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Abstract

The contents of this thesis are on a semiparametric extension of the ACD model
of Engle and Russell (1998). The proposal of the Semi-ACD model is based on
the decomposition of the data of interest into a deterministic and a stochastic part,
whereby the former is assumed to be time-varying. A non-negative, time-varying,
smooth scale function is included into the model to take this into account. The pro-
posal of this thesis is its estimation with a local polynomial regression. An automatic
iterative plug-in bandwidth selection algorithm is developed. No prior assumptions
about a specific model are required and the scale function estimation can be used
flexibly. The estimated trend is removed from the data and any parametric model
can be fitted to the standardized data. A simulation study evaluates the Semi-ACD
model on the basis of various criteria. In direct comparison with the cubic spline
method, it is clearly superior. Non-consideration of the deterministic component is
a clear misspecification. An extension of the proposal to log data shows that the
estimation of the scale function is clearly simplified. In addition, decisive theoretical
properties for the Semi-Log-ACD model are derived and the bandwidth selection
algorithm is further automated. It is shown that this does not affect the rate of con-
vergence of the asymptotical optimal bandwidth. To forecast non-negative financial
data, the above models are combined with known and new forecasting methods. In
order to not limit the flexibility of the semiparametric idea, bootstrap methods are
chosen as nonparametric forecasting methods. Compared to model-based Kalman
filter predictions, these give not the best forecasts, but are clearly better compared to
the corresponding parametric model forecasts. The algorithm is applied to forecast
the log-GDP of developing and developed countries. Random Walk models with a
constant drift, a linear drift and a local linear drift are applied, as well. It is found
that combining forecasting methods improves the forecasts and especially including
the local linear regression method stabilizes the forecasts and enables the detection of
variations in the trend process, that are typical for developing countries. Promising
research questions to further improve the Semi-(Log-)ACD models are presented. In
particular, first results of a simulation study show that applying the local polyno-
mial regression IPI to log-transformed returns in a GARCH model framework works
well. Pursuing this proposal further should be of great value for the research on
quantitative risk management.



Zusammenfassung

Diese Arbeit stellt eine semiparametrische Erweiterung des ACD-Modells von Engle
und Russell (1998) vor. Der Vorschlag des Semi-ACD-Modells basiert auf der Zer-
legung der Daten in einen deterministischen und einen stochastischen Teil, wobei der
Erste als zeitvariabel angenommen wird. Um dies entsprechend zu berücksichtigen
wird eine nicht-negative, zeitvariable, glatte Skalenfunktion in das Modell aufgenom-
men. Der Vorschlag dieser Arbeit ist ihre Schätzung mit einer lokal polynomialen Re-
gression. Ein automatischer, iterativer Plug-In Bandbreitenwahl-Algorithmus wird
entwickelt. Es sind keine vorherigen Annahmen über ein bestimmtes Modell er-
forderlich und die Skalenfunktionsschätzung kann flexibel eingesetzt werden. Der
geschätzte Trend wird aus den Daten entfernt und ein beliebiges parametrisches
Modell kann an die standardisierten Daten angepasst werden. Anhand verschiedener
Kriterien aus einer Simulationsstudie wird das Semi-ACD Modell bewertet. Im di-
rekten Vergleich zur kubischen Spline-Methode ist sie deutlich überlegen. Die Nicht-
berücksichtigung der deterministischen Komponente ist eine eindeutige Fehlspezi-
fikation. Eine Erweiterung des Semi-ACD Modells zur Anpassung an Log-Daten
zeigt, dass die Schätzung der Skalenfunktion deutlich vereinfacht wird. Darüber
hinaus werden entscheidende theoretische Eigenschaften für das Semi-Log-ACD-
Modell abgeleitet und der Bandbreitenwahl-Algorithmus weiter automatisiert. Dies
hat keinen Einfluss auf die Konvergenzrate der asymptotisch optimalen Bandbre-
ite. Zur Prognose nicht-negativer Finanzdaten werden die oben genannten Mod-
elle mit bekannten und neuen Prognosemethoden kombiniert. Bootstrap-Methoden
werden als nichtparametrische Prognosemethoden gewählt. Im Vergleich zu mod-
ellbasierten Kalman-Filter-Vorhersagen liefern diese nicht die besten Vorhersagen,
sind aber deutlich besser als die entsprechenden parametrischen Modellvorhersagen.
Der Algorithmus wird weiter verwendet, um das Log-BIP von Entwicklungs- und
Industrieländern zu prognostizieren. Auch Random Walk Modelle mit konstantem,
linearem und lokal linearem Drift werden verwendet. Die Kombination von Prog-
nosemethoden verbessert die Vorhersage und insbesondere die Einbeziehung der lokal
linearen Regressionsmethode stabilisiert sie. Zudem wird die Erkennung von für En-
twicklungsländer typischen Schwankungen im Trendprozess ermöglicht. Forschungs-
fragen zur weiteren Verbesserung der Semi-(Log-)ACD-Modelle werden vorgestellt.
Insbesondere zeigen ersten Ergebnisse einer Simulationsstudie, dass die Anwendung
des lokal polynomialen Regressionsalgorithmus für log-transformierte Renditen in
einer GARCH-Modell Umgebung gut funktioniert. Eine tiefere Untersuchung und
Fortführung dieser Idee sollten von großem Wert für die Forschung im Bereich des
quantitativen Risikomanagements sein.
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1 Introduction1

1.1 Market microstructure theory and the ACD
model

One of the many technological advancements of the 21st century is the possibility
to record data of interest on ultra-high frequency level (UHF), i.e. fully and usually
the second it arises (see Engle, 2000). Especially for the analysis of financial market
dynamics, the accessibility of data on micro level, exact to the second and contain-
ing the whole range of information corresponding to the data, gives unprecedented
opportunities. It opens up new fields of research in financial economics and econo-
metrics, such as the analysis of UHF trade durations (see Hautsch, 2004). They are
defined as the time passed between two consecutive transactions. Used as a proxy
for information or trading intensity, trade durations are assumed to deliver valuable
information concerning the processing of information in financial markets. This is
an essential idea of market microstructure theory as pointed out, for instance, by
Glosten and Milgrom (1985), Admati and Pfleiderer (1988) or Easley et al. (1997).
To fully utilize the opportunity of analysing UHF trade duration data, its salient
features need to be addressed appropriately. The irregular time-spacing of the data
is one of these features and poses a severe challenge for the theoretical development
and practical application of suitable models. Time series models, such as the (Gen-
eralized) Autoregressive Conditional Heteroskedasticity ((G)ARCH) model by Engle
(1982) and Bollerslev (1986), or ARMA models require the data to be equidistant
and are therefore not applicable. In order to adequately address this problem with-
out possibly alleviating the information content of UHF data through aggregation,
Engle and Russell (1998) develop the Autoregressive Conditional Duration (ACD)

1The literature mentioned in this chapter makes no claim to completeness. Rather it is intended
to put the following theoretical and applied research into context by giving selected examples of
available research literature.

1
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model. The ACD model describes trade durations as the product of their conditional
expected duration and i.i.d. positive valued innovations. Treating trade durations as
a sequence of different time intervals, the stochastic process that generates them is a
point process. The classes of point processes are modelled with the expected dura-
tion being conditional on time as a function of past observations and its own lagged
history. Besides dealing with the irregular spacing of the data, the ACD model is
also able to capture the clustering of trade durations, another characteristic feature
of UHF financial trade duration data. In a market microstructure theoretical frame,
Easley and O’Hara (1992) explain the clusters with new information being processed
at an unequal speed by the market participants. Due to asymmetric information, an
increase in trading intensity is caused by informed traders wanting to take advan-
tage of the arrival of news. Uninformed traders, however, only suspect additional
information due to the increase in trading activity and follow the actions of the al-
legedly informed traders. Thus, trading is done over a period of time, rather than
a single point in time and long durations follow long durations and short durations
follow short durations. The analysis of trade durations can explain why an agent will
trade by associating the durations with the intensity of liquidity demand. Also the
question of when an agent will trade can be addressed by assuming that an informed
trader will act on the basis of exclusive information, whereas the uninformed traders
only follow. Among other research questions in the field of market microstructure
theory, the analysis of trade durations to infer on the trading intensity in the fi-
nancial market is a very active field of research. For example, Dufour and Engle
(2000b) apply the ACD model to discuss the impact of trade durations on the price
formation process. Zuccolotto (2002) introduces the daily ACD (d-ACD) model to
analyse the relationship between the number of shares traded when a stock market
opens and intra-daily trading intensity. Spierdijk (2004) studies the role of trade
durations in the dissemination of information by applying the ACD model to specify
the data generating process which underlies the trading intensity. Tay et al. (2009)
aim to infer on the probability of informed trading by applying the asymmetric ACD
model of Bauwens and Giot (2003). Over the course of time, with new models and
methods available, results and findings are being updated. Diamond and Verrechhia
(1987) state, for example, that periods of no trading activity resulting in long trade
durations are due to bad news, whereas Easley and O’Hara (1992) see long trade
durations as a sign of no news. Karaa et al. (2013) find that high informed trading
follows low liquidity, which is in contrast to the findings of Admati and Pfleiderer
(1988). Karaa et al. (2013) further find, that high trading intensity is only related
to high volatility, large trading volume and narrow spreads for liquid stocks. This
coincides with the results of Manganelli (2005).
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For testing other market microstructure theory hypotheses, so-called marks associ-
ated with each trade are used. Marks define a subset with specific characteristics,
which is considered for the analysis, so that the process is selectively thinned out
(Engle and Russell, 1998). For example, only transactions are considered for the
analysis for which a certain change in the price is given. Gouriéroux et al. (1999)
aim to infer on liquidity by capturing the dependencies between intra-trade durations
and transaction volumes or prices. They introduce duration based activity measures
for the time until a fixed volume or price is traded. Giot (2000) studies intra-day
volatility by applying the Log-ACD model of Bauwens and Giot (2000) and Bauwens
et al. (2008) to data with a price and volume mark. Kwok et al. (2009) extend the
ACMD (Autoregressive Conditional Marked Duration) model of Tay et al. (2004)
by including a three-state price movement indicator into the model. They find that
their results support Easley and O’Hara’s (1992) result on long trade durations be-
ing due to the absence of news. However, the results of Tay et al. (2004) confirm
Diamond and Verrecchia (1987) in trading intensity being low as a consequence of
the arrival of bad news. Depending on the features of the data at hand, different
specifications for the expected durations and/or different conditional distribution
choices for the innovations make the ACD model very flexible. The contents of the
following work are oriented towards the development of suitable ACD models and
ACD model extensions. A market microstructure theoretical interpretation of the
results is not provided, but rather an evaluation of models and methods used with
regards to their practical performance. The previous brief descriptions of selected
market microstructural topics and articles are used to embed the model in a financial
market theory environment. It is shown in the following, though, that the area of
application of the ACD model is much wider.
The ACD model as the primary focus of this work is very flexible and manifold re-
garding its setup and financial areas of application.2 Saart et al. (2015) classify the
development of the ACD model into three generations. The first generation extends
the originally proposed standard exponential and Weibull conditional distribution as-
sumptions. Grammig and Maurer (2000) allow for non-monotonic hazard functions
with their proposal of a Burr distribution and Zhang et al. (2001) use a generalized
Gamma conditional distribution for their Threshold ACD model. In order to increase
the flexibility of the ACD model, mixtures of the error distributions are proposed in

2The main area for application of the ACD model is in finance. Due to its universal and
adjustable nature it is sometimes applied in non-finance research, as well. For example, Vlahogianni
et al. (2011) use it to estimate the congestion duration in urban signalized arterials in Athens.
Khan and Mittnik (2018) compare the performance of different autoregressive linear and nonlinear
time series models concerning their modelling and forecasting qualities in the field of earthquake
seismology of the Hindu Kush region.
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the literature, as well. For example, De Luca and Gallo (2004, 2008 and 2010) study
the mixture of distributions with (time-varying) weights for a MEM (multiplicative
error model, Engle, 2002), a generalization of the ACD model. Gómez-Déniz and
Pérez-Rodŕıguez (2016) extend the model of De Luca and Zuccolotto (2003) from
a finite and infinite mixture of exponential distributions to distribution mixtures
of non-exponentials based distributions. The second generation of the ACD model
development extends the trade duration specification non-linearly. The Log-ACD
model, for example, contains two model specifications based on the log-transformed
data. The Threshold ACD model of Zhang et al. (2001), mentioned above, is another
example of the second generation ACD model, because it allows the expected condi-
tional duration to depend nonlinearly on past information. Also including another
model for different components of the data is common. Ghysels and Jasiak (1998),
for instance, define the ACD-GARCH model which allows past asset return volatili-
ties to affect trade durations and v.v.. Engle (2000) also proposes an ACD-GARCH
model, where an ACD model specifies the durations and the GARCH model is ap-
plied to the volatility of returns, conditional on durations.3 This model is taken up
in either form and developed further by other authors, such as Grammig and Wellner
(2002), Min et al. (2003), Racicot et al. (2008), Czado and Haug (2009, 2010) or
Chung and Hwang (2016). Pacurar (2008) gives a very detailed overview over the
scientific literature on the ACD model development since its first proposal. Hautsch
(2011) gives some examples of further ACD models and Kaur Bhogal and Thekke
Variyam (2018) give a “post-Pacurar (2008)” (Kaur Bhogal and Thekke Variyam,
2018, p.2) structured literature review on the ACD model development following the
classification of Saart et al. (2015).
A final example of a recently published ACD model extension serves to summarize
the core statement of this section with regard to the multiple extension possibili-
ties. Jeyasreedharan et al. (2014) propose the autoregressive conditional directional
duration (ACDD) model, which defines negative durations if the trade is bid-driven
and positive durations when it is ask-driven. The mean equation of the model fol-
lows a semiparametric fractional autoregressive (SEMIFAR) formulation and the
variance is modelled via GARCH. The resulting SEMIFAR-ACDD model addresses
the now symmetric distribution of the directional durations, as well as persistence
and long-memory. It combines several extensions and modifications and the title
of the paper “Yet another ACD model: the Autoregressive Conditional Directional

3Meddahi et al. (2006) discuss the differences between the ACD-GARCH models of Ghysels
and Jasiak (1998) and Engle (2000). Without getting into too much detail the differences are in the
conditioning information, the GARCH formulation and the GARCH representation of the returns.
Eventually Meddahi et al. (2006) combine the advantages of each ACD-GARCH model in another
model proposal.
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Duration (ACDD) model” possibly alludes to the use of the term YAARCH (Yet
another ARCH; Figlewski, 1995 conference presentation UCSD), described by Engle
(2002) as a “linguistic culmination” (Engle, 2002, p. 426), to express the multitude
of extensions available for the class of ARCH models.
The demarcation required for the overview of the state of research presented in the
following section is drawn as follows: The contents of this work are about semipara-
metrically extending the ACD model. This falls into the third generation specifica-
tion of Saart et al. (2015) and is motivated by taking into account another specific
feature of UHF data: the daily pattern for UHF and the long-term dynamics for
High-Frequency (HF) data. The daily pattern of the volume of trades, spreads and
their volatility was found to be U-shaped (see McInish and Wood, 1992), whereas
it typically is inversely U-shaped for trade durations (Engle and Russell, 1998). In
either case, the stationarity assumption of the ACD model is violated. The main
idea underlying the following contents is based on decomposing the data. In a first
step, the data is detrended via nonparametric methods and the resulting residuals
are fitted to an ACD-type model parametrically. The next section gives an overview
over the research literature available on non- and semiparametric methods in the
ACD model and ACD model-related context.4

1.2 State of research on non- and semiparametric
ACD models

Referring to the combination of parametric and nonparametric methods, there is
a variety of semiparametric ACD or ACD model-related extensions, that address
different aspects of the model. Solgi and Mira (2013), for instance, propose a semi-
parametric MEM where the nonparametric estimation applies to the innovation dis-
tribution. For a countable infinite mixture of Gamma distributions with two free
parameters a Bayesian approach is described to increase the flexibility of the model.
Drost and Werker (2004) propose a semiparametric duration model which contains
a semiparametrically efficient score functions estimator of the unknown model pa-
rameter vector. Also, the model allows to specify the dependencies between the
innovations to range from being i.i.d. to being random, as the i.i.d. assumption
of the ACD model might be too restrictive in some cases. Ranasinghe and Silva-

4‘ACD and ACD model-related’ includes the ACD model as proposed by Engle and Russell
(1998) and its different forms, concerning e.g. the distribution choice of the innovations, different
specifications of the conditional durations or transformation of the data. Also literature on semi-
parametric MEM and GARCH models is considered in the following, as the ACD model is a special
case of the MEM and closely related in its form and properties to the GARCH model.
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pulle (2011) build on this idea of a semiparametric unknown model parameter vector
estimator and develop a constrained version. The possible problem of parameter
estimations lying outside the constrained parameter space and thereby violating the
imposed non-negativity restrictions is addressed with this model. Zuccolotto (2003)
takes another approach by claiming that traders receive more information on finan-
cial market events from the quantiles estimation than from estimating the expected
trade durations. A parametric approach, assuming an exponential distribution and
a semiparametric distribution-assumption free approach are proposed.
Here, the data is decomposed into a deterministic and a stochastic part to account
for intra-daily seasonality or long-term dynamics nonparametrically and to model
them together with the conditional dynamics of the data series. Decomposing the
data is also a common approach for the analysis of financial returns with GARCH
models. Engle and Lee (1999), for example, propose a volatility component model
which describes the considered volatility process with an additive relationship be-
tween a stochastic long-run and a short-run component. Formally the decomposition
is done by replacing the unconditional variance in the GARCH model specification
of the conditional variance by the long-run component, which itself is described in
an autoregressive manner. Engle and Rangel (2008) decompose the components
as determined by Engle and Lee (1999) multiplicatively and use a nonparametric
exponential quadratic spline approach for the estimation of the introduced trend.
Similarly, Engle and Russell (1998) propose to multiplicatively decompose the trade
durations for the ACD model into a stochastic and a deterministic part. For esti-
mating the latter component cubic splines are proposed with knots chosen on every
hour and additionally on the last half hour of the trading day. Cubic splines are also
used by Bauwens and Giot (2000) to determine whether there is seasonality within
a trading week and are still a prominent tool to eliminate intraday seasonality in
financial data (see e.g. Simonsen, 2007, Czado and Haug, 2009 or Karaa et al., 2013
and 2017). The performance of the method introduced in this work is compared
with the cubic spline method as a reference in chapter 2 and is shown to be better.
Other suggestions for decomposition are, e.g. by Brownlees et al. (2010) which define
three components to model the data: a multiplicative daily, an intra-daily periodic
and an intra-daily dynamic one. The same authors propose the composite MEM in
2012, where the conditional mean is described additively by a time-varying and a
zero-mean stationary component.
In general, the dynamic and stochastic components can either be estimated jointly
or via a two-step procedure. Pohlmeier and Gerhard (2001) analyze intraday volatil-
ity through the estimation of transaction price changes via an ordered probit model
with conditional heteroskedasticity. A two-stage estimation procedure is not appli-
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cable, so they define the discrete price jump as a count variable and extend it to the
domain of negative integers. A Fourier series approximation (Andersen and Boller-
slev, 1997) is used to identify the factors driving the volatility. Rodŕıguez-Poo et al.
(2008) propose a method to jointly estimate the seasonal and dynamic components
of durations by extending the generalized profile likelihood techniques by Severini
and Wong (1992) to non i.i.d. observations. They compare one-step and two-step es-
timations with a modified Nadaraya-Watson (NW) and splines, each. They compute
the bandwidth data-driven for the one-step NW method and find that this allows the
method to quickly adapt to changes in the seasonal pattern. Brownlees and Gallo
(2011) propose the joint estimation of the two components in their semiparametric
MEM. They use a shrinkage type estimator, which shrinks the parameters of the
deterministic part towards zero. A quadratic form of this component’s coefficients
serves as the penalty function for the penalized log-likelihood of the model. Dungey
et al. (2014) also propose a two-stage semiparametric ACD (SACD) model, which
aims to minimise the risk of model misspecification by subsequently correcting the
fitted parametric ACD model. The methods for the two-stage semiparametric esti-
mator of the conditional variance of Mishra et al. (2010) and Long et al. (2011)
are adapted and parametric and nonparametric conditional duration estimators are
combined in a multiplicative way. In their first step an ACD model is fitted paramet-
rically. Then, nonparametric estimates of the conditional mean of the standardized
parametric residuals are obtained and used as a correction factor for the parametric
ACD estimator in a second step. By doing so, misspecification in the parametric
model might be corrected. The results of empirically applying the model with a
local exponential method and a least squares Cross-Validation (CV) approach for
obtaining the optimal bandwidth show, that the duration coverage of the semipara-
metric model specification is superior to the parametric model. Another two-step
procedure is described by Savu and Ng (2006), who propose the Semiparametric
Copula Duration model (SCoD). After deseasonalising the observations with a non-
linear kernel regression, the copula models are estimated in two stages. A random
sample is drawn from the vector of durations and lagged durations and using the
empirical distribution, the marginal distributions are estimated nonparametrically.
The copula parameter vector is then estimated in a second step by maximizing a
log-likelihood function.
This cross-section through parts of the literature on semiparametric ACD and ACD-
related models shows, that one of the overarching objectives is an increased flexibil-
ity of the model by waiving prior assumptions on the conditional distribution or the
model specifications, for example. The approach presented in this thesis fits into the
current literature on the semiparametric estimation of non-negative financial data
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by presenting an approach, with which the data of interest can be modelled more
flexibly. It is a two-stage estimation procedure in order to avoid possible numerical
issues arising with a joint estimation of the deterministic and the stochastic com-
ponent (Hautsch and Pohlmeier, 2001) and to allow the estimation procedure to be
of a rather general nature. This proposal is derived from the close structural re-
lationship between the GARCH and the ACD model. Feng (2004a) developed the
Semi-GARCH model for simultaneously modelling the conditional heteroskedasticity
and scale change in financial returns. This idea is carried over to the ACD model
context by Feng (2014) and extended further throughout the course of this thesis.
The principal contribution, that runs through all chapters of this work is an iterative
plug-in (IPI) algorithm for estimating the scale function of the data with an auto-
matically selected bandwidth (see Gasser et al., 1991). It is shown to work well in
theory and in practice and it can also be extended and adapted concerning its setup,
but also concerning its area of application. The following contents of the chapters
are summarized as follows:

1.3 Summary of contents

Chapter 2 examines the quality of an IPI bandwidth selection algorithm for local
linearly estimating the diurnal pattern of UHF trade duration data (see Feng, 2014).
A two-step fitting procedure of the semiparametric ACD model is described, based
on the decomposition of the observations into a deterministic and a stochastic part.
The underlying deterministic smooth scale function is estimated nonparametrically
with an automatically selected bandwidth by the data-driven IPI algorithm. The
data is then standardized by the estimated scale function and a likely stationary
data series is obtained to which the Exponential ACD (EACD) model is fitted. The
overall aim of this chapter is to discuss the practical performance of the IPI algorithm
taking into account various bandwidth influencing factors and to compare the results
with the commonly used cubic spline method (Engle and Russell, 1998). For this
purpose a large simulation study was carried out, with sets of different sample sizes,
trends and variances. The main results of the simulation study show, that 1) the
Semi-ACD model is clearly superior to the parametric ACD model, thus not taking
into account the diurnal pattern before fitting the model is a severe misspecification.
2) A best combination of bandwidth influencing factors, i.e. of inflation method,
inflation factor and coefficient for calculating the lag-window estimator of the sum
of autocovariances is identified and 3) the proposed Semi-ACD model outperforms
the cubic spline method.
Chapter 3 describes a semiparametric extension of the first-type Log-ACD model
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of Bauwens and Giot (2000) and Bauwens et al. (2008). Basic properties of the
parametric part as a general linear process are discussed. A special case for the
residuals following an ARMA model with log-normally distributed innovations are
considered, as well. Conditions are derived for conditional distributions other than
the log-normal one for weak stationarity of the standardized data and their ability
to model heavy tails at different levels in the data. The scale function is estimated
by local polynomial regression via a data-driven IPI algorithm with automatic band-
width selection. To further automatize the IPI algorithm two parametric and one
nonparametric method for estimating the variance factor are introduced into the IPI.
They are practically compared and evaluated via real financial non-negative data ex-
amples. The Semi-Log-ACD and the Semi-ACD model are fitted to data examples
and due to its flexibility and ease of estimating the scale function the Semi-Log-ACD
is recommended over the Semi-ACD model. A possible effect of estimation errors in
the semiparametric part on the parametric estimation is investigated and conditions
are found under which the parametric estimation is

√
T -consistent.

The Semi-Log-ACD model of chapter 3 is taken up again in chapter 4. The nonpara-
metric trend estimation methods discussed in the previous chapters are combined
with bootstrap methods for forecasting different non-negative financial data. The
trend estimation, as well as the actual forecasting methods do not require a prior
assumption on the distribution for the innovations. A special case of the Semi-Log-
ACD model under a conditional log-normal distribution is discussed, as well. The
observations of this model are forecast using Kalman filters, in order to compare
the results of ACD and ARMA model forecasts. The forecasts obtained with the
Semi-ACD model and the Semi-Log-ACD model with and without a conditional dis-
tribution assumption are applied to different data-types of six firms. The obtained
point and 90% interval forecasts are evaluated with training data sets for ten different
forecast horizons with two criteria each. The results show that the semiparametric
methods are on average more stable and more precise than the parametric methods.
The Semi-Log-ACD model with the conditional log-normal distribution gives the
best forecasts of the methods proposed.
In chapter 5 the IPI is applied in a non-financial context. Developing economies
are of major importance for global macroeconomic development. However, the em-
pirical analysis and especially the forecasting of macroeconomic time series remain
difficult due to a lack of sufficient data, data frequency, high volatility, and often
highly non-linear developments. The data-driven local linear trend estimation with
an extended IPI algorithm for determining the bandwidth endogenously is applied
for forecasting the GDP of developing economies. This approach allows a smooth
trend estimation that takes care of temporary changes in trend processes which can
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often be found in macroeconomic time series. Further, for forecasting, the näıve
random walk model is extended by this local linear, temporarily adjusting trend.
Six selected developing economies and two advanced economies are used for showing
the practical performance of the proposed methods. Different forecast combinations
are evaluated and their results compared. Combining the local linear approach and
the random walk with a local linear trend with other forecasting methods improves
forecasting accuracy and reduces variance. The overall results of the forecasts seem
rather reliable and encourage the use of this methodology.
Chapter 6 discusses further miscellaneous research questions derived from the find-
ings of the different main chapters. The proposals include an idea to use the Semi-
Log-ACD model for return series in a GARCH model framework. The algorithm
developed in chapter 3 is directly applicable to return data after transformation.
A simulation study is carried out to enable a first discussion on the performance.
Results on the bandwidth selection, scale function estimation, model parameter es-
timation and the application of the Semi-Log-GARCH model to real financial return
data support this idea for future research. In view of the new BASEL reform, improv-
ing the possibilities for estimating the volatility is very valuable. Another approach
presented is on a new transformation, which applies to the log-data and allows to
improve and refine its normality. It is applied to a data example and the results
are in clear favour of this approach. To improve the quality of the growth devel-
opment forecasts, this chapter also examines whether including neural networks as
single methods and in combination with the methods of chapter 5 is suitable. It
is found, that these additional methods do not improve the forecasting quality as
compared to the results of chapter 5. Further suggestions are included without nu-
merical results. One is on introducing a local bandwidth factor in the IPI to improve
the trend estimation by allowing for different bandwidths. Another proposal is on a
model parameter estimation approach using estimating functions as an alternative
to the (Q)MLE. As a potential possibility for improving the quality of forecasts of
non-negative financial data, block bootstrap methods are discussed. Chapter 7 sum-
marizes the results of each chapter and embeds them in the current state of research.
The empirical analyses were carried out with R. The following packages were used:
ACDm (Belfrage, 2016) and fACD (Perlin, 2014) for the parametric fitting of ACD
models. fGARCH (Wuertz et al., 2017) for estimating GARCH model parameters.
ggpubr (Alboukadel, 2017) for displaying figures and forecast (Hyndman and Khan-
dakar, 2008) to apply NNAR and NNARLL methods for forecasting. splines (R-Core
Team, 2017) for applying cubic splines method. xtable (Dahl, 2016) to import tables
obtained in R into a TeX environment. The raw financial data used was retrieved
from the Thomson Reuters Tick History data base and processed accordingly.



2 On the iterative plug-in algorithm for
estimating diurnal patterns of financial

trade durations5

2.1 Introduction

Since the introduction of the ACD model in the seminal work of Engle and Russell
(1998), the analysis of financial market behaviour based on transaction durations
became one of the most important sub-areas of financial econometrics. Numerous
extensions of this model are proposed, including the Log-ACD model (Bauwens and
Giot, 2000), the class of the augmented ACD models (Fernandes and Grammig,
2006) and the threshold ACD model (Zhang et al., 2001). For further information
on the development in this context we refer the reader to Pacurar (2008), Russell
and Engle (2010), and in particular the monograph of Hautsch (2011) and references
therein.
Intraday trade durations often exhibit a nonstationary deterministic diurnal pattern
(or intraday seasonality). The estimation of this component is necessary for further
econometric analysis of trade durations using a stationary ACD model. Different
approaches are proposed in the literature to deal with this problem. For instance,
the use of a cubic spline was originally proposed by Engle and Russell (1998). A
nonparametric approach is proposed by Bauwens and Giot (2000). Rodŕıguez-Poo et
al. (2008) proposed to estimate the diurnal duration pattern and the ACD parame-
ters jointly using generalized profile likelihood, which results in a transformed kernel
estimator of the nonparametric part. Further approaches for estimating the diurnal
duration pattern are e.g. the linear spline (Dufour and Engle, 2000a,b), the wavelet
method (Bortoluzzo et al., 2010) and the shrinkage technique (Brownlees and Gallo,
2011). Most recently, Feng (2014) proposed a Semi-ACD (semiparametric ACD)
model with a local linear estimator for the diurnal duration pattern and developed

5Chapter 2 is published with the same title in the Journal of Statistical Computation and
Simulation. Apart from the adjustments of references in the text, corrections of spelling mistakes
and exclusion of the abstract, nothing has been changed regarding the published paper. It is referred
to as Feng et al. (2016) throughout this work.
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an iterative plug-in algorithm (Gasser et al., 1991) for selecting the bandwidth. In
this chapter we propose to use a design adaptive version of the asymptotically opti-
mal bandwidth obtained by minimizing a partially weighted asymptotic MISE (mean
integrated squared error), bA. To reduce the computing time the two required inte-
grals in bA are calculated numerically at some equidistant evaluation points not at all
observation points, without affecting the rate of convergence of b̂A. Furthermore, a
closed form formula of bA under an EACD(1, 1) model is obtained and employed for
assessing the quality of the selected bandwidth in the simulation. The proposed IPI
algorithm is applicable under different ACD models, though, because the variance
factor in bA is obtained by a nonparametric lag-window estimator (Bühlmann, 1996).
The aim of this chapter is to study the practical performance of the IPI bandwidth
selector in detail and to compare the data-driven local linear approach with the
commonly used cubic spline. For this purpose, a simulation study with two diurnal
patterns, two EACD(1, 1) models and three sample sizes is carried out, with 400
replications in each case. For each replication the bandwidth is selected by differ-
ent sub-methods. Furthermore, the effect of the window-width for calculating the
lag-window estimate of the variance factor is also investigated. Cubic spline diurnal
pattern estimators with two choices of knots are included for comparison purpose.
In order to discuss the effect of the nonparametric estimator on further parametric
estimation, EACD(1, 1) models are fitted to the original data and the standardized
durations in each case, respectively. The results are then assessed according to the
MSE of the selected bandwidth, the goodness-of-fit of the estimated diurnal pattern
and the quality of the resulting parameter estimation. The analysis confirmed that
the IPI bandwidth selector works very well. In particular, the assessment results
following each of these criteria confirmed the consistency of the proposed bandwidth
selector and the resulting diurnal pattern estimate. Some findings are: 1) According
to the MSE of the selected bandwidth, the best bandwidth selector changes from
case to case. 2) According to the goodness-of-fit of the estimated diurnal patterns,
a sub-method is found which works almost overall the best. We will hence suggest
the use of this sub-method in practice. 3) Concerning the estimation of the scale
parameter and that of the latent variable: Empirical efficiency of the estimates using
the original data decreases to zero, while that of the estimates using the standardized
durations increases very quickly, as the sample size increases. This indicates that the
estimates in the former case are clearly wrong but those in the latter case are consis-
tent. Hence, the adjustment of the diurnal pattern is necessary, before a parametric
ACD model is fitted. 4) The effect of the diurnal pattern on the estimated parameter
of the lagged observation is not as strong as for the other two parameters, because the
diurnal pattern is a long-term time-varying component. However, the improvement
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in this case is still very clear, as the empirical efficiency of the estimated parameters
following the Semi-ACD model achieves 100% in many cases. 5) Regarding the cubic
spline: As expected, the simulation results show that this approach works very well,
if the cubic spline assumption is roughly fulfilled, but its behaviour can be very poor
otherwise. Another disadvantage of the cubic spline is that the resulting diurnal
pattern is sometimes quite unstable. Some details and the practical relevance of the
proposal are illustrated by simulated and real data examples. All of the results show
that our proposal usually outperforms the cubic spline.
The model and the estimator are defined in Section 2.2. The bandwidth selector is
proposed in Section 2.3. Section 2.4 reports the simulation results. Practical rele-
vance of the proposal is illustrated in Section 2.5 by examples. Concluding remarks
in Section 2.6 close the chapter.

