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Abstract

Future cars will be equipped with communication modules that allow them to

exchange information directly with each other and potentially infrastructure nodes,

forming a Vehicular Ad Hoc Network (VANET). Through communication, cars will

be able to coordinate and drive cooperatively, which will make transportation safer,

more efficient, and more comfortable than ever before. One of the considered

technologies for vehicular networks is IEEE 802.11p, a slightly modified version of

consumer Wireless LAN (WLAN) that was adapted to better fit the characteristics of

vehicular environments. While the decision to rely on readily available technology

might ease market introduction, it also raises the question whether a physical layer

that was designed for relatively static indoor environments can provide reasonable

performance in highly dynamic VANETs.

Using Software Defined Radios (SDRs), i.e., fully programmable radios, we are

able to address this question, as they allow us to closely examine and modify the

physical waveform. We made SDRs accessible for research on VANETs by imple-

menting the first IEEE 802.11p transceiver for GNU Radio, a popular real-time signal

processing framework for use in SDRs. Performing all signal processing on a PC, our

transceiver is well-suited for rapid prototyping and can be used for simulations as

well as real-world experiments, offering a seamless switch from theory to practice.

In the first part of the thesis, we detail the design of our IEEE 802.11p transceiver,

study its computational complexity, and present results from thorough validations

through simulations and interoperability tests. We furthermore show that it is

possible to support time-critical functionalities like channel access and automatic

gain control without giving up the advantages of a PC implementation.

In the second part, we use our transceiver to address selected research questions

in VANETs. Here, we conduct field tests to compare the performance of different

devices and algorithms in realistic environments and study the impact of noise and

intra-technology interference on IEEE 802.11p. Finally, we show a use-case for our

transceiver that goes beyond signal processing: With full access to all information

down to the physical layer, we develop a novel, robust attack on the location privacy

of vehicles and study its impact through network simulations.
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Kurzfassung

Zukünftig werden Automobile mit Kommunikationsmodulen ausgestattet sein, die

einen direkten Datenaustausch zwischen den Fahrzeugen ermöglichen. Auf diese

Weise können sich Verkehrsteilnehmer koordinieren, um so den Straßenverkehr

sicherer, effizienter und komfortabler zu gestalten. Eine der Technologien, die da-

für in Betracht gezogen wird, ist IEEE 802.11p, eine an Fahrzeugnetze angepasste

Version von normalem Wireless LAN (WLAN). Die Entscheidung WLAN, und da-

mit einen bereits vorhandenen Standard, heranzuziehen, ist im Hinblick auf die

Markteinführung sicherlich nachvollziehbar. Gleichzeitig stellt sich allerdings die

Frage, ob eine Technologie, die für relativ statische Anwendungen entwickelt wurde,

den Herausforderungen dynamischer Fahrzeugnetze gerecht werden kann.

Software Defined Radios (SDRs), programmierbare Funksende- und -empfangs-

einheiten, bieten vollen Zugriff auf alle Aspekte der Kommunikation und sind damit

prädestiniert, die Eignung von WLAN zu untersuchen. Um dies zu ermöglichen,

haben wir IEEE 802.11p basierend auf GNU Radio implementiert. GNU Radio ist

eine SDR-Entwicklungsumgebung, mit der drahtlose Kommunikation prototypisch

umgesetzt werden kann. Durch Abbildung des Standards in Software können wir

dieselbe Implementierung für Simulationen und Messungen benutzen.

Im ersten Teil der Arbeit gehen wir auf unsere IEEE 802.11p-Implementierung ein.

Wir untersuchen die Aufwändigkeit der Berechnungen und zeigen die Korrektheit

durch Simulationen und Interoperabilitätstests. Darüber hinaus erweitern wir unsere

Implementierung durch zeitkritische Funktionen, wie Kanalzugriff und automatische

Anpassung der Empfangsverstärkung, ohne die Komplexität merklich zu erhöhen.

Im zweiten Teil der Arbeit verwenden wir unsere Implementierung, um ausge-

wählten Forschungsfragen nachzugehen. In diesem Kontext führen wir zwei Feldtests

durch, in denen wir die Leistungsfähigkeit des Standards in einer realistischen Um-

gebung untersuchen. Weiterhin untersuchen wir den Einfluss von Interferenz auf

IEEE 802.11p und validieren so ein in vielen Studien genutztes Simulationsmodell.

Abschließend stellen wir einen neuen Angriff auf die Privatsphäre in Fahrzeugnetzen

vor, der erst durch unsere Implementierung und die Möglichkeit auf alle Daten des

Empfangsprozesses zuzugreifen, realisiert werden kann.
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Chapter 1

Introduction

Today, we witness how autonomous driving is about to change transportation and,

with it, large parts of our society. Research and development has overcome fun-

damental challenges and the first prototypes are allowed on public streets. These

proof-of-concept implementations gave the sector a whole new drive and motivated

big companies to launch visionary projects. Uber already operates a fleet of self-

driving taxis in Pittsburgh1, while Amazon considers self-driving vans or trucks to

transport their goods2. Without a doubt, the technology will constitute a huge step

towards fully automated business processes as envisioned in the Industry 4.0 context.

By leaving the research labs and being tested on the street, the topic also became

prevalent in the general public and is covered in the news on a nearly daily basis. It

seems that autonomous driving is a technology whose time has finally come.

Taking a more technical perspective, we can view the current generation of

autonomous cars as cyber-physical systems with a multitude of sensors attached

to them. Using data from stereo cameras, gyroscopes, ultrasonic distance sensors,

Global Positioning System (GPS), RADAR, and LIDAR, modern cars are able to sense

their immediate environment with a high precision. Based on this data, vehicles are

able to maneuver reliably even in challenging environments [1], which raises the

hope that the technology will help to drastically reduce the number of accidents

in the future – especially since over 90 % of the crashes are accredited to human

factors [2]. Yet, the current generation of autonomous vehicles shares a common

limitation: They rely on locally available sensor data only. Since these sensors

are, furthermore, limited by the line of sight, vehicles have to drive defensively

in environments with limited visual range. Such environments are, however, very

common as buildings or other cars and trucks can obstruct the field of vision.

1https://newsroom.uber.com/us-pennsylvania/new-wheels/
2http://uk.businessinsider.com/amazon-is-exploring-self-driving-technology-

2017-4

1
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Future vehicles will be different. They will employ wireless communication to

exchange information with each other and potentially infrastructure nodes, forming

a vehicular network. The ability to communicate is not a mere add-on but adds a

whole new dimension, enabling the transition from autonomous driving to cooperative

driving. If we consider what the Internet was for PCs, we might be able to grasp

the potential. Still, communication is not only about autonomous driving but the

enabler for a much wider class of Cooperative Intelligent Transportation Systems

(C-ITS). Already in 2009, European Telecommunications Standards Institute (ETSI)

envisioned a basic set of applications [3] and the list has been growing ever since.

Today, people are working, for example, on intersection collision warning systems [4],
traffic information systems [5], green light speed advisories [6], and automated car

following [7]. Overall, inter-vehicular communication is an important technological

advancement that will make driving safer, more efficient, more comfortable, and

more entertaining.

Given the wealth and diversity of applications, there is no single communication

technology that is well-suited for all use-cases. Vehicular networks will, therefore, be

heterogeneous, using access technologies like LTE, Wireless LAN (WLAN), Millimeter

Wave (mmW), and Visible Light Communication (VLC). Apart from costs, the

technologies mainly differ in terms of throughput, delay, range, and directionality of

the communication.

1.1 Automotive WLAN

One of the core technologies for future vehicular networks will be automotive WLAN,

a slightly modified version of normal WLAN that operates on a dedicated frequency

band at 5.9 GHz and was adapted to better fit the requirements of vehicular net-

works. Using WLAN technology, cars can communicate directly with each other

and infrastructure nodes, forming decentralized networks, usually referred to as

Vehicular Ad Hoc Networks (VANETs). The advantages of WLAN make it a perfect

candidate for safety and efficiency applications:

low cost It uses cheap, readily available chips that operate free of charge on a

dedicated frequency band.

low delay It supports direct communication between vehicles, without the need for

intermediate nodes like a base station or an access point.

good coverage It supports communication ranges over 800 m [8] and is not strictly

limited to line of sight or blocked by rain.
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no directionality In contrast to VLC or mmW, WLAN has no inherent directionality

and is, therefore, well-suited for broadcast-based communication to all cars in

close vicinity.

With these properties and the fact that safety and efficiency applications are

regarded as one of the main drivers for the introduction of C-ITS, it is likely that

WLAN will play a central role in future vehicular networks.

While WLAN is a cheap readily-available and time-tested technology, there are

also doubts whether it can be fit for operation in vehicular environments. To support

VANETs, the IEEE 802.11 standard was extended with a new operational mode that

allowed immediate communication without prior connection setup and an adapted

Orthogonal Frequency-Division Multiplexing (OFDM)-based physical layer (PHY),

which is similar to IEEE 802.11a but with all timings doubled. This change transforms

the 20 MHz signal of IEEE 802.11a to the 10 MHz signal proposed for automotive

applications. In a nutshell, the switch to 10 MHz made the signal more robust against

delay spread but, at the same time, more sensitive to Doppler and time variability of

the channel [9]. This means that the change was not a clear improvement. In fact,

it rebalanced a trade-off and was, therefore, not without doubts.

The concerns of the research community are reflected by a vast amount of

publications that focus on the topic [10]–[13]. As researchers were worried about

the reliability of WLAN in highly dynamic vehicular environments, they came up with

a wide range of approaches to cope with the expected challenging channel effects.

These works proposed, for example, to implement advanced receive algorithms [14],
to introduce additional pilot symbols [11], to use differential encoding [15], or to

exploit diversity through relaying or multiple antennas [16]. The design of high

performance receivers and the evaluation of automotive WLAN in realistic scenarios

are still subject to ongoing studies.

A problem faced by many researchers is that the available tools and research

methodologies have inherent limitations that cannot easily be overcome. Besides

analytical models, researchers rely on simulations and increasingly on measurements

and field tests to study VANETs [17]. Simulations are often the first choice as they

are easy to conduct and allow investigating new algorithms and strategies in a

fast and reproducible manner. However, most works are based on custom PHY

implementations in a scripting language like MATLAB [11], [15], [18]. Given the

complexity of the PHY, we might be left with questions regarding implementation

details or even the general correctness, especially if the source code is not published.

Furthermore, it might be unclear whether the assumptions used in simulations are

reasonable and hold in practice. Simulations alone, therefore, often lack the ultimate

proof of their correctness and the applicability of the proposed approach or algorithm.
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Measurements with hardware prototypes can overcome this issue but come with

other limitations. Not only can they be expensive and time consuming to conduct,

they also act as a black box for the user as the algorithms used in the transceiver are

usually considered to be intellectual property of the vendor. This and the fact that

the PHY implementation is fixed, limits their application in the academic context,

especially with regard to testing new algorithms or adaptations of the technology.

1.2 Contribution

To overcome the limitations of current tools, we developed a complete Software De-

fined Radio (SDR)-based transceiver for automotive WLAN. SDRs are programmable

radios that can be used to send and receive arbitrary waveforms [19], making them

the perfect tool to prototype receivers and study novel wireless technologies. The

transceiver presented in this thesis is the first implementation of the technology for

GNU Radio, a General Purpose Processor (GPP)-based SDR framework, where signal

processing is implemented on a normal PC. This architecture allows us to program

the radio in a high-level language like C++ or Python, which makes the system

well-suited for rapid prototyping [20].

The main benefit of our implementation is that it enables a unique workflow that

is not available with other tools or platforms. An overview of this workflow is given

in Figure 1.1, where we show the typical cyclic nature of the research process. It

starts with an idea of either a completely new PHY or the improvement of an existing

technology. Implementing this idea on a GPP-based SDR, we can use the same code

Design/Improve

Implement

Measure

Evaluate

Simulate

Figure 1.1 – Our SDR transceiver can be used throughout the whole research
process, allowing us to overcome the usual disconnect between theory and
practice.
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base to assess the performance through simulations over various channels as well as

to conduct over-the-air measurements in the lab or the real environment.

This would not be possible with other platforms, as there is always a disconnect

that cannot be overcome. Normal PHY simulators, for example, are limited to their

domain as they cannot be used to conduct over-the-air experiments. Hardware

prototypes, in turn, provide limited information about their internals and cannot be

used in simulations. For that reason, researchers are either limited to one domain

or have a disconnect in their workflow when switching tools. This does not only

increase the workload but might also raise concerns as to whether the simulated

PHY and the hardware prototype are actually comparable.

With our transceiver, we are able to overcome this problem. Our GPP-based SDR

implementation provides a seamless switch between simulations and real-world

experiments and, therefore, bridges the gap between theory and practice. It is one

tool that can be used throughout the whole process, allowing us to easily go through

the cycle multiple times, while continuously improving or adapting our strategies

based on insights from simulations and measurements. Ultimately, this tool helps us

to get a better understanding of the challenges and the achievable performance of

WLAN in a vehicular environment.

While this application was clearly the main driver for the development of our

transceiver, its ability to access and if needed modify its components down to and

including the PHY, makes it a valuable tool also in other contexts. Apart from

performance evaluations of automotive WLAN, we also present a novel robust attack

on the location privacy of vehicles that was enabled by our transceiver as it allows

accessing identifying information that is hidden deep in the decoding process and,

therefore, not accessible with other prototypes.

Overall, the scientific contributions can be summarized as follows:

• We develop an Open Source SDR-based WLAN transceiver, study its compu-

tational complexity, and validate it through interoperability tests with other

IEEE 802.11p prototypes (Chapter 4).

• We show that it is possible to support time-critical functionalities like channel

access and Automatic Gain Control (AGC) without giving up the advantages

of a PHY implementation on a normal PC (Section 4.4).

Using our SDR-based transceiver, we address open research questions in VANETs:

• We conduct two field tests to study the performance of WLAN in an automotive

environment (Section 5.1). The first compares the performance of our imple-

mentation with other prototypes, while the second uses our implementation

to compare the performance of different receive algorithms.
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• We characterize the impact of noise and interference on IEEE 802.11p to verify

a PHY simulation model used by many network simulators (Section 5.2).

• We present a novel attack on the location privacy of vehicles and evaluate its

large-scale impact through network simulations (Section 5.3).

To make our work available to the community and to allow reproduction of our

results, we release the transceiver under an Open Source license. We are particularly

proud that it proved useful to fellow researchers, who used our transceiver in many

studies, ranging from algorithm design [21] to backscatter communication [22].
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Ever since Marconi’s first long-range radio transmissions in the late nineteenth

century [57], people were fascinated by wireless communications. The broadcast na-

ture of the channel and the possibility to communicate without a physical connection

bears obvious advantages. With interest in wireless, the technology evolved at a fast

pace. In only a century, it advanced from the first wireless telegraph transmissions,

to broadcast radio, to satellite television, to cellular networks and Wireless LAN

(WLAN), providing ubiquitous wireless Internet connectivity.

Today, we are on the verge of the next generation of wireless. Future networks

will no longer focus on individuals only. Also, an ever-increasing number of things

are designed to be online, connected any time and anywhere by means of wireless

communication. Inspired by the vision of an Internet of Things (IoT), more and

more devices are integrated into the network. Through communication, the sum

becomes more than its parts and connectivity makes them appear smart.

Vehicles are a prime example of these things. Seeking for smart cities and smart

transportation, people are working on technologies that allow future vehicles to

exchange information with each other and drive cooperatively. This will make

transportation safer, more efficient, and more comfortable than ever before. To

make this become a reality, the standardization bodies in Europe, the US, and Japan

are working on the corresponding standards. In Europe, ETSI is working on ITS-

G5; in the US, IEEE is working on 1609 Wireless Access in Vehicular Environment

(WAVE); and in Japan, ARIB is working on STD-T109. While all of these standards

are based on WLAN, the technology is not without competition. More recently,

3GPP also turned their attention towards automotive applications and developed

Cellular Vehicle-to-Everything (C-V2X) [58] as part of Long-Term Evolution (LTE)

Release 14. Even though C-V2X is part of a cellular communication standard, it also

supports infrastructure-less operation, allowing direct communication between cars.

However, such a system would require shared spectrum that is available to users of

all cellular providers. While C-V2X evolves at a fast pace, WLAN is at the moment

better understood and the only technology that has dedicated spectrum allocated.

2.1 IEEE 802.11p

Given their unique characteristics, Vehicular Ad Hoc Networks (VANETs) ask for

novel application-specific solutions on all layers of the network stack. To make WLAN

fit for automotive applications, it requires several adaptations that are colloquially

referred to as IEEE 802.11p. In fact, IEEE 802.11p is the amendment that added the

last components to IEEE 802.11 so that higher-layer standards can use it as a base

for a VANET communication stack. In this thesis, we follow the convention of the
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community and use IEEE 802.11p when referring to all components of automotive

WLAN. This comprises:

• Outside the Context of a BSS (OCB) mode, a new station mode that allows

immediate communication without connection setup (initially introduced in

IEEE 802.11p).

• Enhanced Distributed Channel Access (EDCA) for Quality of Service (QoS)-

enhanced channel access that allows, for example, to prioritize safety messages

(initially introduced in IEEE 802.11e).

• 10 MHz physical layer (PHY) mode with all timings doubled for greater ro-

bustness against delay-spread (initially introduced in IEEE 802.11j).

• Operation in the 5.9 GHz band (initially introduced in IEEE 802.11p).

The OCB mode is a straightforward but essential extension. Using a wildcard

Basic Service Set Identifier (BSSID), it avoids the need to associate with the network

and allows communication in a highly mobile network with short contact times. In

contrast to the OCB mode, medium access and the changes to the PHY are more

involved and, therefore, described in more detail.

2.2 Medium Access

IEEE 802.11 is well-known for its distributed and decentralized Carrier Sense Multi-

ple Access (CSMA)-based medium access scheme, coordinated by the Distributed

Coordination Function (DCF). While the standard also supports centrally coordi-

nated channel access, it is less common and not applicable to VANETs, given the

decentralized nature of the network. Using the DCF, stations continuously monitor

the channel to determine whether the medium is busy. This carrier sensing is divided

into virtual and physical carrier sensing and the channel is declared busy if either of

them senses it busy.

Virtual carrier sensing relies on the duration field of overheard frames. The field

can be used to reserve the channel for a time slot that extends beyond the duration

of the current frame. This allows protecting, for example, a whole burst of frames or

dependent transmissions like Acknowledgement Frames (ACKs) from interference.

Every station that overhears a frame with a non-zero value in its duration field will

sense the channel busy for the time indicated.

Physical carrier sensing, in turn, is further divided into preamble detection and

energy detection. Preamble detection is the most reliable mechanism. It uses the

characteristic, easily recognizable pattern of the preamble to detect frames even

at low Signal to Noise Ratios (SNRs). Once a frame is detected, the receiver tries
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to decode the signal field following the preamble. It is encoded in the most robust

Modulation and Coding Scheme (MCS) and contains the length and encoding of

the following data. With this information, the receiver can calculate the duration

of the frame and sense the channel busy during its transmission (even if the signal

fades or if the actual data symbols cannot be decoded). The second variant, energy

detection, measures the RF energy on the channel and declares the channel busy if

it exceeds a predefined threshold. Following the standard, the medium has to be

sensed busy for power levels above −65 dBm for 10 MHz channels and −62 dBm for

20 MHz channels [59]. This method is less sensitive but works even if the preamble

was missed or if the channel is occupied by a different technology.

The output of the carrier sensing module is used by the CSMA state machine

to decide when a frame can be sent. In every transmission attempt, the CSMA

algorithm uses two parameters: a minimum inter-frame space (the DCF Interframe

Space (DIFS)) and a pseudorandom backoff period that randomizes channel access

to avoid that all stations transmit at the same time, which would lead to collisions.

The length of the backoff period is measured in integer multiples of the PHY-specific

slot time and chosen uniformly from the interval between zero and the contention

window CW. Every frame transmission starts with the minimum contention window

CWmin and doubles it for every unsuccessful attempt up to a maximum value CWmax.

When a frame is handed over to the WLAN module, it first checks if the channel

was idle during the last DIFS. If this is the case, the frame is sent immediately. If

not, the node continues to monitor the channel. Once it is idle for the duration of

the DIFS, the node starts to count down backoff slots. If the channel turns busy

during that time, the current number of backoff slots is kept and the node waits

again until the channel is free for the duration of the DIFS before it can continue to

count down slots. When the number of backoff slots reaches zero, the node transmits

the frame. For unicast transmission, the transmitting station expects an ACK from

the destination. If this is not received, the node doubles the congestion window (if it

is smaller than CWmax) and chooses a new backoff uniformly within the congestion

window. Once the maximum number of retries is reached, the frame is dropped and

the next frame starts again with the minimum congestion window CWmin.

Table 2.1 – Channel access parameters for IEEE 802.11p.

Parameter Value Reference

slot time 13µs [59, Table 17-21]
SIFS 32µs [59, Table 17-21]
aCWmin 15 [59, Table 17-21]
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After a frame is sent, the device enters a post-transmit backoff that works similar

to the normal backoff procedure. This mechanism ensures that the device does not

capture the channel and starts sending packets back-to-back (i.e., sends frames that

are spaced only by a DIFS), which could stall other devices. An overview of the

PHY-specific timings of IEEE 802.11p can be found in Table 2.1

Using the normal DCF, stations used the same parameters for all frames. To

support QoS and to allow prioritizing frames, the standard was extended with EDCA,

which introduced four traffic classes that were named according to their initially

intended use-cases: Voice, Video, Background, and Best Effort. These traffic classes

can be parameterized with different parameters for the congestion window and the

inter-frame space (which is called Arbitration Inter-Frame Space (AIFS) for EDCA).

The AIFS is defined with the Short Interframe Space (SIFS), which is the inter-frame

space for dependent transmissions like ACKs, and the slot time. For a given Access

Category (AC), it is calculated as AIFS[AC]= SIFS+AIFSN[AC] · slot time.

Using a smaller congestion window and a shorter inter-frame space, safety-related

messages can be prioritized, since these parameters ensure that they have to wait

shorter on average. If the sum of the AIFS and the maximum backoff period of one

AC is shorter than the AIFS of another AC, the higher priority frame is guaranteed

to be sent first if the transmitters can reliably sense each other.

Frames of different ACs are put into separate queues that are managed by indepen-

dent instances of the CSMA algorithm, using parameters specific to the corresponding

AC. In addition to normal carrier sensing, these queues are connected virtually, i.e.,

the channel is sensed busy by all CSMA instances if one queue transmits. Further-

more, if two queues wanted to access the channel at the same time, this virtual

collision is resolved internally: the higher priority frame is sent, while the other

CSMA instances back off.

Apart from ACs, IEEE 802.11e also introduced the concept of Transmission Op-

portunities (TXOPs). A TXOP can be configured per AC and defines a maximum

time that the channel can be occupied once the station is allowed to access the

medium. TXOPs were introduced to solve the rate anomaly of WLAN [60], which

arises since the normal DCF algorithm only ensures fairness in terms of the number

of frames that are sent. A station with bad connectivity might, however, have to

use a more robust MCS, which results in longer frames that need more time to

transmit. Although this station sends the same number of frames, it occupies the

channel for a much longer time, which can lead to disproportional degradation of

the overall network performance. Using TXOPs, we can establish time-based fairness

and overcome the problem. Overall, the Medium Access Control (MAC) provides

QoS-enhanced, decentralized channel access, which, for IEEE 802.11p, operates on

top of an Orthogonal Frequency-Division Multiplexing (OFDM)-based PHY.
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2.3 Orthogonal Frequency-Division Multiplexing

OFDM is a physical layer technology that is adopted by many state-of-the-art wireless

communication technologies. Seeking for more throughput and higher bandwidths,

the classical single-carrier technologies ran into problems. Considering the Shannon–

Hartley theorem, we know that the throughput of a wireless channel is bound by its

capacity C, which is, for a given bandwidth B, signal power S, and noise power N,

calculated as

C = B log2

�

1+
S
N

�

. (2.1)

Today, sophisticated MCSs allow us to optimize spectral efficiency and get close to

the capacity bounds. Still, higher throughput ultimately requires a higher bandwidth,

which, for a single carrier system, translates into a higher symbol rate. This approach,

however, does not scale well: Once the bandwidth of a single-carrier signal exceeds

the coherence bandwidth of the channel, the receiver has to employ complex channel

estimation algorithms [61], [62].

Using multiple narrow-band subcarriers instead of a single wide-band carrier,

OFDM allows us to overcome this issues. Figure 2.1 shows a simplified schematic

of a single-carrier and a corresponding multi-carrier scheme. Both configurations

use the same resources in time-frequency domain to transmit the same number of

symbols and, therefore, provide a similar spectral efficiency. The main advantage of

OFDM is its increased flexibility. It adds a degree of freedom that allows balancing

between more carriers and longer symbol time, on the one hand, and less carriers

and shorter symbol times, on the other hand. The single-carrier scheme in Figure 2.1,
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(a) Single-carrier scheme.
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(b) Multi-carrier scheme.

