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Abstract 

The exponential growth of the information technology, such as social media content or on-

demand video services, results in increasing energy consumption, which may be one of the 

main causes of climate changes. Power and cooling are the key challenges to reducing the 

emission of greenhouse gas, especially in large-scale data centers. With our full-system 

model, we contribute towards improving the energy efficiency on specific server systems 

and, consequently, optimize the efficiency of data center infrastructures. We develop a 

generic, flexible, and scalable model to simulate and optimize a complete server system for 

the multiple, potentially conflicting aspects: power, temperature, and performance. We 

develop a hierarchical and abstract model of a rack-mounted server system, which builds the 

base of our mathematical methods to calculate the multi-aspects of each component. We 

demonstrate the feasibility and advantages of our concept through a prototypical 

implementation, in which we empirically validate our model using a variety of artificial 

workloads to ensure the reproducibility at any time. In principle, our simulation-based, full-

system server model supports customer-specific workload scenarios, specified as realistic 

category-specific utilization levels, to simulate the suitable power of server systems. We 

address the significant static as well as dynamic characteristics and configurations to cover a 

variety of server systems and components compatible with the customer-specific server 

system. We precisely calculate the power consumption that reduces the over-provisioning of 

the server system, particularly in industrial practice. Moreover, we demonstrate that we can 

forecast future generations of high-performance systems and components by assuming the 

predecessor or a similar generation. To our knowledge, in academic research, there are no 

generic approaches that cover the full server system simulation on a common base. This 

thesis provides new research contributions that explicitly cover the heterogeneous 

characteristics of the hardware and software variations, such as supporting diverse server 

families or generations. Moreover, the simulation optimizes the energy efficiency of the 

server system at various utilization levels, especially at low-intensity phases (under-

utilization). 
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Zusammenfassung 

Der ansteigende Medienkonsum, bedingt durch sich weiterentwickelnde Kommunikations-

kanäle, führt zum kontinuierlichen Anstieg des Energiebedarfs, welches den Klimawandel 

weiter voranschreiten lässt. Das größte Potenzial zur Energieeinsparung im Rechenzentrum 

wird derzeit dem IT-Equipment sowie dessen Kühlung zugesprochen. Wir haben ein 

ganzheitliches Systemmodell zur Optimierung der Energieeffizienz von Rack-Servern 

entwickelt. Wir entwickelten ein allgemein-gültiges, flexibles und skalierbares Model, um 

verschiedene Server zu simulieren und optimieren. Das hierarchische und abstrahierte 

Servermodell unterstützt die Berechnung der konkurrierenden Aspekte: Energieverbrauch, 

Temperaturentwicklung und Performance. Die prototypische Implementierung zeigt die 

Machbarkeit und Vorteile unseres Ansatzes. In der Evaluation unseres simulationsbasierten 

Systemmodells verwenden wir synthetische Lastszenarien zur besseren Nachvollziehbarkeit, 

wobei wir auch realistische benutzerspezifische Lastszenarien unterstützen. Der Anwender 

definiert die prozentuale Auslastung der Komponenten als Lastszenario, welches wir zur 

Berechnung der maximalen Leistungsaufnahme und des Energieverbrauchs verwenden. Wir 

präsentieren die relevanten statischen und dynamischen Merkmale, um unterschiedliche 

Serversysteme und Komponenten aus verschiedenen Generationen abzubilden. Wir 

berechnen den Energieverbrauch bzw. die Leistungsaufnahme und die daraus resultierenden 

Temperaturen hinreichend genau, welches die oftmals erhebliche Überschätzung des 

tatsächlichen Energieverbrauchs von Servern reduziert. Unser Ansatz ermöglicht die 

Prognose der maximalen Leistungsaufnahme von zukünftigen Systemen und Komponenten. 

Unser Ansatz unterstützt, im Gegensatz zu den bisherigen akademischen Ansätzen, eine 

Vielzahl an Server und deren unterschiedliche Komponenten. Mithilfe unseres 

simulationsbasierten Ansatzes können wir die Energieeffizienz von Servern bei jeglichen 

anwenderspezifischen Szenarien optimieren.  
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1 Introduction 

1.1 Motivation 
The consumption rate of information technologies, especially web-based resources, has 

increased rapidly. Social media networks, such as Facebook and Twitter are well established. 

Providers work with large amounts of data because the customers upload and download a 

wide range of data, such as movies, photos, and documents. Every day consumers upload 

more than 300 million photos on Facebook (data from the first quarter of 2012) and thus, data 

centers daily handle more than 500 terabytes of new data [Fac 2012, Con 2012]. The 

International Data Corporation1 (IDC) forecasts the amounts of information will double every 

two years, as shown in Figure 1 [JD 2012, Pet 2012]. The amount of data was nearly five 

Zettabytes2 in 2013 and will probably be around 40 Zettabytes in 2020, which shows 

exponential growth.  

 
Figure 1: IDC's forecast for the digital information growth [JD 2012] 

This growing data trend is occurring because of different factors of mobile devices, forecasted 

by Gartner 2012 [Pet 2012]. The shift from mobile phones to smartphones provides the ability 

to perform computer functions on the portable devices. Therefore, some general-purpose 

services, such as television, are switching to on-demand video services. Wide ranges of 

business-to-consumer (B2C) markets are growing because of the web-based streams. 

Especially the marketplace for portable applications has grown within the last years. The 

authors in [Pet 2012] forecasted nearly 70 billion mobile application downloads in 2014. 

The demands of computation resources, not just storage resources, are also increasing. Data 

centers or search engine providers such as Bing3 or Google4 handle a high level of data 

quantity, inquiries, and services using the server systems. Google had approximately sixty 

                                                           
1
 International Data Corporation: http://www.idc.com 

2
 Zettabyte: 10

21
 Byte 

3
 Bing: http://www.bing.com 

4
 Google: https://www.google.com 
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thousand searches per second in 2012 [Com 2013]. If we take previous years into account, the 

amount of searches will dramatically increase in the following years. In 2010, Google’s server 

consumed nearly two billion kilowatt-hours [Koo 2011]. As a consequence, the energy demand 

on data centers is growing. 

The energy efficiency report produced by the US Environmental Protection Agency5 (EPA) 

depicts historical as well as current trends of energy use in U.S. data centers [USEPA 2013]. 

Within six years the energy consumption doubled between 2000 and 2006 from 30 to 60 

terawatt-hours6, see Figure 2. Assuming the trend is continuing, the energy use will be 

approximately 170 terawatt-hours in 2020. It has thus increased more than fourfold [Acc 

2008].  

 
Figure 2: Total energy demand of servers and data centers [Acc 2008, HFS 2010] 

The energy demand of German data centers was 12 terawatt-hours in 2012 [Thy 2012]. The 

servers and data centers require about 1.8 percent of the overall German energy demand. 

Another agency [HFS 2010] forecasted that in 2015 the energy demand of servers and data 

centers in Germany would be around 14.2 terawatt-hours in “business as usual cases” and 

around six terawatt-hours in “best practice” green IT-based solutions, as shown in Figure 3. 

 
Figure 3: Total energy demand of German data centers [HFS 2010, Thy 2012] 

                                                           
5
 US Environmental Protection Agency: http://www.epa.gov 

6
 Terawatt: 10

12
 Watt 
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Furthermore, Koomey forecasts the same tendency for computer performance (operations per 

period) and efficiency (operations per power demand), which double within one and a half-

year [KBS et al. 2010]. The costs per operation are decreasing because of the technologies that 

are shrinking semiconductors and because of increasing transistor density. In 1965, Moore 

predicted a doubled numbers of transistors on integrated circuits every two years [Moo 1965]. 

An adequate computer can be built much cheaper with the same performance, but using more 

transistors. An increasing computing performance enables large-scale computations in 

academia as well. For instance, transmutation, decoding, reconstructing, or recombining of 

genomes generates large data sets and complex tasks. These data-intensive tasks utilize all 

data center levels [IIZ et al. 2007], especially the server, in certain ways.  

The authors in [BLR et al. 2005, BH 2007, RRT et al. 2008, LEU et al. 2010] state that the servers 

consume the most power (between 27% and 65%) in comparison to the data centers’ 

operational expenditures, such as the overall electricity costs. The increasing energy 

consumption may be one of the main causes of climate change. Power and cooling are the key 

challenges to reducing especially the greenhouse gas emissions of data centers. Several 

governmental agencies, initiatives, and industrial consortiums are investigating on improving 

the energy efficiency. Replacing inefficient IT equipment, optimizing the climate control, 

limiting, and balancing the server workloads are conventional considerations for reducing the 

energy consumption. With our full-system model, we want to make our contribution to enable 

certain energy efficiency optimizations on specific server systems. We model a complete 

server system as a simulation-based approach to predict the power consumption, 

temperature, and performance, which enables the analysis of the energy efficiency considering 

realistic workloads and low-intensity phases (under-utilization). Moreover, we optimize the 

energy efficiency of the server system concerning the variety of software and hardware 

configurations.  

1.2 Objectives and Contributions 
The main objective of this thesis is to develop a novel multi-aspect full-system model that is 

able to optimize an entire server system concerning the energy efficiency. We specify a flexible 

simulation-based approach that enables the optimization of customer-specific workload 

scenarios and various system configurations. In this thesis, we investigate the following 

questions: 

 How can we specify entire server systems and their components? 

We specify a server-specific configuration tree as a hierarchical structure concerning 

the various abstraction levels. We subdivide the hardware, first, into the static model 

considering the architecture as well as connectors, and secondly into the dynamic 

behavior model, including the relations between the components.  
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 Is it possible to forecast next-generation systems? 

We specify various significant characteristics to forecast the power consumption of 

next-generation processors and memory modules that are based on the component 

technology development, for instance.  

 How can we deal with the external and internal requirements concerning the workload 

scenario to support vendor and customer demands? 

We flexibly specify the server system externals, such as the resource-based workload 

scenarios to apply the intended scope of application. We integrate the internal and 

external constraints such as the thermal limits that build the base of the thermal 

control in the primary phase of our optimization strategy.  

 How can we calculate aspects of power, temperature, and performance in an accurate 

manner? 

For each aspect, we develop a method that consists of the technical specification 

function and the configuration function. In our configuration tree, we weight the 

characteristics with their corresponding coefficients and consider the related offsets.  

 How can we deal with multi-aspect-based calculation methods and their relationships, 

especially the interdependencies between the components? 

We implement each aspect in a particular calculation method. Herein, the power 

consumption builds the significant input parameter of the thermal calculation. We 

predict the performance on the basis of the power consumption and thermal 

development. We realize the interdependencies between the components in Simulink 

and in MATLAB partly specify the relations that influence the component behavior. 

 What are the significant characteristics of the components concerning the specific 

aspects? 

In contrast to common assumptions and as a result of our analysis, we found the 

following significant characteristics of the memory modules: vendor, die, series, 

fabrication size, synchronization mode, and ranks. We additionally observe the relevant 

processor characteristics: semiconductor technology (thermal design power), product 

life cycle stage, fabrication size, and series. The power consumption, thermal 

development, and performance of the server system depend upon the enclosure, its 

subset of equipment, and usage models.  

 How can we flexibly react to characterization changes and adjust our calculation 

methods? 

We define a centralized database that consists of the possible characteristics and 

configurations. We provide access to individually configurable data within the 

database to enable the use of our models across multiple server generations. 
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 Is it possible to simulate a full-server system in a time-continuous workload scenario?  

Indeed, we simulate the entire server system concerning the trace of several real 

application softwares. In our evaluation, we trace the utilization levels from artificial 

benchmarks to ensure the reproducibility at any time.  

 How can we deal with multi-objective optimization of the entire server system? 

In our evaluation, we present the alternations of the server characteristics and 

configurations at each time 𝑡𝑘 resulting from our multi-objective optimization in which 

we select the global optimal solution.  

 How much can we optimize the energy efficiency by adjusting a more suitable 

configuration or characteristic? 

We illustrate the possible optimization of the performance-to-power ratio by nearly 

12.2% in our exemplary evaluation. 

 How much amount of power consumption does an improved server system 

(configuration or characteristic) accomplish regarding a specific workload scenario? 

We exemplarily achieve the mean processor power reduction of approximately 53.3% 

when analyzing the SPECpower benchmark. 

Our multi-aspect full-system model should minimize the vendors’ measurement effort by 

simulating accurate and precise aspects of the server system components. As a result, we will 

reduce the over-provisioning of the server system. Moreover, we investigate the opportunity 

to calculate next-generation systems while considering actual trends of server system 

configuration.  
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1.3 Organization of This Thesis 
We organize the remaining content of this thesis as follows: 

Chapter 2 – Background outlines the fundamental knowledge to understand our modeling and 

simulation. Herein, we define necessary terms pertaining to energy efficiency and 

give the backgrounds of the server system in a data center.  

Chapter 3 – Basic Modeling Technologies, Algorithms, and Approaches in Academic Research 

and Industrial Practice presents the various modeling technologies and respective 

server system domains to create multi-aspect models. Moreover, we introduce 

the corresponding related work, which we split into aspect-based sections. We 

describe the gap between the academic approaches and the industrial field of 

application, which results in our problems.  

Chapter 4 – Problem Statement, Challenges, and Aims discusses the problems and challenges 

between the industrial tools and academic approaches. For this, we specify seven 

aims used as a basis for our thesis. 

Chapter 5 – Multi-aspect Full-system Server Model and Optimization Concept as a 

Simulation-based Approach (MFSMOS) presents the details of the five-step 

concept, including the aspect-based component models and characterization of 

the server system. We describe the external environment and specify further 

details of the optimization strategy, such as the cascading primary and secondary 

phases.  

Chapter 6 – Design and Implementation of the Architecture applies the concept in a 

simulation framework as a prototypical implementation. We realize a Model-

View-Controller (MVC) approach and describe the layers concerning its methods. 

Chapter 7 – Evaluation of the Multi-aspect Full-system Server Model and Optimization 

(MFSMOS) evaluates the multi-aspect-based methods and algorithms developed 

in this thesis. First, we present the evaluation environment and analyze the 

calculation methods regarding their accuracy. Second, we investigate the impact 

on changes of the component characteristics. Third, we evaluate the 

improvements that result through our server system optimization.  

Chapter 8 – Conclusion summarizes the work done in this thesis and presents an outlook in 

which further investigations might be useful.  
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2 Background 

The purpose of a model is to show and predict realistic behavior, which interacts with the 

environment. Thus principles7 and theories are formal logic or mathematics, for instance. Real 

behavior is defined in an abstract and generalized manner. Models represent certain aspects 

of reality with a specific purpose. They support the understanding of relationships in the case 

of similar behavior in comparison to the real world. Section 2.1 describes the modeling and 

simulation differences. This thesis, which addresses an energy efficiency estimation approach, 

contains terms such as power, energy, performance, and efficiency, which are outlined in 

detail in Section 2.2. The purpose of this model is to predict the power and energy 

consumption of server systems in data centers. Sections 2.3 and 2.4 present a generic 

overview of the services and equipment of data centers. 

2.1 Modeling and Simulation 
Modeling is an approach to show and predict an actual system’s reality. A model depicts a 

simplified representation abstracting from some real-life complexities. The model accuracy 

depends on the level of the model’s detail. Too many details result in complex, complicated 

and time-consuming models. On the other hand, providing too little information will have the 

effect of missing relevant details for the simulation results. Therefore, a specification and 

requirement analysis are mandatory steps for developing a proper model. A model is a virtual 

or digital prototype of a real system dependent on use cases and model objectives. Modeling 

systems need system details. If customers know the internal rules or workflows, they use a 

white-box modeling approach for the respective system. This is the case in self-designed 

systems. On the other hand, modeling a black-box does not include any internal details of the 

system. Such an approach is required in case of external systems from other suppliers. In 

contrast, a grey-box model is a mixture of both the white-box and black-box approach. Some 

internal workflows are known but not at all of them. 

A model is created by empirical as well as mathematical methods and techniques such as 

deterministic, stochastic, static, and dynamic methods. Usually, equations, logical rules, and 

constraints define the limits, and flowcharts represent the system behavior. Stimulators 

generate input data for the model. In an accurate case, the system model is an exact replica of 

the real system with the same behavior. The developer executes the model to check whether 

the right system [BCC et al. 2014] is built.  

Simulations of the model help to verify and confirm the represented reality8 and dynamic 

behavior. Furthermore, they support the processes of analyzing and designing a system. Under 

known input conditions, a model is valid if the resulting outputs from the real world and 

                                                           
7
 Principles: physical, analogue, or mathematical model 

8
 Reality: logical, behavioral flow, interfaces, or triggers 
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simulation are the same. The decision depends on the accuracy and precision of the system. 

Simulation-based approaches handle the complexity of industrial hardware and software 

systems [SMA et al. 2003]. A simulation checks a model, which runs over a certain period. A 

positive aspect is that inside a simulation all operating conditions such as temperatures, as 

well as non-controllable factors, e.g. the weather, are changeable. It does not matter if it is 

realistic or not. Sometimes arbitrary conditions are dangerous or expensive in the real world. 

On the other side, a simulation requires a detailed model to predict valid behavior and results. 

Either a suitable programming language or simulation package is required for implementing a 

simulation model. Choosing the adequate simulation software or environment depends on the 

software or customer properties. Software properties include the following aspects: 

 Support 

 Documentation 

 Interfaces 

 Costs 

 Resource requirements 

 Statistical capabilities 

 Reporting capabilities 

On the other hand, customer properties are potential effects, problems, aid for structures 

(hierarchical, flat, object-oriented, or nested) and their level of competence or expertise 

because of training periods. 

2.1.1 MATLAB and Simulink 

MathWorks9 developed a software system called MATLAB. MATLAB is an advanced tool for 

numerical computations, used in academia and industry. MATLAB is an environment and a 

programming language. It focuses on vector-, and matrix-based calculations. The model used 

in this thesis includes several differential equations, statistics, and forecasts. MATLAB solves 

these problems and provides various interpolation methods as well as statistical analysis. For 

this thesis, we analyze and integrate the high level of data within the model. MATLAB supports 

several import functions and opportunities. A wizard-based graphical interface generates a 

MATLAB function based on several data, such as input information or measurement results. 

Furthermore, the data can be adapted, analyzed (reports), and visualized (plots) by built-in or 

plug-in tools. Moreover, many domains are used: for instance, control, sequence, mechanical, 

or electrical systems. MATLAB supports model, data, and controller optimization. Automatic 

code generation is another benefit. In this thesis, a MATLAB extension called Simulink is used. 

  

                                                           
9
 MathWorks: http://www.mathworks.com 
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Simulink is a block-based simulation environment with a graphical user interface and is 

integrated into the MATLAB environment. Its interfaces support executing MATLAB code (M 

scripts) and functions. Many hierarchical domains are distinguished in blocks, which are also 

called subsystems. This thesis uses a model-based design (MBD) approach, which models the 

control system and simulates the dynamic behavior of electrical and mechanical systems. 

Moreover, Simulink supports the textual modeling of methods, data flow diagrams, state 

machines, and various domains. A simulation model includes, for instance, the dynamic control 

of non-deterministic behavior of disturbances, influences, and environmental factors. Simulink 

supports viewing and debugging results for model optimization as well as parameterization 

and additionally supports executable source code generation. 

2.1.2 MATLAB Notation and Syntax  

The following chapter introduces MATLAB notations. The model uses vectors, matrices, and 

arrays to define the represented system. Developed algorithms and system descriptions use 

MATLAB syntax as well. 

MATLAB labels variables with an equal sign. The variable name is on the left side, whereas the 

variable content is on the right side. Appendix A3c describes MATLAB label restrictions. 

MATLAB variables contain only numbers (𝐼) or a mix of numbers and strings (𝐼𝐼). The mix is a 

cell array or cell matrix. The following terms describe the syntax of MATLAB vectors or 

matrices. A numerical vector (𝐼) consists of a sequence of numbers within square brackets as 

shown in (2.1). A number is followed by a number within a row vector. Each number defines a 

column, whereby a blank separates the columns. 

[𝑙𝑎𝑏𝑒𝑙] = [ [𝑛𝑢𝑚𝑏𝑒𝑟𝑠]+ [𝑛𝑢𝑚𝑏𝑒𝑟𝑠]∗ ] (2.1) 

A row vector transforms into a column vector using a semicolon as shown in (2.2). A semicolon 

defines the end of a row. 

[label] = [ [numbers]+;  [numbers]+ ] (2.2) 

Both variable types 𝐼, 𝐼𝐼 are within square brackets. A cell array (𝐼𝐼) requires additionally curly 

brackets and single quotation marks as shown in (2.3, 2.4). Strings and numbers are in any 

order. 

[label] = [{ [′[string|numbers]′]+  [′[string|numbers]′]∗} ] (2.3, 2.4) 

[label] = [ { [′[string|numbers]′]+ [′[string|numbers]′]∗ ; 

{ [′[𝐬𝐭𝐫𝐢𝐧𝐠|𝐧𝐮𝐦𝐛𝐞𝐫𝐬]′]+ [′[𝐬𝐭𝐫𝐢𝐧𝐠|𝐧𝐮𝐦𝐛𝐞𝐫𝐬]′]∗  } ] 

The following examples show both matrix types 𝐼, 𝐼𝐼. The matrix 𝑀𝑎 includes many vectors. 

The matrix dimension (𝑚 𝑥 𝑛) specifies the amount of rows (𝑚) and columns (𝑛). A complete 

numerical matrix 𝑀𝑎 (𝐼) is shown in (2.5). It can contain different dimensions, for instance 

(2𝑥2, 2𝑥3, 3𝑥2). 
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Ma=[1 2; 3 4]  Ma=[1 2 3; 4 5 6]  Ma=[1 2; 3 4; 5 6] 

%   1 2 1 2 3 1 2 

%   3 4 4 5 6 3 4 

% 5 6 (2.5) 

An index identifies a specific value from a vector or matrix. The first mandatory parameter 

determines the column of a vector and a row in the case of matrices. In matrices, the second 

parameter additionally identifies the column. A comma separates both values, as shown in 

(2.6). 

Ma=[1 2 3; 4 5 6] Ma(1,3) Ma(2,3) 

% 1 2 3 3 6 

% 4 5 6 (2.6) 

The same matrix 𝑀𝑎 uses mixed data types (𝐼𝐼) in the following example (2.7). The values two 

and four are numbers in both definitions. The other values are converted to strings in 

𝑀𝑎_𝑐𝑒𝑙𝑙_𝑎𝑟𝑟𝑎𝑦. Therefore, we use single equation marks within the matrix.  

Ma_cell_array = [{'one' '2' 'three'; '4' 'five' 'six'}] 

% 'one' '2' 'three' 

% '4' 'five' 'six' (2.7) 

A data adaption or extension is manageable by changing or adding new values independently 

of their data types. MATLAB provides a wide range of cell-specific functions, such as converting 

strings to numbers 𝑠𝑡𝑟2𝑛𝑢𝑚, and common functionalities. Further details about the MATLAB 

notation and syntax are given by the MATLAB homepage10 and Appendix A3c. The simulation 

model of this thesis uses MATLAB, its functions and variables. Therefore, definitions are 

provided in MATLAB notation. The model of this thesis focuses on power dissipation and 

energy efficiency. The following section defines power- and energy-related terms. 

2.2 Definition of Terms 

2.2.1 Power and Energy 

Power 𝑃 is an electrical level in watt [𝑊] and exists at any certain point in time [Stö 2014] of a 

defined duration 𝑇, see Equation (2.8). Power is the average value of power oscillation. At 

each point in time, the simulation system models a certain state with a specific power 

consumption. This thesis focuses on peak power consumption, which is calculated from the 

first derivative of the power function. Over all points in time, we look for the largest power 

                                                           
10

 MATLAB homepage: MathWorks, http://www.mathworks.com/help/index.html 
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demand. This process is time-invariant and uses those values. Power in DC circuits11 is found 

through Joule’s Law and is defined in Equation (2.10) for instantaneous values. Additionally, 

peak values are taken instead of rms-based12 values. As a result, power is calculated as a 

product of voltage and current, see (2.11). Power consumption, dissipation, and demand have 

the same significance.  

Equation 1: Power calculation 

 

Concerning the power of IT equipment, this is distinguished between peak and nameplate 

power. Peak power is the amplitude of power oscillation in DC circuits plus the largest power 

in AC circuits13. Nameplate power is the nominal power of electric power production 

equipment. A special system-rating label (nameplate) contains information about how much 

power the equipment consumes. It is necessary for electrical installations to select the right 

wiring method to meet these requirements.  

Integrating electrical power consumption over a period of time 𝑇 = 𝑡2 − 𝑡1 results in electrical 

energy 𝐸. The commercial unit of energy is a watt-hour [𝑊ℎ] or Joule [𝐽 = 𝑁𝑚/𝑠], whereby 

Joule is defined as newton meter per second. Equation (2.12) changes into a time-invariant 

approach. Therefore, only time 𝑇[𝑠] is multiplied with power values 𝑃[𝑊], see (2.14). 

Equation 2: Energy calculation 

 

In the following example, the power at time 15 minutes is 80 watts, see dotted lines. Twenty 

minutes later the (peak) power doubles to 160 watts, shown with dashed lines. The median 

power demand is about 122 watts. The colored grid area below the curve is equal to the 

                                                           
11

 DC circuits: direct current circuits 
12

 Rms-based values: root-mean-square 
13

 AC circuits: alternating current circuits 

𝑃 =
1

𝑇
∫ 𝑣(𝑡) ∗ 𝑖(𝑡) 𝑑𝑡
𝑇

0
  (2.8) 

𝑃(𝑡) = 𝑉(𝑡) ∗ 𝐼(𝑡)  (2.9) 

𝑃 = 𝑉 ∗ 𝐼 = 𝐼2 ∗ 𝑅  (2.10) 

𝑃[𝑊] = 𝑉[𝑉] ∗ 𝐼[𝐴] (2.11) 

𝐸 = ∫ 𝑝(𝑡) 𝑑𝑡 = ∫ 𝑖(𝑡) ∗ 𝑣(𝑡) 𝑑𝑡
𝑡2
𝑡1

𝑡2
𝑡1

  (2.12) 

𝐸 = 𝑃 ∗ (𝑡2 − 𝑡1) = 𝑉 ∗ 𝐼 ∗ (𝑡2 − 𝑡1)  (2.13) 

𝐸[𝑊ℎ] = 𝑃[𝑊] ∗ 𝑇[ℎ] = 𝑉[𝑉] ∗ 𝐼[𝐴] ∗ 𝑇[ℎ]  (2.14) 

 



Background 

 

 

 
18 

 

overall energy consumption within a period. Adding up power values up to an hour, beginning 

at the first minute, results in an energy demand of approximately 7.4 kilowatt hours (𝑘𝑊ℎ).  

 
Figure 4: Power [𝑾] vs. energy [𝑾𝒉] 

2.2.2 Performance 

Performance14 indicates the effectiveness of a system. It is the ratio between the (execution) 

time and the resources consumed for a given task or a set of operations (computations). More 

aspects, such as the delay of processing, access, transmission, resource usage, or response 

time (latency) as well as throughput, are relevant for various measurements. Performance is 

specific to an application and the used system. Cycles per instruction (CPI) and cycle times 

differ between processor types because of architecture variations, such as the cache size and 

level. Performance counters may include device cycles, cache misses/hits, or a number of 

instructions. Furthermore, an executed application utilizes resources in different ways. 

Therefore, performance criteria depend on the system specifics. Usually, benchmarks measure 

the performance. The Standard Performance Evaluation Corporation (SPEC)15 developed well-

known benchmarks. A benchmark is a suite containing different operation types. Floating-

point and integer operations are common parts of processor testing. In general, a higher 

performance score determines better-used system resources. Processor performance usually 

is measured in floating-point operations per second (FLOPS) or in response / transaction time, 

which is defined as required time to finish a job.  

2.2.3 Utilization and Workload 

Utilization16 is the percentage of component usage in relation to its maximal available physical 

working capacity. It is the ratio between working (active) and idle time. The peak utilization 

(100%) uses the entire possible working capacity that a resource offers. In this case, the 

system or a component is 100-percent busy processing during a given interval and the capacity 

                                                           
14

 Performance: performance factor 
15

 SPEC: http://www.spec.org/ 
16

 Utilization: sometimes called load level 
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limit is reached. Utilization levels distinguish between static component states. Utilization 𝑈 is 

defined as a utilization level 𝑢𝑚 at a specific point in time 𝑡𝑖 for each component 𝑚 of a 

system, whereby 𝑚 is any natural number 𝑚, 𝑛 ∈ 𝑁0, 𝑁0 = {0, 1, 2, 3, … }. A column vector 𝑈⃗⃗⃗  

specifies system utilization at a specific time, as shown in Equation (2.16). The time vector 𝑇 

contains 𝑛 values 𝑡𝑛. If 𝑛 is infinite, the time will be continuous. The vector 𝑢1⃗⃗⃗⃗  ⃗ specifies the 

utilization of 𝑚 components at 𝑡1. A tuple (𝑡1, 𝑢1…𝑚) specifies a system utilization only for one 

point in time and is herein defined as 𝑢1⃗⃗⃗⃗  ⃗, which is furthermore done for all 𝑛 values of 𝑇, see 

(2.23). 

𝑈⃗⃗ = {𝑢1, 𝑢2, … , 𝑢𝑚} at 𝑡𝑖, ∀𝑖 ∈ 𝑁0, 𝑚 ∈ 𝑁0  (2.15) 

𝑈⃗⃗ = (

𝑢1
𝑢2
…
𝑢𝑚

) at 𝑡𝑖, ∀𝑖 ∈ 𝑁0, 𝑚 ∈ 𝑁0  (2.16) 

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} (2.17) 

𝑢1⃗⃗⃗⃗ = {𝑢11, 𝑢21, … , 𝑢𝑚1} at 𝑡1, 𝑚 ∈ 𝑁0 (2.18) 

𝑢1⃗⃗⃗⃗  ≡ (𝑡1), (

𝑢11
𝑢21
⋮
𝑢𝑚1

  ) (2.19) 

𝑢2⃗⃗⃗⃗ = {𝑢12, 𝑢22, … , 𝑢𝑚2} at 𝑡2, 𝑚 ∈ 𝑁0 (2.20) 

𝑢2⃗⃗⃗⃗ ≡ (𝑡2), (

𝑢12
𝑢22
⋮
𝑢𝑚2

  ) (2.21) 

𝑢𝑚⃗⃗ ⃗⃗  ⃗ = {𝑢1𝑛, 𝑢2𝑛, … , 𝑢𝑚𝑛} at 𝑡𝑚, 𝑚 ∈ 𝑁0 (2.22) 

𝑢𝑚⃗⃗ ⃗⃗  ⃗ ≡ (𝑡𝑛), (

𝑢1𝑛
𝑢2𝑛
⋮

𝑢𝑚𝑛

  ) (2.23) 

Workload is a specific application17 with many processes that are running or executed on the 

system. A workload distinguishes between different utilization levels 𝑈 of each component 𝑚 

at a specific time 𝑡𝑛, varying with the executed applications. Workload 𝑊 is an (𝑚 𝑥 𝑛) matrix, 

which unfolds when the point in time 𝑡𝑛 is defined as the 𝑛-th column vector of the matrix. 

The workload matrix 𝑊 reflects a period of time 𝑇, see Equation (2.24). The columns 𝑛 in the 

matrix 𝑊 represent the time index. Furthermore, the dimension 𝑚 of the matrix corresponds 

to the number of components 𝑚 and is scalable just like the system.  
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 Application: operating system, program, or software 
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𝑊 = (𝑤𝑖𝑗) = (

𝑢11
𝑢21
⋮
𝑢𝑚1

𝑢12
𝑢22
⋮
𝑢𝑚2

……
⋱
⋯

𝑢1𝑛
𝑢2𝑛
⋮
𝑢𝑚𝑛

) ∀𝑖 ∈ 𝑁0, ∀𝑗 ∈ 𝑁0, 𝑚, 𝑛 ∈ 𝑁0 (2.24) 

𝑁0 = {0, 1, 2, 3,… } 

A workload scenario is a specific workload or concatenated workload profiles running on the 

system over a period of time.  

2.2.4 Thermal Energy, Temperature, and Heat 

The thermal energy is the total of all kinetic energies within a system, which is part of the 

particle’s movement or motion, such as for heating up an object. The unit of thermal energy is 

Joule [𝐽], which has an internal temperature and produces heat. The temperature is an 

absolute internal energy value of the resource’s state, which refers to the average kinetic 

energy. We measure it in degrees Celsius [°𝐶], Kelvin [𝐾], or Fahrenheit [°𝐹]. The heat 

(internal energy) is the transfer of thermal energy from one system to another. It is the 

transfer between two objects of different temperatures or the same system flowing from one 

temperature to another. The heat is caused by the flow of thermal energy and is measured in 

Joules [𝐽]  or watt-hours [𝑊ℎ] . The well-known types of heat transfer are conduction, 

convection, and radiation. The thermal energy is directly proportional to the temperature.  

The analogy between the electric and thermal quantities offers an alternative description of 

the system. The thermal balance follows the same rules compared to Ohm’s law of the 

conservation of electrical energy, which is shown in Table 1. The classical thermal properties 

are current and thermal resistance18.  

Table 1: Electrical and thermal analogy 

Electric quantity Thermal quantity 

𝑰 [𝑨] 
Current flowing through  

𝒒 [𝑾] 
Rate of heat conduction, heat flow 

∆𝑽 [𝑽] 
Voltage 

∆𝑻 [𝑲] 
Temperature difference 

𝑹𝒆 [𝜴]  
Electrical resistance 

𝑹𝒕 [𝑲/𝑾] 
Thermal resistance 

𝑪 [𝑭] 
Electrical capacitance 

𝑪𝒕 [𝑱/𝑲] 
Thermal capacitance, thermal mass 

𝝉 = 𝑹𝑪 [𝒔] 
Electrical constant 

𝝉𝒕 = 𝑹𝒕𝑪𝒕 [𝒔] 
Thermal constant 

𝑰 =
∆𝑽

𝑹𝒆
 𝒒 =

∆𝑻

𝑹𝒕
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 Thermal resistance: theta (θ) is a characteristic of a heat sink or the specific thermal resistance is a 
material constant [Int 2015] 
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2.2.5 Efficiency 

Efficiency distinguishes between thermal, energy, working, computational, and economic 

efficiency. In the context of this work, computational energy efficiency is always used. 

Efficiency 𝜂 is the ratio between outputs 𝑦𝑖, and inputs 𝑥𝑖, being a unit-less ratio, see Equation 

(2.25).  

𝑦𝑖 = 𝑓(𝑥𝑖) with  𝑖 ∈ 𝑁,𝑁 = {0, 1, 2, 3, … } (2.25) 

𝜂 =
𝑦𝑖
𝑥𝑖

 

Output and input are activities, jobs, tasks, utilization, data, or power consumption. Becoming 

more efficient means doing the same work under the same conditions but reducing the period 

of time or resources, for example. Energy efficiency is the rate between the consumed energy 

over time and the useful performed work (performance), shown in Equation (2.26). 

Measurement unit of the energy efficiency19 is FLOPS per watt. Lower energy means less 

power for an activity using the same conditions. In the case of hardware equipment, power 

efficiency is the ratio between performance and power, see Equation (2.27). It is also known as 

performance-to-power ratio. 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑒𝑛𝑒𝑟𝑔𝑦
=
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒 ∗ 𝑝𝑜𝑤𝑒𝑟
 (2.26) 

𝑝𝑜𝑤𝑒𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑝𝑜𝑤𝑒𝑟
 (2.27) 

2.2.6 Graph and Tree Definition 

The previous sections described power, energy, performance, and efficiency as aspects for 

modeling and simulation. In practice, we generalize the system and the diagrams represent an 

abstraction of the system. Further design process steps are described in Section 2.4.2 and 

Section 5. A graph or tree represents the system. A graph 𝐺 consists of a non-empty finite set 

of vertices 𝑉 and edges 𝐸. The finite set of vertices and edges20 are denoted by 𝑉 = 𝑉(𝐺) =

{𝑉0, 𝑉1, … , 𝑉𝑛}  and 𝐸 = 𝐸(𝐺) = {𝐸1, 𝐸2, … , 𝐸𝑚}with 𝑛,𝑚 ∈ 𝑁0  as any natural number in 

𝑁0 = {0, 1, 2, 3, … }. A directed edge21 connects two vertices22 and is denoted by a directed pair 

(𝑉0, 𝑉1) of vertices with {𝑉𝑜, 𝑉1 ∈ 𝑉, 𝑉𝑜 ≠ 𝑉1}, where (𝑉0, 𝑉1) ≠ (𝑉1, 𝑉0). Thus, a single directed 

edge23 is denoted by 𝐸1 = (𝑉0, 𝑉1). Finally, a graph is as pair of sets defined as 𝐺 = (𝑉, 𝐸). A 

tree is a specialized connected graph without any cycles24 [BR 2012]. The vertical hierarchical 

levels of a tree are shown in Figure 5.   

                                                           
19

 Energy efficiency: also called energy efficiency ratio 
20

 Vertex: node, point, site; edge: line, link, bound 
21

 Directed edge: opposite is an unordered pair of vertices {𝑉0, 𝑉1} 
22

 Vertices: store information and are labeled with 𝑎, 𝑏, 𝑐 or  0, 1, 2 or 𝑉1, 𝑉2, 𝑉3 
23

 Directed edge: represented as an arrow 
24

 No cycles: circuit-free, called acyclic 
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The index 𝑛 of a tree level 𝐿𝑛 defines the tree depth. In the graphs of Figure 5 and Figure 6, the 

edge relation stands for the inclusion relation, where an upper level includes many lower 

levels for all 𝑖 ∈ 𝑁0. Equation (2.28) shows the level definitions, including the root level 𝐿0. 

𝐿𝑖+1 ⊆ 𝐿𝑖 ⊆ ⋯ ⊆ 𝐿0, ∀𝑖 ∈ 𝑁0 (2.28) 

The root vertex 𝑉0 has the level zero and is the parent of 𝑉1 and 𝑉2 in this example. A parent is 

a vertex that is closer to 𝐿0 by one edge, or vertex. The vertex 𝑉1 also presents a parent of 𝑉11 

and 𝑉12. Each element 𝑉𝑖𝑗 ∈ 𝑉 can be a root vertex for a new subtree with𝑗 ∈ 𝑁0. The children 

𝑉1 and 𝑉2 share the same parent 𝑉0 which is formulated as 𝐸1 = (𝑉0, 𝑉1) and 𝐸2 = (𝑉0, 𝑉2). 

The tuples are neighbors because of a connected edge between them. The set of neighbors25 

𝑁𝑏 of a vertex 𝑉𝑖 is denoted by 𝑁𝑏(𝑉) = {𝑉𝑖, 𝑉𝑖
′ ∈ 𝑉 |(𝑉𝑖, 𝑉𝑖

′) ∈ 𝐸}, whereby the numbers of 

neighbors, equal to the number of edges, in 𝑉𝑖  is defined as degree. A vertex with an 

outdegree of zero is called a leaf: for example, 𝑉11 in Figure 5 is a leaf. Further information 

about graph theory and definitions are found in [HHM 2008, Wal 2007]. 

 
Figure 5: Undirected tree and levels 

A tree can be used to define structural aspects of server systems, devices, and states. Figure 6 

uses the specialized diagram terminology including the tree elements type and subtype. The 

vertices are rectangles, including a label with system information. Figure 6 and the following 

figures have to be interpreted from top to bottom. The upper rectangle is a type at root level 

and contains different subtypes, which are displayed at a lower level. This figure reflects a 

parent-child26 relation between type and subtype whereby 𝑛,𝑚 ∈ 𝑁0 is any natural number in 

𝑁0 = {0, 1, 2, 3, … }. 

                                                           
25

 Set of neighbors: neighborhood 
26

 Parent-child: type (superclass / class) – subtype (subclass) 
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Figure 6: Diagram terminology 

Subtypes form a subset of type in a hierarchical view, because subtypes and all their elements 

are part of type. There are defined as: 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 ⊆ 𝑡𝑦𝑝𝑒 or 𝑡𝑦𝑝𝑒 ⊇ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 and represented 

as ∀𝑆𝑈𝑖{𝑆𝑈𝑖 ∈ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 → 𝑆𝑈𝑖 ∈ 𝑡𝑦𝑝𝑒}, ∀𝑖𝜖𝑁. The set of all members of subtype and type are 

defined as follows: 

 Subtype:  𝑆𝑈 = {𝑆𝑈1, 𝑆𝑈2, … , 𝑆𝑈𝑛}      = {𝑠𝑢𝑏𝑡𝑦𝑝𝑒1, 𝑠𝑢𝑏𝑡𝑦𝑝𝑒2, … , 𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑛}, 

 Type:  𝑇𝑌 = {𝑇𝑌0, 𝑇𝑌1, 𝑇𝑌2, … , 𝑇𝑌𝑛} = {𝑡𝑦𝑝𝑒0, 𝑡𝑦𝑝𝑒1, 𝑡𝑦𝑝𝑒2, … , 𝑡𝑦𝑝𝑒𝑛}, and 

 𝑛 ∈ 𝑁0 as any natural number in 𝑁0 = {0, 1, 2, 3, … }. 

Therefore, the diagram is defined as ∀𝑆𝑈𝑖{𝑆𝑈𝑖 ∈ 𝑆𝑈 → 𝑆𝑈𝑖 ∈ 𝑇𝑌}, ∀𝑖𝜖𝑁. Figure 7 shows a 

simplified representation of type where the root vertex type 𝑇𝑌0 includes 𝑛 subtypes. The 

formal definition of the graph 𝐺 = (𝑉, 𝐸)  according to graph theory is 𝑉 = 

{𝑇𝑌0, 𝑆𝑈1, 𝑆𝑈2, … , 𝑆𝑈𝑁}  and 𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑚}  with 𝐸1 = (𝑇𝑌0, 𝑆𝑈1), 𝐸2 = (𝑇𝑌0, 𝑆𝑈2), 

… , 𝐸𝑚 = (𝑇𝑌0, 𝑆𝑈𝑚). The internal rectangles present the subtypes as part of an external 

higher-level rectangle. Additionally, due to the simplification, the arrows and numbers are not 

displayed in the subsequent tree figures, because the amounts of subtypes are addressed in 

the number of rectangles in a horizontal manner. The figure becomes more transparent and 

defined for complex systems, because of a consolidated representation, while not missing any 

information. A set of all subtypes 𝑆𝑈 represents a smaller scale of depiction. 

 
Figure 7: Type and subtypes tree as a diagram 

Different vertical hierarchical levels connect types and subtypes. Consequently, a server system 

tree is defined as shown in the following equations. 
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Equation 3: Tree definition 

∀𝑠:  𝑙(𝑠𝑢𝑏𝑡𝑦𝑝𝑒) = (𝑠𝑢𝑏𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒)   => 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 ⊆  𝑡𝑦𝑝𝑒 

𝑙(𝑠𝑢𝑏𝑡𝑦𝑝𝑒) = (𝑠𝑢𝑏𝑡𝑦𝑝𝑒, ∅)   => 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 =  𝑟𝑜𝑜𝑡 

𝑙(𝑡𝑦𝑝𝑒) = (𝑡𝑦𝑝𝑒, ∅)  => 𝑡𝑦𝑝𝑒 =  𝑟𝑜𝑜𝑡 

𝑙(𝑟𝑜𝑜𝑡):= (𝑟𝑜𝑜𝑡, ∅) 

If type or subtype has no parent, it is the root. The root type 𝑇𝑌0  is a subtype 𝑆𝑈2 parent; 

meanwhile subtype 𝑆𝑈2 also presents a sub subtype 𝑆𝑈22 parent. The children of 𝑆𝑈2 are 

{𝑆𝑈21, 𝑆𝑈22, … , 𝑆𝑈2𝑚}  with 𝑚 ∈ 𝑁0  as any natural number in 𝑁0 = {0, 1, 2, 3, … } . Each 

element 𝑆𝑈𝑖  of {𝑆𝑈1, … , 𝑆𝑈𝑛} and 𝑆𝑈𝑖𝑗  of {𝑆𝑈11, … , 𝑆𝑈𝑛𝑚}  are the root vertex for a new 

subtree and thus follow the same rules of Equation 3. 

 

Figure 8: Tree diagram 

Figure 9 represents a generic tree including: 

 Root type 𝑇𝑌0  with 𝑇𝑌0  ∈ 𝑇𝑌, 

 A set subtype 𝑆𝑈 = {𝑆𝑈1, … , 𝑆𝑈𝑛}, with   𝑆𝑈𝑖 ∈ 𝑆𝑈, 𝑇𝑌0, ∀𝑖 ∈ 𝑁0, 𝑆𝑈 ⊆ 𝑇𝑌0 , 𝑛 ∈ 𝑁0, 

 A set sub subtype 𝑆𝑈1 = {𝑆𝑈11, 𝑆𝑈12, … , 𝑆𝑈1𝑚}, with 𝑆𝑈1 ∈ 𝑆𝑈, 𝑇𝑌0 , 𝑆𝑈11 ∈ 𝑆𝑈1 ∈

𝑆𝑈,  𝑆𝑈1𝑖 ∈ 𝑆𝑈1, ∀𝑖 ∈ 𝑁0,   𝑆𝑈11 ⊆  𝑆𝑈1 ⊆ 𝑆𝑈,  𝑚 ∈ 𝑁0, 

 A set sub subtype 𝑆𝑈2 = {𝑆𝑈21, 𝑆𝑈22  … , 𝑆𝑈2𝑚}, and even subtype 𝑆𝑈𝑛 =

{𝑆𝑈𝑛1, 𝑆𝑈𝑛2  … , 𝑆𝑈𝑛𝑚}, 

whereas 𝑚, 𝑛 ∈ 𝑁0 are any natural number in 𝑁0 = {0, 1, 2, 3, … }. All subtypes 𝑆𝑈 are given as 

a set of {𝑆𝑈1, … , 𝑆𝑈𝑛}. Each member of 𝑆𝑈 can contain one up to 𝑚 sub subtypes or be an end 

vertex27  with no more children. All sub subtypes are a set of {𝑆𝑈11, 𝑆𝑈1𝑚, 𝑆𝑈21, 𝑆𝑈2𝑚, 

… , 𝑆𝑈𝑛1, 𝑆𝑈𝑛𝑚}
28.  

                                                           
27

 End vertex: leaf 
28

 Sub subtypes 𝑆𝑈𝑛𝑚: followed by The Universal Address System for a rooted tree [Che 2015] 
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Figure 9: Generic tree diagram 

Previously mentioned diagrams and trees define various terms, such as data centers, 

equipment, environments, servers, systems, and chip domains. This diagram terminology is 

also valid in the case of state description. In the state diagram, the rectangles are circles or 

rectangles with rounded corners, shown in Chapter 3.  

2.3 Data Centers 
Data centers (DC) are physical environments, plants, and facilities, which contain and provide 

Information and Communication Technologies (ICT). Data processing29 and distribution are the 

focus within large-scale enterprises. Data centers support all types of applications. Therefore, a 

pool of data-storage devices, network equipment, information technology infrastructure, and 

compute nodes are the main hardware resources. Wire cages, power supply, and workload 

management software (such as load balancer) support the data center functionality. 

2.3.1 Services 

Several data center providers30 offer computing power or storage services for sale. Specialized 

Application Service Providers (ASPs) focus on different equipment types. For instance, Amazon 

Web Services (AWS)31 offers a service for computing power called Amazon Elastic Compute 

Cloud (Amazon EC2)32 . Another service is the Amazon Simple Storage Service (Amazon S3)33 

which can store huge amounts of data. Data is expected to increase to 40000 Exabyte by 2020. 

Day by day, customers generate and store various data types. The mentioned services are 

usually cloud services. Cloud services combine different data centers over the Internet, 

regardless of where they are. Remote access and Internet connectivity enable decentralized 

environments, such as clouds. Most services are provided on demand and for a certain period 

only. In general, cloud providers deploy “Anything or Everything as a Service” (XaaS), such as 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). 

The infrastructure involves the underlying hardware equipment, such as memory systems and 

network devices. Amazon Web Services offer Infrastructure as a Service because they provide 

                                                           
29

 Processing: store and manage 
30

 Provider: Internet (ISP) -, Application (ASP)-, Full (FSP)-, Wireless Application (WASP) - Service Provider 
31

 AWS: http://aws.amazon.com/ 
32

 EC2: http://aws.amazon.com/ec2/ 
33

 S3: http://aws.amazon.com/s3/ 
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virtual resources, such as storage. A higher abstraction level is Platform as a Service, which 

provides an infrastructure and an advanced base runtime environment. Databases or web 

hosting services are examples where the customer does not care about the operating system. 

Google Apps34 is a well-known Platform as a Service provider. The application provides a web-

based e-mail program, an integrated calendar, and document creating and processing. 

Software as a Service provides end-user applications with standard interfaces. It offers access 

to a holistic environment, such as an application (Gmail, Yahoo correspondence) or social 

network (Facebook) containing infrastructure and platform parts. Data centers have different 

requirements due to their use case scenario. Decentralized services support this significant 

time progress through the virtual combination of various data center resources. 

2.3.2 Design, Equipment, and Domains 

Data centers are split into cabinet rows, including IT equipment, and other all-purpose areas 

with a multitude of various scopes, such as administration, management, and networking. 

General-purpose areas of responsibility, also known as key facility systems, are power 

distribution35, network (switches, routers), offices (desktop computers), security systems, 

management, administration, lighting, and Heating Ventilation Air Conditioning and 

Refrigeration Technologies (HVAC, HVACR). Hot and cold aisles containment is established 

between different rows in well-designed data centers, shown in Figure 10 and Figure 11. It 

reduces the mixing of hot and cold air, which further reduces the energy demand for electricity 

required for air conditioning. A row, containing large numbers of 19-inch rack enclosures, has a 

high equipment density, and a high airflow demand to cool the devices. The equipment density 

varies between the different facility area types. Consequently, power demands fluctuate in 

those areas as well as between data centers [TSX et al. 2003].  

 
Figure 10: Data center cabinet rows and others 

                                                           
34

 Google Apps: http://learn.googleapps.com/ 
35

 Power distribution: uninterruptible power supply (UPS) systems 
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Figure 11: Hot and cold aisle design in data center cabinet rows 

A 19-inch rack enclosure is a standardized format for data center equipment. It provides space 

for mounting many technical equipment modules and resources. Communication systems, 

backup equipment, and power distributors are peripherals in data centers. A compute node is 

hardware that is mounted upon the 1U rack unit36. One unit is the smallest unit that defines 

the height of a rack mount. The width is predefined, and comes either from the 19-inch or 

from the 23-inch rack enclosures. The length varies between 17.7 and 27 inches. Hardware 

resources and hence the used numbers of resources, their density and temperature 

development differ because of the various space required by the compute nodes within a rack. 

Compute nodes are server systems that give computing power for data processing or data 

storage. We describe further details in Section 2.4. 

 
Figure 12: Cabinet row structure 

Other enclosures are stand-alone systems, such as desktop, mobile, enterprise, or floor stand37 

computers. Floor stand computers support a higher computational and storage demand in 

comparison to desktop computers. They are a part of administration, security, and office 

areas. For illustrating purposes, Figure 13 shows the context between data center equipment. 

For example, stand-alone enclosures are a subset of other equipment within data centers. 

However, data centers include cabinet rows and rack-mounted enclosures as well. Memory 

and storage devices in rack-mounted enclosures are many times larger than in personal 

computers in order to handle and process the huge amount of data.  

  

                                                           
36

 1U: one rack unit, 1.75 inches (4.445 cm) high  
37

 Floor stand: also called tower or stand-alone 
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Network devices for the Internet or intranet connectivity are set up on the Top of Racks (ToR) 

to provide access to rack-mounted devices and to distribute data. A rack enclosure also 

mounts storage, input/output (I/O) devices, and power distribution.  

 
Figure 13: Compute node (server system) in data centers 

Rack-mounted compute nodes are server systems that are part of any row within a data 

center. Rack servers have a higher impact on the DC energy consumption because of their 

huge number within cabinet rows and the high computing equipment density. The rack server 

rate within a rack-mounted enclosure is about 40 to 45 percent in all server rooms in German 

data centers, with 11 up to 100 servers between 2008 and 2010 [HFS 2010]. In contrast, the 

rack server rate increased to 60 percent in data centers, with up to 5000 servers or larger. 

Furthermore, rack servers have a market share of about 53 percent, whereas the blade 

servers, revenue share of total market was 21 percent in the fourth quarter of 2013 [Neb 

2014]. Servers with about 80% produce the main energy consumption in data centers. 

Network or storage devices, both consume the same quantity of energy, was about 10 percent 

at a data center in 2008 as well as in 2015 [HFS 2010]. Consequently, rack-mounted server 

systems constitute the focus of this thesis.  

The rack server location within a row or data center does not matter, because the thermal and 

power aspects are abstracted. Incoming tasks, jobs, or services, be it in a virtualized or non-

virtualized system, are grouped together as environment conditions. Furthermore, the 

environment summarizes all external influences and equipment around the rack-mounted 

server system. Scheduling and placement algorithms are not covered. Additionally, data 

centers, cabinet rows and rack enclosures are part of the environment domain. 
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Table 2: Domains, system domain, and examples 

Complexity  
level 

Domain System  
domain 

Examples 

High Data center Environment Workloads, jobs, queue, tasks, 
services, rows, hypervisor / virtual 
machine monitor, lighting 
equipment, infrastructure 
equipment 

 Cabinet row, others, 
rack enclosure 

Environment Network equipment, storage 
equipment, server 

 Compute node, 
server System, 
component 

System Components (processor, memory, 
bus), software (operating System, 
firmware, BIOS/UEFI, compiler), 
architecture (cores, pipelines, 
caches, switching activities, 
process, interfaces, protocols), 
electronic system level (ESL), 
power supply, connectors 

Low Chip Physical 
(Chip) 

Circuit, transistor, gate, logic, 
design, FPGA, ASICs 
register-transfer, geometry, 
topology 

 

The following section describes various server system types, starting at supercomputers and 

getting progressively smaller to the point of being a server system. Supercomputers are 

specialized for one application or a small amount of applications in comparison to data 

centers. 

2.4 Compute Node Types 

2.4.1 Supercomputers, Mainframes, and Servers 

Specialized IT systems are supercomputers, mainframes, and servers. The Chinese 

supercomputer called Tianhe-2 is the most powerful supercomputer38 in the TOP50039 ranking 

from June 2014. It has a power demand of approximately 18 megawatts providing a 

performance of nearly 34 Peta FLOPS, measured by the Linpack benchmark. This type of 

system is specialized for high computing power, usually for a certain application. Particular 

tasks, such as simulation, modeling or complex computations, are the focus of such systems 

and include typical application fields such as nanotechnology, human science, or disaster 

prevention. OCuLUS40 is another high-performance computer at the University of Paderborn. 

                                                           
38

 Supercomputer: high-end computer 
39

 TOP500: http://www.top500.org/lists/2014/06/ 
40

 OCuLUS: http://pc2.uni-paderborn.de/hpc-systems-services/available-systems/hpc-cluster/ 
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The data center at the Paderborn Center for Parallel Computing (PC²) provides computing 

power to its users. The system’s theoretical peak performance is about 200 Tera FLOPS. Power 

information on this system is not available. Nonetheless, power and performance are 

significant factors of supercomputers. 

In comparison to supercomputers, mainframes are smaller systems. Usually, mainframe 

performance is measured in millions of (machine) instructions per second (MIPS). Intel 

architecture instructions are integer, floating-point, and system instructions. Integer 

instructions handle arithmetic (ADD, SUB) and logic (AND, OR) operations. The processor’s 

floating-point unit (FPU) executes instructions in either floating-point (real) or integer. System 

instructions support operating systems via specific commands (MOV). Therefore, MIPS and 

FLOPS are not comparable to each other. Mainframe servers run many applications and are 

specialized in data movements, resource processing, and transactions. Mainframes handle 

huge amounts of input and output data. Enterprise businesses, such as a data warehouses, 

integrate an Enterprise Information System (EIS), which stores general company data and 

controls access to them. 

The smallest computational nodes within a data center are servers, which support any kinds of 

applications and operating systems. Servers manage and give access to a network or 

centralized environment. Depending on the requirements on the server, the server 

performance is measured using various types of benchmarks. A typical processor benchmark is 

SPEC CPU41, which compares compute-intensive operations. On the other hand, SPECpower42 

evaluates the power versus performance. According to the US Environmental Protection 

Agency a new server efficiency benchmark was developed, namely. The Server Efficiency 

Rating Tool (SERT)43 combines power and performance demand over a specific period.  

Servers are physical devices in large-scale enterprises, also known as data centers. They have 

different computing and data processing capabilities because of their various types: the four 

most well-known types being database, web, image, and application servers [IIZ et al. 2007]. 

Databases handle the huge amount of user and application data, process and store it. DB244 or 

MySQL45 are examples of common databases. With web servers, this data is available on the 

Internet. The third type, the application server focuses on generic purpose software. 

Application servers support running certain applications and offer a range of services, such as 

e-learning, sales or search engines. Specialized infrastructure servers distribute the processing 

load between the various standard server types. The server equipment depends on their use 

cases and usage models, which are based upon their application types and communication 

levels. The authors of [DEP et al. 2009] describe the various server types considering the sub-

                                                           
41

 SPEC CPU: Central Processing Unit, http://www.spec.org/benchmarks.html#cpu 
42

 SPECpower: http://www.spec.org/benchmarks.html#power 
43

 SERT: http://www.spec.org/sert/ 
44

 DB2: http://www-01.ibm.com/software/data/db2/ 
45

 MySQL: http://www.oracle.com/us/products/mysql/overview/index.html 
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components that have the most impact on server performance. Therefore, different resources 

and configurations are available. Other examples of server types are gateway, mail, game, and 

print servers. All of these types can be virtualized and may become equipment in a cloud.  

On the other side, chassis types classify servers. Tower servers are not mountable in rack 

enclosures. They are usually part of small- and medium-scale enterprise facilities. Data centers 

contain blade and rack servers. A blade chassis is a 19-inch rack-based enclosure, as shown in 

Figure 14. It provides slots for mounting several devices, offers a high equipment density, and 

has special features, such as a prewired chassis and shared components like as a power supply 

unit (PSU), fans, and network devices. The system is ready for plug and play. Blade servers, 

storage and interface devices are based upon a special slot format. A blade server is a 

computational node containing a processor, memory, input/output devices, and sometimes 

storage. In common usage, the term blade or blade server stands for a rack-mounted blade 

enclosure.  

 
Figure 14: 19-inch rack enclosure 

A rack server is comparable with a slot-based blade server. In either case, the regular 

equipment, such as processors, memory or input/output devices, are part of the physical 

device. In contrast to blades, a rack unit integrates storage, fans, and power supply units. A 

compute node is an assortment of various components. Each compute node type contains 

components that focus on a) high performance, b) safe and reliable operations, or c) low-cost. 

Consequently, the power consumption of the server differs between these types. Rajamani et 

al. sum up the server power breakdowns for various compute node types [RLG et al. 2008]. 

The most frequent reason for server power breakdowns of supercomputers (a) is the power 

subsystem. Cooling and input/output components cause fewer problems of supercomputer 

crashes. Mainframe servers (b) are more affected because of insufficient cooling. Standard 

servers (c) have the most problems with power breakdowns due to their high memory and 

processor power consumption, as shown in Table 3.  
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Table 3: Normalized server power breakdown for various classes/types [RLG et al. 2008] 

 Compute node type Normalized server power breakdown [%] 
  Power 

Subsystem 
Cooling Input / 

Output 
Memory Processor / 

Cache 

a) Supercomputer, 
high-end computer 

35 10 10 15 30 

b) Mainframes 30 20 30 5 15 
c) Server (HPC, rack) 23 7 5 20 45 
c) Server (blade) 23 5 7 10 55 

 

This short introduction featured various types of computing equipment, from supercomputers 

to server systems. Because this thesis focuses on server systems with a rack format, the next 

section will formalize a system and address all major components. 

2.4.2 Rack Server Systems 

This following section defines a rack server system. The specific characteristics are not 

complete and show the possible parts of a system model. Explicitly used characteristics are 

described in Section 3 and Section 5. Additionally, related definitions are described in MATLAB 

notation. 

A rack enclosure mounts a compute node, for instance, which is called a system, see (2.29). A 

rack system is a computational node in a rack format. In general, this is known as a rack server 

and performs computational work.  

system  = [{'compute node'}] (2.29) 

rack system = [{'rack server system'}] (2.30) 

In the remainder of this thesis, a system is always a rack server, defined as an overall system. A 

system  𝑆 has 𝑜𝑛𝑒 up to 𝑛 parts 𝑆 with 𝑛 ∈ 𝑁0 as any natural number 𝑁0 = {0,1,2,3,… }. In 

general, a system 𝑆 is defined as a vector 𝑆 = {𝑆1, … , 𝑆𝑛}. Equation (2.31) shows the same 

definition in MATLAB notation46. The vector length is equal to the used amount 𝑛 of parts 𝑆. 

Software and hardware are part of the system, as shown in (2.32). In this example, the system 

has only two major elements. 

system = [S1 S2 … Sn]  

 = [{'S1'} {'S2'} … {'Sn'}] (2.31) 

system = [{'hardware'} {'software'}] (2.32) 
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 MATLAB notation: labels cannot include spaces, using hyphens instead of 
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A system executes software. An operating system (OS) provides communication between the 

software and hardware. The standardized application programming interface (API) supports a 

considerable independence of software and hardware manufacturers. Cloud and virtualization 

software suppliers benefit from this approach. Various application software types result in 

complex combinations of computing, network, and storage demand. Processor benchmarks 

generate different behavior and power consumption in comparison to virtualization 

benchmarks. This thesis provides realistic application-specific scenarios. Therefore, input data 

abstracts and defines different application software types. In this thesis, software is defined as 

𝑆𝑊 = {𝑆𝑊1, … , 𝑆𝑊𝑛}, as shown in (2.33). 

software  = [SW1 SW2 … SWn]  

 = [{'SW1'} {'SW2'} … {'SWn'}] (2.33) 

software  = [{'operating-system'} {'BIOS-UEFI'}  

  {'firmware'} {'application software'}  

  {virtualization'}] (2.34) 

Other software parts, shown in (2.34), are server-specific. Firmware is an embedded operating 

system running on a server-specific baseboard management controller (BMC), which provides 

management and monitoring capabilities to observe the health and system status. Another 

motherboard chip or flash device provides the Basic Input Output System (BIOS) and its 

successor, the Unified Extensible Firmware Interface (UEFI). Both are types of embedded 

application software.  

On the other hand, hardware is any physical device that is mountable in a system. Hardware 

can have many devices and is defined as 𝑆𝐻 = {𝑆𝐻1, … , 𝑆𝐻𝑛} . Hardware distinguishes 

between three generic types, as shown in (2.36). The size of a rack server defines the 

mountable and suitable hardware devices for this system. 

hardware  = [SH1 SH2 … SHn]  

 = [{'SH1'} {'SH2'} … {'SHn'}] (2.35) 

hardware   = [{'component'} {'connector'}  

  {'power-supply'}]  (2.36) 

A power supply provides electrical power for hardware and electrical circuits (chips). A power 

supply unit converts incoming alternating current to direct current on different power levels, 

such as 3.5 or 5 volt. A power supply is defined as 𝐻𝑃 = {𝐻𝑃1, … , 𝐻𝑃𝑛}, see (2.37). 

power-supply  = [HP1 HP2 … HPn]  

 = [{'HP1'} {'HP2'} … {'HPn'}] (2.37) 



Background 

 

 

 
34 

 

Connectors are system busses, internal connectors, and external connectors, which are part of 

a system and connect several components. Busses and caches influence the system 

performance because of their throughput and latency while processing the data. Busses are 

not configurable by the consumer and have a constant power consumption of nanowatts or 

microwatts. Caches are part of the architecture design of a device, such as processor caches or 

cache lines. The higher the number of cache misses, the smaller the data performance, and the 

power consumption ultimately grows because of increased repeated requests. All power 

values lower than watts are considered as static power. Consequently, the single power values 

of connectors are negligible. 

The frontside bus47 (FSB) connects the processor with the system chipsets, main memory and 

other peripherals. Other typical data busses are the peripheral component interconnect (PCI), 

the peripheral component interconnect express (PCIe), the inter-integrated circuit (I2C), the 

system management bus (SMBus), the power management bus (PMBus), the intelligent 

platform management bus (IPMB), and the intelligent chassis management bus (ICMB). These 

internal busses also support internal connectors, such as the front panel and the main power 

connector. Other external connectors in the case of the front and rear side are serial48, video49, 

and network50 connectors. Connectors are defined as 𝐻𝑂 = {𝐻𝑂1, … , 𝐻𝑂𝑛}, as shown in the 

following equation: 

connector  = [HO1 HO2 … HOn]  

 = [{'HO1'} {'HO2'} … {'HOn'}] (2.38) 

Connectors and busses are integrated on the motherboard and are not changeable. This setup 

is fixed after the design phase. The motherboard is part of the component definition. External 

devices, connected via PCI or PCIe, are not in the focus of this thesis. Part of the system 

hardware is 𝑆𝐻 = {𝐻𝐶,𝐻𝑂,𝐻𝑃}, see Figure 15. 

                                                           
47

 Frontside Bus: equal to processor/memory/system bus 
48

 Serial connector: COM / RS232 
49

 Video connector: VGA 
50

 Network connector: LAN, RJ45 
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Figure 15: System hardware 𝑺𝑯 (component 𝑯𝑪, connector 𝑯𝑶, power supply 𝑯𝑷) and software 𝑺𝑾 

The system definition characterizes the used hardware resources and configuration. Software 

executed on the system is summarized as an application; in contrast, embedded software is 

abstracted as a configuration. The software vertex of the tree depicts the input parameters of 

the system model. Further details are described in Section 5. 

 
Figure 16: System levels (components, power supply and connectors) 

Components 𝐻𝐶 are real physical parts of the system hardware. The enclosure is part of the 

hardware but already predefined within our system definitions. Component 𝐻𝐶 divides n 

subtypes 𝐻𝐶 = {𝐻𝐶1, … , 𝐻𝐶𝑛}, see (2.39). In our example (2.40) components are add-in, 

onboard, or system-board components.  

component  = [HC1 HC2 … HCn]  

 = [{'HC1'} {'HC2'} … {'HCn'}] (2.39) 

component  = [{'system-board'} {'onboard'} {'add-in'}] (2.40) 
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Add-in components 𝐶𝐴  are divided into 𝐶𝐴 = {𝐶𝐴1, … , 𝐶𝐴𝑛} . They are specific to the 

customer, with any amount as long as it is compatible with the server system and connectors. 

System fans, drive bays (optical drives51), local view panel, and expansion cards (network and 

graphic cards) are examples of add-in components. This differs between server types and is 

not the focus of this thesis. 

add-in  = [CA1 CA2 … CAn]  

 = [{'CA1'} {'CA2'} … {'CAn'}]  (2.41) 

add-in  = [{'expansion-card'} {'drive-bays'}  

  {'system-fan'}] (2.42) 

Onboard components 𝐶𝑂 are defined as 𝐶𝑂 = {𝐶𝑂1, … , 𝐶𝑂𝑛}. These types are not changeable 

and are provided directly via the hardware, such as the motherboard. Hardware predefines the 

amount and type of capacitors, transistors, and inductors. Onboard components are all either 

through-hole devices (THD) or surface-mounted devices (SMD). Temperature and voltage 

sensors are fixed onboard. Examples of controllers are Ethernet, baseboard management 

controllers (BMC), or standard north/south bridges. The consumer cannot adapt or change 

these onboard components. 

onboard   = [CO1 CO2 … COn]  

 = [{'CO1'} {'CO2'} … {'COn'}] (2.43) 

onboard  = [{'controller'} {'read-only-memory'}  

   {'capacitor'} {'transistor'} {'chipset'}  

   {'inductor'} {'integrated-circuit'}  

   {'regulator'} {'led'} {'sensor'}] (2.44) 

In contrast, system-board components can be easily manipulated in a straightforward manner. 

(Related approaches are described in Section 3.) System-board components 𝐶𝑆 are defined as 

𝐶𝑆 = {𝐶𝑆1, … , 𝐶𝑆𝑚} with 𝑚 ∈ 𝑁0 as any natural number 𝑁0 = {0,1,2,3,… }, see (2.45). These 

components are changeable because of their standardized interfaces, connectors, and busses. 

Otherwise, they are partly predefined by the motherboard. The motherboard supports only 

special sockets, controllers, or busses. Examples of mandatory system-board components are 

the central processing unit (CPU), random-access-memory (RAM), input/output devices such 

as hard disk drives (HDD), etc.  

  

                                                           
51

 Optical: CD, DVD, or Blu-ray 
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system-board  = [CS1 CS2 … CSm]  

 = [{'CS1'} {'CS2'} … {'CSm'}] (2.45) 

system-board  = [{'processor'} {'memory'} {'fan'} 

 {'input-output'} {'others'}] (2.46) 

The described component types differ in their variability, power range, and dependencies. The 

vendor predefines the onboard components, which are neither changeable nor configurable 

on the system, and consumes the lowest power. On the other hand, add-in and system-board 

components are individually selectable. They depend on the provided connectors, busses, or 

slots, which rely on the system-board architecture and generation. System-board and add-in 

components consume even more power in comparison to onboard components. At system 

deployment, the processor and memory are mandatory elements during the configuration 

phase. Consequently, system-board components are the main part of system configuration 

and deployment. Add-in components are optional elements with a separate order process at 

any time. Table 4 summarizes the differences between component types. 

Table 4: Comparison component types (system-board, onboard, add-in) 

Component Variability Power [W] Dependency 

Add-in Individually 
selectable 

101…103 Connector, slot, port, bus 

Onboard Predefined 
by vendor 

10−9…101 Bus 

System-board Individually 
selectable 

10−3…103 Architecture (system-board), controller, 
chipset, socket, slot, port, bus 

 
Some system-board components, such as input/output devices, are optional as well. We 

divided the system-board components into five major categories, see Equation (2.46). The 

processor category includes all processing unit devices. The term memory refers to all physical 

memory device types. The input/output category contains all storage and communication 

hardware. Internal hard disk drives (HDD), solid-state drives (SSD), or InfiniBand52 are part of it. 

Fans are cooling devices that are controlled by temperature algorithms. Parts of other system-

board components are optional input devices (keyboard, mouse), expansion cards, and the 

system motherboard itself. The motherboard provides several essential onboard mounted 

components, such as BMC. Figure 17 provides a diagram about component types as well as 

system-board categories, which are further described in Section 5. 

                                                           
52

 InfiniBand: http://www.infinibandta.org/ 
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Figure 17: Component (component 𝑯𝑪, add-in 𝑪𝑨, onboard 𝑪𝑶, system-board 𝑪𝑺) and system-board categories 

The system definition is applicable and adaptable for blade server, stand-alone servers, or 

embedded systems as well. For other server types than rack servers, the characteristics of 

components differ. Many blades within a blade enclosure use, for instance, a shared power 

supply. Moreover, devices have special form factors compared to rack servers. A blade server 

does not include the same amount of connectors compared to a rack-based system because of 

the pre-wired backplane. A blade enclosure can contain more specialized-components because 

of a higher enclosure size and smaller device formats.  

In summary, the hierarchical abstract structure of a rack-mounted server system S is defined 

by the following components: 

 Software 𝑆𝑊 

 Hardware 𝑆𝐻 

o Components 𝐻𝐶 

 Add-in 𝐶𝐴 

 Onboard 𝐶𝑂 

 System-board 𝐶𝑆 

o Connectors 𝐻𝑂 

o Power supply 𝐻𝑃 

Figure 18 shows the abstract server definition as tree 𝜃 with various levels: for example, 

components 𝐻𝐶, connectors 𝐻𝑂, and power supply units 𝐻𝑃 are part of the system hardware 

resources 𝑆𝐻. In contrast, software 𝑆𝑊 is not divided into detail. Furthermore, components 

𝐻𝐶 include three defined hierarchical component levels: add-in 𝐶𝐴, onboard 𝐶𝑂, and system-

board components 𝐶𝑆, which are denoted by 𝐻𝐶 = {𝐶𝐴, 𝐶𝑂, 𝐶𝑆}. The diagram shows an extra 

level at the bottom, which in turn reflects several subtypes. 
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Figure 18: Hierarchical server system definition 

In this section, we consider the hierarchical structure of the rack-mounted server system in our 

concept, in which we define the aspect-based component models as part of our server system 

configuration tree. 

2.5 Summary 
We develop our multi-aspect full-system model by using MATLAB and Simulink. In Section 2.1, 

we briefly describe MATLAB, Simulink, and its corresponding syntax. In particular, we specify 

the fundamental terms of this thesis, such as the energy efficiency that we further consider as 

the performance-to-power ratio. In our evaluation, we use the performance scores of the 

particular benchmarks that rely upon the utilization levels of the components. The server 

system is a compute node in a data center, more precisely in a cabinet row that is usually 

equipped within a rack-mounted enclosure to provide computing power for data processing. 

The most well-known server types are database, web, image, and application servers in which 

the power consumption significantly differs. Moreover, we abstractly define our rack-based 

server system as a hierarchical structure (tree 𝜃) that mainly constitutes software 𝑆𝑊 and 

system hardware resources 𝑆𝐻. We further divide the hardware into the components 𝐻𝐶, 

connectors 𝐻𝑂 , and power supply units 𝐻𝑃 . We concentrate on the system-board 

components, as part of 𝐻𝐶, which we divide into the following categories: processor, memory, 

input/output, fan, and others. The specified configuration tree builds the base of our multi-

aspect full-system model. 
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3 Basic Modeling Technologies, Algorithms, and Approaches in 

Academic Research and Industrial Practice 

Peak power consumption and energy efficiency are key economic aspects of server system 

design and its field of application. High peak power values lead to waste energy and an over-

provisioning of server systems. High energy consumption results in a huge thermal increase, 

especially in data centers, which increases the level of carbon emissions as well as the costs 

associated with air-conditioning and cooling. Algorithms, such as dynamic voltage frequency 

scaling (DVFS), influence the power and energy consumption of server systems, yet reduce the 

performance of the server system at the same time. An aim of this thesis is to model a 

prototype of a server, including separated single components to analyze the peak power 

consumption and thermal expansion. This thesis addresses specific power, performance, and 

thermal models to analyze the energy efficiency of diverse management strategies and server 

configurations. Energy efficiency aims at minimizing the power consumption by maximizing the 

performance under thermal constraints. The following sections introduce various technologies, 

models, and algorithms. 

This chapter provides a brief overview of object-oriented modeling techniques. It also outlines 

some basic modeling techniques and software development processes followed by the intent 

and purpose of these models. The following section describes various modeling techniques 

ordered by data, control, and process specification. The model domain influences the model 

objectives and the stakeholder’s point of view. The stakeholder53 defines the main aspects, 

priorities, and metrics to verify and confirm the model. Furthermore, we outline the use cases 

of simulation-based and measurement-based models. The classification of the model depends 

on the focus at diverse target domains (e.g., power/energy, thermal, and performance) and 

may change because of power versus cost awareness. The following subsections describe the 

server system models and simulations. Afterwards, the gap between academic research and 

theoretical approaches is stated. A table summarizes the used models, considerations, and 

algorithms. Afterwards, the use case scenarios describe the relevance and significance. They 

differ with their fields of application. Many companies and customers developed vendor-

specific tools for special requirements and functionality. We identify and formulate the aim of 

this thesis and corresponding problem statement on the basis of proposed techniques, 

practical realizations, and industrial background. 

  

                                                           
53

 Stakeholder: user, customer 
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3.1 Modeling Techniques and Domains 
Various modeling techniques and software development processes are a part of software 

engineering and design to ensure high-quality software. Classic software-development 

processes are the waterfall model and V-model [Lin 2001]. These processes describe the 

development phases of a system, support design, and system decomposition in the lifecycle 

stages. Rumbaugh developed an object-oriented modeling technique (OMT) that builds up a 

system in an analysis, design, and implementation phase [Rum 1991]. The system is 

transformed into an abstract and structured representation in any manner. The aim of these 

techniques is to separate between behavior and implementation54. Furthermore, the abstract 

description improves communication among diverse stakeholders. Lifecycle costs decrease 

because of the stakeholders’ better understanding of the design implications, risks, or 

dependencies [Lon 2012]. 

Rumbaugh proposes three main types of OMT: the object, dynamic, and functional models, 

which may be the basis of technical decisions because of system definitions. The characteristic, 

hierarchy, or usage of a system is defined without any implementation details. An object 

describes the static structural representation of a system, its architecture and components. 

Classes model the systemic aspects, including attributes and methods; whereby objects are 

built according to that definition. Additionally, associations 55  describe the relationships 

between classes to ensure traceability. The communication among objects, also called 

interaction, is part of a dynamic model. Furthermore, the model describes the conditions like 

how an object changes from one state to another. The changeover between various states is a 

transition, which executes when an external event or action occurs. The functional model 

includes the flow of information through the system because of the event. These three 

specification models became standard analysis models in object-oriented software 

engineering. Using diverse views is an efficient method of presenting complex systems [Tep 

2010]. If we completely describe the system, a model becomes an effective prototype [Lon 

2012]. Accordingly, the model support designs decisions, changes and also error detections, 

while checking consistence, correctness, completeness, or relationships. The stakeholder 

detects problems and trade-offs in early design phase, which reduces errors, development 

times, and costs [BCC et al. 2014]. The following sections describe the basic approaches to 

each specification phase. 

  

                                                           
54

 Concept: separation of concerns 
55

 Associations: between classes on model level, links: between objects on instance level 



Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial 

Practice 

 

 

 
42 

 

3.1.1 Object Specification 

The object specification phase aims at analyzing the structure of the system [EG 2000]. A 

standardized approach56 is a class and object diagram of the unified modeling language (UML). 

Data elements, also called objects, show the system in an abstract and variable type by hiding 

information specifics, which conceal implementation details [Sir 2007]. In such a case, common 

object classes, sometimes called concepts, generalize a set of data objects. Associations 

represent the relationship between objects or classes57. Subclasses and superclasses generalize 

this relationship. Figure 19 shows the superclass component of a server system, which has 

three subclasses: system-board, onboard, and add-in. 

 
Figure 19: Class diagram – components 

The superclass component has two private attributes, width and length, which define the 

component floor space58. Additionally, the operation size() provides a public interface to get 

floor space information. The three subclasses inherit width, length, and size() but have 

specialized properties, such as height, bus, or port. Each class can provide various interfaces, 

features, attributes, or operations, such as calculating the volume() for the purpose of area 

planning. Based on graphical notations, the system is hierarchically in this diagram. The 

corresponding structure and data aspects of a system depend on the selected diagram type59. 

The data object specification represents the static system; the control specification introduces 

dynamic system behavior.   

                                                           
56

 Standardized approach: using a modeling language 
57

 Associations in diagrams: represented as arrows 
58

 Floor space: base area (horizontal space) 
59

 Data object diagrams: class, object, package, component, profile, deployment, or subsystem 
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3.1.2 Control Specification 

Control specifications define the interaction and communication between objects. In 

comparison with data object specifications they contain extra information and various control 

aspects. The dynamic functionality, for instance, behavior or message interchange, is an 

abstract sequence diagram or other manners60. A state or transition approach covers the 

behavioral perspective as well. A state machine indicates the system behavior61, a specific 

system state at any given point in time, whose state changes in response to an external 

occurring event or action [Oli 2007]. A transition represents the relationship from one state to 

another [HS 1997]. If there is decomposition of the system into subsystems, it shows the 

interaction between subsystems and events. A finite state machine (FSM) describes the states 

and transitions, which is furthermore a deterministic finite automaton (DFA). A 5-tuple 

𝐴 = (𝑄, 𝛴, 𝑇, 𝑞0, 𝐹) represents a deterministic finite automaton where the components are as 

follows [HMU 2001]: 

Component Description Example (Figure 20) 

𝑄 A finite nonempty set of internal states 𝑄 = {𝑠1, 𝑠2} 

𝛴 A finite set of input symbols (alphabet)  𝛴 = {0,1} 

𝑇 A state transition function 
𝑇:𝑄 × 𝛴 → 𝑄 

𝑡𝑖𝑗 ∈ 𝑇 

𝑞0 An initial (start) state  
𝑞0 ∈ 𝑄 

𝑞0 = 𝑠1  

𝐹 A set of final (accepted) states 
𝐹 ⊆ 𝑄 

𝐹 = {𝑠2} 

 

The previous description provides the example of Figure 20, which shows a state transition 

diagram (STD). A state transition diagram describes a deterministic finite automaton. States 

and their changes are major components of this diagram type62. A state specifies each object 

modality in a certain static situation. A transition defines a state change, including various 

operating conditions. Figure 20 has two states (𝑠1, 𝑠2) and their corresponding transition 

𝑇:𝑄 × 𝛴 → 𝑄 referred by input events 𝛴 = {0,1}. The transition functions 𝑡𝑖𝑗 ∈ 𝑇 are a set of 

triple (𝑠, 𝑖, 𝑠′) with 𝑠, 𝑠′ ∈ 𝑄  and 𝑖 ∈ 𝛴. The triple consists of the current state 𝑠, the input 

event 𝑖 and the resulting next state 𝑠′. 

                                                           
60

 Control diagrams: activity, sequence, communication, timing, or state (transition) machine 
61

 System behavior: glass box with internal structures 
62

 Diagram representation: states represented as circular or rectangular, changes represented as arrows 



Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial 

Practice 

 

 

 
44 

 

 
Figure 20: State transition diagram (STD) 

In the case of Mealy machine description, each transition function is defined by a current state 

𝑄 as well as an input symbol  Σ which returns a state 𝑄. A finite set of state transitions labels 

each state transition 𝑇. In this example, all transition functions 𝑡𝑖𝑗 ∈ 𝑇: 𝑄 × 𝛴 → 𝑄 are within 

a transition table. Table 5 specifies the state changes of Figure 20. A transition 𝑡12 describes 

the state change from 𝑠1 to 𝑠2
63 and is defined as 𝑡12 = 𝑠1 → 𝑠2, where a transition 𝑡11 does 

not mean any state change. The transition functions are: 𝑇(𝑠1, 0) = 𝑠1 , 𝑇(𝑠1, 1) = 𝑠2 , 

𝑇(𝑠2, 0) = 𝑠1, and 𝑇(𝑠2, 1) = 𝑠2. 

Table 5: Transition table and transition functions (Figure 20) 

    𝑡𝑖𝑗  Set of triple Transitions 

  Symbols Σ  𝑡11 (𝑠1, 0, 𝑠1) 𝑇(𝑠1, 0) = 𝑠1 
 𝑇(𝑄 , 𝛴) 0 1  𝑡12 (𝑠1, 1, 𝑠2) 𝑇(𝑠1, 1) = 𝑠2 

Current 
State 

𝑠1 𝑠1 𝑠2  𝑡21 (𝑠2, 0, 𝑠1) 𝑇(𝑠2, 0) = 𝑠1 

𝑠2 𝑠1 𝑠2  𝑡22 (𝑠2, 1, 𝑠2) 𝑇(𝑠2, 1) = 𝑠2 
 

Figure 20 shows, for instance, the system states of a server. In practice, a server system state is 

off (𝑠1) and a power button event occurs (𝑖 = 1). The transition function 𝑇(𝑠1, 1) = 𝑠2 

defines the system behavior. The server switches to (𝑠2) only in case of being in (𝑠1) and when 

an input (𝑖 = 1) occurs. The state of the system changes from 𝑠1 to 𝑠2. Otherwise, if there is 

an event zero, the server stays in 𝑠1 and nothing changes 𝑇(𝑠1, 0) = 𝑠1. As long as no other 

action occurs, the system stays in the same state. Overall, the state-based approach is the 

major element of the control specification. The authors of [DFM 2000] give detailed 

information about formalized state machines, their semantics, and a state transition diagram 

of a Mealy machine. Control specifications use state machines. Another aspect is how the 

interaction and communication works. 
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 Transition function: note, the transition 𝑡12 can also occur in another DFA case if a 0 or 1 occurs 
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3.1.3 Process Specification 

Process specifications provide functional models for dynamic system behavior descriptions. 

They focus on the data and information flow through a system because of a previous event. 

Furthermore, process specifications indicate the data and information transformation and 

interaction and also address the information system’s functionality. A data flow diagram (DFD) 

is a graph that shows the flow of data values without any time or control information and its 

functions that send and transfer data [LD 2000]. It is a top-down process with a gradual 

refinement, which includes the high-level functionality of a system. Figure 21 illustrates a 

simple data flow diagram. The size of a system determines how much floor space a printed 

circuit board (PCB) requires. The server volume is calculated by taking the height into account, 

whereby server dimensions64 are predefined at the design process. Both the size and the 

volume are required in floor planning tools and the simulation of the computational fluid 

dynamics (CFD) of data centers to plan the sizing and ventilation65. 

   
Figure 21: Data flow diagram (DFD) – size and volume data flow 

Data flow diagrams are part of the structured analysis/structured design (SA/SD) approach 

[LPT 1994, Kur 2008]. Additional diagram types66 support the process specification and define 

the information flow. The interaction and communication of the system are part of the control 

specification. Data object specifications define the static representation of the system. 

Accordingly, the alternative designs and concepts use the model components of all 

specifications, while ensuring consistency and traceability. Developing similar system models 

reduces time and costs by re-using model components [BCC et al. 2014, Lon 2012]. 

  

                                                           
64

 Dimension: height (1U,2U,4U), width (19-inch, 23-inch), length (17.7 or 27 inches) 
65

 Ventilation: rack- or row-oriented cooling 
66

 Process diagrams: flowcharts, pseudo code, entity-relationship diagrams, or data flow diagrams 
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3.1.4 Modeling Domains 

State machines, flow diagrams, and block diagrams support system specifications, which are 

common in a wide range of modeling domains. Figure 22 shows the five major domains 

defined within the literature [Osi 2010]. Andersson additionally divides the domains, including 

information, and physical objects and focuses on their major usage or architecture [And 2009, 

And 2012]. The generic modeling domains are described as follows: 

1. The physical domain includes objects that describe technical (physical) systems and 

their designs. The domain includes electrical (power, energy, performance, efficiency), 

mechanical (motor, rotation), or thermal (heat transfer) systems.  

2. Processes, processing structures, activities, operations, architectures, or interactions 

are part of the logical domain.  

3. The conceptual domain provides the objects, functional descriptions, workflows 

(control flow), or information of the system. 

4. The contextual domain focuses on system usages, services, or requirements that are 

part of the conceptual as well as the external domain.  

5. The purposes and constraints are defined in the external domain because of 

predefined vendor limitations, rules, or policies for modeling. Furthermore, the 

stakeholders influence the model design because of various points of views. 

 

 
Figure 22: Definition of modeling domains [Osi 2010] 

Stakeholders such as the planner, owner, designer, builder, or subcontractor focus on defined 

modeling domains from top to bottom. For instance, designers focus on the logical system 

level; in contrast, builders concentrate on the physical level. The defined modeling domains 

are also part of Zachman’s framework that describes the stakeholders and their various 

perspectives involved in the planning or building phases of the system [PS 2004]. The 

developers consider various design aspects depending on the role. 
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3.2 Model Objectives, Characteristics, and Criteria 
The previous section identified established modeling techniques to deal with various design 

aspects. The following section describes model objectives, characteristics, and criteria. The 

overall modeling aim is to build up a physical system. A continuous physical system can be 

characterized by a model using differential equations 𝑢(𝑡). A model 𝑢̃(𝑡) should behave like 

the represented system 𝑢(𝑡) would in the real world. The equations 𝑢̃(𝑡) are an abstraction of 

the model 𝑢(𝑡). Both functions 𝑢̃(𝑡) and 𝑢(𝑡) describe system behavior. A model is adequate 

only under defined criteria. For instance, the area 𝐴 between 𝑢̃(𝑡) and 𝑢(𝑡) are calculated via 

the integral of the differential function 𝑈(𝑡) = 𝑢̃(𝑡) − 𝑢(𝑡), shown in Equation (3.1). The real 

and represented systems are identical when area 𝐴 is zero, which is not the case in practice. 

Thus, the customer specifies the criterion 𝑎, which decides when a model is adequate or not. 

The model is suitable if the area 𝐴 is lower than the criterion 𝑎. 

𝐴 = |𝑈(𝑡)| = ∫|𝑈(𝑡)|𝑑𝑡 = ∫|(𝑢̃(𝑡) − 𝑢(𝑡))|𝑑𝑡

∞

−∞

∞

−∞

 

𝐴 = {
< 𝑎,              𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒
≥ 𝑎,     𝑛𝑜𝑡 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒

 (3.1) 

The represented physical system u is defined as a time-continuous system and contains time-

continuous67 values 𝑥(𝑡). In practice, the input signal 𝑥(𝑡) is a continuous value series over 

continuous time. An alternative description of the system is time-discrete68 𝑥[𝑛], with n as any 

natural number 𝑛 ∈ 𝑁0, 𝑁0 = {0, 1, 2, 3, … }. A sample identifies a value 𝑥(𝑡) at a certain point 

in time 𝑡𝑁  (or simple 𝑛) using an interval 𝑇𝑁  as the interval between 𝑥[𝑛] and 𝑥[𝑛 + 1]. 

Therefore, a time-continuous system becomes time-discrete. A discrete system is represented 

as a finite or countable infinite set of values, which is as a sequence 𝑥[𝑛 ∗ 𝑇𝑁] = 

{𝑥[0], 𝑥[𝑇𝑁], 𝑥[2𝑇𝑁],… , 𝑥[𝑛𝑇𝑁]}. The right side of Figure 23 shows a time-discrete system 𝑥[𝑛] 

with 𝑛 = {0,1,2,… ,9,10}, and 𝑇𝑁 = 1 sampled from the left side of the figure represented as 

𝑥(𝑡). Both diagrams show the same period of time 0 < 𝑖 ≤ 𝑇(𝑛 ∗ 𝑇𝑁). 

 
Figure 23: Time-continuous 𝒙(𝒕) and time-discrete 𝒙[𝒏] systems 

                                                           
67

 Time-continuous: differential equation specified systems (DESS) 
68

 Time-discrete: discrete-time specified systems (DTSS) 
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Time-continuous and time-discrete systems are mappable into each other, as shown in Figure 

24 [Gee 2004]. The sampling theorem by Nyquist-Shannon, assuming that the signal is 

represented in the frequency domain, defines the following frequency dependency to avoid 

information losses: 

“The sampling frequency should be at least twice the highest 
frequency contained in the signal.” [Ols 2000] 

The corresponding mathematical equations are shown in Equations (3.2) and (3.3) with the 

sampling frequency 𝑓𝑁 and the highest frequency 𝑓 in the system. The sample rate 𝑇𝑁, or 

frequency 𝑓𝑁, ensures the reconstruction from time-discrete to time-continuous systems.  

𝑓𝑁 =
1

𝑇𝑁
[𝐻𝑧] 𝑓 =

1

𝑇
[𝐻𝑧] (3.2) 

𝑓𝑁 ≥ 2 ∗ 𝑓  (3.3) 

For instance, temperature sensors usually have a sample time 𝑇𝑁  of approximately one 

second. A smaller sample time offers no advantage because on the one side, the traffic69 limits 

the performance of the bus connection; and on the other side, the fan’s inertia ensures that 

the fan speed is controlled within a defined time response from generally ten seconds70. 

Accordingly, the additional values, because of a shorter sample time, are practically useless 

and provide no further information. A correct sample time immediately captures all 

temperature changes. In comparison, a longer sample time may lead to wrong or missing 

values. If the sample time is insufficient, multiple temperature changes occur within one 

sample time. The various changes and their effects are not possible to capture. In the worst-

case, we do not find any temperature change. Accordingly, the monitored time and the sample 

time should fulfill the requirements as stated before. In contrast to thermal sample times, the 

sample time of power values can vary between micro- and milliseconds, depending on their 

domain. For instance, the changes to the input signal and their effects are not determinable in 

the case of the complete system’s inertia. An increasing processor frequency and voltage 

scaling produces a temperature change within seconds. Because of the higher temperature, 

the fans will wind up and consume more power in comparison to the previous state. Both the 

temperature and the power consumption grow slowly and are subsequently monitored in 

comparison to the dynamic voltage and frequency scaling. In the case of measurements, the 

continuous time is sampled to time-discrete series to avoid a huge mass of values.  

                                                           
69

 Traffic: requests to other sensors and therefore, delays in response 
70

 Time response: fan vendor specific, less than 10s leads to acoustic and audible roar from the fans 
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Figure 24: Time-continuous and time-discrete cycle 

Parameter changes influence the system behavior. For instance, the power consumption of a 

memory module depends on the voltage and frequency settings and therefore, we utilize it in 

another manner. The power consumption p of a component depends on the utilization level71 

at a specific time. In this case, the utilization level is defined as 𝑢(𝑡). The system generates the 

power consumption 𝑝(𝑡) as an output signal. A short notation is known as 𝑢(𝑡) → 𝑝(𝑡). The 

calculation of energy consumption E requires the time period 0 ≤ 𝑡 ≤ 𝑇. Equation (3.4) 

defines the summation of power values in a time-varying (LTV) form. According to the time 

period, an integral sums up the related values 𝑝(𝑡). 

𝐸 = ∫ 𝑝(𝑡) 𝑑𝑡
𝑇

𝑡=0
 (3.4) 

On the other hand, the input values of the system, the utilization levels 𝑢[𝑛], and the resulting 

output power value 𝑝[𝑛] can be part of a time-discrete system. A short notation is known as 

𝑢[𝑛] → 𝑝[𝑛]. In a time invariant (TIV) system, the output values result in a time-varying 

convolution, as shown in Equation (3.5). The time period limits this summation of discrete-

time values 𝑝[𝑖]. It simply adds up a set of values defined by each point in time 𝑖, with 𝑖 as any 

natural number.  

𝐸 = ∑ 𝑝[𝑖]𝑇
𝑖=0  (3.5) 

Consequently, it results in four combinations of time and value characteristics, shown in Table 

6. In use case (I), the signal and time can take on any values as already described in Figure 23. 

The discrete times are a sequence 𝑇 = {𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑛} and analogous to this, the discrete 

values are 𝑋 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛}. Both in combination result in use case (IV), whose values 

and times are discrete, as shown in Figure 25. At the discrete time (𝑡3) only one discrete value 

(𝑥2) or (𝑥3) exists. A value (𝑥2.5) is invalid and does not exist because it is not part of the 

sequence X. Use case (III) shows that the sample time TN, the interval between 𝑥[𝑛] and 

𝑥[𝑛 + 1], varies because of discrete values. In this example, the sample time 𝑇𝑁(𝑥3, 𝑥4) is 

much smaller in comparison to 𝑇𝑁(𝑥4, 𝑥3). Figure 25 shows all four signal sampling and 

discretization use cases.  
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 Memory utilization level: voltage and frequency dependencies not covered, implicit via utilization 
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Table 6: Use cases for continuous and discrete time and values 

Use case Time characteristic Value characteristic 

(I) Continuous 𝑡 Continuous 𝑥(𝑡) 
(II) Discrete 𝑡𝑛  

𝑛 
Continuous 𝑥(𝑡𝑛) 

𝑥[𝑛] 
(III) Continuous 𝑡 Discrete 𝑥𝑛(𝑡) 
(IV) Discrete 𝑡𝑛 Discrete 𝑥𝑛(𝑡𝑛) 

 

           

 
Figure 25: Signal sampling and discretization 

The power consumption 𝑥(𝑡) varies over a period of time, which is a time-varying process. The 

value 𝑥(𝑡) depends on a specific point in time 𝑡. The time-varying behavior becomes time-

independent when the time is no longer considered. For instance, the largest value of the 

signal is time-independent because only the global maximum (𝑥5) is relevant, independent of 

how many local maxima (𝑥3) and (𝑥5) occur at which time. A local maximum is calculated by 

the first derivative, which is set to zero. The resulting critical points of 𝑓, values 𝑥0, are used in 

the second derivative to check the extremum type. The function 𝑓(𝑥) has a local maximum in 

a given interval72 𝐼 when the second derivative in 𝑥0 is negative, the value 𝑥0 is part of the 

defined interval, and the function values 𝑓(𝑥) are smaller than the value of 𝑓(𝑥0) for all 𝑥 ∈ 𝐼, 

see (3.6). Furthermore, it is a global maximum, whereas consistently all other values 𝑓(𝑥) are 

smaller than 𝑓(𝑥0) within the complete function. The peak power value (𝑥5) is used to choose 

a suitable power supply unit for the largest power consumption of the system to avoid over-

provisioning. 

𝑑𝑓

𝑑𝑥
= 𝑓′(𝑥0) = 0,   

𝑑

𝑑𝑥
(
𝑑𝑓

𝑑𝑥
) = 𝑓′′(𝑥0) < 0  (3.6) 

𝑓(𝑥0) ≥ 𝑓(𝑥) (3.7) 

                                                           
72

 Interval: if an interval is not defined, it is described as values x ‘near’ x0 or nearby 
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A model depicts the present state of a system at a specific time. Usually, this state has a 

present value of a characteristic set. The parameters differ in model characteristics and 

criteria. The power model of the rack-mounted server system can estimate the main 

component-based consumer on the basis of power states or being more granular on the basis 

of instructions. In the case of instructions-based analysis, the calculation time increases 

because of a more complex model than a model with fewer details, more parameters, and a 

higher sample rate. A rudimentary level of detail cannot guarantee a high-granular analysis of 

power values. For example, a component has a power value p at a specific point in time. A 

discrete-time interval is defined as 𝑡 ∈ [0, 𝑇] with constant time steps ∆𝑡 = 1 and a time 

period of 𝑇 = 3. A calculation73 of energy values 𝐸 = ∫ 𝑝(𝑡)
𝑇

0
𝑑𝑡 becomes a) more complex if 

the time interval expands like 𝑇 = 5 or b) more exact if intermediate steps are added like 

∆𝑡 = 0.5. On this basis, the calculation time will increase. Therefore, it is necessary to define 

the relevant accuracy of the model and the corresponding aim [Paw 1990]. The deviation 

between estimated and measured values decides if a strategy is applicable. Another model 

aim, added to build up a real system, is to design a simple model that uses the minimal input 

parameters and reduces the model complexity. Simplicity and accuracy are contradictory. A 

more exact model requires a more complicated model and usually the sampling rate increases 

to ensure state changes. A complex model generates overhead and consumes more 

computational time, which is not applicable for real-time approaches. The model level and 

level of detail74 are results of the model accuracy decision of stakeholders [SMA et al. 2003]. 

Depending on the model’s intentions, various modeling levels may be more suitable than 

others might be. The International Organization for Standardization (ISO) and International 

Electrotechnical Commission (IEC) specifies the product quality model which describes quality 

characteristics and criteria, as shown in Table 7 [ISO 2011]. Each top-level characteristic 

(factor) has many sub-characteristics (criteria) which are analyzed by metrics, such as lines of 

code (LOC) or special performance metrics like jitter, latency, response time, or throughput. 

For instance, the accuracy criterion is assessable by the amount of internal states and by the 

supported input parameters. The product quality criteria and related metrics are customer-

specific [CHW et al. 2010].  

  

                                                           
73

 Calculation: also known as estimation or prediction 
74

 Level of detail: granularity 

http://de.wikipedia.org/wiki/International_Organization_for_Standardization
http://de.wikipedia.org/wiki/International_Electrotechnical_Commission
http://de.wikipedia.org/wiki/International_Electrotechnical_Commission
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Table 7: Product quality model and characteristics by ISO/IEC 25010:2011 [ISO 2011] 

Characteristics (factor) Sub-characteristics (criteria) 

Functionality Suitability, accuracy, interoperability, compliance, security 
Reliability Maturity, fault tolerance, recoverability 
(Re-) Usability Understandability, learnability, operability, attractiveness 
Efficiency Time behavior, resource utilization 
Maintainability Analyzability, changeability, stability, testability 
Portability Adaptability, installability, co-existence, replaceability 

 

Moreover, a model should be generic as part of the usability or portability characteristic. For 

instance, one metric is the variety of supported rack-mounted enclosures, such as rack or 

blade servers, as well as stand-alone systems, like desktop or mobile computers. In this thesis, 

we use the model that deals with various classes of systems and is adaptable by adding new 

classes. More details are described in Chapter 4. 

A physical system modeling can be based upon measurements using continuous or discrete 

values. The system behavior is based upon simulation results and is described in the next 

sections. Afterwards, a short overview about configuration-based and optimization-based 

models is given. 

3.2.1 Measurement-based Models 

The modeling properties of parameters have diverse impacts, caused by the chosen model 

style. A standard practice is to model and depict current system behavior via sampling or 

discretization. The numeric parameter type, such as floating-point instead of integer, 

influences the time resolution and for that reason, influences the calculation time. If a system’s 

behavior and values are characterized by data and the findings of a real-life system and its 

respective hardware, it is a measurement-based approach. Potential areas of interest are 

observed. The customer analytically characterizes the measurements of the system in order to 

find dependencies between associated instructions or functions. Therefore, detailed 

information about the real hardware, such as its architecture, is beneficial. Mathematical 

analysis techniques form the basis of the model. In the case of power or energy models, stress 

tests utilize the system components to check the component power (states) and 

corresponding performance characteristics such as the computation time. Benchmarks use 

synthetic workloads to test real-world systems or discrete system components in a specified 

and reproducible manner under defined circumstances. Many experimental measurements 

and iterations75 support the system evaluation, verification, and confirmation as part of the 

development process. 

                                                           
75

 Iterations: choosing various parameters 
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Especially the power measuring and profiling are key technologies for creating a sufficient 

model. The measurements are hardware-based when additional meters, integrated sensors, or 

special instruments observe the current and voltages of the hardware devices. In comparison, 

the software-based measurements’ aggregate power values from the operating system or 

application, such as hardware counters, which are flexible in comparison to the hardware-

based method. 

3.2.2 Simulation-based Models 

Simulation-based models forecast the system behavior under not yet tested or measured 

circumstances. The models analyze and abstract the system behavior, but the internal 

architecture, operation, or configuration is unknown. A vendor-specific component is a black-

box76 device and only names or interfaces are visible. Another benefit is that the physical 

device is not required. Sometimes simulation-based models are called predictive or execution 

models. Comprehensive approaches based on system-theoretical models are defined that 

include analysis results of previous system generations and their behavior. The model is partial 

because some characteristics are not predictable. We model only a limited number of 

variations because of time constraints (execution time, time to market). Complex systems 

often use simulation-based approaches [SMA et al. 2003]. Simulations use either a behavior 

description or an algorithm level for the functional behavior of hardware components. 

Certainly, the power characteristics of tasks are estimated by table-based approaches, 

including activities, transactions, or instructions. The power consumption of the overall system 

is based upon simulation results. Statistical analysis and stochastic methods are basic elements 

of an algorithm level [LK 2000, AK 2002]. A simulation-based approach predicts a future 

configuration, accesses, transactions, or activities. Running an empirical simulation supports all 

levels of existing and non-existing functions, algorithms, or physical devices. Experimental 

results are especially extrapolated about non-existing system conditions. On the other hand, 

empirical results are not available or possible. Either the hardware of a future component does 

not exist, or it may be either too dangerous or costly to test [FOG 2008]. Another aspect is 

fault injection in which various fault conditions are simulated and analyzed77 [EL 2009, Hex 

2003, SSH 2014]. 

3.2.3 Configuration- and Optimization-based Models 

Another modeling style reflects the experimental environment. A configuration model 

describes physical observations in relation to random settings of characteristic parameters. A 

randomly generated sequence has properties, ranges, or limits to answering a specific 

question. Usually, the aim is to minimize or maximize certain model output parameters, 

functions, or values under defined constraints. In complex systems, a parameter influences the 

results in a positive and negative direction at the same time as cost and time. So, solving the 

                                                           
76

 Black-box: outside point of view  
77

 Analysis: fault tree analysis (FTA) 
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problem has many conflicting objectives78, which are defined as vector F, including multiple, 

potentially, conflicting objective functions 𝑓1, … , 𝑓𝑘. The objective is to minimize or maximize 

all of them simultaneously at the same point in time, where k defines the maximum number of 

objective functions, with k and n as any natural number [SWK 2011, DSH 2005], as shown in 

following equations. 

min𝑥∈ℝ𝑛{𝐹(𝑥)}  or resp. max𝑥∈ℝ𝑛{𝐹(𝑥)} (3.8) 

𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑘(𝑥)) (3.9) 

𝐹:ℝ𝑛 → ℝ𝑘, 𝑘, 𝑛 ∈ 𝑁0, 𝑁0 = {0,1,2,3,… }, 𝑘 ≥ 2  (3.10) 

A single solution does not exist, and the set of correct trade-off solutions called Pareto79 

optimal (PO) sets are defined. These sets of optimal solutions are mathematical equally correct 

solutions within the multi-objective optimization (MO or MOO) approach. Additionally, 

constraint functions C80 characterize the subject functions as follows [Mos 2005]: 

𝐶(𝑥) = (𝑐1(𝑥), 𝑐2(𝑥),… , 𝑐𝑚(𝑥)) ≤ 0  or 𝐶(𝑥) ≥ 0 (3.11) 

𝑖 ∈ 𝑁0, 𝑁0 = {0,1,2,3, … },  (3.12) 

where the vector of decision variables is defined as: 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 (3.13) 

The decision vectors are part of a workable region, which is a set of constraints C. These 

conditions should be satisfied among the set of all vectors, which is a set of favorable (e.g., 

non-dominated) solutions in the objective space also called Pareto optimal front or Pareto 

front. Various multi-objective algorithms are described in [Abr 2005, BDM et al. 2008, Deb 

2002, ES 2003, GC 2000]. 

Measurement-based and simulation-based approaches form the primary basis for building up 

real-world systems. Depending on the model’s intentions, various modeling tiers are more 

sufficient than others. Especially the model domain plays an important role with regard to 

functionality characteristics and design decisions. 

3.3 Server System Model Domains and Aspects 
This thesis focuses on rack-mounted server system models and their simulation. As proposed 

before, a model description relates to corresponding objectives. In the case of servers, the 

maximal outlet, also known as the exhaust temperature and the related airflow are critical 

characteristics in the planning phase of data centers. High costs of data centers incur from 

                                                           
78

 Multiple conflicting objectives: known as the multi-objective optimization problem (MOP) 
79

 Pareto: Vilfredo Pareto generalized the concept of Francis Y. Edgeworth 
80

 Constraints: define the variable boundaries (low or high) of each decision variable 𝑥 ∈ 𝑋 
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cooling the equipment, which results in energy costs. Figure 11 shows the hot and cold aisle 

design in data centers. As a consequence, each consumed electrical power unit results equal 

quantity of released heat [ERK 2006]. Air-conditioning systems81 dissipate heat and coldness to 

keep the data center temperature and humidity conditions constant. High humidity supports 

condensation on electronic devices, which may lead to electrical short circuits. In addition, 

critical server components could be damaged, and a server crash and shutdown may result 

from these damages. Servers produce masses of heat. Due to an increasing power density82, 

the heat generation grows exponentially. The authors in [Sku 2013] assume approximately 30 

kW in power loss in a 19-inch rack enclosure. Thus, heat removal becomes a fundamental issue 

for data centers. Data centers use entire systems, such as HVAC (Heating, ventilation, and air 

conditioning) equipment, to ensure permanent heat dissipation. A consequent heat 

production exists in all domains up to chip level, as shown in Table 8. The demand of heat 

dissipation in entire data centers is hundreds or thousands of times larger in comparison to the 

chip level.  

