Berlin/Heidelberg, 2013a.

D. Wonisch, A. Schremmer, and H. Wehrheim. Programs from proofs – approach and

applications. In N.C. Ehmke W. Hasselbring, editor, Proceedings of the Software

Engineering Conference (SE), volume 227, pages 67–68, 2014.

Daniel Wonisch, Alexander Schremmer, and Heike Wehrheim. Zero overhead runtime

monitoring. In RobertM. Hierons, MercedesG. Merayo, and Mario Bravetti, editors,

Software Engineering and Formal Methods, volume 8137 of LNCS, pages 244–258.

Springer Berlin Heidelberg, 2013b.

Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Prentice

Hall, 1996.

Zhengping Wu and A.C. Weaver. Application of fuzzy logic in federated trust manage-

ment for pervasive computing. In COMPSAC, volume 2, pages 215–222, 2006.

	List of Figures
	List of Tables
	1 Introduction
	1.1 A Theoretical Framework
	1.2 A Practical Implementation
	1.3 Structure of this Thesis

	I Preliminaries
	2 Domain Knowledge and Logic
	2.1 Formalizing Domain Knowledge
	2.2 Description Logics, Ontologies, and Knowledge Bases
	2.2.1 Description Logics as Ontology Semantics
	2.2.2 Reasoning in DLs: General Concept Inclusion
	2.2.3 Higher-level Ontology Languages
	2.2.4 Enhancing Ontologies with Rules
	2.2.5 A Formal Knowledge Base

	II Contributions
	3 Workflow Descriptions
	3.1 Related Work
	3.2 Syntax and Semantics
	3.2.1 Services and Service Compositions
	3.2.2 States, Configurations, and Semantics of Workflows

	3.3 Partial and Total Correctness
	3.4 Proof Calculus
	3.4.1 Axioms and Rules
	3.4.2 Soundness
	3.4.3 Completeness

	4 Workflow Templates
	4.1 Related Work
	4.2 Syntax and Semantics
	4.3 Partial and Total Correctness
	4.4 Proof Calculus
	4.4.1 Axioms and Rules
	4.4.2 Soundness and Completeness

	4.5 Correct Instantiations
	4.5.1 Ontology Mappings
	4.5.2 Template Instantiation
	4.5.3 Correctness by Construction

	5 Automating Correctness Proofs using First-order Logic
	5.1 Related Work and the Treatment of Loops
	5.2 First-order Logic Encodings
	5.2.1 Preliminaries
	5.2.2 Domain Knowledge and Services
	5.2.3 Control Flow

	5.3 Correspondence of Correctness and Sat Problems
	5.3.1 Correspondence Theorem
	5.3.2 Proofs

	5.4 Deriving Invariants and Termination Functions
	5.4.1 Finding Loop Invariants using Domain Knowledge
	5.4.2 Finding Termination Functions using Domain Knowledge

	6 Dealing with Uncertain Service Descriptions
	6.1 Uncertainty in Service Descriptions
	6.2 Verification under Uncertainty
	6.3 Special Cases
	6.3.1 Loop Proof Obligations
	6.3.2 Repetition

	6.4 Discussion and Related Work

	7 Prototypical Implementation
	7.1 Overview
	7.1.1 Automating Satisfiability Problems
	7.1.2 Compatibility with SeSAME
	7.1.3 Input Models

	7.2 Logical Models
	7.2.1 Logical Encoding Standard SMT-LIB
	7.2.2 Encoding Proofs, Sets, and Polymorphic Types

	7.3 Prototype Architecture
	7.4 Evaluation
	7.4.1 Approach
	7.4.2 Results
	7.4.3 Conclusion

	III Discussion
	8 Discussion and Conclusion
	8.1 Related Approaches
	8.2 Conclusion
	8.3 Design Decisions
	8.4 Future Work

	IV Appendix
	A Template Examples
	A.1 Produce/Consume
	A.2 Choose
	A.3 Target Processing
	A.4 Filter

	B Listings
	B.1 Counterexample

	Bibliography

