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ngemäß übernommen worden sind, sind als solche gekennzeichnet.

City, Date Signature

v





Kurzfassung

Die vorliegende Arbeit befasst sich mit der Anwendung modellprädiktiver Re-
gelungen (englisch: Model Predictive Control (MPC)) auf modulare Mehr-
punktstromrichter (englisch: Modular Multilevel Converter (MMC)). Das zen-
trale Ziel ist dabei, den Aufwand zur Lösung des zugrundeliegenden Opti-
mierungsproblems zu reduzieren und gleichzeitig die geforderten Konverter-
zustände einzuhalten.
Typische Modelle für MMCs zeichnen sich durch eine Vielzahl an Zuständen

und wertdiskreten Eingangsgrößen aus. Derartige Modelle führen in Kombina-
tion mit MPC insbesondere dann auf komplexe Optimierungsprobleme, wenn
lange Prädiktionshorizonte erforderlich sind. Um dieses Problem zu umge-
hen, wird im Rahmen der Arbeit ein vereinfachtes Modell vorgestellt, welches
sowohl die Systemordnung reduziert als auch Diskontinuitäten resultierend
aus wertdiskreten Schaltvorgängen eliminiert. Die Genauigkeit und Grenzen
des neuartigen Modellierungsansatzes werden ausgiebig diskutiert, um eine
verlässliche Anwendung zu ermöglichen. Das reduzierte Modell wir anschlie-
ßend eingesetzt, um geeignete Referenzwerte für die Regelung des MMCs zu
bestimmen. Insbesondere wird für das Anwendungsbeispiel in der Arbeit auf-
gezeigt, wie Referenzwerte so gewählt werden können, dass die Restwelligkeit
in den einzelnen Modulen des Stromrichters reduziert werden.
Die Komplexität des MPC-Optimierungsproblems wird unter Verwendung

des vereinfachten Modells weiter reduziert, indem nur je ein wertkontinuier-
licher Reglereingriff pro Konverterarm betrachtet wird. Darüber hinaus wird
untersucht, unter welchen Bedingungen sich ein konvexes Optimierungspro-
blem ergibt. Diese Bedingungen sind für viele Anwendungsfälle erfüllt, so dass
etablierte und effiziente Algorithmen zur Lösung des Optimierungsproblems
eingesetzt werden können. Dies ist insbesondere für die oben angesprochenen,
langen Prädiktionshorizonte gewinnbringend. Die entwickelten, maßgeschnei-
derten MPC Schemata für MMC werden abschließend in einer realitätsnahen
Simulationsumgebung erprobt.
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Abstract

This work addresses problems that arise with the application of Model Pre-
dictive Control (MPC) to Modular Multilevel Converters (MMCs), by aiming
to reduce the complexity of the optimization problem associated with the
controller while properly tracking the converter states.
Due to the complexity of the MMC, principally attributed to the high di-

mension of its state space model along with the high number of discontinuous
switching variables available, solving the optimization problem associated with
the MPC can be challenging. This becomes more significant when long pre-
diction horizons are required. In order to address this problem, this work
presents a reduced order model that aims to reduce the complexity of the
state space model of the MMC and to eliminate the discontinuities associated
with the converter switches. In order to validate this approach, the accuracy
and limitations of this model are analyzed and identified in detail. Moreover,
with the help of the reduced order model, detailed references for the MMC
are carefully designed and, for the case presented in this work, reference pa-
rameters are selected optimally in order to reduce the voltage ripple in the
converter modules.
The complexity of the optimization problem associated with the MPC is

also reduced with the help of the reduced order model by considering just one
continuous control signal per converter arm. To further aid the optimization,
a method to derive conditions that guarantee its convexity is presented. By
guaranteeing convexity, it is possible to use very well studied and efficient
optimization algorithms, easing the application of MPC on MMC, especially
in the case where long prediction horizons are required. In order to illustrate
the proposed procedure, numerical examples are presented in a simulation
environment.
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1. Introduction

Power converters play an essential role in energy distribution systems, allowing the con-
trol of the energy flow and enabling the incorporation of different kinds of energy sources
[Erl14]. The manipulable control inputs in these converters are typically discrete-valued
switching signals. This makes the development of high-performance control laws in-
herently difficult. Modular Multilevel Converters (MMCs) are an increasingly popular
class of converters that use a series connection of several basic modules and provide
significant advantages in high power and high voltage applications in comparison with
other power converter topologies [LM03]. The main advantages of the MMC come from
its modularity and easy scalability, giving one the possibility to work with high volt-
ages and high power using relatively low voltage components and low switching fre-
quencies. It has been shown that this improves efficiency and reduces harmonic dis-
tortion [XZZ16, DQB+15, IAH+11, PPC+13, RGM15, PRFK12, AI15, LZW+15]. All
these characteristics make the MMC a very important topology for industry. Some
of its applications include: wind energy conversion, HVDC grids, and medium voltage
drives [LM03, MGRP10, PBR+15]. Due to the relevance of this topology, several studies
have proposed different techniques to improve performance and address important issues.
These include: modulation techniques [IANN12a, HZM16, LYLZ16], voltage balancing
techniques [FZXX15], optimal capacitor ripple reduction [IAH+11, PPC+13], several con-
trol approaches [QS12, RGM15, PRFK12, GDY+16] and energy quality and reliability
[XZZ16, WP16]. All of these works also aim to understand operation principles of MMCs.

An MMC usually has tens or even hundreds of switches that can be driven indepen-
dently. Classical control approaches using linear controllers, can become very complex
when the number of control variables increases, often leading to poor performance. This
motivates the use of Model Predictive Control (MPC) for governing MMCs. An MPC can
deal easily with system constraints and system failures; it also has the potential to reduce
switching losses and harmonic distortion when compared to classical linear techniques
[Gey11, BB12, LHWB06]. Another advantage of the MPC framework is the possibility
to explicitly consider the future behavior of the system and take that into account in the
current control action [BVP+12, QAG14, AMM14, dOKM00, CWR13].

This work addresses the problem of MPC for MMCs by dividing it into three main
parts. First, a modelling technique that reduces the analytical complexity of the MMC
is introduced and validated. The second part consists in using this model to elucidate
analytically the relationship between the MMC variables, and then to design optimal
references for control purposes. Finally, the last part uses the model with reduced com-
plexity and the optimal references, and analyzes in detail the problem of the application
of MPC to MMCs. The remainder of the present chapter discusses the motivation behind
this work and gives an overview of the proposed solutions.

1



1. Introduction

1.1. System modeling

In the first part of this work the efforts are focused on analysing the problem of obtaining
a simple mathematical model of the MMC. The goal of the model is to be able to obtain
relatively simple mathematical expressions that, not only describe the converter accu-
rately, but also allow one to obtain insight into the behaviour of the system. This insight
can be used as a guideline for different design purposes such as: selection of references for
control, injection of current harmonics for voltage ripple reduction, or selection of control
laws for different applications [SHN+16].
The following sections describe the classical modeling approach of MMCs, mention its

drawbacks and discuss new approaches to MMC’s modeling. This also opens the path to
discuss the motivation and procedures that constitute the first part of the current work

1.1.1. Modular Multilevel Converter

The MMC is a power converter topology which transforms the waveform of an electrical
variable from DC to AC, or vice versa (see fig. 1.1) [LM03, Mar10].

PSfrag replacements
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Figure 1.1.: MMC with N modules per arm. Here, vl denotes the output voltage of the
converter, il stands for the load current, ic for the circulating current and,
iu and il for the current in the upper and lower arm respectively. Si

1 and Si
2

represent the switches and, vu,li and V M
i describe the voltage of the capacitors

and the modules, respectively.

In order to control the MMC, the switch positions of each module shown in fig. 1.1 can
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1.1 System modeling

be chosen independently to be one of two possible values: “inserted” or “not-inserted”.
A module is considered “inserted” when its voltage (V M

i ) is equal to the voltage of its
respective capacitor. Conversely, a module is considered “not-inserted” when its voltage
(V M

i ) is equal to 0.

The desired waveforms of output currents and voltages of the MMC are sinusoidal and
can be defined as

il(t) = îl cos(ωt+ φ), (1.1)

vl(t) = v̂l cos(ωt), (1.2)

where îl is the amplitude of the output current and ω represents the angular frequency.
The phase angle φ and the voltage amplitude v̂l can be calculated depending on v∗ac(t),
Rl and Ll. v∗ac(t) is also a sinusoidal voltage that ideally shares the same phase angle as
il (for unitary power factor) and can be defined as follows

v∗ac(t) = v̂ac cos(ωt+ φ), (1.3)

where v̂ac represents the amplitude.

Using electrical circuit analysis methods, an MMC with N submodules per arm can be
described by the following state space model

ẋ(t) = A
(

~µu(t), ~µl(t)
)

x(t) + B[vdc v∗ac(t)]
T , (1.4)

where

x(t) ,
[

ic(t) il(t) vu1 (t) · · · vuN (t) vl1(t) · · · vlN (t)
]T

, (1.5)

is the system state. In eq. (1.5), ic is the circulating current, whereas vui and vli represent
the capacitor voltages of the ith module of the upper (u) and lower (l) arms respectively.

In eq. (1.4), ~µu(t) and ~µl(t) represent the control signals for the modules in the upper
and lower arms. Each individual component of these control signals can take the value of
1 (module inserted) or 0 (module not inserted):

~µu(t) ,
[

µu
1(t) · · · µu

N(t)
]T

, µu
i (t) ∈ {0, 1}, (1.6)

~µl(t) ,
[

µl
1(t) · · · µl

N(t)
]T

, µl
i(t) ∈ {0, 1}. (1.7)

The matrix A
(

~µu(t), ~µl(t)
)

is defined as

A
(

~µu(t), ~µl(t)
)

,
[

A1,1 A1,2

(

~µu(t), ~µl(t)
)

A2,1

(

~µu(t), ~µl(t)
)

0

]

,
(1.8)

3



1. Introduction

with

A1,1 =

[−R
L

0

0 −R+2Rl

L+2Ll

]

,

A1,2

(

~µu(t), ~µl(t)
)

=

[ − 1
2L
~µu(t)T − 1

2L
~µl(t)T

− 1
L+2Ll

~µu(t)T 1
L+2Ll

~µl(t)T

]

,

A2,1

(

~µu(t), ~µl(t)
)

=

[

1
C
~µu(t) 1

2C
~µu(t)

1
C
~µl(t) − 1

2C
~µl(t)

]

.

(1.9)

Finally, B is given by:

B ,

[

1
2L

0 · · · 0
0 − 2

L+2Ll
· · · 0

]T

. (1.10)

As it is possible to see in eq. (1.4), MMCs are complex power converters that exhibit
a non-linear and discontinuous behaviour, partially due to the binary nature of all the
control inputs in eqs. (1.6) and (1.7). It is also possible to see that the size of the state
space vector in eq. (1.5), and the number of control inputs, grow proportionally with
the number of modules used. All this makes it considerably difficult to analyze more in
detail the behavior of the MMC, motivating the study of a simpler but accurate modelling
technique.

1.1.2. Current approaches and proposed methodology

In order to be able to obtain useful information about the MMC behavior, the model pre-
sented in section 1.1.1 needs to be refined and simplified. Several modeling approaches for
the MMC have been presented in the literature. Some of these approaches are designed
for simulation purposes with various levels of complexity [PSD+12, XGZ15, GGJ11]. The
simpler models often neglect some of the dynamics of the converter and do not consider
power losses, opening the path for more accurate methods to be proposed [BSBG16].
For a more detailed analysis of the converter, a more complex model is required. In
[RPK+16, SLL+13], models that aim to obtain detailed information about the converter
losses and behaviour in steady state are proposed. However, important information
about the dynamics of the MMC cannot be obtained. In other works [RWB11, AÄN+14,
YDLH16, HAN+13], more detailed continuous dynamical models of the MMC are pre-
sented. These models exhibit a reduced number of state space and control variables while
maintaining the nonlinearities of the MMC. In [ÄAS+11, AÄH+14], these kind of mod-
els have been used to determine open-loop control strategies that use calculated steady
state values and estimated voltage ripple values to achieve energy control with asymptotic
stability. In general, all these models are represented in the abc frame, complicating the
analysis of the converter due to the multiplication of two time varying signals. In [JJ16],
a more convenient representation in the dq frame is presented. However, the analysis is
carried out for a small signal application ignoring, in most cases, the dynamics of the
second order harmonic.
The first part of the current thesis presents and analyses a reduced order model for

MMCs, which reduces the number of state variables and control inputs. Here, its accu-
racy is verified while identifying its limitations. This is done by analyzing the frequency
response of the converter in the case where the control signals present discontinuities

4



1.2 References for controlling MMCs

associated with quantization and also in cases where these discontinuities are neglected.
This is particularly useful in the case where the number of modules is low and the control
signals are considered continuous in order to obtain a continuous system representation.
An interesting phenomenon is that the accuracy of the reduced order model is greatly
affected when the operating frequency of the converter matches some specific frequencies.
Following an analytical procedure, expressions for some of the frequencies where the er-
ror of the reduced order model is more significant, are presented, constituting the main
contribution of the first part of this work. These frequencies are poorly damped resonant
modes that depend on the converter parameters and the harmonic content of the inputs.
In [LGZ16, LCM16], it is shown that these poorly damped modes can generate instability
in a closed loop control strategy. The method presented in this work is a straightforward
alternative to identify such frequencies and therefore, it has also potential use for stability
analysis [COY16].

1.2. References for controlling MMCs

A closed-loop control law is often required to drive the outputs of a physical system to a
desired value. The main advantage of the closed loop structure is that it constantly mon-
itors the output y(t) and, by comparison with a desired reference value r(t), determines
the control action u(t) [GGS01]. A basic closed-loop control structure is shown in fig. 1.2.

PSfrag replacements

Controller System

u(t) y(t)
r(t)

Figure 1.2.: Basic closed-loop control structure. Here y(t) stands for the controlled vari-
ables in the system, u(t) for the control action and r(t) for the controller
references.

In most applications, it is desired that the system output y(t) follows the reference r(t).
Thus references must be properly selected in order to achieve good controlled system
performance.
The second part of this work focuses on designing detailed references for MMCs, opti-

mized to reduce capacitor voltage ripple. This is done by using the model presented in
the first part of this work. The results of these first two parts will be employed to design
an MPC law in later parts. Note that adequate references are required independently of
the control technique used.
There are three important variables to control in an MMC: the output current il, the

capacitor voltage of each module vu,li , and the circulating current ic (see fig. 1.1). The
output current is the current delivered to the load and its desired waveform is purely
sinusoidal. The capacitor voltages are desired to be the same for all modules in the same
arm, distributing the voltage stress evenly in all the modules. The role of the circulating
current is to transfer the power from the input voltage source to the rest of the circuit. In

5



1. Introduction

some works with MMCs, the references given to their controllers are simplified DC versions
of the actual waveforms. These assume an ideal case of infinite capacitances [QS12,
PRFK12]. In a realistic case, with finite value capacitances, several AC components
appear in the circulating current and the capacitor voltages. With existing methods, these
AC components are left uncontrolled if the simplified DC references are used. To improve
control loop performance, it is important that the references are designed adequately, this
requires the knowledge of the possibilities and limitations of the system, cf. [QAP+12].

Some of the MMC’s internal variables, specifically the circulating current and com-
mon mode voltage, can be controlled in order to improve the converter performance
[LWY+15, MB15, DC15, JJF15, HZXF15, DQS15]. This is achieved by adding or remov-
ing harmonic components in a controlled manner, aiming to manipulate aspects such as
voltage ripple in the capacitors or losses in the converter. In [PCK+15], a useful method
to generate references for circulating current injection based on present measurements is
proposed. This method facilitates the online calculation of the injected currents; however,
the analysis is done based on power flow and with a limited number of harmonics. This
analysis is extended in [WHMB18], where the effects of the semiconductor devices are
also considered in the circulating current generation method. In [YLL+17], the circulat-
ing current is used to reduce power losses, but it does not directly consider the capacitor
voltage ripple. Similarly, [PCP+15] introduces a discontinuous modulation technique that
reduces power losses and capacitor voltage ripple. However, due to the introduction of
such discontinuities, obtaining an analytical expression that guarantees optimality is very
complex. Approaches in [SKF17, LLH+17, HZM17] address the problem of reducing the
capacitor voltage ripple by using additional hardware. In some cases, however, hardware
modifications are not possible. In [APE17], a different perspective of the problem is pre-
sented by analyzing the power transfer between modules. With this, circulating current
and common model voltages can be properly selected. However, the analysis is limited
only to minimize the previously mentioned power transfer. In [DWYZ17, TAA+16, DS13],
common voltage injection and circulating current injection are applied to the MMC using
control strategies, including Model Predictive Control (MPC), showing how these tech-
niques can be used in conjunction with a controller. In [DS13], the controller is in charge
of generating indirectly circulating current harmonic components based on approximate
model of the capacitor voltage. However, the approximation does not consider all the
harmonic components, limiting its potential. All the previously mentioned works limit
their analysis to a second order harmonic in the circulating current and, in most cases,
optimality is not guaranteed. In [TMG17], the analysis is extended to higher number
of harmonic components. Moreover, the authors point out the high complexity of using
nonlinear optimization techniques to find these optimal harmonic components on-line,
and propose a method that reduces the problem to a linear program. They inject current
harmonic and zero sequence voltage harmonics to reduce the energy fluctuations in the
circuit, as consequence, the capacitor voltage ripple is reduced. Here, we focus on the
injection of circulating current harmonic components analysing directly the capacitor volt-
age waveform. Although non-linear optimizations are required, it is shown that, with the
method presented here, different figures of merit can be easily considered in the optimiza-
tion. Moreover, we will show that the results can be approximated with relatively high
accuracy by a linear function. This can potentially eliminate the requirement of on-line

6



1.3 Control approach

optimizations or look-up tables. One of the objectives of the current thesis is to extend
the approach of [PCK+15, VCR14] by analyzing directly the impact of the injection of
several harmonic components in the converter currents (up to 8th order) on the capacitor
voltage ripple. This is done based on well-defined analytical expressions that allow one to
describe completely the relationship between circulating current and capacitor voltages.
The analytical expressions also allow one to consider any figure of merit as objective in
the optimization, and to freely manipulate the phase and amplitude of the harmonics to
guarantee the optimality of the results.
The reduced order model, which is presented in the first part of this work, is employed to

reduce the analytical complexity of the converter [KHL14, AÄN09]. This model simplifies
the analysis by removing the discontinuities produced by the switches, and reducing the
number of state space variables and control inputs. This allows one to obtain continuous
analytical expressions that relate different variables in the converter. In particular, it
is possible to relate the voltage ripple in the capacitors with the harmonic components
in the circulating current through a continuous analytical expression, allowing one to
easily perform fast numerical optimization methods with the possibility to include any
number of harmonic components in the analysis. Moreover, our results show that close
to optimal values of the circulating current harmonic components can be obtained by
a linear function that uses the phase and amplitude of the load current as independent
variables. The accuracy of this method is evaluated showing good results for a wide
range of cases. This method significantly reduces the computational effort needed to
calculate the circulating current harmonic components in comparison with other methods
[GGJ11, EDD11]. This, and the analysis using detailed analytical expressions, represent
the main contribution of the second part of this thesis.

1.3. Control approach

The third and last part of this work addresses the problem related with the analysis of
control laws for MMCs. Due to its flexibility, ability to easily deal with system constraints,
and the fact that control actions can be taken considering predictions of the response of
the system in the future, MPC is the technique of choice in this work [GPM89, BBM17,
May14].
The types of systems where MPC has been used are diverse, including chemical, bi-

ological, mechanical and electrical systems among others [CB12]. Particularly, in elec-
trical applications, some of the most popular systems where MPC has been applied to,
are switching power converters [KCV+09, RKE+13, VLF+14, QAG14, GQ14b]. Most of
these converters are bilinear systems, thus the need to investigate finite horizon optimal
control of bilinear systems arises [BvdBV04, MLDD07, FDG08].
Bilinear systems usually appear in many control problems. This has motivated the

study of properties, techniques an algorithms to solve these problems more efficiently
[PY10, Ell09, Ekm05, Bro75, Top03b, Top03a]. In particular, in applications with MPC,
robustness and stability of these bilinear systems have been the focus of analyses [BCK03,
FDG08, KNM95]. Moreover, transforming complex non-linear systems into bilinear ones,
to simplify their analysis and application of MPC, has also been employed [YLL11]. Along
with the MPC framework, a numerical optimization procedure is required. Algorithms for
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1. Introduction

non-linear optimization, such as Sequential Quadratic Programming, are often used to deal
with the bilinearity of the problem [KB11, NW06]. The complexity of such optimization
grows significantly with the prediction horizon of the MPC, motivating the study of
methods for its simplification.

In the following sections, details about discrete time modeling of bilinear systems and
the basics behind the MPC are mentioned. Moreover, a discussion about some of the
MPC properties, principally the convexity of the associated optimization, is presented.
This opens the path to present the motivations behind the last part of this work, and
to show how the results derived in the first two parts become crucial for the proper
application of the MPC.

1.3.1. Discrete time modeling of bilinear systems

Discrete time modeling is necessary for MPC applications since, as it is shown later in
section 1.3.2, it requires the prediction of the future behavior of the system which is divided
into discrete time steps. Here, a generalized bilinear discrete time system is presented.
This model is then transformed into an equivalent one with the purpose of simplifying
the analysis later presented in chapter 4. Moreover, the model is going to be employed as
a template for the analysis, and later is going to be replaced with the MMC’s model.