Table 8: Thermal systems in various domains 

Thermal 
demand 

Domain Thermal systems 

High Data center Heating, ventilation, and air conditioning (HVAC), 
heating, ventilation, air conditioning, and 
refrigeration technology (HVACR), 
computer room air conditioner (CRAC), 
computer room air handler (CRAH) 

 Rack enclosure Air distribution (fan panel), water cooling, 
active flow control (AFC) 

 Server system, 
Component 

Air distribution, ventilation (fan),  
water cooling 

Low Chip Heat spreader, heat sink 

 

The other remaining costs are electrical equipment costs. These energy costs are associated 

with operating and maintaining (O&M) the IT infrastructure or computing equipment, which 

are operational expenditures (Opex). Opex are ongoing, regular occurring costs in operation, 

such as administrative, lightning, or thermal costs as well as power expenses over a given 

period, e.g., a year. In contrast, capital expenditures (Capex) are fixed one-off costs83, for 

instance, initial IT infrastructure and equipment investment costs, to ensure the daily business 

and services of data centers. All cost types are summed up into the total cost of ownership 

(TCO) and are a critical part of return on investment (ROI) decisions, which faces the trade-off 
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 Air-conditioning systems: filtering, reheating, humidifying, and dehumidifying 
82

 Power density: effect of shrinking CMOS sizes, watts per square cm 
83

 One-off costs: cost to build 
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between buy84 and internal build [HLH et al. 2012]. There should be a balance between TCO, 

ROI, and power usage effectiveness85 (PUE). This metric, defined by The Green Grid, compares 

total data center energy consumption with the IT equipment energy consumption. A PUE value 

results by comparing the complete utility load with the total IT equipment load [Mat 2011, Jau 

2011]. On the other hand, uninterruptible power supply (UPS)86 systems have to be able to 

handle all energy requirements within the high-availability 24x7 data center if a power failure 

occurs. In decentralized or hierarchical data centers, power distribution units (PDUs) give the 

necessary power to many servers under normal, everyday circumstances. PSUs distribute 

power to single servers and have a smaller power range in comparison to PDUs. Table 9 shows 

the classification of the power systems to their domains. For instance, power models at data 

centers handle power demands in kilo-, mega-, or gigawatt. Chip’s power model calculates 

demands as microwatt and milliwatt. A data center operator monitors the power and energy 

values in an entire building [New 2008].  

Table 9: Power and energy systems in various domains 

Power (energy) demand Domain Power systems 

 Power [W]  Examples 
High 106-∞ Data center Uninterruptible power supply (UPS), 

energy power supply (EPS) 
 104-105-6 Rack enclosure Power distribution unit (PDU), 

rack distribution unit (RDU) 
 102-103 Server system, 

Component 
Power supply unit (PSU) 

Low 10-3-101 Chip DC-DC power converter, control unit, 
transformer 

 

The data center manager should be aware of the growing possibilities to use information, 

which leads to adjustable data center capacity, such as computational nodes and storage. A 

data center manager has to plan the energy demand for peaks. The power systems should be 

able to handle extra energy demands also within the near future. Thus, the authors of [RN 

2011] introduce a growth model to discuss future IT power requirements. The growth model 

includes the following two main parameters: a) the design IT load profiles and b) the system 

capacity plan. The profiles predict the actual, initial, minimum, and maximum (final) load in the 

data center. The system capacity plan supports the defined IT load profiles via step size and 

margin. If the system capacity is bigger than the actual IT load, capacity, energy, or costs are 

wasted. However, if the system capacity is lower in comparison to the real IT load, the data 

center needs extra IT resources to avoid crashes.  

                                                           
84

 Buy: collocation, hosting 
85

 PUE: reciprocal data center infrastructure efficiency (DCiE), aim: low PUE value 
86

 UPS: have batteries, converters, and generators 
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Servers in data centers are utilized in various ways. Various workloads require diverse server 

power and performance levels. On the one side, some services and operating times vary in 

relation to the time of year and day: for instance, a peak utilization level of a mail server will 

occur when the working time in an office begins. Customers check and retrieve emails from 

the mail server in a concentrated manner. After the first working phase, the requests (i.e., 

utilization level) decrease. Another example is the use of a productive subversion (SVN) server. 

Figure 26 and Figure 27 show the total number of commits within one week and within one 

day over a period of one year. The statistics identify differences at the working days and hours. 

Monday and Wednesday are used more often to commit changes than on Tuesday, Thursday, 

and Friday. Fewer commits occurred over the weekend. On the other side, the numbers of 

commits increase during working hours. Peaks are displayed at 9am, 2pm, and 5pm. Each 

commit creates input and output traffic at a subversion server. Processors, memories, 

networks, and storage systems handle and process this traffic. Therefore, the server system 

and component utilization vary. 

 
Figure 26: SVN server commits – day statistic 

 
Figure 27: SVN server commits – hour statistic 

Previous studies discovered that server utilization could be extremely low, because of long idle 

times between jobs. Figure 27 shows this effect at early-morning hours. The commits are done 

marginally in comparison to office hours. The vendor does not design the server for an average 

utilization level of approximately 10 up to 30 percent. Invested capital costs and resources are 

wasted because the server is underutilized and consumes high power in low utilization (less 
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energy efficiency87) in comparison to a high utilization level with a high energy efficiency level, 

as shown in Table 10 and Table 11. High energy costs result at low utilization without any 

processing benefits. Both tables show less energy efficiency at utilization levels from 10 up to 

30 percent, which increases by higher utilization. In the case of optimized systems (𝐼𝐼) the 

initial power is only 10 percent instead of 50 percent of peak power [BH 2007]. 

Table 10: Server utilization, power, and energy efficiency – system 𝑰 [BH 2007] 

Utilization [%] Power [% of peak] Energy efficiency 

0 50 0 
10 55 0.18 
20 60 0.3 
30 65 0.46 
50 75 0.66 
70 85 0.82 

100 100 1 

 

Table 11: Server utilization, power, and energy efficiency – system 𝑰𝑰 [BH 2007] 

Utilization [%] Power [% of peak] Energy efficiency 

0 10 0 
10 55 0.18 
20 75 0.27 
30 83 0.36 
50 92 0.54 
70 95 0.74 

100 100 1 

 

The energy efficiency of the server system has improved during recent years. Table 12 shows 

the energy efficiency of a rack-mounted server system from Fujitsu88 in 2015 measured with 

SPECpower [SPE 2015]. Eight years after system 𝐼𝐼 measurement (Table 11), the energy 

efficiency has doubled at low utilization levels (10 − 30%) because of efficient components, 

design, and architecture. Even so, there is a constant quest for improvement at a low 

utilization level. 

  

                                                           
87

 Energy efficiency: the authors calculate the power efficiency, called energy efficiency, by dividing the 
utilization level and the corresponding power, both normalized by their peak values 
88

 Fujitsu: Fujitsu Limited, http://www.fujitsu.com/global/ 
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Table 12: Server utilization, power, and energy efficiency – system 𝑰𝑰𝑰 [SPE 2015] 

Utilization [%] Power [% of peak] Energy efficiency 

0 0 0 
10 32 0.32 
20 37 0.53 
30 43 0.7 
50 54 0.93 
70 69 1 

100 100 1 

 

Reducing idle times is a management strategy. Performance values check and compare 

systems and their characteristics. Benchmarks are standardized, synthetic sets of applications, 

which are executed on the system. Performance metrics and values identify how powerful 

such systems could be. This specified standard is a reference point for comparative purposes. 

It establishes how efficient a system is designed and operated. A few repeated measurement 

iterations support statistically significant statements. Data center owners or operators 

compare the efficiency of key facilities, such as cooling, lighting, or power distribution. An 

indicator of the HVAC system performance is the ratio between cooling and UPS power [TSX et 

al. 2003], as shown in Equation (3.14). The UPS output strongly relies on the system utilization. 

𝐻𝑉𝐴𝐶𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒[%] =
𝐻𝑉𝐴𝐶𝑝𝑜𝑤𝑒𝑟 [𝑘𝑊]

𝑈𝑃𝑆𝑜𝑢𝑡𝑝𝑢𝑡 [𝑘𝑊]
 (3.14) 

The HVAC system effectiveness is calculated to be IT equipment energy divided with full HVAC 

system energy, which is a sum of the electrical energy for all HVAC components, such as the 

cooling, fan movement, fuel, steam, and chilled water [WK 2013]. 

𝐻𝑉𝐴𝐶𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠[%] =
𝐼𝑇 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦

𝐻𝑉𝐴𝐶 𝑠𝑦𝑠𝑡𝑒𝑚 𝑒𝑛𝑔𝑒𝑟𝑦
 (3.15) 

HVAC systems are integral elements of data centers and form a part of the total energy 

consumption of data centers. This is applicable on rack enclosures as well. Table 13 shows the 

metrics and key performance indicators (KPIs) in various domains, such as data centers. The IT 

or load density89 of server equipment or server utilization factors are examples of key 

performance factors in rack and server domains. On the other hand, time to market conditions 

such as the transaction and response time are a part of the service level agreements of data 

centers. Servers are analyzed not only concerning power consumption but also concerning 

throughput, such as the bandwidth [GB/sec], performance [GFLOPS/TFLOPS], or total numbers 

of instructions or cycles. Appendix A3b provides an enhanced table of metrics in various 

                                                           
89

 Density: watts per square feet [W/sf] 
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domains. The Top 50090 benchmarks the energy-efficient supercomputer in the field of high-

performance computing (HPC) using LINPACK 91 . JouleSort 92  and SPECpower similarly 

benchmark servers concerning their computing efficiency by measuring the system 

power/energy, performance, or time while processing an application.  

Table 13: Metrics and benchmarks (performance, power/energy, and efficiency) in various domains 

Domain Metrics Benchmarks 

Data center Power usage effectiveness (PUE), airflow 
efficiency (AE), cooling system sizing (CSS), 
data center cooling system efficiency (CSE), 
carbon usage effectiveness (CUE), data 
center workload power efficiency (DWPE), 
coefficient of performance (COP) 

Calarch, Comis, 
DoE-2, EnergyPlus, 
Genopt 

Rack 
enclosure 

IT or server equipment load density (W/sf), 
SWaP (space, watts, and performance), PDU 
losses, return temperature index (RTI), rack 
cooling index (RCI), beta index (𝛽) 

 

Server system, 
component 

IT equipment utilization (ITEU),  
IT equipment efficiency (ITEE),  
utilization (load) factor, server utilization, 
green computing performance index (GCPI), 
peak performance (GFLOPS, TFLOPS) 

Green 500, SPEC 
CPU, SPECpower, 
LINPACK, STREAM, 
JouleSort, Server 
Efficiency Rating 
Tool (SERT) 

Chip Performance counter, instructions or cycles, 
thermal resistance 

Latbench, Micro-
Benchmarks 

 

Each domain includes performance indicators with magnification by a factor of 10, starting 

from the chip moving towards the data center’s domain. Because of their performance and 

energy usage, the carbon footprint production of each domain is proportional to the 

magnification factors. Meanwhile, the servers are in operating mode, producing 80 up to 90 

percent of the entire carbon footprints93 [Fuj 2010]. 

Power is a key factor across all domains, as shown in Figure 28. Costs, either operational or 

expenditure, are the main factors in data centers and build limits for the design process and 

investments. A high computing performance reduces working time needed for given services. 

On the other hand, increasing maximum power consumption leads to growing thermal costs. 

Thermal considerations have less impact in the chip domain in comparison to server or data 

                                                           
90

 Top 500: http://www.top500.org/project/linpack/ 
91

 LINPACK: https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download 
92

 JouleSort: http://sortbenchmark.org/ 
93

 Total carbon footprint: raw material, manufacturing, transport/distribution, assembly, use phase, 
recycling, and disposal 
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centers. Airflow and humidity are listed separately, as shown in Figure 28, because they are 

not considered in most performance metrics for chips and servers. All mentioned aspects, 

thermal, power/energy, utilization, carbon footprint, airflow/humidity, and costs have same 

goals towards performance and efficiency but differ in their approaches. 

 
Figure 28: Considered aspects in various server domains 

The performance and efficiency aspects correspond separately to thermal, utilization, 

power/energy, and time but are combinable. The performance metrics indirectly express the 

systems’ behavior in various domains, while the busy and idle thread metrics present the 

utilization aspect of a resource, for instance. The processor provides computational power to 

offer the highest throughput, but on the other side, it generates extra heat. The high numbers 

of exceptions or errors are the reason that a task execution may take longer, and the costs 

increase. The performance is considered in each domain, but is shown as a single aspect in the 

figure to depict the huge amount of the metrics.  

Additionally, each aspect also has many metrics, not only performance, to determine the 

resources’ behavior. The power losses (in the PSU, PDU, or UPS) are common metrics at the 

server, rack, and data center level. The utilization levels are fundamental metrics in the 

component level. At low level, the thermal resistances define the temperature behavior. On 

the one hand, the metrics are a domain; however, they are included at each considered 

aspect. If we integrate the metrics in Figure 28, the objects overlap, and they are illegible. 

Therefore, the aspects completely move to the y-axis. The x-y-position of the various domain-

specific metrics and indicators in Figure 29 shows the direct relation between the server 

domain and the considered aspect. This thesis focuses on thermal, power/energy, utilization, 

and performance indicators, which are key factors for server systems and components. The 

other indicators such as the carbon emission, airflow / humidity, equipment density, or costs 

are not considered.  
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Figure 29: Metrics and considered aspects in various server domains 

Server domains with performance, efficiency, or utilization aspects contain most metrics and 

indicators. Data center metrics focus on costs and performance. In this thesis, the server 

domain is the main focus and is defined as a system domain. The environment abstracts 

external system influences, such as rack enclosures and data centers. The physical domain 

clusters the internal chips, transistors, gates, logic, and circuits. Table 14 provides a short 

overview and examples of the system domain definition.  
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Table 14: Focused domains for thermal, power, and performance indicators 

Domain Server system domain Focus 

Data center Environment Hypervisor / virtual machine monitor, 
infrastructure equipment, operating 
system level, software level 

Rack enclosure Environment Network equipment, storage 
equipment, server 

Server system, 
component 

System Components (processor, memory, 
bus), electronic system level (ESL), 
connectors 

Chip Physical (Chip) Circuit, transistor, gate, logic 

 

Analyzing the server system domain, server definition (Section 2.4.1), and the modeling 

domains (Section 3.1.4) lead to the following server type description, classified in Figure 30: 

I. The physical server system description, including: 

A1. Electrical descriptions for the power/energy, thermal, performance, and 

efficiency calculation also within chip level 

A2. Thermal equations for heat transfer 

A3. Mechanical definitions that define the physical system characteristics: e.g., the 

largest amount of components or the total number of components currently 

used, such as memory modules, etc. 

II. Interfaces (Peripheral Component Interconnect), operations, and communication 

processes to handle jobs and their related descriptions are part of the logical level. 

III. Hardware and software designs define the topology, hierarchy, generation, or 

architecture views of server systems. Furthermore, they include components and 

connectors to support logical description. 

IV. The conceptual description of the server system defines data types, general/abstract 

functions, workflow (control flow), communication, databases, processes, or 

controllers. 

V. The structural or architectural description is part of the conceptual and contextual 

because it includes the topology, entities, coupling, attributes, or component 

relationships. 

VI. The customization is part of the contextual and the external domain. Herein, the 

customer defines the server system’s hardware and software configuration, such as 

the operating system (OS) type, or BIOS/UEFI settings.  

VII. The usage context defines the server system environment. The server system inputs 

are the ambient temperature, utilization level, and server configuration. 

VIII. The model‘s purpose (Section 3.2) is the considered aspects (Section 3.3), which are 

partly described within the contextual and the external level. 
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IX. Measurement data, such as benchmark results, device tables, or data sheets are 

external conditions for system development and design. 

X. Constraints are external sources because vendors define thermal limits for the 

components. The system designer and company predefine some rules, limits, laws, 

policies, schema, or terminologies. 

 

 
Figure 30: Definition of server modeling domains using server system definition, enhanced model from [Osi 2010] 

If we add the considered aspects, the planar abstraction will become a three-dimensional 

graph, wherein the x-z-plane represents Figure 30 partly at the server system domains. Each 

aspect is taken into account and has a model in a server system domain, represented in the x-

y-plane. Furthermore, the y-z-plane represents these aspects within the server-modeling 

domain.  

 
Figure 31: 3-dimensional space for diverse models 
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The next sections describe the fundamental algorithms and approaches initiated from the 

various model aspects, which can be classified in the server system and server-modeling 

domain. The models are substantial for the management techniques and the optimization 

algorithms. 

3.4 Power and Energy Algorithms and Approaches 
The following power and energy models are described along the x-axis at various server system 

domains. The white-, gray-, or black-box models are domain-specific because of the inner data 

or behavior. This section presents various models beginning with the full information, such as 

instructions up to the least well-known internal data. Several prototypes of low-level power 

devices apply cycle-accurate approaches. 

3.4.1 Physical (Chips) – Server System Domain 

The power and energy model approaches and algorithms are usually defined as a physical or 

logical description of the chip or component level. Chip level approaches define their electrical 

behavior at the transistor, circuit, gate, register, or transfer level. The interior component 

structures, operations, and processes are known because of existing data on the geometry, 

design, and topology of the circuits, characterized by real hardware measurements. 

Monitoring, profiling, or tracking the software and corresponding power values give the ability 

to create power metrics. If the data about the natural linking of the devices, the used blocks 

providing service, their operations, the data transfer at register-transfer level (RTL), and the 

chip’s functions and signals are obtainable, all internal system data is visible, and thus it is a 

white-box model.  

White-box Approaches (Instructions) 

We categorize the white-box power models into logical and electrical94 descriptions. The 

logical description includes instructions or activities to define the system behavior. The logical-

based approach uses physical measurement techniques to obtain power values while 

executing associated and disassembled instructions running on the component. In this case, 

chip level details are not required. In contrast, simulation-based approaches need information 

about the chip’s micro-architecture, which relies on functional or algorithmic levels.  

In [TMW 1994], fundamental research is done for measurement-based power analysis 

techniques. The average power 𝑃 is defined by the average current 𝐼, and the voltage supply 

𝑉𝐶𝐶 . The energy 𝐸 is the consumed power over the execution time 𝑇 of an instruction, 

operation, given task, or software. Moreover, the execution time of a software consists of the 

clock cycle’s 𝑁 and the corresponding clock period 𝜏, as shown in Equations (3.16) and (3.17). 
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 Electrical description: gate and circuit 
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𝑃 = 𝐼 ∗ 𝑉𝐶𝐶 (3.16) 

𝐸 = 𝑃 ∗ 𝑇, 𝑇 = 𝑁 ∗ 𝜏 (3.17) 

Individual instructions have their specific energy consumption. The total energy is determined 

by the base cost of one cycle multiplied by the full number of cycles for the instruction. This 

approach is called instruction-level power analysis (ILPA). Tiwari considers the inter-instruction 

effects in the power model. Furthermore, Tiwari et al. analyzed the software power 

consumption on the basis of the instruction level on a digital signal processor [TMW et al. 

1996]. They found that the state changes (switching activities) in the circuit generate more 

overhead in comparison to the single instructions at each time. These inter-instruction effects 

are considered within assigned costs. Therefore, the author refined the total instruction-level 

energy model whereby the overall energy 𝐸 is the total of: 

1. “base costs, 𝐵𝑖, of each instruction, 𝑖, weighted by the number of times, 𝑁𝑖, it will be 

executed, [TMW et al. 1996]“ 

2. “the circuit state overhead, 𝑂𝑖,𝑗 , for each pair of consecutive instructions, (𝑖, 𝑗), 

weighted by the number of times, 𝑁𝑖, the pair is executed, TMW et al. 1996] ” 

3. “the energy contribution, 𝐸𝑘,of the other inter-instruction effects, 𝑘, (pipeline stalls 

and cache misses) that would occur during the execution, [TMW et al. 1996] ” 

Equation (3.18) shows the total energy calculation. The power analysis uses the entire 

instruction set architecture (ISA) to characterize single instructions. 

𝐸 = ∑ (𝐵𝑖 ∗ 𝑁𝑖) +𝑖 ∑ (𝑂𝑖,𝑗 ∗ 𝑁𝑖,𝑗) +𝑖,𝑗 ∑ (𝐸𝑘)𝑘  (3.18) 

Most of the measurement-based, instruction-level power models refer to Tiwari’s method. The 

authors of [NKN et al. 2002] also proposes a measurement-based, instruction-level power 

model, but on a current sensing circuit. Each clock cycle and related instantaneous currents are 

monitored and measured during the execution of instructions such as ADD, AND, or MOV. In 

the work of [RHH et al. 2005] the analytical power model is applied on a processor for a low-

power embedded system on a chip (SoC). In addition, they characterized the instructions in 

five main groups. 

Another adaptation to the Tiwari’s method is done by [SIC 2003]. The power consumption of 

the components includes the dynamics, and the static power defined in Equations (3.19), 

(3.20), and (3.21). The dynamic or switching power is calculated by the whole average 

capacitance95 𝐶𝐿, the supply voltage 𝑉𝐷𝐷, and the operating frequency 𝑓. The capacitance 

depends upon the software execution per clock cycle. The static or leakage power is the 

product of voltage 𝑉𝐷𝐷 and the leakage current 𝐼𝑙𝑒𝑎𝑘 through the circuits. The fixed power 

consumption results from bias currents, junction currents, or gate tunneling, for instance. 
                                                           
95

 Total average capacitance: sometimes also defined as effective (switched) capacitance 𝐶𝑒𝑓𝑓  
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𝑃 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (3.19) 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝐿 ∗ 𝑉𝐷𝐷
2 ∗ 𝑓 (3.20) 

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉𝐷𝐷 ∗ 𝐼𝑙𝑒𝑎𝑘 (3.21) 

In addition, the authors of [HXL et al. 2002] added a factor ∝ to the dynamic power definition. 

In the case of complementary metal-oxide semiconductor (CMOS) or very large-scale 

integration (VLSI) circuits, the factor ∝ describes the switching activity ratio, and 𝐶 is the 

physical load capacitance [JGM 2003], as stated in Equation (3.22). 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶 ∗ 𝑉𝐷𝐷
2 ∗∝∗ 𝑓 (3.22) 

Landman [Lan 1996] classifies the architectural power models in complexity-based and 

activity-based models and describes the static as well as dynamic activities at the behavior-

level. On the one side, the numbers of functional blocks, which are equal to used gates for a 

specific function, define the chip architecture’s complexity. On the other side, the authors of 

[Naj 1995] found that the consumed power relies on the input and output entropies of the 

functional blocks. Three high-level approaches in the industrial use case, considered in [FCM 

2014], mainly analyze FPGA power consumption. They offer an overview about basic hardware 

design flow beginning at the physical level, to gate level, register-transfer level, and up to 

system level. 

Other approaches include the micro-architectural structure of the circuits. The authors in 

[KAM et al. 2002] give an overview about micro-architectural power methods. Hence, the 

authors of [LS 1994] propose a power model that includes the logic gate functions, the 

capacitance, the latches coming from flip-flops, the cell structures of a memory module using 

cache lines, the row decoder, the column selector, or intermediate interconnections such as 

buses or wires. In fact, the approach requires library information96 about the circuits at the 

gate level. In [WJ 1996], they present an analytical model for an on-chip, direct-mapped cache. 

The authors focus on access and cycle times at a cache array. Moreover, they consider the 

parameter (cache size, block size, or width), the cache organization parameters (bit lines, word 

lines, or array size), decoder structures at gate level, comparators, multiplexers, drains, 

resistances, or capacitance. An overview about the various types of capacitance and their 

equations are in [BTM 2000, NKB et al. 2004]. In [HXL et al. 2002], the authors consider the 

gate and transistor capacitance within an architectural-level model, such as, using the first-in 

first-out (FIFO) method. Another execution-driven, cycle-accurate power model of a memory 

system, including various access stages, is addressed in [YVK et al. 2000]. The output is traced 

cycle-by-cycle at the register-transfer level. They proposed a transition-sensitive energy macro-

model. A macro-model considers a function or unit as a black-box model and is only aware of 
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 Library information: composition rules and technical description of basic building blocks of electronic 
functions (layout, schematic, logics, shapes, or symbols) 
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the power consumption of a subroutine within an internal module97. The authors of [LJ 2003] 

present a linear model, including the power interest metrics 𝑐𝑗  and macro-modeling 

coefficients 𝑤𝑗.  

𝑃 = ∑ 𝑤𝑗 ∗ 𝑐𝑗𝑗  (3.23) 

A control flow graph defines the correlated paths of the functions or subroutines. The authors 

of [LRR et al. 2004] address another early-stage power model at the RTL or lower level, based 

upon a cycle-accurate functional description. It uses system activities, transition states, data 

paths, or buses.  

The previous physical and logical models (white-box models) are instruction-level power 

modeling approaches, which need detailed design data (architecture, structure, transitions, 

execution units, registers, or activities) about the circuit level in the physical system domain. 

These approaches have restrictions because of their low abstraction level. Usually, we need an 

analysis98 of the chip to build a model unless earlier data are available. Therefore, the software 

or instruction99 sequences run on a real chip and in parallel, the customer receives the data. 

The circuit- or gate-level models become infeasible and extremely slow because of the 

simulating complexity of a large software application [LJ 2003]. In [YVK et al. 2000], the authors 

propose the memory system’s power model in the physical domain. These techniques are too 

inefficient for system-level design. However, some unknowns such as the bus architecture, 

read/write access, context switches, or the total number of bus transactions must be 

predicted. Furthermore, the actually used instructions on the chip are unknown before the 

customer or developer assembles the chip. In the design phase, the developer determines the 

suitable chip for a specific demand to give proper support. For instance, a network chip100 

should support the data rate of 10/100/1000 megabit per second, has a package size of 

81mm², and maximally use a two-volt supply voltage. The designer selects the chip by charging 

the minimal costs. In sum, the energy and costs are major design decisions in comparison with 

the chip architecture, structure, or activity. In addition, the design and layout of the system 

may have not been specified. Various design parameters, such as circuit styles, clock 

strategies, word lengths, signals, or layout techniques are impossible to characterize in the 

early design phase. Additionally, we cannot guarantee the detailed circuit-level information 

availability. 
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 Internal modules: adders, registers, multipliers, or controllers 
98

 Analysis: measuring, profiling, or tracking of software, instructions, or activities 
99

 Instructions: assembly-level  
100

 Network chip: Ethernet PHY chip, physical layer transceiver 
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3.4.2 Components and System – Server System Domain 

Gray-box Approaches (States and Transitions) – Processors 

Besides the instruction-level approaches, the hardware monitors101 trace micro-architectural 

events, such as accesses, and switching activities, such as cache miss times. A power model 

uses the counter-based heuristics that reflect the hardware activities. The authors of [JM 2001] 

distinguish between hardware performance counters and power-relevant events of 

microprocessors. In their approach, professional monitoring tools trace the processor’s 

performance counters and events. The processor’s functional units measure and verify the 

power of an executed application. Bellosa analyzed the floating-point or integer instructions 

on a processor and the event correlation, for instance [Bel 2000]. [SBM 2009], [RAK et al. 

2013], and [LSQ et al. 2014] provide power models using performance counters or hardware 

events, such as instructions per cycle, fetch counters, miss/hit counters, stalls, retired-

instruction counters, clock logic, data path, cache, or other events to choose the correct 

operating condition. Another approach considers per component 𝑐𝑖 the access rate 𝑎𝑟, the 

architectural scaling 𝑎𝑠, the maximum consumed power 𝑚𝑝, and the conditional clock power 

𝑛𝑔𝑐𝑝 for the component power, outlined in [IM 2003]. The authors analyzed a Pentium 4 

processor and its functional units. They used 24 performance event metrics for the model of 

the processor power. The total power is the sum of the idle power and the power of all 

components, as shown in (3.24). The system power varies between 30 and 50 watts while 

executing several benchmarks. Their model predicts the power with a variation about three 

Watts. The authors of [BGM et al. 2010], applied this approach to the power of the processor 

cores. 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑖𝑑𝑙𝑒 + ∑ (𝑎𝑟 (𝑐𝑖) ∗  𝑎𝑠(𝑐𝑖) ∗ 𝑚𝑝(𝑐𝑖) ∗ 𝑛𝑔𝑐𝑝(𝑐𝑖))𝑖  (3.24) 

Those power model approaches are sufficient if real hardware is available. Through these 

performance counters, they are able to generate power values for a specific application. The 

hardware performance counters provide detailed processor data in comparison to events 

coming from the operating system or application. However, if the data on an application or 

their operating type102 is not available, we cannot estimate or predict the power. The 

application may be non-deterministic and vary over time throughout diverse executions. Bus 

transactions103 from other components may influence the access rate. On the other hand, the 

processor is still in development or only a prototype is shipped to the server system vendor 

during the design phase. Therefore, the performance counters are either not traceable or do 

not present the last version. In addition, the processor type limits the heuristics, and with 

them, the performance counters. Furthermore, the measurable events simultaneously deviate, 

as analyzed in [JM 2001]. One reason is the various CMOS types used by the application. The 

                                                           
101

 Hardware monitors: performance counters which are a group of special registers 
102

 Operating type: integer, floating-point, arithmetic, or logic 
103

 Bus transactions: data activities on the front side bus (FSB) are reads, writes, or pre-fetches 
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performance counter approaches are not valid for novel multi-core processors since new 

processor architectures, such as extra cache levels or clustered functional units are introduced. 

In [Ben 2010], the authors propose that various caches have a power proportion of 

approximately 30 percent of the entire dynamic power profile of a processor. Two other major 

parts are the clock and the functional units. 

Moreover, the event-driven model attempts to generalize the instructions and performance 

counters by using resources and events. Each resource within the system is a state machine 

wherein the state is component behavior abstractions, including data about the power 

behavior of a block, block interactions, or environmental data. An event leads to a state 

change, also called a transition. Section 3.1.2 shows the formal definition. A transition is 

marked with costs, times, or events within the state machine. The power of a resource is 

associated with the actual state. Hence, a state is marked with a power value or function. 

Benini [BHS 1998] presents various power state machines (PSM) including the operational 

states for a display, a disk, a memory module, and an electronic clipboard. Three years earlier, 

Benini [BM 1995] described a state transition graph (STG) as a Markov chain for a simple finite 

state machine at a high-level abstraction. The Figure 32 illustrates an equal power state 

machine of a server containing only the two states on and off on the basis of a formal 

definition of Figure 20. In this model, the power consumption is zero when the server is off and 

otherwise a function of maximal power and the internal system state if the server is working. 

The power events104 trigger the diverse transitions between the two server states.  

 
Figure 32: Simple power state machine of server (on, off) 

  

                                                           
104

 Power events: customer shutdown via operating system or automatic shutdown event via system 
control interrupt (SCI) 
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The advanced configuration and power interface (ACPI) specification105 defines the system 

states into: 

 Global system states (𝐺) 

 Device power states (𝐷) 

 Sleeping states (𝑆) 

 Processor power states (𝐶) 

 Device and processor performance states (𝑃) 

Appendix A3a gives an overview of all global system states specified by ACPI [HIM et al. 2013]. 

The global system state defines, for instance, if the system is in mechanical off (𝐺3), soft off 

(𝐺2), or the working (𝐺0) state. The device power states are adequately distinguished in off 

or full-on. The sleeping states (𝑆0 − 𝑆5) include the power and latency. The processor power 

(𝐶) and performance (𝑃) states are interpreted by processor vendors such Intel [CJ 2010], 

which defines and extends the states as follows: 

 System sleep state (𝑆) 

 Microprocessor and package idle state (𝐶) 

 Microprocessor performance and operational states (𝑃) 

 Microprocessor throttle states (𝑇) 

An overview of the internal processor states shows Table 15, Table 16, and Figure 33. The 

states consists of 𝑁  number of sub-states, whereby 𝑁  is any natural number  𝑁0 =

{0, 1, 2, 3, … }. The related power management approaches are described in Section 3.4.2. For 

instance, the throttling can reduce the noise of the fans because a passive cooling is enough 

after the power reduction.  

Table 15: Intel processor states (𝑺) – an overview [CJ 2010] 

Intel States State Description 

System sleep states 𝑺 Sleeping state 
 𝑆0 Full on 
 𝑆1…𝑆5 Sleep states 
 𝑆3 Suspend-to-RAM 
 𝑆4 Suspend-to-disk 
 𝑆5 Soft off 

 

  

                                                           
105

 ACPI specification: also defines the transitions between the states 
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Table 16: Intel processor states (𝑪, 𝑷, 𝑻) – an overview [CJ 2010] 

Intel States State Description 

Microprocessor and 
package idle state 

𝑪 Processor power state 

 𝐶0 Executes instructions 
active, operational 

 𝐶1…𝐶7 Not fully active 
 𝐶1, 𝐶1𝐸 Halt 
 𝐶3 Sleep 
 𝐶6, 𝐶7 Deep sleep 
Microprocessor 
performance and 
operational states 

𝑷 Performance state 

 𝑃0 Maximum performance 
turbo 

 𝑃1  
 𝑃𝑁 Energy efficient state 
Microprocessor 
throttle states 

𝑻 Throttle states 

 

 
Figure 33: Intel processor states – a graphical 

representation [CJ 2010] 

 

 

 

 

 
Figure 34: Intel processor (𝑷) states [CJ 2010] 
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The authors of [BJ 2003] use a power state machine for each core at a PowerPC. The 

developed framework calculates the minimal and maximal power, which relies on a reachable 

set of power states. In addition, they analyze the impact of various parameters and 

configurations. Their algorithm includes the spreadsheet models, which will be outlined. 

The power model of the state-based approach106 consists of three major power consumptions, 

whereby 𝑡𝑖𝑗 ∈ 𝑇, 𝑠𝑖 , 𝑠𝑗 ∈ 𝑄, 𝑖, 𝑗 ∈ 𝑁0, 𝑁0 = {0, 1, 2, 3, … }. 

1. The leakage power consumption 𝑃𝑙(𝑠𝑖) exists for all appearing states 𝑠𝑖
107. 

2. The power consumption 𝑃𝑠(𝑠𝑖) is defined as the average power for all operations in 

each state 𝑠𝑖. 

3. The transition power108 𝑃𝑡(𝑡𝑖𝑗) is the dissipated power for a transition 𝑡𝑖𝑗 , which 

switches the state 𝑠𝑖 to another state 𝑠𝑗. 

In conclusion, the power model sums up the power values for each used state and all occurring 

transition power, as stated in the following equations. 

𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = ∑ 𝑃𝑙(𝑠𝑖)
𝑚
𝑖=1  (3.25) 

𝑃𝑠𝑡𝑎𝑡𝑒𝑠 = ∑ 𝑃𝑠(𝑠𝑖)
𝑚
𝑖=1  (3.26) 

𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = ∑ ∑ 𝑃𝑡(𝑡𝑖𝑗)
𝑚
𝑗=0

𝑛
𝑖=0 , 𝑤ℎ𝑒𝑟𝑒𝑏𝑦 𝑖 = 𝑗 𝑖𝑠 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 (3.27) 

𝑃 = 𝑃𝑠𝑡𝑎𝑡𝑒𝑠(𝑢𝑠𝑒𝑑) + 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑢𝑠𝑒𝑑) + 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑢𝑠𝑒𝑑) (3.28) 

The state-based approach is applied wherever the resource’s state changes are detectable. 

The model defines the power behavior in an abstract manner and does not consider the 

system’s inactivity or corresponding overhead in comparison to Tiwari’s method. The approach 

only considers the power behavior of the resource and the transitions. The lookup tables (LUT) 

integrate the power models, for instance, as a hardware-specific macro. The authors of [CBB et 

al. 2010] focused on the processor’s power domains to support a set of various power modes 

where the power domains come from the diverse voltage regulators within the system on chip. 

The clock frequency of the respective resource formulates the power states. Current 

processors or memories today operate at various frequencies in the interval [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] at 

runtime. A related power value within the interval of [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥] exists for each frequency. 

Equation (3.29) shows the power-frequency relationship, proposed by [UKI et al. 2010]. The 

authors found a quadratic power model which consists of the minimal power 𝑃𝑚𝑖𝑛, the weight 

factor ∝, the operating frequency 𝑓, and least frequency 𝑓𝑚𝑖𝑛 of the processor.   

                                                           
106

 State-based approach: formal definition can be found in Section 3.1.2 
107

 State: can consist of several sub (internal) states 
108

 Power: it is precisely the energy because of consumed time for a state change 
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[GHD et al. 2009] present another similarly quadratic relationship. The minimal power, which is 

more than 30%, and the power trends are shown in Table 10, Table 11, and Table 12. In [Han 

2007], the power model of the processors uses the p-state and the corresponding frequency. 

𝑃(𝑓) = 𝑃𝑚𝑖𝑛+∝∗ (𝑓 − 𝑓𝑚𝑖𝑛)
2 (3.29) 

In [TDM 2011], the researchers analyze a multi-core processor109 because of the number of 

cores and neglected active frequency in previous approaches. The authors propose a power 

model with a linear association of the processor‘s power consumption and the number of 

working cores. They add the frequency relationship and power regression factors to predict 

the power consumption of various application types. In [MAC et al. 2011], they present a linear 

and non-linear regression model, which considers multi-core processors, including hidden 

device states. Equation (3.30) shows the additive regression model, which is solved by 

calculating the least square solution for the parameters 𝛽0, 𝛽1, … , 𝛽𝑛 . The vector 𝑦 =

[𝑦1, 𝑦2, … , 𝑦𝑘] contains the power measurements; the vector 𝑥𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑛] includes 

the normalized vector of measurements on the 𝑛 variables, and 𝜀𝑖  is the numerical noise.  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 +⋯+ 𝛽𝑛𝑥𝑖,𝑛 + 𝜀𝑖 (3.30) 

The evaluation results show that a linear and non-linear model of the processor differs from 10 

up to 150 percent, such as, using the interchangeable configuration for the same dies. [BGM et 

al. 2010] and [BM 2012] present core-based power models, such as in Equation (3.31). The 

power consumption 𝑃𝑐 of a core 𝑗 is total for all 𝑛 cores. The entire power consumption is the 

sum of the power dissipated by each single core. 

𝑃𝑛 = ∑ 𝑃𝑐(𝑗)
𝑛
𝑗=1  (3.31) 

The processor model of [KJC et al. 2014] considers the number of active cores, the operating 

frequency, the number of cache misses, and accesses. The processor power is the sum of the 

dynamic power, the static power, and the cache power, whereby 𝑐 denotes the number of 

working cores. The dynamic power consists of a constant 𝑘 and the constant factor 𝛽, which 

depends upon capacitance, the supply voltage 𝑉, and the activity factor of the processor. The 

static power is the product of leakage current and supply voltage. The cache power multiplies 

the number of cache accesses 𝑁 and a constant 𝜀. 

𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∗ 𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑐𝑎𝑐ℎ𝑒 = 𝛽(𝑘𝑉)
3𝑐 + 𝛾(𝑘𝑉) + 𝜀𝑁 (3.32) 

The authors in [BM 2012] suggest a multi-core processor model, including resource sharing. 

They further analyzed the chip-level, and the die-level constraints as well as the 

communication between the cores. Secondly, they extended their core-level model by adding 

active core power consumption and inter-core communication. The resulting power model is 

                                                           
109

 Multi-core processor: Intel Xeon CPU E5540 
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based on the core-based utilization level. The entire processor power, in Equation (3.33), 

consists of the chip-level mandatory component power 𝑃𝑚𝑐 , the communication power 

between dies 𝑃𝑖𝑛𝑡𝑒𝑟_𝑑𝑖𝑒, and the die-level power 𝑃𝑑𝑖𝑒. The die-level power includes the core-

based power  𝑃𝑛, the inner die-level power, and the off-chip caches power. In [BM 2012], the 

authors describe information that is more detailed. 

𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑚𝑐 + 𝑃𝑖𝑛𝑡𝑒𝑟_𝑑𝑖𝑒 + 𝑃𝑑𝑖𝑒 (3.33) 

The peak power consumption of the processor core is analyzed in [BCS et al. 2012], produced 

by the functional pattern’s execution. The authors divide the simulation-based approaches into 

switching activity (SA), weighted switching activity (WSA), transient analysis (TA), and post 

layout analysis (PLA), which refers to the abstraction level and the domain. Furthermore, they 

provide a comparison of the accuracy and the runtime of these approaches.  

Moreover, the work of [FWB 2007] shows a model that uses the processor utilization reported 

by the operating system. The dynamic power of components besides the processor and 

memory is negligible because the power values are less than 30%. Benini addresses in [Ben 

2010] the power consumption trend and power density trend, where the leakage and the 

dynamic power increase linearly with the power density. Additionally, they state that the 

supply voltage 𝑉𝐷𝐷 decreased constantly by approximately 0.8-fold with each step of shrinking 

{250, 180, 130, 90, 65, 45} nm technology, but the energy per device decreased by 50 percent. 

Benini also found that the active power increases by 50 percent when the frequency doubles. 

All simulation-based models have in common that a resource such as a processor must be 

available. The power models work with measurement results using performance counters, 

present frequencies, core activities, or access rates. Hence, the approaches use data about 

inner designs, structures, states, connectivity, or parameters. The models characterize the 

components and improve the power estimation because of higher detail and accuracy. In 

comparison to the chip domain, data about internal structures are necessary to gain, but not 

to every single, last, or full detail. For that reason, the approach is a gray-box view of the 

system. The white-box and gray-box approaches differ in their accuracy and speed. The 

instruction-level approaches are more accurate in comparison to the gray-box approaches but 

at the same time very slow. Additionally, the more accurate models are very time-complex110, 

and if they only present a small part of the overall power consumption, this means a waste of 

effort. The main aim must be to optimize the operating costs.  

  

                                                           
110

 Time-complex: high design and computational effort 
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Gray-box Approaches (States and Transitions) – Memory and Disk 

In addition to the modeling of processors, other devices and components are considered, such 

as memory modules and storages. In [LR 1996], they introduce models for computational 

elements. Equation (3.34) shows the PowerPlay’s dynamic power model of a static random-

access memory (SRAM) module. “The switching capacitance,”…“, is a function of the word-

width (bits) and the number of words, [LR 1996].” They divide the swing capacitance into 

𝐶𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑠𝑤𝑖𝑛𝑔 and 𝐶𝑓𝑢𝑙𝑙𝑠𝑤𝑖𝑛𝑔, which takes the related swing voltage111  𝑉𝑠𝑤𝑖𝑛𝑔 at a frequency 𝑓 

into account. The authors of [NKB et al. 2004] consider a bit-line capacitance factor per module 

by using an overall swinging delta voltage. In contrast, [ZYY et al. 2011] proposes a power 

model considering the voltage and the current only. 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =∝∗ [𝐶𝑓𝑢𝑙𝑙𝑠𝑤𝑖𝑛𝑔𝑉𝐷𝐷
2 + 𝐶𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑠𝑤𝑖𝑛𝑔𝑉𝑠𝑤𝑖𝑛𝑔𝑉𝐷𝐷] ∗ 𝑓 (3.34) 

[HCE et al. 2011] describe a memory power model that quantifies the dynamic random-access 

memory (DRAM) with respect to operational and background power. The active memory 

operations, especially all accesses or data transfers, are the essential part of the dynamic 

power; on the contrary to the power models of the processors, the operating voltages, 

frequencies, and associated states are elements of the background power. The background 

energy 𝐸𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, as shown in Equations (3.35) up to (3.40)112, is the sum of the consumed 

energy for self-refreshing113 the memory module, the energy to precharge the data, and the 

overall energy produced by the data read/write operations114. In [LEU et al. 2010], they adopt 

the model using weights for the operations, such as activate, read, or write access. The authors 

in [LZZ et al. 2007] state a model that uses the throughput of the read and write access for the 

static power estimation.  

𝐸𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝐸𝑠𝑒𝑙𝑓_𝑟𝑒𝑓𝑟𝑒𝑠ℎ + 𝐸𝑝𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 + 𝐸𝑟𝑒𝑎𝑑_𝑤𝑟𝑖𝑡𝑒 (3.35) 

𝐸𝑠𝑒𝑙𝑓_𝑟𝑒𝑓𝑟𝑒𝑠ℎ = (𝑃𝑠𝑒𝑙𝑓_𝑟𝑒𝑓𝑟𝑒𝑠ℎ ∗ 𝑡𝑠𝑒𝑙𝑓_𝑟𝑒𝑓𝑟𝑒𝑠ℎ) (3.36) 

𝐸𝑝𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐸𝑝𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒_𝑓𝑎𝑠𝑡_𝑝𝑜𝑤𝑒𝑟𝑑𝑜𝑤𝑛 + 𝐸𝑝𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒_𝑠𝑡𝑎𝑛𝑑𝑏𝑦 (3.37) 

𝐸𝑝𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒_𝑓𝑎𝑠𝑡_𝑝𝑜𝑤𝑒𝑟𝑑𝑜𝑤𝑛 = (𝑃𝐶𝐾𝐸𝐿 ∗ 𝑡𝐶𝐾𝐸𝐿) (3.38) 

𝐸𝑝𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒_𝑠𝑡𝑎𝑛𝑑𝑏𝑦 = (𝑃𝐶𝐾𝐸𝐻 ∗ 𝑡𝐶𝐾𝐸𝐻) (3.39) 

  

                                                           
111

 Swing voltage (CMOS): output voltage range (rail-to-rail) usually from 𝑉𝐷𝐷(+) to 𝑉𝑆𝑆(−) 
112

 CKEL/CKEH: clock enable low/high 
113

 Self-refresh: activating the module via row access 
114

 Data read/write: column access 
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𝐸𝑟𝑒𝑎𝑑_𝑤𝑟𝑖𝑡𝑒 = 𝐸𝑟𝑒𝑎𝑑 + 𝐸𝑤𝑟𝑖𝑡𝑒 (3.40) 

𝐸𝑟𝑒𝑎𝑑 = (
𝐸𝑟𝑒𝑎𝑑

𝑜𝑝𝑠
∗ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑎𝑑) (3.41) 

𝐸𝑤𝑟𝑖𝑡𝑒 = (
𝐸𝑤𝑟𝑖𝑡𝑒

𝑜𝑝𝑠
∗ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑤𝑟𝑖𝑡𝑒) (3.42) 

The authors of [HJZ et al. 2008] focus on background power in the same manner, but using a 

state transition model. Their model considers the memory module design, including interfaces, 

buses, pins115, and logics. They found that the consumed power is proportional to the bits that 

are read and written. Furthermore, the power depends on the data width because of the 

involved number of devices for each access. The authors of [JCX 2008] address a typical state 

machine of DRAM, which is equally valid for various random-access memories116. The authors 

present the models for background, activate, read/write, and total power, including the 

currents and voltages of the memory module. A similar power model is done in [Qia 2011], 

whereby the idle, the active, and the standby state specify the current power state and the 

spin down, the spin up, and the seek is the related transition.  

In [XTB 2007], the authors introduce an analytical and empirical model for SRAM structures. 

The energy model of the analytical SRAM array bit line, shown in Equation (3.43), has the 

supply voltage 𝑉𝐷𝐷, the total capacitance 𝐶𝑏𝑖𝑡𝑙𝑖𝑛𝑒, and the voltage swing 𝑉𝑠𝑤𝑖𝑛𝑔 of the bit line, 

whereby the capacitance 𝐶𝑏𝑖𝑡𝑙𝑖𝑛𝑒, for example, consists of pre-charge circuit capacitance or 

column-select circuit capacitance. 

𝐸 = 𝐶𝑏𝑖𝑡𝑙𝑖𝑛𝑒 ∗ 𝑉𝐷𝐷 ∗ 𝑉𝑠𝑤𝑖𝑛𝑔 (3.43) 

In [KIM et al. 2011], the authors define a power model based upon the method117 described in 

[Mic 2007] for double data rate, synchronous dynamic random-access memories (𝐷𝐷𝑅3). In 

this approach, the termination power is additionally considered. Furthermore, the model uses 

the percentages of cycles in the various states. The complete energy model is defined by the 

consumed total power at a specific frequency for a given execution time, shown in Equation 

(3.44). 

𝐸𝑓 = 𝑃𝑡𝑜𝑡𝑎𝑙
𝑓

∗ 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (3.44) 

  

                                                           
115

 Memory pins: data, control, or address 
116

 Memory kinds: SRAM, SDRAM, or DRAM (DDR) 
117

 Method: memory module calculation of Micron 
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In the work of [DBN et al. 2005], a memory module simulator called DRAMsim118 uses the 

previous method. It calculates the power of various memory types, such as 𝐷𝐷𝑅, 𝐷𝐷𝑅2, 

𝑆𝐷𝑅𝐴𝑀, and fully buffered DIMMs (FB-DIMM). The simulator uses a detailed cycle-accurate 

timing model to support four different transaction policies119. It is possible to build a power 

model by using the number of read/write cycles and the relative time at various states. 

Power models for hard disk drives (HDD) and solid-state drives (SSD) work in the same manner. 

The main characteristics are the average execution time for reading or writing operations, the 

file size, and the number of concurrent processes, as stated in [IIE et al. 2011, IAE et al. 2011]. 

The total power consumption of hard disk drives is the sum of power dissipated in each 

operating state for a certain time. Usually, the power is divided into a spin, start, idle, and 

access, as shown in Equation (3.45). The total power consumption depends upon the number 

of timeouts, activated by the number of disk accesses within the entire system, as given in [Gre 

1994]. The authors of [SLU 2010] additionally consider the bandwidth of the disks, inner disk 

parameters120, or the number of disks within an array121.  

𝑃𝑑𝑖𝑠𝑘 = 𝑃𝑠𝑝𝑖𝑛 ∗ 𝑇𝑠𝑝𝑖𝑛 + 𝑃𝑠𝑡𝑎𝑟𝑡 ∗ 𝑇𝑠𝑡𝑎𝑟𝑡 + 𝑃𝑖𝑑𝑙𝑒 ∗ 𝑇𝑖𝑑𝑙𝑒 + 𝑃𝑎𝑐𝑐𝑒𝑠𝑠 ∗ 𝑇𝑎𝑐𝑐𝑒𝑠𝑠 (3.45) 

At the approach of [MPL 2009], the disk model uses two different request types to estimate 

the power consumption. In this method, they trace a real-time streaming workload, such as 

data transfers122 or seek operations123. In [GSI et al. 2002], they propose a state-based power 

model. 

The storage power models need access patterns, such as read and write operations and 

related time data. Additionally, the models use state machines with transitions to estimate the 

power and energy consumption. The operations, types, and corresponding device states are 

known. These techniques use behavioral and cycle-accurate functional level models. 

The gray-box approaches are functional models that specify a component or behavior in a 

correct manner. They describe the system’s reaction to an external event, and the related 

state machines are abstract event simulators of the system [Ben 2010].  

  

                                                           
118

 DRAMsim: http://www.eng.umd.edu/~blj/dramsim/ 
119 

Transaction policies: first come first serve (FCFS), read or instruction fetch first (RIFF), bank round 
robin (BRR), and command pair rank hopping (CPRH) 
120

 Internal disk parameter: head switch, track switch, full stroke 
121

 Array: merge of physical disks to a logical unit, e.g., redundant array of independent disks (RAID) 
122

 Data transfer: read/write operations 
123

 Seek operations: physical (address) mapping of logical blocks 
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Black-box Approaches (Spreadsheets) – Devices 

We can use a black-box approach even if no other inner data and details are available. The 

model presents the name and interfaces of a device (outside point of view), but no information 

about the interior behavior or functionality, such as instructions or operations. Therefore, it is 

applicable for specification and verification purposes in early design phases.  

The base for a black-box model is data sheets, which are analyzed to find possible criteria for 

the power models. We characterize the devices and then the customer selects the 

characteristics, such as the bandwidth, organization of the device (architecture), cores, or 

supply voltages. The entire power consumption uses the estimated energy per operation 

defined in the model under specific constraints, such as the number of accesses of each 

resource. A web-based spreadsheet is explained in [LR 1996], which considers devices 

activities. The spreadsheets are tables in which cells contain data, and the function defines the 

relationships between the column and row variables. The spreadsheets are excerpts of the 

data sheets and provide power consumption values of each device on the architectural level. 

The common method is a lookup table124, which stores the power consumption of a single 

component whereby the Hamming distance between subsequent input vector pairs indexes 

each cell [NKB et al. 2004]. Texas Instruments provides power estimation spreadsheets125 for 

open multimedia application platform (OMAP) devices. 

The black-box approach is not able to estimate power consumption for an explicit instruction. 

They use maximums or averaged values, “rely on aggregate instruction counts and do not 

incorporate either time or input data, [DAH et al. 2007].” The switching clock capacitances are 

not considered for each operation or instruction, but in general are included as a static value 

within the model. Furthermore, the model is not flexible and has no learning curve because 

alternative designs, modified technologies, smaller features, or architecture sizes need a fresh 

device analysis, so a new spreadsheet is necessary [NKB et al. 2004]. The spreadsheet provides 

the maximal power consumption and does not consider the dynamic power dependent on the 

frequency or voltage settings. Usually, it is a summation of all components, which states the 

power consumption at too high a level [BHS 1998]. On the other side, this approach offers a 

fast calculation in comparison to instruction-based approaches within the early design stages 

on the architectural level. Even so, the designer has to give some fundamental device facts to 

model the complex system. 

  

                                                           
124

 Lookup table: substitutable by simple equation or macro model 
125

 Spreadsheets: http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet 
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A Mix of White-, Gray-, and Black-box Approaches – Complete Machine Simulation 

In the academic literature, the simulation approaches regarding the system’s power and 

energy combine and integrate the relevant parameters and resources across the various level 

of detail. The full-system models are part of the early design stage as well as the architectural 

level of existing systems. Hence, we distinguish between simulation-based and hardware-

metric-based models. The models present full-system approaches with the focus on power 

consumption. 

Simulation-based Full-system Model 

In [MKO et al. 2002], an instruction set simulator of an embedded system is proposed. The 

authors developed a model on the architectural level, which takes hardware costs, power, and 

performance into account. The models build up hardware components, such as the processor 

core, memory, and cache. They focus on embedded hardware/software co-design system, 

including the internal bus architecture and pipelines. The application-specific hardware 

contains a selection of functional modules, which can be either a master or slave. This 

granularity is not adequate for complex server models, because of high computational and 

design effort. Furthermore, the system specification does not define the instructions and 

operations. 

The authors of [DAH et al. 2007] develop a full-system simulator considering power, 

performance, timing, and functional data for the early design phase. They propose a method 

of predicting the power consumption for various micro-architectural structures using FPGA126-

accelerated simulation technologies (FAST). The simulator uses a functional and timing model 

(FM / TM)127 separately, each executed in an efficient unit designed for these purposes. The 

functional model streams the instructions to the timing model, which sends the feedback 

about the power, and performance back to the questionnaire. The authors found 

dependencies between floating-point units, shift operands, and pipeline stages. Furthermore, 

the timing models [WJ 1996, DAH et al. 2007] are an alternative approach usually used in the 

chip and system domain for micro-architectural description. Timing data is a sustained part in 

the case of software level models. An application and its behavior, for instance, the parallelism 

of the software128 and hardware129, can be modeled using time data values. In addition, the 

model also considers the timing aspects of the system. The significant factor of management 

techniques and optimization strategies is the time and related constraints. In [KSH et al. 2009], 

                                                           
126

 FPGA: Field programmable gate array 
127

 FM / TM: functional behavior “what”, timing behavior “when” 
128

 Software parallelism: complex structures and parallel executions, algorithm, compiler options, 
programming style, independent processing elements, task, or data at the same time 
129

 Hardware parallelism: simultaneously instructions, pipelining, machine architecture, hardware 
multiplicity, superscalar, vector processors, or multiprocessors (shared, distributed memory) 
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a timing-dependent model is proposed to estimate the dynamic power, which considers 

coupling impacts. If a coupled effect occurs, a relative switching-based time delay is observable 

and hence has extra power consumption.  

The work of [GFN et al. 2006] proposes a hierarchical model in which every component is again 

a set of components. Each component has static and dynamic properties whereby the static 

factors 𝑠𝑝 are constant and the dynamic properties 𝑑𝑝 change during runtime, such as the 

voltage and frequency. The authors present the power consumption model of the server 𝑠 

where 𝑆𝐶 is the set of components and 𝑁 the amount of components. They distinguish within 

the equation in the correlation function 𝐹𝑆𝐶  between the components and the power function 

𝐹1…𝑁 of each component 𝑐1, … , 𝑐𝑁. The developed power model, shown in Equation (3.46), 

does not simply add the power consumption of the components. It depends upon the 

correlation between components as well as their static and dynamic parameters. They found 

that the number of used processor cores has a higher impact in the case of high utilization in 

comparison to idle or low-level utilization.  

𝐹(𝑠𝑠𝑝⃗⃗ ⃗⃗  ⃗, 𝑠𝑑𝑝⃗⃗ ⃗⃗ ⃗⃗ , 𝑠) = {
𝐹𝑆𝐶 = ∅(𝑠𝑠𝑝⃗⃗ ⃗⃗  ⃗, 𝑠𝑑𝑝⃗⃗ ⃗⃗ ⃗⃗ )                                                                      𝑖𝑓 𝑆𝐶 = ∅

𝐹𝑆𝐶 = (𝑠𝑠𝑝⃗⃗ ⃗⃗  ⃗, 𝑠𝑑𝑝⃗⃗ ⃗⃗ ⃗⃗ , 𝐹1 (𝑐𝑠𝑝
1⃗⃗ ⃗⃗  ⃗, 𝑐𝑑𝑝

1⃗⃗ ⃗⃗ ⃗⃗ , 𝑐1) ,… , 𝐹𝑁 (𝑐𝑠𝑝
𝑁⃗⃗ ⃗⃗  ⃗, 𝑐𝑑𝑝

𝑁⃗⃗ ⃗⃗ ⃗⃗ , 𝑐𝑁))              𝑒𝑙𝑠𝑒
 (3.46) 

Another system-level simulation tool developed by [BLR et al. 2005], reduces the 

computational effort to optimizing the accuracy and efficiency, in comparison to functional 

simulation. They offer a framework that includes alternative heterogeneous component power 

models to find sufficient power models for an embedded system130. Their method combines 

multiple model types, such as cycle-accurate functional, transaction-level, and instruction-level 

models dependent upon the accuracy and efficiency constraints of each component. They 

developed a cycle-accurate functional and behavioral model. 

A generalized simulation-based method for power-managed systems is proposed by [BHS 

1998]. Benini considers the components in an abstract manner and calls them resources. The 

set of resources and a power manager builds the system. The power manager “…, translates 

environmental stimuli into requests to system resources to change their power states, [BHS 

1998].” It also includes the power management policies, which are algorithms that try to 

reduce the power consumption of the components. The authors abstract the external 

environment (requests) and present it as a component’s state change initiated by the power 

manager. They found that the utilization levels continuously switch between high, low, as well 

as idle and thus, the power and performance change immediately. The power-manageable 

resources have multiple power states. This leads to a model that considers the power 

consumption of inner resource states, the related performance values, and the model includes 

the switching activity times. 

                                                           
130

 Embedded systems: they concentrate on system on a chip 
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Hardware-metric-based Full-system Model 

In [ERK 2006], the authors introduce the Mantis method to create a full-system power model 

and predict real-time power. The authors concentrate on blade servers, but also evaluate the 

approach on a high-end server. Their method requires real existing hardware, because they 

calibrate the system to get the power consumption characteristics. In their method, they 

measure the active current component-level power, including the operating system utilization 

metrics and performance counters. “Mantis estimates total power consumption using a set of 

user-level system utilization metrics, [ERK 2006]”. The authors develop a server power model, 

including various utilizations for the processor, the memory, hard disk, and network, as stated 

in Equation (3.47). The coefficients 𝐾0, 𝐾1, 𝐾2, 𝐾3, and 𝐾4are server-specific characteristics, 

such as design and architecture properties. 

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝐾0 + 𝐾1 ∗ 𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 ∓ 𝐾2 ∗ 𝑢𝑚𝑒𝑚𝑜𝑟𝑦 + 𝐾3 ∗ 𝑢𝑑𝑖𝑠𝑘 + 𝐾4 ∗ 𝑢𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (3.47) 

The authors found that the transaction-related components use approximately 20 up to 40 

percent of the entire power consumption. Furthermore, they state that the idle power is huge 

on the Itanium server in comparison to the blade. The two highest power consumers are the 

processor (about 50%) and the memory (about 30%). The processor power dominance of the 

entire consumption decreases because of enabled power management strategies. The authors 

do not characterize the power proportion referring to the utilization levels or component-

bounded workloads. The other power contributors are miscellaneous components, such as the 

disk, net, or fans, which amount to 20 percent proportion. Furthermore, they do not consider 

the processors’ variations and their related BIOS/UEFI settings. The authors measured the 

system components in isolation and do not consider system-specific effects.  

In the further research, the authors of [Riv 2008] introduce five models that estimate the 

power consumption of a CoolSort machine, a laptop, a Xeon, and an Itanium server system. 

These machines run a wide range of benchmarks, such as SPECint, SPECfp, or stream to 

present realistic workloads. The models consist of the coefficients 𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6 , 

the relative processor and disk utilization 𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟  and 𝑢𝑑𝑖𝑠𝑘, and the performance counters 

𝑃𝑚, 𝑃𝑖, 𝑃𝑐 , 𝑃𝑢  corresponds to the number of memory bus transactions, the number of 

instructions retired, the unhalted clock cycles, and the number of last-level cache references. 

The authors state a constant power model for each machine, as shown in (3.48). The linear 

model in (3.49) considers the processor utilization. The authors enhance this model, including 

an empirical factor 𝐹, as shown in (3.50). They also consider the disk utilization with the linear 

model based on Equation (3.49). Finally, the performance counters 𝑃𝑚, 𝑃𝑖, 𝑃𝑐 ,  𝑃𝑢   extend the 

processor and disk utilization-based model, as stated in (3.52). 
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1. Constant model 

𝑃 = 𝐾0 (3.48) 

2. Linear processor utilization-based model 

𝑃 = 𝐾0 ∓ 𝐾1 ∗ {
𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

max (𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟)
}
1

 (3.49) 

3. Empirical processor utilization-based model 

𝑃 = 𝐾0 ∓ 𝐾1 ∗ {
𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

max (𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟)
}
1

∓ 𝐾1 ∗ {
𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

max (𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟)
}
𝐹

 (3.50) 

4. Linear processor and disk utilization-based model 

𝑃 = 𝐾0 ∓ 𝐾1 ∗ {
𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

max (𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟)
}
1

∓ 𝐾2 ∗
𝑢𝑑𝑖𝑠𝑘

max (𝑢𝑑𝑖𝑠𝑘)
 (3.51) 

5. Performance-counter-based model 

𝑃 = 𝐾0 ∓ 𝐾1 ∗ {
𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

max(𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟)
}
1

∓ 𝐾2 ∗
𝑢𝑑𝑖𝑠𝑘

max(𝑢𝑑𝑖𝑠𝑘)
  

 ∓𝐾3 ∗
𝑃𝑚

max (𝑃𝑚)
∓ 𝐾4 ∗

𝑃𝑖

max (𝑃𝑖)
∓ 𝐾5 ∗

𝑃𝑐

max (𝑃𝑐)
∓ 𝐾6 ∗

𝑃𝑢

max (𝑃𝑢)
 (3.52) 

The authors focus on a fixed system configuration, but beneficially for various workloads. They 

take the memory utilization as performance counters into account, which is a white-box 

approach including instructions and transitions. A brief overview about the utilization 

proportion131 of the processors, memories, and disks is given in the literature of [Riv 2008] for 

six different benchmarks. 

The authors of [RRK 2008] present a constant model that uses Mantis [ERK 2006] to predict 

the full-system power consumption. The operating system reports the performance metrics at 

each time, which is the basis for the power consumption of the components. The empirical 

characteristics in the equations have been created by calibration schemes that stress the 

individual components and measure the performance and power values at the same time. The 

power model in Equation (3.53) consists of a constant idle power 𝐾0 based on vendor 

specifications, the processor power in relation to its utilization level 𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟, and the fitting 

parameter 𝑟, defined by [FWB 2007].  

  

                                                           
131

 Utilization proportion: relative statement, such as very high, high, medium-high, medium, medium-
low, or very low 
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𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐾0 + (𝐾1 ∗ 𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 + 𝐾2 ∗ 𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
𝑟 ) (3.53) 

They also consider the linear regression of the disk utilization 𝑢𝑑𝑖𝑠𝑘 by the number of input and 

output requests or transfers. Furthermore, the model uses the maximal available performance 

counters 𝑝𝑖  involving instruction-level information for model simplification and low overhead. 

The last model is stated in (3.54), whereby 𝐾𝑖  is the coefficient for the corresponding 

performance counter [Riv 2008]. 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐾0 + (𝐾1 ∗ 𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 +𝐾2 ∗ 𝑢𝑑𝑖𝑠𝑘) + ∑(𝐾𝑖 ∗ 𝑝𝑖) (3.54) 

The authors evaluate their approach on various components and characteristics (processor, 

memory) using four benchmarks. They found that the “… resource utilization metrics 

correlates to power consumption, [RRK 2008].” The performance-counter-based models are 

most accurate for each benchmark in the possible configurations. The authors conclude that a 

linear processor utilization-based model is suitable for an average error smaller than 10 

percent. A calibration workload, proposed in [Riv 2008], varies the utilization level of each 

power-dominant component (processor, memory, and disk) to get isolated values. The authors 

found that components utilization also differs within the same workload of the calibration 

suite, which leads to the conclusion that not all components are stressed simultaneously. For 

instance, the processor utilization is non-linear to the disk utilization because the processor 

throttles 132  automatically for fewer disk accesses. The processor’s power consumption 

depends also on the various utilization types, such as lower instruction-level parallelism, the 

number of used (active) cores, or the operations. In [KJC et al. 2014], the authors sum up the 

power consumption of each isolated part, whereby the miscellaneous power is constant.  

The approach of [YSY et al. 2011] is a system-level online power estimation, which uses the on-

chip bus performance monitors to capture component activities. The authors focus on the 

system-on-chip architectures and use an energy state machine (ESM), which distinguishes 

between static and dynamic energy consumed by each instruction, cycle, or transition. The 

processor model consists of the static power, the power-relevant performance counters, and 

their coefficients. The memory model uses cycle-accurate instructions. This approach works for 

online power measurements at a given cyber-physical system. 

The authors of [BJ 2007] use five major components, namely the processor, chipset, 

memory133, input/output134, and disk to model the system. They use performance counters to 

characterize the component’s power consumption of eleven workloads. They found that the 

processor power relies on the processor-bounded workload and decreases for memory-

bounded workloads because a lower number of simultaneous threads are enough to handle 

                                                           
132

 Throttle: clock gating, shut down used units, frequency and voltage scaling 
133

 Memory: subsystem includes the memory controller and DRAM power 
134

 Input/output: includes PCI buses and attached devices 
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the job. The maximum of the memory power occurs in the case of read or write transactions. 

Additionally, the authors found that the processor, which is not considered in the model, does 

not start some of the component’s activities. Some years later, the authors added the graphics 

processing unit (GPU) to their approach and validated it on a server and a desktop [BJ 2012]. 

The previous research paper focuses on performance counters or OS-reported utilization 

levels. The power consumption depends on the systems software, such as the operating 

system or the type of application executed on the server. The operating system ensures that 

all jobs will execute. The system schedules and handles a range of jobs and threads, whether 

or not another management strategy influences the system. For instance, the operating 

system autonomously allocates and manages memory, controls peripherals, or changes the 

settings of the frequency to reduce the power consumption.  

The software running on the system affects the system power consumption as well. In fact, the 

software includes various algorithms, multiple coding styles, or compilation optimizations and 

thus other physical parts of the processors or memories are used. The compiler generates 

code and transforms data to reduce resource usage or exploit the advantages of the processor 

architecture. For this reason, the software consumes different power. The workload of the 

system depends on the input data of the system. It changes dynamically and thus the 

resources are utilized, but cannot be predicted.  

The software-level power models or routine-level OS power models abstract the specific 

performance counters and use the routines as well as the corresponding time to estimate the 

power and energy consumption. The authors of [LJ 2003] investigate the use of instructions 

per cycle, which indicates circuit switching activities and finally the power consumption. They 

found that the data path and pipeline OS routines consume 50 percent of the overall power. 

The authors stated that the power consumption depends on interrupts, processes, inter-

process controls, or file systems. They present a linear regression model with the parameters 

𝑘1and 𝑘0, shown in Equation (3.55), and include the instruction per cycle. The authors extend 

the power model towards an energy model by including the time, shown in (3.56), whereby 

the power and time are specific to the 𝑖𝑡ℎ OS routine call. This approach works only if we 

establish the average power of the OS routines. The authors conclude that the detailed 

software’s data, such as OS routines, ensure not absolutely the accuracy of the full-system 

power model. 

𝑃 = 𝑘1 ∗ 𝐼𝑃𝐶 + 𝑘0 (3.55) 

𝐸𝑂𝑆 = ∑ 𝑃𝑂𝑆𝑟𝑜𝑢𝑡𝑖𝑛𝑒 ,𝑖 ∗ 𝑇𝑂𝑆𝑟𝑜𝑢𝑡𝑖𝑛𝑒,𝑖𝑖  (3.56) 

In [TRJ 2005], the authors present an energy macro modeling approach for embedded 

operating systems. They use the white-box approach to find the power-relevant components 

while observing the OS routines. On the other hand, they measure the power consumption in 
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isolation from the OS energy, as a black-box approach, but consider the customer-level 

software. Another approach uses the power consumption in the process level [TSW 2009]. The 

authors create an energy model that reflects the power consumption of a resource with the 

corresponding utilization level, the related energy consumed by process interactions, and the 

required time interval. Furthermore, they divide the energy of the components within the 

system as a function of its states and transitions. Equation (3.57) shows the generic definition 

of the components’ energy consumption, including the power 𝑃𝑖 for a time period 𝑡𝑖, using a 

particular frequency and the several transitions 𝑛𝑘 consuming the energy 𝐸𝑘. This abstract 

model is refined for hard disk drives, memory, processor, and network. 

𝐸𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = ∑ 𝑃𝑖 ∗ 𝑡𝑖 + ∑ 𝑛𝑘 ∗ 𝐸𝑘𝑘𝑖  (3.57) 

The classic approaches consider particular systems and components to analyze the power 

management, the energy efficiency, or the optimization. The performance counters of the 

systems (processor, memory, etc.) are hardware-dependent and therefore, only valid for an 

explicit configuration or platform on the micro-architectural level. On the other hand, the 

performance counters show the hardware and software system states, including the operating 

system. Many research papers [GHD et al. 2009, Han 2007, KJC et al. 2014] evaluate their 

concrete models for a given configuration considering dynamic power management attributes 

such as voltage and frequency scaling. These models are analytical real-time models and highly 

accurate. The approaches do not take the relationships, the dependencies, or the structures 

between hardware families, generations, or series into account. The portability and 

comparability are not achieved. Furthermore, the variable selections of workloads and 

software settings are crucial factors of the power dissipation of a system.  

On the other hand, system-based, black-box models try to abstract the hardware details to 

guarantee the portability. In [Bel 2000], they present a high-level processor power model 

called Joule Watcher, which includes the linear relation between power consumption and 

performance counters. Those models using performance counters support the real-time power 

characterization on the fly. The hardware selection limits the number of performance counters 

and their readings. Usually, all full-system power models use real and direct hardware 

measurements, as proposed in [ERK 2006, Riv 2008]. The approaches are accurate (about 

5 − 10%) and fast in comparison to the micro-architectural level, but on the contrary, slow in 

comparison with real hardware. The model works for existing systems as well as for future 

systems, which is a benefit of simulation-based approaches. Some research papers use OS-

reported utilization levels instead of performance counters to abstract it from the specific 

hardware, which is also adequate.  
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Bellosa [Bel 2001] states that most simulation-based approaches do not consider the device’s 

activate and reactivate time, latency, and performance impacts. The authors of [Bel 2001] 

argue that an OS-based model and related measurements are not adequate to estimate power 

consumption because diverse functional units may be used. Additionally, they state that the 

resource principals differed between internal and external requests. 

Another power-related effect is described in [RRK 2008], whereby the models are adequate for 

processor-intensive benchmarks because the processor power dominates the entire 

consumption [Ben 2010]. In comparison, the same model does not work accurately for 

memory-intensive workloads. It further overestimates the power dissipation of the full system. 

Additionally, the dominance of the processor’s power consumption becomes relative when the 

processor uses management technologies, such as voltage and frequency scaling. In such a 

case, the proportions of the memory power contribute to the entire consumption increases 

and become more relevant. In addition, the authors present a simple constant power model in 

[RRK 2008], which is very inaccurate because of the model’s simplicity. “All these models have 

in common that either they are too simple and inaccurate or very specific and complex, [GFN 

et al. 2006].” 

In the early design phase, the applications or architectural decisions are uncertain. The level of 

detail varies between chips, components, or the system so that the designer cannot estimate 

accurate power consumption [DAH et al. 2007]. On the other hand, the physical level 

approaches are not usable at the system or component domain because of their detailed 

granularity and time aspects for the simulation. 

Benini et al. [BHS 1998] provide a generic approach that abstracts the inner system 

components from the external requests. A power manager schedules the state changes with 

respect to management policies. The authors do not focus on the resource power models 

themselves, but provide a simple full-system model on the gray-box level. Their method 

considers multiple inner-component states, but do not concentrate on various component 

families and generations. Furthermore, Benini et al. do not investigate into the various 

workload types and their characterizations.  

3.4.3 Environment – Server System Domain 

The work of [FWB 2007] shows the various power distributions at various hierarchies within 

the data center. The rack server power is typically connected to the power distribution unit, 

which is part of the facility or data center. The power management strategy can rely on the 

data center specification for a single server system or a complete 19-inch rack enclosure. A 

configured power limit at the server’s firmware is only valid for the server-specific power 

management. It is another interface, but influences the same server settings. A peak power 

value is the maximal reached limit for the server. The server manages the power consumption 

autonomously via dynamic voltage and frequency scaling, which is an interior contractual 
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enforcement because of energy efficiency. On the other hand, the firmware controls the 

physical limit. For instance, the server firmware can set the maximally available power state of 

the processor, which is independent of the operating system. It avoids overloading of electrical 

circuits. The firmware or the processor directly enables the maximal speed of the fans to start 

cooling. The server environments, such as increasing utilization levels and more executed jobs 

are the reason why the system consumes more power. This is part of the data center’s 

virtualization, scheduling, and allocation techniques. The data center manager provides power 

for multiple systems that share the power infrastructure. The characteristics of the system 

utilization are not known or predictable. On the other hand, the customer does not care about 

the infrastructure.  

The authors of [BC 2010] propose a power model for a virtualized cloud. The coefficient 𝐾0 is 

the offset at the idle state. The other coefficients weight the performance counters 𝑝 of the 

components. The authors determine the linear relationship between the component’s 

utilization and the total power consumption 𝑃𝑡𝑜𝑡𝑎𝑙.  

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝐾0 + 𝐾1 ∗ 𝑝𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 + 𝐾2 ∗ 𝑝𝑐𝑎𝑐ℎ𝑒 + 𝐾3 ∗ 𝑝𝐷𝑅𝐴𝑀 + 𝐾4 ∗ 𝑝𝑑𝑖𝑠𝑘  (3.58) 

They also find that the accuracy depends on the interrelation between the input variables. 

Therefore, they enhance their model, including the correlation between the components, as 

shown in the following equations. They classify the workload and hence the model into 

processor-bounded and I/O-bounded processes. The authors proposed two linear regression 

models with correlated system events with the coefficient 𝑎1, 𝑎4 as offsets to the idle state. 

The other coefficients are again weight factors. They also investigate the baseline and dynamic 

power for the virtual machines. 

𝑃{𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟,𝑐𝑎𝑐ℎ𝑒} = 𝑎1 + 𝑎2 ∗ 𝑝𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 + 𝑎3 ∗ 𝑝𝑐𝑎𝑐ℎ𝑒 (3.59) 

𝑃{𝐷𝑅𝐴𝑀,𝑑𝑖𝑠𝑘} = 𝑎4 + 𝑎5 ∗ 𝑝𝐷𝑅𝐴𝑀 + 𝑎6 ∗ 𝑝𝑑𝑖𝑠𝑘 (3.60) 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝛼 ∗ 𝑃{𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟,𝑐𝑎𝑐ℎ𝑒} + 𝛽 ∗ 𝑃{𝐷𝑅𝐴𝑀,𝑑𝑖𝑠𝑘} (3.61) 

In addition, various workload scenarios utilize the system in several ways, and the system 

settings play an important role. The operating system influences the power consumption [FWB 

2007, RRK 2008]. The application software uses various circuits with respect to the 

optimization settings [YVK et al. 2000, LJ 2003] and changes the power consumption as well. 

Therefore, it is necessary to examine diverse server systems and to observe the power 

consumption to change the coefficients.  
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The utilization level of the physical domain focuses on instructions and operations on an 

architectural level. The benchmark suites utilize the components and the systems in several 

ways. At data center domain, virtualized environments, scheduled jobs, or applications adjust 

the utilization levels. The utilization highly depends upon the performed task in the server 

system domain. In addition, the data center operator perhaps does not know about the 

explicit application or resource utilizations.  

This section does not include further literature on power analysis in the physical system 

domain because this thesis does not consider circuit-based models. The white-box section 

describes a brief overview of the low-level models, including instructions and activities using 

the physical and logical description of the resources. The details are more granular for white-

box models in comparison to the black-box models. The resource abstraction increases 

because the facts, functionality, activities, or instructions are unknown. At the same time, the 

complexity of the resources decreases because interdependencies or relationships are 

considered. Gray-box models use state machines to estimate the power consumption of the 

components and the system, whereby the activities or instructions are defined in an abstract 

manner. Gray-box approaches rely on conceptual definitions; and on the other side, black-box 

models use contextual or external description. In fact, the researchers work continuously on 

power models of components at various level of detail, as shown in Figure 35. The academic 

research concentrates on physical and component-based model for power and energy aspects. 

The models are specific for a given software or hardware configuration. It is necessary to 

investigate the coefficients and weight for each setup. 

 
Figure 35: Power and energy models in recent years 
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3.5 Utilization Algorithms and Approaches 
The power-based models work with performance counters that characterize the component’s 

power. Another aspect is the utilization of the server system domain whereby the 

performance counters represent the chips, components, or system activity in another way. If 

the utilization level of a component increases, the value of the performance counters will also 

grow. The utilization level indirectly affects the other aspect-based models. In fact, the 

resource utilization level is part of the power/energy or performance model inputs, which is 

sometimes depicted alternatively because of the level of detail within the domain. Therefore, 

the utilization is a concealed aspect and not a separate model. The utilization levels are the key 

elements for the workload definition, which builds up a realistic scenario. Section 5.3.2.2 

defines the workload characterization. 

3.6 Thermal Algorithms and Approaches 
The resources utilization results not only in power consumption, but also in leads to thermal 

dissipation. The total energy consumption includes the heating and cooling aspects. 

Permanently running fan motors or air-conditioning systems guarantee the temperatures of 

operation as well as humidity conditions. The thermal behavior relies on the operating 

condition of a system and on resources, chips, and their related states. A heat transfer changes 

the inner thermal state. The thermal energy considers the volume flow135, density, and specific 

heat. Fourier’s law of heat conduction also describes the thermal behavior heat flux using the 

heat flow, thermal conductivity, and thermal gradient. Additionally, Newton’s law of cooling 

includes the heat transfer rate and the thermal resistance. Therefore, the material properties 

influence the temperature distribution of the resource [FOG 2008]. The corresponding 

management techniques differ because of the reference quantity. For example, when a 

constant volume flow and steady fan speed must be kept, the algorithm can change the air 

pressure or density by a given temperature difference. On the other hand, when the pressure 

is constant, the volume flow depends upon the speed and pressure. The volume flow changes 

proportionally to the speed, the pressure depends upon a square form of the speed, and the 

power consumption is cubic to the speed [Jun 1999].  

The approach proposed in [SAS 2002] focuses on thermal resistances and capacitance (RC) on 

integrated circuits at the physical levels. The authors analyze the structure and architecture of 

the die, heat spreader, and heat sink, which form the base of the electrical functional blocks. 

The models in [SAS 2002, PZH et al. 2005, YS 2005] estimate the temperature of the various 

micro-architectural units within a chip and the cooling package. The HotSpot method defined 

by [SSS et al. 2004] is also a thermal RC-based model. Within the micro-architectural level, an 

RC circuit describes each chip’s heat (power) dissipation. The authors use the heat spreader 
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 Volume flow: depends upon the cross section, the volume speed/velocity, and the flow types (swirl, 
linear, laminar, or turbulent) 
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and sink layers to add further RC circuits to support the package characteristics136 and 

convection. The authors of [KS 2005] extended the HotSpot method to estimate the power 

from the physical hardware resources. Therefore, they add hardware monitoring events, such 

as performance counters, and estimate the temperature at the floor plan level. The authors of 

[AC 2003] characterize the thermal behavior of a low-profile, low-cost power package. Another 

adjustment of the HotSpot approach is done in [MNR 2007]. The authors expand the model, 

including various layers about the silicon-on-insulator technology, chip interconnect, or 

packaging. Another thermal characterization of packaged semiconductor devices is done in 

[SXC et al. 2000]. These approaches are very complex and need much time to create an electric 

model based upon the functional and architectural levels. Furthermore, they require multiple 

measurements and iterations to analyze the diverse applications.  

A physically based model is introduced in [BBT et al. 2014], which generates a thermal map 

along the chip or the package. The authors use a gray-box identification to determine the 

coefficients of the material137 and heat conduction of the processor. The gray-box approach is 

intended to find the characteristics of the discrete-time, discrete-space model, which the 

authors proposed in the paper. Furthermore, they differentiate between the copper and the 

silicon layer because of their structure and spatial characteristics.  

In [SA 2003], research is done not only for RC-based models, but also for the effects of voltage 

and frequency scaling on thermal behavior. The authors state that the temperature depends 

upon the quadratic voltage and linear frequency at each frequency. In [BKW et al. 2003, WB 

2004, MB 2006], the authors present a thermal model that includes the processor 

characteristics as well as its heat sink. The thermal model consists of a thermal resistance and 

capacity, whereby the utilization represented as event counters initiate the energy 

consumption and finally the temperature. The energy of the processors is the input value for 

the energy model of the heat sink, as shown in (3.62). The difference of the heat sink energy 

∆𝑄 is calculated by the dissipated processor power 𝑃 over an elapsed time ∆𝑡. The heat sink 

stores thermal energy, such as heat, which consists of a constant 𝑐, the mass of heat sink 𝑚, 

and the heat sink’s temperature increase ∆𝑇. The thermal energy is in balance and thus, the 

heat sink’s energy output is equal to the heat sink’s energy input minus the stored heat. Due to 

the convection, the energy is formulated by the constant 𝛼, the thermal resistance 𝑅, and the 

ambient temperature 𝑇0. This part is transformable into Newton’s law of cooling [BKW et al. 

2003]. The thermal resistance delivers the processor’s heat to the ambient air, which relies on 

convection. They found that the coefficients about the increasing and decreasing temperature 

characteristics must be defined separately.  

∆𝑄 = ∫ 𝑃(𝑡)𝑑𝑡
𝑡1+∆𝑡

𝑡1
= 𝑐 ∗ 𝑚 ∗ ∆𝑇 =

𝛼

𝑅
∗ (𝑇 − 𝑇0) ∗ 𝑡 (3.62) 
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 Package characteristics: material, physical, or geometrical 
137

 Material coefficients: mass density, specific heat, or thermal conductivity 
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The authors propose an exponential function to cover the real thermal behavior of the 

processor. The quadratic relationship is shown in Equation (3.63), whereby the coefficients 

𝑎2, 𝑎1, and 𝑎0 are processor-specific. The processor’s temperature 𝑇(𝑃) has a square and 

linear regression to the power consumption values of the processor 𝑃. 

𝑇(𝑃) = 𝑎2𝑃
2 + 𝑎1𝑃 + 𝑎0 (3.63) 

The authors focus on energy-aware scheduling and balancing of tasks with different energy 

characteristics, but also consider the thermal behavior of various processors. The authors in 

[Liu 2011, BKW et al. 2003] use the utilization-based thermal models. They assume a linear 

relationship between the processor utilization 𝑈 and the temperature 𝑇, as shown in Equation 

(3.64), with the coefficient 𝐾1. In addition, they also use an additive model for temperature 

decrease, which is independent of the utilization, as shown in (3.65).  

𝑑𝑇 = (𝐾1 ∗ 𝑈)𝑑𝑡 (3.64) 

𝑑𝑇 = −𝐾2(𝑇 − 𝑇0)𝑑𝑡 (3.65) 

After combining and solving the differential equation138, the result is an exponential time-

based function similarly to [MB 2006], which focuses on the utilization 𝑈, the ambient 

temperature 𝑇0, and the coefficients 𝐾2, 𝐾1, 𝐾0. The first part of the equation depicts the 

dynamic thermal behavior of a component, such as temperature increase or decrease, as long 

as the system does not reach the steady-state temperature. The steady-state temperature is 

the second part of the equation, which results when the component is at the same state over a 

period. The offset 𝑇0 defines the temperature start condition. 

𝑇(𝑡) = −
𝐾0

𝐾2
𝑒−𝐾2𝑡 +

𝐾1

𝐾2
𝑈 + 𝑇0 (3.66) 

The authors found that the temperature behavior over time correlates to various workloads. 

Thus, they changed their approach toward regular utilization, which is a linear function of the 

average temperature and vice versa.  

In [HCG et al. 2006], the thermal energy produced by a component 𝑄𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 is calculated by 

the consumed power 𝑃 at a specific utilization level and the required time, shown in Equation 

(3.67). The utilization-based power is the sum of idle power 𝑃𝑏𝑎𝑠𝑒 and the relative power139 

weighted by the utilization level. A utilization factor of one refers to the maximum consumed 

power; a utilization factor of zero states an idle case. The heat model of the processor is based 

upon hardware performance counters because it is non-linear. The authors used the 

temperature model, as shown in Equation (3.62). 

                                                           
138

 Combining and solving the equation: further details shown in [Liu 2011] 
139

 Relative power: between 𝑃𝑚𝑎𝑥  and 𝑃𝑏𝑎𝑠𝑒  
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𝑄𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑃(𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) ∗ 𝑡𝑖𝑚𝑒 (3.67) 

𝑃(𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) = 𝑃𝑏𝑎𝑠𝑒 + 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∗ (𝑃𝑚𝑎𝑥 − 𝑃𝑏𝑎𝑠𝑒) (3.68) 

The approach uses discrete-time steps on an airflow graph, which considers the inter-

component heat-flow, the intra-machine airflow, and the inter-machine airflow of the 

considered system.  

The thermal model in [KLL et al. 2008] is a regression-based approach to characterize thermal 

behavior of various applications. It is a run-time method that uses performance counters and 

thermal sensors of the processor analyzed in every micro-architectural detail, which is a white-

box approach. The authors observed the micro-benchmarks, the corresponding on-die 

temperatures, and the hardware events. They developed a process-based thermal model, see 

Equation (3.69), which considers the local and global temperatures 𝑡𝑙𝑝, 𝑡𝑔𝑝 of the process 𝑝 

weighted by 𝑤𝑙𝑝 and 𝑤𝑔𝑝. In addition, the authors aggregated the measurements of one or 

more applications and defined a “weighted average of the local and global-temperature 

components, [KLL et al. 2008]” as shown in Equation (3.70). The overall local and global 

temperatures 𝑇𝑙 , 𝑇𝑔 are weighted by 𝑤𝑙 , 𝑤𝑔, which come from several processes as average 

values.  

𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑤𝑙𝑝𝑡𝑙𝑝 +𝑤𝑔𝑝𝑡𝑔𝑝 (3.69) 

𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑤𝑙𝑇𝑙 +𝑤𝑔𝑇𝑔 (3.70) 

The industry trend of shrinking device technology results in higher temperatures and lower 

reliability. More semiconductor components are closely positioned and the device density is 

extreme, which results in more performance in the same space. Each resource is defined by 

several temperature limits or ranges regarding long-term reliability140, functionality, and 

damage due to their thermal performance [Mic 2007]. Operating temperature intervals ensure 

unrestricted functional reliability. Increasing the temperature has a negative impact on 

working behavior. In reference to the Uptime Institute, an increase of 18 degrees Celsius 

doubles the equipment and server failure rate [ERK 2006, LU 2009]. Researchers at the Los 

Alamos National Laboratory and Uptime Institute proposed that it is a continuous process 

while the temperature increases. Because of the high ambient temperature of 

semiconductors, the reliability and functionality decrease because huge errors occur 

concerning permanent silicon damage [Lin 2009]. Hence, the temperature is a dominant factor 

in performance and reliability.  

  

                                                           
140

 Reliability: meantime to failure (MTTF), meantime between failure (MTBF), failures in time (FIT), 
time-dependent dielectric breakdown (TDDB), or negative bias temperature instability (NBTI) 
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Usually, we design power and performance management such that a) the functionality limit is 

reached and b) the damage limit will never be reached. The thermal design power (TDP) is a 

power limit to prevent overheating and fulfill reliability requirements. In fact, the damage limit 

is the largest allowed device temperature. Figure 36 shows the three thermal limits, which in 

general are part of every resource. Typically, the power and thermal management techniques 

work between the functionality and damage limit because the time is much longer compared 

with the time between the reliability and functionality limit. The power consumption of the 

fans increases with the growing thermal conditions, and thus the working efficiency suffers as 

a result. In this thesis, we consider thermal limits with the focus on the thermal hotspots 

within the system. 

 
Figure 36: Thermal limits of the resource [Ste 2012] 

These three thermal limits are resource-specific. Table 17 shows the well-known limits and the 

related processor signal names [Don 2006]. The fan control algorithms use the thermal trigger 

point TCONTROL as the offset point. The PROCHOT signal indicates the processors’ on-die 

temperature and activates the throttling mechanism by either using a less consuming throttle 

state or setting a lower voltage or frequency. “PROCHOT is a fixed temperature threshold 

calibrated to trip at the max specified junction temperature, [RHA et al. 2007]”. The most 

critical thermal limit is the THERMTRIP signal, because the system shuts down to avoid circuit 

damages. “THERMTRIP is a catastrophic shut-down event, both on the CPU and for the 

platform. It identifies thermal runaway in case of cooling system malfunction and turns off the 

CPU and platform voltages, preventing meltdown and permanent damage, [RHA et al. 2007]”. 

Table 17: Processor thermal limits [Don 2006] 

Temperature Limit Processor signal name 

Low Reliability TCONTROL Thermal trigger point 
Medium Functionality PROCHOT Processor hot 
High Damage THERMTRIP Thermal trip 
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In [RHA et al. 2007], the authors state four reasons why the temperature measurements, such 

as parameter variance or manufacturing thermal control are inaccurate. They cover the 

temperature measurement on the die considering the hottest location and the diode distance. 

The digital thermal sensors (DTS) support a higher accuracy in comparison to the analog 

thermal diodes and read the temperatures for each core separately. Additionally, the DTS offer 

the opportunity for a graceful shutdown because a notification to the operating system occurs 

before the THERMTRIP happens.  

In [Han 2007], the authors developed a thermal model of the processor which uses the scalar 

coefficient 𝜏, the p-state-based power 𝑃𝑝−𝑠𝑡𝑎𝑡𝑒, and the ambient temperature 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡. The 

authors proposed a fixed value of the coefficient 𝜏 = 1.25. This is a simple equation (3.71) to 

model the thermal behavior of the processor. The deviation of over- and under-estimation is 

approximately 4°C and highly accurate in comparison to the micro-architectural approaches 

with less model effort. 

𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 = 𝜏 ∗ 𝑃𝑝−𝑠𝑡𝑎𝑡𝑒 + 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 (3.71) 

The authors in [HS 2007, Han 2007, HKG et al. 2007] found that the processor’s temperature 

fluctuates within 50ms but the ambient temperature ramps up in minutes. They found a 

feedback loop: the thermal increase requires a speed-up of the fans, which consumes more 

power. The higher power dissipation leads to a larger cooling need and thus, the fan speed 

increases as long as it does not reach the maximum rotation speed. The authors state that the 

ambient temperature is only an offset of the measured processor temperature. The ambient 

temperature increase results direct proportionally to the processor temperature increase in 

the case of constant fan speed. 

In comparison with the processor-based thermal models, the memory models concentrate on 

the hardware architecture of the modules. The approaches split the printed circuit boards 

(PCBs) into chip-based areas on which the model is based. The authors of [LZZ et al. 2007] 

developed a thermal model for single fully buffered DIMM without any thermal interaction to 

other modules, but on the other side consider the interaction between the buffer and memory 

chips. They state that the memory throughput determines the heat generation; a higher 

airflow velocity leads to faster heat dissipation; a higher ambient temperature produces a 

higher module offset; and finally the type of the heat spreader influences the heat creation. 

Equation (3.72) shows the additives model of the buffer temperature 𝑇𝑏𝑢𝑓𝑓𝑒𝑟, where the 

thermal resistances 𝑅 are from the buffer to the ambient environment and from the DRAM to 

the buffer. The power of the buffer 𝑃𝑏𝑢𝑓𝑓𝑒𝑟 and the DRAM 𝑃𝐷𝑅𝐴𝑀 are multiplied with the 

resistances, and the ambient temperature 𝑇𝐴  is the offset. The DRAM temperature is 

calculated in the same manner, but using the thermal resistances 𝑅 of the buffer to the DRAM 

and from the DRAM chip to the ambient, as shown in Equation (3.73). 
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𝑇𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑇𝐴 + 𝑃𝑏𝑢𝑓𝑓𝑒𝑟𝑅𝑏𝑢𝑓𝑓𝑒𝑟 + 𝑃𝐷𝑅𝐴𝑀𝑅𝐷𝑅𝐴𝑀_𝑏𝑢𝑓𝑓𝑒𝑟 (3.72) 

𝑇𝐷𝑅𝐴𝑀 = 𝑇𝐴 + 𝑃𝑏𝑢𝑓𝑓𝑒𝑟𝑅𝑏𝑢𝑓𝑓𝑒𝑟_𝐷𝑅𝐴𝑀 + 𝑃𝐷𝑅𝐴𝑀𝑅𝐷𝑅𝐴𝑀 (3.73) 

The authors found that the temperature of the buffer is much higher in comparison to the 

DRAM chips. In [QXY 2008], the authors state that the thermal characterization of memory 

modules does not only rely on self-heating, spreading heating, or adjacent heating resistances, 

used by [LZZ et al. 2007]. They also involve a computational fluid dynamics (CFD) model, which 

represents the thermal behavior under changing airflow. In addition, the authors used the 

largest device operating (junction) temperature from the supplier to estimate the memory 

cooling capability. The authors analyze the variation of memory heat spreaders141 and their 

influence on airflow, which depends upon the system operating curve, the fan characteristics, 

and the system layout. In [SBA et al. 2011], the thermal model focuses on the single-sided, 

mounted memory module and distinguishes between the chips assembled in or against airflow 

direction. The authors develop an RC-based model that estimates the thermal behavior of each 

chip under consideration of optional buffers. They found that the chip temperatures vary by 

over 10°𝐶.  

The approaches are based upon resistance, but do not consider the thermal interaction 

between resources from the same type, from other types, or inner dependencies because of 

the circuit structure as well as the architecture. Furthermore, the system-wide thermal effects 

are not taken into account. The processor models only consider local hotspots, whereby the 

temperature is non-linear to the utilization level and the input voltage, but linear to the 

frequency. The temperature changes slowly in comparison to power. 

The thermal and flow characterization of a blade system was done in [Erd 2013]. The authors 

develop a single transient black-box server model, which considers the airflow rate, pressure, 

time constants, thermal conductance, and capacitance of the system. Finally, they introduce a 

black-box model that uses the thermal capacitance of the server, which reports the 

temperature difference between the inlet and outlet from the system. A first-order differential 

equation describes the time-dependent outlet air temperature and stream. This approach was 

investigated experimentally under a constant fan speed and executing a rack shutdown. The 

authors found that the capacitance depends on the servers’ mass and specific heat because of 

the volume and material.  

In the system and the environment (data center) domain, the common thermal approach is 

based upon computational fluid dynamics simulation. This method provides a 3-dimensional, 

temperature-based view of the entire system. The authors in [CKS et al. 2007] propose 

ThermoStat, a statistical thermal modeling tool for the server and racks. They considered the 

system’s geometry, the materials, the components’ placements and their power dissipation, 
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and the cooling mechanism, including the air characteristics and thermal properties. They 

focus on the correct component placements within a server as well as the server’s location 

within a rack. Therefore, they simulated the fan failures with regard to the inlet air 

temperature.  

In [ISS et al. 2012], the authors focus on the servers’ thermal mass142 and response at fixed 

power levels using diverse fan speeds, which corresponds to the various airflow rates. They 

state that the heat-transfer coefficient increases when the airflow rate rises. The thermal total 

energy depends linearly on the exact heat of air, the temperature difference across the server, 

the thermal mass, and the server temperature under time conditions. The authors state an 

additive weighted temperature regression model of the server, as shown in Equation (3.74), 

whereby the coefficients 𝐾𝐻𝐷𝐷 , 𝐾𝑅𝐴𝑀, 𝐾𝑃𝑆, 𝐾𝐻𝑆, 𝐾𝑐ℎ𝑎𝑠𝑠𝑖𝑠  and the temperatures 𝑇𝐻𝐷𝐷 , 𝑇𝑅𝐴𝑀, 

𝑇𝑃𝑆, 𝑇𝐻𝑆, 𝑇𝑐ℎ𝑎𝑠𝑠𝑖𝑠  are specific to the hard disk, memory, power supply, heat sink, and chassis. 

𝑇𝑠𝑒𝑟𝑣𝑒𝑟 = 𝐾𝐻𝐷𝐷𝑇𝐻𝐷𝐷 + 𝐾𝑅𝐴𝑀𝑇𝑅𝐴𝑀 + 𝐾𝑃𝑆𝑇𝑃𝑆 +𝐾𝐻𝑆𝑇𝐻𝑆 + 𝐾𝑐ℎ𝑎𝑠𝑠𝑖𝑠𝑇𝑐ℎ𝑎𝑠𝑠𝑖𝑠 (3.74) 

The authors found that the chassis has the largest influence on the server temperature and 

thermal mass, followed by the hard disks, power supply, processor, and memory modules. 

They extract the thermal mass and conductance information, which are included in the CFD 

simulations. A couple of research papers [ASS et al. 2014, PV 2014] focus on the servers’ 

thermal mass or capacity for CFD simulations. The authors in [Qih 2008] couple the heat and 

mass flow of the entire system. They proposed a transient multi-scale thermal model, which 

was proofed by an isolated gate bipolar transistor module integrated within a server 

enclosure.  

The work done in [BBB 2011] focuses on the steady-state thermal model of a multi-core 

processor by linking the cores’ power and their temperatures. The authors developed a linear 

regression model that collects the power and temperature measurements of the processor. 

They assume that all cores are within the same small neighborhood and define a thermal 

transient time-discrete model with the following equation (3.75), whereby 𝑛 determines the 

time index, 𝑇 is the temperature, and 𝑃 the power vectors with the dimension of cores 𝐶. The 

square matrices 𝐴, 𝐵 are calculated from the cross-product of 𝐶. The authors assume that the 

processor is in steady state and therefore 𝑇[𝑛 + 1] = 𝑇[𝑛] = 𝑇. The temperature depends on 

the ambience as well as the core temperature, and the model distinguishes between the 

working and sleep states.  

𝑇[𝑛 + 1] = 𝐴 ∗ 𝑇[𝑛] + 𝐵 ∗ 𝑃[𝑛] (3.75) 

  

                                                           
142

 Thermal mass: the capacity to store the heat [IBS et al. 2012] 
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The authors stated that the power consumption of a component grows when the core of a 

processor is active, because of the shared clock and power domain of the processor. The base 

power exists if the processor core is in operation and corresponds to the lowest of all the 

frequency values of the cores. 

Furthermore, the entire processor power depends on the number of active cores, the power of 

the fully busy cores, and the system power. They measured the temperatures and power 

consumption based upon core-based activation patterns of various operating frequencies. 

They found that “the configurations with the same number of active cores have similar power 

consumption levels, [BBB 2011],” the power consumption is symmetric to the number of cores 

but non-linear to the frequency.  

A numerical data center model is developed in [IGB et al. 2010], whereby the power and 

airflow of the server vary over time. The authors focus on transient CFD modeling. They found 

that if only the power varies, the buoyancy effects are the main factors for inlet temperature 

variation. The CRAC airflow changes are directly observable via the rack inlet flow during the 

time. The inlet temperature changes faster than the power when both are flexible, because of 

on-top or edge recirculation. The server power does not influence the inlet temperature when 

a constant airflow is established. In addition, the same authors propose a transient model of 

data centers in [IBS et al. 2012], which considers the airflow changes. They also model the 

server thermal mass that is beneficial to the transient analysis. The authors state that the 

power dissipation varies over the time and depends on the fan speed inside and the pressure 

across the servers. They analyzed the rack power under constant and variable CRAC airflow. 

Furthermore, “the server was modeled as a simple thin plate, [IBS et al. 2012]” which has a 

thermal mass considering the material mix of steel and copper. The specific heat capacity and 

conductivity are part of the thermal mass model and therefore, part of the thermal boundary 

conditions, which is a time-dependent factor to read the steady state. The authors found that 

the airflow variation has a more rapid result of the inlet temperature in comparison to power 

changes. 

The thermal model in [BWP et al. 2010] uses the heat dissipation and power consumption of 

the cooling systems within the data center. The authors’ model the fan, the rack, the CRAC, the 

chiller, and the cooling tower, including the following parameters: 

 Fan speed 

 Volume flow rate 

 Pressure drop 

 Mass flow rate of air 

 Heat transfer coefficients 

 Heat exchanger effectiveness 
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to represent the heat flow from the rack level to the chiller. Due to the variety of cooling 

systems within a data center, the authors analyzed the inlet air temperature of the rack 

systems and the dependencies towards the infrastructure of the data center cooling systems. 

The authors found that the increase in rack-air inlet temperature of approximately five °C 

improves the coefficient of performance (COP) by about eight percent. They also state that a 

temperature rise across the racks is more efficient in comparison to a rack inlet temperature 

increase. Similarly, the authors in [JVG 2010] propose a data center thermal model that 

considers the heat interference and the cooling but uses ambient sensors to detect the 

temperatures. The authors of [RZB et al. 2012] state a model-based approach of the data 

center’s thermal environment. The authors develop a dynamic rack-inlet temperature model.  

The simulation-based approaches require real servers to measure the temperatures of each 

component to find the weight coefficients. This approach is of limited practical utility in 

investigated time, effort, and presence of constant environmental conditions, such as 

humidity, temperature, or utilization levels. These tools are useful to analyze particular 

components. The easy equations use the analogy between electrical and thermal properties 

with resistance and capacitance. On the contrary, the equations become more complex for 

CFD simulations, which require an extensive analysis of the real hardware under static and 

dynamic considerations. The models are more accurate and complicated because of the entire 

system behavior, such as airflow. Another critical factor for temperature approaches is the 

simulation speed, because thermal changes are substantially faster in comparison to the total 

simulation time and therefore, differ across several steps.  

In fact, the researchers work continuously on thermal models at various level of detail, as 

shown in the Figure 37. Within the last recent years, the authors focused on the system and 

the environment domain. The thermal models, especially the coefficients and weights, need to 

be adapted for each particular server configuration.  
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Figure 37: Thermal models in recent years 

The cooling costs increase by the growth of thermal dissipation. At a certain level, the cooling 

costs grow strongly with respect to the dissipated temperature [GBC et al. 2001]. The 

computational density trend, such as the larger amount of transistors or capacitance and the 

higher frequencies, are causes of the thermal increase. It is necessary to find the break-even 

within the thermal-to-cost ratio; otherwise the correct energy efficiency is impossible. 

Moreover, high temperatures will have some negative effects, such as reduced reliability of 

the resources. Hence, the temperature is a dominant factor of performance.  

3.7 Performance Algorithms and Approaches 
The system and resource performance indicate how powerful the system operates. The 

performance models estimate the peak value, the average values, or the performance per watt 

on the basis of resource characterization. Usually, the system or resource executes a set of 

workloads, such as benchmarks (suite), and the researcher observes143 the corresponding 

performance counters, events, power values, or temperatures. The results of these empirical 

studies and analyses form the basis for the performance models. Furthermore, the stress 

findings are relevant criteria for statistical and experimental models validated with various 

hardware settings. The performance characterization depends on the executed instructions 

(floating-point, integer) and related activated functional units on the hardware [DEP et al. 

2009]. The compiler settings influence the software execution, whereby the operating system 

changes the device frequencies on demand. The authors of [FM 2002] illustrate the 

performance levels and time spent within various frequencies at two MPEG144 scenarios using 
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 Observation: measuring, profiling, tracking, or logging 
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the video playback LongRun and Vertigo. They found that neither the frequencies, nor the time 

is equal. This indicates that the amount of hardware devices, the types145, or the architecture 

requires an adjustment of the model, whether through weighting factors, model design, or 

diverse descriptions based upon diverse system domains146.  

The performance model in [MKO et al. 2002] is based upon the architectural level. The authors 

analyze the design and architecture of an embedded system and its elements. They consider 

the behavioral level, such as using the events that execute instructions of one or more system 

elements.  

The authors in [YZ 2011] estimate the performance of the various memory modules in 

embedded systems, whereby they focused on cache activities. They completed a compiler 

static analysis and dynamic profiling through a simulator. The data traces show the realistic 

accesses. The authors analyze the data objects and classify it into four different dblocks147, 

which conflict which each other. The authors state a cache conflict graph (CCG) to determine 

the cache performance criteria, such as the cache misses or hits. Each edge within the graph 

has a weight that shows the amount of memory accesses. This approach requires a scan of the 

assembly code to get the dblocks, the cache table, and the cache conflict graph to estimate the 

hits and accesses. [MHS et al. 2009] propose that the main memory latency consists of the L3 

cache misses148, the quick path interconnects (QPI), and the integrated memory controller 

(IMC) per DIMM latencies, as shown in the following equation. They found that the absolute 

values rely on the processor’s core and uncore frequency.  

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑅𝐴𝑀 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝐿3 𝑀𝐼𝑆𝑆 + 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑄𝑃𝐼 + 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝐼𝑀𝐶/𝐷𝐼𝑀𝑀 (3.76) 

Additionally, the authors stated that the read performance of a memory module increases 

with the growth of the data as well as with the amount of the cores. Moreover, the write 

performance of the L3 cache and RAM increases with higher number of cores. The authors 

analyzed the performance of L1, L2, L3, and RAM for concurrent read and write accesses. They 

measured the single-core and multi-core bandwidth accessing the same memory module. The 

authors found that the bandwidth of L1 and L2 caches is linear to the number of threads, 

because the threads executing on each core are independent. The RAM and L3 cache 

performance have only doubled by the quadrupled threads, because the system shares the L3 

bandwidth.  

                                                           
145

 Hardware types: server types, processor generation, single inline, or dual in-line memory modules 
146

 Descriptions on various system domains: instruction-based, functional blocks, state transition 
diagrams, or spread sheets 
147 Dblocks: “The dblock is defined as a contiguous sequence of data within the same data object that is 

mapped to the same cache set in the data cache, [YZ 2011]”. 
148

 L3 cache misses: latency of L3 cache misses includes the miss rate 
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The authors in [ZT 2011] experimentally analyze a memory system that uses the Intel Nehalem 

and Westmere micro-architectures via the triad benchmark. They stated that the data 

locality149 influences the performance of the applications because of the throughput of the 

integrated memory controllers and their shared resources, such as bandwidth. The authors 

found that the on-chip memory controller has a better bandwidth with the increasing number 

of tasks in comparison to the off-chip memory controller. The processor cores request the 

access to the memory simultaneously. In their configuration, the memory bandwidth is the 

ratio between accessed data per processor cycles. Herein, the authors define the accessed 

data by the size of the cache lines multiplied with the last-level cache (LLC) misses at a 

processing frequency, as shown in Equation (3.77). The Intel Nehalem processor has a cache 

line size of 64𝑏𝑦𝑡𝑒𝑠 and a frequency of 2.27𝐺𝐻𝑧. 

