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Chapter 1

Introduction

1.1 Volatility models

Estimating, modelling and forecasting volatility has been the subject of extensive

research among academics and practitioners over the last twenty years. Financial

market volatility is a statistical measure of the price fluctuation over time for a

given security and can be measured by using the standard deviation or variance of

returns. It is indispensable for the theory and practice of portfolio selection, asset

pricing and risk management. The higher the volatility, the riskier the security.

The traditional financial econometrics models of risk are generally regarded as

variance independent, identically distributed constants. Since the 1960’s, a large

number of empirical research have confirmed that the variance varies over time.

Meanwhile, researcher and academicians have found four main characteristics of

financial asset volatility, which are important for analysis the volatility in the

financial market.

1. Volatility clustering: Time series of financial asset returns often exhibit

the volatility clustering property, which means large changes tend to be followed

by large changes and small changes tend to be followed by small changes. A

quantitative manifestation of this fact is that returns themselves are uncorrelated,

while absolute returns and their squares display a positive, significant and slowly

decaying autocorrelation function. To describe this phenomenon, in 1982 Robert

1
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Engle proposed the ARCH model, which is the first framework for modeling con-

ditional volatility. It is assumed in the ARCH model that the returns depend

on the past information with a specific form. Four years after the ARCH model

was proposed, Bollerslev (1986) addressed a generalized ARCH model called the

GARCH model, which is one of the most well-known extension models based on

the ARCH. The main idea behind these two models is the same. However, the

GARCH model overcomes some disadvantages of the ARCH model. In particular,

in empirical applications, the ARCH model commonly requires a relative long lag

in the conditional variance equation which leads to a higher order and makes the

model more complicated. Besides, the GARCH can better capture the volatility

process of an asset return by adding the conditional heteroskedasticity moving

items. In addition, all of the ARCH process can be extended to the GARCH

process, i.e. the ARCH process is a special case of the GARCH process, which

is why the study of the ARCH was replaced by the GARCH model, since it was

proposed. A GARCH (p,q) model is defined by

Yt | zt−1 = ηt
√
ht, Yt|zt−1 ∼ N(0, ht)

ht = α0 +

p∑
i=i

αiY
2
t−i +

q∑
j=1

βjht−j,

where α0 > 0, αi ≥ 0, βj ≥ 0, zt−1 denotes past information. ηt are the i.i.d

random variables and can be expressed as a standard normal distribution with zero

mean and unit variance. The GARCH model has greater applicability for easy

computation. Using maximum log-likelihood method can estimate the parameters

in the GARCH model.

2. Leverage effects: However, standard GARCH models assume that pos-

itive and negative error terms have a symmetric effect on the volatility. From

an empirical point of view the volatility increases more after bad news than after

good news. In order to measure the rate of return volatility asymmetry, Ding

et al. (1993) proposed an asymmetric power ARCH also called APARCH model,

in which the volatility reacts asymmetrically to negative and positive returns. A
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time series Yt follows an APARCH (p,q) model is defined by,

Yt = ηtσt, σδt = α0 +

p∑
i=1

αi(| Yt−i | −γiYt−i)δ +

q∑
j=1

βjσ
δ
t−j,

where σt =
√
ht is the conditional variance, 0 < δ ≤ 2 is a power index for this

model and 0 ≤ γi < 1 is the “leverage effect”. By changing the parameters the

APARCH model nests at least seven ARCH-type models.

• The ARCH model with δ = 2, γi = 0 and βj = 0.

• The GARCH model with δ = 2, γi = 0.

• The TS-GARCH (Taylor, 1986, Schwert, 1990) with δ = 1, γi = 0.

• The GJR (Glosten et al., 1993) with δ = 2.

• The TARCH of Zakoian (1994) with δ = 1.

• The NARCH (Higgins and Bera, 1992) with γi = 0 and βj = 0.

• The Log-ARCH (Geweke, 1986, Pantula 1986) with δ → 0.

3. Fat tail: Financial asset returns often possess distributions with a fat

tail, which has the property that there is a (relatively) high probability of some

“unusual” events. Using the normal distribution assumption can underestimate

the probability of unusual events and thus affect the accuracy of risk management

estimates-VaR (Value at risk). Therefore, such as the GARCH model with con-

ditional t-distribution after standardization (Bollerslev, 1987) and the GARCH

model with skewed innovation were proposed.

4. Long memory: Long memory is considered as one of the most important

statistical properties of time series. It implies there are correlations between two

long distanced observations and its ACF decays slowly at hyperbolic rate. AR,

MA, ARMA, ARIMA models represent only short memory features. Hence, these

models are inadequate. The fractionally integrated GARCH model (FIGARCH)



Chapter 1. Introduction 4

was proposed by Baillie et al. (1996) and can be used to model long memory phe-

nomenon in the volatility. However, the unconditional variance in the FIGARCH

model does not exist, which is why it can not be used to analyze long memory in

a usual sense. This problem was solved by the proposal of the LMGARCH model

(Karanasos et al., 2004).

In the literature, a large number of extensions of the GARCH model build up

a GARCH family, such as the general exponential GARCH (EGARCH, Nelson,

1991) model, where the conditional variance is an explicit multiplicative func-

tion of lagged innovations; the component-GARCH model (CGARCH, Engle and

Lee, 1999). Mikosch and Stăarică (2004) showed that in a fitted GARCH (1,1)

model a non-stationarity phenomenon exhibited (α1+β1 ≈ 1), a piecewise GARCH

model was hence proposed. The Semi-GARCH model with a slowly changing scale

function for modelling conditional heteroscedasticity and time heteroscedasticity

simultaneously was proposed by Feng (2004). If an existing nonparametric scale

function is not considered, it will be misinterpreted as very strong long memory.

The multivariate GARCH class of models was first introduced and estimated em-

pirically by Bollerslev et al. (1988). Their model is generalized directly from the

univariate GARCH model to multivariate case and called the Vector Error Cor-

rection (VEC) model. Bollerslev (1990) investigated the Constant Conditional

Correlation (CCC) model, in which all conditional correlations are constant and

the conditional variances can be modeled as univariate GARCH processes. Engle

(2002) extended the CCC model to a Dynamic Conditional Correlation (DCC)

model, where the correlations change with time.

In the last decade, owing to the rapid development in computer technology,

methods of data processing and collection have made swift progress. These make

the observations with small time intervals–high-frequency data obtainable. High-

frequency data records the real-time transaction and provides many more details

of the events in the financial market. Hence, it is of great significance for the un-

derstanding and research of financial market microstructure. Based on the idea of

the ARCH and GARCH models, a new model is developed to investigate the irreg-

ularly time-spaced characteristic of high frequency data, namely the autoregressive
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conditional duration model (ACD, Engle and Russell, 1998). Let Xt = ti − ti−1
be the ith duration between two events which occur at times ti−1 and ti. The

sequence {x1, x2, . . . , xn} has non-negative elements, since t1 ≤ t2 ≤ t3 ≤ . . . tn.

Let ψt ≡ E(Xt|zt−1) be the conditional mean (expected) durations, where zt−1

denotes past information set of durations available at time t− 1. A general model

for conditional duration is:

Xt = ψtεt,

where εt > 0 are i.i.d. with E(εt) = 1 and var(εt) = σ2. Following the GARCH

idea the ACD(p,q) model is defined by:

ψt = α0 +

p∑
i=1

αiXt−i +

q∑
j=1

βjψt−j,

where α0 > 0, αi ≥ 0, βj ≥ 0. It means that the conditional mean duration ψt

depends on p previous durations and q previous mean durations. The restrictions

of the ACD and (G)ARCH models (i.e, α0 > 0, αi ≥ 0, βj ≥ 0) are to ensure ψt

and ht to be positive. As a matter of fact, the ACD model is an application of the

GARCH model to the duration data. Define ηt = Xt−ψt, which are uncorrelated

with mean zero, then like the GARCH model, the ACD(p,q) model can also be

treated as an ARMA (max(p,q),q) model:

Xt = α0 +

p∑
i=1

Xt−i +

q∑
j=1

βjXt−j −
q∑
j=1

βjηt−j + ηt.

The strong similarity between the ACD and (G)ARCH models has nurtured the

rapid expansion of alternative specifications of conditional durations. One of the

extensions of the ACD model is to change the distribution of εt. Engle and Russell

(1998) proposed WACD model with standardized weibull distribution. Gramming

and Maurer (2000) used a burr distribution which contains the exponential, weibull

and log-logistic as special cases.

In the ACD (p,q) model, it is assumed that all coefficients (α0, αj, βj) are

positive in order to ensure the positivity of durations. Due to such a restriction
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it is not allowed to add some variables taken from the microstructure literature

with possible negative coefficients in the autoregressive equation, which may lead

to a negative duration. To avoid this, some nonlinear ACD models were devel-

oped. The Log-ACD model was proposed by Bauwens and Giot (2000). Following

the idea of the linear ACD model, the general form of the Log-ACD model is

introduced by

Xt = eφtεt, lnψt = α0 +

p∑
i=1

αig(εt−i) +

q∑
j=1

βj lnψt−j,

where φ is proportional to the logarithm of the conditional expection of Xt, εt

are i.i.d and follow a Weibull (1, γ) distribution with E(εt) = 1 and var(εt) = σ2.

Let g(εt−i) be ln εt−i or εt−i, which correspond to the Log-ACD1 model or Log-

ACD2 model, respectively. In this thesis we will only discuss the Log-ACD1 model,

which actually can be considered as the ACD model using logarithmic data. The

Log-ACD1 model is defined by

lnψt = α0 +

p∑
i=1

αi lnXt−i +

q∑
j=1

βj lnψt−j.

This model is close to the Log-GARCH model proposed by Geweke (1986). Com-

pared with the original ACD model it is more flexible and the only constraint on

the coefficients is β < 1. However, one drawback of Log-ACD is that it cannot ac-

commodate durations, which are equal to zero. Allen et al. (2008) showed that the

Log-ACD model can be rewritten as a linear ARMA process using the logarithmic

data (namely the Log-ARMA model). Define µt = lnXt− lnψt, where E(µt) = 0.

The Log-ACD model can be rewritten as a Log-ARMA model as follows:

lnXt = α0 +
r∑
i=1

αi lnXt−i +
r∑
j=1

βj lnψt + lnXt − lnψt

= α0 +
r∑
i=1

(αi + βi) lnXt−i −
r∑
j=1

βj(lnXt − lnψt−j) + µt.
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If σi = αi + βi and θ = −βj, then

lnXt = α0 +
r∑
i=1

σi lnXt−i +
r∑
j=1

θjµt−j + µt.

Reversely, it is easy to show that the exponential transformation of a linear ARMA

process can be written as a Log-ACD model. Bayesian information critterion

(BIC) can be used to select a suitable model and the parameter of the Log-ACD

model will also be obtained through the Log-ARMA model. Comparing with the

multiplicative form of the ACD model, the Log-ACD model is a additional model,

which is easier to estimate. A long memory extension of the Log-ACD model

can be thought of as the exponential fractional autoregressive integrated moving

average model (EFARIMA), which was proposed by Beran et al. (2015), and can

simply be thought of as an application of the well known FARIMA model to the

log transformed data.

Following the idea of the Semi-GARCH, a Semi-ACD model with a slowly

varying scale function was proposed. The estimation of the Semi-ACD model is

better than that of the ACD model, if local stationary phenomenon exists. The

Semi-ACD model can be defined as a multiplicative model and it can be considered

as an ACD(p,q) model with a smooth scale-function ν(τt). Let Xt be the duration

between two events, τt = t/n be the rescaled time, ψt be the conditional mean

duration after standardization and ηt ≥ 0 are i.i.d. random variables with unit

mean, then the Semi-ACD model is proposed by

Xt = ν(τt)ψtεt,

where ψtεt = ζt is the conditional dynamics of the stationary process. After

removing the scale function ν(τt), the ACD (p, q) model can be employed to an-

alyze ζt. The estimation of the scale function ν is a nodus in the estimation of

semiparametric models. A data-driven algorithm with a good asymptotic proper-

ties for estimating the nonparametric scale function was proposed by Beran and

Feng (2002b, 2002c). This approach does not have any assumptions of parametric
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model, except that ζt is assumed to be stationary. After removing the nonpara-

metric part- scale function, the approximations of ζt can be derived by means of

fitting some suitable parametric models. The selection of suitable model can fol-

low some well known model selection criteria like BIC. A long memory extension

of the Semi-Log-ACD model was proposed for modelling a nonnegative process

with long memory and a nonparametric scale function simultaneously. It can be

thought of as the semiparametric version of the EFARIMA model (SEMIFAR).

Beran and Ocker (2001) found significant trend in volatility by fitted SEMIFAR

models.

Taylor (1982, 1986) proposed stochastic volatility model (SV). Both GARCH

family and SV models take into account the important volatility clustering phe-

nomenon and are driven by the past information. The main difference is that

the GARCH family models assume deterministic volatility states, while in the SV

model the volatility is a latent variable with unexpected noise. The introduction

of the additional error term makes the SV model more flexible than the GARCH

family models. Carnero et al. (2004) showed that compared with the GARCH

models, the SV model captures the main empirical properties often observed in

daily series of financial returns in a more appropriate way. However, the empirical

applications of the SV model have been very limited. The main reason is that

the GARCH model is easily estimated via Maximum Likelihood estimator, while

the likelihood of SV models is not directly available. The use of simulation tech-

niques, like simulated maximum likelihood, the generalized method of moments

and Markov chain Monte Carlo are required. Ghysels et al. (1996) and Shephard

(1996) surveyed the SV literature, and Broto and Ruiz (2004) reviewed the esti-

mation methods for the SV models. The first multivariate SV model proposed by

Harvey et al. (1994). Asai et al. (2006) reviewed the substantial literature on

specification, estimation and evaluation of multivariate SV models. An alterna-

tive approach is implied volatility, which invoke option pricing models to invert

observed derivatives prices over a fixed future period. Such procedures remain

model-dependent and further incorporate a potentially time-varying volatility risk

premium in the measure so they generally do not provide unbiased forecasts of
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the volatility of the underlying asset.

Increased availability of high-frequency data in the last decade have resulted

in development of the new model-free volatility approach called realized volatility

(Andersen et al., (2001a, 2001b)), which exploits the information in high fre-

quency returns and is constructed as the sum of the squared intraday returns that

are sampled at very short intervals. In contrast to all GARCH and SV models, re-

alized volatility estimator does not need parametric assumptions. Koopman et al.

(2005), Martens (2002) and Martens et al. (2007) among others demonstrated the

superiority of realized volatility models over GARCH family for volatility fore-

casting. In the ideal case, increasing the sampling frequency towards to make

more accurate estimates of volatility on any given day. This implies that daily

volatility becomes almost observable via realized volatility. However, a perfect

estimate of realized volatility can be obtained only under the assumption that

prices are observed in continuous time and without measurement. In reality the

sampling frequency is limited by actual quotation or transaction frequency and

observed prices are contaminated by market microstructure (MS) noise, which

leads to the bias problem, refer to e.g. Andersen et al., (2001a); Barndorff-Nielsen

and Shephard (2002). Market MS noise could, for example, be induced by the

discreteness of price changes, bid-ask bounce, latency, and asymmetric informa-

tion of traders. Due to the market MS noise, the intraday returns are correlated

(normally negative). If this negative correlation is not considered, the realized

volatility will be overestimated. To solve this bias problem, different approaches

have been introduced into the literature. Bandi and Russel (2006, 2008, 2011) and

Oomen (2006) investigated a method of selecting the optimal sampling frequency

based on a trade-off between the variance and bias. Hansen et al. (2008) inves-

tigated correction of MS bias using moving average-based estimators. Podolskij

et al. (2009) provided the pre-averaging approach. The subsampling approach

originally suggested by Zhang et al. (2005), which builds on the use of a realized

volatility estimator with two time scales under dependent MS noise. A general-

ization of Zhang et al. (2005) was introduced by Aı̈t-Sahalia et al. (2011) and

Zhang (2006), which is consistent and asymptotically unbiased under dependent
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noise. Zhou (1996) proposed to use the first order correlation to correct the bias.

This is the first kernel based method and was generalized in Hansen and Lunde

(2006a). Nevertheless, the estimators are inconsistent. Barndorff-Nielsen et al.

(2008) proposed the realized kernels (RK), which are a generalization of Zhou

(1996) and are consistent estimators of the IV under given conditions. Barndorff-

Nielsen et al. (2009) provided the practical application of the non-flat-top realized

kernels. Barndorff- Nielsen et al. (2011a) considered further refinements of the

realized kernels in the spirit of the subsampling approach adopted in the TSRV

estimators by using averaged covariance terms in the realized kernel estimators.

Ikeda (2015) proposed two-scale RK, which is a convex combination of two realized

kernels with different bandwidths and converges to the daily integrated volatility

in the presence of dependent MS noise. Moreover, some alternative realized vari-

ance measures based on the quadratic variation that exploit other aspects of high

frequency financial data were investigated. Christensen and Podolskij (2007) pro-

posed a realized range-based estimator, that replaces the squared intraday returns

by normalized squared ranges. Christensen et al. (2010b) introduced the quan-

tile based realized variance (QRV) estimator. Andersen et al. (2009) introduced

the duration based approach based on a localization argument and the theory of

Brownian passage times. In the multivariate case Barndorff-Nielsen et al. (2008)

provided the multivariate realized kernel estimator, which guarantees consistency,

positive semi-definiteness and handles non-synchronous trading simultaneously.

Christensen et al. (2010a) introduced the adjusted modulated realized covariance.

Lunde et al. (2016) proposed the composite kernel.

Financial risk managers often report the risk of investments using the concept

of Value-at-Risk (VaR), which estimates the maximum loss at given confidence

interval in a certain period. The Basel Committee demands banks use the VaR in

establishing the minimum capital necessary at investments in order to reduce the

fragility of international active banks. VaR is widely used by investors and regu-

lators in the financial industry to measure the amount of assets needed to cover

possible losses and has been considered as a expectable banking risk measure. The

VaR is obtained by σtF
−1
L (α) at a given confidence interval (1−α), where F−1L (α)
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is loss distribution and σt is the standard deviation (volatility) of investments at

time t. By calculating VaR, σt play a crucial role. Accurate volatility estimates

are vital in risk management for calculating such as VaR. Further analyzing and

forecasting the estimated volatility is also of paramount importance. In this thesis

the forecasting of long memory and a nonparametric scale function in nonnegative

financial processed based on the Semi-FI-Log-ACD model is proposed. A linear

predictor based on the truncated AR(∞) form of the logarithmic process is pro-

posed. The proposals are applied to forecasting such as realized volatility, trading

volume. Furthermore, we propose new consistent estimators for realized kernels

under independent and dependent noise. The comparison of proposed estimators

with several other volatility estimates are reported. All practical studies in this

thesis are based on high-frequency financial data from several European stocks.

1.2 Forecasting based on the Semi-FI-Log-ACD

model

Modeling and forecasting of short- and long memory, and a possible nonparamet-

ric scale function in financial time series is of great interest. Well known models

with short memory are e.g. the ARCH and GARCH for returns and the ACD

for transaction durations. The ACD can also be used for modeling trading vol-

ume (Manganelli, 2005). Models based on logarithmic transformation are also

proposed, including the Log-GARCH (Geweke, 1986, and Pantula, 1986) and the

Log-ACD1 (Bauwens and Giot, 2000, Bauwens et al., 2008, Karanasos, 2008).

Now, the estimates are always nonegative and the log-data can be modeled by

known linear time series approaches. Modeling of a smooth scale function in

volatility caused by changing macroeconomic environment was investigated by

Feng (2004) and Engle and Rangel (2008). Well-known long memory volatility

models are the FIGARCH, the LM-GARCH, the FIACD (Jasiak, 1998) and the

LM-ACD (Karanasos, 2004). In the literatures, the estimation of a nonparametric

scale function in volatility models with long memory is not yet well studied.
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Most recently, an EFARIMA (exponential fractional autoregressive integrated

moving average) for nonnegative processes with long memory is proposed by Beran

et al. (2015), called a Log-FARIMA in this thesis. The Log-FARIMA is defined

as follows. Let X∗t = λtηt, where ηt ≥ 0 are i.i.d. random variables and λt is the

conditional mean. Let Zt = ln(X∗t ) and εt = ln(ηt). It is assumed that Zt = ln(X∗t )

is a FARIMA

(1−B)dφ(B)Zt = ψ(B)εt,

where d ∈ (−0.5, 0.5) is the fractional differencing parameter, φ(B) = 1− φ1B −
. . .−φpBp and ψ(B) = 1+ψ1B+. . .+ψqB

q are the MA- and AR-polynomials with

no common factor and all roots outside the unit circle. This model can be extended

to a Log-SEMIFAR (logarithmic semiparametric fractional autoregressive) Xt =

ν(τt)X
∗
t = ν(τt)λtηt, where τt = t/n and ν(τt) > 0 is a smooth scale function. It

can be shown that

lnλt =
∞∑
i=1

πi lnλt−i +
∞∑
j=1

ωj ln(ηt−j),

where πi are coefficients of π(B) = (1 − B)dφ(B) = 1 −
∑∞

i=1 πiB
i. The Log-

FARIMA is hence a fractionally integrated extension of the Log-ACD1 (Bauwens

et al., 2008) and is also called a FI-Log-ACD. The Log-SEMIFAR will hence be

called a Semi-FI-Log-ACD. Both models are useful tools for modeling nonnegative

financial data and can be estimated using existing software packages.