Figure 2.1 – Schematic time-frequency resource usage of a single-carrier and
a corresponding multi-carrier scheme.
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for example, is converted to a four-carrier scheme, where each OFDM symbol spans

four times the original symbol time. It could, however, just as well operate with

eight carriers spanning eight times the original symbol time.

This offers flexibility to adapt the PHY to the channel conditions of a particular

application. If the coherence time is short, we can use shorter symbols; if the

coherence bandwidth is small, we can use more narrow subcarriers. Usually, the

system is set up so that the OFDM symbol time is smaller than the coherence time,

and the subcarrier bandwidth is smaller than the coherence bandwidth. If these

requirements are met, we can use a one-tap equalizer per subcarrier, which greatly

simplifies the receiver design [61].

Another advantage of OFDM is its scalability towards higher bandwidths, which,

in essence, means adding more subcarriers. WLAN and LTE are great examples,

as both technologies support multiple channel bandwidths that only differ in the

number of subcarriers. The main trick of OFDM and the reason for its high spectral

efficiency is the subcarrier spacing. If earlier single-carrier PHYs shared the spectrum,

they required a rather large guard band that assured that the signal of one carrier

did not leak into the other. This degradation of the overall spectral efficiency can

be overcome with OFDM. Using OFDM, the spectra of the individual subcarriers

overlap and, therefore, interfere with each other. The important point is, however,

that they do not interfere at the center frequencies of other subcarriers. This is often

visualized like in Figure 2.2, where we plot the spectrum of adjacent subcarriers. As

shown in the figure, the contributions of each subcarrier are zero at multiples of the

subcarrier spacing, i.e., the center frequencies of adjacent subcarriers.

Fortunately, an OFDM signal like this is straightforward to generate through

a Discrete Fourier Transformation [61]. Often the number of subcarriers is set to

a power of two and the efficient Fast Fourier Transform (FFT) algorithm is used.

IEEE 802.11a/g/p, for example, uses 64 subcarriers. Overall, the benefits of OFDM

have led to a wide adaption of the technology in many state-of-the-art wireless com-
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Figure 2.2 – Spectra of adjacent OFDM subcarriers.
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munication standards like WLAN, LTE, digital audio broadcast, and both terrestrial

and satellite TV.

However, also OFDM comes with drawbacks. One is the need for a guard period

between successive OFDM symbols. The duration of the guard period is chosen with

regard to the delay-spread of the channel. It ensures that an OFDM symbol does not

leak into the useful symbol time of the successive symbol, which would introduce

inter-symbol interference and degrade performance. Typically, a cyclic prefix, i.e., a

cyclic extension of the FFT, is used to fill the guard time. For IEEE 802.11a/g/p, the

OFDM symbol is extended by as much as one fourth of the symbol time.

Another drawback of OFDM is its high Peak-to-Average Power Ratio (PAPR). For

single-carrier systems, the envelope of the signal is rather constant, limited by the

amplitude differences of the constellation points. With OFDM, the contributions

of the subcarriers occasionally add up, leading to peaks that can easily drive the

power amplifier into saturation. To cope with this, the transmitter either has to use

a low average power (to leave enough headroom) or accept nonlinearities. In any

case, OFDM requires capable amplifiers that support a large linear range. This can,

however, be a problem in practice, especially for highly integrated mobile devices.

For that reason, LTE uses SC-OFDM, a variant with a more constant envelope, in the

uplink.

2.4 Physical Layer Challenges

Designing a PHY for vehicular networks is a challenging task, since it has to perform in

diverse environments and cope with high dynamics and severe multi-path effects [13],
[63], [64]. In particular, the mobility leads to fast-fading effects that the receiver

has to compensate for. The PHY of IEEE 802.11p is based on IEEE 802.11a but with

all timings doubled, transforming the 20 MHz channels of IEEE 802.11a into the

10 MHz channels of IEEE 802.11p. Figure 2.3 compares the two modes in time-

frequency domain and shows how doubling the timings stretches the frame in time

domain and shrinks it in frequency domain. The area in time-frequency domain

and, therefore, its spectral efficiency in terms of bits per Hertz per second remains

constant. Since also the cyclic prefix (i.e., the guard time between symbols) is

doubled, an IEEE 802.11p frame is more robust against delay spread, as reflected

paths do not leak into successive symbols so easily. Furthermore, the 64 subcarriers

are spread over a smaller bandwidth and, therefore, become more narrow, which

makes the signal better suited for channels with small coherence bandwidths. Given

the inverse relationship between the delay spread and the coherence bandwidth,

this is just a different view on the same aspect.
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Figure 2.3 – Comparison of an IEEE 802.11a/g frame (left) and a correspond-
ing IEEE 802.11p frame (right) in time-frequency domain.

These advantages, however, come at a price: The main drawback of 10 MHz

channels is the increased frame duration, which makes the signal more sensitive

against fast-fading effects. In VANETs, these effects are particularly pronounced

given the small wavelength (≈ 5 cm at 5.9 GHz) and the high relative velocities. To

make things worse, it becomes even more problematic in combination with the pilot

pattern of IEEE 802.11a/g/p (i.e., the blue shaded area in Figure 2.3). Typically,

channel estimation relies heavily on the initial estimate, which is calculated based on

the block pilots at the beginning of the frame. The problem with IEEE 802.11p is that

these pilots might become outdated during the reception of the frame, potentially

degrading the performance of the PHY.

The relation between the relative vehicle speed, the coherence time of the channel,

and the packet duration is shown in Figure 2.4. To calculate the coherence time,

we consider a uniform scattering environment with an approximate decorrelation

distance of 0.4 times the wave length λ [61]. This approximation is well established

and used, for example, to estimate the minimum distance between the antennas of

a multi-antenna transceiver. For a given relative vehicle speed v, we can calculate

the coherence time τ as

τ ≈ 0.4
λ

v
= 0.4

c
f · v , (2.2)

where c is the speed of light and f the carrier frequency, which we set to 5.9 GHz.

The frame duration corresponds to QPSK-1⁄2 frames and the packet size refers to the
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Figure 2.4 – Comparison of the channel’s coherence time (solid, orange line)
and the duration of QPSK-1⁄2 frames of different sizes (horizontal lines).

MAC Protocol Data Unit (MPDU), which comprises all data from the MAC, including

the MAC header, the payload, and the Cyclic Redundancy Check (CRC). Using the

coherence time, we can approximate how long the initial channel estimate is valid.

As we can see from the plot, already a 600 Byte frame exceeds the coherence time

for relative vehicles speeds of 100 km/h. Even for frames as short as 200 Byte, the

duration is longer than the coherence time for relative speeds above 250 km/h. These

results suggest that commonly used algorithms that rely only on the initial estimate

of the channel might run into problems when used for vehicular applications.

A different view on the problem is presented in Figure 2.5. It shows the relation-

ship between the payload size and the number of OFDM symbols for all MCSs of

IEEE 802.11p. A second x-axis maps the size to the duration of the frame. To relate
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Figure 2.5 – Frame duration depending on the payload size for all MCSs. The
dashed horizontal line corresponds to the coherence time of the channel for a
relative speed of 100 km/h.
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the duration with the dynamics of the VANET channel, we added a dashed horizontal

line that corresponds to the coherence time at a relative speed of 100 km/h. Such a

relative speed is typical for oncoming traffic in urban environments.

From the graph, we can see that already a relatively short Binary Phase-Shift

Keying (BPSK)-1⁄2 frame with a size of less than 250 Byte is longer than the coherence

time of the channel. This means that already for short frames, the initial channel

estimate becomes outdated during the frame. Also for 16-Quadrature Amplitude

Modulation (QAM)-1⁄2 frames, this already happens at a payload size of approximately

1000 Byte. The results suggests that a simple receiver that relies only on the initial

channel estimate will run into problems when the frame duration gets close to (or

exceeds) the coherence time. This raises the question whether a PHY that was

designed for a relatively static indoor environment can cope with the dynamics of

VANET. These observations motivated many studies that proposed novel channel

estimation schemes for IEEE 802.11p [65], [66] or even recommended to adapt the

PHY [11], [15]. Until today, the performance evaluation of the technology in realistic

environments and the design of a receiver that provides a good compromise between

performance and complexity are subject to ongoing studies. At this stage of the

development process, it is, however, unlikely that the PHY and the MAC will undergo

significant changes so that at least the first generation of VANETs will probably be

based on IEEE 802.11p. To bring the technology on the road, we need a full protocol

stack that integrates IEEE 802.11p with higher-layer protocols.

2.5 Protocol Stacks

Such VANET communication standards are currently developed in Japan, Europe,

and the US. All of them are based on WLAN and mainly differ with regard to the

frequency band and the channel access scheme.

IEEE 1609 WAVE and ETSI ITS-G5 use 10 MHz channels in the 5.9 GHz band,

dedicated to vehicular communication. Given the spectrum scarcity, the allocation of

dedicated channels shows the strong commitment of the regulatory bodies to support

the technology and foster its deployment. Both standards define a designated Control

Channel (CCH) and use the others as Service Channels (SCHs) or reserve them for

emergency vehicles. They are based on IEEE 802.11p, using its 10 MHz OFDM PHY,

OCB mode, and EDCA queues. The main difference is the implementation of the

higher layers, in particular, the channel access scheme.

Coordinating channel access for vehicular applications is a challenging task as

the network has to perform in different environments, ranging from rural areas with

low vehicle densities to traffic jams with high network load. Especially in dense

environments, it is crucial that devices adapt to the network load to get safety-
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relevant messages reliably disseminated. The main issue for VANETs is that the

congestion avoidance mechanism of normal WLAN is based on ACKs. If a transmitter

does not receive an ACK, it considers the frame to be dropped due to interference

(i.e., network congestion) and increases its congestion window. This does not work

well for VANETs, as they are mainly broadcasting awareness messages to all cars in

their vicinity. Since broadcasts are not acknowledged, they always use the minimal

congestion window, which might overload the channel. Protocol stacks, therefore,

complement the WLAN MAC with higher-layer channel access schemes.

WAVE is defined in the IEEE 1609 family of standards [67]. In contrast to ETSI

ITS-G5, IEEE 1609 WAVE supports multi-channel operation with a single radio [68].
To avoid missing potentially safety-relevant information on the CCH, the radios have

to be synchronized and use a split phase approach, where all radios periodically tune

to the CCH. The rest of the time can be spent on an arbitrary SCH. While this allows

using SCHs with a single radio, it also comes with drawbacks: Periodic channel

switching requires tight synchronization and the introduction of guard intervals,

which lowers the overall efficiency of the system. Furthermore, channel switching

leads to higher collision probability at the start of a phase, since chances are higher

that multiple nodes have frames to send [69].

ETSI ITS-G5 does not face these problems since it requires that its nodes always

listen on the CCH. However, it also means that a second radio is required if a node

wants to use SCHs. To avoid network congestion, ETSI ITS-G5 puts special focus on

adaptive channel access that works well with changing node densities. It introduces

the Decentralized Congestion Control (DCC) [70], which acts as a higher-layer state

machine that regulates the traffic generated by a node. Based on the observed

channel load, DCC switches between states that adapt the

• message generation interval,

• transmit power,

• MCS, and

• channel sense threshold.

This higher-layer mechanism works on top of the normal CSMA functionality of

WLAN. While it enables broadcast-based networks to operate in dense environments,

it also introduces new parameters that are not straightforward to configure. With a

suboptimal parameter set, DCC does not necessarily stabilize but has been observed

to oscillate between states [69].

With ARIB STD-T109 [71], Japan took a slightly different approach. The standard

also uses the IEEE 802.11p PHY as a base but operates on a single channel at

760 MHz. Using a lower frequency band changes the propagation characteristics,
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especially since the signal tends to better penetrate objects [72]. This leads to larger

communication distances but also increases the interference range. Furthermore,

ARIB STD-T109 limits the allowed modulations to BPSK, QPSK, and 16-QAM, i.e., it

excludes the 64-QAM scheme of IEEE 802.11p.

Channel access is coordinated with a combination of Time-Division Multiple

Access (TDMA) and CSMA. The TDMA scheme uses a 100 ms control interval that

is divided into 16 slots. In contrast to ETSI ITS-G5 and IEEE 1609 WAVE, ARIB

STD-T109 differentiates between transmissions from Roadside Units (RSUs) and

mobile stations. Each TDMA slot is, therefore, subdivided into a period for RSUs and

one for mobile nodes. Channel access during the RSU period follows a configured

schedule, negotiated between the RSUs. Since RSUs have communication periods

for exclusive channel access allocated, they do not need to sense the channel but

can send frames directly and quasi back-to-back, spaced by only a SIFS.

The remaining slot time is allocated to the mobile stations, which use normal

CSMA to compete for the channel. To incorporate the TDMA scheme into IEEE 802.11,

the mobile nodes use the virtual carrier sensing function to declare the channel busy

during the TDMA periods that are allocated to the RSUs.

The main task of all three protocol stacks is to provide the base for automotive

applications. Today, vehicular networks are often mentioned in the context of

autonomous driving. Here, cooperation and coordinated maneuvers could improve

the efficiency, since vehicles would no longer be limited to their local sensors only.

Apart from autonomous driving, there are many more applications that can roughly

be categorized into safety, efficiency, comfort, and entertainment applications. Some

applications, like rear-end collisions warning or intersection collision avoidance,

match very well into one category (safety in this case). Others, like platooning,

i.e., vehicles driving close behind each other, forming a road train, improve safety,

efficiency, and comfort. Further applications that were already part of the basic set

of application envisioned by ETSI include traffic information systems, emergency

vehicle warning, and roadwork warning [3].

The concrete implementation of these applications is not part of the standard but

subject to ongoing research. The standards only incorporate services that can serve

as a base. ETSI ITS-G5, for example, specifies Cooperative Awareness Messages

(CAMs) that are sent periodically by vehicles to make surrounding vehicles aware

of their presence. They include information regarding heading, speed, and vehicle

dimensions [73]. These messages are relevant for many safety applications including

intersection collision warning systems. Decentralized Environmental Notification

Messages (DENMs) are a second type of messages that are not sent periodically

but when predefined events occur [74]. Such events are, for example, emergency

braking, road hazards, or wrong way driving.
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2.6 Research Methodologies

Given their decentralized and dynamic nature, VANETs are particularly challenging

to design. Even when limiting the focus to networking aspects only, there are many

open questions ranging from application layer performance, down to propagation

characteristics of the physical signal. Besides analytical models, which are beyond

the scope of this work, researchers rely on simulations and increasingly on real-world

experiments to study those networks [17].

Simulations are often the first choice as they are easy to conduct and allow

investigating VANETs in a reproducible manner. Depending on the aspect that is

studied, different types of simulators are in use. Dedicated PHY simulators are tuned

towards studying channel effects, interference, and signal processing algorithms.

Here, researchers rely often on custom simulation models implemented in scripting

languages like MATLAB [11], [15], [18]. While the level of detail can be the same

as with a Software Defined Radio (SDR), these simulators do not support real-time

operation. Furthermore, the implementations are often not tested (or cannot be

tested) against real hardware, which can lead to doubts about their correctness,

especially if the implementation is not published.

Apart from PHY simulators, discrete event simulations are a popular tool. They

use a higher level of abstraction but allow investigating macro-scale network effects.

To capture unique characteristics of vehicular networks and to produce realistic re-

sults, researchers couple road traffic simulators with network simulators bidirection-

ally. Well-known examples for such simulators are Veins, iTetris, and VSimRTI [75].
Focusing on larger scenarios, they lend themselves well for investigating the MAC

and application layer. For performance reasons, these simulators usually employ

simple channel and bit error rate models. There is, however, also the idea to model

the PHY on signal level [76] and, thus, to combine physical layer and network layer

simulators. In fact, our SDR implementation of IEEE 802.11p has already been

integrated into Veins by an independent group [77].

Finally, trace-based studies offer an approach to realistic VANET simulations.

Such a study was presented in [12], where the authors recorded raw signal samples

in a field test, which were later used for offline, trace-driven simulations. We adopted

this approach in one of our field tests (see Section 5.1.2). The downside of this

method is, however, that it produces large amounts of data. Following Nyquist’s

sampling theorem, a 10 MHz channel leads to, at least, 10E6 complex baseband

samples per second. Furthermore, as the receiver does not decode the data live, it

cannot be part of the VANET but is limited to passive measurements only.

Apart from simulations, real-world experiments can provide valuable insights.

Field tests are particularly important as they show the performance of a real system
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and reveal potential weaknesses in system design [78]. Often a practical realization

of a system make engineers aware of problems that might be faced in reality.

Today, many experiments are conducted with dedicated IEEE 802.11p prototypes

from companies like Cohda Wireless [79], NEC [80], [81], and Denso [8], [82].
These devices provide complete communication stacks for IEEE 1609 WAVE or ETSI

ITS-G5 and are, therefore, well-suited for testing VANET applications. The Cohda

Wireless MK5 series, for example, comes with a complete implementation of the ETSI

ITS-G5 stack, allowing us to focus on the implementation of the actual application.

These devices are, however, rather expensive since they are no mass market products

yet.

Apart from dedicated prototypes, it is possible to modify certain off-the-shelf

WLAN cards to operate in IEEE 802.11p mode. The Unex DCMA-86P2 card, for

example, is a MiniPCI WLAN card that was already used in many experiments [83]–
[86]. This card is based on an Atheros chip that is supported by the ath5k Linux

driver. To enable IEEE 802.11p operation, it is possible to adapt the Linux kernel

driver to switch to 10 MHz mode and remove regulatory restrictions to tune to the

Cooperative Intelligent Transportation System (C-ITS) channels in the 5.9 GHz band.

Recently, the Linux kernel added IEEE 802.11p support for the Atheros ath9k driver.

Together with Open Source implementations of VANET communication stacks, like

OpenC2X [87], these WLAN cards can be used to build cheap and nearly feature-

complete prototypes.

While both custom and commercial prototypes are well-suited to test VANET

applications, they share a common limitation in that they provide limited access to

the PHY (i.e., they act as a black box) and have fixed PHY implementations that

cannot be adapted. These limitations can be overcome with SDR. Implementing the

whole signal processing in software, SDRs allow us to study, and if needed modify,

all implementation details. Furthermore, they operate on the physical signal and,

therefore, provide access to all data, allowing for a better understanding of the

system.
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In the past, radios have been built with a clearly defined purpose. They were

designed from the ground up to support a specific technology, i.e., to operate on

predefined frequency bands and given Modulation and Coding Schemes (MCSs).

Most of the time, there was no flexibility and a change of the technology also required

changing the hardware. Software Defined Radios (SDRs), i.e., freely programmable

radios, overcome this limitation [19]. They allow programming the whole commu-

nication stack down to and including the physical layer (PHY) in software, which

adds flexibility and opens many opportunities for research and development. It is a

simple concept that is about to revolutionize wireless. Using SDR, it is easily possible

to demonstrate the feasibility of novel ideas through prototype implementations and

provide the ultimate proof-of-concept. Especially for research on wireless networks,

the ability to experiment with the technology should not be underestimated. Since

we cannot directly perceive electromagnetic waves, we often lack an intuitive un-

derstanding of how waves propagate and how signals get distorted on their way to

the receiver. With SDR, the spectrum becomes accessible, or as Thomas Rondeau

puts it: “SDRs allow us to alter one of the fundamental forces of nature.” This

allows researchers to experiment with wireless transceivers and gain a much better

understanding of the technology.

The idea of programmable radios was first explored by Mitola [88], [89]. The

basic concept is very simple. An ideal Software Radio, as shown in Figure 3.1,

would directly connect Analog-to-Digital Converters (ADCs) and Digital-to-Analog

Converters (DACs) to the antenna. To transmit an arbitrary waveform, the PC

streams the digitized, sampled waveform to the DAC, which transforms it into an

analog RF signal that is sent out through the antenna. This concept is very similar

to a PC sound card, which does the same to generate acoustic waves. The ideal

software radio, however, is impractical: Since modern wireless technologies use

a rather high carrier frequency, a software radio would have to sample the signal

at a very high rate. Already a 2.4 GHz signal, would result in 4.8E9 samples per

second. Such high sample rates would not only require very capable ADCs but also

drastically overload a typical PC.

Software Defined Radios solve this problem by down-converting the signal to

center it around zero Hertz. Most SDRs nowadays use direct-conversion transceivers

ADC/
DAC

Figure 3.1 – Schematic overview of an ideal Software Radio.
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ADC/
DAC

exp(2πif )

Figure 3.2 – Schematic overview of a direct-conversion Software Defined Radio
that up- or down-coverts the complex baseband signal to a carrier frequency f.

that operate on the complex representation of the baseband signal. As shown in

Figure 3.2, such a transceiver mixes the signal with the carrier frequency to up- or

down-convert it to baseband. Using this architecture, the in-phase and quadrature

component of a 10 MHz signal is sampled with 10 Msps, independent of the carrier

frequency. Given the lower sample rate, such a system is more practical, allowing us

to implement wireless protocols in software. One of the biggest advantages of such

an implementation is that we can hook into every component of the transceiver and

analyze the data to gain a better understanding of the processes. This is in contrast to

off-the-shelf devices, where signal processing is implemented on Application-Specific

Integrated Circuits (ASICs), which, typically, act as a black box in two ways: We do

not know what algorithms are implemented, and we cannot tap into their internal

data. The ability to use these devices for research is, therefore, considerably limited.

With SDR, we have access to all data and every detail of the PHY.

Using SDR, however, does not only help in understanding the internals of wireless

transceivers. The information from the PHY can also be used to implement novel

improvements and optimizations. Higher layers could, for instance, exploit the data

from the PHY to better adapt to current channel conditions. Even though this breaks

with the traditional layered design approach of network stacks, it can improve overall

performance, especially in wireless networks [90]. The information from the PHY

can also be used to extend the receiver with additional functionality. One could, for

example, use an estimate of the channel or the time of arrival for localization [91],
synchronized transmissions [92], or beamforming [93].

Apart from studying existing technologies, SDRs are also well-suited to exper-

iment with novel ideas. This can be either alternate transceiver implementations

(e.g., novel signal processing algorithms) or variations of the technology (e.g., al-

ternate pilot patterns or coding schemes). In the past, it was only possible to test

these ideas in simulations, which often lacked the definite proof of concept. Here,

SDRs provide the required flexibility to test these ideas in practice. In this thesis,

we will, for example, use our IEEE 802.11a/g/p transceiver to compare alternate
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receive algorithms and study their performance in different environments. Apart

from modifications of existing technologies, SDRs also allow experimenting with

completely novel technologies. The ability to prototype the transceiver in software

is a big advantage, which is particularly well-suited to evaluate application-specific

technologies before designing an integrated transceiver. We followed this approach

when designing an ultra-low power sensor mote for wildlife monitoring [39].

At least in the academic context, SDRs are often regarded as research platforms

only. They are, however, not limited to this use-case. Today, consumer hardware like

Wireless LAN (WLAN) or Long-Term Evolution (LTE) chips are flexible enough to

add new features through firmware updates. Android phones, for example, load a

baseband firmware for the LTE chip during boot, and the firmware of typical WLAN

cards offers a level of flexibility that was high enough for the European Commission

to consider regulating it. The Nexmon project, for example, shows that firmware

modifications can be used to turn a WLAN card into a jammer [94] or offload

applications onto the WLAN chip [95]. When classifying these devices, it might

not be obvious where to draw the line between a normal radio and an SDR. For

more professional hardware, like cellular base stations, things are clearer. Already

in 2007, Vanu presented a software-defined base station that ran on off-the-shelf

hardware and supported both Global System for Mobile Communications (GSM)

and Universal Mobile Telecommunications System (UMTS) [96]. Today, it is possible

to add support for new technologies (like NB-IoT, the Internet of Things (IoT) mode

of LTE) through updates.3 Similarly, we could use SDR to future-proof wireless

transceivers in cars. Given their long product-cycle, this would be an interesting

option.

3.1 Architectures

When we look at SDRs from a more technical perspective, we can consider them

as a bundle of software and hardware components. Depending on the component

that implements the PHY, we can classify SDRs into different architectures, ranging

from FPGA, over Digital Signal Processors (DSPs), to General Purpose Processor

(GPP)-based architectures [20]. Differentiating based on the PHY implementation is

reasonable since every SDR uses an FPGA at an early stage in the signal processing

chain. Directly after the ADC, the FPGA is used to channelize (i.e., filter and resample)

the signal. The discriminating factor is, therefore, how this channelized sample

stream is processed.

Wireless Open-Access Research Platform (WARP) [97] is a prominent example

of an FPGA-based SDR. The biggest advantage of this type of platform is that it

3https://www.telekom.com/en/company/details/world-s-first-countrywide-rollout-
of-narrowband-iot-494754

https://www.telekom.com/en/company/details/world-s-first-countrywide-rollout-of-narrowband-iot-494754
https://www.telekom.com/en/company/details/world-s-first-countrywide-rollout-of-narrowband-iot-494754
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can sustain high bandwidths, has deterministic timings, and introduces minimal

latencies. These properties allow implementing complete communication stacks of

state-of-the-art wireless standards. A prominent example is the WLAN reference

design of WARP, which manages to meet the challenging timing requirements in

the microsecond scale. The advantages, however, come at a price, as FPGA-based

architectures are more expensive and harder to program. Today, better tooling

improves the situation, but FPGAs implementations are still less accessible and have

longer development times. Furthermore, a design is always tied to a particular

platform and cannot easily be ported.