𝑚𝑒𝑚𝑜𝑟𝑦𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ [𝑀𝐵/𝑠] =
𝑠𝑖𝑧𝑒𝑐𝑎𝑐ℎ𝑒_𝑙𝑖𝑛𝑒𝑠 ∗ 𝐿𝐿𝐶𝑀𝐼𝑆𝑆 ∗ 𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝐶𝑌𝐶𝐿𝐸𝑆∗10
6   (3.77) 

The system performance depends on the balance between local and remote memory accesses. 

Furthermore, the authors proposed an overall system throughput model that sums the 

instructions per cycle (IPC) values of each process 𝑝. 

𝐼𝑃𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐼𝑃𝐶𝑝𝑝 ∈ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠   (3.78) 

The authors in [KKK et al. 2012] propose a memory behavioral model. The authors found that 

the memory performance does not only linearly scale to the number of processor cores and 

the related parallelized software. They create a performance model that uses the number of 

parallel tasks (iterations), the amount of parallel sections (loops), and the computations 

without and within locks. Furthermore, the approach works on the number of all instructions 

and DRAM accesses to model the performance. 

Those performance models all constitute the need of an explicit hardware and software 

configuration that traces and estimates the event counters. The memory architecture, the data 

locality, and the cache misses are criteria for the performance modeling approaches. The 

workload type generates performance differences because of parallelization or shared 

accesses. It is necessary to measure the performance values on a real server system with an 

existing job to make a general and reliable statement. A forecast or prediction is only possible 

for an explicit workload, where the read-to-write ratio is established, e.g., for memory 

modules. The exact performance values of the instructions need to be known. In conclusion, 

the amount of performance models is less in comparison to the power and thermal models. 

Usually, the performance is measured on the real hardware and seldomly predicted because of 

a priori unknown resource claims, the high-required level of detail, and the non-existing 

workloads. Figure 38 shows the performance approaches mentioned during the recent years. 
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Figure 38: Performance models in recent years 

In this thesis, we measure the performance using several benchmarks. We do not cover the 

performance approaches because we focus upon the power and thermal models. The thesis 

models are validated via real hardware and realistic software running on the server. The 

performance criteria will verify the performance assumptions and check the performance 

monitoring. The performance models help to estimate the energy efficiency of the resources 

and the systems.  

3.8 Efficiency Algorithms and Approaches 
The efficiency is a criterion to determine the productivity, whether in power, thermal, or 

performance. The efficiency provides the ability to avoid costs, airflow, humidity, carbon 

footprint, efforts, energy, time, or money at the considered aspects. The ratio between output 

and input values is the basis of management techniques and optimizations to ask the 

questions of how and where to optimize. Table 13 shows some efficiency metrics within the 

various server domains. The IT or load density is a key factor for power models. For example, 

the thermal models of the server resources use the capacitance and resistance to predict the 

temperature. The server performance, such as bandwidth or the instructions per cycle are 

indicators to estimate the response time or how much time a job consumes. The focus on 

efficiency such as power usage efficiency, data center cooling system efficiency, IT equipment 

efficiency, or energy efficiency characterizes the algorithms and approaches. There are fewer 

independent theoretical approaches. A guiding principle is to create a unique and separate 

model under particular circumstances and specific conditions. The following equations show 

the energy as well as power efficiency calculation under thermal constraints, which is the focus 

of this thesis. 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑒𝑛𝑒𝑟𝑔𝑦
=
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒 ∗ 𝑝𝑜𝑤𝑒𝑟
 (3.79) 

𝑝𝑜𝑤𝑒𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑝𝑜𝑤𝑒𝑟
 (3.80) 
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The energy efficiency increases when the system executes the identical work, if the job is 

processed more quickly consuming the same power. Another method is to improve the 

performance, while the energy consumption is constant. Of course, the aim is to maximize the 

performance and reduce the energy consumption either via time or/and power at the same 

time. The efficiency is inversely proportional to the energy or power and directly proportional 

to the performance. The efficiency is constant when the performance and power 

simultaneously increase or decrease by the equal factor. Therefore, the aim of energy 

efficiency optimization relies on a fixed performance demand or a predefined power limit, 

which lead to power/energy minimization or performance maximization. In addition, an 

increasing frequency may lead to high temperatures above the functionality limit or the 

damage limit, which potentially generates more failures. On the other hand, a power reduction 

to a lower device state leads to a time increase and thus, higher operating costs.  

3.9 Server System Models and Simulation 
Figure 39 summarizes the studied system-based models considering power/energy, thermal, 

and performance aspects. Of course, the server models also include the individual component 

models stated in the previous sections. They all have in common, that the models are 

dependent on a single technology and refer to known working conditions, such as an 

application or particular operations. The models guarantee a suitable accuracy via using 

various instruction counter types to determine the resources’ activity level or performance. 

The counters are hardware-specific because of the resource architecture, inner designs, states, 

connectivity, or parameters. Therefore, the hardware counters are only valid for an explicit 

configuration or platform on the micro-architectural level. For that reason, the models focus 

on concrete configurations within a defined environment, such as a given workload or thermal 

limits. The models have a range of complexity and accuracy because of the considered 

purpose. The approaches do not take the relationships, the dependencies, or the structures 

between hardware families, generations, or series into account. The models do not support 

forecasts on the physical and technological basis for future systems. The portability and 

comparability are not achieved. On the other hand, the black-box models try to abstract the 

hardware details to guarantee portability. Furthermore, the variable settings of workloads and 

software settings are crucial factors of a system’s power dissipation. 
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Figure 39: Server system power/energy, thermal, and performance models 

We differentiate between power/energy, thermal, and performance models and their related 

component-based simulators. Parts of them build the foundation for full-system simulation to 

predict energy efficiency, for instance, and enable the opportunity for studying diverse 

management techniques (how and with what to optimize) or optimization strategies (with 

respect to the optimization goal). Furthermore, we distinguish the full-system simulations into 

hardware measure-based approaches, software profiling tools, and simulation frameworks. 

Section 3.4.2 widely describes counter-based models, such as Mantis [ERK 2006, Riv 2008, RRK 

2008] or the Joule Watcher approach [Bel 2000]. These approaches give a more exact 

estimation about the system’s behavior because of realistic workloads, including operating 

system effects on behavior, and performance in the working progress. The resource utilization 

is obtainable via measurements of synthetic benchmarks or during the runtime of the 

respective system. Software profiling tools simulate applications and effects, such as the 

operating system behavior more quantitatively. The approaches model the instruction 

execution after studying an application. The authors observed the timings and functional data 

of realistic workloads. Therefore, we call them static full-system simulators or application-level 

simulators. Bellosa combined hardware measurements with the software power profiling. 

Here, we present the software profiling tools: SimOS, SoftWatt, Simics, and the timing model 

TFSim. On the contrary, the SoftWatt approach not only has the purpose of profiling, but it 

also simulates the system. This is an advantage of the dynamic full-system simulators, which 

execute instructions with timing behavior. Those executions-driven simulators need a more 

exact timing model. Herein, the simulation detail and accuracy of functionality and 

performance are important facts to choose the adequate simulation model. We introduce the 

dynamic full-system simulators SimFlex, SimWattch, and BladeSim. A system consists of 

various components and physical chips and therefore, some low-level or component-based 

simulators are required, such as SimplePower, SimpleScalar, or Wattch. The academic research 

focuses more on the software profiling and hardware measurements at the system 

(component) level in comparison to the full-system simulations. In last recent years, more and 

more researchers concentrate on simulation-based approaches at the environment level, as 

shown in Figure 40. A couple of network simulations for the data center environment exist   
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[AP 2014, JPL et al. 2014], but they do not simulate the server system. The environmental 

simulation models, such as DCSim [SSG et al. 2009, CYR 2012, KTL et al. 2013, TKS et al. 2013] 

concentrate on thermal simulation. At a high abstraction level, job scheduling or management 

strategies consider costs, airflow, power, or energy efficiency [RAM et al. 2009, ADK et al. 

2012, MJW 2012, FBP et al. 2014, KRS et al. 2014, MMA 2014], which are not the scopes of this 

thesis. 

 
Figure 40: Server system simulation models 

3.9.1 Full-System Simulation 

A full-system simulation framework developed at Stanford is called SimOS, which is an 

application-based simulator that covers a variety of systems [RHW et al. 1995]. The SimOS 

system executes multiple commercial operating systems, such as Irix, Tru64, Windows NT, 

GNU/Linux, and their activities. The dynamic simulator supports multiprocessors, such as for 

MIPS150 and Alpha151 instruction sets supported by the processors, as well as memory models 

Embra, Mipsy, and the related interpreter MXS [Her 1998]. It includes statistics as well as 

working information and offers an interface that allows the customer to characterize the 

behavior. The authors determine the system behavior and collect corresponding data, which is 

a possible input for the system. The authors of [Lan 2007] extend the SimOS system to support 

better scalability and performance. They use binary translation and parallelism to model the 

execution of the operating system and the application software of medium-scale, shared-

memory multiprocessors. The approach is restricted to the specific applications designed for 

an explicit hardware and the operating system. The trace-based design supports various 

architectures, designs, and configurations, but is based upon low-level data. Furthermore, the 

system can execute, complete, unmodified binary workloads as well as a variety of software.  
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 MIPS: microprocessor without interlocked pipeline stages, http://imgtec.com/mips/ 
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The SoftWatt approach, proposed in [GSI et al. 2002], is a power and performance simulator 

for the behavior of applications and the operating system. The authors quantify the power 

behavior with respect to the workload. They extend the SimOS approach to include analytical 

power models for various hardware components, such as the memory hierarchy and disk. The 

method analyzes the impact of the operating system and characterizes it at the various 

phases152. They divided the application-specific behavior, executed on a commercial operating 

system, into power dominant services, such as kernel activities, data path, or caches. This 

approach is unsuitable for a server model within the design phase because the model must be 

independent of the operating system. The customer has the free choice of the desired 

operating system153 and this is done according to the needs of the customer’s company. Some 

of the indicators are the company’s size, such as large-scale enterprise, which influences the 

general budget situation, the service, and the related server type. Additionally, the model 

relies on the local events of the system. “Soft-Watt models a simple conditional clocking 

model. It assumes that full power is consumed if any of the ports of a unit is accessed; 

otherwise no power is consumed, [GSI et al. 2002].” The authors do not consider leakage 

power during idle times and in reality, the components do not consume the whole power 

because of power management strategies. The authors of [GSI et al. 2002] show a state 

machine for a full-system simulation and corresponding power values in a range between 0.15 

and 4.2 watts for a hard disk drive. The power part is very simple in comparison to the other 

components and therefore, a low accuracy model is enough. Of course, the proportion 

increases by the number of drives, especially in web or file servers. The authors found that the 

memory’s power is more than twice the data path’s power. The idle power has a share of five 

percent in their system configuration. 

Simics is another dynamic full-system simulator [MCE et al. 2002], which includes functional 

descriptions, such as instruction execution as well as timing aspects of unmodified operating 

systems, kernels, and drivers. The system supports the operating systems: Solaris, Linux, Tru64, 

Windows XP, and the related activities. The processor models are instruction set simulators for 

Alpha, PowerPC, SPARC, MIPS, ARM, and x86-64 architectures. The system supports next-

generation devices by including adjusted functional and timing behavior. The system models 

memory accesses and instructions with uniform time slots. Cache and memory timings are a 

possible extension of the system. The authors of [MHW 2002] compensate this drawback in 

TFsim154, a full-system multiprocessor performance simulator. The approach includes micro-

architectural details, such as pipeline, and models the execution of dynamic instructions within 
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 Analyzation and characterization: post-processing of the information logs from SimOS performance 
simulator 
153

 Operating systems: Microsoft Windows Server (Hyper-V, Server 2x), Red Hat Enterprise Linux (RHEL), 
SUSE Linux Enterprise Server (SLES), Ubuntu Long-Term Support (LTS), Oracle Linux, FreeBSD, Solaris, 
Linux container virtualization (LXC), Xen-based virtualization, or Kernel-based virtual machine (KVM) 
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 TFSim: later known as Opal 
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the timing simulator. The model distinguishes between functional and timing behavior, which 

is decoupled to each other to consider various fidelity requirements. The timing simulator 

(execution of instructions) influences the functional simulator (access of register or memory) 

but does not change internals, such as the register. The software profiling simulators are 

adequate for a given environment, but do not claim to be generally applicable. Hence, the 

dynamic full-system simulators avoid this disadvantage.  

The SimFlex simulation framework developed in [HSW et al. 2004] use statistical samples on a 

platform within component-based design. The approach includes the Simics features to 

provide operating system behavior and functional timing models. Furthermore, the authors 

used the SMARTS methodology [WWF et al. 2003] to have realistic workload samplings. The 

model consists of components in hierarchical manner, which are linked together with the 

wiring description. The definition of the ports and the control flow in C++ connects the 

components at compile time. The authors in [WWF et al. 2006] simplify the SimFlex model to 

speed up the simulation time. Finally, they used parallelism and checkpoint-based sampling. 

On the contrary, SimWattch is a performance and power estimation tool that provides a 

complete system simulation environment [CDS 2003]. The approach combines the cycle-level, 

micro-architectural timing of Simics, the power as well as performance estimation of Wattch 

[BTM 2000], and the customer-level simulator of SimpleScalar [ALE 2002]. The authors focus 

on operating system effects, such as miss rates, to avoid misleading results at customer-level 

simulators. Thus, they generate instruction traces at the cycle level, which are buffered, 

translated, and accessed in various modules. The power model is based upon the load 

capacitance, supply voltage, and frequency as described in (3.22). The performance 

characteristics use the IPCs stated in Section 3.7. Furthermore, they analyze the OS activities, 

the dynamic instruction mix of workloads, the customer instructions on each application, and 

related cache misses per instruction [CDS 2007].  

The SimFlex and SimWattch approaches require an existing system to define the component 

interconnections, the OS activities, and executed instructions at the micro-architectural level. 

The simulation tools do not scale with regard to the hardware configuration and therefore, 

consume much time in comparison to the real system. 

Another high-level, full-system model is the BladeSim approach, which is proposed in [RL 

2007]. It is a resource utilization-based simulator that considers the system configuration and 

architectural policies. The simulator converts the trace of a real workload and the 

corresponding resource utilization levels, which is extended by the timing model. BladeSim 

simulates the system behavior by using the correlation between the task-based resource 

utilization for power or performance metrics, concentrating on the processor, memory, disk, 

and network. The authors argued that the observation and resource utilization of the systems 

is straightforward because of the established trace opportunities (monitoring, control 
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interfaces) or the simplicity to receive the values via scripts. One challenge is the variation of 

resource utilization in various system configurations. In addition, the key challenge is the 

relationship between the performance and power metrics. They found that each server class 

requires a specific model because of the various hardware configurations, such as the voltage 

and frequency states. The authors reduce the workload complexity and simulation time with 

their approach. “The system workloads are modeled as resource utilization traces and systems 

are designed as lookup tables based on the characterization functions, [RL 2007].” The 

approach does not consider detailed component-level behavior, buffered, or queued work. 

Furthermore, this method requires a real system for the characterization via calibration 

experiments. An alternative is an analytical model of the system with regard to the resource 

utilization. The accuracy of the simulator works well (the authors report a five-percent error 

range), in comparison to the investigated effort. In addition, the model scales to a large 

number of homogeneous systems with heterogeneous configurations. 

3.9.2 Physical-based and Component-based Simulation 

At the physical level, the execution-driven and cycle-accurate approach called SimplePower is 

proposed in [YVK et al. 2000]. It includes a transition-sensitive energy model that works on 

cycle-based executions and switching capacitance, defined in Equation (3.20). The approach 

consists of five stages of a pipelined data path and uses the instruction set architecture of the 

SimpleScalar method. The authors use lookup tables to store the capacitance of circuit events 

such as switching activities and transitions. Empirical experiments generate the data, which 

depend upon functional units. These analytical models are more specific rather than generic 

and need to be set for a specific circuit. In addition, the modeling process requires much time 

because of the architectural details and is a typical off-line model. 

SimpleScalar provides an infrastructure for system and component modeling at the 

architectural level. The system provides an instruction set simulator for Alpha, PowerPC, x86, 

and ARM to execute workloads considering timing aspects. The framework provides routines 

to model tasks, e.g., discrete events. The execution-driven simulation uses instruction-set and 

I/O emulators to support customer applications, which are based upon hardware activities. 

The emulator maps the application to the target architecture and the functional core. The 

authors in [ALE 2002] describe the cache and the related timing model. The models execute 

the instructions at the cycle-accurate level. The approach uses baseline models that are 

independent of data collections, such as statistical analysis or event handlers. The very simple 

model abstracts micro-architectural details and uses elements such as branch predictors or 

instruction queues. Beneficially, it has a configurable micro-architecture to enable various 

evaluations. 

A power analysis and modeling framework at the architectural level is proposed in [BTM 2000]. 

The Wattch approach uses the cycle-level performance simulator SimpleScalar and 

configurable power models that estimate the power and performance ratio. Herein, the 
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processor structure is abstracted into array structures (cache, register files), fully associative 

content-addressable memories (logic, buffer), combinational logic (functional units), and clock-

related categories (capacitance load, clock buffers). The activities are traced on a cycle-

accurate level of the micro-architectural structures. This statistics form the basis for the 

analytical models based upon capacitance. The off-line framework allows modifying the micro-

architecture by means of a table-based approach, but it is a time-consuming simulation 

system.  

A detailed processor and memory simulation is done in [MSB et al. 2005]. The general 

execution-driven multiprocessor simulator (GEMS) characterizes the multiprocessor 

performance. The included timing simulator originates from Simics and is decoupled to the 

functional aspects, but the timing simulator can influence the functional behavior to capture 

time-dependent effects. The system consists of a random tester module, a micro-benchmark 

module, Simics, and TFSim. The GEMS toolset models various memory hierarchies, such as 

caches, cache controllers, or main memory. The cache coherency model uses a per-memory-

block state machine, which includes states, events, transitions, and actions. The processor 

model provides the instructions or execution units of the MIPS architecture. The GEMS toolset 

does not support trace caches, hardware multithreading, or diverse ISAs. 

The authors of [RMN 2009] focus on synchronization and timing for full-system network 

simulation of multi-computer systems and deal with the trade-off between simulation speeds, 

time, and accuracy. Therefore, to avoid effort they use Simics and its modules, which simulates 

unmodified operating systems. In addition, the authors combine Simics and the 

Interconnection Network Simulation and Evaluation Environment (INSEE) [RM 2005] and cover 

the challenges to design a full-system simulation. A main aspect is the time synchronization 

caused by the cycle-events of a processor, and the physical time of the network stack. The 

authors argued that the reuse of modules has the risk of inaccuracy and invalid results, 

because the modules are designed for a different purpose.  

3.9.3 Conclusion 

At the server system domain, the rigorous simulation frameworks are a mix of simulation and 

direct hardware measurements, such as software profiling tools, which consider instruction 

sets, capacitance, activities, states, transitions, events, or performance counters to estimate 

the behavior. The researchers limit the applicability155 because of the published methods to 

work exclusively with: 
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 A predefined simulation purpose and an explicit use case 

 A fixed environment 

 A target hardware platform 

o An exact system configuration 

o A restricted number of components 

o An explicit hardware specification 

 A target software configuration 

o A given application, software traces 

o A defined operating system 

The trace-based methods work on the cycle-accurate level, which is sufficient when another 

application executes the same instructions on an identical system or component. The 

instruction or cycle-accurate approaches [RHW et al. 1995, Her 1998, MCE et al. 2002, GSI et 

al. 2002, Lan 2007] would require a workload resolution higher than our 1-second to 

characterize the instructions and component power in a precise manner, such as by an 

accuracy of less than five percent. Thus, the approaches consider realistic memory read/write 

accesses or given tasks, which needs to be known, but the well-known instructions vary from 

the processor architecture, generation, or family. However, the approaches require a real 

system and the instruction-based trace, which is time and cost intensive, especially for 

unfamiliar components. Consequently, the measurement and modeling efforts increase, and 

these analytical models face the trade-off between the accuracy and the simulation time. In 

contrast, the full-system approaches on the basis of the hardware measurements study a 

specific hardware configuration concerning the flexible processor utilization levels. The 

approaches of [ERK 2006, HCG et al. 2006, FWB 2007, Riv 2008, RRK 2008] require several 

training techniques, which guarantee an accuracy less than ten percent. The approaches 

consider the linear regression methods to calculate the power that corresponds to a certain 

utilization level and performance counter specific to the hardware configuration. The 

component characteristics, such as the channel156, the generation157, or the technology 158 of 

the memory modules, have changed over the last recent years. The approaches up to now do 

not cover these heterogeneous characteristics of the hardware variations. In consequence, the 

full-system approaches are not generally valid for various server systems or tend to become 

impractical because the proposed models of [MHW 2002, CDS 2003, HSW et al. 2004, CDS 

2007, RL 2007] concentrate on a particular system configuration and explicit operating system 

in which the models do not flexibly support certain characteristics. Most of the full-system 

approaches are not aware of the component interactions or thermal dependencies that are 

relevant to the industrial field of application.  
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 Channel: Dual-channel, triple-channel, or quadruple-channel 
157

 Generation: DDR, DDR2, DDR3, DDR4, xxx-200, xxx-266, or xxx-333 
158

 Technology: RDIMM (registered), FBDIMM (fully-buffered), or SIMM (single inline) 
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3.10 Industrial Field of Application 
The academic approaches and commercial tools are part of heterogeneous product 

development stages. We introduce the product development life cycle that helps to explain 

the commercial field of application and the specific requirements. Afterwards, we describe the 

internal and external use cases of industrial solutions. In addition, we show the reason why the 

commercial tools do not consider academic approaches and we describe four common power 

calculators. In conclusion, we define the gap between typical industrial tools and academic 

approaches. 

3.10.1 Product Development Life Cycle 

Introducing a new product follows the various stages of the life cycle beginning with 

requirement engineering up to the sell process. The authors of [MSD 2006] define the product 

development life cycle (PDLC) phases: envision (define), build, test, implement, and operate159. 

All separate sequences rely on each other, such as the predecessor phase. The development 

for a non-existing product starts with the envision phase. Herein, the vendors critically analyze 

existing markets to predict product requirements as well as find strengths and weaknesses. 

The envision stage includes customer feedbacks and future forecasts to develop a product 

vision. A recent technology roadmap includes ideas about functionality, ability, performance, 

or design. For instance, Intel’s roadmap [Int 2013] predicts new server processor families using 

an alternative manufacturing process technology called either tick or introducing another 

micro-architecture called tock [Int 2006]. New micro-architectures, changed instruction set 

architectures, or designs provide additionally functionality and improve the energy efficiency 

of the processors. The academic research and product development are part of the next 

phase, called build. The developer or manager defines the architectural requirement 

specifications at the technical level. Afterwards, the vendor starts the proof of concept in the 

early build phase to check constraints and feasibility. In this stage, the vendor has a first 

product prototype, which is also part in the testing phase. The developers test the software 

and hardware in comparison with the functional specification of each single component as well 

as the complete system. In this phase, academic research focuses on alternative designs and 

management techniques. Final acceptance tests check if the first prototypes fulfill the 

specifications. The product manager decides about a specification change or revision because 

of competitors, which leads to start partly from the envision phase. In the implementation 

stage, the vendor provides the complete system functionality, which is part of the system 

specification. Particular product lines have concrete system requirements because of a 

specified purpose. The operate phase is not precisely separated from the implementation 

phase. A customer orders an individual server system with a customized hardware and various 

software components. The vendors manufacture a complete system with unique customer 
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requirements and specifications. The order process and proper product documentation are the 

main part of the operate stage. If a product is at end of life (EOL) or end of sale (EOS), the life 

cycle will start again with a new or adapted product. Figure 41 shows the complete product life 

cycle. 

 
Figure 41: Product development life cycle [MSD 2006] 

The academic approaches and commercial tools partially support at least one of the five 

product development life cycle stages. The following section describes the field of application 

of the academic and industrial approaches.  

3.10.2 Research, Development, and Deployment of Server Systems 

On the one hand, the academic approaches offer an unknown perspective to the established 

practice and provide optimized algorithms to integrate new functions as well as features that 

are part of the product life cycle build stage. On the other hand, the commercial tools do not 

include the systematic findings and results. The established industrial tools offer the 

opportunity to purchase a server system, which is the common business case in the operate 

stage. The customer configures a server suitable to match the customer requirements.  

The requirements differ between superficial and deep knowledge, depending on the server 

system domain described in Section 3.3. A data center manager plans the overall energy 

demand and in comparison, a technician is aware of the temporary power constraints within a 

rack enclosure. Another power-related decision is the server type, because a high-end server 

consumes more power than a mainframe, or an ordinary server. In addition, the enterprise 

sizes predefine the server enclosure because of the provided space and capacity. Data centers 

contain various server kinds, such as storage servers or high-performance servers, which have 

special configuration demands. The unlimited variability of the customer induces the vendor to 

establish flexible and universal (but still vendor-specific) configuration tools that satisfy the 
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diverse demands. Thereby, the commercial tools focus on the system specification phase to 

release a product. At the same time, they do not apply academic approaches, because of the 

high measurement and modeling effort investigated for each single component. Academic 

researchers focus on an explicit scenario to keep products competitive, but they use a 

predefined configuration. An important consideration in ensuring the order process is a 

flexible hardware configuration. The executed software on the server varies for each customer 

and is a subordinated interest.  

Furthermore, the vendors use commercial tools to win the invitation to tender. In this case, a 

customer provides a clear guideline on the hardware required in their enterprise and creates a 

call for tenders with many individual positions. For instance, the customer may require an Intel 

Xeon processor (E55xx), 24𝐺𝐵 𝐷𝐷𝑅3 − 1066 memory, 2-terabyte hard-drive capacity, and a 

Linux Server OS (Red Hat Enterprise Linux – RHEL or SUSE Linux Enterprise Server – SLES) by 

the 500 watt power limit and the upper limit on costs at 700€ per server. The customer does 

not specify the intended purpose and therefore, the vendor calculates the peak power 

consumption on the basis of the technical specification. Instruction-based or cycle-accurate 

approaches do not work, because of the missing data about the range of tasks or precisely 

defined jobs. Furthermore, commercial tools must be independent of the operating system, 

whereby most academic full-system simulators refer to a given one [GSI et al. 2002, MCE et al. 

2002, HSW et al. 2004]. Here, we consider that the server does not pass the power limit under 

any circumstances, because of the regression claims [Fuj 2011]. The server vendors assure 

commitments, such as technical specifications, that form the legal framework. In industrial 

practice, theoretical data, worst-case thresholds, and over-estimation ensure the product 

specification besides management techniques. In general, the customer does not explicitly 

mention something about environment conditions, such as the ambient temperature, thermal, 

or performance limits of the server system. Data centers work with a thermal range from 20°𝐶 

up to 35°𝐶 for which the vendors specify the system. If there is a given environment limit, the 

vendor only checks if the system is within the specification.  

Vendors deploy a server to a customer into the production environment and offer 

maintenance services. In this phase, the server behavior may include bugs or problems, which 

the customer reports to the vendor. In general, such reports are about the reliability, 

availability, maintainability, and safety (RAMS). Vendors solve the reported issues via a 

customer-specific bug fix, a server system adoption, or academic research for the next server 

generation. The server operates many times larger than the development time. The software 

solutions are cheaper options in comparison to hardware changes. Therefore, vendors 

investigate firmware-based solutions to support a range of servers at the same time. If 

firmware changes do not satisfy the demand, a vendor has to adapt the hardware. Academic 

research indicates the related software as well as hardware changes under predefined 

conditions provided by the customer. The particular use cases of the server system provide the 
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environmental conditions, such as the operating system and the workload, which results 

especially in the research question. A rework of the entire system saves the investigation costs 

and ensures more profit for industry in comparison to a complete new server system. The 

individual server systems share the high development costs. In addition, a vendor includes 

novel market requirements and forecasts.  

Various use cases result in multiple perspectives of an industrial tool. Table 18 compares the 

customer and vendor demand, which both in common require a flexible hardware and 

software configuration for the server. On the one side, the customer chooses an explicit 

hardware and software configuration to fulfill his or her own performance demands. On the 

other side, the vendor supports already released systems in a given configuration subset. Our 

simulation tool should offer the ability for future systems and server variants that are in 

development. The flexible software settings require a realistic workload scenario. At the same 

time, full utilization of all resources constitutes the worst-case scenario. The executed jobs are 

unknown in the vendor perspective and therefore the tools abstract the software by means of 

resource utilization levels. Additionally, vendors do not consider the operating system as well 

as virtualization techniques for customer-specific jobs. The requirements of customers and 

vendors do not match, because customers require an operating system that considers 

management techniques, virtualization, or optimization strategies. The customer specifies the 

same job that is already applied in the obsolete system. The system requirements come from 

the real application and the customer’s daily experiences. On the contrary, the customer-

specific job may be unknown because the operations and tasks change within the future. 

Another non-predictable aspect is the job scheduling by the data center manager, which 

utilizes the resources in any manner. The customers use the commercial tools to calculate the 

power of the entire server system. On the contrary, vendors additionally consider the 

component power consumption and the PSU sizing. In the commercial context, a vendor 

calculates the server power for a worst-case scenario, including an extra power overhead [Fuj 

2011]. This method ensures that the PSU has the adequate power under every circumstance, 

and the server has no need to throttle down, which may reduce the performance. 

Nevertheless, customers require an optimally utilized PSU, which is more efficient for 80% 

instead of 50% utilization. The over-provisioning also covers future demand, because a vendor 

designs a system for three up to five years. In the case of large-enterprises, data centers use a 

server much longer. A vendor calculates the power demand of a server system, which is fully 

equipped in the future. The power supply offers sufficient capacity to ensure the incremental 

growth of electronic devices within the server system. The energy efficiency consideration is 

not yet part of industrial tools, but included in all academic research. The green IT trend 

supports the demand of energy-efficient servers, which leads to the energy efficiency 

requirement within the commercial tools. Therefore, customers ask for information about 

application-based power (energy) consumption and the related temperature as well as 

performance. The commercial tools do not follow this trend to our knowledge and provide 
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standard data about peak power, airflow rate, noise, or heat emission. Standardized 

benchmarks show the absolute performance values of a server system, which are not part of 

the industrial tools.  

Table 18: Comparison between customer and vendor requirements of the industrial tools 

 Customer Vendor 

Configuration Hardware, software, flexible Hardware, software, flexible 
Hardware 
settings (change 
components) 

Explicit configuration 
(customer-specific) 

Released systems and 
configurations, future systems, 
new variants 

Support non-
existing server 

Not required Internal for build stage 

Software 
settings 

Predefined configuration Flexible 

Workload 
scenarios 

Customized, actual workload Realistic scenarios, worst-case 
(fully-utilized resources) 

Executed jobs Unknown, real applications, 
actual job, future jobs, or 
scheduled tasks 

Unknown (black-box), abstraction 
from software and operating 
system, customer-specific 

Virtualized 
workload 

Consider virtualization Independent 

Operating 
system 

Customer-specific, 
management techniques, 
optimization strategies 

Independent, neglect 

Power calculation Server systems Server systems and components 
Power supply 
unit 

Suitable, efficient, optimistic 
assumption 

Pessimistic assumption (worst-
case), extra buffer 

Over-estimation Reduction of over-
provisioning, minimize 
worst-case assumption, save 
operational costs 

A range of added power that is 
not used 

Energy efficiency Energy efficient (optimal) 
configuration 

Customer-specific, flexible 

Power / energy Customer-specific, 
application-based 

Peak and actual power 

Thermal Temperature behavior, peak 
value, airflow rate 

Airflow rate, noise, heat emission 

Performance Customer-specific, absolute 
data 

Customer-specific, relative data, 
via benchmarks 

 

The following section describes the industrial power calculation tools, which do not use 

academic fundamentals because of the various requirements and use cases.  
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3.10.3 Commercial Server System Calculators 

In industrial practice, server vendors, such as Dell160, IBM161, HP162, or Fujitsu163 provide web-

based or application-based power calculators for server systems. On the one side, the 

customer configures the entire system for his or her needs and calculates the server power 

consumption to be aware of the overall energy demands of the IT-infrastructure. On the other 

side, the configuration tools offer the opportunity of generating the bill of the material lists 

(BOM) to order a system. The configuration tools propose large quantities of up-to-date as 

well as earlier (archived) server systems, enclosures, related infrastructures, and their 

components. Table 19 summarizes the settings of the industrial tools that calculate the power 

consumption of the complete server system and shows the vendor-specific thermal outputs. 

The table cell content indicates if the input settings are supported (via yes) by the tools of the 

Dell Energy Smart Solution Advisor (ESSA)164, the Fujitsu System Architect165, the HP Power 

Advisor166, or the IBM Energy Estimator167. They all have in common that the hardware 

configuration, such as the processor, memory, and I/O is highly flexible by choosing the type, 

family, quantity, or capacity. The IBM tool only distinguishes in the number of active processor 

cores, which leads to the assumption that the approach of the equation (3.31) is used. The tool 

calculates the power consumption of the entire system, whose values are non-linear with 

respect to the configured active cores. Dell exclusively distinguishes the memory-working 

mode as an input parameter, but the system power dissipation does not change at various 

settings. All vendors besides IBM consider power supply redundancy. Either one or more PSUs 

provide the system’s power to avoid AC losses or power failures. In addition, it could be more 

efficient to use multiple PSUs at 50% utilization level instead of one PSU at 100% utilization 

level. The 80 PLUS® performance specification168 certifies PSUs whose energy efficiency is over 

80% and higher (symbolized with bronze, silver, gold, platinum, or titanium) at all utilization 

levels. For instance, a titanium-certified PSU has an efficiency of 90% in all utilization levels 

and therefore, the power supply redundancy has no effect on the power consumption when 

only the amount of the same PSUs changes. With the present state of our knowledge and 

general experience, the bronze-certified power supply units are state-of-the-art. The fan 

settings are vendor-specific and are impossible to be changed for a customer-specific thermal 

control. The customer cannot directly influence the server’s noise, airflow, or temperature 

behavior. Furthermore, the tools provide the choice of the software, such as an explicit 
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 Dell: Dell Inc., http://www.dell.com/ 
161

 IBM: IBM Corporation, http://www.ibm.com/en-us/ 
162

 HP: Hewlett-Packard Development Company, L.P., http://www8.hp.com/us/en/home.html 
163

 Fujitsu: Fujitsu Limited, http://www.fujitsu.com/global/ 
164

 Dell: http://essa.us.dell.com/DellStarOnline/DCCP.aspx?c=us&l=en&s=corp&Template=6945c07e-
3be7-47aa-b318-18f9052df893 
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 Fujitsu: http://configurator.ts.fujitsu.com/public/ 
166

 HP: http://www8.hp.com/us/en/products/servers/rackandpower.html#poweradvisor 
167

 IBM: http://www-912.ibm.com/see/EnergyEstimator 
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 80 PLUS PSU: http://www.plugloadsolutions.com/80PlusPowerSupplies.aspx 
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application, virtualization, or operating system. This is only part of the material list and not 

part of the power calculation. The same effect occurs for the BIOS/UEFI settings in the Dell 

tool169. All four tools support the power calculation on the basis of the processor utilization 

level. The Dell calculator additionally provides a memory and computational configuration, but 

we observed that the power calculation is fixed. In the case of the computational and memory-

bounded workload, the related power comes from the power consumption at the highest 

processor utilization 𝑢𝑝 = 100%. Equations (3.81) and (3.82) show the weight factors in 

relation to the processor-bounded workload. The factors come from empirical experiments 

that use various server configurations (30) to analyze the influence of the settings. 

𝑝𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 1.07 ∗  𝑝𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟_𝑏𝑜𝑢𝑛𝑑𝑒𝑑(max (𝑢𝑝)) (3.81) 

𝑝𝑚𝑒𝑚𝑜𝑟𝑦_𝑏𝑜𝑢𝑛𝑑𝑒𝑑 = 0.94 ∗  𝑝𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟_𝑏𝑜𝑢𝑛𝑑𝑒𝑑(max (𝑢𝑝)) (3.82) 

Furthermore, Dell uses the static power consumption for the idle utilization level as stated in 

the equations (3.19). The calculator uses the thermal design power of the processors to 

estimate the largest power consumption. The server system power is linearly proportional to 

the processor utilization, and the number of processors used within the system. The linear 

regression is valid for the other vendor tools as well, which we checked in a server system 

evaluation of the Dell R720, Fujitsu RX300S7, and HP DL380p Gen8170. The use case of the 

calculators is the same, so we select almost the same hardware configuration (technical 

specification) to achieve comparable results. In our evaluation, the systems use the dual socket 

processor of the Romley EP platform, the equal amount of memory, and a nearly identical 

storage capacity. We observed that all tools use a linear algorithm to calculate the server 

power consumption. A higher amount of processors results in a taller power-to-utilization 

curve gradient, but is still a linear relationship. Furthermore, we found that the offset to the 

base power at 0% utilization level only relies on the processor quantities. In addition, the IBM 

tool handles the power save mode in the configuration, but this does not have any impact on 

the power calculation. The power tools of Dell and Fujitsu calculate the airflow rate of the 

server system, which based upon the enclosure conditions or limitations. The Fujitsu tool 

estimates the heat emission in a simplified manner, which relies on the statement that every 

consumed power generates the same amount of heat. On the contrary, the Dell calculator 

provides the noise instead of the heat, which is another optimization aspect.  
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 BIOS/UEFI settings: only Dell supports customer-specific settings 
170

 Evaluation: IBM X3650 M4 was impossible to check, because of access rights 
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Table 19: Industrial server systems power calculators (Dell, Fujitsu, HP, and IBM) 

 Dell Fujitsu HP IBM 

Input:     
Hardware variation     

Processor yes yes yes yes 
Number of active processor cores - - - yes 

Memory yes yes yes yes 
Memory operation condition yes - - - 

I/O (hard disk drives, network) yes yes yes yes 
Power supply yes yes yes yes 

Power supply redundancy yes yes yes - 
Fan - - - - 

Software configuration     
Application yes yes - - 
Virtualization yes yes - - 
Operating system yes yes - - 
BIOS/UEFI settings yes - - - 
Workload     

Processor-bounded 
(CPU utilization) 

yes yes yes yes 

Memory-bounded (intensive) yes - - - 
Computational yes - - - 

Environment condition     
Ambient temperature yes yes - - 

Output:     
Power consumption  
at CPU utilization level [0 - 100%] 

yes yes yes yes 

Enabled power save mode - - - yes 
Airflow rate yes yes - - 
Heat emission - yes - - 
Noise yes - - - 

 

3.10.4 The Gap between Typical Industrial Solutions and Academic Approaches 

The industrial server calculation tools offer the same key features, such as configuring the 

server at the hardware and software level to calculate the server power consumption at an 

exact processor utilization level and, finally, order a system. The power consumption is a static 

value due to the demand at a specific time. No tools support customer-specific scenarios or 

applications that refer to a realistic behavior over time. It is impossible to configure the server 

workload in a flexible manner. With the present state of our knowledge and related research 

papers, the tools use measurement-based and spreadsheet-based databases that refer to a 

specific software and hardware configuration [Fuj 2011].  
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Table 20, Table 21, and Table 22 represent the differences between industrial practice and 

academic research for full-system server power calculators and simulators. In comparison to 

the academic approaches, the industrial power tools support a range of server systems and 

configurations, such as the amount of processors and choosing the vendor, the family, or the 

generation. The tools work with diverse mandatory and optional configurations. On the 

contrary, the approaches in Section 3.9 focus on an exact system or component architecture, 

which supports the tested instructions for the functional or timing model. The academic 

models do not abstract from the operating system or application and therefore, the authors 

use an explicit hardware setting for their method. Both approaches do not consider the device 

operation condition, which in specific terms is a hardware-based setting only configurable 

when the system is in the BIOS/UEFI state. In the BIOS/UEFI, for instance, the customer 

enables the virtualization-based mode of the processor or the sparring or mirroring mode of 

the memory modules. During runtime, the behavior is fixed and must be set before the system 

starts. In addition, the management techniques cannot influence these base decisions, but the 

BIOS/UEFI settings are not negligible for the power consumption of the system. In industrial 

tools, the customer selects an operating system or application, which the power algorithm 

does not consider. On the other hand, the researchers analyze the systems on the basis of the 

OS types, working sequences, tasks, or threads because of their influence on the power 

consumption. Therefore, the authors cover a range of benchmarks, applications, or scenarios 

executed over time. On the contrary, all industrial power tools use a processor-bounded 

workload for a simplified power estimation of the server system at a time. The tools do not 

support flexible workloads to estimate the minimal, average, and peak power/energy. Neither 

the industry nor academic power algorithms consider the environmental conditions, such as 

the ambient temperature. In the case of the academic algorithm, the customers choose a 

management technique or strategy, which is the research objective. On the contrary, the 

industrial tools ignore them because the operating system (e.g. Linux or Windows) handles the 

performance demand and, finally, the frequencies autonomously when no management rules 

are given. Furthermore, the customer can set the optimization goal within the baseboard 

management controller, which is independent of the OS. For instance, the customer configures 

a power limit of 200 watt for the server system. The embedded controller limits the highest p-

state of the processor to fulfill the power demand or reduce the fan speed. The software 

settings of the governor or OS are also able to throttle the system if it is part of the settings. 

On the other hand, the data center manager171 may control the power limit and the amount of 

job decrease by a policy to reduce the power consumption. A server vendor has no knowledge 

of the environmental constraints and therefore, does not consider management techniques. 

The main aspect of industrial tools is the power calculation, but at the same time, the 

algorithms do not include the thermal related power that occurs from the fan speed control. 
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 Data center manager: differentiate in business unit manager, IT application manager, IT hardware 
manager, or data center facilities manager [PBB et al. 2010] 
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We found that the industrial power algorithms only rely on the processor as well as resource 

utilization and not, as in the academic case, in instructions, clock cycles, bandwidth, 

accesses/misses, states, transitions, activities, or counters. Therefore, commercial tools use 

measurements and spreadsheet models. The academic research approaches are more 

complex, because the inner behavior is part of the model. The state machines are sensitive to 

the functional model (event, activities, accesses, or misses) as shown by empirical 

experiments. The academic algorithms offer many calculation behaviors beginning with an 

additive relationship up to exponential algorithm. In contrast, all industrial tools calculate the 

power using a linear regression for a time. The average error between the estimation and 

measurement of the industrial tools is more than double (> 20%) in comparison to the 

academic approaches (< 10%). The impact of the academic results is a higher measurement 

as well as modeling effort that consumes more time and costs. Therefore, the vendors set their 

own optimum between the level of detail, accuracy, measurement, and modeling effort. 

Fujitsu stated an error rate of approximately ten percent for full-system power consumption is 

adequate in comparison to the investigated effort, and the customers’ requirements [Fuj 

2013]. Of course, the customer itself wants the most precise results. In the phase of shorter 

server product lifecycles of design and development, very often no physical hardware is 

available. Designing a server in industrial practice considers the supplier data sheet. The 

component-based values are theoretical data or worst-case thresholds in order to not fear 

regression claims. Server vendors believe the technical specification and neither verify nor 

validate the values because of the time or costs that are necessary to evaluate the deliveries. 

Vendors calculate the total system power imprecisely because of the deviation between 

measured and data sheet values. This trend of error propagation continues with the number of 

each component within a server system, which leads to the oversized server PSUs. A correct 

operating state of the power supply is impossible because the PSU almost never reach a 

utilization level over 80 percent. Often, the vendors optimize the power supplies for peak 

conversion at high utilization, which leads to inefficiencies at the lower level.  

Table 20: Comparison of the power calculators of server systems in industrial practice and academic research 
(𝑰) 

 Industrial practice 
(calculators) 

Academic research 
(calculators, simulators) 

Input:   
Hardware 
configuration 
(flexibility, 
expressiveness) 

Variable, 
parameterized, 
customized, generic 
(quantity, vendor, 
family, capacity, etc.) 

Explicit and static 
(predefined) 

Device operation 
condition / mode 

Yes* 
(energy saving mode) 

- 

*: Possible to change, but not considered in the algorithm 
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Table 21: Comparison of the power calculators of server systems in industrial practice and academic research 
(𝑰𝑰) 

 Industrial practice 
(calculators) 

Academic research 
(calculators, simulators) 

Software variation Yes* 
(OS, application) 

OS, parallelism, tasks, threads, 
virtualization, schedule, compiler 
settings 

Workload Processor-bounded**, 
specific, point in time 

Various benchmarks, applications, 
scenarios, generic, point in time, over 
time  

Environment 
condition 

Ambient temperature* - 

Management 
technique / 
optimization 
strategy 

-*** Dynamic power management (DPM), 
advanced power management (APM), 
dynamic voltage frequency scaling 
(DVFS) e.g. AMDs PowerNow or Intel 
Speed Step, power budgeting, capping, 
limiting, throttling, gating, shifting, 
operating mode control, system power 
management, dynamic thermal 
management (DTM), fan speed control, 
resource management, allocation, 
planning, load balancing, workload 
management, consolidation, migration 

Output:    
Aspect / use case Calculation of power** Calculation or simulation of power, 

thermal, performance, or energy 
efficiency 

Scenarios Actual and peak values Actual, min, peak, average, sum, 
optimization, dynamic behavior 

Focused product life 
cycle phase 

External: build, operate 
internal: envision, build, 
test, implement, 
operate 

Test 

*: Possible to change, but not considered in the algorithm 

**: Based on our knowledge, it is the primary property, but there are few exceptions 

***: Not configurable, automatically done within the system (via OS, BMC, and data center manager) 
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Table 22: Comparison of the power calculators of server systems in industrial practice and academic research 
(𝑰𝑰𝑰) 

 Industrial practice 
(calculators) 

Academic research 
(calculators, simulators) 

Power consumption 
algorithm 

  

Basis CPU utilization**, 
OS independency 

Resource (CPU) utilization, OS 
dependency, instructions, clock cycles, 
active cores, parallelism, customer-level 
metrics, open sockets, bandwidth, 
accesses, or I/O rate of: memory, hard 
disk drives, network 

Level of detail Resource utilization Instruction, cycles, voltages, 
frequencies, states, transitions, events, 
activities, counters, accesses, misses, 
correlations 

Modeling style 
(base of 
equations) 

Lookup tables, 
spreadsheet-based, 
measurement-based, 
configuration-based, 
black-box 

State machines sensitive to functional 
model, states controlled by scenarios 
measurement-based (counters, 
profiling), simulation-based, 
optimization-based, 
white-box and gray-box 

Calculation Linear Linear, non-linear, square, cubed, 
exponential 

Power dissipation Peak and actual, 
time 

Min, peak, average, actual, 
over time 

Over-estimation 
(accuracy, error) 

High 
(> 20% average) 
[Fuj 2013] 

Low 
(< 10% average) 
[RRK2008, FWB 2007, HCG et al. 2006] 

Modeling  
effort 

Depends on the 
accuracy, based on 
components 

Based on functional or timing behavior, 
new for every exploration 

Measurement effort High 
(each system) 

Extreme high 
(each instruction or function) 

Time effort, cost High 
(one system, three 
month [Fuj 2011]) 

High 
(analyze and divide system activities, 
trace system, and instructions) 

*: Possible to change, but not considered in the algorithm 

**: Based on our knowledge, it is the primary property, but there are few exceptions 

***: Not configurable, automatically done within the system (via OS, BMC, and data center manager) 
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The gap between the commercial practice and analytical research comes primarily from the 

heterogeneous use cases. Academic approaches have less flexibility in the system 

configuration in comparison to the industrial tools. On the other hand, the commercial 

algorithms use restricted workloads, which are not able to consider academic results because 

of the missing details. Lower power calculation accuracy leads to over-estimation of the server, 

but requires less measurement effort than the academic approaches.  

3.11 Summary 
In this section, we present the basic modeling techniques that are used in academic research 

and industrial practice. We distinguish the basic modeling techniques into the object, control, 

and process specification of the following modeling domains: physical, conceptual, contextual, 

and external. The characteristics of the model and its objectives, such as the measurement-

based, simulation-based, configuration- and optimization-based model, are relevant factors to 

choose the suitable technique. We present the following server system domains: data center, 

rack enclosure, components, chips and their aspect-based metrics as well as benchmarks. In 

this thesis, we concentrate on modeling a server system on the basis of the fundamental 

techniques. We present the aspect-based algorithms and approaches in academic research. 

In fact, power consumption is a key factor across all domains and thus, we begin with the 

related approaches of the server system domain. We define the logical description of the chips 

or components, such as their electrical behavior, which is part of the physical domain. Usually, 

the interior component structures, operations, processes, instructions, and particularly the 

internal data are known because of the prior measurements on the real system. The timing 

models that consider an application and its behavior are typically used in the chip and system 

domain for micro-architectural description. In contrast, the approaches in the component or 

system domain rely upon the hardware activities or micro-architectural events, such as 

accesses or switching activities. These approaches specify states and transitions considering 

counter-based heuristics, e.g. hardware performance counters. If no other inner information 

about the interior behavior or functionality is available, we consider data sheets that provide 

the power consumption values on the architectural level concerning the component 

characteristics, such as the bandwidth, organization of the device, cores, or supply voltages.  

The utilization levels are one of the most commonly used metrics in the models across the 

domains. The utilization levels are the key elements for the workload definition to build up a 

realistic scenario and indirectly affect the aspect-based models that highly depend upon the 

performed task in the server system domain, whereby the performance counters represent 

the chips, components, or system activity. The utilization level of the physical domain focuses 

on instructions and operations on an architectural level, for instance. The resource utilization 

results not only in power consumption, but also leads to thermal dissipation. 
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The thermal behavior relies on the operating condition of a system, its resources, chips, and 

their related states. In academic research works, several thermal algorithms consider the 

volume flow, density, heat, heat flow, thermal conductivity, thermal gradient, heat transfer 

rate, and thermal resistance. Usually, academic approaches assume a linear relationship 

between the component utilization, and the temperature specified as an analogy between 

electrical and thermal properties. Moreover, we present some next-generation approaches 

that define the dynamic thermal behavior of a component as an exponential time-based 

function considering the hardware performance counters. Current approaches for thermal 

modeling of the memory modules are based upon self-heating, spreading heating, or adjacent 

heating resistances, but do not consider the thermal interaction between resources from the 

same type, from other types, or inner dependencies, because of the circuit structure as well as 

the architecture. Current processor models only consider local hotspots, whereby the 

temperature is non-linear to the utilization level and the input voltage, but linear to the 

frequency. The simulation-based approaches require real servers for the temperature 

measurements of each component under static and dynamic considerations. The system-wide 

thermal effects are not taken into account up to now. 

Besides the power and thermal models, we require the performance models to specify the 

energy efficiency. The performance models estimate the peak value, the average values, or the 

performance per watt on the basis of resource characterization to indicate how efficient the 

system operates. The system executes a set of workloads, such as benchmarks (suite) and the 

results of these empirical studies form the basis for the performance models, which depend on 

the executed instructions (floating-point, integer) and related activated functional units on the 

explicit hardware. In case of current memory performance modeling approaches, the 

architecture, the data locality, and the cache misses are significant criteria. In addition, the 

workload type generates performance differences because of parallelization or shared 

accesses. A forecast or prediction is only possible for an explicit workload, where the read-to-

write ratio of the memory modules is established. In this thesis, we focus upon the power and 

thermal models and therefore consider the measurement results of several performance 

scores. The energy efficiency (performance-to-power ratio) is a criterion to determine the 

productivity, whether in power/energy, thermal, or performance. The efficiency provides the 

ability to avoid costs, airflow, humidity, carbon footprint, efforts, energy, time, or money at 

the considered aspects.  

Across the various levels of detail, the aspect-based models build the fundamentals of the full-

system models, which we distinguish into simulation-based and hardware-metric-based 

models. The system-based models depend on a single technology and refer to known working 

conditions, such as an explicit application or particular operations. The variable settings of 

workloads and software settings are crucial factors of a system’s power dissipation. The 

models focus on concrete configurations within a defined environment, such as a given 



Basic Modeling Technologies, Algorithms, and Approaches in Academic Research and Industrial 

Practice 

 

 

 
126 

 

workload, and guarantee a suitable accuracy by using various instruction counter types to 

determine the resources’ activity level or performance. The counters are hardware-specific 

because of the resource architecture, inner designs, states, connectivity, or parameters. 

Therefore, the hardware counters are only valid for an explicit configuration or platform on the 

micro-architectural level. The dynamic full-system simulators or application-level simulators 

(SimFlex, SimWattch, BladeSim) give a more exact estimation about the system’s behavior 

because of realistic workloads, including operating system effects on behavior, and 

performance in the working progress. The resource utilization is obtainable via measurements 

of synthetic benchmarks or during the runtime of the respective system. Software profiling 

tools (SimOS, SoftWatt, Simics, TFSim) simulate applications and effects, such as the operating 

system behavior, and model the instruction execution after studying the timings and 

functional data. The software profiling simulators are adequate for a given environment, but 

do not claim to be generally applicable. The execution-driven simulators and cycle-accurate 

approaches at the physical level (SimplePower, SimpleScalar, Wattch) need a more exact 

timing model because they consider the instructions with their timing behavior, such as 

memory accesses and instructions with uniform time slots, cycle-based executions, pipelined 

data path, and switching capacitance. The approaches provide an infrastructure for system 

modeling at the architectural level and generate instruction traces at the cycle level. The 

execution-driven simulators provide routines to model tasks, e.g., discrete events, and use 

instruction sets, and I/O emulators to support customer applications, which are based upon 

hardware activities. 

The full-system simulation frameworks SimOS and Simics are application-based power and 

performance simulators that model the execution of the operating system and the application 

software of medium-scale, shared-memory multiprocessors. These models are restricted to 

the specific workload designed for an explicit hardware and include functional descriptions, 

such as instruction execution as well as timing aspects of unmodified operating systems, 

kernels, and drivers. Furthermore, the models quantify the power behavior with respect to the 

workload into power dominant services, such as kernel activities, data path, or caches. The 

trace-based design supports various architectures, designs, and configurations, but is based 

upon low-level data. BladeSim is a resource utilization-based simulator that considers the 

system configuration and architectural policies. The simulator converts the trace of a real 

workload and the corresponding task-based resource utilization levels, which is extended by 

the timing model and simulates the system behavior. Figure 42 presents the investigated 

server system simulators concerning their conceptual and server system domain.  
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Figure 42: Server system simulation approaches 

The full-system approaches require an existing system to define the component 

interconnections, the OS activities, and executed instructions at the micro-architectural level. 

The approaches do not take the relationships, the dependencies, or the structures between 

hardware families, generations, or series into account. The impact of the academic results is a 

higher measurement as well as modeling effort that consumes more time and costs. Most 

academic full-system simulators refer to a given operating system, and focus on an explicit 

scenario, and predefined configuration to keep products competitive, but do not scale with 

regard to the hardware configuration. In commercial tools, the full-system simulators are 

unsuitable for the server modeling because the model must be independent of the operating 

system. The customer has free choice concerning the desired operating system and server 

characterization according to the needs of their company. 

The customer chooses an explicit hardware and software configuration to fulfill his or her own 

performance demands of the server system. The system requirements of the server modeling 

come from the real application and the customer’s daily experiences. The executed software 

on the server varies for each customer and is of subordinated interest. Moreover, the 

customer-specific job may be unknown because the operations and tasks change over time. 

The unlimited variability of the customer induces the vendor to establish flexible and universal 

(but still vendor-specific) configuration tools that satisfy the diverse demands. Both in common 

require an adjustable hardware and software configuration for the server.  
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In addition to the main task of purchasing an individual server system, the vendor offers the 

opportunity to calculate the power (energy) consumption of the server system to match the 

customer requirements, such as power constraints in the server environment. In industrial 

practice, a vendor calculates the server power for a worst-case scenario (a fully equipped 

server system), including an extra power overhead in order to not fear regression claims. The 

component-based values are theoretical data on the basis of the technical specifications. 

Vendors calculate the total system power imprecisely because of the deviation between 

measured and data sheet values. This trend of error propagation continues with the number of 

each component within a server system, which leads to oversized server power supply units. 

We found that the industrial power algorithms only rely on the processor as well as resource 

utilization and not, as in the academic case, in instructions, clock cycles, bandwidth, 

accesses/misses, states, transitions, activities, or counters. The academic research approaches 

are more complex, because the internal behavior is part of the model. 
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4 Problem Statement, Challenges, and Aims 

Industrial tools require the same accuracy, an error rate less than ten percent, as the academic 

approaches already offer. The industry is not able to use the precise concepts as they stand 

because of the differences concerning requirements, specific configurations, and modeling 

aspects. Some of the challenges are as follows: 

 Vendor vs. customer perspective 

 Upper vs. lower level of abstraction 

 OS independence vs. explicit OS settings 

 Processor-bounded workload vs. given benchmarks (software settings) 

 Generic vs. particular model 

 Inaccuracy vs. precision 

Industrial tools do not consider instruction-based or cycle-accurate details on the physical 

domain. The loss of accuracy leads to an over-provisioning and inefficiency of the server 

system and this missing precision affects everyone who purchases a server system. A server 

system consumes power and generates heat at the same time. The thermal dissipation 

requires extra ventilation facilities to cut the heat, which is a critical issue, especially in large-

enterprises, where the heating, ventilation, and air-conditioning technology create operational 

expenditure [WK 2013].  

In the academic context, a generic approach can reduce the modeling effort, which supports 

different system variations without creating a new representation. The measurements 

describe the academic observations across a complex and entire system. Hence, another 

benefit is the prevention of extra measurements because of the constraints given by each 

customer. We need a configuration-based model that provides various hardware and software 

architectures as well as a behavioral description. Furthermore, the operating system 

abstraction offers the opportunity to use the model for particular technologies. In addition, the 

model should be valid under virtualized and non-virtualized circumstances, whereby each 

operating system is possible. The authors of [LJ 2003, DAH et al. 2007] create a simulation-

based, full-system timing model at the micro-architectural level, but the functional model 

works on a concrete OS.  

To our knowledge, in the academic literature there are no generic approaches that cover the 

full server system simulation on a common base. The server power depends on the configured 

hardware and software. The same benchmark generates nearly doubled power when we 

duplicate the processor quantity, but the extra resource does not double the performance. Of 

course, the main consumer of the system must be the processor; otherwise, this statement is 

not valid. The performance is less because of the component interconnection, as the authors 

of [SXC et al. 2000, MNR 2007, MHS et al. 2009] have analyzed. If the same hardware 

configuration executes different benchmarks, the peak performance or power also varies.   
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The researchers [Lan 2007, KSH et al. 2009, KKK et al. 2012, KJC et al. 2014] found a couple of 

reasons, such as the instruction type (floating-point vs. integer), the parallelism, the 

architecture, and the limited bandwidth. 

The main concept is the integration of the academic approaches into industrial tools to close 

the gap between measurements and power calculation. A challenge of this thesis is the match 

between the application space and the architectural space of a complete server system. We 

have to map the workload to the server system using utilization-based scenarios. The 

benchmarks do not reflect the reality and therefore, there is a fundamental risk of 

misinterpretation of the power consumption. On the other hand, our model requires a 

sufficient level of detail in the configuration space, allowing the relevant energy efficiency 

factors of the physical domain to support the necessary precision. The authors of [SM 2001] 

propose the interaction between the upper and lower level abstraction, the impacts of which 

are the constraint propagation and performance estimation. We found various problems 

beginning at a higher abstraction level (environment domain) towards a minor abstraction 

level (physical domain). The next sections describe the findings and recommended actions. 

A simple porting of the academic approaches into the commercial tool does not work. This 

section describes the various problems observed in academic and industrial practice. 

Furthermore, we address the impact of not solving the problem and the related aim. Finally, 

the evaluation factors support the decision to check whether the approach is sufficient. The 

requirements chapter describes the expanded simulation tool demands and the resulting 

evaluation criteria.  

4.1 Workload Limitations 
Commercial power calculators do not consider different application types, which use the 

resources in various ways. Industrial tools limit the workload of the server system towards the 

processor-bounded utilization levels. The customer is not able to create a specific workload 

scenario to assume different server usage and cannot receive a precise power consumption of 

the entire server system. In addition, the workload varies according to the customer demand 

and is not always a processor-bounded scenario. For instance, the SPECpower benchmark is a 

computational job that primarily utilizes the processor. Another example is SPECjbb, a Java 

server benchmark that proves the performance of a Java application. Both benchmarks offer 

different performance and power results because on the one side, only the processor is in use 

and on the other, the SPECjbb additionally utilizes the memory modules. Table 23 shows four 

benchmarks used in the Mantis approach, whereby the authors of [Riv 2008] distinguish 

between various components-based utilization levels. We need to differentiate between the 

workloads to predict precise the power consumption for a specific workload. 
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Table 23: Comparison of utilization levels in Mantis [ERK 2006] 

Name Processor 
utilization 

Memory 
utilization 

Disk 
utilization 

SPECint Very high High Very low 
SPECfp Very high High Very low 

SPECjbb Very high Very high Very low 
Stream Medium Very high Very low 

 

The benchmark scenario is more realistic in comparison to the industrial tools, but a single 

benchmark does not consider the utilization during the product life cycle of a server system. 

The operational purpose changes over time because of growing performance demands. The 

server does not fulfill the requirements, and the data center manager exchanges the system or 

the configuration for a specific job. Another challenge is that the benchmarks are synthetic and 

do not show a realistic application scenario [Bor 1999, WWF et al. 2003, ERK 2006, BJ 2007, 

GSK et al. 2009, SLU 2010]. In addition, the application behavior is unpredictable. The 

identification of the key factors is crucial for the various aspects across the different 

abstraction levels and hardware configurations. On the other hand, a large deviation between 

various applications exists, which is a complex research question. Nevertheless, simulation 

supports the expected workload, which helps the energy-efficient characterization in the 

design stage of the server system. A vendor designs a server under a variety of workloads, 

which changes continuously over time. A challenge stated by [RF 2009] is the interaction 

prediction that is based only upon the resource utilization. At the same time, our challenge is 

the expected workload of the system because customer knowledge is a critical factor and 

differs between the various data center levels. We abstract the amount of time needed for a 

job using the actual resource utilization levels to avoid the necessity of deep application 

details. 

If two separate tasks finish in one minute and each use the processor at a different level, what 

happens to the execution time or utilization level, when the processor runs both jobs in 

parallel? The process interaction may lead to waiting periods or performance losses. The 

workload characteristics influence the power- and thermal-management techniques. The 

authors of [Han 2007] argue, “One of the most effective techniques, DVFS, is particularly 

sensitive to workload memory patterns because altering the clock frequency changes the 

relative speed between the core processor and off-chip main memory. Compute-bound 

workloads are more sensitive to frequency change than memory-bound workloads.” As a 

result, the model has to distinguish between the utilization levels of each component for the 

entire system. The utilization-based server system characteristics are an advantage of the 

generic vendor management techniques. 
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Furthermore, an academic workload maps the concrete application behavior observed in an 

actual system, which analyzes and tests various management techniques, for instance. On the 

other hand, a simulation model has a predefined workload, environment, or behavior, which 

shows real observations. The traces also differ from each other and are not exactly at the time 

scale of seconds. For instance, within twenty iterations, the execution time varies 

approximately 1.5 minutes, whereby the average time is about 70 minutes: “Software 

execution also varies for the same benchmarks from run to run [Han 2007].” 

Aim #1: 

We recommend a utilization-based approach, which is compatible with the commercial tools, 

but also has to include low-level observations to distinguish internal structures and behavior. 

The benefit is the sub-characterization of each component due to the real observation level. 

For instance, either the processor is in an active mode like a certain p-state, or we have to 

describe a deeper detail, such as the frequency and voltage pair of the working conditions. 

Therefore, the model should include inter- and intra-component communication that refers to 

academic approaches. The benefit is increased accuracy because of the flexible level of detail.  

A utilization pattern has to provide the scalability and flexibility of various applications. 

Furthermore, the approach should support customer-specific scenarios, which are more 

realistic in comparison to the processor-bounded method. When component interconnection 

is part of the simulation model, the workload abstraction may behave like several benchmarks 

or applications. In addition, the complete server system simulation is intended to consider 

recent scenarios.  

A workload criterion is the opportunity to handle flexible resource utilization levels. The 

customer can create a specific and realistic workload scenario. In advance, our model is 

supposed to offer various predefined utilization levels because of the commercial 

compatibility.  

4.2 Server System Characterization 
The server system model characterizes the hardware precisely, which has the greatest part of 

the desired aspect. In the case of power analysis, the memory and processor dissipate the 

largest power within the server system [ERK 2006, GX 2010, THS 2010, Ste 2012, BJ 2012]. On 

the contrary, the network and I/O devices are key factors for the physical domain within an 

embedded system. Academic approaches characterize the complete system in such detail that 

they consider every instruction and cycle at the physical, component, or system domain in a 

single as well as a separated view. Each approach characterizes their component and finally 

the system at a specific abstraction level for their own. Scientists cannot reuse the proposed 

models because they are not able to map the component characteristics to their existing 

approaches at diverse hierarchy levels. For instance, a brand-new processor QPI speed needs a 

model adjustment, which commonly results in a new model because of missing compatibility 
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and completely different component behavior. A generic model offers a robust base for the 

various abstraction levels. To our actual knowledge, there is no complete server system 

simulator in existence that considers the flexibility and scalability of diverse software and 

hardware configurations to reduce the modeling effort of the individual explorations [RHW et 

al. 1995, Her 1998, BTM 2000, ALE 2002, GSI et al. 2002, MHW 2002, MCE et al. 2002, CDS 

2003, WWF et al. 2003, HSW et al. 2004, WWF et al. 2006, Lan 2007, CDS 2007, RL 2007]. A 

higher system flexibility and complexity may result in more computations, longer simulation 

time, and cut the performance because of limited simulation memory.  

We found that the models do not distinguish between static and dynamic settings for the 

hardware and software characterization. The customers choose a hardware configuration that 

automatically assumes the fixed behavior predefined by the architecture or structure of the 

component. The authors of [HRR et al. 2007] found that five nominally identical processors 

have a ten percent difference in total power consumption. The components have their 

characteristics because of the variations within the manufacturing process. A challenge is the 

chip variability [Han 2007]. The industrial tools do not consider software-based settings and 

their influence on power consumption. An example is the memory module mode, which either 

refreshes the module at regular intervals, or does a series of refresh cycles. The customers 

select the mode only in the case of the shipped hardware, but are not able to change the 

settings in the configuration tool. Another example is the Enhanced Intel SpeedStep 

Technology (EIST)172 that is configurable in the BIOS/UEFI to enable the power management. In 

the case of the processor, the critical power-relevant parameters are the processor speed 

(device scaling characteristics), core quantities, the number of active cores, and the processor 

core interconnections as described in Section 3.4.2. The full-system simulation tools, described 

in Section 3.9.1, do not support customer intervention via changing component characteristics 

or the environmental conditions during the simulation time. The counter-based models Mantis 

and Joule Watcher use the static system’s observations to simulate the system [ERK 2006, Bel 

2000]. SimOS, SoftWatt, and Simics consider a software profile at a fixed hardware 

configuration [RHW et al. 1995, GSI et al. 2002, MCE et al. 2002]. On the contrary, the dynamic 

full-system simulators SimFlex, SimWattch, and BladeSim distinguish between various 

components or physical chips within the configuration [HSW et al. 2004, CDS 2003, RL 2007]. 

Nevertheless, the customer cannot influence the characteristics or disturbance impacts, such 

as the ambient temperature. The predefined operating system and software determine the 

corresponding timings of the simulation model. 
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Aim #2: 

We need a flexible characterization of the software and hardware to support various 

observations at different abstraction levels. In addition, for our simulation model we require 

the support of hardware-based offline settings, such as the BIOS/UEFI configuration. The 

model is intended to abstract the architecture and software dependencies as much as possible 

without losing the accuracy. A challenge is the abstraction level of the complete server system 

complexity, including the configuration adaptability. The abstraction level should be low 

enough to support architectural and structural changes at the physical domain. At the same 

time, a high abstraction level intends to ensure the flexibility and scalability. We recommend a 

component-based approach to offer upper and lower abstraction opportunities. Beneficially, 

the components can be defined independently of each other. As described above, the 

processor includes several critical parameters at all abstraction levels. Of course, the 

simulation model has to include dynamic approaches concerning management techniques, 

such as DVFS. Therefore, multiple design hierarchies are supposed to easily map the various 

component behaviors.  

The supported component types, the device quantities, the flexible adjustment (ambient 

temperature) during the simulation, and the amount of statics as well as dynamic hardware 

and software settings are part of the characterization criteria. 

4.3 Complete Server System Simulation 
A complete server system simulation helps the industry to precisely estimate the energy 

efficiency and especially the power consumption of the server. The authors of [CPI et al. 2009] 

state “…, we need to observe systems to see how they perform in various situations.” A 

simulation system offers the opportunity when no real hardware or a prototype is available, 

which reduces the costs and risks across the industry. The server system simulators model the 

software and hardware of the entire system, including the processor, memory, disk, network, 

or other devices. In the academic research, the complete system simulations use timing and 

behavior models at the instruction-based and cycle-accurate level, as described in Section 

3.4.1. The white-box and gray-box approaches differ in their accuracy and simulation speed. 

The instruction-level approaches are more accurate in comparison to the gray-box approaches, 

but are very slow at the same time. An exact approach wastes modeling time and related costs 

when the share in the total power is negligible. Thus, the decision on which component and 

which abstraction level to use is also a key challenge.  

The complete system simulators use operating system data. The OS architecture and runtime 

events limit the simulation model because the methods require a simulator adaption when the 

structure changes. It is a time-consuming process. Another challenge is that we do not know all 

the critical events for accurate power calculation, which also differs for various manufacturing 

processes of the physical domain. On the other side, if the aim is an analysis of the OS power 

consumption, a time-accurate, access-driven, and power-aware simulation is necessary [LJ 
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2003]. SimOS [RHW et al. 1995] includes the operating system, on a time scale of tens of 

milliseconds, and the corresponding software that executes complete and unmodified binary 

workloads. Most of the simulation approaches use instructions and cycles instead of resource 

utilization to consider predefined applications. Furthermore, simulation needs an explicit 

specification of the operating system and the executed software. 

The academic approaches try “…, to explain phenomenon experienced through observations 

[CPI et al. 2009]” across the complex systems with a fixed target. The analytical methods have 

an error rate less than ten percent, but are not applicable. The simulation-based, software 

profile, or hardware measurement approaches are not universally valid for server systems, 

because of the mass of hardware and software configurations across existent and unspecific 

systems. The workload variation (software) with heterogeneous characteristics and the 

component manufacturing variation (hardware) in real systems are challenges for generic 

management techniques and optimization strategies, because of unexpected behavior [Han 

2007].  

Aim #3: 

A flexible, entire server system simulation is intended to combine the accuracy of the 

academic approaches based upon some higher abstraction level. For being valuable, our model 

needs multiple model hierarchies, from the system to the physical domain, to include the 

impacts of the technology designs, generations of architectures, as well as accurate predictions 

of particular resources. A complete system model should provide the integration of academic 

approaches or results with single as well as decoupled components. The model should offer 

the opportunity to use white-box, gray-box, and black-box models in one simulation model. 

Furthermore, we intend to explore new models that cross discipline boundaries to understand 

the fundamental limitations and properties of power, energy, and thermal behavior. The 

temperature-aware workload scheduling and the energy efficiency analysis [HS 2007, MNR 

2007, Han 2007, JVG 2010] show the benefits of combining the solution spaces. We should 

achieve a better efficiency across the overall hierarchy levels. The model should be 

independent of the operating system and device events. A correct abstract simulation model 

provides the entire system complexity to capture the most important factors, but at the same 

time is simple enough to cover the system behavior. In addition, the simulation model has to 

consider the customer and vendor requirements to support different product life cycle stages. 

  



Problem Statement, Challenges, and Aims 

 

 

 
136 

 

We use the following modeling and simulation criteria to check the recommended solution. 

The error rate (between measurement and calculation) is less than ten percent of the entire 

system. The approach has to simulate three different server generations173. The operating 

system has to be a factor for the calculation algorithm. The simulation is intended to support 

different product life cycle stages, which we determine by the level of component 

abstractions, the amount of components, and the availability that the customer can adjust the 

simulation. 

4.4 Worst-Case Power Assumption 
The common commercial vendors [Dell Inc., IBM Corporation, Hewlett-Packard Development 

Company, L.P., Fujitsu Limited] and the authors of the academic approaches [BHS 1998, ERK 

2006, Riv 2008, BC 2010] accumulate the sum of all peak power values associated with each 

component within the system. The constant additive approaches use the worst-case scenario 

“the full utilization of all resources at the same time,” which leads to be over-provisioning. 

When unused resources dynamically or autonomously shut down, the worst-case assumption 

is invalid. Furthermore, the components execute some instructions and interact between 

other components. The communication needs working time and this is the reason, why the 

workload does not fully use all resources at the same time. A challenge is the unknown system 

structure, which influences the component communication. 

In addition, the vendors estimate extra overhead to ensure compliance with product safety 

standards or future demands and call it nameplate power174. Significant differences between 

the power values occur, if we compare the nameplate power with the actual power. The 

authors of [New 2008] state that the nameplate power (700𝑊) is the double of the realistic 

peak power (350𝑊) for their chosen server example175. The idle power of the server system is 

about 200 watts. The server will never utilize the power supply over 50 percent, when vendors 

use the nameplate power to size the PSU. “…, Many OEMs standardize their power supplies on 

a smaller number of PSUs, which can result in substantial gaps between nameplate values and 

actual power consumed for a given piece of IT equipment, [BBJ et al. 2009].” The same authors 

also mention that “When discussing server power draw and cooling loads, nameplate is 

frequently used (albeit incorrectly) to describe the value from the server data sheet for the 

power supply (generally the output of the power supply listed in watts).”  

In the literature of [DSC 2006], the authors state, “For the blade system, the nameplate power 

rating overestimates the power by almost 50%, and misestimates the importance of various 

components.” The nameplate power is substantially larger than the peak power of the entire 

system, which results in inefficiency, extra capital expenditures, or operational costs. A 

problem is that industry, especially the data center manager, generally accepts the nameplate 
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power to interpret incoming energy requirements. On the one side, the data center requires 

the electrical data, such as the wiring method and PSU quantities. On the other side, the server 

has to fulfill the customer-specific requirements at a particular place. Unfortunately, the data 

center architects still often use the nameplate power in the design, planning, and deployment 

stage [BBJ et al. 2009]. In addition, the power supply is not server-specific and does not change 

because of the changing quantities of the components. The nameplate power is independent 

of whether the component is mounted or not within the limits of the maximal system 

configuration.  

Aim #4: 

“In general, the electrical loading should be sized based on IT equipment peak measured or 

maximum measured power consumption levels and not nameplate values, [BBJ et al. 2009].” 

Therefore, we have to calculate the total power consumption independent from the worst-

case scenario or create a more realistic one. The server system’s PSU sizing should use the 

power calculation to avoid over-provisioning.  

We should consider the interdependencies between the components in the complete server 

system to show the real power consumption to the component utilization levels. The Simics or 

TFSim approach is not aware of the component interaction [MCE et al. 2002, MHW 2002]. In 

addition, we have to cover the non-linear behavior when we take the communication and 

interaction between the components into account. The authors of [ERK 2006, RRK 2008, Riv 

2008] only set up fixed coefficients to handle server-specific characteristics for a predefined 

workload and configuration. Our model should distinguish between different inner operating 

modes to cover the static and dynamic component-based power with respect to the micro-

architectural structures. A benefit is that we can differentiate between various states within 

each component separately. For instance, our model has to check if the memory is in refresh 

mode or executes a read/write operation. The system power is expected to rely on the 

individual resource utilization and their characteristics.  

A criterion for exact solutions is the difference between the calculated power and the 

nameplate power. The simulation-based results are comparable to the measurements. The 

over-prediction should be less than ten percent.  

4.5 Energy Efficiency for Peak Performance 
“Most benchmarks on the basis of which systems are designed are typically structured to 

stress worst-case performance workloads irrespective of how the system is likely to be used in 

practice [Ran 2010].” Therefore, the vendors design the server system’s energy efficiency for 

peak performance under maximal available workload. “Data center servers usually operate far 

below peak utilization, which creates inefficiencies [BH 2007]”. The customer does not fully 

utilize a productive SVN server at every moment during a day or a week. The authors of [KFK 

2008] report, that the average server utilization is less than ten percent and always lower than 
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50 percent in a data center. The data center manager forces the low-intensity phase (under-

utilization) to have enough performance in the case of the peak capacity demand. As a result, 

the servers are non-utilized. In addition, the Energy Star176 defines the typical server power as 

a weighted function of the idle, sleep, and standby power consumption to consider the 

realistic workload [Riv 2008].  

Additionally, the operating point of a server system is only a local optimization for recent 

management techniques or optimization strategies. The vendor does not optimize the server 

system for under-utilization, which wastes operational expenditure in the data center. As 

stated in the previous chapter, the power supply efficiency is most suitable for high-intensity 

phases. The short-term results clarify particular moment-based problems that are not 

sustainable solutions. Future systems need other approaches because it is improper in the 

case of changing constraints or environmental conditions [CPI et al. 2009]. Secondly, the 

techniques are aware of the entire performance range, beginning at the low-intensity up to 

high-intensity phase.  

Aim #5: 

We recommend different utilization scenarios to consider under-utilization, supporting the 

idle, sleep, or standby mode. On the contrary, the maximal workload is not expected to be the 

full utilization of all resources. The authors of [ERK 2006] categorize the SPECint and SPECfp 

benchmark into a processor-bounded workload with high intensity. In contrast, the stream 

benchmark has a medium utilization of the processor. Beneficially, the flexible utilization-

based approach has to support diverse workloads and should reproduce a realistic 

observation. Furthermore, the customer should influence the resource utilization at simulation 

time, which enables sustainable power levels. The energy efficiency characteristics are 

intended to show the overall behavior through different resource utilization levels. We expect 

to analyze critical utilization levels, such as 0%, 20%, 50%, 80%, and 100%, and the effect of 

each component. We supposed to estimate the energy efficiency on a more realistic use case, 

not only for peak performance.  

Our model is intended to combine the thermal, power, and performance views, but we should 

decouple each component for more flexibility. The authors of [MSB et al. 2005] already use the 

same approach, but focus on the diverse memory hierarchies. The method in [TSW 2009] 

considers process interactions concerning the operational time spent for a process. We should 

exchange the data across the different layers to influence the relationships between the 

various aspects. For instance, higher utilization levels result in larger power consumption and 

better performance, but at certain points only the power value increases. The performance 

reaches its maximum because of limited resources or bottlenecks. The simulation approach 

has to support a specific behavior characterization at every abstraction level.  

                                                           
176

 Energy Star: https://www.energystar.gov/ 



Problem Statement, Challenges, and Aims 

 

 

 
139 

 

The simulation offers the opportunity to optimize the system at various utilization levels, 

especially at under-utilization. We should be able to change the component status during 

simulation. Furthermore, the simulation has to provide a relative statement about the server’s 

energy efficiency. 

4.6 Measurement Effort 
All academic system simulations have a specific research question. For instance, the 

approaches use different architectures of instruction sets to offer an adequate and precise 

model. If we change from a 32-bit architecture towards a 64-bit architecture177, the system 

behaves differently and, ultimately, the interpretation of the instructions and power 

consumption is incorrect. A complete measurement of a server system takes several days, 

weeks, or months in industry. At first, the calibration phase (usually three intervals) 

determines the largest performance or power of the entire system under a predefined 

workload. A new hardware configuration requires an extra calibration of the system, which 

expands the time and costs. The measurement effort increases exponentially by the 

configuration flexibility [Fuj 2012]. Secondly, the developer measures many systems with 

various configurations to get correct power values of the components. A power measurement 

for a single component within the system under test (SUT) takes several days because of the 

standardized technology. The environmental laboratory ensures the prescribed controlled 

conditions, such as the ambient temperature at 40°𝐶, to reduce negative external effects and 

ensure comparability. A certified analyzer measures the AC power dissipation during the 

execution of a compliant benchmark. Hereinafter, the vendor executes the benchmark 

multiple times to achieve the power consumption of the system or components. Finally, the 

developer validates and verifies the results for each variation, which requires additional time.  

The authors of [HRR et al. 2007] state that the average power varies up to ten percent during 

the measurement process. The academic approaches characterize the complete system in such 

detail that they consider every instruction and cycles, which generates a huge measurement 

effort in comparison to the upper abstraction level and have an increasing error rate. If 

industry has to measure the system at each cycle-accurate level, the time to get the power 

values increases exponentially.  

Aim #6: 

A flexible simulation model is intended to reduce the measurement effort, when the model 

combines the industrial and academic approaches. The benefits are the workload and 

configuration variation at a high abstraction level. On the contrary, the academic advantages 

are the exact algorithm at a lower level. Spreadsheet data, observations, statistical results, or 

customer-specific intellectual properties (IP) support the reduction of the measurements 

because the model may vary the server configuration in a short time and is intended to 
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simulate the entire system. The customer may change the data from a lower level to an upper 

level of the abstracted server system to specify the component behavior. This avoids extra 

measurements for a new configuration or other environmental conditions. Compared to the 

measurement time, the simulation time is not a critical factor. We supposed to automatically 

confirm the results and check it via a few separate measurements. 

4.7 Prediction of Future and Uncertain Systems 
In industry, the product life cycle never stops. System development is an iterative process, 

whereby the vendor improves each next generation by applying gained experiences. Each 

release includes novel functionality to satisfy the latest customer requirements. Therefore, the 

vendors have to measure the new server systems to integrate precise data within the joint 

configuration and order tool. The authors of [CPI et al. 2009] state, “We need to observe 

systems to see how they perform in various situations. This includes not only current 

commercially available systems, but systems purposely constructed as prototypes of new 

technologies.” A challenge is that the necessary data for an exact model is not available, such 

as concrete instruction sets or operations. Furthermore, due to missing information the vendor 

cannot answer many open questions and values. The power consumption, especially of novel 

generations, is not predictable and is unknown because no material- specification assignment 

exists.  

In addition, the hardware metrics constantly change from one generation to the next one, 

which means the performance counters are altered, added, or removed [Ben 2010]. The 

component-based power key factor relies on its architecture, structural, or functional model 

[BLR et al. 2005]. If a model is precisely as much as possible, it is invalid for novel generations. 

An upper-level abstraction results in high error rates, but on the contrary, is reusable for future 

components. The prediction for next-generation servers is an open research question, because 

the critical power factors are not available yet. Recent academic approaches do not assume 

the states, transitions, or behavior for future systems because of the complexity and missing 

data.  

Aim #7: 

Our algorithm is supposed to use the vendor experiences, spreadsheets, heuristics, and 

statistics to estimate the future systems on the basis of the earlier observations at every 

product phase. For instance, the first memory module generation 𝐷𝐷𝑅 − 200  offers half the 

transfer rate (1.6𝑀𝐵/𝑠)  in comparison to the next-generation 𝐷𝐷𝑅2 − 400  (3.2𝑀𝐵/𝑠) , 

which is furthermore, half of the 𝐷𝐷𝑅3 − 800 transfer rate (6.4𝑀𝐵/𝑠). Moore and Koomey 

stated the observed scaling and performance trends at certain manufacture generations of the 

fabrication technology, but did not investigate the configuration-specific parameters [Moo 

1965, KBS et al. 2010]. The model is intended to use the generic findings, which leads to the 

prediction of the largest throughput of next generations. We have to predict future systems on 

an upper abstraction level without details about the structure or instructions.  
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The customer is intended to change the component characteristics to assume the future 

behavior of the next-generation components. The model should provide the availability to add 

new components and server systems because of the decoupled and hierarchical concept at 

various abstraction levels. The virtual prototype of a component or server system is a benefit 

in the early design stage. The comparison between the prediction and the state-of-the-art 

component is, consequently, an evaluation criterion. 

4.8 Summary 
Our aim is to improve the power calculation in the commercial tools supported by the 

academic approaches regarding realistic and customer-specific workload scenarios for flexible 

server system variations. The over-provisioning reduction is a further dissertation goal 

achievable by more precise worst-case power calculation and adjustment. Another aspect is 

the server system’s energy efficiency, which is predictable at all utilization levels. If the 

approach decreases the measurement effort, the vendors will save time and costs. The future 

resource prediction supports the applicability at certain product development stages.  
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5 Multi-aspect Full-system Server Model and Optimization 

Concept as a Simulation-based Approach (MFSMOS) 

We develop a generic and scalable concept that consists of five separate steps to support the 

dynamic adaptations of control algorithms, management strategies, and system 

characteristics. Figure 43 shows an overview of the main concept. The externals block (𝐸𝑋) 

describes the environment and generates the stimuli for the simulation. We map the externals 

to the characterization block (𝑆𝑌), where we model and characterize the server system, its 

components, and its chips primarily in the physical domain, using a mix of commercial and 

academic algorithms to create multi-aspect models. We simulate the entire server system 

using the characteristics (𝑆𝑌) and resource utilization levels (𝐸𝑋). The results block stores the 

simulation response, in particular the energy efficiency values, to analyze the effects of each 

customization and autonomous management decision. The analysis is part of the optimization 

strategy in which we adapt the simulation by changing the characterization or partly changing 

externals. We conclude the simulation, its results, and the corresponding optimization 

strategies into the full-server system simulation (𝐹𝑆). The simulation is performed offline. 

 
Figure 43: Overview of the five-step concept 

Section 3.9 describes the state-of-the-art full-system approaches and simulators. As part of our 

overall system, we conceive an alternative server system simulator that is independent of the 

operating system. Our flexible external and internal system characterization supports any 

server and component vendor. We develop a holistic concept that includes the results of 

theoretical analyses, heuristics, measurements, and vendor-based experiences from existing 

systems as well as next-generation systems in the early design phases. At this stage, we are not 
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able to characterize all components at the same level of detail. Therefore, our model handles 

various abstraction levels beginning with instructions, proceeding with states, and finishing 

with black-box descriptions where we predict the behavior on the basis of spreadsheets. We 

support flexible and configurable resource utilization levels to estimate customer-specific 

application software, which is the major simulator input. Furthermore, we model the impact of 

system-tailored configurations and characteristics considering the following aspects: power, 

performance, and temperature. The simulator includes common power management 

techniques, as shown in [RL 2007]. In contrast, the authors in [RL 2007] trace and store the 

corresponding utilization levels of an explicit application of a real system with a static 

configuration. In addition, we consider the external power limits and thermal limits provided 

by the customer. Therefore, we include various management techniques and model the 

related behavior. According to the simulation results, we optimize the energy efficiency by 

adapting the system characterization. Finally, the simulator provides ideal energy-efficient 

settings for the given resource utilization levels. If no single optimum is possible, the system 

operates at an energy-efficient corridor, characterized by a Pareto front. We describe the full-

system simulations in Section 5.1 and Section 5.4.2. 

In this chapter, we assign the following terms with respective notations. We define the indices 

𝑖, 𝑗, 𝑛,𝑚, 𝑘, 𝑙, which are always any natural number 𝑁0 = {0,1,2,3,… }. In particular, an index 𝑖 

specifies a concrete component 𝐶𝑖 or category 𝐶𝑆𝑖. The related index 𝑚 identifies the maximal 

number of the elements in the set of 𝐶 or 𝐶𝑆178. We specify an aspect 𝐴𝑗 using the index 𝑗, 

whereby 𝑛 defines the final element.  

𝑖, 𝑗, 𝑛,𝑚, 𝑘, 𝑙 ∈ 𝑁0, 𝑁0 = {0,1,2,3,… }, 𝑁 = {1,2,3,… } (5.1) 

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚}, 𝐶𝑖 ∈ 𝐶 (5.2) 

𝐶𝑆 = {𝐶𝑆1, 𝐶𝑆2, … , 𝐶𝑆𝑚}, 𝐶𝑆𝑖 ∈ 𝐶𝑆  (5.3) 

𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑛}, 𝐴𝑗 ∈ 𝐴 (5.4) 

We use the index 𝑘 and 𝑙 as any consecutive index of all remaining terms. For instance, lambda 

is a generic object that has 𝑘 elements, as shown in Equation (5.5). The index 𝑙 specifies an 

explicit element of the set Λ. 

Λ = {Λ1, Λ2, … , Λ𝑘}, Λ𝑙 ∈ Λ (5.5) 

In addition, we add an extra dimension, whereby the first dimension specifies the 𝑙-th element 

of Λ, and the second dimension defines the related component 𝐶𝑖. We determine each 

element by Λ𝑙𝐶𝑖
 in the two-dimensional array, see Equation (5.6). In the case that we set 𝑙 = 2 

to a fixed value, Λ2 looks like Equation (5.7), but includes an extra system-wide Λ2𝑆𝑌 element.  

                                                           
178

 Component and categories: We state further details of the context in Section 5.3.2.1. 
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Λ = {Λ1𝐶1
, Λ2𝐶2

, … , Λ𝑘𝐶𝑚
} , Λ𝑙𝐶𝑖

∈ Λ (5.6) 

Λ2 = {Λ2𝑆𝑌, Λ2𝐶1
, Λ2𝐶2

, … , Λ2𝐶𝑚}
, Λ2𝐶𝑖

∈ Λ2 (5.7) 

The following section describes aspect-based component models as the basis of our full-server 

system simulation.  

5.1 Aspect-based Component Models of the Full-Server System 

Simulation 
We define a dynamic and deterministic simulation model using time-continuous and value-

continuous stimuli. The externals 𝐸𝑋 build the stimuli for the simulation model, which we 

convert into a time-discrete and a value-discrete workload. We need steady states because the 

simulation framework calls our calculation methods at each simulation step. We calculate the 

energy efficiency of the server, which depends upon the actual system configuration. 

Therefore, we characterize the system and its system-board components 𝐶𝑖 to define the inner 

behavior. At first, we specify each component separately in order to define the aspect-related 

functions. Afterwards, we include the relations between the aspects of a single component. 

Finally, we define component’s relations of the entire system behavior. Table 24 and Table 25 

list the symbols and definitions for the aspect-based component models within our simulation. 

Table 24: Nomenclature – aspect-based component models (𝑰) 

Nomenclature Meaning  Nomenclature Meaning 

𝑨 Aspect 𝒊, 𝒋, 𝒏,𝒎, 𝒌, 𝒍 Index  
𝑪 Component 𝑵𝟎 Any natural number  

𝑁0 = {0,1,2,3,… } 
𝑪𝑺 System-board 

category 
(  ≡ components) 

𝜽 
𝜽𝑹, 𝜽𝑪, 𝜽𝑺 

Configuration tree  
(HW, SW) 
released, customer, 
system-compatible  

𝑬𝑿 Externals 𝒑𝒓𝒐𝒄 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 
𝑺𝒀 System 𝒎𝒆𝒎 𝑀𝑒𝑚𝑜𝑟𝑦 
𝑭𝑺 Full-system 

simulation and 
optimization 

𝒊𝒐 𝐼𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡 

𝑨𝑪 Architecture 𝒐𝒕𝒉 𝑂𝑡ℎ𝑒𝑟𝑠 
𝑪𝑪 Connectors 𝑴𝑨𝑺𝑪 Aspect-based models 

per component 
𝑬𝑬 Energy efficiency 𝑨𝒋𝑪𝒊

 Element in matrix 𝑀𝐴𝑆𝐶  

𝑷𝑶 Power 𝑭𝑨𝒋𝑪𝒊
 Functional description of 

𝐴𝑗𝐶𝑖
 

𝑷𝑬 Performance 𝑭(𝒙) Objective functions with 
decision variables 𝑥 
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Table 25: Nomenclature – aspect-based component models (𝑰𝑰) 

Nomenclature Meaning  Nomenclature Meaning 

𝑻𝑯 Thermal 𝒙 Decision variables 
𝑫𝒀𝒔 Dynamic behavior 

of the system 
(characteristics) 

𝑮(𝒙), 𝑮𝟏
𝑪(𝒙) Constraints of 𝐹(𝑥) 

𝑺𝑻𝒔 Static 
characteristics  

𝑨𝑿,𝑨𝒀 Aspect-based models 

𝑹𝑨𝒍
𝑨𝒌  Relation between 

the aspects 
(𝐴𝑘 , 𝐴𝑙) 

𝑹𝑨, 𝑹𝑨𝑪 Aspect-based relations 

𝑹𝑨𝒋𝑪𝒊
 Aspect-related 

relevance for 
component 𝑖 and 
aspect 𝑗 

𝑹𝑨𝒋
 
𝒕𝒌

𝒕𝒌+𝟏  Impact of 𝐴𝑗 at time step 

𝑡𝑘+1 

𝑹𝑹𝑨𝒋𝒓𝒆𝒍

𝑨𝒌𝒓𝒆𝒍 

𝑹𝑹𝑨𝒋𝒓𝒆𝒍

𝑨𝒌𝒓𝒆𝒍
𝒎𝒊𝒏

  

𝑹𝑹𝑨𝒋𝒓𝒆𝒍

𝑨𝒌𝒓𝒆𝒍
𝒎𝒂𝒙

  

Interval limits of 

relation 𝑅𝐴𝑙
𝐴𝑘  

𝑩𝑬𝑪 Component behavioral 
model 

   𝑹𝑩𝑬 Relations between the 
component-specific 
behavior models 

 

This section defines the formal description of the aspect-based component models which we 

want to cover in the simulation. We consider the set of aspects 𝐴 and the set of components 

𝐶, see Equations (5.8) and (5.9). 

𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑛}, 𝐴𝑗 ∈ 𝐴 (5.8) 

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚}, 𝐶𝑖 ∈ 𝐶 (5.9) 

In our concept, we generate models for all combinations of the components 𝐶𝑖 ∈ 𝐶 and 

aspects 𝐴𝑗 ∈ 𝐴 that we consider in the simulation, whereby 𝑖, 𝑗, 𝑚, 𝑛 are any natural numbers 

𝑖, 𝑗, 𝑚, 𝑛 ∈ 𝑁0, 𝑁0 = {0, 1, 2, 3,… }: i.e., they build the cross product 𝐴 × 𝐶, see Equation (5.10). 

We concentrate upon the behavioral model of each component 𝐶𝑖 in the system.  
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𝑀𝐴𝑆𝐶 = 𝐴 × 𝐶 = (

(𝐴1, 𝐶1)

(𝐴2, 𝐶1)
⋮

(𝐴𝑛, 𝐶1)

 

(𝐴1, 𝐶2)

(𝐴2, 𝐶2)
⋮

(𝐴𝑛, 𝐶2)

⋯

 
⋯
⋱ 
⋯

(𝐴1, 𝐶𝑚)

(𝐴2, 𝐶𝑚)
⋮

(𝐴𝑛, 𝐶𝑚)

) =

(

  
 

(𝐴1𝐶1
)

(𝐴2𝐶1
)

⋮

(𝐴𝑛𝐶1
)

 

(𝐴1𝐶2
)

(𝐴2𝐶2
)

⋮

(𝐴𝑛𝐶2
)

⋯

 
⋯
⋱ 
⋯

(𝐴1𝐶𝑚
)

(𝐴2𝐶𝑚
)

⋮

(𝐴𝑛𝐶𝑚
))

  
 

 (5.10) 

𝑀𝐴𝑆𝐶 = 𝑀𝐴𝑆𝐴𝑗𝐶𝑖
= (𝐴𝑗𝐶𝑖

) (5.11) 

We define the component 𝐶1 by all aspects 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑛} and the aspect 𝐴1 for all 

components 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚}. The row 𝑛 of the two-dimensional array specifies the aspect 

𝐴𝑛, and the column 𝑚 specifies the component 𝐶𝑚, see Equation (5.12).  

𝐴 = {𝐴1𝐶1
, 𝐴2𝐶2

, … , 𝐴𝑛𝐶𝑚
} , 𝐴𝑗𝐶𝑖

∈ 𝐴 (5.12) 

In other words, each element within the matrix 𝑀𝐴𝑆𝐶  defines an aspect-based component 

model. A row vector 𝑀𝐴𝑆𝐴𝑗𝐶𝑖
 specifies one aspect 𝐴𝑗 for all components 𝐶𝑖 ∈ 𝐶. In contrast, a 

column vector 𝑀𝐴𝑆𝐴𝑗𝐶𝑚
 specifies all aspects 𝐴𝑗 ∈ 𝐴  for one component 𝐶𝑚. 

𝑀𝐴𝑆𝐴𝑗𝐶𝑖
= ((𝐴𝑗𝐶1

) (𝐴𝑗𝐶2
) (𝐴𝑗𝐶𝑚

))             𝑀𝐴𝑆𝐴𝑗𝐶𝑚
=

(

  
 

(𝐴1𝐶𝑚
)

(𝐴2𝐶𝑚
)

⋮

(𝐴𝑛𝐶𝑚
))

  
 

 (5.13) 

Finally, our matrix 𝑀𝐴𝑆𝐶  contains all component models for all aspects 𝐴𝑗. We define each 

element 𝐴𝑗𝐶𝑖
 of the two-dimensional array 𝑀𝐴𝑆𝐶  in the logical and physical layer. Other full-

system simulators, see Section 3.2.2 and Section 3.9, do not cover diverse aspects at the same 

time. In our concept, we address the aspects power 𝑃𝑂, performance 𝑃𝐸, and thermal 𝑇𝐻 for 

all components, see Equations (5.14) and (5.15). 

𝐴 = {𝑃𝑂, 𝑃𝐸, 𝑇𝐻} = {𝐴1, 𝐴2, 𝐴3}, 𝐴𝑗 ∈ 𝐴| ∀𝐶𝑖 (5.14) 

𝑀𝐴𝑆𝐴𝐶𝑖
= (

𝑃𝑂𝐶𝑖
𝑃𝐸𝐶𝑖
𝑇𝐻𝐶𝑖

) (5.15) 

We consider the following components: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 , 𝑚𝑒𝑚𝑜𝑟𝑦 , 𝑖𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑓𝑎𝑛 , and 

𝑜𝑡ℎ𝑒𝑟𝑠, which we describe in Section 5.3.2.1. Equation (5.17) shows the row vector 𝑀𝐴𝑆𝑃𝑂𝐶𝑖
, 

which refers to the power models of all components 𝐶𝑖.  
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𝐶 = {𝑝𝑟𝑜𝑐,𝑚𝑒𝑚, 𝑖𝑜, 𝑓𝑎𝑛, 𝑜𝑡ℎ} (5.16) 

𝑀𝐴𝑆𝑃𝑂𝐶𝑖
= (𝑃𝑂𝑝𝑟𝑜𝑐 𝑃𝑂𝑚𝑒𝑚 𝑃𝑂𝑖𝑜 𝑃𝑂𝑓𝑎𝑛 𝑃𝑂𝑜𝑡ℎ) (5.17) 

𝑀𝐴𝑆𝐶 = (

𝑃𝑂𝑝𝑟𝑜𝑐 𝑃𝑂𝑚𝑒𝑚 𝑃𝑂𝑖𝑜 𝑃𝑂𝑓𝑎𝑛 𝑃𝑂𝑜𝑡ℎ

𝑃𝐸𝑝𝑟𝑜𝑐 𝑃𝐸𝑚𝑒𝑚 𝑃𝐸𝑖𝑜 𝑃𝐸𝑓𝑎𝑛 𝑃𝐸𝑜𝑡ℎ

𝑇𝐻𝑝𝑟𝑜𝑐 𝑇𝐻𝑚𝑒𝑚 𝑇𝐻𝑖𝑜 𝑇𝐻𝑓𝑎𝑛 𝑇𝐻𝑜𝑡ℎ

) (5.18) 

We generate the entire aspect-based component matrix 𝑀𝐴𝑆𝐶  and create a model for each 

element within the matrix. We define the calculation methods for each element 𝐴𝑗𝐶𝑖
 as a 

functional description 𝐹𝐴𝑗𝐶𝑖
, which we describe in Section 5.2.2. 

We additionally consider relations 𝑅𝐴 between aspect-based models 𝐴𝑋 and 𝐴𝑌, which are 

elements within the matrix 𝑀𝐴𝑆𝐶 . Each model 𝐴𝑋  and 𝐴𝑌  contain the aspects 𝐴𝑗  or 𝐵𝑗 , 

respectively, where the number of aspects is considered to be equal. We specify each 

combination in the two-dimensional matrix 𝑅𝐴, see Equation (5.22). 

𝑅𝐴 = 𝐴𝑋 × 𝐴𝑌 (5.19) 

𝐴𝑋 = {𝐴1, 𝐴2, … , 𝐴𝑛}, 𝐴𝑌 = {𝐵1, 𝐵2, … , 𝐵𝑛} (5.20) 

𝑅𝐴 = 𝐴𝑋 × 𝐴𝑌 = {(𝐴𝑗, 𝐵𝑗)|𝐴𝑗 ∈ 𝐴𝑋, 𝐵𝑗 ∈ 𝐴𝑌, 𝑗 ∈ 𝑁0} (5.21) 

𝑅𝐴 = (

(𝐴1, 𝐵1)

(𝐴2, 𝐵1)
⋮

(𝐴𝑛, 𝐵1)

 

(𝐴1, 𝐵2)

(𝐴2, 𝐵2)
⋮

(𝐴𝑛, 𝐵2)

⋯

 
⋯
⋱ 
⋯

(𝐴1, 𝐵𝑛)

(𝐴2, 𝐵𝑛)
⋮

(𝐴𝑛, 𝐵𝑛)

) (5.22) 

The matrix contains all combinations of 𝐴𝑋 × 𝐴𝑌. As stated before, we always address the 

same aspects 𝐴𝑗 for all components 𝐶𝑖. Therefore, 𝐴𝑋 is identical with 𝐴𝑌, we replace 𝐴𝑌 in 𝑅𝐴 

and create a simplified version, see Equation (5.25). 

 𝐴 = 𝐴𝑋 = 𝐴𝑌 = {𝐴1, 𝐴2, … , 𝐴𝑛} | ∀𝐶𝑖, 𝑖 ∈ 𝑁0 (5.23) 

𝑅𝐴 = 𝐴 × 𝐴 = (

(𝐴1, 𝐴1)

(𝐴2, 𝐴1)
⋮

(𝐴𝑛, 𝐴1)

 

(𝐴1, 𝐴2)

(𝐴2, 𝐴2)
⋮

(𝐴𝑛, 𝐴2)

⋯

 
⋯
⋱ 
⋯

(𝐴1, 𝐴𝑛)

(𝐴2, 𝐴𝑛)
⋮

(𝐴𝑛, 𝐴𝑛)

) (5.24) 

A relation between the same aspects 𝐴𝑗 does not exist and is negligible, see Equation (5.25). 

For compatibility in the tool chain, we define the relation of two identical aspects 𝐴𝑗 as value 

one within the matrix 𝑅𝐴. The relation between the two aspects 𝐴1 and 𝐴2 is bidirectional and 

interchangeable, see Equation (5.26).  
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(𝐴𝑗 , 𝐴𝑗) = 1 (5.25) 

(𝐴1, 𝐴2) ≡ (𝐴2, 𝐴1) (5.26) 

As a result, we specify a simplified matrix 𝑅𝐴, which defines all existing relations between the 

aspects 𝐴𝑗, again setting all values to be ignored to 1. 

𝑅𝐴 = 𝐴 × 𝐴 = (

1
1
⋮
1

 

(𝐴1, 𝐴2)
1
⋮
1

(𝐴1, 𝐴3)

(𝐴2, 𝐴3)
⋮
1

⋯

 
⋯
⋱ 
⋯

(𝐴1, 𝐴𝑛)

(𝐴2, 𝐴𝑛)
⋮
1

) =

(

 
 
1
1
⋮
1

 

𝑅𝐴2
𝐴1

1
⋮
1

𝑅𝐴3
𝐴1

𝑅𝐴3
𝐴2

⋮
1

⋯

 
⋯
⋱ 
⋯

𝑅𝐴𝑛
𝐴1

𝑅𝐴𝑛
𝐴2

⋮
1 )

 
 

 (5.27) 

We define the element (𝐴𝑘 , 𝐴𝑙) in 𝑅𝐴 as the relation 𝑅𝐴𝑙
𝐴𝑘. We summarize the relations among 

the component 𝐶𝑖 by 𝑅𝐴𝐶𝑖
. Finally, we collect all component relations in 𝑅𝐴𝐶 . 

𝑅𝐴𝐶𝑖
= {𝑅𝐴2

𝐴1 , 𝑅𝐴3
𝐴1 , 𝑅𝐴3

𝐴2 , … , 𝑅𝐴𝑛
𝐴1 , 𝑅𝐴𝑛

𝐴2 , 𝑅𝐴𝑛
𝐴𝑛−1} (5.28) 

𝑅𝐴𝐶 = {𝑅𝐴𝐶1 , 𝑅𝐴𝐶2 , … , 𝑅𝐴𝐶𝑛} (5.29) 

According to the specification in (5.27), we define the relations 𝑅𝐴  for the aspects 𝐴 =

{𝑃𝑂, 𝑃𝐸, 𝑇𝐻} and specify them for all components 𝐶𝑖 in 𝑅𝐴𝐶𝑖
. 

𝑅𝐴 = (
1 𝑅𝑃𝐸

𝑃𝑂 𝑅𝑇𝐻
𝑃𝑂

1 1 𝑅𝑇𝐻
𝑃𝐸

1 1 1

) = {𝑅𝑃𝐸
𝑃𝑂 , 𝑅𝑇𝐻

𝑃𝑂, 𝑅𝑇𝐻
𝑃𝐸} (5.30) 

𝑅𝐴𝐶𝑖
= {𝑅𝑃𝐸𝐶𝑖

𝑃𝑂𝐶𝑖 , 𝑅𝑇𝐻𝐶𝑖

𝑃𝐸𝐶𝑖 , 𝑅𝑇𝐻𝐶𝑖

𝑃𝑂𝐶𝑖} (5.31) 

Figure 44 illustrates a component 𝐶𝑖, its aspect-based models of the matrix 𝑀𝐴𝑆𝐶, and the 

models’ corresponding relations 𝑅𝐴𝐶𝑖
.  

 
Figure 44: Aspect-based components and corresponding relations (𝑹𝑨) 

In the next step, we specify the behavior model 𝐵𝐸𝐶𝑖, whereby we include the aspect-based 

models in 𝑀𝐴𝑆𝐴𝐶𝑖
 for each component 𝐶𝑖and their relations 𝑅𝐴𝐶𝑖

. We define the components’ 

behavioral level, but do not specify the description level for each domain. For instance, we 

specify the processor power model on the physical domain, but the memory thermal model as 
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a black-box approach. Equation (5.33) defines the behavior model of the processor, which 

includes the aspect-based models 𝑃𝑂𝑝𝑟𝑜𝑐 , 𝑃𝐸𝑝𝑟𝑜𝑐 , 𝑇𝐻𝑝𝑟𝑜𝑐  considering the relations 

𝑅𝑃𝐸𝑝𝑟𝑜𝑐
𝑃𝑂𝑝𝑟𝑜𝑐 , 𝑅𝑇𝐻𝑝𝑟𝑜𝑐

𝑃𝐸𝑝𝑟𝑜𝑐 , and 𝑅𝑇𝐻𝑝𝑟𝑜𝑐
𝑃𝑂𝑝𝑟𝑜𝑐. We collect the system behavior model in 𝐵𝐸𝐶 , see Equation 

(5.34).  

