'J UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Entwurf und Evaluierung einer kennzahlenorientierten
Gestaltung des Softwareentwicklungsprozesses in

produzierenden Betrieben

Der Fakultat fiir Elektrotechnik, Informatik und Mathematik der
Universitat Paderborn
zur Erlangung des akademischen Grades eines

Dr. rer. nat.

eingereichte Dissertation

von

Dipl.-Ing. Andreas Deuter

Eingereicht im Marz 2018

Erster Gutachter: Prof. Dr. Gregor Engels
Zweiter Gutachter: Prof. Dr. Dennis Kundisch

Danksagung

Ich bedanke mich bei allen Personen, die mich bei der Erstellung dieser Dissertation

unterstiitzten.

Ich bedanke mich bei meinen Gutachtern Prof. Dr. Gregor Engels und Prof. Dr. Dennis
Kundisch fiir ihre stets konstruktive Kritik. Sie gaben mir die wesentlichen Impulse fiir
das wissenschaftliche Arbeiten. Recht herzlichen Dank!

Ich bedanke mich bei meinen ehemaligen Kollegen und Kolleginnen von Phoenix Contact.
Insbesondere bedanke ich mich bei Hans-Jiirgen Koch, Detlev Kuschke, Werner Neuge-
bauer, Oliver Stallmann, Dr. Tobias Frank und Marco Hogrebe, die mich bei der Durch-
fiihrung und der Auswertung der Softwaremessungen unterstiitzten. Bei allen anderen
nichtgenannten Kollegen und Kolleginnen bedanke ich mich fiir die vielen Gespréache iiber

das Dissertationsthema und fiir ihre wichtigen Anregungen.

Ich bedanke mich bei meinen jetzigen Kollegen und Kolleginnen der Hochschule

Ostwestfalen-Lippe fiir ihre Tipps und Hinweise.
Ich bedanke mich bei meinen Eltern, die mir meine akademische Laufbahn erméglichten.

Mein innigster Dank gilt meiner Frau Gitta. Letztendlich war es ihr steter Riickhalt, der

mir die Kraft gab, diese Dissertation zu Ende zu fiihren.

Abstract

Increasing digitalization in the industrial sector is requiring ever more intelligent products.
Intelligent products are based on mechatronics with an increasing importance of software
for the added value of the products. Thus, manufacturing companies developing and
supplying intelligent products are challenged to most efficiently design their software de-
veloping process as a part of their product development. The demands of this process
design are based on both, the strategic and operational goals of the manufacturing com-
pany. To successfully monitor the achievement of targets it is essential to implement
key figures directly linked to the targets and acquired during the software development
process. For this reason it is necessary to place great emphasis on the acquisition of key

figures when designing the software development process.

This thesis deals with the question how manufacturing companies can design their software
development process in a key figure-oriented way, taking into account that the information
needs of the software teams directly involved in the process as well as those of the man-
agement shall be fulfilled. Due to their profound knowledge of the software domain, the
first target group can be supported by established software key figures; this, however, is
not true for the management. For this reason, the main issue of this thesis focuses on the
question whether today’s production key figures can be used for the software development
process. As the manufacturing process is a central and directly value-adding process of

each manufacturing company, the management is familiar with production key figures.

The results of this thesis were evaluated in cooperation with the company Phoenix Contact

Electronics GmbH, a manufacturing company within the sense of this thesis.

Zusammenfassung

Durch die zunehmende Digitalisierung werden in der Industrie immer mehr intelligente
Produkte bendtigt. Intelligente Produkte beruhen auf der Mechatronik, wobei der Anteil
der Software an deren Wertschopfung stetig steigt. Produzierende Betriebe, die intelligente
Produkte entwickeln und vertreiben, sind folglich aufgefordert, die Softwareentwicklungs-
prozesse als Teil der Produktentwicklung moglichst effizient zu gestalten. Die Anforde-
rungen an diese Prozessgestaltung leiten sich aus den strategischen und operativen Zielen
eines produzierenden Betriebes ab. Um eine Zielerreichung iiberpriifen zu konnen, miissen
Kennzahlen eingesetzt werden. Sie zeichnen sich dadurch aus, dass sie in einem unmittel-
baren Zusammenhang zu den Zielen stehen und dass sie im Softwareentwicklungsprozess
erfasst werden. Um Letzteres zu gewahrleisten, ist folglich die Kennzahlenerfassung in der

Gestaltung des Softwareentwicklungsprozesses zu beachten.

Diese Arbeit behandelt die Fragestellung, wie produzierende Betriebe den Softwareent-
wicklungsprozess kennzahlenorientiert gestalten kénnen. Dabei wird beriicksichtigt, dass
sowohl die Informationsbediirfnisse der unmittelbar im Prozess beteiligten Softwareteams
als auch die Informationsbediirfnisse des Managements befriedigt werden. Zwar konnen
etablierte Softwarekennzahlen die erste Zielgruppe aufgrund ihres ausgepriagten Wissens
iiber die Softwaredoméne unterstiitzen, allerdings nicht das Management. Der Fokus die-
ser Arbeit liegt aus diesem Grund in der Fragestellung, ob heutige Produktionskennzahlen
im Softwareentwicklungsprozess eingesetzt werden konnen. Das Management ist gut mit
Produktionskennzahlen vertraut, da der Produktionsprozess ein zentraler, direkt wert-

schépfender Prozess eines jeden produzierenden Betriebes ist.

Die Ergebnisse dieser Arbeit wurden in Zusammenarbeit mit der Phoenix Contact

Electronics GmbH, einem produzierenden Betrieb im Sinne dieser Arbeit, evaluiert.

Inhaltsverzeichnis

1 Einleitung 1
1.1 Ausgangssituation und Abgrenzung 1
1.2 Kennzahlenorientierte Gestaltung der Produktion 4
1.3 Kennzahlenorientierte Gestaltung der Softwareentwicklung 6
1.4 Forschungsfrage 8
1.5 Methodische Vorgehensweise L. 11
1.6 Aufbau der Arbeit 14
1.7 Vorverdffentlichungen oo 16

2 Grundlagen 17
2.1 Kennzahlen 18

2.1.1 Begriffe und Eigenschaften L. 18
2.1.2 Softwarekennzahlen 21
2.1.3 Produktionskennzahlen o000 36
2.2 Produktion und Softwareentwicklung 38
2.3 Transfer und Bestimmung von Kennzahlen 40
2.3.1 Bewertungsgrundlagen o000 41
2.3.2 Balanced Scorecard oo 45
2.3.3 ISO/IEC/IEEE 15939 47
2.3.4 GQM-Methode 49
2.3.5 Bewertung L Lo ol

v

2.4 Produktentstehungsprozesso o o 52

2.4.1 Definition und Eigenschaften L. 52
2.4.2 Systems Engineering o o000 53
2.5 Softwareentwicklungsprozess Lo oL 56
2.5.1 Definition und Eigenschaften 56
2.5.2 Softwareentwicklungsprozess beim Kooperationspartner 61
2.6 Zusammenfassung Lo 64
Transfer von Produktionskennzahlen 66
3.1 RGQM-Methode 67
3.1.1 Konzept 67
3.1.2 Bearbeitungsschritte Lo Lo 69
3.2 Anwendungsbeispiel L 73
3.2.1 Einfilhrung 73
3.2.2 RGQM-Bearbeitungsschritte 73
Bestimmung der Softwarekennzahlen 83
4.1 Vorgehen 84
4.2 Anwendungsbeispiel oL 86
4.2.1 Bestimmung der operativen Ziele 86
4.2.2 Bestimmung der Softwarekennzahlen 88
Gestaltung des Softwareentwicklungsprozesses 94
5.1 Vorgehen 95
5.2 Sliced V-Modell 97
5.2.1 Begriff und Anforderungen 97
5.2.2 Eigenschaften oo 99
0.2.3 Bewertung 109