On the other end of the spectrum are GPP-based architectures, where signal

processing is implemented on a normal PC. This architecture is well-suited for

rapid prototyping as the PHY is implemented in a high-level programming language

like C, C++, or Python. Compared to an FPGA-based SDR, it is much easier to

get started on this type of platform. After Mitola publicized the idea of an SDR,

Vanu Bose was the first to prototype and evaluate a GPP-based real-time signal

processing framework [98]. His seminal work, conducted in the context of MIT’s

SpectrumWare project, also laid the foundation of GNU Radio, the most popular real-

time signal processing framework, which is heavily used in industry and academia.

While rapid prototyping and accessibility are great advantages, GPP-based SDRs also

have drawbacks: Even though modern multi-core CPUs allow us to parallelize signal

processing tasks and support vectorized instructions through extensions like MME,

SSE, or AVX; they still do not reach the computational performance of FPGAs. In

addition, buffering of the samples and signal processing on a non-real-time operating

system introduces jitter due to the non-deterministic scheduling of the processes.

Furthermore, the transport of the samples between the device and the PC introduces

delay, which is typically in the low microsecond scale [99]–[101]. The ability to

meet the timings of communication standards is, therefore, limited.

To combine the advantages of both approaches, the current trend goes away

from pure FPGA-based or GPP-based architectures. The idea is to make accelerators

like FPGAs [102] or Graphics Processing Units (GPUs) [103] accessible and offload

individual signal processing steps. This approach allows us to gradually move the

bottleneck of GPP implementations closer to the hardware.

3.2 Frameworks

SDR frameworks constitute the software part of an SDR. They consist of two main

parts: a runtime environment that handles the data flow and a library with basic

signal processing algorithms. The fact that the runtime is of great importance

becomes clear when we compare an SDR framework with a normal signal processing
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library like the ones that come as part of Octave, MATLAB, or SciPy. These libraries

are designed for iterative offline signal processing and, therefore, not well-suited for

SDRs. Dedicated SDR frameworks like GNU Radio [104], [105], Microsoft Sora [106],
RedHawk [107], or Iris [108], in turn, are designed to process a continues sample

stream in real-time. Note that in this context, we refer to the term real-time to

contrast offline signal processing. It implies that the PC is able to keep up with the

incoming sample stream without dropping samples. In other words, the average

processing time per sample is smaller than the sample duration. The term does

not imply any limits for the delay or the jitter of the system. This is in contrast to

real-time as it is commonly used in the Computer Science context when soft or hard

deadlines have to be met.

Iris and Sora are more specialized frameworks. Iris initially focused on cognitive

radio applications, supporting experiments with opportunistic channel access, self-

organization, rendezvous protocols, co-existence, and reconfiguration. Sora, in

turn, targeted communication standards like WLAN and later LTE. GNU Radio

and RedHawk, in turn, are application-independent, general-purpose frameworks.

They do not target a particular standard or application but focus on the runtime

environment and a library of basic signal processing tasks. RedHawk is special in that

it provides a complete system framework. As the only framework, it can not only be

used to create but also to provision and execute distributed signal processing systems.

While these frameworks are well-known in academia and industry, GNU Radio is,

by far, the most active and popular project. For that reason and since the work

presented in this thesis relies on GNU Radio, we discuss it in more detail.

3.2.1 GNU Radio

GNU Radio is an Open Source signal processing framework that is typically used as

the software part of a GPP-based SDR. It was started by Eric Blossom [104], based

on PSPECtRA, an SDR framework developed in the context of MIT’s SpectrumWare

project [98]. Given the interest in SDR, it evolved into a whole ecosystem under

the lead of Thomas Rondeau [105]. Today, GNU Radio is the most popular SDR

framework that is used in many sectors, including academia, industry, amateur radio,

government, and military. With GNU Radio, signal processing is implemented on

a GPP like a normal PC. As discussed in Section 3.1, this architecture, on the one

hand, introduces higher latency and jitter than FPGA frameworks but, on the other

hand, lends itself well for rapid prototyping. This is supported through its use of

high-level programming languages. For performance reasons, the core of GNU Radio

is implemented in C++. It can, however, also be extended with Python, allowing for

even faster development cycles.
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A major advantage of GNU Radio, especially when compared to other SDR frame-

works, is that it is hardware agnostic, i.e., it is not developed to be used with a

specific radio front end. For historic reasons, the devices from Ettus Research are

well supported, as the company was working closely with the GNU Radio community.

Today, there are, however, also more cost-effective alternatives available. Devices

like the BladeRF from Nuand, the HackRF One from Great Scott Gadgets, and the

LimeSDR from Myriad-RF can interface with GNU Radio and support the bandwidth

and frequency bands for WLAN.

Also GNU Radio itself is not tuned towards a particular application. Instead,

it provides a solid base that can be used to realize any technology. GNU Radio,

therefore, does not come with extensive implementations for wireless standards.

In fact, an exemplary implementation for digital TV is the only technology specific

code. Being a general-purpose framework, GNU Radio already served as the base

for research in many areas, including satellite communications, cognitive radio,

cooperative diversity, multi-antenna systems, localization, and radio astronomy.

Application-specific functionality for these use-cases is implemented in so-called

Out-Of-Tree (OOT) modules, which extend GNU Radio with custom blocks. Our

IEEE 802.11p transceiver is one example of such an OOT module.

The central component of GNU Radio is a block. Typically, a block implements a

specific signal processing task like a filter, an FFT, a modulator, or a synchronization

algorithm. To create a transceiver, individual blocks are connected to form a flow

graph, a data structure that describes more complex, higher order functionality

through a combination of blocks. Initially, GNU Radio was focusing on stream-based

data flows. This paradigm is natural for SDRs, as the radio front end provides a

continuous stream of complex baseband samples. Since stream-based connections fall

short when implementing packet-based transceivers, GNU Radio was extended with

asynchronous message passing. These messages are implemented with a polymorphic

data type so that blocks can exchange any information. Especially, frame-based

operations like the calculation of a checksum, encoding, and scrambling benefit from

message passing. Apart from introducing the notion of a frame, this also allows

blocks to exchange out of band control information. A level controller, for example,

could readjust the gain of the RF front end if the signal does not fully utilize the

dynamic range of the ADCs. In our IEEE 802.11a/g/p transceiver, we make heavy

use of both stream- and message-based data exchange between blocks.

To ease the creation of transceivers, GNU Radio comes with GNU Radio Com-

panion (GRC), a graphical user interface to set up, configure, and run flow graphs.

A screenshot of GRC is shown in Figure 3.3. It shows the main canvas where the

flow graph is set up (left), the list of available blocks (right), and a console with

status information (bottom). GNU Radio also comes with GUI elements to change

parameters while the transceiver is running and graphical outputs that, for example,
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Figure 3.3 – Screenshot of GNU Radio Companion, a tool to setup and config-
ure GNU Radio flow graphs.

display the signal in time and frequency domain. Especially the latter are invaluable

tools to debug a flow graph. Apart from GUI elements, GNU Radio comes with a

comprehensive block library, supporting, for example, file I/O and various signal

processing functions. This library facilitates rapid prototyping, since most function-

ality is already available and allows concentrating on the technology-specific aspects

of the transceiver.

When implementing complex technologies, a transceiver might comprise a large

number of blocks, which can lead to complicated flow graphs. To structure a flow

graph more clearly, GNU Radio supports hierarchical blocks, which encapsulate other

blocks. This can be used to create reusable blocks that realize, for example, the

PHY or the Medium Access Control (MAC) layer. Structuring a flow graph with

hierarchical blocks, we can even resemble an ISO/OSI stack in GRC.

One of the most important aspects of GPP-based SDRs is their computational

performance. The faster samples are processed, the higher we can set the sample

rate and, therefore, capture a larger bandwidth. GNU Radio’s complexity mainly

stems from the runtime environment that was built to sustain high sample rates.

To benefit from today’s multi-core CPUs, GNU Radio starts each block in a separate

thread to parallelize processing. Especially in the receiver, parallelization helps to

enable high-bandwidth real-time signal processing.

Another major performance gain comes from the Vectorized Library of Kernels

(VOLK) [109], a library to exploit Single Instruction Multiple Data (SIMD) extensions
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of modern CPUs. The ever lasting strive for higher bandwidths can be addressed

with better algorithms, faster PCs, or more efficient implementations. Volk optimizes

the latter. Through SIMD extensions like MMX, AVX and SSE on Intel, or NEON on

ARM, CPUs provide instructions that operate on vectors, instead of on individual

items. These vector operations can lead to considerable speed-ups. For some op-

erations, Rondeau, McCarthy, and O’Shea [109] measured a 16-fold performance

increase. Especially in signal processing, SIMD instructions can be exploited in many

frequently-used tasks like addition, multiplication, or type conversion. With VOLK,

SIMD instructions become accessible for developers by providing wrappers around

functions that select the best implementation for the CPU during runtime. Also

our IEEE 802.11a/g/p transceiver makes heavy use of VOLK. Without exploiting

this hardware acceleration the receiver would not be able to process the required

bandwidth on a normal PC. To allow inspecting the performance of a flow graph,

GNU Radio comes with Performance Counters [110]. Using performance counters, the

blocks log metrics like queue utilization or CPU time. These values can be accessed

and visualized during runtime. This feature greatly helps in understanding of the

computational complexity of the flow graph and identifying bottlenecks.

3.2.2 Microsoft Sora

Apart from GNU Radio, also Sora, the Software Radio developed by Microsoft Re-

search Asia [106], deserves particular attention. At least, at first sight, it is closely

related to our work, especially, since it comes with SoftWiFi, an IEEE 802.11a/b/g
implementation. While both our transceiver and Sora use a GPP-based architecture,

they have different design goals and target different use-cases.

While we focus on a modular and easy to extend PHY, Sora wants to provide a

platform that combines the flexibility of GPP-based SDRs and the performance of

programmable hardware (i.e., DSPs and FPGAs). In this context, performance does

not only refer to large bandwidths but also to low latencies in order to meet the timing

requirements of the IEEE 802.11 standard. And indeed, Sora manages to decode

20 MHz Orthogonal Frequency-Division Multiplexing (OFDM) signals, while meeting

the tough Acknowledgement Frame (ACK) timing requirements of IEEE 802.11,

allowing it to interoperate with normal WLAN cards. This is impressive, especially, if

we consider that Sora was already developed in 2009. In that regard, Sora presents a

milestone in SDR development. To achieve this outstanding performance, Sora relies

on a highly optimized hardware-software co-design. It had to be tied to a particular

hardware and uses optimized software, resulting in a more complex implementation.

On hardware side, Sora uses a custom radio control board that is connected to

the PC via PCI Express, which provides high-throughput, low-latency data transfer

between the radio front end and the PC. Given the fact that Sora is developed by
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Mircosoft Research, it comes as no surprise that it is designed for Microsoft Windows.

It is mainly implemented in C, using low-level assembly instructions at selected

performance critical parts of the code. To provide the required bandwidth for IEEE

802.11a/b/g, Sora uses a static scheduling scheme that manually distributes signal

processing task to CPU cores. Like GNU Radio, Sora uses vectorized instructions,

supported through CPU extensions like SSE or AVX. In addition, Sora makes heavy

use of Lookup Tables (LUTs), which avoid performing the same computations over

and over again. Precomputing, for example, the scrambling and descrambling

sequences provides a speedup of 13.6 [106].
Even with these optimizations, it is still not possible to acknowledge a unicast

frame in time. It also requires to parallelize frame decoding and generation of the

response. As soon as the MAC header is decoded, Sora already starts to generate an

ACK. Once the whole frame is received and passed the Cyclic Redundancy Check

(CRC), transmission of the precomputed frame only has to be triggered and does

not require any further signal processing. A minor issue that arises is that parallel

generation of the ACK is not fast enough for short frames. Sora, therefore, also caches

ACKs for recent communication partners. While this sophisticated signal processing

and performance of the hand-tuned PHY is truly impressive, the high throughput

and low latency had to be traded off against a highly optimized implementation

that is tied to their software and hardware platform, depending on Microsoft as a

supplier. This might be seen as a major drawback, considering that the project did

not see any development in the last years.
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In previous chapters, we provided an overview of Wireless LAN (WLAN) and

highlighted the issues that arise when using it for automotive applications. Given

the high mobility, diverse propagation environments, and varying user densities,

Vehicular Ad Hoc Networks (VANETs) ask for an adapted application-specific network

stack. It is well recognized that the development of such a stack is challenging and

should not be done with analytical analysis and simulations only. The importance to

design and test wireless networks over-the-air in realistic environments is recognized

in general [78] and for VANETs in particular [17]. To foster experimentation with

automotive WLAN, we developed an IEEE 802.11a/g/p transceiver for a General

Purpose Processor (GPP)-based Software Defined Radio (SDR) framework. Having

a complete software implementation of WLAN, we are able to inspect and, if needed,

modify all aspects of the physical layer (PHY).

In this chapter, we detail the design, implementation, validation, and evalu-

ation of our GNU Radio-based IEEE 802.11a/g/p SDR transceiver. It is the first

real-time-capable GPP-based WLAN transceiver for the 10 MHz and 20 MHz Orthog-

onal Frequency-Division Multiplexing (OFDM) modes of IEEE 802.11 that does not

rely on hardware-specific or platform-specific features. Our implementation provides

a complete PHY that supports all frame sizes and Modulation and Coding Schemes

(MCSs). It can run in real-time on a normal PC and was extensively tested and

verified with both commercial WLAN cards and IEEE 802.11p prototypes.

The development of a GNU Radio-based IEEE 802.11a/g/p transceiver was mo-

tivated by the fact that existing alternatives have limitations that cannot easily be

overcome. For GNU Radio, there was only a proof-of-concept OFDM transceiver that

did not implement a specific standard and was not generic enough to be adapted

for WLAN. In addition, there was an IEEE 802.11b transceiver, which, however, im-

plemented the very different Direct-Sequence Spread Spectrum (DSSS) PHY [111].
Mango Communications, the vendors of Wireless Open-Access Research Platform

(WARP), provide a free-to-use reference implementation for IEEE 802.11. Built for

a Field-Programmable Gate Array (FPGA)-based SDR architecture, it provides low

latency and deterministic timing, which makes it well-suited for timing sensitive

experiments like studies of the Medium Access Control (MAC) layer [97]. The draw-

back of this approach is, however, that it is not so straightforward to adapt and tied

to the rather expensive platform. Furthermore, the FPGA implementation cannot

easily be used for simulative performance evaluations, limiting its application to

measurements only. Closer related to our work is SoftWiFi, an IEEE 802.11a/b/g
implementation that was released with Microsoft’s Sora [106]. Its best-known fea-

ture is probably the support for unicast communication with commodity devices.

Through many application-specific optimizations, Sora manages to meet the chal-

lenging Acknowledgement Frame (ACK) timings of WLAN. Supporting such low

latencies, however, also comes at a price: it had to be designed for a custom radio
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control board that is sold by Microsoft, it uses operating system specific features of

Microsoft Windows, and it had to be manually optimized to support this particular

application. Sora, therefore, sacrifices typical advantages of a GPP-based SDR to

meet the MAC timings of WLAN.

We made the deliberate decision to focus on different aspects. While we also rely

on a GPP-based SDR framework, we are not targeting a full network stack but focus

on the PHY. Our main goal is to provide a solid and accessible implementation that

can be easily adapted, allowing it to serve as a base for all kinds of studies. Using

GNU Radio, we are not tied to a particular platform: On software side, GNU Radio

runs on Windows, macOS, and Linux, supporting even ARM-based embedded devices.

On hardware side, GNU Radio supports a wide range of SDR radio front ends, ranging

from low-cost SDRs like the HackRF One to more capable radios that support multiple

transmit and receive streams. Developed for VANETs, our transceiver was validated

with normal WLAN cards and various IEEE 802.11p prototypes. Our modular design

lends itself well to plug in and test different channel estimation algorithms, which

were the main focus of many studies [21], [65]. As an example and proof-of-concept,

we implemented both baseline and state-of-the-art channel estimation algorithms

that were designed specifically for VANET.

Another unique benefit of our transceiver is that the GPP-based approach allows

using the same implementation for simulations and measurements. Simulations

can be used in the prototyping phase to evaluate algorithms in a controlled and

reproducible environment. In a second phase, the very same implementation can be

used for over-the-air measurements in the lab and in field tests. While our transceiver

focuses on the PHY, we used the split-functionality approach to implement standard

compliant channel access for broadcast transmission. We will show that this can be

added without increasing the complexity of the PC implementation, i.e., without

sacrificing the accessibility of a GPP-based implementation. We think that this is

an interesting add-on, especially for broadcast-based vehicular communications.

Overall, our implementation provides unique advantages that are not available with

other IEEE 802.11a/g/p prototypes:

Open Source Both our transceiver and the software framework are Open Source

software. To foster the use of SDR for research on VANETs and to allow

reproduction of our results, we released the code to the community. Fellow

researchers can, therefore, study and, if needed, modify all details of the

implementation.

Designed for VANETs Our transceiver is tested with both commercial WLAN cards

and other IEEE 802.11p prototypes. Furthermore, it features channel estima-

tion algorithms that were developed specifically for VANETs.
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Modular Our transceiver adopts GNU Radio’s block-based design that allows us to

easily exchange receiver components with alternate implementations.

PC implementation The PHY is implemented in high-level programming languages

(Python and C++), which makes it accessible, easy to adapt, and well-suited

for rapid prototyping.

Platform independent Our PHY implementation does not rely on software-specific

or hardware-specific features. It can run on Windows, macOS, and Linux

systems, supporting ARM or x86-based CPUs. Furthermore, it is compatible

with a wide range of radio front ends.

Integrated workflow Since the PHY is implemented completely in software, we

can use the same code in simulations and over-the-air experiments, which

allows us to overcome the disconnect between theory and practice.

We believe that our transceiver has many applications for WLAN in general and

for VANETs in particular. Since the PHY implementation is independent of the carrier

frequency of the signal, it is equally well-suited to study IEEE 1609 Wireless Access

in Vehicular Environment (WAVE), ETSI ITS-G5, and ARIB STD-T109. The chapter

is based on the following publications:

• B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Performance Assessment of

IEEE 802.11p with an Open Source SDR-based Prototype,” IEEE Transactions

on Mobile Computing, vol. 17, no. 5, pp. 1162–1175, May 2018. DOI: 10.

1109/TMC.2017.2751474, © 2018 IEEE.

• B. Bloessl, A. Puschmann, C. Sommer, and F. Dressler, “Timings Matter: Stan-

dard Compliant IEEE 802.11 Channel Access for a Fully Software-based SDR

Architecture,” ACM SIGMOBILE Mobile Computing and Communications Review,

vol. 18, no. 3, pp. 81–90, Jul. 2014. DOI: 10.1145/2721896.2721913.

• B. Bloessl, C. Sommer, and F. Dressler, “Power Matters: Automatic Gain Control

for a Software Defined Radio IEEE 802.11a/g/p Receiver,” in 34th IEEE Confer-

ence on Computer Communications (INFOCOM 2015), Demo Session, Hong Kong,

China: IEEE, Apr. 2015, pp. 25–26. DOI: 10.1109/INFCOMW.2015.7179325,

© 2015 IEEE.

• B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Towards an Open Source

IEEE 802.11p Stack: A Full SDR-based Transceiver in GNU Radio,” in 5th IEEE

Vehicular Networking Conference (VNC 2013), Boston, MA: IEEE, Dec. 2013,

pp. 143–149. DOI: 10.1109/VNC.2013.6737601, © 2013 IEEE.

https://doi.org/10.1109/TMC.2017.2751474
https://doi.org/10.1109/TMC.2017.2751474
https://doi.org/10.1145/2721896.2721913
https://doi.org/10.1109/INFCOMW.2015.7179325
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• B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE 802.11a/g/p
OFDM Receiver for GNU Radio,” in ACM SIGCOMM 2013, 2nd ACM SIGCOMM

Workshop of Software Radio Implementation Forum (SRIF 2013), Hong Kong,

China: ACM, Aug. 2013, pp. 9–16. DOI: 10.1145/2491246.2491248, ©

2013 ACM.

as well as further peer-reviewed papers [28], [31], [32].

4.1 Physical Layer

The IEEE 802.11a/g/p amendments of WLAN introduce similar OFDM PHYs that

only differ in terms of the frequency band and the channel bandwidth. IEEE 802.11g

and IEEE 802.11a are 20 MHz PHYs that operate on 2.4 GHz and 5 GHz, respectively.

IEEE 802.11p, in turn, operates on the Cooperative Intelligent Transportation System

(C-ITS) frequency band at 5.9 GHz and has all timings doubled, resulting in 10 MHz

channels. For an SDR, doubling all timings translates into a mere change of the

sample rate. The very same implementation can, therefore, be used for either mode.

IEEE 802.11a/g/p use OFDM PHYs with 64 subcarriers, out of which 52 are

actually used. The others are allocated to guard subcarriers at the edge of the

spectrum and a DC subcarrier at the center. The 64 subcarriers are spread over the

signal bandwidth, resulting in a subcarrier spacing of 156.25 kHz for IEEE 802.11p

and 312.50 kHz for IEEE 802.11a/g. The sample rate of our transceiver is set to the

channel bandwidth, i.e., we are not oversampling the signal. With this configuration,

we can process 64 samples with a 64-bin Fast Fourier Transform (FFT) to convert

between time and frequency domain. To mitigate Intersymbol Interference (ISI), a

cyclic prefix corresponding to one fourth of the symbol length is inserted between

consecutive symbols, resulting in 1.25 · 64 = 80 samples per OFDM symbol. To

calculate an initial estimate of the channel, two OFDM symbols at the start of the

frame serve as block pilots. In addition to that, the data symbols use four subcarriers

Table 4.1 – PHY parameters of the supported OFDM modes.

Parameter IEEE 802.11p IEEE 802.11a/g

Bandwidth 10 MHz 20 MHz
OFDM subcarrier 64 64
Subcarrier spacing 156 kHz 312 kHz
OFDM symbol time 8µs 4µs
Guard Time 1.6µs 0.8µs
Comb Pilot Spacing 2.2 MHz 4.4 MHz

https://doi.org/10.1145/2491246.2491248
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as comb pilots, allowing to adapt the channel estimate during the reception of the

frame. An overview of the parameters is provided in Table 4.1.

For robustness against bit errors, the PHY uses a convolutional code with cod-

ing rates of 1⁄2, 2⁄3, or 3⁄4 for Forward Error Correction (FEC). The coded data bits

data are modulated on the data subcarriers, using BPSK, QPSK, 16-QAM, or 64-

QAM. The combination of coding rate and modulation scheme is called the MCS.

Valid combinations are summarized in Table 4.2. All of them are supported by our

transceiver.

4.1.1 Transmitter

Compared to the receiver, the implementation of the transmitter is rather straight-

forward. In fact, there was already a GNU Radio implementation available prior to

our work [112]. This transmitter was, however, partly implemented in Python and

designed for an older version of GNU Radio that lacked many features for seamless

packet-based operation. Furthermore, it was limited to fixed-sized frames and did

not support setting the MCS per frame. We, therefore, reimplemented it from scratch

in C++, translating the frame format specification of the IEEE 802.11 standard to

the stream paradigm of GNU Radio. A screenshot of its structure in GRC is shown

Table 4.2 – Our transceiver supports all MCSs. (Reproduced from [23], ©
2018 IEEE.)

Modulation Code Rate Transmission Reception

BPSK 1/2, 3/4 Ø Ø
QPSK 1/2, 3/4 Ø Ø
16-QAM 1/2, 3/4 Ø Ø
64-QAM 2/3, 3/4 Ø Ø

Figure 4.1 – Screenshot of the transmitter in GNU Radio Companion.
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in Figure 4.1. The input to the transmitter is the payload of the frame, which is

subsequently

• prefixed it with a MAC header that, for example, contains the frame type and

the source and destination address;

• appended with a 32 Bit Cyclic Redundancy Check (CRC) for error detection;

• encoded with a convolutional code and punctured according to the coding

rate;

• mapped to complex constellation points using BPSK, QPSK, 16-QAM, or 64-

QAM;

• interleaved with pilot symbols;

• transformed to time domain with a 64-bin inverse FFT;

• prepended with a cyclic prefix to cope with ISI; and

• filtered to improve the spectral shape.

The OFDM data symbols generated through this process get prefixed with a

preamble and a BPSK-1⁄2-encoded signal field that informs the receiver about the

length and encoding of the following data.

Apart from the clearly defined procedures of the transmitter, its implementation

is further simplified since its computational demands are rather relaxed. Given the

fact that we can pre-compute the whole frame before streaming the samples to the

SDR, we only have to make sure that the stream does not stall, as interruptions would

corrupt the frame. This is, however, no problem in practice. The computational

performance of the transmitter, therefore, does not impact its general functionality

but mainly its latency and the maximal achievable throughput. Another group

profiled our transmitter and suggested optimizations for memory allocation and

initialization [113]. These optimization are, however, for GNU Radio blocks that are

only used by our transceiver. To avoid duplicating code, we did not reimplement

these components but accept the performance penalty.

