L\

UNIVERSITAT PADERBORN
Fakultat fiir Elektrotechnik, Informatik und Mathematik

Institut fiir Informatik
Arbeitsgruppe Softwaretechnik
Warburger Str. 100
33098 Paderborn

Generierung typsicherer

Implementierungen fiir
Assoziationen in UML-Modellen

Studienarbeit

zur Erlangung des Grades
Bachelor of Computer Science

vorgelegt von

Dietrich Travkin
Ginsterweg 1
33813 Oerlinghausen

vorgelegt bei
Prof. Dr. Wilhelm Schafer

und

Prof. Dr. Hans Kleine Biining

21. Februar 2005

Erklarung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
dghnlicher Form noch keiner anderen Priifungsbehérde vorgelegen hat und von die-
ser als Teil einer Priifungsleistung angenommen worden ist. Alle Ausfithrungen, die
wortlich oder sinngeméfl {ibernommen worden sind, sind als solche gekennzeichnet.

Ort, Datum Unterschrift

iii

Inhaltsverzeichnis

1. Einleitung

1.1. Motivation
1.2, Losungsansatzo
1.3. Struktur der Arbeit

2. Grundlagen

2.1. Assoziationen
2.2. Genericsin Java

2.2.1.
2.2.2.

Einfihrung oL
Eigenschaften der Java Generics

3. Ansidtze zur Implementierung von Assoziationen

3.1. Anforderungen an eine Implementierung
3.2. Rollenimplementierung innerhalb der Modellklassen

3.2.1.
3.2.2.
3.2.3.

Beschreibung des Ansatzes
Evaluation oL
Typsicherheit durch spezielle Java-Container

3.3. Rollen als eigenstédndige Klassen

3.3.1.
3.3.2.
3.4. Fazit

Beschreibung des Ansatzes
Evaluation

4. Typsichere Implementierung von Assoziationen
4.1. Beschreibung des Ansatzes

4.1.1.
4.1.2.
4.1.3.
4.1.4.
4.1.5.
4.1.6.
4.1.7.

Uberblick
Anpassung der Modellklassen
Implementierung spezieller Rollenklassen
Realisierung der Assoziationen
Rollenbibliothek L.
Verwendung von Containern
Typsicherheito

4.2. Evaluation

W N = -

o 3 ot

11
11
13
13
18
20
23
24
29
31

Inhaltsverzeichnis

5. Technische Realisierung

5.1. Implementierung einer Rollenbibliothek
5.2. Anpassung der Code-Generierung in Fujaba
5.2.1. Der Code-Generierungsmechanismus
5.2.2. Das Plug-In fiir die neue Code-Generierung . .

6. Zusammenfassung und Ausblick

A. Anhang

A.1. Aufwand fiir das Erzeugen von Iteratoren mit exklusivem Kontext

A.2. Aufwand fiir Methodenaufrufe mit Hilfe von Reflection

Literaturverzeichnis

vi

47
47
48
48
20

53

55
25
62

67

1. Einleitung

Mit zunehmend wachsenden Softwaresystemen und ihrer Komplexitét nimmt die
Bedeutung der modellbasierten Softwareentwicklung zu. Eine einheitliche Model-
lierungssprache wie UML [Obj03] tragt dazu bei, modellgetriebene Entwicklungs-
prozesse zu etablieren. Besonders wichtig ist bei dieser Art von Softwareentwick-
lung die Generierung von lauffihigem Code aus einem Modell.

Anstatt Anderungen wihrend des Entwicklungsprozesses oder bei neuen An-
forderungen an das Softwaresystem direkt im Quellcode durchzufiithren, wird auf
einer abstrakteren Ebene das zugehorige Modell gedndert. Mit Hilfe von speziellen
Werkzeugen wird anschlieBend Code aus dem Modell generiert, der die Semantik
des Modells erhélt. Diese Vorgehensweise ermoglicht einen schnellen Entwicklungs-
prozess und vereinfacht den Umgang mit Komplexitét.

Ein Werkzeug, das sowohl die Modellierung von Softwaresystemen als auch die
Generierung von Java-Code daraus unterstiitzt, ist die an der Universitiat Pader-
born entwickelte Fujaba Tool Suite (kurz Fujaba) [Fujo4] [FNT98]. Diese Entwick-
lungsumgebung bietet neben zahlreichen UML-Diagrammarten wie Klassen-, Ak-
tivitdtsdiagrammen und Statecharts auch so genannte Story-Diagramme
[FNTZ98]. Diese sind eine Art von Aktivitdtsdiagrammen, die zur Beschreibung
der dynamischen Anderungen von Objektstrukturen spezielle Kollaborationsdia-
gramme, so genannte Storypatterns, einbettet. Mit Hilfe dieser Diagrammarten,
die mit einer formalen Semantik unterlegt sind, ist die Spezifikation von dynami-
schen und statischen Anteilen eines Softwaresystems sowie die Generierung von
zugehorigem Code moglich.

In der grafischen Modellierungssprache UML koénnen verschiedene Arten von
Assoziationen zwischen zwei Klassen modelliert werden, insbesondere bidirektio-
nale. Da diese von den meisten objektorientierten Programmiersprachen wie Java
nicht unterstiitzt werden, bediirfen sie einer speziellen Abbildung von dem Modell
auf lauffahigen Code, dessen Verwendung moglichst intuitiv und sicher sein soll.

1.1. Motivation

Die Entwicklungsumgebung Fujaba generiert unter Anderem Java-Quellcode fiir
Assoziationen, an denen beliebig viele Elemente beteiligt sein kénnen, z.B. fiir
1-zu-n-Assoziationen. Darin werden zur Verwaltung der durch eine Assoziation
verbunden Elemente Container verwendet.

Damit diese Container beliebige Elemente enthalten kénnen, wird der Typ der
in einem Container verwaltbaren Elemente so allgemein wie moglich angegeben.

1. EINLEITUNG

Dadurch koénnen auch Elemente falschen Typs in die Container gelangen und es
werden Typumwandlungen (type casts) im generierten Code notwendig. Typfeh-
ler werden erst durch Typpriifungen zur Laufzeit (dynamisch) erkannt und nur,
wenn die entsprechende Stelle im Code ausgefiihrt wird. Deswegen bietet die von
Fujaba generierte Java-Implementierung von Assoziationen bisher keine Typsi-
cherheit. Eine ausschliellich statische Typisierung wiirde alle Typfehler bereits
zur Ubersetzungszeit aufdecken und Typumwandlungen unnétig machen.

Anstatt von Standard-Containern aus der Java-Bibliothek verwendet die Code-
Generierung von Fujaba spezielle Container, die fiir die Implementierung von
Assoziationen entwickelt wurden. Diese bieten die Funktionalitdt der Standard-
Container und ergéinzen diese, z.B. werden bei Anderungen des Container-Inhalts
Nachrichten an Listener-Objekte verschickt. Die Implementierung der speziellen
Container stellt zusétzlichen Code dar, der den Wartungsaufwand von Fujaba
erhoht. Insbesondere ist die Einfithrung von Typsicherheit schwierig.

Fujaba generiert fiir jede Assoziation, an der eine Modellklasse beteiligt ist,
diverse Methoden zum Verkniipfen und Trennen zweier Modellelemente (Instan-
zen einer Modellklasse) in die Modellklassen. Die grofle Anzahl der generierten
Methoden macht den Quellcode uniibersichtlich und erschwert seine Wartung.

An der Universitdt Kassel wurde eine andere Implementierung von Assozia-
tionen vorgeschlagen [MZ04], die den generierten Code iibersichtlicher und die
Wartung einfacher macht. Bei dieser Implementierung werden die oben genann-
ten Methoden in spezielle Klassen ausgelagert, die den Rollen von Assoziationen
entsprechen. Anstatt der speziellen Container werden hier Standard-Container
verwendet. Obwohl die Implementierung der Rollenklassen und der verwendeten
Container bereits generisch ist, kann dieser Ansatz keine Typsicherheit garantie-
ren, weil hier einige Typumwandlungen notwendig sind.

Im Rahmen dieser Studienarbeit wird untersucht, ob und wie eine typsichere
Implementierung von Assoziationen erreicht und entsprechender Java-Code aus
Modellen generiert werden kann. Zusétzlich sollen der Wartungsaufwand mini-
miert und die Lesbarkeit des generierten Codes erhéht werden.

1.2. Losungsansatz

Der Sprachumfang der Programmiersprache Java wurde in der Version 1.5 unter
Anderem um so genannte Generics erweitert. Dadurch sind generische Typdefini-
tionen und eine statische Typisierung moglich, die eine Basis fiir eine typsichere
Assoziationsimplementierung bieten. Container konnen bei ihrer Implementierung
mit dem Typ der von ihnen verwaltbaren Elemente parametrisiert werden. Bei der
Initialisierung eines solchen Containers wird der konkrete Typ angegeben, sodass
alle Typpriifungen bereits zur Ubersetzungszeit erfolgen. Die Standard-Container
der Java-Bibliothek wurden auf Generics umgestellt und bieten nun Typsicherheit.

Fiir eine Implementierung von insbesondere bidirektionalen Assoziationen wer-
den wie in dem Ansatz in [MZ04] spezielle Rollenklassen definiert. Diese wer-

1.3 Struktur der Arbeit

den vollstéindig generisch implementiert und kapseln alle fiir die Assoziationsim-
plementierung notwendigen Methoden. Fiir die Verwaltung der durch eine Asso-
ziation verkniipfbaren Elemente werden intern anstatt der speziellen Container-
Implementierungen die typsicheren Standard-Container der Java-Bibliothek ver-
wendet. Die spezielle Implementierung der Rollen mit Hilfe von Generics soll den
fiir Assoziationen generierten Code typsicher machen. Die Lesbarkeit und Benutz-
barkeit sollen erhoht, sowie die Wartung erleichtert werden.

Die Rollenimplementierung wird in einer Bibliothek bereitgestellt, da diese in
beliebigen Bereichen zur Implementierung von Assoziationen in Java verwendet
werden kann. Zusétzlich wird ein Plug-In entwickelt, das die Code-Generierung
von Fujaba anpasst und die generierte Assoziationsimplementierung typsicher
macht.

1.3. Struktur der Arbeit

Zunéchst werden in Kapitel 2 die verschiedenen Arten von Assoziationen in UML
kurz vorgestellt. Anschlieffend wird das Konzept der Java Generics und ihre Ver-
wendung an einigen kleinen Beispielen erklért.

In Kapitel 3 werden Anforderungen an eine mégliche Implementierung von Asso-
ziationen formuliert. Danach werden die generierte Assoziationsimplementierung
von Fujaba und der Ansatz aus [MZ04] vorgestellt und bzgl. der Anforderungen
evaluiert.

Wie eine typsichere Assoziationsimplementierung realisiert werden kann, wird
in Kapitel 4 beschrieben. Dabei wird Bezug zu den beiden bisherigen Implemen-
tierungsansatzen genommen und darauf aufbauend eine Losung entwickelt. Auch
diese wird bzgl. der in Kapitel 3 formulierten Anforderungen evaluiert.

Die technische Realisierung dieser Losung wird in Kapitel 5 beschrieben. Dazu
gehort die Anpassung des bisherigen Code-Generierungsmechanismus von Fujaba,
aber auch die Implementierung einer Rollenbibliothek, die im generierten Code
verwendet wird.

Schliefllich werden die Ergebnisse dieser Arbeit in Kapitel 6 zusammengefasst
und in einem Ausblick mogliche Erweiterungen vorgeschlagen.

2. Grundlagen

2.1. Assoziationen

Bei der Modellierung mit UML und Fujaba [FNT98, S. 18 ff. und S. 152 ff.] kénnen
Beziehungen zwischen zwei Klassen durch zahlreiche Arten von Assoziationen in
einem Klassendiagramm beschrieben werden. In Fujaba wird eine Teilmenge der
in UML [Obj03, S. 3-68 ff.] spezifizierten Assoziationsarten unterstiitzt, die im
Folgenden kurz vorgestellt wird.

Bidirektionale Assoziationen und Referenzen

In UML werden meist binédre Assoziationen verwendet. An einer binédren Assozia-
tion sind stets genau zwei Klassen beteiligt. Laut UML-Spezifikation [Obj03, S.
3-68 ff.] sind auch d-dre Assoziationen fiir ein beliebiges d € N moglich, aber diese
werden von Fujaba bisher nicht unterstiitzt. Bindre Assoziationen koénnen bidi-
rektional oder unidirektional sein. Die letzteren werden Referenzen genannt. Eine
bidirektionale Assoziation kann — im Gegensatz zu einer unidirektionalen Assozia-
tion — in beide Richtungen traversiert (durchlaufen) werden. Bei einer Referenz
wird deshalb die Traversierungsrichtung (auch Navigationsrichtung genannt) ex-
plizit angegeben.

Die Verbindungsstellen einer Assoziation zu den Klassen werden Rollen genannt
(zu jeder bindren Assoziation gehoren zwei Rollen). Sowohl die Assoziation als
auch die zugehorigen Rollen konnen benannt werden. Es ist auch moglich, die
Leserichtung der Assoziation zu kennzeichnen.

Die Rollen einer Assoziation legen die Assoziationsart fest und tragen den
Hauptanteil der Information in einer Assoziation. Jede Rolle trigt eine Kardina-
litdt (auch Multiplizitdt genannt), die angibt, wieviele Instanzen einer zugehorigen
Klasse von der Rolle assoziiert werden diirfen. In Fujaba beschrankt man sich bei
der Code-Generierung auf die Unterscheidung zwischen so genannten zu-n- und
zu-1-Rollen, den Rollen mit Kardinalitét 1 oder n (n steht dabei fiir eine beliebige
Zahl). Dadurch sind nur 1-zu-1-, 1-zu-n- und n-zu-m-Assoziationen méglich.

Wenn nicht anders angegeben, wird bei zu-n-Rollen keine Ordnung der assozi-
ierten Instanzen angenommen. Um dieses zu &ndern, ist es moglich, eine solche
Rolle als geordnet oder sortiert zu kennzeichnen.

2. GRUNDLAGEN

Aggregation und Komposition

Aggregation und Komposition sind spezielle bindre Assoziationen. Eine Aggrega-
tion zwischen zwei Klassen stellt dar, dass eine Instanz einer der beiden Klassen
Teil einer Instanz der anderen Klasse ist. Der umfassende Teil wird als Aggregat
bezeichnet.

Die Semantik bei der (schwachen) Aggregation ist, dass wenn ein Aggregat
geloscht wird, es auch alle seine Teilobjekte 16scht. Eine Komposition ist eine
spezielle Form der Aggregation (starke Aggregation). Bei einer Komposition gilt
zusitzlich, dass bei einer Erzeugung des Aggregats auch alle seine Teilobjekte
erzeugt werden miissen und dass diese nicht ausgetauscht werden kénnen (Das
hat auch zur Folge, dass die Kardinalitat bei der Rolle auf Aggregatseite 1 sein
muss.). Die Code-Generierung in Fujaba unterstiitzt bisher nur die schwache Form
der Aggregation.

Qualifizierte Assoziationen

Qualifizierte Assoziationen stellen eine weitere Form der binédren 1-zu-n- und n-zu-
m-Assoziationen dar. Hierbei wird die Menge der assoziierten Instanzen auf der n-
bzw. m-Seite anhand eines Schliissels partitioniert. Eine Instanz oder eine Menge
von Instanzen auf der n- bzw. m-Seite ist dann {iber den zugehérigen Schliissel
erreichbar.

Die Kardinalititen bei den qualifizierten Assoziationen haben auch eine et-
was andere Bedeutung. Eine qualifizierte 1-zu-1-Assoziation zwischen den Klas-
sen A und B, wobei die Instanzen von B iiber einen Schliissel erreicht werden,
ist tatséchlich eine 1-zu-n-Assoziation, bei der jede Instanz auf B-Seite iiber ge-
nau einen eindeutigen Schliissel erreicht wird. Wére bei dieser qualifizierten As-
soziation auf B-Seite die Kardinalitdt n, so gdbe es zu je n Instanzen auf B-
Seite genau einen eindeutigen Schliissel, iiber den man diese Instanzmenge er-
reicht. Tatsédchlich wire es also eine 1-zu-(n - m)-Assoziation, wenn m die An-
zahl der moglichen Schliissel wére. Auch beidseitig qualifizierte Assoziationen sind
moglich.

2.2 Generics in Java

2.2. Generics in Java

Der Sprachumfang der Programmiersprache Java wurde in der Version 1.5 unter
anderem um so genannte Generics erweitert. Diese ermoglichen eine generische
Definition von Typen und Methoden, sodass darin verwendete Typen erst bei einer
konkreten Anwendung festgelegt werden. Unabhéngig von den tatséchlich verwen-
deten Typen konnen so Algorithmen und Datenstrukturen beschrieben werden, die
trotz ihrer allgemeinen Definition typsicher sind.

In diesem Abschnitt werden die wichtigsten Eigenschaften der Java Generics
anhand von einigen Anwendungsbeispielen kurz vorgestellt.

2.2.1. Einfiihrung

Bei der Implementierung von allgemeinen Algorithmen und Datenstrukturen, die
nur wenig oder gar nicht von den darin verwendeten Typen abhéngen (z.B. bei
Sortieralgorithmen und Containern), werden in Programmiersprachen wie Ada,
Eiffel, ML und seit der Version 1.5 auch Java so genannte formale Typparameter
verwendet, die bei einer konkreten Auspragung des Algorithmus oder der Daten-
struktur durch Typargumente ersetzt werden (siehe [Wat96, S. 124 ff, S. 141 ff
und S. 248,249]). So kénnen z.B. Listen definiert werden, die nur Eintréige eines
bestimmten Typs (beschrieben durch ein Typargument) haben kénnen.

In <eren Versionen der Programmiersprache Java (vor Version 1.5) sind solche
Konstrukte nicht moglich. Stattdessen wird z.B. bei der Implementierung von
Containern der allgemeinste Java-Typ java.lang.0bject verwendet. Dadurch
konnen beliebige Elemente in einen solchen Container eingefiigt werden, aber die
Information iiber den Typ der eingefiigten Elemente geht verloren. Durch Typ-
priifungen (type casts) wird zur Laufzeit sichergestellt, dass der Typ eines im
Container enthaltenen Elements dem Typ entspricht, den ein Programmierer an
einer Stelle im Code erwartet. Irrt sich der Programmierer, so tritt ein Typfehler
zur Laufzeit auf.

Ein Beispiel ist in Abb. 2.1 abgebildet. Die Methode get der Klasse ArrayList
(bzw. der Schnittstelle List) gibt ein Objekt vom Typ Object zuriick. Deswegen
wird eine Typumwandlung von Object zu Integer nétig, wenn das in der Liste
enthaltene Integer-Objekt als solches verwendet werden soll. Durch die allgemeine
Definition der Liste mit dem Typ Object als Typ der Eintrége ist es auch moglich,
Objekte von einem anderen Typ als Integer in die Liste einzufiigen, was bei der
spateren Typumwandlung zu Integer zu Laufzeitfehlern fiihrt.

// Implementierung ohne Generics

List list = new ArrayListQ);

list.add(new Integer(1)); // auch list.add("a"); mdglich
Integer value = (Integer) list.get(0); // Type Cast notwendig

Abbildung 2.1.: Benutzung eines Containers ohne die Verwendung von Generics

2. GRUNDLAGEN

Das primére Ziel bei der Entwicklung der Java Generics war Typsicherheit
[Bra04, S. 15]. Dabei bedeutet Typsicherheit, dass alle Typpriifungen bereits zur
Ubersetzungszeit durchgefiihrt werden und alle Typfehler garantiert vom Uber-
setzer (compiler) erkannt werden [Wat96, S. 29] [Bra04, S. 2,15]. So kann eine
wichtige Fehlerquelle vermieden werden, denn Typfehler machen einen wesentli-
chen Teil der Programmierfehler aus [Wat96, S. 29].

// Implementierung mit Generics

List<Integer> list = new ArrayList<Integer>();

list.add(new Integer(1)); // list.add("a"); fithrt zu Kompilierfehler
Integer value = list.get(0); // kein Type Cast mehr ndtig

Abbildung 2.2.: Benutzung eines Containers unter Verwendung von Generics

Im Gegensatz zu dem in Abb. 2.1 dargestellten Code ist der in der Abb. 2.2
dargestellte generische Java-Code typsicher. Die verwendete Liste ist generisch mit
dem Typparameter E implementiert (sieche Abb. 2.3). Dieser Typparameter wird
bei der Instanziierung der Liste durch das Typargument Integer ersetzt. Auf diese
Weise wird die Liste auf Eintrdge vom Typ Integer eingeschrankt. Der Typ einer
so instanziierten Liste wird als parametrisierter Typ bezeichnet. Nun kann bereits
zur Ubersetzungszeit die Typ-Korrektheit der mit der Liste verwendeten Objekte
iiberpriift werden. Das Einfiigen eines String-Objekts ist hier nicht mehr moglich.
Auflerdem wird eine Typumwandlung unnétig, da die Methode get bereits Objekte
des richtigen Typs, ndmlich Integer, zuriickgibt.

public interface List<E>

{
boolean add(E o);
E get(int index);
// weitere Methoden ...
}

Abbildung 2.3.: Generisch definierte Schnittstelle fiir Listen

2.2.2. Eigenschaften der Java Generics

Im Gegensatz zu den Templates der Programmiersprache C++ beschreibt ein ge-
nerisch definierter Java-Typ nicht eine Familie von Klassen oder Schnittstellen,
die sich nur durch die Typparameter-Ersetzungen durch konkrete Typen unter-
scheiden. Eine generische Typdeklaration wird nur einmal iibersetzt. Alle parame-
trisierten Typen benutzen immer die gleiche Klasse oder Schnittstelle, auch zur
Laufzeit. So benutzen z.B. die parametrisierten Typen ArrayList<Integer> und
ArraylList<String> die gleiche Klasse ArrayList.

Als Konsequenz daraus werden alle statischen Variablen und Methoden einer ge-
nerischen Klasse von allen ihren Instanzen unabhingig vom Typargument gemein-
sam genutzt. Auflerdem ist eine Abfrage wie 1ist instanceof List<Integer>

2.2 Generics in Java

nicht sinnvoll, da alle List-Objekte unabhingig vom Typargument Instanzen der
gleichen Klasse sind. Zur Laufzeit existieren keine Typvariablen (in Abb. 2.3 ist
das E), sodass eine Uberpriifung auf die Verwendung eines bestimmten Typar-
guments hin (hier: Integer) nicht moglich ist. Ebenso kann die Korrektheit von
Typumwandlungen wie

T something = (T) object;
fiir eine Typvariable T oder
List<Integer> list = (List<Integer>) object;

nicht tiberpriift werden. Um einen Programmierer darauf aufmerksam zu machen,
gibt der Ubersetzer in solchen Féllen Warnungen aus (unchecked warnings). Kann
der Quellcode ohne diese Warnungen iibersetzt werden, so ist er typsicher [Bra04,

S. 15].

List<Integer> integerList = new ArrayList<Integer>();

List<Object> objectList = integerList; // erzeugt Kompilierfehler
objectList.add(new Object());

Integer zahl = integerList.get(0); // Zuweisung eines Object-Objekts

Abbildung 2.4.: Subtyping bei den Java Generics (List<Integer> ist nicht Un-
tertyp von List<Object>)

Die Generics in Java verwenden eine nicht ganz intuitive Definition von Un-
tertypen (subtyping). Obwohl der Typ java.lang.0bject der Obertyp aller an-
deren nicht-primitiven Typen ist, kann z.B. List<Integer> nicht Untertyp von
List<Object> sein. Das Beispiel in Abb. 2.4 soll das verdeutlichen. Hier konnte
ein Objekt vom Typ Object in eine Liste von Integer-Objekten eingefiigt werden,
wenn der Ubersetzter nicht einen Kompilierfehler erzeugen wiirde.

