
Universität Paderborn
Fakultät für Elektrotechnik, Informatik und Mathematik

Institut für Informatik
Arbeitsgruppe Softwaretechnik

Warburger Str. 100
33098 Paderborn

Generierung typsicherer
Implementierungen für

Assoziationen in UML-Modellen

Studienarbeit
zur Erlangung des Grades

Bachelor of Computer Science

vorgelegt von

Dietrich Travkin
Ginsterweg 1

33813 Oerlinghausen

vorgelegt bei
Prof. Dr. Wilhelm Schäfer

und
Prof. Dr. Hans Kleine Büning

21. Februar 2005





Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von die-
ser als Teil einer Prüfungsleistung angenommen worden ist. Alle Ausführungen, die
wörtlich oder sinngemäß übernommen worden sind, sind als solche gekennzeichnet.

Ort, Datum Unterschrift

iii





Inhaltsverzeichnis

1. Einleitung 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Lösungsansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Struktur der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Grundlagen 5

2.1. Assoziationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Generics in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2. Eigenschaften der Java Generics . . . . . . . . . . . . . . . 8

3. Ansätze zur Implementierung von Assoziationen 11

3.1. Anforderungen an eine Implementierung . . . . . . . . . . . . . . 11

3.2. Rollenimplementierung innerhalb der Modellklassen . . . . . . . . 13

3.2.1. Beschreibung des Ansatzes . . . . . . . . . . . . . . . . . . 13

3.2.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3. Typsicherheit durch spezielle Java-Container . . . . . . . . 20

3.3. Rollen als eigenständige Klassen . . . . . . . . . . . . . . . . . . . 23

3.3.1. Beschreibung des Ansatzes . . . . . . . . . . . . . . . . . . 24

3.3.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. Typsichere Implementierung von Assoziationen 33

4.1. Beschreibung des Ansatzes . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1. Überblick . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2. Anpassung der Modellklassen . . . . . . . . . . . . . . . . 34

4.1.3. Implementierung spezieller Rollenklassen . . . . . . . . . . 34

4.1.4. Realisierung der Assoziationen . . . . . . . . . . . . . . . . 37

4.1.5. Rollenbibliothek . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.6. Verwendung von Containern . . . . . . . . . . . . . . . . . 42

4.1.7. Typsicherheit . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



Inhaltsverzeichnis

5. Technische Realisierung 47
5.1. Implementierung einer Rollenbibliothek . . . . . . . . . . . . . . . 47
5.2. Anpassung der Code-Generierung in Fujaba . . . . . . . . . . . . 48

5.2.1. Der Code-Generierungsmechanismus . . . . . . . . . . . . 48
5.2.2. Das Plug-In für die neue Code-Generierung . . . . . . . . 50

6. Zusammenfassung und Ausblick 53

A. Anhang 55
A.1. Aufwand für das Erzeugen von Iteratoren mit exklusivem Kontext 55
A.2. Aufwand für Methodenaufrufe mit Hilfe von Reflection . . . . . . 62

Literaturverzeichnis 67

vi



1. Einleitung

Mit zunehmend wachsenden Softwaresystemen und ihrer Komplexität nimmt die
Bedeutung der modellbasierten Softwareentwicklung zu. Eine einheitliche Model-
lierungssprache wie UML [Obj03] trägt dazu bei, modellgetriebene Entwicklungs-
prozesse zu etablieren. Besonders wichtig ist bei dieser Art von Softwareentwick-
lung die Generierung von lauffähigem Code aus einem Modell.

Anstatt Änderungen während des Entwicklungsprozesses oder bei neuen An-
forderungen an das Softwaresystem direkt im Quellcode durchzuführen, wird auf
einer abstrakteren Ebene das zugehörige Modell geändert. Mit Hilfe von speziellen
Werkzeugen wird anschließend Code aus dem Modell generiert, der die Semantik
des Modells erhält. Diese Vorgehensweise ermöglicht einen schnellen Entwicklungs-
prozess und vereinfacht den Umgang mit Komplexität.

Ein Werkzeug, das sowohl die Modellierung von Softwaresystemen als auch die
Generierung von Java-Code daraus unterstützt, ist die an der Universität Pader-
born entwickelte Fujaba Tool Suite (kurz Fujaba) [Fuj04] [FNT98]. Diese Entwick-
lungsumgebung bietet neben zahlreichen UML-Diagrammarten wie Klassen-, Ak-
tivitätsdiagrammen und Statecharts auch so genannte Story-Diagramme
[FNTZ98]. Diese sind eine Art von Aktivitätsdiagrammen, die zur Beschreibung
der dynamischen Änderungen von Objektstrukturen spezielle Kollaborationsdia-
gramme, so genannte Storypatterns, einbettet. Mit Hilfe dieser Diagrammarten,
die mit einer formalen Semantik unterlegt sind, ist die Spezifikation von dynami-
schen und statischen Anteilen eines Softwaresystems sowie die Generierung von
zugehörigem Code möglich.

In der grafischen Modellierungssprache UML können verschiedene Arten von
Assoziationen zwischen zwei Klassen modelliert werden, insbesondere bidirektio-
nale. Da diese von den meisten objektorientierten Programmiersprachen wie Java
nicht unterstützt werden, bedürfen sie einer speziellen Abbildung von dem Modell
auf lauffähigen Code, dessen Verwendung möglichst intuitiv und sicher sein soll.

1.1. Motivation

Die Entwicklungsumgebung Fujaba generiert unter Anderem Java-Quellcode für
Assoziationen, an denen beliebig viele Elemente beteiligt sein können, z.B. für
1-zu-n-Assoziationen. Darin werden zur Verwaltung der durch eine Assoziation
verbunden Elemente Container verwendet.

Damit diese Container beliebige Elemente enthalten können, wird der Typ der
in einem Container verwaltbaren Elemente so allgemein wie möglich angegeben.

1



1. Einleitung

Dadurch können auch Elemente falschen Typs in die Container gelangen und es
werden Typumwandlungen (type casts) im generierten Code notwendig. Typfeh-
ler werden erst durch Typprüfungen zur Laufzeit (dynamisch) erkannt und nur,
wenn die entsprechende Stelle im Code ausgeführt wird. Deswegen bietet die von
Fujaba generierte Java-Implementierung von Assoziationen bisher keine Typsi-
cherheit. Eine ausschließlich statische Typisierung würde alle Typfehler bereits
zur Übersetzungszeit aufdecken und Typumwandlungen unnötig machen.

Anstatt von Standard-Containern aus der Java-Bibliothek verwendet die Code-
Generierung von Fujaba spezielle Container, die für die Implementierung von
Assoziationen entwickelt wurden. Diese bieten die Funktionalität der Standard-
Container und ergänzen diese, z.B. werden bei Änderungen des Container-Inhalts
Nachrichten an Listener-Objekte verschickt. Die Implementierung der speziellen
Container stellt zusätzlichen Code dar, der den Wartungsaufwand von Fujaba
erhöht. Insbesondere ist die Einführung von Typsicherheit schwierig.

Fujaba generiert für jede Assoziation, an der eine Modellklasse beteiligt ist,
diverse Methoden zum Verknüpfen und Trennen zweier Modellelemente (Instan-
zen einer Modellklasse) in die Modellklassen. Die große Anzahl der generierten
Methoden macht den Quellcode unübersichtlich und erschwert seine Wartung.

An der Universität Kassel wurde eine andere Implementierung von Assozia-
tionen vorgeschlagen [MZ04], die den generierten Code übersichtlicher und die
Wartung einfacher macht. Bei dieser Implementierung werden die oben genann-
ten Methoden in spezielle Klassen ausgelagert, die den Rollen von Assoziationen
entsprechen. Anstatt der speziellen Container werden hier Standard-Container
verwendet. Obwohl die Implementierung der Rollenklassen und der verwendeten
Container bereits generisch ist, kann dieser Ansatz keine Typsicherheit garantie-
ren, weil hier einige Typumwandlungen notwendig sind.

Im Rahmen dieser Studienarbeit wird untersucht, ob und wie eine typsichere
Implementierung von Assoziationen erreicht und entsprechender Java-Code aus
Modellen generiert werden kann. Zusätzlich sollen der Wartungsaufwand mini-
miert und die Lesbarkeit des generierten Codes erhöht werden.

1.2. Lösungsansatz

Der Sprachumfang der Programmiersprache Java wurde in der Version 1.5 unter
Anderem um so genannte Generics erweitert. Dadurch sind generische Typdefini-
tionen und eine statische Typisierung möglich, die eine Basis für eine typsichere
Assoziationsimplementierung bieten. Container können bei ihrer Implementierung
mit dem Typ der von ihnen verwaltbaren Elemente parametrisiert werden. Bei der
Initialisierung eines solchen Containers wird der konkrete Typ angegeben, sodass
alle Typprüfungen bereits zur Übersetzungszeit erfolgen. Die Standard-Container
der Java-Bibliothek wurden auf Generics umgestellt und bieten nun Typsicherheit.

Für eine Implementierung von insbesondere bidirektionalen Assoziationen wer-
den wie in dem Ansatz in [MZ04] spezielle Rollenklassen definiert. Diese wer-

2



1.3 Struktur der Arbeit

den vollständig generisch implementiert und kapseln alle für die Assoziationsim-
plementierung notwendigen Methoden. Für die Verwaltung der durch eine Asso-
ziation verknüpfbaren Elemente werden intern anstatt der speziellen Container-
Implementierungen die typsicheren Standard-Container der Java-Bibliothek ver-
wendet. Die spezielle Implementierung der Rollen mit Hilfe von Generics soll den
für Assoziationen generierten Code typsicher machen. Die Lesbarkeit und Benutz-
barkeit sollen erhöht, sowie die Wartung erleichtert werden.

Die Rollenimplementierung wird in einer Bibliothek bereitgestellt, da diese in
beliebigen Bereichen zur Implementierung von Assoziationen in Java verwendet
werden kann. Zusätzlich wird ein Plug-In entwickelt, das die Code-Generierung
von Fujaba anpasst und die generierte Assoziationsimplementierung typsicher
macht.

1.3. Struktur der Arbeit

Zunächst werden in Kapitel 2 die verschiedenen Arten von Assoziationen in UML
kurz vorgestellt. Anschließend wird das Konzept der Java Generics und ihre Ver-
wendung an einigen kleinen Beispielen erklärt.

In Kapitel 3 werden Anforderungen an eine mögliche Implementierung von Asso-
ziationen formuliert. Danach werden die generierte Assoziationsimplementierung
von Fujaba und der Ansatz aus [MZ04] vorgestellt und bzgl. der Anforderungen
evaluiert.

Wie eine typsichere Assoziationsimplementierung realisiert werden kann, wird
in Kapitel 4 beschrieben. Dabei wird Bezug zu den beiden bisherigen Implemen-
tierungsansätzen genommen und darauf aufbauend eine Lösung entwickelt. Auch
diese wird bzgl. der in Kapitel 3 formulierten Anforderungen evaluiert.

Die technische Realisierung dieser Lösung wird in Kapitel 5 beschrieben. Dazu
gehört die Anpassung des bisherigen Code-Generierungsmechanismus von Fujaba,
aber auch die Implementierung einer Rollenbibliothek, die im generierten Code
verwendet wird.

Schließlich werden die Ergebnisse dieser Arbeit in Kapitel 6 zusammengefasst
und in einem Ausblick mögliche Erweiterungen vorgeschlagen.

3





2. Grundlagen

2.1. Assoziationen

Bei der Modellierung mit UML und Fujaba [FNT98, S. 18 ff. und S. 152 ff.] können
Beziehungen zwischen zwei Klassen durch zahlreiche Arten von Assoziationen in
einem Klassendiagramm beschrieben werden. In Fujaba wird eine Teilmenge der
in UML [Obj03, S. 3-68 ff.] spezifizierten Assoziationsarten unterstützt, die im
Folgenden kurz vorgestellt wird.

Bidirektionale Assoziationen und Referenzen

In UML werden meist binäre Assoziationen verwendet. An einer binären Assozia-
tion sind stets genau zwei Klassen beteiligt. Laut UML-Spezifikation [Obj03, S.
3-68 ff.] sind auch d-äre Assoziationen für ein beliebiges d ∈ N möglich, aber diese
werden von Fujaba bisher nicht unterstützt. Binäre Assoziationen können bidi-
rektional oder unidirektional sein. Die letzteren werden Referenzen genannt. Eine
bidirektionale Assoziation kann – im Gegensatz zu einer unidirektionalen Assozia-
tion – in beide Richtungen traversiert (durchlaufen) werden. Bei einer Referenz
wird deshalb die Traversierungsrichtung (auch Navigationsrichtung genannt) ex-
plizit angegeben.

Die Verbindungsstellen einer Assoziation zu den Klassen werden Rollen genannt
(zu jeder binären Assoziation gehören zwei Rollen). Sowohl die Assoziation als
auch die zugehörigen Rollen können benannt werden. Es ist auch möglich, die
Leserichtung der Assoziation zu kennzeichnen.

Die Rollen einer Assoziation legen die Assoziationsart fest und tragen den
Hauptanteil der Information in einer Assoziation. Jede Rolle trägt eine Kardina-
lität (auch Multiplizität genannt), die angibt, wieviele Instanzen einer zugehörigen
Klasse von der Rolle assoziiert werden dürfen. In Fujaba beschränkt man sich bei
der Code-Generierung auf die Unterscheidung zwischen so genannten zu-n- und
zu-1-Rollen, den Rollen mit Kardinalität 1 oder n (n steht dabei für eine beliebige
Zahl). Dadurch sind nur 1-zu-1-, 1-zu-n- und n-zu-m-Assoziationen möglich.

Wenn nicht anders angegeben, wird bei zu-n-Rollen keine Ordnung der assozi-
ierten Instanzen angenommen. Um dieses zu ändern, ist es möglich, eine solche
Rolle als geordnet oder sortiert zu kennzeichnen.

5



2. Grundlagen

Aggregation und Komposition

Aggregation und Komposition sind spezielle binäre Assoziationen. Eine Aggrega-
tion zwischen zwei Klassen stellt dar, dass eine Instanz einer der beiden Klassen
Teil einer Instanz der anderen Klasse ist. Der umfassende Teil wird als Aggregat
bezeichnet.

Die Semantik bei der (schwachen) Aggregation ist, dass wenn ein Aggregat
gelöscht wird, es auch alle seine Teilobjekte löscht. Eine Komposition ist eine
spezielle Form der Aggregation (starke Aggregation). Bei einer Komposition gilt
zusätzlich, dass bei einer Erzeugung des Aggregats auch alle seine Teilobjekte
erzeugt werden müssen und dass diese nicht ausgetauscht werden können (Das
hat auch zur Folge, dass die Kardinalität bei der Rolle auf Aggregatseite 1 sein
muss.). Die Code-Generierung in Fujaba unterstützt bisher nur die schwache Form
der Aggregation.

Qualifizierte Assoziationen

Qualifizierte Assoziationen stellen eine weitere Form der binären 1-zu-n- und n-zu-
m-Assoziationen dar. Hierbei wird die Menge der assoziierten Instanzen auf der n-
bzw. m-Seite anhand eines Schlüssels partitioniert. Eine Instanz oder eine Menge
von Instanzen auf der n- bzw. m-Seite ist dann über den zugehörigen Schlüssel
erreichbar.

Die Kardinalitäten bei den qualifizierten Assoziationen haben auch eine et-
was andere Bedeutung. Eine qualifizierte 1-zu-1-Assoziation zwischen den Klas-
sen A und B, wobei die Instanzen von B über einen Schlüssel erreicht werden,
ist tatsächlich eine 1-zu-n-Assoziation, bei der jede Instanz auf B-Seite über ge-
nau einen eindeutigen Schlüssel erreicht wird. Wäre bei dieser qualifizierten As-
soziation auf B-Seite die Kardinalität n, so gäbe es zu je n Instanzen auf B-
Seite genau einen eindeutigen Schlüssel, über den man diese Instanzmenge er-
reicht. Tatsächlich wäre es also eine 1-zu-(n · m)-Assoziation, wenn m die An-
zahl der möglichen Schlüssel wäre. Auch beidseitig qualifizierte Assoziationen sind
möglich.

6



2.2 Generics in Java

2.2. Generics in Java

Der Sprachumfang der Programmiersprache Java wurde in der Version 1.5 unter
anderem um so genannte Generics erweitert. Diese ermöglichen eine generische
Definition von Typen und Methoden, sodass darin verwendete Typen erst bei einer
konkreten Anwendung festgelegt werden. Unabhängig von den tatsächlich verwen-
deten Typen können so Algorithmen und Datenstrukturen beschrieben werden, die
trotz ihrer allgemeinen Definition typsicher sind.

In diesem Abschnitt werden die wichtigsten Eigenschaften der Java Generics
anhand von einigen Anwendungsbeispielen kurz vorgestellt.

2.2.1. Einführung

Bei der Implementierung von allgemeinen Algorithmen und Datenstrukturen, die
nur wenig oder gar nicht von den darin verwendeten Typen abhängen (z.B. bei
Sortieralgorithmen und Containern), werden in Programmiersprachen wie Ada,
Eiffel, ML und seit der Version 1.5 auch Java so genannte formale Typparameter
verwendet, die bei einer konkreten Ausprägung des Algorithmus oder der Daten-
struktur durch Typargumente ersetzt werden (siehe [Wat96, S. 124 ff, S. 141 ff
und S. 248,249]). So können z.B. Listen definiert werden, die nur Einträge eines
bestimmten Typs (beschrieben durch ein Typargument) haben können.

In älteren Versionen der Programmiersprache Java (vor Version 1.5) sind solche
Konstrukte nicht möglich. Stattdessen wird z.B. bei der Implementierung von
Containern der allgemeinste Java-Typ java.lang.Object verwendet. Dadurch
können beliebige Elemente in einen solchen Container eingefügt werden, aber die
Information über den Typ der eingefügten Elemente geht verloren. Durch Typ-
prüfungen (type casts) wird zur Laufzeit sichergestellt, dass der Typ eines im
Container enthaltenen Elements dem Typ entspricht, den ein Programmierer an
einer Stelle im Code erwartet. Irrt sich der Programmierer, so tritt ein Typfehler
zur Laufzeit auf.

Ein Beispiel ist in Abb. 2.1 abgebildet. Die Methode get der Klasse ArrayList
(bzw. der Schnittstelle List) gibt ein Objekt vom Typ Object zurück. Deswegen
wird eine Typumwandlung von Object zu Integer nötig, wenn das in der Liste
enthaltene Integer-Objekt als solches verwendet werden soll. Durch die allgemeine
Definition der Liste mit dem Typ Object als Typ der Einträge ist es auch möglich,
Objekte von einem anderen Typ als Integer in die Liste einzufügen, was bei der
späteren Typumwandlung zu Integer zu Laufzeitfehlern führt.

// Implementierung ohne Generics
List list = new ArrayList();
list.add(new Integer(1)); // auch list.add("a"); möglich
Integer value = (Integer) list.get(0); // Type Cast notwendig

Abbildung 2.1.: Benutzung eines Containers ohne die Verwendung von Generics

7



2. Grundlagen

Das primäre Ziel bei der Entwicklung der Java Generics war Typsicherheit
[Bra04, S. 15]. Dabei bedeutet Typsicherheit, dass alle Typprüfungen bereits zur
Übersetzungszeit durchgeführt werden und alle Typfehler garantiert vom Über-
setzer (compiler) erkannt werden [Wat96, S. 29] [Bra04, S. 2,15]. So kann eine
wichtige Fehlerquelle vermieden werden, denn Typfehler machen einen wesentli-
chen Teil der Programmierfehler aus [Wat96, S. 29].

// Implementierung mit Generics
List<Integer> list = new ArrayList<Integer>();
list.add(new Integer(1)); // list.add("a"); führt zu Kompilierfehler
Integer value = list.get(0); // kein Type Cast mehr nötig

Abbildung 2.2.: Benutzung eines Containers unter Verwendung von Generics

Im Gegensatz zu dem in Abb. 2.1 dargestellten Code ist der in der Abb. 2.2
dargestellte generische Java-Code typsicher. Die verwendete Liste ist generisch mit
dem Typparameter E implementiert (siehe Abb. 2.3). Dieser Typparameter wird
bei der Instanziierung der Liste durch das Typargument Integer ersetzt. Auf diese
Weise wird die Liste auf Einträge vom Typ Integer eingeschränkt. Der Typ einer
so instanziierten Liste wird als parametrisierter Typ bezeichnet. Nun kann bereits
zur Übersetzungszeit die Typ-Korrektheit der mit der Liste verwendeten Objekte
überprüft werden. Das Einfügen eines String-Objekts ist hier nicht mehr möglich.
Außerdem wird eine Typumwandlung unnötig, da die Methode get bereits Objekte
des richtigen Typs, nämlich Integer, zurückgibt.

public interface List<E>
{

boolean add(E o);
E get(int index);
// weitere Methoden ...