6 Ermittlung der Berechnungsgrundlagen 111

6.1 Notwendigkeit und Vorgehen L0000 112
6.2 Berechnungsgrundlagen der Softwarekennzahlen 113
6.2.1 Churn 113
6.2.2 Aufwand fiir die Entwicklungsaktivitdten 118
6.2.3 Entwicklungsdauer o 000 118
6.2.4 Churn-Produktivitat 000000 119
6.2.5 Churn-Liefergeschwindigkeit 119
6.2.6 Anzahl an Work Items 119
6.2.7 Aufwand fiir die Dokumentationsaktivitaten 121
6.2.8 Dokumentationsproduktivitdat L. 121
6.2.9 Dokumentationsliefergeschwindigkeit 122
6.2.10 Prozentuale Verteilung von Fehlerattributen 122
6.2.11 Anzahl intern entdeckter Fehler 123
6.2.12 Anzahl extern entdeckter Fehler 123
6.2.13 Fehlerbehebungsrate 0000 124
6.2.14 Churn-Fehlerdichte00, 124

6.3 Berechnung der SW-Produktionskennzahlen 125
6.3.1 First PassRate oo 125
6.3.2 Technische Riicklauferrate, 127
6.3.3 Servicegrado 128
6.3.4 Wertschopfung oo o 129
6.3.5 Produktivitdt o 130

6.4 Bewertung der semantischen Aquivalenz 131
7 Entwicklung des Informationsverarbeitungssystems 136
7.1 Prototyp e 137

vi

7.2 Praxisnahe Anwendungo L
7.3 Bewertung der Gestaltungsgrundsédtze

7.4 Praktische Anwendung

8 Verallgemeinerung der Ergebnisse
8.1 Bestimmung von SW-Produktionskennzahlen
8.2 Gestaltung des Softwareentwicklungsprozesses

8.3 Aufbau eines Informationsverarbeitungssystems

9 Zusammenfassung und Ausblick
9.1 Zusammenfassung
9.2 Ausblick
9.2.1 Uberfithrung in die betriebliche Praxis

9.2.2 Wissenschaftliche Fragestellungen

Literaturverzeichnis

A Bedeutung der Werte zur Fehlerklassifizierung

B Praxisnahe Anwendung

vii

151

151

154

155

157

157

161

161

162

164

178

181

Abbildungsverzeichnis

1.1

1.2

1.3

1.4

1.5

1.6

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Doméneniibergreifender Entwicklungsprozess nach VDI 2206 [VDI04] . . . 2
Schematischer Ablauf einer kennzahlenorientierten Prozessgestaltung . . . 3
Beispiel einer kennzahlenorientierten Gestaltung des Produktionsprozesses 5
Vorgehen der Arbeit und Zuordnung zu den DR-Phasen 12
Zielsituation dieser Arbeito 13
Aufbau dieser Arbeito Lo 15
Arten von Kennzahlen [BenO7]o 18
Teufelsquadrat nach [Sne87] oo 22
Kategorien von Softwarequantitdtskennzahlen 24
Prozess zur Ermittlung der Functional Size [ISO09] 25
Beispiel eines Unified Diff Patches 27
Erlduterung der prozentualen Fehlerverteilung 32
Allgemeines Qualitdtsmodell in Anlehnung an [ISO10] 32
Quality in Use-Modell der ISO/IEC 25010 [ISO10] 33
Software Product Quality-Modell der ISO/IEC 25010 [ISO10] 33
Grundkonzept eines Kennzahlentransfers 43
Modell der Balanced Scorecard in Anlehnung an |[KN92, Kap10] 46
Prozessmodell der Softwaremessung nach ISO/IEC/IEEE 15939 [ISO17] . . 47

Informationsmodell der ISO/IEC/IEEE 15939 [SMKN11| 49

Die Phasen der GQM-Methode nach [SB99] 50

viil

2.15

2.16

2.17

2.18

2.19

2.20

2.21

3.1

3.2

3.3

3.4

4.1

4.2

4.3

0.1

5.2

5.3

5.4

3.9

5.6

6.1

6.2

6.3

6.4

6.5

Definitionsphase der GQM-Methode nach [SB99] 51

Phasen und Tétigkeiten des Produktlebenszyklus geméf [ES09] 53
Komplexitat von Produkten nach [Bru9l]. 54
Digitale Modelle in der Produktentwicklung geméf [EKM17| 55
Struktur des SPEM-Metamodells gemiaf [OMG17a] 57
Die Phasen in Scrum geméf [Som12| 59
V-Modell geméf DIN EN 61508-3 [DKE10a] 62
Inhalt des Kapitels 3 in Bezug auf die Zielsituation dieser Arbeit 66
Phasen der RGQM-Methode 68
RGQM-Definitionsphase 0 68
Bearbeitungsschritte in der RGQM-Definitionsphase 69
Inhalt des Kapitels 4 in Bezug auf die Zielsituation dieser Arbeit 83
Relation zwischen strategischen und operativen Zielen 85
Relationen zwischen strategischen und operativen Zielen 88
Inhalt des Kapitels 5 in Bezug auf die Zielsituation dieser Arbeit 94
Vererbungszusammenhang der Sliced V-Modell-Artefakte 100
Beziehungen zwischen den Sliced V-Modell-Artefakten 101
Schematische Darstellung von V-Slices 107
Bearbeitungsabfolge einzelner V-Slices 107
Baselines im Sliced V-Modell o000, 108
Inhalt des Kapitels 6 in Bezug auf die Zielsituation dieser Arbeit 111
Zuordnung von Quelltextdnderungen zu Softwarefunktionen 115
Ermittlung des Module Churn 116
Ermittlung der Dokumentationsgréfse einer Softwarefunktion 120
Aufbau des Version Churno 126

X

6.6

7.1

7.2

7.3

7.4

7.5

8.1

9.1

Aufbau des Product Churn 128

Inhalt des Kapitels 7 in Bezug auf die Zielsituation dieser Arbeit 136
SofProSys-Screenshot 138
SofProSys-Systemkontext 138
Anzeige eines Unified Diff Patches in TortoiseSVN 140
Grafische Darstellung der First Pass Rate in MS Excel 149
Vereinfachtes Work Item-basiertes Datenmodell 155
Integrierte Prozesssteuerung durch das Management 159