List<?> unknownList = new ArrayList<Integer>();
unknownList.add(new Integer()); // erzeugt Kompilierfehler

Abbildung 2.5.: Wildcards (Die Zuweisung erzeugt einen Kompilierfehler, da der
Typ der in der Liste unknownList verwendbaren Objekte unbe-
kannt ist.)

Damit ein Obertyp fiir alle parametrisierten Typen zu einer generischen Klasse
angegeben werden kann, werden so genannte Wildcards verwendet, die durch das
Zeichen 7 im Code gekennzeichnet werden. Der Typ List<?> ist dann der Ober-
typ von List<Integer> und List<0bject>. Das Zeichen 7 steht dabei fiir einen
unbekannten Typen. Die Konsequenz daraus ist aber, dass in eine Liste definiert
wie in Abb. 2.5 keine Objekte eingefiigt werden kénnen, weil wegen des unbekann-
ten Typen der Eintrédge keine Typpriifung moéglich ist. Die von einer solchen Liste
zuriickgegebenen Objekte sind immer vom allgemeinsten Typ Object.

2. GRUNDLAGEN

Ahnlich wie in der Programmiersprache Eiffel [Wat96, S. 249] kénnen auch in
Java bei der Definition einer generischen Klasse die Typparameter eingeschréankt
werden. Dabei wird zwischen oberen und unteren Schranken unterschieden. Eine
obere Schranke fiir die Eintrége einer Liste kann z.B. durch den Ausdruck List<T
extends Number> festgelegt werden. In diesem Fall kann die Liste nur Untertypen
von Number enthalten. Eine untere Schranke wird definiert, indem anstatt des
Schliisselworts extends das Wort super verwendet wird. Solche Schranken kénnen
auch in Methoden oder Variablendeklarationen verwendet werden. In diesen Fallen
wird die Typvariable T meist nicht benétigt und kann durch ? ersetzt werden.

Damit der ohne Generics implementierte Java-Code auch in Verbindung mit ge-
nerisch implementiertem Code benutzt werden kann, wurden in der Version 1.5 von
Java so genannte Rohtypen raw types eingefiihrt. Ein Rohtyp ist ein generischer
Typ ohne Typparameter. Ahnlich wie bei einem mit Wildcards parametrisierten
Typ konnen dann beliebige Untertypen von Object fiir die Typvariablen verwen-
det werden. Bei der Verwendung von Rohtypen geht die Typsicherheit verloren,
worauf der Ubersetzer durch unchecked warnings aufmerksam macht, dafiir kann
aber der bisher existierende Java-Code unverdndert weiterbenutzt werden.

abstract class C<A> { abstract class C {
abstract A id(A x); abstract Object id(Object x);
} }
class D extends C<String> { class D extends C {
String id(String x) { String id(String x) {
return x; return x;
} }
} Object id(Object x) {
return id((String) x);
}
}
Abbildung 2.6.: Umwandlung von generischem Code (links) in nicht-generischen

(rechts)

Der generische Java-Quellcode wird bei der Ubersetzung in Bytecode so umge-
wandelt, dass er sich kaum von dem Bytecode élterer Java-Versionen unterschei-
det. Dabei werden alle parametrisierten Typen und Typvariablen durch ein so ge-
nanntes Ausloschungsverfahren (erasure) entfernt. Generische Typen, Methoden
und Ausdriicke werden in solche konvertiert, die keine Generics mehr verwenden
[Bra04, S. 12] [BCK'01, S. 14 ff]. Wenn nétig, werden Typumwandlungen und
zusitzliche Methoden eingefiigt (siehe Beispiel in Abb. 2.6).

10

3. Ansatze zur Implementierung
von Assoziationen

Es gibt verschiedene Ansétze, Assoziationen — insbesondere bidirektionale — auf
Quellcode abzubilden. Bei allen Ansétzen miissen die von einer Assoziation ver-
bundenen (referenzierten) Modellelemente abhéngig von der Assoziationsart und
ihren Eigenschaften verwaltet werden und es miissen diverse Methoden zur Benut-
zung der Assoziationen (z.B. verbinden zweier Objekte) implementiert werden.

Im Rahmen dieser Arbeit werden zwei Ansétze zur Implementierung von Asso-
ziationen betrachtet. Bei dem ersten Ansatz wird die Verwaltung der referenzierten
Elemente und die zugehotrigen Methoden in die durch eine Assoziation verbun-
den Modellklassen verlagert. Bei dem zweiten Ansatz wird diese Verwaltung samt
zugehoriger Methoden in eigenen, den Rollen einer Assoziation entsprechenden
Klassen implementiert.

Nach der Formulierung von Anforderungen an eine moégliche Implementierung
von Assoziationen werden in diesem Kapitel die beiden oben genannten Moglich-
keiten anhand zweier vorliegender Umsetzungen genauer beleuchtet. Dazu gehoren
die von Fujaba [Fuj04] generierte Assoziationsimplementierung und ein neuer in
[MZ04] beschriebener und in [Mai04] zum Teil realisierter Ansatz. Beide Ansétze
werden bzgl. der formulierten Anforderungen evaluiert und verglichen. Zusétzlich
wird diskutiert, wie die bisher generierte Assoziationsimplementierung von Fujaba
typsicher gemacht werden kann.

3.1. Anforderungen an eine Implementierung

In UML koénnen sowohl bidirektionale als auch unidirektionale Assoziationen mo-
delliert werden (siche Abschnitt 2.1, S. 5). Weitere Eigenschaften wie Kardina-
litdten, Schliissel (bei qualifizierten Assoziationen) und Constraints (z.B. geord-
net) sowie diverse Anforderungen an den Quellcode und seine Benutzbarkeit ver-
langen nach einer speziellen Implementierung. Insbesondere ist es erwiinscht, dass
diese Implementierung Typsicherheit garantiert. Dadurch ist es moglich, bereits
zur Ubersetzungszeit sicherzustellen, dass eine Implementierung einer Assoziation
zwischen zwei Klassen A und B nur erlaubt, Objekte vom Typ A und B (oder
Untertypen davon) miteinander zu verbinden.

Im Nachfolgenden werden die entstehenden Anforderungen an eine Implemen-
tierung der Assoziationen formuliert und néher erldutert.

11

3.

ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

1.

Konsistenzerhaltung: Bei bidirektionalen Assoziationen soll die Konsistenz
stets gewahrt bleiben. D.h., wenn die Referenz von Objekt a zu Objekt
b (bei einer bidirektionalen Assoziation zwischen a und b) durch den Aufruf
einer Methode von a entfernt wird, so soll automatisch auch die Referenz
von b zu a entfernt werden. Umgekehrt soll beim Erstellen einer Assoziation
zwischen a und b sowohl eine Referenz von a zu b als auch eine Referenz von
b zu a erstellt werden. Evtl. notwendige Konsistenzpriifungen diirfen nicht
umgangen werden.

. Typsicherheit: Alle Typpriifungen bei der Implementierung von Assoziationen

sollen zur Ubersetzungszeit erfolgen, um Typfehler zur Laufzeit zu vermei-
den.

. Lesbarkeit: Der Quellcode soll iibersichtlich und fiir Anwendungsentwickler

verstandlich sein.

. Benutzbarkeit: Die Implementierung von Assoziationen soll leicht zu benutzen

sein. Dazu zéhlt auch, dass eine Iteration iiber die von einem Modellelement
a referenzierten Elemente selbst dann sinnvoll fortgesetzt werden kann, wenn
sich die Menge der von a referenzierten Elemente wahrend der Iteration
andert.

. Wartbarkeit: Der Wartungsaufwand spielt bei groflen Projekten immer eine

wichtige Rolle. Dieser soll fiir die Assoziationsimplementierung so gering
wie moglich sein.

. Assoziationsarten: Es sollen sowohl uni- als auch bidirektionale Assoziationen

implementiert werden koénnen. Assoziationsenden (Rollen) sollen die Kar-
dinalitdten 1 oder n tragen. Zusétzlich sollen die Assoziationen qualifiziert
sowie geordnet oder sortiert sein konnen.

. Thread-Sicherheit: Die Assoziationsimplementierung soll fiir nebenléufige An-

wendungen Thread-sicher sein. Dazu sollen kritische Bereiche im Code durch
exklusive Zugriffe geschiitzt werden. Weil aber exklusive Zugriffe zwangslau-
fig die Laufzeit negativ beeinflussen,® soll diese Eigenschaft nur bei Bedarf
erfiillt werden.

. Benachrichtigungsmechanismus: Damit so genannte Listener-Objekte iiber

Anderungen von Assoziationen informiert werden kénnen, soll ein Benach-
richtigungsmechanismus realisiert werden. Immer wenn bei einer Assoziation
zwischen zwei Klassen A und B ein Objekt auf A- oder B-Seite hinzukommt

'Wird ein exklusiver Bereich von einem Thread erreicht, so werden andere Threads bei Zu-

12

griff auf den selben exklusiven Bereich blockiert, bis der kritische Bereich von dem ersten
Thread verlassen wird. Die Uberpriifung, ob ein Thread den exklusiven Bereich erreicht
hat, kostet zusétzlichen Laufzeit-Overhead, was bei nicht-nebenldufigen Anwendungen zu
unnotigen Laufzeiteinbuflen fiihrt.

3.2 Rollenimplementierung innerhalb der Modellklassen

oder entfernt wird, sollen die Listener benachrichtigt werden. Dazu sollen sie
sich vorher fiir die Assoziation registrieren.

3.2. Rollenimplementierung innerhalb der
Modellklassen

In diesem Abschnitt wird beschrieben, wie die Assoziationen in dem von Fujaba
[Fujo4] generierten Code implementiert werden.

3.2.1. Beschreibung des Ansatzes
Uberblick

Zur Verwaltung der durch eine Assoziation verbundenen Modellelemente werden
diverse Methoden bendétigt. Diese werden bei dem hier beschriebenen Ansatz in-
nerhalb der Klassen implementiert, die in dem UML-Modell durch eine Assoziation
verbunden sind. Die Methoden sollen es z.B. ermdglichen, zwei Elemente entlang
einer Assoziation zu verbinden, sie zu trennen oder bei einer zu-n-Assoziation alle
referenzierten Modellelemente aufzuzéhlen.

Wenn ein Element an mehreren Assoziationen beteiligt ist, werden diese Me-
thoden fiir jede der Assoziationen implementiert. Die Art der Methoden und ihre
Implementierung héangt von der Art der Assoziation und dem jeweiligen Assozia-
tionsende (Rolle) ab: Zum Beispiel kann man bei einer zu-n-Rolle iiber alle re-
ferenzierten Elemente iterieren, wihrend man bei einer zu-1-Rolle héchstens das
einzige referenzierte Element zuriickgegeben kann.

Zusétzlich zu den genannten Methoden erhalten die Klassen fiir jede der As-
soziationen, an denen sie beteiligt sind, auch je ein Attribut, das entweder einen
Container zur Verwaltung der Objektreferenzen (bei einer zu-n-Rolle) oder eine
direkte Objektreferenz (bei einer zu-1-Rolle) speichert.

Die Methoden sind hauptséchlich fiir die Erhaltung der Konsistenz von bidirek-
tionalen Assoziationen verantwortlich. Die restliche Funktionalitét wird an speziell
fiir diesen Zweck implementierte Container delegiert. Fiir jede Rollenart, z.B. qua-
lifizierte und sortierte zu-n-Rolle, gibt es einen speziellen Container.

Anpassung der Modellklassen

Bei der bidirektionalen Assoziation bewohnt, wie sie in Abb. 3.1 modelliert ist,
kénnen Objekte der Klasse Haus bis zu n Mieter-Objekte referenzieren. Anders-
herum kénnen Objekte der Klasse Mieter héchstens ein Haus-Objekt referenzieren.
Festgelegt wird das von den beiden Rollen heim auf Haus-Seite und bewohner auf
Mieter-Seite durch die Angabe der Kardinalitéten.

Damit die Objekte miteinander verbunden oder voneinander getrennt werden
kénnen, bekommt die Klasse Mieter ein Attribut mit dem Typ Haus und die Klasse

13

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

H Miet
aus heim < bewohnt bewohner e

1 n

Abbildung 3.1.: UML-Klassendiagramm mit einer 1-zu-n-Assoziation

Haus einen Container (z.B. FHashSet) zum Speichern der referenzierten Elemen-
te. Zusétzlich werden verschiedene Zugriffsmethoden implementiert. Die Methode
addToBewohner in der Klasse Haus ermoglicht das Verbinden eines Haus-Objekts
mit einem Mieter-Objekt und die Methode removeFromBewohner das Trennen. Die
gleiche Funktionalitdt bieten die Methoden setHeim und getHeim in der Klasse Mie-
ter. Andere Methoden wie iteratorOfBewohner, sizeOfBewohner und hasInBewohner
werden implementiert, um alle iiber die Assoziation bewohnt referenzierten Ele-
mente eines Haus-Objekts aufzuzdhlen, die Anzahl aller referenzierten Elemente
anzugeben oder zu priifen, ob ein bestimmtes Element referenziert wird.

mieter1: Mieter

bewohner

haus: Haus |heim

mieter2: Mieter

heim | bewohner

Abbildung 3.2.: Objektstrukturbeispiel zum Diagramm in Abb. 3.1

Man beachte, dass die Methodennamen den zugehorigen Rollennamen enthal-
ten. Das dient der Unterscheidung der Assoziationsmethoden voneinander, wenn
eine Klasse an mehreren Assoziationen beteiligt ist. Insbesondere bedeutet das,
dass alle Rollennamen, die zu einer Klasse gehoren, stets eindeutig sein miissen.

Abhéngig von der Assoziationsart werden auch andere Methoden implementiert,
z.B. erlaubt eine geordnete Assoziation das Einfiigen einer Objektreferenz an einer
bestimmten Stelle in der Liste der Referenzen.

. mieter1: Mieter
haus: Haus heim
hei
eim mieter2: Mieter
bewohner
: FHashSet 4\

Abbildung 3.3.: Tatséchliche Objektstruktur zum Beispiel in Abb. 3.2

14

3.2 Rollenimplementierung innerhalb der Modellklassen

Realisierung der Assoziationen

Die Verwaltung der Referenzen unter Beriicksichtigung der Assoziationseigenschaf-
ten iibernehmen die verwendeten Container oder Attribute. Fiir ein beispielhaftes
Objektdiagramm (Abb. 3.2) zum Modell in Abb. 3.1 wird in Abb. 3.3 die Objekt-
struktur so dargestellt, wie sie tatséchlich realisiert wird.

Um die Konsistenz bei bidirektionalen Assoziationen wie bewohnt in Abb. 3.1
zu erhalten (Anforderung 1), wird der Inhalt der Methoden addToBewohner und
removeFromBewohner auf der Seite der zu-n-Rolle und die Methoden setHeim und
getHeim auf der Seite der zu-1-Rolle an die gegeniiberliegende Rolle angepasst.
Wird eine Referenz auf ein Objekt mieter bei einer zu-n-Rolle zu dem Objekt haus
hinzugefiigt, so wird auch das haus-Objekt als Referenz zu dem Objekt mieter hin-
zugefiigt bzw. gesetzt. Das gleiche gilt auch umgekehrt mit dem Unterschied, dass
das mieter-Objekt von einem evtl. vorher referenzierten anderen Haus-Objekt (z.B.
hausl) als Referenz entfernt wird, bevor das neue Haus-Objekt, ndmlich haus, als
Referenz gesetzt wird (siche Abb. 3.4). Auch das Entfernen von Objektreferenzen
wird dhnlich behandelt.

public boolean addToBewohner (Mieter value) public boolean setHeim(Haus value)
{ {
boolean changed = false; boolean changed = false;
if (value !'= null) if (this.heim != value)
{ {
if (this.bewohner == null) if (this.heim != null)
{ {
this.bewohner = new FHashSet (); Haus oldValue = this.heim;
} this.heim = null;
changed = this.bewohner.add (value); oldValue.removeFromBewohner (this);
if (changed) }
{ this.heim = value;
value.setHeim (this); if (value !'= null)
} {
¥ value.addToBewohner (this);
return changed; }
¥ changed = true;
}
return changed;
}

Abbildung 3.4.: Implementierung der Methoden addToBewohner und setHeim zum
Diagramm in Abb. 3.1

Bei qualifizierten Assoziationen erhalten die Assoziationsmethoden einen Schliis-
sel als zusétzlichen Parameter. Bei dem Beispiel in Abb. 3.5 wird die Matrikel-
nummer eines Studenten als Schliissel verwendet. Dieser wird in der Methode add-
Tolmmatrikulierte und removeFromImmatrikulierte der Klasse Universitat verwendet.
Dieser Schliissel wird aber nicht nur auf der qualifizierten Seite der Assoziation
benotigt, sondern auch auf der nicht qualifizierten (also in der Klasse Student). Er
wird dazu benutzt, beim Verbinden oder Trennen zweier Modellelemente auch die
Referenz in Riickrichtung — die ja qualifiziert ist — zu erstellen bzw. zu 16schen,
um die Konsistenz der bidirektionalen Assoziation zu erhalten. Beim Aufruf der
Methode setUni der Klasse Student muss also zusétzlich zum Universitat-Objekt

15

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

Universitat i Student
Matrikelnummer } uni studierende p immatrikulierte uden

1 1

Abbildung 3.5.: Beispiel fiir eine einseitig qualifizierte Assoziation

auch der Schliissel (die Matrikelnummer) iibergeben werden, unter dem das Stu-
dent-Objekt von dem Universitat-Objekt aus zu erreichen ist. Bei einer beidseitig
qualifizierten Assoziation werden sogar zwei Schliissel benotigt, fiir je eine Sei-
te der Assoziation einer. Fujaba enthélt auch eine Unterstiitzung fiir beidseitig
qualifizierte Assoziationen.

Bei einer unidirektionalen Assoziation (Anforderung 6) entfallen die oben be-
schriebenen Methoden auf der referenzierten Seite. Dann bendtigt nur die referen-
zierende Seite die Assoziationsmethoden und beim Verbinden oder Trennen zweier
Elemente werden keine Methoden auf der referenzierten Seite aufgerufen.

Damit auch Aggregationen auf Code abgebildet werden kénnen, bekommen die
Modellklassen so genannte removeYou-Methoden, die fiir jede Assoziation alle Re-
ferenzen zu anderen Modellelementen unter Einhaltung der Konsistenz bei bidirek-
tionelen Assoziationen entfernen.? Bei dem Beispieldiagramm aus Abb. 3.1 (S. 14)
wird dazu die Methode removeAllFromBewohner auf der Haus-Seite fiir die Assozia-
tion bewohnt aufgerufen. Diese entfernt alle Referenzen zu Mieter-Objekten. Eine
removeAllFrom. . . -Methode existiert fiir jedes Assoziationsende (Rolle), das mehr
als ein Element referenzieren kann.

Verwendung von Containern

Fiir die Verwaltung der von einem Assoziationsende (Rolle) referenzierten Modell-
elemente werden Container oder Attribute verwendet.

Bei nahezu allen in Abschnitt 2.1 vorgestellten Assoziationsarten referenziert
eines der beiden Assoziationsenden (Rollen) mehr als nur ein Modellelement. Die
einzige Ausnahme bilden die zu-1-Rollen von nicht qualifizierten Assoziationen. Da
diese Rollen maximal ein Element referenzieren kénnen, reicht fiir die Verwaltung
ein Attribut mit dem Typ des zu referenzierenden Objekts aus. Wird ein Objekt
referenziert, so wird eine Referenz darauf in dem Attribut gespeichert, ansonsten
ist der Eintrag null.

Qualifizierte Rollen sowie nicht qualifizierte zu-n-Rollen miissen eine beliebige
Anzahl von Objekten verwalten kénnen, wobei der Zugriff auf die von einer quali-
fizierten Rolle verwalteten Objekte iiber den zugehdrigen Schliissel erfolgen muss.
Zusétzlich konnen diese drei Rollenarten, ndmlich nicht qualifizierte zu-n- und
qualifizierte zu-1- und zu-n-Rollen, geordnet oder sortiert sein. In diesen Féllen
miissen die Eintrége bei einer geordneten Assoziation stets ihre Reihenfolge behal-

2In Java ist es nicht moglich, Objekte zu l6schen. Um der Semantik von Aggregationen nach-
zukommen, werden alle Objektreferenzen auf ,zu 16schende“ Objekte entfernt, damit diese
von dem Garbage Collector von Java eingesammelt werden konnen.

16

3.2 Rollenimplementierung innerhalb der Modellklassen

ten, wihrend sie bei einer sortierten Assoziation nach einem bestimmten Kriterium
sortiert vorliegen miissen. Fiir alle diese Rollenarten aufler der nicht qualifizierten
zu-1-Rolle werden also spezielle Container benotigt, die eine beliebige Anzahl von
Objekten in der beschriebenen Weise verwalten (Anforderung 6).

Die in dem Java Collections Framework enthaltenen Definitionen von Set-,
Map- und List-Schnittstellen (Paket java.util) stellen eine gute Basis fiir die
Container-Implementierung dar. Die zugehorigen Standard-Implementierungen der
Schnittstellen (z.B. java.util.HashMap) haben aber die Eigenschaft, dass es bei
der Verwendung von Iteratoren (java.util.Iterator) zu Ausnahmen (Concur-
rentModificationExceptions) kommt, wenn sich der Container-Inhalt wahrend der
Iteration &ndert. Dadurch wird die Benutzung der Container erschwert (Anforde-
rung 4). Aulerdem ist es moglich, Container-Eintrage wihrend der Iteration zu
entfernen. Das fiihrt dazu, das evtl. notwendige Konsistenzpriifungen innerhalb
der Assoziationsmethoden umgangen werden kénnen (Anforderung 1).

Es wurde festgestellt, dass in allen moglichen Fillen der Iterator eines Set-, Map-
oder List-Objekts sinnvoll weiterverwendet werden kann, nachdem der Container-
Inhalt sich gedindert hat. Um ConcurrentModificationExceptions zu vermeiden und
Modifikationen des Container-Inhalts durch Iteratoren zu verbieten, haben sich die
Entwickler von Fujaba dafiir entschieden, die von Java bereitgestellten Container
anzupassen, obwohl die benétigte Funktionalitdt durch die Standard-Container
der Java-Bibliothek zum groiten Teil bereitgestellt wird.