2.2 The Semi-ACD model for diurnal durations
Consider the time points To = t0 < t1 < ... < tN < tN+1 = Tc, at which trades
occur, where To and Tc denote the opening and closing times of a stock market, and
N is the (random) number of trades on a trading day. Throughout this chapter we
assume that ti are rescaled trading time points with To = 0 and Tc = 1, except for
Section 2.5.2, where the opening and closing times on German financial markets are
employed. Let xi = ti − ti−1 be the durations between two consecutive trades. A
commonly used model for xi (Engle and Russell, 1998) is

xi = φ(ti)ψiεi, (2.1)

where φ(ti) is often called a (deterministic) diurnal pattern, ψi is the conditional
expectation of the diurnally adjusted durations, which follows e.g. some stationary
ACD model, and εi ≥ 0 are i.i.d. random variables with E(εi) = 1. Let yi = ψiεi.
It is assumed that E(yi) = 1 so that the model is uniquely defined, i.e. yi follows a
unit ACD with E(ψi) = 1. Engle and Russell (1998) propose to specify ψi following
the idea of the GARCH (generalized autoregressive conditional heteroskedasticity,
Engle, 1982 and Bollerslev, 1986) model:

ψi = ω +
p∑
j=1

αjyi−j +
q∑

k=1
βkψi−k (2.2)

with a standard exponential distribution of εi. The restriction E(yi) = 1 implies
that ω = 1−∑p

j=1 αj −
∑q
k=1 βk. Hence, in a Semi-ACD model the scale parameter

ω is no more free.
Note that φ(ti) is (approximately) the local mean of xi. However, xi and φ(ti) depend
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strongly on N . Under regularity conditions we have indeed xi = Op(N−1). Hence,
it is more convenient to study the deterministic pattern in the rescaled durations
zi = Nxi, because the local mean of zi is (approximately) a fixed deterministic
function. For given N , the estimation of the local mean of zi is equivalent to that of
φ(ti). Furthermore, we assume that trades on a day occur according to some design
density 0 < f(t) < ∞ on t ∈ [0, 1] and define m(t) = 1/f(t) and φN(t) = m(t)/N .
According to Feng (2014), it holds E[zi|N ] = m(ti−1)[1 + O(N−1/2)]. This ensures
that φ(t) can be equivalently estimated through φ̂(t) = m̂(t)/N .

2.2.1 Local linear estimation of the scale function

Note that xi and zi can be rewritten as special nonparametric regression models as
follows:

xi = φ(ti) + φ(ti)(yi − 1) (2.3)

and
zi ≈ m(ti) +m(ti)(yi − 1). (2.4)

Now, the derivatives m(ν)(t) can be estimated by minimizing the weighted least
squares

Q =
N∑
i=1
{zi − a0(t)− a1(t)(ti − t)− ...− ad(t)(ti − t)d}2K

(
ti − t
b

)
, (2.5)

where K(u) is a kernel function and b is the bandwidth. We obtain the estimates
m̂(ν)(t) = ν!âν , for ν ≤ d, and accordingly φ̂(ν)(t) = ν!âν

N
. If we put d = 1 and ν = 0,

this leads to the local linear estimates m̂(t) = â0 and φ̂(t) = â0/N , which will be
used in this chapter. The asymptotic properties of m̂(t) and φ̂(t) are obtained by
Feng (2014). Let γ(k) denote the autocovariances of yi and S = ∑

γ(k) be their sum.
Furthermore, let R(K) =

∫
K2(u)du and I(K) =

∫
u2K(u)du for a kernel function

K. At an interior point 0 < t < T the asymptotic variance and asymptotic bias of
m̂(t) are given by

var [m̂(t)] ≈ R(K)S
Nbf(t)m

2(t) = R(K)S
Nb

m3(t) (2.6)

and
B[m̂(t)] = b2m

′′(t)I(K)
2 . (2.7)

Accordingly, we have var [φ̂(t)] ≈ var [m̂(t)]/N2 and B[φ̂(t)] ≈ B[m̂(t)]/N . Based on
equations (2.6) and (2.7) the asymptotic mean integrated squared error (AMISE),
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an approximation of MISE(m̂) =
∫
E{[m̂(t)−m(t)]2}dt, is given by

AMISE(m̂) = b4
∫

[m′′(t)]2dtI(K)
4 + R(K)S

∫
m3(t)dt

Nb
. (2.8)

By minimizing the AMISE we obtain the asymptotically optimal bandwidth

b̃A =
(
R(K)S
I2(K)

I(m3)
I([m′′]2)

)1/5

N−1/5, (2.9)

where I(m3) =
∫
m3(t)dt and I([m′′]2) =

∫
[m′′(t)]2dt. One problem with the above

formula is that the I(m3) term may cause unnecessary instability of the selected
bandwidth. To solve this problem we propose to use the following formula of the
optimal bandwidth

bA =
(
R(K)S
I2(K)

I(m2)
I([m′′]2)

)1/5

N−1/5, (2.10)

which minimizes the dominating part of the partially weighted MISE
∫
{B[m̂(t)]2 +

f(t)V [m̂(t)]}dt. Note that a Semi-ACD model can also be applied to model other
financial variables such as daily average durations and daily trade volumes. The
formula of bA in (2.10) is design adaptive, i.e. it is the same for equidistant, non-
equidistant fixed design as well as for random design. Hence, an algorithm developed
based on this formula works for Semi-ACD models in all of these cases. This fact
also ensures that many known results on the IPI bandwidth selector with dependent
errors can be easily adapted to the one developed in the next section. Furthermore,
we will see that by means of this idea the computing time can be reduced clearly
without affecting the rate of convergence of the proposed bandwidth selector.

To assess the simulation results, we need to calculate b̃A or bA under given design.
Note that R(K) and I(K) are two known constants. The terms I([m′′]2), I(m2) or
I(m3) can also be calculated easily. However, the formula of the sum of γ(k) for a
given ACD model is still unknown in the literature. In the simulation in Section 2.4,
EACD(1, 1) models will be used. In this case, S can be calculated according to the
following lemma.

Lemma 2.1 If yi follow an EACD(1, 1) with εi ∼ exp(1) and ψi = (1 − α − β) +
αyi−1 + βψi−1, then the sum of all γ(k) of yi is given by

S =
(

1− β
1− (α + β)

)2 1− (α + β)2

1− (α + β)2 − α2 . (2.11)

The proof of Lemma 2.1 is given in the appendix. Note that the above formula only
holds for an EACD(1, 1). More general results will not be discussed here. For a
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given diurnal pattern and given EACD(1, 1), it can be shown that the difference
between b̃A and bA is quite small. This confirms that the use of bA is theoretically
and practically reasonable.

2.2.2 Estimation of the ACD parameters

Having estimated the scale function and diurnally adjusted the original duration se-
ries, an ACD model can be fitted to the diurnally adjusted durations. Let θ denote
the vector of the unknown ACD(p, q) parameters, θ = (ω, α1, ..., αp, β1, ..., βq)′. As-
sume that m̂(t) and φ̂(t) are consistent estimates of m(t) and φ(t), then θ can be
estimated from ŷi = xi/φ̂(ti) using the QML (quasi maximum likelihood) method
under an EACD(p, q) assumption as proposed by Engle and Russell (1998) and Engle
(2000). If the type of the distribution of εi is assumed, fully efficient ML estimates of
θ can also be employed. For a detailed description on these topics we refer the reader
to Chapter 5.3 of Hautsch (2011) and references therein. The resulting parameter
estimate will be denoted by θ̂. Now, assume that yi = ψiεi were observable. The
parameter vector θ could also be estimated from yi using the same method. Denote
this (practically unavailable) estimate by θ̃. It is well known that θ̃ is

√
N -consistent

and asymptotically normal. According to the similarity between the GARCH and
the ACD models, consistency and asymptotic properties of θ̂ can be obtained fol-
lowing the ideas of Lemma 1 and Theorem 3 in Feng (2004a). These results indicate
that θ̂ is also

√
N -consistent and asymptotically normal up to a bias term. Following

the proof of Theorem 3 in Feng (2004a), we can see that this bias term is the same
for kernel and local linear estimates of m(t). Moreover, it is easy to see that this
conclusion does not depend on N . Hence we have B(θ̂) = E[θ̂− θ̃] = O[b2 + (Nb)−1],
where the O(b2) term is due to the integral of the bias E[m̂(t) − m(t)] and the
O[(Nb)−1] term is caused by the variance of m̂(t). If a bandwidth b = O(n−a) with
1/4 < a < 1/2 is used, this bias term is asymptotically negligible. If a bandwidth of
the optimal order O(bA) is used, we have B(θ̂) = O(N−2/5). Furthermore, if xi follow
a parametric ACD model with φ(t) to be a constant, then θ̂ is

√
N -consistent and

asymptotically normal, if b is of a larger order than O(N−1/2). This is particularly
true, when b is selected by the proposed data-driven algorithm in the next section.
This means that the Semi-ACD model also works well in the case when the data
do not have a diurnal pattern, but with some loss in the efficiency. Proofs of those
results are omitted to save space.
For the practical implementation we propose to fit an EACD(1, 1) or another suit-
able ACD model to ŷi using the fACD package in R. Other available ACD packages
in the literature can also be employed for this purpose. As in the parametric case,
model selection using the AIC or BIC can also be applied to ŷi.
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2.3 The bandwidth selection procedure

The IPI bandwidth selector to be proposed extends the original idea of Gasser et al.
(1991) in different ways. Let b0 denote the starting bandwidth. In the j-th iteration,
m′′(t) will be estimated using the bandwidth b2j calculated from bj−1, the bandwidth
selected in the (j−1)-th iteration. The formula for calculating b2j from bj−1 is called
the inflation method. Gasser et al. (1991) used the following MIM (multiplicative
inflation method) inflation form

b2j = bj−1N
1/10. (2.12)

On the other hand, Beran and Feng (2002a) proposed to use a faster EIM (exponen-
tial inflation method) inflation form

b2j = bλj−1, (2.13)

where 0 < λ < 1 denotes the inflation factor, which determines the rate of conver-
gence of b̂A.

Assume that the MIM or the EIM with a suitable value of λ is used and that Ŝj is
calculated from γ̂(k) using the Bartlett window wk = 1−k/(L+1) with L = cfN

1/3.
Let
√
N < M < N be an odd integer. Define t∗r = (r − 1)/(M − 1) to be M

equidistant evaluation points, and m1 = [0.05 ∗ (M − 1)] and m2 = [0.95 ∗M ], where
[·] denotes the integer part. The proposed IPI algorithm processes as follows:

Step 1a. In the j-th iteration estimate m̂j(t∗r), r = 1, ...,M , by bj−1. Calculate
Îj(m2) = {∑m2

r=m1 [m̂j(t∗r)]2}/(m2 − m1 + 1) and ŷji = xi/φ̂j(ti), i = 1, ..., N .
Then calculate γ̂j(k) from ŷji and obtain Ŝj = ∑

|k|<Lwkγ̂j(k).

Step 1b. Calculate b2j using the chosen method, estimate m̂′′j (t∗r) by local cubic
regression and calculate Îj([m′′]2) = {∑m2

r=m1 [m̂′′j (t∗r)]2}/(m2 −m1 + 1).

Step 2. Insert the values of Îj(m2), Ŝj and Îj([m′′]2) into (2.10) to obtain bj.

Step 3. Increase j by one and repeatedly carry out Steps 1 and 2 until convergence
or until a given number of iterations is reached. Put b̂ = bj.

The idea to estimate m̂j(t) and m̂′′j (t) only at M evaluation points will reduce the
computing time very clearly. In particular note that m̂′′j (t) is a third order local poly-
nomial estimator, which has to be carried out in each iteration. This simplification
will not affect the rate of convergence of b̂, if M >

√
N , because the highest rate

of convergence of an IPI bandwidth selector in the current context is of the order
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O(N−2/7). Our empirical experience shows that bandwidths selected by different M
values are almost the same. In the simulation in the next section, M = 201 is fixed to
ensure that the large simulation can be finished in an adequate time. Note that even
for the smallest sample size there, i.e. N = 8000, M is just about 2.5% of the whole
observation time points. Our simulation results show that this simplification works
very well in practice. Although it is well known that local polynomial regression has
automatic boundary correction, the curve estimation quality at a boundary point is
still worse than that at an interior point. This problem was dealt with in two ways.
Firstly, at any boundary point, the total bandwidth used is kept to be the same as
at an interior point. For instance, for a given bandwidth b, the estimation at a point
t < b is carried out with all observations within the interval ti ∈ [0, 2b]. Secondly,
the integrals Îj(m2) and Îj([m′′]2) are calculated without the 5% estimates at each
boundary to avoid their effect on the bandwidth selection.
For calculating the standardized durations in the j-th iteration, φ̂j(ti) are obtained
from m̂j(t∗r) by means of linear interpolation. At the beginning, we propose to fix
b0 = 1/10, so that a rather large number of observations, i.e. 20% of the obser-
vations, is used for estimating the scale function in the first iteration. In general,
the finally selected bandwidth does not depend on b0, if set to any reasonable value,
because the IPI algorithm is a fix-point search procedure. It can be shown that with
the above starting bandwidth bj will become a consistent estimator of bA in a few
iterations. The choice of the inflation method is more important. In this chapter
we will mainly consider the use of the EIM. Although, as shown by Beran and Feng
(2002a), an inflation factor of λ = 5/7 will lead to the highest O(N−2/7) convergence
rate, Feng (2014) proposed the use of λ = 1/2 so that b̂ is most stable but with a
lower rate of convergence of the order O(N−1/5), because the variation of the intra-
day durations is very large. This idea was confirmed by the simulation results in
the next section. A further choice of λ is λ = 5/9 to minimize the MSE of m̂′′ with
a rate of convergence of the order O(N−2/9). A bandwidth selected by the MIM of
Gasser et al. (1991) is also most stable with the rate of convergence of the order
O(N−1/5). The error in Ŝ will cause an additional error term in b̂/bA of the order
Op(N−1/3), which is asymptotically negligible. This fact is not affected by the choice
of cf . For practical application, we propose to use m̂(ti) and φ(ti) obtained by using
the selected bandwidth b̂ at all observation points ti as the final estimates.
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2.4 The simulation study

In the simulation study different cases were constructed to examine the practical
performance of the bandwidth selector in detail and to see, whether a relatively
better combination of the control parameters exists and how the algorithm can be
further improved.

2.4.1 Description of the simulation study

Firstly, two diurnal patterns, m1(t) and m2(t), were chosen, where m1(t) exhibits
a typical inverse U-shape and m2(t) shows an atypical duration pattern with long
durations in the morning and afternoon and comparatively short durations around
noon. These two patterns are displayed in Figure 2.1, which were indeed designed
based on the estimated diurnal duration patterns of the BMW stocks on two trading
days in August 2011 (see Feng, 2014). The closed function forms are very complex
and are hence omitted. For each diurnal pattern, data were generated using two
EACD(1, 1) models with:

ACD1 : ψ1i = 0.04 + 0.09xi−1 + 0.87ψ1i−1 (2.14)

and
ACD2 : ψ2i = 0.04 + 0.14xi−1 + 0.82ψ2i−1 (2.15)

with ω = 1 − α − β. The simulation was carried out with three different sam-
ple sizes N1 = 8000, N2 = 16000 and N3 = 32000. The combinations of pat-
tern, model and sample size define 12 main cases of the simulation in total. For
each main case 400 replications were generated.6 Local linear estimators with band-
width selection using four inflation methods, i.e. the MIM and the three EIM with
λ = 5/7, 5/9 and 1/2, are considered. For each method, Ŝ was then calculated
with five values of cf , namely cf = 2, 4, 6, 8 and 10, respectively. Hence, for
each replication the bandwidth was selected by 20 sub-methods separately. The
weighting function used in (2.5) is the bi-square kernel. Furthermore, two cu-
bic splines (called CSA and CSB) with KnotsA= {0, 2/17, 4/17, ..., 16/17, 1} and
KnotsB= {0, 1/17, 2/17, ..., 15/17, 16/17, 1} are included as comparisons. KnotsA is
chosen following Engle and Russell (1998), which corresponds to those set on each
hour on German financial markets, except for the last one. KnotsB, corresponding to
those set on each half an hour, is chosen to discuss the effect of the choice of knots.

6For a few replications in some main cases the estimated diurnal pattern at some boundary
points or some parameter estimates in the second stage were negative. Replications with this prob-
lem were replaced by the next simulated data set until 400 replications were carried out successfully.
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Figure 2.1 – Estimation results for the selected examples Case 111 (left) and Case
223 (right).
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2.4.2 Performance of the selected bandwidth

The quality of the bandwidth selection is first discussed according to its bias, variance
and MSE, and then assessed by the goodness-of-fit, i.e. the corresponding MSEs of
the estimated diurnal patterns using the selected bandwidths. Finally, the simulation
results are evaluated by the quality of the estimated ACD parameters in each case.
Tables 2.1 to 2.3 show the means, standard deviations as well as the mean squared
errors of the bandwidths (multiplied by 100) selected in the 400 replications in the
corresponding sub-cases for N1 = 8000, N2 = 16000 and N3 = 32000, respectively,
together with the true values of bA calculated following Lemma 2.1 (also multiplied
by 100). Firstly, we can see that the MSE decreases strongly, when N increases,
which indicates that the proposed bandwidth selector is consistent. It is clear that
the performance of b̂ depends on the form of the diurnal pattern and the properties of
the ACD model very strongly. It is the easiest to select the bandwidth for the second
diurnal pattern with the first ACD model, while the bandwidth is very difficult to
select in the combination of the first diurnal pattern with the second ACD model.
In the former case, the bandwidth can already be selected very well with N1 = 8000.
In the latter case the quality of the selected bandwidth with N2 = 16000 is still
not good enough. Furthermore, we can see that, if the bandwidth is difficult to
select, the effect caused by increasing the sample size is usually more clear. Another
more important question, that was to be addressed is whether an overall superior
inflation method for selecting a bandwidth can be identified. If the trend is simple,
the results suggest to apply the EIM with λ = 1/2 but for large sample sizes the
MIM also works well. If the trend is more complicated no clear statement can be
made on which inflation method is generally superior to the others, as it seems to
depend on the features of the ACD model as well as the number of observations.
Concerning the choice of cf , the results are ambiguous, as well. For all cases with
first trend and sample size N1 the optimal cf is 6. For N2 one optimal cf cannot
be clearly identified, however cf = 8 and cf = 10 can be ruled out to be optimal.
For N3 as well as almost of the cases simulated with the second trend the majority
of smallest MSE values are achieved by cf = 2. Thus, it is not possible to find an
overall superior choice of cf . But it seems that the performance of a moderate cf
is more stable. Hence we will propose to use cf = 4, 6 or 8. If N is large enough,
cf = 2 can also be chosen.
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Table 2.1 – Statistics from the 400 replications for all cases with N1 = 8000

EIM, λ = 5/7 EIM, λ = 5/9 EIM, λ = 1/2 MIM
m(t) ACD cf bA mean SD MSE mean SD MSE mean SD MSE mean SD MSE

1 1

2

15.98

10.51 2.24 34.85 13.95 1.69 6.94 14.40 1.50 4.70 13.58 2.15 10.36
4 11.33 2.37 27.21 14.71 1.79 4.82 15.17 1.58 3.14 14.54 2.17 6.79
6 11.49 2.45 26.12 14.91 1.84 4.54 15.40 1.62 2.96 14.75 2.20 6.33
8 11.43 2.51 26.95 14.94 1.89 4.62 15.44 1.67 3.07 14.77 2.25 6.52
10 11.24 2.58 29.07 14.88 1.95 5.00 15.37 1.72 3.34 14.69 2.32 7.03

1 2

2

18.86

10.46 2.87 78.77 15.07 2.69 21.55 15.84 2.45 15.14 14.49 3.20 29.38
4 11.39 3.10 65.40 16.01 2.76 15.73 16.69 2.58 11.36 15.71 3.24 20.44
6 11.52 3.19 64.04 16.26 2.83 14.74 16.96 2.74 11.11 15.96 3.29 19.24
8 11.49 3.28 65.06 16.32 2.90 14.84 17.03 2.81 11.23 16.00 3.36 19.47
10 11.36 3.36 67.62 16.29 2.94 15.25 17.01 2.87 11.64 15.95 3.43 20.19

2 1

2

6.83

6.22 0.63 0.76 6.60 0.76 0.63 7.11 0.91 0.90 6.52 0.72 0.61
4 6.56 0.70 0.57 6.93 0.94 0.89 7.56 1.19 1.93 6.83 0.87 0.76
6 6.60 0.83 0.75 6.96 0.95 0.92 7.63 1.21 2.11 6.87 0.92 0.84
8 6.53 0.89 0.88 6.91 1.01 1.02 7.60 1.29 2.25 6.80 0.94 0.88
10 6.42 0.97 1.10 6.81 1.00 1.00 7.52 1.41 2.47 6.72 1.04 1.10

2 2

2

8.06

7.08 1.27 2.59 8.34 2.58 6.72 9.16 2.75 8.79 7.85 2.35 5.55
4 7.60 1.72 3.17 8.84 2.86 8.81 9.73 2.94 11.41 8.34 2.81 7.99
6 7.73 2.00 4.10 9.03 3.22 11.33 9.93 3.24 13.99 8.49 3.08 9.67
8 7.71 2.13 4.66 9.06 3.42 12.65 9.97 3.48 15.75 8.46 3.20 10.39
10 7.64 2.32 5.55 9.05 3.64 14.18 9.93 3.61 16.48 8.41 3.28 10.90

Table 2.2 – Statistics from the 400 replications for all cases with N2 = 16000

EIM, λ = 5/7 EIM, λ = 5/9 EIM, λ = 1/2 MIM
m(t) ACD cf bA mean SD MSE mean SD MSE mean SD MSE mean SD MSE

1 1

2

13.91

10.73 1.65 12.85 13.16 1.13 1.83 13.52 0.96 1.08 13.28 1.28 2.03
4 11.46 1.74 9.02 13.81 1.20 1.45 14.12 1.03 1.10 13.97 1.29 1.66
6 11.61 1.79 8.47 13.99 1.25 1.56 14.29 1.07 1.29 14.13 1.34 1.85
8 11.62 1.82 8.52 14.02 1.29 1.68 14.33 1.11 1.40 14.16 1.38 1.97
10 11.58 1.83 8.77 14.00 1.34 1.80 14.32 1.14 1.46 14.15 1.42 2.08

1 2

2

16.42

10.97 2.35 35.26 14.28 1.79 7.76 14.77 1.71 5.61 14.57 2.04 7.55
4 11.74 2.48 28.00 15.08 1.86 5.24 15.50 1.79 4.06 15.38 2.02 5.17
6 11.94 2.56 26.55 15.29 1.91 4.94 15.71 1.84 3.89 15.56 2.05 4.91
8 11.95 2.59 26.68 15.33 1.95 4.98 15.76 1.87 3.95 15.59 2.09 5.03

2 1

2

5.95

5.59 0.35 0.26 5.82 0.20 0.05 6.07 0.24 0.07 5.93 0.23 0.05
4 5.85 0.38 0.15 6.04 0.25 0.07 6.39 0.57 0.51 6.17 0.44 0.25
6 5.88 0.40 0.17 6.09 0.53 0.30 6.44 0.60 0.61 6.20 0.52 0.33
8 5.84 0.43 0.19 6.05 0.46 0.22 6.41 0.59 0.57 6.16 0.51 0.31
10 5.77 0.46 0.24 6.00 0.56 0.31 6.36 0.73 0.70 6.09 0.39 0.17

2 2

2

7.02

6.51 1.04 1.34 7.19 1.61 2.62 7.79 1.77 3.73 7.08 1.60 2.56
4 6.93 1.32 1.74 7.51 1.66 3.00 8.19 1.70 4.27 7.35 1.63 2.75
6 7.04 1.47 2.17 7.66 1.95 4.22 8.39 2.28 7.07 7.44 1.87 3.67
8 7.02 1.49 2.22 7.70 2.26 5.56 8.43 2.40 7.74 7.51 2.21 5.11
10 7.00 1.68 2.80 7.66 2.30 5.70 8.38 2.40 7.60 7.49 2.28 5.42
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Table 2.3 – Statistics from the 400 replications for all cases with N3 = 32000

EIM, λ = 5/7 EIM, λ = 5/9 EIM, λ = 1/2 MIM
m(t) ACD cf bA mean SD MSE mean SD MSE mean SD MSE mean SD MSE

1 1

2

12.11

10.11 1.20 5.42 12.02 0.75 0.57 12.34 0.61 0.42 12.26 0.72 0.54
4 10.62 1.24 3.75 12.53 0.78 0.78 12.83 0.64 0.92 12.78 0.69 0.93
6 10.76 1.26 3.42 12.67 0.80 0.96 12.96 0.66 1.16 12.93 0.69 1.15
8 10.79 1.28 3.38 12.72 0.82 1.04 13.01 0.67 1.26 12.97 0.71 1.25
10 10.77 1.29 3.44 12.72 0.83 1.07 13.01 0.69 1.29 12.98 0.72 1.28

1 2

2

14.29

10.85 2.00 15.84 13.58 1.35 2.32 13.97 1.23 1.63 13.92 1.33 1.90
4 11.49 2.03 11.99 14.18 1.43 2.05 14.55 1.30 1.75 14.49 1.31 1.75
6 11.68 2.08 11.16 14.34 1.47 2.15 14.71 1.33 1.93 14.67 1.30 1.83
8 11.72 2.12 11.10 14.40 1.49 2.24 14.77 1.34 2.03 14.71 1.33 1.94
10 11.70 2.15 11.32 14.41 1.52 2.33 14.78 1.37 2.11 14.70 1.36 2.02

2 1

2

5.18

5.03 0.24 0.08 5.24 0.15 0.03 5.32 0.17 0.05 5.37 0.16 0.07
4 5.23 0.26 0.07 5.39 0.17 0.07 5.51 0.21 0.16 5.55 0.18 0.17
6 5.26 0.28 0.08 5.41 0.19 0.09 5.55 0.23 0.19 5.57 0.19 0.19
8 5.24 0.29 0.09 5.40 0.20 0.09 5.54 0.25 0.20 5.56 0.21 0.19
10 5.21 0.31 0.09 5.37 0.21 0.08 5.52 0.26 0.18 5.53 0.20 0.17

2 2

2

6.11

5.83 0.51 0.34 6.16 0.70 0.49 6.47 0.68 0.60 6.23 0.73 0.55
4 6.14 0.75 0.56 6.38 0.73 0.60 6.80 0.87 1.22 6.43 0.72 0.62
6 6.22 0.89 0.81 6.44 0.88 0.88 6.89 1.11 1.84 6.49 0.98 1.10
8 6.21 0.94 0.89 6.47 1.02 1.16 6.93 1.27 2.28 6.48 0.96 1.06
10 6.18 0.94 0.89 6.44 1.03 1.17 6.89 1.21 2.06 6.46 1.01 1.14

2.4.3 Goodness of fit of m̂(t)

To assess the goodness-of-fit of the data-driven estimate of the diurnal pattern di-
rectly, we will define the RASE (the root of the average of the averaged squared
errors) as follows. For a given diurnal pattern and sample size, the ASE for the j-th
replication is defined by

ASEj = 1
0.9N

0.95N∑
k=0.05N+1

(m̂(tk)−m(tk))2, (2.16)

where again 5% estimates at each boundary are not used for calculating this criterion.
The RASE is then defined as the root of the average of ASEj over all 400 replications:

RASE =
√√√√ 1

400

400∑
j=1

ASEj. (2.17)

Results of RASE (multiplied by 100) for all sub-methods mentioned above, as well
as CSA and CSB are displayed in Table 2.4. An important empirical finding is
that these results indicate a clear order of the goodness-of-fit of the four methods
for calculating b2j. Now the sub-method EIM with λ = 1/2 performs the best
overall. The MIM sub-method is the second best one and the EIM with λ = 5/7
is the worst. These results also suggest that cf = 2 should not be used. For the
best sub-method, the difference between the results with the other values of cf is
unclear, although cf = 6 or cf = 8, or sometimes cf = 10, is usually the best. Note
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that the main purpose of nonparametric estimation of the diurnal pattern is to fit
m(t) as well as possible. Also note that the MIM was proposed to achieve a most
stable bandwidth. Our simulation results seem to indicate that the stability of the
bandwidth selection is more important than the rate of convergence of the bandwidth
itself. The simulation results indicate further that, following the RASE criterion, a
relatively larger value of cf is more preferable. This shows again that the stability
of the selected bandwidth plays a very important role for the goodness-of-fit of the
resulting curve estimation. Hence, we will suggest the use of the EIM with λ = 1/2
and cf = 6. In the following, this special sub-method will be simply called the LL
estimator. Furthermore, these results indicate that the estimation of m1(t) under
ACD1 is the easiest, while the estimation of m2(t) under ACD2 is most difficult.
Finally, conclusions obtained following the RASE are quite different to those drawn
from the MSE of b̂.
Hereafter, the behaviour of the cubic spline will be compared with that of the LL
estimator. Note that a local cubic function with locations defined by the knots is
used in the former and a local linear with a total bandwidth of 2*b̂ in the latter.
Hence, the distance between two sequential knots plays a role similar to the one of
the total bandwidth, up to possible effects caused by different polynomial orders and
further different features between both approaches. The key difference is that the
knots in CSA and CSB are fixed beforehand, but the bandwidth of the LL estimator
is selected by a data-driven algorithm. It is clear that the cubic spline works very
well, if the specification is roughly fulfilled by the underlying trend. Otherwise, its
performance is usually not good and can even be very poor, if the distance between
the knots is too far from the required bandwidth. These facts are confirmed by the
simulation results: We see, in the six atypical (main) cases (with m2(t)) that the
performance of CSA is clearly better than that of the LL estimator, because now
the distance between each two sequential knots is very close to 2*bA. Hence, CSA
is really a reasonable choice sometimes. But in the six typical cases (with m1(t)),
the LL estimator performs clearly better than CSA, because the estimation of m1(t)
requires a much larger bandwidth. In all of the 12 main cases, the performance of
CSB is much poorer than that of the other two approaches. Note in particular that
CSB performs in all six cases with m1(t) very poorly, because the distance between
the knots is now too far from the total optimal bandwidth. Finally, note that an
atypical diurnal duration pattern like m2(t) occurs in practice rarely and b̂ is often
close to bA for m1(t). See the data examples in Section 2.5.2 or in Feng (2014). This
indicates that in practice the LL estimator will usually outperform CSA.
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Table 2.4 – RASE from the 400 replications for all simulated cases (mk(t), ACDs,
Ni)

λ InfM cf (1,1,1) (1,1,2) (1,1,3) (1,2,1) (1,2,2) (1,2,3) (2,1,1) (2,1,2) (2,1,3) (2,2,1) (2,2,2) (2,2,3)

5/7 EIM

2 16.52 9.82 6.99 35.39 19.63 14.81 23.05 17.15 12.02 39.33 28.83 22.81
4 15.79 9.42 6.79 33.95 18.65 14.01 22.39 16.71 11.77 36.86 27.26 21.56
6 15.73 9.35 6.75 33.87 18.50 13.85 22.28 16.67 11.73 35.46 26.87 21.42
8 15.86 9.37 6.74 34.10 18.57 13.95 22.43 16.75 11.75 35.54 26.94 21.47
10 16.19 9.37 6.74 34.60 18.75 14.05 22.61 16.85 11.80 36.01 27.11 21.57

5/9 EIM

2 12.44 8.31 6.23 22.48 13.73 9.67 21.79 16.42 11.69 30.06 24.59 19.42
4 12.05 8.08 6.10 21.54 13.26 9.42 21.18 16.09 11.53 28.75 23.97 18.96
6 11.93 8.03 6.07 21.33 13.20 9.37 21.15 15.97 11.50 28.69 23.72 18.89
8 11.88 8.02 6.06 21.20 13.14 9.35 21.21 16.01 11.51 28.44 23.75 18.78
10 11.92 8.03 6.06 21.21 13.16 9.36 21.38 16.09 11.54 28.62 23.89 18.83

1/2 EIM

2 11.87 8.13 6.13 20.99 13.37 9.36 20.76 16.03 11.60 28.05 23.31 18.64
4 11.50 7.93 6.02 20.54 12.95 9.11 20.02 15.55 11.39 27.25 22.57 18.02
6 11.35 7.88 5.99 20.03 12.84 9.04 19.91 15.48 11.35 26.84 22.47 17.93
8 11.33 7.87 5.98 19.66 12.82 9.02 19.94 15.52 11.35 26.86 22.46 17.75
10 11.41 7.87 5.98 19.64 12.83 9.02 20.3 15.60 11.38 27.03 22.49 17.94
2 13.17 8.30 6.17 26.58 13.65 9.54 22.20 16.38 11.55 32.09 28.31 19.65
4 12.63 8.05 6.3 24.17 13.13 9.27 21.54 15.93 11.37 30.62 24.58 19.14

— MIM 6 12.46 8.00 5.80 23.89 13.03 9.19 21.43 15.89 11.35 30.24 24.66 19.06
8 12.48 8.00 5.99 23.90 13.03 9.19 21.67 15.94 11.36 30.25 24.42 19.09
10 12.60 8.00 5.99 24.04 13.03 9.20 21.72 16.07 11.38 30.49 24.48 19.12

CS (KnotsA) 15.02 10.03 7.22 23.59 16.52 11.49 18.13 13.02 9.39 24.59 19.78 14.53
CS (KnotsB) 22.29 14.66 10.32 36.77 23.43 16.63 24.97 17.86 12.08 40.36 29.25 19.99

Note: k = 1, 2 for m1(t) and m2(t), s = 1, 2 for ACD1 and ACD2 and i = 1, 2, 3, for N1 = 8000,
N2 = 16000 and N3 = 32000, respectively.

2.4.4 Performance of the ACD parameter estimation

For each of the 400 replications of a main case three EACD(1, 1) models were fitted
to the duration data simulated without a trend, yi, the duration data simulated with
a trend, xi, and the diurnally adjusted durations, ŷi = xi/φ̂(ti). Let θ denote the
true parameter vector θ = (ω, α, β)′. Denote by θ̃, θ̂x and θ̂ŷ the estimated parameter
vector based on yi, xi and ŷi, respectively. For assessing the quality of the parameter
estimation, the relative efficiencies (REFF) of θ̂x and θ̂ŷ with respect to θ̃ are defined
as follows:

REFF(θ̂ŷ) = MSE(θ̃)
MSE(θ̂ŷ)

∗ 100(%) and REFF(θ̂x) = MSE(θ̃)
MSE(θ̂x)

∗ 100(%). (2.18)

These results are listed in Tables 2.5 to 2.7 for the three parameters, respectively.
Theoretically, if there is a deterministic trend in the data xi, θ̂x is obtained un-
der misspecification and is hence inconsistent. As indicated before, θ̂ŷ is however
consistent. These facts can be seen clearly from REFF(θ̂ŷ) and REFF(θ̂x) and the
comparison between them will indicate the gain in parameter estimation by means
of the Semi-ACD model.
Some general findings which we can draw from these results are as follows: 1) The
larger N , the higher the REFF of the estimated parameters from ŷi but the lower the
REFF of those obtained from xi. As N → ∞, θ̂ŷ will tend to 100% but REFF(θ̂x)
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will however tend to zero. This fact can be seen more clearly, if the estimation of
β is considered. See Table 2.7. 2) The quality of ω̂ŷ is the poorest, because ω is
the scale parameter and φ(t) is the scale function. Indeed, the proposed Semi-ACD
model can be asymptotically rewritten as an ACD model with only one time varying
scale parameter, while its α and β are constant, as in a parametric ACD model. 3)
The highest REFFs are achieved by α̂ŷ, where these efficiencies are about 100% in
most cases. Now, the REFFs of α̂x are also high, because α reflects the short term
dependence and is not affected by the diurnal pattern so much.