𝐵𝐸𝐶𝑖(𝑀𝐴𝑆𝐴𝐶𝑖
, 𝑅𝐴𝐶𝑖

) (5.32) 

𝐵𝐸𝑝𝑟𝑜𝑐(𝑃𝑂𝑝𝑟𝑜𝑐 , 𝑃𝐸𝑝𝑟𝑜𝑐 , 𝑇𝐻𝑝𝑟𝑜𝑐 , 𝑅𝑃𝐸𝑝𝑟𝑜𝑐
𝑃𝑂𝑝𝑟𝑜𝑐 , 𝑅𝑇𝐻𝑝𝑟𝑜𝑐

𝑃𝐸𝑝𝑟𝑜𝑐 , 𝑅𝑇𝐻𝑝𝑟𝑜𝑐
𝑃𝑂𝑝𝑟𝑜𝑐) (5.33) 

𝐵𝐸𝐶 = {𝐵𝐸𝐶1 , 𝐵𝐸𝐶2 , … , 𝐵𝐸𝐶𝑚} (5.34) 

The authors of [RL 2007, Riv 2008, BC 2010] use a state-based approach to specify the system 

and components, but do not consider the component’s interaction. For each component 𝐶𝑖 we 

separately define a behavioral model 𝐵𝐸𝐶𝑖, but a component can influence the behavior of 

another component. The processor has to wait for the memory executions and autonomously 

switches to the idle state, for instance. We specify the relations 𝑅𝐵𝐸 between the component-

specific behavior models 𝐵𝐸𝐶  as a cross product, see Equation (5.35).  

𝑅𝐵𝐸 = 𝐵𝐸𝐶 × 𝐵𝐸𝐶  (5.35) 

According to the assumptions for the aspect-based relations 𝑅𝐴, we generate a model 𝑅𝐵𝐸, see 

Equations (5.36), (5.38), and (5.39). Our approach shall automatically generate and fill the 

matrix. We concentrate on the behavior of each component and integrate the consequent to 

the other components. We simulate the constant architecture 𝐴𝐶 of our server system, 

because of the existing connectors 𝐶𝐶 between the mounted components.  

𝑅𝐵𝐸𝐶1

𝐵𝐸𝐶1 , 𝑅𝐵𝐸𝐶2

𝐵𝐸𝐶2 , … , 𝑅𝐵𝐸𝐶𝑛

𝐵𝐸𝐶𝑛 = {∅} (5.36) 

𝑅𝐵𝐸𝐶𝑖

𝐵𝐸𝐶𝑖 = 1 (5.37) 

𝑅𝐵𝐸𝐶2

𝐵𝐸𝐶1 ≡ 𝑅𝐵𝐸𝐶1

𝐵𝐸𝐶2  (5.38) 

𝑅𝐵𝐸 = 𝐵𝐸𝐶 × 𝐵𝐸𝐶 =

(

 
 
 
 1
1
1
1
1

 

𝑅𝐵𝐸𝐶2

𝐵𝐸𝐶1

1
1
1
1

 

𝑅𝐵𝐸𝐶3

𝐵𝐸𝐶1

𝑅𝐵𝐸𝐶3

𝐵𝐸𝐶2

1
1
1

 

⋯
⋯
⋯
⋱
⋯

 

𝑅𝐵𝐸𝐶𝑚

𝐵𝐸𝐶1

𝑅𝐵𝐸𝐶𝑚

𝐵𝐸𝐶2

𝑅𝐵𝐸𝐶𝑚

𝐵𝐸𝐶3

⋮
1 )

 
 
 
 

 (5.39) 

The aspect-based models in 𝑀𝐴𝑆𝐶, their relations 𝑅𝐴, and the behavioral relations 𝑅𝐵𝐸 specify 

the dynamic behavior within the system 𝐷𝑌𝑠 . Herein, we define the system-specific 

dependencies based upon the explicit configuration tree 𝜃𝐶, mounted components 𝐶𝑖, and 
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their category-specific characteristics. Finally, our system model consists of static 𝑆𝑇𝑠 and 

dynamic 𝐷𝑌𝑠  characteristics. Besides the dynamic configuration, we specify the system 

architecture 𝐴𝐶 and the related connectors 𝐶𝐶 as static characteristics 𝑆𝑇𝑠, which are not 

configurable within the system, such as structural restrictions about the amount of 

components 𝐶𝑖 in 𝜃𝐶. Figure 45 shows a graphical overview of the dynamic characteristics in 

our system model. 

𝐷𝑌𝑠 = {𝐵𝐸𝐶 , 𝑅𝐵𝐸} = {𝑀𝐴𝑆𝐶 , 𝑅𝐴𝐶 , 𝑅𝐵𝐸} (5.40) 

𝑆𝑇𝑠 = {𝐴𝐶, 𝐶𝐶} (5.41) 

𝑆𝑌 = {𝑆𝑇𝑠, 𝐷𝑌𝑠} (5.42) 

 
Figure 45: System model (𝑴𝑨𝑺𝑪, 𝑹𝑨𝑪 , 𝑹𝑩𝑬) 

In conclusion, in our concept we define the aspects power 𝑃𝑂, performance 𝑃𝐸, and thermal 

𝑇𝐻  to estimate the energy efficiency 𝐸𝐸 . The externals block 𝐸𝑋  defines the working 

conditions to the server system. The previous formal descriptions characterize the system 𝑆𝑌 

to calculate a set of heterogeneous aspects 𝐴𝑗, which we want to optimize. 

[𝐸𝑋][𝑆𝑌] → [𝐴𝑗] (5.43) 

[𝐸𝑋][𝑆𝑌] → [𝑃𝑂 𝑃𝐸 𝑇𝐻] (5.44) 
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We specify the dynamic and static characteristics of the system and its components. Then we 

replace the system 𝑆𝑌 with our models, as shown in Equation (5.46). Furthermore, we 

characterize the components within the server system 𝑆𝑌 in order to precisely calculate each 

aspect 𝐴𝑗, which we require for our simulation.  

[𝐸𝑋] [ 
𝑆𝑇𝑠
𝐷𝑌𝑠

] → [𝑃𝑂 𝑃𝐸 𝑇𝐻] (5.45) 

[𝐸𝑋] [ 
𝑆𝑇𝑠

𝑀𝐴𝑆𝐶 , 𝑅𝐴𝐶 , 𝑅𝐵𝐸
] → [𝑃𝑂 𝑃𝐸 𝑇𝐻] (5.46) 

The following sections describe various concept stages and introduce what the respective 

blocks have to provide. We present existing approaches and argue why the concepts are not 

fully applicable for the server system simulation. Afterwards, we emphasize our contributions 

and describe which approaches we use or adapt. 

5.2 Server System Configuration and Characterization 

𝑺𝒀 = {𝜽, 𝜽𝑻𝑺, 𝜽𝑪, 𝜽𝑪𝑺, 𝜷, 𝜹, 𝜸, 𝝊, 𝝌} 
This section describes the fundamental principles to simulate an entire server system. The 

explicit server configuration specifies the architecture and the respective components, which 

we further characterize to calculate the concrete aspects. We specify a hierarchical approach, 

similar to [GFN et al. 2006], that provides the scalability to define the system from upper to 

lower abstraction levels. In our approach, we conceive a flexible model that decouples the 

layers configuration, logical and physical, and process and control, which we define separately 

from each other, allowing to support independent descriptions of the diverse domain-specific 

characteristics. The authors of [Che 2006] analyze an application referring to the components 

processor, cache, memory, and peripheral. The authors propose a model of each component 

and calculate the total power consumption. We consider multi-aspects so that we cannot 

apply the approach directly. We develop a generic model and use the utilization levels instead 

of the instruction sets or particular memory traces. 

The configuration layer defines the customer-specific system configuration. The configuration 

layer describes the physical system from the structural perspective, which considers the 

maximal amount of possible mountable system-board components 𝐶𝑖. Herein, we cover the 

system architecture, design, and structure of the entire server system. We model the system 

architecture encapsulated of the components, which supports multiple server generations 

without creating a completely new model. The configuration layer supports the interactions 

with our optimization strategies, which alters the specific configurations of the server system 

to find an ideal energy-efficient solution. We concentrate upon the entire system and 

differentiate into the possible supported components and the simulation configuration, which 

is usually specified by the customer in the commercial tools. In our simulation model, we 
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require a Fujitsu System Architect file179, which specifies the customer-specific server system. 

In principle, we parse the file 180  to define the server configuration and its mounted 

components. Further characterization is done through a generic configuration tree that 

considers the explicit system configuration and its particular specification. We differentiate 

into the configuration and characterization of the server system and its components to define 

the aspect-based models. We specify the calculation methods of each component, whereby 

we access these functions within our simulation model. Therefore, we analyze the components 

within the characterization layer to find the significant energy efficiency characteristics of each 

component 𝐶𝑖 in every aspect 𝐴𝑗, but in an abstract manner. We specify the functional models 

concerning the thermal, power, and performance aspects of each component in the logical 

and physical configuration layer to calculate the energy efficiency at every simulated time 𝑡𝑘. 

We define the diverse levels of the component details flexibly based upon our knowledge of 

the corresponding accuracy level and data, see Section 5.2.2. In addition, the characterization 

layer considers the management techniques 𝛾, such as dynamic voltage frequency scaling 

(DVFS) and dynamic thermal management (DTM). We distribute the workload (utilization 

levels) towards the mounted components and define the communication 𝛿 between the 

components 𝐶𝑖 in the process and control layer. Our process and control layer includes the 

calculation methods based upon the characterization layer to provide the necessary simulation 

data. We manage the system behavior and consider the internal system constraints 𝜐 as well 

as simulation constraints 𝜒, see Section 5.2.3. All layers together generally characterize the 

server system and its behavior. Figure 46 shows a brief overview of the server system 

characterization and its layers, which we outline in the next sections.  

                                                           
179

 Fujitsu System Architect file: proprietary format, http://configurator.ts.fujitsu.com/public/ 
180

 File support: We have to extend the interface and parsing algorithm, which supports server 
configuration files of the other commercial tools. 
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Figure 46: Server system characterization 

5.2.1 Constituents of the Simulation Model 

Our simulation model has a data layer that stores the server system configurations and 

characterizations in a centralized database. The aspect-based calculation methods 𝐹𝐴𝑗𝐶𝑖
 in 

𝑀𝐴𝑆𝐶  use the extended component information181 coming from this database. We define the 

equations in the logical and physical layer, which we separate from the data layer to support 

diverse abstraction levels. We provide access to individually configurable data within the 

database to enable the usage of our models across multiple server generations over several 

years. We recognize two classes of users: the system administrator and the customer. The 

system administrator is the expert who configures the weight coefficients of the calculation 

methods, for instance, updates the database and maintains the simulation model. The 

customer specifies the external input parameters of the simulation model to his or her need. 

The most critical simulation input parameters are the customer-specific system configuration 

and the corresponding workload. We alter the server configuration as part of our optimization 

strategy because, e.g., two memory modules may provide a better performance and consume 

less power in comparison to one module that has the same technical specification and total 

                                                           
181

 Extended component information: customer-specific system configuration does not provide the 
certain details of a component, such as the memory fabrication size 
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capacity. The amount of components within the system influences the energy efficiency. On 

the other hand, a current processor from today may be the bottleneck of the entire server 

system. If we choose a faster processor or a second one, the memory will become the 

bottleneck. We define a generic configuration tree 𝜃 that specifies the actual physical system 

from the structural perspective concerning the maximal amount of possible mountable 

system-board components 𝐶𝑖. The design and architectural descriptions include the topology, 

hierarchy, component types, and connections. The configuration tree considers all possible 

server system configurations independent of the vendor, generation, structure, or hardware 

restrictions. We concentrate upon an exact server system configuration within one simulation 

run, which we consider as the initial configuration of the simulation 𝜃𝐶. We separate the 

system architecture model to abstract the wide range of components from an explicit server 

generation. We reuse the component models for multiple server generations and avoid 

additional effort instead of creating a completely new model for each generation. 

Server System Configuration Tree 𝜽 and Components 𝑪𝒊 

The sub-component tree of a server, as addressed in [GFN et al. 2006], builds the base of our 

modular and hierarchical concept. The authors include the dynamic and static properties 

within the tree, but do not care about the architectural dependencies, such as generation, 

family, or revision to support heterogeneous components. Our aim is to depict a wide range of 

customer configurations 𝜃𝐶  and optimize the system’s energy efficiency. We adjust and 

enhance the component tree of [GFN et al. 2006] to abstract the hardware components from 

their explicit technical specification and extend their model by a flexible characterization. We 

define any possible system configuration 𝜃, its architecture, and resources, but avoid the 

redundant data in comparison with the configuration tree in [GFN et al. 2006]. We conceive a 

general configuration tree182 by a flexible amount of subtypes 𝑆𝑈𝑘 and sub-subtypes 𝑆𝑈𝑘𝑙, 

which are the vertices, as formally defined in Section 2.2.6. We define the server system 

configuration as a tree to extend and integrate dynamic new resources by adding an extra 

subtype183. We can reduce the complexity of our simulation by deleting a subtype of the tree, 

which supports the flexibility when we want to reorder or reorganize the components based 

upon the updated findings of the measurements or the next-generation architectures. We can 

easily apply search algorithms, annotate the tree elements, and depict dependencies. The 

edges between the vertices describe the “consist of” relation. A subtype may consist of 

additional (multiple) sub-subtypes, for instance, or does not have any children, which are 

called leaves. We define the subtypes and sub-subtypes as flexible, dynamic structures at each 

level within the configuration tree, which are expandable for next-generation systems. The 

edges in the technical specification tree 𝜃𝑇𝑆 are an exception because we use them as an “is a” 

                                                           
182

 General configuration tree: has no maximal number of possible subtypes (degree), and every subtype 
can have any number of subtypes independent of each other 
183

 Subtype: vertex (node) in the tree 
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relation. The general configuration tree includes all supported components and server 

configurations within our simulation model. Therefore, we analyze the Fujitsu System Architect 

database to generate the all-encompassing configuration tree considering the several 

configurations and characterizations that are possible to specify an entire server system. The 

configuration tree uses a centralized database that considers the various components 

independent of the vendor.  

We distinguish between the released configuration 𝜃𝑅, the customer configuration 𝜃𝐶, and any 

system-compatible configuration 𝜃𝑆 within our configuration tree 𝜃 with 𝜃𝐶 ⊆ 𝜃𝑅 ⊆ 𝜃𝑆 ⊆ 𝜃. A 

customer configuration is always a released and system-compatible configuration. The vendor 

restricts the released hardware configuration because of the compatibility to predecessor 

generations or vendor-specific constraints. The customer configuration 𝜃𝐶  is our initial 

configuration and serves as simulation input. One of our optimization strategies is the 

alternation of the hardware configuration. We exchange the components 𝐶𝑖  within 𝜃𝐶 , 

whereby 𝐶𝑖 is system-compatible but not necessarily a released184 server configuration 𝜃𝑅. This 

supports our flexible concept in order to simulate various hardware configurations and their 

corresponding characteristics. As stated in the background section, we define our 

configuration tree 𝜃 using the following subtypes and sub-subtypes for a rack-mounted server 

system 𝑆, which is the root type 𝑇𝑌0, see Figure 18: 

 Software 𝑆𝑊 

 Hardware 𝑆𝐻 

o Components 𝐻𝐶 

 Add-in 𝐶𝐴 

 On-board 𝐶𝑂 

 System-board 𝐶𝑆 (components 𝐶) 

o Connectors 𝐻𝑂 

o Power supply 𝐻𝑃 

We address the software settings 𝑆𝑊 in the externals block 𝐸𝑋, which we include as settings 

𝜉. Our workload model covers various applications, see Section 5.3.2.2. We consider the power 

supply 𝐻𝑃 within the total power calculation. We differentiate the connectors 𝐻𝑂 into virtual 

connectors, such as associated network uplink, and electrical connectors 𝐶𝐶. The electrical 

connectors185 enable the communication and limit the maximal performance because of the 

resources’ throughput and bandwidth. We do not cover add-in components 𝐶𝐴, because of 

their wide variety and in order to reduce complexity. In addition, we abstract the on-board 

mounted components 𝐶𝑂, which we denote as main board-specific base power. Usually, we 

                                                           
184

 Non-released servers: operational servers which are not equipped for distributing these onto the 
market 
185

 Electrical connectors: wiring by contacts (pins) 
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cannot control any on-board changes 186  besides shutting down chips or disabling 

communication interfaces. In our simulation model, we concentrate on the grouped system-

board components 𝐶𝑆 = {𝐶𝑆1, 𝐶𝑆2, … , 𝐶𝑆𝑚} , which we distinguish into the five major 

categories processor, memory, input/output, fan, and others, as defined in Equation (5.16) and 

shown in Figure 47.  

 
Figure 47: System-board categories (components) 

The category 𝐶𝑆1 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 includes any kind of processing units; 𝐶𝑆2 = 𝑚𝑒𝑚𝑜𝑟𝑦 refers to 

diverse volatile storage devices. While the category 𝐶𝑆3 = 𝑖𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡  considers non-

volatile storage and communication hardware, such as internal hard disk drives (HDD), solid-

state disks (SSD), or InfiniBand187, the 𝑓𝑎𝑛 covers cooling devices, such as a processor fan, in-

house fan, or power supply unit (PSU) fan. The category 𝐶𝑆5 = 𝑜𝑡ℎ𝑒𝑟𝑠 includes expansion 

cards, for instance, whereby the fraction of the others category on the total power 

consumption is negligible. We concentrate upon the processor, memory, and fan categories 

because we can manage and control these devices at the hardware level. The power 

consumption of the I/O devices depends substantially upon the explicit usage, e.g., either the 

network communication to the storage-area-network (SAN) / network-attached-storage (NAS) 

servers, or provides data for complex computations by an optical interconnect. We 

concentrate upon the small-scale and medium-scale enterprise servers. Herein, typical servers 

involve a small amount of I/O devices because of their less external communication in 

comparison with high-end servers. The I/O-based power in this class of systems is relatively 

small in comparison to the power consumption of the processor or memory. We therefore 

neglect the I/O-based power in the case of a processor-bounded or memory-bounded 

workload, as it has little influence on the entire power dissipation and consider them as static 

power. In principle, I/O-bounded workloads could be handled as well. However, in this case 

precise models of the respective I/O devices and their workloads would be required.  

We analyze the customer-specific server system configuration 𝜃𝐶  automatically and consider 

the related category of each component. We reconfigure our configuration tree because we 

include the subtypes in our simulation model. Our root type 𝑇𝑌0 (𝐿0) is the system, but the 

system-board categories become the level 𝐿1 of our configuration tree 𝜃. We can alter the 

                                                           
186

 On-board changes: e.g., influence voltage or frequency, only possible at the RTL level in the design 
phase 
187

 InfiniBand: http://www.infinibandta.org/ 



Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based 

Approach (MFSMOS) 

 

 

 
157 

 

configuration at each level of the configuration tree. We define a rack-based server system, 

such as 𝑇𝑌0 = RX200S7188, which we want to optimize, for instance. We concentrate upon the 

energy-efficient hardware in our optimization strategy when we search for alternative 

configurations and characterizations. 

Server System Technical Specification Tree 𝜽𝑻𝑺 – A Subtree of the Configuration Tree 𝜽 

The configuration tree concentrates upon the physical system considering the mountable 

system-board components. We differentiate a component itself and the respective category 

into the technical specification and their related characteristics 𝐶𝐻𝑇𝑆. Figure 48 shows an 

incomplete memory subtree that covers just the technical specification. A leaf and their 

ancestors 189  technically specify a component 𝐶𝑖  and define the exclusive configurations 

including the parent subtypes. For instance, a 𝑃𝐶3 − 12800 memory module automatically 

sets the technical details, including its predecessor subtypes  𝐷𝐷𝑅3 − 1600,𝐷𝐷𝑅3, 

𝑆𝐷𝑅𝐴𝑀 𝐷𝐼𝑀𝑀. The path corresponds to the explicit customer-specific memory configuration 

in our generic configuration tree 𝜃. The siblings190 have alternative configurations at every 

certain level. We require exchangeability, such as between the 𝐷𝐷𝑅3 and 𝐷𝐷𝑅4 architecture, 

when we use other memory architectures in the early design phase. Thus, we do not create a 

new model when a technical specification changes. Instead, we extend the tree by adding a 

novel subtype. The encapsulation and abstraction support the required flexibility as well as 

scalability. 

 
Figure 48: Technical specification tree – memory 

We define the levels 𝐿 of our technical specification tree, as shown in Equation (5.47), and 

specify the root type 𝑇𝑌0 by the explicit component category 𝐶𝑆𝑖. The subtypes 𝑆𝑈 and sub-

subtypes 𝑆𝑈𝑔  define the technology characteristics 𝐶𝐻𝑇𝑆 , which we consider in our 

optimization strategy.  

                                                           
188

 RX200S7: Fujitsu server system, https://sp.ts.fujitsu.com/dmsp/Publications/public/ds-py-rx200-s7-
de.pdf 
189

 Ancestors: vertices between a given vertex and the root vertex 
190

 Siblings: vertices with same parents, also called neighbors, or adjacent vertices 
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𝐿 = {𝐿0, 𝐿1, … , 𝐿𝑘}, 𝑘 ∈ 𝑁𝑜, 𝑁𝑜 = {0,1,2,3,… } (5.47) 

𝑆𝑈 = {𝑆𝑈1, 𝑆𝑈2, … , 𝑆𝑈𝑓}, 𝑓 ∈ 𝑁,𝑁 = {1,2,3,… } (5.48) 

𝑆𝑈𝑔 = {𝑆𝑈𝑔1, 𝑆𝑈𝑔2, … , 𝑆𝑈𝑔𝑓}, 𝑔 ∈ 𝑁 (5.49) 

We have grouped the characteristics of each level, which allows us to separate our 

optimization decision level by level. We annotate the explicit server configuration along the 

search path within the tree. We analyze the technical specification tree and alter the 

technology at each level by selecting the siblings. We specify a heuristic, wherein we begin 

with the level that contains the confirmed and reliable values191 of the subtypes. Therefore, we 

start with the highest level192 (leaf), explore the alternative configurations, and search the 

most energy-efficient ones. A lower level, nearby the root level, contains a larger amount of 

theoretical values in comparison to the concrete path in the tree up to the leaf. As an example, 

we assume the tree in Figure 48, and specify the real memory module as 𝐷𝐷𝑅3 −

1600, 𝑃𝐶3 − 12800,𝐷𝐷𝑅3, 𝑆𝐷𝑅𝐴𝑀 𝐷𝐼𝑀𝑀 illustrated in color in the figure. We consider the 

set of leaves193, which probably consumes lower energy in comparison to the actual 

configuration. After evaluating the siblings, we consider the parent level up to the root level. 

An adjustment closer to the root level becomes increasingly uncertain in comparison to a 

change at a higher level. Alternatively, if a server configuration limits the technology to 𝐷𝐷𝑅3 

because of the system architecture, we will exclusively consider the child level in the tree 

instead. As a result, we neglect the upper levels in the technical specification tree and ignore 

the siblings of the 𝐷𝐷𝑅3 subtype. The structural restrictions of the server system lead us to 

start our algorithm at the leaf level that supports a higher degree of flexibility. We restrict the 

design space, the subtypes of each level, on the basis of the system compatibility, which 

reduces the alternation complexity. We accept the risk that our limited tree does not provide 

any ideal solution (the resulting feasible region may become empty) or we exclude a possible 

optimal configuration, which leads to an unsolvable optimization problem. In both scenarios, 

we explore the alternative configurations using a bottom-up approach. The heuristic is part of 

our optimization algorithm, see Section 5.4.2.1. 

The technology characteristics are static simulation parameters, which result from the initial 

server configuration. Besides the predefined parameters, we address dynamic characteristics, 

which we adjust during the simulation. We exemplarily select the leaf 𝑃𝐶3 − 12800 of the 

technical specification tree and annotate the subtypes along the path within the technical 

specification tree by a flag that shows the current usage in the simulation model.  

                                                           
191

 Confirmed and reliable values: empirical measurements, spreadsheet-based data, observations, 
statistical results, or customer-specific intellectual properties (IP) 
192

 Highest level in tree: usually the highest level is assigned to the root and the lowest to the leaves, but 
we define the levels concerning the indices 
193

 Set of leaves: {𝐷𝐷𝑅3 − 800, 𝐷𝐷𝑅3 − 1066, 𝐷𝐷𝑅3 − 1333, 𝐷𝐷𝑅3 − 1866, 𝐷𝐷𝑅3 − 2133} 



Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based 

Approach (MFSMOS) 

 

 

 
159 

 

A leaf of the technical specification tree builds the root type 𝑇𝑌0 of our second configuration 

tree, such as the memory module 𝑆𝐷𝑅𝐴𝑀 𝐷𝐼𝑀𝑀,𝐷𝐷𝑅3,𝐷𝐷𝑅3 − 1600, 𝑃𝐶3 − 12800 . 

Herein, the subtypes define the various characteristics and values of the selected component 

with an arbitrary order of the levels. We implicitly specify the technology characteristics of 

each level by selecting the leaf of the technical specification tree. We define the subtypes 𝑆𝑈 

in the characteristic tree in the same manner. We can replace the tree levels with each other 

because they build an unordered tuple of the characteristics of the explicit configuration. The 

colored subtypes in the figure refer to the component characteristics of the customer 

configuration 𝜃𝐶, a 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑, 𝑙𝑜𝑤 − 𝑣𝑜𝑙𝑡𝑎𝑔𝑒, 𝐸𝐶𝐶, 4𝐺𝐵 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 memory module. Each 

tree level 𝐿 provides a specific characteristic, whereas the siblings refer to the possible range 

of values. We distinguish the static and dynamic characteristics, which we adjust in different 

phases in our optimization strategy. 

 
Figure 49: Configuration with characteristics and values – memory 

All categories and components differ in their technical specification and their respective 

characteristics. We define a generic characterization tree 𝜃𝐶𝑆 that supports the flexibility to 

define each component of the diverse generations. Figure 50 presents partially the generic 

configuration tree 𝜃, the technical specification tree 𝜃𝑇𝑆, and the characterization tree 𝜃𝐶𝑆. 

The color-marked path in the tree exemplarily represents an actual server system 

configuration 𝜃𝐶  of the memory module. 
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Figure 50: Technical specification and characterization tree 

The design and architectural descriptions include the topology, hierarchy, component types, or 

connections. The architectural model 𝐴𝐶  defines the configuration restrictions 194 , sub-

components, their hierarchy, and their electrical connectors 𝐶𝐶. The system architecture and 

busses are fixed for a given server configuration 𝜃𝐶. We consider an explicit server generation 

and family in our simulation model. The server architecture itself restricts the components, 

such as the mountable motherboard, and the generation limits the component type. We 

differentiate the system configuration into the components, connectors, and power supply. 

We concentrate on the component-based concepts because we model the system architecture 

 𝐴𝐶 and connectors 𝐶𝐶 within our simulation model in Simulink195. We distribute the workload 

towards the exact number of the components. Figure 51 shows an overview of the hardware 

design and architecture within the configuration layer.  

                                                           
194

 Configuration restrictions: maximal amount of mountable components 
195

 Simulink: architecture and connectors are a graphical system view designed as blocks and lines 
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Figure 51: Configuration and characterization layer 

An exception in the configuration layer is the power supply unit (PSU) of the server system, 

which we size adequately on the basis of the worst-case power consumption. The power 

supplies are more efficient in the case of higher utilization levels, see Section 3.10.3. We 

calculate the total power consumption 𝑃𝑂𝑃𝑆𝑈𝑂𝑈𝑇  of the server system. Our PSU model 

considers the technical specification of the spreadsheets and the energy efficiency coefficient 

𝐸𝐸𝑃𝑆𝑈, which depends upon the supply voltage 𝛼𝑣𝑜𝑙𝑡 and the actual utilization specified by 

𝑃𝑂𝑃𝑆𝑈𝐼𝑁 , see Equation (5.50). In Europe, we define the supply voltage of the servers between 

220𝑉 and 240𝑉196. The server components require the PSU power 𝑃𝑂𝑃𝑆𝑈𝐼𝑁  to be operational, 

which can be shared among the available PSUs and is specified by the PSU redundancy197.  

  

                                                           
196

 Supply voltage: some countries operate between 100 and 127 volts, such as the USA 
197

 PSU redundancy: the customer decides if all PSUs are utilized or only one PSU is utilized and the 
remaining PSUs are idle as long as no power failure occurs 
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We do not consider any redundancy settings in the case of one PSU, which is a customer-

specific simulation parameter. We share the total power 𝑃𝑂𝑃𝑆𝑈𝐼𝑁_𝑡𝑜𝑡𝑎𝑙  in equal parts among 

the available amount of PSUs, when the PSU redundancy is set. We specify the 𝑃𝑂𝑃𝑆𝑈𝐼𝑁  of a 

single PSU and consider the remaining PSUs as idle when the PSU redundancy is not 

configured, see Equation (5.52). 

𝑃𝑂𝑃𝑆𝑈𝑂𝑈𝑇 = {
𝑃𝑂𝑃𝑆𝑈𝐼𝑁 ∗ 𝐸𝐸𝑃𝑆𝑈120𝑉(𝑃𝑂𝑃𝑆𝑈𝐼𝑁), 𝑖𝑓 𝛼𝑣𝑜𝑙𝑡 = 120 

𝑃𝑂𝑃𝑆𝑈𝐼𝑁 ∗ 𝐸𝐸𝑃𝑆𝑈220𝑉(𝑃𝑂𝑃𝑆𝑈𝐼𝑁), 𝑖𝑓 𝛼𝑣𝑜𝑙𝑡 = 220
 (5.50) 

𝑃𝑆𝑈 = {𝑃𝑆𝑈1, 𝑃𝑆𝑈2, … , 𝑃𝑆𝑈𝑝}, 𝑝 ∈ 𝑁, #𝑃𝑆𝑈 = |𝑃𝑆𝑈| = 𝑝 (5.51) 

𝑃𝑂𝑃𝑆𝑈𝐼𝑁 = 

{
 

 
𝑃𝑂𝑃𝑆𝑈𝐼𝑁_𝑡𝑜𝑡𝑎𝑙 , 𝑖𝑓 #𝑃𝑆𝑈 = 1

𝑃𝑂𝑃𝑆𝑈𝐼𝑁_𝑡𝑜𝑡𝑎𝑙

#𝑃𝑆𝑈
, 𝑖𝑓 #𝑃𝑆𝑈 > 1, 𝑃𝑆𝑈𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

𝑃𝑂𝑃𝑆𝑈𝐼𝑁
1 = 𝑃𝑂𝑃𝑆𝑈𝐼𝑁_𝑡𝑜𝑡𝑎𝑙 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.52) 

We specify the components and their behavior on the basis of the system-board categories. 

We characterize every component independently of the software, OS, and system 

architecture. Beneficially, we can use the same component definition in an embedded system 

or personal computer when we identify and specify the system architecture. Our model is 

suitable and adaptable for the blade servers, standalone servers, and embedded systems. A 

blade enclosure can consider more but specialized components that are connected in a 

cordless manner to a prewired backplane because of their smaller form factors. We adapt the 

static and dynamic characteristics of the components instead of the configuration because we 

found that not only the amount of the memory modules influences the energy efficiency, the 

synchronization mode is also a significant characteristic.  

Server System Characterization Tree 𝜽𝑪𝑺 

We characterize the components of the configuration tree 𝜃 in a hierarchical system to 

support the aspect-based calculation methods within the matrix 𝑀𝐴𝑆𝐴𝐶 , as defined in Equation 

(5.18). We define the characteristic tree, as shown in Figure 52, which is specific to each 

category and support the functional description in the logical and physical configuration layer. 

Herein, we support the characterization from the component down to the chip level to cover 

every accuracy level. Our characterization tree 𝜃𝐶𝑆 and the respective network define the 

abstract models of the components within the simulation. We identify the mutual 

interdependencies of the system in order to create the generic models to define the 

component behavior, see Equation (5.32). We specify the power, thermal, and performance 

aspects 𝐴𝑗 of each component 𝐶𝑖 as a set of utilization-based functions 𝐹𝐴𝑗𝐶𝑖
(𝑢𝑐𝑠) and use the 

hierarchical model, which provides the various categories 𝐶𝑆𝑖 and characteristics 𝐶𝐻. The 
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categories 𝐶𝑆𝑖, especially the components 𝐶𝑖
198, build the root type 𝑇𝑌0 of the tree 𝜃𝐶𝑆. We 

specify the classes 𝐶𝐿 as a technical assistance of our flexible concept, which forms the first 

subtype level. We further distinguish the classes in their category-specific characteristics 𝐶𝐻, 

at the third level of the tree. We propose a dynamic structure to store the wide range of 

categories, classes, and characteristics, which we flexibly specify and extend in the case of the 

next-generation systems. 

 
Figure 52: Category-specific classification and characterization 

The calculation method of the memory power needs different characteristics than the 

processor power or memory temperature models. In our simulation, we require the set of all 

significant characteristics of each component and their relevance of the certain aspects. We 

consider in our characteristic tree 𝜃𝐶𝑆 all basic classes and characteristics that are specific of 

any aspect. We annotate a leaf 𝐶𝐻𝑙 by a value that will be used in the utilization-based 

functions 𝐹𝐴𝑗𝐶𝑖
(𝑢𝑐𝑠)  within the matrix 𝑀𝐴𝑆𝐴𝐶 , as shown in Figure 53. We specify the 

characteristics 𝐶𝐻𝑙  of the aspect 𝐴𝑗  and component 𝐶𝑖  by the weight coefficient 𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻𝑙  to 

distinguish their particular significance in the calculation methods. We assign a higher weight 

coefficient when the characteristic has a substantial effect on the certain aspect. We 

concentrate upon the characteristics that are significant of more than one aspect and those 

whose values most affect the error rate of our calculation methods.  

                                                           
198

 Categories and components: We generalize the components into the categories, in this case, the 

category is equal to the component 𝐶𝑖. 
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Figure 53: Annotation characteristics and weight coefficients of all components 

Figure 54 shows a simplified example of the memory module, which has a frequency 

characteristic by a value of 800𝑀𝐻𝑧. We specify that the frequency is a relevant characteristic 

of the power, thermal, and performance models, whereby we separately weight each of them 

by a coefficient.  

 
Figure 54: Annotation aspects and weight coefficients of a particular characteristic 

Equations (5.53), (5.54) and (5.55) exemplarily show that the power, thermal, and 

performance models of a component 𝐶𝑖 require various characteristics, which we subdivide 

into classes 𝐶𝐿. The power consumption of a component 𝐶𝑖 is a function of the characteristics 

𝑃𝑂𝐶𝑖(𝐶𝐻1, 𝐶𝐻2, 𝐶𝐻3, 𝐶𝐻4, 𝐶𝐻7, 𝐶𝐻8, 𝐶𝐻9) concerning the related classes 𝐶𝐿1, 𝐶𝐿2, and 𝐶𝐿3 . 

We differentiate on the class-specific characteristics in our characteristic tree because some 

refer to the configuration or the technical specification, which are static settings of our 

simulation. We define the specific characteristic and classes to specify the accurate models in 

Section 5.2.2. 
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𝑃𝑂𝐶𝑖 = {

𝐶𝐿1 → 𝐶𝐻7, 𝐶𝐻8, 𝐶𝐻9
𝐶𝐿2 → 𝐶𝐻1, 𝐶𝐻2         
𝐶𝐿3 → 𝐶𝐻3, 𝐶𝐻4         

 (5.53) 

𝑇𝐻𝐶𝑖 = {
𝐶𝐿1 → 𝐶𝐻2, 𝐶𝐻3
𝐶𝐿2 → 𝐶𝐻4         

 (5.54) 

𝑃𝐸𝐶𝑖 = {
𝐶𝐿1 → 𝐶𝐻2, 𝐶𝐻3
𝐶𝐿3 → 𝐶𝐻3, 𝐶𝐻4

 (5.55) 

In the next section, we analyze the static 𝑆𝑇𝑠 and dynamic 𝐷𝑌𝑠 characteristics of the server 

system 𝑆𝑌. Our aim is to characterize the system and the corresponding components within 

our configuration tree to support the calculation methods of each aspect, as shown in 

Equation (5.56). We conclude the configuration and characterization in 𝛽 for better readability. 

[𝐸𝑋] [
𝑆𝑇𝑠

𝑀𝐴𝑆𝐶 , 𝑅𝐴𝐶 , 𝑅𝐵𝐸
 ] → [𝑃𝑂 𝑃𝐸 𝑇𝐻]

 ↑  

 
[

𝜃𝐶
𝐶𝑆𝑖, 𝐶𝑖
𝐶𝐿𝑙
𝐶𝐻𝑙

]

⏞    

↑
𝛽

 

 (5.56) 

We specify declaratively the heterogeneous aspects of all components using encapsulated 

layers to create a generic system model that is suitable for diverse academic and industrial full-

system approaches. We abstract from irrelevant features because of their little effect on 

energy efficiency, or the features that are specific to a single server system. We characterize 

the server system 𝑆𝑌  in the physical domain, which includes the system architecture, 

hardware, configuration, and relevant characteristics. We include academic results in our 

aspect-based models. According to [RRK 2008], we cover processor-dominant systems, such as 

file servers, and alternative configurations for standard server types. Furthermore, we support 

the existing measurements to get a precise model of an explicit server configuration, including 

the certain characteristics. We strictly separate the modeling and simulation characteristics.  

5.2.2 Configuration – Characterization of the Logical and Physical Layer 𝑺𝒀(𝜽) 

The physical and logical layer provides all significant data that a power, temperature, or 

performance model requires. Fully attributed data is fundamental to support the related 

calculation methods. In this section, we define the detailed models of the components within 

the configuration tree, which we characterize to calculate the respective values. We analyze 

and clearly identify the relevant characteristics at various domains that support the flexibility 

to use states, transitions, or instructions. Our concept considers diverse academic approaches 

to provide a sufficient accuracy level for each component. The component description in the 
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logical domain can represent tasks, routines, functions, programs, procedures, activities, 

operations, or interactions. In contrast, the physical domain describes functional blocks of a 

component without any interior definition. The logical and physical configuration layer defines 

electrical (power, energy, performance), mechanical (motor, rotation), or thermal (heat 

transfer) behavior. Herein, we concentrate on the flexibility and the scalability to characterize 

every aspect at each domain separately. We define the power models to be independent of 

the temperature or performance model that refers to an actual state. We cover all component 

states that form the base of our calculation methods. In contrast to [RL 2007], we define our 

component models on the basis of the utilization levels. 

In principle, we use the modeling flow of [FCM 2014] because we specify the component-

specific power consumption and the system behavior and we combine them with the 

hardware design to simulate the entire system. We specify the states of each component 𝐶𝑖 at 

the logical and physical configuration layer. We support various server system domains, such 

as a chip or component level, because we use cycle-based as well as instruction-based models 

to address the functional level. The authors of [Che 2006] create a component model on the 

basis of instructions and accesses, which we abstract on an algorithm or architectural level 

because we consider the generic workloads and avoid the instruction-based details. The 

authors in [Dre 2006] present a Gajski Y-diagram, which illustrates the logical, component, and 

system domain. For each domain the authors define the behavior, geometry, and structure. In 

the same manner, we specify differential equations of the physical domain, algorithms for the 

block definition of a subsystem, or technical specifications for our components. Secondly, we 

define the domain-specific and aspect-related models using a mix of spreadsheets, 

measurement results, and vendor-specific data. We map the component behavior models 

towards the entire system configuration.  

In addition, we abstract a component when just spreadsheets or empirical measurements 

exist, usually for next-generation systems. If a vendor provides only spreadsheet-based data, 

an over-estimation is better than an intuitive prediction, or any values [Fuj 2012]. The authors 

of [BHS 1998] propose an overall black-box concept, which abstracts all internal resources, but 

overestimate power. We do not restrict ourselves to using a black-box model only, because of 

the insufficient accuracy. Beneficially, the black-box concept enables the power estimation for 

novel components regardless of missing architectural or structural details. The authors of [Hag 

2009] propose a flexible description of the component models. In addition to the description, 

we propose an entire technology mix that combines the benefits of the black-box, gray-box, 

and white-box models to provide an adequate accuracy level. If we know the inner component 

structure and instructions, we create a precise white-box model. In contrast, we emulate a 

black-box component, as a functional block, when the internal behavior is unknown. [GFN et 

al. 2006] state “we have to,…, decide for each (sub) component whether it should be regarded 

as a ‘black box’ or as a complex component.” The authors decide according to the significant 
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contribution to the total power consumption and the corresponding component complexity. 

Our approach is potentially more precise in comparison to [Hag 2009]. Furthermore, we reuse 

the mixture of the algorithmic and architectural parameters, as shown in [JLS et al. 2003, LJS et 

al. 2004], whereas the algorithmic parameters rely upon the software execution but the 

architectural parameters are independent of the software. We consider the architecture to be 

within the configuration layer. Figure 55 shows our behavioral component models that include 

the aspects-based models, such as performance, power, and thermal. We create each model 

regarding the available inputs 𝐼𝑁 and the certain parameters 𝑃𝐴 of each component. The 

output 𝑂𝑈𝑇 of each model can either be a function of the inputs and parameters, a function of 

the corresponding component states199, or an internally specified function 𝐹, as shown in 

Equation (5.61). A set of scalable inputs and parameters help to create a suitable aspect-

related method, either with instructions on the functional-level, or abstracted behavior as a 

black-box model.  

𝐼𝑁 = {𝐼𝑁1, 𝐼𝑁2, … , 𝐼𝑁𝑙} (5.57) 

𝑃𝐴 = {𝑃𝐴1, 𝑃𝐴2, … , 𝑃𝐴𝑙} (5.58) 

𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑘} (5.59) 

𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑘} (5.60) 

𝑂𝑈𝑇 = {

𝑓(𝐼𝑁, 𝑃𝐴)

𝑓(𝑠, 𝐿𝑈𝑇) 

𝑓(𝐼𝑁, 𝐹)   

 (5.61) 

 
Figure 55: Logical and physical configuration layer, adapted from the original in [Hag 2009] 

                                                           
199

 States: define the value in a lookup table (LUT) 
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For a logical and physical definition of each component, we eliminate insignificant parameters 

and reduce the output uncertainty. We concentrate upon the input, which generates and 

correlates most of the output variables. In contrast, to the parameter sensitivity analysis [Ham 

1994, LB 2005], we define the component model and its dependent parameters without 

considering a probability density function to each input parameter. We analyze diverse 

spreadsheets, measure components with changed settings, and use benchmarks to find the 

relevant parameters, and their consequences to the output. We assume multi-parameter 

impact when we cannot clearly identify the relation of a single parameter to a certain aspect.  

We analyze a component on the basis of a software trace and we monitor the synthetic 

benchmark, which correlates to an explicit component state. We create a linear regression 

model, as done in [BC 2010, MAC et al. 2011], considering the parameters and analyze the 

accuracy. Another approach in [Riv 2008, RRK 2008] analyzes the activities on a cycle-by-cycle 

basis executing a particular workload. Both approaches are improper when we consider next-

generation systems. 

We define an input matrix of the significant parameters of each component and separately 

configure their relevance. We extrapolate results for next-generation server systems on the 

basis of our findings of current servers used today. We consider technology trends such as 

shrinking the die200 type (size) or increasing the power density201. As a consequence of the 

exponential power increase at each frequency step, the vendor shrinks the logic on a single 

die. The performance increases, but implies growing temperatures, and a higher cooling effort 

in comparison to predecessor generations.  

We present the characteristics to calculate the diverse component aspects and define the 

component behavior dependent on the technical specification. We exemplarily present the 

findings of our processor and memory analysis. In general, we study all characteristic 

combinations of each component separately to identify their relevance, which we define as 

weight coefficients. We specify the relevant characteristic of our configuration tree. 

We determine the category-based and aspect-based characterization of all stages202 within the 

product life cycle (PLC), which is a challenge for our generic approach. In the early design 

phase, we have less data of the components, which usually are available by means of a paper 

base or a prototype. The vendor cannot ensure compliance unless the production ramp-up 

starts with a pilot release. In this case, we gain data by extrapolation and interpolation of the 

spreadsheets and try to compensate the data inaccuracy through measurement results based 

                                                           
200

 Die: dice, physical chip separated from a wafer, small area (array) of semiconductor material, creates 
the integrated circuit 
201

 Power density: growing amount of transistors in a chip 
202

 PLC stages: market introduction, growth, maturity, saturation, and decline 
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upon previous generations. The amount of the component data203 and their accuracy increases 

over the entire life cycle, which is separately evaluated and validated. Our major challenge is 

to sufficiently generate models on the basis of the available data on various system domains 

for the different aspects, see Section 3.3.  

Category-based and Aspect-based Characterization 

We present the characteristics to calculate the diverse component aspects 𝐴𝑗. We define the 

component behavior dependent on the category, their structure, or technical specification. A 

category-based characterization aims at supporting an independent and detailed description 

of the component behavior. We can reuse explicit benchmark results, which we observe from 

the academic approaches for a specific component under certain conditions. We consider 

studies of isolated components and develop a generic model that covers the individual 

characteristics. We combine the heterogeneous benchmark results to examine various 

hardware configurations and finally the entire system behavior. In this section, we exemplarily 

present our observations of a few memory modules and processors that result from our 

adjusted version of the parameter sensitivity analysis. We define the component 

characteristics and their relevance for each aspect 𝐴𝑗.  

We empirically analyze existing spreadsheet-based data and measurements, which are helpful 

to determine the characteristics and find their weight coefficients, see Appendix A3d and A3f. 

We analyze single characteristics, such as the vendor, which can be a cause for variations in 

the power consumption of an equally described component. We define the weight 

coefficients, especially for these findings. We cannot examine all characteristics separately, 

because a couple of characteristics depend upon each other. In this case, we define a system 

of equations to consider their dependencies.  

Memory Power Characterization 

At first, we describe the relevant characteristics of the memory modules to develop an 

accurate power model. Herein, we analyze the memory spreadsheets to define the significant 

characteristics. The memory vendor Micron [Mic 2007] distinguishes the entire power of a 

𝐷𝐷𝑅3-module into the total background power 𝑃𝑂𝑏𝑎𝑐𝑘, active power 𝑃𝑂𝑎𝑐𝑡, and operating 

power 𝑃𝑂𝑜𝑝, see Equation (5.62).  

𝑃𝑂𝑚𝑒𝑚 = 𝑃𝑂𝑏𝑎𝑐𝑘 + 𝑃𝑂𝑎𝑐𝑡 + 𝑃𝑂𝑜𝑝 (5.62) 

  

                                                           
203

 Component data: spreadsheets (technical specification) or measurements 
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The background power is the lowest power state and always occurs204  during normal 

operations. The vendor specifies the background power by the percentage of the time all 

banks are precharged, the percentage of the bank precharge time, and the percentage of the 

active time. The active power includes the time to select a bank or a row address for storing 

the data in the memory array. The corresponding command requires a number of clock cycles 

to activate a cell within the array that can be written or read. The operating power defines the 

power for each operation, which the vendor distinguishes into the read, write, data line205, and 

termination operation. We cannot specify the memory power when we do not have any 

knowledge about the explicit memory operations (read-to-write ratio) or the entire workload. 

The clock cycles and timings depend upon the memory generation. We cannot predict these 

comprehensive details of next-generation memory modules.  

In the second step, we check the commercial tools for the memory variations and their 

customer-specific characteristics, which we analyze in our third phase that includes the 

vendor-specific measurements. We present the results for a group of registered206 memory 

modules provided by a certain vendor 𝐴. The registered or unbuffered characteristics are 

known as synchronization modes, which influence the controller access and memory 

performance. The registered modules include an extra register between the memory 

controller and the chips on the module. An unbuffered207 memory module enables the direct 

access on each chip individually and in parallel, which always consumes less power than a 

registered module with the same technical specification, see Appendix A3d. Our internal 

results show that the power consumption of two modules with an equivalent technical 

specification208 differs up to ten percent. We also concentrate on the vendor 𝐴-based memory 

modules209, which in general consume less power in comparison to vendor 𝐵  memory 

modules, as shown in Appendix A3d and analyzed in [RLG et al. 2008] of the 𝐷𝐷𝑅2 − 𝑆𝐷𝑅𝐴𝑀 

generation. We analyze the memory frequencies of a wide range of modules. The frequency210 

changes from 𝑓𝑘 = 533𝑀𝐻𝑧  to 𝑓𝑘+1 = 667𝑀𝐻𝑧 , which has the largest impact with 

approximately 20 percent of the power consumption. Frequencies lower than 𝑓𝑘 or higher 

than 𝑓𝑘+1 increase the power consumption less than ten percent when the frequency switches 

to a higher value.  
                                                           
204

 Background power: typically occurs when all banks are precharged 
205

 Data line: DQ lines, data width, input/output pins (rank linking) 
206

 Registered (buffered) module: synchronize the timings between the address and control lines, see 
Appendix A3d 

207
 Unbuffered (regular or unregistered) module: has diverse input lines on the same module with 
various loadings 

208
 Equivalent technical specification: memory module DDR3-SDRAM 1GB 1R A, vendor 𝐵, (registered vs. 
unbuffered) 

209
 Memory vendors: common server memory module vendors are Micron, Hynix, Netlist, Qimonda, and 
Samsung 

210
 Memory frequency [MHz]: in the interval [400,533,667,800,933,1066], also defined as equivalent 
transfer rate (speed-bin, throughput) in the interval [800,1066,1333,1600,1866,2133] 
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The related die types are relevant characteristics that specify the component revision 

(technology) denoted by a letter in the interval [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐽, 𝐿,𝑀,𝑁]. A die type 𝑑𝑘 

that is closer to the interval’s beginning, consumes more power than a die type 𝑑𝑘+𝑙  at the end 

of the interval. An actual component revision of the memory module is usually more energy-

efficient in comparison to an older date of manufacture. The fabrication size211 results from the 

die type, which we cannot consider separately. Furthermore, the die type is the significant 

characteristic when we have both the capacity and rank212 linking213 (e.g., 𝑥4, 𝑥8, 𝑥16) 

technology. Herein, we found a decrease of approximately 50 up to 60 percent, whereby we 

neglect the frequency. When we double the memory density [𝐺𝐵] and ranks [𝑅] at the same 

time, the power increases approximately ten percent from 1𝐺𝐵, 1𝑅 to 2𝐺𝐵, 2𝑅 and nearly 20 

percent from 2𝐺𝐵, 2𝑅 to 4𝐺𝐵, 4𝑅. We examine that a doubled density, but a halved rank 

linking, result in a power increase of approximately 70 percent. In this case, the frequency 

influences the power consumption by nearly two percent. We conclude that the memory 

characteristics (the capacity, rank, rank linking, and density) rely upon each other. Therefore, 

we define them as a system of linear equations, which we describe in the implementation 

section. 

The findings from the spreadsheets and measurements enable a better understanding of the 

characteristics to develop an adequate memory model. We distinguish into the technical 

specification 𝐶𝐻𝑇𝑆 and memory characteristics 𝐶𝐻𝐶𝐹𝐺, as graphically shown in Figure 48 and 

Figure 49. The technical characteristics are a result of our analysis on the commercial tools and 

our decision to cover a wide range of memory technologies. The customer pre-defines the 

memory modules on their generation and capacity. Additionally, we divide the characteristics 

𝐶𝐻𝐶𝐹𝐺  into the static 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇  and dynamic 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌  configuration, as shown in Equations (5.63) 

and (5.64).  

𝐶𝐻 = {𝐶𝐻𝑇𝑆, 𝐶𝐻𝐶𝐹𝐺} (5.63) 

𝐶𝐻𝐶𝐹𝐺 = {𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌 } (5.64) 

We analyze the characteristics and define their relevance using the weight coefficient 𝑊𝐹. 

Thus, we develop the memory power model with the weight coefficient 𝑊𝐹𝑇𝑆 of the technical 

specification and the weight coefficient 𝑊𝐹𝐶𝐹𝐺  of the configuration. We distinguish in the 

static and dynamic power of all components within our system, as addressed in [SIC 2003, GFN 

et al. 2006]. As a result, we introduce a static and dynamic weight coefficient of the 

configuration characteristic, see Equations (5.66) and (5.68). The authors of [GFN et al. 2006] 

define various correlation functions 𝐹𝑆𝐶  between each component 𝐶1, … , 𝐶𝑖 and their power 

functions 𝐹1…𝑖 . of each component by a set of dynamic and static parameters.   

                                                           
211

 Fabrication size: nanometer technology [nm] 
212

 Ranks (banks): a group of chips at the memory module having the same chip select 
213

 Rank linking: number of chip’s output pins (bit wide, data width), see Appendix A3d 
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In contrast to [GFN et al. 2006], we do not concentrate on the component-based power 

functions. Our method includes thermal and performance definitions to cover the real 

behavior. 

𝑃𝑂𝑚𝑒𝑚 = 𝑃𝑂𝑇𝑆 + 𝑃𝑂𝐶𝐹𝐺 (5.65) 

𝑃𝑂𝑚𝑒𝑚 = 𝐶𝐻𝑇𝑆 ∗𝑊𝐹𝑇𝑆 + 𝐶𝐻𝐶𝐹𝐺 ∗𝑊𝐹𝐶𝐹𝐺  (5.66) 

𝑃𝑂𝑚𝑒𝑚 = 𝑃𝑂𝑇𝑆 + (𝑃𝑂𝐶𝐹𝐺
𝑆𝑇 + 𝑃𝑂𝐶𝐹𝐺

𝐷𝑌 ) (5.67) 

𝑃𝑂𝑚𝑒𝑚 = 𝐶𝐻𝑇𝑆 ∗𝑊𝐹𝑇𝑆 + (𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 ∗𝑊𝐹𝐶𝐹𝐺

𝑆𝑇 + 𝐶𝐻𝐶𝐹𝐺
𝐷𝑌 ∗ 𝑊𝐹𝐶𝐹𝐺

𝐷𝑌 ) (5.68) 

According to [TMW 1994, SIC 2003, AR 2016], the static power forms the basic power of an 

inactive component. The authors of [Bel 2001] address the leakage power as a static 

characteristic, whereby the leakage power relies upon the capacitor’s size.  

𝑃𝑂𝐶𝐹𝐺
𝑆𝑇 = 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑉𝐷𝐷 ∗ 𝐼𝑙𝑒𝑎𝑘 (5.69) 

In the next sections, we briefly describe academic memory power models 214  or their 

corresponding characteristics. We specify the dynamic power by the states in various 

abstraction levels, as shown in [BM 1995, BHS 1998, YVK et al. 2000, BJ 2003, TRJ 2005, Han 

2007, HJZ et al. 2008], but neglect the transition 𝑡𝑘𝑙, which switches a state 𝑠𝑘 to another state 

𝑠𝑙, because the transition time is much smaller than the time within a state. The consumed 

power within a microsecond or millisecond is negligible in comparison to the power within a 

state on second base. We assume the transition power as offsets.  

𝑃𝑂𝐶𝐹𝐺
𝐷𝑌 = 𝑃𝑠𝑡𝑎𝑡𝑒𝑠 + 𝑃𝑜𝑓𝑓𝑠𝑒𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠  (5.70) 

The authors in [IM 2003, LEU et al. 2010, HCE et al. 2011] address the memory access-rates 

either for read or write accesses to estimate the memory power. We do not exactly know the 

read and write accesses of every workload. We abstract the accesses into the utilization level 

and map them to a probability of read, and write accesses. We correlate the various states to 

the switching frequencies or instructions using the utilization levels and read-to-write ratio as a 

software-based setting. We group and abstract the explicit memory accesses to reduce 

complexity. Furthermore, we define a read-to-write ratio to compensate concrete accesses, 

whereas we differentiate into full write, read, or mixed operations to cover various memory 

workloads. We toggle between the operations, which will be more precise in the case of 

memory-intensive utilization levels. We define the dynamic characteristics, as shown in 

Equation (5.71). 

𝐶𝐻𝐶𝐹𝐺
𝐷𝑌 = {𝑣𝑜𝑙𝑡𝑎𝑔𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙, 𝑟𝑒𝑎𝑑 − 𝑡𝑜 − 𝑤𝑟𝑖𝑡𝑒 𝑟𝑎𝑡𝑖𝑜} (5.71) 
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 Academic memory power models: see Section 3.4 
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The work in [GKG 2012] additionally considers diverse memory patterns, which we neglect. A 

memory operation requires data transfer from the addressed memory cells215 to the bus, 

which builds the dynamic power consumption. Herein, Bellosa [Bel 2001] considers several 

low-power memory states. We extend our memory power model considering the low-power 

states. The memory spreadsheets define the current states, denoted by 𝐼𝐷𝐷 216  and a 

corresponding number. Similar to the die type, the current [𝑚𝐴] depends upon the state’s 

location in the interval [𝐼𝐷𝐷0, 𝐼𝐷𝐷1, 𝐼𝐷𝐷2𝑃, 𝐼𝐷𝐷2𝑁, 𝐼𝐷𝐷3𝑃, 𝐼𝐷𝐷3𝑁, 𝐼𝐷𝐷4𝑅, 𝐼𝐷𝐷4𝑊, 

𝐼𝐷𝐷5𝐵, 𝐼𝐷𝐷6, 𝐼𝐷𝐷7]. The numbers differ by the memory vendor and generation. An 𝐼𝐷𝐷 

closer to the interval’s beginning (e.g., 𝐼𝐷𝐷1) consumes less power than an 𝐼𝐷𝐷 at the end of 

the interval, such as 𝐼𝐷𝐷6. The power difference between the various memory states is 

negligible and requires a complex model, which increases the calculation time. We summarize 

that only a few memory states are significant while executing the benchmarks or working in 

the real world. Therefore, we group the major 𝐼𝐷𝐷 states to be considered into the idle state 

and the active state, which we further distinguish in the refresh mode or read-to-write mode. 

Another memory characteristic is the interleaving method for the dual in-line memory 

modules (DIMMs). The interleaving characteristic defines the symmetric memory usage, 

whereby the data moves between the various memories addresses. The channel interleaves 

divide the memory blocks and spread the data across all channels. The bank interleaves define 

the parallel usage of the memories. The rank interleaves enable the accesses of a memory rank 

while another is being refreshed and provide the request parallelism, which results in a better 

performance. The non-uniform memory access (NUMA) is an asymmetric memory 

configuration, which is configurable when we disable the interleaving. The work in [BS 1976, 

ZZX 2000] shows that the interleaving method influences the system’s performance. [Tol 2009] 

argues, “Interleaved memory systems map contiguous cache lines to multiple devices, 

breaking the one to one relationship between devices and physical address space used in our 

earlier implementation. Consider the earlier example memory system composed of eight 

devices each with 1Gigabyte capacity under interleaving. Even though the physical devices 

have the same capacity, the mapping of devices into the physical address space is different. 

Whereas a 1Gigabyte device is mapped to a specific 1Gbyte region within the physical address 

space in a sequentially mapped system, two or more different memory devices may be 

mapped to the same 1Gbyte region in an interleaved system”. The average execution time 

varies because of the cache line interleaving, the page interleaving, or other methods. We 

assume the interleaving methods as dynamic characteristics. 

The authors of [KCB et al. 2013] state that capacitance, frequency, and data width are 

significant characteristics for power consumption of the dynamic random-access memory 

(DRAM). Thus, we include the capacitance and data width as a static configuration. The work in 
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 Memory cells: capacitors that store data 
216

 IDD: drain current of a CMOS circuit, notation: a letter after the number specifies a sub-state 
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[Bel 2001] presents the memory size (capacity) as a static parameter for the power 

consumption. The authors of [ZX 2012] present that the leakage power of DRAMs 

exponentially increases by the memory capacity. The most relevant characteristic in [KGS 

2008] is the total system memory capacity. The authors present a linear relation between the 

increasing memory size, such as the amount of DIMMs, and their related energy efficiency. We 

consider the amount of memory modules and their respective capacity in our configuration 

tree. We reuse the findings in [KGS 2008] to define the weight coefficients of the memory 

capacity. In conclusion, in our memory power model we integrate the academic 

characteristics, summarized in Table 26 and Table 27, which are based upon spreadsheets and 

measurements. 

Table 26: Memory characteristics (𝑰) 
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Static characteristics        
Capacitors / capacitance 
capacity (size) 

y  y   y y 

Quantity (#)       y 
Vendor       y 
Generation       y 
Family       y 
Series       y 
Density       y 
Die 
(component revision) 

      y 

Fabrication size (nm)       y 
Synchronization mode       y 
Module ranks, rank linking 
(data width) 

  y    y 

Timings       y 
Resistance       y 
Interleaving       y 
Refresh       y 

Considered (y), not considered or unknown (no entry) 
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Table 27: Memory characteristics (𝑰𝑰) 

Memory 
characteristics [B

el
 2

0
0

1
] 

[H
C

E 
et

 a
l.

 2
0

1
1

] 

[K
C

B
 e

t 
al

. 2
0

1
3

] 

[L
EU

 e
t 

al
. 2

0
1

0
] 

[I
M

 2
0

0
3

] 

[Z
X

 2
0

1
2

] 

O
u

r 
co

n
ce

p
t 

Dynamic characteristics        
Frequency   y    y 
Voltage       y 
Accesses / instructions / 
operands 

 y  y y   

Error correction       y 
Considered (y), not considered or unknown (no entry) 

Processor Power Characterization 

We analyze the relevant processor characteristics. In the early design phase, the processor 

vendor specifies a novel family and series with respect to the thermal design power (TDP) 

within their spreadsheets. The vendor restricts the details of the processor that is accessible to 

the public. Our challenge is to estimate the processor power consumption on the basis of the 

rudimentary technical specification, especially for next-generation systems. We plan the entire 

system and the size of the power supply unit (PSU) in the first product life cycle stage. One 

problem is that we cannot specify a power curve when we only have the largest power 

consumption on the basis of the thermal design power. We need further data regarding the 

processor power consumption, e.g., under ideal conditions for every intermediate utilization 

level. Usually, the vendor roughly defines the power consumption by idle, average, and full 

utilization levels for business and collaborative partners. For our study, we did receive the 

internal spreadsheets of our processor family considering the power consumption at certain 

utilization levels, based upon a cooperation with Fujitsu Technology Solutions GmbH217.  

We analyze the spreadsheets of the E5-2600 product family that specifies the maximal 

frequency 𝑓𝑚𝑎𝑥218; but the technical specification does not include the amount of p-states219, 

which helps to identify the idle or average frequencies. The E5-2600 product family always has 

a minimal frequency of 𝑓𝑚𝑖𝑛 = 1.20𝐺𝐻𝑧 , but we do not have any knowledge of the 

corresponding p-state to estimate the power on the basis of these data. We found that the 

frequencies change in equidistant steps of ∆𝑓 = 0.1𝐺𝐻𝑧, which is specific to the x86-

                                                           
217

 Fujitsu Technology Solutions GmbH: http://www.fujitsu.com/fts/ 
218

 Maximal frequency: at the lowest p-state, in general 𝑃1, but with turbo mode 𝑃0 
219

 Amount of p-states: unknown for novel components in the early design phase, otherwise readable by 
the OS or special processor tools which support ACPI  
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architecture. Thus, we calculate the amount of p-states 𝑘  to define the manageable 

frequencies for the power curve using the quotient of the frequency range 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 and 

the step size ∆𝑓, as shown in Equation (5.72). In Appendix A3f, the processor 𝐶1 has a maximal 

frequency of 𝑓𝑚𝑎𝑥 = 3.0𝐺𝐻𝑧 and consequently 18 p-states, for instance. We formally define 

the possible frequency interval in Equation (5.73) with 𝑘 ∈ 𝑁0. The number of p-states defines 

the power resolution of each utilization level. 

𝑘 =
𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛

∆𝑓
 (5.72) 

𝑓 = [𝑓𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥 − 1 ∗ ∆𝑓, 𝑓𝑚𝑎𝑥 − 2 ∗ ∆𝑓,… , 𝑓𝑚𝑎𝑥 − (𝑘 − 1) ∗ ∆𝑓, 𝑓𝑚𝑖𝑛] (5.73) 

We require the manageable frequency interval and the adequate amount of p-states in our 

concept to estimate the power range, especially when we vary the processors and their 

characteristics. The definition of the frequency interval improves our matching process 

between the utilization levels and the related frequencies when we map the workload to the 

processor. We distinguish in our concept whether we fully utilize one processor or distribute 

the workload across multiple processors. Our approach runs into problems when two 

processors have the same maximal frequency but different p-states, and vice versa. A reason is 

that the size of the equidistant steps ∆𝑓 depends upon the processor generation, family, or 

series. Another challenge is that the voltage-frequency pair is not unique. Two fully utilized 

processors may have different voltage-frequency pairs, as shown in Equation (5.74). Each 

processor has a flexible amount of p-states, and the architecture limits the maximal frequency 

𝑓𝑚𝑎𝑥. Our model covers varying p-states instead of directly calculating the power, assuming 

the concrete voltages or frequencies. We consider the relations between the processor 

frequencies and their particular p-states at a certain utilization level to be independent of the 

explicit voltage-frequency pairs. 

𝐶𝑃𝑈𝑘(100%) → (2.0V, 2.5GHz) 𝐶𝑃𝑈𝑘+1(100%) → (1.2V, 2.0GHz) (5.74) 

We specify the processor power on the basis of the rudimentary data, such as the frequency 

interval, under the condition that the vendor does not define the minimal power. The thermal 

design power (TDP) indicates the upper power limit and corresponds to the maximal frequency 

𝑓𝑚𝑎𝑥. Our next challenge is to estimate and interpolate the dynamic processor power upon the 

basis of the frequencies or the utilization levels, respectively. In the early design stage, we 

collect and aggregate the data considering previous studies to transfer the gained experiences 

into our model. Alternatively, we measure the power of an available predecessor generation 

or a processor who is almost identical and transfer the results to our present processor. In 

both cases, we analyze the power consumption to specify the slope ∆𝑃𝑂𝑝𝑟𝑜𝑐 of the power 

curve, which linearly defines the power ascent or descent, see Appendix A3f. We assume that 

the processor power curve of the most recent generation, which we select as a basis, behaves 

approximately proportional to our next-generation processor. We define the power correction 
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𝑃𝐶𝑃𝑘  of the present processor as a product of the slope ∆𝑃𝑂𝑝𝑟𝑜𝑐 and the related p-state 𝑘, see 

Equation (5.75). The processor power consumption is a nearly linear function, which we 

specify as a manageable power interval by the subtraction of the power correction 𝑃𝐶𝑃𝑘  of 

each p-state beginning from the maximal thermal design power and ending with the minimal 

power at the highest p-state220 , as shown in Equation (5.76).  

𝑃𝐶𝑃𝑘 = 𝑘 ∗ ∆𝑃𝑂𝑝𝑟𝑜𝑐 (5.75) 

𝑃𝑂𝑝𝑟𝑜𝑐 = [𝑇𝐷𝑃, 𝑇𝐷𝑃 − 𝑃𝐶𝑃2 , 𝑇𝐷𝑃 − 𝑃𝐶𝑃3 , … , 𝑇𝐷𝑃 − 𝑃𝐶𝑃𝑘] (5.76) 

We define the dynamic fraction within the power interval through the power corrections of all 

p-states [𝑃𝐶𝑃2 , 𝑃𝐶𝑃𝑘]. Finally, we can estimate the processor power consumption on the basis 

of rudimentary vendor-based data (spreadsheet) by weighting the power of a similar 

processor, or by extrapolating the values of the predecessor generation in the early design 

stage for the next-generation processors.  

In a second step, we prove our estimation-based approach using the assigned spreadsheet 

data of the processors, which are already introduced into the market221. We check the 

accuracy, especially the applicability of our approach, and exemplarily analyze a subset of the 

Intel Xeon processors222. We estimate the power consumption of the processors, whereas we 

assume that the processors do not exist. We compare the updated technical specification and 

check which characteristics have been adjusted. We analyze the power consumptions and the 

impacts of the characteristic variations in both life cycle stages. We found that our linear 

regression approach overestimates the slope of the power curve by nearly 25 percent in 

relative upward deviation in comparison to the firmly defined values in the vendor’s 

spreadsheets of the released processors. Thus, we overestimate the entire power 

consumption of the processors in the early design phase. If we neglect the outliers223, our 

upward deviation decreases to approximately nine percent. As all these outliers have more 

than 17 p-states, our method seems to be inaccurate for processors with more than 17 p-

states. We adjust our calculation methods concerning the non-linear power consumption. At 

the same time, we analyze our under-estimation of the power, which is negligible because of a 

relative deviation of nearly three percent. An over-estimation is more critical in comparison to 

the slight under-estimation when we size the power supply, which results in an extra power 

overhead, or the inefficiency of the PSU, as described in Section 4.4.  

  

                                                           
220

 Highest p-state: lowest frequency 
221

 Market introduction: first product life cycle phase, release of a server system 
222

 Intel Xeon processors: E5-2600 product family (𝐶1 − 𝐶17), see Appendix A3f 
223

 Outliers: processors (𝐶1, 𝐶13, 𝐶14, 𝐶15), a subset of the observed processors (𝐶1 − 𝐶17) 
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In a third step, we validate our approach concerning the commercial server system calculators, 

see Section 3.10.3, and concentrate upon the processor power calculation to check the 

consistency. We study the entire power of the systems because the industrial tools do not 

provide the processor power as a separate value. We analyze the results by varying the 

processor characteristics or hardware configuration, such as the generation, family, and series. 

Our estimation method for a wide range of processor families is almost identical with the 

industrial tools, which rely upon the spreadsheets. We exemplarily check the E5-2600 

processor family, wherein we overestimate the processor power of approximately seven 

percent in relative upward deviation. We assume that the commercial calculators consider a 

similar linear regression method to estimate the processor power consumption.  

In a next step, we observe the measurements of the existing processors in an actual 

environment to check whether the spreadsheet data correspond to the reality and to keep the 

error rate of the over-estimation as low as possible. We determine a decreasing power gap 

between our process of estimating and measuring. Figure 56 and Figure 57 exemplarily show 

the estimated and measured power curves of the processors E5-2690v2 and E5-2670v2. The 

measured power is approximately 30 percent of the spreadsheet-based power at the idle 

utilization level. At a utilization level of 50 percent, the measured power is nearly 60 percent of 

our estimated value. Finally, the power gap is less than ten percent at the full utilization level. 

Our challenge is to improve the estimation process, especially at lower utilization levels, so 

that we can define the power consumption in the early design phase more precisely. The lower 

utilization of the processor is significant for the memory-bounded workloads. 

 
Figure 56: Spreadsheet-based estimation vs. measurements of the processor (𝑪𝟏) 
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Figure 57: Spreadsheet-based estimation vs. measurements of the processor (𝑪𝟑) 

We found that the vendor, the commercial tools, or our spreadsheet-based estimation method 

always overestimates the processor power consumption, as shown for the product family E5-

2600 in Appendix A3f. We optimize the calculation method to close the gap between the 

spreadsheet and measurement values because we conceive a non-linear processor power 

model considering the technical specification 𝐶𝐻𝑇𝑆 and the dynamic characteristics 𝐶𝐻𝐶𝐹𝐺
𝐷𝑌  to 

be aware of the various utilization levels. We specify the static and dynamic characteristics and 

refine our spreadsheet-based approach by including our findings of the non-linear behavior of 

lower utilization levels.  

In the next phase of our analysis, we determine the characteristics of diverse processor 

generations that are available at all product life cycle stages. We compare the similar 

processor generations and their power consumptions, which helps to identify the critical 

characteristics. We restrict ourselves to the specific x86-based Intel processor characterization 

because today’s server processors are more energy-efficient and performance-optimized in 

comparison to the AMD processors, which are uncommon in present server systems. We 

exemplarily describe the relevant characteristics of the third Intel Xeon generation and 

architecture, code name Ivy Bridge, which involves the E5-2600v2 processor family with a 

fabrication size of 22nm. The quick path interconnect (QPI), a static characteristic, is a point-to-

point interconnect between one (or more) processors and the memory controller. The 

processor power consumption increases by the QPI transfer rate, especially at the idle 

utilization level, see Appendix A3f. We analyze the processors with identical cores/threads, 

cache sizes, thermal design powers (TDPs), and transfer rates, see Appendix A3f. The power 
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consumption between two processors is proportional when the frequency increases and the L2 

/ L3 cache size decreases at the same time. If the utilization levels are higher than 50 percent, 

the TDP and frequency influence increases. The power consumption exponentially increases 

when the utilization levels are larger than 80 percent and the frequency increases, as stated in 

[SIC 2003], see Equation (3.22). The TDP and frequency are negligible at lower utilization 

levels. If we compare processors with a 15-watt TDP difference, the power curves are 

approximately identical, and we observe the 15-watt gap between the various power curves 

when the utilization levels are larger than 80 percent. We estimate the power consumption on 

a linear basis for the processor, which has a few p-states. We adjust our calculation method for 

the processors with a higher amount of p-states towards a non-linear power curve. We 

empirically analyze the characteristics of the Intel Xeon E5-2600v2 processor to define the 

effect on the slope ∆𝑃𝑂𝑝𝑟𝑜𝑐 and introduce the weight coefficients 𝑊𝐹𝑃𝑘
𝑝𝑟𝑜𝑐

 of our non-linear 

power correction 𝑃𝐶𝑃𝑘  regarding the relevant characteristics, such as the number of p-states 

𝑘, see Equation (5.77). We define the technical specification 𝐶𝐻𝑇𝑆 to consider the processor-

specific characteristics regarding their generation or family. 

𝑃𝐶𝑃𝑘 = 𝑊𝐹𝑃𝑘
𝑝𝑟𝑜𝑐

∗ 𝑘 ∗ ∆𝑃𝑂𝑝𝑟𝑜𝑐 (5.77) 

Furthermore, we found that the power curve is linear for processors with less than 15 p-states 

and non-linear for processors with more than 15 p-states, especially when the utilization level 

(𝑢𝑝𝑟𝑜𝑐) is between 20 and 80 percent. We specify a non-linear correction interval at the two 

edge regions of the power curve, firstly when the processor has a utilization level less than 20 

percent and secondly, when the processor is at a high utilization phase (𝑢𝑝𝑟𝑜𝑐 ≥ 80), see 

Equation (5.78). The boundaries are specific to the Intel Xeon E5-2600v2 generation, which we 

change in a flexible manner when we vary the processor. We separate the weight coefficients 

into 𝑊𝐹𝑃𝑘
𝑙𝑜𝑤 / 𝑊𝐹𝑃𝑘

ℎ𝑖𝑔ℎ
 and found that the slope of higher utilization levels is always larger than 

the slope at lower utilization levels 𝑊𝐹𝑃𝑘
ℎ𝑖𝑔ℎ

≫𝑊𝐹𝑃𝑘
𝑙𝑜𝑤. We consider the processors with less 

than ten p-states by a smaller weight coefficient 𝑊𝐹𝑃𝑘 , which is steady. We do not evaluate all 

possible characteristics that may enhance the power correction by 𝑊𝐹𝑃𝑘
∗  and neglect them, 

because of their insignificance. Our findings and concrete values are specific to the Intel Xeon 

E5-2600v2 processor family, which need to be adjusted whenever we consider another 

processor.  

𝑊𝐹𝑃𝑘
𝑝𝑟𝑜𝑐

=

{
 
 

 
 
𝑊𝐹𝑃𝑘 ,        𝑖𝑓 𝑘 < 10                          

𝑊𝐹𝑃𝑘
𝑙𝑜𝑤,    𝑖𝑓 𝑘 > 15, 𝑢𝑝𝑟𝑜𝑐 ≤ 20

𝑊𝐹𝑃𝑘
ℎ𝑖𝑔ℎ

, 𝑖𝑓 𝑘 > 15, 𝑢𝑝𝑟𝑜𝑐 ≥ 80

𝑊𝐹𝑃𝑘
∗ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

 (5.78) 
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The default value of the 𝑊𝐹𝑃𝑘
𝑝𝑟𝑜𝑐

 is one that does not affect the power correction when we 

cannot define specific conditions. An exception is given by the thermal design power that 

defines the worst-case power consumption at the full utilization level. We do not adjust the 

TDP value in Equation (5.76) by a power correction 𝑃𝐶𝑃𝑘. We found that the maximal power 

significantly relies upon the cache size and the processor threads. Both characteristics lead to 

the refinement of the worst-case power calculation. We specify the 𝑃𝑂𝑝𝑟𝑜𝑐(100%) by an 

additional weight coefficient 𝑃𝐶𝑃1, see Equation (5.79). 

𝑃𝑂𝑝𝑟𝑜𝑐 = [𝑇𝐷𝑃 ∗ 𝑃𝐶𝑃1 , 𝑇𝐷𝑃 − 𝑃𝐶𝑃2 , 𝑇𝐷𝑃 − 𝑃𝐶𝑃3 , … , 𝑇𝐷𝑃 − 𝑃𝐶𝑃𝑘] (5.79) 

We calculate the maximal power, in accordance to the Intel Xeon architecture by a weight 

coefficient of 0.91. We determine two special cases, wherein we change the weight 

coefficients, as shown in Equation (5.80). In the case that the processor has a) the level two 

cache size (𝐿2) bigger than 12𝑥256𝐾𝐵, b) a level three cache size (𝐿3) larger than 30𝑀𝐵, and 

c) more than 24 threads, we specify the power corrections by an increase of approximately 

four percent. In the second case, when a) the L2 cache size is smaller than 4𝑥256𝐾𝐵, b) the L3 

cache size is smaller than 15𝑀𝐵, and c) not turbo mode is available, we nearly halve the 

worst-case power by a weight coefficient of 0.54.  

𝑃𝐶𝑃1 = {
1.04, 𝑖𝑓 𝐿2 𝑐𝑎𝑐ℎ𝑒 ≥ 12𝑥256𝐾𝐵, 𝐿3 𝑐𝑎𝑐ℎ𝑒 ≥ 30𝑀𝐵, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ≥ 24
0.54, 𝑖𝑓 𝐿2 𝑐𝑎𝑐ℎ𝑒 ≤   4𝑥256𝐾𝐵, 𝐿3 𝑐𝑎𝑐ℎ𝑒 ≤ 15𝑀𝐵, 𝑛𝑜 𝑡𝑢𝑟𝑏𝑜         
0.91, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                               

 (5.80) 

We do not concentrate only on the dynamic characteristics, because the static characteristics, 

such as the cache size, are significant characteristics when we model a next-generation 

component based on the basis of a predecessor. In common, we propose a worst-case power 

estimation, including the power correction 𝑃𝐶𝑃1, which uses a set of weight coefficients 

𝑊𝐹 = {𝑊𝐹𝑃1
1 ,𝑊𝐹𝑃1

2 , … ,𝑊𝐹𝑃1
𝑙 } at the lowest p-state 𝑃1  under the set of conditions 𝐶𝑁 =

{𝐶𝑁1, 𝐶𝑁2, … , 𝐶𝑁𝑙}, whereby the conditions are a subset of any possible characteristics, see 

Equation (5.81).  

𝑃𝐶𝑃1 =

{
 
 

 
 

𝑊𝐹𝑃1
1 , 𝑖𝑓 𝐶𝑁1

𝑊𝐹𝑃1
2 , 𝑖𝑓 𝐶𝑁2
⋮

𝑊𝐹𝑃1
𝑙 ,  𝑖𝑓 𝐶𝑁𝑙

𝑊𝐹𝑃1
∗ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.81) 

A shrunk die includes more registers on the same space; as a result, a core consumes more 

power than its predecessor generation, but provides more performance. The architecture 

limits the maximal power consumption because the cache size, core, and uncore area on the 
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die differs224. We distinguish between the processor family and generation225, which both 

specify the hardware configuration, but the family defines the server type, construction, the 

maximal amount of components, or the mounted motherboard. The generation limits the 

system-board components and the related series. We consider the characteristics presented in 

the previous sections as being typical of a wide range of the processors on the architectural 

level, whereby we need to adjust the weight coefficients for each of them. In general, we 

define a set of weight coefficients 𝑊𝐹 = {𝑊𝐹1,𝑊𝐹2, … ,𝑊𝐹𝑙}  of each condition 𝐶𝑁 =

{𝐶𝑁1, 𝐶𝑁2, … , 𝐶𝑁𝑙}, whereby the conditions are a subset of possible characteristics.  

𝑊𝐹𝑃𝑘
𝑝𝑟𝑜𝑐

=

{
 
 

 
 

𝑊𝐹1, 𝑖𝑓 𝐶𝑁1
𝑊𝐹2, 𝑖𝑓 𝐶𝑁2

⋮
𝑊𝐹𝑙 , 𝑖𝑓 𝐶𝑁𝑙

𝑊𝐹𝑃𝑘
∗ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.82) 

In the next sections, we compare our approach to the academic processor power models and 

their corresponding characteristics, which address adequate methods of the specific server 

systems. The approaches concentrate upon a certain aspect of a particular processor and 

primarily characterize the processor power considering the dynamic characteristics. The power 

model 𝑃𝑝𝑟𝑜𝑐 in [KJC et al. 2014] distinguishes into the core-based power, static power, and 

cache power, see Equation (5.83). [Bel 2001] states that the static processor power depends 

upon the time, voltage, and semiconductor characteristics.  

𝑃𝑝𝑟𝑜𝑐 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∗ 𝑐𝑜𝑟𝑒𝑠 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑐𝑎𝑐ℎ𝑒 (5.83) 

According to [RRK 2008], the core-based power consumption is not a linear function of the 

utilization levels, because of the different number of active cores and shared resources. [BGM 

et al. 2010] and [BM 2012] present a core-based power model which sums the power 

consumptions of each core 𝑘, as shown in Equation (3.31).  

𝑃𝑙 = ∑ 𝑃𝑐𝑜𝑟𝑒(𝑘)
𝑙
𝑘=1  (5.84) 

We consider the number of active and available cores of each processor family and define the 

corresponding weight coefficients. Today’s processors cannot change the core’s frequency 

independent from each other, because the physical cores limit the base frequency. [GFN et al. 

2006] presents that each component has diverse static and dynamic characteristics, whereby 

the voltage and frequency are the major characteristics. Bellosa [Bel 2001] shows that the 

dynamic power correlates to “the switching frequency of the transistors and size of the 

capacitors.” The authors of [SIC 2003, JGM 2003, KJC et al. 2014] state that the processor 

                                                           
224

 Die differences: Haswell processor http://ark.intel.com/products/codename/42174/Haswell#@All,  
Nehalem processor http://ark.intel.com/products/codename/64237/Nehalem-EP#@All 
225

 Processor: e.g., architecture (Intel Core i3), generation (Ivy Bridge), family (i3-3xxx / i3-6xxx) 
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frequency and capacitance are relevant characteristics, which we also consider in our concept. 

We execute two threads on a logical core of the same processor, which both fully utilize the 

core. The switching activities of the various functional units result in different power 

consumptions while executing diverse operations. We neglect this accuracy level to be 

independent from the architecture and the explicit workload. In [BGM et al. 2010], the authors 

define the core power by the access rates that correspond to the known event metrics. The 

authors of [Han 2007] state “…, a hybrid model of event counters and measured power may 

provide information to more fully describe the relationship between p-state, workload, and 

power consumption.” The authors of [TMW et al. 1996] analyze a certain processor, including 

its internal behavior, and design the micro-architectural structure. The authors consider 

hardware-specific performance counters, as analyzed in [Bel 2000, SBM 2009, RAK et al. 2013, 

LSQ et al. 2014], which are unsuitable for novel hardware architectures because the 

performance counter differs between the generations. Another problem in the early design 

stage is that the hardware is not available. We avoid concrete hardware-specific event metrics 

in order to conceive a generic model and use state-based models. We abstract the micro-

architectural structure to be independent of the exact processor. We cannot use the 

instruction-based approach proposed in [TMW et al. 1996], because we do not have any 

knowledge about the explicit instructions of every executed workload. Furthermore, the 

processor architecture restricts the instruction types, which we adjust the certain processors. 

The instruction types and operands differ, which results in a variable amount of clock cycles. 

The power model of [LJ 2003] addresses OS routine calls considering the instructions per cycle 

(IPC) and coefficients 𝐾0, 𝐾1, see Equation (5.85). The interrupts, processes, and inter-process 

controls are hardware-specific.  

𝑃 = 𝐾1 ∗ 𝐼𝑃𝐶 + 𝐾0 (5.85) 

We cannot apply the approach of [LJ 2003], because we do not have any knowledge of the 

exact operating system and the OS routine calls of the server system while executing the 

application software. The power model in [Riv 2008] considers the relative processor 

utilization level 
𝑢𝑝𝑟𝑜𝑐

max (𝑢𝑝𝑟𝑜𝑐)
, the coefficients 𝐾0, 𝐾1, and an empirical factor 𝐹, see Equation 

(5.86), to cover the processor behavior; whereby 𝐹  depends upon the processor 

characteristics, and 𝐾0, 𝐾1 relies upon the specific workload. 

𝑃 = 𝐾0 ∓ 𝐾1 ∗ {
𝑢𝑝𝑟𝑜𝑐

max (𝑢𝑝𝑟𝑜𝑐)
}
1

∓ 𝐾1 ∗ {
𝑢𝑝𝑟𝑜𝑐

max (𝑢𝑝𝑟𝑜𝑐)
}
𝐹

 (5.86) 

In principle, we refine the concept of [Riv 2008, RRK 2008] in the manner that we categorize, 

classify, and characterize each component of the entire system that specifies the empirical 

factor, e.g., the processor generation. We define the characteristics and extend the processor 

specification to replace the empirical factor. The authors in [IM 2003, BGM et al. 2010] 

propose an architectural scaling model considering the utilization levels, whereby each 
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resource-bounded workload is weighted. In contrast, we consider the architectural scaling 

within our component models in the technical specification and configurations, which weights 

the relevant characteristics. We are aware of component-bounded workloads. The authors in 

[TDM 2011, MAC et al. 2011] consider the characteristics’ generation, family, architecture, and 

technology. Table 28 and Table 29 conclude the common academic approaches and what 

characteristics the authors consider. It should be mentioned that this table is not all 

embracing, but is concentrating on the major characteristics that are significant for the 

processor power consumption.  

Table 28: Processor characteristics (𝑰) 

Processor 
characteristics [T

M
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9
9

6
] 

[B
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l 2
0

0
1

] 

[S
IC

 2
0

0
3

] 

[J
G

M
 2

0
0

3
] 

[G
FN
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. 2

0
0

6
] 

[T
D

M
 2

0
1

1
, M

A
C

 e
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. 2

0
1

1
] 

[B
G

M
 e

t 
al

. 2
0

1
0

] 

[B
M

 2
0

1
2

] 

[K
JC

 e
t 

al
. 2

0
1

4
] 

O
u

r 
co

n
ce

p
t 

Static characteristics           
Cache / cache lines         y y 
Capacitors / capacitance  y y y       
Voltage  y   y     y 
Time  y        y 
Semiconductor technology 
(TDP) 

 y    y    y 

Quantity (#)          y 
Status          y 
Type      y    y 
Vendor          y 
Product life cycle stage          y 
Generation      y    y 
Family      y    y 
Series      y    y 
Fabrication size (nm)      y    y 
Resistance          y 
Performance features          y 

Considered (y), not considered or unknown (no entry) 
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Table 29: Processor characteristics (𝑰𝑰) 

Processor 
characteristics [T
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6
] 

[B
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] 
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] 
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3
] 
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1
] 
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G

M
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0

1
0

] 

[B
M

 2
0

1
2

] 

[K
JC

 e
t 

al
. 2

0
1

4
] 

O
u

r 
co

n
ce

p
t 

Dynamic characteristics           
Cores / active cores 
(hyper-threading) 

      y y y y 

Frequency  y y y y     y 
Accesses / instructions / 
operands 

y      y y   

Event metrics y      y y y  
Transfer rate          y 
Thresholds          y 

Considered (y), not considered or unknown (no entry) 

We concentrate upon the processor and memory characterization to develop an accurate 

power model. We neglect the I/O-based component characterization because we primarily 

specify the midrange server systems that execute processor-bounded and memory-bounded 

workloads.  

Fan Power Characterization Including the Thermal Models 

Besides the power consumption, the thermal development is a critical aspect of the energy 

efficiency. The components warm up and produce heat, which the thermal control mechanism 

cools down to avoid damage and ensure the working conditions. In the next sections, we 

describe the thermal models of the processor and memory, which we require to define the fan 

power and performance loss. 

The package226 heat dissipation, called the thermal resistance227, is denoted by the theta 𝜃𝑟𝑒𝑠 

or psi 𝜓 in the units of [
°𝐶

𝑊
], which “…, indicates the steady-state temperature rise of the die 

junction above a given reference for each watt of power (heat) dissipated at the die surface. 

[Ben 2002]” The thermal resistance excludes the geometric effects [SXC et al. 2000], but differs 

                                                           
226

 Package: semiconductor device 
227

 Thermal resistance: energy-to-temperature translation coefficient 
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into the thermal conductivity and electrical resistivity, including the material properties, as 

considered in the JEDEC-standard228. In the early design stages, the vendor rudimentary 

specifies the thermal characteristics of the entire system or the next-generation components. 

At first, we analyze the spreadsheets to specify the adequate thermal models. The 

components dissipate power and as a result, simultaneously produce heat.  

We calculate the self-heating Δ𝑇 [°𝐶] due to the power dissipation, which is a product of the 

thermal resistance 𝜃𝑟𝑒𝑠, supply voltage 𝑉𝐶𝑁, and current 𝐼𝐶𝑁  at certain conditions 𝐶𝑁, as 

shown in Equation (5.87). In [NXP 2010], a condition of a memory module is the access on the 

serial data input/output (SDA) or occurring events.  

Δ𝑇𝑚𝑒𝑚 = 𝜃𝑟𝑒𝑠 ∗ [𝑉𝐶𝑁1 ∗ 𝐼𝐶𝑁1 + 𝑉𝐶𝑁2 ∗ 𝐼𝐶𝑁2 +⋯+𝑉𝐶𝑁𝑙 ∗ 𝐼𝐶𝑁𝑙] (5.87) 

In the case that we do not have any knowledge about the thermal resistance we define the 

thermal response on the basis of the self-heating, which is a step function response of a first-

order system (PT1)229. We specify the memory thermal response 𝑇𝐻(𝑡)𝑚𝑒𝑚
𝐷𝐸  considering an 

initial condition 𝐶𝑁0 and a time constant 𝑇𝑆. Equation (5.88) defines the temperature increase 

as an exponential function. 

𝑇𝐻(𝑡)𝑚𝑒𝑚
𝐷𝐸 = 𝐶𝑁0 ∗ (1 − 𝑒

−
𝑡

𝑇𝑆) (5.88) 

In contrast, we specify the processor thermal profile on the basis of linear relations, which we 

determine in the spreadsheets of existing processors. The vendor defines the thermal design 

power (TDP) and the corresponding processor case temperature 𝑇𝐶𝐴𝑆𝐸, which is maximal at 

the processor-specific TDP value. The minimal case temperature is a fixed operating 

temperature and specific to each processor family. The related power 𝑃𝑝𝑟𝑜𝑓𝑖𝑙𝑒_𝑚𝑖𝑛 defines the 

lower power limit, as shown in the following equations.  

(𝑃𝑂2, 𝑇𝐻2) = (𝑇𝐷𝑃,𝑚𝑎𝑥(𝑇𝐶𝐴𝑆𝐸)) (5.89) 

(𝑃𝑂1, 𝑇𝐻1) = (𝑃𝑝𝑟𝑜𝑓𝑖𝑙𝑒_𝑚𝑖𝑛,𝑚𝑖𝑛(𝑇𝐶𝐴𝑆𝐸)) (5.90) 
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 JEDEC: Joint Electron Device Engineering Council, https://www.jedec.org/ 
229

 First-order system or lag element (PT1): under certain conditions may be a second-order system 
(PT2)  
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Both critical data points define the thermal profile of a processor, which we specify as a linear 

equation, 𝑇𝐻𝑝𝑟𝑜𝑐
𝑆𝑇  including the slope 𝑚𝑇𝐻 and the offset 𝑛𝑇𝐻, as shown in Equation (5.91). The 

technical specification of an existing processor provides the values that we need to solve the 

equation. We assume that the thermal profile is always linear, as defined for a couple of 

processors, but the characteristics influence the slope or the offset. In the early design phase, 

the 𝑇𝐶𝐴𝑆𝐸 and 𝑃𝑝𝑟𝑜𝑓𝑖𝑙𝑒_𝑚𝑖𝑛 are not available and, thus, we estimate both values by assuming 

the predecessor or a similar generation.  

𝑇𝐻𝑝𝑟𝑜𝑐
𝑆𝑇 = 𝑚𝑇𝐻 ∗ 𝑃𝑂 + 𝑛𝑇𝐻 (5.91) 

𝑚𝑇𝐻 =
Δ𝑇𝐻

Δ𝑃𝑂
=
𝑇𝐻2−𝑇𝐻1

𝑃𝑂2−𝑃𝑂1
, 𝑛𝑇𝐻 = 𝑇𝐻2 −𝑚𝑇𝐻 ∗ 𝑃𝑂2 (5.92) 

In general, we characterize the temperature 𝑇𝐻𝑝𝑟𝑜𝑐
𝑆𝑇  as the power-related function, which is a 

common method of the thermal assumption for a server system within the data center [ERK 

2006]. We transform the dissipated power 𝑃𝑂𝐶𝑖[𝑊] into the temperature [°C] with the 

processor-specific weight coefficient230 𝑊𝐹𝐶𝑖
𝑇𝐻[

°𝐶

𝑊
], see Equation (5.93). In the case that our 

thermal models partly rely upon the power model, we consider the linear relation between the 

current and the ambient temperature, as done in [AR 2016]. The stationary temperature 𝑇𝐻𝐶𝑖
𝑆𝑇 

depends directly upon the ambient temperature and indirectly upon the thermal design power 

of a processor, which specifies the slope of the thermal profile. We extend the calculation by 

an offset 𝑇𝐻𝑜𝑓𝑓𝑠𝑒𝑡 to consider both influences. 

𝑇𝐻𝐶𝑖
𝑆𝑇 = 𝑃𝑂𝐶𝑖 ∗ 𝑊𝐹𝐶𝑖

𝑇𝐻 + 𝑇𝐻𝑜𝑓𝑓𝑠𝑒𝑡 (5.93) 

We define an exception of the component temperature especially in the case of the memory 

modules. The output current 𝐼𝑜𝑢𝑡  of the semiconductor devices decreases negatively 

exponentially by an increasing ambient temperature [SXC et al. 2000]. In contrast, the average 

supply current 𝐼𝐷𝐷 of the memory modules increases linearly by the ambient temperature 

[NXP 2010]. The component temperature 𝑇𝐻𝐶𝑖 behaves typically non-linear to the operating 

environment, such as the output current. [Han 2007] estimates the processor temperature by 

a linear regression considering the ambient temperature as an offset of the thermal 

specification. The authors argue that they can quickly calculate the processor temperature of 

all p-states and tolerate sensor delays. The approach does not consider the non-linear thermal 

development over the time. We define the stationary temperature as an initial condition of 

the thermal response 𝑇𝐻(𝑡) and refine the step function response of a first-order system, see 

Equation (5.94).  

𝑇𝐻(𝑡)𝐶𝑖
𝐷𝐸 = 𝐾𝐶𝑖

𝑆𝑇 ∗ (1 − 𝑒
−
𝑡

𝑇𝑆) + 𝑇𝐻𝐶𝑖
𝑆𝑇 (5.94) 
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 Weight coefficient: works, such as theta or psi, but is not defined by the vendor 
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In addition, we model the system fans to control the dynamic thermal development of the full 

system and consider the fan power, which is a static fraction at idle utilization levels, and a 

dynamic characteristic of the power when the temperature increases. We analyze the 

assembled server system fans and their characteristics. The authors of BladeSim [RL 2007], 

SimOS [RHW et al. 1995, Lan 2007], and SoftWatt [GSI et al. 2002] neglect the fan power.  

In the approaches of [HS 2007, Han 2007, HKG et al. 2007], the authors define the component 

temperature by a certain state on the basis of the functional level, which we cannot estimate 

when we consider a flexible and generic workload. The authors in [APL et al. 2008] calculate 

the die temperature by the constant idle temperature and the dynamic temperature, which 

depends upon the performance counters of the hardware-specific events and the 

corresponding number of clock cycles while executing a software application. The authors of 

[SBA et al. 2011] present a thermal model to control the airflow within the server system with 

respect to the mounted memory modules. The concept analyzes the airflow and detects the 

hotspots within the system. The authors concentrate upon the computational fluid dynamics 

simulation (CFD), whereby the relevant characteristics are the system geometry, volume, air 

pressure, and humidity. The CFD in [LZZ et al. 2007, QXY 2008] requires a highly detailed 

thermal characterization, such as the resistors and capacitance architecture, which would 

increase the complexity of our entire system model, the simulated time, and development 

effort if we would apply this approach. We abstract the concrete airflow231, but consider the 

stationary thermal development, e.g., the self-heating, and propose a simplified thermal 

model for each component development.  

Performance Models 

The performance model defines the real throughput under certain conditions. The academic 

approaches, such as [DEP et al. 2009] and [YZ 2011], execute diverse instruction types within 

benchmarks to study resource activities and get a relation between the functional units and 

their performance. We cannot predict the exact events or activities of our server system and 

therefore the instruction-based approach is not applicable. In [MKO et al. 2002], the authors 

observe specific events on the architectural level that rely upon the system family and 

generation. We do not investigate on the wide range of the performance models and their 

complexity. In general, we consider the same approach of the diverse performance models at 

various domains, which we include as a category-specific method on either the functional level 

or logical domain. We specify the relevant benchmarks and aggregate the performance metrics 

from multiple benchmarks in a database. We assume a linear relation between the utilization 

levels and the performance scores, which are maximal in the case of full utilization. The 

benchmarks provide only the largest scores232, which we analyze in order to estimate the 
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 Airflow: including volume, pressure, airflow rate, and speed 
232

 Scores: mean of performance ratios as a result of benchmarks 
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performance. We are not able to predict the explicit scores, because of our restricted 

knowledge about the exact workload or instructions. A single component 𝐶𝑖 may have several 

performance results because of the diverse benchmarks, as shown in Equation (5.95) for the 

PassMark CPU benchmark233. We consider the Mixture performance234 as a default setting in 

our simulation model and abstract the specific processor instructions. The customer can adjust 

the simulation level of detail, such as selecting the Floating Point Math, to be more precise for 

a certain application software. 

𝑃𝐸𝐶𝑃𝑈 = 𝑃𝑎𝑠𝑠𝑚𝑎𝑟𝑘 𝐶𝑃𝑈 = 

{
 
 

 
 

𝑀𝑖𝑥𝑡𝑢𝑟𝑒
𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑀𝑎𝑡ℎ

𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡 𝑀𝑎𝑡ℎ
𝑃𝑟𝑖𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟𝑠

𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 (𝑆𝑆𝐸)
…

 (5.95) 

𝑃𝐸𝐶𝑖 = {
𝑃𝑎𝑠𝑠𝑚𝑎𝑟𝑘
𝑆𝑃𝐸𝐶
𝑇𝑃𝐶

 (5.96) 

𝑃𝐸𝐶𝑖 = {

𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘1
𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘2
𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘…
𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑘

  𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑘 =

{
 
 

 
 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑚𝑎𝑥

1

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑚𝑎𝑥
2

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑚𝑎𝑥
…

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑚𝑎𝑥
𝑝

 (5.97) 

We neglect the time-based metrics, such as the response time, throughput, or bandwidth, 

which require a detailed model on the workload, executed operations235, and the hardware 

architecture236. We consider the standard benchmark metrics, such as PassMark, SPEC237, or 

TPC238  instead. The common database stores many benchmark metrics of the diverse 

components 𝐶𝑖. If a customer-specific server configuration includes a component that is not 

part of our database, we parse the technical specification tree to find the closest relatives. We 

specify the weight coefficients concerning the performance at each level of the tree. We 

multiply the performance by the weight coefficients within the technical specification tree. In 

the case that we have to predict the future component performance, we define a performance 

boost, such as a 1.5 weight coefficient, between two different levels of the manufacturing 

technology.  

  

                                                           
233

 PassMark: http://www.passmark.com/index.html 
234

 Mixture performance: also called CPU Mark, a mix of every defined benchmark within Passmark CPU 
235

 Workload and operations: determined by code inspection, input data set 
236

 Hardware architecture: memory hierarchy, compiler options, cache levels 
237

 SPEC: Standard Performance Evaluation Corporation, http://www.spec.org/ 
238

 TPC: Transaction Processing Performance Council, http://www.tpc.org/default.asp 
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We update this coefficient when the next-generation results are available. We consider the 

specific benchmark results as a set of maximum scores that is reliable when the components 

have the highest utilization level. We adjust the scores when we reduce the utilization level 

down to idle analogous to the SPEC-benchmark performance scores.  

In our concept, we transfer the performance results of the isolated components collected by 

the synthetic benchmarks to our system variations with the identical technical specification 

and configuration. If we simulate a component using the particular characteristics that we 

cannot reuse from the results, we update the weight coefficients to estimate the single 

component on the basis of its predecessor generation. We include the entire system 

measurements to cover the system-specific behavior of various server configurations. We 

combine the measurement results of the diverse synthetic benchmarks to estimate the 

behavior under certain conditions. In our simulation model, we reuse the benchmark results 

instead of developing the accurate performance models of each component or system 

variation. We specify a knowledge base that includes the component-based and system-based 

performance results.  

Classification as a Technical Assistant of the Category- and Aspect-based Characterization 

As stated in the previous sections, we found the diverse, relevant characteristics of a category 

𝐶𝑆𝑖 or a certain aspect 𝐴𝑗 which we include in our logical and physical configuration layer. We 

support a flexible characterization, which does not require the highest accuracy level. We 

found that the components 𝐶𝑖 in 𝐶𝑆 have a similar characteristic and abstract them so that the 

models are independent of the concrete accuracy level, but consider sub-characteristics, in 

case we gained experience of the highest accuracy level. We adjust the concept of [GFN et al. 

2006] and group our characteristics into shared classes 𝐶𝐿 = {𝐶𝐿1, 𝐶𝐿2, … , 𝐶𝐿𝑘} to avoid 

redundant data of the various configurations. We define the common characteristics 

𝐶𝐻 = {𝐶𝐻1, 𝐶𝐻2, … , 𝐶𝐻𝑘}, which stores the values of the explicit system configuration of a 

certain category. Figure 58 provides a brief overview of a memory module considering the 

system-board categories, their classification, and the related characteristics, which we describe 

in the next sections. 
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Figure 58: System categories, classes, characteristics, and values 

We differentiate into a technical specification and a configuration, which may be static or 

dynamic. We define the classes as shown in Table 30 that helps to identify the dynamic 

characteristics, which we adjust during the simulation. On the other side, we adapt the 

technical specification, which may result in an extra simulation run. Herein, we differentiate in 

the technology and manufacturing changes that specify the component behavior. In contrast, 

we can change the component quantity, which influences the utilization level and respectively 

the power consumption.  

Table 30: Class definition 𝑪𝑳𝒍 

Terms 𝑪𝑳𝒍 Class Tree Configuration 
characteristics 

𝑪𝑳𝟏 = 𝒑𝒓𝒐 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝜃 𝐶𝐻𝑇𝑆 
𝑪𝑳𝟐 = 𝒎𝒂𝒑 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝜃𝑇𝑆 𝐶𝐻𝑇𝑆 
𝑪𝑳𝟑 = 𝒕𝒆𝒄 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝜃𝑇𝑆, 𝜃𝐶𝑆 𝐶𝐻𝐶𝐹𝐺

𝑆𝑇  
𝑪𝑳𝟒 = 𝒎𝒐𝒅 𝑚𝑜𝑑𝑒𝑠 𝜃𝐶𝑆 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌  
𝑪𝑳𝟓 = 𝒄𝒐𝒎 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝜃 𝐶𝐻𝑇𝑆 
𝑪𝑳𝟔 = 𝒊𝒏𝒕 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝜃 𝐶𝐻𝑇𝑆 

 

The product class specifies the component quantity, if the component is active or still 

assembled in the system. Within the product class, the redundancy239  characteristic is 

especially significant for the power supply and storage devices. We summarize the technical 

specification 𝐶𝐻𝑇𝑆 and the related characteristics in the manufacturing process class. We 

                                                           
239

 Redundancy: e.g., redundant array of independent disks (RAID), PSU redundancy (𝑁 + 1,𝑁 +
2,2𝑁, 2𝑁 + 1,𝑁 + 𝑁) 
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define each component by its vendor, architecture, generation, family, and series. Herein, we 

assume the nomenclature of the Intel processors 240  and adapt them considering our 

components. A special characteristic within the manufacturing process is the product life cycle 

stage. For instance, Intel changes a pilot release processor during the production ramp-up. As a 

result, processors in the maturity, saturation, or decline stages have less manageable p-

states241 in comparison to the same product in the market introduction or growth stage. The 

vendor does not change the processor specification after a certain product life cycle stage. 

Therefore, the product life cycle stage is an empirical characteristic. The authors of [Han 2007] 

expect the increase of the individual component power and performance of the next-

generation fabrication processes. We address Moore’s law [Moo 1965] in the manufacturing 

process because we consider the technological development of the predecessor towards 

today’s architecture, which results in a non-linear energy efficiency. Besides the technical 

specification, we include the static configuration 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇  of the on-chip technology, which we 

conclude in the technology class. The relevant processor characteristics are the hyper-

threading, cache size, or the largest transfer rate, for instance. We consider the dynamic 

characteristics 𝐶𝐻𝐶𝐹𝐺
𝐷𝑌  in our approach and differentiate the several component modes. First, 

the dynamic mode defines the real component state, such as the utilization level, frequency, 

voltage, current, or duty cycle. These characteristics are significant in the OS-specific 

management techniques, such as DVFS. Secondly, we sum up the BIOS/UEFI characteristics in 

the operating mode. Finally, the system optimization mode covers the firmware 

characteristics. We consider the I/O busses and connections within the communication class. 

The internal class defines the thermal thresholds, when a component is at the reliable, 

functional, or damage level, which is specific in each hardware configuration. We define an 

uncertainty or confidence level, which specifies the trust relation on the basis of the 

underlying measurement, spreadsheets, or simulations. We consider the classification in our 

technical specification tree and characterization tree. Figure 59 represents the technology and 

modes classes in the characterization tree of the 𝑆𝐷𝑅𝐴𝑀 𝐷𝐼𝑀𝑀,𝐷𝐷𝑅3,𝐷𝐷𝑅3 − 1600, 𝑃𝐶3 −

12800 memory module. 

                                                           
240

 Intel nomenclature: http://www.intel.com/content/www/us/en/processors/processor-numbers-
data-center.html, http://ark.intel.com/ 
241

 Manageable p-states: formally, both processors have same state P0-P7, but P5 behaves like P6 
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Figure 59: Characterization tree with classification 

Correlation of Component-based and Aspect-based Characterizations 

In the “logical and physical layer” section, we define the aspect-based component models 

regarding the server system configuration. We concentrate upon the relevant characteristics, 

values, and weight coefficients 𝑊𝐹𝐴𝑗𝐶𝑖
𝐶𝐻 . We found that the aspects of a particular component 

influence each other. The processor dissipates the power 𝑃𝑂𝑝𝑟𝑜𝑐(𝑡𝑘), the temperature 

𝑇𝐻𝑝𝑟𝑜𝑐(𝑡𝑘), and the performance 𝑃𝐸𝑝𝑟𝑜𝑐(𝑡𝑘) at a specific time 𝑡𝑘. The self-heating of the 

processor results in a temperature 𝑇𝐻𝑝𝑟𝑜𝑐(𝑡𝑘+1) , whereby the temperature increases 

𝑇𝐻𝑝𝑟𝑜𝑐(𝑡𝑘+1) > 𝑇𝐻𝑝𝑟𝑜𝑐(𝑡𝑘) , but at the same time the performance decreases 

𝑃𝐸𝑝𝑟𝑜𝑐(𝑡𝑘+1) < 𝑃𝐸𝑝𝑟𝑜𝑐(𝑡𝑘). The authors of [NXP 2010, SXC et al. 2000] state that a larger 

temperature of semiconductor devices results in an increasing current, which limits the 

performance. The system fans compensate the warm-up process, which results in a higher 

power consumption of the system. Analogous to Newton’s third law that every action has an 

opposite reaction, we apply the relevant principles concerning our aspects.  

