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Chapter 1

Introduction

1.1 Volatility models

Estimating, modelling and forecasting volatility has been the subject of extensive
research among academics and practitioners over the last twenty years. Financial
market volatility is a statistical measure of the price fluctuation over time for a
given security and can be measured by using the standard deviation or variance of
returns. It is indispensable for the theory and practice of portfolio selection, asset
pricing and risk management. The higher the volatility, the riskier the security.
The traditional financial econometrics models of risk are generally regarded as
variance independent, identically distributed constants. Since the 1960’s, a large
number of empirical research have confirmed that the variance varies over time.
Meanwhile, researcher and academicians have found four main characteristics of
financial asset volatility, which are important for analysis the volatility in the
financial market.

1. Volatility clustering: Time series of financial asset returns often exhibit
the volatility clustering property, which means large changes tend to be followed
by large changes and small changes tend to be followed by small changes. A
quantitative manifestation of this fact is that returns themselves are uncorrelated,
while absolute returns and their squares display a positive, significant and slowly

decaying autocorrelation function. To describe this phenomenon, in 1982 Robert

1



Chapter 1. Introduction 2

Engle proposed the ARCH model, which is the first framework for modeling con-
ditional volatility. It is assumed in the ARCH model that the returns depend
on the past information with a specific form. Four years after the ARCH model
was proposed, Bollerslev (1986) addressed a generalized ARCH model called the
GARCH model, which is one of the most well-known extension models based on
the ARCH. The main idea behind these two models is the same. However, the
GARCH model overcomes some disadvantages of the ARCH model. In particular,
in empirical applications, the ARCH model commonly requires a relative long lag
in the conditional variance equation which leads to a higher order and makes the
model more complicated. Besides, the GARCH can better capture the volatility
process of an asset return by adding the conditional heteroskedasticity moving
items. In addition, all of the ARCH process can be extended to the GARCH
process, i.e. the ARCH process is a special case of the GARCH process, which
is why the study of the ARCH was replaced by the GARCH model, since it was
proposed. A GARCH (p,q) model is defined by

Y, | Fi1= Ut\/E7 Yt|Ft—1 ~ N(O,ht)

p q
ht = qap + Z OZZY;Q_l + Z ﬁjht—jv

j=1
where o > 0, o; > 0, 8; > 0, F;_1 denotes past information. 7 are the i.i.d
random variables and can be expressed as a standard normal distribution with zero
mean and unit variance. The GARCH model has greater applicability for easy
computation. Using maximum log-likelihood method can estimate the parameters
in the GARCH model.

2. Leverage effects: However, standard GARCH models assume that pos-
itive and negative error terms have a symmetric effect on the volatility. From
an empirical point of view the volatility increases more after bad news than after
good news. In order to measure the rate of return volatility asymmetry, Ding
et al. (1993) proposed an asymmetric power ARCH also called APARCH model,

in which the volatility reacts asymmetrically to negative and positive returns. A
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time series Y; follows an APARCH (p,q) model is defined by,
p q
Y, =m0y, o) =0+ Z ai(| Yioi | =7iYii)d + Zﬁjaf_p
i=1 j=1

where 0, = v/h; is the conditional variance, 0 < § < 2 is a power index for this
model and 0 < ~; < 1 is the “leverage effect”. By changing the parameters the
APARCH model nests at least seven ARCH-type models.

e The ARCH model with 6 =2, 7, =0 and 3; = 0.

e The GARCH model with § =2, v, = 0.

e The TS-GARCH (Taylor, 1986, Schwert, 1990) with § =1, ~; = 0.
e The GJR (Glosten et al., 1993) with § = 2.

e The TARCH of Zakoian (1994) with 6 = 1.

e The NARCH (Higgins and Bera, 1992) with v; = 0 and 5; = 0.

e The Log-ARCH (Geweke, 1986, Pantula 1986) with 6 — 0.

3. Fat tail: Financial asset returns often possess distributions with a fat
tail, which has the property that there is a (relatively) high probability of some
“unusual” events. Using the normal distribution assumption can underestimate
the probability of unusual events and thus affect the accuracy of risk management
estimates-VaR (Value at risk). Therefore, such as the GARCH model with con-
ditional t-distribution after standardization (Bollerslev, 1987) and the GARCH
model with skewed innovation were proposed.

4. Long memory: Long memory is considered as one of the most important
statistical properties of time series. It implies there are correlations between two
long distanced observations and its ACF decays slowly at hyperbolic rate. AR,
MA, ARMA, ARIMA models represent only short memory features. Hence, these
models are inadequate. The fractionally integrated GARCH model (FIGARCH)
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was proposed by Baillie et al. (1996) and can be used to model long memory phe-
nomenon in the volatility. However, the unconditional variance in the FIGARCH
model does not exist, which is why it can not be used to analyze long memory in
a usual sense. This problem was solved by the proposal of the LMGARCH model
(Karanasos et al., 2004).

In the literature, a large number of extensions of the GARCH model build up
a GARCH family, such as the general exponential GARCH (EGARCH, Nelson,
1991) model, where the conditional variance is an explicit multiplicative func-
tion of lagged innovations; the component-GARCH model (CGARCH, Engle and
Lee, 1999). Mikosch and Staarica (2004) showed that in a fitted GARCH (1,1)
model a non-stationarity phenomenon exhibited (145 &~ 1), a piecewise GARCH
model was hence proposed. The Semi-GARCH model with a slowly changing scale
function for modelling conditional heteroscedasticity and time heteroscedasticity
simultaneously was proposed by Feng (2004). If an existing nonparametric scale
function is not considered, it will be misinterpreted as very strong long memory.
The multivariate GARCH class of models was first introduced and estimated em-
pirically by Bollerslev et al. (1988). Their model is generalized directly from the
univariate GARCH model to multivariate case and called the Vector Error Cor-
rection (VEC) model. Bollerslev (1990) investigated the Constant Conditional
Correlation (CCC) model, in which all conditional correlations are constant and
the conditional variances can be modeled as univariate GARCH processes. Engle
(2002) extended the CCC model to a Dynamic Conditional Correlation (DCC)
model, where the correlations change with time.

In the last decade, owing to the rapid development in computer technology,
methods of data processing and collection have made swift progress. These make
the observations with small time intervals—high-frequency data obtainable. High-
frequency data records the real-time transaction and provides many more details
of the events in the financial market. Hence, it is of great significance for the un-
derstanding and research of financial market microstructure. Based on the idea of
the ARCH and GARCH models, a new model is developed to investigate the irreg-

ularly time-spaced characteristic of high frequency data, namely the autoregressive
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conditional duration model (ACD, Engle and Russell, 1998). Let X; = t; — t;_1
be the " duration between two events which occur at times t;,_; and t;. The
sequence {x1,T,...,x,} has non-negative elements, since t; < to < t3 < ...t,.
Let ¢y = E(X|F-1) be the conditional mean (expected) durations, where F;_;
denotes past information set of durations available at time ¢ — 1. A general model

for conditional duration is:

Xy = ey,

where g; > 0 are i.i.d. with E(e;) = 1 and var(g;) = 0%, Following the GARCH
idea the ACD(p,q) model is defined by:

p q
P = ag + Z a; X + Z Bithi—j,
i=1 j=1

where ag > 0, a; > 0, 3; > 0. It means that the conditional mean duration
depends on p previous durations and ¢ previous mean durations. The restrictions
of the ACD and (G)ARCH models (i.e, ag > 0, o; > 0, 3; > 0) are to ensure
and h; to be positive. As a matter of fact, the ACD model is an application of the
GARCH model to the duration data. Define 1, = X; — 1), which are uncorrelated
with mean zero, then like the GARCH model, the ACD(p,q) model can also be
treated as an ARMA (max(p,q),q) model:

p q d
Xy =aop+ Z X+ Z BiXi—j — Z Bine—j + -
i=1 j=1 j=1

The strong similarity between the ACD and (G)ARCH models has nurtured the
rapid expansion of alternative specifications of conditional durations. One of the
extensions of the ACD model is to change the distribution of ;. Engle and Russell
(1998) proposed WACD model with standardized weibull distribution. Gramming
and Maurer (2000) used a burr distribution which contains the exponential, weibull
and log-logistic as special cases.

In the ACD (p,q) model, it is assumed that all coefficients (o, a;, ;) are

positive in order to ensure the positivity of durations. Due to such a restriction
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it is not allowed to add some variables taken from the microstructure literature
with possible negative coefficients in the autoregressive equation, which may lead
to a negative duration. To avoid this, some nonlinear ACD models were devel-
oped. The Log-ACD model was proposed by Bauwens and Giot (2000). Following
the idea of the linear ACD model, the general form of the Log-ACD model is
introduced by

p q
X = €¢t5t’ Iny; = ap + Z a;ig(ei—i) + Zﬁj In;j,
i=1 j=1

where ¢ is proportional to the logarithm of the conditional expection of X, &
are i.i.d and follow a Weibull (1,) distribution with F(g;) = 1 and var(g;) = o?.
Let g(e4—;) be Ine;_; or £,_;, which correspond to the Log-ACD; model or Log-
ACD3 model, respectively. In this thesis we will only discuss the Log-ACD; model,
which actually can be considered as the ACD model using logarithmic data. The
Log-ACD; model is defined by

p q
gy =0+ a;InX, i+ Bilnyy ;.
i=1 j=1

This model is close to the Log-GARCH model proposed by Geweke (1986). Com-
pared with the original ACD model it is more flexible and the only constraint on
the coefficients is § < 1. However, one drawback of Log-ACD is that it cannot ac-
commodate durations, which are equal to zero. Allen et al. (2008) showed that the
Log-ACD model can be rewritten as a linear ARMA process using the logarithmic
data (namely the Log-ARMA model). Define y; = In X; — In ), where E(u,) = 0.
The Log-ACD model can be rewritten as a Log-ARMA model as follows:

mX,=ao+ Y a;lnX,;+ > Bjlnty, +In X, —Ine
i=1 j=1

=g+ > (4 B)In X — Y Bi(In X, —Inghyj) + p.

i=1 j=1
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If 0; = a; + B; and 6 = —f3;, then

mX, =00+ Y oiln X+ Y O+ pu.
i=1 j=1

Reversely, it is easy to show that the exponential transformation of a linear ARMA
process can be written as a Log-ACD model. Bayesian information critterion
(BIC) can be used to select a suitable model and the parameter of the Log-ACD
model will also be obtained through the Log-ARMA model. Comparing with the
multiplicative form of the ACD model, the Log-ACD model is a additional model,
which is easier to estimate. A long memory extension of the Log-ACD model
can be thought of as the exponential fractional autoregressive integrated moving
average model (EFARIMA), which was proposed by Beran et al. (2015), and can
simply be thought of as an application of the well known FARIMA model to the
log transformed data.

Following the idea of the Semi-GARCH, a Semi-ACD model with a slowly
varying scale function was proposed. The estimation of the Semi-ACD model is
better than that of the ACD model, if local stationary phenomenon exists. The
Semi-ACD model can be defined as a multiplicative model and it can be considered
as an ACD(p,q) model with a smooth scale-function v(7;). Let X; be the duration
between two events, 7, = t/n be the rescaled time, 1; be the conditional mean
duration after standardization and 7, > 0 are i.i.d. random variables with unit

mean, then the Semi-ACD model is proposed by
Xy = V(Tt)wtt?ta

where e, = (; is the conditional dynamics of the stationary process. After
removing the scale function v(7;), the ACD (p, q) model can be employed to an-
alyze (;. The estimation of the scale function v is a nodus in the estimation of
semiparametric models. A data-driven algorithm with a good asymptotic proper-
ties for estimating the nonparametric scale function was proposed by Beran and

Feng (2002b, 2002c). This approach does not have any assumptions of parametric
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model, except that (; is assumed to be stationary. After removing the nonpara-
metric part- scale function, the approximations of (; can be derived by means of
fitting some suitable parametric models. The selection of suitable model can fol-
low some well known model selection criteria like BIC. A long memory extension
of the Semi-Log-ACD model was proposed for modelling a nonnegative process
with long memory and a nonparametric scale function simultaneously. It can be
thought of as the semiparametric version of the EFARIMA model (SEMIFAR).
Beran and Ocker (2001) found significant trend in volatility by fitted SEMIFAR
models.

Taylor (1982, 1986) proposed stochastic volatility model (SV). Both GARCH
family and SV models take into account the important volatility clustering phe-
nomenon and are driven by the past information. The main difference is that
the GARCH family models assume deterministic volatility states, while in the SV
model the volatility is a latent variable with unexpected noise. The introduction
of the additional error term makes the SV model more flexible than the GARCH
family models. Carnero et al. (2004) showed that compared with the GARCH
models, the SV model captures the main empirical properties often observed in
daily series of financial returns in a more appropriate way. However, the empirical
applications of the SV model have been very limited. The main reason is that
the GARCH model is easily estimated via Maximum Likelihood estimator, while
the likelihood of SV models is not directly available. The use of simulation tech-
niques, like simulated maximum likelihood, the generalized method of moments
and Markov chain Monte Carlo are required. Ghysels et al. (1996) and Shephard
(1996) surveyed the SV literature, and Broto and Ruiz (2004) reviewed the esti-
mation methods for the SV models. The first multivariate SV model proposed by
Harvey et al. (1994). Asai et al. (2006) reviewed the substantial literature on
specification, estimation and evaluation of multivariate SV models. An alterna-
tive approach is implied volatility, which invoke option pricing models to invert
observed derivatives prices over a fixed future period. Such procedures remain
model-dependent and further incorporate a potentially time-varying volatility risk

premium in the measure so they generally do not provide unbiased forecasts of
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the volatility of the underlying asset.

Increased availability of high-frequency data in the last decade have resulted
in development of the new model-free volatility approach called realized volatility
(Andersen et al., (2001a, 2001b)), which exploits the information in high fre-
quency returns and is constructed as the sum of the squared intraday returns that
are sampled at very short intervals. In contrast to all GARCH and SV models, re-
alized volatility estimator does not need parametric assumptions. Koopman et al.
(2005), Martens (2002) and Martens et al. (2007) among others demonstrated the
superiority of realized volatility models over GARCH family for volatility fore-
casting. In the ideal case, increasing the sampling frequency towards to make
more accurate estimates of volatility on any given day. This implies that daily
volatility becomes almost observable via realized volatility. However, a perfect
estimate of realized volatility can be obtained only under the assumption that
prices are observed in continuous time and without measurement. In reality the
sampling frequency is limited by actual quotation or transaction frequency and
observed prices are contaminated by market microstructure (MS) noise, which
leads to the bias problem, refer to e.g. Andersen et al., (2001a); Barndorff-Nielsen
and Shephard (2002). Market MS noise could, for example, be induced by the
discreteness of price changes, bid-ask bounce, latency, and asymmetric informa-
tion of traders. Due to the market MS noise, the intraday returns are correlated
(normally negative). If this negative correlation is not considered, the realized
volatility will be overestimated. To solve this bias problem, different approaches
have been introduced into the literature. Bandi and Russel (2006, 2008, 2011) and
Oomen (2006) investigated a method of selecting the optimal sampling frequency
based on a trade-off between the variance and bias. Hansen et al. (2008) inves-
tigated correction of MS bias using moving average-based estimators. Podolskij
et al. (2009) provided the pre-averaging approach. The subsampling approach
originally suggested by Zhang et al. (2005), which builds on the use of a realized
volatility estimator with two time scales under dependent MS noise. A general-
ization of Zhang et al. (2005) was introduced by Ait-Sahalia et al. (2011) and
Zhang (2006), which is consistent and asymptotically unbiased under dependent
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noise. Zhou (1996) proposed to use the first order correlation to correct the bias.
This is the first kernel based method and was generalized in Hansen and Lunde
(2006a). Nevertheless, the estimators are inconsistent. Barndorff-Nielsen et al.
(2008) proposed the realized kernels (RK), which are a generalization of Zhou
(1996) and are consistent estimators of the IV under given conditions. Barndorff-
Nielsen et al. (2009) provided the practical application of the non-flat-top realized
kernels. Barndorff- Nielsen et al. (2011a) considered further refinements of the
realized kernels in the spirit of the subsampling approach adopted in the TSRV
estimators by using averaged covariance terms in the realized kernel estimators.
Tkeda (2015) proposed two-scale RK, which is a convex combination of two realized
kernels with different bandwidths and converges to the daily integrated volatility
in the presence of dependent MS noise. Moreover, some alternative realized vari-
ance measures based on the quadratic variation that exploit other aspects of high
frequency financial data were investigated. Christensen and Podolskij (2007) pro-
posed a realized range-based estimator, that replaces the squared intraday returns
by normalized squared ranges. Christensen et al. (2010b) introduced the quan-
tile based realized variance (QRV) estimator. Andersen et al. (2009) introduced
the duration based approach based on a localization argument and the theory of
Brownian passage times. In the multivariate case Barndorff-Nielsen et al. (2008)
provided the multivariate realized kernel estimator, which guarantees consistency,
positive semi-definiteness and handles non-synchronous trading simultaneously.
Christensen et al. (2010a) introduced the adjusted modulated realized covariance.
Lunde et al. (2016) proposed the composite kernel.

Financial risk managers often report the risk of investments using the concept
of Value-at-Risk (VaR), which estimates the maximum loss at given confidence
interval in a certain period. The Basel Committee demands banks use the VaR in
establishing the minimum capital necessary at investments in order to reduce the
fragility of international active banks. VaR is widely used by investors and regu-
lators in the financial industry to measure the amount of assets needed to cover
possible losses and has been considered as a expectable banking risk measure. The

VaR is obtained by o,F; '(a) at a given confidence interval (1 —«), where F; '(a)
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is loss distribution and oy is the standard deviation (volatility) of investments at
time t. By calculating VaR, o, play a crucial role. Accurate volatility estimates
are vital in risk management for calculating such as VaR. Further analyzing and
forecasting the estimated volatility is also of paramount importance. In this thesis
the forecasting of long memory and a nonparametric scale function in nonnegative
financial processed based on the Semi-FI-Log-ACD model is proposed. A linear
predictor based on the truncated AR(oo) form of the logarithmic process is pro-
posed. The proposals are applied to forecasting such as realized volatility, trading
volume. Furthermore, we propose new consistent estimators for realized kernels
under independent and dependent noise. The comparison of proposed estimators
with several other volatility estimates are reported. All practical studies in this

thesis are based on high-frequency financial data from several European stocks.

1.2 Forecasting based on the Semi-FI-Log-ACD

model

Modeling and forecasting of short- and long memory, and a possible nonparamet-
ric scale function in financial time series is of great interest. Well known models
with short memory are e.g. the ARCH and GARCH for returns and the ACD
for transaction durations. The ACD can also be used for modeling trading vol-
ume (Manganelli, 2005). Models based on logarithmic transformation are also
proposed, including the Log-GARCH (Geweke, 1986, and Pantula, 1986) and the
Log-ACD; (Bauwens and Giot, 2000, Bauwens et al., 2008, Karanasos, 2008).
Now, the estimates are always nonegative and the log-data can be modeled by
known linear time series approaches. Modeling of a smooth scale function in
volatility caused by changing macroeconomic environment was investigated by
Feng (2004) and Engle and Rangel (2008). Well-known long memory volatility
models are the FIGARCH, the LM-GARCH, the FIACD (Jasiak, 1998) and the
LM-ACD (Karanasos, 2004). In the literatures, the estimation of a nonparametric

scale function in volatility models with long memory is not yet well studied.
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Most recently, an EFARIMA (exponential fractional autoregressive integrated
moving average) for nonnegative processes with long memory is proposed by Beran
et al. (2015), called a Log-FARIMA in this thesis. The Log-FARIMA is defined
as follows. Let X; = Ay, where 1, > 0 are i.i.d. random variables and ), is the
conditional mean. Let Z; = In(X}) and &, = In(n;). It is assumed that Z; = In(X})
is a FARIMA

(1 - BY'$(B)Z, = $(B)e,

where d € (—0.5,0.5) is the fractional differencing parameter, ¢(B) =1 — ¢ B —
...—¢p,BP and Y(B) = 1+ B+...+1¢,B? are the MA- and AR-polynomials with
no common factor and all roots outside the unit circle. This model can be extended
to a Log-SEMIFAR (logarithmic semiparametric fractional autoregressive) X; =
v(1) Xy = v(m) M\, where 7 = t/n and v(7;) > 0 is a smooth scale function. It

can be shown that
ln )\t = Z Uy ln )\tfi + Z CU] ln(nt*]’)’
i=1 J=1

where m; are coefficients of 7(B) = (1 — B)¢(B) = 1 — >, mB". The Log-
FARIMA is hence a fractionally integrated extension of the Log-ACD; (Bauwens
et al., 2008) and is also called a FI-Log-ACD. The Log-SEMIFAR will hence be
called a Semi-FI-Log-ACD. Both models are useful tools for modeling nonnegative
financial data and can be estimated using existing software packages.

