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Abstract

One central goal in the analysis of dynamical systems is the characterization of long
term behavior of the system state. To this end, the so-called global attractor is of
interest, that is, an invariant set that attracts all the trajectories of the underlying
dynamical system. Over the last 20 years so-called set-oriented numerical meth-
ods have been developed that allow to compute approximations of invariant sets.
The basic idea is to cover the objects of interest, for instance attractors or unstable
manifolds, by outer approximations which are created via subdivision techniques.
However, the applicability of those techniques is restricted to finite dimensional
dynamical systems, i.e. ordinary differential equations or discrete dynamical sys-
tems.

In the first part of this thesis, we will extend the set-oriented numerical methods
which are available in the software package GAIO (Global Analysis of Invariant
Objects) to the infinite dimensional context. With those extensions we will be
able to compute finite dimensional invariant sets for infinite dimensional dynami-
cal systems, e.g. for delay and partial differential equations. The idea is to utilize
infinite dimensional embedding techniques in our numerical treatment. This will
allow us to construct a finite dimensional dynamical system, the so-called core dy-
namical system (CDS), on an appropriately chosen observation space. Using the
CDS, we then can approximate finite dimensional embedded attractors or embed-
ded unstable manifolds. Furthermore, we will be able to compute approximations
of the embedded invariant measure in the observation space which gives a statis-
tical description of the dynamical behavior of the infinite dimensional dynamical
system.

In the second part of this thesis we will first construct a numerical realization of the
CDS for delay differential equations with (small) state dependent time delay. Using
the set-oriented techniques introduced in the first part of this thesis, we will compute
several embedded invariant sets and invariant measures, e.g. for the well-known
Mackey-Glass equation representing a model of blood production. Analogously, we
will present a numerical realization of the CDS for partial differential equations,
where we will show approximations of embedded unstable manifolds of the one-
dimensional Kuramoto-Sivashinsky equation.

In contrast to the finite dimensional setting, the numerical effort of the set-oriented
techniques for the computation of embedded invariant sets not only depends on a
combination of both the dimension of the invariant set and the dimension of the
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underlying space, but also on the efficient numerical realization of the selection step
in the subdivision algorithm or the continuation step in the continuation algorithm,
respectively. To this end, in the third part of this thesis, we will present modifications
for the subdivision and the continuation method. In particular, those modifications
will allow us to compute invariant sets of infinite dimensional dynamical systems
more efficiently.
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Zusammenfassung

Ein zentrales Ziel in der Analyse dynamischer Systeme ist die Charakterisierung des
Langzeitverhaltens der Systemzustände. Zu diesem Zwecke interessiert man sich
für den sogenannten globalen Attraktor, welcher eine invariante Menge beschreibt,
die alle Trajektorien des zugrundeliegenden dynamischen Systems anzieht. In den
letzten 20 Jahren wurden mengenorientierte numerische Verfahren entwickelt, die
es erlauben invariante Mengen zu approximieren. Die Idee hierbei ist, die für uns
interessanten Objekte, wie z. B. Attraktoren oder instabile Mannigfaltigkeiten, ap-
proximativ mit Boxen zu überdecken. Dies wird mit sogenannten Unterteilungstech-
niken realisiert. Jedoch sind diese Verfahren bislang nur für endlich-dimensionale
dynamische Systeme definiert, wie zum Beispiel gewöhnliche Differentialgleichungen
oder diskrete dynamische Systeme.

Im ersten Teil dieser Dissertation werden wir die klassischen Techniken, welche im
Software-Paket GAIO (Global Analysis of Invariant Objects) implementiert sind, auf
unendlich-dimensionale Systeme erweitern. Diese Erweiterung wird es uns erlauben
endlich-dimensionale invariante Mengen unendlich-dimensionaler dynamischer Sys-
teme, zum Beispiel retardierter oder partieller Differentialgleichungen, zu berech-
nen. Grundlage unserer Erweiterung auf unendlich-dimensionale Systeme wird ein
Einbettungsresultat sein, welches uns erlaubt ein endlich-dimensionales dynamis-
ches System, das sogenannte core dynamical system (CDS), im Einbettungsraum
(im Weiteren Beobachtungsraum genannt) zu konstruieren. Das CDS wird es uns
erlauben endlich-dimensionale eingebettete Attraktoren oder eingebettete instabile
Mannigfaltigkeiten zu approximieren. Des Weiteren werden wir auch in der Lage sein
eingebettete invariante Maße zu berechnen, welche uns eine statistische Beschrei-
bung des dynamischen Verhaltens der zugrundeliegenden unendlich-dimensionalen
dynamischen Systeme liefern.

Im zweiten Teil dieser Arbeit werden wir zuerst eine numerische Realisierung des
CDS für retardierte Differentialgleichungen mit (kleiner) zustandsabhängiger Totzeit
konstruieren. Dies erlaubt uns die Algorithmen aus dem ersten Teil dieser Disser-
tation auf unterschiedliche Beispiele anzuwenden, um eingebettete invariante Men-
gen, oder invariante Maße zu berechnen. Als ein Beispiel betrachten wir dabei
die Mackey-Glass Gleichung, welche ein Model für die Blutproduktion beschreibt.
Analog dazu präsentieren wir eine numerische Realisierung des CDS für partielle Dif-
ferentialgleichungen und zeigen Approximationen eingebetteter instabiler Mannig-
faltigkeiten der eindimensionalen Kuramoto-Sivashinsky Gleichung.
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Im Unterschied zu endlich-dimensionalen dynamischen Systemen hängt der nume-
rische Aufwand der mengenorientierten Techniken für die Berechnung eingebetteter
invarianter Mengen nicht nur von der Dimension der invarianten Menge und der
Dimension des zugrundeliegenden endlich-dimensionalen Raumes ab, sondern eben-
falls von der numerischen Realisierung des Auswahlschrittes im Unterteilungsalgo-
rithmus, bzw. des Fortsetzungsschrittes im Fortsetzungsalgorithmus. Zu diesem
Zweck werden wir im dritten Teil dieser Arbeit verschiedene Modifikationen sowohl
für das Unterteilungsverfahren als auch für das Fortsetzungsverfahren vorstellen.
Insbesondere werden es uns diese Modifikationen erlauben die invarianten Mengen
effizienter zu berechnen.
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1 Introduction

Dynamical systems find a wide range of applications for everyday processes such
as the flocking of birds, population dynamics, or weather forecasting. Moreover,
they allow further insight into areas not only in mathematics but also, e.g. in biol-
ogy (predator-prey models [May74]), economics [Tu12], or physics (climate models
[JBC`07]). A special class are autonomous dynamical systems, where the progres-
sion only depends on the initial state but not on the time (cf. [KH97, GH13] for
a detailed introduction). If it also depends on the initial time then the dynamical
system is called nonautonomous. In this thesis we will only consider autonomous
dynamical systems. These systems are often modeled by differential equations with
finite or infinite dimensional state space. Typical states, e.g. in mechanical systems,
are the position coordinates and velocities of mechanical parts.

One central goal in the analysis of dynamical systems is the characterization of long
term behavior of the system state. To this end, the so-called global attractor, i.e. an
invariant set that attracts every trajectory of the underlying dynamical system is
of interest. The global attractor also contains all unstable manifolds, which have a
crucial influence on the complexity of the system’s dynamics [GH13]. In general,
the computation of (global) attractors or unstable manifolds by direct simulation
is not sufficient (except in very special cases, e.g. a linear system with a stable
fixed point). Thus, in order to approximate invariant sets dedicated algorithms are
required for this task. Geometrical approaches can be used to approximate (two
dimensional) unstable manifolds of vector fields (see [KOD`05] for an overview).
The approximation by geodesic level sets, for instance, produces a regular mesh
that consists of geodesic circles by solving appropriate boundary value problems.
Recently, a variational approach has been developed, where an appropriate dis-
tance function between a suitably selected finite set of points and its image under
the dynamics has to be minimized [JK17]. With this approach invariant sets of
arbitrary topology, dimension, and stability can be approximated. Furthermore, so-
called set-oriented numerical methods have been developed over the last two decades
(cf., e.g. [DH96, DH97, DJ99, FD03, FLS10]). Here, the basic idea is to cover the
objects of interest such as attractors, invariant manifolds or almost invariant sets
by outer approximations which are created via subdivision techniques. The nu-
merical effort depends essentially on the dimension of the global attractor. For
instance, it is easier to compute a one-dimensional attractor in a ten-dimensional
space than to compute a three-dimensional attractor in a four-dimensional space
[DH97]. The set-oriented techniques have been used in several different application
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1 Introduction

areas such as molecular dynamics ([DDJS99, SHD01, DGM`05]), astrodynamics
([DJL`05, DJK`05, DJ06]) or ocean dynamics ([FHR`12]). Recently, a set-oriented
numerical methodology has been developed which allows to perform uncertainty
quantification for dynamical systems from a global point of view [DKZ17]. All set-
oriented algorithms are implemented in the dynamical systems software package
GAIO (Global Analysis of Invariant Objects), which is available for MATLAB (see
https://github.com/gaioguy/GAIO) [DFJ01].

The methodologies discussed above are restricted to dynamical systems modeled by
differential equations with finite dimensional state space, i.e. ordinary differential
equations or discrete dynamical systems. However, in the case of infinite dimen-
sional dynamical systems, the approximation of (global) attractors is much more
complicated than in the finite dimensional case. Numerically, each state in the in-
finite dimensional space can be discretized in a (possibly very) high-dimensional
space leading to a finite dimensional dynamical system. Therefore, the applicability
of the set-oriented techniques is no longer feasible. Instead, one can perform long-
term simulations of arbitrary initial states in order to gain information about the
dynamical behavior. However, if one is interested in the computation of finite di-
mensional invariant sets of infinite dimensional dynamical systems, i.e. the analysis
of the (global) long-term behavior, simple numerical integration of the flow is not
sufficient. One can combine, for instance, topological tools like the Conley index
with rigorous computations based on computational homology for the global analy-
sis [DJM04] of such systems. Furthermore, for many infinite dimensional dynamical
systems a finite dimensional so-called inertial manifold exists to which trajectories
are attracted exponentially fast [CFNT88, FJK`88, Tem97]. Roughly speaking, an
inertial manifold determines how an infinite number of degrees of freedom are com-
pletely controlled by only a finite number of degrees of freedom. To this end, it
suffices to study the dynamics on the inertial manifold which can be described by
an appropriate reduced order model (ROM). Such a ROM can, e.g. be constructed
via a Galerkin expansion which yields an ordinary differential equation in a finite
(but possibly still high) dimensional state space.

One typical application scenario in which finite dimensional invariant sets in infinite
dimensional dynamical systems arise includes, for instance, the analysis of delay dif-
ferential equations (DDEs) with small time delay ([Dri68, Chi03, CMRV05]). DDEs
are also called time-delay systems and compared to ordinary differential equations
the time derivative of the unknown function not only depends on the current state
but also on previous times [Kua93]. Hence, in order to compute a solution of a
DDE an initial history over a time interval, and thus an initial function, has to be
known. DDEs are of particular interest when more realistic models are required
in which time-delayed aftereffects have to be considered, e.g. for applications in
population dynamics, epidemiology and mechanics [Kua93, CR00, AHD07, KM13].
The Mackey-Glass equation [MG77], for instance, is a model of the concentration of
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blood production at a specific time which also depends on the concentration at an
earlier time, i.e. when the request for more blood is made.
Another typical application scenario includes the analysis of certain types of dissipa-
tive dynamical systems described by partial differential equations (PDEs), includ-
ing the Kuramoto-Sivashinsky equation [FNST86, JKT90, Rob94], the Ginzburg-
Landau equation [DGHN88], or a scalar reaction-diffusion equation with a cubic non-
linearity [Jol89]. In all these cases, a finite dimensional inertial manifold exists, see
e.g. [CFNT88, FJK`88, Tem97]. The Kuramoto-Sivashinsky equation, for instance,
has attracted a lot of interest as a model for complex spatio-temporal dynamics and
has been derived in the context of several extended physical problems, e.g. phase
dynamics in reaction-diffusion systems [KT76] or small thermal diffusive instabilities
in laminar flame fronts [Siv77]. It is also a great paradigm for finite dimensional
dynamics in a PDE and thus can be described by an appropriate finite dimensional
dynamical system, e.g. obtained by a Galerkin expansion.

Besides Galerkin expansions, another approach to construct a ROM of an infinite
dimensional dynamical system is by means of the Koopman operator [Koo31]. This
operator is a linear but infinite dimensional operator whose modes and eigenval-
ues, which are associated with a fixed oscillation frequency and growth/decay rate,
capture the evolution of observables describing any, even nonlinear, dynamical sys-
tem [RMB`09, TRL`14]. In the Koopman operator context the observables are
real valued functions of the state. The spectral properties of the Koopman op-
erator (see e.g. [Mez05, BMM12]) play a crucial role in analyzing the underly-
ing infinite dimensional dynamical system and can, e.g. be used to analyze fluid
flows [RMB`10, Mez13]. Furthermore, other application scenarios where Koop-
man operator theory can be applied are power system technologies [SMRH16] or
optimal control of PDEs [BBPK16, PK17]. Since the Koopman operator is in-
finite dimensional, one first has to compute an appropriate approximation. To
this end, data driven methods that approximate the leading Koopman eigenfunc-
tions, eigenvalues and modes from a data set of successive snapshots can be used.
The extended dynamic mode decomposition (EDMD) [WKR15, KKS16, KNK`18] is
one such algorithm and an extension of the dynamic mode decomposition (DMD)
(cf. [Sch10, TRL`14, AM17]). The convergence of EDMD towards the Koopman
operator has recently been proven in [KM18].

The Koopman operator approach is particularly suited to be applied to sensor mea-
surements or in the case where the underlying system dynamics are unknown. If one,
however, is interested in the reconstruction of attractors or the qualitative dynamics
from (experimental) data or measurements the general idea of embedding theory can
be used [BK86]. The first result on embeddings in the dynamical systems context is
Taken’s embedding theorem [Tak81] based on Whitney’s embedding theorem [Whi36].
Whitney’s embedding theorem states that a generic map from a d-dimensional man-
ifold to a p2d` 1q-dimensional Euclidean space is an embedding. In particular, this
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1 Introduction

means that the map is injective. In the context of Whitney’s embedding theorem
the 2d` 1 independent measurements (observations) can be considered as a map.
Takens has shown that a compact manifold of dimension d of a finite dimensional
dynamical system can generically be embedded using a delay-coordinate map, which
consists of observations of the dynamical behavior at an appropriate number (at
least 2d ` 1) of consecutive snapshots in time. The main difference to Whitney’s
embedding theorem is that we only need time-delayed versions of one generic obser-
vation in order to embed the d-dimensional manifold. Taken’s embedding theorem
has, e.g. been applied to predict chaotic time series, also in combination with neural
networks [FS87, Cas89, PRK92]. For the latter, in order to model the dynamics
of the system that produced the signal, the first step is to reconstruct the attrac-
tor of the system by using Taken’s embedding theorem and then train an artificial
neural network to predict time series over long time periods [PRK92]. The no-
tion of a generic property in Taken’s theorem means, roughly speaking, that the
set of embeddings is an open and dense set of smooth maps. The first statement
means that each embedding with an arbitrarily small perturbation is still an em-
bedding, whereas the second statement means that every smooth map, whether it
is an embedding or not, is arbitrarily near an embedding [SYC91]. From an ex-
perimentalist’s point of view, however, it is desirable to know if the particular map
that results from analyzing the experimental data is an embedding with probability
one. The problem with such a statement is that the space of all smooth maps is
infinite dimensional. The notion of probability one on infinite dimensional spaces
does not have an obvious generalization from finite dimensional spaces. There is no
measure on a Banach space that corresponds to the Lebesgue measure on finite di-
mensional subspaces [HSY92]. In [HSY92] the authors propose a measure-theoretic
condition for a property to hold “almost-everywhere” on an infinite dimensional
vector space, the so called prevalence. This property has been used by Sauer et al.
in [SYC91], where Taken’s theorem has been extended to the context of compact
invariant sets of box-counting dimension d, i.e. invariant sets which have a fractal
dimension. There it has been shown that the same observation map can be used
for the reconstruction of the invariant set as long as more than 2d consecutive snap-
shots in time are used. Moreover, the notion of genericity has been replaced by
prevalence.

Finally, Robinson extended the results obtained in [SYC91] to dynamical systems
on infinite dimensional Banach spaces [Rob05]. Robinson’s main result is based on
the work by Hunt & Kaloshin [HK99], where an infinite dimensional embedding
result for linear maps has been proven. It turns out that in Robinson’s embedding
theorem, the same observation map as defined in Taken’s theorem can be used to
reconstruct invariant sets of finite dimensional box-counting dimension d. However,
in addition to the dimension of the set, it is necessary to know how well the invariant
set can be approximated by finite dimensional subspaces of the underlying Banach
space. This information is encoded in the so-called thickness exponent σ. Therefore,
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the lower bound on the number of snapshots, 2d, has to be replaced by 2p1 ` σqd.
Friz & Robinson have shown that in some sense the thickness exponent is inversely
proportional to smoothness [FR99]. More precisely, they show that global attractors,
which are uniformly bounded in the Sobolev spaces Hs for all s ą 0, have thickness
exponent zero. As a consequence, in certain settings the attractor of the Navier-
Stokes equations has thickness exponent zero. In addition, Ott, Hunt & Kaloshin
suspected that many of the attractors arising in dynamical systems defined by the
evolution equations of mathematical physics have thickness exponent zero [OHK06].
In summary, even for infinite dimensional dynamical systems, we can generically
embed finite dimensional invariant sets by using an appropriate number of single
measurements of its state.
There are several further extensions of Taken’s theorem. For instance in [Sta99]
forced systems are considered, and in [MB04] one can find a stochastic version
of this result. In [Rob08, CLR13] embedding results for infinite dimensional non-
autonomous dynamical systems have been introduced .

The main goal of this thesis is to present set-oriented numerical methods that allow
us to compute approximations of finite dimensional invariant sets of infinite dimen-
sional dynamical systems. Our results in this thesis are based on Hunt & Kaloshin’s
and Robinson’s embedding theorems. In particular, they allow us to embed invariant
sets, in what follows called embedded invariant sets, into finite dimensional spaces.
Assuming that a bound on the box-counting dimension and the thickness exponent
of the invariant set are known we use the observation map and its inverse to define
a finite dimensional dynamical system ϕ, the core dynamical system (CDS), in the
observation space of dimension k ą 2p1 ` σqd. If d and σ are sufficiently low such
that k ď 7 we can apply set-oriented techniques developed in this thesis in order
to compute the embedded invariant set for ϕ. Otherwise, the computation becomes
too expensive and we can only compute projections of the embedded invariant set,
which can not be guaranteed to be one-to-one (cf. [SYC91] for a discussion on this
topic).
The first method developed in this thesis is based on [DH97], and is a set-oriented
subdivision method for the approximation of parts of the embedded (global) at-
tractor, called the relative global attractor. Starting with a box covering in the
observation space in which we want to analyze the observations of the dynamical
behavior of the infinite dimensional dynamical system, we successively subdivide all
boxes and delete those boxes which do not contain any part of the relative global
attractor [DHZ16]. We repeat these steps until the desired accuracy of the approx-
imation is obtained. In principle we use a combination of cell mapping techniques
[Hsu87] with a subdivision procedure.
The second method developed in this thesis is a set-oriented continuation method
based on [DH96], which allows us to approximate embedded unstable manifolds that
are also part of the relative global attractor. This method operates locally in the
sense that we start the computation at an unstable fixed point in observation space
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1 Introduction

and compute parts of the embedded unstable manifold by a continuation procedure
[ZDG18].
As a final step, we can use these coverings obtained by the set-oriented methods
in order to determine a statistical description of the dynamical behavior encoded
in the underlying invariant measure. To this end, we can use the results obtained
in [DJ99] in a straightforward manner and compute an approximation of the trans-
fer operator on the box covering obtained by our set-oriented techniques. The
transfer operator, also known as the Perron-Frobenius operator, is a classical math-
ematical tool for the numerical analysis of complicated dynamical behavior, see
e.g. [DJ99, SHD01, FP09, Kol10] and it was recently also used for the analysis of
dynamical systems with uncertain parameters [DKZ17] or in the context of stochas-
tic differential equations [FK17]. By definition, the invariant measure is a fixed
point of the transfer operator. The numerical approximation of the transfer opera-
tor yields a stochastic matrix PN and its eigenvector corresponding to the eigenvalue
one approximates the embedded invariant measure.
Observe that in contrast to classical Galerkin schemes where the approximation qual-
ity is controlled by the number of modes and hence the dimension of the Galerkin
space, we can always perform the numerical approximation of the invariant sets via
the set-oriented techniques within a finite dimensional space of fixed dimension k.
While this is in principle also possible for infinite dimensional dynamical systems
possessing a finite dimensional inertial manifold, our method works without any a
priori identification of determining modes for the inertial manifold. However, the
drawback of our method is that to guarantee that the observation map is one-to-
one, we need to choose k sufficiently large, i.e. preferably sharp estimates of the
upper box-counting dimension d and the thickness exponent σ have to be known a
priori.

This thesis is organized as follows: in Chapter 2 and 3 the mathematical concepts
used throughout this thesis will be introduced. In Chapter 2 the focus lies on
set-oriented techniques, where we first briefly introduce some of the basic notions
on invariant sets of dynamical systems. Furthermore, we review the contents of
[DH97, DH96], i.e. the subdivision and continuation method for the approximation
of relative global attractors and unstable manifolds, respectively. The chapter con-
cludes with an introduction to transfer operators and the numerical approximation
of invariant measures [DJ99]. Chapter 3 gives a detailed overview of finite dimen-
sional as well as infinite dimensional embedding results. The aim of this chapter is
to present Robinson’s infinite dimensional embedding result that allows us to embed
a finite dimensional invariant set of an infinite dimensional dynamical system into
a finite dimensional space [Rob05].

In Chapter 4 we will employ the main result of Robinson introduced in Chapter 3
to construct a numerical approach to compute compact finite dimensional invariant
sets of infinite dimensional dynamical systems. We will construct the core dynamical
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Figure 1.1: Illustration of the approach in this thesis: by assuming that there exists a
finite dimensional invariant set in function space (red), where, e.g. one state
corresponds to one snapshot of a three-dimensional flow field described by
the Navier-Stokes Equations (from Klus et al., [KGPS16]), we will use infi-
nite dimensional embedding theorems to embed this invariant set in a finite
dimensional space (blue), i.e. the observation space. A state in function
space mapped under the observation map corresponds to a point in observa-
tion space. Then we use the core dynamical system in the observation space
in order to approximate embedded invariant sets and embedded invariant
measures via set-oriented techniques.

system on the finite dimensional observation space using a generalization of Tietze’s
extension theorem [DS88] which is due to Dugundji [Dug51]. By this construction,
the dynamics of the CDS on the embedded invariant set is topologically conjugate
to that of the underlying infinite dimensional dynamical system on its invariant set
[DHZ16] (cf. Figure 1.1 for an illustration of our approach).

In Chapter 5 set-oriented techniques for the approximation of embedded invariant
sets are developed. First, we will extend the subdivision technique introduced in
Chapter 2.2 to continuous but not necessarily homeomorphic dynamical systems.
Then we will show how to approximate embedded attractors via the subdivision

7



1 Introduction

method [DHZ16]. Finally, we present an extension of the continuation method in-
troduced in Chapter 2.3 that allows us to approximate embedded unstable manifolds
[ZDG18].

The numerical approach introduced in Chapter 4 and Chapter 5 is applicable to
arbitrary infinite dimensional dynamical systems described by a Lipschitz continuous
operator on a Banach space. In Chapter 6, however, we will restrict our attention
to DDEs with (small) state dependent time delay as well as PDEs. In the case
of DDEs, we will propose one specific numerical realization of the CDS, where we
choose the observation map to be the delay-coordinate map according to [Rob05].
Then we show how to numerically construct the inverse of this map. The inverse
map takes a point from the observation space and constructs an initial function in
the underlying function space [DHZ16]. In fact, the particular realization of this
inverse map strongly depends on the observations we use. As a consequence, if the
numerical realization is difficult to achieve then this is an indicator that we have
to choose other observations. The numerical construction of the CDS will allow us
to use the set-oriented methods developed in Chapter 5 to approximate invariant
sets and invariant measures for several DDEs. In the second part of Chapter 6 we
show a numerical realization of the CDS for PDEs [ZDG18]. Following [HK99],
we use a linear observation map, which projects a function from function space
onto an orthonormal basis computed with the Proper Orthogonal Decomposition
(POD) [Sir87]. Here, we assume that each state variable can be represented by a
projection onto a set of POD-basis functions. The POD-coefficients are then our
observables which, when multiplied by their corresponding basis functions and the
resulting linear combination of basis functions are summed together, will reproduce
an approximation of the original state. We conclude this chapter by presenting
several unstable manifolds of the one-dimensional Kuramoto-Sivashinsky equation
in different regimes.

The CDS allows us to use set-oriented techniques in a finite dimensional space even
when the dynamical system is infinite dimensional. However, due to the construc-
tion of the CDS each evaluation also includes evaluations of the underlying infinite
dimensional dynamical system, e.g. the time-T -map of a PDE. The crucial steps in
the subdivision and continuation algorithms are the selection and continuation step,
respectively. In both steps, we have to check if the image of a box under the CDS
has a non-empty intersection with another box in the box collection. Numerically,
this is realized as follows: within each box we choose a possibly large number of test
points, map each test point under the CDS and check if another box is hit. Thus, the
evaluation of one selection or continuation step may be very expensive. Therefore,
in comparison to the classical setting, i.e. in case of a finite dimensional dynamical
system, the numerical effort not only depends on the dimension of the underlying
space and the dimension of the attractor, but also on the efficient evaluation of the
selection and continuation step, respectively. To this end, modifications of both
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steps are presented in Chapter 7. In the first part of Chapter 7 we will develop
a modified selection step, where the number of function evaluations of the CDS is
decreased by a factor of approximately two. By storing information from previous
selection steps of the subdivision algorithm and using a slightly modified selection
step, this strategy decreases the overall computational time by a factor of approx-
imately four. In the second part of Chapter 7 we develop a sequential procedure
for the subdivision method which adaptively increases the embedding dimension
if it has been chosen too low initially, without starting the algorithm anew. This
procedure is particularly useful for dynamical systems for which a priori estimates
of the upper box-counting dimension and the thickness exponent are not known.
Finally, we present a Koopman operator based continuation method in which the
evaluation of the CDS is partially replaced by local ROMs based on the Koopman
operator [ZPD18]. We start by introducing the Koopman operator and its numerical
approximation via EDMD. Then we will show how to apply the Koopman operator
to the continuation step in order to compute approximations of embedded unstable
manifolds more efficiently. We conclude each part of Chapter 7 with at least one
example.

Parts of this thesis grew out of publications to which the author has made sub-
stantial contributions. They are referenced at the beginning of the respective chap-
ters.
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2 Classical set-oriented techniques

The purpose of this chapter is to introduce and review the mathematical con-
cepts of set-oriented numerical methods. Over the last two decades they have
been developed in the context of the numerical treatment of dynamical systems
(e.g. [DH97, DJ99, FD03, FLS10]). The basic idea is to cover the objects of interest
like invariant sets or invariant measures by outer approximations which are created
via subdivision techniques. The set-oriented techniques have been used in several dif-
ferent application areas such as molecular dynamics ([DDJS99, SHD01, DGM`05]),
astrodynamics ([DJL`05, DJK`05, DJ06]) or ocean dynamics ([FHR`12]). In Sec-
tion 2.1 we first start with some of the basic notions on invariant sets of dynamical
systems (e.g. [ER85]). The set-oriented techniques developed in [DH97] and [DH96]
will be reviewed in Section 2.2 and 2.3, respectively. Finally, in Section 2.4 we will
briefly summarize the results of [DJ99]. The aim of this section is to determine a
statistical description of the dynamical behavior. This information is encoded in
the underlying invariant measure and we will use a transfer operator approach in
order to approximate invariant measures on box coverings obtained by set-oriented
methods.

2.1 Theoretical background

One central aspect in the theory of dynamical systems is to study long term behavior
of the system’s states. To this end, the so-called global attractor is of interest, that
is, an invariant set that attracts all the trajectories of the underlying dynamical
system. Following the contents of [DH97], in this section we will present some basic
notions on invariant sets of dynamical systems. In what follows, we consider discrete
autonomous dynamical systems of the form

xj`1 “ ϕpxjq, j “ 0, 1, . . . , (2.1)

where ϕ : Rn Ñ Rn is a homeomorphism. Such systems arise, for instance, if one
considers the time-T -map of an ordinary differential equation. A subset A Ă Rn is
called ϕ-invariant if

ϕpAq “ A. (2.2)

11



2 Classical set-oriented techniques

We call an invariant set A an attracting set with fundamental neighborhood U if for
every open set V Ą A there exists a N P N such that ϕjpUq Ă V, @j ě N . Observe
that if A is invariant then the closure of A is invariant, too (e.g. [Tes12]). Thus, we
restrict our attention to closed invariant sets A, i.e.

A “
č

jě0
ϕjpUq.

By definition all the points in the fundamental neighborhood U are attracted by
A. Therefore, we call the open set

Ť

jě0 ϕ
´jpUq the basin of attraction of A. If

the basin of attraction of A is equal to the whole of Rn then A is called the global
attractor.

Remark 2.1.1.

1. Observe that, in general, the global attractor may not be compact. Nonetheless,
in applications it can frequently be observed that all the orbits of the underlying
dynamical system eventually lie inside a bounded domain in Rn, and thus, the
compactness of A immediately follows.