In chapter 2 necessary and sufficient conditions for the existence of a stationary

solution of the FI-Log-ACD are first obtained. It is shown that these conditions

are fulfilled, if ηt are log-normal innovations with εt ∼ N(0, σ2
ε). Further exam-

ples, which fulfill those conditions are the log-logistic and log-Laplace innovations

with suitable restriction on the parameters. In contrast it is shown that, if d > 0

those conditions can never be fulfilled by some well known nonnegative distribu-

tions, such as the weibull and the generalized gamma distributions. For those

distributions a stationary FI-Log-ACD process with long memory in Zt does not

exist. Detailed properties of the FI-Log-ACD under the log-normal assumption as
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obtained in Beran et al. (2015) are summarized. Now, all of the processes X∗t , Zt,

λt as well as ζt = ln(λt) have long memory with the same memory parameter, if

d > 0. If d ≤ 0, X∗t and λt have short memory, which cannot be antipersistent.

Forecasting using the Semi-FI-Log-ACD is then discussed in detail. In chapter

2 we propose to use a simple, truncated linear predictor based on the AR(∞) form

of Zt. This idea is often employed to carry out forecasting based on an ARMA

model, when the sample size is large. See e.g. Brockwell and Davis (2006, p. 184).

In practice, the approximately best linear predictor based on the truncated part

of the AR(∞) representation of Zt is defined by

Ẑn+k =
k−1∑
j=1

β̂jẐn+k−j +
n+k−1∑
j=k

β̂jẐn+k−j,

where β̂j are the estimated coefficients in the AR(∞) form of Zt, Ẑn+k−j for

j = k, ..., n+k−1, are the residuals obtained; and Ẑn+k−j, j = 1, ..., k−1, are the

values predicted previously. To our knowledge, in the literature the above-defined

approximately best linear predictor has not been proposed in the presence of long

memory. Properties of this proposal are investigated in detail. It is shown that, in

the presence of long memory the proposed predictor is still an approximately best

linear predictor. Asymptotic variances of the prediction errors for an individual

observation and for the conditional mean are obtained. Calculation of approximate

forecasting intervals under log-normal assumption is discussed. Effect of the errors

in the estimated trend on the asymptotic properties of the proposed predictor is

also investigated.

The Semi-FI-Log-ACD is then applied for modeling and forecasting daily trad-

ing volumes, daily trading numbers and realized volatility. The data are from four

European stocks, namely AF, BMW, PSA, MEOG. Application to real datasets

shows that the proposed linear predictor works very well in practice. It is also

confirmed that the Semi-FI-Log-ACD model is very useful for modeling different

kinds of financial data, in particular aggregated financial data. Furthermore, note

that the nonparametric trend and the long memory error process should be esti-
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mated simultaneously, because suitable estimation of both parts will improve the

forecasting. The more important reasons for this are as follows. On the one hand,

if possible long memory in the conditional mean of a process is not considered,

the selected bandwidth will be much smaller than it should be and the formula for

calculating the asymptotic variance is also wrong. This will lead to a significant

trend, even if the underlying process is indeed stationary. On the other hand, if an

existing nonparametric scale function is not considered, it will be misinterpreted

as very strong long memory. The results indicate that this model is widely ap-

plicable and the proposed linear predictor works very well in practice. It is also

shown that the log-normal distribution is a suitable choice for different kinds of

aggregated financial data.

1.3 An iterative plug-in algorithm for RK

One of the most important concepts in financial econometrics and financial mathe-

matics introduced in the last two decades is the realized volatility (RV) (Andersen

et al., 2001a,b), which is a model-free estimator of the daily integrated volatility

(IV) based on high-frequency financial data. Let p∗i be the latent logarithmic asset

price observed at 0 = τ0 < τ1 < . . . < τn < τn+1 = T , and p∗i determined by the

stochastic differential equation dp∗(τ) = σ(τ)dW (τ), where W (τ) is a standard

Brownian motion and σ(τ) is the volatility process. Furthermore, assume that the

σ(τ) and W (τ) processes are uncorrelated. The estimation of the daily integrated

volatility is defined by IV =
∫ T
0
σ2(τ)dτ . RV is constructed as the square root of

the sums of intraday squared returns. However, it is found that, if the data exhibit

microstructure noise ui, most of the simple definitions of RV are now inconsistent

estimators of the IV, and the observed log-price pi consists of two components

pi = p∗i + ui, where ui is i.i.d independent of p∗i with zero mean and var(ui) = ω2.

Let r∗i = p∗i − p∗i−1 be the returns with n observations per day. The corresponding

noise contaminated returns is given by ri = r∗i + ei, where ei = ui − ui−1, which

indicates an MA(1) error structure in observed returns.
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In the presence of the MS noise, the commonly used biased estimator of IV is

RV0 =
n∑
i=1

(r∗i )
2 + 2

n∑
i=1

r∗i ei +
n∑
i=1

e2i ,

where its bias B(RV0) = 2nω2 and its variance is var(RV0) = 4nE(u4i )+
2
n

∫ T
0
σ4
t (τ)dτ .

Under the i.i.d noise assumption, Zhou (1996) proposed to use the first order

correlation to correct the bias in RV0. Following the original idea of Zhou the past

one and the further one values are required. In order to facilitate practical use,

we modify Zhou’s approach based on the observed returns

RVZ =
n−1∑
i=2

(r2i + riri+1 + riri−1).

It can be easily proved that volatility calculated by this approach is unbiased,

while its variance tends to be infinite, if the number of the observation is large

enough. There is an optimal observation frequency which trades off between bias

and the variance of RVZ.

In the literature, Bandi and Russel (2006), as well as Oomen (2006) investigate

the optimal lower frequency, such as 5 minute and 15 minute. Zhang et al. (2005)

and Aı̈t-Sahalia et al. (2008) proposed to use two time scales estimator to solve

the MS bias. Hansen and Lunde (2006a) and Oomen (2005) proposed a simple

kernel based estimator. Barndorff-Nielsen et al (2008) proposed an approach to

get the optimal observation frequency. Besides, Hansen et al. (2008) investigate

microstructure bias based on MA filter. Most recently, Barndorff-Nielsen et al.

(2008, 2009 and 2011b) introduced the realized kernels (RK), which is a consistent

positive semi-definite estimators of the time-varying volatility. The realized kernels

are given by

RK =
H∑

h=−H

k

(
h

H + 1

)
γh, γh =

n∑
j=|h|+1

rjrj−|h|,

where k(u) is a kernel weight function, H is the selected bandwidth and γh is the
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h-th realized autocovariance. We use the Parzen kernel, which is one of the kernels

that can guarantee a nonnegative realized kernel estimate. Asymptotic properties

of RK are studied by Barndorff-Nielsen et al. (2008, 2011b), see also Ikeda (2015).

A crucial problem when applying RK is the selection of the bandwidth. The

main purpose of chapter 3 is to propose a simple, fast and fully data-driven con-

sistent bandwidth selector for RK based on the iterative plug-in idee (Gasser et

al., 1991). The asymptotically optimal bandwidth (Barndorff-Nielsen et al., 2009,

2011b), which minimizes the dominating part of the MSE (mean squared error)

of an RK is given by

HA = c0ξ
4/5n3/5 withc0 =

{
k′′(0)2

k0.0•

}1/5

and ξ2 =
ω2√

T
∫ T
0
σ(τ)4dτ

.

For the Parzen kernel c0 = 3.5134. We see the optimal bandwidth for an RK

with a non-flat top kernel is of the order O(n3/5). If a bandwidth of this order is

employed, the resulted RK will achieve its optimal convergence rate of the order

O(n−1/5). In chapter 3, to simplify the estimation procedure we use a biased

version of the asymptotically optimal bandwidth of RK, called HB by replacing

T
∫ T
0
σ4(τ)dτ with IV2. The reason is that the former is not far from the latter, if

σ(τ) does not vary too much. The bandwidth HB is obtained by

HB = c0ξ
4/5
B n3/5 with c0 =

{
k′′(0)2

k0.0·

}
,

where ξ2B = ω̂2/ ˆIV and ω̂2 = RV0− ˆIV
2n

. The term “consistent” is used in a relative

sense that (ĤB − HB)/HB → 0, as n → ∞. The selected bandwidth ĤB is

computed by means of an iterative procedure. In each iteration, the resulting

RK is used as an estimate of the IV, and the variance of the MS noise ω2 is

estimated based on the difference between RV0 and RK. In the first iteration RVZ

is used as the initial value of RK. It is shown that ω̂2 defined in this way is
√
n-

consistent in each iteration. Both of RK and ĤB become consistent form in the

third iteration, while their rate of convergence can still be improved in the fourth

iteration. Thereafter, RK achieves its optimal rate of convergence of the order
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O(n−1/5) and this rate of convergence is also shared by (ĤB −HB)/HB.

An R code is developed for practical implementation of the proposed band-

width selector. The algorithm will be stopped, if Ĥj is equal to Ĥj−1. It is also

found that the selected bandwidths sometimes take two consequent integers al-

ternatively. The procedure will also be ended in this case and the larger of the

two selected bandwidths will be used. Both mentioned cases will be considered as

regular cases. Note that in our implementation, Ĥ is obtained by truncating the

integer part of selected optimal bandwidth and plus 1. The end effect of realized

kernels can be eliminated in the computation of the realized kernels (Barndorff-

Nielsen et al., 2011b). Furthermore, except for regular cases there are also three

cases, which should be specially treated. The first special case (Sp. Case 1) is that

RVZ is smaller than 0. In this case the noise may be very strong. We manually set

ξ̂2 = 100/(2n), which can select a big starting bandwidth. After j iterations Hj

will converge to the optimal bandwidth HB. The second special case (Sp. Case

2) is that RVZ is bigger than RV0, which indicates probably there is no noise in

those days. In this case, we use estimator RV0, because in the case of no noise

RV0 is unbiased and we manually set Ĥ∗ = 0. The third special case (Sp. Case 3)

is that RK is bigger than RV0, which means there may be positive noise in returns

on those days. In this case, we still use estimator RK.

In chapter 3 the nice practical performance of the proposal is illustrated by

application to data of two German and two French firms within a period of sev-

eral years. The proposal runs very quickly and works usually very well in practice.

Detailed analysis of two challenging cases are reported. In Sp. Case 2 the ACF

at lag 1 is positive, however, some ACFs at higher lags can be negative so that

RV0 is still biased. One possible problem, which can arise is that the dependent

MS noise appears. In Sp. Case 3 the ACF at lag 1 is negative, however some

other ACFs are clearly positive so that the sum of the ACF is positive. This

indicated the existence of possible dependent MS noise again, which could cause a

negative bias in RV0. The effect of this kind of possibly dependent MS noise can

however not be corrected by the proposed data-driven RK and it is worthy to de-

velopment a data-driven RK by taking possibly dependent MS noise into account.
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Furthermore, the ESEMIFAR model, which can simultaneously investigated long

memory, nonparametric trends and possible structural breaks, is used to analyze

the RK. Possible structure breaks cased by the financial crisis in 2008 may have

a clear effect on the estimation results. Using piecewise ESEMIFAR model can

improve the quality of estimation results.

1.4 RK under dependent noise using different

sampling frequencies

Further improving the fully automatic iterative plug-in algorithm is the focus of

chapter 4. A data-driven RK under dependent noise assumption is proposed and

now the algorithm works for all cases. Moreover, we extent the proposed algorithm

for the different sampling frequencies and then compare them with several other

realized estimators. In total, we have 4 sampling frequencies (tick-by-tick, 1-

minute, 5-minute and 15-minute), 2 types of realized estimators (RV0 and RK)

and two algorithms (bandwidth selectors under independent and dependent noise

assumptions) of a given transaction price series.

Realized volatility using different sampling frequencies is obtained by

RVs
0 =

ns∑
i=0

r2t,i,

where ns denotes the number of observations using different sampling frequencies.

The version of RVZ with different sampling frequencies is given by

RVs
Z =

ns−1∑
i=2

(r2t,i + rt,irt,i+1 + rt,irt,i−1).

By displaying the ACFs of returns on several selected days it can be found that

in most cases ρr(1) is significantly negative and there are possible dependent MS

noise in tick-by-tick returns and for some cases there may be still MS noise in 1-

minute and 5-minute returns. The correlations reduce with the decrease of sample
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frequencies. The reason is that the diminished number of observations reduces the

bias and extends the two ACF bounds, which makes the daily returns uncorrelated.

However, decreasing the sampling frequency toward to increase the variance and

reduce the accuracy of volatility estimators. Hence, a realized estimator with an

optimal frequencies is necessary to investigate, which can remove the effect of MS

noise and grantee the accuracy of the estimation at the same time.

The proposed asymptotically optimal bandwidth for RK is given by

H = c0ξ
4/5n3/5 with c0 =

{
k′′(0)2

k0.0·

}1/5

and ξ2 =
Ω√
T IQ

,

where c0 = 3.5134 for the Parzen kernel, IQ=
∫ T
0
σ4
t dt is called the integrated quar-

ticity, Ω = Σh>0Ω(h) is the long-run variance of ut,i and Ω(h) = Σn
i=h+1ut,iut,i−h.

The bandwidth H depends on the unknown quantities Ω and IQ. When ut,i is

under i.i.d. noise assumption, Ω reduces to ω2. We let ω̂2
s,1 =

RVs
0

2ns
to replace

ω̂2
s,1 =

RVs
0−RVs

Z

2ns
. It aims to avoid RVs

0 − RVs
Z < 0. It can be observed that

RVs
0

2ns

is not far from
RVs

0−RVs
Z

2ns
, if n→∞. The algorithm after this adjustment is called

the IN algorithm.

However, this IPI algorithm is only for the case under assumption of i.i.d.

MS noise. Ikeda (2015) proposed a two-scale RK, which is a convex combination

of two realized kernels with different bandwidths. He showed that his estimator

converges to the daily integrated volatility in the presence of dependent MS noise.

Following Ikeda (2015) we utilize MK(G) to estimate Ω. Define

MK(G) = (|k′′(0)|nG−2)−1RK(G),

where RK(G) are the realized kernels for bandwidth G. The asymptotically op-

timal bandwidth G = O(nβ) can be obtained by minimizing the AMSEG. When

β = 1/3 only for Parzen kernel, which is allowed for the asymptotic normality of

MK(G). According to the related results in Ikeda (2015), we can get the AMSEG

for MK(G)

AMSEG =

(
IVt

k′′(0)

)2
G4

n2
+O

(
G

n

)
+O

(
1

G2

)
.
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Based on Ikeda (2015)’s conclusion, Wang (2014) proposed two IPI algorithms for

RK under dependent noise assumption. He proved that his proposals are consistent

and that for algorithm A in the second iteration Ĥ2 has already achieved the rate

of convergence of the order O(n3/5) and after only a few iterations Ĥj converges

to HB. He also showed that ĤB is consistent even when α is outside the range

of (1/2, 1). Algorithm B is a fully automatic data-driven algorithm and with our

slight adjustment it is called the DN algorithm. The starting bandwidth in the

DN algorithm is more reasonable and end effects in the computation of the RK

are considered. The processes of the IN and DN algorithms starting with different

bandwidth for four selected days are displayed in Fig. 4.5. It shows that both

algorithms work very well in practice and only a few iterations are required. In

addition, no matter what the starting bandwidths, the selected bandwidths as

of the second iteration are very close and that the final selected bandwidths are

indeed the same. Normally, the required iteration number becomes smaller, if

a suitable starting bandwidth is chosen. The histograms of selected bandwidths

for RK-IN-tick, RK-IN-1min, RK-IN-5min and RK-DN-tick of all companies are

illustrated. The selected bandwidths for RK-IN-tick are smaller than those for

RK-DN-tick. The reason is that the dependent MS noise is taken into account.

Meanwhile, the selected bandwidths for 1-minute RK-IN are smaller than those for

tick-by-tick RK-IN, but larger than those for 5-minute RK-IN. This corresponds

to their ACFs results, that the correlations in 5-minute returns are smaller than

the correlations in 1-minute and tick-by-tick returns. The commonly required

number of iterations for RK-IN-tick, RK-IN-1min, RK-IN-5min and RK-DN-tick

are 3, 3, 3, 5, respectively. These confirm that both IN and DN algorithms work

very well in practice and only a few iterations are required. Please note that the

IN algorithm does not work for 15-minute RK of all ten stocks, because on some

days for these stocks the number of observations are smaller than the selected

bandwidths (n < ĤB). Meanwhile, the number of three cases mentioned in Feng

and Zhou (2015a) (RVZ < 0, RVZ >RV0 and RK>RV0) for RK-IN-tick, RK-

IN-1min, RK-IN-5min and RK-DN-tick of the ten companies are listed, which

shows the necessity of adjusting the old algorithms to the proposed IN and DN
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algorithms.

Further comparison of these realized estimators is carried out by assessing

their performances in the computation of Value-at-Risk (VaR) based on the lnRV-

SEMIFAR (also called the Semi-FI-Log-ACD model). The corresponding VaR

calculation is obtained by

VaRt
1−α = s(τt)σtZ1−α,

where s(τt) is local variance, σt is the volatility of stocks at time t and the loss

distribution Z1−α is assumed normal. In the SEMIFAR model the total means in

the original data s(τt)σt is obtained through the exponential transformation of the

estimated deterministic trend and the estimated conditional mean.

A Backtesting for comparing the observed amount of exceptions (points over

VaR) with the expected amount/benchmark is utilized. The one day dynamic

ahead 95% VaR based on the lnRV-SEMIFAR model together with the losses for

the ten companies are illustrated in Figure 4.8 to Figure 4.17. The corresponding

numerical results for points over VaR and the deviations from the benchmark are

listed in Table 4.4 and Table 4.5. It is found that RK-IN-tick and RK-DN-tick es-

timators have good performances by computing VaR and are hence recommended

using as the estimators of IV in practice.



Chapter 2

Forecasting financial market

activity using a semiparametric

fractionally integrated Log-ACD

This chapter is based on joint work with Yuanhua Feng and published with slight

differences in the International Journal of Forecasting 31 (2015) 349-363.

2.1 Introduction

This chapter considers forecasting of long memory and a smooth scale function

in financial time series aggregated from high-frequency data, such as (daily) trad-

ing volumes, trading numbers, average transaction durations as well as realized

volatility. Here, long memory is probably caused by aggregation. Well known

short-memory models in the current context are the ARCH (autoregressive con-

ditional heteroskedasticity, Engle, 1982) and GARCH (generalized ARCH, Boller-

slev, 1986) for returns and the ACD (autoregressive conditional duration, Engle

and Russell, 1998) for transaction durations. The ACD can also be applied to

trading volumes (Manganelli, 2005) and other quantities. Furthermore, the (first

type) Log-ACD (Bauwens and Giot, 2000, Bauwens et al., 2008, Karanasos, 2008,

Allen et al., 2008) is also proposed, where the log-data are modeled by an ARMA.

22
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The idea ensures that the estimates of the original data are always nonnegative.

Modeling a smooth scale function in volatility caused by changing macroeconomic

environment was investigated by Feng (2004), and Engle and Rangel (2008).

Well known long memory volatility models are the FIGARCH (fractionally in-

tegrated GARCH, Baillie et al., 1996), the LM-GARCH (long memory GARCH,

Karanasos et al., 2004), the FIACD (Jasiak, 1998) and the LM-ACD (Karanasos,

2004). Baillie and Morana (2009) proposed an adaptive FIGARCH for modeling

long memory and structural breaks in volatility. As far as we know, estimating a

smooth scale function in volatility models with long memory is not yet well studied.

Most recently, Beran et al. (2015) proposed to model short memory, long memory

and a nonparametric scale function in nonnegative financial time series based on

the log-transformation. They assumed that the process under consideration has a

log-normal marginal distribution and proposed to model the stochastic component

of the log-data by a Gaussian FARIMA (fractional autoregressive integrated mov-

ing average, Hosking, 1981, Beran et al., 2013). The log-data themselves are ana-

lyzed by a SEMIFAR (semiparametric fractional autoregressive, Beran and Feng,

2002a). Their proposals are hence called an EFARIMA (exponential FARIMA)

and an ESEMIFAR, respectively, which can be easily estimated using existing

software packages.

In this chapter, a possible origin of long memory in the data under consid-

eration is discussed. The EFARIMA and ESEMIFAR models are extended to

the case with general marginal distributions and represented as FI-Log-ACD and

Semi-FI-Log-ACD models, respectively. Necessary and sufficient conditions for

the existence of a stationary solution of the FI-Log-ACD are obtained. Detailed

properties of this model under the log-normal assumption are investigated. In par-

ticular, the long memory parameter is now not affected by the log-transformation

(see also Dittmann and Granger, 2002). Our focus is on forecasting using the

Semi-FI-Log-ACD based on an improved data-driven SEMIFAR algorithm. The

forecasting is carried out using a truncated linear predictor based on the AR(∞)

form, which is more simple and runs faster than the best linear SEMIFAR pre-

dictor of Beran and Ocker (1999). Properties of the proposal are investigated in
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detail. For an ARMA model the proposed predictor is an approximately best lin-

ear predictor (Brockwell and Davis, 2006, p. 184). We show that this is still true in

the presence of long memory. Asymptotic variances of the prediction errors for an

individual observation and for the conditional mean are obtained. The calculation

of approximate forecasting intervals under the log-normal assumption is discussed.

The effect of the errors in the estimated trend on the asymptotic properties of the

proposed predictor is investigated. Application to (daily) trading volumes, trading

numbers, average durations and realized volatility shows that the proposals work

very well in practice and the log-normal distribution is quite reasonable. Finally,

our empirical results reveal that, besides long memory and smooth scale change,

realized volatility may also exhibit structural breaks.

Motivations for this study and definitions of the models are given in section

2.2. section 2.3 describes the properties and estimation of the proposed models.

The linear predictor is proposed and studied in section 2.4. section 2.5 reports

the empirical results. Final remarks in section 2.6 conclude the chapter. Proofs

of results are put in the appendix.