We consider the side effects of the certain components in the aspect-based relation 𝑅𝐴, as 

defined formally in Equation (5.31), which characterizes the mutual influences at a time 𝑡𝑘. We 

standardize the aspects 𝐴𝑗 towards their maximal possible values 𝑚𝑎𝑥 (𝐴𝑗), which result in an 

interval 𝐴𝑗𝑟𝑒𝑙  from zero to one. We specify the relation 𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙 between the aspects as a sum of 

the relative values 𝐴𝑗𝑟𝑒𝑙  and 𝐴𝑘𝑟𝑒𝑙, which have to be within the closed interval 𝑅𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙  defined 

by the lower and upper limits 𝑅𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙
𝑚𝑖𝑛

  and 𝑅𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙
𝑚𝑎𝑥

 , see Equation (5.100). 
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𝐴𝑗𝑟𝑒𝑙
=
𝑎𝑐𝑡𝑢𝑎𝑙(𝐴𝑗)

𝑚𝑎𝑥 (𝐴𝑗)
 (5.98) 

𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙 = 𝐴𝑗𝑟𝑒𝑙
+ 𝐴𝑘𝑟𝑒𝑙 (5.99) 

𝑅𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙 = [ 𝑅𝑅𝑚𝑖𝑛
 

𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙 , 𝑅𝑅𝑚𝑎𝑥
 

𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙] , 𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙 ∈ 𝑅𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙 (5.100) 

The limits cannot be accessed generically because another component characteristic 𝐶𝐻 may 

restrict the maximal throughput, which results in a lower 𝑅𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙
𝑚𝑎𝑥

 . Therefore, we extend 

our relations in 𝑅𝐴𝑗𝑟𝑒𝑙

𝐴𝑘𝑟𝑒𝑙 concerning the various characteristics. Equation (5.102) formally shows 

the relation definition between power and performance. We specify the complete component 

behavior in the model 𝐵𝐸𝐶  being aware of such feedback loops between the aspects.  

𝑅 
𝐶𝐻1

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 = 𝑃𝑂𝑟𝑒𝑙 + 𝑃𝐸𝑟𝑒𝑙 , 𝑅𝑅 
𝐶𝐻1

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 = [ 𝑅𝑅𝑚𝑖𝑛
 𝐶𝐻1

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 , 𝑅𝑅𝑚𝑎𝑥
𝐶𝐻1

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙] 

𝑅 
𝐶𝐻2

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 = 𝑃𝑂𝑟𝑒𝑙 + 𝑃𝐸𝑟𝑒𝑙 , 𝑅𝑅 
𝐶𝐻2

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 = [ 𝑅𝑅𝑚𝑖𝑛
 𝐶𝐻2

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 , 𝑅𝑅𝑚𝑎𝑥
𝐶𝐻2

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙]  

⋮

𝑅 
𝐶𝐻𝑙

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 = 𝑃𝑂𝑟𝑒𝑙 + 𝑃𝐸𝑟𝑒𝑙 , 𝑅𝑅 
𝐶𝐻𝑙

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 = [ 𝑅𝑅𝑚𝑖𝑛
 𝐶𝐻𝑙

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 , 𝑅𝑅𝑚𝑎𝑥
𝐶𝐻𝑙

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙]

 (5.101) 

𝑅𝑃𝐸
𝑃𝑂 =

{
 
 

 
  𝑅 
𝐶𝐻1

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 ∈ 𝑅𝑅 
𝐶𝐻1

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 , 𝑖𝑓 𝐶𝐻1

 𝑅 
𝐶𝐻2

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 ∈ 𝑅𝑅 
𝐶𝐻2

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 , 𝑖𝑓 𝐶𝐻2
⋮

𝑅 
𝐶𝐻𝑙

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 ∈ 𝑅𝑅 
𝐶𝐻𝑙

𝑃𝐸𝑟𝑒𝑙

𝑃𝑂𝑟𝑒𝑙 , 𝑖𝑓 𝐶𝐻𝑙

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.102) 

After defining the relations at a time 𝑡𝑘, we define the dynamic behavior between the time 

step 𝑡𝑘 and 𝑡𝑘+1 in the relation 𝑅𝑡𝑘
𝑡𝑘+1. We consider the actual condition of the component, 

such as the increasing or decreasing relative values of each aspect 𝐴𝑗, and specify the impacts 

due to the remaining aspects, see Equation (5.103).  

𝑅𝐴𝑗
 
𝑡𝑘

𝑡𝑘+1 = {
𝐴𝑗𝑟𝑒𝑙

(𝑡𝑘+1) > 𝐴𝑗𝑟𝑒𝑙
(𝑡𝑘) ≝ 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 

𝐴𝑗𝑟𝑒𝑙
(𝑡𝑘+1) < 𝐴𝑗𝑟𝑒𝑙

(𝑡𝑘) ≝ 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 
 (5.103) 

As an example, we assume the increasing power consumption 𝑃𝑂𝑟𝑒𝑙(𝑡𝑘+1) > 𝑃𝑂𝑟𝑒𝑙(𝑡𝑘) as an 

aspect-based result of our calculation methods, which we specify as 𝑃𝑂𝐼𝑁𝐶. We define the 

impacts of the remaining aspects 𝑇𝐻  and 𝑃𝐸  by the weight coefficients 𝑊𝐹𝑃𝑂𝐼𝑁𝐶
𝑇𝐻  and 

𝑊𝐹𝑃𝑂𝐼𝑁𝐶
𝑃𝐸 , which we apply upon the relative aspects at the time step 𝑡𝑘, as shown in Equation 

(5.104).  
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𝑇𝐻𝑟𝑒𝑙(𝑡𝑘+1) = 𝑇𝐻𝑟𝑒𝑙(𝑡𝑘) ∗  𝑊𝐹𝑃𝑂𝐼𝑁𝐶
𝑇𝐻

𝑃𝐸𝑟𝑒𝑙(𝑡𝑘+1) = 𝑃𝐸𝑟𝑒𝑙(𝑡𝑘) ∗  𝑊𝐹𝑃𝑂𝐼𝑁𝐶
𝑃𝐸  (5.104) 

Another challenge is that the components themselves influence each other within the entire 

system. The authors in [YP 2009] state “…, the memory access is extremely costly in terms of 

the CPU core clock cycles and thus the memory system turns into the main bottleneck in 

system performance. This is mainly because the speed gap between the fast CPU core and the 

relatively slow memory widens.” We specify dynamic rule tables in the matrix 𝑅𝐵𝐸 to restrict 

the component interactions. The authors of [ERK 2006] measure the system components in 

isolation and do not cover system-specific effects. The concepts of [ERK 2006, Riv 2008, RRK 

2008] consider the performance counters, which are unsuitable for novel systems because of 

their dependency to the architecture. Our aim is to reduce the extra modeling effort, while 

being independent of the explicit hardware configuration and characterization. [BHS 1998] 

state “When the CPU is active, the memory components are also active to some degree.” The 

utilization levels vary across a time series on the basis of the complex system interactions on 

the busses and activities, which depend upon each other. We found that we could not fully 

utilize the processor and memory at the same time, which we specify as internal constraints. 

We restrict the maximum utilization levels, which the components may have at the same time. 

We exemplarily define the relation between the component 𝐶1 = 𝑚𝑒𝑚 and 𝐶2 = 𝑝𝑟𝑜𝑐, which 

can be done analogous to the aspect-based relation 𝑅𝐴. We specify the maximal utilization 

level 𝑢𝑚𝑎𝑥
 
𝑝𝑟𝑜𝑐
𝑚𝑒𝑚 that the sum of the memory and processor utilization level (𝑢𝑚𝑒𝑚 + 𝑢𝑝𝑟𝑜𝑐) 

cannot exceed. At the same time, the minimal utilization level 𝑢𝑚𝑖𝑛
 
𝑝𝑟𝑜𝑐
𝑚𝑒𝑚 has to be fulfilled. We 

specify the behavioral relations between the components in 𝑅𝐵𝐸, respectively their utilization 

levels, which form the steady simulation constraints. 

𝑅𝑝𝑟𝑜𝑐
𝑚𝑒𝑚 = 𝑢𝑚𝑒𝑚 + 𝑢𝑝𝑟𝑜𝑐 (5.105) 

𝑅𝑅𝑝𝑟𝑜𝑐
𝑚𝑒𝑚 = [ 𝑢𝑚𝑖𝑛

 
𝑝𝑟𝑜𝑐
𝑚𝑒𝑚, 𝑢𝑚𝑎𝑥

 
𝑝𝑟𝑜𝑐
𝑚𝑒𝑚], 𝑅𝑝𝑟𝑜𝑐

𝑚𝑒𝑚 ∈ 𝑅𝑅𝑝𝑟𝑜𝑐
𝑚𝑒𝑚 (5.106) 

In the case that we define the relations in 𝑅𝐵𝐸 and restrict the utilization levels, we indirectly 

limit the worst-case power consumption of the entire system. The full-system power model of 

[ERK 2006] addresses the system behavior considering an explicit operating system, including 

the particular design and architecture properties. The authors define the component-bounded 

utilization levels that correspond to the OS behavior, but do not address the details of the 

coefficients 𝐾0, 𝐾1, 𝐾2, 𝐾3, and 𝐾4, see Equation (5.107). The authors change the coefficients 

𝐾1and 𝐾2, which refers to the relation between the processor-bounded and memory-bounded 

workload at the OS. The system power depends upon the activity level and the 

communications, which enables various states and transitions. 

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝐾0 + 𝐾1 ∗ 𝑢𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 ∓ 𝐾2 ∗ 𝑢𝑚𝑒𝑚𝑜𝑟𝑦 + 𝐾3 ∗ 𝑢𝑑𝑖𝑠𝑘 + 𝐾4 ∗ 𝑢𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (5.107) 
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In our concept, the coefficients do not only weight the utilization levels of each component; 

the coefficients also define the relation to each other referring to the technical specification 

and configuration of each component. We characterize the system design and architecture in 

an additional layer, which is a more precise in comparison to [ERK 2006] considering diverse 

component variation.  

Furthermore, the authors in [YP 2009] describe, “Apparently, without memory involved, the 

CPU utilization should scale linearly with the CPU core frequency. For example, if the CPU 

utilization is 50% at 104MHz with little or even no memory access, we can easily predict that 

the CPU utilization would be around 25% at 208MHz with the high confidence. But with 

memory access involvement, the CPU utilization would not scale linearly with the core 

frequency any more. At the higher frequency point, performance is usually more blocked by 

the memory since the CPU spends more CPU cycles in waiting for memory response.” We 

cover the performance loss in the relations 𝑅𝐴 and 𝑅𝐵𝐸, which define the influence between 

the components or one certain component. The previous academic results lead to define the 

relations on the component as well as the system level considering the certain workload. The 

workload specifies the processor power fraction of the total system consumption, which 

decreases because the memory modules consume more power in dependence on their 

shrinking technology in the novel generations [RRK 2008]. The memory power becomes more 

significant at the processor-bounded and memory-bounded workloads, when the system has a 

high number of memory modules, such as 64.  

Other key indicators of the system behavior are the management techniques, especially of the 

power consumption. The techniques concentrate upon the average power to optimize the 

energy consumption over the time, which saves electricity costs. The peak power reduction 

decreases the cooling costs in the data centers, which we outline in Section 4.4. In the large-

scale enterprises, the server system is limited by a power budget to ensure that the total 

power and the temperature do not reach a given boundary. The authors of [RLI et al. 2006] 

optimize the dynamic power budgeting at a blade enclosure, which reduces the power 

provisioning between the various server blades. The management technique shall provide the 

suitable power to the current demands. The management techniques are either a hardware 

solution, which has direct access to the low-level information, or a software solution, which 

operates at the application level. The time granularity in the hardware is based upon seconds 

or milliseconds, which is evolving towards hours in the software technique. A well-known 

power management technique is dynamic voltage frequency scaling (DVFS) in which the 

operating system controls the component states on the basis of the utilization level of scaling 

down the unused components, see Section 3.4.2. We propose an individual management 

technique considering the workload variation, while being aware of the high-activity 

(𝑢𝐶𝑖 > 80%) and low-activity (𝑢𝐶𝑖 < 20%) utilization phases.  
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According to the approach in [ZMC 2003], we save energy when we reduce the frequency 𝑓 or 

supply voltage 𝑉𝐷𝐷 of the processor. The dynamic power consumption 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is a product of 

the static capacitance 𝐶𝐿, the square supply voltage 𝑉𝐷𝐷, and the frequency 𝑓. 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝐿 ∗ 𝑉𝐷𝐷
2 ∗ 𝑓 (5.108) 

“When decreasing processor speed, we can also reduce the supply voltage. This reduces 

processor power cubically and energy quadratically at the expense of linearly increasing the 

task’s latency. [ZMC 2003]” We assume that the frequency 𝑓 and performance, which we 

specify as execution time 𝑇, are inversely proportional to each other. If we restrict the actual 

frequency to half of it, the time 𝑇𝑓 will double to execute the same job. As an algorithm 

constraint, we have to guarantee that the allocated time 𝑇𝑚𝑎𝑥 is always long enough to finish 

the job when we reduce the supply power and frequency. In an ideal case, our management 

does not have any negative impact upon the system or component performance, such as the 

execution time. 

𝑓

𝑓𝑚𝑎𝑥
=
𝑇𝑚𝑎𝑥

𝑇𝑓
 (5.109) 

The non-linear power consumptions of the processor lead us to adjust the frequency, as long 

as we satisfy the time demand 𝑇𝑓 ≤ 𝑇𝑚𝑎𝑥. We alter the frequency 𝑓 and voltage 𝑉𝐷𝐷 of a 

processor in the intervals 𝑓𝑚𝑖𝑛 ≤ 𝑓 ≤ 𝑓𝑚𝑎𝑥, 𝑉𝐷𝐷𝑚𝑖𝑛 ≤ 𝑉𝐷𝐷 ≤ 𝑉𝐷𝐷𝑚𝑎𝑥, which the customer 

specifies implicitly in the server system configuration 𝜃𝐶. We do not toggle between the 

various frequencies within a time step, to avoid the additional transition times. We search the 

local optimum to minimize the power consumption and corresponding temperature, but try to 

find the maximal performance at the same time. This is a well-known resource management 

technique, called DVFS, which controls the power consumption in a time horizon of seconds. 

Our aim is to optimize the energy efficiency ratio in a time horizon from seconds to hours or 

days. The common management techniques concentrate upon the actual states and power 

consumption, which we include by calculating the corresponding aspects at each time step. 

The management techniques correlate to the component-based and aspect-related 

characterizations of the explicit server configuration 𝜃𝐶, which may limit the opportunities. We 

apply the DVFS technique in our processor model to reduce the average power consumption.  

Our aim is to optimize the energy efficiency of the server system 𝑆𝑌  considering all 

components in 𝜃𝐶  executing a customer-based application software 𝑊. The static part of our 

system considers the architecture and connectors, which rely upon the server system 

configuration. We consistently consider the same architecture because we support only a 

subset of the server systems in our simulation model. We neglect the static configurations 

𝐴𝐶(𝜃𝐶) and 𝐶𝐶(𝜃𝐶), which we cannot adjust in our prototype implementation. The dynamic 

part considers the system behavior, its components, and relations to each other, see Equations 

(5.112) and (5.113).  



Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based 

Approach (MFSMOS) 

 

 

 
198 

 

𝑆𝑌 = {𝑆𝑇𝑠(𝜃𝐶), 𝐷𝑌𝑠(𝑊, 𝜃𝐶)} (5.110) 

𝑆𝑇𝑠(𝜃𝐶) = {𝐴𝐶(𝜃𝐶), 𝐶𝐶(𝜃𝐶)} (5.111) 

𝐷𝑌𝑠(𝑊, 𝜃𝐶) = {𝐵𝐸𝐶(𝑊, 𝜃𝐶), 𝑅𝐵𝐸(𝑊, 𝜃𝐶)} (5.112) 

= {𝑀𝐴𝑆𝐶(𝑊, 𝜃𝐶), 𝑅𝐴𝐶(𝑊, 𝜃𝐶), 𝑅𝐵𝐸(𝑊, 𝜃𝐶)} (5.113) 

The relations 𝑅𝐴𝐶 and 𝑅𝐵𝐸 depend more upon the workload 𝑊 than on the customer-specific 

configuration 𝜃𝐶. The power-to-temperature impact is similar between two components of the 

same category, but not comparable when executing different workloads (𝑊1,𝑊2). We use 

the same assumption for the relation 𝑅𝐵𝐸. We sum up the system in Equation (5.117).  

 𝑅𝐴𝐶(𝜃𝐶
1)~𝑅𝐴𝐶(𝜃𝐶

2), 𝑅𝐴𝐶(𝑊
1) ≠ 𝑅𝐴𝐶(𝑊

2) (5.114) 

 𝑅𝐵𝐸(𝜃𝐶
1)~𝑅𝐵𝐸(𝜃𝐶

2), 𝑅𝐵𝐸(𝑊
1) ≠ 𝑅𝐵𝐸(𝑊

2)   (5.115) 

𝐷𝑌𝑠(𝑊, 𝜃𝐶) = {𝑀𝐴𝑆𝐶(𝑊, 𝜃𝐶), 𝑅𝐴𝐶(𝑊), 𝑅𝐵𝐸(𝑊)} (5.116) 

𝑆𝑌(𝑊, 𝜃𝐶) = {𝑀𝐴𝑆𝐶(𝑊, 𝜃𝐶), 𝑅𝐴𝐶(𝑊), 𝑅𝐵𝐸(𝑊)} (5.117) 

We cannot optimize the aspect-based relations242 𝑅𝐴𝐶(𝑊) within one component or the 

relationships 𝑅𝐵𝐸(𝑊) between the diverse components separately, because both depend 

upon the workload scenario of the customer and influence each other. We specify a relation by 

the weight coefficient, which defines the sensitivity243 between two tending variables. In our 

optimization strategy, we concentrate on the aspect-based component models in the matrix 

𝑀𝐴𝑆𝐶(𝑊, 𝜃𝐶).  

𝑀𝐴𝑆𝐶(𝑊, 𝜃𝐶) = (

𝑃𝑂𝑝𝑟𝑜𝑐 𝑃𝑂𝑚𝑒𝑚 𝑃𝑂𝑖𝑜 𝑃𝑂𝑓𝑎𝑛 𝑃𝑂𝑜𝑡ℎ

𝑃𝐸𝑝𝑟𝑜𝑐 𝑃𝐸𝑚𝑒𝑚 𝑃𝐸𝑖𝑜 𝑃𝐸𝑓𝑎𝑛 𝑃𝐸𝑜𝑡ℎ

𝑇𝐻𝑝𝑟𝑜𝑐 𝑇𝐻𝑚𝑒𝑚 𝑇𝐻𝑖𝑜 𝑇𝐻𝑓𝑎𝑛 𝑇𝐻𝑜𝑡ℎ

) (5.118) 

We simultaneously optimize 𝑘 (𝑘 ≥ 2) objective functions 𝐹(𝑥), which we define as the 

aspect-based calculation methods 𝐹𝐴𝑗𝐶𝑖
 in the matrix 𝑀𝐴𝑆𝐶. Each function depends upon the 

workload 𝑊  and the server system configuration 𝜃𝐶 . We run into a multi-objective 

optimization problem (MOP) because of competing methods. 

𝐹(𝑥) = 𝐹(𝑊, 𝜃𝐶) = 𝑀𝐴𝑆𝐶(𝑊, 𝜃𝐶) = {𝐹𝐴𝑗𝐶𝑖
(𝑊, 𝜃𝐶)} (5.119) 

  

                                                           
242

 Relations: effect on each other, defined without any unit 
243

 Sensitivity: strength of dependence 
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The functions 𝐹𝐴𝑗𝐶𝑖
 in the matrix 𝑀𝐴𝑆𝐶  consist of the technical specification functions 𝐹𝑇𝑆 and 

the configuration functions 𝐹𝐶𝐹𝐺 to calculate the adequate fraction. We neglect the workload 

as an input parameter in the technical specification functions because the technology impact 

influences the components at all utilization levels in the same manner. We divide the 

configuration function 𝐹𝐶𝐹𝐺 into the static 𝐹𝐶𝐹𝐺
𝑆𝑇  and dynamic 𝐹𝐶𝐹𝐺

𝐷𝑌  constituents, see Equation 

(5.126).  

𝐹𝐴𝑗𝐶𝑖
(𝑊, 𝜃𝐶) = 𝐹𝑇𝑆(𝜃𝐶) + 𝐹𝐶𝐹𝐺(𝑊, 𝜃𝐶) (5.120) 

𝐹𝐶𝐹𝐺 = {𝐹𝐶𝐹𝐺
𝑆𝑇 , 𝐹𝐶𝐹𝐺

𝐷𝑌 } (5.121) 

Each of these functions can be defined by the component-specific characterstics 𝐶𝐻 of 𝜃𝐶, 

which we weight by the corresponding coefficients 𝑊𝐹, and consider the optional offsets 𝑂𝐹. 

The simulation model of each component 𝐴𝑗𝐶𝑖
 specifies the relevant characteristics of the 

diverse classes for the calculation methods in 𝐹𝐴𝑗𝐶𝑖
. We consider the technical characteristics 

of 𝐹𝑇𝑆 in the manufacturing process class and include the static configuration characteristics 

𝐶𝐻𝐶𝐹𝐺
𝑆𝑇  in the technology class. We cover the characteristics of the DVFS and DTM techniques 

by the modes class, which specify the dynamic characteristics 𝐶𝐻𝐶𝐹𝐺
𝐷𝑌  in our approach. The 

following equations show a simplified set of the objective functions concerning the 

characteristics. We describe the concrete characteristics of each component in the 

implementation section. 

𝐹𝑇𝑆 = 𝐶𝐻𝑇𝑆 ∗ 𝑊𝐹𝑇𝑆 +𝑂𝐹𝑇𝑆 (5.122) 

𝐹𝐶𝐹𝐺
𝑆𝑇 = 𝐶𝐻𝐶𝐹𝐺

𝑆𝑇 ∗ 𝑊𝐹𝐶𝐹𝐺
𝑆𝑇 +𝑂𝐹𝐶𝐹𝐺

𝑆𝑇  (5.123) 

𝐹𝐶𝐹𝐺
𝐷𝑌 = 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌 ∗ 𝑊𝐹𝐶𝐹𝐺
𝐷𝑌 +𝑂𝐹𝐶𝐹𝐺

𝐷𝑌  (5.124) 

We specify a vector of 𝑘 ∈ 𝑁 decision variables 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘), also called parameters, 

which belong to the feasible region – a set of solutions – that satisfies at least one given 

objective function, either minimize or maximize 𝐹𝐴𝑗𝐶𝑖
(𝑊, 𝑥) of 𝑀𝐴𝑆𝐶. We assume that the 

workload 𝑊  is steady for a simulation run. The decision variables affect the server 

configuration 𝜃𝐶, which automatically results in the adjustments of its corresponding technical 

specifications, static, and dynamic characteristics.  

𝑥 = {𝜃𝐶 , 𝐶𝐻𝑇𝑆, 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌 } (5.125) 

We optimize the energy efficiency (𝐸𝐸) of the entire server system considering the decision 

variables 𝑥, which we formally specify as the optimization aim 𝑚𝑎𝑥 {𝐹(𝑥)}. We formally define 

𝐹(𝑥) = (𝐹1(𝑥), 𝐹2(𝑥),… , 𝐹𝑘(𝑥)) , which contains  𝑘 ∈ 𝑁  multi-objective functions. In our 

concept, the energy efficiency calculation considers the power, temperature, and performance 
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methods244. We define the energy efficiency as the ratio between the performance 𝑃𝐸 and 

power 𝑃𝑂 over a period of time 𝑇. We assume that this period of time 𝑇 is constant in our 

optimization, which we cannot change. Our aim is to optimize the performance-to-power 

ratio, which is highest when we maximize the performance 𝑚𝑎𝑥(𝑃𝐸), and at the same time 

minimize the power 𝑚𝑖𝑛 (𝑃𝑂), see Equation (5.126). We minimize the thermal aspect 

𝑚𝑖𝑛 (𝑇𝐻) as a consequence of the power optimization, which is based upon each other. We 

consider the entire server system and therefore optimize all components. 

𝑚𝑎𝑥(𝐸𝐸) = 𝑚𝑎𝑥 (
𝑃𝐸

𝑇∗𝑃𝑂
) ≝ 𝑚𝑎𝑥 (

𝑃𝐸

𝑃𝑂
) =

𝑚𝑎𝑥(𝑃𝐸)

𝑚𝑖𝑛(𝑃𝑂)
 (5.126) 

We define a set of constraints 𝐺(𝑥) that further restricts the results of each function in 𝐹(𝑥). 

In our server system, we limit the minimal performance provided by the initial customer 

configuration245 and neglect the solutions with less performance. We avoid higher power 

values than the customer-specific components consume, which are upper constraints of the 

power-based methods. In addition, we specify a lower as well as an upper bound 𝑥𝐿, 𝑥𝑈 of 

each variable to consider the hardware246 / software247 constraints on the exact configuration. 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐺(𝑥) = (𝐺1(𝑥), 𝐺2(𝑥),… , 𝐺𝑙(𝑥)) ≥ 0, 𝑙 ∈ 𝑁 𝑎𝑛𝑑 𝑥
𝐿 ≤ 𝑥 ≤ 𝑥𝑈 (5.127) 

In our concept, the performance-to-power ratio248 of each component cannot be less than zero 

because we normalize the power and performance, see Equation (5.128). If the power 

consumption is very small, the performance-to-power ratio increases arbitrarily highly. We 

normalize the ratio 𝐺1
𝐶(𝐸𝐸) in the range to [0,1]. Therefore, we define the maximum of the 

performance-to-power ratio by the minimal power consumption (𝑃𝑂𝐶𝑖𝑑𝑙𝑒), see Equation 

(5.129), which forms the upper limit of the range. We normalize the values of 𝐺1
𝐶(𝐸𝐸) 

considering the formula in Equation (5.130). 

𝐺1
𝐶(𝐸𝐸) =

𝑃𝐸𝐶

𝑃𝑂𝐶
≥ 0,   1 ≥ 𝑃𝑂𝐶 > 0,   1 ≥ 𝑃𝐸𝐶 > 0  (5.128) 

max (𝐺1
𝐶(𝐸𝐸)) =

max (𝑃𝐸𝐶)

min(𝑃𝑂𝐶)
=

1

𝑃𝑂𝐶𝑖𝑑𝑙𝑒
, min (𝐺1

𝐶(𝐸𝐸)) = 0 (5.129) 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑{𝐺1
𝐶(𝐸𝐸)} =

𝐺1
𝐶(𝐸𝐸)−min (𝐺1

𝐶(𝐸𝐸))

max(𝐺1
𝐶(𝐸𝐸))−min (𝐺1

𝐶(𝐸𝐸))
=

𝐺1
𝐶(𝐸𝐸)

max(𝐺1
𝐶(𝐸𝐸))

 (5.130) 

  

                                                           
244

 Energy efficiency calculation: related functions 𝐹𝐴𝑗𝐶𝑖
(𝑊, 𝑥) of 𝑀𝐴𝑆𝐶  

245
 Initial customer configuration: 𝜃𝐶  calculated 𝐸𝐸𝐵𝐴𝑆𝐸   

246
 Hardware constraints: a (physical) limit, such as the maximal frequency 

247
 Software constraints: the temperature limits (e.g., TCONTROL, PROCHOT, THERMTRIP) 

248
 Ratio: division of normalized performance scores and normalized power values 
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We follow the alternation strategy in a hierarchical manner when adjusting the decision 

variable 𝑥, which has to be system-compatible. We consider the aspect-based relations 

𝑅𝐴𝐶(𝑊) within one component or the relationships 𝑅𝐵𝐸(𝑊) between the diverse components 

when maximizing the energy efficiency of the entire system. We implicitly define further 

constraints in the aspect-based calculation methods, such as non-linear relations between the 

quantity of components and their performance. While optimizing the server system, we make 

sure that the thermal limits are respected. We adjust the set of decision variables 𝑥 that result 

in 𝑥 to find an ideal solution. We apply the changes on the basis of the main principles of our 

heuristic methods, see Section 5.2.1 and 5.4.2.2. We determine the particular set of values 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘) among the set of all objective functions, which satisfy the constraints and 

conditions. A single optimal solution (global optimum) is usually not possible, which means 

that the results may be a corridor of local optimums instead. Therefore, we define a Pareto 

front as a set of solutions that partly satisfy the objective functions. We specify an optimization 

strategy in Section 5.4.2.1 to change the decision variables.  

The authors of [Han 2007] concentrate upon the coordinated power, energy, and performance 

management of a particular system. The pipeline throttling, DVFS, and cache sleep methods 

build the base of their management technique. In next-generation server systems, an extra 

controller mounted on the motherboard scales the voltage and frequency autonomously. The 

OS loses the frequency control, and thus the OS type becomes negligible in such novel 

systems. Certainly, the vendor can specify the management techniques and their constraints 

independently of the OS.  

The dynamic thermal management (DTM) is another technique to reduce the cooling costs of a 

time horizon of seconds and minutes. The aim is to reduce the temperature of certain 

components or the entire system. The fan control system aggregates the component 

temperatures249, which forms the basis of the fan speed control (FSC) algorithm. We control 

the active cooling devices (fans) by their discrete speed [𝑅𝑃𝑀] using either a linear algorithm 

or table-driven (step-based) approach, as shown in Figure 60. The linear algorithm controls the 

fan speed 250  [%] , which increases proportionally between the minimal and maximal 

temperatures. A vendor-specific constraint is the minimal fan speed [% 𝑜𝑟 𝑅𝑃𝑀1], which can 

be zero when energy-efficient components are assembled in the server system. The table-

driven approach considers a set of temperatures 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑘}, which defines the 

corresponding set of RPM values 𝑅𝑃𝑀 = {𝑅𝑃𝑀1, 𝑅𝑃𝑀2, … , 𝑅𝑃𝑀𝑘}. The step-based approach 

provides the possibility to control the fan speed on a non-linear basis. The vendor specifies the 

thermal design before the server system is introduced to the market.  

                                                           
249

 Component temperatures: analog or digital sensors, accuracy varies from 1°𝐶 to 3°𝐶 
250

 Fan speed: percent of duty cycle, which adjusts the pulse width modulated (PWM) signal to control 
the speed [𝑅𝑃𝑀] 
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Figure 60: Fan speed control (FSC) algorithm 

In our concept, we only consider the linear fan algorithm. We assume a closed-loop fan speed 

control because the fans have their own logic to ensure that target value will not be exceeded. 

We consider the thermal limits of the system where the components will be able to work, as 

shown in Figure 36. We include the temperature range and update our fan algorithm. We 

outline our overall control algorithm in Section 5.4.  

5.2.3 Configuration – Process and Control Layer 𝑺𝒀(𝜽𝑪, 𝜹, 𝝊, 𝝌) 

5.2.3.1 Process Definition 

The process layer combines the physical system environment, which we define as externals 

𝐸𝑋, and the specific server system 𝑆𝑌. We consider the logical and physical description of the 

server in the characterization layer. The process and control layer defines the 

communication 251  between the components considering the connectors 𝐶𝐶  and the 

architectural description 𝐴𝐶  of the configuration layer. The workload characterizes the 

executions of the operations and the related communications, which affects the component 

activities and interactions. An input/output-bounded workload produces more network 

communication in comparison to a processor-intensive workload, which utilizes the bus 

between the processors and memories. The processor has to wait until the memory accesses 

finish. A shared cache across the multiple processors will reduce the communications via the 

bus. Furthermore, the associated memory banks of the processor influence the performance in 

dependence on the interleaves and bus connections. We differentiate the memory accesses if 

we utilize the memory communication when the system has one or more processors. The 

authors in [Bel 2001] state that the communications through the bus systems contribute the 

main dynamic energy consumption in dependence on the cycle-based load/unload scenarios of 

the registers. 

  

                                                           
251

 Communication: characteristics defined in the communication class 
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The process layer specifies the dynamic system behavior 𝐷𝑌𝑠  and distributes the 

communication 𝛿 within the entire server system. According to the static system definition, we 

specify the category-specific utilization levels as an input parameter of the aspect-based 

calculation methods. We define a set of generic category-specific interfaces considering the 

flexible amount of components. In the case that the system has one memory module, we do 

not adjust the memory-bounded utilization level, as exemplarily defined with a value of 50 

percent. Our model considers the hardware alternation, such as we assemble four memory 

modules. We assume any combination of the component-specific utilization levels, which 

results in a mean value of approximately 50 percent: e.g., we utilize all modules at nearly 50 

percent, fully utilize half of the modules, or specify any utilization levels in between. The 

customer specifies the utilization level 𝑢𝐶𝑖 of each component 𝐶𝑖 as an input parameter of our 

simulation model, see Section 5.3.2.2. We predefine 𝑘, 𝑘 ∈ 𝑁 profiles to simulate the workload 

distribution in a flexible manner. The customer can extend the profiles or select a certain 

profile, which matches the reality most probably. We require these profiles when we alter the 

hardware configuration by the amount of components within the product class. We implement 

𝑘 ∈ {1,2,3} profiles within our simulation model, which supports the flexible configuration of 

the workload. In the first profile, we consider the initial utilization level 𝑢𝐶𝑖 and provide the 

same value over all components 𝑝 of 𝐶𝑖
𝑝 as a default simulation parameter. This profile is 

common in the industrial tools. In the second profile, we support the component-bounded 

workload, which refers to the academic approaches. The third profile defines a uniform 

distribution among the components of the same category depending upon the component’s 

amount.  

𝑢𝐶𝑖 = {

𝑝𝑟𝑜𝑓𝑖𝑙𝑒1
𝑝𝑟𝑜𝑓𝑖𝑙𝑒2

⋮
𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑘

, 𝑖𝑓 #𝐶𝑖 > 1 (5.131) 

𝐶𝑖 = {𝐶𝑖
1, 𝐶𝑖

2, … , 𝐶𝑖
𝑝}, 𝑝 ∈ 𝑁, #𝐶𝑖 = |𝐶𝑖| = 𝑝 (5.132) 

𝑝𝑟𝑜𝑓𝑖𝑙𝑒1 ≡ 𝑢𝐶𝑖 = 𝑢𝐶𝑖
1 = 𝑢𝐶𝑖

2 = ⋯ = 𝑢𝐶𝑖
𝑝 (5.133) 

𝑝𝑟𝑜𝑓𝑖𝑙𝑒2 ≡ {
                          𝑢𝐶𝑖 = 𝑢𝐶𝑖

1

𝑢𝐶𝑖
2 = ⋯ = 𝑢𝐶𝑖

𝑝 = 0 , 𝑖𝑓 𝑠𝑒𝑙𝑒𝑐𝑡 𝐶𝑖
1 (5.134) 

𝑝𝑟𝑜𝑓𝑖𝑙𝑒3 ≡ 𝑢𝐶𝑖
1 = 𝑢𝐶𝑖

2 = ⋯ = 𝑢𝐶𝑖
𝑝 = 

𝑢𝐶𝑖
𝑝

 (5.135) 

Within the controller layer, we observe the power, temperature, and performance of each 

component and store the results 𝜀 during the simulation. Herein, we generate reports, display 

graphs, and present the energy efficiency ratio in relation to the optimal server configuration. 

The controller checks the workload and communication for compliance with the constraints 

that we specify in the characterization layer. We monitor the utilization levels of the 
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components, for example, to ensure the defined relationships 𝑅𝐵𝐸. If the customer selects a 

profile, the simulation parameters are affected, which we have to adjust. We consider the 

external constraints, such as 𝛼𝑣𝑜𝑙𝑡, 𝜃𝑐, the internal constraints 𝜐, such as 𝑅𝐵𝐸 , 𝑅𝑃𝐸
𝑃𝑂, and the 

resulting restrictions, such as 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, towards our simulation constraints 𝜒. The process 

and control layer enables the opportunity to perform multiple simulation runs by managing 

parameters and constraints and by applying the results of our optimization algorithm. We 

validate the aspect-based data considering the values in our database. In the case of the 

processor performance, we make sure that the actual value is higher than the peak 

performance measured in a synthetic benchmark. We define an uncertainty or confidence 

level by a scalar value that specifies the trust relation in dependence on the underlying real 

measurements, spreadsheets, empirical data, or simulation runs. The value is within the 

interval [0,100], whereby a low value refers to an initial estimation and the highest value 

presents a certified result. We check the correctness, consistency, and plausibility using the 

internal class and database.  

 
Figure 61: Process and control layer 

The server system configuration and characterization layer deploys the hardware architecture, 

generation, and related components. Herein, we consider the aspect-based models in 𝑀𝐴𝑆𝐶  as 

a white-box, gray-box, or black-box approach252 from a lower level to an upper level, but 

relying on the individual utilization levels. We specify the corresponding linear and non-linear 

behavior of every component, provide interfaces to include the academic approaches to the 

instruction level, and extend our observations in the industrial practice of accurate results in 

academia. We decouple each component model and define the behavior separately because 

of its reusability for next-generation systems, which reduces the modeling effort. Our 

hierarchical concept supports the extension of the components at various abstraction levels, 

whereby we provide the category-specific interfaces. We specify the characteristics across 

                                                           
252

 Approach: based upon the level of details 
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multiple components and cover both inter- and intra-component communication in the 

process and control layer, which enables optimization strategies across various layers within a 

server system. The server system configuration and characterization define the conceptual, 

contextual, and mathematical models, such as: 

 The server system and its components 

 The relations between the components 

 The categories, classes, and characteristics 

 The differential equations to calculate the aspects 

 The generic configuration tree 

 The relations between the aspects 

 The customization parameter of the simulation model 

5.3 Server System Externals 𝑬𝑿 = {𝜶, 𝜼,𝑾, 𝝃, 𝑻𝒖} 
We formally define the server system itself and its components, as shown in the following 

equation. In this section, we concentrate upon the externals 𝐸𝑋, which specifies the physical 

environment of the entire server system. 

[𝐸𝑋] 
 
 
 
 
  

 

[ 
𝑆𝑇𝑠

𝑀𝐴𝑆𝐶 , 𝑅𝐴𝐶 , 𝑅𝐵𝐸
]

↑

[
 
 
 
 
𝜃𝐶

𝐶𝑆𝑖, 𝐶𝑖 
𝐶𝐿𝑙
𝐶𝐻𝑙
𝛽 ]

 
 
 
 

⏞    

→

 

 
 
 
 
 
  

[𝑃𝑂 𝑃𝐸 𝑇𝐻] 
 
 
 
 
  

 (5.136) 

We summarize the usage and the simulation context in 𝐸𝑋, which considers the environmental 

conditions 𝛼, the constraints  𝜂, and the application software 𝑆𝑊. We differentiate the 

application software by a workload 𝑊, the utilization time 𝑇𝑢, and a set of software-based 

settings 𝜉, as shown in Equation (5.137). 

 

[ 𝐸𝑋]

↑

[
 
 
 
 
𝛼
𝜂
𝑊
𝜉
𝑇𝑢]
 
 
 
 

⏞

[ 
𝑆𝑇𝑠

𝑀𝐴𝑆𝐶 , 𝑅𝐴𝐶 , 𝑅𝐵𝐸
]

↑

[
 
 
 
 
𝜃𝐶

𝐶𝑆𝑖, 𝐶𝑖 
𝐶𝐿𝑙
𝐶𝐻𝑙
𝛽 ]

 
 
 
 

⏞    

→

 

 
 
 
 
 
  

[𝑃𝑂 𝑃𝐸 𝑇𝐻] 
 
 
 
 
  

 (5.137) 
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Table 31 lists the symbols and definitions of the server system externals section.  

Table 31: Nomenclature – server system externals (EX) 

Nomenclature Meaning  Nomenclature Meaning 

𝑨 Aspect 𝒊, 𝒋, 𝒏,𝒎, 𝒌, 𝒍 Index  
𝑪 Component 𝑵𝟎 Any natural number  

𝑁0 = {0,1,2,3,… } 
𝑪𝑺 System-board 

category 𝑖  
(  ≡ components) 

ℝ Any positive real 
number 

𝑬𝑿 Externals 𝜶, 𝜶̂ Environment 
conditions 

𝑺𝒀 System 
characterization, 
model 

𝜼 External constraints 

𝑭𝑺 Full-system 
simulation and 
optimization 

𝝃 Software settings 

𝑴𝑺𝒀
𝑬𝑿 Mapping 

between 
externals and 
system 

𝒖⃗⃗ 𝒎 = 𝒖𝑪𝑺𝒊  

𝒖⃗⃗ 𝒕𝒌  

Utilization level of 
component category 
𝑚 
time step 𝑡𝑘 

𝑺𝑾 Application 
software 

𝒘𝒊𝒍 
𝑾,𝑾𝑻𝒖 

Workload for 
component 𝑚 at a 
time 𝑡𝑘 

𝒕𝒌 Time step 𝑘 𝑾𝑷𝒌 Workload profile 𝑘 
𝑻𝑭 Time amplifier for 

workload 
𝑻 
𝑻𝒔, 𝑻𝒖 , 𝑻𝒘 

Time period: 
simulation, utilization, 
workload  

𝑻𝒄𝒂𝒔𝒆 Processor case 
temperature 

𝑷𝒎, 𝑷𝒊, 𝑷𝒄, 𝑷𝒖 Performance counters 
of memory bus 
transactions, 
instructions, clock 
cycles, last-level 
cache references 

  𝑲𝟎, 𝑲𝟏, 𝑲𝟐, 𝑲𝟑, 
𝑲𝟒, 𝑲𝟓, 𝑲𝟔 

Coefficients 
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The external domain does not consider the energy supply system itself, because the server 

location sets the supply voltage 𝛼𝑣𝑜𝑙𝑡253. We address the environmental conditions 𝛼 =

{𝛼1, 𝛼2, … , 𝛼𝑘}. The customer cannot change the thermal conditions254 𝛼𝑡𝑒𝑚𝑝, but can limit the 

exhaust system temperature 255 . Therefore, our concept considers exterior constraints 

𝜂 = {𝜂1, 𝜂2, … , 𝜂𝑘}, which are parameters of the management and optimization strategies. 

Another major aspect of the external domain is the application software (𝑆𝑊) which the 

server executes. The workload 𝑊 stimulates the system, whereby we consider the software-

related settings 𝜉 and the utilization time 𝑇𝑢. The external domain is a set of the software 

characteristics, the environmental characteristics, and the exterior constraints, see Equation 

(5.139) and Figure 62. 

𝛼 = {𝛼𝑣𝑜𝑙𝑡, 𝛼𝑡𝑒𝑚𝑝, … , 𝛼𝑜𝑡ℎ𝑒𝑟𝑠} = {𝛼1, 𝛼2, … , 𝛼𝑘}, 𝛼𝑙 ∈ 𝛼 (5.138) 

𝐸𝑋 = {𝛼, 𝜂, 𝑆𝑊}, 𝑆𝑊 = {𝑊, 𝜉, 𝑇𝑢} →  𝐸𝑋 = {𝛼, 𝜂,𝑊, 𝜉, 𝑇𝑢}  (5.139) 

 

 
Figure 62: Externals 

State-of-the-art, full-system approaches [Bel 2000, BJ 2003, FWB 2007, CBB et al. 2010, KJC et 

al. 2014] do not consider customer changes or disturbances during the simulation. In addition, 

state-of-the-art, full-system power models have in common that these approaches are not 

aware of external constraints, such as thermal conditions or limits provided by the customer.  

5.3.1 Environment Characterization and External Constraints {𝜶, 𝜼} 

The approaches in [Bel 2000, JM 2001, MPL 2009] trace application software to optimize the 

system under specific conditions, but do not concentrate on the physical environment or their 

external influences. In [BKW et al. 2003, WB 2004, MB 2006], the thermal algorithm considers 

the ambient temperature as an offset. The algorithm in [RL 2007] uses the system 

temperature, but does not consider the fan characteristics and thermal development. We 

consider the external temperature in our approach, which is relevant to the fan power and 
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 Supply voltage: not modifiable, PSU efficiency differs at 220V in comparison to 120V 
254

 Thermal conditions: systems inlet / ambient temperature 
255

 Exhaust temperature: maximal acceptable temperature because of a limited air-conditioning system 
(HVAC) 
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system temperature. The inlet temperature warms the components because the fans suck air 

from the chassis front inside the system. An input parameter of the simulation model is the 

ambient temperature 𝛼𝑡𝑒𝑚𝑝, which we differentiate into a global system temperature 𝛼𝑡𝑒𝑚𝑝𝑆𝑌
 

and into the local temperatures 𝛼𝑡𝑒𝑚𝑝𝐶𝑖
 of each component 𝐶𝑖. 

𝛼𝑡𝑒𝑚𝑝 = {𝛼𝑡𝑒𝑚𝑝𝑆𝑌
, 𝛼𝑡𝑒𝑚𝑝𝐶1

, 𝛼𝑡𝑒𝑚𝑝𝐶2
, … , 𝛼𝑡𝑒𝑚𝑝𝐶𝑚

} , 𝛼𝑡𝑒𝑚𝑝𝐶𝑖
∈ 𝛼 (5.140) 

The vendor specifies each component by a thermal operating condition, which ensures the full 

functionality.  

𝜂 = {
𝑢𝑝𝑝𝑒𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  
𝑢𝑝𝑝𝑒𝑟 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 

𝑙𝑖𝑚𝑖𝑡 (5.141) 

If the component reaches an upper limit, the component shuts down to ensure reliability. 

Otherwise, the component might be damaged as described in Section 3.6. For each component 

we consider two upper thresholds, defined as a critical limit and a warning limit256. Besides the 

component temperature, the vendor specifies the system temperature.  

𝜂 = {𝜂𝑝𝑜𝑤𝑒𝑟, 𝜂𝑡𝑒𝑚𝑝, … , 𝜂𝑜𝑡ℎ𝑒𝑟𝑠} = {𝜂1, 𝜂2, … , 𝜂𝑘}, 𝜂𝑙 ∈ 𝜂 (5.142) 

𝜂𝑝𝑜𝑤𝑒𝑟 = 𝜂1 = {
𝑢𝑝𝑝𝑒𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  
𝑢𝑝𝑝𝑒𝑟 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 

𝑙𝑖𝑚𝑖𝑡 (5.143) 

𝜂𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝜂2 = {
𝑢𝑝𝑝𝑒𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  
𝑢𝑝𝑝𝑒𝑟 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 

𝑙𝑖𝑚𝑖𝑡 (5.144) 

𝜂𝑘 = {𝜂𝑘𝑆𝑌, 𝜂𝑘𝐶1
, 𝜂𝑘𝐶2

, … , 𝜂𝑘𝐶𝑚
} , 𝜂𝑘𝐶𝑖

∈ 𝜂 (5.145) 

A server system usually works in a temperature range from 20°𝐶 up to 40°𝐶. We address the 

upper system temperature as a critical temperature at 40°𝐶. In [Lin 2009] the authors state 

that a resource has an upper thermal limit of +90°𝐶 to work as designed, otherwise the device 

error-rate increases significantly. We differentiate in global system limits 𝜂𝑘𝑆𝑌  and local 

component limits 𝜂𝑘𝐶𝑖
 for each external constraint 𝜂𝑘. We create a two-dimensional array, 

which includes the external constraint 𝜂𝑘 in the first dimension, and the system components 

𝐶𝑖  in the second dimension. The thermal design power (TDP) commonly specifies the 

processors’ upper critical power limit, whereby the upper warning limit is a range between 80 

or 90 percent of the critical power.  

𝜂𝑝𝑜𝑤𝑒𝑟𝑝𝑟𝑜𝑐 = {
𝑇𝐷𝑃                                      
[0.8 ∗ 𝑇𝐷𝑃…0.9 ∗ 𝑇𝐷𝑃] 

 (5.146) 
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 Limits: A liquid cooling approach requires the lower limits (critical and warning) to ensure working 
conditions. 
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The thermal thresholds result from the power consumption, the system airflow, and an 

adjustment of the component. We assume that the upper critical temperature 𝑚𝑎𝑥 (𝑇𝑐𝑎𝑠𝑒) is 

linearly proportional to the ratio between 𝑃𝑚𝑖𝑛 and 𝑇𝑐𝑎𝑠𝑒. The curve gradient 𝑚𝑔 depends 

upon the component material.  

𝜂𝑡𝑒𝑚𝑝𝑝𝑟𝑜𝑐
= 𝑓(𝑚𝑔, 𝜂𝑝𝑜𝑤𝑒𝑟𝑝𝑟𝑜𝑐

, 𝑇𝑐𝑎𝑠𝑒) (5.147) 

Figure 63 shows the processor’s upper critical temperature 𝑚𝑎𝑥 (𝑇𝑐𝑎𝑠𝑒), which directly derives 

from the TDP value. 

 
Figure 63: Thermal profile diagram [Int 2014] 

Therefore, for each server system the vendor specifies a critical or warning temperature. 

Equation (5.148) shows the upper thermal and power limits of an Intel Xeon processor E5-

2603v2257. The memory vendor defines the commercial temperature in the spreadsheet of 

each module.  

𝜂𝑝𝑜𝑤𝑒𝑟𝑝𝑟𝑜𝑐
= {
 80𝑊   
70𝑊  

, 𝜂𝑡𝑒𝑚𝑝𝑝𝑟𝑜𝑐
= {
 90°𝐶   
70°𝐶  

 (5.148) 

In [BHS 1998], the environment includes the system workload 𝑊 without any limits. We 

extend the approach by using the external constraints 𝜂 and the ambient temperature 𝛼.  

5.3.2 Software Characterization {𝑾, 𝝃, 𝑻𝒖} 

Our concept supports various application software considering diverse designs and 

architectures independent of the hardware configuration. We characterize the software by a 

workload model, which represents processes or refers to functions. The authors of [BHS 1998] 

explain that the precise accesses to resources are unknown in the early design stage of the 

system. A specification at a highly detailed access level results in a too slow simulation. 

Therefore, the authors define the external environment as requests and the components as 

resources. We abstract the software variations and their heterogeneous tasks into utilization 

levels, which are unknown at this abstraction level. We cover high-intensity and low-intensity 

workload phases in our workload model because the server workload varies over the time 
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 Processor power and thermal limits (profile): defined in a thermal design guideline [Int 2014] 
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from seconds to days, see Figure 27. Our workload model has to support the software 

variability on a flexible timescale that considers synthetic workloads, such as benchmarks, to 

emulate various server usages. More specifically, we follow the concept of [RL 2007], which 

monitors diverse application software to include the utilization-based traces as simulator 

stimuli. The synthetic workload provides a simple comparison between the simulation and the 

real system, which is reproducible at any time [IM 2003, Riv 2008, BGM et al. 2010]. Common 

full-system simulators [RHW et al. 1995, Her 1998, GSI et al. 2002, MCE et al. 2002, CDS 2003, 

HSW et al. 2004, RL 2007, Lan 2007] characterize particular software as instruction sets or 

trace the utilization levels from artificial benchmarks. The authors of [YSY et al. 2011, KJC et al. 

2014] describe the workload using specific instructions, operations, or cycle-accurate tracings 

of various tasks. The instruction-based approach in [BC 2010] is adequate in its accuracy, but 

the approach depends upon the explicit hardware and its architecture. The authors of [Che 

2006] conceive an instruction-based processor model, whereby the memory, cache, and 

peripherals rely upon the system accesses. We abstract the specific instructions, accesses, and 

operations by a flexible workload considering diverse utilization levels, which encapsulate the 

software requests from the hardware architecture to reduce the simulation complexity. As a 

result, we provide a ratio between the floating-point or integer instructions. We differentiate 

the processor operations because of their diverse performance results and power 

consumptions. We specify the workload independent of the operating system, but with regard 

to the standardized synthetic benchmarks, which utilize the components at various levels. We 

define workload scenarios to an abstract of an explicit usage, with the premise of the 

scalability and flexibility.  

Moreover, we address the worst-case workload, which the industrial tools of Dell, Fujitsu, HP, 

and IBM commercial use. In addition, we offer customer-specific use case scenarios, which can 

be real application traces or an estimated workload behavior. The realistic workloads support 

the power and over-estimation reduction because of the significant difference between worst-

case assumption and authentic behavior. We define weight coefficients for high-intensive, 

medium-intensive, or low-intensive utilization levels to integrate diverse application software, 

and their topology, hierarchy, generation, or architecture. 

At first, we gather our resources, which rely upon various request types. As a result, we classify 

the workloads into resource-bounded utilization levels. Secondly, we develop heterogeneous 

workload scenarios, which cover the use cases of the industrial tool as well as the academic 

approaches. Herein, we consider the complex system interactions, which result in any mutual 

influence of resource utilization. In the next step, we consider the software-based setting, 

which depends upon the explicit workload or describes influences that do not rely upon the 

software execution.  
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5.3.2.1 Resource Clustering 

The purpose of the system can change during the life cycle. In a virtualized environment, the 

data center manager schedules the services and tasks just in time, finally scheduling the 

requests in any manner, because of fluctuating customer demands. We cannot predict the 

data center scheduling or resource planning techniques in an early design stage. Data center 

resource planning tools autonomously shift virtual machines from one server to another. For 

that reason, state-of-the-art, full-system simulators decouple the workload from the physical 

domain using utilization levels instead of instructions or transactions. The vendors characterize 

the system independently of how and for what purpose the system is used.  

The abstract utilization-based scenarios in [Riv 2008, RRK 2008] consider the explicit hardware, 

whereby the software profiles are based upon the performance counters 𝑃𝑚,  𝑃𝑖 , 𝑃𝑐 , 𝑃𝑢, which 

correspond to the number of memory bus transactions, the number of instructions retired, the 

unhalted clock cycles, and the number of last-level cache references. The authors use the 

coefficients 𝐾𝑖 to quantify the processor or disk utilization, including the memory-related 

instructions and transitions. The resource-specific addition or subtraction results from the 

exact workload scenario. A processor-bounded workload includes less disk utilization in 

comparison to a memory-bounded workload. 

𝑃 = 𝐾0 ∓ 𝐾1 ∗ {
𝑢𝑝𝑟𝑜𝑐

max(𝑢𝑝𝑟𝑜𝑐)
}
1

∓ 𝐾2 ∗
𝑢𝑑𝑖𝑠𝑘

max(𝑢𝑑𝑖𝑠𝑘)
  

 ∓𝐾3 ∗
𝑃𝑚

max (𝑃𝑚)
∓ 𝐾4 ∗

𝑃𝑖

max (𝑃𝑖)
∓ 𝐾5 ∗

𝑃𝑐

max (𝑃𝑐)
∓ 𝐾6 ∗

𝑃𝑢

max (𝑃𝑢)
 (5.149) 

Performance counters are specific to the architecture, generation, and family. Therefore, we 

avoid them to conceive a generic model. The full-system simulation in [RL 2007] uses resource-

bounded utilization levels without performance counters. The authors concentrate upon 

processor-bounded workloads, which is state-of-the-art in the industrial tools. The authors of 

[GFN et al. 2006] define the common resources as a set of components 𝐶.  

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚},  𝐶𝑖  ∈ 𝐶 (5.150) 

The authors of [ERK 2006] utilize especially the resources processor, memory, disk, and 

network, as shown in Table 32. The authors of [ERK 2006, Riv 2008] define resource-bounded 

utilization levels. 

Table 32: Definition 𝑪𝒊 

Terms 𝑪𝒊 Component 

𝑪𝟏 = 𝒑𝒓𝒐𝒄 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 
𝑪𝟐 = 𝒎𝒆𝒎 𝑚𝑒𝑚𝑜𝑟𝑦 
𝑪𝟑 = 𝒅𝒊𝒔 𝑑𝑖𝑠𝑘 
𝑪𝟒 = 𝒏𝒆𝒕 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 
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In [GFN et al. 2006], every component is a set of sub-components. In general, we group the 

resources into the categories 𝐶𝑆  to support flexible utilization types. Each category 𝐶𝑆𝑖 

consists of a set of components 𝐶𝑖  ∈ 𝐶 to cover heterogeneous application software or 

benchmark behavior, which utilizes various components.  

𝐶𝑆 = {𝐶𝑆1, 𝐶𝑆2, … , 𝐶𝑆𝑚}, 𝐶𝑆𝑖 ∈ 𝐶𝑆  (5.151) 

𝐶𝑆𝑖 = {𝐶1, 𝐶2, … , 𝐶𝑚}, 𝐶𝑖 ∈ 𝐶𝑆𝑖 (5.152) 

We restrict ourselves to the categories processor, memory, input/output, fan, and others 

(𝐶𝑆 = {𝑝𝑟𝑜𝑐,𝑚𝑒𝑚, 𝑖𝑜, 𝑓𝑎𝑛, 𝑜𝑡ℎ}) to cover category-bounded workload types. The industrial 

tools address processor-bounded workloads. The authors of [RRK 2008] differentiate into 

processor-intensive and non-processor-intensive workloads. Inside [YP 2009], the authors 

distinguish into computational-bounded and memory-bounded workloads. The authors of [BC 

2010] classify the workloads into processor-bounded and input/output-bounded processes. 

We differentiate non processor-intensive workloads into memory-bounded and I/O-bounded 

ones to cover a realistic workload and have a workload suitable for synthetic benchmarks. 

Table 33: Definition 𝑪𝑺𝒊 

Terms 𝑪𝑺𝒊 Categories 

𝑪𝑺𝟏 = 𝒑𝒓𝒐𝒄 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 
𝑪𝑺𝟐 = 𝒎𝒆𝒎 𝑚𝑒𝑚𝑜𝑟𝑦 
𝑪𝑺𝟑 = 𝒊𝒐 𝑖𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡 
𝑪𝑺𝟒 = 𝒇𝒂𝒏 𝑓𝑎𝑛 
𝑪𝑺𝟓 = 𝒐𝒕𝒉 𝑜𝑡ℎ𝑒𝑟 

 

If we consider the approach of [ERK 2006], then the category 𝐶𝑆3 considers the components 

𝐶3 = 𝑑𝑖𝑠𝑘 and 𝐶4 = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.  

𝐶𝑆3 = {𝐶3, 𝐶4} = {𝑑𝑖𝑠, 𝑛𝑒𝑡} (5.153) 

In our concept, we simplify the category into the related components 𝐶𝑆1 = 𝐶1 and 𝐶𝑆2 = 𝐶2 

for our exact server configuration. We do not cover the sub-components of 𝐶𝑆3, because we 

abstract from the network communication to reduce the complexity. We consider the 

utilization of 𝐶𝑆4 components in the thermal model. The category 𝐶𝑆5 primarily covers the 

mounted system-board components, which build the base power. We categorize our 

utilization levels for each defined category 𝐶𝑆𝑖 ∈ 𝐶𝑆, whereby we do not cover the fans.  

𝑢𝐶𝑆 = {𝑢𝑝𝑟𝑜𝑐 , 𝑢𝑚𝑒𝑚, 𝑢𝑖𝑜, 𝑢𝑜𝑡ℎ} = {𝑢𝐶𝑆1 , 𝑢𝐶𝑆2 , … , 𝑢𝐶𝑆𝑚} (5.154) 

As a restriction, our utilization-based approach is not able to cover memory allocation 

techniques or access patterns on the physical domain, as shown in [YVK et al. 2000, Bel 2001, 

SBM 2009, HCE et al. 2011, RAK et al. 2013, LSQ et al. 2014]. 
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5.3.2.2 Workload Scenarios and Profiles {𝑾, 𝑻𝒖} 

We characterize application software concerning the power, thermal, and performance 

characteristics. We use the category-specific utilization levels 𝑢𝐶𝑆 to create a workload 𝑊, 

which stimulates the simulation model. A workload scenario consists of diverse profiles that 

consider various utilization levels. We enhance the approach of [ERK 2006, BJ 2007, Riv 2008] 

considering customer-specific scenarios in our profiles. The workload is configurable by the 

customer on the basis of the category-specific utilization levels at a time resolution of a 

minimum of one second. Our aim is to achieve an average, minimum, or maximum utilization 

of the components to create a realistic image of application software. We can balance the 

utilization levels to present the workload variations. The same approach is suitable to emulate 

synthetic benchmarks. 

The industrial tools concentrate upon processor-bounded 𝑢𝐶𝑆 = {𝑢𝑝𝑟𝑜𝑐} workloads. Academic 

approaches use additionally memory-bounded 𝑢𝐶𝑆 = {𝑢𝑚𝑒𝑚}  workloads because of the 

synthetic benchmark-based evaluation. We do not concentrate upon I/O-bounded workload 

𝑢𝐶𝑆 = {𝑢𝑖𝑜} as done in [BC 2010], but consider the corresponding utilization levels in our 

workload definition. We consider the processor operation type (floating-point, integer) and 

memory access type (read, write) but do not involve the exact instructions. We assume 

category-specific details in the software settings 𝜉. We generalize the concept of [Riv 2008], 

the flexible configuration of categories, and related utilization levels, which we map to the 

specific components in dependence on their characteristics. We merge the diverse category-

bounded utilization types to consider and reflect an image of the customer-specific workload 

scenarios. We cover a steady workload to reproduce the industrial benchmarks and consider 

changing workloads to support academic approaches.  

According to [BHS 1998], we characterize the application software as a series of external 

requests over time. We use a time resolution of ∆𝑇 = 𝑡2 − 𝑡1 ≥ 1𝑠 between two utilization 

levels because a smaller time scale creates more computational effort and results in a long 

simulation time. The processor changes the frequency within a microsecond or millisecond, for 

instance. We have to calculate the aspect 𝐴𝑗 at every time step 𝑡𝑘, which increases the 

computation time. The system sensors, especially the temperature sensors, work within 

seconds because of the bus latency and bandwidth. In addition, the component and thermal 

inertia guide at a time schedule bigger than one second does. Our approach does not cover a 

workload in a 24-hour or weekly time base, because of the resulting storage demands. We 

assume a workload of a maximum of one hour. We specify for each point in time 𝑡𝑙 the 

category-specific utilization levels 𝑢𝐶𝑆𝑖 in 𝑈⃗⃗ 𝑡𝑘. We conclude the utilization levels 𝑈⃗⃗ 𝑡𝑘 for a time 

𝑇𝑢 = ∑ 𝑡𝑘
𝑙
0  to define a time-annotated workload scenario 𝑊𝑇𝑢. We generalize the workload 

𝑊𝑇𝑢 into a two-dimensional array 𝑊, whereby the first dimension is the time 𝑇𝑢 and the 

second dimension is the specific category-based utilization levels.  
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𝑈⃗⃗ 𝑡𝑘 = {𝑢𝐶𝑆1 , 𝑢𝐶𝑆2 , … , 𝑢𝐶𝑆𝑚} at 𝑡𝑘 , 𝑡𝑘 ∈ 𝑇𝑢  (5.155) 

𝑊𝑇𝑢 = (𝑈⃗⃗
 
𝑡1 , 𝑈⃗⃗
 
𝑡2 ,⋯ , 𝑈⃗⃗

 
𝑡𝑘) (5.156) 

𝑊 = (𝑤𝑖𝑙) = (

𝑢11
𝑢21
⋮
𝑢𝑚1

𝑢12
𝑢22
⋮
𝑢𝑚2

……
⋱
⋯

𝑢1𝑘
𝑢2𝑘
⋮
𝑢𝑚𝑘

) ;  𝑖,𝑚 ∈ 𝐶𝑆;  𝑙, 𝑘 ∈ 𝑇𝑢 (5.157) 

𝑊 = (𝑤𝑖𝑙) =

(

 
 

𝑢𝑝𝑟𝑜𝑐𝑡1
𝑢𝑚𝑒𝑚𝑡1
𝑢𝑖𝑜𝑡1
𝑢𝑜𝑡ℎ𝑡1

𝑢𝑝𝑟𝑜𝑐𝑡2
𝑢𝑚𝑒𝑚𝑡2
𝑢𝑖𝑜𝑡2
𝑢𝑜𝑡ℎ𝑡2

⋯
⋯
⋯
⋯

𝑢𝑝𝑟𝑜𝑐𝑡𝑘
𝑢𝑚𝑒𝑚𝑡𝑘
𝑢𝑖𝑜𝑡𝑘
𝑢𝑜𝑡ℎ𝑡𝑘 )

 
 
;  𝑖,𝑚 ∈ 𝐶𝑆;  𝑙, 𝑘 ∈ 𝑇𝑢 (5.158) 

A scenario 𝑊𝑇𝑢  can include multiple workload profiles 𝑊𝑃 = {𝑊𝑃𝑇1 ,𝑊𝑃𝑇2 , … ,𝑊𝑃𝑇𝑘} , 

whereby 𝑇𝑢 = ∑ 𝑇𝑘
𝑢
𝑘 . We divide a time 𝑇𝑖 into 𝑙 steps 𝑇𝑖 = ∑ 𝑡𝑙

𝑙
0 .  

𝑊𝑃𝑇1 = (

𝑢10
𝑢20
⋮
𝑢𝑚0

𝑢1(𝑘/𝑙)
𝑢2(𝑘/𝑙)
⋮

𝑢𝑚(𝑘/𝑙)

……
⋱
⋯

𝑢11
𝑢21
⋮
𝑢𝑚1

) ;  𝑚 ∈ 𝐶𝑆;   𝑘, 𝑙 ∈ 𝑇𝑢 (5.159) 

We define full utilization of a component by 𝑢𝐶𝑆 = 100% and define the component idle state 

as the minimal utilization level 𝑢𝐶𝑆 = 0%. The utilization levels define the component usage in 

relation to its maximal available physical working capacity 
𝑢𝐶𝑆𝑖

max (𝑢𝐶𝑆𝑖)
. A utilization level is the 

percentage of time the component spends doing work in contrast to being idle. The workload 

can completely utilize single or multiple components up to 100%. A full-system utilization has 

at least one utilization level 𝑢𝐶𝑆𝑖 at 100%, which we define as a 𝐶𝑆𝑖-bounded workload. We 

support various profiles, such as processor-bounded workloads, which are configurable by the 

customer and related to the category-specific profiles. 

The customer specifies the workload profile 𝑊𝑃𝑇𝑘  at a time 𝑇𝑤 of any 𝑢𝐶𝑆𝑖. Our scenario might 

have a longer utilization time 𝑇𝑢 in comparison to 𝑇𝑤. We assume that the utilization values 

𝑈⃗⃗ 𝑇𝑢 are constant in the interval between 𝑇𝑤 up to 𝑇𝑢. Moreover, our scenario 𝑊𝑇𝑢 might 

consist of various benchmarks, which have a smaller time period 𝑇𝑢 in comparison to the 

required simulated time 𝑇𝑠. It is vital that we close the gap between 𝑇𝑠 and 𝑇𝑢. We suggest two 

utilization-based approaches; at first, we reuse the last utilization values 𝑈⃗⃗ 𝑇𝑢 and consider 

steady values up to 𝑇𝑠. Second, the utilization values from the first-time interval recursively fill 

the gap. Alternatively, the customer can define and amplify each utilization time step 𝑡𝑘 using 

a time factor 𝑇𝐹 to reduce the gap between 𝑇𝑢 and 𝑇𝑠. We equidistantly expand the time of the 

previous utilization levels.  
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We conceive a time-based workload that generates the simulation stimuli considering various 

category-specific utilization levels of diverse application software or benchmarks. Our 

utilization generator, see Figure 64, supports steady and continuous workload scenarios. We 

expand the industrial steady-state scenarios by extending novel dynamic profiles, whereby we 

flexibly annotate timing for successive scenarios. We emulate a real customer-specific 

workload, which we simulate for the server configuration. 

In contrast, our workload does not consider the fine-grained transactions of each component. 

Our concept neglects the impact of diverse batch sizes, transaction mixes, threads, or queue 

categories258, which the authors in [KGS 2008] observe. We propose a flexible workload model 

considering the category-specific utilization levels, which we restrict to cover the real behavior 

of diverse benchmarks or application software. 

 
Figure 64: Workload model contribution 

5.3.2.3 Software-based Influences and Settings 𝝃 

In the early design stages, we do not know about the implicit read or write accesses of a 

memory-intensive workload. We cannot predict the processor floating-point or integer 

instructions for novel systems.  

The authors in [Fuj 2011] state that using a Windows operating system (OS) consumes 

approximately twenty percent less than the same system using a Linux OS when executing the 

identical SPECpower benchmark. Both OS are not comparable, because of their architecture or 

background threads. The Microsoft Windows OS provides a complete ACPI support, which 

enables all processor states. In contrast, some Linux OS versions cannot control the processor 

in the same detailed manner. The customer chooses any operating system259 for the server 

system. In the work of [RHW et al. 1995, Her 1998, Lan 2007] the models are exact OS images 

                                                           
258

 Queue categories: single vs. multiple 
259

 Operating systems: popular server OS are Red Hat Enterprise Linux (RHEL), SUSE Linux Enterprise 
Server (SLES), and Windows Server, for instance 
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including explicit operations to support the resource optimization. The authors of [TRJ 2005] 

analyze the OS to optimize the power consumption on the basis of executed instructions and 

interactions. We cannot apply these approaches for a generic model, as each OS and system 

generation handles the tasks differently because of the system architecture. The complexity, 

the amount of possible OS, and the measurements lead to extra efforts. Therefore, we 

abstract the OS and exclude precise OS models, which require a millisecond resolution. We 

decide to include the OS type as a global external simulation setting 𝜉1, which is independent 

of the internal architecture and instructions. We do not further investigate on the explicit OS-

dependent power consumption, but consider the fact obtained from the empirical analyses of 

Fujitsu [Fuj 2011] that a Microsoft Windows OS consumes less power than a similar Linux 

operating system because of the extensive ACPI support that highly efficient handle the 

different power states. We consider an OS-specific correction factor in our total power 

calculation, which the customer specifies as an empirical and static simulation parameter.  

The BIOS/UEFI settings influence the energy efficiency of the server system [KGS 2008, Fuji 

2010]. The authors in [EM 2010] present that a Turbo Mode “…, will evaluate the utilization of 

the CPU and will not engage unless additional performance has been requested by the OS for a 

period of 2 seconds.” This power optimized processor setting is significant for workloads with a 

dynamic frequency scaling. The customer can only change the BIOS/UEFI settings when the 

server system is off. For instance, the customer configures the virtualization support, which 

enables additional processor states. As stated in Section 3, academic and industrial approaches 

do not cover such details, because the authors assume and analyze fixed settings. We consider 

the hardware-based BIOS/UEFI settings 𝜉2 as a software configuration, which enables a rapid 

assessment of the energy efficiency effect. Alternatively, we can use the settings as a static 

input simulation parameter, which needs multiple simulation runs. The same demand is 

observable for the firmware settings. The customer can change the power and thermal limits 

𝜉𝑙𝐶𝑖
 in the firmware, which directly influences the power management techniques. We 

characterize the software-based settings as a two-dimensional array, whereby the first 

dimension specifies the kind 𝑙 and the second dimension defines the related component 𝐶𝑖.  

𝜉 = {𝜉1𝐶1
, 𝜉2𝐶2

, … , 𝜉𝑘𝐶𝑚
} , 𝜉𝑙𝐶𝑖

∈ 𝜉 (5.160) 

𝜉1 = 𝜉𝑂𝑆,   𝜉2 = 𝜉𝐵𝐼𝑂𝑆/𝑈𝐸𝐹𝐼 ,   𝜉3 = 𝜉𝐹𝑊,   𝜉4 = 𝜉𝑆𝑊 (5.161) 

Figure 65 shows the environmental conditions, external constraints, and the software, which 

includes the workload model and their corresponding settings.  
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Figure 65: Server system externals 

We encapsulate the externals from the explicit system configuration and use the software 

application space, defined as workload 𝑊, to stimulate the server system considering the 

software settings 𝜉 , the environmental conditions 𝛼 , and the external constraints 𝜂 . It 

altogether builds the externals 𝐸𝑋, see Equation (5.162). We map the externals to the 

concrete system platform by 𝑀𝑆𝑌
𝐸𝑋 in the process and control layer. We concretely scale the 

utilization levels to the system components that rely upon their quantity and characteristics. 

For instance, the customer specifies a processor utilization level at 100 percent. We configure 

the 100 percent for all processors within the system. We have to adapt the utilization level 

when we change the processor characteristics or disable a processor. The authors of [SM 2001] 

map the software to the hardware platform using the network communication. The externals, 

especially the application software, define the ordered sequence of actions which the 

simulation has to perform considering the constraints 𝛼 and 𝜂. 

𝐸𝑋 = {𝛼, 𝜂,𝑊, 𝜉, 𝑇𝑢}  (5.162) 

 
Figure 66: Externals and system 

The externals define the environmental conditions, external simulation constraints, 

customization parameter of the simulation model, and the customer-specific workload 

scenario. 
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5.4 Server System Optimization 𝑭𝑺 = {𝑬𝑿, 𝑺𝒀} 
We create the simulation model on the basis of the operational models in Section 5.2 to find a 

set of solutions (Pareto front) across the flexible workload scenarios, see Section 5.3. The 

simulation run considers a customer-specific, exact workload scenario, and a server system 

configuration. We do not dedicate the simulation to an explicit server system or particular 

operating system, as done in [RHW et al. 1995, GSI et al. 2002, HSW et al. 2004]. Our 

simulation framework supports the variance of server systems and generations on the basis of 

a flexible configuration and characterization. Our aim is to find at least one optimal solution 

concerning an energy efficiency ratio. We consider a set of parameters – decision variables – 

forming the design space of our optimization strategy. The nomenclature in Table 34 and Table 

35 briefly list the symbols of this section.  

Table 34: Nomenclature – server system simulation (𝑰) 

Nomenclature Meaning  Nomenclature Meaning 

𝑨 Aspect 𝒊, 𝒋, 𝒏,𝒎, 𝒌, 𝒍 Index  
𝑪 Component 𝑵𝟎 Any natural number  

𝑁0 = {0,1,2,3,… } 
𝑪𝑺 System-board 

category 
(  ≡ components) 

𝜶, 𝜶̂ Environment conditions 

𝑪𝑳 Classes 𝜹, 𝜹̂ Communication 

𝑺𝒀 System 𝜸, 𝜸̂ Management techniques 
𝑭𝑺 Full-system 

simulation and 
optimization 

𝝃 Software-based settings 

𝑨𝑪 Architecture 𝜺 Simulation results 
𝑪𝑪 Connectors 𝜼 External constraints 
𝑬𝑬, 𝑬𝑬𝑩𝑨𝑺𝑬 Energy efficiency 𝝊 Internal constraints 
𝑷𝑶 Power 𝝌 Simulation constraints 
𝑷𝑬 Performance 𝝈 Abort criterion 
𝑻𝑯 Thermal 𝒙, 𝒙̌ Decision variable, 

modified 
𝒑𝒓𝒐𝒄 Processor 𝑳𝟏 First level of a certain 

tree 
𝒎𝒆𝒎 Memory 𝜽 

𝜽𝑹, 𝜽𝑪, 𝜽𝑺 
𝜽𝑻𝑺, 𝜽𝑪𝑺 

Configuration tree 
(HW,SW) 
released, customer-
specific, system-
compatible  
technical specification, 
characteristics 

 



Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based 

Approach (MFSMOS) 

 

 

 
219 

 

Table 35: Nomenclature – server system simulation (𝑰𝑰) 

Nomenclature Meaning  Nomenclature Meaning 

𝒊𝒐 Input/output 𝜽𝑪
𝒍 , 𝜽𝒌

 
𝑪
𝒍  

𝜽𝑪
𝒍 (𝒙) 

Customer-specific 
configuration at 
iteration 𝑙, time step 𝑘, 
and decision variable 𝑥 

𝒐𝒕𝒉 Others 𝒇𝒎𝒊𝒏, 𝒇𝒎𝒂𝒙 Minimal and maximal 
frequency 

𝑴𝑨𝑺𝑪 Aspect-based 
models per 
component 

𝒖⃗⃗ 𝒎 = 𝒖𝑪𝑺𝒊  

𝒖⃗⃗ 𝒕𝒌  

Utilization level of 
component category 𝑚 
time step 𝑡𝑘 

𝑨𝒋𝑪𝒊
 Element in matrix 

𝑀𝐴𝑆𝐶  
𝒘𝒊𝒍 
𝑾,𝑾𝑻𝒖 

Workload for 
component 𝑖 at a time 𝑡𝑘 

𝑭𝑨𝒋𝑪𝒊
 Functional 

description of 
𝐴𝑗𝐶𝑖

 

𝒕𝒌 Time steps  𝑘 

𝑪𝑯,𝑪𝑯𝑻𝑺 
𝑪𝑯𝑪𝑭𝑮

𝑺𝑻 , 𝑪𝑯𝑪𝑭𝑮
𝑫𝒀  

Characteristics: 
technical 
specification, 
static, dynamic 
configuration 

𝑻 
𝑻𝒔, 𝑻𝒖 , 𝑻𝒘 

Time period (timespan) 
simulation, utilization, 
workload 

𝑾𝑭𝑨𝒋𝑪𝒊
𝑪𝑯 , 

𝑾𝑭𝑨𝒋𝑪𝒊

𝑪𝑳𝑻𝑺, 

𝑾𝑭𝑪𝑭𝑮
𝑺𝑻 , 

𝑾𝑭𝑪𝑭𝑮
𝑫𝒀  

Weight 
coefficients:  
component 𝑖, 
aspect 𝑗, and 
their 
characteristics, 
class, static, 
dynamic 

  

 

The constituents of our simulation model are simulation, results, and optimization strategy, 

see Figure 67. Simulation includes the computational cycles to specify the energy efficiency 

ratio under various conditions, whereby the set of decision variables result from the 

optimization strategy block. We analyze the energy efficiency, decide about the management 

techniques, and alter the configuration or characteristics as part of our optimization strategy. 

We observe the power, temperature, and performance of each component as well as of the 

entire server system. We trace the actual decision variables, category-specific utilization levels, 

and the energy efficiency ratio, which the results block presents graphically. The externals 

specify the environmental working conditions of the server system. We consider all simulation 

inputs and parameters as constant during the simulation process, e.g., the environmental 

conditions 𝛼, external constraints 𝜂, and software settings 𝜉. The simulation constraints 𝜒 

define the thermal limits or the maximal utilization level of the components at the same time. 
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Figure 67: Server system simulation constituents 

We concentrate upon an individual workload scenario and an explicit customer-specific server 

configuration 𝜃𝐶  during a simulation run. In our prototype implementation, we limit the 

hardware configuration towards rack-based and tower-based server systems because we want 

to reduce the degree of freedom of the simulation model by specifying the actual system 

architecture. We have to consider the specific slots to mount several devices, which might 

share the input-output devices, or especially the power supply units when we support blade 

servers, see Section 2.4.1. We predefine the server system architecture 𝐴𝐶, communication 𝛿, 

and connectors 𝐶𝐶 in our simulation manually. Our operational models are based on sensor260 

results gained from the empirical analysis of the real system. The latency and bandwidth of the 

sensors restrict the minimal sample time, which we specify on a 1-second basis. In our 

prototype implementation, we restrict the time steps (𝑡𝑘+1 − 𝑡𝑘) to last at least one second 

because we do not consider a cycle accurate or instruction set simulation that would require a 

higher resolution [Her 1998, MCE et al. 2002, CDS 2003, CDS 2007]. In our simulation 

framework, a smaller sample time does not provide more details when we specify time-

discrete and value-discrete stimuli. The sample time should be adequate to ensure the balance 

between the computation time, data size (sample time), and accuracy. If the customer 

specifies the time as hours, we adjust our sample time considering the Nyquist-Shannon 

theorem, see Section 3.2. The workload scenario 𝑊𝑇𝑢 builds the continuous stimuli of our 

simulation, which reproduces the OS-independent, realistic observations, or assumptions of 

the customer-specific applications. The customer specifies for each point of time 𝑡𝑙  the 

category-specific utilization levels 𝑢𝐶𝑆𝑖  in 𝑈⃗⃗ 𝑡𝑘  for a timespan 𝑇𝑢 = ∑ 𝑡𝑘
𝑙
0 , which has (𝑙 − 1) 

discrete steps. The time-based vector of the utilization levels 𝑈⃗⃗ 𝑡𝑘  provides discrete values, 

which we separately consider at each time step 𝑡𝑘 ∈ 𝑇𝑢. We optimize the server system over 

the entire utilization time 𝑇𝑢, which is a long-term261 aim.  

  

                                                           
260

 Sensors: power and temperature sensors 
261

 Long-term: time horizon of hours, days, weeks, or years 
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In the pre-process of the server system optimization we define the set of decision variables on 

the basis of the initial configuration 𝜃𝐶, considering the workload conditions. We restrict the 

set of configurations and characteristics, which may save energy in comparison to the original 

configuration. We initialize the aspect-based calculation methods in 𝑀𝐴𝑆𝐶  and specify the 

base energy efficiency 𝐸𝐸𝐵𝐴𝑆𝐸  assuming 𝜃𝐶. We prepare the calculation methods considering 

the flexible range of values gained from the set of decision variables, which we update during 

the optimization. After a step-based analysis of the energy efficiency ratios, we iteratively 

decide on the alternation of further decision variables relying upon the best admissible local 

solution and their potential improvement. We store the energy efficiency ratios in a 

descending list and update them at each iteration, which is a rudimentary part of the 

optimization strategy. In accordance with an alternation 𝜃𝐶
𝑙 (𝑥), we modify the calculation 

methods262, estimate the energy efficiency 𝐸𝐸(𝜃𝐶
𝑙 , 𝑈⃗⃗ 𝑡𝑘), and analyze the updated values on the 

basis of the previous iteration.  

The energy efficiency ratios and their related configurations are a sequence of local solutions 

because we optimize the server system at each point in time specified as short-term263. In 

principle, we finish our optimization process at a specific time step and advance the time 

whenever we have considered all possible alternatives or combinations of the decision 

variables at this time step. We apply a heuristic to speed up the optimization strategy. At the 

end of our simulation, we consider the ranked lists in descending order sorted by their energy 

efficiency ratios. We analyze the local solutions stored in the lists, considering all time steps in 

𝑇𝑢 to find a long-term global optimum or a set of long-term optimal solutions. In the global 

analysis, we study what solution dominates over the entire simulated time. Figure 68 and 

Figure 69 show the workflow of the optimization process and simulation, which we outline in 

the next sections. 

                                                           
262

 Modification of calculation methods: change configuration-specific and characteristic-specific 
coefficients and values 
263

 Short-term: time horizon within microseconds, milliseconds, seconds, or minutes 
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Figure 68: Workflow of the optimization process and simulation 

 

 
Figure 69: Graphical presentation of the optimization process and simulation 
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5.4.1 Pre-Process 

Before the simulation starts, in the simulation pre-process we define the set of the decision 

variables that form the design space of the optimization strategy. In the first pre-process step, 

we restrict the generic configuration tree 𝜃 to reduce the design space. The tree contains the 

customer-specific configuration 𝜃𝐶 , which is a released configuration, especially for the 

customer order process. In the design phase, we concentrate upon the system-compatible 

configurations.  

We consider the technical specification in 𝜃𝑇𝑆 followed by the characteristics in 𝜃𝐶𝑆, which we 

distinguish among the classes and characteristics. We search the components 𝐶𝑖 of 𝜃𝐶  by a 

breadth-first search (BFS) algorithm at the level 𝐿1 of the generic configuration tree, which 

builds the root type of the technical specification tree. We consider at least one path of each 

category in the generic configuration tree. We split up the trees regarding the categories for 

parallel processing in our simulation model. We skip to the next level of 𝜃 and search all 

possible characteristics and configurations of 𝜃𝐶. We distinguish into the actual settings and 

their alternatives. We reversely start a depth-first search (DFS) algorithm beginning in the 

leaves to find the system-compatible hardware and copy the tree, wherein we remove the 

incompatible configurations by their subtypes, as shown in Figure 70. In this example, the 

actual memory configuration is 𝑆𝐷𝑅𝐴𝑀 𝐷𝐼𝑀𝑀,𝐷𝐷𝑅3,𝐷𝐷𝑅3 − 1600, 𝑃𝐶3 − 12800, which 

exemplarily has the alternative configurations 𝐷𝐷𝑅3 − 1333, 𝑃𝐶3 − 10600  and 𝐷𝐷𝑅3 −

1866, 𝑃𝐶3 − 14900. We always consider system-compatible hardware only, which we can 

release to the customer. The server system specification restricts the hardware, which we can 

assemble into the enclosure. The limitations in the technical specification tree reduce the 

simulation time because of reduced complexity. 

 
Figure 70: System-compatible technical specification tree 
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Our aim in the next phase is to restrict the possible range of characteristics in 𝜃𝐶𝑆, beyond 

which we cannot adjust by our optimization strategy. An example is the frequency range 

[𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥], which we cannot exceed during our optimization. We start the same techniques 

in accordance to the technical specification tree and set the actual leaves as the root type of 

each characteristic tree 𝜃𝐶𝑆. Furthermore, we differentiate between the technical, static, and 

dynamic characteristics, which refer to the respective classes. We sort the classes 𝐶𝐿 by the 

corresponding tree, including the associated characteristics. Finally, we generate a copy of 𝜃 

considering the restrictions on the basis of the customer-specific configuration, as exemplarily 

shown in Figure 71. 

 
Figure 71: Memory tree 

As part of the tree generations 𝜃𝑇𝑆 and 𝜃𝐶𝑆, we annotate the weight coefficients 𝑊𝐹𝐴𝑗𝐶𝑖
𝐶𝐻  of the 

characteristics which we require in the utilization-based functions 𝐹𝐴𝑗𝐶𝑖
within the matrix 

𝑀𝐴𝑆𝐶. We sum up all weight coefficients of one subdivision {𝐶𝐻𝑇𝑆, 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌 } into the 

class-specific weight coefficients.  
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∑𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻𝑇𝑆 = 𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐿𝑇𝑆 = 𝑊𝐹𝑇𝑆 (5.163) 

∑𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻𝐶𝐹𝐺
𝑆𝑇

= 𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐿𝑆𝑇 = 𝑊𝐹𝐶𝐹𝐺
𝑆𝑇  (5.164) 

∑𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻𝐶𝐹𝐺
𝐷𝑌

= 𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐿𝐷𝑌 = 𝑊𝐹𝐶𝐹𝐺
𝐷𝑌  (5.165) 

We generate a set of each subdivision in descending order of their weight coefficients and 

distinguish between the diverse aspects in the energy efficiency. We analyze the characteristic 

and classes that have the most impact upon the energy efficiency ratio and define the 

execution sequence of the optimization strategy. Figure 72 graphically presents the first step 

of the pre-process, which defines the process to set the decision variables. 

 
Figure 72: Pre-process – set of decision variables 
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In the second step of the pre-process, we initialize and execute the aspect-based calculation 

methods in 𝑀𝐴𝑆𝐶. The utilization levels build the base of the power, temperature, and 

performance functions. We consider the utilization levels of the range between [0,100]% and 

provide the base values of each aspect concerning the initial configuration 𝜃𝐶. The aspect-

based ranges have to be defined before the simulation loop starts to speed up the calculation 

of the energy efficiency ratio in relation to the optimization strategy. 

We define the power range of the processor, as described in Equation (5.79), and store the 

results in lookup tables (LUT). We assume a linear relation between the utilization levels and 

the range of power consumption values. We consider the frequency range, see Equation 

(5.73), which we appropriately associate to the power range with a constant voltage. In 

addition, we specify the particular component states, which rely upon the available p-states 𝑘. 

The p-state is minimal when the utilization level is maximal, see Equation (5.168), which 

provides the extreme values, as shown in Equations (5.166) and (5.167). The voltage-frequency 

pair is specific to each p-state and defined by the configuration 𝜃𝐶.  

𝑢𝑝𝑟𝑜𝑐(100%) → 𝑝 − 𝑠𝑡𝑎𝑡𝑒(100%) = 1 (5.166) 

 𝑢𝑝𝑟𝑜𝑐(0%) → 𝑝 − 𝑠𝑡𝑎𝑡𝑒(0%) = 𝑘 (5.167) 

𝑝 − 𝑠𝑡𝑎𝑡𝑒(𝑢𝑝𝑟𝑜𝑐) = ⌈−
𝑘−1

100
∗ 𝑢𝑝𝑟𝑜𝑐 + 𝑘⌉ (5.168) 

We define the power range of the memory module, as described in Equation (5.68), 

considering the concept of [Mic 2007], see Equation (5.62). We group the major 𝐼𝐷𝐷 states to 

be considered into the idle state and the active state, which we further distinguish in the 

refresh mode or read-to-write mode. We define the boundary between the idle and active 

state by a utilization level at 20 percent264 because the memory refreshes the data within the 

active state. We take the read-to-write ratio after reaching the 50 percent utilization level into 

account.  

5.4.2 Simulation Loop 

The aspect-based ranges of the initial configuration 𝜃𝐶  are the basis data of our energy 

efficiency calculation. We specify at each discrete time 𝑡𝑘  the energy efficiency ratio265 

𝐸𝐸(𝜃𝐶
𝑙 , 𝑈⃗⃗ 𝑡𝑘), whereby we assume that 𝑡𝑘 refers to a period [𝑡𝑘 , 𝑡𝑘+1]. We synchronize the 

simulation loop by a discrete time 𝑡𝑘, which the customer specifies in the workload scenario. 

We assume that the utilization levels are constant during our optimization process and 

calculate the energy efficiency ratio 𝐸𝐸(𝜃𝐶
𝑙 , 𝑈⃗⃗ 𝑡𝑘) at each 𝑡𝑘. A special simulation case is the 

first optimization loop, wherein we calculate the energy efficiency ratio 𝐸𝐸𝐵𝐴𝑆𝐸  considering 

the initial configuration 𝜃𝐶  and the decision variables. We set the local optimum to 𝐸𝐸𝐵𝐴𝑆𝐸 , 

                                                           
264

 Boundary at 20 percent: vendor-specific rule of thumb 
265

 Ratio at 𝑡𝑘: a performance-to-power ratio, but if ∆𝑡 → 0 we assume the energy efficiency ratio 
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skip the step-based analysis, and start the alternation process. In the first loop at each 𝑡𝑘, we 

restrict the design space of the decision variables in dependence on the workload. We 

guarantee that we do not have a negative impact on the system performance so that the 

allocated time is always long enough to finish the job, as shown in Equation (5.109), when we 

adjust the characteristics. We remove the characteristics of the tree266 that do not fulfill the 

requirements. We adjust the server configurations or characteristics by the discrete values 

specified as alternative configuration 𝜃𝐶
𝑙 (𝑥), whereby we analyze whether we have improved 

the energy efficiency. We update the configuration of the previous optimization loop and start 

the energy efficiency calculation. In the second optimization loop, we compare the actual 

energy efficiency ratio with the 𝐸𝐸𝐵𝐴𝑆𝐸  and define the local optimum. We define the 

alternation of the decision variables, our optimization strategy, and the step-based analysis in 

Section 5.4.2.1. In principle, we iterate all possible decision variables of the design space, 

which is our final abort criterion. In consequence, we consider all subtypes of 𝜃𝐶𝑆 and 𝜃𝑇𝑆, 

which is a time-consuming process. We define a set of rules in our optimization strategy – 

when to increment 𝑡𝑘 after finding at least one local optimum267. We repeat the procedure of 

the remaining time and stop the simulation when we reach the end of the workload 𝑡𝑘 = 𝑇𝑢. 

We provide a list of the best admissible solutions at each time 𝑡𝑘. We assume that a long-term 

efficient server configuration of the entire workload will save more energy than a locally 

optimized system. In the post-process of our simulation, we analyze the total workload 

scenario and sum up the time intervals of each sectional solution. At the end of our simulation, 

we define the global optimal solution by the configuration 𝜃𝐶
𝑙 , which dominates by the largest 

time. We do not consider the financial aspects, which the customer influences by the ordering 

process. The fastest return on investment (ROI) will be an additional criterion. 

5.4.2.1 Optimization Strategy 

In the following section, we describe our optimization strategy, which specifies the procedure 

to alter the decision variables. In the interests of clarity, we aggregate the software-based as 

well as hardware-based configurations and characterizations in a configuration block. We 

abstract the internal communications and present them as a process block. Our simulation 

reacts upon the customer-specific workload scenario and considers the ambient temperature, 

which together with the configuration block builds the main input parameters. The controller 

observes the energy efficiency ratio, especially the power, temperature, and performance of 

each component 𝐶𝑖 of the time-based utilization levels. Our optimization strategy specifies the 

general procedure, which the controller takes into account. Figure 73 shows the simplified 

schematic of the process and controller within the simulation model. 

                                                           
266

 Remove characteristics: or generate a taboo list 
267

 Local optimum: best admissible 𝜃𝐶
𝑙  considering the adjusted decision variables 
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Figure 73: Simplified schematic of the system 

Our aim is to derive the optimal component or system configuration during the design phase 

or the order process. We manipulate the server system 𝜃𝐶  within the system boundaries268 on 

the basis of the results of the step-based energy efficiency analysis, which evaluates the energy 

efficiency ratio. We choose the decision variables in the alternation strategy and compare the 

optimization-based results. We define the abort criterion, which decides about additional 

alternations. The controller selects the adequate management technique with respect to the 

optimization strategy and the operational modus, which we further describe in the following 

section.  

 
Figure 74: Controller – select, compare, and decide 

                                                           
268

 System boundaries: thermal limits 𝜂 or hardware constraints 
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In principle, our optimization strategy is based upon two cascading phases, which we 

differentiate into the short-term and long-term strategies. We guarantee in the short-term 

strategy, called the primary phase (𝐼), that our changes do not have any negative impact on 

the system or component’s performance: i.e., we follow a purely greedy approach in the 

interests of simplicity. We may escape from local minima of the greedy approach when we use 

a metaheuristic algorithm. Kernighan-Lin, Simulated Annealing (SA), Evolutionary Algorithms 

(EA), or Genetic Algorithms (GA) are iterative approaches that seek a global optimum; either 

use an acceptable probability, or adjust the population269. In our simulation framework to 

reduce the risk of a local minimum, we do not specify an explicit algorithm.  

We specify the primary phase as online270 because we consider the short-term modifications 

when the server system is working. Herein, we prepare the most probable values of the 

decision variables to represent the reality, which form the input parameters of our 

optimization under most realistic conditions. We adjust the dynamic characteristics 𝐶𝐻𝐶𝐹𝐺
𝐷𝑌  

considering the thermal-based and power-based management techniques. We do not 

integrate our primary phase concept into a real server system, because we have to disable a 

couple of features and change the firmware that may result in an unstable server system. The 

internal system sensors limit the execution of our algorithm because of their latency and bus 

bandwidth. The embedded controller does not provide sufficient performance and storage 

capacity to execute our algorithm. Nevertheless, we assume an authentic and dynamic 

behavior of the server system in the primary phase as the basis of our optimization. 

When the server system executes a workload for hours or days, the short-term management 

techniques are insignificant. We assume that an optimized static characteristic 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇  or an 

updated technical specification 𝐶𝐻𝑇𝑆 will save more energy in comparison to the short-term 

optimization. As a contrast to the online phase, we specify the secondary phase (𝐼𝐼) that is an 

offline271 optimization, whereby the changes have indirect influences on the primary phase. 

We adjust the static characteristics or technical specifications, which the customer can 

manipulate only after shutdown or reboot the server system. Figure 75 shows the primary and 

secondary phases of our optimization strategy, which we outline in the following sections. 

                                                           
269

 Adjusting the population: selection, exchange, mutation, or recombination (crossover) 
270

 Online: characteristic changes are possible during the runtime of the server system 
271

 Offline: server system is shut down 
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Figure 75: Optimization strategy phases 

The authors in [FWB 2007] state that the proportional power consumption at all utilization 

levels, beginning at the low-intensive up to the high-intensive phase, is the major indicator to 

optimize the energy efficiency. Therefore, we concentrate upon the power optimization 

considering uncommon-case working conditions, such as low-intensive utilization levels, which 

the academic approaches neglect. Our aim is to decrease the power, meanwhile keeping the 

performance constant at the same time. Alternatively, we decrease the performance 

proportionally less than the power.  

We specify the primary phase under the condition that the server system is active and 

executes a workload. In the first step (𝐼-𝐼), we reduce the system temperature by enabling the 

dynamic thermal management (DTM) techniques, which does not affect any system 

performance up to when we exceed the damage temperature. The thermal control mechanism 

is a core feature of every server system that the system designer specifies in the design phase. 

The globally active mechanism monitors and controls the temperatures of the entire server 

system independently from the OS or utilization levels. The thermal control autonomously 

reacts upon an increasing temperature, which exceeds a predefined threshold and raises the 

cooling airflow according to the fully functional level of the server system. In industrial 

practice, the customer does not change the internal settings of the thermal control. A lower 

system temperature will increase the fan power, which is negligible in comparison to the 

necessary power of the HVAC system in the data center. We control the system and 

component temperatures within the reliability and functional level, which should not exceed 

the damage level. We react immediately when a component temperature reaches the critical 

threshold but considers a time delay when the warning threshold is exceeded. We are aware 

of the thermal limits to avoid the performance loss caused by the temperature. In both cases, 

we enable the thermal control, as shown in Figure 76.  
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Figure 76: Thermal control in the primary phase 

In the thermal control, we decide whether the fan speed control (FSC) or the component 

thermal control is an adequate strategy. In our primary phase, we neglect the component 

thermal control, which influences the performance because of the external limitations. Inside 

the fan speed control, we distinguish into the open-loop (linear fan algorithm, table-driven 

approach) and the closed-loop (proportional integral derivative – PID) control. In our prototype 

implementation, we consider the linear fan algorithm that does not require a continuous 

control process to a target temperature, see Figure 60.  

In the second step (𝐼-𝐼𝐼) of the primary phase, we reduce the power under the condition that 

the performance is not affected, such as a longer execution time. We decrease the fan speed 

to save power as long as the component temperatures are within the thermal limits to ensure 

the functionality, as done in commercial systems. We optimize the power after the 

temperature because of the management techniques that rely upon the OS. We reduce the 

average and peak power of the components by their dynamic characteristics, such as the 

voltage and frequency (DVFS), as autonomously done by every ACPI-based OS, either Windows 

or Linux, for example. We can reduce the frequency without decreasing the performance 

when the system is idle, which is independent of the specific OS. Consequently, we abstract 

the OS in our model and include the corresponding strategies that present the realistic 

behavior. Beneficially, the power consumption is less in comparison to the higher-frequency 

states, which results in a better energy efficiency ratio. We consider the efficient component 

states across the entire server system when we disable, power down, or set the sleep state of 
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the unused components, as done in [RL2007]. We assume that the server system follows the 

DVFS and DTM strategies, which is a standard practice of the ACPI-based OS control. We 

summarize the time-sensitive DTM and DVFS strategies in 𝛾, which optimize the worst-case 

power consumption in a time horizon of seconds or minutes. We consider the global system 

thermal management and the local power management technique at the same time, whereby 

the fraction of the fan power is less in comparison to the component power. On the basis of 

our analysis results, we change the management strategy to optimize the behavior within the 

primary phase. The authors of [FWB 2007] state that a holistic approach is more efficient than 

a successful local optimization of one component. We separately optimize each component 

but are aware of negative impacts on the global system.  

We assume that the thermal as well as power management techniques work as described and 

consider them as the standard procedures in our simulation. If the approaches act differently 

in certain circumstances, we may adjust our primary phase to represent the common usage 

and behavior in a more realistic manner. We control the internal system temperature (𝐴) 

considering the ambient temperature in the dynamic thermal management and change the 

dynamic component characteristics (𝐵) considering the short-term strategies in our primary 

phase, see Figure 77.  
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Figure 77: Primary optimization strategy 

We move on to the secondary phase after finishing the adjustments of the primary phase. The 

following steps of the secondary phase concentrate upon the long-term strategies, which 

optimizes the server system in the early design phase. The most adjustments in the secondary 

phase are applicable when the system is off, especially a couple of the software-based settings 

𝜉. In the first step (𝐼𝐼-𝐼), we disable the features272 before the system starts that do not result 

in performance loss. The customer usually does not disable the hardware-based features, such 

as the processor virtualization273 support of the component, for instance. If the system is not in 

a virtualized environment, the processor virtualization support is negligible and we disable this 

feature to save energy. We adjust other BIOS/UEFI characteristics that are significant to the 

server system energy efficiency ratio but constant over hours or days, particularly in a data 

center. An example is the memory channel configuration, which defines the operating mode274 

of the memory modules.   

                                                           
272

 Disable features: alternatively adjust power-relevant characteristics 
273

 Processor virtualization support: AMD-V or Intel VT-x 
274

 Operating mode: independent, sparing (a reserved spare rank avoids failures, such as correctable 
errors), or mirroring (copy all data in an opposite channel to create redundancy) 
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We support the flexible adjustment of the hardware configurations, especially their static 

characteristics 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , which the work of [RHW et al. 1995, Her 1998, GSI et al. 2002, MCE et 

al. 2002, CDS 2003, HSW et al. 2004, RL 2007] does not cover.  

In the second step (𝐼𝐼-𝐼𝐼), we vary the technical specification 𝐶𝐻𝑇𝑆 of the components which 

become relevant in the order process of the server system. We can improve the energy 

efficiency when we optimize the components concerning the specific demand. Our aim is to 

avoid under-utilized components and improve the non-peak efficiency considering the low-

intensive workloads. The modern components execute the same workload in a more energy-

efficient manner, which consumes less energy by performing the identical workload or 

provides more computation power (processing speed) with constant energy. In general, we 

prefer the energy reduction when we vary the technical specification, because we concentrate 

upon the actual performance demands and do not consider future demands. As part of our 

heuristic, we replace the components themselves, such as substitute a fully buffered dual 

inline memory module (FB-DIMM) by a registered module (RDIMM) which provides the same 

throughput with less energy. Furthermore, we consider the vendor and hardware generations 

when we alter or adjust the components to find the ideal server configuration. In this step, we 

are aware of the present utilization levels to avoid the full utilization or under-utilized 

components. Fewer chips on the module consume less energy, especially when the memory 

module is under-utilized: e.g., two fully utilized memory modules may consume more energy 

than twice the numbers under half of the utilization275. Consequently, we restrict or vary276 the 

memory capacity upwards or downwards in dependence on the workload scenario. We 

assume a linear relation between the utilization levels and the total memory capacity. 

Subsequently, we update the utilization levels (𝐶) to be comparable between the diverse 

hardware variations. Figure 78 shows the abstract configuration changes of the static 

characteristics (𝐷) and technical specification (𝐸) in our secondary optimization strategy. 

                                                           
275

 Memory energy: power consumption of the memory modules is non-linear 
276

 Vary the memory capacity: change capacity of a single module or the quantity of the modules 
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Figure 78: Secondary optimization strategy 
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Table 36 summarizes the adjustments in the primary and secondary phases of our optimization 

strategy.  

Table 36: Adjustments in the primary and secondary phases 

Primary 
short-term, online strategy 

Secondary 
long-term, offline strategy 

(𝑰) Dynamic characteristics 

𝐶𝐻𝐶𝐹𝐺
𝐷𝑌  (𝐵) 

(𝑰𝑰) Configuration 

(𝑰 − 𝑰) DTM (𝐴), component 
thermal management, 
fan speed control 

(𝑰𝑰 − 𝑰) Static characteristics (𝐷) 

𝐶𝐻𝐶𝐹𝐺
𝑆𝑇  

(𝑰 − 𝑰𝑰) DVFS (𝐵) (𝑰𝑰 − 𝑰𝑰) Technical specification (𝐸) 
𝐶𝐻𝑇𝑆 

  (𝑰𝑰 − 𝑰𝑰𝑰) Performance (throttling) on 
known workload scenario 
(post-process) 

 

In the previous section, we specify the cascading phases of our optimization strategy, which 

we realize in the alternation of the decision variables, as shown in Figure 68. Before we start 

the procedure, we iterative determine the energy efficiency ratio of the present server system 

and start the step-based energy efficiency analysis. We compare the energy efficiency ratios 

𝐸𝐸 and assume that the usefulness of our adjustments are represented by a scalar value of 

each aspect and finally in the energy efficiency ratio. We analyze the energy efficiency ratios of 

an iteration (𝑙) and the previous one (𝑙 − 1) to specify the impact on the basis of our 

adjustments between 𝜃𝑘
 
𝐶
𝑙  and 𝜃𝑘

 
𝐶
𝑙−1, as shown in the upper half of Figure 79. We sort the 

ratios { 𝜃𝑘
 
𝐶
1, 𝜃𝑘

 
𝐶
2, … , 𝜃𝑘

 
𝐶
𝑙 } at each 𝑡𝑘 in a list in descending order considering the improvement 

on 𝐸𝐸𝐵𝐴𝑆𝐸 . In the first optimization loop, the list covers only the 𝐸𝐸𝐵𝐴𝑆𝐸  of 𝜃𝐶  as a local 

optimum. A larger value of 𝐸𝐸( 𝜃𝑘
 
𝐶
1) shifts the position of 𝐸𝐸𝐵𝐴𝑆𝐸  in the list of the second-best 

solution277. The first entry into the list is more energy-efficient than the remaining energy 

efficiency ratios having a greater index, respectively the smaller indexes than 𝐸𝐸𝐵𝐴𝑆𝐸  building 

the set of improved solutions at 𝑡𝑘.  
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 Position in the list: a larger index refers to the less optimal solution 
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Figure 79: Step-based energy efficiency analysis 

The alternation of all characteristics and configurations is too expensive in terms of simulation 

time and performance requirements. We require an adequate heuristic in the alternation 

strategy to specify the priority and selection of the decision variables. In the first instance, we 

specify the priority of the category in dependence on the workload scenario, which is 

processor-bounded, memory-bounded, or I/O-bounded. If we cannot determine the related 

category, we consider a default category that we assume as the highest-impact factor. If we 

know the specific benchmark represented by the workload, we predefine the significant 

category. We optimize the components that contribute to a lower amount by a lower priority 

only if needed or if an extremely high level of optimization is intended. Afterwards, we analyze 

the energy efficiency ratios related to the aspect-based sequence gained from the cascading 

phase of the optimization strategy. We start with the prioritized components to find the 

largest impact up to the lowest impact on each aspect 𝐴𝑗, which specifies the sequence of 

alternation, as abstractly shown in Figure 79.  

As an example, we assume a processor-intensive workload that has the highest priority in our 

alternation because it has the most power-based impact upon the energy efficiency. We 

analyze the power consumptions of all categories and sort them by their values in descending 
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order. The workload may change during the time, which may lead to another sequence of 

categories and components. We dynamically consider the categories by their flexible priority in 

our optimization strategy. We specify the alternation of the decision variables in the next 

section. 

5.4.2.2 Alternation Strategy of the Primary and Secondary Phase 

We alter the decision variables on the basis of the cascading phases of the optimization 

strategy to provide the most probable presentation of the running server system, while 

adjusting all dynamic characteristics. We optimize the server system in the secondary phase on 

the basis of the changes in the primary phase, wherein we modify the static characteristics 

which require a repetition of the adjustments concerning the dynamic characteristics. If we 

adjust the static characteristic, such as the memory capacity, we respectively update the 

utilization level, as described in the second step of the secondary optimization phase. We 

modify the dynamic characteristic because of the changed conditions. In the next phase, we 

optimize the technical specification, which requires the alternation of the dynamic and static 

characteristics. In principle, we consider the hierarchical order of our configuration tree 𝜃 and 

use a bottom-up strategy to alter the decision variables beginning with the dynamic 

characteristics up to the static configuration, as shown in Figure 80. 