Let us consider the following discrete time system:1

z(k + 1) =

(

A(k) +
∑

i∈I

Bi(k)υi(k)

)

z(k) + C(k), (1.11)

where z(k) represents the state space vector, I = {1, 2, ..., I} contains the indices of all
available inputs, A(k),Bi(k) ∈ R

n×n, C(k) ∈ R
n×1 and υi(k) represent the constrained

control inputs.

The model presented here represents a generic bilinear system. In chapter 4 it is shown
that the MMC using the model presented in chapter 2, can be described in discrete time
with a structure as in eq. (1.11).

1.3.2. Principles of Model Predictive Control

The MPC technique consists in deciding the control action based on current state mea-
surements of the system (say, x(0)), a mathematical model of the system (i.e. eq. (4.2)),
and the prediction of the following H future values of the variable of interest (prediction
horizon). In order to decide the control action, a cost function J is minimized. Then, only
the most immediate control action is applied and the optimization of the cost function is
run again in the next time step (see fig. 1.3).

A cost function used as standard practice in the application of the MPC technique can

1The discrete time variable k can be defined t = Tsk, where Ts represents the sampling time of the
MPC and t represents the time.
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1.3 Control approach

Figure 1.3.: Example of an MPC with prediction horizon 3 [QAG14]. Here uopt(k) repre-
sents the optimal control action.

be defined as follows:

J(x(0), ..., x(H), ui(0), .., ui(H− 1)) =
H
∑

h=1

J†
h(x(h), ui(h− 1)), ∀i ∈ I, (1.12)

where the stage cost J†
h(x(h), ui(h− 1)) is written as

J†
h(x(h), ui(h− 1)) = ‖x(h)− x̄(h)‖2M +

λ†
h

2

∑

i∈I

(ui(h− 1)− ūi(h− 1))2, ∀i ∈ I. (1.13)

Let us consider the case where the whole state vector x(k) is controlled. Then, in
eqs. (1.12) and (1.13), x(k) represent the state and ui(k) the constrained control in-
puts, where ui(k) ∈ U, U being a set of all the possible values of ui(k). In eq. (1.13),
‖v‖2M = vTMv represents the square of the weighted Euclidean norm with M being a

9



1. Introduction

diagonal matrix with positive entries, λ†
h is a non-negative weighting parameter and x̄(h)

and ūi(h) represent the state and input references, respectively.
It is possible to write the goal of the MPC as an optimization problem subject to

constraints as follows:

min
ui(H−1),∀i∈I

J†(x(0), ..., x(H), ui(0), .., ui(H− 1))

s.t.
h(ui(H− 1)) = 0
g(ui(H− 1)) ≤ 0

ui(k) ∈ U
, ∀i ∈ I

(1.14)

The last part of this work, presented in chapter 4, will focus on analyzing the cost
function J and properly selecting the design parameter λ†

h that guarantee its convexity.
More on the importance of this will be addressed in the following sections

1.3.3. Finite control set MPC and MPC with PWM

MPC provides the flexibility to deal with the control of power electronics in two different
ways [QAG14]. One of them is to allow the MPC to drive the switches in the converter
directly (Finite Control Set (FCS)) [GQ14b, RKE+13, VBSH15]. This implies that the
control variables only take finite (e.g. binary) values. The main advantages of this ap-
proach is that it delivers better performance during transients and allows one the freedom
to manipulate switching instants. However, it requires more elaborate optimization algo-
rithms due to the binary nature of the control variables, and it is also necessary to execute
the control algorithm often to ensure the switching is produced with a high enough fre-
quency (see fig. 1.4 (a)). The second option is to make use of a Pulse With Modulator
(PWM) which transforms the binary control signal into a continuous one. Some of its
disadvantages include a decrease in performance during transients due to the impossibility
to manipulate the switching instants freely (see fig. 1.4 (b)). However, performance in
steady state is often improved [ALQ13], this also extends to the frequency spectrum of the
voltages and currents, that can be controlled easily due to the predictable spectrum of the
PWM. Due to the continuous nature of the control variables, a numerical optimization
algorithm that finds the optimal control action is required. In comparison with the FCS
problem, the complexity of the optimization problem is significantly reduced due to the
continuous nature of the control variables and the possibility to use convex constraints.
These last points motivate our choice of using a PWM and work towards a simpler and
faster optimization procedure.

1.3.4. Numerical optimization

Numerical optimization has been widely used and studied for many different applica-
tions. In general, optimization problems can be categorized as convex and non-convex
[BV04, MS13, HU89, Yak92]. Non-convex problems can have several local minimum
points. Moreover, convergence of numerical algorithms to one of these local minima
can be a challenge in some cases. Once a local minimum is found, it is not easy to
guarantee that such point also corresponds to the global minimum, possibly leading
to suboptimal results. Algorithms designed for non-convex optimization problems tend
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(a) Finite Control Set MPC (b) MPC with PWM

Figure 1.4.: Types of MPC in applications for power electronics [QAG14].

to be more resource consuming when compared with algorithms for convex problems
[Aus87, Nes13, PH02, HL04, Can04, BLO05, BX09, TS02]. On the other hand, convex
optimization problems are simpler and have been widely studied. For these type of prob-
lems only one minimum exists, which also corresponds to the global minimum. This eases
significantly the procedure of achieving an optimal result. Thus, simpler, faster and less
computationally intensive optimization algorithms are required.

Industrial optimization problems often involve complex system models that usually re-
sult in non-convex optimization problems. Several attempts to reduce the complexity of
non-convex problems by associating them to a convex equivalent have been reported. In
[CMC+14], the convexity of a special class of bilinear systems is studied. However, the
results are limited to a particular case of positive switched systems. In [ST95], an approx-
imate convex envelope of the objective function is used along with modified constraints to
ensure convexity on a determined region. However, the accuracy of these results can be
compromised due to the use of an approximation. The work in [GF08] gives an overview
of a transformation that is able to make positive polynomials convex, which is the base
of geometric programming. This, however, cannot be extended to other types of poly-
nomials, restricting its application. In [HA14], the problems are limited to such where
only the control constraints are non-convex. In [REFA06], the sum of squares convexifi-
cation technique is used along with polynomial optimization to find the solution to MPC
problems. The drawback of this technique lies on its high computational complexity and
its exponential increase with the prediction horizon. In [PHW99, HCVH17], convexifica-
tion techniques with applicability to power electronics are presented. However, these are
restricted to mixed-integer problems.

The last part of this work focuses on analyzing the optimization problem that arises
when quadratic cost functions are used in MPC with PWM for power converters, which
can be typically modeled as bilinear systems (see fig. 1.4 (b)). The goal is to find conditions
that allow one to exploit the useful properties of convex optimization on MPC for power
electronics, which is typically a non-convex problem. The development of these conditions
are the main contribution of this part of the work and, along with the results of the first
two parts, they are used to present an MPC strategy with reduced complexity for MMCs.
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1. Introduction

1.4. Outline

This section describes the outline of this work and mentions the contributions and related
publications associated with each chapter

Chapter 2

This chapter analyses the mathematical modeling of the MMC, elucidating an explicit
analytical relationship between all its state variables. A reduced order model is presented
as a way of simplifying the analysis and modeling of the converter. Moreover, a detailed
analysis and validation of this model is carried out explaining its limitations. Frequencies
where its accuracy is compromised are properly identified as a function of the converter
parameters. Here it is concluded that, as long as one stays sufficiently far from these
frequencies, the accuracy of the reduced order model is sufficiently good.
Most of the contributions presented in this chapter can be found in [LQA+18b, LQA+14].

Chapter 3

In this chapter, the reduced order model of chapter 2 is used to propose a method of
selecting optimal harmonic components. The analysis shows the impact of up to an 8th
harmonic in the circulating current and additional harmonic components in the load cur-
rent. The method is shown to provide accurate results by using analytical expressions
obtained with the reduced order model or linear approximations to obtain the optimal har-
monic components. Moreover, the impact of the harmonic components in the circulating
current over the power transfer between the converter arms is also analyzed.
Most of the contributions presented in this chapter can be found in [LQA+15, LQA+18a].

Chapter 4

This last part of the work applies the results obtained in the previous chapters to MPC
for MMCs. First, the problem of FCS MPC is addressed, mentioning its drawbacks and
motivations behind the use of PWM. Under this motivation, the optimization problem
associated with the MPC is analyzed and conditions to guarantee its convexity are de-
rived. Analytical methods are provided to estimate these conditions and its effectiveness
is verified. The results here allows one to use simple and fast optimization algorithms for
convex problems in the application of MPC for MMCs.
Most of the contributions presented in this chapter can be found in [LQA+14, LQAG18].

Chapter 5

Finally, general conclusions are presented along with a discussion about future work.
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2. Reduced order model of MMCs:
validation and limitations

This chapter presents a reduced order model that allows one to eliminate the disconti-
nuities of the MMC produced by the switching elements, and to reduce the number of
control and state space variables. This model also allows one to obtain explicit analytical
expressions that describe the behavior of the converter variables, and gives the possibility
to approximate the control function (number of modules inserted) by a continuous value.
This chapter extends the concept in [IANN12b] further, and analyzes the effects of this
approximation on the accuracy of the model by estimating the frequency response in dif-
ferent situations. In order to estimate this response, several approaches are used; these
include numerical solutions and also derivation of analytical expressions based on Fourier
expansion and linearized models. The subsequent analysis shows that the accuracy of the
reduced order model is low when close to the resonant frequencies of the converter, due to
the additional frequency components introduced by quantization effects. This produces
a modulation effect that displaces the resonant frequencies of the reduced order model
(when continuous signals are used) in comparison with those of the full order MMC (with
quantization). This generates differences in where the amplitude peak related to the reso-
nance is located, producing inaccuracies. The results presented show that, given sufficient
knowledge about the resonant frequencies, it is possible to determine beforehand if the
response of the reduced order model is accurate enough. This information can be helpful
when designing an MMC based on this model.

In the following sections, a reduced order model is introduced and the implications of
its application are discussed. This is followed by a frequency response analysis where the
limitations of this model are identified. Later, the model introduced here is going to be
used in chapter 3 to design optimized references for MMCs for control purposes, and in
chapter 4 to help the MPC to predict the future behavior of the MMC.

2.1. Reduced order model

The MMC is a highly nonlinear, discontinuous system with multiple inputs as is shown in
section 1.1.1 on page 2. The discontinuities make the system harder to analyze. In order
to simplify the analysis of the system and obtain analytical expressions for the variables
of interest, this section proposes an approximation method to reduce the order of the
model, the number of inputs, and remove the discontinuities.

Lemma 1. Consider the MMC model described in eq. (1.4), and assume that the capacitor

13



2. Reduced order model of MMCs: validation and limitations

voltages are balanced1:

vui (t) = vuj (t) = vu(t), ∀i, j ∈ {1, 2, . . . , N} (2.1)

and
vli(t) = vlj(t) = vl(t), ∀i, j ∈ {1, 2, . . . , N} (2.2)

Then the MMC model in eq. (1.4) reduces to:

ẋ(t) = A
(

µ̌u(t), µ̌l(t)
)

x(t) +B[vdc v∗ac(t)]
T , (2.3)

where

A
(

µ̌u(t), µ̌l(t)
)

,









−R
L

0 − 1
2L
µ̌u(t) − 1

2L
µ̌l(t)

0 −R+2Rl

L+2Ll
− 1

L+2Ll
µ̌u(t) 1

L+2Ll
µ̌l(t)

1
NC

µ̌u(t) 1
2NC

µ̌u(t) 0 0
1

NC
µ̌l(t) − 1

2NC
µ̌l(t) 0 0









, (2.4)

B ,

[

1
2L

0 0 0
0 − 2

L+2Ll
0 0

]T

, (2.5)

and the system state is now given by

x(t) ,
[

ic(t) il(t) vu(t) vl(t)
]T

. (2.6)

In this model, the modulation functions are

µ̌u(t) ,

N
∑

j=1

µu
j (t), µ̌u(t) ∈ {0, . . . , N}, (2.7)

and

µ̌l(t) ,
N
∑

j=1

µl
j(t), µ̌l(t) ∈ {0, . . . , N}. (2.8)

These functions represent the number of modules inserted in the upper and lower arms
respectively, and depend on the control law adopted.

Proof. Note that in the equation related to the derivative of ic in eq. (1.4), using eq. (2.1)
gives the following :

− vu1 (t)

2L
µu
1(t)− · · · − vuN(t)

2L
µu
N(t) = −vu(t)

2L

N
∑

j=1

µu
j (t). (2.9)

Let µ̌u(t) be the modulation function defined in eq. (2.7). Therefore, it can be concluded
that

− vu1 (t)

2L
µu
1(t)− · · · − vuN (t)

2L
µu
N(t) = −vu(t)

2L
µ̌u(t). (2.10)

1Note that vu = vl is not imposed.
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2.1 Reduced order model

An analogous procedure can be carried out for the remaining terms in the equations of
the derivatives of ic and il for the lower arm of the converter

Since the capacitor voltages on each arm are assumed equal, only two state space
variables are now required to represent the voltages of all the modules. Adding all the
capacitor voltages of the upper arm yields

N
∑

j=1

vuj (t) =

N
∑

j=1

(

ic(t)

C
µu
j (t) +

il(t)

2C
µu
j (t)

)

. (2.11)

Using eqs. (2.1) and (2.7), the previous expression can be simplified as follows:

Nvu(t) =
ic(t)

C
µ̌u(t) +

il(t)

2C
µ̌u(t). (2.12)

An analogous procedure can be followed for the voltages in the lower arm, leading to
eqs. (2.3) to (2.5)

It is important to note that when the reduced order model is used, it is implicitly as-
sumed that the voltages in all the capacitors are balanced according to eqs. (2.1) and (2.2).
Note that when this condition is fulfilled, it is possible to represent the capacitor voltages
of all modules with one voltage per arm and use aggregated control signals as in eqs. (2.7)
and (2.8) without using any approximation. All the information about any modulation
technique used, or about the control inputs µu,l

j in general, is now contained in µ̌u,l. Thus,
if the voltages of the capacitors are balanced (see eqs. (2.1) and (2.2)), then the full order
model and the reduced order model using eqs. (2.7) and (2.8) provide the same result.

The reduced order model facilitates the derivation of analytical solutions by reducing
the number of input variables and the size of the state vector. This can be used for a
more detailed analysis of the converter such will be shown throughout this work.

2.1.1. Implications of using continuous control signals

In some cases, it may be convenient to express the aggregated control signals in eqs. (2.7)
and (2.8) as the sum of an equivalent continuous valued signal µu,l(t) and a quantization
effect Qn(t), produced by having only a finite number of modules in the converter, as
follows:

µ̌u,l(t) = µu,l(t) +Qn(t). (2.13)

If desired, Qn(t) can be neglected using only the continuous part µu,l(t). In particular, if
µu,l(t) are smooth, then only differentiable functions need to be taken into account, easing
the analysis. Note that this step implies an approximation and it is especially important
when a low number of modules are available (i.e. Qn(t) comparable with µu,l(t)). It is
because of this approximation that the results of the reduced order model may differ from
the ones of the full order MMC.

Neglecting the quantization allows one to obtain analytical expressions of variables
such as the capacitor voltages. These expressions can then be used for optimization and
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2. Reduced order model of MMCs: validation and limitations

reference design as shown in chapter 3. However, the quantization affects the frequency
response of the circuit, leading to inaccuracies when this is neglected.
Due to the non-linearity in the model, there is a modulation effect that comes from

the multiplication of the control signal with the capacitor voltages, see eq. (2.3). This
effect moves the resonant frequencies (i.e. peaks of amplitude in ic) of the converter when
additional frequency components are considered in the control signals. As shown next,
this accentuates the error of the reduced order model at some specific frequencies.
To illustrate the effect of the quantization at different frequencies, let us consider nu-

merical values of the parameters of the converter as in table 2.1. Moreover, let us define
the following control inputs:

• smooth control inputs:

µu(t) = N
1 + cos(ωt)

2
, µl(t) = N

1− cos(ωt)

2
. (2.14)

• quantized control inputs:

µ̌u(t) = ni

(

N
1 + cos(ωt)

2

)

, µ̌l(t) = ni

(

N
1− cos(ωt)

2

)

, (2.15)

where the operation ni(•) approximates the argument to the nearest integer.

Figure 2.1 shows the response of an open loop MMC to the control inputs in eqs. (2.14)
and (2.15) with fundamental frequency ω = 2π60. A clear difference between the two cases
(with and without quantization) can be observed. Interestingly, the situation changes
when the frequency of the sinusoidal input is changed to ω = 2π50, see fig. 2.2. The
simulation shows that the difference between the response of the model without the quan-
tization and the model with the quantization is minimal for this frequency. In fig. 2.3, a
simulation with the error produced by neglecting the quantization effect for MMCs with
different numbers of modules is shown. The error is calculated as the Root Mean Square of
the difference of the simulated waveforms over one period in steady state. The simulation
shows that a larger error is presented for some specific frequencies. This error tends to be
larger the lower the number of levels. However, sufficiently far from the aforementioned
frequencies, the error for N = 4, N = 8 and N = 12 becomes low and very similar. This
also holds true for a higher number of levels, which implies that the reduced order model
represents a good approximation of the MMC even with a low number of levels as long as
the operation is sufficiently far from these critical frequencies. In the following sections,
the reasons behind these differences are going to be analyzed in more detail.
In fig. 2.3 several peaks in the error plots can be noticed. In general, it is possible to

group these peaks into two different cases: the high frequency peak (around 60Hz) and its
duplicates due to the nonlinearities in the system (i.e modulation due to the multiplication
of the control signal and the module voltages), and the low frequency peak (around 15Hz)
and its duplicates. In fig. 2.3 this grouping is shown for the case with N = 8. These
error peaks are directly related with the resonant frequencies of the converter. We shall
give special attention to the peak with the highest frequency since it may be located close
to the typical operating frequencies of the converter (50Hz or 60Hz). This observation
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2.1 Reduced order model
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a)
b)

Figure 2.1.: Effects of the quantization at 60Hz (Solid lines: without quantization, dashed
lines: with quantization).

Table 2.1.: Parameter values in p.u. at ω = 2π50 for an MMC (The p.u. (per unit) values
are normalized with respect to the grid voltage (3800 V) and the nominal
current (650 A)). P.F. stands for power factor.

Variable R XL (ωL) XC ( 1

ωC
) Rl XLl

(ωLl) vdc v̂∗ac P.F.
Value 0.004 0.075 0.089 0.01 0.15 2.19 1 1

shows that the quality of the model is frequency dependent and motivates our subsequent
analysis.

Let us first define what we shall refer to as the “frequency response of the MMC”. Due to
the non-linear nature of the system, frequency multiples of the input frequency are likely
to appear in the converter currents and voltages. This motivates us to define the frequency
response of the MMC as the amplitude of the second harmonic of the circulating current
ic as a function of the frequency in the control signals ω (see eqs. (2.14) and (2.15)).
The reason why the second harmonic of ic is chosen for the analysis is mainly due to
the following facts: (i) this is the lowest order harmonic in the circulating current, (ii)
its amplitude is significantly higher than the amplitude of the other harmonics, (iii) as
shown in fig. 2.3, the resonance of this second order harmonic is more likely to match
the operating frequency of the converter2. In the following sections we are going to focus
our efforts into determining the relation of these resonant frequencies with the converter
parameters.

2Note that the resonant frequencies are independent of our choice of considering the second order
harmonic of ic as variable for the analysis.
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Figure 2.2.: Effects of the quantization at 50Hz (Solid lines: without quantization, dashed
lines: with quantization).

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

freq. (Hz)

i d
ff

(E
rr

o
r)

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

freq. (Hz)

i o
u

t
(E

rr
o
r)

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

freq. (Hz)

C
a
p
a
c
it
o
r 

v
o
lt
a
g
e
s
 (

E
rr

o
r)

N=4

N=8

N=12

PSfrag replacements
AB

Figure 2.3.: Error produced by the quantization effect using 4, 8 and 12 modules for
different frequency values. (A) High frequency peaks. (B) Low frequency
peaks.

2.1.2. Effects of capacitor voltage imbalances in the reduced order
model

The reduced order model assumes that the capacitor voltages in all the modules are
properly balanced. If this holds true, the prediction of the reduced order model can closely
match its full order counterpart as seen in fig. 2.2. However, good voltage balancing is
not always possible.
This subsection aims to evaluate the effects of module voltage imbalances in the ac-
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2.1 Reduced order model

curacy of the reduced order model. This analysis is done by setting a voltage balancing
control algorithm in the full order MMC that allows a specific maximum voltage difference
between the modules of the same arm, also known as voltage imbalance (δvu,lmax). This
result is then compared with the prediction of the reduced order model for several values
of δvu,lmax.
In fig. 2.4, the increment of the RMS error of the reduced order model as a function

of the relation between the maximum allowed voltage imbalance δvu,lmax and the module
voltage ripple ∆vu,l is shown. For this test, a frequency of 50Hz is used and the reference
RMS error values are taken from fig. 2.3 (N = 8). As expected, the error presented in the
module voltages is increased significantly due to the allowed imbalance. However, for the
rest of the variables, an increment of less than 10%, with an allowed voltage imbalance of
up to 35% of the module voltage ripple, is shown. It is worth noticing that the circulating
current is more affected by the voltage imbalances due to the low arm impedance.
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Figure 2.4.: Increment in the RMS error of the prediction of the reduced order model
introduced by voltage imbalances in the capacitors as a function of the relation
between the maximum voltage difference between capacitors of the same arm
(voltage imbalance δvu,lmax) and the voltage ripple ∆vu,l. Reference values:
ic(error) = 8.3 ·10−3, il(error) = 17.7 ·10−3, ic(error) = 4 ·10−3, ∆vu,l = 0.05
p.u..