}

Abbildung 2.3.: Generisch definierte Schnittstelle für Listen

2.2.2. Eigenschaften der Java Generics

Im Gegensatz zu den Templates der Programmiersprache C++ beschreibt ein ge-
nerisch definierter Java-Typ nicht eine Familie von Klassen oder Schnittstellen,
die sich nur durch die Typparameter-Ersetzungen durch konkrete Typen unter-
scheiden. Eine generische Typdeklaration wird nur einmal übersetzt. Alle parame-
trisierten Typen benutzen immer die gleiche Klasse oder Schnittstelle, auch zur
Laufzeit. So benutzen z.B. die parametrisierten Typen ArrayList<Integer> und
ArrayList<String> die gleiche Klasse ArrayList.

Als Konsequenz daraus werden alle statischen Variablen und Methoden einer ge-
nerischen Klasse von allen ihren Instanzen unabhängig vom Typargument gemein-
sam genutzt. Außerdem ist eine Abfrage wie list instanceof List<Integer>

8



2.2 Generics in Java

nicht sinnvoll, da alle List-Objekte unabhängig vom Typargument Instanzen der
gleichen Klasse sind. Zur Laufzeit existieren keine Typvariablen (in Abb. 2.3 ist
das E), sodass eine Überprüfung auf die Verwendung eines bestimmten Typar-
guments hin (hier: Integer) nicht möglich ist. Ebenso kann die Korrektheit von
Typumwandlungen wie

T something = (T) object;

für eine Typvariable T oder

List<Integer> list = (List<Integer>) object;

nicht überprüft werden. Um einen Programmierer darauf aufmerksam zu machen,
gibt der Übersetzer in solchen Fällen Warnungen aus (unchecked warnings). Kann
der Quellcode ohne diese Warnungen übersetzt werden, so ist er typsicher [Bra04,
S. 15].

List<Integer> integerList = new ArrayList<Integer>();
List<Object> objectList = integerList; // erzeugt Kompilierfehler
objectList.add(new Object());
Integer zahl = integerList.get(0); // Zuweisung eines Object-Objekts

Abbildung 2.4.: Subtyping bei den Java Generics (List<Integer> ist nicht Un-
tertyp von List<Object>)

Die Generics in Java verwenden eine nicht ganz intuitive Definition von Un-
tertypen (subtyping). Obwohl der Typ java.lang.Object der Obertyp aller an-
deren nicht-primitiven Typen ist, kann z.B. List<Integer> nicht Untertyp von
List<Object> sein. Das Beispiel in Abb. 2.4 soll das verdeutlichen. Hier könnte
ein Objekt vom Typ Object in eine Liste von Integer-Objekten eingefügt werden,
wenn der Übersetzter nicht einen Kompilierfehler erzeugen würde.

List<?> unknownList = new ArrayList<Integer>();
unknownList.add(new Integer()); // erzeugt Kompilierfehler

Abbildung 2.5.: Wildcards (Die Zuweisung erzeugt einen Kompilierfehler, da der
Typ der in der Liste unknownList verwendbaren Objekte unbe-
kannt ist.)

Damit ein Obertyp für alle parametrisierten Typen zu einer generischen Klasse
angegeben werden kann, werden so genannte Wildcards verwendet, die durch das
Zeichen ? im Code gekennzeichnet werden. Der Typ List<?> ist dann der Ober-
typ von List<Integer> und List<Object>. Das Zeichen ? steht dabei für einen
unbekannten Typen. Die Konsequenz daraus ist aber, dass in eine Liste definiert
wie in Abb. 2.5 keine Objekte eingefügt werden können, weil wegen des unbekann-
ten Typen der Einträge keine Typprüfung möglich ist. Die von einer solchen Liste
zurückgegebenen Objekte sind immer vom allgemeinsten Typ Object.

9



2. Grundlagen

Ähnlich wie in der Programmiersprache Eiffel [Wat96, S. 249] können auch in
Java bei der Definition einer generischen Klasse die Typparameter eingeschränkt
werden. Dabei wird zwischen oberen und unteren Schranken unterschieden. Eine
obere Schranke für die Einträge einer Liste kann z.B. durch den Ausdruck List<T

extends Number> festgelegt werden. In diesem Fall kann die Liste nur Untertypen
von Number enthalten. Eine untere Schranke wird definiert, indem anstatt des
Schlüsselworts extends das Wort super verwendet wird. Solche Schranken können
auch in Methoden oder Variablendeklarationen verwendet werden. In diesen Fällen
wird die Typvariable T meist nicht benötigt und kann durch ? ersetzt werden.

Damit der ohne Generics implementierte Java-Code auch in Verbindung mit ge-
nerisch implementiertem Code benutzt werden kann, wurden in der Version 1.5 von
Java so genannte Rohtypen raw types eingeführt. Ein Rohtyp ist ein generischer
Typ ohne Typparameter. Ähnlich wie bei einem mit Wildcards parametrisierten
Typ können dann beliebige Untertypen von Object für die Typvariablen verwen-
det werden. Bei der Verwendung von Rohtypen geht die Typsicherheit verloren,
worauf der Übersetzer durch unchecked warnings aufmerksam macht, dafür kann
aber der bisher existierende Java-Code unverändert weiterbenutzt werden.

abstract class C<A> {
abstract A id(A x);

}

class D extends C<String> {
String id(String x) {

return x;
}

}

abstract class C {
abstract Object id(Object x);

}

class D extends C {
String id(String x) {

return x;
}
Object id(Object x) {

return id((String) x);
}

}

Abbildung 2.6.: Umwandlung von generischem Code (links) in nicht-generischen
(rechts)

Der generische Java-Quellcode wird bei der Übersetzung in Bytecode so umge-
wandelt, dass er sich kaum von dem Bytecode älterer Java-Versionen unterschei-
det. Dabei werden alle parametrisierten Typen und Typvariablen durch ein so ge-
nanntes Auslöschungsverfahren (erasure) entfernt. Generische Typen, Methoden
und Ausdrücke werden in solche konvertiert, die keine Generics mehr verwenden
[Bra04, S. 12] [BCK+01, S. 14 ff]. Wenn nötig, werden Typumwandlungen und
zusätzliche Methoden eingefügt (siehe Beispiel in Abb. 2.6).

10



3. Ansätze zur Implementierung
von Assoziationen

Es gibt verschiedene Ansätze, Assoziationen – insbesondere bidirektionale – auf
Quellcode abzubilden. Bei allen Ansätzen müssen die von einer Assoziation ver-
bundenen (referenzierten) Modellelemente abhängig von der Assoziationsart und
ihren Eigenschaften verwaltet werden und es müssen diverse Methoden zur Benut-
zung der Assoziationen (z.B. verbinden zweier Objekte) implementiert werden.

Im Rahmen dieser Arbeit werden zwei Ansätze zur Implementierung von Asso-
ziationen betrachtet. Bei dem ersten Ansatz wird die Verwaltung der referenzierten
Elemente und die zugehörigen Methoden in die durch eine Assoziation verbun-
den Modellklassen verlagert. Bei dem zweiten Ansatz wird diese Verwaltung samt
zugehöriger Methoden in eigenen, den Rollen einer Assoziation entsprechenden
Klassen implementiert.

Nach der Formulierung von Anforderungen an eine mögliche Implementierung
von Assoziationen werden in diesem Kapitel die beiden oben genannten Möglich-
keiten anhand zweier vorliegender Umsetzungen genauer beleuchtet. Dazu gehören
die von Fujaba [Fuj04] generierte Assoziationsimplementierung und ein neuer in
[MZ04] beschriebener und in [Mai04] zum Teil realisierter Ansatz. Beide Ansätze
werden bzgl. der formulierten Anforderungen evaluiert und verglichen. Zusätzlich
wird diskutiert, wie die bisher generierte Assoziationsimplementierung von Fujaba
typsicher gemacht werden kann.

3.1. Anforderungen an eine Implementierung

In UML können sowohl bidirektionale als auch unidirektionale Assoziationen mo-
delliert werden (siehe Abschnitt 2.1, S. 5). Weitere Eigenschaften wie Kardina-
litäten, Schlüssel (bei qualifizierten Assoziationen) und Constraints (z.B. geord-
net) sowie diverse Anforderungen an den Quellcode und seine Benutzbarkeit ver-
langen nach einer speziellen Implementierung. Insbesondere ist es erwünscht, dass
diese Implementierung Typsicherheit garantiert. Dadurch ist es möglich, bereits
zur Übersetzungszeit sicherzustellen, dass eine Implementierung einer Assoziation
zwischen zwei Klassen A und B nur erlaubt, Objekte vom Typ A und B (oder
Untertypen davon) miteinander zu verbinden.

Im Nachfolgenden werden die entstehenden Anforderungen an eine Implemen-
tierung der Assoziationen formuliert und näher erläutert.

11



3. Ansätze zur Implementierung von Assoziationen

1. Konsistenzerhaltung: Bei bidirektionalen Assoziationen soll die Konsistenz
stets gewahrt bleiben. D.h., wenn die Referenz von Objekt a zu Objekt
b (bei einer bidirektionalen Assoziation zwischen a und b) durch den Aufruf
einer Methode von a entfernt wird, so soll automatisch auch die Referenz
von b zu a entfernt werden. Umgekehrt soll beim Erstellen einer Assoziation
zwischen a und b sowohl eine Referenz von a zu b als auch eine Referenz von
b zu a erstellt werden. Evtl. notwendige Konsistenzprüfungen dürfen nicht
umgangen werden.

2. Typsicherheit: Alle Typprüfungen bei der Implementierung von Assoziationen
sollen zur Übersetzungszeit erfolgen, um Typfehler zur Laufzeit zu vermei-
den.

3. Lesbarkeit: Der Quellcode soll übersichtlich und für Anwendungsentwickler
verständlich sein.

4. Benutzbarkeit: Die Implementierung von Assoziationen soll leicht zu benutzen
sein. Dazu zählt auch, dass eine Iteration über die von einem Modellelement
a referenzierten Elemente selbst dann sinnvoll fortgesetzt werden kann, wenn
sich die Menge der von a referenzierten Elemente während der Iteration
ändert.

5. Wartbarkeit: Der Wartungsaufwand spielt bei großen Projekten immer eine
wichtige Rolle. Dieser soll für die Assoziationsimplementierung so gering
wie möglich sein.

6. Assoziationsarten: Es sollen sowohl uni- als auch bidirektionale Assoziationen
implementiert werden können. Assoziationsenden (Rollen) sollen die Kar-
dinalitäten 1 oder n tragen. Zusätzlich sollen die Assoziationen qualifiziert
sowie geordnet oder sortiert sein können.

7. Thread-Sicherheit: Die Assoziationsimplementierung soll für nebenläufige An-
wendungen Thread-sicher sein. Dazu sollen kritische Bereiche im Code durch
exklusive Zugriffe geschützt werden. Weil aber exklusive Zugriffe zwangsläu-
fig die Laufzeit negativ beeinflussen,1 soll diese Eigenschaft nur bei Bedarf
erfüllt werden.

8. Benachrichtigungsmechanismus: Damit so genannte Listener -Objekte über
Änderungen von Assoziationen informiert werden können, soll ein Benach-
richtigungsmechanismus realisiert werden. Immer wenn bei einer Assoziation
zwischen zwei Klassen A und B ein Objekt auf A- oder B-Seite hinzukommt

1Wird ein exklusiver Bereich von einem Thread erreicht, so werden andere Threads bei Zu-
griff auf den selben exklusiven Bereich blockiert, bis der kritische Bereich von dem ersten
Thread verlassen wird. Die Überprüfung, ob ein Thread den exklusiven Bereich erreicht
hat, kostet zusätzlichen Laufzeit-Overhead, was bei nicht-nebenläufigen Anwendungen zu
unnötigen Laufzeiteinbußen führt.

12



3.2 Rollenimplementierung innerhalb der Modellklassen

oder entfernt wird, sollen die Listener benachrichtigt werden. Dazu sollen sie
sich vorher für die Assoziation registrieren.

3.2. Rollenimplementierung innerhalb der
Modellklassen

In diesem Abschnitt wird beschrieben, wie die Assoziationen in dem von Fujaba
[Fuj04] generierten Code implementiert werden.

3.2.1. Beschreibung des Ansatzes

Überblick

Zur Verwaltung der durch eine Assoziation verbundenen Modellelemente werden
diverse Methoden benötigt. Diese werden bei dem hier beschriebenen Ansatz in-
nerhalb der Klassen implementiert, die in dem UML-Modell durch eine Assoziation
verbunden sind. Die Methoden sollen es z.B. ermöglichen, zwei Elemente entlang
einer Assoziation zu verbinden, sie zu trennen oder bei einer zu-n-Assoziation alle
referenzierten Modellelemente aufzuzählen.

Wenn ein Element an mehreren Assoziationen beteiligt ist, werden diese Me-
thoden für jede der Assoziationen implementiert. Die Art der Methoden und ihre
Implementierung hängt von der Art der Assoziation und dem jeweiligen Assozia-
tionsende (Rolle) ab: Zum Beispiel kann man bei einer zu-n-Rolle über alle re-
ferenzierten Elemente iterieren, während man bei einer zu-1-Rolle höchstens das
einzige referenzierte Element zurückgegeben kann.

Zusätzlich zu den genannten Methoden erhalten die Klassen für jede der As-
soziationen, an denen sie beteiligt sind, auch je ein Attribut, das entweder einen
Container zur Verwaltung der Objektreferenzen (bei einer zu-n-Rolle) oder eine
direkte Objektreferenz (bei einer zu-1-Rolle) speichert.

Die Methoden sind hauptsächlich für die Erhaltung der Konsistenz von bidirek-
tionalen Assoziationen verantwortlich. Die restliche Funktionalität wird an speziell
für diesen Zweck implementierte Container delegiert. Für jede Rollenart, z.B. qua-
lifizierte und sortierte zu-n-Rolle, gibt es einen speziellen Container.

Anpassung der Modellklassen

Bei der bidirektionalen Assoziation bewohnt, wie sie in Abb. 3.1 modelliert ist,
können Objekte der Klasse Haus bis zu n Mieter-Objekte referenzieren. Anders-
herum können Objekte der Klasse Mieter höchstens ein Haus-Objekt referenzieren.
Festgelegt wird das von den beiden Rollen heim auf Haus-Seite und bewohner auf
Mieter-Seite durch die Angabe der Kardinalitäten.

Damit die Objekte miteinander verbunden oder voneinander getrennt werden
können, bekommt die Klasse Mieter ein Attribut mit dem Typ Haus und die Klasse

13



3. Ansätze zur Implementierung von Assoziationen

Abbildung 3.1.: UML-Klassendiagramm mit einer 1-zu-n-Assoziation

Haus einen Container (z.B. FHashSet) zum Speichern der referenzierten Elemen-
te. Zusätzlich werden verschiedene Zugriffsmethoden implementiert. Die Methode
addToBewohner in der Klasse Haus ermöglicht das Verbinden eines Haus-Objekts
mit einem Mieter-Objekt und die Methode removeFromBewohner das Trennen. Die
gleiche Funktionalität bieten die Methoden setHeim und getHeim in der Klasse Mie-
ter. Andere Methoden wie iteratorOfBewohner, sizeOfBewohner und hasInBewohner
werden implementiert, um alle über die Assoziation bewohnt referenzierten Ele-
mente eines Haus-Objekts aufzuzählen, die Anzahl aller referenzierten Elemente
anzugeben oder zu prüfen, ob ein bestimmtes Element referenziert wird.

Abbildung 3.2.: Objektstrukturbeispiel zum Diagramm in Abb. 3.1

Man beachte, dass die Methodennamen den zugehörigen Rollennamen enthal-
ten. Das dient der Unterscheidung der Assoziationsmethoden voneinander, wenn
eine Klasse an mehreren Assoziationen beteiligt ist. Insbesondere bedeutet das,
dass alle Rollennamen, die zu einer Klasse gehören, stets eindeutig sein müssen.

Abhängig von der Assoziationsart werden auch andere Methoden implementiert,
z.B. erlaubt eine geordnete Assoziation das Einfügen einer Objektreferenz an einer
bestimmten Stelle in der Liste der Referenzen.

Abbildung 3.3.: Tatsächliche Objektstruktur zum Beispiel in Abb. 3.2

14



3.2 Rollenimplementierung innerhalb der Modellklassen

Realisierung der Assoziationen

Die Verwaltung der Referenzen unter Berücksichtigung der Assoziationseigenschaf-
ten übernehmen die verwendeten Container oder Attribute. Für ein beispielhaftes
Objektdiagramm (Abb. 3.2) zum Modell in Abb. 3.1 wird in Abb. 3.3 die Objekt-
struktur so dargestellt, wie sie tatsächlich realisiert wird.

Um die Konsistenz bei bidirektionalen Assoziationen wie bewohnt in Abb. 3.1
zu erhalten (Anforderung 1), wird der Inhalt der Methoden addToBewohner und
removeFromBewohner auf der Seite der zu-n-Rolle und die Methoden setHeim und
getHeim auf der Seite der zu-1-Rolle an die gegenüberliegende Rolle angepasst.
Wird eine Referenz auf ein Objekt mieter bei einer zu-n-Rolle zu dem Objekt haus
hinzugefügt, so wird auch das haus-Objekt als Referenz zu dem Objekt mieter hin-
zugefügt bzw. gesetzt. Das gleiche gilt auch umgekehrt mit dem Unterschied, dass
das mieter-Objekt von einem evtl. vorher referenzierten anderen Haus-Objekt (z.B.
haus1) als Referenz entfernt wird, bevor das neue Haus-Objekt, nämlich haus, als
Referenz gesetzt wird (siehe Abb. 3.4). Auch das Entfernen von Objektreferenzen
wird ähnlich behandelt.

public boolean addToBewohner(Mieter value)

{

boolean changed = false;

if (value != null)

{

if (this.bewohner == null)

{

this.bewohner = new FHashSet ();

}

changed = this.bewohner.add (value);

if (changed)

{

value.setHeim (this);

}

}

return changed;

}

public boolean setHeim(Haus value)

{

boolean changed = false;

if (this.heim != value)

{

if (this.heim != null)

{

Haus oldValue = this.heim;

this.heim = null;

oldValue.removeFromBewohner (this);

}

this.heim = value;

if (value != null)

{

value.addToBewohner (this);

}

changed = true;

}

return changed;

}

Abbildung 3.4.: Implementierung der Methoden addToBewohner und setHeim zum
Diagramm in Abb. 3.1

Bei qualifizierten Assoziationen erhalten die Assoziationsmethoden einen Schlüs-
sel als zusätzlichen Parameter. Bei dem Beispiel in Abb. 3.5 wird die Matrikel-
nummer eines Studenten als Schlüssel verwendet. Dieser wird in der Methode add-
ToImmatrikulierte und removeFromImmatrikulierte der Klasse Universität verwendet.
Dieser Schlüssel wird aber nicht nur auf der qualifizierten Seite der Assoziation
benötigt, sondern auch auf der nicht qualifizierten (also in der Klasse Student). Er
wird dazu benutzt, beim Verbinden oder Trennen zweier Modellelemente auch die
Referenz in Rückrichtung – die ja qualifiziert ist – zu erstellen bzw. zu löschen,
um die Konsistenz der bidirektionalen Assoziation zu erhalten. Beim Aufruf der
Methode setUni der Klasse Student muss also zusätzlich zum Universität-Objekt

15



3. Ansätze zur Implementierung von Assoziationen

Abbildung 3.5.: Beispiel für eine einseitig qualifizierte Assoziation

auch der Schlüssel (die Matrikelnummer) übergeben werden, unter dem das Stu-
dent-Objekt von dem Universität-Objekt aus zu erreichen ist. Bei einer beidseitig
qualifizierten Assoziation werden sogar zwei Schlüssel benötigt, für je eine Sei-
te der Assoziation einer. Fujaba enthält auch eine Unterstützung für beidseitig
qualifizierte Assoziationen.

Bei einer unidirektionalen Assoziation (Anforderung 6) entfallen die oben be-
schriebenen Methoden auf der referenzierten Seite. Dann benötigt nur die referen-
zierende Seite die Assoziationsmethoden und beim Verbinden oder Trennen zweier
Elemente werden keine Methoden auf der referenzierten Seite aufgerufen.

Damit auch Aggregationen auf Code abgebildet werden können, bekommen die
Modellklassen so genannte removeYou-Methoden, die für jede Assoziation alle Re-
ferenzen zu anderen Modellelementen unter Einhaltung der Konsistenz bei bidirek-
tionelen Assoziationen entfernen.2 Bei dem Beispieldiagramm aus Abb. 3.1 (S. 14)
wird dazu die Methode removeAllFromBewohner auf der Haus-Seite für die Assozia-
tion bewohnt aufgerufen. Diese entfernt alle Referenzen zu Mieter-Objekten. Eine
removeAllFrom. . . -Methode existiert für jedes Assoziationsende (Rolle), das mehr
als ein Element referenzieren kann.

Verwendung von Containern

Für die Verwaltung der von einem Assoziationsende (Rolle) referenzierten Modell-
elemente werden Container oder Attribute verwendet.