Furthermore, the quality of the parameter estimation based on ŷi depends on the
combination of the diurnal pattern and the ACD model very strongly. The case,
where the estimation of ω is the easiest seems to be the combination of m1(t) with
ACD2. By the combination of m2(t) and ACD1, ω is very difficult to estimate. Now
the REFF of ω̂ŷ for N1 = 8000 using any sub-method is clearly smaller than 50%.
Similar conclusions can be drawn for β̂ ŷ. The difference is only that the REFFs of
β̂ ŷ are usually clearly higher than those of ω̂ŷ in corresponding cases.
Concerning the difference caused by the sub-methods for the bandwidth selection
we can find that the EIM with λ = 1/2 performs usually the best, except for the
combination of m2(t) and ACD2. In this case the EIM with λ = 5/7 performs slightly
better than the other methods. However, we will suggest the use of the EIM with
λ = 1/2 again, because it seems to be more stable. Note in particular that by the
combination of m2(t) and ACD1, the EIM with λ = 5/7 performs clearly poorer than
all of the other methods. This sub-method is hence not a suitable choice. When the
sub-method EIM with λ = 1/2 is chosen, the difference caused by the choice of cf is
usually unclear. In general, all of the cf values perform well. However, we will still
suggest the use of cf = 6 or cf = 8, because now the proposed algorithm performs
more stable than with the other cf values.
In order to compare the performances of the LL and CS estimators based on the
REFF, the following simplification is applied. Assuming that the REFF of Method
A is greater than that of Method B, we will say that there is an unclear, clear
or very clear gain of Method A compared to Method B, if the difference between
both REFFs is less than 5, between 5 and 10 or larger than 10 percentage points,
respectively. Analogous simplification applies to the loss. Consider the estimation
of ω first, where in two of the six typical cases there is a very clear gain of the LL
estimator compared to CSA, in two cases the gain is clear and in the other two cases
the gain is unclear. In four of the six atypical cases, there is a very clear loss of
the LL estimator compared to the CSA and in one of those cases the gain (or loss)
is unclear. However, in the last case the LL estimator performs clearly better than
CSA. In all of the first eleven cases the gain of the LL estimators compared to CSB
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Table 2.5 – Empirical efficiencies (%) of ω̂ from the 400 replications for all cases
(mk(t), ACDs, Ni)

λ InfM cf (1,1,1) (1,1,2) (1,1,3) (1,2,1) (1,2,2) (1,2,3) (2,1,1) (2,1,2) (2,1,3) (2,2,1) (2,2,2) (2,2,3)

5/7 EIM

2 40.1 67.6 78.7 51.2 74.4 87.7 33.4 51.1 60.4 52.5 67.6 82.6
4 42.9 69.5 79.8 55.4 72.3 88.2 36.1 54.5 62.5 55.1 64.5 81.4
6 42.8 69.7 79.0 55.4 72.3 88.6 35.8 54.8 63.2 54.1 62.8 79.9
8 41.9 69.6 80.2 55.0 72.3 88.8 34.7 54.7 63.6 52.8 52.3 79.0
10 40.5 69.2 80.0 53.4 72.2 88.7 33.1 52.8 62.5 50.6 60.4 79.1

5/9 EIM

2 56.9 74.6 84.3 66.7 75.0 89.6 37.6 55.7 64.1 52.6 59.5 81.5
4 58.6 75.9 85.4 67.6 75.1 89.8 40.0 58.2 66.1 52.1 58.6 80.7
6 58.9 76.2 85.6 67.3 75.2 89.9 39.6 57.6 66.4 51.4 55.8 78.1
8 59.0 76.3 84.9 67.1 75.2 89.9 38.8 57.6 65.8 50.5 53.6 77.5
10 58.7 75.9 85.6 67.0 75.1 89.8 37.6 56.4 65.5 49.2 53.7 77.0

1/2 EIM

2 58.5 76.3 84.9 67.3 75.3 89.8 42.5 59.0 65.0 54.9 58.6 80.3
4 60.3 77.2 86.4 67.8 76.0 90.1 45.1 61.6 67.3 55.0 58.2 78.9
6 60.8 77.5 86.2 68.8 76.0 90.0 45.0 61.4 67.5 53.9 53.7 74.0
8 61.0 77.6 86.5 68.9 76.1 90.2 44.1 61.3 67.7 53.4 52.7 71.9
10 60.4 77.4 86.7 68.8 76.1 90.2 42.4 59.4 67.2 52.5 55.2 72.6
2 53.3 74.7 85.1 66.2 75.6 89.9 36.8 57.2 65.9 52.1 64.3 81.6
4 56.2 76.3 85.6 67.3 76.0 89.7 39.7 59.9 68.8 52.6 60.1 83.6

— MIM 6 56.9 76.4 86.4 67.4 76.1 90.1 39.2 59.8 68.8 51.5 56.4 79.0
8 56.4 76.1 86.1 67.5 76.0 90.1 38.1 59.3 68.7 50.4 54.5 77.7
10 54.3 76.1 86.3 67.5 76.2 90.3 36.7 58.2 67.9 49.7 54.5 77.2

CS (KnotsA) 51.0 72.6 82.7 56.4 75.0 84.2 71.3 77.4 89.9 71.0 55.3 62.4
CS (KnotsB) 25.2 49.2 67 37.4 65 75.8 36.6 55.9 64.7 50.5 55.7 73.3

x 3.9 2.0 0.85 4.5 2.3 1.0 3.7 1.7 0.87 4.9 1.7 0.80

Table 2.6 – Empirical efficiencies (%) of α̂ from the 400 replications for all cases
(mk(t), ACDs, Ni)

λ InfM cf (1,1,1) (1,1,2) (1,1,3) (1,2,1) (1,2,2) (1,2,3) (2,1,1) (2,1,2) (2,1,3) (2,2,1) (2,2,2) (2,2,3)

5/7 EIM

2 100.9 100.4 100.3 99.2 100.0 99.5 95.5 98.7 100.4 96.8 99.6 100.3
4 101.4 100.5 100.0 99.4 100.0 99.7 95.6 99.1 100.0 95.4 99.0 100.3
6 101.4 100.3 99.2 99.4 100.1 99.7 95.3 89.9 99.8 96.7 10.2 100.5
8 101.4 100.2 100.6 99.4 100.0 99.7 95.5 98.6 100.5 96.9 99.5 100.4
10 101.1 100.3 100.0 99.4 99.9 99.6 94.8 98.8 100.3 96.6 99.0 100.3

5/9 EIM

2 101.0 100.5 99.3 99.3 100.3 100.0 95.6 99.1 100.2 97.5 100.2 100.1
4 101.0 100.4 99.7 99.9 100.3 100.0 95.3 98.9 99.9 98.1 100.1 100.2
6 101.3 100.2 99.8 99.3 100.3 100.1 92.9 98.9 99.7 98.3 100.0 100.1
8 101.2 100.1 99.4 99.2 100.2 100.0 94.4 98.6 100.6 98.2 100.2 99.9
10 101.3 100.2 99.5 99.1 100.3 100.1 94.8 98.7 100.1 98.3 100.4 100.0

1/2 EIM

2 101.5 100.4 98.7 98.9 99.9 100.1 95.4 98.5 100.3 99.2 99.1 100.1
4 101.5 100.4 99.2 99.9 100.3 99.9 96.1 98.7 100.2 98.8 100.1 100.2
6 101.0 100.3 99.5 99.5 100.2 99.8 95.6 98.6 100.6 99.0 100.1 100.3
8 101.3 100.2 99.3 99.7 100.2 99.9 96.2 98.8 100.2 99.1 99.8 100.2
10 101.3 100.2 99.8 99.7 100.2 99.9 97.0 98.6 99.8 98.7 99.7 100.4
2 101.1 100.1 99.6 99.2 100.1 99.6 96.3 99.0 99.8 95.7 99.7 95.9
4 101.0 100.1 99.9 99.8 100.4 99.2 96.3 98.8 100.6 98.1 98.9 100.1

— MIM 6 101.1 100.1 99.5 99.7 100.4 99.8 95.0 98.9 100.3 98.3 100.0 100.4
8 100.9 100.3 99.5 99.7 100.1 99.9 92.1 98.8 100.3 98.4 100.5 100.2
10 100.9 100.2 99.9 99.9 100.4 99.9 94.7 98.2 99.9 96.8 99.7 100.1

CS (KnotsA) 102.3 100.3 99.8 101.0 98.9 99.5 99.5 98.7 99.9 100.2 99.5 98.9
CS (KnotsB) 99.9 99.8 100.3 97.8 99.1 99.6 80.9 99 100.3 97.6 100.3 99.7

x 88.7 79.9 67.4 54.2 90.5 91.1 90.6 74.5 63.5 91.7 89.8 90.2
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Table 2.7 – Empirical efficiencies (%) of β̂ from the 400 replications for all cases
(mk(t), ACDs, Ni)

λ InfM cf (1,1,1) (1,1,2) (1,1,3) (1,2,1) (1,2,2) (1,2,3) (2,1,1) (2,1,2) (2,1,3) (2,2,1) (2,2,2) (2,2,3)

5/7 EIM

2 68.9 87.7 93.2 82.4 93.4 99.3 60.5 75.6 76.8 84.6 93.6 94.8
4 70.8 89.0 93.3 84.5 91.6 99.6 62.4 78.0 77.6 85.9 92.6 95.1
6 70.7 88.9 91.9 84.6 91.7 99.7 62.1 78.1 78.1 85.2 92.4 94.9
8 69.9 88.8 94.1 84.5 91.7 99.9 61.2 77.7 79.1 84.7 91.1 94.3
10 68.9 88.5 93.4 83.7 91.6 99.8 59.4 77.2 78.0 83.2 90.5 94.4

5/9 EIM

2 82.0 91.3 95.0 91.8 92.5 100.8 63.8 78.8 78.9 83.3 91.3 96.2
4 83.0 91.9 95.7 91.9 92.3 100.9 65.5 80.3 80.0 80.9 90.3 96.0
6 83.4 91.9 96.1 91.8 92.3 100.8 64.3 80.1 80.0 80.8 89.0 95.0
8 83.3 91.8 95.1 91.9 92.3 100.8 64.4 80.6 79.9 80.3 88.0 94.7
10 83.2 91.7 95.7 91.8 92.3 100.8 63.5 79.9 79.5 79.7 88.4 94.4

1/2 EIM

2 83.1 92.2 94.5 91.9 92.0 101.0 67.9 80.9 79.5 82.9 89.9 96.0
4 84.4 92.4 95.6 92.1 92.7 100.7 70.1 83.3 80.8 82.2 90.9 95.9
6 84.6 92.5 95.6 92.3 92.6 100.6 69.8 83.0 81.0 81.2 89.0 94.0
8 84.9 92.5 95.8 92.4 92.7 100.7 69.1 83.1 81.1 81.4 88.5 93.2
10 84.3 92.4 96.2 92.4 92.7 100.7 67.8 82.1 80.5 80.8 91.0 93.6
2 79.7 91.3 95.4 90.7 93.1 100.5 63.1 79.5 79.6 83.9 94.9 95.9
4 81.8 92.0 95.7 91.3 92.9 99.8 66.2 81.2 81.8 84.0 90.2 96.9

— MIM 6 82.4 92.0 96.0 91.6 93.0 100.5 64.9 81.5 81.6 83.4 88.6 95.6
8 82.1 91.9 95.6 91.5 92.6 100.7 63.3 81.2 81.7 83.2 87.7 94.7
10 80.9 91.8 96.1 91.4 93.0 100.7 62.9 80.5 80.8 81.9 87.6 94.5

CS (KnotsA) 78.7 90.9 94.5 87.9 92.7 99.6 91.6 91.1 96.9 93.7 81.6 84.0
CS (KnotsB) 55.3 79 88.7 80.6 90.9 94.5 64.2 82.6 84 90.0 86.7 90.2

x 10.0 4.7 2.1 4.7 5.9 2.9 9.7 4.3 2.0 11.3 5.3 2.5

is very clear. In the last case the gain of the LL estimator is unclear. As expected,
there are no clear differences between the performances of α̂ obtained by different
approaches. Concerning the quality of β̂, the gain achieved by the LL estimator
compared to CSA is unclear in four of the six typical cases, but in the other two
cases there is a clear gain. Now, in three of the six atypical cases there is a very
clear loss again, and in one of those cases there is a clear loss of the LL estimator
compared to the CSA. In the last two cases, though, there is a clear or even very
clear gain of the LL estimator compared to the CSA, again. The performance of
β̂ using CSB compared to that of ω̂ is clearly improved. Now, β̂ obtained by CSB
even outperforms that obtained by CSA in one case, and outperforms that obtained
by the LL estimator in another case. The assessment according to the REFF of the
parameter estimation is more in favour of the use of the LL estimator, because now
it performs in a few atypical cases even better than CSA.

2.5 Application to simulated and real data exam-
ples

The practical relevance of the proposed LL estimator with the IPI algorithm will be
illustrated and compared with that of the cubic spline by simulated and real data
examples.
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2.5.1 Estimation results for two simulated data examples

At first, two simulated data sets were chosen, for which the fitted results using the
proposed LL estimator, CSA and CSB are shown in more detail. The first example
is the first simulated data set in the case with m1(t), ACD1 and N1, called Case 111.
The second example is the last simulated data set in the case with m2(t), ACD2 and
N3, called Case 223. The left panels of Figure 2.1 display the simulated data without
trend, yi, the simulated data with trend, xi, the true trend m1(ti) together with the
estimates of m1(t) obtained by the LL estimator, CSA and CSB respectively, and
the standardized duration series according to the first two trend estimates for Case
111. Those for Case 223 are shown in the right panels of Figure 2.1.

We see, for Case 111 the LL estimator works a little bit better than CSA, whereas
CSA works better than the LL estimator for Case 223. In both examples the trend
estimated by each of the two methods fits the true trend well. The standardized
durations obtained by both approaches look very close to the simulated data. That
is the nonstationarity caused by the trend is well removed. Finally, the fitted ACD
models in the two cases are with ψLL

1i = 0.038 + 0.082xi−1 + 0.879ψLL
1i−1 and ψLL

2i =
0.040+0.139xLL

i−1 +0.820ψ2i−1, for the LL estimator, and ψCSA
1i = 0.039+0.082xi−1 +

0.878ψCSA
1i−1 and ψCSA

2i = 0.040 + 0.140xi−1 + 0.821ψCSA
2i−1 for CSA, respectively. We see,

in both examples the estimates of corresponding parameter are always almost the
same.

In both cases CSB performs the worst. From Case 111 we see in particular that
if the distance between each two sequential knots is (relatively) too small, some
random conditional fluctuation of the data may be wrongly estimated as a part of
the deterministic trend. This will in turn affect the further parameter estimation
strongly. These examples confirm again that the cubic spline only works well, if this
specification with given knots is roughly fulfilled. Otherwise its performance can be
very poor. Hence, Engle and Russell (1998) proposed the use of CSA assuming that
m(t) can be approximated by this cubic spline specification.

2.5.2 Application to some real data examples

In the following, data sets of two German firms BMW and Deutsche Telekom (DTE)
on five days from 22. to 26. Sep. 2014 are chosen to compare the practical per-
formance of our proposal to that of the cubic spline. In Germany financial markets
open from 9:00 to 17:30. The two choices of knots correspond to KnotsA and KnotsB

mentioned in Section 2.4 are now Knots∗A={9:00, 10:00, ..., 16:00, 17:00, 17:30} and
KnotsB is Knots∗B={9:00, 9:30, ..., 17:00, 17:30}, respectively. The selected band-
widths for those examples are b̂=1.46, 1.62, 1.44, 1.01 and 1.23 for BMW, and b̂=1.38,
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1.32, 1.31, 1.00 and 1.58 for DTE, respectively.
We see that the selected bandwidths vary strongly from one example to another.

The biggest is over 1.5 (hour) and the smallest about one hour. The selected band-
widths correspond to total windows with a length of about 2 to 3.2 hours. These
results indicate that CSB does not work at all now. The performance of the LL
estimator will hence only be compared to that of CSA. Observations on two selected
days from each firm are displayed in the left panels of Figure 2.2, respectively. The
fitted trends by the LL and CSA estimators are shown in the corresponding right
panels. Those obtained by CSB are clearly unreasonable and are hence not given
here. Examples of DTE on the 24. Sep. 2014 and that of BMW on 25. Sep. 2014
are chosen to show that CSA does work well sometimes. We see that in the former
example results of both estimators are quite similar. This is also about true for the
latter. The example of BMW on the 23. Sep. 2014 is chosen to show the typical
difference between diurnal patterns estimated by the LL estimator and CSA. In this
case, the two estimated trends are similar to each other during some sub-periods.
Otherwise, the trend estimated by CSA varies strongly around the trend obtained
by the LL estimator in a random periodic way, which seems to depend on the chosen
knots. This feature is shown more clearly by the example of DTE on the 23. Sep.
2014, where the estimated trend by CSA runs in a random periodic way around that
of the LL estimator through the whole support, similar to the behaviour of CSB in
the simulated example Case 111 discussed in Section 2.5.1. Discussion on the stan-
dardized durations and the parameter estimation in the second stage is omitted.
In summary, the simulation results and real data examples show that our proposal
outperforms CSA in a general case, although CSA works sometimes quite well. The
key difference is that the LL estimator adapts to the features of each data set,
whereas CSA with fixed knots is not data-adaptive. The distance between two se-
quential knots by CSA is sometimes not big enough. Now, some random fluctuations
can be wrongly estimated as a part of the diurnal pattern. It can be shown that the
use of too few knots, e.g. those set on every two hours, may cause strong bias and
a new problem, namely that the estimated trend at the boundary is often negative.
Detailed discussion on this topic is beyond the aim of this chapter.
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Figure 2.2 – Trends estimated by local linear and cubic spline approaches for four
real data sets.
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2.6 Conclusion

In this chapter a data-driven estimation of the diurnal pattern in a recently proposed
Semi-ACD model is discussed. Detailed results on the bandwidth selection are ob-
tained. A large simulation was carried out to discuss the practical performance of
the proposed bandwidth selector in different cases. The results are then assessed in
different ways. It is shown that the IPI bandwidth selector works well in general.
One of the sub-methods using the EIM inflation form, an inflation factor λ = 1/2
and a coefficient cf = 6 for calculating the lag-window estimator of the sum of all au-
tocovariances seems to outperform the others in most of the cases, in particular if the
performance is assessed using the goodness-of-fit of the estimated diurnal pattern.
The results of the parameter estimation further showed that if a significant daily
pattern is not removed from the data, the fitted ACD model is inconsistent. Hence,
in practice the Semi-ACD model instead of the stationary parametric ACD model
should be used. Furthermore, it is also shown that our proposal usually outper-
forms the commonly used cubic spline, because the latter is indeed still a parametric
method and is not data-adaptive. Further experiments show that the smoothing
spline, the nonparametric counterpart of the cubic spline, with a suitable smoothing
parameter might be another attractive approach. Hence, it is worthy to develop a
data-driven smoothing spline in the current context e.g. by adapting the proposal
of Krivobokova and Kauermann (2007).
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A.2 Appendix of Chapter 2

Proof of Lemma 2.1. Assume that the true scale functions and ACD model
parameters ω, α and β are known. Let ηi = yi−ψi be a martingale difference sequence
by construction. Following Engle and Russell (1998), the EACD(1, 1) model can be
represented as an ARMA(1, 1) model: yi = ω + (α + β)yi−1 − βηi−1 + ηi. Based on
well known results on the sum of all autocovariances of an ARMA(1, 1) model we
have

S =
(

1− β
1− (α + β)

)2

σ2
ηi
. (A2.1)

Straightforward calculation leads to

σ2
ηi

= var (yi) + var (ψi)− 2cov (yi, ψi). (A2.2)

Following Engle and Russell (1998) we have

var (yi) = 1− β2 − 2αβ
1− β2 − 2αβ − α2 .

Bauwens and Giot (2000) showed that var (ψi) = α2

1−β2−2αβ and

cov (yi, ψi) = E[(yi − E(yi))(ψi − E(ψi))]

= E[yiψi]− E[yi]E[ψi]. (A2.3)

Under the weakly stationarity assumption we have E(yi) = E(ψi). Furthermore, fol-
lowing Bauwens and Giot (2000), we haveE[yiψi] = E[ψ2

i ]. This leads to cov (yi, ψi) =
E[ψ2

i ]− µ2 = var (ψi) and

σ2
ηi

= 1− (α + β)2

1− (α + β)2 − α2 (A2.4)

Inserting (A2.4) into equation (A2.1) gives

S =
(

1− β
1− (α + β)

)2 1− (α + β)2

1− (α + β)2 − α2 . (A2.5)

Lemma 2.1 is proved. 3
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3 A semiparametric multiplicative error
model for modelling long-term and

conditional dynamics in non-negative
financial data7

3.1 Introduction

The Autoregressive Conditional Duration (ACD) model of Engle and Russell (1998)
for analysing irregularly spaced data underwent an extensive development since its
initial proposal. Saart et al. (2015) refer to the different stages of development
as generations. Extending the first generation baseline model of Engle and Russell
(1998) parametrically constitutes the second generation and contains, for example,
the Threshold ACD model (Zhang et al., 2001) or the augmented ACD model (Fer-
nandes and Grammig, 2006) with the Box-Cox ACD model (Dufour and Engle,
2000a) and the Log-ACD model (Bauwens and Giot, 2000 and Bauwens et al., 2008)
as special cases. The application of non- and semiparametric methods makes up
the third generation. Wongsaart et al. (2010), for example, propose a semipara-
metric regression approach to nonlinear duration modelling. Brownlees and Gallo
(2011) develop a shrinkage type estimator used for a semiparametric MEM (Engle,
2002) or Cosma and Galli (2006) introduce a nonparametric ACD model with an
iterative algorithm proposed by Bühlmann and McNeil (1999) for a nonparamet-
ric GARCH model. Feng (2014) and Feng et al. (2016) propose a semiparametric
ACD (Semi-ACD) model, based on data decomposition. Furthermore, alternatives
to the baseline ACD model are proposed in the literature, such as the Birnbaum-
Saunders ACD model, which uses the conditional median instead of the conditional
mean to specify the time-varying model dynamics (Bhatti, 2010). Other extensions,
such as the fractionally integrated ACD model of Jasiak (1999) or the long-memory
stochastic duration model of Deo et al. (2010) are developed to take into account
long-memory of the data.

7This chapter is available as a pre-print and was written in joint work with Professor Dr.
Yuanhua Feng (Paderborn University). It is referred to as Forstinger and Feng (2018) throughout
this work.

35
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In this chapter we propose a semiparametric extension of the (first-type) Log-ACD
model by Bauwens and Giot (2000) and Bauwens et al. (2008). Because the non-
negativity constraints on the parameters can be dropped for the Log-ACD model,
its semiparametric extension serves the aim of providing a more flexible alternative
to the Semi-ACD model. Furthermore, the methods of the Semi-ACD model can
be generalized to local polynomial regression for log-data and are not restricted to
local linear regression anymore. The log-transformation also solves the problem of
observations being close to or possibly touching the zero bound (see Engle, 2002)
and it simplifies estimation, because the model becomes an additive nonparametric
regression with stationary linear time series errors (see Shumway and Stoffer, 2011).
For “the volatility counterpart of the Log-ACD model” (Allen et al., 2008, p.163),
a semiparametric extension of the EGARCH model of Nelson (1991) is studied with
a local polynomial link function estimation by Yang and Wu (2011). It is found
to perform better than the EGARCH(1, 1) model, which supports our intention of
proposing the Semi-Log-ACD model.
Properties of the proposal are discussed briefly. Firstly, conditions for the existence
of a strictly and weakly stationary solution of the proposal as a general linear process
are found. Some suitable examples fulfilling those conditions with possible heavy-
tails at different levels are provided. Further detailed results are given for the special
case, when the innovations are log-normally distributed. It is shown that now any
power of the process is still log-normal, which has a similar dependence structure
than that of the generating Gaussian process. Closed form formulas for their auto-
correlations are obtained, which extend the results in Beran et al. (2015) and hold
for long-memory processes. In particular, it is indicated that the autocorrelations
of any power of such a process decay exponentially, if the log-data follows a normal
stationary and invertible ARMA model.
An iterative plug-in (IPI) algorithm (Gasser et al., 1991) for selecting the bandwidth
in a local polynomial regression is further proposed here. The aim is to develop
a fully nonparametric and automatic IPI algorithm independent of any parametric
assumption. Generalizing the IPI to local polynomial regression increases the range
of applicability of the IPI, as well as the semiparametric model fitting to log-data, in
general. The estimation of the variance factor in the asymptotically optimal band-
width is the key point of the IPI. Here, we propose to use a lag-window estimator
for the variance factor and adapt another iterative plug-in procedure for choosing
the window-width in this context (see Bühlmann, 1996). It is evaluated through
application to different data sets. Compared to the estimation of the variance factor
by means of an ARMA model it is shown that the current proposal is more stable.
It can also be extended to the case with long-memory, but this is not straightfor-
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ward and beyond the aim of this chapter. The effect of estimation errors in the
nonparametric part on the further parametric estimation is investigated. Conditions
are found under which the parametric estimation is still

√
T -consistent. They are

fulfilled by an automatically selected bandwidth, as proposed here.
The remaining part of this chapter is organized as follows: Section 3.2 defines the
model and discusses the existence conditions. Further properties of a general linear
process and the specified Semi-Log-ACD model are provided in section 3.3. The
estimation procedure is described in section 3.4. Section 3.5 discusses the practical
implementation of the algorithm including the methods for estimating the variance
factor. The proposals are applied to different real financial data examples and eval-
uated in section 3.6 and section 3.7 concludes.

3.2 The proposed models

The models are described for non-negative daily average financial data to simultane-
ously model its long-term and conditional dynamics. Extending the proposals and
results to irregularly spaced data is straightforward, though. Compared to the ACD
model, the Semi-ACD model by Feng (2014) and Feng et al. (2016) and the Log-
ACD model of Bauwens and Giot (2000) and Bauwens et al. (2008) are each more
flexible. The Semi-ACD model estimates the deterministic and the stochastic data
parts separately and can thereby account for long-term dynamics or daily patterns
in the data. The Log-ACD model does not require the non-negativity constraints on
the model parameters. Combining these models to the Semi-Log-ACD model aims
to further increase the flexibility. The scale function estimation IPI developed for
the Semi-ACD model is general and can be adapted to the Log-ACD model. It is not
limited to local linear regression, though, so the IPI is described for local polynomial
regression later. The additive structure of the log-data in this model, in fact, even
simplifies the scale function estimation. In the following, the general framework is
set for the ACD model and its semiparametric extension. Their log-transformation
gives the Log-ACD and Semi-Log-ACD models, which can be defined as linear pro-
cesses. Latter enable a general discussion on the asymptotic properties for processes
which allow long-memory, short-memory or antipersistence.

3.2.1 The Semi-ACD model

Let Xt ≥ 0 denote the observations for t = 1, ..., T . The baseline ACD model
is extended semiparametrically by including a time-varying smooth scale function,
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ν(τt) > 0, to model the local, deterministic changes of the mean level of Xt:

Xt = ν(τt)ψtεt. (3.1)

The conditional mean, ψt = ω + ∑p
j=1 αjX

∗
t−j + ∑q

r=1 βrψt−r, follows the linear
parametrisation as suggested by Engle and Russell (1998) with X∗t = Xt

ν(τt) = ψtεt.
The innovations, εt, are i.i.d. non-negative random variables and τt = t/T denotes
the rescaled time. For a general sequence of regularly spaced non-negative random
variables (3.1) is a semiparametric extension of the MEM (Engle, 2002), so Xt is not
limited to being transaction durations. It will still be denoted by the ACD model
terminology here. The non-negativity constraints to ensure that ψt > 0 are ω > 0,
α1, ..., αp ≥ 0 for j = 1, ..., p and β1, ..., βq ≥ 0 for r = 1, ..., q. The Semi-ACD
model as described by (3.1) and ψt is non-stationary, but is assumed to be a locally
stationary process following Dahlhaus (1997). This allows to model the long-term
dynamics of the data together with its conditional dynamics, expressed by the scale
function and the model parameters, respectively.

3.2.2 Linear processes and the Semi-Log-ACD model

Within the framework of (3.1), define Yt = log(Xt), µ(τt) = log(ν(τt)), ζt = log(ψt),
Y ∗t = log(X∗t ) = ζt + ηt = Yt − µ(τt) and ηt = log(εt) with E(ηt) = 0 and var(ηt) =
σ2
η. The multiplicative model in (3.1) can be written as an additive nonparametric

regression with linear stationary errors of the following form:

Yt = µ(τt) + Y ∗t . (3.2)

The description of Yt given in (3.2) is the first part of the Semi-Log-ACD model. In
addition, the log-conditional mean is linearly parametrised as ζt = ω+∑p

j=1 αjY
∗
t−j +∑q

r=1 βrζt−r (first-type Log-ACD model; Bauwens and Giot, 2000 and Bauwens et
al., 2008). No non-negativity constraints on the parameters are required. In the
following, the asymptotic properties are discussed generally. For this purpose let
Y ∗t be a linear process and X∗t a log-linear process accordingly. Denote the MA(∞)
representation of Y ∗t by:

Y ∗t = α(B )ηt =
∞∑
i=0

αiηt−i, (3.3)

where α(B ) = ∑∞
i=0 αiB j, α0 = 1 and ∑∞

i=0 |αi| < ∞. Following e.g. Prado and
West (2010), (3.3) is the stationary solution of Y ∗t . Assuming invertibility of Y ∗t ,
it can also be represented as an AR (∞) model with ∑∞

j=0 |bj| < ∞, implying that
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∑∞
i=0 αi 6= 0:

Y ∗t =
∞∑
j=1

bjY
∗
t−j + ηt. (3.4)

Here, αi and βj can be obtained by matching the powers of B in φ(B )ψ(B )−1 and
ψ(B )φ(B )−1, respectively (see e.g. Property 3.1 and 3.2 of Shumway and Stoffer,
2011). From (3.3) a closed form expression of the residual autocovariances of Y ∗t
and their sum can be derived, i.e. γ(k) = σ2∑∞

i=0 αiαi+|k| and cf = 1
2π
∑∞
−∞ γ(k).

The above assumptions ensure that 0 <
∑∞
−∞ γ(k) < ∞. The autocorrelations

of Y ∗t are independent of the conditional distribution of X∗t , which are given by
ρ(k) = ∑∞

i=0 αiαi+k/
∑∞
i=0 α

2
i for k = 0, 1, ... . The existence of moments and results

on the autocorrelations for X∗t are studied for Log-ACD models by Bauwens et al.
(2008) and Karanasos (2008). By comparing ρ(k) with corresponding results in
aforementioned works the tail behaviour of X∗t and Y ∗t can be discussed. A thorough
discussion on this topic is beyond the aim of this chapter, though, but the results on
the existence of the moments will be extended to the here discussed generalized linear
process definition. For this purpose, let αsup = lim

k→∞
max(α0, α1, ..., αk) ≥ α0 = 1 and

αinf = lim
k→∞

min(α0, α1, ..., αk). We introduce the following conditions:

A1. Y ∗t in (3.3) is stationary and invertible with α0 = 1 and ∑∞i=0 α
2
i <∞.

A2. Both, E(εmαsup
t ) and E(εmαinf

t ) exist for some integer m ≥ 2.

Taking the exponential transformation of (3.3), we obtain

X∗t =
∞∏
i=0

εαit−i, (3.5)

which is the strictly and weakly stationary solution of X∗t , if A1 and A2 hold. Under
the same conditions, X∗t has finite moments of any order as given in equation (9) of
Karanasos (2008). By expanding (3.5) the locally stationary solution of Xt is given
by:

Xt = ν(τt)
∞∏
i=0

εαit−i. (3.6)

Furthermore, if A1 and A2 hold, the corresponding moments of the linear process
exist, because the scale function is bounded. If A1 holds, A2 is a necessary and
sufficient condition for the existence of a stationary solution of Y ∗t with finite m-th
moment, which is jointly determined by the properties of the conditional distribution
as well as αinf and αsup. Depending on the distribution choice, requirements on the
fulfilment of A2 might lead to stronger restrictions on αi than the one given in A1.
Note that αinf can be negative, so the existence of the m-th moment of X∗t might
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require the existence of negative moments for εt up to the order mαinf.8 For instance,
E(εδt ) only exist, for

• εt ∼ exp(λ), when δ ≥ −1, so X∗t is only weakly stationary, if αinf > −1/m
and for

• εt ∼Rayleigh(σ), when δ ≥ −2, so X∗t is only weakly stationary, if αinf > −2/m.

The exponential distribution is a common choice for ACD models, as it was origi-
nally proposed by Engle and Russell (1998). The Rayleigh distribution is used, for
example, by Pathmanathan et al. (2010) to compare different estimation methods
for ACD models. For some other distributions, the moments of positive order only
exist up to a certain order, which might require additional restrictions on αsup. For
instance,

• εt ∼ Fréchet (a, s,m), for δ < a, so X∗t is only weakly stationary, if αsup < a/m;

• εt ∼ Gumbel (µ, β), for δ < 1/β, so X∗t is only weakly stationary, if αsup <

1/mβ and

• εt ∼ Log-Logistic (α, β), for δ < β, so X∗t is only weakly stationary, if αsup <

β/m.

Zheng et al. (2016) propose the use of the Fréchet conditional distribution for cap-
turing characteristics of block trades, such as heavy tails and extreme values in
financial durations. Lindner and Meyer (2003) discuss the Gumbel distribution for
the EGARCH and Log-ACD model and the log-logistic distribution is included here
as a special case of the Generalized F distribution, discussed by Karanasos (2008).
Further restrictions on both αsup and αinf are required for distributions with order
limitations on both hand sides. For example,

• εt ∼ Lomax (λ, a), for −1 < δ < a, so X∗t is only weakly stationary if, αinf >

−1/m and αsup < a/m;

• εt ∼ Burr (λ, a, η), for −a < δ < aη, so X∗t is only weakly stationary, if
αinf > −a/m and αsup < ma/η and

• εt ∼ F (d1, d2), for −d1/2 < δ < d2/2, so X∗t is only weakly stationary, if
αinf > −d1m and αsup < d2m.