2.1.3. Blocking and de-blocking modes

As protective measure, the blocking mode is commonly used in unbalanced grid conditions.
This mode consists in switching off all the switches in the modules on either of the arms
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2. Reduced order model of MMCs: validation and limitations

of the converter, forcing the current to flow through the parallel diode associated to the
semiconductor devices. In order to include the blocking mode in the simplified model of
the MMC, the equivalent configuration shown in fig. 2.5 can be used. More details of this
configuration and blocking and de-blocking modes can be found in [AÄNN12, AÄN13]
where the configuration in fig. 2.5 was originally proposed.
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The original MMC equations in eq. (2.3) can be modified to include the blocking modes
as follows:

˙ic(t) =− R
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ic(t)−

1

2L
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1− βuu
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−ic −
il
2

))
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(
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(2.16)
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(2.17)

v̇u(t) =

(

1

NC
ic +

1

2NC
il

)

(Nβu + µ̌u(t) (1− βu))

(

1− βuu

(

−ic −
il
2

))

(2.18)
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v̇l(t) =

(

1

NC
ic −

1

2NC
il

)

(

Nβl + µ̌l(t)
(

1− βl
))

(

1− βlu

(

−ic +
il
2

))

(2.19)

where u(∗) represents the step function, βu and βl represent the blocking signals of the
upper and lower arm respectively (βu,l = 1 represents a blocked arm). In the blocking
state, the control signals µu,l are forced to N and the arm voltage depends on the direction
of the current (see fig. 2.5).

In the following sections, the frequency response of the MMC will be analyzed. However,
due to the mathematical complexity that arises when the blocking mode is included (see
eqs. (2.16) to (2.19)), the method presented in section 2.3, used to analyze the frequency
response and for the accuracy assessment, cannot be applied due to the impossibility of
transforming the system into a component wise linear system as we will see in eq. (2.27).
For this reason, the subsequent analyses are going to be performed without including the
blocking mode.

2.2. Estimation of the MMC frequency response

(Linearization approach)

This section presents a preliminary approach to obtain information about the frequency
response of the MMC that uses a linearized version of the reduced order model around an
operation point. The linearization technique is widely used in many applications. One of
them is design of control laws for power converters, where it is important that the infor-
mation provided by the linearized model matches as close as possible the original model
to guarantee proper performance and good stability properties. This approach aims to
derive simple analytical expressions for the resonant frequencies based on linear differ-
ential equations that later will be used for comparison with more elaborate approaches.
This will also serve as a criteria to determine the accuracy of the linearized model of the
MMC.

The linear model can be written based on eq. (2.3), as follows:

˙̃x(t) = A
(

µ̄u, µ̄l
)

x̃(t) +B(x(0))[vdc v∗ac(t) µ̃u,l(t)]T , (2.20)

where µ̄u,l represent the control signals in the operational point, µ̃u,l(t) and x̃(t) =
[̃ic ĩl ṽu ṽl] the incremental variables associated with the control signals and the state
space vector respectively, and B(x(0)) a constant matrix that depends on the initial con-
ditions x(0). Since the matrix A

(

µ̄u, µ̄l
)

is in charge of determining the placement of the
poles and resonant frequencies of the system, we focus our analysis in this term of the
equation.

To simplify the calculations, let us assume that ‖R+ jωL‖ ≪ ‖Rl + jωLl‖. Therefore,
the resonant frequencies can be analyzed by considering two different equivalent circuits;
a circuit for the higher frequencies and an additional circuit for the lower frequencies, as
shown in fig. 2.6. The following analysis uses this assumption and the linearized model
in eq. (2.20) to derive analytical expressions of the resonant frequencies of the MMC. In
section 2.3, the results of the resonant frequencies obtained with the linearized model will
be compared with results obtained with more accurate methods, which can be very useful
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Figure 2.6.: Approximate circuits of the MMC to compute its resonant frequencies.

when one wishes to evaluate the accuracy of the linearized model specially in the case
of stability of control loops. Moreover, it will provide more insight into the problem of
explaining the results in fig. 2.3.

2.2.1. High Frequencies

Under the assumption ‖R+ jωL‖ ≪ ‖Rl + jωLl‖, it is possible to rewrite the differential
equations of the linear system in eq. (2.20) and, taking into account that the operation
lies in the high frequency range as shown in fig. 2.6 (i.e. ‖Rl + jωLl‖ → ∞ or il = 0),
develop analytical expressions for the resonant frequencies of the converter. According to
eq. (2.20), the following holds:

˙̃ic = −R

L
ĩc −

1

2L
µ̄uṽu − 1

2L
µ̄lṽl + . . . ,

˙̃vu =
1

NC
µ̄uĩc + . . . , ˙̃vl =

1

NC
µ̄lĩc + . . . .

(2.21)

For the sake of simplicity, some terms are omitted in eq. (2.21) since they have no effect
over the value of the resonant frequencies.

By obtaining the second derivative of ĩc using eq. (2.21), and substituting ˙̃vu and ˙̃vl,
the following is obtained:
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2.2 Estimation of the MMC frequency response (Linearization approach)

¨̃ic =− R

L
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1

2L
µ̄u

(

1

CN
µ̄u

)

ĩc −
1

2L
µ̄l

(
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ĩc + . . .
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L
˙̃ic −

1

2LCN

(

(µ̄u)2 +
(

µ̄l
)2
)

ĩc + . . . .

(2.22)

It is assumed that µ̄u + µ̄l = N and µ̄u = αN , where 0 < α < 1. α is a constant value
that depends on the linearization point. Using the second order differential equation in
eq. (2.22), a value for the resonant frequency can be obtained as:

f1 =
1

√

2LC
N

1
α2+(1−α)2

,

√
2

2

1
√

2LC
N

≤ f1 <
1

√

2LC
N

(2.23)

Due to the fact that ic contains mainly second order harmonics, an interesting phe-
nomenon occurs. This consists in the resonance being produced when the input frequency
is equal to f1

2
. Due to the system non-linearities, this input frequency produces an ic with

frequency f1, matching the resonance frequency. Note that this phenomenon is not cap-
tured by the linear model analyzed in this section. This will be corroborated and analyzed
further with the method presented in section 2.3.

2.2.2. Low Frequencies

For the low frequency case, as presented in fig. 2.6, R and L are considered as 0. eq. (2.20)
can be used under this consideration to write the following set of differential equations

0 = −µ̄uṽu − µ̄lṽl + . . . , ˙̃il = −Rl

Ll

ĩl −
1

2Ll

µ̄uṽu +
1

2Ll

µ̄lṽl + . . . ,

˙̃vu =
1

NC
µ̄u

(

ĩc +
ĩl
2

)

+ . . . , ˙̃vl =
1

NC
µ̄l

(

ĩc −
ĩl
2

)

+ . . . .

(2.24)

In an analogous procedure as for the high frequency case, the second derivative of ĩl is
obtained and ˙̃vu and ˙̃vl are substituted, leading to:

¨̃il =− Rl

Ll

˙̃il +
1

Ll

µ̄l ˙̃vl

=− Rl

Ll

˙̃il −
1

NLlC

1
(

1
µ̄u

)2

+
(

1
µ̄l

)2 ĩl + . . . .
(2.25)

Considering again that µ̄u + µ̄l = N and µ̄u = αN , where 0 < α < 1, and using the
second order differential equation in eq. (2.25), a value for the resonant frequency can be
obtained as:

f2 =
1

√

LlC
N

(

α2+(1−α)2

α2(1−α)2

)

, 0 < f2 ≤
√
2

4

1
√

LlC
N

(2.26)

23



2. Reduced order model of MMCs: validation and limitations

2.3. Estimation of the frequency response of the MMC

(Fourier approach)

In order to address the problem of obtaining information about the frequency response
of the MMC in more detail, an approach using Fourier series approximation that ana-
lyzes each frequency component separately is applied. For detailed information of such
techniques please refer to [TSC14, NÄI+12a]. In [JJF15, RF16], this Fourier method is
applied to an MMC under nominal operating conditions and validated against a fully
detailed electromagnetic transient model in PSCAD/EMTDC (see fig. 2.7). Here, each
of the semiconductor switches used in the converter modules are modeled using an ideal
switch S, diodes D1 and D2 in series and antiparallel configurations, which are modelled
using the classical diode exponential function, and a snubber circuit. This model has been
used successfully in studies for large scale implementations showing a good representation
of its real life counter part. More details on this model and its application can be found
in [PSD+12].
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Figure 2.7.: Detailed model of the MMC module including the detailed model of the semi-
conductor switches used in PSCAD/EMTDC. The model of the semiconduc-
tor switch includes an ideal switch S, a snubber RLC circuit and two non
linear diodes D1 and D2.

The results in [JJF15, RF16] show good accuracy of the Fourier series approximation
with as low as two harmonic components. Moreover, it is also shown that, by increasing
the harmonic components up to 17, the results are considerably improved, obtaining a
very close match between the model in PSCAD/EMTDC and the approach using Fourier
series. Therefore, we shall consider the model presented in this section as a good reference
for the accuracy assessment of the reduced order model.

Using the Fourier series approximation, the MMC can be described by the following
equation

M(ω)z = U, (2.27)

where

M(ω) ,









−(RI+ jωnL) 0 −1
2
Yu −1

2
Yl

0 −(R+2Rl
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Yu −jωnC 0

1
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Yl − 1
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



, (2.28)
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U ,

[−1
2
Vin 0 0 0
0 2Ll

L+2Ll
V∗

ac 0 0

]T

, (2.29)

and
z ,

[

Ic Il Vu Vl
]T

, (2.30)

are matrices constructed based on the Fourier transformation of eq. (2.3). The diagonal
matrix n is defined as follows

n , diag
([

−n −(n− 1) · · · 0 . . . n− 1 n
])

(2.31)

where n is the number of frequency components used in the Fourier series expansion.

The variablesVin, V
∗
ac, Ic, Il, V

u andVl are vectors that contain each of the coefficients
of the Fourier series expansion of the respective variable. As an example, let us assume
that ic(t) can be written as:

ic(t) =
n
∑

k=−n

i(k)c ejωnt. (2.32)

With this, the variable Ic can be defined as follows

Ic ,
[

i
(−n)
c . . . i

(0)
c . . . i

(n)
c

]T

, (2.33)

where i
(j)
c represents the coefficient corresponding to the jth multiple of the natural fre-

quency of ic.

The matrices Yj represent the Fourier decomposition of the control inputs and are
defined as follows:

Yj ,


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
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



, (2.34)

where Y
(k)
j represent the coefficient corresponding to the kth multiple of the natural fre-

quency of the control signals µj.

With the previous definitions, the vector z in eq. (2.27) can be found using the following
expression

z = (M(ω))−1U. (2.35)

Since the system described by eq. (2.27) is linear, it is possible to find the resonant
frequencies of the system by solving for ω the following equation

det(M(ω)) = 0. (2.36)

In order to illustrate the results of this method, fig. 2.8 shows the frequency response
of ic for different numbers of frequency components n. It can be seen that the resonant
frequencies move and some new ones appear when the value of n is increased. In particular,

25



2. Reduced order model of MMCs: validation and limitations

the peaks marked as ”A” correspond to the resonance of the 2nd harmonic of ic, ”B” to
the resonance of the 4th harmonic, ”C” to the resonance of the 6th harmonic. The peaks
marked as ”D” correspond to the resonances dominated by the load impedance.

Figure 2.8.: Estimation of the amplitude of ic using the Fourier series approximation for
different values of n.

It is possible to obtain analytical expressions for some of the resonant frequencies in
terms of the converter components. This can be done by solving eq. (2.36) for a given
value of n. For the sake of simplicity, only the continuous control signals in eq. (2.14) are
going to be considered for this analysis.

Note that the frequency response may change if the amplitude or characteristics of
these control signals change due to the nonlinear properties of the system.

The results of the analysis of the frequency response using the Fourier series are shown
in the sections below. For some numerical comparisons, the values in table 2.1 are used.

2.3.1. Frequency response analysis with n = 2

In order to begin with the analysis, matrices U, n, Yu and Yl in eqs. (2.29), (2.31)
and (2.34) respectively, need to be defined using n = 2 and the control signals in eq. (2.14).
These matrices can be used to define M(ω) (see eq. (2.28)) and then to obtain the solution
z by applying eq. (2.35). Consequently, the resonant frequencies can be obtained using
eq. (2.36).

After some algebraic manipulations, the following simplified expressions for the fre-
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2.3 Estimation of the frequency response of the MMC (Fourier approach)

Table 2.2.: Comparison of the resonant frequencies f1 and f2 (see fig. 2.8) obtained with
different methods for n = 2: Actual: Using eq. (2.36) with n → ∞ and
quantized control signals. Fourier (Num.): Using eq. (2.36) with n = 2 and
continuous control signals. Fourier (Ana.): Using eqs. (2.37) and (2.38). Lin.:
Using eqs. (2.23) and (2.26)

Actual Fourier (Num.) Fourier (Ana.) Lin.
f1 382.6 361.4 362.4 582.4 - 823.7
f2 50.4 29.3 28.3 0 - 265.5

quencies f1 and f2 in fig. 2.8 can be derived

f1 =

(

28CL2R2 + 80CL2RRl + 64CL2R2
l

32CL2(L2 + 4LLl + 4L2
l )

−

16CLLlR
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lR
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
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√

16C2R4
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l

64L2
lC



 , (2.38)

where Re(∗) represents the real part of the argument. Table 2.2 shows a comparison of
the numerical values of the resonant frequencies obtained with different methods. It can
be seen that the analytical expressions (eqs. (2.37) and (2.38)) approximate the numerical
results with an error less than 4%. The approach based on linearization in section 2.2
gives a very easy method to compute these values, however the accuracy of the result is
compromised. Note that the phenomenon mentioned in section 2.2 where the resonance
due to f1 is produced when the input is at f1

2
can be seen clearly in this comparison.

The linearized approach fails to model this phenomenon producing values for f1 that are
around twice as high as the actual value. Remember also that f1 is of special importance
since it could match the operating frequency of the converter and thereby producing
inaccuracies in the reduced order model.

2.3.2. Frequency response analysis with n > 4

The complexity of the expressions obtained by solving eq. (2.36) grows exponentially with
n. For n = 4 it is possible to obtain relatively simple analytical expressions only for f3
(see fig. 2.8). After some algebraic manipulations, the expression for f3 can be written as
follows

f3 = Re

(

N

(

5
23712CR2

l − 127LlN

177209344R4
lC

3
−

√

559490048C2R4
l − 6022848CLlNR2

l + 16129L2
lN

2

177209344R4
lC

3

)
1
2



 .

(2.39)
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Table 2.3.: Comparison of the resonant frequencies f3 (see fig. 2.8) obtained with different
methods for n = 4: ((actual: Using eq. (2.36) with n → ∞ and quantized
control signals. Fourier (Num.): Using eq. (2.36) with n = 4 and continuous
control signals. Fourier (Ana.): Using eq. (2.39).

Actual Fourier (Num.) Fourier (Ana.)
f3 4.2 8.4 7.88

As in the case with n = 2, this expression is a simplified version of the solution. Table 2.3
shows a comparison of the numerical values obtained with different methods.
For the remaining resonant frequencies, no simple closed form expression could be

obtained for n = 4. Therefore, the solutions are computed numerically. This also applies
to the cases with n > 4. From fig. 2.8 the numerical values for the most important
frequencies for different values of n can be obtained. It is important to see that, the more
terms are used in the Fourier approximation, the more resonant frequencies appear and
some others change their position.

2.3.3. Effects of the quantization in the frequency response

Due to the non-linear nature of the system, the inclusion of the quantization changes the
frequency response of the system. To take this effect into account, the control signals in
eq. (2.15) are used for the following analysis.
Figure 2.9 shows a comparison of the frequency response of the reduced order model

calculated with the Fourier approximation for n = 2, with and without the quantization.
It can be seen how the resonant frequencies change their position and the amplitudes of
the peaks are slightly attenuated. Unfortunately, it is not possible to obtain analytical
expression for the resonant frequencies when the quantization is taken into account for
n ≥ 2 due to the complexity of the solution. However, they can be obtained numerically
by solving eq. (2.36).
Figure 2.10 shows the results for n = 6. For this case, the resonant frequencies are also

affected by the quantization; especially, the amplitude corresponding to the resonance
of the 4th harmonic (frequency peak between 150 rad/s and 200 rad/s) is attenuated
significantly once the quantization is taken into account. Moreover, the resonant frequency
with the highest value is displaced around 7% due to the quantization. This displacement
in frequency is less pronounced for the other resonant frequencies.
The difference of the two frequency responses in fig. 2.10 corresponds to the error

caused by neglecting the quantization. Since the amplitude peaks are at slightly different
locations, the difference between the two frequency responses become significant close to
them. This explains the peaks obtained in the simulation already shown in fig. 2.3, where
the error of the model without quantization was first illustrated.

2.4. Conclusions

The present chapter has investigated a reduced order model for Modular Multilevel Con-
verters. Detailed methods to characterize resonant frequencies of MMCs by using ana-
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2.4 Conclusions

Figure 2.9.: Frequency response of the MMC for n = 2 with and without quantization.

Figure 2.10.: Frequency response of the MMC for n = 6 with and without quantization.

lytical expressions obtained with the help of this model have been developed. This novel
analysis allows one to obtain values of the resonant frequencies that have not been identi-
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2. Reduced order model of MMCs: validation and limitations

fied in the current literature, giving additional insight on the MMC. The results obtained
here can be used to estimate beforehand if the reduced order model produces an accu-
rate representation of the MMC. The insight gained thereby is particularly useful when
working with control techniques using continuous control signals. The presented approach
based on a linearized model also serves as a good starting point for evaluating the accu-
racy of the linearization of the MMC giving insight in how to proceed when designing any
control law. The fact that the linear model fails to represent complex behavior results
in an estimation of some resonant frequencies that can be twice as high as their actual
value.
For the sake of accuracy, working close to any of the resonant frequencies of the converter

should be avoided. This becomes more important the lower the number of used modules
in the MMC, since in this case the amplitude of the quantization grows in relation with
the continuous approximation of the control signals. It is also shown that the reduced
order model produces the same results as the full order MMC when the quantization is
taken into account. Therefore, when using control techniques with quantized variables
such as finite control set MPC [GQ14b], the accuracy problem becomes less significant.
In the following chapter the reduced order model is going to be used to derive continuous

analytical expressions that describe the relationship between the variables of the MMC.
This will be useful to design and optimize references for control purposes.
The results presented here can also be expanded to analyse a 3-phase MMC; to see

more details on this please, refer to appendix A.
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3. Optimal reference design with
capacitor voltage ripple reduction

This chapter proposes a method to design detailed references for MMCs. For that purpose,
the reduced order model introduced in chapter 2 is used to obtain analytical expressions
showing the relation between each of the variables of the converter. Additionally, it
is shown how the effect of the circulating current can be modeled and manipulated to
influence specifically the module capacitor voltages.

The analysis presented here evaluates the benefits of injecting harmonic components
(up to an 8th harmonic component) in the converter currents for minimizing the capacitor
voltage ripple. Moreover, the impact of adding harmonic components to the load current
to further reduce the voltage ripple is analyzed. It is shown that, if a certain Total
Harmonic Distortion (THD) in the output current can be tolerated, then it is possible to
reduce the voltage ripple accordingly. This trade-off is analyzed, elucidating the relation
between the introduced THD and the total ripple reduction. For all the previous analyses
the voltage ripple is quantified using the RMS value and the peak to peak (P2P) value,
showing how the results vary depending on the figure of merit used.

To further simplify the process required to obtain the optimal values of the harmonic
components in the circulating current, this work introduces an approach using linear
approximations of these optimal parameters as a function of the load current parameters.
The analysis shows that the linear approximations give a good result in estimating the
optimal parameters for the injected currents over a wide range of operating conditions.
Therefore, the linear approximations can be used in a situation where computational
resources are limited.

Additionally, an analysis that illustrates the importance of the injected circulating
current on the power transfer inside the converter is also presented. This and the rest
of the analyses in this chapter use expressions obtained with the reduced order model
presented in chapter 2. Moreover, as described in fig. 1.2 on page 5, these references can
be used along with a control law to drive the MMC and achieve good performance. This
topic is addressed in chapter 4 using an MPC strategy.

3.1. Voltage ripple analysis

This section illustrates how to use the reduced order model introduced in chapter 2 to
derive harmonic components for the converter currents with the purpose of minimizing
the capacitor voltage ripple. These harmonic components are selected using analytical
expressions and a numerical optimization procedure. Extensive system simulations are
not required.
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3. Optimal reference design with capacitor voltage ripple reduction

3.1.1. Effect of harmonic components

Harmonics can be injected deliberately into the arm currents of the converter by means
of an external control loop. This allows one to add a degree of control over the behavior
of the voltage ripple in the capacitors [LQA+14, vdM13]. However, different harmonics
(odd or even) can have different effects on the voltage ripple, depending on whether they
appear in the circulating or in the load current. This section uses the reduced order model
to analyze the effect that each harmonic component has on the voltage ripple. This leads
to suggestions on which harmonics should be used in order to reduce the voltage ripple
in the capacitors of the converter.

