& UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Multi-aspect Full-system Server Model and
Optimization Concept as a Simulation-based Approach
(MFSMOS)

Dissertation
in Computer Science

A thesis submitted to the

Faculty of Computer Science, Electrical Engineering and Mathematics,
Paderborn University

in partial fulfillment of the requirements for the degree of

doctor rerum naturalium

(Dr. rer. nat.)
by

Diana Riemer

Paderborn, Germany, 2017-11-29

Supervisors:
Prof. Dr.-Ing. André Brinkmann

Prof. Dr. Franz Josef Rammig

Johannes Gutenberg University Mainz

Paderborn University

Abstract

The exponential growth of the information technology, such as social media content or on-
demand video services, results in increasing energy consumption, which may be one of the
main causes of climate changes. Power and cooling are the key challenges to reducing the
emission of greenhouse gas, especially in large-scale data centers. With our full-system
model, we contribute towards improving the energy efficiency on specific server systems
and, consequently, optimize the efficiency of data center infrastructures. We develop a
generic, flexible, and scalable model to simulate and optimize a complete server system for
the multiple, potentially conflicting aspects: power, temperature, and performance. We
develop a hierarchical and abstract model of a rack-mounted server system, which builds the
base of our mathematical methods to calculate the multi-aspects of each component. We
demonstrate the feasibility and advantages of our concept through a prototypical
implementation, in which we empirically validate our model using a variety of artificial
workloads to ensure the reproducibility at any time. In principle, our simulation-based, full-
system server model supports customer-specific workload scenarios, specified as realistic
category-specific utilization levels, to simulate the suitable power of server systems. We
address the significant static as well as dynamic characteristics and configurations to cover a
variety of server systems and components compatible with the customer-specific server
system. We precisely calculate the power consumption that reduces the over-provisioning of
the server system, particularly in industrial practice. Moreover, we demonstrate that we can
forecast future generations of high-performance systems and components by assuming the
predecessor or a similar generation. To our knowledge, in academic research, there are no
generic approaches that cover the full server system simulation on a common base. This
thesis provides new research contributions that explicitly cover the heterogeneous
characteristics of the hardware and software variations, such as supporting diverse server
families or generations. Moreover, the simulation optimizes the energy efficiency of the
server system at various utilization levels, especially at low-intensity phases (under-
utilization).

Zusammenfassung

Der ansteigende Medienkonsum, bedingt durch sich weiterentwickelnde Kommunikations-
kanale, fihrt zum kontinuierlichen Anstieg des Energiebedarfs, welches den Klimawandel
weiter voranschreiten lasst. Das grofRte Potenzial zur Energieeinsparung im Rechenzentrum
wird derzeit dem IT-Equipment sowie dessen Kihlung zugesprochen. Wir haben ein
ganzheitliches Systemmodell zur Optimierung der Energieeffizienz von Rack-Servern
entwickelt. Wir entwickelten ein allgemein-giltiges, flexibles und skalierbares Model, um
verschiedene Server zu simulieren und optimieren. Das hierarchische und abstrahierte
Servermodell unterstiitzt die Berechnung der konkurrierenden Aspekte: Energieverbrauch,
Temperaturentwicklung und Performance. Die prototypische Implementierung zeigt die
Machbarkeit und Vorteile unseres Ansatzes. In der Evaluation unseres simulationsbasierten
Systemmodells verwenden wir synthetische Lastszenarien zur besseren Nachvollziehbarkeit,
wobei wir auch realistische benutzerspezifische Lastszenarien unterstitzen. Der Anwender
definiert die prozentuale Auslastung der Komponenten als Lastszenario, welches wir zur
Berechnung der maximalen Leistungsaufnahme und des Energieverbrauchs verwenden. Wir
prasentieren die relevanten statischen und dynamischen Merkmale, um unterschiedliche
Serversysteme und Komponenten aus verschiedenen Generationen abzubilden. Wir
berechnen den Energieverbrauch bzw. die Leistungsaufnahme und die daraus resultierenden
Temperaturen hinreichend genau, welches die oftmals erhebliche Uberschitzung des
tatsachlichen Energieverbrauchs von Servern reduziert. Unser Ansatz ermoglicht die
Prognose der maximalen Leistungsaufnahme von zukiinftigen Systemen und Komponenten.
Unser Ansatz unterstilitzt, im Gegensatz zu den bisherigen akademischen Ansatzen, eine
Vielzahl an Server und deren unterschiedliche Komponenten. Mithilfe unseres
simulationsbasierten Ansatzes kénnen wir die Energieeffizienz von Servern bei jeglichen
anwenderspezifischen Szenarien optimieren.

Acknowledgement

First and foremost, | would like to express my deep appreciation to Professor Dr.-Ing. André
Brinkmann and Professor Dr. Franz J. Rammig, my research supervisors, for their patient
guidance, vital support, immense knowledge, and constructive suggestions during the
planning and development of this dissertation. | could never have imagined having better
mentors for my PhD study. In particular, | sincerely thank Franz for his extreme patience in
the face of numerous obstacles and his invaluable advice towards the success of my thesis.
Besides my advisors, | would like to thank my committee members, Professor Dr. Christian
Plessl, Professor Dr. Gudrun Oevel, and Dr. Wolfgang Miiller for their time, insightful
comments, and hard questions in the examination board. | would like to pay special thanks to
Cornelia Wiederhold who was periodically busy with printing, binding and delivering this
thesis.

| would also like to express my very profound gratitude to Dr. Wolfgang Miiller and Bernhard
Homolle, who initiated the cooperation between C-LAB at Paderborn University and Fujitsu
Technology Solutions GmbH. My regards go out to the management of both persons for the
third-party project and for the contributions, that each of them made to my intellectual
growth during my years of study. | would like to thank the following staffers at Fujitsu
Technology Solutions GmbH as well as Atos IT Solutions and Services GmbH: Karsten Beins,
Hansfried Block, Dr. Martin Clemens, Thomas Diekmann, Helmut Emmerich, Wolfgang Erig,
Stefan Festl, Robert Hoffmann, Sebastian KeRler, Brigitte Krawinkel, Alois Lichtenstern,
Johannes Linne, Bernhard Lithen, Karl-Josef Littgenau, Uwe Meiners, Georg Miiller, Dr.
Oliver Niehorster, Detlef Pusch, Klaus Rammig, Dr. Mitsuru Sato, Bernhard Schrader, Dr.
Jirgen Schrage, Jothiram Selvam, Dieter Tenberg, Sylvia Tuschen, Walter Unruh, Bernd
Winkelstrater, and Norbert Zobe. You provided enormous support and were always willing to
help me. | must express my very great appreciation to Harald Lidtke for providing me
valuable support with Kalcheck, immense knowledge, and continuous motivation throughout
the ongoing process of researching and writing this thesis. | would also like to extend my
thanks to the technicians of the environmental laboratory and hardware department at
Fujitsu Technology Solutions GmbH for their technical support, such as collecting the server-
specific data, providing the necessary IT equipment, and introducing me to the tools for my
measurements and analysis.

This dissertation was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Centre On-The-Fly Computing (SFB901). My special thanks are
extended to Dr. Michelle R. Kloppenburg, who assisted through proofreading, my English
teacher Mary Cremer, and classmates Annika Ballhausen, Michaela Kemper, Kirstin Koéhler,
Birgit Petermeier, and Annette Zaloudek for enhancing my speaking language skills.

Furthermore, | would like to show my gratitude to my fellow doctoral students Peer Adelt,
Markus Becker, Dr. Gilles Bertrand Gnokam Defo, Jan Jatzkowski, Mabel Mary Joy, Dr.
Alexander Jungmann, Dr. Matthias Keller, Christoph Kuznik, Fabian Mischkalla, Sven
Schonberg, Dr. Katharina Stahl, and Jan Stenner for their feedback, conversations, and of
course friendship. | would like to offer my special thanks to Dr. Lorijn van Rooijen for her
guidance in defining precise mathematical formulas. Getting through my studies required
more than academic support and | would like to offer my special thanks to Jan Braun, Claudia
Dobrinski, Marlies Drestomark, Saikal Gerlach, Isabel Junger, Andreas Kaufmann, Dr. Isabel
Koke, Christoph Nagel, and Dr. Gaby Nordendorf for listening to me, tolerating me, and
supporting me over the last several years. Indeed, it would have been a lonely office without
Veit Dornseifer, Mohamed Hassan Mohamed Elsharkawi, Bastian Koppelmann, Arjun
Ramaswami, and Jonathan Westerholt. Finally, | especially thank Ginger Claassen for our
daily conversations and your morning-based reliable coffee delivery.

I would also like to thank my friends for their wise counsel and infinite support. Furthermore,
| am particularly grateful for my family and, especially, my parents who raised me with a
tremendous passion for technology, particularly in computer science, and supported me in
the pursuit of this project. They were always supporting me and encouraging me with their
best wishes. | would like to thank Bernd Rummler very much for his widespread support,
giving me confidence, and always being there for me.

Finally, | would like to thank all those mentors, advisors and friends who have supported me
and believed in me. Just wishing to recognize the valuable help from all throughout my PhD
thesis - | ask for forgiveness for all those who have been with me over these years whose
names | have failed to mention.

Thank you,

Diana Riemer
Paderborn University
November 2017

Vi

Table of Contents

Table of Contents
F Yo g o T F=Te F= =T 4 =T 3 PPN v
Table of CONTENTS....cciiiiiiiiiiiii 2
S 111 Yo 1¥ Tt o T S 7
11 MOTIVATION. ...t 7
1.2 Objectives and CoNtribULIONScccuiiiiiiiiiiei e 9
1.3 Organization Of This ThESIS ...ciccuiiiiiiiiie e e 12
PN - ¥ Yol ¢-{ o101 1 o [N 13
2.1 Modeling and SIMUIATIONeeiiiieieecee e e et e e 13
21.1 MATLAB and SimuUlINK ...ccc.eooiiiiieee e e 14
2.1.2 MATLAB Notation and SYNTaX......cccueeiieiieee ettt e eevee e e e ebeee e e e 15
2.2 Definition Of TEIMS ..cueiiiiieereeee ettt 16
2.2.1 POWEF AN ENEIZY .uviiiiiiiiee ittt sttt e e e te e s e ae e e e abae e e e sabeee e snbeeas 16
2.2.2 PeIfOIMANCE. ... ettt 18
2.23 Utilization and Workloadooeeeiiiiniie e 18
2.24 Thermal Energy, Temperature, and Heatccccccvveeeeiiiee e 20
2.2.5 8 ol 1T o ox YRR 21
2.2.6 Graph and Tree Definitioncccee i 21
2.3 Data CNTEIS....iiiiiiiiiiiiiiit s 25
231 SEIVICES ittt e s e e e e s e e e e s e s e e nan 25
2.3.2 Design, Equipment, and DOMAiNS........ccuviiieeeeiiecciiieee et e e e e e 26
2.4 (00 0 Vo0 L= \\To Yo [T IV o 1= SRR 29
24.1 Supercomputers, Mainframes, and SEIVEIScceeevciveeeeiiieee e 29
2.4.2 RACK SEIVEI SYSTEMS...ciieiiiie ettt e e e e e e ba e e s e nabee e e enreeas 32
2.5 SUMIMIAIY i e s e eeaeeeeesaasaesssansnnnens 39

Table of Contents

3 Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and

4T TV g T o - ot (o N 40
31 Modeling Techniques and DOMaiNS.........cuivriiiieiiiiiee et e s s 41
3.1.1 (0] o Yot] o T=Tol 1 Tor- | 1 o] o NS UPURUNE 42
3.1.2 Control SPECITICAtiONcccccuieei e e 43
3.1.3 Process SPeCifiCatioN......c.uuiiieciiiei e 45
3.1.4 [V ToTo L] I a1 Do] o o F- 112 3SR SPR 46
3.2 Model Objectives, Characteristics, and Criteria......ccccccoeeeiiiieeieeiieieccieeeee e, 47
321 Measurement-based Models.........coceiieeiiiiiiniieee e 52
3.2.2 Simulation-based MOAEIScouiiiiriirieee s 53
3.2.3 Configuration- and Optimization-based Modelscccccoueeeieiiiieeccieeeeccieeeee 53
33 Server System Model Domains and ASPECES.......ceeivcieieieciiieeiieee e e erree e evre e e 54
3.4 Power and Energy Algorithms and Approachescccccceeeeiiiieeiiciiee e, 65
3.4.1 Physical (Chips) — Server System DOMaiNccccveevieeeiieeeiiee e 65
3.4.2 Components and System — Server System Domain.......cccceeeeeecviiieeeeeecececnnieeenn. 69
343 Environment — Server System DOMain ...coceeeeeeeeeieieeecccceccceccceccceeeeeeeeeeeeeee e, 87
35 Utilization Algorithms and ApProacheseeeecuieeeeciiiee e e e 90
3.6 Thermal Algorithms and APProachescccuieeeeiiieeecciee e 90
3.7 Performance Algorithms and AppProaches.........cccceeivecieieicciee e e 100
3.8 Efficiency Algorithms and APProachescueeevciieeiiciiie e 103
3.9 Server System Models and SIMulationccceeeieeicieee e 104
3.9.1 Full-System Simulation. ... 106
3.9.2 Physical-based and Component-based Simulation........ccccoceccvvieeeeeiiiicccniennnn. 109
3.9.3 CONCIUSION .ttt sttt e e b e e sneesane e 110
3.10 Industrial Field of APpliCationcoiviiiiiiiiiieecee e e 112
3.10.1 Product Development Life CYCl@......cuuiieeciiieeeieee e 112
3.10.2 Research, Development, and Deployment of Server Systemscccceeeuvneenn. 113
3.10.3 Commercial Server System Calculatorsccccceeeecciiiieiee e, 117
3.10.4 The Gap between Typical Industrial Solutions and Academic Approaches....... 119
3.00 SUMIMIAIY iiiiiiiieieeecsese s ere e s e s s s s s s s s s e s s s s s s s s s s s s s s s s s e s s s s s s e s e s esssssasssssssssssssssssssssssssnnsssnsnsnennnens 124

Table of Contents

4 Problem Statement, Challenges, and Aims..........ccceciriieeiiiieeeiiiireeercir e reneneeeeenanes 129
4.1 WoOrkload LimitatioNns......coceereiriieieeeeeeere e s 130
4.2 Server System Characterizationcc.uuiicciieiiiciiie e e sree e 132
4.3 Complete Server System SimuUlatioN........ccveiivciiiiiiiiiie e 134
4.4 Worst-Case POWEr ASSUMPTIONiiiiiiiiiiiiiiiieee ettt e e e e e e e e e 136
4.5 Energy Efficiency for Peak Performance.........cccoccvveeiieciiei e 137
4.6 Measurement EFffOrto.cooiiiiiiiee e 139
4.7 Prediction of Future and Uncertain SYyStemsccccvivecieiiicciiee et 140
4.8 SUMMIAIY eeeeeeesaeasasasasaaanns 141

5 Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based

APProach (IMFSIMOS)oieeeiiiieeeciireeeeerreneneesrenesesrenssesssenssssssenssssssenssssssennsssssennsssssennnns 142
5.1 Aspect-based Component Models of the Full-Server System Simulation 144
5.2 Server System Configuration and Characterization
SY ={0,0TS,0C,0CS,B,8,V,U, X} ettt e 151

5.2.1 Constituents of the Simulation Model ..o 153
5.2.2 Configuration — Characterization of the Logical and Physical Layer SY(0) 165
5.2.3 Configuration — Process and Control Layer SY(OC,8,V, X) «..ceeevveveeveeneennnne 202
5.3 Server System Externals EX = {@,), W, &, TU} ..ccooeeviiniriiiinieeneeeseeeeene 205
5.31 Environment Characterization and External Constraints {@, 0}ccccecevennen. 207
5.3.2 Software Characterization {W, &, TU}ccccoverieniiieieneeeeeeeeeeeee 209
5.4 Server System Optimization FS = {EX,SY}...ccoooiiiiiieeeeeeecee e 218
54.1 PrE-PrOCESS. ... ettt e e 223
5.4.2 SIMUIGLION LOOP weiiiieiiiciieiee et e e et e e e e e e e aa e e e e e e e e e ennnnnes 226
543 POSE-PrOCESSoviiiiiiiiiiiiiiiii s 241
55 SUMIMIAIY 1o e s e eeeeeaasaeasaasaaannenns 241

6 Design and Implementation of the Architecturecccceeiiiireiiiriiciiiierccreeece e, 244
6.1 VIBW LAY I ..eeieieieieeeee ettt e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeseeeae e e e e e e e e e e seseeerererneernennnnne 246
6.2 Y oo 1= I I 1YY SR 250
6.3 (0o T o] a o] 11T ol IF= 1YY U 264
6.4 SUMIMIAIY eeeeeeeas 271

Table of Contents

7 Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOS)272

7.1 Evaluation ENVIFONMENT.....ccoiiiiiiieiiieeee ettt sttt e e e e e 272
7.1.1 SystemM UNAEr TESE (SUT) cuvieiiiieeiieeiieeeieeetee e eteeere e ste e e tee et estne e saae e ssaeesnnee s 272
7.1.2 Measurement INfrastrUCtUrecoovieeiiiiieiie e e 274
7.13 BENCAMAIKS ..ot 278
7.1.4 Measurement Issues and ReStriCtioNScccceeveerieriieenieeneenie e 282

7.2 Analysis of the Aspect-based Calculation Methods Regarding Their Accuracy......... 284
7.2.1 (0] o [=Tot 41V TSP 284
7.2.2 EVAluQtion Criteria.....ccoceiiiiieiieeeiee ettt et e 284
7.2.3 EXPErimMENTal SELUD ...eeiiiiieie ettt ettt e e e e rre e e e e bte e e s eraeeeeeanes 285
7.2.4 RESUILS aNd ANAIYSIS . .ccciiiiiee ettt et e e et e e e e e s e rae e e e eanes 288
7.2.5 CONCIUSION .ttt st ettt b e bt st st e e b e e sbeesbeesaneeas 327

7.3 Analysis the Impact on Changes of the Component Characteristicscccccuvvveeee... 328
7.3.1 (0] o [=Tot 41V TSRS 328
7.3.2 EValution Criterid.....ceceesrieniereeeieete ettt 328
733 EXPEriMENTAl SETUD . .eiiiiiiiee et ettt e et e e e e tre e e e e bre e e e ebaeeeeeanes 329
7.3.4 RESUILS aNd ANAIYSIS . .cciiiiiiee ettt e et e e e ctre e e e e bre e e e e baeeeeeanes 330
7.3.5 CONCIUSION .ttt et b e b e bt st st e et e e nbeesbeesaneeas 340

7.4 Improvement Analysis regarding Server System Optimizationccceceevvieeniiennne 342
7.4.1 (0] o [=Tot 41V TSRS 342
7.4.2 EValuation Criterid. .. cooeeiierieriieiie et 342
7.4.3 EXPEriMENtal SELUPuiiiie ettt e e e e e e rarae e e s 343
7.4.4 ResUlts and ANAlYSIS.....uueiii i 344

7.5 SUMMIANY e 358

8 Conclusion and FUtUre WOorkccceeeeiiiniiiiiiiiiii e 361

8.1 SUMIMIAIY 1o e aeeseeaeaesesasennaaneanns 361

8.2 FUBUIE WOTK .ttt st st e e e s e smenesaneeeane 367

Table of Contents

AL, NOMENCIATUIE....cciiiiiiiiiiiicr s I
A2, List Of ABBreviationscciviiirieeiiiiiiiiiiiinieinii e v
7N TV e o T o T Lo PR Xl
A3a. Definition Of TEIMS ..eei ittt e e sab e s e sne e e saree e Xl
A3b. Overview of Various Metrics and Benchmarks in Their Related Domains XV
A3c. MATLAB Notation and Syntax — Classes, Labels, Usage, and Restrictions................. XVI
A3d. Memory Module Analyzation and Characteristics (C1 — C78).......ccccccoeveeveenennenne. XIX
A3e. Detailed Memory Module Characteristics (€14,C24,€26,C70 — C78) XXIV
A3f. Processor Analyzation and Characteristics (C1 — C19)ccccecevireeveneneenienene XXVII
A3g. Detailed Processor Characteristics (C1 — C4,€7,(€8,€14,C18)....................... XXXVII
A3h. Evaluation Results of the Processors (€1, €3, C7)cccoveveeveneeceeninieeene XXXV
A3i. Memory, Processor, and System Performance SCOres.......cccovveeeiieeeeciveeeeecveeeeeenne XLI
A4, List Of TABleS...ccoiiiiiiiiiiiiiiiiiiiiiii XLIV
AS5. LiSt Of FIGUIES....cceueiiiiieiiiiiieiiiiiiiesienesessenesessenasessensssessensssssssnsssssssnsssssssnsssssanes XLvii
AB. Bibliography ...t e e s s e n e s s s e ne s s s e ananas LIV
AT. NOTES ceeuuiiiiiiiiiitiiiitii et s s esa s e st esass s tesassestesassstenassseenanes XClv

Introduction

1 Introduction

1.1 Motivation

The consumption rate of information technologies, especially web-based resources, has
increased rapidly. Social media networks, such as Facebook and Twitter are well established.
Providers work with large amounts of data because the customers upload and download a
wide range of data, such as movies, photos, and documents. Every day consumers upload
more than 300 million photos on Facebook (data from the first quarter of 2012) and thus, data
centers daily handle more than 500 terabytes of new data [Fac 2012, Con 2012]. The
International Data Corporation® (IDC) forecasts the amounts of information will double every
two years, as shown in Figure 1 [JD 2012, Pet 2012]. The amount of data was nearly five
Zettabytes® in 2013 and will probably be around 40 Zettabytes in 2020, which shows
exponential growth.

Information 35
[zettabytes]

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
year

Figure 1: IDC's forecast for the digital information growth [JD 2012]

This growing data trend is occurring because of different factors of mobile devices, forecasted
by Gartner 2012 [Pet 2012]. The shift from mobile phones to smartphones provides the ability
to perform computer functions on the portable devices. Therefore, some general-purpose
services, such as television, are switching to on-demand video services. Wide ranges of
business-to-consumer (B2C) markets are growing because of the web-based streams.
Especially the marketplace for portable applications has grown within the last years. The
authors in [Pet 2012] forecasted nearly 70 billion mobile application downloads in 2014.

The demands of computation resources, not just storage resources, are also increasing. Data
centers or search engine providers such as Bing® or Google” handle a high level of data
guantity, inquiries, and services using the server systems. Google had approximately sixty

! International Data Corporation: http://www.idc.com
? Zetta byte: 10 Byte

? Bing: http://www.bing.com

* Google: https://www.google.com

Introduction

thousand searches per second in 2012 [Com 2013]. If we take previous years into account, the
amount of searches will dramatically increase in the following years. In 2010, Google’s server
consumed nearly two billion kilowatt-hours [Koo 2011]. As a consequence, the energy demand
on data centers is growing.

The energy efficiency report produced by the US Environmental Protection Agency’ (EPA)
depicts historical as well as current trends of energy use in U.S. data centers [USEPA 2013].
Within six years the energy consumption doubled between 2000 and 2006 from 30 to 60
terawatt-hours®, see Figure 2. Assuming the trend is continuing, the energy use will be
approximately 170 terawatt-hours in 2020. It has thus increased more than fourfold [Acc
2008].

20,00
18,00

180

,:_;/ World
German 16,00 - L 140 energy
energy -
demand 14,00 / L 120 d[eTr\n;hn]d
[TWh] 12,00 / L 100
— 10,00 / ~ - -
- |-
8,00 - 80
- - 60

6,00
4,00
2,00
0,00

- 40

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

year

Figure 2: Total energy demand of servers and data centers [Acc 2008, HFS 2010]

The energy demand of German data centers was 12 terawatt-hours in 2012 [Thy 2012]. The
servers and data centers require about 1.8 percent of the overall German energy demand.
Another agency [HFS 2010] forecasted that in 2015 the energy demand of servers and data
centers in Germany would be around 14.2 terawatt-hours in “business as usual cases” and
around six terawatt-hours in “best practice” green IT-based solutions, as shown in Figure 3.

20,00
18,00

German
energy
demand
[TWh]

16,00
14,00
12,00
10,00

8,00 — -

f —
6,00 ——— S
4,00
2,00
0,00

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
year
———business as usual = - best practice

Figure 3: Total energy demand of German data centers [HFS 2010, Thy 2012]

> US Environmental Protection Agency: http://www.epa.gov
® Terawatt: 10" Watt

Introduction

Furthermore, Koomey forecasts the same tendency for computer performance (operations per
period) and efficiency (operations per power demand), which double within one and a half-
year [KBS et al. 2010]. The costs per operation are decreasing because of the technologies that
are shrinking semiconductors and because of increasing transistor density. In 1965, Moore
predicted a doubled numbers of transistors on integrated circuits every two years [Moo 1965].
An adequate computer can be built much cheaper with the same performance, but using more
transistors. An increasing computing performance enables large-scale computations in
academia as well. For instance, transmutation, decoding, reconstructing, or recombining of
genomes generates large data sets and complex tasks. These data-intensive tasks utilize all
data center levels [IIZ et al. 2007], especially the server, in certain ways.

The authors in [BLR et al. 2005, BH 2007, RRT et al. 2008, LEU et al. 2010] state that the servers
consume the most power (between 27% and 65%) in comparison to the data centers’
operational expenditures, such as the overall electricity costs. The increasing energy
consumption may be one of the main causes of climate change. Power and cooling are the key
challenges to reducing especially the greenhouse gas emissions of data centers. Several
governmental agencies, initiatives, and industrial consortiums are investigating on improving
the energy efficiency. Replacing inefficient IT equipment, optimizing the climate control,
limiting, and balancing the server workloads are conventional considerations for reducing the
energy consumption. With our full-system model, we want to make our contribution to enable
certain energy efficiency optimizations on specific server systems. We model a complete
server system as a simulation-based approach to predict the power consumption,
temperature, and performance, which enables the analysis of the energy efficiency considering
realistic workloads and low-intensity phases (under-utilization). Moreover, we optimize the
energy efficiency of the server system concerning the variety of software and hardware
configurations.

1.2 Objectives and Contributions

The main objective of this thesis is to develop a novel multi-aspect full-system model that is
able to optimize an entire server system concerning the energy efficiency. We specify a flexible
simulation-based approach that enables the optimization of customer-specific workload
scenarios and various system configurations. In this thesis, we investigate the following
questions:

e How can we specify entire server systems and their components?
We specify a server-specific configuration tree as a hierarchical structure concerning
the various abstraction levels. We subdivide the hardware, first, into the static model
considering the architecture as well as connectors, and secondly into the dynamic
behavior model, including the relations between the components.

Introduction

Is it possible to forecast next-generation systems?

We specify various significant characteristics to forecast the power consumption of
next-generation processors and memory modules that are based on the component
technology development, for instance.

How can we deal with the external and internal requirements concerning the workload
scenario to support vendor and customer demands?

We flexibly specify the server system externals, such as the resource-based workload
scenarios to apply the intended scope of application. We integrate the internal and
external constraints such as the thermal limits that build the base of the thermal
control in the primary phase of our optimization strategy.

How can we calculate aspects of power, temperature, and performance in an accurate
manner?

For each aspect, we develop a method that consists of the technical specification
function and the configuration function. In our configuration tree, we weight the
characteristics with their corresponding coefficients and consider the related offsets.

How can we deal with multi-aspect-based calculation methods and their relationships,
especially the interdependencies between the components?

We implement each aspect in a particular calculation method. Herein, the power
consumption builds the significant input parameter of the thermal calculation. We
predict the performance on the basis of the power consumption and thermal
development. We realize the interdependencies between the components in Simulink
and in MATLAB partly specify the relations that influence the component behavior.

What are the significant characteristics of the components concerning the specific
aspects?

In contrast to common assumptions and as a result of our analysis, we found the
following significant characteristics of the memory modules: vendor, die, series,
fabrication size, synchronization mode, and ranks. We additionally observe the relevant
processor characteristics: semiconductor technology (thermal design power), product
life cycle stage, fabrication size, and series. The power consumption, thermal
development, and performance of the server system depend upon the enclosure, its
subset of equipment, and usage models.

How can we flexibly react to characterization changes and adjust our calculation
methods?

We define a centralized database that consists of the possible characteristics and
configurations. We provide access to individually configurable data within the
database to enable the use of our models across multiple server generations.

10

Introduction

e s it possible to simulate a full-server system in a time-continuous workload scenario?

Indeed, we simulate the entire server system concerning the trace of several real
application softwares. In our evaluation, we trace the utilization levels from artificial
benchmarks to ensure the reproducibility at any time.

e How can we deal with multi-objective optimization of the entire server system?

In our evaluation, we present the alternations of the server characteristics and
configurations at each time t, resulting from our multi-objective optimization in which
we select the global optimal solution.

e How much can we optimize the energy efficiency by adjusting a more suitable
configuration or characteristic?

We illustrate the possible optimization of the performance-to-power ratio by nearly
12.2% in our exemplary evaluation.

e How much amount of power consumption does an improved server system
(configuration or characteristic) accomplish regarding a specific workload scenario?

We exemplarily achieve the mean processor power reduction of approximately 53.3%
when analyzing the SPECpower benchmark.

Our multi-aspect full-system model should minimize the vendors’ measurement effort by
simulating accurate and precise aspects of the server system components. As a result, we will
reduce the over-provisioning of the server system. Moreover, we investigate the opportunity
to calculate next-generation systems while considering actual trends of server system
configuration.

11

Introduction

1.3 Organization of This Thesis
We organize the remaining content of this thesis as follows:

Chapter 2 — Background outlines the fundamental knowledge to understand our modeling and
simulation. Herein, we define necessary terms pertaining to energy efficiency and
give the backgrounds of the server system in a data center.

Chapter 3 — Basic Modeling Technologies, Algorithms, and Approaches in Academic Research
and Industrial Practice presents the various modeling technologies and respective
server system domains to create multi-aspect models. Moreover, we introduce
the corresponding related work, which we split into aspect-based sections. We
describe the gap between the academic approaches and the industrial field of
application, which results in our problems.

Chapter 4 — Problem Statement, Challenges, and Aims discusses the problems and challenges
between the industrial tools and academic approaches. For this, we specify seven
aims used as a basis for our thesis.

Chapter 5 — Multi-aspect Full-system Server Model and Optimization Concept as a
Simulation-based Approach (MFSMOS) presents the details of the five-step
concept, including the aspect-based component models and characterization of
the server system. We describe the external environment and specify further
details of the optimization strategy, such as the cascading primary and secondary
phases.

Chapter 6 — Design and Implementation of the Architecture applies the concept in a
simulation framework as a prototypical implementation. We realize a Model-
View-Controller (MVC) approach and describe the layers concerning its methods.

Chapter 7 — Evaluation of the Multi-aspect Full-system Server Model and Optimization
(MFSMOS) evaluates the multi-aspect-based methods and algorithms developed
in this thesis. First, we present the evaluation environment and analyze the
calculation methods regarding their accuracy. Second, we investigate the impact
on changes of the component characteristics. Third, we evaluate the
improvements that result through our server system optimization.

Chapter 8 — Conclusion summarizes the work done in this thesis and presents an outlook in
which further investigations might be useful.

12

Background

2 Background

The purpose of a model is to show and predict realistic behavior, which interacts with the
environment. Thus principles’ and theories are formal logic or mathematics, for instance. Real
behavior is defined in an abstract and generalized manner. Models represent certain aspects
of reality with a specific purpose. They support the understanding of relationships in the case
of similar behavior in comparison to the real world. Section 2.1 describes the modeling and
simulation differences. This thesis, which addresses an energy efficiency estimation approach,
contains terms such as power, energy, performance, and efficiency, which are outlined in
detail in Section 2.2. The purpose of this model is to predict the power and energy
consumption of server systems in data centers. Sections 2.3 and 2.4 present a generic
overview of the services and equipment of data centers.

2.1 Modeling and Simulation

Modeling is an approach to show and predict an actual system’s reality. A model depicts a
simplified representation abstracting from some real-life complexities. The model accuracy
depends on the level of the model’s detail. Too many details result in complex, complicated
and time-consuming models. On the other hand, providing too little information will have the
effect of missing relevant details for the simulation results. Therefore, a specification and
requirement analysis are mandatory steps for developing a proper model. A model is a virtual
or digital prototype of a real system dependent on use cases and model objectives. Modeling
systems need system details. If customers know the internal rules or workflows, they use a
white-box modeling approach for the respective system. This is the case in self-designed
systems. On the other hand, modeling a black-box does not include any internal details of the
system. Such an approach is required in case of external systems from other suppliers. In
contrast, a grey-box model is a mixture of both the white-box and black-box approach. Some
internal workflows are known but not at all of them.

A model is created by empirical as well as mathematical methods and techniques such as
deterministic, stochastic, static, and dynamic methods. Usually, equations, logical rules, and
constraints define the limits, and flowcharts represent the system behavior. Stimulators
generate input data for the model. In an accurate case, the system model is an exact replica of
the real system with the same behavior. The developer executes the model to check whether
the right system [BCC et al. 2014] is built.

Simulations of the model help to verify and confirm the represented reality® and dynamic
behavior. Furthermore, they support the processes of analyzing and designing a system. Under
known input conditions, a model is valid if the resulting outputs from the real world and

7 Principles: physical, analogue, or mathematical model
8
Reality: logical, behavioral flow, interfaces, or triggers

13

Background

simulation are the same. The decision depends on the accuracy and precision of the system.
Simulation-based approaches handle the complexity of industrial hardware and software
systems [SMA et al. 2003]. A simulation checks a model, which runs over a certain period. A
positive aspect is that inside a simulation all operating conditions such as temperatures, as
well as non-controllable factors, e.g. the weather, are changeable. It does not matter if it is
realistic or not. Sometimes arbitrary conditions are dangerous or expensive in the real world.
On the other side, a simulation requires a detailed model to predict valid behavior and results.

Either a suitable programming language or simulation package is required for implementing a
simulation model. Choosing the adequate simulation software or environment depends on the
software or customer properties. Software properties include the following aspects:

e Support

e Documentation

e Interfaces

e Costs

e Resource requirements
e Statistical capabilities

e Reporting capabilities

On the other hand, customer properties are potential effects, problems, aid for structures
(hierarchical, flat, object-oriented, or nested) and their level of competence or expertise
because of training periods.

2.1.1 MATLAB and Simulink

MathWorks’ developed a software system called MATLAB. MATLAB is an advanced tool for
numerical computations, used in academia and industry. MATLAB is an environment and a
programming language. It focuses on vector-, and matrix-based calculations. The model used
in this thesis includes several differential equations, statistics, and forecasts. MATLAB solves
these problems and provides various interpolation methods as well as statistical analysis. For
this thesis, we analyze and integrate the high level of data within the model. MATLAB supports
several import functions and opportunities. A wizard-based graphical interface generates a
MATLAB function based on several data, such as input information or measurement results.
Furthermore, the data can be adapted, analyzed (reports), and visualized (plots) by built-in or
plug-in tools. Moreover, many domains are used: for instance, control, sequence, mechanical,
or electrical systems. MATLAB supports model, data, and controller optimization. Automatic
code generation is another benefit. In this thesis, a MATLAB extension called Simulink is used.

® MathWorks: http://www.mathworks.com

14

Background

Simulink is a block-based simulation environment with a graphical user interface and is
integrated into the MATLAB environment. Its interfaces support executing MATLAB code (M
scripts) and functions. Many hierarchical domains are distinguished in blocks, which are also
called subsystems. This thesis uses a model-based design (MBD) approach, which models the
control system and simulates the dynamic behavior of electrical and mechanical systems.
Moreover, Simulink supports the textual modeling of methods, data flow diagrams, state
machines, and various domains. A simulation model includes, for instance, the dynamic control
of non-deterministic behavior of disturbances, influences, and environmental factors. Simulink
supports viewing and debugging results for model optimization as well as parameterization
and additionally supports executable source code generation.

2.1.2 MATLAB Notation and Syntax

The following chapter introduces MATLAB notations. The model uses vectors, matrices, and
arrays to define the represented system. Developed algorithms and system descriptions use
MATLAB syntax as well.

MATLAB labels variables with an equal sign. The variable name is on the left side, whereas the
variable content is on the right side. Appendix A3c describes MATLAB label restrictions.
MATLAB variables contain only numbers (I) or a mix of numbers and strings (II). The mix is a
cell array or cell matrix. The following terms describe the syntax of MATLAB vectors or
matrices. A numerical vector (I) consists of a sequence of numbers within square brackets as
shown in (2.1). A number is followed by a number within a row vector. Each number defines a
column, whereby a blank separates the columns.

[label] = [[numbers]*t [numbers]*] (2.1)

A row vector transforms into a column vector using a semicolon as shown in (2.2). A semicolon
defines the end of a row.

[label] = [[numbers]*; [numbers]™] (2.2)

Both variable types I, II are within square brackets. A cell array (II) requires additionally curly
brackets and single quotation marks as shown in (2.3, 2.4). Strings and numbers are in any
order.

[label] = [{ ['[string|numbers]']* ['[string|numbers]']*}] (2.3,2.4)
[label] = [{ ['[string|numbers]']" ['[string|numbers]']*;
{ ['[string|numbers]']" ['[string|numbers]']* }]

The following examples show both matrix types I, II. The matrix Ma includes many vectors.
The matrix dimension (m x n) specifies the amount of rows (m) and columns (n). A complete
numerical matrix Ma (I) is shown in (2.5). It can contain different dimensions, for instance
(2x2,2x3,3x2).

15

Background

Ma=[1l 2; 3 4] Ma=[1l 2 3; 4 5 6] Ma=[1l 2; 3 4; 5 6]

% 12 123 12
5 3 4 4 5 6 3 4

o°
(@]
(&)

(2.5)

An index identifies a specific value from a vector or matrix. The first mandatory parameter
determines the column of a vector and a row in the case of matrices. In matrices, the second
parameter additionally identifies the column. A comma separates both values, as shown in
(2.6).

Ma=[1 2 3; 4 5 6] Ma (1, 3) Ma (2, 3)
512 3 3 6
$ 45 6 (2.6)

The same matrix Ma uses mixed data types (II) in the following example (2.7). The values two
and four are numbers in both definitions. The other values are converted to strings in
Ma_cell_array. Therefore, we use single equation marks within the matrix.

Ma cell array = [{'one' '2' 'three'; '4' 'five' 'six'}]
% 'one'! 2! 'three'
% 4! 'five' 'six!' (2.7)

A data adaption or extension is manageable by changing or adding new values independently
of their data types. MATLAB provides a wide range of cell-specific functions, such as converting
strings to numbers str2num, and common functionalities. Further details about the MATLAB
notation and syntax are given by the MATLAB homepage'® and Appendix A3c. The simulation
model of this thesis uses MATLAB, its functions and variables. Therefore, definitions are
provided in MATLAB notation. The model of this thesis focuses on power dissipation and
energy efficiency. The following section defines power- and energy-related terms.

2.2 Definition of Terms

2.2.1 Power and Energy

Power P is an electrical level in watt [W] and exists at any certain point in time [St6 2014] of a
defined duration T, see Equation (2.8). Power is the average value of power oscillation. At
each point in time, the simulation system models a certain state with a specific power
consumption. This thesis focuses on peak power consumption, which is calculated from the
first derivative of the power function. Over all points in time, we look for the largest power

10 MATLAB homepage: MathWorks, http://www.mathworks.com/help/index.html

16

Background

demand. This process is time-invariant and uses those values. Power in DC circuits'' is found
through Joule’s Law and is defined in Equation (2.10) for instantaneous values. Additionally,
peak values are taken instead of rms-based’ values. As a result, power is calculated as a
product of voltage and current, see (2.11). Power consumption, dissipation, and demand have
the same significance.

Equation 1: Power calculation

P =2 v()«i(t) dt (2.8)
P(t) = V(t) * I(t) (2.9)
P=VxI=I*%R (2.10)
PIW] = V[V] * I[A] (2.11)

Concerning the power of IT equipment, this is distinguished between peak and nameplate
power. Peak power is the amplitude of power oscillation in DC circuits plus the largest power
in AC circuits®. Nameplate power is the nominal power of electric power production
equipment. A special system-rating label (nameplate) contains information about how much
power the equipment consumes. It is necessary for electrical installations to select the right
wiring method to meet these requirements.

Integrating electrical power consumption over a period of time T = t, — t; results in electrical
energy E. The commercial unit of energy is a watt-hour [Wh] or Joule [] = Nm/s], whereby
Joule is defined as newton meter per second. Equation (2.12) changes into a time-invariant
approach. Therefore, only time T[s] is multiplied with power values P[], see (2.14).

Equation 2: Energy calculation

E= fttlzp(t) dt = ft’fi(t) «v(t) dt (2.12)
E=Px(t,—ty)=Vx*xIx(t; —t;) (2.13)
E[Wh] = P[W] * T[R] = V[V] * I[A] * T[h] (2.14)

In the following example, the power at time 15 minutes is 80 watts, see dotted lines. Twenty
minutes later the (peak) power doubles to 160 watts, shown with dashed lines. The median
power demand is about 122 watts. The colored grid area below the curve is equal to the

11
DC circuits: direct current circuits
12
Rms-based values: root-mean-square
13
AC circuits: alternating current circuits

17

Background

overall energy consumption within a period. Adding up power values up to an hour, beginning
at the first minute, results in an energy demand of approximately 7.4 kilowatt hours (kWh).

power [W]

180
160
140 |
120 :
100]
80 :
60 - i |
40 - I
i {
I
l
5

20 - :
0 . ; T ‘
0 10 15 20 30 3

40 50 60

time [min]
Figure 4: Power [W] vs. energy [Wh]

2.2.2 Performance

Performance™ indicates the effectiveness of a system. It is the ratio between the (execution)
time and the resources consumed for a given task or a set of operations (computations). More
aspects, such as the delay of processing, access, transmission, resource usage, or response
time (latency) as well as throughput, are relevant for various measurements. Performance is
specific to an application and the used system. Cycles per instruction (CPl) and cycle times
differ between processor types because of architecture variations, such as the cache size and
level. Performance counters may include device cycles, cache misses/hits, or a number of
instructions. Furthermore, an executed application utilizes resources in different ways.
Therefore, performance criteria depend on the system specifics. Usually, benchmarks measure
the performance. The Standard Performance Evaluation Corporation (SPEC)" developed well-
known benchmarks. A benchmark is a suite containing different operation types. Floating-
point and integer operations are common parts of processor testing. In general, a higher
performance score determines better-used system resources. Processor performance usually
is measured in floating-point operations per second (FLOPS) or in response / transaction time,
which is defined as required time to finish a job.

2.2.3 Utilization and Workload

Utilization™ is the percentage of component usage in relation to its maximal available physical
working capacity. It is the ratio between working (active) and idle time. The peak utilization
(100%) uses the entire possible working capacity that a resource offers. In this case, the
system or a component is 100-percent busy processing during a given interval and the capacity

14
Performance: performance factor
> SPEC: http://www.spec.org/
' Utilization: sometimes called load level

18

Background

limit is reached. Utilization levels distinguish between static component states. Utilization U is
defined as a utilization level u,, at a specific point in time t; for each component m of a
system, whereby m is any natural number m,n € Ny, Ny = {0,1,2,3, ...}. A column vector U
specifies system utilization at a specific time, as shown in Equation (2.16). The time vector T
contains n values t,,. If nis infinite, the time will be continuous. The vector uy specifies the
utilization of m components at ¢t;. A tuple (t;,u;_) specifies a system utilization only for one
point in time and is herein defined as u7, which is furthermore done for all n values of T, see
(2.23).

U = {uy,uy, ..., Uy} at t;, Vi € Ny,m € N, (2.15)
U
— u ;
U= "2 |att;, Vi€ Nyme€N, (2.16)
um

T = {tl' tz, ey tn} (217)

Uy = {uyq, Uz, o, Ua } at tg, m € Ny (2.18)
U1

. u

ur = ()| 7 (2.19)
Umi

Uy = {Uy2, Upz, o, Uz} At t,, M E Ny (2.20)
Ug2

. u

u; = (), 37 (2.21)
Um2

U = {Uyn, Ugny o) U} @t ty, M E Ny (2.22)
Uin

N u

Up = ()| 1" (2.23)
umn

Workload is a specific application'” with many processes that are running or executed on the
system. A workload distinguishes between different utilization levels U of each component m
at a specific time t,,, varying with the executed applications. Workload W is an (m x n) matrix,
which unfolds when the point in time t,, is defined as the n-th column vector of the matrix.
The workload matrix W reflects a period of time T, see Equation (2.24). The columns n in the
matrix W represent the time index. Furthermore, the dimension m of the matrix corresponds
to the number of components m and is scalable just like the system.

v Application: operating system, program, or software

19

Background

U1g Uz .. Uin

W= (wy) = “fl “22 uz" Vi € Ny, Vj € Ny, m,n € N (2.24)
umlumzmumn

Ny =1{0,1,2,3,...}

A workload scenario is a specific workload or concatenated workload profiles running on the
system over a period of time.

2.2.4 Thermal Energy, Temperature, and Heat

The thermal energy is the total of all kinetic energies within a system, which is part of the
particle’s movement or motion, such as for heating up an object. The unit of thermal energy is
Joule [J], which has an internal temperature and produces heat. The temperature is an
absolute internal energy value of the resource’s state, which refers to the average kinetic
energy. We measure it in degrees Celsius [°C], Kelvin [K], or Fahrenheit [°F]. The heat
(internal energy) is the transfer of thermal energy from one system to another. It is the
transfer between two objects of different temperatures or the same system flowing from one
temperature to another. The heat is caused by the flow of thermal energy and is measured in
Joules [J] or watt-hours [Wh]. The well-known types of heat transfer are conduction,
convection, and radiation. The thermal energy is directly proportional to the temperature.

The analogy between the electric and thermal quantities offers an alternative description of
the system. The thermal balance follows the same rules compared to Ohm’s law of the
conservation of electrical energy, which is shown in Table 1. The classical thermal properties
are current and thermal resistance™.

Table 1: Electrical and thermal analogy

Electric quantity Thermal quantity
I114] q[W]
Current flowing through Rate of heat conduction, heat flow
AV [V] AT [K]
Voltage Temperature difference
R. [2] R, [K/W]
Electrical resistance Thermal resistance
C[F] C. U/K]
Electrical capacitance Thermal capacitance, thermal mass
Electrical constant Thermal constant
P AV _AT
"R, 1= R,

¥ Thermal resistance: theta () is a characteristic of a heat sink or the specific thermal resistance is a
material constant [Int 2015]

20

Background

2.2.5 Efficiency

Efficiency distinguishes between thermal, energy, working, computational, and economic
efficiency. In the context of this work, computational energy efficiency is always used.
Efficiency i is the ratio between outputs y;, and inputs Xx;, being a unit-less ratio, see Equation
(2.25).

yi = f(x;))with ie NN ={0,1,2,3, ...} (2.25)

_
Xi

Output and input are activities, jobs, tasks, utilization, data, or power consumption. Becoming
more efficient means doing the same work under the same conditions but reducing the period
of time or resources, for example. Energy efficiency is the rate between the consumed energy
over time and the useful performed work (performance), shown in Equation (2.26).
Measurement unit of the energy efficiency’®is FLOPS per watt. Lower energy means less
power for an activity using the same conditions. In the case of hardware equipment, power
efficiency is the ratio between performance and power, see Equation (2.27). It is also known as
performance-to-power ratio.

performance _ performance

energy ef ficiency = energy Time = power (2.26)
.. __ performance
power ef ficiency = ~ower (2.27)

2.2.6 Graph and Tree Definition

The previous sections described power, energy, performance, and efficiency as aspects for
modeling and simulation. In practice, we generalize the system and the diagrams represent an
abstraction of the system. Further design process steps are described in Section 2.4.2 and
Section 5. A graph or tree represents the system. A graph G consists of a non-empty finite set
of vertices VV and edges E. The finite set of vertices and edges™ are denoted by V = V(G) =
Vo, Vi, ... Vu} and E = E(G) = {E}, E;, ..., E,} with n,m € Ny as any natural number in
N, =1{0,1,2,3,...}. Adirected edge” connects two vertices®” and is denoted by a directed pair
(Vo, V1) of vertices with {V,,V; € V,V, # V;}, where (V,, V1) # (V1,Vy). Thus, a single directed
edge® is denoted by E; = (V,,V;). Finally, a graph is as pair of sets defined as G = (V,E). A
tree is a specialized connected graph without any cycles* [BR 2012]. The vertical hierarchical
levels of a tree are shown in Figure 5.

9 Energy efficiency: also called energy efficiency ratio
20 yertex: node, point, site; edge: line, link, bound
*! Directed edge: opposite is an unordered pair of vertices {Vo, V13
22 Vertices: store information and are labeled with a,b,cor 0,1,20rV,,V,,V,
* Directed edge: represented as an arrow
24 . . .
No cycles: circuit-free, called acyclic

21

Background

The index n of a tree level L,, defines the tree depth. In the graphs of Figure 5 and Figure 6, the
edge relation stands for the inclusion relation, where an upper level includes many lower
levels for all i € Ny. Equation (2.28) shows the level definitions, including the root level L.

Li+1 g Li g ce g Lo, Vl € NO (228)

The root vertex V, has the level zero and is the parent of V; and V, in this example. A parent is
a vertex that is closer to L, by one edge, or vertex. The vertex V; also presents a parent of ;4
and V;,. Each element V;; € V can be a root vertex for a new subtree withj € Ny. The children
V; and V, share the same parent Vy which is formulated as E; = (Vy, V) and E; = (Vy, V).
The tuples are neighbors because of a connected edge between them. The set of neighbors®
Nb of a vertex V; is denoted by Nb(V) = {V;,V;" € V |(V;,V;") € E}, whereby the numbers of
neighbors, equal to the number of edges, inV;is defined as degree. A vertex with an
outdegree of zero is called a leaf: for example, V;; in Figure 5 is a leaf. Further information
about graph theory and definitions are found in [HHM 2008, Wal 2007].

Level L Tree
LO

(root) Vo
L1 V1 V2
L2 V11 V12

Figure 5: Undirected tree and levels

A tree can be used to define structural aspects of server systems, devices, and states. Figure 6
uses the specialized diagram terminology including the tree elements type and subtype. The
vertices are rectangles, including a label with system information. Figure 6 and the following
figures have to be interpreted from top to bottom. The upper rectangle is a type at root level
and contains different subtypes, which are displayed at a lower level. This figure reflects a
parent-child®® relation between type and subtype whereby n,m € N, is any natural number in
N, =1{0,1,2,3,...}.

> Set of neighbors: neighborhood
*® parent-child: type (superclass / class) — subtype (subclass)

22

Background

type

subset|

n

subtype

Figure 6: Diagram terminology

Subtypes form a subset of type in a hierarchical view, because subtypes and all their elements
are part of type. There are defined as: subtype C type or type 2 subtype and represented
as VSU;{SU; € subtype — SU; € type}, VieN. The set of all members of subtype and type are
defined as follows:

e Subtype: SU ={SUy,SU,,...,SU,} = {subtype,,subtype,, ..., subtype,},
e Type: TY = {TY,,TY,,TY,, ..., TY,} = {typeo, typey, type,, ..., type,}, and
e n € N, as any natural numberin Ny ={0,1,2,3,...}.

Therefore, the diagram is defined as VSU;{SU; € SU — SU; € TY}, VieN. Figure 7 shows a
simplified representation of type where the root vertex type TY; includes n subtypes. The
formal definition of the graph G = (V,E) according to graph theory is V =
{TY,,SU,,SU,, ...,SUy} and E ={E{,E,,..,E,} with E; = (TY,y,SU,),E, = (TY,,SU,),
i, Eqp = (TY,y,SU,,). The internal rectangles present the subtypes as part of an external
higher-level rectangle. Additionally, due to the simplification, the arrows and numbers are not
displayed in the subsequent tree figures, because the amounts of subtypes are addressed in
the number of rectangles in a horizontal manner. The figure becomes more transparent and
defined for complex systems, because of a consolidated representation, while not missing any
information. A set of all subtypes SU represents a smaller scale of depiction.

type 0 TYO TYO
| subtype 1 ‘ | subtype 2 ‘ |:| ‘ subtypen‘ = ‘ Su1 ‘ ‘ suz2 ‘ |:| ‘ SUn ‘ =

Figure 7: Type and subtypes tree as a diagram

Different vertical hierarchical levels connect types and subtypes. Consequently, a server system
tree is defined as shown in the following equations.

23

Background

Equation 3: Tree definition

Vs: I(subtype) = (subtype, type) => subtype C type
[(subtype) = (subtype, 0) => subtype = root
I(type) = (type, @) => type = root

I(root): = (root, @)

If type or subtype has no parent, it is the root. The root type TY, is a subtype SU, parent;
meanwhile subtype SU, also presents a sub subtype SU,, parent. The children of SU, are
{SU51,8U;5, ...,SUym} with m € Ny as any natural number in Ny ={0,1,2,3,...}. Each
element SU; of {SUj, ...,SUy} and SU;; of {SUy4, ..., SUps} are the root vertex for a new
subtree and thus follow the same rules of Equation 3.

T TYO

0
|SU1HSU2||ZHSUn| ‘SU1||SU2‘E||SUn|
— ~ T

- - |
suz suU1 su2 SuUn
SU2i
|SU21‘ ‘SU22| IZI ‘SU2m| III ‘ SU21| |SU22‘ EI |SU2m| III EI

Figure 8: Tree diagram

Figure 9 represents a generic tree including:

e RoottypeTY, withTYy, €TY,

o Asetsubtype SU = {SU,, ...,SU,}, with SU; € SU,TY,,Vi € Ny, SU € TY,, n € N,

e Asetsub subtype SU; = {SU;1,SU;3, ..., SUyp}, with SU; € SU,TY,, SU;; € SU; €
Su, SU;; € SU,,Vi €Ny, SU;;1 € SU; € SU, m € N,

e Asetsub subtype SU, = {SU,1,SU,, ...,SU,,,}, and even subtype SU,, =
{SUL1,SUps .., SUpm},

whereas m,n € N, are any natural number in N, = {0, 1, 2, 3, ... }. All subtypes SU are given as
a set of {SUj, ..., SU,, }. Each member of SU can contain one up to m sub subtypes or be an end
vertex”’ with no more children. All sub subtypes are a set of {SU;1,SUim, SUz1, SUzm,
s SUp1, SUpm V2.

" End vertex: leaf
2 sub subtypes SU,,,,: followed by The Universal Address System for a rooted tree [Che 2015]

24

Background

TY0

‘SU1HSU2|EHSUn|

SuU1 suz Sun

‘ su11| ‘su12| EI ‘SU1m| ‘ su21| ‘su22| EI ‘su2m| ‘ sum| ‘SUn2| EI ‘SUnm|

Figure 9: Generic tree diagram

Previously mentioned diagrams and trees define various terms, such as data centers,
equipment, environments, servers, systems, and chip domains. This diagram terminology is
also valid in the case of state description. In the state diagram, the rectangles are circles or
rectangles with rounded corners, shown in Chapter 3.

2.3 Data Centers

Data centers (DC) are physical environments, plants, and facilities, which contain and provide
Information and Communication Technologies (ICT). Data processing® and distribution are the
focus within large-scale enterprises. Data centers support all types of applications. Therefore, a
pool of data-storage devices, network equipment, information technology infrastructure, and
compute nodes are the main hardware resources. Wire cages, power supply, and workload
management software (such as load balancer) support the data center functionality.

2.3.1 Services

Several data center providers® offer computing power or storage services for sale. Specialized
Application Service Providers (ASPs) focus on different equipment types. For instance, Amazon
Web Services (AWS)*" offers a service for computing power called Amazon Elastic Compute
Cloud (Amazon EC2)* . Another service is the Amazon Simple Storage Service (Amazon $3)*
which can store huge amounts of data. Data is expected to increase to 40000 Exabyte by 2020.
Day by day, customers generate and store various data types. The mentioned services are
usually cloud services. Cloud services combine different data centers over the Internet,
regardless of where they are. Remote access and Internet connectivity enable decentralized
environments, such as clouds. Most services are provided on demand and for a certain period
only. In general, cloud providers deploy “Anything or Everything as a Service” (XaaS), such as
Infrastructure as a Service (laaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
The infrastructure involves the underlying hardware equipment, such as memory systems and
network devices. Amazon Web Services offer Infrastructure as a Service because they provide

% Processing: store and manage

% provider: Internet (ISP) -, Application (ASP)-, Full (FSP)-, Wireless Application (WASP) - Service Provider
*1 AWS: http://aws.amazon.com/

%2 EC2: http://aws.amazon.com/ec2/

3s3: http://aws.amazon.com/s3/

25

Background

virtual resources, such as storage. A higher abstraction level is Platform as a Service, which
provides an infrastructure and an advanced base runtime environment. Databases or web
hosting services are examples where the customer does not care about the operating system.
Google Apps> is a well-known Platform as a Service provider. The application provides a web-
based e-mail program, an integrated calendar, and document creating and processing.
Software as a Service provides end-user applications with standard interfaces. It offers access
to a holistic environment, such as an application (Gmail, Yahoo correspondence) or social
network (Facebook) containing infrastructure and platform parts. Data centers have different
requirements due to their use case scenario. Decentralized services support this significant
time progress through the virtual combination of various data center resources.

2.3.2 Design, Equipment, and Domains

Data centers are split into cabinet rows, including IT equipment, and other all-purpose areas
with a multitude of various scopes, such as administration, management, and networking.
General-purpose areas of responsibility, also known as key facility systems, are power
distribution®, network (switches, routers), offices (desktop computers), security systems,
management, administration, lighting, and Heating Ventilation Air Conditioning and
Refrigeration Technologies (HVAC, HVACR). Hot and cold aisles containment is established
between different rows in well-designed data centers, shown in Figure 10 and Figure 11. It
reduces the mixing of hot and cold air, which further reduces the energy demand for electricity
required for air conditioning. A row, containing large numbers of 19-inch rack enclosures, has a
high equipment density, and a high airflow demand to cool the devices. The equipment density
varies between the different facility area types. Consequently, power demands fluctuate in
those areas as well as between data centers [TSX et al. 2003].

data center

cabinet row cabinet row cabinet row cabinet row other

rack enclosure | rack enclosure | rack enclosure
19-inch 19-inch 19-inch

BN N |

Figure 10: Data center cabinet rows and others

** Google Apps: http://learn.googleapps.com/
% power distribution: uninterruptible power supply (UPS) systems

26

Background

hot aisle

Figure 11: Hot and cold aisle design in data center cabinet rows

A 19-inch rack enclosure is a standardized format for data center equipment. It provides space
for mounting many technical equipment modules and resources. Communication systems,
backup equipment, and power distributors are peripherals in data centers. A compute node is
hardware that is mounted upon the 1U rack unit®®. One unit is the smallest unit that defines
the height of a rack mount. The width is predefined, and comes either from the 19-inch or
from the 23-inch rack enclosures. The length varies between 17.7 and 27 inches. Hardware
resources and hence the used numbers of resources, their density and temperature
development differ because of the various space required by the compute nodes within a rack.
Compute nodes are server systems that give computing power for data processing or data
storage. We describe further details in Section 2.4.

cabinet row cabinet row

|
s blade server

rack enclosure
19-inch

rack enclosure

19-inch ‘-_

computenode rack server

—

other

Figure 12: Cabinet row structure

Other enclosures are stand-alone systems, such as desktop, mobile, enterprise, or floor stand®’
computers. Floor stand computers support a higher computational and storage demand in
comparison to desktop computers. They are a part of administration, security, and office
areas. For illustrating purposes, Figure 13 shows the context between data center equipment.
For example, stand-alone enclosures are a subset of other equipment within data centers.
However, data centers include cabinet rows and rack-mounted enclosures as well. Memory
and storage devices in rack-mounted enclosures are many times larger than in personal
computers in order to handle and process the huge amount of data.

%® 1U: one rack unit, 1.75 inches (4.445 cm) high
*” Floor stand: also called tower or stand-alone

27

Background

Network devices for the Internet or intranet connectivity are set up on the Top of Racks (ToR)
to provide access to rack-mounted devices and to distribute data. A rack enclosure also
mounts storage, input/output (1/0) devices, and power distribution.

data center

‘ cabinet row ‘ ‘ other ‘

rack-mounted stand-alone
enclosure enclosure

R

rack ‘ ‘ blade ‘

compute node
server system

network device storage device input/output device power distribution

Figure 13: Compute node (server system) in data centers

Rack-mounted compute nodes are server systems that are part of any row within a data
center. Rack servers have a higher impact on the DC energy consumption because of their
huge number within cabinet rows and the high computing equipment density. The rack server
rate within a rack-mounted enclosure is about 40 to 45 percent in all server rooms in German
data centers, with 11 up to 100 servers between 2008 and 2010 [HFS 2010]. In contrast, the
rack server rate increased to 60 percent in data centers, with up to 5000 servers or larger.
Furthermore, rack servers have a market share of about 53 percent, whereas the blade
servers, revenue share of total market was 21 percent in the fourth quarter of 2013 [Neb
2014]. Servers with about 80% produce the main energy consumption in data centers.
Network or storage devices, both consume the same quantity of energy, was about 10 percent
at a data center in 2008 as well as in 2015 [HFS 2010]. Consequently, rack-mounted server
systems constitute the focus of this thesis.

The rack server location within a row or data center does not matter, because the thermal and
power aspects are abstracted. Incoming tasks, jobs, or services, be it in a virtualized or non-
virtualized system, are grouped together as environment conditions. Furthermore, the
environment summarizes all external influences and equipment around the rack-mounted
server system. Scheduling and placement algorithms are not covered. Additionally, data
centers, cabinet rows and rack enclosures are part of the environment domain.

28

Background

Table 2: Domains, system domain, and examples

Complexity Domain System
level domain
High Data center Environment Workloads, jobs, queue, tasks,
services, rows, hypervisor / virtual
machine monitor, lighting
equipment, infrastructure
equipment
Cabinet row, others, Environment Network equipment, storage
rack enclosure equipment, server
Compute node, System Components (processor, memory,
server System, bus), software (operating System,
component firmware, BIOS/UEFI, compiler),
architecture (cores, pipelines,
caches, switching activities,
process, interfaces, protocols),
electronic system level (ESL),
power supply, connectors
Low Chip Physical Circuit, transistor, gate, logic,
(Chip) design, FPGA, ASICs
register-transfer, geometry,
topology

Examples

The following section describes various server system types, starting at supercomputers and
getting progressively smaller to the point of being a server system. Supercomputers are
specialized for one application or a small amount of applications in comparison to data
centers.

2.4 Compute Node Types

2.4.1 Supercomputers, Mainframes, and Servers

Specialized IT systems are supercomputers, mainframes, and servers. The Chinese
supercomputer called Tianhe-2 is the most powerful supercomputer’® in the TOP500*° ranking
from June 2014. It has a power demand of approximately 18 megawatts providing a
performance of nearly 34 Peta FLOPS, measured by the Linpack benchmark. This type of
system is specialized for high computing power, usually for a certain application. Particular
tasks, such as simulation, modeling or complex computations, are the focus of such systems
and include typical application fields such as nanotechnology, human science, or disaster
prevention. OCuLUS™ is another high-performance computer at the University of Paderborn.

38 .
Supercomputer: high-end computer
* TOP500: http://www.top500.0rg/lists/2014/06/
“© 0cuLUS: http://pc2.uni-paderborn.de/hpc-systems-services/available-systems/hpc-cluster/

29

Background

The data center at the Paderborn Center for Parallel Computing (PC?) provides computing
power to its users. The system’s theoretical peak performance is about 200 Tera FLOPS. Power
information on this system is not available. Nonetheless, power and performance are
significant factors of supercomputers.

In comparison to supercomputers, mainframes are smaller systems. Usually, mainframe
performance is measured in millions of (machine) instructions per second (MIPS). Intel
architecture instructions are integer, floating-point, and system instructions. Integer
instructions handle arithmetic (ADD, SUB) and logic (AND, OR) operations. The processor’s
floating-point unit (FPU) executes instructions in either floating-point (real) or integer. System
instructions support operating systems via specific commands (MOV). Therefore, MIPS and
FLOPS are not comparable to each other. Mainframe servers run many applications and are
specialized in data movements, resource processing, and transactions. Mainframes handle
huge amounts of input and output data. Enterprise businesses, such as a data warehouses,
integrate an Enterprise Information System (EIS), which stores general company data and
controls access to them.

The smallest computational nodes within a data center are servers, which support any kinds of
applications and operating systems. Servers manage and give access to a network or
centralized environment. Depending on the requirements on the server, the server
performance is measured using various types of benchmarks. A typical processor benchmark is
SPEC CPU*, which compares compute-intensive operations. On the other hand, SPECpower*
evaluates the power versus performance. According to the US Environmental Protection
Agency a new server efficiency benchmark was developed, namely. The Server Efficiency
Rating Tool (SERT)*® combines power and performance demand over a specific period.

Servers are physical devices in large-scale enterprises, also known as data centers. They have
different computing and data processing capabilities because of their various types: the four
most well-known types being database, web, image, and application servers [lIZ et al. 2007].
Databases handle the huge amount of user and application data, process and store it. DB2* or
MySQL* are examples of common databases. With web servers, this data is available on the
Internet. The third type, the application server focuses on generic purpose software.
Application servers support running certain applications and offer a range of services, such as
e-learning, sales or search engines. Specialized infrastructure servers distribute the processing
load between the various standard server types. The server equipment depends on their use
cases and usage models, which are based upon their application types and communication
levels. The authors of [DEP et al. 2009] describe the various server types considering the sub-

*L SPEC CPU: Central Processing Unit, http://www.spec.org/benchmarks.html#cpu
*2 SPECpower: http://www.spec.org/benchmarks.html#power

* SERT: http://www.spec.org/sert/

** DB2: http://www-01.ibm.com/software/data/db2/

4 MySQL: http://www.oracle.com/us/products/mysgl/overview/index.html

30

Background

components that have the most impact on server performance. Therefore, different resources
and configurations are available. Other examples of server types are gateway, mail, game, and
print servers. All of these types can be virtualized and may become equipment in a cloud.

On the other side, chassis types classify servers. Tower servers are not mountable in rack
enclosures. They are usually part of small- and medium-scale enterprise facilities. Data centers
contain blade and rack servers. A blade chassis is a 19-inch rack-based enclosure, as shown in
Figure 14. It provides slots for mounting several devices, offers a high equipment density, and
has special features, such as a prewired chassis and shared components like as a power supply
unit (PSU), fans, and network devices. The system is ready for plug and play. Blade servers,
storage and interface devices are based upon a special slot format. A blade server is a
computational node containing a processor, memory, input/output devices, and sometimes
storage. In common usage, the term blade or blade server stands for a rack-mounted blade
enclosure.

blade server

ck server (system)

Figure 14: 19-inch rack enclosure

A rack server is comparable with a slot-based blade server. In either case, the regular
equipment, such as processors, memory or input/output devices, are part of the physical
device. In contrast to blades, a rack unit integrates storage, fans, and power supply units. A
compute node is an assortment of various components. Each compute node type contains
components that focus on a) high performance, b) safe and reliable operations, or c) low-cost.
Consequently, the power consumption of the server differs between these types. Rajamani et
al. sum up the server power breakdowns for various compute node types [RLG et al. 2008].
The most frequent reason for server power breakdowns of supercomputers (a) is the power
subsystem. Cooling and input/output components cause fewer problems of supercomputer
crashes. Mainframe servers (b) are more affected because of insufficient cooling. Standard
servers (c) have the most problems with power breakdowns due to their high memory and
processor power consumption, as shown in Table 3.

31

Background

Table 3: Normalized server power breakdown for various classes/types [RLG et al. 2008]

Compute node type Normalized server power breakdown [%]
Power Cooling Input/ Memory Processor/
Subsystem Output Cache
a) Supercomputer, 35 10 10 15 30
high-end computer
b) Mainframes 30 20 30 5 15
c) Server (HPC, rack) 23 7 5 20 45
c) Server (blade) 23 5 7 10 55

This short introduction featured various types of computing equipment, from supercomputers
to server systems. Because this thesis focuses on server systems with a rack format, the next
section will formalize a system and address all major components.

2.4.2 Rack Server Systems

This following section defines a rack server system. The specific characteristics are not
complete and show the possible parts of a system model. Explicitly used characteristics are
described in Section 3 and Section 5. Additionally, related definitions are described in MATLAB
notation.

A rack enclosure mounts a compute node, for instance, which is called a system, see (2.29). A
rack system is a computational node in a rack format. In general, this is known as a rack server
and performs computational work.

system [{'compute node'}] (2.29)

rack system = [{'rack server system'}] (2.30)

In the remainder of this thesis, a system is always a rack server, defined as an overall system. A
system S has one up to n parts S with n € Ny as any natural number N, = {0,1,2,3,...}. In
general, a system S is defined as a vector S = {S;, ..., S,,}. Equation (2.31) shows the same
definition in MATLAB notation. The vector length is equal to the used amount n of parts S.
Software and hardware are part of the system, as shown in (2.32). In this example, the system
has only two major elements.

system = [S1 S2 .. Sn]

[{'S1'} {'S2'} .. {'Sn'}] (2.31)

system = [{'hardware'} {'software'}] (2.32)

*® MATLAB notation: labels cannot include spaces, using hyphens instead of

32

Background

A system executes software. An operating system (OS) provides communication between the
software and hardware. The standardized application programming interface (API) supports a
considerable independence of software and hardware manufacturers. Cloud and virtualization
software suppliers benefit from this approach. Various application software types result in
complex combinations of computing, network, and storage demand. Processor benchmarks
generate different behavior and power consumption in comparison to virtualization
benchmarks. This thesis provides realistic application-specific scenarios. Therefore, input data
abstracts and defines different application software types. In this thesis, software is defined as
SW = {SW,, ..., SW,,}, as shown in (2.33).

software = [SW1l SW2 .. SWn]
= [{"SW1'"'} {'Sw2'} .. {'SWn'}] (2.33)
software = [{'operating-system'} {'BIOS-UEFI'}

{"firmware'} {'application software'}
{virtualization'}] (2.34)

Other software parts, shown in (2.34), are server-specific. Firmware is an embedded operating
system running on a server-specific baseboard management controller (BMC), which provides
management and monitoring capabilities to observe the health and system status. Another
motherboard chip or flash device provides the Basic Input Output System (BIOS) and its
successor, the Unified Extensible Firmware Interface (UEFI). Both are types of embedded
application software.

On the other hand, hardware is any physical device that is mountable in a system. Hardware
can have many devices and is defined as SH = {SH;, ..., SH,}. Hardware distinguishes
between three generic types, as shown in (2.36). The size of a rack server defines the
mountable and suitable hardware devices for this system.

hardware = [SH1 SH2 .. SHn]
= [{'SH1'} {'SH2'} .. {'SHn'}] (2.35)
hardware = [{'component'} {'connector'}
{ 'power-supply'}] (2.36)

A power supply provides electrical power for hardware and electrical circuits (chips). A power
supply unit converts incoming alternating current to direct current on different power levels,
such as 3.5 or 5 volt. A power supply is defined as HP = {HP;, ..., HB,}, see (2.37).

power-supply = [HP1 HP2 .. HPn]

[{"HP1'"} {'HP2'} .. {'HPn'}] (2.37)

33

Background

Connectors are system busses, internal connectors, and external connectors, which are part of
a system and connect several components. Busses and caches influence the system
performance because of their throughput and latency while processing the data. Busses are
not configurable by the consumer and have a constant power consumption of nanowatts or
microwatts. Caches are part of the architecture design of a device, such as processor caches or
cache lines. The higher the number of cache misses, the smaller the data performance, and the
power consumption ultimately grows because of increased repeated requests. All power
values lower than watts are considered as static power. Consequently, the single power values
of connectors are negligible.

The frontside bus®’ (FSB) connects the processor with the system chipsets, main memory and
other peripherals. Other typical data busses are the peripheral component interconnect (PCl),
the peripheral component interconnect express (PCle), the inter-integrated circuit (12C), the
system management bus (SMBus), the power management bus (PMBus), the intelligent
platform management bus (IPMB), and the intelligent chassis management bus (ICMB). These
internal busses also support internal connectors, such as the front panel and the main power
connector. Other external connectors in the case of the front and rear side are serial®, video®,
and network®® connectors. Connectors are defined as HO = {HO,, ..., HO,}, as shown in the
following equation:

connector [HO1 HOZ2 .. HOn]

[{'"HO1'"} {'HO2'} .. {'HOn'}] (2.38)

Connectors and busses are integrated on the motherboard and are not changeable. This setup
is fixed after the design phase. The motherboard is part of the component definition. External
devices, connected via PCl or PCle, are not in the focus of this thesis. Part of the system
hardware is SH = {HC, HO, HP}, see Figure 15.

* Frontside Bus: equal to processor/memory/system bus
“8 Serial connector: COM / RS232

* Video connector: VGA

*® Network connector: LAN, RJ45

34

Background

compute node
server system

hardware software
[
operating system BIOS/UEFI firmware application software virtualization
component connector power supply

Figure 15: System hardware SH (component HC, connector HO, power supply HP) and software SW

The system definition characterizes the used hardware resources and configuration. Software
executed on the system is summarized as an application; in contrast, embedded software is
abstracted as a configuration. The software vertex of the tree depicts the input parameters of
the system model. Further details are described in Section 5.

\
\\ EAVITONTIGnT / \ environment /

system

system

chips ’\:

\ components

power supply

connectors

Figure 16: System levels (components, power supply and connectors)

Components HC are real physical parts of the system hardware. The enclosure is part of the
hardware but already predefined within our system definitions. Component HC divides n
subtypes HC = {HC,, ..., HC,,}, see (2.39). In our example (2.40) components are add-in,
onboard, or system-board components.

component = [HC1l HC2 .. HCn]
= [{'HC1'} {'HC2'} .. {'HCn'}] (2.39)
component = [{'system-board'} {'onboard'} {'add-in'}] (2.40)

35

Background

Add-in components CA are divided into CA = {CA,,...,CA,}. They are specific to the
customer, with any amount as long as it is compatible with the server system and connectors.
System fans, drive bays (optical drives™'), local view panel, and expansion cards (network and
graphic cards) are examples of add-in components. This differs between server types and is
not the focus of this thesis.

add-in = [CAl CA2 .. CAn]
= [{'CA1l'} {'CA2'} .. {'CAn'}] (2.41)
add-in = [{'expansion-card'} {'drive-bays'}
{'system-fan'}] (2.42)

Onboard components CO are defined as CO = {CO;, ..., CO,}. These types are not changeable
and are provided directly via the hardware, such as the motherboard. Hardware predefines the
amount and type of capacitors, transistors, and inductors. Onboard components are all either
through-hole devices (THD) or surface-mounted devices (SMD). Temperature and voltage
sensors are fixed onboard. Examples of controllers are Ethernet, baseboard management
controllers (BMC), or standard north/south bridges. The consumer cannot adapt or change
these onboard components.

onboard = [CO1l CO2 .. COn]
= [{'CO1l'} {'CcO2'} .. {'COn"'}] (2.43)
onboard = [{'controller'} {'read-only-memory'}

{'capacitor'} {'transistor'} {'chipset'}
{'inductor'} {'integrated-circuit'}
{'regulator'} {'led'} {'sensor'}] (2.44)

In contrast, system-board components can be easily manipulated in a straightforward manner.
(Related approaches are described in Section 3.) System-board components CS are defined as
CS ={CS,, ...,CS,,} withm € N, as any natural number N, = {0,1,2,3, ...}, see (2.45). These
components are changeable because of their standardized interfaces, connectors, and busses.
Otherwise, they are partly predefined by the motherboard. The motherboard supports only
special sockets, controllers, or busses. Examples of mandatory system-board components are
the central processing unit (CPU), random-access-memory (RAM), input/output devices such
as hard disk drives (HDD), etc.

>t Optical: CD, DVD, or Blu-ray

36

Background

system-board [CS1 CS2 .. CSm]

= [{'CS1'} {'CS2'} .. {'CSm'}] (2.45)
system-board = [{'processor'} {'memory'} {'fan'}
{'input-output'} {'others'}] (2.46)

The described component types differ in their variability, power range, and dependencies. The
vendor predefines the onboard components, which are neither changeable nor configurable
on the system, and consumes the lowest power. On the other hand, add-in and system-board
components are individually selectable. They depend on the provided connectors, busses, or
slots, which rely on the system-board architecture and generation. System-board and add-in
components consume even more power in comparison to onboard components. At system
deployment, the processor and memory are mandatory elements during the configuration
phase. Consequently, system-board components are the main part of system configuration
and deployment. Add-in components are optional elements with a separate order process at
any time. Table 4 summarizes the differences between component types.

Table 4: Comparison component types (system-board, onboard, add-in)

Component Variability = Power [W] Dependency

Add-in Individually 10'...103 Connector, slot, port, bus
selectable

Onboard Predefined 107°..10' Bus
by vendor

System-board Individually 1073..103 Architecture (system-board), controller,
selectable chipset, socket, slot, port, bus

Some system-board components, such as input/output devices, are optional as well. We
divided the system-board components into five major categories, see Equation (2.46). The
processor category includes all processing unit devices. The term memory refers to all physical
memory device types. The input/output category contains all storage and communication
hardware. Internal hard disk drives (HDD), solid-state drives (SSD), or InfiniBand>* are part of it.
Fans are cooling devices that are controlled by temperature algorithms. Parts of other system-
board components are optional input devices (keyboard, mouse), expansion cards, and the
system motherboard itself. The motherboard provides several essential onboard mounted
components, such as BMC. Figure 17 provides a diagram about component types as well as
system-board categories, which are further described in Section 5.

>2 InfiniBand: http://www.infinibandta.org/

37

Background

‘ system-board H onboard H add-in ‘
I

expansion card ‘ ‘ drive bays ‘ ‘ system fan ‘

‘ confroller ‘ read only memory ‘ ‘ capacitor ‘ ‘ transistor ‘ ‘ chipset ‘
‘ inductor ‘ integrated circuit ‘ ‘ regulator ‘ ‘ led ‘ ‘ sensor ‘
system-board categories |
processor ‘ ‘ memory ‘ ‘ input/output ‘ ‘ fan ‘ ‘ others ‘

Figure 17: Component (component HC, add-in CA, onboard CO, system-board CS) and system-board categories

The system definition is applicable and adaptable for blade server, stand-alone servers, or
embedded systems as well. For other server types than rack servers, the characteristics of
components differ. Many blades within a blade enclosure use, for instance, a shared power
supply. Moreover, devices have special form factors compared to rack servers. A blade server
does not include the same amount of connectors compared to a rack-based system because of
the pre-wired backplane. A blade enclosure can contain more specialized-components because
of a higher enclosure size and smaller device formats.

In summary, the hierarchical abstract structure of a rack-mounted server system S is defined
by the following components:

e Software SW
e Hardware SH
o Components HC
= Add-inCA
= Onboard CO
= System-board CS
o Connectors HO
o Power supply HP

Figure 18 shows the abstract server definition as tree 8 with various levels: for example,
components HC, connectors HO, and power supply units HP are part of the system hardware
resources SH. In contrast, software SW is not divided into detail. Furthermore, components
HC include three defined hierarchical component levels: add-in CA, onboard CO, and system-
board components CS, which are denoted by HC = {CA, CO, CS}. The diagram shows an extra
level at the bottom, which in turn reflects several subtypes.

38

Background

S
s lse [-lsu |
|

SW
Lswi] swe][] [sw |

SH
st st][] (5t
I

HO
[#o][Ho.][][0,]

HP
Lre (e][[Am]

HC
[re J[me][] [Hew]
|

cs
Les JLes [[Lesu |

co
Lo, |[co.][][cou |

CA
Lem Jeaz][[ean |

Figure 18: Hierarchical server system definition

In this section, we consider the hierarchical structure of the rack-mounted server system in our
concept, in which we define the aspect-based component models as part of our server system
configuration tree.

2.5 Summary

We develop our multi-aspect full-system model by using MATLAB and Simulink. In Section 2.1,
we briefly describe MATLAB, Simulink, and its corresponding syntax. In particular, we specify
the fundamental terms of this thesis, such as the energy efficiency that we further consider as
the performance-to-power ratio. In our evaluation, we use the performance scores of the
particular benchmarks that rely upon the utilization levels of the components. The server
system is a compute node in a data center, more precisely in a cabinet row that is usually
equipped within a rack-mounted enclosure to provide computing power for data processing.
The most well-known server types are database, web, image, and application servers in which
the power consumption significantly differs. Moreover, we abstractly define our rack-based
server system as a hierarchical structure (tree 8) that mainly constitutes software SW and
system hardware resources SH. We further divide the hardware into the components HC,
connectors HO, and power supply units HP. We concentrate on the system-board
components, as part of HC, which we divide into the following categories: processor, memory,
input/output, fan, and others. The specified configuration tree builds the base of our multi-
aspect full-system model.

39

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3 Basic Modeling Technologies, Algorithms, and Approaches in
Academic Research and Industrial Practice

Peak power consumption and energy efficiency are key economic aspects of server system
design and its field of application. High peak power values lead to waste energy and an over-
provisioning of server systems. High energy consumption results in a huge thermal increase,
especially in data centers, which increases the level of carbon emissions as well as the costs
associated with air-conditioning and cooling. Algorithms, such as dynamic voltage frequency
scaling (DVFS), influence the power and energy consumption of server systems, yet reduce the
performance of the server system at the same time. An aim of this thesis is to model a
prototype of a server, including separated single components to analyze the peak power
consumption and thermal expansion. This thesis addresses specific power, performance, and
thermal models to analyze the energy efficiency of diverse management strategies and server
configurations. Energy efficiency aims at minimizing the power consumption by maximizing the
performance under thermal constraints. The following sections introduce various technologies,
models, and algorithms.

This chapter provides a brief overview of object-oriented modeling techniques. It also outlines
some basic modeling techniques and software development processes followed by the intent
and purpose of these models. The following section describes various modeling techniques
ordered by data, control, and process specification. The model domain influences the model
objectives and the stakeholder’s point of view. The stakeholder> defines the main aspects,
priorities, and metrics to verify and confirm the model. Furthermore, we outline the use cases
of simulation-based and measurement-based models. The classification of the model depends
on the focus at diverse target domains (e.g., power/energy, thermal, and performance) and
may change because of power versus cost awareness. The following subsections describe the
server system models and simulations. Afterwards, the gap between academic research and
theoretical approaches is stated. A table summarizes the used models, considerations, and
algorithms. Afterwards, the use case scenarios describe the relevance and significance. They
differ with their fields of application. Many companies and customers developed vendor-
specific tools for special requirements and functionality. We identify and formulate the aim of
this thesis and corresponding problem statement on the basis of proposed techniques,
practical realizations, and industrial background.

53
Stakeholder: user, customer

40

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.1 Modeling Techniques and Domains

Various modeling techniques and software development processes are a part of software
engineering and design to ensure high-quality software. Classic software-development
processes are the waterfall model and V-model [Lin 2001]. These processes describe the
development phases of a system, support design, and system decomposition in the lifecycle
stages. Rumbaugh developed an object-oriented modeling technique (OMT) that builds up a
system in an analysis, design, and implementation phase [Rum 1991]. The system is
transformed into an abstract and structured representation in any manner. The aim of these
techniques is to separate between behavior and implementation®®. Furthermore, the abstract
description improves communication among diverse stakeholders. Lifecycle costs decrease
because of the stakeholders’ better understanding of the design implications, risks, or
dependencies [Lon 2012].

Rumbaugh proposes three main types of OMT: the object, dynamic, and functional models,
which may be the basis of technical decisions because of system definitions. The characteristic,
hierarchy, or usage of a system is defined without any implementation details. An object
describes the static structural representation of a system, its architecture and components.
Classes model the systemic aspects, including attributes and methods; whereby objects are
built according to that definition. Additionally, associations> describe the relationships
between classes to ensure traceability. The communication among objects, also called
interaction, is part of a dynamic model. Furthermore, the model describes the conditions like
how an object changes from one state to another. The changeover between various states is a
transition, which executes when an external event or action occurs. The functional model
includes the flow of information through the system because of the event. These three
specification models became standard analysis models in object-oriented software
engineering. Using diverse views is an efficient method of presenting complex systems [Tep
2010]. If we completely describe the system, a model becomes an effective prototype [Lon
2012]. Accordingly, the model support designs decisions, changes and also error detections,
while checking consistence, correctness, completeness, or relationships. The stakeholder
detects problems and trade-offs in early design phase, which reduces errors, development
times, and costs [BCC et al. 2014]. The following sections describe the basic approaches to
each specification phase.

54 .
Concept: separation of concerns

55
Associations: between classes on model level, links: between objects on instance level

41

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.1.1 Object Specification

The object specification phase aims at analyzing the structure of the system [EG 2000]. A
standardized approach®® is a class and object diagram of the unified modeling language (UML).
Data elements, also called objects, show the system in an abstract and variable type by hiding
information specifics, which conceal implementation details [Sir 2007]. In such a case, common
object classes, sometimes called concepts, generalize a set of data objects. Associations
represent the relationship between objects or classes® . Subclasses and superclasses generalize
this relationship. Figure 19 shows the superclass component of a server system, which has
three subclasses: system-board, onboard, and add-in.

Component
{abstract}
- width: int
- length: int
+ size(): int
[‘? 1
System board Onboard Add-in
- height: int - bus: string - port: string
+ volume(): int

Figure 19: Class diagram — components

The superclass component has two private attributes, width and length, which define the
component floor space®®. Additionally, the operation size() provides a public interface to get
floor space information. The three subclasses inherit width, length, and size() but have
specialized properties, such as height, bus, or port. Each class can provide various interfaces,
features, attributes, or operations, such as calculating the volume() for the purpose of area
planning. Based on graphical notations, the system is hierarchically in this diagram. The
corresponding structure and data aspects of a system depend on the selected diagram type™.
The data object specification represents the static system; the control specification introduces
dynamic system behavior.

*® Standardized approach: using a modeling language

>7 Associations in diagrams: represented as arrows

*® Floor space: base area (horizontal space)

*° Data object diagrams: class, object, package, component, profile, deployment, or subsystem

42

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.1.2 Control Specification

Control specifications define the interaction and communication between objects. In
comparison with data object specifications they contain extra information and various control
aspects. The dynamic functionality, for instance, behavior or message interchange, is an
abstract sequence diagram or other manners®. A state or transition approach covers the
behavioral perspective as well. A state machine indicates the system behavior®, a specific
system state at any given point in time, whose state changes in response to an external
occurring event or action [Oli 2007]. A transition represents the relationship from one state to
another [HS 1997]. If there is decomposition of the system into subsystems, it shows the
interaction between subsystems and events. A finite state machine (FSM) describes the states
and transitions, which is furthermore a deterministic finite automaton (DFA). A 5-tuple
A=(Q,2,T,qy F) represents a deterministic finite automaton where the components are as
follows [HMU 2001]:

Component Description Example (Figure 20)
Q A finite nonempty set of internal states Q = {s1,52}
X A finite set of input symbols (alphabet) 2 ={0,1}
T A state transition function ti; €T
T:Q XX - Q
90 An initial (start) state qo = $1
9o € Q
F A set of final (accepted) states F ={s,}
F cQ

The previous description provides the example of Figure 20, which shows a state transition
diagram (STD). A state transition diagram describes a deterministic finite automaton. States
and their changes are major components of this diagram type®. A state specifies each object
modality in a certain static situation. A transition defines a state change, including various
operating conditions. Figure 20 has two states (s1,S2) and their corresponding transition
T:Q XX — Q referred by input events ' = {0,1}. The transition functions t;; € T are a set of
triple (s,i,s") withs,s" € Q and i € X. The triple consists of the current state s, the input
event i and the resulting next state s’.

60 ey .
Control diagrams: activity, sequence, communication, timing, or state (transition) machine
61 . . .
System behavior: glass box with internal structures
62 - . .
Diagram representation: states represented as circular or rectangular, changes represented as arrows

43

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Figure 20: State transition diagram (STD)

In the case of Mealy machine description, each transition function is defined by a current state
Q as well as an input symbol X which returns a state Q. A finite set of state transitions labels
each state transition T. In this example, all transition functions t;; € T: @ X X' — Q are within
a transition table. Table 5 specifies the state changes of Figure 20. A transition t;, describes
the state change from s; to s,%’ and is defined as t;, = s; — s,, where a transition t;; does
not mean any state change. The transition functions are: T(s;,0) =s;, T(s1,1) = s, ,
T(s,,0) =s;,and T(s,,1) = s,.

Table 5: Transition table and transition functions (Figure 20)

tij Set of triple Transitions
Symbols £ ti1 (51,0,51) T(s1,0) =54
rQ,2)| 0 1 t12 (s Lsy) T(sp, D) =s,
Current Sy Sy s, tyq (55,0,51) T(5,,0) =354
State S5 Sy s, ty (s5,1,55) T(sp,1) =5,

Figure 20 shows, for instance, the system states of a server. In practice, a server system state is
off (s;) and a power button event occurs (i = 1). The transition function T'(s;,1) = s,
defines the system behavior. The server switches to (s;) only in case of being in (s1) and when
an input (i = 1) occurs. The state of the system changes from s; to s,. Otherwise, if there is
an event zero, the server stays in s; and nothing changes T'(s{,0) = s;. As long as no other
action occurs, the system stays in the same state. Overall, the state-based approach is the
major element of the control specification. The authors of [DFM 2000] give detailed
information about formalized state machines, their semantics, and a state transition diagram
of a Mealy machine. Control specifications use state machines. Another aspect is how the
interaction and communication works.

63 e . apr . .
Transition function: note, the transition t,, can also occur in another DFA case if a 0 or 1 occurs

44

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.1.3 Process Specification

Process specifications provide functional models for dynamic system behavior descriptions.
They focus on the data and information flow through a system because of a previous event.
Furthermore, process specifications indicate the data and information transformation and
interaction and also address the information system’s functionality. A data flow diagram (DFD)
is a graph that shows the flow of data values without any time or control information and its
functions that send and transfer data [LD 2000]. It is a top-down process with a gradual
refinement, which includes the high-level functionality of a system. Figure 21 illustrates a
simple data flow diagram. The size of a system determines how much floor space a printed
circuit board (PCB) requires. The server volume is calculated by taking the height into account,
whereby server dimensions® are predefined at the design process. Both the size and the
volume are required in floor planning tools and the simulation of the computational fluid
dynamics (CFD) of data centers to plan the sizing and ventilation®.

volume

Figure 21: Data flow diagram (DFD) - size and volume data flow

Data flow diagrams are part of the structured analysis/structured design (SA/SD) approach
[LPT 1994, Kur 2008]. Additional diagram types® support the process specification and define
the information flow. The interaction and communication of the system are part of the control
specification. Data object specifications define the static representation of the system.
Accordingly, the alternative designs and concepts use the model components of all
specifications, while ensuring consistency and traceability. Developing similar system models
reduces time and costs by re-using model components [BCC et al. 2014, Lon 2012].

® Dimension: height (1U,2U,4U), width (19-inch, 23-inch), length (17.7 or 27 inches)
® Ventilation: rack- or row-oriented cooling
% process diagrams: flowcharts, pseudo code, entity-relationship diagrams, or data flow diagrams

45

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.1.4 Modeling Domains

State machines, flow diagrams, and block diagrams support system specifications, which are
common in a wide range of modeling domains. Figure 22 shows the five major domains
defined within the literature [Osi 2010]. Andersson additionally divides the domains, including
information, and physical objects and focuses on their major usage or architecture [And 2009,
And 2012]. The generic modeling domains are described as follows:

1. The physical domain includes objects that describe technical (physical) systems and
their designs. The domain includes electrical (power, energy, performance, efficiency),
mechanical (motor, rotation), or thermal (heat transfer) systems.

2. Processes, processing structures, activities, operations, architectures, or interactions
are part of the logical domain.

3. The conceptual domain provides the objects, functional descriptions, workflows
(control flow), or information of the system.

4. The contextual domain focuses on system usages, services, or requirements that are
part of the conceptual as well as the external domain.

5. The purposes and constraints are defined in the external domain because of
predefined vendor limitations, rules, or policies for modeling. Furthermore, the
stakeholders influence the model design because of various points of views.

O\
purposes,
- external
constraints
usages, /_\
serV|ce§, needs, conteXtual
requirements v
functions,
information, conceptual
objects
processes, logical
activities v
technical hvsical
objects phy

Figure 22: Definition of modeling domains [Osi 2010]

Stakeholders such as the planner, owner, designer, builder, or subcontractor focus on defined
modeling domains from top to bottom. For instance, designers focus on the logical system
level; in contrast, builders concentrate on the physical level. The defined modeling domains
are also part of Zachman’s framework that describes the stakeholders and their various
perspectives involved in the planning or building phases of the system [PS 2004]. The
developers consider various design aspects depending on the role.

46

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.2 Model Objectives, Characteristics, and Criteria

The previous section identified established modeling techniques to deal with various design
aspects. The following section describes model objectives, characteristics, and criteria. The
overall modeling aim is to build up a physical system. A continuous physical system can be
characterized by a model using differential equations u(t). A model i(t) should behave like
the represented system u(t) would in the real world. The equations #i(t) are an abstraction of
the model u(t). Both functions 7i(t) and u(t) describe system behavior. A model is adequate
only under defined criteria. For instance, the area A between #i(t) and u(t) are calculated via
the integral of the differential function U(t) = i(t) — u(t), shown in Equation (3.1). The real
and represented systems are identical when area A is zero, which is not the case in practice.
Thus, the customer specifies the criterion a, which decides when a model is adequate or not.
The model is suitable if the area A is lower than the criterion a.

A=U@®)] = fIU(t)Idt= f|(a(t)—u(t))|dt

4= {< a, adequate (3.1)

>a, notadequate

The represented physical system u is defined as a time-continuous system and contains time-
continuous® values x(t). In practice, the input signal x(t) is a continuous value series over
continuous time. An alternative description of the system is time-discrete®® x[n], with n as any
natural numbern € Ny, Ny = {0, 1,2, 3, ... }. A sample identifies a value x(t) at a certain point
in time ty (or simple n) using an interval Ty as the interval between x[n] and x[n + 1].
Therefore, a time-continuous system becomes time-discrete. A discrete system is represented
as a finite or countable infinite set of values, which is as a sequence x[n*Ty] =
{x[0], x[Ty], x[2Ty], ..., x[nTy1}. The right side of Figure 23 shows a time-discrete system x[n]
withn = {0,1,2, ...,9,10}, and Ty = 1 sampled from the left side of the figure represented as
x(t). Both diagrams show the same period of time 0 < i < T(n * Ty).

time-continuous systems " "
x(t) ¥ 50 time-discrete systems

Tn

— =
|
I ——

.ﬁ
~
w
N
«
@
~
®
©
"
153

t

Figure 23: Time-continuous x(t) and time-discrete x[n] systems

®” Time-continuous: differential equation specified systems (DESS)
% Time-discrete: discrete-time specified systems (DTSS)

47

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Time-continuous and time-discrete systems are mappable into each other, as shown in Figure
24 [Gee 2004]. The sampling theorem by Nyquist-Shannon, assuming that the signal is
represented in the frequency domain, defines the following frequency dependency to avoid
information losses:

“The sampling frequency should be at least twice the highest
frequency contained in the signal.” [Ols 2000]

The corresponding mathematical equations are shown in Equations (3.2) and (3.3) with the
sampling frequency fy and the highest frequency f in the system. The sample rate Ty, or
frequency fy, ensures the reconstruction from time-discrete to time-continuous systems.

fu =7-1Hz] f =2[Hz] (3.2)

SR

fnz2xf (3.3)

For instance, temperature sensors usually have a sample time Ty of approximately one
second. A smaller sample time offers no advantage because on the one side, the traffic®® limits
the performance of the bus connection; and on the other side, the fan’s inertia ensures that
the fan speed is controlled within a defined time response from generally ten seconds’.
Accordingly, the additional values, because of a shorter sample time, are practically useless
and provide no further information. A correct sample time immediately captures all
temperature changes. In comparison, a longer sample time may lead to wrong or missing
values. If the sample time is insufficient, multiple temperature changes occur within one
sample time. The various changes and their effects are not possible to capture. In the worst-
case, we do not find any temperature change. Accordingly, the monitored time and the sample
time should fulfill the requirements as stated before. In contrast to thermal sample times, the
sample time of power values can vary between micro- and milliseconds, depending on their
domain. For instance, the changes to the input signal and their effects are not determinable in
the case of the complete system’s inertia. An increasing processor frequency and voltage
scaling produces a temperature change within seconds. Because of the higher temperature,
the fans will wind up and consume more power in comparison to the previous state. Both the
temperature and the power consumption grow slowly and are subsequently monitored in
comparison to the dynamic voltage and frequency scaling. In the case of measurements, the
continuous time is sampled to time-discrete series to avoid a huge mass of values.

® Traffic: requests to other sensors and therefore, delays in response
" Time response: fan vendor specific, less than 10s leads to acoustic and audible roar from the fans

48

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

sampling

time-cantinuous time-discrete

| [|
| [|
| [|
I x(t)— systems L) I I X[n—> systems P yin] }
| [|
| [|

__
? reconstruction T

Figure 24: Time-continuous and time-discrete cycle

Parameter changes influence the system behavior. For instance, the power consumption of a
memory module depends on the voltage and frequency settings and therefore, we utilize it in
another manner. The power consumption p of a component depends on the utilization level”
at a specific time. In this case, the utilization level is defined as u(t). The system generates the
power consumption p(t) as an output signal. A short notation is known as u(t) — p(t). The
calculation of energy consumption E requires the time period 0 <t < T. Equation (3.4)
defines the summation of power values in a time-varying (LTV) form. According to the time

period, an integral sums up the related values p(t).

E= ftiop(t) dt (3.4)

On the other hand, the input values of the system, the utilization levels u[n], and the resulting
output power value p[n] can be part of a time-discrete system. A short notation is known as
u[n] = p[n]. In a time invariant (TIV) system, the output values result in a time-varying
convolution, as shown in Equation (3.5). The time period limits this summation of discrete-
time values p[i]. It simply adds up a set of values defined by each point in time i, with i as any
natural number.

E=3",plil (3.5)

Consequently, it results in four combinations of time and value characteristics, shown in Table
6. In use case (/), the signal and time can take on any values as already described in Figure 23.
The discrete times are a sequence T = {ty, t;, t, ..., t,} and analogous to this, the discrete
values are X = {x, X1, X3, ..., X, }. Both in combination result in use case (/V), whose values
and times are discrete, as shown in Figure 25. At the discrete time (t3) only one discrete value
(x5) or (x3) exists. A value (x,5) is invalid and does not exist because it is not part of the
sequence X. Use case (/ll) shows that the sample time Ty, the interval between x[n] and
x[n + 1], varies because of discrete values. In this example, the sample time Ty (x3,x,) is
much smaller in comparison to Ty (x4,x3). Figure 25 shows all four signal sampling and
discretization use cases.

& Memory utilization level: voltage and frequency dependencies not covered, implicit via utilization

49

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice

Table 6: Use cases for continuous and discrete time and values

Use case Time characteristic Value characteristic
(N Continuous t Continuous x(t)
() Discrete t, Continuous x(tn)
x[n]
(1) Continuous t Discrete X, (1)
(1v) Discrete t, Discrete Xn (ty)
| un
(11 (01%] time-discrete, continuous values
time-continuous, continuous values xt,)
x(t)
t t t t s t ' ts tg t7 tg ty
" :a I time-continuous, discrete values Xg ey o ——
X e i S s 5 =1
. m . /? \k s £ \
g \ /':V X, F - w } v
* —n e — S — X [T T | T =~ |
° t TN(xqul Tu(anxg) %o ty 1y 1t ty oot ts 19] s ty

Figure 25: Signal sampling and discretization

The power consumption x(t) varies over a period of time, which is a time-varying process. The
value x(t) depends on a specific point in time t. The time-varying behavior becomes time-
independent when the time is no longer considered. For instance, the largest value of the
signal is time-independent because only the global maximum (xs) is relevant, independent of
how many local maxima (x3) and (x5) occur at which time. A local maximum is calculated by
the first derivative, which is set to zero. The resulting critical points of f, values x, are used in
the second derivative to check the extremum type. The function f(x) has a local maximum in
a given interval” I when the second derivative in x, is negative, the value x, is part of the
defined interval, and the function values f(x) are smaller than the value of f(x,) forallx € I,
see (3.6). Furthermore, it is a global maximum, whereas consistently all other values f(x) are
smaller than f(xg) within the complete function. The peak power value (x3) is used to choose
a suitable power supply unit for the largest power consumption of the system to avoid over-
provisioning.

L= flxo) =0, (L) =f"(x0) <0 (36)
flxo) = f(x) (3.7)

72
Interval: if an interval is not defined, it is described as values x ‘near’ xq or nearby

50

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

A model depicts the present state of a system at a specific time. Usually, this state has a
present value of a characteristic set. The parameters differ in model characteristics and
criteria. The power model of the rack-mounted server system can estimate the main
component-based consumer on the basis of power states or being more granular on the basis
of instructions. In the case of instructions-based analysis, the calculation time increases
because of a more complex model than a model with fewer details, more parameters, and a
higher sample rate. A rudimentary level of detail cannot guarantee a high-granular analysis of
power values. For example, a component has a power value p at a specific point in time. A
discrete-time interval is defined ast € [0,T] with constant time steps At = 1and a time

period of T = 3. A calculation” of energy values E = fOTp(t) dt becomes a) more complex if
the time interval expands like T = 5 or b) more exact if intermediate steps are added like
At = 0.5. On this basis, the calculation time will increase. Therefore, it is necessary to define
the relevant accuracy of the model and the corresponding aim [Paw 1990]. The deviation
between estimated and measured values decides if a strategy is applicable. Another model
aim, added to build up a real system, is to design a simple model that uses the minimal input
parameters and reduces the model complexity. Simplicity and accuracy are contradictory. A
more exact model requires a more complicated model and usually the sampling rate increases
to ensure state changes. A complex model generates overhead and consumes more
computational time, which is not applicable for real-time approaches. The model level and
level of detail” are results of the model accuracy decision of stakeholders [SMA et al. 2003].
Depending on the model’s intentions, various modeling levels may be more suitable than
others might be. The International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) specifies the product quality model which describes quality
characteristics and criteria, as shown in Table 7 [ISO 2011]. Each top-level characteristic
(factor) has many sub-characteristics (criteria) which are analyzed by metrics, such as lines of
code (LOC) or special performance metrics like jitter, latency, response time, or throughput.
For instance, the accuracy criterion is assessable by the amount of internal states and by the
supported input parameters. The product quality criteria and related metrics are customer-
specific [CHW et al. 2010].

7 Calculation: also known as estimation or prediction
74 . .
Level of detail: granularity

51

http://de.wikipedia.org/wiki/International_Organization_for_Standardization
http://de.wikipedia.org/wiki/International_Electrotechnical_Commission
http://de.wikipedia.org/wiki/International_Electrotechnical_Commission

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice

Table 7: Product quality model and characteristics by ISO/IEC 25010:2011 [ISO 2011]

Characteristics (factor) Sub-characteristics (criteria)

Functionality Suitability, accuracy, interoperability, compliance, security

Reliability Maturity, fault tolerance, recoverability

(Re-) Usability Understandability, learnability, operability, attractiveness

Efficiency Time behavior, resource utilization

Maintainability Analyzability, changeability, stability, testability

Portability Adaptability, installability, co-existence, replaceability

Moreover, a model should be generic as part of the usability or portability characteristic. For
instance, one metric is the variety of supported rack-mounted enclosures, such as rack or
blade servers, as well as stand-alone systems, like desktop or mobile computers. In this thesis,
we use the model that deals with various classes of systems and is adaptable by adding new
classes. More details are described in Chapter 4.

A physical system modeling can be based upon measurements using continuous or discrete
values. The system behavior is based upon simulation results and is described in the next
sections. Afterwards, a short overview about configuration-based and optimization-based
models is given.

3.2.1 Measurement-based Models

The modeling properties of parameters have diverse impacts, caused by the chosen model
style. A standard practice is to model and depict current system behavior via sampling or
discretization. The numeric parameter type, such as floating-point instead of integer,
influences the time resolution and for that reason, influences the calculation time. If a system’s
behavior and values are characterized by data and the findings of a real-life system and its
respective hardware, it is a measurement-based approach. Potential areas of interest are
observed. The customer analytically characterizes the measurements of the system in order to
find dependencies between associated instructions or functions. Therefore, detailed
information about the real hardware, such as its architecture, is beneficial. Mathematical
analysis techniques form the basis of the model. In the case of power or energy models, stress
tests utilize the system components to check the component power (states) and
corresponding performance characteristics such as the computation time. Benchmarks use
synthetic workloads to test real-world systems or discrete system components in a specified
and reproducible manner under defined circumstances. Many experimental measurements
and iterations” support the system evaluation, verification, and confirmation as part of the
development process.

75 . . .
Iterations: choosing various parameters

52

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Especially the power measuring and profiling are key technologies for creating a sufficient
model. The measurements are hardware-based when additional meters, integrated sensors, or
special instruments observe the current and voltages of the hardware devices. In comparison,
the software-based measurements’ aggregate power values from the operating system or
application, such as hardware counters, which are flexible in comparison to the hardware-
based method.

3.2.2 Simulation-based Models

Simulation-based models forecast the system behavior under not yet tested or measured
circumstances. The models analyze and abstract the system behavior, but the internal
architecture, operation, or configuration is unknown. A vendor-specific component is a black-
box’® device and only names or interfaces are visible. Another benefit is that the physical
device is not required. Sometimes simulation-based models are called predictive or execution
models. Comprehensive approaches based on system-theoretical models are defined that
include analysis results of previous system generations and their behavior. The model is partial
because some characteristics are not predictable. We model only a limited number of
variations because of time constraints (execution time, time to market). Complex systems
often use simulation-based approaches [SMA et al. 2003]. Simulations use either a behavior
description or an algorithm level for the functional behavior of hardware components.
Certainly, the power characteristics of tasks are estimated by table-based approaches,
including activities, transactions, or instructions. The power consumption of the overall system
is based upon simulation results. Statistical analysis and stochastic methods are basic elements
of an algorithm level [LK 2000, AK 2002]. A simulation-based approach predicts a future
configuration, accesses, transactions, or activities. Running an empirical simulation supports all
levels of existing and non-existing functions, algorithms, or physical devices. Experimental
results are especially extrapolated about non-existing system conditions. On the other hand,
empirical results are not available or possible. Either the hardware of a future component does
not exist, or it may be either too dangerous or costly to test [FOG 2008]. Another aspect is
fault injection in which various fault conditions are simulated and analyzed’’ [EL 2009, Hex
2003, SSH 2014].

3.2.3 Configuration- and Optimization-based Models

Another modeling style reflects the experimental environment. A configuration model
describes physical observations in relation to random settings of characteristic parameters. A
randomly generated sequence has properties, ranges, or limits to answering a specific
qguestion. Usually, the aim is to minimize or maximize certain model output parameters,
functions, or values under defined constraints. In complex systems, a parameter influences the
results in a positive and negative direction at the same time as cost and time. So, solving the

’® Black-box: outside point of view
7 Analysis: fault tree analysis (FTA)

53

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

problem has many conflicting objectives’®, which are defined as vector F, including multiple,
potentially, conflicting objective functions f3, ..., fx. The objective is to minimize or maximize
all of them simultaneously at the same point in time, where k defines the maximum number of
objective functions, with k and n as any natural number [SWK 2011, DSH 2005], as shown in
following equations.

min,ern{F(x)} or resp. max,cgn{F(x)} (3.8)
F(x) = (fi(x), f2(x), ..., fie (%)) (3.9)
F:R"™ > R¥, k,n € Ny,N, = {0,1,2,3,..}, k =2 (3.10)

A single solution does not exist, and the set of correct trade-off solutions called Pareto”
optimal (PO) sets are defined. These sets of optimal solutions are mathematical equally correct
solutions within the multi-objective optimization (MO or MOO) approach. Additionally,
constraint functions C° characterize the subject functions as follows [Mos 2005]:

C(x) = (c1(x),c2(x), e, cn(x)) <0 0rC(x) =0 (3.11)
i € Ny, N, ={0,1,2,3, ...}, (3.12)
where the vector of decision variables is defined as:

X = (x4, Xz, e,)T (3.13)

The decision vectors are part of a workable region, which is a set of constraints C. These
conditions should be satisfied among the set of all vectors, which is a set of favorable (e.g.,
non-dominated) solutions in the objective space also called Pareto optimal front or Pareto
front. Various multi-objective algorithms are described in [Abr 2005, BDM et al. 2008, Deb
2002, ES 2003, GC 2000].

Measurement-based and simulation-based approaches form the primary basis for building up
real-world systems. Depending on the model’s intentions, various modeling tiers are more
sufficient than others. Especially the model domain plays an important role with regard to
functionality characteristics and design decisions.

3.3 Server System Model Domains and Aspects

This thesis focuses on rack-mounted server system models and their simulation. As proposed
before, a model description relates to corresponding objectives. In the case of servers, the
maximal outlet, also known as the exhaust temperature and the related airflow are critical
characteristics in the planning phase of data centers. High costs of data centers incur from

8 Multiple conflicting objectives: known as the multi-objective optimization problem (MOP)
7 pareto: Vilfredo Pareto generalized the concept of Francis Y. Edgeworth
% Constraints: define the variable boundaries (low or high) of each decision variable x € X

54

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

cooling the equipment, which results in energy costs. Figure 11 shows the hot and cold aisle
design in data centers. As a consequence, each consumed electrical power unit results equal
quantity of released heat [ERK 2006]. Air-conditioning systems®" dissipate heat and coldness to
keep the data center temperature and humidity conditions constant. High humidity supports
condensation on electronic devices, which may lead to electrical short circuits. In addition,
critical server components could be damaged, and a server crash and shutdown may result
from these damages. Servers produce masses of heat. Due to an increasing power density®,
the heat generation grows exponentially. The authors in [Sku 2013] assume approximately 30
kW in power loss in a 19-inch rack enclosure. Thus, heat removal becomes a fundamental issue
for data centers. Data centers use entire systems, such as HVAC (Heating, ventilation, and air
conditioning) equipment, to ensure permanent heat dissipation. A consequent heat
production exists in all domains up to chip level, as shown in Table 8. The demand of heat
dissipation in entire data centers is hundreds or thousands of times larger in comparison to the
chip level.

Table 8: Thermal systems in various domains

Thermal Domain Thermal systems
demand
High Data center Heating, ventilation, and air conditioning (HVAC),

heating, ventilation, air conditioning, and
refrigeration technology (HVACR),
computer room air conditioner (CRAC),
computer room air handler (CRAH)

Rack enclosure Air distribution (fan panel), water cooling,
active flow control (AFC)
Server system, Air distribution, ventilation (fan),
Component water cooling
Low Chip Heat spreader, heat sink

The other remaining costs are electrical equipment costs. These energy costs are associated
with operating and maintaining (O&M) the IT infrastructure or computing equipment, which
are operational expenditures (Opex). Opex are ongoing, regular occurring costs in operation,
such as administrative, lightning, or thermal costs as well as power expenses over a given
period, e.g., a year. In contrast, capital expenditures (Capex) are fixed one-off costs®, for
instance, initial IT infrastructure and equipment investment costs, to ensure the daily business
and services of data centers. All cost types are summed up into the total cost of ownership
(TCO) and are a critical part of return on investment (ROI) decisions, which faces the trade-off

8t Air-conditioning systems: filtering, reheating, humidifying, and dehumidifying
8 power density: effect of shrinking CMOS sizes, watts per square cm
% One-off costs: cost to build

55

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

between buy84 and internal build [HLH et al. 2012]. There should be a balance between TCO,
ROI, and power usage effectiveness® (PUE). This metric, defined by The Green Grid, compares
total data center energy consumption with the IT equipment energy consumption. A PUE value
results by comparing the complete utility load with the total IT equipment load [Mat 2011, Jau
2011]. On the other hand, uninterruptible power supply (UPS)®® systems have to be able to
handle all energy requirements within the high-availability 24x7 data center if a power failure
occurs. In decentralized or hierarchical data centers, power distribution units (PDUs) give the
necessary power to many servers under normal, everyday circumstances. PSUs distribute
power to single servers and have a smaller power range in comparison to PDUs. Table 9 shows
the classification of the power systems to their domains. For instance, power models at data
centers handle power demands in kilo-, mega-, or gigawatt. Chip’s power model calculates
demands as microwatt and milliwatt. A data center operator monitors the power and energy
values in an entire building [New 2008].

Table 9: Power and energy systems in various domains

Power (energy) demand Domain Power systems
Power [W] Examples
High 105.00 Data center Uninterruptible power supply (UPS),
energy power supply (EPS)
10%-10°° Rack enclosure Power distribution unit (PDU),
rack distribution unit (RDU)
10%-10° Server system, Power supply unit (PSU)
Component
Low 103-10" Chip DC-DC power converter, control unit,
transformer

The data center manager should be aware of the growing possibilities to use information,
which leads to adjustable data center capacity, such as computational nodes and storage. A
data center manager has to plan the energy demand for peaks. The power systems should be
able to handle extra energy demands also within the near future. Thus, the authors of [RN
2011] introduce a growth model to discuss future IT power requirements. The growth model
includes the following two main parameters: a) the design IT load profiles and b) the system
capacity plan. The profiles predict the actual, initial, minimum, and maximum (final) load in the
data center. The system capacity plan supports the defined IT load profiles via step size and
margin. If the system capacity is bigger than the actual IT load, capacity, energy, or costs are
wasted. However, if the system capacity is lower in comparison to the real IT load, the data
center needs extra IT resources to avoid crashes.

84 . .

Buy: collocation, hosting
® PUE: reciprocal data center infrastructure efficiency (DCiE), aim: low PUE value
86 .