 
Figure 80: Alternation of decision variables considering the cascading phases 
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As an aspect of the technical adjustments, we differentiate between high-sophisticated 

(enthusiast), midrange (standard), power-reduced, or performance-reduced components. A 

high-end component, such as a processor, wastes more energy while being idle in comparison 

to a midrange one, because of the larger base power. As one part of our strategy, we adjust 

the component by selecting a more efficient version. In addition, we consider the diverse 

vendors that support the same performance but consume less power because of their internal 

specification. After defining the category-specific sequence, we successively analyze the 

relevance of every characteristic ordered by their impacts, which is a dynamic process. 

We have to consider any characteristics and configurations in the entire design space, whereby 

we explore single decision variables or multiple combinations. We can guarantee to find the 

best solution after completely traversing the configuration tree considering all possible 

characteristics and configurations. We define a heuristic to avoid the disproportionate increase 

in the alternation complexity and the corresponding simulation time, which reduces the design 

space and provides flexible abort criteria. We specify the knowledge-based and vendor-specific 

alternation rules that exclude irrelevant adjustments, such as insignificant modifications, and 

define a preference for the decision variables to reduce the optimization effort as well as 

speed up the procedure. Our aim is to prioritize the characteristics and configurations of each 

component concerning their impact upon the energy efficiency ratio. 

In our alternation strategy, we consider the separation of the aspects as well as components in 

relation to the workload gained from the step-based analysis and priority sequence of the pre-

process. We apply the annotation of the weight coefficients 𝑊𝐹𝐴𝑗𝐶𝑖
𝐶𝐻  of each characteristic278 in 

each function 𝐹𝐴𝑗𝐶𝑖
 at 𝑀𝐴𝑆𝐶  and use the descending list of the weight coefficients to 

determine their impact on the total energy consumption, for instance. The highest weight 

coefficient has the most impact on the calculation function, whereby we determine the 

priority to the related characteristic concerning the list index. We restrict the optimization by 

setting the abort criterion when the remaining characteristics have less influence than the 

present ones. We assume a set of characteristics 𝐶𝐻 = {𝐶𝐻1, 𝐶𝐻2, … , 𝐶𝐻𝑁}  and their 

corresponding weight coefficients 𝑊𝐹𝐴𝑗𝐶𝑖
𝐶𝐻  of any aspect 𝐴𝑗. Table 37 exemplarily presents 

possible priorities to the characteristics and relative impacts on the range between zero and 

one of the unspecific aspect.  
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 Specification of the weight coefficients: see Figure 53 and Figure 54 



Multi-aspect Full-system Server Model and Optimization Concept as a Simulation-based 

Approach (MFSMOS) 

 

 

 
240 

 

Table 37: Prioritization characteristics by their weight coefficients 

Priority Weight coefficient 

𝑾𝑭𝑨𝒋𝑪𝒊

𝑪𝑯𝒍  

Relative impact on 𝑨𝒋 

of component 𝑪𝒊 

Characteristic 
𝑪𝑯𝒍 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻3 0.40 𝐶𝐻3 

𝑯𝒊𝒈𝒉 𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻1 0.35 𝐶𝐻1 

𝑴𝒆𝒅𝒊𝒖𝒎 𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻4 0.15 𝐶𝐻4 

𝑳𝒐𝒘 𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻2 0.10 𝐶𝐻2 

Weight coefficients: annotation, see Figure 53 and Figure 54 

From this table, we would conclude to optimize the critical characteristic 𝐶𝐻3 that has the 

most single impact by approximately 0.40 on the aspect 𝐴𝑗. The sum of the remaining weight 

coefficients ∑𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻𝑙 , 𝑙 = 1,4,2  is larger than the weight coefficient of the critical 

characteristic 𝐶𝐻3. Therefore, we consider the second largest (high) priority 𝐶𝐻1  in our 

optimization strategy. We abort the alternation when the sum of the remaining weight 

coefficients (relative impact) is smaller in comparison to the actual weight coefficient 

determined by the priority list. In our example, the sum of the weight coefficients 

∑𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐻𝑙 , 𝑙 = 4,2 is smaller than the weight coefficient of the characteristic 𝐶𝐻1. We restrict 

the design space of each category on the basis of the impacts on the dynamic characteristics, 

static characteristics, or technical specification. Accordingly, we dynamically annotate the 

classes and characteristics of the tree in relation to the actual management technique on the 

basis of the aspect. The abort criteria restrict the design space and in consequence we do not 

consider all characteristics in the configuration tree. If the simulation time is uncritical, or we 

require a higher accuracy, we will neglect the abort criteria and consider the remaining 

characteristics.  

We avoid superposition during our iterative process and select the decision variables in 

dependence on their weight coefficients in the ranked list sorted by their impacts. When we 

change one decision variable279 in a system-compatible solution 𝜃𝑘
 
𝐶
𝑙 , we mean an adjustment 

of the value of the predefined range considering the thermal constraints, for instance. We 

extend our approach with regard to the coupled characteristics, which influence each other. 

We can also reduce the complexity of the design space when we alter only the decision 

variables of 𝜃𝑘
 
𝐶
𝑙  that are better than 𝐸𝐸𝐵𝐴𝑆𝐸 , but this may lead to ignore alternative optimal 

solutions.  

                                                           
279

 Change one decision variable: try to keep the remaining decision variables unchanged 
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5.4.3 Post-Process 

At the end of each optimization loop at 𝑡𝑘, our step-based analysis provides a ranked list in 

descending order that specifies the set of optimal solutions when the present energy efficiency 

is better than 𝐸𝐸𝐵𝐴𝑆𝐸 . In the global analysis, we intuitively select the optimal solution 𝜃𝐶
𝑙 , 

which dominates for the longest period of time. The optimal solution represents a rough 

approximation, which does not fit if the energy efficiency has an exponentially high value for a 

short time but an extremely low value for a long time. Consequently, the dominant energy 

efficiency ratio would be very inefficient in such a situation. To be more precise, we optimize 

the balance of the power and respective energy in the integrand of the time integral. We 

consider the energy efficiency ratios and their aspect-based values, which we weight by their 

corresponding time, and minimize the integral at 𝑇𝑢. Herein, we provide a purely technical 

optimal solution, but do not consider financial aspects like the fastest return on investment 

(ROI), which the customer influences during the ordering process.  

We can handle an additional optimization when we consider the complete workload scenario. 

A high throughput of the component may proportionally increase the temperature and power 

consumption of the entire time. We analyze the various benchmarks, their parameters, and 

the global settings to optimize the components. Herein, we decide whether we can create 

bottlenecks, which will be compensated by fewer utilization levels in the following time step. 

As an additional step of the secondary optimization strategy (𝐼𝐼-𝐼𝐼𝐼), but established in our 

post-process, we restrict the performance, called throttling, and respectively the power 

consumption in dependence on the complete workload scenario. We limit the maximal 

utilization levels and avoid the full utilization level, which results in a reduced performance of 

the remaining components because of additional waiting cycles. We restrict the read-write 

bandwidth in the memory throttling technique280 that specifies the highest utilization levels to 

tailor the traffic to the workload demand. Alternatively, we define the theoretical maximal 

transfer rate to save energy because the modules do not reach their largest throughput. The 

authors of [Bel 2000] investigate on the processor throttling strategies to keep the system in a 

predefined power range, which limits the frequency but may exceed the interval while 

executing the job. Their event-driven approach controls the component activities of each 

thread-specific event. We are not able to adjust the events, because of the missing information 

about the explicit hardware counters in the early design phase. 

5.5 Summary 
In our concept, we support the vendor and customer perspective to calculate the energy 

efficiency of a server system. We consider a steady workload, as done in the commercial tools, 

which we distinguish between the diverse component-bounded utilization levels. We specify 

the utilization levels as profiles that form in close conjunction our workload scenario. The 
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 Throttling restriction: limit the rate of accesses 
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scenarios create a realistic image of the application software in the externals. For the purposes 

of the multi-aspect server simulation, we transform the steady workload to continuous values 

to optimize the energy efficiency in the long-term (static configurations, technical 

specification). As part of our optimization strategy, we consider the common approaches, such 

as DVFS and DTM, to represent the short-term behavior (dynamic characteristics). We specify 

the cascading primary (online) and secondary (offline) phases to alter the relevant 

characteristics and configurations. In the configuration and characterization layer, we identify 

the system components, characterize the models, and define the aspect-based functions to 

calculate the energy efficiency. Herein, we consider the design implications, such as 

spreadsheets, analysis results, or vendor-based measurements. We assume the relations 

between the aspects of a single component and in the entire server system. We define the 

rules and equations of the controller in the characterization activity, while the controller is 

executed in the simulation activity. In our concept, we optimize a server system at each time 

step when the utilization levels change. We analyze the actual results and decide on the 

adequate management technique in the optimization strategy, according to the two 

optimization phases. We analyze the impact of our changes concerning the energy-to-

performance ratio in comparison to the base energy efficiency of the initial server 

configuration. The adjustments of the server configuration and characterization require an 

additional calculation, which results in an iterative approach. We decide on our optimization 

strategy whether no further alternation is possible or required. Afterwards, we consider the 

subsequent part of the workload until the end of the simulated time. We select the globally 

optimized server configuration and characteristic that dominates for the largest time. Figure 

81 shows a brief overview of the basic constituents of our five-step concept.  
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Figure 81: Five-step concept including basis constituents 
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6 Design and Implementation of the Architecture 

We develop the simulation framework to calculate the energy efficiency of a server system 

with respect to a customer-specific workload on the basis of the concept described in the 

previous section. We abstract unnecessary details as used in a couple of academic models. In 

contrast to most of the commercial approaches, we extend the level of detail by certain 

characteristics and explore them to power, temperature, as well as performance limits. We 

consider fundamental restrictions and constraints on power, energy, performance, and 

temperature under realistic assumptions. The aim of our optimization system is to provide 

an optimized server system that operates in an energy-efficient corridor. For this purpose, 

such values of the decision variables 𝑥 = {𝜃𝐶 , 𝐶𝐻𝑇𝑆, 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌 } are selected that maximize 

the performance and minimize the power (energy).  

We specify the simulation model in MATLAB281 and perform the continuous simulation using 

Simulink282. Our simulation framework includes the data processing, which provides the 

mathematical equations to calculate the multi-aspects of each component. We implement the 

non-linear behavior, which reacts to the time-dependent utilization levels by numerical 

integration of a system of ordinary differential equations (ODE). We apply numerical methods 

provided by MATLAB to solve the equations. When we have to predict the power consumption 

of a next-generation component, we use various interpolation methods. The customer 

specifies the simulation input in discrete283 but not equidistant time steps, which results in 

changes of the simulation state at discrete instants of time. On the other hand, Simulink steps 

through each time interval 𝑇𝑠 using a fixed sample time on a 1-second basis284. We include the 

thermal development over time and thus we obtain a continuous-values simulation model, 

including feedback loops.  

We realize our concept in MATLAB/Simulink using the common Model-View-Controller (MVC) 

approach, which is a three-layer design pattern to separate the major functionality. A change 

of any layer does not necessarily affect the remaining ones. This facilitates maintainability. We 

encapsulate the processing and storage activities to ensure integrity and consistency among 

the data. Our text-based and loosely coupled design provides a high level of flexibility and 

scalability for implementing further server generations considering dynamic structures and 

customizable weight coefficients. A designer or customer can easily extend or update the data 

of the simulation model.  

  

                                                           
281

 MATLAB: implementation in *.m scripts or functions 
282

 Simulink: implementation in *.mdl file 
283

 Discrete and continuous time or values: see Section 3.2 
284

 Sample time: update the basis with regard to the time interval 
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We specify the components and its aspect-based calculation methods in MATLAB within the 

model layer, but represent the components in Simulink as abstract blocks of the controller 

layer. The controller layer assigns the input to the components, such as the workload, and calls 

the aspect-based functions of each time step. The Simulink environment monitors/controls the 

relations of each single component and the behavior between them. In the controller layer, we 

analyze the results and make logical decisions, such as optimization, whereby we follow our 

alteration strategy. In the view layer, we provide a graphical user interface (GUI) for the 

customization of the workload and the configuration of the server system. Using the GUI, we 

start the simulation and update the graphical elements to visualize the simulation results. 

 
Figure 82: Model-View-Controller (MVC) using MATLAB/Simulink 

The interaction between MATLAB and Simulink is done through callback functions, a listener, 

and workspace variables, but MATLAB and Simulink have their own internal representations of 

the variables. Consequently, we extend our MVC approach in order to enable cross-border 

exchanges of data285. We implement the event_listener() function to receive the GUI-based 

data and transfer it into the Simulink environment. When the simulation has finished, we 

update the GUI of MATLAB by using the update_GUI() method. The set_param() and 

get_param() functions are default communication methods, which we partly use in our 

initialization phase. Figure 83 briefly shows the communication between MATLAB and 

Simulink.  

                                                           
285

 Data exchange: possible alternative functions are assignin(), set(), or setappdata() 
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Figure 83: Communication between MATLAB and Simulink 

6.1 View Layer 
We implement the view layer for the representation of results and for supporting the 

customization of the input data, such as the external environment or the application software. 

We implement a dedicated MATLAB GUI that consists of the (𝑖) the workload configuration, 

(𝑖𝑖) the server configuration, and (𝑖𝑖𝑖) the ambient temperature settings286, which build the 

primary input data of our simulation model. We assume that an efficient cooling outside the 

server system exists and no external influence may change the temperature: i.e., we assume 

the ambient temperature as a constant input. Furthermore, in our GUI we include (𝑖𝑣) the 

start-stop functionality of the simulation and (𝑣) a graphical area for the representation of the 

simulation results287. Figure 84 shows the schematic view of the GUI, and Figure 85 illustrates 

the MATLAB implementation. 

 
Figure 84: View layer – schematic GUI 

                                                           
286

 Ambient temperature 𝛼𝑡𝑒𝑚𝑝: we consider further environment settings at the model layer 
287

 Simulation results: partly visualize in MATLAB GUI and Simulink scopes 
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Figure 85: MATLAB GUI implementation 

The customer directly specifies the workload, designates the ambient temperature, and selects 

the concrete server system by using the GUI. We assign an explicit handler (callback function) 

to every MATLAB GUI event288 to transfer the GUI-based data to our model layer. We visualize 

the initial customer-specific configuration and show further details, which we require in our 

optimization process. We graphically present the power and energy consumption at the GUI, 

which is comparable with the commercial tools in industrial practice. We initialize the output 

fields by a hyphen, update the GUI when the results are available, and visualize the related 

energy efficiency ratio to additional scopes289 with respect to the continuous time domain. We 

provide the optimized server system configuration in a text-based format.  

Server System Configuration and Workload Configuration 

We require an individual server system characterized by a configuration file290. Our simulation 

framework manages a server configuration, which we specify in a commercial tool called PC- / 

System Architect291 developed within Fujitsu. This external tool has been designed as a 

common means to configure and order a server system manually. In principle, we can support 

diverse configuration tools, but we have to adjust our parsing algorithm to be compatible with 

such tools, e.g., the Dell Energy Smart Solution Advisor292. The Fujitsu tool stores one or more 

rack chassis in a single file, including multiple, heterogeneous, and rack-based server 

systems293.  

  

                                                           
288

 Event: mouse clicks of a button, slider, or scroll bar 
289

 Scope: graphical elements in Simulink (plots) 
290

 Configuration file: proprietary format (*.ask), text-based 
291

 Fujitsu PC-/ System Architect: http://configurator.ts.fujitsu.com/public/ 
292

 Dell Energy Smart Solution Advisor: http://essa.us.dell.com/DellStarOnline/DCCP.aspx 
293

 Server systems: blade-based servers are also possible, which we neglect 
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The complexity of the architecture as well as of communication exponentially increases if a 

complete rack chassis is considered. In our prototype implementation, we concentrate on a 

certain rack-based server system architecture, which we exemplarily simulate and optimize.  

In addition to the configurability, we support the intended flexibility of the workload to 

realistically reproduce and simulate the behavior of a server system. Our aim is to represent an 

hourly up to daily server usage and create an image of the customer-specific application 

software. We want to be independent of specific benchmarks, but support synthetic 

benchmarks in an abstract manner. In principle, our workload model is compatible with the 

most of commercial tools. In addition, we provide variations over an individual timespan. We 

abstract from specific instructions because the customer cannot predict them. We consider 

the influence of the OS type294 simply by a factor. Our challenge is to overcome the workload 

limitations, as described in Section 4.1. In the next section, we describe the workflow of the 

customer-specific workload configuration, as shown in Figure 86. The customer selects either a 

steady or continuous workload scenario in the GUI, whereby the steady workload defines 

constant utilization levels over the complete simulated time.  

 
Figure 86: Workload configuration – workflow 

In the steady case, the customer selects a single pre-defined workload profile as a steady 

workload, which is a common approach within commercial tools. In compliance with several 

industrial tools, we specify the following profiles: 

 Idle 

 Transactional 

 Computational 

 Memory-intensive 

 Worst-case 
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 OS type: integrated in the optional settings of the application software 
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The idle workload considers the lowest (0%) utilization levels and the worst-case represents 

the highest (100%) ones of all components within the entire server system. The transactional 

profile is a synonym for an I/O-bounded workload and reflects applications such as 

VMWare295, SAP296, or Java-based applications. We subsume the high-performance computing 

and processor-bounded workloads in the computational profile. The memory-intensive profile 

refers to database applications (SQL server) or exchange servers. In our model layer, we 

distinguish between read-intensive and write-intensive applications. In accordance to most of 

the academic approaches, we express customization by a read-write-ratio. We specify the 

default utilization levels of every profile in an extra configuration file and initialize them, after 

a customer selects a steady workload. The customer can modify the utilization levels of each 

category by changing the defaults or adjusting the position of specific workload sliders. An 

extra button provides the opportunity to set all utilization levels to worst-case. We load the 

steady workload into the Simulink environment after generating a continuous and time-based 

stimulus. 

 
Figure 87: Steady workload – workflow 

As an alternative to the steady workload, we support a continuous workload that builds a 

more realistic use case. We define the continuous workload in a customizable file297 that is 

composed of multiple utilization levels over a timespan. The columns specify the utilization 

levels of each category in the interval [0,100] and the rows define discrete integer times. We 

                                                           
295

 VMWare: http://www.vmware.com/ 
296

 SAP: http://go.sap.com/index.html 
297

 Customizable file: Excel file (*.xlsx), settings specify the used rows and columns 
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automatically parse the configuration file, convert the data into MATLAB-compatible format 

and check the input data. We expect that the customers manually specify the utilization levels 

in the configuration file, which is a common use case of industrial practice. Figure 88 

exemplarily shows a workload scenario that has equidistant time steps; however, we also 

support non-equidistant time steps when a customer specifies a complete day or week. In the 

example, the server utilization is assumed to be extremely low at early-morning hours and 

would increase at office hours, as described for an SVN server in Section 3.3. We expect that 

the customer will provide the average utilization levels with respect to the opening and closing 

hours, which limits the access to the SVN server at a certain time. We consider constant 

utilization levels until another value is provided. In reality, the utilization levels fluctuate within 

milliseconds or microseconds, which we cannot consider. Therefore, we average the values 

over a ten-second base.  

 
Figure 88: Customer-specific workload scenario 

In addition to the workload configuration, we check a plausibility of the utilization levels and 

automatically correct the values when we find an unrealistic assumption. For instance, a 

customer specifies more than one category by a utilization level of 100%, see Section 3.4. In 

our example, we fully utilize the memory and I/O at 𝑡𝑘 = 20𝑠 up to 𝑡𝑘+1 = 30𝑠. We calculate 

the average usage of both categories to define which category is more dominant in our 

timespan. We limit the I/O utilization level at a value of 80 − 90% based on the rule of thumb, 

gained from the empirical measurements in a real system. We graphically show the current 

utilization level according to our correction and inform the customer about the correction with 

a warning message in the MATLAB environment.  

6.2 Model Layer 
We assemble the functional description of the components in a modular and isolated manner 

to ensure scalability. The model layer is the core concept of our simulation framework. It 

centrally provides the mathematical background and is used to calculate the aspect-based 

values in the controller layer. Our framework provides the availability to add next-generation 

components and server systems at various abstraction levels. Using a decoupled and 

hierarchical concept, we realize the abstraction between the aspect-based component 

description, the behavior, and the entire system. We separately define every component, 

which we may reuse in several server types, but influence the behavior using a higher-level 

specification in order to represent unique behavior in different compositions. We abstract 
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from unimportant features and details of the server system such as to neglect operations that 

are executed once, as done in [BHS 1998].  

We can define any kind of abstraction level of a component, but we exemplary concentrate 

upon utilization-based procedures. We define our category-specific methods, which we 

decoupled from the exact data to be universal and independent from the specific methods. 

We implement the logic that we require on the transition from the utilization-based 

calculation methods to a higher level of detail, such as power states or certain instructions. We 

consider external settings within our mathematical definitions, use MATLAB algorithms, and 

include a database. The database stores the possible values of the server system 

characterization and configuration containing the default utilization levels of our workload 

profiles, the weight coefficients, certain constraints, and the values of the configuration tree. 

We obtain high-quality data from the database on the basis of the server type and its 

compatible components, which we gain from real measurements and different data sources298. 

We require additional data, which we specify as metadata to realize our concept. Table 38 

exemplarily299 shows the relevant metadata of a memory module, which we consider in our 

aspect-based calculation methods.  

Table 38: Memory module 𝟖𝑮𝑩 (𝟏𝒙𝟖𝑮𝑩) 𝟐𝑹𝒙𝟒 𝑳 𝑫𝑫𝑹𝟑 − 𝟏𝟑𝟑𝟑 𝑹 𝑬𝑪𝑪 – additional metadata 

Memory characteristics Metadata 

Technical configuration  
Vendor vendor="Samsung" 
Family fam="240 Pin DDR3 DIMM" 
Die (component revision) die="D" 

Static characteristics  
Capacitors / capacitance, capacity (size) [GB] cap="8GB" 
Density [GB] dens="8GB" 
Fabrication size [nm] nm_tech="44nm" 
Synchronization mode sync="registered" 
Module ranks, rank linking 
(data width) 

ranks="2R" 
ranks_x="x4" 

Timings cycle_time="1.5ns", cas="CL9" 
Resistance rth="56°C/W" 

Dynamic characteristics  
Frequency [MHz] MHz="667", frequency=MHz 
Voltage volt="LV", LV="low-voltage" 
Error correction corr="ECC" 

 

                                                           
298

 Data sources: diverse benchmarks, spreadsheets, wide ranges of sensor data, or vendor-specific data 
299

 Example of a memory module: table contains metadata which we can consider in the order process 



Design and Implementation of the Architecture 

 

 

 
252 

 

In addition, to customize our framework we define several default settings, which are fixed for 

the simulation runs. We specify the location of our database, the server configuration file, the 

energy units, or the supply voltage, for instance.  

 
Figure 89: Database 

The key constituents of the model layer are the mathematical descriptions of the components, 

as shown in Figure 90. We separately specify the components and their explicit calculation 

methods of each aspect, whereby we additionally specify the individual behavior. At the next 

abstraction level, we define the relations between the aspects and the components. We 

implement a function of each aspect in relation to the utilization level and specify a lookup 

table that represents the values of 10% step-based utilization levels, as common is in 

industrial practice. We consider linear and non-linear interpolation methods provided by 

MATLAB to obtain the values with a smaller step size. The temperature itself directly depends 

upon the power consumption. Therefore, we do not need to define it on a stand-alone basis. 

To specify the energy efficiency ratio, we normalize the performance scores and power values 

being compatible to the simulation and having the same range of values. To improve the 

energy efficiency ratio, we consider the results and implement the optimization strategy300, 

considering the two cascading phases, see Section 5. Herein, we specify the related methods 

and apply the existing MATLAB algorithms to optimize an entire server system.  

                                                           
300

 Optimization strategy: includes the management techniques 
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Figure 90: Model layer – block diagram 

We implement the aspect-based calculation methods for the lookup-based models of every 

component. We specify the category-specific equations in the concept, as shown in Table 39.  

Table 39: Calculation methods 

Category 
(component) 

Power equations 
(section) 

Temperature equations 
(section) 

Processor (5.76) - (5.75) 
(5.2.2) 

(5.89) - (5.92) 
(5.2.2) 

Memory (5.66) - (5.68) 
(5.2.2) 

(5.87), (5.88) 
(5.2.2) 

PSU (5.50) - (5.52) 
(5.2.1) 

(5.87), (5.93), (5.94) 
(5.2.2) 

Input/output, 
others 

Static offset Static offset 

 

For each category, we specifically define a method of calc_category()301, which Simulink calls at 

each time step during the simulation, see Equation (6.1). We integrate the function call of 

calc_category() within the component models in Simulink302 and specify the current state on 

the basis of the dynamic characteristics 𝐶𝐻𝐶𝐹𝐺
𝐷𝑌 , which we consider in MATLAB to be grouped 

as settings. We specify the descriptive metadata, which includes further details regarding the 

                                                           
301

 Names in MATLAB notation: we simplify the names to ensure a good readability, we use descriptive 
names in our methods or internal variables with longer text strings 
302

 Component models in Simulink: see Section 6.3 
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characteristics in a separate database303 to be unique and provide data consistency. We can 

integrate various dynamic and static characteristics in Simulink, but this requires a data 

conversion of every signal in each category providing them as numerical values304. We 

implement the aspect-based calculation in MATLAB because of lower development time and 

effort305 in comparison to a Simulink-based approach. We include the ambient temperature 

and the category-specific utilization levels as the input signals input_args in the Simulink 

environment, which may change at each time step.  

function [output_args] = calc_category(input_args) (6.1) 
 input_args = {input_args settings metadata} 

 current_state = calc_state(input_args) 

 input_args = {input_args current_state} 

 

We specify the possible range of states in calc_state() and decide upon the current state on 

the basis of the utilization level, the read-to-write ratio, and the frequency in our memory-

based method306. The range of states relies upon the settings, such as the memory generation, 

which we calculate considering the metadata. We have grouped the diverse memory states307 

into clusters considering the centroids by applying the simple k-means clustering algorithm 

[TSK 2009], which MATLAB provides in the stochastic toolbox as a cluster-based analysis 

method. We consider three major clusters, which we differentiate between high, medium, and 

low power consumption while executing various workloads. Figure 91 exemplarily shows the 

results of the k-means algorithm, which clusters the given set of 𝐼𝐷𝐷 values, as shown in the 

right-hand legend. We consider the centroids of 35𝑚𝐴 ,  70𝑚𝐴 , and 155𝑚𝐴 , which 

correspond to a set of 𝐼𝐷𝐷 states. As a result of our analysis, we reduce the complexity of the 

𝐼𝐷𝐷 states and define the baseline power308.  

                                                           
303

 Database: separate m-files, dynamic structures, or structured information (matrix, vector) 
304

 Numeric values in Simulink: support data types, such as single, double, signed, unsigned, 8/16/32-bit 
integer, Boolean, or fixed-point 
305

 Development effort: adjusting code in MATLAB is easier than in Simulink, such as adding a signal or 
characteristic 
306

 Category-specific states: memory (read-to-write ratio, frequency), processor (voltage-frequency pair) 
307

 Memory states: memory currents 𝐼𝐷𝐷s, see Section 5.2.2 
308

 Baseline power: voltage is a linear factor, power highly depends upon the current (𝐼𝐷𝐷) states 
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Figure 91: Clustering of 𝑰𝑫𝑫 memory states 

In principle, each calc_category() method consists of the aspect-based subroutines 

calc_aspect() in the operating sequence of the power calculation, thermal calculation, and 

performance estimation. We define the component temperature on the basis of the power 

values, which thus becomes an additional input argument. The performance of a component 

depends upon the current temperature. We decouple the various methods and their 

databases to support a high flexibility when an adaption is necessary. 

function [output_args] = calc_category(input_args) (6.2) 
 [total_category_power] =  

 calc_power(input_args) 

 [total_category_temperature] =  

 calc_temperature(input_args, total_category_power) 

 [total_category_performance] =  

 calc_performance(input_args, total_category_temperature) 

 

We divide each aspect-based subroutine into three segments, considering the dynamic 

characteristics, the static characteristics, and the technical specification unique to a certain 

class, which we define in a list ordered by their significance. We exemplarily describe the 

power calculation method of a memory module (𝑃𝑂𝑚𝑒𝑚), whereby the significant classes are 

modes (𝐶𝐿𝑚𝑜𝑑), technology (𝐶𝐿𝑡𝑒𝑐), and manufacturing process (𝐶𝐿𝑚𝑎𝑝), as defined in 

Equation (6.3). We show the memory-related characteristics in Table 26 and define the class-

specific notation in Table 30. 

𝑃𝑂𝑚𝑒𝑚 = {

𝐶𝐿𝑚𝑜𝑑 → 𝑐𝑜𝑟𝑟, 𝑣𝑜𝑙𝑡, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦                                                     
𝐶𝐿𝑡𝑒𝑐 → 𝑐𝑎𝑝, 𝑑𝑒𝑛𝑠, 𝑠𝑦𝑛𝑐, 𝑟𝑎𝑛𝑘𝑠, 𝑟𝑎𝑛𝑘𝑠_𝑥                                    
𝐶𝐿𝑚𝑎𝑝 → 𝑡𝑦𝑝𝑒, 𝑎𝑟𝑐ℎ, 𝑔𝑒𝑛, 𝑓𝑎𝑚, 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑣𝑒𝑛𝑑𝑜𝑟, 𝑝𝑙𝑐, 𝑑𝑖𝑒         

 (6.3) 
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On the basis of the results of our analysis, we implement the error correction (𝑐𝑜𝑟𝑟), 

synchronization mode (𝑠𝑦𝑛𝑐), and die technology as independent linear factors in our memory 

power calculation method. We specify the dynamic structures309 by a header310 that specifies 

the characteristic naming, provides the direction, and defines the kind of dependencies (𝑑𝑒𝑝) 

between the values (𝑣𝑎𝑙_1, 𝑣𝑎𝑙_2, 𝑣𝑎𝑙_3), such as an absolute or relative factor. In our 

example, we define the linear factor311 (0.9) when the value of the characteristic changes of 

𝑣𝑎𝑙_1 towards 𝑣𝑎𝑙_2, as shown in Equation (6.4). We can easily adjust the dynamic structure 

by adding a new value or update the dependencies.  

characteristic=[{'header'} {'val_1'} {'val_2'} {'val_3'}]; (6.4) 
 dimension = length(characteristic);  

 % factor between values [0 0.9 1.3 0]; 
 dep(1:dimension) = 0;  
 dep(2) = 0.9; dep(3) = 1.3; 

 

for i = 1:dimension (6.5) 
characteristic_all(i).id = characteristic(i); 
characteristic_all(i).value = dep(i); 

end 
 

In contrast, the characteristics of the technology class (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐_𝑡𝑒𝑐), such as capacity 

(𝑐𝑎𝑝), density (𝑑𝑒𝑛𝑠), rank (𝑟𝑎𝑛𝑘𝑠), and rank linking (𝑟𝑎𝑛𝑘𝑠_𝑥), rely upon each other, see 

Section 5.2.2. Therefore, we define a system of linear equations in a matrix to specify the 

interdependencies, as shown in Equation (6.6). The technology factor 𝑡𝑒𝑐_𝑓𝑎𝑐𝑡𝑜𝑟  is the 

summation of the certain dependencies 𝑑𝑒𝑝, which we adjust by the 𝑐𝑜𝑟𝑟 factors of the 

different memory modules and settings, see Equation (6.7). 

% characteristic_tec [ ranks capacity density ranks_x ]  (6.6) 
% [ ranks[%]; capacity[%]; density[%]; ranks_x[%] ] 
characteristic_tec = [1 1 1 1; 2 1 2 1; 2 1 1 2; 1 1 2 0.5]; 
rel_dep = [0; 0.13; -0.32; -0.64]; 

dep = characteristic_tec/rel_dep; 

 

tec_factor = dep(1)*ranks*correct.ranks +  (6.7) 
dep(2)*cap*correct.cap + dep(3)*dens*correct.dens + 

dep(4)*ranks_x*correct.ranks_x; 

 

In our optimization phase, we require the current customer-specific configuration 𝜃𝐶  and the 

configuration trees 𝜃, 𝜃𝑇𝑆, 𝜃𝐶𝑆, which we can only handle in MATLAB312. We consider the initial 

configuration 𝜃𝐶  and its base characteristics to set the default settings of each calculation 

                                                           
309

 Dynamic structures: using vector- and matrix-based dimensions optimized in MATLAB 
310 Header of a dynamic structure: {'identifier'} {''} {'basic calculating operation'} {'direction'}, basic 

calculating operation (*,/,-,+), direction (upwards vs. downwards), absolute vs. relative 
311

 Factor: a factor equal to zero does not have any dependency on the next value in the direction 
312

 Input arguments in Simulink: require numeric values as signals between the blocks 
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method. We define the possible range of characteristics in a separate database and specify the 

weight coefficients 𝑊𝐹𝐴𝑗𝐶𝑖
𝐶𝐻 ,𝑊𝐹𝐴𝑗𝐶𝑖

𝐶𝐿 ,𝑊𝐹𝑇𝑆,𝑊𝐹𝐶𝐹𝐺
𝑆𝑇 ,𝑊𝐹𝐶𝐹𝐺

𝐷𝑌 , which we consider in the metadata. 

Finally, we consider the class-specific factors and weight coefficients in the power calculation 

method of a memory module. 

𝑃𝑂𝑚𝑒𝑚 = 𝑓(𝐶𝐿𝑚𝑜𝑑 , 𝐶𝐿𝑡𝑒𝑐 , 𝐶𝐿𝑚𝑎𝑝) (6.8) 

𝐶𝐻𝐶𝐹𝐺
𝐷𝑌 = {𝑐𝑜𝑟𝑟, 𝑣𝑜𝑙𝑡, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙, 𝑟𝑒𝑎𝑑 − 𝑡𝑜 − 𝑤𝑟𝑖𝑡𝑒 𝑟𝑎𝑡𝑖𝑜} (6.9) 

𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 = {𝑐𝑎𝑝, 𝑑𝑒𝑛𝑠, 𝑠𝑦𝑛𝑐, 𝑟𝑎𝑛𝑘𝑠, 𝑟𝑎𝑛𝑘𝑠_𝑥} (6.10) 

𝐶𝐻𝑇𝑆 = {𝑡𝑦𝑝𝑒, 𝑎𝑟𝑐ℎ, 𝑔𝑒𝑛, 𝑓𝑎𝑚, 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑣𝑒𝑛𝑑𝑜𝑟, 𝑝𝑙𝑐, 𝑑𝑖𝑒 } (6.11) 

Figure 92 briefly presents the internal workflow of the calculation methods. 

 
Figure 92: Workflow – calculation methods 

The main outputs output_args of the calc_category() methods are the results of each aspect, 

which influence each other. Thus, we exemplarily specify the relation definition 𝑅𝐴 between 

the power and temperature of the memory module, whereby we consider the formal 

definition of Equation (5.93). We specify the static memory temperature, including the 

memory power consumption, the weight coefficient 𝑊𝐹𝑚𝑒𝑚
𝑇𝐻  replaced by the thermal 

resistance 𝜃𝑟𝑒𝑠, and the ambient temperature 𝛼𝑡𝑒𝑚𝑝 as the thermal offset. We define the 

dynamic thermal development on the basis of the empirical measurements gained from a real 

server system, as shown in Figure 93. We apply the lsqcurvefit method of MATLAB to 

approximate the measured temperatures.   
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We define the first-order differential equation that best suits to describe the dynamic thermal 

development of a memory module. In Equation (6.13) we specify the PT1 method of the 

coefficients 𝐾𝑚𝑒𝑚
𝑆𝑇 = 13.07 , 𝑇𝑆 = 87.33𝑠 , and 𝑇𝐻𝑚𝑒𝑚

𝑆𝑇 = 33°𝐶 , which result from the 

approximation. 

𝑇𝐻𝑚𝑒𝑚
𝑆𝑇 = 𝑃𝑂𝑚𝑒𝑚 ∗ 𝜃𝑟𝑒𝑠 + 𝛼𝑡𝑒𝑚𝑝 (6.12) 

𝑇𝐻(𝑡)𝑚𝑒𝑚
𝐷𝐸 = 13.07 ∗ (1 − 𝑒−

𝑡

87.33) + 33 (6.13) 

 
Figure 93: Dynamic thermal development of a memory module 

We consider the thermal interaction between various components of the same category as a 

part of the relation definition 𝑅𝐴. A small mutual distance between the memory modules leads 

to a higher thermal impact. The processors have a large distance and active cooling and 

therefore smaller temperature impacts on each other. The processor’s thermal dissipation in 

an enclosure significantly depends upon the surrounding air temperature itself, as stated in 

[KLL et al. 2008]. The authors of [LZZ et al. 2007] neglect the thermal effects in their approach 

and consider the components in isolation.  

We simply map the memory utilization levels considering the workload scenario of the 

memory performance, which we store in a database. The performance scaling is an important 

constituent of the relation definition 𝑅𝐵𝐸 when we alternate the components. We include the 

strategy addressed in [DEP et al. 2009], which specifies the performance improvements 

because of some adjustments at the processor and memory configuration. Table 40 

exemplarily shows the coefficients when we double the number of processors and memory 

capacity at the same time. We consider the approximate coefficients from 1.5 up to 1.7 to 

estimate the performance of the system.  
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Table 40: Performance improvement (processor and memory capacity) [DEP et al. 2009] 

Step Processor amount 
and memory capacity 

Performance improvement 
(coefficient) 

from step n to n+1 

1 1 CPU 4 GB 1.7 
2 2 CPU 8 GB 1.6 
3 4 CPU 16 GB 1.5 
4 8 CPU 32 GB 1.5 
5 16 CPU 64 GB unknown 

 

Figure 94 shows the pseudo code of the methods and categories that we implement in 

MATLAB. We implement all categories and respective component methods in MATLAB with 

nominally identical parts presenting unique values, which follow the same principles as used 

when we describe the memory module. We implement the behavior between the components 

𝑅𝐵𝐸 within the Simulink model. We strictly follow our concept concerning the optimization 

strategy and alternation, which we do not explain in further detail. 

 
Figure 94: Pseudo code – aspect-based and category-based calculation process 
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The user of our simulation framework should reckon with some slight changes in the 

implementation in comparison to the concept of higher efficiency. We implement the 

Simulink-based component models considering the calc_category() methods, which 

constitutes the highest abstraction level. The internal functions such as the aspect-based 

subroutines calc_aspect() represent the diverse hierarchy levels of our concept, wherein we 

consider the various classes, the related dynamic and static characteristics, or the technical 

specifications. We provide modularity because we can replace or extend a single calculation 

method considering various characteristics dependent on the actual empirical results. Our 

simulation framework consists of approximately 18,500 physical lines of code (LOC) distributed 

over 250 files, including almost 33 percent comments. We implement around 220 m-scripts 

with nearly 260 functions and around 30 Simulink models (*.slx).  

Restricting Assumptions in Order to Simplify the Calculation 

We consider several components that can fulfill the requirements of a certain workload 

scenario, which provides the opportunity to influence the energy consumption. Theoretically, 

we can consider all server configurations and characteristics, but we exemplarily concentrate 

upon a couple of server systems from which we can easily receive experimental results 

(measurements, benchmarks). We restrict our prototype implementation to demonstrate the 

feasibility of our concept by reducing the complexity to decrease the calculation effort and 

simulation time. We consider the aspect-based models of the selected system configuration 𝜃𝐶  

and its components, which we limit to rack-based server systems, and fix the component 

behavior as a simplified assumption. We assume that the concept is applicable to blade and 

tower servers with slight adoptions concerning their architecture. We manually implement the 

system architecture and connectors in Simulink, which are temporary static in our simulation 

framework. We neglect the operating systems influences, as described in Section 5.3.2.3. We 

assume a constant ambient temperature of the server system, while executing the workload 

scenario that is based upon the regular functionality of the heating, ventilation, and air 

conditioning (HVAC) equipment in the data center. We support the ambient temperature 

range of our GUI as shown in Table 41. 
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Table 41: GUI-based restrictions of the server system 

Parameters Range 

Ambient temperature [°C] {'20°C - 25°C'} {'25°C - 30°C'}  

{'30°C - 35°C'} {'35°C - 40°C'}  

{'40°C - 45°C'} 

Workload scenario {'Steady'} {'Continuously'} 

Workload profile {'Idle'} {'Transactional'} 

{'Computational'}  

{'Memory-intensive'}  

{'Worst-case'}  
Utilization levels [%] [0:1:100] 

Platform segment Single rack-based server system 
Server system model Fujitsu RX200, RX300 family 
Observable subsystems Processor, memory, fan, PSU 
Quantity (#) processors 1 - 2 
# memory modules 1 - 24 
# fans 1 - 16 (enclosure) 
# power supply units 1 - 2 

 

We restrict the feasible range of controllable variables, such as the decision variables, on the 

basis their relevance in our category-specific and aspect-based calculation methods without 

any claim of comprehensiveness. Table 42 and Table 43 show the restrictions of the memory 

characteristics. 

Table 42: Memory characteristics – simulation parameters (𝑰) 

Memory characteristics Range 

Quantity (#) 1 - 64 
Vendor {'Micron'} {'Samsung'} {'Hynix'} 

{'Qimonda'} {'Netlist'} 

Capacitors / capacitance 
capacity (size) [GB] 

{'1GB'} {'2GB'} {'4GB'} {'8GB'} 

{'16GB'} {'32GB'} 

Generation {'DDR3'} {'SDRAM DIMM'} 

Family 240 Pin DDR3 DIMM 
Series Family & synchronization mode & capacity & 

die 
Density [GB] {'1GB'} {'2GB'} {'4GB'} {'8GB'} 

{'16GB'} {'32GB'} 

Die 
(component revision) 

{'M'} {'G'} {'F'} {'E'} {'D'} 

{'C'} {'B'} {'A'} 

Fabrication size [nm] {'56nm'} {'54nm'} {'46nm'} 

{'44nm'} {'38nm'} {'35nm'} 

{'29nm'} 

Synchronization mode {'load reduced'} {'registered'} 

{'unbuffered'} {'fully buffered'}; 

{'LR'} {'R'} {'U'} {'FB'} 
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Table 43: Memory characteristics – simulation parameters (𝑰𝑰) 

Memory characteristics Range 

Module ranks, rank linking 
(data width) 

{'1R'} {'2R'} {'4R'};  

{'SR'} {'DR'} {'QR'} 

{'x4'} {'x8'} {'x16'} 

Timings {'6'} {'7'} {'8'} {'9'} {'10'} 

{'11'} {'13'} 

Resistance '56°C/W' 

Interleaving {'bank'} {'channel'} {''} 

Error correction {'ECC'} {''} 

Refresh {''} {'mirroring'} {'independent'} 

{'sparing'} {'scrubbing'} 

Frequency [MHz] {'400'} {'533'} {'667'} {'800'} 

{'933'} {'1066'} 

Voltage [VDC]313 {'LV'} {'STD'}; 

1.35 - 1.5VDC 
Transfer rate / throughput 
[MHz] 

{'800'} {'1066'} {'1333'} {'1600'} 

{'1866'} {'2133'}, 

{'PC3-6400'} {'PC3-8500'}  

{'PC3-10600'} {'PC3-12800'} 

{'PC3-14900'} {'PC3-17066'} 

 

We consider the processor characteristics, which we restrict to a single processor family. We 

exemplarily describe our results of the Intel Xeon architecture – the third generation, code 

name Ivy Bridge. We simulate the E5-2600 product family of the E5-v2 processor family. We 

implement the aspect-based calculation methods to consider, especially the Intel Xeon E5-

2690v2 and Intel Xeon E5-2670v2 processors. We analyze the power gap between the 

spreadsheet-based estimating, the measurements, and our simulation results. Table 44 and 

Table 45 show the processor characteristics, which we exemplarily support in our prototype 

implementation. 

Table 44: Processor characteristics – simulation parameters (𝑰) 

Processor characteristics Range 

Cache / cache lines 
[MB] 

{'10MB'} {'15MB'} {'20MB'} {'25MB'} 

{'30MB'} 

Voltage [V] 0.65-1.3V 
Time Consider various device states in time intervals 
Semiconductor 
technology (TDP) [W] 

{'60W'} {'70W'} {'80W'} {'95W'} 

{'115W'} {'130W'} 

Quantity (#) 1 - 4 
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 VDC: volts direct current 
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Table 45: Processor characteristics – simulation parameters (𝑰𝑰) 

Processor characteristics Range 

Status Enabled, disabled 
Type (OS) Microsoft Windows Server 2012R2, 

manufacturing process 
Vendor {'Intel'} 

Product life cycle stage Market introduction, growth, maturity, 
saturation, and decline 

Architecture Intel Xeon E5 
Generation Ivy Bridge EP 
Family E5-2600v2 
Series {'Intel Xeon E5-2603v2'} {'Intel Xeon 

E5-2680v2'} {'Intel Xeon E5-2670v2'} 

{'Intel Xeon E5-2660v2'} {'Intel Xeon 

E5-2650v2'} {'Intel Xeon E5-2640v2'} 

{'Intel Xeon E5-2630v2'} {'Intel Xeon 

E5-2620v2'} {'Intel Xeon E5-2609v2'} 

{'Intel Xeon E5-2690v2'} {'Intel Xeon 

E5-2697v2'} {'Intel Xeon E5-2695v2'} 

{'Intel Xeon E5-2667v2'} {'Intel Xeon 

E5-2643v2'} {'Intel Xeon E5-2637v2'} 

{'Intel Xeon E5-2650Lv2'} {'Intel 

Xeon E5-2630Lv2'} 

Fabrication size [nm] {'22nm'} 

Resistance  '0.257°C/W' 

Performance features 
(turbo) 

{'yes'} {'no'}, 

Intel VT-x, AMD-V 

Cores / active cores 
(hyper-threading) [C,T] 

{'1C'} {'2C'} {'3C'} {'4C'} {'5C'} 

{'6C'} {'7C'} {'8C'} {'9C'} {'10C'} 

{'11C'} {'12C'} {'13C'} {'14C'} 

{'15C'} {'16C'}, 
{'1T'} {'2T'} {'4T'} {'8T'} {'12T'} 

{'16T'} {'20T'} {'24T'} 

Frequency [GHz] {'1.2'} {'1.3'} {'1.4'} {'1.5'} 

{'1.6'} {'1.7'} {'1.8'} {'1.9'} 

{'2.0'} {'2.1'} {'2.2'} {'2.3'} 

{'2.4'} {'2.5'} {'2.6'} {'2.7'} 

{'2.8'} {'2.9'} {'3.0'} {'3.1'} 

{'3.2'} {'3.3'} {'3.4'} {'3.5'} 

{'3.6'} {'3.7'} {'3.8'} 

Accesses / instructions 
/ operands 

Integer, floating-point 

Transfer rate 
[GT/s, MHz] 

{'6.4GT/s'} {'7.2GT/s'} {'8.0GT/s'}, 
{'1333MHz'} {'1600MHz'} {'1866MHz'}  

Thresholds (thermal) 63°C - 88°C 
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We statically characterize the fan-specific behavior, which specifies how rapidly we will absorb 

and dissipate the heat. Our fan model is based on the characteristics presented in Table 46. 

Table 46: Fan characteristics – simulation parameters 

Fan characteristics Range 

Current [A] 0.02A - 2.5A 
Speed [RPM] 0 – 20000 
Type Axial-flow, centrifugal 
Voltage [VDC] 10.8 - 12.6VDC 

 

The model layer provides the mathematical methods and configuration data that we require in 

the simulation. The Simulink environment calls the functions receiving the energy efficiency of 

each component, which we control and monitor.  

6.3 Controller Layer 
The philosophy of Simulink considers a monolithic controller in the block diagram, an approach 

that we cannot apply concerning our concept because we adjust the dynamic behavior of each 

component. The controller layer of our simulation framework generally consists of a controller 

template according to Simulink (denoted as Simulink controller) and a set of distributed 

controllers that are specific to each component (named as component controller). The 

Simulink controller manages the simulation instructions provided by the view layer and 

specifies several simulation options, such as the initial conditions, the sample time of the 

Simulink blocks, or the start and stop time of a simulation run. We define the external 

interfaces for the simulation model in the Simulink controller and create the input signals by 

the stimuli model, which loads the utilization levels from the GUI and assigns them to our 

system model in Simulink. We connect the component models by signals in Simulink to enable 

the communication in the Simulink controller, which distributes and shares the aspect-based 

signals between each other. We specify the output signals to store the simulation results, 

which the Simulink controller manages. 

We design the top-level structure and architecture of a rack-based server system in Simulink, 

which includes the lookup-based models of each component, as specified in Section 6.2. We 

implement each component as a stand-alone Simulink model that supports the independent 

specification of the internal component behavior. The Simulink controller calls the aspect-

based calculation methods, which we integrate into the component models. We can exchange 

or simply adjust the calculation methods in MATLAB without changing the simulation model 

itself. We arrange the models in a modular approach, enabling them to communicate in a 

loosely coupled fashion to ensure scalability and exchangeability. 
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We split the expected monolithic controller of the Simulink model into several component 

controllers to enable especially the primary phase, wherein we customize the dynamic 

behavior. An exception is the fan model, which includes an internal monolithic controller (fan 

speed control) and considers the thermal development of the entire server system. 

Consequently, we connect the fan model to all components in our Simulink controller. The 

power supply is a non-controllable component that provides the power on the basis of the PSU 

efficiency and redundancy settings. 

We visualize and monitor the results of the system model at each time step of the simulation in 

the Simulink controller. Afterwards, we analyze and evaluate the impact of the diverse server 

configurations and characteristics on the energy efficiency ratio under various workloads and 

vendor-specific constraints. We decide upon the alternation strategy in our system-wide 

optimization engine, which results in an adjusted system model and requires updates on each 

instance of the distributed component controller. Figure 95 shows the simplified structure of 

the controller layer as a block diagram. 

 
Figure 95: Controller layer – block diagram 



Design and Implementation of the Architecture 

 

 

 
266 

 

Our simulation model consists of two major blocks at the highest abstraction level, as shown in 

Figure 96. The stimuli model314 generates the customer-specific (steady or continuously) 

utilization levels of every component. We consider the ambient temperature of the rack-

mounted server system as a static input. We visualize the simulation results in the Simulink 

scopes315 to enable the update process between the MVC layers.  

 
Figure 96: Simulation model – stimuli and server system 

Figure 97 shows the simplified subsystems of the rack-mounted server system, including the 

components, thermal control, and the power supply unit, which we divide into several 

subsystems. The components subsystem contains separate subsystems of the processor, 

memory, input/output, and others categories, which behave as individuals specified by the 

mathematical methods described in Section 6.2. Each component provides the performance, 

power, and thermal values that we couple with each other to provide the resulting values. The 

thermal control influences the temperatures inside the system, which we consider as the same 

all around the enclosure. We implement the thermal control, according to the specification in 

the concept chapter. In general, we implement a fan analogue to a component, but it does not 

include the performance calculation. We sum up the power consumption values resulting in 

the secondary power (provided by the PSU) and calculate the primary power (input to the PSU) 

considering the power supply efficiency and redundancy settings. We want to refrain from a 

detailed description of the subsystems316, because of the reduced readability in the figures.  

                                                           
314

 Stimuli model: Simulink subsystem, implement in the workload generator in MATLAB 
315

 Simulink scope: define a name tag 
316

 Subsystems: the customer or user can get further details by double-clicking at the Simulink blocks 
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Figure 97: System model – components, thermal control, and power supply unit (simplified representation) 

Hence, we implement the MATLAB methods and Simulink models; we execute the MATLAB 

script GUI.m, which builds the simulation entry and initializes the graphical user elements by 

their related functions. We load the configuration file of the server system and parse it to 

adjust our configuration tree and restrict the decision variables. Afterwards, we set up the 

model and simulation parameter, which we require to control the Simulink model in the 

background. The graphical user interface remains at the wait state as long as an event occurs, 

see Figure 98. The MATLAB callback functions react to any changes in the graphical user 

interface, such as the workload scenario (popup menu), the utilization levels (sliders), the 

selection of the server configuration (list box), or the start request (button). We implement the 

specific callback functions and provide the settings to the framework317, which parameterizes 

the simulation model. We activate the simulation and optimization by pressing the start 

button in the GUI.  

 
Figure 98: Workflow – MATLAB GUI and Simulink model 

  

                                                           
317

 Framework: MATLAB scripts (*.m files), MATLAB workspace, and Simulink (model workspace, block 
properties) 
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We realize our framework regarding the concept, which includes both a pre- and post-process 

of the proper simulation, as shown in Figure 99.  

 
Figure 99: Workflow – callback simulation start 

In the pre-process, we import the workload scenario and pre-define the stimuli when we open 

the GUI, as described in Section 6.1. We update the stimuli on the basis of any change in the 

GUI. In parallel, we create the generic configuration tree and import the customer-specific 

server configuration, which restricts the system-compatible hardware and the related decision 

variables. We initialize the aspect-based methods, as we briefly explain the procedure in 

Section 6.2. Figure 100 shows a simplified workflow of the pre-process.  
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Figure 100: Workflow – simulation pre-process 

In each calculation method, we identify the relevant aspect-based characteristics of the 

respective component and load them into the simulation environment. Afterwards, we 

establish the particular weight coefficients and apply the offset of our initial configuration in 

relation to the default values in our database. We call the calculation methods and create the 

lookup-based models. Figure 101 presents an overview of the initialization workflow.  
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Figure 101: Workflow – initialize aspect-based methods 

After configuring and initializing the calculation methods, we execute the simulation and 

optimization. Figure 102 shows the workflow of the simulation framework in an abstract 

manner. Our simulation framework considers the utilization levels at each time step 𝑡𝑘, which 

controls the simulation loop. We synchronize the time stamps of the workload scenario of the 

timer of the simulation model. In the first optimization loop, we consider the initial set of 

decision variables in our calculation method, which consists of the lookup-based models. We 

load the utilization levels at the time 𝑡𝑘 and calculate the aspects of the energy efficiency 

computation that we consider. We strictly follow our concept concerning the step-based 

analysis, presented in Figure 79. We evaluate the results and find the possible impacts of the 

several characteristics on whose basis we decide on the alternation strategy. We restrict the 

set of decision variables that we further want to modify, see Section 5.4.2.2. If we modify a 

characteristic318, we update the lookup-based models and call the calculation methods again. 

This results in a recursive optimization at each time 𝑡𝑘. If we do not require a subsequent 

iteration within the optimization loop, we define the step-based optimum and advance to the 

next time step 𝑡𝑘+1, as long as we do not reach the end of the workload scenario. We 

continuously visualize the aspects in the Simulink scopes and save the values in our 

environment. We globally analyze the step-based optima in the post-process, which we 

implement in MATLAB.  

                                                           
318

 Modification of the characteristics: change the values 
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Figure 102: Workflow of the simulation framework 

6.4 Summary 
We realize our concept as a Model-View-Controller (MVC) approach that considers a flexible 

amount of rack-based server configurations and components. The customer can define a 

workload scenario that specifies the specific demands in a more realistic manner. 

Furthermore, we integrate the ambient temperature of the server system, which reflects the 

data center requirements. We implement our framework as a combination of MATLAB and 

Simulink to gain each benefit, such as the existing realization of certain algorithms. In the next 

chapter, we evaluate our calculation methods of the components considering the energy 

efficiency of the entire server system. 
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7 Evaluation of the Multi-aspect Full-system Server Model and 

Optimization (MFSMOS) 

In the first section, we introduce the evaluation environment in which we describe the 

measured server system, the software-based measurement infrastructure, and the 

benchmarks considering different server configurations. The aim of the evaluation is to prove 

the applicability of our developed concept as a proof-of-concept. We demonstrate the viability 

of our multi-aspect-based calculation methods for the components, which we integrate into a 

full-system server model. We emphasize the reliability, portability, and flexibility of our 

simulation framework and demonstrate that we are able to optimize a server system 

concerning its configuration and characteristics. To validate our models, we performed a 

sequence of benchmarks on various server system configurations and varied the utilization 

levels. To demonstrate the industrial feasibility and suitability, we emphasize the modular 

description of the workload and the server system configuration. We evaluate our MFSMOS 

approach considering a series of analyses with our prototype implementation and we assume 

the applicability of each alternative server system, considering another vendor or platform 

segment, for instance.  

First, we evaluate the accuracy of the aspect-based calculation methods to check the 

plausibility, and then we analyze the impacts on particular characteristics to test the flexible 

reaction to possible changes. Here, we characterize the components and analyze the response 

of the varying utilization levels and consider a set of micro-benchmarks in order to distinguish 

the different component activities and consider the behavior in the entire system. Thirdly, we 

consider the worst-case power and energy efficiency in a case study in two versions, one 

without optimizations and one with. This is in accordance to common industry practice. Here, 

we present an experimental analysis to demonstrate the optimization possibilities and 

concentrate upon the three main analyses: Accuracy Analysis, Impact on Characteristics 

Changes, and Energy Efficiency Analysis.  

7.1 Evaluation Environment 

7.1.1 System under Test (SUT) 

We analyze an exemplary rack-based server system, the system under test (SUT), which is a 

Fujitsu319 server system. Table 47 shows a brief overview of the hardware settings, which 

allows up to two processors and 24 memory modules. Our current SUT is equipped with two 

Intel Xeon E5-2650v2 processors, whereby we disable the second processor in the BIOS/UEFI320 

when we want to analyze a single processor in the system. We have access to up to 12 

memory modules for test purposes. If we require fewer modules in our experiments, we 

physically remove the modules. We analyze the total memory capacity and related 

                                                           
319

 Fujitsu server systems: http://www.fujitsu.com/fts/products/computing/servers/primergy/rack/ 
320

 Disable a processor: It automatically disables memory modules that correspond to the processor. 
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characteristics in order to show the differences between the various benchmarks, for instance. 

The particular system’s power supply delivers an output of 450𝑊 at around 94% efficiency. In 

our experimental setup, we share one hard disk with the operating system, measurement 

tools, and benchmarks. The combination of the OS and the tools on a single hard disk may 

influence the evaluation results321, such as throughput, response time, or latency. 

Table 47: System under test (SUT) – hardware settings 

Category Settings 

Platform segment Single rack-based server system 
Server system model Fujitsu PRIMERGY RX200 family (RX200S8) 
Form factor Dual socket 2U rack server 

Processor  
Family (Series) 
(𝑪𝟏𝟖) 

Intel Xeon E5-2600 v2 (E5-2650v2) 

Generation Ivy Bridge EP (Romley) 
Frequency 1.8GHz – 2.1GHz, turbo 2.3GHz 
Hyper-threading / turbo Enabled / enabled 
Enabled 8 cores, 2 chips 
Hardware threads 16 (2 / core) 
L1 Cache 8x32KB instruction caches, 8x32KB data caches 
L2 Cache 8x256KB 
L3 Cache 20480KB 
Thermal design power (TDP) 70W 

Memory  
Total amount (max) 40GB 
# and size of DIMM 8*4GB, 4*2GB 
Memory characteristics 
(𝑪𝟕𝟎, 𝑪𝟕𝟏) 

4GB (Micron): 
DDR3 LV, SDRAM, RDIMM (registered), ECC, 
single rank (1Rx4), DDR3-1600, PC3-12800, CL11 

2GB (Qimonda): 
DDR3, SDRAM, RDIMM (registered), ECC, single 
rank (1Rx4), DDR3-1066, PC3-8500R, CL7 

Disk  
Drives 1x73GB 15K RPM SAS 
Controller Integrated SAS controller (Intel C600) 

Network adapter 4xSuperFast NIC, 100Mbit 
Power supply unit  
Quantity and rating 1x450W, Delta 
Specification 94% (platinum efficiency), 100-240V, 50/60 Hz 

Fans 5, 4+1 redundant 

 

                                                           
321

 Influence of the results: due to resource management, memory (access) management, or OS-based 
scheduling onto the hardware resources (load balancing, multitasking, or context switch) 
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We choose a Microsoft Windows OS to ensure the full support of the device states, according 

to the ACPI standard, considering an enabled power management. We execute Java-based322 

measurement tools and benchmarks on our server system, which may have an impact on our 

results because some implementations have a poor garbage collection, a large memory 

footprint, or a lack of garbage collection on resources. Most of the tools continuously monitor 

and save the sensor data323 at the same time. In Table 48, we show the software versions of 

our system under test. Additionally, the system is accessible from outside by the baseboard 

management controller (BMC), which provides the intelligent platform management interface 

(IPMI) to enable the sensor tracing324 independently of the operating system. 

Table 48: System under test (SUT) – software settings 

Category Settings 

Operating system (OS)  
Version Microsoft Windows Server 2012 

Standard R2 
Power management Enabled 

Software  
Java runtime environment (JRE) 1.8.0_91 
Oracle VirtualBox 4.1.18 r78361 

BIOS/UEFI (ACPI support) SMBIOS V2.4 
Baseboard management controller  
Integrated remote management 
controller (iRMC) 

iRMC S4, 256 MB attached memory  
incl. graphics controller 

Firmware version 7.61 
Sensor data record (SDR) 09.71 (ID 0356) 
Intelligent platform management 
interface (IPMI) version 

2.0 

 

7.1.2 Measurement Infrastructure 

Here we consider several measurement tools to monitor the power, performance, and 

temperature of the target SUT, which are available for the most popular operating systems 

and easily accessible in the public domain. We install the software-based measurement tools 

on our target SUT, execute all of them in parallel, and store the results325 afterwards.  

  

                                                           
322

 Java tools: platform-independent, must be interpreted, needs the Java runtime environment (JRE) 
323

 Sensor data: hardware sensors are mounted on the motherboard 
324

 Sensor tracing: read sensors (power, temperature, fan speed) 
325

 Results: files in *.csv format, some tools support caching, others write data at all times 
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We always save all the tool information that is available during our evaluations considering a 

steady load of writing data onto disk. Among our repeated measurements326, we assume a 

steady situation327 in the laboratory concerning a constant ambient temperature, static air 

pressure, or humidity. 

The HW Monitor Pro328 provides the status of the component utilization levels and especially 

distinguishes between the processor cores and threads. The tool shows the current 

frequencies, which are restricted to the processor cores329, monitors the processor package 

power, and uncores power330, according to the voltage regulator module (VRM). The HW 

Monitor Pro records the temperatures of the processor cores and the core temperature of the 

memory modules. The tool reads the sensor data by a time base of one second and continually 

writes the sensor data into an appropriate file on the hard disk.  

The Intel Power Gadget331 is the only tool that provides the cumulative energy consumption of 

the input/output, processor, and memory of their aggregated power values. Herein, we 

particularly focus on the memory power consumption because the other tools do not provide 

the same level of detail. The tool does not distinguish into the particular processor cores and 

therefore provides the processor frequency as an all-embracing time-based vector. The Intel 

Power Gadget monitors the temperatures within the system, whereby the time base of the 

Intel Power Gadget is fixed to 100 milliseconds.  

The major benefit of the Intel Power Thermal Utility332 (PTU) is the flexible configuration of the 

time base, which we define as 50 milliseconds to monitor and trace the sensor data more 

accurately in comparison to the other tools. Therefore, we consider the processors’ power, 

temperature, frequency, and utilization level to evaluate our processor and memory model. 

The tool directly accesses the processors’ internal sensors and provides the voltages, which we 

evaluate in our processor model considering the p-states and the related voltage-frequency 

pair. The Intel Power Thermal Utility caches the sensor data, which we save in a specific log file 

afterwards.  

                                                           
326

 Repeated measurements: up to five times, evaluating either identical or modified server system 
configurations 
327

 Steady situation: always ideal operating conditions because of the HVAC system 
328

 HW Monitor Pro: http://www.cpuid.com/softwares/hwmonitor.html 
329

 Processor cores: processing functionality and instructions, such as arithmetic logic unit (ALU), 
floating-point unit (FPU), L1 and L2 cache 
330

 Processor uncore: integrated subsystems on the processor (on-chip interconnect or communication), 
e.g. the Quick Path Interconnect (QPI), power controller, integrated memory controller (IMC), I/O 
controller, network controller, scalable memory interface (SMI), distributed/shared last-level cache 
(LLC), such as L3 cache 
331

 Intel Power Gadget: https://software.intel.com/en-us/articles/intel-power-gadget-20 
332

 Intel Power Thermal Utility: 
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cpu-monitoring-dts-
peci-paper.pdf 
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The Intel tools (Intel Power Gadget and Intel Power Thermal Utility) provide several relevant 

processor-specific details based upon the processor socket, family, series, and generation, 

which are only accessible by these tools because of the particular sensors inside the 

processor333.  

A special tool is called Kalcheck, developed by Fujitsu, which monitors the power and 

temperature values independently of the operating system. In particular, Kalcheck provides 

server-specific, internal system temperatures of the system-board, power supply unit, and 

each individual memory module. We can observe the ambient and processor-specific 

temperatures to analyze the thermal development within the enclosure considering the fan 

speed. In addition, Kalcheck distinguishes between the secondary (provided by the PSU) and 

primary (input to the PSU) power of the system, and separately monitors the system-board 

and hard disk power. Kalcheck uses IPMI over Ethernet to connect to the BMC, which accesses 

to sensors with the inter-integrated circuit bus (I²C). The time base is restricted to one second 

because the sensors are connected to the I²C bus, which has a limited bandwidth, especially in 

case of one hundred sensors within a particular server system. The sensor data record (SDR) 

inside the BMC specifies the certain addresses of the sensors, sensor types, and amount of 

sensors. The following table shows an overview of our measurement tools, their time basis, 

and extra settings. 

Table 49: Measurement tools and settings 

Measurement tool Description Time base Settings 

HW Monitor Pro Version 1.25.0 1000𝑚𝑠 Disable multi-curves 
Intel Power Gadget Version 3.0 100𝑚𝑠  
Intel Power  
Thermal Utility 

Version 3.2 50𝑚𝑠 
(configurable) 

Max records 99999999 

Kalcheck 
(Fujitsu-specific 
internal tool) 

Date of 
manufacture 
2014-04-01 

1000𝑚𝑠 Poll -temp -fan -power -
logfile ‘logfile.csv’ 

 

We execute the measurement tool Kalcheck on an extra computer to avoid using the loopback 

network interface on the target system, which may lead to additional load, and the data 

tracing is accessible independently of the target OS. We always start all measurement tools of 

the same sequence before we enable the benchmark procedures, using the remote desktop 

protocol (RDP). In the next step, we run the benchmarks from scratch334 to avoid caching 

effects and improve the repeatability when testing. Figure 103 shows our evaluation 

environment in the laboratory.  

                                                           
333

 Processor sensors: digital thermal sensors (DTS) 
334

 Start from scratch: after rebooting the SUT, access benchmark after starting the measurement tools 
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Figure 103: Evaluation and simulation environment 

We share one computer to execute Kalcheck and start our simulation framework, including our 

MFSMOS approach as a prototype implementation. We trace the system under test using the 

HW Monitor Pro, Intel Power Gadget, Intel Power Thermal Utility, and Kalcheck to collect the 

data for our simulation framework. We disable all communications between both systems and 

stop every measurement tool when we start our simulation model in MATLAB. Table 50 lists 

the hardware and software settings of our computer. 

Table 50: Computer – hardware and software settings 

Category Settings 

Hardware  
Platform segment Laptop, Fujitsu Celsius H710 
Processor Intel Core i7-2760QM, 2.4GHz 
Memory 8GB, DDR3-SDRAM 

Software  
Operating system Microsoft Windows 7 Professional SP1 

version 6.1 (Build 7601: SP1) 
Java runtime environment (JRE) 1.7.0_71 
MATLAB R2015a (8.5.0.197613), 64-bit 
Simulink R2015a (8.5.0.197613), 64-bit 

 

The possible resolution and precision of the temperature, power, and fan speed depend on the 

sensor quality and sensor position within the server system. Our target SUT has approximately 

200 sensors in which the sensor data record defines how to interpret the raw values. The 

temperature sensors are determined to an accuracy of half a degree Celsius. The power 

sensors of the processor, memory, and hard disk drive are more accurate (< ±0.5 𝑊) in 

comparison to the power supply sensors (≥ ±4 𝑊). The fan speed sensors have an accuracy 

of approximately ±10 𝑅𝑃𝑀. Furthermore, the time used for collecting data varies because of 

the flexible configuration of the sensors and their corresponding amount of data, which we 
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save in the log files. The measurement tools use the clock of the operating systems instead of a 

real-time clock, which implies that the handling or triggering335 of sensor data does not fit the 

configured time exactly.  

7.1.3 Benchmarks 

We consider the standard publicly available benchmarks and their metrics, such as SPEC336, 

TPC337, and PassMark338. Table 51 lists the various benchmarks and settings, which we install 

and execute on the target SUT to analyze multiple activity rates. We assume that the OS 

insignificantly limits the benchmarks, because we assign the highest priority to our 

benchmarks, and additionally set the affinity at all processor cores and threads to ensure that 

all of them are used similarly. As a result, we enhance the repeatability and restrict the 

possible variations between various benchmark tests. 

Table 51: Benchmarks settings 

Benchmark Settings 

SPECpower Version ssj2008-1.12 
Operating system (OS)  
boot (Management) firmware version 

SPEC Open Doors 2006 F500 
1.2.3.4 (64-bit) 

Java Virtual Machine (JVM) version SPEC Java VM 5.0 (build 1.2.3.4-tricore 
20071111) 

JVM command-line options -Xms3500m -Xmx3500m –XrunFast  
-XconsumeLessPower -Xmn3100m 

Workload version SSJ 1.2.10 
PTDaemon v1.4.2 

PassMark Version 8 
PassMark CPU CPU mark, integer math, floating-point 

math, prime numbers, extended 
instructions (SSE), compression, 
encryption, physics, sorting, single 
threaded 

PassMark Memory Memory mark, database operations, 
read cached, read uncached, write, 
available RAM, latency, threaded 

MemTest86 Version 7.0 free edition, pattern testing 

 

  

                                                           
335

 Trigger the data: The measurements have non-equidistant times, e.g., 1.02 𝑠 or 0.98𝑠 between the 
measurement time stamps. 
336

 SPEC: http://www.spec.org/ 
337

 TPC: http://www.tpc.org/default.asp 
338

 PassMark: http://www.passmark.com/ 
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The SPECpower339 benchmark measures the power and related performance while utilizing the 

server system at various levels, considering the processors, memories, or caches. SPECpower 

starts a calibration phase (minimum of three runs) to identify the maximum benchmark 

throughput. Afterwards, the sequence of the target throughput decreases from the maximal 

target throughput from 100%  down to 0%  in about 10%  of the discrete steps of the 

calibrated throughput. SPECpower tries to reach an approximate target throughput of 90%, 

for instance. The tool uses the server-side Java (ssj) workloads340 that execute multiple Java 

virtual machines (JVMs), considering a large number of users and various transaction types. A 

result of the SPECpower benchmark is the actual target throughput, such as 90.7% of the 

maximal throughput, which should be as close as possible341 to the target throughput of 90%. 

We assume that the system approximately operates at a certain utilization level in average 

when working at a particular target throughput, which will not be a steady value342. The 

utilization level of the processor behaves proportional to the load (target throughput) of the 

benchmark. Furthermore, the benchmark provides the average power consumption and the 

number of ssj-operations343 (𝑠𝑠𝑗_𝑜𝑝𝑠) on the basis of the various target throughputs. The tool 

considers both aspects to calculate the performance-to-power ratio at each target throughput. 

We cannot use the certified (officially released) power analyzer 344  in the SPECpower 

benchmark, because of the extraordinary equipment costs to consider high-resolution power 

measurements. Instead, we consider various measurement tools, monitoring the power of the 

motherboard, processor, memory, or power supply unit. Therefore, our SPECpower log file 

does not include the average power and the performance-to-power ratio in a precise manner.  

We execute the SPECpower benchmark in four different server configurations, which either 

changes the number of processors or the total amount of the memory capacity. The server 

system requires the balance of the memory modules among the processors, which depends 

upon the enabled processors and the memory channel configuration. Therefore, we consider a 

dual channel (𝑆𝑃𝑥. 2. 𝑧) and a triple channel (𝑆𝑃𝑥. 3. 𝑧) configuration, whereby 𝑥 denotes the 

number of the processors, 𝑦 indicates the channel configuration, and 𝑧 refers to the total 

memory capacity within the system, as shown in Table 52.  

Table 52: SPECpower – test cases for (𝑺𝑷𝒙. 𝒚. 𝒛) 

  # of memory modules *  
capacity (GB) per module 

  2*4 3*4, 3*2 

# of 
processors 

1 𝑆𝑃1.2.8  𝑆𝑃1.3.18 
2 𝑆𝑃2.2.16 𝑆𝑃2.3.36 

                                                           
339

 SPECpower: http://www.spec.org/benchmarks.html#power 
340

 SSJ workloads: Java program, https://www.spec.org/power/docs/SPECpower_ssj2008-Design_ssj.pdf 
341

 As close as possible: less than 2% positive or negative deviation 
342

 Steady value: average value over an interval 
343

 ssj-operations: performance indicator 
344

 Power analyzer: https://www.spec.org/power/docs/SPECpower-Device_List.html 
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In contrast, the TPC suite focuses on data-centric benchmarks, which are relevant in industry 

and uncommon in academic evaluations. We neglect the wide range of micro-benchmarks in 

our evaluation because of the amount of data will increase exponentially. In principle, we may 

add the TPC benchmark results when a server system is suitable345.  

A widely used software in personal and in business applications is PassMark, which tests x86-

based computers and their components. We consider especially the PassMark CPU346 and 

PassMark Memory 347 , which help comparing the relative performance of the various 

components. Both benchmarks consist of multiple micro-benchmarks, as shown in Table 51, 

which we entirely execute because this operating mode is set as a default. The PassMark 

benchmarks store the maximal scores of every micro-benchmark, provide the mixture (overall) 

score of the benchmark itself, and additionally show scores of similar configurations, such as 

the Intel Xeon E5-2640v2, Intel Xeon E5-2650L, and Intel Xeon E5-2648L. We consider the 

mixture performance result, a mix of the certain micro-benchmarks, as the default maximal 

performance values of the components in our simulation model. To respond flexibly to 

customer demands, we add the results of the micro-benchmarks to our database. Table 53 and 

Table 54 list the PassMark test cases that we analyze in our evaluation, considering the 

processor performance (𝑃𝐶𝑥. 𝑦. 𝑧) and memory performance (𝑃𝑀𝑥. 𝑦. 𝑧) in which 𝑦 denotes 

the amount of memory modules per processor. 

Table 53: PassMark CPU – test cases for (𝑷𝑪𝒙. 𝒚. 𝒛) 

  # of memory modules *  
capacity (GB) per module 

  1*2 1*4 2*2 

# of 
processors 

1 𝑃𝐶1.1.2 𝑃𝐶1.1.4 𝑃𝐶1.2.4 
2 𝑃𝐶2.1.4 𝑃𝐶2.1.8 𝑃𝐶2.2.8 

 

Table 54: PassMark Memory – test cases for (𝑷𝑴𝒙. 𝒚. 𝒛) 

  # of memory modules *  
capacity (GB) per module 

  1*2 1*4 2*2 

# of 
processors 

1 𝑃𝑀1.1.2 𝑃𝑀1.1.4 𝑃𝑀1.2.4 
2 𝑃𝑀2.1.4 𝑃𝑀2.1.8 𝑃𝑀2.2.8 

 

                                                           
345

 Server system in TPC: PRIMERGY TX300 (similar to RX200/TX200) 
http://c970058.r58.cf2.rackcdn.com/fdr/tpcc/fujitsu-siemens.TX300.030811.01.fdr.pdf 
346

 PassMark CPU: http://www.cpubenchmark.net/ 
347

 PassMark Memory: http://www.memorybenchmark.net/ 
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Moreover, we consider the PassMark MemTest86348 because the internal test algorithm 

utilizes the memory cells more individually, as done in the PassMark Memory benchmark. The 

MemTest86 algorithm349 reads and writes the memory cells using a pre-defined pattern, which 

can start at the lowest or highest address. The algorithm includes the writing of the original 

data and its complement. As a last step, the tool checks the write process by reviewing the 

data and counting the faults. The MemTest86 procedure increases the memory address and 

repeats the previous steps toward the end of the memory address range. We further analyze 

the memory modules (𝑀𝑇𝑥. 𝑧), considering the amount of processor threads 𝑥 and the total 

memory capacity 𝑧, as listed in Table 55. We create and reconfigure exactly the same virtual 

machine settings to enable the analysis of all test cases and we adapt the memory capacity by 

adjusting the virtual machine properties. This special virtual environment is necessary because 

we cannot execute the measurement tools in the stand-alone350 memory testing software 

MemTest86. 

Table 55: MemTest86 – test cases for (𝑴𝑻𝒙. 𝒛) 

  Total memory capacity (GB) 
  32 24 16 8 1 

# of 
processor 
threads 

1 𝑀𝑇1.32 𝑀𝑇1.24 𝑀𝑇1.16 𝑀𝑇1.8 𝑀𝑇1.1 
8 𝑀𝑇8.32 𝑀𝑇8.24 𝑀𝑇8.16 𝑀𝑇8.8 𝑀𝑇8.1 

16 𝑀𝑇16.32 𝑀𝑇16.24 𝑀𝑇16.16 𝑀𝑇16.8 𝑀𝑇16.1 

 

Finally, we analyze the boot phase of the server system, where 𝑥 is the number of the 

processors, 𝑦  is related to the channel configuration, and 𝑧  indicates the total memory 

capacity within the system, as shown in Table 56.  

Table 56: Boot phase – test cases for (𝑩𝑷𝒙. 𝒚. 𝒛) 

  # of memory modules *  
capacity (GB) per module 

  1*2 1*4 2*2 

# of 
processors 

1 𝐵𝑃1.1.2 𝐵𝑃1.1.4 𝐵𝑃1.2.4 
2 𝐵𝑃2.1.4 𝐵𝑃2.1.8 𝐵𝑃2.2.8 

 

  

                                                           
348

 MemTest86 : http://www.memtest86.com/download.htm 
349

 Algorithm: http://www.memtest86.com/technical.htm 
350

 Stand-alone software: MemTest86 boots from a USB flash drive or CD 
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In the initial starting phase, the BIOS/UEFI checks whether the components work properly. 

Therefore, each component will be accessed during the initialization and boot process at some 

specific moment, which usually results in the maximum possible power consumption within 

some seconds or up to a maximum of a few minutes. The power consumption behavior can be 

compared with the spin-up process of a hard disk in which we require more power to spin the 

disk from 0𝑅𝑃𝑀 to 7200𝑅𝑃𝑀 than to keep them rotating [HSR et al. 2008].  

Table 57 lists the execution time statistics of the various benchmark runs considering the 

repetitions because all benchmarks vary at each run. The SPECpower benchmark requires 

approximately 77 minutes, followed by the MemTest86 at approximately 27 minutes. In 

contrast, the PassMark benchmarks perform within about three to four minutes, which is 

nearly as fast as the boot phase of the server system of less than three minutes. We cannot 

guarantee the exact benchmark behavior, but evaluate an explicit benchmark trace.  

Table 57: Execution time statistics – benchmarks 

  Benchmarks 
  SPECpower 

 
𝑺𝑷𝒙. 𝒚. 𝒛 

PassMark  
CPU 

𝑷𝑪𝒙. 𝒚. 𝒛 

PassMark  
Memory 
𝑷𝑴𝒙. 𝒚. 𝒛 

MemTest86 
 

𝑴𝑻𝒙. 𝒛 

Boot  
phase 
𝑩𝑷𝒙. 𝒚. 𝒛 

Execution 
time 
[min] 

Maximum  84.47 4.09 3.21 28.18 3.18 
Minimum 73.56 4.02 2.92 26.65 2.23 

Mean 76.32 4.04 2.98 27.24 2.70 
Median 74.24 4.03 2.95 26.87 2.73 

Standard 
deviation 

4.63 0.02 0.10 0.83 0.27 

Variance 21.46 0.0005 0.01 0.69 0.07 

 

7.1.4 Measurement Issues and Restrictions 

Before we present the evaluation results, we give a general overview of our general findings 

when analyzing the measurements of the real system. First, the results of the benchmarks and 

measurement infrastructure have to be consistent over time because the tools do not use a 

real-time clock or have the same time stamps. Thus, we convert all time stamps of the various 

signals into a second-based format and slightly shift some signals (in milliseconds) to 

synchronize them, considering the different date and time formats. In addition, we configure a 

particular start time and stop time as a common base to provide valid time stamps in our 

analysis at any time. We specify ′0𝑠′ as an absolute and common start time of all signals in 

every experiment, which builds the basis of the related times on the x-axis represented with an 

exponent.  

Figure 104 exemplarily shows the measurements of the Intel Power Thermal Utility recording 

the processor frequency while executing the PassMark CPU benchmark (𝑃𝐶1.1.2). In our 

frequency measurement, we observe multiple frequency peaks that are higher than the 
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maximal possible frequency of the processor defined at 2300𝑀𝐻𝑧, such as 3033𝑀𝐻𝑧 at a 

time351 stamp 𝑡 = 5.052 ∗ 106𝑠. We assume that all signals during our measurements are 

affected by such measurement errors. We especially analyze the appearance of the incorrect 

frequencies in relation to the total amount of occurring frequencies and observe nearly 

+0.33% at the PassMark CPU and approximately +0.25% at the SPECpower benchmark in the 

mean. The upward extreme outliers352 are not the only measurement errors; we also found 

values that sharply vary from the rest in a group of observations under the same conditions. 

We observe a couple of measurement errors that just occur for a short period in relation to 

the entire benchmark (unusually small). Moreover, Figure 104 presents a certain measurement 

error between the time period 𝑇 = [5.048 ∗ 106, 5.052 ∗ 106]𝑠, which shows a non-signal. 

Such a reading error may occur in further measurements. Even more, we face a problem with 

zero values in our evaluation that leads to infinite values when we calculate the accuracy 

because of a division by zero.  

 
Figure 104: PassMark CPU (𝑷𝑪𝟏. 𝟏. 𝟐) – measurement accuracy 

  

                                                           
351

 Time notation: 1 ∗ 105𝑠 corresponds to 1e+06s MATLAB notation. We simplify the time notation 
for better readability and define 1 ∗ 106 ≡ 1𝑒 + 06, which ensures easy reading in our graphs and 
analysis. 
352

 Detect outlier: exceed the minimum/maximum limit (e.g. frequency) or calculate the mean 𝜇 and 
variance 𝜎. Outliers are either less than 𝜇 − 3𝜎 or greater than 𝜇 + 3𝜎, known as three sigma rule in 
normal distribution; our MATLAB version does not support the current ‘isoutliers’ function. 
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We require a relatively long period in comparison to the measurement errors in order to 

achieve a sufficiently high density of samples that ensure the statistical significance of our 

signals. The SPECpower benchmark finishes after around 77 minutes, the PassMark CPU 

requires approximately four minutes, the PassMark Memory takes nearly three minutes, the 

MemTest86 stops after 27 minutes, and the boot phase ends after three minutes, as shown in 

Table 57. 

As stated in Section 7.1.2, we execute our simulation framework on a common computer and 

list the related settings in Table 50. The measurement infrastructure (hardware and software) 

produces a systematic error because of their uncertainty based on the limited accuracy (the 

digits in each measurement) or imprecise calibration [Rab 2010]. Another systematic error is 

the environmental condition, which may change during our measurements, such as an 

increasing ambient temperature. We are restricted to the specific ambient temperature range 

of 20 − 25°𝐶 because of the static HVAC settings in our laboratory. We cannot adjust the 

measurement environment of the system under test, as the changes are possible in our 

simulation runs. Additionally, we assume that a highly utilized processor, which is located 

relatively nearby the memory module on the motherboard, may be another disturbance of the 

thermal development within the system. 

7.2 Analysis of the Aspect-based Calculation Methods Regarding Their 

Accuracy 

7.2.1 Objective 

Our aim is a general verification as well as evaluation of the concepts’ operating principles and 

our related calculation methods, which have to react on heterogeneous workload scenarios. 

We analyze the accuracy of our aspect-based component models and check whether our 

approach is adequate. The abstraction level of the server system and its components should be 

low enough to support architectural and structural changes at the physical domain. We want 

to find the limits of our model because of the chosen abstraction level to treat the conditions 

of the vendor and the customer-specific demands at the same time. Additionally, our 

component-based models shall improve the power calculation of the commercial tools and 

avoid over-provisioning. 

7.2.2 Evaluation Criteria 

Our models immediately need to react upon the synthetic workload scenarios (category-

specific utilization levels) provided by the commercial tools. We assume that if our models 

handle the flexible category-specific utilization levels step-by-step, the entire simulation model 

will respond adequately at all possible utilization levels. In this analysis, we answer the 

following question: 

 How much can we trust our aspect-based calculation methods and component-based 

models in our simulation? 
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As a prerequisite, we have to answer the question of how to determine whether the aspect-

based calculation methods are accurate. We study and trace the particular components within 

the system to verify our concept and show the plausibility when reaching extreme values. The 

various commercial tools primarily consider spreadsheets, instead of measuring the real server 

systems, which saves costs. We evaluate the accuracy of our aspect-based calculation methods 

by comparing our results with the measurement values gained from the real server system. 

Therefore, our evaluation criteria are the absolute and relative differences between the 

simulation-based values and the measurement results at the various utilization levels. When 

simulating the power consumption, we require an over-prediction of less than +10% in 

relation to the real-life measurement. We concentrate on the power and thermal 

measurement in our analysis and avoid any vendor-specific hardware to show the applicability 

of several generic components. 

7.2.3 Experimental Setup 

We specify the general evaluation environment and measurement infrastructure in the 

Sections 7.1.1, 7.1.2, and 7.1.3. In Section 7.2, we describe the experimental setup of the 

accuracy analysis in which we exclusively study an audited hardware, because we can 

crosscheck our simulation-based results with the empirical measurements gained from the real 

hardware, considering identical data of the components. We analyze two Intel processors of 

the same family and a couple of memory modules that have various capacities and originate 

from a certain manufacturer. We separately evaluate the category-specific components 

concerning their accuracy of the aspect-based calculation methods, which is possible because 

of our modular and hierarchical concept. Figure 105 shows the block diagram of the controller 

layer in our simulation model in which we explicitly simulate the memory module, for instance. 
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Figure 105: Controller layer – block diagram considering an exclusive memory model for evaluation purposes 

We provide the memory utilization level 𝑢𝑚𝑒𝑚 to our memory model within the system model 

and calculate the various aspects of the memory module, which we further analyze in our 

controller during the simulation. Herein, we exclusively consider the memory component and 

call the particular calc_category() method, provided by the memory model, which is isolated 

and encapsulated from the other components, see Section 6.2. We neglect the complex 

simulation model (e.g. the thermal control) and especially analyze the component behavior 

itself and its internal aspect-based relations, as shown in Figure 44, concerning each utilization 

level. In this evaluation section, we disable the system-wide optimization engine because we 

analyze the results of our component-based models. 

 
Figure 106: Aspect-based memory module and corresponding relations (𝑹𝑨) 
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Therefore, we restrict the stimuli of our simulation model with regard to the memory and set 

the remaining utilization levels to zero353, which results in ignoring the other components in 

the simulation, as shown in Figure 107. Moreover, we ignore the relations or communications 

between the various components to isolate and encapsulate the memory module from the 

other components. We separately study the memory component, as if the memory model was 

detached354 from the entire simulation framework.  

 
Figure 107: Simulation model – stimuli and server system for the exclusive memory evaluation 

We choose this approach to simplify the evaluation and speed up the simulation in which we 

can easily import the utilization levels of the real-life measurements as an input parameter of 

our component-specific aspect-based calculation methods. We can effortlessly include the 

measurement trace355 that is the subject of our analysis and calculate the absolute as well as a 

relative difference regarding our simulation-based results. We consider the following identical 

data as the basis of our simulation and internal aspect-based calculation methods as input 

parameters356: 

 Characterization of the component (e.g. category, static configuration, technical 

specification, and dynamic characteristics) 

 Ambient temperature 

 Utilization level 

First, we study a certain memory module and a particular processor, an audited hardware 

configuration, considering a steady technical specification under varying utilization levels. We 

execute and analyze various benchmarks to cover the entire range of the utilization levels of 

                                                           
353

 Set utilization levels to zero: synthetic constraint, which is unrealistic in a total server system because 
the most used components are always very small 
354

 Detaching single components: Each category has its certain interface, including the aspect-based 
calculation methods, thus each component model is available in a standalone model, if necessary. 
355

 Include the measurement trace: no need of additional synchronization effort, import time-based 
MATLAB vectors 
356

 Input parameter: same parameters required within the simulation framework and calc_category() 
method 
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especially the single component in our memory evaluation because we cannot restrict the 

usage towards a particular level357, as is possible in the processor evaluation. We essentially 

analyze the PassMark Memory and PassMark CPU regarding their memory-specific utilization 

levels to reflect the certain utilization levels. Additionally, we consider further details of the 

workload, such as the low-level observations when reading/writing the data into the memory 

cells or executing different instructions. We start with the power simulation and afterwards 

analyze the thermal development.  

We consider the SPECpower benchmark to explicitly adjust the utilization levels of the 

processor in equidistant steps of 10% in the interval [0,100]%, which is nearly proportional to 

the calibrated throughput. We execute the standardized benchmarks to ensure the 

reproducibility because of their synthetic workload scenarios, see Section 7.1.3. In the 

beginning of our evaluation, we do not change the technical specification, as described in this 

section. In the next section, we analyze the memory modules and processors, considering the 

technical specification tree of each component, and analyze the effects upon the changing 

component characteristics.  

7.2.4 Results and Analysis 

We exemplarily present the results of our aspect-based component models to evaluate our 

concept and especially consider the memory and processor, concerning their power 

consumption and temperature development. We analyze the aspect-based accuracy, the 

absolute difference between the measured and simulated values (in the mean) and state their 

relative differences (in the mean) with regard to the flexible utilization levels that influence the 

component states.  

Memory Power Evaluation 

A key performance metric of the memory module is the actual utilization level that indicates 

the physical usage of a memory module, usually expressed in percentages. The utilization level 

has the major impact on the memory power consumption and corresponding thermal 

development. We conjecture that simulating the memory power on the basis of the utilization 

level is probably imprecise. If the memory power is inadequate, we will investigate and analyze 

the effects of the memory read-to-write ratio. 

First, we exemplarily analyze a 4𝐺𝐵 memory module of Micron (𝐿𝑉 𝐷𝐷𝑅3 − 𝑆𝐷𝑅𝐴𝑀, see 

Table 47), which we assemble together with one enabled Intel Xeon E5-2650v2 processor in 

our system under test. Our chosen memory module is nearly identical with the memory 

module in our database that we consider as a basis (metadata default) to simulate the power 

consumption. We avoid the characteristic changes in this section, which we further analyze in 

Section 7.3, but consider the technical specification in our aspect-based calculation method at 

the same time, such as the vendor, die, or family.  

                                                           
357

 Particular levels: We cannot generate utilization levels in equidistant steps. 
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We execute the PassMark Memory benchmark (𝑃𝑀1.1.4) on the real server system and trace 

the memory utilization level (by the HW Monitor Pro), power consumption (by the Intel Power 

Thermal Utility), and temperature (by the Intel Power Gadget). The upper graph in Figure 108 

shows the utilization levels while executing the PassMark Memory benchmark, more 

particularly, the data operations, reading/writing the data, or refreshing the memory cells. In 

our example, the PassMark Memory benchmark utilizes the memory module between 22% 

and 29%, which we similarly observe in the remaining (𝑃𝑀𝑥. 𝑦. 𝑧) benchmark runs. We 

observe that the memory power consumption reaches only predefined values during the 

benchmark, such as [1.1 − 1.2]𝑊, [2.5 − 2.6]𝑊, [3.7 − 3.8]𝑊, or [4.9 − 5.1]𝑊, as shown in 

the lower graph. The lower power values ([1.1 − 1.2]𝑊) refer to the background power while 

precharging the memory cells. On the other hand, the memory cell selection (bank or row 

address) for storing the data consumes more power ([2.5 − 2.6]𝑊) than the precharging 

process. The explicit memory operations (read or write access) result in the highest power358 

values of [3.7 − 5.1]𝑊  that depends upon the concrete instruction. In contrast, the 

benchmark in (𝑃𝑀1.1.2) utilizes the memory module in a range between 39% and 52%, 

whereby we observe similar steady power states and comparable power values in relation to 

the memory capacity.  

 
Figure 108: Memory power measurement (𝑷𝑴𝟏. 𝟏. 𝟒) 

  

                                                           
358

 Memory power: additional information is provided in Section 3.4.2 and Section 5.2.2 
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In our memory power simulation, we consider the same trace of the utilization levels that we 

gained from our experimental measurements in (𝑃𝑀1.1.4). Figure 109 shows our simulation-

based results of the memory power (dashed-dotted red line) in comparison to the 

measurement trace of the Intel Power Thermal Utility (solid blue line) in the middle of the 

graph. The lower graph of the figure shows the absolute difference in the mean359 (marked in 

purple) between the measurements and our simulation in the range of [−3.9,+2.2]𝑊, which 

looks like an unacceptable result of our model. The extreme inaccuracy occurs in a situation 

when the utilization level increases from 25% to 26% at 𝑡 = 2.671 ∗ 106𝑠 (𝑡 = 2.702 ∗ 106𝑠) 

or decreases from 26% to 25% at 𝑡 = 2.788 ∗ 106𝑠, whereby both levels correspond to 

different memory states360. We can avoid these situations when we detect the increasing 

utilization levels and postpone the power consumptions, or adjust the limits of the specific 

states. Another reason of the inaccuracy at 𝑇 = [2.624 ∗ 106, 2.644 ∗ 106]𝑠 or 𝑇 = [2.768 ∗

106, 2.788 ∗ 106]𝑠 is that we only specify three memory states in our non-linear calculation 

method to reduce the modeling effort.  

 
Figure 109: Memory power accuracy (𝑷𝑴𝟏. 𝟏. 𝟒) 

  

                                                           
359

 Mean values: because of sampling, shown in Figure 111 
360

 Memory states: cluster into three IDD states 
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On the other hand, we underestimate the power consumption by a mean inaccuracy of 

approximately −0.09𝑊, which is an +6.7% inaccuracy in relation to our measurements during 

the entire benchmark in this example. The time of our absolute over-estimation is extremely 

low in comparison to the total time of the entire benchmark and therefore we assume that the 

inaccuracy is negligible. Figure 110 presents the memory power consumption by the related 

normalized probability function (histogram) on the basis of the absolute differences in Watt. In 

this example, we underestimate nearly half of our memory power consumption but observe a 

median at ±0𝑊, a standard deviation by +0.91𝑊, and a variance of +0.83𝑊. 

 
Figure 110: Memory power accuracy – a histogram (normalized probability) (𝑷𝑴𝟏. 𝟏. 𝟒) 

Figure 111 illustrates the identical absolute difference signal, which is the lowest graph in 

Figure 109 (marked in purple) but in this figure exemplarily limited by the horizontal axis in 

𝑇 = [2.6432 ∗ 106, 2.6452 ∗ 106]𝑠, which is a simplified representation of the signal. In our 

accuracy analysis, we calculate the absolute difference on the basis of the samples of the 

utilization levels in equidistant steps (time stamps of the green bars) and discrete points of 

time of the measurements. We simplify the representation of the absolute difference signal 

into a constant signal (solid purple line) that is suitable for a fast and easy representation.  

 
Figure 111: Memory power – an interpolation between the samples (𝑷𝑴𝟏. 𝟏. 𝟒) 
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In the next section, we check whether we can trust the steady power states gained from the 

PassMark Memory benchmarks, which we use in our memory evaluation. For this purpose, we 

analyze the memory utilization level in another benchmark to detect the same memory states 

and show the plausibility of the measured values. We trace the memory utilization level in the 

PassMark CPU benchmarks that concentrate upon the processor utilization. The top graph in 

Figure 112 exemplarily shows the memory utilization level (traced by the HW Monitor Pro) of 

the identical server configuration used in (𝑃𝑀1.1.4), but we execute the PassMark CPU 

benchmark (𝑃𝐶1.1.4) instead. The graph in the middle of the figure illustrates the measured 

power consumption (by the Intel Power Thermal Utility) displayed by a solid blue line, and the 

simulation results presented by a dashed-dotted red line. We observe that the memory power 

consumption significantly increases approximately up to 5.2𝑊 when the processor searches 

prime numbers, simulates physics interactions, or sort strings361, probably because of the 

read/write necessity at 𝑇 = [2.133 ∗ 106, 2.152 ∗ 106]𝑠 and 𝑇 = [2.221 ∗ 106, 2.262 ∗ 106]𝑠. 

At the same time, the memory utilization level does not substantially rise (> ±5%) in the 

prime numbers test, but approximately doubles in the two remaining higher utilization phases. 

We can observe a direct correlation between the utilization levels and the power 

consumption, but we consequently assume that the memory power consumption does not 

only rely on the utilization levels. In addition, we observe that the power consumption at the 

steady utilization level of 22% toggles between 1.17𝑊  at 𝑡 = 2.154 ∗ 106𝑠  and 2.60𝑊  at 

𝑡 = 2.180 ∗ 106𝑠, as exemplarily tagged in Figure 112. We found that the same utilization 

levels contradictorily result in diverse memory power values 𝑃𝑂𝑚𝑒𝑚(𝑢𝑚𝑒𝑚) when executing 

different benchmarks, such as (𝑃𝑀1.1.4) or (𝑃𝐶1.1.4), as shown in the following equations: 

𝑢𝑚𝑒𝑚 = 22%, {𝐶𝐿𝑚𝑜𝑑 , 𝐶𝐿𝑡𝑒𝑐 , 𝐶𝐿𝑚𝑎𝑝} = 𝑐𝑜𝑛𝑠𝑡 (7.1) 

𝑃𝑂𝑚𝑒𝑚(𝑢𝑚𝑒𝑚) = {
~1.17𝑊, 𝑖𝑓 (𝑃𝑀1.1.4), Figure 109  𝑎𝑡 𝑡 = 2.743 ∗ 106𝑠

~2.60𝑊, 𝑖𝑓 (𝑃𝐶1.1.4), Figure 112 𝑎𝑡 𝑡 = 2.180 ∗ 106𝑠
 (7.2) 

In fact, we cannot trust the steady state values of a particular benchmark. Accordingly, we 

measure and evaluate both benchmarks in our analysis considering the accuracy. We are 

convinced that the processor-based workload reacts on the memory modules in a similar 

manner when executing the database operations in the PassMark Memory workload, because 

the processor partly reads/writes data into the memory cells and loads the data considering 

the processor caches. In this example, the mean inaccuracy is approximately +1𝑊, in which is 

an +31% inaccuracy in relation to our measurements if we purely consider the memory 

utilization levels independently of the workload scenario. Consequently, we determine the 

category-specific workload scenario in our simulation model when simulating the memory 

power consumption. 

                                                           
361

 Strings: single-byte characters 
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Figure 112: Memory power accuracy (𝑷𝑪𝟏. 𝟏. 𝟒) 

A restriction of our memory evaluation is that all of our PassMark Memory or PassMark CPU 

benchmarks do not fully utilize our memory modules, as exemplarily represented in Figure 109 

and Figure 112. For this purpose, we briefly analyze other benchmarks362, such as the 

PMemTest, Memload, or NTMemTest, as shown in Figure 113. In our previous examples, the 

memory module has a peak value of approximately 5.2𝑊, see Figure 112. Accordingly, to our 

additional evaluation we have to update the maximal power consumption of our memory 

module in (𝑃𝑀1.1.4/𝑃𝐶1.1.4) at nearly 6.8𝑊. These experimental benchmark runs show the 

significance of the specific memory workload that we have to determine when simulating 

precise power values.  

 
Figure 113: Memory power consumption at various benchmarks – Fujitsu-specific hardware adapter 

                                                           
362

 Other benchmarks: PMemTest (physical memory test), Memload, or NTMemTest are specially 
adopted tools of the server system, but from the public sources. Fujitsu uses a special memory slot 
adapter that indicates the microampere, which is independent of any software. 
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In our memory evaluation, we neglect the explicit workload scenario and consider the memory 

model concerning the aspects themselves. Table 58 lists the inaccuracy of our memory power 

simulation under various benchmarks regarding their absolute as well as relative differences 

between the simulated and measured values, both stated as mean363 values. Our aim is an 

error rate less than ten percent, which we specify as precise enough, see Chapter 4. We can 

argue that our results of the SPECpower benchmark are sufficient because the inaccuracy of 

nearly −12.3% may occur on the basis of the error propagation when simulating multiple 

memory modules. Our power simulation is especially inadequate concerning the PassMark 

CPU benchmarks (𝑃𝐶𝑥. 𝑦. 𝑧), which have an approximately high inaccuracy (relative difference) 

in comparison to the PassMark Memory benchmarks (𝑃𝑀𝑥. 𝑦. 𝑧), excluding the (𝑃𝑀2.1.4) 

run. We found that our PassMark Memory results are reliable and adequate because the 

relative differences are in the range of [−10.2,+6.7]% when we neglect the results of 

(𝑃𝑀2.1.4). In our (𝑃𝑀2.1.4) benchmark, we expect the same tendency, such as in the 

remaining PassMark Memory benchmarks, but we observe a nearly steady power value of the 

entire period of nearly 2.5𝑊. We do not trace a power increase by more than 1.5𝑊 that 

occurs in more than a few seconds, which leads to the assumption that the memory sensors 

produce incorrect power values of all our iterations in our evaluation. Furthermore, we 

monitor a random signal at the end of the benchmark that does not rely on any utilization level 

or instruction.  

Table 58: Memory power accuracy – the simulated vs. the measured results 

  Inaccuracy 

  Absolute 
difference [W] 

(mean)  

Relative 
difference [%]  

(mean) 

SPECpower  𝑆𝑃1.2.8 -0.29 +4.4 
𝑆𝑃2.2.16 -0.84 -12.3 

PassMark 
CPU 

𝑃𝐶1.1.2 +0.11 +13.9 

𝑃𝐶1.1.4 -1.02 -30.9 

𝑃𝐶2.1.4 -0.07 -0.1 

𝑃𝐶2.1.8 -0.65 -25.1 

𝑃𝐶2.2.8 -0.63 -16.0 

PassMark 
Memory 

𝑃𝑀1.1.2 -0.16 +3.6 

𝑃𝑀1.1.4 -0.09 +6.7 

𝑃𝑀2.1.4 +1.59 +68.8 

𝑃𝑀2.1.8 -0.16 -3.3 

𝑃𝑀2.2.8 -0.37 -10.2 
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 Mean values: 𝜇, average of all data values 
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Moreover, we cannot trust our memory power simulation when we neglect the workload 

scenario, because the simulation results are insufficiently precise, especially of the PassMark 

CPU benchmarks. The relative difference is in the range of [−30.9,+13.9]%, which simply is 

based upon the utilization levels. We analyze whether the read-to-write ratio, considered as an 

additional impact factor, may improve the memory power simulation. Furthermore, we 

assume that the interactions between the processor and memory cause effects of the read-to-

write ratio, especially in the PassMark CPU benchmarks, which results in inaccurate values 

because we only consider the utilization level as an input parameter of our aspect-based 

calculation method. As a result of our evaluation, we analyze and consider the read-to-write 

ratio on the basis of the interactions besides the utilization levels. Therefore, we define the 

read-to-write ratio assuming the benchmark specification, which refers to the certain tests, 

and on the other hand use the Fujitsu-internal traces364 of the memory accesses.  

Figure 114 exemplarily shows the results of our memory power simulation considering the 

read-to-write ratio (dashed magenta line) and the results purely on the basis of the utilization 

levels (dash-dotted red line) at the PassMark CPU benchmark (𝑃𝐶1.1.4) in the middle of the 

graph. We especially adjust the read-to-write ratio when executing the prime numbers, 

physical interactions, or string sort algorithms, as graphically presented in Figure 112. In our 

example, we simulate more precisely the power values (absolute difference), such as by 

reducing the mean and the median by approximately one Watt. 

 
Figure 114: Memory power accuracy (𝑷𝑪𝟏. 𝟏. 𝟒) considering the read-to-write ratio 
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 Fujitsu-internal traces: specific to each memory module (vendor, capacity) and benchmark, traces are 
not publicly available 
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Our aim is to simulate the memory power as exactly as possible, such as when the ideal 

absolute difference is ±0𝑊  and the relative difference is ±0% . We determine the 

improvement of the read-to-write ratio by identifying the total amount of the difference to 

zero and subtract the inaccuracy value of the utilization level results considering the read-to-

write ratio. Herein, negative improvement values refer to deterioration, see Equation (7.6). 

|𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 (𝑃𝐶1.1.2)| = |0.11𝑊| = 0.11𝑊 (7.3) 

|𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑒𝑎𝑑−𝑤𝑟𝑖𝑡𝑒−𝑟𝑎𝑡𝑖𝑜 (𝑃𝐶1.1.2)| = |−0.15𝑊| = 0.15𝑊 (7.4) 

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = |𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙| − |𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑒𝑎𝑑−𝑤𝑟𝑖𝑡𝑒−𝑟𝑎𝑡𝑖𝑜| (7.5) 

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 0.11𝑊 −  0.15𝑊 = −0.04𝑊 (7.6) 

Table 59 lists our results and shows the reductions of the absolute and relative differences 

(mean values) in all simulations of the PassMark CPU benchmarks considering the read-to-

write ratio, which we choose because we assume the highest potential for improvements. We 

reduce the absolute difference by approximately +0.41𝑊 overall and the relative difference by 

around +13.52%. A negative exception regarding the relative improvement builds the results 

in (𝑃𝐶2.1.4) in which we increase the absolute difference, but with an acceptable relative 

difference by nearly −3%.  

Table 59: Memory power accuracy considering the read-to-write ratio 

 Inaccuracy  Inaccuracy considering  
the read-to-write ratio 

 Improvement 

 Absolute 
difference 

[W] 
(mean)  

Relative 
difference 

[%] 
(mean) 

 Absolute 
difference 

[W] 
(mean)  

Relative 
difference  

[%] 
(mean) 

 Absolute 
difference 

[W] 
(mean)  

Relative 
difference  

[%] 
(mean) 

𝑷𝑪𝟏. 𝟏. 𝟐 +0.11 +13.9  -0.15 +2.3  -0.04 +11.6 
𝑷𝑪𝟏. 𝟏. 𝟒 -1.02 -30.9  -0.01 +10.2  +1.01 +20.7 
𝑷𝑪𝟐. 𝟏. 𝟒 -0.07 -0.1  +0.16 +3.1  -0.09 -3 
𝑷𝑪𝟐. 𝟏. 𝟖 -0.65 -25.1  -0.06 +2.5  +0.59 +22.6 
𝑷𝑪𝟐. 𝟐. 𝟖 -0.63 -16.0  -0.03 -0.3  +0.6 +15.7 

Mean -0.45 -11.64  -0.02 +3.56  +0.41 +13.52 
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Furthermore, we improve the accuracy (median365, standard deviation366) and precision367 

(variance) of our power simulation considering the read-to-write ratio during the specific 

benchmarks, as shown in Table 60 and Table 61. We improve the median by approximately 

+0.74𝑊, the standard deviation by around +0.07𝑊, and the variance by nearly +0.17𝑊 in 

the mean. 