Bei nahezu allen in Abschnitt 2.1 vorgestellten Assoziationsarten referenziert
eines der beiden Assoziationsenden (Rollen) mehr als nur ein Modellelement. Die
einzige Ausnahme bilden die zu-1-Rollen von nicht qualifizierten Assoziationen. Da
diese Rollen maximal ein Element referenzieren können, reicht für die Verwaltung
ein Attribut mit dem Typ des zu referenzierenden Objekts aus. Wird ein Objekt
referenziert, so wird eine Referenz darauf in dem Attribut gespeichert, ansonsten
ist der Eintrag null.

Qualifizierte Rollen sowie nicht qualifizierte zu-n-Rollen müssen eine beliebige
Anzahl von Objekten verwalten können, wobei der Zugriff auf die von einer quali-
fizierten Rolle verwalteten Objekte über den zugehörigen Schlüssel erfolgen muss.
Zusätzlich können diese drei Rollenarten, nämlich nicht qualifizierte zu-n- und
qualifizierte zu-1- und zu-n-Rollen, geordnet oder sortiert sein. In diesen Fällen
müssen die Einträge bei einer geordneten Assoziation stets ihre Reihenfolge behal-

2In Java ist es nicht möglich, Objekte zu löschen. Um der Semantik von Aggregationen nach-
zukommen, werden alle Objektreferenzen auf ”zu löschende“ Objekte entfernt, damit diese
von dem Garbage Collector von Java eingesammelt werden können.

16



3.2 Rollenimplementierung innerhalb der Modellklassen

ten, während sie bei einer sortierten Assoziation nach einem bestimmten Kriterium
sortiert vorliegen müssen. Für alle diese Rollenarten außer der nicht qualifizierten
zu-1-Rolle werden also spezielle Container benötigt, die eine beliebige Anzahl von
Objekten in der beschriebenen Weise verwalten (Anforderung 6).

Die in dem Java Collections Framework enthaltenen Definitionen von Set-,
Map- und List-Schnittstellen (Paket java.util) stellen eine gute Basis für die
Container-Implementierung dar. Die zugehörigen Standard-Implementierungen der
Schnittstellen (z.B. java.util.HashMap) haben aber die Eigenschaft, dass es bei
der Verwendung von Iteratoren (java.util.Iterator) zu Ausnahmen (Concur-
rentModificationExceptions) kommt, wenn sich der Container-Inhalt während der
Iteration ändert. Dadurch wird die Benutzung der Container erschwert (Anforde-
rung 4). Außerdem ist es möglich, Container-Einträge während der Iteration zu
entfernen. Das führt dazu, das evtl. notwendige Konsistenzprüfungen innerhalb
der Assoziationsmethoden umgangen werden können (Anforderung 1).

Es wurde festgestellt, dass in allen möglichen Fällen der Iterator eines Set-, Map-
oder List-Objekts sinnvoll weiterverwendet werden kann, nachdem der Container-
Inhalt sich geändert hat. Um ConcurrentModificationExceptions zu vermeiden und
Modifikationen des Container-Inhalts durch Iteratoren zu verbieten, haben sich die
Entwickler von Fujaba dafür entschieden, die von Java bereitgestellten Container
anzupassen, obwohl die benötigte Funktionalität durch die Standard-Container
der Java-Bibliothek zum größten Teil bereitgestellt wird.

Unglücklicherweise war es nicht möglich, die bereits vorhandene Container-
Implementierung von Java (z.B. die Klassen HashMap, TreeSet, LinkedList) durch
Vererbung (Spezialisierung) zu erweitern. Die Iteratoren der Standard-Container
werden durch interne Klassen implementiert. Diese Klassen und einige für eine
Spezialisierung wichtige Variablen sind für erbende Klassen nicht sichtbar. Aus
diesem Grund wurde für die Fujaba-Implementierung der Container der Quell-
code der Java-Standard-Container kopiert und an die Anforderungen angepasst.
So entstand für jede der oben genannten Rollenarten eine spezielle Container-
Implementierung in dem Paket de.upb.tools.fca.

Für jeden der realisierten Container gibt es auch eine Version, die einen Benach-
richtigungsmechanismus implementiert (Anforderung 8). Mit Hilfe von weiteren
Methoden in den Modellklassen können sich Listener-Objekte bei einem Modell-
element registrieren, um bei Änderungen der Assoziation durch PropertyChange-
Events benachrichtigt zu werden.

Damit die Assoziationsimplementierung auch in nebenläufigen Anwendungen
verwendet werden kann und Thread-sicher ist (Anforderung 7), werden alle Zu-
griffsmethoden der Container als kritische Bereiche betrachtet und durch exklu-
sive Zugriffe geschützt. Das passiert durch das Schlüsselwort synchronized bei
der Deklaration der Container-Methoden. Diese Funktionalität kann aber nicht
abgestellt werden.

17



3. Ansätze zur Implementierung von Assoziationen

Typsicherheit

Die Standard-Container der Java-Bibliothek, die für die spezielle Container-Im-
plementierung verwendet wurden, sind als allgemeine nicht-homogene Container3

implementiert. Generics waren zu diesem Zeitpunkt nicht verfügbar. Deswegen
sind Typumwandlungen (type casts) von dem allgemeinen Typ java.lang.Object

zu dem speziellen Typ (z.B. Mieter) notwendig. Die Korrektheit dieser Typum-
wandlungen kann nur zur Laufzeit überprüft werden, wodurch bei der speziellen
Implementierung der Container und damit auch bei der gesamten Assoziations-
implementierung keine Typsicherheit gegeben ist (Anforderung 2).

Außerdem können Objekte falschen Typs in die Container eingefügt werden,
obwohl die Assoziationsmethoden – wie addToBewohner und setHeim in Abb. 3.4
(S. 15) – die richtigen Typen (hier: Mieter und Haus) bei ihren Parametern ver-
wenden. Eine Methode, die in der gleichen Klasse wie eine der Assoziationsme-
thoden definiert ist, kann auf alle in der gleichen Klasse definierten Container
direkt zugreifen. Dadurch kann diese Methode auch Objekte beliebigen Typs in
die allgemein definierten Container einfügen. Eine Verwendung der Assoziations-
methoden kann so umgangen werden. Der entstehende Typfehler wird erst zur
Laufzeit erkannt.

Es ist möglich, diese Implementierung typsicher zu machen, indem generische
und typsichere Container verwendet und die Rümpfe der generierten Assoziations-
methoden angepasst werden (siehe Abschnitt 3.2.3, S. 20). Die Container können
mit den Typen der an einer Assoziation beteiligten Modellelemente parametrisiert
werden. Dadurch können Typumwandlungen (z.B. bei der Iteration über die re-
ferenzierten Elemente) innerhalb der Assoziationsmethoden verhindert und eine
statische Typisierung erreicht werden.

3.2.2. Evaluation

Die Assoziationsimplementierung bei diesem Ansatz ist bisher nicht typsicher (An-
forderung 2). Dadurch, dass sie sich komplett innerhalb der beiden an einer As-
soziation beteiligten Klassen befindet (und nicht etwa in einer Bibliothek), ist
es aber möglich den Code beliebig anzupassen und insbesondere auch typsicher
zu machen. Die Konsistenz bei bidirektionalen Assoziationen wird stets gewahrt
(Anforderung 1).

Leider werden sehr viele Assoziationsmethoden in den modellierten Klassen im-
plementiert, was den Code unübersichtlich (Anforderung 3) macht und die Be-
nutzung (Anforderung 4) so implementierter Modelle sowie deren Wartung er-
schwert (Anforderung 5). Bei einer geordneten 1-zu-n-Assoziation z.B. werden in
der Klasse auf der Seite der zu-n-Rolle 18 verschiedene Methoden zur Verwen-

3Homogene Container können nur Objekte eines bestimmten Typs enthalten. Das Einfügen von
Objekten eines anderen Typs ist nicht möglich. Im Gegensatz dazu gibt es allgemein definierte
Container, die Objekte beliebigen Typs enthalten können (in Java sind das Objekte vom Typ
java.lang.Object).

18



3.2 Rollenimplementierung innerhalb der Modellklassen

dung der Assoziation implementiert. Schon bei wenigen Assoziationen, an denen
eine Klasse beteiligt ist, überwiegt damit die Anzahl der darin implementierten
Assoziationsmethoden die Anzahl der modellierten Methoden.

Die Wartung der speziellen Container-Implementierung ist schwierig, denn die
Standard-Container wurden durch eine Modifikation ihres Quellcodes neu imple-
mentiert. Änderungen der Container-Implementierung von Java (z.B. die Umstel-
lung auf Generics in der Java-Version 1.5) haben keine Auswirkungen auf diese
spezielle Implementierung. Sie muss von ihren Entwicklern extra angepasst wer-
den.

Bei einer Änderung der Assoziationsimplementierung (ohne, die Schnittstellen
zu verändern) würden sich auch die Rümpfe der Assoziationsmethoden ändern.
Dadurch muss die Implementierung des Modells neu generiert bzw. angepasst und
erneut kompiliert werden.

Die Methodenrümpfe der verwendeten Assoziationsmethoden sind bei Rollen
(bzw. Assoziationen) mit gleichen Eigenschaften nahezu identisch. Trotzdem wer-
den sie für jede Assoziation getrennt implementiert. Dadurch entsteht Code-Re-
dundanz, was wiederum die Wartung eines so implementierten Modells erschwert.

Dadurch, dass es keine allgemeinen Schnittstellen für Assoziationen gibt und die
Methodennamen sich immer unterscheiden, ist eine Gleichbehandlung ähnlicher
oder gleicher Assoziationen (Assoziationen mit gleichen Eigenschaften, z.B. meh-
rere geordnete 1-zu-n Assoziationen) nicht ohne größeren Aufwand (z.B. durch
Reflection4) möglich.

Die vorgestellte Assoziationsimplementierung ermöglicht eine Abbildung aller
in Abschnitt 2.1 (S. 5) vorgestellten Assoziationen auf Java-Quellcode (Anforde-
rung 6).

Durch die exklusiven Zugriffe auf Container wird Thread-Sicherheit geboten
(Anforderung 7), allerdings kann diese nicht abgestellt werden, um die Laufzeit
von nicht-nebenläufigen Anwendungen zu verbessern.

Ein Benachrichtigungsmechanismus wird mit Hilfe von speziellen Containern
realisiert (Anforderung 8).

Vorteile

• Typsicherheit (fehlt in Fujaba, kann aber realisiert werden)

• Konsistenzerhaltung bei bidirektionalen Assoziationen

• Thread-Sicherheit (nicht abstellbar, aber vorhanden)

• Benachrichtigungsmechanismus

4Reflection ist eine Technik der Programmiersprache Java, zur Laufzeit Informationen über
die Klasse eines Objekts zu bekommen. Das ermöglicht unter Anderem auch das Finden und
Aufrufen von in einer Klasse deklarierten Methoden, wenn die Methodensignatur bekannt
ist.

19



3. Ansätze zur Implementierung von Assoziationen

Nachteile

• erschwerte Anwendungsentwicklung und hoher Wartungsaufwand durch zu
viele Methoden, Fehlen von allgemeinen Assoziationsschnittstellen, Code-
Redundanz und eine spezielle Container-Implementierung

• Kompilierabhängigkeit zwischen Modell und der Assoziationsimplementie-
rung: Änderungen an der Assoziationsimplementierung erfordern eine An-
passung (oder Neugenerierung) der Modellimplementierung und ihre Neu-
kompilierung

3.2.3. Typsicherheit durch spezielle Java-Container

In diesem Abschnitt wird erläutert, wie die in dem Abschnitt 3.2.1 (S. 13) be-
schriebene Assoziationsimplementierung typsicher gemacht werden könnte. Dabei
wird der Ansatz aus Abschnitt 3.2.1 angepasst und anschließend bzgl. der Anfor-
derungen an eine Assoziationsimplementierung evaluiert.

Typsicherheit

Die Assoziationsmethoden werden bei dem in Abschnitt 3.2.1 (S. 13) beschrie-
benen Ansatz für jede Assoziation, an der eine Modellklasse beteiligt ist, speziell
generiert. Die Parameter der Methoden haben den Typ der durch eine Assoziation
verbindbaren Modellelemente.

Die Typsicherheit geht durch die Verwendung von nicht-homogenen Containern
und nicht generischen Iteratoren verloren. Diese können nur Objekte von dem
allgemeinsten Java-Typ java.lang.Object zurückgeben. Das wiederum erfordert
Typumwandlungen in den tatsächlichen Typ der verwalteten Elemente und damit
auch Typprüfungen zur Laufzeit.

Durch die Verwendung von typsicheren Containern, die seit der Version 1.5 in
der Java-Bibliothek verfügbar sind, und einigen Anpassungen am generierten Code
kann Typsicherheit hergestellt werden.

Dazu werden die verwendeten Container mit den Typen der Modellelemente pa-
rametrisiert. Anstatt der allgemeinen Iteratoren geben die Assoziationsmethoden
generische parametrisierte Iteratoren zurück. Bei dem Beispiel für das Klassendia-
gramm in Abb. 3.1 (S. 14) wird der Container anstatt durch die Anweisung

this.bewohner = new FHashSet();

in der Methode addToBewohner in Abb. 3.4 (S. 15) durch die Anweisung

this.bewohner = new HashSet<Mieter>();

instanziiert. Der verwendete Container wird also mit dem Typ Mieter der verwalt-
baren Modellelemente parametrisiert.

20



3.2 Rollenimplementierung innerhalb der Modellklassen

Einige weitere Methoden müssen ebenfalls angepasst werden, um die parame-
trisierten Container zu verwenden. Für das Beispiel Abb. 3.1 (S. 14) wird unter
Anderem auch die Methode removeAllFromBewohner in die Modellklasse Haus ge-
neriert. Diese würde nun einen mit dem Typ Mieter parametrisierten Iterator ver-
wenden, wodurch die Typumwandlung (type cast) unnötig wird (siehe Abb. 3.6).

public void removeAllFromBewohner()

{

Mieter tmpValue;

Iterator iter =

this.iteratorOfBewohner();

while (iter.hasNext())

{

tmpValue = (Mieter) iter.next ();

this.removeFromBewohner (tmpValue);

}

}

public void removeAllFromBewohner()

{

Mieter tmpValue;

Iterator<Mieter> iter =

this.iteratorOfBewohner();

while (iter.hasNext())

{

tmpValue = iter.next ();

this.removeFromBewohner (tmpValue);

}

}

Abbildung 3.6.: Anpassung der Methode removeAllFromBewohner zu dem Beispiel
in Abb. 3.1 (S. 14)

Durch die Verwendung typsicherer parametrisierter Container und die zugehö-
rigen Anpassungen in den Assoziationsmethoden kann der für die Assoziations-
implementierung generierte Code typsicher gemacht werden. Alle Typprüfungen
erfolgen dann zur Übersetzungszeit.

Verwendung von Containern

Das Problem, das auch schon die Fujaba-Entwickler hatten und durch eine eigene
Implementierung gelöst haben, ist die fehlende Funktionalität bei den Standard-
Containern der Java-Bibliothek. Diese bieten z.B. keinen Benachrichtigungsmecha-
nismus (Anforderung 8) und erzeugen Laufzeitfehler, wenn sich bei der Iteration
über die in einem Container verwalteten Elemente der Container-Inhalt ändert
(Anforderung 4).

Abhilfe schaffen da die seit der Java-Version 1.5 verfügbaren Container in dem
Paket java.util.concurrent der Java-Bibliothek. Dazu zählen die Klassen Con-
currentHashMap und ConcurrentLinkedQueue. Diese Container sind nicht nur typsi-
cher (Anforderung 2), sondern sie stellen auch Iteratoren zur Verfügung, die keine
Laufzeitfehler erzeugen (Anforderung 4) und bieten Thread-Sicherheit (Anforde-
rung 7) durch exklusive Zugriffe auf die Container.

Nicht-exklusive Zugriffe sind allerdings nicht möglich, weil alle Methoden mit
dem Schlüsselwort synchronized deklariert sind und diese Eigenschaft nicht ab-
gestellt werden kann.

Diese Container sind für die Anwendung in nebenläufigen Programmen opti-
miert. Sie sind so organisiert, dass sie eine bestimmte feste Anzahl nebenläufiger
Zugriffe erlauben, ohne die zugreifenden Threads zu blockieren. Das wird dadurch
erreicht, dass die Container-Inhalte partitioniert und die Zugriffe unabhängig von-
einander auf den einzelnen Partitionen behandelt werden.

21



3. Ansätze zur Implementierung von Assoziationen

Damit auch Benachrichtigungen (PropertyChangeEvents) bei Änderungen des
Container-Inhalts verschickt werden (Anforderung 8), könnten spezielle Wrapper-
Klassen für die Container-Klassen implementiert werden. Die Wrapper-Klassen
würden die gesamte Funktionalität an die Container delegieren und zusätzlich
das Registrieren von Listener-Objekten ermöglichen sowie diese bei Änderungen
benachrichtigen.

Die von diesen Containern bereitgestellten Iteratoren (java.util.Iterator)
bieten die Möglichkeit, die Container-Inhalte zu verändern (Iterator.remove()).
Es ist aber unerwünscht, dass der Container-Inhalt außerhalb der Assoziations-
methoden verändert werden kann. Dadurch wäre es möglich, Konsistenzprüfungen
innnerhalb der Assoziationsmethoden zu umgehen (Anforderung 1).

Um die remove-Operation auf einem Iterator zu verbieten, kann eine Wrapper-
Klasse für Iteratoren implementiert werden, die die Iterator-Methoden hasNext
und next an den tatsächlichen Iterator delegiert, bei der Methode remove aber eine
UnsupportedOperationException wirft. Anstatt des tatsächlichen Iterators wird von
den Assoziationsmethoden (z.B. iteratorOfBewohner bei dem Beispiel in Abb. 3.1
auf S. 14) der Iterator-Wrapper verwendet bzw. zurückgegeben.

In der Klasse Collections (Paket java.util) sind auch Wrapper für unveränder-
bare Sets, Maps und Lists vorhanden (z.B. durch die Methode unmodifiableMap),
die es ermöglichen, Änderungen von Container-Objekten zu verbieten. Auch eine
Änderung durch den Iterator eines Containers ist dann nicht mehr möglich. Die
Verwendung dieser Wrapper ist eine Alternative für die Implementierung eines
eigenen Iterator-Wrappers.

Leider existieren zur Zeit nur die zwei genannten Container-Klassen in der
Java-Bibliothek (Version 1.5). Für die Implementierung von Assoziationen werden
aber unter Anderem Container benötigt, die die verwalteten Objekte sortieren.
Das trifft auf die Klassen ConcurrentHashMap und ConcurrentLinkedQueue nicht
zu. Erwünscht wären entsprechende Concurrent-Versionen der Klassen LinkedList,
HashSet, TreeMap und TreeSet aus dem Paket java.util. Laut Aussagen von
Doug Lea5 vom Februar 2005 sind einige zusätzliche Klassen dieser Art und ande-
re bereits im Rahmen des JSR-1666 implementiert worden und sollen in die nächste
Java-Version7 intergriert werden. Eine Vorschau der überarbeiteten Schnittstellen
(APIs) ist unter [Lea05] erhältlich. Zu den neuen Klassen zählen insbesondere Con-
currentSkipListMap und ConcurrentSkipListSet. Diese bieten eine Obermenge der
Funktionalität von TreeMap und TreeSet aus dem Paket java.util. Zusammen
mit diesen neuen Klassen wäre es vermutlich möglich, eine Assoziationsimplemen-

5Doug Lea ist ein Professor der Informatik an der State University of New York at Oswego. Er
ist Autor des Buchs Concurrent Programming in Java: Design principles and patterns (ISBN
0-201-31009-0) und verschiedener weit verbreiteter Softwarekomponenten. Insbesondere ist
er Autor der beiden Klassen ConcurrentHashMap und ConcurrentLinkedQueue.

6JSR steht für Java Specification Request. Im JSR-166 werden einige Werkzeuge für die Ver-
wendung in nebenläufigen Programmen vorgeschlagen. Hauptveranwortlicher ist Doug Lea.

7Voraussichtlich wird Java 1.6 mit dem Code-Namen Mustang die nächste Java-Version sein,
nachdem Version 1.5.1 (Dragonfly) doch nicht veröffentlicht wird.

22



3.3 Rollen als eigenständige Klassen

tierung unter Verwendung der Concurrent-Klassen zu realisieren. Das muss aber
nach Veröffentlichung der neuen Klassen genauer untersucht werden.

Evaluation

Angenommen, es wären alle genannten Concurrent-Klassen verfügbar, dann wären
bei der Verwendung dieser Container-Implementierung nur einige Wrapper-Klas-
sen notwendig. Eine eigene Implementierung der Container könnte vermieden wer-
den.

Die Konsistenz bei bidirektionalen Assoziationen wäre weiterhin garantiert (An-
forderung 1). Zusätzlich wäre die Assoziationsimplementierung aber typsicher
(Anforderung 2).

Die Container in dem Paket java.util.concurrent erzeugen bei Iterationen
selbst dann keine Laufzeitfehler, wenn sich der Container-Inhalt währenddessen
ändert (Anforderung 4). Das erhöht die Benutzbarkeit.