In chapter 2 necessary and sufficient conditions for the existence of a stationary
solution of the FI-Log-ACD are first obtained. It is shown that these conditions
are fulfilled, if 7, are log-normal innovations with &, ~ N(0,02). Further exam-
ples, which fulfill those conditions are the log-logistic and log-Laplace innovations
with suitable restriction on the parameters. In contrast it is shown that, if d > 0
those conditions can never be fulfilled by some well known nonnegative distribu-
tions, such as the weibull and the generalized gamma distributions. For those
distributions a stationary FI-Log-ACD process with long memory in Z; does not

exist. Detailed properties of the FI-Log-ACD under the log-normal assumption as
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obtained in Beran et al. (2015) are summarized. Now, all of the processes X/, Z,
A as well as ¢; = In()\;) have long memory with the same memory parameter, if
d>0.If d <0, X; and \; have short memory, which cannot be antipersistent.
Forecasting using the Semi-FI-Log-ACD is then discussed in detail. In chapter
2 we propose to use a simple, truncated linear predictor based on the AR(oc0) form
of Z;. This idea is often employed to carry out forecasting based on an ARMA
model, when the sample size is large. See e.g. Brockwell and Davis (2006, p. 184).
In practice, the approximately best linear predictor based on the truncated part

of the AR(c0) representation of Z; is defined by

n+k—1

k—1
nyk = E B Zngk—j + E B Zntk—js
j=1 ij=k

where Bj are the estimated coefficients in the AR(oo) form of Z;, Zn+k_j for
7 =k,...,n+k—1, are the residuals obtained; and Zn+k_j, j=1,...,k—1, are the
values predicted previously. To our knowledge, in the literature the above-defined
approximately best linear predictor has not been proposed in the presence of long
memory. Properties of this proposal are investigated in detail. It is shown that, in
the presence of long memory the proposed predictor is still an approximately best
linear predictor. Asymptotic variances of the prediction errors for an individual
observation and for the conditional mean are obtained. Calculation of approximate
forecasting intervals under log-normal assumption is discussed. Effect of the errors
in the estimated trend on the asymptotic properties of the proposed predictor is
also investigated.

The Semi-FI-Log-ACD is then applied for modeling and forecasting daily trad-
ing volumes, daily trading numbers and realized volatility. The data are from four
European stocks, namely AF, BMW, PSA, MEOG. Application to real datasets
shows that the proposed linear predictor works very well in practice. It is also
confirmed that the Semi-FI-Log-ACD model is very useful for modeling different
kinds of financial data, in particular aggregated financial data. Furthermore, note

that the nonparametric trend and the long memory error process should be esti-
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mated simultaneously, because suitable estimation of both parts will improve the
forecasting. The more important reasons for this are as follows. On the one hand,
if possible long memory in the conditional mean of a process is not considered,
the selected bandwidth will be much smaller than it should be and the formula for
calculating the asymptotic variance is also wrong. This will lead to a significant
trend, even if the underlying process is indeed stationary. On the other hand, if an
existing nonparametric scale function is not considered, it will be misinterpreted
as very strong long memory. The results indicate that this model is widely ap-
plicable and the proposed linear predictor works very well in practice. It is also
shown that the log-normal distribution is a suitable choice for different kinds of

aggregated financial data.

1.3 An iterative plug-in algorithm for RK

One of the most important concepts in financial econometrics and financial mathe-
matics introduced in the last two decades is the realized volatility (RV) (Andersen
et al., 2001a,b), which is a model-free estimator of the daily integrated volatility
(IV) based on high-frequency financial data. Let p} be the latent logarithmic asset
price observed at 0 =79 < 7 < ... < T, < Tpy1 = I, and p; determined by the
stochastic differential equation dp*(7) = o(7)dW (1), where W(7) is a standard
Brownian motion and o(7) is the volatility process. Furthermore, assume that the
o(7) and W (7) processes are uncorrelated. The estimation of the daily integrated
volatility is defined by IV = fOT o?(7)dr. RV is constructed as the square root of
the sums of intraday squared returns. However, it is found that, if the data exhibit
microstructure noise u;, most of the simple definitions of RV are now inconsistent
estimators of the IV, and the observed log-price p; consists of two components
pi = pi + u;, where u; is i.i.d independent of p; with zero mean and var(u;) = w?.
Let r; = pf — p;_; be the returns with n observations per day. The corresponding
noise contaminated returns is given by r; = r} + e;, where e; = u; — u;_1, which

indicates an MA(1) error structure in observed returns.
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In the presence of the MS noise, the commonly used biased estimator of IV is

n

RV, = Z(rf)z + 221”;*61« + Zef,
i=1 i=1 i=1
where its bias B(RV,)) = 2nw? and its variance is var(RVy) = 4nE(u})+2 fOT o} (T)dr.

Under the i.i.d noise assumption, Zhou (1996) proposed to use the first order
correlation to correct the bias in RV. Following the original idea of Zhou the past
one and the further one values are required. In order to facilitate practical use,
we modify Zhou’s approach based on the observed returns

n—1
RV, = Z(T? + 7T FriTio).
=2
It can be easily proved that volatility calculated by this approach is unbiased,
while its variance tends to be infinite, if the number of the observation is large
enough. There is an optimal observation frequency which trades off between bias
and the variance of RVy.

In the literature, Bandi and Russel (2006), as well as Oomen (2006) investigate
the optimal lower frequency, such as 5 minute and 15 minute. Zhang et al. (2005)
and Ait-Sahalia et al. (2008) proposed to use two time scales estimator to solve
the MS bias. Hansen and Lunde (2006a) and Oomen (2005) proposed a simple
kernel based estimator. Barndorff-Nielsen et al (2008) proposed an approach to
get the optimal observation frequency. Besides, Hansen et al. (2008) investigate
microstructure bias based on MA filter. Most recently, Barndorff-Nielsen et al.
(2008, 2009 and 2011b) introduced the realized kernels (RK), which is a consistent
positive semi-definite estimators of the time-varying volatility. The realized kernels

are given by

H n
Z h Z
R - h:—Hk ( 1) i = Tjrjilhl?

j=lhl+1

where k(u) is a kernel weight function, H is the selected bandwidth and =, is the
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h-th realized autocovariance. We use the Parzen kernel, which is one of the kernels
that can guarantee a nonnegative realized kernel estimate. Asymptotic properties
of RK are studied by Barndorff-Nielsen et al. (2008, 2011b), see also Tkeda (2015).

A crucial problem when applying RK is the selection of the bandwidth. The
main purpose of chapter 3 is to propose a simple, fast and fully data-driven con-
sistent bandwidth selector for RK based on the iterative plug-in idee (Gasser et
al., 1991). The asymptotically optimal bandwidth (Barndorff-Nielsen et al., 2009,
2011b), which minimizes the dominating part of the MSE (mean squared error)
of an RK is given by

nem2 Y /5 2
Ha = co€¥°n®  withey = {%} and ¢? = ~ .
. T fOT o(1)*dr

For the Parzen kernel ¢y = 3.5134. We see the optimal bandwidth for an RK
with a non-flat top kernel is of the order O(n%/?). If a bandwidth of this order is
employed, the resulted RK will achieve its optimal convergence rate of the order
O(n‘l/ ®). In chapter 3, to simplify the estimation procedure we use a biased
version of the asymptotically optimal bandwidth of RK, called Hg by replacing
T fOT ot (7)dr with IV2. The reason is that the former is not far from the latter, if
o(7) does not vary too much. The bandwidth Hy is obtained by

k}” 0 2
Hp = coﬁé/5n3/5 with ¢g = {%} ,

where ¢4 = @2/IV and &2 = W. The term “consistent” is used in a relative
sense that (fIB — Hg)/Hg — 0, as n — oo. The selected bandwidth Hy is
computed by means of an iterative procedure. In each iteration, the resulting
RK is used as an estimate of the IV, and the variance of the MS noise w? is
estimated based on the difference between RV and RK. In the first iteration RVy
is used as the initial value of RK. It is shown that &? defined in this way is /n-
consistent in each iteration. Both of RK and [:IB become consistent form in the

third iteration, while their rate of convergence can still be improved in the fourth

iteration. Thereafter, RK achieves its optimal rate of convergence of the order
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O(n~/%) and this rate of convergence is also shared by (Hg — Hg)/Hg.

An R code is developed for practical implementation of the proposed band-
width selector. The algorithm will be stopped, if ij is equal to flj_l. It is also
found that the selected bandwidths sometimes take two consequent integers al-
ternatively. The procedure will also be ended in this case and the larger of the
two selected bandwidths will be used. Both mentioned cases will be considered as
regular cases. Note that in our implementation, H is obtained by truncating the
integer part of selected optimal bandwidth and plus 1. The end effect of realized
kernels can be eliminated in the computation of the realized kernels (Barndorff-
Nielsen et al., 2011b). Furthermore, except for regular cases there are also three
cases, which should be specially treated. The first special case (Sp. Case 1) is that
RV7y is smaller than 0. In this case the noise may be very strong. We manually set
€2 = 100/(2n), which can select a big starting bandwidth. After j iterations H;
will converge to the optimal bandwidth Hg. The second special case (Sp. Case
2) is that RVy is bigger than RV, which indicates probably there is no noise in
those days. In this case, we use estimator RV, because in the case of no noise
RV, is unbiased and we manually set H* = 0. The third special case (Sp. Case 3)
is that RK is bigger than RV, which means there may be positive noise in returns
on those days. In this case, we still use estimator RK.

In chapter 3 the nice practical performance of the proposal is illustrated by
application to data of two German and two French firms within a period of sev-
eral years. The proposal runs very quickly and works usually very well in practice.
Detailed analysis of two challenging cases are reported. In Sp. Case 2 the ACF
at lag 1 is positive, however, some ACFs at higher lags can be negative so that
RVj is still biased. One possible problem, which can arise is that the dependent
MS noise appears. In Sp. Case 3 the ACF at lag 1 is negative, however some
other ACFs are clearly positive so that the sum of the ACF is positive. This
indicated the existence of possible dependent MS noise again, which could cause a
negative bias in RVy. The effect of this kind of possibly dependent MS noise can
however not be corrected by the proposed data-driven RK and it is worthy to de-
velopment a data-driven RK by taking possibly dependent MS noise into account.
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Furthermore, the ESEMIFAR model, which can simultaneously investigated long
memory, nonparametric trends and possible structural breaks, is used to analyze
the RK. Possible structure breaks cased by the financial crisis in 2008 may have
a clear effect on the estimation results. Using piecewise ESEMIFAR model can

improve the quality of estimation results.

1.4 RK under dependent noise using different
sampling frequencies

Further improving the fully automatic iterative plug-in algorithm is the focus of
chapter 4. A data-driven RK under dependent noise assumption is proposed and
now the algorithm works for all cases. Moreover, we extent the proposed algorithm
for the different sampling frequencies and then compare them with several other
realized estimators. In total, we have 4 sampling frequencies (tick-by-tick, 1-
minute, 5-minute and 15-minute), 2 types of realized estimators (RV, and RK)
and two algorithms (bandwidth selectors under independent and dependent noise
assumptions) of a given transaction price series.

Realized volatility using different sampling frequencies is obtained by

Nns

RVy =Y 17,
i=0
where n; denotes the number of observations using different sampling frequencies.
The version of RV with different sampling frequencies is given by

ns—1

RVy = Z (T?l + i1 £ i)
=2
By displaying the ACFs of returns on several selected days it can be found that
in most cases p,(1) is significantly negative and there are possible dependent MS
noise in tick-by-tick returns and for some cases there may be still MS noise in 1-

minute and 5-minute returns. The correlations reduce with the decrease of sample
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frequencies. The reason is that the diminished number of observations reduces the
bias and extends the two ACF bounds, which makes the daily returns uncorrelated.
However, decreasing the sampling frequency toward to increase the variance and
reduce the accuracy of volatility estimators. Hence, a realized estimator with an
optimal frequencies is necessary to investigate, which can remove the effect of MS
noise and grantee the accuracy of the estimation at the same time.

The proposed asymptotically optimal bandwidth for RK is given by

k// 0 2y 1/5 0
H= 0054/57”63/5 with Co = {%} and 52 = TQ,
where ¢y = 3.5134 for the Parzen kernel, [Q= fOT odt is called the integrated quar-
ticity, 0 = Xp5082(h) is the long-run variance of uy; and Q(h) = 37, uys iUy ;p-

The bandwidth H depends on the unknown quantities €2 and 1Q. When wu; is

.. . . . RVS
under i.i.d. noise assumption, Q reduces to w?. We let &2, = 5,2 to replace
) S
. RV§—RVS . . RVS
w2, = —3—=. It aims to avoid RVj — RV} < 0. It can be observed that -2
’ S S

RV§—RVy,
2ng

the IN algorithm.

is not far from , if n — oo. The algorithm after this adjustment is called

However, this IPI algorithm is only for the case under assumption of i.i.d.
MS noise. Ikeda (2015) proposed a two-scale RK, which is a convex combination
of two realized kernels with different bandwidths. He showed that his estimator
converges to the daily integrated volatility in the presence of dependent MS noise.

Following Ikeda (2015) we utilize M K (G) to estimate 2. Define
MEK(G) = (|k"(0)[nG™*)"'RK(G),

where RK(G) are the realized kernels for bandwidth G. The asymptotically op-
timal bandwidth G = O(n”) can be obtained by minimizing the AMSEg;. When
B = 1/3 only for Parzen kernel, which is allowed for the asymptotic normality of

MK(G). According to the related results in Ikeda (2015), we can get the AMSE

for MK(G)
(VG G 1
wists = () G0 (9)+o(g)-
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Based on Ikeda (2015)’s conclusion, Wang (2014) proposed two IPI algorithms for
RK under dependent noise assumption. He proved that his proposals are consistent
and that for algorithm A in the second iteration H, has already achieved the rate
of convergence of the order O(n3) and after only a few iterations H ; converges
to HB. He also showed that H? is consistent even when « is outside the range
of (1/2,1). Algorithm B is a fully automatic data-driven algorithm and with our
slight adjustment it is called the DN algorithm. The starting bandwidth in the
DN algorithm is more reasonable and end effects in the computation of the RK
are considered. The processes of the IN and DN algorithms starting with different
bandwidth for four selected days are displayed in Fig. [4.5] It shows that both
algorithms work very well in practice and only a few iterations are required. In
addition, no matter what the starting bandwidths, the selected bandwidths as
of the second iteration are very close and that the final selected bandwidths are
indeed the same. Normally, the required iteration number becomes smaller, if
a suitable starting bandwidth is chosen. The histograms of selected bandwidths
for RK-IN-tick, RK-IN-1min, RK-IN-5min and RK-DN-tick of all companies are
illustrated. The selected bandwidths for RK-IN-tick are smaller than those for
RK-DN-tick. The reason is that the dependent MS noise is taken into account.
Meanwhile, the selected bandwidths for 1-minute RK-IN are smaller than those for
tick-by-tick RK-IN, but larger than those for 5-minute RK-IN. This corresponds
to their ACFs results, that the correlations in 5-minute returns are smaller than
the correlations in 1-minute and tick-by-tick returns. The commonly required
number of iterations for RK-IN-tick, RK-IN-1min, RK-IN-5min and RK-DN-tick
are 3, 3, 3, b5, respectively. These confirm that both IN and DN algorithms work
very well in practice and only a few iterations are required. Please note that the
IN algorithm does not work for 15-minute RK of all ten stocks, because on some
days for these stocks the number of observations are smaller than the selected
bandwidths (n < H B). Meanwhile, the number of three cases mentioned in Feng
and Zhou (2015a) (RVz < 0, RVz >RV, and RK>RV,) for RK-IN-tick, RK-
IN-1min, RK-IN-5min and RK-DN-tick of the ten companies are listed, which
shows the necessity of adjusting the old algorithms to the proposed IN and DN
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algorithms.

Further comparison of these realized estimators is carried out by assessing
their performances in the computation of Value-at-Risk (VaR) based on the InRV-
SEMIFAR (also called the Semi-FI-Log-ACD model). The corresponding VaR

calculation is obtained by
VaR'i_a = S(Tt)O'tzlfa,

where s(7) is local variance, oy is the volatility of stocks at time ¢ and the loss
distribution Z;_, is assumed normal. In the SEMIFAR model the total means in
the original data s(7;)o; is obtained through the exponential transformation of the
estimated deterministic trend and the estimated conditional mean.

A Backtesting for comparing the observed amount of exceptions (points over
VaR) with the expected amount/benchmark is utilized. The one day dynamic
ahead 95% VaR based on the InNRV-SEMIFAR model together with the losses for
the ten companies are illustrated in Figure to Figure The corresponding
numerical results for points over VaR and the deviations from the benchmark are
listed in Table .4l and Table .5l It is found that RK-IN-tick and RK-DN-tick es-
timators have good performances by computing VaR and are hence recommended

using as the estimators of IV in practice.



Chapter 2

Forecasting financial market
activity using a semiparametric

fractionally integrated Log-ACD

This chapter is based on joint work with Yuanhua Feng and published with slight
differences in the International Journal of Forecasting 31 (2015) 349-363.

2.1 Introduction

This chapter considers forecasting of long memory and a smooth scale function
in financial time series aggregated from high-frequency data, such as (daily) trad-
ing volumes, trading numbers, average transaction durations as well as realized
volatility. Here, long memory is probably caused by aggregation. Well known
short-memory models in the current context are the ARCH (autoregressive con-
ditional heteroskedasticity, Engle, 1982) and GARCH (generalized ARCH, Boller-
slev, 1986) for returns and the ACD (autoregressive conditional duration, Engle
and Russell, 1998) for transaction durations. The ACD can also be applied to
trading volumes (Manganelli, 2005) and other quantities. Furthermore, the (first
type) Log-ACD (Bauwens and Giot, 2000, Bauwens et al., 2008, Karanasos, 2008,
Allen et al., 2008) is also proposed, where the log-data are modeled by an ARMA.

22
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The idea ensures that the estimates of the original data are always nonnegative.
Modeling a smooth scale function in volatility caused by changing macroeconomic
environment was investigated by Feng (2004), and Engle and Rangel (2008).

Well known long memory volatility models are the FIGARCH (fractionally in-
tegrated GARCH, Baillie et al., 1996), the LM-GARCH (long memory GARCH,
Karanasos et al., 2004), the FIACD (Jasiak, 1998) and the LM-ACD (Karanasos,
2004). Baillie and Morana (2009) proposed an adaptive FIGARCH for modeling
long memory and structural breaks in volatility. As far as we know, estimating a
smooth scale function in volatility models with long memory is not yet well studied.
Most recently, Beran et al. (2015) proposed to model short memory, long memory
and a nonparametric scale function in nonnegative financial time series based on
the log-transformation. They assumed that the process under consideration has a
log-normal marginal distribution and proposed to model the stochastic component
of the log-data by a Gaussian FARIMA (fractional autoregressive integrated mov-
ing average, Hosking, 1981, Beran et al., 2013). The log-data themselves are ana-
lyzed by a SEMIFAR (semiparametric fractional autoregressive, Beran and Feng,
2002a). Their proposals are hence called an EFARIMA (exponential FARIMA)
and an ESEMIFAR, respectively, which can be easily estimated using existing
software packages.

In this chapter, a possible origin of long memory in the data under consid-
eration is discussed. The EFARIMA and ESEMIFAR models are extended to
the case with general marginal distributions and represented as FI-Log-ACD and
Semi-FI-Log-ACD models, respectively. Necessary and sufficient conditions for
the existence of a stationary solution of the FI-Log-ACD are obtained. Detailed
properties of this model under the log-normal assumption are investigated. In par-
ticular, the long memory parameter is now not affected by the log-transformation
(see also Dittmann and Granger, 2002). Our focus is on forecasting using the
Semi-FI-Log-ACD based on an improved data-driven SEMIFAR algorithm. The
forecasting is carried out using a truncated linear predictor based on the AR(o0)
form, which is more simple and runs faster than the best linear SEMIFAR, pre-
dictor of Beran and Ocker (1999). Properties of the proposal are investigated in
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detail. For an ARMA model the proposed predictor is an approximately best lin-
ear predictor (Brockwell and Davis, 2006, p. 184). We show that this is still true in
the presence of long memory. Asymptotic variances of the prediction errors for an
individual observation and for the conditional mean are obtained. The calculation
of approximate forecasting intervals under the log-normal assumption is discussed.
The effect of the errors in the estimated trend on the asymptotic properties of the
proposed predictor is investigated. Application to (daily) trading volumes, trading
numbers, average durations and realized volatility shows that the proposals work
very well in practice and the log-normal distribution is quite reasonable. Finally,
our empirical results reveal that, besides long memory and smooth scale change,
realized volatility may also exhibit structural breaks.

Motivations for this study and definitions of the models are given in section
2.2. section 2.3 describes the properties and estimation of the proposed models.
The linear predictor is proposed and studied in section 2.4. section 2.5 reports
the empirical results. Final remarks in section 2.6 conclude the chapter. Proofs

of results are put in the appendix.