Table 60: Memory power accuracy and precision statistics considering the read-to-write ratio 

 Inaccuracy  Inaccuracy considering  
the read-to-write ratio 

 Absolute difference [W] 
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𝑷𝑪𝟏. 𝟏. 𝟐 +0.11 +0.65 +1.38 +1.91  -0.15 +0.13 +1.14 +1.29 

𝑷𝑪𝟏. 𝟏. 𝟒 -1.02 -1.37 +1.17 +1.37  -0.01 -0.29 +1.05 +1.11 

𝑷𝑪𝟐. 𝟏. 𝟒 -0.07 -0.25 +1.04 +1.09  +0.16 +0.09 +1.14 +1.29 
𝑷𝑪𝟐. 𝟏. 𝟖 -0.65 -1.31 +0.79 +0.63  -0.06 -0.28 +0.72 +0.52 

𝑷𝑪𝟐. 𝟐. 𝟖 -0.63 -1.63 +1.75 +3.05  -0.03 -0.71 +1.73 +3.01 
Mean -0.45 -0.782 +1.23 +1.61  -0.02 -0.21 +1.16 +1.44 

 

Table 61: Improvement of the memory power accuracy and precision considering the read-to-write ratio 

 Improvement 
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𝑷𝑪𝟏. 𝟏. 𝟐 -0.04 +0.52 +0.24 +0.62 
𝑷𝑪𝟏. 𝟏. 𝟒 +1.01 +1.08 +0.12 +0.26 

𝑷𝑪𝟐. 𝟏. 𝟒 -0.09 +0.16 -0.10 -0.20 
𝑷𝑪𝟐. 𝟏. 𝟖 +0.59 +1.03 +0.07 +0.11 

𝑷𝑪𝟐. 𝟐. 𝟖 +0.6 +0.92 +0.02 +0.04 
Mean +0.41 +0.74 +0.07 +0.17 

 

                                                           
365

 Median: value in the middle when values are sorted in an ascending order 
366

 Standard deviation: 𝜎, root-mean-square (RMS) value from a set of absolute differences [W] 
367

 Precision (variance): 𝜎2, closeness / variability of all data values 
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We demonstrate our memory power values exclusively considering the utilization levels and 

found that a precise simulation requires additional data about the memory instructions 

because the measured power values differ in dependence on the benchmark when tracing the 

same utilization level. In fact, if we do not consider the read-to-write ratio, the simulation 

results are definitely inadequate. Therefore, we always consider the workload scenario in our 

simulation to cover the read-to-write ratio of the memory module. Herein, we have to 

estimate the significant read-to-write ratio of each workload scenario (e.g. processor-bounded, 

memory-bounded, or I/O-bounded), which are based upon empirical studies by a statistical 

approximation.  

Memory Temperature Evaluation 

Furthermore, we simulate the memory temperature on the basis of the memory power 

consumption (directly dependent upon the utilization levels) and the technical specification. If 

a memory is in a steady state, such as a constant utilization level, the temperature will 

continuously increase, known as self-heating due to the power dissipation368, which we 

observe closely to some individual phases in our measurements. Usually, the memory 

temperature does not increase as fast as the effect of an increasing utilization level will have. 

We specify a higher slope of the temperature increase in comparison to the decrease, which 

rely upon the delta between the previous and actual memory power. Therefore, we distinguish 

between a steady state, an increasing, and a decreasing temperature development. We specify 

all temperature-based methods by a time delay because of the inertia of the thermal 

development, as specified in Section 5. We neglect short-term peaks (less than one second) of 

the power consumption, which do not influence the memory temperature.  

Again, we analyze the 4𝐺𝐵 memory module of Micron (𝐿𝑉 𝐷𝐷𝑅3 − 𝑆𝐷𝑅𝐴𝑀, see Table 47), 

which we exemplarily assemble together with two enabled Intel Xeon E5-2650v2 processors in 

our system under test. Figure 115 graphically presents the results of our memory temperature 

simulation (dash-dotted red line) in the middle of the figure, which we evaluate according to 

our measurements (solid blue line) at (𝑃𝑀2.1.4). In this example, the utilization level is in the 

range of [22,29]% of those results in the steady memory power states because of our cluster 

method (threefold division). We are aware of the read-to-write ratio, and thus we observe a 

temperature increase during the database operations and the read-to-write-phases369. The 

simulated temperature increases from 34.13°𝐶 up to 37.04°𝐶 during the database operations 

at the time 𝑇 = [1.089 ∗ 104, 3.289 ∗ 104]𝑠 and decreases slowly to 34.37°𝐶 at the time 

𝑇 = [3.289 ∗ 104, 5.439 ∗ 104]𝑠.  

  

                                                           
368

 Self-heating: thermal response, predominantly specified by the power dissipation and thermal 
resistance 
369

 Database operations and the read-to-write-phases: see Figure 108 
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Herein, we overestimate the temperature more than the rest of the PassMark Memory 

benchmarks probably because of the continuous changing read-to-write ratio. The simulated 

memory temperature increases at the times 𝑇 = [5.439 ∗ 104, 7.339 ∗ 104]𝑠, 𝑇 = [9.139 ∗

104, 1.044 ∗ 105]𝑠, and 𝑇 = [1.344 ∗ 105, 1.584 ∗ 105]𝑠 due to the utilization level changes, 

which we consider in our temperature method. 

 
Figure 115: Memory temperature accuracy (𝑷𝑴𝟐. 𝟏. 𝟒) 

In this example, we observe an absolute temperature difference (in the mean) by 

approximately +0.82°𝐶 and a relative difference by around +2.5% inaccuracy in relation to 

our measurements during the entire benchmark. Figure 116 presents the memory 

temperature accuracy by the related normalized probability function (histogram) on the basis 

of the absolute differences in degree Celsius. We overestimate the memory temperature and 

observe a median at +0.67°𝐶, a standard deviation by +1.41°𝐶, and a variance of +1.98°𝐶. 
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Figure 116: Memory temperature accuracy – a histogram (normalized probability) (𝑷𝑴𝟐. 𝟏. 𝟒) 

We observe a similar thermal development at the PassMark CPU benchmark (𝑃𝐶2.1.4) 

because of the nearly steady utilization levels in the first third, as shown in the middle graph of 

Figure 117. We simulate the temperature increase at the time 𝑇 = [4167, 5.767 ∗ 104]𝑠 from 

33.79°𝐶 up to 34.37°𝐶, which does not increase as fast as the measured temperatures from 

30.8°𝐶 up to 34.37°𝐶. A higher and faster temperature increase (up to 36.85°𝐶) occurs in the 

short-term at 𝑇 = [5.767 ∗ 104, 8.067 ∗ 104]𝑠 while calculating the prime numbers, which 

afterwards decreases to its previous value. In contrast, the measured temperature 

continuously increases during the time and has a low degree of dependency concerning the 

read-to-write ratio or utilization level, which is shown at the time between 𝑇 = [1.407 ∗

105, 1.597 ∗ 105]𝑠 . In our memory temperature simulation, we consider the power 

consumption on the basis of the read-to-write ratio and utilization level, which results in a 

higher temperature increase at the same time. We observe a temperature increase up to 

38.56°𝐶 when the utilization level changes from 23% up to 49%, but considering a time delay 

in respect to the inertia. Our simulation does not avoid the utilization-based gap at 𝑡 =

1.617 ∗ 105𝑠  because the low utilization lasts about several seconds at 𝑇 = [1.597 ∗

105, 1.642 ∗ 105]𝑠. The effect is a wide range of the temperature decrease, with nearly 4°𝐶 

between the two read-to-write intensive phases. We observe an absolute temperature 

difference (mean) by approximately +0.8°𝐶 and a relative difference by around +2.4%. 
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Figure 117: Memory temperature accuracy (𝑷𝑪𝟐. 𝟏. 𝟒) 

Table 62 lists the inaccuracy of our memory temperature simulation, their absolute as well as 

relative differences (in the mean) between the simulated and measured values considering 

various benchmarks. We overestimate the memory temperatures that differ in the range 

between [±0,+10]% and observe that our simulation is more accurate considering modules 

with higher capacities. If we compare the results of the following benchmark pairs 

(𝑆𝑃1.2.8, 𝑆𝑃2.2.16) , (𝑃𝐶1.1.2, 𝑃𝐶2.1.4) , and (𝑃𝐶1.1.4, 𝑃𝐶2.2.8)  that contain a second 

processor and the doubled memory amount, we observe a higher inaccuracy, despite having 

the same conditions of the memory temperature simulation. We assume that the additional 

processor may influence the thermal measurement of our memory modules, which we do not 

observe at the PassMark Memory benchmark. We overestimate the memory temperatures 

around +1.2°𝐶, which is an approximate inaccuracy of +4%. 
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Table 62: Memory temperature accuracy in comparison to the measurements 

  Inaccuracy 

  Absolute 
difference [°C] 

(mean)  

Relative 
difference [%]  

(mean) 

SPECpower  𝑆𝑃1.2.8 +0.9 +3.9 
𝑆𝑃2.2.16 +2.58 +10 

PassMark 
CPU 

𝑃𝐶1.1.2 +1.29 +3.9 

𝑃𝐶1.1.4 +0.25 +1.1 

𝑃𝐶1.2.4 +0.51 +1.8 

𝑃𝐶2.1.4 +0.8 +2.4 

𝑃𝐶2.2.8 +2.02 +6.3 

PassMark 
Memory 

𝑃𝑀1.1.2 +1.82 +5.5 

𝑃𝑀1.1.4 +0.8 +3 

𝑃𝑀1.2.4 +2.24 +7.1 

𝑃𝑀2.1.4 +0.82 +2.5 

𝑃𝑀2.2.8 -0.01 +0.4 

 

Processor Power Evaluation 

In this section, we focus on the processor power and temperature, which are affected by the 

multiple processor cores and their dynamically changing frequencies. In contrast to the 

memory modules, we reproduce the specific utilization levels – or usage – in the range 

𝑢𝐶𝑆 = [0,100]% in about 10% discrete steps using the SPECpower benchmark.  

In the beginning of this section, we justify our decision on the adequate measurement tools 

concerning their resolution to sufficiently trace the utilization levels and frequencies. 

Afterwards, we analyze the deviations of the thread-specific frequencies370 of the respective 

processor and check whether the frequencies may improve the accuracy and precision of our 

processor model. Additionally, we review the measurement traces, analyze the mean values of 

the thread-specific and processor-specific frequencies, and test if we can neglect the thread-

specific frequencies to speed up our simulation. The frequencies depend upon the utilization 

levels and therefore we show how the thread-specific utilization levels vary from the target 

throughput in the SPECpower benchmark and analyze their relevance when tracing the 

processor-specific utilization levels (as mean values) at the same time, which may accelerate 

the processor simulation.  

  

                                                           
370

 Thread-specific frequencies: consider the frequency of each processor core and related hardware 
thread 
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In the following section, we present the simplification of our measurement traces and 

simulation results, especially of the SPECpower benchmark and MemTest86 to improve the 

readability of the results. According to the decision on what measurement tools and resolution 

we rely on, we present our simulation results regarding the processor power and temperature. 

As stated in the concept chapter, we consider a resolution of one second in our simulation 

framework, which is our major assumption and abstraction when designing the processor 

model and simulating the aspects, for example. Concerning the experimental environment, 

three measurement tools are available, one with a 1000𝑚𝑠 resolution, another with 100𝑚𝑠 

resolution, and the next one with 50𝑚𝑠 resolution, see Table 49. First, we evaluate whether 

the 1-second resolution tool provides sufficient precision, and finally decide on the specific 

measurement tool of our processor evaluation that we rely on.  

In order to analyze the processor frequency and the suitable tools, we start with the PassMark 

CPU benchmark371 and exemplarily show the measurement results, beginning with the lowest 

resolutions of 100𝑚𝑠 and 50𝑚𝑠. As a typical illustration, Figure 118 presents the processor372 

frequency recorded by the Intel Power Gadget (top of the graph) and Intel Power Thermal 

Utility (middle of the graph) executing the PassMark CPU benchmark. At the bottom of the 

graph, we place both signals on top of each other so that the differences between them can be 

determined, which is our basis for analyzing the inaccuracy in relation to the sampling rate for 

the scope of our measurement infrastructure. We have to be aware that the frequencies are 

only instantaneous samples, not averages. 

 
Figure 118: PassMark CPU (𝑷𝑪𝟏. 𝟏. 𝟐) – processor frequency analysis 

(Intel Power Gadget vs. Intel Power Thermal Utility) 

                                                           
371

 PassMark CPU: It is more transparent and easier to understand than the SPECpower illustration. 
372

 Processor: first processor, called ‘CPU0’ 
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We calculate the integral of the areas under both curves considering the trapezoidal numerical 

integration (trapz) method of MATLAB that approximates the signals because we cannot 

define a specific 𝑦 = 𝑓(𝑥)  function. We define the Intel Power Thermal Utility signal as our 

basis because of the more accurate measurement results (50𝑚𝑠 resolution) in comparison to 

the remaining signal. Figure 119 and Figure 120 show an extract of some recordings, the first 

at the full utilization level and the second when the system is idle. The high-resolution data of 

the Intel Power Thermal Utility constantly vary in contrast to the signal of the Intel Power 

Gadget. Ideally, the processor frequency is steady at a particular value in both figures. 

 
Figure 119: Frequency analysis (𝑷𝑪𝟏. 𝟏. 𝟐) – 100% utilization level  

(Intel Power Gadget vs. Intel Power Thermal Utility) 

 
Figure 120: Frequency analysis (𝑷𝑪𝟏. 𝟏. 𝟐) – 0% utilization level  

(Intel Power Gadget vs. Intel Power Thermal Utility) 

The frequencies change so often because of the power management of the processor/system, 

OS dependencies, or page faults in the idle case. We observe that the integrals of the areas 

under both curves are closely identical: e.g., we calculate between the Intel Power Thermal 
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Utility and the Intel Power Gadget signals a relative error in median of nearly +0.68% at the 

PassMark CPU benchmark and approximately +1.48% at the SPECpower benchmark. Table 63 

lists the relative errors as the statistical representation regarding the PassMark CPU and 

SPECpower that Figure 121 graphically presents. The median value increases along the length 

of time that a benchmark requires and the PassMark CPU errors are skewed more than the 

SPECpower values, as shown in Figure 121.  

Table 63: Frequency inaccuracy (resolution inaccuracy: Intel Power Gadget vs. Intel Power 
Thermal Utility) – relative error (numerical) of PassMark CPU and SPECpower 

Resolution inaccuracy 
(trapz of frequency) 

PassMark CPU SPECpower 

Mean time [min] 4.04 76.32 
   

Upper adjacent [%] +1.18 +5.40 
75th percentile [%] +1.04 +2.91 
Median [%] +0.68 +1.48 
25th percentile [%] +0.55 +0.15 
Lower adjacent [%] +0.30 -2.41 

 

 
Figure 121: Frequency inaccuracy – graphical representation of the relative error of PassMark CPU and 

SPECpower (resolution inaccuracy: Intel Power Gadget vs. Intel Power Thermal Utility) 

Thus, we assume that the Intel Power Gadget is sufficiently precise to trace the processor 

frequency because the error rate is tolerable in the entire experimental analyses. Moreover, 

we analyze the HW Monitor Pro with a sample time on a 1-second basis and check whether we 

can use the tool instead of the Intel Power Gadget, whereby the HW Monitor Pro has the 

identical resolution such as our simulation model.  

The analysis procedure concerning the processor frequency and tool resolution itself is the 

same: we calculate the integral of the areas under both curves of the HW Monitor Pro and the 

Intel Power Gadget, whereby we specify the Intel Power Gadget as the new basis of our 
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calculation. Figure 122 presents the processor frequency373 recorded by the Intel Power 

Gadget (top of the graph) and HW Monitor Pro (middle of the graph) running the PassMark 

CPU benchmark. 

 
Figure 122: PassMark CPU (𝑷𝑪𝟏. 𝟏. 𝟒) – processor frequency analysis 

(Intel Power Gadget vs. HW Monitor Pro) 

We observe that the curves of the Intel Power Gadget and the HW Monitor Pro are almost 

identical, especially when executing the PassMark CPU benchmark. As a rule, we observe that 

the processor frequency is always at the highest possible level at 2000𝑀𝐻𝑧 during the active 

phases of the micro-benchmarks in the PassMark CPU.  

Figure 122 shows an ideal representation of our measurement tool. In contrast, we observe 

that the signal of the HW Monitor Pro performs out of sync in a couple of traces, as 

exemplarily shown in Figure 123. Both curves are nearly identical between 𝑇 = [5.041 ∗

106, 5.044 ∗ 106]𝑠 at a frequency of 2000𝑀𝐻𝑧. The frequency levels get out of sync, such as 

at 𝑇 = [5.058 ∗ 106, 5.066 ∗ 106]𝑠, and continuously begin to move apart from each other, 

which is especially observable at the time 𝑇 = [5.098 ∗ 106, 5.11 ∗ 106]𝑠. In some PassMark 

CPU runs, the effects of time delay only occur intermittently after executing the third or fourth 

micro-benchmark. Indeed, if we analyze the measurement results gained from the HW 

Monitor Pro in comparison with the other tools, we have to consider the occurring time 

problems. In the beginning of the frequency analysis in Table 67 and Table 68, we neglect the 

time differences of the measurement tools because the SPECpower benchmark interrupts the 

target throughput by some seconds.  

                                                           
373

 Processor frequency: The first processor, called ‘CPU0’, and the first core, called ‘core 0’, both belong 
together. 
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Figure 123: PassMark CPU (𝑷𝑪𝟏. 𝟏. 𝟐) – processor frequency analysis 

(Intel Power Gadget vs. HW Monitor Pro) 

Additionally, we observe that the HW Monitor Pro does not completely trace all benchmarks 

before the end of their term. In general, we want to avoid such synchronization errors374 to be 

more precise in our evaluation. 

In our analysis, between the HW Monitor Pro and the Intel Power Gadget signals we calculate a 

relative error in median of approximately −0.22% at the PassMark CPU benchmark and nearly 

−0.08% at the SPECpower benchmark. Table 64 lists the relative errors as the statistical 

representation regarding the PassMark CPU and SPECpower that Figure 124 graphically 

presents.  

Table 64: Frequency inaccuracy (resolution inaccuracy: Intel Power Gadget vs. HW Monitor Pro) 
– relative error (numerical) of PassMark CPU and SPECpower 

Resolution inaccuracy 
(trapz of frequency) 

PassMark CPU SPECpower 

Mean time [min] 4.04 76.32 
   

Upper adjacent [%] -0.14 +7.86 
75th percentile [%] -0.18 +2.91 
Median [%] -0.22 -0.08 
25th percentile [%] -2.93 -2.50 
Lower adjacent [%] -6.50 -9.71 

 

                                                           
374

 Synchronization errors: associated by the first quartile or lower adjacent values in Table 64 
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Figure 124: Frequency inaccuracy – graphical representation of the relative error of PassMark CPU and 

SPECpower (resolution inaccuracy: Intel Power Gadget vs. HW Monitor Pro) 

We assume that the error rate is tolerable in entirely experimental analyses because the 

configurations and characteristics have a greater impact on the models. The tool with a sample 

time on a 1-second basis provides sufficient precision. Nevertheless, we choose the Intel Power 

Gadget for our evaluation that provides the same time stamps and is more precise than the 

HW Monitor Pro. Consequently, we trace the processor frequency by the Intel Power Gadget 

and consider their values in our evaluation with a 100𝑚𝑠 resolution. We study the identical 

utilization trace when we simulate the processor, which works at a resolution of 1𝑠. Therefore, 

we compare the experimental trace and our model on a 1-second basis.  

The authors of [Han 2007] studied the effects of the sampling rate considering a range of 

sampling interval sizes at the SPEC CPU2000375 benchmark. The authors argued that a higher 

sample rate detects short power peaks more often than a lower rate, which may lead to 

another power management decision. In contrast, we neglect the peaks and a resolution lower 

than 1𝑠 because we do not optimize the processor power on a cycle-by-cycle basis.  

The authors of [TDM 2011, MAC et al. 2011] propose a power management strategy that 

schedules the various frequencies of a multi-core processor. Consequently, we investigate the 

potential improvement on the thread-specific frequencies of a processor. In our analysis, we 

exemplarily trace the thread-specific frequencies by the HW Monitor Pro while executing the 

SPECpower benchmark (𝑆𝑃1.2.8). We statistically analyze the frequencies of all hardware 

threads376 that occur in the benchmark phases presented as target throughput in percentage, 

as shown in Table 65 and Table 66. We observe extremely small deviations from the hardware 
                                                           
375

 SPEC CPU2000: https://www.spec.org/cpu2006/ 
376

 Hardware thread: The SUT processor consists of eight cores with hyper-threading technology. 
Consequently, the processor provides 16 hardware threads. 
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threads, such as nearly identical frequencies (±8𝑀𝐻𝑧) , which is recognizable by the 

interquartile range377 (IQR). We additionally provide an overview of the detailed frequencies of 

all hardware threads in the Appendix A3f. We assume that the processor architecture is 

responsible of nearly the same frequencies that result on the least common multiple (LCM) 

and consider the mean value instead. We similarly observe the identical thread-specific 

frequencies of the Intel Xeon architecture378. The thread-specific frequencies and their 

deviations do not significantly affect the processor power consumption.  

Table 65: Statistical representation of the thread-specific frequencies [MHz] of the processor at 
target throughput (𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏, 𝟏𝟎𝟎%− 𝟔𝟎%) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%] 
Thread-specific 

frequencies [MHz] 
Calibration 100 90 80 70 60 

Upper adjacent  1997 1988 1813 1688 1540 1427 
75th percentile  1996 1987 1813 1687 1538 1423 

Median 1995 1987 1811 1687 1535 1421 
25th percentile  1994 1987 1811 1680 1530 1419 
Lower adjacent  1993 1987 1811 1677 1527 1416 

Interquartile range 2 0 2 7 8 4 
       

Mean 1995 1987 1812 1684 1534 1421 

 

Table 66: Statistical representation of the thread-specific frequencies [MHz] of the processor at 
target throughput (𝟓𝟎%− 𝟏𝟎%, 𝒊𝒅𝒍𝒆) in (𝑺𝑷𝟏. 𝟐. 𝟖)  

 Target throughput [%] 
Thread-specific 

frequencies [MHz] 
50 40 30 20 10 Idle 

Upper adjacent  1337 1267 1226 1205 1200 1200 
75th percentile  1334 1265 1225 1204 1200 1200 

Median 1333 1262 1222 1204 1200 1200 
25th percentile  1332 1260 1221 1203 1200 1200 
Lower adjacent  1332 1258 1219 1203 1200 1200 

Interquartile range 2 5 4 1 0 0 
       

Mean 1333 1262 1223 1204 1200 1200 

 

If we compare the mean values of the thread-specific frequencies gained from the HW Monitor 

Pro with the processor-specific frequencies of the Intel Power Gadget, we observe almost 

equal frequencies (±6𝑀𝐻𝑧) at both tools of the various target throughputs, as shown in Table 

                                                           
377

 Interquartile range: 75th percentile minus 25th percentile, upper (third) quartile minus lower (first) 
quartile 
378

 Intel Xeon architecture: Intel Xeon processor E3/5/7-xxxx v1-5 family 
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67 and Table 68. In our accuracy analysis, we can consider both tools concerning the mean 

frequency at a specific target throughput. As an additional result, we neglect the thread-

specific frequencies, because the values do not provide extra data that improve the accuracy 

or precision of our processor power model, and concentrate on the processor-specific 

frequencies gained by the Intel Power Gadget, which saves time and reduces the effort.  

Table 67: Mean frequency [MHz] at target throughput (𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏, 𝟏𝟎𝟎%− 𝟔𝟎%) in (𝑺𝑷𝟏.𝟐. 𝟖) 

 Target throughput [%] 
Mean frequency [MHz] Calibration 100 90 80 70 60 

HW Monitor Pro 1995 1987 1812 1684 1534 1421 
Intel Power Gadget 1998 1991 1818 1690 1540 1421 

Absolute difference -3 -4 -6 -6 -6 0 

 

Table 68: Mean frequency [MHz] at target throughput (𝟓𝟎%− 𝟏𝟎%, 𝒊𝒅𝒍𝒆) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%] 

Mean frequency [MHz] 50 40 30 20 10 Idle 

HW Monitor Pro 1333 1262 1223 1204 1200 1200 
Intel Power Gadget 1333 1261 1222 1204 1200 1200 

Absolute difference 0 +1 +1 0 0 0 

 

In particular, the processor frequencies result from the actual utilization level, which both are 

the major parameters in our simulation model concerning the processor power consumption 

and related temperature. We assume that the thread-specific utilization levels depend upon 

the target throughput, as it has already been true to the thread-specific frequencies, which we 

further analyze considering the traces of the HW Monitor Pro. We exemplarily present the 

statistical results of the thread-specific utilization levels in Table 69 and Table 70. We observe 

that the thread-specific utilization levels vary less from the calibration phases up to a target 

throughput of 60%  than at the subsequent target throughput of (50%− 10%, 𝑖𝑑𝑙𝑒) , 

presented by the interquartile range. Mostly, all thread-specific utilization levels evenly rely 

upon the target throughput of the benchmark, and we discover that all threads are more 

involved permanently at the beginning of the benchmark achieving the target throughput, but 

some of them become unused at the end. Furthermore, we observe that the benchmark 

utilizes all threads in the same way with one exception: the zero thread379. Accordingly, we 

observe a utilization level of the zero thread at 34.4% in the mean during the idle time 

(specified as an outlier), which is nearly three times the mean value of approximately 11.73%. 

In the remaining target throughputs, the zero thread is nearby the lower adjacent. We assume 

that the zero thread will behave like the residual threads, especially in the idle case when the 

thread does not execute additional tasks, such as executing the benchmark, writing data onto 

                                                           
379

 Zero thread: first processor core and related thread 
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discs, or administrating tasks. When we consider the fact that the frequencies vary only 

(±8𝑀𝐻𝑧) and at the same time, the utilization levels deviate between [0 − 15]% of the 

particular target throughput, we can neglect the thread-specific utilization levels that are 

irrelevant and consider the mean value instead.  

Table 69: Statistical representation of the thread-specific utilization levels [%] of the processor at 
target throughput (𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏, 𝟏𝟎𝟎%− 𝟔𝟎%) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%] 

Thread-specific 
utilization levels [%] 

Calibration 100 90 80 70 60 

Upper adjacent  99.66 97.14 86.14 77.23 68.59 60.26 
75th percentile  99.56 96.86 84.70 76.08 65.93 59.00 

Median 99.42 96.14 83.43 73.72 64.79 55.37 
25th percentile  99.28 94.06 78.15 70.26 63.53 54.27 
Lower adjacent  98.94 92.28 76.16 65.24 62.50 49.61 

Interquartile range 0.28 2.80 6.55 5.82 2.40 4.73 
       

Mean 99.4 95.03 81.08 72.17 64.04 56.08 

 

Table 70: Statistical representation of the thread-specific utilization levels [%] of the processor at 
target throughput (𝟓𝟎%− 𝟏𝟎%, 𝒊𝒅𝒍𝒆) in (𝑺𝑷𝟏. 𝟐. 𝟖)  

 Target throughput [%] 

Thread-specific 
utilization levels [%] 

50 40 30 20 10 Idle 

Upper adjacent  54.69 46.22 36.18 31.02 13.56 23.40 
75th percentile  53.18 42.66 34.95 22.68 12.28 13.85 

Median 43.83 35.81 27.68 18.45 9.49 10.80 
25th percentile  42.21 31.13 20.55 13.97 6.54 6.15 
Lower adjacent  40.10 30.19 19.21 12.77 5.25 0 

Interquartile range 10.97 11.53 14.40 8.71 5.74 7.70 
       

Mean 46.91 36.83 27.73 19.08 10.49 11.73 

 

We calculate the mean utilization level of all available hardware threads considering the HW 

Monitor Pro, which requires additional computational and analysis effort. We assume that the 

processor-specific utilization levels of the Intel Power Thermal Utility are equally suitable for 

our analysis and evaluation of the accuracy and precision, but can be accessed easier. 

Therefore, we compare the mean utilization level of the entire processor considering both 

measurement tools applied on the same benchmark. We observe that the Intel Power Thermal 

Utility has an absolute difference in the mean of approximately +2.2% in comparison to the 

thread-specific utilization levels of the HW Monitor Pro, as shown in Table 71 and Table 72. 

The idle case builds an exception regarding the absolute difference, which varies from nearly 
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−7.33%. We suggest that the measurement traces of the Intel Power Thermal Utility may be 

more precise in comparison to the HW Monitor Pro, because of the same manufacturer when 

analyzing the processor.  

Table 71: Mean utilization level [%] at target throughput (𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏,𝟏𝟎𝟎%− 𝟔𝟎%) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%] 

Mean utilization levels [%] Calibration 100 90 80 70 60 

Intel Power Thermal Utility 99.73 96.12 84.17 75.89 67.94 60.17 
HW Monitor Pro 99.4 95.03 81.08 72.17 64.04 56.08 

Absolute difference +0.33 +1.09 +3.09 +3.72 +3.90 +4.09 

 

Table 72: Mean utilization level [%] at target throughput (𝟓𝟎%− 𝟏𝟎%, 𝒊𝒅𝒍𝒆) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%] 

Mean utilization levels [%] 50 40 30 20 10 Idle 

Intel Power Thermal Utility 50.75 40.75 31.57 22.38 13.40 4.4 
HW Monitor Pro 46.91 36.83 27.73 19.08 10.49 11.73 

Absolute difference +3.84 +3.92 +3.84 +3.30 +2.91 -7.33 

 

As a result, we consider the processor-specific utilization levels380 of the Intel Power Thermal 

Utility instead of the thread-specific utilization levels of the HW Monitor Pro as the reference 

parameter of our simulation and evaluation. Figure 125 exemplarily shows the processor-

specific utilization levels, given as a percentage, which we trace by the Intel Power Thermal 

Utility while executing the SPECpower benchmark (𝑆𝑃1.2.8). In the figure, we see the three 

calibration phases between 𝑇 = [1.122 ∗ 106, 2.039 ∗ 106]𝑠  searching for the maximum 

throughput, which consequently fully utilize the processor by approximately 100%. Moreover, 

the graph shows the actual utilization level of the processor, which ideally consists of several 

discrete and steady 10% steps concerning the target throughput beginning at 𝑡 = 2.039 ∗

106𝑠  until 𝑡 = 5.151 ∗ 106𝑠  followed by three idle intervals. In our measurements, we 

automatically detect381 the beginning and the end of each interval that we mark by a vertical 

solid line. We observe that a specific target throughput does not guarantee a steady utilization 

level, as shown in Figure 125 by the utilization levels that move up and down.  

                                                           
380

 Processor-specific utilization levels: entire processor frequency independent of the cores, common in 
industrial practice 
381

 Automatically detect: implement a certain MATLAB function for evaluation, detect the rising and 
falling edge of the utilization levels 
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Figure 125: Processor utilization level (𝑺𝑷𝟏. 𝟐. 𝟖) measured by Intel Power Thermal Utility 

As an exemplary illustration, we simplify the graph of Figure 125 to show an easier to read 

representation of the measurement results. Therefore, we use the times of each vertical solid 

line that indicate the interval length of each 10% step (target throughput) to calculate the 

mean value of the actual utilization level. Herein, we consider a short transient phase by 

avoiding the first 200𝑚𝑠 specified by an internal analysis to neglect the low utilization levels 

between the intervals, such as 4.07% at 𝑡 = 3.29 ∗ 106𝑠 or 14.81% at 𝑡 = 3.59 ∗ 106𝑠. Figure 

126 shows the simplified representation of Figure 125 illustrating the same intervals marked 

by the identical vertical solid lines. Herein, we rename the horizontal axis to present the target 

throughput382, which is implicitly represented by the time of the Figure 125. The vertical axis 

shows the actual utilization level in [%] calculated as a mean value of their particular interval, 

which we present as dashed-dotted black line labeled by their corresponding label. We expect 

a linear relation (ideal course) between the target throughput and the actual utilization level. 

In contrast, we observe that the mean values are lower than the target throughput from 100% 

up to 70% and, in fact, larger in the subsequent part of the benchmark. In the idle intervals 

starting at 𝑡 = 5.151 ∗ 106𝑠 and ending at 𝑡 = 6.087 ∗ 106𝑠, we observe the mean utilization 

level between 4.1% and 4.9%, which shows that the processor is always busy and does not 

have a utilization level around 0%. 

                                                           
382

 Target throughput: defined as target loads at SPECpower benchmark 
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Figure 126: Simplified representation of the processor utilization level (𝑺𝑷𝟏. 𝟐. 𝟖) as mean values 

In our evaluation, we consider the high-resolution and precision of the Intel Power Thermal 

Utility regarding the processor-specific utilization levels, shown in Figure 125, as the reference 

parameter of our simulation model, but present the results in the simplified and readable 

graph of their mean values. We consider the actual utilization levels of the complete processor 

that are approximately linearly dependent on target throughput, which we consider when 

simulating the performance-to-power ratio.  

The key performance metric of the processor is the actual processor-specific utilization level 

that indicates the physical usage of the entire processor, usually expressed in percentages. The 

utilization level has the major impact on the processor power consumption and corresponding 

thermal development. 

We exemplarily analyze the Intel Xeon E5-2650v2 processor (see Table 47), executing various 

benchmarks to guarantee various utilization levels and simulate the power consumption. 

Therefore, we execute the benchmarks on the real server system and trace the processor-

specific utilization level (by the Intel Power Thermal Utility), power consumption (by the Intel 

Power Gadget), and temperature (by the Intel Power Gadget). We avoid the characteristic 

changes in this section because of the limited measurement results of our system under test, 

but we further analyze the characteristic changes of the Intel Xeon E5-26xx v2 processor 

generation and family in Section 7.3 considering the Fujitsu-specific measurements and 

vendor-based spreadsheets.  

We exemplarily present the identical benchmarks383, as described in the memory evaluation, 

but in consideration of the processor power and temperature. In the meantime, the processor 

is under-utilized while executing the PassMark Memory benchmark, but immediately fully 

                                                           
383

 Benchmarks: We trace all component-specific utilization levels and corresponding aspects executing 
the same benchmark. 
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utilized when the memory executes the read/write operations. In contrast, the PassMark CPU 

benchmark almost fully utilizes the processor nearly the whole time. We do not observe 

utilization levels in the range of [20,80]%, thus we additionally consider the PassMark 

MemTest86 and the SPECpower benchmark, which especially reproduce the certain processor-

specific utilization levels.  

Figure 127 exemplarily shows the utilization levels while executing the PassMark Memory 

benchmark (𝑃𝑀1.1.4) in the upper graph in which the benchmark utilizes the processor below 

20% (in the mean 11%) at 𝑇 = [2.624 ∗ 106, 2.768 ∗ 106]𝑠 and fully utilizes the processor at 

𝑇 = [2.768 ∗ 106, 2.789 ∗ 106]𝑠, which we similarly observe in the remaining (𝑃𝑀𝑥. 𝑦. 𝑧) 

benchmark runs. We measure the processor power consumption of approximately 23𝑊 at the 

lower utilization levels and around 50𝑊 at the higher utilization levels, as shown in the middle 

graph by a solid blue line. We present our simulation-based results of the processor power as a 

dashed-dotted red line and show the absolute difference in the mean (marked in purple) 

between the measurements and our simulation in the lower graph of the figure. We observe 

nearly identical power consumptions, but observe an extreme inaccuracy in the range of 

[−12.4,+29.3]𝑊 in a situation when the utilization level increases from 17% to 100%, 

decreases to 24%, and increases to 100% between 𝑡 = 2.768 ∗ 106𝑠 and 𝑡 = 2.769 ∗ 106𝑠. 

We can avoid these situations when we continuously analyze the utilization levels and neglect 

the detected peaks. Nevertheless, we estimate the power consumption by a mean inaccuracy 

of approximately +0.19𝑊, which is an +0.6% inaccuracy in relation to our measurements 

during the entire benchmark in this example. 

 
Figure 127: Processor power accuracy (𝑷𝑴𝟏. 𝟏. 𝟒) 
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In the next section, we check whether we can trust the power consumption gained from the 

PassMark Memory benchmarks, which we use in our processor evaluation. For this purpose, 

we analyze the processor utilization levels in the PassMark CPU benchmark that concentrates 

on the processor utilization to detect the same processor power and show the plausibility of 

the measured and simulated values. The top graph in Figure 128 exemplarily shows the 

processor utilization levels (gained by the Intel Power Thermal Utility) of the identical server 

configuration used in (𝑃𝑀1.1.4), but we execute the PassMark CPU benchmark (𝑃𝐶1.1.4) 

instead. Herein, we observe that the benchmark fully utilizes the processor nearly the entire 

time at 𝑇 = [2.09 ∗ 106, 2.262 ∗ 106]𝑠  is interrupted by changing the particular micro-

benchmark; an exception of the utilization levels builds the single threaded micro-benchmark 

in the end of the benchmark at 𝑡 = 2.263 ∗ 106𝑠, which utilizes the processor between 17% 

and 24%, as exemplarily tagged in the figure. The graph in the middle illustrates the measured 

power consumption (by the Intel Power Gadget) presented by a solid blue line and the 

simulation-based shown as a dashed-dotted red line. We observe that the processor power 

consumption varies in the range of [44.2,66.8]𝑊 when we fully utilize the processor, but 

approximately observe a power consumption around 50𝑊. Indeed, we measure the following 

power consumptions when executing the particular micro-benchmarks: 

 Integer:   ~44.2𝑊  at 𝑇 = [2.090 ∗ 106, 2.109 ∗ 106]𝑠 

 Floating-point:  ~55.3𝑊  at 𝑇 = [2.113 ∗ 106, 2.131 ∗ 106]𝑠 

 Prime numbers:   ~44.2𝑊  at 𝑇 = [2.134 ∗ 106, 2.153 ∗ 106]𝑠 

 Encryption:   [48.2,66.8]𝑊  at 𝑇 = [2.199 ∗ 106, 2.219 ∗ 106]𝑠 

 Sort strings:   ~54.4𝑊  at 𝑇 = [2.242 ∗ 106, 2.262 ∗ 106]𝑠 

We assume that the varying power consumptions depend upon the processor architecture and 

its integrated subsystems (see footnote 330). In contrast, we simulate a constant processor 

power of around 50𝑊, as illustrated at 𝑡 = 2.173 ∗ 106𝑠, which is only based upon the 

utilization levels, while neglecting the certain operations, and additionally analyze the 

accuracy. The lower graph of the figure presents the absolute difference in the mean (marked 

in purple) between the measurements and our simulation. We observe nearly identical power 

consumptions, but observe extreme inaccuracies, such as peaks in the range of 

[−23.6,+26.9]𝑊 while switching the micro-benchmarks, because of the different resolutions 

between the measurement tools and our simulation framework. In fact, we estimate the 

power consumption by a mean inaccuracy of approximately +0.02𝑊 in this example, which is 

an +1.5% inaccuracy in relation to our measurements of the entire benchmark. 
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Figure 128: Processor power accuracy (𝑷𝑪𝟏. 𝟏. 𝟒) 

We do not observe utilization levels between 20% and 80% in the PassMark Memory or 

PassMark CPU benchmarks, but can argue that our simulation-based results are sufficiently 

precise. Furthermore, we analyze the results of the SPECpower benchmark in the following 

section, which explicitly adjusts the utilization levels of the processor in equidistant steps of 

10% in the interval [0,100]% to show the entire functionality and accuracy of our aspect-

based calculation method. We exemplarily present the traces of the processor-specific 

utilization levels (by the Intel Power Thermal Utility) that we gained in the SPECpower 

benchmark (𝑆𝑃1.2.8), as shown in Figure 125 and Figure 126, consider the same intervals 

marked by the vertical solid lines, and present the horizontal axes as the target throughput in 

Figure 129. In the upper graph, we present the actual utilization level in [%] calculated as a 

mean value of their particular interval that we simplify as a dashed-dotted red line by their 

corresponding label. In our example, the SPECpower benchmark specifies the target 

throughputs, which result in a maximal utilization level of 100%  and reduce them 

systematically. In the middle of the graph, we present the measured power consumptions 

[𝑊], simplified as mean values (traced by the Intel Power Gadget), and illustrated as a dashed-

dotted red line by their corresponding labels. We simulate the processor power consumption 

on the basis of the measurement traces of the real utilization levels, but present our 

simulation results as mean values by the dashed-dotted red line and their corresponding 

labels. In our example, both (the measured and simulated) power consumptions are very close 

to each other, which results in nearly identical values, as listed in Table 73 and Table 74 in a 

more legible format. We observe a higher slope of the measured power consumption in Table 

73 in comparison to the slope in Table 74 in which the absolute differences are at their highest 

value at the utilization levels between 40% and 70% in comparison to our simulation-based 
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results. We further evaluate the processor-specific power development in Section 7.3 and 

check whether we require a linear or non-linear power method, considering various processors 

with different thermal design powers, additional p-states, or frequencies. 

 
Figure 129: Processor power accuracy (𝑺𝑷𝟏. 𝟐. 𝟖) 

 

Table 73: Mean utilization level [%] and mean power consumption (measured vs. simulated) at target 
throughput (𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏, 𝟏𝟎𝟎%− 𝟔𝟎%) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%] 

Mean Calibration 100 90 80 70 60 
Utilization levels [%] 99.73 96.12 84.17 75.89 67.94 60.17 

Measured  
power consumption [W]  

50.92 50.66 44.83 40.74 36.41 32.89 

Simulated 
power consumption [W] 

49.91 48.70 44.68 41.90 39.23 36.62 

Absolute difference [W] -1.01 -1.96 -0.15 +1.16 +2.82 +3.73 
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Table 74: Mean utilization level [%] and mean power consumption (measured vs. simulated) at target 
throughput (𝟓𝟎%− 𝟏𝟎%, 𝒊𝒅𝒍𝒆) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%] 

Mean 50 40 30 20 10 Idle 
Utilization levels [%] 50.75 40.75 31.57 22.38 13.40 4.4 

Measured  
power consumption [W]  

29.95 27.05 24.73 22.44 20.19 17.79 

Simulated 
power consumption [W] 

33.45 30.09 27.01 23.92 20.90 17.88 

Absolute difference [W] +3.50 +3.04 +2.28 +1.48 +0.71 +0.09 

 

Additionally, we analyze the absolute difference (in the mean) between the measurements and 

our simulation-based power, which rely upon the high-resolution of the utilization levels to 

consider all values of the specific times. We simulate the power consumption by a mean 

inaccuracy of approximately +0.84𝑊 , which is an +3.6% inaccuracy in relation to our 

measurements of the entire benchmark. In this example, we observe a median at +0.06𝑊, a 

standard deviation by +3.3𝑊, and a variance of +10.9𝑊. Figure 130 presents the processor 

power consumption by the related normalized probability function (histogram) on the basis of 

the absolute differences in Watt.  

 
Figure 130: Processor power accuracy – a histogram (normalized probability) (𝑺𝑷𝟏. 𝟐. 𝟖) 

Table 75 lists the inaccuracy of our processor power model under various benchmarks 

concerning their absolute as well as relative differences between the simulated and measured 

values, both stated as mean384 values. Our aim is an error rate less than ten percent, which we 

specify as precise enough, see Chapter 4. Generally, we can argue that our processor power 

model is sufficiently accurate when we neglect the explicit workload scenario, and for 

                                                           
384

 Mean values: 𝜇, average of all data values concerning the high-resolution of the utilization levels 
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simplicity purposes neglect the specific processor operations considering a few exceptions 

regarding the accuracy, e.g. (𝑆𝑃2.3.36), (𝑀𝑇16. 𝑧), and (𝑃𝑀2.1.4). The mean utilization 

levels in the SPECpower benchmark (𝑆𝑃2.3.36) do not behave the same way as we trace the 

remaining (𝑆𝑃𝑥. 𝑦. 𝑧) benchmarks. Herein, the utilization levels continuously toggle towards 

the maximal utilization level of 100% at each target throughput. Our simulation model is 

insufficiently precise under these circumstances, as listed in Table 75 with a relative difference 

by +32.24%. Additionally, we observe a relative difference of +14.42% at the MemTest86 

benchmark (𝑀𝑇16. 𝑧), which primarily results from the power inaccuracy of the (𝑀𝑇16.32) 

test case385. The benchmark does not fully utilize all the 16 processor-specific hardware 

threads after allocating approximately half of the memory capacity (16𝐺𝐵) at 𝑡 = 9.6 ∗ 104𝑠 

up to the entire memory capacity (32𝐺𝐵) used at 𝑡 = 4.07 ∗ 105𝑠, which we exemplarily 

present in Figure 131 indicated by the memory utilization levels. We assume that the 

increasing memory capacity (addressing toward the end of the memory address range) and 

accessing (loading) a series of data onto the cache lines require more communication and 

consequently reduce the utilization level of the processor and the related power consumption. 

The remaining results of the SPECpower and MemTest86 benchmark are sufficiently precise 

because their relative differences are less than ±6%.  

 
Figure 131: Memory and processor utilization level (𝑴𝑻𝟏𝟔. 𝟑𝟐) – an excerpt of (𝑴𝑻𝟏𝟔. 𝒛) 

We found that our PassMark CPU results are especially reliable and adequate because the 

relative differences are in the range of [+1.5,+8.2]%, which is valid of the PassMark Memory 

benchmarks observing an accuracy between +0.6% and +10.1% when we neglect the results 

of (𝑃𝑀2.1.4), see Table 75. In our (𝑃𝑀2.1.4) benchmark, we expect the same tendency, such 

as in the remaining PassMark Memory benchmarks, but we observe extreme inaccuracies 

                                                           
385

 MemTest86 test case: We execute the MemTest86 in a virtual machine and adapt the memory 
capacity from 32𝐺𝐵 to 1𝐺𝐵. 
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because of the appearing middle-term (more than a few seconds) power peaks up to 190𝑊, 

which especially frequently occur at the end of the benchmark.  

We demonstrate the precise simulation of the processor power considering the processor-

specific utilization levels and processor-specific frequencies of the Intel Xeon architecture. We 

found that we could neglect the thread-specific data (utilization levels, frequencies) because 

the values are nearly identical and their deviations do not significantly affect the processor 

power consumption. The peak power consumption of a fully utilized processor depends upon 

the processor architecture and its integrated subsystems (see footnote 330) activated by the 

particular micro-benchmarks.  

Table 75: Processor power accuracy – the simulated vs. the measured results 

  Inaccuracy 

  Absolute 
difference [W] 

(mean)  

Relative 
difference [%]  

(mean) 

SPECpower  𝑆𝑃1.2.8 +0.84 +3.56 
𝑆𝑃1.3.18 +1.32 +5.28 
𝑆𝑃2.2.16 -4.54 -1.90 
𝑺𝑷𝟐. 𝟑. 𝟑𝟔 +6.78 +32.24 

MemTest86 𝑀𝑇1. 𝑧 -0.01 +0.41 
𝑀𝑇8. 𝑧 -0.80 -1.39 
𝑴𝑻𝟏𝟔. 𝒛 +4.73 +14.42 

PassMark 
CPU 

𝑃𝐶1.1.2 +0.71 +3.43 

𝑃𝐶1.1.4 +0.02 +1.50 

𝑃𝐶1.2.4 +0.29 +2.51 

𝑃𝐶2.1.4 +1.15 +5.65 

𝑃𝐶2.1.8 +0.62 +2.56 

𝑃𝐶2.2.8 +1.23 +8.24 

PassMark 
Memory 

𝑃𝑀1.1.2 +0.82 +3.32 

𝑃𝑀1.1.4 +0.19 +0.60 

𝑃𝑀1.2.4 +0.28 +1.62 

𝑷𝑴𝟐. 𝟏. 𝟒 +2.58 +24.02 

𝑃𝑀2.1.8 +0.04 +1.74 

𝑃𝑀2.2.8 +1.52 +10.13 

 

Processor Temperature Evaluation 

Moreover, we simulate the processor temperature on the basis of the processor power 

consumption (typically direct dependent upon the utilization levels). If a processor has a 

constant utilization level, the temperature will continuously increase due to the power 

dissipation, which is known as self-heating. The thermal development of the processor 

behaves similarly to the memory temperature behavior, and thus we specify various slopes of 
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the increasing, decreasing, or steady utilization levels in our temperature-based methods 

considering the time delay because of the inertia. We neglect short-term peaks (less than one 

second) of the power consumption that do not influence the processor temperature and 

measure the processor-specific temperature386 by the Intel Power Gadget. 

Again, we analyze the Intel Xeon E5-2650v2 processor (see Table 47) in our system under test 

while executing the PassMark Memory benchmark. The top graph in Figure 132 exemplarily 

shows the processor utilization levels (by the Intel Power Thermal Utility) and the middle of the 

figure presents the results of our processor temperature simulation (dash-dotted red line), 

which we evaluate according to our measurements (solid blue line) traced by the Intel Power 

Gadget. In our example, the PassMark Memory benchmark (𝑃𝑀2.1.4) utilizes the processor 

below 20% (in the mean 5%) until 𝑡 = 1.557 ∗ 105𝑠  and fully utilizes the processor at 

𝑇 = [1.557 ∗ 105, 1.784 ∗ 105]𝑠, which we similarly observe in the remaining (𝑃𝑀𝑥. 𝑦. 𝑧) 

benchmark runs. The simulated temperature increases from 37.05°𝐶 up to 42.76°𝐶 at the 

time 𝑇 = [2.027 ∗ 104, 1.144 ∗ 105]𝑠 , marginally decreases afterwards around 1°𝐶 , but 

significantly increases to 50.95°𝐶 when the processor is fully utilized at the time 𝑇 = [1.558 ∗

105, 1.678 ∗ 105]𝑠, as shown in Figure 132. Herein, we overestimate the temperature by a 

mean inaccuracy of approximately +3.9°𝐶. This is an +10.44% inaccuracy in relation to our 

measurements, which is less precise than the rest of the PassMark Memory benchmarks.  

 
Figure 132: Processor temperature accuracy (𝑷𝑴𝟐. 𝟏. 𝟒) 

  

                                                           
386

 Processor-specific temperature: We consider the same level of details of the processor temperature 
concerning the processor-specific utilization levels; otherwise, we have to trace the thread-specific data. 
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In contrast, the behavior of the PassMark CPU benchmark (𝑃𝐶2.1.4) is different from the 

PassMark Memory benchmark, which fully utilizes the processor most of the time and may 

lead to a different thermal development of the processor. Therefore, we check whether our 

processor temperature model works sufficiently precisely concerning the influence of the 

changed utilization levels. The top graph in Figure 133 exemplarily shows the processor 

utilization levels (by the Intel Power Thermal Utility) of the identical server configuration used 

in (𝑃𝑀2.1.4), but we execute the PassMark CPU benchmark (𝑃𝐶2.1.4) instead. Figure 133 

exemplarily presents the measured and simulated temperatures in the middle graph. Herein, 

we observe that the benchmark fully utilizes the processor nearly the entire time at 

𝑇 = [1.552 ∗ 104, 1.883 ∗ 105]𝑠 , however being interrupted by changing the micro-

benchmarks. We observe that the processor temperature increases in the range of 

[40.8,49.0]°𝐶 when we fully utilize the processor, but measure a temperature decrease after 

executing the floating-point operations from 45°𝐶 down to 43°𝐶 at 𝑇 = [5.609 ∗ 104, 5.915 ∗

104]𝑠. The lower graph of the figure presents the absolute difference in the mean (marked in 

purple) between the measurements and our simulation, in which we can observe an increasing 

temperature inaccuracy when executing the micro-benchmarks prime numbers or extended 

instructions. In our temperature model, we neglect the specific processor operations and 

simulate the thermal development on the basis of the utilization level. Nevertheless, we 

observe an absolute temperature difference (in the mean) by approximately +1.67°𝐶 and a 

relative difference by around +3.89% inaccuracy in relation to our measurements of the 

entire benchmark.  

 
Figure 133: Processor temperature accuracy (𝑷𝑪𝟐. 𝟏. 𝟒) 
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In the next section, we analyze our simulation-based results on the basis of more flexible 

utilization levels in comparison to the PassMark benchmarks. We exemplarily present the 

traces of the processor-specific utilization levels (by the Intel Power Thermal Utility) that we 

gained while executing the SPECpower benchmark (𝑆𝑃1.2.8). We exemplarily present our 

measurement results as mean values that are as simple to read as the results of Figure 132 or 

Figure 133. The horizontal axes in the three diagrams of Figure 134 illustrate the target 

throughput in [%] (marked by the vertical solid lines), beginning with the three calibration 

phases, followed by a sequence of target throughputs 100% down to 0% and ending by three 

idle intervals. We present the actual utilization levels [%] in the upper graph of Figure 134, 

calculated as a mean value of their particular interval (by a dashed-dotted red line and their 

corresponding labels). The middle graph of Figure 134 shows the measured temperatures [°𝐶], 

simplified as mean values (traced by the Intel Power Gadget), and illustrated as a dashed-

dotted red line by their corresponding labels. We illustrate our simulation-based results [°𝐶] as 

mean values by the dashed-dotted red line and their matching labels in the lower graph of 

Figure 134. In our exemplary analysis, both (the measured and simulated) temperatures are 

very close to each other, but in particular vary around 4.61°𝐶 in the idle case. In our processor 

temperature model, we take the ambient temperature into account, which may result in a 

higher temperature. Furthermore, we neglect the fan-based cooling effect on the processor in 

this section because we consider the processor as a single separate component decoupled 

from the entire system and management strategies. 

 
Figure 134: Processor temperature accuracy (𝑺𝑷𝟏. 𝟐. 𝟖) 
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Table 76: Mean utilization level [%] and mean temperature (measured vs. simulated) at target throughput 
(𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏, 𝟏𝟎𝟎%− 𝟔𝟎%) in (𝑺𝑷𝟏.𝟐. 𝟖) 

 Target throughput [%] 

Mean Calibration 100 90 80 70 60 
Utilization levels [%] 99.73 96.12 84.17 75.89 67.94 60.17 

Measured  
temperature [°C]  

48.61 49.03 47.08 45.60 44.17 42.71 

Simulated 
temperature [°C] 

48.53 48.43 47.82 47.39 46.55 45.18 

Absolute difference [°C] -0.08 -0.60 +0.74 +1.79 +2.38 +2.47 

 

Table 77: Mean utilization level [%] and mean temperature (measured vs. simulated) at target throughput 
(𝟓𝟎%− 𝟏𝟎%, 𝒊𝒅𝒍𝒆) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%] 

Mean 50 40 30 20 10 Idle 
Utilization levels [%] 50.75 40.75 31.57 22.38 13.40 4.4 

Measured  
temperature [°C] 

41.52 40.52 39.26 38.23 37.41 36.35 

Simulated 
temperature [°C] 

42.19 38.46 37.01 37.92 39.81 40.96 

Absolute difference [°C] +0.67 -2.06 -2.25 -0.31 +2.40 +4.61 

 

In our example, we observe an absolute temperature difference (in the mean) by 

approximately +1.19°𝐶 and a relative difference by around +3.17% inaccuracy in relation to 

our measurements of the entire benchmark. Figure 135 presents the processor temperature 

accuracy by the related normalized probability function (histogram) on the basis of the 

absolute differences in degree Celsius. We overestimate the processor temperature and 

observe a median at +0.89°𝐶, a standard deviation by +2.42°𝐶, and a variance of +5.87°𝐶.  

 
Figure 135: Processor temperature accuracy – a histogram (normalized probability) (𝑺𝑷𝟏. 𝟐. 𝟖) 
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Table 78 lists the inaccuracy of our processor temperature model under various benchmarks 

concerning their absolute as well as relative differences between the simulated and measured 

values, both stated as mean values. Our aim is an error rate less than ten percent, which we 

specify as exact enough, see Chapter 4. Generally, we can argue that the results are sufficiently 

precise with a few exceptions, such as in (𝑆𝑃2.3.36) and (𝑃𝑀2.1.4). We observe in the 

SPECpower benchmark (𝑆𝑃2.3.36) that the utilization levels do not behave the same way as 

we trace in the leftover benchmarks (𝑆𝑃𝑥. 𝑦. 𝑧), because the utilization levels continuously 

toggle towards the maximal utilization level of 100% at each target throughput, which 

especially result in inadequate power consumptions and corresponding temperatures by a 

relative difference of +11.02%. The remaining results of the SPECpower and MemTest86 

benchmarks are sufficiently accurate because their relative differences are less than ±9%. We 

found that our PassMark CPU and PassMark Memory results are especially reliable and 

adequate because the relative differences are in the range of [−1.81,+3.89]%  and 

[−1.77,+10.44]%, although the (𝑃𝑀2.1.4) power consumption is inaccurate.  

Table 78: Processor temperature accuracy in comparison to the measurements 

  Inaccuracy 

  Absolute 
difference [°C] 

(mean)  

Relative 
difference [%]  

(mean) 

SPECpower  𝑆𝑃1.2.8 +1.19 +3.17 
𝑆𝑃1.3.18 +2.39 +5.85 
𝑆𝑃2.2.16 +3.4 +8.56 
𝑆𝑃2.3.36 +4.19 +11.02 

MemTest86 𝑀𝑇1. 𝑧 +2.42 +6.62 
𝑀𝑇8. 𝑧 +3.58 +8.84 
𝑀𝑇16. 𝑧 +3.07 +7.51 

PassMark 
CPU 

𝑃𝐶1.1.2 -0.51 -1.21 

𝑃𝐶1.1.4 -0.76 -1.81 

𝑃𝐶1.2.4 -0.50 -1.15 

𝑃𝐶2.1.4 +1.67 +3.89 

𝑃𝐶2.1.8 +1.34 +3.08 

𝑃𝐶2.2.8 +1.48 +3.40 

PassMark 
Memory 

𝑃𝑀1.1.2 +0.27 +0.58 

𝑃𝑀1.1.4 -0.61 -1.77 

𝑃𝑀1.2.4 -0.01 -0.15 

𝑃𝑀2.1.4 +3.90 +10.44 

𝑃𝑀2.1.8 +3.02 +7.95 

𝑃𝑀2.2.8 +3.36 +8.90 
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7.2.5 Conclusion 

The presented results of the previous sections show that our simple aspect-based component 

models can be used to predict in sufficient accuracy the power and temperature in a wide 

range of flexible heterogeneous workload scenarios considering category-specific utilization 

levels. We identify that the memory-specific read-to-write ratio has a significant impact on the 

power simulation, which can reduce the over-estimation of the memory power consumption. 

We observe the highest memory power at the processor-intensive workloads, e.g. PassMark 

CPU, in comparison to the memory-intensive workloads, such as the PassMark Memory 

benchmark, because of the communication between the processor and memory. We define 

the memory model as a state-based approach, like the respective authors specified in [RL 

2007, Riv 2008, BC 2010], but we particularly consider the memory’s interaction by the read-

to-write ratio in the certain workload scenario. The authors in [MAC et al. 2011] predict the 

memory power by a mean relative error of [+4,+8]% across various micro-benchmarks, 

including a single core processor. Our simulation results are equivalent to the results 

presented in [KCB et al. 2013], whereby the accuracy of the memory current and obtained 

power consumptions are in a range of [+2.1,+14.02]%. We get comparable results to those 

achieved by the authors of [KCB et al. 2013], but involve less effort because we group the 𝐼𝐷𝐷 

values instead of considering every 𝐼𝐷𝐷 state that are defined in the spreadsheets. The precise 

power consumption builds the base of the temperature simulation, which we differentiate into 

a steady state, an increasing, and a decreasing temperature development. We neglect short-

term peaks (less than one second) of the power consumption, which have no impact on the 

memory and processor temperature because of the thermal inertia. The authors of [APL et al. 

2008] simulate the memory temperature with an accuracy of less than +5% considering 

various micro-benchmarks and performance counters of the hardware-specific events. Our 

simulation-based thermal results are adequately precise and require less effort in analyzing the 

memory modules. Moreover, we identify that the thread-specific utilization levels and 

frequencies of the processor (Intel Xeon architecture387) do not improve the accuracy of the 

processor power consumption, but we demonstrate sufficiently precise results of our 

decoupled component models, which are as accurate as the approach in [MAC et al. 2011] of 

the multi-core processor. The authors of [MAC et al. 2011] estimate the multi-core processor 

power by an average accuracy between [+10,+14]%, which is refined in case of a single core 

processor power by an accuracy of [+2,+6]%. In the work of [Riv 2008], the authors, 

especially analyzed the Intel Xeon architecture and predict the power in their utilization-based 

models by a mean accuracy of less than ≤ 15% considering various processor-intensive micro-

benchmarks. Their performance-counter-based models are more accurate than the utilization-

based models as identifiable by a mean accuracy of approximately +10%. We define the 

component-specific aspects as separate functions considering the entire utilization levels 

(processor-specific) instead of the instruction sets, particular operation traces, or activities on 

a cycle-by-cycle basis as done in [Che 2006, Riv 2008, RRK 2008]. We found that using the 

                                                           
387

 Intel Xeon architecture: Intel Xeon processor E3/5/7-xxxx v1-5 family 
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integrated subsystems of the processor has a relevant impact on the processor power 

consumption, which is observable while executing the various micro-benchmarks of the 

PassMark CPU benchmark. Nevertheless, we simulate the processor power and temperature 

that are only based on the utilization levels and consider a mean usage of the subsystems in 

which we neglect the specific operations and the fan-based cooling effect, but also simulate 

equivalent results (sufficiently accurate precision and accuracy) concerning our measurements 

on the real server system. Our aspect-based component models require marginal component-

based data, such as characterization, ambient temperature, and utilization levels. We achieve 

the same level of accuracy as the counter-based power models described in [Bel 2001] by 

around +10% using two event counters or +5%, considering additional counters. We do not 

study the particular counters, which result in less effort in comparison to the counter-based 

models by [Han 2007]. Our accuracy is as good as the accuracy of [Han 2007, HS 2007] within 

the range of [−4,+10]%. Their thermal model has an accuracy in the range of [−1.3,+3.4]°𝐶 

considering the Intel Pentium III processor, which is nearly identical with our temperature 

accuracy. We assume that creating rough models considering the technical specification can be 

as adequate as highly detailed models, which, in consequence, creates less computational 

effort. Generally, our accurate and precise power as well as temperature results leads to the 

assumption that we can avoid over-provisioning in the case of the PSU sizing.  

7.3 Analysis the Impact on Changes of the Component Characteristics 

7.3.1 Objective 

Our aim is the verification and evaluation of the concepts’ operating principles regarding the 

flexible changes of the component characteristics to support a wide range of various server 

systems. In this section, we primarily show the scalability of the category-based and aspect-

based characterization considering the certain adjustments of the technical specification 𝐶𝐻𝑇𝑆, 

static characteristic 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , or dynamic characteristics 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌 . We alternate the component 

characteristics, analyze the accuracy, and check whether we simulate adequate results. We 

want to find the limits of our model because of the chosen relevant characteristics and check 

their universal applicability on future and uncertain systems. Additionally, our component-

based models shall reduce the measurement effort of actual server systems.  

7.3.2 Evaluation Criteria 

Our models instantaneously have to react rapidly and efficiently to the changes of the 

characteristics. We assume that if our component models flexibly respond to the particular 

characteristic adjustments, the entire simulation model will provide adequately aspects-based 

results. In this analysis, we answer the following questions: 
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 How much can we trust our component-based models and their related aspect-based 

calculation methods when we change the internal component characteristics forced by 

a recent external server configuration? 

 What are the consequences (impacts) of the characteristic changes in our component 

models concerning the accuracy and precision? 

As a prerequisite, we have to answer the question whether the component-based models 

flexibly react upon varying characteristics. As described in the concept chapter, we empirically 

analyze the component-specific characteristics in academia and industrial practice to 

determine their significance on the certain aspect, contribute the most variability, and reduce 

the simulation output uncertainty, which is a further precondition. Section 7.2 indicates that 

our component models are working in an accurate manner because we already adjust some of 

the memory characteristics, such as the capacity. In this section, we concentrate upon the 

varying characteristics and study the particular components to demonstrate the functionality 

of our concept. We evaluate the accuracy of our methods by comparing our simulation-based 

results with the measurement values gained from the components in a real server system on 

the one hand, and with the vendor-specific spreadsheets on the other. Fujitsu started a couple 

of measurement processes over the years to trace especially the power consumption for a 

large number of various memory modules and Intel processors. We have confidence in the 

quality, comparability, and accuracy of the measurement procedure and therefore consider 

the Fujitsu-internal database results in our evaluation. Our evaluation criteria are the absolute 

and relative differences between the simulation-based values and either the measurement 

results gained by Fujitsu or the vendor-specific spreadsheets in terms of availability and a 

relatively high level of comparability (nearly identical characteristics). We expect that the 

purely spreadsheet-based approaches overestimate the current aspect more than our aspect-

based calculation methods. On the other hand, when simulating the power consumption, we 

require an over-prediction less than +10% in relation to the real-life measurement. We 

concentrate on the power simulation in our analysis and partly consider the thermal results 

because of the limited available data. We study a sequence of diverse memory modules and 

processors. 

7.3.3 Experimental Setup 

We specify the general evaluation environment and measurement infrastructure in Sections 

7.1.1, 7.1.2, and 7.1.3. Herein, we specify the experimental setup of the impact on 

characteristic changes, which is nearly the same with regard to the procedure in Section 7.2.3. 

We separately evaluate the category-specific components regarding their accuracy of the 

aspect-based calculation methods, as shown in Figure 105. Herein, we exclusively consider the 

specific component and call the particular calc_category() method, provided by the 

component model, which is isolated and encapsulated from the other components. This 

approach simplifies the evaluation and speeds up the simulation because we analyze each 

component and its characteristic changes separately. In general, we analyze the recent 
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external server configuration when we start the entire simulation, but we adjust the 

characteristics of each component in an isolated manner in our experimental setup to speed 

up the evaluation. Additionally, we ignore the relations or communications between the 

various components to encapsulate the certain component from each other. In this evaluation 

section, we disable the system-wide optimization engine because we analyze the results of our 

component-based models concerning the flexible characterization. In contrast to Section 7.2, 

here we analyze various Intel processors as well as memory modules, whereby we consider 

various families, generations, or series as technical specification or the memory density, 

capacity, or die as different static characteristics that could originate from various 

manufacturers. Therefore, we adjust the component configuration as an input parameter of 

the simulation framework or isolated component model. In order to ensure the comparability 

of the simulation results, we modify the stimuli to produce a very similar situation considering 

the utilization levels and the component characterization. We calculate the absolute as well as 

relative difference regarding our simulation-based results. 

7.3.4 Results and Analysis 

We exemplarily present the results of our memory and processor models to evaluate the 

parameter sensitivity of our simulation model and present the simulation-based values 

resulting from the changing simulation parameters. Herein, we concentrate upon the power-

specific calculation methods because the power consumptions of the various components are 

accessible everywhere and available to anyone. In contrast, the component-specific 

temperatures are not well analyzed regarding the variability of their characteristics. Therefore, 

we evaluate our thermal models that are based on the power consumption and the utilization 

levels, see Section 7.2.4. First, we present the adapted power consumptions of our simulation 

model considering various characteristics on condition that we only change the particular 

simulation parameter without modifying the models. We analyze their accuracy (evaluation 

criteria: the absolute and relative differences) with regard to the measurement results gained 

by Fujitsu. The experimental results of Fujitsu are stored in an internal database and not 

accessible to the public, which, on the other hand, are used to simulate the component-

specific power in the commercial tools. Furthermore, we compare a subset of our simulation-

based results in accordance with the academic approaches or vendor-specific spreadsheets 

that are suitable regarding a high level of comparability (nearly identical characteristics).  

Memory Power Evaluation 

At first, we concentrate upon the two different memory modules considering the 

configurations (𝐶70, 𝐶71)  that we analyze in the test cases (𝑃𝐶1.1.4)  and (𝑃𝑀1.1.2)  in 

Section 7.2. In our memory power evaluation, we exemplarily analyze a selection of 

characteristics388 that we vary as a subset of the possible parameters to show the sensitivity 

and accuracy of our simulation model. Table 79 lists the memory characteristics of the SUT 
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 Characteristics: Table 42 lists the detailed characteristics 
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modules, which we consider as the particular simulation parameters. The authors of [RLG et al. 

2008] analyzed the varying designs of the 𝐷𝐷𝑅2 memory modules considering the idle power 

of diverse vendors. In this section, we concentrate upon the maximal power consumption of 

the 𝐷𝐷𝑅3 memory modules starting with the vendor-specific evaluation. 

Table 79: Memory modules (𝑪𝟕𝟎, 𝑪𝟕𝟏) of the SUT – characteristics considered as simulation parameters 

Memory characteristics Memory module (𝑪𝟕𝟎) Memory module (𝑪𝟕𝟏) 

Vendor {'Micron'}; {'C'} {'Qimonda'}; {'D'} 

Capacity (size) [GB] {'4GB'} {'2GB'} 

Density [GB] {'4GB'} {'2GB'} 

Die (component revision) {'D'} {'D'} 

Fabrication size [nm] {'44nm'} {'56nm'} 

Synchronization mode {'registered'} {'registered'} 

Module ranks,  
rank linking (data width) 

{'1R'}; 

{'SR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

Timings {'11'} {'7'} 

Error correction {'ECC'} {'ECC'} 

Frequency [MHz] {'800'} {'533'} 

Voltage [VDC]389 {'LV'}; 

1.35VDC 
{'STD'}; 

1.5VDC 
Transfer rate / throughput 
[MHz] 

{'1600'}; 

{'PC3-12800'} 
{'1066'}, 

{'PC3-8500R'} 

 

Instead of considering all variations in each 𝐼𝐷𝐷 state, we group the major 𝐼𝐷𝐷 states into the 

idle state and the active state, which we further distinguish in the refresh mode or read-to-

write mode. In [KCB et al. 2013], the authors analyze every current variation in a single 

memory module, which we ignore as the impact of variations in the power consumption and 

are negligible in the variation of clusters.  

We separately evaluate both memory modules (𝐶70, 𝐶71) because their characteristics differ 

from each other significantly, such as the capacity, density, or frequency. For the purpose of 

comparability, we temporary split the two memory modules into different groups, such as 

(𝐶70, 𝐶72, 𝐶73, 𝐶75) and (𝐶26, 𝐶71, 𝐶74, 𝐶76). Appendix A3e provides further details of the 

components and their characteristics. The eight bars to the left side of the Figure 136 present 

the measured and simulated results of the four memory modules (𝐶70, 𝐶72, 𝐶73, 𝐶75) with 

4𝐺𝐵  capacity that have almost identical characteristics, but are from several different 

vendors390. We fully utilize the memory modules by the synthetic PassMark Memory workload 

and use our default read-to-write ratio. We observe that the 4𝐺𝐵 memory module of the 
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 VDC: volts direct current 
390

 Different vendors: labeled in letters 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺  because we gained the particular power 
consumptions of the vendors that are confidential 
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vendors 𝐷 and 𝐶 consume nearly twice as much power as the memory modules of the vendors 

𝐴 and 𝐸 in the measurements as well as in the simulation. The absolute differences in our 

simulated power in comparison to the measured values are in a range between +0.03𝑊 and 

+0.62𝑊 of the 4𝐺𝐵 memory module. Figure 136 also presents the comparative values of the 

SUT-specific 2𝐺𝐵 memory module 𝐶71 that are visualized in the six bars to the right side of 

the module, grouped as (𝐶26, 𝐶71, 𝐶74, 𝐶76). In contrast to the 4𝐺𝐵 configurations, the 

power consumptions of the 2𝐺𝐵 memory modules of the vendor 𝐸 and  𝐶 show an opposite 

trend, but our observation between the vendors 𝐷 and 𝐴 remain unchanged. The absolute 

difference of the 2𝐺𝐵 memory modules between the measurements and our simulation is in 

the range of [+0.03,+0.22]𝑊, which are sufficiently accurate results of our model. Herein, we 

implicitly show that our simulation model reacts on changing capacity and density. We observe 

a similar trend of the results by [RLG et al. 2008] in which the maximal power consumption 

depends upon the vendor and varies in a wide range. Some differences of the power 

consumption may occur, because we cannot consider the capacity as a separate characteristic. 

In our preceding analysis, we found that the memory capacity relies upon the rank, rank 

linking, and density. In order to reduce the mutual influence, we consider the particular 

modules, as shown in Figure 136. In addition, the authors of [KCB et al. 2013] state that the 

power consumption varies approximately 20%  through the various vendors, which is 

observable in Figure 136. In our evaluation, we concentrate upon the 𝐷𝐷𝑅3 − 𝑆𝐷𝑅𝐴𝑀391 

memory and consider the dependencies of the various sizes and ranks on the power 

consumption that the authors of [XTB 2007] analyzed of the SRAM-based392 memory modules.  

 

Figure 136: Vendor-specific power consumption of the memory modules (𝑪𝟐𝟔, 𝑪𝟕𝟎 − 𝑪𝟕𝟔) 

In the next section, we change the memory frequencies, which we define as the dynamic 

characteristic and evaluate the impact on a single change in the power consumption. We do 

not have adequate measurable results concerning varying frequencies of the SUT memory 

                                                           
391

 DDR3-SDRAM: synchronous dynamic random-access memory 
392

 SRAM: static random-access memory 
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modules and therefore we choose the 2𝐺𝐵 memory modules 𝐶26 and 𝐶24 of vendor 𝐴 to 

show the relevance and effects on the power consumption. Again, we fully utilize the memory 

modules by the synthetic PassMark Memory workload while varying the memory frequencies. 

In our simulation model, we consider the baseline frequency of 533𝑀𝐻𝑧 for the memory 

modules 𝐶26 and 𝐶24. We continuously increase the frequency following the predefined steps 

of [533,667,800,933]𝑀𝐻𝑧. The eight bars to the left side of Figure 137 show the 𝐶26 module; 

the eight bars to the right side present the 𝐶24 module as measured as well as simulated 

power values. We observe that a higher memory frequency results in an increasing power 

consumption. In our example, we simulate the power consumptions, which are higher than the 

measured values, but sufficiently accurate because the absolute differences are in a range of 

[+0.02,+0.25]𝑊.  

 

Figure 137: Frequency-specific power consumption of the memory modules (𝑪𝟐𝟔, 𝑪𝟐𝟒) 

Besides the capacity, density, vendor, or frequency, we found that the die types are also 

significant regarding the memory power consumption. We study the power consumption of 

the various die types in order to understand the future trends of memory power consumption. 

We assume a continuous development of memory modules.  

Figure 138 exemplarily shows the three memory modules 𝐶14, 𝐶20, and 𝐶26 that are almost 

identical, but differ with their die types (𝐵, 𝐶, 𝐷). We simulate the three memory modules 

considering the PassMark Memory workload and fully utilize them to analyze the dependency 

on the die. In principle, we can simulate the same module and change their die type, but we 

gained the explicit measurement results of these three individual memory modules. We 

observe that the 𝐷-Die memory module (𝐶26) consumes less power than the 𝐶-Die (𝐶20) or 

𝐵-Die (𝐶14). Our simulation-based results are less exact when we only consider the changing 

die types as a single parameter. In this example, we observe an absolute difference between 

−0.7𝑊 and +0.04𝑊 that is more accurate concerning the over-estimation, but is less precise 

in the under-estimation in comparison to the frequency-based results, for instance. 

Nevertheless, we can predict future components in our simulation model that follow the same 
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trend as the memory modules before. The authors of [Vog 2010] present the scaling 

progresses through the memory generations, such as fabrication size, capacity, generation, or 

family regarding the power, voltage, timing, and energy trends that we consider in our 

approach.  

 

Figure 138: Die-specific power consumption of the memory modules (𝑪𝟏𝟒, 𝑪𝟐𝟎, 𝑪𝟐𝟔) 

We exemplarily show that our simulation model reacts on the characteristics of the memory 

modules that influence the power consumption. In the majority of the cases, the 

characteristics influence each other and cannot be simulated separately. We evaluate the 

memory modules (𝐶77, 𝐶78) of the academic approaches [HCE et al. 2011] and [LEU et al. 

2010] to show the applicability and reliability of our simulation-based approach. Accordingly, 

we specify the memory modules in our simulation model on the basis of the descriptions of 

the scientific papers, but we guess several parameters as default assumptions that are not 

documented in detail. In Figure 139, we observe that our simulation-based results are higher 

than the results gained from the academic approaches and lower than the listed power 

consumption of the spreadsheets393. The vendors provide the worst-case values (e.g. power, 

temperature) in their spreadsheets, which is a common industrial practice [Fuj 2014] and 

generally leads to an over-estimation. The absolute differences of our simulated power 

consumption in comparison to the academic approaches are between +0.58𝑊 and +0.73𝑊, 

which may occur because of the missing memory-specific details concerning a specific 

workload, such as the execution of various instructions or patterns. We found that our 

simulation model is sufficiently precise in relation to the detailed cycle-by-cycle or instruction-

based models.  

                                                           
393

 Spreadsheets: the commercial tools usually consider the spreadsheet values 
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Figure 139: Comparison of the memory power simulation (𝑪𝟕𝟕, 𝑪𝟕𝟖)  
concerning the academic approaches [HCE et al. 2011, LEU et al. 2010] 

Processor Power Evaluation 

In this section, we evaluate different processor configurations, considering various processor 

characteristics, as a subset of possible simulation parameters to show the sensitivity of our 

simulation model, see Table 44. We describe our results of the Intel Xeon architecture - the 

third generation, code name Ivy Bridge. In our analysis, we exemplarily simulate the E5-2600 

product family of the E5-v2 processor family starting with the E5-2650v2. At first, we analyze 

the power gap between the spreadsheet-based estimation, the commercial tools, the 

measurements, and our simulation results. Afterwards, we evaluate the absolute and relative 

difference (in mean) between the measured and simulated values to show the functionality 

and flexibility of our approach. Our challenge is to improve the processor power calculation, 

especially at lower utilization levels, which is relevant for the memory-bounded workloads 

typical for a data center. Furthermore, we assume a continuous development of the processor 

family and series to define the power consumption in an early design phase more precisely. 

In contrast to Section 7.2.4, we exemplarily present a detailed power analysis considering the 

exact characteristics that are relevant to simulate the entire power consumption of the 

processor and concentrate upon the processor-specific p-states that correspond to the 

processor-specific utilization levels. Table 80 lists the processor characteristics that we 

consider as the particular simulation parameters of Intel Xeon E5-2650v2 configuration (𝐶18). 
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Table 80: Processor (𝑪𝟏𝟖) of the SUT (Intel Xeon E5-2650v2) – characteristics considered as simulation 
parameters 

Processor characteristics Processor (𝑪𝟏𝟖) 

L3 cache [MB] {'20MB'} 

L2 cache [KB] {'2048KB'} 

Semiconductor technology 
(TDP) [W] 

{'70W'} 

Vendor {'Intel'} 

Architecture Intel XEON E5 
Generation Ivy Bridge EP 
Family E5-2600v2 
Series {'E5-2650v2'} 

Cores / active cores 
(hyper-threading) 

{'8C'}, 
{'16T'} 

Frequency [GHz] {'2.1'}, turbo {'2.3'} 
Transfer rate [GT/s, MHz] {'8.0GT/s'}, 

{'1600MHz'} 

 

In our analysis, we consider synthetic utilization levels of the processor in equidistant steps of 

10% in the interval [0,100]% as an input parameter of our simulation. At the same time, we 

assume an unchanged ambient temperature. This might negatively influence the accuracy of 

our processor power simulation. However, we make this assumption for two reasons. First, the 

ambient temperature is not under our control; second, we want to keep our model simple. As 

described in the concept chapter, we simulate the processor power in a manageable power 

interval considering the thermal design power (TDP) and the minimal power in relation to the 

amount of p-states as well as the processor family (series) as static characteristics. Figure 140 

exemplarily presents the simulation-based results of the processor power (dash-dotted red 

line) in comparison to the measurement trace of the Intel Power Thermal Utility (solid blue 

line)394, the data gained from the commercial tools395 (dotted magenta line), or vendor-based 

data determined in the spreadsheets (dashed black line). We simulate the power consumption 

of the Intel Xeon E5-2650v2 (𝐶18) as a linear function396 of the utilization levels, which is 

nearly identical to the measurements. In contrast to our studies at the SPECpower 

benchmarks, we observe a higher absolute difference between the simulated and the 

measured values by a mean inaccuracy of approximately +1.39𝑊, which is a +6.72% relative 

difference (in mean). The Intel Xeon E5-2600 specification defines a nearly constant processor 

power in the range of [58,70]𝑊. In addition, we observe significant differences between the 

                                                           
394

 Comparison to the measurement trace: detailed accuracy of (𝐶18), such as the frequency analysis, is 
presented in Section 7.2.4 
395

 Commercial tools: we found equivalent configurations of the processors (𝐶1, 𝐶3, 𝐶7, 𝐶18) in the Dell 
Energy Smart Solution Advisor (ESSA), http://www.dell.com/calc 
396

 Linear function: the processor power is non-linear for processors with more than approximately 15 p-
states 
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realistic measured/simulated power values in comparison to the commercial tools, which 

overestimate the power especially at the full utilization levels. In our example, the 

measured/simulated power consumption at the full utilization level is approximately 50.59𝑊 

but nearly 74𝑊 calculated by a commercial tool and approximately 70𝑊 defined by the 

spreadsheet. We observe that the accuracy of the power consumptions gained from the 

commercial tools is more precise when the utilization levels decrease. Thus, the absolute 

difference between the measured values and the commercial tool is +15.26𝑊  at 50% 

utilization level. At the same time, the simulated values have the highest level of inaccuracy of 

approximately +3.46𝑊. We observe that the minimal power is nearly identical at all curves 

besides the spreadsheet-based power. Moreover, Appendix A3h provides the detailed power 

comparisons of the processors (𝐶1), (𝐶3), and (𝐶7), but we generally observe that the 

processor power consumptions of the spreadsheets are inadequate concerning their accuracy 

in comparison to the measurements, as analyzed in [DSC 2006, New 2008, Fuj 2014]. The 

results demonstrate the necessity of more precise estimation of the processor power 

consumption in industrial practice and show the improvements when we simulate the 

processor power consumption. We can easily reduce the power gap between the spreadsheet-

based method and the measurements by using our simulation model to keep the inaccuracy as 

low as possible. We observe the best improvements of the spreadsheet-based approach at 

higher utilization levels, such as in a range of [50 − 100]%. The minimal power of the 

processor is nearly identical with the commercial tools, simulations, or measurements. We can 

avoid over-provisioning because of our more precise power simulation in comparison to the 

commercial tools and spreadsheet-based approaches.  
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Figure 140: Processor power consumption (𝑪𝟏𝟖) –  
an exemplary comparison between spreadsheet, commercial tools, measured and simulated power 

If we only consider the processor series E5-2600 and their continuous development as a single 

static characteristic in our simulation model, we will provide the list of processors 

(𝐶7, 𝐶18, 𝐶3, 𝐶1) sorted by their peak power in ascending order. Figure 141 illustrates the 

simulation-based results in which the processor (𝐶18) has the lowest peak power because the 

thermal design power of (𝐶18) has the smallest value by 70𝑊. Consequently, we consider the 

thermal design power as an additional static characteristic and update the list 

(𝐶18, 𝐶7, 𝐶3, 𝐶1). In our approach, the simulation of the processor (𝐶3) is based on the 

simulation of the processor (𝐶1), which we proceed in the same manner accordingly with the 

processor (𝐶7)  that relies upon the processor (𝐶3) . We adjust the slopes and weight 

coefficients397 regarding the significant characteristics to change the power correction of every 

processor. Furthermore, we observe the non-linear power consumption of the processor (𝐶1) 

because the amount of p-states is bigger than 15, as stated in the concept section. Appendix 

A3h provides the simulation-based results of processor power consumptions considering the 

processors (𝐶1 − 𝐶19). 

                                                           
397

 Slopes and weight coefficients: the slope of higher utilization levels is always larger than the slope at 

lower utilization levels 𝑊𝐹𝑃𝑘
ℎ𝑖𝑔ℎ

≫ 𝑊𝐹𝑃𝑘
𝑙𝑜𝑤  
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Figure 141: Simulated processor power consumption (𝑪𝟏, 𝑪𝟑, 𝑪𝟕, 𝑪𝟏𝟖) 

Table 81 lists the inaccuracy of our processor power simulation under the synthetic utilization 

levels regarding their absolute as well as relative differences (in the mean) between the 

simulated and measured values. Our aim is an error rate less than ten percent, which we 

specify as precise enough, see Chapter 4. We concentrate on the processors (𝐶1 − 𝐶19) of the 

E5-2600v2 product family and observe the absolute difference in the range of 

[−6.63,+6.63]𝑊. We can argue that our simulation-based results are reliable and adequate, 

because the inaccuracy is approximately ±9.6% when we neglect the results of the processors 

(𝐶2), (𝐶4), and (𝐶8). In case of these three processors, we observe the total absolute 

difference of +4.34𝑊 up to +9.2𝑊, especially at full utilization levels, which has a negative 

impact on the entire power simulation of the particular processor. The variance of the 

processor power increases with the processor generation, which is approximately 20% up to 

25% measured from peak to peak [Fuj 2013]. The impact of process variation in the processor 

power consumption can be another reason for our inaccuracy [RLG et al. 2008].  
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Table 81: Processor power accuracy – the simulated vs. the measured results 

 Inaccuracy 
 Absolute 

difference [W] 
(mean)  

Relative 
difference [%]  

(mean) 

𝑪𝟏 +1.13 +3.6 
𝑪𝟐 -6.63 -13.8 
𝑪𝟑 +3.88 +7.6 
𝑪𝟒 +6.63 +14.7 
𝑪𝟓 -1.21 -9.6 
𝑪𝟔 +3 +3.2 
𝑪𝟕 +4.13 +9.6 
𝑪𝟖 +5.37 +15.3 
𝑪𝟗 +1.15 +1.4 
𝑪𝟏𝟎 -2.18 -8.2 
𝑪𝟏𝟏 +0.05 -1.4 
𝑪𝟏𝟐 +4.73 +5.2 
𝑪𝟏𝟑 +5.69 +2.1 
𝑪𝟏𝟒 +4.25 +0.3 
𝑪𝟏𝟓 +1.78 +0.6 
𝑪𝟏𝟔 -0.63 -1.0 
𝑪𝟏𝟕 -1.54 -0.9 
𝑪𝟏𝟖 +1.39 +6.7 
𝑪𝟏𝟗 -2.75 -8.2 

 

A sufficiently precise simulation requires static and dynamic characteristics to be universally 

applicable on future and uncertain systems that we demonstrate by our processor-specific 

power values considering the synthetic utilization levels. Nevertheless, we can predict future 

components in our simulation model that follow the same trend as the processors before. 

7.3.5 Conclusion 

We demonstrate that our simulation model at a high level of abstraction is sufficiently precise 

(less than +10% relative difference) when we consider the relevant static and dynamic 

characteristics of the memory modules and processors. Our simulation results are more 

accurate in comparison to the results gained from commercial tools or defined by 

spreadsheets. We reduce the over-estimation of the worst-case power, e.g. the peak power at 

the full utilization level, and decrease the power gap at lower utilization levels when we 

compare our simulation results to spreadsheets. We improve the estimation process, 

especially at lower utilization levels, so that we can define the power consumption in an early 

design phase more precisely. We simulate equivalent results concerning precision and 

accuracy in comparison to academic approaches, taking into account that we investigate less 

effort to analyze and measure each component, such as various memory modules. The authors 

of [Han 2007] analyze the specific frequencies executing different benchmarks, but we show in 
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Section 7.2.4 that the various processor-intensive micro-benchmarks have little impact on the 

peak power consumption. We consequently assume that the processor frequencies rely upon 

the utilization level. In the work of [Han 2007], the authors state that the power linearly 

depends upon clock throttling. As a result, we assume that the processor power is linear to the 

certain p-state (voltage-frequency pair). In contrast to the work in [GFN et al. 2006], we specify 

our components by the relevant technical specification 𝐶𝐻𝑇𝑆 , static 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇  and dynamic 

characteristics 𝐶𝐻𝐶𝐹𝐺
𝐷𝑌  wherein we neglect the instruction-level details, as analyzed in [BGM et 

al. 2010] by the access rate. We simulate the entire processor power dependent on the cache 

sizes (𝐿2, 𝐿3), which is defined as core-specific power consumptions in the power models in 

[RRK 2008, BM 2012 KJC et al. 2014]. In fact, the amount of processor cores is an additional 

relevant characteristic of processor power consumption. Our simulation model flexibly reacts 

upon the characteristic changes of the components, which finally reduces the measurement 

effort of the particular component series. We predict future components, but assume a 

continuous development of the components, wherein we adjust the certain weight coefficients 

upon the basis of the specific characteristics and technology changes. In the work of [Han 

2007], the authors define a processor model of the Intel Pentium M 755398 generation, which 

we do not include in our simulation model because the processor is a desktop processor, while 

we concentrate upon server-specific processors. The authors in [Riv 2008] define the power 

model of the server processor Intel Xeon 5130399 similar to the processor model in [THS 2010] 

suitable for an Intel Xeon E5430400 processor. Both are three processor generations (Core 

generation) away from our SUT-specific processor generation401, called Ivy Bridge. The authors 

in [TDM 2011] analyze an Intel Xeon E5540402 processor, including the Intel Xeon Nehalem 

architecture, which is two processor generations away from our SUT processor generation. We 

do not support the Intel Pentium M (M 755), Intel Xeon Core (5130, E5430), or Nehalem 

(E5540) architecture in our simulation model, because we want to limit the model complexity. 

Our simulation model is actually limited to the server-specific generations of the Intel Xeon 

processors, in particular, Sandy Bridge, Ivy Bridge, and Haswell, because the experimental 

results of Fujitsu are not accessible to the public and are restricted to these three Intel Xeon 

generations. In general, we need to adjust the processor generations and estimate the 

generation dependencies.   

                                                           
398

 Intel Pentium M 755: (Pentium M, Dothan), 2.0GHz base frequency, 7.5W TDP, one core, 2MB L2 
cache, 400MHz 
399

 Intel Xeon 5130: (Core, Woodcrest), 2.0GHz base frequency, 65W TDP, two cores, 4MB L2 cache, 
1333MHz 
400

 Intel Xeon E5430: Xeon (Core, Harpertown), 2.66GHz base frequency, 80W TDP, four cores, turbo, 
6MB L2 cache, 12MB L2 cache, 1333MHz 
401

 Processor generation: https://ark.intel.com/#@Processors, 
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors 
402

 Intel Xeon E5540: Xeon (Nehalem, Gainestown), 2.53GHz base frequency, 80W TDP, four cores / 
eight threads (4C/8T), hyper-threading, turbo, 8x256KB L2 cache, 8MB L3 cache (TLC), 5.86GT/s QPI, 
1066MHz 
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7.4 Improvement Analysis regarding Server System Optimization 

7.4.1 Objective 

Sections 7.2 and 7.3 evaluate the calculation methods on the basis of isolated components 

considering the heterogeneous workload scenarios and flexible changes of the component 

characteristics. On the basis of the evaluation results in Sections 7.2 and 7.3, we can trust in 

the accuracy of the aspect-based calculation methods concerning the variable adjustments. 

Our aim of this section is to evaluate the server system optimization in which we alternate the 

technical specification 𝐶𝐻𝑇𝑆, static characteristic 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , or dynamic characteristics 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌  as 

part of the decision variables in our optimization strategy. We simulate the entire server 

system and analyze the improvements regarding our adjustments. For this purpose, we 

observe the necessary performance scores that we will consider in our performance models 

and that will finally become part of our energy efficiency analysis. In our empirical analysis, we 

concentrate on the server system architecture of our rack-based system under test. 

Additionally, our complete server simulation shall improve the energy efficiency concerning 

the peak performance, accordingly, reduce the energy consumption associated with the 

decrease of the heat dissipation, and consider a realistic workload scenario instead of a worst-

case scenario. In contrast to [ERK 2006, RRK 2008, Ran 2010], we want to optimize the server 

system for low utilization because the average server utilization is less than ten percent and 

always lower than 50 percent in a data center [KFK 2008]. The server optimization offers a high 

level of potential savings in the energy consumption and total costs. A couple of alternative 

approaches403 exist that overcome low utilization in data centers. If these techniques are 

applied, we would be able to optimize a server system for high utilization as well.  

7.4.2 Evaluation Criteria 

At first, our server system model rapidly needs to react on the workload scenarios (category-

specific utilization levels) provided as external stimuli. Secondly, it has to react precisely to the 

characteristic changes that occurred in the internal system-wide optimization engine in our 

simulation. We assume that we can optimize the server system in our step-based analysis, 

evaluate the results, and find the possible impacts of our optimization. In this analysis, we 

answer the following questions: 

 How much can we optimize the energy efficiency by adjusting a more suitable 

configuration or characteristic? 

 How much amount of power consumption404 does an improved server system 

(configuration or characteristic) accomplish regarding a specific workload scenario? 

  

                                                           
403

 Alternative approaches: e.g. virtualization, scheduling, or allocation techniques 
404

 Power consumption: associated to the carbon footprint 
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As a prerequisite, we assume that it is possible to improve the energy efficiency of the server 

system at any point of time. Further prerequisites are that we can evaluate and alternate the 

components as a local solution (step-base) during the simulation. We assume that the 

operating point of a server system is only a local optimization for recent management 

techniques or optimization strategies at the specific time. A pre-assumption of our simulation 

is that the component-based models consider the power and temperatures of our calculation-

based methods, but include the results gained from the Fujitsu-specific performance 

measurements. Our evaluation criteria are the absolute and relative differences between the 

initial server system configuration (SUT) and our optimized configuration concerning the local 

solution and the global optimal solution.  

7.4.3 Experimental Setup 

We specify the general evaluation environment and measurement infrastructure in Sections 

7.1.1, 7.1.2, and 7.1.3. In this section, we exclusively study our system under test405 and specify 

the experimental setup of the energy efficiency analysis. In contrast to Sections 7.2 and 7.3, we 

simulate the entire server system and apply our hierarchical approach in the simulation model. 

Figure 142 presents the corresponding block diagram of the controller layer in which we 

visualize, analyze, evaluate, and optimize the server system.  

 
Figure 142: Controller layer – block diagram considering the entire system model for evaluation purpose 

                                                           
405

 System under test: described in detail in Section 7.1.1 
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We connect the component models in the system model to enable the communication and the 

corresponding effects of the behavior models. Nevertheless, we activate the particular 

calc_category() method within each component model, as described in Section 7.2. We enable 

the system-wide optimization engine because we analyze the results of the entire system 

model to optimize the energy efficiency. We analyze the possible impacts of several 

characteristics on the respective aspects and decide on the suitable alternation strategy. We 

apply our optimization and alternation strategy in the system-wide optimization engine in 

which we adjust and restrict the set of decision variables to reduce the complexity and 

simulation effort, as described in detail in Section 6.3.  

In this evaluation section, we externally generate the stimuli that distribute all component-

specific utilization levels to our system model and its integrated component-based models, as 

shown in Figure 143. Our simulation model reacts to either a steady or continuous workload 

scenario, which together with the ambient temperature is configurable in the graphical user 

interface. We can import the utilization levels of the real-life measurements as an input 

parameter or generate synthetic workload scenarios.  

 
Figure 143: Simulation model – stimuli and server system considering the entire system model 

7.4.4 Results and Analysis 

The foundations of our optimization analysis consists of the total memory, processor, and 

system-specific performance scores that we study while executing the PassMark Memory, 

PassMark CPU, and SPECpower benchmarks. In our simulation model, we create a database to 

specify the particular component-based as well as system-specific performance scores 

concerning their various characteristics and benchmarks. Furthermore, we include the relative 

performance scaling based on our measurements, such as adding an extra processor or 

extending the memory capacity. Appendix A3i provides a brief overview of the performance 

scores and findings related to our system under test. 
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In the following section, we present the potential for improving the energy efficiency of the 

processor, memory, and entire system on the basis of theoretical considerations. We 

especially analyze the performance-to-power ratios in relation to the adjustments of the 

server configuration that we gained while executing diverse benchmarks. Afterwards, we 

exemplarily show the performance-to-power ratios of the system under test 𝜃𝐶  resulting from 

the SPECpower benchmark that we consider as base energy efficiency 𝐸𝐸𝐵𝐴𝑆𝐸 . We present the 

alternative configurations and their corresponding energy efficiency 𝐸𝐸(𝜃𝐶
𝑙 , 𝑈⃗⃗ 𝑡𝑘) resulting 

from our step-based analysis in our optimization. Moreover, we exemplarily describe how we 

observe the local set of solutions (Pareto front) that satisfy the objective functions and 

illustrate the results of our global analysis, specified as post-process, in which we reduce the 

local set of solutions to present the global optimal solution. Finally, we compare the results of 

our optimization strategy concerning the base energy efficiency and energy consumption. 

Memory, Processor, and System Performance-to-Power Ratios 

In parallel to the memory and processor evaluation (7.2 and 7.3), the particular benchmarks 

store the performance score that we consider when we simulate the energy efficiency. Figure 

144 and Figure 145 exemplarily show the performance-to-power ratios (on top of the bars) as 

the results of the PassMark CPU (𝑃𝐶𝑥. 𝑦. 𝑧),  the three bars on the left  and the PassMark 

Memory (𝑃𝑀𝑥. 𝑦. 𝑧) benchmarks  the three bars on the right of the figures. It can be observed 

that if we double the memory capacity in a server system with an exclusive processor (𝑥 = 1), 

either in a single memory module (𝑧̂ = 𝑧 ∗ 2) or as an additional memory module (𝑦̂ = 𝑦 ∗ 2), 

the performance-to-power ratio will approximately increase by [2.0,11.5]% at (𝑃𝐶1. 𝑦. 𝑧) and 

by [52.8,106.9]% at (𝑃𝑀1. 𝑦. 𝑧), see Figure 144. If the system has two processors, the 

performance-to-power ratio of the processor increases at the PassMark CPU benchmark 

(𝑃𝐶2. 𝑦. 𝑧)  by [5.3,24.1]%  when we double the memory capacity. In contrast, the 

performance-to-power ratio of the memory modules decreases by nearly −5.1% when we 

double the memory capacity of the single module, but increases by around 80.1% at the 

PassMark Memory benchmark (𝑃𝑀2. 𝑦. 𝑧) when adding an extra memory module, as shown in 

Figure 145.  
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Figure 144: PassMark CPU (𝑷𝑪𝟏. 𝒚. 𝒛) and PassMark Memory (𝑷𝑴𝟏. 𝒚. 𝒛) performance-to-power ratios 

 
Figure 145: PassMark CPU (𝑷𝑪𝟐. 𝒚. 𝒛) and PassMark Memory (𝑷𝑴𝟐. 𝒚. 𝒛) performance-to-power ratios 

Furthermore, we observe that an additional processor and its related second memory 

module406 have a significant impact of approximately [−50.9,−21.0]% on the performance-

to-power ratio of the memory modules, as shown in the PassMark Memory benchmarks, see 

Figure 146. In contrast, when the server system executes the PassMark CPU (𝑃𝐶𝑥. 𝑦. 𝑧) 

benchmarks in which we provide an additional processor and memory module, we observe 

improvements of the performance-to-power ratios of the processor by approximately 26.4%, 

30.5%, and 40.6%, as shown in Figure 147. 

                                                           
406

 Second memory module: server system settings require a memory module per processor, based 
upon the fact of the regular expansion 
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Figure 146: PassMark Memory performance-to-power ratios(𝒙̂ = 𝒙 ∗ 𝟐) 

 

 
Figure 147: PassMark CPU performance-to-power ratios(𝒙̂ = 𝒙 ∗ 𝟐) 

The authors of [DEP et al. 2009] present the typical performance gains [1.5,1.7] when doubling 

the amount of the processor and the memory capacity of an IBM x3850 M2 server407. The 

theoretical potential improvements of the processor-specific and memory-specific energy 

efficiency lead to the assumption that we can easily improve the energy efficiency of the entire 

system. We investigate and clarify the actual performance-to-power ratios by evaluating our 

real server system.  

  

                                                           
407

 IBM x3850 M2: 
http://www-07.ibm.com/systems/includes/content/x/hardware/enterprise/x3850m2/pdf/xso03033use
n.pdf 
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Server System Optimization 

We exemplarily optimize the energy efficiency of the system under test, as specified in Table 

47, because we can easily compare our simulation results with the measurement-based data. 

In our optimization strategy, we adjust the dynamic characteristics, static characteristics, and 

technical specifications relying upon the actual thermal dissipation and power consumption of 

the single components. The optimized components will probably have a positive effect on the 

total energy efficiency of the entire server system. In the following sections, we concentrate 

on the potential local and global optimal solutions for the energy-efficient server 

configuration, irrespective of the optimization phase408 in which the solutions are found.  

We exemplarily execute the trace of the SPECpower benchmark (𝑆𝑃1.2.8) (gained by the Intel 

Power Thermal Utility) in our simulation considering the component-specific utilization levels 

in the period of 𝑇 = [0,3732]𝑠 presented by their target throughputs of the system between 

[10,100]%, as shown in Figure 148. At first, we check the plausibility of the normalized 

performance-to-power ratios and secondly, we analyze the local and global optimal solutions.  

 

Figure 148: Component-specific utilization level at SPECpower 

  

                                                           
408

 Optimization phase: primary or secondary phase of alternate decision variables 
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The processor-intensive workload (solid blue line) produces up to 70% target throughput the 

significant part of the total power consumption, see Figure 149. The power consumption of the 

others (solid green line) constitutes the motherboard and fans, which we can partly influence 

in our optimization strategy. We neglect the I/O-based power (purple solid line) in the case of 

a processor-bounded or memory-bounded workload, as it has little influence on the entire 

power dissipation and consider them as static power. In contrast, the memory utilization (solid 

red line) highly depends upon the utilization level, but in our example, the memory power is 

the lowest part of the total power consumption. Accordingly, we concentrate upon the 

processor optimization.  

 

Figure 149: Component-specific power consumption at SPECpower 

Our measurements do not consider the performance of the input/output and other 

components. Nevertheless, Figure 150 presents the normalized performance-to-power ratios 

of the processor (solid blue line), the memory (solid red line), and the entire system under test 

𝜃𝐶  (solid magenta line) that we consider as base energy efficiency 𝐸𝐸𝐵𝐴𝑆𝐸  in our optimization 

strategy. We observe that the performance-to-power ratio of the memory modules is nearly 

stable around 0.81 from 100% down to 0%, but increases during the calibration phase from 

1.3 up to 1.5. The performance-to-power ratio of the processor is in linear proportion to the 

processor utilization level. The performance-to-power ratio of the system increases from 1 up 

to 1.4 until the target throughput of 40% and decreases at lower target throughputs.  
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Figure 150: Normalized performance-to-power ratios at SPECpower 

Our aim is a server system optimization regarding energy efficiency (performance-to-power 

ratio) that simultaneously results in the mutually contradicting objectives: minimizing the 

power and maximizing the performance. We exemplarily optimize the processor in the 

simulation in which we execute the step-based analysis at each discrete time 𝑡𝑘 of 𝑇 and 

iterate all possible decision variables to specify various alternative processor configurations. 

Figure 151 shows all alternative processor configurations (many-colored crosses) as the results 

of our step-based energy efficiency analysis in the optimization process considering the entire 

simulation period 𝑇 = [0,3732]𝑠 on the x-axis and the normalized performance-to-power 

ratio 𝐸𝐸(𝜃𝐶
𝑙 , 𝑈⃗⃗ 𝑡𝑘) on the y-axis, which we further analyze in the post-process to find the Pareto 

front. In the figure, we simply identify the gaps of the processor utilization levels around 4% as 

a set of vertically aligned alternative processor configurations in regular intervals containing 

the normalized performance-to-power ratios between 0 and 0.6. We observe that the number 

of alternative processor configurations (many-colored crosses) differ with each time, especially 

when we analyze the period 𝑇 = [0,1400]𝑠. The increasing number of alternative processor 

configurations in the continuous optimization process will increase the simulation time, 

because every alternative processor configuration activates the aspect-based calculation 

methods at each discrete time 𝑡𝑘. 
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Figure 151: Alternative processor configurations (normalized performance-to-power ratio) at SPECpower 
𝑻 = [𝟎, 𝟑𝟕𝟑𝟐]𝒔 

We backwards transform Figure 151 into a representation concerning the normalized power 

and normalized performance. Figure 152 presents the alternative processor configurations 

(many-colored crosses) in a 3-dimensional representation in which the x-axis shows the entire 

period 𝑇 = [0,3732]𝑠, the y-axis specifies the normalized power, and the z-axis defines the 

normalized performance. This figure gives a rough impression of the optimizations’ complexity 

on the basis of the alternative processor configurations (many-colored crosses), respectively 

their numbers. 

 

Figure 152: Alternative processor configurations (normalized power, normalized performance) at SPECpower 
𝑻 = [𝟎, 𝟑𝟕𝟑𝟐]𝒔 
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We simplify the graph of Figure 152 by limiting the period 𝑇 = [0,1400]𝑠 on the x-axis to show 

an easier-to-read representation of the alternative processor configurations resulting from our 

optimization process, which we further store in the ranked lists in descending order. We 

observe in Figure 153 that the number of possible alternative processor configurations (many-

colored crosses) is less when the processor is fully utilized, as shown in the beginning 

𝑇 = [0,876]𝑠 in comparison to the period 𝑇 = [876,1400]𝑠 when the processor utilization 

decreases. The varying number of alternative processor configurations results from the 

optimization and the alternation process considering the weighted dynamic characteristics, 

static characteristics, and technical specifications to fulfill the mutually exclusive objectives, 

such as power and performance conditions at the specific workload.  

 

Figure 153: Alternative processor configurations (normalized power, normalized performance) at SPECpower 
𝑻 = [𝟎, 𝟏𝟒𝟎𝟎]𝒔 

We exemplarily analyze the large number of processor-specific performance-to-power ratios 

(Figure 151) to find the local set of optimal solutions (Pareto front) at each time. The following 

steps pertain to our global analysis, which we separately execute as a post-process of our 

simulation.  

In our example, we present the alternative processor configurations of the optimization 

process at the times 𝑡1 = 395𝑠 , 𝑡2 = 577𝑠 , 𝑡3 = 876𝑠 , 𝑡4 = 1143𝑠 , and 𝑡5 = 1299𝑠  and 

analyze them to check whether we have improved the energy efficiency of the base processor 

configuration 409 . Therefore, we analyze the actual utilization level, the corresponding 

normalized power 
𝑃𝑂𝑐

max (𝑃𝑂𝑐)
, the normalized performance 

𝑃𝐸𝑐

max (𝑃𝐸𝑐)
, and the normalized 

performance-to-power ratio 
𝐺1
𝐶(𝐸𝐸)

max(𝐺1
𝐶(𝐸𝐸))

 of the base processor configuration, as listed in Table 

82.   

                                                           
409

 Base configuration: the initial configuration 𝜃𝐶  specifies the base energy efficiency 𝐸𝐸𝐵𝐴𝑆𝐸  
(normalized performance-to-power ratio) 
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Table 82: Base processor data at system under test (time, utilization level, normalized power, normalized 
performance, and normalized performance-to-power ratio)  

Time 
Utilization 
level [%] 

Normalized 
power 

Normalized 
performance 

Normalized 
performance-
to-power ratio 

𝒕𝟏 = 𝟑𝟗𝟓𝒔 100 1 1 1 
𝒕𝟐 = 𝟓𝟕𝟕𝒔 4 0.356 0.041 0.115 
𝒕𝟑 = 𝟖𝟕𝟔𝒔 97 0.978 0.968 0.989 
𝒕𝟒 = 𝟏𝟏𝟒𝟑𝒔 90 0.935 0.903 0.966 
𝒕𝟓 = 𝟏𝟐𝟗𝟗𝒔 78 0.854 0.782 0.916 

 

In our optimization strategy, we specify the alternative processor configurations that have a 

lower normalized power or a higher normalized performance in comparison to the base 

configuration (without optimization), see Table 82. Figure 154 exemplarily presents the 

alternative processor configurations, marked by the many-colored crosses410 in the subplots at 

the times 𝑡1 = 395𝑠, 𝑡2 = 577𝑠, 𝑡4 = 1143𝑠, and 𝑡5 = 1299𝑠 with the normalized power on 

the x-axis and the normalized performance on the y-axis. In our optimization strategy, we 

analyze all alternative processor configurations at each discrete time 𝑡𝑘 to find a local set of 

solutions (Pareto front) that satisfy the mutually contradicting objectives of the energy 

efficiency. Consequently, in Figure 154 we present the local set of optimal solutions (Pareto 

points) of the processor configurations, which we identify within the post-process, marked 

with red dots411. 