2. The global attractor contains all the invariant sets of the dynamical system.
Moreover, if the global attractor is compact, then it also contains all invariant
compact sets.

In applications of the algorithms developed in [DH97, DH96] we approximate just a
part of the global attractor within a specified compact set Q Ă Rn. To this end, for
Q Ă Rn we define the global attractor relative to Q as follows:

Definition 2.1.2. Let Q Ă Rn be a compact set and assume that the dynamical
system (2.1) possesses an invariant set A, i.e. ϕpAq “ A. Then the global attractor
relative to Q is defined as

AQ “
č

jě0
ϕjpQq. (2.3)

Remark 2.1.3.

1. The definition of AQ in (2.3) implies that AQ Ă Q. Moreover,

ϕ´1
pAQq “

č

jě0
ϕj´1

pQq

“ ϕ´1
pQq X

˜

č

jě0
ϕjpQq

¸

“ ϕ´1
pQq X AQ

Ă AQ,

12



2.2 The subdivision algorithm

but not necessarily ϕpAQq Ă AQ. In particular, AQ may not be invariant.
Furthermore, since Q is compact and ϕ a homeomorphism AQ is compact as
well.

2. Let A be the global attractor of ϕ. Then the global attractor relative to Q is a
subset of A. Moreover, observe that in general

AQ ‰ AXQ.

Let us consider, for instance, a heteroclinic connection between two hyperbolic
fixed points p and q. Furthermore, suppose that the unstable manifold of p is
the stable manifold of q. Next, we consider a compact set Q which contains q
but not the entire heteroclinic connection to p. On one hand, by definition the
global attractor A contains the heteroclinic connection between p and q, but,
on the other hand, AQ does not contain the part of the heteroclinic connection
between p and q. Hence, AQ ‰ AXQ.

2.2 The subdivision algorithm

In this section we describe the subdivision algorithm and how it can be used to
approximate the relative global attractor AQ [DH97]. The idea of the subdivision
algorithm is as follows: we start with a finite family of (large) compact subsets of
Rn which cover the domain in which we want to analyze the dynamical behavior.
Numerically, we will realize this finite family of compact subsets by n-dimensional
cubes, throughout this thesis termed as boxes defined by

Bpc, rq “ ty P Rn : |yi ´ ci| ď ri for i “ 1, . . . , nu ,

where c, r P Rn, ri ą 0 for i “ 1, . . . , n, are the center and radii, respectively. Then
we subdivide each of these boxes into smaller ones, e.g. by bisection with respect
to the j-th coordinate, where j is varied cyclically, and keep only those boxes that
contain parts of the relative global attractor. Continuing this process with the
new collection of (smaller) sets generates successively better approximations of the
relative global attractor. This process terminates when a predefined lower bound of
the box-radius is reached.

Let us be more precise. By using the subdivision algorithm we obtain a sequence
B0,B1, . . . of finite collections of compact subsets of Rn such that the diameter

diampB`q “ max
BPB`

diampBq

13



2 Classical set-oriented techniques

converges to zero for ` Ñ 8. Given an initial collection B0, we inductively obtain
B` from B`´1 for ` “ 1, 2, . . . in two steps.

1. Subdivision step: construct a new collection B̂` such that
ď

BPB̂`

B “
ď

BPB`´1

B (2.4)

and
diampB̂`q “ θ` diampB`´1q, (2.5)

where 0 ă θmin ď θ` ď θmax ă 1, e.g. θ` “ θ “ 1{2.

2. Selection step: define the new collection B` by

B` “

!

B P B̂` : DB̂ P B̂` such that ϕ´1
pBq X B̂ ‰ H

)

. (2.6)

The subdivision step guarantees that the collections B` consist of successively finer
sets for increasing `. In fact, by construction

diampB`q ď θ`max diampB0q Ñ 0 for `Ñ 8.

By applying the selection step we remove each subset whose preimage does nei-
ther intersect itself nor any other subset in B̂`. Therefore, this step is respon-
sible for the fact that the unions

Ť

BPB`
B approach the relative global attrac-

tor.

Remark 2.2.1.

1. Note that in the selection step (2.6), we have to decide whether or not the
preimage of a given set Bi P B̂` has a nonzero intersection with another set
Bj P B̂`, i.e.

ϕ´1
pBiq XBj “ H. (2.7)

Numerically, this is realized as follows: we discretize each box Bj by a finite
set of test points x P Bj and replace the condition (2.7) by

ϕpxq R Bi for all test points x P Bj. (2.8)

A rigorous discretization of each box Bj that reduces the numerical effort for
the evaluation of (2.8) has been introduced in [Jun00]. However, in this work
local Lipschitz constants for the map ϕ have to be known.

2. In practice the test points x P Bj can be chosen according to several different
strategies: in low-dimensional problems one can choose them from a regular
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2.2 The subdivision algorithm

grid within each box Bj. Alternatively one can select the test points from the
boundaries of the boxes or at random with respect to a uniform distribution.
Throughout this thesis, we use the Halton sequence which is a quasi-random
number sequence [Hal64].

In what follows, we will show that this algorithm always converges to a relative global
attractor if ` is going to infinity. To this end, let us denote by Q` the collection of
compact subsets obtained after ` subdivision steps, that is,

Q` “
ď

BPB`

B.

Moreover, we denote the initial covering of the set Q by Q0, i.e. Q0 “
Ť

BPB0
B “ Q,

where B0 is a finite collection of closed subsets.

We begin by noticing that the relative global attractor is always covered by the sets
Q`.

Lemma 2.2.2. Let AQ be a global attractor relative to the compact set Q, and let
B0 be a finite collection of closed subsets whose union is Q, i.e. Q0 “

Ť

BPB0
B “ Q.

Then the sets Q` obtained by the subdivision algorithm contain the relative global
attractor, i.e.

AQ Ă Q` for all ` P N.

Proof. By Definition 2.1.2 we know that AQ Ă Q “ Q0. Suppose there exists a
x P AQ Ă Q`´1 such that x R Q` for some ` ą 0. Then there is a box B P B̂`

containing x which is removed in the selection step, i.e.

ϕ´1
pBq XQ`´1 “ H.

Hence, ϕ´1pxq R Q`´1. But this contradicts the fact that ϕ´1pAQq Ă AQ Ă Q`´1
(cf. item 1 of Remark 2.1.3).

In the next step, we show that every backward invariant subset of Q must be con-
tained in the relative global attractor.

Lemma 2.2.3. Let B Ă Q be a subset such that

ϕ´1
pBq Ă B. (2.9)

Then B is contained in the relative global attractor AQ.
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Proof. First we show that B is contained in the global attractor A. By (2.9) we
know that B Ă ϕjpBq for all j ě 0. Therefore,

B Ă
č

jě0
ϕjpBq Ă

č

jě0
ϕjpUq “ A,

where A is the global attractor and U its fundamental neighborhood. Furthermore,
from (2.9) it follows that ϕjpBq Ă ϕj`1pBq for all j ě 0. Hence

B “
č

jě0
ϕjpBq Ă

č

jě0
ϕjpQq “ AQ.

Due to the construction of the subdivision method the collections of compact sub-
sets denoted by Q` define a nested sequence of compact sets, that is, Q``1 Ă Q`.
Therefore, for each m,

Qm “

m
č

`“1
Q`, (2.10)

and we may view

Q8 “
8
č

`“1
Q` (2.11)

as the limit of the Q`’s. We will show that the set Q8 is backward invariant and
hence must be contained in AQ by Lemma 2.2.3.

Lemma 2.2.4. The set Q8 is a nonempty backward invariant set, i.e.

ϕ´1
pQ8q Ă Q8.

Proof. By Lemma 2.2.2 the relative global attractor AQ must be contained in the
limit set Q8. This fact yields, in particular, that Q8 is nonempty. Hence, it remains
to show that Q8 is backward invariant. To this end, we suppose that there exists a
point y P Q8 such that ϕ´1pyq R Q8. Since Q8 is compact this implies that

d
`

ϕ´1
pyq, Q8

˘

ą δ ą 0,

where d denotes the distance between ϕ´1pyq and Q8. Hence there is an integer
N ą 0 such that

d
`

ϕ´1
pyq, Qj

˘

ą
δ

2 for all j ą N.

For each j we choose a set Bjpyq P Bj containing y. Then by continuity there exists
a k ą N such that

ϕ´1
pBkpyqq XQk “ H.
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However, this is impossible by the construction of the algorithm (cf. (2.6)), and we
have obtained a contradiction. Thus, Q8 is backward invariant.

Now we are in a position to prove the following convergence result.

Proposition 2.2.5. Let AQ be a global attractor to the closed set Q, and let B0 be
a finite collection of closed subsets with Q0 “

Ť

BPB0
B “ Q. Then

AQ “ Q8.

Proof. On the one hand, by Lemma 2.2.2 AQ is contained in each Q`. Consequently,
it is also contained in Q8. On the other hand, by Lemma 2.2.4 Q8 is backward
invariant and thus Lemma 2.2.3 implies that it must be contained in the relative
global attractor AQ. Thus,

Q8 Ă AQ Ă Q8

which yields the desired result.

Remark 2.2.6. Observe that we can reformulate the main convergence result of
[DH97] to

lim
`Ñ8

h pAQ, Q`q “ 0, (2.12)

where hpB,Cq is the Hausdorff distance between two compact subsets B,C Ă Rn.

We summarize the subdivision method in Algorithm 2.1 and conclude this section
with an example.

Example 2.2.7. Let us consider a simple chaotic flow [Spr94]

9x1 “ ´x3,

9x2 “ x1 ´ x2,

9x3 “ Ax1 ` x2
2
`Bx3,

(2.13)

where A “ 3.1 and B “ 0.5 are given parameters. For this parameter regime the
system possesses the (hyperbolic) equilibria O1 “ p0, 0, 0q and O2 “ p´3.1,´3.1, 0q,
each of them having a one-dimensional stable manifold and a two-dimensional un-
stable manifold. The map ϕ : R3 Ñ R3 is defined by the time-T -map of (2.13) with
T “ 15. In Figure 2.1 (a)-(d) we show successively finer box coverings of AQ for
Q “ r´8, 8s ˆ r´8, 8s ˆ r´6, 10s.

The numerical effort of the subdivision algorithm depends on a combination of both
the dimension of the underlying space and the dimension of the global attractor.
Since the number of boxes increases exponentially, we are restricted to dynamical
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2 Classical set-oriented techniques

Algorithm 2.1 Subdivision algorithm

Initialization: Choose an initial box Q Ă Rn and start the subdivision algorithm
with B0 “ tQu.

1. Subdivision step: construct a new collection B̂` such that
ď

BPB̂`

B “
ď

BPB`´1

B

and
diampB̂`q “ θ` diampB`´1q,

where 0 ă θmin ď θ` ď θmax ă 1.

2. Selection step: define the new collection B` by

B` “

!

B P B̂` : DB̂ P B̂` such that ϕ´1
pBq X B̂ ‰ H

)

.

3. Repeat steps (1) and (2) until a prescribed size ε of the diameter relative to
the initial box Q is reached. That is, stop when

diampB`q ă ε diampQq.

(a) ` “ 9 (b) ` “ 15 (c) ` “ 21 (d) ` “ 27

Figure 2.1: (a)-(c) Successively finer coverings of the relative global attractor AQ of
(2.13) for ` “ 9, 15, 21. (d) Transparent boxes depicting the internal struc-
ture of AQ after ` “ 27 subdivision steps.

systems that posses low-dimensional attractors. If we are only interested in parts of
the attractor, e.g. the unstable manifold of a given hyperbolic fixed point, it is more
efficient, in the sense of computational time, to compute this unstable manifold via a
(set-oriented) continuation method. To this end, we will review the classical contin-
uation method introduced in [DH96] in the following section.
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2.3 The continuation method

2.3 The continuation method

Based on [DH96], we will describe how to combine the subdivision algorithm for
the computation of relative global attractors with a set-oriented continuation tech-
nique. This will allow us to approximate unstable manifolds of the discrete dynam-
ical system (2.1). But first, we note that the subdivision algorithm described in
Section 2.2 can also be used to approximate global unstable manifolds. This claim
is verified by showing that unstable manifolds are always contained in the global
attractor A if it is compact. To this end, we begin with the following definition
(cf. e.g. [ER85, PDM12]).

Definition 2.3.1. Let ϕ : Rn Ñ Rn be a diffeomorphism and p a hyperbolic fixed
point of ϕ. Then the unstable manifold of p is defined by

W u
ppq “

 

x P Rn : ϕ´jpxq Ñ p for j Ñ 8
(

. (2.14)

Moreover, the local part of W uppq, which contains the fixed point p, is called the
local unstable manifold of p. It is defined as follows:

W u
locppq “

 

x P Rn : }ϕ´jpxq ´ p} ă ε for all j P N
(

. (2.15)

The following theorem holds (cf. [ER85, DH97]):

Theorem 2.3.2. Let A be a compact attracting set of ϕ, and p P A a hyperbolic
fixed point, then

W u
ppq Ă A,

i.e. , the unstable manifold of p is contained in A.

Proof. Let p P A be a hyperbolic fixed point and suppose that y P W uppq. Let V
be an open neighborhood of A and U the fundamental neighborhood of A. Since A
is a compact attracting set there exists a k P N such that ϕ´jpyq P U for all j ě k.
On the other hand there is a l P N such that ϕjpUq Ă V for all j ě l. Hence by
taking j ě maxpk, lq we obtain

y “ ϕjpϕ´jpyqq P V.

Since V was arbitrary this completes the proof.

As a consequence, by applying the subdivision algorithm to a (small) neighborhood
of a hyperbolic fixed point we can compute a covering of the corresponding local
unstable manifold up to a given accuracy. This will be the initialization step of
the continuation method discussed in this section which was introduced in [DH96].
Then we proceed with the continuation step where we extend the covering of the local
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unstable manifold successively to coverings of larger parts of the (global) unstable
manifold.

More precisely, we define a partition P of Q to be a finite family of subsets of Q
such that

ď

BPP
B “ Q and intB X intB1 “ H, @B,B1 P P , B ‰ B1.

Moreover, we denote by Ppxq P P the element of P containing x P Q. We con-
sider a nested sequence Ps, s P N, of successively finer partitions of Q, requiring
that for all B P Ps there exist B1, . . . , Bm P Ps`1 such that B “

Ťm
i“1Bi and

diampBiq ď θ diampBq for some 0 ă θ ă 1. A set B P Ps is said to be of level s.
Now assume that CB “ Psppq is a neighborhood of the fixed point p such that the
attractor relative to CB satisfies

ACB
“ W u

locppq X CB

for some ε ą 0 (cf. (2.15)). Applying the subdivision algorithm with ` subdivision
steps to B0 “ tCBu, we obtain a covering B` Ă Ps`` of the embedded local unstable
manifold W u

locppq, that is,

ACB
“ W u

locppq X CB Ă
ď

BPB`

B. (2.16)

Here we assume that the subdivision algorithm used on B0 “ tCBu constructs box
coverings that are elements of the partitions Pn, n ą s. By Proposition 2.2.5 this
box covering converges to W u

locppq for `Ñ 8.

Now the continuation algorithm can be described as follows. For fixed ` P N we
define a sequence Cp`q0 , Cp`q1 , . . . of subsets Cp`qj Ă Ps`` by

1. Initialization step:
Cp`q0 “ B`,

where Cp`q0 is a box covering of the local unstable manifold ACB
“ W u

locppq X CB
obtained by the subdivision method (cf. Algorithm 2.1).

2. Continuation step: for j “ 0, 1, 2, . . . define

Cp`qj`1 “
!

B P Ps`` : DB1 P Cp`qj such that B X ϕpB1q ‰ H
)

. (2.17)

Remark 2.3.3.

1. Observe that the unions
C
p`q
j “

ď

BPCp`qj

B
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form a nested sequence in `, i.e.

C
p0q
j Ą C

p1q
j Ą . . . Ą C

p`q
j . . . .

In fact, it is also a nested sequence in j, i.e.

C
p`q
0 Ă C

p`q
1 . . . Ă C

p`q
j . . . .

2. In the initialization step we will often choose ` “ 0. In most applications this
is sufficient in order to get a good approximation of the unstable manifold.

3. Similar to the numerical realization of the subdivision step (cf. item 1 of Re-
mark 2.2.1) we will replace the condition

B X ϕpB1q ‰ H

in the continuation step (2.17) by

ϕpxq P B for at least one test point x P B1.

It is easy to see that the algorithm, as constructed, generates an approximation of the
embedded unstable manifold W uppq. In particular, we expect that the bigger s and
` are chosen the better the approximation of W uppq will be. In Figure 2.2 we show
some steps of the continuation method described above. However, since we restrict
our attention to a compact subset Q Ă Rn it can just be guaranteed that the algo-
rithm generates an approximation of a certain part of W uppq.

In what follows, we will define the subsets of W uppq which are indeed approximated
by the continuation method. To this end, we set W0 “ W u

locppq X CB and define
inductively for j “ 0, 1, 2, . . .

Wj`1 “ ϕpWjq XQ.

With this notion we obtain the following convergence result [DH96].

Proposition 2.3.4.

1. The sets Cp`qj are coverings of Wj for all j, ` “ 0, 1, . . . .

2. For fixed j, Cp`qj converges to Wj in Hausdorff distance if the number ` of
subdivision steps in the initialization step goes to infinity.

Proof. The first statement follows directly from (2.16), i.e. the set B` obtained by
the subdivision algorithm is always a covering of W0 “ W u

locppq X CB.
In order to prove the second statement, we first observe that by Proposition 2.2.5
C
p`q
0 converges to the relative global attractor ACB

“ W u
locppqXCB “ W0 for `Ñ 8.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Illustration of the continuation method for ` “ 0. (a) Initial box Q Ą Ak.
(b) Let CB P Ps be the box containing p. (c) Within CB choose a finite
number of test points x P Rn. Mark those boxes that are hit by ϕpxq. (d)-
(f) Repeat step (c) with those boxes that were marked in the last step until
no additional boxes were marked.

Furthermore, since j is fixed a continuity argument shows that the sets Cp`qj converge
to Wj for `Ñ 8, i.e.

C
p8q

j “
č

`ě0
C
p`q
j “ Wj.

Remark 2.3.5.

1. Observe that in general the continuation method will not lead to an approxi-
mation of the entire set W uppq X Q. If Q is not sufficiently big, the unstable
manifold of the hyperbolic fixed point p may ’leave’ Q but may as well ’wind
back’ into it. In this case we will not cover all of W uppq XQ (cf. Figure 2.3).
To get an approximation of the entire set, Q has to be chosen sufficiently large,
i.e. W uppq Ă Q.

2. Due to the realization of our set-oriented continuation method it may happen
that we also obtain a covering of the unstable manifold of another hyperbolic
fixed point q P Q. If this is the case, the continuation method will proceed
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along these unstable directions of the fixed point q as well.

(a) (b)

Figure 2.3: Illustration of the problems discussed in item 1 and item 2 of Remark 2.3.5.
(a) The dashed line will not be covered by the continuation method and
thus, we will not approximate the entire set W uppq XQ. (b) Schematic box
covering obtained by the continuation method, where in this particular case
we also obtain a covering of W upqq XQ.

We summarize the continuation method discussed in this section in the following
algorithm.

Algorithm 2.2 The continuation method

Initialization: Choose an initial box Q Ă Rn and a partition Ps of Q. Mark the box
CB P Ps with p P CB.

1. Apply the subdivision algorithm (cf. Algorithm 2.1) with ` subdivision steps
to B0 “ tCBu to obtain a covering B` Ă Ps`` of the embedded local unstable
manifold.

2. Set
Cp`q0 “ B`.

3. Continuation step: for j “ 0, 1, 2, . . . define

Cp`qj`1 “
!

B P Ps`` : DB1 P Cp`qj such that B X ϕpB1q ‰ H
)

.
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2.4 Computation of invariant measures

In this section, we will review the contents of [DJ99]. We are interested in the long
term behavior of the dynamical system

xi`1 “ ϕpxiq, i “ 0, 1, . . . ,

where ϕ : Rn Ñ Rn is a continuous map (and not a diffeomorphism as in [DJ99]),
and if this system exhibits complicated dynamics. To this end, we will determine a
statistical description of the dynamical behavior. This information is encoded in the
underlying invariant measure and we will use a transfer operator approach in order
to approximate invariant measures on the relative global attractor AQ. The transfer
operator, also called the Perron-Frobenius operator, is a classical mathematical tool
for the numerical analysis of complicated dynamical behavior, e.g. [DJ99, SHD01,
FP09, Kol10] and it was recently also used for the analysis of dynamical systems with
uncertain parameters [DKZ17] or in the context of stochastic differential equations
[FK17]. In Section 2.4.1 we will first introduce the reader to the notion of stochastic
transition functions that will allow us to define invariant measures in the stochastic
context. Then, in Section 2.4.2 and 2.4.3 we will introduce the transfer operator and
show how to numerically approximate invariant measures. Finally, in Section 2.4.4
we show a convergence result and conclude with an example, where we show the
invariant measure of the Lorenz system.

2.4.1 Stochastic transition functions and probability measures

In this section, we will follow closely the related contents in [DJ99, Kol10]. Let
Q Ă Rn be compact and denote by B the Borel-σ algebra on Q and by m the
Lebesgue measure on B.

Definition 2.4.1. Let M be the space of probability measures on B. A measure
µ P M is called invariant w.r.t. ϕ if

µpBq “ µpϕ´1
pBqq for all B P B.

We call a probability measure µ ergodic (w.r.t. ϕ), if for all invariant setsA (cf. (2.2))

µpAq “ 0 or µpAq “ 1

is satisfied. Ergodic measures play an important role in the long-term behavior of
the system:

Theorem 2.4.2 ([Bir31]). Let ϕ : QÑ Q be a measurable function on the measur-
able space pQ,B, µq and µ an ergodic measure. Then, for any φ P L1pQ,B, µq, the
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2.4 Computation of invariant measures

average of the observable φ along an orbit of ϕ is equal almost everywhere to the
average of φ w.r.t. µ, i.e.

lim
nÑ8

1
n

n
ÿ

k“0
φpϕkpxqq “

ż

Q

φ dµ µ´ a.e.

Example 2.4.3. Let x P Q and B P B. We would like to obtain the relative
frequency of an orbit tϕkpxqu8k“0 visiting B. To this end, we have

ϕkpxq P B ðñ χBpϕ
k
pxqq “ 1.

Thus, we obtain the relative frequency of points of the orbit tx, ϕpxq, . . . , ϕN´1pxqu
that visit B by

1
N

N´1
ÿ

k“0
χBpϕ

k
pxqq.

For µ an ergodic measure we finally get

lim
NÑ8

1
N

N
ÿ

k“0
χBpϕ

k
pxqq “

ż

Q

χB dµ “ µpBq µ´ a.e.,

i.e. the asymptotic relative frequency is given by µpBq.

In the remainder of this section we turn our attention to the more general stochastic
framework.

Definition 2.4.4. A function p : QˆB Ñ r0, 1s is a stochastic transition function,
if

1. ppx, ¨q is a probability measure for every x P Q,

2. pp¨, Aq is Lebesgue-measurable for every A P B.

Intuitively this means that if we are in a state x, the probability of being in the
set A in the next instance is given by the stochastic transition function ppx, Aq.
Moreover, by setting pp1qpx, Aq “ ppx, Aq, the i-step stochastic transition function
for i “ 1, 2, . . . is defined by

ppi`1q
px, Aq “

ż

Q

ppiqpy, Aqppx, dyq, i “ 1, 2, . . . . (2.18)

The definition of a stochastic transition function allows us to define invariant mea-
sures in the stochastic setting.
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2 Classical set-oriented techniques

Definition 2.4.5. Let p be a stochastic transition function. If µ P M satisfies

µpAq “

ż

Q

ppx, Aq dµpxq

for all A P B, then µ is an invariant measure of p.

Remark 2.4.6.

1. If µ is an invariant measure of p then it follows that

µpAq “

ż

Q

ppiqpx, Aq dµpxq

for all i “ 1, 2, . . ..

2. Let us denote by δy the Dirac measure supported on the point y P Q. Then
ppx, Aq “ δhpxqpAq is a stochastic transition function for every m-measurable
function h. In particular, by choosing h “ ϕ we get the deterministic situation
in this stochastic setup. More precisely, let us suppose that ppx, ¨q “ δϕpxq and
let µ be an invariant measure of p. Then, for A P B, we get

µpAq “

ż

ppx, Aq dµpxq “
ż

δϕpxqpAq dµpxq

“

ż

χApϕpxqq dµpxq “ µpϕ´1
pAqq,

where we denote by χA the characteristic function of A. Hence, µ is an invari-
ant measure for the map ϕ in the classical deterministic sense (cf. [Pol93]).

In what follows we assume that for every x P Q the probability measure ppx, ¨q is
absolutely continuous with respect to the Lebesgue measure m. Thus, we may write
ppx, ¨q as

ppx, Aq “

ż

A

kpx,yq dmpyq for all A P B,

with an appropriate transition density function k : QˆQÑ R. Obviously,

kpx, ¨q P L1
pQ,mq and kpx,yq ě 0. (2.19)

In this case, we also call the stochastic transition function p absolutely continu-
ous.

Remark 2.4.7. Observe that
ż

kpx,yq dmpyq “ ppx, Qq “ 1 for all x P Q. (2.20)
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2.4 Computation of invariant measures

Similar to (2.18), we set kp1qpx,yq “ kpx,yq and define the i-step transition density
function as

kpi`1q
px,yq “

ż

kpx, ξqkpiqpξ,yq dmpξq, i “ 1, 2, . . . . (2.21)

For A P B this yields

ppiqpx, Aq “

ż

A

kpiqpx,yq dmpyq,

i.e. the i-step transition density function kpiq is the stochastic transition density
function for pi (cf. (2.18)).

The following ergodic theorem for transition densities can be found in [Doo60].

Theorem 2.4.8. Let p : Q ˆ B Ñ r0, 1s be an absolutely continuous stochastic
transition function with density function k : QˆQÑ R. Suppose that kpx,yq ďM
for M ą 0 and all x,y P Q. Then Q can be decomposed into finitely many disjoint
invariant sets B1, B2, . . . , Bl, also called the ergodic sets of p, and a transient set
F “ Qz

Ťl
j“1Bj such that for each Bj there is a unique probability measure µj P M

with µjpBjq “ 1 and

lim
NÑ8

N
ÿ

i“1
ppiqpx, Aq “ µjpAq for all A P B and @x P Bj. (2.22)

Furthermore, the left hand side qpx, Aq in (2.22) exists uniformly in x and defines
for every fixed x P Q an invariant measure. Finally, every invariant measure of p
is a convex combination of the µj’s.

2.4.2 The transfer operator

By introducing the stochastic setting in the section before, we are now in a position
to describe the transfer operator in the stochastic context and, in particular, how
to approximate it in order to use it numerically. To this end, we start with an
introduction of this operator and review certain spectral properties. In what follows,
the related contents can also be found in [DJ99].

Definition 2.4.9. Let p be a stochastic transition function. Then the transfer op-
erator P : MC Ñ MC is defined by

PµpAq “
ż

ppx, Aq dµpxq,
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2 Classical set-oriented techniques

where MC is the space of bounded complex-valued measures on B. Moreover, if p is
absolutely continuous with density function k we can define P on L1, i.e.

Pgpyq “
ż

kpx,yqgpxq dmpxq for all g P L1. (2.23)

Remark 2.4.10. Note that in the case where p is absolutely continuous we have
P : L1 Ñ L1 since for each g P L1

ż

Pgpyq dmpyq “
ż ż

kpx,yqgpxq dmpxq dmpyq

“

ż

gpxq

ż

kpx,yq dmpyq dmpxq

“

ż

gpxq dmpxq ă 8 (cf. Remark 2.4.7).

A probability measure µ which does not change under the dynamics of the trans-
fer operator P is called an invariant measure. Thus, µ is a fixed point of P ,
i.e.

Pµ “ µ. (2.24)

In other words, invariant measures correspond to eigenmeasures of P for the eigen-
value one.

Remark 2.4.11. Observe that in the deterministic situation where ppx, ¨q “ δϕpxq
we obtain

PµpAq “
ż

ppx, Aq dµpxq “ µpϕ´1
pAqq

(cf. item 2 of Remark 2.4.6 or [LM13]).

In the remainder of this section we review a numerical method for the approximation
of such measures [DJ99].

2.4.3 Numerical approximation of invariant measures

The subdivision or the continuation method yield a box covering of the invariant
set of interest. In this section we will explain how to approximate an invariant
measure on this invariant set numerically. The invariant measure µ is a fixed point
of the transfer operator P : MC Ñ MC (cf. (2.24)). Thus, we will first compute a
discretized transfer operator PN and solve the corresponding eigenvalue problem in
order to get an approximation of the invariant measure. Throughout this section,
we follow closely the contents of [DHJR97, DJ99, Kol10].
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2.4 Computation of invariant measures

Let us denote by m the Lebesgue measure and by B` “ tB1, . . . , BNu a disjoint
partition of Q. The probability measures on the sets Bj Ă B` are defined as fol-
lows:

µBj
pAq “

1
mpBjq

ż

A

χBj
dm “

mpAXBjq

mpBjq
, j “ 1, . . . , N. (2.25)

Remark 2.4.12. Although this approach works with a covering of the whole set
Q Ă Rn, we will restrict our attention to global attractors relative to the set Q or
unstable manifolds which have been generated by Algorithm 2.1 or Algorithm 2.2,
respectively. Therefore, in what follows B` is the finite collection of compact subsets
defined by the selection step of the subdivision algorithm (2.6), or the union of all
boxes obtained by the continuation steps (2.17). Obviously, the number of boxes N
in our covering B` of the attractor is in general much smaller in comparison to a
covering of the whole set Q of the same fineness. Hence, this results in a much
smaller eigenvalue problem.