UPS: have batteries, converters, and generators

56

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Servers in data centers are utilized in various ways. Various workloads require diverse server
power and performance levels. On the one side, some services and operating times vary in
relation to the time of year and day: for instance, a peak utilization level of a mail server will
occur when the working time in an office begins. Customers check and retrieve emails from
the mail server in a concentrated manner. After the first working phase, the requests (i.e.,
utilization level) decrease. Another example is the use of a productive subversion (SVN) server.
Figure 26 and Figure 27 show the total number of commits within one week and within one
day over a period of one year. The statistics identify differences at the working days and hours.
Monday and Wednesday are used more often to commit changes than on Tuesday, Thursday,
and Friday. Fewer commits occurred over the weekend. On the other side, the numbers of
commits increase during working hours. Peaks are displayed at 9am, 2pm, and 5pm. Each
commit creates input and output traffic at a subversion server. Processors, memories,
networks, and storage systems handle and process this traffic. Therefore, the server system
and component utilization vary.

commits depending on working days

number 1800
of 1600
commits 1400

1200
1000

800

600

400
H =

0
Mon Tue Wed Thu Fri Sat Sun

Figure 26: SVN server commits — day statistic

commits at hour of the day

number 800
of

commitsTDD
600
500
400
300
200
100 I
0 — — - I u I | - I - 0 -
2 3 4 5 6 7 8 9

0121 2 3 4 5 8 7 8 9 10 11 12 1

Figure 27: SVN server commits — hour statistic

Previous studies discovered that server utilization could be extremely low, because of long idle
times between jobs. Figure 27 shows this effect at early-morning hours. The commits are done
marginally in comparison to office hours. The vendor does not design the server for an average
utilization level of approximately 10 up to 30 percent. Invested capital costs and resources are
wasted because the server is underutilized and consumes high power in low utilization (less

57

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

energy efficiency87) in comparison to a high utilization level with a high energy efficiency level,
as shown in Table 10 and Table 11. High energy costs result at low utilization without any
processing benefits. Both tables show less energy efficiency at utilization levels from 10 up to
30 percent, which increases by higher utilization. In the case of optimized systems (II) the
initial power is only 10 percent instead of 50 percent of peak power [BH 2007].

Table 10: Server utilization, power, and energy efficiency — system I [BH 2007]

Utilization [%] Power [% of peak] Energy efficiency

0 50 0

10 55 0.18
20 60 0.3
30 65 0.46
50 75 0.66
70 85 0.82
100 100 1

Table 11: Server utilization, power, and energy efficiency — system II [BH 2007]

Utilization [%] Power [% of peak] Energy efficiency

0 10 0

10 55 0.18
20 75 0.27
30 83 0.36
50 92 0.54
70 95 0.74
100 100 1

The energy efficiency of the server system has improved during recent years. Table 12 shows
the energy efficiency of a rack-mounted server system from Fujitsu®® in 2015 measured with
SPECpower [SPE 2015]. Eight years after system II measurement (Table 11), the energy
efficiency has doubled at low utilization levels (10 — 30%) because of efficient components,
design, and architecture. Even so, there is a constant quest for improvement at a low
utilization level.

& Energy efficiency: the authors calculate the power efficiency, called energy efficiency, by dividing the
utilization level and the corresponding power, both normalized by their peak values
88 Fujitsu: Fujitsu Limited, http://www.fujitsu.com/global/

58

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Table 12: Server utilization, power, and energy efficiency — system I11 [SPE 2015]

Utilization [%] Power [% of peak] Energy efficiency

0 0 0
10 32 0.32
20 37 0.53
30 43 0.7
50 54 0.93
70 69 1
100 100 1

Reducing idle times is a management strategy. Performance values check and compare
systems and their characteristics. Benchmarks are standardized, synthetic sets of applications,
which are executed on the system. Performance metrics and values identify how powerful
such systems could be. This specified standard is a reference point for comparative purposes.
It establishes how efficient a system is designed and operated. A few repeated measurement
iterations support statistically significant statements. Data center owners or operators
compare the efficiency of key facilities, such as cooling, lighting, or power distribution. An
indicator of the HVAC system performance is the ratio between cooling and UPS power [TSX et
al. 2003], as shown in Equation (3.14). The UPS output strongly relies on the system utilization.

HVACpower [KW]

3.14
UPSoutput [kW] ()

HVACperformance [%] =

The HVAC system effectiveness is calculated to be IT equipment energy divided with full HVAC
system energy, which is a sum of the electrical energy for all HYAC components, such as the
cooling, fan movement, fuel, steam, and chilled water [WK 2013].

] __IT equipment energy

HVA Ceffectiveness [%] = (3.15)

HVAC system engery

HVAC systems are integral elements of data centers and form a part of the total energy
consumption of data centers. This is applicable on rack enclosures as well. Table 13 shows the
metrics and key performance indicators (KPIs) in various domains, such as data centers. The IT
or load density®® of server equipment or server utilization factors are examples of key
performance factors in rack and server domains. On the other hand, time to market conditions
such as the transaction and response time are a part of the service level agreements of data
centers. Servers are analyzed not only concerning power consumption but also concerning
throughput, such as the bandwidth [GB/sec], performance [GFLOPS/TFLOPS], or total numbers
of instructions or cycles. Appendix A3b provides an enhanced table of metrics in various

8 Density: watts per square feet [W/sf]

59

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

domains. The Top 500% benchmarks the energy-efficient supercomputer in the field of high-
performance computing (HPC) using LINPACK®'. JouleSort®® and SPECpower similarly
benchmark servers concerning their computing efficiency by measuring the system
power/energy, performance, or time while processing an application.

Table 13: Metrics and benchmarks (performance, power/energy, and efficiency) in various domains

Domain Metrics Benchmarks
Data center Power usage effectiveness (PUE), airflow Calarch, Comis,
efficiency (AE), cooling system sizing (CSS), DoE-2, EnergyPlus,
data center cooling system efficiency (CSE), Genopt
carbon usage effectiveness (CUE), data
center workload power efficiency (DWPE),
coefficient of performance (COP)
Rack IT or server equipment load density (W/sf),
enclosure SWaP (space, watts, and performance), PDU
losses, return temperature index (RTI), rack
cooling index (RCl), beta index ()

Server system, T equipment utilization (ITEU), Green 500, SPEC

component IT equipment efficiency (ITEE), CPU, SPECpower,
utilization (load) factor, server utilization, LINPACK, STREAM,
green computing performance index (GCPI), JouleSort, Server
peak performance (GFLOPS, TFLOPS) Efficiency Rating

Tool (SERT)

Chip Performance counter, instructions or cycles, Latbench, Micro-

thermal resistance Benchmarks

Each domain includes performance indicators with magnification by a factor of 10, starting
from the chip moving towards the data center’s domain. Because of their performance and
energy usage, the carbon footprint production of each domain is proportional to the
magnification factors. Meanwhile, the servers are in operating mode, producing 80 up to 90
percent of the entire carbon footprints® [Fuj 2010].

Power is a key factor across all domains, as shown in Figure 28. Costs, either operational or
expenditure, are the main factors in data centers and build limits for the design process and
investments. A high computing performance reduces working time needed for given services.
On the other hand, increasing maximum power consumption leads to growing thermal costs.
Thermal considerations have less impact in the chip domain in comparison to server or data

% Top 500: http://www.top500.0rg/project/linpack/

L LINPACK: https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download

%2 JouleSort: http://sortbenchmark.org/

% Total carbon footprint: raw material, manufacturing, transport/distribution, assembly, use phase,
recycling, and disposal

60

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

centers. Airflow and humidity are listed separately, as shown in Figure 28, because they are
not considered in most performance metrics for chips and servers. All mentioned aspects,
thermal, power/energy, utilization, carbon footprint, airflow/humidity, and costs have same
goals towards performance and efficiency but differ in their approaches.

Considered A
Aspects

o
[}

Costs

e

r

£ Air flow / humidity

0 ¢

ol Carbon footprint

me

an

n o Thermal

cy

a Utilization

Power / Energy
|- .
P Domain
Chip Server system, Rack enclosure Data center

Component

Figure 28: Considered aspects in various server domains

The performance and efficiency aspects correspond separately to thermal, utilization,
power/energy, and time but are combinable. The performance metrics indirectly express the
systems’ behavior in various domains, while the busy and idle thread metrics present the
utilization aspect of a resource, for instance. The processor provides computational power to
offer the highest throughput, but on the other side, it generates extra heat. The high numbers
of exceptions or errors are the reason that a task execution may take longer, and the costs
increase. The performance is considered in each domain, but is shown as a single aspect in the
figure to depict the huge amount of the metrics.

Additionally, each aspect also has many metrics, not only performance, to determine the
resources’ behavior. The power losses (in the PSU, PDU, or UPS) are common metrics at the
server, rack, and data center level. The utilization levels are fundamental metrics in the
component level. At low level, the thermal resistances define the temperature behavior. On
the one hand, the metrics are a domain; however, they are included at each considered
aspect. If we integrate the metrics in Figure 28, the objects overlap, and they are illegible.
Therefore, the aspects completely move to the y-axis. The x-y-position of the various domain-
specific metrics and indicators in Figure 29 shows the direct relation between the server
domain and the considered aspect. This thesis focuses on thermal, power/energy, utilization,
and performance indicators, which are key factors for server systems and components. The
other indicators such as the carbon emission, airflow / humidity, equipment density, or costs
are not considered.

61

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice

Considered 4
Aspects

Costs

Carbon footprint

Performance
&
Efficiency

Thermal

Air flow / humidity

Utilization
(% usage)

Power [Energy

CAPEX/OP| .

Coue)
I,
.@

Cree>

ops (FLOPS]

allocated size

@

air flow rate
air transfer rate
:
load density (system load) availability
@ executing time (systel load factor
network utilization
storage utilization

CPU utllizatio transaction cylce time
data center utilization

cache hit rate

CPU d
- " Shee delay (load) time
disk utilizatiop/smemory utilizatigm

apacity utilization
component utilization

power (usage, state
average power

power
converter
losses

UPS (EPS) losses

PDU (RDU) losses Metrics / Indicators
.
Ll
Chip Server system, Rack enclosure Data center Domain

Component

Figure 29: Metrics and considered aspects in various server domains

Server domains with performance, efficiency, or utilization aspects contain most metrics and
indicators. Data center metrics focus on costs and performance. In this thesis, the server
domain is the main focus and is defined as a system domain. The environment abstracts
external system influences, such as rack enclosures and data centers. The physical domain
clusters the internal chips, transistors, gates, logic, and circuits. Table 14 provides a short
overview and examples of the system domain definition.

62

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice
Table 14: Focused domains for thermal, power, and performance indicators
Domain Server system domain Focus
Data center Environment Hypervisor / virtual machine monitor,

infrastructure equipment, operating
system level, software level

Rack enclosure Environment Network equipment, storage
equipment, server

Server system, System Components (processor, memory,

component bus), electronic system level (ESL),
connectors

Chip Physical (Chip) Circuit, transistor, gate, logic

Analyzing the server system domain, server definition (Section 2.4.1), and the modeling
domains (Section 3.1.4) lead to the following server type description, classified in Figure 30:

I. The physical server system description, including:
Al. Electrical descriptions for the power/energy, thermal, performance, and
efficiency calculation also within chip level
A2. Thermal equations for heat transfer
A3. Mechanical definitions that define the physical system characteristics: e.g., the
largest amount of components or the total number of components currently
used, such as memory modules, etc.

Il. Interfaces (Peripheral Component Interconnect), operations, and communication
processes to handle jobs and their related descriptions are part of the logical level.

Il Hardware and software designs define the topology, hierarchy, generation, or
architecture views of server systems. Furthermore, they include components and
connectors to support logical description.

IV. The conceptual description of the server system defines data types, general/abstract
functions, workflow (control flow), communication, databases, processes, or
controllers.

V. The structural or architectural description is part of the conceptual and contextual
because it includes the topology, entities, coupling, attributes, or component
relationships.

VL. The customization is part of the contextual and the external domain. Herein, the
customer defines the server system’s hardware and software configuration, such as
the operating system (OS) type, or BIOS/UEFI settings.

VIl. The usage context defines the server system environment. The server system inputs
are the ambient temperature, utilization level, and server configuration.

VIll. The model‘s purpose (Section 3.2) is the considered aspects (Section 3.3), which are
partly described within the contextual and the external level.

63

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

IX. Measurement data, such as benchmark results, device tables, or data sheets are
external conditions for system development and design.

X. Constraints are external sources because vendors define thermal limits for the
components. The system designer and company predefine some rules, limits, laws,
policies, schema, or terminologies.

IX external

VI
B VIl H v

contextual < >

v

conceptual

i
R ——

wa(] D

_//

| physical

Figure 30: Definition of server modeling domains using server system definition, enhanced model from [Osi 2010]

If we add the considered aspects, the planar abstraction will become a three-dimensional
graph, wherein the x-z-plane represents Figure 30 partly at the server system domains. Each
aspect is taken into account and has a model in a server system domain, represented in the x-
y-plane. Furthermore, the y-z-plane represents these aspects within the server-modeling
domain.

Y = considered aspects

efficiency
performance

thermal

utilization
power / energy

external X = server system domain
contextual
conceptual
logical
physical

physical (chips) |sy5tem| environment

Z =server modeling domain

Figure 31: 3-dimensional space for diverse models

64

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The next sections describe the fundamental algorithms and approaches initiated from the
various model aspects, which can be classified in the server system and server-modeling
domain. The models are substantial for the management techniques and the optimization
algorithms.

3.4 Power and Energy Algorithms and Approaches

The following power and energy models are described along the x-axis at various server system
domains. The white-, gray-, or black-box models are domain-specific because of the inner data
or behavior. This section presents various models beginning with the full information, such as
instructions up to the least well-known internal data. Several prototypes of low-level power
devices apply cycle-accurate approaches.

3.4.1 Physical (Chips) - Server System Domain

The power and energy model approaches and algorithms are usually defined as a physical or
logical description of the chip or component level. Chip level approaches define their electrical
behavior at the transistor, circuit, gate, register, or transfer level. The interior component
structures, operations, and processes are known because of existing data on the geometry,
design, and topology of the circuits, characterized by real hardware measurements.
Monitoring, profiling, or tracking the software and corresponding power values give the ability
to create power metrics. If the data about the natural linking of the devices, the used blocks
providing service, their operations, the data transfer at register-transfer level (RTL), and the
chip’s functions and signals are obtainable, all internal system data is visible, and thus it is a
white-box model.

White-box Approaches (Instructions)

We categorize the white-box power models into logical and electrical® descriptions. The
logical description includes instructions or activities to define the system behavior. The logical-
based approach uses physical measurement techniques to obtain power values while
executing associated and disassembled instructions running on the component. In this case,
chip level details are not required. In contrast, simulation-based approaches need information
about the chip’s micro-architecture, which relies on functional or algorithmic levels.

In [TMW 1994], fundamental research is done for measurement-based power analysis
techniques. The average power P is defined by the average current I, and the voltage supply
Vcc. The energy E is the consumed power over the execution time T of an instruction,
operation, given task, or software. Moreover, the execution time of a software consists of the
clock cycle’s N and the corresponding clock period 7, as shown in Equations (3.16) and (3.17).

* Electrical description: gate and circuit

65

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice
E=P+xT,T=N=x*t (3.17)

Individual instructions have their specific energy consumption. The total energy is determined
by the base cost of one cycle multiplied by the full number of cycles for the instruction. This
approach is called instruction-level power analysis (ILPA). Tiwari considers the inter-instruction
effects in the power model. Furthermore, Tiwari et al. analyzed the software power
consumption on the basis of the instruction level on a digital signal processor [TMW et al.
1996]. They found that the state changes (switching activities) in the circuit generate more
overhead in comparison to the single instructions at each time. These inter-instruction effects
are considered within assigned costs. Therefore, the author refined the total instruction-level
energy model whereby the overall energy E is the total of:

1. “base costs, B;, of each instruction, i, weighted by the number of times, N;, it will be
executed, [TMW et al. 1996]“

2. “the circuit state overhead, 0, for each pair of consecutive instructions, (i,j),
weighted by the number of times, N;, the pair is executed, TMW et al. 1996] ”

3. “the energy contribution, Ey,of the other inter-instruction effects, k, (pipeline stalls
and cache misses) that would occur during the execution, [TMW et al. 1996] ”

Equation (3.18) shows the total energy calculation. The power analysis uses the entire
instruction set architecture (ISA) to characterize single instructions.

E =3(B; * N)) + X ;(0;; * Ny ;) + Xk (Ey) (3.18)

Most of the measurement-based, instruction-level power models refer to Tiwari’s method. The
authors of [NKN et al. 2002] also proposes a measurement-based, instruction-level power
model, but on a current sensing circuit. Each clock cycle and related instantaneous currents are
monitored and measured during the execution of instructions such as ADD, AND, or MOV. In
the work of [RHH et al. 2005] the analytical power model is applied on a processor for a low-
power embedded system on a chip (SoC). In addition, they characterized the instructions in
five main groups.

Another adaptation to the Tiwari’s method is done by [SIC 2003]. The power consumption of
the components includes the dynamics, and the static power defined in Equations (3.19),
(3.20), and (3.21). The dynamic or switching power is calculated by the whole average
capacitance” C,, the supply voltage Vpp, and the operating frequency f. The capacitance
depends upon the software execution per clock cycle. The static or leakage power is the
product of voltage Vpp and the leakage current [}, through the circuits. The fixed power
consumption results from bias currents, junction currents, or gate tunneling, for instance.

% Total average capacitance: sometimes also defined as effective (switched) capacitance Ceys

66

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice
pP= denamic + Pstatic (3.19)
denamic =(p * VgD * f (3.20)
Pstatic = Vop * Leak (3.21)

In addition, the authors of [HXL et al. 2002] added a factor « to the dynamic power definition.
In the case of complementary metal-oxide semiconductor (CMOS) or very large-scale
integration (VLSI) circuits, the factor « describes the switching activity ratio, and C is the
physical load capacitance [JGM 2003], as stated in Equation (3.22).

Paynamic = C * VDZD *0Ck f (3.22)

Landman [Lan 1996] classifies the architectural power models in complexity-based and
activity-based models and describes the static as well as dynamic activities at the behavior-
level. On the one side, the numbers of functional blocks, which are equal to used gates for a
specific function, define the chip architecture’s complexity. On the other side, the authors of
[Naj 1995] found that the consumed power relies on the input and output entropies of the
functional blocks. Three high-level approaches in the industrial use case, considered in [FCM
2014], mainly analyze FPGA power consumption. They offer an overview about basic hardware
design flow beginning at the physical level, to gate level, register-transfer level, and up to
system level.

Other approaches include the micro-architectural structure of the circuits. The authors in
[KAM et al. 2002] give an overview about micro-architectural power methods. Hence, the
authors of [LS 1994] propose a power model that includes the logic gate functions, the
capacitance, the latches coming from flip-flops, the cell structures of a memory module using
cache lines, the row decoder, the column selector, or intermediate interconnections such as
buses or wires. In fact, the approach requires library information® about the circuits at the
gate level. In [WJ 1996], they present an analytical model for an on-chip, direct-mapped cache.
The authors focus on access and cycle times at a cache array. Moreover, they consider the
parameter (cache size, block size, or width), the cache organization parameters (bit lines, word
lines, or array size), decoder structures at gate level, comparators, multiplexers, drains,
resistances, or capacitance. An overview about the various types of capacitance and their
equations are in [BTM 2000, NKB et al. 2004]. In [HXL et al. 2002], the authors consider the
gate and transistor capacitance within an architectural-level model, such as, using the first-in
first-out (FIFO) method. Another execution-driven, cycle-accurate power model of a memory
system, including various access stages, is addressed in [YVK et al. 2000]. The output is traced
cycle-by-cycle at the register-transfer level. They proposed a transition-sensitive energy macro-
model. A macro-model considers a function or unit as a black-box model and is only aware of

% Library information: composition rules and technical description of basic building blocks of electronic
functions (layout, schematic, logics, shapes, or symbols)

67

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

the power consumption of a subroutine within an internal module®. The authors of [LJ 2003]
present a linear model, including the power interest metrics ¢; and macro-modeling

coefficients w;.
P = Z] wj * Cj (323)

A control flow graph defines the correlated paths of the functions or subroutines. The authors
of [LRR et al. 2004] address another early-stage power model at the RTL or lower level, based
upon a cycle-accurate functional description. It uses system activities, transition states, data
paths, or buses.

The previous physical and logical models (white-box models) are instruction-level power
modeling approaches, which need detailed design data (architecture, structure, transitions,
execution units, registers, or activities) about the circuit level in the physical system domain.
These approaches have restrictions because of their low abstraction level. Usually, we need an
analysis® of the chip to build a model unless earlier data are available. Therefore, the software
or instruction® sequences run on a real chip and in parallel, the customer receives the data.
The circuit- or gate-level models become infeasible and extremely slow because of the
simulating complexity of a large software application [LJ 2003]. In [YVK et al. 2000], the authors
propose the memory system’s power model in the physical domain. These techniques are too
inefficient for system-level design. However, some unknowns such as the bus architecture,
read/write access, context switches, or the total number of bus transactions must be
predicted. Furthermore, the actually used instructions on the chip are unknown before the
customer or developer assembles the chip. In the design phase, the developer determines the
suitable chip for a specific demand to give proper support. For instance, a network chip™®
should support the data rate of 10/100/1000 megabit per second, has a package size of
81mm?, and maximally use a two-volt supply voltage. The designer selects the chip by charging
the minimal costs. In sum, the energy and costs are major design decisions in comparison with
the chip architecture, structure, or activity. In addition, the design and layout of the system
may have not been specified. Various design parameters, such as circuit styles, clock
strategies, word lengths, signals, or layout techniques are impossible to characterize in the
early design phase. Additionally, we cannot guarantee the detailed circuit-level information
availability.

*” Internal modules: adders, registers, multipliers, or controllers

98 . . "l
Analysis: measuring, profiling, or tracking of software, instructions, or activities

% |nstructions: assembly-level

1% Network chip: Ethernet PHY chip, physical layer transceiver

68

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.4.2 Components and System - Server System Domain
Gray-box Approaches (States and Transitions) — Processors

9% trace micro-architectural

Besides the instruction-level approaches, the hardware monitors
events, such as accesses, and switching activities, such as cache miss times. A power model
uses the counter-based heuristics that reflect the hardware activities. The authors of [JM 2001]
distinguish between hardware performance counters and power-relevant events of
microprocessors. In their approach, professional monitoring tools trace the processor’s
performance counters and events. The processor’s functional units measure and verify the
power of an executed application. Bellosa analyzed the floating-point or integer instructions
on a processor and the event correlation, for instance [Bel 2000]. [SBM 2009], [RAK et al.
2013], and [LSQ et al. 2014] provide power models using performance counters or hardware
events, such as instructions per cycle, fetch counters, miss/hit counters, stalls, retired-
instruction counters, clock logic, data path, cache, or other events to choose the correct
operating condition. Another approach considers per component c; the access rate ar, the
architectural scaling as, the maximum consumed power mp, and the conditional clock power
ngcp for the component power, outlined in [IM 2003]. The authors analyzed a Pentium 4
processor and its functional units. They used 24 performance event metrics for the model of
the processor power. The total power is the sum of the idle power and the power of all
components, as shown in (3.24). The system power varies between 30 and 50 watts while
executing several benchmarks. Their model predicts the power with a variation about three
Watts. The authors of [BGM et al. 2010], applied this approach to the power of the processor
cores.

Peotar = Piare + Xi(ar (¢;) * as(c;) * mp(c) * ngep(c;)) (3.24)

Those power model approaches are sufficient if real hardware is available. Through these
performance counters, they are able to generate power values for a specific application. The
hardware performance counters provide detailed processor data in comparison to events
coming from the operating system or application. However, if the data on an application or
their operating type'®is not available, we cannot estimate or predict the power. The
application may be non-deterministic and vary over time throughout diverse executions. Bus
transactions'® from other components may influence the access rate. On the other hand, the
processor is still in development or only a prototype is shipped to the server system vendor
during the design phase. Therefore, the performance counters are either not traceable or do
not present the last version. In addition, the processor type limits the heuristics, and with
them, the performance counters. Furthermore, the measurable events simultaneously deviate,
as analyzed in [JM 2001]. One reason is the various CMOS types used by the application. The

101
Hardware monitors: performance counters which are a group of special registers

Operating type: integer, floating-point, arithmetic, or logic
Bus transactions: data activities on the front side bus (FSB) are reads, writes, or pre-fetches

102
103

69

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

performance counter approaches are not valid for novel multi-core processors since new
processor architectures, such as extra cache levels or clustered functional units are introduced.
In [Ben 2010], the authors propose that various caches have a power proportion of
approximately 30 percent of the entire dynamic power profile of a processor. Two other major
parts are the clock and the functional units.

Moreover, the event-driven model attempts to generalize the instructions and performance
counters by using resources and events. Each resource within the system is a state machine
wherein the state is component behavior abstractions, including data about the power
behavior of a block, block interactions, or environmental data. An event leads to a state
change, also called a transition. Section 3.1.2 shows the formal definition. A transition is
marked with costs, times, or events within the state machine. The power of a resource is
associated with the actual state. Hence, a state is marked with a power value or function.
Benini [BHS 1998] presents various power state machines (PSM) including the operational
states for a display, a disk, a memory module, and an electronic clipboard. Three years earlier,
Benini [BM 1995] described a state transition graph (STG) as a Markov chain for a simple finite
state machine at a high-level abstraction. The Figure 32 illustrates an equal power state
machine of a server containing only the two states on and off on the basis of a formal
definition of Figure 20. In this model, the power consumption is zero when the server is off and
otherwise a function of maximal power and the internal system state if the server is working.
The power events' trigger the diverse transitions between the two server states.

power fail

push power button (AC lost) push power button

power on lan shutdown event (OS,SCI)
power on event

P=f{400 W system state)

Figure 32: Simple power state machine of server (on, off)

104
Power events: customer shutdown via operating system or automatic shutdown event via system

control interrupt (SCl)

70

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

105
d

The advanced configuration and power interface (ACPI) specification efines the system

states into:

e Global system states (G)

e Device power states (D)

e Sleeping states (S)

e Processor power states (C)

e Device and processor performance states (P)

Appendix A3a gives an overview of all global system states specified by ACPI [HIM et al. 2013].
The global system state defines, for instance, if the system is in mechanical off (G3), soft off
(G2), or the working (GO) state. The device power states are adequately distinguished in off
or full-on. The sleeping states (S0 — S5) include the power and latency. The processor power
(C) and performance (P) states are interpreted by processor vendors such Intel [C) 2010],
which defines and extends the states as follows:

e System sleep state (S)

e Microprocessor and package idle state (C)

e Microprocessor performance and operational states (P)
e Microprocessor throttle states (T)

An overview of the internal processor states shows Table 15, Table 16, and Figure 33. The
states consists of N number of sub-states, whereby N is any natural number N, =
{0,1,2,3,...}. The related power management approaches are described in Section 3.4.2. For
instance, the throttling can reduce the noise of the fans because a passive cooling is enough
after the power reduction.

Table 15: Intel processor states (S) — an overview [CJ 2010]

Intel States State Description
System sleep states S Sleeping state
S0 Full on
S§1...55 Sleep states
S3 Suspend-to-RAM
S4 Suspend-to-disk
S5 Soft off

195 ACPI specification: also defines the transitions between the states

71

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice

Table 16: Intel processor states (C, P, T) — an overview [CJ 2010]

Intel States State Description
Microprocessor and C Processor power state
package idle state

CcO0 Executes instructions
active, operational
C1..C7 Not fully active

C1,C1E Halt

C3 Sleep

Cc6,C7 Deep sleep
Microprocessor P Performance state
performance and
operational states

PO Maximum performance

turbo

P1

PN Energy efficient state
Microprocessor T Throttle states
throttle states

Sleeping state W

S
Operational Sleep Sleep
S0 S1 SN

Operational

2" ||
Power state
c

‘ g

Performance state
P

Turbo
PO ‘

Power siate

C
Active Not fully active Not fully active
co c1 CN

| Thermal design point
P1

Not fully active
C1..CN

Active
co ‘

‘ Power saving
P2...PN-1

~
[Throttling state j | Performance state ‘
! AN " /

Throttling state ‘ | Performance state |

T Energy efficient ‘
N Y Y PN
@ ‘ - | ‘ ‘ | - | /’I
AP N AN ~
\ J

Figure 33: Intel processor states — a graphical Figure 34: Intel processor (P) states [CJ 2010]

representation [CJ 2010]

72

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The authors of [BJ 2003] use a power state machine for each core at a PowerPC. The
developed framework calculates the minimal and maximal power, which relies on a reachable
set of power states. In addition, they analyze the impact of various parameters and
configurations. Their algorithm includes the spreadsheet models, which will be outlined.

The power model of the state-based approach'® consists of three major power consumptions,
whereby t;; € T,s;,s; € Q, i,j € Ng,Ny ={0,1,2,3, ... }.

The leakage power consumption P;(s;) exists for all appearing states s;*".
The power consumption Ps(s;) is defined as the average power for all operations in
each state s;.

3. The transition power'® P,(t;;) is the dissipated power for a transition t;;, which

ij
switches the state s; to another state s;.

In conclusion, the power model sums up the power values for each used state and all occurring
transition power, as stated in the following equations.

Pieakage = Xiz1 Pi(Si) (3.25)
Pstates = Xizq Ps(si) (3.26)
Ptransitions = Xi=o Xj=o P (tij) , whereby i = j is negligible (3.27)
P = Psiates(used) + Prransitions(Used) + Pregrage (used) (3.28)

The state-based approach is applied wherever the resource’s state changes are detectable.
The model defines the power behavior in an abstract manner and does not consider the
system’s inactivity or corresponding overhead in comparison to Tiwari’s method. The approach
only considers the power behavior of the resource and the transitions. The lookup tables (LUT)
integrate the power models, for instance, as a hardware-specific macro. The authors of [CBB et
al. 2010] focused on the processor’s power domains to support a set of various power modes
where the power domains come from the diverse voltage regulators within the system on chip.

The clock frequency of the respective resource formulates the power states. Current
processors or memories today operate at various frequencies in the interval [finin, fmax] at
runtime. A related power value within the interval of [P,in, Pnax] €Xists for each frequency.
Equation (3.29) shows the power-frequency relationship, proposed by [UKI et al. 2010]. The
authors found a quadratic power model which consists of the minimal power P,,;,, the weight
factor «, the operating frequency f, and least frequency f;,;,, of the processor.

1% state-based approach: formal definition can be found in Section 3.1.2

State: can consist of several sub (internal) states
Power: it is precisely the energy because of consumed time for a state change

107
108

73

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

[GHD et al. 2009] present another similarly quadratic relationship. The minimal power, which is
more than 30%, and the power trends are shown in Table 10, Table 11, and Table 12. In [Han
2007], the power model of the processors uses the p-state and the corresponding frequency.

P(f) = Ppintocx (f — fmin)z (3.29)

199 hecause of the number of

In [TDM 2011], the researchers analyze a multi-core processor
cores and neglected active frequency in previous approaches. The authors propose a power
model with a linear association of the processor’s power consumption and the number of
working cores. They add the frequency relationship and power regression factors to predict
the power consumption of various application types. In [MAC et al. 2011], they present a linear
and non-linear regression model, which considers multi-core processors, including hidden
device states. Equation (3.30) shows the additive regression model, which is solved by
calculating the least square solution for the parameters S, 1, ..., Bn- The vector y =
[V1,¥2, .., Y] contains the power measurements; the vector x; = [x; 1, X; 2, ..., X; n] includes

the normalized vector of measurements on the n variables, and ¢; is the numerical noise.

Vi = Bo+ Pixig + BaXiz + -+ BrXin + & (3.30)

The evaluation results show that a linear and non-linear model of the processor differs from 10
up to 150 percent, such as, using the interchangeable configuration for the same dies. [BGM et
al. 2010] and [BM 2012] present core-based power models, such as in Equation (3.31). The
power consumption P, of a core j is total for all n cores. The entire power consumption is the
sum of the power dissipated by each single core.

By =21 P () (3.31)

The processor model of [KIC et al. 2014] considers the number of active cores, the operating
frequency, the number of cache misses, and accesses. The processor power is the sum of the
dynamic power, the static power, and the cache power, whereby c denotes the number of
working cores. The dynamic power consists of a constant k and the constant factor 5, which
depends upon capacitance, the supply voltage V, and the activity factor of the processor. The
static power is the product of leakage current and supply voltage. The cache power multiplies
the number of cache accesses N and a constant €.

Pprocessor = denamic * € + Pgtatic T Peache = ,B(kV)3C +y(kV) +eN (3.32)

The authors in [BM 2012] suggest a multi-core processor model, including resource sharing.
They further analyzed the chip-level, and the die-level constraints as well as the
communication between the cores. Secondly, they extended their core-level model by adding
active core power consumption and inter-core communication. The resulting power model is

1% Multi-core processor: Intel Xeon CPU E5540

74

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

based on the core-based utilization level. The entire processor power, in Equation (3.33),
consists of the chip-level mandatory component power B,., the communication power
between dies Piter gie, and the die-level power Py;.. The die-level power includes the core-
based power B,, the inner die-level power, and the off-chip caches power. In [BM 2012], the
authors describe information that is more detailed.

Pprocessor = Pmc + Pinter_die + Pdie (3-33)

The peak power consumption of the processor core is analyzed in [BCS et al. 2012], produced
by the functional pattern’s execution. The authors divide the simulation-based approaches into
switching activity (SA), weighted switching activity (WSA), transient analysis (TA), and post
layout analysis (PLA), which refers to the abstraction level and the domain. Furthermore, they
provide a comparison of the accuracy and the runtime of these approaches.

Moreover, the work of [FWB 2007] shows a model that uses the processor utilization reported
by the operating system. The dynamic power of components besides the processor and
memory is negligible because the power values are less than 30%. Benini addresses in [Ben
2010] the power consumption trend and power density trend, where the leakage and the
dynamic power increase linearly with the power density. Additionally, they state that the
supply voltage Vp decreased constantly by approximately 0.8-fold with each step of shrinking
{250, 180, 130, 90, 65, 45} nm technology, but the energy per device decreased by 50 percent.
Benini also found that the active power increases by 50 percent when the frequency doubles.

All simulation-based models have in common that a resource such as a processor must be
available. The power models work with measurement results using performance counters,
present frequencies, core activities, or access rates. Hence, the approaches use data about
inner designs, structures, states, connectivity, or parameters. The models characterize the
components and improve the power estimation because of higher detail and accuracy. In
comparison to the chip domain, data about internal structures are necessary to gain, but not
to every single, last, or full detail. For that reason, the approach is a gray-box view of the
system. The white-box and gray-box approaches differ in their accuracy and speed. The
instruction-level approaches are more accurate in comparison to the gray-box approaches but
at the same time very slow. Additionally, the more accurate models are very time-complex'*°,
and if they only present a small part of the overall power consumption, this means a waste of
effort. The main aim must be to optimize the operating costs.

1o Time-complex: high design and computational effort

75

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Gray-box Approaches (States and Transitions) — Memory and Disk

In addition to the modeling of processors, other devices and components are considered, such
as memory modules and storages. In [LR 1996], they introduce models for computational
elements. Equation (3.34) shows the PowerPlay’s dynamic power model of a static random-

“«

access memory (SRAM) module. “The switching capacitance,”...”, is a function of the word-
width (bits) and the number of words, [LR 1996].” They divide the swing capacitance into
Cpartiatswing aNd Cryiiswing, Which takes the related swing voltage'"! Vswing at a frequency f
into account. The authors of [NKB et al. 2004] consider a bit-line capacitance factor per module
by using an overall swinging delta voltage. In contrast, [ZYY et al. 2011] proposes a power

model considering the voltage and the current only.

denamic =k [CfullswingVDzD + CpartialswinngwingVDD] * f (3-34)

[HCE et al. 2011] describe a memory power model that quantifies the dynamic random-access
memory (DRAM) with respect to operational and background power. The active memory
operations, especially all accesses or data transfers, are the essential part of the dynamic
power; on the contrary to the power models of the processors, the operating voltages,
frequencies, and associated states are elements of the background power. The background
energy Epackground, @ shown in Equations (3.35) up to (3.40)"", is the sum of the consumed
energy for self-refreshing"™ the memory module, the energy to precharge the data, and the
overall energy produced by the data read/write operations'™. In [LEU et al. 2010], they adopt
the model using weights for the operations, such as activate, read, or write access. The authors
in [LZZ et al. 2007] state a model that uses the throughput of the read and write access for the

static power estimation.

Epackground = Eseif refresh T Eprecharge T Evead_write (3.35)
Eseif refresh = (Pself refresh * tself refresh) (3.36)
Eprecharge = Eprecharge_fast powerdown + Eprecharge_standaby (3.37)
Eprecharge_fast_powerdown = (PckeL * tekeL) (3.38)
Eprecharge standby = (Pcken * teken) (3.39)

! swing voltage (CMOS): output voltage range (rail-to-rail) usually from Vpp(+) to Vss(—)

12 CKEL/CKEH: clock enable low/high
8 Self-refresh: activating the module via row access

114 .
Data read/write: column access

76

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice
Eread_write = Ereqaa t+ Ewrite (3.40)
Eroqa = (Eo—psd x Bandwidth,,qq) (3.41)
Ewrite .
Eprite = (T; * Bandwidth,, ite) (3.42)

The authors of [HJZ et al. 2008] focus on background power in the same manner, but using a
state transition model. Their model considers the memory module design, including interfaces,
buses, pins'**, and logics. They found that the consumed power is proportional to the bits that
are read and written. Furthermore, the power depends on the data width because of the
involved number of devices for each access. The authors of [JCX 2008] address a typical state
¢ The authors
present the models for background, activate, read/write, and total power, including the

currents and voltages of the memory module. A similar power model is done in [Qia 2011],

machine of DRAM, which is equally valid for various random-access memories

whereby the idle, the active, and the standby state specify the current power state and the
spin down, the spin up, and the seek is the related transition.

In [XTB 2007], the authors introduce an analytical and empirical model for SRAM structures.
The energy model of the analytical SRAM array bit line, shown in Equation (3.43), has the
supply voltage Vp)p, the total capacitance Cp;tjine, and the voltage swing Vg4 of the bit line,
whereby the capacitance Cp;tine, for example, consists of pre-charge circuit capacitance or
column-select circuit capacitance.

E = Chpitiine * Vpp * szing (3.43)

In [KIM et al. 2011], the authors define a power model based upon the method'"” described in
[Mic 2007] for double data rate, synchronous dynamic random-access memories (DDR3). In
this approach, the termination power is additionally considered. Furthermore, the model uses
the percentages of cycles in the various states. The complete energy model is defined by the
consumed total power at a specific frequency for a given execution time, shown in Equation
(3.44).

Ef = Ptj;tal * Texecution (3.44)

115 .
Memory pins: data, control, or address

Memory kinds: SRAM, SDRAM, or DRAM (DDR)
Method: memory module calculation of Micron

116
117

77

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

In the work of [DBN et al. 2005], a memory module simulator called DRAMsim™® uses the
previous method. It calculates the power of various memory types, such as DDR, DDR?2,
SDRAM, and fully buffered DIMMs (FB-DIMM). The simulator uses a detailed cycle-accurate
timing model to support four different transaction policies''. It is possible to build a power
model by using the number of read/write cycles and the relative time at various states.

Power models for hard disk drives (HDD) and solid-state drives (SSD) work in the same manner.
The main characteristics are the average execution time for reading or writing operations, the
file size, and the number of concurrent processes, as stated in [IIE et al. 2011, IAE et al. 2011].
The total power consumption of hard disk drives is the sum of power dissipated in each
operating state for a certain time. Usually, the power is divided into a spin, start, idle, and
access, as shown in Equation (3.45). The total power consumption depends upon the number
of timeouts, activated by the number of disk accesses within the entire system, as given in [Gre
1994]. The authors of [SLU 2010] additionally consider the bandwidth of the disks, inner disk
parameters'?’, or the number of disks within an array**.

Pdisk = Pspin * Tspin + Pstart * Tstart + Pidle * Lidle + Paccess * Taccess (3-45)

At the approach of [MPL 2009], the disk model uses two different request types to estimate
the power consumption. In this method, they trace a real-time streaming workload, such as

123

data transfers'? or seek operations'®. In [GSI et al. 2002], they propose a state-based power

model.

The storage power models need access patterns, such as read and write operations and
related time data. Additionally, the models use state machines with transitions to estimate the
power and energy consumption. The operations, types, and corresponding device states are
known. These techniques use behavioral and cycle-accurate functional level models.

The gray-box approaches are functional models that specify a component or behavior in a
correct manner. They describe the system’s reaction to an external event, and the related
state machines are abstract event simulators of the system [Ben 2010].

18 DRAMSsim: http://www.eng.umd.edu/~blj/dramsim/

Transaction policies: first come first serve (FCFS), read or instruction fetch first (RIFF), bank round
robin (BRR), and command pair rank hopping (CPRH)

129 |nternal disk parameter: head switch, track switch, full stroke

Array: merge of physical disks to a logical unit, e.g., redundant array of independent disks (RAID)

Data transfer: read/write operations

Seek operations: physical (address) mapping of logical blocks

119

121
122
123

78

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Black-box Approaches (Spreadsheets) — Devices

We can use a black-box approach even if no other inner data and details are available. The
model presents the name and interfaces of a device (outside point of view), but no information
about the interior behavior or functionality, such as instructions or operations. Therefore, it is
applicable for specification and verification purposes in early design phases.

The base for a black-box model is data sheets, which are analyzed to find possible criteria for
the power models. We characterize the devices and then the customer selects the
characteristics, such as the bandwidth, organization of the device (architecture), cores, or
supply voltages. The entire power consumption uses the estimated energy per operation
defined in the model under specific constraints, such as the number of accesses of each
resource. A web-based spreadsheet is explained in [LR 1996], which considers devices
activities. The spreadsheets are tables in which cells contain data, and the function defines the
relationships between the column and row variables. The spreadsheets are excerpts of the
data sheets and provide power consumption values of each device on the architectural level.
The common method is a lookup table'*
component whereby the Hamming distance between subsequent input vector pairs indexes

, Which stores the power consumption of a single

each cell [NKB et al. 2004]. Texas Instruments provides power estimation spreadsheets'* for
open multimedia application platform (OMAP) devices.

The black-box approach is not able to estimate power consumption for an explicit instruction.
They use maximums or averaged values, “rely on aggregate instruction counts and do not
incorporate either time or input data, [DAH et al. 2007].” The switching clock capacitances are
not considered for each operation or instruction, but in general are included as a static value
within the model. Furthermore, the model is not flexible and has no learning curve because
alternative designs, modified technologies, smaller features, or architecture sizes need a fresh
device analysis, so a new spreadsheet is necessary [NKB et al. 2004]. The spreadsheet provides
the maximal power consumption and does not consider the dynamic power dependent on the
frequency or voltage settings. Usually, it is a summation of all components, which states the
power consumption at too high a level [BHS 1998]. On the other side, this approach offers a
fast calculation in comparison to instruction-based approaches within the early design stages
on the architectural level. Even so, the designer has to give some fundamental device facts to
model the complex system.

124 Lookup table: substitutable by simple equation or macro model

12 spreadsheets: http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet

79

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

A Mix of White-, Gray-, and Black-box Approaches — Complete Machine Simulation

In the academic literature, the simulation approaches regarding the system’s power and
energy combine and integrate the relevant parameters and resources across the various level
of detail. The full-system models are part of the early design stage as well as the architectural
level of existing systems. Hence, we distinguish between simulation-based and hardware-
metric-based models. The models present full-system approaches with the focus on power
consumption.

Simulation-based Full-system Model

In [MKO et al. 2002], an instruction set simulator of an embedded system is proposed. The
authors developed a model on the architectural level, which takes hardware costs, power, and
performance into account. The models build up hardware components, such as the processor
core, memory, and cache. They focus on embedded hardware/software co-design system,
including the internal bus architecture and pipelines. The application-specific hardware
contains a selection of functional modules, which can be either a master or slave. This
granularity is not adequate for complex server models, because of high computational and
design effort. Furthermore, the system specification does not define the instructions and
operations.

The authors of [DAH et al. 2007] develop a full-system simulator considering power,
performance, timing, and functional data for the early design phase. They propose a method
of predicting the power consumption for various micro-architectural structures using FPGA™-
accelerated simulation technologies (FAST). The simulator uses a functional and timing model
(FM / TM)* separately, each executed in an efficient unit designed for these purposes. The
functional model streams the instructions to the timing model, which sends the feedback
about the power, and performance back to the questionnaire. The authors found
dependencies between floating-point units, shift operands, and pipeline stages. Furthermore,
the timing models [WJ 1996, DAH et al. 2007] are an alternative approach usually used in the
chip and system domain for micro-architectural description. Timing data is a sustained part in
the case of software level models. An application and its behavior, for instance, the parallelism
of the software'”® and hardware'®, can be modeled using time data values. In addition, the
model also considers the timing aspects of the system. The significant factor of management

techniques and optimization strategies is the time and related constraints. In [KSH et al. 2009],

2% EPGA: Field programmable gate array

FM / TM: functional behavior “what”, timing behavior “when”

Software parallelism: complex structures and parallel executions, algorithm, compiler options,
programming style, independent processing elements, task, or data at the same time

% Hardware parallelism: simultaneously instructions, pipelining, machine architecture, hardware
multiplicity, superscalar, vector processors, or multiprocessors (shared, distributed memory)

127
128

80

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

a timing-dependent model is proposed to estimate the dynamic power, which considers
coupling impacts. If a coupled effect occurs, a relative switching-based time delay is observable
and hence has extra power consumption.

The work of [GFN et al. 2006] proposes a hierarchical model in which every component is again
a set of components. Each component has static and dynamic properties whereby the static
factors sp are constant and the dynamic properties dp change during runtime, such as the
voltage and frequency. The authors present the power consumption model of the server s
where SC is the set of components and N the amount of components. They distinguish within
the equation in the correlation function Fg. between the components and the power function
F; n of each component ¢y, ..., cy. The developed power model, shown in Equation (3.46),
does not simply add the power consumption of the components. It depends upon the
correlation between components as well as their static and dynamic parameters. They found
that the number of used processor cores has a higher impact in the case of high utilization in
comparison to idle or low-level utilization.

. Fs¢ = 0(Ssp,Sap) if SC=0 e
S 'Sd ,S = [N _ _— — .
sprap Fgc = (ssp,sdp,F1 (cslp, cép, Cl) s Fy (cé\é,, CC’in, CN)) else

Another system-level simulation tool developed by [BLR et al. 2005], reduces the
computational effort to optimizing the accuracy and efficiency, in comparison to functional
simulation. They offer a framework that includes alternative heterogeneous component power

130 Their method combines

models to find sufficient power models for an embedded system
multiple model types, such as cycle-accurate functional, transaction-level, and instruction-level
models dependent upon the accuracy and efficiency constraints of each component. They

developed a cycle-accurate functional and behavioral model.

A generalized simulation-based method for power-managed systems is proposed by [BHS
1998]. Benini considers the components in an abstract manner and calls them resources. The
set of resources and a power manager builds the system. The power manager “..., translates
environmental stimuli into requests to system resources to change their power states, [BHS
1998].” It also includes the power management policies, which are algorithms that try to
reduce the power consumption of the components. The authors abstract the external
environment (requests) and present it as a component’s state change initiated by the power
manager. They found that the utilization levels continuously switch between high, low, as well
as idle and thus, the power and performance change immediately. The power-manageable
resources have multiple power states. This leads to a model that considers the power
consumption of inner resource states, the related performance values, and the model includes
the switching activity times.

% Embedded systems: they concentrate on system on a chip

81

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Hardware-metric-based Full-system Model

In [ERK 2006], the authors introduce the Mantis method to create a full-system power model
and predict real-time power. The authors concentrate on blade servers, but also evaluate the
approach on a high-end server. Their method requires real existing hardware, because they
calibrate the system to get the power consumption characteristics. In their method, they
measure the active current component-level power, including the operating system utilization
metrics and performance counters. “Mantis estimates total power consumption using a set of
user-level system utilization metrics, [ERK 2006]”. The authors develop a server power model,
including various utilizations for the processor, the memory, hard disk, and network, as stated
in Equation (3.47). The coefficients K, K1, K5, K3, and K,are server-specific characteristics,
such as design and architecture properties.

Bserver = Ko + K1 * Uprocessor T K2 * Umemory + K3 * Ugisk + K4 * Unetwork (3.47)

The authors found that the transaction-related components use approximately 20 up to 40
percent of the entire power consumption. Furthermore, they state that the idle power is huge
on the Itanium server in comparison to the blade. The two highest power consumers are the
processor (about 50%) and the memory (about 30%). The processor power dominance of the
entire consumption decreases because of enabled power management strategies. The authors
do not characterize the power proportion referring to the utilization levels or component-
bounded workloads. The other power contributors are miscellaneous components, such as the
disk, net, or fans, which amount to 20 percent proportion. Furthermore, they do not consider
the processors’ variations and their related BIOS/UEFI settings. The authors measured the
system components in isolation and do not consider system-specific effects.

In the further research, the authors of [Riv 2008] introduce five models that estimate the
power consumption of a CoolSort machine, a laptop, a Xeon, and an Itanium server system.
These machines run a wide range of benchmarks, such as SPECint, SPECfp, or stream to
present realistic workloads. The models consist of the coefficients Ky, K1, K, K3, K4, K5, K¢,
the relative processor and disk utilization U ocessor and Ug;sx, and the performance counters
Py, P;, P., P, corresponds to the number of memory bus transactions, the number of
instructions retired, the unhalted clock cycles, and the number of last-level cache references.
The authors state a constant power model for each machine, as shown in (3.48). The linear
model in (3.49) considers the processor utilization. The authors enhance this model, including
an empirical factor F, as shown in (3.50). They also consider the disk utilization with the linear
model based on Equation (3.49). Finally, the performance counters B,,, P;, P., B, extend the
processor and disk utilization-based model, as stated in (3.52).

82

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice
1. Constant model
P =K, (3.48)
2. Linear processor utilization-based model
P=K.FK *{M}l (3.49)
0 1 max(Uprocessor))
3. Empirical processor utilization-based model
P=K i K *{ Uprocessor }1 ‘T‘ K *{ Uprocessor }F (3 50)
0 1 max(Uprocessor) 1 max(Uprocessor) ’
4. Linear processor and disk utilization-based model
P =K ?K*{M}1$K o Ydisk (3.51)
0 1 max(Uprocessor) 2 max(Ugisk))
5. Performance-counter-based model
P=K.FK *{ Uprocessor }1 FK,* Udisk
0 1 max(uprocessor) 2 max(ugisk)
T Pm T Py T Pc 0 Py
+K; max(Py,) Ky max(P;) Ks * max(P;) Ke * max(Py,) (3:52)

The authors focus on a fixed system configuration, but beneficially for various workloads. They
take the memory utilization as performance counters into account, which is a white-box
approach including instructions and transitions. A brief overview about the utilization
proportion®*! of the processors, memories, and disks is given in the literature of [Riv 2008] for
six different benchmarks.

The authors of [RRK 2008] present a constant model that uses Mantis [ERK 2006] to predict
the full-system power consumption. The operating system reports the performance metrics at
each time, which is the basis for the power consumption of the components. The empirical
characteristics in the equations have been created by calibration schemes that stress the
individual components and measure the performance and power values at the same time. The
power model in Equation (3.53) consists of a constant idle power K, based on vendor
specifications, the processor power in relation to its utilization level wy,,cessor, and the fitting
parameter r, defined by [FWB 2007].

B utilization proportion: relative statement, such as very high, high, medium-high, medium, medium-

low, or very low

83

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Pprediction = KO + (Kl * uprocessor + KZ * uzrorocessor) (3-53)

They also consider the linear regression of the disk utilization u,;5, by the number of input and
output requests or transfers. Furthermore, the model uses the maximal available performance
counters p; involving instruction-level information for model simplification and low overhead.
The last model is stated in (3.54), whereby K; is the coefficient for the corresponding
performance counter [Riv 2008].

Pprediction = KO + (Kl * uprocessor + KZ * udisk) + Z(Ki * pi) (3-54)

The authors evaluate their approach on various components and characteristics (processor,

“

memory) using four benchmarks. They found that the “.. resource utilization metrics
correlates to power consumption, [RRK 2008].” The performance-counter-based models are
most accurate for each benchmark in the possible configurations. The authors conclude that a
linear processor utilization-based model is suitable for an average error smaller than 10
percent. A calibration workload, proposed in [Riv 2008], varies the utilization level of each
power-dominant component (processor, memory, and disk) to get isolated values. The authors
found that components utilization also differs within the same workload of the calibration
suite, which leads to the conclusion that not all components are stressed simultaneously. For
instance, the processor utilization is non-linear to the disk utilization because the processor
throttles ** automatically for fewer disk accesses. The processor's power consumption
depends also on the various utilization types, such as lower instruction-level parallelism, the
number of used (active) cores, or the operations. In [KIC et al. 2014], the authors sum up the
power consumption of each isolated part, whereby the miscellaneous power is constant.

The approach of [YSY et al. 2011] is a system-level online power estimation, which uses the on-
chip bus performance monitors to capture component activities. The authors focus on the
system-on-chip architectures and use an energy state machine (ESM), which distinguishes
between static and dynamic energy consumed by each instruction, cycle, or transition. The
processor model consists of the static power, the power-relevant performance counters, and
their coefficients. The memory model uses cycle-accurate instructions. This approach works for
online power measurements at a given cyber-physical system.

The authors of [BJ 2007] use five major components, namely the processor, chipset,

memorym, input/output134

, and disk to model the system. They use performance counters to
characterize the component’s power consumption of eleven workloads. They found that the
processor power relies on the processor-bounded workload and decreases for memory-

bounded workloads because a lower number of simultaneous threads are enough to handle

B2 Throttle: clock gating, shut down used units, frequency and voltage scaling

Memory: subsystem includes the memory controller and DRAM power
Input/output: includes PCl buses and attached devices

133
134

84

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

the job. The maximum of the memory power occurs in the case of read or write transactions.
Additionally, the authors found that the processor, which is not considered in the model, does
not start some of the component’s activities. Some years later, the authors added the graphics
processing unit (GPU) to their approach and validated it on a server and a desktop [BJ 2012].

The previous research paper focuses on performance counters or OS-reported utilization
levels. The power consumption depends on the systems software, such as the operating
system or the type of application executed on the server. The operating system ensures that
all jobs will execute. The system schedules and handles a range of jobs and threads, whether
or not another management strategy influences the system. For instance, the operating
system autonomously allocates and manages memory, controls peripherals, or changes the
settings of the frequency to reduce the power consumption.

The software running on the system affects the system power consumption as well. In fact, the
software includes various algorithms, multiple coding styles, or compilation optimizations and
thus other physical parts of the processors or memories are used. The compiler generates
code and transforms data to reduce resource usage or exploit the advantages of the processor
architecture. For this reason, the software consumes different power. The workload of the
system depends on the input data of the system. It changes dynamically and thus the
resources are utilized, but cannot be predicted.

The software-level power models or routine-level OS power models abstract the specific
performance counters and use the routines as well as the corresponding time to estimate the
power and energy consumption. The authors of [LJ 2003] investigate the use of instructions
per cycle, which indicates circuit switching activities and finally the power consumption. They
found that the data path and pipeline OS routines consume 50 percent of the overall power.
The authors stated that the power consumption depends on interrupts, processes, inter-
process controls, or file systems. They present a linear regression model with the parameters
kqand kg, shown in Equation (3.55), and include the instruction per cycle. The authors extend
the power model towards an energy model by including the time, shown in (3.56), whereby
the power and time are specific to the i;;, OS routine call. This approach works only if we
establish the average power of the OS routines. The authors conclude that the detailed
software’s data, such as OS routines, ensure not absolutely the accuracy of the full-system
power model.

EOS = Zi POSroutinEri * TOSroutinEri (356)

In [TRJ 2005], the authors present an energy macro modeling approach for embedded
operating systems. They use the white-box approach to find the power-relevant components
while observing the OS routines. On the other hand, they measure the power consumption in

85

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

isolation from the OS energy, as a black-box approach, but consider the customer-level
software. Another approach uses the power consumption in the process level [TSW 2009]. The
authors create an energy model that reflects the power consumption of a resource with the
corresponding utilization level, the related energy consumed by process interactions, and the
required time interval. Furthermore, they divide the energy of the components within the
system as a function of its states and transitions. Equation (3.57) shows the generic definition
of the components’ energy consumption, including the power P; for a time period t;, using a
particular frequency and the several transitions n, consuming the energy Ej. This abstract
model is refined for hard disk drives, memory, processor, and network.

Ecomponent = YiPixt; + Xpng xEy (3.57)

The classic approaches consider particular systems and components to analyze the power
management, the energy efficiency, or the optimization. The performance counters of the
systems (processor, memory, etc.) are hardware-dependent and therefore, only valid for an
explicit configuration or platform on the micro-architectural level. On the other hand, the
performance counters show the hardware and software system states, including the operating
system. Many research papers [GHD et al. 2009, Han 2007, KIC et al. 2014] evaluate their
concrete models for a given configuration considering dynamic power management attributes
such as voltage and frequency scaling. These models are analytical real-time models and highly
accurate. The approaches do not take the relationships, the dependencies, or the structures
between hardware families, generations, or series into account. The portability and
comparability are not achieved. Furthermore, the variable selections of workloads and
software settings are crucial factors of the power dissipation of a system.

On the other hand, system-based, black-box models try to abstract the hardware details to
guarantee the portability. In [Bel 2000], they present a high-level processor power model
called Joule Watcher, which includes the linear relation between power consumption and
performance counters. Those models using performance counters support the real-time power
characterization on the fly. The hardware selection limits the number of performance counters
and their readings. Usually, all full-system power models use real and direct hardware
measurements, as proposed in [ERK 2006, Riv 2008]. The approaches are accurate (about
5 — 10%) and fast in comparison to the micro-architectural level, but on the contrary, slow in
comparison with real hardware. The model works for existing systems as well as for future
systems, which is a benefit of simulation-based approaches. Some research papers use OS-
reported utilization levels instead of performance counters to abstract it from the specific
hardware, which is also adequate.

86

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Bellosa [Bel 2001] states that most simulation-based approaches do not consider the device’s
activate and reactivate time, latency, and performance impacts. The authors of [Bel 2001]
argue that an 0OS-based model and related measurements are not adequate to estimate power
consumption because diverse functional units may be used. Additionally, they state that the
resource principals differed between internal and external requests.

Another power-related effect is described in [RRK 2008], whereby the models are adequate for
processor-intensive benchmarks because the processor power dominates the entire
consumption [Ben 2010]. In comparison, the same model does not work accurately for
memory-intensive workloads. It further overestimates the power dissipation of the full system.
Additionally, the dominance of the processor’s power consumption becomes relative when the
processor uses management technologies, such as voltage and frequency scaling. In such a
case, the proportions of the memory power contribute to the entire consumption increases
and become more relevant. In addition, the authors present a simple constant power model in
[RRK 2008], which is very inaccurate because of the model’s simplicity. “All these models have
in common that either they are too simple and inaccurate or very specific and complex, [GFN
et al. 2006].”

In the early design phase, the applications or architectural decisions are uncertain. The level of
detail varies between chips, components, or the system so that the designer cannot estimate
accurate power consumption [DAH et al. 2007]. On the other hand, the physical level
approaches are not usable at the system or component domain because of their detailed
granularity and time aspects for the simulation.

Benini et al. [BHS 1998] provide a generic approach that abstracts the inner system
components from the external requests. A power manager schedules the state changes with
respect to management policies. The authors do not focus on the resource power models
themselves, but provide a simple full-system model on the gray-box level. Their method
considers multiple inner-component states, but do not concentrate on various component
families and generations. Furthermore, Benini et al. do not investigate into the various
workload types and their characterizations.

3.4.3 Environment - Server System Domain

The work of [FWB 2007] shows the various power distributions at various hierarchies within
the data center. The rack server power is typically connected to the power distribution unit,
which is part of the facility or data center. The power management strategy can rely on the
data center specification for a single server system or a complete 19-inch rack enclosure. A
configured power limit at the server’s firmware is only valid for the server-specific power
management. It is another interface, but influences the same server settings. A peak power
value is the maximal reached limit for the server. The server manages the power consumption
autonomously via dynamic voltage and frequency scaling, which is an interior contractual

87

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

enforcement because of energy efficiency. On the other hand, the firmware controls the
physical limit. For instance, the server firmware can set the maximally available power state of
the processor, which is independent of the operating system. It avoids overloading of electrical
circuits. The firmware or the processor directly enables the maximal speed of the fans to start
cooling. The server environments, such as increasing utilization levels and more executed jobs
are the reason why the system consumes more power. This is part of the data center’s
virtualization, scheduling, and allocation techniques. The data center manager provides power
for multiple systems that share the power infrastructure. The characteristics of the system
utilization are not known or predictable. On the other hand, the customer does not care about
the infrastructure.

The authors of [BC 2010] propose a power model for a virtualized cloud. The coefficient K, is
the offset at the idle state. The other coefficients weight the performance counters p of the
components. The authors determine the linear relationship between the component’s
utilization and the total power consumption P; ;-

Ptotal = KO + Kl * pprocessor + KZ * Pcache + K3 * PbRAM + K4 * Pdisk (3-58)

They also find that the accuracy depends on the interrelation between the input variables.
Therefore, they enhance their model, including the correlation between the components, as
shown in the following equations. They classify the workload and hence the model into
processor-bounded and 1/0O-bounded processes. The authors proposed two linear regression
models with correlated system events with the coefficient a,, a, as offsets to the idle state.
The other coefficients are again weight factors. They also investigate the baseline and dynamic
power for the virtual machines.

P{processor,cache} =a + as * pprocessor + az * Pcache (3-59)
Pipram,disky = Aa + As * Ppram + A6 * Paisk (3.60)
Ptotal =a* P{processor,cache} + .3 * P{DRAM,disk} (3-61)

In addition, various workload scenarios utilize the system in several ways, and the system
settings play an important role. The operating system influences the power consumption [FWB
2007, RRK 2008]. The application software uses various circuits with respect to the
optimization settings [YVK et al. 2000, LJ 2003] and changes the power consumption as well.
Therefore, it is necessary to examine diverse server systems and to observe the power
consumption to change the coefficients.

88

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice

The utilization level of the physical domain focuses on instructions and operations on an
architectural level. The benchmark suites utilize the components and the systems in several
ways. At data center domain, virtualized environments, scheduled jobs, or applications adjust
the utilization levels. The utilization highly depends upon the performed task in the server
system domain. In addition, the data center operator perhaps does not know about the
explicit application or resource utilizations.

This section does not include further literature on power analysis in the physical system
domain because this thesis does not consider circuit-based models. The white-box section
describes a brief overview of the low-level models, including instructions and activities using
the physical and logical description of the resources. The details are more granular for white-
box models in comparison to the black-box models. The resource abstraction increases
because the facts, functionality, activities, or instructions are unknown. At the same time, the
complexity of the resources decreases because interdependencies or relationships are
considered. Gray-box models use state machines to estimate the power consumption of the
components and the system, whereby the activities or instructions are defined in an abstract
manner. Gray-box approaches rely on conceptual definitions; and on the other side, black-box
models use contextual or external description. In fact, the researchers work continuously on
power models of components at various level of detail, as shown in Figure 35. The academic
research concentrates on physical and component-based model for power and energy aspects.
The models are specific for a given software or hardware configuration. It is necessary to
investigate the coefficients and weight for each setup.

ear
Y [LSQ et al. 2014][KIC et al. 2014]
[RAK et al. 2013][BM 2012]
[IAE et al. 2011] [BCS et al. 2012]
[IIE et al. 2011] [Qia2011] [BJ 2012)
[MAC et al. 2011] [TDM 2011]
[HCE et al. 2011][KIM et al. 2011] [YSY et al. 2011]
[BGM et al. 2010][ZYY et al. 2011] [BWP et al. 2010]
[Ben 2010] [SLU 2010][LEU et al. 2010] [BC2010]
[CBB et al. 2010][UKI et al. 2010] [TSW 2009]
CJ 2010
[SBM 2009] 100 2[0091] [KSH et al. 2009]
[GHD et al. 2009] [Riv2008] [RRK 2008]
[JCX 2008) [HIZ et al. 2008] [DAP‘;;t;[lJ.UZ??Oﬂ
[Han 2007] [XTB 2007][FWB 2007] [ERK 2006]
(RHH et al. 2005] [GFN et al. 2006]
(LRR et al. 2004] [JGM 2003] [DBN et al. 2005] (BLR etal. 2005]
[SIC 2003] [HXL et al. 2002] [NKB et al. 2004][BJ 2003] [U 2003] (TRJ 2005]
[NKN et al. 2002] [GSl et al. 2002][IM 2003] [MKO et al. 2002]
[BTM 2000] [YVKetal. 2000] [Bel2000] 5 o) o0 (1M 2001] (W1 1996]
[TMW et al. 1996][WJ 1996]
[TMW 1994][LS 1994] [Gre 1994] [BM 1995][LR 1996]
physical (chips) | component system | environment

..... gray-box

power / energy

Figure 35: Power and energy models in recent years

89

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.5 Utilization Algorithms and Approaches

The power-based models work with performance counters that characterize the component’s
power. Another aspect is the utilization of the server system domain whereby the
performance counters represent the chips, components, or system activity in another way. If
the utilization level of a component increases, the value of the performance counters will also
grow. The utilization level indirectly affects the other aspect-based models. In fact, the
resource utilization level is part of the power/energy or performance model inputs, which is
sometimes depicted alternatively because of the level of detail within the domain. Therefore,
the utilization is a concealed aspect and not a separate model. The utilization levels are the key
elements for the workload definition, which builds up a realistic scenario. Section 5.3.2.2
defines the workload characterization.

3.6 Thermal Algorithms and Approaches

The resources utilization results not only in power consumption, but also in leads to thermal
dissipation. The total energy consumption includes the heating and cooling aspects.
Permanently running fan motors or air-conditioning systems guarantee the temperatures of
operation as well as humidity conditions. The thermal behavior relies on the operating
condition of a system and on resources, chips, and their related states. A heat transfer changes
the inner thermal state. The thermal energy considers the volume flow™*, density, and specific
heat. Fourier’s law of heat conduction also describes the thermal behavior heat flux using the
heat flow, thermal conductivity, and thermal gradient. Additionally, Newton’s law of cooling
includes the heat transfer rate and the thermal resistance. Therefore, the material properties
influence the temperature distribution of the resource [FOG 2008]. The corresponding
management techniques differ because of the reference quantity. For example, when a
constant volume flow and steady fan speed must be kept, the algorithm can change the air
pressure or density by a given temperature difference. On the other hand, when the pressure
is constant, the volume flow depends upon the speed and pressure. The volume flow changes
proportionally to the speed, the pressure depends upon a square form of the speed, and the
power consumption is cubic to the speed [Jun 1999].

The approach proposed in [SAS 2002] focuses on thermal resistances and capacitance (RC) on
integrated circuits at the physical levels. The authors analyze the structure and architecture of
the die, heat spreader, and heat sink, which form the base of the electrical functional blocks.
The models in [SAS 2002, PZH et al. 2005, YS 2005] estimate the temperature of the various
micro-architectural units within a chip and the cooling package. The HotSpot method defined
by [SSS et al. 2004] is also a thermal RC-based model. Within the micro-architectural level, an
RC circuit describes each chip’s heat (power) dissipation. The authors use the heat spreader

3> Volume flow: depends upon the cross section, the volume speed/velocity, and the flow types (swirl,

linear, laminar, or turbulent)

90

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

and sink layers to add further RC circuits to support the package characteristics™*® and
convection. The authors of [KS 2005] extended the HotSpot method to estimate the power
from the physical hardware resources. Therefore, they add hardware monitoring events, such
as performance counters, and estimate the temperature at the floor plan level. The authors of
[AC 2003] characterize the thermal behavior of a low-profile, low-cost power package. Another
adjustment of the HotSpot approach is done in [MNR 2007]. The authors expand the model,
including various layers about the silicon-on-insulator technology, chip interconnect, or
packaging. Another thermal characterization of packaged semiconductor devices is done in
[SXC et al. 2000]. These approaches are very complex and need much time to create an electric
model based upon the functional and architectural levels. Furthermore, they require multiple
measurements and iterations to analyze the diverse applications.

A physically based model is introduced in [BBT et al. 2014], which generates a thermal map
along the chip or the package. The authors use a gray-box identification to determine the

coefficients of the material®**’

and heat conduction of the processor. The gray-box approach is
intended to find the characteristics of the discrete-time, discrete-space model, which the
authors proposed in the paper. Furthermore, they differentiate between the copper and the

silicon layer because of their structure and spatial characteristics.

In [SA 2003], research is done not only for RC-based models, but also for the effects of voltage
and frequency scaling on thermal behavior. The authors state that the temperature depends
upon the quadratic voltage and linear frequency at each frequency. In [BKW et al. 2003, WB
2004, MB 2006], the authors present a thermal model that includes the processor
characteristics as well as its heat sink. The thermal model consists of a thermal resistance and
capacity, whereby the utilization represented as event counters initiate the energy
consumption and finally the temperature. The energy of the processors is the input value for
the energy model of the heat sink, as shown in (3.62). The difference of the heat sink energy
AQ is calculated by the dissipated processor power P over an elapsed time At. The heat sink
stores thermal energy, such as heat, which consists of a constant ¢, the mass of heat sink m,
and the heat sink’s temperature increase AT. The thermal energy is in balance and thus, the
heat sink’s energy output is equal to the heat sink’s energy input minus the stored heat. Due to
the convection, the energy is formulated by the constant a, the thermal resistance R, and the
ambient temperature T,,. This part is transformable into Newton’s law of cooling [BKW et al.
2003]. The thermal resistance delivers the processor’s heat to the ambient air, which relies on
convection. They found that the coefficients about the increasing and decreasing temperature
characteristics must be defined separately.

AQ = f:ll‘i'AtP(t)dt =c*+m#*AT = %* (T —Ty) *t (3.62)

136 . s . . .
Package characteristics: material, physical, or geometrical

37 Material coefficients: mass density, specific heat, or thermal conductivity

91

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The authors propose an exponential function to cover the real thermal behavior of the
processor. The quadratic relationship is shown in Equation (3.63), whereby the coefficients
a,,a,, and ay are processor-specific. The processor’'s temperature T(P) has a square and
linear regression to the power consumption values of the processor P.

T(P) = a,P? + a,P + a, (3.63)

The authors focus on energy-aware scheduling and balancing of tasks with different energy
characteristics, but also consider the thermal behavior of various processors. The authors in
[Liu 2011, BKW et al. 2003] use the utilization-based thermal models. They assume a linear
relationship between the processor utilization U and the temperature T, as shown in Equation
(3.64), with the coefficient K;. In addition, they also use an additive model for temperature
decrease, which is independent of the utilization, as shown in (3.65).

dT = (K, * U)dt (3.64)

After combining and solving the differential equation®®®, the result is an exponential time-
based function similarly to [MB 2006], which focuses on the utilization U, the ambient
temperature T;, and the coefficients K,, K;, Ky. The first part of the equation depicts the
dynamic thermal behavior of a component, such as temperature increase or decrease, as long
as the system does not reach the steady-state temperature. The steady-state temperature is
the second part of the equation, which results when the component is at the same state over a
period. The offset Ty defines the temperature start condition.

T(t) = —:2e Mt 422U + T, (3.66)
2 2

The authors found that the temperature behavior over time correlates to various workloads.
Thus, they changed their approach toward regular utilization, which is a linear function of the
average temperature and vice versa.

In [HCG et al. 2006], the thermal energy produced by a component Q¢omponent is calculated by
the consumed power P at a specific utilization level and the required time, shown in Equation
(3.67). The utilization-based power is the sum of idle power Py . and the relative power™®
weighted by the utilization level. A utilization factor of one refers to the maximum consumed
power; a utilization factor of zero states an idle case. The heat model of the processor is based
upon hardware performance counters because it is non-linear. The authors used the
temperature model, as shown in Equation (3.62).

138 Combining and solving the equation: further details shown in [Liu 2011]

139 .
Relative power: between P, and Ppgse

92

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice
Qcomponent = P(utilization) = time (3.67)
P(utilization) = Py + utilization * (Pyax — Ppase) (3.68)

The approach uses discrete-time steps on an airflow graph, which considers the inter-
component heat-flow, the intra-machine airflow, and the inter-machine airflow of the
considered system.

The thermal model in [KLL et al. 2008] is a regression-based approach to characterize thermal
behavior of various applications. It is a run-time method that uses performance counters and
thermal sensors of the processor analyzed in every micro-architectural detail, which is a white-
box approach. The authors observed the micro-benchmarks, the corresponding on-die
temperatures, and the hardware events. They developed a process-based thermal model, see
Equation (3.69), which considers the local and global temperatures t,,, ty, of the process p
weighted by w;, and wy,,. In addition, the authors aggregated the measurements of one or
more applications and defined a “weighted average of the local and global-temperature
components, [KLL et al. 2008]” as shown in Equation (3.70). The overall local and global
temperatures T;, T, are weighted by w;, w,, which come from several processes as average

values.
Tprocess = Wlptlp + ngtgp (369)
Toverau = wiTy + wyTy (3.70)

The industry trend of shrinking device technology results in higher temperatures and lower
reliability. More semiconductor components are closely positioned and the device density is
extreme, which results in more performance in the same space. Each resource is defined by
several temperature limits or ranges regarding long-term reliability**, functionality, and
damage due to their thermal performance [Mic 2007]. Operating temperature intervals ensure
unrestricted functional reliability. Increasing the temperature has a negative impact on
working behavior. In reference to the Uptime Institute, an increase of 18 degrees Celsius
doubles the equipment and server failure rate [ERK 2006, LU 2009]. Researchers at the Los
Alamos National Laboratory and Uptime Institute proposed that it is a continuous process
while the temperature increases. Because of the high ambient temperature of
semiconductors, the reliability and functionality decrease because huge errors occur
concerning permanent silicon damage [Lin 2009]. Hence, the temperature is a dominant factor
in performance and reliability.

149 Reliability: meantime to failure (MTTF), meantime between failure (MTBF), failures in time (FIT),

time-dependent dielectric breakdown (TDDB), or negative bias temperature instability (NBTI)

93

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Usually, we design power and performance management such that a) the functionality limit is
reached and b) the damage limit will never be reached. The thermal design power (TDP) is a
power limit to prevent overheating and fulfill reliability requirements. In fact, the damage limit
is the largest allowed device temperature. Figure 36 shows the three thermal limits, which in
general are part of every resource. Typically, the power and thermal management techniques
work between the functionality and damage limit because the time is much longer compared
with the time between the reliability and functionality limit. The power consumption of the
fans increases with the growing thermal conditions, and thus the working efficiency suffers as
a result. In this thesis, we consider thermal limits with the focus on the thermal hotspots
within the system.

temperature
damage

functionality power / thermal
limit management

reliability
limit

time

Figure 36: Thermal limits of the resource [Ste 2012]

These three thermal limits are resource-specific. Table 17 shows the well-known limits and the
related processor signal names [Don 2006]. The fan control algorithms use the thermal trigger
point TCONTROL as the offset point. The PROCHOT signal indicates the processors’ on-die
temperature and activates the throttling mechanism by either using a less consuming throttle
state or setting a lower voltage or frequency. “PROCHOT is a fixed temperature threshold
calibrated to trip at the max specified junction temperature, [RHA et al. 2007]"”. The most
critical thermal limit is the THERMTRIP signal, because the system shuts down to avoid circuit
damages. “THERMTRIP is a catastrophic shut-down event, both on the CPU and for the
platform. It identifies thermal runaway in case of cooling system malfunction and turns off the
CPU and platform voltages, preventing meltdown and permanent damage, [RHA et al. 2007]".

Table 17: Processor thermal limits [Don 2006]

Temperature Limit Processor signal name

Low Reliability TCONTROL Thermal trigger point
Medium Functionality PROCHOT Processor hot

High Damage THERMTRIP Thermal trip

94

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

In [RHA et al. 2007], the authors state four reasons why the temperature measurements, such
as parameter variance or manufacturing thermal control are inaccurate. They cover the
temperature measurement on the die considering the hottest location and the diode distance.
The digital thermal sensors (DTS) support a higher accuracy in comparison to the analog
thermal diodes and read the temperatures for each core separately. Additionally, the DTS offer
the opportunity for a graceful shutdown because a notification to the operating system occurs
before the THERMTRIP happens.

In [Han 2007], the authors developed a thermal model of the processor which uses the scalar
coefficient 7, the p-state-based power P,_g¢qte, and the ambient temperature Ty mpiens- The
authors proposed a fixed value of the coefficient T = 1.25. This is a simple equation (3.71) to
model the thermal behavior of the processor. The deviation of over- and under-estimation is
approximately 4°C and highly accurate in comparison to the micro-architectural approaches
with less model effort.

Tprocessor =Tx* Pp—state + Tambient (3-71)

The authors in [HS 2007, Han 2007, HKG et al. 2007] found that the processor’s temperature
fluctuates within 50ms but the ambient temperature ramps up in minutes. They found a
feedback loop: the thermal increase requires a speed-up of the fans, which consumes more
power. The higher power dissipation leads to a larger cooling need and thus, the fan speed
increases as long as it does not reach the maximum rotation speed. The authors state that the
ambient temperature is only an offset of the measured processor temperature. The ambient
temperature increase results direct proportionally to the processor temperature increase in
the case of constant fan speed.

In comparison with the processor-based thermal models, the memory models concentrate on
the hardware architecture of the modules. The approaches split the printed circuit boards
(PCBs) into chip-based areas on which the model is based. The authors of [LZZ et al. 2007]
developed a thermal model for single fully buffered DIMM without any thermal interaction to
other modules, but on the other side consider the interaction between the buffer and memory
chips. They state that the memory throughput determines the heat generation; a higher
airflow velocity leads to faster heat dissipation; a higher ambient temperature produces a
higher module offset; and finally the type of the heat spreader influences the heat creation.
Equation (3.72) shows the additives model of the buffer temperature Ty, rrer, Where the
thermal resistances R are from the buffer to the ambient environment and from the DRAM to
the buffer. The power of the buffer P,y ff.r and the DRAM Pppyy are multiplied with the
resistances, and the ambient temperature T, is the offset. The DRAM temperature is
calculated in the same manner, but using the thermal resistances R of the buffer to the DRAM
and from the DRAM chip to the ambient, as shown in Equation (3.73).

95

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice
Tbuffer =Ty + Pbuffeeruffer + PDRAMRDRAM_buffer (3.72)
Tpram = Ta + PyusrerRpusfer pram + PpramRporam (3.73)

The authors found that the temperature of the buffer is much higher in comparison to the
DRAM chips. In [QXY 2008], the authors state that the thermal characterization of memory
modules does not only rely on self-heating, spreading heating, or adjacent heating resistances,
used by [LZZ et al. 2007]. They also involve a computational fluid dynamics (CFD) model, which
represents the thermal behavior under changing airflow. In addition, the authors used the
largest device operating (junction) temperature from the supplier to estimate the memory
cooling capability. The authors analyze the variation of memory heat spreaders*** and their
influence on airflow, which depends upon the system operating curve, the fan characteristics,
and the system layout. In [SBA et al. 2011], the thermal model focuses on the single-sided,
mounted memory module and distinguishes between the chips assembled in or against airflow
direction. The authors develop an RC-based model that estimates the thermal behavior of each
chip under consideration of optional buffers. They found that the chip temperatures vary by
over 10°C.

The approaches are based upon resistance, but do not consider the thermal interaction
between resources from the same type, from other types, or inner dependencies because of
the circuit structure as well as the architecture. Furthermore, the system-wide thermal effects
are not taken into account. The processor models only consider local hotspots, whereby the
temperature is non-linear to the utilization level and the input voltage, but linear to the
frequency. The temperature changes slowly in comparison to power.

The thermal and flow characterization of a blade system was done in [Erd 2013]. The authors
develop a single transient black-box server model, which considers the airflow rate, pressure,
time constants, thermal conductance, and capacitance of the system. Finally, they introduce a
black-box model that uses the thermal capacitance of the server, which reports the
temperature difference between the inlet and outlet from the system. A first-order differential
equation describes the time-dependent outlet air temperature and stream. This approach was
investigated experimentally under a constant fan speed and executing a rack shutdown. The
authors found that the capacitance depends on the servers’ mass and specific heat because of
the volume and material.

In the system and the environment (data center) domain, the common thermal approach is
based upon computational fluid dynamics simulation. This method provides a 3-dimensional,
temperature-based view of the entire system. The authors in [CKS et al. 2007] propose
ThermoStat, a statistical thermal modeling tool for the server and racks. They considered the
system’s geometry, the materials, the components’ placements and their power dissipation,

! Heat spreader: the adequate thickness, structure, tolerance (air gaps), or mechanical properties

96

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

and the cooling mechanism, including the air characteristics and thermal properties. They
focus on the correct component placements within a server as well as the server’s location
within a rack. Therefore, they simulated the fan failures with regard to the inlet air
temperature.

In [ISS et al. 2012], the authors focus on the servers’ thermal mass** and response at fixed
power levels using diverse fan speeds, which corresponds to the various airflow rates. They
state that the heat-transfer coefficient increases when the airflow rate rises. The thermal total
energy depends linearly on the exact heat of air, the temperature difference across the server,
the thermal mass, and the server temperature under time conditions. The authors state an
additive weighted temperature regression model of the server, as shown in Equation (3.74),
whereby the coefficients Kypp, Kram, Kps) Kys, Kcnassis and the temperatures Typp, Tram,
Tps, Tys, Tenassis are specific to the hard disk, memory, power supply, heat sink, and chassis.

Tserver = KuppTupp + KramTram + KpsTps + KysTys + KcnassisTchassis (3.74)

The authors found that the chassis has the largest influence on the server temperature and
thermal mass, followed by the hard disks, power supply, processor, and memory modules.
They extract the thermal mass and conductance information, which are included in the CFD
simulations. A couple of research papers [ASS et al. 2014, PV 2014] focus on the servers’
thermal mass or capacity for CFD simulations. The authors in [Qih 2008] couple the heat and
mass flow of the entire system. They proposed a transient multi-scale thermal model, which
was proofed by an isolated gate bipolar transistor module integrated within a server
enclosure.

The work done in [BBB 2011] focuses on the steady-state thermal model of a multi-core
processor by linking the cores’ power and their temperatures. The authors developed a linear
regression model that collects the power and temperature measurements of the processor.
They assume that all cores are within the same small neighborhood and define a thermal
transient time-discrete model with the following equation (3.75), whereby n determines the
time index, T is the temperature, and P the power vectors with the dimension of cores C. The
square matrices A, B are calculated from the cross-product of C. The authors assume that the
processor is in steady state and therefore T[n + 1] = T[n] = T. The temperature depends on
the ambience as well as the core temperature, and the model distinguishes between the
working and sleep states.

T[n+ 1] = A * T[n] + B * P[n] (3.75)

"2 Thermal mass: the capacity to store the heat [IBS et al. 2012]

97

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The authors stated that the power consumption of a component grows when the core of a
processor is active, because of the shared clock and power domain of the processor. The base
power exists if the processor core is in operation and corresponds to the lowest of all the
frequency values of the cores.

Furthermore, the entire processor power depends on the number of active cores, the power of
the fully busy cores, and the system power. They measured the temperatures and power
consumption based upon core-based activation patterns of various operating frequencies.
They found that “the configurations with the same number of active cores have similar power
consumption levels, [BBB 2011],” the power consumption is symmetric to the number of cores
but non-linear to the frequency.

A numerical data center model is developed in [IGB et al. 2010], whereby the power and
airflow of the server vary over time. The authors focus on transient CFD modeling. They found
that if only the power varies, the buoyancy effects are the main factors for inlet temperature
variation. The CRAC airflow changes are directly observable via the rack inlet flow during the
time. The inlet temperature changes faster than the power when both are flexible, because of
on-top or edge recirculation. The server power does not influence the inlet temperature when
a constant airflow is established. In addition, the same authors propose a transient model of
data centers in [IBS et al. 2012], which considers the airflow changes. They also model the
server thermal mass that is beneficial to the transient analysis. The authors state that the
power dissipation varies over the time and depends on the fan speed inside and the pressure
across the servers. They analyzed the rack power under constant and variable CRAC airflow.
Furthermore, “the server was modeled as a simple thin plate, [IBS et al. 2012]” which has a
thermal mass considering the material mix of steel and copper. The specific heat capacity and
conductivity are part of the thermal mass model and therefore, part of the thermal boundary
conditions, which is a time-dependent factor to read the steady state. The authors found that
the airflow variation has a more rapid result of the inlet temperature in comparison to power
changes.

The thermal model in [BWP et al. 2010] uses the heat dissipation and power consumption of
the cooling systems within the data center. The authors’ model the fan, the rack, the CRAC, the
chiller, and the cooling tower, including the following parameters:

e Fan speed

e Volume flow rate

e Pressure drop

e Mass flow rate of air

e Heat transfer coefficients

e Heat exchanger effectiveness

98

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

to represent the heat flow from the rack level to the chiller. Due to the variety of cooling
systems within a data center, the authors analyzed the inlet air temperature of the rack
systems and the dependencies towards the infrastructure of the data center cooling systems.
The authors found that the increase in rack-air inlet temperature of approximately five °C
improves the coefficient of performance (COP) by about eight percent. They also state that a
temperature rise across the racks is more efficient in comparison to a rack inlet temperature
increase. Similarly, the authors in [JVG 2010] propose a data center thermal model that
considers the heat interference and the cooling but uses ambient sensors to detect the
temperatures. The authors of [RZB et al. 2012] state a model-based approach of the data
center’s thermal environment. The authors develop a dynamic rack-inlet temperature model.

The simulation-based approaches require real servers to measure the temperatures of each
component to find the weight coefficients. This approach is of limited practical utility in
investigated time, effort, and presence of constant environmental conditions, such as
humidity, temperature, or utilization levels. These tools are useful to analyze particular
components. The easy equations use the analogy between electrical and thermal properties
with resistance and capacitance. On the contrary, the equations become more complex for
CFD simulations, which require an extensive analysis of the real hardware under static and
dynamic considerations. The models are more accurate and complicated because of the entire
system behavior, such as airflow. Another critical factor for temperature approaches is the
simulation speed, because thermal changes are substantially faster in comparison to the total
simulation time and therefore, differ across several steps.

In fact, the researchers work continuously on thermal models at various level of detail, as
shown in the Figure 37. Within the last recent years, the authors focused on the system and
the environment domain. The thermal models, especially the coefficients and weights, need to
be adapted for each particular server configuration.

99

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

year
[ASS et al. 2014]
BBT |.2014
[BBTetal.2014] [Erd 2013][PV 2014] [RZB et al. 2012]
[ISSetal. 2012] [IBS et al. 2012]
[BBB 2011] _
[SBAetal. 2011] (Lu2011) (GBetal. 2010]
[BWP et al. 2010]
VG 201
[KLL et al. 2008] VG 2010]
[QXY 2008] [Qih 2008]
[MNR 2007] [CKS et al. 2007]
[HKG et al. 2007]
[Han 2007][LZZ et al. 2007]
[RHA et al. 2007][HS 2007]
[MB 2006][HCG et al. 2006]
[SSS et al. 2004] [YS 2005] [KS 2005]
[AC 2003] [PZH et al. 2005]
[SAS 2002] [SA 2003][WB 2004]
[SXCetal. 2000] [BKWetal. 2003]
physical (chips) component system | environment

Figure 37: Thermal models in recent years

The cooling costs increase by the growth of thermal dissipation. At a certain level, the cooling
costs grow strongly with respect to the dissipated temperature [GBC et al. 2001]. The
computational density trend, such as the larger amount of transistors or capacitance and the
higher frequencies, are causes of the thermal increase. It is necessary to find the break-even
within the thermal-to-cost ratio; otherwise the correct energy efficiency is impossible.
Moreover, high temperatures will have some negative effects, such as reduced reliability of
the resources. Hence, the temperature is a dominant factor of performance.

3.7 Performance Algorithms and Approaches

The system and resource performance indicate how powerful the system operates. The
performance models estimate the peak value, the average values, or the performance per watt
on the basis of resource characterization. Usually, the system or resource executes a set of

workloads, such as benchmarks (suite), and the researcher observes'®

the corresponding
performance counters, events, power values, or temperatures. The results of these empirical
studies and analyses form the basis for the performance models. Furthermore, the stress
findings are relevant criteria for statistical and experimental models validated with various
hardware settings. The performance characterization depends on the executed instructions
(floating-point, integer) and related activated functional units on the hardware [DEP et al.
2009]. The compiler settings influence the software execution, whereby the operating system
changes the device frequencies on demand. The authors of [FM 2002] illustrate the

144

performance levels and time spent within various frequencies at two MPEG™™" scenarios using

3 Observation: measuring, profiling, tracking, or logging

"4 MPEG: moving picture experts group

100

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

the video playback LongRun and Vertigo. They found that neither the frequencies, nor the time
is equal. This indicates that the amount of hardware devices, the types'®, or the architecture
requires an adjustment of the model, whether through weighting factors, model design, or

diverse descriptions based upon diverse system domains**.

The performance model in [MKO et al. 2002] is based upon the architectural level. The authors
analyze the design and architecture of an embedded system and its elements. They consider
the behavioral level, such as using the events that execute instructions of one or more system
elements.

The authors in [YZ 2011] estimate the performance of the various memory modules in
embedded systems, whereby they focused on cache activities. They completed a compiler
static analysis and dynamic profiling through a simulator. The data traces show the realistic
accesses. The authors analyze the data objects and classify it into four different dblocks™’,
which conflict which each other. The authors state a cache conflict graph (CCG) to determine
the cache performance criteria, such as the cache misses or hits. Each edge within the graph
has a weight that shows the amount of memory accesses. This approach requires a scan of the
assembly code to get the dblocks, the cache table, and the cache conflict graph to estimate the
hits and accesses. [MHS et al. 2009] propose that the main memory latency consists of the L3
cache misses'®, the quick path interconnects (QPI), and the integrated memory controller
(IMC) per DIMM latencies, as shown in the following equation. They found that the absolute
values rely on the processor’s core and uncore frequency.

latencypam = latencys yyss + latencygp; + latencyyc/pimm (3.76)

Additionally, the authors stated that the read performance of a memory module increases
with the growth of the data as well as with the amount of the cores. Moreover, the write
performance of the L3 cache and RAM increases with higher number of cores. The authors
analyzed the performance of L1, L2, L3, and RAM for concurrent read and write accesses. They
measured the single-core and multi-core bandwidth accessing the same memory module. The
authors found that the bandwidth of L1 and L2 caches is linear to the number of threads,
because the threads executing on each core are independent. The RAM and L3 cache
performance have only doubled by the quadrupled threads, because the system shares the L3
bandwidth.

145 . . T . .
Hardware types: server types, processor generation, single inline, or dual in-line memory modules

Descriptions on various system domains: instruction-based, functional blocks, state transition
diagrams, or spread sheets

%7 Dblocks: “The dblock is defined as a contiguous sequence of data within the same data object that is
mapped to the same cache set in the data cache, [YZ 2011]".

%813 cache misses: latency of L3 cache misses includes the miss rate

146

101

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The authors in [ZT 2011] experimentally analyze a memory system that uses the Intel Nehalem
and Westmere micro-architectures via the triad benchmark. They stated that the data
locality™*®
integrated memory controllers and their shared resources, such as bandwidth. The authors

found that the on-chip memory controller has a better bandwidth with the increasing number

influences the performance of the applications because of the throughput of the

of tasks in comparison to the off-chip memory controller. The processor cores request the
access to the memory simultaneously. In their configuration, the memory bandwidth is the
ratio between accessed data per processor cycles. Herein, the authors define the accessed
data by the size of the cache lines multiplied with the last-level cache (LLC) misses at a
processing frequency, as shown in Equation (3.77). The Intel Nehalem processor has a cache
line size of 64bytes and a frequency of 2.27GHz.

_ Sizecache_lines * LLCMISs * fprocessor
memorypanawiath [MB/s] = S ————ETY: (3.77)

The system performance depends on the balance between local and remote memory accesses.
Furthermore, the authors proposed an overall system throughput model that sums the
instructions per cycle (IPC) values of each process p.

IPCiotar = Zp € processes IPCp (3.78)

The authors in [KKK et al. 2012] propose a memory behavioral model. The authors found that
the memory performance does not only linearly scale to the number of processor cores and
the related parallelized software. They create a performance model that uses the number of
parallel tasks (iterations), the amount of parallel sections (loops), and the computations
without and within locks. Furthermore, the approach works on the number of all instructions
and DRAM accesses to model the performance.

Those performance models all constitute the need of an explicit hardware and software
configuration that traces and estimates the event counters. The memory architecture, the data
locality, and the cache misses are criteria for the performance modeling approaches. The
workload type generates performance differences because of parallelization or shared
accesses. It is necessary to measure the performance values on a real server system with an
existing job to make a general and reliable statement. A forecast or prediction is only possible
for an explicit workload, where the read-to-write ratio is established, e.g., for memory
modules. The exact performance values of the instructions need to be known. In conclusion,
the amount of performance models is less in comparison to the power and thermal models.
Usually, the performance is measured on the real hardware and seldomly predicted because of
a priori unknown resource claims, the high-required level of detail, and the non-existing
workloads. Figure 38 shows the performance approaches mentioned during the recent years.

% Data locality: local / remote caches or RAM

102

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

year
[KKK et al. 2012]

[ZT 2011]
[YZ2011]

[DEP et al. 2009]

[MKO et al. 2002]

[FM 2002]
physical (chips) component system environment

Figure 38: Performance models in recent years

In this thesis, we measure the performance using several benchmarks. We do not cover the
performance approaches because we focus upon the power and thermal models. The thesis
models are validated via real hardware and realistic software running on the server. The
performance criteria will verify the performance assumptions and check the performance
monitoring. The performance models help to estimate the energy efficiency of the resources
and the systems.

3.8 Efficiency Algorithms and Approaches

The efficiency is a criterion to determine the productivity, whether in power, thermal, or
performance. The efficiency provides the ability to avoid costs, airflow, humidity, carbon
footprint, efforts, energy, time, or money at the considered aspects. The ratio between output
and input values is the basis of management techniques and optimizations to ask the
questions of how and where to optimize. Table 13 shows some efficiency metrics within the
various server domains. The IT or load density is a key factor for power models. For example,
the thermal models of the server resources use the capacitance and resistance to predict the
temperature. The server performance, such as bandwidth or the instructions per cycle are
indicators to estimate the response time or how much time a job consumes. The focus on
efficiency such as power usage efficiency, data center cooling system efficiency, IT equipment
efficiency, or energy efficiency characterizes the algorithms and approaches. There are fewer
independent theoretical approaches. A guiding principle is to create a unique and separate
model under particular circumstances and specific conditions. The following equations show
the energy as well as power efficiency calculation under thermal constraints, which is the focus
of this thesis.

. . performance performance
energy ef ficiency = = 3.79
9y ff Y energy time x power ()
.. performance
ower ef ficiency = ———— 3.80
p ff y ower (3.80)

103

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The energy efficiency increases when the system executes the identical work, if the job is
processed more quickly consuming the same power. Another method is to improve the
performance, while the energy consumption is constant. Of course, the aim is to maximize the
performance and reduce the energy consumption either via time or/and power at the same
time. The efficiency is inversely proportional to the energy or power and directly proportional
to the performance. The efficiency is constant when the performance and power
simultaneously increase or decrease by the equal factor. Therefore, the aim of energy
efficiency optimization relies on a fixed performance demand or a predefined power limit,
which lead to power/energy minimization or performance maximization. In addition, an
increasing frequency may lead to high temperatures above the functionality limit or the
damage limit, which potentially generates more failures. On the other hand, a power reduction
to a lower device state leads to a time increase and thus, higher operating costs.

3.9 Server System Models and Simulation

Figure 39 summarizes the studied system-based models considering power/energy, thermal,
and performance aspects. Of course, the server models also include the individual component
models stated in the previous sections. They all have in common, that the models are
dependent on a single technology and refer to known working conditions, such as an
application or particular operations. The models guarantee a suitable accuracy via using
various instruction counter types to determine the resources’ activity level or performance.
The counters are hardware-specific because of the resource architecture, inner designs, states,
connectivity, or parameters. Therefore, the hardware counters are only valid for an explicit
configuration or platform on the micro-architectural level. For that reason, the models focus
on concrete configurations within a defined environment, such as a given workload or thermal
limits. The models have a range of complexity and accuracy because of the considered
purpose. The approaches do not take the relationships, the dependencies, or the structures
between hardware families, generations, or series into account. The models do not support
forecasts on the physical and technological basis for future systems. The portability and
comparability are not achieved. On the other hand, the black-box models try to abstract the
hardware details to guarantee portability. Furthermore, the variable settings of workloads and
software settings are crucial factors of a system’s power dissipation.

104

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

aspects
performance
[ISS et al. 2012] [Erd 2013][PV 2014] [ASS et al. 2014]
thermal

[CKS et al. 2007][Qih 2008] [KLL et al. 2008] [Liu 2011]

[RRK 2008] [KSH et al. 2009] [TSW 2009] [YSY et al. 2011] [B) 2012]
[ERK2006] [Lan 2007] [B) 2007] [DAH et al. 2007][Riv 2008]

power/ | [L)2003] [TRJ2005] [BLRetal.2005] [GFN et al. 2006]
energy | [RHW et al. 1995] [WJ 1996] [Her 1998] [MKO et al. 2002]

models
server system domain

Figure 39: Server system power/energy, thermal, and performance models

We differentiate between power/energy, thermal, and performance models and their related
component-based simulators. Parts of them build the foundation for full-system simulation to
predict energy efficiency, for instance, and enable the opportunity for studying diverse
management techniques (how and with what to optimize) or optimization strategies (with
respect to the optimization goal). Furthermore, we distinguish the full-system simulations into
hardware measure-based approaches, software profiling tools, and simulation frameworks.
Section 3.4.2 widely describes counter-based models, such as Mantis [ERK 2006, Riv 2008, RRK
2008] or the Joule Watcher approach [Bel 2000]. These approaches give a more exact
estimation about the system’s behavior because of realistic workloads, including operating
system effects on behavior, and performance in the working progress. The resource utilization
is obtainable via measurements of synthetic benchmarks or during the runtime of the
respective system. Software profiling tools simulate applications and effects, such as the
operating system behavior more quantitatively. The approaches model the instruction
execution after studying an application. The authors observed the timings and functional data
of realistic workloads. Therefore, we call them static full-system simulators or application-level
simulators. Bellosa combined hardware measurements with the software power profiling.
Here, we present the software profiling tools: SimOS, SoftWatt, Simics, and the timing model
TFSim. On the contrary, the SoftWatt approach not only has the purpose of profiling, but it
also simulates the system. This is an advantage of the dynamic full-system simulators, which
execute instructions with timing behavior. Those executions-driven simulators need a more
exact timing model. Herein, the simulation detail and accuracy of functionality and
performance are important facts to choose the adequate simulation model. We introduce the
dynamic full-system simulators SimFlex, SimWattch, and BladeSim. A system consists of
various components and physical chips and therefore, some low-level or component-based
simulators are required, such as SimplePower, SimpleScalar, or Wattch. The academic research
focuses more on the software profiling and hardware measurements at the system
(component) level in comparison to the full-system simulations. In last recent years, more and
more researchers concentrate on simulation-based approaches at the environment level, as
shown in Figure 40. A couple of network simulations for the data center environment exist

105

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

[AP 2014, JPL et al. 2014], but they do not simulate the server system. The environmental
simulation models, such as DCSim [SSG et al. 2009, CYR 2012, KTL et al. 2013, TKS et al. 2013]
concentrate on thermal simulation. At a high abstraction level, job scheduling or management
strategies consider costs, airflow, power, or energy efficiency [RAM et al. 2009, ADK et al.
2012, MJW 2012, FBP et al. 2014, KRS et al. 2014, MMA 2014], which are not the scopes of this
thesis.

conceptual
[FBP et al. 2014]
[JPL et al. 2014] [AP 2014]
[MMA 2014] [KRS et al. 2014]
[TKS et al. 2013][KTL et al. 2013]
[MJW 2012]
simulation [CYR 2012][ADK et al. 2012]
RMN 2 [RAM et al. 2009] [SSG et al. 2009]
[008] [RL 2007][CDS 2007]
[MSB et al. 2005] [HSW et al. 2004]
[CDS 2003]
[ALE 2002] [MHW 2002]
[YVKet al.2000] [BTM 2000]

[Lan 2007]

software [GSl et al. 2002]

profiling [MCE et al. 2002]

[Her 1998]

[RHW et al. 1995]

hardware [Riv 2008] [RRK 2008]
measurements [Bel 2000] [ERK 2006]
server system domain
physical (chips) component system environment

Figure 40: Server system simulation models

3.9.1 Full-System Simulation

A full-system simulation framework developed at Stanford is called SimOS, which is an
application-based simulator that covers a variety of systems [RHW et al. 1995]. The SimOS
system executes multiple commercial operating systems, such as Irix, Tru64, Windows NT,
GNU/Linux, and their activities. The dynamic simulator supports multiprocessors, such as for
MIPS™° and Alpha™" instruction sets supported by the processors, as well as memory models
Embra, Mipsy, and the related interpreter MXS [Her 1998]. It includes statistics as well as
working information and offers an interface that allows the customer to characterize the
behavior. The authors determine the system behavior and collect corresponding data, which is
a possible input for the system. The authors of [Lan 2007] extend the SimOS system to support
better scalability and performance. They use binary translation and parallelism to model the
execution of the operating system and the application software of medium-scale, shared-
memory multiprocessors. The approach is restricted to the specific applications designed for
an explicit hardware and the operating system. The trace-based design supports various
architectures, designs, and configurations, but is based upon low-level data. Furthermore, the
system can execute, complete, unmodified binary workloads as well as a variety of software.

B0 MIPS: microprocessor without interlocked pipeline stages, http://imgtec.com/mips/

B! Alpha: http://www.alphaprocessors.com/

106

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The SoftWatt approach, proposed in [GSI et al. 2002], is a power and performance simulator
for the behavior of applications and the operating system. The authors quantify the power
behavior with respect to the workload. They extend the SimOS approach to include analytical
power models for various hardware components, such as the memory hierarchy and disk. The
method analyzes the impact of the operating system and characterizes it at the various
phases™. They divided the application-specific behavior, executed on a commercial operating
system, into power dominant services, such as kernel activities, data path, or caches. This
approach is unsuitable for a server model within the design phase because the model must be
independent of the operating system. The customer has the free choice of the desired
operating system™ and this is done according to the needs of the customer’s company. Some
of the indicators are the company’s size, such as large-scale enterprise, which influences the
general budget situation, the service, and the related server type. Additionally, the model
relies on the local events of the system. “Soft-Watt models a simple conditional clocking
model. It assumes that full power is consumed if any of the ports of a unit is accessed;
otherwise no power is consumed, [GSI et al. 2002].” The authors do not consider leakage
power during idle times and in reality, the components do not consume the whole power
because of power management strategies. The authors of [GSI et al. 2002] show a state
machine for a full-system simulation and corresponding power values in a range between 0.15
and 4.2 watts for a hard disk drive. The power part is very simple in comparison to the other
components and therefore, a low accuracy model is enough. Of course, the proportion
increases by the number of drives, especially in web or file servers. The authors found that the
memory’s power is more than twice the data path’s power. The idle power has a share of five
percent in their system configuration.

Simics is another dynamic full-system simulator [MCE et al. 2002], which includes functional
descriptions, such as instruction execution as well as timing aspects of unmodified operating
systems, kernels, and drivers. The system supports the operating systems: Solaris, Linux, Tru64,
Windows XP, and the related activities. The processor models are instruction set simulators for
Alpha, PowerPC, SPARC, MIPS, ARM, and x86-64 architectures. The system supports next-
generation devices by including adjusted functional and timing behavior. The system models
memory accesses and instructions with uniform time slots. Cache and memory timings are a
possible extension of the system. The authors of [MHW 2002] compensate this drawback in
TFsim™*, a full-system multiprocessor performance simulator. The approach includes micro-
architectural details, such as pipeline, and models the execution of dynamic instructions within

12 Analyzation and characterization: post-processing of the information logs from SimOS performance

simulator

153 Operating systems: Microsoft Windows Server (Hyper-V, Server 2x), Red Hat Enterprise Linux (RHEL),
SUSE Linux Enterprise Server (SLES), Ubuntu Long-Term Support (LTS), Oracle Linux, FreeBSD, Solaris,
Linux container virtualization (LXC), Xen-based virtualization, or Kernel-based virtual machine (KVM)

B4 TESim: later known as Opal

107

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

the timing simulator. The model distinguishes between functional and timing behavior, which
is decoupled to each other to consider various fidelity requirements. The timing simulator
(execution of instructions) influences the functional simulator (access of register or memory)
but does not change internals, such as the register. The software profiling simulators are
adequate for a given environment, but do not claim to be generally applicable. Hence, the
dynamic full-system simulators avoid this disadvantage.

The SimFlex simulation framework developed in [HSW et al. 2004] use statistical samples on a
platform within component-based design. The approach includes the Simics features to
provide operating system behavior and functional timing models. Furthermore, the authors
used the SMARTS methodology [WWEF et al. 2003] to have realistic workload samplings. The
model consists of components in hierarchical manner, which are linked together with the
wiring description. The definition of the ports and the control flow in C++ connects the
components at compile time. The authors in [WWF et al. 2006] simplify the SimFlex model to
speed up the simulation time. Finally, they used parallelism and checkpoint-based sampling.

On the contrary, SimWattch is a performance and power estimation tool that provides a
complete system simulation environment [CDS 2003]. The approach combines the cycle-level,
micro-architectural timing of Simics, the power as well as performance estimation of Wattch
[BTM 2000], and the customer-level simulator of SimpleScalar [ALE 2002]. The authors focus
on operating system effects, such as miss rates, to avoid misleading results at customer-level
simulators. Thus, they generate instruction traces at the cycle level, which are buffered,
translated, and accessed in various modules. The power model is based upon the load
capacitance, supply voltage, and frequency as described in (3.22). The performance
characteristics use the IPCs stated in Section 3.7. Furthermore, they analyze the OS activities,
the dynamic instruction mix of workloads, the customer instructions on each application, and
related cache misses per instruction [CDS 2007].

The SimFlex and SimWattch approaches require an existing system to define the component
interconnections, the OS activities, and executed instructions at the micro-architectural level.
The simulation tools do not scale with regard to the hardware configuration and therefore,
consume much time in comparison to the real system.

Another high-level, full-system model is the BladeSim approach, which is proposed in [RL
2007]. It is a resource utilization-based simulator that considers the system configuration and
architectural policies. The simulator converts the trace of a real workload and the
corresponding resource utilization levels, which is extended by the timing model. BladeSim
simulates the system behavior by using the correlation between the task-based resource
utilization for power or performance metrics, concentrating on the processor, memory, disk,
and network. The authors argued that the observation and resource utilization of the systems
is straightforward because of the established trace opportunities (monitoring, control

108

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

interfaces) or the simplicity to receive the values via scripts. One challenge is the variation of
resource utilization in various system configurations. In addition, the key challenge is the
relationship between the performance and power metrics. They found that each server class
requires a specific model because of the various hardware configurations, such as the voltage
and frequency states. The authors reduce the workload complexity and simulation time with
their approach. “The system workloads are modeled as resource utilization traces and systems
are designed as lookup tables based on the characterization functions, [RL 2007].” The
approach does not consider detailed component-level behavior, buffered, or queued work.
Furthermore, this method requires a real system for the characterization via calibration
experiments. An alternative is an analytical model of the system with regard to the resource
utilization. The accuracy of the simulator works well (the authors report a five-percent error
range), in comparison to the investigated effort. In addition, the model scales to a large
number of homogeneous systems with heterogeneous configurations.

3.9.2 Physical-based and Component-based Simulation

At the physical level, the execution-driven and cycle-accurate approach called SimplePower is
proposed in [YVK et al. 2000]. It includes a transition-sensitive energy model that works on
cycle-based executions and switching capacitance, defined in Equation (3.20). The approach
consists of five stages of a pipelined data path and uses the instruction set architecture of the
SimpleScalar method. The authors use lookup tables to store the capacitance of circuit events
such as switching activities and transitions. Empirical experiments generate the data, which
depend upon functional units. These analytical models are more specific rather than generic
and need to be set for a specific circuit. In addition, the modeling process requires much time
because of the architectural details and is a typical off-line model.

SimpleScalar provides an infrastructure for system and component modeling at the
architectural level. The system provides an instruction set simulator for Alpha, PowerPC, x86,
and ARM to execute workloads considering timing aspects. The framework provides routines
to model tasks, e.g., discrete events. The execution-driven simulation uses instruction-set and
I/O emulators to support customer applications, which are based upon hardware activities.
The emulator maps the application to the target architecture and the functional core. The
authors in [ALE 2002] describe the cache and the related timing model. The models execute
the instructions at the cycle-accurate level. The approach uses baseline models that are
independent of data collections, such as statistical analysis or event handlers. The very simple
model abstracts micro-architectural details and uses elements such as branch predictors or
instruction queues. Beneficially, it has a configurable micro-architecture to enable various
evaluations.

A power analysis and modeling framework at the architectural level is proposed in [BTM 2000].
The Wattch approach uses the cycle-level performance simulator SimpleScalar and
configurable power models that estimate the power and performance ratio. Herein, the

109

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

processor structure is abstracted into array structures (cache, register files), fully associative
content-addressable memories (logic, buffer), combinational logic (functional units), and clock-
related categories (capacitance load, clock buffers). The activities are traced on a cycle-
accurate level of the micro-architectural structures. This statistics form the basis for the
analytical models based upon capacitance. The off-line framework allows modifying the micro-
architecture by means of a table-based approach, but it is a time-consuming simulation
system.

A detailed processor and memory simulation is done in [MSB et al. 2005]. The general
execution-driven multiprocessor simulator (GEMS) characterizes the multiprocessor
performance. The included timing simulator originates from Simics and is decoupled to the
functional aspects, but the timing simulator can influence the functional behavior to capture
time-dependent effects. The system consists of a random tester module, a micro-benchmark
module, Simics, and TFSim. The GEMS toolset models various memory hierarchies, such as
caches, cache controllers, or main memory. The cache coherency model uses a per-memory-
block state machine, which includes states, events, transitions, and actions. The processor
model provides the instructions or execution units of the MIPS architecture. The GEMS toolset
does not support trace caches, hardware multithreading, or diverse ISAs.

The authors of [RMN 2009] focus on synchronization and timing for full-system network
simulation of multi-computer systems and deal with the trade-off between simulation speeds,
time, and accuracy. Therefore, to avoid effort they use Simics and its modules, which simulates
unmodified operating systems. In addition, the authors combine Simics and the
Interconnection Network Simulation and Evaluation Environment (INSEE) [RM 2005] and cover
the challenges to design a full-system simulation. A main aspect is the time synchronization
caused by the cycle-events of a processor, and the physical time of the network stack. The
authors argued that the reuse of modules has the risk of inaccuracy and invalid results,
because the modules are designed for a different purpose.

3.9.3 Conclusion

At the server system domain, the rigorous simulation frameworks are a mix of simulation and
direct hardware measurements, such as software profiling tools, which consider instruction
sets, capacitance, activities, states, transitions, events, or performance counters to estimate
the behavior. The researchers limit the applicability™> because of the published methods to
work exclusively with:

5 Limited applicability: specific constraints, preconditions, and assumptions

110

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

e A predefined simulation purpose and an explicit use case
e Afixed environment
e Atarget hardware platform
o An exact system configuration
o Arestricted number of components
o An explicit hardware specification
e Atarget software configuration
o Agiven application, software traces
o A defined operating system

The trace-based methods work on the cycle-accurate level, which is sufficient when another
application executes the same instructions on an identical system or component. The
instruction or cycle-accurate approaches [RHW et al. 1995, Her 1998, MCE et al. 2002, GSI et
al. 2002, Lan 2007] would require a workload resolution higher than our 1-second to
characterize the instructions and component power in a precise manner, such as by an
accuracy of less than five percent. Thus, the approaches consider realistic memory read/write
accesses or given tasks, which needs to be known, but the well-known instructions vary from
the processor architecture, generation, or family. However, the approaches require a real
system and the instruction-based trace, which is time and cost intensive, especially for
unfamiliar components. Consequently, the measurement and modeling efforts increase, and
these analytical models face the trade-off between the accuracy and the simulation time. In
contrast, the full-system approaches on the basis of the hardware measurements study a
specific hardware configuration concerning the flexible processor utilization levels. The
approaches of [ERK 2006, HCG et al. 2006, FWB 2007, Riv 2008, RRK 2008] require several
training techniques, which guarantee an accuracy less than ten percent. The approaches
consider the linear regression methods to calculate the power that corresponds to a certain
utilization level and performance counter specific to the hardware configuration. The
component characteristics, such as the channel™®, the generation®’, or the technology **® of
the memory modules, have changed over the last recent years. The approaches up to now do
not cover these heterogeneous characteristics of the hardware variations. In consequence, the
full-system approaches are not generally valid for various server systems or tend to become
impractical because the proposed models of [MHW 2002, CDS 2003, HSW et al. 2004, CDS
2007, RL 2007] concentrate on a particular system configuration and explicit operating system
in which the models do not flexibly support certain characteristics. Most of the full-system
approaches are not aware of the component interactions or thermal dependencies that are
relevant to the industrial field of application.

156 .
Channel: Dual-channel, triple-channel, or quadruple-channel

Generation: DDR, DDR2, DDR3, DDR4, xxx-200, xxx-266, or xxx-333
Technology: RDIMM (registered), FBDIMM (fully-buffered), or SIMM (single inline)

157
158

111

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.10 Industrial Field of Application

The academic approaches and commercial tools are part of heterogeneous product
development stages. We introduce the product development life cycle that helps to explain
the commercial field of application and the specific requirements. Afterwards, we describe the
internal and external use cases of industrial solutions. In addition, we show the reason why the
commercial tools do not consider academic approaches and we describe four common power
calculators. In conclusion, we define the gap between typical industrial tools and academic
approaches.

3.10.1 Product Development Life Cycle

Introducing a new product follows the various stages of the life cycle beginning with
requirement engineering up to the sell process. The authors of [MSD 2006] define the product
development life cycle (PDLC) phases: envision (define), build, test, implement, and operate™”.
All separate sequences rely on each other, such as the predecessor phase. The development
for a non-existing product starts with the envision phase. Herein, the vendors critically analyze
existing markets to predict product requirements as well as find strengths and weaknesses.
The envision stage includes customer feedbacks and future forecasts to develop a product
vision. A recent technology roadmap includes ideas about functionality, ability, performance,
or design. For instance, Intel's roadmap [Int 2013] predicts new server processor families using
an alternative manufacturing process technology called either tick or introducing another
micro-architecture called tock [Int 2006]. New micro-architectures, changed instruction set
architectures, or designs provide additionally functionality and improve the energy efficiency
of the processors. The academic research and product development are part of the next
phase, called build. The developer or manager defines the architectural requirement
specifications at the technical level. Afterwards, the vendor starts the proof of concept in the
early build phase to check constraints and feasibility. In this stage, the vendor has a first
product prototype, which is also part in the testing phase. The developers test the software
and hardware in comparison with the functional specification of each single component as well
as the complete system. In this phase, academic research focuses on alternative designs and
management techniques. Final acceptance tests check if the first prototypes fulfill the
specifications. The product manager decides about a specification change or revision because
of competitors, which leads to start partly from the envision phase. In the implementation
stage, the vendor provides the complete system functionality, which is part of the system
specification. Particular product lines have concrete system requirements because of a
specified purpose. The operate phase is not precisely separated from the implementation
phase. A customer orders an individual server system with a customized hardware and various
software components. The vendors manufacture a complete system with unique customer

159 orr . .
PDLC phases: alternative identifiers are conception, specification, new variants, enhancement, and

maintenance

112

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

requirements and specifications. The order process and proper product documentation are the
main part of the operate stage. If a product is at end of life (EOL) or end of sale (EQS), the life
cycle will start again with a new or adapted product. Figure 41 shows the complete product life
cycle.