Tabellenverzeichnis

1.1

1.2

2.1

2.2

2.3

2.4

2.5

3.1

0.1

5.2

9.3

5.4

2.9

7.1

7.2

7.3

7.4

7.5

7.6

KVP-Beispiel beim Kooperationspartner 5)
Vorveroffentlichungen zu dieser Arbeit 16
Kosten-pro-Fehler-Analyse [Jonl7] 31
Ablaufartengliederung der REFA-Methodenlehre [REF92] 37
Bewertung der Methoden bzw. Prozessbeschreibungen 52
Ausgewihlte Elemente des SPEM-Package MethodContent [OMG17a] . . . 58
Schematisches Konzept einer Traceability-Matrix 63
Auswahl der HW-Produktionskennzahlen 74
Work Item-Typen im Sliced V-Modell 103
Attribute des Base Work Items 103
Beispiele fiir Work Item-Typen 104
Aufzihlungstypen der Attribute des Defect Work Items 105
Zeitattribute des Task Work Items 106
Versionsbezogene SofProSys-Softwarekennzahlen 141
Versionsbezogene SofProSys-SW-Produktionskennzahlen 141
Produktbezogene SofProSys-Kennzahlen 141
Versionsbezogene Softwarekennzahlen des Softwareproduktes 146
Versionsbezogene SW-Produktionskennzahlen des Softwareproduktes . . . 147
Produktbezogene Kennzahlen des Softwareproduktes 147

xi

7.7

8.1

8.2

Al

A2

A3

B.1

B.2

B.3

Softwarekennzahlen einzelner Softwarefunktionen 149

Frage, Ziel, Interpretation des Ausnutzungsgrades in der Produktion 152
Frage und Ziel des Ausnutzungsgrades in der Softwareentwicklung 153
Wertemenge des Aufzdhlungstyps DefSeverity angelehnt an [PP11]. 178
Wertemenge des Aufzihlungstyps DefInternal [SSRT08] 179
Wertemenge des Aufzihlungstyps DefEzternal angelehnt an [ISO10] 180
Prozentuale Teilwerte des Attributs seversty 181
Prozentuale Teilwerte des Attributs nternal 181
Prozentuale Teilwerte des Attributs external 182

xil

Abkurzungsverzeichnis

Application Lifecycle Management

Wertschopfung

Wertschopfung fiir eine Softwareversion

Balanced Scorecard

Design Research

Single Defect Churn

Single Internal Defect Churn

Version Internal Defect Churn

Product External Defect Churn

Single External Defect Churn

File Churn

Single Feature Churn

Version Feature Churn

Module Churn

Version Churn

Entwicklungsdauer einer Softwareversion

Churn-Fehlerdichte einer Softwareversion
Fehlerbehebungsrate fiir ein Softwareprodukt
Dokumentationsgrofe einer Softwarefunktion
Dokumentationsgrofke einer Softwareversion

Ist-Aufwand der Entwicklungsaktivititen fiir eine Softwareversion
Ist-Aufwand der Dokumentationsaktivitéiten fiir eine Softwareversion
First Pass Rate

Zu einer HW-Produktionskennzahl gehorendes Ziel

Zu einer SW-Produktionskennzahl gehdrendes Ziel
Goal-Question-Metric

Zu einer HW-Produktionskennzahl gehérende Interpretation
Zu einer SW-Produktionskennzahl gehdrendes Interpretation
Kilobyte

xiii

TRR
TRR,
Ven,
Vitoc,
W1
Wi,
Wi,

Menge an Hardware(HW)-Produktionskennzahlen

Eine Hardware(HW)-Produktionskennzahl

Menge an Software(SW)-Produktionskennzahlen

Eine Software(SW)-Produktionskennzahl

Menge an Softwarekennzahlen

Produktivitat

Churn-Produktivitit der Entwicklung einer Softwareversion
Dokumentationsproduktivitit einer Softwareversion
Produktivitit fiir eine Softwareversion
Reversed-Goal-Question-Metric

Zu einer HW-Produktionskennzahl gehérende Frage

Zu einer SW-Produktionskennzahl gehérende Frage
Servicegrad

Servicegrad fiir eine Softwareversion

Technische Riicklauferrate

Technische Riicklauferrate fiir ein Softwareprodukt
Churn-Liefergeschwindigkeit einer Softwareversion
Dokumentationsliefergeschwindigkeit einer Softwareversion
Work Item

Anzahl an intern entdeckten Fehlern fiir ein Softwareprodukt

Anzahl an extern entdeckten Fehlern fiir ein Softwareprodukt

Xiv

Kapitel 1

Einleitung

1.1 Ausgangssituation und Abgrenzung

Die Digitalisierung der Prozesse in der Industrie hat die Flexibilisierung der Produk-
tion, eine bessere Vernetzung von Entwicklungs- und Produktionsprozessen und folglich
die Starkung der Wettbewerbsfahigkeit produzierender Betriebe zum Ziel. Die technische
Grundlage dafiir sind intelligente Produkte, die eine weitestgehend selbstorganisierende
Produktion und deren Vernetzung zu den angrenzenden Prozessen ermoglichen sollen
[Pla17]. In Deutschland wird dieser Trend zur Digitalisierung der Produktionsprozesse als
Industrie 4.0 bezeichnet [KWH17|. Produzierende Betriebe, die in dieser Arbeit themati-
siert werden, stellen die fiir die Industrie 4.0 benotigten intelligenten Produkte mit eigenen
Produktionsmitteln her. Beispiele fiir intelligente Produkte im Kontext dieser Arbeit sind

speicherprogrammierbare Steuerungen oder regelbare Spannungsversorgungen.

Intelligente Produkte beruhen auf der Mechatronik. Sie werden durch ein Zusammen-
wirken mehrerer Doménen entwickelt, wie zum Beispiel der Mechanik, der Elektronik
und der Softwaretechnik [AG12]. Systems Engineering ist ein methodischer Ansatz fiir
die doméaneniibergreifende Entwicklung intelligenter Produkte. Der Begriff ,Systems En-
gineering” ist zwar vielfiltig definiert, beschreibt im Wesentlichen jedoch das Manage-
ment parallellaufender Entwicklungsprozesse in den beteiligten Doménen [BB16]. Eine
konkrete Ausgestaltung eines auf den Methoden des Systems Engineering beruhenden
Entwicklungsprozesses beschreibt die VDI-Richtlinie 2206 [VDI04|. Der darin beschrie-
bene Entwicklungsprozess baut auf dem V-Modell auf, das aus der Softwareentwicklung
[Boe79| stammt und in der VDI 2206 an die Anforderungen an eine doméneniibergrei-
fende Entwicklung angepasst wurde. Wie in Abbildung 1.1 gezeigt, erfolgt ausgehend
von den Produktanforderungen der doméneniibergreifende Systementwurf. Es folgen die

doménenspezifischen Entwiirfe, die laut der VDI-Richtlinie 2206 meist getrennt in den be-

Kapitel 1. FEinleitung

Entwicklungsprozess

Anforderungen Produkt

—
—

Eigenschaftsabsicherung

—

Domaénenspezifischer Entwurf

Elektronik
Softwaretechnik

Abbildung 1.1: Doméneniibergreifender Entwicklungsprozess nach VDI 2206 [VDI04]

teiligten Doménen erfolgen. In der Systemintegration werden die Ergebnisse der einzelnen

Doménen zusammengefiihrt und die Eigenschaften des intelligenten Produktes gepriift.