2.2 A semiparametric multiplicative long mem-

ory model

2.2.1 Origin of long memory in aggregated financial data

Nonnegative financial time series often exhibit long memory. Long memory in real-
ized volatilities and trading volumes has been studied by Andersen et al. (2001a),
and Fleminga and Kirbyb (2011). Deo et al. (2010) revealed that transaction
durations, trading numbers, squared returns and realized volatility may exhibit
long memory at potentially the same level. Beran et al. (2015) found evidence of
long memory in average durations.

A well known theoretical origin of long memory in economic time series is
the cross-sectional aggregation of microeconomic data. For instance, Granger

(1980) and Leipus et al. (2014) showed that the aggregation of random-coefficient
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ARMA processes under certain conditions will result in a long-memory process.
Zaffaroni (2007) discussed the aggregation of GARCH models and indicated that
this does not lead to long memory in volatility. See also Beran et al. (2013)
and references therein. Time series considered in this chapter can be thought
of as special cross-sectional aggregates of high-frequency data, i.e. aggregation
of micro-financial data in some sense. For instance, define the realized volatility
based on 1-minute (log-) returns as the sum of squared returns (Andersen et al.,
2001a). If returns at a given time point on a trading day follow a GARCH model,
realized volatility will be an aggregate of squared GARCH processes. Although a
squared GARCH process corresponds to a nonlinear ARMA model, the stationary
conditions for such (squared) processes are quite different to those for linear ARMA
models. Hence, results in Granger (1980) and Leipus et al. (2014) do not apply
to realized volatility. Results of Zaffaroni (2007) on the aggregation of GARCH
models also do not apply to the aggregation of squared returns. Realized volatility
used in the application in section 2.5 is indeed defined as the sum of the squared
ultra-high-frequency returns (without considering the effect of the microstructure
noise). Now, discussing the origin of long memory in such time series would be
even more difficult. To our knowledge, theoretical models to explain the origin of
long memory in financial time series aggregated from high-frequency data are still

unknown. But we believe that it is mainly caused by aggregation.

2.2.2 Simultaneously modeling long memory and scale change

A well known model for a stationary nonnegative financial time series, X;, t =

1,...,n, is the MEM (multiplicative error model, Engle, 2002) defined as
Xt = V)\tnt, (221)

where v > 0 is a scale parameter, \; > 0 is the conditional mean of X; = X;/v and
1 > 0 are i.i.d. random variables. In order to model long memory and a slowly
changing scale function simultaneously, we propose the use of a semiparametric

MEM model by replacing v in Eq. (2.2.1) with a nonparametric scale function
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v(T) > 0:
X =v(m) X = v(m)\my, (2.2.2)

where 7, = t/n denotes the rescaled time. Let Y; = In(X;), u(n) = Infv(n)],
¢ = In(N), e = In(n,) and Z;, = ¢ + &, where u(7;) and ¢; are the local and
conditional means of Y;, respectively. Following Beran et al. (2015), we assume

that E(g;) = 0, var(g;) = 02, and the stochastic component Z; follows a FARIMA
m(B)Z; = ¢¥(B)e, (2.2.3)

where 7(B) = (1 — B)%¢(B) = 1 — ¥2,m;B" with 7; ~ ci%7! for large i, d €
(—0.5,0.5) is the fractional differencing parameter, ¢(B) =1 — ¢ B — ... — ¢,BP
and Y(B) = 1+ B+...+1,B? are the AR- and MA-characteristic polynomials
with no common factor and all roots outside the unit circle. The model defined

by Egs. (2.2.1) and (2.2.3)) is called an exponential FARIMA (EFARIMA), which

is a nonnegative process whose log-transformation follows a FARIMA. The model
defined by Egs. and will be called an ESEMIFAR, because Y; =
In(X;) = Z; + pu(m) follows a SEMIFAR (Beran and Feng, 2002a) with the integer
integration parameter m = 0 and an additional MA part. Because of Eq. ,

we have

m(B)G = [(B) — w(B)]e:.

Beran et al. (2015) indicated that the EFARIMA model can be written as a
fractionally integrated generalization of the (first type) Log-ACD model. The
reason is that, similar to Eq. (7) of Bauwens et al. (2008), the conditional mean

of Z; can be represented as
=In)\ = Z min A\ + ij In(n;—;) (2.2.4)

where w; = m; +1; for 1 < j < ¢, and w; = 7; for j > ¢. The model defined

by Egs. (2.2.1) and (2.2.4) will be called a FI-Log-ACD. And Eqgs. (2.2.2) and
(2.2.4]) define a semiparametric generalization of the FI-Log-ACD, called a Semi-
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FI-Log-ACD. The Log-ACD (p, ¢) model is the special case with d = 0. Moreover,
according to Eq. (2.2.3), ¢; can also be rewritten as

G=2y—e—j =2y — -5 — T(B)Zy + p(B)ey (2.2.5)
— (1 (B2 + [9(B) — 1=,

The relationship between the FI-Log-ACD and the EFARIMA models is given

below.

Proposetion 2.2.1. The EFARIMA model defined by Egs. (2.2.1) and (2.2.3),
and the FI-Log-ACD model defined by Eqs. (2.2.1) and (2.2.4) are equivalent to

each other.

Proof of Proposition 2.2.1 is omitted. This result means that the proposed
models are the application of the well known FARIMA and SEMIFAR models
to the log-process. Hence, the log-transformation of a nonlinear (nonnegative)
process following the FI-Log-ACD is assumed to be a linear process. The original

process X, is hence a log-linear process.

2.3 Properties and estimation of the models

2.3.1 The stationary solutions

In the following, some results in Beran et al.’s (2015) under the log-normal assump-
tion are extended to more general distributions. Let a(B) = (1—-B)~% }(B)y(B) =
1+ >, a;B". Note that the stationary solution of the FARIMA process Z; is
given by

Zy =) i (2.3.1)
1=0

with a; ~ ¢,i197! for large 4, and, for large k, the autocorrelation (ACF) of Z; is
given by
pz(k) ~ cf’k|2d*1, (2.3.2)

A

where ¢ A

is a constant. Note that Cf > 0 for d > 0 and now Z; has long memory.

Let amax = max(«;) and api, = inf(a;), where apnax > 1 and o, may be negative.
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Conditions for the existence of a stationary solution of X; in the current case with

2u-th finite moment are similar to those given by Karanasos (2008).
Al. Z, is a stationary and invertible FARIMA process as defined in Eq. (2.2.3)).
A2. Both E(n**™>) and E(n;"*™") are finite for some u > 0.

Now, the stationarity solution of X is given by
X; =] (2.3.3)
i=0

Lemma 2.3.1. The solution of X, given in (2.3.3)) is strictly stationary with finite
2u-th moment, if and only if A1 and A2 hold. If A2 holds for uw > 1, X[ is also

weakly stationary.

The proof is similar to that of Lemmas and from Karanasos (2008), and is
omitted.

A2 ensures that all of the terms in the product in Eq. exist. Al
implies that > >° a? < oo and E(g;) = 0. This together with A2 ensures the
convergence of X; defined in Eq. (2.3.3). The condition E(s;) = 0 is different
to the typical assumption E(7;) = 1 used in an ACD model. For instance, if
1 is exponentially distributed with the density f(u) = " exp(—u/puy), we have
p, = exp(y) ~ 1.781, where 7 is the Euler constant. However, the restriction
E(e:) = 0 is now necessary. Otherwise, the mean in Z; and the scale in X} are

not well defined, because a; are not summable. F(g;) = 0 is fulfilled, for example

by:
Example 1. The log-normal innovations n; with &, ~ N(0,02) and ¢2 > 0,
Example 2. The log-logistic innovations 7, with &, ~ Lo(0,b) and b > 0 or
Example 3. The log-Laplace innovations 7; with &, ~ La(0,b) and b > 0.

Note that A2 may or may not be affected by d. The question of whether A2 is
fulfilled or not is determined jointly by the distribution of 7, the value of v and
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the FARIMA coefficients. In Example 1, A2 is always fulfilled and X} is strictly
and weakly stationary. In Examples 2 and 3, X} is only weakly stationary if b is
small enough.

Furthermore, the stationary solutions of the conditional mean of Z; and that

of X; are

G = ZaiEt—i and \; = Hntaji. (2.34)
i=1 i=1

The forecasts of the FARIMA process Z; and its conditional mean (; to be proposed

later are based on their AR(c0) representations, respectively. For Z; we have

Zt = Z Bth,j + Et, (235)

j=1

where §; are the coefficients of §(B) = (1 — B)*¢(B)y~"(B) = 1 - Y2, 3;B7.

For large j, we have 3; ~ c5j~¢"! with c¢g > 0. This yields the representation of
(; based on Z;:
G= BiZi;. (2.3.6)
j=1
The stationary solutions of X; and \;, respectively, can be rewritten as
X7 =mn [J(X7 )% and A, = [J (X7 )" (2.3.7)
j=1 j=1

2.3.2 Properties under the log-normal assumption

Beran et al. (2015) found that when aggregated financial data are considered,
the log-normal assumption is usually a suitable choice. They hence studied the
properties of the proposed models with log-normally distributed innovations in
detail. In the following, their results will be first summarized briefly. Then we
will focus on discussing the application of the Semi-FI-Log-ACD model. We will
see that now all of Z;, X}, ¢; and )\, exhibit long memory. In particular, the
authors showed that the stationary process X; is also log-normally distributed,

X; ~ LN(0,0%) with 02 = 02 )2, a7, if & are 1.i.d. N(0,0?) random variables.

79
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The closed form formula of the ACF of X} can be obtained. Furthermore, in the

presence of long memory it holds

k’2d_1

px+(k) =)

for large k, where 0 < cff T < cf . We see that X is a long memory process with the
same memory parameter d, if Z; has long memory. This confirms the well known
fact that the long memory parameter in Z; and that in X; under the log-normal
assumption is the same (see Dittmann and Granger, 2002). The reason is that
the Hermite rank of the exponential function is one. However, the constant in the
asymptotic formula of px«(k) is smaller than that in pz(k). If Z; is a FARIMA
with —0.5 < d <0, it can be shown that > pyx«(k) > 0. We see that X} does not
have antipersistence, even if Z; is antipersistent (see also Dittmann and Granger,

2002). This leads to the very interesting fact:

Proposetion 2.3.1. A FI-Log-ACD process X, with log-normal marginal distri-

bution cannot exhibit antipersistence.

In financial econometrics, study on the long-memory property of the condi-
tional means (; and \; in Z; and X/, respectively, is also of great interest. The

ACF of ¢; with d > 0 is given by
pe(k) = k>4 (2.3.8)

for large k, where ¢, > ¢7. From (2.3.8) we see that (; also has long memory with
the same memory parameter d. However, the constant in the asymptotic formula

of pc(k) is larger than that in pz (k). And the ACF of \; for large k is given by
pa(k) = cplk[*7,

where 0 < cﬁ < cg. Again, the long memory parameter in ); is d. But the constant
in the asymptotic formula of the ACF after the exponential transformation is

reduced.
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2.3.3 Estimation of the models

From now on we will mainly consider the model of Z; without the MA part for
simplicity. But the theoretical discussion holds in the case, when Z; follows a
general FARIMA model. Now, let 6 = (02,d,¢1,...,¢,)" denote the unknown
parameter vector of the SEMIFAR model. Under the normal assumption of &;, ¢
can be estimated from Z, = Y, — f(1;) by the approximate Gaussian maximum
likelihood method (MLE). The AR order p can be selected consistently by the
BIC. The trend will be estimated by a p,-th order local polynomial (Beran and
Feng, 2002b) with a weighting function K (u) and the bandwidth h, which does
not share the boundary problem, if p, is odd. We mainly consider the use of
p, = 1 and p, = 3, and put [ = p, + 1. The asymptotically optimal bandwidth is
given by

1— 24 (“)QV} 1/(20+1-2d)

h :C (2d—1)/(21+1—2d) thC —
A= RN WP (D)

. (239
where I(u®) = fol (1D (7)]?dT and V is a constant as defined in Beran and Feng
(2002b).

An iterative plug-in algorithm for kernel estimator of x(7) developed by Beran
and Feng (2002a) following Gasser et al. (1991) is built-in S+ FinMetrics. In this
chapter the algorithm of Beran and Feng (2002b) for local polynomial regression
will be used, where p®) is estimated by a (I + 1)-th local polynomial with the
bandwidth & ;, inflated from the selected bandwidth h;_; in the (j—1)-th iteration.

This algorithm processes as follows:

Step 1. Start with the bandwidth hg = O(n~?) with b = 1/(20 + 1).

Step 2. In the jth iteration with j > 1, estimate p using h;_1, and d and V' from
Y,, where Y, = Z, — f(1;) and the AR order p is selected by BIC. Estimate
I(u®) using hy; = (hj_1)* with o = (21 + 1 — 2d) /(2] 4 3 — 2d).
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Step 3. Improve h;_; by

R o 1/(204+1-2d)
- 1—2d ] (H=v . p(2d-1)/(21+1-2d) (2.3.10)
’ 2082 I[uO(7; hy )]

Step 4. Increase j by one and repeatedly carry out Steps 2 and 3 repeatedly until

convergence is reached or until a maximal number of iterations is achieved.

The starting bandwidth in Step 1 is roughly estimated under independent errors,
which works very well in practice. As was shown by Beran and Feng (2002b), the
a used in Step 2 is the asymptotically optimal choice, called ogp. Two further
reasonable choices of a are oy = (20 + 1 — 2d)/(2l + 5 — 2d), to minimize the
MISE of 49, and awa: = 1/2, to achieve the most stable bandwidth selector. The
simulation study of Beran and Feng (2002c) showed that various different iterative
plug-in SEMIFAR, algorithms based on the kernel regression work very well. This
should be the same in the current context, because the local polynomial regression

and the kernel regression are asymptotically equivalent.

2.4 Forecasting based on the Semi-FI-Log-ACD

Now, we will discuss forecasting based on the Semi-FI-Log-ACD model, which is
equivalent to the ESEMIFAR. Note that the ESEMIFAR is a SEMIFAR applied
to the log-transformed data, the ESEMIFAR forecasting hence consists of two
stages: 1) The forecasting based on the SEMIFAR model applied to the log-data,
and 2) The calculation of the forecasts for the original data through exponential
transformation. The former consists again of two parts: the extrapolation of the

estimated trend function /i(7,) and the prediction of the stochastic part Z, .

2.4.1 Extrapolation of the trend function

For the purpose of forecasting, we will propose the use of the local linear regression,
because the local cubic approach is sometimes instable at the endpoint. The great

advantage of the local linear estimator compared to a kernel estimator is that j
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has automatic boundary correction, i.e. the bias of fi(7,,) at the endpoint 7, is still
of the order O(h?), while the bias of a kernel estimator at 7, is of the order O(h).
We propose to forecast the trend pu(7,1x) in the future by linear extrapolation
of j(r,). Let Ap = ji(7,) — fi(7,—1). By means of the linear extrapolation, the

forecasted trend fi(7,4) is given by
Arais) = 1) + EAp. (2.4.1)

The following assumptions are required for further discussion.

A3. In Al, assume further that d € (0,0.5), &, ~ N(0,02), and ¢ = 0 for
simplicity.

A4. The weighting function K (u) is a symmetric density on the compact support
[—1,1].

A5. The trend function p is at least four times continuously differentiable.

A6. The bandwidth A is selected by the data-driven algorithm proposed in section
2.3.3.

A4 and A5 are standard assumptions in nonparametric regression. A6 ensures

that /i achieves the optimal rate of convergence of the order O(n(d—DV/(2+1-2d)),

2.4.2 The best linear and approximately best linear pre-

dictors

Let Z, ..., Z, denote the past observations. The best linear predictor of 7, for
SEMIFAR was proposed by Beran and Ocker (1999):

Tk =Y BriZi, (24.2)
j=1

where 87 = (87,,...,57,)" is as given in Theorem 1 of Beran and Ocker (1999),

which minimizes the mean squared prediction error (MSE). Furthermore, Zsk
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satisfies

%

E[(Zusn — Zosn)Z) =0, t=1,...,n. (2.4.3)

Eq. implies that the prediction error of Zn+k is orthogonal to any of the
observations.

It is however not easy to use Zn+k defined in Eq. , because 3} has to be
solved repeatedly at each forecasting step. Note that in the current context n is
very large. For simplicity, we propose to use an approximately best linear predictor
based on the truncated part of the AR(co) representation of Z;. This idea is often
employed to carry out forecasting based on an ARMA model, when the sample
size is large (Brockwell and Davis, 2006, p. 184). Hence, an approximately best
linear predictor based on Z1,. .., Z,, by means of the AR(co) representation Eq.

(2.3.5)) of the FARIMA process is defined by

n+k—1

k—1
ek = Zﬂj k=g T Z Bi Zntk—js (2.4.4)
Jj=1 j=k

where Z; +k—; are the previously predicted values. For the practical implementa-

tion, we propose to use the following linear predictor

k—1 n+k—1
Zn+k = Z ﬁjZn—&—k—j + Z BjZnJ,-k—j, (245)
Jj=1 j=k

where Bj are the estimated coefficients in the AR(co) form of Z;, Zn%,j for
7=k, ....,n+k—1, are the residuals obtained; and Zn+k_j, Jg=1,...,k—1, are the
values predicted previously. The linear predictor Eq. is what we propose
to use in practice. To the best of our knowledge, the above-defined approximately
best linear predictor has not previously been proposed in the literature in the

presence of long memory. The relationship between Zn+k and Z; 41 18 given by

Lemma 2.4.1. Under Assumptions A3 through A6, the two linear predictors Zn+k

and Z:; 4k are asymptotically equivalent to each other.

Proof of Lemma [2.4.1] is given in the appendix. Lemma [2.4.1] indicates that
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the asymptotic properties of Z:L 41> defined based on the unobservable quantities

B; and Z;, are the same as those of Zn+k, defined using Bj and Z,.

Now, the best linear predictor given infinite past observations Z,,, ..., 21, Zo, Z_1, . ..

is introduced. Similar to Eq. (5.5.3) of Brockwell and Davis (2006), this linear pre-
dictor based on the AR(oc0) form of the FARIMA model in Eq. (2.3.5) is defined
by

k-1 o
Tk =Y BiZnski+ Y BiZnin i (2.4.6)
j=1 =k

The properties of Zn+k are stated in the following theorem.

Theorme 2.4.2. Under the same assumptions of Lemma[2.].1], the proposed lin-

ear predictor Zn+k 18 an approximately best linear predictor in the following sense:

~ A

Z) E[(ZnJrk - Zn+k)2] = 0(1) and

A

i) E[(Znsw — Znsn) 2] = o(1), t =1,...n.

Proof of Theorem is given in the appendix. Theorem i) shows that
Zn+k converges to Zn+k in mean squared error. Theorem ii) shows that the
prediction error of Zn+k is approximately orthogonal to all of the observations.
Note that Zn+k is the best linear predictor based on infinite past observations.
Hence, its MSE is no larger than that of Zn+k, because the o-algebra generated by
Ly ooy L1, 20,41, ... includes that generated by Z,,...,7Z; as a subset. More-
over, the MSE of Zn+k is no smaller than that of Zn+k. Thus, Theorem i)
ensures that the MSE of all of the above mentioned linear predictors are asymp-

totically the same. This leads to the following corollary.

Corollary 1. Under Assumptions A3 to A6, the linear predictor Z, is asymptot-
ically equivalent to the (exactly) best linear predictor 7, proposed by Beran and
Ocker (1999).

2.4.3 Approximate forecasting intervals

Next, we will discuss the interval forecasting of an individual observation, the

conditional mean and the total mean. Note that the point forecasting for (. is
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the same as that for Z,, .4, i.e. fn+k = Zn+k. The variance of Z,,,j — Zn+k and that

of (yirx — Znix can be easily obtained by adapting known results in the literature.

Theorme 2.4.3. Under the same conditions of Theorem [2.4.4 we have

. k=1
i) var(Zpsk — Zngk|Zns -, Z1) = Vg, ., where Vg, = o2 > a2,
i=0
R S
) var(Cok — Znkl| Zns -5 Z0) = Ve, where Ve, =023 aF.

1

<.
I

The proof of Theorem [2.4.3]is given in the Appendix. The result in Theorem
i) is well known. Note however that, in the current case V, ,, tends to var(Z;)
very slowly. Moreover, as far as we know, the result in Theorem ii) on the
variance of the prediction error for the conditional mean is usually not discussed
in the literature. This is however an interesting topic in financial econometrics.
For example, it helps us to understand the accuracy of the forecasted volatility or
the forecasted conditional mean duration.