- X ~
requirement and
definition ‘

L (envision, define))

-

p
| order, sales and research and

support development
(operate) (build)
X ~ - X - ~,
production and testing and quality
deployment assurance
(implement) L (test) y
<~

Figure 41: Product development life cycle [MSD 2006]

The academic approaches and commercial tools partially support at least one of the five
product development life cycle stages. The following section describes the field of application
of the academic and industrial approaches.

3.10.2 Research, Development, and Deployment of Server Systems

On the one hand, the academic approaches offer an unknown perspective to the established
practice and provide optimized algorithms to integrate new functions as well as features that
are part of the product life cycle build stage. On the other hand, the commercial tools do not
include the systematic findings and results. The established industrial tools offer the
opportunity to purchase a server system, which is the common business case in the operate
stage. The customer configures a server suitable to match the customer requirements.

The requirements differ between superficial and deep knowledge, depending on the server
system domain described in Section 3.3. A data center manager plans the overall energy
demand and in comparison, a technician is aware of the temporary power constraints within a
rack enclosure. Another power-related decision is the server type, because a high-end server
consumes more power than a mainframe, or an ordinary server. In addition, the enterprise
sizes predefine the server enclosure because of the provided space and capacity. Data centers
contain various server kinds, such as storage servers or high-performance servers, which have
special configuration demands. The unlimited variability of the customer induces the vendor to
establish flexible and universal (but still vendor-specific) configuration tools that satisfy the

113

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

diverse demands. Thereby, the commercial tools focus on the system specification phase to
release a product. At the same time, they do not apply academic approaches, because of the
high measurement and modeling effort investigated for each single component. Academic
researchers focus on an explicit scenario to keep products competitive, but they use a
predefined configuration. An important consideration in ensuring the order process is a
flexible hardware configuration. The executed software on the server varies for each customer
and is a subordinated interest.

Furthermore, the vendors use commercial tools to win the invitation to tender. In this case, a
customer provides a clear guideline on the hardware required in their enterprise and creates a
call for tenders with many individual positions. For instance, the customer may require an Intel
Xeon processor (E55xx), 24GB DDR3 — 1066 memory, 2-terabyte hard-drive capacity, and a
Linux Server OS (Red Hat Enterprise Linux — RHEL or SUSE Linux Enterprise Server — SLES) by
the 500 watt power limit and the upper limit on costs at 700€ per server. The customer does
not specify the intended purpose and therefore, the vendor calculates the peak power
consumption on the basis of the technical specification. Instruction-based or cycle-accurate
approaches do not work, because of the missing data about the range of tasks or precisely
defined jobs. Furthermore, commercial tools must be independent of the operating system,
whereby most academic full-system simulators refer to a given one [GSI et al. 2002, MCE et al.
2002, HSW et al. 2004]. Here, we consider that the server does not pass the power limit under
any circumstances, because of the regression claims [Fuj 2011]. The server vendors assure
commitments, such as technical specifications, that form the legal framework. In industrial
practice, theoretical data, worst-case thresholds, and over-estimation ensure the product
specification besides management techniques. In general, the customer does not explicitly
mention something about environment conditions, such as the ambient temperature, thermal,
or performance limits of the server system. Data centers work with a thermal range from 20°C
up to 35°C for which the vendors specify the system. If there is a given environment limit, the
vendor only checks if the system is within the specification.

Vendors deploy a server to a customer into the production environment and offer
maintenance services. In this phase, the server behavior may include bugs or problems, which
the customer reports to the vendor. In general, such reports are about the reliability,
availability, maintainability, and safety (RAMS). Vendors solve the reported issues via a
customer-specific bug fix, a server system adoption, or academic research for the next server
generation. The server operates many times larger than the development time. The software
solutions are cheaper options in comparison to hardware changes. Therefore, vendors
investigate firmware-based solutions to support a range of servers at the same time. If
firmware changes do not satisfy the demand, a vendor has to adapt the hardware. Academic
research indicates the related software as well as hardware changes under predefined
conditions provided by the customer. The particular use cases of the server system provide the

114

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

environmental conditions, such as the operating system and the workload, which results
especially in the research question. A rework of the entire system saves the investigation costs
and ensures more profit for industry in comparison to a complete new server system. The
individual server systems share the high development costs. In addition, a vendor includes
novel market requirements and forecasts.

Various use cases result in multiple perspectives of an industrial tool. Table 18 compares the
customer and vendor demand, which both in common require a flexible hardware and
software configuration for the server. On the one side, the customer chooses an explicit
hardware and software configuration to fulfill his or her own performance demands. On the
other side, the vendor supports already released systems in a given configuration subset. Our
simulation tool should offer the ability for future systems and server variants that are in
development. The flexible software settings require a realistic workload scenario. At the same
time, full utilization of all resources constitutes the worst-case scenario. The executed jobs are
unknown in the vendor perspective and therefore the tools abstract the software by means of
resource utilization levels. Additionally, vendors do not consider the operating system as well
as virtualization techniques for customer-specific jobs. The requirements of customers and
vendors do not match, because customers require an operating system that considers
management techniques, virtualization, or optimization strategies. The customer specifies the
same job that is already applied in the obsolete system. The system requirements come from
the real application and the customer’s daily experiences. On the contrary, the customer-
specific job may be unknown because the operations and tasks change within the future.
Another non-predictable aspect is the job scheduling by the data center manager, which
utilizes the resources in any manner. The customers use the commercial tools to calculate the
power of the entire server system. On the contrary, vendors additionally consider the
component power consumption and the PSU sizing. In the commercial context, a vendor
calculates the server power for a worst-case scenario, including an extra power overhead [Fuj
2011]. This method ensures that the PSU has the adequate power under every circumstance,
and the server has no need to throttle down, which may reduce the performance.
Nevertheless, customers require an optimally utilized PSU, which is more efficient for 80%
instead of 50% utilization. The over-provisioning also covers future demand, because a vendor
designs a system for three up to five years. In the case of large-enterprises, data centers use a
server much longer. A vendor calculates the power demand of a server system, which is fully
equipped in the future. The power supply offers sufficient capacity to ensure the incremental
growth of electronic devices within the server system. The energy efficiency consideration is
not yet part of industrial tools, but included in all academic research. The green IT trend
supports the demand of energy-efficient servers, which leads to the energy efficiency
requirement within the commercial tools. Therefore, customers ask for information about
application-based power (energy) consumption and the related temperature as well as
performance. The commercial tools do not follow this trend to our knowledge and provide

115

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

standard data about peak power, airflow rate, noise, or heat emission. Standardized
benchmarks show the absolute performance values of a server system, which are not part of

the industrial tools.

Table 18: Comparison between customer and vendor requirements of the industrial tools

Customer

Vendor

Configuration
Hardware
settings (change
components)

Support non-
existing server
Software
settings
Workload
scenarios
Executed jobs

Virtualized
workload
Operating
system

Power calculation
Power supply

unit
Over-estimation

Energy efficiency
Power / energy
Thermal

Performance

Hardware, software, flexible
Explicit configuration
(customer-specific)

Not required
Predefined configuration
Customized, actual workload

Unknown, real applications,
actual job, future jobs, or
scheduled tasks

Consider virtualization

Customer-specific,
management techniques,
optimization strategies
Server systems

Suitable, efficient, optimistic
assumption

Reduction of over-
provisioning, minimize
worst-case assumption, save
operational costs

Energy efficient (optimal)
configuration
Customer-specific,
application-based
Temperature behavior, peak
value, airflow rate
Customer-specific, absolute
data

Hardware, software, flexible
Released systems and
configurations, future systems,
new variants

Internal for build stage

Flexible

Realistic scenarios, worst-case
(fully-utilized resources)
Unknown (black-box), abstraction
from software and operating
system, customer-specific
Independent

Independent, neglect

Server systems and components
Pessimistic assumption (worst-
case), extra buffer

A range of added power that is
not used

Customer-specific, flexible

Peak and actual power

Airflow rate, noise, heat emission

Customer-specific, relative data,
via benchmarks

The following section describes the industrial power calculation tools, which do not use

academic fundamentals because of the various requirements and use cases.

116

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

3.10.3 Commercial Server System Calculators

In industrial practice, server vendors, such as Dell**®, 1IBM*®*, HP'®?, or Fujitsu163 provide web-
based or application-based power calculators for server systems. On the one side, the
customer configures the entire system for his or her needs and calculates the server power
consumption to be aware of the overall energy demands of the IT-infrastructure. On the other
side, the configuration tools offer the opportunity of generating the bill of the material lists
(BOM) to order a system. The configuration tools propose large quantities of up-to-date as
well as earlier (archived) server systems, enclosures, related infrastructures, and their
components. Table 19 summarizes the settings of the industrial tools that calculate the power
consumption of the complete server system and shows the vendor-specific thermal outputs.
The table cell content indicates if the input settings are supported (via yes) by the tools of the
Dell Energy Smart Solution Advisor (ESSA)'®, the Fujitsu System Architect'®, the HP Power
Advisor'®®, or the IBM Energy Estimator'. They all have in common that the hardware
configuration, such as the processor, memory, and 1/O is highly flexible by choosing the type,
family, quantity, or capacity. The IBM tool only distinguishes in the number of active processor
cores, which leads to the assumption that the approach of the equation (3.31) is used. The tool
calculates the power consumption of the entire system, whose values are non-linear with
respect to the configured active cores. Dell exclusively distinguishes the memory-working
mode as an input parameter, but the system power dissipation does not change at various
settings. All vendors besides IBM consider power supply redundancy. Either one or more PSUs
provide the system’s power to avoid AC losses or power failures. In addition, it could be more
efficient to use multiple PSUs at 50% utilization level instead of one PSU at 100% utilization
level. The 80 PLUS® performance specification'® certifies PSUs whose energy efficiency is over
80% and higher (symbolized with bronze, silver, gold, platinum, or titanium) at all utilization
levels. For instance, a titanium-certified PSU has an efficiency of 90% in all utilization levels
and therefore, the power supply redundancy has no effect on the power consumption when
only the amount of the same PSUs changes. With the present state of our knowledge and
general experience, the bronze-certified power supply units are state-of-the-art. The fan
settings are vendor-specific and are impossible to be changed for a customer-specific thermal
control. The customer cannot directly influence the server’s noise, airflow, or temperature
behavior. Furthermore, the tools provide the choice of the software, such as an explicit

% pell: Dell Inc., http://www.dell.com/

IBM: IBM Corporation, http://www.ibm.com/en-us/

HP: Hewlett-Packard Development Company, L.P., http://www8.hp.com/us/en/home.html
Fujitsu: Fujitsu Limited, http://www.fujitsu.com/global/

Dell: http://essa.us.dell.com/DellStarOnline/DCCP.aspx?c=us&|=en&s=corp&Template=6945c07e-
3be7-47aa-b318-18f9052df893

1% Fyjitsu: http://configurator.ts.fujitsu.com/public/

HP: http://www8.hp.com/us/en/products/servers/rackandpower.html#poweradvisor

IBM: http://www-912.ibm.com/see/EnergyEstimator

80 PLUS PSU: http://www.plugloadsolutions.com/80PlusPowerSupplies.aspx

161
162
163
164

166
167
168

117

http://configurator.ts.fujitsu.com/public/
http://configurator.ts.fujitsu.com/public/
http://configurator.ts.fujitsu.com/public/

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

application, virtualization, or operating system. This is only part of the material list and not
part of the power calculation. The same effect occurs for the BIOS/UEFI settings in the Dell

tool*®

. All four tools support the power calculation on the basis of the processor utilization
level. The Dell calculator additionally provides a memory and computational configuration, but
we observed that the power calculation is fixed. In the case of the computational and memory-
bounded workload, the related power comes from the power consumption at the highest
processor utilization u, = 100%. Equations (3.81) and (3.82) show the weight factors in
relation to the processor-bounded workload. The factors come from empirical experiments

that use various server configurations (30) to analyze the influence of the settings.

pcomputational = 1.07 * pprocessor_bounded(max(up)) (3-81)

pmemory_bounded =0.94 * pprocessor_bounded (max(up)) (3-82)

Furthermore, Dell uses the static power consumption for the idle utilization level as stated in
the equations (3.19). The calculator uses the thermal design power of the processors to
estimate the largest power consumption. The server system power is linearly proportional to
the processor utilization, and the number of processors used within the system. The linear
regression is valid for the other vendor tools as well, which we checked in a server system
evaluation of the Dell R720, Fujitsu RX300S7, and HP DL380p Gen8'°. The use case of the
calculators is the same, so we select almost the same hardware configuration (technical
specification) to achieve comparable results. In our evaluation, the systems use the dual socket
processor of the Romley EP platform, the equal amount of memory, and a nearly identical
storage capacity. We observed that all tools use a linear algorithm to calculate the server
power consumption. A higher amount of processors results in a taller power-to-utilization
curve gradient, but is still a linear relationship. Furthermore, we found that the offset to the
base power at 0% utilization level only relies on the processor quantities. In addition, the IBM
tool handles the power save mode in the configuration, but this does not have any impact on
the power calculation. The power tools of Dell and Fujitsu calculate the airflow rate of the
server system, which based upon the enclosure conditions or limitations. The Fujitsu tool
estimates the heat emission in a simplified manner, which relies on the statement that every
consumed power generates the same amount of heat. On the contrary, the Dell calculator
provides the noise instead of the heat, which is another optimization aspect.

169 BIOS/UEFI settings: only Dell supports customer-specific settings

7% Evaluation: IBM X3650 M4 was impossible to check, because of access rights

118

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice

Table 19: Industrial server systems power calculators (Dell, Fujitsu, HP, and IBM)

Dell Fujitsu HP IBM
Input:
Hardware variation
Processor yes yes yes yes
Number of active processor cores - - - yes
Memory yes yes yes yes
Memory operation condition yes - - -
1/0 (hard disk drives, network) yes yes yes yes
Power supply yes yes yes yes
Power supply redundancy yes yes yes -
Fan - - - -
Software configuration
Application yes yes - -
Virtualization yes yes - -
Operating system yes yes - -
BIOS/UEFI settings yes - - -
Workload
Processor-bounded yes yes yes yes
(CPU utilization)
Memory-bounded (intensive) yes - - -
Computational yes - - -
Environment condition
Ambient temperature yes yes - -
Output:
Power consumption yes yes yes yes
at CPU utilization level [0 - 100%]
Enabled power save mode - - - yes
Airflow rate yes yes - -
Heat emission - yes - -
Noise yes - - -

3.10.4 The Gap between Typical Industrial Solutions and Academic Approaches
The industrial server calculation tools offer the same key features, such as configuring the
server at the hardware and software level to calculate the server power consumption at an

exact processor utilization level and, finally, order a system. The power consumption is a static

value due to the demand at a specific time. No tools support customer-specific scenarios or

applications that refer to a realistic behavior over time. It is impossible to configure the server
workload in a flexible manner. With the present state of our knowledge and related research
papers, the tools use measurement-based and spreadsheet-based databases that refer to a

specific software and hardware configuration [Fuj 2011].

119

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

Table 20, Table 21, and Table 22 represent the differences between industrial practice and
academic research for full-system server power calculators and simulators. In comparison to
the academic approaches, the industrial power tools support a range of server systems and
configurations, such as the amount of processors and choosing the vendor, the family, or the
generation. The tools work with diverse mandatory and optional configurations. On the
contrary, the approaches in Section 3.9 focus on an exact system or component architecture,
which supports the tested instructions for the functional or timing model. The academic
models do not abstract from the operating system or application and therefore, the authors
use an explicit hardware setting for their method. Both approaches do not consider the device
operation condition, which in specific terms is a hardware-based setting only configurable
when the system is in the BIOS/UEFI state. In the BIOS/UEFI, for instance, the customer
enables the virtualization-based mode of the processor or the sparring or mirroring mode of
the memory modules. During runtime, the behavior is fixed and must be set before the system
starts. In addition, the management techniques cannot influence these base decisions, but the
BIOS/UEFI settings are not negligible for the power consumption of the system. In industrial
tools, the customer selects an operating system or application, which the power algorithm
does not consider. On the other hand, the researchers analyze the systems on the basis of the
OS types, working sequences, tasks, or threads because of their influence on the power
consumption. Therefore, the authors cover a range of benchmarks, applications, or scenarios
executed over time. On the contrary, all industrial power tools use a processor-bounded
workload for a simplified power estimation of the server system at a time. The tools do not
support flexible workloads to estimate the minimal, average, and peak power/energy. Neither
the industry nor academic power algorithms consider the environmental conditions, such as
the ambient temperature. In the case of the academic algorithm, the customers choose a
management technique or strategy, which is the research objective. On the contrary, the
industrial tools ignore them because the operating system (e.g. Linux or Windows) handles the
performance demand and, finally, the frequencies autonomously when no management rules
are given. Furthermore, the customer can set the optimization goal within the baseboard
management controller, which is independent of the OS. For instance, the customer configures
a power limit of 200 watt for the server system. The embedded controller limits the highest p-
state of the processor to fulfill the power demand or reduce the fan speed. The software
settings of the governor or OS are also able to throttle the system if it is part of the settings.
On the other hand, the data center manager'’* may control the power limit and the amount of
job decrease by a policy to reduce the power consumption. A server vendor has no knowledge
of the environmental constraints and therefore, does not consider management techniques.
The main aspect of industrial tools is the power calculation, but at the same time, the
algorithms do not include the thermal related power that occurs from the fan speed control.

! Data center manager: differentiate in business unit manager, IT application manager, IT hardware

manager, or data center facilities manager [PBB et al. 2010]

120

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

We found that the industrial power algorithms only rely on the processor as well as resource
utilization and not, as in the academic case, in instructions, clock cycles, bandwidth,
accesses/misses, states, transitions, activities, or counters. Therefore, commercial tools use
measurements and spreadsheet models. The academic research approaches are more
complex, because the inner behavior is part of the model. The state machines are sensitive to
the functional model (event, activities, accesses, or misses) as shown by empirical
experiments. The academic algorithms offer many calculation behaviors beginning with an
additive relationship up to exponential algorithm. In contrast, all industrial tools calculate the
power using a linear regression for a time. The average error between the estimation and
measurement of the industrial tools is more than double (> 20%) in comparison to the
academic approaches (< 10%). The impact of the academic results is a higher measurement
as well as modeling effort that consumes more time and costs. Therefore, the vendors set their
own optimum between the level of detail, accuracy, measurement, and modeling effort.
Fujitsu stated an error rate of approximately ten percent for full-system power consumption is
adequate in comparison to the investigated effort, and the customers’ requirements [Fuj
2013]. Of course, the customer itself wants the most precise results. In the phase of shorter
server product lifecycles of design and development, very often no physical hardware is
available. Designing a server in industrial practice considers the supplier data sheet. The
component-based values are theoretical data or worst-case thresholds in order to not fear
regression claims. Server vendors believe the technical specification and neither verify nor
validate the values because of the time or costs that are necessary to evaluate the deliveries.
Vendors calculate the total system power imprecisely because of the deviation between
measured and data sheet values. This trend of error propagation continues with the number of
each component within a server system, which leads to the oversized server PSUs. A correct
operating state of the power supply is impossible because the PSU almost never reach a
utilization level over 80 percent. Often, the vendors optimize the power supplies for peak
conversion at high utilization, which leads to inefficiencies at the lower level.

Table 20: Comparison of the power calculators of server systems in industrial practice and academic research

(I

Industrial practice Academic research
(calculators) (calculators, simulators)
Input:
Hardware Variable, Explicit and static
configuration parameterized, (predefined)
(flexibility, customized, generic
expressiveness) (quantity, vendor,

family, capacity, etc.)
Device operation Yes* -
condition / mode (energy saving mode)

*: Possible to change, but not considered in the algorithm

121

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice

Table 21: Comparison of the power calculators of server systems in industrial practice and academic research

(an

Industrial practice
(calculators)

Academic research
(calculators, simulators)

Software variation

Workload

Environment
condition
Management
technique /
optimization
strategy

Output:
Aspect / use case
Scenarios

Focused product life
cycle phase

Yes*
(OS, application)

Processor-bounded**,
specific, point in time

Ambient temperature*

k k%

Calculation of power**

Actual and peak values

External: build, operate
internal: envision, build,
test, implement,
operate

OS, parallelism, tasks, threads,
virtualization, schedule, compiler
settings

Various benchmarks, applications,
scenarios, generic, point in time, over
time

Dynamic power management (DPM),
advanced power management (APM),
dynamic voltage frequency scaling
(DVFS) e.g. AMDs PowerNow or Intel
Speed Step, power budgeting, capping,
limiting, throttling, gating, shifting,
operating mode control, system power
management, dynamic thermal
management (DTM), fan speed control,
resource management, allocation,
planning, load balancing, workload
management, consolidation, migration

Calculation or simulation of power,
thermal, performance, or energy
efficiency

Actual, min, peak, average, sum,
optimization, dynamic behavior
Test

*: Possible to change, but not considered in the algorithm
**: Based on our knowledge, it is the primary property, but there are few exceptions
**%: Not configurable, automatically done within the system (via OS, BMC, and data center manager)

122

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial

Practice

Table 22: Comparison of the power calculators of server systems in industrial practice and academic research

an

Industrial practice
(calculators)

Academic research
(calculators, simulators)

Power consumption
algorithm
Basis

Level of detail

Modeling style
(base of
equations)

Calculation
Power dissipation

Over-estimation
(accuracy, error)

Modeling
effort

Measurement effort

Time effort, cost

CPU utilization**,
OS independency

Resource utilization

Lookup tables,
spreadsheet-based,
measurement-based,
configuration-based,
black-box

Linear

Peak and actual,
time

High

(> 20% average)
[Fuj 2013]
Depends on the
accuracy, based on
components

High

(each system)
High

(one system, three
month [Fuj 2011])

Resource (CPU) utilization, OS
dependency, instructions, clock cycles,
active cores, parallelism, customer-level
metrics, open sockets, bandwidth,
accesses, or I/0O rate of: memory, hard
disk drives, network

Instruction, cycles, voltages,
frequencies, states, transitions, events,
activities, counters, accesses, misses,
correlations

State machines sensitive to functional
model, states controlled by scenarios
measurement-based (counters,
profiling), simulation-based,
optimization-based,

white-box and gray-box

Linear, non-linear, square, cubed,
exponential

Min, peak, average, actual,

over time

Low

(< 10% average)

[RRK2008, FWB 2007, HCG et al. 2006]
Based on functional or timing behavior,
new for every exploration

Extreme high

(each instruction or function)

High

(analyze and divide system activities,
trace system, and instructions)

*: Possible to change, but not considered in the algorithm

**: Based on our knowledge, it is the primary property, but there are few exceptions

***: Not configurable, automatically done within the system (via OS, BMC, and data center manager)

123

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The gap between the commercial practice and analytical research comes primarily from the
heterogeneous use cases. Academic approaches have less flexibility in the system
configuration in comparison to the industrial tools. On the other hand, the commercial
algorithms use restricted workloads, which are not able to consider academic results because
of the missing details. Lower power calculation accuracy leads to over-estimation of the server,
but requires less measurement effort than the academic approaches.

3.11 Summary

In this section, we present the basic modeling techniques that are used in academic research
and industrial practice. We distinguish the basic modeling techniques into the object, control,
and process specification of the following modeling domains: physical, conceptual, contextual,
and external. The characteristics of the model and its objectives, such as the measurement-
based, simulation-based, configuration- and optimization-based model, are relevant factors to
choose the suitable technique. We present the following server system domains: data center,
rack enclosure, components, chips and their aspect-based metrics as well as benchmarks. In
this thesis, we concentrate on modeling a server system on the basis of the fundamental
techniques. We present the aspect-based algorithms and approaches in academic research.

In fact, power consumption is a key factor across all domains and thus, we begin with the
related approaches of the server system domain. We define the logical description of the chips
or components, such as their electrical behavior, which is part of the physical domain. Usually,
the interior component structures, operations, processes, instructions, and particularly the
internal data are known because of the prior measurements on the real system. The timing
models that consider an application and its behavior are typically used in the chip and system
domain for micro-architectural description. In contrast, the approaches in the component or
system domain rely upon the hardware activities or micro-architectural events, such as
accesses or switching activities. These approaches specify states and transitions considering
counter-based heuristics, e.g. hardware performance counters. If no other inner information
about the interior behavior or functionality is available, we consider data sheets that provide
the power consumption values on the architectural level concerning the component
characteristics, such as the bandwidth, organization of the device, cores, or supply voltages.

The utilization levels are one of the most commonly used metrics in the models across the
domains. The utilization levels are the key elements for the workload definition to build up a
realistic scenario and indirectly affect the aspect-based models that highly depend upon the
performed task in the server system domain, whereby the performance counters represent
the chips, components, or system activity. The utilization level of the physical domain focuses
on instructions and operations on an architectural level, for instance. The resource utilization
results not only in power consumption, but also leads to thermal dissipation.

124

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

The thermal behavior relies on the operating condition of a system, its resources, chips, and
their related states. In academic research works, several thermal algorithms consider the
volume flow, density, heat, heat flow, thermal conductivity, thermal gradient, heat transfer
rate, and thermal resistance. Usually, academic approaches assume a linear relationship
between the component utilization, and the temperature specified as an analogy between
electrical and thermal properties. Moreover, we present some next-generation approaches
that define the dynamic thermal behavior of a component as an exponential time-based
function considering the hardware performance counters. Current approaches for thermal
modeling of the memory modules are based upon self-heating, spreading heating, or adjacent
heating resistances, but do not consider the thermal interaction between resources from the
same type, from other types, or inner dependencies, because of the circuit structure as well as
the architecture. Current processor models only consider local hotspots, whereby the
temperature is non-linear to the utilization level and the input voltage, but linear to the
frequency. The simulation-based approaches require real servers for the temperature
measurements of each component under static and dynamic considerations. The system-wide
thermal effects are not taken into account up to now.

Besides the power and thermal models, we require the performance models to specify the
energy efficiency. The performance models estimate the peak value, the average values, or the
performance per watt on the basis of resource characterization to indicate how efficient the
system operates. The system executes a set of workloads, such as benchmarks (suite) and the
results of these empirical studies form the basis for the performance models, which depend on
the executed instructions (floating-point, integer) and related activated functional units on the
explicit hardware. In case of current memory performance modeling approaches, the
architecture, the data locality, and the cache misses are significant criteria. In addition, the
workload type generates performance differences because of parallelization or shared
accesses. A forecast or prediction is only possible for an explicit workload, where the read-to-
write ratio of the memory modules is established. In this thesis, we focus upon the power and
thermal models and therefore consider the measurement results of several performance
scores. The energy efficiency (performance-to-power ratio) is a criterion to determine the
productivity, whether in power/energy, thermal, or performance. The efficiency provides the
ability to avoid costs, airflow, humidity, carbon footprint, efforts, energy, time, or money at
the considered aspects.

Across the various levels of detail, the aspect-based models build the fundamentals of the full-
system models, which we distinguish into simulation-based and hardware-metric-based
models. The system-based models depend on a single technology and refer to known working
conditions, such as an explicit application or particular operations. The variable settings of
workloads and software settings are crucial factors of a system’s power dissipation. The
models focus on concrete configurations within a defined environment, such as a given

125

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

workload, and guarantee a suitable accuracy by using various instruction counter types to
determine the resources’ activity level or performance. The counters are hardware-specific
because of the resource architecture, inner designs, states, connectivity, or parameters.
Therefore, the hardware counters are only valid for an explicit configuration or platform on the
micro-architectural level. The dynamic full-system simulators or application-level simulators
(SimFlex, SimWattch, BladeSim) give a more exact estimation about the system’s behavior
because of realistic workloads, including operating system effects on behavior, and
performance in the working progress. The resource utilization is obtainable via measurements
of synthetic benchmarks or during the runtime of the respective system. Software profiling
tools (SimOS, SoftWatt, Simics, TFSim) simulate applications and effects, such as the operating
system behavior, and model the instruction execution after studying the timings and
functional data. The software profiling simulators are adequate for a given environment, but
do not claim to be generally applicable. The execution-driven simulators and cycle-accurate
approaches at the physical level (SimplePower, SimpleScalar, Wattch) need a more exact
timing model because they consider the instructions with their timing behavior, such as
memory accesses and instructions with uniform time slots, cycle-based executions, pipelined
data path, and switching capacitance. The approaches provide an infrastructure for system
modeling at the architectural level and generate instruction traces at the cycle level. The
execution-driven simulators provide routines to model tasks, e.g., discrete events, and use
instruction sets, and 1/O emulators to support customer applications, which are based upon
hardware activities.

The full-system simulation frameworks SimOS and Simics are application-based power and
performance simulators that model the execution of the operating system and the application
software of medium-scale, shared-memory multiprocessors. These models are restricted to
the specific workload designed for an explicit hardware and include functional descriptions,
such as instruction execution as well as timing aspects of unmodified operating systems,
kernels, and drivers. Furthermore, the models quantify the power behavior with respect to the
workload into power dominant services, such as kernel activities, data path, or caches. The
trace-based design supports various architectures, designs, and configurations, but is based
upon low-level data. BladeSim is a resource utilization-based simulator that considers the
system configuration and architectural policies. The simulator converts the trace of a real
workload and the corresponding task-based resource utilization levels, which is extended by
the timing model and simulates the system behavior. Figure 42 presents the investigated
server system simulators concerning their conceptual and server system domain.

126

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

conceptual
F GEMS BladeSim Eng?use
simulation |SimplePower SimpleScalar SimFlex DCS”_”
Wattch SimWattch MDCSim
software SoftWatt
profiling TFsim (Opal)
SimOS simics
hardware
measurements Joule Watcher Mantis
server system domain
physical (chips) component system environment

Figure 42: Server system simulation approaches

The full-system approaches require an existing system to define the component
interconnections, the OS activities, and executed instructions at the micro-architectural level.
The approaches do not take the relationships, the dependencies, or the structures between
hardware families, generations, or series into account. The impact of the academic results is a
higher measurement as well as modeling effort that consumes more time and costs. Most
academic full-system simulators refer to a given operating system, and focus on an explicit
scenario, and predefined configuration to keep products competitive, but do not scale with
regard to the hardware configuration. In commercial tools, the full-system simulators are
unsuitable for the server modeling because the model must be independent of the operating
system. The customer has free choice concerning the desired operating system and server
characterization according to the needs of their company.

The customer chooses an explicit hardware and software configuration to fulfill his or her own
performance demands of the server system. The system requirements of the server modeling
come from the real application and the customer’s daily experiences. The executed software
on the server varies for each customer and is of subordinated interest. Moreover, the
customer-specific job may be unknown because the operations and tasks change over time.
The unlimited variability of the customer induces the vendor to establish flexible and universal
(but still vendor-specific) configuration tools that satisfy the diverse demands. Both in common
require an adjustable hardware and software configuration for the server.

127

Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial
Practice

In addition to the main task of purchasing an individual server system, the vendor offers the
opportunity to calculate the power (energy) consumption of the server system to match the
customer requirements, such as power constraints in the server environment. In industrial
practice, a vendor calculates the server power for a worst-case scenario (a fully equipped
server system), including an extra power overhead in order to not fear regression claims. The
component-based values are theoretical data on the basis of the technical specifications.
Vendors calculate the total system power imprecisely because of the deviation between
measured and data sheet values. This trend of error propagation continues with the number of
each component within a server system, which leads to oversized server power supply units.
We found that the industrial power algorithms only rely on the processor as well as resource
utilization and not, as in the academic case, in instructions, clock cycles, bandwidth,
accesses/misses, states, transitions, activities, or counters. The academic research approaches
are more complex, because the internal behavior is part of the model.

128

Problem Statement, Challenges, and Aims

4 Problem Statement, Challenges, and Aims

Industrial tools require the same accuracy, an error rate less than ten percent, as the academic
approaches already offer. The industry is not able to use the precise concepts as they stand
because of the differences concerning requirements, specific configurations, and modeling
aspects. Some of the challenges are as follows:

e Vendor vs. customer perspective

e Upper vs. lower level of abstraction

e OSindependence vs. explicit OS settings

e Processor-bounded workload vs. given benchmarks (software settings)
e Generic vs. particular model

e Inaccuracy vs. precision

Industrial tools do not consider instruction-based or cycle-accurate details on the physical
domain. The loss of accuracy leads to an over-provisioning and inefficiency of the server
system and this missing precision affects everyone who purchases a server system. A server
system consumes power and generates heat at the same time. The thermal dissipation
requires extra ventilation facilities to cut the heat, which is a critical issue, especially in large-
enterprises, where the heating, ventilation, and air-conditioning technology create operational
expenditure [WK 2013].

In the academic context, a generic approach can reduce the modeling effort, which supports
different system variations without creating a new representation. The measurements
describe the academic observations across a complex and entire system. Hence, another
benefit is the prevention of extra measurements because of the constraints given by each
customer. We need a configuration-based model that provides various hardware and software
architectures as well as a behavioral description. Furthermore, the operating system
abstraction offers the opportunity to use the model for particular technologies. In addition, the
model should be valid under virtualized and non-virtualized circumstances, whereby each
operating system is possible. The authors of [LJ 2003, DAH et al. 2007] create a simulation-
based, full-system timing model at the micro-architectural level, but the functional model
works on a concrete OS.

To our knowledge, in the academic literature there are no generic approaches that cover the
full server system simulation on a common base. The server power depends on the configured
hardware and software. The same benchmark generates nearly doubled power when we
duplicate the processor quantity, but the extra resource does not double the performance. Of
course, the main consumer of the system must be the processor; otherwise, this statement is
not valid. The performance is less because of the component interconnection, as the authors
of [SXC et al. 2000, MNR 2007, MHS et al. 2009] have analyzed. If the same hardware
configuration executes different benchmarks, the peak performance or power also varies.

129

Problem Statement, Challenges, and Aims

The researchers [Lan 2007, KSH et al. 2009, KKK et al. 2012, KJC et al. 2014] found a couple of
reasons, such as the instruction type (floating-point vs. integer), the parallelism, the
architecture, and the limited bandwidth.

The main concept is the integration of the academic approaches into industrial tools to close
the gap between measurements and power calculation. A challenge of this thesis is the match
between the application space and the architectural space of a complete server system. We
have to map the workload to the server system using utilization-based scenarios. The
benchmarks do not reflect the reality and therefore, there is a fundamental risk of
misinterpretation of the power consumption. On the other hand, our model requires a
sufficient level of detail in the configuration space, allowing the relevant energy efficiency
factors of the physical domain to support the necessary precision. The authors of [SM 2001]
propose the interaction between the upper and lower level abstraction, the impacts of which
are the constraint propagation and performance estimation. We found various problems
beginning at a higher abstraction level (environment domain) towards a minor abstraction
level (physical domain). The next sections describe the findings and recommended actions.

A simple porting of the academic approaches into the commercial tool does not work. This
section describes the various problems observed in academic and industrial practice.
Furthermore, we address the impact of not solving the problem and the related aim. Finally,
the evaluation factors support the decision to check whether the approach is sufficient. The
requirements chapter describes the expanded simulation tool demands and the resulting
evaluation criteria.

4.1 Workload Limitations

Commercial power calculators do not consider different application types, which use the
resources in various ways. Industrial tools limit the workload of the server system towards the
processor-bounded utilization levels. The customer is not able to create a specific workload
scenario to assume different server usage and cannot receive a precise power consumption of
the entire server system. In addition, the workload varies according to the customer demand
and is not always a processor-bounded scenario. For instance, the SPECpower benchmark is a
computational job that primarily utilizes the processor. Another example is SPECjbb, a Java
server benchmark that proves the performance of a Java application. Both benchmarks offer
different performance and power results because on the one side, only the processor is in use
and on the other, the SPECjbb additionally utilizes the memory modules. Table 23 shows four
benchmarks used in the Mantis approach, whereby the authors of [Riv 2008] distinguish
between various components-based utilization levels. We need to differentiate between the
workloads to predict precise the power consumption for a specific workload.

130

Problem Statement, Challenges, and Aims

Table 23: Comparison of utilization levels in Mantis [ERK 2006]

Name Processor Memory Disk
utilization utilization utilization
SPECint Very high High Very low
SPECfp Very high High Very low
SPECjbb Very high Very high Very low
Stream Medium Very high Very low

The benchmark scenario is more realistic in comparison to the industrial tools, but a single
benchmark does not consider the utilization during the product life cycle of a server system.
The operational purpose changes over time because of growing performance demands. The
server does not fulfill the requirements, and the data center manager exchanges the system or
the configuration for a specific job. Another challenge is that the benchmarks are synthetic and
do not show a realistic application scenario [Bor 1999, WWF et al. 2003, ERK 2006, BJ 2007,
GSK et al. 2009, SLU 2010]. In addition, the application behavior is unpredictable. The
identification of the key factors is crucial for the various aspects across the different
abstraction levels and hardware configurations. On the other hand, a large deviation between
various applications exists, which is a complex research question. Nevertheless, simulation
supports the expected workload, which helps the energy-efficient characterization in the
design stage of the server system. A vendor designs a server under a variety of workloads,
which changes continuously over time. A challenge stated by [RF 2009] is the interaction
prediction that is based only upon the resource utilization. At the same time, our challenge is
the expected workload of the system because customer knowledge is a critical factor and
differs between the various data center levels. We abstract the amount of time needed for a
job using the actual resource utilization levels to avoid the necessity of deep application
details.

If two separate tasks finish in one minute and each use the processor at a different level, what
happens to the execution time or utilization level, when the processor runs both jobs in
parallel? The process interaction may lead to waiting periods or performance losses. The
workload characteristics influence the power- and thermal-management techniques. The
authors of [Han 2007] argue, “One of the most effective techniques, DVFS, is particularly
sensitive to workload memory patterns because altering the clock frequency changes the
relative speed between the core processor and off-chip main memory. Compute-bound
workloads are more sensitive to frequency change than memory-bound workloads.” As a
result, the model has to distinguish between the utilization levels of each component for the
entire system. The utilization-based server system characteristics are an advantage of the
generic vendor management techniques.

131

Problem Statement, Challenges, and Aims

Furthermore, an academic workload maps the concrete application behavior observed in an
actual system, which analyzes and tests various management techniques, for instance. On the
other hand, a simulation model has a predefined workload, environment, or behavior, which
shows real observations. The traces also differ from each other and are not exactly at the time
scale of seconds. For instance, within twenty iterations, the execution time varies
approximately 1.5 minutes, whereby the average time is about 70 minutes: “Software
execution also varies for the same benchmarks from run to run [Han 2007].”

Aim #1:

We recommend a utilization-based approach, which is compatible with the commercial tools,
but also has to include low-level observations to distinguish internal structures and behavior.
The benefit is the sub-characterization of each component due to the real observation level.
For instance, either the processor is in an active mode like a certain p-state, or we have to
describe a deeper detail, such as the frequency and voltage pair of the working conditions.
Therefore, the model should include inter- and intra-component communication that refers to
academic approaches. The benefit is increased accuracy because of the flexible level of detail.

A utilization pattern has to provide the scalability and flexibility of various applications.
Furthermore, the approach should support customer-specific scenarios, which are more
realistic in comparison to the processor-bounded method. When component interconnection
is part of the simulation model, the workload abstraction may behave like several benchmarks
or applications. In addition, the complete server system simulation is intended to consider
recent scenarios.

A workload criterion is the opportunity to handle flexible resource utilization levels. The
customer can create a specific and realistic workload scenario. In advance, our model is
supposed to offer various predefined utilization levels because of the commercial
compatibility.

4.2 Server System Characterization

The server system model characterizes the hardware precisely, which has the greatest part of
the desired aspect. In the case of power analysis, the memory and processor dissipate the
largest power within the server system [ERK 2006, GX 2010, THS 2010, Ste 2012, BJ 2012]. On
the contrary, the network and I/O devices are key factors for the physical domain within an
embedded system. Academic approaches characterize the complete system in such detail that
they consider every instruction and cycle at the physical, component, or system domain in a
single as well as a separated view. Each approach characterizes their component and finally
the system at a specific abstraction level for their own. Scientists cannot reuse the proposed
models because they are not able to map the component characteristics to their existing
approaches at diverse hierarchy levels. For instance, a brand-new processor QPI speed needs a
model adjustment, which commonly results in a new model because of missing compatibility

132

Problem Statement, Challenges, and Aims

and completely different component behavior. A generic model offers a robust base for the
various abstraction levels. To our actual knowledge, there is no complete server system
simulator in existence that considers the flexibility and scalability of diverse software and
hardware configurations to reduce the modeling effort of the individual explorations [RHW et
al. 1995, Her 1998, BTM 2000, ALE 2002, GSI et al. 2002, MHW 2002, MCE et al. 2002, CDS
2003, WWF et al. 2003, HSW et al. 2004, WWF et al. 2006, Lan 2007, CDS 2007, RL 2007]. A
higher system flexibility and complexity may result in more computations, longer simulation
time, and cut the performance because of limited simulation memory.

We found that the models do not distinguish between static and dynamic settings for the
hardware and software characterization. The customers choose a hardware configuration that
automatically assumes the fixed behavior predefined by the architecture or structure of the
component. The authors of [HRR et al. 2007] found that five nominally identical processors
have a ten percent difference in total power consumption. The components have their
characteristics because of the variations within the manufacturing process. A challenge is the
chip variability [Han 2007]. The industrial tools do not consider software-based settings and
their influence on power consumption. An example is the memory module mode, which either
refreshes the module at regular intervals, or does a series of refresh cycles. The customers
select the mode only in the case of the shipped hardware, but are not able to change the
settings in the configuration tool. Another example is the Enhanced Intel SpeedStep
Technology (EIST)""? that is configurable in the BIOS/UEFI to enable the power management. In
the case of the processor, the critical power-relevant parameters are the processor speed
(device scaling characteristics), core quantities, the number of active cores, and the processor
core interconnections as described in Section 3.4.2. The full-system simulation tools, described
in Section 3.9.1, do not support customer intervention via changing component characteristics
or the environmental conditions during the simulation time. The counter-based models Mantis
and Joule Watcher use the static system’s observations to simulate the system [ERK 2006, Bel
2000]. SimOS, SoftWatt, and Simics consider a software profile at a fixed hardware
configuration [RHW et al. 1995, GSI et al. 2002, MCE et al. 2002]. On the contrary, the dynamic
full-system simulators SimFlex, SimWattch, and BladeSim distinguish between various
components or physical chips within the configuration [HSW et al. 2004, CDS 2003, RL 2007].
Nevertheless, the customer cannot influence the characteristics or disturbance impacts, such
as the ambient temperature. The predefined operating system and software determine the
corresponding timings of the simulation model.

72 EIST: the Intel processor-based power management option, AMD’s Cool ‘n’ Quiet™

133

Problem Statement, Challenges, and Aims

Aim #2:

We need a flexible characterization of the software and hardware to support various
observations at different abstraction levels. In addition, for our simulation model we require
the support of hardware-based offline settings, such as the BIOS/UEFI configuration. The
model is intended to abstract the architecture and software dependencies as much as possible
without losing the accuracy. A challenge is the abstraction level of the complete server system
complexity, including the configuration adaptability. The abstraction level should be low
enough to support architectural and structural changes at the physical domain. At the same
time, a high abstraction level intends to ensure the flexibility and scalability. We recommend a
component-based approach to offer upper and lower abstraction opportunities. Beneficially,
the components can be defined independently of each other. As described above, the
processor includes several critical parameters at all abstraction levels. Of course, the
simulation model has to include dynamic approaches concerning management techniques,
such as DVFS. Therefore, multiple design hierarchies are supposed to easily map the various
component behaviors.

The supported component types, the device quantities, the flexible adjustment (ambient
temperature) during the simulation, and the amount of statics as well as dynamic hardware
and software settings are part of the characterization criteria.

4.3 Complete Server System Simulation
A complete server system simulation helps the industry to precisely estimate the energy
efficiency and especially the power consumption of the server. The authors of [CPI et al. 2009]

"

state “..., we need to observe systems to see how they perform in various situations.” A
simulation system offers the opportunity when no real hardware or a prototype is available,
which reduces the costs and risks across the industry. The server system simulators model the
software and hardware of the entire system, including the processor, memory, disk, network,
or other devices. In the academic research, the complete system simulations use timing and
behavior models at the instruction-based and cycle-accurate level, as described in Section
3.4.1. The white-box and gray-box approaches differ in their accuracy and simulation speed.
The instruction-level approaches are more accurate in comparison to the gray-box approaches,
but are very slow at the same time. An exact approach wastes modeling time and related costs
when the share in the total power is negligible. Thus, the decision on which component and

which abstraction level to use is also a key challenge.

The complete system simulators use operating system data. The OS architecture and runtime
events limit the simulation model because the methods require a simulator adaption when the
structure changes. It is a time-consuming process. Another challenge is that we do not know all
the critical events for accurate power calculation, which also differs for various manufacturing
processes of the physical domain. On the other side, if the aim is an analysis of the OS power
consumption, a time-accurate, access-driven, and power-aware simulation is necessary [LJ

134

Problem Statement, Challenges, and Aims

2003]. SimOS [RHW et al. 1995] includes the operating system, on a time scale of tens of
milliseconds, and the corresponding software that executes complete and unmodified binary
workloads. Most of the simulation approaches use instructions and cycles instead of resource
utilization to consider predefined applications. Furthermore, simulation needs an explicit
specification of the operating system and the executed software.

The academic approaches try “..., to explain phenomenon experienced through observations
[CPI et al. 2009]” across the complex systems with a fixed target. The analytical methods have
an error rate less than ten percent, but are not applicable. The simulation-based, software
profile, or hardware measurement approaches are not universally valid for server systems,
because of the mass of hardware and software configurations across existent and unspecific
systems. The workload variation (software) with heterogeneous characteristics and the
component manufacturing variation (hardware) in real systems are challenges for generic
management techniques and optimization strategies, because of unexpected behavior [Han
2007].

Aim #3:

A flexible, entire server system simulation is intended to combine the accuracy of the
academic approaches based upon some higher abstraction level. For being valuable, our model
needs multiple model hierarchies, from the system to the physical domain, to include the
impacts of the technology designs, generations of architectures, as well as accurate predictions
of particular resources. A complete system model should provide the integration of academic
approaches or results with single as well as decoupled components. The model should offer
the opportunity to use white-box, gray-box, and black-box models in one simulation model.
Furthermore, we intend to explore new models that cross discipline boundaries to understand
the fundamental limitations and properties of power, energy, and thermal behavior. The
temperature-aware workload scheduling and the energy efficiency analysis [HS 2007, MNR
2007, Han 2007, JVG 2010] show the benefits of combining the solution spaces. We should
achieve a better efficiency across the overall hierarchy levels. The model should be
independent of the operating system and device events. A correct abstract simulation model
provides the entire system complexity to capture the most important factors, but at the same
time is simple enough to cover the system behavior. In addition, the simulation model has to
consider the customer and vendor requirements to support different product life cycle stages.

135

Problem Statement, Challenges, and Aims

We use the following modeling and simulation criteria to check the recommended solution.
The error rate (between measurement and calculation) is less than ten percent of the entire
system. The approach has to simulate three different server generations'”>. The operating
system has to be a factor for the calculation algorithm. The simulation is intended to support
different product life cycle stages, which we determine by the level of component
abstractions, the amount of components, and the availability that the customer can adjust the
simulation.

4.4 Worst-Case Power Assumption

The common commercial vendors [Dell Inc., IBM Corporation, Hewlett-Packard Development
Company, L.P., Fujitsu Limited] and the authors of the academic approaches [BHS 1998, ERK
2006, Riv 2008, BC 2010] accumulate the sum of all peak power values associated with each
component within the system. The constant additive approaches use the worst-case scenario
“the full utilization of all resources at the same time,” which leads to be over-provisioning.
When unused resources dynamically or autonomously shut down, the worst-case assumption
is invalid. Furthermore, the components execute some instructions and interact between
other components. The communication needs working time and this is the reason, why the
workload does not fully use all resources at the same time. A challenge is the unknown system
structure, which influences the component communication.

In addition, the vendors estimate extra overhead to ensure compliance with product safety
standards or future demands and call it nameplate power'’*. Significant differences between
the power values occur, if we compare the nameplate power with the actual power. The
authors of [New 2008] state that the nameplate power (700W) is the double of the realistic
peak power (350W) for their chosen server example'”. The idle power of the server system is
about 200 watts. The server will never utilize the power supply over 50 percent, when vendors
use the nameplate power to size the PSU. “..., Many OEMs standardize their power supplies on
a smaller number of PSUs, which can result in substantial gaps between nameplate values and
actual power consumed for a given piece of IT equipment, [BBJ et al. 2009].” The same authors
also mention that “When discussing server power draw and cooling loads, nameplate is
frequently used (albeit incorrectly) to describe the value from the server data sheet for the
power supply (generally the output of the power supply listed in watts).”

In the literature of [DSC 2006], the authors state, “For the blade system, the nameplate power
rating overestimates the power by almost 50%, and misestimates the importance of various
components.” The nameplate power is substantially larger than the peak power of the entire
system, which results in inefficiency, extra capital expenditures, or operational costs. A
problem is that industry, especially the data center manager, generally accepts the nameplate

' Three generations: the previous, the recent, and the future

Nameplate power: technically correct — system rating label [BBJ et al. 2009]
Server configuration: x86 architecture, 1U rack server, two processors, and two hard disk drives

174
175

136

Problem Statement, Challenges, and Aims

power to interpret incoming energy requirements. On the one side, the data center requires
the electrical data, such as the wiring method and PSU quantities. On the other side, the server
has to fulfill the customer-specific requirements at a particular place. Unfortunately, the data
center architects still often use the nameplate power in the design, planning, and deployment
stage [BBJ et al. 2009]. In addition, the power supply is not server-specific and does not change
because of the changing quantities of the components. The nameplate power is independent
of whether the component is mounted or not within the limits of the maximal system
configuration.

Aim #4:

“In general, the electrical loading should be sized based on IT equipment peak measured or
maximum measured power consumption levels and not nameplate values, [BBJ et al. 2009].”
Therefore, we have to calculate the total power consumption independent from the worst-
case scenario or create a more realistic one. The server system’s PSU sizing should use the
power calculation to avoid over-provisioning.

We should consider the interdependencies between the components in the complete server
system to show the real power consumption to the component utilization levels. The Simics or
TFSim approach is not aware of the component interaction [MCE et al. 2002, MHW 2002]. In
addition, we have to cover the non-linear behavior when we take the communication and
interaction between the components into account. The authors of [ERK 2006, RRK 2008, Riv
2008] only set up fixed coefficients to handle server-specific characteristics for a predefined
workload and configuration. Our model should distinguish between different inner operating
modes to cover the static and dynamic component-based power with respect to the micro-
architectural structures. A benefit is that we can differentiate between various states within
each component separately. For instance, our model has to check if the memory is in refresh
mode or executes a read/write operation. The system power is expected to rely on the
individual resource utilization and their characteristics.

A criterion for exact solutions is the difference between the calculated power and the
nameplate power. The simulation-based results are comparable to the measurements. The
over-prediction should be less than ten percent.

4.5 Energy Efficiency for Peak Performance

“Most benchmarks on the basis of which systems are designed are typically structured to
stress worst-case performance workloads irrespective of how the system is likely to be used in
practice [Ran 2010].” Therefore, the vendors design the server system’s energy efficiency for
peak performance under maximal available workload. “Data center servers usually operate far
below peak utilization, which creates inefficiencies [BH 2007]”. The customer does not fully
utilize a productive SVN server at every moment during a day or a week. The authors of [KFK
2008] report, that the average server utilization is less than ten percent and always lower than

137

Problem Statement, Challenges, and Aims

50 percent in a data center. The data center manager forces the low-intensity phase (under-
utilization) to have enough performance in the case of the peak capacity demand. As a result,
the servers are non-utilized. In addition, the Energy Star'’® defines the typical server power as
a weighted function of the idle, sleep, and standby power consumption to consider the
realistic workload [Riv 2008].

Additionally, the operating point of a server system is only a local optimization for recent
management techniques or optimization strategies. The vendor does not optimize the server
system for under-utilization, which wastes operational expenditure in the data center. As
stated in the previous chapter, the power supply efficiency is most suitable for high-intensity
phases. The short-term results clarify particular moment-based problems that are not
sustainable solutions. Future systems need other approaches because it is improper in the
case of changing constraints or environmental conditions [CPI et al. 2009]. Secondly, the
techniques are aware of the entire performance range, beginning at the low-intensity up to
high-intensity phase.

Aim #5:

We recommend different utilization scenarios to consider under-utilization, supporting the
idle, sleep, or standby mode. On the contrary, the maximal workload is not expected to be the
full utilization of all resources. The authors of [ERK 2006] categorize the SPECint and SPECfp
benchmark into a processor-bounded workload with high intensity. In contrast, the stream
benchmark has a medium utilization of the processor. Beneficially, the flexible utilization-
based approach has to support diverse workloads and should reproduce a realistic
observation. Furthermore, the customer should influence the resource utilization at simulation
time, which enables sustainable power levels. The energy efficiency characteristics are
intended to show the overall behavior through different resource utilization levels. We expect
to analyze critical utilization levels, such as 0%, 20%, 50%, 80%, and 100%, and the effect of
each component. We supposed to estimate the energy efficiency on a more realistic use case,
not only for peak performance.

Our model is intended to combine the thermal, power, and performance views, but we should
decouple each component for more flexibility. The authors of [MSB et al. 2005] already use the
same approach, but focus on the diverse memory hierarchies. The method in [TSW 2009]
considers process interactions concerning the operational time spent for a process. We should
exchange the data across the different layers to influence the relationships between the
various aspects. For instance, higher utilization levels result in larger power consumption and
better performance, but at certain points only the power value increases. The performance
reaches its maximum because of limited resources or bottlenecks. The simulation approach
has to support a specific behavior characterization at every abstraction level.

¢ Energy Star: https://www.energystar.gov/

138

Problem Statement, Challenges, and Aims

The simulation offers the opportunity to optimize the system at various utilization levels,
especially at under-utilization. We should be able to change the component status during
simulation. Furthermore, the simulation has to provide a relative statement about the server’s
energy efficiency.

4.6 Measurement Effort

All academic system simulations have a specific research question. For instance, the
approaches use different architectures of instruction sets to offer an adequate and precise
model. If we change from a 32-bit architecture towards a 64-bit architecture'”’, the system
behaves differently and, ultimately, the interpretation of the instructions and power
consumption is incorrect. A complete measurement of a server system takes several days,
weeks, or months in industry. At first, the calibration phase (usually three intervals)
determines the largest performance or power of the entire system under a predefined
workload. A new hardware configuration requires an extra calibration of the system, which
expands the time and costs. The measurement effort increases exponentially by the
configuration flexibility [Fuj 2012]. Secondly, the developer measures many systems with
various configurations to get correct power values of the components. A power measurement
for a single component within the system under test (SUT) takes several days because of the
standardized technology. The environmental laboratory ensures the prescribed controlled
conditions, such as the ambient temperature at 40°C, to reduce negative external effects and
ensure comparability. A certified analyzer measures the AC power dissipation during the
execution of a compliant benchmark. Hereinafter, the vendor executes the benchmark
multiple times to achieve the power consumption of the system or components. Finally, the
developer validates and verifies the results for each variation, which requires additional time.

The authors of [HRR et al. 2007] state that the average power varies up to ten percent during
the measurement process. The academic approaches characterize the complete system in such
detail that they consider every instruction and cycles, which generates a huge measurement
effort in comparison to the upper abstraction level and have an increasing error rate. If
industry has to measure the system at each cycle-accurate level, the time to get the power
values increases exponentially.

Aim #6:

A flexible simulation model is intended to reduce the measurement effort, when the model
combines the industrial and academic approaches. The benefits are the workload and
configuration variation at a high abstraction level. On the contrary, the academic advantages
are the exact algorithm at a lower level. Spreadsheet data, observations, statistical results, or
customer-specific intellectual properties (IP) support the reduction of the measurements
because the model may vary the server configuration in a short time and is intended to

Y7 Architecture change: results in different routines for allocating and addressing the memory

139

Problem Statement, Challenges, and Aims

simulate the entire system. The customer may change the data from a lower level to an upper
level of the abstracted server system to specify the component behavior. This avoids extra
measurements for a new configuration or other environmental conditions. Compared to the
measurement time, the simulation time is not a critical factor. We supposed to automatically
confirm the results and check it via a few separate measurements.

4.7 Prediction of Future and Uncertain Systems

In industry, the product life cycle never stops. System development is an iterative process,
whereby the vendor improves each next generation by applying gained experiences. Each
release includes novel functionality to satisfy the latest customer requirements. Therefore, the
vendors have to measure the new server systems to integrate precise data within the joint
configuration and order tool. The authors of [CPI et al. 2009] state, “We need to observe
systems to see how they perform in various situations. This includes not only current
commercially available systems, but systems purposely constructed as prototypes of new
technologies.” A challenge is that the necessary data for an exact model is not available, such
as concrete instruction sets or operations. Furthermore, due to missing information the vendor
cannot answer many open questions and values. The power consumption, especially of novel
generations, is not predictable and is unknown because no material- specification assignment
exists.

In addition, the hardware metrics constantly change from one generation to the next one,
which means the performance counters are altered, added, or removed [Ben 2010]. The
component-based power key factor relies on its architecture, structural, or functional model
[BLR et al. 2005]. If a model is precisely as much as possible, it is invalid for novel generations.
An upper-level abstraction results in high error rates, but on the contrary, is reusable for future
components. The prediction for next-generation servers is an open research question, because
the critical power factors are not available yet. Recent academic approaches do not assume
the states, transitions, or behavior for future systems because of the complexity and missing
data.

Aim #7:

Our algorithm is supposed to use the vendor experiences, spreadsheets, heuristics, and
statistics to estimate the future systems on the basis of the earlier observations at every
product phase. For instance, the first memory module generation DDR — 200 offers half the
transfer rate (1.6MB/s) in comparison to the next-generation DDR2 — 400 (3.2MB/s),
which is furthermore, half of the DDR3 — 800 transfer rate (6.4MB/s). Moore and Koomey
stated the observed scaling and performance trends at certain manufacture generations of the
fabrication technology, but did not investigate the configuration-specific parameters [Moo
1965, KBS et al. 2010]. The model is intended to use the generic findings, which leads to the
prediction of the largest throughput of next generations. We have to predict future systems on
an upper abstraction level without details about the structure or instructions.

140

Problem Statement, Challenges, and Aims

The customer is intended to change the component characteristics to assume the future
behavior of the next-generation components. The model should provide the availability to add
new components and server systems because of the decoupled and hierarchical concept at
various abstraction levels. The virtual prototype of a component or server system is a benefit
in the early design stage. The comparison between the prediction and the state-of-the-art
component is, consequently, an evaluation criterion.

4.8 Summary

Our aim is to improve the power calculation in the commercial tools supported by the
academic approaches regarding realistic and customer-specific workload scenarios for flexible
server system variations. The over-provisioning reduction is a further dissertation goal
achievable by more precise worst-case power calculation and adjustment. Another aspect is
the server system’s energy efficiency, which is predictable at all utilization levels. If the
approach decreases the measurement effort, the vendors will save time and costs. The future
resource prediction supports the applicability at certain product development stages.

141

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

5 Multi-aspect Full-system Server Model and Optimization
Concept as a Simulation-based Approach (MFSMOS)

We develop a generic and scalable concept that consists of five separate steps to support the
dynamic adaptations of control algorithms, management strategies, and system
characteristics. Figure 43 shows an overview of the main concept. The externals block (EX)
describes the environment and generates the stimuli for the simulation. We map the externals
to the characterization block (SY), where we model and characterize the server system, its
components, and its chips primarily in the physical domain, using a mix of commercial and
academic algorithms to create multi-aspect models. We simulate the entire server system
using the characteristics (SY) and resource utilization levels (EX). The results block stores the
simulation response, in particular the energy efficiency values, to analyze the effects of each
customization and autonomous management decision. The analysis is part of the optimization
strategy in which we adapt the simulation by changing the characterization or partly changing
externals. We conclude the simulation, its results, and the corresponding optimization
strategies into the full-server system simulation (FS). The simulation is performed offline.

externals
EX
—— ¥
|
| l
|
optimization : characterization
strategy | SY o
EFS . stimuli
adaption
l h 4
simulation
FS
iresponse

results
FS
feedback

Figure 43: Overview of the five-step concept

Section 3.9 describes the state-of-the-art full-system approaches and simulators. As part of our
overall system, we conceive an alternative server system simulator that is independent of the
operating system. Our flexible external and internal system characterization supports any
server and component vendor. We develop a holistic concept that includes the results of
theoretical analyses, heuristics, measurements, and vendor-based experiences from existing
systems as well as next-generation systems in the early design phases. At this stage, we are not

142

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

able to characterize all components at the same level of detail. Therefore, our model handles
various abstraction levels beginning with instructions, proceeding with states, and finishing
with black-box descriptions where we predict the behavior on the basis of spreadsheets. We
support flexible and configurable resource utilization levels to estimate customer-specific
application software, which is the major simulator input. Furthermore, we model the impact of
system-tailored configurations and characteristics considering the following aspects: power,
performance, and temperature. The simulator includes common power management
techniques, as shown in [RL 2007]. In contrast, the authors in [RL 2007] trace and store the
corresponding utilization levels of an explicit application of a real system with a static
configuration. In addition, we consider the external power limits and thermal limits provided
by the customer. Therefore, we include various management techniques and model the
related behavior. According to the simulation results, we optimize the energy efficiency by
adapting the system characterization. Finally, the simulator provides ideal energy-efficient
settings for the given resource utilization levels. If no single optimum is possible, the system
operates at an energy-efficient corridor, characterized by a Pareto front. We describe the full-
system simulations in Section 5.1 and Section 5.4.2.

In this chapter, we assign the following terms with respective notations. We define the indices
i,j,m,m, k, 1, which are always any natural number N, = {0,1,2,3, ... }. In particular, an index i
specifies a concrete component C; or category CS;. The related index m identifies the maximal
number of the elements in the set of C or CS**. We specify an aspect 4; using the index j,

whereby n defines the final element.

i,jnmkl €Ny Ny=1{0123,..},N=1{123,..} (5.1)
C={Cy,Cy....Cn},C; EC (5.2)
CS = {CS;,CS,, ...,CSy},CS; € CS (5.3)
A={Ay Ay .., A} A €A (5.4)

We use the index k and [as any consecutive index of all remaining terms. For instance, lambda
is a generic object that has k elements, as shown in Equation (5.5). The index [specifies an
explicit element of the set A.

A={Ay Ay, .., A} A €A (5.5)

In addition, we add an extra dimension, whereby the first dimension specifies the [-th element

of A, and the second dimension defines the related component C;. We determine each

element by A; . in the two-dimensional array, see Equation (5.6). In the case that we set [= 2
1A

to a fixed value, A, looks like Equation (5.7), but includes an extra system-wide Ay, element.

8 Component and categories: We state further details of the context in Section 5.3.2.1.

143

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

A={A1g Do Brg, Jo g, €A (5.6)

Ay = {Aogy Ao Bog o hag }ohag, € Ay (5.7)

The following section describes aspect-based component models as the basis of our full-server
system simulation.

5.1 Aspect-based Component Models of the Full-Server System

Simulation
We define a dynamic and deterministic simulation model using time-continuous and value-
continuous stimuli. The externals EX build the stimuli for the simulation model, which we
convert into a time-discrete and a value-discrete workload. We need steady states because the
simulation framework calls our calculation methods at each simulation step. We calculate the
energy efficiency of the server, which depends upon the actual system configuration.
Therefore, we characterize the system and its system-board components C; to define the inner
behavior. At first, we specify each component separately in order to define the aspect-related
functions. Afterwards, we include the relations between the aspects of a single component.
Finally, we define component’s relations of the entire system behavior. Table 24 and Table 25
list the symbols and definitions for the aspect-based component models within our simulation.

Table 24: Nomenclature — aspect-based component models (I)

Nomenclature Meaning Nomenclature Meaning
A Aspect i,jnmk,l Index
C Component Ny Any natural number
N, ={0,1,2,3,...}
CS System-board (7] Configuration tree
category Or,0.,0g (HW, SW)
(= components) released, customer,
system-compatible
EX Externals proc Processor
SY System mem Memory
FS Full-system io Input/output

simulation and
optimization

AC Architecture oth Others

cc Connectors MAS Aspect-based models
per component

EE Energy efficiency Afc- Element in matrix MAS;

PO Power FAic- Functional description of
Afcl-

PE Performance F(x) Objective functions with

decision variables x

144

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Table 25: Nomenclature — aspect-based component models (I1)

Nomenclature Meaning Nomenclature Meaning
TH Thermal X Decision variables
DY Dynamic behavior G(x), G5(x) Constraints of F(x)
of the system
(characteristics)
ST, Static AX,AY Aspect-based models
characteristics
Rﬁf Relation between Ry Ry, Aspect-based relations
the aspects
(AkrAl)
RAl'c- Aspect-related AjR:’;H Impact of 4; at time step
! relevance for trs1
component i and
aspect j
RRi’_‘”‘ Interval IimAits of BE Component behavioral
]”’Ak relation RAlk model
. RR rel
i Ajrel
maxR R
Rpe Relations between the
component-specific
behavior models

This section defines the formal description of the aspect-based component models which we
want to cover in the simulation. We consider the set of aspects A and the set of components
C, see Equations (5.8) and (5.9).

A={Ay Ay . A} A E A (5.8)
C ={Cy,Cyy,C},C; EC (5.9)

In our concept, we generate models for all combinations of the components C; € C and
aspects Aj € A that we consider in the simulation, whereby i, j, m,n are any natural numbers
i,j,myn€ Ny, Ny ={0,1,2,3,...}: i.e., they build the cross product A X C, see Equation (5.10).
We concentrate upon the behavioral model of each component C; in the system.

145

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

(A1,C1) (A1, Cy) ... (A1, Cy) /(Alcl) (Alcz) (Alc"l)\
MAS = A C = | A€ (2,6 (Ao Co) | | (4ag,) (42¢,) " (426,) | (s.20)

(A C) (An, C) ™ (Ap, Co) (A’) (A=)---(A.)
ne ne, ne,

MASc = MAS,, = (4;,) (5.11)

1

We define the component C; by all aspects A = {A;,4,,...,A,} and the aspect A; for all
components C = {Cy, C,, ..., C;,}. The row n of the two-dimensional array specifies the aspect
A, and the column m specifies the component C,,,, see Equation (5.12).

€A (5.12)
In other words, each element within the matrix MAS. defines an aspect-based component

model. A row vector MASA].C specifies one aspect A; for all components C; € C. In contrast, a
i

column vector MASAJ-C specifies all aspects A; € A for one component Cp,.

/(Alcm)\

MASAjCi:((A-) (A,-CZ) (45,) MASAij=I (AZ:cm)' (5.13)

] Cy] Cm
(4nc,.)

Finally, our matrix MAS. contains all component models for all aspects A;. We define each

element Afc- of the two-dimensional array MAS. in the logical and physical layer. Other full-
4

system simulators, see Section 3.2.2 and Section 3.9, do not cover diverse aspects at the same
time. In our concept, we address the aspects power PO, performance PE, and thermal TH for
all components, see Equations (5.14) and (5.15).

A ={PO,PE,TH} = {A;,A;, A3}, A; € A| VC; (5.14)
PO,

MAS, ., = | PEc (5.15)
THe,

We consider the following components: processor, memory, input/output, fan, and
others, which we describe in Section 5.3.2.1. Equation (5.17) shows the row vector MASp. ,
L

which refers to the power models of all components C;.

146

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

C = {proc, mem, io, fan, oth} (5.16)

MASPOCi = (Poproc POmem POio Pofan Pooth) (5-17)

POWOC POmem POio POfan POoth
MASC = PEpT'OC PEmem PElo PEfan PEOth (518)
THpTOC THmem THio THfan THOth.

We generate the entire aspect-based component matrix MAS; and create a model for each
element within the matrix. We define the calculation methods for each element 4;_ as a
15

functional description FAJ’c , Which we describe in Section 5.2.2.
i

We additionally consider relations R, between aspect-based models AX and AY, which are
elements within the matrix MAS;. Each model AX and AY contain the aspects A; or Bj,
respectively, where the number of aspects is considered to be equal. We specify each
combination in the two-dimensional matrix R4, see Equation (5.22).

Ry = AX X AY (5.19)

AX = {A;, Ay, ..., Ap}, AY = {By,B,, ..., B,} (5.20)

R, = AX x AY = {(4;, B;)|A; € AX,B; € AY,j € Ny} (5.21)
(AljBl) (AlvBZ) (Al'Bn)

R, = (Az'.B1) (Az,.Bz) (Az».Bn) (5.22)

(An By) (An, By) " (Ay, By)

The matrix contains all combinations of AX X AY. As stated before, we always address the
same aspects A; for all components C;. Therefore, AX is identical with AY, we replace AY in Ry
and create a simplified version, see Equation (5.25).

A=AX =AY = {AllAZ' ...,An} | VCl,l € NO (5.23)
(AliAl) (AllAZ) (AltAn)
RA =AXA= (AZJ:Al) (AZI:AZ) .':.. (AZI.ATI) (524)

(A AD) (A A7) " (A Ar)

A relation between the same aspects A; does not exist and is negligible, see Equation (5.25).
For compatibility in the tool chain, we define the relation of two identical aspects A; as value
one within the matrix R4. The relation between the two aspects A; and A, is bidirectional and
interchangeable, see Equation (5.26).

147

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

(4;,4;) =1 (5.25)
(A1,4A3) = (A3, A1) (5.26)

As a result, we specify a simplified matrix R4, which defines all existing relations between the
aspects Aj, again setting all values to be ignored to 1.

A A
1(A1,42)(A1,43) ... (A1, Ap) 1 R:;RA; RA:
Ry=A%XA= 1 1 (Az,.As) (Az;.An) = 1 1 R:: R:; (5.27)
1 i i cee i 1 i i cee i

We define the element (4, 4;) in R, as the relation Rﬁl". We summarize the relations among

the component C; by R, . Finally, we collect all component relations in Ry ..
L

A

A
RACi = {RA

A A A A
1 1 2 1 2
Ry, R, .., RYL RY2 R

n-1 (5.28)

RAC = {RAC]_'RACZ' ey RACn} (529)

According to the specification in (5.27), we define the relations R, for the aspects A =
{PO, PE, TH} and specify them for all components C; in R,,. .
2

1 Ry Rij

Ri=|1 1 REE|={(Rpg, RIT,RTE (5.30)
1 1 1

R, = {R. Gt RoEC pFOciy (5.31)

Ac; PEc,’ "THc " THc; :

Figure 44 illustrates a component C;, its aspect-based models of the matrix MAS., and the
models’ corresponding relations R,. .
13

POCi Ci
RTHCi
v v
PO, o PE, o THE,
PECi THc;

Figure 44: Aspect-based components and corresponding relations (R,)

In the next step, we specify the behavior model BE,, whereby we include the aspect-based
models in MAS, . for each component C;and their relations R, . . We define the components’
L L

behavioral level, but do not specify the description level for each domain. For instance, we
specify the processor power model on the physical domain, but the memory thermal model as

148

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

a black-box approach. Equation (5.33) defines the behavior model of the processor, which
includes the aspect-based models POpyoc, PEproc, THproc considering the relations

POproc 1, PEproc
PEproc’” THproc

(5.34).

PO . . .
, and RTH;’::. We collect the system behavior model in BE;, see Equation

BECi(MASACi;RACl.) (5.32)

PO PE. PO
proc proc proc
BEproc(POprochEproc:THprocvRpEme:RTHWOC'RTHpmc) (5.33)

BEC = {BEC1’ BECZ' ...,BECm} (534)

The authors of [RL 2007, Riv 2008, BC 2010] use a state-based approach to specify the system
and components, but do not consider the component’s interaction. For each component C; we
separately define a behavioral model BE,, but a component can influence the behavior of
another component. The processor has to wait for the memory executions and autonomously
switches to the idle state, for instance. We specify the relations Rgz between the component-
specific behavior models BE as a cross product, see Equation (5.35).

Rpr = BE; X BE, (5.35)

According to the assumptions for the aspect-based relations R4, we generate a model Ry, see
Equations (5.36), (5.38), and (5.39). Our approach shall automatically generate and fill the
matrix. We concentrate on the behavior of each component and integrate the consequent to
the other components. We simulate the constant architecture AC of our server system,
because of the existing connectors CC between the mounted components.

BEc, _BEc, BEc,

Roge Rpggr o Rggg = {0} (5.36)
RoCi=1 (5.37)
BECi - .
BEc, _ _BE¢
Rpp,. =Ry, (5.38)
BE(
BEc, R__*
1 RBEC1 RBEC: BEc,,
BEc, BE(,
L7 RBEe2 " Rpg,
Rep = BEc X BEc=|1 | Bfcs BEq (5.39)
1 1 RBE :
1 1 Cm
1] :
1 1

The aspect-based models in MAS, their relations R4, and the behavioral relations Ry specify
the dynamic behavior within the system DY;. Herein, we define the system-specific
dependencies based upon the explicit configuration tree 8., mounted components C;, and

149

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

their category-specific characteristics. Finally, our system model consists of static ST, and
dynamic DY; characteristics. Besides the dynamic configuration, we specify the system
architecture AC and the related connectors CC as static characteristics ST;, which are not
configurable within the system, such as structural restrictions about the amount of
components C; in 8.. Figure 45 shows a graphical overview of the dynamic characteristics in
our system model.

DYy = {BE;,Rgg} = {MAS, RACrRBE} (5.40)
ST, = {AC, CC} (5.41)
SY = {ST,, DY) (5.42)
SY
Ros “
4 y
POC, R‘:g‘fll PECI R;;: THC1 e

PO, PE¢ poc
BEc,(POc,, PEc, THe, Rpp, ", Ry Ryt

BEc, BEc,
RECZ RRECm
Ca
POr PE¢. PO
BEc,(POc,, PEc, THc, Rpy. * Ry, Ry)
3
: BEc,
\L BEc,,
Cin

POcp, RPLCm RPOCM) <

BECm(POCm' PE(-'m’ THCm RPE,— THcy,' THep,

Figure 45: System model (MAS¢, Ry, Rgr)

In conclusion, in our concept we define the aspects power PO, performance PE, and thermal
TH to estimate the energy efficiency EE. The externals block EX defines the working
conditions to the server system. The previous formal descriptions characterize the system SY
to calculate a set of heterogeneous aspects 4;, which we want to optimize.

[EX][SY] - [4)] (5.43)

[EX][SY] - [PO PE TH] (5.44)

150

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

We specify the dynamic and static characteristics of the system and its components. Then we
replace the system SY with our models, as shown in Equation (5.46). Furthermore, we
characterize the components within the server system SY in order to precisely calculate each
aspect A;, which we require for our simulation.

ST.
[EX][| > [PO PE TH] (5.45)
DY,
ST,
[EX][MAS,, Ry, RBE]—>[P0 PE TH] (5.46)

The following sections describe various concept stages and introduce what the respective
blocks have to provide. We present existing approaches and argue why the concepts are not
fully applicable for the server system simulation. Afterwards, we emphasize our contributions
and describe which approaches we use or adapt.

5.2 Server System Configuration and Characterization
SY = {9! BTS! 66" BCS: ﬁl 6! Y, U!X}

This section describes the fundamental principles to simulate an entire server system. The
explicit server configuration specifies the architecture and the respective components, which
we further characterize to calculate the concrete aspects. We specify a hierarchical approach,
similar to [GFN et al. 2006], that provides the scalability to define the system from upper to
lower abstraction levels. In our approach, we conceive a flexible model that decouples the
layers configuration, logical and physical, and process and control, which we define separately
from each other, allowing to support independent descriptions of the diverse domain-specific
characteristics. The authors of [Che 2006] analyze an application referring to the components
processor, cache, memory, and peripheral. The authors propose a model of each component
and calculate the total power consumption. We consider multi-aspects so that we cannot
apply the approach directly. We develop a generic model and use the utilization levels instead
of the instruction sets or particular memory traces.

The configuration layer defines the customer-specific system configuration. The configuration
layer describes the physical system from the structural perspective, which considers the
maximal amount of possible mountable system-board components C;. Herein, we cover the
system architecture, design, and structure of the entire server system. We model the system
architecture encapsulated of the components, which supports multiple server generations
without creating a completely new model. The configuration layer supports the interactions
with our optimization strategies, which alters the specific configurations of the server system
to find an ideal energy-efficient solution. We concentrate upon the entire system and
differentiate into the possible supported components and the simulation configuration, which
is usually specified by the customer in the commercial tools. In our simulation model, we

151

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

179

require a Fujitsu System Architect file™"”, which specifies the customer-specific server system.

In principle, we parse the file™®® to define the server configuration and its mounted
components. Further characterization is done through a generic configuration tree that
considers the explicit system configuration and its particular specification. We differentiate
into the configuration and characterization of the server system and its components to define
the aspect-based models. We specify the calculation methods of each component, whereby
we access these functions within our simulation model. Therefore, we analyze the components
within the characterization layer to find the significant energy efficiency characteristics of each
component C; in every aspect 4;, but in an abstract manner. We specify the functional models
concerning the thermal, power, and performance aspects of each component in the logical
and physical configuration layer to calculate the energy efficiency at every simulated time ¢,.
We define the diverse levels of the component details flexibly based upon our knowledge of
the corresponding accuracy level and data, see Section 5.2.2. In addition, the characterization
layer considers the management techniquesy, such as dynamic voltage frequency scaling
(DVFS) and dynamic thermal management (DTM). We distribute the workload (utilization
levels) towards the mounted components and define the communication § between the
components C; in the process and control layer. Our process and control layer includes the
calculation methods based upon the characterization layer to provide the necessary simulation
data. We manage the system behavior and consider the internal system constraints v as well
as simulation constraints y, see Section 5.2.3. All layers together generally characterize the
server system and its behavior. Figure 46 shows a brief overview of the server system
characterization and its layers, which we outline in the next sections.

7 Fujitsu System Architect file: proprietary format, http://configurator.ts.fujitsu.com/public/

File support: We have to extend the interface and parsing algorithm, which supports server
configuration files of the other commercial tools.

180

152

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Server System
Characterization
Server System
Configuration
configuration layer Server System
Management Technique
9, QTS ’ QC ’ ﬁ
HC 4
specifies < ——i, power/energy
system and components server system
behavior model DVFS
logical and physical layer
temperature
B¢, Ocs
DTM
J7used for ? —
- performance
process and control layer
GC; 5; U, X

Figure 46: Server system characterization

5.2.1 Constituents of the Simulation Model

Our simulation model has a data layer that stores the server system configurations and

characterizations in a centralized database. The aspect-based calculation methods FA].C in
i

MAS, use the extended component information™" coming from this database. We define the
equations in the logical and physical layer, which we separate from the data layer to support
diverse abstraction levels. We provide access to individually configurable data within the
database to enable the usage of our models across multiple server generations over several
years. We recognize two classes of users: the system administrator and the customer. The
system administrator is the expert who configures the weight coefficients of the calculation
methods, for instance, updates the database and maintains the simulation model. The
customer specifies the external input parameters of the simulation model to his or her need.
The most critical simulation input parameters are the customer-specific system configuration
and the corresponding workload. We alter the server configuration as part of our optimization
strategy because, e.g., two memory modules may provide a better performance and consume
less power in comparison to one module that has the same technical specification and total

181 Extended component information: customer-specific system configuration does not provide the

certain details of a component, such as the memory fabrication size

153

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

capacity. The amount of components within the system influences the energy efficiency. On
the other hand, a current processor from today may be the bottleneck of the entire server
system. If we choose a faster processor or a second one, the memory will become the
bottleneck. We define a generic configuration tree 8 that specifies the actual physical system
from the structural perspective concerning the maximal amount of possible mountable
system-board components C;. The design and architectural descriptions include the topology,
hierarchy, component types, and connections. The configuration tree considers all possible
server system configurations independent of the vendor, generation, structure, or hardware
restrictions. We concentrate upon an exact server system configuration within one simulation
run, which we consider as the initial configuration of the simulation 8.,. We separate the
system architecture model to abstract the wide range of components from an explicit server
generation. We reuse the component models for multiple server generations and avoid
additional effort instead of creating a completely new model for each generation.

Server System Configuration Tree & and Components C;

The sub-component tree of a server, as addressed in [GFN et al. 2006], builds the base of our
modular and hierarchical concept. The authors include the dynamic and static properties
within the tree, but do not care about the architectural dependencies, such as generation,
family, or revision to support heterogeneous components. Our aim is to depict a wide range of
customer configurations 8, and optimize the system’s energy efficiency. We adjust and
enhance the component tree of [GFN et al. 2006] to abstract the hardware components from
their explicit technical specification and extend their model by a flexible characterization. We
define any possible system configuration 6, its architecture, and resources, but avoid the
redundant data in comparison with the configuration tree in [GFN et al. 2006]. We conceive a
¥2 by a flexible amount of subtypes SU and sub-subtypes SU,;,
which are the vertices, as formally defined in Section 2.2.6. We define the server system

general configuration tree

configuration as a tree to extend and integrate dynamic new resources by adding an extra

183 We can reduce the complexity of our simulation by deleting a subtype of the tree,

subtype
which supports the flexibility when we want to reorder or reorganize the components based
upon the updated findings of the measurements or the next-generation architectures. We can
easily apply search algorithms, annotate the tree elements, and depict dependencies. The
edges between the vertices describe the “consist of” relation. A subtype may consist of
additional (multiple) sub-subtypes, for instance, or does not have any children, which are
called leaves. We define the subtypes and sub-subtypes as flexible, dynamic structures at each
level within the configuration tree, which are expandable for next-generation systems. The

edges in the technical specification tree 815 are an exception because we use them as an “is a”

182 General configuration tree: has no maximal number of possible subtypes (degree), and every subtype

can have any number of subtypes independent of each other
18 Subtype: vertex (node) in the tree

154

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

relation. The general configuration tree includes all supported components and server
configurations within our simulation model. Therefore, we analyze the Fujitsu System Architect
database to generate the all-encompassing configuration tree considering the several
configurations and characterizations that are possible to specify an entire server system. The
configuration tree uses a centralized database that considers the various components
independent of the vendor.

We distinguish between the released configuration 6, the customer configuration 8., and any
system-compatible configuration 65 within our configuration tree 8 with 8, € 8p € 65 € 0. A
customer configuration is always a released and system-compatible configuration. The vendor
restricts the released hardware configuration because of the compatibility to predecessor
generations or vendor-specific constraints. The customer configuration 6 is our initial
configuration and serves as simulation input. One of our optimization strategies is the
alternation of the hardware configuration. We exchange the components C; within 6.,
whereby C; is system-compatible but not necessarily a released™ server configuration Or. This
supports our flexible concept in order to simulate various hardware configurations and their
corresponding characteristics. As stated in the background section, we define our
configuration tree 0 using the following subtypes and sub-subtypes for a rack-mounted server
system S, which is the root type TY,, see Figure 18:

e Software SW
e Hardware SH
o Components HC
= Add-inCA
= On-board CO
= System-board CS (components C)
o Connectors HO
o Power supply HP

We address the software settings SW in the externals block EX, which we include as settings
&. Our workload model covers various applications, see Section 5.3.2.2. We consider the power
supply HP within the total power calculation. We differentiate the connectors HO into virtual
connectors, such as associated network uplink, and electrical connectors CC. The electrical
connectors'® enable the communication and limit the maximal performance because of the
resources’ throughput and bandwidth. We do not cover add-in components CA, because of
their wide variety and in order to reduce complexity. In addition, we abstract the on-board
mounted components CO, which we denote as main board-specific base power. Usually, we

8% Non-released servers: operational servers which are not equipped for distributing these onto the

market
'8 Electrical connectors: wiring by contacts (pins)

155

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

cannot control any on-board changes **® besides shutting down chips or disabling
communication interfaces. In our simulation model, we concentrate on the grouped system-
board components CS = {CS;,CS;, ...,CSy,}, which we distinguish into the five major
categories processor, memory, input/output, fan, and others, as defined in Equation (5.16) and

system-board I

B

shown in Figure 47.

Figure 47: System-board categories (components)

The category CS; = processor includes any kind of processing units; CS, = memory refers to
diverse volatile storage devices. While the category CS; = input/output considers non-
volatile storage and communication hardware, such as internal hard disk drives (HDD), solid-
state disks (SSD), or InfiniBand™®’, the fan covers cooling devices, such as a processor fan, in-
house fan, or power supply unit (PSU) fan. The category CSs = others includes expansion
cards, for instance, whereby the fraction of the others category on the total power
consumption is negligible. We concentrate upon the processor, memory, and fan categories
because we can manage and control these devices at the hardware level. The power
consumption of the 1/O devices depends substantially upon the explicit usage, e.g., either the
network communication to the storage-area-network (SAN) / network-attached-storage (NAS)
servers, or provides data for complex computations by an optical interconnect. We
concentrate upon the small-scale and medium-scale enterprise servers. Herein, typical servers
involve a small amount of I/O devices because of their less external communication in
comparison with high-end servers. The 1/0-based power in this class of systems is relatively
small in comparison to the power consumption of the processor or memory. We therefore
neglect the 1/O-based power in the case of a processor-bounded or memory-bounded
workload, as it has little influence on the entire power dissipation and consider them as static
power. In principle, 1/0-bounded workloads could be handled as well. However, in this case
precise models of the respective I/O devices and their workloads would be required.

We analyze the customer-specific server system configuration 6. automatically and consider
the related category of each component. We reconfigure our configuration tree because we
include the subtypes in our simulation model. Our root type TY, (Ly) is the system, but the
system-board categories become the level L; of our configuration tree 8. We can alter the

'8 On-board changes: e.g., influence voltage or frequency, only possible at the RTL level in the design

phase
87 |nfiniBand: http://www.infinibandta.org/

156

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

configuration at each level of the configuration tree. We define a rack-based server system,
such as TYy = RX20057'%, which we want to optimize, for instance. We concentrate upon the
energy-efficient hardware in our optimization strategy when we search for alternative
configurations and characterizations.

Server System Technical Specification Tree O1¢ — A Subtree of the Configuration Tree 6

The configuration tree concentrates upon the physical system considering the mountable
system-board components. We differentiate a component itself and the respective category
into the technical specification and their related characteristics CHrg. Figure 48 shows an
incomplete memory subtree that covers just the technical specification. A leaf and their

ancestors 189

technically specify a component C; and define the exclusive configurations
including the parent subtypes. For instance, a PC3 — 12800 memory module automatically
sets the technical details, including its predecessor subtypes DDR3 — 1600,DDR3,
SDRAM DIMM. The path corresponds to the explicit customer-specific memory configuration
in our generic configuration tree 8. The siblings'® have alternative configurations at every
certain level. We require exchangeability, such as between the DDR3 and DDR4 architecture,
when we use other memory architectures in the early design phase. Thus, we do not create a
new model when a technical specification changes. Instead, we extend the tree by adding a

novel subtype. The encapsulation and abstraction support the required flexibility as well as

scalability.

‘ SDRAM DIMM H NVDIMM ‘
\
\ \
‘ DDR ‘ ‘ DDR2 ‘ ‘ DDR3 ‘ ‘ DDR4 ‘
\
\ | \ \ | \
‘ DDR3-800 ‘ ‘ DDR3-1066 ‘ ‘ DDR3-1333 ‘ ‘ DDR3-1600 ‘ ‘ DDR3-1866 ‘ ‘ DDR3-2133 ‘
\ | \ \ | \
‘ PC3-6400 ‘ ‘ PC3-8500 ‘ ‘ PC3-10600 ‘ ‘ PC3-12800 ‘ ‘ PC3-14900 ‘ ‘ PC3-17000 ‘

Figure 48: Technical specification tree — memory

We define the levels L of our technical specification tree, as shown in Equation (5.47), and
specify the root type TY, by the explicit component category CS;. The subtypes SU and sub-
subtypes SU, define the technology characteristics CHrg, which we consider in our

optimization strategy.

188 RX200S7: Fujitsu server system, https://sp.ts.fujitsu.com/dmsp/Publications/public/ds-py-rx200-s7-

de.pdf
'8 Ancestors: vertices between a given vertex and the root vertex

190 Siblings: vertices with same parents, also called neighbors, or adjacent vertices

157

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

L={Lo,Ly,...,Lc},k € N, N, ={0,1,2,3, ...} (5.47)
SU = {SU,,SU,, ...,SU¢},f € N,N = {1,2,3,...} (5.48)
SU,; = {SUy1,5U,3, ...,SUysl,g €N (5.49)

We have grouped the characteristics of each level, which allows us to separate our
optimization decision level by level. We annotate the explicit server configuration along the
search path within the tree. We analyze the technical specification tree and alter the
technology at each level by selecting the siblings. We specify a heuristic, wherein we begin

%1 of the subtypes. Therefore, we

with the level that contains the confirmed and reliable values
12 (leaf), explore the alternative configurations, and search the

most energy-efficient ones. A lower level, nearby the root level, contains a larger amount of

start with the highest leve

theoretical values in comparison to the concrete path in the tree up to the leaf. As an example,
we assume the tree in Figure 48, and specify the real memory module as DDR3 —
1600,PC3 — 12800, DDR3, SDRAM DIMM illustrated in color in the figure. We consider the
set of leaves'®”®, which probably consumes lower energy in comparison to the actual
configuration. After evaluating the siblings, we consider the parent level up to the root level.
An adjustment closer to the root level becomes increasingly uncertain in comparison to a
change at a higher level. Alternatively, if a server configuration limits the technology to DDR3
because of the system architecture, we will exclusively consider the child level in the tree
instead. As a result, we neglect the upper levels in the technical specification tree and ignore
the siblings of the DDR3 subtype. The structural restrictions of the server system lead us to
start our algorithm at the leaf level that supports a higher degree of flexibility. We restrict the
design space, the subtypes of each level, on the basis of the system compatibility, which
reduces the alternation complexity. We accept the risk that our limited tree does not provide
any ideal solution (the resulting feasible region may become empty) or we exclude a possible
optimal configuration, which leads to an unsolvable optimization problem. In both scenarios,
we explore the alternative configurations using a bottom-up approach. The heuristic is part of
our optimization algorithm, see Section 5.4.2.1.

The technology characteristics are static simulation parameters, which result from the initial
server configuration. Besides the predefined parameters, we address dynamic characteristics,
which we adjust during the simulation. We exemplarily select the leaf PC3 — 12800 of the
technical specification tree and annotate the subtypes along the path within the technical
specification tree by a flag that shows the current usage in the simulation model.

191
Confirmed and reliable values: empirical measurements, spreadsheet-based data, observations,

statistical results, or customer-specific intellectual properties (IP)

192 Highest level in tree: usually the highest level is assigned to the root and the lowest to the leaves, but
we define the levels concerning the indices

1% Set of leaves: {DDR3 — 800, DDR3 — 1066, DDR3 — 1333, DDR3 — 1866, DDR3 — 2133}

158

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

A leaf of the technical specification tree builds the root type TY, of our second configuration
tree, such as the memory module SDRAM DIMM,DDR3,DDR3 — 1600,PC3 — 12800.
Herein, the subtypes define the various characteristics and values of the selected component
with an arbitrary order of the levels. We implicitly specify the technology characteristics of
each level by selecting the leaf of the technical specification tree. We define the subtypes SU
in the characteristic tree in the same manner. We can replace the tree levels with each other
because they build an unordered tuple of the characteristics of the explicit configuration. The
colored subtypes in the figure refer to the component characteristics of the customer
configuration 6., a registered, low — voltage, ECC, 4GB capacity memory module. Each
tree level L provides a specific characteristic, whereas the siblings refer to the possible range
of values. We distinguish the static and dynamic characteristics, which we adjust in different
phases in our optimization strategy.

‘ registered ‘ ‘ buffered ‘ ‘ low-voltage ‘ ‘ standard ‘

\/ \/

‘ memory, SDRAM DIMM, Samsung, DDR3, DDR3-1600, PC3-12800 ‘

o~

‘ ECC “ none “168“268“468“868‘

Figure 49: Configuration with characteristics and values — memory

All categories and components differ in their technical specification and their respective
characteristics. We define a generic characterization tree 6.¢ that supports the flexibility to
define each component of the diverse generations. Figure 50 presents partially the generic
configuration tree 6, the technical specification tree 815, and the characterization tree 6.
The color-marked path in the tree exemplarily represents an actual server system
configuration 8., of the memory module.

159

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

O¢c 0

system-board categories]
| [

| processor | | memory ‘ ‘ input/output ‘ ‘ fan | | others

o
| SDRAM DIMM | | NVDIMM |

[[
| DDR | | DDR2 | | DDR3 ‘ ‘ DDR4 ‘

[

[[[I [|
| DDR3-800 | | DDR3-1066 | | DDR3-1333 ‘ ‘ DDR3-1600 ‘ | DDR3-1866 | | DDR3-2133 ‘
I PC3-6400 | | PC3-8500 | | PC3-10600 ‘ \ PC3-12800 ‘ | PC3-14900 | | PC3-17000 ‘

| registered | | buffered | | low-voitage | | standard | Ocs

\/\I/

| memory, SDRAM DIMM, Samsung, DDR3, DDR3-1600, PC3-12800 |

A

| ECC | | none I 1GB I 2GB ‘ | 4GB | 8GB

Figure 50: Technical specification and characterization tree

The design and architectural descriptions include the topology, hierarchy, component types, or
connections. The architectural model AC defines the configuration restrictions ***, sub-
components, their hierarchy, and their electrical connectors CC. The system architecture and
busses are fixed for a given server configuration 8.. We consider an explicit server generation
and family in our simulation model. The server architecture itself restricts the components,
such as the mountable motherboard, and the generation limits the component type. We
differentiate the system configuration into the components, connectors, and power supply.
We concentrate on the component-based concepts because we model the system architecture
AC and connectors CC within our simulation model in Simulink'®. We distribute the workload
towards the exact number of the components. Figure 51 shows an overview of the hardware
design and architecture within the configuration layer.

194
Configuration restrictions: maximal amount of mountable components

195
Simulink: architecture and connectors are a graphical system view designed as blocks and lines

160

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

configuration layer
hardware design and architecture
3 system architecture and connector } design space
i } configuration
4 component 1 i - N
} H system configuration
component n 1
] P i(AC, o)
-
4 = connector 1...n
i ; used for 4
4
i |
' —> subsystem 1 1
} 3 power supply unit 1..n
1 subsystem 4 —> |1 ——————
H « 1 r] eeececes
] —> i
1 { 8, 0rs, 0
} 1 component 1...n
H H - -
] Tused for] BE;(MAS,.,Ry,) P
1 1 cYcs
] system design %
4
! !
4 -
} family ‘ | generation } used for
H } (CS,CL,CH)
e R R R s - R M SR+ R mm— e s e e —mm e ey
]
[component t
‘
i €S = (€S, €S, CSm) o) i
I | used for s 14
* | systemr-board categories | '
. = o
i |)
: e 1
I \ processor | l memory | | input/output | l fan | | others | |
g PP PP g |

Figure 51: Configuration and characterization layer

An exception in the configuration layer is the power supply unit (PSU) of the server system,
which we size adequately on the basis of the worst-case power consumption. The power
supplies are more efficient in the case of higher utilization levels, see Section 3.10.3. We
calculate the total power consumption POpgy,, . Of the server system. Our PSU model
considers the technical specification of the spreadsheets and the energy efficiency coefficient
EEpgy, which depends upon the supply voltage a,,,;; and the actual utilization specified by
POpsy,,, see Equation (5.50). In Europe, we define the supply voltage of the servers between
220V and 240V '*®. The server components require the PSU power POpgy,,, to be operational,

which can be shared among the available PSUs and is specified by the PSU redundancy™’.

196 Supply voltage: some countries operate between 100 and 127 volts, such as the USA

PSU redundancy: the customer decides if all PSUs are utilized or only one PSU is utilized and the
remaining PSUs are idle as long as no power failure occurs

197

161

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

We do not consider any redundancy settings in the case of one PSU, which is a customer-
specific simulation parameter. We share the total power POPSUIN_total in equal parts among
the available amount of PSUs, when the PSU redundancy is set. We specify the POpgy,, of a
single PSU and consider the remaining PSUs as idle when the PSU redundancy is not
configured, see Equation (5.52).

POpsy,y * EEPSUlzov(POPSUIN)’ if ayoir = 120
POpsyoyr = PO EE PO . — 220 (5.50)
psuy * PSUZZOV(PSUIN)r if Qyoir =
PSU = {PSU*,PSU?,...,PSUP},p € N, #PSU = |PSU| =p (5.51)
(POPSqu,totaz' if #PSU =1
PO
POPSUIN = {%' if #PSU > 1, PSUredundancy (5.52)

POPSU}N = POpsy,y 1orq Otherwise

We specify the components and their behavior on the basis of the system-board categories.
We characterize every component independently of the software, 0S, and system
architecture. Beneficially, we can use the same component definition in an embedded system
or personal computer when we identify and specify the system architecture. Our model is
suitable and adaptable for the blade servers, standalone servers, and embedded systems. A
blade enclosure can consider more but specialized components that are connected in a
cordless manner to a prewired backplane because of their smaller form factors. We adapt the
static and dynamic characteristics of the components instead of the configuration because we
found that not only the amount of the memory modules influences the energy efficiency, the
synchronization mode is also a significant characteristic.

Server System Characterization Tree O g

We characterize the components of the configuration tree 8 in a hierarchical system to
support the aspect-based calculation methods within the matrix MAS,_., as defined in Equation
(5.18). We define the characteristic tree, as shown in Figure 52, which is specific to each
category and support the functional description in the logical and physical configuration layer.
Herein, we support the characterization from the component down to the chip level to cover
every accuracy level. Our characterization tree 6.5 and the respective network define the
abstract models of the components within the simulation. We identify the mutual
interdependencies of the system in order to create the generic models to define the
component behavior, see Equation (5.32). We specify the power, thermal, and performance
aspects A; of each component C; as a set of utilization-based functions FAJ’ci (ucs) and use the

hierarchical model, which provides the various categories CS; and characteristics CH. The

162

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

categories CS;, especially the components Cil%, build the root type TY, of the tree 6,5. We
specify the classes CL as a technical assistance of our flexible concept, which forms the first
subtype level. We further distinguish the classes in their category-specific characteristics CH,
at the third level of the tree. We propose a dynamic structure to store the wide range of
categories, classes, and characteristics, which we flexibly specify and extend in the case of the
next-generation systems.

cs
[esi][es][] [esi]
I
[[

|| cL — | cL, 1| cLy,
| cH, | cH, L | cH,
| CH, — CH, — CH,
L CH, L | CcH, L cH,

Figure 52: Category-specific classification and characterization

The calculation method of the memory power needs different characteristics than the
processor power or memory temperature models. In our simulation, we require the set of all
significant characteristics of each component and their relevance of the certain aspects. We
consider in our characteristic tree 8.5 all basic classes and characteristics that are specific of
any aspect. We annotate a leaf CH; by a value that will be used in the utilization-based
functions FAjCl- (ucs) within the matrix MAS, ., as shown in Figure 53. We specify the

characteristics CH; of the aspect A; and component ; by the weight coefficient WIifjHl to
Gy

distinguish their particular significance in the calculation methods. We assign a higher weight
coefficient when the characteristic has a substantial effect on the certain aspect. We
concentrate upon the characteristics that are significant of more than one aspect and those
whose values most affect the error rate of our calculation methods.

198 Categories and components: We generalize the components into the categories, in this case, the

category is equal to the component C;.

163

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

CH,
val
CH,
/311{_-1 WF'Alc"1
Ay wrSHh
Al “ AlCz
CH
Ay ¢ WFAI;‘
CH,
AzCl W.':'J‘.,zé1
A CH;
Az oz WFAZCZ
CH
Ay, WF,,!

Figure 53: Annotation characteristics and weight coefficients of all components

Figure 54 shows a simplified example of the memory module, which has a frequency
characteristic by a value of 800MHz. We specify that the frequency is a relevant characteristic
of the power, thermal, and performance models, whereby we separately weight each of them
by a coefficient.

frequency

800MHz

PO WFfrequency

POmem

TH WFfrequency

THmem

PE WFfrequency

PEmem

Figure 54: Annotation aspects and weight coefficients of a particular characteristic

Equations (5.53), (5.54) and (5.55) exemplarily show that the power, thermal, and
performance models of a component C; require various characteristics, which we subdivide
into classes CL. The power consumption of a component C; is a function of the characteristics
PO¢,(CHy,CH,, CH3, CHy, CH4, CHg, CHy) concerning the related classes CLq, CLy, and CL3.
We differentiate on the class-specific characteristics in our characteristic tree because some
refer to the configuration or the technical specification, which are static settings of our
simulation. We define the specific characteristic and classes to specify the accurate models in
Section 5.2.2.

164

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

CL, - CH,, CHg, CH,
POCl‘ = {CLZ il CHl, CHZ (553)
CLs — CH3, CH,

_ (CLy - CH,,CH,

THe = {er 2 il (5.54)
_ (CLy, - CH,, CH,

PEc, = {CL3 CH,,CH, (5.55)

In the next section, we analyze the static ST; and dynamic DY, characteristics of the server
system SY. Our aim is to characterize the system and the corresponding components within
our configuration tree to support the calculation methods of each aspect, as shown in
Equation (5.56). We conclude the configuration and characterization in § for better readability.

ST,
[EX] [M ASe, Ry, Ris - [PO PE TH]

0

Oc
CS;, C; (5.56)
CL,

CH,

0

B

We specify declaratively the heterogeneous aspects of all components using encapsulated
layers to create a generic system model that is suitable for diverse academic and industrial full-
system approaches. We abstract from irrelevant features because of their little effect on
energy efficiency, or the features that are specific to a single server system. We characterize
the server system SY in the physical domain, which includes the system architecture,
hardware, configuration, and relevant characteristics. We include academic results in our
aspect-based models. According to [RRK 2008], we cover processor-dominant systems, such as
file servers, and alternative configurations for standard server types. Furthermore, we support
the existing measurements to get a precise model of an explicit server configuration, including
the certain characteristics. We strictly separate the modeling and simulation characteristics.

5.2.2 Configuration - Characterization of the Logical and Physical Layer SY (0)

The physical and logical layer provides all significant data that a power, temperature, or
performance model requires. Fully attributed data is fundamental to support the related
calculation methods. In this section, we define the detailed models of the components within
the configuration tree, which we characterize to calculate the respective values. We analyze
and clearly identify the relevant characteristics at various domains that support the flexibility
to use states, transitions, or instructions. Our concept considers diverse academic approaches
to provide a sufficient accuracy level for each component. The component description in the

165

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

logical domain can represent tasks, routines, functions, programs, procedures, activities,
operations, or interactions. In contrast, the physical domain describes functional blocks of a
component without any interior definition. The logical and physical configuration layer defines
electrical (power, energy, performance), mechanical (motor, rotation), or thermal (heat
transfer) behavior. Herein, we concentrate on the flexibility and the scalability to characterize
every aspect at each domain separately. We define the power models to be independent of
the temperature or performance model that refers to an actual state. We cover all component
states that form the base of our calculation methods. In contrast to [RL 2007], we define our
component models on the basis of the utilization levels.

In principle, we use the modeling flow of [FCM 2014] because we specify the component-
specific power consumption and the system behavior and we combine them with the
hardware design to simulate the entire system. We specify the states of each component C; at
the logical and physical configuration layer. We support various server system domains, such
as a chip or component level, because we use cycle-based as well as instruction-based models
to address the functional level. The authors of [Che 2006] create a component model on the
basis of instructions and accesses, which we abstract on an algorithm or architectural level
because we consider the generic workloads and avoid the instruction-based details. The
authors in [Dre 2006] present a Gajski Y-diagram, which illustrates the logical, component, and
system domain. For each domain the authors define the behavior, geometry, and structure. In
the same manner, we specify differential equations of the physical domain, algorithms for the
block definition of a subsystem, or technical specifications for our components. Secondly, we
define the domain-specific and aspect-related models using a mix of spreadsheets,
measurement results, and vendor-specific data. We map the component behavior models
towards the entire system configuration.

In addition, we abstract a component when just spreadsheets or empirical measurements
exist, usually for next-generation systems. If a vendor provides only spreadsheet-based data,
an over-estimation is better than an intuitive prediction, or any values [Fuj 2012]. The authors
of [BHS 1998] propose an overall black-box concept, which abstracts all internal resources, but
overestimate power. We do not restrict ourselves to using a black-box model only, because of
the insufficient accuracy. Beneficially, the black-box concept enables the power estimation for
novel components regardless of missing architectural or structural details. The authors of [Hag
2009] propose a flexible description of the component models. In addition to the description,
we propose an entire technology mix that combines the benefits of the black-box, gray-box,
and white-box models to provide an adequate accuracy level. If we know the inner component
structure and instructions, we create a precise white-box model. In contrast, we emulate a
black-box component, as a functional block, when the internal behavior is unknown. [GFN et
al. 2006] state “we have to,..., decide for each (sub) component whether it should be regarded
as a ‘black box’ or as a complex component.” The authors decide according to the significant

166

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

contribution to the total power consumption and the corresponding component complexity.
Our approach is potentially more precise in comparison to [Hag 2009]. Furthermore, we reuse
the mixture of the algorithmic and architectural parameters, as shown in [JLS et al. 2003, LIS et
al. 2004], whereas the algorithmic parameters rely upon the software execution but the
architectural parameters are independent of the software. We consider the architecture to be
within the configuration layer. Figure 55 shows our behavioral component models that include
the aspects-based models, such as performance, power, and thermal. We create each model
regarding the available inputs IN and the certain parameters PA of each component. The
output OUT of each model can either be a function of the inputs and parameters, a function of
the corresponding component states'®®, or an internally specified function F, as shown in
Equation (5.61). A set of scalable inputs and parameters help to create a suitable aspect-
related method, either with instructions on the functional-level, or abstracted behavior as a
black-box model.

IN = {IN;,IN,, ..., IN;} (5.57)

PA = {PA4,PA,, ...,PA;} (5.58)

S ={S1,52, -, Sk} (5.59)

F = {Fl'FZ""'Fk} (560)
f(N,PA)

OUT =< f(s,LUT) (5.61)
f(N,F)

logical and physical layer

- component models 1...m

L IN | out = f (IN; PA) L OUTH

behavior model

%’,wnsists of

performance model

states map to out

s1,82, ..k [(LUT)

ouT

F1
F2
. .. F=fINPA)

Fk ‘% partial rely on
Vi !

thermal model

power model

Figure 55: Logical and physical configuration layer, adapted from the original in [Hag 2009]

1% States: define the value in a lookup table (LUT)

167

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

For a logical and physical definition of each component, we eliminate insignificant parameters
and reduce the output uncertainty. We concentrate upon the input, which generates and
correlates most of the output variables. In contrast, to the parameter sensitivity analysis [Ham
1994, LB 2005], we define the component model and its dependent parameters without
considering a probability density function to each input parameter. We analyze diverse
spreadsheets, measure components with changed settings, and use benchmarks to find the
relevant parameters, and their consequences to the output. We assume multi-parameter
impact when we cannot clearly identify the relation of a single parameter to a certain aspect.

We analyze a component on the basis of a software trace and we monitor the synthetic
benchmark, which correlates to an explicit component state. We create a linear regression
model, as done in [BC 2010, MAC et al. 2011], considering the parameters and analyze the
accuracy. Another approach in [Riv 2008, RRK 2008] analyzes the activities on a cycle-by-cycle
basis executing a particular workload. Both approaches are improper when we consider next-
generation systems.

We define an input matrix of the significant parameters of each component and separately
configure their relevance. We extrapolate results for next-generation server systems on the
basis of our findings of current servers used today. We consider technology trends such as

%1 As a consequence of the

shrinking the die*® type (size) or increasing the power density
exponential power increase at each frequency step, the vendor shrinks the logic on a single
die. The performance increases, but implies growing temperatures, and a higher cooling effort

in comparison to predecessor generations.

We present the characteristics to calculate the diverse component aspects and define the
component behavior dependent on the technical specification. We exemplarily present the
findings of our processor and memory analysis. In general, we study all characteristic
combinations of each component separately to identify their relevance, which we define as
weight coefficients. We specify the relevant characteristic of our configuration tree.

We determine the category-based and aspect-based characterization of all stages®® within the
product life cycle (PLC), which is a challenge for our generic approach. In the early design
phase, we have less data of the components, which usually are available by means of a paper
base or a prototype. The vendor cannot ensure compliance unless the production ramp-up
starts with a pilot release. In this case, we gain data by extrapolation and interpolation of the
spreadsheets and try to compensate the data inaccuracy through measurement results based

200
Die: dice, physical chip separated from a wafer, small area (array) of semiconductor material, creates

the integrated circuit
% power density: growing amount of transistors in a chip

22pc stages: market introduction, growth, maturity, saturation, and decline

168

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

upon previous generations. The amount of the component data®®”

and their accuracy increases
over the entire life cycle, which is separately evaluated and validated. Our major challenge is
to sufficiently generate models on the basis of the available data on various system domains

for the different aspects, see Section 3.3.
Category-based and Aspect-based Characterization

We present the characteristics to calculate the diverse component aspects 4;. We define the
component behavior dependent on the category, their structure, or technical specification. A
category-based characterization aims at supporting an independent and detailed description
of the component behavior. We can reuse explicit benchmark results, which we observe from
the academic approaches for a specific component under certain conditions. We consider
studies of isolated components and develop a generic model that covers the individual
characteristics. We combine the heterogeneous benchmark results to examine various
hardware configurations and finally the entire system behavior. In this section, we exemplarily
present our observations of a few memory modules and processors that result from our
adjusted version of the parameter sensitivity analysis. We define the component
characteristics and their relevance for each aspect 4;.

We empirically analyze existing spreadsheet-based data and measurements, which are helpful
to determine the characteristics and find their weight coefficients, see Appendix A3d and A3f.
We analyze single characteristics, such as the vendor, which can be a cause for variations in
the power consumption of an equally described component. We define the weight
coefficients, especially for these findings. We cannot examine all characteristics separately,
because a couple of characteristics depend upon each other. In this case, we define a system
of equations to consider their dependencies.

Memory Power Characterization

At first, we describe the relevant characteristics of the memory modules to develop an
accurate power model. Herein, we analyze the memory spreadsheets to define the significant
characteristics. The memory vendor Micron [Mic 2007] distinguishes the entire power of a
DDR3-module into the total background power PO, active power PO,.;, and operating
power PO,,, see Equation (5.62).

POmem = POback + POact + POop (562)

203 Component data: spreadsheets (technical specification) or measurements

169

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

The background power is the lowest power state and always occurs®® during normal
operations. The vendor specifies the background power by the percentage of the time all
banks are precharged, the percentage of the bank precharge time, and the percentage of the
active time. The active power includes the time to select a bank or a row address for storing
the data in the memory array. The corresponding command requires a number of clock cycles
to activate a cell within the array that can be written or read. The operating power defines the
power for each operation, which the vendor distinguishes into the read, write, data Iinezos, and
termination operation. We cannot specify the memory power when we do not have any
knowledge about the explicit memory operations (read-to-write ratio) or the entire workload.
The clock cycles and timings depend upon the memory generation. We cannot predict these
comprehensive details of next-generation memory modules.

In the second step, we check the commercial tools for the memory variations and their
customer-specific characteristics, which we analyze in our third phase that includes the
vendor-specific measurements. We present the results for a group of registered”*® memory
modules provided by a certain vendor A. The registered or unbuffered characteristics are
known as synchronization modes, which influence the controller access and memory
performance. The registered modules include an extra register between the memory
controller and the chips on the module. An unbuffered”” memory module enables the direct
access on each chip individually and in parallel, which always consumes less power than a
registered module with the same technical specification, see Appendix A3d. Our internal
results show that the power consumption of two modules with an equivalent technical
specification’® differs up to ten percent. We also concentrate on the vendor A-based memory
modules®®, which in general consume less power in comparison to vendor B memory
modules, as shown in Appendix A3d and analyzed in [RLG et al. 2008] of the DDR2 — SDRAM
generation. We analyze the memory frequencies of a wide range of modules. The frequency?*°
changes from f, = 533MHz to f,,1 = 667MHz, which has the largest impact with
approximately 20 percent of the power consumption. Frequencies lower than f; or higher
than f; . increase the power consumption less than ten percent when the frequency switches
to a higher value.

208 Background power: typically occurs when all banks are precharged

Data line: DQ lines, data width, input/output pins (rank linking)

Registered (buffered) module: synchronize the timings between the address and control lines, see
Appendix A3d

Unbuffered (regular or unregistered) module: has diverse input lines on the same module with
various loadings

Equivalent technical specification: memory module DDR3-SDRAM 1GB 1R A, vendor B, (registered vs.
unbuffered)

Memory vendors: common server memory module vendors are Micron, Hynix, Netlist, Qimonda, and
Samsung

1% Memory frequency [MHz]: in the interval [400,533,667,800,933,1066], also defined as equivalent
transfer rate (speed-bin, throughput) in the interval [800,1066,1333,1600,1866,2133]

205
206

207

208

209

170

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

The related die types are relevant characteristics that specify the component revision
(technology) denoted by a letter in the interval [A,B,C,D,E,F,G,H,],L, M, N]. A die type d,
that is closer to the interval’s beginning, consumes more power than a die type dj,; at the end
of the interval. An actual component revision of the memory module is usually more energy-
efficient in comparison to an older date of manufacture. The fabrication size®** results from the
die type, which we cannot consider separately. Furthermore, the die type is the significant
characteristic when we have both the capacity and rank®" linking™® (e.g., x4, x8, x16)
technology. Herein, we found a decrease of approximately 50 up to 60 percent, whereby we
neglect the frequency. When we double the memory density [GB] and ranks [R] at the same
time, the power increases approximately ten percent from 1GB, 1R to 2GB, 2R and nearly 20
percent from 2GB, 2R to 4GB, 4R. We examine that a doubled density, but a halved rank
linking, result in a power increase of approximately 70 percent. In this case, the frequency
influences the power consumption by nearly two percent. We conclude that the memory
characteristics (the capacity, rank, rank linking, and density) rely upon each other. Therefore,
we define them as a system of linear equations, which we describe in the implementation
section.