We assume that the load current (il), as shown in fig. 1.1 on page 2, is divided evenly
between the upper and lower converter arms. Therefore, the currents in the upper arm
(iu) and in the lower arm (il) can be written in terms of ic and il as per

iu = ic +
il
2
, il = ic −

il
2
. (3.1)

They can be used to characterize the derivatives of the capacitor voltages as follows:

v̇u(t) = iu(t)
µu(t)

CN
, (3.2)

v̇l(t) = il(t)
µl(t)

CN
. (3.3)

To evenly distribute the losses between the modules, we shall assume that the capacitor
voltage waveform is the same in both arms but with a phase shift φv, which is to be
determined. Therefore, we set vu(t) = vl(t − φv

ω
). Using this assumption, the following

expression can be obtained from eqs. (3.2) and (3.3):

iu(t)µu(t) = il
(

t− φv

ω

)

µl

(

t− φv

ω

)

. (3.4)

For the sake of simplicity, we consider only continuous control signals, i.e. µu(t) and µl(t).

It is convenient to analyze (3.4) by splitting it into two different equations that relate
variables of a similar nature. Therefore, we define an equation that relate the two arm
currents and another equation that relate the control signals as follows:

iu(t) = il
(

t− φv

ω

)

, (3.5)

µu(t) = µl

(

t− φv

ω

)

. (3.6)

Note that, by considering eqs. (3.5) and (3.6), eq. (3.4) is implicitly considered as well.

Let the circulating and load currents contain additional harmonic components, as per:

ic(t) = i0 + îk cos(kωt+ φk), k ∈ {2, 3, 4, . . .}, (3.7)
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3.1 Voltage ripple analysis

il(t) = îl cos(ωt+ φ) + în cos(nωt+ φn), n ∈ {2, 3, 4, . . .}. (3.8)

The circulating current contains a kth order harmonic and the load current an nth order
harmonic.

The currents in the upper and lower arms and the load and circulating currents can be
written, using eqs. (3.7) and (3.8), as follows:

iu(t) = ic(t) +
il(t)

2
= i0 + îk cos(kωt+ φk) +

îl
2
cos(ωt+ φ) +

în
2
cos(nωt+ φn), (3.9)

il(t) = ic(t)−
il(t)

2
= i0 + îk cos(kωt+ φk)−

îl
2
cos(ωt+ φ)− în

2
cos(nωt+ φn). (3.10)

Therefore, the phase shifted version of the current in the lower arm satisfies:

il
(

t− φv

ω

)

= i0 + îk cos(kωt+ φk − kφv)−
îl
2
cos(ωt+ φ− φv)−

în
2
cos(nωt+ φn − nφv).

(3.11)

By expanding the trigonometric functions in eq. (3.11) and isolating the effect of the
angle φv, we notice that the only value of φv for which eq. (3.5) holds (see also eq. (3.9))
is φv = π. With this, eq. (3.11) simplifies to

il
(

t− π

ω

)

= i0+(−1)k îk cos(kωt+φk)+
îl
2
cos(ωt+φ)+(−1)n+1 în

2
cos(nωt+φn). (3.12)

Therefore, eq. (3.5) holds if k is even, n is odd and φv = π. Thus, eq. (3.6) must also
hold. In other words, the result suggests that the circulating current should only contain
even order harmonics, while the load current should contain solely odd order harmonics.

3.1.2. Analytical expressions of the capacitor voltages

For the sake of simplicity, only a second order harmonic in the circulating current is taken
into account in the subsequent example (higher order harmonics will be considered in the
final analysis). We thus set:

ic(t) = i0 + î2 cos(2ωt+ φ2), (3.13)

where î2 and φ2 represent the amplitude and phase of the second harmonic of the cir-
culating current, which are the parameters to be determined. The DC component i0
transfers power from the DC input to the converter arms. In previous approaches, see,
e.g., [QS12, PRFK12], no harmonics were taken into account and only i0 was considered,
restricting the ability to govern the capacitor voltages.

To control an MMC, a suitable reference trajectory for the state space vector x in
eq. (2.33) on page 25, should be specified. We shall consider a situation where, at the
load, il and vl have been predefined, see eqs. (1.1) and (1.2) on page 3. The relevant
design question now becomes one of specifying parameters in eq. (3.13) that reduce the
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3. Optimal reference design with capacitor voltage ripple reduction

voltage ripple in the converter capacitors. These quantities are linked as specified below:

Lemma 2. Consider the system described in eq. (2.3) on page 14 and the definitions of
ic and il in eq. (3.13) and eq. (1.1) on page 3 respectively. For a given î2 and φ2, the
analytical solution of eq. (2.3) in steady-state is given by the following equations:

i0 =

vdc −
√

v2dc − 8R
(

v̂l îl
2
cos(φ) + 2R

(

î2
l

8
+

î22
2

))

4R
(3.14)

vu(t) =

√

2

CN

∫ t

0

(

ic(τ) +
il(τ)

2

)

au(τ) dτ + (vuDC)
2 (3.15)

vl(t) =

√

2

CN

∫ t

0

(

ic(τ)−
il(τ)

2

)

al(τ) dτ + (vlDC)
2

(3.16)

where

− au(t) = (L+ 2Ll)i̇l(t) + 2Li̇c(t) + 2Ric(t) + (R + 2Rl)il(t)− vdc + 2v∗ac(t) (3.17)

al(t) = (L+ 2Ll)i̇l(t)− 2Li̇c(t)− 2Ric(t) + (R + 2Rl)il(t) + vdc + 2v∗ac(t) (3.18)

and

vuDC = vlDC =
vdc − 2Ri0

N
(3.19)

Proof. The component i0 depends on the power delivered to the load and the additional
power losses in the circuit; therefore, the input power produced by these current must be
equal to all the power losses plus the power delivered to the load. This can be written as
follows

vdci0 =
v̂lîl
2

cos(φ) + 2R

(

î2l
8
+

î22
2
+ i20

)

. (3.20)

Solving for i0 two solutions are obtained. The positive root produces a very high value
of i0 which is often outside implementation boundaries. Therefore, the negative root is
selected which leads to eq. (3.14).

Using the first two equations in eq. (2.3) (i̇c(t) and i̇l(t)), eqs. (1.1) and (3.13), the
following is obtained

i̇c(t) = −2̂i2sin (2ω0t+ φ2)ω0, (3.21)

i̇l(t) = −îlsin (ω0t+ φ)ω0, (3.22)

The desired values of the modulation functions µu,l can be obtained solving the previous
set of equations, which yields

µu(t) =
1

2

au(t)

vu(t)
, µl(t) =

1

2

al(t)

vl(t)
, (3.23)

where au(t) and al(t) are defined as in eqs. (3.17) and (3.18) respectively.
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3.2 Numerical studies

Using the last two equations in eq. (2.3) (v̇u and v̇l) and the result in eq. (3.23), the
following is obtained

v̇u(t) =
1

CN

(

ic(t) +
il(t)

2

)

au(t)

2vu(t)
∫ t

0

vu(τ)v̇u(τ) dτ =
1

CN

∫ t

0

(

ic(τ) +
il(τ)

2

)

au

2
(τ) dτ

vu(t)2

2
=

1

CN

∫ t

0

(

ic(τ) +
il(τ)

2

)

au

2
(τ) dτ +

(vuDC)
2

2
,

(3.24)

This leads to eq. (3.15), where vuDC represents the DC value of the capacitor voltage and
can be computed as in eq. (3.19)
An analogous procedure can be followed to compute vl, leading to eq. (3.16)

Note that all the previous expressions are composed of known integrable and differ-
entiable functions, implying that analytical explicit expressions can be obtained. These
expressions can be used to select the values of î2, φ2 to satisfy a variety of design objec-
tives.1

With the previous results it is easy to study the effect of several design variables, such as
current amplitudes and phase angles, on the behaviour of the converter. In the following
sections, we focus our efforts into analysing the particular case of the relation between
the voltage ripple and the circulating current harmonics.

3.2. Numerical studies

In order to evaluate the effect of the current harmonic components on the capacitor
voltages, the RMS and the peak to peak (P2P) values are used as figures of merit. These
quantities are defined as follows:

vuRMS =
1

T

√

∫ T

0

(vu(t))2dt, (3.25)

vuP2P = max(vu(t))−min(vu(t)), (3.26)

where T = 2π
ω

represents the fundamental period and t ∈ [0, T ]. The RMS and P2P
values for vl are defined accordingly. For this analysis, the modulation signals µu and µl

are assumed to be continuous (see chapter 2). Figure 3.1 shows the effect of î2 and φ2 on
the RMS and P2P values of the capacitor voltage ripple. It is possible to see that both
plots are similar. However, when the RMS function is used, a smoother plot is obtained.
The RMS value is directly related with the energy stored in the capacitor. Therefore, by
minimizing this value the average energy fluctuation in the capacitors is also minimized.
Note that, since the proposed method is based on analytical expressions, the RMS or

P2P values can be easily obtained simply by evaluating numerically the corresponding

1Note that the expressions in eqs. (3.27) and (3.28) can also be used, taking into account more harmonic
components. This will be analyzed in section 3.2.
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3. Optimal reference design with capacitor voltage ripple reduction
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Figure 3.1.: RMS and P2P values of the voltage ripple of each capacitor as a function of
the second harmonic of the circulating current ic with P.F. = 1 (P.F. stands
for power factor).

expression. In contrast, alternative methods that lack analytical expressions, require
significantly more computational effort [PPC+13].

In the preceding analysis, a simplified case with just a second harmonic in the circulating
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3.2 Numerical studies

Table 3.1.: Optimal harmonics in the circulating current and their effect on the voltage

ripple (cost function: RMS) when operating at îl = 1 p.u.. The RMS and P2P
values are normalized.

ic Performance

î2 φ2 î4 φ4 î6 φ6 î8 φ8 vu,lRMS vu,lP2P
Case 0 0 0 0 0 0 0 0 0 1 1
Case 1 0.390 0.046 0 0 0 0 0 0 0.478 0.524
Case 2 0.396 0.043 −0.106 0.370 0 0 0 0 0.467 0.560
Case 3 0.396 0.043 −0.109 0.370 0.029 1.003 0 0 0.466 0.569
Case 4 0.396 0.043 −0.109 0.370 0.031 1.018 0.012 −1.173 0.466 0.569

current was investigated. It is possible to also consider additional harmonic components
in the circulating current and in the load current as follows:

ic(t) = i0+ î2 cos(2ωt+φ2)+ î4 cos(4ωt+φ4)+ î6 cos(6ωt+φ6)+ î8 cos(8ωt+φ8), (3.27)

il(t) = îl cos(ωt+ φ) + î3 cos(3ωt+ φ3) + î5 cos(5ωt+ φ5). (3.28)

The subsequent numerical results take into account eqs. (3.27) and (3.28) and aim
to find amplitudes and phases of the harmonic components, which minimize capacitor
voltage ripple. Note that, as long as the reduced order model is accurate, the calculation
of the harmonic components in the converter currents does not depend on the control
or modulation technique used (see chapter 2 for details on the accuracy and limitations
of the reduced order model). Therefore, the same harmonic components can be used in
different control set-ups.

3.2.1. Optimal harmonic components in the circulating current

For this case, the values of table 2.1 on page 17 are used and the additional harmonic
components in the load current are assumed zero. Therefore, we set î3 = î5 = 0 in
eq. (3.28). The harmonic components of the circulating current are added as shown in
tables 3.1 and 3.2 (see also eq. (3.27)). A trust-region optimization algorithm was used
to compute the amplitudes and phases of the harmonic components such that the cost
function (RMS or P2P value) is minimized. Different sets of harmonic components and
cost functions are taken into account. Table 3.1 shows the resulting amplitudes and phases
using the RMS value of the capacitor voltage ripple as a cost function for the optimization.
It can be seen that the addition of the second harmonic produces a significant reduction
in the RMS value. However, the addition of the 6th and 8th harmonic only improves the
result by 1%. For the instances presented in table 3.2, where the P2P value is used as
the cost function, a similar behavior can be observed. Adding the 6th and 8th harmonic
improves the result of case 2 in table 3.2 by less than 2%. It can be concluded that, for
the situations examined, harmonics up to and including 4th order suffice.

Figure 3.2 shows the relation between the RMS value of the AC components of the
circulating current and the P2P value of the voltage ripple. It can be seen that, in order
to reduce the P2P value, it is necessary to increase the RMS value of the circulating
current, thereby increasing the losses in the converter. If desired, the circulating current
RMS can be considered in the cost function used for the numerical optimization to directly
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3. Optimal reference design with capacitor voltage ripple reduction

Table 3.2.: Optimal harmonics in the circulating current and their effect on the voltage

ripple (cost function: P2P) when operating at îl = 1 p.u.. The RMS and P2P
values are normalized.

ic Performance

î2 φ2 î4 φ4 î6 φ6 î8 φ8 vu,lRMS vu,lP2P
Case 0 0 0 0 0 0 0 0 0 1 1
Case 1 0.494 0.088 0 0 0 0 0 0 0.534 0.497
Case 2 0.458 0.071 0.067 0 0 0 0 0 0.521 0.461
Case 3 0.444 0.078 0.063 0 −0.080 0 0 0 0.513 0.455
Case 4 0.449 0.087 0.079 0.001 −0.088 0.002 0.089 0.002 0.519 0.447

consider this trade-off [EDD11].
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Figure 3.2.: Normalized P2P value of the voltage ripple for several combinations of î2, φ2,

î4, φ4. Each instance corresponds to a different combination of values.

It is worth noting that when the RMS value is used in the cost function, the numerical
optimization converges to the minimum independently of the initial conditions. However,
with the P2P function the convergence depends, in some cases, on the initial conditions.

3.2.2. Optimal harmonic components in the load current

It is well known that adding harmonic components to the load current increases the THD
and reduces the power quality. However, adding these components may serve to further
reduce the voltage ripple in the capacitors. The goal in this section is to evaluate how
successful these components are in reducing the voltage ripple in the capacitors by finding
optimal values of amplitudes and phases. Our findings allow one to shed light into the
trade-off between the THD in the load current and the capacitor voltage ripple reduction.
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3.2 Numerical studies

Table 3.3.: Optimal harmonics in the load current and their effect on the voltage ripple

(cost function: RMS) when operating at îl = 1 p.u.. The RMS and P2P values
are normalized.

ic il Performance

î2 φ2 î4 φ4 î3 φ3 î5 φ5 vu,lRMS vu,lP2P THD
Case 0 0 0 0 0 0 0 0 0 1 1 0%
Case 1 0.440 −0.067 0.176 −0.689 −0.548 0.943 0 0 0.364 0.509 54.8%
Case 2 0.447 −0.056 0.175 −1.014 −0.593 0.978 0.347 1.516 0.319 0.453 68.7%

Table 3.4.: Optimal harmonics in the load current and their effect on the voltage ripple

(cost function: P2P) when operating at îl = 1 p.u.. The RMS and P2P values
are normalized.

ic il Performance

î2 φ2 î4 φ4 î3 φ3 î5 φ5 vu,lRMS vu,lP2P THD
Case 0 0 0 0 0 0 0 0 0 1 1 0%
Case 1 0.407 −0.008 0.106 0.035 −0.306 0.583 0 0 0.422 0.406 30.5%
Case 2 0.381 0.011 0.150 −0.090 −0.221 0.670 −0.152 −0.003 0.444 0.385 26.7%

As in the previous case, the parameter values of table 2.1 on page 17 are used. Table 3.3
shows the results when 3rd and 5th harmonics are added to the load current (see eq. (3.28))
and the voltage RMS value is used as the cost function. For this case, the parameters of
the circulating current harmonics are also optimized along with the parameters in the load
current. It can be seen that the addition of optimal 3rd and 5th harmonics (table 3.3)
reduces the RMS value by more than 22% in comparison with the results in table 3.1
(Case 2), producing a THD of up to 68.7%.

Table 3.4 shows the results when the voltage P2P value is used as a cost function.
Note that for this case, adding both harmonics improves the results by around 21% in
comparison with the results of Case 2 in table 3.2. The THD, when the 3rd and 5th
harmonics are included, is 27%. This value is lower than in all the other cases evaluated.

Although, as shown in the previous examples, the additional harmonics in the load cur-
rent can be used to reduce further the voltage ripple, they should be used in combination
with the right set of harmonics in the circulating current. In order to illustrate this crit-
ical aspect, fig. 3.3 shows the THD of the load current for different values of amplitudes
and phases of its harmonic components with the corresponding normalized P2P value of
the voltage ripple. For this example, no harmonic component in the circulating current
is used. It can be seen that a reduction in the voltage P2P value of around 7% can be
achieved, with a THD of 31%.

Figure 3.4 shows results for the same setup, but with the harmonic components in the
circulating current carefully selected. It can be seen that the relative improvement is
better (around 22%) with around 30% THD. In both cases, the lowest voltage P2P value
for a given THD decreases almost linearly with the increase of its respective THD. The
injection of large harmonic components to the load currents might be prohibited in MMC
applications. The analysis done in this section could thus be deemed to be of a rather
theoretical value. However, any PWM method introduces small low-order harmonics into
the load current. It might be possible to design a PWM method that injects low-order
harmonics with amplitudes and phases that help minimize the capacitor voltage ripple.
The analysis proposed in this section could be used for this purpose.
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3. Optimal reference design with capacitor voltage ripple reduction

3.3. Linear aproximation of the optimal circulating

current parameters

This section presents a simple approach to obtain approximated values of the optimal
parameters of the second harmonic in the circulating current. For the example examined
in this section the RMS value is used as a cost function. The circulating current is limited
to contain only a second order harmonic component.
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Figure 3.3.: Normalized P2P values of the voltage ripple for several combinations of î3,

φ3, î5 and φ5. All the harmonic components in the circulating current are
taken as zero. Each instance corresponds to a different combination of values.

3.3.1. Dependence of the optimal harmonic components with the

load current parameters

The voltage ripple reduction obtained by injecting additional harmonic components into
the circulating current depends strongly on the load current (amplitude and phase). This
can be seen in more detail in fig. 3.5; here the reduction of the voltage ripple fluctuates
between 38% and 54%, depending on the load current.

The values of amplitude and phase of the second harmonic of the circulating current
that correspond to the results in fig. 3.5 are shown in figs. 3.6 and 3.7. As expected,
the relationships between the amplitude and phase of the load current, and the optimal
amplitude and phase of the second harmonic of the circulating current are non-linear. To
simplify the analysis and design, we will next derive an approximation based on linear
relations between the variables in order to derive the optimal values.
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3.3 Linear aproximation of the optimal circulating current parameters
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Figure 3.4.: Normalized P2P values of the voltage ripple for several combinations of î3, φ3,

î5 and φ5. The harmonic components in the circulating current are considered
as in table 3.2 Case 2. The P2P values are also normalized with respect to
table 3.2 Case 2. Each instance corresponds to a different combination of
values.

For that purpose let us consider a linear relationship of the following form

f̂ (̂il, φ) = âil + bφ + c. (3.29)

In table 3.5 the optimal values of a, b and c are shown. These values are selected such
that the RMS error:

eRMS =

√

√

√

√

1

n

n
∑

i=1

(f̂(zi)− f(zi))2, (3.30)

is minimized. In eq. (3.30), n stands for the number of data points, zi for a pair of values
(̂il, φ) contained in the empirical data and f(zi) for the non-linear relationship to be ap-
proximated (i.e. figs. 3.6 and 3.7). The function f(•) represents a generic function, which
represents either the amplitude or the phase angle of the second harmonic in table 3.5.

The results show a strong dependence between the optimal amplitude of the second
harmonic and the amplitude of the load current (i.e. the parameter a takes a large value).
Although the amplitude of the second harmonic is also affected by the phase of the load
current, this relation is weaker. On the other hand, the phase of the second harmonic of
the circulating current is very similar to the phase of the load current (i.e. b ≈ 1).
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3. Optimal reference design with capacitor voltage ripple reduction
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Figure 3.5.: Optimal normalized RMS capacitor voltage with a second harmonic in the
circulating current as a function of the amplitude and phase of the load cur-
rent.
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Figure 3.6.: Optimal amplitude of the second harmonic of the circulating current as a
function of the amplitude and phase of the load current.
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Figure 3.7.: Optimal phase of the second harmonic of the circulating current as a function
of the amplitude and phase of the load current.

Table 3.5.: Parameters of the linear approximation of the optimal components of the sec-
ond harmonic of the circulating current.

f̂(•) a b c eRMS

î2(•) 0.4809 −0.08846 −0.06841 0.0234
φ2(•) −0.02366 1.108 −0.0002 0.1208

3.3.2. Additional results including a 4th harmonic in the circulating
current

In order to complement the previous results, an additional 4th harmonic is included in
the circulating current. Figures 3.8 and 3.9 show the optimal amplitude and phase of the
4th harmonic for different values of the load amplitude and phase. It can be seen that
these results can be approximated by linear functions with a relatively small error, similar
to the case presented in the previous section. Table 3.6 shows the results of this linear
approximation (see eq. (3.29)). Note that the results for the second harmonic are very
similar to the situation considered in table 3.5.