2.2 A semiparametric multiplicative long mem-

ory model

2.2.1 Origin of long memory in aggregated financial data

Nonnegative financial time series often exhibit long memory. Long memory in real-

ized volatilities and trading volumes has been studied by Andersen et al. (2001a),

and Fleminga and Kirbyb (2011). Deo et al. (2010) revealed that transaction

durations, trading numbers, squared returns and realized volatility may exhibit

long memory at potentially the same level. Beran et al. (2015) found evidence of

long memory in average durations.

A well known theoretical origin of long memory in economic time series is

the cross-sectional aggregation of microeconomic data. For instance, Granger

(1980) and Leipus et al. (2014) showed that the aggregation of random-coefficient
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ARMA processes under certain conditions will result in a long-memory process.

Zaffaroni (2007) discussed the aggregation of GARCH models and indicated that

this does not lead to long memory in volatility. See also Beran et al. (2013)

and references therein. Time series considered in this chapter can be thought

of as special cross-sectional aggregates of high-frequency data, i.e. aggregation

of micro-financial data in some sense. For instance, define the realized volatility

based on 1-minute (log-) returns as the sum of squared returns (Andersen et al.,

2001a). If returns at a given time point on a trading day follow a GARCH model,

realized volatility will be an aggregate of squared GARCH processes. Although a

squared GARCH process corresponds to a nonlinear ARMA model, the stationary

conditions for such (squared) processes are quite different to those for linear ARMA

models. Hence, results in Granger (1980) and Leipus et al. (2014) do not apply

to realized volatility. Results of Zaffaroni (2007) on the aggregation of GARCH

models also do not apply to the aggregation of squared returns. Realized volatility

used in the application in section 2.5 is indeed defined as the sum of the squared

ultra-high-frequency returns (without considering the effect of the microstructure

noise). Now, discussing the origin of long memory in such time series would be

even more difficult. To our knowledge, theoretical models to explain the origin of

long memory in financial time series aggregated from high-frequency data are still

unknown. But we believe that it is mainly caused by aggregation.

2.2.2 Simultaneously modeling long memory and scale change

A well known model for a stationary nonnegative financial time series, Xt, t =

1, ..., n, is the MEM (multiplicative error model, Engle, 2002) defined as

Xt = νλtηt, (2.2.1)

where ν > 0 is a scale parameter, λt > 0 is the conditional mean of X∗t = Xt/ν and

ηt ≥ 0 are i.i.d. random variables. In order to model long memory and a slowly

changing scale function simultaneously, we propose the use of a semiparametric

MEM model by replacing ν in Eq. (2.2.1) with a nonparametric scale function
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ν(τ) > 0:

Xt = ν(τt)X
∗
t = ν(τt)λtηt, (2.2.2)

where τt = t/n denotes the rescaled time. Let Yt = ln(Xt), µ(τt) = ln[ν(τt)],

ζt = ln(λt), εt = ln(ηt) and Zt = ζt + εt, where µ(τt) and ζt are the local and

conditional means of Yt, respectively. Following Beran et al. (2015), we assume

that E(εt) = 0, var(εt) = σ2
ε , and the stochastic component Zt follows a FARIMA

π(B)Zt = ψ(B)εt, (2.2.3)

where π(B) = (1 − B)dφ(B) = 1 − Σ∞i=1πiB
i with πi ≈ cπi

d−1 for large i, d ∈
(−0.5, 0.5) is the fractional differencing parameter, φ(B) = 1− φ1B − . . .− φpBp

and ψ(B) = 1 +ψ1B+ . . .+ψqB
q are the AR- and MA-characteristic polynomials

with no common factor and all roots outside the unit circle. The model defined

by Eqs. (2.2.1) and (2.2.3) is called an exponential FARIMA (EFARIMA), which

is a nonnegative process whose log-transformation follows a FARIMA. The model

defined by Eqs. (2.2.2) and (2.2.3) will be called an ESEMIFAR, because Yt =

ln(Xt) = Zt +µ(τt) follows a SEMIFAR (Beran and Feng, 2002a) with the integer

integration parameter m = 0 and an additional MA part. Because of Eq. (2.2.3),

we have

π(B)ζt = [ψ(B)− π(B)]εt.

Beran et al. (2015) indicated that the EFARIMA model can be written as a

fractionally integrated generalization of the (first type) Log-ACD model. The

reason is that, similar to Eq. (7) of Bauwens et al. (2008), the conditional mean

of Zt can be represented as

ζt = lnλt =
∞∑
i=1

πi lnλt−i +
∞∑
j=1

ωj ln(ηt−j), (2.2.4)

where ωj = πj + ψj for 1 ≤ j ≤ q, and ωj = πj for j > q. The model defined

by Eqs. (2.2.1) and (2.2.4) will be called a FI-Log-ACD. And Eqs. (2.2.2) and

(2.2.4) define a semiparametric generalization of the FI-Log-ACD, called a Semi-
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FI-Log-ACD. The Log-ACD (p, q) model is the special case with d = 0. Moreover,

according to Eq. (2.2.3), ζt can also be rewritten as

ζt = Zt − εt−j = Zt − εt−j − π(B)Zt + ψ(B)εt (2.2.5)

= [1− π(B)]Zt + [ψ(B)− 1]εt.

The relationship between the FI-Log-ACD and the EFARIMA models is given

below.

Proposetion 2.2.1. The EFARIMA model defined by Eqs. (2.2.1) and (2.2.3),

and the FI-Log-ACD model defined by Eqs. (2.2.1) and (2.2.4) are equivalent to

each other.

Proof of Proposition 2.2.1 is omitted. This result means that the proposed

models are the application of the well known FARIMA and SEMIFAR models

to the log-process. Hence, the log-transformation of a nonlinear (nonnegative)

process following the FI-Log-ACD is assumed to be a linear process. The original

process X∗t is hence a log-linear process.

2.3 Properties and estimation of the models

2.3.1 The stationary solutions

In the following, some results in Beran et al.’s (2015) under the log-normal assump-

tion are extended to more general distributions. Let α(B) = (1−B)−dφ−1(B)ψ(B) =

1 +
∑∞

i=1 αiB
i. Note that the stationary solution of the FARIMA process Zt is

given by

Zt =
∞∑
i=0

αiεt−i (2.3.1)

with αi ≈ cαi
d−1 for large i, and, for large k, the autocorrelation (ACF) of Zt is

given by

ρZ(k) ≈ cZρ |k|2d−1, (2.3.2)

where cZρ is a constant. Note that cZρ > 0 for d > 0 and now Zt has long memory.

Let αmax = max(αi) and αmin = inf(αi), where αmax ≥ 1 and αmin may be negative.
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Conditions for the existence of a stationary solution of X∗t in the current case with

2u-th finite moment are similar to those given by Karanasos (2008).

A1. Zt is a stationary and invertible FARIMA process as defined in Eq. (2.2.3).

A2. Both E(η2uαmax
t ) and E(η2uαmin

t ) are finite for some u > 0.

Now, the stationarity solution of X∗t is given by

X∗t =
∞∏
i=0

ηαi
t−i. (2.3.3)

Lemma 2.3.1. The solution of X∗t given in (2.3.3) is strictly stationary with finite

2u-th moment, if and only if A1 and A2 hold. If A2 holds for u ≥ 1, X∗t is also

weakly stationary.

The proof is similar to that of Lemmas and from Karanasos (2008), and is

omitted.

A2 ensures that all of the terms in the product in Eq. (2.3.3) exist. A1

implies that
∑∞

i=0 α
2
i < ∞ and E(εt) = 0. This together with A2 ensures the

convergence of X∗t defined in Eq. (2.3.3). The condition E(εt) = 0 is different

to the typical assumption E(ηt) = 1 used in an ACD model. For instance, if

ηt is exponentially distributed with the density f(u) = µ−1η exp(−u/µη), we have

µη = exp(γ) ≈ 1.781, where γ is the Euler constant. However, the restriction

E(εt) = 0 is now necessary. Otherwise, the mean in Zt and the scale in X∗t are

not well defined, because αi are not summable. E(εt) = 0 is fulfilled, for example

by:

Example 1. The log-normal innovations ηt with εt ∼ N(0, σ2
ε) and σ2

ε > 0,

Example 2. The log-logistic innovations ηt with εt ∼ Lo(0, b) and b > 0 or

Example 3. The log-Laplace innovations ηt with εt ∼ La(0, b) and b > 0.

Note that A2 may or may not be affected by d. The question of whether A2 is

fulfilled or not is determined jointly by the distribution of ηt, the value of u and
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the FARIMA coefficients. In Example 1, A2 is always fulfilled and X∗t is strictly

and weakly stationary. In Examples 2 and 3, X∗t is only weakly stationary if b is

small enough.

Furthermore, the stationary solutions of the conditional mean of Zt and that

of X∗t are

ζt =
∞∑
i=1

αiεt−i and λt =
∞∏
i=1

ηαi
t−i. (2.3.4)

The forecasts of the FARIMA process Zt and its conditional mean ζt to be proposed

later are based on their AR(∞) representations, respectively. For Zt we have

Zt =
∞∑
j=1

βjZt−j + εt, (2.3.5)

where βj are the coefficients of β(B) = (1 − B)dφ(B)ψ−1(B) = 1 −
∑∞

j=1 βjB
j.

For large j, we have βj ≈ cβj
−d−1 with cβ > 0. This yields the representation of

ζt based on Zt:

ζt =
∞∑
j=1

βjZt−j. (2.3.6)

The stationary solutions of X∗t and λt, respectively, can be rewritten as

X∗t = ηt

∞∏
j=1

(X∗t−j)
βj and λt =

∞∏
j=1

(X∗t−j)
βj . (2.3.7)

2.3.2 Properties under the log-normal assumption

Beran et al. (2015) found that when aggregated financial data are considered,

the log-normal assumption is usually a suitable choice. They hence studied the

properties of the proposed models with log-normally distributed innovations in

detail. In the following, their results will be first summarized briefly. Then we

will focus on discussing the application of the Semi-FI-Log-ACD model. We will

see that now all of Zt, X
∗
t , ζt and λt exhibit long memory. In particular, the

authors showed that the stationary process X∗t is also log-normally distributed,

X∗t ∼ LN(0, σ2) with σ2 = σ2
ε

∑∞
i=0 α

2
i , if εt are i.i.d. N(0, σ2

ε) random variables.
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The closed form formula of the ACF of X∗t can be obtained. Furthermore, in the

presence of long memory it holds

ρX∗(k) ≈ cX
∗

ρ |k|2d−1

for large k, where 0 < cX
∗

ρ < cZρ . We see that X∗t is a long memory process with the

same memory parameter d, if Zt has long memory. This confirms the well known

fact that the long memory parameter in Zt and that in X∗t under the log-normal

assumption is the same (see Dittmann and Granger, 2002). The reason is that

the Hermite rank of the exponential function is one. However, the constant in the

asymptotic formula of ρX∗(k) is smaller than that in ρZ(k). If Zt is a FARIMA

with −0.5 < d ≤ 0, it can be shown that
∑
ρX∗(k) > 0. We see that X∗t does not

have antipersistence, even if Zt is antipersistent (see also Dittmann and Granger,

2002). This leads to the very interesting fact:

Proposetion 2.3.1. A FI-Log-ACD process X∗t with log-normal marginal distri-

bution cannot exhibit antipersistence.

In financial econometrics, study on the long-memory property of the condi-

tional means ζt and λt in Zt and X∗t , respectively, is also of great interest. The

ACF of ζt with d > 0 is given by

ρζ(k) ≈ cζρ|k|2d−1 (2.3.8)

for large k, where cζρ > cZρ . From (2.3.8) we see that ζt also has long memory with

the same memory parameter d. However, the constant in the asymptotic formula

of ρζ(k) is larger than that in ρZ(k). And the ACF of λt for large k is given by

ρλ(k) ≈ cλρ |k|2d−1,

where 0 < cλρ < cζρ. Again, the long memory parameter in λt is d. But the constant

in the asymptotic formula of the ACF after the exponential transformation is

reduced.
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2.3.3 Estimation of the models

From now on we will mainly consider the model of Zt without the MA part for

simplicity. But the theoretical discussion holds in the case, when Zt follows a

general FARIMA model. Now, let θ = (σ2
ε , d, φ1, . . . , φp)

T denote the unknown

parameter vector of the SEMIFAR model. Under the normal assumption of εt, θ

can be estimated from Ẑt = Yt − µ̂(τt) by the approximate Gaussian maximum

likelihood method (MLE). The AR order p can be selected consistently by the

BIC. The trend will be estimated by a pµ-th order local polynomial (Beran and

Feng, 2002b) with a weighting function K(u) and the bandwidth h, which does

not share the boundary problem, if pµ is odd. We mainly consider the use of

pµ = 1 and pµ = 3, and put l = pµ + 1. The asymptotically optimal bandwidth is

given by

hA = CAn
(2d−1)/(2l+1−2d) with CA =

[
1− 2d

2lβ2

(l!)2V

I(µ(l))

]1/(2l+1−2d)

, (2.3.9)

where I(µ(l)) =
∫ 1

0
[µ(l)(τ)]2dτ and V is a constant as defined in Beran and Feng

(2002b).

An iterative plug-in algorithm for kernel estimator of µ(τ) developed by Beran

and Feng (2002a) following Gasser et al. (1991) is built-in S+ FinMetrics. In this

chapter the algorithm of Beran and Feng (2002b) for local polynomial regression

will be used, where µ(l) is estimated by a (l + 1)-th local polynomial with the

bandwidth hl,j, inflated from the selected bandwidth hj−1 in the (j−1)-th iteration.

This algorithm processes as follows:

Step 1. Start with the bandwidth h0 = O(n−b) with b = 1/(2l + 1).

Step 2. In the jth iteration with j > 1, estimate µ using hj−1, and d and V from

Ŷt, where Ŷt = Zt − µ̂(τt) and the AR order p is selected by BIC. Estimate

I(µ(l)) using hl,j = (hj−1)
α with α = (2l + 1− 2d̂)/(2l + 3− 2d̂).
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Step 3. Improve hj−1 by

hj =

{
1− 2d̂

2lβ2

(l!)2V̂

Î[µ(l)(τ ;hl,j)]

}1/(2l+1−2d̂)

· n(2d̂−1)/(2l+1−2d̂) (2.3.10)

Step 4. Increase j by one and repeatedly carry out Steps 2 and 3 repeatedly until

convergence is reached or until a maximal number of iterations is achieved.

The starting bandwidth in Step 1 is roughly estimated under independent errors,

which works very well in practice. As was shown by Beran and Feng (2002b), the

α used in Step 2 is the asymptotically optimal choice, called αopt. Two further

reasonable choices of α are α0 = (2l + 1 − 2d)/(2l + 5 − 2d), to minimize the

MISE of µ̂(l), and αvar = 1/2, to achieve the most stable bandwidth selector. The

simulation study of Beran and Feng (2002c) showed that various different iterative

plug-in SEMIFAR algorithms based on the kernel regression work very well. This

should be the same in the current context, because the local polynomial regression

and the kernel regression are asymptotically equivalent.

2.4 Forecasting based on the Semi-FI-Log-ACD

Now, we will discuss forecasting based on the Semi-FI-Log-ACD model, which is

equivalent to the ESEMIFAR. Note that the ESEMIFAR is a SEMIFAR applied

to the log-transformed data, the ESEMIFAR forecasting hence consists of two

stages: 1) The forecasting based on the SEMIFAR model applied to the log-data,

and 2) The calculation of the forecasts for the original data through exponential

transformation. The former consists again of two parts: the extrapolation of the

estimated trend function µ̂(τn) and the prediction of the stochastic part Zn+k.

2.4.1 Extrapolation of the trend function

For the purpose of forecasting, we will propose the use of the local linear regression,

because the local cubic approach is sometimes instable at the endpoint. The great

advantage of the local linear estimator compared to a kernel estimator is that µ̂
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has automatic boundary correction, i.e. the bias of µ̂(τn) at the endpoint τn is still

of the order O(h2), while the bias of a kernel estimator at τn is of the order O(h).

We propose to forecast the trend µ(τn+k) in the future by linear extrapolation

of µ̂(τn). Let ∆µ = µ̂(τn) − µ̂(τn−1). By means of the linear extrapolation, the

forecasted trend µ̂(τn+k) is given by

µ̂(τn+k) = µ̂(1) + k∆µ. (2.4.1)

The following assumptions are required for further discussion.

A3. In A1, assume further that d ∈ (0, 0.5), εt ∼ N(0, σ2
ε), and q = 0 for

simplicity.

A4. The weighting function K(u) is a symmetric density on the compact support

[−1, 1].

A5. The trend function µ is at least four times continuously differentiable.

A6. The bandwidth h is selected by the data-driven algorithm proposed in section

2.3.3.

A4 and A5 are standard assumptions in nonparametric regression. A6 ensures

that µ̂ achieves the optimal rate of convergence of the order O(n(2d−1)l/(2l+1−2d)).

2.4.2 The best linear and approximately best linear pre-

dictors

Let Z1, . . . , Zn denote the past observations. The best linear predictor of Zn+k for

SEMIFAR was proposed by Beran and Ocker (1999):

Z̆n+k =
n∑
j=1

βok,jZj, (2.4.2)

where βok = (βok,1, . . . , β
o
k,n)T is as given in Theorem 1 of Beran and Ocker (1999),

which minimizes the mean squared prediction error (MSE). Furthermore, Z̆n+k
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satisfies

E[(Zn+k − Z̆n+k)Zt] = 0, t = 1, . . . , n. (2.4.3)

Eq. (2.4.3) implies that the prediction error of Z̆n+k is orthogonal to any of the

observations.

It is however not easy to use Z̆n+k defined in Eq. (2.4.2), because βok has to be

solved repeatedly at each forecasting step. Note that in the current context n is

very large. For simplicity, we propose to use an approximately best linear predictor

based on the truncated part of the AR(∞) representation of Zt. This idea is often

employed to carry out forecasting based on an ARMA model, when the sample

size is large (Brockwell and Davis, 2006, p. 184). Hence, an approximately best

linear predictor based on Z1, . . . , Zn, by means of the AR(∞) representation Eq.

(2.3.5) of the FARIMA process is defined by

Ẑ∗n+k =
k−1∑
j=1

βjẐ
∗
n+k−j +

n+k−1∑
j=k

βjZn+k−j, (2.4.4)

where Ẑ∗n+k−j are the previously predicted values. For the practical implementa-

tion, we propose to use the following linear predictor

Ẑn+k =
k−1∑
j=1

β̂jẐn+k−j +
n+k−1∑
j=k

β̂jẐn+k−j, (2.4.5)

where β̂j are the estimated coefficients in the AR(∞) form of Zt, Ẑn+k−j for

j = k, ..., n+k−1, are the residuals obtained; and Ẑn+k−j, j = 1, ..., k−1, are the

values predicted previously. The linear predictor Eq. (2.4.5) is what we propose

to use in practice. To the best of our knowledge, the above-defined approximately

best linear predictor has not previously been proposed in the literature in the

presence of long memory. The relationship between Ẑn+k and Ẑ∗n+k is given by

Lemma 2.4.1. Under Assumptions A3 through A6, the two linear predictors Ẑn+k

and Ẑ∗n+k are asymptotically equivalent to each other.

Proof of Lemma 2.4.1 is given in the appendix. Lemma 2.4.1 indicates that
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the asymptotic properties of Ẑ∗n+k, defined based on the unobservable quantities

βj and Zt, are the same as those of Ẑn+k, defined using β̂j and Ẑt.

Now, the best linear predictor given infinite past observations Zn, . . . , Z1, Z0, Z−1, . . .,

is introduced. Similar to Eq. (5.5.3) of Brockwell and Davis (2006), this linear pre-

dictor based on the AR(∞) form of the FARIMA model in Eq. (2.3.5) is defined

by

Z̃n+k =
k−1∑
j=1

βjZ̃n+k−j +
∞∑
j=k

βjZn+k−j. (2.4.6)

The properties of Ẑn+k are stated in the following theorem.

Theorme 2.4.2. Under the same assumptions of Lemma 2.4.1, the proposed lin-

ear predictor Ẑn+k is an approximately best linear predictor in the following sense:

i) E[(Z̃n+k − Ẑn+k)2] = o(1) and

ii) E[(Zn+k − Ẑn+k)Zt] = o(1), t = 1, . . . n.

Proof of Theorem 2.4.2 is given in the appendix. Theorem 2.4.2 i) shows that

Ẑn+k converges to Z̃n+k in mean squared error. Theorem 2.4.2 ii) shows that the

prediction error of Ẑn+k is approximately orthogonal to all of the observations.

Note that Z̃n+k is the best linear predictor based on infinite past observations.

Hence, its MSE is no larger than that of Z̆n+k, because the σ-algebra generated by

Zn, . . . , Z1, Z0, Z−1, . . . includes that generated by Zn, . . . , Z1 as a subset. More-

over, the MSE of Ẑn+k is no smaller than that of Z̆n+k. Thus, Theorem 2.4.2 i)

ensures that the MSE of all of the above mentioned linear predictors are asymp-

totically the same. This leads to the following corollary.

Corollary 1. Under Assumptions A3 to A6, the linear predictor Ẑt is asymptot-

ically equivalent to the (exactly) best linear predictor Z̆t proposed by Beran and

Ocker (1999).

2.4.3 Approximate forecasting intervals

Next, we will discuss the interval forecasting of an individual observation, the

conditional mean and the total mean. Note that the point forecasting for ζn+k is
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the same as that for Zn+k, i.e. ζ̂n+k = Ẑn+k. The variance of Zn+k− Ẑn+k and that

of ζn+k− Ẑn+k can be easily obtained by adapting known results in the literature.