The transfer operator P is acting on the probability measures (2.25) as follows

`

PµBj

˘

pAq “

ż

ppx, Aq dµBj
“

1
mpBjq

ż

ppx, AqχBj
dm

“
1

mpBjq

ż

Bj

ppx, Aq dm.

This allows us to approximate P with the stochastic matrix PN “ ppijq on the box
covering B` “ tB1, . . . , BNu, where

pij “
1

mpBjq

ż

Bj

ppx, Biq dm, for i, j “ 1, . . . , N. (2.26)

In the next step we approximate the invariant measure corresponding to the stochas-
tic transition function p by the stationary distribution of the Markov chain given by
PN . Concretely, we approximate probability measures ν P MC by

ν «
N
ÿ

l“1
αl µBl

,

where µBj
is defined according to (2.25). Let us denote by µ the invariant measure

which we want to approximate. Since the invariant measure fulfills (2.24), we also
require that

˜

P
N
ÿ

j“1
αj µBj

¸

pBiq “

N
ÿ

j“1
αj µBj

pBiq “ αi, i “ 1, 2, . . . , N.
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2 Classical set-oriented techniques

Here, the construction of the box covering yields

µBj
pBiq “ δij,

where we denote by δij the Kronecker-delta. That is, for an approximation of an
invariant measure µ we have to compute the eigenvector αN P RN

ě0 for the eigenvalue
one of the matrix PN , i.e.

PN αN “ αN

(see also (2.26)).

Remark 2.4.13.

1. In the deterministic case, that is ppx, ¨q “ δϕpxq, the transition probabilities are
given by

pij “
m pϕ´1pBiq XBjq

mpBjq
.

2. Numerically, for the computation of (2.26) we use a Monte Carlo approach as
described in [Hun93]. More precisely, for each 1 ď j ď N , we select a finite set
of test points x1, . . . ,xM P Bj at random according to a uniform distribution.
This yields

pij “
1

mpBjq

ż

Bj

ppx, Biq dm

«
1
M

M
ÿ

k“1
χBi
pϕpxkqq.

Thus, we only have to check whether or not the points ϕpxkq, k “ 1, . . . ,M ,
are contained in Bi.

3. The box covering tB1, . . . , BNu obtained with the subdivision scheme and the
dynamics induced by the stochastic transition function p yield a directed graph
as illustrated in Figure 2.4. The dynamics on this graph with the transition
probabilities in (2.26) can be viewed as an approximation of the transfer oper-
ator P .

We summarize the approximation of an invariant measure corresponding to the
stochastic transition function p supported onAQ in Algorithm 2.3.

2.4.4 Convergence result

Finally, in this section we review the theoretical framework from [DJ99] to show
a convergence result for the numerical approach discussed above. In order to ap-
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2.4 Computation of invariant measures

Figure 2.4: Schematic illustration of the graph induced by the transition function p on
the box covering. Left: box covering tB1, . . . , B8u and mapping of points
from box Bi to box Bj . Right: resulting directed graph with vertices
tv1, . . . , v8u and edges pvi, vjq.

Algorithm 2.3 Computation of invariant measures

1. Approximate the relative global attractor AQ by Algorithm 2.1 or the unstable
manifold by Algorithm 2.2 to obtain a box covering tB1, . . . , BNu.

2. Use tB1, . . . , BNu to compute the discretized transfer operator PN by (2.26).

3. Compute the eigenvector αN P RN corresponding to the eigenvalue 1 of PN to
obtain an approximation of an invariant measure µ on AQ (cf. (2.24)).

ply classical convergence theory for compact operators, we have to consider small
random perturbations (cf. [Kif86]) of ϕpxq so that the transfer operator becomes
compact as an operator on L2. Recall that the purpose of this section is to approxi-
mate the transfer operator P of a deterministic dynamical system represented by a
continuous map ϕ. Hence, the stochastic system that we consider should be a small
perturbation of the underlying deterministic system.

To this end, let B “ B0p1q be the open ball in Rn of radius one. For ε ą 0 we define
the perturbed transition density function

kεpx,yq “
1

εnmpBq
χB

ˆ

1
ε

´

y ´ x
¯

˙

, x,y P Rn. (2.27)
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Now we can define the stochastic transition function pε in this context by

pεpx, Aq “

ż

A

kεpϕpxq,yq dmpyq.

Remark 2.4.14. Observe that

pεpx, Aq “

ż

A

kεpϕpxq,yqdmpyq Ñ δϕpxqpAq

for ε Ñ 0 uniformly in x in a weak˚–sense. Hence, we get the deterministic situ-
ation in this stochastic setup. Moreover, the Markov process defined by any initial
probability measure µ and the stochastic transition function pε is a small random
perturbation of the deterministic system ϕ in the sense of [Kif86].

Due to the small random perturbation, the measure pεpx, ¨q is absolutely continuous
for ε ą 0, and the corresponding transfer operator Pε : L1 Ñ L1 can be written
as

pPεgq pyq “

ż

kεpϕpxq,yqgpxq dmpxq for all g P L1. (2.28)

In order to apply classical convergence theory for compact operators, we review the
following proposition (cf. [Yos80]):

Proposition 2.4.15. Let kpx,yq be a real- or complex-valued B-measurable function
on a measure space pQ,B,mq such that

ż ż

|kpx,yq|2dmpxqdmpyq ă 8.

Then the integral operator P : L2 Ñ L2 defined by the kernel kpx,yq, i.e.

pPgqpyq “
ż

kpx,yqgpyqdmpxq, g P L2
“ L2

pQ,B,mq,

is compact.

For the proof, the interested reader is referred to [Yos80]. To show that the transfer
operator is compact, we have to verify that for ε ą 0

ĳ

|kεpϕpxq,yq|
2 dmpxqdmpyq ă 8. (2.29)
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By (2.27), it follows directly that
ĳ

|kεpϕpxq,yq|
2 dmpxqdmpyq ď

ˆ

mpQq

εnmpBq

˙2

ă 8.

Therefore, by Proposition 2.4.15 the transfer operator in (2.28) as an operator de-
fined on L2, i.e. Pε : L2 Ñ L2, is compact. Throughout the rest of this section we
now suppose that (2.29) is fulfilled.

Let VN , N ě 1, be a sequence of N -dimensional subspaces of L2 and denote by
QN : L2 Ñ VN the corresponding projection onto the subspace VN , such that

lim
NÑ8

}QNψ ´ ψ} “ 0 @ψ P L2.

Then

}PN ´ Pε} Ñ 0 for N Ñ 8,

where PN denotes the projection of Pε onto the N -dimensional subspaces of L2,
i.e.

PN “ QNPε.

Denote by σpPεq and ρpPεq the spectrum and resolvent set of Pε, respectively, and
by

Rz “ pzI ´ Pεq
´1, z P ρpPεq,

the resolvent operator. Now let β ‰ 0 P σpPεq be an eigenvalue of Pε and let E
be a projection onto the corresponding generalized eigenspace. More precisely, let
Γ Ă C be a circle in ρpPεq with center β such that no other point of σpPεq is inside
Γ. Then E is defined by

E “ Epβq “
1

2πi

ż

Γ
RzpPεq dz.

The following convergence result yields an approximation result for invariant mea-
sures in the randomized situation (see Theorem 3.5 in [DJ99] and also [Osb75]).

Theorem 2.4.16. Let βd be an eigenvalue of PN such that βN Ñ β for N Ñ 8,
and let γN be a corresponding eigenvector of unit length. Then there is a vector
hN P RpEq and a constant C ą 0 such that pβI ´ P qhN “ 0 and

}hN ´ γN}2 ď C}pPε ´ PNq|RpEq}2.
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We conclude this section with an example.

Example 2.4.17 (The Lorenz System). We consider the famous Lorenz system
from 1963 [Lor63] defined by

9x1 “ σpx1 ´ x2q,

9x2 “ x1pρ´ x3q ´ x2,

9x3 “ x1x2 ´ βx3,

(2.30)

where we have slightly changed the parameters to σ “ 10, ρ “ 28 and β “ 0.4. This
system has been derived by truncating a Fourier series expansion of a convection
fluid model. We first compute the unstable manifold W up0q of the origin by the
continuation method discussed in Section 2.3, whose closure is the Lorenz attractor.
This is the first step of Algorithm 2.3 and we denote the box-collection by QLor.
Note that we can also use the subdivision method discussed in Section 2.2 in order
to obtain a box covering QLor. Let us denote by N P N the number of boxes in our
final box covering. Next, we use (2.26) (see also item 2 of Remark 2.4.13) in order
to approximate the transfer operator PN P RNˆN on QLor. Finally, we compute
the eigenvector corresponding to the eigenvalue one of PN to obtain the invariant
measure µ for the Lorenz attractor. The invariant measure is shown in Figure 2.5,
where the density ranges from blue (low density), over green and yellow to red (high
density).

The applicability of the subdivision and the continuation method discussed in Sec-
tion 2.2 and Section 2.3, respectively, is restricted to finite dimensional dynamical
systems, e.g. ordinary differential equations. In the following chapters, we extend
these methods to the infinite dimensional context. More precisely, we develop a
set-oriented numerical methodology which allows us to compute finite dimensional
invariant sets for infinite dimensional dynamical systems. In order to analyze these
systems, rather than using a straightforward approach based on an appropriate
combination of Galerkin expansions and subdivision steps we follow a completely
different path and utilize infinite dimensional embedding results in our numerical
treatment. In the next chapter we will give a detailed overview about finite dimen-
sional as well as infinite dimensional embedding results. In particular, the infinite
dimensional embedding result by Robinson [Rob05] will allow us to compute em-
bedded invariant sets in a finite dimensional space which we call observation space.
Thus, we construct a continuous and finite dimensional dynamical system, the so-
called core dynamical system (CDS), which will be the main part of Chapter 4.
Since the CDS is continuous, and therefore measurable, we will also be able to com-
pute invariant measures on the embedded invariant sets, called embedded invariant
measures.
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Figure 2.5: Invariant measure for the Lorenz attractor obtained by Algorithm 2.3. The
density ranges from blue (low density) Ñ green Ñ yellow Ñ red (high den-
sity).
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3 From finite to infinite dimensional
embeddings

In this chapter we give an overview about finite dimensional as well as infinite
dimensional embedding results introduced in the last years. The general idea of
embeddings is to reconstruct attractors or the qualitative dynamics from (experi-
mental) data, e.g. obtained by sensor measurements [BK86]. In particular, embed-
ding techniques are well suited if a mathematical description of the system is not
known. The aim of this chapter is to present an embedding result by Robinson
[Rob05] that allows us to get a one-to-one image of an invariant set A of an infinite
dimensional dynamical system in a finite dimensional space, in what follows called
the observation space. This will be achieved by using the so-called observation map.
In Chapter 4 we will use this particular map to construct a finite dimensional dy-
namical system that will allow us to approximate finite dimensional invariant sets
of infinite dimensional dynamical systems.

3.1 Taken’s embedding theorem

The first result on embeddings in the dynamical systems context is Taken’s embed-
ding theorem [Tak81] based on Whitney’s embedding theorem [Whi36]. Whitney’s
embedding theorem states that a generic map from a d-dimensional manifold to a
p2d ` 1q-dimensional Euclidean space is an embedding. This means, in particular,
that no two points in the d-dimensional manifold map to the same point in the
p2d ` 1q-dimensional space. In the context of Whitney’s embedding theorem the
2d` 1 independent measurements (observations) can be considered as a map.
Takens has shown that a compact manifold of dimension d of a finite dimensional
dynamical system can generically be embedded using a delay-coordinate map, which
consists of observations of the dynamical behavior at an appropriate number (at
least 2d ` 1) of consecutive snapshots in time. The main difference to Whitney’s
embedding theorem is that we only need time-delayed versions of one generic obser-
vation in order to embed the d-dimensional manifold. Taken’s embedding theorem
has, e.g. been applied to predict chaotic time series as well as chaotic time series
within neural networks [FS87, Cas89, PRK92]. For the latter, in order to model
the dynamics of the system that produced the signal, the first step is to reconstruct
the attractor of the system by using Taken’s embedding theorem and then train an
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artificial neural network to predict time series over long time periods [PRK92]. An-
other area of application is, for instance, the estimation of entropy for the detection
of epilepsy in EEG data [KCAS05].

Before we state the main theorem of [Tak81], we need the following definitions (see
e.g. [Wig03]):

Definition 3.1.1 (Residual set). Let X be a topological space, and let U Ă X. U
is called a residual set if it contains the intersection of a countable number of sets,
each of which are open and dense in X.

Definition 3.1.2 (Ck-topology). Let CrpRd,Rdq denote the space of Cr maps of Rd

into Rd. Moreover, two elements f, g P CrpRd,Rdq are said to be Ck ε-close (k ď r),
or just Ck-close, if

}f p`q ´ gp`q} ă ε @ 0 ď ` ď k,

where } ¨ } denotes some norm in Cr.
Assume that M is a compact, boundaryless differentiable manifold of dimension d.
Then the topology induced on CrpM,Mq by this measure of distance between two
elements of CrpM,Mq is called the Ck-topology.

For a more thorough discussion about the Ck-topology, the reader is referred to
[Hir12, PDM12].

Definition 3.1.3 (Generic property). A property of a map (resp. vector field) is
said to be Ck-generic if the set of maps (resp. vector fields) possessing that property
contains a residual subset in the Ck-topology.

We are now in a position to state the main theorem of [Tak81]:

Theorem 3.1.4. Let M be a compact manifold of dimension d and Φ : M Ñ M a
smooth diffeomorphism. Then for f : M Ñ R a smooth function (at least C2) and
k “ 2d ` 1, it is a generic property that the observation map Dkrf,Φs : M Ñ Rk,
defined by

Dkrf,Φspxq “
`

fpxq, fpΦpxqq, . . . , fpΦk´1
pxqq

˘J
, (3.1)

is an embedding.

Consequently, for a given time-series, Theorem 3.1.4 guarantees that the observa-
tion map (3.1), also called the delay-coordinate map, provides a reconstruction of
the hidden state space and that it is also a one-to-one embedding of the system’s
attractor.
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Remark 3.1.5. Takens embedding theorem ensures that distinct points in the ob-
servation space correspond to distinct points in the d-dimensional manifold. In par-
ticular, it only preserves the attractor topology. Recently, in [EYWR18] a stable
embedding result has been presented which preserves the attractors geometry by en-
suring that distances between points in the state space are approximately preserved.

3.2 Extension to fractal sets

In Theorem 3.1.4 the observation map (3.1) is constructed from time series of a
single observed quantity from, e.g. an experiment. However, it is most unlikely that
the attracting set which we want to reconstruct from time series via the observation
map, is a manifold and has an integer dimension d. Ten years later, in 1991, Takens
theorem has been generalized by [SYC91] as follows: first, by replacing “generic”
with “probability-one” (in a prescribed sense), and second, by replacing the manifold
M by a possibly fractal set. In this section, we will review the main results of
[SYC91] which will later allow us to proof an embedding result obtained by [Rob05]
for invariant sets of infinite dimensional dynamical systems.

3.2.1 Prevalence

Takens theorem states, roughly speaking, that the set of embeddings is an open and
dense set of smooth maps. The first statement means that each embedding with an
arbitrarily small perturbation is still an embedding. Whereas the second statement
means that every smooth map, whether it is an embedding or not, is arbitrarily near
an embedding [SYC91]. From an experimentalist view, we would like to know if the
particular map that results from analyzing the experimental data is an embedding
with probability one.
The problem with such a statement is that the space of all smooth maps is infinite
dimensional. The notion of probability one on infinite dimensional spaces does not
have an obvious generalization from finite dimensional spaces. There is no measure
on a Banach space that corresponds to Lebesgue measure on finite dimensional
subspaces [HSY92]. Nonetheless, we would like to make sense of “almost every” map
having some property, such as being an embedding [SYC91].

In [HSY92], the authors propose a measure-theoretic condition for a property to
hold “almost-everywhere” on an infinite dimensional vector space, the so called
prevalence.

Definition 3.2.1 (Prevalence). A Borel subset S of a normed linear space V is
prevalent if there is a finite dimensional subspace E of V (the ‘probe space’) such
that for each v P V, v ` e belongs to S for (Lebesgue) almost every e P E.

39



3 From finite to infinite dimensional embeddings

A set S is prevalent means that if we start at any point in the space V and explore
along the finite dimensional space of directions specified by the probe space E,
then almost every point encountered will lie in S. Following [SYC91] we note that
any space containing a probe space for S is itself a probe space for S. Hence, for
E Ă E 1, where E 1 is any finite dimensional space, perturbations of any element of
V by elements of E 1 will be in S with probability one. Thus, a prevalent subset
of a finite dimensional vector space is simply a set whose complement has zero
measure. Moreover, the union or intersection of a finite number of prevalent sets is
again prevalent. It follows from the definition that prevalence implies denseness in
the Ck-topology (cf. Definition 3.1.2) for any k. More generally, prevalence implies
denseness in any normed linear space.

As already mentioned, it is most unlikely that the attracting set that we want to
reconstruct has an integer dimension of d. Hence, it remains to replace the manifold
M by a fractal set A. In order to choose a sufficiently large embedding dimension,
we need to know the dimension of A. To this end, we will use the so-called box-
counting dimension which gives one possibility to define and approximate a fractal
dimension.

3.2.2 Box-counting dimension

We start with the following definition of the (lower or upper) box-counting dimen-
sion, where we divide the Rn into ε-cubes, e.g. at points whose coordinates are
ε-multiples of integers (cf. [SYC91]):

Definition 3.2.2 (Box-counting dimension). Let A Ă Y , where Y Ă Rn, be a
compact set. For ε ą 0 denote by NY pA, εq the minimal number of balls of radius ε
necessary to cover the set A. Then

dboxpA;Y q :“ lim
εÑ0

logNY pA, εq

´ log ε (3.2)

denotes the box-counting dimension of the set A. By taking the limes inferior or
limes superior in (3.2), we get the lower and upper box-counting dimension, dLB
and dB, respectively.

Note that when the box-counting dimension exists, the approximate scaling law

NY pA, εq « ε´d

holds, where d “ dboxpA;Y q and ε ą 0 sufficiently small. We give some examples of
the box-counting dimension:

Example 3.2.3.
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3.2 Extension to fractal sets

1. Consider the unit sphere in Rn: Let Y “ Rn and A “ ty P Rn | }y} ď 1u be
the closed unit sphere in Rn.
Then NY pA, εq « ε´n for small ε ą 0 and therefore dboxpA;Y q “ n.

2. The middle third Cantor set (cf. [Fal13]):
Let Y “ r0, 1s and C the Cantor set defined by

C “
č

jě1
Cj where Cj “

Cj´1

3 Y

ˆ

2
3 `

Cj´1

3

˙

for j ě 1, and C0 “ r0, 1s.

On the one hand, if 3´j ă ε ď 3´j`1, then the 2j level-j intervals Cj of length
3´j provide an ε-cover of C, such that NY pC, εq ď 2j, where NY pC, εq is the
least number of boxes that cover C. This yields

dBpC;Y q ď lim sup
jÑ8

log 2j
´ log 3´j`1 “

log 2
log 3 .

On the other hand, any interval of length ε with 3´j´1 ď ε ă 3´j intersects
at most one of the level-j intervals of length 3´j used in the construction of
C. There are 2j such intervals, all containing points of C, such that at least 2j
intervals of length ε are required to cover the set C. Hence, NY pC, εq ě 2j and

dLBpC;Y q ě lim inf
jÑ8

log 2j
´ log 3´j´1 “

log 2
log 3 .

Thus,

dLBpC;Y q “ dBpC;Y q “ dboxpC;Y q “ log 2
log 3 .

Observe that by Definition 3.2.2 we have to cover the compact set A with a fi-
nite number of boxes of radius ε. Since our set-oriented algorithms compute box-
coverings of the invariant sets, they also allow us to compute approximations of the
box-counting dimension. To this end, we consider the following example.

Example 3.2.4 (The Lorenz system). Again, let us consider the Lorenz system
from 1963 [Lor63] defined by

9x1 “ σpx1 ´ x2q,

9x2 “ x1pρ´ x3q ´ x2,

9x3 “ x1x2 ´ βx3,

(2.30)

where σ “ 10, ρ “ 28 and β “ 8{3. For this parameter regime the system possesses
a chaotic attractor [Tuc02], which we will denote by ALor. Its correlation dimension
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3 From finite to infinite dimensional embeddings

(cf. [The90]) is estimated to be « 2.05 [GP83], and its fractal dimension is estimated
to be « 2.06 [Lor84]. We consider the discrete dynamical system

xj`1 “ ϕpxjq,

where ϕ : Y Ñ Y , Y Ă R3, denotes the time-T -map of (2.30) where we choose
T “ 0.2. In order to approximate the box-counting dimension of the Lorenz attractor,
we first compute a covering Q` of the attracting set ALor via the subdivision algorithm
(cf. Section 2.2) and then use Definition 3.2.2 for the approximation of the box-
counting dimension. Given the box-covering of the Lorenz attractor (cf. Figure 3.1),

Figure 3.1: Box-counting dimension of the box covering Q` of the Lorenz attrac-
tor ALor obtained by the subdivision algorithm (cf. Section 2.2) for
Q “ r´30, 30s ˆ r´30, 30s ˆ r´13, 67s and ` “ 1, . . . , 24.

we can compute the box-counting dimension via

dboxpQ`;Y q “
logNY pQ`, rq

´ log r ,

where r is the box-radius after ` subdivision steps, i.e. r “ 2´`{d (since each box
is subdivided via bisection with respect to each coordinate) and d “ 3 denotes the
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3.2 Extension to fractal sets

dimension of the Lorenz system. For ` “ 24, we obtain

dboxpQ24;Y q “ logNY pQ24, rq

´ log r “
log 97256
8 ¨ log 2 “ 2.0712.

Observe that we have only a covering of the Lorenz attractor, i.e. Alor Ă Q` for all
` “ 1, . . . , 24. Thus, we get a slightly higher box-counting dimension than « 2.06.

Given the definitions of prevalence as well as the box-counting dimension the exten-
sion of (Taken’s) Theorem 3.1.4 to fractal sets is as follows:

Theorem 3.2.5 (Fractal Delay Embedding Prevalence Theorem). Let Φ be a diffeo-
morphism on an open subset Y Ă Rn, and let A Ă Y be compact with box-counting
dimension dboxpA;Y q “ d. Let k ą 2d be an integer and assume that for every pos-
itive integer p ď k, the set Ap of p-periodic points satisfies dboxpAp;Y q ă p{2, and
that the linearization DΦp for each of these orbits has distinct eigenvalues. Then for
almost every smooth function f : Y Ñ R, the observation map Dkrf,Φs : Y Ñ Rk

defined by

Dkrf,Φspxq “
`

fpxq, f pΦpxqq , . . . , f
`

Φk´1
pxq

˘˘J
,

is:

1. One-to-one on A.

2. An immersion on each compact subset C of a smooth manifold contained in
A.

Remark 3.2.6. Note that Theorem 3.2.5 needs extra assumptions on the dimension
of the set of p-periodic points. To motivate this, we consider the case where A is a
periodic orbit of a continuous dynamical system with period equal to T of the time-
T -map Φ. Topologically, A is a circle and in this case Dkrf,Φs would map A for
any observation function f on a diagonal line. This can be prohibited by choosing a
sufficiently small sampling time T . Furthermore, if we assume that the vector field
on A satisfies a Lipschitz condition with Lipschitz constant L then for T ă π{L
there will be no periodic orbits of period T or 2T . For more details we refer the
reader to [SYC91].

The next theorem gives a version of Theorem 3.2.5 for maps g that are only Hölder
continuous [Rob05].

Theorem 3.2.7 (Finite dimensional delay embedding theorem for Hölder maps).
Let A Ă Y Ă RN be a compact subset of Y with upper box-counting dimension
dBpA;Y q “ d, and g : Y Ñ Y a map such that gr is a α-Hölder function for any
r P N. Let k ą 2d{α and assume that the set Ap of p-periodic points of g satisfies
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3 From finite to infinite dimensional embeddings

dBpAp;Y q ă p{2α for all p “ 1, . . . , k.
Moreover, let h1, . . . , hm be a basis for the polynomials in N variables of degree at
most 2k. Given any α-Hölder function h0 : RN Ñ R define

hθ “ h0 `

m
ÿ

j“1
θjhj.

Then the observation map Fk : Y Ñ Rk defined by

Fkrhθ, gspxq “
`

hθpxq, hθpgpxqq, . . . , hθpg
k´1
pxqq

˘J (3.3)

is one-to-one on A for almost every θ P Rm.

Observe that in Theorem 3.2.7 not only g but all iterates have the same Hölder
exponent. Although this is the case for any Lipschitz map g (for α “ 1, where in
this case the condition on k in the theorem reduces to k ą 2d), it is only true for a
subset of α-Hölder functions g (cf. [Rob05]).

We conclude this section with an example, where we reconstruct the Lorenz attractor
by the observation map defined in Theorem 3.2.5.

Example 3.2.8. We use the Lorenz system defined by (2.30), where analogously to
Example 3.2.4 we choose σ “ 10, ρ “ 28 and β “ 8{3. In Figure 3.2 (a) we see the
Lorenz attractor obtained via one long-time simulation of (2.30). The corresponding
trajectories are shown in Figure 3.2 (b). We will use Theorem 3.2.5 to compute

(a) (b)

Figure 3.2: (a) Lorenz attractor obtained via one long-time simulation of (2.30).
(b) Corresponding trajectory of the long-time simulation.

a one-to-one image of the Lorenz attractor in an appropriately high-dimensional
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3.3 Infinite dimensional embedding theory

space. To this end, we denote by Φ the time-T -map of the Lorenz system, where
we set T “ 0.04. Since d “ dboxpALor;Y q « 2.06 (cf. Example 3.2.4), we choose
k “ 5 ą 2d. Last, we choose our observable f : Y Ñ R to be fpxq “ x1. This yields
the observation map

Dkrf,Φspxq “
`

fpxq, fpΦpxqq, fpΦ2
pxqq, fpΦ3

pxqq, fpΦ4
pxqq

˘J (3.4)

which takes consecutive time-snapshots of the x1ptq-trajectory of (2.30), say at time
t, t`T, . . . , t` 4T . In Figure 3.3 we show a three-dimensional projection of the em-
bedded attractor corresponding to the long-time simulation shown in Figure 3.2 (b).
Although we only observe the x1ptq-trajectory of the Lorenz 163 system, the embed-
ding yields a reconstruction of the attractor which is topologically equal to Figure 3.2
(a).

Figure 3.3: Three-dimensional projection of the embedded Lorenz attractor.

3.3 Infinite dimensional embedding theory

Note that in the previous sections the manifold M as well as the invariant set
A was defined only for finite dimensional dynamical systems. In this section we
will review the main results of [HK99, Rob05] which extend Theorem 3.2.5 to the
infinite dimensional context. To this end, let us denote by A the invariant set of an
infinite dimensional dynamical system defined on a Banach space Y . One natural
question that arises is if there is still a possibility to obtain a one-to-one image
of A in an appropriate finite dimensional space. Based on the work by Hunt &
Kaloshin [HK99], where an infinite dimensional embedding result for linear maps
has been proven, Robinson extended the results obtained in [SYC91] to dynamical
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3 From finite to infinite dimensional embeddings

systems on infinite dimensional Banach spaces [Rob05]. It turns out that the same
observation map can be used to reconstruct invariant sets of finite dimensional upper
box-counting dimension d. However, in addition to the dimension of the set another
quantity comes into play, namely the thickness exponent σ.

3.3.1 The thickness exponent

In order to formulate the main results of [HK99, Rob05] we first need the definition
of the so-called thickness exponent.

Definition 3.3.1 (Thickness exponent). Let Y be a Banach space, and let X Ă Y
be compact. For ε ą 0, denote by dYpX , εq the minimal dimension of all finite
dimensional subspaces V Ă Y such that every point of X lies within distance ε of
V ; if no such V exists, then dYpX , εq “ 8. Then

σpX ,Yq :“ lim sup
εÑ0

´ logε dYpX , εq

is called the thickness exponent of X in Y.

Roughly speaking, the thickness exponent σpX ,Yq captures how well X can be
approximated from within finite dimensional subspaces of Y . Denoting the minimum
distance between X and any k-dimensional linear subspace of Y by εYpX , kq, it was
proven in [KR04] that

σpX ,Yq “ lim sup
kÑ8

log k
´ log εYpX , kq

,

i.e. approximately εYpX , kq « k´1{σpX ,Yq. Moreover, it was observed in [HK99] that
the thickness exponent is alway bounded from above by the upper box-counting di-
mension. Before we show this result, we first have to extend the definition of the up-
per box-counting dimension to the infinite dimensional context.

Definition 3.3.2 (Upper box-counting dimension). Let Y be a Banach space, and
let X Ă Y be compact. For ε ą 0, denote by NYpX , εq the minimal number of balls
of radius ε (in the norm of Y) necessary to cover the set X . Then

dBpX ; Yq :“ lim sup
εÑ0

´ logεNYpX , εq

denotes the upper box-counting dimension of X .

Lemma 3.3.3. Let X Ă Y be a compact set with upper box-counting dimension
dBpX ; Yq. Then

σpX ,Yq ď dBpX ; Yq.
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3.3 Infinite dimensional embedding theory

Proof. For ε ą 0, we cover X with NYpX , εq balls of radius ε. Then every point
of X lies within ε of the linear subspace V that is spanned by the centers of these
balls. Since the dimension of V is not greater than NYpX , εq, this implies that

dYpX , εq ď NYpX , εq

and the lemma follows directly.