Ungliicklicherweise war es nicht moglich, die bereits vorhandene Container-
Implementierung von Java (z.B. die Klassen HashMap, TreeSet, LinkedList) durch
Vererbung (Spezialisierung) zu erweitern. Die Iteratoren der Standard-Container
werden durch interne Klassen implementiert. Diese Klassen und einige fiir eine
Spezialisierung wichtige Variablen sind fiir erbende Klassen nicht sichtbar. Aus
diesem Grund wurde fiir die Fujaba-Implementierung der Container der Quell-
code der Java-Standard-Container kopiert und an die Anforderungen angepasst.
So entstand fiir jede der oben genannten Rollenarten eine spezielle Container-
Implementierung in dem Paket de.upb.tools.fca.

Fiir jeden der realisierten Container gibt es auch eine Version, die einen Benach-
richtigungsmechanismus implementiert (Anforderung 8). Mit Hilfe von weiteren
Methoden in den Modellklassen kénnen sich Listener-Objekte bei einem Modell-
element registrieren, um bei Anderungen der Assoziation durch PropertyChange-
Events benachrichtigt zu werden.

Damit die Assoziationsimplementierung auch in nebenldufigen Anwendungen
verwendet werden kann und Thread-sicher ist (Anforderung 7), werden alle Zu-
griffsmethoden der Container als kritische Bereiche betrachtet und durch exklu-
sive Zugriffe geschiitzt. Das passiert durch das Schliisselwort synchronized bei
der Deklaration der Container-Methoden. Diese Funktionalitdt kann aber nicht
abgestellt werden.

17

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

Typsicherheit

Die Standard-Container der Java-Bibliothek, die fiir die spezielle Container-Im-
plementierung verwendet wurden, sind als allgemeine nicht-homogene Container?
implementiert. Generics waren zu diesem Zeitpunkt nicht verfiighar. Deswegen
sind Typumwandlungen (type casts) von dem allgemeinen Typ java.lang.0Object
zu dem speziellen Typ (z.B. Mieter) notwendig. Die Korrektheit dieser Typum-
wandlungen kann nur zur Laufzeit iiberpriift werden, wodurch bei der speziellen
Implementierung der Container und damit auch bei der gesamten Assoziations-
implementierung keine Typsicherheit gegeben ist (Anforderung 2).

Auflerdem konnen Objekte falschen Typs in die Container eingefiigt werden,
obwohl die Assoziationsmethoden — wie addToBewohner und setHeim in Abb. 3.4
(S. 15) — die richtigen Typen (hier: Mieter und Haus) bei ihren Parametern ver-
wenden. Eine Methode, die in der gleichen Klasse wie eine der Assoziationsme-
thoden definiert ist, kann auf alle in der gleichen Klasse definierten Container
direkt zugreifen. Dadurch kann diese Methode auch Objekte beliebigen Typs in
die allgemein definierten Container einfiigen. Eine Verwendung der Assoziations-
methoden kann so umgangen werden. Der entstehende Typfehler wird erst zur
Laufzeit erkannt.

Es ist moglich, diese Implementierung typsicher zu machen, indem generische
und typsichere Container verwendet und die Riimpfe der generierten Assoziations-
methoden angepasst werden (sieche Abschnitt 3.2.3, S. 20). Die Container kénnen
mit den Typen der an einer Assoziation beteiligten Modellelemente parametrisiert
werden. Dadurch kénnen Typumwandlungen (z.B. bei der Iteration iiber die re-
ferenzierten Elemente) innerhalb der Assoziationsmethoden verhindert und eine
statische Typisierung erreicht werden.

3.2.2. Evaluation

Die Assoziationsimplementierung bei diesem Ansatz ist bisher nicht typsicher (An-
forderung 2). Dadurch, dass sie sich komplett innerhalb der beiden an einer As-
soziation beteiligten Klassen befindet (und nicht etwa in einer Bibliothek), ist
es aber moglich den Code beliebig anzupassen und insbesondere auch typsicher
zu machen. Die Konsistenz bei bidirektionalen Assoziationen wird stets gewahrt
(Anforderung 1).

Leider werden sehr viele Assoziationsmethoden in den modellierten Klassen im-
plementiert, was den Code uniibersichtlich (Anforderung 3) macht und die Be-
nutzung (Anforderung 4) so implementierter Modelle sowie deren Wartung er-
schwert (Anforderung 5). Bei einer geordneten 1-zu-n-Assoziation z.B. werden in
der Klasse auf der Seite der zu-n-Rolle 18 verschiedene Methoden zur Verwen-

3 Homogene Container kénnen nur Objekte eines bestimmten Typs enthalten. Das Einfiigen von
Objekten eines anderen Typs ist nicht moglich. Im Gegensatz dazu gibt es allgemein definierte
Container, die Objekte beliebigen Typs enthalten kénnen (in Java sind das Objekte vom Typ
java.lang.0Object).

18

3.2 Rollenimplementierung innerhalb der Modellklassen

dung der Assoziation implementiert. Schon bei wenigen Assoziationen, an denen
eine Klasse beteiligt ist, {iberwiegt damit die Anzahl der darin implementierten
Assoziationsmethoden die Anzahl der modellierten Methoden.

Die Wartung der speziellen Container-Implementierung ist schwierig, denn die
Standard-Container wurden durch eine Modifikation ihres Quellcodes neu imple-
mentiert. Anderungen der Container-Implementierung von Java (z.B. die Umstel-
lung auf Generics in der Java-Version 1.5) haben keine Auswirkungen auf diese
spezielle Implementierung. Sie muss von ihren Entwicklern extra angepasst wer-
den.

Bei einer Anderung der Assoziationsimplementierung (ohne, die Schnittstellen
zu verandern) wiirden sich auch die Riimpfe der Assoziationsmethoden &ndern.
Dadurch muss die Implementierung des Modells neu generiert bzw. angepasst und
erneut kompiliert werden.

Die Methodenriimpfe der verwendeten Assoziationsmethoden sind bei Rollen
(bzw. Assoziationen) mit gleichen Eigenschaften nahezu identisch. Trotzdem wer-
den sie fiir jede Assoziation getrennt implementiert. Dadurch entsteht Code-Re-
dundanz, was wiederum die Wartung eines so implementierten Modells erschwert.

Dadurch, dass es keine allgemeinen Schnittstellen fiir Assoziationen gibt und die
Methodennamen sich immer unterscheiden, ist eine Gleichbehandlung dhnlicher
oder gleicher Assoziationen (Assoziationen mit gleichen Eigenschaften, z.B. meh-
rere geordnete 1-zu-n Assoziationen) nicht ohne gréferen Aufwand (z.B. durch
Reflection®) moglich.

Die vorgestellte Assoziationsimplementierung ermoglicht eine Abbildung aller
in Abschnitt 2.1 (S. 5) vorgestellten Assoziationen auf Java-Quellcode (Anforde-
rung 6).

Durch die exklusiven Zugriffe auf Container wird Thread-Sicherheit geboten
(Anforderung 7), allerdings kann diese nicht abgestellt werden, um die Laufzeit
von nicht-nebenldufigen Anwendungen zu verbessern.

Ein Benachrichtigungsmechanismus wird mit Hilfe von speziellen Containern
realisiert (Anforderung 8).

Vorteile

e Typsicherheit (fehlt in Fujaba, kann aber realisiert werden)
e Konsistenzerhaltung bei bidirektionalen Assoziationen
e Thread-Sicherheit (nicht abstellbar, aber vorhanden)

e Benachrichtigungsmechanismus

4 Reflection ist eine Technik der Programmiersprache Java, zur Laufzeit Informationen iiber
die Klasse eines Objekts zu bekommen. Das erméglicht unter Anderem auch das Finden und
Aufrufen von in einer Klasse deklarierten Methoden, wenn die Methodensignatur bekannt
ist.

19

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

Nachteile

e erschwerte Anwendungsentwicklung und hoher Wartungsaufwand durch zu
viele Methoden, Fehlen von allgemeinen Assoziationsschnittstellen, Code-
Redundanz und eine spezielle Container-Implementierung

e Kompilierabhéngigkeit zwischen Modell und der Assoziationsimplementie-
rung: Anderungen an der Assoziationsimplementierung erfordern eine An-
passung (oder Neugenerierung) der Modellimplementierung und ihre Neu-
kompilierung

3.2.3. Typsicherheit durch spezielle Java-Container

In diesem Abschnitt wird erldutert, wie die in dem Abschnitt 3.2.1 (S. 13) be-
schriebene Assoziationsimplementierung typsicher gemacht werden kénnte. Dabei
wird der Ansatz aus Abschnitt 3.2.1 angepasst und anschlielend bzgl. der Anfor-
derungen an eine Assoziationsimplementierung evaluiert.

Typsicherheit

Die Assoziationsmethoden werden bei dem in Abschnitt 3.2.1 (S. 13) beschrie-
benen Ansatz fiir jede Assoziation, an der eine Modellklasse beteiligt ist, speziell
generiert. Die Parameter der Methoden haben den Typ der durch eine Assoziation
verbindbaren Modellelemente.

Die Typsicherheit geht durch die Verwendung von nicht-homogenen Containern
und nicht generischen Iteratoren verloren. Diese kénnen nur Objekte von dem
allgemeinsten Java-Typ java.lang.0Object zuriickgeben. Das wiederum erfordert
Typumwandlungen in den tatséchlichen Typ der verwalteten Elemente und damit
auch Typpriifungen zur Laufzeit.

Durch die Verwendung von typsicheren Containern, die seit der Version 1.5 in
der Java-Bibliothek verfiigbar sind, und einigen Anpassungen am generierten Code
kann Typsicherheit hergestellt werden.

Dazu werden die verwendeten Container mit den Typen der Modellelemente pa-
rametrisiert. Anstatt der allgemeinen Iteratoren geben die Assoziationsmethoden
generische parametrisierte Iteratoren zuriick. Bei dem Beispiel fiir das Klassendia-
gramm in Abb. 3.1 (S. 14) wird der Container anstatt durch die Anweisung

this.bewohner = new FHashSet();
in der Methode addToBewohner in Abb. 3.4 (S. 15) durch die Anweisung
this.bewohner = new HashSet<Mieter>();

instanziiert. Der verwendete Container wird also mit dem Typ Mieter der verwalt-
baren Modellelemente parametrisiert.

20

3.2 Rollenimplementierung innerhalb der Modellklassen

Einige weitere Methoden miissen ebenfalls angepasst werden, um die parame-
trisierten Container zu verwenden. Fiir das Beispiel Abb. 3.1 (S. 14) wird unter
Anderem auch die Methode removeAllFromBewohner in die Modellklasse Haus ge-
neriert. Diese wiirde nun einen mit dem Typ Mieter parametrisierten Iterator ver-
wenden, wodurch die Typumwandlung (type cast) unnotig wird (siehe Abb. 3.6).

public void removeAllFromBewohner () public void removeAllFromBewohner ()
{ {
Mieter tmpValue; Mieter tmpValue;
Iterator iter = Iterator<Mieter> iter =
this.iteratorOfBewohner() ; this.iterator0fBewohner();
while (iter.hasNext()) while (iter.hasNext())
{ {
tmpValue = (Mieter) iter.next (); tmpValue = iter.next ();
this.removeFromBewohner (tmpValue); this.removeFromBewohner (tmpValue);
} }
} }

Abbildung 3.6.: Anpassung der Methode removeAllFromBewohner zu dem Beispiel
in Abb. 3.1 (S. 14)

Durch die Verwendung typsicherer parametrisierter Container und die zugehd-
rigen Anpassungen in den Assoziationsmethoden kann der fiir die Assoziations-
implementierung generierte Code typsicher gemacht werden. Alle Typpriifungen
erfolgen dann zur Ubersetzungszeit.

Verwendung von Containern

Das Problem, das auch schon die Fujaba-Entwickler hatten und durch eine eigene
Implementierung gelost haben, ist die fehlende Funktionalitdt bei den Standard-
Containern der Java-Bibliothek. Diese bieten z.B. keinen Benachrichtigungsmecha-
nismus (Anforderung 8) und erzeugen Laufzeitfehler, wenn sich bei der Iteration
iiber die in einem Container verwalteten Elemente der Container-Inhalt éndert
(Anforderung 4).

Abhilfe schaffen da die seit der Java-Version 1.5 verfiighbaren Container in dem
Paket java.util.concurrent der Java-Bibliothek. Dazu zdhlen die Klassen Con-
currentHashMap und ConcurrentLinkedQueue. Diese Container sind nicht nur typsi-
cher (Anforderung 2), sondern sie stellen auch Iteratoren zur Verfiigung, die keine
Laufzeitfehler erzeugen (Anforderung 4) und bieten Thread-Sicherheit (Anforde-
rung 7) durch exklusive Zugriffe auf die Container.

Nicht-exklusive Zugriffe sind allerdings nicht méglich, weil alle Methoden mit
dem Schliisselwort synchronized deklariert sind und diese Eigenschaft nicht ab-
gestellt werden kann.

Diese Container sind fiir die Anwendung in nebenléufigen Programmen opti-
miert. Sie sind so organisiert, dass sie eine bestimmte feste Anzahl nebenlaufiger
Zugriffe erlauben, ohne die zugreifenden Threads zu blockieren. Das wird dadurch
erreicht, dass die Container-Inhalte partitioniert und die Zugriffe unabhéngig von-
einander auf den einzelnen Partitionen behandelt werden.

21

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

Damit auch Benachrichtigungen (PropertyChangeEvents) bei Anderungen des
Container-Inhalts verschickt werden (Anforderung 8), kénnten spezielle Wrapper-
Klassen fiir die Container-Klassen implementiert werden. Die Wrapper-Klassen
wiirden die gesamte Funktionalitdt an die Container delegieren und zusétzlich
das Registrieren von Listener-Objekten ermdglichen sowie diese bei Anderungen
benachrichtigen.

Die von diesen Containern bereitgestellten Iteratoren (java.util.Iterator)
bieten die Moglichkeit, die Container-Inhalte zu verdndern (Iterator.remove()).
Es ist aber unerwiinscht, dass der Container-Inhalt auflerhalb der Assoziations-
methoden verdndert werden kann. Dadurch wére es moglich, Konsistenzpriifungen
innnerhalb der Assoziationsmethoden zu umgehen (Anforderung 1).

Um die remove-Operation auf einem Iterator zu verbieten, kann eine Wrapper-
Klasse fiir Iteratoren implementiert werden, die die Iterator-Methoden hasNext
und next an den tatséchlichen Iterator delegiert, bei der Methode remove aber eine
UnsupportedOperationException wirft. Anstatt des tatsdchlichen Iterators wird von
den Assoziationsmethoden (z.B. iteratorOfBewohner bei dem Beispiel in Abb. 3.1
auf S. 14) der Iterator-Wrapper verwendet bzw. zuriickgegeben.

In der Klasse Collections (Paket java.util) sind auch Wrapper fiir unverénder-
bare Sets, Maps und Lists vorhanden (z.B. durch die Methode unmodifiableMap),
die es erméglichen, Anderungen von Container-Objekten zu verbieten. Auch eine
Anderung durch den Iterator eines Containers ist dann nicht mehr méglich. Die
Verwendung dieser Wrapper ist eine Alternative fiir die Implementierung eines
eigenen Iterator-Wrappers.

Leider existieren zur Zeit nur die zwei genannten Container-Klassen in der
Java-Bibliothek (Version 1.5). Fiir die Implementierung von Assoziationen werden
aber unter Anderem Container benétigt, die die verwalteten Objekte sortieren.
Das trifft auf die Klassen ConcurrentHashMap und ConcurrentLinkedQueue nicht
zu. Erwiinscht wéren entsprechende Concurrent-Versionen der Klassen LinkedList,
HashSet, TreeMap und TreeSet aus dem Paket java.util. Laut Aussagen von
Doug Lea® vom Februar 2005 sind einige zusétzliche Klassen dieser Art und ande-
re bereits im Rahmen des JSR-166° implementiert worden und sollen in die néchste
Java-Version” intergriert werden. Eine Vorschau der iiberarbeiteten Schnittstellen
(APIs) ist unter [Lea05] erhéltlich. Zu den neuen Klassen zéhlen insbesondere Con-
currentSkipListMap und ConcurrentSkipListSet. Diese bieten eine Obermenge der
Funktionalitdt von TreeMap und TreeSet aus dem Paket java.util. Zusammen
mit diesen neuen Klassen wére es vermutlich moglich, eine Assoziationsimplemen-

% Doug Lea ist ein Professor der Informatik an der State University of New York at Oswego. Er
ist Autor des Buchs Concurrent Programming in Java: Design principles and patterns (ISBN
0-201-31009-0) und verschiedener weit verbreiteter Softwarekomponenten. Insbesondere ist
er Autor der beiden Klassen ConcurrentHashMap und ConcurrentLinkedQueue.

6JSR steht fiir Java Specification Request. Im JSR-166 werden einige Werkzeuge fiir die Ver-
wendung in nebenldufigen Programmen vorgeschlagen. Hauptveranwortlicher ist Doug Lea.

"Voraussichtlich wird Java 1.6 mit dem Code-Namen Mustang die nichste Java-Version sein,
nachdem Version 1.5.1 (Dragonfly) doch nicht versffentlicht wird.

22

3.3 Rollen als eigenstiandige Klassen

tierung unter Verwendung der Concurrent-Klassen zu realisieren. Das muss aber
nach Verdffentlichung der neuen Klassen genauer untersucht werden.

Evaluation

Angenommen, es wéren alle genannten Concurrent-Klassen verfiighar, dann waren
bei der Verwendung dieser Container-Implementierung nur einige Wrapper-Klas-
sen notwendig. Eine eigene Implementierung der Container konnte vermieden wer-
den.

Die Konsistenz bei bidirektionalen Assoziationen wire weiterhin garantiert (An-
forderung 1). Zusatzlich wire die Assoziationsimplementierung aber typsicher
(Anforderung 2).

Die Container in dem Paket java.util.concurrent erzeugen bei Iterationen
selbst dann keine Laufzeitfehler, wenn sich der Container-Inhalt wihrenddessen
dndert (Anforderung 4). Das erhoht die Benutzbarkeit.

Der Aufwand fiir die Wartung der Container-Klassen kénnte drastisch reduziert
werden (Anforderung 5), da dieser Ansatz auf Containern aus der Java-Bibliothek
basiert.

Thread-Sicherheit wire gegeben (Anforderung 7), aber es wiren keine nicht-
exklusiven Zugriffe auf Container-Inhalte moglich, was die Performance von nicht-
nebenlaufigen Anwendungen negativ beeinflussen wiirde. Bei nebenléufigen An-
wendungen dagegen konnten die Container die Performance erhchen, da auch
mehrere nebenléufige Zugriffe auf die Container-Inhalte ohne Blockieren moglich
sind.

Ein Benachrichtigungsmechanismus (Anforderung 8) wird von den Java-Contai-
nern nicht bereitgestellt und miisste extra implementiert werden, z.B. in Wrapper-
Klassen.

Es miisste auch iiberpriift werden, um wie viel der Laufzeit- und Speicherbedarf
wiéchst, der durch die Partitionierung der Container-Inhalte und die exklusiven
Zugriffe darauf entsteht.

Solange sich keine weiteren Container wie ConcurrentHashMap und Concurrent-
LinkedQueue in der Java-Bibliothek befinden, insbesondere mit der Unterstiitzung
fiir Sortierung, ist eine Umsetzung dieses Ansatzes vorerst nicht moéglich.

3.3. Rollen als eigenstindige Klassen

Mitarbeiter der Software Engineering Research Group an der Universitiat Kassel
haben eine andere als die bisher in Fujaba verwendete Losung entwickelt und fiir
die Implementierung von Assoziationen vorgeschlagen [MZ04]. Diese Losung zielt
hauptséchlich darauf ab, den von Fujaba generierten Code lesbarer und die Code-
Generierung fiir Assoziationen leichter wartbar zu machen. Insbesondere wollte
man die vielen fiir die Implementierung der Assoziationen generierten Methoden
aus den Modellklassen in eigene spezielle Klassen verlagern. Zusétzlich ist fiir

23

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

diesen Ansatz die Verwendung von Java Generics geplant, um Typsicherheit zu
garantieren, allerdings ist das bisher nicht vollsténdig umgesetzt worden.

Auch in [HBRO0] wird eine Abbildung von UML-Modellen auf Java-Code vor-
gestellt. Hier werden fiir jede Modellklasse zwei Java-Klassen generiert (eine ab-
strakte fiir die Schnittstelle und eine fiir das Verhalten). Assoziationen werden
mit Hilfe von so genannten Cursorn implementiert, die den Rollen von an Asso-
ziationen beteiligten Objekten entsprechen. Der in [HBRO00] verwendete Ansatz
zur Implementierung von Assoziationen #hnelt dem Ansatz aus [MZ04], jedoch
verspricht der Ansatz von Maier und Ziindorf [MZ04] eine hohere Benutzbarkeit
und Unabhéngigkeit der Assoziationsimplementierung von der Modellimplemen-
tierung. Deswegen wird hier nur der in [MZ04] vorgeschlagene Ansatz betrachet.

3.3.1. Beschreibung des Ansatzes
Uberblick

Bei dieser Vorgehensweise werden Assoziationen mit Hilfe von Rollenklassen im-
plementiert. Jedes Rollenobjekt repréasentiert ein Ende einer Assoziation und stellt
alle zur Verwaltung der Assoziation benétigten Methoden zur Verfiigung, die bis-
her in die Modellklasse generiert wurden.

Jedes Modellelement besitzt fiir jede Assoziation, an der es beteiligt ist, ein
Rollenobjekt. Die Rollen ermoglichen das Verbinden und Trennen von Modellele-
menten, deren Klassen laut UML-Modell durch eine Assoziation verbunden sind.
Insbesondere wird durch die Rollen die Konsistenz der bidirektionalen Assoziatio-
nen beim Verbinden und Trennen aufrechterhalten.

Die Rollen bieten abhéingig von der Art der Assoziation, zu der sie gehoren,
verschiedene Methoden und Funktionalitdt. So gibt es z.B. spezielle Klassen fiir
qualifizierte und geordnete Rollen. Da die Rollenimplementierung allgemein ver-
wendbar ist, werden alle Rollen in einer 6ffentlich zugénglichen Bibliothek zusam-
mengefasst [Mai04].

Fiir die Verwaltung der durch eine Assoziation verbundenen Modellelemente
werden Standard-Container der Java-Bibliothek innerhalb der Rollen verwendet.

Bevor die Details genauer erlautert werden, muss erwihnt werden, dass dieser
Ansatz [MZ04] bis zur Fertigstellung dieser Studienarbeit noch in Entwicklung
war. Aus diesem Grund kann hier nur die bis dahin (21.02.2005) vorliegende Ver-
sion 0.4 [Mai04] vorgestellt und evaluiert werden.

Anpassung der Modellklassen

Bei diesem Ansatz werden Assoziationen mit Hilfe von eigenstéindigen Klassen fiir
Rollen implementiert. Fiir jede Assoziation, an der ein Modellelement beteiligt
sein kann, erhilt es ein an die Assoziationsart angepasstes Rollenobjekt. Uber je
ein Attribut hélt das Modellelement eine Referenz zu seiner Rolle und umgekehrt
(d.h. jedes Rollenobjekt kennt auch seinen Besitzer).