Theorme 2.4.3. Under the same conditions of Theorem 2.4.2 we have

i) var(Zn+k − Ẑn+k|Zn, . . . , Z1) ≈ VZn+k
, where VZn+k

= σ2
ε

k−1∑
i=0

α2
i ,

ii) var(ζn+k − Ẑn+k|Zn, . . . , Z1) ≈ Vζn+k
, where Vζn+k

= σ2
ε

k−1∑
i=1

α2
i .

The proof of Theorem 2.4.3 is given in the Appendix. The result in Theorem

2.4.3 i) is well known. Note however that, in the current case VZn+k
tends to var(Zt)

very slowly. Moreover, as far as we know, the result in Theorem 2.4.3 ii) on the

variance of the prediction error for the conditional mean is usually not discussed

in the literature. This is however an interesting topic in financial econometrics.

For example, it helps us to understand the accuracy of the forecasted volatility or

the forecasted conditional mean duration.

The point forecast for an individual future observation is Ŷn+k = µ̂(τn+k) +

Ẑn+k. The length of the forecasting interval for Yn+k is asymptotically the same as

that for Zn+k, because the error in µ̂(τn+k) is asymptotically negligible compared

to that in Ẑn+k. Assume that εt are i.i.d. N(0, σ2
ε). The approximate 100(1−α)%-

forecasting interval for Yn+k is given by

Yn+k ∈
(
µ̂(τn+k) + Ẑn+k − qα/2

√
VZn+k

, µ̂(τn+k) + Ẑn+k + qα/2

√
VZn+k

)
(2.4.7)

and, for k > 1, the approximate 100(1− α)%-forecasting interval of ζn+k is given

by

ζn+k ∈
(
Ẑn+k − qα/2

√
Vζn+k

, Ẑn+k + qα/2

√
Vζn+k

)
, (2.4.8)

where qα/2 is the upper α/2-quantile of N(0, 1). Furthermore, let m(τt) = µ(τt)+ζt

and g(τt) = exp[m(τt)] be the total means in Yt and Xt, respectively. We have

m̂(τn+k) = Ŷn+k. But the prediction error for m(τn+k) is approximately equal to

that for ζn+k. Thus, the approximate 100(1−α)%-forecasting interval for m(τn+k),
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k > 1, is given by

m(τn+k) ∈
(
µ̂(τn+k) + Ẑn+k − qα/2

√
Vζn+k

, µ̂(τn+k) + Ẑn+k + qα/2

√
Vζn+k

)
.

(2.4.9)

Note that the prediction errors in ζ̂n+1 and m̂(τn+1) are both asymptotically neg-

ligible.

Our main purpose is to achieve suitable forecasts for Xn+k, λn+k and g(τn+k).

Taking the exponential transformation of Ẑn+k and m̂(τn+k) = Ŷn+k, respectively,

we have

λ̂n+k = exp(Ẑn+k) =
n+k−1∏
j=1

Ẑ
β̂j
n+k−j, (2.4.10)

X̂n+k = ĝ(τn+k) = exp[µ̂(τn+k) + Ẑn+k] = ν̂(τn+k)λ̂n+k. (2.4.11)

The approximate 100(1 − α)%-forecasting intervals for Xn+k, λn+k and g(τn+k)

can be obtained based on Eqs. (2.4.7) to (2.4.9), respectively, through exponential

transformation.

2.5 Application

The forecasting of realized volatility plays an important role in option pricing and

risk management. Hence, the proposals are applied to realized volatility and other

related quantities aggregated from high-frequency data of different European firms.

In what follows, empirical results for four selected examples, namely the (daily)

trading numbers of Air France (AF-TrN), trading volumes of BMW (BMW-TrV),

average durations of Peugeot (PSA-MD) and realized volatility of Metro (MEOG-

RV) from Jan. 2, 2006 to Jun. 30, 2012, are reported. For each example, data-

driven estimates were carried out using six sub-methods, namely those with pµ = 1

and 3, and α = αopt, α0 and αvar, denoted by M1, M2 and M3, respectively. This

enables us to determine the effect of the bandwidth selection on the parameter

estimation. The Epanechnikov kernel is used as the weighting function. To reduce

the effect of the large variation in µ̂(l)(τ) at boundary points on ĥ, Î was calculated

on [δ, 1 − δ] (See Beran and Feng, 2002c), where δ = 2.5% and 5% are used for
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pµ = 1 and 3, respectively.

Table 2.1 lists the selected bandwidth, the estimated long memory parameter

and the selected AR order in all cases, together with the estimated short memory

parameter, if applicable, with the 95%-confidence intervals for the corresponding

parameters and results of the significance test of the trend being given as well.

Note that, in a given case , ĥ with pµ = 3 will be much larger than ĥ with

pµ = 1. For a given example and fixed pµ, the bandwidths selected by αopt, α0

and αvar may clearly differ from each other. Usually, the bandwidths selected

by α0 and αvar are larger than that selected by αopt. For instance, for PSA-MD

with pµ = 1, the bandwidths selected by αopt, α0 and αvar are 0.112, 0.192 and

0.187, respectively. For AF-TrN with pµ = 3, they are 0.226, 0.227 and 0.280.

The trend is significant in all cases, except in the example of MEOG-RV with

pµ = 1. In this last case, the test is significant using the bandwidth selected

by αopt, but insignificant using bandwidths selected by α0 and αvar, due to the

enlarged bandwidths. The test results for this example might also be affected

strongly by possible structural breaks (this will be discussed further a little later).

In this chapter, we propose the use of the asymptotically optimal inflation factor

αopt, because the number of observations is very large. For choosing pµ we found

that forecasts with pµ = 3 using the linear extrapolation may be unreasonable

at times, due to the instability of the estimate at the right endpoint. Hence, we

propose the use of pµ = 1 for forecasting purposes. It is found that the use of

pµ = 3 with a constant extrapolation will also work, but now the change of the

trend cannot be reflected by the forecast.

For any given example, all six sub-methods select the same EFARIMA model.

Here, we obtained an EFARIMA (0,d,0) for the AF-TrN and MEOG-RV examples.

The relationship between d̂ and ĥ is obvious. For a given pµ, the larger ĥ is,

the higher the d̂ that will be obtained from the residuals. However, none of

the examples clarify the differences between the values of d̂ obtained by the six

sub-methods with different bandwidths and different pµ. The biggest difference

occurred for PSA-MD, where d̂ has a maximum of 0.294 and a minimum of 0.259.

This difference becomes even smaller if we consider only the three sub-methods
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Table 2.1: Results of ESEMIFAR models for the four data sets

Series Bandwidth selection
d̂ & 95%-CI p̂ φ̂1 & 95%-CI trend

pµ ĥ

M1

AF-TrN
1 0.207 0.409 [0.372, 0.447] 0 sign.

3 0.226 0.397 [0.359, 0.434] 0 sign.

BMW-TrV
1 0.146 0.299 [0.233, 0.366] 1 0.109 [0.024, 0.193] sign.

3 0.252 0.293 [0.226, 0.360] 1 0.114 [0.029, 0.199] sign.

PSA-MD
1 0.112 0.271 [0.202, 0.341] 1 0.158 [0.071, 0.246] sign.

3 0.228 0.259 [0.189, 0.329] 1 0.169 [0.081, 0.258] sign.

MEOG-RV
1 0.127 0.420 [0.382, 0.457] 0 — sign.

3 0.203 0.415 [0.377, 0.452] 0 sign.

M2

AF-TrN
1 0.203 0.409 [0.371, 0.447] 0 — sign.

3 0.227 0.396 [0.359, 0.434] 0 — sign.

BMW-TrV
1 0.196 0.312 [0.246, 0.378] 1 0.097 [0.013, 0.181] sign.

3 0.266 0.295 [0.228, 0.361] 1 0.112 [0.028, 0.197] sign.

PSA-MD
1 0.192 0.294 [0.226, 0.362] 1 0.137 [0.051, 0.223] sign.

3 0.230 0.259 [0.1889, 0.330] 1 0.169 [0.080, 0.257] sign.

MEOG-RV
1 0.149 0.425 [0.388, 0.463] 0 — insign.

3 0.215 0.417 [0.379, 0.455] 0 — sign.

M3

AF-TrN
1 0.201 0.409 [0.371, 0.447] 0 — sign.

3 0.280 0.401 [0.363, 0.438] 0 — sign.

BMW-TrV
1 0.191 0.311 [0.245, 0.377] 1 0.098 [0.015, 0.182] sign.

3 0.254 0.293 [0.226, 0.360] 1 0.114 [0.029, 0.199] sign.

PSA-MD
1 0.187 0.293 [0.225, 0.362] 1 0.138 [0.052, 0.224] sign.

3 0.278 0.268 [0.198, 0.338] 1 0.161 [0.073, 0.248] sign.

MEOG-RV
1 0.151 0.426 [0.388, 0.463] 0 — insign.

3 0.246 0.420 [0.382, 0.458] 0 — sign.

with the same pµ. An interesting empirical finding is that (for a given example

with a fixed α) the d̂ obtained by pµ = 3 is always slightly lower than that obtained

by pµ = 1. Theoretically, the large sample properties of the estimated parameters
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with pµ = 3 are slightly better than those with pµ = 1. Furthermore, if p̂ = 1,

φ̂1 is also affected less by the selected bandwidths. However, now, due to the

existence of short memory, d̂ is much lower than in the case of p̂ = 0. Finally,

if p̂ = 1 the φ̂1 obtained in a given example with pµ = 1 is always slightly lower

than that obtained with pµ = 3, a trade-off effect which ensures that the resulting

theoretical ACF in a finite sample is not affected as much by the choice of pµ.

Let Ẑt = Yt − µ̂(τt) denote the residuals of the log-data. Histograms of the

standardized values of Ẑt and those of their exponential values are shown in Figure

2.1 for all examples. We see that the distribution of Ẑt in all cases is nearly normal.

This indicates that the normal assumption on εt is a suitable choice for analyzing

these time series.

Figure 2.2(a) shows daily trading numbers of Air France together with the

point and 95%-forecasting intervals for the next 50 days. We can see that the

higher the scale function, the larger the variation in the observations, which re-

flects the fact that Xt has time varying variance var(Xt) = ν2(τt)var(X
∗
t ). To

this end see also the other examples. This provides the evidence for the use of

the log-transformation based on a multiplicative nonparametric regression model.

Figure 2.2(b) displays the log-transformed data together with the estimated trend

µ̂(τt) (solid line) and the corresponding forecasts of Yn+k. In this example, the

point forecasts are much lower than the estimated trend at the right end, but

will tend to the average level in the near future. This reflects the well known

fact that a long memory process may exhibit spurious local trends and indicates

that long memory and the smooth scale change should be investigated together.

The estimated conditional means of the log-data together with the corresponding

point and interval forecasts for ζn+k are given in Figure 2.2(c). The estimated

conditional means look quite stationary. The difference between the forecasting

interval of Yn+k in Figure 2.2(b) and that of ζn+k in Figure 2.2(c) is that the former

is affected by εn+k, but the latter not. The estimated total means in the original

data ĝ(τt) together with the point forecasts ĝ(τn+k) and their forecasting intervals

are displayed in Figure 2.2(d), which reflect the total dynamics of the daily trading

number of Air France caused by past information and slowly changing macroeco-
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Figure 2.1: Histograms of the standardized residuals of the SEMIFAR model for
the log-data and their exponential transformation for all examples.
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nomic environment. From Figure 2.2(d) we can see that trading numbers of Air

France and their volatility increased strongly in the last years and will possibly

increase further in the future. Results on λ̂t and m̂(τt) are omitted.

Similar results for daily trading volumes of BMW and daily average durations

of Peugeot are displayed in Figures 2.3 and 2.4. From Figure 2.3(b) we can see that

the current BMW trading volumes stay at a relatively low but stable level. The

results in Figure 2.5 indicate that the transaction durations of Peugeot reduced

clearly in the last years due to the introduction of electronic trading platforms.

Figures 2.3(b) and 2.4(b) show in particular that after the log-transformation

those data can be well modeled by an additive nonparametric regression and the

residual series in Figures 2.3(c) and 2.4(c) are quite stationary.

Finally, empirical results of the Semi-FI-Log-ACD applied to realized volatility

of Metro are displayed in Figure 2.5. Comparing Figure 2.5(a) with Figure 2.5(b)

we see that analysis of the log-transformed realized volatility is a natural way, as it

is usually proposed in the literature. Although the Semi-FI-Log-ACD works in this

case, there seems to be a problem. That is the realized volatility during the global

financial crisis in 2008 and 2009 and the European debt crisis in 2011 was very

high with possible structural breaks. The fact that realized volatility may exhibit

long memory and structural breaks at the same time is e.g. reported by Choi et

al. (2010), who proposed to improve the estimation of the long memory parameter

in realized volatility after removing the detected structural breaks. From Figure

2.5(b) we can see that in addition to long memory and possible structural breaks,

this series may also exhibit significant trend, in particular in the subperiod between

the two crises. A scrutinizing empirical study shows that the quality of both of the

estimated long-memory parameter and the fitted trend can be improved clearly,

if possible structural breaks are taken into account. It is better to find out all

structural breaks in the scale function of this realized volatility series first using

a suitable nonparametric detecting procedure. An ESEMIFAR model can then

be fitted to each of the subperiods determined by the detected structural breaks

separately. Detailed study on such an approach is beyond the aim of this chapter

and will be investigated elsewhere.
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(a) Daily trading numbers of AF from Jan. 2, 2006 to Jun. 30, 2012 and forecasts for 50 days
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Figure 2.2: Estimation and forecasting results for daily trading numbers of AF
from Jan. 02, 2006 to Jun. 30, 2012, obtained by the Semi-FI-Log-ACD model.
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(a) Daily trading volumes of BMW from Jan. 2, 2006 to Jun. 30, 2012 and forecasts for 50 days
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(d) Estimated total means in the original data and the forecasts

Figure 2.3: Similar results as given in Figure 2.2 but for daily trading volumes of
BMW.
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(a) Daily average durations of PSA from Jan. 2, 2006 to Jun. 30, 2012 and forecasts for 50 days
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Figure 2.4: Similar results as given in Figure 2.2 but for daily average durations
of Peugeot.
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(a) Realized volatility of MEOG from Jan. 2, 2006 to Jun. 30, 2012 and forecasts for 50 days
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(c) Estimated conditional means of the ESEMIFAR and the forecasts
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Figure 2.5: Similar results as given in Figure 2.2 but for realized volatility of
Metro.
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2.6 Final remarks

Some important results and a data-driven algorithm for the Semi-FI-Log-ACD

model have been obtained. The short- and middle-term forecasting of a nonnega-

tive process with long memory and a nonparametric scale function based on this

model have also been studied. An approximately best linear predictor has been

proposed, and an application to a number of financial time series aggregated from

high-frequency data has shown that the proposals work very well in practice. Note

in particular that the simultaneous estimation of the nonparametric trend and the

long memory error process improves the forecast quality. The reasons for this are

as follows. On the one hand, if potential long memory in the conditional mean

of a process is not considered, the bandwidth selected will be much smaller than

it should be, and the formula for calculating the asymptotic variance will also be

wrong. This may lead to the estimation of a significant trend, even if the underly-

ing process is in fact stationary. On the other hand, if an existing nonparametric

scale function is not considered, it will be misinterpreted as very strong long mem-

ory. Finally, possible structural breaks also have a clear effect on the estimated

model; however, this is not considered in the current chapter.
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Appendix to Chapter 2

Proof of Lemma 2.4.1. It is well known that, under assumptions A3 through

A6, the local linear estimator µ̂(τ) with fractional times series error achieves the

optimal convergence rate of the order O(n−2(1−2d)/(5−2d)) (Feng and Beran, 2013).

This results in the fact that the difference between Ẑt and Zt is also of the order

O(n−2(1−2d)/(5−2d)). Moreover, when n→∞ and d > 0, the effect of the estimated

trend function on the estimation of the unknown parameter vector θ is negligible

(Beran and Feng, 2002a), and θ̂ is now still
√
n-consistent. Using Taylor expansion

it can be shown that β̂j − βj = βjOp(n
−1/2). Detailed discussion on this point is

omitted to save space.

In what follows, we will only show the result of Lemma 2.4.1 for k = 1 in

detail. Note that Ẑ∗n+1 =
∑n

j=1 βjZn+1−j = Op(1) and
∑n

j=1 |βj| <
∑∞

j=1 |βj| <∞
for d > 0. We have

Ẑn+1 − Ẑ∗n+1 =
n∑
j=1

β̂jẐn+1−j −
n∑
j=1

βjZn+1−j

=
n∑
j=1

β̂jẐn+1−j −
n∑
j=1

β̂jZn+1−j −
n∑
j=1

βjZn+1−j +
n∑
j=1

β̂jZn+1−j

=
n∑
j=1

β̂j(Ẑn+1−j − Zn+1−j)−
n∑
j=1

(βj − β̂j)Zn+1−j

=
n∑
j=1

β̂jOp(n
−2(2d−1)/(5−2d))−

n∑
j=1

βjZn+1−jOp(n
−1/2)

≈
n∑
j=1

β̂jOp(n
−2(2d−1)/(5−2d)) (A.2.1)

≤ Op(n
2(2d−1)/(5−2d))

n∑
j=1

|β̂j| = op(1).

Similarly, this result can be proved for k > 1. Lemma 2.4.1 is proved. 3

Proof of Theorem 2.4.2. Following Lemma 2.4.1, the results of Theorem

2.4.2 will be proved by replacing Ẑn+k with Ẑ∗n+k. Under the same conditions of

Lemma 2.4.1 we have
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i) For k = 1:

E[(Z̃n+1 − Ẑ∗n+1)
2] = E

( ∞∑
j=1

βjZn+1−j −
n∑
j=1

βjZn+1−j

)2


= E

( ∞∑
j=n+1

βjZn+1−j

)2


=
∞∑

i=n+1

βi

∞∑
j=n+1

βjE[Zn+1−iZn+1−j]

=
∞∑

i=n+1

βi

∞∑
j=n+1

βjγ(i− j) (A.2.2)

≈
∞∑

i=n+1

Cβi
−d−1

∞∑
j=n+1

Cβj
−d−1γ(i− j)

≤ γ(0)
∞∑

i=n+1

|Cβ|i−d−1
∞∑

j=n+1

|Cβ|j−d−1

= γ(0)O[(n+ 1)−2d] = o(1).

More details of the proof above will be clarified by the remark given later.

Now, let k > 1 and assume that the results are proved for i = 1, . . . , k− 1. We

have

E[(Z̃n+k − Ẑ∗n+k)2] = E

(k−1∑
j=1

βjZ̃n+k−j +
∞∑
j=k

βjZn+k−j −
k−1∑
j=1

βjẐ
∗
n+k−j −

n+k−1∑
j=k

βjZn+k−j

)2


= E

((k−1∑
j=1

βjZ̃n+k−j −
k−1∑
j=1

βjẐ
∗
n+k−j

)
+

∞∑
j=n+k

βjZn+k−j

)2


= E
[
T 2
1 + 2T1T2 + T 2

2

]
= E[T 2

1 ] + 2E[T1T2] + 2E[T 2
2 ],

where T1 =
∑k−1

j=1 βj(Z̃n+k−j − Ẑ∗n+k−j) and T2 =
∑∞

j=n+k βjZn+k−j.

Since all of the terms in T1 are of the order op(1), T1 is hence an op(1) term.

Similarly as for k = 1, it can be shown that T2 is also of the order op(1). This

leads to the conclusion that E[(Z̃n+k − Ẑn+k)2] = o(1) holds for k > 1.
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ii) For k = 1 and any t = 1, ..., n:

E[(Zn+1 − Ẑ∗n+1)Zt] = E

[(
∞∑
i=1

βiZn+1−i + εn+1 −
n∑
i=1

βiZn+1−i

)(
∞∑
j=1

βjZt−j + εt

)]

= E

[(
∞∑

i=n+1

βiZn+1−i + εn+1

)(
∞∑
j=1

βjZt−j + εt

)]

= E

[
∞∑
j=1

βjZt−j

∞∑
i=0

βn+1+iZ−i + εn+1

∞∑
j=1

βjZt−j

+εt

(
∞∑
i=0

βn+1+iZ−i + εn+1

)]

= E

[
∞∑
j=1

βjZt−j

∞∑
i=0

βn+1+iZ−i

]
+ E

[
εn+1

∞∑
j=1

βjZt−j

]

+ E

[
εt

(
∞∑
i=0

βn+1+iZ−i + εn+1

)]
.

Since E
[
εn+1

∑∞
j=1 βjZt−j

]
= 0 and E [εt (

∑∞
i=0 βn+1+iZ−i + εn+1)] = 0,

E[(Zn+1 − Ẑ∗n+1)Zt] = E

[
∞∑
j=1

βjZt−j

∞∑
i=0

βn+1+iZ−i

]
(A.2.3)

=
∞∑
i=0

βn+1+i

∞∑
j=1

βjE[Z−iZt−j]

≤
∞∑
i=0

|βn+1+i|
∞∑
j=1

| βj | |γ(t+ i− j)|

≤ γ(0)
∞∑
i=0

|Cβ|(n+ 1 + i)−d−1 = O[(n+ 1)−d] = o(1).

Now, let k > 1 and assume that the results are proved for i = 1, . . . , k − 1, we

have

E[(Zn+k − Ẑ∗n+k)Zt] = E

{[
k−1∑
i=1

βi(Zn+k−i − Ẑ∗n+k−i) +
∞∑

i=n+k

βiZn+k−i + εn+k

]
Zt

}
= E[T3 + T4 + T5], (A.2.4)
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where T3 = Zt
∑k−1

i=1 βi(Zn+k−i − Ẑ∗n+k−i), T4 = Zt
∑∞

i=n+k βiZn+k−i and T5 =

εn+kZt with E(T5) = 0. It is clear that E(T3) = o(1), because the results hold for

i = 1, . . . , k − 1. The fact that E(T4) = o(1) can be proved similarly as for k = 1.