The findings from the spreadsheets and measurements enable a better understanding of the
characteristics to develop an adequate memory model. We distinguish into the technical
specification CHrg and memory characteristics CHcgg, as graphically shown in Figure 48 and
Figure 49. The technical characteristics are a result of our analysis on the commercial tools and
our decision to cover a wide range of memory technologies. The customer pre-defines the
memory modules on their generation and capacity. Additionally, we divide the characteristics
CH¢pg into the static CH2L, and dynamic CH2Y, configuration, as shown in Equations (5.63)
and (5.64).

CH = {CHrs, CHcrg} (5.63)
CHcrg = {CHFg, CHEYG (5.64)

We analyze the characteristics and define their relevance using the weight coefficient WF.
Thus, we develop the memory power model with the weight coefficient W Frg of the technical
specification and the weight coefficient WF g of the configuration. We distinguish in the
static and dynamic power of all components within our system, as addressed in [SIC 2003, GFN
et al. 2006]. As a result, we introduce a static and dynamic weight coefficient of the
configuration characteristic, see Equations (5.66) and (5.68). The authors of [GFN et al. 2006]
define various correlation functions Fs- between each component Cy, ..., C; and their power
functions F;_; . of each component by a set of dynamic and static parameters.

" Fabrication size: nanometer technology [nm]

Ranks (banks): a group of chips at the memory module having the same chip select
Rank linking: number of chip’s output pins (bit wide, data width), see Appendix A3d

212
213

171

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

In contrast to [GFN et al. 2006], we do not concentrate on the component-based power
functions. Our method includes thermal and performance definitions to cover the real
behavior.

POpem = POrs + POcpg (5.65)
POpem = CHys * WFrg + CHepg * WFcrg (5.66)
POpem = POrs + (POSE; + PORY, (5.67)
POpem = CHypg * WFrg + (CH3E, * WFSL, + CHRY. » WFRY. (5.68)

According to [TMW 1994, SIC 2003, AR 2016], the static power forms the basic power of an
inactive component. The authors of [Bel 2001] address the leakage power as a static
characteristic, whereby the leakage power relies upon the capacitor’s size.

Pog};G = Pleakage = Vpp * Lieak (5.69)

2% or their

In the next sections, we briefly describe academic memory power models
corresponding characteristics. We specify the dynamic power by the states in various
abstraction levels, as shown in [BM 1995, BHS 1998, YVK et al. 2000, BJ 2003, TRJ 2005, Han
2007, HJZ et al. 2008], but neglect the transition t,;, which switches a state s; to another state
s;, because the transition time is much smaller than the time within a state. The consumed
power within a microsecond or millisecond is negligible in comparison to the power within a

state on second base. We assume the transition power as offsets.

PO?I}‘,G = Pstates + Poffsettmnsitions (5.70)

The authors in [IM 2003, LEU et al. 2010, HCE et al. 2011] address the memory access-rates
either for read or write accesses to estimate the memory power. We do not exactly know the
read and write accesses of every workload. We abstract the accesses into the utilization level
and map them to a probability of read, and write accesses. We correlate the various states to
the switching frequencies or instructions using the utilization levels and read-to-write ratio as a
software-based setting. We group and abstract the explicit memory accesses to reduce
complexity. Furthermore, we define a read-to-write ratio to compensate concrete accesses,
whereas we differentiate into full write, read, or mixed operations to cover various memory
workloads. We toggle between the operations, which will be more precise in the case of
memory-intensive utilization levels. We define the dynamic characteristics, as shown in
Equation (5.71).

CHRY. = {voltage, frequency, utilization level,read — to — write ratio} (5.71)

214 . .
Academic memory power models: see Section 3.4

172

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

The work in [GKG 2012] additionally considers diverse memory patterns, which we neglect. A
2510 the bus,
which builds the dynamic power consumption. Herein, Bellosa [Bel 2001] considers several

memory operation requires data transfer from the addressed memory cells

low-power memory states. We extend our memory power model considering the low-power
states. The memory spreadsheets define the current states, denoted by IDD*°and a
corresponding number. Similar to the die type, the current [mA] depends upon the state’s
location in the interval [IDDO,IDD1,IDD2P,IDD2N,IDD3P,IDD3N,IDD4R,IDD4W,
IDD5B,IDD6,IDD7]. The numbers differ by the memory vendor and generation. An IDD
closer to the interval’s beginning (e.g., IDD1) consumes less power than an IDD at the end of
the interval, such as IDD6. The power difference between the various memory states is
negligible and requires a complex model, which increases the calculation time. We summarize
that only a few memory states are significant while executing the benchmarks or working in
the real world. Therefore, we group the major IDD states to be considered into the idle state
and the active state, which we further distinguish in the refresh mode or read-to-write mode.
Another memory characteristic is the interleaving method for the dual in-line memory
modules (DIMMs). The interleaving characteristic defines the symmetric memory usage,
whereby the data moves between the various memories addresses. The channel interleaves
divide the memory blocks and spread the data across all channels. The bank interleaves define
the parallel usage of the memories. The rank interleaves enable the accesses of a memory rank
while another is being refreshed and provide the request parallelism, which results in a better
performance. The non-uniform memory access (NUMA) is an asymmetric memory
configuration, which is configurable when we disable the interleaving. The work in [BS 1976,
ZZX 2000] shows that the interleaving method influences the system’s performance. [Tol 2009]
argues, “Interleaved memory systems map contiguous cache lines to multiple devices,
breaking the one to one relationship between devices and physical address space used in our
earlier implementation. Consider the earlier example memory system composed of eight
devices each with 1Gigabyte capacity under interleaving. Even though the physical devices
have the same capacity, the mapping of devices into the physical address space is different.
Whereas a 1Gigabyte device is mapped to a specific 1Gbyte region within the physical address
space in a sequentially mapped system, two or more different memory devices may be
mapped to the same 1Gbyte region in an interleaved system”. The average execution time
varies because of the cache line interleaving, the page interleaving, or other methods. We
assume the interleaving methods as dynamic characteristics.

The authors of [KCB et al. 2013] state that capacitance, frequency, and data width are
significant characteristics for power consumption of the dynamic random-access memory
(DRAM). Thus, we include the capacitance and data width as a static configuration. The work in

2 Memory cells: capacitors that store data

% |DD: drain current of a CMOS circuit, notation: a letter after the number specifies a sub-state

173

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

[Bel 2001] presents the memory size (capacity) as a static parameter for the power
consumption. The authors of [ZX 2012] present that the leakage power of DRAMs
exponentially increases by the memory capacity. The most relevant characteristic in [KGS
2008] is the total system memory capacity. The authors present a linear relation between the
increasing memory size, such as the amount of DIMMs, and their related energy efficiency. We
consider the amount of memory modules and their respective capacity in our configuration
tree. We reuse the findings in [KGS 2008] to define the weight coefficients of the memory
capacity. In conclusion, in our memory power model we integrate the academic
characteristics, summarized in Table 26 and Table 27, which are based upon spreadsheets and
measurements.

Table 26: Memory characteristics (I)

Memory
characteristics

Static characteristics
Capacitors / capacitance y
capacity (size)
Quantity (#)
Vendor
Generation
Family
Series
Density
Die
(component revision)
Fabrication size (nm)
Synchronization mode
Module ranks, rank linking y
(data width)
Timings
Resistance
Interleaving
Refresh

Considered (y), not considered or unknown (no entry)

[Bel 2001]

[HCE et al. 2011]
[KCB et al. 2013]
[LEU et al. 2010]
[1m 2003]

[2X 2012]

Our concept

<
<
<K < < <K <K< < < <

< < <

< < < <

174

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Table 27: Memory characteristics (I1)

- =™ g
g 3 3
[[8 |
— —_ -— _— — Q
= —_
e £ - £ 8 9 =
I~ 7] 7]) = o o
M [o)] w o - ~ ~ (5]
emor v 9O o 5
y . & F £ w =2 S a
characteristics _ = = = = =
Dynamic characteristics
Frequency y y
Voltage y
Accesses / instructions / y y y
operands
Error correction Y

Considered (y), not considered or unknown (no entry)
Processor Power Characterization

We analyze the relevant processor characteristics. In the early design phase, the processor
vendor specifies a novel family and series with respect to the thermal design power (TDP)
within their spreadsheets. The vendor restricts the details of the processor that is accessible to
the public. Our challenge is to estimate the processor power consumption on the basis of the
rudimentary technical specification, especially for next-generation systems. We plan the entire
system and the size of the power supply unit (PSU) in the first product life cycle stage. One
problem is that we cannot specify a power curve when we only have the largest power
consumption on the basis of the thermal design power. We need further data regarding the
processor power consumption, e.g., under ideal conditions for every intermediate utilization
level. Usually, the vendor roughly defines the power consumption by idle, average, and full
utilization levels for business and collaborative partners. For our study, we did receive the
internal spreadsheets of our processor family considering the power consumption at certain
utilization levels, based upon a cooperation with Fujitsu Technology Solutions GmbH?*"’.

We analyze the spreadsheets of the E5-2600 product family that specifies the maximal
frequency fiq218; but the technical specification does not include the amount of p-states™,
which helps to identify the idle or average frequencies. The E5-2600 product family always has
a minimal frequency of f,,;» = 1.20GHz, but we do not have any knowledge of the
corresponding p-state to estimate the power on the basis of these data. We found that the
frequencies change in equidistant steps of Af = 0.1GHz, which is specific to the x86-

Y7 Fujitsu Technology Solutions GmbH: http://www.fujitsu.com/fts/

Maximal frequency: at the lowest p-state, in general Py, but with turbo mode P
Amount of p-states: unknown for novel components in the early design phase, otherwise readable by
the OS or special processor tools which support ACPI

218
219

175

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

architecture. Thus, we calculate the amount of p-states k to define the manageable
frequencies for the power curve using the quotient of the frequency range finax — fmin and
the step size Af, as shown in Equation (5.72). In Appendix A3f, the processor C; has a maximal
frequency of f,,,ox = 3.0GHz and consequently 18 p-states, for instance. We formally define
the possible frequency interval in Equation (5.73) with k € N,. The number of p-states defines
the power resolution of each utilization level.

_ fmax—fmin
k = T (5.72)
f = Umax fmax = 1 * Af, finax — 2 * Af, oo, frnax — (kK — 1) * Af, frnin] (5.73)

We require the manageable frequency interval and the adequate amount of p-states in our
concept to estimate the power range, especially when we vary the processors and their
characteristics. The definition of the frequency interval improves our matching process
between the utilization levels and the related frequencies when we map the workload to the
processor. We distinguish in our concept whether we fully utilize one processor or distribute
the workload across multiple processors. Our approach runs into problems when two
processors have the same maximal frequency but different p-states, and vice versa. A reason is
that the size of the equidistant steps Af depends upon the processor generation, family, or
series. Another challenge is that the voltage-frequency pair is not unique. Two fully utilized
processors may have different voltage-frequency pairs, as shown in Equation (5.74). Each
processor has a flexible amount of p-states, and the architecture limits the maximal frequency
fmax- Our model covers varying p-states instead of directly calculating the power, assuming
the concrete voltages or frequencies. We consider the relations between the processor
frequencies and their particular p-states at a certain utilization level to be independent of the
explicit voltage-frequency pairs.

CPU,(100%) — (2.0V, 2.5GHz) CPU,4,(100%) — (1.2V,2.0GHz) (5.74)

We specify the processor power on the basis of the rudimentary data, such as the frequency
interval, under the condition that the vendor does not define the minimal power. The thermal
design power (TDP) indicates the upper power limit and corresponds to the maximal frequency
fmax- Our next challenge is to estimate and interpolate the dynamic processor power upon the
basis of the frequencies or the utilization levels, respectively. In the early design stage, we
collect and aggregate the data considering previous studies to transfer the gained experiences
into our model. Alternatively, we measure the power of an available predecessor generation
or a processor who is almost identical and transfer the results to our present processor. In
both cases, we analyze the power consumption to specify the slope AP0, of the power
curve, which linearly defines the power ascent or descent, see Appendix A3f. We assume that
the processor power curve of the most recent generation, which we select as a basis, behaves
approximately proportional to our next-generation processor. We define the power correction

176

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

PCp, of the present processor as a product of the slope AP0y, and the related p-state k, see
Equation (5.75). The processor power consumption is a nearly linear function, which we
specify as a manageable power interval by the subtraction of the power correction PCp, of
each p-state beginning from the maximal thermal design power and ending with the minimal
power at the highest p-state’®, as shown in Equation (5.76).

PCp, = k * APOpyo, (5.75)
POyyoc = [TDP,TDP — PCp, TDP — PCp,, ..., TDP — PCp,] (5.76)

We define the dynamic fraction within the power interval through the power corrections of all
p-states [PCp,, PCp, |. Finally, we can estimate the processor power consumption on the basis
of rudimentary vendor-based data (spreadsheet) by weighting the power of a similar
processor, or by extrapolating the values of the predecessor generation in the early design
stage for the next-generation processors.

In a second step, we prove our estimation-based approach using the assigned spreadsheet
data of the processors, which are already introduced into the market®'. We check the
accuracy, especially the applicability of our approach, and exemplarily analyze a subset of the
Intel Xeon processors®*2. We estimate the power consumption of the processors, whereas we
assume that the processors do not exist. We compare the updated technical specification and
check which characteristics have been adjusted. We analyze the power consumptions and the
impacts of the characteristic variations in both life cycle stages. We found that our linear
regression approach overestimates the slope of the power curve by nearly 25 percent in
relative upward deviation in comparison to the firmly defined values in the vendor’s
spreadsheets of the released processors. Thus, we overestimate the entire power
consumption of the processors in the early design phase. If we neglect the outliers®*?, our
upward deviation decreases to approximately nine percent. As all these outliers have more
than 17 p-states, our method seems to be inaccurate for processors with more than 17 p-
states. We adjust our calculation methods concerning the non-linear power consumption. At
the same time, we analyze our under-estimation of the power, which is negligible because of a
relative deviation of nearly three percent. An over-estimation is more critical in comparison to
the slight under-estimation when we size the power supply, which results in an extra power
overhead, or the inefficiency of the PSU, as described in Section 4.4.

220 Highest p-state: lowest frequency

Market introduction: first product life cycle phase, release of a server system
Intel Xeon processors: E5-2600 product family (C; — C;7), see Appendix A3f
Outliers: processors (Cy, Cy3,Cq4, Cy5), a subset of the observed processors (C; — C;7)

221
222
223

177

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

In a third step, we validate our approach concerning the commercial server system calculators,
see Section 3.10.3, and concentrate upon the processor power calculation to check the
consistency. We study the entire power of the systems because the industrial tools do not
provide the processor power as a separate value. We analyze the results by varying the
processor characteristics or hardware configuration, such as the generation, family, and series.
Our estimation method for a wide range of processor families is almost identical with the
industrial tools, which rely upon the spreadsheets. We exemplarily check the E5-2600
processor family, wherein we overestimate the processor power of approximately seven
percent in relative upward deviation. We assume that the commercial calculators consider a
similar linear regression method to estimate the processor power consumption.

In a next step, we observe the measurements of the existing processors in an actual
environment to check whether the spreadsheet data correspond to the reality and to keep the
error rate of the over-estimation as low as possible. We determine a decreasing power gap
between our process of estimating and measuring. Figure 56 and Figure 57 exemplarily show
the estimated and measured power curves of the processors E5-2690v2 and E5-2670v2. The
measured power is approximately 30 percent of the spreadsheet-based power at the idle
utilization level. At a utilization level of 50 percent, the measured power is nearly 60 percent of
our estimated value. Finally, the power gap is less than ten percent at the full utilization level.
Our challenge is to improve the estimation process, especially at lower utilization levels, so
that we can define the power consumption in the early design phase more precisely. The lower
utilization of the processor is significant for the memory-bounded workloads.

150 Intel Xeon E5-2690v2 10C/20T 3.0GHz 25MB
T T T T T T T

measured
140 — = —spreadsheet |

130 % b

120 ¥ b
101 E
100
90

80

power [W]

70

60 -

50

40

30

20

Il
100 90 80 70 60 50 40 30 20 10 0

10 I I I I L

utilization level [%]

Figure 56: Spreadsheet-based estimation vs. measurements of the processor (C1)

178

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

120 Intel Xeon E5-2670v2 10C/20T 2.5GHz 25MB
T T T T T T

. measured

~ = = = spreadsheet
110 = 8

10 1 Il Il Il Il Il
100 90 80 70 60 50 40 30 20 10 0

utilization level [%]

Figure 57: Spreadsheet-based estimation vs. measurements of the processor (C3)

We found that the vendor, the commercial tools, or our spreadsheet-based estimation method
always overestimates the processor power consumption, as shown for the product family E5-
2600 in Appendix A3f. We optimize the calculation method to close the gap between the
spreadsheet and measurement values because we conceive a non-linear processor power
model considering the technical specification CHyg and the dynamic characteristics CHZY; to
be aware of the various utilization levels. We specify the static and dynamic characteristics and
refine our spreadsheet-based approach by including our findings of the non-linear behavior of
lower utilization levels.

In the next phase of our analysis, we determine the characteristics of diverse processor
generations that are available at all product life cycle stages. We compare the similar
processor generations and their power consumptions, which helps to identify the critical
characteristics. We restrict ourselves to the specific x86-based Intel processor characterization
because today’s server processors are more energy-efficient and performance-optimized in
comparison to the AMD processors, which are uncommon in present server systems. We
exemplarily describe the relevant characteristics of the third Inte/l Xeon generation and
architecture, code name Ivy Bridge, which involves the E5-2600v2 processor family with a
fabrication size of 22nm. The quick path interconnect (QPl), a static characteristic, is a point-to-
point interconnect between one (or more) processors and the memory controller. The
processor power consumption increases by the QPI transfer rate, especially at the idle
utilization level, see Appendix A3f. We analyze the processors with identical cores/threads,
cache sizes, thermal design powers (TDPs), and transfer rates, see Appendix A3f. The power

179

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

consumption between two processors is proportional when the frequency increases and the L2
/ L3 cache size decreases at the same time. If the utilization levels are higher than 50 percent,
the TDP and frequency influence increases. The power consumption exponentially increases
when the utilization levels are larger than 80 percent and the frequency increases, as stated in
[SIC 2003], see Equation (3.22). The TDP and frequency are negligible at lower utilization
levels. If we compare processors with a 15-watt TDP difference, the power curves are
approximately identical, and we observe the 15-watt gap between the various power curves
when the utilization levels are larger than 80 percent. We estimate the power consumption on
a linear basis for the processor, which has a few p-states. We adjust our calculation method for
the processors with a higher amount of p-states towards a non-linear power curve. We
empirically analyze the characteristics of the Intel Xeon E5-2600v2 processor to define the
effect on the slope APOpy, and introduce the weight coefficients WF]°° of our non-linear
power correction PCp, regarding the relevant characteristics, such as the number of p-states
k, see Equation (5.77). We define the technical specification CHyg to consider the processor-
specific characteristics regarding their generation or family.

PCp, = WF °® % ke x APOpyoc (5.77)

Furthermore, we found that the power curve is linear for processors with less than 15 p-states
and non-linear for processors with more than 15 p-states, especially when the utilization level
(Uproc) is between 20 and 80 percent. We specify a non-linear correction interval at the two
edge regions of the power curve, firstly when the processor has a utilization level less than 20
percent and secondly, when the processor is at a high utilization phase (uy,,o, = 80), see
Equation (5.78). The boundaries are specific to the Intel Xeon E5-2600v2 generation, which we
change in a flexible manner when we vary the processor. We separate the weight coefficients
into WF}{W / WFP}:gh and found that the slope of higher utilization levels is always larger than
the slope at lower utilization levels WFP};igh > WF;ZW. We consider the processors with less
than ten p-states by a smaller weight coefficient WFEp,, which is steady. We do not evaluate all
possible characteristics that may enhance the power correction by WF;k and neglect them,
because of their insignificance. Our findings and concrete values are specific to the Intel Xeon
E5-2600v2 processor family, which need to be adjusted whenever we consider another
processor.

WFp,, if k<10
WEPTO¢ — WFFI’ZW: if k> 15, Uppoe < 20
Py WFP’:(zgh, if k> 15, Uproc = 80

WF;k, otherwise

(5.78)

180

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

The default value of the WFPpkmC is one that does not affect the power correction when we
cannot define specific conditions. An exception is given by the thermal design power that
defines the worst-case power consumption at the full utilization level. We do not adjust the
TDP value in Equation (5.76) by a power correction PCp,. We found that the maximal power
significantly relies upon the cache size and the processor threads. Both characteristics lead to
the refinement of the worst-case power calculation. We specify the P0O,,,:(100%) by an
additional weight coefficient PCp , see Equation (5.79).

POyyoc = [TDP * PCp,TDP — PCp,, TDP — PCp,, ..., TDP — PCp,] (5.79)

We calculate the maximal power, in accordance to the Intel Xeon architecture by a weight
coefficient of 0.91. We determine two special cases, wherein we change the weight
coefficients, as shown in Equation (5.80). In the case that the processor has a) the level two
cache size (L2) bigger than 12x256KB, b) a level three cache size (L3) larger than 30MB, and
c) more than 24 threads, we specify the power corrections by an increase of approximately
four percent. In the second case, when a) the L2 cache size is smaller than 4x256KB, b) the L3
cache size is smaller than 15MB, and c) not turbo mode is available, we nearly halve the
worst-case power by a weight coefficient of 0.54.

1.04, if L2 cache = 12x256KB, L3 cache = 30MB, threads = 24
PCp, =10.54, if L2 cache < 4x256KB, L3 cache < 15MB, no turbo (5.80)
0.91, otherwise

We do not concentrate only on the dynamic characteristics, because the static characteristics,
such as the cache size, are significant characteristics when we model a next-generation
component based on the basis of a predecessor. In common, we propose a worst-case power
estimation, including the power correction PCp , which uses a set of weight coefficients
WF = {WF3 ,WFZ,...,WF} } at the lowest p-state P; under the set of conditions CN =
{CN;,CN,, ...,CN;}, whereby the conditions are a subset of any possible characteristics, see
Equation (5.81).

(WFp,, if CNy
WFg, if CN,
PCp, = : (5.81)
l WF, if CN,

WFp,, otherwise

A shrunk die includes more registers on the same space; as a result, a core consumes more
power than its predecessor generation, but provides more performance. The architecture
limits the maximal power consumption because the cache size, core, and uncore area on the

181

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

die differs®*. We distinguish between the processor family and generation’”®, which both
specify the hardware configuration, but the family defines the server type, construction, the
maximal amount of components, or the mounted motherboard. The generation limits the
system-board components and the related series. We consider the characteristics presented in
the previous sections as being typical of a wide range of the processors on the architectural
level, whereby we need to adjust the weight coefficients for each of them. In general, we
define a set of weight coefficients WF = {WF;,WF,, ..., WF;} of each condition CN =
{CN;,CN,, ...,CN;}, whereby the conditions are a subset of possible characteristics.

WE,, if CN,
WE,, if CN,

WFPT"C = (5.82)

WE, if CN,
WF;k, otherwise

In the next sections, we compare our approach to the academic processor power models and
their corresponding characteristics, which address adequate methods of the specific server
systems. The approaches concentrate upon a certain aspect of a particular processor and
primarily characterize the processor power considering the dynamic characteristics. The power
model P, in [KIC et al. 2014] distinguishes into the core-based power, static power, and
cache power, see Equation (5.83). [Bel 2001] states that the static processor power depends
upon the time, voltage, and semiconductor characteristics.

Pproc = denamic * cores + Pstatic + Pcache (5-83)

According to [RRK 2008], the core-based power consumption is not a linear function of the
utilization levels, because of the different number of active cores and shared resources. [BGM
et al. 2010] and [BM 2012] present a core-based power model which sums the power
consumptions of each core k, as shown in Equation (3.31).

P = Z%{:l Peore (k) (5.84)

We consider the number of active and available cores of each processor family and define the
corresponding weight coefficients. Today’s processors cannot change the core’s frequency
independent from each other, because the physical cores limit the base frequency. [GFN et al.
2006] presents that each component has diverse static and dynamic characteristics, whereby
the voltage and frequency are the major characteristics. Bellosa [Bel 2001] shows that the
dynamic power correlates to “the switching frequency of the transistors and size of the
capacitors.” The authors of [SIC 2003, JGM 2003, KIC et al. 2014] state that the processor

% Die differences: Haswell processor http://ark.intel.com/products/codename/42174/Haswel #@All,

Nehalem processor http://ark.intel.com/products/codename/64237/Nehalem-EP#@AII
?% processor: e.g., architecture (Intel Core i3), generation (Ivy Bridge), family (i3-3xxx / i3-6xxx)

182

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

frequency and capacitance are relevant characteristics, which we also consider in our concept.
We execute two threads on a logical core of the same processor, which both fully utilize the
core. The switching activities of the various functional units result in different power
consumptions while executing diverse operations. We neglect this accuracy level to be
independent from the architecture and the explicit workload. In [BGM et al. 2010], the authors
define the core power by the access rates that correspond to the known event metrics. The
authors of [Han 2007] state “..., a hybrid model of event counters and measured power may
provide information to more fully describe the relationship between p-state, workload, and
power consumption.” The authors of [TMW et al. 1996] analyze a certain processor, including
its internal behavior, and design the micro-architectural structure. The authors consider
hardware-specific performance counters, as analyzed in [Bel 2000, SBM 2009, RAK et al. 2013,
LSQ et al. 2014], which are unsuitable for novel hardware architectures because the
performance counter differs between the generations. Another problem in the early design
stage is that the hardware is not available. We avoid concrete hardware-specific event metrics
in order to conceive a generic model and use state-based models. We abstract the micro-
architectural structure to be independent of the exact processor. We cannot use the
instruction-based approach proposed in [TMW et al. 1996], because we do not have any
knowledge about the explicit instructions of every executed workload. Furthermore, the
processor architecture restricts the instruction types, which we adjust the certain processors.
The instruction types and operands differ, which results in a variable amount of clock cycles.
The power model of [LJ 2003] addresses OS routine calls considering the instructions per cycle
(IPC) and coefficients K;, K1, see Equation (5.85). The interrupts, processes, and inter-process
controls are hardware-specific.

P =K, *IPC+K, (5.85)

We cannot apply the approach of [LJ 2003], because we do not have any knowledge of the
exact operating system and the OS routine calls of the server system while executing the
application software. The power model in [Riv 2008] considers the relative processor

Uproc

max(uproc),

(5.86), to cover the processor behavior; whereby F depends upon the processor

utilization level the coefficients Ky, K7, and an empirical factor F, see Equation

characteristics, and K, K; relies upon the specific workload.

1 F
R e I e (26)
In principle, we refine the concept of [Riv 2008, RRK 2008] in the manner that we categorize,
classify, and characterize each component of the entire system that specifies the empirical
factor, e.g., the processor generation. We define the characteristics and extend the processor
specification to replace the empirical factor. The authors in [IM 2003, BGM et al. 2010]
propose an architectural scaling model considering the utilization levels, whereby each

183

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

resource-bounded workload is weighted. In contrast, we consider the architectural scaling
within our component models in the technical specification and configurations, which weights
the relevant characteristics. We are aware of component-bounded workloads. The authors in
[TDM 2011, MAC et al. 2011] consider the characteristics’ generation, family, architecture, and
technology. Table 28 and Table 29 conclude the common academic approaches and what
characteristics the authors consider. It should be mentioned that this table is not all
embracing, but is concentrating on the major characteristics that are significant for the
processor power consumption.

Table 28: Processor characteristics (I)

Processor
characteristics
Static characteristics
Cache / cache lines y
Capacitors / capacitance
Voltage
Time
Semiconductor technology
(TDP)
Quantity (#)
Status
Type y
Vendor
Product life cycle stage
Generation
Family
Series
Fabrication size (nm)
Resistance

Performance features
Considered (y), not considered or unknown (no entry)

[TDM 2011, MAC et al. 2011]

[TMW et al. 1996]
[Bel 2001]

[SIC 2003]

[JGM 2003]

[GFN et al. 2006]
[BGM et al. 2010]
[BM 2012]

[KIC et al. 2014]
Our concept

<

< < < <
<

<
<

< < < <
K < < <K <K ¥ ¥ x¥xK < <K<

184

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Table 29: Processor characteristics (I1)

-
i
o
N
©
=]
f— o —
2 g 23 g
()] (=] o <
— —_ N = . N &
C - = o = 9 T = " g
Tt 3 2 8 2 8 g 3w ¢
© 6 N w Q + o
Processor S v Q@ G & o v 2 4§ 5
. F @ 8 5 0O F @ o X 5
characteristics === == == ==
Dynamic characteristics
Cores / active cores Yy Y VY Y
(hyper-threading)
Frequency Yy Y VvV Y y
Accesses / instructions / y y vy
operands
Event metrics y y Yy vy
Transfer rate v
Thresholds Yy

Considered (y), not considered or unknown (no entry)

We concentrate upon the processor and memory characterization to develop an accurate
power model. We neglect the I/O-based component characterization because we primarily
specify the midrange server systems that execute processor-bounded and memory-bounded
workloads.

Fan Power Characterization Including the Thermal Models

Besides the power consumption, the thermal development is a critical aspect of the energy
efficiency. The components warm up and produce heat, which the thermal control mechanism
cools down to avoid damage and ensure the working conditions. In the next sections, we
describe the thermal models of the processor and memory, which we require to define the fan
power and performance loss.

The package®® heat dissipation, called the thermal resistance®”, is denoted by the theta 6,5

or psi Y in the units of [OWC], which “..., indicates the steady-state temperature rise of the die
junction above a given reference for each watt of power (heat) dissipated at the die surface.
[Ben 2002]” The thermal resistance excludes the geometric effects [SXC et al. 2000], but differs

226 . .
Package: semiconductor device

7 Thermal resistance: energy-to-temperature translation coefficient

185

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

into the thermal conductivity and electrical resistivity, including the material properties, as
considered in the JEDEC-standard®?®. In the early design stages, the vendor rudimentary
specifies the thermal characteristics of the entire system or the next-generation components.
At first, we analyze the spreadsheets to specify the adequate thermal models. The
components dissipate power and as a result, simultaneously produce heat.

We calculate the self-heating AT [°C] due to the power dissipation, which is a product of the
thermal resistance 8,5, supply voltage V-y, and current Iy at certain conditions CN, as
shown in Equation (5.87). In [NXP 2010], a condition of a memory module is the access on the
serial data input/output (SDA) or occurring events.

ATmem = Ores * [Ven, * Ien, + Ven, * Ien, + -+ Ven, * Ien,] (5.87)

In the case that we do not have any knowledge about the thermal resistance we define the
thermal response on the basis of the self-heating, which is a step function response of a first-

2 We specify the memory thermal response TH(t)2E,, considering an

order system (PT1)
initial condition CN, and a time constant Ts. Equation (5.88) defines the temperature increase

as an exponential function.

t
TH(t)PE,, = CN, * (1 —e Ts) (5.88)

In contrast, we specify the processor thermal profile on the basis of linear relations, which we
determine in the spreadsheets of existing processors. The vendor defines the thermal design
power (TDP) and the corresponding processor case temperature T4z, Which is maximal at
the processor-specific TDP value. The minimal case temperature is a fixed operating
temperature and specific to each processor family. The related power Py, fi1e min defines the

lower power limit, as shown in the following equations.

(PO,,TH,) = (TDP, max(T¢ask)) (5.89)

(P01, THy) = (Pyrofite min min(Teass)) (5.90)

%% JEDEC: Joint Electron Device Engineering Council, https://www.jedec.org/

First-order system or lag element (PT1): under certain conditions may be a second-order system
(PT2)

229

186

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Both critical data points define the thermal profile of a processor, which we specify as a linear
equation, THgTTOC including the slope mry and the offset nyy, as shown in Equation (5.91). The
technical specification of an existing processor provides the values that we need to solve the
equation. We assume that the thermal profile is always linear, as defined for a couple of
processors, but the characteristics influence the slope or the offset. In the early design phase,
the Teasg and Pyrofite min @re not available and, thus, we estimate both values by assuming

the predecessor or a similar generation.

THgZOC = Mgy * PO + Nry (591)

__ATH _ TH,-TH,

Mmry —m—m,n’rlq =TH2—mTH*P02 (592)

In general, we characterize the temperature THS}FOC as the power-related function, which is a
common method of the thermal assumption for a server system within the data center [ERK
2006]. We transform the dissipated power PO¢,[W] into the temperature [°C] with the
°C

wh
thermal models partly rely upon the power model, we consider the linear relation between the

processor-specific weight coefficient®* WFCTiH[see Equation (5.93). In the case that our

current and the ambient temperature, as done in [AR 2016]. The stationary temperature THgiT
depends directly upon the ambient temperature and indirectly upon the thermal design power
of a processor, which specifies the slope of the thermal profile. We extend the calculation by
an offset TH, e to consider both influences.

THgiT = POCi * WF(.Z;-H + THoffset (5.93)

We define an exception of the component temperature especially in the case of the memory
modules. The output current I,,; of the semiconductor devices decreases negatively
exponentially by an increasing ambient temperature [SXC et al. 2000]. In contrast, the average
supply current Iy, of the memory modules increases linearly by the ambient temperature
[NXP 2010]. The component temperature TH¢, behaves typically non-linear to the operating
environment, such as the output current. [Han 2007] estimates the processor temperature by
a linear regression considering the ambient temperature as an offset of the thermal
specification. The authors argue that they can quickly calculate the processor temperature of
all p-states and tolerate sensor delays. The approach does not consider the non-linear thermal
development over the time. We define the stationary temperature as an initial condition of
the thermal response TH(t) and refine the step function response of a first-order system, see
Equation (5.94).

t

TH()EF = K& (1 — e'T_s) + THET (5.94)

230 Weight coefficient: works, such as theta or psi, but is not defined by the vendor

187

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

In addition, we model the system fans to control the dynamic thermal development of the full
system and consider the fan power, which is a static fraction at idle utilization levels, and a
dynamic characteristic of the power when the temperature increases. We analyze the
assembled server system fans and their characteristics. The authors of BladeSim [RL 2007],
SimOS [RHW et al. 1995, Lan 2007], and SoftWatt [GSI et al. 2002] neglect the fan power.

In the approaches of [HS 2007, Han 2007, HKG et al. 2007], the authors define the component
temperature by a certain state on the basis of the functional level, which we cannot estimate
when we consider a flexible and generic workload. The authors in [APL et al. 2008] calculate
the die temperature by the constant idle temperature and the dynamic temperature, which
depends upon the performance counters of the hardware-specific events and the
corresponding number of clock cycles while executing a software application. The authors of
[SBA et al. 2011] present a thermal model to control the airflow within the server system with
respect to the mounted memory modules. The concept analyzes the airflow and detects the
hotspots within the system. The authors concentrate upon the computational fluid dynamics
simulation (CFD), whereby the relevant characteristics are the system geometry, volume, air
pressure, and humidity. The CFD in [LZZ et al. 2007, QXY 2008] requires a highly detailed
thermal characterization, such as the resistors and capacitance architecture, which would
increase the complexity of our entire system model, the simulated time, and development
effort if we would apply this approach. We abstract the concrete airflow”, but consider the
stationary thermal development, e.g., the self-heating, and propose a simplified thermal
model for each component development.

Performance Models

The performance model defines the real throughput under certain conditions. The academic
approaches, such as [DEP et al. 2009] and [YZ 2011], execute diverse instruction types within
benchmarks to study resource activities and get a relation between the functional units and
their performance. We cannot predict the exact events or activities of our server system and
therefore the instruction-based approach is not applicable. In [MKO et al. 2002], the authors
observe specific events on the architectural level that rely upon the system family and
generation. We do not investigate on the wide range of the performance models and their
complexity. In general, we consider the same approach of the diverse performance models at
various domains, which we include as a category-specific method on either the functional level
or logical domain. We specify the relevant benchmarks and aggregate the performance metrics
from multiple benchmarks in a database. We assume a linear relation between the utilization
levels and the performance scores, which are maximal in the case of full utilization. The
benchmarks provide only the largest scores®?, which we analyze in order to estimate the

231 4. . . .
Airflow: including volume, pressure, airflow rate, and speed

232 .
Scores: mean of performance ratios as a result of benchmarks

188

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

performance. We are not able to predict the explicit scores, because of our restricted
knowledge about the exact workload or instructions. A single component C; may have several
performance results because of the diverse benchmarks, as shown in Equation (5.95) for the
PassMark CPU benchmark®?. We consider the Mixture performance®” as a default setting in
our simulation model and abstract the specific processor instructions. The customer can adjust
the simulation level of detail, such as selecting the Floating Point Math, to be more precise for
a certain application software.

Mixture
| Integer Math

PE:py = Passmark CPU = Float.ing Point Math (5.95)
Prime Numbers

Extended Instructions (SSE)

Passmark
PEc,={ SPEC (5.96)
TPC
benchmark; I(per formancel, 4,
_) benchmark, B 4 performance?,,
PEc, = benchmark . benchmark,. = performance;;q (5.97)
benchmark; performance? ..

We neglect the time-based metrics, such as the response time, throughput, or bandwidth,
which require a detailed model on the workload, executed operations®>>, and the hardware
2% We consider the standard benchmark metrics, such as PassMark, SPEC**’, or
TPC*® instead. The common database stores many benchmark metrics of the diverse

architecture

components C;. If a customer-specific server configuration includes a component that is not
part of our database, we parse the technical specification tree to find the closest relatives. We
specify the weight coefficients concerning the performance at each level of the tree. We
multiply the performance by the weight coefficients within the technical specification tree. In
the case that we have to predict the future component performance, we define a performance
boost, such as a 1.5 weight coefficient, between two different levels of the manufacturing
technology.

33 passMark: http://www.passmark.com/index.html

Mixture performance: also called CPU Mark, a mix of every defined benchmark within Passmark CPU
Workload and operations: determined by code inspection, input data set

Hardware architecture: memory hierarchy, compiler options, cache levels

SPEC: Standard Performance Evaluation Corporation, http://www.spec.org/

TPC: Transaction Processing Performance Council, http://www.tpc.org/default.asp

234
235
236
237
238

189

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

We update this coefficient when the next-generation results are available. We consider the
specific benchmark results as a set of maximum scores that is reliable when the components
have the highest utilization level. We adjust the scores when we reduce the utilization level
down to idle analogous to the SPEC-benchmark performance scores.

In our concept, we transfer the performance results of the isolated components collected by
the synthetic benchmarks to our system variations with the identical technical specification
and configuration. If we simulate a component using the particular characteristics that we
cannot reuse from the results, we update the weight coefficients to estimate the single
component on the basis of its predecessor generation. We include the entire system
measurements to cover the system-specific behavior of various server configurations. We
combine the measurement results of the diverse synthetic benchmarks to estimate the
behavior under certain conditions. In our simulation model, we reuse the benchmark results
instead of developing the accurate performance models of each component or system
variation. We specify a knowledge base that includes the component-based and system-based
performance results.

Classification as a Technical Assistant of the Category- and Aspect-based Characterization

As stated in the previous sections, we found the diverse, relevant characteristics of a category
CS; or a certain aspect A; which we include in our logical and physical configuration layer. We
support a flexible characterization, which does not require the highest accuracy level. We
found that the components C; in CS have a similar characteristic and abstract them so that the
models are independent of the concrete accuracy level, but consider sub-characteristics, in
case we gained experience of the highest accuracy level. We adjust the concept of [GFN et al.
2006] and group our characteristics into shared classes CL = {CL{,CL5,...,CL;}to avoid
redundant data of the various configurations. We define the common characteristics
CH = {CH,,CH,, ..., CH}}, which stores the values of the explicit system configuration of a
certain category. Figure 58 provides a brief overview of a memory module considering the
system-board categories, their classification, and the related characteristics, which we describe
in the next sections.

190

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

systom boad category. memory

EJtechnotogy ?:] modes
—(;j capacity 4{2‘; dynamic (OS)
tem-board categories | C—Fuce) utization lovel
{ J { | I e P roquency (cock)
‘ | | | T uce T seoomee
processor memory npuloutput H fan H others
—@j fabrication size (nm) voltage
: - 0w 4Ei=_—|w
e S categories [Jhyper-tweadng T cument
. .
- e —@gynmmgnmmm —Futy cyce
. N
N s ‘registered” operating (BIOS/UEFI,
- " preees I 0w [T opwatina)
. . - Tt ks ;. -
a
e " £ num
NN [owvompe | [saroa o mtacrg srocess Ltw aror coraction
—— —— 1mngs ECC
I -
l imemary, SDRAM DIMM, Samsung, DOR3, DDR3-1600, PC3-12800 ‘ :> :>
¥ refresh
T IEE
T T~ N k] ‘indapendent’
=] = : e
F—F"cacne —%j system optimization (FW)
o L7 1e00mTss"] power
classification
resistance) energy efficiency
56T T nose
" temperature

characteristics

Figure 58: System categories, classes, characteristics, and values

We differentiate into a technical specification and a configuration, which may be static or
dynamic. We define the classes as shown in Table 30 that helps to identify the dynamic
characteristics, which we adjust during the simulation. On the other side, we adapt the
technical specification, which may result in an extra simulation run. Herein, we differentiate in
the technology and manufacturing changes that specify the component behavior. In contrast,
we can change the component quantity, which influences the utilization level and respectively
the power consumption.

Table 30: Class definition CL,

Terms CL, Class Tree Configuration
characteristics

CL, =pro product 0 CHyg

CL, =map manufacturing process 0Org CHrg

CL; = tec technology Ors,0cs CHEEL:

CLy =mod modes Ocs CHEY;

CL; =com communication 0 CHrpg

CLg = int internal configuration 6 CHrg

The product class specifies the component quantity, if the component is active or still
assembled in the system. Within the product class, the redundancy®® characteristic is
especially significant for the power supply and storage devices. We summarize the technical
specification CHyg and the related characteristics in the manufacturing process class. We

% Redundancy: e.g., redundant array of independent disks (RAID), PSU redundancy (N+1,N+

2,2N,2N +1,N + N)

191

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

define each component by its vendor, architecture, generation, family, and series. Herein, we
assume the nomenclature of the Intel processors®”® and adapt them considering our
components. A special characteristic within the manufacturing process is the product life cycle
stage. For instance, Intel changes a pilot release processor during the production ramp-up. As a
result, processors in the maturity, saturation, or decline stages have less manageable p-
states®* in comparison to the same product in the market introduction or growth stage. The
vendor does not change the processor specification after a certain product life cycle stage.
Therefore, the product life cycle stage is an empirical characteristic. The authors of [Han 2007]
expect the increase of the individual component power and performance of the next-
generation fabrication processes. We address Moore’s law [Moo 1965] in the manufacturing
process because we consider the technological development of the predecessor towards
today’s architecture, which results in a non-linear energy efficiency. Besides the technical
specification, we include the static configuration CHg,ZG of the on-chip technology, which we
conclude in the technology class. The relevant processor characteristics are the hyper-
threading, cache size, or the largest transfer rate, for instance. We consider the dynamic
characteristics CHZY; in our approach and differentiate the several component modes. First,
the dynamic mode defines the real component state, such as the utilization level, frequency,
voltage, current, or duty cycle. These characteristics are significant in the OS-specific
management techniques, such as DVFS. Secondly, we sum up the BIOS/UEFI characteristics in
the operating mode. Finally, the system optimization mode covers the firmware
characteristics. We consider the 1/O busses and connections within the communication class.
The internal class defines the thermal thresholds, when a component is at the reliable,
functional, or damage level, which is specific in each hardware configuration. We define an
uncertainty or confidence level, which specifies the trust relation on the basis of the
underlying measurement, spreadsheets, or simulations. We consider the classification in our
technical specification tree and characterization tree. Figure 59 represents the technology and
modes classes in the characterization tree of the SDRAM DIMM, DDR3,DDR3 — 1600, PC3 —
12800 memory module.

% Intel nomenclature: http://www.intel.com/content/www/us/en/processors/processor-numbers-

data-center.html, http://ark.intel.com/
a1 Manageable p-states: formally, both processors have same state PO-P7, but P5 behaves like P6

192

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

[ECC ‘ ‘ none ‘ ’ low-voltage ‘ [standard ‘ 655

operating (BIOS/UEFI) dynamic (OS)

‘ memory, SDRAM DIMM, Samsung, DDR3, DDR3-1600, PC3-12800 |

technology

| registered ‘ | buffered ‘ ‘ 1GB ‘ ’ 2GB | | 4GB | \ 8GB |

Figure 59: Characterization tree with classification

Correlation of Component-based and Aspect-based Characterizations

In the “logical and physical layer” section, we define the aspect-based component models
regarding the server system configuration. We concentrate upon the relevant characteristics,

values, and weight coefficients WFAC];’ . We found that the aspects of a particular component

4

influence each other. The processor dissipates the power POp(tx), the temperature
THproc(tk), and the performance PEy, . (tx) at a specific time t;. The self-heating of the
processor results in a temperature THp.oc(tx+1), Whereby the temperature increases
THyroc(tis1) > THproc(tr) , but at the same time the performance decreases
PEproc(tk1) < PEproc(ty). The authors of [NXP 2010, SXC et al. 2000] state that a larger
temperature of semiconductor devices results in an increasing current, which limits the
performance. The system fans compensate the warm-up process, which results in a higher
power consumption of the system. Analogous to Newton’s third law that every action has an
opposite reaction, we apply the relevant principles concerning our aspects.

We consider the side effects of the certain components in the aspect-based relation Ry, as
defined formally in Equation (5.31), which characterizes the mutual influences at a time t;,. We
standardize the aspects A; towards their maximal possible values max(4;), which result in an

A
interval Ajrel from zero to one. We specify the relation R, f‘”l between the aspects as a sum of

Jrel

. . L. . A .
the relative values Afrel and Akrel' which have to be within the closed interval RR, ,krel defined
Jrel

by the lower and upper limits minRR:]kre’ and maxRR:jk”"l, see Equation (5.100).
rel

irel

193

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

__actual(4j)
Jret — max(Aj) (5-98)
Akrer _
Ry, ™ =4 T Akrer (5.99)
Akrel — . Ak‘r‘el AkT‘el] AkT‘el Akrel
RRAjrel mlnRRAerl) maxRRAerl] RAerl € RRA]'Tel (5100)

The limits cannot be accessed generically because another component characteristic CH may

. . . . A
restrict the maximal throughput, which results in a lower maxRRAjkTel. Therefore, we extend
rel

. . A
our relations in R, ¥rel concerning the various characteristics. Equation (5.102) formally shows

Jrel

the relation definition between power and performance. We specify the complete component
behavior in the model BE being aware of such feedback loops between the aspects.

CH, pPOrel _ CH, POre; _ | CHy POre; CHy POre
RPErel = POre; + PEres, RRPErel - minRRPErel'maxRRPErel

PO PO CH. PO CH. PO
CHzRPE::ll — POTel + PETel' CHzRRP rel — [2PR rel 2pPR rel]

Erel min"*"*PEg;? max " "' PE ¢ (5.101)
CH pPOrer _ CHppPOret _ | CHippPOrei CHippPOre
RPErel = POre; + PEres, RRPErel - minRRPErel'maxRRPErel
CH,pPOrel CH POrer
(1RPErel € 1RRPErel' if CH,
PO PO .
CHRppret € CM2RRpp"!, if CHy
RpE = : (5.102)

CH;pPOrel CH. POre;
‘Rpg € “"'RRpg), if CH;
1, otherwise
After defining the relations at a time t;, we define the dynamic behavior between the time
step ty and t, 4 in the relation R::H' We consider the actual condition of the component,

such as the increasing or decreasing relative values of each aspect A, and specify the impacts
due to the remaining aspects, see Equation (5.103).

Ajrel(tkﬂ) > Ajrel(tk) & impacts

Rikrt = { s (5.103)
Aj 7tk Aj (err) < A4; () & impacts

As an example, we assume the increasing power consumption PO,,;(t;41) > PO, (t)) as an
aspect-based result of our calculation methods, which we specify as PO;yc. We define the

impacts of the remaining aspects TH and PE by the weight coefficients WF;[,*INC and

WF}fgINC, which we apply upon the relative aspects at the time step t;, as shown in Equation
(5.104).

194

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

THrel(tk+1) = THrel(tk) * WFEH

POinc
(5.104)
PErel(tk+1) = PErel(tk) x WFE

POInc

Another challenge is that the components themselves influence each other within the entire
system. The authors in [YP 2009] state “..., the memory access is extremely costly in terms of
the CPU core clock cycles and thus the memory system turns into the main bottleneck in
system performance. This is mainly because the speed gap between the fast CPU core and the
relatively slow memory widens.” We specify dynamic rule tables in the matrix Rz to restrict
the component interactions. The authors of [ERK 2006] measure the system components in
isolation and do not cover system-specific effects. The concepts of [ERK 2006, Riv 2008, RRK
2008] consider the performance counters, which are unsuitable for novel systems because of
their dependency to the architecture. Our aim is to reduce the extra modeling effort, while
being independent of the explicit hardware configuration and characterization. [BHS 1998]
state “When the CPU is active, the memory components are also active to some degree.” The
utilization levels vary across a time series on the basis of the complex system interactions on
the busses and activities, which depend upon each other. We found that we could not fully
utilize the processor and memory at the same time, which we specify as internal constraints.
We restrict the maximum utilization levels, which the components may have at the same time.
We exemplarily define the relation between the component C; = mem and C, = proc, which
can be done analogous to the aspect-based relation R4. We specify the maximal utilization
level ,qxUproc that the sum of the memory and processor utilization level (Umem + Uproc)
cannot exceed. At the same time, the minimal utilization level ,,,;, up;%5¢ has to be fulfilled. We
specify the behavioral relations between the components in Rgg, respectively their utilization
levels, which form the steady simulation constraints.

gﬁ%ﬁl = Umem T Uproc (5.105)

RRESE = [minupiots maxUproe | Rpyoe € RREGE (5.106)

In the case that we define the relations in Rgg and restrict the utilization levels, we indirectly
limit the worst-case power consumption of the entire system. The full-system power model of
[ERK 2006] addresses the system behavior considering an explicit operating system, including
the particular design and architecture properties. The authors define the component-bounded
utilization levels that correspond to the OS behavior, but do not address the details of the
coefficients K, K1, K5, K3, and K, see Equation (5.107). The authors change the coefficients
K;and K, which refers to the relation between the processor-bounded and memory-bounded
workload at the OS. The system power depends upon the activity level and the
communications, which enables various states and transitions.

Pserver = KO + Kl * uprocessor + KZ * umemory + K3 * Ugisk + K4 * Upetwork (5-107)

195

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

In our concept, the coefficients do not only weight the utilization levels of each component;
the coefficients also define the relation to each other referring to the technical specification
and configuration of each component. We characterize the system design and architecture in
an additional layer, which is a more precise in comparison to [ERK 2006] considering diverse
component variation.

Furthermore, the authors in [YP 2009] describe, “Apparently, without memory involved, the
CPU utilization should scale linearly with the CPU core frequency. For example, if the CPU
utilization is 50% at 104MHz with little or even no memory access, we can easily predict that
the CPU utilization would be around 25% at 208MHz with the high confidence. But with
memory access involvement, the CPU utilization would not scale linearly with the core
frequency any more. At the higher frequency point, performance is usually more blocked by
the memory since the CPU spends more CPU cycles in waiting for memory response.” We
cover the performance loss in the relations R4 and Rgg, which define the influence between
the components or one certain component. The previous academic results lead to define the
relations on the component as well as the system level considering the certain workload. The
workload specifies the processor power fraction of the total system consumption, which
decreases because the memory modules consume more power in dependence on their
shrinking technology in the novel generations [RRK 2008]. The memory power becomes more
significant at the processor-bounded and memory-bounded workloads, when the system has a
high number of memory modules, such as 64.

Other key indicators of the system behavior are the management techniques, especially of the
power consumption. The techniques concentrate upon the average power to optimize the
energy consumption over the time, which saves electricity costs. The peak power reduction
decreases the cooling costs in the data centers, which we outline in Section 4.4. In the large-
scale enterprises, the server system is limited by a power budget to ensure that the total
power and the temperature do not reach a given boundary. The authors of [RLI et al. 2006]
optimize the dynamic power budgeting at a blade enclosure, which reduces the power
provisioning between the various server blades. The management technique shall provide the
suitable power to the current demands. The management techniques are either a hardware
solution, which has direct access to the low-level information, or a software solution, which
operates at the application level. The time granularity in the hardware is based upon seconds
or milliseconds, which is evolving towards hours in the software technique. A well-known
power management technique is dynamic voltage frequency scaling (DVFS) in which the
operating system controls the component states on the basis of the utilization level of scaling
down the unused components, see Section 3.4.2. We propose an individual management
technique considering the workload variation, while being aware of the high-activity
(uc, > 80%) and low-activity (uc, < 20%) utilization phases.

196

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

According to the approach in [ZMC 2003], we save energy when we reduce the frequency f or
supply voltage Vpp of the processor. The dynamic power consumption Pgypamic is a product of
the static capacitance C;, the square supply voltage Vjp, and the frequency f.

denamic =(p * VgD * f (5.108)

“When decreasing processor speed, we can also reduce the supply voltage. This reduces
processor power cubically and energy quadratically at the expense of linearly increasing the
task’s latency. [ZMC 2003]” We assume that the frequency f and performance, which we
specify as execution time T, are inversely proportional to each other. If we restrict the actual
frequency to half of it, the time Ty will double to execute the same job. As an algorithm
constraint, we have to guarantee that the allocated time T, is always long enough to finish
the job when we reduce the supply power and frequency. In an ideal case, our management
does not have any negative impact upon the system or component performance, such as the
execution time.

f Tinax

= K7 (5.109)
The non-linear power consumptions of the processor lead us to adjust the frequency, as long
as we satisfy the time demand Ty < Tj,,4. We alter the frequency f and voltage Vj,, of a
processor in the intervals fiin < f < finaxs Vopmin < Vob < Vbp g, Which the customer
specifies implicitly in the server system configuration 8.. We do not toggle between the
various frequencies within a time step, to avoid the additional transition times. We search the
local optimum to minimize the power consumption and corresponding temperature, but try to
find the maximal performance at the same time. This is a well-known resource management
technique, called DVFS, which controls the power consumption in a time horizon of seconds.
Our aim is to optimize the energy efficiency ratio in a time horizon from seconds to hours or
days. The common management techniques concentrate upon the actual states and power
consumption, which we include by calculating the corresponding aspects at each time step.
The management techniques correlate to the component-based and aspect-related
characterizations of the explicit server configuration 8., which may limit the opportunities. We
apply the DVFS technique in our processor model to reduce the average power consumption.

Our aim is to optimize the energy efficiency of the server system SY considering all
components in 8- executing a customer-based application software W. The static part of our
system considers the architecture and connectors, which rely upon the server system
configuration. We consistently consider the same architecture because we support only a
subset of the server systems in our simulation model. We neglect the static configurations
AC(8;) and CC(B(), which we cannot adjust in our prototype implementation. The dynamic
part considers the system behavior, its components, and relations to each other, see Equations
(5.112) and (5.113).

197

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

SY = {ST,(6,), DY;(W, 6,)} (5.110)
STs(6¢c) = {AC(6c), CC(6c)} (5.111)
DY,(W,6¢) = {BEc(W, 6¢), Rgs (W, 6c)} (5.112)

= {MASc(W,0¢c), Ra.(W,0¢), Rge (W, 0¢)} (5.113)

The relations R, and R depend more upon the workload W than on the customer-specific
configuration 8.. The power-to-temperature impact is similar between two components of the
same category, but not comparable when executing different workloads (W1, W?2). We use
the same assumption for the relation Rgg. We sum up the system in Equation (5.117).

Ry (65)~Rs (68), Ry, (W) # Ry (W?) (5.114)
Rpp(08)~Rpg(08), Rgg(W™) # Rpg(W?) (5.115)
DY;(W,8¢) = {MASc(W,6c), Ra, (W), Rgg (W)} (5.116)
SY(W,6¢) = {MASc(W,0¢), Ra,(W), Rg (W)} (5.117)

We cannot optimize the aspect-based relations**

R4, (W) within one component or the
relationships Rgg (W) between the diverse components separately, because both depend
upon the workload scenario of the customer and influence each other. We specify a relation by
the weight coefficient, which defines the sensitivity*** between two tending variables. In our
optimization strategy, we concentrate on the aspect-based component models in the matrix

MAS:(W,8,).

Poproc POmem POio POfan Pooth
MASc(W,0¢) =| PEproc PEmem PEio PEfan PEotn (5.118)
THproc THmem THio THfan THoth

We simultaneously optimize k (k = 2) objective functions F(x), which we define as the

aspect-based calculation methods FAjc in the matrix MAS. Each function depends upon the
i

workload W and the server system configuration .. We run into a multi-objective

optimization problem (MOP) because of competing methods.

F(X) = F(W, Qc) = MASC(W, Qc) = {FAjCi (W, QC)} (5119)

%2 Relations: effect on each other, defined without any unit

23 Sensitivity: strength of dependence

198

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

The functions FAjc in the matrix MAS, consist of the technical specification functions Frg and
i

the configuration functions F.g. to calculate the adequate fraction. We neglect the workload
as an input parameter in the technical specification functions because the technology impact
influences the components at all utilization levels in the same manner. We divide the
configuration function F,pg into the static F3%. and dynamic F&¥; constituents, see Equation
(5.126).

FAJ-Ci(W: 0c) = Frs(6c) + Fere(W,0¢) (5.120)

Fere = {Fée Férg (5.121)

Each of these functions can be defined by the component-specific characterstics CH of 6,

which we weight by the corresponding coefficients WF, and consider the optional offsets OF.

The simulation model of each component 4;_ specifies the relevant characteristics of the
L

diverse classes for the calculation methods in FAjc . We consider the technical characteristics
i

of Frs in the manufacturing process class and include the static configuration characteristics
CHZL; in the technology class. We cover the characteristics of the DVFS and DTM techniques
by the modes class, which specify the dynamic characteristics CHZY; in our approach. The
following equations show a simplified set of the objective functions concerning the
characteristics. We describe the concrete characteristics of each component in the
implementation section.

FTS = CHTS * WFTS + OFTS (5122)
Féie = CHZfg * WFEhe + OF i (5.123)
F&iG = CHERg » WEER; + OF5; (5.124)

We specify a vector of k € N decision variables x = (xq, x5, ..., X;), also called parameters,

which belong to the feasible region — a set of solutions — that satisfies at least one given

objective function, either minimize or maximize FAjc (W, x) of MAS;. We assume that the
i

workload W is steady for a simulation run. The decision variables affect the server
configuration 6., which automatically results in the adjustments of its corresponding technical
specifications, static, and dynamic characteristics.

x = {0¢, CHrs, CHZ}z, CHERG (5.125)

We optimize the energy efficiency (EE) of the entire server system considering the decision
variables x, which we formally specify as the optimization aim max{F (x)}. We formally define
F(x) = (F1 (%), F5(x), ...,Fk(x)), which contains k € N multi-objective functions. In our
concept, the energy efficiency calculation considers the power, temperature, and performance

199

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

methods®*

. We define the energy efficiency as the ratio between the performance PE and
power PO over a period of time T. We assume that this period of time T is constant in our
optimization, which we cannot change. Our aim is to optimize the performance-to-power
ratio, which is highest when we maximize the performance max(PE), and at the same time
minimize the power min(P0), see Equation (5.126). We minimize the thermal aspect
min(TH) as a consequence of the power optimization, which is based upon each other. We

consider the entire server system and therefore optimize all components.

max(EE) = max (%) “ max (%)

__ max(PE)

min(PO) (5.126)

We define a set of constraints G (x) that further restricts the results of each function in F(x).
In our server system, we limit the minimal performance provided by the initial customer
configuration®” and neglect the solutions with less performance. We avoid higher power
values than the customer-specific components consume, which are upper constraints of the
power-based methods. In addition, we specify a lower as well as an upper bound x%, xV of

246

each variable to consider the hardware®*® / software®*’ constraints on the exact configuration.

subject to: G(x) = (G, (x), G5 (x), ..., Gi(x)) = 0,l € N and x* < x < x! (5.127)

In our concept, the performance-to-power ratio**® of each component cannot be less than zero
because we normalize the power and performance, see Equation (5.128). If the power
consumption is very small, the performance-to-power ratio increases arbitrarily highly. We
normalize the ratio G{ (EE) in the range to [0,1]. Therefore, we define the maximum of the
performance-to-power ratio by the minimal power consumption (PO¢,,), see Equation
(5.129), which forms the upper limit of the range. We normalize the values of G{(EE)
considering the formula in Equation (5.130).

GE(EE) = % >0, 1>P0,>0, 1>PE;>0 (5.128)
I _ max(PEc) _ . I _
max (Gl (EE)) = e o = g, min (G1 (EE)) =0 (5.129)

idle

GS (EE)-min(GE (EE)) _ GS(EE)
max(Gf(EE))—min(Glc(EE)) max(Gf(EE))

normalized{Gf (EE)} = (5.130)

24 Energy efficiency calculation: related functions FA}'c (W, x) of MAS,
i

245 ers . .
Initial customer configuration: 8. calculated EEg 455

Hardware constraints: a (physical) limit, such as the maximal frequency
Software constraints: the temperature limits (e.g., TCONTROL, PROCHOT, THERMTRIP)
Ratio: division of normalized performance scores and normalized power values

246
247
248

200

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

We follow the alternation strategy in a hierarchical manner when adjusting the decision
variable x, which has to be system-compatible. We consider the aspect-based relations
R4 (W) within one component or the relationships Rgg (W) between the diverse components
when maximizing the energy efficiency of the entire system. We implicitly define further
constraints in the aspect-based calculation methods, such as non-linear relations between the
guantity of components and their performance. While optimizing the server system, we make
sure that the thermal limits are respected. We adjust the set of decision variables x that result
in X to find an ideal solution. We apply the changes on the basis of the main principles of our
heuristic methods, see Section 5.2.1 and 5.4.2.2. We determine the particular set of values
X = (X, Xy, ..., X) among the set of all objective functions, which satisfy the constraints and
conditions. A single optimal solution (global optimum) is usually not possible, which means
that the results may be a corridor of local optimums instead. Therefore, we define a Pareto
front as a set of solutions that partly satisfy the objective functions. We specify an optimization
strategy in Section 5.4.2.1 to change the decision variables.

The authors of [Han 2007] concentrate upon the coordinated power, energy, and performance
management of a particular system. The pipeline throttling, DVFS, and cache sleep methods
build the base of their management technique. In next-generation server systems, an extra
controller mounted on the motherboard scales the voltage and frequency autonomously. The
OS loses the frequency control, and thus the OS type becomes negligible in such novel
systems. Certainly, the vendor can specify the management techniques and their constraints
independently of the OS.

The dynamic thermal management (DTM) is another technique to reduce the cooling costs of a
time horizon of seconds and minutes. The aim is to reduce the temperature of certain
components or the entire system. The fan control system aggregates the component
temperatures®”®, which forms the basis of the fan speed control (FSC) algorithm. We control
the active cooling devices (fans) by their discrete speed [RPM] using either a linear algorithm
or table-driven (step-based) approach, as shown in Figure 60. The linear algorithm controls the
fan speed®° [%], which increases proportionally between the minimal and maximal
temperatures. A vendor-specific constraint is the minimal fan speed [% or RPM1], which can
be zero when energy-efficient components are assembled in the server system. The table-
driven approach considers a set of temperatures T = {Ty,T5, ..., Tx}, which defines the
corresponding set of RPM values RPM = {RPM,, RPM,, ..., RPM, }. The step-based approach
provides the possibility to control the fan speed on a non-linear basis. The vendor specifies the
thermal design before the server system is introduced to the market.

249 . . .
Component temperatures: analog or digital sensors, accuracy varies from 1°C to 3°C

Fan speed: percent of duty cycle, which adjusts the pulse width modulated (PWM) signal to control
the speed [RPM]

250

201

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

linear fan algorithm table-driven approach

fan speed fan speed
[%] [RPM]

temperature

rel

fan speed temperature

® [

[%] e
60 % 45°C

fan speed

®

RPM3

[RPM]

temperature temperature
K [c 45°C rc
30 60 90 30 60 90

T1 T2 T3 T4 T5 temperature set points

Figure 60: Fan speed control (FSC) algorithm

In our concept, we only consider the linear fan algorithm. We assume a closed-loop fan speed
control because the fans have their own logic to ensure that target value will not be exceeded.
We consider the thermal limits of the system where the components will be able to work, as
shown in Figure 36. We include the temperature range and update our fan algorithm. We
outline our overall control algorithm in Section 5.4.

5.2.3 Configuration - Process and Control Layer SY (0.,6,v, x)

5.2.3.1 Process Definition

The process layer combines the physical system environment, which we define as externals
EX, and the specific server system SY. We consider the logical and physical description of the
server in the characterization layer. The process and control layer defines the
communication " between the components considering the connectors CC and the
architectural description AC of the configuration layer. The workload characterizes the
executions of the operations and the related communications, which affects the component
activities and interactions. An input/output-bounded workload produces more network
communication in comparison to a processor-intensive workload, which utilizes the bus
between the processors and memories. The processor has to wait until the memory accesses
finish. A shared cache across the multiple processors will reduce the communications via the
bus. Furthermore, the associated memory banks of the processor influence the performance in
dependence on the interleaves and bus connections. We differentiate the memory accesses if
we utilize the memory communication when the system has one or more processors. The
authors in [Bel 2001] state that the communications through the bus systems contribute the
main dynamic energy consumption in dependence on the cycle-based load/unload scenarios of
the registers.

251
Communication: characteristics defined in the communication class

202

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

The process layer specifies the dynamic system behavior DYy and distributes the
communication § within the entire server system. According to the static system definition, we
specify the category-specific utilization levels as an input parameter of the aspect-based
calculation methods. We define a set of generic category-specific interfaces considering the
flexible amount of components. In the case that the system has one memory module, we do
not adjust the memory-bounded utilization level, as exemplarily defined with a value of 50
percent. Our model considers the hardware alternation, such as we assemble four memory
modules. We assume any combination of the component-specific utilization levels, which
results in a mean value of approximately 50 percent: e.g., we utilize all modules at nearly 50
percent, fully utilize half of the modules, or specify any utilization levels in between. The
customer specifies the utilization level u¢, of each component (; as an input parameter of our
simulation model, see Section 5.3.2.2. We predefine k, k € N profiles to simulate the workload
distribution in a flexible manner. The customer can extend the profiles or select a certain
profile, which matches the reality most probably. We require these profiles when we alter the
hardware configuration by the amount of components within the product class. We implement
k € {1,2,3} profiles within our simulation model, which supports the flexible configuration of
the workload. In the first profile, we consider the initial utilization level uc, and provide the
same value over all components p of C;” as a default simulation parameter. This profile is
common in the industrial tools. In the second profile, we support the component-bounded
workload, which refers to the academic approaches. The third profile defines a uniform
distribution among the components of the same category depending upon the component’s

amount.

profile,
= profiles ;e uc > 1 (5.131)

profile,
¢, ={c'c?...CPLpEN, #C;=|Cil=p (5.132)
profile; = uc, =ucr =Ugz =+ = Ugp (5.133)

uCi = uci1
profile, = { Ugz == Ugp = 0 ,if select Cl-1 (5.134)
, Uc;

profile; = Uct = Ugz =+ = Uep = 7‘ (5.135)

Within the controller layer, we observe the power, temperature, and performance of each
component and store the results € during the simulation. Herein, we generate reports, display
graphs, and present the energy efficiency ratio in relation to the optimal server configuration.
The controller checks the workload and communication for compliance with the constraints
that we specify in the characterization layer. We monitor the utilization levels of the

203

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

components, for example, to ensure the defined relationships Rgg. If the customer selects a
profile, the simulation parameters are affected, which we have to adjust. We consider the
external constraints, such as @, 6;, the internal constraints v, such as Rgg, REY, and the
resulting restrictions, such as finin, fimax, towards our simulation constraints y. The process
and control layer enables the opportunity to perform multiple simulation runs by managing
parameters and constraints and by applying the results of our optimization algorithm. We
validate the aspect-based data considering the values in our database. In the case of the
processor performance, we make sure that the actual value is higher than the peak
performance measured in a synthetic benchmark. We define an uncertainty or confidence
level by a scalar value that specifies the trust relation in dependence on the underlying real
measurements, spreadsheets, empirical data, or simulation runs. The value is within the
interval [0,100], whereby a low value refers to an initial estimation and the highest value
presents a certified result. We check the correctness, consistency, and plausibility using the
internal class and database.

process and control layer

communication controller

4 workload monitoring

category 1 3 /s ’W—l distribution and storing
’
category 2 component m
category m \ component 2
— \ — G

\ s, ~

-
\ . S

\ calculation methods S
\ validation

\ Aj

rules
Ci

Figure 61: Process and control layer

The server system configuration and characterization layer deploys the hardware architecture,
generation, and related components. Herein, we consider the aspect-based models in MAS, as
a white-box, gray-box, or black-box approach®’ from a lower level to an upper level, but
relying on the individual utilization levels. We specify the corresponding linear and non-linear
behavior of every component, provide interfaces to include the academic approaches to the
instruction level, and extend our observations in the industrial practice of accurate results in
academia. We decouple each component model and define the behavior separately because
of its reusability for next-generation systems, which reduces the modeling effort. Our
hierarchical concept supports the extension of the components at various abstraction levels,
whereby we provide the category-specific interfaces. We specify the characteristics across

»2 Approach: based upon the level of details

204

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

multiple components and cover both inter- and intra-component communication in the
process and control layer, which enables optimization strategies across various layers within a
server system. The server system configuration and characterization define the conceptual,
contextual, and mathematical models, such as:

e The server system and its components

e The relations between the components

e The categories, classes, and characteristics

e The differential equations to calculate the aspects

e The generic configuration tree

e The relations between the aspects

e The customization parameter of the simulation model

5.3 Server System Externals EX = {a,n,W,§, T, }

We formally define the server system itself and its components, as shown in the following
equation. In this section, we concentrate upon the externals EX, which specifies the physical
environment of the entire server system.

ST,
[EX][MASC,RAC,RBE >[PO PE TH]
0

——

Oc (5.136)
cs,, C;

CL,
CH,
L 5

We summarize the usage and the simulation context in EX, which considers the environmental
conditions &, the constraints 1, and the application software SW. We differentiate the
application software by a workload W, the utilization time T,,, and a set of software-based
settings &, as shown in Equation (5.137).

ST,
EX [MASC,RAC,RBE -[PO PE TH]
1

———

Oc
CS;, C;
CcL,
CH,
B

(l
n (5.137)
w
3

,___|
I———l

Ty

205

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Table 31 lists the symbols and definitions of the server system externals section.

Table 31: Nomenclature — server system externals (EX)

Nomenclature Meaning Nomenclature = Meaning
A Aspect i,jnmk,l Index
c Component Ny Any natural number
N, =1{0,1,2,3,...}
CS System-board R Any positive real
category i number
(= components)
EX Externals a,d Environment
conditions
SY System n External constraints
characterization,
model
FS Full-system '3 Software settings
simulation and
optimization
MES Mapping Uy, = Ucs;, Utilization level of
between ﬁtk component category
externals and m
system time step t
sw Application Wi Workload for
software W, Wy, component m at a
time ¢,
ty Time step k WP, Workload profile k
Tr Time amplifier for T Time period:
workload T, T,,T, simulation, utilization,
workload
e Processor case 180 P [[P Performance counters
temperature of memory bus
transactions,
instructions, clock
cycles, last-level
cache references
Ko, K{,K;, K3, Coefficients
K4 K5, K¢

206

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

The external domain does not consider the energy supply system itself, because the server
location sets the supply voltage a,,;:2°3. We address the environmental conditions a =
{a;,ay, ..., ay}. The customer cannot change the thermal conditions™ ey, but can limit the
exhaust system temperature®®. Therefore, our concept considers exterior constraints
1 = {n1., N2, -, Nk}, Which are parameters of the management and optimization strategies.
Another major aspect of the external domain is the application software (SW) which the
server executes. The workload W stimulates the system, whereby we consider the software-
related settings & and the utilization time T;,. The external domain is a set of the software
characteristics, the environmental characteristics, and the exterior constraints, see Equation
(5.139) and Figure 62.

a= {avoltr Atemps aothers} ={ay,az, ...}, €Ea (5.138)
EX ={a,n,SW}, SW={W,§,T,} > EX ={a,n,W,¢T,} (5.139)
EX
sw
@ w
Ty
1 $

Figure 62: Externals

State-of-the-art, full-system approaches [Bel 2000, BJ 2003, FWB 2007, CBB et al. 2010, KJC et
al. 2014] do not consider customer changes or disturbances during the simulation. In addition,
state-of-the-art, full-system power models have in common that these approaches are not
aware of external constraints, such as thermal conditions or limits provided by the customer.

5.3.1 Environment Characterization and External Constraints {«, n}

The approaches in [Bel 2000, JM 2001, MPL 2009] trace application software to optimize the
system under specific conditions, but do not concentrate on the physical environment or their
external influences. In [BKW et al. 2003, WB 2004, MB 2006], the thermal algorithm considers
the ambient temperature as an offset. The algorithm in [RL 2007] uses the system
temperature, but does not consider the fan characteristics and thermal development. We
consider the external temperature in our approach, which is relevant to the fan power and

>3 Supply voltage: not modifiable, PSU efficiency differs at 220V in comparison to 120V

Thermal conditions: systems inlet / ambient temperature
Exhaust temperature: maximal acceptable temperature because of a limited air-conditioning system
(HVAC)

254
255

207

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

system temperature. The inlet temperature warms the components because the fans suck air
from the chassis front inside the system. An input parameter of the simulation model is the
ambient temperature @;.mp, Which we differentiate into a global system temperature Atemp gy

and into the local temperatures Atemp - of each component (;.
i

Atemp = {atempsy; Atemp ¢’ atempcz: o Xtemp Cm} » Xtemp Ci Ea (5.140)

The vendor specifies each component by a thermal operating condition, which ensures the full
functionality.

_ {upper critical limit (5.141)

"~ |upper warning

If the component reaches an upper limit, the component shuts down to ensure reliability.
Otherwise, the component might be damaged as described in Section 3.6. For each component
we consider two upper thresholds, defined as a critical limit and a warning limit**°. Besides the
component temperature, the vendor specifies the system temperature.

1 = {Npower: Neemps -+ Nothers} = (172, -, Micd M €M (5.142)
Tpower = = {ur ey ;Z)f;‘;flfq limit (5.143)
Ntemperature = N2 = {355::;2::;%9 limit (5.144)
N = {nksyJ Mkc, Mk, ---»Ukcm}»nkci €En (5.145)

A server system usually works in a temperature range from 20°C up to 40°C. We address the
upper system temperature as a critical temperature at 40°C. In [Lin 2009] the authors state
that a resource has an upper thermal limit of +90°C to work as designed, otherwise the device
error-rate increases significantly. We differentiate in global system limits Nk sy @nd local

component limits 7, .. for each external constraint n,. We create a two-dimensional array,
L

which includes the external constraint 1, in the first dimension, and the system components
C; in the second dimension. The thermal design power (TDP) commonly specifies the
processors’ upper critical power limit, whereby the upper warning limit is a range between 80
or 90 percent of the critical power.

_(TDP

Tpower o = {[0.8 «TDP ...0.9 « TDP] (5.146)

28 Limits: A liquid cooling approach requires the lower limits (critical and warning) to ensure working

conditions.

208

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

The thermal thresholds result from the power consumption, the system airflow, and an
adjustment of the component. We assume that the upper critical temperature max(T,qs.) is
linearly proportional to the ratio between Py, and Teqee. The curve gradient my depends
upon the component material.

ntemppmc = f(mg: npowerpmc: Tease) (5.147)

Figure 63 shows the processor’s upper critical temperature max(T,4se), which directly derives
from the TDP value.

temperature
max(Tcase)
Trontrol Lo oo oo

!

TC(ISE |
[
[
s power

Prin TDP

Figure 63: Thermal profile diagram [Int 2014]

Therefore, for each server system the vendor specifies a critical or warning temperature.
Equation (5.148) shows the upper thermal and power limits of an Intel Xeon processor E5-
2603v2*’. The memory vendor defines the commercial temperature in the spreadsheet of
each module.

8ow 3 {90 C (5.148)

npowerpmc = { 70W 'ntemppmc ~ 170°C
In [BHS 1998], the environment includes the system workload W without any limits. We
extend the approach by using the external constraints 7 and the ambient temperature a.

5.3.2 Software Characterization {W, ¢, T, }

Our concept supports various application software considering diverse designs and
architectures independent of the hardware configuration. We characterize the software by a
workload model, which represents processes or refers to functions. The authors of [BHS 1998]
explain that the precise accesses to resources are unknown in the early design stage of the
system. A specification at a highly detailed access level results in a too slow simulation.
Therefore, the authors define the external environment as requests and the components as
resources. We abstract the software variations and their heterogeneous tasks into utilization
levels, which are unknown at this abstraction level. We cover high-intensity and low-intensity
workload phases in our workload model because the server workload varies over the time

7 processor power and thermal limits (profile): defined in a thermal design guideline [Int 2014]

209

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

from seconds to days, see Figure 27. Our workload model has to support the software
variability on a flexible timescale that considers synthetic workloads, such as benchmarks, to
emulate various server usages. More specifically, we follow the concept of [RL 2007], which
monitors diverse application software to include the utilization-based traces as simulator
stimuli. The synthetic workload provides a simple comparison between the simulation and the
real system, which is reproducible at any time [IM 2003, Riv 2008, BGM et al. 2010]. Common
full-system simulators [RHW et al. 1995, Her 1998, GSI et al. 2002, MCE et al. 2002, CDS 2003,
HSW et al. 2004, RL 2007, Lan 2007] characterize particular software as instruction sets or
trace the utilization levels from artificial benchmarks. The authors of [YSY et al. 2011, KJC et al.
2014] describe the workload using specific instructions, operations, or cycle-accurate tracings
of various tasks. The instruction-based approach in [BC 2010] is adequate in its accuracy, but
the approach depends upon the explicit hardware and its architecture. The authors of [Che
2006] conceive an instruction-based processor model, whereby the memory, cache, and
peripherals rely upon the system accesses. We abstract the specific instructions, accesses, and
operations by a flexible workload considering diverse utilization levels, which encapsulate the
software requests from the hardware architecture to reduce the simulation complexity. As a
result, we provide a ratio between the floating-point or integer instructions. We differentiate
the processor operations because of their diverse performance results and power
consumptions. We specify the workload independent of the operating system, but with regard
to the standardized synthetic benchmarks, which utilize the components at various levels. We
define workload scenarios to an abstract of an explicit usage, with the premise of the
scalability and flexibility.

Moreover, we address the worst-case workload, which the industrial tools of Dell, Fujitsu, HP,
and IBM commercial use. In addition, we offer customer-specific use case scenarios, which can
be real application traces or an estimated workload behavior. The realistic workloads support
the power and over-estimation reduction because of the significant difference between worst-
case assumption and authentic behavior. We define weight coefficients for high-intensive,
medium-intensive, or low-intensive utilization levels to integrate diverse application software,
and their topology, hierarchy, generation, or architecture.

At first, we gather our resources, which rely upon various request types. As a result, we classify
the workloads into resource-bounded utilization levels. Secondly, we develop heterogeneous
workload scenarios, which cover the use cases of the industrial tool as well as the academic
approaches. Herein, we consider the complex system interactions, which result in any mutual
influence of resource utilization. In the next step, we consider the software-based setting,
which depends upon the explicit workload or describes influences that do not rely upon the
software execution.

210

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

5.3.2.1 Resource Clustering

The purpose of the system can change during the life cycle. In a virtualized environment, the
data center manager schedules the services and tasks just in time, finally scheduling the
requests in any manner, because of fluctuating customer demands. We cannot predict the
data center scheduling or resource planning techniques in an early design stage. Data center
resource planning tools autonomously shift virtual machines from one server to another. For
that reason, state-of-the-art, full-system simulators decouple the workload from the physical
domain using utilization levels instead of instructions or transactions. The vendors characterize
the system independently of how and for what purpose the system is used.

The abstract utilization-based scenarios in [Riv 2008, RRK 2008] consider the explicit hardware,
whereby the software profiles are based upon the performance counters P,,, P;, P., P,, which
correspond to the number of memory bus transactions, the number of instructions retired, the
unhalted clock cycles, and the number of last-level cache references. The authors use the
coefficients K; to quantify the processor or disk utilization, including the memory-related
instructions and transitions. The resource-specific addition or subtraction results from the
exact workload scenario. A processor-bounded workload includes less disk utilization in
comparison to a memory-bounded workload.

1
P=KO$K1*{ Uproc }$K2* Udisk

max(uproc) max(Ugisk)
T Pm T Py T Pc 0 Py
+K3 * max(Pp,) K4 * max(P;) KS * max(P.) K6 * max(Py) (5149)

Performance counters are specific to the architecture, generation, and family. Therefore, we
avoid them to conceive a generic model. The full-system simulation in [RL 2007] uses resource-
bounded utilization levels without performance counters. The authors concentrate upon
processor-bounded workloads, which is state-of-the-art in the industrial tools. The authors of
[GFN et al. 2006] define the common resources as a set of components C.

C ={Cy,Cy...Cp}, C; €C (5.150)

The authors of [ERK 2006] utilize especially the resources processor, memory, disk, and
network, as shown in Table 32. The authors of [ERK 2006, Riv 2008] define resource-bounded
utilization levels.

Table 32: Definition C;

Terms C; Component
C, =proc processor
C, =mem memory
C3; =dis disk

C, =net network

211

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

In [GFN et al. 2006], every component is a set of sub-components. In general, we group the
resources into the categories CS to support flexible utilization types. Each category CS;
consists of a set of components C; € C to cover heterogeneous application software or
benchmark behavior, which utilizes various components.

S ={CS;,CS,, ...,CSy},CS; € CS (5.151)
CS; = {C1,Cy, ..., Cu}, C; € CS; (5.152)

We restrict ourselves to the categories processor, memory, input/output, fan, and others
(CS = {proc, mem, io, fan, oth}) to cover category-bounded workload types. The industrial
tools address processor-bounded workloads. The authors of [RRK 2008] differentiate into
processor-intensive and non-processor-intensive workloads. Inside [YP 2009], the authors
distinguish into computational-bounded and memory-bounded workloads. The authors of [BC
2010] classify the workloads into processor-bounded and input/output-bounded processes.
We differentiate non processor-intensive workloads into memory-bounded and I/0-bounded
ones to cover a realistic workload and have a workload suitable for synthetic benchmarks.

Table 33: Definition CS;

Terms CS; Categories
CS, = proc processor
CS, = mem memory

CS; =io input/output
CSy=fan fan

CSs = oth other

If we consider the approach of [ERK 2006], then the category CS; considers the components
C; = disk and C, = network.

CS3 = {Cg, C4,} = {diS, net} (5.153)

In our concept, we simplify the category into the related components CS; = C; and CS, = C,
for our exact server configuration. We do not cover the sub-components of CS3, because we
abstract from the network communication to reduce the complexity. We consider the
utilization of CS, components in the thermal model. The category CSs primarily covers the
mounted system-board components, which build the base power. We categorize our
utilization levels for each defined category CS; € CS, whereby we do not cover the fans.

Ucs = {uproc: Umems Uio» uoth} = {u651: UCsyr s uCSm} (5.154)

As a restriction, our utilization-based approach is not able to cover memory allocation
techniques or access patterns on the physical domain, as shown in [YVK et al. 2000, Bel 2001,
SBM 2009, HCE et al. 2011, RAK et al. 2013, LSQ et al. 2014].

212

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

5.3.2.2 Workload Scenarios and Profiles {W,T,}

We characterize application software concerning the power, thermal, and performance
characteristics. We use the category-specific utilization levels u.g to create a workload W,
which stimulates the simulation model. A workload scenario consists of diverse profiles that
consider various utilization levels. We enhance the approach of [ERK 2006, BJ 2007, Riv 2008]
considering customer-specific scenarios in our profiles. The workload is configurable by the
customer on the basis of the category-specific utilization levels at a time resolution of a
minimum of one second. Our aim is to achieve an average, minimum, or maximum utilization
of the components to create a realistic image of application software. We can balance the
utilization levels to present the workload variations. The same approach is suitable to emulate
synthetic benchmarks.

The industrial tools concentrate upon processor-bounded ucg = {Uproc} Workloads. Academic
approaches use additionally memory-bounded ucs = {Unem} Workloads because of the
synthetic benchmark-based evaluation. We do not concentrate upon 1/0-bounded workload
Ucs = {Ujo} as done in [BC 2010], but consider the corresponding utilization levels in our
workload definition. We consider the processor operation type (floating-point, integer) and
memory access type (read, write) but do not involve the exact instructions. We assume
category-specific details in the software settings £. We generalize the concept of [Riv 2008],
the flexible configuration of categories, and related utilization levels, which we map to the
specific components in dependence on their characteristics. We merge the diverse category-
bounded utilization types to consider and reflect an image of the customer-specific workload
scenarios. We cover a steady workload to reproduce the industrial benchmarks and consider
changing workloads to support academic approaches.

According to [BHS 1998], we characterize the application software as a series of external
requests over time. We use a time resolution of AT =t, — t; = 1s between two utilization
levels because a smaller time scale creates more computational effort and results in a long
simulation time. The processor changes the frequency within a microsecond or millisecond, for
instance. We have to calculate the aspect A; at every time step t;, which increases the
computation time. The system sensors, especially the temperature sensors, work within
seconds because of the bus latency and bandwidth. In addition, the component and thermal
inertia guide at a time schedule bigger than one second does. Our approach does not cover a
workload in a 24-hour or weekly time base, because of the resulting storage demands. We
assume a workload of a maximum of one hour. We specify for each point in time t; the
category-specific utilization levels ucg, in ﬁtk. We conclude the utilization levels ﬁtk for a time
T, = Yt t; to define a time-annotated workload scenario Wr,. We generalize the workload
Wy, into a two-dimensional array W, whereby the first dimension is the time T, and the

second dimension is the specific category-based utilization levels.

213

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

—

Utk = {qul, uCSZ, ...,ucsm} at tk' tk (S Tu (5155)

WTu = (ﬁt1’ ﬁtz' T ﬁtk) (5.156)

U1g Uz . Utk
Urq1 Upp " U A
W=y = 22"22.. 72k |, imecCS; LkeT, (5.157)
UniUmz Umk
u u u
procy “procy, Hprocy,
| Umem¢, Umemy, - Umemy, |
)

Uiog, Uiog, 1 Uiog,
Uothy, Uothy, Uothy,

W= (wy) = imecCs; LkeT, (5.158)

A scenario WTu can include multiple workload profiles WP = {WPTl, WPr,, ..., WPTk} ,
whereby T,, = Y¥T}.. We divide a time T; into [steps T; = Yp t;.

ugo Y1/, Uy
oo
wpy, = 120202 e cs; ke, (5.159)

UmolUmk 1y Umai

We define full utilization of a component by urs = 100% and define the component idle state
as the minimal utilization level ucs = 0%. The utilization levels define the component usage in

Ucs:
relation to its maximal available physical working capacity — A utilization level is the
max(ucs.)
cs;

percentage of time the component spends doing work in contrast to being idle. The workload
can completely utilize single or multiple components up to 100%. A full-system utilization has
at least one utilization level ucg, at 100%, which we define as a €S;-bounded workload. We

support various profiles, such as processor-bounded workloads, which are configurable by the
customer and related to the category-specific profiles.

The customer specifies the workload profile WPr, atatimeT,, of any Ucs,- Our scenario might
have a longer utilization time T,, in comparison to T,,. We assume that the utilization values
ﬁTu are constant in the interval betweenT,, up toT,. Moreover, our scenario Wr might
consist of various benchmarks, which have a smaller time period T,, in comparison to the
required simulated time Tg. It is vital that we close the gap between T, and T;,. We suggest two
utilization-based approaches; at first, we reuse the last utilization values l7Tu and consider
steady values up to T;. Second, the utilization values from the first-time interval recursively fill
the gap. Alternatively, the customer can define and amplify each utilization time step t;, using
a time factor T to reduce the gap between T,, and T5. We equidistantly expand the time of the
previous utilization levels.

214

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

We conceive a time-based workload that generates the simulation stimuli considering various
category-specific utilization levels of diverse application software or benchmarks. Our
utilization generator, see Figure 64, supports steady and continuous workload scenarios. We
expand the industrial steady-state scenarios by extending novel dynamic profiles, whereby we
flexibly annotate timing for successive scenarios. We emulate a real customer-specific
workload, which we simulate for the server configuration.

In contrast, our workload does not consider the fine-grained transactions of each component.
Our concept neglects the impact of diverse batch sizes, transaction mixes, threads, or queue
categories”®, which the authors in [KGS 2008] observe. We propose a flexible workload model
considering the category-specific utilization levels, which we restrict to cover the real behavior
of diverse benchmarks or application software.

waorkload model

l utilization

utilization levels

processor-bounded

memory-bounded

generator

behavior model

configuration
software characteristics
[time, utilization levels]

[settings. architecture]
input/output-bounded
scenario
[steady, continuously]
merged [customer, application]
[industrial, academic]

workload profile

workload type Y [resource-bounded]

(benchmarks) \

Figure 64: Workload model contribution

5.3.2.3 Software-based Influences and Settings §
In the early design stages, we do not know about the implicit read or write accesses of a

memory-intensive workload. We cannot predict the processor floating-point or integer
instructions for novel systems.

The authors in [Fuj 2011] state that using a Windows operating system (OS) consumes
approximately twenty percent less than the same system using a Linux OS when executing the
identical SPECpower benchmark. Both OS are not comparable, because of their architecture or
background threads. The Microsoft Windows OS provides a complete ACPI support, which
enables all processor states. In contrast, some Linux OS versions cannot control the processor
in the same detailed manner. The customer chooses any operating system”® for the server
system. In the work of [RHW et al. 1995, Her 1998, Lan 2007] the models are exact OS images

258 . . .
Queue categories: single vs. multiple

Operating systems: popular server OS are Red Hat Enterprise Linux (RHEL), SUSE Linux Enterprise
Server (SLES), and Windows Server, for instance

259

215

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

including explicit operations to support the resource optimization. The authors of [TRJ 2005]
analyze the OS to optimize the power consumption on the basis of executed instructions and
interactions. We cannot apply these approaches for a generic model, as each OS and system
generation handles the tasks differently because of the system architecture. The complexity,
the amount of possible OS, and the measurements lead to extra efforts. Therefore, we
abstract the OS and exclude precise OS models, which require a millisecond resolution. We
decide to include the OS type as a global external simulation setting &;, which is independent
of the internal architecture and instructions. We do not further investigate on the explicit OS-
dependent power consumption, but consider the fact obtained from the empirical analyses of
Fujitsu [Fuj 2011] that a Microsoft Windows OS consumes less power than a similar Linux
operating system because of the extensive ACPI support that highly efficient handle the
different power states. We consider an OS-specific correction factor in our total power
calculation, which the customer specifies as an empirical and static simulation parameter.

The BIOS/UEFI settings influence the energy efficiency of the server system [KGS 2008, Fuiji
2010]. The authors in [EM 2010] present that a Turbo Mode “..., will evaluate the utilization of
the CPU and will not engage unless additional performance has been requested by the OS for a
period of 2 seconds.” This power optimized processor setting is significant for workloads with a
dynamic frequency scaling. The customer can only change the BIOS/UEFI settings when the
server system is off. For instance, the customer configures the virtualization support, which
enables additional processor states. As stated in Section 3, academic and industrial approaches
do not cover such details, because the authors assume and analyze fixed settings. We consider
the hardware-based BIOS/UEFI settings &, as a software configuration, which enables a rapid
assessment of the energy efficiency effect. Alternatively, we can use the settings as a static
input simulation parameter, which needs multiple simulation runs. The same demand is
observable for the firmware settings. The customer can change the power and thermal limits
Elci in the firmware, which directly influences the power management techniques. We

characterize the software-based settings as a two-dimensional array, whereby the first
dimension specifies the kind [and the second dimension defines the related component C;.

f = {Elcli EZCZ’ '"lfkcm}lflci € f (5160)

$1 =3$o0s, $2 =S$pros/uery §3 = §rwy $a = Ssw (5.161)

Figure 65 shows the environmental conditions, external constraints, and the software, which
includes the workload model and their corresponding settings.

216

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

server system
externals

software

environment conditions application software design and architecture

ambient temperature workload model
supply voltage W = (wy) Ty,
a

settings

external constraints

operating system

,i]mer TTI[st BIOS/UEFI
thermal limits firmware

n software settings

¢

Figure 65: Server system externals

We encapsulate the externals from the explicit system configuration and use the software
application space, defined as workload W, to stimulate the server system considering the
software settings £, the environmental conditions a, and the external constraints n. It
altogether builds the externals EX, see Equation (5.162). We map the externals to the
concrete system platform by MEX in the process and control layer. We concretely scale the
utilization levels to the system components that rely upon their quantity and characteristics.
For instance, the customer specifies a processor utilization level at 100 percent. We configure
the 100 percent for all processors within the system. We have to adapt the utilization level
when we change the processor characteristics or disable a processor. The authors of [SM 2001]
map the software to the hardware platform using the network communication. The externals,
especially the application software, define the ordered sequence of actions which the
simulation has to perform considering the constraints @ and 7.

EX ={a,n W, T} (5.162)

EX
Mgy

SY

Figure 66: Externals and system

The externals define the environmental conditions, external simulation constraints,
customization parameter of the simulation model, and the customer-specific workload
scenario.

217

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

5.4 Server System Optimization FS = {EX, SY}

We create the simulation model on the basis of the operational models in Section 5.2 to find a

set of solutions (Pareto front) across the flexible workload scenarios, see Section 5.3. The

simulation run considers a customer-specific, exact workload scenario, and a server system

configuration. We do not dedicate the simulation to an explicit server system or particular
operating system, as done in [RHW et al. 1995, GSI et al. 2002, HSW et al. 2004]. Our
simulation framework supports the variance of server systems and generations on the basis of

a flexible configuration and characterization. Our aim is to find at least one optimal solution

concerning an energy efficiency ratio. We consider a set of parameters — decision variables —

forming the design space of our optimization strategy. The nomenclature in Table 34 and Table

35 briefly list the symbols of this section.

Table 34: Nomenclature — server system simulation (I)

Nomenclature Meaning Nomenclature = Meaning
A Aspect i,jnmk,l Index
c Component Ny Any natural number
N, =1{0,1,2,3,...}
CcS System-board a, Environment conditions
category
(= components)
CL Classes 8,6 Communication
SY System % Management techniques
FS Full-system '3 Software-based settings
simulation and
optimization
AC Architecture & Simulation results
cc Connectors n External constraints
EE, EEp sk Energy efficiency v Internal constraints
PO Power X Simulation constraints
PE Performance o Abort criterion
TH Thermal X, X Decision variable,
modified
proc Processor Ly First level of a certain
tree
mem Memory (7] Configuration tree

Or,0.,0g (HW,SW)

O15,0cs released, customer-
specific, system-
compatible
technical specification,
characteristics

218

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Table 35: Nomenclature — server system simulation (II)

Nomenclature Meaning Nomenclature Meaning
io Input/output 6., ,0. Customer-specific
Olc(x) configuration at

iteration [, time step k,
and decision variable x

oth Others fmin [max Minimal and maximal
frequency

MAS Aspect-based U, = Ucs;, Utilization level of
models per iZtk component category m
component time step ty

Al'c. Element in matrix Wy Workload for

' MAS; wW,Wr, component i at a time ¢y
FAic- Functional ty Time steps k
! description of

A]Cl

CH,CHrg Characteristics: T Time period (timespan)

CH3L:, CH2Y. technical r,T1,,T, simulation, utilization,
specification, workload

static, dynamic
configuration

WFi!, Weight
WFCL;S coefficients:

Ajc,’ component i,
WF“EEG: aspect j, and
WF?I}?/G their

characteristics,
class, static,
dynamic

The constituents of our simulation model are simulation, results, and optimization strategy,
see Figure 67. Simulation includes the computational cycles to specify the energy efficiency
ratio under various conditions, whereby the set of decision variables result from the
optimization strategy block. We analyze the energy efficiency, decide about the management
techniques, and alter the configuration or characteristics as part of our optimization strategy.
We observe the power, temperature, and performance of each component as well as of the
entire server system. We trace the actual decision variables, category-specific utilization levels,
and the energy efficiency ratio, which the results block presents graphically. The externals
specify the environmental working conditions of the server system. We consider all simulation
inputs and parameters as constant during the simulation process, e.g., the environmental
conditions «, external constraints7, and software settings £&. The simulation constraints y
define the thermal limits or the maximal utilization level of the components at the same time.

219

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

adaption

oplimization simulation
strategy FS
FS

results
FS

Figure 67: Server system simulation constituents

We concentrate upon an individual workload scenario and an explicit customer-specific server
configuration 8. during a simulation run. In our prototype implementation, we limit the
hardware configuration towards rack-based and tower-based server systems because we want
to reduce the degree of freedom of the simulation model by specifying the actual system
architecture. We have to consider the specific slots to mount several devices, which might
share the input-output devices, or especially the power supply units when we support blade
servers, see Section 2.4.1. We predefine the server system architecture AC, communication &,
and connectors CC in our simulation manually. Our operational models are based on sensor’®
results gained from the empirical analysis of the real system. The latency and bandwidth of the
sensors restrict the minimal sample time, which we specify on a 1-second basis. In our
prototype implementation, we restrict the time steps (t,4+; — ti) to last at least one second
because we do not consider a cycle accurate or instruction set simulation that would require a
higher resolution [Her 1998, MCE et al. 2002, CDS 2003, CDS 2007]. In our simulation
framework, a smaller sample time does not provide more details when we specify time-
discrete and value-discrete stimuli. The sample time should be adequate to ensure the balance
between the computation time, data size (sample time), and accuracy. If the customer
specifies the time as hours, we adjust our sample time considering the Nyquist-Shannon
theorem, see Section 3.2. The workload scenario WTu builds the continuous stimuli of our
simulation, which reproduces the OS-independent, realistic observations, or assumptions of
the customer-specific applications. The customer specifies for each point of time t; the
category-specific utilization levels ucg, in l_ftk for a timespan T, = Y} t, which has (I — 1)
discrete steps. The time-based vector of the utilization levels l_ftk provides discrete values,
which we separately consider at each time step t;, € T,,. We optimize the server system over

the entire utilization time T, which is a Iong-term261 aim.

260
Sensors: power and temperature sensors

261 . .
Long-term: time horizon of hours, days, weeks, or years

220

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

In the pre-process of the server system optimization we define the set of decision variables on
the basis of the initial configuration 6., considering the workload conditions. We restrict the
set of configurations and characteristics, which may save energy in comparison to the original
configuration. We initialize the aspect-based calculation methods in MAS. and specify the
base energy efficiency EEg 455 assuming 8.. We prepare the calculation methods considering
the flexible range of values gained from the set of decision variables, which we update during
the optimization. After a step-based analysis of the energy efficiency ratios, we iteratively
decide on the alternation of further decision variables relying upon the best admissible local
solution and their potential improvement. We store the energy efficiency ratios in a
descending list and update them at each iteration, which is a rudimentary part of the
optimization strategy. In accordance with an alternation Hé(x), we modify the calculation
methods®®, estimate the energy efficiency EE (0t ﬁtk), and analyze the updated values on the
basis of the previous iteration.

The energy efficiency ratios and their related configurations are a sequence of local solutions

263
. In

because we optimize the server system at each point in time specified as short-term
principle, we finish our optimization process at a specific time step and advance the time
whenever we have considered all possible alternatives or combinations of the decision
variables at this time step. We apply a heuristic to speed up the optimization strategy. At the
end of our simulation, we consider the ranked lists in descending order sorted by their energy
efficiency ratios. We analyze the local solutions stored in the lists, considering all time steps in
T,, to find a long-term global optimum or a set of long-term optimal solutions. In the global
analysis, we study what solution dominates over the entire simulated time. Figure 68 and
Figure 69 show the workflow of the optimization process and simulation, which we outline in

the next sections.

%% Modification of calculation methods: change configuration-specific and characteristic-specific

coefficients and values
263 . . ol s . e .
Short-term: time horizon within microseconds, milliseconds, seconds, or minutes

221

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

? 0w

set of decision variables
x = {6, CHrs, CHEf, CHEYG Y

pre-process
{
initialization
MAS
Vi, €T, simulation loop
Oc
7”@
yes
modification calculation
MAS EE(0,Uy,)
3 optimization

strategy ;
‘ step — based analysis

further
alternation?

alternation
decision variables

0¢ (x)

[
[
[
[
[
[
[
[
no !
[
[
[
[
[
[
[
[

global analysis post-process

Figure 68: Workflow of the optimization process and simulation

! l 6c,EBgasg ! : J(O, EEpase l e, EEpase lef'EEEASE ' l 0Oc, EEpasg
1 RV @ S e YR @¢
| optimization H 1 optimization optimization | . optimization | f H optimization
] 5 S ; :

| Comsioncconyy__ Sateqy T Caimpl 0| SUGlegy lag,!io o SUGRQY lau [strategy T a7 strategy 1
: EE(,0D) L FEGeOD |, FEGHD) [— 1 EEGeedd) [— 1 FECHD i
i 1, H k-1 ! 3 . 1) H B
' EE(,08) : : EE(4-103) o EE(82) . EE (1s:98) . 1 EE(.07) :
: EEpase : EEpase : EEgase : EEpase : EEpase
¢ EE(,00) : : BE (405 | EE(L) i BE (100,01 ;] EE(,08) :
s IS [epuspupepupupepupups O IR S SAPRL S lossspupepupugt IS Lot RS
global analysis
ff, vector of category-specific @ iterative Elpase energy efficiency EE(0%) energy efficiency at {;
utilization levels at t; optimization at {; basis configuration 6, 2" iteration of configuration &

Figure 69: Graphical presentation of the optimization process and simulation

222

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

5.4.1 Pre-Process

Before the simulation starts, in the simulation pre-process we define the set of the decision
variables that form the design space of the optimization strategy. In the first pre-process step,
we restrict the generic configuration tree 0 to reduce the design space. The tree contains the
customer-specific configuration 8., which is a released configuration, especially for the
customer order process. In the design phase, we concentrate upon the system-compatible
configurations.

We consider the technical specification in 815 followed by the characteristics in 8.5, which we
distinguish among the classes and characteristics. We search the components C; of 8. by a
breadth-first search (BFS) algorithm at the level L; of the generic configuration tree, which
builds the root type of the technical specification tree. We consider at least one path of each
category in the generic configuration tree. We split up the trees regarding the categories for
parallel processing in our simulation model. We skip to the next level of 8 and search all
possible characteristics and configurations of 8.. We distinguish into the actual settings and
their alternatives. We reversely start a depth-first search (DFS) algorithm beginning in the
leaves to find the system-compatible hardware and copy the tree, wherein we remove the
incompatible configurations by their subtypes, as shown in Figure 70. In this example, the
actual memory configuration is SDRAM DIMM,DDR3,DDR3 — 1600, PC3 — 12800, which
exemplarily has the alternative configurations DDR3 — 1333,P(C3 — 10600 and DDR3 —
1866, PC3 — 14900. We always consider system-compatible hardware only, which we can
release to the customer. The server system specification restricts the hardware, which we can
assemble into the enclosure. The limitations in the technical specification tree reduce the
simulation time because of reduced complexity.

memory

type

‘ SDRAM DIMM H NVDIMM ‘

\ [

‘ DDR ‘ | DDR2 ‘ ‘ DDR3 | ‘ DDR4 ‘

JEDEC (speed)

‘ DDR3-800 H DDR3-1066 ‘H DDR3-1333 |H DDR3-1600 H| DDR3-1886 H‘ DDR3-2133 ‘

‘H PC3-10600 |H PC3-12800 H| PC3-14900 H‘ PC3-17000 ‘

‘ PC3-8400 ‘ | PC3-8500

Figure 70: System-compatible technical specification tree

223

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOQS)

Our aim in the next phase is to restrict the possible range of characteristics in 8.5, beyond
which we cannot adjust by our optimization strategy. An example is the frequency range
[fmin fmax], Which we cannot exceed during our optimization. We start the same techniques
in accordance to the technical specification tree and set the actual leaves as the root type of
each characteristic tree 8.5. Furthermore, we differentiate between the technical, static, and
dynamic characteristics, which refer to the respective classes. We sort the classes CL by the
corresponding tree, including the associated characteristics. Finally, we generate a copy of
considering the restrictions on the basis of the customer-specific configuration, as exemplarily
shown in Figure 71.

[. I . I I .
A ” DDR3-1333 |H DDR3-1600 |” DDR3-1866 ”
[|] I

[| [oo | [|

Figure 71: Memory tree

As part of the tree generations 615 and 8.5, we annotate the weight coefficients WFACJ.IZ of the

L

characteristics which we require in the utilization-based functions FAJC within the matrix
i

MAS;. We sum up all weight coefficients of one subdivision {CHrs, CHZE:, CHEY-} into the
class-specific weight coefficients.

224

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

CHrs _ CLts
Z WPA]'C. - WP:qjc.

i i

ST
Z WF:qC,HCFG — WFCLST —
Jc;:

A.
i Ic;

DY
Y WFI'qC‘HCFG — WFCLDY
JC;

A.
i]Ci

WFrg
WFgc

WFCEG

(5.163)

(5.164)

(5.165)

We generate a set of each subdivision in descending order of their weight coefficients and
distinguish between the diverse aspects in the energy efficiency. We analyze the characteristic
and classes that have the most impact upon the energy efficiency ratio and define the
execution sequence of the optimization strategy. Figure 72 graphically presents the first step
of the pre-process, which defines the process to set the decision variables.

!

reduction generic tree
O CE0, EO;C0

distinction in
1st: B¢, O, s
2nd: 075, Ocs
3rd:CL,CH

l

sort classes CL
including characteristics CH

distinction in
1st: O = CLpg = CHypg
2nd: Ops = Clys —» CHEE:
3rd: Ocs = Cles = CHER
4th: s = CLeg = CHERG
rest: 8 — CLys — CHrpg

|

annotation weight coef ficients

distinction in
1st: characteristics WF,%’:

2nd: classes WF,ffE
i

set of decision variables
x = {8¢, CHrs, CHE g, CHERG)

|

l

set of CHys

assorted descending
CHys

by WL

set of CHEE;
assorted descending

culY
by WF, ¢F¢
y Aje;

set of CHyrg
assorted descending

L.HST
by WF, 7cre
Y Aje;

|

distinction in EE
1st:TH
2nd: PO
3rd: PE

®

Figure 72: Pre-process — set of decision variables

225

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

In the second step of the pre-process, we initialize and execute the aspect-based calculation
methods in MAS.. The utilization levels build the base of the power, temperature, and
performance functions. We consider the utilization levels of the range between [0,100]% and
provide the base values of each aspect concerning the initial configuration 8,. The aspect-
based ranges have to be defined before the simulation loop starts to speed up the calculation
of the energy efficiency ratio in relation to the optimization strategy.

We define the power range of the processor, as described in Equation (5.79), and store the
results in lookup tables (LUT). We assume a linear relation between the utilization levels and
the range of power consumption values. We consider the frequency range, see Equation
(5.73), which we appropriately associate to the power range with a constant voltage. In
addition, we specify the particular component states, which rely upon the available p-states k.
The p-state is minimal when the utilization level is maximal, see Equation (5.168), which
provides the extreme values, as shown in Equations (5.166) and (5.167). The voltage-frequency
pair is specific to each p-state and defined by the configuration 6.

Uproc(100%) — p — state(100%) = 1 (5.166)

Uproc(0%) = p — state(0%) = k (5.167)
k_

p — state(Uproc) = [— F; * Uppoe + k] (5.168)

We define the power range of the memory module, as described in Equation (5.68),
considering the concept of [Mic 2007], see Equation (5.62). We group the major IDD states to
be considered into the idle state and the active state, which we further distinguish in the
refresh mode or read-to-write mode. We define the boundary between the idle and active
state by a utilization level at 20 percent®* because the memory refreshes the data within the
active state. We take the read-to-write ratio after reaching the 50 percent utilization level into
account.

5.4.2 Simulation Loop
The aspect-based ranges of the initial configuration 8. are the basis data of our energy

efficiency calculation. We specify at each discrete time t; the energy efficiency ratio”

EE (6}, l_ftk), whereby we assume that ¢, refers to a period [t, t;x41]. We synchronize the
simulation loop by a discrete time t;, which the customer specifies in the workload scenario.
We assume that the utilization levels are constant during our optimization process and
calculate the energy efficiency ratio EE (65, L_ftk) at each t;. A special simulation case is the
first optimization loop, wherein we calculate the energy efficiency ratio EEg 455 considering
the initial configuration 8, and the decision variables. We set the local optimum to EEg sg,

264 Boundary at 20 percent: vendor-specific rule of thumb

2% Ratio at t,: a performance-to-power ratio, but if At = 0 we assume the energy efficiency ratio

226

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

skip the step-based analysis, and start the alternation process. In the first loop at each ¢t;, we
restrict the design space of the decision variables in dependence on the workload. We
guarantee that we do not have a negative impact on the system performance so that the
allocated time is always long enough to finish the job, as shown in Equation (5.109), when we
%%® that do not fulfill the
requirements. We adjust the server configurations or characteristics by the discrete values

adjust the characteristics. We remove the characteristics of the tree

specified as alternative configuration Qé(x), whereby we analyze whether we have improved
the energy efficiency. We update the configuration of the previous optimization loop and start
the energy efficiency calculation. In the second optimization loop, we compare the actual
energy efficiency ratio with the EEp,gr and define the local optimum. We define the
alternation of the decision variables, our optimization strategy, and the step-based analysis in
Section 5.4.2.1. In principle, we iterate all possible decision variables of the design space,
which is our final abort criterion. In consequence, we consider all subtypes of 8.5 and Org,
which is a time-consuming process. We define a set of rules in our optimization strategy —
when to increment t, after finding at least one local optimum®®’. We repeat the procedure of
the remaining time and stop the simulation when we reach the end of the workload t;, = Tj,.
We provide a list of the best admissible solutions at each time t;. We assume that a long-term
efficient server configuration of the entire workload will save more energy than a locally
optimized system. In the post-process of our simulation, we analyze the total workload
scenario and sum up the time intervals of each sectional solution. At the end of our simulation,
we define the global optimal solution by the configuration Gé, which dominates by the largest
time. We do not consider the financial aspects, which the customer influences by the ordering
process. The fastest return on investment (ROI) will be an additional criterion.

5.4.2.1 Optimization Strategy

In the following section, we describe our optimization strategy, which specifies the procedure
to alter the decision variables. In the interests of clarity, we aggregate the software-based as
well as hardware-based configurations and characterizations in a configuration block. We
abstract the internal communications and present them as a process block. Our simulation
reacts upon the customer-specific workload scenario and considers the ambient temperature,
which together with the configuration block builds the main input parameters. The controller
observes the energy efficiency ratio, especially the power, temperature, and performance of
each component C; of the time-based utilization levels. Our optimization strategy specifies the
general procedure, which the controller takes into account. Figure 73 shows the simplified
schematic of the process and controller within the simulation model.

266 . e .
Remove characteristics: or generate a taboo list

%7 Local optimum: best admissible Qé considering the adjusted decision variables

227

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

i
system
process
‘ behavior ‘
performance [ops] >
power [W] >
thermal [C] >
>
[%] A H
|
|
T
controller }
Il 1> select, compare, decide
energy efficiency
temperature
power
performance

Figure 73: Simplified schematic of the system

Our aim is to derive the optimal component or system configuration during the design phase
or the order process. We manipulate the server system 6, within the system boundaries**® on
the basis of the results of the step-based energy efficiency analysis, which evaluates the energy
efficiency ratio. We choose the decision variables in the alternation strategy and compare the
optimization-based results. We define the abort criterion, which decides about additional
alternations. The controller selects the adequate management technique with respect to the
optimization strategy and the operational modus, which we further describe in the following

section.

(select, compare, decide w
(oplimization strategy w energy efficiency altemation
online temperature dynamic characteristic
offline power static characteristic
management technique performance technical specification (configuration)

Figure 74: Controller — select, compare, and decide

268 system boundaries: thermal limits 1 or hardware constraints

228

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

In principle, our optimization strategy is based upon two cascading phases, which we
differentiate into the short-term and long-term strategies. We guarantee in the short-term
strategy, called the primary phase (I), that our changes do not have any negative impact on
the system or component’s performance: i.e., we follow a purely greedy approach in the
interests of simplicity. We may escape from local minima of the greedy approach when we use
a metaheuristic algorithm. Kernighan-Lin, Simulated Annealing (SA), Evolutionary Algorithms
(EA), or Genetic Algorithms (GA) are iterative approaches that seek a global optimum; either
use an acceptable probability, or adjust the population®®. In our simulation framework to
reduce the risk of a local minimum, we do not specify an explicit algorithm.

We specify the primary phase as online’”° because we consider the short-term modifications
when the server system is working. Herein, we prepare the most probable values of the
decision variables to represent the reality, which form the input parameters of our
optimization under most realistic conditions. We adjust the dynamic characteristics CHZY;
considering the thermal-based and power-based management techniques. We do not
integrate our primary phase concept into a real server system, because we have to disable a
couple of features and change the firmware that may result in an unstable server system. The
internal system sensors limit the execution of our algorithm because of their latency and bus
bandwidth. The embedded controller does not provide sufficient performance and storage
capacity to execute our algorithm. Nevertheless, we assume an authentic and dynamic
behavior of the server system in the primary phase as the basis of our optimization.

When the server system executes a workload for hours or days, the short-term management
techniques are insignificant. We assume that an optimized static characteristic CH3r; or an
updated technical specification CHrg will save more energy in comparison to the short-term
optimization. As a contrast to the online phase, we specify the secondary phase (II) that is an
offline’”* optimization, whereby the changes have indirect influences on the primary phase.
We adjust the static characteristics or technical specifications, which the customer can
manipulate only after shutdown or reboot the server system. Figure 75 shows the primary and
secondary phases of our optimization strategy, which we outline in the following sections.

269 Adjusting the population: selection, exchange, mutation, or recombination (crossover)

Online: characteristic changes are possible during the runtime of the server system
Offline: server system is shut down

270
271

229

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

?]

control | control Il
(primary) (secondary)

no
static workload scenario?
characteristics

performance
technical (throttling)
specification

X

eS8

dynamic

characteristics

-

power

-
| L

< control flow g

use
leuse_

Figure 75: Optimization strategy phases

The authors in [FWB 2007] state that the proportional power consumption at all utilization
levels, beginning at the low-intensive up to the high-intensive phase, is the major indicator to
optimize the energy efficiency. Therefore, we concentrate upon the power optimization
considering uncommon-case working conditions, such as low-intensive utilization levels, which
the academic approaches neglect. Our aim is to decrease the power, meanwhile keeping the
performance constant at the same time. Alternatively, we decrease the performance
proportionally less than the power.