24

3.3 Rollen als eigenstiandige Klassen

Die Rollen werden als Container innerhalb der Modellklassen benutzt. Sie wer-
den bei Bedarf in einer Getter-Methode der Modellklasse erstellt, eine Setter-
Methode existiert nicht. Um zwei Modellelemente miteinander zu verbinden oder
voneinander zu trennen, konnen die Methoden der Rollenobjekte verwendet wer-
den.

class Haus implements PropertyChangeSource class Mieter implements PropertyChangeSource
{ {
private ToManyRole<Haus,Mieter> bewohner = null; private ToOneRole<Mieter,Haus> heim = null;
public ToManyRole<Haus,Mieter> bewohner () public ToOneRole<Mieter,Haus> heim()
{ {
if (this.bewohner == null) if (this.heim == null)
{ {
this.bewohner = new ToManyRole<Haus,Mieter>(this.heim = new ToOneRole<Mieter,Haus>(
"heim", "propertyHeim", this); "bewohner", "propertyMieter", this);
} }
return this.bewohner; return this.heim;
} }
// PropertyChangeSource methods // PropertyChangeSource methods
} }

Abbildung 3.7.: Generische Implementierung der Modellklassen zum Diagramm

in Abb. 3.1

Durch die Verlagerung der fiir die Verwaltung von Assoziationen benétigten
Methoden in eigene dafiir vorgesehene Rollenklassen soll der Quellcode fiir die mo-
dellierten UML-Klassen (Modellklassen) kiirzer und iibersichtlicher werden (An-
forderung 3). Der Quellcode zu dem Klassendiagramm in Abb. 3.1 auf Seite 14
wiirde wie in Abb. 3.7 aussehen. Es wird fiir jede Assoziation, an der ein Modell-
element beteiligt sein kann, nur noch eine Methode und ein Attribut innerhalb
der Modellklasse implementiert.

Die bisher vorliegende Rollenimplementierung [Mai04] sieht eine Unterstiitzung
fiir einen Benachrichtigungsmechanismus vor (Anforderung 8), die aber bisher
nicht realisiert wurde. Dafiir ist es allerdings notwendig, dass die Modellklas-
sen die Schnittstelle PropertyChangeSource implementieren (siehe Abb. 3.7). Diese
definiert Methoden zum Feuern von PropertyChangeEvents und Registrieren von
Listenern.

Realisierung der Assoziationen

Die Rollenklassen kapseln die Implementierung von Assoziationen. Je zwei Rollen
reprasentieren dabei eine Assoziation. Diese Klassen sind generisch implementiert
und brauchen fiir ihre Verwendung in der Modellimplementierung nicht neu im-
plementiert oder erweitert zu werden.

Zum Vergleich zum vorhergehenden Implementierungsansatz zeigt Abb. 3.8 die
Objektstruktur wie sie bei der beispielhaften Instanziierung (Abb. 3.2, S. 14) von
dem Klassendiagramm in Abb. 3.1 (S. 14) aussehen wiirde.

Eine Rolle verwaltet alle iiber eine Assoziation referenzierten Modellelemente
und ist dafiir verantwortlich, beim Verbinden oder Trennen zweier Elemene iiber

25

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

eine bidirektionale Assoziation die Konsistenz zu erhalten (Anforderung 1).

Bei dem Beispiel in Abb. 3.1 auf Seite 14 (siehe auch Abb. 3.8) wird die Konsis-
tenz der bidirektionalen Assoziation bewohnt erhalten, indem die Rolle bewohner
(hier: ToManyRole) des Objekts haus beim Verbinden dieses Objekts mit einem
anderen Objekt mieterl entlang der Assoziation bewohnt nicht nur eine Referenz
auf das Objekt mieterl zu den in der Rolle bewohner verwalteten Referenzen hin-
zufiigt, sondern auch eine Referenz auf das Objekt haus zu den in der Rolle von
Objekt mieterl (hier: ToOneRole) verwalteten Referenzen. Das Trennen zweier
Modellelemente erfolgt analog. Damit das mdglich ist, bekommt eine Rolle bei
ihrer Instanziierung ihren eigenen Namen iibergeben. Die Zugriffsmethoden fiir
die Rollen zweier an einer Assoziation beteiligten Klassen haben den gleichen
Namen, wie die Rolle, die sie zuriickgeben. In Abb. 3.7 (S. 25) sind das gerade
heim und bewohner. Mit Hilfe des Reflection-Mechanismus von Java und dieser
Namenskonvention ist es der Rolle bewohner moglich, iiber ein Objekt, das re-
ferenziert werden kann (hier mieterl oder mieter2), auf dessen Rollenobjekt (die
gegeniiberliegende Rolle heim) zuzugreifen, um darauf eine Methode aufzurufen,
die den Besitzer der Rolle bewohner (Objekt haus) zu den von der Rolle heim
verwalteten Objekten hinzufiigt bzw. entfernt.

; linkedObject . .
haus: Haus :ToOneRole backLinkObject mieter1: Mieter
linkedObject L backLinkRoleName =“bewohner” heim
backLinkObject bewohner ToOneRole backLinkObject mieter2: Mieter
ToManvRole backLinkRoleName ="bewohner heim
backLinkRoleName ="heim*“ /P
linkedObjects =L

Abbildung 3.8.: Tatséchliche Objektstruktur zu dem Beispiel in Abb. 3.2

Die Assoziationsimplementierung — wie sie momentan vorliegt — ist ausschlief3-
lich fiir bidirektionale Assoziationen implementiert, kann aber durch eine einfache
Anpassung auch auf Referenzen (Anforderung 6) erweitert werden. Dazu reicht
es aus, bei einer unidirektionalen Assoziation zwischen den Klassen A und B, wo-
bei B referenziert wird, die Methode der Klasse B, die bei einer bidirektionalen
Assoziation die zugehorige Rolle zuriickgeben wiirde, null zuriickgeben zu las-
sen. B hitte also keine Rolle. Die Rollenimplementierung miisste zusétzlich so
angepasst werden, dass in dem Fall, dass keine gegeniiberliegende Rolle existiert
(wie bei B), auch keine Riickverkniipfung beim Verbinden oder Trennen zweier
Modellelemente erstellt wird (es wird keine Referenz von der B-Seite zur A-Seite
erstellt).

Um die Semantik von Aggregationen bei der Abbildung auf Java-Code zu er-
moglichen, implementieren die Rollenklassen eine parameterlose unlink-Methode,
die — wie die in den Modellklassen implementierten removeAllFrom. . .-Methoden
des in Abschnitt 3.2 beschriebenen Ansatzes (siehe S. 16) — alle Referenzen zu Mo-
dellelementen unter Einhaltung der Konsistenz bei bidirektionalen Assoziationen

26

3.3 Rollen als eigenstiandige Klassen

<<interface>>
Role

+getBackLinkRoleName() : String
+getPropertyName() : String
+getRoleName() : String
+unlink() : boolean

/
[> /
/
|
AbstractRole

L extends
PropertyChangeSource

N

r
I
(el

#getBackLinkObject() : L

—— > #getBackLinkRole(R linkedObject) : Role
#setBackLink(R linkedObject, Class|] parameterTypes, Object[| parameters)

LR
AbstractToManyRole — — — r—
#getlinkedObjects() : Collection<R>
| +add(R newObject) : boolean
+link(R newObject) : boolean
+remove(Object object) : boolean
+unlink(R object) : boolean
+unlink() : boolean
A +iterator() : Iterator<R>
+contains(Object object) : boolean
+size() : int

MLRK |
AbstractQualifiedRole — — — —
#getlLinkedObjects() : Map<K, R>
+get(Object key) : R
+put(K key, R newObject) : R
+link(K key, R newObject) : R
+remove(Object key) : R
+unlink(K key) : R
+unlink() : boolean
+values() : Collection<R>
+keySet() : Set<kK>
A +iterator() : lterator<R>
+iteratorOfValues() : Iterator<R>
+iteratorOfKeys() : Iterator<K>
+contains(Object object) : boolean
+containsKey(Object key) : boolean
+size() @ int

L,R
AbstractToOneRole — — — —

#getLinkedObject() : R
#setLinkedObject(R linkedObject) : void
+get(): R

I__E_I

ToManyRole

#getLinkedObjects() : Collection<R>
+add(R newObject) : boolean
| +remove(Object object) : boolean

L,
ToOneRole — — — —

+link(R newLinkedObject) : void
+set(R newLinkedObject) : boolean
+unlink(R object) : boolean
+unlink() : boolean

I _L,_ _|
OrderedToManyRole — — — —

#getLinkedObjects() : Collection<R>

+add(R newObject) : boolean FLRK |

+remove(Object object) : boolean QualifiedRoleByKey — — — r

+get(int index) : R

== +add(int index, R newObject) : void
ToOneRoleByKey — _L'E _I +link(int index, R newObject) : void

+set(int index, R newObject) : R

+link(K key, R newObject) : void +remove(int index) : R

+set(K key, R newObject) : boolean +unlink(int index) : R

+unlink(K key, R newObject) : void +listlterator() : Listlterator<R>

+unlink(R object) : boolean +indexOf(Object object) : int

+unlink() : boolean

#getLinkedObjects() : Map<K, R>

Die Semantik von UML 1.5 bzgl.
parametrisierbarer Klassen

(Templates) erlaubt nicht, dass

Templates Oberklassen sind.

Dieses Diagramm verwendet die

Semantik von Java 1.5. Die dargestellten
Templates sind als generische Klassen oder

riRT
QualifiedRoleByAttribute — — — —
#getLinkedObjects() : Collection<R>

+add(R newObject) : boolean
+remove(Object object) : boolean
+get(Object key) : R

Interfaces im Sinne von Java Generics
anzusehen und kénnen deshalb auch
Oberklassen sein, wie im Diagramm

+removeKey(Object key) : R
+getAttributeName() : String

illustiert.

Abbildung 3.9.: Klassenhierarchie der Rollenbibliothek mit den wichtigsten Me-
thoden und Attributen (Stand: November 2004, Vers. 0.4)

entfernt.

Rollenbibliothek

Da die Anzahl der referenzierten Elemente und die Anforderungen an ihre Ver-
waltung von der Art der Assoziation bzw. der Rolle abhéngen, gibt es verschie-
dene Rollenimplementierungen, die entsprechende Eigenschaften erfiillen. Dabei
wird zwischen zu-1- und zu-n- sowie qualifizierten Rollen unterschieden (Anforde-
rung 6), es gibt z.B. die Klassen ToOneRole und ToManyRole und einige weitere
fiir qualifizierte und geordnete oder sortierte Rollen.

Die Hierarchie der bisher verfiigharen Rollenklassen ist in vereinfachter Form
(nur die wichtigsten Methoden sind dargestellt) in der Abb. 3.9 dargestellt. Wie
die Hierarchie (Abb. 3.9) und die Abbildung 3.7 (S. 25) zeigen, werden die Rollen

27

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

mit den Typen der Modellelemente parametrisiert, die durch eine Assoziation
verbunden werden konnen. In dem Beispiel aus Abb. 3.7 sind das gerade Haus
und Mieter fiir die Typvariablen L und R in der Abb. 3.9.

Beim Hinzufiigen oder Entfernen eines Elements bei qualifizierten Rollen reicht
es nicht aus, nur das zu referenzierende oder zu entfernende Modellelement an die
zustdndige Methode zu iibergeben. Die Qualifizierung verlangt einen Schliissel,
iiber den das Element erreicht werden kann. Dieser muss zusétzlich zum Modellele-
ment an die entsprechende Methode als Parameter iibergeben werden. Das gleiche
gilt auch fiir die gegeniiberliegende Seite, selbst wenn diese nicht qualifiziert ist,
denn beim Verbinden oder Trennen zweier Modellelemente muss auch die Referenz
in Riickrichtung erstellt bzw. geloscht werden, um die Konsistenz zu erhalten.
Dazu wird aber der Schliissel als zusétzlicher Parameter benétigt.

Dieses Problem wird hier dadurch gelost, dass bei einer einseitig qualifizierten
Assoziation spezielle zu-1- und zu-n-Rollenklassen verwendet werden. Fiir das Bei-
spiel in Abb. 3.5 (S. 16) wiirden die in der Abb. 3.9 dargestellten Rollenklassen
QualifiedRoleByKey fiir Universitdit und ToOneRoleByKey fiir Student verwendet
werden. Bei beidseitig qualifizierten Assoziationen werden sogar zwei Schliissel
benétigt, fiir je eine Seite der Assoziation einer. Wie mit beidseitig qualifizierten
Assoziationen bei diesem Ansatz umgegangen wird, ist aus [Mai04] und [MZ04]
nicht ersichtlich.

Verwendung von Containern

Bei der Implementierung in [Mai04] benutzen die Rollen, die mehrere Referenzen
verwalten miissen, Container aus der Java-Bibliothek, z.B. HashSet oder Linked-
List. Bei den zu-1-Rollen wird die einzig mogliche Referenz in einem Attribut
gespeichert.

Funktionalitit wie das Sortieren der referenzierten Elemente oder der Zugriff
darauf iiber einen Schliissel wird an die Container delegiert. Speziell fiir geordnete
und sortierte Assoziationen gibt es nur eine Rollenklasse, ndmlich Ordered ToMany-
Role. Durch einen Parameter wird entschieden, ob der verwendete Container die
Reihenfolge der verwalteten Elemente behalten (geordnete Rolle) oder sie nach
einem bestimmten Kriterium sortieren soll (sortierte Rolle).

Typsicherheit

Der hier beschriebene Ansatz zur Assoziationsimplementierung ist zwar bereits
mit Java Generics implementiert, kann aber keine Typsicherheit (Anforderung 2)
garantieren. Das liegt zum einen an der Verwendung des Reflection-Mechanismus®
von Java, der zur Laufzeit Informationen iiber eine Klasse beschaffen kann, nicht

8Man beachte, dass Java Generics so realisiert sind, dass alle Objekte einer generisch implemen-
tierten parametrisierten Klasse, auch wenn sie mit verschiedenen Typparametern initialisiert
worden sind, immer die gleiche Klasse verwenden. Der Reflection-Mechanismus kann nur
statische Informationen zur Klasse, ihren Methoden und Attributen beschaffen.

28

3.3 Rollen als eigenstiandige Klassen

aber Informationen iiber die von einem Objekt verwendeten Typparameter, da die-
se zur Laufzeit nicht existieren. Zum anderen verwendet die bisher vorliegende Im-
plementierung Typumwandlungen (type casts), die nur zur Laufzeit durchgefiihrt
werden konnen und daher nicht typsicher sind. Die Typumwandlungen sind aber
hauptséchlich aufgrund der Verwendung des Reflection-Mechanismus nétig, da
dieser bei einem Methodenaufruf durch java.lang.reflect.Method.invoke als
Riickgabetyp immer den allgemeinsten Java-Typ java.lang.0bject verwendet.

Obwohl diese Implementierung keine vollstdndig statische Typpriifung erlaubt,
ist es dennoch nicht méglich, Objekte falschen Typs in die Container einzufiigen.
Das liegt daran, dass die Rollenklassen nur Methoden zum Einfiigen von Objekten
des richtigen Typs haben. Bei einer Spezialisierung einer der Rollenklassen kénnen
die verwendeten Container-Objekte nur durch die definierten Zugriffsmethoden
erreicht werden, denn die Container-Variablen sind durch private-Deklarationen
in erbenden Klassen nicht sichtbar. Weil die Rollenklassen in einer Bibliothek
liegen und deswegen nicht direkt verdndert werden kénnen, ist es einem Entwickler
nicht moglich durch Hinzufiigen weiterer Methoden in eine der Rollenklassen die
Zugriffsmethoden zu umgehen. Bei dem in Abschnitt 3.2 beschriebenem Ansatz
ist das moglich (siehe Seite 18).

3.3.2. Evaluation

Die Vorteile dieses Ansatzes sind vor Allem die bessere Benutzbarkeit (Anforde-
rung 4), hohere Lesbarkeit (Anforderung 3) und der geringere Wartungsaufwand
(Anforderung 5) durch deutlich kiirzeren, tibersichtlicheren und versténdlicheren
Code fiir die Modellklassen und die Auslagerung der Assoziationsmethoden in ei-
gene dafiir vorgesehene Rollenklassen. Die Klassenhierarchie der Rollen und die
darin verwendeten Abstraktionen bzw. Spezialisierungen ermoglichen eine einheit-
liche Behandlung von Rollen mit gleicher Schnittstelle, was die Anwendungsent-
wicklung bequemer macht.

Durch die Auslagerung der Rollen in eine Bibliothek, ist ihre Wartung — solange
sich die Schnittstellen nicht &ndern — moglich, ohne dass die Implementierung der
UML-Modelle angepasst oder neu generiert und kompiliert werden muss.

Der Hauptnachteil dieser Assoziationsimplementierung ist, dass keine Typsi-
cherheit (Anforderung 2) garantiert werden kann. Man miisste die Verwendung
von Reflection durch einen anderen flexiblen Mechanismus oder ein anderes Design
ersetzen, um Typsicherheit garantieren zu kénnen und gleichzeitig die Konsistenz
der bidirektionalen Assoziationen zu erhalten (Anforderung 1).

Die Implementierung der Rollen (und damit auch der Assoziationen) ist durch
die Verwendung von Reflection nur noch schwer lesbar und erschwert die Wartung
der Rollenbibliothek.

Die Benutzung von Reflection hat auch noch einen anderen nicht zu vernachlas-
sigenden Nachteil: Methodenaufrufe mit Hilfe von Reflection benétigen eine deut-
lich hohere Laufzeit, als gewohnliche Methodenaufrufe. Der gréfite Aufwand ent-
steht dabei beim Heraussuchen der aufzurufenden Methode (Methoden-Lookup).

29

3. ANSATZE ZUR IMPLEMENTIERUNG VON ASSOZIATIONEN

Bei mehr als einem Aufruf der gleichen Methode kann der Gesamtaufwand durch
Caching minimiert werden. Dann muss die Methode nur ein Mal vor dem ersten
Aufruf herausgesucht werden. Doch auch dann ist der Laufzeitbedarf hoher als bei
gewohnlichen Methodenaufrufen (siche Anhang A.2).

Die vorgestellte Assoziationsimplementierung erméglicht eine Abbildung der
meisten in Abschnitt 2.1 (S. 5) vorgestellten Assoziationen auf Java-Quellcode
(Anforderung 6). Fiir beidseitig qualifizierte Assoziationen scheint es noch keine
Unterstiitzung in [Mai04] zu geben.

Bei Iterationen kénnen Laufzeitfehler auftreten, wenn sich wihrenddessen der
zugehorige Container-Inhalt d&ndert. Dadurch ist die Benutzbarkeit dieser Imple-
mentierung eingeschréinkt (Anforderung 4).

Thread-Sicherheit (Anforderung 7) ist bei der zur Zeit vorliegenden Imple-
mentierung [Mai04] nicht gegeben. Ein Benachrichtigungsmechanismus (Anfor-
derung 8) ist zwar vorgesehen, ist aber momentan ebenfalls nicht verfiighar.

Die Rollenobjekte, die zur Laufzeit paarweise je eine Verbindung zwischen zwei
Modellelementen entlang einer Assoziation représentieren, erhéhen den Speicher-
bedarf der modellierten und auf diese Weise implementierten Anwendung. Bei der
Implementierung der Rollen innerhalb der Modellklassen (Abschnitt 3.2, ab S.13)
sind keine weiteren Objekte (aufler den Containern zur Verwaltung von referen-
zierten Objekten, die auch bei dieser Losung verwendet werden) notig.

Vorteile

e die Methoden zur Verwaltung der Assoziationen werden in eigene Klassen
ausgelagert, der Code fiir Modellklassen wird iibersichtlicher, erhéhte Les-
barkeit

e unabhingige Wartung der Assoziationsimplementierung moglich, solange die
Schnittstellen sich nicht &ndern; Modellimplementierung bedarf dann keiner-
lei Anpassung oder Neukompilierung

e Benutzung der Assoziationsimplementierung unter Anderem durch Abstrak-
tion und gemeinsame Schnittstellen vereinfacht

e Trennung der Assoziationsimplementierung von der Implementierung der
Modell-Klassen erziehlt ein besser strukturiertes Design

e Konsistenzerhaltung bei bidirektionalen Assoziationen

Nachteile

e es gibt keine Typsicherheit, diese kann auch nicht realisiert werden
e bei Iterationen kénnen Laufzeitfehler auftreten

e Thread-Sicherheit und ein Benachrichtigungsmechanismus fehlen

30

3.4 Fazit

e Reflection senkt die Lesbarkeit der Rollenimplementierung und der War-
tungsaufwand fiir die Rollenbibliothek wichst

e geringe Performance der Modellimplementierung: hoherer Speicherverbrauch
durch Rollenobjekte, hohere Laufzeit durch Reflection

3.4. Fazit

In diesem Kapitel wurden Anforderungen an eine Assoziationsimplementierung
formuliert. Es wurden der bei der Code-Generierung von Fujaba verwendete An-
satz und der in [MZ04] vorgeschlagene Ansatz bzgl. der Anforderungen evaluiert.
Ebenso wurde diskutiert, wie die von Fujaba generierte Assoziationsimplementie-
rung typsicher gemacht werden kann.

Es stellte sich heraus, das bei der vollstandigen Implementierung der Assozia-
tionen innerhalb der Modellklassen, wie es bei Fujaba der Fall ist, eine typsichere
Assoziationsimplementierung realisierbar ist. Wegen der vielen generierten Me-
thoden in den Modellklassen ist diese Implementierung aber sehr uniibersichtlich
und erschwert seine Benutzung und Wartung. Bei dem von Fujaba generierten
Code ist bisher keine Typsicherheit gegeben, dafiir ist aber z.B. ein Benachrichti-
gungsmechanismus verfiighar. Werden statt der speziellen Container die Standard-
Container von Java verwendet, so wird die Implementierung zwar typsicher, aber
dafiir fehlt einige Funktionalitdt wie der Benachrichtigungsmechanismus.

Der in [MZ04] beschriebene Ansatz 16st die Probleme der Lesbarkeit, verein-
facht die Benutzung und erlaubt eine Wartung der Assoziationsimplementierung
unabhingig von einer Modellimplementierung (solange sich die Schnittstellen der
Assoziationsimplementierung nicht é@ndern). Um die Konsistenz von bidirektio-
nalen Assoziationen zu erhalten, wird hier der Reflection-Mechanismus von Java
verwendet, wodurch aber Typsicherheit verloren geht. Auflerdem wird die Perfor-
mance einer Modellimplementierung durch Reflection beeintrachtigt. Es besteht
keine Thread-Sicherheit und es fehlt Funktionalitit wie ein Benachrichtigungsme-
chanismus.

31

4. Typsichere Implementierung von
Assoziationen

Aufbauend auf den in Kapitel 3 vorgestellten Ansétzen zur Assoziationsimplemen-
tierung wird im Rahmen dieser Studienarbeit iiberpriift, ob und wie die Typsi-
cherheit in der Implementierung von Assoziationen garantiert werden kann.