Insert these results into (A.2.4) we obtain

E[(Zn+k − Ẑ∗n+k)Zt] = o(1), t = 1, ..., n, (A.2.5)

for any k > 1. Theorem 2.4.2 is proved. 3

Remark 1. Some techniques used in the proof only apply to d > 0, while for

d < 0 other approaches should be used. It is very common that some conclusions

hold only for long memory errors but not for antipersistent errors. For instance,

for d > 0 we have
∑∞

i=1 βi = 1. For d < 0, βi are however not summable.

Furthermore, the approximate formula of γ(k) does not apply to γ(i − j) in the

fourth line of (A.2.2). The reason is that although both i and j tend to infinity,

their difference may be very small. Hence, here the fact that |γ(k)| ≤ γ(0) is simply

employed. Detailed analysis of the second sum there may lead to more accurate

result. This is however omitted to simplify the proof.

Proof of Theorem 2.4.3. For a causal stationary and invertible ARMA

model, the predictor Z̃n+k defined in (2.4.6) can be represented as a MA(∞) form

(see e.g. Theorem 5.5.1 of Brockwell and Davis, 2006)

Z̃n+k =
∞∑
i=k

αiεn+k−i. (A.2.6)

It can be shown that this fact also holds, if Zt is a causal stationary and invertible

FARIMA model considered in this chapter. The difference between Zn+k and Z̃n+k

is:

Zn+k − Z̃n+k =
∞∑
i=0

αiεn+k−i −
∞∑
i=k

αiεn+k−i =
k−1∑
i=0

αiεn+k−1. (A.2.7)
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The variance of Zn+k − Z̃n+k is therefore

var(Zn+k − Z̃n+k) = σ2
ε

k−1∑
i=0

αi. (A.2.8)

Note that the point forecast for the conditional mean, ζ̃n+k, is the same as Z̃n+k.

The difference between ζn+k and Z̃n+k is given by

ζn+k − Z̃n+k =
∞∑
i=1

αiεn+k−i −
∞∑
i=k

αiεn+k−i =
k−1∑
i=1

αiεn+k−i (A.2.9)

with the variance

var(ζn+k − Z̃n+k) = σ2
ε

k−1∑
i=1

α2
i . (A.2.10)

In Theorem 2.4.2 it is shown that Ẑn+k ≈ Z̃n+k. Thus, Zn+k−Ẑn+k ≈ Zn+k−Z̃n+k
and ζn+k − Ẑn+k ≈ ζn+k − Z̃n+k. Consequently, var(Zn+k − Ẑn+k) ≈ var(Zn+k −
Z̃n+k) and var(ζn+k − Ẑn+k) ≈ var(ζn+k − Z̃n+k). Theorem 2.4.3 is proved. 3



Chapter 3

An iterative plug-in algorithm for

realized kernels

This chapter is based on joint work with Yuanhua Feng and published with slight

differences as Working Paper (2015-01) in the Working Paper Series of Center for

International Economics at Paderborn University.

3.1 Introduction

Estimation of the daily integrated volatility (IV) is an important topic in risk

management, portfolio allocation and option pricing. Realized volatility (RV)

introduced by Andersen et al. (2001a, b) is a model-free estimator of this quantity

based on high-frequency financial data. The most simple definition of the RV,

called RV0, is the sum of the squared intraday returns. It is however found that

high-frequency data often exhibit microstructure (MS) noise (Hasen and Lunde,

2006a). Strong evidence for the existence of MS noise is illustrated in Figure

3.1 in the next section using numerical examples. Now, RV0 is an inconsistent

estimator of the IV (Zhang et al., 2005, Bandi and Russel, 2008). Different bias

corrected estimators of the IV are introduced into the literature. For instance,

Zhou (1996) proposed an improved estimator, called RVZ, by including the cross-

products between two consequent observations, which is unbiased under i.i.d. MS

53
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noise. Bandi and Russel (2006, 2008, 2011) and Oomen (2006) investigated the use

of sparse equidistant high-frequency data and studied the choice of the optimal

frequency to make a trade-off between the variance and bias of the proposed

estimators. Zhang et al. (2005) and Aı̈t-Sahalia et al. (2011) proposed the use of

a realized volatility estimator with two time scales to solve the bias problem caused

by MS noise. Hansen and Lunde (2006a) and Oomen (2005) proposed a simple

kernel based estimator of the IV. Furthermore, Hansen et al. (2008) investigated

correction of MS bias using moving average-based estimators.

Recently, Barndorff-Nielsen et al. (2008, 2009, 2011b) introduced the realized

kernels (RK), which are consistent estimators of the IV under given conditions.

A crucial problem by applying realized kernels is the selection of the bandwidth,

because an RK only works well, if the bandwidth is selected properly. This is

illustrated in Figure 3.2 in the next section through the above mentioned numerical

examples. Barndorff-Nielsen et al. (2009) proposed to select the bandwidth by

plugging suitable estimates of two unknowns into a simplified (but biased) formula

of the asymptotically optimal bandwidth of the RK. However, their proposal is

very complex and not fully data-driven. And the selected bandwidth by this

algorithm does not converge to the targeted bandwidth.

In this chapter an iterative plug-in (IPI) bandwidth selector for realized kernels

is developed by adapting the idea of Gasser et al. (1991) to the current context.

So far as we know, this is the first IPI algorithm for RK. For simplicity, we also

adopt the biased targeted bandwidth proposed by Barndorff-Nielsen et al. (2009).

The difference between RV0 and the RK resulted in each iteration is used to

estimate the variance of the MS noise. And RVZ is used as an initial value of

the RK so that the procedure is fully data-driven. It is shown that the proposed

bandwidth selector is consistent in the sense that the relative error with respect

to the targeted bandwidth tends to zero, as n → ∞. Furthermore, the proposed

bandwidth selection rule is very simple and the algorithm runs very fast, because

only a few iterations are required. It is hence suitable to be applied to obtain data-

driven RK in a long observation period. Theoretically, both of the resulted RK

and the selected bandwidth become consistent from the third iteration, while their
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rate of convergence can still be improved in the fourth iteration. Thereafter, the

resulted RK achieves its optimal rate of convergence of the order O(n−1/5), which

is also shared by the relative error in the selected bandwidth. The nice practical

performance of the proposal is illustrated by application to data of a few German

and French firms. These results show that in most of the cases the procedure

converges within four iterations. And the distribution of the selected bandwidths

is nearly normal. Empirical analysis showed that the resulted RK performs better

than RV0 and RVZ. It seems that both of the bias and the standard deviation of

RV0 and RVZ are clearly reduced by the data-driven RK. But this fact still needs

to be confirmed through simulation. The performance of the proposed bandwidth

selector on a few so-called ‘challenging days’ is discussed in detail.

Further analysis of the obtained results is of great interest. Andersen et al.

(2001a, 2001b, 2011) and Deo et al. (2006) find that the logarithmic RV may

exhibit long memory. Choi et al. (2010) found that the observed long memory

may be spuriously generated e.g. by a nonparametric trend or structural breaks.

Hence, long memory, nonparametric trends and possible structural breaks should

be studied simultaneously. We propose to analyze realized kernels use a piecewise

version of the ESEMIFAR (exponential semiparametric fractional autoregressive,

Beran et al., 2015). It is found that realized kernels exhibit long memory and a

significant nonparametric trend at the same time. Estimation results for the two

sub-periods before and after the 2008 financial crisis are clearly different.

The chapter is organized as follows. Some necessary known results are summa-

rized in section 3.2. The data-driven bandwidth selector is proposed and studied

in section 3.3. Application to real data is reported in section 3.4. In section

3.5 modeling of realized kernels using the ESEMIFAR model is discussed. Final

remarks in section 3.6 conclude the chapter.
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3.2 Realized volatility and realized kernels

3.2.1 Effect of MS noise on realized volatility

Let p∗(τ) denote the logarithmic efficient asset price on a trading day, where

0 ≤ τ ≤ T , and 0 and T denote the opening and closing time. Assume that p∗(τ)

are determined by the stochastic differential equation

dp∗(τ) = σ(τ)dW (τ), (3.2.1)

where W (τ) is a standard Brownian motion and σ(τ) is the spot volatility process.

Furthermore, it is assumed that the σ(τ) and W (τ) processes are independent of

each other. Estimation of the daily integrated volatility

IV =

∫ T

0

σ2(τ)dτ (3.2.2)

is of great interest. Realized volatility is introduced as a model free estimator of

the IV based on high-frequency financial data. Let pi be the logarithmic asset

prices observed at time points 0 = τ0 < τ1 < . . . < τn < τn+1 = T , where n is

the (random) number of observations happened on that day. It is assumed that

τi − τi−1 = Op(n
−1). The intraday returns are given by ri = pi − pi−1. The most

simple definition of the realized volatility is

RV0 =
∑

r2i , (3.2.3)

which is a consistent estimator of the IV, if there is no MS noise such that pi = p∗i ,

where p∗i stands for p∗(τi). In the presence of MS noise we have however

pi = p∗i + ui, (3.2.4)

where ui represents a stationary noise process with mean zero and var(ui) = ω2.

It is assumed that ui is independent of p∗i . In this chapter we will focus on the

case with i.i.d. ui. Let r∗i = p∗i − p∗i−1 be the efficient returns. The corresponding
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noise contaminated observed returns are given by

ri = pi − pi−1 = r∗i + ei, (3.2.5)

where ei = ui − ui−1 is the noise in ri. The observed returns are correlated

to each other, while r∗i are uncorrelated. Under the i.i.d. assumption on ui,

ei follow an MA(1) model. It can be shown that, the ACF of ri at lag 1 is

ρr(1) = −ω2/(2ω2 +σ2
i )→ −0.5, as n→∞, where σ2

i = var(r∗i ). If ω2/σ2
i is large,

RV0 is clearly overestimated.
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(d) For ALV−returns on 22.Jan.2008
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(f) For PSA−returns on 24.May 2011

Figure 3.1: Examples of ACFs of high-frequency returns on four selected days

Empirical evidence of MS noise can be found by displaying the ACF of high-

frequency returns. Figure 3.1 shows the correlograms of high-frequency returns

on four selected trading days, one from each of the following German and French

companies, Air France (AF), Allianz (ALV), BMW and Peugeot (PSA), respec-

tively. From Figure 3.1 we see that ρr(1) is always significantly negative, a clear

evidence for the existence of MS noise. The independence assumption on the noise
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is about true in the first three cases. Furthermore, we see the noise on the second

selected day is very strong with ρ̂(1) < −0.4 as can be seen from Figure 3.1(b).

Figures 3.1(a) and (c) show that the noise on the first and third selected days is

at a middle and a relatively low level, respectively. The fourth example in Figure

3.1(d) is chosen to show that strong and dependent noise could also happen. For

this example not only ρ̂r(1) but also those at lags 2 and 3 are significantly non-zero

with ρ̂r(2) > 0. But the sum of ρ̂r(1) to ρ̂r(3) is clearly negative.

In the presence of MS noise, RV0 can be rewritten as

RV0 =
n∑
i=1

(r∗i )
2 + 2

n∑
i=1

r∗i ei +
n∑
i=1

e2i . (3.2.6)

It is well known that the bias of RV0 is B(RV0) = 2nω2 and the asymptotic

variance of RV0 is var(RV0) ≈ 4nE(u4i ), as n → ∞. Different approaches are

introduced into the literature to improve the performance of RV0. Under the i.i.d.

assumption on ui, Zhou (1996) proposed to correct the bias in RV0 by introducing

the cross-products of lag 1 into RV0. In this chapter his proposal is slightly

modified as follows:

RVZ =
n−1∑
i=2

(r2i + riri+1 + riri−1). (3.2.7)

Under independent MS noise RVZ is unbiased and its variance is approximately

8nω4, as n→∞. That is this estimator is still inconsistent.

3.2.2 Realized kernels

To overcome the above mentioned problems of well known estimators of the IV,

Barndorff-Nielsen et al. (2008, 2009, 2011b) introduced the realized kernels, which

are consistent estimators of the IV in the presence of MS noise under regularity

conditions. A RK is defined by

RK =
H∑

h=−H

k

(
h

H + 1

)
γh, γh =

n∑
j=|h|+1

rjrj−|h|, (3.2.8)
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where k(u) is a kernel weight function, H is the bandwidth and γh is the h-th

realized autocovariance. To ensure the non-negativity of the RK, it is assumed

that k(u) satisfies the Condition K in Barndorff-Nielsen et al. (2011b). This

implies in particular that the kernel is with a non-flat top such that k′′(0), the

second derivative of k(u) at the origin, is non-zero. A variety of kernel functions

in this class may be found in Table 1 of Barndorff-Nielsen et al. (2011b). The

authors indicated that the use of the Parzen kernel is more preferable. For u ≥ 0,

the Parzen kernel is defined by

k(u) =



1− 6u2 + 6u3, 0 ≤ u ≤ 1/2,

2(1− u)3, 1/2 < u ≤ 1,

0 u > 1.

(3.2.9)

This kernel will be used in the numerical part of this chapter.

Asymptotic properties of the RK are studied by Barndorff-Nielsen et al. (2008,

2011b). See also Ikeda (2015). Assume that the bandwidth H is of the order

H = O(nα) with 0 < α < 1, asymptotic bias and variance of an RK are given by

B(RK) ≈ [k′′(0)]2ω2 n

H2
(3.2.10)

and

var(RK) ≈ 4Tk0.0•

∫ T

0

σ4(τ)dτ
H

n
+ C1

n

H3
+ C2

1

H
, (3.2.11)

where k0.0• =
∫∞
0
k2(u)du, and C1 and C2 are two constants. The quantity∫ T

0
σ4(τ)dτ is called the daily integrated quarticity. These results indicate that

variance of an RK is asymptotically negligible, if α > 1/3, and both of its asymp-

totic variance and bias are negligible, if α > 1/2. The asymptotic variance is dom-

inated by the second term on the right-hand-side of (3.2.11), if 1/3 < α < 1/2, and

by the first term, if α > 1/2. The asymptotically optimal bandwidth (Barndorff-

Nielsen et al., 2009, 2011b), which minimizes the dominating part of the MSE
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(mean squared error) of an RK, is given by

HA = c0ξ
4/5n3/5 with (3.2.12)

c0 =

{
k′′(0)2

k0.0•

}1/5

and ξ2 =
ω2√

T
∫ T
0
σ(τ)4dτ

.

For the Parzen kernel we have c0 = 3.5134. We see the optimal bandwidth for an

RK with a non-flat top kernel is of the order O(n3/5). If a bandwidth of this order

is employed, the resulted RK will achieve its optimal convergence rate of the order

O(n−1/5).
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(c) Realized kernels of BMW on 09. Jan. 2012
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(d) Realized kernels of PSA on 30. Mar. 2007

Figure 3.2: Realized kernels against H obtained on the four selected days

The above theoretical results show that realized kernels work well, only if the

bandwidth is chosen properly. To show this, the dependence of the RK on the

bandwidth H is displayed in Figure 3.2 for the four selected examples, where the

vertical line in each panel highlights the bandwidth selected by the procedure

proposed in the next section with Ĥ = 55, 20, 13 and 24, respectively. Figure 3.2
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shows that an RK is very sensitive to the change of the used bandwidth, if H is

small. In a common case, like those in Figures 3.2(a), (b) and (d), the change in

H usually does not have a clear effect on the resulted RK, if the used bandwidth

is large. However, Figure 3.2(c) indicates that sometimes both of a too large or

a too small bandwidth can lead to a clearly wrong estimation result. Detailed

discussion on the selected bandwidths will be given in section 3.4.

3.3 Bandwidth selection for realized kernels

Examples in Figure 3.2 show that the selection of the bandwidth is a crucial

problem for the application of the RK. In the current context the number of ob-

servations on a trading day is very large and one usually would also like to estimate

the RK for a number of firms within a long observation period. Hence, we aim at

the development of a quick bandwidth selector for the RK with nice theoretical

and practical performance. An plug-in bandwidth selector can be obtained by

inserting estimates of ω2 and
∫ T
0
σ4(τ)dτ into HA. However, the estimation of∫ T

0
σ4(τ)dτ is not yet well solved in the literature. Barndorff-Nielsen et al. (2009)

proposed a plug-in bandwidth selector based on the following formula:

HB = c0ξ
4/5
B n3/5 (3.3.1)

with ξ2 in HA being replaced by ξ2B = ω2/IV, which is of the same order as HA

but with a biased factor in the constant. The reason is that T
∫ T
0
σ4(τ)dτ can

be well approximated through IV2, if σ(τ) does not vary too much. This biased

version of the optimal bandwidth will also be employed in the current chapter .

Now, assume that ÎV is an at least unbiased estimator of IV, it is easy to show

that

ω̂2 =
RV0 − ÎV

2n
(3.3.2)
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is an consistent estimator of ω2. Furthermore, if ÎV is a consistent estimator, HB

can be estimated consistently by replacing ξ2B with

ξ̂2B = ω̂2/ÎV. (3.3.3)

The difference betweenHA andHB is an constant factorHB/HA = (T
∫ T
0
σ4
udu/IV

2)1/5,

which is usually slightly bigger than one. In the following a consistent bandwidth

selector of HB is proposed by adapting the IPI idea of Gasser et al. (1991) to the

current context with RV0 and RVZ as the initial values. The proposed algorithm

reads as:

Step 1. In the first iteration let ÎV1 = RVZ. Calculate ω̂2
1 and ξ̂21 following (4.3.5)

and (3.3.3). Insert the latter into (3.3.1) to obtain Ĥ1. Put j = 2.

Step 2. In the jth iteration with j > 1, calculate ÎVj with Ĥj−1. Then calculate

ω̂2
j and ξ̂2j , and obtain Ĥj similar to Step 1.

Step 3. Increase j by 1 and carry out Step 2 repeatedly. The procedure will be

ended, if convergence is achieved or some stopping criterion is fulfilled, or a

maximal number of iterations J is carried out. Put Ĥ = Ĥj.

We will see that Ĥ1 is an inconsistent bandwidth selector. But after a few itera-

tions, Ĥj will become a consistent estimate of HB. The detailed behavior of Ĥj in

each iteration and the theoretical properties of the finally selected bandwidth are

discussed in the following theorem and its proof.

Theorme 3.3.1. Assume that Conditions K, SH, D and U in Theorem 2 of

Barndorff-Nielsen (2011b) hold. Assume further that ui are i.i.d. and that the

end-effect as indicated in that paper is treated suitably, so that it does not affect

the asymptotic performance of ÎVj in the proposed procedure. Then we have

i) Ĥj selected by the proposed procedure with j ≥ 3 is a consistent estimator of

HB in the sense that (Ĥj −HB)/HB = op(1).

ii) For j ≥ 4 the selected bandwidth is consistent with a relative convergence

rate of the order n−1/5, i.e. (Ĥj −HB)/HB = Op(n
−1/5).
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A sketched proof of Theorem 3.3.1. The following proof is carried out

conditioning on given number of observations n on a trading day.

i) In the first iteration, we have ÎV1 = IVZ = IV + Op(n
1/2). Furthermore,

it can be shown that ω̂2
1 is
√
n-consistent such that ω̂2

1 = ω2[1 + Op(n
−1/2)] and

ξ̂21 = Op(n
−1/2). This results in an estimate Ĥ1 = Op(n

α1) with α1 = 2/5 > 1/3.

Following the asymptotic results summarized in (3.2.10) and (3.2.11), the use of

Ĥ1 in the second iteration will lead to an estimate with an asymptotically negligible

variance and a random bias term of the order O
(

n
H2

1

)
= Op(n

1/5). That is we

have ÎV2 = IV + Op(n
1/5) + op(1). Now, it can be shown that ω̂2

2 = ω2[1 +

Op(n
−1/2) + Op(n

−4/5)] with an additional term caused by the bias in ÎV2, which

is still
√
n-consistent. Furthermore, we have ξ̂22 = Op(n

−1/5). Insert these results

into the proposed algorithm we obtain Ĥ2 = Op(n
α2) with α2 = 13/25 > 1/2. The

estimates ÎV3, ω̂
2
3 and ξ̂23 in the third iteration obtained with Ĥ2 are all consistent.

Hence, Ĥ3 is a consistent estimate of HB in the relative sense.

ii) Note that the error of Ĥj is dominated by that of ÎVj. Using Taylor ex-

pansion of a random function it can be shown that the rate of convergence of

Hj is the same as that of ξ̂2j . From the fourth iteration onwards, Ĥj achieves

its optimal rate of convergence of the order Op(n
−1/5) in a relative sense with

(Ĥj −HB)/HB = Op(n
−1/5) for any j ≥ 4. 3

The proof above shows that, theoretically, at least three steps are required

to achieve a consistent selector of HB. Asymptotically, the performance of Ĥ4

might be slightly better than that of Ĥ3, because ÎV4 is obtained with a consistent

bandwidth selector. The proposed data-driven algorithm and the above theoretical

results can be easily adapted to the case, if an unbiased estimate of
∫
σ4(τ)dτ is

used. Furthermore, note that the bandwidth for an RK is an integer. Small

changes in the involved quantities often do not have any effect on the finally

selected bandwidth. Hence, the proposed algorithm converges very quickly. This

is also confirmed by the application in the next section.

An R code is developed for practical implementation of the proposed band-

width selector. The procedure will be stopped, if Ĥj = Ĥj−1 is achieved. It is

also found that sometimes the selected bandwidths take two consequent integers
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alternatively. If this happens, the procedure will also be ended. Now, the larger

of the two selected bandwidths will be used. Both cases will be considered as

regular cases (Reg. Case). Furthermore, the following three special cases can also

happen. The first special case (Sp. Case 1) is that with RVZ < 0. This indicates

that the MS noise should be very strong (and maybe correlated). Now, Ĥ1 can

not be calculated according to the proposed algorithm, because we have ÎV1 < 0.