The point forecast for an individual future observation is }Afmk = [(Thak) +
2n+k. The length of the forecasting interval for Y,,,x is asymptotically the same as
that for Z,.x, because the error in [i(7,,x) is asymptotically negligible compared

to that in Z,,j. Assume that &, are i.i.d. N(0,02). The approximate 100(1—a)%-

forecasting interval for Y, is given by

Yok € </l(7'n+k) + Zpyr — Qo2 Vi I (Tngr) + Zis, + Go/21/ Vzn+k> (2.4.7)

and, for k > 1, the approximate 100(1 — «)%-forecasting interval of (, is given
by

where ¢,/ is the upper o/2-quantile of N (0, 1). Furthermore, let m(7;) = pu(7)+¢;
and g(7;) = exp[m(7;)] be the total means in Y; and X, respectively. We have

M (Tpak) = Ynix. But the prediction error for m(7,,x) is approximately equal to

that for ;4. Thus, the approximate 100(1—a)%-forecasting interval for m(7, 1),
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k > 1, is given by

m(Tn-i-k) € (ﬂ(Tn—&-k) + Zn+k - Qa/Q\/ ‘/Cn-Hw ﬂ(Tn-‘rk) + Zn+k + o2 \/ ‘/Cn+k> .

(2.4.9)

Note that the prediction errors in én+1 and Mm(71,+1) are both asymptotically neg-
ligible.

Our main purpose is to achieve suitable forecasts for X, x, Apix and g(7,4%)-

Taking the exponential transformation of Z, ., and m(7uyy) = Yk, respectively,

we have
n+k—1
)\n—i—k = eXP( n+k) - H Zfik,j, (2410)
7j=1
Xn+k = §(Tnsk) = expli(Tnyr) + Zn+k] = ’;(Tn+k);\n+k' (2.4.11)

The approximate 100(1 — «)%-forecasting intervals for X, x, Anir and g(7n4r)

can be obtained based on Egs. ([2.4.7)) to (2.4.9), respectively, through exponential

transformation.

2.5 Application

The forecasting of realized volatility plays an important role in option pricing and
risk management. Hence, the proposals are applied to realized volatility and other
related quantities aggregated from high-frequency data of different European firms.
In what follows, empirical results for four selected examples, namely the (daily)
trading numbers of Air France (AF-TrN), trading volumes of BMW (BMW-TrV),
average durations of Peugeot (PSA-MD) and realized volatility of Metro (MEOG-
RV) from Jan. 2, 2006 to Jun. 30, 2012, are reported. For each example, data-
driven estimates were carried out using six sub-methods, namely those with p, =1
and 3, and a = agpt, g and e, denoted by M1, M2 and M3, respectively. This
enables us to determine the effect of the bandwidth selection on the parameter
estimation. The Epanechnikov kernel is used as the weighting function. To reduce
the effect of the large variation in 4()(7) at boundary points on iL, I was calculated

on [6,1 — §] (See Beran and Feng, 2002c), where § = 2.5% and 5% are used for
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pu, = 1 and 3, respectively.

Table lists the selected bandwidth, the estimated long memory parameter
and the selected AR order in all cases, together with the estimated short memory
parameter, if applicable, with the 95%-confidence intervals for the corresponding
parameters and results of the significance test of the trend being given as well.
Note that, in a given case , h with pp = 3 will be much larger than h with
p, = 1. For a given example and fixed p,, the bandwidths selected by aqpt, g
and .- may clearly differ from each other. Usually, the bandwidths selected
by oy and a,,, are larger than that selected by gy For instance, for PSA-MD
with p, = 1, the bandwidths selected by aqpt, g and aye, are 0.112, 0.192 and
0.187, respectively. For AF-TrN with p, = 3, they are 0.226, 0.227 and 0.280.
The trend is significant in all cases, except in the example of MEOG-RV with
pp = 1. In this last case, the test is significant using the bandwidth selected
by oy, but insignificant using bandwidths selected by oy and ayq,, due to the
enlarged bandwidths. The test results for this example might also be affected
strongly by possible structural breaks (this will be discussed further a little later).
In this chapter, we propose the use of the asymptotically optimal inflation factor
Qopt, because the number of observations is very large. For choosing p, we found
that forecasts with p, = 3 using the linear extrapolation may be unreasonable
at times, due to the instability of the estimate at the right endpoint. Hence, we
propose the use of p, = 1 for forecasting purposes. It is found that the use of
p, = 3 with a constant extrapolation will also work, but now the change of the
trend cannot be reflected by the forecast.

For any given example, all six sub-methods select the same EFARIMA model.
Here, we obtained an EFARIMA (0,d,0) for the AF-TrN and MEOG-RV examples.
The relationship between d and h is obvious. For a given p,, the larger h is,
the higher the d that will be obtained from the residuals. However, none of
the examples clarify the differences between the values of d obtained by the six
sub-methods with different bandwidths and different p,. The biggest difference
occurred for PSA-MD, where d has a maximum of 0.294 and a minimum of 0.259.

This difference becomes even smaller if we consider only the three sub-methods



Chapter 2. Forecasting financial market activity using a semiparametric

fractionally integrated Log-ACD 39
Table 2.1: Results of ESEMIFAR models for the four data sets
Series Bandwidth selection N ) R
- d & 95%-CI D o1 & 95%-CI trend
P h
1 0.207 0.409 [0.3727 0.447] 0 sign.
AF-TrN
M1 3 0.226 0.397 [0.3597 0.434] 0 sign.
1 0.146 0.299 [0.233, 0.366] 1 0.109 [0.024, 0.193 sign.
BMW-TrV
3 0.252 0.293 [0.226, 0.360] 1 0.114 [0.029, 0.199 sign.
1 0.112 0.271 [0.2027 0.341] 1 0.158 [0.071, 0.246 sign.
PSA-MD
3 0.228 0.259 [().1897 0.329] 1 0.169 [0.081, 0.258 sign.
1 0.127 0.420 [0.382, 0.457] 0 — sign.
MEOG-RV
3 0.203 0.415 [0.3777 0.452] 0 sign.
1 0.203 0.409 [0.371, 0.447] 0 — sign.
AF-TrN
M2 3 0.227 0.396 [0.3597 0.434] 0 — sign.
1 0.196 0.312 [0.2467 0.378] 1  0.097 [0.013, 0.181 sign.
BMW-TrV
3 0.266 0.295 [0.2287 0.361] 1 0.112 [0.028, 0.197 sign.
1 0.192 0.294 [0.2267 0.362] 1 0.137 [0.051, 0.223 sign.
PSA-MD
3 0.230 0.259 [0.1889, 0.330] 1 0.169 [0.080, 0.257 sign.
1 0.149 0.425 [0.3887 0.463] 0 — insign.
MEOG-RV
3 0.215 0.417 [0.379, 0.455] 0 — sign.
1 0.201 0.409 [0.3717 0.447] 0 — sign.
AF-TrN
M3 3 0.280 0.401 [0.363, 0.438] 0 — sign.
1 0.191 0.311 [0.24:57 0.377] 1 0.098 [0.015, 0.182 sign.
BMW-TrV
3 0.254 0.293 [0.2267 0.360] 1 0.114 [0.029, 0.199 sign.
1 0.187 0.293 [().2257 0.362] 1 0.138 [0.052, 0.224 sign.
PSA-MD
3 0.278 0.268 [0.1987 0.338] 1 0.161 [0.073, 0.248 sign.
1 0.151 0.426 [0.388, 0.463] 0 — insign.
MEOG-RV
3 0.246 0.420 [0.3827 0.458] 0 — sign.

with the same p,. An interesting empirical finding is that (for a given example

with a fixed «) the d obtained by p, = 3 is always slightly lower than that obtained

by p, = 1. Theoretically, the large sample properties of the estimated parameters
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with p, = 3 are slightly better than those with p, = 1. Furthermore, if p = 1,
(;51 is also affected less by the selected bandwidths. However, now, due to the
existence of short memory, d is much lower than in the case of p = 0. Finally,
if p =1 the gEl obtained in a given example with p, = 1 is always slightly lower
than that obtained with p, = 3, a trade-off effect which ensures that the resulting
theoretical ACF in a finite sample is not affected as much by the choice of p,,.

Let Zt =Y, — ii(r;) denote the residuals of the log-data. Histograms of the
standardized values of Z, and those of their exponential values are shown in Figure
for all examples. We see that the distribution of Z; in all cases is nearly normal.
This indicates that the normal assumption on ¢; is a suitable choice for analyzing
these time series.

Figure (a) shows daily trading numbers of Air France together with the
point and 95%-forecasting intervals for the next 50 days. We can see that the
higher the scale function, the larger the variation in the observations, which re-
flects the fact that X; has time varying variance var(X;) = v*(r;)var(X;). To
this end see also the other examples. This provides the evidence for the use of
the log-transformation based on a multiplicative nonparametric regression model.
Figure (b) displays the log-transformed data together with the estimated trend
f(1;) (solid line) and the corresponding forecasts of Y, .. In this example, the
point forecasts are much lower than the estimated trend at the right end, but
will tend to the average level in the near future. This reflects the well known
fact that a long memory process may exhibit spurious local trends and indicates
that long memory and the smooth scale change should be investigated together.
The estimated conditional means of the log-data together with the corresponding
point and interval forecasts for (,,; are given in Figure (c) The estimated
conditional means look quite stationary. The difference between the forecasting
interval of Y,, 4 in Figure[2.2(b) and that of (, in Figure[2.2|c) is that the former
is affected by €,.%, but the latter not. The estimated total means in the original
data g(7;) together with the point forecasts §(7,.x) and their forecasting intervals
are displayed in Figure[2.2(d), which reflect the total dynamics of the daily trading

number of Air France caused by past information and slowly changing macroeco-
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(a) AF-Trading Numbers (b) Log-data of AF-Trading Numbers
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Figure 2.1: Histograms of the standardized residuals of the SEMIFAR model for
the log-data and their exponential transformation for all examples.
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nomic environment. From Figure 2.2(d) we can see that trading numbers of Air
France and their volatility increased strongly in the last years and will possibly
increase further in the future. Results on ), and m(7) are omitted.

Similar results for daily trading volumes of BMW and daily average durations
of Peugeot are displayed in Figures|2.3/and . From Figure (b) we can see that
the current BMW trading volumes stay at a relatively low but stable level. The
results in Figure indicate that the transaction durations of Peugeot reduced
clearly in the last years due to the introduction of electronic trading platforms.
Figures 2.3(b) and [2.4(b) show in particular that after the log-transformation
those data can be well modeled by an additive nonparametric regression and the
residual series in Figures [2.3(c) and 2.4)c) are quite stationary.

Finally, empirical results of the Semi-FI-Log-ACD applied to realized volatility
of Metro are displayed in Figure 2.5 Comparing Figure 2.5(a) with Figure 2.5(b)
we see that analysis of the log-transformed realized volatility is a natural way, as it
is usually proposed in the literature. Although the Semi-FI-Log-ACD works in this
case, there seems to be a problem. That is the realized volatility during the global
financial crisis in 2008 and 2009 and the European debt crisis in 2011 was very
high with possible structural breaks. The fact that realized volatility may exhibit
long memory and structural breaks at the same time is e.g. reported by Choi et
al. (2010), who proposed to improve the estimation of the long memory parameter
in realized volatility after removing the detected structural breaks. From Figure
2.5(b) we can see that in addition to long memory and possible structural breaks,
this series may also exhibit significant trend, in particular in the subperiod between
the two crises. A scrutinizing empirical study shows that the quality of both of the
estimated long-memory parameter and the fitted trend can be improved clearly,
if possible structural breaks are taken into account. It is better to find out all
structural breaks in the scale function of this realized volatility series first using
a suitable nonparametric detecting procedure. An ESEMIFAR model can then
be fitted to each of the subperiods determined by the detected structural breaks
separately. Detailed study on such an approach is beyond the aim of this chapter

and will be investigated elsewhere.
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(a) Daily trading numbers of AF from Jan. 2, 2006 to Jun. 30, 2012 and forecasts for 50 days

15000 25000

5000

0

2006 2008 2010 2012

Year

(b) The log—data with ESEMIFAR trend and corresponding forecasts

2006 2008 2010 2012

Year

(c) Estimated conditional means of the ESEMIFAR and the forecasts

0.5

0.0

2006 2008 2010 2012

Year

(d) Estimated total means in the original data and the forecasts

6000 10000
AN

2000

2006 2008 2010 2012
Figure 2.2: Estimation and forecasting results for daily trading numbers of AF
from Jan. 02, 2006 to Jun. 30, 2012, obtained by the Semi-FI-Log-ACD model.
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(a) Daily trading volumes of BMW from Jan. 2, 2006 to Jun. 30, 2012 and forecasts for 50 days
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Figure 2.3: Similar results as given in Figure [2.2] but for daily trading volumes of
BMW.
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(a) Daily average durations of PSA from Jan. 2, 2006 to Jun. 30, 2012 and forecasts for 50 days
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Figure 2.4: Similar results as given in Figure but for daily average durations

of Peugeot.



Chapter 2. Forecasting financial market activity using a semiparametric
fractionally integrated Log-ACD 46

(a) Realized volatility of MEOG from Jan. 2, 2006 to Jun. 30, 2012 and forecasts for 50 days
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Figure 2.5: Similar results as given in Figure but for realized volatility of
Metro.
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2.6 Final remarks

Some important results and a data-driven algorithm for the Semi-FI-Log-ACD
model have been obtained. The short- and middle-term forecasting of a nonnega-
tive process with long memory and a nonparametric scale function based on this
model have also been studied. An approximately best linear predictor has been
proposed, and an application to a number of financial time series aggregated from
high-frequency data has shown that the proposals work very well in practice. Note
in particular that the simultaneous estimation of the nonparametric trend and the
long memory error process improves the forecast quality. The reasons for this are
as follows. On the one hand, if potential long memory in the conditional mean
of a process is not considered, the bandwidth selected will be much smaller than
it should be, and the formula for calculating the asymptotic variance will also be
wrong. This may lead to the estimation of a significant trend, even if the underly-
ing process is in fact stationary. On the other hand, if an existing nonparametric
scale function is not considered, it will be misinterpreted as very strong long mem-
ory. Finally, possible structural breaks also have a clear effect on the estimated

model; however, this is not considered in the current chapter.
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Appendix to Chapter 2

Proof of Lemma It is well known that, under assumptions A3 through
A6, the local linear estimator fi(7) with fractional times series error achieves the
optimal convergence rate of the order O(n=21724/(5=2d)) (Feng and Beran, 2013).
This results in the fact that the difference between Zt and Z; is also of the order
O(n~21-24)/(-24)) Moreover, when n — oo and d > 0, the effect of the estimated
trend function on the estimation of the unknown parameter vector 6 is negligible
(Beran and Feng, 2002a), and 6 is now still \/n-consistent. Using Taylor expansion
it can be shown that Bj — B = BjOp(n_1/2). Detailed discussion on this point is
omitted to save space.

In what follows, we will only show the result of Lemma for k = 1 in
detail. Note that Z5 = 3" | B;Znp1-; = Op(1) and 320 |B;] < 3220, (8] < o0
for d > 0. We have

Zn+1 n+1 - Z 6_7 n+l—j Z 53 n+1—j
= Z Bj2n+1—j - Z BjZnﬂ—j — Z BiZn1—j + Z BjZnH—j
=1 =1 j=1 j=1

n

_Z/BJ n+l—j = n+1 ]) Z(ﬁ /8]) n+1—j

7=1

_ ZBJ n—22d-1)/(5— 2d) Zﬁﬂ 1 ] _1/2)
~ Zﬁj 72 2d—1)/(5— 2d)> (A.Q.l)

< Op(n*PD/E=20) Z 131 = op(1).
j=1
Similarly, this result can be proved for £ > 1. Lemma [2.4.1|is proved. <
Proof of Theorem [2.4.2] Following Lemma [2.4.1] the results of Theorem
2.4.2| will be proved by replacing ZnJrkJ with Z 4 Under the same conditions of
Lemma 2.4.1] we have
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i) For k = 1:

[ (o] n 2
E[(Znir— Z50)') = E (Z BiZns1j— > 5jZn+1j>
p j=1

00 2
—E ( > @-Z,LH]-)

j=n+1

:ZﬁzZﬁ] n+lzn+lj]

i=n-+1 Jj=n+1

=D B Y Bli—J) (A2.2)

i=n+1 j=n+1

%ZngdlzC’@] 16— 4)

i=n-+1 j=n+1
00 00
0) Y [Coli™" > |Csli!
i=n+1 j=n+1

= 4(0)0(n +1)7] = o(1).

More details of the proof above will be clarified by the remark given later.
Now, let £ > 1 and assume that the results are proved fori =1,..., k—1. We

have

ntk—1 2
E[(Zn—i-k - Z:L+k)2] =L <Z 5] ntk—j T Zﬂ] ntk—j Zﬁj n+k—j Z BjZn—H’f—j)
j=k

2
=L <<Zﬁ] ntk—j Zﬁj ntk j) + Z ﬁjZ"Jrkj)

Jj=n+k
= B[T? + 2E[ITy) + 2E[T3],

where T = Zf 1153( ntk—j Z:,+kfg) and Ty = Z] otk Bi Ltk
Since all of the terms in 77 are of the order o,(1), T} is hence an 0,(1) term.

Similarly as for £ = 1, it can be shown that 75 is also of the order o,(1). This
leads to the conclusion that E[(Zpix — Znix)?] = o(1) holds for k > 1.
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ii) Fork=1andany t=1,...,n

El(Zy1 — Zn+1)Zt] =F (Z BiZnt1—i + Eng1 — Z BiZnJrli) (Z BiZ—j + 5t)
L \i=1 i=1 J=1
=K ( Z BiZng1—i + €n+1) (Z BjZ—j + €t>

i=n+1 j=1

=FK Zﬁ]Zt jZBn-&-l-&-zZ—z“‘En-i-l Zﬂjzt —j

Lj=1

&t <Z 6n+1+z‘Z—i + 5n+1)

1=0

=FE Z Bth—j Z 5n+1+z’Zﬂ;
j=1 i=0
€t <Z Bry14id—i + 5n+1>

1=0

+FE

oo
En+1 E ﬁthfj
J=1

+FE

Since E En+1 Z;il Bth_ji| =0and F [€t (Zfio Bn—i—l—i—iZ—i + 5n+1)] - O,

E((Zosr — 22, ) 2] = E (A.2.3)

D 8%y BuiriZo
i=0

< Z |Br+1+i Z | B | v (E+1— )]
=0 =1

<7(0) ) 1Csl(n + 1+~ = O[(n+ 1)~ = o(1).

1=0

Now, let k > 1 and assume that the results are proved for:=1,..., k— 1, we

]

= E[Ts + Ty + T3], (A.2.4)

have

)
E Bz n+k—i n+k z E ﬁz’Zn—&-k—i +€n+k

i=n+k

E[(Zm—k Z:L—‘rk Zt = {
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~

where Ty = Z, 30 Bil(Znsii — Zisni)s Tu = 20350 BiZnyk—i and T =
entkZy with E(T5) = 0. It is clear that E(73) = o(1), because the results hold for
i=1,...,k—1. The fact that E(T}) = o(1) can be proved similarly as for k£ = 1.
Insert these results into we obtain

E[(Zn-l-k - Z:L+k>Zt] - 0(]‘>’t - 17 ey 10, (A25)

for any k£ > 1. Theorem [2.4.2]is proved. <

Remark 1. Some techniques used in the proof only apply to d > 0, while for
d < 0 other approaches should be used. It is very common that some conclusions
hold only for long memory errors but not for antipersistent errors. For instance,
for d > 0 we have > ;= 3 = 1. For d < 0, f; are however not summable.
Furthermore, the approzimate formula of v(k) does not apply to (i — j) in the
fourth line of . The reason is that although both i and j tend to infinity,
their difference may be very small. Hence, here the fact that |y(k)| < ~(0) is simply
employed. Detailed analysis of the second sum there may lead to more accurate

result. This is however omitted to simplify the proof.

Proof of Theorem [2.4.3] For a causal stationary and invertible ARMA
model, the predictor Zn+k defined in (2.4.6)) can be represented as a MA(oo) form
(see e.g. Theorem 5.5.1 of Brockwell and Davis, 2006)

Zn+k = Z QiEntk—i- (A.2.6)
i=k

It can be shown that this fact also holds, if Z; is a causal stationary and invertible
FARIMA model considered in this chapter. The difference between 7, and Zn+k
is:

00 e k—1
Zn+k - Zn+k = E QiEntk—i — E 1 E Qi€ptk—1- (A27)
=0 i=k =0
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The variance of Z,, 1y — Z,11 is therefore

k—1

var(Znsx — Zn+k) =0’ Z Q. (A.2.8)

=0

Note that the point forecast for the conditional mean, 5n+k, is the same as Zn+k.