Der Aufwand für die Wartung der Container-Klassen könnte drastisch reduziert
werden (Anforderung 5), da dieser Ansatz auf Containern aus der Java-Bibliothek
basiert.

Thread-Sicherheit wäre gegeben (Anforderung 7), aber es wären keine nicht-
exklusiven Zugriffe auf Container-Inhalte möglich, was die Performance von nicht-
nebenläufigen Anwendungen negativ beeinflussen würde. Bei nebenläufigen An-
wendungen dagegen könnten die Container die Performance erhöhen, da auch
mehrere nebenläufige Zugriffe auf die Container-Inhalte ohne Blockieren möglich
sind.

Ein Benachrichtigungsmechanismus (Anforderung 8) wird von den Java-Contai-
nern nicht bereitgestellt und müsste extra implementiert werden, z.B. in Wrapper-
Klassen.

Es müsste auch überprüft werden, um wie viel der Laufzeit- und Speicherbedarf
wächst, der durch die Partitionierung der Container-Inhalte und die exklusiven
Zugriffe darauf entsteht.

Solange sich keine weiteren Container wie ConcurrentHashMap und Concurrent-
LinkedQueue in der Java-Bibliothek befinden, insbesondere mit der Unterstützung
für Sortierung, ist eine Umsetzung dieses Ansatzes vorerst nicht möglich.

3.3. Rollen als eigenständige Klassen

Mitarbeiter der Software Engineering Research Group an der Universität Kassel
haben eine andere als die bisher in Fujaba verwendete Lösung entwickelt und für
die Implementierung von Assoziationen vorgeschlagen [MZ04]. Diese Lösung zielt
hauptsächlich darauf ab, den von Fujaba generierten Code lesbarer und die Code-
Generierung für Assoziationen leichter wartbar zu machen. Insbesondere wollte
man die vielen für die Implementierung der Assoziationen generierten Methoden
aus den Modellklassen in eigene spezielle Klassen verlagern. Zusätzlich ist für

23



3. Ansätze zur Implementierung von Assoziationen

diesen Ansatz die Verwendung von Java Generics geplant, um Typsicherheit zu
garantieren, allerdings ist das bisher nicht vollständig umgesetzt worden.

Auch in [HBR00] wird eine Abbildung von UML-Modellen auf Java-Code vor-
gestellt. Hier werden für jede Modellklasse zwei Java-Klassen generiert (eine ab-
strakte für die Schnittstelle und eine für das Verhalten). Assoziationen werden
mit Hilfe von so genannten Cursorn implementiert, die den Rollen von an Asso-
ziationen beteiligten Objekten entsprechen. Der in [HBR00] verwendete Ansatz
zur Implementierung von Assoziationen ähnelt dem Ansatz aus [MZ04], jedoch
verspricht der Ansatz von Maier und Zündorf [MZ04] eine höhere Benutzbarkeit
und Unabhängigkeit der Assoziationsimplementierung von der Modellimplemen-
tierung. Deswegen wird hier nur der in [MZ04] vorgeschlagene Ansatz betrachet.

3.3.1. Beschreibung des Ansatzes

Überblick

Bei dieser Vorgehensweise werden Assoziationen mit Hilfe von Rollenklassen im-
plementiert. Jedes Rollenobjekt repräsentiert ein Ende einer Assoziation und stellt
alle zur Verwaltung der Assoziation benötigten Methoden zur Verfügung, die bis-
her in die Modellklasse generiert wurden.

Jedes Modellelement besitzt für jede Assoziation, an der es beteiligt ist, ein
Rollenobjekt. Die Rollen ermöglichen das Verbinden und Trennen von Modellele-
menten, deren Klassen laut UML-Modell durch eine Assoziation verbunden sind.
Insbesondere wird durch die Rollen die Konsistenz der bidirektionalen Assoziatio-
nen beim Verbinden und Trennen aufrechterhalten.

Die Rollen bieten abhängig von der Art der Assoziation, zu der sie gehören,
verschiedene Methoden und Funktionalität. So gibt es z.B. spezielle Klassen für
qualifizierte und geordnete Rollen. Da die Rollenimplementierung allgemein ver-
wendbar ist, werden alle Rollen in einer öffentlich zugänglichen Bibliothek zusam-
mengefasst [Mai04].

Für die Verwaltung der durch eine Assoziation verbundenen Modellelemente
werden Standard-Container der Java-Bibliothek innerhalb der Rollen verwendet.

Bevor die Details genauer erläutert werden, muss erwähnt werden, dass dieser
Ansatz [MZ04] bis zur Fertigstellung dieser Studienarbeit noch in Entwicklung
war. Aus diesem Grund kann hier nur die bis dahin (21.02.2005) vorliegende Ver-
sion 0.4 [Mai04] vorgestellt und evaluiert werden.

Anpassung der Modellklassen

Bei diesem Ansatz werden Assoziationen mit Hilfe von eigenständigen Klassen für
Rollen implementiert. Für jede Assoziation, an der ein Modellelement beteiligt
sein kann, erhält es ein an die Assoziationsart angepasstes Rollenobjekt. Über je
ein Attribut hält das Modellelement eine Referenz zu seiner Rolle und umgekehrt
(d.h. jedes Rollenobjekt kennt auch seinen Besitzer).

24



3.3 Rollen als eigenständige Klassen

Die Rollen werden als Container innerhalb der Modellklassen benutzt. Sie wer-
den bei Bedarf in einer Getter-Methode der Modellklasse erstellt, eine Setter-
Methode existiert nicht. Um zwei Modellelemente miteinander zu verbinden oder
voneinander zu trennen, können die Methoden der Rollenobjekte verwendet wer-
den.

class Haus implements PropertyChangeSource

{

private ToManyRole<Haus,Mieter> bewohner = null;

public ToManyRole<Haus,Mieter> bewohner()

{

if (this.bewohner == null)

{

this.bewohner = new ToManyRole<Haus,Mieter>(

"heim", "propertyHeim", this);

}

return this.bewohner;

}

// PropertyChangeSource methods

...

}

class Mieter implements PropertyChangeSource

{

private ToOneRole<Mieter,Haus> heim = null;

public ToOneRole<Mieter,Haus> heim()

{

if (this.heim == null)

{

this.heim = new ToOneRole<Mieter,Haus>(

"bewohner", "propertyMieter", this);

}

return this.heim;

}

// PropertyChangeSource methods

...

}

Abbildung 3.7.: Generische Implementierung der Modellklassen zum Diagramm
in Abb. 3.1

Durch die Verlagerung der für die Verwaltung von Assoziationen benötigten
Methoden in eigene dafür vorgesehene Rollenklassen soll der Quellcode für die mo-
dellierten UML-Klassen (Modellklassen) kürzer und übersichtlicher werden (An-
forderung 3). Der Quellcode zu dem Klassendiagramm in Abb. 3.1 auf Seite 14
würde wie in Abb. 3.7 aussehen. Es wird für jede Assoziation, an der ein Modell-
element beteiligt sein kann, nur noch eine Methode und ein Attribut innerhalb
der Modellklasse implementiert.

Die bisher vorliegende Rollenimplementierung [Mai04] sieht eine Unterstützung
für einen Benachrichtigungsmechanismus vor (Anforderung 8), die aber bisher
nicht realisiert wurde. Dafür ist es allerdings notwendig, dass die Modellklas-
sen die Schnittstelle PropertyChangeSource implementieren (siehe Abb. 3.7). Diese
definiert Methoden zum Feuern von PropertyChangeEvents und Registrieren von
Listenern.

Realisierung der Assoziationen

Die Rollenklassen kapseln die Implementierung von Assoziationen. Je zwei Rollen
repräsentieren dabei eine Assoziation. Diese Klassen sind generisch implementiert
und brauchen für ihre Verwendung in der Modellimplementierung nicht neu im-
plementiert oder erweitert zu werden.

Zum Vergleich zum vorhergehenden Implementierungsansatz zeigt Abb. 3.8 die
Objektstruktur wie sie bei der beispielhaften Instanziierung (Abb. 3.2, S. 14) von
dem Klassendiagramm in Abb. 3.1 (S. 14) aussehen würde.

Eine Rolle verwaltet alle über eine Assoziation referenzierten Modellelemente
und ist dafür verantwortlich, beim Verbinden oder Trennen zweier Elemene über

25



3. Ansätze zur Implementierung von Assoziationen

eine bidirektionale Assoziation die Konsistenz zu erhalten (Anforderung 1).
Bei dem Beispiel in Abb. 3.1 auf Seite 14 (siehe auch Abb. 3.8) wird die Konsis-

tenz der bidirektionalen Assoziation bewohnt erhalten, indem die Rolle bewohner
(hier: ToManyRole) des Objekts haus beim Verbinden dieses Objekts mit einem
anderen Objekt mieter1 entlang der Assoziation bewohnt nicht nur eine Referenz
auf das Objekt mieter1 zu den in der Rolle bewohner verwalteten Referenzen hin-
zufügt, sondern auch eine Referenz auf das Objekt haus zu den in der Rolle von
Objekt mieter1 (hier: ToOneRole) verwalteten Referenzen. Das Trennen zweier
Modellelemente erfolgt analog. Damit das möglich ist, bekommt eine Rolle bei
ihrer Instanziierung ihren eigenen Namen übergeben. Die Zugriffsmethoden für
die Rollen zweier an einer Assoziation beteiligten Klassen haben den gleichen
Namen, wie die Rolle, die sie zurückgeben. In Abb. 3.7 (S. 25) sind das gerade
heim und bewohner. Mit Hilfe des Reflection-Mechanismus von Java und dieser
Namenskonvention ist es der Rolle bewohner möglich, über ein Objekt, das re-
ferenziert werden kann (hier mieter1 oder mieter2), auf dessen Rollenobjekt (die
gegenüberliegende Rolle heim) zuzugreifen, um darauf eine Methode aufzurufen,
die den Besitzer der Rolle bewohner (Objekt haus) zu den von der Rolle heim
verwalteten Objekten hinzufügt bzw. entfernt.

Abbildung 3.8.: Tatsächliche Objektstruktur zu dem Beispiel in Abb. 3.2

Die Assoziationsimplementierung – wie sie momentan vorliegt – ist ausschließ-
lich für bidirektionale Assoziationen implementiert, kann aber durch eine einfache
Anpassung auch auf Referenzen (Anforderung 6) erweitert werden. Dazu reicht
es aus, bei einer unidirektionalen Assoziation zwischen den Klassen A und B, wo-
bei B referenziert wird, die Methode der Klasse B, die bei einer bidirektionalen
Assoziation die zugehörige Rolle zurückgeben würde, null zurückgeben zu las-
sen. B hätte also keine Rolle. Die Rollenimplementierung müsste zusätzlich so
angepasst werden, dass in dem Fall, dass keine gegenüberliegende Rolle existiert
(wie bei B), auch keine Rückverknüpfung beim Verbinden oder Trennen zweier
Modellelemente erstellt wird (es wird keine Referenz von der B-Seite zur A-Seite
erstellt).

Um die Semantik von Aggregationen bei der Abbildung auf Java-Code zu er-
möglichen, implementieren die Rollenklassen eine parameterlose unlink-Methode,
die – wie die in den Modellklassen implementierten removeAllFrom. . . -Methoden
des in Abschnitt 3.2 beschriebenen Ansatzes (siehe S. 16) – alle Referenzen zu Mo-
dellelementen unter Einhaltung der Konsistenz bei bidirektionalen Assoziationen

26



3.3 Rollen als eigenständige Klassen

Abbildung 3.9.: Klassenhierarchie der Rollenbibliothek mit den wichtigsten Me-
thoden und Attributen (Stand: November 2004, Vers. 0.4)

entfernt.

Rollenbibliothek

Da die Anzahl der referenzierten Elemente und die Anforderungen an ihre Ver-
waltung von der Art der Assoziation bzw. der Rolle abhängen, gibt es verschie-
dene Rollenimplementierungen, die entsprechende Eigenschaften erfüllen. Dabei
wird zwischen zu-1- und zu-n- sowie qualifizierten Rollen unterschieden (Anforde-
rung 6), es gibt z.B. die Klassen ToOneRole und ToManyRole und einige weitere
für qualifizierte und geordnete oder sortierte Rollen.

Die Hierarchie der bisher verfügbaren Rollenklassen ist in vereinfachter Form
(nur die wichtigsten Methoden sind dargestellt) in der Abb. 3.9 dargestellt. Wie
die Hierarchie (Abb. 3.9) und die Abbildung 3.7 (S. 25) zeigen, werden die Rollen

27



3. Ansätze zur Implementierung von Assoziationen

mit den Typen der Modellelemente parametrisiert, die durch eine Assoziation
verbunden werden können. In dem Beispiel aus Abb. 3.7 sind das gerade Haus
und Mieter für die Typvariablen L und R in der Abb. 3.9.

Beim Hinzufügen oder Entfernen eines Elements bei qualifizierten Rollen reicht
es nicht aus, nur das zu referenzierende oder zu entfernende Modellelement an die
zuständige Methode zu übergeben. Die Qualifizierung verlangt einen Schlüssel,
über den das Element erreicht werden kann. Dieser muss zusätzlich zum Modellele-
ment an die entsprechende Methode als Parameter übergeben werden. Das gleiche
gilt auch für die gegenüberliegende Seite, selbst wenn diese nicht qualifiziert ist,
denn beim Verbinden oder Trennen zweier Modellelemente muss auch die Referenz
in Rückrichtung erstellt bzw. gelöscht werden, um die Konsistenz zu erhalten.
Dazu wird aber der Schlüssel als zusätzlicher Parameter benötigt.

Dieses Problem wird hier dadurch gelöst, dass bei einer einseitig qualifizierten
Assoziation spezielle zu-1- und zu-n-Rollenklassen verwendet werden. Für das Bei-
spiel in Abb. 3.5 (S. 16) würden die in der Abb. 3.9 dargestellten Rollenklassen
QualifiedRoleByKey für Universität und ToOneRoleByKey für Student verwendet
werden. Bei beidseitig qualifizierten Assoziationen werden sogar zwei Schlüssel
benötigt, für je eine Seite der Assoziation einer. Wie mit beidseitig qualifizierten
Assoziationen bei diesem Ansatz umgegangen wird, ist aus [Mai04] und [MZ04]
nicht ersichtlich.

Verwendung von Containern

Bei der Implementierung in [Mai04] benutzen die Rollen, die mehrere Referenzen
verwalten müssen, Container aus der Java-Bibliothek, z.B. HashSet oder Linked-
List. Bei den zu-1-Rollen wird die einzig mögliche Referenz in einem Attribut
gespeichert.

Funktionalität wie das Sortieren der referenzierten Elemente oder der Zugriff
darauf über einen Schlüssel wird an die Container delegiert. Speziell für geordnete
und sortierte Assoziationen gibt es nur eine Rollenklasse, nämlich OrderedToMany-
Role. Durch einen Parameter wird entschieden, ob der verwendete Container die
Reihenfolge der verwalteten Elemente behalten (geordnete Rolle) oder sie nach
einem bestimmten Kriterium sortieren soll (sortierte Rolle).

Typsicherheit

Der hier beschriebene Ansatz zur Assoziationsimplementierung ist zwar bereits
mit Java Generics implementiert, kann aber keine Typsicherheit (Anforderung 2)
garantieren. Das liegt zum einen an der Verwendung des Reflection-Mechanismus8

von Java, der zur Laufzeit Informationen über eine Klasse beschaffen kann, nicht

8Man beachte, dass Java Generics so realisiert sind, dass alle Objekte einer generisch implemen-
tierten parametrisierten Klasse, auch wenn sie mit verschiedenen Typparametern initialisiert
worden sind, immer die gleiche Klasse verwenden. Der Reflection-Mechanismus kann nur
statische Informationen zur Klasse, ihren Methoden und Attributen beschaffen.

28



3.3 Rollen als eigenständige Klassen

aber Informationen über die von einem Objekt verwendeten Typparameter, da die-
se zur Laufzeit nicht existieren. Zum anderen verwendet die bisher vorliegende Im-
plementierung Typumwandlungen (type casts), die nur zur Laufzeit durchgeführt
werden können und daher nicht typsicher sind. Die Typumwandlungen sind aber
hauptsächlich aufgrund der Verwendung des Reflection-Mechanismus nötig, da
dieser bei einem Methodenaufruf durch java.lang.reflect.Method.invoke als
Rückgabetyp immer den allgemeinsten Java-Typ java.lang.Object verwendet.

Obwohl diese Implementierung keine vollständig statische Typprüfung erlaubt,
ist es dennoch nicht möglich, Objekte falschen Typs in die Container einzufügen.
Das liegt daran, dass die Rollenklassen nur Methoden zum Einfügen von Objekten
des richtigen Typs haben. Bei einer Spezialisierung einer der Rollenklassen können
die verwendeten Container-Objekte nur durch die definierten Zugriffsmethoden
erreicht werden, denn die Container-Variablen sind durch private-Deklarationen
in erbenden Klassen nicht sichtbar. Weil die Rollenklassen in einer Bibliothek
liegen und deswegen nicht direkt verändert werden können, ist es einem Entwickler
nicht möglich durch Hinzufügen weiterer Methoden in eine der Rollenklassen die
Zugriffsmethoden zu umgehen. Bei dem in Abschnitt 3.2 beschriebenem Ansatz
ist das möglich (siehe Seite 18).

3.3.2. Evaluation

Die Vorteile dieses Ansatzes sind vor Allem die bessere Benutzbarkeit (Anforde-
rung 4), höhere Lesbarkeit (Anforderung 3) und der geringere Wartungsaufwand
(Anforderung 5) durch deutlich kürzeren, übersichtlicheren und verständlicheren
Code für die Modellklassen und die Auslagerung der Assoziationsmethoden in ei-
gene dafür vorgesehene Rollenklassen. Die Klassenhierarchie der Rollen und die
darin verwendeten Abstraktionen bzw. Spezialisierungen ermöglichen eine einheit-
liche Behandlung von Rollen mit gleicher Schnittstelle, was die Anwendungsent-
wicklung bequemer macht.

Durch die Auslagerung der Rollen in eine Bibliothek, ist ihre Wartung – solange
sich die Schnittstellen nicht ändern – möglich, ohne dass die Implementierung der
UML-Modelle angepasst oder neu generiert und kompiliert werden muss.

Der Hauptnachteil dieser Assoziationsimplementierung ist, dass keine Typsi-
cherheit (Anforderung 2) garantiert werden kann. Man müsste die Verwendung
von Reflection durch einen anderen flexiblen Mechanismus oder ein anderes Design
ersetzen, um Typsicherheit garantieren zu können und gleichzeitig die Konsistenz
der bidirektionalen Assoziationen zu erhalten (Anforderung 1).

Die Implementierung der Rollen (und damit auch der Assoziationen) ist durch
die Verwendung von Reflection nur noch schwer lesbar und erschwert die Wartung
der Rollenbibliothek.

Die Benutzung von Reflection hat auch noch einen anderen nicht zu vernachläs-
sigenden Nachteil: Methodenaufrufe mit Hilfe von Reflection benötigen eine deut-
lich höhere Laufzeit, als gewöhnliche Methodenaufrufe. Der größte Aufwand ent-
steht dabei beim Heraussuchen der aufzurufenden Methode (Methoden-Lookup).

29



3. Ansätze zur Implementierung von Assoziationen

Bei mehr als einem Aufruf der gleichen Methode kann der Gesamtaufwand durch
Caching minimiert werden. Dann muss die Methode nur ein Mal vor dem ersten
Aufruf herausgesucht werden. Doch auch dann ist der Laufzeitbedarf höher als bei
gewöhnlichen Methodenaufrufen (siehe Anhang A.2).

Die vorgestellte Assoziationsimplementierung ermöglicht eine Abbildung der
meisten in Abschnitt 2.1 (S. 5) vorgestellten Assoziationen auf Java-Quellcode
(Anforderung 6). Für beidseitig qualifizierte Assoziationen scheint es noch keine
Unterstützung in [Mai04] zu geben.

Bei Iterationen können Laufzeitfehler auftreten, wenn sich währenddessen der
zugehörige Container-Inhalt ändert. Dadurch ist die Benutzbarkeit dieser Imple-
mentierung eingeschränkt (Anforderung 4).

Thread-Sicherheit (Anforderung 7) ist bei der zur Zeit vorliegenden Imple-
mentierung [Mai04] nicht gegeben. Ein Benachrichtigungsmechanismus (Anfor-
derung 8) ist zwar vorgesehen, ist aber momentan ebenfalls nicht verfügbar.

Die Rollenobjekte, die zur Laufzeit paarweise je eine Verbindung zwischen zwei
Modellelementen entlang einer Assoziation repräsentieren, erhöhen den Speicher-
bedarf der modellierten und auf diese Weise implementierten Anwendung. Bei der
Implementierung der Rollen innerhalb der Modellklassen (Abschnitt 3.2, ab S.13)
sind keine weiteren Objekte (außer den Containern zur Verwaltung von referen-
zierten Objekten, die auch bei dieser Lösung verwendet werden) nötig.