In this case we will manually set ξ̂21 = 100/(2n), which will lead to a big starting

bandwidth Ĥ1. Nevertheless the procedure runs very well and, after a few itera-

tions, Hj will converge to the selected optimal bandwidth, which is independent of

Ĥ1. The second special case (Sp. Case 2) is that with RVZ > RV0, which indicates

probably that there is no MS noise on that day. Now, the procedure cannot be

carried out, because we have ω̂2
1 < 0. In this case, we will set Ĥ = 0 and simply

use RV0. The last special case (Sp. Case 3) will happen, when RK becomes bigger

than RV0 in some iteration with j > 1. This means again that there is no strong

MS noise in the observed prices on that day. And now the proposed algorithm

cannot be carried out further. Hence, we will put Ĥ = Ĥj as the selected optimal

bandwidth.

Note that the optimal bandwidth for an RK under independent and dependent

MS noise is of the same order of magnitude. The proposal bandwidth selector can

hence be applied to the case with dependent MS noise. The example in Figure

3.2 (d) also indicates that the proposal works in this case. But now, the selected

bandwidth is only sub-optimal, because it is only of a correct order but with a

clearly biased constant.

3.4 Application

The proposed algorithm is applied to the datasets of AF, ALV, BMW and PSA

from 2. Jan. 2006 to 30. Jun. 2012, downloaded from the “Thomson Reuters”

Corporation. The total number of trading days for the two German Stocks is 1655

and that for the two French Stocks is 1664. The numbers of days in the four cases

with different behavior of the algorithm as described in the last section are listed
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in Table 3.1. We see the proposed algorithm converged for more than 99% of

Table 3.1: Numbers of days in different cases for the four companies
XXXXXXXXXXFirms

Cases
Reg. Case Sp. Case 1 Sp. Case 2 Sp. Case 3

AF 1662 0 1 1

ALV 1652 0 1 2

BMW 1643 0 1 11

PSA 1653 1 3 8

those datasets. The three special cases only happened with a very small chance.

Sp. Case 1 occurred only once by PSA. Sp. Case 2 and Sp. Case 3 for AF and

ALV also occurred rarely. For BMW and PSA, Sp. Case 3 occurred on 11 and 8

days, respectively. Now, the ratio of Sp. Case 3 is still clearly smaller than 1%.

Therefore, the three special cases can be considered as some rare extreme events.

Trading days on which Sp. Cases 2 or 3 happened will be called challenging days.

Now, the proposed algorithm does not work well. This will be discussed in section

4.2 in detail.

3.4.1 Summary of the general findings

Figure 3.3 shows the histograms of the selected optimal bandwidths for the four

companies. It seems that the proposed bandwidth selector is nearly asymptotically

normally distributed. For finite samples the distribution is sometimes slightly

skewed to the right with very fewer extremely large selected bandwidths. The

selected bandwidths are usually between 5 and 25. The largest selected bandwidth

is 55 by AF on 18. Jul. 2007 as indicated in Figure 3.3 (a). As defined before,

the selected bandwidth is 0, if Sp. Case 2 happened. From Figure 3.2 we can see

that the use of the selected bandwidth leads to an estimate, which is at a very low

level, but not the lowest value of all possible RK. This feature is as expected and

shows that the proposed bandwidth selector works very well in practice. This nice

property is particularly highlighted by Figure 3.2 (c). Note that the bandwidth
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Figure 3.3: Histograms of selected bandwidth for all examples.

selected by the procedure of Barndorff-Nielsen et al. (2009) is usually very large.

This is not only caused by the use of different algorithms, but also by the different

features of the used datasets. It is of great interest to carry out a comparative

study between the two proposals theoretically and through simulation. This is

however beyond the aim of the current chapter and will be discussed elsewhere.

The histograms of the numbers of iterations for all companies are displayed in

Figure 3.4. In the R code a maximal number of iteration J = 15 is used. For the

datasets under consideration this limit is never achieved. The maximal number of

iterations occurred is 11 by PSA on one day. The maximal numbers of iterations by

AF, ALV and BMW are 6, 5 and 6, respectively. And the most possible number of

iterations for all of the four companies is 3. Furthermore, in most of the cases the

proposed algorithm converges within four iterations. This confirmed the results

of Theorem 3.3.1.

The estimated RV0, RVZ and RK are summarized in Table 3.2, where the t

statistic for the differences between RV0 and RVZ, and those between RVZ and RK

are also given in the second and third rows, respectively. These t values are calcu-
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Figure 3.4: Histograms of the number of iterations for all examples.

Table 3.2: Statistics of RV0, RVZ and RK; t between RV0 & RVZ, and RVZ & RK

AF ALV BMW PSA

mean s.d. t mean s.d. t mean s.d. t mean s.d. t

RV0 12.74 14.60 — 10.18 24.03 — 7.71 11.35 — 12.11 14.02 —

RVZ 8.05 8.84 26.79 6.82 16.25 17.27 5.54 8.26 26.09 8.28 9.39 27.20

RK 6.29 6.62 23.48 5.28 10.02 9.41 5.16 6.55 6.90 7.07 7.57 19.03

lated under the assumption that those differences in a given case are i.i.d. We see

that for each of the four companies the mean of RV0 is much larger than those of

RVZ and RK. The mean of RVZ is also bigger than that of RK. The differences be-

tween those mean values are always very highly significant. The difference between

the means of RV0 and RVZ indicates the part of the bias caused by the MS noise,

which can be discovered by ρ̂(1) of the returns. And the difference between the

means of RVZ and RK indicates additional bias caused by possible dependent MS

noise, which can not be reflected by ρ̂(1) of the returns. The differences between
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the standard deviations of those estimators are similar to that mentioned above.

It can also be shown that those differences are always significant. Details to this

end are omitted to save space. In summary, the use of the proposed data-driven

RK will lead to a clear reduction of the bias and the variation, comparing with the

two well known estimators RV0 and RVZ. These empirical findings show that the

proposed approach works well in practice. However, the practical performance of

the proposed data-driven algorithm for RK still need to be confirmed by means

of a simulation study.
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Figure 3.5: Logarithmic transformation of all realized volatility estimators for Air
France

The results of RV0, RVZ and RK for AF after logarithmic transformation

are shown in Figure 3.5. From this figure we can see that, in addition to the

differences among the estimates obtained by these different approaches, they also
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exhibit quite similar common patterns. In particular all of these series seem to

have a non-stationary trend component and possible structural breaks caused by

two financial crises, i.e. the global financial crisis in 2008 and the European debt

crisis in 2011, respectively. The results of the data-driven RK for ALV, BMW and

PSA, again in log-scale, are displayed in Figure 3.6. We see, these series also share

similar patterns as those displayed in 3.5(c). Moreover, an interesting empirical

finding is that, in addition to the common general tendency of those RK series,

they seem also correlated to each other strongly. This feature is helpful for further

modeling and forecasting of RK.
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Figure 3.6: Logarithmic transformation of realized kernels for the other three
companies
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3.4.2 Detailed analysis of two challenging cases

Now, we will discuss briefly, why the proposed data-driven algorithm does not

work well in Sp. Cases 2 and 3. The dataset of AF on the 15. Sept. 2011 was

chosen as an example of Sp. Case 2 and that of BMW on the 21. May 2009 was

chosen as an example of Sp. Case 3. Figure 3.7 shows the ACF of the intraday

returns on those two challenging days. As shown in Figure 3.1, usually, MS noise

will cause a clearly significant negative ACF at lag 1. From Figure 3.7 we can see
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(f) First iteration for BMW on 21.May 2009
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(g) Final iteration for AF on 15.Sept.2011
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(h) Final iteration for BMW on 21.May 2009

Figure 3.7: ACF of the high-frequency returns on the two challenging days

that this is not true in both examples selected here. Figure 3.7 (a) shows that

almost all of the estimated ACF in this case are insignificant. But the ACF at

lag 1 happens to be slightly positive. This results in turn in the fact that RVZ

is slightly larger than RV0. In this case we proposed the use of Ĥ = 0, because

now the effect of the MS noise seems to be unclear. One problem can arise in

the presence of dependent MS noise. Now, it can happen that although the ACF

at lag 1 is positive, but some ACF at higher lags can be negative so that RV0

is still biased. This kind of effect of MS noise can however not be corrected by

the proposed data-driven RK. The problem in Sp. Case 3 is different. As we

can see, now the ACF at lag 1 is negative and hence the proposed bandwidth

selection algorithm can be started. However, some other ACF are clearly positive

so that the sum of the ACF is now positive. This indicates again the existence of

possible dependent MS noise. This kind of noise could however cause a negative
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bias in RV0. Following our proposal, the resulted RK in this special cease is always

slightly bigger than RV0. The effect of this kind of possibly dependent MS noise

can also not be captured by the proposed algorithm. Both examples indicate that

the proposed algorithm should still be improved and it is worthy to development a

data-driven RK by taking possibly dependent microstructure noise into account.

3.5 Further analysis using the Semi-FI-Log-ACD

Further analysis of the obtained RK is of great interest. Ebens (1999) showed that

the distribution of the logarithmic volatility is approximately normal. Anderson

et al. (2003), Corsi (2009) and Koopman et al. (2005) showed that logarithmic

realized volatility may exhibit high persistence. From Figures 3.5 and 3.6 we can

see that the logarithmic RK may also exhibit a deterministic nonparametric trend.

The well known SEMIFAR (Beran and Feng, 2002a) is a nonparametric regression

model with long-range dependence. Most recently, Beran et al. (2015) proposed to

apply the SEMIFAR model to logarithmic transformation of nonnegative financial

time series. Their proposal is hence called an ESEMIFAR model, which can be

applied to RK. See also Feng and Zhou (2015a) for discussion on forecasting based

on this approach. Assume that Zt, the log-transformed RK, follow a SEMIFAR

model

(1−B)dφ(B)[Zt − µ(τt)] = εt, (3.5.1)

where B denotes the backshift operator, φ(B) is the AR-characteristic polynomial,

εt are i.i.d. normally distributed random variables with E(εt) = 0 and var(εt) =

σ2
ε ; d ∈ (−0.5, 0.5) and τ = t/n denotes the rescaled time. The existing data-

driven algorithms of the SEMIFAR can be used to fit (3.5.1), where the AR model

is selected by the BIC. A very nice property of this proposal is that, if d > 0, the

long memory parameter in the original and the log-data is the same. See Beran

et al. (2015) for more details.

In the following, the RK series of Air France is used as an example. Like the

nonparametric trend, a financial crisis will also cause spurious long memory, if
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long memory is estimated without taking possible structural breaks into account.

Hence, we will apply the ESEMIFAR model to the whole series as well as to the

two sub-series from 2. Jan. 2006 to 30. Sept. 2008, and from 1. Oct. 2008 to 30.

Apr. 2011. These sub-periods are defined manually. Discussion on the detection

of structural breaks under the SEMIFAR model is beyond the purpose of this

chapter. The sub-series after May 2011 is very short and is hence not considered.

Figure 3.8: Estimated trend by ESEMIFAR together with the log-data

An ESEMIFAR model with a third order local polynomial is fitted to the

whole series and to each of the two sub-series mentioned above. The fitted trends

together with the data are displayed in Figure 3.8(a) to (c), respectively. The

trend in Figure 3.8(a) indicates clear effect of the two financial crises on the market

volatility. However, it seems that there is no more structural breaks in the two

sub-series. And now the ESEMIFAR fits the data well. The selected bandwidths
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Table 3.3: Results of ESEMIFAR for realized kernels of Air France

Series ĥ d̂ & %-CI p̂ φ̂1 & 95%-CI trend

Jan. 2006 - Jun. 2012 0.191 0.437 [0.399, 0.475] 0 — insign.

Jan. 2006 - Sep. 2008 0.269 0.380 [0.322, 0.438] 0 — sign.

Oct. 2008 - Apr. 2011 0.149 0.285 [0.175, 0.395] 1 0.152 [0.014, 0.290] sign.

(b̂), the estimated long memory parameters (d̂) and the selected AR model, if

applicable, are listed in Table 3.3, where the 95%-confidence intervals and the

results of the significant test of the fitted trend are also given. From this table we

can see that in both sub-periods realized kernels exhibit significant long memory

and a significant non-parametric trend simultaneously. In the second sub-period,

the short memory part of this model is also significant. Comparing the results

for the whole series with those for the two sub-periods, we can see that possible

structure breaks cause by the two financial crises exhibit at least the following

effects on the estimated ESEMIFAR model: The possible structure breaks resulted

in clear overestimation of the long memory parameter, which in turn caused the

wrong conclusion, that the estimated trend were insignificant.

3.6 Final remarks

An IPI algorithm for realized kernels under independent MS noise was proposed.

To our knowledge this is the first IPI algorithm in the current context. It is

shown that this proposal has some nice theoretical properties, runs very quickly

and works usually very well in practice. Possible problems which can happen on

some challenging days are discussed in detail. It is also proposed to analyze the

resulted RK using the most recently proposed ESEMIFAR model. We also tried

to apply this model to different pieces of the whole series. There are still some

open questions in this context. Firstly, it is better, if one can find more reason-

able solutions to the problems on the challenging days. Secondly, it is worthy

to extend the current proposal to cases with dependent MS noise. Thirdly, the
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proposed bandwidth selector can also be improved, if an unbiased estimator of the

daily integrated quarticity can be developed. Furthermore, to apply the idea of

the piecewise ESEMIFAR model properly, a suitable approach for detecting struc-

tural breaks under the SEMIFAR model should also be developed. Finally, the

development of a multivariate semiparametric long memory time series approach

for jointly modeling of different RK series is also of great interest.



Chapter 4

A comparison study of realized

kernels using different sampling

frequencies

This chapter has been published with slight differences as Working Paper (2018-

02) in the Working Paper Series of the Faculty of Business Administration and

Economics at Paderborn University.

4.1 Introduction

In recent years, there has been a large and rapidly expanding literature on estima-

tion of the daily integrated volatility (IV). With the improvement of availability

of high-frequency financial data Andersen et al. (2001a, b) proposed a model-free

volatility approach, called realized volatility (RV0), which exploits the informa-

tion in high frequency returns and is constructed as the sums of intraday squared

returns. However, observed prices are contaminated by market MS noise, which

leads to the bias problem at high sampling frequencies (Hanse and Lunde, 2006a).

To solve this bias problem, different approaches are introduced into the literature.

Bandi and Rusell (2006, 2008, 2011b) proposed a method of selecting the optimal

sampling frequency based on a trade-off between the variance and bias. Zhang et

75
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al. (2005) proposed a subsampling method, called two time scales, to deal with

the bias problem under i.i.d. MS noise. Their proposal was developed to the

case under dependent MS noise by Zhang (2006) and Aı̈t-Sahalia et al. (2008).

This is also the first consistent estimator of IV. Furthermore, a pre-filter was used

to weaken the effects of MS noise (e.g. Bollen and Inder, 2002). Large (2007)

introduced an alternative estimator to control the MS effects. In addition, Zhou

(1996) proposed to include the cross-products between two consequent observa-

tions. The author showed that his estimator, called RVZ is unbiased under i.i.d.

MS noise. This is also the first kernel method to deal with the problem of MS

noise. Hansen and Lunde (2004, 2006b) studied extensively this estimator and

proposed a simple kernel-based estimator. Barndorff-Nielsen et al. (2008, 2009,

2011b) proposed realized kernels, which are a generalization of RVZ and also are

consistent estimators of the IV under given conditions.

A crucial problem by applying RK is the selection of the bandwidth. This

problem is investigated first by Barndorff-Nielsen et al. (2009) for non-negative

RK with an asymptotically optimal bandwidth of the order O(n3/5) and an optimal

rate of convergence of the order O(n−1/5), where n is the number of observations on

a trading day. Feng and Zhou (2015b) introduced a fully automatic iterative plug-

in (IPI) algorithm to select bandwidth for RK by adapting the idea of Gasser

et al. (1991). However, their algorithm is only applicable for the case under

the assumption of i.i.d. MS noise. And the algorithm does not work, if three

special cases occur. In this chapter we improve this algorithm slightly so that it

works for all cases. This improved algorithm is called the IN algorithm in the

context of this chapter. Ikeda (2015) proposed two-scale RK, which is a convex

combination of two realized kernels with different bandwidths. He showed that

his estimator converges to the IV in the presence of the dependent MS noise.

Based on Ikeda (2015)’s conclusion, Wang (2014) proposed two IPI algorithms

for RK under dependent noise assumption. In his work algorithm B is a fully

automatic data-driven algorithm and after slight adjustment we call this algorithm

in this chapter the DN algorithm. End effects in the computation of the RK are

considered. The non-flat-top Parzen kernel is utilized, because it can guarantee
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the nonnegativity of RK. Theoretically, in the fourth iteration the two bandwidths

G and H have achieved the optimal rate of convergence. After several iterations,

the resulted RK achieves its optimal rate of convergence of the order O(n−1/5).

The processes of the IN and DN algorithms for RK based on different sampling

frequency starting with different bandwidths are investigated. It is shown, that no

matter the starting bandwidths, the selected bandwidths as of the second iteration

are very close and that the final selected bandwidths are indeed the same. Most

recently, Liu et al. (2015) has studied the accuracy of a wide variety of volatility

measures constructed from high-frequency data. They concluded that when RV0

calculated by 5-minute returns is taken as the benchmark measure, it is very hard

to be beaten by any measure. Furthermore, if no benchmark is specified, the

best estimators appear to e.g. RV0 based on 1-minute data and RK. Barndorff-

Nielsen et al. (2009) compared tick-by-tick and 1-minute RK with RV0 computed

by several sampling frequencies. Their conclusions were obtained by measuring

the disagreement between these estimates based on transaction prices and mid-

quote prices over 123 days. It was found that both RK estimates are better

than any of the RV0 and the statistical results of both RK estimates are similar.

Motivated by all of these we study a comparison of RK using different sampling

frequencies (tick-by-tick, 1-minute, 5-minute and 15-minute) calculated by the IN

algorithm as well as RK using tick-by-tick returns calculated by the DN algorithm

within a long period over 2000 trading days. Meanwhile, RV0 computed from

the different frequency returns are compared with these RK estimators mentioned

above. In total, we have 4 sampling frequencies, 2 types of realized measures

and two algorithms of a given transaction price series. The detailed comparison

of these realized estimators are investigated by comparing their performances in

the computation of Value-at-Risk based on the Semi-FI-Log-ACD model (also

called the exponential SEMIFAR model, Feng and Zhou, 2015a). Value-at-Risk

is considered as an extremely important measure in financial risk management to

determine the amount of assets needed to cover possible losses. It is found that the

performances of two RK estimators based on the tick-by-tick returns calculated

by the IN and DN algorithms are better than any other realized estimator and
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hence recommended using in practice.

The rest of this chapter is organized as follows. Different sampling schemes

and several volatility estimators used in this chapter are introduced in section 4.2.

The improved bandwidth selectors under independent and dependent MS noise

assumptions are proposed in section 4.3. The implementation of algorithms as

well as the comparison of volatility estimators based on different frequencies of

data are reported in section 4.4. Final remarks in section 4.5 conclude.

4.2 Realized measures

4.2.1 Different sampling schemes

Prices are practically observed at discrete and irregularly time intervals. Sampling

schemes are rules of data recording. Different sampling schemes can be used for

calculating realized measures. Let p∗t,i, i = 1, . . . , n, be the logarithmic efficient

asset prices at time points 0 = τ0 < τ1 < . . . τn < τn+1 = T on trading day t,

where n is the total number of observations at day t. Support that, p∗t,i follow a

continuous time diffusion process dp∗t = σtdWt, where W is a standard Brownian

motion and σt is the spot volatility process. The daily integrated volatility is given

by

IVt =

∫ T

0

σ2
t dt. (4.2.1)

We divide the interval [0, T ] in n subintervals. The length of the ith subinterval is

defined by δi,n = τi− τi−1. The integrated volatility for each of the subintervals is

IVi,t =

∫ τi

τi−1

σ2
t dt.

The choice of sampling schemes and sampling frequencies can have a strong influ-

ence on the estimation of the IV. Sampling schemes are mainly classified according

to the concept of time.

Calendar Time Sampling (CTS). CTS is sampled by regularly spaced cal-

endar time and is defined by δi,n = 1
n

for all i (see e.g. French et al. (1987);
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Hsieh (1991); Andersen and Bollerslev (1998); Andersen et al. (2001a)). Because

of irregularity of the intraday data, calendar time sampled data must be builded

artificially (refer to Wasserfallen and Zimmermann (1985); Andersen and Boller-

slev (1997); and Dacorogna et al. (2001)). In this chapter we use this sampling

scheme. The original tick-by-tick price is sampled by different sampling frequen-

cies, namely 1-minute, 5-minute or 15-minute. We utilize the data for the period

between 9:00 am and 17:30 pm and use the previous tick method that takes the

first observation as the sampled price (Hansen and Lunde, 2006a). For instance,

when the price process is sampled at 1-minute interval, this will yield 511 price

observations on one day.

Tick Time Sampling (TkTS) and Transaction Time Sampling (TrTS).

Prices are recorded at every price change in TkTS (see e.g. Corsi et al., 2001;

Zhou, 1996). Prices are sampled every kth transaction in TrTS (see e.g. Hansen

and Lunde, 2006a). Grifin and Oomen (2008) investigated the difference between

transaction time and tick time sampling. They found that the MSE of RV in tick

time is lower than that in transaction time, especially when the level of noise,

number of ticks, or the arrival frequency of efficient price moves is low.

Business Time Sampling (BTS). The sampling time are chosen such that

IVi,t = IVt

n
. The observation times for BTS are unobserved. The BTS transactions

are often sampled in order to ensure approximately equal volatility of the returns

over each interval. Peters and Vilder (2006), Andersen et al. (2007) and Andersen

et al. (2010) selected time points to sample BTS returns with a target volatility.