Ott, Hunt & Kaloshin suspected that many of the attractors arising in dynamical
systems defined by the evolution equations of mathematical physics have thickness
exponent zero [OHK06]. In addition, Friz & Robinson have shown that in some
sense the thickness exponent is inversely proportional to smoothness [FR99]. Their
result does not rely on the dynamics associated with the set X or the form of the
underlying equations, but only makes assumptions on the smoothness of functions
on X [Rob05].

Lemma 3.3.4 ([Rob05]). Let Ω Ă Rk be bounded. Suppose that X is a subset of
L2pΩq that is uniformly bounded in HspΩq. Then

σpX , L2
pΩqq ď k

s
.

In particular, if X consists of ’smooth functions’, i.e. is uniformly bounded in HspΩq
for every s P N, then

σpX , L2
pΩqq “ 0.

Consequently, if an attractor is bounded in HspΩq for every s, then its thickness
exponent is zero.

Example 3.3.5. Let us consider the simplified two-dimensional Navier-Stokes equa-
tions

Bu

Bt
´∆u` pu ¨∇uqu`∇p “ fpxq,

∇ ¨ u “ 0,

where upx, tq denotes the two-component velocity, pptq the scalar pressure and fpxq
represents a body forcing that maintains motion. Lemma 3.3.4 can be translated
to an assumption on the smoothness of the forcing term f . More precisely, the
attractor of the two-dimensional Navier-Stokes equation has zero thickness exponent
if f P C8pΩq [Rob10].
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3 From finite to infinite dimensional embeddings

3.3.2 An infinite dimensional embedding result for linear maps

We now have everything necessary to formulate the main result of [HK99].

Theorem 3.3.6 ([HK99]). Let Y be a Banach space and A Ă Y compact, with
upper box-counting dimension dBpA; Yq “ d and thickness exponent σpA,Yq “ σ.
Let N ą 2d be an integer, and let α P R with

0 ă α ă
N ´ 2d

N ¨ p1` σq . (3.5)

Then for a prevalent set of bounded linear maps L : Y Ñ RN there exists a C ą 0
such that

C ¨ }Lpx´ yq}α ě }x´ y} for all x,y P A.

Note that, since L is bounded and linear this means that L is Lipschitz continuous
and one-to-one on A. Moreover, the next lemma states that the image of the set A
under a Lipschitz continuous map, i.e. LpAq, has dimension no more than that of
the original set A.

Lemma 3.3.7 ([Rob10]). Let X ,Y be Banach spaces and A Ă X . Furthermore, let
L : X Ñ Y be a Lipschitz continuous map. Then

dBpLpAq; Yq ď dBpA; X q.

Proof. Given d ą dBpA; X q, choose ε0 sufficiently small such that NX pA, εq ď ε´d

for all 0 ă ε ă ε0. Cover A with no more than ε´d closed balls of radius ε. Since
L is Lipschitz continuous with Lipschitz constant C ą 0, the image of this cover
under L provides a covering of LpAq by sets (not necessarily closed) of diameter no
larger than 2Cε. These sets are certainly contained in closed balls of radius 4Cε.
Therefore

NYpLpAq, 4Cεq ď ε´d

and by choosing δ “ 4Cε we get the equivalent formulation

NYpLpAq, δq ď
ˆ

δ

4C

˙´d

“ p4Cqdδ´d.

Hence, for dÑ dBpA; X q we get

dBpLpAq; Yq ď dBpA; X q
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3.3.3 An infinite dimensional delay embedding result

By combining Theorem 3.2.7 and Theorem 3.3.6 Robinson was able to prove the
fundamental infinite dimensional embedding result that allows to map invariant
sets from infinite dimensional dynamical systems into a finite dimensional space (of
sufficiently large dimension k) via a time-delay observation map. We present the
result found in [Rob05]:

Theorem 3.3.8 ([Rob05]). Let A be a compact subset of a Banach space Y and
suppose that the upper box-counting dimension of A is dBpA; Yq “ d, and that A has
the thickness exponent σpA,Yq “ σ. Choose an integer k ą 2p1 ` σqd and suppose
further that A is an invariant set for a Lipschitz map Φ : Y Ñ Y, such that the set Ap

of p-periodic points of Φ satisfies dBpAp; Yq ă p{p2` 2σq for p “ 1, . . . , k. Then for
a prevalent set of Lipschitz maps f : Y Ñ R the observation map Dkrf,Φs : Y Ñ Rk

defined by
Dkrf,Φspuq “

`

fpuq, fpΦpuqq, . . . , fpΦk´1
puqq

˘J (3.6)

is one-to-one on the invariant set A.

Proof. Given k ą 2p1` σqd, choose N sufficiently big such that

k ą
Np2` 2σq
N ´ 2d d.

Moreover, choose
α ă

N ´ 2d
N ¨ p1` σq pcf. (3.5)q

such that k ą 2d{α. By Theorem 3.3.6 there exists a bounded linear function
L : Y Ñ RN that is one-to-one on A and which satisfies

C ¨ }Lpx´ yq}α ě }x´ y} for all x,y P A.

Consider the set X “ LA Ă RN and define the induced mapping g : X Ñ X by

gpξq “ LΦpL´1ξq.

Since A is an invariant set for Φ, the set X is also an invariant set for g, that is,

gpXq “ LΦpL´1Xq

“ LΦpL´1LAq
“ LΦpAq “ LA “ X.

Moreover,
gnpξq “ LΦn

pL´1ξq
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and thus

}gnpξq ´ gnpηq} “ }LΦn
pL´1ξq ´ LΦn

pL´1ηq}

ď }L}}Φn
pL´1ξq ´ Φn

pL´1ηq}

ď LnΦ}L}}L´1ξ ´ L´1η}

ď CLnΦ}L}}ξ ´ η}α,

where }L} is the operator norm of L : Y Ñ RN and LΦ is the Lipschitz constant of
Φ. Observe that if x is a fixed point of Φj then ξ “ Lx is a fixed point of gj and
vice versa.
Thus, it follows that Xp, the set of all points of X that are p-periodic for g is simply
given by Xp “ LAp. Since L is Lipschitz, Lemma 3.3.7 yields that the box-counting
dimension does not increase for Xp, i.e.

dBpXp;RN
q ď dBpAp; Yq.

Given a Lipschitz map f0 : Y Ñ R, we define the α-Hölder map h0 : X Ñ R by

h0pξq “ f0pL´1ξq for all ξ P X.

With thjumj“1 a basis for the polynomials in N variables of degree at most 2k, all
the conditions of Theorem 3.2.7 are satisfied, and thus for almost every θ P Rm, the
observation map on RN given by

Fkrhθ, gspξq “
`

hθpξq, hθpgpξqq, . . . , hθpg
k´1
pξqq

˘J
,

where

hθ “ h0 `

m
ÿ

j“1
θjhj,

is one-to-one on X. Now consider the observation map on A given by

Fkrhθ, gspLxq “
`

hθpLxq, hθpLΦpxqq, . . . , hθpLΦk´1
pxqq

˘J
.

Since L is one-to-one between A and X, and Fkrhθ, gs is one-to-one between X and
its image, it follows that Fk ˝L is one-to-one between A and its image. If we define
fjpxq “ hjpLxq, then each fj is a Lipschitz map from A into Rk, and we can write

Fkrhθ, gspLxq “ Dkrfθ,Φspxq “
`

fθpxq, fθpΦpxqq, . . . , fθpΦk´1
pxqq

˘J
,
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where

fθ “ f0 `

m
ÿ

j“1
θjfj.

Here, tfjumj“1 forms a basis for the linear space of polynomials on LY of degree at
most 2k. It follows that a prevalent set of Lipschitz maps f make the observation
map Dkrfθ,Φs one-to-one on A.

We note that the condition on the number of time-delay coordinates required in-
creases with the thickness of the set A, i.e. k ą 2p1` σqd. In the case when A has
zero thickness, e.g. when Lemma 3.3.4 is fulfilled, this reduces to k ą 2d familiar
from Theorem 3.2.5.

Remark 3.3.9. Following an observation already made in [SYC91], we note that
this result may be generalized to the case where several distinct observables are eval-
uated. More precisely, for a prevalent set of Lipschitz maps fi : Y Ñ R, i “ 1, . . . , q,
the observation map Dkrf1, . . . , fq,Φs : Y Ñ Rk,

u ÞÑ pf1puq, . . . , f1pΦk1´1
puqq, . . . , fqpuq, . . . , fqpΦkq´1

puqqqJ (3.7)

is also one-to-one on A, provided that

k “
q
ÿ

i“1
ki ą 2p1` σq ¨ d and dpApq ă p{p2` 2σq @p ď maxpk1, . . . , kqq.
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4 The core dynamical system

In this chapter we employ Theorem 3.3.8 in order to construct a finite dimensional
dynamical system, the so called core dynamical system (CDS), that will allow us to
approximate finite dimensional attractors of infinite dimensional dynamical systems
via set-oriented techniques (cf. Chapter 2). However, note that we also can use the
main result from [HK99], i.e. Theorem 3.3.6, or Remark 3.3.9, respectively. Large
parts of this chapter are also contained in [DHZ16] to which the author has made
substantial contributions.

Throughout the remainder of this thesis we are interested in dynamical systems of
the form

uj`1 “ Φpujq, j “ 0, 1, . . . , (4.1)

where Φ : Y Ñ Y is a Lipschitz continuous operator on a Banach space Y . Unless
stated otherwise, Φ will be a time-T -map of an infinite dimensional dynamical sys-
tem (e.g. of a delay or a partial differential equation). In addition, we assume that
Φ has a compact invariant set A, i.e.

ΦpAq “ A

of (finite) upper box-counting dimension dBpA; Yq “ d and thickness exponent
σpA,Yq “ σ. This assumption is justified by several classical results, where it has
been shown that (non-trivial) global compact attractors for many dissipative sys-
tems in Banach spaces have finite capacity or Hausdorff dimensions (see [MP76,
Mn81, CFT85, CL88, Hal10]). In Section 5.2 we will additionally assume that A is
a global attractor in the sense that it attracts all bounded sets within Y as tÑ 8.
The main goal of this thesis is to approximate the invariant set A via set-oriented
numerical techniques. To this end, we will make use of the main theorems of Sec-
tion 3.3.2 and 3.3.3 in order to embed A in a finite dimensional space. Therefore,
let us denote by Ak the image of A Ă Y under the observation map Dkrf,Φs, that
is

Ak “ Dkrf,ΦspAq, (4.2)

where Dkrf,Φs is the map defined in Theorem 3.3.8 and f is chosen such that
Dkrf,Φs is one-to-one on A. Note that Ak Ă Rk, where k ą 2p1 ` σqd. We will
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call this particular finite dimensional space Rk the observation space. We will now
construct the CDS

xj`1 “ ϕpxjq, j “ 0, 1, 2, . . . ,

with ϕ : Rk Ñ Rk as follows: we set

ϕ “ R ˝ Φ ˝ E, (4.3)

where E : Rk Ñ Y andR : Y Ñ Rk are continuous maps satisfying

pE ˝Rqpuq “ u @u P A and pR ˝ Eqpxq “ x @x P Ak (4.4)

and Φ : Y Ñ Y is the right hand side of (4.1).

Let us be more precise. The CDS ϕ is realized as follows: for the map R we
set

R “ Dkrf,Φs,

where Dkrf,Φs is defined according to Theorem 3.3.8. Next we observe that the
requirement

pR ˝ Ẽqpxq “ x for all x P Ak (4.5)

uniquely defines a map Ẽ : Ak Ñ A since R is one-to-one on A. Thus, it remains to
extend this map Ẽ to a continuous map E : Rk Ñ Y (see Figure 4.1).

Figure 4.1: Definition of the map ϕ.

For this we employ a generalization of Tietze’s extension theorem [DS88, I.5.3] found
by Dugundji [Dug51, Theorem 4.1]:

Theorem 4.0.1. Let X be a metric space and A Ă X closed. In addition, let V be
a locally convex linear space and p : AÑ V continuous. Then there is a continuous
map P : X Ñ V with P |A “ p such that P pXq is contained in the convex hull of
ppAq.

We also use a result from elementary topology [Wil04] that guarantees the existence
of the inverse map of R on Ak.
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Proposition 4.0.2 ([Wil04]). Let X be a compact space and Y Hausdorff. Then
the injective continuous map f : X Ñ Y is a homeomorphism.

Proof. Let E Ă X be a closed set. By assumption, X is compact and therefore, E is
compact as well. f is continuous yields that fpEq is compact. Since Y is Hausdorff,
fpEq is also closed in Y . Thus f is a closed map, and hence a homeomorphism.

Using Theorem 4.0.1 and Proposition 4.0.2, we obtain the following result:

Proposition 4.0.3. There is a continuous map ϕ : Rk Ñ Rk satisfying

ϕpRpuqq “ RpΦpuqq for all u P A. (4.6)

Proof. By construction, the map R “ Dkrf,Φs : Y Ñ Rk given by (3.6) is continuous
(even Lipschitz) and one-to-one. Thus, restricting R to A we obtain a bijective
map R̃ : A Ñ Ak. As A is assumed to be compact and Ak Ă Rk is Hausdorff,
R̃ is a homeomorphism by Proposition 4.0.2. Thus we obtain a continuous map
Ẽ : Ak Ñ A as Ẽ “ R̃´1.

As Y is a normed linear space, it is locally convex. Thus we can apply Theorem 4.0.1
with X “ Rk, A “ Ak, p “ Ẽ and V “ Y to see that there is a continuous map
E : Rk Ñ Y with E|Ak

“ Ẽ. Finally, by (4.3) ϕ is continuous as a composition of
continuous maps.

Note that by Proposition 4.0.3 the CDS is well defined in Rk. Therefore, we will be
able to use our set-oriented techniques introduced in Chapter 2 for the CDS. Further-
more, observe that due to (4.4) Ak is an invariant set for ϕ, i.e.

ϕpAkq “ pR ˝ Φ ˝ EqpAkq
“ pR ˝ ΦqpAq
“ RpAq “ Ak,

and that the dynamics of ϕ on Ak is topologically conjugate to that of Φ on A. Here
we have used the fact that the map E is the inverse of the map R on Ak and that
A is an invariant set of Φ.

Remark 4.0.4.

1. Note that the arguments used in the proof of Proposition 4.0.3 only guarantee
existence of the continuous map E and provide no guideline on how to design
or approximate it. In fact, the particular realization of the map E will depend
on the actual application. In Chapter 6, we will show possible realizations for
delay differential equations with state dependent time delay as well as partial
differential equations.

55



4 The core dynamical system

2. As already mentioned, we can also use Theorem 3.3.6 or Remark 3.3.9 in
order to define the observation map R, that is, we are not restricted to delay-
coordinates of one observable f . In fact, in Section 6.2.3 we will use a linear
map as our observation map where we choose k different observables.

In this chapter we have constructed a finite dimensional dynamical system which
dynamics on the embedded invariant set Ak is topologically conjugate to that of Φ
on A, i.e. to the dynamics of our infinite dimensional dynamical system (4.1). In the
next step, we want to use the CDS in order to approximate the embedded invariant
set Ak by the subdivision method introduced in Section 2.2. Moreover, we also want
to approximate unstable manifolds

Wu
Φpu

˚
q Ă A,

where u˚ P A denotes an unstable steady state of Φ. In particular, we focus on
unstable manifolds for semiflows of Banach spaces (cf. [Hal71, Hen06, Car12, CH12]).
To this end, we denote by

W u
ppq “ RpWu

Φpu
˚
qq Ă Ak (4.7)

the image of the unstable manifold Wu
Φpu

˚q Ă A under the observation map, the
so-called embedded unstable manifold, where p “ Rpu˚q. Note that, by construction
of the CDS, W uppq is also an invariant set of ϕ. Analogous to finite dimensional
dynamical systems, we will use the continuation method introduced in Section 2.3
to approximate the embedded unstable manifold W uppq. Before we come to this, we
first need an extension of the set-oriented techniques discussed in Chapter 2 to the
case where the underlying finite dimensional dynamical system is just continuous
(and not a homeomorphism).
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5 Set-oriented techniques for embedded
invariant sets

The main goal of this thesis is to approximate invariant sets A Ă Y of the infinite
dimensional dynamical system

uj`1 “ Φpujq, j “ 0, 1, . . . , (4.1)

where Φ : Y Ñ Y is a Lipschitz continuous operator on a Banach space Y . Through
the construction of the core dynamical system (CDS)

xj`1 “ ϕpxjq j “ 0, 1, . . . , (5.1)

we are now in the position to approximate the embedded attractor Ak (cf. (4.2)) or
the embedded unstable manifold W uppq (cf. (4.7)). In Section 5.1 we start by ex-
tending the classical subdivision method to continuous discrete dynamical systems,
where we also want to approximate the global attractor relative to a compact set Q.
Then we will assume in Section 5.2 that the invariant set A is attracting and show
how to approximate it by the subdivision method. Finally, in Section 5.3 we will also
show how to use the continuation method introduced in Section 2.3 to approximate
unstable manifolds of the underlying infinite dimensional dynamical system. The
results presented in this chapter are also contained in [DHZ16, ZDG18] to which the
author has made substantial contributions.

5.1 Extension to continuous dynamical systems

We briefly review the contents of Section 2.2 that will be necessary for the proof
of convergence of the subdivision algorithm in the case when the dynamical system
is just continuous. The global attractor relative to a compact set Q is defined
by

AQ “
č

jě0
ϕjpQq
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5 Set-oriented techniques for embedded invariant sets

(see Definition 2.1.2). Furthermore, we denote by Q` the union of compact subsets
obtained after ` subdivision steps (cf. (2.4) and (2.6)), that is,

Q` “
ď

BPB`

B. (5.2)

Moreover, let B0 be a finite collection of closed subsets with Q0 “
Ť

BPB0
B “ Q.

Then the main convergence result of [DH97] (cf. Proposition 2.2.5) states that

lim
`Ñ8

h pAQ, Q`q “ 0,

where hpB,Cq is the Hausdorff distance between two compact subsets B,C Ă Rn.
However, in that work the authors assume that ϕ is a homeomorphism and not
just continuous, as in the situation here. In the following we present a proof of
convergence for continuous ϕ.

In order to prove convergence, we will essentially follow the structure of the proof
of the main result in Section 2.2. However, there are some technical differences,
and we will need one additional assumption on AQ. More precisely, we assume that
ϕ´1pAQq Ă AQ. This is automatically satisfied in the case where ϕ is a homeomor-
phism. Moreover if Ak is attracting and Ak “ AQ then AQ is backward invariant.
These observations justify this assumption. Before we show the convergence result
we start with the following lemma.

Lemma 5.1.1. Suppose that B Ă Q satisfies B Ă ϕpBq. Then B Ă AQ.

Proof. From B Ă ϕpBq it follows that ϕjpBq Ă ϕj`1pBq for all j ě 0. Hence

B “
č

jě0
ϕjpBq Ă

č

jě0
ϕjpQq “ AQ.

Next we will show that the box covering Q` obtained by the subdivision algorithm
approaches the relative global attractor as ` tends to infinity.

Proposition 5.1.2. Let ϕ : Rk Ñ Rk be continuous and suppose that AQ satisfies
ϕ´1pAQq Ă AQ. Then

AQ “ Q8,

where
Q8 “

8
č

`“1
Q`. (5.3)
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5.2 Computation of embedded attractors via subdivision

Proof. We first show that
Q8 Ă AQ.

To this end, let y P Q8. Then for every ` ě 0 there exists a unique B`pyq P B`

with y P B`pyq. By the selection step of the subdivision scheme (see (2.6)), there
is a z` P Q` with ϕpz`q P B`pyq. Choosing a convergent subsequence of pz`q, if
necessary, we may assume that z “ lim`Ñ8 z`. By construction, z P Q8, and
since lim`Ñ8 diampB`pyqq “ 0 we conclude that lim`Ñ8 ϕpz`q “ y. Finally ϕ is
continuous, and therefore y “ ϕpzq. Hence y P ϕpQ8q. Since y P Q8 was chosen
arbitrary, this yields

Q8 Ă ϕpQ8q.

By construction, Q8 Ă Q and by Lemma 5.1.1 we obtain

Q8 Ă AQ.

Since ϕ´1pAQq Ă AQ by assumption, the inclusion

AQ Ă Q8

follows directly from the proof of Lemma 2.2.2 in Section 2.2 and we have proven
convergence.

In the next section we will show how to approximate the set Ak if the invariant
compact set A is a global attractor.

5.2 Computation of embedded attractors via
subdivision

In this section, we additionally assume that A Ă Y is an attracting set. Analogously
to Section 2.1, we call A an attracting set with fundamental neighborhood U , if for
every open set V Ą A there exists a N P N such that ΦjpUq Ă V , @j ě N . Moreover
we assume that the set Q is chosen in such a way that

Ak Ă Q and EpQq Ă U . (5.4)

Hence, for every x P Q, the iterates ΦjpEpxqq will eventually approach the attracting
set A for j Ñ 8. The main goal of this section is to present a convergence result
for the approximation of attracting sets A. We begin this section with the following
observation.
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5 Set-oriented techniques for embedded invariant sets

Proposition 5.2.1. Let AQ be the global attractor relative to the compact set Q,
and suppose that Q is chosen such that (5.4) is satisfied. Then

Ak Ă AQ. (5.5)

Proof. By construction of the CDS (see (4.3)–(4.5)), we have ϕpAkq “ Ak. Thus,
Lemma 5.1.1 implies that Ak Ă AQ.

Remark 5.2.2. Observe that we can in general not expect that Ak “ AQ. In fact,
by construction AQ may contain several invariant sets and related heteroclinic con-
nections. In this sense Ak will be embedded in AQ.

Note that by Proposition 5.2.1, the set AQ defined in Section 2.2 contains the one-
to-one image Ak of the invariant set A of Φ, where Φ is the right hand side of our
abstract infinite dimensional dynamical system (4.1). We now show that by using
sufficiently high powers of Φ we can actually approximate a one-to-one image of A
if A is attracting. Observe that the fact that for every x P Q the iterates ΦjpEpxqq
will eventually approach the attracting set A for j Ñ 8 does not guarantee that
Ak is also an attracting set for the dynamical system ϕ. For instance, it may be
the case that for a certain x̄ P Q one has a “spurious fixed point” in the sense
that

x̄ “ ϕpx̄q

although ΦpEpx̄qq “ Epx̄q may be closer to A than Epx̄q.

In order to overcome this problem we now define form ě 1 the continuous maps

ϕm “ R ˝ Φm
˝ E (5.6)

and denote the corresponding relative global attractors byAmQ , where

AmQ “
č

jě0
ϕjmpQq.

Remark 5.2.3.

1. Obviously A is an invariant set for Φm for every m and therefore we can still
use R as the observation map in our construction of the CDS ϕm on Rk.

2. Note that in general ϕm “ ϕm since equality can only be guaranteed on Ak.

Lemma 5.2.4. Ak Ă AmQ for all m ě 1.

Proof. Since ΦpAq “ A we have ϕmpAkq “ Ak for m ě 1. Moreover Ak Ă Q (see
(5.4)), and Lemma 5.1.1 implies that Ak Ă AmQ .
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5.2 Computation of embedded attractors via subdivision

Now let us define
A8Q “

č

mě1
AmQ .

Then the following convergence result holds:

Proposition 5.2.5. Suppose A is an attracting set with basin of attraction U Ą A
and choose Q Ă Rk such that Ak Ă Q and EpQq Ă U . Then

Ak “ A8Q .

Proof. It follows directly from Lemma 5.2.4 that Ak Ă A8Q . Thus, it remains to
show that Ak Ą A8Q . To this end, suppose that x P A8QzAk. As Ak is compact, this
implies distpx, Akq “ ε ą 0. Now A is also compact, R is continuous and Ak “ RpAq.
Therefore there is δ ą 0 such that

distpu,Aq ă δ ñ distpRpuq, Akq ă
ε

2 for u P Y .

Let V “ EpQq. Since A is attracting and V Ă U by assumption (see (5.4)) we can
find some m ě 1 such that

hpΦm
pVq,Aq ă δ,

where h is the Hausdorff distance. By our choice of δ it follows that

hpRpΦm
pVqq, Akq “ hpϕmpQq, Akq ă

ε

2 .

Since distpx, Akq “ ε ą 0 this implies that x R ϕmpQq. Thus,

x R AmQ ñ x R A8
Q

which yields a contradiction.

Remark 5.2.6. Roughly speaking Proposition 5.2.5 states that it will be possible to
approximate an attracting set for Φ if we perform the computations with appropri-
ately high iterates of Φ.

We summarize the numerical realization of the subdivision method for the compu-
tation of embedded attractors in Algorithm 5.1.

In the next section we will assume that u˚ P Y is an unstable steady state of the
infinite dimensional dynamical system Φ (cf. (4.1)) and we denote by Wu

Φpu
˚q P A

the corresponding unstable manifold. Moreover, let us denote by p “ Rpu˚q the
image of u˚ under the observation map R. In the next section we will show how to
approximate the embedded unstable manifold W uppq, i.e.

W u
ppq “ RpWu

Φpu
˚
qq
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5 Set-oriented techniques for embedded invariant sets

Algorithm 5.1 The subdivision method for embedded attractors

Initialization: choose k ą 2p1 ` σqd P N, where d denotes the upper box-counting
dimension and σ the thickness exponent of A. Choose an initial box Q Ă Rk, defined
by a k-dimensional cube of the form

Qpc, rq “ ty P Rk : |yi ´ ci| ď ri for i “ 1, . . . , ku,

where c, r P Rk, ri ą 0 for i “ 1, . . . , k, are the center and radii, respectively. Start
the subdivision algorithm with B0 such that

Ť

BPB0
“ Q.

1. Realization of the subdivision step: in step p`´1q, subdivide each box B P B`´1
of the current collection by bisection with respect to the s-th coordinate, where
s is varied cyclically. Thus, in the new collection B̂` the number of boxes is
increased by a factor of 2 (cf. (2.4), (2.5)).

2. Realization of the selection step: within each box B̂ P B̂` choose a finite set of
test points and replace the condition (2.6) by

B` “

!

B P B̂` : DB̂ P B̂` such that ϕpxq P B for (at least) one x P B̂
)

. (5.7)

3. Repeat steps (1) and (2) until a prescribed size ε of the diameter relative to
the initial box Q is reached. That is, stop when

diampB`q ă ε diampQq.

via an extension of the set-oriented continuation method introduced in Section 2.3.

62



5.3 Continuation for embedded unstable manifolds

5.3 Continuation for embedded unstable manifolds

In what follows, let us denote by u˚ P Y the unstable steady state of the infinite di-
mensional dynamical system (4.1). Furthermore, we assume that Wu

Φpu
˚q Ă A. The

continuation starts at p “ Rpu˚q of the embedded unstable manifold

W u
ppq “ RpWu

Φpu
˚
qq, (5.8)

where R is defined according to Theorem 3.3.8 or Theorem 3.3.6, respectively. More-
over, we choose a compact set Q Ă Rk containing p in which we want to approximate
W uppq. In the following we assume that Q is large enough so that it contains the
entire embedded unstable manifold of p, i.e.

W uppq Ă Q. (5.9)

However, this assumption can be relaxed, and we will discuss this point later in
the context of the realization of the approximation scheme. In what follows, let
us assume that CB “ Psppq is a neighborhood of p and let us denote by ACB

the
embedded local unstable manifold satisfying

ACB
“ W u

ppq X CB.

Then, the numerical realization of the continuation algorithm for the approximation
of embedded unstable manifolds can be described as follows (see Section 2.3):

Remark 5.3.1. Due to the compactness of Q the continuation in Step 3 of Algo-
rithm 5.2 will terminate after finitely many, say J`, steps. We denote the corre-
sponding box covering obtained by the continuation method by

G` “

J
ď̀

j“0
C
p`q
j “ C

p`q
J`
. (5.11)

We expect that the algorithm, as constructed, generates an approximation of the
embedded unstable manifold W uppq. In particular, we expect that the bigger s
and ` are the better the approximation will be. Analogously to Section 2.3 let
us denote by Wj Ă W uppq subsets of the embedded unstable manifold, where
W0 “ W uppq X CB “ ACB

andWj`1 “ ϕpWjq for j “ 0, 1, . . ., and by

C
p`q
j “

ď

BPCp`qj

B

the unions obtained after the `-th continuation step. Then, the following convergence
result holds:
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5 Set-oriented techniques for embedded invariant sets

Algorithm 5.2 The continuation method for embedded unstable manifolds

Initialization: Given k ą 2p1 ` σqd we choose an initial box Q Ă Rk, defined by a
k-dimensional cube of the form

Qpc, rq “
 

y P Rk : |yi ´ ci| ď ri for i “ 1, . . . , k
(

,

where c, r P Rk, ri ą 0 for i “ 1, . . . , k, are the center and the radii, respectively.
Choose a partition Ps of Q and a box CB P Ps such that p “ Rpu˚q P CB.

1. Apply the subdivision algorithm (cf. Algorithm 5.1) with ` subdivision steps
to B0 “ tCBu to obtain a covering B` Ă Ps`` of the embedded local unstable
manifold ACB

.

2. Set
Cp`q0 “ B`.

3. Realization of the continuation step: in each box B1 P Cp`qj choose a finite set
of test points and replace the condition (2.17) by

Cp`qj`1 “
!

B P Ps`` : DB1 P Cp`qj and x P B1 such that ϕpxq P B
)

. (5.10)

Proposition 5.3.2.