Vorteile

• die Methoden zur Verwaltung der Assoziationen werden in eigene Klassen
ausgelagert, der Code für Modellklassen wird übersichtlicher, erhöhte Les-
barkeit

• unabhängige Wartung der Assoziationsimplementierung möglich, solange die
Schnittstellen sich nicht ändern; Modellimplementierung bedarf dann keiner-
lei Anpassung oder Neukompilierung

• Benutzung der Assoziationsimplementierung unter Anderem durch Abstrak-
tion und gemeinsame Schnittstellen vereinfacht

• Trennung der Assoziationsimplementierung von der Implementierung der
Modell-Klassen erziehlt ein besser strukturiertes Design

• Konsistenzerhaltung bei bidirektionalen Assoziationen

Nachteile

• es gibt keine Typsicherheit, diese kann auch nicht realisiert werden

• bei Iterationen können Laufzeitfehler auftreten

• Thread-Sicherheit und ein Benachrichtigungsmechanismus fehlen

30



3.4 Fazit

• Reflection senkt die Lesbarkeit der Rollenimplementierung und der War-
tungsaufwand für die Rollenbibliothek wächst

• geringe Performance der Modellimplementierung: höherer Speicherverbrauch
durch Rollenobjekte, höhere Laufzeit durch Reflection

3.4. Fazit

In diesem Kapitel wurden Anforderungen an eine Assoziationsimplementierung
formuliert. Es wurden der bei der Code-Generierung von Fujaba verwendete An-
satz und der in [MZ04] vorgeschlagene Ansatz bzgl. der Anforderungen evaluiert.
Ebenso wurde diskutiert, wie die von Fujaba generierte Assoziationsimplementie-
rung typsicher gemacht werden kann.

Es stellte sich heraus, das bei der vollständigen Implementierung der Assozia-
tionen innerhalb der Modellklassen, wie es bei Fujaba der Fall ist, eine typsichere
Assoziationsimplementierung realisierbar ist. Wegen der vielen generierten Me-
thoden in den Modellklassen ist diese Implementierung aber sehr unübersichtlich
und erschwert seine Benutzung und Wartung. Bei dem von Fujaba generierten
Code ist bisher keine Typsicherheit gegeben, dafür ist aber z.B. ein Benachrichti-
gungsmechanismus verfügbar. Werden statt der speziellen Container die Standard-
Container von Java verwendet, so wird die Implementierung zwar typsicher, aber
dafür fehlt einige Funktionalität wie der Benachrichtigungsmechanismus.

Der in [MZ04] beschriebene Ansatz löst die Probleme der Lesbarkeit, verein-
facht die Benutzung und erlaubt eine Wartung der Assoziationsimplementierung
unabhängig von einer Modellimplementierung (solange sich die Schnittstellen der
Assoziationsimplementierung nicht ändern). Um die Konsistenz von bidirektio-
nalen Assoziationen zu erhalten, wird hier der Reflection-Mechanismus von Java
verwendet, wodurch aber Typsicherheit verloren geht. Außerdem wird die Perfor-
mance einer Modellimplementierung durch Reflection beeinträchtigt. Es besteht
keine Thread-Sicherheit und es fehlt Funktionalität wie ein Benachrichtigungsme-
chanismus.

31





4. Typsichere Implementierung von
Assoziationen

Aufbauend auf den in Kapitel 3 vorgestellten Ansätzen zur Assoziationsimplemen-
tierung wird im Rahmen dieser Studienarbeit überprüft, ob und wie die Typsi-
cherheit in der Implementierung von Assoziationen garantiert werden kann.

Dabei entstand ein neuer Implementierungsansatz, der auf der in [MZ04] ent-
wickelten und in [Mai04] umgesetzten Idee (siehe auch Abschnitt 3.3, ab S. 23)
basiert und Typsicherheit garantiert. Dieser Ansatz wird in diesem Kapitel vor-
gestellt und wie die anderen Ansätze bzgl. der in Kapitel 3 formulierten Anforde-
rungen evaluiert.

4.1. Beschreibung des Ansatzes

In Kapitel 3 wurden zwei Möglichkeiten zur Implementierung von Assoziationen
vorgestellt. Beide Ansätze weisen aber Mängel auf. Während bei dem ersten zu
viele Methoden innerhalb der Modellklassen implementiert werden, kann der zwei-
te keine Typsicherheit garantieren. Das Ziel des hier vorgestellten Ansatzes zur
Implementierung von Assoziationen ist es, möglichst viele Vorteile der anderen
Ansätze mit der Typsicherheit zu verbinden.

4.1.1. Überblick

Damit der Quellcode übersichtlich bleibt, der bei der Implementierung eines UML-
Modells entsteht, wird hier die Idee aus [MZ04] aufgegriffen und die Assoziations-
methoden werden in Rollenklassen gekapselt.

Bei der Implementierung von bidirektionalen Assoziationen muss die Konsistenz
immer aufrechterhalten werden. Bei den in Kapitel 3 vorgestellten Ansätzen ruft
deswegen eine Methode zum Verbinden oder Trennen zweier Modellelemente, die
auf einer Assoziationsseite aufgerufen wird, immer auch eine entsprechende Me-
thode der gegenüberliegende Seite auf.

Damit das möglich ist, muss in irgendeiner Form auf die Methode der anderen
Assoziationsseite zugegriffen werden. In einer generischen Rollenimplementierung
werden anstatt der Typen der verbindbaren Elemente Typvariablen benutzt, wo-
durch keine Methoden der Modellklassen bekannt sind. Deswegen wird der Zugriff
auf die Methoden bei dem Ansatz in [MZ04] (Abschnitt 3.3, S. 23) mit Hilfe von
Reflection durchgeführt. Um Typsicherheit bei der Assoziationsimplementierung

33



4. Typsichere Implementierung von Assoziationen

zu ermöglichen, muss aber auf Reflection und Typumwandlungen verzichtet wer-
den.

Bei dem hier vorgestellten Ansatz wird deshalb zusätzlich zu den allgemeinen
generischen Rollenklassen für jede Assoziation ein Paar von speziellen Rollenklas-
sen implementiert. Diese erben von den allgemeinen und legen die Typparameter
fest. Durch die Belegung der Typparameter mit den Typen von an einer Asso-
ziation beteiligten Modellelementen kann innerhalb der speziellen Rollenklassen
auf die Methoden der Modellklassen direkt zugegriffen werden. Auf diese Weise
kann Typsicherheit garantiert und gleichzeitig die Konsistenz von bidirektionalen
Assoziationen durch gegenseitigen Methodenaufruf erhalten werden.

Die generischen allgemeinen Rollenklassen enthalten den größten Teil der Im-
plementierung und werden als abstrakte Klassen in einer Bibliothek bereitgestellt.
Die speziellen Rollenklassen werden für jedes Modell neu implementiert. Sie die-
nen nur dem typsicheren Zugriff von einer Rolle aus auf die ihr gegenüberliegende
Rolle, um Methoden zum Verbinden oder Trennen zweier Modellelemente aufzu-
rufen. Zur Verwaltung der verbundenen Modellelemente werden die typsicheren
Standard-Container der Java-Bibliothek innerhalb der allgemeinen Rollenklassen
verwendet.

4.1.2. Anpassung der Modellklassen

Wie bei dem in in Abschnitt 3.3 (S. 23) beschriebenen Ansatz erhält hier ein
Modellelement für jede Assoziation, an der es beteiligt sein kann, ein an die As-
soziation angepasstes Rollenobjekt. Dieses hält eine Referenz zum Modellelement
und umgekehrt. Die Rollen werden in einer Getter-Methode der Modellklasse er-
stellt, während eine Setter-Methode nicht existiert.

Wie Abbildung 4.1 zeigt, ähnelt die Modellklassenimplementierung bei diesem
Ansatz stark der generischen in Abschnitt 3.3 (Abb. 3.7, S. 25). Der Hauptunter-
schied ist die Verwendung von speziell für die Assoziation implementierten und
bereits mit den an der Assoziation beteiligten Modellklassen parametrisierten Rol-
lenklassen. Die Verwendung von Generics ist dadurch im Quellcode der Modell-
klassen nicht erkennbar.

Bei diesem Ansatz werden keinerlei Schnittstellen für die Modellklassen vor-
ausgesetzt. Insbesondere müssen keine Methoden für die Realisierung eines Be-
nachrichtigungsmechanismus implementiert werden, wie das bei dem Ansatz in
Abschnitt 3.3 der Fall ist (vgl. Abb. 4.1 und Abb. 3.7, S. 25).

4.1.3. Implementierung spezieller Rollenklassen

Der Name der durch eine Spezialisierung von Rollenklassen aus der Rollenbiblio-
thek entstehenden speziellen Rollenklassen ist irrelevant, aber um die Lesbarkeit
zu erhöhen, bekommen sie den Namen der abstrakten Rollenklasse, die spezialisiert
wird, und den eigenen Rollennamen sowie den der gegenüberliegenden Rolle als
Präfix. Das erleichtert die Zuordnung zur zugehörigen Assoziation. Zum Beispiel

34



4.1 Beschreibung des Ansatzes

class Haus

{

private Heim_Bewohner_NonQualifiedToManyRole bewohner = null;

public final Heim_Bewohner_NonQualifiedToManyRole bewohner()

{

if (this.bewohner == null)

{

this.bewohner = new Heim_Bewohner_NonQualifiedToManyRole (this);

}

return this.bewohner;

}

}

class Mieter

{

private Bewohner_Heim_NonQualifiedToOneRole heim = null;

public final Bewohner_Heim_NonQualifiedToOneRole heim()

{

if (this.heim == null)

{

this.heim = new Bewohner_Heim_NonQualifiedToOneRole (this);

}

return this.heim;

}

}

Abbildung 4.1.: Typsichere Implementierung der Modellklassen zum Diagramm in
Abb. 3.1 auf Seite 14

hat die Rolle Heim Bewohner NonQualifiedToManyRole (Abb. 4.1 und Abb. 4.2) der
Klasse Haus in dem verwendeten Beispiel den eigenen Rollennamen heim gefolgt
von dem der gegenüberliegenden Rolle bewohner und dem Rollenklassennamen
NonQualifiedToManyRole als Namen.

Die Implementierung der speziellen Rollenklassen erfordert nur einen Konstruk-
tor und das Implementieren der abstrakten Methode getOppositeRole. Beides be-
darf zusammen nur weniger Zeilen Code, wie Abb. 4.2 zeigt. Der Rollenname
wird bei diesem Ansatz nicht benötigt. Seine Übergabe an den Konstruktor der
Oberklasse dient hier nur dazu, den Namen einer Rolle zu speichern und wieder
auslesen zu können.

Die Methode getOppositeRole kann nicht in einer der allgemeinen generischen
Klassen implementiert werden. Diese verwenden bei ihrer Imlementierung eine
Typvariable, die den Typ der verwalteten Elemente repräsentiert (in den Abbil-
dungen 4.3 auf Seite 36, 4.5 auf Seite 38 und 4.6 auf Seite 40 ist das E). Weil
für diesen Typ keine Einschränkungen in Form einer Schnittstelle gemacht wer-
den, sind die Methoden zur Rückgabe des Rollenobjekts zu einem Modellelement
in diesen Klassen nicht bekannt. In dem Beispiel in Abb. 4.1 und Abb. 4.2 sind
das die Methoden heim und bewohner, die auf einem Modellelement aufgerufen
werden.

Alternativ könnte man eine Schnittstelle für die entlang einer Assoziation ver-
bindbaren Typen festlegen. Diese würde z.B. eine Methode

public Role<E,O> getRole(String roleName)

35



4. Typsichere Implementierung von Assoziationen

public class Heim_Bewohner_NonQualifiedToManyRole extends NonQualifiedToManyRole<Mieter, Haus>

{

public Heim_Bewohner_NonQualifiedToManyRole(Haus owner)

{

super("heim", owner);

}

protected NonQualifiedRole<Haus, Mieter> getOppositeRole(Mieter oppositeElement)

{

return oppositeElement.heim();

}

}

public class Bewohner_Heim_NonQualifiedToOneRole extends NonQualifiedToOneRole<Haus, Mieter>

{

public Persons_House_NonQualifiedToOneRole(Mieter owner)

{

super("bewohner", owner);

}

protected NonQualifiedRole<Mieter, Haus> getOppositeRole(Haus oppositeElement)

{

return oppositeElement.bewohner();

}

}

Abbildung 4.2.: Typsichere Implementierung der Rollenklassen zum Diagramm in
Abb. 3.1 auf Seite 14

definieren, die anhand des Rollennamens, der eindeutig ist, die entsprechende Rolle
zurückgibt (E ist hier der Typ der referenzierten Elemente und O der Typ des
Modellelements, zu dem die Rolle gehört). Legt man nun fest, dass die in den
allgemeinen Rollenklassen verwendeten Typvariablen Typen repräsentieren, die
diese Schnittstelle implementieren, so wird die Methode getRole auch in diesen
Klassen bekannt.

Abgesehen von der Schnittstelle, die nun alle entlang einer Assoziation verbind-
baren Klassen implementieren müssten, entsteht so ein anderes Problem: Die Me-
thoden zum Verbinden und Trennen zweier Modellelemente benötigen abhängig
davon, ob eine nicht qualifizierte, einseitig qualifizierte oder beidseitig qualifizierte
Assoziation vorliegt, verschiedene Parameter. Bei einseitig qualifizierten Assozia-
tionen wird zusätzlich zum Modellelement auch ein Schlüssel, unter dem dieses
Element erreichbar ist, verlangt. Bei beidseitig qualifizierten Assoziationen wird

Abbildung 4.3.: UML-Klassendiagramm: Spezialisierung der abstrakten Rollen-
klassen zu Abb. 4.2

36



4.1 Beschreibung des Ansatzes

so ein Schlüssel wegen des gegenseitigen Methodenaufrufs zur Erhaltung der Kon-
sistenz für beide Seiten benötigt. Definiert man für jeden der drei Fälle eine eigene
Rollenklasse mit passenden Methoden und Parametern, so werden Typumwand-
lungen und instanceof-Abfragen im Quellcode der Rollenimplementierung not-
wendig, die wiederum nicht typsicher sind. Eine Alternative ist, für alle drei Fälle
Methoden mit gleicher Signatur zu verwenden. Dadurch müsste man aber z.B.
bei nicht qualifizierten Rollen immer zwei zusätzliche Parameter übergeben, die
eigentlich nicht benötigt werden.

Als Ausweg werden spezielle Rollenklassen implementiert, bei denen durch die
Festlegung der Typparameter der allgemeinen generischen Rollenklassen die Zu-
griffsmethoden für die Rollenobjekte zu einem Modellelement sichtbar werden.
Anstatt für die Modellklassen die Implementierung einer Schnittstelle vorauszu-
setzen und Assoziationsmethoden mit gleicher Signatur für alle Assoziationsarten
zu verwenden, werden für jede Assoziationsart spezielle Rollenklassen mit passen-
den Parametern in den Assoziationsmethoden definiert. Durch die Verwendung
des richtigen Rollentyps, nämlich nicht qualifiziert, einseitig qualifiziert oder beid-
seitig qualifiziert, als Rückgabetyp der Zugriffsmethoden für eine Rolle, ist eine
Typumwandlung nicht notwendig.

Bei dem Beispiel in Abb. 4.2 und Abb. 4.3 werden durch die Festlegung der
Typparameter (hier Haus und Mieter) die allgemeiner definierten generischen Rol-
lenklassen an die Assoziation, in der sie verwendet werden sollen, angepasst. Die
Methode getOppositeRole verwendet hier die Klasse NonQualifiedRole für nicht
qualifizierte Rollen als Rückgabetyp.

4.1.4. Realisierung der Assoziationen

Wie bei dem Ansatz in [MZ04] (Abschnitt 3.3, S. 23) kapseln die Rollenklassen
die Implementierung von Assoziationen. Je zwei Rollen repräsentieren dabei eine
Assoziation.

Abbildung 4.4.: Tatsächliche Objektstruktur zu dem Beispiel in Abb. 3.2 (S. 14)

Die Objektstrukturen, die zur Laufzeit bei Verwendung dieser Assoziationsim-
plementierung entstehen können, sehen – bis auf die Rollenklassen- und Attri-
butnamen – identisch zu denen aus, die bei dem in Abschnitt 3.3 beschriebenen
Ansatz entstehen. Zum Vergleich illustriert die Abb. 4.4 die Objektstruktur zu
dem Beispiel in Abb. 3.2 auf Seite 14 (vgl. Abb. 3.8, S. 26).

37



4. Typsichere Implementierung von Assoziationen

Die Konsistenz bei bidirektionalen Assoziationen wird durch einen gegenseitigen
Aufruf der Methoden zum Verbinden (link) oder Trennen (unlink) zweier Modell-
elemente sichergestellt. Zusätzlich zu den Methoden link und unlink wird auch die
Methode references von allen Rollen mit den für die jeweilige Assoziationsart (nicht
qualifiziert, einseitig qualifiziert oder beidseitig qualifiziert) passenden Parametern
implementiert.

public final boolean link(E element)

{

if (element == null)

{

throw new IllegalArgumentException("The parameter \’element\’must not be null.");

}

if (this.references(element))

{

return false;

}

this.referencedModelElements.add(element);

NonQualifiedRole<O, E> oppositeRole = this.getOppositeRole(element);

if (oppositeRole != null && !oppositeRole.references(this.getOwner()))

{

oppositeRole.link(this.getOwner());

}

return true;

}

Abbildung 4.5.: Implementierung der Methode link in der Klasse NonQualifiedTo-
ManyRole

Die Methode references dient der Überprüfung auf eine evtl. schon vorhande-
ne Referenz vor der Verbindung mit (bzw. Trennung von) einem Objekt. Diese
Prüfung ist wichtig für die Erhaltung der Konsistenz einer bidirektionalen Asso-
ziation, denn ein Aufruf der link-Methode auf der einen Seite der Assoziation hat
einen Aufruf der gleichen Methode auf der anderen Seite der Assoziation zur Folge
(ebenso für unlink). Ohne die Abfrage auf eine evtl. schon vorhandene Referenz,
würde dabei eine Endlosschleife entstehen. Zur Verdeutlichung wird die Methode
link der Klasse NonQualifiedToManyRole in der Abb. 4.5 dargestellt (vgl. Methode
addToBewohner in Abb. 3.4 auf S. 15).

Das Einfügen von null-Einträgen wird von den Rollenklassen durch eine Ab-
frage verhindert, denn eine Referenz zu null macht bei einer Assoziation keinen
Sinn. Ist ein Parameter der link- oder unlink-Methoden null, so wird eine Illegal-
ArgumentException geworfen.

Dieser Ansatz unterstützt sowohl uni- als auch bidirektionale Assoziationen (An-
forderung 6). Bei unidirektionalen Assoziationen (Referenzen) gibt es nur Rol-
len auf der referenzierenden Seite (eine bei einer 1-zu-x- und n bei einer n-zu-
x-Assoziation). Die Methode getOppositeRole der Rolle auf der referenzierenden
Seite gibt einfach null zurück. Eine Konsistenzprüfung wie bei bidirektionalen
Assoziationen ist hier nicht notwendig.

Die Abbildung von Aggregationen auf Java-Quellcode wird, wie bei dem in
Abschnitt 3.3 beschriebenen Ansatz (siehe S. 26), durch eine parameterlose unlink-
Methode in den Rollenklassen ermöglicht, die unter Einhaltung der Konsistenz bei

38



4.1 Beschreibung des Ansatzes

bidirektionalen Assoziationen alle Referenzen zu Modellelementen entfernt.

4.1.5. Rollenbibliothek

Die allgemeinen generischen Rollenimplementierungen liegen in einer Bibliothek
vor. Alle Rollenklassen haben eine gemeinsame Oberklasse Role, die den Rollen-
namen und den Besitzer einer Rolle (das Modellelement, zu dem die Rolle gehört)
speichert. Die Klasse Role erhält zwei Typvariablen: E für den Typ der referen-
zierten Elemente (elements) und O für den Typ des Modellelements, zu dem die
Rolle gehört (owner).

Während bei dem Ansatz in Abschnitt 3.3 (S. 23) aus dem Papier [MZ04] und
der bisherigen Implementierung [Mai04] nicht ersichtlich wird, wie mit beidsei-
tig qualifizierten Assoziationen umgegangen wird, werden bei diesem Ansatz die
beidseitig qualifizierten Assoziationen explizit berücksichtigt.

Bei nicht qualifizierten, einseitig qualifizierten und beidseitig qualifizierten As-
soziationen werden verschiedene Anzahlen von Parametern benötigt. Deshalb wer-
den für jeden der drei Fälle jeweils passende Rollenklassen mit nur einem, zwei
oder drei Parametern in den betroffenen Methoden definiert. Dadurch ist die Klas-
senhierarchie der Rollen in drei Teilhierarchien unterteilt, mit den Klassen Non-
QualifiedRole (für nicht qualifizierte), SingleQualifiedRole (für einseitig qualifizierte)
und DoubleQualifiedRole (für beidseitig qualifizierte Assoziationen) als Oberklassen
(siehe Abb. 4.6). Diese bekommen weitere Typvariablen: K und L für die Typen der
verwendbaren Schlüssel. So können sich bei beidseitig qualifizierten Assoziationen
die Schlüsseltypen der beiden Seiten unterscheiden.