The difference between (, . and Zn+k is given by

[e's) 00 k—1
Cntk = Znyk = E Qi€pyk—i — E Qi€pyk—i = E Qi€nyk—i (A.2.9)
=1 i—k i—1

with the variance

k-1
0ar Gk — Zngr) = 0° Z o, (A.2.10)
i=1

In Theorem it is shown that Zn+k ~ ~n+k. Thus, Z, 1 — Zn+k SIS Zn+k

and Cn-i—k - Zn-I—k ~ Cn-‘rk - Zn-i—k- Consequently, UCLT’(Zn+k - Zn-i—k) ~ UCLT(Zn—I—k -
Zn+k) and var(Goix — Zn+k) ~ var(Coar — Zn+k). Theorem is proved. <©



Chapter 3

An iterative plug-in algorithm for

realized kernels

This chapter is based on joint work with Yuanhua Feng and published with slight
differences as Working Paper (2015-01) in the Working Paper Series of Center for

International Economics at Paderborn University.

3.1 Introduction

Estimation of the daily integrated volatility (IV) is an important topic in risk
management, portfolio allocation and option pricing. Realized volatility (RV)
introduced by Andersen et al. (2001a, b) is a model-free estimator of this quantity
based on high-frequency financial data. The most simple definition of the RV,
called RVy, is the sum of the squared intraday returns. It is however found that
high-frequency data often exhibit microstructure (MS) noise (Hasen and Lunde,
2006a). Strong evidence for the existence of MS noise is illustrated in Figure
in the next section using numerical examples. Now, RV, is an inconsistent
estimator of the IV (Zhang et al., 2005, Bandi and Russel, 2008). Different bias
corrected estimators of the IV are introduced into the literature. For instance,
Zhou (1996) proposed an improved estimator, called RV, by including the cross-

products between two consequent observations, which is unbiased under i.i.d. MS
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noise. Bandi and Russel (2006, 2008, 2011) and Oomen (2006) investigated the use
of sparse equidistant high-frequency data and studied the choice of the optimal
frequency to make a trade-off between the variance and bias of the proposed
estimators. Zhang et al. (2005) and Ait-Sahalia et al. (2011) proposed the use of
a realized volatility estimator with two time scales to solve the bias problem caused
by MS noise. Hansen and Lunde (2006a) and Oomen (2005) proposed a simple
kernel based estimator of the IV. Furthermore, Hansen et al. (2008) investigated
correction of MS bias using moving average-based estimators.

Recently, Barndorff-Nielsen et al. (2008, 2009, 2011b) introduced the realized
kernels (RK), which are consistent estimators of the IV under given conditions.
A crucial problem by applying realized kernels is the selection of the bandwidth,
because an RK only works well, if the bandwidth is selected properly. This is
illustrated in Figure[3.2]in the next section through the above mentioned numerical
examples. Barndorff-Nielsen et al. (2009) proposed to select the bandwidth by
plugging suitable estimates of two unknowns into a simplified (but biased) formula
of the asymptotically optimal bandwidth of the RK. However, their proposal is
very complex and not fully data-driven. And the selected bandwidth by this
algorithm does not converge to the targeted bandwidth.

In this chapter an iterative plug-in (IPI) bandwidth selector for realized kernels
is developed by adapting the idea of Gasser et al. (1991) to the current context.
So far as we know, this is the first IPI algorithm for RK. For simplicity, we also
adopt the biased targeted bandwidth proposed by Barndorff-Nielsen et al. (2009).
The difference between RV, and the RK resulted in each iteration is used to
estimate the variance of the MS noise. And RVy is used as an initial value of
the RK so that the procedure is fully data-driven. It is shown that the proposed
bandwidth selector is consistent in the sense that the relative error with respect
to the targeted bandwidth tends to zero, as n — oo. Furthermore, the proposed
bandwidth selection rule is very simple and the algorithm runs very fast, because
only a few iterations are required. It is hence suitable to be applied to obtain data-
driven RK in a long observation period. Theoretically, both of the resulted RK

and the selected bandwidth become consistent from the third iteration, while their
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rate of convergence can still be improved in the fourth iteration. Thereafter, the
resulted RK achieves its optimal rate of convergence of the order O(n~'/?), which
is also shared by the relative error in the selected bandwidth. The nice practical
performance of the proposal is illustrated by application to data of a few German
and French firms. These results show that in most of the cases the procedure
converges within four iterations. And the distribution of the selected bandwidths
is nearly normal. Empirical analysis showed that the resulted RK performs better
than RV and RVy. It seems that both of the bias and the standard deviation of
RV, and RVy are clearly reduced by the data-driven RK. But this fact still needs
to be confirmed through simulation. The performance of the proposed bandwidth
selector on a few so-called ‘challenging days’ is discussed in detail.

Further analysis of the obtained results is of great interest. Andersen et al.
(2001a, 2001b, 2011) and Deo et al. (2006) find that the logarithmic RV may
exhibit long memory. Choi et al. (2010) found that the observed long memory
may be spuriously generated e.g. by a nonparametric trend or structural breaks.
Hence, long memory, nonparametric trends and possible structural breaks should
be studied simultaneously. We propose to analyze realized kernels use a piecewise
version of the ESEMIFAR (exponential semiparametric fractional autoregressive,
Beran et al., 2015). It is found that realized kernels exhibit long memory and a
significant nonparametric trend at the same time. Estimation results for the two
sub-periods before and after the 2008 financial crisis are clearly different.

The chapter is organized as follows. Some necessary known results are summa-
rized in section 3.2. The data-driven bandwidth selector is proposed and studied
in section 3.3. Application to real data is reported in section 3.4. In section
3.5 modeling of realized kernels using the ESEMIFAR model is discussed. Final

remarks in section 3.6 conclude the chapter.
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3.2 Realized volatility and realized kernels

3.2.1 Effect of MS noise on realized volatility

Let p*(r) denote the logarithmic efficient asset price on a trading day, where
0 <7 <T, and 0 and T denote the opening and closing time. Assume that p*(7)

are determined by the stochastic differential equation
dp*(1) = o(7)dW (1), (3.2.1)

where W (1) is a standard Brownian motion and o(7) is the spot volatility process.
Furthermore, it is assumed that the o(7) and W (7) processes are independent of

each other. Estimation of the daily integrated volatility

IV = /OT o?(7)dr (3.2.2)

is of great interest. Realized volatility is introduced as a model free estimator of
the IV based on high-frequency financial data. Let p; be the logarithmic asset
prices observed at time points 0 = 79 < 7 < ... < 7, < Tp41 = T, where n is
the (random) number of observations happened on that day. It is assumed that
7, — Tiz1 = Op(n™!). The intraday returns are given by r; = p; — p;_;. The most

simple definition of the realized volatility is

RVy = 7, (3.2.3)

which is a consistent estimator of the IV, if there is no MS noise such that p; = pf,

where p} stands for p*(7;). In the presence of MS noise we have however

pi = p; + ui, (3.2.4)

where wu; represents a stationary noise process with mean zero and var(u;) = w?.

It is assumed that u; is independent of p;. In this chapter we will focus on the

case with i.i.d. w;. Let 7 = pI — p? ;| be the efficient returns. The corresponding
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noise contaminated observed returns are given by

ri=pi— Pi-1 =7; + €, (3.2.5)

where e; = u; — u;—; is the noise in r;. The observed returns are correlated
to each other, while r] are uncorrelated. Under the ii.d. assumption on wu;,

e; follow an MA(1) model. It can be shown that, the ACF of r; at lag 1 is

pr(1) = —w?/(2w* +0?) — —0.5, as n — oo, where 07 = var(r}). If w?/o? is large,
RV is clearly overestimated.
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Figure 3.1: Examples of ACF's of high-frequency returns on four selected days

Empirical evidence of MS noise can be found by displaying the ACF of high-
frequency returns. Figure [3.1] shows the correlograms of high-frequency returns
on four selected trading days, one from each of the following German and French
companies, Air France (AF), Allianz (ALV), BMW and Peugeot (PSA), respec-
tively. From Figure we see that p,(1) is always significantly negative, a clear

evidence for the existence of MS noise. The independence assumption on the noise
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is about true in the first three cases. Furthermore, we see the noise on the second
selected day is very strong with p(1) < —0.4 as can be seen from Figure [3.1|(b).
Figures [3.1a) and (c) show that the noise on the first and third selected days is
at a middle and a relatively low level, respectively. The fourth example in Figure
3.1)(d) is chosen to show that strong and dependent noise could also happen. For
this example not only p,(1) but also those at lags 2 and 3 are significantly non-zero
with p,(2) > 0. But the sum of p,.(1) to p,(3) is clearly negative.

In the presence of MS noise, RV, can be rewritten as

RVy = zn:(T;)Q%—an:rfei—i—zn:e?. (3.2.6)

i=1 i=1 i=1
It is well known that the bias of RV, is B(RV,) = 2nw? and the asymptotic
variance of RV is var(RVy) ~ 4nE(u}), as n — oo. Different approaches are
introduced into the literature to improve the performance of RVy. Under the i.i.d.
assumption on u;, Zhou (1996) proposed to correct the bias in RVq by introducing
the cross-products of lag 1 into RVy. In this chapter his proposal is slightly
modified as follows:

n—1

RVZ = Z(T‘? + Tiri—i-l + ’I“i’l“i_l). (327)

=2
Under independent MS noise RV is unbiased and its variance is approximately

8nw?, as n — oco. That is this estimator is still inconsistent.

3.2.2 Realized kernels

To overcome the above mentioned problems of well known estimators of the IV,
Barndorff-Nielsen et al. (2008, 2009, 2011b) introduced the realized kernels, which
are consistent estimators of the IV in the presence of MS noise under regularity

conditions. A RK is defined by

H n
h
RK = hz_:Hk (H——l—l> Yhs Yh = Z 7’]'7’]‘_|h|, (328)

j=Ih|+1
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where k(u) is a kernel weight function, H is the bandwidth and 7, is the h-th
realized autocovariance. To ensure the non-negativity of the RK, it is assumed
that k(u) satisfies the Condition K in Barndorff-Nielsen et al. (2011b). This
implies in particular that the kernel is with a non-flat top such that k”(0), the
second derivative of k(u) at the origin, is non-zero. A variety of kernel functions
in this class may be found in Table 1 of Barndorff-Nielsen et al. (2011b). The
authors indicated that the use of the Parzen kernel is more preferable. For u > 0,

the Parzen kernel is defined by

p

1—6u?+6u 0<u<1/2,
k(u) = 201 —u)®, 1/2<u<l, (3.2.9)

0 u > 1.

\

This kernel will be used in the numerical part of this chapter.
Asymptotic properties of the RK are studied by Barndorff-Nielsen et al. (2008,
2011b). See also ITkeda (2015). Assume that the bandwidth H is of the order

H = O(n*) with 0 < o < 1, asymptotic bias and variance of an RK are given by

n
B(RK) ~ [/-c”(o)]%;zm (3.2.10)
and
00 [ 4 H n 1
var(RK) ~ 4Tk, /0 o (T)dTE + C1ﬁ + CQE, (3.2.11)
where k00 = [ k*(u)du, and C; and C are two constants. The quantity

fOT od(7)dr is called the daily integrated quarticity. These results indicate that
variance of an RK is asymptotically negligible, if & > 1/3, and both of its asymp-
totic variance and bias are negligible, if & > 1/2. The asymptotic variance is dom-
inated by the second term on the right-hand-side of ([3.2.11)), if 1/3 < a < 1/2, and
by the first term, if « > 1/2. The asymptotically optimal bandwidth (Barndorff-
Nielsen et al., 2009, 2011b), which minimizes the dominating part of the MSE
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(mean squared error) of an RK, is given by

Hy = co&°n®5  with (3.2.12)

E"(0)2 1/5 2
Co = { k<0-0) } and &2 = ~ )
. \/TfOT o(r)*dr
For the Parzen kernel we have ¢y = 3.5134. We see the optimal bandwidth for an
RK with a non-flat top kernel is of the order O(n*/®). If a bandwidth of this order

is employed, the resulted RK will achieve its optimal convergence rate of the order
O(n=1/%).
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Figure 3.2: Realized kernels against H obtained on the four selected days

The above theoretical results show that realized kernels work well, only if the
bandwidth is chosen properly. To show this, the dependence of the RK on the
bandwidth H is displayed in Figure for the four selected examples, where the
vertical line in each panel highlights the bandwidth selected by the procedure
proposed in the next section with H = 55, 20, 13 and 24, respectively. Figure
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shows that an RK is very sensitive to the change of the used bandwidth, if H is
small. In a common case, like those in Figures [3.2(a), (b) and (d), the change in
H usually does not have a clear effect on the resulted RK, if the used bandwidth
is large. However, Figure (c) indicates that sometimes both of a too large or
a too small bandwidth can lead to a clearly wrong estimation result. Detailed

discussion on the selected bandwidths will be given in section 3.4.

3.3 Bandwidth selection for realized kernels

Examples in Figure |3.2] show that the selection of the bandwidth is a crucial
problem for the application of the RK. In the current context the number of ob-
servations on a trading day is very large and one usually would also like to estimate
the RK for a number of firms within a long observation period. Hence, we aim at
the development of a quick bandwidth selector for the RK with nice theoretical
and practical performance. An plug-in bandwidth selector can be obtained by
inserting estimates of w? and fOT o*(7)dr into Hy. However, the estimation of
fOT ot (7)dr is not yet well solved in the literature. Barndorff-Nielsen et al. (2009)

proposed a plug-in bandwidth selector based on the following formula:
Hg = cof3"n?? (3.3.1)

with €2 in H,4 being replaced by £% = w?/IV, which is of the same order as Hy
but with a biased factor in the constant. The reason is that T fOT o*(7)dr can
be well approximated through IV?, if o(7) does not vary too much. This biased
version of the optimal bandwidth will also be employed in the current chapter .
Now, assume that IV is an at least unbiased estimator of IV, it is easy to show

that _—
5 RVy—1V
0= —

— (3.3.2)
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is an consistent estimator of w?. Furthermore, if IV is a consistent estimator, Hg

can be estimated consistently by replacing £ with
&2 = 0?1V, (3.3.3)

The difference between Ha and Hg is an constant factor Hg/Hx = (T’ fOT oldu IV,
which is usually slightly bigger than one. In the following a consistent bandwidth
selector of Hpg is proposed by adapting the IPI idea of Gasser et al. (1991) to the
current context with RVy and RV as the initial values. The proposed algorithm

reads as:

Step 1. In the first iteration let IV; = RVy. Calculate &2 and €2 following (4.3.5)

and |) Insert the latter into 1) to obtain Hy. Put j = 2.

Step 2. In the jth iteration with j > 1, calculate I/\\/j with ij,l. Then calculate

o7 and §J2, and obtain H; similar to Step 1.

Step 3. Increase j by 1 and carry out Step 2 repeatedly. The procedure will be
ended, if convergence is achieved or some stopping criterion is fulfilled, or a

maximal number of iterations J is carried out. Put H = H j-

We will see that ]:Il is an inconsistent bandwidth selector. But after a few itera-
tions, H ; will become a consistent estimate of Hg. The detailed behavior of H j in
each iteration and the theoretical properties of the finally selected bandwidth are

discussed in the following theorem and its proof.

Theorme 3.3.1. Assume that Conditions K, SH, D and U in Theorem 2 of
Barndorff-Nielsen (2011b) hold. Assume further that w; are i.i.d. and that the
end-effect as indicated in that paper is treated suitably, so that it does not affect

the asymptotic performance of I/\7j wn the proposed procedure. Then we have

i) I:Ij selected by the proposed procedure with j > 3 is a consistent estimator of

Hg in the sense that (ﬁ] — Hg)/Hp = 0,(1).

ii) For j > 4 the selected bandwidth is consistent with a relative convergence

rate of the order n*1/5, i.e. (I;T] — Hg)/Hp = Op(nfl/f)),
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A sketched proof of Theorem (3.3.1. The following proof is carried out
conditioning on given number of observations n on a trading day.

i) In the first iteration, we have IVy = IV = IV + O,(n'/2). Furthermore,
it can be shown that &% is \/n-consistent such that ©} = W?[1 + O,(n"1?)] and
€2 = O,(n="2). This results in an estimate H; = O,(n®') with ay = 2/5 > 1/3.
Following the asymptotic results summarized in and , the use of
H, in the second iteration will lead to an estimate with an asymptotically negligible
variance and a random bias term of the order O (Hilg) = 0,(n'/®). That is we
have IV, = IV + 0, (n*?) + 0,(1). Now, it can be shown that &3 = wW?[1 +
0,(n~Y2) + 0,(n=4/5)] with an additional term caused by the bias in IV, which
is still \/n-consistent. Furthermore, we have é% = O,(n1?). Insert these results
into the proposed algorithm we obtain Hy = O,(n®?) with oy = 13/25 > 1/2. The
estimates IV, &2 and €2 in the third iteration obtained with Hy are all consistent.
Hence, 131'3 18 a consistent estimate of Hg in the relative sense.

it) Note that the error of ]:Ij is dominated by that of I/\\/j. Using Taylor ex-
pansion of a random function it can be shown that the rate of convergence of
H; is the same as that of 532 From the fourth iteration onwards, H'j achieves
its optimal rate of convergence of the order O,(n~'/%) in a relative sense with
(H; — Hg)/Hg = O,(n="/) for any j > 4. &

The proof above shows that, theoretically, at least three steps are required
to achieve a consistent selector of Hg. Asymptotically, the performance of H,
might be slightly better than that of Hj, because I/\\/4 is obtained with a consistent
bandwidth selector. The proposed data-driven algorithm and the above theoretical
results can be easily adapted to the case, if an unbiased estimate of [ o*(7)dr is
used. Furthermore, note that the bandwidth for an RK is an integer. Small
changes in the involved quantities often do not have any effect on the finally
selected bandwidth. Hence, the proposed algorithm converges very quickly. This
is also confirmed by the application in the next section.

An R code is developed for practical implementation of the proposed band-
width selector. The procedure will be stopped, if ]:[j = ﬁj_l is achieved. It is

also found that sometimes the selected bandwidths take two consequent integers
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alternatively. If this happens, the procedure will also be ended. Now, the larger
of the two selected bandwidths will be used. Both cases will be considered as
regular cases (Reg. Case). Furthermore, the following three special cases can also
happen. The first special case (Sp. Case 1) is that with RVz < 0. This indicates
that the MS noise should be very strong (and maybe correlated). Now, H, can
not be calculated according to the proposed algorithm, because we have I/\\/l < 0.
In this case we will manually set €2 = 100/(2n), which will lead to a big starting
bandwidth H;. Nevertheless the procedure runs very well and, after a few itera-
tions, H; will converge to the selected optimal bandwidth, which is independent of
H,. The second special case (Sp. Case 2) is that with RV, > RV, which indicates
probably that there is no MS noise on that day. Now, the procedure cannot be
carried out, because we have w? < 0. In this case, we will set H =0 and simply
use RVy. The last special case (Sp. Case 3) will happen, when RK becomes bigger
than RVy in some iteration with j > 1. This means again that there is no strong
MS noise in the observed prices on that day. And now the proposed algorithm
cannot be carried out further. Hence, we will put H=H ; as the selected optimal
bandwidth.

Note that the optimal bandwidth for an RK under independent and dependent
MS noise is of the same order of magnitude. The proposal bandwidth selector can
hence be applied to the case with dependent MS noise. The example in Figure
(d) also indicates that the proposal works in this case. But now, the selected
bandwidth is only sub-optimal, because it is only of a correct order but with a

clearly biased constant.

3.4 Application

The proposed algorithm is applied to the datasets of AF, ALV, BMW and PSA
from 2. Jan. 2006 to 30. Jun. 2012, downloaded from the “Thomson Reuters”
Corporation. The total number of trading days for the two German Stocks is 1655
and that for the two French Stocks is 1664. The numbers of days in the four cases

with different behavior of the algorithm as described in the last section are listed
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in Table 3.1 We see the proposed algorithm converged for more than 99% of

Table 3.1: Numbers of days in different cases for the four companies

Firms Cases Reg. Case Sp. Case1l Sp. Case 2 Sp. Case 3
AF 1662 0 1 1
ALV 1652 0 1 2
BMW 1643 0 1 11
PSA 1653 1 3 8

those datasets. The three special cases only happened with a very small chance.
Sp. Case 1 occurred only once by PSA. Sp. Case 2 and Sp. Case 3 for AF and
ALV also occurred rarely. For BMW and PSA, Sp. Case 3 occurred on 11 and 8
days, respectively. Now, the ratio of Sp. Case 3 is still clearly smaller than 1%.
Therefore, the three special cases can be considered as some rare extreme events.
Trading days on which Sp. Cases 2 or 3 happened will be called challenging days.
Now, the proposed algorithm does not work well. This will be discussed in section

4.2 in detail.