3.3.3. Analysis using the P2P value

In the previous results, the RMS was used as the cost function due to the fact that its
numerical convergence is more robust to the set of initial conditions; the P2P function on
the other hand, produces less consistent results.
To further examine this issue, the optimal amplitudes and phases of the second and

fourth harmonic of the circulating current are found using the P2P value as the cost
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3. Optimal reference design with capacitor voltage ripple reduction

Table 3.6.: Parameters of the linear approximation of the optimal components of the sec-
ond and fourth harmonic of the circulating current.

f̂(•) a b c eRMS

î2(•) 0.4928 −0.09226 −0.07234 0.02553
φ2(•) −0.02537 1.108 0.0002 0.1113

î4(•) 0.161 −0.03266 −0.03427 0.009958
φ4(•) −0.2175 1.149 −0.003069 0.1702
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Figure 3.8.: Optimal amplitude of the fourth harmonic of the circulating current as a
function of the amplitude and phase of the load current.

function. The results are illustrated in figs. 3.10 to 3.14. The surfaces obtained for this
case are not as smooth as in the case of the RMS value. However, it can be clearly
seen that they can be well approximated by a linear function. It is worth noting that the
results obtained for the amplitude of the fourth harmonic (see fig. 3.14) are not sufficiently
smooth to deduce any shape.

The results of the linear approximation are shown in table 3.7. Note that the RMS
error is smaller than in table 3.6 except for the case of describing the amplitude of î4.

In order to evaluate the effectiveness of the linear approximation of the optimal har-
monic parameters, the error in the voltage ripple produced when the parameters of ta-
bles 3.6 and 3.7 are used, is shown in figs. 3.15 and 3.16. This error is computed as
follows

Error =
|vuRMS − ṽuRMS |

vuRMS

, (3.31)

where vuRMS and ṽuRMS represent the RMS values of the voltage ripple, calculated using the
exact parameters for the circulating current harmonics and using the linear approximation
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Figure 3.9.: Optimal phase of the fourth harmonic of the circulating current as a function
of the amplitude and phase of the load current.

Table 3.7.: Parameters of the linear approximation of the optimal components of the sec-
ond and fourth harmonic of the circulating current using the P2P value as cost
function.

f̂(•) a b c eRMS

î2(•) 0.3717 0.01568 0.02835 0.01991
φ2(•) −0.02312 1.033 0.006358 0.08614

î4(•) 0.1213 −0.03841 −0.04009 0.01805
φ4(•) 0.1994 1.137 0.01452 0.2014

respectively.
It can be seen in fig. 3.15 that the error for îl = 1 lies between 7% and 15%. For values

of îl close to 0, the error of the approximation is higher, with values between 5% and 35%.
On the other hand, in the case where the P2P value is used (see fig. 3.16), the error seems
to depend more on the load phase φ. The error reaches values of around 20% for values
of φ around −π/2, and values around 2% for values of φ around 0. However, for îl close
to 0, the error of the approximation increases drastically, reaching values of up to 50%.

3.4. Circulating current analysis

In order to take a deeper look at the role of circulating current in the converter, the
reduced order model is used to provide simplified expressions that ease the analysis. In
this section, these expressions are computed showing the role of the circulating current on
the power flow in the converter. Using the reduced order model, the modulation functions
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for each arm can be easily obtained as in eq. (3.23). These modulation functions depend
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Figure 3.12.: Optimal phase of the second harmonic of the circulating current as a function
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on the desired values of the circulating and load current. For the sake of simplicity v∗ac = 0
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is assumed. Therefore, they can be written as:

µu(t) =
1

2vu(t)

((

dil(t)

dt
+ 2

dic(t)

dt

)

L− (il(t) + 2ic(t))R+
dil(t)

dt
Ll + 2il(t)Rl + vdc

)

,

(3.32)
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µl(t) = − 1

2vl(t)

((

dil(t)

dt
− 2

dic(t)

dt

)

L− (il(t)− 2ic(t))R+
dil(t)

dt
Ll − 2il(t)Rl − vdc

)

.

(3.33)
The modulation functions can be used to compute the voltages of the capacitors and
the power on them by multiplying the capacitor voltage and current using the equations
described in eq. (2.3) on page 14. This can be written as:

P u(t) =
dEu(t)

dt
=

(

ic(t) +
il(t)

2

)

µu(t)vu(t)

CN
, (3.34)

P l(t) =
dEl(t)

dt
=

(

ic(t)−
il(t)

2

)

µl(t)vl(t)

CN
, (3.35)

where Eu(t) and El(t) represent the energy in each capacitor in the upper and lower arm
respectively. Computing the energy of the capacitors in both arms, the power difference
between them can be defined as

P∆(t) , P u(t)− P l(t). (3.36)

This term represents the power transferred between the two arms. The total power
represents the power transferred from the arms to other elements in the converter, and
can be defined as

P T (t) , P u(t) + P l(t). (3.37)
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3. Optimal reference design with capacitor voltage ripple reduction

Note that all the capacitor voltages in the upper and lower arm are considered to be
balanced. Therefore, the total power in the upper or lower arm can be calculated by
multiplying the power in the capacitor by a factor N . Using the results in eqs. (3.32)
and (3.33), and computing eq. (3.36) and (3.37) the following is obtained

CNP T (t) = vdcic(t)− 2

(

ic(t)R +
dic(t)

dt
L

)

ic(t)−
(

Rlil(t) +
dil(t)

dt
Ll

)

il(t), (3.38)

CNP∆(t) = −2

(

Rlil(t) +
dil(t)

dt
Ll

)

ic(t) +
vdcil(t)

2
−
(

ic(t)R +
dic(t)

dt
L

)

il(t). (3.39)

For the sake of simplicity, let us assume that the circulating current in eq. (3.7) contains
only a second harmonic, and the load current in eq. (3.8) contains no harmonics. The
total power in eq. (3.38) contains the squares of ic(t) and il(t), which when multiplied
with the DC values produce active power. This can be written as:

CNP T
active(t) = vdci0−2Ri20−2Rî22 cos(2ω0t+φ2)

2−Rlî
2
l cos(ω0t+φ)2− Rî2l

2
cos(ω0t+φ)2.

(3.40)
The active power contains a DC part and a second and fourth harmonic produced by
the square of the cosine functions. The remaining terms are reactive power, and can be
written as:

CNP T
reactive(t) = vdcî2 cos(2ω0t+ φ2)− 4i0î2 cos(2ω0t + φ2)+

4ω0Lî
2
2 sin(2ω0t + φ2) cos(2ω0t+ φ2)− ω0Ll î

2
l sin(ω0t+ φ) cos(ω0t + φ).

(3.41)

The reactive power only contains AC terms. These terms are only the second and fourth
harmonics and most of them are produced by the injection of a second harmonic in the
circulating current.

On the other hand, eq. (3.39) contains the product between ic(t) and il(t). Since these
currents or their derivatives share no common harmonics, all the power in eq. (3.39) is
purely reactive and can be expressed as follows

CNP∆
reactive(t) =

(vdc
2

− 2Rli0 − 2Ri0

)

îl cos(ω0t+ φ) + ω0i0(2Ll + L)̂il sin(ω0t+ φ)

+
î2
2

[

ω0(3L+ 2Ll)̂il sin(3ω0t+ φ+ φ2) + ω0(L− 2Ll)̂il sin(ω0t− φ+ φ2)

− 2(R +Rl)̂il cos(ω0t− φ+ φ2) −2(R +Rl)̂il cos(3ω0t + φ+ φ2)
]

.

(3.42)
This expression contains only odd order harmonics (first and third). The third order
harmonic is generated by the injection of the second harmonic in the circulating current.

When the voltage ripple of the capacitors is reduced, the total power fluctuation is also
reduced. However, the higher the amplitude of the circulating current, the higher the
peak value of the power.

It can be seen in eqs. (3.40) to (3.42), that the second harmonic injected into the
circulating current is present in both the reactive and active power. However, in the
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active power, this harmonic only appears due to the power losses in the resistor R, which
usually can be neglected compared with the power dissipated in Rl (see eq. (3.40)). In the
reactive power in eqs. (3.41) and (3.42), the circulating current plays an important role
generating most of its components. Note how the frequency components on the reactive
part of the total power are only even order harmonics, while in the difference (P∆(t))
they are only odd order harmonics.

3.5. Conclusions

A novel method to compute reference signals for MMCs has been investigated. The
method allows one to take into account AC components of the circulating current and
capacitor voltages for a more accurate control of the MMC. Using analytical expressions
that describe the converter dynamics, the behaviour of the system can be easily studied
and optimized.
Here we aim to reduce the voltage ripple of the module capacitors by injecting addi-

tional harmonics into the circulating and load currents. The analytical expressions allow
one to describe the voltage ripple as a function of the harmonic components in the cur-
rents. These expressions are then used to derive the optimal amplitude and phase of the
harmonics by means of a numerical optimization. Two figures of merit are evaluated in
the optimization, namely the RMS and the P2P voltage ripple.
The addition of harmonics to the load current reduces the voltage ripple in the capaci-

tors even further. The trade-off between the additional THD in the load current and the
ripple reduction is evaluated. The results show that the effect of these harmonic compo-
nents is highly dependent on the circulating current components. Moreover, the relation
between the lowest voltage ripple for a given THD and the corresponding THD is almost
linear until the optimal point is reached as shown in figs. 3.3 and 3.4.
The injection of harmonics in the circulating and load current can be used to reduce

the voltage ripple by more than 60% for the evaluated cases. However, these results
strongly depend on the load parameters, with the ripple reduction varying between 30%
and 60%. The relation between the parameters of the optimal second harmonic component
injected in the circulating current with the phase and amplitude of the output current is
non-linear. Interestingly, a linear approximation closely matches the results, thus easing
the calculation of the optimal components significantly. The reference design technique
presented here does not depend on the control or modulation technique used, allowing
applications with other control strategies.
Furthermore, the circulating current can be understood by analyzing the power transfer

between arms using the analytical expressions provided by the reduced order model.
It has been shown here that, by carefully designing references for an MMC, its perfor-

mance can be improved. However, a control law is required to drive the MMC to follow
the references properly. In the following chapter, the references presented here and the
reduced order model in chapter 2 are going to be employed to implement and analyze
MPC strategies.
The results presented here can also be expanded to analyse a 3-phase MMC, please

refer to appendix A.
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4. MPC for bilinear systems: convexity
and application to power converters

MPC is a very intuitive and popular control technique that uses a cost function and future
predictions of the system behaviour to decide the optimal control action. It covers a broad
range of applications. In power electronics, particularly in switched power converters, it
is possible to apply the MPC in two different ways. The most direct option is to allow
the MPC to drive the converter switches directly, implying that the decision variables
are binary (i.e. Finite Control Set (FCS)). This chapter starts by illustrating the use
of the reference design technique, introduced in chapter 3, in the application of an FCS
MPC. Here, a comparison with more simplistic reference design approaches is shown,
demonstrating the importance of well selected references. Moreover, some drawbacks of
the FCS approach are discussed explaining the motivation to move towards the use of
MPC with PWM.

The rest of this chapter discusses more in detail the problem of MPC with PWM,
addressing the problem of the convexity of the associated optimization problem as defined
in section 1.3.2. Here, convex constraints are assumed, therefore only the convexity of the
cost function is left to be analyzed. Conditions to guarantee this convexity are developed
in terms of the system model parameters. Finally, an application to the MMC shows how
the results in chapters 2 and 3 can be used along with the developed conditions to achieve
good performance with reduced complexity.

4.1. Application of FCS MPC

For the application of the FCS MPC, the MMC model in section 1.1.1 with binary control
variables is used. Moreover, in order to obtain a discrete time system representation, the
Euler method is employed. By doing this it is possible to obtain an MPC problem as
the one described in section 1.3.2. However, here the allowed control decision values are
binary, which represents a non-convex constraint set.

In order to decide the control action, an optimal switching combination is found using
the cost function J (see section 1.3.2). For the sake of this example the following is set:
H = 1 and λ†

h = 0. Moreover, the MMC parameters in table 2.1 on page 17 are used. For
the case presented here, the MMC with N = 8 modules per arm has 65536 (22N) possible
switching combinations, and one of them has to be selected as the optimal. A traditional
approach to find the optimal switching combination involves brute force search, evaluating
every possible combination and then selecting the one with the lowest cost function value.
Less computationally tasking methods include using a restricted control set [PRFK12],
indirect FCS [VBSH15], or sphere decoding techniques [GQ14b, GQ14a].
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In order to show the advantages of the reference design approach, introduced in chap-
ter 3, in comparison with a simplified approach used in the literature [QS12, PRFK12],
three different sets of references are used along with a FCS MPC and tested via simu-
lations. The first set of references consider the case where no harmonic components are
injected in the circulating current. The other two set of references are selected optimally
to reduce the RMS and the P2P value of the capacitor voltage ripple as shown in chapter 3
(see tables 3.1 and 3.2)
Figure 4.1 shows the response of the controlled converter to all sets of references. The

results show that with no injection of harmonics in the circulating current, the capacitor
voltage ripple is twice as high in comparison with the other two cases. Using the results
in chapter 3, the capacitor voltage ripple can be optimally reduced.
For short horizon approaches, as the one shown above, FCS MPC can be efficiently

implemented. However, let us consider the case where a longer prediction horizon is
required (i.e. H = 20). Then, for an MMC as described in chapter 2, 320 different binary
control variables and more than 2×1096 switch combinations have to be considered to find
the optimal control action. By using the reduced order model presented in chapter 2 and a
set of PWMs, it is possible to simplify this problem and only consider 40 continuous control
variables. The fact that the control variables are continuous facilitates the problem, giving
information about the optimal solution through differentiation. Although more efficient
and better methods to solve these kinds of FCS problems are proposed every day, the
binary nature of its variables make them inherently a significantly more difficult problem
than the PWM counterpart [D’A10, GQ14b]. This motivates the analysis presented in
the following sections.

4.2. MPC with PWM

In the following sections, a general kind of problem that often appears with the application
of MPC is analyzed. This problem consists of a quadratic cost function of bilinear systems
using an arbitrary prediction horizon, convex constraints and continuous decision variables
(i.e. PWM). This set of characteristics frequently appear in MPC for power electronics
where most of the popular power converters are bilinear systems [BvdBV01, BMC+09,
KPKL14, Gey09, AG94]. This bilinearity can become a problem when the MPC uses a
large prediction horizon, producing a non-convex problem and therefore, requiring a high
computational effort to get to an optimal solution. If convexity can be guaranteed by
manipulating the cost function, simpler and more efficient optimization algorithms can
be used. The following sections aim to develop conditions over a weighting parameter in
the cost function that guarantees the convexity of the optimization problem. In this case,
this term (λh) penalizes the error of the control inputs with their respective references (see
section 1.3.2). A detailed analysis of the cost function for an arbitrary prediction horizon
is carried out. This analysis allows one to find bounds for the value of the weighting
factor that can be estimated with a simple analytical expression. These bounds give us
useful information if the goal is to obtain a convex optimization problem. Two cases are
considered, one that guarantees convexity for a wide range of the state space, and one that
is restricted only to a neighborhood around the reference values. Numerical and analytical
results are compared for both cases showing the advantages and disadvantages of each.
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Figure 4.1.: Response of the FCS-MPC for three different cases: In (a), (d) and (g),
no harmonics are injected in the circulating current. In (b), (e) and (h),
harmonics to reduce the RMS value of the capacitors voltage ripple are used
(i.e. table 3.1 Case 2). In (c), (f) and (i), harmonics to reduce the P2P
value of the capacitors voltage ripple are used (i.e. table 3.2 Case 2). With
M = diag([20 17 40× 103 40× 103]) and sampling time 1ms.

Examples using a Boost converter and an MMC are shown to illustrate numerically the
proposed procedure.

First, let us address details about the discrete time model and the definition of the
MPC problem that are going to be used throughout this chapter to simplify the analysis
of the optimization problem.
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4.2.1. Discrete system modeling

In section 1.3.1, basics of the discrete time modeling were described. Based on this model,
and in order to simplify the analysis presented in this work, let us consider a new state
space vector x(k) defined as

x(k) =
[

z(k)T 1
]T

, (4.1)

with the following associated state dynamics

x(k + 1) =

(

A(k) +
∑

i∈I

Bi(k)ui(k)

)

x(k) (4.2)

where

ui(k) =
1

δi
υi(k), (4.3)

and

A(k) =

[

A(k) C(k)
0 I

]

, Bi(k) =

[

δiBi(k) 0
0 0

]

. (4.4)

In eq. (4.3), δi is a weighting parameter such that

max
k

|ui(k)| = ρ, ∀i ∈ I. (4.5)

where ρ is an arbitrary constant. More details on the purpose of δi will be discussed in
section 4.4 (see Remark 3).

Using the model presented in eq. (4.2), the analysis of the MPC can be simplified. Note
that, in contrast with the model in eq. (1.11), all the terms are multiplied by the state
space vector. The model in eq. (4.2) is also going to be used in the following section to
describe details of MPC.

4.2.2. MPC Problem

The basic MPC problem were discussed in section 1.3.2. Here, a description of the problem
that allows one to reduce the analytical complexity of the analysis is presented. This will
be particularly useful later in this chapter.

Based on the MPC problem presented in section 1.3.2, the cost function in eq. (1.12)
can be equivalently written as

J(x(0), ..., x(H), ui(0), .., ui(H− 1)) =

H
∑

h=1

Jh(x(h), ui(h− 1)), ∀i ∈ I, (4.6)

where

Jh(x(h), ui(h− 1)) = ‖x(h)− x̄(h)‖2M +
λh

2

∑

i∈I

‖ui(h− 1)− ūi(h− 1)‖2, ∀i ∈ I, (4.7)

56



4.3 Convexity of the cost function

and
ui(h− 1) =

[

ui(0) ui(1) . . . ui(h− 1)
]T

,

ūi(h− 1) =
[

ūi(0) ūi(1) . . . ūi(h− 1)
]T

.
(4.8)

In eq. (4.7) ūi(h) represents the control input references and λh ∈ R, λh ≥ 0. Note
that eqs. (1.12) and (4.6) are equivalent if λ†

h = λh + λh+1 + · · · + λH. The definition
of J as in eq. (4.6) is going to be useful for its analysis later in this chapter. Note
that the Hessian of Jh, contains only λh on its diagonal, which is convenient when an-
alyzing the MPC problem (see section 4.3). Therefore, the following analyses are going
to be based on the cost function defined as in eq. (4.6). Moreover, the cost function
J(x(0), ..., x(H), ui(0), .., ui(H− 1)) and the stage cost Jh(x(h), ui(h− 1)) will be referred
to simply as J and Jh when convenient.
It is possible then to write the goal of the MPC as an optimization problem subject to

constraints as follows:

min
ui(H−1),∀i∈I

J(x(0), ..., x(H), ui(0), .., ui(H− 1))

s.t.
h(ui(H− 1)) = 0
g(ui(H− 1)) ≤ 0

ui(k) ∈ U
, ∀i ∈ I

(4.9)

Remark 1. In the analysis presented in this work, only convex constraints h(ui(H− 1)),
g(ui(H− 1)) and U are going to be considered. Therefore, if J is convex, the optimization
problem in eq. (4.9) is also convex.

The following sections address the problem of the convexity of the optimization problem
of the MPC with PWM as defined in here. Since convex constraints are assumed, only
the convexity of the cost function is left to be analyzed. Conditions to guarantee this
convexity are developed in terms of the system model parameters. Finally, an application
to the MMC shows how the results in chapters 2 and 3 can be used along with the
developed conditions to achieve good performance with reduced complexity.
Throughout the following sections, the matrix properties described in appendix B are

going to be used.

4.3. Convexity of the cost function

In this section, conditions for the convexity of the cost function J are discussed. It is
clear that, due to the bilinear nature of the system in eq. (4.2), the cost function in
eqs. (4.6) and (4.7) with λh = 0 is in general not convex. On the other hand, as the
value of λh moves towards infinity, the cost function J reduces to the quadratic term
λh

2

∑

i∈I ‖ui(h− 1)− ūi(h− 1)‖2, which is a convex function. Therefore, there is a range
of values of λh for which the cost function J is convex [Ber79]. The following theorem
focuses on identifying the range of values of λh for which this occurs. This is done by
identifying the lower bound of this set of values, which we call ζh, and elucidating its
relation with the system parameters, including the prediction horizon of the MPC.
In the analysis carried out to find the bounds ζh, a dependency on the control input

ui(H− 1) has been identified. Note that this variable is the decision variable in the
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optimization problem in eq. (1.14). To overcome this issue, worst cases of ui(H− 1) are
considered to find ζh. These worst cases are restricted by the constraints in eq. (1.14).
By doing this, the direct dependency of ζh on the decision variable is overcome and, at
the same time, the validity of ζh for all possible values of ui(H− 1) is guaranteed. A
similar consideration has to be done for the state vector x(k) and its reference. For these,
the worst case is considered by the use of the variable xmax, which is particulary useful
when analytical estimates of the convexity bound are required. More details on this will
be addressed in section 4.4.