8The following examples are on common distribution choices for short-memory ACD models,
however, the discussion is general and not limited to a short-memory framework.
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The Lomax distribution is included in the Generalized F distribution and a Burr-
ACD model is introduced by Grammig and Maurer (2000). If the conditional distri-
bution has finite moments of any order δ for δ ∈ (−∞,∞), the linear and log-linear
process have finite moments of any order m for m ∈ (0,∞) and now A2 is automat-
ically fulfilled. The use of different conditional distributions allows to model heavy
tails at different levels in the data. Assuming that E(X∗2t ) <∞ but E(X∗4t ) =∞ we
will say that X∗t has clear heavy-tails. If E(X∗4t ) <∞ but E(X∗8t ) =∞, X∗t is said
to have light heavy-tails. A process with E(X∗8t ) < ∞ will be called a non-heavy
tailed one in this chapter.

3.3 Correlation structure under log-normal assump-
tion

If the conditional distribution is log-normal, moments of any order of X∗t exist and
the dependence structure of X∗t is completely known. Detailed properties on the
correlation structure under this strong assumption are first stated for the general
linear process. Specified properties under a Gaussian Semi-Log-ACD model will be
described briefly.

3.3.1 Results for the general linear process

Beran et al. (2015) propose to model the stochastic component of the log-data by a
Gaussian FARIMA with long memory. In this chapter we will extend their results to
a common power (X∗t )m, m > 0. The following lemma is a straightforward extension
of Lemma 1 in Beran et al. (2015), which gives the closed form formula of the
stationary solution of any m-th power of X∗t .

Lemma 3.1 Assume that εt is log-normally distributed, i.e. εt ∼ LN(0, σ2
ε). Then

for any m > 0, (X∗t )m =
∞∏
i=0

ηmait−i is a weakly and strictly stationary process with a

LN(0,m2σ2) marginal distribution, where σ2 = σ2
ε

∞∑
i=0

a2
i .

Lemma 1 in Beran et al. (2015) corresponds to Lemma 3.1 with m = 1 here. The
proof of Lemma 3.1 is therefore omitted. Since any power of a log-normal distribution
is still log-normal, a straightforward extension of the dependence structure of x∗t to
(X∗t )m for any m > 0 is possible. For a Gaussian log-linear process, the dependence
structure of (X∗t )m, m > 0, is given by the following theorem.
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Theorem 3.1 Under the assumptions of Lemma 3.1 we have

i) E[(X∗t )m] = em
2σ2/2 and var[(X∗t )m] = em

2σ2
(
em

2σ2 − 1
)
,

where σ2 is as defined in Lemma 3.1.

ii)

γm(k) = em
2σ2

em2σ2
ε

∞∑
i=0

aiai+k
− 1

 .
iii)

ρm(k) =

em2σ2
ε

∞∑
i=0

aiai+k
− 1

(em2σ2 − 1
)−1

=
(
em

2σ2ρY ∗ (k) − 1
) (
em

2σ2 − 1
)−1

. (3.7)

iv) The relationship between ρm(k) and ρY ∗(k) for large k is given by

ρm(k) ∼ cρ(m)ρY ∗(k), (3.8)

where ∼ means that the ratio of both sides tends to 1, as k → ∞ and 0 <

cρ(m) < 1 is a non-negative monotonically decreasing function of m as defined
in the appendix with lim

m→0
cρ(m) = 1 and lim

m→∞
cρ(m) = 0.

The proof of Theorem 3.1 is given in the appendix. Items i) to iii) provide simple
closed form formulas for the dependence structure of (X∗t )m, in addition to the result
in Lemma 3.1. This is in contrast to most volatility or duration models, where
the correlation structure, conditions for the existence of high order moments and
the marginal distribution are usually very complex or even unknown. Moreover, a
particularly interesting finding is the result in (3.8), which provides an asymptotic
relationship between ρm(k) and ρY ∗(k). The rate of decay of the autocorrelations
of any power of X∗t is the same as that for the underlying Gaussian process Y ∗t .
The constant in the asymptotic formula, which is between 0 and 1, depends on m,
though. The larger m, the smaller the constant. Note in particular that the fact
lim
m→0

cρ(m) = 1 must hold, as lim
m→0

[(X∗t )m − 1]/m→ ln(X∗t ) = Y ∗t .

3.3.2 Further properties in the short-memory case

The algorithm for estimating the scale function is based on an algorithm by Bühlmann
(1996) which is developed for short-memory data. Thus, the following contents are
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described for short-memory data only, but the results on linear processes of the pre-
vious sections still hold. Also an extension of the following methods to long-memory
data is possible but not subject of this chapter. A special case of the Log-ACD model
that is discussed here and applied in section 3.6 is a linear ARMA model. Let Y ∗t
follow a stationary and invertible ARMA(p, q) model (Allen et al., 2008):

φ(B )Y ∗t = ψ(B )ηt, (3.9)

where φ(z) = 1−φ1z− ...−φpzp and ψ(z) = 1+ψ1z+ ...+ψqz
q are the characteristic

polynomials of the AR and MA parts, respectively. It is assumed that they have no
common factors and all of the roots of φ(z) = 0 and ψ(z) = 0 lie outside the
unit circle. The log-linear process, X∗t and (3.9) define a Log-ACD model in a
strict sense, whereas Xt in (3.1) and (3.9) define a semiparametric generalization
of the Log-ACD model. The short-memory adapted Gaussian ARMA follows a
MEM with log-normally distributed innovations, for which Allen et al. (2008) show
that its log-transformation follows a linear ARMA. Consequently, the exponential
transformation of this linear ARMA model can be written as a Log-ACD model.
Based on the findings of Theorem 3.1 iv), the following corollary can be derived for
the short-memory Gaussian Log-ACD model:

Corollary 3.1 Under the assumptions of Theorem 3.1 and the further assumption
that Y ∗t follows a stationary ARMA process, ρm(k) for any m > 0 decay exponen-
tially.

The proof of Corollary 3.1 is straightforward and therefore omitted. This result
indicates that now for any m > 0, the acf of (X∗t )m are not only absolutely summable
but also decay very quickly.

3.4 The two-stage estimation procedure

For estimating the scale function in (3.1) directly, the existence of the fourth order
moment of X∗t is usually required for developing a data-driven bandwidth selec-
tor. Furthermore, it involves a nonparametric regression with time-varying variance
var (Xt) = ν2(τt)var (X∗t ). As the required assumption on the existence of the fourth
order moment of Yt is less of a problem for financial processes, we propose to esti-
mate ν(τ) equivalently via (3.2) and not directly via (3.1). The existence of E[(X∗t )m]
for all m ∈ (−m0,m0) for m0 > 0 implies the existence of the moment generating
function of Y ∗t in the neighbourhood (−m0,m0). Under the additional regularity
assumption A1 on φ(B ) and ψ(B ), Y ∗t has a strict stationary solution with finite



44 CHAPTER 3. A SEMIPARAMETRIC MULTIPLICATIVE ERROR MODEL

moments of any order. Here, the methods are described for m = 1. The estima-
tion of the scale function does not depend on the power of X∗t , because after the
log-transformation the power becomes a constant. In a first step µ(τ) is estimated
and the residuals Ŷ ∗t = Yt − µ̂(τt) are obtained. In a second step, the parameters
of the model can be estimated from the residuals. The following descriptions are
for the very general case of estimating the v-th derivative of µ(τ) to show that it
also applies to other data than the one used here. The formulas can be extended to
long-memory easily, however, for above mentioned reasons we limit this section to
the short-memory case.

3.4.1 Local polynomial estimation of the trend

As opposed to the Semi-ACD and related models, we propose a local polynomial
estimator for µ̂. Since the Log-ACD does not require parameter constraints to ensure
non-negativity, the nonparametric trend estimation methods are not restricted to
local linear regression, as in the case of the Semi-ACD model. Local polynomial
is asymptotically a kernel estimator with automatic boundary correction (e.g. Fan
and Gijbels, 1996 and Cheng et al., 1997 ) and eases the estimation of higher order
kernel functions, as well as derivatives. Feng et al. (2018) apply local polynomial
regression to estimate the trend and its derivatives for economic time series. Here we
discuss this method for the log-trends of non-negative financial time series and extend
the results of Feng et al. (2018) theoretically. We impose the following regularity
conditions:

B1. The scale function µ(τ) is strictly positive, bounded and k = p + 1 times
continuously differentiable on [0,1].

B2. The kernel K(u) is a symmetric density with compact support on [-1,1].

B3. The bandwidth b satisfies b→ 0 and bT →∞ as T →∞.

These conditions are necessary for the derivation of asymptotic results and ensure
that the model can be estimated by the proposed Semi-Log-ACD model algorithm.
Condition B1 is on the smoothness of the scale function. B1 and B3 are required
to derive the order of magnitude of the bias of the estimated scale function. The
assumption on the kernel function made in B2 is imposed for simplicity. The lo-
cal polynomial estimator of the v-th derivative of µ is obtained by minimizing the
weighted least squares equation:

Q =
T∑
t=1
{Yt −

p∑
j=0

βj(τt − τ)j}2K
(
τt − τ
b

)
, (3.10)
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where b is the bandwidth and K a second order kernel function on [−1, 1]. The
estimate is obtained by µ̂(τ)(v) = v!α̂v. The asymptotically equivalent kernel of
µ̂(τ) is the kernel K(u) itself at an interior point and a corresponding boundary
kernel at a boundary point. For p− v = odd the estimator has automatic boundary
correction and the order of the bias is uniform, so that the local polynomial regression
achieves the global optimal rates of convergence (Feng and Beran, 2013). Asymptotic
properties of µ̂(τ) can be obtained by adapting known results in the literature on
nonparametric regression with short-range dependent errors (e.g. see Hart, 1991 or
Opsomer et al., 2001). For the kernel function define R(K) =

∫
K2(u)du, I(K) =∫

ukK(u)du and I(µk) =
∫

[µk(τ)]2dτ and let cf denote the value of the spectral
density of Y ∗t at the origin.
The bias of µ̂(τ) is not affected by correlation in the errors, so it is the same as in
nonparametric regression with i.i.d. errors (see e.g. Hart, 1991). The variance of
µ̂(τ) is affected by the error correlation, so presuming error independence might lead
to a too small (large) bandwidth that undersmoothes (oversmoothes) the regression
function estimate (e.g. De Brabanter et al., 2011; Hermann et al., 1992; Hart, 1999).
Under A1, A2 and B1 to B3 the bias is

B(µ̂(τ)) = b(k−v)µ
(k)(τ)I(K))

k! [1 + o(1)] (3.11)

and the variance is given by

var (µ̂(τ)) = 2πcfR(K)
Tbb2v [1 + o(1)]. (3.12)

The global optimal bandwidth that is to enter the weighted sum of least squares
equation is the one that minimizes the dominant part of the MISE of µ̂(τ). It can
be approximated for practical convenience by the asymptotic MISE:

AMISE(µ̂(τ)) = b2(k−v) I(µk)I(K)2

[k!]2 + 2πcfR(K)
Tbb2v + o

(
max(b2(k−v)), o( 1

Tbb2v )
)
.

(3.13)
The AMISE can be calculated on the whole support [0,1], because the dependence of
both the kernel and the bandwidth on τ in the bias and variance of µ̂ does not affect
it. The contribution of the estimated values in the boundary area is asymptotically
negligible and the asymptotically global optimal bandwidth is given by

bA =
(

2v + 1
2(k − v)

2πcf [k!]2R(K)
I(K)2(K)I(µk)

)1/(2k+1)

T−1/(2k+1). (3.14)

If 2πcf > γ(0) (2πcf < γ(0)) the bandwidth becomes too small (too large), when the
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errors are correlated but assumed to be uncorrelated, whereas if they are correlated
but in fact they are not, 2πcf reduces to the residual variance (Hermann et al., 1992).

3.4.2 Parameter estimation from residuals

For estimating the unknown parameters, let θ = (ψ1, ..., ψp;φ1, ..., φq)′ denote the
unknown parameter vector and assume that µ̂(τ) is a consistent estimator of µ(τ).
Using the corresponding maximum likelihood estimators built in R or S-Plus, θ can
be estimated from Ŷ ∗t easily and will be denoted by θ̂. Under the conditional log-
normal assumption, the estimation is carried out via approximate MLE, whereas if
the conditional distribution is not log-normal, an approximate QMLE is used. If
the conditional distribution is far from log-normal, θ can e.g. be estimated by the
conditional least squares approach. As Y ∗t are not directly observable, the discus-
sion of whether errors in the trend estimation affect the parametric estimation is of
great importance (see Feng, 2004a). Letting θ̃ denote the standard

√
T -consistent

estimator of θ, obtained using Y ∗t , it can be shown that
√
T (θ̂ − θ̃) = op(1), if

o(T−1/2) < b < o(T−1/(4k)). The additional bias in θ̂ due to the bias of µ̂ is negligi-
ble, if b < o(T−1/(4k)). That due to the variance of µ̂ is negligible, if o(T−1/2) < b.
The additional variance in θ̂ can always be considered negligible, if µ̂ is consistent
(Beran and Feng, 2002b; Feng et al., 2018). As bA = O(T−1/(2k+1)), the asymp-
totically optimal bandwidth satisfies the condition for the

√
T -consistency and θ̂ is

asymptotically not affected by the bias and variance of µ̂(τ).

3.5 Practical Implementation

We propose a data-driven IPI algorithm for estimating the scale function with auto-
matic global bandwidth selection via a nonparametric regression approach with time
series errors (e.g. see Beran and Feng, 2002a or Gasser et al., 1991). This method
was also successfully extended to allow for local adaptivity (Herrmann et al., 1992;
Brockmann et al., 1993 and Herrmann, 1997). The two unknowns in the formula
of bA in (3.14) are cf and Î(µ)k. Of these two, only the variance term might be
affected strongly by correlated errors (see Opsomer et al., 2001), whereas I(µ)k can
be estimated by established techniques for models with i.i.d. errors.

3.5.1 Variance factor estimation

Besides the limitation to local linear regression, the IPI developed for the Semi-ACD
model also differs in the estimation of cf . It is based on the residual autocovariances
via a nonparametric estimator: c̃f = 1

2π
∑
|k|<K ωkγ̂(k), where ωk = 1 − k/(K + 1)
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are Bartlett-window weights (see e.g. Priestley, 1981) with K = CMT
1/3. The

window-width K is fixed manually by choosing a value of CM . To increase the
degree of automation of the IPI, we propose three methods in total to estimate cf
data-driven instead of fixing it beforehand by choosing a value for the maximal lag
of the sum of residual autocovariances. Two of these methods are parametric by
assuming AR(MA) models fitted to the obtained residuals, as described in model
(3.9):

ĉ
f,ARMA =

1 + ψ̂1 + ...+ ψ̂q

1− φ̂1 − ...− φ̂p

2

σ2
η.

For an AR model the numerator reduces to 1. For consistency reasons the orders
of the models are selected by BIC. To maintain the flexibility of the Semi-Log-ACD
algorithm, we also propose a nonparametric estimation procedure for the variance
factor, which does not require any parametric assumption on the residuals:

ĉf,NP = 1/2π
CK∑

c=−CK
ωcγ̂(c).

We take on the proposal of Bühlmann (1996) to use an IPI procedure for automat-
ically selecting the optimal window-width. It minimizes the asymptotic MSE at a
fixed frequency of the lag-window estimator. In a first step, a global estimate CK,opt

is obtained which is used in a second step to obtain a local estimate at the frequency
ξ = 0. Let f̂(ξ) denote the lag-window estimator for the spectral density of Y ∗t at
frequency ξ as given in (2) of Bühlmann (1996). The algorithm follows Bühlmann
(1996) in most parts, except for the inflation factor being chosen smaller and, thus,
more than a maximal number of four iterations for the global step (2.) is used:

1. Choose a starting value of the lag-bandwidth manually. Here CK,0 = [T/2],
where [•] denotes the integer part.

2. In the j-th iteration put C ′K,j = [CK,j−1/T
2/21]. Using (2) of Bühlmann (1996)

estimate
∫

(f(ξ)2)dξ and
∫
f (1)(ξ)dξ, where f (1)(ξ) denotes the first order gen-

eralized derivative of f(ξ). Insert the estimates into (5) of Bühlmann (1996)
for the optimal window-width for a Bartlett window.

3. Increase j by one and repeatedly carry out Step 2 until convergence or until a
maximal number of iterations is reached (here: 20). Set ĈK,G = ĈK,j.

4. Use Ĉ ′K = [CK,G/T 2/21] to calculate
∫
f (1)(ξ)dξ. Insert it into (5) of Bühlmann

(1996). Obtain ĈK for estimating f(0).

Feng et al. (2018) propose the use of a bandwidth correction factor following table
1 of Feng and Heiler (2009). This is to improve the quality of the estimation of cf ,
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as it ensures that the asymptotically optimal bandwidth for estimating the residual-
based variance is larger than the one for estimating the scale function. The number
of observations for HF financial data is usually much larger than in the economic
time series setting of Feng et al. (2018), so we do not consider this adjustment
necessary here.

3.5.2 The bandwidth selection algorithm

The main bandwidth selection IPI is adapted to (3.14) to estimate the scale function
of equidistant log-data. The algorithm is as follows:

1. Choose a starting bandwidth, b0, and put j = 1.

2. Refine b0 via the IPI idea, ignoring correlation and scale change for J1 iterations.

3. In the j-th iteration for j > J1:

a) Obtain µ̂(τ) via bj−1. Calculate Ŷ ∗t = Yt − µ̂(τ) and γ̂(k), estimate cf .

b) Obtain Î(µk) via an inflation method and factor of choice. Here we use
the EIM of Beran and Feng (2002a) b2j = bυj−1.

c) Increase j by one and repeatedly carry out steps 3.a) to c) until conver-
gence or a fixed maximal number of J iterations is reached. Set b̂A = bj

or b̂A = bJ .

Convergence in this case means that a convergent output or a fixed point is achieved.
The autocovariances γ̂(k) are calculated from the residuals, Ŷ ∗t , in the (j − 1)th

iteration. Gasser et al. (1991) propose a multiplicative inflation method, however
the rate of convergence of the estimated bandwidth is much slower than the one of
the bandwidth selected with an IPI using the EIM. This inflation method is chosen
with an inflation factor of υ = 5/7, because then the selected optimal bandwidth
achieves the highest rate of convergence (see Beran and Feng, 2002a), which is also
shown as one of the results of Theorem 3.2.
The main IPI algorithm is a fix-point search procedure. If the variance factor is
chosen manually beforehand, the choice of the starting bandwidth does not affect
the finally selected bandwidth, if chosen from a suitable range (Herrmann, 1997). If
cf is estimated, the choice of the starting bandwidth does affect the finally selected
bandwidth in some cases, which was found and discussed in the practical evaluation
of the adapted algorithm in section 3.6. Regardless of this practical issue, the quality
of the finally selected bandwidth b̂A can be quantified by the following theorem:
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Theorem 3.2 Under assumptions A1, B1 through B3 and the additional assumption
that E(Y ∗4t ) <∞, the following holds: For υ = 1/2,

b̂A = bA[1 +O(T−1/(2k+1)) +Op(T−1/2) +Op(T−1/3)]. (3.15)

For υ = (2k + 1)/(2(k + 2) + 1),

b̂A = bA[1 +O(T−2/(2(k+2)+1)) +Op(T−2k/(2(k+2)+1)) +Op(T−1/3)]. (3.16)

For υ = (2k + 1)/(2k + 3),

b̂A = bA[1 +O(T−2/(2k+3)) +Op(T−2/(2k+3)) +Op(T−1/3)]. (3.17)

The proof of Theorem 3.2 is given in the appendix. For k = 2, the (relative) rates
of convergence of the selected bandwidth are of the orders O(T−1/5), Op(n−2/9) and
Op(n−2/7). These rates of convergence are not very high but much higher than the
Op(n−1/10) convergence rate for a cross-validation bandwidth selector. Compared to
these terms, the Op(T−1/3) term, which is caused by the error in ĉf , is asymptotically
negligible. The same holds for k = 4 and the (relative) rates of convergence of the
selected bandwidth of the orders O(T−1/9), Op(n−2/13) and Op(n−2/11). In summary,
the error in the lag-window estimator does not affect the rate of convergence of the
finally selected bandwidth. For υ = (2k+1)/(2k+3) the (relative) rate of convergence
of the selected bandwidth is optimal. The variance and the bias converge at the same
rate and the MSE of Î[µ(k)] is minimized. It is known that this rate is the optimal rate
of convergence for a local polynomial approach with independent or short-memory
errors, when bA is selected by a plug-in rule. If υ = 1/2 is used, the variance of
Î[µ(k)] is minimized and does not depend on k, but its bias is clearly increased. Feng
et al. (2016) show, though, that local linear regression with this inflation factor
yields the best results for UHF data with large sample sizes. The other two inflation
factors perform clearly worse in this setting. If the observation number is not as
high as it is for UHF data this inflation factor is likely to be too strong and should
not be used. Feng et al. (2018), for example, use υ = (2k + 1)/(2(k + 2) + 1)
and υ = (2k + 1)/(2k + 3) in an economic time series context, i.e. with usually
much less observations than for UHF financial data. All of the inflation factors
given in Theorem 3.2 are therefore of practical relevance and the choice of factor
depends on the data at hand. In either case the estimation of the variance factor
does not affect the convergence rate of the asymptotically optimal bandwidth. Let bM
denote the theoretically optimal bandwidth. A question that arises is on the relative
convergence rate of b̂A to bM . Compared to the difference between b̂A and bA, the
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relative difference between bA and bM , which is of the order (bA− bM)/bM = O(b2
M),

is asymptotically negligible (Beran and Feng, 2002b). Thus we have

Corollary 3.2 Under the same assumption as in Theorem 3.2 the relative conver-
gence rates of (b̂A − bM)/bM in any cases are the same as those given there.

The proof of Corollary 3.2 is given in the appendix.

3.6 Application to real financial data

In order to evaluate the practical performance of previously described models and
methods, they are applied to the daily average durations (MD), trading number
(TrNo) data and volume (Vol) of the German companies Allianz SE (ALV), BMW
AG (BMW), Deutsche Bank AG (DBK), Siemens AG (SIE), Thyssenkrupp AG
(TKA) and Volkswagen AG (VW). The observation period is from January, 2, 2006,
to September, 30, 2014. The ultra-high frequency raw data was retrieved from the
Thomson Reuters Tick History Database and processed accordingly.
This section compares the performance of the Semi-Log-ACD modelling approach
described in above sections to the Semi-ACD model. For either model, the scale
function is estimated from the log-data, so the algorithm for and the results of
the scale function estimation in both models are the same. For the Semi-ACD
model, the original data is standardized by the retransformed scale function and
an EACD(1, 1) model is fitted to the obtained residuals. Concerning the manual
choice of some control parameters, we choose a bi-square kernel and the exponential
inflation method of Beran and Feng (2002a, 2002b) with an inflation factor of 5/7
in a local linear regression. The time series are considered sufficiently large for this
method to work best and a direct comparison with the performance of the Semi-ACD
model and the Semi-Log-ACD model is possible.

3.6.1 Performance of the estimated variance factor

Figures A3.1 to A3.3 show the behaviour of the selected bandwidth with the variance
factor estimated by the methods described above and different starting bandwidths.
Being based on a fix-point search, the bandwidth selected by the IPI algorithm does
usually not depend on the value of the starting bandwidth (see e.g. Hermann and
Gasser, 1994 or Herrmann, 1997). The figures show, though, that if the variance
factor is estimated, the bandwidths are selected differently in some cases depending
on b0. We consider all differences in the selected bandwidths negligibly small, if they
are smaller than a convergence criterion of 1/T . This holds for the majority of con-
sidered examples. For some of the data the selection of the bandwidth with cf,ARMA
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is instable and the differences in the bandwidths are larger than the convergence
criterion. This is the case for the trading number of BMW, the volume of DBK, the
trading number of TKA and the volume of VW. The finally selected bandwidth by
an algorithm containing cf,ARMA can also be illogically small or illogically large and
fluctuate in value to value, depending on b0. The bandwidth selections with an IPI
containing cf,AR or cf,NP are about equally stable. The nonparametric variance factor
estimation yields the smallest bandwidths in most cases, the ones based on AR and
ARMA select larger bandwidths. The differences in the bandwidths selected by each
method are very small, for the convergent bandwidth examples, though. Table A3.1
gives the bandwidths selected by the IPI with each of the variance factor estimation
methods, b̂ and obtained with a manually fixed CM = 4, b̃opt for a starting bandwidth
b0 = 0.10. Additionally, the values for ĉf and c̃f are given to compare the estimates
with the manually fixed. The table shows that the bandwidths selected by the IPI
with a manually obtained variance factor do not differ much from the bandwidths
selected by the IPI with an estimated variance factor. Also the estimates of the
variance factor are not much different to the manually fixed ones. Overall, the band-
widths are the smallest for the majority of data examples when the variance factor
is fixed manually and could be adjusted by changing the value of CM . However,
considering the increased flexibility of automatically estimating the variance factor,
we do not propose to include the manually fixed variance factor into the IPI. Also
we do not propose the use of the ARMA based method to estimate cf . Thus, our
proposal for the practical application of here described methods is to include ĉf,AR

or ĉf,NP into the IPI, so a general method that does not require a prior parametric
model assumption is proposed, as well as an appropriate model assumption based
alternative.

3.6.2 Final analysis

In order to discuss the overall performance of the Semi-Log ACD model the final
analysis is carried out for the IPI with ĉf,AR and ĉf,NP and b0 = 0.10, i.e. 20% of the
observations are used in the first iteration to estimate µ(τ). Please note, though, that
this is not a general recommendation and was chosen here, because most bandwidths
did converge for b0 ≥ 0.10. Figure A3.4 shows the original data of the trading number
of TKA and VW, together with the retransformed trends estimated with the IPI
containing cf,AR and cf,NP. Also the estimated total mean durations following the
Semi-Log-ACD model and the Semi-ACD model are given. Looking at the original
data one can see that: 1. A nonparametric trend can be clearly found, so the use
of the proposed semiparametric model extension is a reasonable choice. 2. The
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variation in the data is large when the trend is high, which supports the use of log-
transformed data in order to stabilize the variance across time. 3. The underlying
distributions of the data are clearly positively skewed, but only a few observations
are close to zero. On the one hand, this finding also supports the choice of the
log-transformation as it may reduce the skew. On the other hand, this restricts
the distribution choices to those who do not have a peak at zero. The discussed
special case with a conditional log-normal distribution meets this criterion. Also the
distributions discussed in section 3.2.2 except for the Lomax and the exponential
distribution do. Looking at the trends estimated via the IPI with the variance factor
obtained by the AR and the NP method, the differences are small, especially at
the boundaries. The numerical results of the bandwidths selected for estimating the
trend of the log-data are given under the figures. They will not be discussed any
further than indicating that they seem reasonably selected and the retransformed
trends capture the movement of the original series well. For the examples considered
here, the differences in the finally selected bandwidths by both methods are the
largest for the trading number data of TKA and the smallest for the trading number
data of VW. For VW, there is no visible difference in the trend estimations. For
TKA minor deviations can be seen in the interior, where the trend estimated with
cf,NP is not as smooth as the one estimated with cf,AR. In order to quantify this
visual impression the mean squared scaled differences (MSSD) between the two trend
estimates are calculated and given under the figures. Overall, the differences are small
and do not rule out the practical application of either method, so our proposal of cf,AR

and cf,NP is supported by these empirical results. For the graphical final analysis
the results for trends estimated by the NP method are shown. For the estimation of
the total conditional means, it can be seen that the overall movement of the original
data is caught very well in both, the estimations of the Semi-ACD and the Semi-Log-
ACD model. The estimated values are at a smaller level than the original ones and
the estimated series appear less noisy, especially for the total conditional durations
of the Semi-Log-ACD model. Both modelling approaches perform well in practice,
but following the ease of estimation and theoretical and practical flexibility of the
Semi-Log-ACD model, we recommend this model for practical application.

3.7 Conclusion

We propose a semiparametric extension of the Log-ACD model to further increase
its degree of flexibility. The model was discussed as a linear process and asymptotic
properties were derived for a special case with a conditional log-normal distribution.
For a selection of conditional distributions other than the log-normal one, conditions
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were derived under which they can serve to model different levels of heavy-tails in
the data. We propose to estimate the scale function from the log-data regardless
of whether a Semi-ACD or a Semi-Log-ACD model is fitted, as the fourth order
moment requirement is less of a problem for Y ∗t than it is for X∗t . Furthermore,
the IPI for estimating the scale function of time series data with correlated errors is
generalized to local polynomial regression. Also the estimation of the variance factor
is automatized. We describe two parametric and one nonparametric method, where
the parametric ones are AR and ARMA model based and latter adapts an already
existing IPI. The methods were applied to three data-types of six firms and it is found
that the starting bandwidth sometimes affects the finally selected bandwidth, if the
variance factor is estimated. For the nonparametric and AR based variance factor
estimation, the bandwidths converge, though, whereas the final bandwidth selection
with the ARMA method is instable. Following the flexibility and ease of estimation
of the Semi-Log-ACD model, we propose the use of the nonparametric variance
factor estimation, as no prior assumptions on the model need to be made. The AR
based method for estimating the variance factor is an adequate model assumption
based alternative. The Semi-ACD and Semi-Log-ACD model yield similar results,
but due to the advantages discussed, we propose the use of latter model. The trend
estimation procedure is set up very generally, so it may also be applied after minor
adaptation to different areas of research. Feng et al. (2018) were already cited to
apply an IPI for a local polynomial estimation of the trend and its derivatives in
macroeconomic time series together with a data-driven lag-window estimator for the
variance factor. The Semi-(Log-)ACD model, introduced here is found to work very
well in practice and the theoretical findings of this chapter should be of great value for
the development of methods for the further analysis of non-negative financial data,
as well as data of different research areas. An especially promising area for further
future research could be its application to financial returns in a GARCH model
framework. Using local polynomial regression with the methods described in this
chapter for the estimation of the time-varying scale in log-returns could improve the
Semi-GARCH model of Feng (2004a). Eventually this could improve the calculation
of quantitative risk measures, such as the Expected Shortfall, and be a valuable
contribution in this field of research.
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A.3 Appendix of Chapter 3

Proof of Theorem 3.1. i) The mean and variance of (X∗t )m follow directly from
Lemma 3.1 and well-known properties of the log-normal distribution. The given
formulae in this part can be obtained after a straightforward simplification. The
variance is of course also a special case of γm(k) in ii) with k = 0.

ii) The formula for the autocovariance is derived by subtracting the product of
the expectations of lagged values from the expectation of the product of lagged ob-
servations. Note that (X∗t )m is stationary, so E[(X∗t )m]E[(X∗t+k)m] = {E[(X∗t )m]}2 =
em

2σ2 . E
[
(X∗t )m(X∗t+k)m

]
can be calculated as follows:

E[(X∗t )m(X∗t+k)m] = E

( ∞∏
i=0

ηmait−i

∞∏
i=0

ηmait−i+k

)

= E

(
k−1∏
i=0

ηmait−i

∞∏
i=0

η
m(ai+ai+k)
t−i+k

)

=
k−1∏
i=0

E (ηmait−i )
∞∏
i=0

E
(
η
m(ai+ai+k)
t−i+k

)

=
k−1∏
i=0

em
2a2
i σ

2
ε /2

∞∏
i=0

em
2(ai+ai+k)2σ2

ε /2

=
∞∏
i=0

em
2a2
i σ

2
ε /2

∞∏
i=0

em
2a2
i σ

2
ε /2

∞∏
i=0

e2m2aiai+kσ
2
ε /2

= em
2σ2
e
m2σ2

ε

∞∑
i=0

aiai+k
,

as ηt ∼ LN(0, σ2
ε ). The autocovariances are then calculated by

γm(k) = em
2σ2
e
m2σ2

ε

∞∑
i=0

aiai+k
− em2σ2

= em
2σ2

em2σ2
ε

∞∑
i=0

aiai+k
− 1

 . (A3.1)

iii) To obtain the autocorrelations γm(k)/var(X∗t )m, i.e.

ρm(k) =

em2σ2
ε

∞∑
i=0

aiai+k
− 1

(em2σ2 − 1
)−1

=
(
em

2σ2ρY ∗ (k) − 1
) (
em

2σ2 − 1
)−1

. (A3.2)

iv) By means of Taylor expansions of both exponential functions on the right-
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hand side of (A3.2) we obtain

ρm(k) =
{ ∞∑
i=1

[ρY ∗(k)m2σ2]i/i!
}{ ∞∑

i=1
[m2σ2]i/i!

}−1

. (A3.3)

Now we will show that the first sum on the right hand side of (A3.3) is dominated
by its first term ρY ∗(k)m2σ2. Note that |ρY ∗(k)| ≤ 1 and lim

k→∞
ρY ∗(k)→ 0. We have

∞∑
i=2
|ρY ∗(k)m2σ2|i/i! ≤ [ρY ∗(k)]2

∞∑
i=2

[m2σ2]i/i!

= [ρY ∗(k)]2(em2σ2 − 1−m2σ2)

= O{[ρY ∗(k)]2}

= o[ρY ∗(k)].

Hence, we have
ρm(k) = cρ(m)ρY ∗ [1 + o(1)], (A3.4)

where

cρ(m) = m2σ2
{ ∞∑
i=1

[m2σ2]i/i!
}−1

= m2σ2[em2σ2 − 1]. (A3.5)

It is clear that 0 < cρ(m) < 1, for which we have

[cρ(m)]′m = 2mσ2
{ ∞∑
i=1

[m2σ2]i/i!
}−1

−m2σ2
{ ∞∑
i=1

2im2i−1σ2i/i!
}{ ∞∑

i=1
[m2σ2]i/i!

}−2

= 2mσ2
{ ∞∑
i=1

[m2σ2]i/i!
}−1

×

1−
{ ∞∑
i=1

i[m2σ2]i/i!
}{ ∞∑

i=1
[m2σ2]i/i!

}−1
 ,

which is negative for any m > 0. Thus cρ(m) decreases monotonically. Furthermore,
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note that
∞∑
i=1

[m2σ2]i/i! > m2σ2. And, if m→ 0, we have

∞∑
i=1

[m2σ2]i/i! = m2σ2
∞∑
i=0

[m2σ2]i/(i+ 1)!

< m2σ2em
2σ2

= m2σ2[1 + o(1)].

Insert those results into cρ(m) leads to lim
m→0

cρ(m) = 1. If m→∞, we have

m2σ2 = o

( ∞∑
i=1

[m2σ2]i/i!
)
.