3.4.1 Summary of the general findings

Figure shows the histograms of the selected optimal bandwidths for the four
companies. [t seems that the proposed bandwidth selector is nearly asymptotically
normally distributed. For finite samples the distribution is sometimes slightly
skewed to the right with very fewer extremely large selected bandwidths. The
selected bandwidths are usually between 5 and 25. The largest selected bandwidth
is 55 by AF on 18. Jul. 2007 as indicated in Figure (a). As defined before,
the selected bandwidth is 0, if Sp. Case 2 happened. From Figure [3.2| we can see
that the use of the selected bandwidth leads to an estimate, which is at a very low
level, but not the lowest value of all possible RK. This feature is as expected and
shows that the proposed bandwidth selector works very well in practice. This nice

property is particularly highlighted by Figure (c). Note that the bandwidth
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Figure 3.3: Histograms of selected bandwidth for all examples.

selected by the procedure of Barndorff-Nielsen et al. (2009) is usually very large.
This is not only caused by the use of different algorithms, but also by the different
features of the used datasets. It is of great interest to carry out a comparative
study between the two proposals theoretically and through simulation. This is
however beyond the aim of the current chapter and will be discussed elsewhere.
The histograms of the numbers of iterations for all companies are displayed in
Figure In the R code a maximal number of iteration J = 15 is used. For the
datasets under consideration this limit is never achieved. The maximal number of
iterations occurred is 11 by PSA on one day. The maximal numbers of iterations by
AF, ALV and BMW are 6, 5 and 6, respectively. And the most possible number of
iterations for all of the four companies is 3. Furthermore, in most of the cases the
proposed algorithm converges within four iterations. This confirmed the results
of Theorem [3.3.1]

The estimated RVy, RVz and RK are summarized in Table [3.2] where the ¢
statistic for the differences between RV, and RV, and those between RV and RK

are also given in the second and third rows, respectively. These ¢ values are calcu-
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Figure 3.4: Histograms of the number of iterations for all examples.

Table 3.2: Statistics of RVy, RV and RK; t between RV & RV, and RVyz & RK

AF ALV BMW PSA
mean | s.d. t mean | s.d. t mean | s.d. t mean | s.d. t
RV, | 12.74 | 14.60 — 10.18 | 24.03 — 7.71 11.35 — 12.11 | 14.02 —

RVyz | 805 | 884 | 26.79 | 6.82 | 16.25 | 17.27 | 5.54 | 8.26 | 26.09 | 828 | 9.39 | 27.20
RK | 6.29 | 6.62 | 23.48 | 5.28 | 10.02 | 9.41 5.16 | 6.5 | 6.90 | 7.07 | 7.57 | 19.03

lated under the assumption that those differences in a given case are i.i.d. We see
that for each of the four companies the mean of RV is much larger than those of
RVy; and RK. The mean of RVy is also bigger than that of RK. The differences be-
tween those mean values are always very highly significant. The difference between
the means of RV, and RV indicates the part of the bias caused by the MS noise,
which can be discovered by p(1) of the returns. And the difference between the
means of RV, and RK indicates additional bias caused by possible dependent MS

noise, which can not be reflected by p(1) of the returns. The differences between
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the standard deviations of those estimators are similar to that mentioned above.
It can also be shown that those differences are always significant. Details to this
end are omitted to save space. In summary, the use of the proposed data-driven
RK will lead to a clear reduction of the bias and the variation, comparing with the
two well known estimators RV and RVy. These empirical findings show that the
proposed approach works well in practice. However, the practical performance of
the proposed data-driven algorithm for RK still need to be confirmed by means

of a simulation study.
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Figure 3.5: Logarithmic transformation of all realized volatility estimators for Air
France

The results of RVy, RV; and RK for AF after logarithmic transformation
are shown in Figure From this figure we can see that, in addition to the

differences among the estimates obtained by these different approaches, they also
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exhibit quite similar common patterns. In particular all of these series seem to

have a non-stationary trend component and possible structural breaks caused by

two financial crises, i.e. the global financial crisis in 2008 and the European debt

crisis in 2011, respectively. The results of the data-driven RK for ALV, BMW and

PSA, again in log-scale, are displayed in Figure[3.6] We see, these series also share

similar patterns as those displayed in (C) Moreover, an interesting empirical

finding is that, in addition to the common general tendency of those RK series,

they seem also correlated to each other strongly. This feature is helpful for further

modeling and forecasting of RK.
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3.4.2 Detailed analysis of two challenging cases

Now, we will discuss briefly, why the proposed data-driven algorithm does not
work well in Sp. Cases 2 and 3. The dataset of AF on the 15. Sept. 2011 was
chosen as an example of Sp. Case 2 and that of BMW on the 21. May 2009 was
chosen as an example of Sp. Case 3. Figure [3.7] shows the ACF of the intraday
returns on those two challenging days. As shown in Figure [3.1} usually, MS noise

will cause a clearly significant negative ACF at lag 1. From Figure 3.7 we can see

(a) ACF of AF-returns on 15.Sept.2011 (b) ACF of BMW-returns on 21.May 2009
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Figure 3.7: ACF of the high-frequency returns on the two challenging days

that this is not true in both examples selected here. Figure (a) shows that
almost all of the estimated ACF in this case are insignificant. But the ACF at
lag 1 happens to be slightly positive. This results in turn in the fact that RVy
is slightly larger than RV,. In this case we proposed the use of H = 0, because
now the effect of the MS noise seems to be unclear. One problem can arise in
the presence of dependent MS noise. Now, it can happen that although the ACF
at lag 1 is positive, but some ACF at higher lags can be negative so that RV,
is still biased. This kind of effect of MS noise can however not be corrected by
the proposed data-driven RK. The problem in Sp. Case 3 is different. As we
can see, now the ACF at lag 1 is negative and hence the proposed bandwidth
selection algorithm can be started. However, some other ACF are clearly positive
so that the sum of the ACF is now positive. This indicates again the existence of

possible dependent MS noise. This kind of noise could however cause a negative
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bias in RVy. Following our proposal, the resulted RK in this special cease is always
slightly bigger than RV(. The effect of this kind of possibly dependent MS noise
can also not be captured by the proposed algorithm. Both examples indicate that
the proposed algorithm should still be improved and it is worthy to development a

data-driven RK by taking possibly dependent microstructure noise into account.

3.5 Further analysis using the Semi-FI-Log-ACD

Further analysis of the obtained RK is of great interest. Ebens (1999) showed that
the distribution of the logarithmic volatility is approximately normal. Anderson
et al. (2003), Corsi (2009) and Koopman et al. (2005) showed that logarithmic
realized volatility may exhibit high persistence. From Figures and [3.6] we can
see that the logarithmic RK may also exhibit a deterministic nonparametric trend.
The well known SEMIFAR (Beran and Feng, 2002a) is a nonparametric regression
model with long-range dependence. Most recently, Beran et al. (2015) proposed to
apply the SEMIFAR model to logarithmic transformation of nonnegative financial
time series. Their proposal is hence called an ESEMIFAR model, which can be
applied to RK. See also Feng and Zhou (2015a) for discussion on forecasting based
on this approach. Assume that Z;, the log-transformed RK, follow a SEMIFAR

model

(1—B)"¢(B)[Z: — p(m)] = &, (3.5.1)

where B denotes the backshift operator, ¢(B) is the AR~characteristic polynomial,
g are i.i.d. normally distributed random variables with E(e;) = 0 and var(e;) =
0% d € (—0.5,0.5) and 7 = t/n denotes the rescaled time. The existing data-
driven algorithms of the SEMIFAR can be used to fit (3.5.1)), where the AR model
is selected by the BIC. A very nice property of this proposal is that, if d > 0, the
long memory parameter in the original and the log-data is the same. See Beran
et al. (2015) for more details.

In the following, the RK series of Air France is used as an example. Like the

nonparametric trend, a financial crisis will also cause spurious long memory, if
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long memory is estimated without taking possible structural breaks into account.
Hence, we will apply the ESEMIFAR model to the whole series as well as to the
two sub-series from 2. Jan. 2006 to 30. Sept. 2008, and from 1. Oct. 2008 to 30.
Apr. 2011. These sub-periods are defined manually. Discussion on the detection
of structural breaks under the SEMIFAR model is beyond the purpose of this

chapter. The sub-series after May 2011 is very short and is hence not considered.

(a) Log-RK for AF with fitted trend in the whole period
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(b) Log-RK for AF with fitted trend, 02.Jan.2006-30.Sept.2008
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(c) Log-RK for AF with fitted trend, 01.0c¢t.2008-30.Apr.2011
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Figure 3.8: Estimated trend by ESEMIFAR together with the log-data

An ESEMIFAR model with a third order local polynomial is fitted to the
whole series and to each of the two sub-series mentioned above. The fitted trends
together with the data are displayed in Figure [3.8(a) to (c), respectively. The
trend in Figure[3.§(a) indicates clear effect of the two financial crises on the market

volatility. However, it seems that there is no more structural breaks in the two

sub-series. And now the ESEMIFAR fits the data well. The selected bandwidths
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Table 3.3: Results of ESEMIFAR for realized kernels of Air France

Series h d & %-CI p é1 & 95%-CI trend
Jan. 2006 - Jun. 2012 | 0.191 0.437 [0.399, 0.475] O — insign.
Jan. 2006 - Sep. 2008 | 0.269 0.380 [0.322, 0.438] O — sign.
Oct. 2008 - Apr. 2011 | 0.149 0.285 [0.175, 0.395] 1 0.152 [0.014, 0.290] sign.

~

(b), the estimated long memory parameters (d) and the selected AR model, if
applicable, are listed in Table [3.3] where the 95%-confidence intervals and the
results of the significant test of the fitted trend are also given. From this table we
can see that in both sub-periods realized kernels exhibit significant long memory
and a significant non-parametric trend simultaneously. In the second sub-period,
the short memory part of this model is also significant. Comparing the results
for the whole series with those for the two sub-periods, we can see that possible
structure breaks cause by the two financial crises exhibit at least the following
effects on the estimated ESEMIFAR model: The possible structure breaks resulted
in clear overestimation of the long memory parameter, which in turn caused the

wrong conclusion, that the estimated trend were insignificant.

3.6 Final remarks

An IPI algorithm for realized kernels under independent MS noise was proposed.
To our knowledge this is the first IPI algorithm in the current context. It is
shown that this proposal has some nice theoretical properties, runs very quickly
and works usually very well in practice. Possible problems which can happen on
some challenging days are discussed in detail. It is also proposed to analyze the
resulted RK using the most recently proposed ESEMIFAR model. We also tried
to apply this model to different pieces of the whole series. There are still some
open questions in this context. Firstly, it is better, if one can find more reason-
able solutions to the problems on the challenging days. Secondly, it is worthy
to extend the current proposal to cases with dependent MS noise. Thirdly, the
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proposed bandwidth selector can also be improved, if an unbiased estimator of the
daily integrated quarticity can be developed. Furthermore, to apply the idea of
the piecewise ESEMIFAR model properly, a suitable approach for detecting struc-
tural breaks under the SEMIFAR model should also be developed. Finally, the
development of a multivariate semiparametric long memory time series approach

for jointly modeling of different RK series is also of great interest.



Chapter 4

A comparison study of realized
kernels using different sampling

frequencies

This chapter has been published with slight differences as Working Paper (2018-
02) in the Working Paper Series of the Faculty of Business Administration and

Economics at Paderborn University.

4.1 Introduction

In recent years, there has been a large and rapidly expanding literature on estima-
tion of the daily integrated volatility (IV). With the improvement of availability
of high-frequency financial data Andersen et al. (2001a, b) proposed a model-free
volatility approach, called realized volatility (RVy), which exploits the informa-
tion in high frequency returns and is constructed as the sums of intraday squared
returns. However, observed prices are contaminated by market MS noise, which
leads to the bias problem at high sampling frequencies (Hanse and Lunde, 2006a).
To solve this bias problem, different approaches are introduced into the literature.
Bandi and Rusell (2006, 2008, 2011b) proposed a method of selecting the optimal

sampling frequency based on a trade-off between the variance and bias. Zhang et
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al. (2005) proposed a subsampling method, called two time scales, to deal with
the bias problem under i.i.d. MS noise. Their proposal was developed to the
case under dependent MS noise by Zhang (2006) and Ait-Sahalia et al. (2008).
This is also the first consistent estimator of IV. Furthermore, a pre-filter was used
to weaken the effects of MS noise (e.g. Bollen and Inder, 2002). Large (2007)
introduced an alternative estimator to control the MS effects. In addition, Zhou
(1996) proposed to include the cross-products between two consequent observa-
tions. The author showed that his estimator, called RVy is unbiased under i.i.d.
MS noise. This is also the first kernel method to deal with the problem of MS
noise. Hansen and Lunde (2004, 2006b) studied extensively this estimator and
proposed a simple kernel-based estimator. Barndorff-Nielsen et al. (2008, 20009,
2011b) proposed realized kernels, which are a generalization of RV and also are
consistent estimators of the IV under given conditions.

A crucial problem by applying RK is the selection of the bandwidth. This
problem is investigated first by Barndorff-Nielsen et al. (2009) for non-negative
RK with an asymptotically optimal bandwidth of the order O(n*/°) and an optimal
rate of convergence of the order O(n~1/?), where n is the number of observations on
a trading day. Feng and Zhou (2015b) introduced a fully automatic iterative plug-
in (IPI) algorithm to select bandwidth for RK by adapting the idea of Gasser
et al. (1991). However, their algorithm is only applicable for the case under
the assumption of i.i.d. MS noise. And the algorithm does not work, if three
special cases occur. In this chapter we improve this algorithm slightly so that it
works for all cases. This improved algorithm is called the IN algorithm in the
context of this chapter. Ikeda (2015) proposed two-scale RK, which is a convex
combination of two realized kernels with different bandwidths. He showed that
his estimator converges to the IV in the presence of the dependent MS noise.
Based on Ikeda (2015)’s conclusion, Wang (2014) proposed two IPI algorithms
for RK under dependent noise assumption. In his work algorithm B is a fully
automatic data-driven algorithm and after slight adjustment we call this algorithm
in this chapter the DN algorithm. End effects in the computation of the RK are

considered. The non-flat-top Parzen kernel is utilized, because it can guarantee
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the nonnegativity of RK. Theoretically, in the fourth iteration the two bandwidths
G and H have achieved the optimal rate of convergence. After several iterations,
the resulted RK achieves its optimal rate of convergence of the order O(n=1/?).
The processes of the IN and DN algorithms for RK based on different sampling
frequency starting with different bandwidths are investigated. It is shown, that no
matter the starting bandwidths, the selected bandwidths as of the second iteration
are very close and that the final selected bandwidths are indeed the same. Most
recently, Liu et al. (2015) has studied the accuracy of a wide variety of volatility
measures constructed from high-frequency data. They concluded that when RV
calculated by 5-minute returns is taken as the benchmark measure, it is very hard
to be beaten by any measure. Furthermore, if no benchmark is specified, the
best estimators appear to e.g. RV, based on 1-minute data and RK. Barndorff-
Nielsen et al. (2009) compared tick-by-tick and 1-minute RK with RV, computed
by several sampling frequencies. Their conclusions were obtained by measuring
the disagreement between these estimates based on transaction prices and mid-
quote prices over 123 days. It was found that both RK estimates are better
than any of the RV, and the statistical results of both RK estimates are similar.
Motivated by all of these we study a comparison of RK using different sampling
frequencies (tick-by-tick, 1-minute, 5-minute and 15-minute) calculated by the IN
algorithm as well as RK using tick-by-tick returns calculated by the DN algorithm
within a long period over 2000 trading days. Meanwhile, RV, computed from
the different frequency returns are compared with these RK estimators mentioned
above. In total, we have 4 sampling frequencies, 2 types of realized measures
and two algorithms of a given transaction price series. The detailed comparison
of these realized estimators are investigated by comparing their performances in
the computation of Value-at-Risk based on the Semi-FI-Log-ACD model (also
called the exponential SEMIFAR model, Feng and Zhou, 2015a). Value-at-Risk
is considered as an extremely important measure in financial risk management to
determine the amount of assets needed to cover possible losses. It is found that the
performances of two RK estimators based on the tick-by-tick returns calculated

by the IN and DN algorithms are better than any other realized estimator and
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hence recommended using in practice.

The rest of this chapter is organized as follows. Different sampling schemes
and several volatility estimators used in this chapter are introduced in section 4.2.
The improved bandwidth selectors under independent and dependent MS noise
assumptions are proposed in section 4.3. The implementation of algorithms as
well as the comparison of volatility estimators based on different frequencies of

data are reported in section 4.4. Final remarks in section 4.5 conclude.

4.2 Realized measures

4.2.1 Different sampling schemes

Prices are practically observed at discrete and irregularly time intervals. Sampling
schemes are rules of data recording. Different sampling schemes can be used for
calculating realized measures. Let p;,, ¢ = 1,...,n, be the logarithmic efficient
asset prices at time points 0 = 79 < 74 < ...7, < Tpu1 = 1T on trading day t,
where n is the total number of observations at day t. Support that, p;; follow a
continuous time diffusion process dp; = o,dW,, where W is a standard Brownian
motion and oy is the spot volatility process. The daily integrated volatility is given
by
T
IV, = /0 oldt. (4.2.1)

We divide the interval [0, 7] in n subintervals. The length of the ith subinterval is
defined by 0;,, = 7, — 7;,_1. The integrated volatility for each of the subintervals is

IV, = / oldt.
Ti—1

The choice of sampling schemes and sampling frequencies can have a strong influ-
ence on the estimation of the IV. Sampling schemes are mainly classified according
to the concept of time.

Calendar Time Sampling (CTS). CTS is sampled by regularly spaced cal-
endar time and is defined by 6;,, = + for all i (see e.g. French et al. (1987);
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Hsieh (1991); Andersen and Bollerslev (1998); Andersen et al. (2001a)). Because
of irregularity of the intraday data, calendar time sampled data must be builded
artificially (refer to Wasserfallen and Zimmermann (1985); Andersen and Boller-
slev (1997); and Dacorogna et al. (2001)). In this chapter we use this sampling
scheme. The original tick-by-tick price is sampled by different sampling frequen-
cies, namely 1-minute, 5-minute or 15-minute. We utilize the data for the period
between 9:00 am and 17:30 pm and use the previous tick method that takes the
first observation as the sampled price (Hansen and Lunde, 2006a). For instance,
when the price process is sampled at 1-minute interval, this will yield 511 price
observations on one day.

Tick Time Sampling (TkTS) and Transaction Time Sampling (TrTS).
Prices are recorded at every price change in TkTS (see e.g. Corsi et al., 2001;
Zhou, 1996). Prices are sampled every kth transaction in TrTS (see e.g. Hansen
and Lunde, 2006a). Grifin and Oomen (2008) investigated the difference between
transaction time and tick time sampling. They found that the MSE of RV in tick
time is lower than that in transaction time, especially when the level of noise,
number of ticks, or the arrival frequency of efficient price moves is low.

Business Time Sampling (BTS). The sampling time are chosen such that
IV = IVTf The observation times for BTS are unobserved. The BTS transactions
are often sampled in order to ensure approximately equal volatility of the returns
over each interval. Peters and Vilder (2006), Andersen et al. (2007) and Andersen
et al. (2010) selected time points to sample BTS returns with a target volatility.

The CTS, TrTS and TKTS schemes are constructed based on explicit criteria
such as the regular calendar-time length or the number of ticks/price change.
In addition, the observation times are observed. In contrast, the BTS scheme
depends on the unobserved latent volatility. As a result, the most widely used
sampling scheme is CTS. In many cases, the BTS scheme has the minimal MSE of
realized variance among all sampling schemes, however, it is used less frequently

in practice.
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4.2.2 The effect of microstructure noise

Let p:; be the ith logarithmic observed prices during day t. Assuming that the

prices are observed with noise, we have
Pri = Di; + U, (4.2.2)

where wu;; represents a stationary logarithmic microstructure noise process with
mean zero. It is assumed that u,; is independent of p},;. The noise process itself can
be a white noise or a dependent process. The corresponding noise contaminated

observed returns are obtained by
Tti = Pt — Dti—1 = 7“;1- + €44, (4.2.3)

where e;; = u;; — us;—1 is the noise in the observed returns. In the presence of
MS noise, realized variance RVy = " | r;; is no more consistent of the integrated

variance, and can be rewritten as

RVy = Z(rfl)Q +2 Z Tii€ti + Z eii.
i=1 i=1 i=1
Under independent noise assumptions, the variance of noise is var(u;) = w?. The
bias of RV is B(RVy) = 2nw? and the asymptotic variance of RV is var(RV,) ~
4nE(u}), as n — oo. For the dependent noise structure, Zhang (2006) and Ait-
Sahalia et al. (2008) showed that the bias is still 2nw? and the variance tents to
4n©, where © = V[(ur1 — uio)] +2> 2, Covl(ues —uiy), (ugir1 — ui,;)]. However,
for large values of n, the bias and variance of RV are infinite. Different approaches
have been introduced into the literature to improve the performance of RV in the
presence of MS noise. Andersen et al. (2001a, 2003) proposed to select arbitrarily
lower frequencies returns to treat the MS bias, such as every 5 or 15 minutes,

instead of at every tick. RV using different sampling frequencies is defined by

s

1=0
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where ng denotes the number of observations. It is showed that the bias due to
noise for independent and dependent is given by 2n,E (ufz) The bias is reduced
when ng < n, however, the variance is increased due to discretization. This leads
to the well-known bias-variance trade-off.