An architectural limitation of our GPP implementation is its non-deterministic

processing time. Calculating the samples on a normal PC introduces jitter that makes

it impossible to generate frames with a precise inter-frame space. In practice, it is,

however, easily possible to work around this limitation by pre-computing a signal

with zero-padded frames and streaming this signal to the radio front end in one go.
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S S S S S S S S S S L1/2 L L Signal Data Data ...
Short Training Sequence

Long Training Sequence

Figure 4.2 – WLAN frames comprise a short and a long training sequence for
synchronization; a signal field, containing information about the length and
encoding of the frame; and the data symbols, carrying the actual payload.
(Reproduced from [23], © 2018 IEEE.)

4.1.2 Receiver

Compared to the transmitter, the design of the receiver is much more challenging.

IEEE 802.11a/g/p uses a complex PHY with a bandwidth of up to 20 MHz. Even

without oversampling, the receiver, therefore, has to process the baseband signal

with a rate of 20 Msps. Realizing a receiver on a GPP-based SDR is an important

contribution of our work and will, therefore, be described in more detail. Here, the

novelty is not the algorithm but the design, implementation, and evaluation of a

modular implementation on a normal PC. Given the fact that there was only a basic

proof-of-concept OFDM implementation for GNU Radio (that supported only small

bandwidths) and the highly optimized Sora framework (that was strictly tied to

a hardware and software environment), it was not clear whether such a receiver

would be possible in the first place.

The design of the receiver is mainly motivated by the frame structure of IEEE

802.11a/g/p frames, which is depicted in Figure 4.2. To synchronize on the frame,

it starts with a short and a long training sequence, usually called the short and long

preamble. Despite their names, both parts of the preamble have the same length,

spanning over two OFDM symbols. The short preamble consists of a short pattern

that repeats ten times. This signal is well-suited for frame detection based on the

autocorrelation of the signal.

4.1.2.1 Frame Detection

When implementing frame detection, the computational complexity is of particular

interest. Naturally, the frame detection algorithm has to process the whole sample

stream to recognize the start of a frame. Even when the receiver is already synchro-

nized and about to decode a frame, it might make sense to continue frame detection

and search for another preamble to resynchronize on an interfering frame with a

higher power. This process is called capturing and is known to be implemented on

typical WLAN receivers [114], [115].
The need to use an algorithm with a low computational complexity rules out

a naive implementation based on the cross-correlation of the sample stream with
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the known pattern of the preamble. If n is the length of the correlation sequence,

this approach would require n complex multiplications per baseband sample. A

more efficient method for frame detection is based on the well-known Schmidl-Cox

algorithm [116], which exploits the autocorrelation of the short preamble. A detailed

comparison of the autocorrelation and cross-correlation methods is available in Chia-

Horng [117]. Following [117, Algorithm 1], we calculate the autocorrelation a of

the baseband sample stream s with a lag of 16 samples, which corresponds to the

length of the repeating pattern of the short preamble.

a[n] =
Nwin+15
∑

k=0

s[n+ k] s[n+ k+ 16] . (4.1)

Here, s denotes the complex conjugate of s and Nwin is a configurable parameter to

apply a moving average, which we set to 48. Including the lag of the autocorrelation,

we average values that span 64 samples, which corresponds to the size of an OFDM

symbol. While this value was found to work well in our experiments, we did not

conduct a separate parameter study for this parameter. Since the absolute value

of the autocorrelation depends on the input power level and, therefore, the gain

setting of the device, we normalize the value with the average input power level p

to calculate the autocorrelation coefficient as

p[n] =
Nwin−1
∑

k=0

s[n+ k] s[n+ k] ; (4.2)

c[n] =

�

�a[n]
�

�

p[n]
. (4.3)

Here,
�

�a[n]
�

� denotes the magnitude of a. Exemplary courses of the autocor-

relation coefficient c at different SNRs are shown in Figure 4.3. In the plot, we

consider an Additive White Gaussian Noise (AWGN) channel without any hardware

impairments, like frequency or clock offsets. Since the autocorrelation stays high

during the short preamble and since we do not average over the whole preamble

length, we can see the typical plateau of the autocorrelation coefficient during frame

start.

The calculation of the autocorrelation coefficient can be composed from simple

mathematical functions that are readily available in GNU Radio. An overview of the

receiver flow graph in GRC is depicted in Figure 4.4, where we annotate the stream of

p, a, and c. The blocks make heavy use of vectorized instructions through GNU Radio’s

Vectorized Library of Kernels (VOLK), allowing a typical PC to process even 20 MHz

signals without dropping samples. A more detailed study of the computational

complexity is presented in Section 4.3.
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Figure 4.3 – Typical course of the autocorrelation coefficient during frame start
at different SNR levels. Frame detection is triggered once the autocorrelation
coefficient exceeds a predefined threshold (dotted line).

The autocorrelation coefficient is monitored by our Sync Short block (see Fig-

ure 4.4), which triggers frame detection once the correlation exceeds a predefined

threshold. This threshold defines the sensitivity of the transceiver and balances

the trade-off between computational overhead and frame error rate. If we set the

threshold too low, the receiver might trigger on noise, resulting in unnecessary signal

processing. If we set the threshold too high, the receiver might miss frames, resulting

in bad performance. Based on a parameter study that we detail in Section 4.1.2.6,

we selected a threshold of 0.56.

4.1.2.2 Symbol Alignment

Once a frame is detected, we have to derive the position of the OFDM symbols in

order to align the FFT in the receiver and decode the frame. This is done in the Sync

Long block (see Figure 4.4). Since the plateau of the short preamble is not well-suited

for this task, we use the long preamble for more precise alignment. At this stage,

we employ the computationally more complex cross-correlation with the known
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p

a

c

Figure 4.4 – Screenshot of the receiver in GNU Radio Companion. The signal
for the power p, the autocorrelation a, and the autocorrelation coefficient c
are annotated.

time-domain pattern of the long preamble LP. This pattern spans over 64 samples

and repeats 2.5 times during the long preamble (see Figure 4.2). Cross-correlation

with this pattern results in 64 complex multiplications per sample, which is feasible

at this stage since we only have to calculate it in a small window of length Npreamble

following the frame start. In our implementation, we set the length of the window

to the conservative value of 320 samples, corresponding to the total length of the

short and long preamble.

Cross-correlating the signal with the preamble yields very localized peaks that

allow precise alignment. The characteristic course of the cross-correlation at various

SNR levels is depicted in Figure 4.5. Like in the previous plot, we consider an

AWGN channel and no hardware impairments like clock or frequency offsets. To

determine the frame start, the receiver orders the values of the cross-correlation

by their magnitude and searches the three peaks NP (using the arg max3 operator,

which selects the indices of the three highest values).

NP = arg max3
n∈{0,...,Npreamble}

63
∑

k=0

s[n+ k]LP[k], (4.4)

The first OFDM data symbol starts 64 samples after the last peak, which is the

peak with the highest sample index.

nP =max (NP) + 64, (4.5)
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Figure 4.5 – Cross-correlation of a frame with the known pattern of the long
preamble, as calculated by the receiver to determine OFDM symbol alignment.

Knowing the start of the frame, we can remove the cyclic prefix before passing

the samples to down-stream blocks. Since most channel estimation algorithms use

the long preamble as block pilots to calculate an initial estimate of the channel, we

also forward the symbols of the long preamble. As shown in Figure 4.2, the long

preamble symbols are sent back-to-back, whereas the data symbols use a cyclic-prefix

of 16 samples.

s←
�

s[nP − 128], . . . , s[nP − 65]
︸ ︷︷ ︸

long preamble 1

, s[nP − 64], . . . , s[nP − 1]
︸ ︷︷ ︸

long preamble 2

,

s[nP + 16], . . . , s[nP + 79]
︸ ︷︷ ︸

first data symbol

, s[nP + 80+ 16], . . . , s[nP + 80+ 79]
︸ ︷︷ ︸

second data symbol

�

.
(4.6)

The fact that we first cross-correlate the signal and then search for the peaks is

the reason why we duplicate the signal between the Sync Short and Sync Long block.

Since there is no easy way to traverse the sample stream in reverse direction, we

locate the peaks within one branch and use a delayed copy to extract the symbols.
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Using GNU Radio’s stream tags, we annotate the first sample of a frame to indicate

its start to the following blocks. At this stage of the decoding process, we do not

know the length of the frame. We, therefore, pass on samples that correspond to a

maximum sized frame, encoded with the least efficient MCS, i.e., a frame with the

longest possible duration. Copying samples to downstream blocks can, however, be

preempted if another frame is detected. This happens either if a high power frame

interferes and triggers frame detection or if a short frame is immediately followed by

another frame. Through this mechanism, we implement capturing and support small

frames that are sent with short inter-arrival times like Request To Send (RTS)/Clear

To Send (CTS) pairs or ACKs.

4.1.2.3 Frequency Offset Correction

An additional task that is performed by the Sync Short and Sync Long block is

frequency offset correction. Both blocks use the method proposed in [118], which

exploits the cyclic nature of the short and long preamble to estimate the frequency

offset. If we, for example, consider the short preamble with its 16 sample pattern,

then, ideally, s[n]would correspond to s[n+16]. However, due to imperfections of the

oscillators in sender and receiver, they will operate at slightly different frequencies.

Therefore, s[n + 16] is slightly rotated with regard to s[n], resulting in a non-

zero argument for s[n] s[n+ 16]. Neglecting noise, the argument of that product

corresponds to 16 times the rotation ∆α that is introduced by the frequency offset

between consecutive samples. To estimate this offset, we average over the length of

the preamble and calculate

∆α=
1

16
arg

�Nshort−1−16
∑

n=0

s[n] s[n+ 16]

�

, (4.7)

where Nshort is 160 samples, which corresponds to the length of the short training

sequence.

Finally, the frequency offset is compensated through

s[n]← s[n] e i (n∆α). (4.8)

For even more fine-grained correction, we use the long preamble in the Sync

Long block in a similar manner to compensate the residual frequency offset.

4.1.2.4 Channel Estimation

Since the Sync Long block already extracted the OFDM symbols, we can directly

use a 64-bin FFT to switch to frequency domain. At that stage, we have to employ

a channel estimation algorithm to estimate and reverse the perturbations induced
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by the channel. This is a crucial part of the receiver as it has a major impact on

its performance. Especially in the VANET context, channel estimation algorithms

received significant attention, as there are concerns whether simple schemes will be

able to cope with the high dynamics of vehicular networks [10], [11], [13], [65], [66].
To ease experimentation with new algorithms, we implemented a generic interface,

allowing the user to easily extend the transceiver with new channel estimation

algorithms and even change them during runtime. We implemented both baseline

and state-of-the-art algorithms, developed specifically for VANETs.

A more detailed comparison of the algorithms and their performance in a real-

istic environment is presented in Section 5.1.2. For the performance evaluation in

this chapter, we use the Least Squares (LS) equalizer, which is a simple algorithm

that is often used as a baseline and cited to be a typical candidate for hardware

implementations [12], [13].

The algorithm uses the long training sequence as block pilots to compute an

estimate of the channel and uses it to correct the rest of the frame. Denoting the

estimate of a value X as X̂ , we calculate the channel H at subcarrier k as

Ĥ(k) =
Y1(k) + Y2(k)

2XLP(k)
, (4.9)

where Y1,2 are the two received copies of the long training sequence and XLP its

known value. With the LS equalizer, this initial estimate is kept during the whole

frame. While computationally very efficient, it is well-known that this algorithm

suffers as frames get longer or the coherence time of the channel gets shorter [12],
[13]. Using the vector of the channel estimates Ĥ, we correct data symbol X through

X̂ =
X

Ĥ
. (4.10)

4.1.2.5 Decoding

After correcting the symbols, we demap the noisy subcarrier constellations to the

closest ideal constellation points, which, in turn, directly correspond to bit sequences.

At bit-level, the receiver decodes the information using the reversed process im-

plemented in the transmitter. To decode the convolution code, we use a highly

optimized hard-bit Viterbi decoder that was contributed by another group [113].
Using Lookup Tables (LUTs) and SSE2 instructions, the decoder provides signifi-

cant improvements over our previous implementation, which was identified as a

performance bottleneck [113]. As the discussion on the computational complexity

in Section 4.3 will show, this is an important contribution as even the improved

decoder presents a CPU bottleneck. A potential improvement of the receiver would

be the use of soft-bits [119] instead of hard-bits. We, however, did not explore this
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option in detail, as the need to associate each bit with a confidence level would

introduce considerable complexity in an already performance critical component of

the receiver.

The first OFDM symbol contains the signal field, which encodes the length and

MCS of the following data. This symbol is decoded separately, and the information

is used to configure the demodulation and decoding process.

4.1.2.6 Sensitivity

While the structure of the receiver is complex, there are not many free parameters

that we have to choose. One interesting exception is the frame detection threshold,

which balances sensitivity against computational overhead. A low threshold increases

the sensitivity as even low SNR frames can trigger the decoding process. However,

a low threshold also leads to false positives when frame detection is triggered by

noise. These false positives cause unnecessary decoding attempts when no signal is

present, increasing the computational overhead. A high value for the threshold, in

turn, would lead to false negatives when frames are missed and never processed by

the decoder.

To determine the threshold, we simulated the frame error rate of 435 Byte BPSK-
1⁄2 frames over an AWGN channel. We chose the most robust MCS, since it is most

sensitive to threshold changes. This is because false positives are completely inde-

pendent of any frame transmissions and only cause computational overhead. False

negatives, in turn, are worse for BPSK-1⁄2, since chances are high that the missed

frame could have been decoded. If, in contrast, a 64-QAM-3⁄4 frame is missed, it is

likely that the signal quality was in any case not good enough to decode the frame.

In this and the following experiments, we often use 435 Byte frames, which we

believe is about the size of a typical VANET frame. There is, however, no correct

size, as it heavily depends on the

• application or the frame type within one application,

• the certificate information, which can be a hash of a certificate or a complete

certificate chain.

Furthermore, since our experiments asses PHY performance, the frame size refers

to the MAC Protocol Data Unit (MPDU), which corresponds to the overall size as

indicated in the signal field. This includes the MAC header, the Logical Link Control

(LLC), the payload, and the CRC.

The frame delivery ratio for different sensitivities is shown in Figure 4.6. The

error bars indicate the 95 % confidence intervals, which are based on 20 runs with

100 frames per run. As expected, the decoding performance of the receiver improves

with lower values for the threshold. Between 0.68 and 0.62, we can see a rather big
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Figure 4.6 – Delivery ratio of 435 Byte BPSK-1/2 frames at different sensitivity
levels.

improvement, shifting the error curve by about 2 dB. This indicates false negatives, as

decodable frames are missed by the receiver. For smaller thresholds, the performance

improvement gets smaller, and the curve converges.

Based on these results, we select a value of 0.56 for our transceiver. This value

is close to the converged curve and, therefore, provides nearly optimal decoding

performance. Still, in this experiment, we only looked at one aspect of the trade-off,

i.e., we selected the threshold only based on the frame error rate. Nevertheless, we

think that this is reasonable, since the primary goal is to provide good decoding

performance. Apart from that, we provide a detailed analysis of the computational

complexity of the receiver in Section 4.3.

4.1.3 Transceiver

As shown in Figure 4.7, we can combine transmit and receive chains to a complete

transceiver. To create a more structured flow graph layout, we encapsulated transmit

and receive chains in a hierarchical block that presents the PHY. If this transceiver

is used with a half-duplex radio, the SDR will, by default, receive and only switch to

transmit mode when a frame is supposed to be sent. This switch is handled by the

SDR and does not require any additional logic in our implementation.

Finally, the received frames can be exported in the PCAP format, a popular

packet capturing format, which allows analyzing the traffic with network monitoring

software like Wireshark. Similar to a normal WLAN card, we annotate metadata of

the frame in the Radiotap header, which includes information like the MCS or the

bandwidth. A screenshot of the transceiver’s graphical user interface is depicted in

Figure 4.8. It shows a log of the received frames in the console (bottom left) and in

Wireshark (top left). Furthermore, it visualizes the signal in time domain (top right)

and shows a constellation plot of a QPSK signal (bottom right). Apart from logging
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Figure 4.7 – Screenshot of the transceiver in GNU Radio Companion.

and visualizing frames, it is possible to pipe them in a TUN/TAP interface, a virtual

network device, and, thus, to connect the SDR to the Linux TCP/IP stack. This way

the SDR can be used like a normal network interface.

4.2 Verification and Interoperability

After presenting the design of our SDR-based IEEE 802.11a/g/p transceiver, we

verify its correctness in several steps: We start with AWGN simulations, which allows

us to compare the performance of our implementation with published results. While

this can show that the results are reasonable, it does not verify the correctness.

This is done in subsequent interoperability tests with both commercial WLAN cards

and IEEE 802.11p prototypes. Apart from pure functionality, the computational

performance of the implementation is very relevant for a GPP-based SDR. It is

crucial that we can reliably process all samples, as dropped samples would lead

to frame losses at the receiver. We, therefore, measure the CPU time of individual
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Figure 4.8 – Screenshot of the transceiver’s graphical user interface while
decoding a QPSK frame. (Reproduced from [31].)

transceiver components with varying traffic loads ranging from a completely idle to

a completely saturated channel.

4.2.1 AWGN Simulations

To test the general functionality of the implementation and to show that it produces

reasonable results, we conducted simulations over an AWGN channel. In this exper-

iment, we do not consider hardware impairments like frequency or sample clock

offsets. Measuring the frame delivery ratio, we highlight the transceiver’s applica-

bility for simulations and present baseline results that can be compared to related

works. The results for 435 Byte frames and all MCSs are shown in Figure 4.9a.

On a basic level, we see the transceiver can decode its own frames and pro-

duces reasonable results in the sense that more robust MCSs work at lower SNRs.

Furthermore, there are no systematic problems, as all MCSs converge to 100 % for

high SNRs. Apart from these basic insights, we can compare our results to results

available in the literature. The NIST PHY simulation model [120], for example, is

adopted by popular network simulators like Veins or ns-3. Many research results,

therefore, rely on the validity and accuracy of this model. It is analytically derived

and validated with commercial WLAN cards in a testbed. To compare our results with



58 4.2 Verification and Interoperability

0 5 10 15 20 25
SNR (in dB)

0
20

40
60

80
10

0
Fr

am
e

D
el

iv
er

y
R

at
io

(i
n

%
)

BPSK 1/2
BPSK 3/4

QPSK 1/2
QPSK 3/4

16-QAM 1/2
16-QAM 3/4

64-QAM 2/3
64-QAM 3/4

(a) Our transceiver. (Reproduced from [23], © 2018 IEEE.)
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(b) NIST error rate model.

Figure 4.9 – Delivery ratio of 435 Byte frames over an AWGN channel.

the NIST model, we plot the corresponding error curves in Figure 4.9b. Considering

the fact that receiver implementation comprises many design decisions that impact

the results, the curves match surprisingly well. For some MCSs, the NIST model is

slightly more conservative in the sense that it requires 1 dB to 2 dB higher SNR for a

similar performance. The BPSK-3⁄4 curve exhibits the biggest difference to the model.

While our implementation shows a clear difference between BPSK-3⁄4 and QPSK-1⁄2,

the NIST model produces very similar curves. This, however, seems to be an artifact

of the NIST model, as also the testbed results in Pei and Henderson [120] show a

clear difference between these MCSs.

Similar results are also reported by Mittag et al. [76], who present a detailed

PHY simulation model for ns-3. Like our SDR implementation, this model operates

on the complex baseband representation of the sampled waveform, i.e., it uses the
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same level of abstraction. This implementation is, however, not real-time capable

and cannot be connected to an SDR radio front end. It is, therefore, limited to

simulations only. While the results presented in the paper are for 500 Byte frames,

they also match well with our error curves, shifted about 2 dB towards higher SNRs,

which can be explained by the larger frame size. Overall, this first experiment shows

that our simulation results match well with the literature and that our transceiver

provides reasonable performance, at least over simple AWGN channels.

4.2.2 Interoperability Tests

In the simulations, we fed back the sample stream generated by the transmitter

into the receiver without involving any hardware. While this produced reasonable

results, we did not yet prove that we are able to transmit and receive standard

compliant IEEE 802.11 frames over the air. To show that this is the case, we performed

extensive interoperability tests in our lab and validated our implementation with

both commercial IEEE 802.11a/g cards and IEEE 802.11p prototypes.

In these experiments, we used the same code as in the simulations together with

an Ettus Research B210 SDR radio front end. The B210 covers a large frequency

range, including both the 2.4 GHz and the 5.9 GHz band. While we selected this

particular radio for our tests, we did not use any hardware-specific features. Our

transceiver works just as well with other radios that are supported by GNU Radio,

operate on the frequency band of interest, and provide enough bandwidth for the

PHY mode that is supposed to be studied.

An exemplary list of some devices that we tested with our transceiver is provided

in Table 4.3. The list contains widely used chips from Intel and Apple, used in

popular commercial devices like the MacBook Air. If the card supported it, we

tested both the 2.4 GHz and the 5 GHz band. We managed to establish bi-directional

communication with each device, using either MCS, which highlights the correctness

of our implementation and shows that we are able to send and receive standard

compliant frames.

Table 4.3 – WLAN cards and IEEE 802.11p prototypes used in our interoper-
ability tests. (Reproduced from [23], © 2018 IEEE.)

NIC Standard Bandwidth

MacBook Pro/Air 802.11a/g 20 MHz Ø
Intel Ultimate-N 6300 802.11a/g 20 MHz Ø
Air Live X.USB 802.11a/g 20 MHz Ø
Cohda MK2/MK5 802.11p 10 MHz Ø
Unex DCMA-86P2 802.11a/p 10/20 MHz Ø
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Apart from commercial WLAN devices, we also tested IEEE 802.11p prototypes.

The Unex DCMA-86P2 is a commercial IEEE 802.11p-capable MiniPCI WLAN card

that was used successfully in field tests. It is based on an Atheros chip supported

by the ath5k Linux driver. To switch to IEEE 802.11p, we had to modify the kernel

driver to switch to 10 MHz and adapt the regulatory domain settings tune to the

5.9 GHz band. Apart from the Unex DCMA-86P2, we tested an ath9k-based Atheros

card. This card is supported by the official Linux IEEE 802.11p implementation and,

therefore, does not need manual patching. The third device is a Cohda Wireless

MK5, an integrated IEEE 802.11p prototype that features communication stacks

for both IEEE 1609 WAVE and ETSI ITS-G5. The MK5 and its predecessors are

well-known in the research community and were used in major field tests in USA,

Australia, Germany, France, and Korea. Again, we manage to set up bidirectional

communication, with all prototypes, supporting our claim of a standard compliant

PHY implementation. Furthermore, by going beyond simulations, these tests show

that we implemented a transceiver that is able to deal with impairments of real

hardware and unsynchronized clocks.

4.2.3 Lab Measurements

Apart from sole connectivity test, we wanted to further quantify the performance of

sender and receiver by comparing them to commercial devices and IEEE 802.11p

prototypes. In these experiments, we evaluate the performance of the transceiver

in a controlled lab environment over simple, static channels. These experiments

are important to establish our implementation as a tool for experimentation with

WLANs. Providing comparable performance to other WLAN cards means that there

are no systematic problems and we can use commercial devices and our transceiver

interchangeably.

4.2.3.1 Transmitter

To assess the performance of the transmitter, we connect an Ettus Research N210

equipped with a CBX daughterboard via cable to a Unex DCMA-86P2 WLAN card.

The cable connection rules out interference and guarantees stable channel conditions,

required to compare the performance of different devices. The cable is, however, no

artificial simplification for the transceivers as the devices are not synchronized or

benefit in any other way from this setup. The Unex DCMA-86P2 is able to operate

on the 5.9 GHz band with a bandwidth of 10 MHz. To avoid damaging the devices,

we use attenuators to reduce the signal power. In the experiment, we send 133 Byte

frames with either MCS and vary the output power. For each configuration, i.e.,

pair of MCS and output power, we send 10 000 frames on WLAN channel 172 at

5.86 GHz. A summary of the setup is given in Table 4.4.
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Table 4.4 – The most relevant components of our test system for lab measure-
ments. (Reproduced from [30], © 2013 IEEE.)

Component Type

CPU Intel Core i7-2600 CPU 3.40GHz
RAM 16 GByte
NIC RTL-8169 Gigabit Ethernet
Operating System Ubuntu 12.04 LTS, 64 Bit
GNU Radio Version 3.7
SDR Ettus Research N210 revision 4
Daughterboard CBX
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(a) SDR transmits frames to a commercial WLAN card.
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(b) Sender and receiver are commercial WLAN cards.