Dabei entstand ein neuer Implementierungsansatz, der auf der in [MZ04] ent-
wickelten und in [Mai04] umgesetzten Idee (siche auch Abschnitt 3.3, ab S. 23)
basiert und Typsicherheit garantiert. Dieser Ansatz wird in diesem Kapitel vor-
gestellt und wie die anderen Ansétze bzgl. der in Kapitel 3 formulierten Anforde-
rungen evaluiert.

4.1. Beschreibung des Ansatzes

In Kapitel 3 wurden zwei Moglichkeiten zur Implementierung von Assoziationen
vorgestellt. Beide Ansétze weisen aber Méngel auf. Wihrend bei dem ersten zu
viele Methoden innerhalb der Modellklassen implementiert werden, kann der zwei-
te keine Typsicherheit garantieren. Das Ziel des hier vorgestellten Ansatzes zur
Implementierung von Assoziationen ist es, moglichst viele Vorteile der anderen
Ansétze mit der Typsicherheit zu verbinden.

4.1.1. Uberblick

Damit der Quellcode iibersichtlich bleibt, der bei der Implementierung eines UML-
Modells entsteht, wird hier die Idee aus [MZ04] aufgegriffen und die Assoziations-
methoden werden in Rollenklassen gekapselt.

Bei der Implementierung von bidirektionalen Assoziationen muss die Konsistenz
immer aufrechterhalten werden. Bei den in Kapitel 3 vorgestellten Ansétzen ruft
deswegen eine Methode zum Verbinden oder Trennen zweier Modellelemente, die
auf einer Assoziationsseite aufgerufen wird, immer auch eine entsprechende Me-
thode der gegeniiberliegende Seite auf.

Damit das moglich ist, muss in irgendeiner Form auf die Methode der anderen
Assoziationsseite zugegriffen werden. In einer generischen Rollenimplementierung
werden anstatt der Typen der verbindbaren Elemente Typvariablen benutzt, wo-
durch keine Methoden der Modellklassen bekannt sind. Deswegen wird der Zugriff
auf die Methoden bei dem Ansatz in [MZ04] (Abschnitt 3.3, S. 23) mit Hilfe von
Reflection durchgefithrt. Um Typsicherheit bei der Assoziationsimplementierung

33

4. TYPSICHERE IMPLEMENTIERUNG VON ASSOZIATIONEN

zu ermoglichen, muss aber auf Reflection und Typumwandlungen verzichtet wer-
den.

Bei dem hier vorgestellten Ansatz wird deshalb zusétzlich zu den allgemeinen
generischen Rollenklassen fiir jede Assoziation ein Paar von speziellen Rollenklas-
sen implementiert. Diese erben von den allgemeinen und legen die Typparameter
fest. Durch die Belegung der Typparameter mit den Typen von an einer Asso-
ziation beteiligten Modellelementen kann innerhalb der speziellen Rollenklassen
auf die Methoden der Modellklassen direkt zugegriffen werden. Auf diese Weise
kann Typsicherheit garantiert und gleichzeitig die Konsistenz von bidirektionalen
Assoziationen durch gegenseitigen Methodenaufruf erhalten werden.

Die generischen allgemeinen Rollenklassen enthalten den grofiten Teil der Im-
plementierung und werden als abstrakte Klassen in einer Bibliothek bereitgestellt.
Die speziellen Rollenklassen werden fiir jedes Modell neu implementiert. Sie die-
nen nur dem typsicheren Zugriff von einer Rolle aus auf die ihr gegeniiberliegende
Rolle, um Methoden zum Verbinden oder Trennen zweier Modellelemente aufzu-
rufen. Zur Verwaltung der verbundenen Modellelemente werden die typsicheren
Standard-Container der Java-Bibliothek innerhalb der allgemeinen Rollenklassen
verwendet.

4.1.2. Anpassung der Modellklassen

Wie bei dem in in Abschnitt 3.3 (S. 23) beschriebenen Ansatz erhilt hier ein
Modellelement fiir jede Assoziation, an der es beteiligt sein kann, ein an die As-
soziation angepasstes Rollenobjekt. Dieses hélt eine Referenz zum Modellelement
und umgekehrt. Die Rollen werden in einer Getter-Methode der Modellklasse er-
stellt, wihrend eine Setter-Methode nicht existiert.

Wie Abbildung 4.1 zeigt, dhnelt die Modellklassenimplementierung bei diesem
Ansatz stark der generischen in Abschnitt 3.3 (Abb. 3.7, S. 25). Der Hauptunter-
schied ist die Verwendung von speziell fiir die Assoziation implementierten und
bereits mit den an der Assoziation beteiligten Modellklassen parametrisierten Rol-
lenklassen. Die Verwendung von Generics ist dadurch im Quellcode der Modell-
klassen nicht erkennbar.

Bei diesem Ansatz werden keinerlei Schnittstellen fiir die Modellklassen vor-
ausgesetzt. Insbesondere miissen keine Methoden fiir die Realisierung eines Be-
nachrichtigungsmechanismus implementiert werden, wie das bei dem Ansatz in

Abschnitt 3.3 der Fall ist (vgl. Abb. 4.1 und Abb. 3.7, S. 25).

4.1.3. Implementierung spezieller Rollenklassen

Der Name der durch eine Spezialisierung von Rollenklassen aus der Rollenbiblio-
thek entstehenden speziellen Rollenklassen ist irrelevant, aber um die Lesbarkeit
zu erhohen, bekommen sie den Namen der abstrakten Rollenklasse, die spezialisiert
wird, und den eigenen Rollennamen sowie den der gegeniiberliegenden Rolle als
Préfix. Das erleichtert die Zuordnung zur zugehorigen Assoziation. Zum Beispiel

34

4.1 Beschreibung des Ansatzes

class Haus
{
private Heim_Bewohner_NonQualifiedToManyRole bewohner = null;
public final Heim_Bewohner_NonQualifiedToManyRole bewohner ()
{
if (this.bewohner == null)
{
this.bewohner = new Heim_Bewohner_NonQualifiedToManyRole (this);
}
return this.bewohner;
}
}

class Mieter

{
private Bewohner_Heim_NonQualifiedToOneRole heim = null;
public final Bewohner_Heim_NonQualifiedToOneRole heim()

{
if (this.heim == null)
{
this.heim = new Bewohner_Heim_NonQualifiedToOneRole (this);
}

return this.heim;
}
}
Abbildung 4.1.: Typsichere Implementierung der Modellklassen zum Diagramm in

Abb. 3.1 auf Seite 14

hat die Rolle Heim_Bewohner_NonQualified ToManyRole (Abb. 4.1 und Abb. 4.2) der
Klasse Haus in dem verwendeten Beispiel den eigenen Rollennamen heim gefolgt
von dem der gegeniiberliegenden Rolle bewohner und dem Rollenklassennamen
NonQualified ToManyRole als Namen.

Die Implementierung der speziellen Rollenklassen erfordert nur einen Konstruk-
tor und das Implementieren der abstrakten Methode getOppositeRole. Beides be-
darf zusammen nur weniger Zeilen Code, wie Abb. 4.2 zeigt. Der Rollenname
wird bei diesem Ansatz nicht benétigt. Seine Ubergabe an den Konstruktor der
Oberklasse dient hier nur dazu, den Namen einer Rolle zu speichern und wieder
auslesen zu kénnen.

Die Methode getOppositeRole kann nicht in einer der allgemeinen generischen
Klassen implementiert werden. Diese verwenden bei ihrer Imlementierung eine
Typvariable, die den Typ der verwalteten Elemente représentiert (in den Abbil-
dungen 4.3 auf Seite 36, 4.5 auf Seite 38 und 4.6 auf Seite 40 ist das E). Weil
fiir diesen Typ keine Einschrankungen in Form einer Schnittstelle gemacht wer-
den, sind die Methoden zur Riickgabe des Rollenobjekts zu einem Modellelement
in diesen Klassen nicht bekannt. In dem Beispiel in Abb. 4.1 und Abb. 4.2 sind
das die Methoden heim und bewohner,; die auf einem Modellelement aufgerufen
werden.

Alternativ konnte man eine Schnittstelle fiir die entlang einer Assoziation ver-
bindbaren Typen festlegen. Diese wiirde z.B. eine Methode

public Role<E,0> getRole(String roleName)

35

4. TYPSICHERE IMPLEMENTIERUNG VON ASSOZIATIONEN

public class Heim_Bewohner_NonQualifiedToManyRole extends NonQualifiedToManyRole<Mieter, Haus>
{

public Heim_Bewohner_NonQualifiedToManyRole(Haus owner)

{
super ("heim", owner);
}
protected NonQualifiedRole<Haus, Mieter> getOppositeRole(Mieter oppositeElement)
{
return oppositeElement.heim();
}

public class Bewohner_Heim_NonQualifiedToOneRole extends NonQualifiedToOneRole<Haus, Mieter>
{

public Persons_House_NonQualifiedToOneRole(Mieter owner)

{
super ("bewohner", owner);
}
protected NonQualifiedRole<Mieter, Haus> getOppositeRole(Haus oppositeElement)
{
return oppositeElement.bewohner();
}

}

Abbildung 4.2.: Typsichere Implementierung der Rollenklassen zum Diagramm in
Abb. 3.1 auf Seite 14

definieren, die anhand des Rollennamens, der eindeutig ist, die entsprechende Rolle
zuriickgibt (E ist hier der Typ der referenzierten Elemente und 0 der Typ des
Modellelements, zu dem die Rolle gehort). Legt man nun fest, dass die in den
allgemeinen Rollenklassen verwendeten Typvariablen Typen repréasentieren, die
diese Schnittstelle implementieren, so wird die Methode getRole auch in diesen
Klassen bekannt.

Abgesehen von der Schnittstelle, die nun alle entlang einer Assoziation verbind-
baren Klassen implementieren miissten, entsteht so ein anderes Problem: Die Me-
thoden zum Verbinden und Trennen zweier Modellelemente benttigen abhingig
davon, ob eine nicht qualifizierte, einseitig qualifizierte oder beidseitig qualifizierte
Assoziation vorliegt, verschiedene Parameter. Bei einseitig qualifizierten Assozia-
tionen wird zusétzlich zum Modellelement auch ein Schliissel, unter dem dieses
Element erreichbar ist, verlangt. Bei beidseitig qualifizierten Assoziationen wird

‘ NonQualified ToOneRole 1 EO NonQualified ToManyRole {_EO |
#getOppositeRole(E oppositeElement) : NonQualifiedRole<O, E> #getOppositeRole(E oppositeElement) : NonQualifiedRole<O, E>
+link(E element) : boolean {final} +link(E element) : boolean {final}
+unlink(E element) : boolean {final} +unlink(E element) : boolean {final}
+unlink() : boolean {final} +unlink() : boolean {final}
+references(E element) : boolean {final} +references(E element) : boolean {final}
+get() : E {final} +values() : Iterator<E> {final}
+getRoleName() : String +size() : int {final}
+getOwner() : O +getRoleName() : String

+getOwner() : O

| <<bind>> (Haus, Mieter) | <<bind>> (Mieter, Haus)
Bewohner_Heim_NonQualifiedToOneRole Heim_Bewohner_NonQualifiedToManyRole
#getOppositeRole(Haus oppositeElement) : NonQualifiedRole<Mieter, Haus> #getOppositeRole(Mieter oppositeElement) : NonQualifiedRole<Haus, Mieter>

Abbildung 4.3.: UML-Klassendiagramm: Spezialisierung der abstrakten Rollen-
klassen zu Abb. 4.2

36

4.1 Beschreibung des Ansatzes

so ein Schliissel wegen des gegenseitigen Methodenaufrufs zur Erhaltung der Kon-
sistenz fiir beide Seiten benotigt. Definiert man fiir jeden der drei Félle eine eigene
Rollenklasse mit passenden Methoden und Parametern, so werden Typumwand-
lungen und instanceof-Abfragen im Quellcode der Rollenimplementierung not-
wendig, die wiederum nicht typsicher sind. Eine Alternative ist, fiir alle drei Falle
Methoden mit gleicher Signatur zu verwenden. Dadurch miisste man aber z.B.
bei nicht qualifizierten Rollen immer zwei zusétzliche Parameter iibergeben, die
eigentlich nicht benotigt werden.

Als Ausweg werden spezielle Rollenklassen implementiert, bei denen durch die
Festlegung der Typparameter der allgemeinen generischen Rollenklassen die Zu-
griffsmethoden fiir die Rollenobjekte zu einem Modellelement sichtbar werden.
Anstatt fiir die Modellklassen die Implementierung einer Schnittstelle vorauszu-
setzen und Assoziationsmethoden mit gleicher Signatur fiir alle Assoziationsarten
zu verwenden, werden fiir jede Assoziationsart spezielle Rollenklassen mit passen-
den Parametern in den Assoziationsmethoden definiert. Durch die Verwendung
des richtigen Rollentyps, ndmlich nicht qualifiziert, einseitig qualifiziert oder beid-
seitig qualifiziert, als Riickgabetyp der Zugriffsmethoden fiir eine Rolle, ist eine
Typumwandlung nicht notwendig.

Bei dem Beispiel in Abb. 4.2 und Abb. 4.3 werden durch die Festlegung der
Typparameter (hier Haus und Mieter) die allgemeiner definierten generischen Rol-
lenklassen an die Assoziation, in der sie verwendet werden sollen, angepasst. Die
Methode getOppositeRole verwendet hier die Klasse NonQualifiedRole fiir nicht
qualifizierte Rollen als Riickgabetyp.

4.1.4. Realisierung der Assoziationen

Wie bei dem Ansatz in [MZ04] (Abschnitt 3.3, S. 23) kapseln die Rollenklassen
die Implementierung von Assoziationen. Je zwei Rollen reprisentieren dabei eine
Assoziation.

linkedObject

haus: Haus owner

:Bewohner_Heim_NonQualifiedToOneRole

mieter1: Mieter

linkedObject t roleName ="bewohner* heim
bewohner - -
owner/N/ :Bewohner_Heim_NonQualifiedToOneRole owner mieter2: Mieter
:Heim_Bewohner_NonQualifiedToManyRole — « -
roleName ="bewohner heim
roleName =*heim*“ 4\
‘ linkedObjects :17:C°"e°‘i°”
P S

Abbildung 4.4.: Tatsdchliche Objektstruktur zu dem Beispiel in Abb. 3.2 (S. 14)

Die Objektstrukturen, die zur Laufzeit bei Verwendung dieser Assoziationsim-
plementierung entstehen kénnen, sehen — bis auf die Rollenklassen- und Attri-
butnamen — identisch zu denen aus, die bei dem in Abschnitt 3.3 beschriebenen
Ansatz entstehen. Zum Vergleich illustriert die Abb. 4.4 die Objektstruktur zu
dem Beispiel in Abb. 3.2 auf Seite 14 (vgl. Abb. 3.8, S. 26).

37

4. TYPSICHERE IMPLEMENTIERUNG VON ASSOZIATIONEN

Die Konsistenz bei bidirektionalen Assoziationen wird durch einen gegenseitigen
Aufruf der Methoden zum Verbinden (link) oder Trennen (unlink) zweier Modell-
elemente sichergestellt. Zusétzlich zu den Methoden link und unlink wird auch die
Methode references von allen Rollen mit den fiir die jeweilige Assoziationsart (nicht
qualifiziert, einseitig qualifiziert oder beidseitig qualifiziert) passenden Parametern
implementiert.

public final boolean link(E element)
{
if (element == null)
{
throw new IllegalArgumentException("The parameter \’element\’must not be null.");
}
if (this.references(element))
{
return false;
}
this.referencedModelElements.add(element);
NonQualifiedRole<0, E> oppositeRole = this.getOppositeRole(element);
if (oppositeRole != null && !oppositeRole.references(this.getOwner()))
{
oppositeRole.link(this.getOwner());
}
return true;

}

Abbildung 4.5.: Implementierung der Methode link in der Klasse NonQualifiedTo-
ManyRole

Die Methode references dient der Uberpriifung auf eine evtl. schon vorhande-
ne Referenz vor der Verbindung mit (bzw. Trennung von) einem Objekt. Diese
Priifung ist wichtig fiir die Erhaltung der Konsistenz einer bidirektionalen Asso-
ziation, denn ein Aufruf der link-Methode auf der einen Seite der Assoziation hat
einen Aufruf der gleichen Methode auf der anderen Seite der Assoziation zur Folge
(ebenso fiir unlink). Ohne die Abfrage auf eine evtl. schon vorhandene Referenz,
wiirde dabei eine Endlosschleife entstehen. Zur Verdeutlichung wird die Methode
link der Klasse NonQualifiedToManyRole in der Abb. 4.5 dargestellt (vgl. Methode
addToBewohner in Abb. 3.4 auf S. 15).

Das Einfiigen von null-Eintrdgen wird von den Rollenklassen durch eine Ab-
frage verhindert, denn eine Referenz zu null macht bei einer Assoziation keinen
Sinn. Ist ein Parameter der link- oder unlink-Methoden null, so wird eine lllegal-
ArgumentException geworfen.

Dieser Ansatz unterstiitzt sowohl uni- als auch bidirektionale Assoziationen (An-
forderung 6). Bei unidirektionalen Assoziationen (Referenzen) gibt es nur Rol-
len auf der referenzierenden Seite (eine bei einer 1-zu-z- und n bei einer n-zu-
x-Assoziation). Die Methode getOppositeRole der Rolle auf der referenzierenden
Seite gibt einfach null zuriick. Eine Konsistenzpriifung wie bei bidirektionalen
Assoziationen ist hier nicht notwendig.

Die Abbildung von Aggregationen auf Java-Quellcode wird, wie bei dem in
Abschnitt 3.3 beschriebenen Ansatz (siehe S. 26), durch eine parameterlose unlink-
Methode in den Rollenklassen ermdglicht, die unter Einhaltung der Konsistenz bei

38

4.1 Beschreibung des Ansatzes

bidirektionalen Assoziationen alle Referenzen zu Modellelementen entfernt.

4.1.5. Rollenbibliothek

Die allgemeinen generischen Rollenimplementierungen liegen in einer Bibliothek
vor. Alle Rollenklassen haben eine gemeinsame Oberklasse Role, die den Rollen-
namen und den Besitzer einer Rolle (das Modellelement, zu dem die Rolle gehort)
speichert. Die Klasse Role erhélt zwei Typvariablen: E fiir den Typ der referen-
zierten Elemente (elements) und 0 fiir den Typ des Modellelements, zu dem die
Rolle gehort (owner).

Wihrend bei dem Ansatz in Abschnitt 3.3 (S. 23) aus dem Papier [MZ04] und
der bisherigen Implementierung [Mai04] nicht ersichtlich wird, wie mit beidsei-
tig qualifizierten Assoziationen umgegangen wird, werden bei diesem Ansatz die
beidseitig qualifizierten Assoziationen explizit beriicksichtigt.

Bei nicht qualifizierten, einseitig qualifizierten und beidseitig qualifizierten As-
soziationen werden verschiedene Anzahlen von Parametern benétigt. Deshalb wer-
den fiir jeden der drei Fille jeweils passende Rollenklassen mit nur einem, zwei
oder drei Parametern in den betroffenen Methoden definiert. Dadurch ist die Klas-
senhierarchie der Rollen in drei Teilhierarchien unterteilt, mit den Klassen Non-
QualifiedRole (fiir nicht qualifizierte), SingleQualifiedRole (fiir einseitig qualifizierte)
und DoubleQualifiedRole (fiir beidseitig qualifizierte Assoziationen) als Oberklassen
(siche Abb. 4.6). Diese bekommen weitere Typvariablen: K und L fiir die Typen der
verwendbaren Schliissel. So konnen sich bei beidseitig qualifizierten Assoziationen
die Schliisseltypen der beiden Seiten unterscheiden.

Die drei Klassen in dieser Ebene definieren die drei wichtigsten Methoden zum
Verbinden und Trennen zweier Modellelemente mit den fiir die jeweilige Hierarchie
passenden Parametern. Die Methoden sind link, unlink und references. Zusétzlich
zu diesen drei Methoden wird die abstrakte Methode getOppositeRole definiert, die
zu einer Rolle ihre gegeniiberliegende Rolle liefern soll und bei der Spezialisierung
der Rollenklassen (wie in Abb. 4.2 und Abb. 4.3 auf S. 36) implementiert werden
muss. Durch die Verwendung des speziellen Rollentyps (NonQualifiedRole, Single-
QualifiedRole oder DoubleQualifiedRole) als Riickgabetyp dieser Methode kénnen
Typumwandlungen in der generischen Implementierung der Methoden link und
unlink vermieden werden.

In jeder der drei Teilhierarchien (nicht qualifiziert, einseitig qualifiziert, beid-
seitig qualifiziert) wird in der ndchsten Hierarchieebene zwischen zu-1- und zu-
n-Rollen unterschieden. Darin werden die zuvor abstrakt definierten Methoden
link, unlink und references sowie einige weitere fiir zu-1- oder zu-n-Rollen typi-
sche Methoden, die das Aufzahlen oder Durchlaufen aller referenzierten Elemente
erlauben, implementiert.