Under the iid. assumption on w,;, Zhou (1996) proposed to use the first
order correlation to correct the bias in RVy. This estimator RVy is unbiased but

inconsistent. The version of RV with different sampling is given by

ns—1
s 2
RV, = E (rt,i + TtiTti+1 + Tt,irt,i—l)- (425)
=2
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Figure 4.1: ACFs of Thyssenkrupp on 20. Jan. 2012.

Empirical evidence of MS noise can be found by displaying the ACFs of returns.
Figure 4.1 to Figure [4.4] show the ACFs of different sampling-frequency returns on
four selected trading days, respectively. Generally speaking, the ACFs on every
selected trading day vary a lot by changing the sampling-frequency. ACFs of tick-
by-tick returns for Thyssenkrupp on 07. May 2007 are displayed in Figure (a).
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Figure 4.2: ACF's of Siemens on 13. Jun. 2008.
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Figure 4.3: ACFs of Peugeot on 24. May 2011.
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Figure 4.4: ACFs of Schneider Electric on 24. Jan. 2010.

Table 4.1: Detailed results of different realized estimators (x10%) for selected ex-

amples
RV, RK
tick 1-min 5-min 15-min IN-Imin IN-5min DN-tick
THK
3.867 2.413 2.393 2.425 2.439 1.611
07. 05. 2007
SIE
3.761 2.518 1.635 1.941 1.278 1.744
01. 12. 2009
PSA
5.064 2.699 2.551 2.924 2.864 2.448
24. 05. 2011
SE
7.660 2.472 2.044 2.114 2.016 2.147
24. 01. 2014

It shows that p,(1) < 0 and the ACFs at lags 2 and 3 are slightly not-zero. This
indicates the existence of possible dependent MS noise. From Figure (b) and
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(c) we can see that the correlations in 1-minute and 5- minute returns are reduced,
but several lags are still outside two bounds. There are almost no correlations in
15-minute returns, which can be seen in Figure (d). Figure displays the
ACFs of Siemens on 01. Dec. 2009. In Figures (a), (b) and (c) not only
pr(1) but also the following several lags are slightly not-zero. The correlations
are reduced with the decrease of sample frequencies and there are also almost no
correlations in 15-minute returns. ACF's of Peugeot on 24. May 2011 are shown in
Figure 4.3 In Figure (a) p,(1) is not significant, but some ACFs at higher lags
are clearly significant. This indicates the presence of dependent MS noise and that
the simple independence assumption on the noise may not be sufficient. Using the
DN algorithm to calculate RK may be suitable in such a case. The correlations
are clearly reduced by using 1-minute returns in Figure (b). As has been
demonstrated before, there are also almost no correlations in 5- and 15-minutes
returns. Figure [4.4] shows the ACFs for Schneider Electric on 24. Jan. 2014. In
Figure (a) the noise is very strong with p.(1) < —0.5 and the several lags,
which follow, are also clearly significant. On this day RV, < 0, which is one of
the special cases for the IN algorithm. The correlations diminish clearly by using
I-minute returns in Figure (b). There are almost no correlations in 5-minute
and 15-minute returns. In conclusion, from Figure to Figure |4.4]it can be seen
that in most cases p,(1) is significantly negative and there are possible dependent
MS noise in tick-by-tick returns and for some cases there may be still MS noise
in 1I-minute and 5-minute returns. Furthermore, the correlations reduce with the
decrease of sample frequencies. The reason is that the diminished number of
observations reduces the bias and extends the two ACF bounds, which makes the
daily returns uncorrelated. However, decreasing the sampling frequency toward
to increase the variance and reduce the accuracy of volatility estimators. Hence,
a realized estimator with an optimal frequencies is necessary to investigate, which
can remove the effect of MS noise and grantee the accuracy of the estimation at
the same time. The corresponding numerical results of RV, and RK computed
from different sample frequencies for these four selected days are provided in Table

4.1l From the first four columns we see that the values of RVy for all examples
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reduce by the decease of the sample frequencies. For instance, for SE on 24.
Jan. 2014 the tick-by-tick RV is even three times bigger than the 1-minute RVy.
The last four columns show us that the results of RK computed from different
frequencies returns by the IN algorithm are clearly different form the results of
tick-by-tick RK using the DN algorithm. These differences are caused by the
calculated dependent MS noise with the DN algorithm. One of our purpose in
this chapter is to investigate which of these realized estimators can estimate the

financial market volatility more accurately.

4.3 Bandwidth selection for realized kernels

4.3.1 Realized kernels

Realized kernels are introduced by Barndorff-Nielsen et al. (2008, 2009, 2011b)

and can be thought of as an extension of RVy.

n

H
h
K= k|l —— = T 4.3.1
R h;H (H+1> Yhy  Vh Z TiTi—|h| ( 3 )

i=|h|+1

where k() is a kernel weight function, H is the selected bandwidth and ~;, is the
h-th realized autocovariance. In this chapter we use the Parzen kernel, which can
guarantee the nonnegative realized kernels estimate.

Under H = O(n®) with 1/2 < o < 1 and further regularity conditions, RK is

a consistent estimator of IV with the AMSE (asymptotic mean squared error):
AMSE(H) = [K"(0)]*Q*n*H* 4+ 4K2° (T1Q) Hn™ !, (4.3.2)

where K0 = [ k(x)*dx is a constant, IQ= fOT o}dt is called the integrated quar-
ticity, 0 = Xp50€2(h) is the long-run variance of wu;; and Q(h) = X7, Uy iUy i—p-
The first part and second part in Eq.(4.3.2) are the asymptotic squared bias and
variance of RK, respectively.

The asymptotically optimal bandwidth which minimizes the AMSE is provided
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E"(0)2 1/5 0
H = cot5n35 with ¢y = { kg)oo) } and ¢&? = \/T_Q’ (4.3.3)

where ¢y = 3.5134 for the Parzen kernel. The bandwidth H depends on the

unknown quantities €2 and IQ.

4.3.2 Bandwidth selection under i.i.d. noise

The crucial problem when applying RK is the selection of the bandwidth. The
asymptotically optimal bandwidth given in Eq. provides a base for selecting
the bandwidth. To do this, we need to estimate €2 and IQ. When u;; is under
the i.i.d. noise assumption, Q reduces to w?. Following Barndorff-Nielsen et al.
(2009), 1Q in Eq. is replaced with TV, because the former is not too far
from the latter, under conditions, when o? does not vary significantly. It can
be easy shown that the conclusions for RK in Barndorff-Nielsen et al. (2008,
2009, 2011b) are also suitable for RK based on different sampling frequencies
(RK,). Under the i.i.d assumption a biased version of H, called H® constructed

at different sampling frequencies is given by

HE = cofé/5n§/5 with £ = I\; . (4.3.4)
Now, assuming that ﬁs is at least an unbiased estimator of IV, it can be shown
that e
.o RV —1TV;

w

(4.3.5)

s 2n,

is a consistent estimator of w?. Barndorff-Nielsen et al. (2009) proposed to select
the bandwidth by plugging two complex estimates of IV and w?. Their proposal
is not fully data-driven and the selected bandwidth does not converge to H®.
Instead of these two complex estimators, Feng and Zhou (2015b) utilized RVy as
an initial value of IV for estimating the starting bandwidth H;. Then inserting H,
into Egs. and , and using the IPI idea to obtain optimal bandwidth
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HB automatically. This is the first IPI algorithm and it is shown the selected
bandwidth is consistent to H®. However, their algorithm does not work, if three
following special cases occur. They are RVz is smaller than zero (Case 1), RVy
is larger than RV, (Case 2), and RK is larger than RV, (Case 3). For Case 1
a large starting bandwidth should be manually set, since I/\\/l < 0. For Case 2
they set HB =0 and simply use RV, because @? < 0. And for Case 3 they put
HB = F[j as the selected optimal bandwidth, because dJJQ < 0. The last two cases

imply that there is possibly no strong MS noise on those days. To avoid these
RV§—RVS,

2n

. . ~ RV3 ~ .
three cases, in this chapter we let &%, = -2 replace &2, = . It aims to

2ng
avoid RV — RV}, < 0. It can be observed that 1;:5 is not far from %, if

n — 0o. Moreover, end effects in the computation of the RK is also considered
with m = 2. For more details please refer to section 2.2 in Barndorff-Nielsen et
al. (2009).

Let 7 denote the number of iterations. The IN algorithm unfolds as:

Step 1. To resolve end-effects problem. Let pg = %(pm + . Pem)s Dj = Prj+1,

j=m...,n—m—1and p, = =(Drp-mt1 + ... Din), Where we put m = 2.

Step 2. In the first iteration j =1, let I/\\/&l = RV}, calculate éﬁl with

RV} \ 2
F4 2n
= > ) 4.3.6
>t (Ry;> (4:3.6)

Insert £!, into Eq. (£3.4) to obtain H, ;. Let j = 2.

Step 3. In the jth iteration with j > 1, calculate I/\\/w with [:]57]‘—1- Then insert

RV 1\ 2

= | B (4.3.7)

L= 3.
<1Vs,j )

into Eq. ([#.3.4) to obtain H, ;.

Step 4. Iteratively carry out this procedure until convergence has been achieved.

The algorithm will be stopped, if f]s,j is equal to ﬁs,j_l. As showed in Theorem 1
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in Feng and Zhou (2015b), theoretically, both of RK, and HB become consistent
form in the third iteration, while their rate of convergence can still be improved in
the fourth iteration. Thereafter, ﬁﬁs achieves its optimal rate of convergence of
the order O(n~'/%) and this rate of convergence is also shared by (H® — HP)/HP.
An R code is developed for practical implementation of the proposed bandwidth

selector.

4.3.3 Bandwidth selection under dependent noise

From Eq. (4.3.2) it can be seen that for dependent noise the estimation of the
long-run variance €2 may enable the correction of the leading bias of RK. Following

Ikeda (2015) we utilize M K(G) to estimate 2. Define
MK(G) = (|K"(0)|]nG™?)"'RK(G), (4.3.8)

where RK(G) are the realized kernels for bandwidth G. Under the assumption
G=0(n?), B € (0,1/2] and if n — oo

MK(G) — Q-+ lim n 'G*(|K"(0)])'1V.. (4.3.9)

n—oo

In addition, given G=0(n") for 1/(2¢ +1) < 3 < 1/3 or 8 = 1/3, where ¢ is the
characteristic exponent of £”(0). If ¢ = 1 and § = 1/3 (for Parzen kernel) are
allowed for the asymptotic normality of M K (G). According to the related results
in Ikeda (2015), the AMSE( for the Parzen kernel is obtained by

v, \? G G 1
AMSE¢ = (k”—(é)) —+0 (5) +0 <@> : (4.3.10)

The asymptotically optimal bandwidth G = O(n'/?) for MK(G) can be obtained
by minimizing the AMSEg. Two-scale realized kernels can be used to estimate
Q). However, the estimator can be negative. Wang (2014) proposed two IPI al-
gorithms A and B under dependent noise assumption. Algorithm A starts with

Hy =n® a € (1/2,1). In the second iteration H, has already achieved the rate of
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convergence of the order O(n/®) and after only a few iterations H ; converges to
H®. He also demonstrated that H; is consistent even when « is outside (1/2,1).
Algorithm B is a fully automatic data-driven algorithm and with slight adjust-
ments it is called the DN algorithm in this chapter. Let j denote the number of
iterations. The DN algorithm unfolds as:

Step 1. To resolve end-effects problem. Let py = %(pm + . Dtm)s Dj = P+,

j=m....n—m—1andp, = %(ptvn_mﬂ—l—...pt,n), where we put m = 2.

Step 2. In the first iteration, let IV, = RVy, calculate éj‘ with

. RV \
4= 2| . 4.3.11
51 (RVZ) ( )

Insert 5{1 into Eq. (£.3.4) to obtain H;. Let j = 2.

Step 3. In the jth iteration with 5 > 1, calculate I/\\/j with flj_l. Meanwhile,
similar to step 2, let G = H]‘r)f % to obtain ﬁ(G) The unknown value 53-1 is

- K 2
&= (12—1n—1G§ Rﬂ;@) (4.3.12)
J

calculated by

and then H ; can be obtained.
Step 4. Iteratively carry out this procedure until convergence has been achieved.

Like in the IN algorithm IV? is also used to estimate 1Q. Let Q; = %, SO
that a negative €2, is avoided. Please note that for both IN and DN algorithms
H ; is obtained by truncating the integer part of selected optimal bandwidth and
subsequently adding 1. The proof for the convergence of this algorithm was given
in Wang (2014). Theoretically, in the fourth iteration G and H have achieved to

their optimal rate of convergence, respectively. After several iterations the resulted

RK achieves its optimal rate of convergence of the order O(n=/?).
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4.4 Application

The datasets of ten European companies (Air France (AF), Allianz (ALV), BMW,
Deutsche Bank (DBK), Michelin (MIC), Peugeot (PSA), RWE, Schneider Electric
(SE), Siemens (SIE) and Thyssenkrupp (THK)) from 02. Jan. 2006 to 30. Sept.
2014 are used as data examples, which were downloaded from “Thomson Reuters”
Corporation. The total number of trading days for the six German companies is
2226 and for the four French companies it is 2239. The trading times for all ten
companies are from 9:00 to 17:30. We eliminate the data outside this time interval
and also the data containing clerical errors. In addition to tick-by-tick data, we
also employ 1-minute, 5-minute and 15-minute data, which are computed based
on tick-by-tick data. Two realized measures, RVy and RK are considered. The
IN algorithm is utilized to calculate RK obtained based on tick-by-tick, 1-minute
and 5-minute returns. The DN algorithm is used to calculate tick-by-tick RK.
We consider end effects in the computation of the RK with m = 2. The absolute
difference for the ten European companies are less than 0.878% on average, which
confirms the conclusion in Barndorff-Nielsen et al. (2009) that the end effect can

be ignored in practice.

4.4.1 Implementation of algorithms

Figure shows the processes of the IN and DN algorithms starting with dif-
ferent bandwidths for four selected days. In Figure 4.5 “u” and “I” represent
the selected bandwidths in each iteration when a fixed upper and a lower starting
bandwidths are used, respectively. And “z” stands for selected bandwidths in each
iteration, when algorithms start with H; estimated by Eq. ([.3:4). Figure (a)
displays the process of the IN algorithm based on tick-by-tick returns for THK on
07. May 2007. We choose 50 as the upper starting bandwidth and the selected
bandwidths PAISJ- in 3 iterations are 50, 14, 14, respectively. When 5 is chosen as
the lower starting bandwidth, the selected bandwidths in 4 iterations are 5, 12,
14, 14, respectively. The calculated starting bandwidth H, is 16 by using RV, as

~

the estimator of IV ;, after 3 iterations (H,;=16, 14, 14), the optimal bandwidth
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(a) Process of IN for THK—-tick on 07. 05. 2007 (b) Process of IN for MIC—1min on 23. 05. 2006
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Figure 4.5: Process of algorithms for four selected days.

is also 14. Likewise, the processes of the IN algorithm based on 1-minute and
5-minute returns for MIC and RWE are plotted in Figure |4.5/ (b) and (c), respec-
tively. Figure (d) plot the process of the DN algorithm based on tick-by-tick
returns for SIE on 01. Dec. 2009. In Figure (d) the upper starting bandwidth
is 100, the selected bandwidths in 5 iterations are 100, 39, 46, 51, 51, respectively.
We choose 5 as the lower starting bandwidth, the selected bandwidths in 6 itera-
tions are 5, 32, 41, 46, 51, 51, respectively. The calculated starting bandwidth is
19 by using RV7, as the estimator of IV 1, after 5 iterations (PAISJ-:19, 35, 45, 51,
51), HB is also equal to 51. From Figure we can see that both algorithms work
very well and only a few iterations are required. In addition, no matter what the
starting bandwidths are, the selected bandwidths as of the second iteration are
very close and that the final selected bandwidths are indeed the same.

Figure displays the histograms of selected bandwidths and iteration num-
bers of RK for DBK. The histograms of H® calculated by the IN algorithm for
tick-by-tick, 1-minute and 5-minute RK are plotted in Figures 4.6 (a), (b) and (c),
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(a) Histogram of H for DBK-IN-tick (b) Histogram of H for DBK-IN-1min
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(a) Histogram of H for MIC-IN-tick (b) Histogram of H for MIC-IN-1min
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respectively. Figure (d) provides the histogram of HP for the tick-by-tick RK
calculated by the DN algorithm (RK-DN-tick). The corresponding histograms of
iteration numbers are displayed in Figures (e), (f), (g) and (h), respectively.
The selected bandwidths in Figure 4.6| (d) are bigger than those in Figure [4.6| (a),
the reason is that the dependent MS noise is taken into account. The selected
bandwidths for 1-minute RK in Figure (b) are smaller than those for tick-by-
tick RK, but larger than those for 5-minute RK. This corresponds to their ACFs
results, that the correlations in 5-minute returns are smaller than the correlations
in 1-minute and tick-by tick returns. In R code a maximal number of iterations
J = 20. For the datasets under consideration this limit is never achieved. The
commonly required number of iterations for DBK-IN-tick, DBK-IN-1min, DBK-
IN-5min and DBK-DN-tick are 3, 3, 3, 5, respectively, which are also true for the
other nine companies. These confirm that both IN and DN algorithms work very
well in practice and only a few iterations are required. The illustrative results for
MIC can be found in Figure 4.7 The histograms for the other eight companies
show the same conclusions as in Figures and [4.7], and are given in the appendix
to chapter 4. Please note that the IN algorithm does not work for 15-minute RK
of all the ten stocks, because on some days the number of observations is smaller
than the selected bandwidths (n < H®). For the same reason, 5-minute is not
recommended using for calculating RK.

Table lists the number of the three special cases (RVz < 0, RVz >RV, and
RK>RVj) mentioned in Feng and Zhou (2015b) for RK-IN-tick, RK-IN-1min,
RK-IN-5min and RK-DN-tick of the ten companies, respectively. We see that for
all companies Case 1 occur rarely, however, Case 2 and Case 3 happen with a very
big chance. For instance, Case 2 occur on 116 days for MIC-IN-tick and Case 3
occur on 226 days for SE-DN-tick. This shows us the necessity of adjusting Feng
and Zhou (2015b)’s algorithm by replacing &F | = %SRVSZ with &7 | = Z”TVE. After
this adjustment, the proposed IN and DN algorithms work automatically very well
for all days. Meanwhile, we find that for all the companies Case 3 occur much
more often for DN-tick than that for IN-tick. For instance, Case 3 in THK occur
on 100 days for DN-tick and only on 26 days for IN-tick. This difference shows
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that the obtained RK results change obviously if the dependent noise takes into
account. In addition, we see that Case 2 and Case 3 occur much more often when
the sampling frequencies decline.