Der Umfang der Beteiligung der einzelnen Doménen in der Produktentwicklung hangt
von den Merkmalen des konkreten intelligenten Produktes ab, wobei die Softwaretech-
nik zunehmend eine strategische Rolle einnimmt, denn: ,die Analysten sind sich einig,
dass seit etlichen Jahren die allermeisten Produktinnovationen in der Software begriindet
sind“ [Sen14|. Der softwaredoménenspezifische Entwurf wird Softwareentwicklungsprozess

genannt.

Es ist die strategische Aufgabe des Managements, also der Fiihrungskréfte in den oberen
Hierarchieebenen wie zum Beispiel in der Bereichsleitung oder in der Geschéftsfiihrung,
die durch Industrie 4.0 motivierten Prozessinderungen im Produktlebenszyklus intelligen-
ter Produkte im eigenen produzierenden Betrieb zu gestalten. Der Produktlebenszyklus

umfasst sowohl die Produktentwicklung als auch die Produktion.

Ausgangspunkt fiir die Gestaltung aller betrieblichen Prozesse ist die Unternehmensstra-
tegie. Um eine Strategie zu operationalisieren, sind vom Management strategische Ziele
zu formulieren, die den Ausgangspunkt fiir prozessgestaltende Mafknahmen bilden. Fiir
jedes der strategischen Ziele sind Kennzahlen zu definieren, die die Zielerreichung der
strategischen Ziele anzeigen [See08]. Um die Kennzahlen auswerten zu konnen, muss in
der Prozessgestaltung deren Erfassung beriicksichtigt werden: Der Prozess muss derart

gestaltet oder angepasst werden, dass Kennzahlen erfasst werden konnen.

Die Kennzahlen werden entsprechend den Informationsbediirfnissen des Managements
zusammengestellt und aufbereitet. Um die Kennzahlen beurteilen und interpretieren zu

kénnen, muss das Management deren Semantik kennen. Fiir den Begriff ,Semantik einer

Kapitel 1. FEinleitung

Kennzahl“ gibt es zwar keine allgemein anerkannte Definition, allerdings sind aus der Li-
teratur mehrere Formen fiir die Beschreibung von Kennzahlen bekannt, zum Beispiel ein
Kennzahlenstammblatt [Ben07]|, ein Kennzahlensteckbrief [Kiit10] oder ein Kennzahlen-
formular [HPO7]. Diese moglichen Beschreibungsformen einer Kennzahl enthalten zahlrei-
che kennzahlenspezifische Informationen wie zum Beispiel Name, Mafeinheit, Wertebe-
reich, Berechnungsgrundlagen und Interpretation. Durch die gesamtheitliche Kenntnis all
dieser Informationsinhalte entsteht beim Adressaten einer Kennzahl ein Verstindnis iiber
deren Semantik. Diese Semantik ist jedoch oftmals betriebsspezifisch. Damit ist gemeint,
dass eine Kennzahl mit demselben Namen in verschiedenen produzierenden Betrieben eine

unterschiedliche Bedeutung haben kann.

Abbildung 1.2 veranschaulicht den erlduterten Ablauf, der sich in zwei Phasen gliedert:
In der ersten Phase formuliert das Management die strategischen Ziele. Auf deren Basis
werden durch verschiedene Stakeholder in einem produzierenden Betrieb Kennzahlen defi-
niert, die fiir die Uberpriifung der Zielerreichung der strategischen Ziele benétigt werden.
Sowohl die strategischen Ziele als auch die daraus definierten Kennzahlen sind die Basis
fiir die Gestaltung eines betrieblichen Prozesses. Die Gestaltung des Prozesses erfolgt wie-
derum von den verschiedenen Stakeholdern. Diese erste Phase ist die Gestaltungsphase,
deren Abldufe in Abbildung 1.2 mit diinnen Strichen gekennzeichnet sind. In der zwei-
ten Phase werden wiahrend der Durchfithrung des betrieblichen Prozesses die Kennzahlen
mit einem Informationsverarbeitungssystem erfasst. Damit ist ein [T-System gemeint, das
Daten aus dem betrieblichen Prozess ermittelt, zu Kennzahlen verarbeitet und diese gra-
fisch darstellt [Ben07]. Die grafisch aufbereiteten Kennzahlen werden vom Management
interpretiert. Diese zweite Phase ist die Erfassungsphase, deren Ablaufe in der Abbildung

mit dicken Strichen gekennzeichnet sind.

Management
Formulierung Interpretation
Y
Strateg® Definition
»(Kennzahlen

Ziele

Prozess >

Erfassung

Abbildung 1.2: Schematischer Ablauf einer kennzahlenorientierten Prozessgestaltung

Kapitel 1. FEinleitung

Dieses Vorgehen wird in dieser Arbeit kennzahlenorientierte Prozessgestaltung genannt.
In den folgenden Abschnitten wird der Stand der kennzahlenorientierten Prozessgestal-
tung in der Produktion und in der Softwareentwicklung in produzierenden Betrieben als

Ausgangspunkt fiir die Herleitung der Forschungsfrage dargelegt.

1.2 Kennzahlenorientierte Gestaltung der Produktion

Der Produktionsprozess ist ein zentraler Prozess in produzierenden Betrieben, da er di-
rekt wertschépfend ist. Er beeinflusst in hohem Mafe die Herstellkosten, die Lieferzeiten
und die Qualitdt der Produkte und trigt entscheidend zum wirtschaftlichen Erfolg der

produzierenden Betriebe bei.

Im Folgenden wird eine betriebsspezifische kennzahlenorientierte Gestaltung des Produk-
tionsprozesses von intelligenten Produkten am Beispiel des Geschéftsbereichs Automati-
sierung der Phoenix Contact Electronics GmbH, dem Kooperationspartner dieser Arbeit,
dargestellt. Die Phoenix Contact Gruppe ist ein weltweit fiihrender Anbieter von elek-
trischer Verbindungs- und elektronischer Interfacetechnik sowie industrieller Automati-
sierungstechnik. Im Geschiftsbereich Automatisierung der Phoenix Contact Electronics
GmbH werden u.a. intelligente Produkte fiir die Fabrikautomatisierung entwickelt und
gefertigt. Beispiele fiir solche Produkte sind speicherprogrammierbare Steuerungen und
Feldgeridte mit industriellen Netzwerkanschliissen. Der Verfasser dieser Arbeit arbeitete
viele Jahre beim Kooperationspartner. Der im Folgenden ausgefiihrte Stand der kennzah-
lenorientierten Prozessgestaltung in der Produktion wurde zum einen in unstrukturierter
Form beobachtet und basiert zum anderen auf Gesprichen mit dem Produktionsleiter,
dem Geschiéftsbereichsleiter und ausgewihlten Teamleitern. Einige der Gespréche wurden

in Form eines Interviews gefiihrt.