Figure 4.10 – Frame delivery ratio between two devices that are connected
via cable. The frame size is 133 Byte. (Reproduced from [30], © 2013 IEEE.)
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The receiving WLAN card is put into monitor mode, where it adds a Radiotap

header to each overheard frame. This header contains metadata like signal and

noise levels, which are used to calculate the SNR at the receiver. The results of the

experiment are depicted in Figure 4.10a. What we can immediately see is that their

qualitative course is similar to our simulations results. Like in the previous plots, the

error bars correspond to the confidence intervals of the mean for a confidence level of

95 %. To compare the results to a commercial device, we repeated the measurements

with another Unex device as a sender. Since the performance can vary between

individual cards, we made sure to use the same receiver for both measurements.

The results are shown in Figure 4.10b. We can see that the results of the WLAN

transmitter match well with our SDR transmitter. The exception is the 64-QAM-3⁄4

encoding, where we experience worse performance with the SDR.

Since we do not see such an effect in simulations and since the system works

well for the other cases, we are reasonably sure that the sample stream we generate

is correct. Furthermore, we experienced no underruns, i.e., we were able to stream

the samples to the device so that the device did not stall which would destroy the

physical waveform. For these reasons, we believe that the deviation in the results

is caused by hardware impairments. Device characteristics that might cause such

a behavior are oscillator drift and, more likely, nonlinearities in the amplifier that

might disturb the signal, which leads to packet errors, especially with higher order

modulations.

4.2.3.2 Receiver

Similar to the transmitter, we also want to quantify the performance of the receiver.

In a first experiment, we compare our receiver to an Air Live X.USB WLAN card,

operating in IEEE 802.11a mode, i.e., we were using the 5 GHz band and a bandwidth

of 20 MHz. For the SDR, we used an Ettus Research N210 with an XVCR2450

daughterboard, which is specifically designed for the 2.4 GHz and the 5 GHz band.

This time, the experiment was conducted over the air in an office environment. We

chose the 5 GHz band to avoid the crowded 2.4 GHz Industrial Scientific and Medical

(ISM) band, where uncontrolled interference could invalidate the results. Due to

the limited space, we had to use attenuators at the transmitter to lower the signal

power and generate packet error curves. The antennas were 3 dBi VERT2450 dipoles,

and the distance between sender and receiver was approximately 6 m. The PC and

software configuration were the same as in the previous experiment.

As transmitter, we used a Unex DCMA-86P2 to send 63 Byte frames. At the time

of the experiment, we only had the normal Linux driver available. This driver was

limited to packet injection with the most robust MCS, limiting us to BPSK-1⁄2 frames.

In our experiment, we varied the transmit power between 0 dBm and 18 dBm in
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steps of 1 dBm. For every power setting, we conducted 200 measurement runs,

sending 100 frames per run.

The resulting frame delivery ratio with 95 % confidence intervals is plotted in

Figure 4.11. Note that in contrast to typical error curves, we plot the transmit

power on the x-axis and not the SNR. This stems from the fact that, at the moment,

the receiver does not estimate the SNR. By increasing the transmit power by 1 dB,

we know that the SNR is 1 dB higher, but we do not know the absolute value.

The values on the x-axis can, therefore, be interpreted as relative increases of the

SNR. The results show that our receiver and the commercial card show comparable

performance. For higher transmit powers, both devices approach 100 %, which

highlights the fact that the are no systematic errors in our receiver. Furthermore, the

width of the interval in which the frame delivery ratio rises matches very well with

the commercial card. A limitation of this measurement method is that we cannot

guarantee that the received SNR is similar for both devices. Due to channel effects,

one device might experience a higher attenuation, which would mean that the SNR

curves of the receiver might be shifted with regard to Figure 4.11. We, however,

tried different antenna placements and found the results to be stable, indicating that

the performances of the devices are indeed similar.

While IEEE 802.11a/g/p define very similar PHYs, we also wanted to test the

performance of IEEE 802.11p in order to emphasize the transceiver’s applicability

for research on VANETs. Therefore, we conducted a second experiment in which

we sent frames with a Cohda Wireless MK2, an IEEE 802.11p prototype that was

used in many field tests. The measurements are, again, performed over the air in an

office environment, but, this time, on the otherwise vacant 5.9 GHz band, using a

bandwidth of 10 MHz. The experiment was conducted with an earlier version of the
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Figure 4.11 – Comparison of the receive performance of a commercial device
and our SDR implementation. (Reproduced from [33] with permission, ©
2013 ACM.)
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Figure 4.12 – Delivery ratio of 95 Byte frames that are sent from a Cohda Wire-
less MK2 and received with our SDR implementation. (Reproduced from [33]
with permission, © 2013 ACM.)

receiver, which was limited to BPSK and QPSK modulations. At that stage, we only

had a basic channel estimation algorithm implemented that did not normalize the

amplitude, limiting us to phase-shift keying. The current version of the transceiver

does not have this limitation but implements a full IEEE 802.11a/g/p transceiver

that supports all frame sizes and MCS. We varied the transmit power of the MK2

in 1 dBm steps and performed 30 runs for every configuration, sending 100 frames

per run. The results with 95 % confidence intervals are plotted in Figure 4.12. We

can see that at least the MCSs that use BPSK and QPSK modulations work, as their

frame delivery ratio approach 100 %. Furthermore, the results are reasonable in the

sense that higher bitrates suffer from higher packet losses.

Overall, the results indicate that our transceiver works with 10 MHz and 20 MHz

channels and provides reasonable performance that is comparable to commercial

WLAN cards. Furthermore, it does not suffer from systematic errors, highlighting its

applicability for research on WLANs.

4.3 Computational Complexity

When it comes to GPP-based SDRs, the computational performance and the ability

to process samples in real-time are critical factors. A correct implementation that is

not capable of processing the sample stream on a normal PC would be of limited use.

Dropped samples could lead to packet loss in the receiver and, ultimately, to wrong

interpretation of the measurement results, for example, if lost frames are regarded

as effects of the wireless channel or shortcomings of the receive algorithm. Overall,

this could limit the transceiver’s applicability for academic studies. Furthermore,
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when the SDR detects that samples are dropped, the driver interrupts reception

and continues only if the sample queue is completely flushed. Therefore, even a

single overrun can have a great impact and cause the loss of several frames. Given

its importance, we have an in-depth look at the computational complexity of the

transceiver.

Compared to the receiver, the computational complexity of the transmitter is

less challenging as the whole waveform can be pre-generated before streaming the

samples to the SDR. We only have to make sure that the sample stream does not

stall, which would corrupt the signal. This is, however, no problem in practice.

The receiver, in turn, is more complex. While Sora’s SoftWiFi showed that an

optimized implementation can run in real-time on a normal PC, it was not clear

whether it is possible for a general purpose framework that does not rely on hardware

or operating-system-specific features. Fortunately, GNU Radio helps us to implement

efficient transceivers, as it allows us to profile a flow graph while it is running. To

identify bottlenecks, GNU Radio’s performance counters monitor metrics like CPU time

and fill state of the queues per block and exposes them through control port [110].
Since there is no easy way to export this data, we created a measurement tool that

connects to the transceiver, resets all performance counters, waits for 30 s, and logs

the counters to a CSV file.

In the context of this work, we are mainly interested in the CPU time of individual

receiver components. Depending on the hardware, GNU Radio supports multiple

ways to measure CPU time. We used the more accurate thread clock, which measures

the time that the thread is scheduled by the operating system. The alternative

monotonic clock logs the time that a block is scheduled by GNU Radio, i.e., the time it

needs to execute the function that processes the samples. This metric is less accurate

since it is likely that the thread does not have exclusive access to a CPU during that

time. Depending on the load of the system or the amount of I/O operations, there

might be a significant difference between the duration of the function call and the

actually used CPU time.

To evaluate the performance, we used GCC 5.4.0 to compile GNU Radio and our

transceiver in release mode. This compiler configuration strips debug symbols and

enables all code optimizations. To assert that we use the Single Instruction Multiple

Data (SIMD) instructions that provide the best performance for our particular CPU,

we used the profiling tool of VOLK, which tests alternate implementations for common

signal processing functions and stores the best implementation in a configuration file.

With this, we do not have to optimize our transceiver for a particular architecture but

can rely on VOLK to choose the optimal instructions for us. The performance tests

were conducted on a desktop PC with an Intel i7-7700K CPU and 16 GByte memory.

The receiver was configured to use the LS algorithm and operate on channel 178 at

5.89 GHz with a bandwidth of 10 MHz.
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(a) Idle channel.
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(b) 435 Byte QPSK-1/2 frames (73 OFDM data symbols) sent with a rate of
10 frames per second. (Reproduced from [23], © 2018 IEEE.)

Figure 4.13 – CPU utilization of individual signal processing blocks.

To have a baseline, we start with a simple experiment that measures the CPU time

of the receiver components when the channel is idle. In this scenario, the receiver

does not decode any frames, only false positives of the frame detection algorithm

might trigger decoding attempts. The results of the experiment are depicted in

Figure 4.13a, which shows the overall CPU time during the 30 s measurement period

per block. In this and the following graphs, the blocks are shaded according to their

role in the receiver. When considering the computational complexity, we can divide

components into roughly two groups.

The first kind of blocks, which we labeled stream-based, operates on the whole

sample stream. In our receiver, these blocks comprise the SDR source and the blocks

that are involved in frame detection. Following the description of our receiver, these

blocks calculate the autocorrelation of the signal to recognize the repeating pattern

of the short preamble. Since these blocks process all samples, their computational

demand is independent of actual frame transmissions. Doubling the bandwidth to



4.3 Computational Complexity 67

20 MHz IEEE 802.11a/g signals, would, therefore, approximately double their CPU

time. The last stream-processing block in the receiver chain is the Sync Short block.

It monitors the autocorrelation and acts a valve for the subsequent decoding chain.

Once the autocorrelation coefficient raises above a configurable threshold, it marks

the beginning of a frame and streams samples into the decoding chain. The blocks

that work on this subset of samples are involved in decoding the frame. They are

labeled frame-based in the figures.

As expected, the frame-based blocks are not triggered when the channel is idle.

This shows that the false-positive rate of the frame detection blocks is negligible. A

more subtle observation is also worth noting: When running the receiver we do not

experience any overruns, i.e., the PC is able to keep up with the incoming sample

stream. This is not immediately clear, given the fact that it has to process 10E6

complex floating point numbers per second, and calculating the autocorrelation

involves many computationally complex operations like multiplication and division.

Furthermore, the fact that the CPU time of all components is below 2 s indicates that

we still have a lot of headroom for the decoding process.

To quantify the complexity of the decoding process, we conducted the same

measurements but, this time, sending 435 Byte QPSK-1⁄2 frames with a rate of 10 Hz.

This corresponds to the highest beacon rate of a vehicle according to the ETSI ITS-

G5 standard [73]. The results of these measurements are shown in Figure 4.13b.

Compared to the idle channel, we can see that both blocks that are involved in

synchronization, i.e., Sync Short and Sync Long, require more CPU time. However,

the increase is only marginal and the overall load of the system is still low.

The performance figures of these and the following experiments should be re-

garded as exemplary and qualitative evaluations. The actual numbers could vary

significantly depending on the compiler, compile flags, the GNU Radio version, the

operating system, and the CPU. Especially the latter might have a major impact, con-

sidering the wide range of clock speeds, hierarchical cache structures, and different

instruction sets. Nevertheless, we have observed similar qualitative results on other

platforms. In particular, we have tested our implementation on a 2013 MacBook Air

with a 1.6 GHz Intel i5 CPU. The receiver worked without dropping samples also on

this platform. This shows that even laptops are real-time-capable, highlighting the

transceiver’s applicability for field tests.

In these low-traffic scenarios, the frame-based blocks use only marginal CPU time.

When switching to higher channel loads, the blocks would scale with the number of

frames per second. A frame rate of 20 Hz would, therefore, approximately double

their CPU time.

Apart from this typical traffic pattern, we also wanted to consider the most

challenging case, i.e., a fully saturated channel. To maximize the load of the receiver,

we sent 64-QAM-3⁄4 frames, which combines the modulation with the highest order
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(a) 36 Byte frames, corresponding to 2 OFDM data symbols.
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(b) 1500 Byte frames, corresponding to 56 OFDM data symbols. (Repro-
duced from [23], © 2018 IEEE.)

Figure 4.14 – Distribution of the computational load with a fully saturated
channel of 64-QAM-3/4 encoded frames.

with the highest coding rate. This maximizes the load of both the demodulator and

the decoder. What we did not know in advance was the overhead caused by the

frame-based blocks. In particular, we did not know the relationship between the

constant overhead per frame (like synchronization and decoding of the signal field)

and the overhead that scales with the size of the frame (like demodulation and

decoding). For that reason, we conducted two experiments: One with a frame size

of only 36 Byte, which comprises the MAC and LLC header but no data payload, and

another one with 1500 Byte frames. In both scenarios, we saturated the channel

by sending the frames with an inter-frame space of 58µs. This corresponds to the

Arbitration Inter-Frame Space (AIFS) of Voice, i.e., the Access Category (AC) with the

highest priority, and zero backoff slots. To guarantee precise timing, we generated

the sample stream with proper spacing in advance and streamed it to the device in

one go.
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The results for the short frames are shown in Figure 4.14a, and the results for

the large frames are shown in Figure 4.14b. In both cases, the load is dominated by

the frame-based blocks. However, the load distribution between blocks is different.

For the short frames, the load is dominated by the blocks that are involved in

synchronization. These blocks comprise Sync Short, Sync Long, and the Frame

Equalizer, which decodes the signal field and calculates an initial estimate of the

channel.

For the longer frames, the decoder causes the highest load. It required nearly 28 s

CPU time in the 30 s measurement interval. That means it required one CPU core

nearly exclusively. While this experiment already considers a worst case scenario,

it also shows that there is not a lot of headroom left. When aiming for higher

bandwidths, this component would, at the moment, present the bottleneck of the

receiver. Overall, the results from these measurements showed that the receiver

is able to process the signal reliably without dropping samples, highlighting its

real-time capability even for fully saturated channels.

4.4 Time-Critical Functionality

When developing our IEEE 802.11a/g/p transceiver, the PHY was clearly the main

focus. Still, after its implementation and validation, we wanted to further explore

the potential and the limitations of the architecture. If we consider time-critical

functionalities like channel access or Automatic Gain Control (AGC), the relevant

timings are in the microsecond scale. Our GPP-based SDR architecture, however,

introduces latencies in the millisecond scale [101]. These latencies stem from pre-

processing the samples on the radio, streaming them to the PC, and processing them

on a non-real-time operating system. Implementing standard compliant channel

access or AGC on the PC is, therefore, not possible.

4.4.1 Channel Access

One way to implement channel access for GPP-based SDRs is to relax the timings

by increasing the inter-frame space. The increase, however, has to be significant,

spanning about three orders of magnitude [121], [122]. The resulting system is, of

course, no longer standard compliant and makes less efficient use of the channel.

Yet, it is a simple method to implement WLAN-like channel access on the PC.

The only option to implement standard compliant channel access for our SDR

architecture is to extend the FPGA. The idea is to move time-critical functionality

in hardware to achieve low latency and deterministic timing, while leaving the

non-time-critical parts in software, maintaining the benefits of a GPP-based PHY

implementation. This split-functionality approach was first explored by Nychis et al.
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[99]. Their prototype featured a GNU Radio implementation of a Carrier Sense

Multiple Access (CSMA) MAC that realized carrier sensing, backoff processing, and

dependent packet processing inside the FPGA of an SDR from Ettus Research. More

recently, Di Francesco et al. [123] presented a similar architecture for an embedded

SDR. However, both works do not focus on standard compliance but study the

feasibility of the split-functionality approach on the respective platforms. We use

the same approach to realize standard compliant channel access for IEEE 802.11

broadcast transmissions.

4.4.1.1 Concept and Implementation

To implement CSMA, we had to extend all components of the system, i.e., our

transceiver, the USRP Hardware Driver (UHD), which interfaces the Ettus Research

N210, the FPGA image, and the firmware of the ZPU soft-core running on the

FPGA. An overview of the system is shown in Figure 4.15. We started by creating

a GNU Radio block with four inputs for the individual ACs. This block tags data

packets with CSMA metadata, i.e., AIFS and the randomly chosen number of backoff

and post-TX backoff slots. All random numbers are, therefore, generated on the host.

The tags are propagated through the transmit chain until they reach the USRP Sink

block, which orchestrates the SDR through the UHD. Here, the CSMA parameters

Figure 4.15 – Conceptual overview of our CSMA implementation. (Repro-
duced from [28] with permission.)

Table 4.5 – Most relevant components of our setup. (Reproduced from [28]
with permission.)

Component Type

GNU Radio Version 3.7
UHD Version 003 006 001
SDR Ettus Research N210
Daughterboard XCVR2450
Xilinx ISE Version 12.3
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are extracted from the tags and added as metadata to the samples before they are

sent over Ethernet to the FPGA.

On the FPGA, the parameters are used to configure the CSMA state machine, and

the samples are stored in memory until the state machine triggers their transmission.

Note that, currently, we maintain a single queue for all frames as opposed to one

queue per AC. We refrained from adding multi-queue support, since the available

memory on the FPGA is too small to instantiate multiple queues. Finally, we extended

the firmware of the ZPU soft-core to provide a control interface to set parameters

that are not frame-specific, like slot time and the Clear Channel Assessment (CCA)

threshold.

While we base our implementation on the most recent versions of GNU Radio

and the UHD, we used an older version of the Xilinx ISE to compile the FPGA image,

since we experienced timing problems when using more recent versions. Table 4.5

summarizes the most important components of our setup.

Clear Channel Assessment

Since virtual carrier sensing is not relevant for broadcast transmissions, we only

consider physical carrier sensing. Here, we limited our implementation to energy

detection only, since preamble detection requires us to demodulate and decode at

least the signal field on the FPGA. This would require additional functionality on

the FPGA, including frame detection, synchronization, demodulation, and decoding.

Implementing these PHY algorithms in hardware would contradict our GPP-based

approach and also exceed the resources of the Ettus N210.

For energy detection, we pipe all samples from the receive chain to a custom

Verilog module and calculate the power per sample. The power values are averaged

over a window of configurable size and compared to a threshold. If the average

power exceeds the threshold, we report the channel as busy to the CSMA state

machine. The threshold can be configured over the control channel implemented on

the ZPU soft-core. For our tests and evaluations, we used a moving average of eight

samples, which corresponds to a time window of 0.8µs at 10 MHz.

CSMA State Machine

To send a frame, its samples are transferred to the SDR and buffered in memory

until the CSMA state machine triggers their transmission. Each frame is annotated

with its AIFS duration and random variables for the backoff and post-TX backoff

slots. An overview of the state machine is depicted in Figure 4.16. It starts in the

IDLE state and remains there until a frame is loaded on the SDR. Once a frame is

buffered in the SDR, it switches to the AIFS&GO state. If the medium is free for an

AIFS while in the AIFS&GO state, we send the frame immediately. Otherwise, we
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AIFS
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SEND
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Figure 4.16 – CSMA state machine implemented on the FPGA that controls
frame transmission. (Reproduced from [28] with permission.)

switch to the AIFS state and start the normal backoff procedure. We stay in AIFS

until the medium is free for an AIFS without interruption. When this is the case,

we switch to the SLOT state and start counting down backoff slots. If the medium

turns busy while in the SLOT state, we reset the current slot timer and switch back

to AIFS. Otherwise, we send the frame after waiting for the configured number of

backoff slots. A frame transmission is triggered by entering the SEND state, where

we also remain during the transmission. Once the frame is transmitted, we enter

the post-TX backoff, which does not differ from the normal backoff logic. Since we

enter the post-TX backoff even if no frame is buffered, we might switch from the

SLOT state back to the IDLE state.

4.4.1.2 Evaluation

Verification and evaluation of our implementation have been performed in three

steps. We verify

• the CCA mechanism,

• the inter-arrival time of frames from a fully saturated channel,

• and interoperability with commercial devices.

In general, the Enhanced Distributed Channel Access (EDCA) parameters, i.e.,

AIFS durations and the maximum number backoff slots, are configured by higher

layers. However, the IEEE 802.11p as well as IEEE 1609 WAVE [68] and ETSI ITS-

G5 [124] agree on the parameters listed in Table 4.6. Furthermore, these standards



4.4 Time-Critical Functionality 73

Table 4.6 – Channel access parameters for the different access categories [59,
Table 9-138]. (Reproduced from [23], © 2018 IEEE.)

AC CWmin AIFSN AIFS

Background aCWmin = 15 9 149µs
Best Effort aCWmin = 15 6 110µs
Video (aCWmin + 1)/2− 1= 7 3 71µs
Voice (aCWmin + 1)/4− 1= 3 2 58µs

set the Transmission Opportunity (TXOP) of all ACs to zero, effectively disabling the

mechanism and falling back to packet-based fairness. We employ this parameter set

for all measurements.

Energy Threshold for CCA

To implement energy detection, we have to set a threshold that defines the power

level above which the channel is sensed busy. In our case, the threshold does not

define an absolute level but is expressed in the raw values that are output by the

Analog-to-Digital Converter (ADC). Calibration with a reference device in order to

set the threshold to the power levels defined in the standard is possible but was not

necessary for the following experiments. Instead, we manually set the threshold

between the power level of the noise floor and a frame transmission.

To test the timing accuracy of our implementation, we used another SDR to

monitor the channel. We synchronized the clock of the monitoring device with the

clock of the device that accesses the channel. This way we prevented a relative clock

drift and made sure that the sampling frequencies are in sync. Furthermore, we set

all backoffs to zero so that the channel is accessed deterministically after an AIFS.

In the first experiment, we used an SDR to occupy the channel and block frame

transmissions. The results of this experiment are shown in Figure 4.17. During the

first 100µs, the channel is blocked with noise. After that, we see that the frame

transmission is delayed even after the channel turns free. In this case, we configured

the AIFS to 58µs, i.e., the inter-frame space of the Voice AC and measured a value

of 59.8µs. The additional 1.8µs can be explained by the 1µs RX-TX turn around

time of the MAX2829 transceiver IC [125], which is used on our RF front end, and

the 0.8µs averaging window of the energy detector. Moreover, this complies with

the upper limit of 2µs defined in the standard.

We made similar measurements also with different inter-frame spaces to assure

that the timing does not drift for larger values (which it actually did with a more

recent version of the Xilinx ISE) and observed similar results. The constant additional

delay of 1.8µs could be compensated by subtracting it from the AIFS, resulting in

a more precise timing. We, however, did not implement this, since the CCA delay
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Figure 4.17 – Power measurements to verify AIFS timing and to determine
channel access delay. (Reproduced from [23], © 2018 IEEE.)

and the RX-TX turnaround time are already considered in the calculation of the slot

time, so that also the current version is within the bounds defined by the standard.

Inter-arrival Time

In the next step, we tested basic CSMA functionality. A convenient way to do this

is to saturate the channel and measure the inter-arrival time of frames. If a single

device saturates the channel, the CSMA mechanism is as follows: the device sends

a frame, enters the post-TX backoff, and sends the next frame immediately after

the post-TX backoff. The post-TX backoff spans an AIFS plus a random number of

backoff slots, uniformly distributed between 0 and CWmin. The inter-arrival times

should, therefore, be discrete and uniformly distributed in the CW.

Like in previous experiments, we used a Linux PC with a Unex DCMA-86P2. To

measure the inter-arrival time, we extended the receive interrupt handler of the

card with logging functionality. We configured the SDR to saturate the channel by

sending frames as fast as possible and configured different ACs. The distribution of

the inter-arrival times of the Voice and Video ACs can be seen in Figure 4.18. Each

histogram is based on more than 30 000 frames. The dashed lines indicate the slot

boundaries where the transmissions are expected. Note that in this and the following

histogram, we added a constant offset of 3µs when plotting the slot boundaries.

This honors RX-TX turn around time and a slight offset that seems to be introduced

by the clock resolution of the Linux PC.

We can also see that the card waits for the mandatory AIFS duration plus a random

number of backoff slots. This verifies the slot time, the AIFS duration, and the CWmin

setting. Furthermore, it shows that the backoff slots are distributed approximately
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Figure 4.18 – Distribution of the inter-arrival time when using the ACs for
Voice and Video. (Reproduced from [23], © 2018 IEEE.)

uniform, as expected. In addition to that, the histograms give a good impression

about the accuracy of the implementation. We repeated the measurements for the

other ACs and observed similar results (data not shown).

Interoperability

In a final experiment, we verified interoperability in terms of fairness with IEEE

802.11p prototypes. We started with the Cohda Wireless MK2 using firmware version

4.0.14615. To assert that we configured the device correctly, we conducted the same

measurements as for the SDR. The results are plotted in Figure 4.19 (top plot).

Clearly, the distribution does not correspond with the expected result. It turned

out that the Cohda Wireless MK2 does not implement the post-TX correctly and sends

consecutive frames deterministically after an AIFS. We configured different ACs and

observed different AIFS, which showed that we used the right Quality of Service

(QoS) queues. The post-TX backoff, however, did not work for any AC. The technical

support of Cohda Wireless meanwhile confirmed the bug. Since the post-TX backoff

is a crucial part of the CSMA mechanism, especially for saturated channels, we had

to exclude the MK2 from the experiments.