Wihrend bei nicht qualifizierten und beidseitig qualifizierten Assoziationen die
Rollen auf beiden Seiten gleicher Art sind, ndmlich beide nicht qualifiziert oder
beide qualifiziert, entsteht bei den einseitig qualifizierten Assoziationen ein beson-
derer Fall: Hier ist nur eine der beiden Rollen qualifiziert, d.h. die eine Rolle greift

39

4. TYPSICHERE IMPLEMENTIERUNG VON ASSOZIATIONEN

~ = —_—, ojoyAuepo] papospayiendalbul

“Hansnj

wwesBeiq Wi om ‘UIBs USSSEPIBA0 BEER
I I Uy === _ _
Yone gleysap Uauugy pun usyasnzue
SOLIBUSY BAB[UOA BUUIS WI SB0BLIAIU| _ _ = == 0/0dAUBNOLpRIopIOPaLENDEBUS |
18P0 usssely ayosuauab sie puis sejejdws | T TN R Eetal| LAO3 }
usyje1sabliep aiQ 'S’} BABL UOA YjUBWSS _|1_| ‘03 } -
alp Jopuamian wweibeiq sesalq _ _
puis uasseppaqQ sejejdwa] =
ssep Jyolu 1qnepe (sereidwa]) 3 0104AUB/NOLPoISPIOPaYINDRIGNOq | t . _ _
uasse|y| Joseqlaisujaweled |,O|. ;| 91043UQ0LPaLOSpalenDdbuls —_—=
- LA03 } E 9105 AUBINOL POHIOSPELIIENDUON
1624 'L TNIN UOA YjUBWSS B1a _ _03_H
= _ _
_ L2073 } 310420 LP2/2PIOPUIENDIBUS | .Lm 3 | SI0uAUBINO LpaISpIOPSYIENOUON
_JAI, 53 | 2lo¥9U001 PoHOSPaYIENDIa1Og | -
222}
L | |
5 g 2loyduO0LpasspiopalenDeqnog _ ~ = —_— AeyoysoddoyimejogAuepol pepios _
L1203} L3103 }
L.vﬂo|.m|_ AoyjopsoddoyumalogAueno pasepio _
222k
i (Rey M)azis+ [T —_———— I_ -
<3>lojesa)) : (Aeyhw y)sanjen+ | .J,l, 55 |__2lodfuepo paentejanog I_ ANAN
ajoyAuBNO L PalEND| A_ 0 — === “_ |||||||||||||||||
TRy T _s<eoRsu> —~ — —_— ajoyAuepolpayienosbuis
== R i .
| . .
| — 3: (Reyihw W)ebs
.._. 9|042UQ0 1 payIenD| _
=T T, <<GoBUSUI>> <l o prgy
L 363 h ﬁmmcoﬂnms\gcmagm
<y>Jojesa)| : ()shadj+ : (oloufuenoLpe!
ues|ooq : (Aey M)Aeysurejuoo+ J]
ui : ()skey0azis . pun 8j0y8UQO L Pal ot
s M msz Hoezis+ : nz Bojeue) penuawajdwi AN < n
1___ M_uﬂ m,:_ sl USPOYISA- [BUL, S[E Jaly puis {leuy) - (Jozis+
PRI Roxasoddo, (ous) ueorsea (vauon eo0ome
Jagne uapoyiey = s .
USDRASE o) | {leuy} uesjooq : ()yulun+
q PIensqE eIy oo, 000, < < _ | {leuy} uesjooq : (juawsaje J)Nulun+
i (Jeziss e | e | {leuy} uesjooq : (Juswaje 3)jui+
<3>I0jeus)| : (Jsenjea+ e | ﬂl m M |.m\ct\,\:m§£um§m=0:o2
Bj0yAueoL| < e
Sy Tpsseompa> [T T T TR TR {leuy} 3: (heb+
L-2_! {leuy} uesjooq : (Juswsaje J)seouaioel+
_ 3: (hebs+ {leuy} uesjooq : (Juswsale J)Hulun+
.._. SOUU00L] _ {leuy} uesjooq : (Juawsa|a I)Null+
T4 Tys<eorpRu>> T 0F 1oloHeU00LpayIENDUON
X730 03/qnog :) l0196% <30 09IbuIS 1) ddojeby
ueajooq : (Juswale 3 Aoy y)seouaiopai+ uesjooq :(juswaje 3 A8y y)seousiajel+ <3 'O DUON : ddo 3) Jjoysoddoiebi
ueajooq :(Aayapsoddo 7 Juswafe 3 ‘AeyAw y)yuyun+ uesj00q : (Juswale 3 ‘Aoy y)yulun+ ueejo0q : (Juswaje J)yulun+
ues|ooq : (Aayepsoddo 7 ‘uswaje 3 ‘Aayihw y)yul+ ueajooq : (Juawaja 3 ‘Aay M)yull+ ue8j00q : (JUsWale)i+
_|4 M ,||,W|." 8/04payI[enoe|qnoa ml |x|.m|,w||‘“ 9/04payenDalbuls m||MLM||.n B0PaYI[ENOUON

v ueajooq : ()yulun+
ueej00q : (Juswsje J)seousIajel+

0 : (JJaumpyeb+

Buls : ()oweNs|oy1eb+
=53 010

Hierarchie der abstrakten Rollenklassen

Abbildung 4.6.

40

4.1 Beschreibung des Ansatzes

auf die referenzierten Objekte {iber einen Schliissel zu, die andere nicht. Dennoch
haben die in der Klasse SingleQualifiedRole definierten Methoden fiir beide Rollen-
arten die gleiche Signatur, denn beide benutzen einen Schliissel. Es werden also
zwei zu-1- und zwei zu-n-Rollenklassen gebraucht, je eine fiir den qualifizierten
und je eine fiir den nicht qualifizierten Fall. Diese Fille werden durch die Klassen
ToOneRoleWithOppositeKey und ToManyRoleWithOppositeKey fiir die nicht quali-
fizierte und die Klassen SingleQualifiedToOneRole und SingleQualified ToManyRole
fiir die qualifizierte Seite einer Assoziation abgedeckt.

Damit auch geordnete und sortierte Assoziationen (Anforderung 6) realisiert
werden konnen, gibt es zu jeder der Rollenklassen, die mehr als ein Element re-
ferenzieren konnen, auch je eine Unterklasse fiir geordnete und sortierte Rollen.
Das erlaubt sogar eine genauere Spezifikation von Assoziationen, denn die Cons-
traints geordnet oder sortiert konnen fiir jede Rolle einzeln anstatt fiir die ganze
Assoziation festgelegt werden. Die Klassen fiir sortierte oder geordnete Rollen un-
terscheiden sich von ihren Oberklassen hauptséchlich durch die Verwendung eines
anderen Containers zur Verwaltung der referenzierten Modellelemente. Auflerdem
sind einige zusétzliche Methoden moglich, z.B. fiir das Festlegen der Sortierreihen-
folge bei einer sortierten Rolle durch einen java.util.Comparator (das konnte
in einem zusétzlichen Konstruktor passieren). Bei geordneten Rollen konnte das
Einfiigen oder das Abfragen eines Eintrags an einer bestimmten Stelle ermoglicht
werden.

Role [

+getRoleName() : String

+getOwner() : O

+references(E element) : boolean

+unlink() : boolean

-getPropertyChangeSupport() : PropertyChangeSupport
+addPropertyChangeListener(PropertyChangeListener listener) : void source propertyChangeSupport
+addPropertyChangeListener(String propertyName, PropertyChangeListener listener) : void
+removePropertyChangeListener(PropertyChangelListener listener) : void 1
+removePropertyChangeListener(String propertyName, PropertyChangeListener listener) : void

PropertyChangeSupport

+hasListeners(String propertyName) : boolean
#firePropertyChange(PropertyChangeEvent evt) : void
#firePropertyChange(String propertyName, Object oldValue, Object newValue) : void

Abbildung 4.7.: Implementierung des Benachrichtigungsmechanismus

Ein Benachrichtigungsmechanismus (Anforderung 8) kann in der abstrakten
Klasse Role implementiert werden. Diese erhélt dann zusétzlich zu den in Abb. 4.6
(S. 40) dargestellten Methoden einige weitere, die den Mechanismus implementie-
ren (siche Abb. 4.7). Die Funktionalitit wird durch die Delegation der Aufrufe
an ein Objekt der Klasse java.beans.PropertyChangeSupport realisiert. Dieses
Objekt wird nur bei Bedarf erzeugt.! Die Methoden addPropertyChangelListener,
removePropertyChangelistener und hasListeners ermoglichen das Registrieren und
Abmelden von Listener-Objekten. Eine der beiden Methoden firePropertyChange
der Klasse Role wird bei Anderung des Container-Inhalts von den erbenden Klas-
sen (z.B. NonQualifiedToManyRole) innerhalb der link- und unlink-Methoden auf-

'Bei einem Aufruf der Methode getPropertyChangeSupport wird ein PropertyChangeSupport-
Objekt erstellt, wenn es noch nicht existiert.

41

4. TYPSICHERE IMPLEMENTIERUNG VON ASSOZIATIONEN

gerufen, um die Listener zu benachrichtigen.

Die vorgestellte Klassenhierarchie fiir Rollen ist trotz der 24 Klassen iibersicht-
lich und erlaubt eine einfache Auswahl und Spezialisierung der passenden Rolle
fiir eine zu realisierende Assoziation (Anforderung 4). Dabei gibt es fiir jede der
in Abschnitt 2.1 (S. 5) und der Anforderung 6 (S. 12) genannten Assoziationen
eine passende Rollenklasse. Ergénzend zu dieser Hierarchie sind Schnittstellen
orthogonal zu den Hierarchieebenen definiert, die eine Benutzung dieser Assozia-
tionsimplementierung weiter vereinfachen sollen.

4.1.6. Verwendung von Containern

Die verschiedenen Rollen miissen abhéingig von der Art der Assoziation, die sie
paarweise reprasentieren, die verbundenen Modellelemente in einer bestimmten
Art und Weise verwalten. Zum Beispiel miissen die Elemente bei einer qualifizier-
ten Assoziation iiber einen Schliissel erreichbar sein. Bei einer zusétzlich sortierten
Assoziation miissen die Eintrége in sortierter Reihenfolge vorliegen.

Tabelle 4.1.: Verwendete Container

nicht qualifiziert qualifiziert

zu-1 zZu-n zu-1 Zu-n
geordnet LinkedList | LinkedHashMap | LinkedLists in LinkedHashMap
sortiert TreeSet TreeMap TreeSets in TreeMap
weder noch | Attribut | HashSet HashMap HashSets in HashMap

Diese Funktionalitdt wird, um Wartungs- und Implementierungsaufwand zu
sparen (Anforderung 5), an die Standard-Container der Java-Bibliothek (Paket
java.util) delegiert, welche seit der Java-Version 1.5 typsicher sind und eine
gute Basis fiir die Verwaltung der Modellelemente bieten. Bei nicht qualifizierten
zu-1-Rollen reicht ein Attribut aus, um die einzig mogliche Objektrefrenz auf ein
Modellelement zu speichern. In der Tabelle 4.1 werden alle verwendeten Container
geordnet nach der Rollenart, in der sie verwendet werden, aufgelistet.

Bei der Iteration iiber die in einem der Standard-Container von Java enthalte-
nen Objekte konnen Laufzeitfehler (ConcurrentModificationExceptions) auftreten,
wenn sich der Container-Inhalt wiahrend der Iteration (z.B. durch Hinzuftigen
oder Entfernen von Objekten) éndert. Um die Benutzbarkeit der Assoziations-
implementierung nicht einzuschréinken, soll die Iteration in diesen Féllen sinnvoll
fortgesetzt und Laufzeitfehler verhindert werden (Anforderung 4).

Eine Moglichkeit, dieses ohne eine Neuimplementierung der Standard-Container
von Java — wie bei dem Ansatz in Abschnitt 3.2 (S. 13) — umzusetzen, ist, die
Container oder ihren Inhalt vor jeder Iteration zu kopieren und die Kopie fiir die
Iteration zu verwenden. Somit ist sichergestellt, dass jeder Iterator iiber ein ei-
genes exklusives Container-Objekt verfiigt, iiber dessen Elemente dieser iteriert.

42

4.1 Beschreibung des Ansatzes

ConcurrentModificationExceptions konnen nicht mehr auftreten und mehrere ne-
benlaufige Iterationen auf dem gleichen (vorher kopierten) Container werden da-
durch moglich.

In Java kénnen Objekte und damit auch die Container auf einfache Weise ge-
klont werden, was auch den Container-Inhalt kopieren wiirde (genauer: nur die
Objektreferenzen auf den Inhalt). Allerdings wiirde dabei Typsicherheit verlo-
ren gehen, weil die zum Klonen verwendete Methode java.lang.0Object.clone
nur ein Objekt vom Typ java.lang.Object zuriickgibt und damit Typumwand-
lungen erfordert. AuBerdem zieht das Klonen einen relativ hohen Speicher- und
Laufzeitaufwand nach sich, wie in Anhang A.1 (ab S. 55) gezeigt wird.

Deswegen wird anstatt des gesamten Containers nur sein Inhalt kopiert (nur
die Objektreferenzen darauf). Das passiert mit Hilfe des in Anhang A.1 (ab S. 55)
vorgestellten und speziell fiir diesen Zweck implementierten typsicheren Collec-
tionlterators. Dieser bekommt einen Container und erstellt sich eine Kopie des
Container-Inhalts, die in einer ArrayList gehalten wird. Die ArrayList wird anschlie-
Bend fiir die Iteration verwendet.

Dadurch, dass alle Rollenklassen in ihren Zugriffsmethoden anstatt des Itera-
tors eines Containers einen Collectionlterator mit dem Container-Inhalt verwenden,
kann eine Iteration auch dann fortgesetzt werden, wenn sich der Container-Inhalt
gedndert hat.

Die Schnittstelle fiir Iteratoren (java.util.Iterator) definiert die Methode
remove, die das Entfernen der Elemente, iiber die iteriert wird, ermoglichen soll.
Damit Konsistenzpriifungen (Anforderung 1) innerhalb der Zugriffsmethoden der
Rollenklassen nicht umgangen werden konnen, ist der Collectionlterator so im-
plementiert, dass ein Aufruf der Methode remove einen Laufzeitfehler erzeugt
(UnsupportedOperationException) und damit ein Entfernen der Container-Eintréige
verbietet. Alternativ konnte der Collectionlterator (zumindest bei nicht qualifizier-
ten Rollen) die Zugriffsmethode (unlink) der entsprechenden Rolle benutzen, um
ein Element zu entfernen.

Um auf flexible Weise Thread-Sicherheit zu gewéhrleisten (Anforderung 7), wer-
den die in den Rollen verwendeten Container bei Bedarf in speziellen typsicheren
Wrappern gekapselt. Diese stellen sicher, dass nur exklusive Zugriffe auf die Con-
tainer moglich sind.

Die Rollen werden so implementiert, dass wenn die verwendeten Container
Thread-Sicherheit garantieren, dann auch die Rollen Thread-sicher sind. Ein Pa-
rameter im Konstruktor einer Rollenklasse bestimmt, ob die darin verwendeten
Container in einem Thread-sicheren Wrapper gekapselt werden sollen, bevor sie
verwendet werden.

Die Wrapper sind in der Klasse java.util.Collections des Java Collections
Frameworks implementiert. Ein Methodenaufruf wie

Collections.synchronizedMap (myMap)

liefert den iibergeben Container myMap in einem Wrapper zuriick, dessen Zugriffs-
methoden synchronized sind. Dadurch, dass der Container-Inhalt vor einer Itera-

43

4. TYPSICHERE IMPLEMENTIERUNG VON ASSOZIATIONEN

tion dariiber kopiert und nur iiber die in der Kopie enthaltenen Elemente iteriert
wird, ist eine zusétzliche Synchronisation bei Iterationen nicht notwendig.

Bei nebenlédufigen Anwendungen wird durch die Verwendung Thread-sicherer
Container-Wrapper unter Anderem auch das Kopieren der Container-Inhalte durch
exklusiven Zugriff geschiitzt. Dadurch werden Modifikationen des Containers wéih-
rend des Kopierens verhindert und Laufzeitfehler wie ConcurrentModificationExcep-
tions kénnen nicht auftreten. Bei rein sequentiellen Anwendungen ist eine Verén-
derung des Container-Inhalts wéhrend des Kopierens nicht méoglich.

Die Standard-Container aus der Java-Bibliothek kénnen auf einfache Weise in-
nerhalb der Rollenklassen an die gestellten Assoziationsanforderungen angepasst
werden. Der Wartungsaufwand beschrinkt sich dadurch auf den der Rollenbiblio-
thek (Anforderung 5). Die Typsicherheit bleibt mit Hilfe der generisch implemen-
tierten Container und Rollen erhalten.

4.1.7. Typsicherheit

Um Typsicherheit (Anforderung 2) bei dieser Implementierung garantieren zu
konnen, wird auf die Verwendung des Reflection-Mechanismus von Java verzichtet
und Typumwandlungen werden verhindert.

Dazu werden minimale aber an die Assoziation, in der sie verwendet werden
sollen, angepasste Rollenklassen implementiert. Diese ermoglichen den typsiche-
ren Zugriff auf die Rolle eines Modellelements, um durch Aufrufe von Zugriffsme-
thoden beider Assoziationsseiten die Konsistenz von bidirektionalen Assoziationen
zu erhalten. Aulerdem werden typsichere Container der Java-Bibliothek innerhalb
der abstrakten Rollenklassen zur Verwaltung der durch eine Assoziation verbun-
denen Modellelemente verwendet.

4.2. Evaluation

Bei diesem Implementierungsansatz wird versucht, moglichst viele Vorteile der
zuvor in Kapitel 3 vorgestellten Ansétze zusammen mit der Typsicherheit in einer
Assoziationsimplementierung zu vereinen.

Als wichtigstes Ziel ist die Typsicherheit (Anforderung 2) erreicht worden. Auch
die Konsistenz der bidirektionalen Assoziationen (Anforderung 1) bleibt immer
gewahrt.

Durch eine Verlagerung der Assoziationsmethoden in eigene dafiir vorgesehe-
ne Klassen wird die Modellklassenimplementierung iibersichtlicher und erleichtert
ihre Wartung (Anforderung 5). Klare Schnittstellen und eine einfache Anwen-
dung (z.B. a.rolename() .1link(b) zum Verbinden zweier Modellelemente a und
b) erhohen die Lesbarkeit (Anforderung 3), vereinfachen die Benutzung (Anfor-
derung 4) und erleichtern die Softwareentwicklung.

Der Wartungsaufwand fiir die Rollenbibliothek wird durch die Verwendung von
bereits existierenden Containern der Java-Bibliothek reduziert. Mit Hilfe von eben-

44

4.2 Evaluation

falls existierenden Wrapper-Klassen kann ihre Funktionalitéit flexibel angepasst
werden.

Durch die (nicht ganz vollstindige) Auslagerung der Rollenklassen in eine Bib-
liothek ist eine unabhéngige Wartung dieser Implementierung méglich, solange die
Schnittstellen der Rollenklassen nicht verédndert werden. Dann ist es nicht nétig,
Modellimplementierungen an eine neue Bibliothek anzupassen.

Code-Redundanz — wie sie bei der Implementierung der Rollen innerhalb von
Modellklassen (Abschnitt 3.2, S. 13) auftritt — wird durch die Implementierung
gleicher Methoden in gemeinsamen Oberklassen verhindert.

Um Typsicherheit zu erhalten, ist es notwendig, die Rollenklassen der bereitge-
stellten Bibliothek zu spezialisieren. Auch wenn der Inhalt dieser spezialisierten
Klassen klein ist, entsteht dennoch fiir jede Assoziation im Modell ein Paar neuer
Rollenklassen. Das wiederum kann die Ubersicht iiber alle Klassen erschweren.
Um dem entgegen zu wirken, wird empfohlen, die spezialisierten Rollenklassen in
ein anderes als das von den Modellklassen verwendete Paket zu verschieben.

Die Implementierung ist sowohl fiir unidirektionale als auch fiir bidirektio-
nale Assoziationen verwendbar (Anforderung 6). AuBerdem werden alle in Ab-
schnitt 2.1 (S. 5) und Anforderung 6 (S. 12) genannten Assoziationen beriicksich-
tigt.

Mit Hilfe von speziellen Wrappern fiir Container kann bei diesem Ansatz auf fle-
xible Weise Thread-Sicherheit garantiert werden (Anforderung 7), ohne unnétigen
Laufzeit-Overhead fiir sequentielle Anwendungen zu erzeugen. Ein Benachrichti-
gungsmechanismus (Anforderung 8) ist ebenfalls verfiighar.

Bei diesem Ansatz besteht — wie bei dem Ansatz in [MZ04] (Abschnitt 3.3,
S. 23) — ein erhohter Speicherbedarf durch die Rollenobjekte, die paarweise je
eine Verbindung zweier Modellelemente entlang einer Assoziation repréasentieren.
Wrapper-Objekte und das Kopieren von Container-Inhalten erhéhen den Speicher-
bedarf und die Laufzeit zusétzlich. Dazu befindet sich eine Untersuchung in An-
hang A.1.

Vorteile

e Typsicherheit

e die Methoden zur Verwaltung der Assoziationen werden in eigene Klassen
ausgelagert, der Code fiir Modellklassen wird iibersichtlicher, erhéhte Les-
barkeit

e unabhingige Wartung der Assoziationsimplementierung moglich, solange die
Schnittstellen der Rollenklassen sich nicht dndern; Modellimplementierung
bedarf dann keinerlei Anpassung oder Neukompilierung

e Benutzung der Assoziationsimplementierung unter Anderem durch Abstrak-
tion und gemeinsame Schnittstellen vereinfacht

45

4. TYPSICHERE IMPLEMENTIERUNG VON ASSOZIATIONEN

Trennung der Assoziationsimplementierung von der Implementierung der
Modell-Klassen erziehlt ein besser strukturiertes Design

Konsistenzerhaltung bei bidirektionalen Assoziationen

Thread-Sicherheit

Benachrichtigungsmechanismus

Nachteile

e erhohter Speicherverbrauch durch Rollenobjekte fiir jedes an einer Assozia-
tion beteiligte Modellelement sowie durch Container-Kopien und Container-
Wrapper

e fiir jede Assoziation miissen je zwei spezielle Rollenklassen implementiert
werden

46

5. Technische Realisierung

Das UML Case Tool Fujaba [Fuj04] stellt auBer der Unterstiizung fiir die Mo-
dellierung von statischen und dynamischen Teilen eines Softwaresystems mit Hilfe
von UML-Diagrammen und speziellen so genannten Story-Diagrammen [FNTZ98]
auch eine automatische Code-Generierung bereit. Fujaba kann Java-Code erzeu-
gen. Die Code-Generierung von Fujaba ist aber so aufgebaut, dass auch die Ge-
nerierung von Code in einer anderen objektorientierten Programmiersprache wie
C++ prinzipiell méglich ist.

Im Rahmen dieser Studienarbeit wird unter Anderem untersucht, wie die bis-
her vorhandene Code-Generierung von Fujaba so erweitert werden kann, dass die
Generierung von typsicherem Java-Code fiir Assoziationen in einem UML-Modell
moglich wird. Als Grundlage fiir die Implementierung von Assoziationen dient da-
bei der neue, in dieser Studienarbeit erarbeitete und im Abschnitt 4.1 vorgestellte
Ansatz.

Zu der technischen Realisierung dieses Ansatzes gehort zum einen die Imple-
mentierung der allgemein verwendbaren Rollenbibliothek und zum anderen die
Entwicklung eines Plug-Ins zur Anpassung der Fujaba-Code-Generierung. Beides
wird in diesem Kapitel beschrieben.

5.1. Implementierung einer Rollenbibliothek

Zu dem in Abschnitt 4.1 (ab S. 33) beschriebenen Ansatz wird eine Rollenbib-
liothek in Java implementiert. Diese enthélt abstrakte Rollenklassen, die fiir eine
konkrete Implementierung von Assoziationen zwischen zwei Modellklassen spe-
zialisiert werden. Die Rollenimplementierung in der Bibliothek kann allgemein
verwendet werden, unabhéngig von Fujaba oder anderen Werkzeugen zur Code-
Generierung.

Der nach dem in Abschnitt 4.1 vorgestellten Ansatz implementierte Code fiir
Assoziationen in einem UML-Modell kann nur in Verbindung mit der Rollenbib-
liothek kompiliert und verwendet werden. Deswegen wird diese Bibliothek bei der
neuen Code-Generierung in Fujaba verwendet.

Zur Zeit ist nur eine der drei Teilhierarchien in Abb. 4.6 (S. 40) implementiert
worden, nédmlich die fiir nicht-qualifizierte Rollen. In Zukunft soll die Rollenbib-
liothek vervollstéandigt werden.