Thence, lim
m→∞

cρ(m) = 0. Theorem 3.1 is proved. �

Proof of Theorem 3.2. Let CA denote the constant of bA and define bA =
CAT−1/(2k+1). We have b̂A = ĈAT−1/(2k+1) and

(b̂A − bA)/bA = (ĈA − CA)/CA. (A3.6)

Through Taylor expansion we obtain

ĈA − CA
.= Op[Î(µ(k))− I(µ(k))] +O(T−1/2) +O(ĉf − cf ). (A3.7)

The order O(T−1/2) is due to the errors in θ̂. According to equation (3) in Bühlmann
(1996), following the results in chapter 6.2 of Priestley (1981), the error in the lag-
window estimator of cf using the Bartlett-window and a bandwidth of the optimal
order K = O(T 1/3) is

ĉf − cf = Op(T−1/3). (A3.8)

Both terms are considered negligible concerning the effect on the rate of convergence
of b̂A, as they converge much faster than Op(Î(µ(k))− I(µ(k))). The orders of magni-
tude of the dominant bias and variance terms in Î(µ(k))− I(µ(k)) are given in (3.3)
to (3.5) in Beran and Feng (2002a) for k = 2 or in Theorem 6.1 and Corollary 6.1
of Feng (2004b). Note that Î(µ(k)) − I(µ(k)) is at least of the order Op(b2

opt), where
bopt = O(T−2/(2k+3)) denotes the MISE minimizing bandwidth for estimating I(µ(k)).
In either case, the estimation of the variance factor does not affect the rate of con-
vergence of the finally selected bandwidth. The choice of inflation factor affects the
rate of convergence. �

Proof of Corollary 3.2. The question to address is whether the difference be-
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tween bA and bM is asymptotically negligible, so that bA can be used to quantify the
quality of b̂A, as done in Theorem 3.2. If the quality of the bandwidth is expressed
by the difference between the selected bandwidth b̂A and the theoretically optimal
bandwidth bM , the difference between bA and bM , the error in the model parameter
estimation, as well as the error in estimating I(µ(k)) determine it. Here, also the
error of estimating the variance factor via an IPI needs to be included.
Following (A.7) in Beran and Feng (2002b) let the rate of convergence be calculated
as follows:

(b̂A − bM)/bM = (b̂A − bA)/bM + (bA − bM)/bM . (A3.9)

In order to discuss bA − bM we include a third term into above equation.

(b̂A − bM)/bM = (b̂A − bA)/bA + (b̂A − bA)/bM − (b̂A − bA)/bA + (bA − bM)/bM
= (b̂A − bA)/bA +

{
[(b̂A − bA)/bM ]− [(b̂A − bA)/bA]

}
+ (bA − bM)/bM .

(A3.10)

Let T1 = (b̂A − bA)/bA denote the first term of (A.10), which is at least of the order
O(T−2/(2k+3)) as shown in Theorem 3.2. Let T3 = (bA − bM)/bM denote the third
term of (A.10). Extending the proof of Proposition 1 of Beran and Feng (2002b) to
a local polynomial short-memory case following Feng (2004b), we have

M1 = O(b2k) +O{(Tb)−1},

where M1 denotes the asymptotic MISE described in (3.13), which is obtained based
on the k-th order approximation of the bias

B1 = O(bk) + o(bk).

If µ(k+2) is continuous the bias can be approximated by

B2 = O(bk) +O(b(k+2)) + o(b(k+2))

to obtain a more accurate approximation of the MISE, M , by

M2 = O(b2k) +O(b2(k+1)) +O{(Tb)−1}.

In the neighbourhood of hM , the second term in the variance part is always negligible
and

M(bM)−M1(bM)=̇M2(bM)−M1(bM)=̇O(b2(k+1)
M ). (A3.11)
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Through Taylor expansion we obtain

bA − bM=̇− [M ′
1(bM)−M ′(bM)]/M ′′(bM) (A3.12)

=̇− [M ′
1(bM)−M ′

2(bM)]/M ′′(bM). (A3.13)

Note that M ′
1(bM)−M ′

2(bM)=̇O(b2k+1
M ) and M ′′(bM)=̇O(b2(k−1)

M ) so

(bA − bM)/bM=̇O(b2
M). (A3.14)

Note that bM = O(T−1/(2k+1)), so b2
M = O(T−2/(2k+1)). Recall that T1 is at least of the

order O(T−2/(2k+3)), hence we have b2
M = o(T1). This holds for all cases considered

in Theorem 2, since for υ = 1/2 and υ = (2k + 1)/(2(k + 2) + 1) the orders of the
bias terms of b̂A are larger than for υ = (2k + 1)/(2k + 3). The variance terms are
negligible compared to the ones for estimating the variance factor and as explained,
the Op(T−1/3) terms are asymptotically negligible compared to the bias terms. To
discuss T2 = [(b̂A − bA)/bM ]− [(b̂A − bA)/bA] it can be rewritten as

T2 = (b̂A − bA)
[ 1
bM
− 1
bA

]
= (b̂A − bA)

(
bA − bM
bAbM

)
= (b̂A − bA)/bA · (bA − bM)/bM
= T1T3. (A3.15)

T2 = o(T3) and T3 = o(T1), so it is shown that the difference between bA and bM

does not affect the rate of convergence and is, therefore, negligible for quantifying
the quality of the finally selected bandwidth in Theorem 3.2. �
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Table A3.1 – Bandwidth selection with b0 = 0.1, different methods for obtaining cf

b̂AR b̂ARMA b̂NP ĉf,AR ĉf,ARMA ĉf,NP b̃opt c̃f

ALV
MD 0.1046 0.1073 0.0970 1.2387 1.3783 0.9446 0.1007 1.1859
TrNo 0.1051 0.1074 0.0974 1.2591 1.3757 0.9546 0.1006 1.1911
Vol 0.1298 0.1342 0.1239 1.2117 1.3912 0.9966 0.1205 1.1974

BMW
MD 0.1020 0.1029 0.0954 0.8861 0.9146 0.6921 0.1016 0.8905
TrNo 0.1026 0.1034 0.0958 0.9088 0.9385 0.7063 0.1017 0.9010
Vol 0.1107 0.1074 0.1056 0.9784 0.8576 0.8014 0.1049 1.0005

DBK
MD 0.1222 0.1154 0.1141 1.2707 0.9900 0.9463 0.1107 1.0439
TrNo 0.1227 0.1160 0.1148 1.2760 0.9981 0.9586 0.1111 1.0530
Vol 0.1170 0.1130 0.1125 1.3564 1.1372 1.1132 0.1075 1.2095

SIE
MD 0.1215 0.1147 0.1176 1.1636 0.9065 1.0099 0.1154 1.2326
TrNo 0.1208 0.1144 0.1161 1.0868 0.8649 0.9170 0.1143 1.1505
Vol 0.1344 0.1283 0.1289 1.0737 0.8844 0.9054 0.1270 1.1047

TKA
MD 0.1251 0.1258 0.1171 0.7743 0.7918 0.6043 0.1188 0.7089
TrNo 0.1256 0.1242 0.1171 0.7869 0.7757 0.6039 0.1186 0.7050
Vol 0.1280 0.1306 0.1233 1.0623 1.1692 0.8962 0.1258 1.1002

VW
MD 0.1180 0.1290 0.1172 2.3890 3.8192 2.3090 0.1145 2.4198
TrNo 0.1176 0.1286 0.1166 2.3329 3.7027 2.2402 0.1144 2.3486
Vol 0.1005 0.1182 0.1000 5.4786 10.7414 5.3383 0.0889 4.9629
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Figure A3.1 – Comparison of different methods with different starting bandwidths
for ALV and BMW
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Figure A3.2 – Comparison of different methods with different starting bandwidths
for DBK and SIE
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Figure A3.3 – Comparison of different methods with different starting bandwidths
for TKA and VW



A.3. APPENDIX OF CHAPTER 3 63

2006 2008 2010 2012 2014

5
0

0
0

1
0

0
0

0
1

5
0

0
0

TKA Trading Number with trends estimated with cfAR (solid) and cfNP (dashed)

 b̂AR = 0.1255198 and b̂NP = 0.1171273 , MSSD = 0.1395852
Year

2006 2008 2010 2012 2014

5
0

0
0

1
0

0
0

0
1

5
0

0
0

TKA TrNo original data with conditional means by Semi−ACD with cfNP

Year

2006 2008 2010 2012 2014

5
0

0
0

1
0

0
0

0
1

5
0

0
0

VW TrNo original data with conditional means by Semi−Log−ACD with cfNP

Year

2006 2008 2010 2012 2014

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

VW Trading Number with trends estimated with cfAR (solid) and cfNP (dashed)

 b̂AR = 0.1176304 and b̂NP = 0.1165872 , MSSD = 0.003668083
Year

2006 2008 2010 2012 2014

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

TKA TrNo original data with conditional means, by Semi−ACD with cfNP

Year

2006 2008 2010 2012 2014

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

VW TrNo original data with conditional means by Semi−Log−ACD with cfNP

Year

Figure A3.4 – TrNo TKA and VW with estimated trends and total conditional means
estimated by Semi-(Log-)ACD
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4 Forecasting non-negative financial
processes using different parametric and

semiparametric ACD-type models

4.1 Introduction

De Gooijer and Hyndman (2006) review ‘25 years of time series forecasting’ until
2005. They consider heavy computation methods, realized volatilities (see Andersen
et al., 2003) and transaction durations (see Engle and Russell, 1998) as important
areas, which slowly began to be the subject of forecasting method developments.
Their review includes a reference to Cogger (1988) calling for a departure from lin-
ear models with a too strict assumption of Gaussian i.i.d. errors. While the research
on the forecasting of realized volatilities is very active, this is not the case for the
forecasting of transaction durations. This chapter is part of the research on the fur-
ther development of the ACD model, which already underwent several stages and
is still subject to further development (see e.g. Pacurar, 2008; Saart et al., 2015 or
Kaur Bhogal and Thekke Variyam, 2018).
In the following, different forecasting approaches are proposed based on the semipara-
metric extensions of the ACD model of Engle and Russell (1998) and the (first-type)
Log-ACD model of Bauwens and Giot (2000) and Bauwens et al. (2008). Above
mentioned issues are addressed by forecasting methods that do not require a prior
parametric model assumption or that are restricted to a particular conditional distri-
bution. ACD models are considered, as their properties and flexibility make them be
of great value for the analysis of financial market data. With their semiparametric
extension and generalization to multiplicative errors models (MEM; see Engle, 2002)
more flexibility is gained. The general setup of the MEM for any sequence of non-
negative random variables allows for its application to data, other than transaction
durations. Different types of marked durations can be modelled, as well, where the
durations not only measure the time elapsed, but the time until e.g. a minimum
mid-price change is observed or a minimum volume is traded (see e.g. Giot, 2000
and Fernandes and Grammig, 2006). It can also be used to model (daily) aver-
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age volume (Manganelli, 2005) and its semiparametric extensions include amongst
others nonparametric methods for estimating the unknown model parameter vector
(e.g. Drost and Werker, 2004 or Ranasinghe and Silvapulle, 2011) or are based on
decomposing the data and applying nonparametric methods to at least one of the
components (e.g. Engle and Russell, 1998; Brownlees et al., 2010 or Brownlees et
al., 2012). Here, the data is decomposed into a deterministic and a stochastic part
and estimated separately in order to account for intra-daily patterns (see McInish
and Wood, 1992; Veredas et al., 2001; Bauwens et al., 2004 or Feng et al., 2016) or
long-term behaviour (see Forstinger and Feng, 2018). The deterministic movement
of the data is described by including a time-varying scale function into the model. It
is proposed to be estimated from the log-data via local polynomial regression with
automatic bandwidth and variance factor selection (Forstinger and Feng, 2018). Af-
ter this step any parametric model can be fitted to the detrended data.
The trend is extracted in a first step and existing and new forecasting methods
are applied to the obtained residuals. Eventually they are combined with the es-
timated and linearly extrapolated trend. For existing methods the Semi-Log-ACD
model with a conditional log-normal distribution is used. For obtaining the point
and 90% forecasting-intervals Kalman filter methods are applied. To overcome the
issue that parametric forecasting interval methods perform poorly for non-Gaussian
errors (see e.g. Stine, 1987 or Li and Maddala, 1996), another nonparametric boot-
strap approach is proposed. Due to the correlation structure of the process the i.i.d.
assumption of the observations for the bootstrap of Efron (1979) does not apply to
time series data (e.g. Chatterjee, 1986 or Bühlmann, 2002). Therefore, the sieve
bootstrap idea of Bühlmann (1997) and its extensions (Alonso et al., 2002; 2003;
2004) is adapted to the Semi-Log-ACD model. Analogously bootstrap for GARCH
models is extended to the Semi-ACD model following Pascual et al. (2006) and Chen
et al. (2011). Once the replicate data is generated, it is used for obtaining the point
forecasts and the confidence intervals as the quantiles of the bootstrap distribution
function of the forecasted bootstrap replicates in either case (see e.g. Pascual et al.,
2006; Hwang and Shin, 2013 or Allende et al., 2015).
The remainder of this chapter is organized as follows: Section 4.2 gives an overview
over the ACD and Log-ACD model and their semiparametric extensions. Section 4.3
describes the forecasting methods for the trend and the residuals. The semiparamet-
ric models, as well as their parametric counterparts are applied to three data types
of six firms in section 4.4. The performance of the forecasts is discussed for training
and validity sets with different forecast horizons. Section 4.5 summarizes the results
and main findings.
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4.2 The Semi-ACD and Semi-Log-ACD model

4.2.1 General setup

Let the observations of interest be denoted by Xt ≥ 0 for t = 1, ..., T . The very basic
setup of the ACD model by Engle and Russell (1998) follows the idea of a classical
MEM (Engle, 2002) of decomposing Xt into a scale parameter, the conditional mean
and a positively valued error term: Xt = νψtεt, with ν > 0. Different possibilities
exist for the functional form of the conditional mean, ψt > 0, as well as for the
distribution of the i.i.d. non-negative random variables, εt.9 Here, the conditional
mean function follows a linear parametrisation, as given in the original proposal of
Engle and Russell (1998):

ψt = ω +
p∑
j=0

αjX
∗
t−j +

q∑
j=0

βjψt−j, (4.1)

where X∗t = Xt/ν. To ensure non-negativity of ψt, ω > 0, αj ≥ 0 and βj ≥ 0
for j = 1, ..., p and q. These constraints on the parameters can be dropped for the
(first-type) Log-ACD model of Bauwens and Giot (2000) and Bauwens et al. (2008).
Let Yt = log(Xt), µ = log(ν), λt = log(ψt) and ηt = log(εt), so that Yt = µ+ λt + ηt.
In order to model the conditional and long-term dynamics simultaneously, the scale
parameter is replaced with a nonparametric smooth scale function ν(τt) > 0 and
µ(τt), where τt = t/T denotes the rescaled time in either case. The estimation of the
scale function and its removal from the data is important, because it is found that
the ACD model is inconsistent, if a significant trend is not removed (see Feng et al.,
2016). The semiparametric extension of the ACD model is obtained by

Xt = ν(τt)ψtεt (4.2)

and (4.1). The Semi-Log-ACD model is given by

Yt = µ(τt) + λt + ηt (4.3)

and the corresponding conditional mean function λt = ω+∑p
j=0 αjY

∗
t−j+

∑q
j=0 βjλt−j,

where Y ∗t = Yt−µ(τt). The Log-ACD model and the Semi-ACD model are each more
flexible than the baseline ACD model of Engle and Russell (1998). Applying semi-
parametric methods to the Log-ACD model further increases the flexibility and eases

9Other specifications of the ACD model, such as mixture and component models, or regime-
switching ACD models are not considered here (see chapter 6 of Hautsch, 2011 for an overview of
further specifications).
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the estimation of the trend, due to the additive structure of the model. Additionally,
the local linear regression IPI of the Semi-ACD model of Feng (2014) and Feng et al.
(2016) can be extended to local polynomial regression for the Semi-Log-ACD model.

4.2.2 Semiparametric model estimation

The Semi-ACD and the Semi-Log-ACD model are fitted in two steps, where first the
scale function is estimated nonparametrically and removed from the observations.
In a second step, the parametric models are fitted to the residuals (see Feng, 2014;
Feng et al., 2016 and Forstinger and Feng, 2018). Different approaches to account for
the deterministic trend are developed in the literature. Engle and Russell (1998), for
example, propose cubic splines, but Feng et al. (2016) identify it as performing not as
reliably good as the local linear regression of the Semi-ACD model. Dufour and Engle
(2000a,b) propose linear splines and Brownlees and Gallo (2011) describe a shrinkage
type estimator. Here, the scale function is proposed to be equivalently estimated via
local polynomial regression of (4.3) for µ(τt), as the existence of moments required
for the development of the bandwidth selection algorithm is less of a problem for
financial processes then (see Forstinger and Feng, 2018).
A local polynomial estimator for the log-scale function minimizes the weighted sum
of least squares Q = ∑T

t=1{Yt−
∑p
j=1 βj(τt− τ)j}2K

(
τt−τ
b

)
. A weight kernel function

enters this equation as K(u), which is the asymptotically equivalent kernel of µ̂(τt)
at an interior point and a boundary kernel at a boundary point. The estimator
has automatic boundary correction and the local polynomial regression achieves the
global optimal rates of convergence, if the difference between the orders, p and v

of the polynomial regression and the derivative, respectively, is odd (see Fan et al.,
1996; Cheng et al., 1997 and Feng and Beran, 2013). The bandwidth enters the
weighted least squares equation as b and is estimated automatically via an IPI (see
Gasser et al., 1991 for the original idea of the IPI; Hermann et al., 1992; Brockmann
et al., 1993 and Hermann, 1997 for its extension to allow for local adaptivity and
Forstinger and Feng, 2018 for its application to the Semi-Log-ACD model). Deriving
the asymptotic properties of µ̂(v)(τt) = v!α̂v eventually leads to the formula for
the global asymptotical optimal bandwidth, which minimizes the asymptotic mean
integrated squared error. For K(u) let R(K) =

∫
K2(u)du, I(K) =

∫
ukK(u)du and

I(µ)k =
∫

[µk(τ)]2dτ . The variance factor cf denotes the value of the spectral density
of Yt at the origin. The sum of the residual autocovariances of Y ∗t can be written as
2πcf = ∑∞

−∞ γ(c), for which γ(c) = σ2∑∞
i=0 αiαi+|c|:

bA =
(

2v + 1
2(k − v)

2πcfR(K)[k!]2
I(K)2I([µ(k)])

)1/(2k+1)

T−1/(2k+1). (4.4)
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The closed form expression of the residual autocovariances is derived from the MA(∞)
representation of the standardized log-data, Y ∗t = ∑∞

i=0 αiηt−i. As one of the two
unknowns in (4.4), I(µ(k)) can be estimated by already known methods for models
with i.i.d. errors. The unknown variance factor cf , however, might be affected by
non i.i.d. errors (see Opsomer et al., 2001). A nonparametric estimator of cf is
proposed in this context by Forstinger and Feng (2018), together with a correspond-
ing IPI following Bühlmann (1996). The estimator ĉf,NP = 1/2π∑CK

c=−Ck ωcγ̂(c) is
based on 2πcf and Bartlett window weights ωc. Instead of fixing the window-width
manually by choosing a value for CK an IPI selects the optimal window width by
minimizing the asymptotic mean square error at a fixed frequency of the lag-window
estimator (see Bühlmann, 1996 for the original idea and Forstinger and Feng, 2018
for the adapted implementation). Both IPI that apply to the trend estimation of
the Semi-Log-ACD model are described in detail in Forstinger and Feng (2018), so
another repeated description is abstained from here.
After the scale function estimation, the data of interest is standardized and the un-
known model parameters can be estimated from the residuals. Let the unknown
parameter vector of Y ∗t be denoted by θ = (ω, α1, ..., αp, β1, ..., βq)′. Under the as-
sumption that µ̂(τt) is a consistent estimator of µ(τt), θ̂ can be obtained via corre-
sponding (Quasi-)Maximum Likelihood estimators based on the distribution of the
innovations. Forstinger and Feng (2018) show, that the quality of the estimation of
the parameters is not affected by the estimation of the scale function and the errors
caused by the estimation of the variance factor are asymptotically negligible, as well.

4.3 Forecasting methods

The methods described in this section forecast the estimated trend and the residuals
separately and eventually combine the forecasts. For all discussed semiparametric
methods, we propose to forecast µ̂(τT ) by means of linear extrapolation. For some
forecast horizon k = 1, 2, 3... :

µ̂(τT+k) = µ̂(τT ) + k∆µ, (4.5)

where ∆µ = µ̂(τT ) − µ̂(τT−1). For the forecasting approach using the Semi-ACD
model, µ̂(τt) is retransformed and forecasting methods apply to X̂∗t = Xt/exp(µ̂(τt)),
whereas for the Semi-Log-ACD model forecasting methods retransformation is the
final step: X̂T+k = exp(ŶT+k).
For forecasting the detrended data, we propose a total of three methods. One method
uses the representation of Y ∗t through an ARMA(p, q) model (see Allen et al., 2008).
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It puts itself forward for forecasting purposes, as already well studied methods and
tools are readily available. Brockwell and Davis (2002) propose an approximately
best linear predictor, based on the state space representation of the stationary ARMA
process. In a long-memory framework Feng and Zhou (2015) apply this predictor for
forecasting standardized log-data following a FARIMA process. Furthermore, two
nonparametric bootstrap forecasting methods for the Semi-ACD and the Semi-Log-
ACD model are proposed to avoid making assumptions about the distribution for the
innovation. All methods described in the following also apply to the corresponding
parametric models, i.e. the pre-step of removing the estimated scale function is not
carried out and the forecasting methods apply to the (log-transformed) data directly.

4.3.1 ARMA(p, q) Kalman filter forecast

The Kalman filter forecast for the Semi-Log-ACD model under a conditional normal
distribution and its implementation follow Harvey (1990), Harvey and McKenzie
(1982) and Brockwell and Davis (1991, 2002). The focus of this chapter is on the
bootstrap methods discussed in 4.3.2, so the methodological elements of the Kalman
filter forecast are only outlined. It serves as a well-established forecasting technique
to which the newly proposed methods are compared against later. For more details
on assumptions and proofs, the reader is referred to aforementioned literature. Let
Y ∗t follow a stationary and invertible ARMA model (see Allen et al., 2008):

φ(B)Y ∗t = ψ(B)ηt, (4.6)

where φ(z) = 1 − φ1z − ... − φpz
p is the characteristic polynomial of the AR-part

and ψ(z) = 1 − ψ1z + ... + ψqz
q is the characteristic polynomial of the MA-part.

Per assumption they do not have common factors and all of the roots of φ(z) = 0
and ψ(z) = 0 are outside the unit circle. The prediction method employed here is
based on the state space representation of (4.6) and a Kalman filter for calculating
the best linear mean square predictors.

1. Prediction of Y ∗T+k based on the ARMA(p, q) process given in (4.6)
Based on the state space representation of the likely stationary ARMA process,
Y ∗t = GtX̃t +Wt, where the state equation X̃t+1 = FtX̃t +Vt, the finite sample
predictions are calculated by applying Kalman recursions. Wt and Vt are i.i.d.
with zero means and known variances, V ar(Vt) = Qt and V ar(Wt) = Rt,
as well as a known covariance matrix Cov(Vt,Wt) = St. Gt and Ft are the
coefficient matrices. Following Brockwell and Davis (1991, 2002), the k-step
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prediction, already including the correction step and Kalman gain is

ˆ̃XT+k = FT+k−1X̃T+k−1, (4.7)

which starts with k = 1:

ˆ̃XT+1 = FT
ˆ̃XT + ΘT∆−1

T (Y ∗T − Ŷ ∗T ). (4.8)

The covariance matrices of the prediction errors are Θn = FTΩTG
′
T + ST and

∆T = GTΩTG
′
T + RT with the error covariance matrices ΩT = E((X̃T −

ˆ̃XT )(X̃T − ˆ̃XT )′). The corresponding forecasting errors in terms of the co-
variance matrices are

∆(k)
T = GT+kΩ(k)

T G′T+k +RT+k, k = 1, 2, .... (4.9)

with Ω(k)
T = FT+k−1Ω(k−1)

T F ′T+k−1 + QT+k−1. Accordingly, the observation pre-
dictions are given by:

Ŷ ∗T+k = GT+k
ˆ̃XT+k (4.10)

2. Prediction of ŶT+k = Ŷ ∗T+k + µ̂(τT+k).

3. Prediction of X̂T+k = exp(ŶT+k) = exp[Ŷ ∗T+k + µ̂(τT+k)].

The corresponding formulas of forecasting intervals are:

YT+k ∈
(
µ̂(τT+k) + Ŷ ∗T+k ± qα2

√
VY ∗

T+k

)
(4.11)

and
XT+k ∈

(
exp[µ̂(τT+k) + Ŷ ∗T+k ± qα2

√
VY ∗

T+k
]
)
. (4.12)

4.3.2 (Log-) ACD model bootstrap forecast

In the following, bootstrap methods are introduced for both the Semi-ACD and
the Semi-Log-ACD model forecast. The sieve bootstrap idea of Bühlmann (1997)
is extended. Unlike the classical bootstrap, it does not require i.i.d. observations,
but takes into account the correlation structure of the process. It resamples the
innovations obtained from the fitted model, instead of resampling the observations
directly:
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Stage I: Semiparametric fitting of the ACD model

1. Consider the Semi-ACD model as set up by (4.2) and (4.1) and obtain µ̂(τt)
following section 4.2.2. Calculate X̂∗t = Xt/exp[µ̂(τt)].

2. Fit an ACD(p, q) model, for which the orders are chosen via BIC and obtain
ψ̂t from the model estimation. Also obtain ε̂t = X̂∗t /ψ̂t and θ̂.

Stage II: Simulation of m forecast series for a forecast horizon of k each

1. Define a matrix, XB, with m rows and k columns.

2. In the first loop, let i run from 1 to m. For each i draw εBi = (εBi,1, ..., εBi,k)′,
which are sampled with replacement.

3. In the second loop, let i again run from 1 to m and j run from 1 to k.
Calculate ψ̂Bi,T+j = ω̂ + ∑p̂

r=1 α̂rX
∗
i,T+j−r + ∑q̂

s=1 β̂sψi,T+j−s and let XB
i,T+j =

ψ̂Bi,T+jε
B
i,j. Set X∗i,t = X̂∗t for t = 1, ..., p and ψi,l = ψ̂l for l = 1, ..., q.

For t ≥ p+ 1 and l ≥ q + 1, set X∗i,t = XB
i,t and ψi,l = ψ̂Bi,l, respectively.

4. Put XB[i, j] = XB
i,n+j.

Stage III: Calculation of the point and interval forecasts

1. Let the point forecasts be defined by X∗m = E(XB[, 1 : k]), the mean of the
columns of XB and define mlow = [m∗0.025 + 0.5] and mup = [m∗0.975 + 0.5].

2. Let X∗L and X∗U be two vectors of length k.

3. Let i run from 1 to m. Let X(i)
B be the ordered vector of XB[i, 1 : k]. Put

X∗L = X
(i)
B [ml] for the lower bootstrap-forecasting bound and X∗U = X

(i)
B [mu]

for the upper bootstrap-forecasting bounds.

The bootstrap forecast for the Semi-Log-ACD model overall follows the same stages
and steps accordingly and is not given here.

4.4 Application to real financial data

For comparison and evaluation purposes, the described forecasting methods are ap-
plied to different types of non-negative financial data. The raw data was retrieved
from the Thomson Reuters Tick History Database and processed accordingly. In
particular, the daily average durations (MD), the daily trading volume (Vol) and
the realized volatility (RV), defined as the sum of squared intraday log-returns, of
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six German DAX30 companies are analysed: Allianz SE (ALV), BMW AG (BMW),
Deutsche Bank AG (DBK), Siemens AG (SIE), Thyssenkrupp AG (TKA) and Volk-
swagen AG (VW). The period of analysis starts in January 2006 and ends in Septem-
ber 2014. All data were standardized or centralized by their mean in a first step,
to make sure that the level of each data is accurate by treating the means as global
constants. In order to analyse the obtained results appropriately significance tests
of the estimated scale functions and the normality assumption of the data are car-
ried out. The 95% confidence intervals for the estimated log-scale functions were
calculated to test whether they are statistically significantly different to the mean of
each observed log-data series. To show that this insignificance is not a result of the
log-transformation, the same test procedure was carried out for the original data.
The results of these tests are that all of the estimated scale functions are statisti-
cally significantly different to the corresponding mean and, thus, the semiparametric
methods are expected to be clearly better than the parametric methods. The visual-
ization of the tests for the log-data are given in figures A4.1 to A4.3. It is apparent
that for all data types used, clearly more than 5% of the mean of the log-data are
outside of the calculated confidence interval bounds. The %-values of deviations are
given in table B4.1. For testing the normality of the data, the Shapiro Wilk test
(SW; see Shapiro and Wilk, 1965) is used and it is found that for all of the examples
or their transformations the normal distribution hypothesis is rejected. The p-values
of each SW test are given in table B4.1l.10

For the semiparametric methods, the scale function µ(τt) is estimated via the IPI
bandwidth selection algorithm, described in section 4.2.2. A local linear regression
with a bi-square kernel, the exponential inflation method with an inflation factor
of 5/7 and a starting bandwidth of b0 = 0.10 is applied. For all examples forecast
horizons of k = 10 to k = 100 are used and the point and 1− α% interval forecasts
are obtained for α = 10%. A total of six forecasting methods are applied, i.e. the
bootstrap ACD model, the bootstrap Log-ACD model and the Kalman filters for the
Log-ACD model with a conditional normal distribution. Same methods are applied
semiparametrically. A training set of n = T − 100 observations and a validity set of
k observations are used to assess the quality of the point and interval forecasts. To
ensure that the forecasting quality can be adequately assessed, the point from which
the forecasts start is the same for all k. The performance of the point and interval
forecasts are evaluated by two criteria each.

10The SW test is carried out due to its expressive power, availability and common usage. A
discussion on normality tests and drawbacks of the SW test are not included.
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4.4.1 Quality of point forecasts

For assessing the quality of the point forecasts, the mean absolute scaled error
(MASE) of Hyndman and Köhler (2006) is used:

MASE = mean

(∣∣∣∣∣ et
1

n−1
∑n
t=2 |Xt −Xt−1|

∣∣∣∣∣
)
, (4.13)

where et = Xt− X̂t. As a second criterion the mean absolute error, standardized by
the corresponding mean values of the training sets is calculated:

SMAE =
∑n
t=n−k+1 |et|∑n−k

t=1 Xt

. (4.14)

The MASE is scale-independent, less sensitive to outliers and does not require the
observations to be sufficiently far from 0. Therefore, it is suitable for comparing
different methods applied to different types of data, as is the case in this application
section. Also it is easy to interpret, because the forecasting method of interest is
evaluated against a one-step näıve forecast. If MASE > 1 the one-step näıve forecast
is better and v.v. (see e.g. Armstrong and Collopy, 1992 or Franses, 2016). The
standardized MAE is included in the performance discussion to have a criterion
without a reference method it is compared against. It also less sensitive to outliers
than other commonly used scale-dependent measures and the standardization makes
it comparable across the different data types and methods used (Hyndman and
Köhler, 2006).

4.4.2 Quality of Forecasting Intervals

To take into account the quality of the forecasting intervals, the mean lengths of
the forecasting intervals are proposed as an evaluation criterion. For the bootstrap
methods the intervals are calculated with the quantiles of the bootstrap distribution
function. For the ARMA based forecasts, the quantiles of the standard normal
distribution are used:

LFI = mean

(
FIupper,k − FIlower,k∑n−k

t=1 Xt

)
. (4.15)

In order to make the results comparable among methods and data types, each length
value is standardized by the corresponding mean value of the training set. Natu-
rally, the shorter the interval, the more precise the interval estimation is assumed.
In addition, a newly developed criterion is proposed, the “Error of points outside
Forecasting Interval”, EoPoFi. Let Xt be the validity set and Lowt|t−1 and Upt|t−1
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the lower and upper bounds of the forecasting interval obtained for t at t − 1. Let
PoFIup = #(Xt > Upt|t−1) and PoFIlow = #(Xt < Lowt|t−1). The EoPoFI is given
by

EoPoFI = |(PoFIup + PoFIlow)− kα|. (4.16)

The idea of using the points outside the forecasting intervals is related to the idea of
the Peak over Threshold Approach, PoT, in Extreme Value Theory (see Leadbetter,
1991) and takes on the interval forecasts evaluation methods of Christoffersen (1998).
Latter do not require a distributional assumption be made on the process of interest
and therefore fit well in the bootstrap forecasting framework (see e.g. Reeves, 2005).
The EoPoFI compares the theoretical number of points with the actual number of
points outside the forecasting intervals and, thus, gives a good measure for discussing
the intervals’ quality in terms of meeting the theoretical deviations. The EoPoFI is
scale-independent and can be used to compare different methods for different data
types. Also it does not require a distribution assumption, so it is suitable for eval-
uating our bootstrap forecasting intervals, but also for assessing the quality of the
forecasting intervals obtained under the normal distribution assumption. Further-
more, it supplements the evaluation of the length of the forecast intervals. A short
interval in which the true values of the validity set exceed the limits excessively is
certainly not to be described as precise for practical use. The two criteria for judging
the interval forecasts should therefore not be interpreted separately.