Instead, we switched to the Unex DCMA-86P2 that we already used in our initial

measurements. However, physical connectivity is not enough for the fairness test,

we also need a correctly parameterized and standard compliant MAC. This required

further modifications of the ath5k driver. In particular, we had to instantiate and

configure the QoS queues and set the slot time and the Short Interframe Space

(SIFS). With these changes the QoS queues are enabled, but all packets go to the

default queue. For setting the AC per packet, we used the Radiotap header. When
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Figure 4.19 – Inter-arrival time of a Cohda Wireless MK2 (top) and a Unex
card with (middle) and without (bottom) TXOP set. (Reproduced from [28]
with permission.)

the WLAN card operates in monitor mode, the Radiotap header allows to annotate

metadata (like the MCS or the signal power) to a frame. We exploited a field that is

currently not used on TX side to signal the AC to the kernel.

Since we made major modifications to the driver, we validated the changes by

measuring the inter-arrival time. At first, we observed the distribution shown in the

middle of Figure 4.19. The results are not as expected but indicate that the driver

uses TXOPs by default. That means that a device that wins contention will use the

channel for the whole TXOP, during which it sends frames spaced only by a SIFS.

After the TXOP, the device enters a post-TX backoff and uses the expected inter-frame

space. This is indicated by the small bars at the slot boundaries. The ratio between

the packets that are sent after a SIFS and after a post-TX backoff depends on the

frame size and the duration of the TXOP. In this case, the TXOP was long enough to

cover several frames, so that most frames are spaced only by a SIFS. Following these

experiments, we explicitly disabled all TXOPs and repeated the measurements. This

time we observed the expected timing distribution depicted in the plot at the bottom

of Figure 4.19. We also tested the other ACs and observed the correct distribution.

With these experiments, we made sure that the correct EDCA queues are used and

that the AIFS, SIFS, slot time, and CWmin are configured correctly.
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Figure 4.20 – Interoperability test between an SDR and a Unex card (top) and
two Unex cards (bottom), showing that each device gets a fair share of the
channel. (Reproduced from [28] with permission.)

Using the validated Unex devices, we are able to conduct fairness measurements

as a final step towards ensuring the correctness of the implementation. We use a

PC with a Unex card to log all frames and saturate the channel, in one experiment,

with an SDR and a Unex card and, in another experiment, with two Unex cards.

The average throughput over time is plotted in Figure 4.20. In both cases, we can

observe a fair share of the channel and a similar variation of the throughput. This

shows the interoperability of our implementation with commercial devices.

To summarize, we presented an approach to extend a GPP-based SDR with

standard compliant channel access for broadcast transmissions. Our implementation

follows the split-functionality approach, where only time critical components, like

carrier sensing and CSMA logic, are implemented in hardware. This architecture

preserves the flexibility of a software implementation but, at the same time, allows

for standard compliant channel access for broadcast transmissions. We validated

our implementation through extensive timing measurements and interoperability

tests with commercial devices. The results highlight the feasibility of the approach

and show that our implementation is able to meet all timing requirements of the

standard.

4.4.2 Automatic Gain Control

When we leave the lab to conduct field tests, we face another challenge as the receiver

has to process frames with very different power levels. This effect is particularly

pronounced in VANETs where the maximum transmit power is higher than in normal

WLANs. This was not an issue in our previous experiments, since relatively static

channels allowed us to configure the gain manually. However, in a more realistic
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scenario, the receiver has to process frames from multiple mobile communication

partners connected through fast-fading multi-path channels. As we will show in

our experiments, there is no fixed gain setting that works well for all input power

levels. Either weak frames do not take full advantage of the dynamic range of

the ADC, resulting in quantization noise, or high power frames drive the receiver

into saturation, distorting the signal. A static setting would, therefore, lead to

performance issues, which can be overcome by adjusting the gain for every received

frame. With AGC, the receiver measures the power during frame detection and

adjusts the gain to an optimal level that balances the trade-off between quantization

noise and non-linearities. For WLAN, we have only a short time to adjust the gain.

Considering a 10 MHz signal, there are only the 16µs of the short preamble to detect

the frame, estimate the power level, and set a proper receive gain. Since the long

preamble is used for initial channel estimation, also the transients introduced by the

gain change should be finished before the long preamble starts.

Given these requirements, an integrated WLAN card implements AGC directly on

the RF transceiver chip. A general purpose SDR, however, cannot provide AGC out

of the box, since the requirements are highly application-specific. With Long-Term

Evolution (LTE), for example, the mobile handset is connected to a single base

station, allowing the device to adjust the gain gradually over time. Apart from that,

the ideal gain setting also depends signal parameters like the Peak-to-Average Power

Ratio (PAPR).

With regard to our transceiver, the tough timing constraints require an FPGA

implementation, since the PC would be orders of magnitudes too slow [99]. Like

in our CSMA implementation, we extended the Open Source firmware of the Ettus

Research N210 using Xilinx ISE 12.3. (This particular version of the development

framework worked well in our tests, while more recent versions led to timing errors.)

Since we control the gain, we also have to interact with the RF transceiver, which

makes the code also specific to a particular daughterboard. We used a XCVR2450

daughterboard, which is equipped with a MAX2829 RF transceiver. This transceiver

is designed specifically for WLAN applications [125]. It allows operation in the

2.4 GHz and 5 GHz band and supports two alternate modes to set the receive gain.

By default, the N210 uses the SPI interface. This serial communication, however,

introduces additional delay, which might be problematic given our tough timing

constraints. We, therefore, set the gain directly through I/O pins. With the MAX2829,

readjusting the receive gain leads to transients with considerable distortions, but it

resettles after only 40 ns.

On the FPGA, there are two possible locations in the signal processing chain

where we could hook in AGC: Either directly after the ADC or after the signal is

channelized and downsampled. An implementation directly after the ADC has the

advantage that it minimizes delay but also bears problems: Since RF transceivers
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can only tune to fixed frequencies, the N210 has to perform a shift in digital domain.

Directly after the ADC, the signal is, therefore, not necessarily centered around the

carrier frequency, making it harder to exploit the autocorrelation of the preamble

for frame detection.

For that reason, we implemented AGC using the channelized samples and, there-

fore, operate on the same sample stream that is also sent to the PC. For AGC, we have

to detect a frame, estimate its power level, and adjust the gain to bring it as close

as possible to a desired reference power level. We determined the reference level

empirically with a comprehensive set of experiments in which we measure the frame

delivery ratio of different combinations of frame input power levels and receive gain

settings. With these measurements, we are able to create a lookup table that maps

the input power level to a gain setting that works well for our platform. Analytical

calculations or simulations would have to be adapted to reflect the limitations of

the hardware and would be hard to parameterize in order to realistically capture

the characteristics of the transceiver chip. Furthermore, the high PAPR of the signal

makes it at least not straightforward to map a given input power level to an optimal

receive gain setting.

The gain of the MAX2829 transceiver can be distributed across two amplifiers, a

Low Noise Amplifier (LNA) close to the antenna and a Variable Gain Amplifier (VGA)

at a later stage of the signal processing chain. While the LNA provides a coarse

resolution with only three steps for gain values of 0 dB, 15 dB, and 30 dB, the VGA

offers a more finer grained resolution, covering 62 dB in steps of 2 dB. Both stages

combined provide a gain range of 92 dB. Since the gain range of the VGA is larger

than the steps of the LNA, most gain levels could be configured with different gain

distributions between LNA and VGA. In those cases, we set the LNA to the highest

possible value to minimize the overall noise figure of the receiver. When no frame is

detected the AGC will switch to an intermediate level of 46 dB.

On the FPGA, we use two methods for frame detection: The first uses the

autocorrelation of the short preamble, similar to the PC implementation. The second

triggers frame detection if the input power level exceeds a predefined threshold.

Using the second method, we can also detect high-power frames that overdrive the

ADCs, distorting the cyclic pattern of the preamble.

To highlight the need for AGC and to show its performance improvements over

fixed gain configurations, we used a setup with two WLAN receivers. One was placed

nearby the SDR and was transmitting with high power (15 dBm). Another one was

placed several meters away and was transmitting with low power (−15 dBm). In

a first experiment, we plotted the signal power in time domain to measure the

time that we need to reconfigure the gain. This delay is interesting, since it was

unclear whether the processing delay of the N210 is low enough for our application,

i.e., whether it is possible to implement AGC based on the channelized samples.
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Figure 4.21 plots the results for the low-power transmitter (on the left) and for the

high power transmitter (on the right). The power is normalized to the reference

power level that the AGC tries to adjust to. Two observations are interesting in

this context: First, we see that both signals are adjusted to a very similar power

level, demonstrating basic functionality of the AGC, i.e., that the low power signal is

amplified, while the high power signal is attenuated. Second, the time to detect the

frame, reconfigure the gain, and stabilize after a transient phase is shorter that the

short training sequence of the frame. This ensures that the frame is not corrupted

by changing power levels, proving the feasibility of our approach. The graphs show

IEEE 802.11p frames with a short preamble of 16µs. As we can see in the insets,

the signal stabilizes on the target power level after about 12µs. Since the delay is

mainly caused by averaging of the power level, our AGC implementation also works

with higher sample rates. It even supports IEEE 802.11a/g.

In a second experiment, we highlight the need for AGC by showing performance

issues of fixed gain configurations. We use the same setup with a high and low

power transmitter and measure the delivery ratio of 128 Byte BPSK-1⁄2 frames. For

both configurations, we compare AGC to the whole range of fixed gain settings.

Figure 4.22a shows the frame delivery ratio of the low power transmitter. As expected,

we can see that the frames cannot be decoded with low receive gains, as the low gain

in combination with the low power level results in a high relative quantization noise.

The opposite happens for high-power signals (see Figure 4.22b). Here, frames can

be received with low receive gains, while higher receive gains drive the ADCs into

saturation, resulting in clipping noise. For both configurations, we also measured
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Figure 4.22 – Frame delivery ratio with fixed receive gains and AGC. (Repro-
duced from [26], © 2015 IEEE.)

the delivery ratio with AGC enabled and were able to receive close to all frames.

Being able to correctly tune the input amplifier even in dynamic scenarios turns our

SDR solution into a viable measurement equipment also for outdoor experiments.

4.5 Conclusion

By demonstrating the feasibility of Automatic Gain Control (AGC), we conclude the

development, verification, and evaluation of our IEEE 802.11a/g/p transceiver. It

presents the first physical layer (PHY) implementation for a general purpose Software

Defined Radio (SDR) framework that is functionally complete, as it supports all

frame sizes and Modulation and Coding Schemes (MCSs). Our contribution is not

the development of new algorithms but the realization of the receiver based on

a General Purpose Processor (GPP) real-time signal processing framework. We

verified the implementation through simulations and interoperability test with both

commercial Wireless LAN (WLAN) adapters and IEEE 802.11p prototypes. Since

real-time capabilities are essential, we studied the computational complexity of

individual receiver components at different channel loads. By considering fully

saturated channels, we showed that our transceiver manages to process all samples

even in the most challenging scenarios. While the PHY was clearly the main focus

of our work, we also explored the possibility to implement time-critical tasks like

channel access and AGC. Following the split-functionality approach, we extended

the Field-Programmable Gate Array (FPGA) with timing-critical functionality, while

keeping the whole PHY on the PC. This allowed us to add functionality without

giving up any of the benefits of a GPP-based implementation.

Our goal was not to create an, in all aspects, optimal transceiver but to provide

a solid base that can be adapted for all kinds of studies. We believe that its ability to

experiment with the PHY in combination with standard-compliant channel access for

broadcast transmissions makes the transceiver particularly interesting for Vehicular
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Ad Hoc Networks (VANETs). To foster the use of SDR in the vehicular networking

community and to allow reproduction of our results, we released the software under

an Open Source license. Our work can be seen as a first step towards a fully Open

Source IEEE 1609 Wireless Access in Vehicular Environment (WAVE) or ETSI ITS-G5

stack, which was identified by the community as a requirement for reproducible field

tests. To demonstrate its applications and to highlight its ability to address open

research questions in VANETs, we present exemplary studies that were enabled by

our prototype.
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In this chapter, we use our Software Defined Radio (SDR)-based IEEE 802.11

a/g/p transceiver as a tool to address selected research questions in vehicular net-

works. To highlight our prototype’s applicability for a wide range of use-cases, we

present three different studies that, apart from the relevance of the results themselves,

show the flexibility of our tool.

At first, we use our transceiver in two field tests to study the performance of IEEE

802.11p under realistic conditions. Given the fact that Wireless LAN (WLAN) was

designed for relatively static indoor setups, its applicability for vehicular applications

is of great interest. In separate field tests, we compare the performance of different

IEEE 802.11p prototypes and the performance of different receive algorithms. After

the field tests, we study the impact of noise and intra-technology interference on IEEE

802.11p. With this study, we validate a physical layer (PHY) simulation model that

is used by many popular network simulators. Here, we settle a current dispute in the

community as to whether noise of interference has a more detrimental impact on the

PHY. Apart from validating the model, the study also shows the most interesting use-

cases of our transceiver. Following the research process described in the introduction,

we progress from simulations to over-the-air experiments, which, together, provide

a coherent picture, increasing the confidence in our results.

Finally, we present an application that goes beyond signal processing and PHY

performance. Using internal data from the decoding process, we develop a novel

attack on the location privacy of Vehicular Ad Hoc Networks (VANETs) and evaluate

its impact through network simulations. While the data used in the attack is available

in every transceiver, it is not exposed by normal WLAN cards. This is not an issue with

SDRs, as they allow us to tap into data from all processes and exploit weaknesses

in the pseudo-random number generators of typical WLAN chips to track vehicles,

circumventing the privacy protection mechanisms of VANET protocol stacks.

The chapter is based on the following publications:

• B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Performance Assessment of

IEEE 802.11p with an Open Source SDR-based Prototype,” IEEE Transactions

on Mobile Computing, vol. 17, no. 5, pp. 1162–1175, May 2018. DOI: 10.

1109/TMC.2017.2751474, © 2018 IEEE.

• B. Bloessl, M. Gerla, and F. Dressler, “IEEE 802.11p in Fast Fading Scenarios:

From Traces to Comparative Studies of Receive Algorithms,” in 22nd ACM Inter-

national Conference on Mobile Computing and Networking (MobiCom 2016), 1st

ACM International Workshop on Smart, Autonomous, and Connected Vehicular

Systems and Services (CarSys 2016), New York, NY: ACM, Oct. 2016. DOI:

10.1145/2980100.2980104.

• B. Bloessl, F. Klingler, F. Missbrenner, and C. Sommer, “A Systematic Study

on the Impact of Noise and OFDM Interference on IEEE 802.11p,” in 9th IEEE

https://doi.org/10.1109/TMC.2017.2751474
https://doi.org/10.1109/TMC.2017.2751474
https://doi.org/10.1145/2980100.2980104
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Vehicular Networking Conference (VNC 2017), Torino, Italy: IEEE, Nov. 2017,

pp. 287–290. DOI: 10.1109/VNC.2017.8275633, © 2017 IEEE.

• B. Bloessl, C. Sommer, F. Dressler, and D. Eckhoff, “The Scrambler Attack: A

Robust Physical Layer Attack on Location Privacy in Vehicular Networks,” in 4th

IEEE International Conference on Computing, Networking and Communications

(ICNC 2015), CNC Workshop, Anaheim, CA: IEEE, Feb. 2015, pp. 395–400.

DOI: 10.1109/ICCNC.2015.7069376, © 2015 IEEE.

5.1 Field Tests

After many years of research, VANETs have become a major technology, and the

corresponding communications standards are well-advanced. At this stage of the

development process, it is unlikely that the PHY will undergo significant changes, so

that, at least, the first generation of VANETs will be based on IEEE 802.11p. Before

the higher-layer standards are finalized, and the technology is rolled-out on a large

scale, field tests become increasingly relevant. In the worst case, they allow us to

identify weaknesses in system design that might have been overlooked in simulations.

In the best case, they serve as the ultimate proof-of-concept that demonstrates the

readiness of the technology to car manufacturers, regulatory bodies, and the general

public.

Apart from demonstrating the feasibility of the technology, field tests also provide

quantitative performance results. With a final specification for the PHY, we can

study IEEE 802.11p from different angles, addressing questions like:

• What is the performance of a given transceiver in a realistic environment?

• What receiver complexity is necessary to reach a given minimal performance?

• What are the practical limitations of the technology?

In the first field tests, we compare our implementation to other IEEE 802.11p

prototypes to establish it as a credible tool among prototypes that are based on

commercial WLAN cards [83]–[86] and dedicated IEEE 802.11p transceivers from

Cohda Wireless [79], NEC [80], [81], and Denso [8], [82]. Apart from showing our

transceiver’s applicability for field tests, the experiment provides exemplary results for

the achievable performance in a realistic environment. Furthermore, the comparison

of different prototypes gives an indication about the potential performance gains of

better hardware and more specialized implementations.

https://doi.org/10.1109/VNC.2017.8275633
https://doi.org/10.1109/ICCNC.2015.7069376
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(a) Antenna placement. (b) Receiver hardware.

Figure 5.1 – Setup of our field test. (Reproduced from [23], © 2018 IEEE.)

5.1.1 Performance of IEEE 802.11p Prototypes

The field test is conducted near Paderborn, Germany. We equip two cars with

IEEE 802.11p prototypes, as shown in Figure 5.1. As transmitters, we use a Cohda

Wireless MK5 and our SDR implementation with an Ettus N210 using an XCVR2450

daughterboard. In the SDR, we used the Least Squares (LS) equalizer, which was,

at the time of the field tests, the only implemented channel estimation algorithm.

While both the MK5 and the SDR are no calibrated measurement devices, we set

their output power to about 10 dBm. For the MK5, this can be configured. For the

SDR, we adjust the gain and the signal amplitude, assuming a maximum output

power of 20 dBm as listed in the datasheet. Both devices are controlled by a laptop,

which alternates between sending frames from the MK5 and the SDR. We leave

enough timing margins to make sure that there are no collisions. Like in the Additive

White Gaussian Noise (AWGN) simulations, we use 435 Byte frames to resemble

the size of a typical Cooperative Awareness Message (CAM). We set the Modulation

and Coding Scheme (MCS) to Quadrature Phase-Shift Keying (QPSK)-1⁄2, since we

do not want to use the simplest scheme but show that the receiver is able to deal

with higher order modulations. Furthermore, QPSK-1⁄2 was found to provide a good

compromise between throughput and robustness, and was, therefore, selected as

the default MCS for periodic awareness messages in ETSI ITS-G5 [126].

On the receive side, we use another MK5, another SDR, and a Unex DCMA-

86P2. The receivers use 9 dBi dipole antennas mounted at the center of the roof (see

Figure 5.1). Note that each receiver uses its own antenna and, therefore, experiences

independent fast-fading effects. For that reason, we can compare average reception

rates but not the success of individual transmissions. Both cars log their positions

every 0.5 s with a u-blox NEO-7N, a high precision GPS receiver. The cars’ positions

at frame transmissions are later interpolated linearly based on the GPS time series.
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During the measurements, the cars drive around in diverse surroundings, ranging

from open fields, to rural areas, to city environments. The speed was up to 70 km/h
but mostly around 40 km/h.

5.1.1.1 Transmit Performance

The first aspect that we investigate is the ability to transmit standard compliant

IEEE 802.11p frames. Using the Cohda Wireless MK5 as the reference receiver, we

plot the delivery ratio of frames generated by the SDR and the MK5 in Figure 5.2.

Here and in the following plots, we bin the data in 10 intervals ranging from 15 m

to 300 m, excluding short distance frames recorded on the parking lot. The graph

in Figure 5.2 conveys two important messages. First, our SDR transceiver is able

to generate standard compliant IEEE 802.11p frames that are received by the MK5,

not only under idealized lab conditions but also in a realistic scenario. Second, both

transmitters show similar performance, highlighting the applicability of the SDR

transceiver for field tests.

While the results are promising for our transceiver, the measurements should

not be mistaken for a performance comparison between the SDR and the MK5. This

would require more precise power calibration and measurements with the exact

same antenna placement, as the antenna’s position on the roof can have a significant

impact [13], [127]. Apart from performance characteristics, the plot shows that

the environment naturally led to packet loss. While this is expected in realistic

conditions, it also highlights that we did not choose overly simplistic scenarios.
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5.1.1.2 Receive Performance

Having tested our transceiver’s ability to send standard compliant frames, we compare

the receive performance of the different prototypes. Using the MK5 as sender, we

plot the number of frames received by the SDR, the MK5, and the Unex card in

Figure 5.3. The inset shows a zoomed version of distances between 150 m and 300 m

where the sample size is relatively low. The main message of the plot is that all three

transceivers show comparable performance in our field test. Based on advanced

hardware and software, the MK5 provides a slightly higher reception rate. This is in

accordance with independent experiments that compared a predecessor of the MK5

with off-the-shelf cards [79].
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Another view on the same data is shown in Figure 5.4, where we plot the

cumulative number of received packets over time. Since we sent frames at a constant

rate, the total number would yield a straight line under ideal conditions. The plot,

however, shows regions with a lower slope, indicating packet loss. Correlating

these losses with events that we logged during the experiment shows that the

losses seem reasonable in the sense that they are caused by shadowing, a large

gap between sender and receiver, and challenging multi-path environments. In

other words, the SDR does not suffer from systematic or random errors but dropped

frames in challenging environments. In addition, we annotate the overall ratio of

received packets per receiver on the right hand side of the plot to allow a quantitative

comparison. It shows that the SDR lost 20 % of all frames, while the MK5 and the

Unex card lost around 10 %. The difference can be explained by the use of more

sophisticated receive algorithms in the commercial device and the prototype. Cohda

Wireless, for example, uses a sophisticated two-stage decoder that is optimized

for high mobility [10], [128]. The lower reception rate of the SDR, in turn, is no

general weakness of the approach but reflects known limitations of the LS equalizer

in dynamic channels [13], [66].

Overall, the field test shows that our transceiver does not only provide reasonable

performance in simulations and measurements in the lab but also in a realistic

environment on the street, which highlights our transceiver’s applicability for all

steps of the research process.

5.1.2 Trace-Driven Performance Evaluation

The first field test already gave a hint about the shortcomings of the LS equalizer. In

the second field test, we have a closer look at this receiver component and study the

performance of different channel estimation algorithms. When WLAN was proposed

as a base for VANETs, the research community was concerned whether the PHY

could work in a vehicular environment. It was widely agreed that, at least, simple

receive algorithms will run into problems given the high mobility of the network [12],
[13], [66]. There are two ways to deal with that problem: One is to adapt the PHY

using, for example, additional pilot symbols [11] or differential encoding [15]. The

other is to employ more advanced receive algorithms that can cope with the high

dynamics [14], [65].

Following the latter line of research, we conduct a field test to compare the perfor-

mance of selected IEEE 802.11p channel estimation algorithms. In the experiment,

we use one car as a transmitter that sends frames with different sizes and MCSs at a

high rate. Another car acts as a dedicated receiver. Here, we do not immediately

decode the frames but use an Ettus Research N210 SDR to record the raw signal

(i.e., the complex baseband samples). This allows us to post-process the recorded
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samples with different algorithms and directly compare their performance. In the

context of this experiment, we extended our transceiver with four state-of-the-art

channel estimation algorithms and used them to decode the signal trace.

5.1.2.1 Channel Estimation

The LS equalizer is a simple algorithm that is often used as a baseline and cited to be

a candidate for hardware implementations [12], [13]. In a nutshell, it uses the long

training sequence of IEEE 802.11p as block pilots to estimate the channel. Denoting

the estimate of a value X as X̂ , we calculate the channel H at subcarrier k as

Ĥ(k) =
Y1(k) + Y2(k)

2XLT(k)
, (5.1)

where Y1,2 are the two received copies of the long training sequence and XLT its

known value. The LS equalizer does not adapt but uses this initial estimate for

the whole frame. While computationally very efficient, it is well known that this

algorithm suffers as frames get longer or the coherence time of the channel gets

shorter [12], [13].

The Least Mean Squares (LMS) algorithm overcomes this limitation. Starting

with the same initial estimate as the LS equalizer, it updates the channel after the i-th

Orthogonal Frequency-Division Multiplexing (OFDM) symbol using the constellation

point X̂ i that the received symbol Yi was demapped to as

Ĥi(k) = (1−α) Ĥi−1(k) +α
Yi(k)

X̂ i(k)
. (5.2)

With α, we apply a low-pass filter to average the channel coefficients in time domain.

Neither the LS nor the LMS algorithm average in frequency domain but consider

each subcarrier independently.

The Comb equalizer, in contrast, interpolates linearly in frequency domain using

the four comb pilots that are interleaved with the data symbols. Following Fernandez,

Stancil, and Bai [65], we use the mean value of the pilots at the border of the

spectrum and interpolate with the vector [mp, P1, P2, P3, P4, mp], where P1..4 are the

four comb pilots and mp their mean. This interpolation is done for every OFDM

symbol. Afterwards, a low-pass filter similar to Equation (5.2) can be applied to also

filter in time domain.