1. The sets Cp`qj are coverings of Wj for all j, ` “ 0, 1, . . .. Moreover, for fixed j,
we have

8
č

`“0
C
p`q
j “ Wj.

2. Suppose that W uppq Ă Q is linearly attracting, i.e. there exist a λ P p0, 1q and
a neighborhood U Ą W uppq such that

distpϕpyq,W uppqq ď λ distpy,W uppqq @y P U. (5.12)

Then the box coverings obtained by Algorithm 5.2 converge to the closure of
the embedded unstable manifold W uppq. That is,

8
č

`“0
G` “ W uppq.
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5.3 Continuation for embedded unstable manifolds

Proof.

1. This proof is in principal identical to the proof of Proposition 2.3.4. The first
statement follows directly from the fact that the set B` obtained by the sub-
division algorithm is always a covering of W0 “ ACB

for all ` ě 0 (cf. Proposi-
tion 5.1.2). Furthermore, we observe that by Proposition 5.1.2 Cp`q0 converges
to the relative global attractor ACB

“ W0 for ` Ñ 8. Since j is fixed a
continuity argument shows that the sets Cp`qj converge to Wj for `Ñ 8, i.e.

8
č

`“0
C
p`q
j “ Wj.

2. For each ` Algorithm 5.2 yields a covering of W uppq, i.e.
8
č

`“0
G` Ą W uppq.

Thus, it remains to show that
8
č

`“0
G` Ă W uppq.

To this end, suppose there is a x P
`
Ş8

`“0G`

˘

zW uppq. Since W uppq is com-
pact, this yields distpx,W uppqq ą 0. Observe that due to the realization of
the continuation method, for each ` ě 0, Algorithm 5.2 generates a diampB`q-
pseudo orbit tx0, . . . ,xjp`qu, where xjp`q “ x, that is

xj P C
p`q
j and ϕpxjq P Ps``pxj`1q @j P t0, . . . , jp`q ´ 1u.

Here, we denote by Ps``pxj`1q Ă C
p`q
j`1 the element of Ps`` which contains

xj`1 P C
p`q
j`1 and jp`q “ mintj P t0, . . . , J`u : x P Cp`qj u, i.e. x is covered after

j ě jp`q continuation steps. Observe that the sequence jp`q is monotonically
increasing in ` (cf. Step 3 of Algorithm 5.2 and item 1 of Remark 2.3.3) and
that

}xj ´ ϕpxj´1q} ď diampB`q @j P t0, . . . , jp`q ´ 1u. (5.13)

Let us suppose that jp`q is bounded by some J P N0, i.e. max jp`q “ J . Hence,
by monotony of jp`q there is `0 P N0 such that jp`q “ J for all ` ě `0. Using
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5 Set-oriented techniques for embedded invariant sets

item 1 of Remark 2.3.3 we have

x P

˜

`0´1
č

`“0
C
p`q
jp`q

¸

X

˜

8
č

`“`0

C
p`q
J

¸

Ă

8
č

`“`0

C
p`q
J “

8
č

`“0
C
p`q
J .

However, since J is fixed, by the first part of Proposition 5.3.2 the latter is
equal to WJ Ă W uppq which is a contradiction to distpx,W uppqq ą 0. Hence,
jp`q Ñ 8 for `Ñ 8.
Let us now suppose that, w.l.o.g., Q Ă U . If this is not the case, we choose
Q sufficiently small such that W uppq Ă Q Ă U . Then, (5.12), (5.13) and the
triangle inequality yields

distpx,W uppqq ď distpϕpxjp`q´1q,W uppqq ` diampB`q

ď λ distpxjp`q´1,W uppqq ` diampB`q

...

ď λjp`q distpx0,W uppqq ` diampB`q

jp`q´1
ÿ

i“0
λi

ď λjp`q distpx0,W uppqq `
diampB`q

1´ λ ÝÑ 0 for `Ñ 8.

The last expression converges to zero since λ P p0, 1q and diampB`q Ñ 0 for
`Ñ 8 (see (2.5)). This however contradicts the fact that distpx,W uppqq ą 0
and it follows that

8
č

`“0
G` Ă W uppq,

which yields the desired statement.

Remark 5.3.3.

1. The assumption in part 2 of Proposition 5.3.2 is, for instance, not satisfied
if W uppq forms a heteroclinic connection between the steady state solution p
and another hyperbolic steady state q. In fact, in this case the algorithm also
generates a covering of the embedded unstable manifold of q (cf. Figure 2.3).

2. If Wu
Φpu

˚q is attractive but (5.12) is not satisfied, one can apply the subdivi-
sion algorithm (cf. Section 5.2) starting with the box covering G` in order to
approximate W uppq more accurately.

3. Observe that (5.12) is satisfied if the observation map R is bi-Lipschitz with
Lipschitz constant L ě 1 and Wu

Φpu
˚q is linearly attractive with λ P p0, L´2q.
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6 Applications

In this chapter we will use the set-oriented techniques introduced in Chapter 5
to approximate finite dimensional invariant sets A of infinite dimensional dynam-
ical systems. Typical application scenarios in which finite dimensional invariant
sets in infinite dimensional dynamical systems arise include delay differential equa-
tions with small time delay ([Dri68, Chi03, CMRV05]) and certain types of dissi-
pative dynamical systems described by partial differential equations, including the
Kuramoto-Sivashinsky equation [FNST86, JKT90, Rob94], the Ginzburg-Landau
equation [DGHN88], or several reaction-diffusion equations [Jol89]. In all these
cases, a finite dimensional so-called inertial manifold exists to which trajectories are
attracted exponentially fast [CFNT88, FJK`88, Tem97]. In Section 6.1 we present
a numerical realization of the core dynamical system (CDS) ϕ and illustrate the ap-
plicability of the set-oriented methods introduced in Chapter 5 by the computation
of embedded invariant sets and invariant measures of delay differential equations.
Analogously, in Section 6.2 we show a numerical realization of ϕ for partial dif-
ferential equations and conclude with illustrations of several unstable manifolds of
the one-dimensional Kuramoto-Sivashinsky equation. The results presented in this
chapter are also contained in [DHZ16, ZDG18] to which the author has made sub-
stantial contributions.

6.1 Delay differential equations

As a first application we consider so-called delay differential equations (DDEs).
DDEs are also called time-delay systems and compared to ordinary differential
equations the time derivative of the unknown function not only depends on the
current state but also on previous times [Kua93]. Hence, in order to compute a so-
lution of a DDE an initial history over a time interval, and thus an initial function,
has to be known. DDEs are of particular interest when more realistic models are
required in which time-delayed aftereffects have to be considered, e.g. for applica-
tions in population dynamics, epidemiology and mechanics [Kua93, CR00, AHD07,
KM13].

In this section, we restrict our attention to DDEs with (small) state dependent time
delays. However, we will also consider DDEs with constant time delay. As a first
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6 Applications

step, let us define the infinite dimensional dynamical system

uj`1 “ Φpujq, j “ 0, 1, . . . ,

where Φ : Y Ñ Y is a Lipschitz continuous operator on a Banach space Y and then
present a numerical realization of the CDS ϕ (cf. Chapter 4). Parts of the results
presented in this section have appeared in [DHZ16]. The author has made significant
contributions to the results presented therein.

Throughout this section, we will consider DDEs of the general form

9yptq “ gpyptq, ypt´ τpyqqq, 0 ď t ď tf ,

yptq “ uptq, t ď 0
(6.1)

where y : R Ñ Rn, τ : Rn Ñ Rą0 denotes the time delay and g : Rn ˆ Rn Ñ Rn is
smooth map. The basic assumptions for the delay function τ are as follows:

(A1) τ is continuously differentiable,

(A2) 0 ă τpyq ď τ̄ for all y P Rn.

While (A1) is a mild smoothness assumption, condition (A2) guarantees that the
time delay does not vanish and more importantly that all solutions ’forget’ their his-
tory prior to a maximal value τ̄ . Observe that both assumptions are always fulfilled
in case of a constant time-delay τ ą 0. Moreover, we denote by u : r´τ̄ , 0s Ñ Rn

the initial condition of (6.1) and by C “ Cpr´τ̄ , 0s,Rnq the (infinite dimensional)
state space of the dynamical system (6.1) (cf. [HL93]). Equipped with the maximum
norm, C is a Banach space.

Let yu be the trajectory generated by (6.1) with the initial condition u P C. Then
the flow Φs : C Ñ C of (6.1) is given by

Φs
puqptq “ yups` tq for t P r´τ̄ , 0s.

Next we fix T ą 0 and consider the corresponding time-T -map ΦT : C Ñ C as our
dynamical system. That is, we set

Φ “ ΦT and Y “ C (6.2)

in our abstract infinite dimensional dynamical system (4.1).

In what follows we assume that upper bounds for both the box-counting dimension
d “ dpA; Yq and the thickness exponent σ “ σpA,Yq are available. This allows us
to fix

k ą 2p1` σqd
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6.1 Delay differential equations

according to Theorem 3.3.8 and Remark 3.3.9, respectively. In order to numerically
realize the CDS

ϕ : Rk
Ñ Rk, ϕ “ R ˝ Φ ˝ E

(cf. Chapter 4), we have to work on three tasks: the implementation of the continu-
ous map E : Rk Ñ Y , of the observation map R : Y Ñ Rk and of ΦT : Y Ñ Y . For
the latter we will rely on standard methods for forward time integration of DDEs
[BZ13]. A standard approach for solving DDEs of the form (6.1) consists of solving
step by step the local problems

w1n`1ptq “ g pwn`1ptq, xpt´ τpwn`1qqq , tn ď t ď tn`1,

wn`1ptnq “ yn,
(6.3)

via Runge-Kutta methods [But87], where

xpsq “

$

’

&

’

%

upsq for s ď 0,
ηpsq for 0 ď s ď tn,

wn`1psq for tn ď s ď tn`1,

and η is the continuous interpolated solution computed by the method itself up to
tn. Observe that in (6.3) we denote by yn the approximation of yptnq obtained by
the Runge-Kutta method. For more details about the Runge-Kutta methods for
DDEs we refer the interested reader to [BZ13].

Depending on the underlying DDE (6.1) the observation map R will be realized
on the basis of Theorem 3.3.8 or Remark 3.3.9, respectively. For the numerical
construction of the continuous map E we will employ a bootstrapping method that
re-uses results of previous computations. This way we will guarantee, in particular
that the identities in (4.4), i.e.

pE ˝Rqpuq “ u @u P A and pR ˝ Eqpxq “ x @x P Ak,

are at least approximately satisfied. In fact, the identity pR ˝Eqpxq “ x will always
be satisfied.

6.1.1 Numerical realization of the delay-coordinate map R

For the definition of R we have to specify the time span T and appropriate corre-
sponding observables. Note that by assumption (A2) the time delay τ : Rn Ñ R is
bounded from above by τ̄ . Hence, we can fix the length of the time interval where
our observations are made. In the case of a scalar equation (n “ 1) we choose the
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observable f to be the function evaluation

fpuq “ up´τ̄q. (6.4)

Therefore, by Theorem 3.3.8 R is given by

Rpuq “ Dkrf,Φspuq “ pup´τ̄q,Φpuqp´τ̄q, . . . ,Φk´1
puqp´τ̄qqJ. (6.5)

It remains to define the time span T of the time-T -map ΦT (cf. (6.2)). We choose
T to be a natural fraction of the maximal time-delay τ̄ , that is

T “
τ̄

K
for K P N. (6.6)

Remark 6.1.1.

1. Observe that a natural choice for K in (6.6) would be K “ k ´ 1 for k ą 1,
where k denotes the embedding dimension (cf. Chapter 4). That is, for each
evaluation of R the observable would be applied to a function u : r´τ̄ , 0s Ñ R
at k equally distributed time steps within the interval r´τ̄ , 0s.

2. As described in Chapter 5 (see item 1 of Remark 5.2.3) we will frequently
replace Φ by Φm (m ą 1) in order to speed up the convergence towards the
invariant sets A and Ak, respectively. An illustration is shown in Figure 6.1.

Figure 6.1: Numerical realization of the observation map R for n “ 1, k “ 3 (i.e. K “ 2)
andm “ 6K. The evaluation of Rpūq yields k function evaluations at equally
distributed time steps within the interval r5τ̄ , 6τ̄ s.

For the numerical analysis of systems of DDEs (i.e. n ą 1) we make use of Re-
mark 3.3.9 as follows: for each component uj of u we define a separate observable
fj, j “ 1, . . . , n, by

fjpuq “ ujpνjq for some νj P r´τ̄ , 0s, (6.7)
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and choose different time spans

Tj “
νj
Kj

for Kj P N (6.8)

accordingly. Hence, R is given by

R “ pu1pν1q,ΦT1pu1qpν1q, . . . ,ΦK1T1pu1qpν1q, . . . , unpνnq, . . . ,ΦKnTnpunqpνnqq
J.

Observe that more general constructions for the observation map R : C Ñ Rk can
be employed. In fact, due to Theorem 3.3.6, for any k that is sufficiently large
an arbitrary linear map L : C Ñ Rk will generically be one-to-one on A. There-
fore, we can use almost every linear combination of trajectory points computed
during forward integration for the construction of the map R. However, R should
always be defined in such a way that the conditions pR ˝ Eqpxq “ x, @x P Ak, and
pE ˝Rqpuq “ u, @u P A, can numerically be realized.

6.1.2 Numerical realization of the map E

In the application of the subdivision scheme for the computation of the embedded at-
tractorAk described in Section 5.2 one has to perform the selection step

B` “

!

B P B̂` : DB̂ P B̂` such that ϕpxq P B for (at least) one x P B̂
)

(see (2.6)), where each box B̂ P B̂` is discretized by a finite set of test points x P Rk.
Analogously, in the application of the continuation scheme for the computation
of the embedded unstable manifold W uppq described in Section 5.3 the numerical
realization of the continuation step is defined by

Cp`qj`1 “
!

B P Ps`` : DB1 P Cp`qj and x P B1 such that ϕpxq P B
)

.

(cf. (2.17)). A box is kept or marked, respectively, if there is at least one test point
x such that ϕpxq P B. For the evaluation of ϕ “ R ˝ Φ ˝ E at a test point x we
first need to define an initial condition uptq, t P r´τ̄ , 0s, for the forward integration
of the DDE (6.1), i.e. uptq “ Epxq.

In the first step of the subdivision procedure and the first continuation step, when
no information on A is available, we proceed as follows. In the case of a scalar
DDE, that is n “ 1, we construct a piecewise linear (or piecewise spline) function
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uptq “ Epxq (see Figure 6.2), where

uptiq “ xi, (6.9)

for ti “ ´τ̄ ` i ¨ T, i “ 0, . . . , k ´ 1, where T is defined according to (6.6) and
item 1 of Remark 6.1.1. Observe that by this choice of E and R the condi-
tion

pR ˝ Eqpxq “ x

is satisfied for each test point x P Rk (see (4.4) and item 1 of Remark 6.1.1).

Figure 6.2: Numerical realization of E via piecewise linear interpolation, where n “ 1,
k “ 3 (i.e. K “ 2). The components of x are equally distributed within the
interval r´τ̄ , 0s and the initial function u “ Epxq is generated by a piecewise
linear interpolation.

For systems of DDEs (n ą 1) we proceed analogously and distribute the components
of x P Rk to the components uj of u “ Epxq P Rn according to (6.7) and (6.8). Also
in this case the condition pR ˝ Eqpxq “ x still holds.

In the following steps of the subdivision and continuation procedure we make use
of the information obtained in the previous steps. Observe that if B P B`, then, by
the selection step, there must have been a B̂ P B`´1 such that RpΦmpEpx̂qqq P B for
at least one test point x̂ P B̂. Analogously, if B P Cj, then there must have been a
B̂ P Cj´1 such that RpΦmpEpx̂qqq P B for at least one test point x̂ P B̂. Therefore,
we can use the information from the computation of ΦmpEpx̂qq to construct an
appropriate Epxq for each test point x P B.

More concretely, in every step of the subdivision procedure, for every set B P B`

we keep additional information about the trajectories ΦmpEpx̂qq that were mapped
into B by R in the previous step. In the simplest case, we store si ě 1 additional
equally distributed function values for each interval p´τ̄ ` pi ´ 1qT,´τ̄ ` iT q for
i “ 1, . . . , k ´ 1. When ϕpBq is to be computed using test points from B, we
first use the points in B for which additional information is available and generate
the corresponding initial value functions via spline interpolation. Note that the
more information we store, the smaller the error }ΦmpEpx̂qq ´ Epxq} becomes for
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x “ RpΦmpEpx̂qqq. Here, we use the norm } ¨ } of the underlying Banach space Y .
That is, we enforce an approximation of the identity pE ˝ Rqpuq “ u for all u P Y
(see (4.4)). If the additional information is available only for a few points in B, we
generate new test points in B at random and construct corresponding trajectories
by piecewise linear (or spline) interpolation.

6.1.3 Examples

In this section we present results of computations carried out for three different
DDEs with (small) state dependent as well as constant time delay. In each case,
uptq is scalar, although for the Arneodo System with time delay the problem is
recast into a three-dimensional form in order to obtain a first-order equation. The
numerical realization of the map E is as discussed in Section 6.1.2, i.e. when no
information is available we will create piecewise linear functions, and otherwise we
will use additional information in order to construct initial functions via spline
interpolation.

A price model with state dependent delay

Consider the scalar differential equation

9uptq “ a
´

uptq ´ u
`

t´ τpuq
˘

¯

´ |uptq|uptq (6.10)

involving some parameter a ą 0 and a state dependent delay τpuq ą 0. For the
constant time delay τpuq “ 1 this equation has been studied extensively in [BEW04].
If a ă 1 then the zero solution uptq “ 0, t P R, of (6.10) is (locally) asymptotically
stable, whereas in case a ą 1 it is unstable. In addition, if a ą 1 then there
exists a so-called slowly oscillating periodic solution p : R Ñ R of (6.10), whose
minimal period is given by three consecutive zeros [Stu12]. Moreover, the orbit
O “ tpptq | t P Ru of the periodic solution p coincides with the set ĎW z W , where
W is a two-dimensional global center-unstable manifold of (6.10) at the zero solution.
Note that the birth at a “ 1 of the periodic solution is not a Hopf-bifurcation. The
linearization of (6.10) has always a zero eigenvalue and at the critical parameter
value a “ 1 a real eigenvalue of the linearization crosses the imaginary axis from the
left to right half-plane of C. All those analytical results have been generalized for
the case of a state-dependent delay τpuq ą 0 [Stu12]. Here, a further assumption
for the delay function τ : RÑ R is needed:

(A3) |τ 1puq| ă 1{p4a2q for all ´2a ě u ě 2a.
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This assumption ensures that for any solution u bounded by 2a the delayed argument
t´ τpuptqq is a strictly increasing function of t. This is important for the analytical
proof for the existence of (periodic) solutions (cf. [Stu12, BZ13]). Following [Stu12]
we choose τ to be a non-constant time-delay function with the stated properties
(A1)-(A3), i.e.

τpuq “ expp´cu2
q.

The constant c ą 0 may be chosen in such a way that for fixed parameter a ą 0,
assumption (A3) is satisfied. In our computations of the embedded attractor we
set a “ 2 and c “ 1 and therefore τ̄ “ maxupτpuqq “ 1. In this parameter regime
there exists a periodic orbit as discussed above which is connected to an unstable
equilibrium, i.e. uptq “ 0, via a center-unstable manifold. Following Section 6.1.1,
we set T “ τ̄

k´1 “
1
4 and choose the observable

fpuq “ up´τ̄q “ up´1q

(see (6.4)). Moreover, we choose the embedding dimension k “ 5 and the iteration
exponentm “ 5 (cf. item 2 of Remark 6.1.1), and approximate the relative global at-
tractor AQ Ă R5 for Q “ r´4, 4s5 by using Algorithm 5.1. In Figure 6.3 we show suc-
cessively finer box coverings of the relative global attractor AQ. Here the set AQ con-
sists of a reconstruction of the two-dimensional center unstable manifold of u0ptq “ 0
which accumulates on a stable periodic orbit at its boundary.

In Figure 6.4 (c) we show a box covering of the reconstructed periodic solution itself.
It has been obtained by removing a small open neighborhood U of the origin from
Q “ r´4, 4s5 and computing A

rQ for rQ “ QzU . Here, we have also increased the
iteration exponent to m “ 10. For the sake of comparison, we also show one direct
simulation of (6.10) and a three-dimensional embedding of the trajectory obtained
by direct simulation.

Next, we also compute the unstable manifold of u0ptq “ 0 for t P r´1, 0s. Here we
consider a fine partition Ps of Q “ r´2, 2s5, where s “ 45, and set CB “ Psppq
for

p “ Rpu0q “ p0, 0, 0, 0, 0qJ.

In Figure 6.5 (a) we show the embedded center unstable manifold W uppq obtained
by Algorithm 5.2 (dark blue) as well as the relative global attractor AQ (gray).
Moreover, in Figure 6.5 (b) we show the embedded invariant measure obtained by
Algorithm 2.3, where we use Algorithm 5.1 for the approximation of the relative
global attractor AQ in step 1 of Algorithm 2.3. As expected, the highest density is
along the periodic solution at the boundary of the relative global attractor. If we are
also interested in the particular states of the underlying infinite dimensional dynam-
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(a) ` “ 20 (b) ` “ 30

(c) ` “ 40 (d) ` “ 50

Figure 6.3: (a)-(d) Three-dimensional projection of successively finer coverings of the
relative global attractor AQ for (6.10) after ` subdivision steps.

(a) (b) (c)

Figure 6.4: (a) Direct simulation of (6.10) for u0ptq “ 1, t P r´1, 0s. (b) Three-
dimensional embedding of the periodic solution obtained by direct simu-
lation. (c) Box covering of the periodic solution after ` “ 50 subdivision
steps.

ical system (6.10) that have high density, i.e. the periodic solution, it suffices to use
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the map E for points in those boxes that have a high density. This generates func-
tions in state space that have high probability. This yields a statistical description
of the underlying infinite dimensional dynamical system.

(a) (b)

Figure 6.5: (a) Three-dimensional projection of the relative global attractor AQ
(gray box covering) and the embedded center unstable manifold W uppq,
p “ p0, 0, 0, 0, 0qJ, for equation (6.10). (b) Embedded invariant measure for
(6.10) obtained by a combination of Algorithm 2.3 and Algorithm 5.1. The
density ranges from blue (low density) Ñ green Ñ yellow Ñ red (high den-
sity).

The Arneodo system with delay

The second example is a modification of the Arneodo system [ACST85] where a
delay is introduced in the first order derivative of u,

d3u

dt3
ptq `

d2u

dt2
ptq ` 2du

dt
pt´ τq ´ αuptq ` u2

ptq “ 0.

This equation has been introduced and analyzed in [SV09]. In our computations we
use the equivalent reformulation as a three-dimensional first-order system pn “ 3q

9u1 “ u2,

9u2 “ u3, (6.11)
9u3 “ ´u3 ´ bu2pt´ τq ` au1 ´ u

2
1.

The undelayed system (i.e. (6.11) with τ “ 0 and b “ 2) has been studied ex-
tensively (e.g. [ACST85, GS84, KO99]). It possesses the equilibria O1 “ p0, 0, 0q
and O2 “ pa, 0, 0q, the latter is asymptotically stable for a ă 2. At a “ 2 the
equilibrium O2 undergoes a supercritical Hopf bifurcation (cf. [KO99]). For val-
ues of a which are slightly larger than two points on the two-dimensional unstable
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manifold of O2 converge to the corresponding limit cycle on the branch of periodic
solutions.

For the delayed equation, i.e. τ ą 0, where τ is assumed to be constant (and therefore
τ̄ “ τ) and b “ 2, the Hopf bifurcation occurs at decreasing values of a for increasing
values of τ . For fixed a “ 2.5, the amplitude of the limit cycle grows with increasing
values of τ and loses its stability in a period-doubling bifurcation at τ « 0.11 [SV09].
Our purpose is to investigate the structure of the relative global attractor right
after the occurrence of the period-doubling bifurcation. Concretely we set a “ 2.5,
τ “ 0.13, choose the embedding dimension k “ 5, and approximate the relative
global attractor AQ Ă R5 for Q “ r´4, 4s5. This way we compute a reconstruction of
the two-dimensional unstable manifold of O2 which accumulates on a period-doubled
limit cycle (see Figure 6.6, where we show a three-dimensional projection (x1, x4
and x5) of the box covering). Observe that after the period doubling bifurcation
the unstable manifold contains a Moebius strip with the period-doubled periodic
solution at its boundary.

(a) ` “ 30 (b) ` “ 45 with the period-doubled orbit computed by
direct simulation

Figure 6.6: (a)-(b) Successively finer coverings of the three-dimensional projection of the
two-dimensional unstable manifold of O2 for the Arneodo DDE (6.11) after
` subdivision steps (a “ 2.5, τ “ 0.13, embedding dimension k “ 5 and
iteration exponent m “ 15; see Section 6.1.1).

In this example we have made use of Remark 3.3.9 in our numerical realization.
Concretely we have chosen T “ τ{2 and the following three observables (see (6.7)
and (6.8))

f1puq “ u1p0q, k1 “ 1,
f2puq “ u2p´τq, k2 “ 3, K2 “ 2,
f3puq “ u3p0q, k3 “ 1.

77



6 Applications

Thus, our observation map R can be written as

Rpuq “ pf1puq, f2puq,Φpf2puqq,Φ2
pf2puqq, f3puqq

J

“ pu1p0q, u2p´τq, u2p´τ{2q, u2p0q, u3p0qqJ.

Observe that R is linear and therefore also Theorem 3.3.6 can be used in order
to justify this construction. The corresponding continuous map E is then defined
by

Epxq “

¨

˝

x1
Ipx2, x3, x4q

x5

˛

‚,

where I : R3 Ñ Ĉ denotes a piecewise spline interpolation with

Ipx2, x3, x4qp´τq “ x2,

Ipx2, x3, x4qp´τ{2q “ x3,

Ipx2, x3, x4qp0q “ x4.

Here, Ĉ “ Cpr´τ, 0s,Rq. Note that the identity pR ˝ Eqpxq “ x holds for all
x P R5. In Figure 6.7 (a) we show a three-dimensional projection of the relative
global attractor AQ obtained by Algorithm 5.1, where we choose the same projection
as above. Observe that we also obtain the one-dimensional unstable manifold of O1.
The invariant measure is shown in Figure 6.7 (b). The highest density is along the
period-doubled periodic solution at the boundary of the relative global attractor
AQ.

(a) ` “ 40 (b) ` “ 45

Figure 6.7: (a) Relative global attractor AQ for the Arneodo DDE (6.11) after ` “ 40
subdivision steps. (b) Embedded invariant measure for (6.11). The density
ranges from blue (low density) Ñ green Ñ yellow Ñ red (high density).
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The Mackey-Glass equation

Our final example is the well-known DDE introduced by Mackey and Glass in 1977
[MG77], namely

9uptq “ β
upt´ τq

1` upt´ τqη ´ γuptq, (6.12)

where we choose β “ 2, γ “ 1, η “ 9.65, and a constant time-delay τ “ 2. This
equation is a model of blood production, where uptq represents the concentration of
blood at time t, 9uptq represents production at time t and upt´τq is the concentration
of blood at an earlier time, when the request for more blood is made. This equation
possesses a chaotic attractor [MG77] and it has been studied in several contexts,
e.g. for the analysis of global dynamics of DDEs with unimodal feedback [RW07,
LR09], for the prediction of chaotic time series [FS87, MBS93, MSR`97] or for the
analysis of recurrence plots [ZW92]. Direct numerical simulations indicate that the
dimension of the corresponding attracting set is approximately d ą 2 (cf. Figure 6.8).

(a) (b)

Figure 6.8: (a) Long-time simulation of (6.12) for the constant initial condition
uptq “ 0.5, t P r´2, 0s. (b) Three-dimensional embedding of one trajectory
obtained by direct simulation.

We choose the embedding dimension k “ 7, and approximate the relative global
attractor AQ for Q “ r0, 1.5s7 Ă R7. Observe that the functions u1ptq “ 0 and
u2ptq “ 1 for t P r´2, 0s are steady states of (6.12). In Figure 6.9 (a) – (b), we
show projections of the coverings obtained after ` “ 35 and ` “ 63 subdivision
steps. Here, we have removed a small open neighborhood U of the origin from
Q “ r0, 1.5s7.

As already mentioned the attractor A is chaotic. Hence, Ak is also chaotic. In this
particular case the embedded invariant measure possesses a complex structure (see
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(a) ` “ 35 (b) ` “ 63

Figure 6.9: Successively finer coverings of the relative global attractor AQ for the
Mackey-Glass equation (6.12). (a) Box covering after ` “ 35 subdivision
steps. (b) Transparent box covering after 63 subdivision steps depicting the
internal structure of AQ.

Figure 6.10). If we are also interested in the particular states of the underlying in-
finite dimensional dynamical system (6.12) that have high density it suffices to use
the map E for points in those boxes that have high density. This generates the cor-
responding functions in state space. Therefore, we also get a statistical description
of the underlying infinite dimensional dynamical system.