The CTS, TrTS and TkTS schemes are constructed based on explicit criteria

such as the regular calendar-time length or the number of ticks/price change.

In addition, the observation times are observed. In contrast, the BTS scheme

depends on the unobserved latent volatility. As a result, the most widely used

sampling scheme is CTS. In many cases, the BTS scheme has the minimal MSE of

realized variance among all sampling schemes, however, it is used less frequently

in practice.
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4.2.2 The effect of microstructure noise

Let pt,i be the ith logarithmic observed prices during day t. Assuming that the

prices are observed with noise, we have

pt,i = p∗t,i + ut,i, (4.2.2)

where ut,i represents a stationary logarithmic microstructure noise process with

mean zero. It is assumed that ut,i is independent of p∗t,i. The noise process itself can

be a white noise or a dependent process. The corresponding noise contaminated

observed returns are obtained by

rt,i = pt,i − pt,i−1 = r∗t,i + et,i, (4.2.3)

where et,i = ut,i − ut,i−1 is the noise in the observed returns. In the presence of

MS noise, realized variance RV0 =
∑n

i=1 rt,i is no more consistent of the integrated

variance, and can be rewritten as

RV0 =
n∑
i=1

(r∗t,i)
2 + 2

n∑
i=1

r∗t,iet,i +
n∑
i=1

e2t,i.

Under independent noise assumptions, the variance of noise is var(ut,i) = ω2. The

bias of RV0 is B(RV0) = 2nω2 and the asymptotic variance of RV0 is var(RV0) ≈
4nE(u4i ), as n → ∞. For the dependent noise structure, Zhang (2006) and Aı̈t-

Sahalia et al. (2008) showed that the bias is still 2nω2 and the variance tents to

4nΘ, where Θ = V [(ut,1− u2t,0)] + 2
∑∞

i=1Cov[(ut,1− u2t,0), (ut,i+1− u2t,i)]. However,

for large values of n, the bias and variance of RV0 are infinite. Different approaches

have been introduced into the literature to improve the performance of RV0 in the

presence of MS noise. Andersen et al. (2001a, 2003) proposed to select arbitrarily

lower frequencies returns to treat the MS bias, such as every 5 or 15 minutes,

instead of at every tick. RV0 using different sampling frequencies is defined by

RVs
0 =

ns∑
i=0

r2t,i, (4.2.4)
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where ns denotes the number of observations. It is showed that the bias due to

noise for independent and dependent is given by 2nsE(u2t,i). The bias is reduced

when ns < n, however, the variance is increased due to discretization. This leads

to the well-known bias-variance trade-off.

Under the i.i.d. assumption on ut,i, Zhou (1996) proposed to use the first

order correlation to correct the bias in RV0. This estimator RVZ is unbiased but

inconsistent. The version of RVZ with different sampling is given by

RVs
Z =

ns−1∑
i=2

(r2t,i + rt,irt,i+1 + rt,irt,i−1). (4.2.5)
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Figure 4.1: ACFs of Thyssenkrupp on 20. Jan. 2012.

Empirical evidence of MS noise can be found by displaying the ACFs of returns.

Figure 4.1 to Figure 4.4 show the ACFs of different sampling-frequency returns on

four selected trading days, respectively. Generally speaking, the ACFs on every

selected trading day vary a lot by changing the sampling-frequency. ACFs of tick-

by-tick returns for Thyssenkrupp on 07. May 2007 are displayed in Figure 4.1 (a).
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Figure 4.2: ACFs of Siemens on 13. Jun. 2008.
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Figure 4.3: ACFs of Peugeot on 24. May 2011.



Chapter 4. A comparison study of realized kernels using different sampling
frequencies 83

0 10 20 30 40

−0
.5

0.
0

0.
5

1.
0

Lag

AC
F

ACFs of SE−tick on 24. 01. 2014

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

ACFs of SE−1min on 24. 01. 2014

0 5 10 15 20

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

ACFs of SE−5min on 24. 01. 2014

0 5 10 15

−0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

ACFs of SE−15min on 24. 01. 2014

Figure 4.4: ACFs of Schneider Electric on 24. Jan. 2010.

Table 4.1: Detailed results of different realized estimators (∗104) for selected ex-
amples

RV0 RK

tick 1-min 5-min 15-min IN-tick IN-1min IN-5min DN-tick

THK
3.867 2.413 2.393 2.362 1.558 2.425 2.439 1.611

07. 05. 2007

SIE
3.761 2.518 1.635 0.906 2.258 1.941 1.278 1.744

01. 12. 2009

PSA
5.064 2.699 2.551 1.765 2.657 2.924 2.864 2.448

24. 05. 2011

SE
7.660 2.472 2.044 2.028 2.150 2.114 2.016 2.147

24. 01. 2014

It shows that ρ̂r(1) < 0 and the ACFs at lags 2 and 3 are slightly not-zero. This

indicates the existence of possible dependent MS noise. From Figure 4.1 (b) and
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(c) we can see that the correlations in 1-minute and 5- minute returns are reduced,

but several lags are still outside two bounds. There are almost no correlations in

15-minute returns, which can be seen in Figure 4.1 (d). Figure 4.2 displays the

ACFs of Siemens on 01. Dec. 2009. In Figures 4.2 (a), (b) and (c) not only

ρ̂r(1) but also the following several lags are slightly not-zero. The correlations

are reduced with the decrease of sample frequencies and there are also almost no

correlations in 15-minute returns. ACFs of Peugeot on 24. May 2011 are shown in

Figure 4.3. In Figure 4.3 (a) ρ̂r(1) is not significant, but some ACFs at higher lags

are clearly significant. This indicates the presence of dependent MS noise and that

the simple independence assumption on the noise may not be sufficient. Using the

DN algorithm to calculate RK may be suitable in such a case. The correlations

are clearly reduced by using 1-minute returns in Figure 4.3 (b). As has been

demonstrated before, there are also almost no correlations in 5- and 15-minutes

returns. Figure 4.4 shows the ACFs for Schneider Electric on 24. Jan. 2014. In

Figure 4.4 (a) the noise is very strong with ρ̂r(1) < −0.5 and the several lags,

which follow, are also clearly significant. On this day RVZ < 0, which is one of

the special cases for the IN algorithm. The correlations diminish clearly by using

1-minute returns in Figure 4.4 (b). There are almost no correlations in 5-minute

and 15-minute returns. In conclusion, from Figure 4.1 to Figure 4.4 it can be seen

that in most cases ρr(1) is significantly negative and there are possible dependent

MS noise in tick-by-tick returns and for some cases there may be still MS noise

in 1-minute and 5-minute returns. Furthermore, the correlations reduce with the

decrease of sample frequencies. The reason is that the diminished number of

observations reduces the bias and extends the two ACF bounds, which makes the

daily returns uncorrelated. However, decreasing the sampling frequency toward

to increase the variance and reduce the accuracy of volatility estimators. Hence,

a realized estimator with an optimal frequencies is necessary to investigate, which

can remove the effect of MS noise and grantee the accuracy of the estimation at

the same time. The corresponding numerical results of RV0 and RK computed

from different sample frequencies for these four selected days are provided in Table

4.1. From the first four columns we see that the values of RV0 for all examples
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reduce by the decease of the sample frequencies. For instance, for SE on 24.

Jan. 2014 the tick-by-tick RV0 is even three times bigger than the 1-minute RV0.

The last four columns show us that the results of RK computed from different

frequencies returns by the IN algorithm are clearly different form the results of

tick-by-tick RK using the DN algorithm. These differences are caused by the

calculated dependent MS noise with the DN algorithm. One of our purpose in

this chapter is to investigate which of these realized estimators can estimate the

financial market volatility more accurately.

4.3 Bandwidth selection for realized kernels

4.3.1 Realized kernels

Realized kernels are introduced by Barndorff-Nielsen et al. (2008, 2009, 2011b)

and can be thought of as an extension of RVZ.

RK =
H∑

h=−H

k

(
h

H + 1

)
γh, γh =

n∑
i=|h|+1

riri−|h|, (4.3.1)

where k(x) is a kernel weight function, H is the selected bandwidth and γh is the

h-th realized autocovariance. In this chapter we use the Parzen kernel, which can

guarantee the nonnegative realized kernels estimate.

Under H = O(nα) with 1/2 < α < 1 and further regularity conditions, RK is

a consistent estimator of IV with the AMSE (asymptotic mean squared error):

AMSE(H) = [K ′′(0)]2Ω2n2H−4 + 4K0,0
• (T IQ)Hn−1, (4.3.2)

where K0.0
• =

∫∞
0
k(x)2dx is a constant, IQ=

∫ T
0
σ4
t dt is called the integrated quar-

ticity, Ω = Σh>0Ω(h) is the long-run variance of ut,i and Ω(h) = Σn
i=h+1ut,iut,i−h.

The first part and second part in Eq.(4.3.2) are the asymptotic squared bias and

variance of RK, respectively.

The asymptotically optimal bandwidth which minimizes the AMSE is provided
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by

H = c0ξ
4/5n3/5 with c0 =

{
k′′(0)2

k0.0·

}1/5

and ξ2 =
Ω√
T IQ

, (4.3.3)

where c0 = 3.5134 for the Parzen kernel. The bandwidth H depends on the

unknown quantities Ω and IQ.

4.3.2 Bandwidth selection under i.i.d. noise

The crucial problem when applying RK is the selection of the bandwidth. The

asymptotically optimal bandwidth given in Eq. (4.3.3) provides a base for selecting

the bandwidth. To do this, we need to estimate Ω and IQ. When ut,i is under

the i.i.d. noise assumption, Ω reduces to ω2. Following Barndorff-Nielsen et al.

(2009), IQ in Eq. (4.3.3) is replaced with IV2, because the former is not too far

from the latter, under conditions, when σ2
t does not vary significantly. It can

be easy shown that the conclusions for RK in Barndorff-Nielsen et al. (2008,

2009, 2011b) are also suitable for RK based on different sampling frequencies

(RKs). Under the i.i.d assumption a biased version of H, called HB constructed

at different sampling frequencies is given by

HB
s = c0ξ

4/5
B n3/5

s with ξ2B =
ω2
s

IVs

. (4.3.4)

Now, assuming that ÎVs is at least an unbiased estimator of IVs, it can be shown

that

ω̂2
s =

RVs
0 − ÎVs

2ns
(4.3.5)

is a consistent estimator of ω2
s . Barndorff-Nielsen et al. (2009) proposed to select

the bandwidth by plugging two complex estimates of IV and ω2. Their proposal

is not fully data-driven and the selected bandwidth does not converge to HB.

Instead of these two complex estimators, Feng and Zhou (2015b) utilized RVZ as

an initial value of IV for estimating the starting bandwidth H1. Then inserting Ĥ1

into Eqs. (4.3.4) and (4.3.5), and using the IPI idea to obtain optimal bandwidth
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ĤB automatically. This is the first IPI algorithm and it is shown the selected

bandwidth is consistent to HB. However, their algorithm does not work, if three

following special cases occur. They are RVZ is smaller than zero (Case 1), RVZ

is larger than RV0 (Case 2), and RK is larger than RV0 (Case 3). For Case 1

a large starting bandwidth should be manually set, since ÎV1 < 0. For Case 2

they set ĤB = 0 and simply use RV0, because ω̂2
1 < 0. And for Case 3 they put

ĤB = Ĥj as the selected optimal bandwidth, because ω̂2
j < 0. The last two cases

imply that there is possibly no strong MS noise on those days. To avoid these

three cases, in this chapter we let ω̂2
s,1 =

RVs
0

2ns
replace ω̂2

s,1 =
RVs

0−RVs
Z

2ns
. It aims to

avoid RVs
0 − RVs

Z < 0. It can be observed that
RVs

0

2ns
is not far from

RVs
0−RVs

Z

2ns
, if

n → ∞. Moreover, end effects in the computation of the RK is also considered

with m = 2. For more details please refer to section 2.2 in Barndorff-Nielsen et

al. (2009).

Let j denote the number of iterations. The IN algorithm unfolds as:

Step 1. To resolve end-effects problem. Let p0 = 1
m

(pt,1 + . . . pt,m), pj = pt,j+1,

j = m. . . , n−m− 1 and pn = 1
m

(pt,n−m+1 + . . . pt,n), where we put m = 2.

Step 2. In the first iteration j = 1, let ÎVs,1 = RVs
Z, calculate ξ̂4s,1 with

ξ̂4s,1 =

(
RVs

0

2ns

RVs
Z

)2

. (4.3.6)

Insert ξ̂4s,1 into Eq. (4.3.4) to obtain Ĥs,1. Let j = 2.

Step 3. In the jth iteration with j > 1, calculate ÎVs,j with Ĥs,j−1. Then insert

ξ̂4s,j =

(
RVs

0

2ns

ÎVs,j

)2

(4.3.7)

into Eq. (4.3.4) to obtain Ĥs,j.

Step 4. Iteratively carry out this procedure until convergence has been achieved.

The algorithm will be stopped, if Ĥs,j is equal to Ĥs,j−1. As showed in Theorem 1
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in Feng and Zhou (2015b), theoretically, both of R̂Ks and ĤB
s become consistent

form in the third iteration, while their rate of convergence can still be improved in

the fourth iteration. Thereafter, R̂Ks achieves its optimal rate of convergence of

the order O(n−1/5) and this rate of convergence is also shared by (ĤB
s −HB

s )/HB
s .

An R code is developed for practical implementation of the proposed bandwidth

selector.

4.3.3 Bandwidth selection under dependent noise

From Eq. (4.3.2) it can be seen that for dependent noise the estimation of the

long-run variance Ω may enable the correction of the leading bias of RK. Following

Ikeda (2015) we utilize MK(G) to estimate Ω. Define

MK(G) = (|k′′(0)|nG−2)−1RK(G), (4.3.8)

where RK(G) are the realized kernels for bandwidth G. Under the assumption

G=O(nβ), β ∈ (0, 1/2] and if n→∞

MK(G) −→ Ω + lim
n→∞

n−1G2(|k′′(0)|)−1IVt. (4.3.9)

In addition, given G=O(nβ) for 1/(2q + 1) ≤ β < 1/3 or β = 1/3, where q is the

characteristic exponent of k′′(0). If q = 1 and β = 1/3 (for Parzen kernel) are

allowed for the asymptotic normality of MK(G). According to the related results

in Ikeda (2015), the AMSEG for the Parzen kernel is obtained by

AMSEG =

(
IVt

k′′(0)

)2
G4

n2
+O

(
G

n

)
+O

(
1

G2

)
. (4.3.10)

The asymptotically optimal bandwidth G = O(n1/3) for MK(G) can be obtained

by minimizing the AMSEG. Two-scale realized kernels can be used to estimate

Ω. However, the estimator can be negative. Wang (2014) proposed two IPI al-

gorithms A and B under dependent noise assumption. Algorithm A starts with

H1 = nα, α ∈ (1/2, 1). In the second iteration Ĥ2 has already achieved the rate of
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convergence of the order O(n3/5) and after only a few iterations Ĥj converges to

HB. He also demonstrated that Ĥj is consistent even when α is outside (1/2, 1).

Algorithm B is a fully automatic data-driven algorithm and with slight adjust-

ments it is called the DN algorithm in this chapter. Let j denote the number of

iterations. The DN algorithm unfolds as:

Step 1. To resolve end-effects problem. Let p0 = 1
m

(pt,1 + . . . pt,m), pj = pt,j+1,

j = m. . . , n−m− 1 and pn = 1
m

(pt,n−m+1 + . . . pt,n), where we put m = 2.

Step 2. In the first iteration, let ÎV1 = RVZ, calculate ξ̂41 with

ξ̂41 =

(
RV0

2n

RVZ

)2

. (4.3.11)

Insert ξ̂41 into Eq. (4.3.4) to obtain Ĥ1. Let j = 2.

Step 3. In the jth iteration with j > 1, calculate ÎVj with Ĥj−1. Meanwhile,

similar to step 2, let G = H
5/9
j−1 to obtain R̂K(G). The unknown value ξ̂4j is

calculated by

ξ̂4j =

(
12−1n−1G2

j

RK(G)

IVj

)2

(4.3.12)

and then Ĥj can be obtained.

Step 4. Iteratively carry out this procedure until convergence has been achieved.

Like in the IN algorithm IV2 is also used to estimate IQ. Let Ω1 = RV0

2n
, so

that a negative Ω1 is avoided. Please note that for both IN and DN algorithms

Ĥj is obtained by truncating the integer part of selected optimal bandwidth and

subsequently adding 1. The proof for the convergence of this algorithm was given

in Wang (2014). Theoretically, in the fourth iteration G and H have achieved to

their optimal rate of convergence, respectively. After several iterations the resulted

RK achieves its optimal rate of convergence of the order O(n−1/5).
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4.4 Application

The datasets of ten European companies (Air France (AF), Allianz (ALV), BMW,

Deutsche Bank (DBK), Michelin (MIC), Peugeot (PSA), RWE, Schneider Electric

(SE), Siemens (SIE) and Thyssenkrupp (THK)) from 02. Jan. 2006 to 30. Sept.

2014 are used as data examples, which were downloaded from “Thomson Reuters”

Corporation. The total number of trading days for the six German companies is

2226 and for the four French companies it is 2239. The trading times for all ten

companies are from 9:00 to 17:30. We eliminate the data outside this time interval

and also the data containing clerical errors. In addition to tick-by-tick data, we

also employ 1-minute, 5-minute and 15-minute data, which are computed based

on tick-by-tick data. Two realized measures, RV0 and RK are considered. The

IN algorithm is utilized to calculate RK obtained based on tick-by-tick, 1-minute

and 5-minute returns. The DN algorithm is used to calculate tick-by-tick RK.

We consider end effects in the computation of the RK with m = 2. The absolute

difference for the ten European companies are less than 0.878% on average, which

confirms the conclusion in Barndorff-Nielsen et al. (2009) that the end effect can

be ignored in practice.

4.4.1 Implementation of algorithms

Figure 4.5 shows the processes of the IN and DN algorithms starting with dif-

ferent bandwidths for four selected days. In Figure 4.5, “u” and “l” represent

the selected bandwidths in each iteration when a fixed upper and a lower starting

bandwidths are used, respectively. And “z” stands for selected bandwidths in each

iteration, when algorithms start with Ĥ1 estimated by Eq. (4.3.4). Figure 4.5 (a)

displays the process of the IN algorithm based on tick-by-tick returns for THK on

07. May 2007. We choose 50 as the upper starting bandwidth and the selected

bandwidths Ĥs,j in 3 iterations are 50, 14, 14, respectively. When 5 is chosen as

the lower starting bandwidth, the selected bandwidths in 4 iterations are 5, 12,

14, 14, respectively. The calculated starting bandwidth Ĥ1 is 16 by using RVs
Z as

the estimator of IVs,1, after 3 iterations (Ĥs,j=16, 14, 14), the optimal bandwidth
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Figure 4.5: Process of algorithms for four selected days.

is also 14. Likewise, the processes of the IN algorithm based on 1-minute and

5-minute returns for MIC and RWE are plotted in Figure 4.5 (b) and (c), respec-

tively. Figure 4.5 (d) plot the process of the DN algorithm based on tick-by-tick

returns for SIE on 01. Dec. 2009. In Figure 4.5 (d) the upper starting bandwidth

is 100, the selected bandwidths in 5 iterations are 100, 39, 46, 51, 51, respectively.

We choose 5 as the lower starting bandwidth, the selected bandwidths in 6 itera-

tions are 5, 32, 41, 46, 51, 51, respectively. The calculated starting bandwidth is

19 by using RVs
Z as the estimator of IVs,1, after 5 iterations (Ĥs,j=19, 35, 45, 51,

51), ĤB is also equal to 51. From Figure 4.5 we can see that both algorithms work

very well and only a few iterations are required. In addition, no matter what the

starting bandwidths are, the selected bandwidths as of the second iteration are

very close and that the final selected bandwidths are indeed the same.

Figure 4.6 displays the histograms of selected bandwidths and iteration num-

bers of RK for DBK. The histograms of ĤB calculated by the IN algorithm for

tick-by-tick, 1-minute and 5-minute RK are plotted in Figures 4.6 (a), (b) and (c),
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Figure 4.6: Histograms of selected bandwidth and interation number for Deutsche
Bank.
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Figure 4.7: Histograms of selected bandwidth and interation number for Michelin.
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respectively. Figure 4.6 (d) provides the histogram of ĤB for the tick-by-tick RK

calculated by the DN algorithm (RK-DN-tick). The corresponding histograms of

iteration numbers are displayed in Figures 4.6 (e), (f), (g) and (h), respectively.

The selected bandwidths in Figure 4.6 (d) are bigger than those in Figure 4.6 (a),

the reason is that the dependent MS noise is taken into account. The selected

bandwidths for 1-minute RK in Figure 4.6 (b) are smaller than those for tick-by-

tick RK, but larger than those for 5-minute RK. This corresponds to their ACFs

results, that the correlations in 5-minute returns are smaller than the correlations

in 1-minute and tick-by tick returns. In R code a maximal number of iterations

J = 20. For the datasets under consideration this limit is never achieved. The

commonly required number of iterations for DBK-IN-tick, DBK-IN-1min, DBK-

IN-5min and DBK-DN-tick are 3, 3, 3, 5, respectively, which are also true for the

other nine companies. These confirm that both IN and DN algorithms work very

well in practice and only a few iterations are required. The illustrative results for

MIC can be found in Figure 4.7. The histograms for the other eight companies

show the same conclusions as in Figures 4.6 and 4.7, and are given in the appendix

to chapter 4. Please note that the IN algorithm does not work for 15-minute RK

of all the ten stocks, because on some days the number of observations is smaller

than the selected bandwidths (n < ĤB). For the same reason, 5-minute is not

recommended using for calculating RK.