Fiir die Veranschaulichung der kennzahlenorientierten Prozessgestaltung des Produkti-
onsprozesses dient Abbildung 1.3. Das Management formuliert strategische Ziele, zum
Beispiel die Erreichung einer hohen Fertigungsqualitit. Basierend auf diesen strategi-
schen Zielen werden verschiedene Produktionskennzahlen definiert, die die Zielerreichung
der strategischen Ziele anzeigen. Diese Produktionskennzahlen bilden die Menge Kgyw
(HW steht fiir Hardware). Ein Beispiel einer Produktionskennzahl ist die sogenannte
First Pass Rate (FPR). Die FPR ist das Verhéltnis von den bestandenen Fertigungsend-
tests zu allen durchgefiihrten Fertigungsendtests. Beim Kooperationspartner wird jedes

einzelne gefertigte intelligente Produkt einem Fertigungsendtest unterzogen.

Ableitend aus den strategischen Zielen formulieren die Produktionsteams operative Ziele.

Das sind kurz- oder mittelfristige Ziele, die der Steuerung von konkreten Produktions-

Kapitel 1. FEinleitung

Management
Formulierung Interpretation
Strategische Definition
Ziele Erfassung
Berticksichtigung Verdichtung

Produktionsteam Gestaltung Produktionsprozess

Formulierung Interpretation

Definition Erfassung

Operative
Ziele

Abbildung 1.3: Beispiel einer kennzahlenorientierten Gestaltung des Produktionsprozesses

linien dienen. Die operativen Ziele sind der Ausgangspunkt fiir kontinuierliche Verbes-
serungsmafnahmen. Kontinuierliche Verbesserungsmafnahmen sind Teil von kontinuier-
lichen Verbesserungsprozessen (KVP), die viele kleine Anderungen bewirken, aus deren
Summe erhebliche Prozessverbesserungen erreicht werden kénnen |Bec05]. Tabelle 1.1

zeigt ein KVP-Beispiel beim Kooperationspartner.

Neben den kontinuierlichen Verbesserungsmafnahmen werden auch strategische Mafnah-
men realisiert. Diese Mafsnahmen miissen anders als die KVP-Maknahmen vom Manage-
ment bestitigt werden. Ein Beispiel dafiir ist die Beschaffung einer vollautomatisierten

Leiterplattenbestiickungs- und Lotmaschine im Wert von ca. einer Million Euro.

Basierend auf den operativen Zielen werden mehrere Produktionskennzahlen definiert.
Diese Produktionskennzahlen bilden die Menge Kjy,. Beim Kooperationspartner sind
einige der Produktionskennzahlen, die Teil der Menge Ky, sind, auch Teil der Menge
Kpw. Damit ist gemeint, dass diese Produktionskennzahlen mit dem gleichen Namen
und der gleichen Bedeutung in beiden Mengen verwendet werden. So ist zum Beispiel
die FPR Bestandteil in beiden Mengen, jedoch unterscheidet sie sich in dem zeitlichen

oder organisatorischen Geltungsbereich: Die Produktionskennzahlen in Ky, zeigen de-

Ist-Stand am 10.04.: | 221 Gerite gefertigt mit FPR 87,78 %
Ursachen: 1. Lotfehler Handlotung

- Rangierplatine nicht richtig verlotet
2. Testadapter

- FE-Klammer kontaktiert nicht richtig
Mafnahmen: 1. Mitarbeiter geschult

2. Adaptierung durch zwei Klammern
Ist-Stand am 27.05. | 29 Gerite gefertigt mit FPR 96,67 %

Tabelle 1.1: KVP-Beispiel beim Kooperationspartner

Kapitel 1. FEinleitung

taillierte Informationen zu einem Fertigungslos, zu einem Produktionstag etc. an. Die
Produktionskennzahlen in Kgy zeigen verdichtete Informationen zu einer Fertigungs-
stitte, einem Quartal etc. an. Kpy ist folglich eine verdichtete Darstellung von Ky,
an deren Aufbereitung die Produktionsteams beteiligt sind. Diese Aufbereitung &ndert

allerdings nicht die Semantik der Produktionskennzahlen.

Die Produktionskennzahlen in K}y, werden im Produktionsprozess erfasst. Um diese in
Kpw verdichtet dem Management zur Verfiigung zu stellen, wird wie am folgenden Bei-
spiel der FPR gezeigt vorgegangen: Die FPR verschiedener Produktionslinien werden mit
Hilfe eines Informationsverarbeitungssystems erfasst und gehen in K7,y ein. Aus diesen
verschiedenen FPR wird eine FPR fiir die Produktionsstitte, in denen die Produktionslini-
en aufgebaut sind, zusammengefiihrt und in K gy gezeigt. Die FPR der Produktionsstétte
wird folglich nicht im Produktionsprozess erfasst, sondern wird durch eine mathematische

Weiterverarbeitung der FPR der Produktionslinien gebildet.

Die Erfassung der FPR ist seit langem in dem Produktionsprozess integriert: Die Pro-
duktionsteams tragen in einem Informationsverarbeitungssystem ein, ob ein gefertigtes
intelligentes Produkt den Fertigungsendtest bestanden hat, und das Informationsverar-
beitungssystem berechnet die FPR. Sowohl die Produktionsteams als auch das Manage-
ment verwenden seit Jahren die definierten Produktionskennzahlen. Ihre Bedeutung und

ihre Interpretation, also ihre Semantik, sind gut bekannt.

Es kann zusammengefasst werden, dass beim Kooperationspartner eine kennzahlenori-
entierte Gestaltung des Produktionsprozesses etabliert ist. Wie im folgenden Abschnitt
aufgefiihrt wird, gilt dies nicht fiir die kennzahlenorientierte Gestaltung des Softwareent-

wicklungsprozesses.

1.3 Kennzahlenorientierte Gestaltung der Softwareent-

wicklung

Der Prozessablauf fiir die Entwicklung intelligenter Produkte, die sowohl die Hardware-
als auch die Softwareentwicklung umfasst, ist in einem unternehmensweit giiltigen Doku-
ment beschrieben. Der Produktentwicklungsprozess basiert auf mehreren Meilensteinen,

zu deren Erreichung bestimmte Kriterien zu erfiillen sind.