Theorem 1. Consider the state space system in eq. (4.2) and a cost function J associated
with an MPC problem as in eq. (4.6). Then J is convex if

λ1 ≥ 0 and λh ≥
{

ζh 0 � Zk,v � Iζh
(h− 1)ζh −Iζh � Zk,v � Iζh

∀k, v ∈ {1, 2, ..., h},
∀h ∈ {2, 3, ...,H}. (4.10)

where
ζh = max

k,v
(‖Zk,v‖) , (4.11)

Zk,v = 2













xT
e M

∂2xe

∂u1(k)∂u1(v)
xT
e M

∂2xe

∂u1(k)∂u2(v)
· · · xeM

∂2xe

∂u1(k)∂uI(v)

xT
e M

∂2xe

∂u1(k)∂u2(v)
xT
e M

∂2xe

∂u2(k)∂u2(v)
...

. . .
...

xT
e M

∂2xe

∂u1(k)∂uI(v)
· · · xT

e M
∂2xe

∂uI(k)∂uI(v)













, (4.12)

xe = x(h)− x̄(h), x(h) =

h−1
∏

j=0

χ{∅}(j)x(0),
∂2xe

∂uι(k)∂uℓ(v)
=

h−1
∏

j=0

χ{(ι,k),(ℓ,v)}(j)x(0)

(4.13)
and

χ{(i1,j1),(i2,j2),...}(j) ,

{

Bin(j) j = jn
A(j) +

∑

i∈I Bi(j)ui(j) otherwise
. (4.14)

The norm ‖ · ‖ is defined as the maximum singular value for matrices and the absolute
value for scalars.

Proof. To guarantee convexity of the cost function J , it is sufficient to prove that Jh in
eq. (4.7) is convex for all h ∈ N. In order to verify this, it is possible to proceed by using
induction over the variable h. Let us first verify the convexity for the case where h = 1:

• Analyzing J1

Using eqs. (4.2) and (4.7) we have

J1 =

∥

∥

∥

∥

∥

(

A(0) +
∑

i∈I

Bi(0)ui(0)

)

x(0)− x̄(1)

∥

∥

∥

∥

∥

2

M

+
λ1

2

∑

i∈I

‖ui(0)− ūi(0)‖2 (4.15)

The Hessian of J1 can be expressed as

H1 = h1h
T
1 + Iλ1 (4.16)
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where
h1 =

[

M
1
2B1(0)x(0) M

1
2B2(0)x(0) · · · M

1
2BI(0)x(0)

]T
(4.17)

For J1 to be convex it is necessary that H1 ≻ 0. Therefore, since h1h
T
1 is always

positive, the following can be easily deduced from eq. (4.16):

λ1 > 0. (4.18)

• Analyzing Jh for h ≥ 2

In general, Jh can be written as

Jh =

∥

∥

∥

∥

∥

h−1
∏

j=0

χjx(0)− x̄(h)

∥

∥

∥

∥

∥

2

M

+
λh

2

∑

i∈I

‖ui(h)− ūi(h)‖2. (4.19)

The corresponding second order derivatives of Jh are

∂2Jh

∂ui(k)2
= 2

∥

∥

∥

∥

∥

h−1
∏

j=0

χ{(i,k)}(j)x(0)

∥

∥

∥

∥

∥

2

M

+ λh (4.20)

∂2Jh

∂ui(k)∂uℓ(k)
= 2

(

h−1
∏

j=0

χ{(i,k)}(j)x(0)

)T

M
h−1
∏

j=0

χ{(ℓ,k)}(j)x(0) (4.21)

∂2Jh

∂ui(k)∂uℓ(v)
=2

(

h−1
∏

j=0

χ{(i,k)}(j)x(0)

)T

M
h−1
∏

j=0

χ{(ℓ,v)}(j)x(0)+

2

(

h−1
∏

j=0

χ{∅}(j)x(0)− x̄(h)

)T

M
h−1
∏

j=0

χ{(i,k),(ℓ,v)}(j)x(0)

(4.22)

The Hessian matrix associated with Jh can be constructed as

Hh =











H1,1 H1,2 · · · H1,h

H2,1 H2,2

...
. . .

...
Hh,1 · · · Hh,h











, (4.23)

where

Hk,v =













∂2Jh
∂u1(k)∂u1(v)

∂2Jh
∂u1(k)∂u2(v)

· · · ∂2Jh
∂u1(k)∂uI(v)

∂2Jh
∂u1(k)∂u2(v)

∂2Jh
∂u2(k)∂u2(v)

...
. . .

...
∂2Jh

∂u1(k)∂uI(v)
· · · ∂2Jh

∂uI(k)∂uI(v)













. (4.24)

It is convenient to write Hh as follows

Hh = hhh
T
h + H̃ (4.25)
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where

hh =









































√

∂2Jh
∂u1(1)2

− λh
√

∂2Jh
∂u2(1)2

− λh

...
√

∂2Jh
∂uI(1)2

− λh
√

∂2Jh
∂u1(2)2

− λh
√

∂2Jh
∂u2(2)2

− λh

...
√

∂2Jh
∂uI(h)2

− λh









































, H̃ =











Iλh Z1,2 · · · Z1,h

Z2,1 Iλh Z2,h
...

. . .
...

Zh,1 Zh,2 · · · Iλh











, (4.26)

and Zk,v is defined in eq. (4.12). Note that Zk,v = ZT
v,k

Consider now ζh as in eq. (4.11), and a set Zh containing all the possible values of
Zk,v as

Zh = {Zk,v|Zk,v satisfies eq. (4.12) ∀k, v ∈ {1, 2, ..., h}}. (4.27)

The parameter ζh will be used to define bounds later in the demonstration.

For Jh to be convex, Hh must be positive definite. Note that the term hhh
T
h in

eq. (4.25) is at least positive semidefinite. Therefore, it is sufficient to guarantee
that H̃ is positive definite for the Hessian to be positive definite. Let us define H̃ℓ as
the ℓth leading principal submatrix of H̃ constructed by blocks as follows: H̃1 = Iλh,

H̃2 =

[

Iλh Z1,2

Z2,1 Iλh

]

and so on, up to H̃h = H̃ . Using Fact B.2 and B.7, and induction

over the variable ℓ, conditions over λh for H̃ to be positive definite can be obtained.
Let us start analyzing the first two cases ℓ = 1 and ℓ = 2:

1. Principal submatrix H̃1

It is trivial to see that for H̃1 we get the basic condition

λh > 0. (4.28)

2. Principal submatrix H̃2

In order to guarantee H̃2 to be positive definite, Fact B.7 can be used. Note
that, with the conditions imposed over H̃1, the block A1,1 (see details in Fact
B.7) in H̃2 is guaranteed to be positive definite. Therefore the remaining
condition goes as follows

Iλh − ZT
2,1(Iλh)

−1Z2,1 ≻ 0, ∀Z1,2 ∈ Z2. (4.29)

Using Facts B.4 and B.5, and ζh in eq. (4.11), the following can be written

Iλh −
ZT

2,1Z1,2

λh

� Iλh −
Iζ2h
λh

∀Z1,2 ∈ Z2. (4.30)
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Therefore, to guarantee eq. (4.29), the following condition is sufficient

Iλh −
Iζ2h
λh

≻ 0, (4.31)

which leads to
λh > ζh. (4.32)

Note that, for eq. (4.29) to be true for all values of Z1,2, it is necessary to con-
sider the worst case, which is given by the bound in eq. (4.12). A consequence of
this fact is that, for the analyses of the following principal leading submatrices
H̃3, H̃4, . . ., H̃j, the value of Z1,2 will be substituted for the one corresponding
to its bound, i.e. ζh. Analagous to this, we will see that from the analyses of
H̃3, H̃4, and up to H̃j , it is concluded that for Zk,v, ∀k, v ∈ {1, 2, ..., j} the
worst case is also given by ζh.

3. Principal submatrix H̃j+1

The induction hypothesis states that

H̃j ≻ 0. (4.33)

In order to prove that
H̃j+1 ≻ 0, (4.34)

Fact B.7 is used and its two necessary conditions are verified. Note that A1,1 =
H̃j ≻ 0 (see details in Fact B.7) is given by the induction hypothesis. Therefore,
to guarantee eq. (4.34), it is sufficient to guarantee the following

Iλh −







Z1,j+1
...

Zj,j+1







T

H̃−1
j







Z1,j+1
...

Zj,j+1






≻ 0, ∀Zk,v ∈ Zh. (4.35)

Note that, as mentioned previously, the worst case scenario for the values in
H̃j (i.e. Zk,v, ∀k, v ∈ {1, 2, ..., j}) is given by the matrix H̃†

j defined as follows

H̃†
j =











Iλh Iζh · · · Iζh
Iζh Iλh Iζh
...

. . .
...

Iζh Iζh · · · Iλh











. (4.36)

Moreover, we can write H̃†
j as

H̃†
j = Ξj + λhI, (4.37)
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where Ξj is an jI× jI matrix defined as follows:

Ξj =











0 Iζh · · · Iζh
Iζh 0 Iζh
...

. . .
...

Iζh Iζh · · · 0











, (4.38)

where I represent the number of control inputs.

By substituting the worst case given by eq. (4.36) in eq. (4.35), the following
sufficient condition to guarantee eq. (4.34) can be obtained

Iλh −







Z1,j+1
...

Zj,j+1







T

(

H̃†
j

)−1







Z1,j+1
...

Zj,j+1






≻ 0, ∀Zk,j+1 ∈ Zh (4.39)

So far, the definition of Ξj in eq. (4.38) has been written in terms of ζh, a
positive value as defined in eq. (4.11). However, considering a general case
where −Iζh � Zk,i � Iζh, ∀k, i, it is necessary to consider also ±Ξj . Let us
start by analysing first the less general case where 0 � Zk,i � Iζh (i.e. +Ξj).

Using eq. (4.37) and Fact B.8, the quadratic form in eq. (4.39) can be rewritten
as







Z1,j+1
...

Zj,j+1







T

(

H̃†
j

)−1







Z1,j+1
...

Zj,j+1






=







Z1,j+1
...

Zj,j+1







T
(

∞
∑

i=0

(−1)iΞ−1
j (λhΞ

−1
j )i

)







Z1,j+1
...

Zj,j+1






.

(4.40)

Applying Fact B.4 to eq. (4.40) we obtain







Z1,j+1
...

Zj,j+1







T

(

H̃†
j

)−1







Z1,j+1
...

Zj,j+1






�

−







Z1,j+1
...

Zj,j+1







T
(

∞
∑

i=0

λi
h(IΛmin(−Ξ−1

j ))i+1

)







Z1,j+1
...

Zj,j+1






.

(4.41)

62



4.3 Convexity of the cost function

Moreover, using the bound ζh leads to

−







Z1,j+1
...

Zj,j+1







T 





Z1,j+1
...

Zj,j+1







∞
∑

i=0

λi
h(Λmin(−Ξ−1

j ))i+1 �

− jIζ2h

∞
∑

i=0

λi
h(Λmin(−Ξ−1

j ))i+1, ∀Zk,j+1 ∈ Zh

(4.42)

From eqs. (4.41) and (4.42) we conclude that







Z1,j+1
...

Zj,j+1







T

(

H̃†
j

)−1







Z1,j+1
...

Zj,j+1






� −jIζ2h

∞
∑

i=0

λi
h(Λmin(−Ξ−1

j ))i+1,

∀Zk,j+1 ∈ Zh.

(4.43)

Note that the conclusion from eq. (4.42) that led to eq. (4.43) goes in line with
the statement made at the end of item 2 which says that the worst cases for
Zk,v are given by ζh.

With the definition of Ξj in eq. (4.38), it is possible to compute Λmin(−Ξ−1
j ) as

Λmin(−Ξ−1
j ) = − 1

(j − 1)ζh
. (4.44)

Substituting eq. (4.44) into the scalar part of the sum in eq. (4.43) leads to

−jζ2h

∞
∑

i=0

λi
h

(

− 1

(j − 1)ζh

)i+1

= j

∞
∑

i=0

(−1)iλi
h

(

1

ζh

)i−1(
1

j − 1

)i+1

, (4.45)

by changing the variable (i = 2ℓ) in the sum, we obtain

−jζ2h

∞
∑

i=0

λi
h

(

− 1

(j − 1)ζh

)i+1

=

=j

∞
∑

ℓ=0

λ2ℓ
h

(

1

ζh

)2ℓ−1(
1

j − 1

)2ℓ+1

− λ2ℓ+1
h

(

1

ζh

)2ℓ(
1

j − 1

)2ℓ+2

=
j

j − 1

(

ζh −
λh

j − 1

) ∞
∑

ℓ=0

(

λ2
h

ζ2h(j − 1)2

)ℓ

.

(4.46)
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From eqs. (4.43) and (4.46) we obtain that

Iλh −







Z1,j+1
...

Zj,j+1







T

(

H̃†
j

)−1







Z1,j+1
...

Zj,j+1






�

Iλh − I
j

j − 1

(

ζh −
λh

j − 1

) ∞
∑

ℓ=0

(

λ2
h

ζ2h(j − 1)2

)ℓ

, ∀zk,j+1 ∈ Zh.

(4.47)
Therefore, to guarantee eq. (4.39), it is sufficient to guarantee that

Iλh − I
j

j − 1

(

ζh −
λh

j − 1

) ∞
∑

ℓ=0

(

λ2
h

ζ2h(j − 1)2

)ℓ

≻ 0, (4.48)

which is equivalent to the following scalar inequality

λh −
j

j − 1

(

ζh −
λh

j − 1

) ∞
∑

ℓ=0

(

λ2
h

ζ2h(j − 1)2

)ℓ

> 0. (4.49)

Now consider a constant κ > 0 such that λh = κζh. With this, we can rewrite

eq. (4.49) for
∣

∣

∣

κ
j−1

∣

∣

∣
< 1 as follows

κζh −
j

j − 1

(

ζh −
κζh
j − 1

)

1

1− κ2

(j−1)2

> 0. (4.50)

After some algebraic manipulations we obtain

(κ− 1)(κ+ j)

κ+ j − 1
> 0, (4.51)

concluding that κ > 1 and, since λh = κζh, we have that

λh > ζh, ∀h ∈ {2, 3, ...,H}, (4.52)

where H represents the prediction horizon. Therefore, for eq. (4.25) to be
positive definite (i.e. convex cost function (eq. (4.6))), given that 0 � Zk,i �
Iζh, the condition in eq. (4.52) sufficient.

Now, let us consider the general case where −Iζh � Zk,i � Iζh (i.e. ±Ξj is used
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instead of +Ξj). Then eq. (4.40) can be rewritten using Fact B.8 as follows







Z1,j+1
...

Zj,j+1







T

(

H̃†
j

)−1







Z1,j+1
...

Zj,j+1






=







Z1,j+1
...

Zj,j+1







T
(

∞
∑

i=0

(−1)iλ−1
h ((±Ξj)λ

−1
h )i

)







Z1,j+1
...

Zj,j+1






.

(4.53)

In an analogous procedure, an upper bound is found using Fact B.3 and con-
sidering the following

Λmax(−(±Ξj)) = (j − 1)ζh. (4.54)

Solving the sum in eq. (4.53) and, as in the previous case, using a constant
κ > 0 such that λh = κζh, leads to the condition

−(1 + κ)(j − κ)

κ− (j − 1)
> 0, (4.55)

where we conclude that κ > j − 1.

The variable j represents the principal submatrix being analyzed. Since eq. (4.55)
must be true for all j, we consider the worst case j = h, which corresponds to
the last principal submatrix. Therefore we conclude that

λh > (h− 1)ζh, ∀h ∈ {2, 3, ...,H}, (4.56)

It is now possible to say that, for eq. (4.25) to be positive definite (i.e. convex
cost function (eq. (4.6))) given that −Iζh � Zk,i � Iζh, the condition in
eq. (4.56) sufficient.

The previous theorem provides sufficient conditions over the parameters λh for which
the convexity of J is guaranteed. The following section focuses into elucidating analytical
estimates of these conditions as a function of the system model parameters.

4.4. Analytical estimation of the convexity bound

As a direct consequence of Theorem 1, the following Corollary (Convexity for a wide
operation range) provides an analytical estimate of ζh for an admissible set of state space
values and inputs.

Corollary 3 (Convexity for a wide range of operation). An estimate of ζh can be defined
as follows
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ζ̂h = 2
(αh + 1)αh

α2
‖M‖x2

maxβ, (4.57)

where

β =

∥

∥

∥

∥

∥

∥

∥

∥

∥











β2
1 β1β2 · · · β1βI

β1β2 β2
2

...
. . .

...
β1βI · · · β2

I











∥

∥

∥

∥

∥

∥

∥

∥

∥

(4.58)

and

xmax = max
k

(‖x(0)‖, ‖x̄(k)‖), α = max
k

(∥

∥

∥

∥

∥

A(k) +
I
∑

i=1

Bi(k)ui(k)

∥

∥

∥

∥

∥

)

,

βi = max
k

(‖Bi(k)‖).
(4.59)

The norm ‖ · ‖ is defined as the maximum singular value for matrices and the absolute
value for scalars.

Proof. Based on Theorem 1 and using eqs. (4.12) and (4.13), each of the elements of Zk,v

can be written as

xT
e M

∂2xe

∂uι(k)∂uℓ(v)
=

(

h−1
∏

j=0

χ{∅}(j)x(0)− x̄(h)

)T

M

h−1
∏

j=0

χ{(ι,k),(ℓ,v)}(j)x(0) (4.60)

Applying Fact B.1 to each of the elements described in eq. (4.60), using Fact B.6 and the
definition of ζh in eq. (4.11), the following holds

2
(αh + 1)αh

α2
‖M‖x2

maxβ ≥ max
k,v

(‖Zk,v‖)

≥ ζh,

(4.61)

where β, α, βi and xmax are defined in eqs. (4.58) and (4.59) respectively. Therefore, ζ̂h
as defined in eq. (4.57), represents an estimate of ζh in eq. (4.11).

The following result (Convexity for local operation) presents an analytical expression
that relates the values of the convexity bound with the differences between the references
and the values of the state. Therefore, convexity is merely guaranteed in a neighborhood
around the reference values. The value of the bound obtained for local operation is
typically lower than the one for wide operation range, impliying a less restrictive condition
for the controller.

Corollary 4 (Convexity for local operation). It is possible to obtain an estimate of ζh
by limiting the error between the reference and the predicted states as follows

ζ̂h = 2emaxα
h−2xmaxβ, (4.62)
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where β, α, βi and xmax are defined in eqs. (4.58) and (4.59) respectively, and

emax = max
k

(‖Mxe‖) (4.63)

Proof. Using eqs. (4.12) and (4.13), each of the elements of Zk,v can be written as

xT
e M

∂2xe

∂uι(k)∂uℓ(v)
= xT

e M
h−1
∏

j=0

χ{(ι,k),(ℓ,v)}(j)x(0) (4.64)

In an analogous procedure to that of Corollary 3, ζ̂h as defined in eq. (4.62) represents an
estimate of the convexity bound.

Remark 2. The analytical expressions obtained in Corollary 3 and 4 are an estimate.
This comes from using the inequality ‖Ax‖ ≤ ‖A‖‖x‖ (see Fact B.1). In the general
case, when the values of A, B, x(k) and x̄(k) are matrices and vectors respectively, the
value ‖A‖‖x‖ could be considerably higher than the one of ‖Ax‖, giving as a result a loose
estimate of the actual bounds. The estimate becomes looser, the higher the dimension of
the state space. In the specific case where A, B, x(k) and x̄(k) are scalars, the analytical
expressions provide an accurate result. This can be verified by using numerical techniques
along with eqs. (4.11) and (4.15).

Remark 3. The transformation of the state space system from the original model in
eq. (1.11) to the model in eq. (4.2) serves the purpose of easing the analysis done in
Theorem 1 and, consequently, in Corollary 3 and 4. The introduction of the parameter
δi in eq. (4.3) is particulary useful when using the estimates in Corollary 3 and 4. This
parameter can be used to take into account constraints and differences in the range of the
different control inputs ui(k) for a better analytical estimate of ζh.
As an example, let us assume that two control inputs are available, and the constraints

−1 ≤ υ1(k) ≤ 1 and −1 ≤ υ2(k) ≤ 1 are taken into account. In this case δ1 = δ2 = 1
can be selected. Leading to the new inputs u1(k) and u2(k) in eq. (4.3), to share the same
constraints as the original inputs.
Now consider the case where the constraints over υ2(k) are −1

2
≤ υ2(k) ≤ 1

2
. In this

case it is possible to set δ1 = 2δ2 = 1. Transforming the constrains on the new inputs
u1(k) and u2(k) to −1 ≤ u1(k) ≤ 1 and −1 ≤ u2(k) ≤ 1.
A reasonable choice of the parameter ρ in eq. (4.5) can be ρ = 1 or, alternatively,

ρ = maxi(maxk(|υi(k)|)).

4.5. Application to a Boost converter

In order to illustrate numerically the results obtained in sections 4.3 and 4.4, and before
turning to the MMC, let us consider a switched power converter in Boost configuration as
in fig. 4.2 [EM01]. This power converter consists of a DC power supply Vdc, an inductive
element L, a capacitor C, a load resistor Rl and two ideal switches S1 and S2. The
two switches, S1 and S2, are complementary. This leads to the two possible circuit
configurations shown in fig. 4.3.
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Figure 4.2.: Boost converter
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Figure 4.3.: Possible circuit configurations of the Boost converter. a) S1 ON and S2 OFF,
b) S1 OFF and S2 ON

By manipulating the times in which the converter stays in each of the two possible
circuit configurations, it is possible to regulate the voltage in the capacitor C (i.e. vc).