We specify the primary phase under the condition that the server system is active and
executes a workload. In the first step (I-I), we reduce the system temperature by enabling the
dynamic thermal management (DTM) techniques, which does not affect any system
performance up to when we exceed the damage temperature. The thermal control mechanism
is a core feature of every server system that the system designer specifies in the design phase.
The globally active mechanism monitors and controls the temperatures of the entire server
system independently from the OS or utilization levels. The thermal control autonomously
reacts upon an increasing temperature, which exceeds a predefined threshold and raises the
cooling airflow according to the fully functional level of the server system. In industrial
practice, the customer does not change the internal settings of the thermal control. A lower
system temperature will increase the fan power, which is negligible in comparison to the
necessary power of the HVAC system in the data center. We control the system and
component temperatures within the reliability and functional level, which should not exceed
the damage level. We react immediately when a component temperature reaches the critical
threshold but considers a time delay when the warning threshold is exceeded. We are aware
of the thermal limits to avoid the performance loss caused by the temperature. In both cases,
we enable the thermal control, as shown in Figure 76.

230

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

control -l thermal control
{primary)

temperature

temperature z
[critical j

temperature |
<

critical threshold

temperature
N fan speed control
warnin iti
] critical threshold temperature

fan speed control W (wmponer‘r{ thermal Uurrtruﬁ

T

temperature temperature
< >
warning threshold warning threshold
(71 open-loop control closed-loop control
thesmaljcontiol (linear fan algorithm) | (PID) ‘
(table-driven approach) ‘ ‘

Figure 76: Thermal control in the primary phase

In the thermal control, we decide whether the fan speed control (FSC) or the component
thermal control is an adequate strategy. In our primary phase, we neglect the component
thermal control, which influences the performance because of the external limitations. Inside
the fan speed control, we distinguish into the open-loop (linear fan algorithm, table-driven
approach) and the closed-loop (proportional integral derivative — PID) control. In our prototype
implementation, we consider the linear fan algorithm that does not require a continuous
control process to a target temperature, see Figure 60.

In the second step (I-11) of the primary phase, we reduce the power under the condition that
the performance is not affected, such as a longer execution time. We decrease the fan speed
to save power as long as the component temperatures are within the thermal limits to ensure
the functionality, as done in commercial systems. We optimize the power after the
temperature because of the management techniques that rely upon the 0OS. We reduce the
average and peak power of the components by their dynamic characteristics, such as the
voltage and frequency (DVFS), as autonomously done by every ACPl-based OS, either Windows
or Linux, for example. We can reduce the frequency without decreasing the performance
when the system is idle, which is independent of the specific OS. Consequently, we abstract
the OS in our model and include the corresponding strategies that present the realistic
behavior. Beneficially, the power consumption is less in comparison to the higher-frequency
states, which results in a better energy efficiency ratio. We consider the efficient component
states across the entire server system when we disable, power down, or set the sleep state of

231

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

the unused components, as done in [RL2007]. We assume that the server system follows the
DVFS and DTM strategies, which is a standard practice of the ACPl-based OS control. We
summarize the time-sensitive DTM and DVFS strategies in y, which optimize the worst-case
power consumption in a time horizon of seconds or minutes. We consider the global system
thermal management and the local power management technique at the same time, whereby
the fraction of the fan power is less in comparison to the component power. On the basis of
our analysis results, we change the management strategy to optimize the behavior within the
primary phase. The authors of [FWB 2007] state that a holistic approach is more efficient than
a successful local optimization of one component. We separately optimize each component
but are aware of negative impacts on the global system.

We assume that the thermal as well as power management techniques work as described and
consider them as the standard procedures in our simulation. If the approaches act differently
in certain circumstances, we may adjust our primary phase to represent the common usage
and behavior in a more realistic manner. We control the internal system temperature (4)
considering the ambient temperature in the dynamic thermal management and change the
dynamic component characteristics (B) considering the short-term strategies in our primary
phase, see Figure 77.

232

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

system

select, compare, decide

|
[configuration]

|
‘ ! e
1
} process
|
|
|
|
|
|
|
|
|
| [ops]
} >
T~
[w)
! >
|
|
|
| [C]
} thermal >
|
| Y
} |ﬂp>ﬂ’ 1
|
‘ !
| T
| controller
‘ y
| |
| |

|

|

energy efficien -~ change
utilization levels %l ‘D@u{\ legwy;eraturecy temperature (A)

power
performance

ambient temperature input
[ambtent tompertre oy *>§>

Figure 77: Primary optimization strategy

We move on to the secondary phase after finishing the adjustments of the primary phase. The
following steps of the secondary phase concentrate upon the long-term strategies, which
optimizes the server system in the early design phase. The most adjustments in the secondary
phase are applicable when the system is off, especially a couple of the software-based settings
&.In the first step (I1-1), we disable the features*”
in performance loss. The customer usually does not disable the hardware-based features, such

before the system starts that do not result

as the processor virtualization®’® support of the component, for instance. If the system is not in
a virtualized environment, the processor virtualization support is negligible and we disable this
feature to save energy. We adjust other BIOS/UEFI characteristics that are significant to the
server system energy efficiency ratio but constant over hours or days, particularly in a data
center. An example is the memory channel configuration, which defines the operating mode®”*

of the memory modules.

%72 Disable features: alternatively adjust power-relevant characteristics

Processor virtualization support: AMD-V or Intel VT-x
Operating mode: independent, sparing (a reserved spare rank avoids failures, such as correctable
errors), or mirroring (copy all data in an opposite channel to create redundancy)

273
274

233

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

We support the flexible adjustment of the hardware configurations, especially their static
characteristics CH2L., which the work of [RHW et al. 1995, Her 1998, GSI et al. 2002, MCE et
al. 2002, CDS 2003, HSW et al. 2004, RL 2007] does not cover.

In the second step (/I-11), we vary the technical specification CHrgs of the components which
become relevant in the order process of the server system. We can improve the energy
efficiency when we optimize the components concerning the specific demand. Our aim is to
avoid under-utilized components and improve the non-peak efficiency considering the low-
intensive workloads. The modern components execute the same workload in a more energy-
efficient manner, which consumes less energy by performing the identical workload or
provides more computation power (processing speed) with constant energy. In general, we
prefer the energy reduction when we vary the technical specification, because we concentrate
upon the actual performance demands and do not consider future demands. As part of our
heuristic, we replace the components themselves, such as substitute a fully buffered dual
inline memory module (FB-DIMM) by a registered module (RDIMM) which provides the same
throughput with less energy. Furthermore, we consider the vendor and hardware generations
when we alter or adjust the components to find the ideal server configuration. In this step, we
are aware of the present utilization levels to avoid the full utilization or under-utilized
components. Fewer chips on the module consume less energy, especially when the memory
module is under-utilized: e.g., two fully utilized memory modules may consume more energy
than twice the numbers under half of the utilization®”>. Consequently, we restrict or vary*’® the
memory capacity upwards or downwards in dependence on the workload scenario. We
assume a linear relation between the utilization levels and the total memory capacity.
Subsequently, we update the utilization levels (C) to be comparable between the diverse
hardware variations. Figure 78 shows the abstract configuration changes of the static
characteristics (D) and technical specification (E) in our secondary optimization strategy.

275 . . .
Memory energy: power consumption of the memory modules is non-linear

276 Vary the memory capacity: change capacity of a single module or the quantity of the modules

234

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based

Approach (MFSMOS)

utilization levels
: [%]

ambient temperature|[—_
['Cl

configuration
system
e o>
| X .
| [configuration] >
| v
|
|
: process
|
|
| I
|
: behavior
|
|
| v
I [ops]
: performance >
]
| W]
: power >
|
| 7
! |
! ["C]
: thermal >
|
| v
|
| mp}
|
|
|
| controller
\ \ 4
I >
:__ _ | change static characteristics (D) _ select, compare, decide
change technical specification (E)
o energy efficiency
L1 temperature
power
e change utilization levels (C)_ _ _ performance
> !

Figure 78: Secondary optimization strategy

235

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Table 36 summarizes the adjustments in the primary and secondary phases of our optimization
strategy.

Table 36: Adjustments in the primary and secondary phases

Primary Secondary
short-term, online strategy long-term, offline strategy
(D Dynamic characteristics | (IT) Configuration

CHgg (B)
(Ir-n DTM (A), component (Ir-n Static characteristics (D)

thermal management, CHg,ZG
fan speed control
(I—1I) DVFS (B) (11 —1I) Technical specification (E)
CHrg

(II = IIT) Performance (throttling) on
known workload scenario
(post-process)

In the previous section, we specify the cascading phases of our optimization strategy, which
we realize in the alternation of the decision variables, as shown in Figure 68. Before we start
the procedure, we iterative determine the energy efficiency ratio of the present server system
and start the step-based energy efficiency analysis. We compare the energy efficiency ratios
EFE and assume that the usefulness of our adjustments are represented by a scalar value of
each aspect and finally in the energy efficiency ratio. We analyze the energy efficiency ratios of
an iteration (1) and the previous one (I — 1) to specify the impact on the basis of our
adjustments between 0% and ,857, as shown in the upper half of Figure 79. We sort the
ratios {02, k02, ..., x05} at each ty in a list in descending order considering the improvement
on EEg,sg. In the first optimization loop, the list covers only the EEg,gp of ¢ as a local
optimum. A larger value of EE (,,62) shifts the position of EEg s in the list of the second-best

2”7 The first entry into the list is more energy-efficient than the remaining energy

solution
efficiency ratios having a greater index, respectively the smaller indexes than EEg 455 building

the set of improved solutions at ty.

7 position in the list: a larger index refers to the less optimal solution

236

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

® step — based
\L analysis
comparison

EE(,6¢) and EE(,07")

|

analyze adjustments

{decision variables) O EEGHD
| | EEGeR)
sort EE(,6¢) EEgase
assorted descending
by max(EE)
J/ RNy EE(kQ(,[‘)
sort proportion of C; in EE(kBé)
assorted descending G
d- . . 3 /’ CZ
Istinction in A
1st: TH ’
3rd:PE i

|

prioritization alternation
and selection of decision variables

v
®

Figure 79: Step-based energy efficiency analysis

The alternation of all characteristics and configurations is too expensive in terms of simulation
time and performance requirements. We require an adequate heuristic in the alternation
strategy to specify the priority and selection of the decision variables. In the first instance, we
specify the priority of the category in dependence on the workload scenario, which is
processor-bounded, memory-bounded, or I/O-bounded. If we cannot determine the related
category, we consider a default category that we assume as the highest-impact factor. If we
know the specific benchmark represented by the workload, we predefine the significant
category. We optimize the components that contribute to a lower amount by a lower priority
only if needed or if an extremely high level of optimization is intended. Afterwards, we analyze
the energy efficiency ratios related to the aspect-based sequence gained from the cascading
phase of the optimization strategy. We start with the prioritized components to find the
largest impact up to the lowest impact on each aspect A;, which specifies the sequence of
alternation, as abstractly shown in Figure 79.

As an example, we assume a processor-intensive workload that has the highest priority in our
alternation because it has the most power-based impact upon the energy efficiency. We
analyze the power consumptions of all categories and sort them by their values in descending

237

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

order. The workload may change during the time, which may lead to another sequence of
categories and components. We dynamically consider the categories by their flexible priority in
our optimization strategy. We specify the alternation of the decision variables in the next
section.

5.4.2.2 Alternation Strategy of the Primary and Secondary Phase

We alter the decision variables on the basis of the cascading phases of the optimization
strategy to provide the most probable presentation of the running server system, while
adjusting all dynamic characteristics. We optimize the server system in the secondary phase on
the basis of the changes in the primary phase, wherein we modify the static characteristics
which require a repetition of the adjustments concerning the dynamic characteristics. If we
adjust the static characteristic, such as the memory capacity, we respectively update the
utilization level, as described in the second step of the secondary optimization phase. We
modify the dynamic characteristic because of the changed conditions. In the next phase, we
optimize the technical specification, which requires the alternation of the dynamic and static
characteristics. In principle, we consider the hierarchical order of our configuration tree 8 and
use a bottom-up strategy to alter the decision variables beginning with the dynamic
characteristics up to the static configuration, as shown in Figure 80.

alternation

decision variables

1

Bé (x), W ¢ (x)
!

online
alternation of CH?}’C
in a descending order

calculation
EE(6¢, U,)

of fline
alternation of CHZL;
in a descending order

calculation | |
yes | EE(6fU,)

no

of fline
alternation of CHyg
in a descending order

L calculation
"5-'5'(9&,”:.,() ves

no

®

Figure 80: Alternation of decision variables considering the cascading phases

238

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

As an aspect of the technical adjustments, we differentiate between high-sophisticated
(enthusiast), midrange (standard), power-reduced, or performance-reduced components. A
high-end component, such as a processor, wastes more energy while being idle in comparison
to a midrange one, because of the larger base power. As one part of our strategy, we adjust
the component by selecting a more efficient version. In addition, we consider the diverse
vendors that support the same performance but consume less power because of their internal
specification. After defining the category-specific sequence, we successively analyze the
relevance of every characteristic ordered by their impacts, which is a dynamic process.

We have to consider any characteristics and configurations in the entire design space, whereby
we explore single decision variables or multiple combinations. We can guarantee to find the
best solution after completely traversing the configuration tree considering all possible
characteristics and configurations. We define a heuristic to avoid the disproportionate increase
in the alternation complexity and the corresponding simulation time, which reduces the design
space and provides flexible abort criteria. We specify the knowledge-based and vendor-specific
alternation rules that exclude irrelevant adjustments, such as insignificant modifications, and
define a preference for the decision variables to reduce the optimization effort as well as
speed up the procedure. Our aim is to prioritize the characteristics and configurations of each
component concerning their impact upon the energy efficiency ratio.

In our alternation strategy, we consider the separation of the aspects as well as components in
relation to the workload gained from the step-based analysis and priority sequence of the pre-

process. We apply the annotation of the weight coefficients WFACJ.'LC’ of each characteristic’’® in
i

each function FAjCl- at MAS. and use the descending list of the weight coefficients to
determine their impact on the total energy consumption, for instance. The highest weight
coefficient has the most impact on the calculation function, whereby we determine the
priority to the related characteristic concerning the list index. We restrict the optimization by
setting the abort criterion when the remaining characteristics have less influence than the
present ones. We assume a set of characteristics CH = {CH,,CH,, ..., CHy} and their

CH

corresponding weight coefficients WFA]_C of any aspect A;. Table 37 exemplarily presents

possible priorities to the characteristics and relative impacts on the range between zero and
one of the unspecific aspect.

278 Specification of the weight coefficients: see Figure 53 and Figure 54

239

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

Table 37: Prioritization characteristics by their weight coefficients

Priority ~ Weight coefficient Relative impacton A; Characteristic

WFff” of component C; CH,
JC;

Critical wE ™ 0.40 CH;
Iy

High WFAC_H1 0.35 CH,
Jc;

Medium WE, " 0.15 CH,
]Ci

Low WES 2 0.10 CH,
45

Weight coefficients: annotation, see Figure 53 and Figure 54

From this table, we would conclude to optimize the critical characteristic CH; that has the
most single impact by approximately 0.40 on the aspect 4;. The sum of the remaining weight

coefficients ZWPA?H’,lzlA,Z is larger than the weight coefficient of the critical
C:

1

characteristic CH;. Therefore, we consider the second largest (high) priority CH; in our
optimization strategy. We abort the alternation when the sum of the remaining weight
coefficients (relative impact) is smaller in comparison to the actual weight coefficient
determined by the priority list. In our example, the sum of the weight coefficients

» WEquHl ,1 = 4,2 is smaller than the weight coefficient of the characteristic CH;. We restrict
C:

4

the design space of each category on the basis of the impacts on the dynamic characteristics,
static characteristics, or technical specification. Accordingly, we dynamically annotate the
classes and characteristics of the tree in relation to the actual management technique on the
basis of the aspect. The abort criteria restrict the design space and in consequence we do not
consider all characteristics in the configuration tree. If the simulation time is uncritical, or we
require a higher accuracy, we will neglect the abort criteria and consider the remaining
characteristics.

We avoid superposition during our iterative process and select the decision variables in
dependence on their weight coefficients in the ranked list sorted by their impacts. When we

" in a system-compatible solution keé, we mean an adjustment

change one decision variable
of the value of the predefined range considering the thermal constraints, for instance. We
extend our approach with regard to the coupled characteristics, which influence each other.
We can also reduce the complexity of the design space when we alter only the decision
variables of .0} that are better than EEg s, but this may lead to ignore alternative optimal

solutions.

279 Change one decision variable: try to keep the remaining decision variables unchanged

240

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

5.4.3 Post-Process

At the end of each optimization loop at t;, our step-based analysis provides a ranked list in
descending order that specifies the set of optimal solutions when the present energy efficiency
is better than EEg45g. In the global analysis, we intuitively select the optimal solution Bé,
which dominates for the longest period of time. The optimal solution represents a rough
approximation, which does not fit if the energy efficiency has an exponentially high value for a
short time but an extremely low value for a long time. Consequently, the dominant energy
efficiency ratio would be very inefficient in such a situation. To be more precise, we optimize
the balance of the power and respective energy in the integrand of the time integral. We
consider the energy efficiency ratios and their aspect-based values, which we weight by their
corresponding time, and minimize the integral at T,. Herein, we provide a purely technical
optimal solution, but do not consider financial aspects like the fastest return on investment
(ROI), which the customer influences during the ordering process.

We can handle an additional optimization when we consider the complete workload scenario.
A high throughput of the component may proportionally increase the temperature and power
consumption of the entire time. We analyze the various benchmarks, their parameters, and
the global settings to optimize the components. Herein, we decide whether we can create
bottlenecks, which will be compensated by fewer utilization levels in the following time step.
As an additional step of the secondary optimization strategy (/I-111), but established in our
post-process, we restrict the performance, called throttling, and respectively the power
consumption in dependence on the complete workload scenario. We limit the maximal
utilization levels and avoid the full utilization level, which results in a reduced performance of
the remaining components because of additional waiting cycles. We restrict the read-write
bandwidth in the memory throttling technique®® that specifies the highest utilization levels to
tailor the traffic to the workload demand. Alternatively, we define the theoretical maximal
transfer rate to save energy because the modules do not reach their largest throughput. The
authors of [Bel 2000] investigate on the processor throttling strategies to keep the system in a
predefined power range, which limits the frequency but may exceed the interval while
executing the job. Their event-driven approach controls the component activities of each
thread-specific event. We are not able to adjust the events, because of the missing information
about the explicit hardware counters in the early design phase.

5.5 Summary

In our concept, we support the vendor and customer perspective to calculate the energy
efficiency of a server system. We consider a steady workload, as done in the commercial tools,
which we distinguish between the diverse component-bounded utilization levels. We specify
the utilization levels as profiles that form in close conjunction our workload scenario. The

280 Throttling restriction: limit the rate of accesses

241

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

scenarios create a realistic image of the application software in the externals. For the purposes
of the multi-aspect server simulation, we transform the steady workload to continuous values
to optimize the energy efficiency in the long-term (static configurations, technical
specification). As part of our optimization strategy, we consider the common approaches, such
as DVFS and DTM, to represent the short-term behavior (dynamic characteristics). We specify
the cascading primary (online) and secondary (offline) phases to alter the relevant
characteristics and configurations. In the configuration and characterization layer, we identify
the system components, characterize the models, and define the aspect-based functions to
calculate the energy efficiency. Herein, we consider the design implications, such as
spreadsheets, analysis results, or vendor-based measurements. We assume the relations
between the aspects of a single component and in the entire server system. We define the
rules and equations of the controller in the characterization activity, while the controller is
executed in the simulation activity. In our concept, we optimize a server system at each time
step when the utilization levels change. We analyze the actual results and decide on the
adequate management technique in the optimization strategy, according to the two
optimization phases. We analyze the impact of our changes concerning the energy-to-
performance ratio in comparison to the base energy efficiency of the initial server
configuration. The adjustments of the server configuration and characterization require an
additional calculation, which results in an iterative approach. We decide on our optimization
strategy whether no further alternation is possible or required. Afterwards, we consider the
subsequent part of the workload until the end of the simulated time. We select the globally
optimized server configuration and characteristic that dominates for the largest time. Figure
81 shows a brief overview of the basic constituents of our five-step concept.

242

Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based
Approach (MFSMOS)

externals

workload environment
r model conditions
|
|
|
|
|
| i
|
optimization | characterization
strategy :
i
altemation configuration management
and technique
characterization
models
analysis
3 simulation
contral 1 control 1I controller
(primary) (secondary)
L J workload monitoring
% distribution and storing
calculation
A
validation
rules
results

energy-efficiency ratio
power [energy
temperature

performance

Figure 81: Five-step concept including basis constituents

243

Design and Implementation of the Architecture

6 Design and Implementation of the Architecture

We develop the simulation framework to calculate the energy efficiency of a server system
with respect to a customer-specific workload on the basis of the concept described in the
previous section. We abstract unnecessary details as used in a couple of academic models. In
contrast to most of the commercial approaches, we extend the level of detail by certain
characteristics and explore them to power, temperature, as well as performance limits. We
consider fundamental restrictions and constraints on power, energy, performance, and
temperature under realistic assumptions. The aim of our optimization system is to provide
an optimized server system that operates in an energy-efficient corridor. For this purpose,
such values of the decision variables x = {8, CHys, CHEE;, CHRY.} are selected that maximize
the performance and minimize the power (energy).

281

We specify the simulation model in MATLAB
k282

and perform the continuous simulation using
Simulink®®*. Our simulation framework includes the data processing, which provides the
mathematical equations to calculate the multi-aspects of each component. We implement the
non-linear behavior, which reacts to the time-dependent utilization levels by numerical
integration of a system of ordinary differential equations (ODE). We apply numerical methods
provided by MATLAB to solve the equations. When we have to predict the power consumption
of a next-generation component, we use various interpolation methods. The customer
specifies the simulation input in discrete®® but not equidistant time steps, which results in
changes of the simulation state at discrete instants of time. On the other hand, Simulink steps
through each time interval T using a fixed sample time on a 1-second basis*®**. We include the
thermal development over time and thus we obtain a continuous-values simulation model,

including feedback loops.

We realize our concept in MATLAB/Simulink using the common Model-View-Controller (MVC)
approach, which is a three-layer design pattern to separate the major functionality. A change
of any layer does not necessarily affect the remaining ones. This facilitates maintainability. We
encapsulate the processing and storage activities to ensure integrity and consistency among
the data. Our text-based and loosely coupled design provides a high level of flexibility and
scalability for implementing further server generations considering dynamic structures and
customizable weight coefficients. A designer or customer can easily extend or update the data
of the simulation model.

1 MATLAB: implementation in *.m scripts or functions

Simulink: implementation in *.mdl file
Discrete and continuous time or values: see Section 3.2
Sample time: update the basis with regard to the time interval

282
283
284

244

Design and Implementation of the Architecture

We specify the components and its aspect-based calculation methods in MATLAB within the
model layer, but represent the components in Simulink as abstract blocks of the controller
layer. The controller layer assigns the input to the components, such as the workload, and calls
the aspect-based functions of each time step. The Simulink environment monitors/controls the
relations of each single component and the behavior between them. In the controller layer, we
analyze the results and make logical decisions, such as optimization, whereby we follow our
alteration strategy. In the view layer, we provide a graphical user interface (GUI) for the
customization of the workload and the configuration of the server system. Using the GUI, we
start the simulation and update the graphical elements to visualize the simulation results.

—
]
> - S,
|/ if I
S il I
Q! :
S e L] [
customer display
configuration results
o
)
>
o
= \
(0] | :
o i ;
. : |
+ | N
c| ! :
o| i _ _. _._!
o
call provide
methods results
L
o
>
B |
o
o
o
el

] =N
! MATLAB | H Simulink

Figure 82: Model-View-Controller (MVC) using MATLAB/Simulink

The interaction between MATLAB and Simulink is done through callback functions, a listener,
and workspace variables, but MATLAB and Simulink have their own internal representations of
the variables. Consequently, we extend our MVC approach in order to enable cross-border
exchanges of data’®. We implement the event _listener() function to receive the GUI-based
data and transfer it into the Simulink environment. When the simulation has finished, we
update the GUI of MATLAB by using the update_GUI() method. The set_param() and
get_param() functions are default communication methods, which we partly use in our
initialization phase. Figure 83 briefly shows the communication between MATLAB and

Simulink.

*® Data exchange: possible alternative functions are assignin(), set(), or setappdata()

245

Design and Implementation of the Architecture

6.1 View Layer

event_listener ()

MATLAB

l

set_param ()

1

get_param ()

Simulink

update_GUI ()

Figure 83: Communication between MATLAB and Simulink

We implement the view layer for the representation of results and for supporting the
customization of the input data, such as the external environment or the application software.
We implement a dedicated MATLAB GUI that consists of the (i) the workload configuration,
(i) the server configuration, and (iii) the ambient temperature settings**®, which build the
primary input data of our simulation model. We assume that an efficient cooling outside the

server system exists and no external influence may change the temperature: i.e., we assume
the ambient temperature as a constant input. Furthermore, in our GUI we include (iv) the
start-stop functionality of the simulation and (v) a graphical area for the representation of the

simulation results®®’. Figure 84 shows the schematic view of the GUI, and Figure 85 illustrates
the MATLAB implementation.

view layer

GUI
i W‘?rkloafj server ambient results
configuration configuration temperature
w BC atemp £

results
scopes

Figure 84: View layer — schematic GUI

286
287

Ambient temperature @;emy,: We consider further environment settings at the model layer
Simulation results: partly visualize in MATLAB GUI and Simulink scopes

246

Design and Implementation of the Architecture

4] Configuration and Simulstion Results. = |) [

power consumpton

- workload actaty pesk ‘
PR el — (aeton
configuration CONPONENTS

COMPONENTS
processor W] - processor (W]

memory W] - - memory W]

npet-outpat W] - - put-output (V]

vs. smuston others] - - others W]
system boara] = = ‘system boara (W]
ssam sysTEM

power W) power (W]
DC/ secondary - - 0C/ secondary
pouse || contove e

sctve / primary - actwe / pemary
pextstep

wrte ata ogs

energyconsumtn
ambient CouPONENTS seton - provemant

- temperature

results

processor]

memory (Wh)
recthar

3
© S26361-K1455-V101 -- PY R
@ S26361-F3691-£210 - Int cessor E5-2650v2 (BC/16T, 210 GHe, TLC: 20 ME
@ S26361-F3654-E10 - Independent Mode Instal otmers [uh

nput-outpat (Wh]

srvembons
@ S26361.F452-6100 - Res DA il

@ S26113-F575-E12 -- Modular PSU 450W platinum hp“ 450W modulares Stromversorgun SYSTEM
one)
server Com
configuration

energy
efficeacy
Iscore]
vis simuston
wihout optmizaton

Figure 85: MATLAB GUI implementation

The customer directly specifies the workload, designates the ambient temperature, and selects
the concrete server system by using the GUL. We assign an explicit handler (callback function)
to every MATLAB GUI event®®® to transfer the GUI-based data to our model layer. We visualize
the initial customer-specific configuration and show further details, which we require in our
optimization process. We graphically present the power and energy consumption at the GUI,
which is comparable with the commercial tools in industrial practice. We initialize the output
fields by a hyphen, update the GUI when the results are available, and visualize the related
energy efficiency ratio to additional scopes™® with respect to the continuous time domain. We
provide the optimized server system configuration in a text-based format.

Server System Configuration and Workload Configuration

We require an individual server system characterized by a configuration file?®*. Our simulation

framework manages a server configuration, which we specify in a commercial tool called PC-/

System Architect”™*

developed within Fujitsu. This external tool has been designed as a
common means to configure and order a server system manually. In principle, we can support
diverse configuration tools, but we have to adjust our parsing algorithm to be compatible with

such tools, e.g., the Dell Energy Smart Solution Advisor*>

. The Fujitsu tool stores one or more
rack chassis in a single file, including multiple, heterogeneous, and rack-based server

2!
systems 3,

288 . .
Event: mouse clicks of a button, slider, or scroll bar

Scope: graphical elements in Simulink (plots)

Configuration file: proprietary format (*.ask), text-based

Fujitsu PC-/ System Architect: http://configurator.ts.fujitsu.com/public/

Dell Energy Smart Solution Advisor: http://essa.us.dell.com/DellStarOnline/DCCP.aspx
Server systems: blade-based servers are also possible, which we neglect

289
290
291
292
293

247

Design and Implementation of the Architecture

The complexity of the architecture as well as of communication exponentially increases if a
complete rack chassis is considered. In our prototype implementation, we concentrate on a
certain rack-based server system architecture, which we exemplarily simulate and optimize.

In addition to the configurability, we support the intended flexibility of the workload to
realistically reproduce and simulate the behavior of a server system. Our aim is to represent an
hourly up to daily server usage and create an image of the customer-specific application
software. We want to be independent of specific benchmarks, but support synthetic
benchmarks in an abstract manner. In principle, our workload model is compatible with the
most of commercial tools. In addition, we provide variations over an individual timespan. We
abstract from specific instructions because the customer cannot predict them. We consider
the influence of the 0S type®®* simply by a factor. Our challenge is to overcome the workload
limitations, as described in Section 4.1. In the next section, we describe the workflow of the
customer-specific workload configuration, as shown in Figure 86. The customer selects either a
steady or continuous workload scenario in the GUI, whereby the steady workload defines
constant utilization levels over the complete simulated time.

select
workload scenario

g5 Steady? o

Steady Continuously

)

Figure 86: Workload configuration — workflow

In the steady case, the customer selects a single pre-defined workload profile as a steady
workload, which is a common approach within commercial tools. In compliance with several
industrial tools, we specify the following profiles:

e Idle

e Transactional

e Computational

e Memory-intensive
e Worst-case

>4 0s type: integrated in the optional settings of the application software

248

Design and Implementation of the Architecture

The idle workload considers the lowest (0%) utilization levels and the worst-case represents
the highest (100%) ones of all components within the entire server system. The transactional
profile is a synonym for an 1/O-bounded workload and reflects applications such as
VMWare®®®, SAP?®®, or Java-based applications. We subsume the high-performance computing
and processor-bounded workloads in the computational profile. The memory-intensive profile
refers to database applications (SQL server) or exchange servers. In our model layer, we
distinguish between read-intensive and write-intensive applications. In accordance to most of
the academic approaches, we express customization by a read-write-ratio. We specify the
default utilization levels of every profile in an extra configuration file and initialize them, after
a customer selects a steady workload. The customer can modify the utilization levels of each
category by changing the defaults or adjusting the position of specific workload sliders. An
extra button provides the opportunity to set all utilization levels to worst-case. We load the
steady workload into the Simulink environment after generating a continuous and time-based
stimulus.

Steady

dl transactional computational memaory-intensive "
e - input/output-bounded - - processor-bounded - - memory-bounded - worsk-case

initialize
utilization levels

setall category-specific
utilization levels egory-sp
sliders

o
100% - merged -

| $

Figure 87: Steady workload — workflow

‘ change positions of ‘

As an alternative to the steady workload, we support a continuous workload that builds a
297 .
that is

composed of multiple utilization levels over a timespan. The columns specify the utilization

more realistic use case. We define the continuous workload in a customizable file

levels of each category in the interval [0,100] and the rows define discrete integer times. We

2% VMWare: http://www.vmware.com/

SAP: http://go.sap.com/index.html
Customizable file: Excel file (*.xlsx), settings specify the used rows and columns

296
297

249

Design and Implementation of the Architecture

automatically parse the configuration file, convert the data into MATLAB-compatible format
and check the input data. We expect that the customers manually specify the utilization levels
in the configuration file, which is a common use case of industrial practice. Figure 88
exemplarily shows a workload scenario that has equidistant time steps; however, we also
support non-equidistant time steps when a customer specifies a complete day or week. In the
example, the server utilization is assumed to be extremely low at early-morning hours and
would increase at office hours, as described for an SVN server in Section 3.3. We expect that
the customer will provide the average utilization levels with respect to the opening and closing
hours, which limits the access to the SVN server at a certain time. We consider constant
utilization levels until another value is provided. In reality, the utilization levels fluctuate within
milliseconds or microseconds, which we cannot consider. Therefore, we average the values
over a ten-second base.

utilization level utilization level utilization level utilization level
time processor [%] |~ memory [%] |~ input/output [%] | ¥ others [%] v
10 11 11 9 1
20 7 100 100 2
30 14 80 20 3
40 11 13 9 2
50 43 100 69 3
60 38 46 76 2
average 20,7 58,3 47,2 2,2

Figure 88: Customer-specific workload scenario

In addition to the workload configuration, we check a plausibility of the utilization levels and
automatically correct the values when we find an unrealistic assumption. For instance, a
customer specifies more than one category by a utilization level of 100%, see Section 3.4. In
our example, we fully utilize the memory and I/O at t;, = 20s up to t;,; = 30s. We calculate
the average usage of both categories to define which category is more dominant in our
timespan. We limit the 1/O utilization level at a value of 80 — 90% based on the rule of thumb,
gained from the empirical measurements in a real system. We graphically show the current
utilization level according to our correction and inform the customer about the correction with
a warning message in the MATLAB environment.

6.2 Model Layer

We assemble the functional description of the components in a modular and isolated manner
to ensure scalability. The model layer is the core concept of our simulation framework. It
centrally provides the mathematical background and is used to calculate the aspect-based
values in the controller layer. Our framework provides the availability to add next-generation
components and server systems at various abstraction levels. Using a decoupled and
hierarchical concept, we realize the abstraction between the aspect-based component
description, the behavior, and the entire system. We separately define every component,
which we may reuse in several server types, but influence the behavior using a higher-level
specification in order to represent unique behavior in different compositions. We abstract

250

Design and Implementation of the Architecture

from unimportant features and details of the server system such as to neglect operations that
are executed once, as done in [BHS 1998].

We can define any kind of abstraction level of a component, but we exemplary concentrate
upon utilization-based procedures. We define our category-specific methods, which we
decoupled from the exact data to be universal and independent from the specific methods.
We implement the logic that we require on the transition from the utilization-based
calculation methods to a higher level of detail, such as power states or certain instructions. We
consider external settings within our mathematical definitions, use MATLAB algorithms, and
include a database. The database stores the possible values of the server system
characterization and configuration containing the default utilization levels of our workload
profiles, the weight coefficients, certain constraints, and the values of the configuration tree.
We obtain high-quality data from the database on the basis of the server type and its
compatible components, which we gain from real measurements and different data sources*®.
We require additional data, which we specify as metadata to realize our concept. Table 38
exemplarily* shows the relevant metadata of a memory module, which we consider in our
aspect-based calculation methods.

Table 38: Memory module 8GB (1x8GB) 2Rx4 L DDR3 — 1333 R ECC - additional metadata

Memory characteristics Metadata

Technical configuration

Vendor vendor="Samsung"

Family
Die (component revision)
Static characteristics
Capacitors / capacitance, capacity (size) [GB]
Density [GB]
Fabrication size [nm]
Synchronization mode
Module ranks, rank linking
(data width)
Timings
Resistance
Dynamic characteristics
Frequency [MHz]
Voltage
Error correction

fam="240 Pin DDR3 DIMM"
die="D"

cap="8GB"

dens="8GB"

nm_tech="44nm"
sync="registered"

ranks="2R"

ranks_x="x4"
cycle_time="1.5ns", cas="CL9"
rth="56°C/W"

MHz="667", frequency=MHz
volt="LV", LV="low-voltage"
corr="ECC"

298

Data sources: diverse benchmarks, spreadsheets, wide ranges of sensor data, or vendor-specific data

299
Example of a memory module: table contains metadata which we can consider in the order process

251

Design and Implementation of the Architecture

In addition, to customize our framework we define several default settings, which are fixed for
the simulation runs. We specify the location of our database, the server configuration file, the
energy units, or the supply voltage, for instance.

T
e

database
— A

constraints
nuvyx

configuration tree

0,0r, 05,075, Ocs

characteristics
cH
WFAfci
CcS CL
B CHrs CHZrg CHEgg

workload profiles

Figure 89: Database

The key constituents of the model layer are the mathematical descriptions of the components,
as shown in Figure 90. We separately specify the components and their explicit calculation
methods of each aspect, whereby we additionally specify the individual behavior. At the next
abstraction level, we define the relations between the aspects and the components. We
implement a function of each aspect in relation to the utilization level and specify a lookup
table that represents the values of 10% step-based utilization levels, as common is in
industrial practice. We consider linear and non-linear interpolation methods provided by
MATLAB to obtain the values with a smaller step size. The temperature itself directly depends
upon the power consumption. Therefore, we do not need to define it on a stand-alone basis.
To specify the energy efficiency ratio, we normalize the performance scores and power values
being compatible to the simulation and having the same range of values. To improve the
energy efficiency ratio, we consider the results and implement the optimization strategy’®,
considering the two cascading phases, see Section 5. Herein, we specify the related methods
and apply the existing MATLAB algorithms to optimize an entire server system.

300 Optimization strategy: includes the management techniques

252

Design and Implementation of the Architecture

server system
characterization and configuration

model layer

external settings
a ¢ = behavior
definitions
optimization strategy
management techniques | | <32 calculation relation
14 methods definitions
U LMASC FAJ‘CEJL

MATLAB algorithms

D
<= aatts

sort statistical stochastic interpolation optimization alternation ’

Figure 90: Model layer — block diagram

We implement the aspect-based calculation methods for the lookup-based models of every
component. We specify the category-specific equations in the concept, as shown in Table 39.

Table 39: Calculation methods

Category Power equations Temperature equations
(component) (section) (section)
Processor (5.76) - (5.75) (5.89) - (5.92)
(5.2.2) (5.2.2)
Memory (5.66) - (5.68) (5.87), (5.88)
(5.2.2) (5.2.2)
PSU (5.50) - (5.52) (5.87), (5.93), (5.94)
(5.2.1) (5.2.2)
Input/output, Static offset Static offset
others

301 which Simulink calls at

For each category, we specifically define a method of calc_category()
each time step during the simulation, see Equation (6.1). We integrate the function call of
calc_category() within the component models in Simulink®®® and specify the current state on
the basis of the dynamic characteristics CHE}/G, which we consider in MATLAB to be grouped

as settings. We specify the descriptive metadata, which includes further details regarding the

! Names in MATLAB notation: we simplify the names to ensure a good readability, we use descriptive

names in our methods or internal variables with longer text strings
302 Component models in Simulink: see Section 6.3

253

Design and Implementation of the Architecture

characteristics in a separate database®”

to be unique and provide data consistency. We can
integrate various dynamic and static characteristics in Simulink, but this requires a data
conversion of every signal in each category providing them as numerical values®®. We
implement the aspect-based calculation in MATLAB because of lower development time and
effort®®

and the category-specific utilization levels as the input signals input_args in the Simulink

in comparison to a Simulink-based approach. We include the ambient temperature

environment, which may change at each time step.

function [output args] = calc category(input args) (6.1)
input args = {input args settings metadata}
current state = calc_state(input args)
input args = {input args current state}

We specify the possible range of states in calc_state() and decide upon the current state on
the basis of the utilization level, the read-to-write ratio, and the frequency in our memory-
based method®®. The range of states relies upon the settings, such as the memory generation,
which we calculate considering the metadata. We have grouped the diverse memory states®”’
into clusters considering the centroids by applying the simple k-means clustering algorithm
[TSK 2009], which MATLAB provides in the stochastic toolbox as a cluster-based analysis
method. We consider three major clusters, which we differentiate between high, medium, and
low power consumption while executing various workloads. Figure 91 exemplarily shows the
results of the k-means algorithm, which clusters the given set of IDD values, as shown in the
right-hand legend. We consider the centroids of 35mA, 70mA, and 155mA, which
correspond to a set of IDD states. As a result of our analysis, we reduce the complexity of the

IDD states and define the baseline power®®,

303
Database: separate m-files, dynamic structures, or structured information (matrix, vector)

Numeric values in Simulink: support data types, such as single, double, signed, unsigned, 8/16/32-bit
integer, Boolean, or fixed-point

30> Development effort: adjusting code in MATLAB is easier than in Simulink, such as adding a signal or
characteristic

306 Category-specific states: memory (read-to-write ratio, frequency), processor (voltage-frequency pair)
Memory states: memory currents IDDs, see Section 5.2.2

Baseline power: voltage is a linear factor, power highly depends upon the current (IDD) states

304

307
308

254

Design and Implementation of the Architecture

. DD values in spreadsheet Cluster Assignments and Centroids of IDD values

H * +
o] i > 0D Chmr i
160k * 3 luster 2 it T
* * + x +
1 10D Centroids (mA) = 35, 70. 155 +
140 * +
¥ * + +
20 120
i * +
< <
£ 100 £ 100 - .
£ * = o
5 80 s sof
3 3 X
*
*
60 * 60
* * * +
* * * *
40 * * 40 * *
* * * * * x * *
R P T
20 20+
* +
0 L " 0 -
o N) & 2 - & =] »)) o ¢ & & = &
e & 5 & 5 & e & P & (3 B
& g & & &F & & & RER F F F & F F
o i
&

IDD states DD states

Figure 91: Clustering of IDD memory states

In principle, each calc_category() method consists of the aspect-based subroutines
calc_aspect() in the operating sequence of the power calculation, thermal calculation, and
performance estimation. We define the component temperature on the basis of the power
values, which thus becomes an additional input argument. The performance of a component
depends upon the current temperature. We decouple the various methods and their
databases to support a high flexibility when an adaption is necessary.

function [output args] = calc category(input args) (6.2)
[total category power] =
calc_power (input args)
[total category temperature] =
calc_temperature (input args, total category power)
[total category performance] =
calc_performance (input args, total category temperature)

We divide each aspect-based subroutine into three segments, considering the dynamic
characteristics, the static characteristics, and the technical specification unique to a certain
class, which we define in a list ordered by their significance. We exemplarily describe the
power calculation method of a memory module (P00), Whereby the significant classes are
modes (CLyq), technology (CLiec), and manufacturing process (CLygqp), as defined in
Equation (6.3). We show the memory-related characteristics in Table 26 and define the class-
specific notation in Table 30.

CLyoa = corr,volt, frequency

POpyom = { CLtec — cap,dens, sync,ranks, ranks_x (6.3)
CLyap — type, arch, gen, fam, series, vendor, plc, die

255

Design and Implementation of the Architecture

On the basis of the results of our analysis, we implement the error correction (corr),
synchronization mode (sync), and die technology as independent linear factors in our memory
power calculation method. We specify the dynamic structures®® by a header®™ that specifies
the characteristic naming, provides the direction, and defines the kind of dependencies (dep)
between the values (val_1,val_2,val_3), such as an absolute or relative factor. In our
example, we define the linear factor’™

val_1 towards val_2, as shown in Equation (6.4). We can easily adjust the dynamic structure

(0.9) when the value of the characteristic changes of

by adding a new value or update the dependencies.

characteristic=[{'header'} {'val 1'} {'val 2'} {'val 3'}]; (6.4)
dimension = length (characteristic);
% factor between values [0 0.9 1.3 0];

dep (l:dimension) = 0;

dep(2) = 0.9; dep(3) = 1.3;

for i = l:dimension (6.5)
characteristic_all(i).id = characteristic(i);
characteristic _all(i).value = dep(i);

end

In contrast, the characteristics of the technology class (characteristic_tec), such as capacity
(cap), density (dens), rank (ranks), and rank linking (ranks_x), rely upon each other, see
Section 5.2.2. Therefore, we define a system of linear equations in a matrix to specify the
interdependencies, as shown in Equation (6.6). The technology factor tec_factor is the
summation of the certain dependencies dep, which we adjust by the corr factors of the
different memory modules and settings, see Equation (6.7).

% characteristic tec [ranks capacity density ranks x] (6.6)
% [ranks[%]; capacity[%]; density[%]; ranks x[%]]
characteristic tec = [1 1 11; 212 1; 2 112;1120.5];

rel dep = [0; 0.13; -0.32; -0.64];

dep = characteristic tec/rel dep;

tec factor = dep(l)*ranks*correct.ranks + (6.7)

dep (2) *cap*correct.cap + dep(3)*dens*correct.dens +
dep (4) *ranks x*correct.ranks x;

In our optimization phase, we require the current customer-specific configuration 8. and the
configuration trees 6, 875, 8¢5, which we can only handle in MATLAB*"”. We consider the initial
configuration 8. and its base characteristics to set the default settings of each calculation

309 Dynamic structures: using vector- and matrix-based dimensions optimized in MATLAB

Header of a dynamic structure: {'identifier'} {"} {'basic calculating operation'} {'direction'}, basic
calculating operation (*,/,-,+), direction (upwards vs. downwards), absolute vs. relative
311Factor:afactorequaltozerodoesnothaveanydependencyonthenextvaﬂueinthedirection

Input arguments in Simulink: require numeric values as signals between the blocks

310

312

256

Design and Implementation of the Architecture

method. We define the possible range of characteristics in a separate database and specify the
weight coefficients WFAC,-IZ ,WFIijC ,WFrg, WESL. , WEEY., which we consider in the metadata.

Finally, we consider the class-specific factors and weight coefficients in the power calculation
method of a memory module.

POmem = f(CLinoa, CLtec) CLinap) (6.8)
CHRY. = {corr,volt, frequency, utilization level,read — to — write ratio} (6.9)
C Hg;a = {cap, dens, sync,ranks, ranks_x} (6.10)
CHrs = {type, arch, gen, fam, series, vendor, plc, die } (6.11)

Figure 92 briefly presents the internal workflow of the calculation methods.

calculation
methods
(components, aspects)

analyze
medifications

initial?

calculate

g

calculate

static characteristics change
update Gﬂsgl . & static characteristics?
static characteristics
no

calculate
dynamic characteristics

——

Figure 92: Workflow - calculation methods

technical specification change
update offset es, technical specification?
technical specification
s

update offset
dynamic characteristics

The main outputs output_args of the calc_category() methods are the results of each aspect,
which influence each other. Thus, we exemplarily specify the relation definition R, between
the power and temperature of the memory module, whereby we consider the formal
definition of Equation (5.93). We specify the static memory temperature, including the
memory power consumption, the weight coefficient WETH replaced by the thermal
resistance 0,..5, and the ambient temperature @¢emp, as the thermal offset. We define the
dynamic thermal development on the basis of the empirical measurements gained from a real
server system, as shown in Figure 93. We apply the Isqcurvefit method of MATLAB to

approximate the measured temperatures.

257

Design and Implementation of the Architecture

We define the first-order differential equation that best suits to describe the dynamic thermal
development of a memory module. In Equation (6.13) we specify the PT1 method of the
coefficients K5L. = 13.07, Tg = 87.33s, and TH3E,, = 33°C, which result from the
approximation.

TH;S;l’I;m = POmem * Ores + Otemp (6.12)
__t
TH()5Em = 13.07 (1 — e 7935) + 33 (6.13)

dynamic thermal development of a memory module
8 T 1 1

n
— = = PT2 approximation

temperature [°C]

2 L ! ! ! !
0 50 100 150 200 250

time [s]

Figure 93: Dynamic thermal development of a memory module

We consider the thermal interaction between various components of the same category as a
part of the relation definition R4. A small mutual distance between the memory modules leads
to a higher thermal impact. The processors have a large distance and active cooling and
therefore smaller temperature impacts on each other. The processor’s thermal dissipation in
an enclosure significantly depends upon the surrounding air temperature itself, as stated in
[KLL et al. 2008]. The authors of [LZZ et al. 2007] neglect the thermal effects in their approach
and consider the components in isolation.

We simply map the memory utilization levels considering the workload scenario of the
memory performance, which we store in a database. The performance scaling is an important
constituent of the relation definition Rz when we alternate the components. We include the
strategy addressed in [DEP et al. 2009], which specifies the performance improvements
because of some adjustments at the processor and memory configuration. Table 40
exemplarily shows the coefficients when we double the number of processors and memory
capacity at the same time. We consider the approximate coefficients from 1.5 up to 1.7 to
estimate the performance of the system.

258

Design and Implementation of the Architecture

Table 40: Performance improvement (processor and memory capacity) [DEP et al. 2009]

Step Processor amount Performance improvement
and memory capacity (coefficient)
from step n to n+1

1CPU 4 GB 1.7
2 CPU8GB 1.6
4 CPU 16 GB 1.5
8 CPU 32 GB 1.5
16 CPU 64 GB unknown

u b WNR

Figure 94 shows the pseudo code of the methods and categories that we implement in

MATLAB. We implement all categories and respective component methods in MATLAB with

nominally identical parts presenting unique values, which follow the same principles as used

when we describe the memory module. We implement the behavior between the components

R within the Simulink model. We strictly follow our concept concerning the optimization

strategy and alternation, which we do not explain in further detail.

= category = {'processor' ‘'memory' ‘'input_output' ‘'fan' ‘'others'};

$ C = component = category:
- aspects = {'power' 'temperature' 'performance'}; % call methods from left to right because they depend upon each other

% calculat

= for i=1 to

10 - begin calc
11 t e.q.

13 - input_args (ambient_temperature, utilization_level)

15 t add settings, metadata, e.g. characteristics, configuration tree, decision variables, initial/default values)

16 = input args = {input_args settings metadata}:

18 % define cu
19| = current_state = calc_state(input_args):;
20 - input args = {input_args current_state}; % add state

t state

22 % calculate each aspects
23 - for 3=1 to length(aspects)

25 - begin calc_aspect (input_args) of 3

power, calc_temperature, calc_performance

28 - input_args (ambient_temperature, utilization level, settings, metadata, current_state)

33 — calc_aspect (xnpu\::axqs) i

35 - output_args (total_category aspect) ¥ each element of aspects

4 % apply behavior definitions BE_C of each component

42 - [total_category power, total V. re, total ¢ y_per] = correction_aspects(total_category aspect):

a4 = output_args (total_category power, total_category_temperature, total_category performance)
46 = end

48 % calculate energy efficiency

49 - total_category_energy efficiency = calc_energy efficiency_ category(input_args, output_args):
51 - end

Figure 94: Pseudo code — aspect-based and category-based calculation process

259

Design and Implementation of the Architecture

The user of our simulation framework should reckon with some slight changes in the
implementation in comparison to the concept of higher efficiency. We implement the
Simulink-based component models considering the calc_category() methods, which
constitutes the highest abstraction level. The internal functions such as the aspect-based
subroutines calc_aspect() represent the diverse hierarchy levels of our concept, wherein we
consider the various classes, the related dynamic and static characteristics, or the technical
specifications. We provide modularity because we can replace or extend a single calculation
method considering various characteristics dependent on the actual empirical results. Our
simulation framework consists of approximately 18,500 physical lines of code (LOC) distributed
over 250 files, including almost 33 percent comments. We implement around 220 m-scripts
with nearly 260 functions and around 30 Simulink models (*.slx).

Restricting Assumptions in Order to Simplify the Calculation

We consider several components that can fulfill the requirements of a certain workload
scenario, which provides the opportunity to influence the energy consumption. Theoretically,
we can consider all server configurations and characteristics, but we exemplarily concentrate
upon a couple of server systems from which we can easily receive experimental results
(measurements, benchmarks). We restrict our prototype implementation to demonstrate the
feasibility of our concept by reducing the complexity to decrease the calculation effort and
simulation time. We consider the aspect-based models of the selected system configuration 6,
and its components, which we limit to rack-based server systems, and fix the component
behavior as a simplified assumption. We assume that the concept is applicable to blade and
tower servers with slight adoptions concerning their architecture. We manually implement the
system architecture and connectors in Simulink, which are temporary static in our simulation
framework. We neglect the operating systems influences, as described in Section 5.3.2.3. We
assume a constant ambient temperature of the server system, while executing the workload
scenario that is based upon the regular functionality of the heating, ventilation, and air
conditioning (HVAC) equipment in the data center. We support the ambient temperature
range of our GUI as shown in Table 41.

260

Design and Implementation of the Architecture

Table 41: GUI-based restrictions of the server system

Parameters Range

Ambient temperature [°C] {'20°C - 25°C'} {'25°C - 30°C"}
{'30°C - 35°C'} {'35°C - 40°C"}
{'40°C - 45°C"'"}

{'Steady'} {'Continuously'}
{'Idle'} {'Transactional'}
{'Computational'}
{'Memory-intensive'}
{'Worst—-case'}

[0:1:100]

Single rack-based server system
Fujitsu RX200, RX300 family
Processor, memory, fan, PSU

Workload scenario
Workload profile

Utilization levels [%]
Platform segment
Server system model
Observable subsystems

Quantity (#) processors 1-2

memory modules 1-24

fans 1-16 (enclosure)
power supply units 1-2

We restrict the feasible range of controllable variables, such as the decision variables, on the
basis their relevance in our category-specific and aspect-based calculation methods without
any claim of comprehensiveness. Table 42 and Table 43 show the restrictions of the memory
characteristics.

Table 42: Memory characteristics — simulation parameters (I)

Memory characteristics Range
Quantity (#) 1-64
Vendor {'Micron'} {'Samsung'} {'Hynix'}

Capacitors / capacitance
capacity (size) [GB]
Generation

Family

Series

Density [GB]

Die

(component revision)
Fabrication size [nm]

Synchronization mode

{'Qimonda'} {'Netlist'}

{'"1GB'} {'2GB'} {'4GB'} {'8GB'}
{'"16GB'} {'32GB'}

{'DDR3'} {'SDRAM DIMM'}

240 Pin DDR3 DIMM

Family & synchronization mode & capacity &
die

{'1GB'} {'2GB'} {'4GB'} {'8GB'}
{'"16GB"} {'32GB'}

{'Mm'y {'c'y {'F'} {'E'} {'D"}
{'c'y {'B"} {'A"}

{'56nm'} {'54nm'} {'46nm'}
{'44nm'} {'38nm'} {'35nm'}
{'29nm"}

{'"load reduced'} {'registered'}
{'"unbuffered'} {'fully buffered'};
{'LR"} {'R"} {'U"} {'FB"}

261

Design and Implementation of the Architecture

Table 43: Memory characteristics — simulation parameters (I1)

Memory characteristics Range

Module ranks, rank linking {'1IR"} {'2R"} {'4R'};

(data width) {'SR'"} {'DR'} {'QR'}
{'x4"'} {'x8'} {'xle6'}

Timings {re"y {'7"r {'8'}y {'9"} {"10"}
{"117)y {"13"}

Resistance '56°C/W'

Interleaving {'bank'} {'channel'} {''}

Error correction {'ECC'} {'"}

Refresh {""} {'mirroring'} {'independent'}
{'sparing'} {'scrubbing'}

Frequency [MHz] {'400"'} {'533'} {'667'} {'800'}
{'933'} {'1066"'}

Voltage [VDC]*" {('LV'} {'STD'};
1.35-1.5VDC

Transfer rate / throughput {'800'} {'1066"'} {'1333'} {'1600"}

[MHz] {'1866'} {'2133'},

{'"PC3-6400"} {'PC3-8500"'}
{'"PC3-10600"} {'PC3-12800"}
{"PC3-14900"} {'PC3-17066"}

We consider the processor characteristics, which we restrict to a single processor family. We
exemplarily describe our results of the Intel Xeon architecture — the third generation, code
name lvy Bridge. We simulate the E5-2600 product family of the E5-v2 processor family. We
implement the aspect-based calculation methods to consider, especially the Intel Xeon E5-
2690v2 and Intel Xeon E5-2670v2 processors. We analyze the power gap between the
spreadsheet-based estimating, the measurements, and our simulation results. Table 44 and
Table 45 show the processor characteristics, which we exemplarily support in our prototype
implementation.

Table 44: Processor characteristics — simulation parameters (I)

Processor characteristics Range

Cache / cache lines {'10MB'} {'1l5MB'} {'20MB'} {'25MB'}
[MB] {'30MB"'}

Voltage [V] 0.65-1.3V

Time Consider various device states in time intervals
Semiconductor {"60W'} {'70W'} {'8OW'} {'95W'}
technology (TDP) [W] {"115W"} {'130W"}

Quantity (#) 1-4

313 \DC: volts direct current

262

Design and Implementation of the Architecture

Table 45: Processor characteristics — simulation parameters (1)

Processor characteristics

Range

Status
Type (0S)

Vendor
Product life cycle stage

Architecture
Generation
Family
Series

Fabrication size [nm]
Resistance
Performance features
(turbo)

Cores / active cores
(hyper-threading) [C,T]

Frequency [GHz]

Accesses / instructions
/ operands

Transfer rate

[GT/s, MHz]
Thresholds (thermal)

Enabled, disabled
Microsoft Windows Server 2012R2,

manufacturing process

{"Intel'}

Market introduction, growth, maturity,
saturation, and decline

Intel Xeon E5

Ivy Bridge EP

E5-2600v2

{'"Intel Xeon E5-2603v2'}
E5-2680v2'} {'Intel Xeon
{'"Intel Xeon E5-2660v2"'}
E5-2650v2'} {'Intel Xeon
{'"Intel Xeon E5-2630v2'}
E5-2620v2'} {'Intel Xeon
{'"Intel Xeon E5-2690v2'}
E5-2697v2'} {'Intel Xeon
{'"Intel Xeon E5-2667v2'} {'Intel Xeon
E5-2643v2'} {'Intel Xeon E5-2637v2'}
{'Intel Xeon E5-2650Lv2'} {'Intel
Xeon E5-2630Lv2'}

{'22nm"'}

'0.257°C/W"'

{'yes'} {'no'},

Intel VT-x, AMID-V

{r1c'} {'2c'} {'3C'} {'4cC'} {'5C'}
{rec'} {'7Cc'} {'s8c'} {'eoc'} {'10Cc'}
{r11Ccr} {'12Cc'} {'13C'} {'14cC"}
{'15Cc'} {'1eC'},

{'Intel Xeon
E5-2670v2"'}
{'Intel Xeon
E5-2640v2"'}
{'Intel Xeon
E5-2609v2"'}
{'Intel Xeon
E5-2695v2"'}

{"1T'} {'2T'} {'4T'} {'8T'} {'12T'}
{"16T'} {'20T'} {'24T'}

{"1.2'} {'1.3"'} {'1.4"} {'1.5"}
{'1.6'} {'1.7'} {'1.8"} {'1.9"}
{"2.0"} {'2.1'} {'2.2'} {'2.3'}
{'2.4'} {'2.5"'} {'2.6"} {'2.7"'}
{'2.8'} {'2.9'} {'3.0"} {'3.1"}
{"3.2'} {'3.3"'} {'3.4"} {'3.5'}
{'3.6'} {'3.7'} {'3.8"}

Integer, floating-point

{'6.4GT/s'"} {'7.2GT/s"'}
{'1333MHz"'} {'1600MHz'}

63°C - 88°C

('8.0GT/s'},
{'1866MHzZ '}

263

Design and Implementation of the Architecture

We statically characterize the fan-specific behavior, which specifies how rapidly we will absorb
and dissipate the heat. Our fan model is based on the characteristics presented in Table 46.

Table 46: Fan characteristics — simulation parameters

Fan characteristics Range
Current [A] 0.02A - 2.5A
Speed [RPM] 0-20000
Type Axial-flow, centrifugal
Voltage [VDC] 10.8-12.6VDC

The model layer provides the mathematical methods and configuration data that we require in
the simulation. The Simulink environment calls the functions receiving the energy efficiency of
each component, which we control and monitor.

6.3 Controller Layer

The philosophy of Simulink considers a monolithic controller in the block diagram, an approach
that we cannot apply concerning our concept because we adjust the dynamic behavior of each
component. The controller layer of our simulation framework generally consists of a controller
template according to Simulink (denoted as Simulink controller) and a set of distributed
controllers that are specific to each component (named as component controller). The
Simulink controller manages the simulation instructions provided by the view layer and
specifies several simulation options, such as the initial conditions, the sample time of the
Simulink blocks, or the start and stop time of a simulation run. We define the external
interfaces for the simulation model in the Simulink controller and create the input signals by
the stimuli model, which loads the utilization levels from the GUI and assigns them to our
system model in Simulink. We connect the component models by signals in Simulink to enable
the communication in the Simulink controller, which distributes and shares the aspect-based
signals between each other. We specify the output signals to store the simulation results,
which the Simulink controller manages.

We design the top-level structure and architecture of a rack-based server system in Simulink,
which includes the lookup-based models of each component, as specified in Section 6.2. We
implement each component as a stand-alone Simulink model that supports the independent
specification of the internal component behavior. The Simulink controller calls the aspect-
based calculation methods, which we integrate into the component models. We can exchange
or simply adjust the calculation methods in MATLAB without changing the simulation model
itself. We arrange the models in a modular approach, enabling them to communicate in a
loosely coupled fashion to ensure scalability and exchangeability.

264

Design and Implementation of the Architecture

We split the expected monolithic controller of the Simulink model into several component
controllers to enable especially the primary phase, wherein we customize the dynamic
behavior. An exception is the fan model, which includes an internal monolithic controller (fan
speed control) and considers the thermal development of the entire server system.
Consequently, we connect the fan model to all components in our Simulink controller. The
power supply is a non-controllable component that provides the power on the basis of the PSU
efficiency and redundancy settings.

We visualize and monitor the results of the system model at each time step of the simulation in
the Simulink controller. Afterwards, we analyze and evaluate the impact of the diverse server
configurations and characteristics on the energy efficiency ratio under various workloads and
vendor-specific constraints. We decide upon the alternation strategy in our system-wide
optimization engine, which results in an adjusted system model and requires updates on each
instance of the distributed component controller. Figure 95 shows the simplified structure of
the controller layer as a block diagram.

system model

controller layer

component models

~—l| processor __
model &

[
memory __
model

[
input/output
model

[

others

model

S

system-wide
optimization engine

fan

model

stimuli
model

=

power supply unit
model

behavior model

analysis
evaluation results

U U

visualization, monitoring, storing (s
(stimuli, power, energy, performance, temperature)

—
'l component controller
=\

Figure 95: Controller layer — block diagram

265

Design and Implementation of the Architecture

Our simulation model consists of two major blocks at the highest abstraction level, as shown in
Figure 96. The stimuli model®** generates the customer-specific (steady or continuously)
utilization levels of every component. We consider the ambient temperature of the rack-
mounted server system as a static input. We visualize the simulation results in the Simulink

scopes®™ to enable the update process between the MVC layers.

stimuli model system model results

util_level_processor util_level_processor wer_total_system >
uti_level_processor g oo AR power_total_system

peak_power_total_system P
util_level_memory util_level_memory peak_power_total_system
uti_level_memory

energy_total_system >
energy_total_system

util_level_input_output P util_level_input_output
= bl util_level_input_output Bl

temperature_total_system >
temperature_total_system

util_level_others P util_level_others
uti_level_others performance_total_system »
performance_total_system

stimuli l
25 l P ambient energy_efficiency _total_system

energy_efficiency_total_system |

constant_ambient_temp
rack-mounted server system

constant_ambient_temp

Scope_output_simulink

Figure 96: Simulation model — stimuli and server system

Figure 97 shows the simplified subsystems of the rack-mounted server system, including the
components, thermal control, and the power supply unit, which we divide into several
subsystems. The components subsystem contains separate subsystems of the processor,
memory, input/output, and others categories, which behave as individuals specified by the
mathematical methods described in Section 6.2. Each component provides the performance,
power, and thermal values that we couple with each other to provide the resulting values. The
thermal control influences the temperatures inside the system, which we consider as the same
all around the enclosure. We implement the thermal control, according to the specification in
the concept chapter. In general, we implement a fan analogue to a component, but it does not
include the performance calculation. We sum up the power consumption values resulting in
the secondary power (provided by the PSU) and calculate the primary power (input to the PSU)
considering the power supply efficiency and redundancy settings. We want to refrain from a
detailed description of the subsystems>'®, because of the reduced readability in the figures.

3% Stimuli model: Simulink subsystem, implement in the workload generator in MATLAB

Simulink scope: define a name tag
Subsystems: the customer or user can get further details by double-clicking at the Simulink blocks

315
316

266

Design and Implementation of the Architecture

system model

utl_level_processor power_total_components B e e (D)
)|t evelmenory e _ata_system
unuamo,y Add por syst
1 evel ot ot temparture totl_components Saparsn e compenert Syl

wi_level_nput_outpst

power_supply_unt
1 _evelothers

i

il _evel_athers
Sai partormance tatl_components [——

ambient temperature

temperature

Components thermal control temperature_total_system
peformance_total_system

Figure 97: System model — components, thermal control, and power supply unit (simplified representation)

Hence, we implement the MATLAB methods and Simulink models; we execute the MATLAB
script GUL.m, which builds the simulation entry and initializes the graphical user elements by
their related functions. We load the configuration file of the server system and parse it to
adjust our configuration tree and restrict the decision variables. Afterwards, we set up the
model and simulation parameter, which we require to control the Simulink model in the
background. The graphical user interface remains at the wait state as long as an event occurs,
see Figure 98. The MATLAB callback functions react to any changes in the graphical user
interface, such as the workload scenario (popup menu), the utilization levels (sliders), the
selection of the server configuration (list box), or the start request (button). We implement the
specific callback functions and provide the settings to the framework®’, which parameterizes
the simulation model. We activate the simulation and optimization by pressing the start
button in the GUL.

!

create
MATLAB GUI elements

set defaults of GUI elements
initialize

MATLAB GUI elements — (display, slider, popup menu, list box)
J/ enable customization

set event listeners
define model and simulation parameters
assign block properties

open _
MATLAB GUI & Simulink model

wait
T

changes detected

Figure 98: Workflow — MATLAB GUI and Simulink model

> Eramework: MATLAB scripts (*.m files), MATLAB workspace, and Simulink (model workspace, block

properties)

267

Design and Implementation of the Architecture

We realize our framework regarding the concept, which includes both a pre- and post-process

of the proper simulation, as shown in Figure 99.

callback
start

!

(pre-process

RN

simulation and optimization

yes

calculation methods

finished?

step-based analysis optimization engine

y

(post-process

é

Figure 99: Workflow — callback simulation start

AN

In the pre-process, we import the workload scenario and pre-define the stimuli when we open
the GUI, as described in Section 6.1. We update the stimuli on the basis of any change in the
GULI. In parallel, we create the generic configuration tree and import the customer-specific
server configuration, which restricts the system-compatible hardware and the related decision
variables. We initialize the aspect-based methods, as we briefly explain the procedure in
Section 6.2. Figure 100 shows a simplified workflow of the pre-process.

268

Design and Implementation of the Architecture

pre-process

!

create
configuration tree

- import
server configuration (steady, continuously)

utilization generator

search create
system-compatible hardware Initlalize stimuli

aspects

set of decision variables
(design space)

J

‘ define ‘

:

Figure 100: Workflow — simulation pre-process

In each calculation method, we identify the relevant aspect-based characteristics of the
respective component and load them into the simulation environment. Afterwards, we
establish the particular weight coefficients and apply the offset of our initial configuration in
relation to the default values in our database. We call the calculation methods and create the
lookup-based models. Figure 101 presents an overview of the initialization workflow.

269

Design and Implementation of the Architecture

initialize
aspects

!

initialize
calculation basis

calculation
methods

components, aspects)

load
aspect-based
characteristics

establish

create
lookup-based
models

weight coefficients

search

initial configuration

. ./

Figure 101: Workflow — initialize aspect-based methods

After configuring and initializing the calculation methods, we execute the simulation and
optimization. Figure 102 shows the workflow of the simulation framework in an abstract
manner. Our simulation framework considers the utilization levels at each time step t;, which
controls the simulation loop. We synchronize the time stamps of the workload scenario of the
timer of the simulation model. In the first optimization loop, we consider the initial set of
decision variables in our calculation method, which consists of the lookup-based models. We
load the utilization levels at the time t;, and calculate the aspects of the energy efficiency
computation that we consider. We strictly follow our concept concerning the step-based
analysis, presented in Figure 79. We evaluate the results and find the possible impacts of the
several characteristics on whose basis we decide on the alternation strategy. We restrict the
set of decision variables that we further want to modify, see Section 5.4.2.2. If we modify a

characteristic®*®

, we update the lookup-based models and call the calculation methods again.
This results in a recursive optimization at each time . If we do not require a subsequent
iteration within the optimization loop, we define the step-based optimum and advance to the
next time step ty,.q, as long as we do not reach the end of the workload scenario. We
continuously visualize the aspects in the Simulink scopes and save the values in our
environment. We globally analyze the step-based optima in the post-process, which we

implement in MATLAB.

3% Modification of the characteristics: change the values

270

Design and Implementation of the Architecture

advance to
next time step

Ly = Ly

load initial set of

[utilization levels decision variables

load
lookup-based models

calculation

methods

solve

TH,PO,PE

CHEY CHEFg Clrs

system-wide
optimization engine

alternation
decision variables

#e(x)

restrict the set of
decision variables

yes

<72

no global
analysis

®

Lk

calculation
EE

H

step — based analysis
evaluation results

H

further
alternation?,

step-based
optimum

find impacts
EE,TH,PO,PE

Figure 102: Workflow of the simulation framework

6.4 Summary

We realize our concept as a Model-View-Controller (MVC) approach that considers a flexible

amount of rack-based server configurations and components. The customer can define a

workload scenario that specifies the specific demands in a more realistic manner.

Furthermore, we integrate the ambient temperature of the server system, which reflects the

data center requirements. We implement our framework as a combination of MATLAB and

Simulink to gain each benefit, such as the existing realization of certain algorithms. In the next

chapter, we evaluate our calculation methods of the components considering the energy

efficiency of the entire server system.

271

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

7 Evaluation of the Multi-aspect Full-system Server Model and
Optimization (MFSMOS)

In the first section, we introduce the evaluation environment in which we describe the
measured server system, the software-based measurement infrastructure, and the
benchmarks considering different server configurations. The aim of the evaluation is to prove
the applicability of our developed concept as a proof-of-concept. We demonstrate the viability
of our multi-aspect-based calculation methods for the components, which we integrate into a
full-system server model. We emphasize the reliability, portability, and flexibility of our
simulation framework and demonstrate that we are able to optimize a server system
concerning its configuration and characteristics. To validate our models, we performed a
sequence of benchmarks on various server system configurations and varied the utilization
levels. To demonstrate the industrial feasibility and suitability, we emphasize the modular
description of the workload and the server system configuration. We evaluate our MFSMOS
approach considering a series of analyses with our prototype implementation and we assume
the applicability of each alternative server system, considering another vendor or platform
segment, for instance.

First, we evaluate the accuracy of the aspect-based calculation methods to check the
plausibility, and then we analyze the impacts on particular characteristics to test the flexible
reaction to possible changes. Here, we characterize the components and analyze the response
of the varying utilization levels and consider a set of micro-benchmarks in order to distinguish
the different component activities and consider the behavior in the entire system. Thirdly, we
consider the worst-case power and energy efficiency in a case study in two versions, one
without optimizations and one with. This is in accordance to common industry practice. Here,
we present an experimental analysis to demonstrate the optimization possibilities and
concentrate upon the three main analyses: Accuracy Analysis, Impact on Characteristics
Changes, and Energy Efficiency Analysis.

7.1 Evaluation Environment

7.1.1 System under Test (SUT)

We analyze an exemplary rack-based server system, the system under test (SUT), which is a
Fujitsu®*® server system. Table 47 shows a brief overview of the hardware settings, which
allows up to two processors and 24 memory modules. Our current SUT is equipped with two
Intel Xeon E5-2650v2 processors, whereby we disable the second processor in the BIOS/UEFI**°
when we want to analyze a single processor in the system. We have access to up to 12
memory modules for test purposes. If we require fewer modules in our experiments, we

physically remove the modules. We analyze the total memory capacity and related

9 Fujitsu server systems: http://www.fujitsu.com/fts/products/computing/servers/primergy/rack/

29 pisable a processor: It automatically disables memory modules that correspond to the processor.

272

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

characteristics in order to show the differences between the various benchmarks, for instance.
The particular system’s power supply delivers an output of 450W at around 949% efficiency. In
our experimental setup, we share one hard disk with the operating system, measurement

tools, and benchmarks. The combination of the OS and the tools on a single hard disk may

influence the evaluation results**!, such as throughput, response time, or latency.

Table 47: System under test (SUT) — hardware settings

Category

Settings

Platform segment
Server system model
Form factor

Processor
Family (Series)

(C18)

Generation

Frequency

Hyper-threading / turbo
Enabled

Hardware threads

L1 Cache

L2 Cache

L3 Cache

Thermal design power (TDP)

Memory
Total amount (max)

and size of DIMM
Memory characteristics
(€70,C71)

Disk
Drives
Controller
Network adapter
Power supply unit
Quantity and rating
Specification
Fans

Single rack-based server system
Fujitsu PRIMERGY RX200 family (RX200S8)
Dual socket 2U rack server

Intel Xeon E5-2600 v2 (E5-2650v2)

Ivy Bridge EP (Romley)

1.8GHz — 2.1GHz, turbo 2.3GHz

Enabled / enabled

8 cores, 2 chips

16 (2 / core)

8x32KB instruction caches, 8x32KB data caches
8x256KB

20480KB

70W

40GB
8*4GB, 4*2GB
4GB (Micron):
DDR3 LV, SDRAM, RDIMM (registered), ECC,
single rank (1Rx4), DDR3-1600, PC3-12800, CL11
2GB (Qimonda):
DDR3, SDRAM, RDIMM (registered), ECC, single
rank (1Rx4), DDR3-1066, PC3-8500R, CL7

1x73GB 15K RPM SAS
Integrated SAS controller (Intel C600)
4xSuperFast NIC, 100Mbit

1x450W, Delta
94% (platinum efficiency), 100-240V, 50/60 Hz
5, 4+1 redundant

321

scheduling onto the hardware resources (load balancing, multitasking, or context switch)

Influence of the results: due to resource management, memory (access) management, or OS-based

273

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

We choose a Microsoft Windows OS to ensure the full support of the device states, according
to the ACPI standard, considering an enabled power management. We execute Java-based**
measurement tools and benchmarks on our server system, which may have an impact on our
results because some implementations have a poor garbage collection, a large memory
footprint, or a lack of garbage collection on resources. Most of the tools continuously monitor

and save the sensor data®®

at the same time. In Table 48, we show the software versions of
our system under test. Additionally, the system is accessible from outside by the baseboard
management controller (BMC), which provides the intelligent platform management interface

(IPMI) to enable the sensor tracing®** independently of the operating system.

Table 48: System under test (SUT) — software settings

Category Settings
Operating system (OS)
Version Microsoft Windows Server 2012

Power management
Software
Java runtime environment (JRE)
Oracle VirtualBox
BIOS/UEFI (ACPI support)
Baseboard management controller
Integrated remote management
controller (iRMC)
Firmware version
Sensor data record (SDR)
Intelligent platform management

Standard R2
Enabled

1.8.0 91
4.1.18 r78361
SMBIOS V2.4

iRMC S4, 256 MB attached memory
incl. graphics controller

7.61

09.71 (ID 0356)

2.0

interface (IPMI) version

7.1.2 Measurement Infrastructure

Here we consider several measurement tools to monitor the power, performance, and
temperature of the target SUT, which are available for the most popular operating systems
and easily accessible in the public domain. We install the software-based measurement tools
on our target SUT, execute all of them in parallel, and store the results®® afterwards.

%22 Java tools: platform-independent, must be interpreted, needs the Java runtime environment (JRE)

Sensor data: hardware sensors are mounted on the motherboard
Sensor tracing: read sensors (power, temperature, fan speed)
Results: files in *.csv format, some tools support caching, others write data at all times

323
324
325

274

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

We always save all the tool information that is available during our evaluations considering a
steady load of writing data onto disk. Among our repeated measurements®?, we assume a
steady situation®”” in the laboratory concerning a constant ambient temperature, static air

pressure, or humidity.

The HW Monitor Pro®*® provides the status of the component utilization levels and especially
distinguishes between the processor cores and threads. The tool shows the current
frequencies, which are restricted to the processor cores**’, monitors the processor package
power, and uncores power>*, according to the voltage regulator module (VRM). The HW
Monitor Pro records the temperatures of the processor cores and the core temperature of the
memory modules. The tool reads the sensor data by a time base of one second and continually
writes the sensor data into an appropriate file on the hard disk.

The Intel Power Gadget®” is the only tool that provides the cumulative energy consumption of
the input/output, processor, and memory of their aggregated power values. Herein, we
particularly focus on the memory power consumption because the other tools do not provide
the same level of detail. The tool does not distinguish into the particular processor cores and
therefore provides the processor frequency as an all-embracing time-based vector. The Intel
Power Gadget monitors the temperatures within the system, whereby the time base of the
Intel Power Gadget is fixed to 100 milliseconds.

The major benefit of the Intel Power Thermal Utility**

(PTU) is the flexible configuration of the
time base, which we define as 50 milliseconds to monitor and trace the sensor data more
accurately in comparison to the other tools. Therefore, we consider the processors’ power,
temperature, frequency, and utilization level to evaluate our processor and memory model.
The tool directly accesses the processors’ internal sensors and provides the voltages, which we
evaluate in our processor model considering the p-states and the related voltage-frequency
pair. The Intel Power Thermal Utility caches the sensor data, which we save in a specific log file

afterwards.

326 Repeated measurements: up to five times, evaluating either identical or modified server system

configurations

327 Steady situation: always ideal operating conditions because of the HVAC system

HW Monitor Pro: http://www.cpuid.com/softwares/hwmonitor.html

Processor cores: processing functionality and instructions, such as arithmetic logic unit (ALU),
floating-point unit (FPU), L1 and L2 cache

3% processor uncore: integrated subsystems on the processor (on-chip interconnect or communication),
e.g. the Quick Path Interconnect (QPI), power controller, integrated memory controller (IMC), 1/O
controller, network controller, scalable memory interface (SMI), distributed/shared last-level cache
(LLC), such as L3 cache

3! Intel Power Gadget: https://software.intel.com/en-us/articles/intel-power-gadget-20

Intel Power Thermal Utility:
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cpu-monitoring-dts-
peci-paper.pdf

328
329

332

275

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

The Intel tools (Intel Power Gadget and Intel Power Thermal Utility) provide several relevant
processor-specific details based upon the processor socket, family, series, and generation,
which are only accessible by these tools because of the particular sensors inside the
processor>>>.

A special tool is called Kalcheck, developed by Fujitsu, which monitors the power and
temperature values independently of the operating system. In particular, Kalcheck provides
server-specific, internal system temperatures of the system-board, power supply unit, and
each individual memory module. We can observe the ambient and processor-specific
temperatures to analyze the thermal development within the enclosure considering the fan
speed. In addition, Kalcheck distinguishes between the secondary (provided by the PSU) and
primary (input to the PSU) power of the system, and separately monitors the system-board
and hard disk power. Kalcheck uses IPMI over Ethernet to connect to the BMC, which accesses
to sensors with the inter-integrated circuit bus (I*C). The time base is restricted to one second
because the sensors are connected to the I>C bus, which has a limited bandwidth, especially in
case of one hundred sensors within a particular server system. The sensor data record (SDR)
inside the BMC specifies the certain addresses of the sensors, sensor types, and amount of
sensors. The following table shows an overview of our measurement tools, their time basis,
and extra settings.

Table 49: Measurement tools and settings

Measurement tool Description Time base Settings

HW Monitor Pro Version 1.25.0 1000ms Disable multi-curves
Intel Power Gadget Version 3.0 100ms

Intel Power Version 3.2 50ms Max records 99999999
Thermal Utility (configurable)

Kalcheck Date of 1000ms Poll -temp -fan -power -
(Fujitsu-specific manufacture logfile ‘logfile.csv’
internal tool) 2014-04-01

We execute the measurement tool Kalcheck on an extra computer to avoid using the loopback
network interface on the target system, which may lead to additional load, and the data
tracing is accessible independently of the target OS. We always start all measurement tools of
the same sequence before we enable the benchmark procedures, using the remote desktop

protocol (RDP). In the next step, we run the benchmarks from scratch®**

to avoid caching
effects and improve the repeatability when testing. Figure 103 shows our evaluation

environment in the laboratory.

33 processor sensors: digital thermal sensors (DTS)

34 Start from scratch: after rebooting the SUT, access benchmark after starting the measurement tools

276

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

software software
Intel Power Thermal Utility

any _Intel Power Gadget simulation Kalcheck
benchmark HW Monitor framework
operating system operating system
Microsoft Windows Server 2012 Standard R2 Microsoft Windows 7 Professional SP1
hardware ’ BMC IPMI hardware
sensors over |
Ethernet

computer

system under test

Figure 103: Evaluation and simulation environment

We share one computer to execute Kalcheck and start our simulation framework, including our
MFSMOS approach as a prototype implementation. We trace the system under test using the
HW Monitor Pro, Intel Power Gadget, Intel Power Thermal Utility, and Kalcheck to collect the
data for our simulation framework. We disable all communications between both systems and
stop every measurement tool when we start our simulation model in MATLAB. Table 50 lists
the hardware and software settings of our computer.

Table 50: Computer — hardware and software settings

Category Settings
Hardware
Platform segment Laptop, Fujitsu Celsius H710
Processor Intel Core i7-2760QM, 2.4GHz
Memory 8GB, DDR3-SDRAM
Software
Operating system Microsoft Windows 7 Professional SP1

version 6.1 (Build 7601: SP1)
Java runtime environment (JRE) 1.7.0 71
MATLAB R2015a (8.5.0.197613), 64-bit
Simulink R2015a (8.5.0.197613), 64-bit

The possible resolution and precision of the temperature, power, and fan speed depend on the
sensor quality and sensor position within the server system. Our target SUT has approximately
200 sensors in which the sensor data record defines how to interpret the raw values. The
temperature sensors are determined to an accuracy of half a degree Celsius. The power
sensors of the processor, memory, and hard disk drive are more accurate (< £0.5 W) in
comparison to the power supply sensors (= +4 W). The fan speed sensors have an accuracy
of approximately +10 RPM. Furthermore, the time used for collecting data varies because of
the flexible configuration of the sensors and their corresponding amount of data, which we

277

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

save in the log files. The measurement tools use the clock of the operating systems instead of a
real-time clock, which implies that the handling or triggering®*® of sensor data does not fit the
configured time exactly.

7.1.3 Benchmarks

We consider the standard publicly available benchmarks and their metrics, such as SPEC>*®,
TPC*® | and PassMark®*®. Table 51 lists the various benchmarks and settings, which we install
and execute on the target SUT to analyze multiple activity rates. We assume that the OS
insignificantly limits the benchmarks, because we assign the highest priority to our
benchmarks, and additionally set the affinity at all processor cores and threads to ensure that
all of them are used similarly. As a result, we enhance the repeatability and restrict the
possible variations between various benchmark tests.

Table 51: Benchmarks settings

Benchmark Settings
SPECpower Version ssj2008-1.12
Operating system (0OS) SPEC Open Doors 2006 F500
boot (Management) firmware version 1.2.3.4 (64-bit)
Java Virtual Machine (JVM) version SPEC Java VM 5.0 (build 1.2.3.4-tricore
20071111)
JVM command-line options -Xms3500m -Xmx3500m —XrunFast
-XconsumelessPower -Xmn3100m
Workload version SSJ 1.2.10
PTDaemon v1.4.2
PassMark Version 8
PassMark CPU CPU mark, integer math, floating-point

math, prime numbers, extended
instructions (SSE), compression,
encryption, physics, sorting, single
threaded
PassMark Memory Memory mark, database operations,

read cached, read uncached, write,
available RAM, latency, threaded

MemTest86 Version 7.0 free edition, pattern testing

3% Trigger the data: The measurements have non-equidistant times, e.g., 1.02 s or 0.98s between the

measurement time stamps.

38 SPEC: http://www.spec.org/

TPC: http://www.tpc.org/default.asp
PassMark: http://www.passmark.com/

337
338

278

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

The SPECpower® benchmark measures the power and related performance while utilizing the
server system at various levels, considering the processors, memories, or caches. SPECpower
starts a calibration phase (minimum of three runs) to identify the maximum benchmark
throughput. Afterwards, the sequence of the target throughput decreases from the maximal
target throughput from 100% down to 0% in about 10% of the discrete steps of the
calibrated throughput. SPECpower tries to reach an approximate target throughput of 90%,

for instance. The tool uses the server-side Java (ssj) workloads**

that execute multiple Java
virtual machines (JVMs), considering a large number of users and various transaction types. A
result of the SPECpower benchmark is the actual target throughput, such as 90.7% of the
3 to the target throughput of 90%.

We assume that the system approximately operates at a certain utilization level in average

maximal throughput, which should be as close as possible

when working at a particular target throughput, which will not be a steady value**. The
utilization level of the processor behaves proportional to the load (target throughput) of the
benchmark. Furthermore, the benchmark provides the average power consumption and the

number of ssj-operations>**

(ssj_ops) on the basis of the various target throughputs. The tool
considers both aspects to calculate the performance-to-power ratio at each target throughput.
We cannot use the certified (officially released) power analyzer®* in the SPECpower
benchmark, because of the extraordinary equipment costs to consider high-resolution power
measurements. Instead, we consider various measurement tools, monitoring the power of the
motherboard, processor, memory, or power supply unit. Therefore, our SPECpower log file

does not include the average power and the performance-to-power ratio in a precise manner.

We execute the SPECpower benchmark in four different server configurations, which either
changes the number of processors or the total amount of the memory capacity. The server
system requires the balance of the memory modules among the processors, which depends
upon the enabled processors and the memory channel configuration. Therefore, we consider a
dual channel (SPx.2.z) and a triple channel (SPx. 3. z) configuration, whereby x denotes the
number of the processors, y indicates the channel configuration, and z refers to the total
memory capacity within the system, as shown in Table 52.

Table 52: SPECpower — test cases for (SPx.y.z)

of memory modules *

capacity (GB) per module
2%4 3%4, 3*2
of 1 SP1.2.8 SP1.3.18
processors 2 SP2.2.16 SP2.3.36

3% SPECpower: http://www.spec.org/benchmarks.html#power

SSJ workloads: Java program, https://www.spec.org/power/docs/SPECpower_ssj2008-Design_ssj.pdf
As close as possible: less than 2% positive or negative deviation

Steady value: average value over an interval

3 ssj-operations: performance indicator

* power analyzer: https://www.spec.org/power/docs/SPECpower-Device_List.html

340
341
342
34

279

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In contrast, the TPC suite focuses on data-centric benchmarks, which are relevant in industry
and uncommon in academic evaluations. We neglect the wide range of micro-benchmarks in
our evaluation because of the amount of data will increase exponentially. In principle, we may
add the TPC benchmark results when a server system is suitable®.

A widely used software in personal and in business applications is PassMark, which tests x86-
based computers and their components. We consider especially the PassMark CPU**® and
PassMark Memory>", which help comparing the relative performance of the various
components. Both benchmarks consist of multiple micro-benchmarks, as shown in Table 51,
which we entirely execute because this operating mode is set as a default. The PassMark
benchmarks store the maximal scores of every micro-benchmark, provide the mixture (overall)
score of the benchmark itself, and additionally show scores of similar configurations, such as
the Intel Xeon E5-2640v2, Intel Xeon E5-2650L, and Intel Xeon E5-2648L. We consider the
mixture performance result, a mix of the certain micro-benchmarks, as the default maximal
performance values of the components in our simulation model. To respond flexibly to
customer demands, we add the results of the micro-benchmarks to our database. Table 53 and
Table 54 list the PassMark test cases that we analyze in our evaluation, considering the
processor performance (PCx.y.z) and memory performance (PMx.y.z) in which y denotes
the amount of memory modules per processor.

Table 53: PassMark CPU — test cases for (PCx.y.z)

of memory modules *
capacity (GB) per module
1*2 1*4 2*2
of 1 PC1.1.2 PC1.14 PC1.2.4
processors 2 PC2.1.4 PC2.1.8 PC2.2.8

Table 54: PassMark Memory — test cases for (PMx.y.z)

of memory modules *
capacity (GB) per module
1*2 1*4 2*2
of 1 PM1.1.2 PM1.1.4 PM1.2.4
processors 2 PM2.1.4 PM2.1.8 PM2.2.8

* Server system in TPC: PRIMERGY TX300 (similar to RX200/TX200)
http://c970058.r58.cf2.rackcdn.com/fdr/tpcc/fujitsu-siemens.TX300.030811.01.fdr.pdf
% passMark CPU: http://www.cpubenchmark.net/

%7 passMark Memory: http://www.memorybenchmark.net/

280

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Moreover, we consider the PassMark MemTest86>*

because the internal test algorithm
utilizes the memory cells more individually, as done in the PassMark Memory benchmark. The
MemTest86 algorithm>®*® reads and writes the memory cells using a pre-defined pattern, which
can start at the lowest or highest address. The algorithm includes the writing of the original
data and its complement. As a last step, the tool checks the write process by reviewing the
data and counting the faults. The MemTest86 procedure increases the memory address and
repeats the previous steps toward the end of the memory address range. We further analyze
the memory modules (MTx. z), considering the amount of processor threads x and the total
memory capacity z, as listed in Table 55. We create and reconfigure exactly the same virtual
machine settings to enable the analysis of all test cases and we adapt the memory capacity by
adjusting the virtual machine properties. This special virtual environment is necessary because
we cannot execute the measurement tools in the stand-alone®*® memory testing software
MemTest86.

Table 55: MemTest86 — test cases for (MTx. z)

Total memory capacity (GB)
32 24 16 8 1
of 1 MT132 MT1.24 MT1.16 MT1.8 MT1.1
processor 8 MT832 MT824 MT8.16 MT88 MT8.1
threads 16 MT16.32 MT16.24 MT16.16 MT16.8 MT16.1

Finally, we analyze the boot phase of the server system, where x is the number of the
processors, y is related to the channel configuration, and z indicates the total memory
capacity within the system, as shown in Table 56.

Table 56: Boot phase — test cases for (BPx.y.z)

of memory modules *
capacity (GB) per module
1*2 1*4 2*2
of 1 BP1.1.2 BP1.1.4 BP1.2.4
processors 2 BP2.1.4 BP2.1.8 BP2.2.8

**® MemTest86 : http://www.memtest86.com/download.htm

Algorithm: http://www.memtest86.com/technical.htm
Stand-alone software: MemTest86 boots from a USB flash drive or CD

349
350

281

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In the initial starting phase, the BIOS/UEFI checks whether the components work properly.
Therefore, each component will be accessed during the initialization and boot process at some
specific moment, which usually results in the maximum possible power consumption within
some seconds or up to a maximum of a few minutes. The power consumption behavior can be
compared with the spin-up process of a hard disk in which we require more power to spin the
disk from ORPM to 7200RPM than to keep them rotating [HSR et al. 2008].

Table 57 lists the execution time statistics of the various benchmark runs considering the
repetitions because all benchmarks vary at each run. The SPECpower benchmark requires
approximately 77 minutes, followed by the MemTest86 at approximately 27 minutes. In
contrast, the PassMark benchmarks perform within about three to four minutes, which is
nearly as fast as the boot phase of the server system of less than three minutes. We cannot
guarantee the exact benchmark behavior, but evaluate an explicit benchmark trace.

Table 57: Execution time statistics — benchmarks

Benchmarks
SPECpower PassMark PassMark MemTest86 Boot
CPU Memory phase
SPx.y.z PCx.y.z PMx.y.z MTx.z BPx.y.z
Maximum 84.47 4.09 3.21 28.18 3.18
Minimum 73.56 4.02 2.92 26.65 2.23
Execution Mean 76.32 4.04 2.98 27.24 2.70
time Median 74.24 4.03 2.95 26.87 2.73
[min] Standard 4.63 0.02 0.10 0.83 0.27
deviation
Variance 21.46 0.0005 0.01 0.69 0.07

7.1.4 Measurement Issues and Restrictions

Before we present the evaluation results, we give a general overview of our general findings
when analyzing the measurements of the real system. First, the results of the benchmarks and
measurement infrastructure have to be consistent over time because the tools do not use a
real-time clock or have the same time stamps. Thus, we convert all time stamps of the various
signals into a second-based format and slightly shift some signals (in milliseconds) to
synchronize them, considering the different date and time formats. In addition, we configure a
particular start time and stop time as a common base to provide valid time stamps in our
analysis at any time. We specify '0s’ as an absolute and common start time of all signals in
every experiment, which builds the basis of the related times on the x-axis represented with an
exponent.

Figure 104 exemplarily shows the measurements of the Intel Power Thermal Utility recording
the processor frequency while executing the PassMark CPU benchmark (PC1.1.2). In our
frequency measurement, we observe multiple frequency peaks that are higher than the

282

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

maximal possible frequency of the processor defined at 2300MHz, such as 3033MHz at a
time*! stamp t = 5.052 * 10°s. We assume that all signals during our measurements are
affected by such measurement errors. We especially analyze the appearance of the incorrect
frequencies in relation to the total amount of occurring frequencies and observe nearly
+0.33% at the PassMark CPU and approximately +0.25% at the SPECpower benchmark in the

mean. The upward extreme outliers*?

are not the only measurement errors; we also found
values that sharply vary from the rest in a group of observations under the same conditions.
We observe a couple of measurement errors that just occur for a short period in relation to
the entire benchmark (unusually small). Moreover, Figure 104 presents a certain measurement
error between the time period T = [5.048 x 10°,5.052 * 10°]s, which shows a non-signal.
Such a reading error may occur in further measurements. Even more, we face a problem with
zero values in our evaluation that leads to infinite values when we calculate the accuracy

because of a division by zero.

3200

X: 5.0526+08
Y:3033 power_thermal_utility_Frequency

3000

2800 —

2600 —

2400 —

2300
2200

2000 =

X: 5.0522+06
Y: 2001

frequency [MHz]

1800

1600

1400

1200

1000

5.04 5.045 5.05 5.055 5.06 5.065
time [s] «108

Figure 104: PassMark CPU (PC1.1.2) — measurement accuracy

*! Time notation: 1 * 10°s corresponds to 1e+06s MATLAB notation. We simplify the time notation

for better readability and define 1 * 10° = 1e + 06, which ensures easy reading in our graphs and
analysis.

2 Detect outlier: exceed the minimum/maximum limit (e.g. frequency) or calculate the mean u and
variance o. Outliers are either less than u — 30 or greater than u + 30, known as three sigma rule in
normal distribution; our MATLAB version does not support the current ‘isoutliers’ function.

283

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

We require a relatively long period in comparison to the measurement errors in order to
achieve a sufficiently high density of samples that ensure the statistical significance of our
signals. The SPECpower benchmark finishes after around 77 minutes, the PassMark CPU
requires approximately four minutes, the PassMark Memory takes nearly three minutes, the
MemTest86 stops after 27 minutes, and the boot phase ends after three minutes, as shown in
Table 57.

As stated in Section 7.1.2, we execute our simulation framework on a common computer and
list the related settings in Table 50. The measurement infrastructure (hardware and software)
produces a systematic error because of their uncertainty based on the limited accuracy (the
digits in each measurement) or imprecise calibration [Rab 2010]. Another systematic error is
the environmental condition, which may change during our measurements, such as an
increasing ambient temperature. We are restricted to the specific ambient temperature range
of 20 — 25°C because of the static HVAC settings in our laboratory. We cannot adjust the
measurement environment of the system under test, as the changes are possible in our
simulation runs. Additionally, we assume that a highly utilized processor, which is located
relatively nearby the memory module on the motherboard, may be another disturbance of the
thermal development within the system.

7.2 Analysis of the Aspect-based Calculation Methods Regarding Their
Accuracy

7.2.1 Objective

Our aim is a general verification as well as evaluation of the concepts’ operating principles and
our related calculation methods, which have to react on heterogeneous workload scenarios.
We analyze the accuracy of our aspect-based component models and check whether our
approach is adequate. The abstraction level of the server system and its components should be
low enough to support architectural and structural changes at the physical domain. We want
to find the limits of our model because of the chosen abstraction level to treat the conditions
of the vendor and the customer-specific demands at the same time. Additionally, our
component-based models shall improve the power calculation of the commercial tools and
avoid over-provisioning.

7.2.2 Evaluation Criteria

Our models immediately need to react upon the synthetic workload scenarios (category-
specific utilization levels) provided by the commercial tools. We assume that if our models
handle the flexible category-specific utilization levels step-by-step, the entire simulation model
will respond adequately at all possible utilization levels. In this analysis, we answer the
following question:

e How much can we trust our aspect-based calculation methods and component-based
models in our simulation?

284

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

As a prerequisite, we have to answer the question of how to determine whether the aspect-
based calculation methods are accurate. We study and trace the particular components within
the system to verify our concept and show the plausibility when reaching extreme values. The
various commercial tools primarily consider spreadsheets, instead of measuring the real server
systems, which saves costs. We evaluate the accuracy of our aspect-based calculation methods
by comparing our results with the measurement values gained from the real server system.
Therefore, our evaluation criteria are the absolute and relative differences between the
simulation-based values and the measurement results at the various utilization levels. When
simulating the power consumption, we require an over-prediction of less than +10% in
relation to the real-life measurement. We concentrate on the power and thermal
measurement in our analysis and avoid any vendor-specific hardware to show the applicability
of several generic components.

7.2.3 Experimental Setup

We specify the general evaluation environment and measurement infrastructure in the
Sections 7.1.1, 7.1.2, and 7.1.3. In Section 7.2, we describe the experimental setup of the
accuracy analysis in which we exclusively study an audited hardware, because we can
crosscheck our simulation-based results with the empirical measurements gained from the real
hardware, considering identical data of the components. We analyze two Intel processors of
the same family and a couple of memory modules that have various capacities and originate
from a certain manufacturer. We separately evaluate the category-specific components
concerning their accuracy of the aspect-based calculation methods, which is possible because
of our modular and hierarchical concept. Figure 105 shows the block diagram of the controller
layer in our simulation model in which we explicitly simulate the memory module, for instance.

285

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

controller layer

system model

: |
|
|
|
|
|
|
|
|
|
|
|
i |
i i |
i stimuli = memory
i model !
model |C|| i
|
|
! Umem :
i |
|
| !
i !
i ful I
i 2 I
H w O
| > = |
> C
i © 2 !
o
c © |
| S
@ @ © |
| - - - - - - >
i visualization, monitoring, storing cy @ |
i (stimuli, power, energy, performance, temperature) |
i |

="
'l component controller
=\

Figure 105: Controller layer — block diagram considering an exclusive memory model for evaluation purposes

We provide the memory utilization level u,,,,, to our memory model within the system model

and calculate the various aspects of the memory module, which we further analyze in our

controller during the simulation. Herein, we exclusively consider the memory component and

call the particular calc_category() method, provided by the memory model, which is isolated

and encapsulated from the other components, see Section 6.2. We neglect the complex

simulation model (e.g. the thermal control) and especially analyze the component behavior

itself and its internal aspect-based relations, as shown in Figure 44, concerning each utilization

level. In this evaluation section, we disable the system-wide optimization engine because we

analyze the results of our component-based models.

POmem mem
THmem
PO PEmem THmem
mem POmem PEmem
PEmem THmem

Figure 106: Aspect-based memory module and corresponding relations (R,)

286

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Therefore, we restrict the stimuli of our simulation model with regard to the memory and set
the remaining utilization levels to zero®>, which results in ignoring the other components in
the simulation, as shown in Figure 107. Moreover, we ignore the relations or communications
between the various components to isolate and encapsulate the memory module from the
other components. We separately study the memory component, as if the memory model was
detached®” from the entire simulation framework.

stimuli model {memory only) system model (memory only) results (memaory only)

util_level_processor
util_lev el_processor - util_level_processor power_total_memory] »
power_total_memory

neglect proc util_level_processor

peak_power_total_memory
util_lev el_memory util_level_memory peak_power_total_memary
util_level_memory

energy_total_memory >

energy_total_memory
util_lev el_input_output e ot v

regect Vo ui_level_input_output " total_memory temperature_total_memory
util_level_others perf ormance_total_memory
neglect others util_level_others. performance_total_memory

stimuil

ambient temperature energy_efficiency_total_memory »
energy_efficiency_total_memory

rack-mounted server system (exclusive memory)

constant_ambiert_temp

constant_ambient_temp Scope_output_simulink

Figure 107: Simulation model — stimuli and server system for the exclusive memory evaluation

We choose this approach to simplify the evaluation and speed up the simulation in which we
can easily import the utilization levels of the real-life measurements as an input parameter of
our component-specific aspect-based calculation methods. We can effortlessly include the

> that is the subject of our analysis and calculate the absolute as well as a

measurement trace
relative difference regarding our simulation-based results. We consider the following identical
data as the basis of our simulation and internal aspect-based calculation methods as input

paramete rs356:

e Characterization of the component (e.g. category, static configuration, technical
specification, and dynamic characteristics)

e Ambient temperature

e Utilization level

First, we study a certain memory module and a particular processor, an audited hardware
configuration, considering a steady technical specification under varying utilization levels. We
execute and analyze various benchmarks to cover the entire range of the utilization levels of

353 " c e .
Set utilization levels to zero: synthetic constraint, which is unrealistic in a total server system because

the most used components are always very small

34 Detaching single components: Each category has its certain interface, including the aspect-based
calculation methods, thus each component model is available in a standalone model, if necessary.
*>Include the measurement trace: no need of additional synchronization effort, import time-based
MATLAB vectors

36 Input parameter: same parameters required within the simulation framework and calc_category()
method

287

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

especially the single component in our memory evaluation because we cannot restrict the

1’ as is possible in the processor evaluation. We essentially

usage towards a particular leve
analyze the PassMark Memory and PassMark CPU regarding their memory-specific utilization
levels to reflect the certain utilization levels. Additionally, we consider further details of the
workload, such as the low-level observations when reading/writing the data into the memory
cells or executing different instructions. We start with the power simulation and afterwards

analyze the thermal development.

We consider the SPECpower benchmark to explicitly adjust the utilization levels of the
processor in equidistant steps of 10% in the interval [0,100]%, which is nearly proportional to
the calibrated throughput. We execute the standardized benchmarks to ensure the
reproducibility because of their synthetic workload scenarios, see Section 7.1.3. In the
beginning of our evaluation, we do not change the technical specification, as described in this
section. In the next section, we analyze the memory modules and processors, considering the
technical specification tree of each component, and analyze the effects upon the changing
component characteristics.

7.2.4 Results and Analysis

We exemplarily present the results of our aspect-based component models to evaluate our
concept and especially consider the memory and processor, concerning their power
consumption and temperature development. We analyze the aspect-based accuracy, the
absolute difference between the measured and simulated values (in the mean) and state their
relative differences (in the mean) with regard to the flexible utilization levels that influence the
component states.

Memory Power Evaluation

A key performance metric of the memory module is the actual utilization level that indicates
the physical usage of a memory module, usually expressed in percentages. The utilization level
has the major impact on the memory power consumption and corresponding thermal
development. We conjecture that simulating the memory power on the basis of the utilization
level is probably imprecise. If the memory power is inadequate, we will investigate and analyze
the effects of the memory read-to-write ratio.

First, we exemplarily analyze a 4GB memory module of Micron (LV DDR3 — SDRAM, see
Table 47), which we assemble together with one enabled Intel Xeon E5-2650v2 processor in
our system under test. Our chosen memory module is nearly identical with the memory
module in our database that we consider as a basis (metadata default) to simulate the power
consumption. We avoid the characteristic changes in this section, which we further analyze in
Section 7.3, but consider the technical specification in our aspect-based calculation method at
the same time, such as the vendor, die, or family.

357 . - . . . qe
Particular levels: We cannot generate utilization levels in equidistant steps.

288

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

We execute the PassMark Memory benchmark (PM1.1.4) on the real server system and trace
the memory utilization level (by the HW Monitor Pro), power consumption (by the Intel Power
Thermal Utility), and temperature (by the Intel Power Gadget). The upper graph in Figure 108
shows the utilization levels while executing the PassMark Memory benchmark, more
particularly, the data operations, reading/writing the data, or refreshing the memory cells. In
our example, the PassMark Memory benchmark utilizes the memory module between 22%
and 29%, which we similarly observe in the remaining (PMx.y.z) benchmark runs. We
observe that the memory power consumption reaches only predefined values during the
benchmark, such as [1.1 — 1.2]W, [2.5 — 2.6]W, [3.7 — 3.8]W, or [4.9 — 5.1]W, as shown in
the lower graph. The lower power values ([1.1 — 1.2]W) refer to the background power while
precharging the memory cells. On the other hand, the memory cell selection (bank or row
address) for storing the data consumes more power ([2.5 — 2.6]W) than the precharging
process. The explicit memory operations (read or write access) result in the highest power®*®
values of [3.7 —5.1]W that depends upon the concrete instruction. In contrast, the
benchmark in (PM1.1.2) utilizes the memory module in a range between 39% and 52%,
whereby we observe similar steady power states and comparable power values in relation to
the memory capacity.

32
database read write refresh read/write Memory utilization
—_ 30 operations
s
T 28
>
@
5 %f
=
N ooaf
E]
22
20 | | | | |
262 2.64 2.66 2. 68 2.7 2. 72 2. 74 2. ?6 278 28
time [s] %108
8r
X: 2.7766+06 measured
Y:6.155
6 —
X: 2.692e+06 X:2.714e+06
% Y.Jaﬂe Y 3792 X: 2.789e+06
T 4 & Y:5.086
2 X: 2.637e+06 I X:2.758e+06
g Y:2.667 Y:2.672
r“‘““‘M.'T
=
background power
| | | |
262 2.64 2.66 268 2.? 2 72 2. ?4 2. 76 2. 78 2.8

time [s] %108

Figure 108: Memory power measurement (PM1.1.4)

38 Memory power: additional information is provided in Section 3.4.2 and Section 5.2.2

289

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMQOS)

In our memory power simulation, we consider the same trace of the utilization levels that we
gained from our experimental measurements in (PM1.1.4). Figure 109 shows our simulation-
based results of the memory power (dashed-dotted red line) in comparison to the
measurement trace of the Intel Power Thermal Utility (solid blue line) in the middle of the
graph. The lower graph of the figure shows the absolute difference in the mean®?®
purple) between the measurements and our simulation in the range of [—3.9,4+2.2]W, which

(marked in

looks like an unacceptable result of our model. The extreme inaccuracy occurs in a situation
when the utilization level increases from 25% to 26% at t = 2.671 * 10°s (t = 2.702 * 10°s)
or decreases from 26% to 25% at t = 2.788 * 10%s, whereby both levels correspond to

different memory states**

. We can avoid these situations when we detect the increasing
utilization levels and postpone the power consumptions, or adjust the limits of the specific
states. Another reason of the inaccuracy at T = [2.624 = 10%,2.644 = 10%]s or T = [2.768 *
10°,2.788 = 10°]s is that we only specify three memory states in our non-linear calculation

method to reduce the modeling effort.

.35
£ [——Memory_utiization
g 30
5 ., eRE IEEEEREE"
g 25 I~ x: 27000408 X 27880406
N Y
5 Ll | ! \ L | L |
262 264 266 268 27 272 274 276 278 28
time [s] 10°
8
X: 27880406
S: 6 L Y 5061
5 4 Y3288 040 O P A o Y. 3285 =
2 Ak o\ T (60N | (oo =~ measur
g prisd R i 1 i .] X 2743040 SRR | V| | === simulated
2 Y i i 1} Yy 5 i
= ¥ L . 1 i U
1 1 1 1 1 | | | 1
0
262 264 266 268 A g 272 274 276 278 28
time [s] 10°
i X 27030406 - =
3 ‘ Y 2182 absolute difference |
E. 25 ‘ -
E oyt e | |
E U .‘JM M |, :
S L |
g 2 g
B ‘ | | | L = 1
5
262 264 266 268 27 272 274 276 278 28
time [s] 10°

Figure 109: Memory power accuracy (PM1.1.4)

% Mean values: because of sampling, shown in Figure 111

360 Memory states: cluster into three IDD states

290

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

On the other hand, we underestimate the power consumption by a mean inaccuracy of
approximately —0.09W, which is an +6.7% inaccuracy in relation to our measurements during
the entire benchmark in this example. The time of our absolute over-estimation is extremely
low in comparison to the total time of the entire benchmark and therefore we assume that the
inaccuracy is negligible. Figure 110 presents the memory power consumption by the related
normalized probability function (histogram) on the basis of the absolute differences in Watt. In
this example, we underestimate nearly half of our memory power consumption but observe a
median at +0W, a standard deviation by +0.91W, and a variance of +-0.83W/.

0.3

0251 —

o

L =

« (S}
T

normalized probability
<

.0 —_ . ﬂw *.—\m

-5 -4 -3 -2 -1 0 1 2 3
inaccuracy [W]

Figure 110: Memory power accuracy — a histogram (normalized probability) (PM1.1.4)

Figure 111 illustrates the identical absolute difference signal, which is the lowest graph in
Figure 109 (marked in purple) but in this figure exemplarily limited by the horizontal axis in
T = [2.6432 * 10%,2.6452 = 10°]s, which is a simplified representation of the signal. In our
accuracy analysis, we calculate the absolute difference on the basis of the samples of the
utilization levels in equidistant steps (time stamps of the green bars) and discrete points of
time of the measurements. We simplify the representation of the absolute difference signal
into a constant signal (solid purple line) that is suitable for a fast and easy representation.

15
= absolute difference interpolated
Il =bsolute difference samples
1 —
_. 05
>
9]
€ o " n 5 - — o
=]
o
o
©
£
0.5
1+
| | | | | | | | | |

26432 26434 26436 26438 2.644 26442 26444 26446 26448 2645
time [s] %108

Figure 111: Memory power — an interpolation between the samples (PM1.1.4)

291

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In the next section, we check whether we can trust the steady power states gained from the
PassMark Memory benchmarks, which we use in our memory evaluation. For this purpose, we
analyze the memory utilization level in another benchmark to detect the same memory states
and show the plausibility of the measured values. We trace the memory utilization level in the
PassMark CPU benchmarks that concentrate upon the processor utilization. The top graph in
Figure 112 exemplarily shows the memory utilization level (traced by the HW Monitor Pro) of
the identical server configuration used in (PM1.1.4), but we execute the PassMark CPU
benchmark (PC1.1.4) instead. The graph in the middle of the figure illustrates the measured
power consumption (by the Intel Power Thermal Utility) displayed by a solid blue line, and the
simulation results presented by a dashed-dotted red line. We observe that the memory power
consumption significantly increases approximately up to 5.2W when the processor searches
prime numbers, simulates physics interactions, or sort strings>®', probably because of the
read/write necessity at T = [2.133 % 10%,2.152 x 10%]s and T = [2.221 % 10°,2.262 = 10°]s.
At the same time, the memory utilization level does not substantially rise (> £5%) in the
prime numbers test, but approximately doubles in the two remaining higher utilization phases.
We can observe a direct correlation between the utilization levels and the power
consumption, but we consequently assume that the memory power consumption does not
only rely on the utilization levels. In addition, we observe that the power consumption at the
steady utilization level of 22% toggles between 1.17W at t = 2.154 * 10°s and 2.60W at
t = 2.180 * 10°s, as exemplarily tagged in Figure 112. We found that the same utilization
levels contradictorily result in diverse memory power values POy, om (Umem) When executing
different benchmarks, such as (PM1.1.4) or (PC1.1.4), as shown in the following equations:

Umem = 22%,{CLmoda, CLtec, CLmap} = const (7.1)

~1.17W, if (PM1.1.4), Figure 109 att = 2.743 * 10%s

7.2
~2.60W, if (PC1.1.4), Figure 112 at t = 2.180 * 10°s (7.2)

POmem(Umem) = {
In fact, we cannot trust the steady state values of a particular benchmark. Accordingly, we
measure and evaluate both benchmarks in our analysis considering the accuracy. We are
convinced that the processor-based workload reacts on the memory modules in a similar
manner when executing the database operations in the PassMark Memory workload, because
the processor partly reads/writes data into the memory cells and loads the data considering
the processor caches. In this example, the mean inaccuracy is approximately +1W, in which is
an +31% inaccuracy in relation to our measurements if we purely consider the memory
utilization levels independently of the workload scenario. Consequently, we determine the
category-specific workload scenario in our simulation model when simulating the memory
power consumption.

361 Strings: single-byte characters

292

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

40

= physics teracions
3 350 n X:2.2622+06
3 X 2.2216406 sortstings .31
2 30 Y:35 n
c
2 X:2.1336+06 X:2.1526+06
© [Y: 24 prime numbers - y: 24 X: 2.18e+06
N 25 =] Yi22
] J X
> | | | | |
20
21 215 22 225 23
time [s] %108

8—

e X: 2.1448+06 X: 22268406 measured
= 6 Y: 5197 Y:52 - simulated
g 5 » L ———-
& 4 X:2.18e+06 r
2 3 Yi26 | Limemsmemesseen| Bt eeeas
s} X: 2.1540+06 -
=% [.

ff;. L AL [1 ALl "

) | | | | |

21 215 22 225 23
time [s] %108

5
g g absolute difference

2
31
E o
g 1
£ 3

. \
-5

2.1 215 22

time [s]

225 23

x10°

Figure 112: Memory power accuracy (PC1.1.4)

A restriction of our memory evaluation is that all of our PassMark Memory or PassMark CPU
benchmarks do not fully utilize our memory modules, as exemplarily represented in Figure 109

and Figure 112. For this purpose, we briefly analyze other benchmarks®*

, such as the
PMemTest, Memload, or NTMemTest, as shown in Figure 113. In our previous examples, the
memory module has a peak value of approximately 5.2W, see Figure 112. Accordingly, to our
additional evaluation we have to update the maximal power consumption of our memory
module in (PM1.1.4/PC1.1.4) at nearly 6.8W. These experimental benchmark runs show the
significance of the specific memory workload that we have to determine when simulating

precise power values.

measured

! idle !

! i
system MSDOS Windows

{start ! idle
1

Windows Memload

idle

PMemTest

i i i
i i i
! | P | i A NTMemTest | Windows
6 ; ! V:6.752 ! :W X: 542 - idle
i i i Y:6.438 e
i i i X:735
i i i Y: 5.896
.5 | i i
=3 : | | :
S 40— i i i i
= | 1 i i
(=} i i 1
< i i i
3 i i i
21 1 | !
- - i |
%76 i X:323 'l : i _A L.J :L.
1 Y:1.585 i Y:1.587 i
i T i X412 X627 X: 820
i i Y:1.083 Y:1.086 Y:1.086 A/\>
o Ll \ \ L \ ! ! !
100 200 300 400 500 600 700 800
time [s]
Figure 113: Memory power consumption at various benchmarks - Fujitsu-specific hardware adapter
362

Other benchmarks: PMemTest (physical memory test), Memload, or NTMemTest are specially
adopted tools of the server system, but from the public sources. Fujitsu uses a special memory slot
adapter that indicates the microampere, which is independent of any software.