                                                           
410

 Many-colored crosses: alternative processor configurations do not always have the same colors, due 
to the restricted color representation and confusable colors display 
411

 Red dots: specify various alternative processor configurations 
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Figure 154: Exemplary processor optimization (normalized power, normalized performance, Pareto front) at 
SPECpower 𝒕𝟏 = 𝟑𝟗𝟓𝒔, 𝒕𝟐 = 𝟓𝟕𝟕𝒔, 𝒕𝟒 = 𝟏𝟏𝟒𝟑𝒔, 𝒕𝟓 = 𝟏𝟐𝟗𝟗𝒔 

The local set of optimal solutions (represented as red dots) has a higher performance-to-power 

ratio in comparison to the base processor configuration. Figure 155 presents the identical 

simulation results of the alternative processor configurations (many-colored crosses) and the 

local set of optimal solutions (red dots) at the times 𝑡1 = 395𝑠, 𝑡2 = 577𝑠, 𝑡4 = 1143𝑠, and 

𝑡5 = 1299𝑠, presenting the related performance-to-power ratios on the y-axis. The Pareto 

points present the ideal short-term solutions of our optimization process.  
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Figure 155: Exemplary processor optimization (normalized performance-to-power ratio) at SPECpower 
 𝒕𝟏 = 𝟑𝟗𝟓𝒔, 𝒕𝟐 = 𝟓𝟕𝟕𝒔, 𝒕𝟑 = 𝟖𝟕𝟔𝒔, 𝒕𝟒 = 𝟏𝟏𝟒𝟑𝒔, 𝒕𝟓 = 𝟏𝟐𝟗𝟗𝒔 

In the post-process (global analysis), we search the global optimal solution as a long-term 

optimum over the period of time. We consider all local optimal solutions, which involves 108 

unique processor configurations, in our exemplary optimization. The globally optimal solution 

dominates for the longest period of time and represents a rough approximation of an intuitive 

selection, as shown in Table 83. To be more precise, we additionally consider the balance of 

the power and respective energy in the integrand of the time integral that leads to the global 

optimal processor configuration in Table 84. 

Table 83: Intuitive global optimal processor configuration 

Processor Intuitive global optimal configuration 

Family (Series) Intel Xeon E5-2643 v2 (𝐶14) 
Generation Ivy Bridge EP (Romley) 
Frequency 3.5GHz 
Hyper-threading / turbo Enabled / enabled 
Enabled 6 cores, 2 chips 
Hardware threads 12 (2 / core) 
L1 Cache 8x32KB instruction caches, 8x32KB data caches 
L2 Cache 6x256KB 
L3 Cache 25600KB 
Thermal design power (TDP) 130W 
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Table 84: Global optimal processor configuration considering the power and respective energy 

Processor Global optimal configuration considering the 
power and respective energy at the time 

Family (Series) Intel Xeon E5-2603 v2 (𝐶10) 
Generation Ivy Bridge EP (Romley) 
Frequency 1.80GHz 
Hyper-threading / turbo Enabled / enabled 
Enabled 4 cores, 2 chip 
Hardware threads 4 (2 / core) 
L1 Cache 8x32KB instruction caches, 8x32KB data caches 
L2 Cache 4x256KB 
L3 Cache 10280KB 
Thermal design power (TDP) 80W 

 

Table 85: Global optimal processor configuration concerning the performance-to-power ratio 

Processor Global optimal configuration concerning the 
performance-to-power ratio 

Family (Series) Intel Xeon E5-2637 v2 (𝐶15) 
Generation Ivy Bridge EP (Romley) 
Frequency 3.5GHz 
Hyper-threading / turbo Enabled / enabled 
Enabled 4 cores, 2 chips 
Hardware threads 8 (2 / core) 
L1 Cache 8x32KB instruction caches, 8x32KB data caches 
L2 Cache 4x256KB 
L3 Cache 15360KB 
Thermal design power (TDP) 130W 

 

The top graph in Figure 156 exemplary presents the trace of the processor-specific utilization 

levels (by the Intel Power Thermal Utility) that we gained in the SPECpower benchmark, in 

which we consider the same intervals marked by the vertical solid lines and horizontal axes 

(target throughput) as in Figure 150. In the middle of the graph, we present the simulated 

power consumptions [𝑊] of the base configuration (solid blue line), and the globally optimal 

processor described in Table 84 (dashed-dotted red line). The lower graph of the figure 

presents the relative power optimization of the processor as a purple solid line. We observe 

the highest relative power optimization of approximately 85.2% when we fully utilize the 

processor. The exemplary presented processor configuration provides the most energy 

reduction in the range of [13.8,85.2]%, which is in a mean of 53.3%. In contrast, the intuitive 

global optimal solution reduces the power only by a mean value of nearly 5.2%. 
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Figure 156: Relative power optimization of the processor (Table 84) 

Finally, we compare the results of our optimization strategy concerning the base energy 

efficiency. In Figure 157, we concentrate on the normalized performance-to-power ratio of the 

base processor configuration (solid blue line), as shown in the middle of the graph. We observe 

an increasing relative optimization of the processor (Table 85) concerning the performance-to-

power ratio, presented as a purple solid line in the lower graph. In our example, the globally 

optimal solution has a higher impact on the lower utilization levels in comparison to the higher 

utilization levels. We observe the relative optimization in the range of [±0,88.2]%, which is in 

a mean of 12.2%. Our relative improvement of the performance-to-power ratio is higher than 

the improvements gained by an additional memory module or doubled memory capacity in a 

single processor configuration (11.5% 𝑎𝑡 𝑃𝐶1. 𝑦. 𝑧)  while executing a processor-bounded 

workload. Our optimization process neglects an extra processor in the local set of solutions, 

which may improve the performance-to-power ratio of nearly 40.6%, but the additional 

processor consumes more energy over time and is not part of the Pareto points. 
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Figure 157: Relative optimization of the performance-to-power ratio – processor (Table 85) 

Finally, we observe an absolute mean power reduction of approximately 17𝑊 considering the 

entire server system.  

7.5 Summary 
To evaluate our multi-aspect full-system server model, we present a series of experimental 

analyses, specifically: Accuracy Analysis, Impact on Characteristics Changes, and Energy 

Efficiency Analysis. We develop a prototypical simulation model, which is actually limited to 

the server-specific generations of the Intel Xeon processors - primarily, Sandy Bridge, Ivy 

Bridge, and Haswell - to limit the model complexity. In our simulation, we consider a mean 

usage of the subsystems and components specified as category-specific utilization levels to 

guarantee the compatibility with commercial tools offering predefined workload scenarios. We 

exemplarily analyze and optimize our system under test (SUT), which is a rack-based server 

system from Fujitsu Technology Solutions GmbH. We evaluate only system-compatible 

components, especially those we can equip in our PRIMERGY RX200S8 server, such as the 

processor of the Intel Xeon E5-26xx family and 12 different memory modules with various 

characteristics. 

We verify and evaluate the concepts’ operating principles that in generally react on 

heterogeneous workload scenarios, such as customer-specific application software. We define 

simple component models as separate aspect-based calculation methods, considering the 

category-specific utilization levels, and show that our abstraction level of the server system as 

well as its components are sufficiently accurate to calculate the power and temperature. Our 

simulation model (a hierarchical approach) handles various abstraction levels considering low-
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level observations, component states or black-box descriptions where we predict the behavior 

of future components by assuming spreadsheets, for instance. Therefore, we support the 

scalability and adaptability of the hardware and software characterization, such as diverse 

component types, quantities, or settings. We analyze the impacts on particular category-based 

and aspect-based changes considering the adjustments of the technical specification 𝐶𝐻𝑇𝑆, 

static characteristic 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , or dynamic characteristics 𝐶𝐻𝐶𝐹𝐺

𝐷𝑌  in a wide range of hetero-

geneous workload scenarios. In fact, we identify that the memory-specific read-to-write ratio 

has a significant impact on the power simulation, which can reduce the over-estimation of the 

memory power consumption. We observe the highest memory power at the processor-

intensive workloads and particularly consider the memory’s interaction by the read-to-write 

ratio in the certain workload scenarios. The mean accuracy of the memory current and 

obtained power consumptions are in a range of [+2.1,+14.02]%. We specify the processor 

on a high hierarchy level considering the entire utilization levels and processor characteristics 

in contrast to the approaches in which the processor is specified by the instruction sets, 

particular operation traces, or activities on a cycle-by-cycle basis. We linearly define the 

processor power in relation to the certain p-state (voltage-frequency pair), which becomes 

non-linear for processors with more than approximately 15 p-states. We demonstrate that the 

thread-specific utilization levels and frequencies of the processor (Intel Xeon architecture) do 

not improve the accuracy of the processor power consumption. In the case of the processors, 

we achieve the mean power accuracy of approximately 10%, which is sufficiently precise in 

comparison to related scientific approaches. The power consumption builds the base of the 

temperature simulation, which we differentiate into a steady and a dynamic phase. We neglect 

short-term peaks (less than one second) of the power consumption, which have no impact on 

the memory and processor temperature, because of the thermal inertia. We identify a nearly 

linear relation between the power consumption and the thermal development, which depends 

upon the respective component characteristics. In our simulation, we overestimate the 

memory temperatures in the range between [±0,+10]%, but being more accurate when the 

memory capacity increases. We demonstrate that our processor temperature calculation is 

reliable and adequate by the mean accuracy of [−1.81,+10.44]%. The authors of [MAC et al. 

2011] state that the components’ variability, such as between two processors, is 

approximately 11%, which may affect our accuracy. In general, our evaluations show that our 

simulation model is sufficiently precise (less than +10% mean accuracy) when we consider the 

relevant static and dynamic characteristics of the components at a high level of abstraction. 

Our accurate and exact component-based models improve the power and thermal calculation 

of the commercial tools (vendor-based approaches) that consequently avoid over-provisioning 

when sizing the power supply unit. As a result, we close the gap between the worst-case 

nameplate values towards more realistic power consumption, as intended in [BBJ et al. 2009]. 

We simulate authentic workload scenarios instead of worst-case scenarios that reduce the 

over-estimation of the worst-case power, e.g. the peak power at the full utilization level, and 

decrease the power gap at lower utilization levels when we compare our simulation results to 
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spreadsheets. We improve the estimation process, especially at lower utilization levels, so that 

we can define the power consumption in an early design phase more precisely. Additionally, 

we reduce the measurement effort of actual server systems because we trust in the accuracy 

and precision of our simulation model, which flexibly react upon the characteristic changes of 

the components and the particular component series. We consider the vendor experiences, 

generic findings, spreadsheets, heuristics, and statistics, such as the impacts of the technology 

designs, generations, or families in which we assume a continuous development of the 

components that enables our simulation model to predict future and uncertain components. 

Moreover, we change the component characteristics to support different product life cycle 

stages and predict the future behavior of the next-generation components. 

After verifying and evaluating the basic operating principles on the basis of the isolated 

components, we simulate the entire server system and analyze the energy efficiency in which 

we adjust the technical specifications 𝐶𝐻𝑇𝑆, static characteristics 𝐶𝐻𝐶𝐹𝐺
𝑆𝑇 , or dynamic chara-

cteristics 𝐶𝐻𝐶𝐹𝐺
𝐷𝑌  as part of the decision variables in our optimization strategy. Therefore, we 

define a complete server system model that integrates the isolated component models and 

specifies the communication and interaction between the components that result in the non-

linear behavior. Furthermore, we take the thermal control of the complete server system into 

account. We combine the thermal, power, and performance views of the various components 

and transform them towards the entire server system. We optimize the server system on the 

basis of the thermal dissipation and power consumption, as described in Section 5.4.2.1. 

We optimize the server system for low utilization because the average server utilization is less 

than ten percent and always lower than 50 percent in a data center [KFK 2008]. Moreover, a 

global optimal server configuration saves total costs because of the reduced energy 

consumption. In our optimization strategy we exemplarily achieve the mean processor power 

reduction of approximately 53.3%. The power optimization has the highest impact at the full 

utilization levels, but behaves strictly opposite concerning the performance-to-power ratio. 

Nevertheless, we observe a mean optimization of the performance-to-power ratio by nearly 

12.2%. 
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8 Conclusion and Future Work 

Power and cooling are the key challenges to reducing the greenhouse-gas emissions of server-

based computing environments. In this thesis, we present a novel multi-aspect full-system 

model that simulates and optimizes a wide range of server systems in contrast to traditional 

full-system simulators. To our knowledge, in academic research, there are no generic 

approaches that cover the full server system simulation on a common base. In our proposed 

prototypical implementation in MATLAB/Simulink, we explicitly cover the heterogeneous 

characteristics of the hardware and software variations. 

8.1 Summary 
We develop a hierarchical and abstract approach that provides the opportunity to define the 

system from upper to lower abstraction levels. We specify a generic, flexible, and scalable 

configuration tree as a static part of our concept that defines the actual physical customer-

specific system configuration from the structural perspective. Herein, we define the 

encapsulated layers: configuration, logical and physical, and process and control, which we 

define separately from each other, allowing to support independent descriptions of the diverse 

domain-specific characteristics. We abstract the server system complexity and include the 

configuration adaptability to support architectural and structural changes at the physical 

domain. Our decoupled and hierarchical concept provides the availability to add new 

components at various abstraction levels.  

In the configuration layer, we specify the architecture, design, and structure of the entire 

server system to support multiple server generations. We do not merely consider the actual 

configuration, but also take the maximal amount of possible mountable system-board 

components into account. We specify the five major categories – processor, memory, 

input/output, fan, and others – in the generic, but static configuration tree. Moreover, we 

model and characterize each component of the server system primarily in the physical domain, 

using a mix of commercial and academic algorithms in the configuration layer.  

We define the mathematical methods to calculate the multi-aspects of each component 

considering the static configuration tree, which we further define by their technical 

specification and their respective characteristics. Accordingly, the logical and physical layer 

builds the base of our simulation-based model, in which we specify the component-based 

power, thermal, and performance models as a set of utilization-based functions describing the 

non-linear behavior. We propose a flexible category-specific classification and generic 

characterization approach to support their corresponding calculation-based methods. In 

general, we consider the relevant aspect-based characteristics of the components concerning 

their explicit category within the configuration tree and apply a weight coefficient to 

distinguish their particular significance of the certain aspects. 
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In Section 7.2, we demonstrate the precise accuracy of our power and thermal calculation 

concerning the memory modules and processors. In our approach, we group the memory 

states and abstract the explicit memory accesses to reduce complexity. We exclusively 

consider the utilization levels instead and found that a precise simulation requires additional 

data about the memory instructions because the measured power values differ in relation to 

the benchmark when tracing the same utilization level. As a result, we define the read-to-write 

ratio of the memory modules to compensate concrete accesses and always estimate them in 

the category-bounded workload scenario based on empirical studies by a statistical 

approximation. The precise power consumption builds the base of the temperature simulation, 

which we differentiate into a steady state, an increasing, and a decreasing temperature 

development. We neglect short-term peaks (less than one second) of the power consumption, 

which have no impact on the memory and processor temperature because of the thermal 

inertia. We demonstrate that our simple state-based memory model sufficiently accurately 

calculates the power and temperature, which can reduce the over-estimation. We do not 

require fine granular low-level data, such as instructions, which reduces the estimation effort 

of the memory modules. Moreover, we demonstrate sufficiently precise results of our 

decoupled processor models concerning the Intel Xeon architecture, in which we neglect the 

thread-specific utilization levels and frequencies. We precisely simulate the processor power 

and temperature, which are only based upon the utilization levels. In our processor models, 

we consider the mean usage of the integrated subsystems in which we neglect the specific 

operations and the fan-based cooling effect. Our accurate and exact power calculation reduces 

the over-provisioning of the server system, particularly in industrial practice and, in 

consequence, optimizes the PSU (power supply unit) sizing.  

In Section 7.3, we demonstrate that a sufficiently precise power simulation requires static as 

well as dynamic characteristics. We present that our approach is sufficiently scalable and 

sensitive about varying the compatible subset of the possible components concerning the 

category-based and aspect-based characterization to cover a variety of server systems. We 

concentrate upon the power-specific calculation methods because the power consumptions of 

the various components are accessible everywhere and available to anyone. In contrast to 

common assumptions, we found the following relevant characteristics of the memory-based 

calculation methods: vendor, die, series, fabrication size, synchronization mode, and ranks. We 

consider the single characteristic changes in our power calculation, but in the majority of the 

cases, the characteristics influence each other and cannot be calculated separately. Thus, we 

define a system of linear equations in a matrix to specify the interdependencies of the 

technology-based characteristics, such as capacity, density, rank, and rank linking. We simulate 

equivalent results concerning precision and accuracy in comparison to academic approaches. 

In addition, our simulation-based results of the E5-2600v2 product family are reliable and 

adequate. We observe the processor-specific characteristics: semiconductor technology 

(thermal design power), product life cycle stage, fabrication size, and series, which have a 

significant impact on our calculation-based methods. In our approach, the processor power is 
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linear to the certain p-state (voltage-frequency pair), and we assume that the processor 

frequencies rely upon the utilization level. We define a non-linear power method when the 

amount of processor-specific p-states is bigger than 15. In fact, the amount of processor cores 

and the cache sizes are additional relevant characteristics of processor power calculation.  

Our simulation-based model flexibly reacts upon the characteristic changes of the 

components, which finally reduces the measurement effort of the particular component 

series. We demonstrate that we can forecast future generations of high-performance systems 

and components by assuming the predecessor or a similar generation that follows the same 

trend as the components before. We demonstrate that our model is universally applicable on 

next-generation and uncertain components. Our concept supports the virtual prototype of a 

component or server system, which is a benefit in the early design stage and a unique selling 

proposition of our thesis.  

After separately defining each calculation-based method and their corresponding 

characteristics, we specify the relations between the aspects of a single component as a 

dynamic behavioral description characterized by findings of a real-life system and its 

respective hardware. Furthermore, we define the component-specific relations of the entire 

system behavior in MATLAB, because a component can influence the behavior of another 

component. We consider the interdependencies between the components, which results in 

more realistic power and temperature calculation. The process and control layer includes the 

dynamic system behavior, such as the inter- and intra-component communication 

(interactions) between the components, which we implement in Simulink considering the 

connectors and the architectural description of the configuration layer. The description of the 

dynamic behavior enables restriction on the actual performance when the resources are 

limited or we exceed the critical temperatures.  

Our generic simulation-based model is based upon the operational models described in the 

encapsulated configuration, logical and physical, and process and control layers. Herein, we 

support the variance of server systems and components because of the flexible category-

specific configuration and characterization that we consider as a centralized database. We 

provide access to individually server system configuration within the database to enable the 

use of our models across multiple families and generations. Our simulation-based model offers 

the opportunity to use white-box, gray-box, and black-box approaches from upper to lower 

abstraction levels, because of the component-based encapsulation and different levels of 

abstractions in the hierarchical configuration tree. In contrast to academic approaches, we 

concentrate upon an exact server system configuration within one simulation run, but do not 

dedicate the model to an explicit server system or particular workload scenario. We describe 

the external environment and constraints, such as the ambient temperature or thermal limits, 

and integrate the hardware-based offline settings, such as the BIOS/UEFI configuration, which 

we consider in our calculation methods. We abstract the software dependencies, such as the 

specific operating system, but consider the corresponding weight coefficients instead. The 
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customer may vary the external and internal data from a lower level to an upper level of the 

abstracted server system to specify the component and system behavior. This avoids extra 

measurements for a new configuration or other environmental conditions. 

We abstract low-level data, such as instructions, and ignore the particular hardware-specific 

events, e.g. performance counters that certainly rely upon the exact architecture. Beneficially, 

our model is independent of the architecture and generation; because of the abstraction, we 

reduce the model complexity. For the purposes of the multi-aspect server simulation, we 

transform the steady workload to continuous values to optimize the energy efficiency in the 

long-term. Our flexible concept allows the definition of the customer-specific and realistic 

workload scenarios based upon the category-specific utilization levels, which specifies the 

time-continuous and value-continuous stimuli for the simulation. We predefine particular 

utilization levels in various workload scenarios to be compatible with the commercial tools 

that under-utilizes all components or define a worst-case workload scenario that fully utilizes 

all categories, for instance. Herein, we differentiate into category-bounded (processor-

bounded, memory-bounded, or input/output-bounded) workload scenario that preliminarily 

sets the focus on what to concentrate on the server system optimization.  

We distinguish our optimization strategy into the cascading primary and secondary phases, 

which we differentiate into the short-term and long-term strategies. We specify the primary 

phase as online because we consider the short-term modifications when the server system is 

working, and we guarantee that our variations do not have any negative impact on the system 

or component’s performance. We adjust the dynamic characteristics considering the thermal-

based and power-based management techniques. We consider the common approaches, such 

as the dynamic voltage frequency scaling (DVFS) and the dynamic thermal management 

(DTM), to represent the short-term behavior (dynamic characteristics). We specify the 

cascading primary (online) and secondary (offline) phases to alter the relevant characteristics 

and configurations. We control the internal system temperature considering the ambient 

temperature in the dynamic thermal management and vary the dynamic component 

characteristics considering the short-term strategies. The abstract configuration changes of the 

static characteristics and technical specification is our secondary optimization strategy. When 

the server system executes a workload for hours or days, the short-term management 

techniques are insignificant. As a contrast to the online phase, we specify the secondary phase, 

which is an offline optimization, whereby the changes have indirect influences on the primary 

phase in which we adjust the static characteristics or technical specifications. We concentrate 

upon the power optimization considering uncommon-case working conditions, such as low-

intensive utilization levels, which academic approaches neglect. The thermal control 

autonomously reacts upon an increasing temperature, which exceeds a predefined threshold 

and raises the cooling airflow according to the fully functional level of the server system. We 

control the system and component temperatures within the reliability and functional level by 

enabling the dynamic thermal management techniques. We reduce the average and peak 
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power of the components by their dynamic characteristics under the condition that the 

performance is not affected as autonomously done by every ACPI-based operating system, 

which optimize the worst-case power consumption in a time horizon of seconds or minutes. 

We consider the global system thermal management and the local power management 

technique at the same time, whereby the fraction of the fan power is less in comparison to the 

component power. We separately optimize each component, but are aware of the negative 

impacts on the global system. The most adjustments in the secondary phase are applicable 

when the system is off and we concentrate upon the long-term strategies to optimize the 

server system in the early design phase, for instance. We disable the hardware-based features 

that do not result in performance loss, such as the processor virtualization before the system 

starts. We adjust the BIOS/UEFI characteristics that are significant to the server system energy 

efficiency ratio, but constant over hours or days, particularly in a data center. We support the 

flexible adjustment of the hardware configurations, especially their static characteristics.  

In our concept, we optimize a server system at each time step when the utilization levels 

change. We analyze the actual results and decide on the adequate management technique in 

the optimization strategy, according to the two optimization phases. We analyze the impact of 

our changes concerning the energy-to-performance ratio in comparison to the base energy 

efficiency of the initial server configuration. The adjustments of the server configuration and 

characterization require an additional calculation, which results in an iterative approach. 

We alter the decision variables on the basis of the cascading phases of the optimization 

strategy to provide the most probable presentation of the running server system, while 

adjusting all dynamic characteristics. We optimize the server system in the secondary phase, 

assuming the changes in the primary phase, wherein we modify the static characteristics, 

which require a repetition of the adjustments concerning the dynamic characteristics. We have 

to consider any characteristics and configurations in the entire design space, whereby we 

explore single decision variables or multiple combinations. We optimize the technical 

specification, which requires the alternation of the dynamic and static characteristics. In 

principle, we consider the hierarchical order of our configuration tree and use a bottom-up 

strategy to alter the decision variables beginning with the dynamic characteristics up to the 

static configuration. We restrict the design space of each category on the basis of the impacts 

on the dynamic characteristics, static characteristics, or technical specification. Accordingly, we 

dynamically annotate the classes and characteristics of the tree in relation to the actual 

management technique on the basis of the aspect. The abort criteria restrict the design space, 

and in consequence, we do not consider all characteristics in the configuration tree. We 

compare the energy efficiency ratios and assume that the usefulness of our adjustments are 

represented by a scalar value of each aspect and finally in the energy efficiency ratio.  
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The multi-objective optimization provides a ranked list in descending order that specifies the 

set of optimal solutions when the present energy efficiency is better than the base energy 

efficiency. We select the globally optimized server configuration and characteristic that 

dominates for the longest period of time; but to be more precise, we optimize the balance of 

the power and respective energy in the integrand of the minimized time integral. 

In Section 7.4, we demonstrate the possible improvements that result upon the server system 

optimization. Moreover, the simulation optimizes the energy efficiency of the server system at 

various utilization levels, especially at low-intensity phases (under-utilization). We 

demonstrate that we improve the energy efficiency when we optimize the components 

concerning the specific demand and avoid under-utilized components to improve the non-

peak efficiency considering the low-intensive workloads. 

Our flexible simulation model can reduce the measurement effort because the model may vary 

the server configuration in a short time and can simulate the entire system, including a wide 

range of spreadsheet data, observations, statistical results, or customer-specific intellectual 

properties.  

We present the plausibility of our component-based models on the basis of the sufficiently 

accurate power and thermal results. We demonstrate that our abstract simulation model 

provides the entire system complexity and at the same time is simple enough to cover the 

system behavior considering the most important characteristics and configuration. 

We demonstrate the feasibility and advantages of our concept through our prototype 

implementation, in which we empirically validate our server system using a variety of artificial 

workloads to ensure the reproducibility at any time. We address the significant static as well as 

dynamic characteristics and configurations of the precise calculation of the aspects.  

Our simulation results are more accurate in comparison to the results gained from commercial 

tools. We reduce the over-estimation of the worst-case power, e.g. the peak power at the full 

utilization level, and decrease the power gap at lower utilization levels when we compare our 

simulation results to spreadsheets, and we can easily reduce the power gap of the 

measurement-based approaches. We improve the estimating process so that we can define 

the power consumption in an early design phase more precisely, which may improve the 

power estimation in industrial practice.  
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8.2 Future Work 
We present our multi-aspect full-system server model and optimization concept as a 

simulation-based approach. However, we make several assumptions and limitations in this 

thesis. In the following section, we present a couple of possible improvements concerning our 

proposed simulation-based model and discuss some recommendations for future research.  

The first limitation in our simulation model is that we neglect the component thermal control, 

either as an automated mechanism to cool down the explicit device internally or as a server-

specific technology to cool down the components externally. The fan settings are vendor-

specific and are impossible to be changed for a customer-specific thermal control. The 

customer cannot directly influence the server’s noise, airflow, or temperature behavior. 

Improvements could be made to the temperature accuracy of the entire system when we 

consider the intra- and inter-component airflow and observe the mutual influence of the heat 

dissipation. Additional studies could assess the integration of the computational fluid dynamics 

within a server system to plan the ventilation and define the critical thresholds as part of the 

thermal control. In our prototype implementation, we consider the linear fan algorithm that 

does not require a continuous control process to a target temperature. Future research could 

also concentrate on the extension of the thermal control, such as studying a closed-loop 

(proportional integral derivative – PID) mechanism that might save additional energy. The 

power and thermal management techniques may act differently in certain circumstances in 

comparison to the common usage and behavior, which result in future research.  

Furthermore, the second limitation is that we restrict the hardware configuration towards the 

rack-based and tower-based server systems because we want to reduce the degree of freedom 

concerning our simulation model. An improvement could be made to support a blade chassis, 

because blade servers have been ignored so far. In any case, supporting a blade server will 

increase the adjustment effort to model a server system because we have to consider the 

specific slots to mount several devices of the prewired chassis and shared components. The 

actual model assumes only the use of system-board components. Therefore, further study 

could focus on the optional (add-in) and on-board components. Another limitation of our 

simulation-based approach is that we define the input/output and other resources as static 

models assuming empirical measurements. Additional improvements could be made to the 

simulation when modeling the dynamic behavior of the input/output and others components. 

Our simulation model is actually limited to the server-specific generations of the Intel Xeon 

processors, especially Sandy Bridge, Ivy Bridge, and Haswell, because the experimental results 

of Fujitsu are not accessible to the public and are restricted to these generations. In particular, 

we concentrate on the processors of the E5-2600v2 product family. An extra study could 

evaluate other processor generations and series.  
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In general, we need to extend the component models for the next generations and require 

future research that concentrates on updating the dependencies and related weight 

coefficients. We recommend further investigations on next-generation components and server 

systems to specify the generation-specific static and dynamic characteristics.  

Another assumption is that we consider a continuous development of the system and 

components, which may cause wrong expectations of the applicability of our model 

concerning next-generations. In our approach, we consider the vendor experiences, 

spreadsheets, heuristics, and statistics to estimate the future systems, assuming the earlier 

observations at every product phase. The qualities of the generic findings, e.g. the defined 

weight coefficients based on the real-life measurements, highly influence the calculation 

methods. We assume that our weight coefficients can become more accurate, which requires 

further studies.  

Another assumption is related to the system model because we manually predefine the server 

system architecture, communication, and connectors. Additional improvements could be 

made to the automated definition on the basis of the system specification. Moreover, we 

assume that the updated behavioral description that relies on the static and dynamic 

characteristics has a high potential for improvements. Another study could investigate on 

dynamically adjusting the settings of the class-specific characteristics of our configuration tree 

during the simulation. The actual hierarchical model abstracts the irrelevant features, e.g. the 

features that are specific to a single server system, because of their little effect on energy 

efficiency. Further improvements could be made to the accuracy of our calculation-based 

methods or possible characteristic changes in our optimization strategy. We assume that 

creating rough models considering the technical specification can be as adequate as highly 

detailed models, which, in consequence, creates less computational effort. 

Further research could also concentrate on a more granular component model, which might 

have a positive impact on the accuracy of our power and temperature calculation. In our 

simulation model, we restrict the performance models by considering the performance scores 

that rely upon the real-life measurements. We need further investigation on the performance 

scores concerning the impact of category-based and aspect-based changes of the 

characteristics and configurations to calculate the performance explicitly.  

This thesis presents a variety of artificial workload scenarios to ensure the reproducibility at 

any time. We evaluate benchmarks considering synthetic workloads to test real-world systems 

or discrete system components in a specified and repeatable manner under defined 

circumstances. Future research could also concentrate on evaluating customer-specific, real-

life utilization traces and input/output-bounded workload scenarios. Additional improvements 

could be made to the dynamical changing of the component-specific utilization levels at 

simulation time, defined by the customer. Another limitation is the actual restriction of the 

utilization-based scenarios and models. A further study assesses the extension of our workload 
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scenarios concerning the explicit low-level data. Thus, we need detailed design data, such as 

the architecture, structure, transitions, execution units, registers, or an activity at the circuit 

level in the physical system domain to define the physical and logical models as a white-box 

approach that suitably reacts to the detailed low-level data and considers the internal data 

flow. We assume that the extra information increases the model complexity that further result 

in higher simulation time. In general, the explicit workload scenario is a continuous stimulus of 

our simulation-based model, in which we calculate the corresponding power independently of 

the operating system. A further study could explore the usefulness of including the OS-specific 

timings or scheduling.  

In the interests of simplicity, we follow a purely greedy approach in our optimization strategy, 

which is a further limitation. We may escape from local minima of the greedy approach when 

we use a metaheuristic algorithm. In our simulation framework to reduce the risk of a local 

minimum, we do not specify an explicit algorithm. Future research could concentrate on 

analyzing the acceptable probability to seek a global optimum and specifying the best iterative 

approach, such as Kernighan-Lin, Simulated Annealing (SA), Evolutionary Algorithms (EA), or 

Genetic Algorithms (GA). We could not integrate the cascading phases of the short-term and 

long-term optimization into a real server system, because we have to disable a couple of 

features and change the firmware, which may result in an unstable server system. The internal 

system sensors limit the execution of our concept because of their latency and bus bandwidth. 

In addition, the embedded controller that stores the firmware does not provide sufficient 

performance and storage capacity to execute our algorithm. Future research could assess the 

possibility of integrating our algorithm. Another limitation of our optimization is that we 

restrict the alternation of all characteristics and configurations in the entire design space, 

exploring only single decision variables or certain combinations, because the process is too 

expensive in terms of simulation time and performance requirements. Hence, we do not 

completely traverse the configuration tree considering all possible characteristics and 

configurations. Additional improvements could be made to the selection of adequate 

heuristics in the alternation strategy, which avoids the disproportionate increase in the 

alternation complexity (design space reduction) and provides flexible abort criteria to reduce 

the corresponding simulation time. We specify the knowledge-based and vendor-specific 

alternation rules that exclude irrelevant adjustments, such as insignificant modifications, and 

define a preference of the decision variables to reduce the optimization effort. We assume 

further research on adequately adjusting the alternation rules of next-generation systems and 

components.  

Another limitation is that we implement the post-process as an offline optimization and decide 

on a global optimal solution after simulating the server system, because we cannot adequately 

store the set of local optimal solutions in Simulink. Therefore, we save the temporary results 

during the simulation and analyze them afterwards. How to solve the problem is a further 

analysis question.   



Nomenclature 

 

 

 
I 

 

A1. Nomenclature 

Table 86: Nomenclature A1.1 

Nomenclature Meaning  Nomenclature Meaning 

𝑨, 𝑨𝒋 Aspect 𝑗 𝒊, 𝒋, 𝒏,𝒎, 𝒌 Index  

𝑪, 𝑪𝒊 Component 𝑖 𝑵𝟎 Any natural number 
𝑁0 = {0,1,2,3,… } 

𝑪𝑺, 𝒄𝒔𝒊 System-board 
category 𝑖  
(  ≡ components) 

ℝ Any positive real number 

𝑪𝑳,𝑪𝑳𝒊 Classes 𝑖 𝜶, 𝜶̂ Environment conditions 
𝑪𝑯,𝑪𝑯𝒊 Characteristic 𝑖 𝜷, 𝜷̂ Characteristics 

𝑬𝑿 Externals 𝜸, 𝜸̂ Management techniques 
𝑺𝒀 System 

characterization, 
model 

𝜹, 𝜹̂ Communication 

𝑭𝑺 Full-system 
simulation and 
optimization 

𝜺 Simulation results 

𝑴𝑺𝒀
𝑬𝑿 Mapping between 

externals and system 
𝜼 External constraints 

𝑺𝑾 Application software 𝝊 Internal constraints 
𝑺𝑯 Hardware 𝝌 Simulation constraints 
𝑯𝑪 Components 𝝃 Software settings 
𝑪𝑨 Add-in components 𝝈 Abort criterion 
𝑪𝑶 On-board 

components 
𝒗𝒏, 
𝒗𝟎 

Vertex 𝑛 
Root vertex 

𝑯𝑶 Connectors 𝒆 Edge 
𝑯𝑷 Power supply 𝒑𝒓𝒐𝒄 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 
𝑰𝑵 Input  𝒎𝒆𝒎 𝑀𝑒𝑚𝑜𝑟𝑦 
𝑷𝑨 Parameter  𝒊𝒐 𝐼𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡 
𝑶𝑼𝑻 Output  𝒐𝒕𝒉 𝑂𝑡ℎ𝑒𝑟𝑠 
𝑺𝑻𝒔 Static characteristics  𝑳𝟏 First level of a certain tree 
𝑫𝒀𝒔 Dynamic behavior of 

the system 
(characteristics) 

 𝑷𝒊𝒅 Power consumption of 𝑖𝑑 
𝑖𝑑 ={processor, OS, 
dynamic, static, state, 
cache, transition, core, 
leakage, server} 

𝑬𝑬, 𝑬𝑬𝑩𝑨𝑺𝑬 Energy efficiency  𝒕𝒊𝒋 Transition from 𝑖 to 𝑗 

𝑷𝑶 Power  𝑺𝒊 State 𝑖 
𝑷𝑬 Performance  𝑲𝒊 Coefficient 𝑖 
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Table 87: Nomenclature A1.2 

Nomenclature Meaning  Nomenclature Meaning 

𝑻𝑯 Thermal 𝒇𝒎𝒊𝒏, 𝒇𝒎𝒂𝒙 Minimal and maximal 
frequency 

𝑨𝑪 Architecture 𝑻𝒄𝒂𝒔𝒆 Processor case 
temperature 

𝑪𝑪 Connectors 𝒘𝒊𝒍 
𝑾,𝑾𝑻𝒖 

Workload for component 
𝑚 at a time 𝑡𝑘 

𝑴𝑨𝑺𝑪 Aspect-based models 
per component 

𝑾𝑷𝒌 Workload profile 𝑘 

𝑨𝒋𝑪𝒊
 Element in matrix 

𝑀𝐴𝑆𝐶  
𝑻 
𝑻𝒔, 𝑻𝒖 , 𝑻𝒘 

Time period 
simulation, utilization, 
workload 

𝑭𝑨𝒋𝑪𝒊
 Functional 

description of 𝐴𝑗𝐶𝑖
 

𝒕𝒌 Time step 𝑘 

𝑭(𝒙) Objective functions 
with decision 
variables x 

∆𝑻𝑭 Time amplifier for 
workload 

𝒙, 𝒙̌ Decision variables ∆𝑻, ∆𝑻′ Time resolution 

𝑮(𝒙), 𝑮𝟏
𝑪(𝒙) Constraints of 𝐹(𝑥) 𝑷𝒎,  𝑷𝒊, 𝑷𝒄, 𝑷𝒖 Performance counters of 

memory bus transactions, 
instructions, clock cycles, 
last-level cache references 
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Table 88: Nomenclature A1.3 

Nomenclature Meaning  Nomenclature Meaning 

𝑨𝑿,𝑨𝒀 Aspect-based models 𝒖⃗⃗ 𝒎 = 𝒖𝑪𝑺𝒊  

𝒖⃗⃗ 𝒕𝒌  

Utilization level of 
component category 𝑚 
time step 𝑡𝑘 

𝑹𝑨, 𝑹𝑨𝑪 Aspect-based 
relations 

𝜽 
𝜽𝑹, 𝜽𝑪, 𝜽𝑺 
𝜽𝑻𝑺, 𝜽𝑪𝑺 

Configuration tree  
(HW, SW) 
released, customer, 
system-compatible 
technical specification, 
characteristics 

𝑹𝑨𝒋
 
𝒕𝒌

𝒕𝒌+𝟏  Impact of 𝐴𝑗 at time 

step 𝑡𝑘+1 
𝜽𝑪
𝒍 , 𝜽𝒌

 
𝑪
𝒍  

𝜽𝑪
𝒍 (𝒙) 

Customer-specific 
configuration at iteration 
𝑙, time step 𝑘, and 
decision variable 𝑥 

𝑩𝑬𝑪, 𝑩𝑬𝑪𝒊
𝑨𝒋 Component 

behavioral model 
𝑾𝑭𝑨𝒋𝑪𝒊

𝑪𝑯𝒌 Weighting factor 
component 𝑖, aspect 𝑗, 
and their characteristics 
𝐶𝐻𝑘 

𝑹𝑨𝒍
𝑨𝒌  Relation between 

the aspects (𝐴𝑘 , 𝐴𝑙) 
𝑹𝑩𝑬 Relations between the 

component-specific 
behavior models 

𝑹𝑨𝒋𝑪𝒊
 Aspect-related 

relevance for 
component i and 
aspect j 

𝑪𝑯,𝑪𝑯𝑻𝑺 

𝑪𝑯𝑪𝑭𝑮
𝑺𝑻 , 𝑪𝑯𝑪𝑭𝑮

𝑫𝒀  

Characteristics: technical 
specification, static, 
dynamic configuration 

𝑹𝑹𝑨𝒋𝒓𝒆𝒍

𝑨𝒌𝒓𝒆𝒍 

𝑹𝑹𝑨𝒋𝒓𝒆𝒍

𝑨𝒌𝒓𝒆𝒍
𝒎𝒊𝒏

  

𝑹𝑹𝑨𝒋𝒓𝒆𝒍

𝑨𝒌𝒓𝒆𝒍
𝒎𝒂𝒙

  

Interval limits of 

relation 𝑅𝐴𝑙
𝐴𝑘  

𝑾𝑭𝑨𝒋𝑪𝒊
𝑪𝑯 , 

𝑾𝑭𝑨𝒋𝑪𝒊

𝑪𝑳𝑻𝑺, 

𝑾𝑭𝑪𝑭𝑮
𝑺𝑻 , 

𝑾𝑭𝑪𝑭𝑮
𝑫𝒀  

Weight coefficients:  
component 𝑖, aspect 𝑗, 
and their characteristics, 
class, static, dynamic 
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A2. List of Abbreviations 

Table 89: List of abbreviations A2.1 – (A - CPRH) 

Abbreviation  
Acronyms 

Definition 

A Ampere, Amps 
AC Alternating Current 
ACPI Advanced Configuration and Power Interface 
ADD Integer addition 
AE Airflow Efficiency 
AEU Air Economizer Utilization 
AFC Active Flow Control 
ALU Arithmetic Logic Unit 
AND And 
API Application Programming Interfaces 
APM Advanced Power Management 
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers 
ASIC Application-Specific Integrated Circuit 
ASP Application Service Provider 
AWS Amazon Web Services  
B2C Business to Consumer 
BFS Breadth-First Search 
BIOS Basic Input Output System 
BMC Baseboard Management Controller 
BOM Bill Of Material 
BRR Bank Round Robin 
BX Blade server 
CADE Corporate Average Datacenter Efficiency 
Capex Capital Expenditures  
CCG Cache Conflict Graph 
CD Compact Disc 
CEEDA Certified Energy Efficient Data Center Award 
CEF Carbon Emission Factor 
CFD Computational Fluid Dynamics 
CFG Control Flow Graph 
CI Capture Index 
CKEH Clock Enable High 
CKEL Clock Enable Low 
CMOS Complementary Metal-Oxide Semiconductor 
COP Coefficient Of Performance 
CPI Cycles Per Instruction 
CPRH Command Pair Rank Hopping 
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Table 90: List of abbreviations A2.2 – (CPU - EPS) 

Abbreviation  
Acronyms 

Definition 

CPU Central Processing Unit 
CRAC Computer Room Air Conditioner 
CRAH Computer Room Air Handler 
CSE Data Center Cooling System Efficiency 
CSS Cooling System Sizing 
CUE Carbon Usage Effectiveness 
CUT Circuit Under Test  
DB2 Database 
DC Data Center 
DC Direct Current 
DC-DC Direct Current to Direct Current converter 
DCeP Data Center energy Productivity 
DCiE Data Center infrastructure Efficiency 
DDR Double Data Rate Synchronous Dynamic Random-Access Memory 
DES Discrete Event Systems 
DESS Differential Equation Specified Systems 
DFA Deterministic Finite Automaton 
DFD Data Flow Diagram 
DFS Depth-First Search 
Die silicon device (chip) 
DIMM Dual In-line Memory Module 
DOM Date Of Manufacture 
DPC DIMMs Per Channel 
DPM Dynamic Power Management 
DRAM Dynamic Random-Access Memory 
DS Data Sheet 
DSP Digital Signal Processor 
DTM Dynamic Thermal Management 
DTS Digital Thermal Sensor 
DTSS Discrete Time Specified Systems 
DVFS Dynamic Voltage Frequency Scaling 
DWPE Data Center Workload Power Efficiency 
EA Evolutionary Algorithms 
EC2 Amazon Elastic Compute Cloud 
EIS Enterprise Information System 
EIST Enhanced Intel SpeedStep Technology 
EOL End Of Life 
EoR End of Row 
EOS End Of Sale 
EPA US Environmental Protection Agency 
EPS Energy Power Supply 
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Table 91: List of abbreviations A2.3 – (ERD - ILPA) 

Abbreviation  
Acronyms 

Definition 

ERD Entity-Relationship Diagrams 
ERF Energy Reuse Factor 
ESL Electronic System Level 
ESM Energy State Machine 
ESSA Dell Energy Smart Solution Advisor 
FAST FPGA-Accelerated Simulation Technologies 
FB-DIMM Fully-Buffered Dual In-line Memory Module 
FCFS First Come First Serve 
FIFO First In First Out 
Flop/s  
FLOPS 

Floating-Point Operations Per Second 

FM Functional Model 
FPGA Field Programmable Gate Array 
FPU Floating-Point Unit 
FSB Front Side Bus  
FSC Fan Speed Control 
FSM Finite State Machine 
FSP Full Service Provider 
FTA Fault Tree Analysis 
GA Genetic Algorithms 
GCPI Green Computing Performance Index 
GEC Green Energy Coefficient 
GEMS General Execution-driven Multiprocessor Simulator 
GFLOPS / 
TFLOPS 

Giga / Tera Floating-Point Operations Per Second 

GPU Graphics Processing Unit 
GUI Graphical User Interface 
HDD Hard Disk Drive 
HPC High Performance Computer 
HVAC Heating Ventilation Air Conditioning 
HVACR Heating Ventilation Air Conditioning And Refrigeration Technology 
HW Hardware 
I/O Input / Output 
I2C, I²C Inter-Integrated Circuit Bus 
IaaS Infrastructure as a Service 
ICMB Intelligent Chassis Management Bus 
ICT Information and Communication Technologies 
IDC International Data Corporation 
IDD Drain current of a CMOS circuit 
IEC International Electrotechnical Commission 
ILPA Instruction-Level Power Analysis 

 



List of Abbreviations 

 

 

 
VII 

 

Table 92: List of abbreviations A2.4 – (IMC - MOV) 

Abbreviation  
Acronyms 

Definition 

IMC Integrated Memory Controller 
INSEE Interconnection Network Simulation and Evaluation Environment 
IP Intellectual Property 
IPC Instructions executed per Cycle 
IPMB Intelligent Platform Management Bus 
IPMI Intelligent Platform Management Interface 
IPTV Internet Protocol Television 
IQR Interquartile Range 
iRMC Integrated Remote Management Controller 
ISA Instruction Set Architecture 
ISO International Organization for Standardization 
ISP Internet Service Provider 
ITEE IT Equipment Efficiency 
ITEU IT Equipment Utilization 
J Joule 
JEDEC Joint Electron Device Engineering Council 
JRE Java Runtime Environment 
JVM Java Virtual Machine 
KPI Key Performance Indicator 
KVM Kernel-based Virtual Machine 
kW, kWh Kilowatt, Kilowatt hour 
L2, L3 Level two / three cache 
LC Liquid Cooling 
LCM Least Common Multiple 
LLC Last-Level Cache 
LOC Lines of Code 
LTS Long-Term Support 
LTV Linear Time-Varying 
LUT Lookup Tables 
LV Low Voltage 
LXC Linux Container Virtualization 
MBD Model-Based Design (Development) 
Mbps MegaBits Per Second 
MBSE Model-Based Systems Engineering 
MFSMOS Multi-aspect Full-system Server Model and Optimization Concept as a 

Simulation-based Approach 
MIPS Millions of Instructions Per Second 
MIPS Microprocessor without Interlocked Pipeline Stages Architecture 
MO, MOO Multi-Objective Optimization 
MOP Multi-Objective Optimization Problem 
MOV Load and store control registers 
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Table 93: List of abbreviations A2.5 – (MPEG - PROCHOT) 

Abbreviation  
Acronyms 

Definition 

MPEG Moving Picture Experts Group 
MTBF Meantime Between Failure 
MTTF Meantime To Failure 
MVC Model-View-Controller 
MW Megawatt 
MySQL My Structured Query Language 
NAS Network-Attached-Storage 
NBTI Negative Bias Temperature Instability 
NDF Numerical Differentiation Formulas 
NFA Nondeterministic Finite Automaton 
NUMA Non-uniform Memory Access 
O&M Operation And Maintenance 
ODE Ordinary Differential Equations 
OMAP Open Multimedia Application Platform 
OMT Object-oriented Modeling Techniques 
Opex Operational Expenditures 
OPS Operations Per Second 
OR Or 
OS Operating System 
PaaS Platform as a Service 
PC Performance Counter 
PC² Paderborn Center for Parallel Computing 
PCB Printed Circuit Board 
PCI Peripheral Component Interconnect 
PCIe Peripheral Component Interconnect Express 
PDLC Product Development Life Cycle 
PDU Power Distribution Unit 
PF Power Factor 
PFC Power Factor Correction 
PFLOPS Peta Floating-Point Operations Per Second 
PHY PHYsical layer transceiver, Ethernet chip 
PID Proportional Integral Derivative 
PLA Post Layout Analysis 
PLC Product Life Cycle 
PMBus Power Management Bus 
PMC Performance Monitoring Counters 
PO Pareto Optimal 
POST Power-On Self-Test 
PPC PRIMERGY Power Calculator 
PPW Performance per Watt 
PROCHOT Processor Hot 
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Table 94: List of abbreviations A2.6 – (PSG - SMI) 

Abbreviation  
Acronyms 

Definition 

PSG Product Sales Group 
PSM Power State Machine 
PSU Power Supply Unit 
PTU Intel Power Thermal Utility 
PUE Power Usage Effectiveness 
PVT Process, Voltage, and Temperature 
PWM Pulse Width Modulation 
QPI Quick Path Interconnect 
RAID Redundant Array of Independent Disks 
RAM Random-Access-Memory 
RAMS Reliability, Availability, Maintainability, and Safety 
RC Thermal Resistances and Capacitances 
RCI Rack Cooling Index 
RDIMM Registered Dual In-line Memory Module 
RDP Remote Desktop Protocol 
RDU Rack Distribution Unit 
RHEL Red Hat Enterprise Linux 
RHI Return Heat Index 
RIFF Read or Instruction Fetch First 
RMS Root-Mean-Square 
ROI Return On Investment 
RPM Revolutions per Minute 
RTI Return Temperature Index 
RTL Register-transfer Level  
RX Rack server 
SA Switching Activity 
SA Simulated Annealing 
SA/SD Structured Analysis / Structured Design 
SaaS Software as a Service 
SAN Storage-Area-Network 
SCI System Control Interrupt 
SDA Serial Data Input/Output 
SDR Sensor Data Record 
SDRAM Synchronous Dynamic Random-Access Memory 
SERT Server Efficiency Rating Tool 
sf Square Feet 
SHI Supply Heat Index 
SLES SUSE Linux Enterprise Server 
SMBus System Management Bus   
SMD Surface-Mounted Device 
SMI System Management Interrupt (OS) 
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Table 95: List of abbreviations A2.7 – (SMI - VRM) 

Abbreviation  
Acronyms 

Definition 

SMI Scalable Memory Interface (processor) 
SMT Simultaneous Multithreading Technology 
SoC System on a Chip 
SPEC Standards Performance Evaluation Corporation 
SQL Structured Query Language 
SRAM Static Random-Access Memory 
SSD Solid-State Drives  
SSJ Server-side Java 
STD State Transition Diagram  
STG State Transition Graph 
SUB Subtract 
SUE Server Utilization Effectiveness 
SUT System Under Test 
SVN Subversion 
SW Software 
SWaP Space, Watts and Performance 
TA Transient Analysis 
TCO Total Cost of Ownership 
TDDB Time-Dependent Dielectric Breakdown 
TDP Thermal Design Power 
TGG The Green Grid 
THD Through-Hole Device 
THERMTRIP Thermal Trip 
tick-tock Intel specific model for technology cycles 
TIV Time Invariant 
TM Timing Model 
ToR Top of Rack 
TPC Transaction Processing Performance Council 
TX Tower server 
U Rack Unit 
U.S. / US United States 
UEFI Unified Extensible Firmware Interface 
UML Unified Modeling Language 
UPS Uninterruptible Power Supply 
USB Universal Serial Bus 
V Volt 
VA Volt Amps 
VAR Volt Amps Reactive 
VDC Volts Direct Current 
VLSI Very Large-Scale Integration 
VRM Voltage Regulator Module 
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Table 96: List of abbreviations A2.8 – (W - 𝝍) 

Abbreviation  
Acronyms 

Definition 

W Watt 
WASP Wireless Application Service Provider 
WEU Water Economizer Utilization 
Wh Watt hour 
WSA Weighted Switching Activity 
XaaS Anything or Everything as a Service 
𝜷 Beta Index 
𝜽 Theta (ja/jm, jc, jb): Junction-to-Ambient, Junction-to-Moving Air, Junction-

to-Case, Junction-to-Board 
𝝍 Psi (jt,jb): Junction-to-Top of package, Junction-to-Board 
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A3. Appendices 

A3a. Definition of Terms 
Power Triangle 

Power 𝑃 is an electrical level in Watt [𝑊] at a certain point in time. We distinguish power in 

true, effective, active, or real power. In common, power multiplies apparent power 𝑆 with 

reactive power 𝑄, see (A3.1).  

Apparent power 𝑆 is measured in units of volt amps [𝑉𝐴] and is the product of voltage in volt 

[𝑉] and current in amps [𝐴], see (A3.2), calculated by using Ohm’s Law. Power is directly 

proportional to voltage and current. The abbreviation 𝑟𝑚𝑠 in this equation stands for root-

mean-square (A3.3). A 𝑟𝑚𝑠-based value is the amplitude of a signal divided by the square root. 

Reactive power 𝑄, also known as power factor [𝑃𝐹] cosine 𝜑412, has the unit volt amps reactive 

[𝑉𝐴𝑅], see (A3.4) or Figure 158. The phase angle  𝜑 is between voltage and current. The angle 

depends on different load types, such as capacitive, inductive, or resistive. Power is measured 

in watt. 

Equation 4: Definition – power, apparent power and power factor 

 

 
Figure 158: Power triangle [Stö 2014] 

  

                                                           
412

 𝜑: phi 

𝑝𝑜𝑤𝑒𝑟 [𝑊] = 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟 ∗ 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 (A3.1) 

𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟[𝑉𝐴] = 𝑉𝑟𝑚𝑠[𝑉] ∗ 𝐼𝑟𝑚𝑠[𝐴] (A3.2) 

𝑉𝑟𝑚𝑠 =
𝑉𝑝𝑒𝑎𝑘

√2
        𝐼𝑟𝑚𝑠 =

𝐼𝑝𝑒𝑎𝑘

√2
 (A3.3) 

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 [𝑉𝐴𝑅] =  𝑝𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑐𝑜𝑠(𝜑) (A3.4) 
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Under ideal circumstances, the phase angle 𝜑 is zero, which means that no inductive, resistive, 

or inductive influences exist. Thus, the power factor cosine 𝜑 is one. In this case, voltage and 

currents are “in phase”, cross the zero points at the same time, and the largest possible power 

occurs. Amplitudes of both are changing continuously either in Alternating or Direct Current 

(AC, DC) circuits. The AC power considers the different types of power, shown in the power 

triangle. 

Advanced Configuration and Power Interface Specification (ACPI) 

The advanced configuration and power interface (ACPI) specification defines the system states 

into: 

 Global system states (𝐺) 

 Device power states (𝐷) 

 Sleeping states (𝑆) 

 Processor power states (𝐶) 

 Device and processor performance states (𝑃) 

Table 97 and Table 98 list the ACPI states and provides a rough description, which is interpreted 

by component vendors. 

Table 97: ACPI state definitions (𝑮,𝑫, 𝑺) [HIM et al. 2013] 

ACPI states State  Description 

Global system 𝑮  Global system state 
 𝐺3  Mechanical off 
 𝐺2 𝑆5 Soft off 
 𝐺1  Sleeping 
 𝐺0  Working 
  𝑆4 Non-volatile sleep 
Device power 𝑫  Device state 
 𝐷3  Off 
 𝐷3ℎ𝑜𝑡   
 𝐷2  Save more power 
 𝐷1   
 𝐷0  Fully-on 
Sleeping 𝑺  Sleeping state 
 𝑆0   
 𝑆1  Low wake latency 
 𝑆2   
 𝑆3   
 𝑆4  Lowest power, longest wake latency 
 𝑆5  Soft off state 
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Table 98: ACPI state definitions (𝑪, 𝑷) [HIM et al. 2013] 

ACPI states State  Description 

Processor power 𝑪  Processor power state 
 𝐶0  Executes instructions 
 𝐶1  Lowest latency 
 𝐶2   
 𝐶3   
Device and 
processor 
performance 

𝑷  Performance state 

 𝑃0  Maximum performance 
 𝑃1   
 𝑃𝑁  Minimum performance 

 

A3b. Overview of Various Metrics and Benchmarks in Their Related 

Domains 
Table 99 and Table 100 summarize the various performance or power metrics as well as 

benchmarks that could be used in the data center, for a single rack enclosure, server system, or 

specialized on a certain chip. 

Table 99: Metrics and benchmarks in various domains (𝑰) 

Domain Metrics Benchmarks (tools) 

Data center Power usage effectiveness (PUE), data 
center infrastructure efficiency (DCiE), 
corporate average datacenter efficiency 
(CADE), airflow efficiency (AE), air 
economizer utilization (AEU), water 
economizer utilization (WEU), HVAC 
efficiency, cooling system sizing (CSS), data 
center cooling system efficiency (CSE), UPS 
losses, utilization (Load) factor, SWaP 
(Space, Watts and Performance), data 
center energy productivity (DCeP), green 
energy coefficient (GEC), energy reuse 
factor (ERF), carbon emission factor (CEF), 
carbon usage effectiveness (CUE), data 
center workload power efficiency (DWPE), 
supply heat index (SHI), return heat index 
(RHI), capture index (CI) 

Calarch, Comis, DoE-2, 
EnergyPlus, Genopt 

 

  



Appendices 

 

 

 
XV 

 

Table 100: Metrics and benchmarks in various domains (𝑰𝑰) 

Domain Metrics Benchmarks (tools) 

Rack 
enclosure 

PDU losses, IT or server equipment load 
density (W/sf), SWaP (space, watts and 
performance), return temperature index 
(RTI), rack cooling index (RCI), beta index 
(𝛽) 

 

Server 
system, 
component 

IT equipment utilization (ITEU), IT 
equipment efficiency (ITEE), utilization 
(Load) factor, server utilization, green 
computing performance index (GCPI), peak 
performance (GFLOPS, TFLOPS), memory 
bandwidth (GB/sec), number of instructions 
/ cycles, time period per job, 80 plus 
certificate (power supply), server utilization 
effectiveness (SUE) 

Green 500, SPEC CPU, 
SPECpower, 
SPECviewperf, SPECwpc, 
SPECapc, SPEC ACCEL, 
SPEC MPI, SPEC OMP, 
SPEC HPC, 
SPECjAppServer, 
SPECjbb, SPECjvm, 
SPECmail, SPEC JVM, 
SPECvirt, SPECweb, 
LINPACK, STREAM, 
JouleSort, Server 
Efficiency Rating Tool 
(SERT),OCCT, Memtest, 
Iostat, IOzone, Iometer, 
Dbench, Hardinfo, 
GtkPerf, SysBench, 
Phoronix Test Suite, 
3DMark, CPUBench, 
ProcessorMark, 
PassMark 

Chip Performance counter, number of 
instructions / cycles, theta / psi (thermal 
resistance) 

Latbench, micro-
Benchmarks 
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A3c. MATLAB Notation and Syntax – Classes, Labels, Usage, and 

Restrictions 
The following section provides a short overview of MATLAB notations and syntax to provide the 

reader a better understanding of the terminology. MATLAB contains the classes: double, 

character, string or cell to format vectors, matrices, or arrays. Table 101 shows the relation 

between use cases and the corresponding classes. 

Table 101: MATLAB relation between use cases and classes 

Use case Class 

Complete numbers Double 
Complete strings Character or string 
Mix of numbers and strings Cell 

 

MATLAB labels internal variables by an equal sign. A label can contain numbers, underscores, 

and characters. A label cannot start with a number or contain a hyphen. A number includes a 

sign (+/-) followed by minimum of one numeric. Additionally, a dot divides decimal places. 

Equation 5 shows a brief overview of the characters, labels, numbers, and numbers within 

names. 

Equation 5: Definition of MATLAB labels and numbers 

𝒏𝒖𝒎𝒃𝒆𝒓𝒔𝑾𝒊𝒕𝒉𝒊𝒏𝑵𝒂𝒎𝒆𝒔 = {𝟎 − 𝟗, 𝒆±𝟎−𝟗},  𝑳𝒏𝒖𝒎𝒃𝒆𝒓𝒔𝑾𝒊𝒕𝒉𝒊𝒏𝑵𝒂𝒎𝒆𝒔 = {𝟎, 𝟏, 𝟗, 𝟏𝟗, 𝟏𝟗𝟗, 𝟏𝟎𝒆
−𝟑… } (A3.5) 

𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒔 = {_,𝒂 − 𝒛,𝑨 − 𝒁},  𝑳𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒔 = {_, 𝒂, _𝒂, 𝒂_, 𝒂_𝒃, 𝑨, 𝒛, 𝒁𝒛… } (A3.6) 

𝒍𝒂𝒃𝒆𝒍 = [𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒔]+[𝒏𝒖𝒎𝒃𝒆𝒓𝒔𝑾𝒊𝒕𝒉𝒊𝒏𝑵𝒂𝒎𝒆𝒔]∗[𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒔]∗ (A3.7) 

𝒏𝒖𝒎𝒃𝒆𝒓𝒔 = [±]∗[𝒏𝒖𝒎𝒃𝒆𝒓𝒔𝑾𝒊𝒕𝒉𝒊𝒏𝑵𝒂𝒎𝒆𝒔]+[. ]∗[𝒏𝒖𝒎𝒃𝒆𝒓𝒔𝑾𝒊𝒕𝒉𝒊𝒏𝑵𝒂𝒎𝒆𝒔]∗ (A3.8) 

𝒏𝒂𝒎𝒆_𝒏𝒖𝒎𝒃𝒆𝒓 = {𝒏𝒖𝒎𝒃𝒆𝒓𝒔𝑾𝒊𝒕𝒉𝒊𝒏𝑵𝒂𝒎𝒆𝒔|𝒏𝒖𝒎𝒃𝒆𝒓𝒔|𝒍𝒂𝒃𝒆𝒍𝒔} (A3.9) 

The following terms describe the syntax of MATLAB vectors or matrices, whereby MATLAB 

defines a label in square brackets. A semicolon distinguishes between rows. Furthermore, a cell 

array requires additional curly brackets and single equation marks, shown in (A3.12). 

Percentage signs indicate user comments.  

Equation 6: MATLAB row/column vector and matrix notation 

[𝒍𝒂𝒃𝒆𝒍] = [ [𝒏𝒖𝒎𝒃𝒆𝒓𝒔]+ [𝒏𝒖𝒎𝒃𝒆𝒓𝒔]∗ ] (A3.10) 

[𝒍𝒂𝒃𝒆𝒍] = [ [𝒏𝒖𝒎𝒃𝒆𝒓𝒔]+;  [𝒏𝒖𝒎𝒃𝒆𝒓𝒔]+ ] (A3.11) 

[𝒍𝒂𝒃𝒆𝒍] = [{ [′[𝒏𝒂𝒎𝒆_𝒏𝒖𝒎𝒃𝒆𝒓]′]+  [′[𝒏𝒂𝒎𝒆_𝒏𝒖𝒎𝒃𝒆𝒓]′]∗} ] (A3.12) 

[𝑙𝑎𝑏𝑒𝑙] = [ { [′[𝑛𝑎𝑚𝑒_𝑛𝑢𝑚𝑏𝑒𝑟]′]+ [′[𝑛𝑎𝑚𝑒_𝑛𝑢𝑚𝑏𝑒𝑟]′]∗ ;  [′[𝑛𝑎𝑚𝑒_𝑛𝑢𝑚𝑏𝑒𝑟]′]+ [′[𝑛𝑎𝑚𝑒_𝑛𝑢𝑚𝑏𝑒𝑟]′]∗  } ]  (A3.13) 
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A numerical vector consists of a sequence of numbers within square brackets. Equation (A3.14) 

defines a single row vector (Vector), which includes the numeric values one and two.  

Vector=[1 2] equal to Vector=[1, 2] (A3.14) 

% 1 2 

A row vector can be transformed to a column vector using a semicolon between both values. 

Vector=[1; 2] (A3.15) 

% 1 

% 2 

Adding an additional row or column to our Vector ends up in a matrix 𝑀𝑎, shown in (A3.16). A 

matrix 𝑀𝑎 includes multiple vectors. The matrix dimension (𝑚 𝑥 𝑛) specifies the amount of 

rows (𝑚) and columns (𝑛). The complete numerical matrix 𝑀𝑎 can have different dimensions, 

for instance (2𝑥2, 2𝑥3, 3𝑥2).  

Ma=[1 2; 3 4]  Ma=[1 2 3; 4 5 6]  Ma=[1 2; 3 4; 5 6] (A3.16) 

%   1 2 1 2 3 1 2 

%   3 4 4 5 6 3 4 

% 5 6 

An index identifies a specific value from a vector or matrix. The first mandatory parameter 

determines a column for vectors and a row in the case of matrices. In matrices, the second 

parameter additionally identifies the column.  

Ma=[1 2 3; 4 5 6] Ma(1,3) Ma(2,3) (A3.17) 

% 1 2 3 3 6 

% 4 5 6 

Generated vectors and matrices use the internal MATLAB class double, because they only 

contain numbers. The cells class is the equivalent for character or string arrays. Creating a cell 

array can be done in same manner, but the array requires curly brackets and single quotations.  

Array = [{'one' 'two'}] (A3.18) 

% 'one' 'two' 

Array = [{'one'; 'two'}] (A3.19) 

% 'one' 

% 'two' 
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Array = [{'one' 'two'; 'three' 'four'}] (A3.20) 

% 'one' 'two'  

% 'three' 'four' 

Equation (A3.21) mixes both data types, whereby the first row contains only numbers and the 

second row contains strings. 

Mixed_array = [{1 2; 'three' 'four'}] (A3.21) 

% [    1] [   2] 

% 'three' 'four' 

In the case of mixed classes, cell-specific MATLAB functions return failures. Therefore, it is 

necessary to convert strings to numbers or vice versa. One method is to store numbers within 

cells, which MATLAB shows with single quotation marks, and finally convert them. 

Cell_array = [{'1' '2'; 'three' 'four'}] (A3.22) 

%     '1'    '2' 

% 'three' 'four' 

Another variant is to save numbers separately from strings. We use an additional vector that 

includes only numbers. In our example (A3.23) low (LV), standard (STD), and future voltages are 

supported with levels from 1.35, 1.5, and 1.6 volt.  

volt_possibilities=[{'voltage'}{'LV'}{'STD'}{'FUTURE'}] (A3.23) 

volt_values=[0 1.35 1.5 1.6] 

We combine both in one-structure volts via a for loop, which includes all possible strings and 

values. 

for all volts_possibilities (A3.24) 

volts(i).possibilities = volt_possibilities(i) 

volts(i).values   = volt_values(i) 

end 

If the value of string LV is required, we search the string within the possibilities of the volts 

structure. We save the index in case a string matches the search criteria. Afterwards, we 

provide the string value by using the same index at the volts values structure.  
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for all volts_possibilities (A3.25) 

 compare volts(i).possibilities with search string LV 

 if match than remember index 

 return 

end 

get value of string LV using volts(index).values 

The LV string has an index two and thus we address the content using the index and the vector 

name, which contains the values.  

volts(2) (A3.26) 

% possibilities: {'LV'} 

% values: 1.3500 

 

volts(2).values (A3.27) 

% 1.3500 

Data adaption or extension is easily manageable by changing or adding new values in related 

vectors. MATLAB provides a huge range of class-specific functions, such as converting from 

string to number str2num and other common functionalities. The MathWorks homepage413 

provides further information. 

A3d. Memory Module Analyzation and Characteristics (𝐂𝟏 − 𝐂𝟕𝟖) 
Figure 159 presents the memory module characteristics, currents [𝑚𝐴] , and power 

consumptions [𝑊] of our measurements, which we respectively analyze for the memory 

modules of vendor 𝐴. Additionally, we observe the measurement results considering the 

vendors [𝐴 − 𝐺], as shown in Figure 160. 

                                                           
413

 MathWorks homepage: http://www.mathworks.com/help/index.html 
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Figure 159: Memory module characteristics of vendor 𝑨 (𝑪𝟏, 𝑪𝟓𝟏) – measurements 

 



Appendices 

 

 

 
XXI 

 

 

Figure 160: Memory module characteristics of diverse vendors (𝑪𝟓𝟐, 𝑪𝟕𝟖) – measurements 

We exemplarily describe our results of the memory modules of the vendor 𝐴 considering the 

capacity, fabrication size, ranks, technology, and density, as shown in Figure 159. We measure 

the memory current 𝐼𝐷𝐷 [𝑚𝐴] 414  and calculate the power consumption in [𝑊]  of the 

components 𝐶1 − 𝐶51 with a constant supply voltage 𝑉𝐷𝐷 = 1.5𝑉 concerning the frequencies 

𝑓 = {800𝑀𝐻𝑧, 1066𝑀𝐻𝑧, 1333𝑀𝐻𝑧} using an external hardware adapter. We present our 

analysis results considering the synchronization mode, vendor, and frequency, and finally show 

the dependencies of the capacity, ranks, technology, and density. 

Synchronization Mode 

An unbuffered memory module consumes always less power compared to a registered module 

with the same technical specification. Our internal results show that the power consumption of 

two modules with equivalent technical specification415 differs up to ten percent. 

 

Figure 161: Memory modules – synchronization mode 

  

                                                           
414

 Current 𝐼𝐷𝐷: drain-current of a CMOS circuit 
415

 Memory modules: vendor 𝐵 DDR3-SDRAM 1GB 1R A (registered vs. unbuffered) 
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Vendor 

In general, we study all characteristic combinations of each category separately to identify their 

relevance and find the weight coefficients. We analyze single characteristics, such as the 

memory vendor, which can be another cause for variations in the power consumption of the 

same specified module.  

 
Figure 162: Memory modules – vendor 

Frequency 

Furthermore, we found that a frequency change from 𝑓1 = 800𝑀𝐻𝑧  to 𝑓2 = 1066𝑀𝐻𝑧 

increases the power in the mean nearly eight percent. A changing frequency, from 𝑓2 =

1066𝑀𝐻𝑧 to 𝑓3 = 1333𝑀𝐻𝑧, results in 19 percent higher power consumption.  

Table 102: Memory modules – frequency 

Frequency change Increase [%] 

𝒇𝟏 = 𝟖𝟎𝟎𝑴𝑯𝒛 -> 𝒇𝟐 = 𝟏𝟎𝟔𝟔𝑴𝑯𝒛 8 
𝒇𝟐 = 𝟏𝟎𝟔𝟔𝑴𝑯𝒛 -> 𝒇𝟑 = 𝟏𝟑𝟑𝟑𝑴𝑯𝒛 19 
𝒇𝟑 = 𝟏𝟑𝟑𝟑𝑴𝑯𝒛 -> 𝒇𝟒 = 𝟏𝟔𝟎𝟎𝑴𝑯𝒛 4 
𝒇𝟒 = 𝟏𝟔𝟎𝟎𝑴𝑯𝒛 -> 𝒇𝟓 = 𝟏𝟖𝟔𝟔𝑴𝑯𝒛 3 

 

Capacity, Ranks, Technology, and Density 

Figure 163 addresses the differences in current [𝑚𝐴] between the fabrication size and die 

technology416, whereby all other characteristics are fixed. We set the fabrication size from 

46𝑛𝑚 to 35𝑛𝑚, and set the die from 𝐷 to 𝐸. The power consumption is approximately 32 

percent lower for a (𝐶7, 𝐶8, 𝐶11 − 35𝑛𝑚, 𝐸)  module than for a (𝐶1, 𝐶2, 𝐶5 − 46𝑛𝑚,𝐷) 

module, see pairs of (𝐶1, 𝐶7; 𝐶2, 𝐶8; 𝐶5, 𝐶11). The decrease of a (𝐶5, 𝐶11 − 4𝐺𝐵, 4𝑅) module 

is four percent larger than for a (𝐶1, 𝐶7 − 1𝐺𝐵, 1𝑅)  module, which we neglect in our 

approach. 

                                                           
416

 Die technology: component revision, denote by a letter {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐽, 𝐿,𝑀, 𝑁} 
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Figure 163: Memory modules – fabrication size and die 

We analyze the memory capacity, rank linking417 (e.g. x4, x8, x16) technology, and die type. If 

we have twice the capacity and the rank linking, the die type is the significant factor. We 

compare the components (𝐶4, 𝐶13) with a reduced power by 52 percent from 𝐷 to 𝐵 die. We 

see a decrease of approximately 62 percent when we compare the 𝐷 and 𝐶 die. The effect the 

frequency has on the power consumption is negligible. 

 
Figure 164: Memory modules – capacity, rank linking, and die 

Figure 165 shows the memory modules with twofold density and ranks. A doubled density from 

(𝐶1, 𝐶7 − 1𝐺𝐵, 1𝑅)  to (𝐶2, 𝐶8 − 2𝐺𝐵, 2𝑅) , as compared with the pairs (𝐶1, 𝐶2; 𝐶7, 𝐶8) , 

results in a 13 percent power increase. We see a 23 percent rise for a (𝐶2, 𝐶8 − 2𝐺𝐵, 2𝑅) to a 

(𝐶5, 𝐶11 − 4𝐺𝐵, 4𝑅) module, such as (𝐶2, 𝐶5; 𝐶8, 𝐶11). The effect the frequency has on the 

power consumption is negligible. 

 
Figure 165: Memory modules – ranks and density 

Figure 166 summarizes the modules with double density, but halved rank linking. The power 

increases approximately 69 percent from a (𝐶1 − 1𝐺𝐵, 𝑥8) to a (𝐶3 − 2𝐺𝐵, 𝑥4) module, which 

is comparable by a rise of 72 percent from (𝐶2 − 2𝐺𝐵, 𝑥8) up to (𝐶4 − 4𝐺𝐵, 𝑥4). The power 

consumption of the memory pair (𝐶5 − 4𝐺𝐵, 𝑥8) and (𝐶6 − 8𝐺𝐵, 𝑥4) nearly doubles from 𝐶5 

to 𝐶6. Furthermore, we see a frequency influence of nearly two percent from a lower to an 

upper frequency. We conclude that the memory factors ranks, rank linking, die, and density 

rely on each other. Therefore, we handle them as a linear system of equations. 

                                                           
417

 Rank linking: number of chip’s output pins / bit wide 
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Figure 166: Memory modules – ranks (x) and density 

A3e. Detailed Memory Module Characteristics 

 (𝑪𝟏𝟒, 𝑪𝟐𝟒, 𝑪𝟐𝟔, 𝑪𝟕𝟎 − 𝑪𝟕𝟖) 
In this section, we present the memory module characteristics that we use in our simulation 

and evaluation.  

Table 103: Detailed memory characteristics (𝑪𝟕𝟎, 𝑪𝟕𝟏)  

Memory characteristics Memory module (𝑪𝟕𝟎) Memory module (𝑪𝟕𝟏) 

Vendor {'Micron'}; {'C'} {'Qimonda'}; {'D'} 

Capacity (size) [GB] {'4GB'} {'2GB'} 

Density [GB] {'4GB'} {'2GB'} 

Die (component revision) {'D'} {'D'} 

Fabrication size [nm] {'44nm'} {'56nm'} 

Synchronization mode {'registered'} {'registered'} 

Module ranks,  
rank linking (data width) 

{'1R'}; 

{'SR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

Timings {'11'} {'7'} 

Error correction {'ECC'} {'ECC'} 

Frequency [MHz] {'800'} {'533'} 

Voltage [VDC] 418 {'LV'}; 

1.35VDC 
{'STD'}; 

1.5VDC 
Transfer rate / throughput 
[MHz] 

{'1600'}; 

{'PC3-12800'} 
{'1066'}, 

{'PC3-8500R'} 
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 VDC: volts direct current 
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Table 104: Detailed memory characteristics (𝑪𝟐𝟔, 𝑪𝟕𝟒, 𝑪𝟕𝟔) 

Memory 
characteristics 

Memory module 
(𝑪𝟐𝟔) 

Memory module 
(𝑪𝟕𝟒) 

Memory module 
(𝑪𝟕𝟔) 

Vendor {'A'} {'G'} {'E'} 

Capacity (size) [GB] {'2GB'} {'2GB'} {'2GB'} 

Density [GB] {'4GB'} {'2GB'} {'2GB'} 

Die (component 
revision) 

{'D'} {'D'} {'D'} 

Fabrication size [nm] {'35nm'} {'44nm'} {'38nm'} 

Synchronization 
mode 

{'registered'} {'registered'} {'registered'} 

Module ranks,  
rank linking (data 
width) 

{'1R'}; 

{'SR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

Timings {'11'} {'11'} {'11'} 

Error correction {''} {'ECC'} {'ECC'} 

Frequency [MHz] {'533'} {'800'} {'800'} 

Voltage [VDC] 419 {'STD'}; 

1.5VDC 
{'STD'}; 

1.5VDC 
{'STD'}; 

1.5VDC 
Transfer rate / 
throughput [MHz] 

{'1066'}; 

{'PC3-8500'} 
{'1600'}; 

{'PC3-12800'} 
{'1600'}; 

{'PC3-12800'} 
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 VDC: volts direct current 
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Table 105: Detailed memory characteristics (𝑪𝟕𝟐, 𝑪𝟕𝟑, 𝑪𝟕𝟓) 

Memory 
characteristics 

Memory module 
(𝑪𝟕𝟐) 

Memory module 
(𝑪𝟕𝟑) 

Memory module 
(𝑪𝟕𝟓) 

Vendor {'A'} {'Qimonda'}; 

{'D'} 
{'E'} 

Capacity (size) [GB] {'4GB'} {'4GB'} {'4GB'} 

Density [GB] {'4GB'} {'4GB'} {'4GB'} 

Die (component 
revision) 

{'D'} {'B'} {'D'} 

Fabrication size [nm] {'44nm'} {'44nm'} {'44nm'} 

Synchronization 
mode 

{'registered'} {'registered'} {'registered'} 

Module ranks,  
rank linking (data 
width) 

{'1R'}; 

{'SR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

Timings {'11'} {'11'} {'11'} 

Error correction {'ECC'} {'ECC'} {'ECC'} 

Frequency [MHz] {'800'} {'667'} {'667'} 

Voltage [VDC] 420 {'LV'}; 

1.35VDC 
{'LV'}; 

1.35VDC 
{'LV'}; 

1.35VDC 
Transfer rate / 
throughput [MHz] 

{'1600'}; 

{'PC3-12800'} 
{'1333'}, 

{'PC3-10600'} 
{'1333'}, 

{'PC3-10600'} 

 

Table 106: Detailed memory characteristics (𝑪𝟐𝟒, 𝑪𝟐𝟔)  

Memory characteristics Memory module (𝑪𝟐𝟒) Memory module (𝑪𝟐𝟔) 

Vendor {'A'} {'A'} 

Capacity (size) [GB] {'2GB'} {'2GB'} 

Density [GB] {'2GB'} {'4GB'} 

Die (component revision) {'D'} {'D'} 

Fabrication size [nm] {'35nm'} {'35nm'} 

Synchronization mode {'registered'} {'registered'} 

Module ranks,  
rank linking (data width) 

{'2R'}; 

{'DR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

Timings {'11'} {'11'} 

Error correction {'ECC'} {''} 

Frequency [MHz] {'800'} {'533'} 

Voltage [VDC] {'STD'}; 

1.5VDC 
{'STD'}; 

1.5VDC 
Transfer rate / throughput 
[MHz] 

{'1600'}; 

{'PC3-12800'} 
{'1066'}; 

{'PC3-8500'} 
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 VDC: volts direct current 
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Table 107: Detailed memory characteristics (𝑪𝟏𝟒, 𝑪𝟐𝟎, 𝑪𝟐𝟔) 

Memory 
characteristics 

Memory module 
(𝑪𝟏𝟒) 

Memory module 
(𝑪𝟐𝟎) 

Memory module 
(𝑪𝟐𝟔) 

Vendor {'A'} {'A'} {'A'} 

Capacity (size) [GB] {'2GB'} {'2GB'} {'2GB'} 

Density [GB] {'4GB'} {'4GB'} {'4GB'} 

Die (component 
revision) 

{'B'} {'C'} {'D'} 

Fabrication size [nm] {'46nm'} {'46nm'} {'35nm'} 

Synchronization 
mode 

{'registered'} {'registered'} {'registered'} 

Module ranks,  
rank linking (data 
width) 

{'1R'}; 

{'SR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

Timings {'11'} {'11'} {'11'} 

Error correction {''} {''} {''} 

Frequency [MHz] {'533'} {'533'} {'533'} 

Voltage [VDC] 421 {'STD'}; 

1.5VDC 
{'STD'}; 

1.5VDC 
{'STD'}; 

1.5VDC 
Transfer rate / 
throughput [MHz] 

{'1066'}, 

{'PC3-8500'} 
{'1066'}, 

{'PC3-8500R'} 
{'1066'}; 

{'PC3-8500'} 

 

Table 108: Detailed memory characteristics (𝑪𝟕𝟕, 𝑪𝟕𝟖)  

Memory characteristics Memory module (𝑪𝟕𝟕) Memory module (𝑪𝟕𝟖) 

Vendor {'Micron'}; {'C'} {'A'} 

Capacity (size) [GB] {'4GB'} {'4GB'} 

Density [GB] {'2GB'} {'4GB'} 

Die (component revision) {'D'} {'D'} 

Fabrication size [nm] {'44nm'} {'44nm'} 

Synchronization mode {'registered'} {'registered'} 

Module ranks,  
rank linking (data width) 

{'2R'}; 

{'DR'}, 

{'x4'} 

{'1R'}; 

{'SR'}, 

{'x4'} 

Timings {'9'} {'7'} 

Error correction {'ECC'} {''} 

Frequency [MHz] {'800'} {'667'} 

Voltage [VDC] {'STD'}; 

1.5VDC 
{'LV'}; 

1.35VDC 
Transfer rate / throughput 
[MHz] 

{'1600'}; 

{'PC3-12800'} 
{'1333'}, 

{'PC3-10600'} 
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A3f. Processor Analyzation and Characteristics (𝐂𝟏 − 𝐂𝟏𝟗) 
Figure 167 lists the processor characteristics and power consumptions [𝑊]  of our 

measurements in which we concentrate on the Intel Xeon E5-2600v2 generation.  

 
Figure 167: Processor characteristics overview (𝑪𝟏 − 𝑪𝟏𝟗) and measurements 

We exemplarily describe our results concerning the thermal design power (TDP), p-state, 

frequency, quick path interconnect (QPI), turbo, or cache. Figure 168 graphically presents the 

power consumption of the processors at diverse utilization levels. The idle power consumption 

varies between 14W and 24W, which we define as base power for the E5-2600v2 family. We 

include our findings at lower utilization levels to get results that are more precise. The maximal 

power range differs from 31W up to 134W. 

 
Figure 168: Intel Xeon E5-2600v2 power consumption measurement (𝑪𝟏 − 𝑪𝟏𝟗) 
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We cannot find a relation between the highest number of p-state and the power consumption, 

but we can assume that the p-states define the step resolution, which directly correspond to 

the utilization levels. If a processor has only six p-states, such as (𝐶16), the power model is less 

precise than a processor with nineteen p-states.  

Thermal Design Power (TDP), Utilization Levels, P-states, and Frequencies 

The vendor provides the thermal design power (TDP), which is accessible to the public within 

the technical specification of each processor. We estimate the processor power consumption 

on the basis of the spreadsheet facts. We cannot specify a power curve when we have only the 

largest power consumption. We need further data regarding the processor power 

consumption, under ideal conditions for every intermediate utilization level. Usually, the 

processor vendor roughly specifies the power consumption by idle, average, and full utilization 

for business and collaborative partners. We received an internal spreadsheet about the 

processor power consumption at the certain utilization levels, because we cooperated with 

Fujitsu Technology Solutions GmbH422. The processor power consumption is a nearly linear 

function. The spreadsheet contains the maximal frequency 𝑓𝑚𝑎𝑥 at the p-state 𝑃1. The vendor 

has not provided the maximal number of p-states 𝑘. We analyze the E5-2600 product family, 

which has always a minimal frequency of 𝑓𝑚𝑖𝑛 = 1.20𝐺𝐻𝑧 , but we do not know the 

corresponding p-state. The frequency changes in equidistant steps of ∆𝑓 = 0.1𝐺𝐻𝑧, which is 

specific to the architecture. For instance, the processor 𝐶1  has a maximal frequency of 

𝑓𝑚𝑎𝑥 = 3.0𝐺𝐻𝑧. We calculate the number of p-states 𝑘 by the ratio of frequencies and their 

step size. We receive a set of available frequencies, Equation (A3.29), based on an Equation 

(A3.28). 

𝑘 =
𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛

∆𝑓
 (A3.28) 

𝑓 = {𝑓𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥 − 1 ∗ ∆𝑓, 𝑓𝑚𝑎𝑥 − 2 ∗ ∆𝑓,… , 𝑓𝑚𝑎𝑥 − (𝑘 − 1) ∗ ∆𝑓, 𝑓𝑚𝑖𝑛} (A3.29) 

The thermal design power 𝑇𝐷𝑃 = 130𝑊 is the value of the maximal frequency 𝑓𝑚𝑎𝑥. The 

vendor has not provided the minimal power, but we can estimate the power using the slope of 

the power curve ∆𝑃𝑂𝑝𝑟𝑜𝑐 which defines the power reduction of each ∆𝑓. We receive the 

∆𝑃𝑂𝑝𝑟𝑜𝑐 in our cooperation, which we alternatively have to measure. We subtract the ∆𝑃𝑂𝑝𝑟𝑜𝑐 

value of the 𝑇𝐷𝑃  by the factor of frequency changes 𝑘 . Equation (A3.30) shows our 

spreadsheet-based estimation.  

𝑃𝑂𝑝𝑟𝑜𝑐 = {𝑇𝐷𝑃, 𝑇𝐷𝑃 − 1 ∗ ∆𝑃𝑂𝑝𝑟𝑜𝑐 , 𝑇𝐷𝑃 − 2 ∗ ∆𝑃𝑂𝑝𝑟𝑜𝑐 , … , 𝑇𝐷𝑃 − 𝑘 ∗ ∆𝑃𝑂𝑝𝑟𝑜𝑐} (A3.30) 
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 Fujitsu Technology Solutions GmbH: http://www.fujitsu.com/fts/ 
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We analyze the processors 𝐶1 − 𝐶17 and overestimate the power approximately 25% in relative 

deviation compared to the spreadsheet. Our estimation method underestimates the power 

nearly 3% in relative deviation. Table 109 provides the slope values and the concrete relative 

deviations. 

Table 109: Intel spreadsheet vs. estimation method 

Component 
Family - 
series 

Slope of the 
power 
curve 
∆𝐏𝐎𝐩𝐫𝐨𝐜 

Relative 
over-

estimation 
[%] 

Relative 
under-

estimation 
[%] 

C1 
Intel Xeon 
E5-2690v2 

4.06 14.86 0 

C2 
Intel Xeon 
E5-2680v2 

3.38 8.91 0 

C3 
Intel Xeon 
E5-2670v2 

3.38 4.85 0.54 

C4 
Intel Xeon 
E5-2660v2 

2.7 0.33 2.72 

C5 
Intel Xeon 
E5-2650v2 

2.5 6.25 0 

C6 
Intel Xeon 
E5-2640v2 

2.38 0.48 1.72 

C7 
Intel Xeon 
E5-2630v2 

1.79 4.52 0 

C8 
Intel Xeon 
E5-2620v2 

1.67 1.01 0.9 

C9 
Intel Xeon 
E5-2609v2 

1.23 2.02 0.45 

C10 
Intel Xeon 
E5-2603v2 

1.67 0.46 0.46 

C11 
Intel Xeon 
E5-2697v2 

4.2 5.93 0 

C12 
Intel Xeon 
E5-2695v2 

3.83 4.55 0.78 

C13 
Intel Xeon 
E5-2667v2 

3.33 18.28 0 

C14 
Intel Xeon 
E5-2643v2 

3.17 24.53 0 

C15 
Intel Xeon 
E5-2637v2 

2.74 20.1 0 

C16 
Intel Xeon 

E5-2650Lv2 
2.4 0.67 1.21 

C17 
Intel Xeon 

E5-2630Lv2 
1.33 3.14 0 
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Our estimation method becomes inaccurate (more than ten percent) for processors with more 

than 15 p-states (𝐶1, 𝐶13, 𝐶14, 𝐶15). In this case, we will include a non-linear basis for our power 

calculation method. The dashed line in Figure 169 presents our estimation values, and the solid 

line shows the spreadsheet power consumption. We evaluate the average deviation, which is 

7% for over-estimation and 1% for under-estimation. We neglect the differences of the 

processor power consumption and conclude that our estimation423 method is almost identical 

with the vendor (industrial tools), which rely upon the spreadsheets.  

 
Figure 169: Processor (𝑪𝟏) and (𝑪𝟑) – spreadsheet vs. vendor estimation 

Nevertheless, we observe a power gap between our spreadsheet-based estimation and our 

measurements, shown in Figure 170 and Figure 171. In our example, the measured power at 

the idle utilization level (~20W) is approximately 30% of the spreadsheet-based estimated 

power (60-70W). At a utilization level of 50%, the imprecision shrinks and the measured power 

is nearly 60% of the estimation. Finally, the power gap is less than 10% at a utilization level of 

100%. The power gap for the idle utilization is larger compared to the full utilization. 

                                                           
423

 Power estimation: our spreadsheet-based method is synonymous with the vendor estimation. 
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Figure 170: Spreadsheet-based estimation vs. measurements of the processor (𝑪𝟏) 

 

Figure 171: Spreadsheet-based estimation vs. measurements of the processor (𝑪𝟑) 

As a result, we see that the vendor or our spreadsheet-based method424 overestimates the 

power consumption for two processors of the product family E5-2600, which we pick for our 

example. We compared other families and saw the same problem. We conclude that the 

vendor always overestimates the power consumption of the processor product family E5-2600.  

                                                           
424

 Vendor, spreadsheet-based method: we receive the power consumption from the industrial tools and 
compare them with our estimation method to become nearly identical 
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Our aim is to conceive a non-linear processor power model, which reduces the gap between 

the spreadsheet-based estimation and the measurements. We reduce the worst-case power 

assumption and enhance the power specification at lower utilization levels. We define a 

spreadsheet-based method considering diverse characteristics from the technical specification 

available to the public. We try to model the power consumption by ten percent in a single 

utilization step, which refers to the processor states. 

Quick Path Interconnects (QPI) 

The quick path interconnect (QPI) is a point-to-point interconnect between the processor and 

the memory controller. At the idle utilization level, the power increases by the QPI transfer 

rate, as shown in Table 110. Finally, we assume that the idle power consumption depends on 

the QPI speed.  

Table 110: Average power consumption (𝑪𝟏 − 𝑪𝟏𝟗) at 0% utilization level 

QPI speed [GT/s] Average power consumption 
@ 0% utilization level [W] 

6.4 14.7 
7.2 16.1 
8.0 18.7 

 

The thermal design power defines the processor power limit at a utilization level of 100%. We 

analyze the maximal power consumption and propose a TDP-based power function, see 

Equation (A3.31). 

𝑝𝑜𝑤𝑒𝑟𝐼𝑛𝑡𝑒𝑙 𝑋𝑒𝑜𝑛 𝐸5−2600𝑣2(100%) =

{
𝑇𝐷𝑃 ∗ 1.04, 𝑖𝑓 𝐿2 𝑐𝑎𝑐ℎ𝑒 ≥ 12𝑥256𝐾𝐵, 𝐿3 𝑐𝑎𝑐ℎ𝑒 ≥ 30𝑀𝐵, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ≥ 24
𝑇𝐷𝑃 ∗ 0.54, 𝑖𝑓 𝐿2 𝑐𝑎𝑐ℎ𝑒 ≤   4𝑥256𝐾𝐵, 𝐿3 𝑐𝑎𝑐ℎ𝑒 ≤ 15𝑀𝐵, 𝑛𝑜 𝑡𝑢𝑟𝑏𝑜         
𝑇𝐷𝑃 ∗ 0.91, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                               

 (A3.31) 

 

Frequency, TDP, Hyper-Threading, Turbo, Cache, and Transfer Rate 

We analyze the component pairs (𝐶2, 𝐶3; 𝐶5, 𝐶6) and (𝐶7, 𝐶8), which have the same TDP 

values to specify a model, which has a finer granularity. Figure 172 summarizes the power 

consumptions, which show that the TDP and frequency influence grow when the utilization 

level is higher than 50%.  
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Figure 172: Processor frequency, p-state, and transfer rate (𝑪𝟐, 𝑪𝟑, 𝑪𝟓 − 𝑪𝟖) 

Figure 173 contains processors that all have the same amount of cores/threads, an identical 

cache size, transfer rate, and support the turbo mode. The processors (𝐶1 − 𝐶4) differ in their 

base frequency, TDP, and maximum p-states. The power consumption fluctuates up to 10W at 

a utilization level of 0%, 20%, and 50%. The processors (𝐶2) and (𝐶3) have the same TDP, but a 

0.3𝐺𝐻𝑧 variation in their base frequency as well as maximum frequency. At a utilization level of 

80% and 100%, the power consumption increases with a higher frequency. A small base 

frequency and TDP value, see (𝐶4), causes less power consumption at an 80% or 100% 

utilization level compared to a higher frequency-TDP pair (𝐶1). 

 
Figure 173: Processor frequency, TDP, and p-state (𝑪𝟏 − 𝑪𝟒) 

Figure 174 and Figure 175 present processor pairs that are consistent in their cores/threads 

and cache size. We analyze the same processors, but compare different components that have 

the same TDP value and transfer rate. We analyze the pair (𝐶11, 𝐶12) and (𝐶1, 𝐶2), which 

have a difference of 15W in the TDP. We assume the power consumption behaves at the full 

utilization level in a similar way. 

 
Figure 174: Processor frequency, TDP, and p-state (𝑪𝟏, 𝑪𝟐, 𝑪𝟏𝟏, 𝑪𝟏𝟐) 

In addition, we compare (𝐶11, 𝐶1) and (𝐶12, 𝐶2), whereby the frequency increases, but the L2 

and L3 cache decreases. The processors of (𝐶11) and (𝐶12) have two more physical cores and 

four threads compared to (𝐶1)  and (𝐶2) . The power ratio (𝐶11, 𝐶1)  is proportional to 

(𝐶12, 𝐶2), whereby the base frequency is negligible.  
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Figure 175: Processor frequency, p-state, and cache (𝑪𝟏, 𝑪𝟐, 𝑪𝟏𝟏, 𝑪𝟏𝟐) 

Processor Core Frequencies (𝑪𝟏𝟖) 

Table 111 and Table 112 present thread-specific utilization levels of the processor in relation to 

the target throughput level in which we found the irrelevance of the specific thread when we 

observe the entire processor utilization.  

Table 111: Thread-specific (#) utilization levels [%] of the processor (𝑪𝟏𝟖) as mean values at target 
throughput (𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏, 𝟏𝟎𝟎%− 𝟔𝟎%) in (𝑺𝑷𝟏. 𝟐. 𝟖) 

 Target throughput [%]  
Processor threads 
(#) and utilization 

levels in [%] 

Calibration 100 90 80 70 60 

0 99.44 86.77 64.67 58.03 53.20 49.61 
1 99.41 94.08 76.56 67.59 62.50 55.06 
2 99.37 95.47 82.39 72.84 66.96 60.26 
3 99.46 96.71 83.44 74.05 64.75 55.60 
4 98.97 92.28 77.94 70.42 64.84 59.34 
5 99.43 96.83 83.41 73.39 63.38 53.69 
6 99.14 95.85 84.50 76.21 68.59 58.62 
7 99.11 94.03 76.16 65.24 57.42 50.70 
8 99.54 96.89 83.81 75.27 65.76 59.63 
9 99.51 96.42 84.89 76.55 66.09 54.58 

10 99.54 97.14 86.14 77.23 67.84 58.75 
11 99.50 96.53 84.01 74.44 63.68 54.68 
12 99.52 94.25 79.82 71.16 65.77 59.25 
13 99.50 97.12 85.13 76.30 64.22 53.97 
14 99.46 92.98 78.36 70.10 64.17 58.45 
15 99.48 97.08 86.02 75.94 65.43 55.15 

       
Mean of all 

threads 
(HW Monitor Pro) 

99.4 95.03 81.08 72.17 64.04 56.08 

       
Mean processor 

(Intel Power 
Thermal Utility) 

99.73 96.12 84.17 75.89 67.94 60.17 
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Table 112: Thread-specific (#) utilization levels [%] of the processor (𝑪𝟏𝟖) as mean values at target 
throughput (𝟓𝟎% − 𝟎%, 𝒊𝒅𝒍𝒆) in (𝑺𝑷𝟏.𝟐. 𝟖) 

 Target throughput [%]  
Processor threads 
(#) and utilization 

levels in [%] 

50 40 30 20 10 Idle 

0 44.07 38.67 35.31 31.02 28.64 34.4 
1 43.58 32.95 19.60 12.77 5.25 3.1 
2 54.15 42.50 34.91 22.35 10.92 23.4 
3 42.28 32.38 21.07 15.13 6.64 12.5 
4 54.69 43.55 34.68 22.19 11.61 3.1 
5 40.83 31.11 20.46 13.76 5.78 12.3 
6 53.01 42.81 34.59 21.78 9.50 4.6 
7 40.10 30.43 20.63 14.47 7.80 0 
8 50.92 34.00 32.63 22.25 12.70 10.8 
9 42.41 32.25 22.73 14.85 8.06 7.8 

10 51.50 41.58 35.56 24.10 13.56 23.4 
11 42.15 30.19 19.21 13.42 6.43 15.2 
12 54.53 46.21 36.18 26.20 13.38 7.7 
13 40.57 30.55 21.60 13.81 9.47 10.8 
14 53.34 42.88 35.00 23.00 11.86 7.8 
15 42.45 31.14 19.58 14.13 6.23 10.8 

       
Mean of all 

threads 
 (HW Monitor Pro) 

46.91 36.83 27.73 19.08 10.49 11.73 

       
Mean processor 
 (Intel Power 

Thermal Utility) 

50.75 40.75 31.57 22.38 13.40 4.4 
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A3g. Detailed Processor Characteristics (𝑪𝟏 − 𝑪𝟒, 𝑪𝟕, 𝑪𝟖, 𝑪𝟏𝟒, 𝑪𝟏𝟖) 
In this section, we present the processor characteristics that we use in our simulation and 

evaluation.  

Table 113: Detailed processor characteristics (𝑪𝟏, 𝑪𝟑, 𝑪𝟕) 

Processor 
characteristics 

Processor (𝑪𝟏) Processor (𝑪𝟑) Processor (𝑪𝟕) 

L3 cache [MB] {'25MB'} {'25MB'} {'15MB'} 

L2 cache [KB] {'2056KB'} {'2056KB}' {'1536KB'} 

Semiconductor 
technology (TDP) 
[W] 

{'130W'} {'115W'} {'80W'} 

Vendor {'Intel'} {'Intel'} {'Intel'} 

Architecture Intel XEON E5 Intel XEON E5 Intel XEON E5 
Generation Ivy Bridge EP Ivy Bridge EP Ivy Bridge EP 
Family E5-2600v2 E5-2600v2 E5-2600v2 
Series {'E5-2690v2'} {'E5-2670v2'} {'E5-2630v2'} 

Cores / active cores 
(hyper-threading) 

{'10C'}, 
{'20T'} 

{'10C'}, 
{'20T'} 

{'6C'}, 
{'12T'} 

Frequency [GHz] {'3.00'} {'2.50'} {'2.60'} 

Transfer rate [GT/s, 
MHz] 

{'8.0GT/s'}, 
{'1866MHz'} 

{'8.0GT/s'}, 
{'1866MHz'} 

{'7.2GT/s'}, 
{'1866MHz'} 

 

Table 114: Detailed processor characteristics (𝑪𝟐, 𝑪𝟒, 𝑪𝟖) 

Processor 
characteristics 

Processor (𝑪𝟐) Processor (𝑪𝟒) Processor (𝑪𝟖) 

L3 cache [MB] {'25MB'} {'25MB'} {'15MB'} 

L2 cache [KB] {'2056KB'} {'2056KB'} {'1536KB'} 

Semiconductor 
technology (TDP) 
[W] 

{'115W'} {'95W'} {'80W'} 

Vendor {'Intel'} {'Intel'} {'Intel'} 

Architecture Intel XEON E5 Intel XEON E5 Intel XEON E5 
Generation Ivy Bridge EP Ivy Bridge EP Ivy Bridge EP 
Family E5-2600v2 E5-2600v2 E5-2600v2 
Series {'E5-2680v2'} {'E5-2660v2'} {'E5-2620v2'} 

Cores / active cores 
(hyper-threading) 

{'10C'}, 
{'20T'} 

{'10C'}, 
{'20T'} 

{'6C'}, 
{'12T'} 

Frequency [GHz] {'2.80'} {'2.20'} {'2.10'} 

Transfer rate [GT/s, 
MHz] 

{'8.0GT/s'}, 
{'1866MHz'} 

{'8.0GT/s'}, 
{'1866MHz'} 

{'7.2GT/s'}, 
{'1600MHz'} 

 



Appendices 

 

 

 
XXXVIII 

 

Table 115: Detailed processor characteristics (𝑪𝟏𝟒, 𝑪𝟏𝟖) 

Processor characteristics Processor (𝑪𝟏𝟒) Processor (𝑪𝟏𝟖) 

L3 cache [MB] {'25MB'} {'20MB'} 

L2 cache [KB] {'1536KB'} {'2048KB'} 

Semiconductor technology 
(TDP) [W] 

{'130W'} {'70W'} 

Vendor {'Intel'} {'Intel'} 

Architecture Intel XEON E5 Intel XEON E5 
Generation Ivy Bridge EP Ivy Bridge EP 
Family E5-2600v2 E5-2600v2 
Series {'E5-2643v2'} {'E5-2650v2'} 

Cores / active cores 
(hyper-threading) 

{'6C'}, 
{'12T'} 

{'8C'}, 
{'16T'} 

Frequency [GHz] {'3.50'} 
 

{'2.1'}, turbo {'2.3'} 

Transfer rate [GT/s, MHz] {'8.0GT/s'}, 
{'1866MHz'} 

{'8.0GT/s'}, 
{'1600MHz'} 

 

A3h. Evaluation Results of the Processors (𝑪𝟏, 𝑪𝟑, 𝑪𝟕) 
Figure 176, Figure 177, and Figure 178 show the simulation-based results of the processor 

power (dash-dotted red line) in comparison to the measurement trace of the Intel Power 

Thermal Utility (solid blue line), the data gained from the commercial tools (dotted magenta 

line), or vendor-based data determined in the spreadsheets (dashed black line). These figures 

present the power comparisons of the processors (𝐶1), (𝐶3), and (𝐶7). 
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Figure 176: Processor power consumption (𝑪𝟏) –  
an exemplary comparison between spreadsheet, commercial tools, and measured and simulated power 

 

Figure 177: Processor power consumption (𝑪𝟑) –  
an exemplary comparison between spreadsheet, commercial tools, and measured and simulated power 
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Figure 178: Processor power consumption (𝑪𝟕) –  
an exemplary comparison between spreadsheet, commercial tools, and measured and simulated power 

Figure 179 presents the simulated power consumption in [𝑊] of the processors 𝐶1 − 𝐶19 at 

the specific utilization level in [%] that we gained while executing the SPECpower benchmark 

(𝑆𝑃1.2.8).  

 

Figure 179: Simulated processor power consumption (𝑪𝟏 − 𝑪𝟏𝟗) 
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A3i. Memory, Processor, and System Performance Scores 
In parallel to the memory and processor evaluation (Section 7.2 and Section 7.3), the particular 

benchmarks store the highest performance score that we consider when we simulate the 

energy efficiency, see Section 7.1.3. Figure 180 and Figure 181 exemplarily show the absolute 

performance scores425 (on top of the bars) as the results of the PassMark CPU (𝑃𝐶𝑥. 𝑦. 𝑧),  the 

three bars on the left, and the PassMark Memory (𝑃𝑀𝑥. 𝑦. 𝑧) benchmarks  the three bars on 

the right of the figures. It can be observed that if we double the memory capacity in a server 

system with an exclusive processor (𝑥 = 1), either in a single memory module (𝑧̂ = 𝑧 ∗ 2) or 

as an additional memory module (𝑦̂ = 𝑦 ∗ 2), the performance scores will approximately 

increase at (𝑃𝐶1. 𝑦. 𝑧) by [+4.7,+13.1]% and at (𝑃𝑀1. 𝑦. 𝑧) by [+21.7,+28.5]%, see Figure 

144. If the system has two processors, the impact of the doubled memory capacity increases at 

the PassMark CPU benchmark (𝑃𝐶2. 𝑦. 𝑧) by [+6.4,+20.7] and increases at the PassMark 

Memory benchmark (𝑃𝑀2. 𝑦. 𝑧) by [+5.7,+12.4]%, as shown in Figure 181.  

 
Figure 180: PassMark CPU (𝑷𝑪𝟏. 𝒚. 𝒛) and PassMark Memory (𝑷𝑴𝟏. 𝒚. 𝒛) performance scores 

 
Figure 181: PassMark CPU (𝑷𝑪𝟐. 𝒚. 𝒛) and PassMark Memory (𝑷𝑴𝟐. 𝒚. 𝒛) performance scores 

                                                           
425

 Performance scores: additional scores are available at 
https://www.memorybenchmark.net/ram_list.php and https://www.cpubenchmark.net/cpu_list.php 
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Furthermore, we observe that an additional processor and its related second memory 

module426 have a significant impact of approximately 14.6% on the performance scores only 

when each processor has 2𝐺𝐵  memory capacity, as shown in the PassMark Memory 

benchmarks (𝑃𝑀1.1.2, 𝑃𝑀2.1.4), see Figure 182. In our measurements, the performance 

scores are approximately identical when adding an extra processor. In contrast, when the 

server system executes the PassMark CPU (𝑃𝐶𝑥. 𝑦. 𝑧) benchmarks in which we provide an 

additional processor and memory module, we observe a higher performance improvement of 

27%, 29.1%, and 35.6% in comparison to the memory-bounded workload, as shown in Figure 

183. 

 
Figure 182: PassMark Memory performance scores (𝒙̂ = 𝒙 ∗ 𝟐) 

 
Figure 183: PassMark CPU performance scores (𝒙̂ = 𝒙 ∗ 𝟐) 

Furthermore, we observe linear curves of the performance scores at the specific target 

throughputs when executing the SPECpower benchmarks. Figure 184 exemplarily presents the 

absolute performance scores considering our system under test of a single processor (𝑥 = 1) 

                                                           
426

 Second memory module: server system settings require a memory module per processor, based upon 
the fact of the regular expansion 
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and two processors (𝑥 = 2)  in (𝑆𝑃𝑥. 𝑦. 𝑧) . We observe that an extra processor always 

increases the peak performance scores. In our example, the performance scores increase by 

the approximate factor of 1.31 between (𝑆𝑃1.2.8) and (𝑆𝑃2.2.16), but the extra processor is 

more efficient between (𝑆𝑃1.3.18) and (𝑆𝑃2.3.36) by a factor of nearly 2.2. To our surprise, 

we observe that the performance scores of the (𝑆𝑃1.2.8) are higher in comparison to 

(𝑆𝑃1.3.18), which has more memory capacity (𝑧 = 18). One reason may be the restricted 

memory bandwidth or processor cache size. In the case of the configuration, including a second 

processor we observe that the additional memory capacity significantly improves the 

performance from 339.863 at (𝑆𝑃2.2.16) up to 520.375 at (𝑆𝑃2.3.36). 

 
Figure 184: SPECpower (𝑺𝑷𝒙. 𝒚. 𝒛) performance scores 

In our simulation model, we create a database to specify the particular component-based as 

well as system-specific performance scores concerning their various characteristics and 

benchmarks. Herein, we support a wide variety of hardware and software configurations and 

their related performance scores.  
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