47

5. TECHNISCHE REALISIERUNG

5.2. Anpassung der Code-Generierung in Fujaba

In diesem Abschnitt wird erklért, wie der bisherige Code-Generierungsmechanis-
mus von Fujaba funktioniert. Anschliefend wird die Entwicklung eines Plug-Ins
fiir Fujaba beschrieben, das die bisher verwendete Java-Code-Generierung fiir As-
soziationen in UML-Modellen anpasst.

Um die Generierung der statischen Anteile eines Modells anzupassen, ersetzt das
Plug-In die bisherigen fiir die Implementierung von Assoziationen in die Modell-
klassen generierten Zugriffsmethoden und Container-Attribute durch neue an die
Verwendung der Rollenobjekte angepasste Versionen. Es generiert spezielle an die
modellierten Assoziationen angepasste Rollenklassen und speichert diese in einem
neuen Paket namens roles. Damit auch die dynamischen Anteile die neue Asso-
ziationsimplementierung verwenden, wird die Generierung von Methodenriimpfen
aus Story-Diagrammen [FNTZ98| angepasst.

5.2.1. Der Code-Generierungsmechanismus

Der Mechanismus zur Code-Generierung in Fujaba ist flexibel aufgebaut. Alle in ei-
nem Diagramm vorkommenden Elemente liegen in einem so genannten abstrakten
Syntazgraphen (ASG) vor. Abhéngig von der gewdhlten Zielprogrammiersprache
werden diese Elemente mit Hilfe von speziellen an die Elemente und die Zielspra-
che angepassten Handler- und Visitor-Objekten behandelt. Dabei werden Stiick
fiir Stiick Code-Fragmente zusammengesetzt und in entsprechende Dateien ge-
schrieben.

Bei der Initialisierung des Code-Generierungsmechanismus werden die fiir eine
gewihlte Zielprogrammiersprache passenden Objekte zur Behandlung der ASG-
Elemente instanziiert. Darunter befindet sich auch die in der Klasse CodeGenStra-
tegy und ihren Unterklassen implementierte Strategie (Strategy-Entwurfsmuster
nach [GHJV95]) zur Code-Generierung.'

Anschlieflend wird ein UMLProject-Objekt (ein Element des ASG), das ein ge-
samtes UML-Modell kapselt, zur Bearbeitung an die verwendete Strategie gereicht.
Diese besitzt fiir die Code-Generierung aus ASG-Elementen eine Liste von ASG-
Element-Handlern, eine Liste von CodeGenFunctions sowie fiir jede Zielsprache
einen CodeGenVisitor (siche Ubersicht in Abb. 5.1). Wihrend die Handler fiir die
statischen Teile des UML-Modells zusténdig sind, behandeln die CodeGenFunc-
tions die dynamischen Teile, insbesondere Teile der Story-Diagramme (spezielle
UML Aktivitdts- und Kollaborationsdiagramme) [FNTZ98].

Fiir jede Art von ASG-Elementen gibt es einen Handler, insbesondere gibt es
auch einen fiir UMLProject-Objekte. Damit Code fiir ein ASG-Element generiert
wird, reicht die Strategie das Element an den ersten Handler in der Liste. Die
Liste ist implementiert nach dem Entwurfsmuster Chain of Responsibility nach

Momentan wird ausschliefllich die Klasse OOGenStrategyClient (Unterklasse von CodeGen-
Strategy) als Strategie verwendet, aber auch andere Strategien — vielleicht sogar fiir nicht
objektorientierte Programmiersprachen — wéren denkbar.

48

5.2 Anpassung der Code-Generierung in Fujaba

JavaGenVisitor OOGenVisitor
+generateClassStartBlock() : void +createClassDeclaration(FClass theClass) : String
+generateClassStartBlock() : void
+getSourceCode(OOStatement statement) : String {final}

<<singleton>> | 1 hasStrategies p» 1 1 hasVisitors - 1 [CodeGenVisitor
CodeGenFactory |_name CodeGenStrategy name
1 1 1 1
currentFactory currentStrategy currentStrategy currentVisitor
chainMaster [1 1| chainMaster
1| prevHandler {ordered} {ordered} prevFunction| 1
CodeGenStrategyHandler CodeGenFunction
1 n n 1
successor handlerChain functionChain successor
OOGenStrategyHandler OOGenFunction
UMLProjectOOHandler ‘ ReturnStatOOFunction
UMLClassOOHandler ‘ LinkCreateOOFunction ‘
EndOfChainOOHandler LinkCheckToManyOOFunction

Abbildung 5.1.: Ubersicht der an der Code-Generierung beteiligten Klassen (alle
aus dem Paket de.uni_paderborn.fujaba.codegen)

Gamma et al. ((GHJV95]). Der Handler priift, ob er fiir diese Art von Elemen-
ten zusténdig ist und reicht das Element an den néchsten Handler in der Liste
weiter bis ein zustdndiger Handler gefunden wurde. Bei der Verarbeitung eines
ASG-Elements werden, wenn nétig, Konsistenzpriifungen durchgefiihrt und darin
enthaltene Elemente extrahiert. Diese werden ebenfalls an die Strategie zur Bear-
beitung weitergegeben. Auf diese Weise werden alle Elemente des ASG beginnend
mit einem UMLProject-Objekt nach und nach von einem zusténdigen Handler be-
arbeitet. Ahnlich wie von den Handlern, werden die ASG-Elemente auch von den
CodeGenFunctions behandelt, die ebenfalls als Chain of Responsibility organisiert
sind. Die CodeGenFunctions sind hauptséchlich fiir die Generierung der Metho-
denriimpfe zustandig.

Die Handler und CodeGenFunctions verwenden die Strategie und diese wiede-
rum den CodeGenVisitor, um fiir ein ASG-Element Code zu generieren. Fiir jede
der unterstiitzten Zielprogrammiersprachen gibt es je eine Unterklasse von Code-
GenVisitor. Jede davon bietet verschiedene Methoden zur Generierung von be-
stimmten Ausdriicken in der Zielsprache. Die CodeGenVisitor-Implementierungen
ermoglichen die Generierung dieser Ausdriicke, ohne die Syntax der Program-
miersprache zu kennen. Unter Verwendung dieser Methoden wird fiir jedes der

49

5. TECHNISCHE REALISIERUNG

ASG-Elemente von den Handlern und den CodeGenFunctions Code generiert. Die
CodeGenVisitor-Objekte puffern die generierten Code-Fragmente und schreiben ihn
schliellich in die entsprechenden Dateien.

Eine genauere Beschreibung des Code-Generierungsmechanismus befindet sich
in [Moa02].

5.2.2. Das Plug-In fiir die neue Code-Generierung

Fiir die Implementierung von Assoziationen nach dem neuen Ansatz aus Ab-
schnitt 4.1 (ab S. 33) wird die bisherige Code-Generierung von Fujaba durch ein
Plug-In angepasst. Die Anpassung betrifft dabei sowohl die Generierung von Code
fiir statische als auch fiir dynamische Anteile eines modellierten Softwaresystems.
Das implementierte Plug-In unterstiitzt momentan nur nicht-qualifizierte zu-1-
und zu-n-Rollen (darunter auch sortierte und geordnete).

Die bisherige Code-Generierung bietet bereits eine Unterstiitzung fiir die Gene-
rierung von Java-Code fiir Assoziationen. Nach dem Ansatz aus Abschnitt 3.2 (ab
S. 13) werden dabei verschiedene Methoden zum Verbinden und Trennen zweier
Modellelemente in die an einer Assoziation beteiligten Modellklassen generiert.

Zusténdig fiir die Generierung dieser Methoden ist hauptséchlich der UML-
RoleOOHandler. Dieser bekommt das UMLRole-Objekt einer an einer Assoziation
beteiligten Klasse (UMLClass) und erzeugt abhéngig von der Art der Assozia-
tion neue UMLAttr- und UMLMethod-Objekte fiir die Assoziationsimplementie-
rung. Diese neuen ASG-Elemente werden zur weiteren Behandlung an die Code-
Generierungsstrategie weitergereicht, werden aber nach der Code-Generierung wie-
der entfernt, um das Modell nicht zu dndern.

Um die Generierung an die neue Assoziationsimplementierung anzupassen, wer-
den einige Handler (insbesondere UMLRoleOOHandler) fiir die statischen und Code-
GenFunctions fiir die dynamischen Anteile eines modellierten Softwaresystems
durch angepasste Versionen davon ausgetauscht. Damit auch parametrisierte Ty-
pen wie Rollenklassen durch ein ASG-Element beschrieben werden kénnen, werden
neue ASG-Elemente implementiert. Schliellich wird der CodeGenVisitor so ange-
passt, dass dieser auch Code fiir die neuen ASG-Elemente generieren kann.

UMLClass UMLType
% n typeParameters
‘ UMLParameterizableClass

‘ n {ordered}

Abbildung 5.2.: Spezialisierung von UMLClass fiir parametrisierte Typen

Die vorhandene Code-Generierung kann nicht mit generischen Klassen und Me-
thoden umgehen. Damit fiir jede Assoziation spezielle generische Rollenklassen ge-
neriert werden konnen, wird ein neues ASG-Element eingefiihrt, das in der Klasse

50

5.2 Anpassung der Code-Generierung in Fujaba

1| previous
UMLRoleOOHandlerStrategy 1 UMLRoleOOHandler
1

next strategyChain chainMast:

[UMLRoleOOHandlerNonQualified ToOneStrategy |

| UMLRoleOOHandlerNonQualifiedToManyStrategy ‘

Abbildung 5.3.: Implementierung der Rollen-Strategien

UMLParameterizableClass implementiert wird (siche Abb. 5.2). Dieses Element re-
préasentiert einen parametrisierten Typ (z.B. eine Klasse mit Typparametern) oder
eine gewohnliche Klasse. Die einzige neue Funktionalitidt gegeniiber der Klasse
UMLClass ist das Merken der Typparameter, wenn welche festgelegt wurden. Da
bei der Generierung von Rollenklassen keine Methoden mit Typvariablen generiert
werden miissen, werden vorerst keine ASG-Elemente fiir Typvariablen implemen-
tiert.

Bei der Generierung von dynamischen Teilen eines Modells wird ein spezieller
abstrakter Syntaxgraph von dem OOGenStrategyClient (Code-Generierungsstrate-
gie fiir objektorientierte Programmiersprachen) und dem OOGenVisitor verwendet.
Typen werden darin durch Objekte der Klasse OOType anstatt UMLClass oder
UMLType représentiert. Deswegen wurde fiir die Verwendung von parametrisier-
ten Typen innerhalb von Methodenriimpfen die Klasse OOType durch die Klasse
OOParameterized Type analog zu UMLParameterizableClass erweitert.

Ein UMLRoleOOHandler hat eine Liste von Strategien (siche Abb. 5.3), &hnlich
der Handler-Liste der CodeGenStrategy. Fiir jede Rollenart, z.B. nicht qualifizierte
zu-n-Rolle, gibt es je eine Strategie, die fiir die Bearbeitung des UMLRole-Objekts
zusténdig ist. (Bisher sind nur Strategien fiir nicht-qualifizierte Rollen implemen-
tiert.) Der UMLRoleOOHandler und seine Strategien werden so angepasst, dass
anstatt der Assoziationsmethoden innerhalb der Modellklassen nun die Rollenklas-
sen und die zugehorigen Zugriffsmethoden generiert werden (siehe auch Abb. 4.1,
S. 35 und Abb. 4.2, S. 36). Dazu werden fiir die entsprechenden Methoden, Attri-
bute und Rollenklassen neue ASG-Elemente erstellt und zur weiteren Behandlung
an die Code-Generierungsstrategie weitergegeben. Damit die erzeugten Elemente
nach der Code-Generierung aus dem Modell wieder entfernt werden kénnen, wird
der UMLProjectOOHandler so angepasst, dass er sie zwischenspeichert und nach
der Code-Generierung entfernt. Zusétzlich sammelt dieser alle zu generierenden
Dateien ein — ndmlich die fiir die Rollenklassen — und generiert den zugehorigen
Code nachdem alle anderen Dateien generiert wurden.

Auch die CodeGenFunctions werden angepasst, damit innerhalb der generier-

51

5. TECHNISCHE REALISIERUNG

ten Methodenriimpfe die neuen Zugriffsmethoden und Rollen benutzt werden.
Auflerdem konnen aufgrund der typsicheren Assoziationsimplementierung bisher
notwendige Typumwandlungen (type casts) weggelassen werden. Die verwendeten
[teratoren sind parametrisiert mit dem Typ der Elemente, iiber die iteriert wird.
Diese Typparameter miissen ebenfalls bei der Code-Generierung ergéinzt werden.

Der CodeGenVisitor wird erweitert, damit dieser mit parametrisierten Typen
umgehen kann. Insbesondere wird die Methode createClassExtendsDeclaration iiber-
schrieben, um bei einer Klassendeklaration mit einem extends-Ausdruck auch
Typparameter angeben zu kénnen. Das ist fiir die Generierung der Rollenklassen
notwendig, wie die Abb. 4.2 (S. 36) zeigt.

Schlielich wird eine Plug-In-Klasse implementiert, die bei der Initialisierung
den CodeGenVisitor, die Handler und die CodeGenFunctions durch angepasste Ver-
sionen ersetzt.

Der generierte Code kann zusammen mit der in Abschnitt 5.1 (S. 47) beschrie-
benen Rollenbibliothek kompiliert und verwendet werden.

52

6. Zusammenfassung und Ausblick

In dieser Studienarbeit wurden verschiedene Ansétze zur Implementierung von
Assoziationen mit dem Ziel der Code-Generierung aus einem UML-Modell vorge-
stellt und evaluiert. Die bisher verwendete Fujaba-Code-Generierung fiir Assozia-
tionen und ein neuer an der Universitéit Kassel entwickelter Ansatz [MZ04] wurden
verglichen und auf die Realisierung von Typsicherheit hin {iberpriift. Dabei stell-
te sich heraus, dass die Fujaba-Code-Generierung zwar typsicher gemacht werden
konnte, der erzeugte Code aber durch sehr viele generierte Methoden innerhalb der
Modellklassen nur schwer lesbar und wartbar ist. Obwohl der Ansatz aus [MZ04]
bereits Java Generics verwendet, kann bei dieser Art der Assoziationsimplementie-
rung aufgrund der Verwendung des Reflection-Mechanismus keine Typsicherheit
erreicht werden. Es zeigten sich aber deutliche Vorteile bzgl. Wartbarkeit und
Lesbarkeit des generierten Codes.

Aufbauend auf der Idee aus [MZ04] wurde eine typsichere Implementierung von
Assoziationen erarbeitet und beschrieben. Sie erfiillt alle genannten Anforderun-
gen, insbesondere wird die Konsistenz bei bidirektionalen Assoziationen gewahrt
und die Wartbarkeit und Lesbarkeit des generierten Codes erhéht. Fiir einen prak-
tischen Test wurde ein Fujaba-Plug-In implementiert, das alle nicht-qualifizierten
in Fujaba modellierbaren Assoziationen unterstiitzt.

In Zukunft kann die zur Zeit nicht vollsténdig implementierte Rollenbibliothek
um die Rollenklassen fiir einseitig qualifizierte und beidseitig qualifizierte Assozia-
tionen erweitert und der Offentlichkeit zugénglich gemacht werden. Da der Ansatz
Fujaba-unabhéngig ist, kann die Bibliothek auch ohne Code-Generierung oder in-
nerhalb einer anderen Umgebung als Fujaba verwendet werden.

Die bisher als Plug-In implementierte typsichere Assoziationsimplementierung
konnte komplett in den Code-Generierungsmechanismus von Fujaba integriert
werden. Da grofie Teile von Fujaba mit Fujaba entwickelt wurden, ist auch ei-
ne Neugenerierung des vorhandenen Fujaba-Codes unter Verwendung der neuen
Assoziationsimplementierung denkbar. Dadurch konnte der Fujaba-Code typsi-
cher, aber auch iibersichtlicher und lesbarer gemacht werden. Der Aufwand fiir
die Wartung des Fujaba-Codes konnte reduziert werden und Typfehler bei der
Implementierung von Assoziationen verhindert werden.

In einem néchsten Schritt konnte die Modellierung von generischen Klassen und
Methoden innerhalb von Fujaba realisiert werden. Dadurch wére eine Generierung
von vollstindig! typsicherem Code aus einem Modell méglich.

'Das realisierte Plug-In ermoglicht die Generierung von einem nur fiir Assoziationen typsicheren
Code .

53

A. Anhang

In diesem zusétzlichen Kapitel werden einige Fragen bzgl. Performance bei der
Implementierung von Assoziationen geklért.

In dem ersten Abschnitt wird untersucht, wie hoch der Laufzeit- und Spei-
cheraufwand fiir das Erzeugen von Iteratoren ist, die auch bei Verdnderung des
Container-Inhalt wihrend einer Iteration keine Laufzeitfehler (ConcurrentModifica-
tionExceptions) erzeugen. Das ist insbesondere fiir die Verwendung der Standard-
Container aus der Java-Bibliothek wichtig, wie das z.B. bei dem in Abschnitt 4.1
(ab S. 33) beschriebenen Ansatz der Fall ist.

Bei dem zweiten Abschnitt wird der Aufwand fiir Methodenaufrufe mit Hilfe
des Reflection-Mechanismus von Java dem Aufwand fiir direkte Methodenaufrufe
gegeniibergestellt. Dieser Vergleich ergéinzt die Evaluation des Ansatzes zur Asso-
ziationsimplementierung in Abschnitt 3.3 (ab S. 23).

Alle in diesem Kapitel vorgestellten Tests sind in Java implementiert. Dabei
wird die Version 1.5 verwendet (Java 2 SE 5 bzw. Java Development Toolkit 1.5).
Um Daten, wie Speicherverbrauch und Laufzeit der Tests, zu sammeln, wird das
Tool JProfiler in der Version 3.1.2 der Firma ej-Technologies verwendet [ej-04].

Die Evaluation einer Anwendung mit JProfiler erfordert, dass diese Anwendung
noch aktiv (nicht beendet) ist. Aus diesem Grund wird in allen Tests am Ende
des Test-Programms ein AWT-Fenster! erzeugt, das die Programmausfiihrung fiir
die Dauer der Evaluation hinauszogert. Dadurch ist der gemessene Speicherbedarf
evtl. etwas erhoht.

A.1. Aufwand fiir das Erzeugen von lteratoren mit
exklusivem Kontext

Bei der Implementierung von Assoziationen wird meist Gebrauch von Contai-
nern gemacht. Diese dienen der Verwaltung von sich gegenseitig referenzierenden
Objekten. Im Zusammenhang mit Containern werden auch Iteratoren verwen-
det (java.util.Iterator), um die enthaltenen Elemente zu durchlaufen. Dabei
kénnen ConcurrentModificationExceptions auftreten, falls sich der Inhalt eines Con-
tainers wahrend der Iteration &ndert, z.B. wenn ein Element hinzugefiigt wird.

LAWT steht fiir ,Abstract Window Toolkit“. Das ist ein Teil der Java-Bibliothek und
stellt diverse Hilfsmittel zur Programmierung von grafischen Benutzungsschnittstellen zur
Verfiigung. Hier wurde ein Frame aus dem Paket java.awt verwendet.

55

A. ANHANG

public class TestPerformance

{
private static HashMap<Integer, String> map = new HashMap<Integer, String>();
public static void main(String[] args)
{

// Initialisieren der Variablen...
// Einfiigen der Eintréige in die HashMap...
// TEST: Erzeugen der Iteratoren...

// AWT-Fenster erstellen, damit das Programm nicht gleich beendet wird
Frame f = new Frame();
f.setVisible(true);
f.addWindowListener (new WindowAdapter ()
{
public void windowClosing(WindowEvent e)
{
System.exit(0);
}
b

Abbildung A.1.: Aufbau eines Testprogramms

Um diese Exceptions in sequentiellen Anwendungen zu vermeiden,? ist es moglich,
das Container-Objekt zu klonen und einen Iterator des geklonten Containers fiir
die Iteration zu verwenden. Dadurch erhohen sich der Speicherverbrauch und die
Laufzeit, was in diesem Abschnitt genauer untersucht wird.

Um den Container-Inhalt bei jeder Iteration exklusiv zu benutzen, konnen die
Container-Objekte vor der Iteration geklont und anstatt des Originals fiir die Ite-
ration verwendet werden. Es wurde aber auch eine weitere Moglichkeit erarbeitet,
die ebenfalls eine Iteration {iber exklusive Container-Inhalte erlaubt. In diesem
Fall wird nicht ein gesamter Container geklont, sondern nur sein Inhalt kopiert
(genauer: nur die Referenzen auf den Inhalt). Dadurch soll der Speicherbedarf
reduziert werden.

Realisiert wird das mit Hilfe einer typsicheren Implementierung der Iterator-
Schnittstelle von Java. Der Collectionlterator (eigene Entwicklung) bekommt einen
Container vom Typ java.util.Collection iibergeben, dessen Inhalt beim FEr-
zeugen des Iterators in eine vom Iterator exklusiv gehaltene ArrayList (Paket
java.util) kopiert wird.

Die clone-Methode gibt immer nur ein Objekt vom Typ java.lang.Object
zuriick und nicht vom speziellen tatsédchlich geklonten Typ. Dadurch werden Typ-
umwandlungen (type casts) notig. Diese verhindern aber Typsicherheit, da die
Typpriifung zur Laufzeit erfolgt.

Um Aussagen zu Speicherverbrauch und Laufzeit machen zu kénnen, wurden
einige kurze Java-Programme geschrieben und mit JProfiler evaluiert. In jedem

2In nebenliufigen Anwendungen bedarf es eines weiteren Mechanismus, um ConcurrentModifi-
cationExceptions zu vermeiden. Damit sich der Container-Inhalt wihrend des Klonvorganges
nicht dndert (z.B. durch das Einfiigen oder Entfernen von Objekten durch andere Threads),
muss das Klonen des Containers durch einen exklusiven Zugriff geschiitzt werden.

56

A.1 Aufwand fiir das Erzeugen von Iteratoren mit exklusivem Kontext

Test wird eine HashMap (Paket java.util mit mehreren Eintrdgen (Integer als
Key und String als Value) erzeugt. Anschlieflend wird eine bestimmte Anzahl
von lIterator-Objekten fiir die Iteration iiber die Value-Eintrédge der HashMap er-
zeugt und in einem Array oder einer Variable gespeichert. Mit JProfiler wird die
Laufzeit fiir das Kopieren des Container-Inhalts (bzw. Klonen des Containers)
und das Erzeugen der Iterator-Objekte gemessen. Zusétzlich wird der verbrauchte
Speicher direkt vor dem Erstellen der Iterator-Objekte und danach festgehalten.
Die Abb. A.1 zeigt den Aufbau eines solchen Testprogramms.