Table 4.2 lists the number of the three special cases (RVZ < 0, RVZ >RV0 and

RK>RV0) mentioned in Feng and Zhou (2015b) for RK-IN-tick, RK-IN-1min,

RK-IN-5min and RK-DN-tick of the ten companies, respectively. We see that for

all companies Case 1 occur rarely, however, Case 2 and Case 3 happen with a very

big chance. For instance, Case 2 occur on 116 days for MIC-IN-tick and Case 3

occur on 226 days for SE-DN-tick. This shows us the necessity of adjusting Feng

and Zhou (2015b)’s algorithm by replacing ω̂2
s,1 =

RVs
0−RVs

Z

2ns
with ω̂2

s,1 =
RVs

0

2ns
. After

this adjustment, the proposed IN and DN algorithms work automatically very well

for all days. Meanwhile, we find that for all the companies Case 3 occur much

more often for DN-tick than that for IN-tick. For instance, Case 3 in THK occur

on 100 days for DN-tick and only on 26 days for IN-tick. This difference shows
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that the obtained RK results change obviously if the dependent noise takes into

account. In addition, we see that Case 2 and Case 3 occur much more often when

the sampling frequencies decline.

Table 4.3 lists the mean and standard deviations of RV0 and RK obtained based

on tick-by-tick, 1-minute, 5-minute and 15-minute returns for the ten companies

over the whole period, respectively. The mean values and standard deviations for

tick-by-tick RV0 are larger than any other realized estimators in Table 4.3. The

mean values of RV0 diminish with the decline of sampling frequency. The standard

deviations of 1-minute, 5-minute and 15-minute RV0 for all companies are much

smaller than those of tick-by-tick RV0. As mentioned before, the algorithm IN

does not work for 15-minute RK of all companies, because on some days n < ĤB.

Therefore, the results are not listed in Table 4.3. For the same reason, 5-minute

returns are not recommended using to calculate RK. In most cases, the standard

deviations of RK-DN-tick are smaller than those of RK-IN-tick and of RK-IN-

1min. The mean values of RK-DN-tick lie between the mean values of RK-IN-tick

and RK-IN-1min. The differences between the means of RK-DN-tick and RK-IN-

tick indicate the bias cased by estimated dependent MS noise.
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Table 4.2: The number of different cases for the ten companies
PPPPPPPPFirm

Cases
IN-tick IN-1min IN-5min DN-tick

AF

RVZ < 0 0 2 1 0

RVZ >RV0 2 308 698 2

RK>RV0 2 332 748 65

ALV

RVZ < 0 3 0 1 3

RVZ >RV0 1 234 683 1

RK>RV0 0 244 717 10

BMW

RVZ < 0 0 0 0 0

RVZ >RV0 43 463 748 43

RK>RV0 52 477 810 156

DBK

RVZ < 0 0 0 0 0

RVZ >RV0 2 436 818 2

RK>RV0 5 467 877 21

MIC

RVZ < 0 0 0 0 0

RVZ >RV0 116 499 748 116

RK>RV0 133 505 805 356

PSA

RVZ < 0 1 0 1 1

RVZ >RV0 6 431 725 6

RK>RV0 11 437 786 110

RWE

RVZ < 0 0 0 0 0

RVZ >RV0 25 334 662 25

RK>RV0 33 336 729 74

SE

RVZ < 0 1 1 1 1

RVZ >RV0 68 375 697 68

RK>RV0 77 391 753 226

SIE

RVZ < 0 0 0 0 0

RVZ >RV0 20 345 750 20

RK>RV0 21 344 802 29

THK

RVZ < 0 0 0 0 0

RVZ >RV0 22 393 720 22

RK>RV0 26 403 779 100
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4.4.2 Comparison of realized estimators based on Value-

at-Risk

Further comparison of these realized estimators is carried out by assessing their

performances in the computation of Value-at-Risk (VaR). Financial risk managers

often report the risk of investments using the concept of VaR, which estimates

the maximum loss at given confidence interval in a certain period. VaR is widely

used by investors and regulators in the financial industry to measure the amount

of assets needed to cover possible losses and has been considered as a expectable

banking risk measure. The Basel Committee demands banks use the VaR in

establishing the minimum capital necessary at investments in order to reduce the

fragility of international active banks. After its proposal it becomes a popular

risk assessment tool in financial service firms. In the literature, Beltratti and

Morana (2005) as well as Giot and Laurent (2004) investigated the performances

of VaR measures based on the GARCH and lnRV-FARIMA models. Their results

show that the lnRV-FARIMA class provide a superior performance by computing

VaR. Feng and Zhou (2015a) showed the logarithmic RK can be well described

by a long-memory process and may also exhibit a deterministic nonparametric

trend. Hence, in our framework we compute the one step ahead VaR by means

of the semiparametric FARIMA model (SEMIFAR also called the Semi-FI-Log-

ACD model in Feng and Zhou, 2015a) based on the different logarithmic realized

estimators. The VaR calculated based on the the SEMIFAR model at a given

confidence interval (1− α) is obtained by

VaRt
1−α = s(τt)σtZ1−α, (4.4.1)

where s(τt) is the local variance, σt is the standard deviation (volatility) of invest-

ments at time t and Z1−α is loss distribution for the corresponding N(0,1) quantile.

In the first step we use the intraday returns of different sampling frequencies to

compute the realized estimators mentioned in section 4.1. In the second step we

estimate the conditional mean using the SEMIFAR model based on the logarith-

mic realized estimators. The estimated total means in the original data s(τt)σt is
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obtained through the exponential transformation of these estimated deterministic

trend and the estimated conditional mean.

A wealth of literature focuses on measuring the quality of the VaR calculations.

Backtesting is a statistical procedure, where the loss forecast calculated by VaR is

compared with the actual losses. Kupiec (1995) proposed a basic tests to examine

the frequency of losses in excess of VaR. By means of a simple backtesting Peitz

(2016) compared VaR calculations based on the parametric with semiparametric

models. In his proposal the observed amount of exceptions (Points over VaR)

is compared to the expected amount/benchmark n ∗ α. We utilize the simple

backtesting in Peitz’s work. Let α = 5%, n is 2226 for the six German companies

and 2239 for the four French companies. The corresponding benchmarks for all

ten companies are 111. Figure 4.8 to Figure 4.17 show the one day dynamic ahead

95% VaR based on the lnRV-SEMIFAR model for the ten example companies from

02. Jan. 2006 to 30. Sept. 2014. The loss distribution is assumed normal. In

each figure the black line shows the loss/negative returns and the red line depicts

the 95% VaR values by means of the SEMIFAR model based on the different

logarithmic realized estimators. Table 4.4 lists the corresponding numerical results

of points over VaR and the deviations from the benchmark for Figure 4.8 to

Figure 4.17. Table 4.5 summarizes the total absolute deviation and total deviation

from the benchmark of 95% VaR based on the lnRV-SEMIFAR model. In the

empirical implementation, RK-IN-tick with the smallest total absolute deviation

121 is the best estimator in the computation of VaR. RK-DN-tick is the second

best estimator with the total absolute deviation 145. This confirms that the

independent MS noise assumption is more suitable on the most trading days in

our data examples. From Figure 4.1 to 4.4 we can also see that in most cases the

ACFs at lag 1 are clearly significant and the results imply that some at higher

lags slightly significant ACFs occur only occasionally. Meanwhile, the difference

between the total absolute deviation of RK-IN-tick and that of RK-DN-tick is

not big. Both can be considered as the good volatility estimators. In addition,

the worst realized estimator is RV0-tick. Its deviations for all ten companies

are negative, the corresponding total deviation is -568. From the figures (a) of
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all ten companies we can see that the red lines are far over the daily losses,

which confirms the numerical result that the 95% VaR based on the ln(RV0-tick)-

SEMIFAR seriously overestimate the financial risk. Next overestimated realized

estimator is RV0-1min with the total deviation -167. The deviations of RK-IN-

5min for all ten companies are however positive, which means the underestimation

of the financial risk. This fact can be confirmed in the figures (g) of all ten

companies, where a few black lines are outside the red lines. The same results are

also obtained for RK-IN-1min, RV0-5min, RV0-15min, based on them the financial

risk can be seriously underestimated. Moreover, the performance of RV0-15min is

worse than that of RV0-1min, while the performance of RK-IN-5min is worse than

that of RK-IN-1min and RK-IN-tick. This shows again the necessity of choosing

a realized estimator together with a suitable frequency.

In summary, after comparing the performances of different realized estima-

tors in the computation of VaR based on the SEMIFAR model we find that the

performances of RK-IN-tick and RK-DN-tick are better than any other realized

estimator and are hence recommended using as the estimators of IV in practice.

4.5 Final remarks

In this chapter we improved the IPI algorithms for RK under independent and

dependent noise assumptions. End effects are considered for both algorithms.

The data from ten European companies of 9 years are used as data examples.

We apply the IN algorithm to tick-by-tick, 1-minute, 5-minute and 15-minute

returns and apply the DN algorithm to tick-by-tick returns. Both algorithms

are fully automatic and now work very well for all data examples. Furthermore,

we compare these RK estimators with RV0 calculated by tick-by-tick, 1-minute,

5-minute and 15-minute returns. The IN algorithm does not work well for the

data-frequencies over 5-minute, because on same days the number of observations

is smaller than the selected bandwidths. Further comparison of these realized

measures is carried out by assessing their performances in the computation of

VaR based on the SEMIFAR model. It is found that RK-IN-tick and RK-DN-
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tick estimators have good performances and are hence recommended using as the

estimators of IV in practice. However, a modified approach to rate these realized

estimators should be proposed by means of comparing their mean squared error

(MSE) values. This is also one of our future research directions.

Acknowledgments: I would like to express my deepest gratitude to Prof.
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of this chapter.

Table 4.4: “Points over 95% VaR” (benchmark: 111) by means of the SEMIFAR
model based on the different logarithmic realized measures for the ten companies

AF ALV BMW DBK MIC PSA RWE SE SIE THK

RV0-tick
PoV 53 41 53 52 62 61 47 57 38 78

deviation -58 -70 -58 -59 -49 -50 -64 -54 -73 -33

RV0-1min
PoV 92 96 80 102 89 111 88 102 81 102

deviation -19 -15 -31 -9 -22 0 -23 -9 -30 -9

RV0-5min
PoV 214 134 107 136 122 147 115 144 111 138

deviation +103 +23 -4 +25 +11 +36 +4 +33 0 +27

RV0-15min
PoV 157 138 107 131 126 153 123 146 116 153

deviation +46 +27 -4 +20 +15 +42 +12 +35 +5 +42

RK-IN-tick
PoV 138 109 86 110 112 131 101 117 84 113

deviation +27 -2 -25 -1 +1 +20 -10 +6 -27 +2

RK-IN-1min
PoV 148 137 103 130 116 144 113 139 110 141

deviation +37 +26 -8 +19 +5 +33 +2 +28 -1 +30

RK-IN-5min
PoV 187 158 127 154 152 176 147 176 139 169

deviation +76 +47 +16 +43 +41 +65 +36 +65 +28 +58

RK-DN-tick
PoV 143 122 87 119 112 131 110 124 92 127

deviation +32 +11 -24 +8 +1 +20 -1 +13 -19 +16
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Table 4.5: Summary of “Points over 95% VaR” based on the lnRV-SEMIFAR

Realized measure Total absolute deviation Total deviation

RK-IN-tick 121 -9

RK-DN-tick 145 57

RV0-1min 167 -167

RK-IN-1min 189 171

RV0-15min 248 240

RV0-5min 266 258

RK-IN-5min 475 475

RV0-tick 568 -568
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Figure 4.8: Loss and 95% VaR based on the lnRV-SEMIFAR model for Air France.
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Figure 4.9: Loss and 95% VaR based on the lnRV-SEMIFAR model for Allianz.
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Figure 4.10: Loss and 95% VaR based on the lnRV-SEMIFAR model for BMW.
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Figure 4.11: Loss and 95% VaR based on the lnRV-SEMIFAR model for Deutsche
Bank.
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Figure 4.12: Loss and 95% VaR based on the lnRV-SEMIFAR model for Michelin.
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Figure 4.13: Loss and 95% VaR based on the lnRV-SEMIFAR model for Peugeot.
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Figure 4.14: Loss and 95% VaR based on the lnRV-SEMIFAR model for RWE.
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Figure 4.15: Loss and 95% VaR based on the lnRV-SEMIFAR model for Schneider
Electric.
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Figure 4.16: Loss and 95% VaR based on the lnRV-SEMIFAR model for Siemens.
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Figure 4.17: Loss and 95% VaR based on the lnRV-SEMIFAR model for
Thyssenkrupp.
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Figure A.4.1: Histograms of selected bandwidth and interation number for Air
France.
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Figure A.4.2: Histograms of selected bandwidth and interation number for Allianz.
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Figure A.4.3: Histograms of selected bandwidth and interation number for BMW.
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Figure A.4.4: Histograms of selected bandwidth and interation number for Peu-
geot.
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Figure A.4.5: Histograms of selected bandwidth and interation number for RWE.
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Figure A.4.6: Histograms of selected bandwidth and interation number for Schnei-
der Electric.
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Figure A.4.7: Histograms of selected bandwidth and interation number for
Siemens.



Appendix to Chapter 4 120

Selected bandwidth

F
re

qu
en

cy

0 5 10 15 20 25

0
10

0
20

0
30

0
40

0
50

0
(a) Histogram of H for THK−IN−tick

F
re

qu
en

cy

5 10 15

0
10

0
20

0
30

0
40

0

(b) Histogram of H for THK−IN−1min

F
re

qu
en

cy

5 10 15

0
10

0
20

0
30

0
40

0
50

0
60

0

(c) Histogram of H for THK−IN−5min

Selected bandwidth

F
re

qu
en

cy

20 30 40 50 60 70 80

0
20

0
40

0
60

0
80

0

Selected bandwidth

(d) Histogram of H for THK−DN−tick

Interation number

F
re

qu
en

cy

2 3 4 5 6 7

0
20

0
60

0
10

00

Selected bandwidth

(e) Histogram of j for THK−IN− tick

F
re

qu
en

cy

2 3 4 5 6 7 8 9

0
20

0
40

0
60

0
80

0
10

00

(f) Histogram of j for THK−IN−1min

Interation number

F
re

qu
en

cy

2 3 4 5 6 7

0
20

0
40

0
60

0
80

0
10

00

(g) Histogram of j for THK−IN−5min

Interation number

F
re

qu
en

cy

3 4 5 6 7 8 9

0
50

0
10

00
15

00

Interation number

(h) Histogram of j for THK−DN− tick

Figure A.4.8: Histograms of selected bandwidth and interation number for
Thyssenkrupp.



Chapter 5

Conclusion

This thesis focuses on a data-driven realized kernels and its further analysis using

the Semi-FI-Log-ACD model. It can be primarily divided into three parts.

In chapter 2 modeling and forecasting of long memory and a smooth scale func-

tion in different nonnegative financial time series aggregated from high-frequency

data based on a fractionally integrated Log-ACD (FI-Log-ACD) and its semi-

parametric extension (Semi-FI-Log-ACD) are discussed. It is shown that the

EFARIMA model is equivalent to the FI-Log-ACD model, which means that the

proposed FI-Log-ACD is the application of the well known FARIMA model to

the log-process. Furthermore, necessary and sufficient conditions for the existence

of a stationary solution of the FI-Log-ACD are obtained. These conditions are

fulfilled, if ηt are log-normal innovations with εt ∼ N(0, σ2
ε). Further examples

which fulfill those conditions are the log-logistic and log-Laplace innovations with

suitable restriction on the parameters. Detailed properties of the FI-Log-ACD un-

der the log-normal assumption as obtained in Beran et al. (2012) are summarized.

All of the processes X∗t , Zt, λt as well as ζt = ln(λt) exhibit long memory with

the same memory parameter, if d > 0. The long memory parameter in Zt and in

X∗t under the log-normal assumption is the same. However, the constant in the

asymptotic formula of ρX∗(k) is smaller than that in ρZ(k). If d ≤ 0, X∗t does not

have antipersistent, even if Zt is antipersistent. The study on the long-memory

property of the conditional means ζt and λt in Zt and X∗t is also provided. Fore-

121
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casting based on the Semi-FI-Log-ACD is then discussed in detail. The local linear

regression is used to extrapolate the trend function. Because the sample size is

very large, an approximately best linear predictor Ẑ∗n+k based on Z1, . . . Zn is de-

fined. Its truncated version Ẑn+k is proposed for the practical implementation. It

is shown, that under given assumptions the two linear predictors Ẑn+k and Ẑ∗n+k

are asymptotically equivalent to each other and that the linear predictor Ẑt is

asymptotically equivalent to the exactly best linear predictor Z̆t proposed by Be-

ran and Ocker (1999). The proposed predictor is still an approximately best linear

predictor in the presence of long memory. Asymptotic variances of the prediction

errors for an individual observation and for the conditional mean are obtained.

Calculation of approximate forecasting intervals under log-normal assumption is

discussed. Effect of the errors in the estimated trend on the asymptotic properties

of the proposed predictor is also investigated. The Semi-FI-Log-ACD is then ap-

plied for modeling and forecasting daily trading volumes, daily trading numbers,

average durations and realized volatility of four European Stocks from Jan. 2,

2006 to Jun. 30, 2012. The results indicate that this model is widely applicable

and the proposed linear predictor works very well in practice. It is also shown that

the log-normal distribution is a suitable choice for different kinds of aggregated

financial data.

The selection of the bandwidth is a crucial problem for applying the RK. RK

work well only if the bandwidth is chosen properly. The main purpose of chapter

3 is to propose a simple, fast and fully data-driven consistent bandwidth selector

for RK based on the iterative plug-in idee (Gasser et al., 1991). To simplify

the estimation procedure we use a biased version of the asymptotically optimal

bandwidth of the RK, called HB, which is of the same order as HA but with a

biased factor in the constant. The difference between HA and HB is an constant

factor HB/HA = (T
∫ T
0
σ4
udu/IV

2)1/5, which is usually slightly bigger than one.

The selected bandwidth ĤB is obtained by means of an iterative procedure. An

R code is programmed for practical implementation of the proposed bandwidth

selector. In each iteration, the resulting RK is used as an estimate of the IV, and

the variance of the microstructure noise ω2 is estimated based on the difference
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between RV0 and RK. In the first iteration RVZ is used as the initial value of RK.

It is shown that ω̂2 defined in this way is
√
n-consistent in each iteration. Both

of RK and ĤB become consistent form in the third iteration, while their rate of

convergence can still be improved in the fourth iteration. Thereafter, RK achieves

its optimal rate of convergence of the order O(n−1/5) and this rate of convergence

is also shared by (ĤB−HB)/HB. The robust practical performance of the proposal

is illustrated by application to data of two German and two French firms within

a period of several years. The proposed IPI algorithm converges very quickly. In

most of the cases the proposed algorithm for the four companies converges within

four iterations, which confirmed the results of Theorem 3.3.1. The numerical

comparison of RV0, RVZ and RK shows that the use of the proposed RK will

lead to a clear reduction of the bias and the variation. In addition, three special

cases are considered as challenging days, where the proposed data-driven algorithm

does not work well. The histograms of the selected optimal bandwidths for the

four companies is nearly asymptotically normally distributed. In view of this, we

use the ESEMIFAR model to further analyze the obtained RK. Possible structure

breaks cased by the financial crisis in 2008 may have a clear effect on the estimation

results. Using piecewise ESEMIFAR model can improve the quality of estimation

results.

In chapter 4 we improve the IPI algorithm mentioned in chapter 3. Now, this IN

algorithm works well for all cases. Furthermore, based on the conclusions of Ikeda

(2015) and Wang (2014) a fully automatic data-driven algorithm to the dependent

MS noise assumption, namely the DN algorithm is given. For both algorithms the

end effect in the computation of the RK are considered. The non-flat-top Parzen

kernel is used to guarantee the nonnegativity of RK. Theoretically, in the fourth

iteration G and H have achieved to the optimal rate of convergence, respectively.

After several iterations the resulted RK achieves its optimal rate of convergence of

the order O(n−1/5). It is also shown, that no matter what the starting bandwidths

are, the selected bandwidths as of the second iteration are very close and the

final selected bandwidths are indeed the same. The robust practical performance

of both algorithms are illustrated by application to the data from 10 European
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firms within 9 years. In addition, we study a comparison of RK using different

sampling frequencies (tick-by-tick, 1-minute, 5-minute and 15-minute) calculated

by the IN algorithm as well as RK using tick-by-tick returns calculated by the

DN algorithm. Meanwhile, RV0 computed for different frequency returns are also

compared with these RK estimators mentioned above. It is ascertained, that the

IN algorithm does not work well for the data/frequencies over 5 minute, because

on some days the number of observations is smaller than the selected bandwidth.

The mean values and standard deviations for tick-by-tick RV0 are larger than

any other volatility estimators and that diminish with the decline of sampling

frequency. Further comparison is carried out by assessing their performances in

the computation of Value-at-Risk (VaR) based on the Semi-FI-Log-ACD model.

A Backtesting to examine the observed amount of exceptions (points over VaR)

in excess of the benchmark is utilized. It is found that RK-IN-tick and RK-DN-

tick estimators have good performances and are hence recommended using as the

estimators of IV in practice.

There are still some open questions in this thesis. For instance, the idea of

the piecewise ESEMIFAR model in chapter 3 can be applied properly. A suit-

able approach for detecting structural breaks under the SEMIFAR model can be

developed. The proposed bandwidth selector in chapter 4 can be improved, if

an unbiased estimator of the integrated quarticity can be developed. A possible

modification of rating different realized measures is by means of comparing their

MSE values.
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