Die Uberwachung der einzelnen Produktentwicklungsprojekte erfolgt mit Hilfe einer Pro-
jektmanagementdatenbank. In dieser werden Projektinformationen dokumentiert, wie
zum Beispiel Soll-/Ist-Termine der Meilensteine, Plan-/Ist-Aufwénde der Produktent-

wicklungsprojekte und der Status der zu jedem Meilenstein zu erledigenden Aufgaben.

Kapitel 1. FEinleitung

Aus der Projektdatenbank werden Berichte generiert, die u.a. die Abweichungen zwischen
Soll- und Ist-Terminen und zwischen Plan- und Ist-Aufwénden projektbezogen darstellen.

Diese Berichte werden in regelméfbigen Terminen dem Management vorgestellt.

Das Management spiegelt diese Kennzahlen an den strategischen Zielen und bewirkt dar-
aufhin strategische Mafnahmen. Ein Beispiel einer strategischen Mafnahme ist in der
Erlduterung 1.1 beschrieben. Die Softwareteams setzen kontinuierlich Verbesserungsmaf-
nahmen um, zum Beispiel die Uberarbeitung bestehender Programmierrichtlinien oder

die Einfiihrung regelméfiger Code Reviews.

Softwarekennzahlen sind Gegenstand zahlreicher Verdffentlichungen [PP11, SSBI10,
Kas08, FP97|. Sie konnen mit Hilfe des Teufelsquadrats kategorisiert werden. Das Teu-
felsquadrat ist ein Grundmodell der Softwarewirtschaftlichkeit, wobei dessen vier Ecken
die Leistungsziele hohe Qualitit, hohe Quantitit, geringe Entwicklungsdauer und geringe
Kosten symbolisieren [Sne87]|.

Fiir jede dieser Ecken gibt es Softwarekennzahlen: Fiir die QQuantitdt gibt es zum Bei-
spiel Function Points [Alb79]| oder Lines of Code [SSB10] und fiir die Qualitit gibt es die
Fehlerbehebungsrate [PP11] oder die Fehlerdichte [FP97]. Der Kooperationspartner ist
bereits in der Lage, Softwarekennzahlen zu Kosten und Entwicklungsdauer zu erfassen,
jedoch nicht fiir Quantitidt und Qualitat. Da jedoch bereits heute der Softwareentwick-
lungsprozess durch strategische und KVP-Mafnahmen beeinflusst wird, werden fiir die
Prozessgestaltung auch solche Softwarekennzahlen benétigt. Folgendes Beispiel der Ein-
fithrung eines Werkzeugs zum Architekturmanagement soll der Veranschaulichung dienen:
Die Softwareteams hatten analysiert, dass eine entworfene Softwarearchitektur oftmals
nicht mit der Implementierung iibereinstimmt. Sie kamen zu der Einschitzung, dass dies
zu Qualitatsproblemen und zu Verzogerungen in der Freigabe einzelner Softwarefunktio-
nen fiithrte, ohne diese genau quantifizieren zu konnen. Daraufhin wurden kommerzielle
Softwarewerkzeuge fiir das Architekturmanagement bewertet. Es wurde ein Werkzeug aus-
gewahlt und die Thematik dem Management dargelegt. Dieses folgte der Einschitzung,
dass ein derartiges Werkzeug notwendig sei und gab daraufhin die Geldmittel fiir die An-
schaffung und die notwendigen Schulungsmafinahmen frei. Da jedoch Softwarekennzahlen
fiir die Quantitdt und die Qualitét fehlen, ist es bislang nicht méglich, die Verringerung
der Qualitdtsprobleme oder die Erh6hung der Verfiigbarkeit einzelner Softwarefunktionen
zu den zugesagten Terminen zu quantifizieren.

Erlauterung 1.1: Fehlende Softwarekennzahlen beim Kooperationspartner

In diesem bislang praktizierten Vorgehen sind zwar Elemente einer kennzahlenorientierten
Prozessgestaltung zu erkennen. Allerdings fehlen zwei wichtige Merkmale einer kennzah-

lenorientierten Prozessgestaltung des Softwareentwicklungsprozesses:

Zum einen fehlen wesentliche Softwarekennzahlen, die nach dem Stand der Technik fiir eine
Messung des Softwareentwicklungsprozesses benotigt werden. Dies wird in der Erlauterung
1.1 detailliert begriindet. Zum anderen fehlt dem Management das Verstdndnis fiir die
Semantik von Softwarekennzahlen. Dies wurde in verschiedenen Gespréichen bestétigt,
in denen zum Beispiel nach der Bedeutung einiger der in Erlduterung 1.1 aufgefiihrten

Softwarekennzahlen gefragt wurde. Die Bedeutung ist dem Management nicht bekannt.

7

Kapitel 1. FEinleitung

Aufgrund dieser fehlenden Merkmale sind sowohl das Management als auch die Softwa-
reteams nur unzureichend in der Lage, den Softwareentwicklungsprozess zu gestalten. Sie
kénnen fiir die Bewertung der Zielerreichung strategischer und operativer Ziele lediglich
die bisherigen Kennzahlen aus der Projektmanagementdatenbank verwenden. Dies reicht
in Zukunft nicht mehr aus, da die Bedeutung des Softwareentwicklungsprozesses wéchst.
Wie bereits in [Deul4| dargestellt, wird der Softwareentwicklungsprozess zu einem zen-
tralen Prozess in produzierenden Betrieben, von dem deren wirtschaftlicher Erfolg mehr

und mehr abhéngt.

1.4 Forschungsfrage

Der dargestellte Stand der kennzahlenorientierten Gestaltung des Produktionsprozesses
und des Softwareentwicklungsprozesses ist spezifisch fiir einen produzierenden Betrieb. Um
einschéitzen zu konnen, inwiefern eine dhnliche Ausgangslage in anderen produzierenden
Betrieben anzutreffen ist, wurde eine Umfrage mit Unterstiitzung der THK Ostwestfa-
len zu Bielefeld durchgefiihrt. Es wurde ein Fragebogen zum Umgang mit Produktions-

kennzahlen und Softwarekennzahlen erstellt.

Der Fragebogen wurde im Dezember 2015 an die Mitglieder des THK-Arbeitskreises ,,I'T*
verteilt. Es gab neun Riicklaufer. Die Ergebnisse der Umfrage sind Indikatoren fiir eine ver-
gleichbare Situation der kennzahlenorientierten Prozessgestaltung des Produktions- und
des Softwareentwicklungsprozesses in weiteren produzierenden Betrieben, wie die Fragen

und Antworten in der Erlduterung 1.2 zeigen.

Frage: Arbeiten Sie im Rahmen ihrer Managementaufgaben mit Produktionskennzahlen,
mit denen Sie die Effizienz und die Qualitdt der Produktionsprozesse in Threm Unterneh-
men beobachten und steuern (z.B. durch die Vorgabe und Uberpriifung von Zielwerten)?
Antworten: Diese Frage beantworteten acht Befragte mit ., Ja“, ein Befragter mit ,Nein®.
Die Mehrheit der Teilnehmer wendet demnach Produktionskennzahlen an.