Fiir die Testergebnisse werden nur die relevanten Werte betrachtet. Fiir die
Ermittlung des Speicherverbrauchs werden nur die Objekte betrachtet, die zu-
sammen den meisten Speicher verbrauchen oder eindeutig von den verwendeten
Datenstrukturen instanziiert werden. Beim Laufzeitvergleich wird nur die Laufzeit
der beim Test verwendeten Methoden betrachtet, sodass die Einfiige-Operationen
in die HashMap sowie das Erstellen des AWT-Fensters keine Auswirkung haben.
Es wird immer die gesamte Laufzeit betrachtet, d.h. wenn eine Methode zehn Mal
aufgerufen wurde, wird die Laufzeit fiir diese zehn Aufrufe zusammen verwen-
det. Es werden nicht alle gesammelten Ergebnisse in dieser Arbeit prisentiert, da
das den Rahmen sprengen wiirde. Stattdessen werden zu jedem der Tests nur die
Laufzeitergebnisse présentiert und einige Hinweise bzgl. des Speicherverbrauchs
gegeben. Anschliefend (ab S. 61) werden der Gesamtspeicherbedarf und die Lauf-
zeit verglichen, allerdings ohne ins Detail zu gehen.

Mit jeder der beiden genannten Methoden (Klonen und Collectionlterator) wer-
den drei Tests durchgefiihrt. Bei dem ersten Test enthélt die HashMap 100.000
Eintrdge und es wird ein Iterator erstellt. Bei dem zweiten Test hat die HashMap
100.000 Eintrédge und es werden 10 Iterator-Objekte erstellt. Beim dritten Test
enthélt die HashMap 10 Eintréige, es werden aber 100.000 lterator-Objekte erstellt.

In beiden Ansétzen werden ausschliefllich der Container-Inhalt und zugehérige

// Initialisieren der Variablen // Initialisieren der Variablen
Iterator<String> iter = null; HashMap<Integer, String>[] maps = new HashMap[10];
Iterator<String>[] iterators = new Iterator[10];

// Einfiigen der Eintr&ge in die HashMap // Einfiigen der Eintrdge in die HashMap

for (int i = 0; i < 100000; i++) for (int i = 0; i < 100000; i++)
{ {
map.put(new Integer(i), map.put(new Integer(i),
Integer.toString(i)); Integer.toString(i));
} }
// TEST: Erzeugen der Iteratoren // TEST: Erzeugen der Iteratoren
iter = ((HashMap) map.clone()) for (int i = 0; i < maps.length; i++)
.values().iterator(); {
maps [i] = (HashMap) map.clone();
// AWT-Fenster erstellen... iterators[i] = maps[i].values().iterator();
}

// AWT-Fenster erstellen...

Abbildung A.2.: Einmaliges bzw. 10-maliges Erzeugen eines Iterators nach dem
Klonen der HashMap mit 100.000 Eintridgen

57

A. ANHANG

Tabelle A.1.: Speicherverbrauch vor dem Klonen (10 Iteratoren, 100.000 Eintréige)

Objekt-Typ Instanzen Byte
HashMap$Entry 101.170 2.428.080
HashMap$Valuelterator 0 0
HashMap$Values 0 0
HashMap$Entrylterator 0 0
HashMap 60 2.400
String 102.356 2.456.544
Integer 100.316 1.605.056
<class>[] 1.615 1.703.080
char[] 102.720 2.559.880
| Summe \ | 10,25680542 MB |

Tabelle A.2.: Speicherverbrauch nach dem Klonen und Erzeugen der Iteratoren
(10 Iteratoren, 100.000 Eintrége)

Objekt-Typ Instanzen Byte
HashMap$Entry 1.101.170 26.428.080
HashMap$Valuelterator 10 320
HashMap$Values 10 160
HashMap$Entrylterator 2 64
HashMap 70 2.800
String 102.356 2.456.544
Integer 100.316 1.605.056
<class>[] 1628 11.664.832
char[] 102.720 2.559.880
| Summe | 42,64615631 MB

Hilfsobjekte (zur Verwaltung der enthaltenen Objekte) geklont bzw. kopiert. Die
verwalteten Objekte bleiben unverindert und werden nicht mitgeklont. 3 Dadurch
beschrénkt sich der erhéhte Speicherbedarf auf den von den geklonten Containern
bzw. erstellten Iteratoren benotigten Speicher, der aber von der Anzahl der ver-
walteten Objekte abhéngt (jede Referenz auf ein verwaltetes Objekt benotigt eine
bestimmte Menge Speicher).

3Es gibt auch Klonoperationen, die eine so genannte tiefe Kopie eines Objekts erstellen. In
diesem Fall werden alle referenzierten Objekte ebenfalls geklont, wodurch der Speicherbedarf
erhoht wird.

58

A.1 Aufwand fiir das Erzeugen von Iteratoren mit exklusivem Kontext

Klonen von Containern

Die Tests fiir das Klonen eines Containers und das anschlieBende Erstellen des Ite-
rators enhalten den Code aus Abb. A.2 in der main-Methode des Testprogramms.
In der Abbildung ist der Code fiir die Tests mit 100.000 Eintrigen und einem bzw.
10 Iteratoren. Der Quellcode fiir den Test mit 10 Eintrédgen und 100.000 Iteratoren
ist analog und unterscheidet sich nur durch die Array-Indizes.

Einige beispielhafte Ergebnisse zu einem der drei durchgefiihrten Tests sind in
den Tabellen A.1 und A.2 zu sehen. Hier wird gut deutlich, dass beim Klonen sehr
viele HashMap$Entry-Objekte erstellt werden, um die 100.000 Eintréige in jedem
neuen Container-Klon zu verwalten. Auflerdem steigt der Speicherverbrauch fiir
Arrays von Objekten (<class>[]). Der Speicherbedarf dieses Ansatzes wird ab
Seite 61 der Verwendung des Collectionlterators gegeniibergestellt.

In allen drei Tests wéichst der Speicherverbrauch nach dem Klonen und Erstellen
der Iteratoren hauptséchlich durch die Hilfsobjekte der HashMap. Besonders deut-
lich wird das bei den HashMap$Entry-Objekten. Bei besonders haufigem Klonen —
z.B. 100.000 Mal, wie bei dem dritten Test — wéchst der Speicherverbrauch auch
durch die HashMap$Values-, HashMap$Valuelterator-, HashMap$Entrylterator-, Has-
hMap- und <class>[]-Objekte, da fiir jeden Klon je ein solches Objekt erstellt
wird.

Tabelle A.3.: Laufzeit fiir das Klonen und Erzeugen der Iteratoren (in Sekunden)

Methode/Test 11/100.000E | 10I/100.000E | 100.000I/10E
HashMap.clone 0,507 7,537 7,747
HashMap.values nm nm 0,42
Collection.iterator | nm nm 0,835

| Summe [0,507 | 7,537 9,002

Die mit nm gekennzeichneten Werte sind kleiner als 1 Millesekunde und damit nicht
mehr messbar. I steht fiir ,Iteratoren” und F fiir ,,Eintrage*“.

Die Laufzeitmessungen ergaben, dass die clone-Methode mit Abstand die mei-
ste Rechenzeit bendtigt (siehe Tabelle A.3). Die beiden anderen Methoden ver-
brauchen weniger als 1 Millesekunde.

Insgesamt erweist sich das Klonen von Containern als nicht effizient, vor Allem
durch den hohen Speicherverbrauch. Auflerdem ist bei der clone-Operation keine
Typsicherheit gegeben.

Collectionlterator-Ansatz

Bei diesem Ansatz wird versucht, Speicher fiir Hilfsobjekte zur Verwaltung von
Container-Inhalten einzusparen. Anstatt den gesamten Container zu klonen wird
hier nur sein Inhalt in einen anderen Container kopiert, ndmlich in eine ArrayList

59

A. ANHANG

// Initialisieren der Variablen
Iterator<String> iter = null;

// Einfiigen der Eintrége in die HashMap
for (int i = 0; i < 100000; i++)
{
map.put (new Integer(i),
Integer.toString(i));
}

// TEST: Erzeugen der Iteratoren
iter = new CollectionIterator<String>(
map.values());

// AWT-Fenster erstellen...

// Initialisieren der Variablen
HashMap<Integer, String>[] maps = new HashMap[10];
Iterator<String>[] iterators = new Iterator[10];

// Einfiigen der Eintr&ge in die HashMap
for (int i = 0; i < 100000; i++)
{
map.put (new Integer(i),
Integer.toString(i));
}

// TEST: Erzeugen der Iteratoren
for (int i = 0; i < iterators.length; i++)
{
iterators[i] = new CollectionIterator<String>(
map.values());

}

// AWT-Fenster erstellen...

Abbildung A.3.: Einmaliges bzw. 10-maliges Erzeugen eines Collectionlterators mit
dem Inhalt der HashMap mit 100.000 Eintrégen

(Paket java.util). Da der ArrayList-Container auf einem Array basiert, werden
hier nur sehr wenige Hilfsobjekte zur Verwaltung des Container-Inhalts benétigt.
Der Konstruktor des Collectionlterators bekommt ein Collection-Objekt, dessen In-
halt kopiert wird. AnschlieBend kann der Collectionlterator iiber die kopierten Ob-
jektreferenzen iterieren.

Wie im vorhergehenden Abschnitt wird hier der Quellcode fiir die drei durch-
gefiithrten Tests in Abb. A.3 dargestellt. Wieder ist der Quellcode fiir die letzten
beiden Tests analog (Unterschied nur in den Indizes).

Dadurch, dass nur der Container-Inhalt kopiert wird, benotigt dieser Ansatz
wesentlich weniger Speicher. Durch die Verwendung der Arraylist werden aber
zusétzliche Objekte erzeugt, z.B. AbstractList$ltr, die ebenfalls Speicher verbrau-
chen. Trotzdem werden z.B. bei Test zwei (10 Iteratoren, 100.000 Eintrdge) an-
statt der ca. 32 MB beim Klonen-Verfahren (42,6 MB — 10,3 MB = 32,3 MB)
hier nur ca. 4,2 MB benétigt. Um nicht weiter ins Detail zu gehen, wird der
Gesamtspeicherbedarf dieses Ansatzes ab Seite 61 dem Klonen von Containern
gegeniibergestellt.

Tabelle A.4.: Laufzeit fiir das Erzeugen von Collectionlteratoren (in Sekunden)

Methode/Test 11/100.000E | 101/100.000E | 100.000I/10E
Collectionlterator.<init> | 0,064 0,71 3,776
HashMap.values nm nm 0,177

| Summe | 0,064 [0,71 | 3,953

Die mit nm gekennzeichneten Werte sind kleiner als 1 Millesekunde und damit nicht
mehr messbar. I steht fiir , Iteratoren* und FE fiir , Eintréige*®.

60

A.1 Aufwand fiir das Erzeugen von Iteratoren mit exklusivem Kontext

Auch bei der Laufzeit zeigen sich enorme Vorteile gegeniiber dem Klonen von
Containern wie die Tabelle A.4 im Vergleich zur Tabelle A.3 auf Seite 59 zeigt.

Insgesamt betrachtet ist dieser Ansatz wesentlich effizienter als das Klonen von
Containern.

Vergleich

Alle gesammelten Werte bzgl. Speicherverbrauch aufzuzeigen, wiirde diese Arbeit
mit vielen Tabellen und iiberfliissigen Informationen fiillen. Um die beiden Ansétze
dennoch vergleichen zu kénnen, wird in diesem Abschnitt der Speicherverbrauch
der durchgefiihrten Tests in Diagrammen illustriert. Auch die Laufzeiten werden
gegeniibergestellt.

——— S [P
100.000 kerstoren, 10 Eintrage I |

10 teratoren, 100.000 Eintrage

1 kerator, 100.000 Eintrége

I

=
[y]

10 15 20 25 an 35 40 45
MByte
B Container klonen (Init.) @ Container klonen (Kopieren) O Collectionlteratar {Init.) O Caollectionlteratar (Kopieren) |

Abbildung A .4.: Gesamtspeicherverbrauch

——————— L
100.000 Rerstoren, 10 Eintrége "

E

10 teratoren, 100.000 Eintrége

1 Rerator, 100.000 Eintrage

H

5 10 15 20 25 30 34 40 45
MByte

||:| Container klonen O Collectionlterator |

Abbildung A.5.: Speicherverbrauch fiir erzeugte Objekte

Die Abbildung A.4 zeigt fiir die beiden Ansétze und die drei Tests pro Ansatz
den insgesamt verbrauchten Speicher. Da die Initialisierung bei allen Ansétzen
gleich ist, ergibt sich dafiir auch der gleiche Speicherbedarf. In der Abbildung A.5

61

A. ANHANG

mmmm | ||| 1TTTT

100.000 terstoren, 10 Eirtrage

10 keratoren, 100.000 Eintrage

1 tterator, 100,000 Eintrage]_

Sekunden

||:|Cnntainer klanen O Collectionlterator @ ohne klonen |

Abbildung A.6.: Laufzeit der beiden Ansétze im Vergleich zum Erstellen eines
Iterators ohne Klonen

wird nur der Speicherbedarf fiir die beim Klonen bzw. Iterator-Erzeugen instanzi-
ierten Objekte dargestellt. Das verdeutlicht den unterschiedlichen Speicherbedarf.

Die Laufzeit der beiden Ansétze wird in der Abb. A.6 gegeniibergestellt. Zu-
sitzlich wird die Laufzeit abgebildet, die fiir die Riickgabe eines Iterators ohne
Kopieren des HashMap-Inhaltes bendtigt wird. Die Benutzung eines Collectionlte-
rators ist eindeutig schneller als das Klonen von Containern. Natiirlich benotigt
das aber eine hohere Laufzeit, als einen Iterator von einem Container zuriickgeben
zu lassen, ohne den Inhalt vorher zu kopieren.

Bei allen durchgefiihrten Tests wird deutlich, dass sich das Klonen der Container
nicht lohnt. Stattdessen sollte nur ihr Inhalt kopiert werden.

A.2. Aufwand fiir Methodenaufrufe mit Hilfe von
Reflection

Um den Aufwand fiir die Verwendung von Reflection bei der Implementierung
von Assoziationen zu messen, wurde ein kleines Testprogramm geschrieben, das
100.000 Mal eine parameterlose Methode per Reflection aufruft. Zum Vergleich
wurde dieser Test auch mit einem 100.000-fachen direkten Aufruf der gleichen
Methode durchgefithrt und mit einem 100.000-fachen Aufruf der Methode per
Reflection, wobei aber die Methode gecached wurde.

In Abbildung A.7 ist der Code fiir den ersten Test zu sehen. Hier wird 100.000
Mal per Reflection die Methode trimToSize eines ArrayList-Objekts geholt und per
invoke-Anweisung aufgerufen.

Besonders lange braucht der Aufruf der Methode java.lang.Class.getMethod,
namlich 1.702 Millesekunden (siche Abb. A.8, S. 63). Um diese Laufzeit bei wie-
derholten Aufrufen zu verkiirzen, wurde bei dem néchsten Test (Abb. A.9) die
zuriickgegebene Methode gecached, um spéter nur noch aufgerufen zu werden.

62

A.2 Aufwand fiir Methodenaufrufe mit Hilfe von Reflection

public class TestPerformanceReflection
{

static List list = new ArrayList();

public static Method getMethod()
{
Method result = null;
try
{
result = list.getClass().getMethod("trimToSize", null);
}
catch (Exception e)
{
e.printStackTrace();
}
return result;

}

public static void main(String[] args)
{
for (int i=0; i<100000; i++)
{
try
{
getMethod () .invoke (list,null);
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
}

Abbildung A.7.: 100.000-facher Aufruf einer Methode per Reflection

Durch diese kleine Anpassung spart man einen groflen Teil der Laufzeit, da
die Methode nur noch einmal rausgesucht werden muss, sodass sich die Nachteile
von Reflection bei mehrfachem Aufruf der gleichen Methode minimieren (siche
Abb. A.8, S. 63). Zum Vergleich wurde das gleiche Testprogramm mit direktem
Methodenaufruf ausgefithrt (Abb. A.10).

direkter Aufruf

Reflection mit Caching

Reflection

0 500 1000 1500 2000 2500 3000
Laufzeit {ms)

& gethethad() mgettMethodCached))
B java.lang Class. gethethod() Bjava.lang. Object. getClass()
mjava.lang reflect. Method.invoke() @java. util ArrayList.trimToSizel)

Abbildung A.8.: Laufzeitaufwand fiir Reflection

63

A. ANHANG

public class TestPerformanceReflection
{
static List list = new ArrayList();
static Method method = null;

public static Method getMethodCached()
{
if (method != null)
return method;
try
{
method = list.getClass().getMethod("trimToSize", null);
}
catch (Exception e)
{
e.printStackTrace();
}
return method;

}

public static void main(String[] args)
{
for (int i=0; i<100000; i++)
{
try
{
getMethodCached() . invoke (list,null);
}
catch (Exception e)
{
e.printStackTrace();
}

}
Abbildung A.9.: 100.000-facher Aufruf einer Methode per Reflection mit Caching

Die Ergebnisse der drei Tests im Vergleich stellt die Abbildung A.8 dar (S. 63).
Hier werden die Laufzeiten der einzelnen Methoden aufgefiihrt. Sie werden so
dargestellt, dass auch die Gesamtlaufzeiten der drei Ansétze verglichen werden
konnen. Die dargestellten Zeiten sind die Laufzeiten fiir die 100.000 Aufrufe der
Methoden (bei Reflection mit Caching werden die Methoden java.lang.Class.
getMethod und java.lang.Object.getClass nur einmal aufgerufen). Ein einzel-
ner Aufruf der Methoden java.lang.Class.getMethod und java.lang.Object.

public class TestPerformanceReflection
{

static ArrayList list = new ArrayList();

public static void main(String[] args)
{
for (int i=0; i<100000; i++)
{
list.trimToSize();

}
}
Abbildung A.10.: 100.000-facher direkter Aufruf einer Methode

64

A.2 Aufwand fiir Methodenaufrufe mit Hilfe von Reflection

getClass innerhalb der Methode getMethodCached benétigte weniger als 1 ms.
In dem Test von Reflection ohne Caching benétigt der Aufruf der Methode get-
Method insgesamt 2.389 ms, wovon 1.702 ms fiir den enthaltenen Aufruf von
java.lang.Class.getMethod und 197 ms fiir den Aufruf von java.lang.0bject.
getClass bendtigt wird. Fiir die Methode getMethod ist in dem Diagramm nur
die Laufzeit dargestellt, die nicht von den darin enthaltenen Methodenaufrufen
benotigt wird, ndmlich 2.389 — 1.702 — 197 = 490 ms.

Insgesamt zeigt sich deutlich, dass bei der Verwendung von Reflection auch
Caching genutzt werden sollte, um die Laufzeit zu minimieren, wenn eine Methode
mehrfach verwendet wird. Am wenigsten Laufzeit (und Code) benotigt aber der
direkte Aufruf einer Methode.

65

Literaturverzeichnis

[BCK*01]

[Bra04]

[ej-04]

[FNT98]

[FNTZ98]

[Fujod]

[GHJIV95]

[HBROO]

BrAcHA, GILAD, NORMAN COHEN, CHRISTIAN KEMPER, STEVE
MARX, MARTIN ODERSKY, SVEN-ERIC PANITZ, DAVID STOUTAMI-
RE, KRESTEN THORUP und PHILIP WADLER: Adding Generics to
the Java Programming Language: Participant Draft Specification, April
2001.

BracHA, GILAD: Generics in the Java Programming Language, Juli
2004. Tutorial.

EJ-TECHNOLOGIES GMBH: JProfiler. Online unter: http://www.ej-

technologies.com /products/jprofiler /overview.html, 2004. Version
3.1.2.

FISCHER, THORSTEN, JORG NIERE und LARS TORUNSKI: Konzeption
und Realisierung einer integrierten Entwicklungsumgebung fiir UML,
Java und Story-Driven-Modeling. Diplomarbeit, Universitit Pader-
born, Juli 1998.

FiscHER, THORSTEN, JORG NIERE, LARS TORUNSKI und ALBERT
ZUNDOREF: Story Diagrams: A new Graph Rewrite Language based on
the Unified Modeling Language and Java. Proceedings of the 6th In-
ternational Workshop on Theory and Application of Graph Transfor-
mation (TAGT), 1998.

FuijaBA DEVELOPMENT GROUP: Fujaba ToolSuite. Online unter:
http://www.fujaba.de, 2004.

GAMMA, ERICH, RiICHARD HELM, RALPH JOHNSON und JOHN VLIS-
SIDES: Design Patterns: Elements of Reusable Object Oriented Softwa-
re. Reading, MA: Addison-Wesley, 1995.

HARRISON, WILLIAM, CHARLES BARTON und MUKUND RAGHAVA-
CHARI: Mapping UML Designs to Java. Proceedings of the 15th Annu-
al ACM Conference on Object-Oriented Programming: Systems, Lan-
guages and Applications (OOPSLA’2000), Volume 35: Seiten 178-188,
Oktober 2000. Minneapolis, Minnesota, USA.

67

http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.fujaba.de

Literaturverzeichnis

[Lea05]

[Mai04]

[Moa02]

[MZ04]

[Obj03]

[Wat96]

68

LEA, Doua: Java Specification Request (JSR) 166: Concurrency Uti-
lities. Online unter: http://gee.cs.oswego.edu/dl/jsr166/dist/docs/,
2005. Schnittstellendefinition (APIs).

MAIER, THOMAS: Associations. Online unter:
http://sourceforge.net /projects/associations/, November 2004.
Version 0.4.

MOAT, SUSANNAH: Fujaba Code Generation for static UML Models.
Universitat Paderborn, Dezember 2002.

MAIER, THOMAS und ALBERT ZUNDORF: Yet Another Association
Implementation. Fujaba Days 2004, 2004.

OBJECT MANAGEMENT GROUP, INC.: OMG Unified Modeling Lan-
guage Specification, Méarz 2003. Version 1.5.

WATT, DAVID A.: Programmiersprachen — Konzepte und Paradigmen.
Hanser, 1996. ISBN 3-446-17992-5.

http://gee.cs.oswego.edu/dl/jsr166/dist/docs/
http://sourceforge.net/projects/associations/

	Inhaltsverzeichnis
	Einleitung
	Motivation
	Lösungsansatz
	Struktur der Arbeit

	Grundlagen
	Assoziationen
	Generics in Java
	Einführung
	Eigenschaften der Java Generics

	Ansätze zur Implementierung von Assoziationen
	Anforderungen an eine Implementierung
	Rollenimplementierung innerhalb der Modellklassen
	Beschreibung des Ansatzes
	Evaluation
	Typsicherheit durch spezielle Java-Container

	Rollen als eigenständige Klassen
	Beschreibung des Ansatzes
	Evaluation

	Fazit

	Typsichere Implementierung von Assoziationen
	Beschreibung des Ansatzes
	Überblick
	Anpassung der Modellklassen
	Implementierung spezieller Rollenklassen
	Realisierung der Assoziationen
	Rollenbibliothek
	Verwendung von Containern
	Typsicherheit

	Evaluation

	Technische Realisierung
	Implementierung einer Rollenbibliothek
	Anpassung der Code-Generierung in Fujaba
	Der Code-Generierungsmechanismus
	Das Plug-In für die neue Code-Generierung

	Zusammenfassung und Ausblick
	Anhang
	Aufwand für das Erzeugen von Iteratoren mit exklusivem Kontext
	Aufwand für Methodenaufrufe mit Hilfe von Reflection

	Literaturverzeichnis