The Spectral Temporal Averaging (STA) equalizer is a state-of-the-art algorithm

designed to cope with the dynamics of VANETs [65]. The core idea is to filter in both

time and frequency domain by updating the channel estimates in two steps. First,
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the current symbol is decoded, and the current channel estimate is calculated as

Ĥi, curr(k) =
Yi(k)

X̂ i(k)
. (5.3)

These estimates are used to average in frequency domain by calculating a moving

average over β adjacent subcarriers as

Ĥi,update(k) =
1

2β + 1

k+β
∑

n=k−β
Ĥi,curr(n) . (5.4)

In the second step, Ĥi,update is used to average in time domain with a similar low-pass

filter as in Equation (5.2).

The LMS and the STA equalizer are decision-directed, using the decoded data

symbols to adapt channel estimates. This also implies that wrong decoding decisions

will lead to feedback errors that possibly degrade the receive performance. In this

thesis, we stick to Fernandez, Stancil, and Bai [65] and select α= 0.5 and β = 2 as

parameters for the STA algorithm. For better comparability, we used the same α also

with the LMS equalizer. Furthermore, we wanted to isolate the effects of time and

frequency selectivity and, therefore, did not apply any averaging in time domain

with the Comb algorithm.

5.1.2.2 Signal Trace Recording

To compare the performance of these algorithms in a realistic environment, we con-

ducted a field test near Paderborn, Germany. The hardware and the most important

Table 5.1 – Hardware setup and most relevant parameters used in the field
test. (Reproduced from [25] with permission.)

Parameter Value

M
ea

su
re

m
en

t Distance 56 km
Duration 56.5 min
Frames > 25 000
Encoding BPSK-1⁄2, QPSK-1⁄2
Frame Size 200 Byte, 500 Byte, 800 Byte
Channel 178 (5.89 GHz)

H
ar

dw
ar

e

Sender based on Atheros AR9280
TX Power 18 dBm
SDR N210 w/ CBX daughterboard
RX Gain 29 dB
Antennas ECOM9-5500 (9 dBi dipole)
GPS Receiver u-blox NEO-7N
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parameters of the field test are summarized in Table 5.1. As transmitter, we used a

WLE200NX mini-PCIe WLAN card, which is based on an Atheros AR9280 chipset

that is supported by the Linux ath9k driver. Using a recent Linux kernel, this chip

supports IEEE 802.11p, i.e., 10 MHz transmissions on the Cooperative Intelligent

Transportation System (C-ITS) band at 5.9 GHz. Since the WLE200NX is not sold as

an IEEE 802.11p device, we conducted preliminary experiments to assert that the

5.9 GHz band is not attenuated or distorted by hardware filters. In these experiments,

we set the bandwidth to 10 MHz and sent frames on both the C-ITS band and on the

regular IEEE 802.11a bands at 5.3 GHz and 5.5 GHz. We used an SDR as spectrum

analyzer but found no differences, i.e., the output power level and the spectral shape

were the same on either band. A limitation of the commercial IEEE 802.11a card is

its maximum transmit power of 18 dBm, which is below the maximum power level

of VANETs. ETSI ITS-G5, for example, allows up to 23 dBm and 33 dBm on service

and control channels, respectively [124]. In our experiments, this did not constitute

a problem since the distance between sender and receiver was never larger than

140 m and could easily be covered.

During the experiment, we sent frames with random payloads, cycling through

the six combinations of BPSK-1⁄2 and QPSK-1⁄2 frames with sizes of 200 Byte, 500 Byte,

and 800 Byte. The average frame rate was about eight frames per second, allowing

us to generate a large data set with over 25 000 transmissions during the 56.5 min

experiment. The frames were sent on channel 178 at 5.89 GHz.

On receive side, we used an Ettus Research N210 with a CBX daughterboard

that covers the frequencies from 1.2 GHz to 6 GHz. The SDR was used to record

the raw signal, dumping the samples directly to an SSD drive without any signal

processing. Using 4 Byte floats for the real and imaginary parts of the complex

baseband samples, the 10 Msps stream from the SDR resulted in 80 MByte/s that

had to be stored. During the 56.5 min field test, we captured over 270 GByte sample

data. The receive gain of the SDR was set to 29 dB, which corresponds to 92 % of its

maximum.

Both cars were equipped with 9 dBi ECOM9-5500 dipole antennas mounted on

the roof of the cars as shown in Figure 5.5. We equipped the cars with NEO-7N

high precision GPS receivers from u-blox and logged their position and speed every

0.5 s. The values at the time instances of frame transmissions were later interpolated

linearly based on the GPS time series. Figure 5.6 plots the GPS trace of our 56 km

drive, color-coding the surroundings, which range from freeway, to highway, to rural,

to city environments. All data is recorded in one take so that the whole setup, i.e.,

cars, devices, and positions of the antennas remain constant, allowing for a direct

comparison between the environments.

On the freeway, we tried to resemble realistic situations by letting one car fall

back to later accelerate and overtake. This way, we do not only capture situations
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Figure 5.5 – Picture of the measurement setup.

Highway

Freeway

City

Rural

Figure 5.6 – GPS trace of the measurement, showing the various environments.
(The map data is © OpenStreetMap contributors, the path is reproduced
from [25] with permission.)

with different absolute speeds but also with different relative speeds. In the other

environments, it was not easily possible to overtake each other. We, therefore, stuck

to varying the distance and letting other cars and trucks get in between sender and

receiver. We spent considerable time in each environment, sending 7373 frames in

the city, 5624 frames in rural areas, 4842 frames on the highway, and 8019 frames

on the freeway.

5.1.2.3 Evaluation of the Signal Trace

After the field test, we post-processed the sample stream with the four implemented

channel estimation algorithms. Figure 5.7 shows the number of received frames for

each algorithm and environment. On top of the bars, we annotated the percentage

of frames that could be decoded by the best algorithm, which was in either case STA.

We can see that the difference between the algorithms is rather small, with each

algorithm decoding over 94 % of the frames. On the one hand, this shows that our
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Figure 5.7 – Performance comparison of receive algorithms in different envi-
ronments. (Reproduced from [25] with permission.)

SDR implementation works well also in realistic environments, on the other hand, it

shows that even the simple LS algorithm is able to decode most frames, at least in

that particular scenario. This suggests that even WLAN chips that are not specially

designed for IEEE 802.11p could provide reasonable performance.

We, however, expect these differences to be more pronounced with higher relative

speeds, for example, if the cars approach each other. In that case, the channel changes

faster, leading to shorter coherence times. This could degrade the performance of

the LS equalizer, as the initial channel estimate becomes outdated during the frame,

causing bit errors and, ultimately, dropped frames.

An indicator of the detrimental effect of the frame sizes on the LS algorithm is

shown in Figure 5.8 where we plot the percentage of QPSK-1⁄2 frames received at

speeds above 80 km/h. While a higher absolute speed does not necessarily imply a

more time-variable channel, it is, at least, correlated, since it determines the relative
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Figure 5.8 – Impact of frame size on the receive performance of the selected
algorithms. (Reproduced from [25] with permission.)
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Figure 5.9 – Impact of speed on the receive performance of the selected
algorithms. (Reproduced from [25] with permission.)

speed to static reflectors like street signs or the guardrail. We split the data based on

the frame sizes and annotate the 95 % confidence intervals. The plot shows that the

LMS, Comb, and STA equalizers are able to cope also with larger frame sizes. The

LS algorithm, in turn, shows lower performance with larger frames, highlighting the

impact of outdated channel estimates.

A different perspective on the data is given in Figure 5.9, where we plot the

percentage of received QPSK-1⁄2 frames in the freeway environment against the

transmitter’s speed. In the plot, we split the data into 30 bins and calculated the

frame error rate per bin. The data basis, i.e., the number of frames per bin varies

significantly, as there are, for example, only a few frames at low speeds on the

freeway. To indicate the distribution of in total over 4000 frames, we added a density

plot to the figure. Shaded in gray, it shows the distribution of transmitter speeds at

which frames were sent.

As expected, the trend is that more frames are lost at higher speeds. The plot

also highlights the impact of fast fading on the LS algorithm. While the graph

does not look like in a textbook, it shows the LS equalizer’s sensitivity to speed.

Compared to the other algorithms, the LS algorithm shows a higher variance and

lower reception rate. Summarizing the results of our field test, we can conclude that

most transmissions did not pose great challenges on the receive algorithms, so that

the overall differences between the algorithms were small. If, however, we focus on

larger frames or higher speeds, the differences become larger, and the limitations of

simple algorithms become more prevalent. To allow fellow researchers to further

evaluate the trace with different algorithms, we release our trace data, photos, and

a description of the field test on our website (cf. Figure 5.10).4

4https://www.wime-project.net/

https://www.wime-project.net/
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Figure 5.10 – We share the trace data and details of the experiment on our
website.

5.2 Impact of Intra-Technology Interference

In our previous experiments, we focused on the performance of a single link. In

this study, we go a step further and also consider the impact of interference. More

specifically, we use results from our SDR-based testbed to validate a PHY simulation

model that is used in popular network simulators. Apart from the relevance of the

results themselves, the study also shows how SDR can bridge between Electrical

Engineering and Computer Science. We characterize PHY performance in a simple

scenario (typically the domain of electrical engineers) and use the results to derive a

more abstract model that can be used for macroscopic network simulations (typically

the domain of computer scientists). Such network simulators are great tools to

design, test, and evaluate VANET applications, as they allow experimenting with

protocols in a fast, cheap, and reproducible manner [75]. The realism and accuracy

of the simulators depend to a large degree on the quality of their simulation models.
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Especially the model of the PHY is crucial for the fidelity of the results, as it decides

whether a given combination of signal, interference, and noise allow reception of

the frame [129].

Given the importance of the model, it is unfortunate that there is a dispute

within the community on how interference should be modeled – or if it can be

modeled accurately at all [130], [131]. Popular network simulators, like ns-3 and

Veins, assume that interference can be treated similar to noise. The rationale behind

that approach might be easy to understand if we keep in mind that the simulation

model was adapted from readily available WLAN models operating on the 2.4 GHz

Industrial Scientific and Medical (ISM) band. On this band, we can find a large

range of interference sources, like microwave ovens, cordless telephones, and Zig-

Bee transceivers. It is, therefore, hard to characterize interference in detail [132].
Considering different interference sources, or even the combination of different

interference sources, would extremely complicate simulation models. Given this

complexity, a pragmatic and practical solution was to treat all kinds of interference

like noise. However, in that regard, IEEE 802.11p is special as it uses dedicated

spectrum in the 5.9 GHz band. Interference is, therefore, limited to intra-technology

interference, i.e., interference from other IEEE 802.11p devices. This might cast

doubt on earlier assumptions.

Some researchers argue that there is, in fact, a large difference in the impact of

interference and noise. A popular example is the work of Fuxjaeger and Ruehrup

[114]. Experimenting with frame capturing, the authors noticed that the Device Un-

der Test (DUT), an off-the-shelf IEEE 802.11p card, could cope better than expected

with interference. The authors compared their results to the NIST error model, a

state-of-the-art model used by many network simulators. This model is empirically

validated with off-the-shelf WLAN cards but only with AWGN [120]. Comparing

the measurement results to the error rate calculated by the simulator, the authors

concluded that noise must have a more detrimental impact than OFDM interfer-

ence. Network simulators would, therefore, produce overly pessimistic results in

interference scenarios. Contrasting this line of thought, one could even argue in the

opposite direction: Compared to noise, an OFDM signal could create more spotted

interference exactly at the subcarrier frequencies and might, therefore, be worse

than a similar level of noise. These examples show that the relation between noise

and interference is, at least, not trivial.

To show the fundamental difference between the two, we created an IEEE 802.11p

OFDM signal and added, in one case, white noise and, in another case, a second

IEEE 802.11p signal. We calibrated the power levels of the interfering signals to an

average power of one. These signals degrade the signal quality of the original frame

by shifting the subcarrier constellations away from their ideal constellation points.

This deviation is, however, very different for noise and OFDM interference. For the
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Figure 5.11 – Histograms, showing the impact of OFDM interference and a
similar level of noise on the subcarrier constellations of an IEEE 802.11p frame.
The histograms are normalized so that integration over the bins yields unity.

noise, it is well known that the deviation follows a complex normal distribution. The

power of the deviation is, therefore, negative exponentially distributed as indicated

by the light colored histogram in Figure 5.11. The known actual distribution is

overlayed by the dashed line.

A similar histogram for OFDM interference is depicted by the darker color. The

most important observation is that the distributions of noise and OFDM interference

are very different. In particular, OFDM interference leads to a pronounced peak. It

turns out that we have to differentiate between two cases: If the OFDM symbols of

the two frames are aligned so that the FFT does not cross symbol boundaries, the

ideal subcarrier constellation points get shifted according to the constellation of the

interfering frame. In our example, we considered an interfering QPSK frame with a

constant amplitude, which leads to a constant deviation that is visible by the spike

in the distribution. (Note that the peak of the OFDM interference is slightly above

1, since only 52 of the 64 subcarriers are used.) If the FFTs are not aligned, the

deviation spreads out over about the same interval as the noise. These simulations

clearly show the fundamental differences between noise and OFDM interference.

The open question is whether these differences at a very low layer also lead to

differences in PHY performance.

When consulting the available literature, we find that there are, on the one hand,

papers that deal with PHY performance in different channels but without interfer-

ence [12], [13]. On the other hand, there are papers that consider interference

but do not target PHY performance in general [114], [115]. Instead, they focus on

characterizing the capture effect, i.e., the special case where a frame is interfered by



100 5.2 Impact of Intra-Technology Interference

a high power frame. In that case, the receiver might cancel reception of the initial

frame and switch over to the high power frame to avoid losing both frames.

Here, we contribute to reconciling these different viewpoints on the impact of

noise and OFDM interference on IEEE 802.11a/g/p WLANs in the following aspects:

• we conduct an extensive set of PHY simulations to investigate these questions;

• we systematically cross-validate these simulations with empirical results and

over-the-air experiments using both lab equipment and off-the-shelf hardware

and find that, on a macroscopic scale, the impact of noise can be modeled by

OFDM interference and vice versa;

• based on these findings, we illustrate a way of constructing a testbed for

the controlled creation and evaluation of interference scenarios using only

off-the-shelf WLAN cards.

5.2.1 Simulative Evaluation

To understand the impact of intra-technology interference and noise on IEEE 802.11p

PHY performance, we set up simulations with our GNU Radio-based IEEE 802.11p

transceiver implementation. In our simulations, we send 546 Byte QPSK-1⁄2 frames

that are interfered either by noise or by another IEEE 802.11p frame. Interference

starts with a delay of 122µs (corresponding to 31 % of the frame time). The pa-

rameters of this and the following experiments are summarized in Table 5.2. The

parameters are chosen to allow crosschecking results and are similar to those em-

ployed by Fuxjaeger and Ruehrup [114]. To make the simulations as realistic as

possible, we slightly resampled one frame to introduce sample, phase, and frequency

offsets. Furthermore, we varied the alignment of OFDM symbols between the origi-

nal and the interfering frame. In every simulation run, we sent 100 frames per run

and made 80 runs per configuration.

Since we want to isolate the effect of interference, we set a high Signal to Noise

Ratio (SNR) (over 40 dB) at the start of the frame, i.e., during the first 122µs. Given

the high SNR at frame start, the performance is determined by the power ratio of the

Table 5.2 – Most relevant parameters of our simulations and measurements.

Parameter Value

PSDU Size 546 Byte
MCS QPSK-1⁄2
Bandwidth 20 MHz
Channel 178 (5.89 GHz)
Delay 122µs
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interfered part of the frame. In the following, we always denote this power ratio as

the Signal to Interference Ratio (SIR) of the frame, even though we alternate between

adding noise and OFDM interference.

Figure 5.12 illustrates the frame delivery ratios for various SIRs. The error bars

indicate confidence intervals at a confidence level of 95 %. The results show that

frame delivery ratios for noise and for OFDM are very similar. The sole difference is

that OFDM shows a slightly more stretched curve. Looking at individual runs, we

notice that this is because, with OFDM interference, we can clearly differentiate

cases where the OFDM symbols were closely aligned (i.e., the FFT windows overlap)

to when they were not. Still, with regard to packet level simulations, the results

indicate that it is reasonable to treat noise and interference as similar.

To further validate our simulation results, we compared them to the NIST error

model [120], which is used in network simulators, like ns-3 or Veins. Compared to

our simulations, the NIST model predicts a sharper transition from no reception to

reception (data not shown); this is in line with observations when the model was

validated against commercial cards [120].

5.2.2 Experimental Evaluation

The simulations suggest that noise and interference may be treated as similar in

network simulators. To back up this important result, we set up measurements in our

lab. Since we already used an SDR implementation in our simulations, we can run

the same software together with a radio front end (we employed an Ettus Research

B210 with a 9 dBi ECOM9-5500 dipole antenna) to transmit over the air. Like in the

simulations, we generated the signal plus interference and transmitted the combined
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Figure 5.12 – GNU Radio simulations of the frame delivery ratio of an OFDM
frame that is interfered by OFDM frames or a similar level of noise. (Repro-
duced from [24], © 2017 IEEE.)
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signal. The mixed signal is sent with high gain to minimize the impact of thermal

noise. With this approach, we know the SIR very precisely.

To assert that the effect of noise and interference is not specific to our SDR

implementation, we used two off-the-shelf WLAN cards as receivers: a Unex DCMA-

86P2, supported by the Linux ath5k driver; and a Netgear WNDA3200, supported

by the Linux ath9k_htc driver. Especially the results from the Unex DCMA-86P2

are interesting, since the card is specifically designed for VANETs and was already

used in many field tests [83]–[86]. We modified both drivers to tune to the 5.9 GHz

band allocated for C-ITS. Given current limitations of the ath9k_htc driver, we

performed the measurements at 20 MHz channel bandwidth. Like in the simulations,

we sent 546 Byte QPSK-1⁄2 frames and delayed the interfering signal by 122µs. The

experiments were conducted on channel 178 at 5.89 GHz. Using a spectrum analyzer,

we made sure that this channel was vacant in our environment. Again, we repeated

the experiment 80 times, sending 100 frames per run.

Figure 5.13 shows the frame delivery ratio for the Unex card. Again, we can see

that the performance under OFDM interference and noise is very similar, backing up

our simulation results. For the ath9k_htc card, the error curves were slightly shifted,

but the curves for noise and interference were also identical (data not shown). In

sum, different receivers exhibited a different overall performance but behaved similar

under noise and OFDM interference. The performance differences between chips

might also explain the deviating conclusions of Fuxjaeger and Ruehrup [114]. The

authors compared the error model of the network simulator directly with interference

measurements. It is, therefore, possible that their particular receiver just did not

match the error model; it does not necessarily imply that OFDM interference has a

fundamentally different impact on PHY performance.
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Figure 5.13 – Frame delivery ratio of a Unex DCMA-86P2 card when receiving
frames that are interfered by another OFDM frame or a similar level of noise.
(Reproduced from [24], © 2017 IEEE.)
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5.2.3 Off-the-Shelf Testbed

Finally, we were curious to see whether we could replace the SDR-based testbed

with a simpler version that is based on cheap off-the-shelf WLAN cards. A limitation

of such a testbed would be that it could only consider OFDM interference, since

normal WLAN cards are restricted to sending WLAN frames. Still, such a testbed

would be cheaper and easier to set up, yielding a platform that is more accessible for

researchers. Furthermore, the results from another testbed provide an additional data

point that can be used to cross-check of our previous simulations and measurements.

Figure 5.14 shows an overview of our off-the-shelf testbed. To create interference

scenarios in a controlled and reproducible manner, we used a Netgear WNDA3200

USB WLAN dongle and flashed it with a custom firmware that is based on the work

of Vanhoef and Piessens [133]. Developed in the security context, the firmware

modifies the dongle to emit signals in response to transmissions, i.e., it transforms

the WLAN card into a reactive jammer. In a nutshell, the firmware constantly checks

whether the transceiver is about to receive a frame and, if this is the case, interrupts

reception and sends an interfering frame.

Since the data frame and the interfering frame are sent from different transmitters,

we do not immediately know the SIR at the receiver. We, therefore, precede every

interference experiment with a measurement run, where we sent frames in a similar

configuration but one after the other, i.e., without interference. To ease these

measurement runs, we extended the reactive jammer to wait for a configurable delay

between sensing the frame transmission and transmission of the jam signal. Adjusting

this delay with micro second resolution, we can, on the one hand, create different

interference scenarios and, on the other hand, easily conduct the measurement runs.

If we delay the jam signal long enough to be sent after the frame, the receiver can log

frames from both the regular transmitter and the jammer, allowing us to calculate the

SIR based on the received signal strength, which is annotated in the Radiotap header

of received frames. Like Pei and Henderson [120], we conducted experiments with

different transmit gains and found that, at least, the relative power levels reported

Sender

Jammer/Interferer

Receiver

Netgear
WNDA3200

Unex
DCMA-86P2

Unex /
Netgear

Figure 5.14 – Overview of our off-the-shelf testbed. (Reproduced from [24],
© 2017 IEEE.)
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by the cards are very accurate. We noticed that the signal strength reported for

an interference-free frame and a jammed frame are similar, which implies that the

values reported by the card are estimated at the start of the frame, rather than a

running average over the whole frame duration. We made sure that the SNR is very

high (above 40 dB) at parts that are not interfered. This way, we made sure that

the frame delivery ratio is only determined by the SIR of the interfered part of the

frame.

To validate our setup, we started by reproducing the experiments of Fuxjaeger

and Ruehrup [114] and Lee et al. [115]. Both papers show that a stronger frame is

captured starting from a SIR of 8 dB and is captured reliably with a SIR above 12 dB.

We configured different SIRs and measured the delivery ratio of the interfering frame.

The corresponding graph is shown in Figure 5.15; it matches amazingly well. Again,

the error bars correspond to the confidence intervals with a confidence level of 95 %.

While these results were already well established, the experiment serves, in this

context, as a basic validation of our setup.

After this preliminary step, we configured the testbed to recreate the setup

from previous measurements, i.e., we sent QPSK-1⁄2 frames on channel 178 and

delayed the jammed frame by 122µs. By adjusting the transmit power of the sender,

we configured different SIRs and measured frame delivery ratios. Figure 5.16

compares the results of these measurements against the SDR measurements reported

in the previous section. The error bars, again, indicate the confidence intervals at

a confidence level of 95 %. The most important observation is that the curves are

very similar, which backs up our previous results and validates the operation of the

testbed. To make sure that we do not merely observe the specific characteristics of

one particular receiver (or receiver model), we conducted similar measurements

with a Netgear WNDA3200. We confirmed that, also with this setup, the frame
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Figure 5.15 – To validate our setup, we reproduce results from the literature
and measure the success rate of frames captures at different SIRs.
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Figure 5.16 – Frame delivery ratio of a Unex DCMA-86P2 under OFDM in-
terference created with an SDR and our testbed. (Reproduced from [24], ©
2017 IEEE.)

delivery ratio of the SDR experiments and our testbed matches very well (data not

shown).

While this is very motivating as far as developing a cheap and effective testbed

goes, the testbed setup is not without drawbacks. Since the jammer only reacts to

transmissions, we cannot create arbitrary interference situations, as there is always

a delay between the original frame and the interfering frame. Using a spectrum

analyzer, we measured the delay at the receiver to be 122µs, which corresponds to

about 15 OFDM symbols at 10 MHz bandwidth. Yet, considering that the testbed

does not rely on SDRs (like [114]) and does not require complex synchronization and

split interference domains (like [115]) – and considering that it uses real off-the-shelf

WLAN hardware – it might provide an interesting avenue for future research. To

allow experimenting with our testbed, we make the firmware with our modifications

available on our website.5

5.2.4 Conclusion

To understand the impact of noise and interference on IEEE 802.11p, we conducted

detailed PHY simulations with our SDR implementation and compared them to

over-the-air measurements in two different testbeds. While we did not explore the

full parameter space with all MCSs, frame sizes, and interference situations, our

experiments produced coherent results and a subset could even be cross-checked

with the literature. Overall, these results strongly suggest that intra-technology

interference and noise have a similar impact on the frame delivery rate of IEEE

802.11p networks. The consequences for the network community are positive in the

sense that the commonly adopted simplification of network simulators (i.e., to treat

5https://www.wime-project.net/

https://www.wime-project.net/


106 5.3 The Scrambler Attack

noise like interference) seems reasonable. Apart from that, the result has another

interesting implication for constructing testbeds for IEEE 802.11 devices. If noise

and interference have a similar impact on the performance, we might be able to

build more accessible physical layer testbeds that are based on normal WLAN cards.

5.3 The Scrambler Attack

Previous experiments already showed the applicability of our SDR-based IEEE 802.11

a/g/p transceiver for physical layer studies. Here, we go one step further and show

how the information that is only accessible with an SDR can be used to develop an

attack on the location privacy of vehicles. Apart from the novel attack vector, the

work also highlights the flexibility of our tool by showing an exemplary use-case in

a different context.