Frage: Arbeiten Sie im Rahmen ihrer Managementaufgaben mit Softwarekennzahlen, mit
denen Sie die Effizienz und die Qualitdt der Softwareentwicklungsprozesse in Threm Be-
trieb beobachten und steuern (z.B. durch die Vorgabe und Uberpriifung von Zielwerten)?
Antworten: Diese Frage beantworteten zwei Befragte mit ,,Ja“, sechs Befragte mit ,Nein“
und ein Befragter machte keine Angabe. Die Mehrheit der Teilnehmer verwendet demnach
keine Softwarekennzahlen. Da sie keine Softwarekennzahlen verwenden und folglich deren
Semantik nicht zu kennen brauchen, ist ihnen die Semantik von Softwarekennzahlen nicht
bewusst.

Erlauterung 1.2: Teilergebnisse der IHK-Umfrage

Zur Herleitung des Forschungsbedarfes wird aufgrund der Beobachtungen beim
Kooperationspartner und den Antworten in der IHK-Umfrage von folgender Ist- und Ziel-

situation in produzierenden Betrieben ausgegangen:

Kapitel 1. FEinleitung

Ist-Situation: Die kennzahlenorientierte Gestaltung des Produktionsprozesses ist eta-
bliert. Sowohl das Management als auch die Produktionsteams verwenden Produktions-
kennzahlen, deren Semantik sie kennen. Die kennzahlenorientierte Gestaltung des Soft-
wareentwicklungsprozesses ist teilweise etabliert. Zwar wirken das Management und die
Softwareteams auf den Softwareentwicklungsprozess ein, es werden jedoch wichtige Softwa-
rekennzahlen nicht eingesetzt und folglich wird deren Erfassung nicht in der Prozessgestal-
tung beriicksichtigt. Aukerdem ist das Management nicht in der Lage, Softwarekennzahlen

zu interpretieren, da es deren Semantik nicht kennt.

Zielsituation: Es ist sowohl die kennzahlenorientierte Gestaltung des Produktionspro-
zesses als auch die des Softwareentwicklungsprozesses etabliert. Das Management, die
Produktionsteams und die Softwareteams kennen die Semantik der fiir ihren Verantwor-
tungsbereich definierten Kennzahlen. Da die kennzahlenorientierte Gestaltung des Pro-
duktionsprozesses bereits etabliert ist, stellt sich die nachfolgende Forschungsfrage als

Grundlage dieser Arbeit:

Wie kann der Softwareentwicklungsprozess in produzierenden Betrieben kennzahlenorien-

tiert gestaltet werden?

Um die Zielsituation zu erreichen, sind die Kennzahlen fiir den Softwareentwicklungspro-
zess fiir das Management und die Softwareteams zielgruppenorientiert aufzubereiten. In
[DEHW13] wird argumentiert, dass das in der Softwaredoméne vorhandene Wissen iiber
die Softwaremessung ,unbedingt zielgruppenorientiert® zu iibersetzen sei. Dies sei not-
wendig, um die Bewertung von Softwareentwicklungsprozessen in der Praxis zu verbes-
sern. Vor diesem Hintergrund werden aus der Forschungsfrage drei Detailfragen abgeleitet,
deren Losungen zur Verbesserung der Bewertung von Softwareentwicklungsprozessen in

produzierenden Betrieben beitragen sollen:

1. Fiir die Befriedigung der Informationsbediirfnisse des heutigen Managements zu
dem Softwareentwicklungsprozess reicht die Verwendung von Softwarekennzahlen,
die aus der Literatur bekannt sind, nicht aus, da das Management deren Seman-
tik nicht kennt. Um dieses Problem zu l6sen, konnen drei Handlungsoptionen in
Betracht gezogen werden: Erstens konnte das Management das notwendige Wissen
aufbauen. Zweitens konnte es Softwaremanager, die die Semantik von Software-
kennzahlen kennen, in den oberen Hierarchieebenen der produzierenden Betriebe
etablieren. Drittens konnten bereits heute eingesetzte Produktionskennzahlen im
Softwareentwicklungsprozess verwendet werden. In dem Fall miisste die semanti-
sche Aquivalenz einer Produktionskennzahl hergestellt werden. Damit ist gemeint,
dass eine Produktionskennzahl ihre Bedeutung beibehilt, auch wenn sie in der Soft-
waredoméne verwendet wird. Im letzteren Fall gidbe es zwei Ausprigungen dieser

Produktionskennzahl: Die Produktionskennzahl, die die Ergebnisse der Produktion

Kapitel 1. FEinleitung

der Hardware eines intelligenten Produktes anzeigt, und die Produktionskennzahl,
die die Ergebnisse der Softwareentwicklung eines intelligenten Produktes anzeigt.
Zur Unterscheidung dieser Ausprigungen werden die Begriffe ,HW-Produktions-
kennzahl* und ,SW-Produktionskennzahl“ eingefiihrt. Die Motivation fiir die Bear-
beitung der dritten Handlungsoption ist die vorhandene Kenntnis des Managements
iiber die Semantik der HW-Produktionskennzahlen. Es wird angenommen, dass die
Semantik der dquivalenten SW-Produktionskennzahlen vom Management in kurzer
Zeit, verinnerlicht werden kann. Konkrete Indikatoren fiir das Interesse des Mana-
gements an der Umsetzung der dritten Handlungsoption sind die Ergebnisse der
IHK-Umfrage und ein Gesprach mit dem Geschéftsbereichsleiter des Kooperations-
partners. In der IHK-Umfrage wurde die Frage gestellt: ,Wiirde es Thnen in Thren
Managementaufgaben helfen, Thnen bekannte Produktionskennzahlen fiir das Be-
obachten der Effizienz und Qualitdt der Softwareentwicklungsprozesse anzuwenden
(egal, ob Sie dies fiir machbar halten oder nicht)?* Auf diese Frage antworteten sie-
ben Befragte mit ,Ja*“ und zwei Befragte machten keine Angabe. Der Geschéftsbe-
reichsleiter des Kooperationspartners beantwortet diese Frage mit ,Ja“ und betonte
explizit sein Interesse an dieser Handlungsoption. Um diese Handlungsoption zu rea-
lisieren, stellt sich die Detailfrage: Wie kénnen SW-Produktionskennzahlen, die die

Semantik der dquivalenten HW-Produktionskennzahlen beibehalten, bestimmt wer-

den?

. SW-Produktionskennzahlen adressieren das Management und dienen der Uberprii-
fung der strategischen Ziele. Die Softwareteams wie auch die Produktionsteams de-
finieren hingegen die operativen Ziele. Fiir die Uberpriifung der Zielerreichung der
operativen Ziele sind Softwarekennzahlen zu bestimmen. Dafiir kénnen bekannte
Methoden wie zum Beispiel die Goal-Question-Metric-Methode (GQM-Methode)
[BW84] angewendet werden. Sobald Softwarekennzahlen als auch SW-Produktions-
kennzahlen bestimmt wurden, ist der Softwareentwicklungsprozess entsprechend an-
zupassen. Um die definierten Kennzahlen erfassen zu konnen, stellt sich die Detailfra-
ge: Wie sollte der Softwareentwicklungsprozess aufgebaut sein, damit die definierten

SW-Produktionskennzahlen und Softwarekennzahlen erfasst werden kénnen?