Figure 6.10: Embedded invariant measure for (6.12) obtained by a combination of Algo-
rithm 2.3 and Algorithm 5.1. The density ranges from blue (low density)
Ñ green Ñ yellow Ñ red (high density).
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6.2 Partial differential equations

In this section we consider partial differential equations (PDEs) that possess fi-
nite dimensional invariant sets. Application scenarios in which such sets arise are
certain types of dissipative dynamical systems described by PDEs, including the
Kuramoto-Sivashinsky equation [FNST86, JKT90, Rob94], the Ginzburg-Landau
equation [DGHN88], or a scalar reaction-diffusion equation with a cubic nonlinear-
ity [Jol89]. In all these cases, a finite dimensional so-called inertial manifold exists
to which trajectories are attracted exponentially fast [CFNT88, FJK`88, Tem97].
Roughly speaking, an inertial manifold determines how an infinite number of degrees
of freedom are completely controlled by only a finite number of degrees of freedom.
In this section we will present a numerical realization of the CDS for PDEs of the
general explicit form

9upy, tq “ Fpy, uq, upy, 0q “ u0pyq, (6.13)

where u : RnˆRÑ Rn is in some Banach space Y and F is a (nonlinear) differential
operator. Observe that the Banach space Y strictly depends on the underlying PDE.
We assume that the dynamical system (6.13) has a well-defined semiflow on Y . The
results presented in this section will also appear in [ZDG18]. The author has made
significant contributions to the results presented therein.

Analogously to the previous section, we assume that upper bounds for both the
box-counting dimension d and the thickness exponent σ are available. This al-
lows us to fix k ą 2p1 ` σqd according to Theorem 3.3.6 or Remark 3.3.9, respec-
tively.

In order to numerically realize the CDS ϕ “ R ˝ Φ ˝ E described in Chapter 4,
we will follow the strategy of the previous section and again work on the follow-
ing three tasks: the implementation of E, of R, and of the time-T -map of (6.13),
denoted by Φ. For the latter we will rely on standard methods for forward time inte-
gration of PDEs, e.g. a fourth-order time stepping method for the one-dimensional
Kuramoto-Sivashinsky equation [KT05]. Observe that the numerical realization of
Φ strongly depends on the underlying PDE. The map R will be realized on the
basis of Theorem 3.3.6 or Remark 3.3.9, respectively. For the numerical realization
of the continuous map E we present an approach that uses statistical information
from previous computations. This step is in particular crucial for the continuation
step, since we want to restart the algorithm with initial conditions that fulfill the
identities in (4.4) at least approximately, i.e. the initial functions are in a small
neighborhood of the unstable manifold.
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6.2.1 Numerical realization of the observation map R

In what follows, we will assume that the function u P Y can be represented in terms
of a basis tΨiu

8
i“1, i.e.

upy, tq “
8
ÿ

i“1
xiptqΨipyq, (6.14)

where the elements Ψi are chosen from a function space (e.g. the Hilbert space L2).
Moreover, we will use the concept of a Galerkin projection, where we want to find
a finite dimensional representation of the function u, i.e.

upy, tq «
S
ÿ

i“1
xiptqΨipyq. (6.15)

Here, our observation map R will be defined by projecting u onto k coefficients xi
(6.15). Following [Rem96], an adequate basis tΨiu

8
i“1 should satisfy several require-

ments:

1. The system tΨiu
8
i“1 must be complete in the sense that the unknown solutions

can be represented exactly.

2. For the solution to be unique, the Ψi have to be linearly independent. From a
technical point of view it is beneficial if the Ψi form an orthogonal system.

3. If the classical method of a Galerkin projection is applied to PDEs, then the
Ψi must meet the boundary conditions of the underlying problem.

In [Pei17] those requirements have been discussed in the context of reduced models
for PDEs. In order to achieve a significant speedup, another requirement for reduced
models has been demanded, that is

4. In order to achieve high numerical efficiency, we want to compute a basis as
small as possible.

Furthermore, we want to keep as low additional information (i.e. additional coeffi-
cients xj, for j “ k`1, . . . , S) as possible to fulfill the requirement

pE ˝Rqpuq “ u @u P A

at least approximately. In the next section we will give a short introduction to the
proper orthogonal decomposition (POD) (see e.g. [Sir87, BHL93, HLBR12]) that can
be used to compute a basis as small as possible.
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Proper orthogonal decomposition

We want to compute an optimal basis tΨiu
S
i“1 (i.e. as small as possible) in the sense

that it contains the ’most characteristic’ data from an ensemble of functions. The
notion ’most characteristic’ implies use of an averaging operation. Furthermore, this
basis has to be capable of representing the solution u of the underlying PDE (6.13)
with an error as small as possible. Both requirements can be addressed by the proper
orthogonal decomposition (see [Sir87, BHL93, HLBR12]) and can be formulated as
an optimization problem, where the average (squared) error between the solution u
and its projection onto the space spanned by the basis functions tΨiu

S
i“1 has to be

minimized (see also [Row06, Vol11]):

min
Ψ1,...,ΨSPL2

1
T

ż T

0
}up¨, tq ´

S
ÿ

i“1
xup¨, tq,ΨiyL2Ψi}

2
L2 dt,

s.t. xΨi,ΨjyL2 “ δij, 1 ď i, j ď S,

(6.16)

where δij is the Kronecker delta. Here, x¨, ¨yL2 denotes the inner product in L2 and
} ¨ }L2 the corresponding norm. This procedure is practically realized by defining a
time grid 0 “ t0 ă t1 ă . . . ă tr “ T and taking r snapshots at these time instances
[Sir87]. Therefore, this approach is referred as the method of snapshots and the
optimization problem (6.16) can be transformed to

min
Ψ1,...,ΨSPL2

1
r

r
ÿ

j“1
}up¨, tjq ´

S
ÿ

i“1
xup¨, tjq,ΨiyL2Ψi}

2
L2 ,

s.t. xΨi,ΨjyL2 “ δij, 1 ď i, j ď S.

(6.17)

We note that equation (6.17) can equivalently be transformed into

max
Ψ1,...,ΨSPL2

S
ÿ

i“1

1
r

r
ÿ

j“1
xup¨, tjq,Ψiy

2
L2 ,

s.t. xΨi,ΨjyL2 “ δij, 1 ď i, j ď S,

(6.18)

see e.g. [HLBR12, Pei17]. Moreover, for S “ 1 this yields

1
r

r
ÿ

j“1
xup¨, tjq,Ψ1y

2
L2 “ xΨ1,RΨ1yL2 ,

where

RΨ1 “

ż

Ω

˜

1
r

r
ÿ

j“1
upy, tjqupz, tjq

¸

Ψ1pzq dz
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and Ω Ă Rn denotes some (spatial) domain. The operator R is linear and self-
adjoint and thus, possesses orthonormal eigenfunctions Ψi with associated positive
eigenvalues σi, i “ 1, . . . , r. We state the following result which can be found in a
similar version in [BHL93].

Lemma 6.2.1. The solution to problem (6.18) is given by the eigenfunctions of R
corresponding to the S ă r largest eigenvalues of R.

Let us now assume that σ1 ą σ2 ą . . . ą σr. Then, the eigenvalues can be utilized
to determine the amount of information that is neglected by truncating the basis to
size S ă r [Sir87]:

εpSq :“
řr
i“S`1 σi
řS
j“1 σj

. (6.19)

It is also possible to determine the amount of information by

ε̄pSq :“
řS
i“1 σ

2
i

řr
j“1 σ

2
j

. (6.20)

Here, the relative importance of the i-th POD mode Ψi is determined by the relative
energy Ei of that mode (cf. [Cha00, HLBR12]), defined by

Ei “
σ2
i

řr
j“1 σ

2
i

.

It remains to show how we can apply this procedure to numerical data obtained
by direct numerical simulation (e.g. by using a finite element method) or exper-
iments. As discussed above, we have to take r snapshots at the time instances
t1 “ 0 ă t1 ă . . . , tr “ T . To this end, let us denote by uhptiq P Rnx , ti P tt1, . . . , tru,
the numerical solution of (6.13) defined on a finite dimensional grid at nx nodes in-
stead of a function space. We then arrange these points in the so-called snapshot
matrix

S “

¨

˝

| |

uhpt1q ¨ ¨ ¨ uhptrq
| |

˛

‚P Rnxˆr. (6.21)

Observe that there exists a close relationship between the proper orthogonal decom-
position and the singular value decomposition (cf. e.g. [Cha00, LLL`02, Vol11]).
Therefore, we perform a singular value decomposition [GR70] of the matrix S and
obtain

S “ UΣV J,
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6.2 Partial differential equations

where U P Rnx,nx , Σ P Rnx,r and V P Rr,r. The columns of U give us a discrete
representation of the POD modes Ψi, whereas the diagonal elements of Σ correspond
to the eigenvalues σ1, . . . , σr with σ1 ą σ2 ą . . . ą σr. By choosing a value for ε in
(6.19) or (6.20), respectively, we can easily determine the optimal length of our basis
[Pei17]. For many applications, the eigenvalues decay fast such that a truncation to
a small basis is possible.

From now on, we assume that the solution to (6.13) at time t P R` can be represented
by

upy, tq “
S
ÿ

i“1
xiptqΨipyq.

Given the basis tΨiu
S
i“1 and using the fact that this basis is orthogonal, we then

define the observation map by choosing k different observables

fipuq “ xu,Ψiy “ xi for i “ 1, . . . , k. (6.22)

This yields
Rpuq “ pf1puq, . . . , fkpuqq

J
“ px1, . . . , xkq

J. (6.23)

Observe that R is linear and hence, for k sufficiently large, Theorem 3.3.6 and Re-
mark 3.3.9, respectively, guarantee thatR will be a one-to-one map on A.

6.2.2 Numerical realization of the map E

Analogous to the numerical realization of the map E for DDEs (cf. Section 6.1.2),
for the evaluation of the CDS ϕ “ R˝Φ˝E we first need to define the map E, that is,
we need to generate initial functions for the forward integration of the PDE (6.13).
In the first step of the subdivision or the continuation procedure, respectively, when
no information on A is available we simply construct initial functions u “ Epxq
by

Epxq “
k
ÿ

i“1
xiΨi, (6.24)

where tΨiu denotes the POD-basis for i “ 1, . . . , S. Observe that by this choice of
E and R the condition pR ˝ Eqpxq “ x is satisfied for each test point x (see (4.4)
and (6.23)).

In the following steps of the subdivision as well as the continuation method we
proceed as follows. Note that by following the same strategy as described in Sec-
tion 6.1.2, we construct initial functions using additional information (i.e. the POD-
coefficients xk`1, . . . , xS) obtained in the previous steps. Thus, we construct initial
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functions by

Epxq “
S
ÿ

i“1
xiΨi.

However, if the additional information is available only for a few points, we then
generate new test points at random and construct corresponding initial functions via
(6.24). Due to the observations we have chosen, this may yield to initial functions
that fulfill pE ˝ Rqpuq “ u not even close (see Figure 6.11). Hence, it is possible
that u generated by (6.24) is not close to the invariant set. For the computation of
attracting invariant sets A via the subdivision algorithm, we can ignore this problem
and increase the iteration exponent m sufficiently. However, for the continuation
method the requirement pE ˝ Rqpuq “ u for all u P Wu

Φpu
˚q (see (4.4)) is crucial in

order to compute a ’nice’ covering of the embedded unstable manifold. Therefore,
for observables like POD-coefficients that result from a Galerkin scheme we will
present a new strategy that allows to compute initial functions u which fulfill the
requirement pE ˝Rqpuq “ u at least approximately.
In what follows, we describe this new approach for the continuation method. Note
that if B P Cp`qj`1 (cf. Algorithm 5.2), then, by the continuation step, there must have
been a B̂ P Cp`qj such that RpΦpEpx̂qqq P B for at least one test point x̂ P B̂. Since
we have to generate initial functions in box B, we make use of the informations
obtained during the computation of ΦpEpx̂qq to construct Epxq for each new test
point x P B.

0 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
No additional information
New initial function
Exact function

Figure 6.11: Illustration of the numerical realization of E for the Kuramoto-Sivashinsky
equation in one specific box B after at least one continuation step: the
black function represents ΦpEpx̂qq from the previous continuation step; the
red function is generated by (6.24); the blue function is generated with our
new approach.

To this end, we compute componentwise the mean value and the variance of all
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points that were mapped in box B in the previous continuation step, i.e. we store
additional information for each box B. Then, we make a Monte Carlo sampling for
the additional coefficients for those points that are generated in the current step in
box B. This yields initial functions of the form

Epxq “
S
ÿ

i“1
xiΨi,

where xi, for i “ k ` 1, . . . , S, are sampled as described above. Therefore, in each
continuation step we generate initial functions that enforce an approximation of the
identity pE ˝ Rqpuq “ u for all u P Wu

Φpu
˚q. In Figure 6.11 we show a comparison

of ΦpEpx̂qq (black) with the initial functions generated by (6.24) (red) and our new
approach (blue) presented above.

6.2.3 Examples

In this section we present results of computations carried out for the Kuramoto-
Sivashinsky equation in one spatial dimension which is given by

ut ` νuxxxx ` uxx `
1
2puxq

2
“ 0, px, tq P Rˆ R`,

upx, 0q “ u0pxq, upx` L, tq “ upx, tq.
(6.25)

This equation has been studied extensively over the past 40 years. It has been
used to model interfacial turbulence in various physical contexts, such as phase
dynamics in reaction-diffusion systems [KT76] or small thermal diffusive instabilities
in laminar flame fronts [Siv77]. Moreover, numerical and analytical studies were
made (cf. [HNZ86, KNS90]) showing the complex hierarchy of bifurcations. We
are, in particular, interested in analyzing the different coherent spatial structures
and temporal chaos by computing the unstable manifolds of the trivial unstable
steady state u0pxq “ 0 for different parameter values. Following [HNZ86, KNS90],
we normalize the K-S equation to an interval length of 2π and set the damping
parameter to the original value derived by Sivashinsky, i.e. ν “ 4. To this end,
equation (6.25) can be written as

ut ` 4uxxxx ` µ
„

uxx `
1
2puxq

2


“ 0, 0 ď x ď 2π,

upx, 0q “ u0pxq, upx` 2π, tq “ upx, tq.

(6.26)

In equation (6.26) we introduced a new parameter µ “ L2{4π2, where L denotes
the size of a typical pattern scale. In order to use our continuation algorithm de-
scribed in Section 5.3 it is crucial to have a good estimate of the dimension of the
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invariant set A and Wu
Φpu

˚q, respectively. In [Rob94] it has been shown that the
dimension of the inertial manifold of (6.25) for ν “ 1 is d « L2.46, i.e. the invari-
ant set is of finite dimension. However, these estimates are very pessimistic and
we expect that we obtain a one-to-one image of the unstable manifold for smaller
k.

In what follows, the observation space is defined through projections on the first k
POD-coefficients, where the illustrations will usually show a projection onto the first
three POD-coefficients. For each parameter µ we compute the POD-basis by using
the snapshot-matrix obtained through a long-time integration of

u0pxq “ 10´4
¨ cos pxq ¨ p1` sin pxqq

(cf. Section 6.2.1).

The traveling wave

For the parameter value µ “ 15, transients for arbitrary initial values get attracted
to a traveling wave solution (cf. Figure 6.12 (a)). This solution can be described
by a function upx ´ ctq, where c is the wave solution that depends on µ. We
observe two waves, traveling in opposite directions [KNS90]. Due to the periodic
boundary conditions, the wave appears as a limit cycle, forming a closed curve in
the observation space (cf. Figure 6.12 (b)).

(a) Direct simulation

10-10

10
5

5

-5

0

0

-5
-5

0

-10-10

5

10

(b) Observation space

Figure 6.12: (a) Direct simulation of the Kuramoto-Sivashinsky equation for µ “ 15.
The initial value gets attracted to a traveling wave solution. (b) Corre-
sponding embedding in observation space where the traveling wave appears
as a limit cycle.

By choosing the embedding dimension k “ 3, we restrict the initial functions in
the first continuation step to the function space that is spanned by the first three
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POD-modes. Furthermore, since k “ 3, we expect to approximate just a projection
of the unstable manifold and thus, not a one-to-one image of Wu

Φpu
˚q. For a related

discussion in the finite dimensional context we refer the interested reader to [SYC91].
We choose Q “ r´8, 8s3 and initialize a fine partition Ps of Q for s P N. Next we set
T “ 200. The idea is to do as few continuation steps as possible, since during each
continuation step, we have to generate initial functions that are only approximations.
Thus, this would probably influence our box covering. In order to still get a fine
covering of the unstable manifold, we define a finite time grid tt0, . . . , tNu, where
tN “ T , and mark all boxes that are hit in each time step. This strategy will be
used for each example in this section. In Figure 6.13 (a)-(d) we illustrate successively
finer box coverings of the unstable manifold as well as a transparent box covering
depicting the complex internal structure of the unstable manifold. Observe that the
boundary of the unstable manifold consists of two limit cycles which are symmetric in
the first POD-coefficient x1. This is due to the fact that the Kuramoto-Sivashinsky
equation (6.26) has Z2 symmetry.

(a) s “ 9 and ` “ 0 (b) s “ 15 and ` “ 0

(c) s “ 21 and ` “ 0 (d) s “ 27 and ` “ 0

Figure 6.13: (a)-(c) Successively finer box-coverings of the unstable manifold for µ “ 15.
(d) Transparent box covering for s “ 27 and ` “ 0 depicting the internal
structure of the unstable manifold.
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The stable heteroclinic cycle

As a next example, we consider the parameter value µ “ 18. The observed long-
term behavior consists of a pulsation between two states, which appear to be π{2-
translations of each other, each state being invariant under π-translation. The tran-
sients linger close to one of these states for a comparatively long time before they
pulse back to the other (cf. Figure 6.14 (a)).

(a) Direct simulation
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-10

15

-10

-20-20

(b) Observation space

Figure 6.14: (a) Direct simulation of the Kuramoto-Sivashinsky equation for µ “ 18.
(b) Corresponding embedding in observation space depicting the stable
heteroclinic loop.

It was observed in [KNS90] that the pulsation projected onto the cosp2xq and sinp2xq
coefficient plane, respectively, appears as a straight line passing through the ori-
gin. In addition, different pulsations, resulting from different initial conditions, give
straight lines that are rotations of each other about the origin. By projecting the
pulsation onto the first three POD-coefficients, we observe a similar behavior in ob-
servation space. Thus, we expect that the covering of the unstable manifold will be
dense. The projection of the long time simulation (cf. Figure 6.15 (a)) onto the first
three POD-coefficients is shown in Figure 6.14 (b).

For the initialization of Algorithm 5.2, we choose the embedding dimension k “ 3
and, analogously to the first example, restrict our initial functions to the function
space generated by the first three POD-modes. Moreover, we choose Q “ r´20, 20s3
and set T “ 200. Then we use the same strategy as described above in the first
example. In Figure 6.15 (a)-(b) we show two box coverings obtained by our con-
tinuation method for different values s P N of the partition Ps of Q. As expected,
the covering of the embedded unstable manifold is dense. This corresponds to the
observation mentioned above.
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(b) s “ 12 and ` “ 0 (d) s “ 24 and ` “ 0

Figure 6.15: (a)-(b) Successively finer box-coverings of the unstable manifold for µ “ 18.

The Oseberg transition

In the last example we choose µ “ 32. In Figure 6.16 (a) and (b) we show a di-
rect simulation as well as the corresponding embedding in the observation space.
The initial condition u0 gets attracted to a so-called bimodal steady state which
after some time loses its stability and becomes a stable limit cycle as t Ñ 8

[JJK01].

(a) Direct simulation
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(b) Observation space

Figure 6.16: (a) Direct simulation of the Kuramoto-Sivashinsky equation for µ “ 32. (b)
Corresponding embedding in observation space.

In Figure 6.17 (a) and (b) we show successively finer box coverings of the unstable
manifold obtained by our continuation method. A very similar result has been
obtained by [JJK01] which the authors called the Oseberg transition. In this work,
the authors restricted the phase space to the invariant subspace of odd functions in
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which the solutions can be represented by the Fourier sine series

upx, tq “
8
ÿ

j“1
bjptq sinpjxq, (6.27)

where an eight-mode Galerkin truncation of (6.27) was used. The projection of their
global attractor onto the first, second and third Fourier coefficient looks quantita-
tively the same as our unstable manifold illustrated in Figure 6.17.

(b) s “ 15 and ` “ 0 (d) s “ 27 and ` “ 0

Figure 6.17: (a)-(b) Successively finer box-coverings of the unstable manifold for µ “ 32.
Furthermore, in (b) we show a transparent box covering for s “ 27 and ` “ 0
depicting the internal structure of the unstable manifold.
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7 Improving the numerical efficiency

In this chapter we will present some efficiency enhancement strategies for the set-
oriented techniques introduced in Chapter 5. Observe that in both the selection
step

B` “

!

B P B̂` : DB̂ P B̂` such that ϕpxq P B for (at least) one x P B̂
)

and the continuation step

Cp`qj`1 “
!

B P Ps`` : DB1 P Cp`qj and x P B1 such that ϕpxq P B
)

we have to check if there is at least one test point x P B̂ such that ϕpxq P B. Here,
each box B̂ is discretized by a (possibly very large) number of test points. Thus,
for each evaluation of the selection and continuation step, respectively, we have to
evaluate the core dynamical system (CDS) possibly many times. However, due to
the construction of the CDS each of its evaluations also includes evaluations of the
underlying infinite dimensional dynamical system, e.g. the time-T -map of a PDE.
Hence, the overall computational cost of both algorithms does not only depend on
the dimension of the embedded invariant set but also on the efficient realization
of the selection and continuation step, respectively. It may also be the case that
the initial embedding dimension k has been chosen too low. Instead of increasing
the embedding dimension and beginning the computation anew, we will follow a
new strategy and utilize the existing results as a starting point for the consecutive
computation.

In Section 7.1, we will develop a modified selection step, where the number of func-
tion evaluations of the CDS is decreased by a factor of approximately two. By
storing information from previous selection steps of the subdivision algorithm in
the random access memory (RAM) and using a slightly modified selection step,
this strategy decreases the overall computational time by a factor of approximately
four. In Section 7.2 we develop a sequential procedure for the subdivision method
which adaptively increases the embedding dimension if it initially has been chosen
too low without starting the algorithm anew. This procedure is particularly use-
ful for dynamical systems for which a priori estimates of the upper box-counting
dimension and the thickness exponent are not known. Finally, in Section 7.3 we
present a Koopman operator based continuation method in which the evaluation
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of the CDS is partially replaced by iterations of local Koopman operators. We
start by introducing the Koopman operator and its numerical approximation via
EDMD. Then we will show how to apply the Koopman operator to the continua-
tion step in order to compute approximations of embedded unstable manifolds more
efficiently.

7.1 A modified selection step for the subdivision
algorithm

In this section we will modify the numerical realization of the selection step in Al-
gorithm 5.1. The selection step is responsible for the fact that the box-coverings
obtained by the subdivision method approach the relative global attractor. Roughly
speaking, the main idea in this section is to decrease the number of function evalua-
tions of the CDS, and therefore also the number of evaluations of the underlying infi-
nite dimensional dynamical system, by a factor of approximately two.

Concretely, let us denote by B0 “ tQu the initial box covering of our area of interest,
where we want to approximate the relative global attractor AQ. In Chapter 2 and
Chapter 5, respectively, we start with a subdivision step that creates a refined box
collection B̂1, i.e.

ď

BPB̂1

B “
ď

BPB0

B, where diampB̂1q ă diampB0q.

Then we do one selection step which, if necessary, removes all boxes that do not
cover the relative global attractor, i.e.

B1 “
!

B P B̂1 : DB̂ P B̂1 such that ϕpxq P B for (at least) one x P B̂
)

.

Here, we chooseM P N test points x1 P B̂ and check the condition

ϕpx1
q P B for (at least) one x1

P B̂. (7.1)

We keep all boxes B for which condition (7.1) holds. In this section, however, we will
present a slightly different selection step. First, note that in order to check condition
(7.1), we first have to generate initial conditions u “ Epx1q for the underlying
infinite dimensional dynamical system Φ. At the very beginning of the subdivision
algorithm, we construct initial conditions u P Y for which no additional information
is available (cf. Section 6.1.2 and 6.2.2 for the numerical realization of E for delay and
partial differential equations, respectively). Then, we evaluate each initial function
u P Y by the time-T -map of the underlying infinite dimensional dynamical system Φ.
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Finally, we use the observation map R in order to complete one function evaluation
of the CDS, i.e.

x1
ÞÑ pR ˝ Φ ˝ Eqpx1

q “ ϕpx1
q.

Observe that due to the numerical realization of the CDS, we store additional infor-
mation from the computation of ΦpEpx1qq in order to fulfill the identity

Epϕpx1
qq “ pΦ ˝ Eqpx1

q

at least approximately (cf. Section 6.1.1 and Section 6.2.1, respectively). Let us
denote by x1

ϕ “ ϕpx1q all points, that have been evaluated by the CDS in the first
RGA step. Since we have only evaluated points x1 with no additional information,
we do not discard any boxes at this moment, i.e.

B1 “ B̂1.

This may result in a slightly different box covering (cf. Figure 7.1). We store all
points x1 and x1

ϕ in the random access memory. This completes the first RGA step
(i.e. one subdivision and selection step).

(a) (b)

Figure 7.1: First step of the modified subdivision algorithm for M “ 10. (a) Choose M
test points x P B̂i, i “ 1, 2 (marked by ˝). (b) Compute the image of all
test points x under ϕ (marked by ˚) and keep all boxes. Observe that box
B̂2 would have been discarded by applying the classical selection step.

Next, we create a refined box collection B̂2 by applying the subdivision step to B1. In
order to apply the selection step for the computation of B2, we again have to choose
M P N test points in each box B̂ P B̂2. Here, the main difference to the classical
selection step is that we first use up to M test points x1

ϕ P B̂, @B̂ P B̂2, that have
been evaluated by the CDS in the first RGA step and are stored in the RAM. If a
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box B̂ P B̂2 has less than M test points, we fill B̂ with test points x1 P B̂ for which
the image ϕpx1q “ x1

ϕ already exists. Observe that the evaluation of those points
by the CDS is not necessary anymore. Finally, we create new test points x2 P B̂ at
random such that all boxes B̂ P B̂2 are discretized byM points.

Remark 7.1.1. Note that each box B̂ P B̂2 is discretized by

M ě m1 ě 0 points x1
ϕ,

M ´m1 ě m2 ě 0 points x1, and
M ´m1 ´m2 ě m3 ě 0 points x2, such that

m1 `m2 `m3 “M (cf. Figure 7.2 (a)).

(a) (b)

Figure 7.2: Second step of the modified subdivision algorithm for M “ 10. (a) Within
each box B̂ P B̂2 choose M test points according to Remark 7.1.1, where we
mark x1

ϕ by a green, x1 by a blue and x2 by a black ˝. (b) Corresponding
image points are marked by a ˚ of the same color. Only boxes 1 and 3 are
kept.

For the numerical realization of the selection step we have to compute the image of
each test point under ϕ. Since the image of x1 already exists, i.e. ϕpx1q “ x1

ϕ, we
only need to compute ϕpx2q and ϕpx1

ϕq, respectively. We denote by X2 “ tx1,x2u

the set of all points that have no additional information and for which an image
already has been computed. Furthermore, we denote by X2

ϕ “ tx
1
ϕ, ϕpx

2qu the set
of the corresponding images. Analogously, we denote by ϕX2 “ tx1

ϕu the set of all
points that have been evaluated by the CDS once and by ϕX2

ϕ “ tϕpx
1
ϕqu the set of

the corresponding images. In what follows, we change the condition of the selection
step to

ϕpxq P B for (at least) one x P ϕX2 (7.2)
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and keep all boxes B for which condition (7.2) is fulfilled. An illustration of the
second selection step is shown in Figure 7.2 (b). The points x P ϕX2

ϕ are marked by
a green ˚ and we keep only boxes B̂1, B̂3 P B̂2, i.e. B2 “ tB̂1, B̂3u. This completes
the second RGA step.

For RGA step ` “ 3, 4, . . . our approach works as follows. We create a refined box
collection

ď

BPB̂`

B “
ď

BPB`´1

B, where diampB̂`q ă diampB`´1q.

Then, each box B̂ P B̂` is discretized by

M ě m0 ě 0 points x P ϕX`´1, (7.3)
M ´m0 ě m1 ě 0 points x P X`´1

ϕ , (7.4)
M ´m0 ´m1 ě m2 ě 0 points x P X`´1, (7.5)

M ´m0 ´m1 ´m2 ě m3 ě 0 points x` P B̂, (7.6)

such that
ř3
i“0mi “ M . If m1 ą 0, we compute the image of all x P X`´1

ϕ .
Analogously, if m3 ą 0, we also compute the image of x` P B̂. Therefore, instead
of evaluating the CDS M -times for each box, this reduces to M ě m1 ` m3 ě 0.
In boxes that cover areas of the global attractor relative to Q that possess a high
density, we often get m0 “M . Hence, for those boxes it is not necessary to evaluate
the CDS even once.

Finally, we update the sets of pointsX`, X`
ϕ, ϕX

` and ϕX`
ϕ as follows:

X`
“ X`´1

Y tx`u, @x` P B̂,

X`
ϕ “ X`´1

ϕ Y tϕpx`qu, @x` P B̂,

ϕX`
“ ϕX`´1

Y txu, @x P X`´1
ϕ ,

ϕX`
ϕ “ ϕX`´1

ϕ Y tϕpxqu, @x P X`´1
ϕ .

In order to complete the RGA step `, for ` “ 3, 4, . . ., we check the condition

ϕpxq P B for (at least) one x P ϕX` (7.7)

and keep all boxes B for which condition (7.7) holds. This completes the `-th RGA
step. An illustration of step 3 of the modified subdivision algorithm is shown in
Figure 7.3.