293

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In our memory evaluation, we neglect the explicit workload scenario and consider the memory
model concerning the aspects themselves. Table 58 lists the inaccuracy of our memory power
simulation under various benchmarks regarding their absolute as well as relative differences
between the simulated and measured values, both stated as mean®® values. Our aim is an
error rate less than ten percent, which we specify as precise enough, see Chapter 4. We can
argue that our results of the SPECpower benchmark are sufficient because the inaccuracy of
nearly —12.3% may occur on the basis of the error propagation when simulating multiple
memory modules. Our power simulation is especially inadequate concerning the PassMark
CPU benchmarks (PCx.y. z), which have an approximately high inaccuracy (relative difference)
in comparison to the PassMark Memory benchmarks (PMx.y.z), excluding the (PM2.1.4)
run. We found that our PassMark Memory results are reliable and adequate because the
relative differences are in the range of [-10.2,4+6.7]% when we neglect the results of
(PM2.1.4). In our (PM2.1.4) benchmark, we expect the same tendency, such as in the
remaining PassMark Memory benchmarks, but we observe a nearly steady power value of the
entire period of nearly 2.5W. We do not trace a power increase by more than 1.5W that
occurs in more than a few seconds, which leads to the assumption that the memory sensors
produce incorrect power values of all our iterations in our evaluation. Furthermore, we
monitor a random signal at the end of the benchmark that does not rely on any utilization level
or instruction.

Table 58: Memory power accuracy — the simulated vs. the measured results

Inaccuracy
Absolute Relative
difference [W] difference [%]
(mean) (mean)
SPECpower SP1.2.8 -0.29 +4.4
SP2.2.16 -0.84 -12.3
PassMark PC1.1.2 +0.11 +13.9
cPU PC1.1.4 -1.02 -30.9
PC2.1.4 -0.07 -0.1
PC2.1.8 -0.65 -25.1
PC2.2.8 -0.63 -16.0
PassMark PM1.1.2 -0.16 +3.6
Memory PM1.1.4 -0.09 +6.7
PM?2.1.4 +1.59 +68.8
PM2.1.8 -0.16 -3.3
PM2.2.8 -0.37 -10.2

363
Mean values: y, average of all data values

294

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Moreover, we cannot trust our memory power simulation when we neglect the workload
scenario, because the simulation results are insufficiently precise, especially of the PassMark
CPU benchmarks. The relative difference is in the range of [—30.9,4+13.9]%, which simply is
based upon the utilization levels. We analyze whether the read-to-write ratio, considered as an
additional impact factor, may improve the memory power simulation. Furthermore, we
assume that the interactions between the processor and memory cause effects of the read-to-
write ratio, especially in the PassMark CPU benchmarks, which results in inaccurate values
because we only consider the utilization level as an input parameter of our aspect-based
calculation method. As a result of our evaluation, we analyze and consider the read-to-write
ratio on the basis of the interactions besides the utilization levels. Therefore, we define the
read-to-write ratio assuming the benchmark specification, which refers to the certain tests,
and on the other hand use the Fujitsu-internal traces®®* of the memory accesses.

Figure 114 exemplarily shows the results of our memory power simulation considering the
read-to-write ratio (dashed magenta line) and the results purely on the basis of the utilization
levels (dash-dotted red line) at the PassMark CPU benchmark (PC1.1.4) in the middle of the
graph. We especially adjust the read-to-write ratio when executing the prime numbers,
physical interactions, or string sort algorithms, as graphically presented in Figure 112. In our
example, we simulate more precisely the power values (absolute difference), such as by
reducing the mean and the median by approximately one Watt.

40—

Memory_utiization

35—
30—

25—

utilization level [%]

20 I ! I ! I
21 215 22 225 23
time [s] %108
8
7 —— measured
B [simulated
£ 5 M P S = = = simulated read-write-ratio
s 4 v fmrmmT I '
g3 ot
a Sl F""*—*‘“]- --------------- r’*——r ------------------------------------
12 n L: 1 T PR N
= t
of " ! ! ! ! sl e
2.1 215 22 225 23

time [s] %108

5 absolute difference
=3 — — —absolute difference read-write-ratio

inaccuracy [W

21 215 22 225 23
time [s] x10°

Figure 114: Memory power accuracy (PC1.1. 4) considering the read-to-write ratio

364 Fujitsu-internal traces: specific to each memory module (vendor, capacity) and benchmark, traces are

not publicly available

295

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

Our aim is to simulate the memory power as exactly as possible, such as when the ideal
absolute difference is +0W and the relative difference is +0% . We determine the
improvement of the read-to-write ratio by identifying the total amount of the difference to
zero and subtract the inaccuracy value of the utilization level results considering the read-to-
write ratio. Herein, negative improvement values refer to deterioration, see Equation (7.6).

linaccuracyytitization tever (PC1.1.2)| = 10.11W| = 0.11W (7.3)
linaccuracy,eqq—write—ratio (PC1.1.2)| = [-0.15W| = 0.15W (7.4)
improvement = |INACCUracyyritization tevet] — NACCUTAY reaa—writo-ratiol (7.5)
improvement = 0.11W — 0.15W = —0.04W (7.6)

Table 59 lists our results and shows the reductions of the absolute and relative differences
(mean values) in all simulations of the PassMark CPU benchmarks considering the read-to-
write ratio, which we choose because we assume the highest potential for improvements. We
reduce the absolute difference by approximately +0.41W overall and the relative difference by
around +13.52%. A negative exception regarding the relative improvement builds the results
in (PC2.1.4) in which we increase the absolute difference, but with an acceptable relative
difference by nearly —3%.

Table 59: Memory power accuracy considering the read-to-write ratio

Inaccuracy Inaccuracy considering Improvement
the read-to-write ratio
Absolute Relative Absolute Relative Absolute Relative
difference difference difference difference difference difference
(W] [%] (W] [%] (W] [%]
(mean) (mean) (mean) (mean) (mean) (mean)
PC1.1.2 +0.11 +13.9 -0.15 +2.3 -0.04 +11.6
PC1.1.4 -1.02 -30.9 -0.01 +10.2 +1.01 +20.7
PC2.1.4 -0.07 -0.1 +0.16 +3.1 -0.09 -3
PC2.1.8 -0.65 -25.1 -0.06 +2.5 +0.59 +22.6
PC2.2.8 -0.63 -16.0 -0.03 -0.3 +0.6 +15.7
Mean -0.45 -11.64 -0.02 +3.56 +0.41 +13.52

296

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Furthermore, we improve the accuracy (median®®, standard deviation®®®) and precision®®’
(variance) of our power simulation considering the read-to-write ratio during the specific
benchmarks, as shown in Table 60 and Table 61. We improve the median by approximately
+0.74W, the standard deviation by around +0.07W, and the variance by nearly +0.17W in
the mean.

Table 60: Memory power accuracy and precision statistics considering the read-to-write ratio

Inaccuracy Inaccuracy considering
the read-to-write ratio
Absolute difference [W]

< s £s & c s 25 ¢

] o T © © 9] ° T © ©

E & §3 0§ -

w o > wn O >
PC1.1.2| +0.11 +0.65 +1.38 +1.91 -0.15 +0.13 +1.14 +1.29
PC1.1.4| -1.02 -1.37 +1.17 +1.37 -0.01 -0.29 +1.05 +1.11
PC2.1.4| -0.07 -0.25 +1.04 +1.09 +0.16 +0.09 +1.14 +1.29
PC2.1.8| -0.65 -1.31 +0.79 +0.63 -0.06 -0.28 +0.72 +0.52
PC2.2.8| -0.63 -1.63 +1.75 +3.05 -0.03 -0.71 +1.73 +3.01
Mean -0.45 -0.782 +1.23 +1.61 -0.02 -0.21 +1.16 +1.44

Table 61: Improvement of the memory power accuracy and precision considering the read-to-write ratio

Improvement

c
c S = o 3
© < © S c
Q Eel T © ©
(7] c S =
E £ S 3 s
n o >

PC1.1.2| -0.04 +0.52 +0.24 +0.62
PC1.1.4| +1.01 +1.08 +0.12 +0.26
PC2.1.4| -0.09 +0.16 -0.10 -0.20
PC2.1.8| +0.59 +1.03 +0.07 +0.11
PC2.2.8| +0.6 +0.92 +0.02 +0.04

Mean +0.41 +0.74 +0.07 +0.17

365
Median: value in the middle when values are sorted in an ascending order

Standard deviation: g, root-mean-square (RMS) value from a set of absolute differences [W]
Precision (variance): a2, closeness / variability of all data values

366
367

297

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

We demonstrate our memory power values exclusively considering the utilization levels and
found that a precise simulation requires additional data about the memory instructions
because the measured power values differ in dependence on the benchmark when tracing the
same utilization level. In fact, if we do not consider the read-to-write ratio, the simulation
results are definitely inadequate. Therefore, we always consider the workload scenario in our
simulation to cover the read-to-write ratio of the memory module. Herein, we have to
estimate the significant read-to-write ratio of each workload scenario (e.g. processor-bounded,
memory-bounded, or I/0-bounded), which are based upon empirical studies by a statistical
approximation.

Memory Temperature Evaluation

Furthermore, we simulate the memory temperature on the basis of the memory power
consumption (directly dependent upon the utilization levels) and the technical specification. If
a memory is in a steady state, such as a constant utilization level, the temperature will
continuously increase, known as self-heating due to the power dissipation®*, which we
observe closely to some individual phases in our measurements. Usually, the memory
temperature does not increase as fast as the effect of an increasing utilization level will have.
We specify a higher slope of the temperature increase in comparison to the decrease, which
rely upon the delta between the previous and actual memory power. Therefore, we distinguish
between a steady state, an increasing, and a decreasing temperature development. We specify
all temperature-based methods by a time delay because of the inertia of the thermal
development, as specified in Section 5. We neglect short-term peaks (less than one second) of
the power consumption, which do not influence the memory temperature.

Again, we analyze the 4GB memory module of Micron (LV DDR3 — SDRAM, see Table 47),
which we exemplarily assemble together with two enabled Intel Xeon E5-2650v2 processors in
our system under test. Figure 115 graphically presents the results of our memory temperature
simulation (dash-dotted red line) in the middle of the figure, which we evaluate according to
our measurements (solid blue line) at (PM2.1.4). In this example, the utilization level is in the
range of [22,29]% of those results in the steady memory power states because of our cluster
method (threefold division). We are aware of the read-to-write ratio, and thus we observe a
temperature increase during the database operations and the read-to-write-phases®®. The
simulated temperature increases from 34.13°C up to 37.04°C during the database operations
at the time T = [1.089 * 10%,3.289 * 10*]s and decreases slowly to 34.37°C at the time
T =[3.289 x 10%,5.439 = 10%]s.

368 Self-heating: thermal response, predominantly specified by the power dissipation and thermal

resistance
%% Database operations and the read-to-write-phases: see Figure 108

298

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Herein, we overestimate the temperature more than the rest of the PassMark Memory
benchmarks probably because of the continuous changing read-to-write ratio. The simulated
memory temperature increases at the times T = [5.439 = 10%,7.339 = 10*]s, T = [9.139 =
10%,1.044 * 105]s, and T = [1.344 * 10°,1.584 = 10°]s due to the utilization level changes,
which we consider in our temperature method.

w
5y

—— Memory_utilization
X: 1.549+05

Y:29

X:3.289e+04 X:1.154e+05 X:1.344e+05 V
Y:22 Y:22 Y:22
. . e
| | | |
e 4 6 8 10

w
=3

utilization level [%]
N
o

20 X: 1.089+04 | | | 1

time [s] %10

o' — measured
X:1.564e+05 .
PE)\5 ;fgiem X:7.330e+04. X:1.044e+05 varae | T simulated
S .-
3 & N X:6430e404 U T T et T e iy T
o [e A £ A e Y o ST e R ke W
g 34T ey X: 13442405
g X:1.089+04 v:35.22 Y 34.99
1] Y:34.43
1 | 1 | 1 | | | 1
2 4 6 8 10 12 14 16 18
time [s] %10
5
oy 4 absolute difference
& 3
T 2
[
3 0
g -1
=
T2
3 1 | 1 | 1 | | | 1
2 4 6 8 10 12 14 16 18
time [s] x10%

Figure 115: Memory temperature accuracy (PM2.1.4)

In this example, we observe an absolute temperature difference (in the mean) by
approximately +0.82°C and a relative difference by around +2.5% inaccuracy in relation to
our measurements during the entire benchmark. Figure 116 presents the memory
temperature accuracy by the related normalized probability function (histogram) on the basis
of the absolute differences in degree Celsius. We overestimate the memory temperature and
observe a median at +0.67°C, a standard deviation by +1.41°C, and a variance of +1.98°C.

299

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

0.14 T T

normalized probability

inaccuracy [°C]

Figure 116: Memory temperature accuracy — a histogram (normalized probability) (PM2.1.4)

We observe a similar thermal development at the PassMark CPU benchmark (PC2.1.4)
because of the nearly steady utilization levels in the first third, as shown in the middle graph of
Figure 117. We simulate the temperature increase at the time T = [4167,5.767 * 10*]s from
33.79°C up to 34.37°C, which does not increase as fast as the measured temperatures from
30.8°C up to 34.37°C. A higher and faster temperature increase (up to 36.85°C) occurs in the
short-term atT = [5.767 = 10%,8.067 = 10*]s while calculating the prime numbers, which
afterwards decreases to its previous value. In contrast, the measured temperature
continuously increases during the time and has a low degree of dependency concerning the
read-to-write ratio or utilization level, which is shown at the time between T = [1.407 *
10%,1.597 * 10°]s. In our memory temperature simulation, we consider the power
consumption on the basis of the read-to-write ratio and utilization level, which results in a
higher temperature increase at the same time. We observe a temperature increase up to
38.56°C when the utilization level changes from 23% up to 49%, but considering a time delay
in respect to the inertia. Our simulation does not avoid the utilization-based gap att =
1.617 = 10°s because the low utilization lasts about several seconds at T = [1.597 =
105,1.642 * 10°]s. The effect is a wide range of the temperature decrease, with nearly 4°C
between the two read-to-write intensive phases. We observe an absolute temperature
difference (mean) by approximately +0.8°C and a relative difference by around +2.4%.

300

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

60

X: 1.597e+05

=2 Y: 49 Memory_utilization
— . X:1.832e+05
2 45 v
o - ']
E X: 1.642e+05
30| x 4167 X:5.767Te+04 X: 8.067e+04 X: 1.407e+05 X: 16172405 A
N Y22 Y:23 e — N Y:23 Y22
= " - ————————————————— = w
El
15‘ | | | | |
0.5 1 1.5 2 25
time [s] x10°

X:1.8826+05

X: 1.597e+05 s measured

40 Y: 38.56 i

X: 8.067e+04 - S G R RS S S S S o simulated
P} AN

38 o £ X: 1.407e+05 - \ / .

X:5.767e+04 Y:35.29 g

Y:34.37

X: 1.6722+05
32 ¥:34.17

temperature [°C]
w
(=2}
x
2
&l

Y:30.8 0.5 1 1.5 2 25
time [s] x10°

absolute difference

inaccuracy [°C]
W20 a2aNWRAEO

0.5 1 1.5 2 25
time [s] %10°

Figure 117: Memory temperature accuracy (PC2.1.4)

Table 62 lists the inaccuracy of our memory temperature simulation, their absolute as well as
relative differences (in the mean) between the simulated and measured values considering
various benchmarks. We overestimate the memory temperatures that differ in the range
between [+0, +10]% and observe that our simulation is more accurate considering modules
with higher capacities. If we compare the results of the following benchmark pairs
(SP1.2.8,5P2.2.16), (PC1.1.2,PC2.1.4), and (PC1.1.4,PC2.2.8) that contain a second
processor and the doubled memory amount, we observe a higher inaccuracy, despite having
the same conditions of the memory temperature simulation. We assume that the additional
processor may influence the thermal measurement of our memory modules, which we do not
observe at the PassMark Memory benchmark. We overestimate the memory temperatures
around +1.2°C, which is an approximate inaccuracy of +4%.

301

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

Table 62: Memory temperature accuracy in comparison to the measurements

Inaccuracy
Absolute Relative
difference [°C] difference [%]

(mean) (mean)
SPECpower SP1.2.8 +0.9 +3.9
SP2.2.16 +2.58 +10
PassMark PC1.1.2 +1.29 +3.9
crPU PC1.1.4 +0.25 +1.1
PC1.2.4 +0.51 +1.8
PC2.1.4 +0.8 +2.4
PC2.2.8 +2.02 +6.3
PassMark PM1.1.2 +1.82 +5.5

Memory PM1.1.4 +0.8 +3

PM1.2.4 +2.24 +7.1
PM2.1.4 +0.82 +2.5
PM?2.2.8 -0.01 +0.4

Processor Power Evaluation

In this section, we focus on the processor power and temperature, which are affected by the
multiple processor cores and their dynamically changing frequencies. In contrast to the
memory modules, we reproduce the specific utilization levels — or usage — in the range
Ucs = [0,100]% in about 10% discrete steps using the SPECpower benchmark.

In the beginning of this section, we justify our decision on the adequate measurement tools
concerning their resolution to sufficiently trace the utilization levels and frequencies.
Afterwards, we analyze the deviations of the thread-specific frequencies®” of the respective
processor and check whether the frequencies may improve the accuracy and precision of our
processor model. Additionally, we review the measurement traces, analyze the mean values of
the thread-specific and processor-specific frequencies, and test if we can neglect the thread-
specific frequencies to speed up our simulation. The frequencies depend upon the utilization
levels and therefore we show how the thread-specific utilization levels vary from the target
throughput in the SPECpower benchmark and analyze their relevance when tracing the
processor-specific utilization levels (as mean values) at the same time, which may accelerate
the processor simulation.

370 Thread-specific frequencies: consider the frequency of each processor core and related hardware

thread

302

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In the following section, we present the simplification of our measurement traces and
simulation results, especially of the SPECpower benchmark and MemTest86 to improve the
readability of the results. According to the decision on what measurement tools and resolution
we rely on, we present our simulation results regarding the processor power and temperature.

As stated in the concept chapter, we consider a resolution of one second in our simulation
framework, which is our major assumption and abstraction when designing the processor
model and simulating the aspects, for example. Concerning the experimental environment,
three measurement tools are available, one with a 1000ms resolution, another with 100ms
resolution, and the next one with 50ms resolution, see Table 49. First, we evaluate whether
the 1-second resolution tool provides sufficient precision, and finally decide on the specific
measurement tool of our processor evaluation that we rely on.

In order to analyze the processor frequency and the suitable tools, we start with the PassMark
CPU benchmark®”* and exemplarily show the measurement results, beginning with the lowest
resolutions of 100ms and 50ms. As a typical illustration, Figure 118 presents the processor®’?
frequency recorded by the Intel Power Gadget (top of the graph) and Intel Power Thermal
Utility (middle of the graph) executing the PassMark CPU benchmark. At the bottom of the
graph, we place both signals on top of each other so that the differences between them can be
determined, which is our basis for analyzing the inaccuracy in relation to the sampling rate for
the scope of our measurement infrastructure. We have to be aware that the frequencies are
only instantaneous samples, not averages.

N 2500
% ‘ power JadgELCPuiFrsqusncyiD|
= 2000 {
=
[9)
g 10 ;/ U U U U U U U Y Y N TR P
=]
=
g 1000 = | | | | |
5.05 5.1 515 52 525
time [s] %10°
E 2500 1
power_thermal_utility_Frequency
£ 2000
>
[9)
$ 1500
=]
o
g 1000 | | | | |
5.05 5.1 5.15 52 5.25
time [s] %108
N 2500 1
§ [Jpower_gadget CPU_Frequency 0
: 2000 power_thermal_utility Frequency
o
& 1500
=]
=
f—;’ 1000
5.05 5.1 515 52 525
time [s] «10°

Figure 118: PassMark CPU (PC1.1.2) — processor frequency analysis
(Intel Power Gadget vs. Intel Power Thermal Utility)

3t passMark CPU: It is more transparent and easier to understand than the SPECpower illustration.

372 .
Processor: first processor, called ‘CPUQ’

303

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

We calculate the integral of the areas under both curves considering the trapezoidal numerical
integration (trapz) method of MATLAB that approximates the signals because we cannot
define a specificy = f(x) function. We define the Intel Power Thermal Utility signal as our
basis because of the more accurate measurement results (50ms resolution) in comparison to
the remaining signal. Figure 119 and Figure 120 show an extract of some recordings, the first
at the full utilization level and the second when the system is idle. The high-resolution data of
the Intel Power Thermal Utility constantly vary in contrast to the signal of the Intel Power
Gadget. Ideally, the processor frequency is steady at a particular value in both figures.

2400
[—Ipower_gadget CPU_Frequency 0
power_thermal_utility_ Frequency
2200
2000
£ 1800
=
=
(&}
& 1600
=
o
o
1400
1200
1000
513 5.135) 5.14 5.145 5.15
time [s] <108
Figure 119: Frequency analysis (PC1.1.2) —100% utilization level
(Intel Power Gadget vs. Intel Power Thermal Utility)
1500
[Jpower_gadget CPU_Frequency 0
—— power_thermal_utility_Frequency
1450
1400
N 1350 -
I
=
& 1300
g
o
1200 \\ V] |v an V /
1150 U V

1100
5.196 5.198 52 5.202 5.204 5.206 5.208 521
time [s] %10°

Figure 120: Frequency analysis (PC1.1.2) — 0% utilization level
(Intel Power Gadget vs. Intel Power Thermal Utility)

The frequencies change so often because of the power management of the processor/system,
OS dependencies, or page faults in the idle case. We observe that the integrals of the areas
under both curves are closely identical: e.g., we calculate between the Intel Power Thermal

304

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Utility and the Intel Power Gadget signals a relative error in median of nearly +0.68% at the
PassMark CPU benchmark and approximately +1.48% at the SPECpower benchmark. Table 63
lists the relative errors as the statistical representation regarding the PassMark CPU and
SPECpower that Figure 121 graphically presents. The median value increases along the length
of time that a benchmark requires and the PassMark CPU errors are skewed more than the
SPECpower values, as shown in Figure 121.

Table 63: Frequency inaccuracy (resolution inaccuracy: Intel Power Gadget vs. Intel Power
Thermal Utility) — relative error (numerical) of PassMark CPU and SPECpower

Resolution inaccuracy PassMark CPU SPECpower
(trapz of frequency)
Mean time [min] 4.04 76.32
Upper adjacent [%] +1.18 +5.40
75th percentile [%] +1.04 +2.91
Median [%] +0.68 +1.48
25th percentile [%] +0.55 +0.15
Lower adjacent [%] +0.30 -2.41
12F - .
| 5 |
7 1 :
1 | 4r i
_osf {9 I
% 08 % 2r
é orr § 1+
@ 06 @
I or :
05l ; :
| Ar |
o4l ! |
| 2f i
03 —‘— f —‘—
PassMark CPU SPECpower

Figure 121: Frequency inaccuracy - graphical representation of the relative error of PassMark CPU and
SPECpower (resolution inaccuracy: Intel Power Gadget vs. Intel Power Thermal Utility)

Thus, we assume that the Intel Power Gadget is sufficiently precise to trace the processor
frequency because the error rate is tolerable in the entire experimental analyses. Moreover,
we analyze the HW Monitor Pro with a sample time on a 1-second basis and check whether we
can use the tool instead of the Intel Power Gadget, whereby the HW Monitor Pro has the
identical resolution such as our simulation model.

The analysis procedure concerning the processor frequency and tool resolution itself is the
same: we calculate the integral of the areas under both curves of the HW Monitor Pro and the
Intel Power Gadget, whereby we specify the Intel Power Gadget as the new basis of our

305

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

calculation. Figure 122 presents the processor frequency®” recorded by the Intel Power
Gadget (top of the graph) and HW Monitor Pro (middle of the graph) running the PassMark
CPU benchmark.

‘N 3000
é 2500 — \ power_gadget_CPU_Frequency_0
> i
& 2000
E 1500 —
g | PPN P ' L
o 1 | | | T
<= 1000
21 215 22 225 23
time [s] %108
W 3000
é 2500 [—— hw_moritor_pro_Intel_Xeon_E5_2648L_Core_0
& 2000 4
5
g
£ 1000 : ‘ : L :
21 215 22 225 23
time [s] %108
= 3000
L - EpcwergadgeLCPUfFrequencyﬁD
= 2500 ——hw_monitor_pro_Intel_Xeon_E5_2648L_Core_0
8 2000~ ' 1
g l
] 15007' U U U U U U U’ b ol v owm L
£ 1000
21 215 22 225 23
time [s] %108

Figure 122: PassMark CPU (PC1.1.4) — processor frequency analysis
(Intel Power Gadget vs. HW Monitor Pro)

We observe that the curves of the Intel Power Gadget and the HW Monitor Pro are almost
identical, especially when executing the PassMark CPU benchmark. As a rule, we observe that
the processor frequency is always at the highest possible level at 2000M Hz during the active
phases of the micro-benchmarks in the PassMark CPU.

Figure 122 shows an ideal representation of our measurement tool. In contrast, we observe
that the signal of the HW Monitor Pro performs out of sync in a couple of traces, as
exemplarily shown in Figure 123. Both curves are nearly identical between T = [5.041 *
10,5.044 * 10°]s at a frequency of 2000MHz. The frequency levels get out of sync, such as
at T = [5.058 = 10%,5.066 = 10°]s, and continuously begin to move apart from each other,
which is especially observable at the time T = [5.098 = 10°,5.11 * 10°]s. In some PassMark
CPU runs, the effects of time delay only occur intermittently after executing the third or fourth
micro-benchmark. Indeed, if we analyze the measurement results gained from the HW
Monitor Pro in comparison with the other tools, we have to consider the occurring time
problems. In the beginning of the frequency analysis in Table 67 and Table 68, we neglect the
time differences of the measurement tools because the SPECpower benchmark interrupts the
target throughput by some seconds.

%73 Processor frequency: The first processor, called ‘CPUQ’, and the first core, called ‘core 0’, both belong

together.

306

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

w3000
E‘ 2500 - ‘ pDwer)qadgeLCF'UiFrequencyiD‘
>
& 2000~
g
2 1500~
©
= 1000 1 1 1 | 1 |
5.02 5.04 5.06 5.08 5.1 512
time [s] %10%
W 30001
é 2500 ‘ ——hw_monitor_pro_Intel_Xeon_E5_2648L_Core_0 ‘
>
2 2000 1
g
= 1500~
@
= 1000 | | | | | |
5.02 5.04 5.06 5.08 5.1 512
time [s] %10°
~ 3000
I DpowerjadgeLCF'UiFrequenqLD
= 2500 LB AT EHE S 5. 0080 206 —— hw_monitor_pro_Intel_Xeon_E5_2648L_Core_0
- Y:2000 ¥: 2000 Y:2000
S 2000 n 4 T
@ X: 5.066e+06 X: 5.0082+06 X:5.11e+06
g ‘5°°;f U W = VU“" U U“" U
]
= 1000
5.02 5.04 5.06 5.08 5.1 512
time [s] x10%

Figure 123: PassMark CPU (PC1.1.2) — processor frequency analysis
(Intel Power Gadget vs. HW Monitor Pro)

Additionally, we observe that the HW Monitor Pro does not completely trace all benchmarks
before the end of their term. In general, we want to avoid such synchronization errors®’* to be

more precise in our evaluation.

In our analysis, between the HW Monitor Pro and the Intel Power Gadget signals we calculate a
relative error in median of approximately —0.22% at the PassMark CPU benchmark and nearly
—0.08% at the SPECpower benchmark. Table 64 lists the relative errors as the statistical
representation regarding the PassMark CPU and SPECpower that Figure 124 graphically
presents.

Table 64: Frequency inaccuracy (resolution inaccuracy: Intel Power Gadget vs. HW Monitor Pro)
- relative error (numerical) of PassMark CPU and SPECpower

Resolution inaccuracy PassMark CPU SPECpower
(trapz of frequency)

Mean time [min] 4.04 76.32
Upper adjacent [%] -0.14 +7.86
75th percentile [%] -0.18 +2.91
Median [%] -0.22 -0.08
25th percentile [%] -2.93 -2.50
Lower adjacent [%] -6.50 -9.71

74 Synchronization errors: associated by the first quartile or lower adjacent values in Table 64

307

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

relative error [%]
relative error [%]

|
| I
| |
| |
| |
| |
| |
| L |
| 6 |
| |
| |
| |
| |
| |

1 -
A10F

PassMark CPU SPECpower

Figure 124: Frequency inaccuracy — graphical representation of the relative error of PassMark CPU and
SPECpower (resolution inaccuracy: Intel Power Gadget vs. HW Monitor Pro)

We assume that the error rate is tolerable in entirely experimental analyses because the
configurations and characteristics have a greater impact on the models. The tool with a sample
time on a 1-second basis provides sufficient precision. Nevertheless, we choose the Intel Power
Gadget for our evaluation that provides the same time stamps and is more precise than the
HW Monitor Pro. Consequently, we trace the processor frequency by the Intel Power Gadget
and consider their values in our evaluation with a 100ms resolution. We study the identical
utilization trace when we simulate the processor, which works at a resolution of 1s. Therefore,
we compare the experimental trace and our model on a 1-second basis.

The authors of [Han 2007] studied the effects of the sampling rate considering a range of
sampling interval sizes at the SPEC CPU2000°” benchmark. The authors argued that a higher
sample rate detects short power peaks more often than a lower rate, which may lead to
another power management decision. In contrast, we neglect the peaks and a resolution lower
than 1s because we do not optimize the processor power on a cycle-by-cycle basis.

The authors of [TDM 2011, MAC et al. 2011] propose a power management strategy that
schedules the various frequencies of a multi-core processor. Consequently, we investigate the
potential improvement on the thread-specific frequencies of a processor. In our analysis, we
exemplarily trace the thread-specific frequencies by the HW Monitor Pro while executing the
SPECpower benchmark (§P1.2.8). We statistically analyze the frequencies of all hardware
threads®’®

as shown in Table 65 and Table 66. We observe extremely small deviations from the hardware

that occur in the benchmark phases presented as target throughput in percentage,

37> SPEC CPU2000: https://www.spec.org/cpu2006/

Hardware thread: The SUT processor consists of eight cores with hyper-threading technology.
Consequently, the processor provides 16 hardware threads.

376

308

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

threads, such as nearly identical frequencies (+8MHz), which is recognizable by the
interquartile range®”’ (IQR). We additionally provide an overview of the detailed frequencies of
all hardware threads in the Appendix A3f. We assume that the processor architecture is
responsible of nearly the same frequencies that result on the least common multiple (LCM)
and consider the mean value instead. We similarly observe the identical thread-specific
frequencies of the Intel Xeon architecture®®. The thread-specific frequencies and their
deviations do not significantly affect the processor power consumption.

Table 65: Statistical representation of the thread-specific frequencies [MHz] of the processor at
target throughput (calibration,100% — 60%) in (SP1.2.8)

Target throughput [%]

Thread-specific Calibration 100 90 80 70 60
frequencies [MHz]

Upper adjacent 1997 1988 1813 1688 1540 1427
75" percentile 1996 1987 1813 1687 1538 1423
Median 1995 1987 1811 1687 1535 1421
25" percentile 1994 1987 1811 1680 1530 1419
Lower adjacent 1993 1987 1811 1677 1527 1416

Interquartile range 2 0 2 7 8 4
Mean 1995 1987 1812 1684 1534 1421

Table 66: Statistical representation of the thread-specific frequencies [MHz] of the processor at
target throughput (50% — 10%, idle) in (SP1.2.8)

Target throughput [%]

Thread-specific 50 40 30 20 10 Idle
frequencies [MHz]
Upper adjacent 1337 1267 1226 1205 1200 1200
75th percentile 1334 1265 1225 1204 1200 1200
Median 1333 1262 1222 1204 1200 1200
25th percentile 1332 1260 1221 1203 1200 1200
Lower adjacent 1332 1258 1219 1203 1200 1200
Interquartile range 2 5 4 1 0 0
Mean 1333 1262 1223 1204 1200 1200

If we compare the mean values of the thread-specific frequencies gained from the HW Monitor
Pro with the processor-specific frequencies of the Intel Power Gadget, we observe almost
equal frequencies (£6MHZz) at both tools of the various target throughputs, as shown in Table

7 Interquartile range: 75th percentile minus 25th percentile, upper (third) quartile minus lower (first)

quartile
378 |ntel Xeon architecture: Intel Xeon processor E3/5/7-xxxx v1-5 family

309

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

67 and Table 68. In our accuracy analysis, we can consider both tools concerning the mean
frequency at a specific target throughput. As an additional result, we neglect the thread-
specific frequencies, because the values do not provide extra data that improve the accuracy
or precision of our processor power model, and concentrate on the processor-specific
frequencies gained by the Intel Power Gadget, which saves time and reduces the effort.

Table 67: Mean frequency [MHz] at target throughput (calibration,100% — 60%) in (SP1.2.8)

Target throughput [%]

Mean frequency [MHz] Calibration 100 90 80 70 60
HW Monitor Pro 1995 1987 1812 1684 1534 1421
Intel Power Gadget 1998 1991 1818 1690 1540 1421

Absolute difference -3 -4 -6 -6 -6 0

Table 68: Mean frequency [MHz] at target throughput (50% — 10%, idle) in (SP1.2.8)

Target throughput [%]

Mean frequency [MHz] 50 40 30 20 10 Idle

HW Monitor Pro 1333 1262 1223 1204 1200 1200

Intel Power Gadget 1333 1261 1222 1204 1200 1200
Absolute difference 0 +1 +1 0 0 0

In particular, the processor frequencies result from the actual utilization level, which both are
the major parameters in our simulation model concerning the processor power consumption
and related temperature. We assume that the thread-specific utilization levels depend upon
the target throughput, as it has already been true to the thread-specific frequencies, which we
further analyze considering the traces of the HW Monitor Pro. We exemplarily present the
statistical results of the thread-specific utilization levels in Table 69 and Table 70. We observe
that the thread-specific utilization levels vary less from the calibration phases up to a target
throughput of 60% than at the subsequent target throughput of (50% — 10%,idle),
presented by the interquartile range. Mostly, all thread-specific utilization levels evenly rely
upon the target throughput of the benchmark, and we discover that all threads are more
involved permanently at the beginning of the benchmark achieving the target throughput, but
some of them become unused at the end. Furthermore, we observe that the benchmark
utilizes all threads in the same way with one exception: the zero thread®”. Accordingly, we
observe a utilization level of the zero thread at 34.4% in the mean during the idle time
(specified as an outlier), which is nearly three times the mean value of approximately 11.73%.
In the remaining target throughputs, the zero thread is nearby the lower adjacent. We assume
that the zero thread will behave like the residual threads, especially in the idle case when the
thread does not execute additional tasks, such as executing the benchmark, writing data onto

37 Zero thread: first processor core and related thread

310

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

discs, or administrating tasks. When we consider the fact that the frequencies vary only
(£8MHz) and at the same time, the utilization levels deviate between [0 — 15]% of the
particular target throughput, we can neglect the thread-specific utilization levels that are
irrelevant and consider the mean value instead.

Table 69: Statistical representation of the thread-specific utilization levels [%] of the processor at
target throughput (calibration,100% — 60%) in (SP1.2.8)

Target throughput [%]

Thread-specific Calibration 100 90 80 70 60
utilization levels [%]

Upper adjacent 99.66 97.14 86.14 77.23 68.59 60.26
75" percentile 99.56 96.86 84.70 76.08 65.93 59.00
Median 99.42 96.14 83.43 73.72 64.79 55.37
25" percentile 99.28 94.06 78.15 70.26 63.53 54.27
Lower adjacent 98.94 92.28 76.16 65.24 62.50 49.61
Interquartile range 0.28 2.80 6.55 5.82 2.40 4.73
Mean 99.4 95.03 81.08 72.17 64.04 56.08

Table 70: Statistical representation of the thread-specific utilization levels [%] of the processor at
target throughput (50% — 10%, idle) in (SP1.2.8)

Target throughput [%]

Thread-specific 50 40 30 20 10 Idle
utilization levels [%]
Upper adjacent 54.69 46.22 36.18 31.02 13.56 23.40
75th percentile 53.18 42.66 3495 22.68 12.28 13.85
Median 43.83 35.81 27.68 1845 9.49 10.80
25th percentile 42.21 31.13 20.55 1397 6.54 6.15
Lower adjacent 40.10 30.19 19.21 12.77 5.25 0

Interquartile range 10.97 11.53 1440 8.71 5.74 7.70

Mean 46.91 36.83 27.73 19.08 1049 11.73

We calculate the mean utilization level of all available hardware threads considering the HW
Monitor Pro, which requires additional computational and analysis effort. We assume that the
processor-specific utilization levels of the Intel Power Thermal Utility are equally suitable for
our analysis and evaluation of the accuracy and precision, but can be accessed easier.
Therefore, we compare the mean utilization level of the entire processor considering both
measurement tools applied on the same benchmark. We observe that the Intel Power Thermal
Utility has an absolute difference in the mean of approximately +2.2% in comparison to the
thread-specific utilization levels of the HW Monitor Pro, as shown in Table 71 and Table 72.
The idle case builds an exception regarding the absolute difference, which varies from nearly

311

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

—7.33%. We suggest that the measurement traces of the Intel Power Thermal Utility may be
more precise in comparison to the HW Monitor Pro, because of the same manufacturer when
analyzing the processor.

Table 71: Mean utilization level [%] at target throughput (calibration,100% — 60%) in (SP1.2.8)

Target throughput [%]

Mean utilization levels [%] = Calibration 100 90 80 70 60
Intel Power Thermal Utility 99.73 96.12 84.17 75.89 67.94 60.17
HW Monitor Pro 99.4 95.03 81.08 72.17 64.04 56.08
Absolute difference +0.33 +1.09 +3.09 +3.72 +3.90 +4.09

Table 72: Mean utilization level [%] at target throughput (50% — 10%, idle) in (SP1.2.8)

Target throughput [%]

Mean utilization levels [%] 50 40 30 20 10 Idle

Intel Power Thermal Utility 50.75 40.75 31.57 2238 13.40 4.4
HW Monitor Pro 46.91 36.83 27.73 19.08 10.49 11.73
Absolute difference +3.84 +3.92 +3.84 +3.30 +2.91 -7.33

380 of the Intel Power Thermal

As a result, we consider the processor-specific utilization levels
Utility instead of the thread-specific utilization levels of the HW Monitor Pro as the reference
parameter of our simulation and evaluation. Figure 125 exemplarily shows the processor-
specific utilization levels, given as a percentage, which we trace by the Intel Power Thermal
Utility while executing the SPECpower benchmark (SP1.2.8). In the figure, we see the three
calibration phases between T = [1.122 % 10°,2.039 % 10°]s searching for the maximum
throughput, which consequently fully utilize the processor by approximately 100%. Moreover,
the graph shows the actual utilization level of the processor, which ideally consists of several
discrete and steady 10% steps concerning the target throughput beginning at t = 2.039 =
10°s until t = 5.151 * 10%s followed by three idle intervals. In our measurements, we

%! the beginning and the end of each interval that we mark by a vertical

automatically detect
solid line. We observe that a specific target throughput does not guarantee a steady utilization

level, as shown in Figure 125 by the utilization levels that move up and down.

380 s o
Processor-specific utilization levels: entire processor frequency independent of the cores, common in

industrial practice
381 Automatically detect: implement a certain MATLAB function for evaluation, detect the rising and
falling edge of the utilization levels

312

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

110

T — -
X:1.122e+06 X: 2.039e+06
v.0000 V- 100

Processor_utilization

90 [

80

70

60

50

utilization level [%]

30

20

1
15 2 25 3 3.5 4 4.5 5 55 6
time [s] %108

Figure 125: Processor utilization level (SP1.2.8) measured by Intel Power Thermal Utility

As an exemplary illustration, we simplify the graph of Figure 125 to show an easier to read
representation of the measurement results. Therefore, we use the times of each vertical solid
line that indicate the interval length of each 10% step (target throughput) to calculate the
mean value of the actual utilization level. Herein, we consider a short transient phase by
avoiding the first 200ms specified by an internal analysis to neglect the low utilization levels
between the intervals, such as 4.07% at t = 3.29 * 10°s or 14.81% at t = 3.59 * 10°s. Figure
126 shows the simplified representation of Figure 125 illustrating the same intervals marked
by the identical vertical solid lines. Herein, we rename the horizontal axis to present the target
throughput®®?, which is implicitly represented by the time of the Figure 125. The vertical axis
shows the actual utilization level in [%] calculated as a mean value of their particular interval,
which we present as dashed-dotted black line labeled by their corresponding label. We expect
a linear relation (ideal course) between the target throughput and the actual utilization level.
In contrast, we observe that the mean values are lower than the target throughput from 100%
up to 70% and, in fact, larger in the subsequent part of the benchmark. In the idle intervals
starting at t = 5.151 * 10°s and ending at t = 6.087 * 10°s, we observe the mean utilization
level between 4.1% and 4.9%, which shows that the processor is always busy and does not
have a utilization level around 0%.

#2134 rget throughput: defined as target loads at SPECpower benchmark

313

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMQOS)

10—
i
100m-22:6814. | 997658 | 997595 4 w6173
X:1.122¢406 X:2.030406 [m-20222i2. o
Y:99.65 Y:99.76
90—
-.8aT2T
s _Iese.
&
= 70 [.67.9433
g X: 3.59e+06
o 601683 o "V
c 60 o e
ks} X: 3.201e+06
© Y:60.17 50.7498
S s | e
=
=]
© -40.7543
2 40
o
© 31.5722
30—
| 223762 |
20—
13.4007
10 X:5.151€+06 X: 6.0876+06
Y:4.894 Y:4.148
b e)
0 | | | | | | | | | | | | | 4.8039 4168 4.1476
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% idle idle idle

target throughput [%]

Figure 126: Simplified representation of the processor utilization level (SP1.2.8) as mean values

In our evaluation, we consider the high-resolution and precision of the Intel Power Thermal
Utility regarding the processor-specific utilization levels, shown in Figure 125, as the reference
parameter of our simulation model, but present the results in the simplified and readable
graph of their mean values. We consider the actual utilization levels of the complete processor
that are approximately linearly dependent on target throughput, which we consider when
simulating the performance-to-power ratio.

The key performance metric of the processor is the actual processor-specific utilization level
that indicates the physical usage of the entire processor, usually expressed in percentages. The
utilization level has the major impact on the processor power consumption and corresponding
thermal development.

We exemplarily analyze the Intel Xeon E5-2650v2 processor (see Table 47), executing various
benchmarks to guarantee various utilization levels and simulate the power consumption.
Therefore, we execute the benchmarks on the real server system and trace the processor-
specific utilization level (by the Intel Power Thermal Utility), power consumption (by the Intel
Power Gadget), and temperature (by the Intel Power Gadget). We avoid the characteristic
changes in this section because of the limited measurement results of our system under test,
but we further analyze the characteristic changes of the Intel Xeon E5-26xx v2 processor
generation and family in Section 7.3 considering the Fujitsu-specific measurements and
vendor-based spreadsheets.

We exemplarily present the identical benchmarks®®

, as described in the memory evaluation,
but in consideration of the processor power and temperature. In the meantime, the processor

is under-utilized while executing the PassMark Memory benchmark, but immediately fully

383 e ™ . . .
Benchmarks: We trace all component-specific utilization levels and corresponding aspects executing

the same benchmark.

314

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

utilized when the memory executes the read/write operations. In contrast, the PassMark CPU
benchmark almost fully utilizes the processor nearly the whole time. We do not observe
utilization levels in the range of [20,80]%, thus we additionally consider the PassMark
MemTest86 and the SPECpower benchmark, which especially reproduce the certain processor-
specific utilization levels.

Figure 127 exemplarily shows the utilization levels while executing the PassMark Memory
benchmark (PM1.1.4) in the upper graph in which the benchmark utilizes the processor below
20% (in the mean 11%) at T = [2.624 * 10°,2.768 * 10°]s and fully utilizes the processor at
T = [2.768 * 10%,2.789 * 10%]s, which we similarly observe in the remaining (PMx.y.z)
benchmark runs. We measure the processor power consumption of approximately 23W at the
lower utilization levels and around 50W at the higher utilization levels, as shown in the middle
graph by a solid blue line. We present our simulation-based results of the processor power as a
dashed-dotted red line and show the absolute difference in the mean (marked in purple)
between the measurements and our simulation in the lower graph of the figure. We observe
nearly identical power consumptions, but observe an extreme inaccuracy in the range of
[—12.4,+29.3]W in a situation when the utilization level increases from 17% to 100%,
decreases to 24%, and increases to 100% between t = 2.768 * 10®s and t = 2.769 * 10°s.
We can avoid these situations when we continuously analyze the utilization levels and neglect
the detected peaks. Nevertheless, we estimate the power consumption by a mean inaccuracy
of approximately +0.19W, which is an +0.6% inaccuracy in relation to our measurements
during the entire benchmark in this example.

Processor_utilization

X:2.7686+06
Y: 100

X: 2.726e+06
Y:21.88

utilization level [%]

X: 2769 +06
Y:23.75

X: 27896406
Y:97.66

2.68 27 272

time [s]

2.74

70
60

50
40
30
20

X: 2.624€406
Y:22.58

power [W]

X: 2.726e406

X: 2.747e+
¥:23.75
4

Y:21.94
m. 5

1ol | \ | | ! | |

measured
----- simulated

1 x: 2780008
Y:49.96

262 264 2.66 268 27 272 274
time [s]

w
a
|

25—

X: 2.7682+06
Y:20.26

inaccuracy [W]

15U | | | | | | |

28
%108

—absolute difference

264 2.66 2.68 27 272 2.74
time [s]

Figure 127: Processor power accuracy (PM1.1.4)

315

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In the next section, we check whether we can trust the power consumption gained from the
PassMark Memory benchmarks, which we use in our processor evaluation. For this purpose,
we analyze the processor utilization levels in the PassMark CPU benchmark that concentrates
on the processor utilization to detect the same processor power and show the plausibility of
the measured and simulated values. The top graph in Figure 128 exemplarily shows the
processor utilization levels (gained by the Intel Power Thermal Utility) of the identical server
configuration used in (PM1.1.4), but we execute the PassMark CPU benchmark (PC1.1.4)
instead. Herein, we observe that the benchmark fully utilizes the processor nearly the entire
time at T = [2.09 x 10°,2.262 = 10°]s is interrupted by changing the particular micro-
benchmark; an exception of the utilization levels builds the single threaded micro-benchmark
in the end of the benchmark at t = 2.263 * 10°s, which utilizes the processor between 17%
and 249%, as exemplarily tagged in the figure. The graph in the middle illustrates the measured
power consumption (by the Intel Power Gadget) presented by a solid blue line and the
simulation-based shown as a dashed-dotted red line. We observe that the processor power
consumption varies in the range of [44.2,66.8]W when we fully utilize the processor, but
approximately observe a power consumption around 50W. Indeed, we measure the following
power consumptions when executing the particular micro-benchmarks:

e Integer: ~44.2W at T = [2.090 = 10°,2.109 = 10°]s
e Floating-point: ~55.3W at T = [2.113 * 10%,2.131 = 10°]s
e Prime numbers: ~44.2W at T = [2.134 % 10%,2.153 = 10°]s
e Encryption: [48.2,66.8]W atT = [2.199 = 10°,2.219 = 10%]s
e Sort strings: ~54.4W at T = [2.242 % 10%,2.262 = 10°]s

We assume that the varying power consumptions depend upon the processor architecture and
its integrated subsystems (see footnote 330). In contrast, we simulate a constant processor
power of around 50W, as illustrated att = 2.173 * 10°s, which is only based upon the
utilization levels, while neglecting the certain operations, and additionally analyze the
accuracy. The lower graph of the figure presents the absolute difference in the mean (marked
in purple) between the measurements and our simulation. We observe nearly identical power
consumptions, but observe extreme inaccuracies, such as peaks in the range of
[—23.6,+26.9]W while switching the micro-benchmarks, because of the different resolutions
between the measurement tools and our simulation framework. In fact, we estimate the
power consumption by a mean inaccuracy of approximately +0.02W in this example, which is
an +1.5% inaccuracy in relation to our measurements of the entire benchmark.

316

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

X: 2.09e+08
V:99.96

X: 21138406
¥: 100

X: 2.134e406
¥: 100

X: 21536406
Y: 100

X: 2.199e406
Y:99.98

X:2.219e+06
Y: 97.66

X:2.2426+06
v:99.98

X: 2.2620 406
v: 100

X: 2.109¢406
Y: 100

integer

utilization level [%]

0 |

X: 2.131e+06
Y: 100

floating-point

extended
instructions

prime numbers compression encryption physics

interactions

—=n

sort strings \

single threaded

Processor_utilization

X:2.2048406
¥:23.72

1 ht i

| W

21 215 22 225 23
time [s] %108
X:2.211e+06
Y:66.83
X:2.127e+406 L X: 2.258e+06
Y:56.32 X:2.173e+06 ’: i;g:e 0% Y: 54.44 measured
g 0o r.._._._.,_ Y:50 - —u gy [l e simulated
F a r 1! w ir i
5 i !! -1 f | x22040008 | E
e i X:2.15e+06 ! H v:482 X:2.204e+06 X: 2.3250+06
1) LD Y:24.37
S X: 2.263e 406 Y:22.96
Y1762 ! L])
u "]
| | | |
215 22 225 23
time [s] %108
35
X
= 15
8
5 ° OO TATE AT (VRN TFMTIN WO
S 5
<
£ 15
25 | | | | |
21 215 22 225 23
time [s] %108

Figure 128: Processor power accuracy (PC1.1.4)

We do not observe utilization levels between 20% and 80% in the PassMark Memory or
PassMark CPU benchmarks, but can argue that our simulation-based results are sufficiently
precise. Furthermore, we analyze the results of the SPECpower benchmark in the following
section, which explicitly adjusts the utilization levels of the processor in equidistant steps of
10% in the interval [0,100]% to show the entire functionality and accuracy of our aspect-
based calculation method. We exemplarily present the traces of the processor-specific
utilization levels (by the Intel Power Thermal Utility) that we gained in the SPECpower
benchmark (§P1.2.8), as shown in Figure 125 and Figure 126, consider the same intervals
marked by the vertical solid lines, and present the horizontal axes as the target throughput in
Figure 129. In the upper graph, we present the actual utilization level in [%] calculated as a
mean value of their particular interval that we simplify as a dashed-dotted red line by their
corresponding label. In our example, the SPECpower benchmark specifies the target
throughputs, which result in a maximal of 100% and reduce them
systematically. In the middle of the graph, we present the measured power consumptions
[W1], simplified as mean values (traced by the Intel Power Gadget), and illustrated as a dashed-
dotted red line by their corresponding labels. We simulate the processor power consumption
on the basis of the measurement traces of the real utilization levels, but present our
simulation results as mean values by the dashed-dotted red line and their corresponding
labels. In our example, both (the measured and simulated) power consumptions are very close
to each other, which results in nearly identical values, as listed in Table 73 and Table 74 in a
more legible format. We observe a higher slope of the measured power consumption in Table
73 in comparison to the slope in Table 74 in which the absolute differences are at their highest
value at the utilization levels between 40% and 70% in comparison to our simulation-based

utilization level

317

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

results. We further evaluate the processor-specific power development in Section 7.3 and
check whether we require a linear or non-linear power method, considering various processors
with different thermal design powers, additional p-states, or frequencies.

;\5‘ | = Processor_utilization mean
] 758939 |
K] o R (RS IR (A R ..
2
é 40
©
% 201 48939 4.158 41476
5 | | | | | i (e e D) M| [A [L (N (Y (IR (S| | PR s - o mmeata R s feomem
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% idle idle idle
target throughput [%]
70 | i
60— | | measured mean
508055 51,0636 510765 506621 | | T
R e (] S Tasse | oo |
& 40 ’--i‘)l'l“-‘l-- 36,4098
H | EEEE 1328855 | s00s90
8 30 | | 2202 27.0489
20— | | § 180136 171::(157 17,6778
PPN [o (0 0 0 [1 G) | N | [) N D R DS I S | N N i R (R i)
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% idle idle idle
target throughput [%]
70+ | |
60 | | simulated mean
S 50498820 1 499213 1 409192 | 4g.6954 | | [
g0 2 419003 | soomee | .
g 40— } po————— 208198 saast9
8 30H | RN) (RGN | AW | o
20 | | 18.0443 17.7971 17.7936
10 | | 1 1 123 1 1 1 1 |
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% idle idle idle

target throughput [%)]

Figure 129: Processor power accuracy (SP1.2.8)

Table 73: Mean utilization level [%] and mean power consumption (measured vs. simulated) at target
throughput (calibration, 100% — 60%) in (SP1.2.8)

Target throughput [%]

Mean Calibration 100 90 80 70 60
Utilization levels [%] 99.73 96.12 84.17 75.89 67.94 60.17
Measured 50.92 50.66 4483 40.74 36.41 32.89
power consumption [W]
Simulated 49.91 48.70 4468 4190 39.23 36.62
power consumption [W]
Absolute difference [W] -1.01 -1.96 -0.15 +1.16 +2.82 +3.73

318

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

Table 74: Mean utilization level [%] and mean power consumption (measured vs. simulated) at target
throughput (50% — 10%, idle) in (SP1.2.8)

Target throughput [%]

Mean 50 40 30 20 10 Idle
Utilization levels [%] 50.75 40.75 31.57 22.38 13.40 4.4
Measured 29.95 27.05 2473 2244 20.19 17.79
power consumption [W]
Simulated 33.45 30.09 27.01 2392 2090 17.88
power consumption [W]
Absolute difference [W] +3.50 +3.04 +2.28 +1.48 +0.71 +0.09

Additionally, we analyze the absolute difference (in the mean) between the measurements and
our simulation-based power, which rely upon the high-resolution of the utilization levels to
consider all values of the specific times. We simulate the power consumption by a mean
inaccuracy of approximately +0.84W, which is an 4+3.6% inaccuracy in relation to our
measurements of the entire benchmark. In this example, we observe a median at +0.06W/, a
standard deviation by +3.3W, and a variance of +10.9W. Figure 130 presents the processor
power consumption by the related normalized probability function (histogram) on the basis of
the absolute differences in Watt.

0.25 T ; |

02

=)
&

normalized probability
(=]

0.05[

]
-30 -20 20 30

inaccuracy [W]

Figure 130: Processor power accuracy — a histogram (normalized probability) (SP1.2.8)

Table 75 lists the inaccuracy of our processor power model under various benchmarks
concerning their absolute as well as relative differences between the simulated and measured
values, both stated as mean®* values. Our aim is an error rate less than ten percent, which we
specify as precise enough, see Chapter 4. Generally, we can argue that our processor power
model is sufficiently accurate when we neglect the explicit workload scenario, and for

384re .
Mean values: y, average of all data values concerning the high-resolution of the utilization levels

319

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

simplicity purposes neglect the specific processor operations considering a few exceptions
regarding the accuracy, e.g. (SP2.3.36), (MT16.z), and (PM2.1.4). The mean utilization
levels in the SPECpower benchmark (SP2.3.36) do not behave the same way as we trace the
remaining (SPx.y. z) benchmarks. Herein, the utilization levels continuously toggle towards
the maximal utilization level of 100% at each target throughput. Our simulation model is
insufficiently precise under these circumstances, as listed in Table 75 with a relative difference
by +32.24%. Additionally, we observe a relative difference of +14.42% at the MemTest86
benchmark (MT16. z), which primarily results from the power inaccuracy of the (MT16.32)
test case®®. The benchmark does not fully utilize all the 16 processor-specific hardware
threads after allocating approximately half of the memory capacity (16GB) att = 9.6 x 10*s
up to the entire memory capacity (32GB) used att = 4.07 = 10°s, which we exemplarily
present in Figure 131 indicated by the memory utilization levels. We assume that the
increasing memory capacity (addressing toward the end of the memory address range) and
accessing (loading) a series of data onto the cache lines require more communication and
consequently reduce the utilization level of the processor and the related power consumption.
The remaining results of the SPECpower and MemTest86 benchmark are sufficiently precise
because their relative differences are less than +6%.

120—

X 4076405 Memory_utiization
100} MT16.32 e

80— Tt

60 X: 960404 E o —_

utilization level [%]

time [s] 10°

X 100608 Processor_utiization
Y969

100 f— - - X: 20050405 . 2=
P v-818 X: 4.07e+05

| e = ' ¥: 100
a1l l||y ‘ I" | } I
VL otk SO A A, T AR 0 i
A0 A VU b 0OV il Y IR Y Wil
“,‘ !_,‘, IL|\|(| i‘l‘llﬁl!i \ ‘lj ‘.IM_';AI 1R ‘j|,‘,| “l ,' " Ik

20— W v:138 L] X: 3565405
L] X: 2120405 Y308

“\1“&'11‘] ‘,‘l“ l"r

utilization level [%]
@
S

1 2 3 R 5 6
time [s] 10°

Figure 131: Memory and processor utilization level (MT16.32) — an excerpt of (MT16. z)

We found that our PassMark CPU results are especially reliable and adequate because the
relative differences are in the range of [+1.5, +8.2]%, which is valid of the PassMark Memory
benchmarks observing an accuracy between +0.6% and +10.1% when we neglect the results
of (PM2.1.4), see Table 75. In our (PM2.1.4) benchmark, we expect the same tendency, such
as in the remaining PassMark Memory benchmarks, but we observe extreme inaccuracies

*® MemTest86 test case: We execute the MemTest86 in a virtual machine and adapt the memory

capacity from 32GB to 1GB.

320

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

because of the appearing middle-term (more than a few seconds) power peaks up to 190/,
which especially frequently occur at the end of the benchmark.

We demonstrate the precise simulation of the processor power considering the processor-
specific utilization levels and processor-specific frequencies of the Intel Xeon architecture. We
found that we could neglect the thread-specific data (utilization levels, frequencies) because
the values are nearly identical and their deviations do not significantly affect the processor
power consumption. The peak power consumption of a fully utilized processor depends upon
the processor architecture and its integrated subsystems (see footnote 330) activated by the
particular micro-benchmarks.

Table 75: Processor power accuracy — the simulated vs. the measured results

Inaccuracy
Absolute Relative
difference [W] difference [%]

(mean) (mean)

SPECpower SP1.2.8 +0.84 +3.56
SP1.3.18 +1.32 +5.28
SP2.2.16 -4.54 -1.90

SP2.3.36 +6.78 +32.24

MemTest86 MT1.z -0.01 +0.41
MT8. z -0.80 -1.39

MT16.z +4.73 +14.42

PassMark PC1.1.2 +0.71 +3.43
cPU PC1.1.4 +0.02 +1.50
PC1.2.4 +0.29 +2.51

PC2.1.4 +1.15 +5.65

PC2.1.8 +0.62 +2.56

PC2.2.8 +1.23 +8.24

PassMark PM1.1.2 +0.82 +3.32
Memory PM1.1.4 +0.19 +0.60
PM1.2.4 +0.28 +1.62

PM2.1.4 +2.58 +24.02

PM2.1.8 +0.04 +1.74

PM?2.2.8 +1.52 +10.13

Processor Temperature Evaluation

Moreover, we simulate the processor temperature on the basis of the processor power
consumption (typically direct dependent upon the utilization levels). If a processor has a
constant utilization level, the temperature will continuously increase due to the power
dissipation, which is known as self-heating. The thermal development of the processor
behaves similarly to the memory temperature behavior, and thus we specify various slopes of

321

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

the increasing, decreasing, or steady utilization levels in our temperature-based methods
considering the time delay because of the inertia. We neglect short-term peaks (less than one
second) of the power consumption that do not influence the processor temperature and
measure the processor-specific temperature®® by the Intel Power Gadget.

Again, we analyze the Intel Xeon E5-2650v2 processor (see Table 47) in our system under test
while executing the PassMark Memory benchmark. The top graph in Figure 132 exemplarily
shows the processor utilization levels (by the Intel Power Thermal Utility) and the middle of the
figure presents the results of our processor temperature simulation (dash-dotted red line),
which we evaluate according to our measurements (solid blue line) traced by the Intel Power
Gadget. In our example, the PassMark Memory benchmark (PM2.1.4) utilizes the processor
below 20% (in the mean 5%) until t = 1.557 * 10°s and fully utilizes the processor at
T = [1.557 = 10%,1.784 * 10°]s, which we similarly observe in the remaining (PMx.y.z)
benchmark runs. The simulated temperature increases from 37.05°C up to 42.76°C at the
time T = [2.027 * 10%,1.144 * 105]5, marginally decreases afterwards around 1°C, but
significantly increases to 50.95°C when the processor is fully utilized at the time T = [1.558 *
105,1.678 * 105]5, as shown in Figure 132. Herein, we overestimate the temperature by a
mean inaccuracy of approximately +3.9°C. This is an +10.44% inaccuracy in relation to our
measurements, which is less precise than the rest of the PassMark Memory benchmarks.

= 120
=100 —
2 4 6 8 10 12 14 16 18
time [s] x10%
. 65—
g 60— measured X: 1.678e+05
© 55— |7 simulated X: 1.558e+05 Y:50.95
o B Y4752 meme== W=,
S 50 Xitdddesos o VHATSE el .
E 45— x:2.027e+04 e s T it Y O |
g a0 v B ik § \'v-«"“v""*"“""A-’;f"""‘y’“"‘“'["““r"""\“"""'""\;""""”"‘"“~""”““"“""‘""J R N S e s 'v““ﬂm
E g5 H A R i
35 S §
2 % | | | | | | | | |
2 4 6 8 10 12 14 16 18
time [s] %10*
16
12

inaccuracy [°C]

A o p o

time [s]

Figure 132: Processor temperature accuracy (PM2.1.4)

386 .r . .
Processor-specific temperature: We consider the same level of details of the processor temperature

concerning the processor-specific utilization levels; otherwise, we have to trace the thread-specific data.

322

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In contrast, the behavior of the PassMark CPU benchmark (PC2.1.4) is different from the
PassMark Memory benchmark, which fully utilizes the processor most of the time and may
lead to a different thermal development of the processor. Therefore, we check whether our
processor temperature model works sufficiently precisely concerning the influence of the
changed utilization levels. The top graph in Figure 133 exemplarily shows the processor
utilization levels (by the Intel Power Thermal Utility) of the identical server configuration used
in (PM2.1.4), but we execute the PassMark CPU benchmark (PC2.1.4) instead. Figure 133
exemplarily presents the measured and simulated temperatures in the middle graph. Herein,
we observe that the benchmark fully utilizes the processor nearly the entire time at
T = [1.552 % 10%,1.883 « 10°]s, however being interrupted by changing the micro-
benchmarks. We observe that the processor temperature increases in the range of
[40.8,49.0]°C when we fully utilize the processor, but measure a temperature decrease after
executing the floating-point operations from 45°C down to 43°C at T = [5.609 * 10%,5.915 *
10%*]s. The lower graph of the figure presents the absolute difference in the mean (marked in
purple) between the measurements and our simulation, in which we can observe an increasing
temperature inaccuracy when executing the micro-benchmarks prime numbers or extended
instructions. In our temperature model, we neglect the specific processor operations and
simulate the thermal development on the basis of the utilization level. Nevertheless, we
observe an absolute temperature difference (in the mean) by approximately +1.67°C and a
relative difference by around +3.89% inaccuracy in relation to our measurements of the
entire benchmark.

X: 1.552¢+04 X:3.502+04 X: 5.915e+04
120 v: 100 ¥:100 v: 100

X: 1.883e+05
A0 Processor_utilization

X: 56092404
80 v: 100

floating-point prime numbers extended single threaded
0 instructions
0 L | |

0.5 1 1.5

time [s] %10%

utilization level [%]
D
o

— measured

X: 5.915e+04 X:1883e+05 simulated

= v:48.18 A v
© 50 X:3.502e+04 X: 5.609e+04 o " ;i A fus .

X: 2.1058+05
V:44.32

DA AL R

a 40— " X:5.9158+04
7 Y:43

time [s] x10°

inaccuracy [°C]
N o

&

time [s] %10°

Figure 133: Processor temperature accuracy (PC2.1.4)

323

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In the next section, we analyze our simulation-based results on the basis of more flexible
utilization levels in comparison to the PassMark benchmarks. We exemplarily present the
traces of the processor-specific utilization levels (by the Intel Power Thermal Utility) that we
gained while executing the SPECpower benchmark (SP1.2.8). We exemplarily present our
measurement results as mean values that are as simple to read as the results of Figure 132 or
Figure 133. The horizontal axes in the three diagrams of Figure 134 illustrate the target
throughput in [%] (marked by the vertical solid lines), beginning with the three calibration
phases, followed by a sequence of target throughputs 100% down to 0% and ending by three
idle intervals. We present the actual utilization levels [%] in the upper graph of Figure 134,
calculated as a mean value of their particular interval (by a dashed-dotted red line and their
corresponding labels). The middle graph of Figure 134 shows the measured temperatures [°C],
simplified as mean values (traced by the Intel Power Gadget), and illustrated as a dashed-
dotted red line by their corresponding labels. We illustrate our simulation-based results [°C] as
mean values by the dashed-dotted red line and their matching labels in the lower graph of
Figure 134. In our exemplary analysis, both (the measured and simulated) temperatures are
very close to each other, but in particular vary around 4.61°C in the idle case. In our processor
temperature model, we take the ambient temperature into account, which may result in a
higher temperature. Furthermore, we neglect the fan-based cooling effect on the processor in
this section because we consider the processor as a single separate component decoupled
from the entire system and management strategies.

g 183 s Eicane: pRrammaan - UL E L saarz | Processor_utilization mean
§ SOt e e R o 7 04
70} RS o2 é
-]z ISmES IR [Srmm S e L R e T
soH iy e e e
(=]
=S st .| e i o | v $amw e (ol | | | e rarirwe)
W 30H T RS AR S T i TN T T T ettt
B 20ttt e e e e R T 134007 4
E 18 | | | T e
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% idle idle idle

1..49.0426 | 49.0834 1 490347 | measured mean

temperature [°C]
&
N
[

cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% idle idle idle

o 50 | 488298 | 488334 | 4a4 simulated mean
£ 48 =2 e £ I 5
30t B N IR (S — N n—
R § I [|] st e asaa| e -
® 44
2 42— - R R LB B2, L)
] R] [(Il S] f1 S] () (] (] e | (IR | e
S QY (S NSRRI O W RN O 1000 S SN DO 0 Y RS o081 23152 |
36 { BSE1 £) NS 1 VOO) [N S0 USSR NEUNY (NS MASE{ VNS N S Lo BRSR{ LERS BNOE s o SRS SO | NN 8 | | QLY LR] b Y R
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% idle idle idle

target throughput [%]

Figure 134: Processor temperature accuracy (SP1.2.8)

324

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

Table 76: Mean utilization level [%] and mean temperature (measured vs. simulated) at target throughput
(calibration,100% — 60%) in (SP1.2.8)

Target throughput [%]

Mean Calibration 100 90 80 70 60
Utilization levels [%] 99.73 96.12 84.17 75.89 67.94 60.17
Measured 48.61 49.03 47.08 45.60 44.17 42.71
temperature [°C]
Simulated 48.53 48.43 47.82 47.39 46.55 45.18
temperature [°C]
Absolute difference [°C] -0.08 -0.60 +0.74 +1.79 +2.38 +2.47

Table 77: Mean utilization level [%] and mean temperature (measured vs. simulated) at target throughput
(50% — 10%, idle) in (SP1.2.8)

Target throughput [%]

Mean 50 40 30 20 10 Idle
Utilization levels [%] 50.75 40.75 31.57 22.38 13.40 4.4
Measured 41.52 40.52 39.26 38.23 37.41 36.35
temperature [°C]
Simulated 42.19 3846 37.01 3792 39.81 40.96
temperature [°C]
Absolute difference [°C] +0.67 -2.06 -2.25 -031 +2.40 +4.61

In our example, we observe an absolute temperature difference (in the mean) by
approximately +1.19°C and a relative difference by around +3.17% inaccuracy in relation to
our measurements of the entire benchmark. Figure 135 presents the processor temperature
accuracy by the related normalized probability function (histogram) on the basis of the
absolute differences in degree Celsius. We overestimate the processor temperature and
observe a median at +0.89°C, a standard deviation by +2.42°C, and a variance of +5.87°C.

0.07 T T T

0.06 — —

o
&
T
I

o
®
T

L

normalized probability
o
2
I

o
LS

0.01—

0
£l £ 4 2 0 2 4 6 8 10

inaccuracy [°C]

Figure 135: Processor temperature accuracy — a histogram (normalized probability) (SP1.2.8)

325

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

Table 78 lists the inaccuracy of our processor temperature model under various benchmarks
concerning their absolute as well as relative differences between the simulated and measured
values, both stated as mean values. Our aim is an error rate less than ten percent, which we
specify as exact enough, see Chapter 4. Generally, we can argue that the results are sufficiently
precise with a few exceptions, such as in (SP2.3.36) and (PM2.1.4). We observe in the
SPECpower benchmark (SP2.3.36) that the utilization levels do not behave the same way as
we trace in the leftover benchmarks (SPx.y.z), because the utilization levels continuously
toggle towards the maximal utilization level of 100% at each target throughput, which
especially result in inadequate power consumptions and corresponding temperatures by a
relative difference of +11.02%. The remaining results of the SPECpower and MemTest86
benchmarks are sufficiently accurate because their relative differences are less than £9%. We
found that our PassMark CPU and PassMark Memory results are especially reliable and
adequate because the relative differences are in the range of [—1.81,+3.89]% and
[—1.77,+10.44]%, although the (PM2.1.4) power consumption is inaccurate.

Table 78: Processor temperature accuracy in comparison to the measurements

Inaccuracy
Absolute Relative
difference [°C] difference [%]

(mean) (mean)
SPECpower SP1.2.8 +1.19 +3.17
SP1.3.18 +2.39 +5.85
SP2.2.16 +3.4 +8.56

SP2.3.36 +4.19 +11.02
MemTest86 MT1.z +2.42 +6.62
MTS8.z +3.58 +8.84
MT16.z +3.07 +7.51
PassMark PC1.1.2 -0.51 -1.21
CPU PC1.1.4 -0.76 -1.81
PC1.2.4 -0.50 -1.15
PC2.1.4 +1.67 +3.89
PC2.1.8 +1.34 +3.08
PC2.2.8 +1.48 +3.40
PassMark PM1.1.2 +0.27 +0.58
Memory PM1.1.4 -0.61 -1.77
PM1.2.4 -0.01 -0.15

PM2.1.4 +3.90 +10.44
PM2.1.8 +3.02 +7.95
PM2.2.8 +3.36 +8.90

326

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

7.2.5 Conclusion

The presented results of the previous sections show that our simple aspect-based component
models can be used to predict in sufficient accuracy the power and temperature in a wide
range of flexible heterogeneous workload scenarios considering category-specific utilization
levels. We identify that the memory-specific read-to-write ratio has a significant impact on the
power simulation, which can reduce the over-estimation of the memory power consumption.
We observe the highest memory power at the processor-intensive workloads, e.g. PassMark
CPU, in comparison to the memory-intensive workloads, such as the PassMark Memory
benchmark, because of the communication between the processor and memory. We define
the memory model as a state-based approach, like the respective authors specified in [RL
2007, Riv 2008, BC 2010], but we particularly consider the memory’s interaction by the read-
to-write ratio in the certain workload scenario. The authors in [MAC et al. 2011] predict the
memory power by a mean relative error of [+4, +8]% across various micro-benchmarks,
including a single core processor. Our simulation results are equivalent to the results
presented in [KCB et al. 2013], whereby the accuracy of the memory current and obtained
power consumptions are in a range of [+2.1,+14.02]%. We get comparable results to those
achieved by the authors of [KCB et al. 2013], but involve less effort because we group the IDD
values instead of considering every IDD state that are defined in the spreadsheets. The precise
power consumption builds the base of the temperature simulation, which we differentiate into
a steady state, an increasing, and a decreasing temperature development. We neglect short-
term peaks (less than one second) of the power consumption, which have no impact on the
memory and processor temperature because of the thermal inertia. The authors of [APL et al.
2008] simulate the memory temperature with an accuracy of less than +5% considering
various micro-benchmarks and performance counters of the hardware-specific events. Our
simulation-based thermal results are adequately precise and require less effort in analyzing the
memory modules. Moreover, we identify that the thread-specific utilization levels and
frequencies of the processor (Intel Xeon architecture®’) do not improve the accuracy of the
processor power consumption, but we demonstrate sufficiently precise results of our
decoupled component models, which are as accurate as the approach in [MAC et al. 2011] of
the multi-core processor. The authors of [MAC et al. 2011] estimate the multi-core processor
power by an average accuracy between [+10, +14]%, which is refined in case of a single core
processor power by an accuracy of [+2,+6]%. In the work of [Riv 2008], the authors,
especially analyzed the Intel Xeon architecture and predict the power in their utilization-based
models by a mean accuracy of less than < 15% considering various processor-intensive micro-
benchmarks. Their performance-counter-based models are more accurate than the utilization-
based models as identifiable by a mean accuracy of approximately +10%. We define the
component-specific aspects as separate functions considering the entire utilization levels
(processor-specific) instead of the instruction sets, particular operation traces, or activities on
a cycle-by-cycle basis as done in [Che 2006, Riv 2008, RRK 2008]. We found that using the

387 Intel Xeon architecture: Intel Xeon processor E3/5/7-xxxx v1-5 family

327

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

integrated subsystems of the processor has a relevant impact on the processor power
consumption, which is observable while executing the various micro-benchmarks of the
PassMark CPU benchmark. Nevertheless, we simulate the processor power and temperature
that are only based on the utilization levels and consider a mean usage of the subsystems in
which we neglect the specific operations and the fan-based cooling effect, but also simulate
equivalent results (sufficiently accurate precision and accuracy) concerning our measurements
on the real server system. Our aspect-based component models require marginal component-
based data, such as characterization, ambient temperature, and utilization levels. We achieve
the same level of accuracy as the counter-based power models described in [Bel 2001] by
around +10% using two event counters or +5%, considering additional counters. We do not
study the particular counters, which result in less effort in comparison to the counter-based
models by [Han 2007]. Our accuracy is as good as the accuracy of [Han 2007, HS 2007] within
the range of [—4, +10]%. Their thermal model has an accuracy in the range of [—1.3, +3.4]°C
considering the Intel Pentium Il processor, which is nearly identical with our temperature
accuracy. We assume that creating rough models considering the technical specification can be
as adequate as highly detailed models, which, in consequence, creates less computational
effort. Generally, our accurate and precise power as well as temperature results leads to the
assumption that we can avoid over-provisioning in the case of the PSU sizing.

7.3 Analysis the Impact on Changes of the Component Characteristics

7.3.1 Objective

Our aim is the verification and evaluation of the concepts’ operating principles regarding the
flexible changes of the component characteristics to support a wide range of various server
systems. In this section, we primarily show the scalability of the category-based and aspect-
based characterization considering the certain adjustments of the technical specification CHrsg,
static characteristic CHZE;, or dynamic characteristics CHZY;. We alternate the component
characteristics, analyze the accuracy, and check whether we simulate adequate results. We
want to find the limits of our model because of the chosen relevant characteristics and check
their universal applicability on future and uncertain systems. Additionally, our component-
based models shall reduce the measurement effort of actual server systems.

7.3.2 Evaluation Criteria

Our models instantaneously have to react rapidly and efficiently to the changes of the
characteristics. We assume that if our component models flexibly respond to the particular
characteristic adjustments, the entire simulation model will provide adequately aspects-based
results. In this analysis, we answer the following questions:

328

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

e How much can we trust our component-based models and their related aspect-based
calculation methods when we change the internal component characteristics forced by
a recent external server configuration?

e What are the consequences (impacts) of the characteristic changes in our component
models concerning the accuracy and precision?

As a prerequisite, we have to answer the question whether the component-based models
flexibly react upon varying characteristics. As described in the concept chapter, we empirically
analyze the component-specific characteristics in academia and industrial practice to
determine their significance on the certain aspect, contribute the most variability, and reduce
the simulation output uncertainty, which is a further precondition. Section 7.2 indicates that
our component models are working in an accurate manner because we already adjust some of
the memory characteristics, such as the capacity. In this section, we concentrate upon the
varying characteristics and study the particular components to demonstrate the functionality
of our concept. We evaluate the accuracy of our methods by comparing our simulation-based
results with the measurement values gained from the components in a real server system on
the one hand, and with the vendor-specific spreadsheets on the other. Fujitsu started a couple
of measurement processes over the years to trace especially the power consumption for a
large number of various memory modules and Intel processors. We have confidence in the
quality, comparability, and accuracy of the measurement procedure and therefore consider
the Fujitsu-internal database results in our evaluation. Our evaluation criteria are the absolute
and relative differences between the simulation-based values and either the measurement
results gained by Fujitsu or the vendor-specific spreadsheets in terms of availability and a
relatively high level of comparability (nearly identical characteristics). We expect that the
purely spreadsheet-based approaches overestimate the current aspect more than our aspect-
based calculation methods. On the other hand, when simulating the power consumption, we
require an over-prediction less than +10% in relation to the real-life measurement. We
concentrate on the power simulation in our analysis and partly consider the thermal results
because of the limited available data. We study a sequence of diverse memory modules and
processors.

7.3.3 Experimental Setup

We specify the general evaluation environment and measurement infrastructure in Sections
7.1.1, 7.1.2, and 7.1.3. Herein, we specify the experimental setup of the impact on
characteristic changes, which is nearly the same with regard to the procedure in Section 7.2.3.
We separately evaluate the category-specific components regarding their accuracy of the
aspect-based calculation methods, as shown in Figure 105. Herein, we exclusively consider the
specific component and call the particular calc_category() method, provided by the
component model, which is isolated and encapsulated from the other components. This
approach simplifies the evaluation and speeds up the simulation because we analyze each
component and its characteristic changes separately. In general, we analyze the recent

329

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

external server configuration when we start the entire simulation, but we adjust the
characteristics of each component in an isolated manner in our experimental setup to speed
up the evaluation. Additionally, we ignore the relations or communications between the
various components to encapsulate the certain component from each other. In this evaluation
section, we disable the system-wide optimization engine because we analyze the results of our
component-based models concerning the flexible characterization. In contrast to Section 7.2,
here we analyze various Intel processors as well as memory modules, whereby we consider
various families, generations, or series as technical specification or the memory density,
capacity, or die as different static characteristics that could originate from various
manufacturers. Therefore, we adjust the component configuration as an input parameter of
the simulation framework or isolated component model. In order to ensure the comparability
of the simulation results, we modify the stimuli to produce a very similar situation considering
the utilization levels and the component characterization. We calculate the absolute as well as
relative difference regarding our simulation-based results.

7.3.4 Results and Analysis

We exemplarily present the results of our memory and processor models to evaluate the
parameter sensitivity of our simulation model and present the simulation-based values
resulting from the changing simulation parameters. Herein, we concentrate upon the power-
specific calculation methods because the power consumptions of the various components are
accessible everywhere and available to anyone. In contrast, the component-specific
temperatures are not well analyzed regarding the variability of their characteristics. Therefore,
we evaluate our thermal models that are based on the power consumption and the utilization
levels, see Section 7.2.4. First, we present the adapted power consumptions of our simulation
model considering various characteristics on condition that we only change the particular
simulation parameter without modifying the models. We analyze their accuracy (evaluation
criteria: the absolute and relative differences) with regard to the measurement results gained
by Fujitsu. The experimental results of Fujitsu are stored in an internal database and not
accessible to the public, which, on the other hand, are used to simulate the component-
specific power in the commercial tools. Furthermore, we compare a subset of our simulation-
based results in accordance with the academic approaches or vendor-specific spreadsheets
that are suitable regarding a high level of comparability (nearly identical characteristics).

Memory Power Evaluation

At first, we concentrate upon the two different memory modules considering the
configurations (C70,C71) that we analyze in the test cases (PC1.1.4) and (PM1.1.2) in
Section 7.2. In our memory power evaluation, we exemplarily analyze a selection of
characteristics®® that we vary as a subset of the possible parameters to show the sensitivity
and accuracy of our simulation model. Table 79 lists the memory characteristics of the SUT

38 Characteristics: Table 42 lists the detailed characteristics

330

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

modules, which we consider as the particular simulation parameters. The authors of [RLG et al.
2008] analyzed the varying designs of the DDR2 memory modules considering the idle power
of diverse vendors. In this section, we concentrate upon the maximal power consumption of
the DDR3 memory modules starting with the vendor-specific evaluation.

Table 79: Memory modules (€70, C71) of the SUT — characteristics considered as simulation parameters

Memory characteristics Memory module (C70) Memory module (C71)
Vendor {'Micron'}; {'C'} {'Qimonda'}; {'D'}
Capacity (size) [GB] {"4GB"} {"2GB"}

Density [GB] {"4GB"} {'2GB"'}

Die (component revision) {'D"} {'D"}

Fabrication size [nm] {"44nm"'} {'56nm'}

Synchronization mode {'registered'} {'registered'}

Module ranks, {"1R"}; {"1R"};

rank linking (data width) {"SR"}, {'SR'},
{'x4'} {'x4'}

Timings {11} {"7"}

Error correction {'ECC"} {'ECC'}

Frequency [MHz] {'800"} {'533"}

Voltage [VDC]** {("LV'}; {'STD'};
1.35VDC 1.5VDC

Transfer rate / throughput {'1600"}; {'1066'},

[MHz] {"PC3-12800"} {'PC3-8500R"}

Instead of considering all variations in each IDD state, we group the major IDD states into the
idle state and the active state, which we further distinguish in the refresh mode or read-to-
write mode. In [KCB et al. 2013], the authors analyze every current variation in a single
memory module, which we ignore as the impact of variations in the power consumption and
are negligible in the variation of clusters.

We separately evaluate both memory modules (€70, C71) because their characteristics differ
from each other significantly, such as the capacity, density, or frequency. For the purpose of
comparability, we temporary split the two memory modules into different groups, such as
(C70,€72,C73,C75) and (C26,C71,C74,C76). Appendix A3e provides further details of the
components and their characteristics. The eight bars to the left side of the Figure 136 present
the measured and simulated results of the four memory modules (C70,C72,C73,C75) with
4GB capacity that have almost identical characteristics, but are from several different

390

vendors™". We fully utilize the memory modules by the synthetic PassMark Memory workload

and use our default read-to-write ratio. We observe that the 4GB memory module of the

¥ \/DC: volts direct current

Different vendors: labeled in letters A,B,C,D,E,F,G because we gained the particular power
consumptions of the vendors that are confidential

390

331

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

vendors D and C consume nearly twice as much power as the memory modules of the vendors
A and E in the measurements as well as in the simulation. The absolute differences in our
simulated power in comparison to the measured values are in a range between +0.03W and
+0.62W of the 4GB memory module. Figure 136 also presents the comparative values of the
SUT-specific 2GB memory module C71 that are visualized in the six bars to the right side of
the module, grouped as (€26,C71,C74,C76). In contrast to the 4GB configurations, the
power consumptions of the 2GB memory modules of the vendor E and C show an opposite
trend, but our observation between the vendors D and A remain unchanged. The absolute
difference of the 2GB memory modules between the measurements and our simulation is in
the range of [+0.03,4+0.22]W, which are sufficiently accurate results of our model. Herein, we
implicitly show that our simulation model reacts on changing capacity and density. We observe
a similar trend of the results by [RLG et al. 2008] in which the maximal power consumption
depends upon the vendor and varies in a wide range. Some differences of the power
consumption may occur, because we cannot consider the capacity as a separate characteristic.
In our preceding analysis, we found that the memory capacity relies upon the rank, rank
linking, and density. In order to reduce the mutual influence, we consider the particular
modules, as shown in Figure 136. In addition, the authors of [KCB et al. 2013] state that the
power consumption varies approximately 20% through the various vendors, which is
observable in Figure 136. In our evaluation, we concentrate upon the DDR3 — SDRAM***
memory and consider the dependencies of the various sizes and ranks on the power
consumption that the authors of [XTB 2007] analyzed of the SRAM-based>*> memory modules.

[measured vendor D
6.80 6.70 6.78 6.70 6.92 §lEsimulated vendor D
6.18 measured vendor A
-simulated vendor A
measured vendor C/ G
ésimulated vendorC/ G
[measured vendor E
I simulated vendor E

gl5.60 573

BUT

410 4.07

3.87 3.91

3.00 3.03

power consumption [W]

Cc70 C75 Cc71 C26 C74 C76 configuration

4 4 2 2 2 2 capacity [GB]
C E D A G E vendor

Figure 136: Vendor-specific power consumption of the memory modules (€26,C70 — C76)

In the next section, we change the memory frequencies, which we define as the dynamic
characteristic and evaluate the impact on a single change in the power consumption. We do
not have adequate measurable results concerning varying frequencies of the SUT memory

**! DDR3-SDRAM: synchronous dynamic random-access memory

3%2 SRAM: static random-access memory

332

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

modules and therefore we choose the 2GB memory modules C26 and C24 of vendor A to
show the relevance and effects on the power consumption. Again, we fully utilize the memory
modaules by the synthetic PassMark Memory workload while varying the memory frequencies.
In our simulation model, we consider the baseline frequency of 533MHz for the memory
modules C26 and C24. We continuously increase the frequency following the predefined steps
of [533,667,800,933]MHz. The eight bars to the left side of Figure 137 show the C26 module;
the eight bars to the right side present the C24 module as measured as well as simulated
power values. We observe that a higher memory frequency results in an increasing power
consumption. In our example, we simulate the power consumptions, which are higher than the
measured values, but sufficiently accurate because the absolute differences are in a range of
[+0.02,4+0.25]W.

[measured 533 MHz
i simulated 533 MHz
454 4.60 4.63 4.70 472 I measured 667 MHz
B simulated 667 MHz
[Imeasured 800 MHz
o isimulated 800 MHz
[measured 933 MHz
M simulated 933 MHz

51 440

305 300 311 300 317

power consumption [W]

C26 C26 C26 C26 C24 C24 C24 C24 configuration
533 667 800 933 533 667 800 933 frequency [MHz]
A A A A A A A A vendor

Figure 137: Frequency-specific power consumption of the memory modules (€26, C24)

Besides the capacity, density, vendor, or frequency, we found that the die types are also
significant regarding the memory power consumption. We study the power consumption of
the various die types in order to understand the future trends of memory power consumption.
We assume a continuous development of memory modules.

Figure 138 exemplarily shows the three memory modules C14, C20, and C26 that are almost
identical, but differ with their die types (B, C, D). We simulate the three memory modules
considering the PassMark Memory workload and fully utilize them to analyze the dependency
on the die. In principle, we can simulate the same module and change their die type, but we
gained the explicit measurement results of these three individual memory modules. We
observe that the D-Die memory module (C26) consumes less power than the C-Die (C20) or
B-Die (C14). Our simulation-based results are less exact when we only consider the changing
die types as a single parameter. In this example, we observe an absolute difference between
—0.7W and +0.04W that is more accurate concerning the over-estimation, but is less precise
in the under-estimation in comparison to the frequency-based results, for instance.
Nevertheless, we can predict future components in our simulation model that follow the same

333

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

trend as the memory modules before. The authors of [Vog 2010] present the scaling
progresses through the memory generations, such as fabrication size, capacity, generation, or
family regarding the power, voltage, timing, and energy trends that we consider in our
approach.

[measured B-Die
esimulated B-Die
Il measured C-Die
B simulated C-Die
[_lmeasured D-Die
{7t simulated D-Die

3.87 3.91

power consumption [W]

i
c14 c20 Cc26 configuration
B-Die C-Die D-Die die
A A A vendor

Figure 138: Die-specific power consumption of the memory modules (€14, €20, C26)

We exemplarily show that our simulation model reacts on the characteristics of the memory
modules that influence the power consumption. In the majority of the cases, the
characteristics influence each other and cannot be simulated separately. We evaluate the
memory modules (C77,C78) of the academic approaches [HCE et al. 2011] and [LEU et al.
2010] to show the applicability and reliability of our simulation-based approach. Accordingly,
we specify the memory modules in our simulation model on the basis of the descriptions of
the scientific papers, but we guess several parameters as default assumptions that are not
documented in detail. In Figure 139, we observe that our simulation-based results are higher
than the results gained from the academic approaches and lower than the listed power
consumption of the spreadsheets®”>. The vendors provide the worst-case values (e.g. power,
temperature) in their spreadsheets, which is a common industrial practice [Fuj 2014] and
generally leads to an over-estimation. The absolute differences of our simulated power
consumption in comparison to the academic approaches are between +0.58W and +0.73W,
which may occur because of the missing memory-specific details concerning a specific
workload, such as the execution of various instructions or patterns. We found that our
simulation model is sufficiently precise in relation to the detailed cycle-by-cycle or instruction-
based models.

393 Spreadsheets: the commercial tools usually consider the spreadsheet values

334

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

[academic approach
6.75 B simulated
[_Ispreadsheet

5.35

power consumption [W]

c77 c78 configuration
4 2 capacity [GB]
1333 1333 frequency [MHz]
C A vendor
[HCE et al. 2011] [LEU et al. 2010] academic approach

Figure 139: Comparison of the memory power simulation (C77,C78)
concerning the academic approaches [HCE et al. 2011, LEU et al. 2010]

Processor Power Evaluation

In this section, we evaluate different processor configurations, considering various processor
characteristics, as a subset of possible simulation parameters to show the sensitivity of our
simulation model, see Table 44. We describe our results of the Intel Xeon architecture - the
third generation, code name lvy Bridge. In our analysis, we exemplarily simulate the E5-2600
product family of the E5-v2 processor family starting with the E5-2650v2. At first, we analyze
the power gap between the spreadsheet-based estimation, the commercial tools, the
measurements, and our simulation results. Afterwards, we evaluate the absolute and relative
difference (in mean) between the measured and simulated values to show the functionality
and flexibility of our approach. Our challenge is to improve the processor power calculation,
especially at lower utilization levels, which is relevant for the memory-bounded workloads
typical for a data center. Furthermore, we assume a continuous development of the processor
family and series to define the power consumption in an early design phase more precisely.

In contrast to Section 7.2.4, we exemplarily present a detailed power analysis considering the
exact characteristics that are relevant to simulate the entire power consumption of the
processor and concentrate upon the processor-specific p-states that correspond to the
processor-specific utilization levels. Table 80 lists the processor characteristics that we
consider as the particular simulation parameters of Intel Xeon E5-2650v2 configuration (C18).

335

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Table 80: Processor (C18) of the SUT (Intel Xeon E5-2650v2) — characteristics considered as simulation

parameters

Processor characteristics Processor (C18)
L3 cache [MB] {'20MB"' }
L2 cache [KB] {'2048KB"}
Semiconductor technology {'70W"}
(TDP) [W]
Vendor {'Intel'}
Architecture Intel XEON E5
Generation Ivy Bridge EP
Family E5-2600v2
Series {'E5-2650v2"'}
Cores / active cores {'8c'y},
(hyper-threading) {'16T'}
Frequency [GHz] {('2.1"'}, turbo {'2.3"}
Transfer rate [GT/s, MHz] {'8.0GT/s"'},

{'1600MHz"}

In our analysis, we consider synthetic utilization levels of the processor in equidistant steps of
10% in the interval [0,100]% as an input parameter of our simulation. At the same time, we
assume an unchanged ambient temperature. This might negatively influence the accuracy of
our processor power simulation. However, we make this assumption for two reasons. First, the
ambient temperature is not under our control; second, we want to keep our model simple. As
described in the concept chapter, we simulate the processor power in a manageable power
interval considering the thermal design power (TDP) and the minimal power in relation to the
amount of p-states as well as the processor family (series) as static characteristics. Figure 140
exemplarily presents the simulation-based results of the processor power (dash-dotted red
line) in comparison to the measurement trace of the Intel Power Thermal Utility (solid blue

394 3% (dotted magenta line), or vendor-based

line)™", the data gained from the commercial tools
data determined in the spreadsheets (dashed black line). We simulate the power consumption
of the Intel Xeon E5-2650v2 (C18) as a linear function®® of the utilization levels, which is
nearly identical to the measurements. In contrast to our studies at the SPECpower
benchmarks, we observe a higher absolute difference between the simulated and the
measured values by a mean inaccuracy of approximately +1.39W, which is a +6.72% relative
difference (in mean). The Intel Xeon E5-2600 specification defines a nearly constant processor

power in the range of [58,70]W. In addition, we observe significant differences between the

394 Comparison to the measurement trace: detailed accuracy of (€18), such as the frequency analysis, is

presented in Section 7.2.4
3% commercial tools: we found equivalent configurations of the processors (€1, C3,C7,C18) in the Dell
Energy Smart Solution Advisor (ESSA), http://www.dell.com/calc
396 ,

Linear function: the processor power is non-linear for processors with more than approximately 15 p-
states

336

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

realistic measured/simulated power values in comparison to the commercial tools, which
overestimate the power especially at the full utilization levels. In our example, the
measured/simulated power consumption at the full utilization level is approximately 50.59W
but nearly 74W calculated by a commercial tool and approximately 70W defined by the
spreadsheet. We observe that the accuracy of the power consumptions gained from the
commercial tools is more precise when the utilization levels decrease. Thus, the absolute
difference between the measured values and the commercial tool is +15.26W at 50%
utilization level. At the same time, the simulated values have the highest level of inaccuracy of
approximately +3.46WW. We observe that the minimal power is nearly identical at all curves
besides the spreadsheet-based power. Moreover, Appendix A3h provides the detailed power
comparisons of the processors (C1), (€3), and (C7), but we generally observe that the
processor power consumptions of the spreadsheets are inadequate concerning their accuracy
in comparison to the measurements, as analyzed in [DSC 2006, New 2008, Fuj 2014]. The
results demonstrate the necessity of more precise estimation of the processor power
consumption in industrial practice and show the improvements when we simulate the
processor power consumption. We can easily reduce the power gap between the spreadsheet-
based method and the measurements by using our simulation model to keep the inaccuracy as
low as possible. We observe the best improvements of the spreadsheet-based approach at
higher utilization levels, such as in a range of [50 — 100]%. The minimal power of the
processor is nearly identical with the commercial tools, simulations, or measurements. We can
avoid over-provisioning because of our more precise power simulation in comparison to the
commercial tools and spreadsheet-based approaches.

337

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMQOS)

T T T T T T T T
801 X: 100
| Y:74 measured i
L s S g simulated
X: 80
70M = < S Y: 68 = = =spreadsheel _
X:100 e e St s SOTE S N MOE SO AN SETLOSSE TS SRS SO0 SIS SOSE RS SO Ot % I commercial tools

- -
- -
-

-

power [W]

10 I I I I I I I | | T
100 90 80 70 60 50 40 30 20 10 0

utilization level [%)]

Figure 140: Processor power consumption (€C18) —
an exemplary comparison between spreadsheet, commercial tools, measured and simulated power

If we only consider the processor series E5-2600 and their continuous development as a single
static characteristic in our simulation model, we will provide the list of processors
(C7,C18,C3,C1) sorted by their peak power in ascending order. Figure 141 illustrates the
simulation-based results in which the processor (€18) has the lowest peak power because the
thermal design power of (C18) has the smallest value by 70/ . Consequently, we consider the
thermal design power as an additional static characteristic and update the list
(C18,C7,C3,C1). In our approach, the simulation of the processor (C3)is based on the
simulation of the processor (C1), which we proceed in the same manner accordingly with the
processor (C7) that relies upon the processor (C3). We adjust the slopes and weight
coefficients®” regarding the significant characteristics to change the power correction of every
processor. Furthermore, we observe the non-linear power consumption of the processor (C1)
because the amount of p-states is bigger than 15, as stated in the concept section. Appendix
A3h provides the simulation-based results of processor power consumptions considering the
processors (C1 — C19).

397 Slopes and weight coefficients: the slope of higher utilization levels is always larger than the slope at

i high
lower utilization levels WF; 9" > WFY

338

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

130
0 S 0 S O P C18 E5-2650 (2.1GHz, 70W)
00 C7 E52630 (2.6GHz, 80W)
110 3_‘-_(\31 ----- C3 E5-2670 (2.5GHz, 115W)
R S S Dot C1 E5-2690 (3.0GHz, 130W)

;‘\ .,
100F™E3 ™

i

L ary
10F

D i | | | | | | | | | |

100 90 80 70 60 50 40 30 20 10 0

utilization level [%]

Figure 141: Simulated processor power consumption (C1,C3,C7,€18)

Table 81 lists the inaccuracy of our processor power simulation under the synthetic utilization
levels regarding their absolute as well as relative differences (in the mean) between the
simulated and measured values. Our aim is an error rate less than ten percent, which we
specify as precise enough, see Chapter 4. We concentrate on the processors (C1 — C19) of the
E5-2600v2 product family and observe the absolute difference in the range of
[—6.63,+6.63]W. We can argue that our simulation-based results are reliable and adequate,
because the inaccuracy is approximately +9.6% when we neglect the results of the processors
(€2), (C4), and (€B). In case of these three processors, we observe the total absolute
difference of +4.34W up to +9.2W, especially at full utilization levels, which has a negative
impact on the entire power simulation of the particular processor. The variance of the
processor power increases with the processor generation, which is approximately 20% up to
25% measured from peak to peak [Fuj 2013]. The impact of process variation in the processor
power consumption can be another reason for our inaccuracy [RLG et al. 2008].

339

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Table 81: Processor power accuracy — the simulated vs. the measured results

Inaccuracy
Absolute Relative
difference [W] difference [%]
(mean) (mean)
c1 +1.13 +3.6
C2 -6.63 -13.8
C3 +3.88 +7.6
c4 +6.63 +14.7
C5 -1.21 -9.6
Cé6 +3 +3.2
Cc7 +4.13 +9.6
Cc8 +5.37 +15.3
c9 +1.15 +1.4
Cc10 -2.18 -8.2
c11 +0.05 -1.4
Cc12 +4.73 +5.2
Cc13 +5.69 +2.1
c14 +4.25 +0.3
C15 +1.78 +0.6
C16 -0.63 -1.0
c17 -1.54 -0.9
Cc18 +1.39 +6.7
c19 -2.75 -8.2

A sufficiently precise simulation requires static and dynamic characteristics to be universally
applicable on future and uncertain systems that we demonstrate by our processor-specific
power values considering the synthetic utilization levels. Nevertheless, we can predict future
components in our simulation model that follow the same trend as the processors before.

7.3.5 Conclusion

We demonstrate that our simulation model at a high level of abstraction is sufficiently precise
(less than +10% relative difference) when we consider the relevant static and dynamic
characteristics of the memory modules and processors. Our simulation results are more
accurate in comparison to the results gained from commercial tools or defined by
spreadsheets. We reduce the over-estimation of the worst-case power, e.g. the peak power at
the full utilization level, and decrease the power gap at lower utilization levels when we
compare our simulation results to spreadsheets. We improve the estimation process,
especially at lower utilization levels, so that we can define the power consumption in an early
design phase more precisely. We simulate equivalent results concerning precision and
accuracy in comparison to academic approaches, taking into account that we investigate less
effort to analyze and measure each component, such as various memory modules. The authors
of [Han 2007] analyze the specific frequencies executing different benchmarks, but we show in

340

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Section 7.2.4 that the various processor-intensive micro-benchmarks have little impact on the
peak power consumption. We consequently assume that the processor frequencies rely upon
the utilization level. In the work of [Han 2007], the authors state that the power linearly
depends upon clock throttling. As a result, we assume that the processor power is linear to the
certain p-state (voltage-frequency pair). In contrast to the work in [GFN et al. 2006], we specify
our components by the relevant technical specification CHyg, static CHgG and dynamic
characteristics CHZY; wherein we neglect the instruction-level details, as analyzed in [BGM et
al. 2010] by the access rate. We simulate the entire processor power dependent on the cache
sizes (L2, L3), which is defined as core-specific power consumptions in the power models in
[RRK 2008, BM 2012 KIC et al. 2014]. In fact, the amount of processor cores is an additional
relevant characteristic of processor power consumption. Our simulation model flexibly reacts
upon the characteristic changes of the components, which finally reduces the measurement
effort of the particular component series. We predict future components, but assume a
continuous development of the components, wherein we adjust the certain weight coefficients
upon the basis of the specific characteristics and technology changes. In the work of [Han

2007], the authors define a processor model of the Intel Pentium M 755°%

generation, which
we do not include in our simulation model because the processor is a desktop processor, while
we concentrate upon server-specific processors. The authors in [Riv 2008] define the power
model of the server processor Intel Xeon 5130°%
suitable for an Intel Xeon E5430"°

generation) away from our SUT-specific processor generation®®, called Ivy Bridge. The authors

similar to the processor model in [THS 2010]
processor. Both are three processor generations (Core

in [TDM 2011] analyze an Intel Xeon E5540°” processor, including the Intel Xeon Nehalem
architecture, which is two processor generations away from our SUT processor generation. We
do not support the Intel Pentium M (M 755), Intel Xeon Core (5130, E5430), or Nehalem
(E5540) architecture in our simulation model, because we want to limit the model complexity.
Our simulation model is actually limited to the server-specific generations of the Intel Xeon
processors, in particular, Sandy Bridge, lvy Bridge, and Haswell, because the experimental
results of Fujitsu are not accessible to the public and are restricted to these three Intel Xeon
generations. In general, we need to adjust the processor generations and estimate the
generation dependencies.

% Intel Pentium M 755: (Pentium M, Dothan), 2.0GHz base frequency, 7.5W TDP, one core, 2MB L2

cache, 400MHz

39 Intel Xeon 5130: (Core, Woodcrest), 2.0GHz base frequency, 65W TDP, two cores, 4MB L2 cache,
1333MHz

0 |ntel Xeon E5430: Xeon (Core, Harpertown), 2.66GHz base frequency, 80W TDP, four cores, turbo,
6MB L2 cache, 12MB L2 cache, 1333MHz

L processor generation: https://ark.intel.com/#@Processors,

https://en.wikipedia.org/wiki/List_of Intel_Xeon_microprocessors

2 |ntel Xeon E5540: Xeon (Nehalem, Gainestown), 2.53GHz base frequency, 80W TDP, four cores /
eight threads (4C/8T), hyper-threading, turbo, 8x256KB L2 cache, 8MB L3 cache (TLC), 5.86GT/s QPI,
1066MHz

341

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

7.4 Improvement Analysis regarding Server System Optimization

7.4.1 Objective

Sections 7.2 and 7.3 evaluate the calculation methods on the basis of isolated components
considering the heterogeneous workload scenarios and flexible changes of the component
characteristics. On the basis of the evaluation results in Sections 7.2 and 7.3, we can trust in
the accuracy of the aspect-based calculation methods concerning the variable adjustments.
Our aim of this section is to evaluate the server system optimization in which we alternate the
technical specification CHyg, static characteristic CHSEz, or dynamic characteristics CH2Y, as
part of the decision variables in our optimization strategy. We simulate the entire server
system and analyze the improvements regarding our adjustments. For this purpose, we
observe the necessary performance scores that we will consider in our performance models
and that will finally become part of our energy efficiency analysis. In our empirical analysis, we
concentrate on the server system architecture of our rack-based system under test.
Additionally, our complete server simulation shall improve the energy efficiency concerning
the peak performance, accordingly, reduce the energy consumption associated with the
decrease of the heat dissipation, and consider a realistic workload scenario instead of a worst-
case scenario. In contrast to [ERK 2006, RRK 2008, Ran 2010], we want to optimize the server
system for low utilization because the average server utilization is less than ten percent and
always lower than 50 percent in a data center [KFK 2008]. The server optimization offers a high
level of potential savings in the energy consumption and total costs. A couple of alternative
approaches’® exist that overcome low utilization in data centers. If these techniques are
applied, we would be able to optimize a server system for high utilization as well.

7.4.2 Evaluation Criteria

At first, our server system model rapidly needs to react on the workload scenarios (category-
specific utilization levels) provided as external stimuli. Secondly, it has to react precisely to the
characteristic changes that occurred in the internal system-wide optimization engine in our
simulation. We assume that we can optimize the server system in our step-based analysis,
evaluate the results, and find the possible impacts of our optimization. In this analysis, we
answer the following questions:

e How much can we optimize the energy efficiency by adjusting a more suitable
configuration or characteristic?

e How much amount of power consumption®® does an improved server system
(configuration or characteristic) accomplish regarding a specific workload scenario?

9 Alternative approaches: e.g. virtualization, scheduling, or allocation techniques

%% power consumption: associated to the carbon footprint

342

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

As a prerequisite, we assume that it is possible to improve the energy efficiency of the server
system at any point of time. Further prerequisites are that we can evaluate and alternate the
components as a local solution (step-base) during the simulation. We assume that the
operating point of a server system is only a local optimization for recent management
techniques or optimization strategies at the specific time. A pre-assumption of our simulation
is that the component-based models consider the power and temperatures of our calculation-
based methods, but include the results gained from the Fujitsu-specific performance
measurements. Our evaluation criteria are the absolute and relative differences between the
initial server system configuration (SUT) and our optimized configuration concerning the local
solution and the global optimal solution.

7.4.3 Experimental Setup

We specify the general evaluation environment and measurement infrastructure in Sections
% and specify
the experimental setup of the energy efficiency analysis. In contrast to Sections 7.2 and 7.3, we
simulate the entire server system and apply our hierarchical approach in the simulation model.

7.1.1,7.1.2, and 7.1.3. In this section, we exclusively study our system under test

Figure 142 presents the corresponding block diagram of the controller layer in which we
visualize, analyze, evaluate, and optimize the server system.

—
Q
P DD
& - e
S s .
Q) \
= system model .
= :
ol 2 !
© component models |
H [}
i — 2 6| |
c i
[< processor g8 !
— = i
I model & g I§
I T o E !
imuli T fan D g i
imuli v 3
N = 8| memory model =g Sl
I model £] Js
: model |/C} =\
i . !
o I
I = !
@ | input/output -
i 5 del power supply unit i I
i < model =4 model '
I | [
i others i I
i model 2|
w1
K2l
! — g | !
i < O I
[
© © |
I S
{ { AN
I . . - . - . 2 .
i visualization, monitoring, storing [y o |
i (stimuli, power, energy, performance, temperature) |
e —— |

="
Il component controller
=\

Figure 142: Controller layer — block diagram considering the entire system model for evaluation purpose

405 System under test: described in detail in Section 7.1.1

343

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

We connect the component models in the system model to enable the communication and the
corresponding effects of the behavior models. Nevertheless, we activate the particular
calc_category() method within each component model, as described in Section 7.2. We enable
the system-wide optimization engine because we analyze the results of the entire system
model to optimize the energy efficiency. We analyze the possible impacts of several
characteristics on the respective aspects and decide on the suitable alternation strategy. We
apply our optimization and alternation strategy in the system-wide optimization engine in
which we adjust and restrict the set of decision variables to reduce the complexity and
simulation effort, as described in detail in Section 6.3.

In this evaluation section, we externally generate the stimuli that distribute all component-
specific utilization levels to our system model and its integrated component-based models, as
shown in Figure 143. Our simulation model reacts to either a steady or continuous workload
scenario, which together with the ambient temperature is configurable in the graphical user
interface. We can import the utilization levels of the real-life measurements as an input
parameter or generate synthetic workload scenarios.

stimuli model system model results
til_level P util_ >
util_level_processor W level_processor util_level_processor power_total_system power_total_syskem
peak_power_total_system >
util_level_memory P! util_level_memory peak_power_total_system

uti_level_memory

energy_total_system >

energy_total_system

util_level_input_output P util_level_input_output
5 bl 2 utii_level_input_output VP OGP

temperature_total_system >
temperature_total_system

util_level_others P util_level_others
uti_level_others performance_total_system »
performance_total_system

stimuli

25 | »{ambient energy_efficiency_total_system >
l energy_efficiency_total_system

constant_ambient_temp

rack-mounted server system
constant_ambient_temp

Scope_output_simulink

Figure 143: Simulation model — stimuli and server system considering the entire system model

7.4.4 Results and Analysis

The foundations of our optimization analysis consists of the total memory, processor, and
system-specific performance scores that we study while executing the PassMark Memory,
PassMark CPU, and SPECpower benchmarks. In our simulation model, we create a database to
specify the particular component-based as well as system-specific performance scores
concerning their various characteristics and benchmarks. Furthermore, we include the relative
performance scaling based on our measurements, such as adding an extra processor or
extending the memory capacity. Appendix A3i provides a brief overview of the performance
scores and findings related to our system under test.

344

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

In the following section, we present the potential for improving the energy efficiency of the
processor, memory, and entire system on the basis of theoretical considerations. We
especially analyze the performance-to-power ratios in relation to the adjustments of the
server configuration that we gained while executing diverse benchmarks. Afterwards, we
exemplarily show the performance-to-power ratios of the system under test 8. resulting from
the SPECpower benchmark that we consider as base energy efficiency EEg455. We present the
alternative configurations and their corresponding energy efficiency EE(Qé, ﬁtk) resulting
from our step-based analysis in our optimization. Moreover, we exemplarily describe how we
observe the local set of solutions (Pareto front) that satisfy the objective functions and
illustrate the results of our global analysis, specified as post-process, in which we reduce the
local set of solutions to present the global optimal solution. Finally, we compare the results of
our optimization strategy concerning the base energy efficiency and energy consumption.

Memory, Processor, and System Performance-to-Power Ratios

In parallel to the memory and processor evaluation (7.2 and 7.3), the particular benchmarks
store the performance score that we consider when we simulate the energy efficiency. Figure
144 and Figure 145 exemplarily show the performance-to-power ratios (on top of the bars) as
the results of the PassMark CPU (PCx.y.z), the three bars on the left and the PassMark
Memory (PMx.y.z) benchmarks the three bars on the right of the figures. It can be observed
that if we double the memory capacity in a server system with an exclusive processor (x = 1),
either in a single memory module (Z = z * 2) or as an additional memory module (¥ = y * 2),
the performance-to-power ratio will approximately increase by [2.0,11.5]% at (PC1.y.z) and
by [52.8,106.9]% at (PM1.y.z), see Figure 144. If the system has two processors, the
performance-to-power ratio of the processor increases at the PassMark CPU benchmark
(PC2.y.z) by [5.3,24.1]% when we double the memory capacity. In contrast, the
performance-to-power ratio of the memory modules decreases by nearly —5.1% when we
double the memory capacity of the single module, but increases by around 80.1% at the
PassMark Memory benchmark (PM2.y.z) when adding an extra memory module, as shown in
Figure 145.

345

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

2. PassMark CPU B PassMark Memory

L70 +11.5% +106.9% 5 6,00
o = 1,65 7 5,13

2 1,65 500 o
= +52.8% B
o 82 =
22 160 379 400 % g
O g E 32
32 155 300 S g
Sq +2.0% , , 9
a e »1,51 £
& g 150 1,48 200 5 &
2 EE
g 145 100 © 8
g

1,40 | | 0,00

PC1.1.2 PCl.1.4 PC1.2.4 PM1.1.2 PM1.1.4 PM1.2.4
benchmark

Figure 144: PassMark CPU (PC1.y. z) and PassMark Memory (PM1.y. z) performance-to-power ratios

3 PassMark CPU W PassMark Memory

2,40 4,00
’ 2,32 ,
230 7 +24.1% > y = > 3,53
4 f(+80.1%
- 3,50
2,20 2
2 210 5% 3,00 g
=
£ 2,00 1,97 gg
22 100 1,87 -5.1% 08z
o 4 [=]
A 196 F—=> =
E 2 180 1,86 2,00 E g
[} [
o ©
gE 170 | g £
g g 150 &£ 3
£ 160 t
b=
g 150 . . 1,00 s
PC2.1.4 PC2.1.8 PC2.2.8 PM2.1.4 PM2.1.8 PM2.2.8
benchmark

Figure 145: PassMark CPU (PC2.y.z) and PassMark Memory (PM2.y. z) performance-to-power ratios

Furthermore, we observe that an additional processor and its related second memory
module®® have a significant impact of approximately [=50.9, —21.0]% on the performance-
to-power ratio of the memory modules, as shown in the PassMark Memory benchmarks, see
Figure 146. In contrast, when the server system executes the PassMark CPU (PCx.y.z)
benchmarks in which we provide an additional processor and memory module, we observe
improvements of the performance-to-power ratios of the processor by approximately 26.4%,
30.5%, and 40.6%, as shown in Figure 147.

406 . .
Second memory module: server system settings require a memory module per processor, based

upon the fact of the regular expansion

346

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

6,00
0
500

£5

§§_ 4,00

=g

= %

5 o

g8 300

w M

8 E

a5
S
E 2,00
[-%

1,00
2,50
Q
B 230
22
2,10

S8

IS 2 190

=0

22

§g 170
3

£ 1,50
o
1,30

W PassMark Memory 1.y.z # PassMark Memory 2.y.z
31.2%
-50.9%
3,79
7 A9 -21%
SH40 {}
1,96

PM1.1.2 PM2.1.4

1,86

PM1.1.4 PM2.1.8 PM1.2.4 PM2.2.8
benchmark

Figure 146: PassMark Memory performance-to-power ratios(X = x * 2)

PassMark CPU 1.y.z

i PassMark CPU 2.y.z

+30.5%

FEEE e b be
HtE bbbt se

PC1.1.2 PC2.1.4

PC1.1.4 PC2.1.8 PC1.2.4 PC2.2.8
benchmark

Figure 147: PassMark CPU performance-to-power ratios(X = x * 2)

The authors of [DEP et al. 2009] present the typical performance gains [1.5,1.7] when doubling

407

the amount of the processor and the memory capacity of an IBM x3850 M2 server™'. The

theoretical potential improvements of the processor-specific and memory-specific energy

efficiency lead to the assumption that we can easily improve the energy efficiency of the entire

system. We investigate and clarify the actual performance-to-power ratios by evaluating our

real server system.

407

IBM x3850 M2:

http://www-07.ibm.com/systems/includes/content/x/hardware/enterprise/x3850m2/pdf/xso03033use

n.pdf

347

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Server System Optimization

We exemplarily optimize the energy efficiency of the system under test, as specified in Table
47, because we can easily compare our simulation results with the measurement-based data.
In our optimization strategy, we adjust the dynamic characteristics, static characteristics, and
technical specifications relying upon the actual thermal dissipation and power consumption of
the single components. The optimized components will probably have a positive effect on the
total energy efficiency of the entire server system. In the following sections, we concentrate
on the potential local and global optimal solutions for the energy-efficient server
configuration, irrespective of the optimization phase® in which the solutions are found.

We exemplarily execute the trace of the SPECpower benchmark (SP1.2.8) (gained by the Intel
Power Thermal Utility) in our simulation considering the component-specific utilization levels
in the period of T = [0,3732]s presented by their target throughputs of the system between
[10,100]%, as shown in Figure 148. At first, we check the plausibility of the normalized
performance-to-power ratios and secondly, we analyze the local and global optimal solutions.