4.5.1. Converter modeling

It is common practice to use a PWM at constant frequency to drive the switches S1 and
S2 in these types of converters. This also allows one to apply average modeling techniques
to obtain a continuous model of the converter [MC76, LPDP13]. Therefore, a discrete
dynamic model of the Boost converter can be written as follows

z(k + 1) = (A+ Bd(k))z(k) + C (4.65)

where

A =

[

0 − 1
L

1
C

− 1
RlC

]

Ts + I, B =

[

0 1
L

− 1
C

0

]

Ts, C =

[

Vdc

L

0

]

Ts (4.66)

and
z(k) =

[

iL(k) vC(k)
]T

. (4.67)

In eqs. (4.65) and (4.66), d(k) and Ts represents the duty cycle of the converter and
the sampling time of the MPC respectively. Additionally 0 ≤ d(k) ≤ 1, ∀k ≥ 0. In
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eq. (4.67), iL(k) and vC(k) represent inductor current and the capacitor voltage respec-
tively.

In order to transform the system in eq. (4.65) into the system in eq. (4.2), eq. (4.4) can
be used to obtain matrices A and B as follows

A =





1 −Ts

L
Vdc

L
Ts

Ts

C
− Ts

RlC
+ 1 0

0 0 1



 , B =





0 Ts

L
0

−Ts

C
0 0

0 0 0



 (4.68)

and
x(k) =

[

iL(k) vC(k) 1
]T

. (4.69)

For the sake of this example, the numerical values shown in table 4.1 are used.

Table 4.1.: Numerical values of the parameters of the Boost converter
Vdc L C Rl Ts xmax emax H M

10V 450µH 220µF 76Ω 42µs ‖[7 35]T ‖ ‖M [0.057 15]T ‖ 12

[

10−3 0
0 1

]

4.5.2. Definition of the control objective

The objective of the controller is to regulate the state vector to a constant reference value.
This constant reference can be defined as

x̄(k) =
[

īL v̄C 1
]T

, d̄(k) = d̄, ∀k ≥ 0 (4.70)

where īL, v̄C and d̄ represent the individual reference values of each of the state space
variables and the control input respectively. With the references in eq. (4.70), the help
of eqs. (4.2), (4.6), (4.7), (4.68) and (4.69), and given that there is only one available
input (u1(k) = d(k)), it is possible to compute the cost function J for a finite prediction
horizon H. Therefore, the optimization problem associated with the MPC for the Boost
converter can be written as follows

min
d(k),∀k≥0

J(x(0), ..., x(H), d(0), .., d(H− 1))

s.t. 0 ≤ d(k) ≤ 1, ∀k ≥ 0
(4.71)

Note that, for the optimization problem in eq. (4.76) to be convex, the values of λh should
meet the requirements given by Theorem 1.

4.5.3. Values of the weighting parameter λh

In this section we aim to use the results in Theorem 1, Corollary 3 and Corollary 4 to
calculate and compare the bounds ζh for the two cases presented in section 4.4 (wide oper-
ation range and local operation). The results using the analytical expressions obtained in
Corollary 3 and Corollary 4 are compared with results obtained numerically (see. fig. 4.4).
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The results in fig. 4.4 show that, as expected, the bounds for a wide operation range
present a higher value than those for local operation. Moreover, the numerical results
for both wide operation and local operation are below the analytical counterparts (see
Remark 2).
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Figure 4.4.: Comparison of the values of the bound ζh as a function of h (the vales were
obtained analytically and numerically). Bound 1 is found considering a wide
range of possible values of the state space vector (see. eq. (4.57)) and Bound 2
is found considering a restricted set of values of the state space vector around
the reference (see eq. (4.62))). Additional values of λh used for simulation are
shown.

4.5.4. Evaluation of the controlled system performance

In order to evaluate how the selection of λh influences the performance of the controller,
fig. 4.5 (a) show the system response from zero initial conditions using the different values
of λh shown in fig. 4.4. Additionally, in fig. 4.5 (b) the response starting from non-
zero initial conditions using the the same λh values is shown. For all these tests the
parameters in table 4.1 are used. Moreover, the simulation uses average models of the
switching devices [EM01].
It can be seen how the response of the controller changes in fig. 4.5 when convexity

is guaranteed. For lower values of λh the system tends to oscillate significantly around
the solution. This can be seen more clearly with λh = 0. The more the value of λh

increases, the more the oscillations are reduced. Moreover, the overshoot and the settling
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time increase. It is important to note that, for large values of λh, the controlled response
gets closer to an open loop response. This can be seen more clearly in fig. 4.5 (b) where
the control action d equals the reference almost the entire time.
We can conclude that, the set of values of λh that guarantees convexity according to the

local operation numerical bound is λ3. The values of λ2 are close to convexity showing
a similar response. It can be seen that non-convex optimization problems lead to an
increase in the oscillations of the controlled variables.

4.6. Application to an MMC

For this example, the MMC and the reduced order model introduced in chapter 2 are
employed. The numerical values of its components can be found in table 2.1 on page 17.
Taking this into account, a reduced order model of the MMC in discrete time can be

written as:
z(k + 1) =

(

A+ B1µ
u(k) + B2µ

l(k)
)

z(k) + C(k), (4.72)

where

A ,









−R
L

0 0 0
0 −R+2Rl

L+2Ll
0 0

0 0 0 0
0 0 0 0









Ts + I, B1 ,









0 0 − 1
2L

0
0 0 − 1

L+2Ll
0

1
NC

1
2NC

0 0
0 0 0 0









Ts,

B2 ,









0 0 0 − 1
2L

0 0 0 1
L+2Ll

0 0 0 0
1

NC
− 1

2NC
0 0









Ts, C(k) ,









1
2L
vdc 0
0 − 2

L+2Ll
v∗ac

0 0
0 0









Ts

(4.73)

and the state space vector is given by

z(k) ,
[

ic(k) il(k) vu(k) vl(k)
]T

. (4.74)

In this model, the control inputs (modulation functions) µu(k) and µl(k) represent the
number of modules inserted in the upper and lower arms of the converter respectively
(0 ≤ µu(k), µl(k) ≤ N). For the sake of simplicity µu(k) and µl(k) are treated as smooth
functions, which is especially useful when using a control law with a PWM (see chapter 2).
The values of A(k), Bi(k), the new state vector x(k) and its respective state space

model can be constructed as in eqs. (4.1), (4.2) and (4.4) on page 56. Here we consider
u1(k) = µu(k) and u2(k) = µl(k).

4.6.1. Reference design

In order to properly control the MMC, it is necessary to track all the state space variables
adequately. Therefore, references for the state have to be carefully designed considering
the converter dynamics. In order to do this, the results in chapter 3 are used.
Table 3.2 on page 38 (case 2) shows the optimal values of the phase and amplitudes

of the circulating current components aiming to reduce the P2P value of the capacitors
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Figure 4.5.: Response of the controlled Boost converter for different values of λh, (a) shows
the response form zero initial conditions. (b) shows the response to a voltage
reference change (from vC = 15 to vC = 30).

voltage ripple. These values are going to be considered for the sake of this example.
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4.6.2. Definition of the control objective

The objective of the controller is to track the state reference, which can be defined as:

x̄(k) =
[

īc(k) īl(k) v̄u(k) v̄l(k) 1
]T

, µ̄u(k), µ̄l(k), ∀k ≥ 0, (4.75)

where īc(k), īl(k), v̄
u(k), v̄l(k), µ̄u(k) and µ̄l(k) represent the individual reference values

for each of the state space variables and the inputs µu(k) and µl(k). With the references
presented in chapter 3, the help of eqs. (4.6) and (4.7), and given that we consider u1(k) =
µu(k) and u2(k) = µl(k), it is possible to write the cost function J of the MPC problem
for a finite prediction horizon H. Therefore, the optimization problem associated with
the MPC can be written as follows

min
µu(k),µl(k),∀i∈k≥0

J(x(0), ..., x(H), µu(0), µl(0), .., µu(H− 1), µl(H− 1))

s.t.
0 ≤ µu(k) ≤ N,
0 ≤ µl(k) ≤ N.

∀k ≥ 0
(4.76)

Note that for the optimization problem in eq. (4.76) to be convex, the values of λh in J (see
eq. (4.7)) should meet the requirements given by Theorem 1. The numerical parameters
used for the controller implementation can be found in table 4.2. Here the value of M is
calculated such that the relative error is considered equitably for all the variables in the
state.

A phase shift of 2π
N

is applied to the PWM between two consecutive modules of the
same arm. Moreover, a voltage balancing algorithm is implemented to guarantee the
assumptions of the reduced order model introduced in chapter 2. The block diagram in
fig. 4.6 illustrates the structure of the controller.

PSfrag replacements x̄(k), µ̄u,l(k)

MPC PWM
Voltage

bal.
MMC

x(k)

vu,l1,...,N(k)

µu,l(k) µu,l
1,...,N(k)

Figure 4.6.: Control scheme of the MMC including a PWM and a voltage balance algo-

rithm. µu,l(k) represent continuous control signals while µu,l
1,...,N(k) represent

a set of binary control signals.
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Table 4.2.: Controller parameter values. xmax represents the maximum allowed value of
the state space vector. emax the weighted maximum allowed error of the state
space vector with respect to its reference where convexity is guaranteed (local
operation) . M represents the a weighting matrix in the quadratic term in the
cost function.

Ts fPWM Horizon H xmax emax M

500µ s 250 Hz 20
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∥
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







1
1
0.3
0.3









∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

M








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0.004
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







∥

∥

∥

∥

∥

∥

∥

∥









20 0 0 0
0 17 0 0
0 0 40 · 103 0
0 0 0 40 · 103









4.6.3. Value of the weighting parameter λh

In section 4.4, the concept of convexity for wide operation range and local operation was
introduced. In order to obtain convexity for a wider range of operation the values of λh are
typically higher. This implies that the controller has less freedom to act against the error
in the state vector. Therefore, in order to reduce the restrictions in the controller, limiting
the convexity to a neighborhood around the references is a reasonable option. Moreover
one can select the values of λh equal to those of the bound required for convexity to reduce
the controller restrictions further.

Tests have shown that, in the case of this MMC, the parameters λh to guarantee con-
vexity for a wide operation range are too restrictive, degrading the controller performance.
Moreover, the analytical estimates of the convexity bound for local operation is affected
significantly by the fact mentioned in Remark 2. For these reasons, only convexity for
local operation (found numerically) is going to be considered in this example. This can be
found using the results in Theorem 1, specifically eqs. (4.11) and (4.15), and considering
the constraints in the control signals, in the state space vector and its distance to the
reference (emax), as shown in table 4.2. We consider values of λh equal to the bound
required for convexity. The results are shown in fig. 4.7.

4.6.4. Evaluation of the controlled system performance

The impact on the system response is evaluated using the values of λh equal to zero
(Case 1) and the values in fig. 4.7 (Case 2). Case 1 is used as a baseline for performance
comparison in the tests presented in the following section. Here, a comparison of the
controller performance in steady state (fig. 4.8 (a)) and the response to changes in the
state references (fig. 4.8 (b)) is shown. It can be seen that Case 1 and Case 2 present
similar performance in all the tests. A good tracking in steady state along with good
response to reference changes is shown. This implies that local convexity can be achieved
without impacting significantly the controller performance.

In fig. 4.8 (b) the amplitude of il is decreased by 20% of its maximum value (1 p.u.)
at t = 0.06s. Note that this small change in the reference allows the converter to stay
always close enough to it to guarantee convexity in Case 2.
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Figure 4.7.: Values of λh as a function of the stage cost h (Case 2). Case 1 refers to λh = 0

4.7. Conclusions

The MPC problem using FCS and PWM was compared, showing the advantages of the
PWM approach. Moreover, a detailed analysis of the convexity of quadratic cost functions
for bilinear systems using PWM was presented. The analysis addresses the case of an
MPC problem where prediction horizons longer than one are required. With this analysis,
conditions to guarantee convexity of the optimization problem with convex constraints
were derived. These conditions are expressed in terms of the parameters of the system and
the controller. Two different scenarios were taken into account, wide range of operation
and local operation. Local operation guarantees convexity in a limited neighborhood
close to the reference values, and restricts the control action less in comparison with the
wide range case. Analytical estimates of the conditions for convexity for both cases were
obtained and compared with their actual values (found numerically). The results showed
that, for the matrix case, the conditions obtained with the analytical expressions are more
restrictive than those obtained numerically.
Numerical examples using a Boost converter and an MMC were presented. In the case

of the Boost converter, the impact on the controller performance when the controller
operates close to the convexity bound was shown. For the MMC, with the help of the
model in chapter 2 and the references in chapter 3, it was possible to obtain a long-horizon
controller whose performance is not affected when convexity is guaranteed in a region close
to the references.
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Figure 4.8.: Response of the controlled MMC, (a) shows the response at steady state and
(b) the response to a current reference change (−20% on il at t = 0.06).
Averages of all the modules for each arm are shown in both cases.
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5. General conclusions and future work

In this work, a deep analysis of the MMC and the problem that arises with the application
of MPC was presented. The MMC is a widely popular converter topology that gives
several advantages in high voltage DC applications over more traditional topologies. Its
modular structure gives the MMC the flexibility to adapt to the requirements of the
application and allows one to use (relatively) low voltage components to handle high
voltage outputs. Power quality and efficiency are also part of the MMC advantages, giving
the possibility to use low switching frequencies while producing low harmonic distortion.

The analysis of the behaviour of the MMC has shown to be a challenge due to its
numerous discontinuous control inputs and the high number of state space variables. This
makes the obtention of explicit analytical relationships between the converter variables
hard to find, making approximations such as considering infinite capacitances, an easy
but low accuracy alternative. Chapter 2 presented a reduced order model that was shown
to be a good alternative to obtain simplified analytical expression of the MMC and to
understand its behaviour. This model conserves all the non-linearities of the original
MMC and at the same time, it simplifies the analysis by considering only continuous
control signals with a reduced number of state space and control variables. Situations
where the accuracy of the model is compromised have been properly identified, showing
that close to some specific frequencies, the error of the model increases. However, if one
stays sufficiently far from these frequencies, then the reduced order model can be highly
accurate even for a low number of modules. The accuracy of the model was also tested
when capacitor voltages were out of balance, showing that it is not necessary to obtain
perfect balance to get good model accuracy.

The reduced order model was also shown to be useful when designing detailed references
for control applications as shown in chapter 3. The fact that the model can be treated
as continuous, opened the possibility to obtain analytical expressions by simply solving
a set of differential equations. Moreover, it has been shown that these references can be
carefully selected to reduce module voltage ripple successfully. This is done by inject-
ing harmonic components in the circulating current of the converter that are selected by
means of numerical optimization. This numerical optimization uses the analytical expres-
sion obtained with the reduced order model which makes it faster than other methods
using simulation approaches. To reduce even further the task of obtaining these optimal
harmonic components, a linear approximation as a function of the load current parame-
ters was presented. It showed very good accuracy for most of the cases, making it a good
alternative when computational resources are limited. Injection of harmonic components
in the load current was also considered. Although this approach could diminish power
quality, the analysis can be taken as a proof of concept and can be considered as an al-
ternative when the application allows it. Voltage ripple reduction can be potentially used
to reduce capacitance requirements, alleviating monetary costs and reducing the size of
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5. General conclusions and future work

an implementation.

Chapter 4 showed that all the previous results can be applied when designing an MPC
for MMCs. Here, conditions that have been successfully applied to exploit the properties
of convexity in the optimization process associated with the MPC are provided. These
conditions are developed for a general class of bilinear systems, opening the path for
it to be used in other applications. The reduced complexity provided by the reduced
order model, the design technique of detailed references for each of the voltages and
currents of the MMC, and being able to guarantee that the complexity of the optimization
associated with the MPC is merely the one of a convex problem, have shown to be
successful in maintaining good tracking performance while allowing one to increase the
prediction horizon of the controller.

Future work

In order to continue and complement the work presented in this thesis, the following points
present some key ideas that can be used as starting points for new research projects.

Extension to 3-phase MMCs

Although the analysis presented in this work focused on a single phase MMC, it has been
shown that the results of the reduced order model and reference design can be extended
to a 3-phase converter (see appendix A). Since the guarantees for convexity are presented
for a general bilinear system, their extension to 3-phase converters is also straightforward.
However, a more detailed simulation and analytical study to corroborate the performance
of the controller using the method proposed here, is still required. The evaluation of
the impact of problems associated only with a 3-phase implementation, such as load
imbalances, is also still pending.

Experimental verification

This work addressed the problem from a theoretical viewpoint, limiting its verification
to a simulation environment. To verify more in detail the applicability of the methods
presented here, an experimental set-up is still required.

Optimization of the control optimization method for hardware implementation

The convexity guarantees allow one to use well studied and less computationally intensive
algorithms for the optimization associated with the MPC. In a real life application these
algorithms have to be implemented in hardware with limited resources. A detailed analysis
on how these convexity guarantees can help to reduce algorithm execution times and how
they can be implemented successfully, can help significantly to evaluate the practical value
of the method.
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Exploiting the convexity properties for different purposes and applications

The analysis presented here also opens the possibility to exploit the properties derived
from convexity on other power converters, or bilinear systems in other areas. This can be
an advantage, not only for using better optimization algorithms, but for the application
of other control schemes.

Distributed control

Particulary, the application of distributed control techniques can be significantly simplified
due to convexity. Distributed control techniques, along with the modularity and flexibility
of the MMC, can be used in order to obtain a significantly more robust system, which is
particulary useful on industrial applications.
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A. Extension to 3-phase MMC

The analysis presented here illustrates how the results in chapters 2 and 3 can be extended
to a 3-phase converter. This is done by showing a simplified version of the procedures
that were first applied to a single phase MMC, including the definition of a reduced order
model, the implications of using continuous control signals and the design of optimal
references injecting circulating current harmonics.

A.1. 3-phase Modular Multilevel Converter

MMC are a series connection of several independently controlled modules. Due to its high
power capabilities 3-phase applications are very common. In fig. A.1, a 3-phase MMC
with N modules per arm is shown.
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Figure A.1.: 3-phase MMC configuration with N modules per arm. µj
i is a binary switch-

ing function

For the sake of simplicity the following is assumed

R1 = R2 = R3 = R, (A.1)
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A. Extension to 3-phase MMC

and
L1 = L2 = L3 = L. (A.2)

The relation of the currents in the converter can be described as follows

ic(t) = ic,1(t) + ic,2(t) + ic,3(t), (A.3)

and
il,3(t) = −il,1(t)− il,2(t). (A.4)

Using circuit analysis, the following equations that describe the behavior of the circuit
in Fig. A.1 can be obtained:

dic,1(t)

dt
= −Ric,1(t)

L
− 1

2L

N
∑

n=1

µl,1
n (t)vl,1n (t)− 1

2L

N
∑

n=1

µu,1
n (t)vu,1n (t) +

vdc
2L

, (A.5)

dic,2(t)

dt
= −Ric,2(t)

L
− 1

2L

N
∑

n=1

µl,2
n (t)vl,2n (t)− 1

2L

N
∑

n=1

µu,2
n (t)vu,2n (t) +

vdc
2L

, (A.6)

dic,3(t)

dt
= −Ric,3(t)

L
− 1

2L

N
∑

n=1

µl,3
n (t)vl,3n (t)− 1

2L

N
∑

n=1

µu,3
n (t)vu,3n (t) +

vdc
2L

, (A.7)

α
dil,1(t)

dt
= −β1,2il,1(t)− γ2il,2(t) + (ζ2 + ζ3)

N
∑

n=1

µl,1
n (t)vl,1n (t)−

ζ3

N
∑

n=1

µl,2
n (t)vl,2n (t)− ζ2

N
∑

n=1

µl,3
n (t)vl,3n (t)− (ζ2 + ζ3)

N
∑

n=1

µu,1
n (t)vu,1n (t)+

ζ3

N
∑

n=1

µu,2
n (t)vu,2n (t) + ζ2

N
∑

n=1

µu,3
n (t)vu,3n (t)− 2(ζ2 + ζ3)vac,1(t)+

2ζ3vac,2(t) + 2ζ2vac,3(t),

(A.8)

α
dil,2(t)

dt
= −γ1il,1(t)− β2,1il,2(t)− ζ3

N
∑

n=1

µl,1
n (t)vl,1n (t)+

(ζ1 + ζ3)
N
∑

n=1

µl,2
n (t)vl,2n (t)− ζ1

N
∑

n=1

µl,3
n (t)vl,3n (t) + ζ3

N
∑

n=1

µu,1
n (t)vu,1n (t)−

(ζ1 + ζ3)

N
∑

n=1

µu,2
n (t)vu,2n (t) + ζ1

N
∑

n=1

µu,3
n (t)vu,3n (t) + 2ζ3vac,1(t)−

2(ζ1 + ζ3)vac,2(t) + 2ζ1vac,3(t),

(A.9)
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A.1 3-phase Modular Multilevel Converter

where

α =3L2 + 4LLl,1 + 4LLl,2 + 4LLl,3 + 4Ll,1Ll,2 + 4Ll,1Ll,3 + 4Ll,2Ll,3, (A.10)

βλ,δ =3LR + 4LRl,λ + 2LRl,3 + 4Ll,δR + 4Ll,δRl,λ + 4Ll,δRl,3 + 2Ll,3R + 4Ll,3Rl,λ,
(A.11)

γδ = −2LRl,δ + 2LRl,3 + 2Ll,δR + 4Ll,δRl,3 − 2Ll,3R− 4Ll,3Rl,δ, (A.12)

ζδ = L+ 2Ll,δ. (A.13)

The previous values are true for λ, δ ∈ {1, 2, 3}. λ and δ are used to distinguish the
parameters of the three branches of the converter.