4.4.3 Discussion of results

For discussing the forecast quality of the methods presented here, forecasts for ten
different forecast horizons k = 10, 20, ..., 100 are calculated. The numerical averages
of the evaluation criteria are summarized in table 4.1 for k = 50 and k = 100 and
illustrated graphically in figure 4.1 over all k. Please note that for the graphical anal-
ysis, the EoPoFi values are standardized, i.e. the average number of points outside
the forecasting interval is shown. Additionally, the detailed results of the MASE of
all methods for all data examples and data types are given in table 4.2 for discussing
the quality of point forecasts for k = 50 and k = 100. The results of all criteria for
all forecast horizons are given in tables B4.2 to B4.21.
Figure 4.1 directly shows that the Semi-ARMA model consistently has the smallest
average values in all evaluation criteria and thus the best forecast quality, on average.
Conversely, the ACD bootstrap method has the worst forecast quality for the exam-
ples considered. The graphical results also show that the semiparametric methods
are generally superior to the parametric ones. The MASE of the semiparametric
forecasts even improves with increasing k. The results of the SMAE give the same
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indication for the forecasting quality of point forecasts. For discussing the quality of
the forecasting intervals, their mean length results show that they converge for the
semiparametric methods, whereas those of the parametric methods become wider
with increasing k. Despite the narrow intervals for the semiparametric methods only
very few forecast values are outside the interval bounds. In contrast, no less pre-
dictive values lie outside the interval limits of the parametric methods, even though
their forecasting intervals are wider. The graphical results are supported by the nu-
merical results of table 4.1. Even though the results on only two forecast horizons
are shown, the general tendency of the results can be clearly seen. On average, the
Semi-ARMA model is the best forecasting method, the semiparametric methods per-
form about equally well and for the parametric methods the forecast quality of the
ARMA model is consistently ranked fourth, the Log-ACD model bootstrap forecasts
fifth and the ACD bootstrap model is ranked sixth for all criteria.
The detailed results for all forecast horizons indicate that the forecasting of MD
is the most difficult and individually considered no better than the one-step näıve
method. The values of the other criteria are also above average for MD forecasts.
Despite the findings from the average results, for some single cases (e.g. MD BMW
or MD VW, k = 10), the ACD bootstrap point forecasts are best. The bootstrap
simulated observations follow a direction that is usually compensated for by the lin-
ear extrapolation of the nonparametric estimated trend or is not very pronounced
due to the standardization of the data in advance. If the direction of the simulated
data reflects the movement of the true observations well, the ACD bootstrap method
is better than the semiparametric methods. Figure 4.2 shows the point forecast for
the mean durations of BMW and DBK for k = 50 and k = 100 according to the
semiparametric and the parametric ACD bootstrap model. In the DBK example, the
ACD model bootstrap point forecast for k = 50 has the (slightly) smallest MASE
and SMAE value overall, for k = 100 it is the Semi ACD bootstrap model. For
BMW the ACD bootstrap model forecasts are the best in either case. In the BMW
example, one can clearly see in both cases how the estimated trend determines the
direction of the forecast values on the one hand, and on the other hand that these
do not take the direction of the true observations. In contrast, the prediction of the
ACD bootstrap model fits better due to its gradient, which is not changed by the
declining scale. In the DBK example for k = 50 you can see that the slowly decreas-
ing predictive values according to the ACD bootstrap method correspond more to
the true observational values than those of the Semi-ACD bootstrap method. All in
all, the difference is minimal (graphical and numerical). For k = 100 of the same
example, however, you can see that on average the declining values of the ACD boot-
strap method miss the true observation values in the long-run and the forecasts of
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the Semi-ACD bootstrap model fit better. The ACD bootstrap forecasts work either
very well if the bootstrap prediction is able to map the data well, or very poorly.
The Semi-ACD model bootstrap forecasts lie in between, so that they are better, on
average, than those of the ACD model bootstrap. The results discussed above do
not have to be revised, though, the Semi-ARMA method is the best and the ACD
bootstrap method the worst, on average.

Table 4.1 – Average results of all criteria for k=50 and k=100

Criterion mean Semi-ACD BS Semi-Log-ACD BS SemiARMA ARMA ACD BS Log-ACD BS
k=50 k=100 k=50 k=100 k=50 k=100 k=50 k=100 k=50 k=100 k=50 k=100

MASE 0.8366 0.7911 0.8514 0.8052 0.8206 0.7774 0.9650 0.9457 1.2710 1.3728 0.9975 1.0131
MD 1.4292 1.3807 1.5833 1.4888 1.5659 1.4764 1.7117 1.6122 1.6598 1.6663 1.6888 1.5807
RV 0.3187 0.2949 0.2238 0.2247 0.2101 0.2169 0.3870 0.4585 1.1011 1.4232 0.4943 0.6686
Vol 0.7619 0.6976 0.7470 0.7021 0.6860 0.6389 0.7964 0.7665 1.0521 1.0289 0.8092 0.7901
rank 2 2 3 3 1 1 4 4 6 6 5 5

SMAE 0.2515 0.2365 0.2506 0.2373 0.2390 0.2267 0.2874 0.2855 0.4116 0.4565 0.3023 0.3153
MD 0.3612 0.3484 0.4024 0.3770 0.3964 0.3727 0.4322 0.4065 0.4194 0.4249 0.4265 0.3990
RV 0.1327 0.1229 0.0934 0.0937 0.0877 0.0904 0.1603 0.1900 0.4548 0.5919 0.2050 0.2779
Vol 0.2605 0.2384 0.2561 0.2412 0.2328 0.2169 0.2697 0.2599 0.3605 0.3526 0.2753 0.2690
rank 3 2 2 3 1 1 4 4 6 6 5 5

length FI 0.9097 0.9086 0.8853 0.8952 0.8572 0.8579 1.0654 1.2339 1.4375 1.6605 1.1468 1.4041
MD 1.1469 1.1540 1.0697 1.0745 1.1268 1.1332 1.1960 1.2963 1.4455 1.5829 1.1738 1.2937
RV 0.5976 0.5863 0.5222 0.5185 0.4803 0.4742 0.8405 1.1434 1.5305 1.9449 1.0221 1.5272
Vol 0.9847 0.9853 1.0641 1.0926 0.9645 0.9661 1.1597 1.2620 1.3366 1.4538 1.2445 1.3913
rank 3 3 2 2 1 1 4 4 6 6 5 5

EoPoFi 3.3889 6.4444 4.2778 6.7222 3.0000 6.1667 5.3889 9.7222 10.6111 18.8333 7.6111 13.5556
MD 3.1667 7.5000 5.5000 8.6667 3.6667 8.1667 4.3333 7.6667 5.1667 10.0000 4.5000 6.6667
RV 2.6667 4.6667 3.1667 5.0000 1.8333 4.5000 5.6667 10.1667 17.3333 30.1667 11.1667 21.5000
Vol 4.3333 7.1667 4.1667 6.5000 3.5000 5.8333 6.1667 11.3333 9.3333 16.3333 7.1667 12.5000
rank 2 2 3 3 1 1 4 4 6 6 5 5

mean rank 2.50 2.25 2.50 2.75 1.00 1.00 4.00 4.00 6.00 6.00 5.00 5.00
mean diff 0.7344 0.5921 0.7602 1.0761 2.0253 1.4849

Table 4.2 – MASE results for k=50 and k=100

Data Type Semi-ACD BS Semi-Log-ACD BS SemiARMA ARMA ACD BS Log-ACD BS
k=50 k=100 k=50 k=100 k=50 k=100 k=50 k=100 k=50 k=100 k=50 k=100

ALV MD 2.7910 2.7299 3.0808 2.9244 3.0781 2.9237 3.6880 3.5174 3.9883 3.8941 3.6189 3.4353
RV 0.3574 0.3930 0.2190 0.2701 0.2096 0.2633 0.3217 0.4336 0.8985 1.1501 0.4761 0.7241
Vol 0.5956 0.6732 0.5132 0.6014 0.5086 0.5979 0.7221 0.8201 0.9173 1.0800 0.7234 0.8337

BMW MD 1.1983 1.1389 1.2815 1.1945 1.3102 1.2195 1.1842 1.0622 0.7626 0.9507 1.2100 1.0811
RV 0.2856 0.2705 0.2234 0.2327 0.2108 0.2294 0.4657 0.5229 1.1979 1.4280 0.5774 0.7245
Vol 0.5018 0.4954 0.4280 0.4420 0.4274 0.4423 0.5592 0.5668 0.7083 0.7454 0.5678 0.5794

DBK MD 1.1911 1.2595 1.1594 1.2749 1.1588 1.2635 1.1657 1.3334 1.1576 1.3194 1.1668 1.3177
RV 0.1926 0.1770 0.1777 0.1654 0.1863 0.1754 0.2191 0.2776 0.8866 1.9952 0.3122 0.5167
Vol 1.4812 1.2091 1.5664 1.2829 1.5665 1.2848 1.5243 1.2418 1.3988 1.1620 1.4466 1.1950

SIE MD 1.6146 1.4778 1.7929 1.6211 1.8045 1.6342 1.8894 1.6133 1.4862 1.3322 1.8177 1.5263
RV 0.3211 0.3322 0.2173 0.2335 0.2149 0.2327 0.3703 0.4674 1.0359 1.3401 0.4946 0.6986
Vol 0.3360 0.3251 0.2980 0.3012 0.2854 0.2961 0.4074 0.4087 0.4908 0.4972 0.3962 0.4007

TKA MD 1.4347 1.3799 1.7121 1.5369 1.6327 1.4837 1.9573 1.8273 2.2318 1.9864 1.9444 1.7999
RV 0.5404 0.4092 0.3395 0.2920 0.2928 0.2585 0.6859 0.7660 2.0773 1.9826 0.7862 0.9408
Vol 0.6413 0.5698 0.5750 0.5074 0.5576 0.4936 0.8381 0.8773 1.6907 1.5946 0.8710 0.9297

VW MD 0.3453 0.2984 0.4731 0.3809 0.4108 0.3337 0.3856 0.3200 0.3321 0.5148 0.3752 0.3239
RV 0.2152 0.1875 0.1657 0.1546 0.1462 0.1421 0.2593 0.2833 0.5103 0.6431 0.3193 0.4069
Vol 1.0157 0.9130 1.1014 1.0777 0.7703 0.7186 0.7271 0.6843 1.1066 1.0943 0.8505 0.8018

mean 0.8366 0.7911 0.8514 0.8052 0.8206 0.7774 0.9650 0.9457 1.2710 1.3728 0.9975 1.0131
mean w/o MD 0.5403 0.4963 0.4854 0.4634 0.4480 0.4279 0.5917 0.6125 1.0766 1.2261 0.6518 0.7293
mean MD 1.4292 1.3807 1.5833 1.4888 1.5659 1.4764 1.7117 1.6122 1.6598 1.6663 1.6888 1.5807
mean RV 0.3187 0.2949 0.2238 0.2247 0.2101 0.2169 0.3870 0.4585 1.1011 1.4232 0.4943 0.6686
mean Vol 0.7619 0.6976 0.7470 0.7021 0.6860 0.6389 0.7964 0.7665 1.0521 1.0289 0.8092 0.7901
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4.5 Conclusion

The aim of this chapter was to develop methods that close a gap in the research on
forecasting non-negative financial market data and trade durations, in particular. To
this end, already known and new methods have been combined. Semiparametric ex-
tensions of the ACD and Log-ACD models are extended to a forecasting framework.
The first step of equivalently estimating the scale function with a local polynomial
regression is extended to forecast the estimated trend via linear extrapolation. The
second step uses bootstrap methods on the residuals of the parametric model fit-
ted to the residuals. Kalman filters are used as a model based alternative for the
Semi-Log-ACD model with a conditional log-normal distribution. The semipara-
metric forecasting models, as well as their parametric counterparts are applied to
different data-types of six firms. The performance of the point and 90% interval
forecast performance was assessed for a training data set and 10 different forecast
horizons with two criteria each. The EoPoFi was newly proposed in this chapter to
evaluate the quality of interval forecasts, when used additionally to the mean length
of forecasting intervals criterion, for example. The results show that the semipara-
metric methods clearly outperform the parametric model forecasts. Following the
criteria used, the forecasting quality is better and even improves with an increasing
forecast horizon. Furthermore, the lengths of the forecasting intervals converge and
the number of validity observation points outside the intervals’ boundaries does not
increase. Thus, the forecasting of non-negative financial data with semiparametric
(Log-) ACD models is shown to work well in practice. In particular, the Semi-Log-
ACD model with a conditional normal distribution consistently performs the best.
The ACD bootstrap method is consistently the worst, on average, but in detail it
is shown to work either very well or very poorly. A closer examination of when the
simulated bootstrap forecast captures the course of the actual data or not would be
a subject that should be considered in future research. In this context, it could also
be interesting to consider trend forecasts other than the linear extrapolation or to
apply bootstrap techniques, other than the one proposed.
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A.4 Appendix of Chapter 4
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5 Forecasting Economic Growth Processes:
Improved Forecast Accuracy by Combining

Local Linear and Standard Measures11

5.1 Introduction

“A fundamental problem of economic forecasting is that many economic variables are
inherently very difficult to forecast, and despite advances in data availability, the-
ory, and computational power, we have not seen dramatic improvements in forecast
accuracy over the past decades” (Stock and Watson, 2017, p. 70). Obviously, even
forecasting of macroeconomic variables for advanced economies is a challenging task.
Moreover, for developing economies the lack of data, low data frequency, high volatil-
ity, and often highly non-linear developments are even more of a severe problem and
restrict forecasting for macroeconomic time series further. This data scarcity leads to
complex forecasting problems which have not yet been sufficiently resolved. Never-
theless, forecasting macroeconomic variables for developing economies is increasingly
important, not only for the countries themselves. Today, developing and emerging
economies like China, India, or Brazil count for a large share of the world economy.
Hence, developments of these countries have a major impact on global macroeco-
nomic processes and reliable predictions of important macroeconomic variables in
these countries are crucial for estimates of global processes and interactions.

Fildes and Stekler (2002) formulate four requirements for economic forecasting.
The forecast should show the economy’s growth direction, turning points and magni-
tudes as well as the time-length of movement persistence. Their survey summarizes
different forecasting techniques separated into näıve, structural and time series fore-
cast models. They conclude that time series forecasts from ARIMA, VAR and BVAR
models sometimes outperform their structural alternatives. In contrast to Stock and
Watson (2017), De Gooijer and Hyndman (2006) demonstrate refinements in time se-
ries’ predictive accuracy by examining methodological improvements since the 1980s

11This chapter is available as a pre-print at Paderborn University and was written in joint work
with Professor Dr. Yuanhua Feng, Professor Dr. Thomas Gries and Marlon Fritz (all Paderborn
University). It is referred to as Fritz et al. (2018) or chapter 5 interchangeably in this thesis.
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in their extensive survey about time series forecasting. Clements and Hendry (1998)
demonstrate a detailed comparison of different forecasting models using different
measures of forecast accuracy.
Stekler (2007) summarizes that forecasting models are used to make statements
about the future under the assumption that the structure of the past process will
not change in the future. Moreover, the forecasts need a starting point and thus
are individually based on the underlying data. However, as Clements and Hendry
(2002) argue, structural changes in deterministic trends produce serious forecast
failures. Amongst others, Castle et al. (2010) and Castle et al. (2016) propose to
consider structural breaks in order to avoid forecast failure. Therefore, Castle et al.
(2016) apply different forecasting models, e.g. VAR and EqCM, which are demon-
strated using UK GDP growth and unemployment during the 2008 crisis.
However, recent results show that there is no forecasting model which is preferred for
all data sets. In other words, the accuracy of the forecasting method highly depends
on the country and time horizon under consideration. Amongst others, Fildes and
Stekler (2002) state that combining forecast methods improves accuracy and that the
refinement is the most when different methods are used. Stock and Watson (2004)
demonstrate the performance of forecast combinations of output growth for seven
OECD countries. Surprisingly, they find the lowest mean squared forecast errors
(MSFE) for the simple combination methods with equal weights (see also Hendry
and Clements, 2004; Smith and Wallis, 2009). Furthermore, Hibon and Evgeniou
(2005) argue that it is riskier to rely on a single forecast method, although the best
individual forecast is not worse than the best combinations. However, in practice the
best individual forecast method is unknown; hence combining forecasts significantly
improves predictive performance.
Meese and Rogoff (1983) demonstrate that the random walk forecast for exchange
rates is preferred over its structural alternatives (Meese-Rogoff Puzzle). Since then,
there have been many analyses of the Meese-Rogoff Puzzle for monetary variables
of different countries; however their results seem to remain valid. Marçal and Ju-
nior (2016) go a step further and combine VAR and VEC models with random walk
models (with and without drift) for the Brazilian real. Calculating the MFSE, they
conclude that for the short-term forecast accuracy for some combinations is equiva-
lent to the random walk without drift. However, in general the random walk without
drift is the most appropriate benchmark for the Brazilian real.
In this chapter, we propose the use of a nonparametric trend estimation approach in
order to improve forecast accuracy. Feng et al. (2016), for example, introduce the
semiparametric ACD model for analysing the duration between consecutive trans-
actions on financial markets. Allen et al. (2008) show that the Log-ACD model is
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equivalent to an ARMA model for log-data and Feng and Zhou (2015) propose an
extension of the semiparametric Log-ACD model for forecasting purposes. We adapt
these methods accordingly. Our method is, in accordance with Feng et al. (2018), a
local linear trend estimation, where the bandwidth is estimated using a data-driven
IPI algorithm for bandwidth selection. Furthermore, a slightly adjusted IPI algo-
rithm is included to estimate the variance factor nonparametrically. This approach
allows for a fully data-driven determination of the optimal bandwidth for the trend
estimation. Consequently, the trend is adjusted smoothly to the underlying obser-
vations and enables a more appropriate approximation of the underlying long-term
growth process since it is compatible with log-linear growth theories. A more accu-
rate calculation of the variance factor further enhances the quality of the estimated
prediction intervals. In addition, we adapt the results of Meese and Rogoff (1983)
and propose the extension of the random walk model with drift by including the local
linear trend as the drift. After the bandwidth is selected and the trend is estimated,
we use these methods to forecast economic variables. Following Fildes and Stekler
(2002) as well as Marçal and Junior (2016), the local linear estimation is combined
with different random walk models to improve forecast accuracy. Therefore, and
in order to comply with the requirements of De Gooijer and Hyndman (2006), we
calculate point as well as interval predictions for each individual method and each
possible combination. The results demonstrate that the combinations using the lo-
cal linear estimation approach and the recently developed random walk with local
linear drift are able to improve forecasting accuracy for advanced and developing
economies. This inference is also reflected in the variance that is most stable in the
combinations using our estimation method.
The rest of the chapter is structured as follows. Section 5.2 introduces the data, the
IPI algorithm and the local linear estimation. Section 5.3 presents the forecasting
methods, a new measure for assessing the forecasting quality and the construction of
forecasting intervals. Section 5.4 compares the forecast accuracy of different models
and their combinations. Section 5.5 concludes.

5.2 Data and semiparametric model

5.2.1 Data

To demonstrate the usefulness of our approach, we apply the data-driven IPI algo-
rithm together with the forecasting methods to six different developing economies
and two advanced economies. The data set includes (log) real GDP series, in constant
2011 national prices (in mil. 2011 US Dollars) for Brazil (1950-2014), China (1952-
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2014), India (1950-2014), Mexico (1950-2014), Nigeria (1950-2014), South Africa
(1950-2014) as well as the United States (1950-2014) and the United Kingdom (1950-
2014). The series are extracted from the Penn World Table Version 9.0 of Feenstra et
al. (2015). India and Nigeria represent the lower middle-income countries, whereas
Brazil, China, Mexico and South Africa are examples of upper middle-income coun-
tries.

5.2.2 Semiparametric model

This section presents a data-driven local linear estimation approach for macroeco-
nomic variables, also called the semiparametric regression model, the local linear
regression (LLR) or model (5.1) in this chapter. In accordance with Beran and Feng
(2002a), as well as Feng et al. (2018), a time series Yt with time t = 1, ..., T is
decomposed into

Yt = m(xt) + Zt, (5.1)

where xt = t/n denotes the rescaled time, m(xt) is some smooth trend function and
Zt denotes a stationary process. For simplicity it is further assumed that Zt follows
an ARMA model. We extend the approach of Beran and Feng (2002a) and apply
it to macroeconomic time series with short-range dependence. Thus, in accordance
with Feng et al. (2018), the ν-th derivative of m(xt), defined as m(ν)(x), is estimated
by minimizing the locally weighted least squares:

Q =
n∑
t=1

yt −
p∑
j=0

βj(xt − x)j


2

W
(
xt − x
h

)
, (5.2)

where W and h are the weight function and relative bandwidth, respectively. To
be consistent with log linear growth theories we use p = 1. The obtained trend
estimates are m̂(ν)(x) = ν!β̂ν . We propose to choose the asymptotical global optimal
bandwidth hA, for estimating m(ν) on [0,1], by minimizing the asymptotic mean
integrated squared error (AMISE):

AMISE(h) = h2(k−ν) I[m(k)]β2

[k!]2 + 2πcfR(K)
nh2ν+1 . (5.3)

The bandwidth is then calculated using

hA =
 2ν + 1

2(k − ν)
2πcf [k!]2R(K)
I[m(k)]β2

(ν,k)

 1
2k+1

n
−1

2k+1 , (5.4)
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where k = p + 1, I[m(k)] =
∫

[m(k)(x)]2dx, β(ν,k) =
∫ 1
−1 u

kK(u)du, and R(K) =∫
K2(u)du. cf = f(0), the variance factor, is estimated in a data-driven manner

using a slightly adjusted IPI algorithm, where f(λ) denotes the spectral density of a
stationary error process. To determine the bandwidth, the key point is to estimate
the variance factor cf correctly. Therefore, we introduce another IPI algorithm for
estimating cf using a lag-window estimator with Bartlett-Window weights.

5.3 Proposed forecasting approaches and their com-
binations

In the following, we propose different forecasting approaches based on the semipara-
metric regression model (5.1) and the well-known random walk model. For the latter
three alternatives, i.e., random walks with a constant, a linear drift, and a local lin-
ear drift are considered. In particular, in line with Fildes and Stekler (2002) and
Timmermann (2006), we propose the use of some combinations of those single fore-
casting approaches. We assess the practical performance of those single forecasting
methods and combinations using a well-known criterion.

5.3.1 Point prediction based on the semiparametric model

Point prediction based on a semiparametric regression model is usually conducted
in two steps. Consider first the data-driven local linear regression estimate m̂LL(xt)
obtained following the algorithm described by Feng et al. (2018). Assume that we
would like to carry out forecasts for k steps. A typical practice in the literature is
to use a simple linear extrapolation of the fitted trend (see, e.g. Beran and Ocker,
1999). The point forecasts m̂LL(xn+j) for forecasting horizons j = 1, ..., k are then
given by:

m̂LL(xn+j) = m̂LL(xn) + j ∗∆m, (5.5)

where ∆m = m̂LL(xn)− m̂LL(xn−1) denotes the estimated increment of the trend at
the end of the time series.
Secondly, the approximately best linear prediction for the ARMA part is calculated.
Under the assumptions of model (5.1) Zt follows a stationary ARMA(p, q) model.
Denote this model by φ(B)Zt = ψ(B)ζ1,t , where φ(B) = 1 − φ1B − ... − φpBp and
ψ(B) = ψ1B+ ...+ψqB

q are the characteristic polynomials of the AR and MA parts,
respectively, which have no common factor and all roots are outside the unit circle,
and ζ1,t are i.i.d. N(0, σ2

1) random variables. Brockwell and Davis (2002) propose
an approximately best linear predictor based on the state-space representation of
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Zt via an algorithm developed by Harvey and McKenzie (1982). In this chapter
we propose calculating the (approximately) best linear predictions Ẑn+j, j = 1, ..., k
based on the residuals Ẑt = Yt − m̂(xt). It is well known that the additional errors
in those best linear predictions caused by the estimation errors in the trend function
are asymptotically negligible (Feng and Zhou, 2015). The total point forecasts are
then given by Ŷ1,n+j = Ẑn+j + m̂LL(xn+j).

5.3.2 Some random walk models

Since the time series considered in this chapter are not very long, which is typical for
developing economies, the practical performance of many other approaches developed
based on asymptotic theory may be limited. Furthermore, it is well-known that
the forecasting quality can be clearly improved by combining different forecasting
methods (see e.g. Stock and Watson, 2004). For this purpose, we describe two
variants of the (parametric) random walk models and introduce a semiparametric
extension of this model. The commonly used random walk model is the one with a
constant drift (called RCS) defined by

Yt = Yt−1 + c+ ζ2,t, (5.6)

where ζ2,t are assumed to be i.i.d. N(0, σ2
2) random variables and a random walk

with a linear drift (called RSL):

Yt = Yt−1 + a+ bxt + ζ3,t, (5.7)

where ζ3,t are i.i.d. N(0, σ2
3) random variables. See e.g. models (2.1) and (2.2) in

Dickey and Fuller (1979) with ρ = 1. Estimation and forecasting using both of the
RCS and RSL models are straightforward. The point forecasts using the RCS are

Ŷ2,n+j = Yn + jĉ, j = 1, ...k. (5.8)

Those obtained by means of the RSL are

Ŷ3,n+j = Yn + jâ+ b̂
j∑
i=1

(n+ i), j = 1, ..., k. (5.9)

Following the SEMIFAR model (Beran and Feng, 2002b), the RSL can be further
extended to

Yt = Yt−1 + δ(xt) + ζ4,t, (5.10)
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where δ(x) is a nonparametric smooth drift function and it is again assumed that
ζ4,t are i.i.d. N(0, σ2

4) random variables. We propose to estimate δ(x) by the local
linear regression. This model can be referred to as a random walk with a local linear
drift (RLL). For practical purposes one can simply apply the data-driven algorithm
in this chapter to the differences of the observed time series. Now, an adjusted
algorithm for this data volume should be employed because a larger bandwidth for
estimating the drift function is more preferable. Point predictions of the drift function
δ̂(xn+j), j = 1, ..., k can again be obtained by linear extrapolation. This results in
the following point predictions:

Ŷ4,n+j = Yn +
j∑
i=1

δ̂(xn+i), j = 1, ..., k. (5.11)

Although the three random walk-models are closely related, we see that forecasting
quality can be improved clearly by combining them. The use of suitable combinations
of forecasting methods is well studied in the literature (see, e.g., Section 11 of De
Gooijer and Hyndman, 2006; Timmermann, 2006 and references therein). Although
some sophisticated combining methods, such as the optimal combination of Bates
and Granger (1969) exist in the literature, it is often found that the simple average of
all candidates is more robust and preferable (Elliott, 2011; Qian et al., 2015). In this
chapter we hence only consider the use of those simple combinations. Based on the
above four single approaches we can define a total of 15 combinations including the
individual methods. Table 5.1 shows the composition of the combinations and their
corresponding denotations for the following performance evaluation. To assess the
forecasting quality of those combinations over the different data examples considered,
we propose using the mean absolute scaled error (MASE) introduced by Hyndman
and Köhler (2006), which is defined by

MASE = mean(|qt|), t = n+ 1, ..., n+ k,

Table 5.1 – Composition of Combinations

LLR Local Linear Regression Method
RCS Random Walk with a Constant Drift
RSL Random Walk with a Linear Drift
RLL Random Walk with a Local Linear Drift

Combination C21 C22 C23 C24 C25 C26 C31 C32 C33 C34 C4
Combined LLR, LLR, LLR, RCS, RCS, RSL, LLR, LLR, LLR, RCS, LLR,

Models RCS RSL RLL RSL RLL RLL RCS, RCS, RSL, RSL, RCS,
RSL RLL RLL RLL RSL,

RLL
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where qt = et
1

n−1
∑n

i=2 |Yi−Yi−1|
denote the scaled errors with forecast errors et = Yt− Ŷt.

The MASE eliminates many drawbacks of commonly used accuracy measures because
it is scale-independent and can thus be used to compare forecasts across different
data sets of different scales. It is also less sensitive to outliers and does not require
the observations to be sufficiently far away from 0. Furthermore, as it is evaluated
by a benchmark value of 1, it is straightforward to interpret. If the MASE < 1, the
forecasting method of interest, on average, is better than a one-step näıve forecast
(see Armstrong and Collopy, 1992; Fildes and Stekler, 2002; Hyndman and Köhler,
2006; Franses, 2016). The MASE is also an established tool for evaluating the prac-
tical performance of methods in the GDP (growth) forecasting literature (see, e.g.,
Šindelář, 2017; Gerunov, 2016). Based on the root mean square error (RMSE) and
following Hyndman and Köhler (2006), we further calculated the root mean square
scaled error (RMSSE), RMSSE =

√
mean(q̃t), for q̃t = e2

t
1

n−1
∑n

i=2(Yt−Yi−1)2 . Assess-
ment by means of the RMSSE is quite similar to that using the MASE. Therefore,
the detailed discussion of the RMSSE results given in table B5.1 is omitted in the
next section.

5.3.3 Individual forecasts, prediction intervals and densities

Prediction intervals, more exact prediction densities, can help practitioners to under-
stand the accuracy and limitations of point forecasts. Studies on these topics have
become much more common over the past 35 years. A brief review on those topics
is given in Section 12 of De Gooijer and Hyndman (2006) and Section 6 of Timmer-
mann (2006). In the following we discuss this problem under the normal distribution
assumption. It is assumed that all of the above mentioned four models hold at least
approximately for the observed time series. For instance, if Yt follows the RCS model,
then the RSL and RLL approaches are both true. It can also be shown that the LLR
approach is now a good approximation. Furthermore, it is assumed that the cross
correlation between the errors of all models under consideration is stationary with
the correlation matrix R. The empirical study in the next section shows that results
obtained in this way work quite well in practice. A detailed theoretical study on
those assumptions is beyond the aim of the current chapter.
Let the MA(∞) representation of Zt be given by Zt = ∑∞

i=0 αiζ1,t−i. Then an in-
dividual forecast following this model is given by Y1,n+j = Ŷ1,n+j + ∑j−1

i=0 αiζ1,n+i

with the approximate variance var(Y1,n+j) = σ2
1
∑j−1
i=0 α

2
i . For simplicity, the error in

m̂LL(xn+j) of the order Op(n−2/5) is omitted. Individual forecasts under the three
random walk models are given be Yi,n+j = Ŷj,n+j + ∑j

j−1 ζi,n+l with the (approxi-
mate) variances var(Yi,n+j) = jσ2

i , i = 2, 3 and 4, and j = 1, ..., k, respectively. The
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combinations of forecasts mentioned above are also applied to those four individ-
ual forecasts. For the j-step prediction by a given combination, let Scomb,j denote
the vector of the standard errors of individual forecasts and Rcomb be the matrix of
the cross correlations between the errors in different models, which does not depend
on the observation time. Then the (approximate) variance for the forecast of an
individual observation is given by

var(Ycomb,n+j) = STcomb,jRcomb,jScomb,j. (5.12)

Assume that the point forecasts are asymptotically unbiased. We then determine
the forecasting densities of a combination. Forecasting intervals for this combination
at given confidence level can be easily calculated. It is well known that the variance
of a combined forecasting method is usually smaller than that of a single forecast,
in particular if some of the used approaches are independent or even negatively cor-
related to the others. We observe that this is true for the proposed approaches in
this chapter. In this case, the bias can also be reduced through a suitable combina-
tion. These facts are discussed in detail in the next section using the selected data
examples.

5.4 Application to the selected examples

For the empirical analysis and the evaluation of the validity of the methods proposed
in sections 5.2 and 5.3, predictive models were developed based on a training set of
the first 60 (58 for China) observations. The remaining five observations were used
as the validity set to evaluate the model’s performance (see e.g. Picard and Berk,
1990). The forecast horizon is set at five years. Based on the errors between the true
values of the data and the estimated forecast values obtained by each of the proposed
methods, table A5.1 shows the MASE values of all combinations for all considered
data examples. In addition, the mean values and the standard deviations of the
MASE for each combination are given. As explained previously, the RMSSE are
calculated too yet do not yield differing information over and above that delivered
compared to the MASE. Hence, they are omitted in the following discussion, but
the values are given in table B5.1 to numerically support the overall findings on the
MASE. The results following both criteria show that with all proposed methods and
their combinations, a good forecast can be achieved on average, but that C4 clearly
outperforms all other approaches. Each of the four proposed models thus helps to
improve forecasting quality.
This is apparent when looking at the mean values and standard deviations, because
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in most cases both of them are clearly lower for the combination methods than for
the single methods. LLR shows a mediocre performance, as the forecast is distorted
by structural breaks at the end of the training set. Therefore, the forecasts for Brazil,
South Africa, the USA and the UK are not good. Mexico is an exception, because
after the break Log GDP increased again at a rate which met the estimated trend.
For the previously mentioned examples, Log GDP did not increase as rapidly after
the break, so the local linear trend for these countries was clearly overestimated. For
the remaining examples with no structural break at the end of the training set, the
forecasting performance is good. RLL faces similar problems. It performs better
than the LLR for the log data for Brazil and India, but worse for the remaining ex-
amples and especially badly for the advanced economy examples. RSL can capture
a regular movement in the data. In our examples, this is the case for India, the USA
and the UK. The considered criteria are very small for these examples, whereas for
the examples showing an unstable and/or non-linear movement, the forecasts with
the RSL are worse and for some examples even >1. Nigeria is the exception here,
where the linear drift captures the overall movement despite the instability. Due to
the very good and very bad forecasting performance of RSL, the mean MASE is the
smallest of all single-method mean MASE values. However, it is also the most unsta-
ble method of all with a standard deviation that is nearly as large as the mean value.
RCS works worst for India and the USA, well for Mexico and well for all remaining
examples. The results demonstrate that the forecast accuracy of the different models
depends heavily on the country under consideration.
Combining these methods is a logical way to improve the forecasting accuracy and
stability, as flaws of one methods can be compensated for by combining another.
Also, as mentioned in the previous section, the variance can be reduced. Table 5.2
is strong indication of this intuition. It shows the variances, covariances and corre-
lations for China and the USA on the left and right side of the table, respectively.
The variances are shown in the diagonals, the covariances above the diagonals, and
the correlations below the diagonals. The variance between the residuals obtained

Table 5.2 – Var, (diagonal), Covar (upper part) and Corr (lower part) of the residuals
of China (left) and USA (right)

Ŷ ∗RCS Ŷ ∗RSL Ŷ ∗RLL Ŷ ∗LLR Ŷ ∗RCS Ŷ ∗RSL Ŷ ∗RLL Ŷ ∗LLR
Ŷ ∗RCS 0.4974 0.4678 0.4645 -0.1307 0.0494 0.0464 0.0436 -0.0180
Ŷ ∗RSL 0.9729 0.4648 0.4611 -0.1264 0.9615 0.0471 0.0444 -0.0174
Ŷ ∗RLL 0.9706 0.9966 0.4605 -0.1245 0.9418 0.9825 0.0433 -0.0160
Ŷ ∗LLR -0.7862 -0.7865 -0.7785 0.0555 -0.5752 -0.5694 -0.5459 0.0198

by RCS is the largest and decreases for the residuals obtained by RSL and RLL. It is
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the smallest for the residuals obtained by LLR; they are negatively (sometimes even
strongly negatively) correlated with the residuals obtained by the Random Walk
models. The residuals obtained by RCS, RSL and RLL are all highly positively
correlated, as expected. The effects are displayed in table A5.2, which shows the
first values of the (approximate) standard deviation for the forecast of an individual
observation, following (5.12) The results for other forecasting horizons are omitted
to save space, because the order of those quantities does not depend on the length of
the forecasting horizon. These values show only little differences for the random walk
methods and the resulting combinations, but they decrease when LLR is used alone
or added to RCS and/or RSL and/or RLL. Not surprisingly, the methods including
LLR have the smallest standard deviation for calculating the forecasting intervals.
Thus, the LLR endogenously estimates data-driven the local linear trend at each
point in time, and in particular LLR takes care of boundary points, this method
offers the best identification of the current trend and in combination systematically
improves the forecast. Thus, this method provides good results for both developing
and advanced economies. Developing economies are well known for non-log-linear
growth processes and show both accelerating and decelerating phases. Therefore,
the flexibility of the LLR method allows us to systematically adjust to these phases
and hence improve the accuracy of trend identification. Consequently, the LLR con-
tributes the most when the underlying growth process is clearly non-linear. This can
be seen from Nigeria in figure A5.3, where different forecast starting points, begin-
ning in 1996, with their respective prediction intervals demonstrate the adjustment
process of C4. Obviously, the combination performs well during normal periods and
adjusts quickly (after 2 years) to the new normal after massive changes due to its
flexibility. This could be seen after 2000 where the IMF confirms a 1 billion Dollar
loan for Nigeria that is followed by a boom in economic activities.
However, even if advanced economies are closer to a log-linear trend stationary
growth process, growth episodes still differ. In advanced economies we also ob-
serve phases of more or less rapid growth. Thus, identifying such varying phases
helps to improve trend forecasts for this country group as well. Figure A5.3 shows
the same adjustment process for the UK and their prediction intervals. Evidently,
a massive change in the growth process during the 2008 financial crisis occurs and,
as demonstrated in table A5.1 and A5.2, every individual forecasting method can-
not depict this distortion even after 2010. Notwithstanding, C4 is able to capture
those movements after 2 years and hence also improves forecast accuracy of advanced
economies.
Following the previous discussion of the results, we propose the combination includ-
ing all four methods, i.e. C4, as the best approach. Figure A5.1 shows the point
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forecasts together with the 95% prediction intervals obtained by this combination for
all countries. As a comparison, the same results for the second-best method, C32,
are displayed in figure A5.2. In general, the results for both methods work very well,
as the figures show. Almost all true observations lie within the forecasting intervals
and are very close to the point forecasts. The one clear difference is South Africa,
where some validity observations lie outside the forecasting intervals for C32, but
not for C4 (see Figure A5.1e and A5.2e).