120 |

Processor_utilization
10~ Memory_utilization
Input/output_utilization
“l'[|Il |l| || — Others_utilization

utilization level [%]

0 | 1 1 | 1 | | | | | 1 | |
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

target throughput [%]

Figure 148: Component-specific utilization level at SPECpower

408 Optimization phase: primary or secondary phase of alternate decision variables

348

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

The processor-intensive workload (solid blue line) produces up to 70% target throughput the
significant part of the total power consumption, see Figure 149. The power consumption of the
others (solid green line) constitutes the motherboard and fans, which we can partly influence
in our optimization strategy. We neglect the |I/O-based power (purple solid line) in the case of
a processor-bounded or memory-bounded workload, as it has little influence on the entire
power dissipation and consider them as static power. In contrast, the memory utilization (solid
red line) highly depends upon the utilization level, but in our example, the memory power is
the lowest part of the total power consumption. Accordingly, we concentrate upon the
processor optimization.

60—

Processor

— Memory
Input/output

— Others

i

power [W]

10 oy byt
1 [T L T T

0 | | | | | | | | | | | | | |
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

target throughput [%]

Figure 149: Component-specific power consumption at SPECpower

Our measurements do not consider the performance of the input/output and other
components. Nevertheless, Figure 150 presents the normalized performance-to-power ratios
of the processor (solid blue line), the memory (solid red line), and the entire system under test
O (solid magenta line) that we consider as base energy efficiency EEg 45z in our optimization
strategy. We observe that the performance-to-power ratio of the memory modules is nearly
stable around 0.81 from 100% down to 0%, but increases during the calibration phase from
1.3 up to 1.5. The performance-to-power ratio of the processor is in linear proportion to the
processor utilization level. The performance-to-power ratio of the system increases from 1 up
to 1.4 until the target throughput of 40% and decreases at lower target throughputs.

349

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

20 I I
Processor_BASE
181 Memory BASE
System_BASE

06

0.4

normalized performance-to-power ratio
4
E

0.2

0 | | | | | | | | | | | | |
cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

target throughput [%)]

Figure 150: Normalized performance-to-power ratios at SPECpower

Our aim is a server system optimization regarding energy efficiency (performance-to-power
ratio) that simultaneously results in the mutually contradicting objectives: minimizing the
power and maximizing the performance. We exemplarily optimize the processor in the
simulation in which we execute the step-based analysis at each discrete time t; of T and
iterate all possible decision variables to specify various alternative processor configurations.
Figure 151 shows all alternative processor configurations (many-colored crosses) as the results
of our step-based energy efficiency analysis in the optimization process considering the entire
simulation period T = [0,3732]s on the x-axis and the normalized performance-to-power
ratio EE (6., l7tk) on the y-axis, which we further analyze in the post-process to find the Pareto
front. In the figure, we simply identify the gaps of the processor utilization levels around 4% as
a set of vertically aligned alternative processor configurations in regular intervals containing
the normalized performance-to-power ratios between 0 and 0.6. We observe that the number
of alternative processor configurations (many-colored crosses) differ with each time, especially
when we analyze the period T = [0,1400]s. The increasing number of alternative processor
configurations in the continuous optimization process will increase the simulation time,
because every alternative processor configuration activates the aspect-based calculation
methods at each discrete time t;,.

350

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

P X X MM KA, o SO HITMIL 063 RIORXH WY g x e G
16— DIy S U A e, Sl e ¥

= <
% %% x

i&fe“ﬁ' ek ¥,

oo zx;xﬁ: 35?‘5‘35 g

P BT K K
e T X
RN g %

*

X %5, 5
| T ’x‘ 5()‘
X B % ok R SO
e K g

normalized performance-to-power ratio

0.2

L ! | ! . [|
0 500 1000 1500 2000 2500 3000 3500 4000
time [s]

Figure 151: Alternative processor configurations (normalized performance-to-power ratio) at SPECpower
T =[0,3732]s

We backwards transform Figure 151 into a representation concerning the normalized power
and normalized performance. Figure 152 presents the alternative processor configurations
(many-colored crosses) in a 3-dimensional representation in which the x-axis shows the entire
period T = [0,3732]s, the y-axis specifies the normalized power, and the z-axis defines the
normalized performance. This figure gives a rough impression of the optimizations’ complexity
on the basis of the alternative processor configurations (many-colored crosses), respectively
their numbers.

0.8 —|
0.6 —|

0.4 —|

normalized performance

4000

06

04

normalized power 1500

Figure 152: Alternative processor configurations (normalized power, normalized performance) at SPECpower
T =[0,3732]s

351

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

We simplify the graph of Figure 152 by limiting the period T = [0,1400]s on the x-axis to show
an easier-to-read representation of the alternative processor configurations resulting from our
optimization process, which we further store in the ranked lists in descending order. We
observe in Figure 153 that the number of possible alternative processor configurations (many-
colored crosses) is less when the processor is fully utilized, as shown in the beginning
T =[0,876]s in comparison to the period T = [876,1400]s when the processor utilization
decreases. The varying number of alternative processor configurations results from the
optimization and the alternation process considering the weighted dynamic characteristics,
static characteristics, and technical specifications to fulfill the mutually exclusive objectives,
such as power and performance conditions at the specific workload.

X:1299

12 e
X:23 0
g 1] o o g e
c : " 5 % Sl Y:0854 ¥
E 0.8 =% h%/%f)s’éf et ki i 2:0.9037
g i%,gg b
g 06
s %
2 % %
N g4 ke *
g x BTy %
E xx %
5 02+ X 50K % x
c X X % % % %
0 = x % % Ko % é‘ &
_ % % %
1.2 X:0 3 * Xsixx % G §(ke &Xxx o m%&
1 Y: 0.5527 % X W X ke Fo i &%&%&
08 2. 8.340.06 ®oh M ey &m&,& % W 1400
; o R x " 1000 20
06 W 600 800
. K X
normalized power 02 200 400 time [s]

Figure 153: Alternative processor configurations (normalized power, normalized performance) at SPECpower
T = [0,1400]s
We exemplarily analyze the large number of processor-specific performance-to-power ratios
(Figure 151) to find the local set of optimal solutions (Pareto front) at each time. The following
steps pertain to our global analysis, which we separately execute as a post-process of our
simulation.

In our example, we present the alternative processor configurations of the optimization
process at the times t; = 395s, t, = 577s, t; = 876s, t, = 1143s, and t5 = 1299s and
analyze them to check whether we have improved the energy efficiency of the base processor
configuration*®. Therefore, we analyze the actual utilization level, the corresponding

. PO . PE, .
normalized power ——=—, the normalized performance —=—, and the normalized
max(PO.) max(PE;)
. GS(EE)
performance-to-power ratio ——-——— of the base processor configuration, as listed in Table
max(G1 (EE))

82.

9 Base configuration: the initial configuration 6. specifies the base energy efficiency EEg sk

(normalized performance-to-power ratio)

352

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Table 82: Base processor data at system under test (time, utilization level, normalized power, normalized
performance, and normalized performance-to-power ratio)

. Utilization Normalized Normalized Normalized
Time performance-
level [%] power performance .
to-power ratio
t; = 395s 100 1 1 1
t, =577s 4 0.356 0.041 0.115
tz; = 876s 97 0.978 0.968 0.989
ty =1143s 90 0.935 0.903 0.966
ts = 1299s 78 0.854 0.782 0.916

In our optimization strategy, we specify the alternative processor configurations that have a
lower normalized power or a higher normalized performance in comparison to the base
configuration (without optimization), see Table 82. Figure 154 exemplarily presents the
alternative processor configurations, marked by the many-colored crosses*'® in the subplots at
the times t; = 395s, t, = 577s, t, = 1143s, and t; = 1299s with the normalized power on
the x-axis and the normalized performance on the y-axis. In our optimization strategy, we
analyze all alternative processor configurations at each discrete time ¢, to find a local set of
solutions (Pareto front) that satisfy the mutually contradicting objectives of the energy
efficiency. Consequently, in Figure 154 we present the local set of optimal solutions (Pareto
points) of the processor configurations, which we identify within the post-process, marked

with red dots**.

410 . . .
Many-colored crosses: alternative processor configurations do not always have the same colors, due

to the restricted color representation and confusable colors display
1 Red dots: specify various alternative processor configurations

353

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

t=395 t=577
1r @ 0.4y
o ® ®
Q
S 098 g
g o X {0 g 031
5 | 5
§ 0% 5 o
=3 S 02t X
3 3 5
N 0847 N
© ©
E E 01f
5 0921 5 PY
= c
|. Hsg « XK
09-® V| | ! I | 0 | | I | | I I
0.95 0.96 0.97 0.98 0.99 1 0.1 0.2 0.3 04 05 0.6 0.7 0.8
normalized power normalized power
t=1143 t=1299
1r ® 1r
Q @
S 098F S 095f ® %
[v] ©
E E (]
2 096 2 o9t
5] Q
o a
ks 3
8 0045 ® Gossr
E E
5 092 5 08t L
< < ® @ X I K
0.9 . X) 0.75 . \ \ |
0.8 0.85 0.9 0.95 1 0.6 0.7 08 09 1
normalized power normalized power

Figure 154: Exemplary processor optimization (normalized power, normalized performance, Pareto front) at
SPECpower t; = 395s,t, = 577s,t, = 1143s,t5 = 1299s

The local set of optimal solutions (represented as red dots) has a higher performance-to-power
ratio in comparison to the base processor configuration. Figure 155 presents the identical
simulation results of the alternative processor configurations (many-colored crosses) and the
local set of optimal solutions (red dots) at the times t; = 395s,t, = 577s, t, = 1143s, and
ts; = 1299s, presenting the related performance-to-power ratios on the y-axis. The Pareto
points present the ideal short-term solutions of our optimization process.

354

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

16—
= alternative processor configurations

14 ® |ocal set of optimal solutions (Pareto front)
.0 .
T ° . ° ° [
5 1.2+
8 ‘ i ' '
g % % i 4 .
e 1 s s s] H
3 g g Q ! X: 1143
c] []] L] Y:0.9673 u
g 08— X:284 X: 395 X: 577 X:876 X: 1209
5 Y:0.863 Y:0.863 Y:0.863 Y:0.863 Y:0.863
h=
& o6l] . .
o v
8 i i i
% X % X LJ

04—
g [] L] []
c

02+ B ¥ ¥

® e ®
i # i °
0 | o | | | | J
0 200 400 600 . 800 1000 1200
time [s]

Figure 155: Exemplary processor optimization (normalized performance-to-power ratio) at SPECpower

t; = 395s,t, = 577s,t3 = 876s,t, = 1143s,t5 = 12995

1400

In the post-process (global analysis), we search the global optimal solution as a long-term

optimum over the period of time. We consider all local optimal solutions, which involves 108

unique processor configurations, in our exemplary optimization. The globally optimal solution

dominates for the longest period of time and represents a rough approximation of an intuitive

selection, as shown in Table 83. To be more precise, we additionally consider the balance of

the power and respective energy in the integrand of the time integral that leads to the global
optimal processor configuration in Table 84.

Table 83: Intuitive global optimal processor configuration

Processor Intuitive global optimal configuration
Family (Series) Intel Xeon E5-2643 v2 (C14)
Generation Ivy Bridge EP (Romley)

Frequency 3.5GHz

Hyper-threading / turbo Enabled / enabled

Enabled 6 cores, 2 chips

Hardware threads 12 (2 / core)

L1 Cache 8x32KB instruction caches, 8x32KB data caches
L2 Cache 6x256KB

L3 Cache 25600KB

Thermal design power (TDP) 130W

355

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQOS)

Table 84: Global optimal processor configuration considering the power and respective energy

Processor Global optimal configuration considering the
power and respective energy at the time

Family (Series) Intel Xeon E5-2603 v2 (C10)

Generation Ivy Bridge EP (Romley)

Frequency 1.80GHz

Hyper-threading / turbo Enabled / enabled

Enabled 4 cores, 2 chip

Hardware threads 4 (2 / core)

L1 Cache 8x32KB instruction caches, 8x32KB data caches
L2 Cache 4x256KB

L3 Cache 10280KB

Thermal design power (TDP) 80W

Table 85: Global optimal processor configuration concerning the performance-to-power ratio

Processor Global optimal configuration concerning the
performance-to-power ratio

Family (Series) Intel Xeon E5-2637 v2 (C15)

Generation Ivy Bridge EP (Romley)

Frequency 3.5GHz

Hyper-threading / turbo Enabled / enabled

Enabled 4 cores, 2 chips

Hardware threads 8 (2 / core)

L1 Cache 8x32KB instruction caches, 8x32KB data caches
L2 Cache 4x256KB

L3 Cache 15360KB

Thermal design power (TDP) 130W

The top graph in Figure 156 exemplary presents the trace of the processor-specific utilization
levels (by the Intel Power Thermal Utility) that we gained in the SPECpower benchmark, in
which we consider the same intervals marked by the vertical solid lines and horizontal axes
(target throughput) as in Figure 150. In the middle of the graph, we present the simulated
power consumptions [W] of the base configuration (solid blue line), and the globally optimal
processor described in Table 84 (dashed-dotted red line). The lower graph of the figure
presents the relative power optimization of the processor as a purple solid line. We observe
the highest relative power optimization of approximately 85.2% when we fully utilize the
processor. The exemplary presented processor configuration provides the most energy
reduction in the range of [13.8,85.2]%, which is in a mean of 53.3%. In contrast, the intuitive
global optimal solution reduces the power only by a mean value of nearly 5.2%.

356

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

Processor. uhhzaklon]

cali cali cali 100% 90% 80% 70% 60% 50% 40%
target throughput [%)]

| —— base processor configuration
50 [e N

T 1 PPN o otk o ol Wees o ol | global optimal processor configuration
S 40

S 30] 4

3 i ™ [" /

8 20}

¥ 200

o

58

possible power optimization
X 337
Y8519

s @
o o ©

relative optimization [

&
=}

cali cali cali 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
target throughput [%)]

Figure 156: Relative power optimization of the processor (Table 84)

Finally, we compare the results of our optimization strategy concerning the base energy
efficiency. In Figure 157, we concentrate on the normalized performance-to-power ratio of the
base processor configuration (solid blue line), as shown in the middle of the graph. We observe
an increasing relative optimization of the processor (Table 85) concerning the performance-to-
power ratio, presented as a purple solid line in the lower graph. In our example, the globally
optimal solution has a higher impact on the lower utilization levels in comparison to the higher
utilization levels. We observe the relative optimization in the range of [+0,88.2]%, which is in
a mean of 12.2%. Our relative improvement of the performance-to-power ratio is higher than
the improvements gained by an additional memory module or doubled memory capacity in a
single processor configuration (11.5% at PC1.y.z) while executing a processor-bounded
workload. Our optimization process neglects an extra processor in the local set of solutions,
which may improve the performance-to-power ratio of nearly 40.6%, but the additional
processor consumes more energy over time and is not part of the Pareto points.

357

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

| —— Processor_utilization

cali call call 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
target throughput [%]

utilization level [%)]

Processor_BASE

----- global optimal processor configuration

-_—

normalized
performance-to-power ratio

cali cali call 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
target throughput [%]

|

cali cali cali 100%

relative optimization [%)
o
o

target throughput [%]

Figure 157: Relative optimization of the performance-to-power ratio — processor (Table 85)

Finally, we observe an absolute mean power reduction of approximately 17W considering the
entire server system.

7.5 Summary

To evaluate our multi-aspect full-system server model, we present a series of experimental
analyses, specifically: Accuracy Analysis, Impact on Characteristics Changes, and Energy
Efficiency Analysis. We develop a prototypical simulation model, which is actually limited to
the server-specific generations of the Intel Xeon processors - primarily, Sandy Bridge, Ivy
Bridge, and Haswell - to limit the model complexity. In our simulation, we consider a mean
usage of the subsystems and components specified as category-specific utilization levels to
guarantee the compatibility with commercial tools offering predefined workload scenarios. We
exemplarily analyze and optimize our system under test (SUT), which is a rack-based server
system from Fujitsu Technology Solutions GmbH. We evaluate only system-compatible
components, especially those we can equip in our PRIMERGY RX200S8 server, such as the
processor of the Intel Xeon E5-26xx family and 12 different memory modules with various
characteristics.

We verify and evaluate the concepts’ operating principles that in generally react on
heterogeneous workload scenarios, such as customer-specific application software. We define
simple component models as separate aspect-based calculation methods, considering the
category-specific utilization levels, and show that our abstraction level of the server system as
well as its components are sufficiently accurate to calculate the power and temperature. Our
simulation model (a hierarchical approach) handles various abstraction levels considering low-

358

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

level observations, component states or black-box descriptions where we predict the behavior
of future components by assuming spreadsheets, for instance. Therefore, we support the
scalability and adaptability of the hardware and software characterization, such as diverse
component types, quantities, or settings. We analyze the impacts on particular category-based
and aspect-based changes considering the adjustments of the technical specification CHyg,
static characteristic CHZF;, or dynamic characteristics CHZY; in a wide range of hetero-
geneous workload scenarios. In fact, we identify that the memory-specific read-to-write ratio
has a significant impact on the power simulation, which can reduce the over-estimation of the
memory power consumption. We observe the highest memory power at the processor-
intensive workloads and particularly consider the memory’s interaction by the read-to-write
ratio in the certain workload scenarios. The mean accuracy of the memory current and
obtained power consumptions are in a range of [+2.1,+14.02]%. We specify the processor
on a high hierarchy level considering the entire utilization levels and processor characteristics
in contrast to the approaches in which the processor is specified by the instruction sets,
particular operation traces, or activities on a cycle-by-cycle basis. We linearly define the
processor power in relation to the certain p-state (voltage-frequency pair), which becomes
non-linear for processors with more than approximately 15 p-states. We demonstrate that the
thread-specific utilization levels and frequencies of the processor (Intel Xeon architecture) do
not improve the accuracy of the processor power consumption. In the case of the processors,
we achieve the mean power accuracy of approximately 10%, which is sufficiently precise in
comparison to related scientific approaches. The power consumption builds the base of the
temperature simulation, which we differentiate into a steady and a dynamic phase. We neglect
short-term peaks (less than one second) of the power consumption, which have no impact on
the memory and processor temperature, because of the thermal inertia. We identify a nearly
linear relation between the power consumption and the thermal development, which depends
upon the respective component characteristics. In our simulation, we overestimate the
memory temperatures in the range between [+£0, +10]%, but being more accurate when the
memory capacity increases. We demonstrate that our processor temperature calculation is
reliable and adequate by the mean accuracy of [—1.81, +10.44]%. The authors of [MAC et al.
2011] state that the components’ variability, such as between two processors, is
approximately 11%, which may affect our accuracy. In general, our evaluations show that our
simulation model is sufficiently precise (less than +10% mean accuracy) when we consider the
relevant static and dynamic characteristics of the components at a high level of abstraction.
Our accurate and exact component-based models improve the power and thermal calculation
of the commercial tools (vendor-based approaches) that consequently avoid over-provisioning
when sizing the power supply unit. As a result, we close the gap between the worst-case
nameplate values towards more realistic power consumption, as intended in [BBJ et al. 2009].
We simulate authentic workload scenarios instead of worst-case scenarios that reduce the
over-estimation of the worst-case power, e.g. the peak power at the full utilization level, and
decrease the power gap at lower utilization levels when we compare our simulation results to

359

Evaluation of the Multi-aspect Full-system Server Model and Optimization (MFSMOQS)

spreadsheets. We improve the estimation process, especially at lower utilization levels, so that
we can define the power consumption in an early design phase more precisely. Additionally,
we reduce the measurement effort of actual server systems because we trust in the accuracy
and precision of our simulation model, which flexibly react upon the characteristic changes of
the components and the particular component series. We consider the vendor experiences,
generic findings, spreadsheets, heuristics, and statistics, such as the impacts of the technology
designs, generations, or families in which we assume a continuous development of the
components that enables our simulation model to predict future and uncertain components.
Moreover, we change the component characteristics to support different product life cycle
stages and predict the future behavior of the next-generation components.

After verifying and evaluating the basic operating principles on the basis of the isolated
components, we simulate the entire server system and analyze the energy efficiency in which
we adjust the technical specifications CHrg, static characteristics CHSE, or dynamic chara-
cteristics CHZY; as part of the decision variables in our optimization strategy. Therefore, we
define a complete server system model that integrates the isolated component models and
specifies the communication and interaction between the components that result in the non-
linear behavior. Furthermore, we take the thermal control of the complete server system into
account. We combine the thermal, power, and performance views of the various components
and transform them towards the entire server system. We optimize the server system on the
basis of the thermal dissipation and power consumption, as described in Section 5.4.2.1.

We optimize the server system for low utilization because the average server utilization is less
than ten percent and always lower than 50 percent in a data center [KFK 2008]. Moreover, a
global optimal server configuration saves total costs because of the reduced energy
consumption. In our optimization strategy we exemplarily achieve the mean processor power
reduction of approximately 53.3%. The power optimization has the highest impact at the full
utilization levels, but behaves strictly opposite concerning the performance-to-power ratio.
Nevertheless, we observe a mean optimization of the performance-to-power ratio by nearly
12.2%.

360

Conclusion and Future Work

8 Conclusion and Future Work

Power and cooling are the key challenges to reducing the greenhouse-gas emissions of server-
based computing environments. In this thesis, we present a novel multi-aspect full-system
model that simulates and optimizes a wide range of server systems in contrast to traditional
full-system simulators. To our knowledge, in academic research, there are no generic
approaches that cover the full server system simulation on a common base. In our proposed
prototypical implementation in MATLAB/Simulink, we explicitly cover the heterogeneous
characteristics of the hardware and software variations.

8.1 Summary

We develop a hierarchical and abstract approach that provides the opportunity to define the
system from upper to lower abstraction levels. We specify a generic, flexible, and scalable
configuration tree as a static part of our concept that defines the actual physical customer-
specific system configuration from the structural perspective. Herein, we define the
encapsulated layers: configuration, logical and physical, and process and control, which we
define separately from each other, allowing to support independent descriptions of the diverse
domain-specific characteristics. We abstract the server system complexity and include the
configuration adaptability to support architectural and structural changes at the physical
domain. Our decoupled and hierarchical concept provides the availability to add new
components at various abstraction levels.

In the configuration layer, we specify the architecture, design, and structure of the entire
server system to support multiple server generations. We do not merely consider the actual
configuration, but also take the maximal amount of possible mountable system-board
components into account. We specify the five major categories — processor, memory,
input/output, fan, and others — in the generic, but static configuration tree. Moreover, we
model and characterize each component of the server system primarily in the physical domain,
using a mix of commercial and academic algorithms in the configuration layer.

We define the mathematical methods to calculate the multi-aspects of each component
considering the static configuration tree, which we further define by their technical
specification and their respective characteristics. Accordingly, the logical and physical layer
builds the base of our simulation-based model, in which we specify the component-based
power, thermal, and performance models as a set of utilization-based functions describing the
non-linear behavior. We propose a flexible category-specific classification and generic
characterization approach to support their corresponding calculation-based methods. In
general, we consider the relevant aspect-based characteristics of the components concerning
their explicit category within the configuration tree and apply a weight coefficient to
distinguish their particular significance of the certain aspects.

361

Conclusion and Future Work

In Section 7.2, we demonstrate the precise accuracy of our power and thermal calculation
concerning the memory modules and processors. In our approach, we group the memory
states and abstract the explicit memory accesses to reduce complexity. We exclusively
consider the utilization levels instead and found that a precise simulation requires additional
data about the memory instructions because the measured power values differ in relation to
the benchmark when tracing the same utilization level. As a result, we define the read-to-write
ratio of the memory modules to compensate concrete accesses and always estimate them in
the category-bounded workload scenario based on empirical studies by a statistical
approximation. The precise power consumption builds the base of the temperature simulation,
which we differentiate into a steady state, an increasing, and a decreasing temperature
development. We neglect short-term peaks (less than one second) of the power consumption,
which have no impact on the memory and processor temperature because of the thermal
inertia. We demonstrate that our simple state-based memory model sufficiently accurately
calculates the power and temperature, which can reduce the over-estimation. We do not
require fine granular low-level data, such as instructions, which reduces the estimation effort
of the memory modules. Moreover, we demonstrate sufficiently precise results of our
decoupled processor models concerning the Intel Xeon architecture, in which we neglect the
thread-specific utilization levels and frequencies. We precisely simulate the processor power
and temperature, which are only based upon the utilization levels. In our processor models,
we consider the mean usage of the integrated subsystems in which we neglect the specific
operations and the fan-based cooling effect. Our accurate and exact power calculation reduces
the over-provisioning of the server system, particularly in industrial practice and, in
consequence, optimizes the PSU (power supply unit) sizing.

In Section 7.3, we demonstrate that a sufficiently precise power simulation requires static as
well as dynamic characteristics. We present that our approach is sufficiently scalable and
sensitive about varying the compatible subset of the possible components concerning the
category-based and aspect-based characterization to cover a variety of server systems. We
concentrate upon the power-specific calculation methods because the power consumptions of
the various components are accessible everywhere and available to anyone. In contrast to
common assumptions, we found the following relevant characteristics of the memory-based
calculation methods: vendor, die, series, fabrication size, synchronization mode, and ranks. We
consider the single characteristic changes in our power calculation, but in the majority of the
cases, the characteristics influence each other and cannot be calculated separately. Thus, we
define a system of linear equations in a matrix to specify the interdependencies of the
technology-based characteristics, such as capacity, density, rank, and rank linking. We simulate
equivalent results concerning precision and accuracy in comparison to academic approaches.
In addition, our simulation-based results of the E5-2600v2 product family are reliable and
adequate. We observe the processor-specific characteristics: semiconductor technology
(thermal design power), product life cycle stage, fabrication size, and series, which have a
significant impact on our calculation-based methods. In our approach, the processor power is

362

Conclusion and Future Work

linear to the certain p-state (voltage-frequency pair), and we assume that the processor
frequencies rely upon the utilization level. We define a non-linear power method when the
amount of processor-specific p-states is bigger than 15. In fact, the amount of processor cores
and the cache sizes are additional relevant characteristics of processor power calculation.

Our simulation-based model flexibly reacts upon the characteristic changes of the
components, which finally reduces the measurement effort of the particular component
series. We demonstrate that we can forecast future generations of high-performance systems
and components by assuming the predecessor or a similar generation that follows the same
trend as the components before. We demonstrate that our model is universally applicable on
next-generation and uncertain components. Our concept supports the virtual prototype of a
component or server system, which is a benefit in the early design stage and a unique selling
proposition of our thesis.

After separately defining each calculation-based method and their corresponding
characteristics, we specify the relations between the aspects of a single component as a
dynamic behavioral description characterized by findings of a real-life system and its
respective hardware. Furthermore, we define the component-specific relations of the entire
system behavior in MATLAB, because a component can influence the behavior of another
component. We consider the interdependencies between the components, which results in
more realistic power and temperature calculation. The process and control layer includes the
dynamic system behavior, such as the inter-andintra-component communication
(interactions) between the components, which we implement in Simulink considering the
connectors and the architectural description of the configuration layer. The description of the
dynamic behavior enables restriction on the actual performance when the resources are
limited or we exceed the critical temperatures.

Our generic simulation-based model is based upon the operational models described in the
encapsulated configuration, logical and physical, and process and control layers. Herein, we
support the variance of server systems and components because of the flexible category-
specific configuration and characterization that we consider as a centralized database. We
provide access to individually server system configuration within the database to enable the
use of our models across multiple families and generations. Our simulation-based model offers
the opportunity to use white-box, gray-box, and black-box approaches from upper to lower
abstraction levels, because of the component-based encapsulation and different levels of
abstractions in the hierarchical configuration tree. In contrast to academic approaches, we
concentrate upon an exact server system configuration within one simulation run, but do not
dedicate the model to an explicit server system or particular workload scenario. We describe
the external environment and constraints, such as the ambient temperature or thermal limits,
and integrate the hardware-based offline settings, such as the BIOS/UEFI configuration, which
we consider in our calculation methods. We abstract the software dependencies, such as the
specific operating system, but consider the corresponding weight coefficients instead. The

363

Conclusion and Future Work

customer may vary the external and internal data from a lower level to an upper level of the
abstracted server system to specify the component and system behavior. This avoids extra
measurements for a new configuration or other environmental conditions.

We abstract low-level data, such as instructions, and ignore the particular hardware-specific
events, e.g. performance counters that certainly rely upon the exact architecture. Beneficially,
our model is independent of the architecture and generation; because of the abstraction, we
reduce the model complexity. For the purposes of the multi-aspect server simulation, we
transform the steady workload to continuous values to optimize the energy efficiency in the
long-term. Our flexible concept allows the definition of the customer-specific and realistic
workload scenarios based upon the category-specific utilization levels, which specifies the
time-continuous and value-continuous stimuli for the simulation. We predefine particular
utilization levels in various workload scenarios to be compatible with the commercial tools
that under-utilizes all components or define a worst-case workload scenario that fully utilizes
all categories, for instance. Herein, we differentiate into category-bounded (processor-
bounded, memory-bounded, or input/output-bounded) workload scenario that preliminarily
sets the focus on what to concentrate on the server system optimization.

We distinguish our optimization strategy into the cascading primary and secondary phases,
which we differentiate into the short-term and long-term strategies. We specify the primary
phase as online because we consider the short-term modifications when the server system is
working, and we guarantee that our variations do not have any negative impact on the system
or component’s performance. We adjust the dynamic characteristics considering the thermal-
based and power-based management techniques. We consider the common approaches, such
as the dynamic voltage frequency scaling (DVFS) and the dynamic thermal management
(DTM), to represent the short-term behavior (dynamic characteristics). We specify the
cascading primary (online) and secondary (offline) phases to alter the relevant characteristics
and configurations. We control the internal system temperature considering the ambient
temperature in the dynamic thermal management and vary the dynamic component
characteristics considering the short-term strategies. The abstract configuration changes of the
static characteristics and technical specification is our secondary optimization strategy. When
the server system executes a workload for hours or days, the short-term management
techniques are insignificant. As a contrast to the online phase, we specify the secondary phase,
which is an offline optimization, whereby the changes have indirect influences on the primary
phase in which we adjust the static characteristics or technical specifications. We concentrate
upon the power optimization considering uncommon-case working conditions, such as low-
intensive utilization levels, which academic approaches neglect. The thermal control
autonomously reacts upon an increasing temperature, which exceeds a predefined threshold
and raises the cooling airflow according to the fully functional level of the server system. We
control the system and component temperatures within the reliability and functional level by
enabling the dynamic thermal management techniques. We reduce the average and peak

364

Conclusion and Future Work

power of the components by their dynamic characteristics under the condition that the
performance is not affected as autonomously done by every ACPl-based operating system,
which optimize the worst-case power consumption in a time horizon of seconds or minutes.
We consider the global system thermal management and the local power management
technique at the same time, whereby the fraction of the fan power is less in comparison to the
component power. We separately optimize each component, but are aware of the negative
impacts on the global system. The most adjustments in the secondary phase are applicable
when the system is off and we concentrate upon the long-term strategies to optimize the
server system in the early design phase, for instance. We disable the hardware-based features
that do not result in performance loss, such as the processor virtualization before the system
starts. We adjust the BIOS/UEFI characteristics that are significant to the server system energy
efficiency ratio, but constant over hours or days, particularly in a data center. We support the
flexible adjustment of the hardware configurations, especially their static characteristics.

In our concept, we optimize a server system at each time step when the utilization levels
change. We analyze the actual results and decide on the adequate management technique in
the optimization strategy, according to the two optimization phases. We analyze the impact of
our changes concerning the energy-to-performance ratio in comparison to the base energy
efficiency of the initial server configuration. The adjustments of the server configuration and
characterization require an additional calculation, which results in an iterative approach.

We alter the decision variables on the basis of the cascading phases of the optimization
strategy to provide the most probable presentation of the running server system, while
adjusting all dynamic characteristics. We optimize the server system in the secondary phase,
assuming the changes in the primary phase, wherein we modify the static characteristics,
which require a repetition of the adjustments concerning the dynamic characteristics. We have
to consider any characteristics and configurations in the entire design space, whereby we
explore single decision variables or multiple combinations. We optimize the technical
specification, which requires the alternation of the dynamic and static characteristics. In
principle, we consider the hierarchical order of our configuration tree and use a bottom-up
strategy to alter the decision variables beginning with the dynamic characteristics up to the
static configuration. We restrict the design space of each category on the basis of the impacts
on the dynamic characteristics, static characteristics, or technical specification. Accordingly, we
dynamically annotate the classes and characteristics of the tree in relation to the actual
management technique on the basis of the aspect. The abort criteria restrict the design space,
and in consequence, we do not consider all characteristics in the configuration tree. We
compare the energy efficiency ratios and assume that the usefulness of our adjustments are
represented by a scalar value of each aspect and finally in the energy efficiency ratio.

365

Conclusion and Future Work

The multi-objective optimization provides a ranked list in descending order that specifies the
set of optimal solutions when the present energy efficiency is better than the base energy
efficiency. We select the globally optimized server configuration and characteristic that
dominates for the longest period of time; but to be more precise, we optimize the balance of
the power and respective energy in the integrand of the minimized time integral.

In Section 7.4, we demonstrate the possible improvements that result upon the server system
optimization. Moreover, the simulation optimizes the energy efficiency of the server system at
various utilization levels, especially at low-intensity phases (under-utilization). We
demonstrate that we improve the energy efficiency when we optimize the components
concerning the specific demand and avoid under-utilized components to improve the non-
peak efficiency considering the low-intensive workloads.

Our flexible simulation model can reduce the measurement effort because the model may vary
the server configuration in a short time and can simulate the entire system, including a wide
range of spreadsheet data, observations, statistical results, or customer-specific intellectual
properties.

We present the plausibility of our component-based models on the basis of the sufficiently
accurate power and thermal results. We demonstrate that our abstract simulation model
provides the entire system complexity and at the same time is simple enough to cover the
system behavior considering the most important characteristics and configuration.

We demonstrate the feasibility and advantages of our concept through our prototype
implementation, in which we empirically validate our server system using a variety of artificial
workloads to ensure the reproducibility at any time. We address the significant static as well as
dynamic characteristics and configurations of the precise calculation of the aspects.

Our simulation results are more accurate in comparison to the results gained from commercial
tools. We reduce the over-estimation of the worst-case power, e.g. the peak power at the full
utilization level, and decrease the power gap at lower utilization levels when we compare our
simulation results to spreadsheets, and we can easily reduce the power gap of the
measurement-based approaches. We improve the estimating process so that we can define
the power consumption in an early design phase more precisely, which may improve the
power estimation in industrial practice.

366

Conclusion and Future Work

8.2 Future Work

We present our multi-aspect full-system server model and optimization concept as a
simulation-based approach. However, we make several assumptions and limitations in this
thesis. In the following section, we present a couple of possible improvements concerning our
proposed simulation-based model and discuss some recommendations for future research.

The first limitation in our simulation model is that we neglect the component thermal control,
either as an automated mechanism to cool down the explicit device internally or as a server-
specific technology to cool down the components externally. The fan settings are vendor-
specific and are impossible to be changed for a customer-specific thermal control. The
customer cannot directly influence the server’s noise, airflow, or temperature behavior.
Improvements could be made to the temperature accuracy of the entire system when we
consider the intra- and inter-component airflow and observe the mutual influence of the heat
dissipation. Additional studies could assess the integration of the computational fluid dynamics
within a server system to plan the ventilation and define the critical thresholds as part of the
thermal control. In our prototype implementation, we consider the linear fan algorithm that
does not require a continuous control process to a target temperature. Future research could
also concentrate on the extension of the thermal control, such as studying a closed-loop
(proportional integral derivative — PID) mechanism that might save additional energy. The
power and thermal management techniques may act differently in certain circumstances in
comparison to the common usage and behavior, which result in future research.

Furthermore, the second limitation is that we restrict the hardware configuration towards the
rack-based and tower-based server systems because we want to reduce the degree of freedom
concerning our simulation model. An improvement could be made to support a blade chassis,
because blade servers have been ignored so far. In any case, supporting a blade server will
increase the adjustment effort to model a server system because we have to consider the
specific slots to mount several devices of the prewired chassis and shared components. The
actual model assumes only the use of system-board components. Therefore, further study
could focus on the optional (add-in) and on-board components. Another limitation of our
simulation-based approach is that we define the input/output and other resources as static
models assuming empirical measurements. Additional improvements could be made to the
simulation when modeling the dynamic behavior of the input/output and others components.
Our simulation model is actually limited to the server-specific generations of the Intel/ Xeon
processors, especially Sandy Bridge, Ivy Bridge, and Haswell, because the experimental results
of Fujitsu are not accessible to the public and are restricted to these generations. In particular,
we concentrate on the processors of the E5-2600v2 product family. An extra study could
evaluate other processor generations and series.

367

Conclusion and Future Work

In general, we need to extend the component models for the next generations and require
future research that concentrates on updating the dependencies and related weight
coefficients. We recommend further investigations on next-generation components and server
systems to specify the generation-specific static and dynamic characteristics.

Another assumption is that we consider a continuous development of the system and
components, which may cause wrong expectations of the applicability of our model
concerning next-generations. In our approach, we consider the vendor experiences,
spreadsheets, heuristics, and statistics to estimate the future systems, assuming the earlier
observations at every product phase. The qualities of the generic findings, e.g. the defined
weight coefficients based on the real-life measurements, highly influence the calculation
methods. We assume that our weight coefficients can become more accurate, which requires
further studies.

Another assumption is related to the system model because we manually predefine the server
system architecture, communication, and connectors. Additional improvements could be
made to the automated definition on the basis of the system specification. Moreover, we
assume that the updated behavioral description that relies on the static and dynamic
characteristics has a high potential for improvements. Another study could investigate on
dynamically adjusting the settings of the class-specific characteristics of our configuration tree
during the simulation. The actual hierarchical model abstracts the irrelevant features, e.g. the
features that are specific to a single server system, because of their little effect on energy
efficiency. Further improvements could be made to the accuracy of our calculation-based
methods or possible characteristic changes in our optimization strategy. We assume that
creating rough models considering the technical specification can be as adequate as highly
detailed models, which, in consequence, creates less computational effort.

Further research could also concentrate on a more granular component model, which might
have a positive impact on the accuracy of our power and temperature calculation. In our
simulation model, we restrict the performance models by considering the performance scores
that rely upon the real-life measurements. We need further investigation on the performance
scores concerning the impact of category-based and aspect-based changes of the
characteristics and configurations to calculate the performance explicitly.

This thesis presents a variety of artificial workload scenarios to ensure the reproducibility at
any time. We evaluate benchmarks considering synthetic workloads to test real-world systems
or discrete system components in a specified and repeatable manner under defined
circumstances. Future research could also concentrate on evaluating customer-specific, real-
life utilization traces and input/output-bounded workload scenarios. Additional improvements
could be made to the dynamical changing of the component-specific utilization levels at
simulation time, defined by the customer. Another limitation is the actual restriction of the
utilization-based scenarios and models. A further study assesses the extension of our workload

368

Conclusion and Future Work

scenarios concerning the explicit low-level data. Thus, we need detailed design data, such as
the architecture, structure, transitions, execution units, registers, or an activity at the circuit
level in the physical system domain to define the physical and logical models as a white-box
approach that suitably reacts to the detailed low-level data and considers the internal data
flow. We assume that the extra information increases the model complexity that further result
in higher simulation time. In general, the explicit workload scenario is a continuous stimulus of
our simulation-based model, in which we calculate the corresponding power independently of
the operating system. A further study could explore the usefulness of including the OS-specific
timings or scheduling.

In the interests of simplicity, we follow a purely greedy approach in our optimization strategy,
which is a further limitation. We may escape from local minima of the greedy approach when
we use a metaheuristic algorithm. In our simulation framework to reduce the risk of a local
minimum, we do not specify an explicit algorithm. Future research could concentrate on
analyzing the acceptable probability to seek a global optimum and specifying the best iterative
approach, such as Kernighan-Lin, Simulated Annealing (SA), Evolutionary Algorithms (EA), or
Genetic Algorithms (GA). We could not integrate the cascading phases of the short-term and
long-term optimization into a real server system, because we have to disable a couple of
features and change the firmware, which may result in an unstable server system. The internal
system sensors limit the execution of our concept because of their latency and bus bandwidth.
In addition, the embedded controller that stores the firmware does not provide sufficient
performance and storage capacity to execute our algorithm. Future research could assess the
possibility of integrating our algorithm. Another limitation of our optimization is that we
restrict the alternation of all characteristics and configurations in the entire design space,
exploring only single decision variables or certain combinations, because the process is too
expensive in terms of simulation time and performance requirements. Hence, we do not
completely traverse the configuration tree considering all possible characteristics and
configurations. Additional improvements could be made to the selection of adequate
heuristics in the alternation strategy, which avoids the disproportionate increase in the
alternation complexity (design space reduction) and provides flexible abort criteria to reduce
the corresponding simulation time. We specify the knowledge-based and vendor-specific
alternation rules that exclude irrelevant adjustments, such as insignificant modifications, and
define a preference of the decision variables to reduce the optimization effort. We assume
further research on adequately adjusting the alternation rules of next-generation systems and
components.

Another limitation is that we implement the post-process as an offline optimization and decide
on a global optimal solution after simulating the server system, because we cannot adequately
store the set of local optimal solutions in Simulink. Therefore, we save the temporary results
during the simulation and analyze them afterwards. How to solve the problem is a further
analysis question.

369

Nomenclature

A1l. Nomenclature

Table 86: Nomenclature Al.1

Nomenclature Meaning Nomenclature Meaning
A Aj Aspect j i,jnmk Index
C C; Component i Ny Any natural number
N, =1{0,1,2,3,...}
CS,cs; System-board R Any positive real number
category i
(= components)
CL,CL; Classes i a, Environment conditions
CH,CH; Characteristic i B.B Characteristics
EX Externals Y, 7 Management techniques
Sy System) Communication
characterization,
model
FS Full-system & Simulation results

simulation and
optimization

MEE Mapping between n External constraints
externals and system

SwW Application software v Internal constraints

SH Hardware X Simulation constraints

HC Components '3 Software settings

CA Add-in components o Abort criterion

co On-board Vn, Vertexn
components vy Root vertex

HO Connectors e Edge

HP Power supply proc Processor

IN Input mem Memory

PA Parameter io Input/output

ouT Output oth Others

ST, Static characteristics Ly First level of a certain tree

DY Dynamic behavior of Pig Power consumption of id
the system id ={processor, OS,
(characteristics) dynamic, static, state,

cache, transition, core,
leakage, server}
EE, EEp sk Energy efficiency tij Transition from i to j
PO Power Si State i

PE Performance K; Coefficient i

Nomenclature

Table 87: Nomenclature Al1.2

Nomenclature Meaning Nomenclature = Meaning
TH Thermal [- Minimal and maximal
frequency
AC Architecture T case Processor case
temperature
cc Connectors Wi Workload for component
w,Wr, m at atime t;
MAS Aspect-based models WP, Workload profile k
per component
Aic- Element in matrix T Time period
‘ MAS T,T,,T, simulation, utilization,
workload
FAic. Functional ty Time step k
' description of Ajci
F(x) Objective functions ATpg Time amplifier for
with decision workload
variables x
X, X Decision variables AT, AT’ Time resolution
G(x), G5(x) Constraints of F (x) P, P;P.P, Performance counters of

memory bus transactions,
instructions, clock cycles,
last-level cache references

Nomenclature

Table 88: Nomenclature Al1.3

Nomenclature

Meaning

Nomenclature

Meaning

AX, AY

Ry Ry,

trt1
Aty

Akyel
RR’,

Jrel

RR

min A;

rel
rel

Akrel
maxRR A;
Jrel

Aspect-based models

Aspect-based
relations

Impact of 4; at time
step x4

Component
behavioral model

Relation between
the aspects (Ag, 4;)

Aspect-related
relevance for
component i and
aspect j

Interval limits of
relation Rﬁl"

Uy = Ucs;
Uy,

(]
Or,0.,0g
O71s,0cs

¢, 10¢
0% (x)

CH
wFSk
Jc;

RBE

CH,CHqg
CH{re CHEFg

Utilization level of
component category m
time step t
Configuration tree

(HW, SW)

released, customer,
system-compatible
technical specification,
characteristics
Customer-specific
configuration at iteration
[, time step k, and
decision variable x
Weighting factor
component i, aspect J,
and their characteristics
CHy

Relations between the
component-specific
behavior models
Characteristics: technical
specification, static,
dynamic configuration

Weight coefficients:
component i, aspect J,
and their characteristics,
class, static, dynamic

List of Abbreviations

A2. List of Abbreviations

Table 89: List of abbreviations A2.1 — (A - CPRH)

Abbreviation Definition

Acronyms

A Ampere, Amps

AC Alternating Current

ACPI Advanced Configuration and Power Interface
ADD Integer addition

AE Airflow Efficiency

AEU Air Economizer Utilization

AFC Active Flow Control

ALU Arithmetic Logic Unit

AND And

API Application Programming Interfaces

APM Advanced Power Management

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASIC Application-Specific Integrated Circuit

ASP Application Service Provider

AWS Amazon Web Services

B2C Business to Consumer

BFS Breadth-First Search

BIOS Basic Input Output System

BMC Baseboard Management Controller

BOM Bill Of Material

BRR Bank Round Robin

BX Blade server

CADE Corporate Average Datacenter Efficiency
Capex Capital Expenditures

CCG Cache Conflict Graph

cb Compact Disc

CEEDA Certified Energy Efficient Data Center Award
CEF Carbon Emission Factor

CFD Computational Fluid Dynamics

CFG Control Flow Graph

Cl Capture Index

CKEH Clock Enable High

CKEL Clock Enable Low

CMOS Complementary Metal-Oxide Semiconductor
cop Coefficient Of Performance

CPI Cycles Per Instruction

CPRH Command Pair Rank Hopping

List of Abbreviations

Table 90: List of abbreviations A2.2 — (CPU - EPS)

Abbreviation Definition

Acronyms

CPU Central Processing Unit

CRAC Computer Room Air Conditioner
CRAH Computer Room Air Handler

CSE Data Center Cooling System Efficiency
CSS Cooling System Sizing

CUE Carbon Usage Effectiveness

CcuT Circuit Under Test

DB2 Database

DC Data Center

DC Direct Current

DC-DC Direct Current to Direct Current converter
DCeP Data Center energy Productivity

DCiE Data Center infrastructure Efficiency
DDR Double Data Rate Synchronous Dynamic Random-Access Memory
DES Discrete Event Systems

DESS Differential Equation Specified Systems
DFA Deterministic Finite Automaton

DFD Data Flow Diagram

DFS Depth-First Search

Die silicon device (chip)

DIMM Dual In-line Memory Module

DOM Date Of Manufacture

DPC DIMMs Per Channel

DPM Dynamic Power Management

DRAM Dynamic Random-Access Memory

DS Data Sheet

DSP Digital Signal Processor

DTM Dynamic Thermal Management

DTS Digital Thermal Sensor

DTSS Discrete Time Specified Systems

DVFS Dynamic Voltage Frequency Scaling
DWPE Data Center Workload Power Efficiency
EA Evolutionary Algorithms

EC2 Amazon Elastic Compute Cloud

EIS Enterprise Information System

EIST Enhanced Intel SpeedStep Technology
EOL End Of Life

EoR End of Row

EOS End Of Sale

EPA US Environmental Protection Agency
EPS Energy Power Supply

List of Abbreviations

Table 91: List of abbreviations A2.3 — (ERD - ILPA)

Abbreviation Definition

Acronyms

ERD Entity-Relationship Diagrams

ERF Energy Reuse Factor

ESL Electronic System Level

ESM Energy State Machine

ESSA Dell Energy Smart Solution Advisor

FAST FPGA-Accelerated Simulation Technologies
FB-DIMM Fully-Buffered Dual In-line Memory Module
FCFS First Come First Serve

FIFO First In First Out

Flop/s Floating-Point Operations Per Second
FLOPS

FM Functional Model

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

FSB Front Side Bus

FSC Fan Speed Control

FSM Finite State Machine

FSP Full Service Provider

FTA Fault Tree Analysis

GA Genetic Algorithms

GCPI Green Computing Performance Index

GEC Green Energy Coefficient

GEMS General Execution-driven Multiprocessor Simulator
GFLOPS / Giga / Tera Floating-Point Operations Per Second
TFLOPS

GPU Graphics Processing Unit

GUI Graphical User Interface

HDD Hard Disk Drive

HPC High Performance Computer

HVAC Heating Ventilation Air Conditioning
HVACR Heating Ventilation Air Conditioning And Refrigeration Technology
HW Hardware

1/0 Input / Output

12C, I12C Inter-Integrated Circuit Bus

laaS Infrastructure as a Service

ICMB Intelligent Chassis Management Bus

ICT Information and Communication Technologies
IDC International Data Corporation

IDD Drain current of a CMOS circuit

IEC International Electrotechnical Commission
ILPA Instruction-Level Power Analysis

\

List of Abbreviations

Table 92: List of abbreviations A2.4 — (IMC - MOV)

Abbreviation Definition

Acronyms

IMC Integrated Memory Controller

INSEE Interconnection Network Simulation and Evaluation Environment

IP Intellectual Property

IPC Instructions executed per Cycle

IPMB Intelligent Platform Management Bus

IPMI Intelligent Platform Management Interface

IPTV Internet Protocol Television

IQR Interquartile Range

iRMC Integrated Remote Management Controller

ISA Instruction Set Architecture

ISO International Organization for Standardization

ISP Internet Service Provider

ITEE IT Equipment Efficiency

ITEU IT Equipment Utilization

J Joule

JEDEC Joint Electron Device Engineering Council

JRE Java Runtime Environment

JVm Java Virtual Machine

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

kW, kWh Kilowatt, Kilowatt hour

L2, L3 Level two / three cache

LC Liquid Cooling

LCM Least Common Multiple

LLC Last-Level Cache

LOC Lines of Code

LTS Long-Term Support

LTV Linear Time-Varying

LUT Lookup Tables

LV Low Voltage

LXC Linux Container Virtualization

MBD Model-Based Design (Development)

Mbps MegaBits Per Second

MBSE Model-Based Systems Engineering

MFSMOS Multi-aspect Full-system Server Model and Optimization Concept as a
Simulation-based Approach

MIPS Millions of Instructions Per Second

MIPS Microprocessor without Interlocked Pipeline Stages Architecture

MO, MOO Multi-Objective Optimization

MOP Multi-Objective Optimization Problem

MOV Load and store control registers

VI

List of Abbreviations

Table 93: List of abbreviations A2.5 — (MPEG - PROCHOT)

Abbreviation Definition

Acronyms

MPEG Moving Picture Experts Group

MTBF Meantime Between Failure

MTTF Meantime To Failure

MVC Model-View-Controller

MW Megawatt

MySQL My Structured Query Language

NAS Network-Attached-Storage

NBTI Negative Bias Temperature Instability
NDF Numerical Differentiation Formulas
NFA Nondeterministic Finite Automaton
NUMA Non-uniform Memory Access

o&M Operation And Maintenance

ODE Ordinary Differential Equations

OMAP Open Multimedia Application Platform
omT Object-oriented Modeling Techniques
Opex Operational Expenditures

OPS Operations Per Second

OR Or

(01 Operating System

Paa$ Platform as a Service

PC Performance Counter

PC? Paderborn Center for Parallel Computing
PCB Printed Circuit Board

PCI Peripheral Component Interconnect
PCle Peripheral Component Interconnect Express
PDLC Product Development Life Cycle

PDU Power Distribution Unit

PF Power Factor

PFC Power Factor Correction

PFLOPS Peta Floating-Point Operations Per Second
PHY PHYsical layer transceiver, Ethernet chip
PID Proportional Integral Derivative

PLA Post Layout Analysis

PLC Product Life Cycle

PMBus Power Management Bus

PMC Performance Monitoring Counters

PO Pareto Optimal

POST Power-On Self-Test

PPC PRIMERGY Power Calculator

PPW Performance per Watt

PROCHOT Processor Hot

Vil

List of Abbreviations

Table 94: List of abbreviations A2.6 — (PSG - SMI)

Abbreviation Definition

Acronyms

PSG Product Sales Group

PSM Power State Machine

PSU Power Supply Unit

PTU Intel Power Thermal Utility

PUE Power Usage Effectiveness

PVT Process, Voltage, and Temperature
PWM Pulse Width Modulation

QPI Quick Path Interconnect

RAID Redundant Array of Independent Disks
RAM Random-Access-Memory

RAMS Reliability, Availability, Maintainability, and Safety
RC Thermal Resistances and Capacitances
RCI Rack Cooling Index

RDIMM Registered Dual In-line Memory Module
RDP Remote Desktop Protocol

RDU Rack Distribution Unit

RHEL Red Hat Enterprise Linux

RHI Return Heat Index

RIFF Read or Instruction Fetch First

RMS Root-Mean-Square

ROI Return On Investment

RPM Revolutions per Minute

RTI Return Temperature Index

RTL Register-transfer Level

RX Rack server

SA Switching Activity

SA Simulated Annealing

SA/SD Structured Analysis / Structured Design
SaaS Software as a Service

SAN Storage-Area-Network

SCI System Control Interrupt

SDA Serial Data Input/Output

SDR Sensor Data Record

SDRAM Synchronous Dynamic Random-Access Memory
SERT Server Efficiency Rating Tool

sf Square Feet

SHI Supply Heat Index

SLES SUSE Linux Enterprise Server

SMBus System Management Bus

SMD Surface-Mounted Device

Smi System Management Interrupt (OS)

List of Abbreviations

Table 95: List of abbreviations A2.7 — (SMI - VRM)

Abbreviation Definition

Acronyms

Smi Scalable Memory Interface (processor)
SMT Simultaneous Multithreading Technology
SoC System on a Chip

SPEC Standards Performance Evaluation Corporation
sQL Structured Query Language

SRAM Static Random-Access Memory

SSD Solid-State Drives

SSJ Server-side Java

STD State Transition Diagram

STG State Transition Graph

SuUB Subtract

SUE Server Utilization Effectiveness

SUT System Under Test

SVN Subversion

SW Software

SWaP Space, Watts and Performance

TA Transient Analysis

TCO Total Cost of Ownership

TDDB Time-Dependent Dielectric Breakdown
TDP Thermal Design Power

TGG The Green Grid

THD Through-Hole Device

THERMTRIP Thermal Trip

tick-tock Intel specific model for technology cycles
TIV Time Invariant

™ Timing Model

ToR Top of Rack

TPC Transaction Processing Performance Council
X Tower server

U Rack Unit

uU.S./ US United States

UEFI Unified Extensible Firmware Interface
UML Unified Modeling Language

UPS Uninterruptible Power Supply

USB Universal Serial Bus

Vv Volt

VA Volt Amps

VAR Volt Amps Reactive

VvDC Volts Direct Current

VLSI Very Large-Scale Integration

VRM Voltage Regulator Module

List of Abbreviations

Table 96: List of abbreviations A2.8 — (W -)

Abbreviation Definition

Acronyms

W Watt

WASP Wireless Application Service Provider

WEU Water Economizer Utilization

Wh Watt hour

WSA Weighted Switching Activity

XaaS Anything or Everything as a Service

4] Beta Index

(7] Theta (ja/jm, jc, jb): Junction-to-Ambient, Junction-to-Moving Air, Junction-
to-Case, Junction-to-Board

Y Psi (jt,jb): Junction-to-Top of package, Junction-to-Board

Xl

Appendices

A3. Appendices

A3a. Definition of Terms
Power Triangle

Power P is an electrical level in Watt [W] at a certain point in time. We distinguish power in
true, effective, active, or real power. In common, power multiplies apparent power S with
reactive power @Q, see (A3.1).

Apparent power S is measured in units of volt amps [VA] and is the product of voltage in volt
[V] and current in amps [4], see (A3.2), calculated by using Ohm’s Law. Power is directly
proportional to voltage and current. The abbreviation rms in this equation stands for root-
mean-square (A3.3). A rms-based value is the amplitude of a signal divided by the square root.

Reactive power @, also known as power factor [PF] cosine ¢*", has the unit volt amps reactive
[VARY], see (A3.4) or Figure 158. The phase angle ¢ is between voltage and current. The angle
depends on different load types, such as capacitive, inductive, or resistive. Power is measured
in watt.

Equation 4: Definition — power, apparent power and power factor

power [W] = apparent power * reactive power (A3.1)

apparent power[VA] = Vo [V] * L [A] (A3.2)
V. ea I ea

Vims = Izﬁk Lrms = pﬁk (A3.3)

reactive power [VAR] = power factor = cos(¢p) (A3.4)

cos(¢)

power factor

power [W]

Figure 158: Power triangle [Sto 2014]

42 @: phi

Xl

Appendices

Under ideal circumstances, the phase angle ¢ is zero, which means that no inductive, resistive,
or inductive influences exist. Thus, the power factor cosine ¢ is one. In this case, voltage and
currents are “in phase”, cross the zero points at the same time, and the largest possible power
occurs. Amplitudes of both are changing continuously either in Alternating or Direct Current
(AC, DC) circuits. The AC power considers the different types of power, shown in the power
triangle.

Advanced Configuration and Power Interface Specification (ACPI)

The advanced configuration and power interface (ACPI) specification defines the system states

into:

e Global system states (G)

e Device power states (D)

e Sleeping states (S)

e Processor power states ()

e Device and processor performance states (P)

Table 97 and Table 98 list the ACPI states and provides a rough description, which is interpreted
by component vendors.

Table 97: ACPI state definitions (G, D, S) [HIM et al. 2013]

ACPI states State Description
Global system G Global system state
G3 Mechanical off
G2 S5 Soft off
G1 Sleeping
GO Working
S4 Non-volatile sleep
Device power D Device state
D3 Off
D3hot
D2 Save more power
D1
DO Fully-on
Sleeping S Sleeping state
SO
S1 Low wake latency
S2
S3
S4 Lowest power, longest wake latency
S5 Soft off state

X

Appendices

Table 98: ACPI state definitions (C, P) [HIM et al. 2013]

ACPI states State Description
Processor power Cc Processor power state
co Executes instructions
Cc1 Lowest latency
C2
C3
Device and P Performance state
processor
performance
PO Maximum performance
P1
PN Minimum performance

A3b. Overview of Various Metrics and Benchmarks in Their Related

Domains

Table 99 and Table 100 summarize the various performance or power metrics as well as
benchmarks that could be used in the data center, for a single rack enclosure, server system, or
specialized on a certain chip.

Table 99: Metrics and benchmarks in various domains (I)

Domain Metrics Benchmarks (tools)
Data center Power usage effectiveness (PUE), data Calarch, Comis, DoE-2,
center infrastructure efficiency (DCIE), EnergyPlus, Genopt

corporate average datacenter efficiency
(CADE), airflow efficiency (AE), air
economizer utilization (AEU), water
economizer utilization (WEU), HVAC
efficiency, cooling system sizing (CSS), data
center cooling system efficiency (CSE), UPS
losses, utilization (Load) factor, SWaP
(Space, Watts and Performance), data
center energy productivity (DCeP), green
energy coefficient (GEC), energy reuse
factor (ERF), carbon emission factor (CEF),
carbon usage effectiveness (CUE), data
center workload power efficiency (DWPE),
supply heat index (SHI), return heat index
(RHI), capture index (ClI)

XV

Appendices

Table 100: Metrics and benchmarks in various domains (I1)

Domain Metrics Benchmarks (tools)
Rack PDU losses, IT or server equipment load
enclosure density (W/sf), SWaP (space, watts and
performance), return temperature index
(RTI), rack cooling index (RCI), beta index
(B)
Server IT equipment utilization (ITEU), IT Green 500, SPEC CPU,
system, equipment efficiency (ITEE), utilization SPECpower,
component (Load) factor, server utilization, green SPECviewperf, SPECwpc,
computing performance index (GCPI), peak SPECapc, SPEC ACCEL,
performance (GFLOPS, TFLOPS), memory SPEC MPI, SPEC OMP,
bandwidth (GB/sec), number of instructions SPEC HPC,
/ cycles, time period per job, 80 plus SPECjAppServer,
certificate (power supply), server utilization ~ SPECjbb, SPECjvm,
effectiveness (SUE) SPECmail, SPEC JVM,
SPECvirt, SPECweb,
LINPACK, STREAM,
JouleSort, Server
Efficiency Rating Tool
(SERT),OCCT, Memtest,
lostat, I0zone, lometer,
Dbench, Hardinfo,
GtkPerf, SysBench,
Phoronix Test Suite,
3DMark, CPUBench,
ProcessorMark,
PassMark
Chip Performance counter, number of Latbench, micro-
instructions / cycles, theta / psi (thermal Benchmarks

resistance)

XV

Appendices

A3c. MATLAB Notation and Syntax - Classes, Labels, Usage, and
Restrictions

The following section provides a short overview of MATLAB notations and syntax to provide the

reader a better understanding of the terminology. MATLAB contains the classes: double,

character, string or cell to format vectors, matrices, or arrays. Table 101 shows the relation

between use cases and the corresponding classes.

Table 101: MATLAB relation between use cases and classes

Use case Class

Complete numbers Double

Complete strings Character or string
Mix of numbers and strings Cell

MATLAB labels internal variables by an equal sign. A label can contain numbers, underscores,
and characters. A label cannot start with a number or contain a hyphen. A number includes a
sign (+/-) followed by minimum of one numeric. Additionally, a dot divides decimal places.
Equation 5 shows a brief overview of the characters, labels, numbers, and numbers within

names.

Equation 5: Definition of MATLAB labels and numbers
numbersWithinNames = {0 — 9,e%°°}, L mberswithinvames = {0,1,9,19,199,10e73 ...} (A3.5)
characters = {_a—2z,A—Z}, Lepgracters = {_a,_a,a_a_b,A,z,Zz ...} (A3.6)
label = [characters]' [numbersWithinNames|*[characters]* (A3.7)
numbers = [t]*[numbersWithinNames]*[.]*[numbersWithinNames]* (A3.8)
name_number = {numbersWithinNames|numbers|labels} (A3.9)

The following terms describe the syntax of MATLAB vectors or matrices, whereby MATLAB
defines a label in square brackets. A semicolon distinguishes between rows. Furthermore, a cell
array requires additional curly brackets and single equation marks, shown in (A3.12).
Percentage signs indicate user comments.

Equation 6: MATLAB row/column vector and matrix notation

[label] = [[numbers]*t [numbers]* | (A3.10)
[label] = [[numbers]*; [numbers]* | (A3.11)
[label] = [{ [[name_number]']* [[name_number]']*}] (A3.12)

[label] = [{ [[name_number]']" [[name_number]']*; [[name_number]']* [[name_number]']* }] (A3.13)

XVI

Appendices

A numerical vector consists of a sequence of numbers within square brackets. Equation (A3.14)
defines a single row vector (Vector), which includes the numeric values one and two.

Vector=[1 2] equal to Vector=[1l, 2] (A3.14)

12
A row vector can be transformed to a column vector using a semicolon between both values.

Vector=[1l; 2] (A3.15)

Adding an additional row or column to our Vector ends up in a matrix Ma, shown in (A3.16). A
matrix Ma includes multiple vectors. The matrix dimension (m x n) specifies the amount of
rows (m) and columns (n). The complete numerical matrix Ma can have different dimensions,
for instance (2x2, 2x3, 3x2).

Ma=[1 2; 3 4] Ma=[1 2 3; 4 5 6] Ma=[1 2; 3 4; 5 6] (A3.16)
s 12 123 12
s 34 45 6 34
S 5 6

An index identifies a specific value from a vector or matrix. The first mandatory parameter
determines a column for vectors and a row in the case of matrices. In matrices, the second
parameter additionally identifies the column.

Ma=[1l 2 3; 4 5 6] Ma (1, 3) Ma (2, 3) (A3.17)
$ 123 3 6
$ 456

Generated vectors and matrices use the internal MATLAB class double, because they only
contain numbers. The cells class is the equivalent for character or string arrays. Creating a cell
array can be done in same manner, but the array requires curly brackets and single quotations.

Array = [{'one' 'two'}] (A3.18)
% 'one' 'two'

Array = [{'one'; 'two'}] (A3.19)
% 'one'

s 'two'

XV

Appendices

Array = [{'one' 'two'; 'three' 'four'}] (A3.20)
% 'one' 'two'
% 'three' 'four'

Equation (A3.21) mixes both data types, whereby the first row contains only numbers and the
second row contains strings.

Mixed array = [{1l 2; 'three' 'four'}] (A3.21)
5 1] [2]
$ 'three' 'four'

In the case of mixed classes, cell-specific MATLAB functions return failures. Therefore, it is
necessary to convert strings to numbers or vice versa. One method is to store numbers within
cells, which MATLAB shows with single quotation marks, and finally convert them.

Cell array = [{'l' '2'; 'three' 'four'}] (A3.22)
% lll 12!
% 'three' 'four'

Another variant is to save numbers separately from strings. We use an additional vector that
includes only numbers. In our example (A3.23) low (LV), standard (STD), and future voltages are
supported with levels from 1.35, 1.5, and 1.6 volt.

volt possibilities=[{'voltage'}{'LV'}{'STD'}{'FUTURE'}] (A3.23)
volt values=[0 1.35 1.5 1.6]

We combine both in one-structure volts via a for loop, which includes all possible strings and
values.

for all volts possibilities (A3.24)

volts (i) .possibilities

volt possibilities (i)
volts (i) .values volt values (i)

end
If the value of string LV is required, we search the string within the possibilities of the volts
structure. We save the index in case a string matches the search criteria. Afterwards, we
provide the string value by using the same index at the volts values structure.

XVl

Appendices

for all volts possibilities (A3.25)
compare volts(i).possibilities with search string LV
if match than remember index
return

end

get value of string LV using volts (index).values

The LV string has an index two and thus we address the content using the index and the vector
name, which contains the values.

volts (2) (A3.26)

o\

possibilities: {'LV'}

% values: 1.3500

volts (2) .values (A3.27)

% 1.3500

°

Data adaption or extension is easily manageable by changing or adding new values in related
vectors. MATLAB provides a huge range of class-specific functions, such as converting from
string to number str2num and other common functionalities. The MathWorks homepage*"®
provides further information.

A3d. Memory Module Analyzation and Characteristics (C1 — C78)
Figure 159 presents the memory module characteristics, currents [mA], and power
consumptions [W] of our measurements, which we respectively analyze for the memory
modules of vendor A. Additionally, we observe the measurement results considering the
vendors [A — G], as shown in Figure 160.

13 MathWorks homepage: http://www.mathworks.com/help/index.html

XIX

Appendices

vendor A
Module IDDx @1,5V VDD [mA] Power Consumption @ 1,5V VDD [W]
Capacity | Component | Ranks Technology Density] 400 MHz| 533 MHz | 667 MHz | 400 MHz | 533 MHz 667 MHz
C1 1R registered | x8 | D-Die | 1GB 2995 3345 4255 45 50 6.4
C2 2R registered | x8 | D-Die | 2GB 3445 3840 4795 52 58 72
46nm C3 1R registered x4 D-Die 2GB 5110 5640 7090 7.7 8,5 10,6
C4 2R registered | x4 | D-Die | 4GB 6010 6630 8170 9,0 99 123
C5 4R | registered | x8 | D-Die | 4GB 4345 4830 5875 6,5 7,2 838
1Gb C6 4R registered | x4 | D-Die | 8GB 8600 9480 11300 12,9 14,2 17,0
C7 1R registered | x8 | E-Die | 1GB 2160 2335 2910 3,2 3,5 44
C8 2R | registered | x8 | E-Die | 2GB 2430 2605 3225 3,6 3,9 438
35nm C9 1R reg?stered x4 E—D?e 2GB 3600 3820 4890 54 57 73
C10 2R registered | x4 | E-Die | 4GB 4140 4360 5520 6,2 6,5 83
C11 4R registered | x8 | E-Die | 4GB 2970 3145 3855 45 47 58
C12 4R | registered | x4 | E-Die | 8GB 5796 6048 7452 8,7 9,1 11,2
C13 2R registered | x8 | B-Die | 4GB 2925 3190 3720 4.4 48 56
C14 1R registered | x4 | B-Die | 4GB 4320 4540 5520 6,5 6,8 83
C15 2R registered | x4 | B-Die | 8GB 4950 5260 6240 74 79 94
C16 4R | registered | x8 | B-Die | 8GB 3555 3910 53 59 -
Cc17 4R registered | x4 | B-Die | 16GB 6786 7308 - 10,2 11,0 -
46nm C18 1R registered | x8 | C-Die | 2GB - 2200 2600 - 3,3 3.9
C19 2R registered | x8 | C-Die | 4GB 2470 2915 - 3,7 44
C20 1R registered | x4 | C-Die | 4GB 3690 4310 - 55 6,5
Cc21 4R | registered | x8 | C-Die | 8GB 3010 3545 - 4,5 53
C22 2R registered | x4 | C-Die | 8GB 4230 4940 - 6,3 74
C23 4R registered | x4 | C-Die | 16GB 5814 6768 - 8,7 10,2
2Gb C24 1R | registered | x8 | D-Die | 2GB 1590 1885 - 24 238
C25 2R | registered | x8 | D-Die | 4GB 1743 2065 - 2,6 3,1
C26 1R registered | x4 | D-Die | 4GB 2580 2920 - 3,9 44
Cc27 4R registered | x8 | D-Die | 8GB 2049 2425 - 3,1 36
C28 2R registered | x4 | D-Die | 8GB 2886 3280 - 43 49
35nm C29 4R reg?stered x4 D-D?e 16GB 3978 4536 - 6,0 6,8
C30 1R registered | x8 | D-Die | 2GB 1590 1885 - 2.4 238
C31 2R registered | x8 | D-Die | 4GB 1743 2065 - 26 3,1
C32 1R registered | x4 | D-Die | 4GB 2580 2920 - 3,9 44
C33 4R | registered | x8 | D-Die | 8GB 2049 2425 - 3,1 36
C34 2R registered | x4 | D-Die | 8GB 2886 3280 - 43 49
C35 4R registered | x4 | D-Die | 16GB 3978 4536 - 6,0 6.8
C36 2R registered | x4 | A-Die | 16GB 3910 4670 - 59 7,0
Cc37 4R | registered | x8 | A-Die | 16GB 2830 3365 - 42 50
C38 4R registered | x4 | A-Die | 32GB - 5346 6318 - 8,0 95
46nm C39 2R registered | x4 | A-Die | 16GB 650 3910 4670 0,98 59 70
C40 4R registered | x8 | A-Die | 16GB 650 2830 3365 0,98 42 50
C41 4R | registered | x4 | A-Die | 32GB 1170 5346 6318 1,76 8,0 9,5
C42 1R registered | x4 | B-Die | 8GB - 3050 3610 - 46 54
4Gb C43 2R registered | x8 | B-Die | 8GB 2060 2440 - 31 37
C44 2R registered | x4 | B-Die | 16GB 3410 3970 - 5.1 6,0
C45 4R | registered | x8 | B-Die | 16GB 2420 2800 - 3,6 42
35nm C46 4R reg?stered x4 B—D?e 32GB 4698 5274 - 7,0 79
c4a7 1R registered | x4 | B-Die | 8GB 3050 3610 - 46 54
C48 2R registered | x8 | B-Die | 8GB 2060 2440 - 31 3,7
C49 2R | registered | x4 | B-Die | 16GB 3410 3970 - 5,1 6,0
C50 4R | registered | x8 | B-Die | 16GB 2420 2800 - 3,6 42
C51 4R registered | x4 | B-Die | 32GB 4698 5274 - 7,0 79
Figure 159: Memory module characteristics of vendor 4 (€1, C51) — measurements

XX

Appendices

Module IDDx @ VDD [mA] VDD Power Consumption @ VDD _[W]
acity | Component|Ranks Technology Density| vendor|400 MHz| 533 MHz | 667 MHz | [V] [400 MHz| 533 MHz | 667 MHz | 800 MHz

C52 4R | registered |x4|A-Die| 2 GB B 939,17 | 1125,00 1,5 1,41 1,69
2Gb |54nm C53 4R reg?siered x4 B-D?e 2GB B 627,50 | 758,33 1,5] 094 1,14

C54 4R | registered |x4|B-Die| 2 GB A 805,83 | 894,17 1,5 1,21 1,34

C55 4R | registered |x4|C-Die| 2 GB A 581,67 | 750,00 1,5] 087 1,13

C56 4R |load reduced|x4|B-Die| 2 GB B |1063,66| 116597 135 144 1,57
2Gb | 46nm C57 4R | registered |x4|B-Die| 2GB B 674,54 | 786,34 135] 091 1,06

C58 4R |load reduced|x4|D-Die| 2 GB A 620,60 | 681,02 1,35| 0,84 0,92

C59 4R | registered |x4|D-Die| 2 GB A 469,21 | 516,44 135]| 063 0,70

C60 1R | registered |x8|A-Die| 1GB B 2654 3014 3464 1,5 4,0 4.5 52
1Gb |46nm C61 1R | unbuffered |x8|A-Die| 1GB B 1800 2000 2440 1,5 27 3.0 37

Cce2 2R | registered |x8|A-Die| 2GB B 3149 3599 4139 1,5 47 54 6,2

C63 2R | unbuffered |x8|A-Die| 2GB B 2200 2480 3040 1,5 3.3 37 46

C64 4R |load reduced|x4|D-Die| 2 GB A 672,78 | 752,22 | 95597 | 15 1,01 1,13 1,43
2Gb |46nm C65 4R |load reduced|x4|D-Die| 2 GB A 554,72 | 61569 | 76764 | 15| 0,83 0,92 1,15

C66 4R _|load reduced|x4|D-Die| 2 GB A 508,33 | 579,31 71347 | 15| 076 0,87 1,07

C87 4R |load reduced|x4|D-Die| 2 GB A 599,85 | 660,65 | 851,39 |1,35| 0,81 0,89 1,15
2Gb |46nm ce8 4R |load reduced|x4|D-Die| 2 GB A 494,75 | 54985 | 68580 |135| 067 0,74 0,93

C69 4R _|load reduced|x4|D-Die| 2 GB A 45247 | 51559 | 638,58 |135]| 0,61 0,70 0,86
4GB|44nm C70 1R | registered [x4|D-Die| 4 GB C 1,35 6,80
2GB|56nm C71 1R registered |x4|D-Die| 2 GB D 1,5 8,70
4GB | 44nm Cc72 1R registered |x4|D-Die| 4 GB A 1,35 3,00

C73 1R | registered |x4|B-Die| 4 GB D 1,35 5,60
2GB|44nm C74 1R registered |x4|D-Die| 2 GB G 1,5 4,10
4GB|44nm C75 1R | registered |x4|D-Die| 4 GB E 1,35 3,00
2GB|38nm C76 1R | registered |x4|D-Die| 2 GB E 1,5 6,70
4GB | 44nm Cc77 2R | registered |x4|D-Die| 2GB C 1,5 4,33

C78 1R registered |x4|D-Die| 4 GB A 1,35 6,64

Figure 160: Memory module characteristics of diverse vendors (€52, C78) — measurements

We exemplarily describe our results of the memory modules of the vendor A considering the
capacity, fabrication size, ranks, technology, and density, as shown in Figure 159. We measure
the memory current IDD [mA]*** and calculate the power consumption in [W] of the
components C1 — €51 with a constant supply voltage VDD = 1.5V concerning the frequencies
f ={800MHz 1066MHz,1333MHz} using an external hardware adapter. We present our
analysis results considering the synchronization mode, vendor, and frequency, and finally show
the dependencies of the capacity, ranks, technology, and density.

Synchronization Mode

An unbuffered memory module consumes always less power compared to a registered module
with the same technical specification. Our internal results show that the power consumption of
two modules with equivalent technical specification*" differs up to ten percent.

vendor B
Module IDDx @1,5V VDD [mA] Power Consumption @ 1,5V VDD [W]
Capacity |Component| Ranks Technology Density| 400 MHz | 533 MHz | 667 MHz | 400 MHz 533 MHz 667 MHz
C60 1R registered |x8|A-Die| 1GB 2654 3014 3464 4,0 4,5 52
1Gb | 46nm Ce1 1R |unbuffered|x8|A-Die| 1GB 1800 2000 2440 2,7 3,0 37
C62 2R registered |x8 |A-Die| 2GB 3149 3599 4139 4,7 54 6,2
C63 2R |unbuffered|x8|A-Die| 2GB 2200 2480 3040 3,3 3,7 4.6
Figure 161: Memory modules — synchronization mode
414

Current IDD: drain-current of a CMOS circuit

s Memory modules: vendor B DDR3-SDRAM 1GB 1R A (registered vs. unbuffered)

XXI

Appendices

Vendor

In general, we study all characteristic combinations of each category separately to identify their
relevance and find the weight coefficients. We analyze single characteristics, such as the
memory vendor, which can be another cause for variations in the power consumption of the
same specified module.

Module IDDx @1,5V VDD [mA] Power Consumption @ 1,5V VDD [W]
Capacity Component|Ranks| Technology |Density| Vendor | 400 MHz 533 MHz 400 MHz 533 MHz

c52 4R _|registered x4 | A-Die| 2GB B 939,17 1125,00 1,41 1,69

C53 4R _|registered|x4 B-Die| 2GB B 627,50 758,33 0,94 1,14
2Gb 54nm

C54 | 4R [registered[x4/B-Die] 2GB | A | 80583 | 89417 | 1,21 [1,34

c55 | 4R |registered|x4|/C-Die] 26B | A | 58167 | 75000 | 0,87 | 1,13

Figure 162: Memory modules — vendor

Frequency

Furthermore, we found that a frequency change from f; = 800MHz to f, = 1066MHz
increases the power in the mean nearly eight percent. A changing frequency, from f, =
1066MHz to f; = 1333MHz, results in 19 percent higher power consumption.

Table 102: Memory modules - frequency

Frequency change Increase [%]
f1=800MHz ->f, = 1066MHz 8

f2 =1066MHz ->f3; = 1333MHz 19

f3 =1333MHz ->f, = 1600MHz 4
fa=1600MHz ->f; = 1866MHz 3

Capacity, Ranks, Technology, and Density

Figure 163 addresses the differences in current [mA] between the fabrication size and die
technology™®, whereby all other characteristics are fixed. We set the fabrication size from
46nm to 35nm, and set the die from D to E. The power consumption is approximately 32
percent lower for a (C7,C8,C11 — 35nm,E) module than for a (C1,C2,C5 — 46nm,D)
module, see pairs of (C1,C7;C2,(C8; C5,C11). The decrease of a (C5,C11 — 4GB, 4R) module
is four percent larger than for a (C1,C7 — 1GB,1R) module, which we neglect in our
approach.

18 Die technology: component revision, denote by a letter {A,B,C,D,E,F,G,H,]J,L,M,N}

XXII

Appendices

vendor A
Module IDDx @1,5V VDD [mA] Power Consumption @ 1,5V VDD [W]
Capacity | Component | Ranks Technology Density | 400 MHz| 533 MHz | 667 MHz | 400 MHz | 533 MHz 667 MHz
46nm C1 1R | registered | x8 | D-Die| 1GB 2995 3345 4255 45 50 6,4
35nm C7 1R _| registered | x8 | E-Die | 1GB 2160 2335 2910 3.2 3.5 44
1Gb 46nm c2 2R | registered | x8 | D-Die| 2GB 3445 3840 4795 5.2 58 7.2
35nm c8 2R | registered | x8 | E-Die | 2GB 2430 2605 3225 36 3.9 48
46nm C5 4R | registered | x8 | D-Die| 4GB 4345 4830 5875 6,5 7.2 8,8
35nm C11 4R | registered | x8 | E-Die | 4GB 2970 3145 3855 45 47 58

Figure 163: Memory modules — fabrication size and die

417

(e.g. x4, x8, x16) technology, and die type. If
we have twice the capacity and the rank linking, the die type is the significant factor. We

We analyze the memory capacity, rank linking

compare the components (€4, C13) with a reduced power by 52 percent from D to B die. We
see a decrease of approximately 62 percent when we compare the D and C die. The effect the
frequency has on the power consumption is negligible.

vendor A
Module IDDx @1,5V VDD [mA] Power Consumption @ 1,5V VDD [W]
Capacity | Component | Ranks Technology Density | 400 MHz| 533 MHz | 667 MHz 400 MHz 533 MHz_| 667 MHz
1Gb C4 2R | registered | x4 | D-Die| 4GB 6010 | 6630 8170 9,0 99 | 123
2Gb | 46nm C13 2R | registered | x8 | B-Die| 4GB 2925 3190 3720 44 48 586
2Gb C19 2R | registered | x8 | C-Die| 4GB - 2470 2915 - 3.7 44

Figure 164: Memory modules — capacity, rank linking, and die

Figure 165 shows the memory modules with twofold density and ranks. A doubled density from
(€C1,C7 — 1GB,1R) to (C2,C8 — 2GB,2R), as compared with the pairs (C1,C2;C7,C8),
results in a 13 percent power increase. We see a 23 percent rise fora (C2,C8 — 2GB,2R) to a
(C5,C11 — 4GB,4R) module, such as (€2, C5; C8,C11). The effect the frequency has on the
power consumption is negligible.

vendor A
Module IDDx @1,5V VDD [mA] Power Consumption @ 1,5V VDD [W]
Capacity | Component [Ranks Technology Density | 400 MHz| 533 MHz | 667 MHz | 400 MHz 533 MHz 667 MHz
CA 1R | registered | x8 | D-Die| 1GB 2995 3345 4255 45 5,0 6,4
46nm c2 2R | registered | x8 | D-Die| 2GB 3445 3840 4795 5.2 58 7.2
C5 4R | registered | x8 | D-Die| 4GB 4345 4830 5875 6,5 7.2 8.8
1Gb
c7 1R | registered | x8 | E-Die | 1GB 2160 2335 2910 3.2 3,5 44
35nm c8 2R | registered | x8 | E-Die | 2GB 2430 2605 3225 36 3.9 4.8
C11 4R | registered | x8 | E-Die | 4GB 2970 3145 3855 45 4.7 5,8

Figure 165: Memory modules — ranks and density

Figure 166 summarizes the modules with double density, but halved rank linking. The power
increases approximately 69 percent froma (C1 — 1GB, x8) to a (€3 — 2GB, x4) module, which
is comparable by a rise of 72 percent from (C2 — 2GB,x8) up to (C4 — 4GB, x4). The power
consumption of the memory pair (C5 — 4GB, x8) and (C6 — 8GB, x4) nearly doubles from C5
to C6. Furthermore, we see a frequency influence of nearly two percent from a lower to an
upper frequency. We conclude that the memory factors ranks, rank linking, die, and density
rely on each other. Therefore, we handle them as a linear system of equations.

*7 Rank linking: number of chip’s output pins / bit wide

XX

Appendices

vendor A
Module IDDx @1,5V VDD [mA] Power Consumption @ 1,5V VDD [W]
Capacity | Component| Ranks Technology Density| 400 MHz| 533 MHz | 667 MHz | 400 MHz | 533 MHz 667 MHz
C1 1R | registered | x8 | D-Die | 1GB 2995 3345 4255 4,5 5,0 6,4
C3 1R_| registered | x4 | D-Die| 2G6B | 5110 5640 7090 7.7 8,5 10,6
16b| 46 c2 2R | registered | x8 [D-Die| 2GB | 3445 3840 4795 52 58 72
nm C4 2R | registered | x4 | D-Die| 4GB | 6010 6630 8170 9,0 9,9 12,3
C5 4R | registered | x8 | D-Die | 4GB 4345 4830 5875 6,5 7,2 8,8
C6 4R_| registered | x4 | D-Die| 8GB | 8600 9480 11300 12.9 142 17,0
Figure 166: Memory modules — ranks (x) and density
A3e. Detailed Memory Module Characteristics

(C14,C24,C26,C70 — C78)

In this section, we present the memory module characteristics that we use in our simulation

and evaluation.

Table 103: Detailed memory characteristics (C70,C71)

Memory characteristics

Memory module (C70) Memory module (C71)

Vendor

Capacity (size) [GB]
Density [GB]

Die (component revision)
Fabrication size [nm]
Synchronization mode
Module ranks,

rank linking (data width)

Timings

Error correction
Frequency [MHz]
Voltage [VDC] **®

Transfer rate / throughput
[MHz]

{'Micron'}; {'C'}
{"4GB"}
{'"4GB"'}

{'D"}
{"44nm"'}
{'registered'}
{"1R"};
{'"SR'},
{'x4"}

{"11"}
{'ECC"}
{'800"}
{'LV'};
1.35VDC
{'"1600"};
{'"PC3-12800"}

{'Qimonda'}; {'D'}
{'"2GB"}
{'"2GB"}

{'D"}
{'56nm'}
{'registered'}
{"1R"};
{'"SR'},
{'x4"}

{"7"}

{'ECC"}
{'533"}
{'STD'};
1.5VDC
{'1066"},
{'"PC3-8500R"}

418

VDC: volts direct current

XXIV

Appendices

Table 104: Detailed memory characteristics (€26,C74,C76)

Memory Memory module Memory module Memory module
characteristics (C26) (€74) (C76)

Vendor {'Aa"} {'G"} {'E'}

Capacity (size) [GB] {r2GB"} {r2GB"} {"2GB'}

Density [GB] {"4GB"'} {'2GB"'} {'2GB"'}

Die (component {'D"} {'D"} {'D"}

revision)

Fabrication size [nm] {'35nm'} {"44nm'} {'38nm’}

Synchronization
mode

Module ranks,
rank linking (data
width)

Timings

Error correction
Frequency [MHz]
Voltage [VDC] **°

Transfer rate /
throughput [MHz]

{'registered'} {'registered'}

("1R'}; {"1R'};
('SR'}, {'SR'},
('x4"} {'x4")
("11') {111
(") {'ECC')
{'533"} {'800"}
{'STD'"}; {'STD'"};
1.5VDC 1.5VDC
{'1066"}; {'1600"};

{'PC3-8500"} {"PC3-12800"}

{'registered'}

{"1IR"};
{'SR"},
{'x4"}

{"11"}
{'ECC'"}
{'800"}
{'STD'};
1.5VDC
{'1600"};
{"PC3-12800"}

419

VDC: volts direct current

XXV

Appendices

Table 105: Detailed memory characteristics (C72,€73,C75)

Memory Memory module Memory module Memory module
characteristics (C72) (€73) (C75)

Vendor {'Aa"} {'Qimonda"'}; {'E'}

{'D"}

Capacity (size) [GB] {"4GB"} {"4GB"'} {'4GB"}

Density [GB] {'4GB'} {'4GB"'} {'4GB"'}

Die (component {'D"} {'B"} {'D"}

revision)

Fabrication size [nm] {'44nm'} {"44nm'} {'44nm' }

Synchronization
mode

Module ranks,
rank linking (data
width)

Timings

Error correction
Frequency [MHz]
Voltage [VDC] **°

Transfer rate /
throughput [MHz]

{'registered'}

{"1R"}; {"1IR"};
{'SR'}, {'SR'"},
{'x4"} {'x4"}
{11} {11}
{'ECC"'} {'ECC"}
{'800"'} {"667"}
{"LV'}; {"LV'};
1.35VDC 1.35VDC
{'1600"}; {'1333"},

{'PC3-12800"}

{'registered'}

{"PC3-10600"}

{'registered'}

{"1R"};
{'SR"},
{'x4"}

{r11"}
{'ECC'"}
{'667"}
{'LV'};
1.35VDC
{'1333"},
{'PC3-10600"}

Table 106: Detailed memory characteristics (€24, C26)

Memory characteristics

Memory module (€C24)

Memory module (€26)

Vendor

Capacity (size) [GB]
Density [GB]

Die (component revision)
Fabrication size [nm]
Synchronization mode
Module ranks,

rank linking (data width)

Timings

Error correction
Frequency [MHz]
Voltage [VDC]

Transfer rate / throughput
[MHz]

{'A"}
{'2GB"'}
{'2GB"'}

{'D"}
{'35nm"'}
{'registered'}
{'2R'};
{'DR"},
{'x4"}
{'11"}
{'ECC"'}
{'800"}
{'STD'};
1.5VDC
{'1600"};
{'"PC3-12800"}

{'A"}
{'2GB"'}
{'4GB"'}
{'D"}
{'35nm"'}
{'registered'}
{'IR"};
{"SR"},
{'x4"}
{"11"}

{""}

{'533"}
{'STD"'};
1.5VDC
{'1066"};
{'"PC3-8500"}

#20\/DC: volts direct current

XXVI

Appendices

Table 107: Detailed memory characteristics (C14,C20, C26)

Memory Memory module Memory module Memory module
characteristics (C14) (€C20) (C26)

Vendor {'Aa"} {'A"} {'a'}

Capacity (size) [GB] {r2GB"} {r2GB"} {"2GB'}

Density [GB] {"4GB"'} {"4GB'} {'4GB"'}

Die (component {'B"} {'c"} {'D"}

revision)

Fabrication size [nm] {'46nm'} {"46nm'} {'35nm’}

Synchronization
mode

{'registered'}

{'registered'}

{'registered'}

Module ranks, {"1IR"}; {"1IR"}; {"1IR"};
rank linking (data {'SR'}, {'SR'}, {'SR"},
width) {'x4"'} {'x4"} {'x4"}
Timings {"11"} {"11"} {"11"}
Error correction {3 {r'} {""}
Frequency [MHz] {'533"} {'533"} {'533"}
Voltage [VDC] *** ('STD'}; {'STD'}; {'STD'};
1.5VDC 1.5VDC 1.5VDC
Transfer rate / {'"1066"}, {'1066"}, {'1066"};

throughput [MHz]

{'PC3-8500"}

{"PC3-8500R"}

{"PC3-8500"}

Table 108: Detailed memory characteristics (C77,C78)

Memory characteristics

Memory module (C77)

Memory module (C78)

Vendor

Capacity (size) [GB]
Density [GB]

Die (component revision)
Fabrication size [nm]
Synchronization mode
Module ranks,

rank linking (data width)

Timings

Error correction
Frequency [MHz]
Voltage [VDC]

Transfer rate / throughput
[MHz]

{"Micron'};
{"4GB"}
{'2GB"}
{'D"}
{'"44nm"}
{'registered'}
{'2R"};
{'DR"},
{'x4"'}

{9}

{'ECC'"}
{'800"}
{'STD'};
1.5VDC
{'1600"};
{'"PC3-12800"}

{'c'}

{'a"}
{"4GB"}
{'"4GB"}

{'D"}
{'"44nm"}
{'registered'}
{"1R"};
{"SR"},
{'x4"}

{"7"}

{""}

{'667"}
{'"LV'};
1.35VDC
{'1333"},
{'PC3-10600"}

*2LyDC: volts direct current

XXVII

Appendices

A3f. Processor Analyzation and Characteristics (C1 — C19)
Figure 167 lists the processor characteristics and power consumptions [W] of our
measurements in which we concentrate on the Intel Xeon E5-2600v2 generation.

Intel
Processor Power Consumption @ utilization level [W]
Fami Frequency - . Cache Transfer rate
Component| . Base |Maxtubo| TDP R L3 100 (%] | 80[%] | 50[%] [20[%] | O[%]
Series e rrpe p-state| cores/threads L2 Lc) QPl | membus
(o] E5-2690 | 3.00GHz | 3.60 GHz[130W| 19 10C/20T 10x256KB | 25 MB | 8.0 GT/s | 1866 MHz| 120,5 7683 | 5362 | 2838 | 1781
c2 E5-2680 | 280GHz | 360GHz[115W| 17 10C/20T 10x256KB | 25 MB | 8.0 GT/s | 1866 MHz| 11288 | 7516 | 5584 | 3107 | 1885
C3 ES5-2670 | 2.50GHz | 3.30GHz | 115W| 14 10C/20T 10x256KB | 25 MB | 8.0 GT/s | 1866 MHz| 101,22 6538 | 4666 | 2799 18,13
C4 E5-2660 | 2.20 GHz | 3.00 GHz | 95 W 11 10C/20T 10x256KB | 25 MB | 80 GT/s | 1866 MHz| 812 57,07 4376 | 2841 17,01
Cc5 E5-2650 | 260GHz | 3.40GHz| 85W| 15 8CNET 8x256KB | 20 MB | 8.0 GT/s | 1866 MHz| 1011 67,08 518 | 2912 | 1845
c6 E5-2640 | 200GHz | 250GHz[85W| 9 8CN6T 8x256KB | 20 MB | 7.2 GT/s | 1600 MHz| 80,2 6176 | 50,16 | 28,04 | 1893
c7 E5-2630 | 260GHz | 3.10GHz| 8BOW| 15 6CM12T 6x256KB | 15MB | 7.2 GT/s | 1866 MHz| 62,69 47,31 3683 | 2244 1544
[of:] E5-2620 | 210GHz | 2.60 GHz | 80 W 10 6C/12T 6x256KB | 15 MB | 7.2 GT/s | 1600 MHz| 54,07 42 41 3255 | 21,02 15,41
c9 E5-2609 | 250GHz | 2.50GHz| 80 W| 14 4C/AT 4x256KB | 10 MB | 6.4 GT/s| 1333 MHz| 38,96 3331 25,69 192 14,68
Cc10 E5-2603 | 1.80GHz | 1.80GHz[80W| 7 4CHAT 4x256KB | 10MB | 6.4 GT/s| 1333 MHz| 31,23 2723 | 2417 | 1785 | 1489
Cc11 E5-2697 | 270GHz | 3.50GHz[130W| 16 12C/24T 12x256KB | 30 MB | 8.0 GT/s | 1866 MHz| 13221 | 9856 67.8 437 2363
c12 E5-2695 | 240GHz | 3.20GHz | 115W| 13 12CR24T 12x256KB | 30 MB | 8.0 GT/s | 1866 MHz| 117,93 80,57 64,09 3522 2167
Cc13 ES5-2667 | 3.30GHz | 4.00GHz|130W| 22 8CHMET 8x256KB | 25 MB | 8.0 GT/s | 1866 MHz| 133,95 88.9 59,76 | 33.72 18,17
Cc14 E5-2643 | 3.50GHz | 3.80 GHz[130W| 24 6CM12T 6x256KB | 25 MB | 8.0 GT/s | 1866 MHz| 124,57 | 9766 622 | 3246 | 1757
C15 E5-2637 | 3.50GHz | 3.80GHz[130W| 24 4C/8T 4x256KB | 15 MB | 8.0 GT/s | 1866 MHz| 79,31 6089 | 4046 | 2451 16,32
Cc18 E5-2650L| 1.70GHz | 210 GHz | 70 W 3] 10C/20T 8x256KB | 25 MB | 8.0 GT/s | 1600 MHz| 65,42 56,11 3755 | 29,06 18,74
Cc17 E5-2630L| 240GHz | 2.80GHz| 60W] 13 6CM2T 6x256KB | 15MB | 7.2 GT/s | 1600 MHz| 53,32 40,39 329 2049 14,42
c18 ES5-2650 | 210GHz | 23GHz | 70W| 10 8C/MET 8x256KB | 20 MB | 8.0 GT/s | 1600 MHz| 50,58 4277 | 2974 | 2185 1412
c18 E5-2650 | 2.00GHz | 22GHz [95W] 9 8CN6T 8x256KB | 20 MB | 8.0 GT/s | 1600 MHz| 843 68,7 50 345 255

Figure 167: Processor characteristics overview (C1 — €19) and measurements

We exemplarily describe our results concerning the thermal design power (TDP), p-state,
frequency, quick path interconnect (QPI), turbo, or cache. Figure 168 graphically presents the
power consumption of the processors at diverse utilization levels. The idle power consumption
varies between 14W and 24W, which we define as base power for the E5-2600v2 family. We
include our findings at lower utilization levels to get results that are more precise. The maximal

power range differs from 31W up to 134W.

150
—c19
140 — —C18
c17
130 D —C16
120 —C15
——cC14
110 —C13
—c12
100 = —C11
— c10
B —cC9
g 80 = ——C8
—C7
2 70 —c6
50 —cC5
—c4
50 c3
—cC2
40 —C
30
20+ —
10 I | | I | | I I |]
100 90 80 70 60 50 40 30 20 10 0

utilization level [%]

Figure 168: Intel Xeon E5-2600v2 power consumption measurement (C1 — C19)

XXVIII

Appendices

We cannot find a relation between the highest number of p-state and the power consumption,
but we can assume that the p-states define the step resolution, which directly correspond to
the utilization levels. If a processor has only six p-states, such as (C16), the power model is less
precise than a processor with nineteen p-states.

Thermal Design Power (TDP), Utilization Levels, P-states, and Frequencies

The vendor provides the thermal design power (TDP), which is accessible to the public within
the technical specification of each processor. We estimate the processor power consumption
on the basis of the spreadsheet facts. We cannot specify a power curve when we have only the
largest power consumption. We need further data regarding the processor power
consumption, under ideal conditions for every intermediate utilization level. Usually, the
processor vendor roughly specifies the power consumption by idle, average, and full utilization
for business and collaborative partners. We received an internal spreadsheet about the
processor power consumption at the certain utilization levels, because we cooperated with

2 The processor power consumption is a nearly linear

Fujitsu Technology Solutions GmbH
function. The spreadsheet contains the maximal frequency f;;,,,, at the p-state P;. The vendor
has not provided the maximal number of p-states k. We analyze the E5-2600 product family,
which has always a minimal frequency of f,,;, = 1.20GHz, but we do not know the
corresponding p-state. The frequency changes in equidistant steps of Af = 0.1GHz, which is
specific to the architecture. For instance, the processor C; has a maximal frequency of
fmax = 3.0GHz. We calculate the number of p-states k by the ratio of frequencies and their
step size. We receive a set of available frequencies, Equation (A3.29), based on an Equation

(A3.28).

_ fmax_fmin
f = nac (A3.28)
f = {fmax:fmax —1x Af'fmax — 2% Af' ---'fmax - (k - 1) * Af'fmin} (A3'29)

The thermal design power TDP = 130W is the value of the maximal frequency f;,4. The
vendor has not provided the minimal power, but we can estimate the power using the slope of
the power curve APO,,,. which defines the power reduction of each Af. We receive the
APOpyoc in our cooperation, which we alternatively have to measure. We subtract the AP0,
value of the TDP by the factor of frequency changes k. Equation (A3.30) shows our
spreadsheet-based estimation.

POyyoc = {TDP,TDP — 1% APOpyoc, TDP — 2 % APOpyoc, ., TDP — k % APOpyoc} (A3.30)

22 Fujitsu Technology Solutions GmbH: http://www.fujitsu.com/fts/

XXIX

Appendices

We analyze the processors C; — C;7 and overestimate the power approximately 25% in relative
deviation compared to the spreadsheet. Our estimation method underestimates the power
nearly 3% in relative deviation. Table 109 provides the slope values and the concrete relative
deviations.

Table 109: Intel spreadsheet vs. estimation method

Slope of the Relative Relative
Family - power over- under-
Component
series curve estimation estimation
APOppoc [%] [%]
c1 Intel Xeon 4.06 14.86 0
E5-2690v2
) Intel Xeon 3.38 8.91 0
E5-2680v2
a3 Intel Xeon 3.38 4.85 0.54
E5-2670v2
ca Intel Xeon 2.7 0.33 2.72
E5-2660v2
s Intel Xeon 2.5 6.25 0
E5-2650v2
6 Intel Xeon 2.38 0.48 1.72
E5-2640v2
c7 Intel Xeon 1.79 4.52 0
E5-2630v2
cs Intel Xeon 1.67 1.01 0.9
E5-2620v2
o Intel Xeon 1.23 2.02 0.45
E5-2609v2
Intel Xeon 1.67 0.46 0.46
c10 E5-2603v2
Intel Xeon 4.2 5.93 0
cil E5-2697v2
Intel Xeon 3.83 4.55 0.78
c12 E5-2695v2
Intel Xeon 3.33 18.28 0
ci3 E5-2667v2
Intel Xeon 3.17 24.53 0
c14 E5-2643v2
Intel Xeon 2.74 20.1 0
S E5-2637v2
Intel Xeon 2.4 0.67 1.21
ci6 E5-2650Lv2
Intel Xeon 1.33 3.14 0
) E5-2630Lv2

XXX

Appendices

Our estimation method becomes inaccurate (more than ten percent) for processors with more
than 15 p-states (Cq, Cy3, C14, C15). In this case, we will include a non-linear basis for our power
calculation method. The dashed line in Figure 169 presents our estimation values, and the solid
line shows the spreadsheet power consumption. We evaluate the average deviation, which is
7% for over-estimation and 1% for under-estimation. We neglect the differences of the
processor power consumption and conclude that our estimation®”® method is almost identical
with the vendor (industrial tools), which rely upon the spreadsheets.

Intel Xeon E5-2690v2 10C/20T 3.0GHz 25MB Intel Xeon E5-2670v2 10C/20T 2.5GHz 25MB

140,00 120,00

130,00 115,00
120,00 110,00
110,00 105,00

100,00
100,00

power [W]

H
w000 g 95,00
: a

spreadsheet
80,00 ===-estimation_vendor

70,00

60,00

50,00 70,00

utilization level[%] utilization level[%]

Figure 169: Processor (C1) and (C3) — spreadsheet vs. vendor estimation

Nevertheless, we observe a power gap between our spreadsheet-based estimation and our
measurements, shown in Figure 170 and Figure 171. In our example, the measured power at
the idle utilization level (~20W) is approximately 30% of the spreadsheet-based estimated
power (60-70W). At a utilization level of 50%, the imprecision shrinks and the measured power
is nearly 60% of the estimation. Finally, the power gap is less than 10% at a utilization level of
100%. The power gap for the idle utilization is larger compared to the full utilization.

2 power estimation: our spreadsheet-based method is synonymous with the vendor estimation.

XXXI

Appendices

power [W]

Figure 170: Spreadsheet-based estimation vs. measurements of the processor (C1)

power [W]

Figure 171: Spreadsheet-based estimation vs. measurements of the processor (€C3)

60

50

40~

30

20

10

Intel Xeon E5-2690v2 10C/20T 3.0GHz 25MB
T T T T T

T
measured
= = =spreadsheet |-

100

120

Il Il
920 80 70 60 50 40 30
utilization level [%]

Intel Xeon E5-2670v2 10C/20T 2.5GHz 25MB
T T T T T

110

measured
= = = spreadsheet

100

| |
90 80 70 60 50 40 30
utilization level [%]

As a result, we see that the vendor or our spreadsheet-based method** overestimates the

power consumption for two processors of the product family £5-2600, which we pick for our

example. We compared other families and saw the same problem. We conclude that the

vendor always overestimates the power consumption of the processor product family £5-2600.

424

Vendor, spreadsheet-based method: we receive the power consumption from the industrial tools and
compare them with our estimation method to become nearly identical

XXXII

Appendices

Our aim is to conceive a non-linear processor power model, which reduces the gap between
the spreadsheet-based estimation and the measurements. We reduce the worst-case power
assumption and enhance the power specification at lower utilization levels. We define a
spreadsheet-based method considering diverse characteristics from the technical specification
available to the public. We try to model the power consumption by ten percent in a single
utilization step, which refers to the processor states.

Quick Path Interconnects (QPI)

The quick path interconnect (QPI) is a point-to-point interconnect between the processor and
the memory controller. At the idle utilization level, the power increases by the QPI transfer
rate, as shown in Table 110. Finally, we assume that the idle power consumption depends on
the QPI speed.

Table 110: Average power consumption (C1 — €19) at 0% utilization level

QPI speed [GT/s] Average power consumption
@ 0% utilization level [W]
6.4 14.7
7.2 16.1
8.0 18.7

The thermal design power defines the processor power limit at a utilization level of 100%. We
analyze the maximal power consumption and propose a TDP-based power function, see
Equation (A3.31).

POWeT nrel xeon Es—2600v2(100%) =
TDP x 1.04, if L2 cache = 12x256KB, L3 cache = 30MB, threads = 24

TDP x 0.54, if L2 cache < 4x256KB, L3 cache < 15MB,no turbo (A3.31)
TDP % 0.91, otherwise

Frequency, TDP, Hyper-Threading, Turbo, Cache, and Transfer Rate

We analyze the component pairs (C2,(C3;C5,C6) and (C7,C8), which have the same TDP
values to specify a model, which has a finer granularity. Figure 172 summarizes the power
consumptions, which show that the TDP and frequency influence grow when the utilization
level is higher than 50%.

XXX

Appendices

vendor Intel
Processor
Family Frequenc ; Cache Transfer rate
Max yper-
Component . Base Max turbo | TDP threading | Turbo L3 0[%] | 20 [%] | 50 [%] | 80 [%] | 100 [%]
Series frequency freq. p-state o e 12 L) QPI mem bus
c2 E5-2680 | 280 GHz | 3.60GHz [115W] 17 10C/20T__ | ves [10x256KB[25MB | 8.0 GT/s |1866 MHz| 18.85] 31,07] 5584 7516] 112,88
C3 E5-2670 | 250 GHz | 3.30 GHz | 115 W] 14 10C/20T ves | 10x256KB| 25 MB | 8.0 GT/s |1866 MHz| 18.13] 27.99] 4666] 6538 101,22
C5 [E5-2650 | 260GHz | 340GHz [95W] 15 | 8CH6T | ves | 8x256KB | 20 MB | 8.0 GT/s [1866 MHz| 18.45] 26,12] 518] 67,08] 1011
c6 |E5-2640 | 200GHz [250GHz [es5w] o | 8cneT | yes | 8x256KB | 20MB | 7.2GT/s [1600 MHz| 18.93] 28.04] 50.16] 61,76 80,2
C7 |E5-2630 | 260GHz | 310GHz [8Bow] 16 [6CM2T | yes | 6x256KB [15MB | 72GT/s [1866 MHz| 15.44] 2244] 36,83] 4731 62,69
c8 |E5-2620 | 210GHz | 260GHz [sow]| 10 | 6cn2T | yes | 6x256KB | 15MB | 72GT/s [1600 MHz| 1541] 21.02] 3255] 4241[54,07

Figure 172: Processor frequency, p-state, and transfer rate (C2, €3, C5 — C8)

Figure 173 contains processors that all have the same amount of cores/threads, an identical
cache size, transfer rate, and support the turbo mode. The processors (C1 — C4) differ in their
base frequency, TDP, and maximum p-states. The power consumption fluctuates up to 10W at
a utilization level of 0%, 20%, and 50%. The processors (€2) and (C3) have the same TDP, but a
0.3GHz variation in their base frequency as well as maximum frequency. At a utilization level of
80% and 100%, the power consumption increases with a higher frequency. A small base
frequency and TDP value, see (C4), causes less power consumption at an 80% or 100%
utilization level compared to a higher frequency-TDP pair (C1).

vendor Intel
Processor Power Consumption @ utilization level
Family Frequency Cache Transfer rate
Max Hyper-
Component ; Base Max turbo | TDP threading | Turbo L3 0[%] | 20 [%] | 50 [%] | 80 [%] | 100 [%]
Series fraquency req, p-state — s L2 (TLC) QPI mem bus
C1 ES5-2690 | 3.00GHz | 360GHz |130W| 19 10C/20T yes |10x256KB| 25MB | 80GT/s 1866 MHz| 1761| 2838 5362 7683 120,5
c2 E5-2680 | 280GHz | 360GHz [115W| 17 10C/20T yes | 10x256KB| 25MB | 8.0GT/s 1866 MHz| 18,85 31,07 5584| 7516 112,88
C3 E5-2670 | 250GHz | 3.30GHz |115W] 14 10C/20T yes |10x256KB| 25MB | 80GT/s 1866 MHz| 18,13 27,99| 4666| 6538 101,22
C4 E5-2660 | 220GHz | 3.00GHz | 95 W 1 10C/20T yes |10x256KB| 25MB | 80GT/s 1866 MHz| 1701 2841| 4376) 5707 812

Figure 173: Processor frequency, TDP, and p-state (C1 — C4)

Figure 174 and Figure 175 present processor pairs that are consistent in their cores/threads
and cache size. We analyze the same processors, but compare different components that have
the same TDP value and transfer rate. We analyze the pair (C11,€12) and (C1,C2), which
have a difference of 15W in the TDP. We assume the power consumption behaves at the full
utilization level in a similar way.

vendor Intel]
Processor Power Cor ion @ utilization level [W]
Family Frequency ; Cache Transfer rate
Max yper-
Component) Base | Maxtubo | TDP | ° threading | Turbo L3 0[%)] | 20 [%] | 50 [%)] | 80 [%] | 100 [%]
Series frequency freq. p-state] o chhreads L2 (TLC) QPl mem bus
c11 E5-2697 | 270 GHz | 3.50GHz [130W] 16 12C/24T | yes [12x256KB| 30 MB | 8.0 GT/s |1866 MHz| 2363 437 678 9856 13221
C12__ |E5-2695 | 240GHz | 3.20GHz [115W] 13 12C/24T | yes |12x256KB| 30 MB | 8.0 GT/s | 1866 MHz| 2167| 3522 6409 8057 117,93
C1 ’E5—2690 3.00 GHz l 3.60 GHz |130w 19 10C/20T | yes |10x256KB 25MB | B0GT/s ‘1865 MHz’ 17,61 28‘33[53,52| 7683] 1205
c2 E5-2680 | 280 GHz | 360GHz |115W] 17 10C/20T yes |10x256KB[25 MB | 8.0GT/s 1866 MHz| 18.85| 31,07 5584| 7518/ 112,88

Figure 174: Processor frequency, TDP, and p-state (C1,C2,C11,(C12)

In addition, we compare (€11, C1) and (€12, C2), whereby the frequency increases, but the L2
and L3 cache decreases. The processors of (C11) and (C12) have two more physical cores and
four threads compared to (C1) and (C2). The power ratio (C11,C1) is proportional to
(C12,C2), whereby the base frequency is negligible.

XXXIV

Appendices

vendor Intel

c11 E5-2697 | 2.70 GHz . 12C/24T yes |12x256KB| 30MB | 8.0 GT/s |1866 MHz| 23,63| 43,7| 67,8 9856 13221
C1 |E5-2690 | 3.00GHz | 3.60GHz [130 W] | 10C/20T | ves |10x256KB| 25MB | 80 GT/s |1866 MHz| 17.61| 28.38| 5362 7683 1205

Cc12 |E5-2695 | 2.40GHz | 3.20GHz [115W] 13 | 12C/24T | vyes [12x256KB| 30MB | 8.0 GT/s [1866 MHz| 2167| 3522 64,09] 8057 117,93
C2 |E5-2680 | 2.80GHz | 3.60GHz [115W| 17 | 10C/20T | ves [10x256KB| 25MB | 8.0 GT/s [1866 MHz| 18,85] 3107| 5584] 7518] 11288

Figure 175: Processor frequency, p-state, and cache (C1,(C2,C11,C12)

Processor Core Frequencies (C18)

Table 111 and Table 112 present thread-specific utilization levels of the processor in relation to
the target throughput level in which we found the irrelevance of the specific thread when we
observe the entire processor utilization.

Table 111: Thread-specific (#) utilization levels [%] of the processor (C18) as mean values at target
throughput (calibration,100% — 60%) in (SP1.2.8)

Target throughput [%]
Processor threads Calibration 100 90 80 70 60
(#) and utilization
levels in [%]

0 99.44 86.77 64.67 58.03 53.20 49.61

1 99.41 94.08 76.56 67.59 62.50 55.06

2 99.37 95.47 82.39 72.84 6696 60.26

3 99.46 96.71 83.44 74.05 64.75 55.60

4 98.97 92.28 77.94 70.42 64.84 59.34

5 99.43 96.83 83.41 73.39 63.38 53.69

6 99.14 95.85 84.50 76.21 68.59 58.62

7 99.11 94.03 76.16 65.24 57.42 50.70

8 99.54 96.89 83.81 75.27 65.76 59.63

9 99.51 96.42 84.89 76.55 66.09 54.58

10 99.54 97.14 86.14 77.23 67.84 58.75

11 99.50 96.53 84.01 74.44 63.68 54.68

12 99.52 94.25 79.82 71.16 65.77 59.25

13 99.50 97.12 85.13 76.30 64.22 53.97

14 99.46 92.98 7836 70.10 64.17 58.45

15 99.48 97.08 86.02 75.94 65.43 55.15

Mean of all 99.4 95.03 81.08 72.17 64.04 56.08

threads
(HW Monitor Pro)
Mean processor 99.73 96.12 84.17 75.89 67.94 60.17
(Intel Power
Thermal Utility)

XXXV

Appendices

Table 112: Thread-specific (#) utilization levels [%] of the processor (C18) as mean values at target
throughput (50% — 0%, idle) in (SP1.2.8)

Target throughput [%]
Processor threads 50 40 30 20 10 Idle
(#) and utilization
levels in [%]

0 44.07 38.67 35.31 31.02 28.64 344
1 43.58 32.95 19.60 12.77 5.25 3.1
2 54.15 42.50 3491 2235 10.92 234
3 42.28 32.38 21.07 15.13 6.64 12.5
4 54.69 43.55 3468 22.19 1161 3.1
5 40.83 31.11 20.46 13.76 5.78 12.3
6 53.01 42.81 34,59 21.78 9.50 4.6
7 40.10 30.43 20.63 14.47 7.80 0
8 50.92 34.00 32.63 22.25 12.70 10.8
9 42.41 32.25 22.73 14.85 8.06 7.8
10 51.50 41.58 35.56 24.10 13.56 234
11 42.15 30.19 19.21 13.42 6.43 15.2
12 54.53 46.21 36.18 26.20 13.38 7.7
13 40.57 30.55 21.60 13.81 9.47 10.8
14 53.34 42.88 35.00 23.00 11.86 7.8
15 42.45 31.14 19.58 14.13 6.23 10.8

Mean of all 46.91 36.83 27.73 19.08 10.49 11.73

threads
(HW Monitor Pro)

Mean processor 50.75 40.75 31.57 22.38 13.40 4.4
(Intel Power
Thermal Utility)

XXXVI

Appendices

A3g. Detailed Processor Characteristics (C1 — C4,C7,(8,C14,(C18)
In this section, we present the processor characteristics that we use in our simulation and
evaluation.