Die drei Klassen in dieser Ebene definieren die drei wichtigsten Methoden zum
Verbinden und Trennen zweier Modellelemente mit den für die jeweilige Hierarchie
passenden Parametern. Die Methoden sind link, unlink und references. Zusätzlich
zu diesen drei Methoden wird die abstrakte Methode getOppositeRole definiert, die
zu einer Rolle ihre gegenüberliegende Rolle liefern soll und bei der Spezialisierung
der Rollenklassen (wie in Abb. 4.2 und Abb. 4.3 auf S. 36) implementiert werden
muss. Durch die Verwendung des speziellen Rollentyps (NonQualifiedRole, Single-
QualifiedRole oder DoubleQualifiedRole) als Rückgabetyp dieser Methode können
Typumwandlungen in der generischen Implementierung der Methoden link und
unlink vermieden werden.

In jeder der drei Teilhierarchien (nicht qualifiziert, einseitig qualifiziert, beid-
seitig qualifiziert) wird in der nächsten Hierarchieebene zwischen zu-1- und zu-
n-Rollen unterschieden. Darin werden die zuvor abstrakt definierten Methoden
link, unlink und references sowie einige weitere für zu-1- oder zu-n-Rollen typi-
sche Methoden, die das Aufzählen oder Durchlaufen aller referenzierten Elemente
erlauben, implementiert.

Während bei nicht qualifizierten und beidseitig qualifizierten Assoziationen die
Rollen auf beiden Seiten gleicher Art sind, nämlich beide nicht qualifiziert oder
beide qualifiziert, entsteht bei den einseitig qualifizierten Assoziationen ein beson-
derer Fall: Hier ist nur eine der beiden Rollen qualifiziert, d.h. die eine Rolle greift

39



4. Typsichere Implementierung von Assoziationen

Abbildung 4.6.: Hierarchie der abstrakten Rollenklassen

40



4.1 Beschreibung des Ansatzes

auf die referenzierten Objekte über einen Schlüssel zu, die andere nicht. Dennoch
haben die in der Klasse SingleQualifiedRole definierten Methoden für beide Rollen-
arten die gleiche Signatur, denn beide benutzen einen Schlüssel. Es werden also
zwei zu-1- und zwei zu-n-Rollenklassen gebraucht, je eine für den qualifizierten
und je eine für den nicht qualifizierten Fall. Diese Fälle werden durch die Klassen
ToOneRoleWithOppositeKey und ToManyRoleWithOppositeKey für die nicht quali-
fizierte und die Klassen SingleQualifiedToOneRole und SingleQualifiedToManyRole
für die qualifizierte Seite einer Assoziation abgedeckt.

Damit auch geordnete und sortierte Assoziationen (Anforderung 6) realisiert
werden können, gibt es zu jeder der Rollenklassen, die mehr als ein Element re-
ferenzieren können, auch je eine Unterklasse für geordnete und sortierte Rollen.
Das erlaubt sogar eine genauere Spezifikation von Assoziationen, denn die Cons-
traints geordnet oder sortiert können für jede Rolle einzeln anstatt für die ganze
Assoziation festgelegt werden. Die Klassen für sortierte oder geordnete Rollen un-
terscheiden sich von ihren Oberklassen hauptsächlich durch die Verwendung eines
anderen Containers zur Verwaltung der referenzierten Modellelemente. Außerdem
sind einige zusätzliche Methoden möglich, z.B. für das Festlegen der Sortierreihen-
folge bei einer sortierten Rolle durch einen java.util.Comparator (das könnte
in einem zusätzlichen Konstruktor passieren). Bei geordneten Rollen könnte das
Einfügen oder das Abfragen eines Eintrags an einer bestimmten Stelle ermöglicht
werden.

Abbildung 4.7.: Implementierung des Benachrichtigungsmechanismus

Ein Benachrichtigungsmechanismus (Anforderung 8) kann in der abstrakten
Klasse Role implementiert werden. Diese erhält dann zusätzlich zu den in Abb. 4.6
(S. 40) dargestellten Methoden einige weitere, die den Mechanismus implementie-
ren (siehe Abb. 4.7). Die Funktionalität wird durch die Delegation der Aufrufe
an ein Objekt der Klasse java.beans.PropertyChangeSupport realisiert. Dieses
Objekt wird nur bei Bedarf erzeugt.1 Die Methoden addPropertyChangeListener,
removePropertyChangeListener und hasListeners ermöglichen das Registrieren und
Abmelden von Listener-Objekten. Eine der beiden Methoden firePropertyChange
der Klasse Role wird bei Änderung des Container-Inhalts von den erbenden Klas-
sen (z.B. NonQualifiedToManyRole) innerhalb der link- und unlink-Methoden auf-

1Bei einem Aufruf der Methode getPropertyChangeSupport wird ein PropertyChangeSupport-
Objekt erstellt, wenn es noch nicht existiert.

41



4. Typsichere Implementierung von Assoziationen

gerufen, um die Listener zu benachrichtigen.

Die vorgestellte Klassenhierarchie für Rollen ist trotz der 24 Klassen übersicht-
lich und erlaubt eine einfache Auswahl und Spezialisierung der passenden Rolle
für eine zu realisierende Assoziation (Anforderung 4). Dabei gibt es für jede der
in Abschnitt 2.1 (S. 5) und der Anforderung 6 (S. 12) genannten Assoziationen
eine passende Rollenklasse. Ergänzend zu dieser Hierarchie sind Schnittstellen
orthogonal zu den Hierarchieebenen definiert, die eine Benutzung dieser Assozia-
tionsimplementierung weiter vereinfachen sollen.

4.1.6. Verwendung von Containern

Die verschiedenen Rollen müssen abhängig von der Art der Assoziation, die sie
paarweise repräsentieren, die verbundenen Modellelemente in einer bestimmten
Art und Weise verwalten. Zum Beispiel müssen die Elemente bei einer qualifizier-
ten Assoziation über einen Schlüssel erreichbar sein. Bei einer zusätzlich sortierten
Assoziation müssen die Einträge in sortierter Reihenfolge vorliegen.

Tabelle 4.1.: Verwendete Container

nicht qualifiziert qualifiziert
zu-1 zu-n zu-1 zu-n

geordnet LinkedList LinkedHashMap LinkedLists in LinkedHashMap

sortiert TreeSet TreeMap TreeSets in TreeMap

weder noch Attribut HashSet HashMap HashSets in HashMap

Diese Funktionalität wird, um Wartungs- und Implementierungsaufwand zu
sparen (Anforderung 5), an die Standard-Container der Java-Bibliothek (Paket
java.util) delegiert, welche seit der Java-Version 1.5 typsicher sind und eine
gute Basis für die Verwaltung der Modellelemente bieten. Bei nicht qualifizierten
zu-1-Rollen reicht ein Attribut aus, um die einzig mögliche Objektrefrenz auf ein
Modellelement zu speichern. In der Tabelle 4.1 werden alle verwendeten Container
geordnet nach der Rollenart, in der sie verwendet werden, aufgelistet.

Bei der Iteration über die in einem der Standard-Container von Java enthalte-
nen Objekte können Laufzeitfehler (ConcurrentModificationExceptions) auftreten,
wenn sich der Container-Inhalt während der Iteration (z.B. durch Hinzufügen
oder Entfernen von Objekten) ändert. Um die Benutzbarkeit der Assoziations-
implementierung nicht einzuschränken, soll die Iteration in diesen Fällen sinnvoll
fortgesetzt und Laufzeitfehler verhindert werden (Anforderung 4).

Eine Möglichkeit, dieses ohne eine Neuimplementierung der Standard-Container
von Java – wie bei dem Ansatz in Abschnitt 3.2 (S. 13) – umzusetzen, ist, die
Container oder ihren Inhalt vor jeder Iteration zu kopieren und die Kopie für die
Iteration zu verwenden. Somit ist sichergestellt, dass jeder Iterator über ein ei-
genes exklusives Container-Objekt verfügt, über dessen Elemente dieser iteriert.

42



4.1 Beschreibung des Ansatzes

ConcurrentModificationExceptions können nicht mehr auftreten und mehrere ne-
benläufige Iterationen auf dem gleichen (vorher kopierten) Container werden da-
durch möglich.

In Java können Objekte und damit auch die Container auf einfache Weise ge-
klont werden, was auch den Container-Inhalt kopieren würde (genauer: nur die
Objektreferenzen auf den Inhalt). Allerdings würde dabei Typsicherheit verlo-
ren gehen, weil die zum Klonen verwendete Methode java.lang.Object.clone

nur ein Objekt vom Typ java.lang.Object zurückgibt und damit Typumwand-
lungen erfordert. Außerdem zieht das Klonen einen relativ hohen Speicher- und
Laufzeitaufwand nach sich, wie in Anhang A.1 (ab S. 55) gezeigt wird.

Deswegen wird anstatt des gesamten Containers nur sein Inhalt kopiert (nur
die Objektreferenzen darauf). Das passiert mit Hilfe des in Anhang A.1 (ab S. 55)
vorgestellten und speziell für diesen Zweck implementierten typsicheren Collec-
tionIterators. Dieser bekommt einen Container und erstellt sich eine Kopie des
Container-Inhalts, die in einer ArrayList gehalten wird. Die ArrayList wird anschlie-
ßend für die Iteration verwendet.

Dadurch, dass alle Rollenklassen in ihren Zugriffsmethoden anstatt des Itera-
tors eines Containers einen CollectionIterator mit dem Container-Inhalt verwenden,
kann eine Iteration auch dann fortgesetzt werden, wenn sich der Container-Inhalt
geändert hat.

Die Schnittstelle für Iteratoren (java.util.Iterator) definiert die Methode
remove, die das Entfernen der Elemente, über die iteriert wird, ermöglichen soll.
Damit Konsistenzprüfungen (Anforderung 1) innerhalb der Zugriffsmethoden der
Rollenklassen nicht umgangen werden können, ist der CollectionIterator so im-
plementiert, dass ein Aufruf der Methode remove einen Laufzeitfehler erzeugt
(UnsupportedOperationException) und damit ein Entfernen der Container-Einträge
verbietet. Alternativ könnte der CollectionIterator (zumindest bei nicht qualifizier-
ten Rollen) die Zugriffsmethode (unlink) der entsprechenden Rolle benutzen, um
ein Element zu entfernen.

Um auf flexible Weise Thread-Sicherheit zu gewährleisten (Anforderung 7), wer-
den die in den Rollen verwendeten Container bei Bedarf in speziellen typsicheren
Wrappern gekapselt. Diese stellen sicher, dass nur exklusive Zugriffe auf die Con-
tainer möglich sind.

Die Rollen werden so implementiert, dass wenn die verwendeten Container
Thread-Sicherheit garantieren, dann auch die Rollen Thread-sicher sind. Ein Pa-
rameter im Konstruktor einer Rollenklasse bestimmt, ob die darin verwendeten
Container in einem Thread-sicheren Wrapper gekapselt werden sollen, bevor sie
verwendet werden.

Die Wrapper sind in der Klasse java.util.Collections des Java Collections
Frameworks implementiert. Ein Methodenaufruf wie

Collections.synchronizedMap(myMap)

liefert den übergeben Container myMap in einem Wrapper zurück, dessen Zugriffs-
methoden synchronized sind. Dadurch, dass der Container-Inhalt vor einer Itera-

43



4. Typsichere Implementierung von Assoziationen

tion darüber kopiert und nur über die in der Kopie enthaltenen Elemente iteriert
wird, ist eine zusätzliche Synchronisation bei Iterationen nicht notwendig.

Bei nebenläufigen Anwendungen wird durch die Verwendung Thread-sicherer
Container-Wrapper unter Anderem auch das Kopieren der Container-Inhalte durch
exklusiven Zugriff geschützt. Dadurch werden Modifikationen des Containers wäh-
rend des Kopierens verhindert und Laufzeitfehler wie ConcurrentModificationExcep-
tions können nicht auftreten. Bei rein sequentiellen Anwendungen ist eine Verän-
derung des Container-Inhalts während des Kopierens nicht möglich.

Die Standard-Container aus der Java-Bibliothek können auf einfache Weise in-
nerhalb der Rollenklassen an die gestellten Assoziationsanforderungen angepasst
werden. Der Wartungsaufwand beschränkt sich dadurch auf den der Rollenbiblio-
thek (Anforderung 5). Die Typsicherheit bleibt mit Hilfe der generisch implemen-
tierten Container und Rollen erhalten.

4.1.7. Typsicherheit

Um Typsicherheit (Anforderung 2) bei dieser Implementierung garantieren zu
können, wird auf die Verwendung des Reflection-Mechanismus von Java verzichtet
und Typumwandlungen werden verhindert.

Dazu werden minimale aber an die Assoziation, in der sie verwendet werden
sollen, angepasste Rollenklassen implementiert. Diese ermöglichen den typsiche-
ren Zugriff auf die Rolle eines Modellelements, um durch Aufrufe von Zugriffsme-
thoden beider Assoziationsseiten die Konsistenz von bidirektionalen Assoziationen
zu erhalten. Außerdem werden typsichere Container der Java-Bibliothek innerhalb
der abstrakten Rollenklassen zur Verwaltung der durch eine Assoziation verbun-
denen Modellelemente verwendet.

4.2. Evaluation

Bei diesem Implementierungsansatz wird versucht, möglichst viele Vorteile der
zuvor in Kapitel 3 vorgestellten Ansätze zusammen mit der Typsicherheit in einer
Assoziationsimplementierung zu vereinen.

Als wichtigstes Ziel ist die Typsicherheit (Anforderung 2) erreicht worden. Auch
die Konsistenz der bidirektionalen Assoziationen (Anforderung 1) bleibt immer
gewahrt.

Durch eine Verlagerung der Assoziationsmethoden in eigene dafür vorgesehe-
ne Klassen wird die Modellklassenimplementierung übersichtlicher und erleichtert
ihre Wartung (Anforderung 5). Klare Schnittstellen und eine einfache Anwen-
dung (z.B. a.rolename().link(b) zum Verbinden zweier Modellelemente a und
b) erhöhen die Lesbarkeit (Anforderung 3), vereinfachen die Benutzung (Anfor-
derung 4) und erleichtern die Softwareentwicklung.

Der Wartungsaufwand für die Rollenbibliothek wird durch die Verwendung von
bereits existierenden Containern der Java-Bibliothek reduziert. Mit Hilfe von eben-

44



4.2 Evaluation

falls existierenden Wrapper-Klassen kann ihre Funktionalität flexibel angepasst
werden.

Durch die (nicht ganz vollständige) Auslagerung der Rollenklassen in eine Bib-
liothek ist eine unabhängige Wartung dieser Implementierung möglich, solange die
Schnittstellen der Rollenklassen nicht verändert werden. Dann ist es nicht nötig,
Modellimplementierungen an eine neue Bibliothek anzupassen.

Code-Redundanz – wie sie bei der Implementierung der Rollen innerhalb von
Modellklassen (Abschnitt 3.2, S. 13) auftritt – wird durch die Implementierung
gleicher Methoden in gemeinsamen Oberklassen verhindert.

Um Typsicherheit zu erhalten, ist es notwendig, die Rollenklassen der bereitge-
stellten Bibliothek zu spezialisieren. Auch wenn der Inhalt dieser spezialisierten
Klassen klein ist, entsteht dennoch für jede Assoziation im Modell ein Paar neuer
Rollenklassen. Das wiederum kann die Übersicht über alle Klassen erschweren.
Um dem entgegen zu wirken, wird empfohlen, die spezialisierten Rollenklassen in
ein anderes als das von den Modellklassen verwendete Paket zu verschieben.

Die Implementierung ist sowohl für unidirektionale als auch für bidirektio-
nale Assoziationen verwendbar (Anforderung 6). Außerdem werden alle in Ab-
schnitt 2.1 (S. 5) und Anforderung 6 (S. 12) genannten Assoziationen berücksich-
tigt.

Mit Hilfe von speziellen Wrappern für Container kann bei diesem Ansatz auf fle-
xible Weise Thread-Sicherheit garantiert werden (Anforderung 7), ohne unnötigen
Laufzeit-Overhead für sequentielle Anwendungen zu erzeugen. Ein Benachrichti-
gungsmechanismus (Anforderung 8) ist ebenfalls verfügbar.

Bei diesem Ansatz besteht – wie bei dem Ansatz in [MZ04] (Abschnitt 3.3,
S. 23) – ein erhöhter Speicherbedarf durch die Rollenobjekte, die paarweise je
eine Verbindung zweier Modellelemente entlang einer Assoziation repräsentieren.
Wrapper-Objekte und das Kopieren von Container-Inhalten erhöhen den Speicher-
bedarf und die Laufzeit zusätzlich. Dazu befindet sich eine Untersuchung in An-
hang A.1.

Vorteile

• Typsicherheit

• die Methoden zur Verwaltung der Assoziationen werden in eigene Klassen
ausgelagert, der Code für Modellklassen wird übersichtlicher, erhöhte Les-
barkeit

• unabhängige Wartung der Assoziationsimplementierung möglich, solange die
Schnittstellen der Rollenklassen sich nicht ändern; Modellimplementierung
bedarf dann keinerlei Anpassung oder Neukompilierung

• Benutzung der Assoziationsimplementierung unter Anderem durch Abstrak-
tion und gemeinsame Schnittstellen vereinfacht

45



4. Typsichere Implementierung von Assoziationen

• Trennung der Assoziationsimplementierung von der Implementierung der
Modell-Klassen erziehlt ein besser strukturiertes Design

• Konsistenzerhaltung bei bidirektionalen Assoziationen

• Thread-Sicherheit

• Benachrichtigungsmechanismus

Nachteile

• erhöhter Speicherverbrauch durch Rollenobjekte für jedes an einer Assozia-
tion beteiligte Modellelement sowie durch Container-Kopien und Container-
Wrapper

• für jede Assoziation müssen je zwei spezielle Rollenklassen implementiert
werden

46



5. Technische Realisierung

Das UML Case Tool Fujaba [Fuj04] stellt außer der Unterstüzung für die Mo-
dellierung von statischen und dynamischen Teilen eines Softwaresystems mit Hilfe
von UML-Diagrammen und speziellen so genannten Story-Diagrammen [FNTZ98]
auch eine automatische Code-Generierung bereit. Fujaba kann Java-Code erzeu-
gen. Die Code-Generierung von Fujaba ist aber so aufgebaut, dass auch die Ge-
nerierung von Code in einer anderen objektorientierten Programmiersprache wie
C++ prinzipiell möglich ist.

Im Rahmen dieser Studienarbeit wird unter Anderem untersucht, wie die bis-
her vorhandene Code-Generierung von Fujaba so erweitert werden kann, dass die
Generierung von typsicherem Java-Code für Assoziationen in einem UML-Modell
möglich wird. Als Grundlage für die Implementierung von Assoziationen dient da-
bei der neue, in dieser Studienarbeit erarbeitete und im Abschnitt 4.1 vorgestellte
Ansatz.

Zu der technischen Realisierung dieses Ansatzes gehört zum einen die Imple-
mentierung der allgemein verwendbaren Rollenbibliothek und zum anderen die
Entwicklung eines Plug-Ins zur Anpassung der Fujaba-Code-Generierung. Beides
wird in diesem Kapitel beschrieben.

5.1. Implementierung einer Rollenbibliothek

Zu dem in Abschnitt 4.1 (ab S. 33) beschriebenen Ansatz wird eine Rollenbib-
liothek in Java implementiert. Diese enthält abstrakte Rollenklassen, die für eine
konkrete Implementierung von Assoziationen zwischen zwei Modellklassen spe-
zialisiert werden. Die Rollenimplementierung in der Bibliothek kann allgemein
verwendet werden, unabhängig von Fujaba oder anderen Werkzeugen zur Code-
Generierung.

Der nach dem in Abschnitt 4.1 vorgestellten Ansatz implementierte Code für
Assoziationen in einem UML-Modell kann nur in Verbindung mit der Rollenbib-
liothek kompiliert und verwendet werden. Deswegen wird diese Bibliothek bei der
neuen Code-Generierung in Fujaba verwendet.

Zur Zeit ist nur eine der drei Teilhierarchien in Abb. 4.6 (S. 40) implementiert
worden, nämlich die für nicht-qualifizierte Rollen. In Zukunft soll die Rollenbib-
liothek vervollständigt werden.

47



5. Technische Realisierung

5.2. Anpassung der Code-Generierung in Fujaba

In diesem Abschnitt wird erklärt, wie der bisherige Code-Generierungsmechanis-
mus von Fujaba funktioniert. Anschließend wird die Entwicklung eines Plug-Ins
für Fujaba beschrieben, das die bisher verwendete Java-Code-Generierung für As-
soziationen in UML-Modellen anpasst.