Remark 7.1.2. In general, the sets X`´1
ϕ and ϕX`´1, respectively, contain more

than M points for at least one box B̂ P B̂`. Hence, in order to prevent excessive
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(a) (b)

Figure 7.3: Third step of the modified subdivision algorithm for M “ 10. (a) Within
each box B̂ P B̂3 choose M test points according to (7.3)–(7.6), where we
mark x P ϕX2 by a red, x P X2

ϕ by a green, x P X2 by a blue and x3 by
a black ˝. (b) Corresponding image points are marked by a ˚ of the same
color. Here, we need only to evaluate the CDS for the black and green test
points. The boxes B2 and B4 are kept.

memory usage, for each box B̂ P B̂` we delete all unnecessary points at random such
that only M points are left.

We conclude this section with an example.

Example 7.1.3. In this example we compare the subdivision method introduced in
Section 5.2 (cf. Algorithm 5.1) with the subdivision method that uses our modified
selection step. To this end, we consider the Mackey-Glass delay differential equation

9uptq “ β
upt´ τq

1` upt´ τqη ´ γuptq, (7.8)

where β “ 2, γ “ 1, η “ 9.65 and τ “ 2 (cf. Section 6.1.3). Since we are only
interested in the performance of the modified selection step, we choose k “ 3 and
Q “ r0, 1.5s3, i.e. we compute a three-dimensional projection of the relative global
attractor AQ. In order to speed up the convergence towards the attractor A, we set
the iteration exponent m “ 10 (cf. (5.6)). Both algorithms terminate when

diampB`q “
1
28 diampQq.

This stopping criterion is realized by 24 RGA steps. We discretize each box B̂ P B̂`,
` “ 1, . . . , 24, with M “ 100 randomly chosen test points. In Figure 7.4 we compare
both algorithms regarding to the overall computational time as well as the time spent
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for the evaluation of the CDS. All other remaining functions like the generation
of new test points x` or marking all boxes that are hit by ϕpx`q are summarized
in ’remaining functions’. Observe that by the realization of the modified selection

Figure 7.4: Comparison of the ’classical’ subdivision algorithm (cf. Algorithm 5.1 and
in particular (5.7)) for the computation of the embedded attractor of the
Mackey-Glass equation (7.13) with the algorithm presented in Section 7.1,
where the selection step has been modified. For the iteration exponentm “ 5
we achieve a speed up by a factor of approximately 4.

step, we can decrease the overall time of our modified subdivision algorithm even
more by choosing an iteration exponent m “ 5. This is justified since we only use
those test points x to check the condition in the modified selection step (7.7) that are
evaluated by the CDS twice, and hence, by choosing m “ 5 this is comparable to the
classical selection step with iteration exponent m “ 10. Comparing to Algorithm 5.1
the overall computational time for the approximation of the embedded attractor is
decreased by a factor of approximately 4. However, in Figure 7.5 we see that after
24 RGA steps we already need 820.2MB RAM for the storage of preimage-image
informations and that the memory usage grows exponentially. This is the main
drawback of our modified subdivision algorithm.

7.2 Development of a sequential procedure

The choice of the embedding dimension k is very crucial in order to guarantee an
one-to-one image of the finite dimensional attractor A Ă Y . A good approximation
of the upper box-counting dimension dBpA; Yq is not always available. Although our
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Figure 7.5: Memory usage of the subdivision method using the modified selection step
for the Mackey-Glass equation (7.13).

set-oriented techniques allow us to compute an approximation of the box-counting
dimension, we first have to do some RGA steps. By using the box covering obtained
via the subdivision method, we can estimate the dimension of the embedded attrac-
tor. We note that it may occur that after ` RGA steps we realize that the chosen
embedding dimension is too small. As already discussed in the previous section, the
selection step of the subdivision method can be very expensive. Hence, choosing a
new embedding dimension and start the whole subdivision algorithm anew would
decrease our computational efficiency significantly.

In this section, we will present a sequential procedure which adaptively increases the
embedding dimension without starting the subdivision algorithm anew. Roughly
speaking, if we realize after some RGA steps that the embedding dimension k needs
to be increased, instead of beginning anew, we will utilize the existing result as a
starting point for the consecutive computation. A flow chart of this approach is
shown in Figure 7.6.

The general idea of our sequential procedure can be described as follows. First, we
start with an initial embedding dimension k and with a sufficiently high number
(say `) of RGA steps, in order to get a coarse box covering B` of the relative global
attractor AQ. Then, our main loop begins. The sequential procedure terminates, if
the diameter of our boxes fulfill the stopping criterion (cf. item 3 of Algorithm 5.1).
This can be realized through a sufficiently high number of RGA steps M ą `. If the
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Figure 7.6: Flow chart of the sequential procedure. After ` subdivision and selection
steps in the initial embedding dimension k, we check if k is bigger than twice
the box-counting dimension of our current box covering Q`. If this is not
the case, we increase k, update our box collection B` and proceed with the
main loop. Otherwise, we make another RGA step.

stopping criterion is not fulfilled, we check if our initially chosen embedding dimen-
sion is sufficiently large. To this end, we approximate the box-counting dimension
of A by computing the box-counting dimension of Q` (cf. (5.2)) and check if the
embedding dimension k fulfills

k ą 2 dboxpQ`q

(cf. Definition 3.2.2). Note that we here assume that the thickness exponent of the
invariant set A is equal to zero. However, if this is not the case, we can always make
a worst case estimation of the embedding dimension, since the thickness exponent
is bounded from above by the upper box-counting dimension (cf. Lemma 3.3.3).
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7 Improving the numerical efficiency

Hence, we have to check if the embedding dimension k fulfills

k ą 2
`

1` dboxpQ`q
˘

dboxpQ`q.

In what follows, we assume that the thickness exponent is equal to zero. If k
is bigger than twice the box-counting dimension of Q`, we proceed with another
RGA step. Otherwise, we start the update procedure (cf. Figure 7.6). If the em-
bedding dimension is too small, we not only have to increase the embedding di-
mension, but we also have to construct a new box covering in dimension K ą k,
where

K “ r2 dboxpQ`qs.

By virtue of our numerical realization of the subdivision step, where we subdivide
each box by bisection with respect to the j-th coordinate and where j is varied
cyclically, we also have to update the current and final number of RGA steps `
and M , respectively (cf. Section 2.2). We then compute a new box covering in
the embedding dimension K, perform one RGA step and increase ` by one. This
completes one iteration in the main loop.

The crucial point in this procedure is the computation of the new box-covering
B` in the embedding space RK . We will use those points that already have been
evaluated by the CDS ϕ : Rk Ñ Rk in the embedding dimension k and we will add
additional K ´ k observations. For the particular realization we will make use of
additional numerical information from the evaluation of the map Φ that is discarded
by the observation map R. This approach will in particular depend on the numerical
realization of the map E and we will show how to use this procedure in the context
of delay and partial differential equations. In what follows, we denote the CDS
constructed in the embedding dimension k by

ϕpkq “ Rk ˝ Φ ˝ Ek, (7.9)

and whenever k has to be increased, we will denote the new embedding dimension
by K and the corresponding CDS by ϕpKq.

7.2.1 Computation of new observations

After increasing the embedding dimension toK ą k the crucial step in the sequential
procedure is the update of the box covering obtained by the subdivision method. As
a first step, we have to generate appropriate observations in the higher-dimensional
embedding space RK by using numerical information already obtained during the
subdivision process for the embedding dimension k. In particular, this step is based
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on the numerical realization of the CDS ϕ for delay and partial differential equations
(cf. Chapter 6).

Delay-embedding coordinates

In this section we will show how to construct new observations in the case of delay-
embedding coordinates. To this end, let us consider the general delay differential
equation (DDE) of the form

9yptq “ gpyptq,ypt´ τpyqqq, 0 ď t ď tf ,

yptq “ φptq, t ď 0,
(7.10)

where yptq P Rn and g : Rn ˆ Rn Ñ Rn. Here, τpyq ą 0 denotes the state de-
pendent time delay, where we again assume that an upper bound τ̄ ą 0 exists,
i.e.

0 ă τpyq ď τ̄ for all y P Rn.

In this section, we will only focus on scalar equations (n “ 1) since the numerical
realization of the sequential procedure for systems of DDEs (i.e. n ą 1) is a straight-
forward extension to our approach presented next. Thus, following Section 6.1, we
use the observable

fpuq “ up´τ̄q

and therefore, the observation mapRk : Y Ñ Rk (cf. (6.5)) is given by

Rkpuq “ pup´τ̄q,Φpuqp´τ̄q, . . . ,Φk´1
puqp´τ̄qqT ,

where Φ “ ΦTk denotes the time-Tk-map of (7.10) for Tk “ τ̄{pk ´ 1q. That is,
for each evaluation of Rk applied to a function u : r´τ̄ , 0s Ñ R we get k equally
distributed function values within the interval r´τ̄ , 0s (cf. item 1 of Remark 6.1.1).
Analogously, we define the observation mapRK : Y Ñ RK , where

RKpuq “ pup´τ̄q,Φpuqp´τ̄q, . . . ,ΦK´1
puqp´τ̄qqT (7.11)

yields K ą k equally distributed function evaluations within the interval r´τ̄ , 0s.
Here we set TK “ τ̄{pK ´ 1q and Φ “ ΦTK in ϕpKq.

We will use the following idea in order to generate new observations: for each box
B P B` and each test point x P B that possesses additional numerical informa-
tion obtained during the previous RGA steps, we use the numerical realization
of the map Ek described in Section 6.1.2 in order to generate initial functions u,
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i.e.

u “ Ekpxq for x P B.

It is easy to see that by applying the observation map RK to each u we get new
observations x̄ “ RKpuq in the higher-dimensional observation space. A schematic
illustration of this procedure is shown in Figure 7.7.

Figure 7.7: Schematic illustration of the sequential procedure for delay-embedding coor-
dinates, where k “ 3 and K “ 5. In the first step we make use of additional
information obtained by R3 to generate an initial function u “ E3pxq for
x P R3. Then, we obtain function evaluations x̄ P R5 at 5 pairwise distinct
points by using the observation map R5 : Y Ñ R5.

POD-coefficients

In Section 6.2 we have presented a numerical realization of the CDS for partial
differential equations (PDEs). Following Section 6.2 we assume that each function
upy, tq P Y can be approximated sufficiently well via

upy, tq «
S
ÿ

i“1
xiptqΨipyq,

where we assume that S ě K and tΨiu denotes the POD-basis obtained in the
initialization step (cf. Section 6.2.1). Here, the observation map Rk is defined as the
projection onto the first k POD-coefficients. Furthermore, we define the observation
map RK as the projection onto the first K ą k POD-coefficients, where the first k
observations are equal to those obtained by Rk. Due to the numerical realization of
Ek and Rk, we can directly use the additional information gained in the previous
RGA steps, since

upy, tq “ Ekpxq “
S
ÿ

i“1
xiptqΨipyq for x P B
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and

fipuq “ xu,Ψiy “ xi for i “ k ` 1, . . . , K.

7.2.2 Creating a new box covering

As a next step, we have to define a new box covering in the higher-dimensional space
RK . Following Section 2.3 and Section 5.3, respectively, we first have to define a fine
partition PK

ŝ of QK Ă RK , where ŝ depends on the number of RGA steps ` which
already have been done for the embedding dimension k. To this end, we choose QK

as follows: for delay-embedding coordinates the box Qk is defined by Qk “ rq1, q2s
k,

where q1, q2 P R. Hence, we set QK “ rq1, q2s
K . However, if we use POD-coefficients

as observables, we set

QK
“ Qk

ˆ ra1, b1s ˆ ra2, b2s ˆ . . .ˆ raK´k, bK´ks,

where ai, bi P R have to be chosen suitably (see item 2 of Remark 7.2.1). Then we
mark those boxes in the partition PK

ŝ of QK that are hit by the new observations
xK P RK , where

xK “ pRK ˝ Ekqpx
k
q, for all xk P B and all B P B` Ă Rk. (7.12)

Remark 7.2.1.

1. Following the numerical realization of the continuous map Ek, we only use
points xk P B, B P B`, for which there exist a x̂k P B̂, B̂ P B`´1, such that

xk “ ϕpkqpx̂kq.

Observe that for those points the identity

pEk ˝Rkqpuq, for all u “ Epxkq,

holds at least approximately.

2. In order to compute ai, bi P R for i “ 1, . . . , K ´ k, we make use of the
information already obtained during the previous RGA steps in the embedding
dimension k. More precisely, we set

ai “ mintfk`ipuqu ´ δ, bi “ maxtfk`ipuqu ` δ,

where δ ą 0 and u “ Epxkq for all xk P B, B P B` (cf. item 1 of Re-
mark 7.2.1).
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It remains to discuss how the partition PK
ŝ of QK is defined. We note that the

numerical realization of PK
ŝ is based on the numerical realization of the subdivision

step, where we subdivide each box by bisection with respect to the j-th coordinate
and where j is varied cyclically. Let us assume that k P N and Qk Ă Rk. Then the
partition Pk

s of Qk for s P N is defined by
ď

BPPk
s

B “ Qk, with

diampPk
s q “ diampQk

q{2s̄, where s̄ “ ts{ku,

i.e. the diameter of all boxes will be decreased by a factor of 2 after k subdivision
steps. However, those subdivision steps are only done virtually and we do not store
the boxes B of the partition Pk

s . Using delay-embedding coordinates, we choose ŝ
such that

diampPsq “ diampP̂ŝq

holds. Using POD-coefficients, we set

ŝ “
s´modps, kq

k
¨K `modps, kq.

We conclude this section with the following example.

Example 7.2.2. Let us consider the Mackey-Glass DDE

9uptq “ β
upt´ τq

1` upt´ τqη ´ γuptq, (7.13)

where β “ 2, γ “ 1, η “ 9.65 and τ “ 2 (cf. Section 6.1.3). Without a priori knowl-
edge of dBpA; Yq, we choose the initial embedding dimension k “ 3, the maximum
number of RGA steps M “ 5 ¨ k and start with ` “ 9 RGA steps. In Figure 7.8
we show the dependency of the box-counting dimension and the number of RGA
steps. In comparison, we also show the box-counting dimension after each RGA step
computed by Algorithm 5.1 for k “ 6. The algorithm using the sequential procedure
described above terminates after 21 RGA steps, whereas the classical algorithm needs
30 RGA steps.

7.3 Koopman operator based continuation step

In this chapter we will introduce a modified continuation step for the computation
of embedded unstable manifolds. As already discussed in the previous sections,
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Figure 7.8: Comparison of the box-counting dimension of Q` for the sequential proce-
dure and the computation carried out with Algorithm 5.1 for k “ 6. The
sequential procedure starts with embedding dimension 3, after ` “ 9 RGA
steps the dimension is increased to 5 (update to ` “ 15), after one more
step it is increased to 6 (update to ` “ 19). The sequential procedure needs
21 steps in order to compute almost the same box covering as the classical
algorithm with 30 RGA steps.

the evaluation of the CDS ϕ or rather the evaluation of the underlying infinite di-
mensional dynamical system may be very expensive. In particular, when each box
of our collection obtained by the subdivision or continuation method is discretized
by a large number of test points, this results in expensive selection and continu-
ation steps, respectively. For the subdivision method this problem was tackled in
Section 7.1. However, for the continuation algorithm presented in Section 5.3 this
approach is not applicable.

In this section, we will introduce a new approach. Note that, by step 3 of Algo-
rithm 5.2, i.e.

Cp`qj`1 “
!

B P Ps`` : for B1 P Cp`qj Dx P B1 such that ϕpxq P B
)

,

we have to evaluate the CDS for each box and each test point x P B1 in order to
mark those boxes in the partition Ps`` that are hit by ϕpxq. Depending on the
complexity of the underlying unstable manifold and how large ps ` `q P N is, we
may have to discretize each box with a (possibly very) large number of test points.
As already pointed out, this may result in an expensive continuation step, resulting
in a prohibitively large computational time of the continuation method. Similar
to the idea of Section 7.1, we want to reduce the number of function evaluations
of the CDS without decreasing the number of test points in each box. Here, the
idea is to evaluate only few test points in each box via the CDS ϕ and then to use
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this information in order to create local reduced order models (ROM). The aim of
model order reduction is to replace a large-scale system of, e.g. PDEs, by systems of
substantially lower dimensions that have almost the same response characteristics.
These ROMs can then be evaluated with a significant reduction of the computational
effort (see e.g. [ASG01, BMS05, Pei17]). One possible approach to construct such a
ROM is by means of the Koopman operator [Koo31]. This operator is a linear but
infinite dimensional operator whose modes and eigenvalues, which are associated
with a fixed oscillation frequency and growth/decay rate, capture the evolution of
observables describing any, even nonlinear, dynamical system [RMB`09, TRL`14].
In the Koopman operator context the observables are often described as real valued
functions on the state space. The spectral properties of the Koopman operator
(see e.g. [Mez05, BMM12]) play a crucial role in analyzing the underlying infinite
dimensional dynamical system and can, e.g. be used to analyze fluid flows [RMB`10,
Mez13]. Furthermore, other application scenarios where Koopman operator theory
can be applied are power system technologies [SMRH16] or optimal control of PDEs
[BBPK16, PK17].

In what follows, we will introduce the Koopman operator and discuss how to effi-
ciently compute numerical approximations via extended dynamic mode decomposi-
tion (EDMD) [WKR15, KKS16, KNK`18]. The convergence of EDMD towards the
Koopman operator has recently been proven in [KM18]. Then we will show how
to combine Koopman operator theory with our continuation method introduced in
Section 5.3.

Parts of the results in this section are contained in [ZPD18]. The author has made
significant contributions to the results presented therein.

7.3.1 The Koopman operator

In this section, the Koopman operator and its numerical approximation via EDMD
are introduced. We consider the discrete deterministic dynamical system

uj`1 “ Φpujq, j “ 0, 1, . . . , (7.14)

where Φ : Y Ñ Y is a Lipschitz continuous operator on a Banach space Y (cf. (4.1)
in Chapter 4). Moreover, we denote by f : Y Ñ R a real-valued Lipschitz con-
tinuous observable of the system. Given a vector space of observables F such
that f ˝ Φ P F for every f P F , we define the Koopman operator K : F Ñ F
by

Kfpuq “ fpΦpuqq, (7.15)
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where u P Y . Unlike Φ, which acts on u P Y , the Koopman operator K acts on
functions of the vector space of observables, i.e. f P F . Therefore, the Koopman
operator is infinite dimensional (even if Φ is finite dimensional), but it is also linear
(even when Φ is nonlinear) [WKR15]. Let us denote by φj : Y Ñ R the Koop-
man eigenfunctions and by µj P C the corresponding Koopman eigenvalues of K,
i.e.

Kφjpuq “ µjφjpuq, j “ 1, 2, . . . . (7.16)

Moreover, let us consider a set of observables fi : Y Ñ R, for i “ 1, . . . , k, and let
us assume that each fi can be written as a combination of the linearly independent
eigenfunctions φj, i.e.

fipuq “
8
ÿ

j“1
cjφjpuq, (7.17)

with ci P C. Then by (7.16)

pKfiqpuq “
8
ÿ

j“1
µjcjφjpuq. (7.18)

Furthermore, let us denote by R “ pf1, . . . , fkq
J the vector of observables. Then,

analogously to (7.18) we obtain

pKRqpuq “

»

—

–

ř8

j“1 µjcj,1φjpuq
...

ř8

j“1 µjcj,kφjpuq

fi

ffi

fl

“

8
ÿ

j“1
µjφjpuq

»

—

–

cj,1
...
cj,k

fi

ffi

fl

“

8
ÿ

j“1
µjφjpuqvj, (7.19)

where vj “ pcj,1, . . . , cj,kq
J (cf. [Mez05, RMB`10, KKS16]). Following [RMB`10,

KKS16] we will refer to the vectors vj P Rk as the Koopman modes of the map Φ,
corresponding to the observable R.

Remark 7.3.1.

1. Given the full-state observable gpuq “ u, the connection between the dynamical
system Φ and the Koopman operator K is as follows:

pKgqpuq “ gpΦpuqq “ Φpuq. (7.20)

(see, e.g. [KKS16]). Thus, by using the Koopman eigenvalues µj, eigenfunc-
tions φj and modes vj corresponding to the observable g, we can compute Φpuq
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with the aid of the Koopman operator, i.e.

Φpuq “ pKgqpuq “
8
ÿ

j“1
µjφjpuqvj.

2. Let F “ L8. Then the Koopman operator K : L8 Ñ L8 is the adjoint of the
transfer operator P (cf. Remark 2.4.10), i.e.

xPf, gy “ xf,Kgy,

where we denote by x¨, ¨y the duality pairing between L1 and L8 functions
[KKS16].

Next, we are interested in a data driven method that approximates the leading
Koopman eigenfunctions, eigenvalues and modes from a data set of consecutive
snapshots.

Extended dynamic mode decomposition (EDMD)

EDMD is a possible algorithm to approximate the Koopman operator, the Koopman
eigenfunctions, eigenvalues and modes introduced in Section 7.3.1. Depending on the
underlying dynamical system, we will sometimes not be able to observe the full state
of the system, in particular, if it is infinite dimensional. Therefore, we will consider
only a finite number of measurements (observations), given by x “ Rpuq P Rk

[PK17]. EDMD requires a set of data, i.e. we assume that we are given snapshots
of observed data pairs

X “ rx1, . . . ,xM s, Y “ ry1, . . . ,yM s, (7.21)

where xi “ Rpuiq and yi “ RpΦpuiqq. Here, we do not assume that the data points
ui lie on a single trajectory of (7.14). In order to approximate the Koopman eigen-
functions, eigenvalues and modes, we will in addition use a dictionary of observables
[WKR15]. This approach is an extension of the classical dynamic mode decomposi-
tion (DMD) (cf. [Sch10, TRL`14, AM17]). In what follows, we will use the notation
introduced in [KKS16].

Let us define the dictionary of observables by D “ tψ1, ψ2, . . . , ψNu, where ψi P F ,
i “ 1, . . . , N , are linearly independent basis functions, whose span we denote by
FN Ă F , i.e.

FN :“ spantψ1, . . . , ψNu.
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Then, EDMD constructs a finite dimensional approximation K : FN Ñ FN of the
Koopman operator K by solving the least-squares problem

min
K̂PRNˆN

}K̂JΨX ´ΨY }
2
F . (7.22)

where

ΨX “ rΨpx1
q, . . . ,ΨpxMqs, ΨY “ rΨpy1

q, . . . ,ΨpyMqs

and

Ψpxq “ rψ1pxq, . . . , ψNpxqs
J,

i.e. ΨX ,ΨY P RNˆM (cf. [WKR15, KM18]). If Ψpxq “ x, we obtain DMD as a spe-
cial case of EDMD. An equivalent formulation of (7.22) is given by

min
K̂PRNˆN

M
ÿ

i“1
}K̂JΨpxiq ´Ψpyiq}22 (7.23)

and we denote the solution to (7.22) or (7.23) by

KJ
“ ΨY Ψ:

X , (7.24)

where ¨: denotes the Moore-Penrose pseudoinverse. The computation of (7.24)
becomes computationally expensive for large M since we have to compute the
pseudoinverse of the matrix ΨX [WKR15, KKS16]. By using the relationship
Ψ:

X “ ΨJ
XpΨXΨJ

Xq
: we can compute a solution to (7.22) or (7.23) more efficiently

by

KJ
“ AG:,

where

A “
M
ÿ

i“1
ΨpxiqΨpyiqT , (7.25)

G “
M
ÿ

i“1
ΨpxiqΨpxiqT . (7.26)

Let us denote by

Ξ “

»

—

–

ξ1
...
ξN

fi

ffi

fl
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the matrix that contains all left eigenvectors of KJ. Furthermore, we denote
by λj the corresponding eigenvalues. This allows us to approximate the eigen-
functions φpxq “ pφ1pxq, . . . , φNpxqq

J of the Koopman operator K (cf. [WKR15])
by

φpxq “ ΞΨpxq. (7.27)

Moreover, the full state observable g can be written as gpxq “ BΨpxq, where
B P RkˆN is the corresponding coefficient matrix, i.e.

gipxq “
N
ÿ

j“1
bijψjpxq.

Then, by using (7.27) we obtain

gpxq “ BΨpxq “ BΞ´1φpxq “ ηφpxq, (7.28)

where η “ BΞ´1. The i-th column vector of η represents the Koopman mode
vi. This finally allows us to evaluate the dynamical system using the Koopman
eigenvalues, eigenfunctions and modes computed from data.

Remark 7.3.2.

1. We note that the accuracy of the approximation described above strongly de-
pends on the set of basis functions D “ tψ1, . . . .ψNu. In our numerical real-
ization we will use monomials up to order two. However, more general basis
functions like Hermite polynomials [BE53] or radial basis functions [Buh03]
can be used [WKR15]. Among those two choices, the Hermite polynomials are
the simplest and are best suited to problems defined on Rk if the data in X
is normally distributed. Recently, in [LDBK17] an iterative approximation al-
gorithm, which couples EDMD with a trainable dictionary represented by an
artificial neural network, has been introduced. By employing this idea from
machine learning, the dictionary can effectively and efficiently be adapted to
the problem at hand without the need to choose a fixed dictionary a priory.

2. Following [PK17], we only consider observations of the system x “ Rpuq and
therefore obtain a dynamical system for the observations only. In order to
obtain the ’true’ full state observable, we can set xi “ ui and yi “ Φpuiq in
(7.21).
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Convergence of EDMD

In this section we will briefly review the main results of [KM18], where convergence
of EDMD towards the Koopman operator has recently been proven. We denote
by KN,M “ KJ, KN,M : FN Ñ FN , the finite dimensional approximation of the
Koopman operator obtained by EDMD. As above, we denote by N the number of
basis functions in D “ tψ1, . . . , ψNu and by M the number of measurements in
(7.21). In order to state the two theorems required for the convergence, we first
introduce the following two assumptions.

Assumption 7.3.3. The basis functions ψ1, . . . , ψN are such that

µtx P Z|cJΨpxq “ 0u “ 0,

for all c P RN , where Z Ă RN and µ is a given probability distribution according to
which xi “ Rpuiq are drawn.

This natural assumption ensures that the measure µ is not supported on a zero level
set of a linear combination of the basis functions used, i.e. ψ1, . . . , ψN (cf. [KM18]
for more details).

Assumption 7.3.4. The following conditions hold:

1. The Koopman operator K : F Ñ F is bounded.

2. The observables ψ1, . . . , ψN defining FN are selected from a given orthonormal
basis of F , i.e. , pψiq8i“1 is an orthonormal basis of F .

The first part of this assumption holds for instance when Φ is invertible (e.g. Φ is
a flow on a Banach space), Lipschitz with Lipschitz inverse and µ is the Lebesgue
measure on Z. By using the Gram-Schmidt process, the second part becomes non-
restrictive since any countable dense subset of F can be turned into an orthonormal
basis [KM18].

The convergence of KN,M to K is now achieved in two steps. First, convergence of
KN,M to KN is shown as the number of samples M tends to infinity, where KN is
the projection of K onto FN . Then, convergence of KN to K is shown by taking the
limit N Ñ 8.

Theorem 7.3.5 ([KM18], Theorem 2). If Assumption 7.3.3 holds, then we have
with probability one for all φ P FN

lim
MÑ8

}KN,Mφ´KNφ} “ 0,
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where } ¨ } is any norm on FN . In particular

lim
MÑ8

}KN,M ´KN} “ 0,

where } ¨ } is any operator norm and

lim
MÑ8

dist pσpKN,Mq, σpKNqq ,

where σp¨q Ă C denotes the spectrum of an operator and distp¨, ¨q the Hausdorff
metric on subsets of C.

In [PK17], a switching time optimization problem is approximated using Koopman
operator based model reduction techniques, where under specific constraints and
under both assumptions stated above the optimal solutions are identical. In order
to show convergence, the authors use a summarized version of the main theorem in
[KM18], i.e. the convergence of KN to K which is given as follows:

Theorem 7.3.6 ([PK17], Theorem 2.5). Let Assumption 7.3.4 hold and define the
L2pµq projection of a function φ onto FN by

PN
µ φ “ arg min

fPFN

}f ´ φ}L2pµq.

Then the sequence of operators KNP
N
µ “ PN

µ KPN
µ converges strongly to K as

N Ñ 8.

Throughout the remainder of this section, we will assume that the Assumptions 7.3.3
and 7.3.4 are satisfied. However, we note that in particular the boundedness of K
does not hold for all dynamical systems.

Combining the Koopman operator with the CDS

We will now combine the Koopman operator approach with the CDS defined in
Chapter 4, i.e.,

xj`1 “ ϕpxjq, j “ 0, 1, 2, . . . , (7.29)

where ϕ “ R ˝ Φ ˝ E. Let us denote by uj “ Epxjq the initial values constructed
via the continuous map E : Rk Ñ Y . One iteration of the CDS is then given
by

xj`1 “ RpΦpujqq.
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Figure 7.9: General approach of Section 7.3: Instead of evaluating xj via the CDS,
where each time we also have to evaluate the underlying infinite dimensional
dynamical system Φ, we use a local approximation of the Koopman operator
via EDMD in order to compute xj`1.

Since R is a vector valued observable (cf. Section 7.3.1), we get the equivalent
formulation

xj`1 “ RpΦpujqq “ pKRqpujq, (7.30)

i.e. one evaluation by the CDS is equivalent to one iteration of the initial function uj
by the Koopman operator (cf. (7.15) and (7.19)). Using EDMD, we can compute an
approximation of the Koopman operator K. Since the Koopman operator is linear,
we can use it in order to iterate a large number of test points very fast in comparison
to the evaluation of those points with the CDS (see Figure 7.9).

Let us be more precise. In the pj`1q-th continuation step, i.e.

Cp`qj`1 “
!