Table 113: Detailed processor characteristics (C1,C3,C7)

Processor Processor (C1) Processor (C3) Processor (C7)
characteristics
L3 cache [MB] {'25MB"} {'25MB"} {'15MB"}
L2 cache [KB] {"2056KB"'} {'"2056KB}" {"1536KB"'}
Semiconductor {r13ow'} {"115W"} {'8ow'}
technology (TDP)
(w]
Vendor {'Intel'} {'Intel'} {'Intel'}
Architecture Intel XEON E5 Intel XEON E5 Intel XEON E5
Generation Ivy Bridge EP Ivy Bridge EP Ivy Bridge EP
Family E5-2600v2 E5-2600v2 E5-2600v2
Series {"E5-2690v2"} {'E5-2670v2"'} {'E5-2630v2"'}
Cores / activecores {'10C'}, {rioc'y, {'ec'y},
(hyper-threading) {'20T"} {'20T"} {'12T'}
Frequency [GHz] {'3.00"} {r2.50"} {'2.60"}
Transfer rate [GT/s, {'8.0GT/s'}, {'8.0GT/s"'}, {'7.2GT/s"'},
MHz] {'1866MHZz"} {'"1866MHz"} {'1866MHz"}

Table 114: Detailed processor characteristics (C2, C4, C8)

Processor Processor (C2) Processor (C4) Processor (C8)
characteristics
L3 cache [MB] {'25MB" } {"25MB" } {"15MB" }
L2 cache [KB] {"2056KB"} {"2056KB"} {"1536KB"'}
Semiconductor {"115W"} {'95wW"} {'80wW"}
technology (TDP)
(w]
Vendor {'Intel'} {'"Intel'} {'"Intel'}
Architecture Intel XEON E5 Intel XEON E5 Intel XEON E5
Generation Ivy Bridge EP Ivy Bridge EP Ivy Bridge EP
Family E5-2600v2 E5-2600v2 E5-2600v2
Series {'E5-2680v2"} {"E5-2660v2"} {"E5-2620v2"'}
Cores / activecores {'10C'}, {ri1oc'y, {'ec'y,
(hyper-threading) {'20T"} {'20T"'} {'127'}
Frequency [GHz] {'2.80"} {r2.20"} {'2.10"}
Transfer rate [GT/s, {'8.0GT/s'}, {'8.0GT/s"}, ("7 .26T/3" %,
MHz] {'1866MHz"} {'"1866MHz"} {'"1600MHzZ "}

XXXVII

Appendices

Table 115: Detailed processor characteristics (€14, C18)

Processor characteristics

Processor (C14)

Processor (C18)

L3 cache [MB]

L2 cache [KB]
Semiconductor technology
(TDP) [W]

Vendor
Architecture
Generation

Family

Series

Cores / active cores
(hyper-threading)
Frequency [GHz]

Transfer rate [GT/s, MHz]

{'"25MB"' }
{'1536KB"}
{r13ow"}

{'"Intel'}
Intel XEON E5
Ivy Bridge EP
E5-2600v2
{'"E5-2643v2"'}
{rec'},
{'12T"'}
{'3.50"}

{'8.0GT/s'},
{'1866MHzZ "}

{'"20MB"' }
{'2048KB"'}
{"70W"}

{"Intel'}

Intel XEON E5

Ivy Bridge EP

E5-2600v2
{'E5-2650v2"}

{'s8c'},

{'16T"'}

{'2.1"}, turbo{'2.3"}

{'8.0GT/s'},
{'1600MHz " }

A3h. Evaluation Results of the Processors (C1,C3,C7)

Figure 176, Figure 177, and Figure 178 show the simulation-based results of the processor
power (dash-dotted red line) in comparison to the measurement trace of the Intel Power
Thermal Utility (solid blue line), the data gained from the commercial tools (dotted magenta
line), or vendor-based data determined in the spreadsheets (dashed black line). These figures
present the power comparisons of the processors (C1), (€3), and (C7).

XXXVIII

Appendices

150 T T T T T T

measured
L L 0 e simulated

ol = = =spreadsheet -
S A S commercial tools

120
110
100
20
80

power [W]

70
60
50
40
30

20

10 | | | | | | | | |
100 90 80 70 60 50 40 30 20 10 0
utilization level [%]

Figure 176: Processor power consumption (C1) -
an exemplary comparison between spreadsheet, commercial tools, and measured and simulated power

120 T T T T T T
measured
110+ simulated

= = =gpreadsheet
100 N, commercial tools

90

80

70

60

power [W]

50

40

30

20

10 | I I I I I | | |
100 90 80 70 60 50 40 30 20 10 0

utilization level [%]

Figure 177: Processor power consumption (C3) -
an exemplary comparison between spreadsheet, commercial tools, and measured and simulated power

XXXIX

Appendices

100

95 ..

90
85

power [W]

10

measured -
----- simulated

= = =gpreadsheet
----------- commercial tools |7

100 90 80 70 60 50 40 30 20 10 0
utilization level [%]

Figure 178: Processor power consumption (C7) —

an exemplary comparison between spreadsheet, commercial tools, and measured and simulated power

Figure 179 presents the simulated power consumption in [W] of the processors C1 — C19 at

the specific utilization level in [%] that we gained while executing the SPECpower benchmark
(SP1.2.8).

power [W]

150
140

130"

120 &

110

100

90
80

70

60
50
40
30
20

10
1

! ! ! ! ! ! ! ! ! —

00

90 80 70 60 50 40 30 20 10 0
utilization level [%]

Figure 179: Simulated processor power consumption (C1 — C19)

XL

Appendices

A3l. Memory, Processor, and System Performance Scores

In parallel to the memory and processor evaluation (Section 7.2 and Section 7.3), the particular
benchmarks store the highest performance score that we consider when we simulate the
energy efficiency, see Section 7.1.3. Figure 180 and Figure 181 exemplarily show the absolute
performance scores*® (on top of the bars) as the results of the PassMark CPU (PCx.y.z), the
three bars on the left, and the PassMark Memory (PMx.y.z) benchmarks the three bars on
the right of the figures. It can be observed that if we double the memory capacity in a server
system with an exclusive processor (x = 1), either in a single memory module (Z = z * 2) or
as an additional memory module (¥ = y * 2), the performance scores will approximately
increase at (PC1.y.z) by [+4.7,+13.1]% and at (PM1.y.z) by [+21.7,+28.5]%, see Figure
144. If the system has two processors, the impact of the doubled memory capacity increases at
the PassMark CPU benchmark (PC2.y.z) by [+6.4,+20.7] and increases at the PassMark
Memory benchmark (PM2.y.z) by [+5.7, +12.4]%, as shown in Figure 181.

+3 PassMark CPU B PassMark Memory

15000 +28.5% 979 1000
14500 7 950
+13.1% 14154 +21.7% .
N =
¢ 14000 = i %00 8
o (@
: 3
g 13500 850 &
’)
= +4.7% R 13108 s
§ 13000 v 800 ¥
8 12520 _762 3
o 12500 750 &
Q
12000 : 700
PC1.1.2 PC1.1.4 PC1.2.4 PM1.1.2 PM1.1.4 PM1.2.4
benchmark
Figure 180: PassMark CPU (PC1.y.z) and PassMark Memory (PM1.y. z) performance scores
32 PassMark CPU B PassMark Memory
20000 10188 A% 1000
19500 +20.7% r
7% ~ - 950
19000 > 5% .
18500 5
£ 873" - 900 8
g 18000 =
g 17500 Leooa 850 &
o, U
¥ 17000 +6.4% 2
5 — v - 800 ¥
= 16500 §
@ 15904
o
8 16000 750 &
15500 &
15000 : 700
PC2.1.4 PC2.1.8 PC2.2.8 PM2.1.4 PM2.1.8 PM2.2.8
benchmark

Figure 181: PassMark CPU (PC2.y.z) and PassMark Memory (PM2.y. z) performance scores

425 ey .
Performance scores: additional scores are available at

https://www.memorybenchmark.net/ram_list.php and https://www.cpubenchmark.net/cpu_list.php

XL

Appendices

Furthermore, we observe that an additional processor and its related second memory
module*® have a significant impact of approximately 14.6% on the performance scores only
when each processor has 2GB memory capacity, as shown in the PassMark Memory
benchmarks (PM1.1.2,PM2.1.4), see Figure 182. In our measurements, the performance
scores are approximately identical when adding an extra processor. In contrast, when the
server system executes the PassMark CPU (PCx.y.z) benchmarks in which we provide an
additional processor and memory module, we observe a higher performance improvement of
27%, 29.1%, and 35.6% in comparison to the memory-bounded workload, as shown in Figure
183.

W PassMark Memory 1.y.z 7% PassMark Memory 2.y.z

1000
1]
g 90 927 923
w
e 900
S
g
§ 850
E 800
=
2
S =
700 -
PM1.1.2 PM2.1.4 PM1.1.4 PM2.1.8 PM1.2.4 PM2.2.8
benchmark
Figure 182: PassMark Memory performance scores (X = x * 2)
5 PassMark CPU 1.y.z & PassMark CPU 2.y.z
20000 19188
19000
o +35.6%
5 18000
3 16924
< 17000
& 15904 +29.1%
= 16000
5 +27.0%
% 15000 141
8 14000
13000 7&_
12000 | je3ssessssees
PC1.1.2 PC2.1.4 PC1.1.4 PC2.1.8 PC1.2.4 PC2.2.8
benchmark

Figure 183: PassMark CPU performance scores (X = x * 2)

Furthermore, we observe linear curves of the performance scores at the specific target
throughputs when executing the SPECpower benchmarks. Figure 184 exemplarily presents the
absolute performance scores considering our system under test of a single processor (x = 1)

426 . .
Second memory module: server system settings require a memory module per processor, based upon

the fact of the regular expansion

XLII

Appendices

and two processors (x = 2) in (SPx.y.z). We observe that an extra processor always
increases the peak performance scores. In our example, the performance scores increase by
the approximate factor of 1.31 between (SP1.2.8) and (SP2.2.16), but the extra processor is
more efficient between (SP1.3.18) and (§P2.3.36) by a factor of nearly 2.2. To our surprise,
we observe that the performance scores of the (SP1.2.8) are higher in comparison to
(§P1.3.18), which has more memory capacity (z = 18). One reason may be the restricted
memory bandwidth or processor cache size. In the case of the configuration, including a second
processor we observe that the additional memory capacity significantly improves the
performance from 339.863 at (§P2.2.16) up to 520.375 at (§P2.3.36).

600.000
F —m -5P2.3.36
500.000 o SP2.2.16
L -~
7 - —-4--SP1.2.8
® 400000 - - —<—5P1.3.18
8 r
~ L
$ 300000 ¢
3 r
% r
200.000
% T
100.000 -

ot

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
$P2.3.36, 520.375 466.523 417.141 365.805 310.323 261.104 208.107 157.109 103.244 51.571
SP2.2.16 339.863 307.907 271.668 237.999 204.192 170.018 137.530 101.377 67.777 34.203
SP1.2.8 257.494 232.464 208.925 181.177 155.846 130.367 103.254 78.566 52.573 25.827
SP1.3.18 236.627 214.621 190.766 165.821 141,711 120.068 95.339 70.308 48.477 23.603
target throughput

Figure 184: SPECpower (SPx.y.z) performance scores

In our simulation model, we create a database to specify the particular component-based as
well as system-specific performance scores concerning their various characteristics and
benchmarks. Herein, we support a wide variety of hardware and software configurations and
their related performance scores.

XLI

List of Tables

A4. List of Tables

Table 1: Electrical and thermal @Nalogy.........coocuiiiieeciiie e e e 20
Table 2: Domains, system domain, and eXampPles.........ceevciiiiiiiiiieeeiiieee e 29
Table 3: Normalized server power breakdown for various classes/types [RLG et al. 2008] 32
Table 4: Comparison component types (system-board, onboard, add-in)........ccccceeevvveeercnnnnnn. 37
Table 5: Transition table and transition functions (Figure 20)ccccocovevieeeceeecieeccee e 44
Table 6: Use cases for continuous and discrete time and valuesccocceeerveieiieenieeeiieenieen. 50
Table 7: Product quality model and characteristics by ISO/IEC 25010:2011 [ISO 2011]............. 52
Table 8: Thermal systems in various domMainsccccuueeiiciieieiiiiiee e eseee e ecree e ssire e e ssaaeee e 55
Table 9: Power and energy systems in various domainscccccueeeeciieeeeiiieeeecieeeeecieeeeecnneee s 56
Table 10: Server utilization, power, and energy efficiency — system I [BH 2007]...........ccuue... 58
Table 11: Server utilization, power, and energy efficiency — system II [BH 2007]..........ccc........ 58
Table 12: Server utilization, power, and energy efficiency — system III [SPE 2015]................... 59
Table 13: Metrics and benchmarks (performance, power/energy, and efficiency) in various

o FoT ' =Y [o -3 RSP UPR 60
Table 14: Focused domains for thermal, power, and performance indicatorscccceceeuveeenn. 63
Table 15: Intel processor states (S) —an overview [CJ 2010]cccovereerenersienencenie e 71
Table 16: Intel processor states (C, P, T) —an overview [CJ 2010]ccccervrrveeriieeneenieesineninenns 72
Table 17: Processor thermal limits [DOn 2006]cocovuveemieeiiiiiiireeeeeeeeeeerrreeeeeeeeeearereeeeeeesens 94
Table 18: Comparison between customer and vendor requirements of the industrial tools... 116
Table 19: Industrial server systems power calculators (Dell, Fujitsu, HP, and IBM).................. 119
Table 20: Comparison of the power calculators of server systems in industrial practice and

ACAAEMIC rESEAICN (1) eeuviieieiieieeie ettt ettt ettt be ettt e b eaeas 121
Table 21: Comparison of the power calculators of server systems in industrial practice and

ACAdeMIC re€SEAICN (L) c..ouieiieeeieee ettt et 122
Table 22: Comparison of the power calculators of server systems in industrial practice and

Yo [o (<10 IO ECIN =T Lol s N 1) TSP 123
Table 23: Comparison of utilization levels in Mantis [ERK 2006]ccceeeivieeeecieeeeeciiee e, 131
Table 24: Nomenclature — aspect-based component models (I)ccceveeveeieeneeneeniiennieeeens 144
Table 25: Nomenclature — aspect-based component models (I1)cccceeeeveenieenieenceeecvennnen 145
Table 26: Memory characteriStiCs (I).....ceceereereerienie ettt ettt s 174
Table 27: Memory characteristics (1)cccooveereereeiieeeiieeieesieeseeseesseeteeseeseeesseesseessnesssesnsens 175
Table 28: Processor Characteristics (I)......ccceveereereerieeniieeieeseeseeseesre e sreeseeeseeesaeeseeesnsesnsees 184
Table 29: Processor characteristics (IT)ccccoieeiiiiiiiiieeieesee ettt 185
Table 30: Class definition CLL............ccoccveiiiieeiiiiiecieccieere ettt saeesseeenee s 191
Table 31: Nomenclature — server system externals (EX)ccccecueeeieeiieeecieeecree e evee e 206
Table 32: DEfiNitioN Ci.......c..coiiviiiiiiiiiie et e s e e e s sabee e s snaneeas 211
Table 33: DefiNition €S ...cocveiiiiiiieeceeee ettt st be e s ba e s saae e sbaeesanes 212
Table 34: Nomenclature — server system simulation (I)cecevererienenienienenienceeeeseeen 218

XLIV

List of Tables

Table 35: Nomenclature — server system simulation (I1).........ccocceveevenenienenienieeneeeeeenieeaen 219
Table 36: Adjustments in the primary and secondary phases.......ccccocveeeeriieieiniiieeeenciee e, 236
Table 37: Prioritization characteristics by their weight coefficients........ccccccevviceiiiiieninneen, 240
Table 38: Memory module 8GB (1x8GB) 2Rx4 L DDR3 — 1333 R ECC - additional

R TEY =T 1 - PSSP 251
Table 39: Calculation METNOAScociiiiiiieece e e sbe e e 253
Table 40: Performance improvement (processor and memory capacity) [DEP et al. 2009] 259
Table 41: GUI-based restrictions of the server system.........ccccvvciiiiiriiee e, 261
Table 42: Memory characteristics — simulation parameters (I)ccccovoeverienenieniceieneeee. 261
Table 43: Memory characteristics — simulation parameters (II)cccccoceioeneniencncienenenen. 262
Table 44: Processor characteristics — simulation parameters (I)cccccoevveevenenieenenieeneneenne. 262
Table 45: Processor characteristics — simulation parameters (IT).......cccccocevveverienenceenencnen. 263
Table 46: Fan characteristics — simulation parameterscccoccveeeeeiieee e 264
Table 47: System under test (SUT) — hardware Settings.........cccccvvevieeicieeerieeccee e 273
Table 48: System under test (SUT) — software settingsccccceeecieeeeecieee et 274
Table 49: Measurement t00ls and SETHINGSccccviiieeiiiiee e 276
Table 50: Computer — hardware and software settingscccecveeieiciiee i, 277
Table 51: BENChMArKSs SETHINGSvviieiiieieeciiee ettt e e s e abe e e e e eabae e e enreeas 278
Table 52: SPECpower — test cases fOr (SPX. Y. Z) c.ccceoueeeereeeee et 279
Table 53: PassMark CPU — test cases fOr (PCX. Y. Z) cccccvevveneenienieeiieeiiesieenieesieesieeseeseesneens 280
Table 54: PassMark Memory — test cases for (PMX. Y. Z) ..cccccocevoeieenenenieseeieeeese e 280
Table 55: MemTest86 — test cases fOr (MTX. Z) ...ccccceeieeeieiieeee et 281
Table 56: Boot phase — test Cases fOr (BPX. Y. Z) .ccccccvcvevieeneeneenieniiesiessreesseesseeseesaneseesnses 281
Table 57: Execution time statistics — beNChMArks..........ccvvviiieiciiiiieece e 282
Table 58: Memory power accuracy — the simulated vs. the measured results.............cc.......... 294
Table 59: Memory power accuracy considering the read-to-write ratioccccccceeeeciveeennnen. 296

Table 60: Memory power accuracy and precision statistics considering the read-to-write ratio

Table 61: Improvement of the memory power accuracy and precision considering the read-to-

(L (=T - 1 1 [o PP PP PP UOPPTOPPPPPPOPORE 297
Table 62: Memory temperature accuracy in comparison to the measurements...................... 302
Table 63: Frequency inaccuracy (resolution inaccuracy: Intel Power Gadget vs. Intel Power
Thermal Utility) — relative error (numerical) of PassMark CPU and SPECpower........ 305
Table 64: Frequency inaccuracy (resolution inaccuracy: Intel Power Gadget vs. HW Monitor Pro)
— relative error (numerical) of PassMark CPU and SPECPOWETccc.cccvveeerveennnnn. 307
Table 65: Statistical representation of the thread-specific frequencies [MHz] of the processor at
target throughput calibration, 100% — 60% in (SP1.2.8)ccccecevvreeuennenne. 309
Table 66: Statistical representation of the thread-specific frequencies [MHz] of the processor at
target throughput 50% — 10%, idle in (SP1.2.8)cccceeiiiviiniiniieceeeeeeee 309
Table 67: Mean frequency [MHz] at target throughput calibration,100% — 60% in
(SP L. 2. 8) ettt bt ettt b e sb et bt besae e 310

List of Tables

Table 68: Mean frequency [MHz] at target throughput 50% — 10%, idle in (SP1.2.8) 310
Table 69: Statistical representation of the thread-specific utilization levels [%] of the processor
at target throughput calibration,100% — 60% in (SP1.2.8)....cccceceevevrueenen. 311
Table 70: Statistical representation of the thread-specific utilization levels [%)] of the processor
at target throughput 50% — 10%, idle in (SP1.2.8)cccoocveviiiiiiienienieeieeenn 311
Table 71: Mean utilization level [%] at target throughput calibration,100% — 60% in
(SP L. 2. 8) ettt et bttt b e bt et b et be s aeenes 312

Table 72: Mean utilization level [%] at target throughput 50% — 10%, idle in (SP1.2.8).. 312
Table 73: Mean utilization level [%] and mean power consumption (measured vs. simulated) at

target throughput calibration, 100% — 60% in (SP1.2.8)ccccecvverieinnnennee 318
Table 74: Mean utilization level [%] and mean power consumption (measured vs. simulated) at

target throughput 50% — 10%, idle in (SP1.2.8) ...cccooceeiiiinieiieeeeeeen 319
Table 75: Processor power accuracy — the simulated vs. the measured results....................... 321
Table 76: Mean utilization level [%] and mean temperature (measured vs. simulated) at target

throughput calibration,100% — 60% in (SP1.2.8)........ccccceevviviiniincincnns 325
Table 77: Mean utilization level [%] and mean temperature (measured vs. simulated) at target

throughput 50% — 10%, idle in (SP1.2.8) ...ccccoovveeeieeeee e 325
Table 78: Processor temperature accuracy in comparison to the measurements.................... 326
Table 79: Memory modules (€70, C71) of the SUT — characteristics considered as simulation

o110 0[] =] PP PP PPPPPPPPPPPPPPPRE 331
Table 80: Processor (€18) of the SUT (Intel Xeon E5-2650v2) — characteristics considered as

SIMUIALION PArAMETELS ...eeiiiiieee ettt e e et ae e e e ebae e e e bee e e enraeas 336
Table 81: Processor power accuracy — the simulated vs. the measured results...................... 340
Table 82: Base processor data at system under test (time, utilization level, normalized power,

normalized performance, and normalized performance-to-power ratio)................. 353
Table 83: Intuitive global optimal processor configuration...........ccceecveeeieiiee e, 355
Table 84: Global optimal processor configuration considering the power and respective energy

.. 356
Table 85: Global optimal processor configuration concerning the performance-to-power ratio

.. 356
Table 86: NOMENCIAtUIE AL Loiiiiiiiieiiee ettt ettt sbe e st ssat e e sbe e s sbbeesabeesabaeesabeesnees I
Table 87: NOMENCIAtUIE AL.2 c....eiiiiieiieeeiee ettt ettt st sbe e st e s sabe e sbe e e sabeesabaesbaeesabaesnes Il
Table 88: NOMENCIAtUIrE AL.3ottt et e e st e e s sbee e e s sbeaeessbeaeessseneessans 1
Table 89: List of abbreviations A2.1 — (A = CPRH)coouiiiiiiiii ettt v
Table 90: List of abbreviations A2.2 — (CPU = EPS) ...cccuuiiiiiieii ettt etvee e svvee e Vv
Table 91: List of abbreviations A2.3 — (ERD - ILPA)coii oottt et e e e W
Table 92: List of abbreviations A2.4 — (IMC - MOV)......uuiiiiiiieiiiieee et eereeeecevveseseaneeeeens VI
Table 93: List of abbreviations A2.5 — (MPEG - PROCHOT)......cooveiirreiieeeeeiirereee e eeeeiireeeeeeeeen VI
Table 94: List of abbreviations A2.6 — (PSG = SMI)uoiiiiiiieecieee ettt IX
Table 95: List of abbreviations A2.7 — (SMI = VRM) ...uuriiiiiiiiecciieeeee ettt e e X
Table 96: List of abbreviations A2.8 — (W = P) c.cccuiiiiiiiiiiiieccteestecsee e XI

List of Tables

Table 97: ACPI state definitions (G, D, S) [HIM et al. 2013].....ccccoiirieninieriininieieneeee e Xl
Table 98: ACPI state definitions (C, P) [HIM et al. 2013].....ccceecerireenenieieieneeenreeee e XIV
Table 99: Metrics and benchmarks in various domains (I)cccoceveeveneeieeniineeneneeeseseeene XIV
Table 100: Metrics and benchmarks in various domains (I1).........ccoceeveneriieneneeneneeieneeeene XV
Table 101: MATLAB relation between use cases and Classes........ccvvvvveieriiieeeriiieeeeiiee e XVI
Table 102: Memory modules — frEQUENCYcceiccuieieeciee et e e et e e e XXI
Table 103: Detailed memory characteristics (€70, C71)ccccoveeiininiininieerieeeee e XXIV
Table 104: Detailed memory characteristics (C26,C74,C76)ccccoeverieeieeneeneenieeieeeens XXV
Table 105: Detailed memory characteristics (€72, C73,C75) ..ccccoceveveenenieeseeieeeeeene XXVI
Table 106: Detailed memory characteristics (C24, C26)ccoceeveeneeienenieieneeeee e XXVI
Table 107: Detailed memory characteristics (C14, C20,C26)cceeveevireeseneesenienneens XXVII
Table 108: Detailed memory characteristics (€77, C78)oooeveeienineeieneeieeeee e XXVII
Table 109: Intel spreadsheet vs. estimation methodccoeciiiiiciiie e, XXX
Table 110: Average power consumption (C1 — €19) at 0% utilization levelcccco.... XXXIII
Table 111: Thread-specific (#) utilization levels [%] of the processor (€18) as mean values at

target throughput calibration,100% — 60% in (SP1.2.8)ccccceeeeenennen. XXXV
Table 112: Thread-specific (#) utilization levels [%] of the processor (C18) as mean values at

target throughput 50% — 0%, idle in (SP1.2.8) ...cccoceeviiiinieieieeeeeeee XXXVI
Table 113: Detailed processor characteristics (€1, C3,C7)cccooceeveeriroiiniiieeeeeeee e XXXVII
Table 114: Detailed processor characteristics (€2, C4,C8)cccvvvvvrvreeniveneeneineereeeeenn XXXVII
Table 115: Detailed processor characteristics (C14, C18).......c.cccccceeviiriieniinnenneenieee XXXVIII

XLviI

List of Figures

A5. List of Figures

Figure 1: IDC's forecast for the digital information growth [JD 2012].....ccccccvviivviiieiiiiiineiineeenn. 7
Figure 2: Total energy demand of servers and data centers [Acc 2008, HFS 2010] 8
Figure 3: Total energy demand of German data centers [HFS 2010, Thy 2012]cccccovveeecnneenne 8
Figure 4: Power [W] vs. €nergy [WhH] ..o 18
Figure 5: Undirected tree and |@VEIS........cioveiiiieciiiiccee et 22
Figure 6: Diagram tErmMINOIOZYuiiiiiiiieeeiiee ettt et e e ree e e e are e e e e atee e e enraeesenreeas 23
Figure 7: Type and subtypes tree as @ diagramcoocvuueiiiiiiiieiiiiiec e 23
TN N TN [=4 o PSPPI 24
Figure 9: GENEriC tre@ diagIam ..o ii ettt e e e te e e e e ate e e e e araeeeentaeeeestaeesennsenas 25
Figure 10: Data center cabinet rows and Othersccceviiiiiie e 26
Figure 11: Hot and cold aisle design in data center cabinet rowsccccceeecveeeecciieececciiee e, 27
Figure 12: Cabinet rOW STIUCTUIEoiiiiiiie ettt e e et e e re e e e e are e e e e abee e e enbeee s enreeas 27
Figure 13: Compute node (server system) in data CeNTerS.......cccvvevieerieeecieecee e 28
Figure 14: 19-iNCh rack @NCIOSUIEcccuuiiieeieie ettt et e et e e ree e e e abee e s eabae e e enreeas 31
Figure 15: System hardware SH (component HC, connector HO, power supply HP) and

SOFEWAIE SW ..ttt et st st e st bb e e s b e e sbee e sabee s 35
Figure 16: System levels (components, power supply and conNectors)ccceceeeveeeeecreeeeennen. 35
Figure 17: Component (component HC, add-in CA, onboard CO, system-board CS) and system-

oToF: [e Ior- 1 =Y {0] o =TSRRI 38
Figure 18: Hierarchical server system definitioncccoeeeiieiicciii i, 39
Figure 19: Class diagram — COMPONENTScc.uvieeeiiiieeeiiieeeeeiee e e et e e e e cree e e eareeeeeabeeeeentaeesearenas 42
Figure 20: State transition diagram (STD)......cccveeeciieiiieeiee et rre e sare e sbaeeeanas 44
Figure 21: Data flow diagram (DFD) — size and volume data flow.........ccccceecieeieciieecccciee e, 45
Figure 22: Definition of modeling domains [0si 2010]......ccccuiieiiiiiieeeciiee e e 46
Figure 23: Time-continuous Xt and time-discrete X[N] systems........ccecevereeneniniieneneeseneneens 47
Figure 24: Time-continuous and time-discrete CyCle........covuiieeriiiccciiieeee e, 49
Figure 25: Signal sampling and discretization........cccco oo, 50
Figure 26: SVN server commits — day statistiC.......cccceeiiiiiiiiiiiie e 57
Figure 27: SVN server commits — hour StatiStiC......ccccieeeciiiiiieie e 57
Figure 28: Considered aspects in various server domains........ccccccuveeeecieeeeniieeeessieeeessieeeeenveens 61
Figure 29: Metrics and considered aspects in various server domains.........cccceeeevveeeecveeeeennnnen. 62
Figure 30: Definition of server modeling domains using server system definition, enhanced

MOodel from [OSi 2010] ..eeeiiieiiiiiieiee et e e e e e e eeesrbrreeeeeeeesaabrraeeeeeeeenns 64
Figure 31: 3-dimensional space for diverse modelscccccvieeiiiiiie e 64
Figure 32: Simple power state machine of server (on, off)cccccoiiieeiiiiiccie e, 70
Figure 33: Intel processor states — a graphical representation [C) 2010]......ccccceevvveeeecieeeeennen. 72
Figure 34: Intel processor (P) states [CJ 2010].....cceueerueririenereeiesieetenie et 72
Figure 35: Power and energy models in FeCENT YEAIScuvvvieieieieiciiiieeee e 89

XLVl

List of Figures

Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:

Thermal limits of the resource [Ste@ 2012]ueeviiiieiieiiieieieeeeeeciireeee e e e e 94
Thermal Models iN FECENT YEAIS ...ciiiciiiiiciieee et 100
Performance models in reCENT YEAISiiiivviiiiiiiee ettt 103
Server system power/energy, thermal, and performance modelscc.uc....... 105
Server system simulation MOdElScoccuiiiiiciiiiiiiice e 106
Product development life cycle [MSD 2006]cccoeevuiereiiiieeeeciiee e eeieee e 113
Server system simulation appProachesccccvveeeeciiei e 127
Overview of the five-step CONCEPL....ciivciiii e 142
Aspect-based components and corresponding relations (RA)ccceeeevereeneenennen. 148
System model (MASC, RAC, RBE)cooiiiiiee ettt 150
Server system characterization.......cccvvvcciiee i 153
System-board categories (COMPONENTS).....cccccuiieieiiiiiieeiiee et 156
Technical specification tree — MEMOIYc.veii i 157
Configuration with characteristics and values — memorycccococeeivcieeeercieeenenns 159
Technical specification and characterization treeccccccoveeeecieeccciee e, 160
Configuration and characterization layeroocuveiieciiee e 161
Category-specific classification and characterization.........ccccceeeeeeieiiiiiiieeeeecccecnns 163
Annotation characteristics and weight coefficients of all components 164
Annotation aspects and weight coefficients of a particular characteristic 164
Logical and physical configuration layer, adapted from the original in [Hag 2009] . 167
Spreadsheet-based estimation vs. measurements of the processor (C1)............... 178
Spreadsheet-based estimation vs. measurements of the processor (C3)............... 179
System categories, classes, characteristics, and values..........ccceeeveiieeeiicieeeccciieeen, 191
Characterization tree with classificationcccceveveviviiniie e 193
Fan speed control (FSC) algorithm...........ccccuiiiiiiiiiecee e 202
Process and CONLrol [aYer.......coiiiiiii i 204
=T 0 = SRS 207
Thermal profile diagram [INt 2014].......ooieiieiieiieeecee e e 209
Workload model contributioncocceiiiiiiiiinii e 215
Server SYStemM EXEEINAIS ...ccii it e e e e e e e e eaaas 217
EXtErnals and SYSEEMueii i e 217
Server system simulation coNStItUENTS.......cccccviieiiiiiii e 220
Workflow of the optimization process and simulationccccceeeivieeiiiiieecccnennn. 222
Graphical presentation of the optimization process and simulation 222
System-compatible technical specification tree........ccceevveeieiiieiiccciie e, 223
1YL= 0 0] Y o =T N 224
Pre-process — set of decision variables..........ccocuveiiiciii e, 225
Simplified schematic of the SYSteM ..o 228
Controller — select, compare, and deCide........ccccvuiieeeeeiicicciiiieee e 228
Optimization Strategy Phasesccueiiiccieii i erre e 230
Thermal control in the primary Phaseccceeeecieie e e 231

List of Figures

Figure 77: Primary optimization STrat@gYuuuueieiiiiiiiiiiiiiiiiiiiiiiii e 233
Figure 78: Secondary optimization StrategYcccceeeieiiiiiiiiiee et 235
Figure 79: Step-based energy efficiency analysisccccvivvciiiiiiciei e, 237
Figure 80: Alternation of decision variables considering the cascading phases..........c.cccc........ 238
Figure 81: Five-step concept including basis constituentscccccevecieiiiviien e, 243
Figure 82: Model-View-Controller (MVC) using MATLAB/Simulink........c..cccouveviveeeiieeeiveeecneeens 245
Figure 83: Communication between MATLAB and Simulinkcccoooeiiiiiiii e, 246
Figure 84: View layer — schematic GUIcccuuiiiiiiiiiiciiie ettt 246
Figure 85: MATLAB GUI implementation..........ccccueveeeciiiei ittt ettt 247
Figure 86: Workload configuration — Workflowccceeeeiiiiiciii e, 248
Figure 87: Steady workload — WOIrKFlOWooeiiiiiiiiiiiie e 249
Figure 88: Customer-specific wWorkload SCENAriO........cccuveeeeiieeiiciee e 250
FIZUIE 89: DAtabaseuueiiiiiiiecciiee ettt e et e e et e e e e et e e e e be e e e e nbae e e e nbeeeeeearaeeeennneeas 252
Figure 90: Model layer —block diagramccoociiiiiiiiiieiciee e 253
Figure 91: Clustering of IDD mMemory Statesccceeeeciiieeiciiee et 255
Figure 92: Workflow — calculation methods........c..cooeiiiiiiciei e 257
Figure 93: Dynamic thermal development of a memory moduleccccoeeieiiiccieeiccciee e, 258
Figure 94: Pseudo code — aspect-based and category-based calculation process.................... 259
Figure 95: Controller layer — block diagrami.........ccoeeeiiiie i 265
Figure 96: Simulation model — stimuli and server systemccccccevevvciieiicciiee e, 266
Figure 97: System model — components, thermal control, and power supply unit (simplified

=T o] g1y =T] =Y u o] o) IO USRI 267
Figure 98: Workflow — MATLAB GUI and Simulink modelccccveiiiiiiiiciier e, 267
Figure 99: Workflow — callback simulation Startccccceeecieeeieiiee e e 268
Figure 100: Workflow — Simulation pre-proCess.......cu i eiccieeeeceiiee et eetee e eetee e e evee e e e 269
Figure 101: Workflow — initialize aspect-based methods.........ccccoeviiviiiiiiciei e, 270
Figure 102: Workflow of the simulation frameworkcccoe oo, 271
Figure 103: Evaluation and simulation environNmMeNnt.........ccccceveeeciiei e 277
Figure 104: PassMark CPU (PC1.1.2) — measurement aCCUraCycoceerveereerersreenvessseesseenens 283
Figure 105: Controller layer — block diagram considering an exclusive memory model for

€VAlUALION PUIPOSESveiiiiiiie ittt ettt ettt e et e e e etre e e e e be e e e s sbraeessbteeeeeanes 286
Figure 106: Aspect-based memory module and corresponding relations (RA)cccccceeueenee. 286
Figure 107: Simulation model — stimuli and server system for the exclusive memory evaluation

... 287
Figure 108: Memory power measurement (PM1.1.4)......cccccovvuiriirniinienniennee e s eieeseee s 289
Figure 109: Memory power accuracy (PM1.1.4)cccooiiiiiiiiiiiiiieieeeeee e 290
Figure 110: Memory power accuracy — a histogram (normalized probability) (PM1.1.4) 291
Figure 111: Memory power — an interpolation between the samples (PM1.1.4).................... 291
Figure 112: Memory power accuracy (PCL.1.4) ...cociiiiiiiiiiiieeeee et 293

Figure 113: Memory power consumption at various benchmarks — Fujitsu-specific hardware
o F=Y o)1 {1 RSP PURPRPRINE 293

List of Figures

Figure 114: Memory power accuracy (PC1.1.4) considering the read-to-write ratio 295
Figure 115: Memory temperature accuracy (PM2.1.4)coccoiiiiiiniiinnieeeeneeeeeee e 299
Figure 116: Memory temperature accuracy — a histogram (normalized probability) (PM2.1.4)
... 300
Figure 117: Memory temperature accuracy (PC2.1.4)ccccoriiriiiiiniiineenee e 301
Figure 118: PassMark CPU (PC1.1.2) — processor frequency analysis (Intel Power Gadget vs.
Intel Power TRermal ULIlItY)cuueeeecieee ettt ectee et e s vtee e e snrae e 303
Figure 119: Frequency analysis (PC1.1.2) — 100% utilization level (/Intel Power Gadget vs. Intel
Power TREIrmMAI ULIlItY).........ueeeeecueeeeeeeiiee ettt eectte e et e e e ctte e e s e rrae e e snaeeaeeanes 304
Figure 120: Frequency analysis (PC1.1.2) — 0% utilization level (Intel Power Gadget vs. Intel
POWEY TREIMAI ULIlIEY)...c..veeeeeeeeeieeeeiee ettt ettt ettt e svte e st saae e saa e e s taeeaeas 304

Figure 121: Frequency inaccuracy — graphical representation of the relative error of PassMark
CPU and SPECpower (resolution inaccuracy: Intel Power Gadget vs. Intel Power

TREIMQAI ULIIEY)oeecveeeeee ettt ettt tte et ae s te e e bae e s be e e bae e sateeebaeesaneean 305
Figure 122: PassMark CPU (PC1.1.4) — processor frequency analysis (Intel Power Gadget vs.
e kY Lo T T el o) 306
Figure 123: PassMark CPU (PC1.1.2) — processor frequency analysis (Intel Power Gadget vs.
L kY Lo T T el o) R 307

Figure 124: Frequency inaccuracy — graphical representation of the relative error of PassMark
CPU and SPECpower (resolution inaccuracy: Intel Power Gadget vs. HW Monitor

Figure 125: Processor utilization level (SP1.2.8) measured by Intel Power Thermal Utility 313
Figure 126: Simplified representation of the processor utilization level (SP1.2.8) as mean

VAJUBS oottt ettt ettt et e et e et ee e et e et e e s e e e bt e e e te e e te e e beeeebeeeartee e teeenbeeeanreeenn 314
Figure 127: Processor power accuracy (PMT1.1.4) ..ccccooiiiiiiniieeeeeeeeee e 315
Figure 128: Processor power accuracy (PCL.1.4) ...ccocveviinienienienieeieesiee e 317
Figure 129: Processor power accuracy (SP1.2.8)....cociiiiiiiiieieeteeeeee e e 318

Figure 130: Processor power accuracy — a histogram (normalized probability) (SP1.2.8)....... 319
Figure 131: Memory and processor utilization level (MT16.32) — an excerpt of (MT16.z) ... 320

Figure 132: Processor temperature accuracy (PMZ2.1.4)ccooiiiiiriiiiiinieneeeeeee e 322
Figure 133: Processor temperature accuracy (PC2.1.4) cccoovvvivviiriineeneenee e 323
Figure 134: Processor temperature accuracy (SP1.2.8) c.coovvvviiiiiriiinenreenee e 324

Figure 135: Processor temperature accuracy — a histogram (normalized probability) (SP1.2.8)

Figure 136: Vendor-specific power consumption of the memory modules (C26,C70-C76)... 332
Figure 137: Frequency-specific power consumption of the memory modules (C26,C24)...... 333
Figure 138: Die-specific power consumption of the memory modules (C14, C20,C26) 334
Figure 139: Comparison of the memory power simulation (C77,C78) concerning the academic

approaches [HCE et al. 2011, LEU et al. 2010]oeeeeciieeecieee e 335

LI

List of Figures

Figure 140: Processor power consumption (C18) — an exemplary comparison between
spreadsheet, commercial tools, measured and simulated power..........ccccuueun.. 338
Figure 141: Simulated processor power consumption (C1,C3,C7,C18) .ccccevviirciiriensienieenne. 339
Figure 142: Controller layer — block diagram considering the entire system model for evaluation
018 0o 1Y =TT UPPPRTPPINN 343
Figure 143: Simulation model — stimuli and server system considering the entire system model
... 344
Figure 144: PassMark CPU (PCl.y.z) and PassMark Memory (PM1.y.z) performance-to-
POWET FATIOS 1ieieieeeeeeee et eeee s 346
Figure 145: PassMark CPU (PC2.y.z) and PassMark Memory (PM2.y.z) performance-to-
POWET FATIOS weviiieiiiiiiiiiiieeee e e e riiirtete e e e e s esirrteeeeeeesssbabteaeeeessssasbbeaaeeeesssanssnreaneeens 346
Figure 146: PassMark Memory performance-to-power ratios(X = X*2)ccccceeerererieenenennn 347
Figure 147: PassMark CPU performance-to-power ratios(X = X*2) ...cccocerveneneenenenieeneneenne 347
Figure 148: Component-specific utilization level at SPECDOWETrc.oeveeeveeiiiciiiieiecieeeeen, 348
Figure 149: Component-specific power consumption at SPECOOWETccceeeeeevveeeecrveeeeennnen. 349
Figure 150: Normalized performance-to-power ratios at SPECOOWETccceeevveeeecrvreeeennnen. 350
Figure 151: Alternative processor configurations (normalized performance-to-power ratio) at
SPECPOWEr T = [0,3732]S ctteueeeerieeienie sttt ettt ettt sttt st see e 351
Figure 152: Alternative processor configurations (normalized power, normalized performance)
at SPECPOWEr T = [0,3732]S cuereeienienieienieetenie ettt sttt s 351
Figure 153: Alternative processor configurations (normalized power, normalized performance)
at SPECPOWEr T = [0,1400]S .eeueeeererteieeieeiesie ettt ettt 352

Figure 154: Exemplary processor optimization (normalized power, normalized performance,
Pareto front) at SPECpower t1 = 395s,t2 = 577s,t4 = 1143s,t5 = 1299s..... 354
Figure 155: Exemplary processor optimization (normalized performance-to-power ratio) at

SPECpower t1 = 395s,t2 = 577s,t3 = 876s,t4 = 1143s,t5 = 1299s 355
Figure 156: Relative power optimization of the processor (Table 84)ccccceeeecieeeeccrieeeennen. 357
Figure 157: Relative optimization of the performance-to-power ratio — processor (Table 85) 358
Figure 158: Power triangle [StO 2014]cievcuiieeeiieeeeireeeestee e esree e s vee e e s arae e e e abae e e snbae e e eareeas Xl
Figure 159: Memory module characteristics of vendor A (C1,C51) — measurements............... XX
Figure 160: Memory module characteristics of diverse vendors (C52,C78) — measurements XXI
Figure 161: Memory modules — synchronization mode.........cccceecveeiiiciiee e, XXI
Figure 162: Memory Modules — VENAOFeeuiiiiiiee ettt e e e e e e e e e anreee e e XXII
Figure 163: Memory modules — fabrication size and die........ccccccceeiiiieiiiccien e, XXI
Figure 164: Memory modules — capacity, rank linking, and dieccccceeeeeieeiiicee e, XXI
Figure 165: Memory modules — ranks and densitycccoveeeeeiiieccciiiieee e XXIII
Figure 166: Memory modules — ranks (x) and densityccccceeevieeeieeeiieeccee e e XXIV
Figure 167: Processor characteristics overview (C1-C19) and measurements..........ccc.c...... XXVII
Figure 168: Intel Xeon E5-2600v2 power consumption measurement (C1-C19) XXVII
Figure 169: Processor (C1) and (C3) — spreadsheet vs. vendor estimation..........cccecveeeveeuenns XXXI

LIl

List of Figures

Figure 170: Spreadsheet-based estimation vs. measurements of the processor (C1)........... XXXII
Figure 171: Spreadsheet-based estimation vs. measurements of the processor (C3)........... XXXI
Figure 172: Processor frequency, p-state, and transfer rate (C2,C3,C5-C8)ccceevuvrueruennne. XXXIV
Figure 173: Processor frequency, TDP, and p-state (C1-C4) ..cocceveverienenenieneneeeeeeeee, XXXIV
Figure 174: Processor frequency, TDP, and p-state (C1,C2,C11,C12).cccccrciiriiinciinneneannen. XXXIV
Figure 175: Processor frequency, p-state, and cache (C1,C2,C11,C12).cccccocercienincenecnennen. XXXV
Figure 176: Processor power consumption (C1) — an exemplary comparison between

spreadsheet, commercial tools, and measured and simulated power.............. XXXIX
Figure 177: Processor power consumption (C3) — an exemplary comparison between

spreadsheet, commercial tools, and measured and simulated power.............. XXXIX
Figure 178: Processor power consumption (C7) — an exemplary comparison between

spreadsheet, commercial tools, and measured and simulated power.................... XL
Figure 179: Simulated processor power consumption (C1-C19)cceceviriieninieieneneeeeee XL
Figure 180: PassMark CPU (PCl.y.z) and PassMark Memory (PM1.y.z) performance scores

... XLl
Figure 181: PassMark CPU (PC2.y.z) and PassMark Memory (PM2.y.z) performance scores

... XLl
Figure 182: PassMark Memory performance scores (X = X*2).ccccvvvevienieenienienieeeeeeneenneens XL
Figure 183: PassMark CPU performance scores (X = X 2) ..cooceviiieieneneeseseeeee e XLl
Figure 184: SPECpower (SPX.y.Z) PerfOrmance SCOTEScuvrurrurrrierneerieeseeseessessessseesseenses XL

LI

Bibliography

A6. Bibliography

[Abr 2005]
A. Abraham "Evolutionary multiobjective optimization". Springer London. 1-85233-787-7,
2005.

[AC 2003]
N. Anuar, N. Chiang "Thermal characterization and electrical performance of low profile
power packages" Electronics Packaging Technology, 2003 5th Conference (EPTC 2003).
10.1109/EPTC.2003.1271511 Print ISBN:0-7803-8205-6, 2003.

[Acc 2008]
accenture "Data Center Energy Forecast”, 2008.

[ADK et al. 2012]
W. Abdelmaksoud, T. Dang, H. Khalifa, R. Schmidt, M. lyengar "Perforated tile models for
improving data center CFD simulation" Thermal and Thermomechanical Phenomena in
Electronic Systems (ITherm), 2012 13th IEEE Intersociety Conference on.
10.1109/ITHERM.2012.6231414 Print ISBN:978-1-4244-9533-7, 2012.

[AK 2002]
C. Alexopoulos, S.-H. Kim "OUTPUT DATA ANALYSIS FOR SIMULATIONS" Proceedings of the
2002 Winter Simulation Conference, 2002.

[ALE 2002]
T. Austin, E. Larson, D. Ernst "SimpleScalar: an infrastructure for computer system
modeling" IEEE Computer, Heft 2. 10.1109/2.982917 ISSN :0018-9162, 2002.

[AMD 2000]
AMD "AMD PowerNow! Technology Informational White Paper" Advanced Micro Devices,
Inc. Revision A, 2000.

[And 2009]
H. Andersson "Aircraft Systems Modeling" ISBN 978-91-7393-692-7, 2009.

LIV

Bibliography

[And 2012]
H. Andersson "Variability and Customization of Simulator Products" Linkdping Studies in
Science and Technology ISBN 978-91-7519-963-4, 2012.

[AP 2014]
R. Alshahrani, H. Peyravi "Modeling and Simulation of Data Center Networks" Proceedings
of the 2Nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
10.1145/2601381.2601389 ISBN: 978-1-4503-2794-7, 2014.

[APL et al. 2008]
Amit Kumar, P. Princeton Univ., Li Shang, Li-Shiuan Peh, Niraj K. Jha "System-Level Dynamic
Thermal Management for High-Performance Microprocessors" Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on. 27, Heft 1.
10.1109/TCAD.2007.907062 ISSN 0278-0070, 2008.

[AR 2016]
I. Ahmad, S. Ranka "Handbook of Energy-Aware and Green Computing" - Two Volume Set.
CRC Press. 9781482254440, 2016.

[ASS et al. 2014]
S. Alkharabsheh, B. Sammakia, S. Shrivastava, R. Schmidt "Implementing rack thermal
capacity in a room level CFD model of a data center" Semiconductor Thermal Measurement
and Management Symposium (SEMI-THERM), 2014 30th Annual. 10.1109/SEMI-
THERM.2014.6892237, 2014.

[BBB 2011]
F. Beneventi, A. Bartolini, L. Benini "Static Thermal Model Learning for High-Performance
Multicore Servers" Computer Communications and Networks (ICCCN), 2011 Proceedings of
20th International Conference on. 10.1109/ICCCN.2011.6006065 Print ISBN:978-1-4577-
0637-0, 2011.

[BBJ et al. 2009]
J. Bean, R. Bednar, R. Jones, R. Jones, P. Morris, D. Moss, M. Patterson, Prisco, Joe, Vinson,
Wade, J. Wallerich "Proper Sizing of IT Power and Cooling Loads" The Green Grid, 2009.

LV

Bibliography

[BBT et al. 2014]
F. Beneventi, A. Bartolini, A. Tilli, L. Benini "An Effective Gray-Box Identification Procedure
for Multicore Thermal Modeling" Computers, IEEE Transactions on, Heft 5.
10.1109/TC.2012.293 ISSN :0018-9340, 2014.

[BC 2010]
A. Bohra, V. Chaudhary "VMeter: Power modelling for virtualized clouds" Parallel
Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on. 10.1109/IPDPSW.2010.5470907 Print ISBN:978-1-4244-6533-0, 2010.

[BCC et al. 2014]
Baker Loyd, P. Clemente, B. Cohen, L. Permenter, B. Purves, P. Salmon "Model Driven
System Design Working Group: Foundational Concepts for Model Driven System Design"
INCOSE International Symposium. 6. 10.1002/j.2334-5837.1996.tb02139.x, 2014.

[BCS et al. 2012]
P. Bernardi, M. de Carvalho, E. Sanchez, M. Reorda, A. Bosio, L. Dilillo, P. Girard, M. Valka
"Peak Power Estimation: A Case Study on CPU Cores". 10.1109/ATS.2012.58 ISSN: 1081-
7735, 2012.

[BDM et al. 2008]
J. Branke, K. Deb, K. Miettinen, R. Slowinski "Multiobjective Optimization". 5252.
10.1007/978-3-540-88908-3 ISBN 978-3-540-88907-6, 2008.

[BDW et al. 2007]
Bruno Diniz, Dorgival Guedes, Wagner Meira, Ricardo Bianchini "Limiting the Power
Consumption of Main Memory" ISCA '07 Proceedings of the 34th annual international
symposium on Computer architecture. 34. 10.1145/1273440.1250699, 2007.

[Bec 2012]
Beckett John "Memory Performance Guidelines for Dell PowerEdge 12th Generation
Servers" Enterprise Solutions Group, 2012.

LVI

Bibliography

[Bel 2000]
F. Bellosa "The Benefits of Event: Driven Energy Accounting in Power-sensitive Systems"
Proceedings of the 9th Workshop on ACM SIGOPS European Workshop: Beyond the PC:
New Challenges for the Operating System. 10.1145/566726.566736, 2000.

[Bel 2001]
F. Bellosa "The Case for Event-Driven Energy" Technical Report TR-14-01-07, Friedrich-
Alexander-University Erlangen-Nirnberg, Department of Computer, 2001.

[Ben 2002]
J. Benson "TB379: Thermal Characterization of Packages for ICs", 2002.

[Ben 2010]
L. Benini "Low-Power Integrated Systems" DEIS Doctoral School 2010, 2010.

[BGM et al. 2010]
R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, E. Ayguade "Decomposable and
Responsive Power Models for Multicore Processors Using Performance Counters"
Proceedings of the 24th ACM International Conference on Supercomputing.
10.1145/1810085.1810108 ISBN: 978-1-4503-0018-6, 2010.

[BH 2007]
L. Barroso, U. Holzle "The Case for Energy-Proportional Computing" IEEE Computer. 40.
10.1109/MC.2007.443 ISSN: 0018-9162, 2007.

[BHS 1998]
L. Benini, R. Hodgson, P. Siegel "System-level power estimation and optimization" Low
Power Electronics and Design, 1998. Proceedings. 1998 International Symposium on.
10.1145/280756.280881 Print ISBN:1-58113-059-7, 1998.

[BJ 2003]
R. Bergamaschi, Y. Jiang "State-based power analysis for systems-on-chip" Design
Automation Conference, 2003. Proceedings. 10.1109/DAC.2003.1219096 Print ISBN:1-
58113-688-9, 2003.

LviI

Bibliography

[BJ 2007]
W. Bircher, L. John "Complete System Power Estimation: A Trickle-Down Approach Based on
Performance Events" Performance Analysis of Systems Software, 2007. ISPASS 2007. IEEE
International Symposium on. 10.1109/ISPASS.2007.363746 Print ISBN:1-4244-1082-7, 2007.

[BJ 2012]
W. Bircher, L. John "Complete System Power Estimation Using Processor Performance
Events" Computers, IEEE Transactions on. 61, Heft 4. 10.1109/TC.2011.47 ISSN :0018-9340,
2012.

[BKW et al. 2003]
F. Bellosa, S. Kellner, M. Waitz, A. Weissel "Event-Driven Energy Accounting for Dynamic
Thermal Management" In Proceedigns of COLP 2003, 2003.

[BLR et al. 2005]
N. Bansal, K. Lahiri, A. Raghunathan, S. Chakradhar "Power monitors: a framework for
system-level power estimation using heterogeneous power models" VLSI Design, 2005. 18th
International Conference on. 10.1109/1CVD.2005.138, 2005.

[BM 1995]
L. Benini, G. de Micheli "State assignment for low power dissipation" Solid-State Circuits,
IEEE Journal of, Heft 3. 10.1109/4.364440 ISSN :0018-9200, 1995.

[BM 2001]
D. Brooks, M. Martonosi "Dynamic thermal management for high-performance
microprocessors" High-Performance Computer Architecture, 2001. HPCA. The Seventh
International Symposium on. 10.1109/HPCA.2001.903261 ISSN :1530-0897, 2001.

[BM 2012]
R. Basmadjian, H. de Meer "Evaluating and modeling power consumption of multi-core
processors" Future Energy Systems: Where Energy, Computing and Communication Meet
(e-Energy), 2012 Third International Conference on, 2012.

[Bor 1999]
S. Borkar "Design challenges of technology scaling" Micro, IEEE. 19, Heft 4.
10.1109/40.782564 ISSN :0272-1732, 1999.

LVII

Bibliography

[BR 2003]
B. Brock, K. Rajamani "Dynamic power management for embedded systems [SOC design]"
SOC Conference, 2003. Proceedings. IEEE International [Systems-on-Chip].
10.1109/50C.2003.1241556 Print ISBN:0-7803-8182-3, 2003.

[BR 2012]
R. Balakrishnan, K. Ranganathan "A Textbook of Graph Theory". Springer New York, NY. 2nd
ed. 2012, 2012.

[BS 1976]
F. Baskett, A. Smith "Interference in Multiprocessor Computer Systems with Interleaved
Memory" New York, NY, USA, Heft 6. 10.1145/360238.360243 ISSN 0001-0782, 1976.

[BTM 2000]
D. Brooks, V. Tiwari, M. Martonosi "Wattch: a framework for architectural-level power
analysis and optimizations" Computer Architecture, 2000. Proceedings of the 27th
International Symposium on ISSN : 1063-6897, 2000.

[BWP et al. 2010]
T. Breen, E. Walsh, J. Punch, A. Shah, C. Bash "From chip to cooling tower data center
modeling: Part | Influence of server inlet temperature and temperature rise across cabinet"
Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE
Intersociety Conference on. 12. 10.1109/ITHERM.2010.5501421 Print ISBN:978-1-4244-
5342-9, 2010.

[CBB et al. 2010]
A. Castagnetti, C. Belleudy, S. Bilavarn, M. Auguin "Power Consumption Modeling for DVFS
Exploitation" Digital System Design: Architectures, Methods and Tools (DSD), 2010 13th
Euromicro Conference on. 10.1109/DSD.2010.55 Print ISBN: 978-1-4244-7839-2, 2010.

[CDS 2003]
J. Chen, M. Dubois, P. Stenstrom "Integrating complete-system and user-level
performance/power simulators: the SimWattch approach" Performance Analysis of Systems
and Software, 2003. ISPASS. 2003 IEEE International Symposium on.
10.1109/I1SPASS.2003.1190227 Print ISBN:0-7803-7756-7, 2003.

LIX

Bibliography

[CDS 2007]
J. Chen, M. Dubois, P. Stenstrom "SimWattch: Integrating Complete-System and User-Level
Performance and Power Simulators" Micro, IEEE, Heft 4. 10.1109/MM.2007.73 ISSN :0272-
1732, 2007.

[Cha 2005]
N. Chang "In-House Tools for Low-Power Embedded Systems" Embedded Software and
Systems. 10.1007/11535409 7 Print ISBN978-3-540-28128-3, 2005.

[Che 2006]
J. Chen "An Advanced Cache Power Model for An Embedded Processor using SLEEP
Methodology" CAS-MS-2006-01, 2006.

[Che 2015]
B. Chen "Graph Theory" Hong Kong, 2015.

[CHW et al. 2010]
M. Cancian, Hauck, Jean Carlo Rossa, Wangenheim, Christiane Gresse von, R. Rabelo
"Discovering Software Process and Product Quality Criteria in Software as a Service"
Product-Focused Software Process Improvement. 6156. 10.1007/978-3-642-13792-1_19
Print ISBN 978-3-642-13791-4, 2010.

[C) 2010]
Chakravarthy Akella, Jesus Yepez "Intel Power Management for Embedded Applications",
2010.

[CKS et al. 2007]
J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang, J. Lee "Modeling and Managing
Thermal Profiles of Rack-mounted Servers with ThermoStat" High Performance Computer
Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on. 13.
10.1109/HPCA.2007.346198 Print ISBN:1-4244-0805-9, 2007.

[CL 2008]
C. Cassandras, S. Lafortune "Introduction to discrete event systems". Springer New York, NY.
2. ed. 978-0-387-33332-8, 2008.

LX

Bibliography

[Com 2013]
Comscore "Google Statistics", 12.07.2013, http://www.statisticbrain.com/google-searches/.

[Con 2012]
Constine Josh "How Big Is Facebook’s Data? 2.5 Billion Pieces Of Content And 500+
Terabytes Ingested Every Day", 2012, http://techcrunch.com/2012/08/22/how-big-is-
facebooks-data-2-5-billion-pieces-of-content-and-500-terabytes-ingested-every-day/.

[CPI et al. 2009]
K. Cameron, K. Pruhs, S. Irani, P. Ranganathan, D. Brooks "Report of the Science of Power
Management Workshop" Arlington, 2009.

[CYR 2012]
Chia-Jung Chen, Yi-Sheng Liu, Rong-Guey Chang "DCSim: Design Analysis on Virtualization
Data Center" Ubiquitous Intelligence Computing and 9th International Conference on
Autonomic Trusted Computing (UIC/ATC), 2012 9th International Conference on.
10.1109/UIC-ATC.2012.66 Print ISBN:978-1-4673-3084-8, 2012.

[DAH et al. 2007]
Dam Sunwoo, H. Al-Sukhni, J. Holt, D. Chiou "Early Models for System-Level Power
Estimation" Microprocessor Test and Verification, 2007. MTV '07. Eighth International
Workshop on. 10.1109/MTV.2007.8 Print ISBN:978-0-7695-3241-7, 2007.

[DAJ et al. 2000]
Dejan Milojicic, Alan Messer, James Shau, Guangrui Fu, Alberto Munoz "Increasing
Relevance of Memory Hardware Errors A Case for Recoverable Programming Models"
Proceedings of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new
challenges for the operating system. 9. 10.1145/566726.566749, 2000.

[DBN et al. 2005]
David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer Jaleel,
Bruce Jacob "DRAMsim: A Memory System Simulator" ACM SIGARCH Computer
Architecture News - Special issue: dasCMP'05. 33. 10.1145/1105734.1105748, 2005.

LXI

Bibliography

[Deb 2002]
K. Deb "Multi-objective optimization using evolutionary algorithms". Wiley Chichester [u.a.].
[Reprint]. 0-471-87339-X, 2002.

[DEP et al. 2009]
David Watts, Erwan Auffret, Phillip Dundas, Mark Kapoor "Tuning IBM System x Servers for
Performance" International Business Machines Corporation. 6, 2009.

[DFM 2000]
J. Desharnais, M. Frappier, A. Mili "Handbook on electronic commerce". Springer Berlin.
978-3-540-25472-0, 2000.

[Don 2006]
J. Donato "Dual-Core Intel® Xeon® Processor 5100 Series" Reference Number: 313357-001,
2006.

[Don 2010]
E. Donald E. Porter "Understanding Transactional Memory Performance" Performance
Analysis of Systems & Software (ISPASS), 2010 IEEE International Symposium on E-ISBN:
978-1-4244-6024-3, 2010.

[Dre 2006]
R. Dreier "Verteilte Ausfiihrung hybrider System-Modelle auf heterogenen
Rechnerplattformen”, PhD thesis, 2006.

[DSH 2005]
M. Dellnitz, O. Schiitze, T. Hestermeyer "Covering Pareto Sets by Multilevel Subdivision
Techniques", Heft 1. 10.1007/s10957-004-6468-7, 2005.

[EG 2000]
G. Engels, Groenewegen Luuk "Object-oriented modeling: a roadmap".
10.1145/336512.336541 ICSE '00 Proceedings of the Conference on The Future of Software
Engineering, 2000.

LXII

Bibliography

[EL 2009]
J. Ezekiel, A. Lomuscio "Combining Fault Injection and Model Checking to Verify Fault
Tolerance in Multi-agent Systems" Richland, SC. Volume 1 ISBN: 978-0-9817381-6-1, 2009.

[EM 2010]
J. Encizo, D. Meyer "System x Server Optimization & Troubleshooting Best Practices
Overview" IBM System x Technical University, 2010.

[Erd 2013]
H. Erden "Experimental and Analytical Investigation of the Transient Thermal Response of
Air Cooled Data Centers", Syracuse University, NY, 2013.

[ERK 2006]
D. Economou, S. Rivoire, C. Kozyrakis "Full-system power analysis and modeling for server
environments" In Workshop on Modeling Benchmarking and Simulation (MOBS), 2006.

[ES 2003]
A. Eiben, J. Smith "Introduction to evolutionary computing". Springer Berlin [u.a.]. 3-540-
40184-9, 2003.

[Fac 2012]
I. Facebook "Amendment No. 4 to Form S-1 - Registration Statement", 2012,
http://www.sec.gov/Archives/edgar/data/1326801/000119312512175673/d287954ds1a.ht
m.

[FBP et al. 2014]
A. Floratou, F. Bertsch, J. Patel, G. Laskaris "Towards Building Wind Tunnels for Data Center
Design" Proc. VLDB Endow. 7, Heft 9. 10.14778/2732939.2732950, 2014.

[FCM 2014]
B. Fischer, C. Cech, H. Muhr "Power Modeling and Analysis in Early Design Phases"
Proceedings of the Conference on Design, Automation \& Test in Europe ISBN: 978-3-
9815370-2-4, 2014.

LXIII

Bibliography

[FM 2002]
K. Flautner, T. Mudge "Vertigo: Automatic Performance-Setting for Linux" Proceedings of
the 5th Symposium on Operating Systems Design and implementation.
10.1145/1060289.1060300 ISBN: 978-1-4503-0111-4, 2002.

[FOG 2008]
S. Ferson, W. Oberkampf, L. Ginzburg "Model validation and predictive capability for the
thermal challenge problem", 29-32. 10.1016/j.cma.2007.07.030, 2008.

[FRK et al. 2005]
W. Felter, K. Rajamani, T. Keller, C. Rusu "A Performance-conserving Approach for Reducing
Peak Power Consumption in Server Systems" Proceedings of the 19th Annual International
Conference on Supercomputing. 10.1145/1088149.1088188 ISBN:1-59593-167-8, 2005.

[Fuj 2009], [Fuj 2011], [Fuj 2012], [Fuj 2013], [Fuj 2014], [Fuj 2015]

Fujitsu Technology Solutions GmbH, Developer, "Internal statement”, Internal Documents
and Presentations, 2009-2015.

[Fuj 2010]
Fujitsu "CO2-Footprint of PRIMERGY RX200 / TX300 S5 Servers", 2010.

[FWB 2007]
X. Fan, W.-D. Weber, L. Barroso "Power Provisioning for a Warehouse-sized Computer"
Proceedings of the 34th Annual International Symposium on Computer Architecture. 35,
Heft 2. 10.1145/1273440.1250665 ISBN: 978-1-59593-706-3, 2007.

[FZL et al. 2012]
K. Fang, H. Zheng, J. Lin, Z. Zhang, Z. Zhu "Mini-Rank: A Power-Efficient DDRx DRAM Memory
Architecture" Computers, IEEE Transactions on. 10.1109/TC.2012.240, 2012.

[GBC et al. 2001]
Gunther, Binns, Carmean, Hall "Managing the Impact of Increasing Microprocessor Power
Consumption" Intel Technology Journal. 5, 2001.

LXIV

Bibliography

[GC 2000]
M. Gen, R. Cheng "Genetic algorithms and engineering optimization". Wiley New York [u.a.].
0-471-31531-1, 2000.

[Gee 2004]
H. Geering "Regelungstechnik". Springer Berlin. 6. 3-540-40507-0, 2004.

[GFN et al. 2006]
Gerg6 Lovasz, Florian Niedermeier, Nasir Ali, Robert Basmadjian, Hermann de Meer
"Modeling Power Consumption of the G-Lab Platform to Enable an Energy-Efficient
Provision of Services" Leibnitz Universitat Hannover, Fakultat fir Elektrotechnik und
Informatik, Institut fir Kommunikationstechnik Project G-Lab Ener-G, 2006.

[GHD et al. 2009]
A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy "Optimal Power Allocation in Server Farms"
Proceedings of the Eleventh International Joint Conference on Measurement and Modeling
of Computer Systems. 37, Heft 1. 10.1145/2492101.1555368, 2009.

[GKG 2012]
M. Gottscho, A. Kagalwalla, P. Gupta "Power Variability in Contemporary DRAMs". 4, Heft 2.
10.1109/LES.2012.2192414 I1SSN 1943-0663, 2012.

[Gre 1994]
P. Greenawalt "Modeling power management for hard disks" Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 1994., MASCOTS '94.,
Proceedings of the Second International Workshop on. 2. 10.1109/MASCOT.1994.284446
Print ISBN:0-8186-5292-6, 1994.

[GSI et al. 2002]
S. Gurumurthi, A. Sivasubramaniam, M. Irwin, N. Vijaykrishnan, M. Kandemir "Using
complete machine simulation for software power estimation: the SoftWatt approach" High-
Performance Computer Architecture, 2002. Proceedings. Eighth International Symposium
on. 10.1109/HPCA.2002.995705, 2002.

LXV

Bibliography

[GSK et al. 2009]
R. Garg, Seung Woo Son, M. Kandemir, P. Raghavan, R. Prabhakar "Markov Model Based
Disk Power Management for Data Intensive Workloads" Cluster Computing and the Grid,
2009. CCGRID '09. 9th IEEE/ACM International Symposium on. 10.1109/CCGRID.2009.67 E-
ISBN :978-0-7695-3622-4, 2009.

[GTW 2006]
Greenberg, Tschudi, Weale "Self Benchmarking Guide for Data Center Energy Performance"
Berkeley National Laboratory. 1, 2006.

[GX 2010]
J. Gong, C.-Z. Xu "A Gray-Box Feedback Control Approach for System-Level Peak Power
Management" Parallel Processing (ICPP), 2010 39th International Conference on.
10.1109/1CPP.2010.63 Print ISBN: 978-1-4244-7913-9, 2010.

[Hag 2009]
0. Hagendorf "Simulation Based Parameter and Structure Optimisation of Discrete Event
Systems", PhD thesis, 2009.

[Ham 1994]
D. Hamby "A review of techniques for parameter sensitivity analysis of environmental
models". 32, Heft 2. 10.1007/BF00547132 Online ISSN1573-2959, 1994.

[Han 2007]
H. Hanson "Coordinated Power, Energy, and Temperature Management" The University of
Texas at Austin, Electrical & Computer Engineering ISBN: 978-0-549-16370-1, 2007.

[HCE et al. 2011]
Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, Onur Mutlu "Memory power
management via dynamic voltage/frequency scaling" ICAC '11 Proceedings of the 8th ACM
international conference on Autonomic computing. 10.1145/1998582.1998590, 2011.

LXVI

Bibliography

[HCG et al. 2006]
T. Heath, A. Centeno, P. George, L. Ramos, Y. Jaluria, R. Bianchini "Mercury and Freon:
Temperature Emulation and Management for Server Systems" Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and
Operating Systems, Heft 11. 10.1145/1168918.1168872 ISBN:1-59593-451-0, 2006.

[HCY et al. 2005]
J. Huang, T. Chen, M. Ye, Y. Lian "The Modeling for Dynamic Power Management of
Embedded Systems" Embedded Software and Systems. 3605. 10.1007/11535409 67 Print
ISBN978-3-540-28128-3, 2005.

[Her 1998]
S. Herrod "Using Complete Machine Simulation to Understand Computer System Behavior,
PhD thesis" Stanford University California, 1998.

[Hex 2003]
R. Hexel "FITS: A Fault Injection Architecture for Time-triggered Systems" Darlinghurst,
Australia, Australia. 16 ISBN: 0-909-92594-1, 2003.

[HFS 2010]
R. Hintemann, K. Fichter, L. Stobbe "Materialbestand der Rechenzentren in Deutschland -"
Dessau-Roflau ISSN 1862-4804, 2010.

[HHM 2008]
J. Harris, J. Hirst, M. Mossinghoff "Combinatorics and Graph Theory". Springer New York.
978-0-387-79710-6, 2008.

[HIM et al. 2013]
Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix
Technologies Ltd., Toshiba Corporation "Advanced Configuration and Power Interface
Specification". Revision 5.0 Errata A, 2013.

LXVII

Bibliography

[HJZ et al. 2008]
Hongzhong Zheng, Jiang Lin, Zhao Zhang, Eugene Gorbatov, Howard David, Zhichun Zhu
"Mini-Rank: Adaptive DRAM Architecture for Improving Memory Power Efficiency"
Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on. 41.
10.1109/MICR0O.2008.4771792 Date of Conference: 8-12 Nov. 2008, 2008.

[HK 2003]
C.-H. Hsu, U. Kremer "The Design, Implementation, and Evaluation of a Compiler Algorithm
for CPU Energy Reduction" Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation. 38, Heft 5. 10.1145/780822.781137
ISBN:1-58113-662-5, 2003.

[HKG et al. 2007]
H. Hanson, S. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, J. Rubio "Thermal response to DVFS:
analysis with an Intel Pentium M" Low Power Electronics and Design (ISLPED), 2007
ACM/IEEE International Symposium on. 10.1145/1283780.1283827 E-ISBN :978-1-59593-
709-4, 2007.

[HLH et al. 2012]
M. Hagan, J. Lusky, T. Hoang, S. Walsh "The Top 9 Mistakes in Data Center Planning"
Schneider Electric — Data Center Science Center, 2012.

[HMU 2001]
J. Hopcroft, R. Motwani, J. Ullman "Introduction to automata theory, languages, and
computation". Addison-Wesley Boston [u.a.]. 2. ed. 0-201-44124-1, 2001.

[HRR et al. 2007]
H. Hanson, K. Rajamani, J. Rubio, S. Ghiasi, Rawson, Freeman "Benchmarking for Power and
Performance" IBM Austin Research Laboratory, 2007.

[HS 1997]
A. Howe, G. Somlo "Modelling discrete event sequences as state transition diagrams".
Springer-Verlag Berlin Heidelberg. 978-3-540-63346-4, 1997.

LXVIII

Bibliography

[HS 2007]
Heather Hanson, Stephen W. Keckler "Power and Thermal Characteristics of a Pentium M
System" The University of Texas at Austin, Electrical & Computer Engineering, 2007.

[HSR et al. 2008]
A. Hylick, R. Sohan, A. Rice, B. Jones "An Analysis of Hard Drive Energy Consumption" 2008
IEEE International Symposium on Modeling, Analysis and Simulation of Computers and
Telecommunication Systems. 10.1109/MASCOT.2008.4770567 ISSN 1526-7539, 2008.

[HSW et al. 2004]
N. Hardavellas, S. Somogyi, T. Wenisch, R. Wunderlich, S. Chen, J. Kim, B. Falsafi, J. Hoe, A.
Nowatzyk "SimFlex: A Fast, Accurate, Flexible Full-system Simulation Framework for
Performance Evaluation of Server Architecture" ACM SIGMETRICS Performance Evaluation
Review - Special issue on tools for computer architecture research. 31, Heft 4.
10.1145/1054907.1054914, 2004.

[HXL et al. 2002]
Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, S. Malik "Orion: a power-performance
simulator for interconnection networks" Microarchitecture, 2002. (MICRO-35). Proceedings.
35th Annual IEEE/ACM International Symposium on. 10.1109/MICR0.2002.1176258 Print
ISBN: 0-7695-1859-1, 2002.

[IAE et al. 2011]
T. Inoue, A. Aikebaier, T. Enokido, M. Takizawa "A Power Consumption Model of a Storage
Server" Network-Based Information Systems (NBiS), 2011 14th International Conference on.
10.1109/NBiS.2011.64, 2011.

[IBS et al. 2012]
M. lbrahim, S. Bhopte, B. Sammakia, B. Murray, M. lyengar, R. Schmidt "Effect of Transient
Boundary Conditions and Detailed Thermal Modeling of Data Center Rooms" Components,
Packaging and Manufacturing Technology, IEEE Transactions on, Heft 2.
10.1109/TCPMT.2011.2175926 ISSN :2156-3950, 2012.

LXIX

Bibliography

[IGB et al. 2010]
M. Ibrahim, S. Gondipalli, S. Bhopte, B. Sammakia, B. Murray, K. Ghose, M. lyengar, R.
Schmidt "Numerical modeling approach to dynamic data center cooling" Thermal and
Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th |IEEE Intersociety
Conference on. 10.1109/ITHERM.2010.5501335 Print ISBN:978-1-4244-5342-9, 2010.

[lIE et al. 2011]
T. Inoue, M. lkeda, T. Enokido, A. Aikebaier, M. Takizawa "A Power Consumption Model for
Storage-based Applications" Complex, Intelligent and Software Intensive Systems (CISIS),
2011 International Conference on. 10.1109/CISIS.2011.101 E-ISBN :978-0-7695-4373-4,
2011.

[l1Z et al. 2007]
lyer, lllikkal, Zhao, Makineni, Newell, Moses, Apparao "Datacenter-on-Chip Architectures:
Tera-scale Opportunities and Challenges in Intel's Manufacturing Environment" Intel
Technology Journal. 11, Heft 03. 10.1535/itj.1103.06 ISSN1535-864X, 2007.

[IM 2002]
IBM, MontaVista Software "Dynamic Power Management for Embedded Systems" IBM and
MontaVista Software, 2002.

[IM 2003]
C. Isci, M. Martonosi "Runtime power monitoring in high-end processors: methodology and
empirical data" Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM
International Symposium on. 10.1109/MICR0.2003.1253186, 2003.

[Int 2006]
Intel Corporation "Intel Architecture and Silicon Cadence", 2006.

[Int 2013]
Intel Corporation "Intel® Public Roadmap Desktop, Mobile & Data Center", 2013.

[Int 2014]
Intel Corporation "Intel® Xeon® Processor E5-1600/E5-2600/E5-4600 v2 Product Families",
2014,

LXX

Bibliography

[Int 2015]
Intersil Corporation "TB379: Thermal Characterization of Packaged Semiconductor Devices"
Intersil Corporation, 2015.

[1SO 2011]
ISO/IEC "ISO/IEC 25010:2011(en) - Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software quality
models", 2011.

[ISS et al. 2012]
M. Ibrahim, S. Shrivastava, B. Sammakia, K. Ghose "Thermal mass characterization of a
server at different fan speeds" Thermal and Thermomechanical Phenomena in Electronic
Systems (ITherm), 2012 13th IEEE Intersociety Conference on. 13.
10.1109/ITHERM.2012.6231467 Print ISBN:978-1-4244-9533-7, 2012.

[Jau 2011]
E. Jaureguialzo "PUE: The Green Grid metric for evaluating the energy efficiency in DC (Data
Center). Measurement method using the Power Demand" Telecommunications Energy
Conference (INTELEC), 2011 IEEE 33rd International. 10.1109/INTLEC.2011.6099718 ISBN:
978-1-4577-1249-4, 2011.

[JCX 2008]
Jinsong Ji, Chao Wang, Xuehai Zhou "System-Level Early Power Estimation for Memory
Subsystem in Embedded Systems" Embedded Computing, 2008. SEC '08. Fifth IEEE
International Symposium on. 10.1109/SEC.2008.48 Print ISBN:978-0-7695-3348-3, 2008.

[JD 2012]
John Gantz, David Reinsel "THE DIGITAL UNIVERSE IN 2020", 2012.

[JGM 2003]
N. Julien, S. Gailhard, E. Martin "Low Power Synthesis Methodology with Data Format
Optimization Applied on a DWT" Journal of VLSI signal processing systems for signal, image
and video technology, Heft 2. 10.1023/A:1023660801499 Print ISSN: 0922-5773, 2003.

LXXI

Bibliography

[JLS et al. 2003]
N. Julien, J. Laurent, E. Senn, E. Martin "Power consumption modeling and characterization
of the TI C6201", Heft 5. 10.1109/MM.2003.1240211 ISSN: 0272-1732, 2003.

[JM 2001]
R. Joseph, M. Martonosi "Run-time Power Estimation in High Performance Microprocessors"
Proceedings of the 2001 International 2001. 10.1145/383082.383119 ISBN:1-58113-371-5,
2001.

[JPL et al. 2014]
E. Jo, D. Pan, J. Liu, L. Butler "A Simulation and Emulation Study of SDN-based Multipath
Routing for Fat-tree Data Center Networks" Proceedings of the 2014 Winter Simulation
Conference, 2014.

[Jun 1999]
U. Jung "Ventilatoren-Fibel". Promotor Verlag Karlsruhe. 3-00-003293-2, 1999.

[JVG 2010]
M. Jonas, G. Varsamopoulos, S. Gupta "Non-invasive Thermal Modeling Techniques Using
Ambient Sensors for Greening Data Centers" Parallel Processing Workshops (ICPPW), 2010
39th International Conference on. 10.1109/ICPPW.2010.67 Print ISBN:978-1-4244-7918-4,
2010.

[KAM et al. 2002]
N. Kim, T. Austin, T. Mudge, D. Grunwald "Challenges for Architectural Level Power
Modeling" Power Aware Computing. 10.1007/978-1-4757-6217-4_16 Print ISBN978-1-4419-
3382-9, 2002.

[KBK 2012]
Karthik Chandrasekar, Benny Akesson, Kees Goossens "Run-Time Power-Down Strategies for
Real-Time SDRAM Memory Controllers" DAC '12 Proceedings of the 49th Annual Design
Automation Conference. 10.1145/2228360.2228538 ISSN :0738-100X, 2012.

LXXII

Bibliography

[KBS et al. 2010]
J. Koomey, S. Berard, M. Sanchez, H. Wong "Implications of Historical Trends in the Electrical
Efficiency of Computing" Annals of the History of Computing, IEEE. 33.
10.1109/MAHC.2010.28 Annals of the History of Computing, IEEE, 2010.

[KCB et al. 2013]
C. Karthik, Christian Weis, Benny Akesson, Norbert Wehn, Kees Goossens "Towards
Variation-Aware System-Level Power Estimation of DRAMs: An Empirical Approach" DAC'13,
2013.

[KFK 2008]
J. Kaplan, W. Forrest, N. Kindler "Revolutionizing Data Center Energy Efficiency" McKinsey
& Company, 2008.

[KGK et al. 2005]
R. Kotla, S. Ghiasi, T. Keller, F. Rawson "Scheduling processor voltage and frequency in
server and cluster systems" Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International. 10.1109/IPDPS.2005.392 Print ISBN:0-7695-2312-9,
2005.

[KGS 2008]
S. Kouney, I. Gorton, K. Sachs "Performance Evaluation: Metrics, Models and Benchmarks".
Springer Berlin Heidelberg SPEC International Performance Evaluation Workshop, SIPEW
2008. 5119. 9783540698142, 2008.

[KIM et al. 2011]
Karthik Elangovan, lvan Rodero, Manish Parashar, Francesc Guim, Isaac Hernandez
"Adaptive Memory Power Management Techniques for HPC Workloads" High Performance
Computing (HiPC), 2011 18th International Conference on, 2011.

[KIC et al. 2014]
M. Kim, Y. Ju, J. Chae, M. Park "A Simple Model for Estimating Power Consumption of a
Multicore Server System" International Journal of Multimedia and Ubiquitous Engineerign.
9, Heft 2. 10.14257/ijmue.2014.9.2.15, 2014.

LXXIII

Bibliography

[KKK et al. 2012]
M. Kim, P. Kumar, H. Kim, B. Brett "Predicting Potential Speedup of Serial Code via
Lightweight Profiling and Emulations with Memory Performance Model" IPDPS '12
Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium. 26. 10.1109/IPDPS.2012.128, 2012.

[KLL et al. 2008]
A. Kumar, Li Shang, Li-Shiuan Peh, N. Jha "System-Level Dynamic Thermal Management for
High-Performance Microprocessors" Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, Heft 1. 10.1109/TCAD.2007.907062 ISSN :0278-0070, 2008.

[Koo 2011]
J. Koomey, "GROWTH IN DATA CENTER ELECTRICITY USE 2005 TO 2010", Heft 3, 2011.

[KRS et al. 2014]
D. King, M. Ross, M. Seymour, T. Gregory "Comparative analysis of data center design
showing the benefits of server level simulation models" Semiconductor Thermal
Measurement and Management Symposium (SEMI-THERM), 2014 30th Annual.
10.1109/SEMI-THERM.2014.6892238, 2014.

[KS 2005]
Kyeong-Jae Lee, K. Skadron "Using performance counters for runtime temperature sensing
in high-performance processors" Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International. 19. 10.1109/1PDPS.2005.448 Print ISBN:0-7695-2312-
9, 2005.

[KSH et al. 2009]
D. Khalil, D. Sinha, Hai Zhou, Y. Ismail "A Timing-Dependent Power Estimation Framework
Considering Coupling" Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
Heft 6. 10.1109/TVLSI1.2008.2008739 ISSN :1063-8210, 2009.

[KTL et al. 2013]
G. Keller, M. Tighe, H. Lutfiyya, M. Bauer "DCSim: A data centre simulation tool" Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on Print
ISBN:978-1-4673-5229-1, 2013.

LXXIV

Bibliography

[Kur 2008]
K. Kurbel "The Making of Information Systems". Springer-Verlag Berlin Heidelberg Berlin,
Heidelberg. 978-3-540-79260-4, 2008.

[KZM 2001]
S. Kaxiras, Zhigang Hu, M. Martonosi "Cache decay: exploiting generational behavior to
reduce cache leakage power" Computer Architecture, 2001. Proceedings. 28th Annual
International Symposium on. 28. 10.1109/I1SCA.2001.937453 ISSN :1063-6897, 2001.

[Lan 1996]
P. Landman "High-level Power Estimation" Proceeding ISLPED '96 Proceedings of the 1996
international symposium on Low power electronics and design ISBN:0-7803-3571-6, 1996.

[Lan 2007]
R. Lantz "Parallel SimOS: Performance and Scalability for Large System Simulation, PhD
thesis" Stanford University California, 2007.

[LB 2005]
Loucks, Beek "WATER RESOURCES SYSTEMS PLANNING AND MANAGEMENT". United
Nations Educational UNESCO PUBLISHING. 92-3-103998-9, 2005.

[LCW 2009]
P. Lu, Y. Che, Z. Wang "A Framework for Effective Memory Optimization of High
Performance Computing Applications" High Performance Computing and Communications,
2009. HPCC '09. 11th IEEE International Conference on. 11. 10.1109/HPCC.2009.60 Date of
Conference: 25-27 June 2009, 2009.

[LD 2000]
V. Le, S. Donald "Understanding Data Flow Diagrams" Proceedings of the 47th annual, 2000.

[LEU et al. 2010]
Le Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanaa, Christian Kruse "RAPL:
memory power estimation and capping" Low-Power Electronics and Design (ISLPED), 2010
ACM/IEEE International Symposium on. 10.1145/1840845.1840883, 2010.

LXXV

Bibliography

[Lin 2001]
J. Lind "lterative software engineering for multiagent systems". Springer Berlin. ISBN 3-540-
42166-1, 2001.

[Lin 2009]
Linaege Power "Thermal Characterization Process For Open-Frame Board Mounted Power
Modules", 2009.

[Liu 2011]
H. Liu "A Measurement Study of Server Utilization in Public Clouds" Dependable, Autonomic
and Secure Computing (DASC), 2011 IEEE Ninth International Conference on.
10.1109/DASC.2011.87 Print ISBN:978-1-4673-0006-3, 2011.

[LJ 2003]
T. Li, L. John "Run-time Modeling and Estimation of Operating System Power Consumption"
SIGMETRICS '03 Proceedings of the 2003 ACM SIGMETRICS, Heft 1. 10.1145/885651.781048
ISBN:1-58113-664-1, 2003.

[LJS et al. 2004]
J. Laurent, N. Julien, E. Senn, E. Martin "Functional level power analysis: an efficient
approach for modeling the power consumption of complex processors". 1.
10.1109/DATE.2004.1268921 ISSN: 1530-1591, 2004.

[LK 2000]
A. Law, W. Kelton "Simulation modeling and analysis" Boston [u.a.]. 3. ed, 2000.

[Lon 2012]
B. London "A model-based system engineering framework for concept development"
Massachusetts Institute of Technology, 2012.

[LPT 1994]
P. Larsen, N. Plat, H. Toetenel "A Formal Semantics of Data Flow Diagrams". Volume 6, Issue
6.10.1007/BF03259387 ISSN: 0934-5043, 1433-299X, 1994.

LXXVI

Bibliography

[LR 1996]
D. Lidsky, J. Rabaey "Early power exploration-a World Wide Web application" Design
Automation Conference Proceedings 1996, 33rd. 33. 10.1109/DAC.1996.545539 ISSN :0738-
100X, 1996.

[LRR et al. 2004]
Lin Zhong, S. Ravi, A. Raghunathan, N. Jha "Power estimation for cycle-accurate functional
descriptions of hardware" Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM
International Conference on. 10.1109/ICCAD.2004.1382659 Print ISBN:0-7803-8702-3, 2004.

[LS 1994]
D. Liu, C. Svensson "Power consumption estimation in CMOS VLSI chips" Solid-State Circuits,
IEEE Journal of, Heft 6. 10.1109/4.293111 ISSN :0018-9200, 1994.

[LSQ et al. 2014]
X. Liu, L. Shen, C. Qian, Z. Wang "Dynamic Power Estimation with Hardware Performance
Counters Support on Multi-core Platform" Advanced Computer Architecture. 10.1007/978-
3-662-44491-7_14 Print ISBN978-3-662-44490-0, 2014.

[LU 2009]
Luiz André Barroso, Urs Holzle "An Introduction to the Design of Warehouse-Scale
Machines" SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE. 6.
10.2200/S00193ED1V01Y200905CAC006 ISBN: 9781598295566, 2009.

[LYB et al. 2012]
Lei Jiang, Youtao Zhang, Bruce R Childers, Jun Yang "FPB: Fine-grained Power Budgeting to
Improve Write Throughput of Multi-level Cell Phase Change Memory" MICRO 12
Proceesdings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture. 45. 10.1109/MICR0.2012.10, 2012.

[LZZ et al. 2007]
J. Lin, H. Zheng, Z. Zhu, H. David, Z. Zhang "Thermal Modeling and Management of DRAM
Memory Systems" ISCA '07 Proceedings of the 34th annual international symposium on
Computer architecture. 34, Heft 2. 10.1145/1273440.1250701 ISBN: 978-1-59593-706-3,
2007.

LXXVII

Bibliography

[MAC et al. 2011]
J. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. Snoeren, R. Gupta
"Evaluating the Effectiveness of Model-based Power Characterization" Proceedings of the
2011 USENIX Conference on USENIX Annual Technical Conference, 2011.

[Mat 2009]
Matthew E. Tolentino "Managing Memory for Power Performance and Thermal Efficiency"
Blacksburg, VA URN: etd-02242009-162329, 2009.

[Mat 2011]
P. Mathew "Recommendations for Measuring and Reporting Overall Data Center Efficiency",
2011.

[MB 2006]
A. Merkel, F. Bellosa "Balancing Power Consumption in Multiprocessor Systems"
Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems
2006, Heft 4. 10.1145/1218063.1217974 I1SBN:1-59593-322-0, 2006.

[MCE et al. 2002]
P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, B. Werner "Simics: A full system simulation platform" Computer. 35, Heft 2.
10.1109/2.982916, 2002.

[MHS et al. 2009]
D. Molka, D. Hackenberg, R. Schone, M. Muller "Memory Performance and Cache
Coherency Effects on an Intel Nehalem Multiprocessor System" Parallel Architectures and
Compilation Techniques, 2009. PACT '09. 18th International Conference on.
10.1109/PACT.2009.22, 2009.

[MHW 2002]
C. Mauer, M. Hill, D. Wood "Full-system Timing-first Simulation" Proceedings of the 2002
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, Heft 1. 10.1145/511399.511349 ISBN:1-58113-531-9, 2002.

LXXVIII

Bibliography

[Mic 2007]
I. Micron Technology "TN-41-01: Calculating Memory System Power for DDR3" Micron
Technology, Inc., 2007.

[MJW 2012]
D. Meisner, Junjie Wu, T. Wenisch "BigHouse: A simulation infrastructure for data center
systems" Performance Analysis of Systems and Software (ISPASS), 2012 IEEE International
Symposium on. 10.1109/ISPASS.2012.6189204 Print ISBN:978-1-4673-1143-4, 2012.

[MKO et al. 2002]
H. Mizuno, H. Kobayashi, T. Onoye, |. Shirakawa "Power estimation at architecture level for
embedded systems" Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium
on. 10.1109/ISCAS.2002.1011028, 2002.

[MMA 2014]
N. Moustafa, M. Mashaly, M. Ashour "Modeling and simulation of energy-efficient cloud
data centers" Engineering and Technology (ICET), 2014 International Conference on.
10.1109/1CEngTechnol.2014.7016745, 2014.

[MNR 2007]
F. Mesa-Martinez, J. Nayfach-Battilana, J. Renau "Power Model Validation Through Thermal
Measurements" Proceedings of the 34th Annual International Symposium on Computer
Architecture, Heft 2. 10.1145/1273440.1250700 ISBN: 978-1-59593-706-3, 2007.

[Moo 1965]
G. Moore "Cramming more components onto integrated circuits" Solid-State Circuits Society
Newsletter, IEEE. volume 38. 10.1109/N-SSC.2006.4785860 Solid-State Circuits Society
Newsletter, IEEE, 1965.

[Mos 2005]
S. Mostaghim "Multi-objective evolutionary algorithms — PhD Thesis", 2005.

LXXIX

Bibliography

[MPL 2009]
D. Molaro, H. Payer, D. Le Moal "Tempo: Disk drive power consumption characterization
and modeling" Consumer Electronics, 2009. ISCE '09. IEEE 13th International Symposium on.
13.10.1109/ISCE.2009.5156863 E-ISBN :978-1-4244-2976-9, 2009.

[MSB et al. 2005]
Martin, Milo M. K., D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore, M.
Hill, D. Wood "Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset" SIGARCH Comput. Archit. News, Heft 4. 10.1145/1105734.1105747, 2005.

[MSD 2006]
Muhammad Sibghatullah, Syed Jafar Hussain, Dr. Syed Jamal Hussain "An Approach to
Effective Product Development Life Cycle". 10.1109/ICET.2006.335975 Emerging
Technologies, 2006. ICET '06. International Conference on, 2006.

[MXX 2011]
Ming Chen, Xiaorui Wang, Xue Li "Coordinating Processor and Main Memory for Efficient
Server Power Control" ICS '11 Proceedings of the international conference on
Supercomputing. 10.1145/1995896.1995917, 2011.

[Naj 1995]
F. Najm "Towards a High-level Power Estimation Capability" Proceedings of the 1995
International Symposium on Low Power Design. 10.1145/224081.224097 ISBN:0-89791-744-
8, 1995.

[Neb 2014]
G. Nebuloni "Server Revenues Fall Further in EMEA in 4Q13 But Units Remain Stable"
FRANKFURT and PRAGUE, 18.03.2014.

[New 2008]
L. Newcombe "Data centre energy efficiency metrics" Data Centre Specialist Group (DCSG),
2008.

LXXX

Bibliography

[NKB et al. 2004]
Nam Sung Kim, T. Kgil, V. Bertacco, T. Austin, T. Mudge "Microarchitectural Power Modeling
Techniques for Deep Sub-Micron Microprocessors" Low Power Electronics and Design, 2004.
ISLPED '04. Proceedings of the 2004 International Symposium on Print ISBN:1-58113-929-2,
2004.

[NKN et al. 2002]
S. Nikolaidis, N. Kavvadias, P. Neofotistos, K. Kosmatopoulos, T. Laopoulos, L. Bisdounis
"Instrumentation Set-up for Instruction Level Power Modeling". 10.1007/3-540-45716-X_8
Print ISBN: 978-3-540-44143-4, 2002.

[NXP 2010]
NXP Semiconductors "DDR memory module temp sensor with integrated SPD", 2010.

[Oli 2007]
A. Olivé "Conceptual Modeling of Information Systems". Springer Berlin Heidelberg. 978-3-
540-39389-4, 2007.

[Ols 2000]
Olshausen "Aliasing", 2000.

[Osi 2010]
J. Osis "Model-Driven Domain Analysis and Software Development". Information Science
Reference, IGI Global. 9781616928766, 2010.

[Paw 1990]
K. Pawlikowski "Steady-State Simulation of Queueing Processes - A Survey of Problems and
Solutions" ACM Computing Surveys. 22. 10.1145/78919.78921 ISSN: 0360-0300, 1990.

[PBB et al. 2010]
J. Pflueger, K. Baker, M. Blackburn, T. Brey, B. Carter, M. Criss, T. Harvey, A. Hawkins, Z. Ortiz
"A roadmap for the adoption of power-related features in servers" The Green Grid. 33,
2010.

LXXXI

Bibliography

[Pet 2012]
Pettey Christy "Gartner Identifies the Top 10 Strategic Technologies for 2012", 2012,
http://www.gartner.com/newsroom/id/1826214.

[PS 2004]
C. Pereira, P. Sousa "A Method to Define an Enterprise Architecture using the Zachman
Framework" ACM Symposium on Applied Computing. 10.1145/967900.968175 ISBN:1-
58113-812-1, 2004.

[PV 2014]
Z. Pardey, J. VanGilder "Further exploration of a compact transient server model" Thermal
and Thermomechanical Phenomena in Electronic Systems (ITherm), 2014 IEEE Intersociety
Conference on. 10.1109/ITHERM.2014.6892433 ISSN :1087-9870, 2014.

[PZH et al. 2005]
Pu Liu, Zhenyu Qi, Hang Li, Lingling Jin, Wei Wu, S. Tan, Jun Yang "Fast thermal simulation
for architecture level dynamic thermal management" Computer-Aided Design, 2005. ICCAD-
2005. IEEE/ACM International Conference on. 10.1109/1CCAD.2005.1560145 Print ISBN:0-
7803-9254-X, 2005.

[Qia 2011]
Qiang Zou "An analytical performance and power model based on the transition probability
for hard disks" Awareness Science and Technology (iCAST), 2011 3rd International
Conference on. 10.1109/1CAwST.2011.6163123 Print ISBN:978-1-4577-0887-9, 2011.

[Qih 2008]
N. Qihong "Experimentally Validated Multiscale Thermal Modeling of Electric Cabinets, PhD
thesis" Georgia Institute of Technology, GA, 2008.

[QXY 2008]
Qi Zhu, Xiang Li, Yinan Wu "Thermal managerment of high power memory module for server
platforms" Thermal and Thermomechanical Phenomena in Electronic Systems, 2008.
ITHERM 2008. 11th Intersociety Conference on. 11. 10.1109/ITHERM.2008.4544319 Print
ISBN:978-1-4244-1700-1, 2008.

LXXXII

Bibliography

[Rab 2010]
S. Rabinovich "Evaluating Measurement Accuracy". Springer New York, NY : Springer
Science+Business Media, LLC New York, NY. 978-1-4419-1455-2, 2010.

[RAK et al. 2013]
R. Rodrigues, A. Annamalai, |. Koren, S. Kundu "A Study on the Use of Performance Counters
to Estimate Power in Microprocessors" Circuits and Systems II: Express Briefs, IEEE
Transactions on. 60, Heft 12. 10.1109/TCSI1.2013.2285966 ISSN :1549-7747, 2013.

[RAM et al. 2009]
R. Romadhon, M. Ali, A. Mahdzir, Y. Abakr "Optimization of cooling systems in data centre
by Computational Fluid Dynamics model and simulation" Innovative Technologies in
Intelligent Systems and Industrial Applications, 2009. CITISIA 2009.
10.1109/CITISIA.2009.5224189 Print ISBN:978-1-4244-2886-1, 2009.

[Ran 2010]
P. Ranganathan "Recipe for Efficiency: Principles of Power-aware Computing" Commun.
ACM. 53, Heft 4. 10.1145/1721654.1721673, 2010.

[Raw 2004]
F. Rawson "MEMPOWER: A Simple Memory Power Analysis Tool Set, Technical Report" IBM
Austin Research Laboratory, 2004.

[RF 2009]
K. Rogoz, K. Figura "A Test Based Multidimensional Performance Model for a Mission Critical
System Server" Software Testing Verification and Validation, 2009. ICST '09. International
Conference on. 10.1109/1CST.2009.40 E-ISBN :978-0-7695-3601-9, 2009.

[RHA et al. 2007]
E. Rotem, J. Hermerding, C. Aviad, C. Harel "Temperature measurement in the Intel Core
Duo Processor" Dans Proceedings of 12th International Workshop on Thermal investigations
of ICs - THERMINIC 2006, Nice : France (2006), 2007.

LXXXI1

Bibliography

[RHH et al. 2005]
Rong Luo, Hong Luo, Huazhong Yang, Yuan Xie "An instruction-level analytical power model
for designing the low power systems on a chip". 2. 10.1109/ICASIC.2005.1611515 Print ISBN:
0-7803-9210-8, 2005.

[RHR et al. 2006]
K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, F. Rawson "Application-Aware Power
Management" Workload Characterization, 2006 IEEE International Symposium on.
10.1109/11ISWC.2006.302728 E-ISBN :1-4244-0509-2, 2006.

[RHW et al. 1995]
M. Rosenblum, S. Herrod, E. Witchel, A. Gupta "Complete Computer System Simulation: The
SimOS Approach" IEEE Parallel Distrib. Technol., Heft 4. 10.1109/88.473612, 1995.

[Riv 2008]
S. Rivoire "Models and Metrics for Energy-Efficient Computer Systems, PhD thesis" Stanford
University California, 2008.

[RL 2007]
P. Ranganathan, P. Leech "Simulating Complex Enterprise Workloads using Utilization
Traces" In Proceedings of the Workshop on Computer Architecture Evaluation using
Commercial Workloads (CAECW), 2007.

[RLG et al. 2008]
Rajamani, Lefurgy, Ghiasi, Rubio, Hanson, Keller "Power Management for Computer Systems
and Datacenters", 2008.

[RLI et al. 2006]
P. Ranganathan, P. Leech, D. Irwin, J. Chase "Ensemble-level Power Management for Dense
Blade Servers" Proceedings of the 33rd Annual International Symposium on Computer
Architecture. 33, Heft 2. 10.1145/1150019.1136492 ISBN:0-7695-2608-X, 2006.

[RM 2005]
F. Ridruejo Perez, J. Miguel-Alonso "INSEE: An Interconnection Network Simulation and
Evaluation Environment" Euro-Par 2005 Parallel Processing. 3648. 10.1007/11549468_111
Print ISBN978-3-540-28700-1, 2005.

LXXXIV

Bibliography

[RMG et al. 2009]
E. Rotem, A. Mendelson, R. Ginosar, U. Weiser "Multiple clock and Voltage Domains for chip
multi processors" Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on ISSN :1072-4451, 2009.

[RMN 2009]
F. Ridruejo, J. Miguel-Alonso, J. Navaridas "Full-system Simulation of Distributed Memory
Multicomputers" Cluster Computing. 12, Heft 3. 10.1007/s10586-009-0086-y, 2009.

[RN 2011]
N. Rasmussen, S. Niles "Data Center Projects: Growth Model" Schneider Electric — Data
Center Science Center, 2011.

[RRK 2008]
S. Rivoire, P. Ranganathan, C. Kozyrakis "A Comparison of High-level Full-system Power
Models" Proceedings of the 2008 Conference on Power Aware Computing and Systems,
2008.

[RRT et al. 2008]
R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, X. Zhu "No "Power" Struggles:
Coordinated Multi-level Power Management for the Data Center" New York, NY, USA, Heft
1.10.1145/1353534.1346289 ISSN: 0163-5964, 2008.

[Rum 1991]
J. Rumbaugh "Object oriented modeling and design". [Hauptbd.]. 0-13-629841-9, 1991.

[RZB et al. 2012]
Rongliang Zhou, Zhikui Wang, C. Bash, A. McReynolds "Data center cooling management
and analysis - a model based approach" Semiconductor Thermal Measurement and
Management Symposium (SEMI-THERM), 2012 28th Annual IEEE.
10.1109/STHERM.2012.6188832 Print ISBN:978-1-4673-1110-6, 2012.

[SA 2003]
J. Srinivasan, S. Adve "Predictive Dynamic Thermal Management for Multimedia
Applications" Proceedings of the 17th Annual International Conference on Supercomputing.
10.1145/782814.782831 ISBN:1-58113-733-8, 2003.

LXXXV

Bibliography

[Sah 2011]
Saha Sonal "An Experimental Evaluation of Real-Time DVFS Scheduling Algorithms"
Blacksburg, Virginia, 2011.

[SAJ et al. 2010]
Sverre Jarp, Alfio Lazzaro, Julien Leduc, Andrzej Nowak "Evaluation of the Intel Nehalem-EX
server processor" CERN openlab, 2010.

[SAS 2002]
K. Skadron, T. Abdelzaher, M. Stan "Control-theoretic techniques and thermal-RC modeling
for accurate and localized dynamic thermal management" High-Performance Computer
Architecture, 2002. Proceedings. Eighth International Symposium on.
10.1109/HPCA.2002.995695 ISSN :1530-0897, 2002.

[SBA et al. 2011]
Song Liu, Brian Leung, Alexander Neckar, Seda Ogrenci Memik, Gokhan Memik, Nikos
Hardavellas "Hardware/software techniques for DRAM thermal management" In
Proceedings of the 17th IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2011, 2011.

[SBM 2009]
K. Singh, M. Bhadauria, S. McKee "Real Time Power Estimation and Thread Scheduling via
Performance Counters" SIGARCH Comput. Archit. News. 37, Heft 2.
10.1145/1577129.1577137, 2009.

[SHY et al. 2005]
Shuo Kang, Huayong Wang, Yu Chen, Xiaoge Wang, Yigi Dai "Skyeye: An Instruction
Simulator with Energy Awareness" Embedded Software and Systems. 10.1007/11535409_66
Print ISBN978-3-540-28128-3, 2005.

[SIC 2003]
A. Sinha, N. Ickes, A. Chandrakasan "Instruction level and operating system profiling for
energy exposed software". 11, Heft 6. 10.1109/TVLSI.2003.819569 ISSN: 1063-8210, 2003.

LXXXVI

Bibliography

[Sir 2007]
W. Siricharoen "Ontologies and Object models in Object Oriented Software Engineering". 33
IAENG International Journal of Computer Science, 2007.

[SKO et al. 1997]
H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa, R. Philip, J. Alvarez "Thermal
management system for high performance PowerPC/sup TM/ microprocessors" Compcon
'97. Proceedings, IEEE. 10.1109/CMPCON.1997.584744 ISSN :1063-6390, 1997.

[Sku 2013]
H. Skurk "Reliable Data Centre", Bitkom, 2013.

[SLU 2010]
S. Sivathanu, Ling Liu, C. Ungureanu "Modeling the performance and energy of storage
arrays" Green Computing Conference, 2010 International.
10.1109/GREENCOMP.2010.5598308 Print ISBN:978-1-4244-7612-1, 2010.

[SM 2001]
A. Sangiovanni-Vincentelli, G. Martin "Platform-based design and software design
methodology for embedded systems" IEEE Design Test of Computers. 18, Heft 6.
10.1109/54.970421 ISSN: 0740-7475, 2001.

[SMA et al. 2003]
Skadron, Martonosi, August, Hill, Lilja, Pai "Challenges in computer architecture evaluation"
Computer. 36.10.1109/MC.2003.1220579 ISSN :0018-9162, 2003.

[SPE 2015]
SPEC Standard Performance Evaluation Corporation "Fujitsu FUJITSU Server PRIMERGY
RX2560 M1", 2015.

[SR 2012]
S. Saha, B. Ravindran "An Experimental Evaluation of Real-Time DVFS Scheduling
Algorithms" SYSTOR '12 Proceedings of the 5th Annual International Systems and Storage. 5.
10.1145/2367589.2367604 ISBN: 978-1-4503-1448-0, 2012.

LXXXVII

Bibliography

[SSG et al. 2009]
Seung-Hwan Lim, B. Sharma, Gunwoo Nam, Eun Kyoung Kim, C. Das "MDCSim: A multi-tier
data center simulation, platform" Cluster Computing and Workshops, 2009. CLUSTER '09.
IEEE International Conference on. 10.1109/CLUSTR.2009.5289159 Print ISBN:978-1-4244-
5011-4, 2009.

[SSH 2014]
K. Siozios, D. Soudris, M. Hiibner "A Framework for Supporting Adaptive Fault-Tolerant
Solutions" New York, NY, USA. 13, Heft 5. 10.1145/2629473, 2014.

[SSS et al. 2004]
K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, D. Tarjan "Temperature-
aware Microarchitecture: Modeling and Implementation" ACM Trans. Archit. Code Optim.,
Heft 1. 10.1145/980152.980157, 2004.

[Ste 2012]
R. Steinbrecher "IT Equipment Thermal Management and Controls" American Society of
Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2012.

[St6 2014]
H. Stocker "Taschenbuch der Physik". Verl. Europa-Lehrmittel Nourney, Vollmer Haan-
Gruiten. 7. Aufl. 978-3-8085-5677-1, 2014.

[SWK 2011]
Y. Shi, S. Wang, G. Kou "New State of MCDM in the 21st Century". Springer-Verlag Berlin
Heidelberg Berlin, Heidelberg, 2011.

[SXC et al. 2000]
Shiwei Feng, Xuesong Xie, Changzhi Lu, G. Shen, Guangbo Gao, Xiaoling Zhang "The thermal
characterization of packaged semiconductor device" Semiconductor Thermal Measurement
and Management Symposium, 2000. Sixteenth Annual IEEE. 10.1109/STHERM.2000.837087
Print ISBN:0-7803-5916-X, 2000.

LXXXVIII

Bibliography

[TDM 2011]
I. Takouna, W. Dawoud, C. Meinel "Accurate Mutlicore Processor Power Models for Power-
Aware Resource Management" Dependable, Autonomic and Secure Computing (DASC),
2011 IEEE Ninth International Conference on. 10.1109/DASC.2011.85 Print ISBN:978-1-4673-
0006-3, 2011.

[Tep 2010]
N. Tepper "Exploring the use of Model-Based Systems Engineering (MBSE) to develop
systems architectures in naval ship design", 2010.

[THS 2010]
D. Tsirogiannis, S. Harizopoulos, M. Shah "Analyzing the Energy Efficiency of a Database
Server" Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data. 10.1145/1807167.1807194 ISBN: 978-1-4503-0032-2, 2010.

[Thy 2012]
Marc Thylmann, Bitkom, “Stromverbrauch von Rechenzentren und Servern sinkt”, Berlin,
21. Mai 2012, http://www.pressebox.de/pressemitteilung/bitkom-bundesverband-
informationswirtschaft-telekommunikation-und-neue-medien-ev/Stromverbrauch-von-
Rechenzentren-und-Servern-sinkt/boxid/509627

[TKS et al. 2013]
M. Tighe, G. Keller, J. Shamy, M. Bauer, H. Lutfiyya "Towards an improved data centre
simulation with DCSim" Network and Service Management (CNSM), 2013 9th International
Conference on. 10.1109/CNSM.2013.6727859, 2013.

[TMW 1994]
V. Tiwari, S. Malik, A. Wolfe "Power analysis of embedded software: a first step towards
software power minimization" Very Large Scale Integration (VLSI) Systems, |EEE
Transactions on. 2, Heft 4. 10.1109/92.335012 ISSN: 1063-8210, 1994.

[TMW et al. 1996]
V. Tiwari, S. Malik, A. Wolfe, M. Tien-Chien Lee "Instruction level power analysis and
optimization of software" Journal of VLSI signal processing systems for signal, image and
video technology. 13, 2-3. 10.1007/BF01130407 Print ISSN: 0922-5773, 1996.

LXXXIX

Bibliography

[Tol 2009]
M. Tolentino "Managing Memory for Power, Performance, and Thermal Efficiency, PhD
thesis", 2009.

[TRJ 2005]
T. Tan, A. Raghunathan, N. Jha "Energy Macromodeling of Embedded Operating Systems"
ACM Transactions on Embedded Computing Systems (TECS). 4, Heft 1.
10.1145/1053271.1053281, 2005.

[TSK 2009]
P.-N. Tan, M. Steinbach, V. Kumar "Introduction to data mining". Boston [u.a.] : Pearson,
Addison Wesley Boston. [Nachdr.]. 0-321-32136-7, 2009.

[TSW 2009]
Thanh Do, Suhib Rawshdeh, Weisong Shi "ptop: A process-level power profiling tool" in
Proceedings of the 2nd Workshop on Power Aware Computing and Systems (HotPower’09},,
2009.

[TSX et al. 2003]
Tschudi, Sreedharan, Xu, Coup, Roggensack "Data Centers and Energy Use — Lets Look at the
Data", 2003.

[UKI et al. 2010]
R. Urgaonkar, U. Kozat, K. Igarashi, M. Neely "Dynamic resource allocation and power
management in virtualized data centers" Network Operations and Management Symposium
(NOMS), 2010 IEEE. 10.1109/NOMS.2010.5488484 ISSN :1542-1201, 2010.

[Wal 2007]
Wallis "A Beginner’s Guide to Graph Theory". Birkhduser Boston. 2. 978-0-8176-4484-0,
2007.

[WB 2004]
A. Weissel, F. Bellosa "Dynamic Thermal Management for Distributed Systems" In
proceedings of the first workshop on temperature-aware computer systems (TACS'04),
2004.

XC

Bibliography

[WJ 1996]
S. Wilton, N. Jouppi "CACTI: an enhanced cache access and cycle time model" Solid-State
Circuits, IEEE Journal of. 31, Heft 5. 10.1109/4.509850 ISSN :0018-9200, 1996.

[WK 2013]
L. Wang, S. Khan "Review of Performance Metrics for Green Data Centers: A Taxonomy
Study" Hingham, MA, USA, Heft 3. 10.1007/s11227-011-0704-3, 2013.

[WWEF et al. 2003]
R. Wunderlich, T. Wenisch, B. Falsafi, J. Hoe "SMARTS: Accelerating Microarchitecture
Simulation via Rigorous Statistical Sampling" Proceedings of the 30th Annual International
Symposium on Computer Architecture, Heft 2. 10.1145/871656.859629 ISBN:0-7695-1945-
8, 2003.

[WWEF et al. 2006]
T. Wenisch, R. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, J. Hoe "SimFlex: Statistical
Sampling of Computer System Simulation" Micro, IEEE. 26, Heft 4. 10.1109/MM.2006.79
ISSN :0272-1732, 2006.

[XMM 2003]
F. Xie, M. Martonosi, S. Malik "Compile-time Dynamic Voltage Scaling Settings:
Opportunities and Limits" Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation. 38, Heft 5. 10.1145/780822.781138
ISBN:1-58113-662-5, 2003.

[XTB 2007]
Xiaoyao Liang, K. Turgay, D. Brooks "Architectural power models for sram and cam
structures based on hybrid analytical/empirical techniques" Computer-Aided Design, 2007.
ICCAD 2007. IEEE/ACM International Conference on. 10.1109/ICCAD.2007.4397367, 2007.

[YP 2009]
Yu Bai, Priya Vaidya "MEMORY CHARACTERIZATION TO ANALYZE AND PREDICT
MULTIMEDIA PERFORMANCE AND POWER IN EMBEDDED SYSTEMS" Acoustics, Speech and
Signal Processing, 2009. ICASSP 2009. IEEE International Conference on.
10.1109/ICASSP.2009.4959835, 2009.

XClI

Bibliography

[YS 2005]
Yong Zhan, S. Sapatnekar "A high efficiency full-chip thermal simulation algorithm"
Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM International Conference on.
10.1109/I1CCAD.2005.1560144 Print ISBN:0-7803-9254-X, 2005.

[YSY et al. 2011]
Younghyun Kim, Sangyoung Park, Youngjin Cho, Naehyuck Chang "System-Level Online
Power Estimation Using an On-Chip Bus Performance Monitoring Unit" Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions o, Heft 11.
10.1109/TCAD.2011.2160349, 2011.

[YVK et al. 2000]
W. Ye, N. Vijaykrishnan, M. Kandemir, M. Irwin "The Design and Use of Simplepower: A
Cycle-accurate Energy Estimation Tool" DAC '00 Proceedings of the 37th Annual Design
Automation Conference. 10.1145/337292.337436 ISBN:1-58113-187-9, 2000.

[YZ 2011]
Yao Yingbiao, Zeng Xianbin "Fast, Accurate On-Chip Data Memory Performance Estimation"
Computational Science and Engineering (CSE), 2011 IEEE 14th International Conference on.
10.1109/CSE.2011.19, 2011.

[ZMC 2003]
D. Zhu, R. Melhem, B. Childers "Scheduling with dynamic voltage/speed adjustment using
slack reclamation in multiprocessor real-time systems" IEEE Transactions on Parallel and
Distributed Systems. 14, Heft 7. 10.1109/TPDS.2003.1214320 ISSN=1045-9219, 2003.

[ZT 2011]
Zoltan Majo, Thomas R. Gross "Memory System Performance in a NUMA Multicore
Multiprocessor" SYSTOR '11 Proceedings of the 4th Annual International Conference on
Systems and Storage. 4. 10.1145/1987816.1987832, 2011.

[ZX 2012]
J. Zhao, Y. Xie "Optimizing bandwidth and power of graphics memory with hybrid memory
technologies and adaptive data migration" ISSN 1092-3152, 2012.

XClI

Bibliography

[ZYY et al. 2011]
Zehan Cui, Yan Zhu, Yungang Bao, Mingyu Chen "A fine-grained component-level power
measurement method" Green Computing Conference and Workshops (IGCC), 2011
International. 10.1109/1GCC.2011.6008599 Print ISBN:978-1-4577-1222-7, 2011.

[2ZX 2000]
Z.Zhang, Z. Zhu, Z. Xiaodong "A permutation-based page interleaving scheme to reduce
row-buffer conflicts and exploit data locality". 10.1109/MICR0.2000.898056 ISSN 1072-
4451, 2000.

XCllI

Notes

A7. Notes

XClvV

Notes

XCV