Table[4.3]lists the mean and standard deviations of RV, and RK obtained based
on tick-by-tick, 1-minute, 5-minute and 15-minute returns for the ten companies
over the whole period, respectively. The mean values and standard deviations for
tick-by-tick RVy are larger than any other realized estimators in Table [£.3] The
mean values of RV diminish with the decline of sampling frequency. The standard
deviations of 1-minute, 5-minute and 15-minute RV for all companies are much
smaller than those of tick-by-tick RVy. As mentioned before, the algorithm IN
does not work for 15-minute RK of all companies, because on some days n < HB.
Therefore, the results are not listed in Table For the same reason, 5-minute
returns are not recommended using to calculate RK. In most cases, the standard
deviations of RK-DN-tick are smaller than those of RK-IN-tick and of RK-IN-
1min. The mean values of RK-DN-tick lie between the mean values of RK-IN-tick
and RK-IN-1min. The differences between the means of RK-DN-tick and RK-IN-
tick indicate the bias cased by estimated dependent MS noise.
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Table 4.2: The number of different cases for the ten companies

- Cases IN-tick IN-lmin IN-5min DN-tick

RV <0 0 2 1 0

AF  RVz >RV, 2 308 698 2
RK>RV, 2 332 748 65

RV <0 3 0 1 3

ALV RVz >RV, 1 234 683 1
RK>RV, 0 244 717 10

RVz <0 0 0 0 0

BMW  RvV; >RV, 43 463 748 43
RK>RV, 52 477 810 156

RVz <0 0 0 0 0

DBK RVz >RV 2 436 818 2
RK>RV, 5 467 877 21

RV <0 0 0 0 0
MIC RV, >RV, 116 499 748 116
RK>RV, 133 505 805 356

RV, <0 1 0 1 1

PSA RVz >RV, 6 431 725 6
RK>RV, 11 437 786 110

RVz <0 0 0 0 0

RWE RV >RV, 25 334 662 25
RK>RV, 33 336 729 74

RVz <0 1 1 1 1

SE  RVz >RV, 68 375 697 68
RK>RV, 7 391 753 226

RVz <0 0 0 0 0

SIE RV >RV, 20 345 750 20
RK>RV, 21 344 802 29

RV, <0 0 0 0 0

THK RV >RV, 22 393 720 22
RK>RV, 26 403 779 100
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4.4.2 Comparison of realized estimators based on Value-

at-Risk

Further comparison of these realized estimators is carried out by assessing their
performances in the computation of Value-at-Risk (VaR). Financial risk managers
often report the risk of investments using the concept of VaR, which estimates
the maximum loss at given confidence interval in a certain period. VaR is widely
used by investors and regulators in the financial industry to measure the amount
of assets needed to cover possible losses and has been considered as a expectable
banking risk measure. The Basel Committee demands banks use the VaR in
establishing the minimum capital necessary at investments in order to reduce the
fragility of international active banks. After its proposal it becomes a popular
risk assessment tool in financial service firms. In the literature, Beltratti and
Morana (2005) as well as Giot and Laurent (2004) investigated the performances
of VaR measures based on the GARCH and InRV-FARIMA models. Their results
show that the InRV-FARIMA class provide a superior performance by computing
VaR. Feng and Zhou (2015a) showed the logarithmic RK can be well described
by a long-memory process and may also exhibit a deterministic nonparametric
trend. Hence, in our framework we compute the one step ahead VaR by means
of the semiparametric FARIMA model (SEMIFAR also called the Semi-FI-Log-
ACD model in Feng and Zhou, 2015a) based on the different logarithmic realized
estimators. The VaR calculated based on the the SEMIFAR model at a given

confidence interval (1 — «) is obtained by
VaR!_, = s(1)0¢Z1_a, (4.4.1)

where s(7;) is the local variance, o; is the standard deviation (volatility) of invest-
ments at time ¢ and Z;_,, is loss distribution for the corresponding N(0,1) quantile.
In the first step we use the intraday returns of different sampling frequencies to
compute the realized estimators mentioned in section 4.1. In the second step we
estimate the conditional mean using the SEMIFAR model based on the logarith-

mic realized estimators. The estimated total means in the original data s(7;)oy is
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obtained through the exponential transformation of these estimated deterministic
trend and the estimated conditional mean.

A wealth of literature focuses on measuring the quality of the VaR calculations.
Backtesting is a statistical procedure, where the loss forecast calculated by VaR is
compared with the actual losses. Kupiec (1995) proposed a basic tests to examine
the frequency of losses in excess of VaR. By means of a simple backtesting Peitz
(2016) compared VaR calculations based on the parametric with semiparametric
models. In his proposal the observed amount of exceptions (Points over VaR)
is compared to the expected amount/benchmark n * o. We utilize the simple
backtesting in Peitz’s work. Let a = 5%, n is 2226 for the six German companies
and 2239 for the four French companies. The corresponding benchmarks for all
ten companies are 111. Figure to Figure show the one day dynamic ahead
95% VaR based on the InRV-SEMIFAR model for the ten example companies from
02. Jan. 2006 to 30. Sept. 2014. The loss distribution is assumed normal. In
each figure the black line shows the loss/negative returns and the red line depicts
the 95% VaR values by means of the SEMIFAR model based on the different
logarithmic realized estimators. Table lists the corresponding numerical results
of points over VaR and the deviations from the benchmark for Figure to
Figure[4.17] Table[d.5summarizes the total absolute deviation and total deviation
from the benchmark of 95% VaR based on the InRV-SEMIFAR model. In the
empirical implementation, RK-IN-tick with the smallest total absolute deviation
121 is the best estimator in the computation of VaR. RK-DN-tick is the second
best estimator with the total absolute deviation 145. This confirms that the
independent MS noise assumption is more suitable on the most trading days in
our data examples. From Figure to we can also see that in most cases the
ACFs at lag 1 are clearly significant and the results imply that some at higher
lags slightly significant ACFs occur only occasionally. Meanwhile, the difference
between the total absolute deviation of RK-IN-tick and that of RK-DN-tick is
not big. Both can be considered as the good volatility estimators. In addition,
the worst realized estimator is RV-tick. Its deviations for all ten companies

are negative, the corresponding total deviation is -568. From the figures (a) of
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all ten companies we can see that the red lines are far over the daily losses,
which confirms the numerical result that the 95% VaR based on the In(RV,-tick)-
SEMIFAR seriously overestimate the financial risk. Next overestimated realized
estimator is RVy-1min with the total deviation -167. The deviations of RK-IN-
5min for all ten companies are however positive, which means the underestimation
of the financial risk. This fact can be confirmed in the figures (g) of all ten
companies, where a few black lines are outside the red lines. The same results are
also obtained for RK-IN-1min, RV(-5min, RVy-15min, based on them the financial
risk can be seriously underestimated. Moreover, the performance of RVy-15min is
worse than that of RVy-1min, while the performance of RK-IN-5min is worse than
that of RK-IN-1min and RK-IN-tick. This shows again the necessity of choosing
a realized estimator together with a suitable frequency.

In summary, after comparing the performances of different realized estima-
tors in the computation of VaR based on the SEMIFAR model we find that the
performances of RK-IN-tick and RK-DN-tick are better than any other realized

estimator and are hence recommended using as the estimators of IV in practice.

4.5 Final remarks

In this chapter we improved the IPI algorithms for RK under independent and
dependent noise assumptions. End effects are considered for both algorithms.
The data from ten European companies of 9 years are used as data examples.
We apply the IN algorithm to tick-by-tick, 1-minute, 5-minute and 15-minute
returns and apply the DN algorithm to tick-by-tick returns. Both algorithms
are fully automatic and now work very well for all data examples. Furthermore,
we compare these RK estimators with RV calculated by tick-by-tick, 1-minute,
5-minute and 15-minute returns. The IN algorithm does not work well for the
data-frequencies over 5-minute, because on same days the number of observations
is smaller than the selected bandwidths. Further comparison of these realized

measures is carried out by assessing their performances in the computation of

VaR based on the SEMIFAR model. It is found that RK-IN-tick and RK-DN-
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tick estimators have good performances and are hence recommended using as the
estimators of IV in practice. However, a modified approach to rate these realized
estimators should be proposed by means of comparing their mean squared error
(MSE) values. This is also one of our future research directions.
Acknowledgments: [ would like to express my deepest gratitude to Prof.
Dr. Yuanhua Feng, who gives me some useful suggestions to improve the quality

of this chapter.

Table 4.4: “Points over 95% VaR” (benchmark: 111) by means of the SEMIFAR
model based on the different logarithmic realized measures for the ten companies

AF ALV BMW DBK MIC PSA RWE SE SIE THK

PoV 53 41 53 52 62 61 47 57 38 78

RV-tick
deviation -58 -70 -58 -59 -49 -50 -64 -54 -73 -33
PoV 92 96 80 102 89 111 88 102 81 102

RV()-lmin
deviation -19 -15 -31 -9 -22 0 -23 -9 -30 -9
PoV 214 134 107 136 122 147 115 144 111 138

RVy-bmin

deviation | +103 423 -4 +25 +11 436 +4  +33 0 +27

PoV 157 138 107 131 126 153 123 146 116 153
RV(-15min

deviation | +46  +27 -4 +20  +15 +42 412 +35 +5  +42

PoV 138 109 86 110 112 131 101 117 84 113

RK-IN-tick
deviation | +27 -2 -25 -1 +1 +20 -10 +6 =27 +2
PoV 148 137 103 130 116 144 113 139 110 141

RK-IN-1min
deviation | +37  +26 -8 +19 +5 +33 +2 +28 -1 +30
PoV 187 158 127 154 152 176 147 176 139 169

RK-IN-5min
deviation | +76  +47 +16 +43 +41 465 +36 +65 +28 458
PoV 143 122 87 119 112 131 110 124 92 127

RK-DN-tick

deviation | +32  +11 -24 +8 +1  +20 -1 +13  -19  +16
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Table 4.5: Summary of “Points over 95% VaR” based on the InRV-SEMIFAR

Realized measure | Total absolute deviation Total deviation
RK-IN-tick 121 -9
RK-DN-tick 145 57

RVy-1min 167 -167
RK-IN-1min 189 171
RV(-15min 248 240

RV(-5min 266 258
RK-IN-5min 475 475

RV-tick 568 -568
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(a) 95% VaR based on the In(RVO-tick)-SEMIFAR (b) 95% VaR based on the In(RV0-1min)-SEMIFAR
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Figure 4.8: Loss and 95% VaR based on the InRV-SEMIFAR model for Air France.
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(a) 95% VaR based on the In(RVO-tick)-SEMIFAR

(b) 95% VaR based on the In(RV0-1min)-SEMIFAR
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Figure 4.9: Loss and 95% VaR based on the InRV-SEMIFAR model for Allianz.
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(a) 95% VaR based on the In(RVO-tick)-SEMIFAR (b) 95% VaR based on the In(RV0-1min)-SEMIFAR
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Figure 4.10: Loss and 95% VaR based on the InRV-SEMIFAR model for BMW.
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(a) 95% VaR based on the In(RVO-tick)-SEMIFAR (b) 95% VaR based on the In(RV0-1min)-SEMIFAR
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Figure 4.12: Loss and 95% VaR based on the InRV-SEMIFAR model for Michelin.
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Figure 4.13: Loss and 95% VaR based on the InRV-SEMIFAR model for Peugeot.
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Figure 4.14: Loss and 95% VaR based on the InRV-SEMIFAR model for RWE.
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(a) 95% VaR based on the In(RVO-tick)-SEMIFAR (b) 95% VaR based on the In(RV0-1min)-SEMIFAR
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Figure 4.16: Loss and 95% VaR based on the InRV-SEMIFAR model for Siemens.
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(a) 95% VaR based on the In(RVO-tick)-SEMIFAR
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(a) Histogram of H for AF-IN-tick (b) Histogram of H for AF=IN-1min
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Figure A.4.1: Histograms of selected bandwidth and interation number for Air
France.
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(a) Histogram of H for ALV-IN-tick (b) Histogram of H for ALV-IN-1min
o |
8 -
N g
o
S 4
g ° g o
[} [} o
S o 2 8
g & g
8
s =
-
o - (=]
T T T T T T 1 T T T T 1
5 10 15 20 25 30 35 2 4 6 8 10 12 14
Selected bandwidth Selected bandwidth
(c) Histogram of H for ALV-IN-5min (d) Histogram of H for ALV-DN-tick
° — _ —
S -
3 -
o 8
S 4 1)
<
3 o Iy N
§ 8 § o
§ o g 81
L g s i
o
&1 8
o - o
T T T T T T 1 T T T T T T 1
2 4 6 8 10 12 14 30 40 50 60 70 80 90
Selected bandwidth Selected bandwidth
(e) Histogram of j for ALV-IN- tick (f) Histogram of j for ALV=IN-1min
8 — —
2 g -
S —
8
g =]
g S 3 o
5] g S
=z =l
15 L o
w 8 a w 8 -1
n
8 4
N
o -~ o 4 — —
T T T T 1 T T T T T T 1
2 3 4 5 6 2 3 4 5 6 7 8
Interation number Interation number
(9) Histogram of j for ALV-IN-5min (h) Histogram of j for ALV-DN- tick
N — —
o -
o
- o
o
8 S
3 o oy e
2 2
g 8 7 g o
o o o -
I o
z 84 g
< —
o
&1 M 8 M
o - o -
T T T T T T 1 T T T T T T 1
2 3 4 5 6 7 8 3 4 5 6 7 8 9
Interation number Interation number

Figure A.4.2: Histograms of selected bandwidth and interation number for Allianz.
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(a) Histogram of H for BMW-IN-tick (b) Histogram of H for BMW-IN-1min
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Figure A.4.3: Histograms of selected bandwidth and interation number for BMW.
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(a) Histogram of H for PSA-IN-tick (b) Histogram of H for PSA-IN-1min
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Figure A.4.4: Histograms of selected bandwidth and interation number for Peu-
geot.
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(a) Histogram of H for RWE-IN-tick
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Figure A.4.5: Histograms of selected bandwidth and interation number for RWE.
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(a) Histogram of H for SE-IN-tick (b) Histogram of H for SE-IN-1min
o
— S _ —
- 2 |
7 o
S 4
o wn
8 N [=]
z z I
5 T o
g 8 g 87
2 & @
w ' 8 a
- ~N
g g
o - o
T T T T T T 1 T T T T 1
0 10 20 30 40 50 60 0 5 10 15 20
Selected bandwidth Selected bandwidth
(c) Histogram of H for SE-IN-5min (d) Histogram of H for SE-DN-tick
o
o — —
o
- o
< 8 =
S 4
© 8 _ —
5 3. z
g © & 8 4
El z ©
[ f=} [
r 9 7 r 8 4
N
o
g g -
o - o -
T T T T 1 T T T T 1
0 5 10 15 20 20 40 60 80 100
Selected bandwidth Selected bandwidth
(e) Histogram of j for SE-IN- tick (f) Histogram of j for SE-IN-1min
- o -
o
- o
-
o
S g
) B 3 o
c c o -
g g CI
o o - o
o © @ [=]
[ L g h
o
o S -
o - ~N
N
o - o -
T T T T T 1 T T T T T 1
2 4 6 8 10 12 2 3 4 5 6 7
Interation number Interation number
(g) Histogram of j for SE-IN-5min (h) Histogram of j for SE-DN- tick
o — _ —
8 -
- g
S 4 3
©
3 o Iy T
c c
r 8 i
< —
(=3
S 4
N
o i

. e 1.0 n

4 5 6 7 8 3 4 5 6

[N}
w

Interation number Interation number

Figure A.4.6: Histograms of selected bandwidth and interation number for Schnei-
der Electric.
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Figure A.4.7: Histograms of selected bandwidth and interation number
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Chapter 5

Conclusion

This thesis focuses on a data-driven realized kernels and its further analysis using
the Semi-FI-Log-ACD model. It can be primarily divided into three parts.

In chapter 2 modeling and forecasting of long memory and a smooth scale func-
tion in different nonnegative financial time series aggregated from high-frequency
data based on a fractionally integrated Log-ACD (FI-Log-ACD) and its semi-
parametric extension (Semi-FI-Log-ACD) are discussed. It is shown that the
EFARIMA model is equivalent to the FI-Log-ACD model, which means that the
proposed FI-Log-ACD is the application of the well known FARIMA model to
the log-process. Furthermore, necessary and sufficient conditions for the existence
of a stationary solution of the FI-Log-ACD are obtained. These conditions are
fulfilled, if 7, are log-normal innovations with &, ~ N(0,02). Further examples
which fulfill those conditions are the log-logistic and log-Laplace innovations with
suitable restriction on the parameters. Detailed properties of the FI-Log-ACD un-
der the log-normal assumption as obtained in Beran et al. (2012) are summarized.
All of the processes X/, Z;, A\ as well as (; = In()\;) exhibit long memory with
the same memory parameter, if d > 0. The long memory parameter in Z; and in
X} under the log-normal assumption is the same. However, the constant in the
asymptotic formula of px«(k) is smaller than that in pz(k). If d < 0, X; does not
have antipersistent, even if Z, is antipersistent. The study on the long-memory

property of the conditional means (; and \; in Z; and X} is also provided. Fore-
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casting based on the Semi-FI-Log-ACD is then discussed in detail. The local linear
regression is used to extrapolate the trend function. Because the sample size is
very large, an approximately best linear predictor Z; 41 based on Zy,... 7, is de-
fined. Its truncated version Zn+k is proposed for the practical implementation. It
is shown, that under given assumptions the two linear predictors Zn+k and Z;‘L Tk
are asymptotically equivalent to each other and that the linear predictor 7, is
asymptotically equivalent to the exactly best linear predictor 7, proposed by Be-
ran and Ocker (1999). The proposed predictor is still an approximately best linear
predictor in the presence of long memory. Asymptotic variances of the prediction
errors for an individual observation and for the conditional mean are obtained.
Calculation of approximate forecasting intervals under log-normal assumption is
discussed. Effect of the errors in the estimated trend on the asymptotic properties
of the proposed predictor is also investigated. The Semi-FI-Log-ACD is then ap-
plied for modeling and forecasting daily trading volumes, daily trading numbers,
average durations and realized volatility of four European Stocks from Jan. 2,
2006 to Jun. 30, 2012. The results indicate that this model is widely applicable
and the proposed linear predictor works very well in practice. It is also shown that
the log-normal distribution is a suitable choice for different kinds of aggregated
financial data.

The selection of the bandwidth is a crucial problem for applying the RK. RK
work well only if the bandwidth is chosen properly. The main purpose of chapter
3 is to propose a simple, fast and fully data-driven consistent bandwidth selector
for RK based on the iterative plug-in idee (Gasser et al., 1991). To simplify
the estimation procedure we use a biased version of the asymptotically optimal
bandwidth of the RK, called Hg, which is of the same order as Hx but with a
biased factor in the constant. The difference between Hx and Hp is an constant
factor Hg/Hx = (T fOT oldu/IV?)Y/5, which is usually slightly bigger than one.
The selected bandwidth Hp is obtained by means of an iterative procedure. An
R code is programmed for practical implementation of the proposed bandwidth
selector. In each iteration, the resulting RK is used as an estimate of the IV, and

2

the variance of the microstructure noise w* is estimated based on the difference
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between RV and RK. In the first iteration RVy is used as the initial value of RK.
It is shown that @? defined in this way is \/n-consistent in each iteration. Both
of RK and Hp become consistent form in the third iteration, while their rate of
convergence can still be improved in the fourth iteration. Thereafter, RK achieves
its optimal rate of convergence of the order O(n~'/°) and this rate of convergence
is also shared by (H p— Hg)/Hg. The robust practical performance of the proposal
is illustrated by application to data of two German and two French firms within
a period of several years. The proposed IPI algorithm converges very quickly. In
most of the cases the proposed algorithm for the four companies converges within
four iterations, which confirmed the results of Theorem The numerical
comparison of RVy, RVz and RK shows that the use of the proposed RK will
lead to a clear reduction of the bias and the variation. In addition, three special
cases are considered as challenging days, where the proposed data-driven algorithm
does not work well. The histograms of the selected optimal bandwidths for the
four companies is nearly asymptotically normally distributed. In view of this, we
use the ESEMIFAR model to further analyze the obtained RK. Possible structure
breaks cased by the financial crisis in 2008 may have a clear effect on the estimation
results. Using piecewise ESEMIFAR model can improve the quality of estimation
results.

In chapter 4 we improve the IPI algorithm mentioned in chapter 3. Now, this IN
algorithm works well for all cases. Furthermore, based on the conclusions of Tkeda
(2015) and Wang (2014) a fully automatic data-driven algorithm to the dependent
MS noise assumption, namely the DN algorithm is given. For both algorithms the
end effect in the computation of the RK are considered. The non-flat-top Parzen
kernel is used to guarantee the nonnegativity of RK. Theoretically, in the fourth
iteration G and H have achieved to the optimal rate of convergence, respectively.
After several iterations the resulted RK achieves its optimal rate of convergence of
the order O(n~'/%). It is also shown, that no matter what the starting bandwidths
are, the selected bandwidths as of the second iteration are very close and the
final selected bandwidths are indeed the same. The robust practical performance

of both algorithms are illustrated by application to the data from 10 European



Chapter 5. Conclusion 124

firms within 9 years. In addition, we study a comparison of RK using different
sampling frequencies (tick-by-tick, 1-minute, 5-minute and 15-minute) calculated
by the IN algorithm as well as RK using tick-by-tick returns calculated by the
DN algorithm. Meanwhile, RV, computed for different frequency returns are also
compared with these RK estimators mentioned above. It is ascertained, that the
IN algorithm does not work well for the data/frequencies over 5 minute, because
on some days the number of observations is smaller than the selected bandwidth.
The mean values and standard deviations for tick-by-tick RV are larger than
any other volatility estimators and that diminish with the decline of sampling
frequency. Further comparison is carried out by assessing their performances in
the computation of Value-at-Risk (VaR) based on the Semi-FI-Log-ACD model.
A Backtesting to examine the observed amount of exceptions (points over VaR)
in excess of the benchmark is utilized. It is found that RK-IN-tick and RK-DN-
tick estimators have good performances and are hence recommended using as the
estimators of IV in practice.

There are still some open questions in this thesis. For instance, the idea of
the piecewise ESEMIFAR model in chapter 3 can be applied properly. A suit-
able approach for detecting structural breaks under the SEMIFAR model can be
developed. The proposed bandwidth selector in chapter 4 can be improved, if
an unbiased estimator of the integrated quarticity can be developed. A possible
modification of rating different realized measures is by means of comparing their

MSE values.
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