The dynamics of the capacitor voltages are given by the following expressions

dvu,δi (t)

dt
=

µu,δ
i (t)

C

(

ic,δ(t) +
il,δ(t)

2

)

,

dvl,δi (t)

dt
=

µl,δ
i (t)

C

(

ic,δ(t)−
il,δ(t)

2

)

,

∀δ ∈ {1, 2, 3} ∧ ∀i ∈ {1, . . . , N} (A.14)

Based on the previous equations, the dynamics of the 3-phase MMC can be described
in state space form as follows

dx(t)

dt
= A(~µj

i (t))x(t) + Bu(t), (A.15)

where the state vector x, the input u and the matrix B are defined as

x(t) = [ic,1(t) ic,2(t) ic,3(t) il,1(t) il,2(t)

~vu,1(t) ~vl,1(t) ~vu,2(t) ~vl,2(t) ~vu,3(t) ~vl,3(t)
]T

,
(A.16)

u(t) =
[

vac,1(t) vac,2(t) vac,3(t) vdc
]T

, (A.17)

B =



























0 0 0 1
2L

0 0 0 1
2L

0 0 0 1
2L

−2 ζ2+ζ3
α

2 ζ3
α

2 ζ2
α

0

2 ζ3
α

−2 ζ1+ζ3
α

2 ζ1
α

0
0 0 0 0
...

...
...

...
0 0 0 0



























, (A.18)

where
~vj(t) =

[

vj1(t) . . . vjN (t)
]

. (A.19)
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A. Extension to 3-phase MMC

The matrix A(~µj
i )(t) is given by:

A(~µj
i(t)) =





A1

[

A2(~µ
j
i (t))

A3(~µ
j
i (t))

]

A4(~µ
j
i (t)) 0



 , (A.20)

where

A1 =













−R
L

0 0 0 0
0 −R

L
0 0 0

0 0 −R
L

0 0

0 0 0 −β1,2

α
−γ2

α

0 0 0 −β2,1

α
−γ1

α













, (A.21)

A2(~µ
j
i (t)) =





− 1
2L

~M+
1 0 0

0 − 1
2L

~M+
2 0

0 0 − 1
2L

~M+
3



 , (A.22)

A3(~µ
j
i (t)) =

1

α

[

−(ζ2 + ζ3) ~M
−
1 ζ3 ~M

−
2 ζ2 ~M

−
3

ζ3 ~M
−
1 −(ζ1 + ζ3) ~M

−
2 ζ1 ~M

−
3

]

, (A.23)

A4(~µ
j
i (t)) =















1
C
~M+

1 0 0

0 1
C
~M+

2 0

0 0 1
C
~M+

3
1
2C

~M−
1 0 − 1

2C
~M−

3

0 1
2C

~M−
2 − 1

2C
~M−

3















T

, (A.24)

and
~µj(t) =

[

µj
1(t) . . . µj

N(t)
]

, µj
i (t) ∈ {0, 1}, ∀i ∈ {1, . . . , N}, (A.25)

~M±
δ =

[

~µu,δ(t) ±~µl,δ(t)
]

, ∀δ ∈ {1, 2, 3}. (A.26)

A.2. Reduced Order Model

In order to simplify the modeling of the MMC, and as in chapter 2, let us assume balanced
voltages on each arm of the converter as follows

vjn(t) = vjm(t) = vj(t), ∀n,m ∈ {1, . . . , N}. (A.27)

This allows one to simplify the equations that describe the behavior of the converter using
the following procedure: let µj be a new control variable defined as follows

µj(t) =
N
∑

n=1

µj
n(t), µj(t) ∈ {0, . . . , N}. (A.28)
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A.2 Reduced Order Model

Using the new variable, the derivative of ic,1 in (A.5) can be re-written as

dic,1(t)

dt
= −Ric,1(t)

L
− vl,1(t)µl,1(t)

2L
− vu,1(t)µu,1(t)

2L
+

vdc
2L

. (A.29)

The expressions in eqs. (A.6) to (A.9) can also be re-written analogously using eqs. (A.27)
and (A.28). Following the procedure for eq. (A.8) leads to

α
dil,1(t)

dt
= −β1,2il,1(t)− γ2il,2(t) + (ζ2 + ζ3)µ

l,1(t)vl,1(t)− ζ3µ
l,2(t)vl,2(t)−

ζ2µ
l,3(t)vl,3(t)− (ζ2 + ζ3)µ

u,1(t)vu,1(t) + ζ3µ
u,2(t)vu,2(t) + ζ2µ

u,3(t)vu,3(t)−
2(ζ2 + ζ3)vac,1(t) + 2ζ3vac,2(t) + 2ζ2vac,3(t).

(A.30)

In order to re-write eq. (A.14), it is necessary to add up all the voltages in one arm.
The procedure is shown only for the equations of the upper arm. For the lower arm the
same steps can be followed. Adding the derivatives of all the voltages in the same arm
the following is obtained

N
∑

i=1

dvu,δi (t)

dt
=

N
∑

i=1

µu,δ
i (t)

C

(

ic,δ(t) +
il,δ(t)

2

)

, ∀δ ∈ {1, 2, 3}. (A.31)

Since the current going through the modules is the same in all of them, eqs. (A.27)
and (A.28) can be used to re-write the latter expression as follows

dvu,δ(t)

dt
=

µu,δ(t)

NC

(

ic,δ(t) +
il,δ(t)

2

)

, ∀δ ∈ {1, 2, 3}. (A.32)

With all the equations that define the dynamics of the converter re-written, a new state
space model with a reduced number of state space variables and control signals µ, can be
defined as follows

dx(t)

dt
= A(µj(t))x(t) +Bu(t), (A.33)

where the state space vector is defined as

x(t) = [ic,1(t) ic,2(t) ic,3(t) il,1(t) il,2(t)

vu,1(t) vl,1(t) vu,2(t) vl,2(t) vu,3(t) vl,3(t)
]T

,
(A.34)

and the state space matrices are defined in eqs. (A.35) and (A.36).

Note that the number of control variables is reduced from 6N binary signals to 6
continuous signals in the interval [0, N ]. Moreover, the number of state space variables is
reduced from 6N + 5 to 11. The number of state space variables and control signals in
the reduced order model is independent of the number of modules N .
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A.2 Reduced Order Model

B =




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. (A.36)

Implications of using continuous control signals

In order to obtain a continuous model of the MMC, the quantization effect produced by
the switching of the modules is neglected. To evaluate the effect of this approximation,
the response of the models with and without the quantization are compared. It is worth
mentioning that the response of the reduced order model when the quantization is taken
into account is identical to the response of the full order model as long as the voltages in
the modules of the converter are balanced properly. In order to evaluate the effect of the
quantization, the following continuous control signals are used

µu,δ(t) = N
1 + cos(ωt+ 2π

3
(1− δ))

2
,

µl,δ(t) = N
1− cos(ωt+ 2π

3
(1− δ))

2
,

∀δ ∈ {1, 2, 3}.

(A.37)

These control signals produce a sinusoidal output current on each phase.

The model is tested with different numbers of modules N . The quantized inputs are
generated by considering a nearest integer approximation of the expressions in eq. (A.37).
The simulated steady state waveforms of the model without the quantization are compared
with the waveforms of the model with the quantization using the following expression

Error =
‖yQ − y‖
‖yQ‖

, (A.38)

where, y is the response of the model without the quantization, yQ the response of the
model with the quantization, and ‖ ∗ ‖ represents the Euclidian norm of the argument.

In fig. A.2 the results of the validation of the reduced order model are shown for different
frequencies. It is possible to see that for some particular frequencies the error increases
significantly. The frequencies where this happens are dependent on the number of modules
used, these frequencies are higher the higher the number of modules. In addition, the
higher the number of modules the lower the magnitude of the error peaks.

The frequencies where the error between the two responses is higher, are directly related
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Figure A.2.: Validation of the reduced order model for different number of modules per
arm

with the resonant frequencies of the converter. Figures A.3 and A.4 show the amplitude
of the response of the models with and without the quantization. It can be seen that
the amplitude of the circulating current is significantly affected by the resonances in the
circuit. Around the resonant frequencies the error in fig. A.2 appears in all the variables
(load current and module voltages) almost equally.

In order to estimate these frequencies easily, one can consider an approach based on
linearization. However, as seen in chapter 2, the error of this approach can be significantly
higher. Therefore, here we limit the analysis to a numerical comparison between the
resonant frequencies obtained with and without the quantization using simulation tools.

Table A.1 shows a numerical comparison of one of the resonant frequencies with and
without considering the quantization. This particular frequency is analyzed since it can
match the operating frequency of the converter, typically 50Hz or 60Hz. It can be seen
that including the quantization moves the resonant frequencies to a lower value. Moreover,
this effect is more noticeable the lower the number of modules used.

Table A.1.: Numerical comparison of resonant frequencies (Hz)

N w. Quant.(fig. A.3) w/o. Quant. (fig. A.4)
4 42.29 44.35
8 61.4 62.1
12 75.19 75.76
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Figure A.3.: Amplitude of the MMC variables for different frequency values with quanti-
zation

A.3. Reference design with voltage ripple reduction

In order to be able to manipulate and analyze the behaviour of the converter, the reduced
order model can be used to obtain analytical expressions that further describe its behavior.
Here we aim to find expressions that relate the converter currents with the module voltages
in order to be able to freely manipulate module voltage ripple.

Let us start by defining the circulating currents as follows

ic,δ(t) =i0,δ + î2,δ cos(2ωt+ φ2,δ) + î4,δ cos(4ωt+ φ4,δ)+

î6,δ cos(6ωt+ φ6,δ), ∀δ ∈ {1, 2, 3},
(A.39)

where the value i0,δ represents the DC component in charge of transferring the energy
from the DC voltage source to the modules, and finally to the load. î2,δ, î4,δ and î6,δ
represent the amplitudes of each of the harmonic components, and φ2,δ, φ4,δ and φ6,δ their
respective phase angles.

The load current is defined as follows

il,δ(t) = îl,δ cos

(

ωt+ φl,δ +
2π

3
(1− δ)

)

, ∀δ ∈ {1, 2, 3}, (A.40)

with
il,3(t) = −il,2(t)− il,1(t). (A.41)
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Figure A.4.: Amplitude of the MMC variables for different frequency values without quan-
tization

Using the expression for the circulating current in eq. (A.39) and the expression for
the load current in eq. (A.40), the values of the control functions µj as a function of the
voltage of the modules can be obtained using eq. (A.33).

An additional equation is required since there are only five equations (derivatives of
the currents) and six control functions µj. The new equation relates the voltage of the
central node of the load with the currents in the circuit as follows

vN,0(t) =
vdc
2

− µu,1(t)vu,1(t)− R

(

ic,1(t) +
il,1(t)

2

)

− L
dic,1(t)

dt
−

Rl,1il,1(t)−
ζ1
2

dil,1(t)

dt
− vac,1(t).

(A.42)

Solving for µj using eqs. (A.33), (A.39), (A.40) and (A.42) yields

µu,1(t) =− 1

2vu,1(t)

(

ζ1
dil,1(t)

dt
+ 2L

dic,1(t)

dt
+R(il,1(t) + 2ic,1(t))+

2Rl,1il,1(t) + 2vac,1(t)− vdc + 2vN,0(t)

)

,

(A.43)
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µl,1(t) =
1

2vl,1(t)

(

ζ1
dil,1(t)

dt
− 2L

dic,1(t)

dt
+R(il,1(t)− 2ic,1(t))+

2Rl,1il,1(t) + 2vac,1(t) + vdc + 2vN,0(t)

)

,

(A.44)

µu,2(t) =− 1

2vu,2(t)

(

ζ2
dil,2(t)

dt
+ 2L

dic,2(t)

dt
+R(il,2(t) + 2ic,2(t))+

2Rl,2il,2(t) + 2vac,2(t)− vdc + 2vN,0(t)

)

,

(A.45)

µl,2(t) =
1

2vl,2(t)

(

ζ2
dil,2(t)

dt
− 2L

dic,2(t)

dt
+R(il,2(t)− 2ic,2(t))+

2Rl,2il,2(t) + 2vac,2(t) + vdc + 2vN,0(t)

)

,

(A.46)

µu,3(t) =
1

2vu,3(t)

(

ζ3

(

dil,1(t)

dt
+

dil,2(t)

dt

)

− 2L
dic,3(t)

dt
+R(il,1(t) + il,2(t)−

2ic,3(t)) + 2Rl,3 (il,1(t) + il,2(t))− 2vac,3(t) + vdc − 2vN,0(t)

)

,

(A.47)

µl,3(t) =− 1

2vu,3(t)

(

ζ3

(

dil,1(t)

dt
+

dil,2(t)

dt

)

+ 2L
dic,3(t)

dt
+R(il,1(t) + il,2(t)+

2ic,3(t)) + 2Rl,3 (il,1(t) + il,2(t))− 2vac,3(t)− vdc − 2vN,0(t)

)

.

(A.48)

Note that these solutions are continuous.

In order to obtain the value of i0,δ, it is necessary to analyze the energy transferred and
received by each of the arms of the converter. The derivative of the energy stored on each
arm can be computed as

dEu,δ(t)

dt
=

1

CN

(

ic,δ(t) +
il,δ(t)

2

)

µu,δ(t)vu,δ(t), ∀δ ∈ {1, 2, 3}, (A.49)

dEl,δ(t)

dt
=

1

CN

(

ic,δ(t)−
il,δ(t)

2

)

µl,δ(t)vl,δ(t), ∀δ ∈ {1, 2, 3}. (A.50)

In steady state, the average of the derivative of the total energy in each phase must be
equal to zero. Using eqs. (A.39), (A.40) and (A.43) to (A.50), this value can be computed
for all the phases of the converter as follows

ω

2π

∫ t+ 2π
ω

t

(

dEu,δ(τ)

dτ
+

dEl,δ(τ)

dτ

)

dτ = vdci0,δ − 2Ri0,δ − Rî22,δ −Rî24,δ −Rî26,δ−

1

4
Rî2l,δ −

1

2
Rl,δ î

2
l,δ = 0, ∀δ ∈ {1, 2, 3}.

(A.51)
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Solving for i0,δ yields

i0,δ =

vdc −
√

v2dc − 8R
(

1
2
Rl,δ î2l,δ +R

(

î22,δ + î24,δ + î26,δ +
1
4
î2l,δ

))

4R
.

(A.52)

Note that the value i0,δ in each phase only depends on the circulating current components
and the load current flowing through the same phase.
With the continuous analytical expressions obtained with the reduced order model, it is

possible to analyze the MMC in more detail. A common problem that can be addressed
is the minimization of the voltage ripple in the modules of the converter. In order to
be able to reduce this variable optimally, it is necessary to obtain an explicit analytical
expression of the voltage in terms of the rest of the variables.
The time domain solution of the voltage of the modules can be found by solving the

differential equations in eq. (A.33). The differential equation for the voltage of the modules
of the upper arms can be written as follows

dvu,δ(t)

dt
=

1

CN

(

ic,δ(t) +
il,δ(t)

2

)

µu,δ(t), (A.53)

or multiplying vu,δ(t) on both sides

vu,δ(t)
dvu,δ(t)

dt
=

1

CN

(

ic,δ(t) +
il,δ(t)

2

)

µu,δ(t)vu,δ(t). (A.54)

Note that, according to eqs. (A.43) to (A.45), the product µu,δ(t)vu,δ(t) is independent
of vu,δ(t) . Therefore, vu,δ(t) can be computed as follows

∫

vu,δ(t)
dvu,δ(t)

dt
dt =

∫

1

CN

(

ic,δ(t) +
il,δ(t)

2

)

µu,δ(t)vu,δ(t)dt, (A.55a)

1

2
(vu,δ(t))2 =

∫

1

CN

(

ic,δ(t) +
il,δ(t)

2

)

µu,δ(t)vu,δ(t)dt+ 2(v̄δ)2, (A.55b)

vu,δ(t) =

√

∫

2

CN

(

ic,δ(t) +
il,δ(t)

2

)

µu,δ(t)vu,δ(t)dt+ (v̄δ)2, (A.55c)

where

v̄δ =
vdc − 2Ri0,δ

N
. (A.56)

An analogous procedure can be followed to find vl,δ. Note that the voltage in the modules
vu,δ and vl,δ depends on the circulating current in eq. (A.39). Therefore, amplitudes of
the different harmonics î2,δ, î4,δ and î6,δ and their respective phase angles can be used to
reduce the ripple of these voltages.
Table A.2 shows the numerical values of the parameters of the converter. Using these

numerical values, the parameters of the circulating current in eq. (A.39) can be obtained.
The expression in eq. (A.55c) is used for numerical optimization. The resulting values of
amplitude and phase are shown also in table A.2.
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Table A.2.: Parameter values of the 3-phase MMC (p.u.) at ω = 2π50 ∀δ ∈ {1, 2, 3}
Variable Value Variable Value Variable Value (rad.)

vdc 2.19 î2,1 0.54 φ2,1 4.69

N 8 mod. î4,1 0.17 φ4,1 1.51

ω 2π50 rad. î6,1 −0.06 φ6,1 0.98

R 0.004 î2,2 0.54 φ2,2 2.59

ωL 0.075 î4,2 0.17 φ4,2 3.6

1/ωC 0.089 î6,2 −0.06 φ6,2 0.99

ωLl,δ 0.15 î2,3 0.54 φ2,3 0.5

Rl,δ 0.01 î4,3 0.17 φ4,3 −0.59

îl,δ 1 î6,3 −0.05 φ6,3 0.87

This analysis yields the conclusion that including harmonics in the circulating current
of order 6th or higher, produces no significant improvement in the reduction of the voltage
ripple.

A.4. Conclusions

An extension of the reduced order model for 3-phase MMCs was presented and the impli-
cations of using continuous control signals were analyzed. With this model, the dimension
of the state system can be reduced to 11 and the control signals to 6, independently of
the number of modules used in the converter. As in the case of the single phase MMC,
this model allows one to obtain analytical expressions that can be used to optimize pa-
rameters of the converter, such as the voltage ripple in the capacitors, and to obtain
detailed references for control purposes. The reduced order model also gives the freedom
of neglecting the quantization produced by the switching eliminating the discontinuities
in the system. The implications of this were evaluated showing that, for some frequencies,
the error produced by neglecting the quantization is significantly higher.
The simplified analysis presented in this section can be taken as a proof of concept of

the capabilities of the method presented in chapters 2 and 3 for its applications to 3-phase
MMCs. A more detailed analysis may be required, opening the door for future work.
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B. Some matrix properties

In this appendix several useful matrix properties are compiled. For more information, see
[Ber05]

Fact B.1. For x ∈ Rn and A ∈ Rn×n the following inequality holds

‖Ax‖ ≤ ‖A‖‖x‖

where ‖ · ‖ represents the Euclidean norm for vectors and the maximum singular value for
matrices.

Fact B.2. Let B ∈ Rn×n, with B symmetric. Then B is positive definite (semidefinite)
if and only if every leading principal sub-matrix is positive definite (semidefinite).1

Fact B.3. For x ∈ Rn and A ∈ Rn×n, with A symmetric, the following inequality holds

‖x‖2Λmin(A) 6 xTAx 6 ‖x‖2Λmax(A)

where Λmin(•) and Λmax(•) represent the minimum and maximum eigenvalue of the argu-
ment respectively, and ‖x‖2 = xTx.

Fact B.4. Let A ∈ Rn×n be symmetric and β, α ∈ R. Then the following holds

Iα ≺ A ≺ Iβ

if and only if Λmax(A) < β and Λmin(A) > α

Fact B.5. Let A ∈ Rn×n be symmetric. Then the following holds

max(|Λmin(A)|, |Λmax(A)|) = ‖A‖

where ‖A‖ represents the norm of A defined as its maximum singular value.

Fact B.6. Let A,B ∈ Rn×n be symmetric matrices with scalar entries ai,j, bi,j ∈ R, ∀i, j
respectively. If |ai,j| ≤ bi,j, ∀i, j, then

‖A‖ ≤ ‖B‖

Fact B.7. Let us define matrix A as follows:

A ,

[

A1,1 A1,2

AT
1,2 A2,2

]

1The leading principal sub-matrices are constructed by eliminating the last i rows and columns of B
with 0 6 i 6 n− 1.
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where A ∈ R

(n+m)×(n+m), A1,1 ∈ R
n×n, A1,2 ∈ R

n×m and A2,2 ∈ R
m×m. Then A ≻ 0 if

and only if
A1,1 ≻ 0

and
A2,2 −AT

1,2A
−1
1,1A1,2 ≻ 0

Fact B.8. Let A,B ∈ Rn×n with A non-singular. Then (A+B)−1 can be written as

(A+B)−1 =
∞
∑

i=0

(−1)iA−1(BA−1)i.

provided that ρ(BA−1) < 1, where ρ(·) refers to the spectral radius of the argument.
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[AÄNN12] Noman Ahmed, Lennart Ängquist, Staffan Norrga, and Hans-Peter Nee.
Validation of the continuous model of the modular multilevel converter with
blocking/deblocking capability. In AC and DC Power Transmission (ACDC
2012), 10th IET International Conference on, pages 1–6. IET, 2012.
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