B P Ps`` : DB1 P Cp`qj and x P B1 such that ϕpxq P B
)

(7.31)

(cf. Algorithm 5.2) we have to mark all boxes B in the partition Ps`` which are hit
by the test points x P B1 under ϕ. This step may become computationally expensive
if the number of test points is large and/or the evaluation of Φ is expensive. Let us
suppose that an approximation of the Koopman operator via EDMD is available,
i.e.

ϕpxq « BKJΨpxq, (7.32)

where B denotes the projection matrix (cf. (7.28)) and x P Rk. Then we can define
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a Koopman-operator based continuation step as follows:

Cp`qj`1 “
!

B P Ps`` : DB1 P Cp`qj and x P B1 such that BKJΨpxq P B
)

. (7.33)

This modified continuation step allows us to compute Cp`qj`1 very efficiently since the
evaluation of the underlying infinite dimensional dynamical system is not required
anymore. Next, we will show that the box coverings obtained by (7.31) and (7.33)
are identical.

Theorem 7.3.7. Let Assumptions 7.3.3 and 7.3.4 be satisfied. Then the box cover-
ings Cp`qj`1 obtained by (7.31) and (7.33), respectively, are identical.

Proof. By Assumption 7.3.3 and 7.3.4, Theorems 7.3.5 and 7.3.6 yield convergence
of EDMD to the Koopman operator. Consequently, we have

BKJΨpxiq “ BΨpxi`1q “ BΨpϕpxiqq “ gpϕpxiqq “ ϕpxiq, (7.34)

where gpxq “ BΨpxq is the full state observable according to item 2 of Remark 7.3.2.
Hence, by (7.34) the coverings obtained by (7.31) and (7.33) are identical.

We note that in Theorem 7.3.7 the number of samples M (i.e. xi “ Rpuiq for
i “ 1, . . . ,M) tends to infinity, where it is also assumed that the samples in state
space ui P A are drawn either independently or ergodically from some measure µ.
This allows us to at least approximate the Koopman operator for the CDS defined
on the invariant set Ak. However, by construction of the continuation method, we
want to construct approximations of the Koopman operator locally, i.e. for each box
of the current box collection Cp`qj . To this end, we will proceed as follows: first, we
discretize each box B1 P Cp`qj by a finite set of test points (say L). Then we evaluate
M ! L test points via the CDS. We use this information in order to create snapshots
of observed data pairs X and Y (cf (7.21)). Then we use EDMD to approximate a
local Koopman operator K P RNˆN , i.e. a Koopman operator which approximates
the dynamics of ϕ restricted to the box B1. Instead of using the CDS, we then
evaluate the remaining L´M points via the Koopman operator.

Remark 7.3.8.

1. The accuracy of the approximation of the local Koopman operator not only
depends on the set of basis functions D, but also on the M test points chosen
for the generation of the data pairs X and Y , respectively. We discretize each
box by an outer grid, where we use three points in each dimension. This yields
M “ 3k test points, where k denotes the embedding dimension.

2. For the numerical realization of the modified continuation step we will addi-
tionally evaluate each point xr, r “ 1, . . . ,M , by the CDS on an equidistant
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time-grid 0 “ t0 ă t1 ă . . . ă tn “ T . Thus, for ϕω “ R ˝ Φω ˝ E, where
ω “ T {n, we define the snapshot matrices X and Y as follows:

X “ rx1, ϕω
`

x1˘ , . . . ϕpn´1qω `x1˘ , . . . ,xM , . . . , ϕpn´1qω `xM
˘

s

and

Y “ rϕω
`

x1˘ , . . . ϕnω
`

x1˘ , . . . , ϕω
`

xM
˘

, . . . , ϕnω
`

xM
˘

s.

Hence, in order to approximate ϕpxq “ pR ˝ Φ ˝ Eq, where Φ “ ΦT , we have
to compute

ϕpxq « BpKJ
q
n`1Ψpxq, (7.35)

3. The decomposition of the Koopman operator into eigenvalues, eigenfunctions
and modes allows us to compute future states (i.e. ϕpxq) via

ϕpxq « BpKJ
q
n`1Ψpxq

“ BΞ´1ΞpKJ
q
n`1Ψpxq

“ ηΛn`1φpxq,

(7.36)

where Λ “ diagpλ1 . . . , λNq.

In (7.32), the evaluation of a test point x via the Koopman operator is just an
approximation of the evaluation by the CDS. By (7.35) and (7.36), respectively, we
have to iterate the test points x up to pn`1q times in order to get an approximation
of ϕpxq. If the approximation of the Koopman operator is poor, we may have to stop
after m ă n` 1 iterations. To this end, in the next section we will introduce a trust
region, where iterations by the Koopman operator are valid as long as they stay in a
small neighborhood of the trajectories computed via the CDS.

7.3.2 The trust region

The aim of this section is to introduce a so-called trust region for the Koopman
operator based continuation step discussed in the previous section. The trust region
is a term often used in mathematical optimization (e.g. [NW06]), where the objective
function is approximated by a model function which can easily be derived for e.g. one
computation of a descend step. If the approximated objective function is sufficiently
accurate within the trust region, then the region is expanded and otherwise it is
contracted (e.g. [CGT00]). Similar ideas of the trust-region frameworks are used
for managing the use of approximation models in optimization [ADLT98] (see also
[Fah01, RTV17] for POD based ROM). Since ROMs are sufficiently accurate only in
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a restricted zone around the point in decision variable space where they have been
constructed, the ROM needs to be updated in a systematic manner over the course of
optimization [AB13]. We will use this idea in our context, where we define the trust
region as a region where the iterates via the approximated Koopman operator are
valid, i.e. where they stay sufficiently close to the trajectories computed via the CDS.
Following item 2 of Remark 7.3.8, we have to do n ` 1 iterations by the Koopman
operator in order to approximate one step of the CDS. If the approximation ofK is
poor, this may result in trajectories in observation space that are far away from the
’real’ embedded unstable manifold, i.e. the embedded unstable manifold obtained by
Algorithm 5.2. The more steps we can do by using the Koopman operator, the more
efficient our modified continuation step becomes. Thus, it is crucial to compute the
optimal number of Koopman iterations for each test point xw, w “ M ` 1, . . . , L.
To this end, we will formulate the optimal number of Koopman steps as a solution
of an optimization problem.

Let us denote by X r “ tϕωjpxrqunj“0, r “ 1, . . . ,M , the discrete trajectories gener-
ated by the CDS, where ω “ T {n. Analogously, we denote by Yw “ tηΛjφpxwqujě0,
w “ M ` 1, . . . , L, the discrete trajectories computed via the Koopman operator.
Moreover, the position at a certain time instance i P N is denoted by X r,i and Yw,i,
respectively (cf. item 2 of Remark 7.3.8). Observe that X r,i “ ϕωipxrq and analo-
gously Yw,i “ ηΛiφpxwq. Then the minimal distance between one point y P Rk and
a discrete trajectory X r is given by

Dpy,X r
q “ mintdpy,X r,i

q | i P t0, . . . , nuu, (7.37)

where dp¨, ¨q is an arbitrary distance function in Rk. This distance allows us to
compute the maximal Koopman iteration for one test point xw pw “M ` 1, . . . , Lq
as follows:

max
iPN

i

s.t. min
rPt1,...,Mu

DpYw,m,X r
q ă ε @m ď i,

(7.38)

i.e. the Koopman iteration stays within an ε-neighborhood of at least one discrete
trajectory computed by the CDS. Note that we maximize over i P N, i.e. we allow
more than n` 1 Koopman iterations as long as they stay within an ε-neighborhood
of the discrete trajectories X r, r “ 1, . . . ,M . In Figure 7.10 we show a schematic
illustration of our trust region approach, whereas in Figure 7.11 we show one step
of our numerical implementation for the modified Wright DDE

9uptq “ ´α ¨ upt´ 1q ¨ r1´ u2
ptqs. (7.39)

On the left side of Figure 7.11 we show a two-dimensional projection of the dis-
crete trajectories computed by the CDS (green) as well as the trajectories computed
by the local Koopman operator (black) and the covering we obtain the continua-
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tion algorithm after one step. On the right side we show a zoom into four boxes,
where the ε-neighborhood of the trajectory points computed by the CDS is indi-
cated.

Figure 7.10: Schematic illustration of the trust region. The gray dots and circles repre-
sent the discrete trajectories for two different test points computed by the
CDS as well as their respective ε-neighborhoods. The blue and red dots
represent the Koopman iterations for one test point, where the color red
indicates that the Koopman iteration is infeasible. In this specific case, we
stop after four Koopman iterations.

Remark 7.3.9.

1. Numerically, we solve the optimization problem (7.38) as follows: we start
with i “ 1 and solve the underlying minimization problem

min
r“1,...,M

DpYw,1,X r
q ă ε

via a k-nearest neighbor algorithm [AMN`98] (see also [Ber06, ZBMM06] for
different application areas of the nearest neighbor searching algorithm). If the
distance between the points Yw,1 and their corresponding nearest neighbor in
X r is smaller than ε ą 0 we accept the Koopman iteration. Otherwise, we
stop the Koopman iteration for those points that become infeasible. Then we
compute the next Koopman iterations (i.e. we compute Yw,2 for all feasible s)
and restart the procedure as described above. This yields the optimal number
of Koopman iterations in the sense of our trust region approach.

2. The implementation of the k-nearest neighbor algorithm in MATLAB allows
us to use a specific metric for the measurement of the distance, i.e. our metric
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Figure 7.11: One step of the modified continuation algorithm introduced in Section 7.3
for the modified Wright DDE (7.39). The green dots are discrete trajectory
points computed by the CDS which are used to approximate the Koopman
operator. The black dots are the Koopman iterations starting in the neigh-
borhood of the unstable fixed point. A zoom into four boxes shows that
they stay within the ε-neighborhood of the discrete trajectory points X r

for r “ 1, . . . ,M .

dp¨, ¨q in (7.37). Following an observation made in [AHK01], where the au-
thors have shown that the meaningfulness of the Lp norm worsens faster with
increasing dimensionality for higher values of p, we choose the Manhattan
distance metric (or L1 metric) defined by

dpx,yq “
k
ÿ

i“1
|xi ´ yi| x,y P Rk.

In summary, the numerical realization of the continuation step (7.31) of Algo-
rithm (5.2) is replaced by the following procedure:

7.3.3 Examples

In this section, we present results of computations carried out for one DDE as well
as one PDE. For the DDE, a comparison with the continuation method introduced
in Section 5.3 is presented as well.
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7.3 Koopman operator based continuation step

Algorithm 7.1 Koopman operator based continuation method

For j “ 0, 1, 2, . . .

1. Discretize each box B P Cp`qj by a finite set of test points xr P B, r “ 1, . . . , L.
Choose M ! L test points and create snapshots of data pairs X and Y
according to item 2 of Remark 7.3.8. In addition, store the iterations computed
by the CDS in X r for r “ 1, . . . , L.

2. Approximate the Koopman operatorK P RNˆN by EDMD using a dictionary
of observables D “ tψ1, ψ2, . . . , ψNu and the snapshot matrices X and Y ,
respectively.

3. Choose ε ą 0 and replace the continuation step (7.31) by

Cp`qj`1 “
!

B P Ps`` : for B1 P Cp`qj Dxw P B1 such that ηΛiφpxwq P B,

where i P N according to (7.38)
)

,
(7.40)

for w “M ` 1, . . . , L.

The modified Wright equation

As a first example let us consider the modified Wright equation

9uptq “ ´α ¨ upt´ 1q ¨ r1´ u2
ptqs. (7.39)

In [HL93] it has been shown that the stationary solution u0ptq ” 0 of (7.39) under-
goes a supercritical Hopf bifurcation at α “ π{2. Thus, (7.39) possesses a stable
periodic solution for α ą π{2. We choose α “ 2, set k “ 3 and Q “ r´2, 2s3.
Further parameter values are shown in Table 7.1. The optimization problem (7.38)

Table 7.1: Parameter values of the Koopman operator based continuation method for
the modified Wright equation.

Parameter Value
Level of the partition Ps s 24
Integration time T 4
Time step ω 4{75
# trajectories computed by the CDS per
box M 9, 27, 65

# points iterated via (7.36) L´M 2000
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is solved for different values of ε “ a ¨ r, where r “ diampCq{2 “ 0.0078 and
C P Ps is the initial box containing the embedded unstable steady state of (7.39),
i.e. Rpu0q. Figure 7.12 shows one comparison of the embedded unstable manifold
obtained by Algorithm 5.2 (where each box is discretized by 2000 test points) and
our new approach which utilizes Koopman operator theory.

Figure 7.12: Comparison of the three-dimensional projection of the embedded unstable
manifold of (7.39). Gray boxes correspond to the box covering obtained by
Algorithm 5.2 and the transparent red boxes correspond to the box covering
obtained by the Koopman operator approach (M “ 27 and ε “ r).

Since we have an efficient implementation of the evaluation of the CDS for this
particular DDE, the overall computational time via the Koopman operator approach
is only faster for low values of M , i.e. M “ 9 (cf. Figure 7.13). However, if we
choose M too low then the Hausdorff distance hpQCDS, QKq between the covering
QCDS obtained by Algorithm 5.2 and the covering QK obtained by the Koopman
operator based approach is inferior to the Hausdorff distance hpQCDS, QKq, where
QK has been computed using higher values of M “ 27, 65 (cf. Figure 7.13). We
obtain the best result for M “ 27 and ε “ r, where the computational time is
about 46% longer comparing to the computational time of Algorithm 5.2. The
corresponding Hausdorff distance hpQCDS, QKq “ 0.01562 “ 2 ¨ r means that the
box covering obtained by the Koopman operator based continuation method is at
most one box thicker than the covering obtained by Algorithm 5.2. We expect that
the Koopman operator based approach will be much faster for dynamical systems
where the evaluation of the underlying infinite dimensional dynamical system is very
expensive. This expectation is justified by the fact that the Koopman iteration,
which is very time consuming comparing to the evaluation of the CDS for this
particular DDE, is independent of the underlying dynamical system and thus should
have less influence on the overall computational time.
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Figure 7.13: Run-time comparison of Algorithm 5.2 and the Koopman operator based
continuation algorithm for the modified Wright DDE (7.39) for different
parameter values M and ε. The last column shows the number of boxes
obtained by both algorithms. We obtain the best result for M “ 27 and
ε “ r. The Hausdorff distance is shown in Table 7.2.

A chemotaxis model

The second example is a one-dimensional Keller-Segel type model for chemotaxis
incorporating a logistic cell growth term [PH11] described by

ut “ ∇pD∇u´ χu∇vq ` rup1´ uq,
vt “ ∆v ` u´ v.

(7.41)

Chemotaxis is a process that describes the movement of cells (or organisms) in
response to the presence of a chemical signal substance inhomogeneously distributed
in space. This can result in a variety of spatial patterns of different complexity. In
[TW07, Win10] the existence of unique global weak solutions is shown, where r is
assumed to be sufficiently large. However, in [TW07] it is also assumed that the
spatial dimension does not exceed two. We denote by upx, tq and vpx, tq the cell
density and the chemoattractant concentration, respectively, at time t and location
x P r0, Ls. Furthermore, we refer to D as the cell diffusion coefficient, χ as the
chemotactic coefficient and r as the growth rate. When χ ą 0, we speak of the
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Table 7.2: Hausdorff distance hpQCDS , QKq between the covering QCDS obtained by
Algorithm 5.2 and the covering QK obtained by the Koopman operator based
continuation method for r “ 0.0078 for the modified Wright DDE (7.39).

M ε Hausdorff distance
9 3r 0.03494
9 2r 0.03827
9 r 0.04419
9 r{2 0.04688
27 3r 0.02706
27 2r 0.0221
27 r 0.01562
27 r{2 0.0221
65 3r 0.02706
65 2r 0.0221
65 r 0.01562
65 r{2 0.0221

so-called chemoattraction, where cells exhibit a tendency to move toward higher
signal concentrations. Conversely, for χ ă 0 we speak of chemorepulsion, where
cells prefer to move away from the signal [Win10]. Related classes of (7.41) can
be found in [HP09]. Following [PH11] we assume zero-flux (Neumann) boundary
conditions, i.e.

Bu

Bx
“
Bv

Bx
“ 0, for x “ 0 and x “ L.

We choose the parameter regime D “ r “ 1, χ “ 5.6 and L “ 10. This yields
spatio-temporal periodicity (cf. Figure 7.14) for initial functions near the unstable
steady state pupx, 0q, vpx, 0qq “ p1, 1q.

(a) upx, tq (b) vpx, tq

Figure 7.14: Direct numerical simulation of (7.41) for D “ r “ 1, χ “ 5.6 and L “ 10 for
an initial function near the unstable steady state pupx, 0q, vpx, 0qq “ p1, 1q.
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We use this coupled data in order to compute the POD-basis according to Section 6.2
for u and v, respectively. Moreover, following the idea introduced in [NAM`03],
where a Karhunen-Loéve decomposition for the viscous incompressible flow around
a circular cylinder incorporating the so-called shift-mode was presented, we will also
incorporate an additional basis function, that is, the constant function in u and v.
Then, we use a modified Gram-Schmidt algorithm [Bjö94] in order to compute an
orthonormal POD-basis. The corresponding POD-coefficients are then our observa-
tions for this particular PDE. In Figure 7.15, we show the first 4 POD-modes for u
and v, respectively.

(a) upx, tq (b) vpx, tq

Figure 7.15: The first four (decoupled) POD-modes for u and v obtained by the singular
value decomposition of the snapshot matrix illustrated in Figure 7.14.

Next, we will show results obtained by the Koopman operator based continuation
method for two different embedding dimensions and we will compare them to box
coverings obtained via long-term simulations. First, we choose the embedding di-
mension k “ 4 and the initial box Q “ r13, 21s ˆ r´4, 4s ˆ r´8, 8s ˆ r´8, 8s. In
Table 7.3 we show further parameter values used in our Koopman operator based
continuation method. The optimization problem (7.38) is solved for ε “ 2¨diampCq,

Table 7.3: Parameter values for the Koopman operator based continuation method for
the chemotaxis model (k “ 4).

Parameter Value
Level of the partition Ps s 30
Integration time T 8
Time step ω 0.1
# trajectories computed by the CDS per
box L 81

# points iterated via (7.36) M ´ L 5000
Spatial discretization for u and v N 200
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Figure 7.16: Different views of a three-dimensional projection of the embedded unstable
manifold of (7.41) for k “ 4. Gray boxes show the box covering obtained
by long-term simulations starting from a small neighborhood of the initial
box C. The transparent orange boxes show the box covering obtained by
the Koopman approach.

where C P Ps is the initial box containing the embedded unstable steady state of
(7.39). In Figure 7.16 we show a three-dimensional projection of the embedded
unstable manifold onto the second, third and fourth POD-mode obtained by the
Koopman operator based continuation method as well as a box covering obtained by
long-term simulations. For the latter, we have chosen the integration time T “ 100.
Furthermore, we start the long-term simulations in a small neighborhood of the box
C (16 boxes in total, each discretized by 3000 test points). Observe that the embed-
ded unstable manifold obtained by the Koopman operator based approach is thicker
than the covering obtained by long-term simulations. This is due to the fact that in
each continuation step, where initial functions u “ Epxq have to be generated, the
approximation error

}Φm
pEpx̂qq ´ u},

where Epx̂q are initial functions generated in the previous continuation step, is too
large (cf. Section 6.2.2). Since the box-counting dimension of the covering obtained
by Algorithm 7.1 is « 2.662, we expect that we get better results if we increase the
embedding dimension to k “ 6.

For the embedding dimension k “ 6 we choose Q “ r13, 21s ˆ r´4, 4s ˆ r´8, 8s4.
Further parameter values are shown in Table 7.4. Again, we solve the optimization
problem (7.38) for ε “ 2¨diampCq, where C P Ps is the initial box containing the em-
bedded unstable steady state of (7.39). In Figure 7.17 we show a three-dimensional
projection of the embedded unstable manifold onto the second, third and fourth
POD-mode obtained by the Koopman operator based continuation method as well

126



7.3 Koopman operator based continuation step

Table 7.4: Parameter values for the Koopman operator based continuation method for
the chemotaxis model (k “ 6).

Parameter Value
Level of the partition Ps s 40
Integration time T 8
Time step ω 0.1
# trajectories computed by the CDS per
box L 129

# points iterated via (7.36) M ´ L 5000
Spatial discretization for u and v N 200

as a box covering obtained by long-term simulations. For the covering obtained by
long-term simulations we choose the integration time T “ 100. Here, we start the
long-term simulations in a small neighborhood of the box C (64 boxes in total, each
discretized by 2000 test points).

Figure 7.17: Three-dimensional projection of the embedded unstable manifold of (7.41)
for k “ 6. Gray boxes show the box covering obtained by long-term sim-
ulations starting from a small neighborhood of the initial box C. The
transparent orange boxes show the box covering obtained by the Koopman
approach.

Though we have chosen 2000 test points the box covering obtained by direct simu-
lation has a lot of holes. This is the main drawback of using long-term simulations
combined with our set-oriented methods. The number of test points has to be suf-
ficiently large. Observe that the boxes that are obtained by long-term simulations
are covered by the Koopman operator based continuation method which yields a
nice covering of the embedded unstable manifold. Furthermore, in Figure 7.18 we
show a comparison of a three-dimensional projection of the coverings obtained by
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Algorithm 7.1 for k “ 4 and k “ 6, respectively. By using more POD-modes for the

Figure 7.18: Comparison of a three-dimensional projection of the embedded unstable
manifold of (7.41) for k “ 4 and k “ 6. Gray boxes show the box covering
obtained by Algorithm 7.1 for k “ 4 whereas the transparent orange boxes
show the box covering for k “ 6.

initial functions near the unstable steady state, we gain more information about the
embedded unstable manifold. Thus, the box collection obtained for k “ 4 is just a
subset of the box collection obtained for k “ 6. This shows that it is very important
to choose the embedding dimension sufficiently large!
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8 Conclusion and outlook

One central goal in the analysis of dynamical systems is the characterization of long
term behavior of the system state. For finite dimensional dynamical systems there
exist various algorithms that allow to approximate, e.g. unstable manifolds or the
global attractor, that is, an invariant set that attracts all trajectories of the dynami-
cal system. Among other methods, so-called set-oriented numerical techniques have
been developed over the last two decades. The basic idea is to cover the objects
of interest by outer approximations which are created via subdivision techniques.
However, if the system’s states are infinite dimensional, and thus, discretized in
a high-dimensional space, those techniques are no longer feasible. For infinite di-
mensional dynamical systems possessing a finite dimensional inertial manifold it
suffices to study the dynamics on the inertial manifold, which can be described by
an appropriate finite dimensional dynamical system, e.g. obtained via a Galerkin
expansion. Although it is possible to fix the dimension of the reduced order model
(ROM), an a priori identification of determining modes for the inertial manifold is
needed.

In this thesis, we have presented a new approach, where we have combined set-
oriented techniques with infinite dimensional embedding results. By using a suffi-
ciently large number of observations for the infinite dimensional states, which de-
pends on the upper box-counting dimension and the thickness exponent of the in-
variant set A, we are able to compute a one-to-one image of A in a finite dimensional
observation space. To this end, we have constructed a finite dimensional dynamical
system, the core dynamical system, which allows us to use set-oriented techniques
for the approximation of embedded invariant sets. The resulting embedded invari-
ant sets are then one-to-one images of A. We note that an a priori identification of
determining modes for the ROM is not needed anymore.

8.1 The core dynamical system

Chapter 3 builds our theoretical foundation for the analysis of the long term be-
havior of infinite dimensional dynamical systems that possess a finite dimensional
invariant set. The main theorem of Section 3.3.3 states that it is possible to com-
pute a one-to-one image of a compact finite dimensional invariant set A of an infinite
dimensional dynamical system. More precisely, the set A is mapped into a finite
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dimensional observation space by using an appropriate observation map R. RpAq is
then a one-to-one image of A as long as the number of observations is sufficiently
large. By using the observation map R as well as its inverse, in Chapter 4 we
have constructed a finite dimensional dynamical system, the core dynamical system
(CDS) ϕ, on the observation space using Dugundji’s extension theorem. By con-
struction, the dynamics of ϕ on RpAq is topologically conjugate to that of Φ on
A, where we denote by Φ the time-T -map of the underlying infinite dimensional
dynamical system.

8.2 Set-oriented techniques for embedded invariant
sets

The CDS allows us to approximate the invariant sets in a finite dimensional space.
However, due to Dungundji’s extension theorem, the CDS is just continuous. Since
the classical convergence results of the set-oriented techniques hold only for finite
dimensional discrete dynamical systems that are homeomorphisms, we had to ex-
tend the theory to the continuous case. This is addressed in Chapter 5. We then
showed how to approximate embedded attractors or embedded unstable manifolds
by using appropriate extensions of the set-oriented methods, i.e. the subdivision and
continuation method.

The general numerical approach we have presented in this thesis is applicable to
infinite dimensional dynamical systems described by a Lipschitz continuous oper-
ator on a Banach space. However, in this thesis we have restricted our attention
to delay differential equations with (small) state dependent time delay and dissipa-
tive dynamical systems modeled by partial differential equations. In Chapter 6 we
have presented numerical realizations of the CDS for each of both classes of differen-
tial equations and showed the efficiency of our numerical methods for several infinite
dimensional dynamical systems that possess a low-dimensional invariant set. For de-
lay differential equations, we have also approximated embedded invariant measures
and discussed how these measures can be interpreted in order to give a statistical
description of the infinite dimensional states.

8.3 Improving the numerical efficiency

Due to our numerical realization of both the selection and the continuation step, we
have to discretize each box in the box collection by a finite number of test points.
Each point then has to be evaluated by the CDS. Due to the construction of the CDS,
for each point we have to solve the underlying infinite dimensional dynamical system.

130



8.4 Future work

Hence, the overall computational time not only depends on the complexity of the
underlying invariant set (i.e. the upper box counting dimension and the thickness
exponent of A), but also on the efficient evaluation of the selection and continuation
step, respectively. Therefore, in Chapter 7 we have presented modifications of the
selection and the continuation step in order to improve the numerical efficiency of
the set-oriented techniques discussed throughout this thesis.

For the selection step, we have used information obtained during the subdivision
procedure in order to decrease the number of CDS evaluations by a factor of approxi-
mately two. Furthermore, we have presented a sequential procedure that adaptively
increases the embedding dimension if it has been chosen too low initially. Here,
instead of beginning the subdivision method anew, the existing results have been
utilized as a starting point for the consecutive computation.

Finally, we have developed a Koopman operator based continuation method. Within
each box that has been marked during the continuation procedure we have used
a small number of test points in order to compute discrete trajectories via the
CDS. Then, we have computed local Koopman operators via extended dynamic
mode decomposition. The approximation of the Koopman operator is given by a
finite dimensional matrix. Hence, this allows us to iterate a large number of test
points by simple matrix-vector multiplications. However, those iterations are just
approximations of the evaluation by the CDS. Thus, we have also introduced a
trust region, where the iterations by the local Koopman operator are only feasible
if they stay within an ε-neighborhood of the discrete trajectories computed by the
CDS.

8.4 Future work

The results presented in this thesis contribute to the numerical analysis of long
term behavior of infinite dimensional dynamical systems. We have combined set-
oriented techniques with infinite dimensional embedding results which allow us to
approximate finite dimensional invariant sets of infinite dimensional dynamical sys-
tems. However, our current approach only gives us topological information about
the invariant sets of interest, since the observation map due to Hunt & Kaloshin or
Robinson does not provide any information about the distance between two points
in observation space and the corresponding distance of functions in state space. For
finite dimensional dynamical systems a geometry preserving delay-coordinate map
has recently been introduced which yields an embedded set that also provides geo-
metrical information [EYWR18]. If possible, an extension to the infinite dimensional
context could yield more information about the embedded invariant sets of infinite
dimensional dynamical systems.
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Due to the realization of the set-oriented techniques presented throughout this the-
sis, our methods are restricted to invariant sets of dimension smaller than four.
Though we have presented some modifications of the selection and continuation
step, respectively, which improve the numerical efficiency of our set-oriented meth-
ods, more work has to be done in order to tackle problems that possess invariant
sets of dimension greater or equal to four.

In particular, since the computation of the selection step is still expensive, we do not
recommend the subdivision method presented in Section 7.1 for the computation of
attractors of PDEs. In Section 7.3 we have shown how to modify the continuation
step in order to decrease the number of function evaluations of the CDS significantly.
Here, we have used an approximation of the Koopman operator which is a linear
operator, i.e. a matrix in the numerical realization, to iterate a large number of test
points very efficiently. Hence, we can use a similar approach for the selection step
of the subdivision algorithm, where we approximate the dynamics in observation
space by local Koopman operators. The idea comes from the field of mathematical
optimization, where the function is approximated by reduced order models which
are only valid in a small neighborhood of the corresponding point in decision space.
Thus, by defining local Koopman operators, we could switch from one Koopman
operator to another, provided that we switch the trust region. However, it should
be desirable to use concrete error estimations for the trust region in which the ap-
proximated Koopman operator is valid. Here, more work has to be done yet, since
the error estimates introduced in [KM18] are only of theoretical nature. Further-
more, it is not clear where a local Koopman operator in observation space should
be constructed. One idea is to use clustering techniques from the computation of
Lagrangian coherent structures (e.g. [PGS17]) in order to identify regions where
the dynamics in observation space behaves similar. In these regions local Koopman
operators can then be approximated (see Figure 8.1 (a)).

(a) (b)

Figure 8.1: (a) Identified regions in the initial box Q, where the dynamics of the
Kuramoto-Sivashinsky equation behaves similar. (b) Evaluation of each test
point via the CDS. Test points in each region stay together.
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