Um die Generierung der statischen Anteile eines Modells anzupassen, ersetzt das
Plug-In die bisherigen für die Implementierung von Assoziationen in die Modell-
klassen generierten Zugriffsmethoden und Container-Attribute durch neue an die
Verwendung der Rollenobjekte angepasste Versionen. Es generiert spezielle an die
modellierten Assoziationen angepasste Rollenklassen und speichert diese in einem
neuen Paket namens roles. Damit auch die dynamischen Anteile die neue Asso-
ziationsimplementierung verwenden, wird die Generierung von Methodenrümpfen
aus Story-Diagrammen [FNTZ98] angepasst.

5.2.1. Der Code-Generierungsmechanismus

Der Mechanismus zur Code-Generierung in Fujaba ist flexibel aufgebaut. Alle in ei-
nem Diagramm vorkommenden Elemente liegen in einem so genannten abstrakten
Syntaxgraphen (ASG) vor. Abhängig von der gewählten Zielprogrammiersprache
werden diese Elemente mit Hilfe von speziellen an die Elemente und die Zielspra-
che angepassten Handler - und Visitor -Objekten behandelt. Dabei werden Stück
für Stück Code-Fragmente zusammengesetzt und in entsprechende Dateien ge-
schrieben.

Bei der Initialisierung des Code-Generierungsmechanismus werden die für eine
gewählte Zielprogrammiersprache passenden Objekte zur Behandlung der ASG-
Elemente instanziiert. Darunter befindet sich auch die in der Klasse CodeGenStra-
tegy und ihren Unterklassen implementierte Strategie (Strategy-Entwurfsmuster
nach [GHJV95]) zur Code-Generierung.1

Anschließend wird ein UMLProject-Objekt (ein Element des ASG), das ein ge-
samtes UML-Modell kapselt, zur Bearbeitung an die verwendete Strategie gereicht.
Diese besitzt für die Code-Generierung aus ASG-Elementen eine Liste von ASG-
Element-Handlern, eine Liste von CodeGenFunctions sowie für jede Zielsprache
einen CodeGenVisitor (siehe Übersicht in Abb. 5.1). Während die Handler für die
statischen Teile des UML-Modells zuständig sind, behandeln die CodeGenFunc-
tions die dynamischen Teile, insbesondere Teile der Story-Diagramme (spezielle
UML Aktivitäts- und Kollaborationsdiagramme) [FNTZ98].

Für jede Art von ASG-Elementen gibt es einen Handler, insbesondere gibt es
auch einen für UMLProject-Objekte. Damit Code für ein ASG-Element generiert
wird, reicht die Strategie das Element an den ersten Handler in der Liste. Die
Liste ist implementiert nach dem Entwurfsmuster Chain of Responsibility nach

1Momentan wird ausschließlich die Klasse OOGenStrategyClient (Unterklasse von CodeGen-
Strategy) als Strategie verwendet, aber auch andere Strategien – vielleicht sogar für nicht
objektorientierte Programmiersprachen – wären denkbar.

48



5.2 Anpassung der Code-Generierung in Fujaba

Abbildung 5.1.: Übersicht der an der Code-Generierung beteiligten Klassen (alle
aus dem Paket de.uni paderborn.fujaba.codegen)

Gamma et al. ([GHJV95]). Der Handler prüft, ob er für diese Art von Elemen-
ten zuständig ist und reicht das Element an den nächsten Handler in der Liste
weiter bis ein zuständiger Handler gefunden wurde. Bei der Verarbeitung eines
ASG-Elements werden, wenn nötig, Konsistenzprüfungen durchgeführt und darin
enthaltene Elemente extrahiert. Diese werden ebenfalls an die Strategie zur Bear-
beitung weitergegeben. Auf diese Weise werden alle Elemente des ASG beginnend
mit einem UMLProject-Objekt nach und nach von einem zuständigen Handler be-
arbeitet. Ähnlich wie von den Handlern, werden die ASG-Elemente auch von den
CodeGenFunctions behandelt, die ebenfalls als Chain of Responsibility organisiert
sind. Die CodeGenFunctions sind hauptsächlich für die Generierung der Metho-
denrümpfe zuständig.

Die Handler und CodeGenFunctions verwenden die Strategie und diese wiede-
rum den CodeGenVisitor, um für ein ASG-Element Code zu generieren. Für jede
der unterstützten Zielprogrammiersprachen gibt es je eine Unterklasse von Code-
GenVisitor. Jede davon bietet verschiedene Methoden zur Generierung von be-
stimmten Ausdrücken in der Zielsprache. Die CodeGenVisitor-Implementierungen
ermöglichen die Generierung dieser Ausdrücke, ohne die Syntax der Program-
miersprache zu kennen. Unter Verwendung dieser Methoden wird für jedes der

49



5. Technische Realisierung

ASG-Elemente von den Handlern und den CodeGenFunctions Code generiert. Die
CodeGenVisitor-Objekte puffern die generierten Code-Fragmente und schreiben ihn
schließlich in die entsprechenden Dateien.

Eine genauere Beschreibung des Code-Generierungsmechanismus befindet sich
in [Moa02].

5.2.2. Das Plug-In für die neue Code-Generierung

Für die Implementierung von Assoziationen nach dem neuen Ansatz aus Ab-
schnitt 4.1 (ab S. 33) wird die bisherige Code-Generierung von Fujaba durch ein
Plug-In angepasst. Die Anpassung betrifft dabei sowohl die Generierung von Code
für statische als auch für dynamische Anteile eines modellierten Softwaresystems.
Das implementierte Plug-In unterstützt momentan nur nicht-qualifizierte zu-1-
und zu-n-Rollen (darunter auch sortierte und geordnete).

Die bisherige Code-Generierung bietet bereits eine Unterstützung für die Gene-
rierung von Java-Code für Assoziationen. Nach dem Ansatz aus Abschnitt 3.2 (ab
S. 13) werden dabei verschiedene Methoden zum Verbinden und Trennen zweier
Modellelemente in die an einer Assoziation beteiligten Modellklassen generiert.

Zuständig für die Generierung dieser Methoden ist hauptsächlich der UML-
RoleOOHandler. Dieser bekommt das UMLRole-Objekt einer an einer Assoziation
beteiligten Klasse (UMLClass) und erzeugt abhängig von der Art der Assozia-
tion neue UMLAttr- und UMLMethod-Objekte für die Assoziationsimplementie-
rung. Diese neuen ASG-Elemente werden zur weiteren Behandlung an die Code-
Generierungsstrategie weitergereicht, werden aber nach der Code-Generierung wie-
der entfernt, um das Modell nicht zu ändern.

Um die Generierung an die neue Assoziationsimplementierung anzupassen, wer-
den einige Handler (insbesondere UMLRoleOOHandler) für die statischen und Code-
GenFunctions für die dynamischen Anteile eines modellierten Softwaresystems
durch angepasste Versionen davon ausgetauscht. Damit auch parametrisierte Ty-
pen wie Rollenklassen durch ein ASG-Element beschrieben werden können, werden
neue ASG-Elemente implementiert. Schließlich wird der CodeGenVisitor so ange-
passt, dass dieser auch Code für die neuen ASG-Elemente generieren kann.

Abbildung 5.2.: Spezialisierung von UMLClass für parametrisierte Typen

Die vorhandene Code-Generierung kann nicht mit generischen Klassen und Me-
thoden umgehen. Damit für jede Assoziation spezielle generische Rollenklassen ge-
neriert werden können, wird ein neues ASG-Element eingeführt, das in der Klasse

50



5.2 Anpassung der Code-Generierung in Fujaba

Abbildung 5.3.: Implementierung der Rollen-Strategien

UMLParameterizableClass implementiert wird (siehe Abb. 5.2). Dieses Element re-
präsentiert einen parametrisierten Typ (z.B. eine Klasse mit Typparametern) oder
eine gewöhnliche Klasse. Die einzige neue Funktionalität gegenüber der Klasse
UMLClass ist das Merken der Typparameter, wenn welche festgelegt wurden. Da
bei der Generierung von Rollenklassen keine Methoden mit Typvariablen generiert
werden müssen, werden vorerst keine ASG-Elemente für Typvariablen implemen-
tiert.

Bei der Generierung von dynamischen Teilen eines Modells wird ein spezieller
abstrakter Syntaxgraph von dem OOGenStrategyClient (Code-Generierungsstrate-
gie für objektorientierte Programmiersprachen) und dem OOGenVisitor verwendet.
Typen werden darin durch Objekte der Klasse OOType anstatt UMLClass oder
UMLType repräsentiert. Deswegen wurde für die Verwendung von parametrisier-
ten Typen innerhalb von Methodenrümpfen die Klasse OOType durch die Klasse
OOParameterizedType analog zu UMLParameterizableClass erweitert.

Ein UMLRoleOOHandler hat eine Liste von Strategien (siehe Abb. 5.3), ähnlich
der Handler-Liste der CodeGenStrategy. Für jede Rollenart, z.B. nicht qualifizierte
zu-n-Rolle, gibt es je eine Strategie, die für die Bearbeitung des UMLRole-Objekts
zuständig ist. (Bisher sind nur Strategien für nicht-qualifizierte Rollen implemen-
tiert.) Der UMLRoleOOHandler und seine Strategien werden so angepasst, dass
anstatt der Assoziationsmethoden innerhalb der Modellklassen nun die Rollenklas-
sen und die zugehörigen Zugriffsmethoden generiert werden (siehe auch Abb. 4.1,
S. 35 und Abb. 4.2, S. 36). Dazu werden für die entsprechenden Methoden, Attri-
bute und Rollenklassen neue ASG-Elemente erstellt und zur weiteren Behandlung
an die Code-Generierungsstrategie weitergegeben. Damit die erzeugten Elemente
nach der Code-Generierung aus dem Modell wieder entfernt werden können, wird
der UMLProjectOOHandler so angepasst, dass er sie zwischenspeichert und nach
der Code-Generierung entfernt. Zusätzlich sammelt dieser alle zu generierenden
Dateien ein – nämlich die für die Rollenklassen – und generiert den zugehörigen
Code nachdem alle anderen Dateien generiert wurden.

Auch die CodeGenFunctions werden angepasst, damit innerhalb der generier-

51



5. Technische Realisierung

ten Methodenrümpfe die neuen Zugriffsmethoden und Rollen benutzt werden.
Außerdem können aufgrund der typsicheren Assoziationsimplementierung bisher
notwendige Typumwandlungen (type casts) weggelassen werden. Die verwendeten
Iteratoren sind parametrisiert mit dem Typ der Elemente, über die iteriert wird.
Diese Typparameter müssen ebenfalls bei der Code-Generierung ergänzt werden.

Der CodeGenVisitor wird erweitert, damit dieser mit parametrisierten Typen
umgehen kann. Insbesondere wird die Methode createClassExtendsDeclaration über-
schrieben, um bei einer Klassendeklaration mit einem extends-Ausdruck auch
Typparameter angeben zu können. Das ist für die Generierung der Rollenklassen
notwendig, wie die Abb. 4.2 (S. 36) zeigt.

Schließlich wird eine Plug-In-Klasse implementiert, die bei der Initialisierung
den CodeGenVisitor, die Handler und die CodeGenFunctions durch angepasste Ver-
sionen ersetzt.

Der generierte Code kann zusammen mit der in Abschnitt 5.1 (S. 47) beschrie-
benen Rollenbibliothek kompiliert und verwendet werden.

52



6. Zusammenfassung und Ausblick

In dieser Studienarbeit wurden verschiedene Ansätze zur Implementierung von
Assoziationen mit dem Ziel der Code-Generierung aus einem UML-Modell vorge-
stellt und evaluiert. Die bisher verwendete Fujaba-Code-Generierung für Assozia-
tionen und ein neuer an der Universität Kassel entwickelter Ansatz [MZ04] wurden
verglichen und auf die Realisierung von Typsicherheit hin überprüft. Dabei stell-
te sich heraus, dass die Fujaba-Code-Generierung zwar typsicher gemacht werden
könnte, der erzeugte Code aber durch sehr viele generierte Methoden innerhalb der
Modellklassen nur schwer lesbar und wartbar ist. Obwohl der Ansatz aus [MZ04]
bereits Java Generics verwendet, kann bei dieser Art der Assoziationsimplementie-
rung aufgrund der Verwendung des Reflection-Mechanismus keine Typsicherheit
erreicht werden. Es zeigten sich aber deutliche Vorteile bzgl. Wartbarkeit und
Lesbarkeit des generierten Codes.

Aufbauend auf der Idee aus [MZ04] wurde eine typsichere Implementierung von
Assoziationen erarbeitet und beschrieben. Sie erfüllt alle genannten Anforderun-
gen, insbesondere wird die Konsistenz bei bidirektionalen Assoziationen gewahrt
und die Wartbarkeit und Lesbarkeit des generierten Codes erhöht. Für einen prak-
tischen Test wurde ein Fujaba-Plug-In implementiert, das alle nicht-qualifizierten
in Fujaba modellierbaren Assoziationen unterstützt.

In Zukunft kann die zur Zeit nicht vollständig implementierte Rollenbibliothek
um die Rollenklassen für einseitig qualifizierte und beidseitig qualifizierte Assozia-
tionen erweitert und der Öffentlichkeit zugänglich gemacht werden. Da der Ansatz
Fujaba-unabhängig ist, kann die Bibliothek auch ohne Code-Generierung oder in-
nerhalb einer anderen Umgebung als Fujaba verwendet werden.

Die bisher als Plug-In implementierte typsichere Assoziationsimplementierung
könnte komplett in den Code-Generierungsmechanismus von Fujaba integriert
werden. Da große Teile von Fujaba mit Fujaba entwickelt wurden, ist auch ei-
ne Neugenerierung des vorhandenen Fujaba-Codes unter Verwendung der neuen
Assoziationsimplementierung denkbar. Dadurch könnte der Fujaba-Code typsi-
cher, aber auch übersichtlicher und lesbarer gemacht werden. Der Aufwand für
die Wartung des Fujaba-Codes könnte reduziert werden und Typfehler bei der
Implementierung von Assoziationen verhindert werden.

In einem nächsten Schritt könnte die Modellierung von generischen Klassen und
Methoden innerhalb von Fujaba realisiert werden. Dadurch wäre eine Generierung
von vollständig1 typsicherem Code aus einem Modell möglich.

1Das realisierte Plug-In ermöglicht die Generierung von einem nur für Assoziationen typsicheren
Code .

53





A. Anhang

In diesem zusätzlichen Kapitel werden einige Fragen bzgl. Performance bei der
Implementierung von Assoziationen geklärt.

In dem ersten Abschnitt wird untersucht, wie hoch der Laufzeit- und Spei-
cheraufwand für das Erzeugen von Iteratoren ist, die auch bei Veränderung des
Container-Inhalt während einer Iteration keine Laufzeitfehler (ConcurrentModifica-
tionExceptions) erzeugen. Das ist insbesondere für die Verwendung der Standard-
Container aus der Java-Bibliothek wichtig, wie das z.B. bei dem in Abschnitt 4.1
(ab S. 33) beschriebenen Ansatz der Fall ist.

Bei dem zweiten Abschnitt wird der Aufwand für Methodenaufrufe mit Hilfe
des Reflection-Mechanismus von Java dem Aufwand für direkte Methodenaufrufe
gegenübergestellt. Dieser Vergleich ergänzt die Evaluation des Ansatzes zur Asso-
ziationsimplementierung in Abschnitt 3.3 (ab S. 23).

Alle in diesem Kapitel vorgestellten Tests sind in Java implementiert. Dabei
wird die Version 1.5 verwendet (Java 2 SE 5 bzw. Java Development Toolkit 1.5).
Um Daten, wie Speicherverbrauch und Laufzeit der Tests, zu sammeln, wird das
Tool JProfiler in der Version 3.1.2 der Firma ej-Technologies verwendet [ej-04].

Die Evaluation einer Anwendung mit JProfiler erfordert, dass diese Anwendung
noch aktiv (nicht beendet) ist. Aus diesem Grund wird in allen Tests am Ende
des Test-Programms ein AWT-Fenster1 erzeugt, das die Programmausführung für
die Dauer der Evaluation hinauszögert. Dadurch ist der gemessene Speicherbedarf
evtl. etwas erhöht.

A.1. Aufwand für das Erzeugen von Iteratoren mit
exklusivem Kontext

Bei der Implementierung von Assoziationen wird meist Gebrauch von Contai-
nern gemacht. Diese dienen der Verwaltung von sich gegenseitig referenzierenden
Objekten. Im Zusammenhang mit Containern werden auch Iteratoren verwen-
det (java.util.Iterator), um die enthaltenen Elemente zu durchlaufen. Dabei
können ConcurrentModificationExceptions auftreten, falls sich der Inhalt eines Con-
tainers während der Iteration ändert, z.B. wenn ein Element hinzugefügt wird.

1AWT steht für ”Abstract Window Toolkit“. Das ist ein Teil der Java-Bibliothek und
stellt diverse Hilfsmittel zur Programmierung von grafischen Benutzungsschnittstellen zur
Verfügung. Hier wurde ein Frame aus dem Paket java.awt verwendet.

55



A. Anhang

public class TestPerformance

{

private static HashMap<Integer, String> map = new HashMap<Integer, String>();

public static void main(String[] args)

{

// Initialisieren der Variablen...

// Einfügen der Einträge in die HashMap...

// TEST: Erzeugen der Iteratoren...

// AWT-Fenster erstellen, damit das Programm nicht gleich beendet wird

Frame f = new Frame();

f.setVisible(true);

f.addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

});

}

}

Abbildung A.1.: Aufbau eines Testprogramms

Um diese Exceptions in sequentiellen Anwendungen zu vermeiden,2 ist es möglich,
das Container-Objekt zu klonen und einen Iterator des geklonten Containers für
die Iteration zu verwenden. Dadurch erhöhen sich der Speicherverbrauch und die
Laufzeit, was in diesem Abschnitt genauer untersucht wird.

Um den Container-Inhalt bei jeder Iteration exklusiv zu benutzen, können die
Container-Objekte vor der Iteration geklont und anstatt des Originals für die Ite-
ration verwendet werden. Es wurde aber auch eine weitere Möglichkeit erarbeitet,
die ebenfalls eine Iteration über exklusive Container-Inhalte erlaubt. In diesem
Fall wird nicht ein gesamter Container geklont, sondern nur sein Inhalt kopiert
(genauer: nur die Referenzen auf den Inhalt). Dadurch soll der Speicherbedarf
reduziert werden.

Realisiert wird das mit Hilfe einer typsicheren Implementierung der Iterator-
Schnittstelle von Java. Der CollectionIterator (eigene Entwicklung) bekommt einen
Container vom Typ java.util.Collection übergeben, dessen Inhalt beim Er-
zeugen des Iterators in eine vom Iterator exklusiv gehaltene ArrayList (Paket
java.util) kopiert wird.

Die clone-Methode gibt immer nur ein Objekt vom Typ java.lang.Object

zurück und nicht vom speziellen tatsächlich geklonten Typ. Dadurch werden Typ-
umwandlungen (type casts) nötig. Diese verhindern aber Typsicherheit, da die
Typprüfung zur Laufzeit erfolgt.

Um Aussagen zu Speicherverbrauch und Laufzeit machen zu können, wurden
einige kurze Java-Programme geschrieben und mit JProfiler evaluiert. In jedem

2In nebenläufigen Anwendungen bedarf es eines weiteren Mechanismus, um ConcurrentModifi-
cationExceptions zu vermeiden. Damit sich der Container-Inhalt während des Klonvorganges
nicht ändert (z.B. durch das Einfügen oder Entfernen von Objekten durch andere Threads),
muss das Klonen des Containers durch einen exklusiven Zugriff geschützt werden.

56



A.1 Aufwand für das Erzeugen von Iteratoren mit exklusivem Kontext

Test wird eine HashMap (Paket java.util mit mehreren Einträgen (Integer als
Key und String als Value) erzeugt. Anschließend wird eine bestimmte Anzahl
von Iterator-Objekten für die Iteration über die Value-Einträge der HashMap er-
zeugt und in einem Array oder einer Variable gespeichert. Mit JProfiler wird die
Laufzeit für das Kopieren des Container-Inhalts (bzw. Klonen des Containers)
und das Erzeugen der Iterator-Objekte gemessen. Zusätzlich wird der verbrauchte
Speicher direkt vor dem Erstellen der Iterator-Objekte und danach festgehalten.
Die Abb. A.1 zeigt den Aufbau eines solchen Testprogramms.

Für die Testergebnisse werden nur die relevanten Werte betrachtet. Für die
Ermittlung des Speicherverbrauchs werden nur die Objekte betrachtet, die zu-
sammen den meisten Speicher verbrauchen oder eindeutig von den verwendeten
Datenstrukturen instanziiert werden. Beim Laufzeitvergleich wird nur die Laufzeit
der beim Test verwendeten Methoden betrachtet, sodass die Einfüge-Operationen
in die HashMap sowie das Erstellen des AWT-Fensters keine Auswirkung haben.
Es wird immer die gesamte Laufzeit betrachtet, d.h. wenn eine Methode zehn Mal
aufgerufen wurde, wird die Laufzeit für diese zehn Aufrufe zusammen verwen-
det. Es werden nicht alle gesammelten Ergebnisse in dieser Arbeit präsentiert, da
das den Rahmen sprengen würde. Stattdessen werden zu jedem der Tests nur die
Laufzeitergebnisse präsentiert und einige Hinweise bzgl. des Speicherverbrauchs
gegeben. Anschließend (ab S. 61) werden der Gesamtspeicherbedarf und die Lauf-
zeit verglichen, allerdings ohne ins Detail zu gehen.