5.5 Conclusion

This chapter introduces the local linear forecasting approach for macroeconomic vari-
ables with a data-driven IPI algorithm for bandwidth selection. The random walk
with drift is combined with the local linear trend estimation in order to improve fore-
cast accuracy. This innovative forecast approach is applied to six arbitrarily selected
developing and two advanced economies. It is shown that the best forecasts for all
countries are obtained by combining our suggested endogenously determined local
linear regression (LLR) with RCS, RSL and RLL (C4). Furthermore, the forecasts
using the proposed local linear method are most stable. Thus, the local linear esti-
mation and the random walk with a local linear trend are able to detect variations
in the trend process that are typical for developing countries. Therefore, using this
LLR method more precisely identifies current trend processes in the underlying data
and in turn, significantly improves forecasts for advanced and developing economies.

However, there is potential for further methodological research. It would be
interesting to carry out detailed theoretical studies on the relationship between the
different single forecasting methods, the search of possible optimal combinations of
those methods, the inclusion of further candidates of single forecasting methods,
and a simulation study to confirm the theoretical and practical performance of the
proposals in the current chapter.
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A.6 Appendix of Chapter 5

Table A5.1 – MASE of all methods for all countries with mean and standard devia-
tions

Brazil India Mexico China S. Africa Nigeria USA UK mean s.e.
LLR 0.803 0.546 0.439 0.378 1.519 0.495 0.940 1.122 0.780 0.397
RCS 0.670 1.486 0.369 0.790 0.547 0.768 0.997 0.673 0.787 0.336
RSL 1.512 0.235 1.625 0.434 0.834 0.216 0.059 0.206 0.640 0.619
RLL 0.534 0.449 1.307 0.709 1.019 0.825 1.603 1.939 1.048 0.529
C21 0.530 0.609 0.394 0.206 1.022 0.631 0.968 0.897 0.657 0.288
C22 1.158 0.382 0.650 0.406 0.436 0.355 0.471 0.656 0.564 0.266
C23 0.659 0.498 0.491 0.543 1.258 0.282 0.331 0.420 0.560 0.306
C24 0.576 0.838 0.669 0.178 0.183 0.492 0.496 0.431 0.483 0.225
C25 0.494 0.652 0.509 0.068 0.783 0.204 0.303 0.633 0.456 0.244
C26 0.936 0.333 1.466 0.571 0.186 0.382 0.803 0.875 0.694 0.414
C31 0.651 0.469 0.337 0.052 0.444 0.493 0.642 0.661 0.469 0.205
C32 0.532 0.346 0.233 0.113 1.021 0.156 0.147 0.223 0.346 0.304
C33 0.892 0.405 0.869 0.507 0.585 0.207 0.222 0.269 0.495 0.273
C34 0.562 0.498 0.881 0.133 0.274 0.155 0.203 0.359 0.383 0.254
C4 0.618 0.307 0.580 0.187 0.566 0.171 0.121 0.219 0.346 0.208

Table A5.2 – First (approximate) standard deviations for calculating the forecasting
intervals

Brazil India Mexico China S. Africa Nigeria USA UK mean s.e.
LLR 0.026 0.016 0.026 0.024 0.014 0.049 0.014 0.012 0.03 0.016
RCS 0.038 0.031 0.037 0.071 0.024 0.065 0.022 0.021 0.065 0.036
RSL 0.035 0.029 0.034 0.068 0.022 0.065 0.022 0.021 0.062 0.035
RLL 0.032 0.029 0.033 0.068 0.019 0.063 0.021 0.020 0.060 0.035
C21 0.021 0.011 0.020 0.027 0.013 0.039 0.009 0.009 0.031 0.018
C22 0.019 0.010 0.019 0.026 0.012 0.039 0.009 0.009 0.029 0.018
C23 0.018 0.010 0.018 0.026 0.011 0.039 0.009 0.009 0.029 0.018
C24 0.036 0.030 0.035 0.069 0.022 0.065 0.022 0.021 0.063 0.035
C25 0.034 0.029 0.034 0.069 0.021 0.064 0.021 0.021 0.061 0.035
C26 0.033 0.029 0.033 0.068 0.020 0.064 0.021 0.021 0.060 0.035
C31 0.024 0.016 0.023 0.040 0.015 0.045 0.012 0.012 0.040 0.023
C32 0.023 0.016 0.022 0.040 0.014 0.044 0.012 0.012 0.039 0.023
C33 0.022 0.016 0.022 0.039 0.014 0.044 0.012 0.012 0.038 0.023
C34 0.034 0.029 0.034 0.068 0.021 0.064 0.021 0.021 0.061 0.035
C4 0.025 0.019 0.024 0.047 0.016 0.049 0.014 0.014 0.044 0.026
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Figure A5.1 – Point and 95% Interval Forecast with C4 for all countries: green dotted
= data, blue solid = forecast, red=interval
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Figure A5.2 – Point and 95% Interval Forecast with C32 for all countries
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Figure A5.3 – UK and Nigeria point and 95% Interval Forecast with C4 for different
starting values



6 Future Research Questions

The results of the analyses carried out in the previous chapters of this work show
that the proposed methods overall work reliably well. Also it was shown that the
introduced methods are applicable to a variety of data types in a financial and a
non-financial setting. Transforming the data to obtain a model, which satisfies the
targeted distribution assumption or developing distribution-free procedures are com-
mon methods, when distribution assumptions do not hold (see Graybill, 1976 p.213
in Sakia, 1992). It is therefore reasonable to pursue possible further improvement of
these methods. In the following first ideas on possible future research are described.
They are not mutually exclusive and the quality of a combination of proposals should
be further examined after successful implementation.
A promising idea presented in section 6.1 is the application of the methods described
in chapter 3 in a GARCH model framework. Estimating the time-varying scale from
log-transformed returns with local polynomial regression is evaluated in a simula-
tion study and compared to the Semi-GARCH modelling approach of Feng (2004a)
via real financial data examples. The proposal given in section 6.2 is on addition-
ally transforming the log-data to further normalize it. By doing so (log-) normal
distribution assumption based methods are applicable without the possible problem
of misspecification. The results of chapter 4, in particular, suggest that the model
with a conditional normal distribution assumption performs the best for forecasting
non-negative financial data. However, the SW tests carried out in advance also show
that the normal distribution assumption is rejected for the log-data. First numerical
results are in clear favour of this new transformation proposal. For the forecast of
the GDP of developing countries section 6.3 extends the empirical analysis of chapter
5 by neural network methods. Section 6.4 briefly summarizes further ideas without
first empirical results. Section 6.4.1 proposes the inclusion of a local bandwidth
factor into the IPI. Estimating functions are suggested in section 6.4.2 as an alter-
native to (Q)MLE and section 6.4.3 suggests improving the forecast of non-negative
financial data by a block bootstrap.
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6.1 A Semi-Log-GARCH model extension

The often emphasized increased flexibility of the methods presented in the previous
chapters suggests their application to other types of financial data or another model
framework. Especially improving the estimation of the volatility of financial returns
with GARCH models should be of interest with Basel IV replacing Basel III (BCBS,
2017). The idea of fitting GARCH models semiparametrically is already described
in the literature, as mentioned in chapter 1. An approach closely related to the
ones described throughout this work is the one of Feng (2004a) on simultaneously
modelling the conditional heteroskedasticity and scale change with a Semi-GARCH
model. It uses a kernel estimator of the scale function. Analogously to the reasoning
behind the development of the Semi-Log-ACD model, the Semi-Log-GARCH model
has some technical advantages over the Semi-GARCH and GARCH models. The
Semi-GARCH model improves the GARCH model by accounting for a possibly time-
varying conditional variance. Nelson (1991) introduces the Exponential GARCH
(EGARCH) model, which is more flexible than the GARCH model, because it does
not require non-negativity constraints on the model parameters. Same holds for the
Log-GARCH model described by Geweke (1986), Pantula (1986) and Milhøj (1987).
The approach taken here combines the constraint free and the nonparametric scale
functions ideas and extends the semiparametric methods of Feng (2004a) to the
local polynomial regression methods described in chapter 3. The proposed model is
called Semi-Log-GARCH model, but the choice of GARCH model to be fitted after
standardization is not limited to the Log-GARCH model. Peitz (2016) applies a
Semi-EGARCH model using kernel regression and compares the actual deviations
of the Value at Risk obtained by different models to the theoretical ones. He finds
the Semi-EGARCH model to perform best, so it is expected that the results further
improve, when local polynomial instead of kernel regression is used.

6.1.1 Description of the Semi-Log-GARCH model

Following Bollerslev (1986) let r∗t for t = 1, ..., T denote the log-returns of a price
series, ht their conditional variance and εt i.i.d. N(0, 1) random variables. Let the
GARCH model be defined by

r∗t =
√
htεt, rt|Ft−1 N(0, ht) (6.1)

and
ht = ω

p∑
j=1

αjr
∗2
t−j +

q∑
k=1

βkht−k. (6.2)
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To ensure non-negativity of returns, restrictions ω > 0 and α1, ..., αp, β1, ..., βq ≥ 0
are imposed on the parameters. It is further assumed that ∑p

j=1 αj + ∑q
k=1 βk < 1

to ensure that a unique strictly stationary solution of the GARCH model exists (see
Feng, 2004a). The parameter constraints can be dropped for the EGARCH model
of Nelson (1991) described by (6.1) and:

log(ht) = ω +
p∑
j=1

(αjεt−j + γ(|εt| − E(εt)) +
q∑

k=1
βk log(ht−k). (6.3)

The size effect of shocks on ht is expressed by γ(|εt|−E(εt)) here. The Log-GARCH
model is described by Geweke (1986), Pantula (1986) and Milhøj (1987) and com-
pared to the EGARCH model by Francq et al. (2013). Amongst other things, they
find that concerning estimation, the Log-GARCH model is more tractable than the
EGARCH model. The Log-GARCH model is given by (6.1) and

log(ht) = ω +
p∑
i=1

αi log(r∗2t−i) +
q∑
j=1

log(ht−j). (6.4)

For the Semi-GARCH model of Feng (2004a) a time-varying smooth scale function
σ(τt) is introduced multiplicatively into (6.1), where τt = t/T denotes the rescaled
time:

rt =
√
htεtσ(τt). (6.5)

The Semi-GARCH model is defined by (6.5) and (6.2) and aims to account for a
possible time-varying unconditional variance. Let ν(τ) = σ2(τ) denote the local
variance of a time series model Yt − µ = σ(τt)r∗t , the model can be rewritten as a
nonparametric regression model. It is given by

(Yt − µ)2 = ν(τt) + ν(τt)ζt, (6.6)

where ζt are zero mean stationary time series errors. The semiparametric estimation
procedure following Feng (2004a) is the kernel estimation of ν(τ) in a first step. The
model parameters are estimated from the standardized residuals r̂t = (yt− ȳt)/σ̂(τt)
in a second step. For the Semi-Log-GARCH model, the scale function is estimated
from log(rt) = Rt and a stationary additive model with a trend

(Yt − µ)2 = ν(τt) +Rt (6.7)

is obtained. The scale ν(τ) does not enter the nonparametric regression model twice
now, i.e. there is no more heteroskedasticity in the model to account for. The
model fitting procedure is similar to the one of the Semi-Log-ACD model. The scale
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is estimated from the log-transformed returns, where local polynomial regression
methods apply. In a second step, the scale is removed from the transformed data,
any parametric GARCH model of choice is fitted to the residuals and the eventually
combined estimated scale and model estimates are retransformed accordingly.

6.1.2 First empirical results

The generality of the IPI described in chapter 3 allows it to be applied directly to
estimate the scale function of log-transformed return series. To get a first impression
of the performance of the estimators a rudimentary simulation study is carried out
in the following. A trend is simulated based on the square root of the average of
two squared scale functions estimated from a Semi-Log-GARCH model for SAP data
from January 1997 to April 2018. The daily data was obtained from Yahoo Finance
and not processed further. One scale function is estimated via local linear and the
other one with a local cubic regression. For both estimations the variance factor of
the IPI is estimated nonparametrically and a bandwidth correction factor as pro-
posed by Feng and Heiler (2009) is applied to increase the bandwidth for estimating
the variance. For both estimations, the EIM is applied with a naive inflation factor,
i.e. υ = 5/9 and starting bandwidth b0 = 0.075 for the local linear regression and
υ = 9/13 and b0 = 0.15 for the local cubic. The combination of trends to be used
for the simulation study is standardized to obtain the standardized SAP returns, to
which a GARCH(1,1) model is fitted. The parameter estimates ω = 0.1, α = 0.13
and β = 0.77 are used to simulate a return series with 5365 observations by the
garchSpec function of the fGarch package of R. The simulated returns and the sim-
ulated trend function are combined multiplicatively and Semi-Log-GARCH models
are fitted to the log-transformed absolute centralized returns.
A local linear and a local cubic regression, each with a nonparametric variance factor
estimation, a bandwidth correction factor and the EIM with a naive inflation factor
are applied. Additionally, we apply the same methods, but with optimal inflation
factors, i.e. υ = 5/7 and υ = 9/11 for the local linear and the third order local
polynomial regression, respectively. The simulation is carried out with 1000 repli-
cations. Figure A6.1 shows the data simulated without trend, the data simulated
with trend and the simulated scale function, together with its local linear and third
order local polynomial estimations of the first replication. A visual assessment of
the performance of the trend estimation shows that all methods applied capture
the trend well and that the regressions each perform similarly for different inflation
factors. Compared to the data simulated without a trend, the returns standardized
by either method capture the return dynamics well and appear stationary without



6.1. A SEMI-LOG-GARCH MODEL EXTENSION 105

lacking prominent features of the simulated stationary data.
The numerical evaluation of the Semi-Log-GARCH model performance is done via a
discussion on the bandwidth selection, the scale function estimation and the model
parameter estimation. The quality of the bandwidth selection is discussed with the
means, standard deviations and mean squared errors of the finally selected band-
widths of each method in each replication. The basis of comparison is a numerical
derivation of the true optimal bandwidth, following Beran et al. (2009) by band-
widths hASE. Latter are obtained by minimizing the ASE of the simulated trend and
the local polynomial trend estimates with i different bandwidths. For each of the
j replications of the simulation the ASEi,j and corresponding hASE,j are calculated.
The optimal bandwidth is obtained by minimizing the means of ASEi. Let ĥM,LL

and ĥM,LC denote the approximated optimal bandwidths for the local linear and the
local cubic regression. Here, ĥM,LL = 0.095 and ĥM,LC = 0.2. Let LLA and LLB de-
note the local linear estimations with υ = 5/7 and 5/9, respectively and accordingly
LCA and LCB the local cubic estimations with υ = 9/11 and υ = 9/13. The finally
selected bandwidths of each replication are compared against these values and the
results are given in table 6.1 and figure 6.1.

Table 6.1 – Selected bandwidth statistics for the simulation study

E(b̂A) sd(b̂A) MSE(ĥM)o
LLA 0.0933 0.0062 0.0413
LLB 0.0973 0.0048 0.0288
LCA 0.1800 0.0256 1.0574
LCB 0.1983 0.0171 0.2943

o The MSE values obtained were multiplied by 1000.
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Figure 6.1 – Semi-Log-GARCH simulation box-plots of bandwidth selection

Overall the bandwidth selection works well and the means of the finally selected
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bandwidths of each replication with either method do not differ much from the nu-
merically derived optimal bandwidths. Also the MSE are small. The methods using
the naive inflation factors 5/9 and 9/13 have smaller MSE and standard deviations
than the ones with optimal inflation factors. The distributions of the bandwidth es-
timation are displayed graphically in figure 6.1 in the form of box-plots and support
previous findings. The bandwidth selection of either method applied works well and
the bias and variance decrease for the methods using naive inflation factors, com-
pared to the ones using optimal inflation factors.
To evaluate the performance of the scale function estimation a new criterion is pro-
posed here to assess the gain of estimating the scale function as compared to fitting
a standard GARCH model. It is calculated to obtain the empirical efficiency of the
Semi-Log-GARCH model. Let this criterion be denoted by Empirical reduction of
squared errors (RSE). It can be calculated by means of the MSE or the RMSE.
Under the assumption that the scale function is not time-varying but constant,

MSEC = E[(Gt − E(Gt))2],

where Gt denotes the simulated trend and RMSEC =
√
E[(Gt − E(Gt))2]. For each

replication of the simulation, j, the MSE is calculated for the scale function estimated
by the four different methods, M = LLA, LLB, LCA, LCB.

MSEj,M = E[(Gt − Ĝt,j,M)2]

and correspondingly RMSEj,M =
√
E[(Gt − Ĝt,j,M)2]. To determine the degree of

improvement by accounting for a time-varying scale function, instead of assuming it
to be constant the RSE is calculated as

RSEj,M =
(

1− (R)MSEj,M
(R)MSEC

)
· 100%. (6.8)

The quality of the parameter estimation is assessed with the relative efficiencies de-
scribed in chapter 2. Table 6.2 shows the means of each criterion over the 1000
replications. Concerning the quality of the scale function estimation, the RSE allows
to interpret the results with regards to a GARCH model, for which no trend was
estimated and eliminated before fitting. When the RSE is calculated based on MSE
it can be seen that for all methods about 97% of the squared estimation error can
be reduced with the nonparametric estimation of the scale function. When the RSE
is RMSE based it is about 83%. The local cubic regression with a naive inflation
factor performs best concerning both RSE criteria and the relative efficiencies of all
parameters. Furthermore, these results all show that the assumption of a constant
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Table 6.2 – Estimation quality criteria and finally selected bandwidths of
1000 replications in a simulation study

ω̂ α̂ β̂ RSEMSE RSERMSE
LL, υ = 5/7 67.080 101.780 89.340 96.923 83.023
LL, υ = 5/9 71.490 101.960 91.770 96.937 83.080
LC, υ = 9/11 66.900 101.660 88.600 97.021 83.325
LC, υ = 9/13 74.250 101.600 92.820 97.234 83.947
param. GARCH 3.050 33.100 4.860 0.012 1.078

Remark: The italic values are the mean values of (R)MSEC · 100.

scale function is a clear misspecification. The results on the relative efficiencies of
the parameter estimates with the Semi-Log-GARCH model are similar to the ones
obtained in chapter 2. The estimation quality of the scale parameter ω is the worst,
the highest relative efficiencies are for the short-term dependence parameter estima-
tion of α, and the ones for β̂ are also high. In general, the naive inflation factors
gives better results than the optimal ones. The behaviour of the relative efficiencies
should be evaluated further for an increased sample size and for different simulated
data cases. Of course, a general more in-depth analysis of more results is necessary
to evaluate these methods meaningfully. In particular, it is crucial to include at
least the Semi-GARCH model approach to compare results. The Semi-GARCH al-
gorithm is not yet available in a form that allows it to be compared to the one of the
Semi-Log-GARCH model in a simulation study. However, the results obtained so far
promote further research on this topic in a timely manner. Fitting a GARCH model
parametrically is a clear misspecification and the computational methods developed
for the Semi-Log-ACD model work well for the Semi-Log-GARCH model.
The methods applied in the simulation study are also used for two real financial data
examples in the following. The data of ALV and BMW from January 1997 to April
2018 is used, which was retrieved from Yahoo Finance. The results are compared
graphically to the ones obtained by the Semi-GARCH model with an IPI described
in (30) of Feng (2004a). Figure A6.2 shows the price and return series for ALV
and BMW, a graphical comparison of the scale function estimations, as well as the
returns standardized by the two shown local polynomial estimations. The figures of
the returns show that the unconditional variance is not constant but changing over
time. The comparisons of the estimated scale functions show that the local linear re-
gression seems to underfit the data and the kernel regression seems to overfit it. The
local cubic regression seems to estimate the trend of the series well. The performance
at the boundaries would need special consideration, though. The standardized re-
turns seem to be stationary after standardization with either method. However, as
stated before, the computational implementation of the Semi-GARCH model is not
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yet equal to the Semi-Log-GARCH model in options and a direct comparison at this
point is not just.
The Semi-Log-GARCH model can be interesting especially in the field of quantitative
risk management. It is more flexible than the Semi-GARCH model, because after
standardization, any GARCH model of choice can be fitted. Also, an algorithm de-
veloped for the Semi-Log-ACD model can be applied directly to the log-transformed
returns and hence the technical implementation is already available. The simulated
and real financial examples show, that the Semi-Log-GARCH model performs well.
A comparison study similar to the one of Peitz (2016) could deliver deeper insight
into the performance of this model proposal compared to other models used in this
field of research. Already well-established GARCH models should be discussed as
reference models nonetheless. A further discussion of this model should be a valuable
contribution to the research on GARCH models and quantitative risk management.

6.2 The Log-sinh-arcsinh-transformation

As stated before, the results of chapter 4 suggest that the method with a normal
distribution assumption performs the best, even though this assumption is rejected
by a SW normality test. Figure 6.2 shows the histograms of the log-residuals for the
Mean Durations (MD), Realized Volatility (RV) and Volume (Vol) of ALV, together
with their densities and normal density curves. The corresponding QQ normal plots
are given in the second column. Figure A6.3 in the appendix shows the histograms
and QQ normal plots for the log-data. The densities look about normal for MD
and Vol, but the QQ normal plots indicate heavy-tails. Figure 6.2 shows that the
normal distribution assumption for the detrended log-data is not completely absurd,
but cannot be supported either. The curves are all skewed, leptokurtic and the QQ
normal plots indicate heavy tails of varying degrees. The approach presented in
this section is different to the methods described in the previous chapters of this
work. Instead of developing new or improving existing methods that do not require
a conditional normal distribution, it aims to further refine normality of the data
through a transformation. If this idea proves successful it can improve the accuracy
of results obtained by methods that assume a conditional normal distribution.

6.2.1 Description of the Log-SAS-transformation

The idea of further normalizing the data already exists in the literature. Hyperbolic
power transformations are appropriate in transforming skewed distributions to nor-
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Histogram of log-MD residuals
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Figure 6.2 – Histograms and QQ normal plots of ALV log-residuals
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mal. Since log-data is considered, the use of e.g. the Box-Cox transformation (Box
and Cox, 1964) is ruled out, because it is only defined on the positive real line. Also
modifications of this transformation, such as the shifted power transformation or
the modulus transformation of John and Draper (1980) do not apply to (−∞,∞).
A promising transformation is the sinh-arcsinh (SAS) transformation, proposed by
Jones and Pewsey (2009) and generalized by Feng (2018). It applies to the whole
range, allows for symmetric and skewed densities and also for heavy and light-tail
distributions. Furthermore, many properties are explored for the resulting family of
distributions and moments of any order exist (see Rubio et al., 2016). Following Feng
(2018), the sinh-arcsinh transformation is applied to the log-data for improving and
further refining the normality of it. This idea is not yet discussed in the ACD model
literature. Let it be denoted by log-sinh-arcsinh (log-SAS-) transformation and the
model used to obtain first results later in this section is called Log-SAS-ACD model.
Let Yt = log(Xt), as defined in (3.2). The log-SAS-transformation is defined by
assuming that Yt has a SAS-marginal distribution for:

Zt = Sε,δ(Yt,ε,δ) = sinh[ε+ δ sinh−1(Yt,ε,δ)]. (6.9)

The parameters ε ∈ R and δ > 0 in (6.9) control for the skewness and tailweight,
respectively. Yt,ε,δ is a random variable associated with the normal density fε,δ, which
is given by:

fε,δ(y) = 1√
2π

δCε,δ(y)√
1 + y2 exp

(
−1

2S
2
ε,δ(y)

)
, (6.10)

where Cε,δ(y) = cosh(ε + δ sinh−1(y)). The transformation in (6.9) is designed for
the canonical case, where the location and scale parameters, σ and µ, are removed.
Using σ−1fε,δ(y−µσ ) allows to reinstate those parameters, yielding a four-parameter
distribution. Adjusting the values of those four parameters in the transformation
of the data adjusts the location, scale, skewness and kurtosis of the density. In
the following, log-data is analysed with and without the SAS-transformation. The
parameters for skewness, ε, and kurtosis, δ, are adjusted and the ones for location
and scale are not considered. Let Ŷ ∗t = Yt − µ̂t denote the detrended log-data
of interest. The standardized data is given by Y̊ ∗t = Ŷ ∗t −

¯̂
Y ∗t

sd(Ŷ ∗t ) . The transformation
in (6.9) is applied to Y̊ ∗t via an algorithm that finds the combination of ε and δ

which minimizes the Jarque-Bera (JB, see Jarque and Bera, 1980) test-statistic or
maximizes the p-value of the SW test. Let the data obtained by either algorithm be
denoted by Ỹ ∗t,JB and Ỹ ∗t,SW.
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6.2.2 First empirical results

To obtain first results, MD, RV and Vol of ALV are log-SAS-transformed. The com-
binations of parameters to be used for the SAS-transformation are εmin = −0.4 to
εmax = 1.4 and δmin = 0.01 to δmax = 2, each with a grid of 0.01. The trend is esti-
mated via a local linear regression, with the EIM inflation method, inflation factor
υ = 5/7 and a bi-square kernel. For estimating the variance factor, the nonparamet-
ric method is used with a starting bandwidth b0 = 0.10, significance level α = 10%
and a bi-square kernel (methods described in chapter 3). The left column of figure
6.3 shows the histograms of Ỹ ∗t,SW, together with the density and normal density
curve and the right column shows the histograms of Ỹ ∗t,JB, together with the density
and normal density curve. QQ normal plots of all data are shown in figure 6.4. The
figures clearly show the improvement towards normality after the log-data has been
SAS-transformed with parameters selected by either algorithm. Skewness and tails
are corrected towards normality, which is especially apparent for the RV data exam-
ple, and also the tails are clearly lightened. The SW p-values and JB log-statistics,
given under each histogram, show that for the log-SAS-transformed data the Null is
clearly not rejected in each case for either method. Even though the JB test is based
on a function of the sample skewness and kurtosis and the SW test uses two variance
estimators, they select similar values for δ and ε. However, this is just a finding for
the data considered here. A more in-depth discussion of the parameter selection of
both methods naturally requires further data examples and possibly an examination
of further goodness-of-fit tests additional to theoretically derived properties.
Generally, an in-depth theoretical discussion of this transformation needs to be in-
cluded in the intended future research. In particular, the effect of the choice of δ
on the tailweights needs proper investigation. Jones and Pewsey (2009) state that
for δ < 1 the tails are heavier than for the normal distribution and lighter if δ > 1.
Based on the tail behaviour formula given in (5) of Jones and Pewsey (2009), we
propose to only consider δ > 0.5:

fε,δ(|y|) ≈ exp(−sgn(y)ε)|y|δ−1exp(−e−sgn(y)2ε|y|2δ). (6.11)

If δ = 1 the tails are as the ones of the normal distribution. The tails are heavier
(lighter) than the ones of the normal distribution for δ < 1(δ > 1). If δ < 0.5 the
moments of the original data do not exist after retransformation. Here, 0.5 < δ < 1
was selected via both algorithms for all data examples, even though δ < 0.5 was
a possible choice given by the range of values for the algorithm. For manually
fixing δ, δ < 0.5 is suggested to be excluded and δ = 0.5 is not recommended
either as the results might be instable. The performance of the algorithm with
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respect to the choice of δ needs to be studied further to gain more insight, just as a
discussion of the properties of the SAS distribution and transformation. To highlight
the importance of an adequate parameter selection for the log-SAS-transformation,
the contour plots are given in figure 6.5 to show how the values of the test statistics of
SW and JB change as a function of both parameters. Please note that the statistics
were logarithmized for display reasons. Here it can easily be seen, that the statistics
quickly take on values that ultimately lead to a rejection of the Null for slight changes
in the parameters. Also the range of parameter values that leads to the JB statistic
minimizing or SW p-value maximizing combination is very small. This is illustrated
by figure A6.4, which shows close-ups of the cores of the contour plots. The excerpts
also show, that the grid chosen between the different starting and end values for the
parameters can further refine the combinations. Therefore, the parameter selection
and the development of adequate methods should be of central practical importance.
The idea of the log-SAS-transformation requires a much deeper theoretical discussion
and a practical assessment that goes beyond the examples shown here. Nevertheless,
the results obtained here are very promising and advocate an extensive study of it
in the near future.
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Histogram of log-SAS-Vol
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Figure 6.3 – Histograms of log-SAS-transformed data
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Figure 6.4 – QQ-Normal-Plots of log-SAS-transformed data
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Figure 6.5 – Contour plots of goodness-of-fit test statistics with different δ and ε
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6.3 Neural Network GDP forecasts

Fritz et al. (2018) show that the combination of different forecasting methods and
especially the inclusion of local linear methods delivers good forecasts for the log-
GDP data of developing and advanced countries. Nevertheless, the search for further
single forecasting methods is considered interesting to possibly improve the forecast
quality. For this purpose, Neural Network (NN) methods are described briefly in the
following and applied to the data examples used in Fritz et al. (2018). Also it is
examined, if the NN method proposed can itself be improved by local linear regres-
sion. NN models are able to capture complex non-linear relationships and, amongst
other features, strict assumptions on the error terms are not required (White, 1989;
Sena and Nagwani, 2016). Examining whether local linear regression methods can
improve its performance should, therefore, be interesting, as well. Admittedly, there
are different results and opinions in the literature regarding the performance of NN
methods, despite their rapid growth in prominence (Crone et al., 2011 and references
therein). Crone et al. (2011) extend the M3 competition of Makridakis and Hibon
(2000) towards NN and computational intelligence methods. For the submissions
they find, amongst others, that it is no longer generally true that simple methods
outperform complicated ones. Even though they cannot identify one main finding
or “best practices” (Crone et al., 2011, p. 657), they still find the results on the NN
and computational intelligence forecasting encouraging for future research.
For the analysis intended here, autoregressive Neural Network models of orders p
and k are considered. The order p for the NNAR model denotes the number of
lagged inputs used and k the number of nodes in the hidden layer (see Hyndman and
Athanasopoulos, 2014). Dismissing the hidden layer would yield an AR(p) model.
However, unlike the AR model, the NNAR model does not require parameter restric-
tions to ensure stationarity. Following Dietz (2012) the NNAR is defined by:

Xt = ω +
p∑
i=1

αiXt−i +
k∑
j=1

ψ

(
γ0j +

p∑
i=1

γijXt−i

)
βj + εt, (6.12)

where Xt denotes the value of a time series at a point in time t = 1, ..., n and ω, α

and β are the NNAR model parameters. The first part of (6.12) denotes the autore-
gressive part, i.e. i weighted lagged values are used as input. The activation function
ψ(•) consists of weight parameters γij, for which j describes the number of nodes in
the hidden layer and a bias, γ0,j. Before entering the output layer, each node in the
hidden layer is weighted by βj and εt are i.i.d. random variables with zero mean and
constant variance.
The NN methods are applied in the empirical application framework of Fritz et al.
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(2018) to show the effect of including them into combinations examined previously.
Since the literature disagrees on whether to remove the trend from the data before
applying NN methods or not (see e.g. Zhang and Kline, 2007; Ahmed et al, 2010 or
Shmueli and Lichtendahl, 2016) they are applied with and without trend here. The
forecasting methods described in Fritz et al. (2018) are supplemented by the NN
method without trend removal (NNAR) and with trend removal by local linear re-
gression (NNARLL). The forecasting intervals cannot be derived analytically for the
NN methods, however, future sample paths of the model can be simulated iteratively
to give a good idea of the forecast distribution (Hyndman, 2017). Including the two
NN proposals gives 63 single and combination methods. Table A6.1 gives an overview
over the methods and their denotation. Table A6.2 gives the mean MASE, as well as
the mean SMAE, the mean length of the forecasting intervals and the mean EoPoFi
for the 5-year forecasts of the log-GDP data of the countries considered in Fritz et al.
(2018). The combination of LLR, RCS, RSL and RLL with a mean MASE of 0.346
is identified best in the previous log-GDP forecast analysis, so this is the benchmark
value to which the results of this section are compared against. The results of the
MASE in table A6.2 indicate that none of the new single or combination methods are
better than the combination identified in Fritz et al. (2018). Except for the single
RWLL and NNAR the forecasts are still better than the one-step näıve, though, but
C211 and C213, which both contain NNAR are close to 1. First mentioned combi-
nation is worsened, as compared to the MASE of the single method RWL, whereas
second mentioned combination is improved as compared to the MASE of the single
method RWLL. The effect of including NN methods is overall inconclusive. The val-
ues of each criterion for each country are given graphically in figures A6.5 to A6.8.
Figure A6.5 shows, that combining NN with a local linear regression improves the
forecasts in most of the examined cases. Also, the MASE decreases and becomes
more stable, the more methods are combined. Overall the superiority of a method
over the one-step näıve seems to be the result of combinations in general. A positive
or negative influence of a particular method on the forecasts cannot be detected. The
SMAE given in figure A6.6 does not indicate anything different than the MASE con-
cerning the analysis sought here. The more methods are combined, the smaller and
less fluctuant is the SMAE. The mean lengths of the 95% forecasting intervals given
in figure A6.7 show that they increase, if LLR is not included in the combination of
methods. Also the forecast intervals are narrower for LLR and NNARLL as single
methods than for the other single methods. For discussing the EoPoFi via figure
A6.8 it must be noted first, that the theoretical deviation is 0.25 here and cannot
be met by actual deviations. For most examples the number of actual deviations
from either the upper or the lower bound is 0 or in less cases > 0, the more methods
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are combined. The EoPoFi for China and Nigeria are the smallest overall, but their
mean lengths of forecasting intervals are the largest, which explains why there are
no deviations from the interval bounds. For C41 the forecasting intervals are not too
large and no observations of the validity set lie outside the bounds.
The inclusion of NNAR and NNARLL methods for forecasting GDP growth of devel-
oping countries did not give conclusive results. The criteria show, that the forecasts
are in most cases more stable the more methods are combined. A method that con-
sistently improves the forecast quality if added to another is not identified, though.
On average, the forecasts of C41 are still the best. Overall, the idea of including
further prediction methods in more combinations is not invalidated by these results,
just the choice of NN methods did not give clear indication of improvement. Also
whether the trend should be removed via local liner regression before applying NN
methods is without clear result. Following the results of Crone et al (2011), other
NN or computational intelligence approaches may be used in future research on this
topic.