It is beyond dispute that C-ITS have many advantages. Yet, serious privacy

concerns still remain [134]. By overhearing unencrypted periodic beacon messages

of vehicles, it is possible for operators of networks of Roadside Units (RSUs) to

track drivers through the network and reveal their locations [135]. To counter this,

both the European and the US system dictate the use of a Public Key Infrastructure

(PKI) employing pseudonymous identifiers, which have to be signed by a certificate

authority and cannot be linked to the real identity of a driver by anyone else [136],
[137]. Location privacy is then achieved by frequently changing these pseudonyms

(along with all other identifying information such as the Medium Access Control

(MAC) address). The goal is to make it impossible to track vehicles by linking

messages with different pseudonyms to each other.

Privacy is becoming a critical concern also in the normal WLAN domain. The use

of privacy preservation techniques has, for example, been integrated into new Apple

products where MAC addresses are randomized during the active probing for new

base stations. This trend will continue with new wearable devices. In the scope of

this thesis, however, we primarily focus on vehicular networks as a base technology.

Attack vectors to still link messages despite changing identifiers usually include

the exploitation of PHY characteristics, e.g., unique features of the electromagnetic

waveform emitted by a particular transceiver. However, such approaches need to

rely on potentially fragile features of the channel or the hardware. Thus, they are

unlikely to work well in highly dynamic vehicular networks.

In this thesis, we reveal and discuss a novel attack vector based on data contained

directly in the PHY: the scrambler state. Scrambling, despite its name, is not related

to network security but is an important process to improve wireless communication

performance. An attack exploiting this mechanism becomes possible by employing

an SDR rather than off-the-shelf hardware, as these transceiver chips do not disclose
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the necessary information. Conversely, an SDR allows an attacker free access to

the complete physical layer frame. We identified a robust passive fingerprinting

technique based on non-random initial scrambler states that can be exploited to

considerably degrade the location privacy of vehicles and, thus, their drivers.

Using our SDR-based IEEE 802.11a/g/p transceiver, we were able to gain access

to this information and reverse engineer the scrambler algorithms of current IEEE

802.11p prototypes and off-the-shelf hardware. We present our investigation of the

weakness of these algorithms as well as the results of an extensive simulation study

of best/worst case scenarios of an attacker attempting to track vehicles across an

intersection and through blind spots in radio coverage. This allows us to give a

quantitative indication of the impact of the presented attack vector.

5.3.1 Related Work

Due to their large success, IEEE 802.11 networks gained much interest from the

research community. When these devices become mobile, as it is the case with WLAN-

enabled mobile phones and vehicular networks, the preservation of location privacy

is a non-trivial challenge. On the PHY, several attack vectors to track users’ mobility

have been identified, and countermeasures have already been discussed [138]. Most

of these attacks on IEEE 802.11 networks can be directly applied to IEEE 802.11p

networks, however, their feasibility in highly dynamic environments such as vehicular

networks has to be reconsidered.

Furthermore, characteristic distortions of the physical waveforms of the signal

can be exploited to re-identify a user. These distortions can be introduced by the

wireless channel [139] or by imperfections and variations of the analog part of the

hardware[140], [141]. Klein, Temple, and Mendenhall [142] present a method

to identify WLAN devices with the help of characteristic features of the preamble

by using a sophisticated signal analyzer using a static setup in a shielded cham-

ber. However, in highly mobile networks, like VANETs, where the signal is greatly

influenced by effects of the wireless channel, these specific characteristics might

be difficult to detect. Ureten and Serinken [143] show how the transient phase

of IEEE 802.11b network cards, another feature of the physical waveform, can be

exploited to identify a device with an accuracy of up to 98 %. During the transient

phase, i.e., immediately after the network card switched to transmit mode, the signal

has a characteristic shape, which is induced by powering up transmit components

like amplifiers. Even though this approach is very reliable in static scenarios, its

practical exploitation in vehicular environments has yet to be shown.

Kohno, Broido, and Claffy [144] show how unique clock drift characteristics

of a device can be exploited using timestamps of TCP packets. This attack might

also be applicable in VANETs as periodic beacon messages include a millisecond
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timestamp. However, vehicles in VANETs are equipped with GPS receivers that allow

us to derive the time with very high precision, possibly limiting the applicability of

this method. Another fingerprinting technique is the utilization of features of higher

layers like protocol and traffic characteristics. Franklin et al. [145] show how small,

vendor-specific implementation details can be used to identify the used hardware. A

limitation of these methods is that they do not identify a specific user but disclose

the model or vendor of the hardware. The scrambler attack presented in this thesis is

able to specifically identify a unique user with high probability, because even though

the same hardware might be used by different users, their state differs.

5.3.2 Description of the Attack Vector

Frame encoding in IEEE 802.11a/g/p OFDM PHY is a rather involved process. How-

ever, for our attack, only the scrambler is relevant. With IEEE 802.11, the binary

payload of a frame is scrambled just before forward error correction is applied. The

scrambler xors the input data with a pseudo-random sequence, generated by a linear

feedback shift register as depicted in Figure 5.17. This produces an uncorrelated

binary sequence with uniformly distributed bits, maximizing the entropy and, thus,

information content.

In OFDM systems, the scrambler has another advantage besides maximizing the

information content of the input data: Since the scrambler generates a different

pseudo-random sequence per frame, the same data payload is mapped to different

binary sequences and thus, physical signals. This is desirable, especially with OFDM,

since certain bit patterns are mapped to disadvantageous waveforms with very high

Peak-to-Average Power Ratio (PAPR) [146]. Without a scrambler, the same payload

would always generate the same physical waveform. Therefore, certain payloads

could experience systematically higher packet error rates.

The output of the scrambler depends only on its initial seed. According to the

standard, the scrambler should be seeded randomly with a nonzero value for every

frame. More precisely, it states: “When transmitting, the initial state of the scrambler

shall be set to a pseudo-random nonzero state” [59, Section 17.3.5.5].

x7 x6 x5 x4 x3 x2 x1

+

+

feedback

data in

scrambled data out
shift register

Figure 5.17 – Schematic overview of the IEEE 802.11 scrambling algorithm.
(Reproduced from [27], © 2015 IEEE.)
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The receiver can reverse this process to decode the packet since the transmitter

prefixes the payload with seven zeros. With these seven scrambled zeros, the receiver

can reconstruct the initial state of the linear feedback register.

The seeding of the scrambler piqued our interest, as it might allow for an attack

vector: If it was possible to correlate scrambler state seeds across multiple messages,

this would allow for the re-identification of devices, and thereby drivers. Furthermore,

such an attack would be highly robust against channel variations and completely

bypass all currently considered privacy preserving mechanisms.

5.3.3 Applicability to Current Hardware

With our SDR-based testbed, we are able to investigate how different vendors imple-

mented the pseudo-random seeding of the scrambler. Since IEEE 802.11p networks

are not deployed, there are no commercial consumer systems available yet. Instead,

experimentation is done with either very expensive prototype systems or adapted

WLAN cards. We use our receiver to investigate the scrambler of IEEE 802.11p

devices of either category.

First, we examine the Cohda Wireless MK2, a well-known prototype system,

which has been used for major field trials in the US and Europe. The MK2 is an

ARM-based PC with an IEEE 802.11p radio implemented on a Field-Programmable

Gate Array (FPGA) that ships with all the firmware and software of a complete IEEE

1609 Wireless Access in Vehicular Environment (WAVE) enabled On-Board Unit

(OBU) or RSU; we used firmware revision 4.0.14615. As second device, we used

the Unex DCMA-86P2 miniPCI card, which is based on the Atheros AR5413 WLAN

chip. With Atheros being one of the market leaders for WLAN cards, this can be

regarded as very representative off-the-shelf hardware. The card is supported by the

standard Linux kernel; we used the Linux 3.9.0 kernel with a modified ath5k driver

that allowed us to set the bandwidth to 10 MHz and to tune to the C-ITS frequencies

in the 5.9 GHz band.

We found that both devices implement a very simple – and most notably, a fully

deterministic – algorithm to seed the scrambler. Our experiments revealed that the

MK2 has a freewheeling scrambler in the sense that the state is not reset at all but

is running from frame to frame without reinitializing its state (as a side effect, this

also means that if the packet size is a multiple of the cycle length of the scrambler,

the seed does not change at all). The Unex card uses a simple counter, i.e., the

initial scrambler seed is incremented by one for each frame that is sent. We tested

different scenarios (e.g., we set the card to monitor and ad hoc mode, we generated

cross-traffic that the card overheard) to make sure that no external parameter has

an impact on either of the scramblers investigated.
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Obviously, both algorithms allow for a trivial re-identification of consecutive

frames from one card and, thus, to re-identify vehicles, even if MAC addresses

(or pseudonyms) are changed between two frames. Since we assumed that also

WLAN cards use over simplistic algorithms, we conducted initial experiments with

commercial devices like a MacBook Air and indeed found suspicious behavior like

network beacons with constant initial scrambler seed. An in-depth investigation of

WLAN devices is, however, out of the scope of this thesis. In fact, since the publication

of this work, another group extended our work and, indeed, found deterministic

seeding also in other consumer products [147].

5.3.4 Implications for Privacy

The standards’ definition of the scrambler is problematic in terms of privacy as it

does not clearly state how the pseudo-random sequence should be derived. From

a communications perspective, it is sufficient to change the scrambler values per

frame. This seems to have led to the situation that most vendors employ very simple

algorithms, not considering possible implications for location privacy.

The most important privacy protection in vehicular networks is the use of

pseudonyms that are changed according to a pseudonym changing strategy. To

ensure location privacy and untraceability, messages sent by the same vehicle but

with different pseudonyms must not be linkable to each other. If an eavesdropping

attacker is able to use transmitted scrambler values to link messages regardless of

their pseudonymous identifier, this privacy measure is circumvented and rendered

useless. For example, in the case of a Unex card, which increments the scrambler

value by one per frame, an attacker overhearing frames
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being a frame with pseudonym P and scrambler state n, is (with all but certainty)

able to identify A and B as being the same entity.

Also in more complex scenarios where an attacker put up several receivers but is

not able to fully overhear all network traffic, non-random scrambler values can be

used to still link messages with different pseudonyms. If the attacker is able to guess

the amount of messages sent by a vehicle when it was not within the transmission

range it can predict the scrambler values and then re-identify the vehicle. This attack

becomes especially feasible when vehicles use static (or a discrete set of) beaconing

frequencies, and in the case of Cohda devices, use messages of the same length.

5.3.5 Evaluation of Impact

To obtain a quantitative indication of the impact of our attack on the location privacy

of drivers in vehicular networks, we conducted an extensive set of simulations using

the Veins framework [148]. We extended the framework so that vehicles either
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used a simulated IEEE 802.11p radio from Cohda, Unex, or one that uses correctly

implemented pseudo-random scrambler values.

5.3.5.1 Simulation Setup

To be able to accurately gauge the impact of the scrambler attack, we investigate two

challenging scenarios. Instead of the usual straight, fully covered stretch of freeway,

we investigate a large urban intersection where vehicles can turn (Figure 5.18) as

well as a 3 km stretch of 3-lane freeway with a large blind spot (Figure 5.19). We

generated vehicular mobility in both scenarios using the microscopic traffic simulator

SUMO and kept the number of vehicles constant throughout the simulation: for

every vehicle that left the scenario a new one of a random preset type with a new,

random route was inserted.

As we believe that the scrambler attack is able to circumvent privacy protection

on the MAC layer and higher layers, such as pseudonym changes, we investigated a

best-case scenario for privacy: vehicles used a new pseudonym for each message,

making it impossible to map messages based on any upper layer identifier. Also,

vehicles emitted beacons with a frequency of only 1 Hz – the lowest possible beacon

frequency according to the ETSI family of standards [149] – which represents the best

Figure 5.18 – Fully covered crossing scenario. (Reproduced from [27], ©
2015 IEEE.)

~ 800m

Figure 5.19 – Freeway scenario with blind spot in between attacker receivers.
(Reproduced from [27], © 2015 IEEE.)
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case in terms of location privacy. The PHY was simulated using two-ray-interference

path-loss with a transmission power of 20 mW, leading to a theoretical transmission

range of about 600 m. All parameters are summarized in Table 5.3.

5.3.5.2 Attacker Model

The attacker in our simulation deployed (connected) receivers along the road and

overhears periodic broadcasts of vehicles to extract information like heading, position,

and speed. We, furthermore, assume that the attacker knows that different vendors

use characteristic scrambler algorithms.

In the intersection scenario (cf. Figure 5.18), the theoretical transmission range

allowed the attacker to receive packets from vehicles approaching and leaving the

intersection and on the intersection itself. A vehicle is considered tracked when it

was possible to fully recreate the distinct path of a vehicle over the intersection from

receiving the first packet until receiving the last packet. Note, as in our simulation

the attacker is not omniscient but uses a radio receiver, she can experience packet

loss and therefore lose track of a vehicle or associate an overheard beacon with the

wrong vehicle.

In the freeway scenario (cf. Figure 5.19), the attacker was not able to fully cover

the whole scenario but placed two receivers along the freeway with a blind spot of

800 m between them. Here, a vehicle is considered tracked if it was possible to track

its path from entering the transmission range of the first receiver and leaving the

transmission range of the second one.

To perform the actual tracking, we deployed an enhanced correlation tracking

algorithm: When trying to associate received beacons with existing vehicle tracks,

it accounted for physical limits of vehicular movement in terms of acceleration,

speed, and heading and consecutively used Edmond’s maximum weighted matching

algorithm [150] to find the best association hypothesis. This tracking method is

computationally inexpensive and has been shown to be very effective[151].

Table 5.3 – Simulation Parameters. (Reproduced from [27], © 2015 IEEE.)

Parameter Setting

Framework extended Veins
Scenarios Intersection, Freeway
PHY/MAC IEEE 802.11p/IEEE 1609.4
Transmission Power 20 mW
Radio Sensitivity −89 dBm
Beacon Frequency 1 Hz
Simulation Time 300 s
Repetitions 50
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To understand the impact of the scrambler attack, we compared this already

advanced tracking algorithm with a variation that also exploited information about

scrambler states: For each sequence of consecutively received beacons that the

tracking algorithm deemed likely to be from the same vehicle (e.g., due to correlation

of position, speed, etc.), it tried to infer which IEEE 802.11p device the vehicle might

be using (by correlating the beacons’ scrambler states). For vehicles where this

succeeded, the tracking algorithm was then able to extrapolate future scrambler

states and use this information to rule out potential associations of beacons and

vehicles, limiting the number of candidate tuples and thus easing tracking.

No other information was used for both tracking mechanisms. For example, the

attacker did not exploit the beacon delay to determine which vehicle sent which

beacon, as this could be easily prevented by distributing beacon events uniformly

over the beacon period.

5.3.5.3 Results

Figure 5.20a shows our results for the intersection scenario. In this and the following

plots, the error bars correspond to the confidence intervals for a confidence level of

95 %. The figure shows the somewhat worrisome picture that it is almost impossible

to confuse an attacker with pseudonym changes when (almost) all messages can

be overheard. This confirms earlier findings [152], suggesting that in these cases

privacy can only be achieved by not sending any packets. Although the tracking

probability was already above 98 %, the usage of additional scrambler information

could increase these values even more.

The results for the freeway scenario are shown in Figure 5.20b. The blind spot

between the two receivers made it considerably harder (dotted, orange line) for the

attacker to track vehicles. Dynamics in the mobility of vehicles such as lane changing,

overtaking, or varying velocities lead to wrong associations of beacons to vehicles on

the attacker side. We observed that the mobility generated by SUMO seemed to be

more dynamic as one would expect; to confuse a ’normal tracking’ attacker in real

life, the gap between the receivers would likely have to be wider. Congestion setting

in at the highest vehicle density caused a slight increase in tracking probability, due

to fewer lane changes and passing maneuvers.

When the attacker used additional scrambler information to track vehicles the

situation completely changed (solid, blue line): We observe that the gap between

the two receivers only marginally influenced the capability to track vehicles. Ap-

proximating the number of beacons presumably sent by a vehicle while driving

in the uncovered section of the freeway, the attacker is able to guess a number of

possible scrambler values. Using this technique, we obtained tracking probabilities

of over 95 %, almost reaching the level of the fully covered intersection scenario.
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(b) Freeway Gap Scenario.

Figure 5.20 – Impact of the Scrambler Attack in different scenarios. (Repro-
duced from [27], © 2015 IEEE.)

This shows that even on a very busy freeway with interrupted radio coverage the

scrambler attack allowed the attacker to effectively circumvent any higher layer

privacy protection and track a large portion of vehicles. From this, we conclude that

also random silent times [153] (a privacy measure that is likely to be used in the

final system [154]) can be rendered ineffective by non-random scramblers.

To fully illustrate the crucial requirement of unpredictable scrambler values,

we analyzed the results for the freeway scenario deeper, showing the tracking

probability differentiated by the type of IEEE 802.11p radio (Figure 5.21). As can

be seen, location privacy cannot be achieved using a predictable scrambler – the

attacker was able to track almost every vehicle using the Cohda or the Unex radio.

Even the vehicles using a random scrambler (dashed, teal line) suffer from the now

smaller number of vehicles possibly confusing an attacker. Their probability of being

tracked is considerably higher than it was when scrambler values were not exploited

to obtain information (dotted, orange line in Figure 5.20b). This again underlines
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Figure 5.21 – Tracking probability depending on the type of IEEE 802.11p
radio using the scrambler tracking. (Reproduced from [27], © 2015 IEEE.)

the necessity to address this problem and not allow for a circumvention of higher

layer privacy measures.

5.3.6 Countermeasures

The most obvious solution is to employ a cryptographic pseudo-random number

generator, possibly seeded by the large number of entropy sources in a vehicle (e.g.,

time when the vehicle was started, sensor values like fuel level and tire pressure,

or meta data of communication like noise level, number of neighbors, and received

data). Another solution is the deployment of constant network-wide scrambler values,

however, this could possibly degrade network communication performance [146].
Then, an eavesdropper cannot derive the state of the internal pseudo-random number

generator based on a single packet and very hard from a sequence of packets.

For the Cohda MK2, this change would be straightforward to implement since

it does not rely on a transceiver chip but implements all logic on reconfigurable

FPGAs. Therefore, it should be possible to fix the scrambling algorithm with a

firmware update of the prototype. For off-the-shelf hardware, the picture is different.

Because vendors do not provide detailed information about their hardware design,

it is hard to tell where certain functionalities are implemented and if this solution

can be achieved with a driver or firmware update. In the worst case, the scrambling

algorithm is implemented in hardware and cannot be fixed, which means that the

chip would have to be replaced.
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5.3.7 Conclusion

We identified a novel attack vector on the location privacy of vehicles that lever-

ages and exploits over-simplistic implementations of the pseudo-random number

generators used by an integral component of all normal WLAN and IEEE 802.11p

radio transceivers. This component is the scrambler, which is crucial to ensure good

performance at the PHY. Sequences of the scrambler state can be predicted by

overhearing a single packet, making it possible for an eavesdropper to associate

different pseudonymous messages with the same sender. This passive, undetectable

attack can be considered a physical layer attack and, therefore, no higher-layer

privacy protection mechanism such as the use of pseudonyms can compensate for

it. In contrast to existing lower-layer attacks, however, it is extremely robust, as it

makes use of data rather than signal characteristics.

To show how severely location privacy can be degraded by our attack, we con-

ducted an extensive set of simulations. Even in scenarios where vehicles traveled

through sections where an adversary was not able to overhear messages, it was

possible to reliably track vehicles. The results highlight the importance to use cryp-

tographic pseudo-random number generators – not to increase the performance of

the system but to preserve the location privacy of drivers. We see our results as a

first step towards enabling privacy protection mechanisms on a large scale.
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Conclusion

Today, as autonomous cars are about to become a reality, we have to set the tracks for

the next generation of transportation. It is without doubt that future vehicles will use

wireless communication to exchange information directly with each other and maybe

infrastructure nodes to form a vehicular network. The ability to communicate will not

be a mere add-on but a true game changer, allowing us to evolve from autonomous

to cooperative driving. The implications of this step will be enormous and open up

a wide spectrum of novel applications that will make transportation safer, more

efficient, and more comfortable than ever before. While these Cooperative Intelligent

Transportation Systems (C-ITS) will rely on multiple communication technologies, it

is likely that IEEE 802.11p, i.e., automotive Wireless LAN (WLAN), will play a central

role. Apart from the fact that the technology is readily available, IEEE 802.11p

bears additional advantages as it does not rely on infrastructure nodes, allows direct

communication, and has free-to-use dedicated spectrum allocated. Together, these

advantages make the technology well-suited for safety-related applications, which

are regarded as one of the main drivers for C-ITS.

Given their huge potential, vehicular networks attracted attention from both

industry and academia. In the focus of many studies, they developed into a major

technology. Today, their characteristic challenges are well understood and regulatory

bodies in Europe, the US, and Japan are finalizing the corresponding standards.

At this stage of the development process, reproducible measurements and field

tests were identified as important next steps to bring the technology forward. By

building prototypes, we can identify weaknesses in system design or provide the

ultimate proof-of-concept. Also when reaching out to the general public, a working

field test makes a strong argument for readiness and feasibility of the technology.

This thesis can be seen as a contribution to this line of research. It detailed the

design, implementation, and evaluation of the first Open Source IEEE 802.11a/g/p
transceiver for a general purpose Software Defined Radio (SDR) framework. Using

117
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this architecture, the physical layer (PHY) is implemented completely on the PC

and does not rely on any hardware- or software-specific features. This unique

property allows our transceiver to be used in each step of the research process, from

simulations to measurements in the lab or in the field. It provides a holistic research

and development framework that bridges the gap between theory and practice.

To establish our transceiver as a credible tool for research, we evaluated it

extensively through simulations and real-world experiments. Designed specifically

for Vehicular Ad Hoc Networks (VANETs), we tested it with both normal WLAN

cards and IEEE 802.11p prototypes. Apart from PHY performance, we also studied

the computational demands of individual components to make sure that it can

operate in real-time on a normal PC. We have seen that this is, indeed, the case,

even for the most challenging scenarios. While the PHY was the main focus of our

work, we further explored the possibilities and limitations of our SDR platform.

By implementing selected time-critical functionality on the Field-Programmable

Gate Array (FPGA) of the radio, we realized Automatic Gain Control (AGC) and

standard compliant channel access for broadcast transmissions without giving up

the advantages of a General Purpose Processor (GPP)-based SDR. To demonstrate

our transceiver’s applicability for experiments that go beyond simulations and lab

measurements, we conducted two field tests. The first compared the performance

of different IEEE 802.11p prototypes; the second compared the performance of

different receive algorithms. While the first showed that our transceiver provides

reasonable performance in a realistic environment, the latter backed up results from

the literature, highlighting the shortcomings of simple algorithms that are typically

used in WLAN cards. The high mobility and the resulting time variability of the

channel ask for advanced receivers that can cope with dynamics of VANETs.

To expand on the performance characterization of the PHY, we used our SDR

transceiver to compare the impact of noise and intra-technology interference on

IEEE 802.11p. With this study, we addressed a dispute in the community as to

whether noise or interference has a more detrimental impact. This disagreement is

unfortunate, considering that a detailed understanding of these effects is needed

to derive realistic and accurate PHY models for network simulations. Given the

popularity of network simulations for research on vehicular networks, it is important

that their results are based on solid ground. In the study, we used our IEEE 802.11p

implementation for both simulations and over-the-air measurements. Here, we

showed how to complement simulation results with real measurements, following

the research cycle described in the introduction. Together, the results provide a

consistent picture, increasing the confidence in our findings. Even though we did

not explore the full parameter space, our results are positive in the sense that they

support the assumptions that are adopted by most network simulators.
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Finally, we highlighted the flexibility of our prototype by studying a totally differ-

ent aspect of VANETs: With the ability to look into all steps of the decoding process,

our SDR-based transceiver allowed us to identify a novel attack on the location

privacy of vehicles. The attack exploits the scrambler seed, i.e., information from

the PHY that is not available from normal devices. When inspecting the seeds, we

noticed, that, at least, the devices in our study did not seed the scrambler pseudo-

randomly (as mandated by the standard) but used a deterministic pattern. Through

network simulations, we showed that these predictable patterns can be exploited by

a passive eavesdropper to track vehicles even in challenging scenarios with partial

network coverage. We believe that the scrambler seed is a particularly interesting

attack vector. On the one hand, it is robust, since it does not use potentially fragile

features of the channel or the analog RF circuitry but uses binary data from the PHY

that every receiver derives during the decoding process. On the other hand, it is a

physical layer attack that cannot be mitigated by typical privacy-preserving mecha-

nism, like Medium Access Control (MAC) address randomization or pseudonyms. In

fact, the scrambler is such an integral part of the PHY that most devices will probably

implement it in hardware, suggesting that the attack cannot easily be fixed through

firmware updates.

We think that the applications of our transceiver do not end here and hope that

it will continue to serve as a tool that helps to better understand the performance of

WLAN for automotive applications. We believe that the insights and lessons learned

from experiments are invaluable and allow us to design more reliable vehicular

networks. And, in the end, this might be the deciding factor for the general acceptance

of the technology, especially with regard to safety-critical applications.
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