Mit jeder der beiden genannten Methoden (Klonen und CollectionIterator) wer-
den drei Tests durchgeführt. Bei dem ersten Test enthält die HashMap 100.000
Einträge und es wird ein Iterator erstellt. Bei dem zweiten Test hat die HashMap
100.000 Einträge und es werden 10 Iterator-Objekte erstellt. Beim dritten Test
enthält die HashMap 10 Einträge, es werden aber 100.000 Iterator-Objekte erstellt.

In beiden Ansätzen werden ausschließlich der Container-Inhalt und zugehörige

// Initialisieren der Variablen

Iterator<String> iter = null;

// Einfügen der Einträge in die HashMap

for (int i = 0; i < 100000; i++)

{

map.put(new Integer(i),

Integer.toString(i));

}

// TEST: Erzeugen der Iteratoren

iter = ((HashMap) map.clone())

.values().iterator();

// AWT-Fenster erstellen...

// Initialisieren der Variablen

HashMap<Integer, String>[] maps = new HashMap[10];

Iterator<String>[] iterators = new Iterator[10];

// Einfügen der Einträge in die HashMap

for (int i = 0; i < 100000; i++)

{

map.put(new Integer(i),

Integer.toString(i));

}

// TEST: Erzeugen der Iteratoren

for (int i = 0; i < maps.length; i++)

{

maps[i] = (HashMap) map.clone();

iterators[i] = maps[i].values().iterator();

}

// AWT-Fenster erstellen...

Abbildung A.2.: Einmaliges bzw. 10-maliges Erzeugen eines Iterators nach dem
Klonen der HashMap mit 100.000 Einträgen

57



A. Anhang

Tabelle A.1.: Speicherverbrauch vor dem Klonen (10 Iteratoren, 100.000 Einträge)

Objekt-Typ Instanzen Byte
HashMap$Entry 101.170 2.428.080
HashMap$ValueIterator 0 0
HashMap$Values 0 0
HashMap$EntryIterator 0 0
HashMap 60 2.400
String 102.356 2.456.544
Integer 100.316 1.605.056
<class>[ ] 1.615 1.703.080
char[ ] 102.720 2.559.880

Summe 10,25680542 MB

Tabelle A.2.: Speicherverbrauch nach dem Klonen und Erzeugen der Iteratoren
(10 Iteratoren, 100.000 Einträge)

Objekt-Typ Instanzen Byte
HashMap$Entry 1.101.170 26.428.080
HashMap$ValueIterator 10 320
HashMap$Values 10 160
HashMap$EntryIterator 2 64
HashMap 70 2.800
String 102.356 2.456.544
Integer 100.316 1.605.056
<class>[ ] 1628 11.664.832
char[ ] 102.720 2.559.880

Summe 42,64615631 MB

Hilfsobjekte (zur Verwaltung der enthaltenen Objekte) geklont bzw. kopiert. Die
verwalteten Objekte bleiben unverändert und werden nicht mitgeklont. 3 Dadurch
beschränkt sich der erhöhte Speicherbedarf auf den von den geklonten Containern
bzw. erstellten Iteratoren benötigten Speicher, der aber von der Anzahl der ver-
walteten Objekte abhängt (jede Referenz auf ein verwaltetes Objekt benötigt eine
bestimmte Menge Speicher).

3Es gibt auch Klonoperationen, die eine so genannte tiefe Kopie eines Objekts erstellen. In
diesem Fall werden alle referenzierten Objekte ebenfalls geklont, wodurch der Speicherbedarf
erhöht wird.

58



A.1 Aufwand für das Erzeugen von Iteratoren mit exklusivem Kontext

Klonen von Containern

Die Tests für das Klonen eines Containers und das anschließende Erstellen des Ite-
rators enhalten den Code aus Abb. A.2 in der main-Methode des Testprogramms.
In der Abbildung ist der Code für die Tests mit 100.000 Einträgen und einem bzw.
10 Iteratoren. Der Quellcode für den Test mit 10 Einträgen und 100.000 Iteratoren
ist analog und unterscheidet sich nur durch die Array-Indizes.

Einige beispielhafte Ergebnisse zu einem der drei durchgeführten Tests sind in
den Tabellen A.1 und A.2 zu sehen. Hier wird gut deutlich, dass beim Klonen sehr
viele HashMap$Entry-Objekte erstellt werden, um die 100.000 Einträge in jedem
neuen Container-Klon zu verwalten. Außerdem steigt der Speicherverbrauch für
Arrays von Objekten (<class>[ ]). Der Speicherbedarf dieses Ansatzes wird ab
Seite 61 der Verwendung des CollectionIterators gegenübergestellt.

In allen drei Tests wächst der Speicherverbrauch nach dem Klonen und Erstellen
der Iteratoren hauptsächlich durch die Hilfsobjekte der HashMap. Besonders deut-
lich wird das bei den HashMap$Entry-Objekten. Bei besonders häufigem Klonen –
z.B. 100.000 Mal, wie bei dem dritten Test – wächst der Speicherverbrauch auch
durch die HashMap$Values-, HashMap$ValueIterator-, HashMap$EntryIterator-, Has-
hMap- und <class>[ ]-Objekte, da für jeden Klon je ein solches Objekt erstellt
wird.

Tabelle A.3.: Laufzeit für das Klonen und Erzeugen der Iteratoren (in Sekunden)

Methode/Test 1I/100.000E 10I/100.000E 100.000I/10E
HashMap.clone 0,507 7,537 7,747
HashMap.values nm nm 0,42
Collection.iterator nm nm 0,835

Summe 0,507 7,537 9,002

Die mit nm gekennzeichneten Werte sind kleiner als 1 Millesekunde und damit nicht
mehr messbar. I steht für ”Iteratoren“ und E für ”Einträge“.

Die Laufzeitmessungen ergaben, dass die clone-Methode mit Abstand die mei-
ste Rechenzeit benötigt (siehe Tabelle A.3). Die beiden anderen Methoden ver-
brauchen weniger als 1 Millesekunde.

Insgesamt erweist sich das Klonen von Containern als nicht effizient, vor Allem
durch den hohen Speicherverbrauch. Außerdem ist bei der clone-Operation keine
Typsicherheit gegeben.

CollectionIterator-Ansatz

Bei diesem Ansatz wird versucht, Speicher für Hilfsobjekte zur Verwaltung von
Container-Inhalten einzusparen. Anstatt den gesamten Container zu klonen wird
hier nur sein Inhalt in einen anderen Container kopiert, nämlich in eine ArrayList

59



A. Anhang

// Initialisieren der Variablen

Iterator<String> iter = null;

// Einfügen der Einträge in die HashMap

for (int i = 0; i < 100000; i++)

{

map.put(new Integer(i),

Integer.toString(i));

}

// TEST: Erzeugen der Iteratoren

iter = new CollectionIterator<String>(

map.values());

// AWT-Fenster erstellen...

// Initialisieren der Variablen

HashMap<Integer, String>[] maps = new HashMap[10];

Iterator<String>[] iterators = new Iterator[10];

// Einfügen der Einträge in die HashMap

for (int i = 0; i < 100000; i++)

{

map.put(new Integer(i),

Integer.toString(i));

}

// TEST: Erzeugen der Iteratoren

for (int i = 0; i < iterators.length; i++)

{

iterators[i] = new CollectionIterator<String>(

map.values());

}

// AWT-Fenster erstellen...

Abbildung A.3.: Einmaliges bzw. 10-maliges Erzeugen eines CollectionIterators mit
dem Inhalt der HashMap mit 100.000 Einträgen

(Paket java.util). Da der ArrayList-Container auf einem Array basiert, werden
hier nur sehr wenige Hilfsobjekte zur Verwaltung des Container-Inhalts benötigt.
Der Konstruktor des CollectionIterators bekommt ein Collection-Objekt, dessen In-
halt kopiert wird. Anschließend kann der CollectionIterator über die kopierten Ob-
jektreferenzen iterieren.

Wie im vorhergehenden Abschnitt wird hier der Quellcode für die drei durch-
geführten Tests in Abb. A.3 dargestellt. Wieder ist der Quellcode für die letzten
beiden Tests analog (Unterschied nur in den Indizes).

Dadurch, dass nur der Container-Inhalt kopiert wird, benötigt dieser Ansatz
wesentlich weniger Speicher. Durch die Verwendung der ArrayList werden aber
zusätzliche Objekte erzeugt, z.B. AbstractList$Itr, die ebenfalls Speicher verbrau-
chen. Trotzdem werden z.B. bei Test zwei (10 Iteratoren, 100.000 Einträge) an-
statt der ca. 32 MB beim Klonen-Verfahren (42, 6 MB − 10, 3 MB = 32, 3 MB)
hier nur ca. 4,2 MB benötigt. Um nicht weiter ins Detail zu gehen, wird der
Gesamtspeicherbedarf dieses Ansatzes ab Seite 61 dem Klonen von Containern
gegenübergestellt.

Tabelle A.4.: Laufzeit für das Erzeugen von CollectionIteratoren (in Sekunden)

Methode/Test 1I/100.000E 10I/100.000E 100.000I/10E
CollectionIterator.<init> 0,064 0,71 3,776
HashMap.values nm nm 0,177

Summe 0,064 0,71 3,953

Die mit nm gekennzeichneten Werte sind kleiner als 1 Millesekunde und damit nicht
mehr messbar. I steht für ”Iteratoren“ und E für ”Einträge“.

60



A.1 Aufwand für das Erzeugen von Iteratoren mit exklusivem Kontext

Auch bei der Laufzeit zeigen sich enorme Vorteile gegenüber dem Klonen von
Containern wie die Tabelle A.4 im Vergleich zur Tabelle A.3 auf Seite 59 zeigt.

Insgesamt betrachtet ist dieser Ansatz wesentlich effizienter als das Klonen von
Containern.

Vergleich

Alle gesammelten Werte bzgl. Speicherverbrauch aufzuzeigen, würde diese Arbeit
mit vielen Tabellen und überflüssigen Informationen füllen. Um die beiden Ansätze
dennoch vergleichen zu können, wird in diesem Abschnitt der Speicherverbrauch
der durchgeführten Tests in Diagrammen illustriert. Auch die Laufzeiten werden
gegenübergestellt.

Abbildung A.4.: Gesamtspeicherverbrauch

Abbildung A.5.: Speicherverbrauch für erzeugte Objekte

Die Abbildung A.4 zeigt für die beiden Ansätze und die drei Tests pro Ansatz
den insgesamt verbrauchten Speicher. Da die Initialisierung bei allen Ansätzen
gleich ist, ergibt sich dafür auch der gleiche Speicherbedarf. In der Abbildung A.5

61



A. Anhang

Abbildung A.6.: Laufzeit der beiden Ansätze im Vergleich zum Erstellen eines
Iterators ohne Klonen

wird nur der Speicherbedarf für die beim Klonen bzw. Iterator-Erzeugen instanzi-
ierten Objekte dargestellt. Das verdeutlicht den unterschiedlichen Speicherbedarf.

Die Laufzeit der beiden Ansätze wird in der Abb. A.6 gegenübergestellt. Zu-
sätzlich wird die Laufzeit abgebildet, die für die Rückgabe eines Iterators ohne
Kopieren des HashMap-Inhaltes benötigt wird. Die Benutzung eines CollectionIte-
rators ist eindeutig schneller als das Klonen von Containern. Natürlich benötigt
das aber eine höhere Laufzeit, als einen Iterator von einem Container zurückgeben
zu lassen, ohne den Inhalt vorher zu kopieren.

Bei allen durchgeführten Tests wird deutlich, dass sich das Klonen der Container
nicht lohnt. Stattdessen sollte nur ihr Inhalt kopiert werden.

A.2. Aufwand für Methodenaufrufe mit Hilfe von
Reflection

Um den Aufwand für die Verwendung von Reflection bei der Implementierung
von Assoziationen zu messen, wurde ein kleines Testprogramm geschrieben, das
100.000 Mal eine parameterlose Methode per Reflection aufruft. Zum Vergleich
wurde dieser Test auch mit einem 100.000-fachen direkten Aufruf der gleichen
Methode durchgeführt und mit einem 100.000-fachen Aufruf der Methode per
Reflection, wobei aber die Methode gecached wurde.

In Abbildung A.7 ist der Code für den ersten Test zu sehen. Hier wird 100.000
Mal per Reflection die Methode trimToSize eines ArrayList-Objekts geholt und per
invoke-Anweisung aufgerufen.

Besonders lange braucht der Aufruf der Methode java.lang.Class.getMethod,
nämlich 1.702 Millesekunden (siehe Abb. A.8, S. 63). Um diese Laufzeit bei wie-
derholten Aufrufen zu verkürzen, wurde bei dem nächsten Test (Abb. A.9) die
zurückgegebene Methode gecached, um später nur noch aufgerufen zu werden.

62



A.2 Aufwand für Methodenaufrufe mit Hilfe von Reflection

public class TestPerformanceReflection

{

static List list = new ArrayList();

public static Method getMethod()

{

Method result = null;

try

{

result = list.getClass().getMethod("trimToSize", null);

}

catch (Exception e)

{

e.printStackTrace();

}

return result;

}

public static void main(String[] args)

{

for (int i=0; i<100000; i++)

{

try

{

getMethod().invoke(list,null);

}

catch (Exception e)

{

e.printStackTrace();

}

}

}

}

Abbildung A.7.: 100.000-facher Aufruf einer Methode per Reflection

Durch diese kleine Anpassung spart man einen großen Teil der Laufzeit, da
die Methode nur noch einmal rausgesucht werden muss, sodass sich die Nachteile
von Reflection bei mehrfachem Aufruf der gleichen Methode minimieren (siehe
Abb. A.8, S. 63). Zum Vergleich wurde das gleiche Testprogramm mit direktem
Methodenaufruf ausgeführt (Abb. A.10).

Abbildung A.8.: Laufzeitaufwand für Reflection

63



A. Anhang

public class TestPerformanceReflection

{

static List list = new ArrayList();

static Method method = null;

public static Method getMethodCached()

{

if (method != null)

return method;

try

{

method = list.getClass().getMethod("trimToSize", null);

}

catch (Exception e)

{

e.printStackTrace();

}

return method;

}

public static void main(String[] args)

{

for (int i=0; i<100000; i++)

{

try

{

getMethodCached().invoke(list,null);

}

catch (Exception e)

{

e.printStackTrace();

}

}

}

}

Abbildung A.9.: 100.000-facher Aufruf einer Methode per Reflection mit Caching

Die Ergebnisse der drei Tests im Vergleich stellt die Abbildung A.8 dar (S. 63).
Hier werden die Laufzeiten der einzelnen Methoden aufgeführt. Sie werden so
dargestellt, dass auch die Gesamtlaufzeiten der drei Ansätze verglichen werden
können. Die dargestellten Zeiten sind die Laufzeiten für die 100.000 Aufrufe der
Methoden (bei Reflection mit Caching werden die Methoden java.lang.Class.

getMethod und java.lang.Object.getClass nur einmal aufgerufen). Ein einzel-
ner Aufruf der Methoden java.lang.Class.getMethod und java.lang.Object.

public class TestPerformanceReflection

{

static ArrayList list = new ArrayList();

public static void main(String[] args)

{

for (int i=0; i<100000; i++)

{

list.trimToSize();

}

}

}

Abbildung A.10.: 100.000-facher direkter Aufruf einer Methode

64



A.2 Aufwand für Methodenaufrufe mit Hilfe von Reflection

getClass innerhalb der Methode getMethodCached benötigte weniger als 1 ms.
In dem Test von Reflection ohne Caching benötigt der Aufruf der Methode get-
Method insgesamt 2.389 ms, wovon 1.702 ms für den enthaltenen Aufruf von
java.lang.Class.getMethod und 197 ms für den Aufruf von java.lang.Object.

getClass benötigt wird. Für die Methode getMethod ist in dem Diagramm nur
die Laufzeit dargestellt, die nicht von den darin enthaltenen Methodenaufrufen
benötigt wird, nämlich 2.389 − 1.702 − 197 = 490 ms.

Insgesamt zeigt sich deutlich, dass bei der Verwendung von Reflection auch
Caching genutzt werden sollte, um die Laufzeit zu minimieren, wenn eine Methode
mehrfach verwendet wird. Am wenigsten Laufzeit (und Code) benötigt aber der
direkte Aufruf einer Methode.

65





Literaturverzeichnis

[BCK+01] Bracha, Gilad, Norman Cohen, Christian Kemper, Steve
Marx, Martin Odersky, Sven-Eric Panitz, David Stoutami-
re, Kresten Thorup und Philip Wadler: Adding Generics to
the Java Programming Language: Participant Draft Specification, April
2001.

[Bra04] Bracha, Gilad: Generics in the Java Programming Language, Juli
2004. Tutorial.

[ej-04] ej-Technologies GmbH: JProfiler. Online unter: http://www.ej-
technologies.com/products/jprofiler/overview.html, 2004. Version
3.1.2.

[FNT98] Fischer, Thorsten, Jörg Niere und Lars Torunski: Konzeption
und Realisierung einer integrierten Entwicklungsumgebung für UML,
Java und Story-Driven-Modeling. Diplomarbeit, Universität Pader-
born, Juli 1998.

[FNTZ98] Fischer, Thorsten, Jörg Niere, Lars Torunski und Albert
Zündorf: Story Diagrams: A new Graph Rewrite Language based on
the Unified Modeling Language and Java. Proceedings of the 6th In-
ternational Workshop on Theory and Application of Graph Transfor-
mation (TAGT), 1998.

[Fuj04] Fujaba Development Group: Fujaba ToolSuite. Online unter:
http://www.fujaba.de, 2004.

[GHJV95] Gamma, Erich, Richard Helm, Ralph Johnson und John Vlis-
sides: Design Patterns: Elements of Reusable Object Oriented Softwa-
re. Reading, MA: Addison-Wesley, 1995.

[HBR00] Harrison, William, Charles Barton und Mukund Raghava-
chari: Mapping UML Designs to Java. Proceedings of the 15th Annu-
al ACM Conference on Object-Oriented Programming: Systems, Lan-
guages and Applications (OOPSLA’2000), Volume 35: Seiten 178–188,
Oktober 2000. Minneapolis, Minnesota, USA.

67

http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.fujaba.de


Literaturverzeichnis

[Lea05] Lea, Doug: Java Specification Request (JSR) 166: Concurrency Uti-
lities. Online unter: http://gee.cs.oswego.edu/dl/jsr166/dist/docs/,
2005. Schnittstellendefinition (APIs).

[Mai04] Maier, Thomas: Associations. Online unter:
http://sourceforge.net/projects/associations/, November 2004.
Version 0.4.

[Moa02] Moat, Susannah: Fujaba Code Generation for static UML Models.
Universität Paderborn, Dezember 2002.

[MZ04] Maier, Thomas und Albert Zündorf: Yet Another Association
Implementation. Fujaba Days 2004, 2004.

[Obj03] Object Management Group, Inc.: OMG Unified Modeling Lan-
guage Specification, März 2003. Version 1.5.

[Wat96] Watt, David A.: Programmiersprachen – Konzepte und Paradigmen.
Hanser, 1996. ISBN 3-446-17992-5.

68

http://gee.cs.oswego.edu/dl/jsr166/dist/docs/
http://sourceforge.net/projects/associations/

	Inhaltsverzeichnis
	Einleitung
	Motivation
	Lösungsansatz
	Struktur der Arbeit

	Grundlagen
	Assoziationen
	Generics in Java
	Einführung
	Eigenschaften der Java Generics


	Ansätze zur Implementierung von Assoziationen
	Anforderungen an eine Implementierung
	Rollenimplementierung innerhalb der Modellklassen
	Beschreibung des Ansatzes
	Evaluation
	Typsicherheit durch spezielle Java-Container

	Rollen als eigenständige Klassen
	Beschreibung des Ansatzes
	Evaluation

	Fazit

	Typsichere Implementierung von Assoziationen
	Beschreibung des Ansatzes
	Überblick
	Anpassung der Modellklassen
	Implementierung spezieller Rollenklassen
	Realisierung der Assoziationen
	Rollenbibliothek
	Verwendung von Containern
	Typsicherheit

	Evaluation

	Technische Realisierung
	Implementierung einer Rollenbibliothek
	Anpassung der Code-Generierung in Fujaba
	Der Code-Generierungsmechanismus
	Das Plug-In für die neue Code-Generierung


	Zusammenfassung und Ausblick
	Anhang
	Aufwand für das Erzeugen von Iteratoren mit exklusivem Kontext
	Aufwand für Methodenaufrufe mit Hilfe von Reflection

	Literaturverzeichnis