6.4 Miscellaneous research topics

Three further ideas on future research are briefly described in the following. The
suggestions made derive from findings obtained in previous chapters of this work
and are supported by results of literature on the here discussed or similar topics. For
the following ideas no numerical results are presented.

6.4.1 Local bandwidth factor for IPI improvement

The estimation of the scale function with a global asymptotically optimal bandwidth
yields good results for the modelling of intraday data, daily average data, as well
as the forecasting of such. The results of the RASE and their discussion in section
2.4.3 give numerical evidence of the good practical performance of the proposed
trend estimation procedure. The results of applying the more automatized IPI to
real financial non-negative data in each of the main chapters support this finding. In
order to further optimize the introduced algorithm and to also prepare for its possible
application to data with a more complex underlying deterministic structure, a local
bandwidth selection approach could be included in the IPI (see e.g. Fan et al., 1996).
Fan and Gijbels (1992) propose a local linear smoother with a variable bandwidth
bn/α(Xj), where α(•) is a non-negative function and obtained via an IPI algorithm.
Fan and Gijbels (1995) let the bandwidth vary with location via assessment of the
conditional MSE. Brockmann et al. (1993) extend the global IPI (Gasser et al., 1991)
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by local steps for a local bandwidth estimator. Herrmann (1997) adds an additional
final step to obtain a local plug-in bandwidth to the Brockmann et al. (1993) IPI and
Staniswalis (1989) proposes a two-step local bandwidth estimation procedure based
on the finite sample expression for the MSE. In many of these proposals, the local
asymptotical bandwidth, bA(τ), is time-varying and can be obtained by minimizing
the dominant part of the MSE of m̂(t) (see Brockmann et al., 1993). In accordance
with the denotation used for the formula of the asymptotical optimal bandwidth
given in (2.10), let

bA(τ) =
(
R(K)2S
I2(K)

µ2(t)
([µ]′′)2

)1/5

N−1/5. (6.13)

The selection of a local bandwidth at each point of the observation would be very
computer-intensive for the (U)HF data considered, though. A local bandwidth factor
could be suggested as a solution. A global factor to generally increase or decrease
would not serve the issue well. Either it would worsen the estimation at the boundary
points, which are found to be estimated well already or it would not solve the problem
of estimating more complex trends, as the bandwidth would still be a global one. For
kernel density estimation, the use of a local bandwidth factor to obtain a variable
bandwidth is proposed by Abramson (1982), Demir and Toktamiş (2010) or Aljuhani
and Al Turk (2014). The idea to pursue in the local linear regression context is
based on the proposals of Feng (unpublished) and Feng and Beran (unpublished)
on a robust estimation of the volatility trend in semiparametric GARCH models.
Let the local bandwidth selector be defined as bA(τ) = C(τ)bA, where bA is the
asymptotically global optimal bandwidth as given for example in (2.10). The local
bandwidth factor is given by

C(τ) =
(

µ2(τ)
I(µ2(τ))

I([µ(τ)′′]2)
[µ(τ)′′]2

)1/5

, (6.14)

with I(µ2(τ)) =
∫
µ2(τ)dτ . It is obtained by

a) Obtain [µ̌(τ)]′′, the estimate of [µ(τ)]′′ with b̂d = b
5/9
A .

b) Obtain [µ̄(τ)]′′, a smoother of [µ̌(τ)]′′, with b̂A.

c) Calculate C(τ) by inserting µ̂2(τ) and [µ̄(τ)]′′ into (6.14).

This idea could first be tested on whether it improves the trend estimation in the
simulation carried out in chapter 2 or the results of real financial non-negative data
examples used throughout this work. If the results are clearly improved compared
to the ones of chapter 2, it could also be of interest to extend this idea to a local
polynomial regression for log-data.
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6.4.2 Model parameter estimation

Throughout the course of this work, the focus was not on estimating the model pa-
rameters, but rather on the steps before and after. The methods for estimating the
scale function and for predicting future values of the data were aimed to be improved.
The discussion of relative efficiencies in section 2.4.4 showed that the ML methods im-
plemented in the R-packages used work sufficiently well. In order to further improve
the semiparametric fitting of the ACD models discussed, estimating the model pa-
rameters semiparametrically could be an approach to consider for future research. In
particular, using the estimating function (EF) of Godambe (1960) instead of (Q)ML
or GMM estimators could be a viable and valuable method. The EF is suggested
by the research literature, especially when the true underlying density is unknown
(see e.g. Hansen, 1982, Grammig and Wellner, 2002, Hallin and La Vecchia, 2017
or see Bera and Bilias, 2002 and Bera et al., 2006 for a detailed description of the
development of the EF and a summary of other estimation approaches). Improving
the accuracy of model parameter estimation adds to the overall performance of the
proposed semiparametric ACD models.
EF have already been show to work well for the estimation of ACD model parameters.
Allen et al. (2013a, b) develop the EF estimation procedure for the Weibull ACD
model and Exponential and Box-Cox ACD Model, respectively. They each design
a simulation study to compare EF and QML methods. Another comparison of EF
and ML methods for ACD models is done e.g. by Pathmanathan et al. (2010), who
extend the work of Peiris et al. (2007) by comparing EF and ML estimation methods
for ACD model parameters with different error distributions. Ng and Peiris (2013)
use a simulation study to evaluate an EF approach based on a Generalized Gamma
distribution and Ng et al. (2014) compare a semiparametric parameter estimation
method for Log-ACD models based on the theory of EF with corresponding (Q)MLE
via a simulation study, as well. The results of applying EF methods to ACD models
can be summarized as follows: EF and ML methods both deliver comparable results,
but EF is faster and more efficient, if the true distribution is unknown. Thus, the EF
is superior to (Q)ML regarding practical evaluation and application without prior
knowledge on the error distribution.
The inclusion of an EF based parameter estimation method into the semiparametric
ACD models would be new to the literature. If it is proven to perform better than
the (Q)MLE it should be an important contribution to the research on Semi-ACD
models. Following the already existing literature, a simulation study should be the
most useful in discussing and evaluating the performance of the EF model parameter
estimation.
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6.4.3 Block-bootstrap for forecasting non-negative financial
data

Concerning the forecast it is apparent from the results obtained in chapter 4, that
the semiparametric bootstrap methods performed mostly well, however not as good
as the semiparametric Log-ACD model with the conditional normal distribution as-
sumption. Besides improving the normality of the data an alternative approach could
be the improvement of the distribution assumption free bootstrap method. The boot-
strap applied in chapter 4 is model-based and in particular based on autoregressive
processes with i.i.d. innovations. Even though the forecasting results do not suggest
this assumption to be apparently false, the data could be autocorrelated, which may
lead to a poor(er) performance of the applied model based bootstrap (Singh, 1981).
A possible solution to suggest is the use of block bootstrap to guarantee stationarity
for short-range dependent data (’stationary bootstrap’, Politis and Romano, 1994),
and to follow the works of Paparoditis and Politits (2002), Dowla et al. (2003) and
Dowla et al. (2013) on a modification of the block bootstrap for locally stationary
processes. Here, the blocks are resampled in a way that blocks can only be replaced
by other blocks, if their starting points are close to each other. The advantage of
applying the block bootstrap idea is that it can also be applied to non i.i.d. data
and no model needs to be specified to obtain the residuals. The crucial point of the
block bootstrap, though, is the choice of block sizes. When applying the block boot-
strap for locally stationary data, the choice of an additional parameter is required,
namely the parameter which determines what is considered ’close to each other’
(see Gonçalves and Politis, 2011). The block-length selection is discussed in the
literature. Bühlmann and Künsch (1999), for example, propose a fully data-driven
block-length selection procedure via a linearised extension (Hampel et al., 1986) of
the Brockmann et al. (1993) IPI to spectral estimation (Bühlmann, 1996) and to use
the inverse of the selected bandwidth as the optimal block-length. Politis and White
(2004)12 also give an automatic block-selection method based on spectral estimation
via flat-top lag windows. Another selection procedure is required to determine the
optimal block size. Whether already existing procedures should be applied or the
development of a new procedure is required would have to be investigated after the
theoretical discussion of block-bootstrap properties. An empirical application would
not only have to determine whether the bootstrap forecasts are improved but more
importantly whether the forecasts are better than the ones of the Semi-Log-ACD
model under a conditional normal distribution.

12Patton et al. (2009) give a correction on their 2004 article, as Nordmann (2009) found an
error in the calculations of Lahiri (1999), an article the 2004 idea was substantially based on. The
original idea is unchanged, though, and the results after the corrections are even better.
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A.5 Appendix of Chapter 6
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7 Summary of chapters and conclusion

The contribution of this work to current research can be derived individually from
each of the contributions of the main chapters, but also as a development process as
a whole. The main contribution of this work can be summarized as a semiparamet-
ric extension of the ACD model for the analysis of non-negative financial data. A
two-stage model fitting process is presented, based on the decomposition of the data
into a deterministic and a stochastic part, with the former being estimated using
nonparametric methods and the latter using parametric methods. Motivated by the
probable violation of the assumption of stationarity by a (typical) daily pattern of
UHF financial data or long-term dynamics of HF data, the model extension pre-
sented here enables, among other things, the adaptation of already well-established
models for the analysis of the stochastic part. The nonparametric local linear re-
gression, the proposed IPI algorithm with an automatic bandwidth selection and
also the extension to local polynomial regression for log-data prove to be very good
tools for the estimation of the trend in empirical applications. The methods are im-
proved and adapted and the arrangement of the chapters corresponds to the process
of development. In detail, the chapters and their contributions to research in the
corresponding fields can be summarized as follows:
Chapter 1 embeds the ACD model in a financial market microstructure theory frame-
work and briefly describes its development since the original proposal in 1998. With
regards to the contents of this work, a literature overview over semiparametric ACD
model extensions is given and the chapters to follow are briefly summarized.
Chapter 2 describes the idea, first published by Feng (2014), of fitting the ACD
model semiparametrically in a two-step procedure. The nonparametric smooth scale
function, which is introduced into the ACD model to account for deterministic dy-
namics is estimated via local linear regression with a data-driven IPI for automat-
ically choosing the optimal bandwidth required. The estimated scale function is
removed from the data and any suitable parametric model can be fitted to the most
likely stationary data. The trend estimation is a general step and does not require

133
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prior assumptions on a parametric model to be fitted in the second step. A carried
out simulation study evaluates the performance of the Semi-ACD model concerning
the trend estimation and the model parameter estimation and also the automatic
bandwidth selection of the IPI is examined. Different sample sizes are simulated to
show the performance for an increase in sample size and also different daily patterns
and different ACD models are simulated to discuss the performance of the proposed
model for typical and difficult cases. The IPI is applied with different combinations
of inflation method, inflation factor and variance factor for calculating the residual
sum of autocovariances to derive a superior combination of these factors to propose
for practical application. The simulation is repeated with a cubic spline estimation
of the scale function with reference to the proposal of Engle and Russell (1998) and
related works to compare the new methods to a method, that is already used in the
prevailing literature. The evaluation of the simulation study provides the research
contribution of this chapter: The here proposed Semi-ACD model with a local linear
trend estimation using a bandwidth that is selected via a data-driven IPI, works well
in practice and outperforms the cubic spline reference method. A superior combina-
tion of IPI factors is identified, which can be given as a recommendation for practical
application. The application to two real financial trade duration examples supports
the findings of the simulation study assessment.
Based on the results obtained for simulated data in chapter 2 the Semi-ACD model
is further developed in chapter 3. In order to gain more flexibility of the model and
ease its estimation, the semiparametric fitting idea is adapted to the (first-type) Log-
ACD model of Bauwens and Giot (2000). It is further extended in the sense, that
the model setup is generalized to a MEM, with the (Log-) ACD model as a special
case and by not necessarily assuming a conditional distribution for the innovations.
A general case is described with the log-data following a linear process and a special
case with the log-data following a stationary and invertible ARMA process, i.e. un-
der a conditional log-normal distribution assumption. Important properties of the
model, i.e. the structure and moments for conditional distributions other than the
log-normal one are discussed to not restrict the otherwise very flexible model at this
point. Also conditions are derived under which the m-th moments of the original
stationary data exist and under which heavy-tails of different levels can be modelled.
The flexibility of the model is holistic, as the scale function estimation is a general
procedure for which no assumption on the model to be fitted after removing the trend
needs to be made. In addition to the model-theoretical research contribution, this
chapter also provides rather application-relevant extensions of the IPI. Since there
are no non-negativity constraints imposed on the parameters, the trend estimation
is generalized to local polynomial regression and not limited to local linear regres-
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sion anymore. Also the variance of the asymptotical optimal bandwidth, which had
to be chosen manually before, is now estimated automatically as part of the IPI.
Three methods are proposed, where two are parametric and AR(MA) model based
and one is nonparametric using another IPI procedure. The research contributions
of this chapters can be summarized as follows: The trend estimation is extended
to local polynomial regression and includes an automatic variance factor estimation
algorithm. The nonparametric method is proposed for flexibility reasons and the
AR based method as a model based alternative. It is proven that the variance factor
estimation does not affect the rate of convergence of the asymptotical optimal band-
width and properties of the model are discussed for conditional distributions other
than the log-normal one. The equivalent estimation of the scale function from the
log-data is derived as recommendation.
Chapter 4 builds on the first two chapters by forecasting non-negative financial mar-
ket data with the Semi-ACD and the Semi-Log-ACD model. The scale function is
estimated following the automated IPI of chapter 3, i.e. it is estimated from the
log-data with the nonparametric variance factor estimation method. The trend es-
timates are removed from the data and linearly extrapolated for the forecasts of
the deterministic movement. Pursuing the aim of increased flexibility, model based
bootstrap methods are applied to obtain point and 90% interval forecasts of the
residuals. Again, the Semi-Log-ACD model under the conditional log-normal dis-
tribution is shown as a special case, for which Kalman filter methods are applied.
Eventually the linearly extrapolated trend and the residual forecasts are combined
to obtain the overall forecasts. The ACD, Log-ACD and Log-ACD model under
the conditional normal distribution assumption are fitted semiparametrically and
parametrically to three types of financial data of six firms. The assessment of the
point and interval forecasting quality using two criteria each shows that, again, the
semiparametric methods are clearly superior to the parametric ones. The model
delivering the most precise and consistent results is the semiparametric Log-ACD
model with the conditional normal distribution assumption. The contribution of
this chapter to research in this field is the proposal of flexible forecasting methods
for non-negative financial data. Also the prior made statements on the detrending
procedure being universally applicable are confirmed, because it also works well in
a forecasting framework. For the evaluation of the forecast quality a new criterion,
EoPoFi, is developed and used. The comparison with the results obtained for the
parametric models, once more show that the semiparametric methods are clearly
better than the parametric ones. Overall, the results of the methods presented in
chapters 2 to 4 should be of value for the ongoing research on analysing non-negative
financial data. The nonparametric estimation method of the scale function presented
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here is not only shown to be clearly superior to the parametric methods, but it is also
shown to be better than the originally proposed cubic spline method. Theoretical
model properties, recommendations for application and further improvements of the
methods for increasing flexibility are the main research contributions.
The origin of the methods presented lies in the analysis of (U)HF financial data.
However, the proposed trend estimation methods also allow their use outside the fi-
nancial data environment. Chapter 5 uses the proposed nonparametric trend estima-
tion approach to improve the forecast accuracy of advanced and especially developing
country GDP data. One of the methods applied is the adapted Semi-Log-ACD model
forecasting method under the conditional normal distribution described in chapter
4. Furthermore, random walk models are used with a constant, a linear and a local
linear drift estimated via the scale function estimation IPI as introduced in the pre-
vious chapters. These four individual methods are additionally combined in 11 ways,
whereby the forecasts of the combined models are determined from the mean values
of the individual forecast values. The application to examples of Log-GDP data of
advanced and developing countries shows that the semiparametric regression model
approach does not work consistently well due to structural breaks in the data. The
conclusion to be drawn from the results of the point and interval forecasts obtained
with the single methods and combined models is that the local linear trend estima-
tion approach stabilizes the forecasts when it is combined with other methods. The
flexibility of the LLR method improves the accuracy of trend identification by sys-
tematically adapting to the different phases of non-log-linear growth processes. The
research contribution of this chapter is the adaptation of the Semi-Log-ACD model
methods in a non-financial context. It is overall shown to work well, even though the
results are inconclusive at some points. The general applicability and overall good
practical performance of the local linear regression IPI is confirmed.
Chapter 6 gives possible future research questions, that are mostly derived from the
findings of the individual chapters of this work. All of the proposals aim to further
improve the accuracy of the fitted model in terms of describing the data’s dynamics
or in terms of forecasting. The approaches are applied at different points in the
2-step process. The contribution to research of this chapter is not that clearly iden-
tifiable (yet). Some of the first empirical results obtained are very promising, but
all of these ideas need proper theoretical discussions and more profound empirical
application. The contribution is considered to lie in the provision of future research
questions. One promising proposal is to apply the nonparametric methods of the
Semi-Log-ACD model in a GARCH model context to improve the estimation of the
volatility of returns. The performance of the Semi-Log-GARCH model is examined
in a simulation study and results on the bandwidth selection, the scale function es-
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timation and the model parameter estimation are all in clear favour of this model
proposal. A just comparison with the Semi-GARCH model performance is not yet
possible, though. Motivated by the findings of chapter 4 that the method assuming
a conditional normal distribution performs best, the Log-SAS transformation is pro-
posed to further normalize the data. Two parameters of this transformation allow
to adjust the skewness and kurtosis to the point where normality of the log-data is
refined. A first algorithm is developed based on the JB and SW tests to find the
optimal combination of these parameters. A first application to real financial data
shows that this idea works well in the way intended and that it should be pursued
in a timely manner. Based on the analysis carried out in chapter 5 the methods
and combinations of methods used there are supplemented by NN methods with and
without trend removal by local linear regression. The analysis is repeated with the
increased number of single methods and combinations, but the results are inconclu-
sive. The finding of chapter 5 that the local linear methods stabilize the forecasts
is confirmed, but besides that no clear statement can be made. The combination of
methods that was identified best in the prior analysis is not outperformed by any of
the other methods or combinations of such. Further ideas are presented without first
empirical results. The proposal of a local bandwidth for estimating the trend aims
at improving the detrending procedure. The idea of using EF instead of (Q)ML
methods would include another method that does not require prior knowledge on
the distribution of the errors and, thus, allow for a semiparametric model parameter
estimation. Applying a different bootstrap for forecasting is proposed, because the
results of the applied bootstrap methods are shown to be not as good as the model
assumption based methods. It could be investigated further, whether the bootstrap
method is not as good, per se.
The arrangement of chapters shows on the one hand how the further developments of
the Semi-ACD model and its extensions build on each other and on the other hand
that a model, which already works very well, can still be further improved. Thus,
research in this area is not yet near completion, but the contents of this work are
expected to contribute positively to the ongoing research.



138 CHAPTER 7. SUMMARY OF CHAPTERS AND CONCLUSION



Bibliography

[1] I. S. Abramson. On bandwidth variation in kernel estimates-a square root law.
The annals of Statistics, pages 1217–1223, 1982.

[2] A. R. Admati and P. Pfleiderer. A theory of intraday patterns: Volume and
price variability. The Review of Financial Studies, 1(1):3–40, 1988.

[3] N. K. Ahmed, A. F. Atiya, N. El Gayar, and H. El-Shishiny. An empirical
comparison of machine learning models for time series forecasting. Econometric
Reviews, 29(5-6):594–621, 2010.

[4] K. H. Aljuhani and L. I. Al Turk. Modification of the adaptive Nadaraya-
Watson kernel regression estimator. Scientific Research and Essays, 9(22):966–
971, 2014.

[5] D. Allen, F. Chan, M. McAleer, and S. Peiris. Finite sample properties of the
QMLE for the Log-ACD model: Application to Australian stocks. Journal of
Econometrics, 147:163–185, 2008.

[6] D. Allen, K. Ng, and S. Peiris. Estimating and simulating Weibull models of
risk or price durations: An application to ACD models. The North American
Journal of Economics and Finance, 25:214–225, 2013a.

[7] D. Allen, K. Ng, and S. Peiris. The efficient modelling of high frequency trans-
action data: A new application of estimating functions in financial economics.
Economics Letters, 120(1):117–122, 2013b.

[8] H. Allende, G. Ulloa, and H. Allende-Cid. Prediction Intervals in Linear and
Nonlinear Time Series with Sieve Bootstrap Methodology. In J. Beran, Y. Feng,
and H. Hebbel, editors, Empirical Economic and Financial Research: Theory,
Methods and Practice, pages 255–273, Cham, 2015. Springer International Pub-
lishing.

[9] A. M. Alonso, D. Pena, and J. Romo. Forecasting time series with sieve boot-
strap. Journal of Statistical Planning and Inference, 100(1):1–11, 2002.

XIII



XIV BIBLIOGRAPHY

[10] A. M. Alonso, D. Pena, and J. Romo. On sieve bootstrap prediction intervals.
Statistics and Probability Letters, 65(1):13–20, 2003.

[11] A. M. Alonso, D. Pena, and J. Romo. Introducing model uncertainty in time
series bootstrap. Statistica Sinica, pages 155–174, 2004.

[12] T. G. Andersen and T. Bollerslev. Heterogeneous Information Arrivals and
Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Re-
turns. The journal of Finance, 52(3):975–1005, 1997.

[13] T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys. Modeling and
Forecasting Realized Volatility. Econometrica, 71(2):579–625, 2003.

[14] J. S. Armstrong and F. Collopy. Error measures for generalizing about fore-
casting methods: Empirical comparisons. International Journal of Forecasting, 
8(1):69–80, 1992.

[15] J. M. Bates and C. W. Granger. The combination of forecasts. Journal of the
Operational Research Society, 20(4):451–468, 1969.

[16] L. Bauwens, F. Galli, and P. Giot. The moments of log-ACD models. Quanti-
tative and Qualitative Analysis in Social Sciences, 2(1):1, 2008.

[17] L. Bauwens and P. Giot. The logarithmic ACD model: an application to
the bid-ask quote process of three NYSE stocks. Annales d’Economie et de
Statistique, pages 117–149, 2000.

[18] L. Bauwens and P. Giot. Asymmetric ACD models: introducing price infor-
mation in ACD models. Empirical Economics, 28(4):709–731, 2003.

[19] L. Bauwens, P. Giot, J. Grammig, and D. Veredas. A comparison of financial
duration models via density forecasts. International Journal of Forecasting, 
20(4):589–609, 2004.

[20] BCBS. Basel III: Finalising post-crisis reforms, 2017.

[21] M. Belfrage. ACDm: Tools for Autoregressive Conditional Duration Models,
2016. R package version 1.0.4.

[22] A. K. Bera and Y. Bilias. The MM, ME, ML, EL, EF and GMM approaches
to estimation: a synthesis. Journal of Econometrics, 107(1):51–86, 2002.

[23] A. K. Bera, Y. Bilias, and P. Simlai. Estimating functions and equations: An
essay on historical developments with applications to econometrics. Palgrave
Handbook of Econometrics, 1:427–476, 2006.



BIBLIOGRAPHY XV

[24] J. Beran and Y. Feng. SEMIFAR models - a semiparametric approach to
modelling trends, long-range dependence and nonstationarity. Computational
Statistics & Data Analysis, 40(2):393–419, 2002.

[25] J. Beran and Y. Feng. Iterative plug-in algorithms for SEMIFAR models -
definition, convergence, and asymptotic properties. Journal of Computational
and Graphical statistics, 11(3):690–713, 2002a.

[26] J. Beran and Y. Feng. Local polynomial fitting with long-memory, short-
memory and antipersistent errors. Annals of the Institute of Statistical Math-
ematics, 54(2):291–311, 2002b.

[27] J. Beran, Y. Feng, and S. Ghosh. Modelling long-range dependence and trends
in duration series: an approach based on EFARIMA and ESEMIFAR models.
Statistical Papers, 56(2):431–451, 2015.

[28] J. Beran, Y. Feng, and S. Heiler. Modifying the double smoothing bandwidth
selector in nonparametric regression. Statistical Methodology, 6(5):447–465,
2009.

[29] J. Beran and D. Ocker. SEMIFAR forecasts, with applications to foreign ex-
change rates. Journal of Statistical Planning and Inference, 80(1-2):137–153,
1999.

[30] C. R. Bhatti. The Birnbaum–Saunders autoregressive conditional duration
model. Mathematics and Computers in Simulation, 80(10):2062–2078, 2010.

[31] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Jour-
nal of econometrics, 31(3):307–327, 1986.

[32] A. B. Bortoluzzo, P. A. Morettin, and C. M. Toloi. Time-varying autoregressive
conditional duration model. Journal of Applied Statistics, 37(5):847–864, 2010.

[33] G. E. Box and D. R. Cox. An analysis of transformations. Journal of the Royal
Statistical Society. Series B (Methodological), pages 211–252, 1964.

[34] M. Brockmann, T. Gasser, and E. Herrmann. Locally adaptive bandwidth
choice for kernel regression estimators. Journal of the American Statistical
Association, 88(424):1302–1309, 1993.

[35] P. Brockwell and R. Davis. Time Series: Theory and Methods. Springer-Verlag,
New York, 1991 edition, 1991.



XVI BIBLIOGRAPHY

[36] P. J. Brockwell and R. A. Davis. Introduction to time series and forecasting.
Springer-Verlag Inc, Berlin; New York, 2002.

[37] C. T. Brownlees, F. Cipollini, and G. M. Gallo. Intra-daily volume modeling
and prediction for algorithmic trading. Journal of Financial Econometrics,
9(3):489–518, 2010.

[38] C. T. Brownlees, F. Cipollini, and G. M. Gallo. Multiplicative Error Models. In
Handbook of Volatility Models and Their Applications, pages 223–247. Wiley-
Blackwell, 2012.

[39] C. T. Brownlees and G. M. Gallo. Shrinkage estimation of semiparametric
multiplicative error models. International Journal of Forecasting, 27(2):365–
378, 2011.
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[41] P. Bühlmann. Sieve bootstrap for time series. Bernoulli, 3(2):123–148, 1997.

[42] P. B¨uhlmann. Bootstraps for Time Series. Statistical Science, 17(1):52–72,
2002.

[43] P. B¨uhlmann and H. R. K¨unsch. Block length selection in the bootstrap 
for time series. Computational Statistics & Data Analysis, 31(3):295–310, 1999.
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Supplementary Appendix

Supplementary Appendix of Chapter 4

The tests for significance of the estimated scale functions test whether the difference
between the time-varying scale function is statistically different to the constant trend,
i.e. the mean. The asymptotic variances for correctly obtaining the confidence
interval bounds are determined via the automatically determined variance factor and
lag-window estimator with Bartlett-window weights. The underlying hypothesis is,
that there is no difference between the time-varying and the constant scale function.
The Null for the Shapiro Wilk tests is, that the data is normally distributed. These
tests are carried out via the shapiro.test function implemented in R for a signficance
level of α = 5%, as well. The results show, that the data and their transformations
each are with a trend that is statistically significant different to the mean of the data
and that for all data and their transformations the hypothesis of the Shapiro Wilk
test that the data is normally distributed is rejected at the 5% significance level. A
thorough discussion on the Shapiro Wilk test is not done here.
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Table B4.1 – Scale function significance tests and Shapiro Wilk tests

Scale function significance Scale function significance Shapiro Wilk Shapiro Wilk
log-data original data log-data original

% outside 95% CI % outside 95% CI p-value value
ALV MD 68.9 68.5 0.00028 < 2.2 ∗ 10−16

RV 53.3 16.2 < 2.2 ∗ 10−16 < 2.2 ∗ 10−16

Vol 73.0 66.7 0.00028 < 2.2 ∗ 10−16

BMW MD 59.2 67.6 0.01153 < 2.2 ∗ 10−16

RV 60.9 28.9 < 2.2 ∗ 10−16 < 2.2 ∗ 10−16

Vol 57.9 51.8 0.0011 < 2.2 ∗ 10−16

DBK MD 71.0 76.5 0.00073 < 2.2 ∗ 10−16

RV 61.9 15.8 < 2.2 ∗ 10−16 < 2.2 ∗ 10−16

Vol 42.5 38.7 8.7 ∗ 10−8 < 2.2 ∗ 10−16

SIE MD 60.4 63.4 2.1 ∗ 10−8 < 2.2 ∗ 10−16

RV 54.1 16.8 < 2.2 ∗ 10−16 < 2.2 ∗ 10−16

Vol 82.8 88.2 1.7 ∗ 10−5 < 2.2 ∗ 10−16

TKA MD 70.7 79.5 0.00025 < 2.2 ∗ 10−16

RV 49.2 20.5 < 2.2 ∗ 10−16 < 2.2 ∗ 10−16

Vol 60.4 55.3 0.0051 < 2.2 ∗ 10−16

VW MD 95.9 93.1 < 2.2 ∗ 10−16 < 2.2 ∗ 10−16

RV 63.0 17.8 < 2.2 ∗ 10−16 < 2.2 ∗ 10−16

Vol 56.5 23.5 4.0 ∗ 10−9 < 2.2 ∗ 10−16
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Supplementary Appendix of Chapter 5

Table B5.1 – RMSSE of all methods for all countries with mean and standard devi-
ations

Brazil India Mexico China S. Africa Nigeria USA UK mean s.e.
LLR 0.771 0.542 0.427 0.366 1.643 0.384 0.929 1.123 0.773 0.446
RCS 0.708 1.371 0.471 0.713 0.623 0.612 0.993 0.643 0.767 0.285
RSL 1.309 0.291 1.505 0.434 0.780 0.188 0.067 0.217 0.599 0.545
RLL 0.629 0.442 0.315 0.054 0.518 0.385 0.645 0.650 0.455 0.205
C21 1.005 0.361 0.580 0.400 0.473 0.278 0.476 0.658 0.529 0.227
C22 0.559 0.754 0.604 0.151 0.176 0.386 0.507 0.415 0.444 0.207
C23 0.817 0.316 1.351 0.563 0.232 0.346 0.785 0.963 0.672 0.382
C24 1.309 0.291 1.505 0.434 0.780 0.188 0.067 0.217 0.599 0.545
C25 0.615 0.485 0.436 0.530 1.366 0.241 0.357 0.591 0.578 0.341
C26 0.488 0.429 1.199 0.693 1.096 0.764 1.579 2.037 1.036 0.559
C31 0.520 0.553 0.436 0.178 1.129 0.497 0.958 0.880 0.644 0.315
C32 0.526 0.461 0.797 0.148 0.348 0.146 0.201 0.463 0.386 0.224
C33 0.504 0.363 0.248 0.124 1.117 0.158 0.148 0.299 0.370 0.327
C34 0.506 0.588 0.468 0.060 0.859 0.166 0.300 0.730 0.460 0.273
C4 0.586 0.341 0.518 0.200 0.659 0.164 0.123 0.253 0.355 0.206
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Paderborn, den 02.Juli 2018
(Sarah Forstinger)


	List of abbreviations
	List of figures
	List of tables
	Introduction
	Market microstructure theory and the ACD model
	State of research
	Summary of contents

	On the iterative plug-in algorithm
	Introduction
	The Semi-ACD model for diurnal durations
	Local linear estimation of the scale function
	Estimation of the ACD parameters

	The bandwidth selection procedure
	The simulation study
	Description of the simulation study
	Performance of the selected bandwidth
	Goodness of fit of (t)
	Performance of the ACD parameter estimation

	Application to simulated and real data examples
	Estimation results for two simulated data examples
	Application to some real data examples

	Conclusion
	Appendix of Chapter 2

	A semiparametric multiplicative error model
	Introduction
	The proposed models
	The Semi-ACD model
	Linear processes and the Semi-Log-ACD model

	Correlation structure under log-normal assumption
	Results for the general linear process
	Further properties in the short-memory case

	The two-stage estimation procedure
	Local polynomial estimation of the trend
	Parameter estimation from residuals

	Practical Implementation
	Variance factor estimation
	The bandwidth selection algorithm

	Application to real financial data
	Performance of the estimated variance factor
	Final analysis

	Conclusion
	Appendix of Chapter 3

	Forecasting non-negative financial processes
	Introduction
	The Semi-ACD and Semi-Log-ACD model
	General setup
	Semiparametric model estimation

	Forecasting methods
	ARMA(p, q) Kalman filter forecast
	(Log-) ACD model bootstrap forecast

	Application to real financial data
	Quality of point forecasts
	Quality of Forecasting Intervals
	Discussion of results

	Conclusion
	Appendix of Chapter 4

	Forecasting Economic Growth Processes
	Introduction
	Data and semiparametric model
	Data
	Semiparametric model

	Proposed forecasting approaches
	Point prediction based on the semiparametric model
	Some random walk models
	Individual forecasts, prediction intervals and densities

	Application to the selected examples
	Conclusion
	Appendix of Chapter 5

	Future Research Questions
	A Semi-Log-GARCH model extension
	Description of the Semi-Log-GARCH model
	First empirical results

	The Log-sinh-arcsinh-transformation
	Description of the Log-SAS-transformation
	First empirical results

	Neural network GDP forecasts
	Miscellaneous research topics
	Local bandwidth factor for IPI improvement
	Model parameter estimation
	Block-bootstrap for forecasting

	Appendix of Chapter 6

	Summary of chapters and conclusion
	Bibliography
	Supplementary Appendix
	Ehrenwörtliche Erklärung