. Die kennzahlenorientierte Prozessgestaltung beinhaltet ein Informationsverarbei-
tungssystem, das die SW-Produktionskennzahlen und Softwarekennzahlen erfasst
und verarbeitet. Die Anwender des Informationsverarbeitungssystems sind das Ma-
nagement und die Softwareteams. Um alle Kennzahlen dem Management und den
Softwareteams zuzufiihren, stellt sich die Detailfrage: Wie sollte ein Informations-
verarbeitungssystem aufgebaut sein, das SW-Produktionskennzahlen und Software-

kennzahlen erfassen und verarbeiten kann?

10

Kapitel 1. FEinleitung

Die Messbarkeit von Softwareentwicklungsprozessen in produzierenden Betrieben ist The-
ma in mehreren Publikationen. In [SMKN11]| wird der Aufbau eines Softwarekennzah-
lensystems bei der Fa. Ericsson beschrieben. Jedoch ist es das Ziel, die Informations-
bediirfnisse von Personen, die fiir die Softwarequalitit verantwortlich sind, zu befriedi-
gen. Daher waren Antworten auf eine mit der Detailfrage 1 vergleichbaren Frage, deren
Losung die Informationsbediirfnisse des Managements befriedigen soll, nicht das Ziel die-
ser Publikation. In [Kil01| wird das interne Programm der Softwaremessung bei Nokia
beschrieben. Zwar werden darin Softwarekennzahlen aus Managementzielen bestimmt, al-
lerdings ist das Management nur fiir die Entwicklung zusténdig, nicht fiir die Produktion,
und es kann nicht erkannt werden, wie die Erfassung von Softwarekennzahlen im Softwa-
reentwicklungsprozess integriert ist. In [EDO7| wird neben den Grundlageninhalten zur
Softwaremessung auch die Einfiihrung von Function Points bei der Fa. Bosch beschrie-
ben. Function Points, die in Abschnitt 2.1.2.1 vertiefend vorgestellt werden, sind Soft-
warekennzahlen fiir die Quantitdtsmessung. In der Fallstudie bleibt allerdings offen, wer
der Adressat der Function Points ist und ob das Management die Semantik von Function

Points kennt, sofern es der Adressat ist.

1.5 Methodische Vorgehensweise

Das Vorgehen dieser Arbeit gliedert sich in die Erstellung der konzeptionellen Grundla-
gen fiir die Beantwortung der Forschungsfragen, in eine praktische Evaluierung und in
eine Theoriebildung. Es orientiert sich an der methodischen Vorgehensweise des Design
Research (DR). DR analysiert die Anwendung von entworfenen IT-Artefakten, um Infor-
mationssysteme zu verstehen, zu erkldren und zu verbessern [IV09|. Trotz der vorhandenen
einschligigen Literatur, zum Beispiel [Ven06, PHBV08, SB12]|, gibt es jedoch weder eine
allgemein giiltige DR-Definition noch ein allgemein anerkanntes DR-Modell [IV09, Gol13|.
Diese Arbeit orientiert sich daher an den Ausfithrungen in [Gol13]: DR besteht aus zwei
Aktivitdten: dem Entwurf eines oder mehrerer IT-Artefakte und der Theoriebildung. Die
IT-Artefakte, in dieser Arbeit sind es zum Beispiel die Losungen zu den Detailfragen,
haben einen lokalen praktischen Bezug, beispielsweise im konkreten Umfeld eines produ-
zierenden Betriebes. Die lokalen Ergebnisse, die im Entwurf der I'T-Artefakte gewonnen
werden, werden der Theoriebildung mit dem Ziel zugefiihrt, daraus allgemein anwendbare
Ergebnisse zu bilden. Der Entwurf eines I'T-Artefakts setzt sich aus den Phasen Proble-
manalyse, Erstellen und Evaluierung zusammen. Die Phasen Erstellen und Evaluierung
konnen mehrfach durchlaufen werden, was in dieser Arbeit auch erfolgte. Abbildung 1.4
zeigt die schrittweise methodische Vorgehensweise dieser Arbeit und die Zuordnung dieser

zu den Phasen des Design Research.

11

Kapitel 1. FEinleitung

Vorgehen in dieser Arbeit Zuordnung zu Design Research

Darlegung der Problemstellung
Problemanalyse

Grundlagen

Entwurf

(R-GQM, Erstellen
Sliced V-Modell,

Formeln)

Entwurf SofProSys

Praxisnahe Verwendung
Praktische Verwendung Evaluierung

Verallgemeinerung
(R-GQM,
Sliced V-Modell,
SofProSys)

Theoriebildung

Abbildung 1.4: Vorgehen der Arbeit und Zuordnung zu den DR-Phasen

In der DR-Entwurfsphase Problemanalyse wird die Situation beim Kooperationspartner
dargestellt und zu einer Problemstellung zusammengefasst. Mit Hilfe der IHK-Umfrage

wird die Giiltigkeit der Problemstellung in anderen produzierenden Betriebe bewertet.

Die DR-Entwurfsphase FErstellen widmet sich zunédchst den fiir diese Arbeit relevanten
Grundlagen. Darauf folgt der konzeptionelle Entwurf fiir die Lésungen zu den Detailfra-
gen: Fiir die Beantwortung der ersten Detailfrage wird eine auf der GQM-Methode [BW84|
aufbauende neue Methode entworfen. Diese Methode wird Reversed-Goal-Question-
Metric-Methode (RGQM-Methode) genannt. Mit Hilfe der RGQM-Methode kénnen HW-
Produktionskennzahlen in der Softwareentwicklung angewendet werden. Im nichsten
Schritt werden konkrete HW-Produktionskennzahlen beim Kooperationspartner ausge-
wahlt und mit Hilfe der RGQM-Methode in SW-Produktionskennzahlen transferiert. Um
die SW-Produktionskennzahlen erfassen zu kénnen, muss der zugrundeliegende Softwa-
reentwicklungsprozess bestimmte Anforderungen erfiillen. Diese Anforderungen werden
formuliert. Weitere Anforderungen ergeben sich aus der Bestimmung von Softwarekenn-
zahlen auf Grundlage der operativen Ziele. Fiir die Bestimmung der Softwarekennzahlen
wird die etablierte GQM-Methode verwendet.

Fiir die Beantwortung der zweiten Detailfrage wird das sogenannte Sliced V-Modell ent-
worfen. Das Sliced V-Modell ist ein Datenmodell, an dessen Gestaltung der Autor der
Arbeit mafgeblich beteiligt war. Es beschreibt die im Softwareentwicklungsprozess des
Kooperationspartners genutzten Softwareartefakte und deren Zusammenhénge. Im Ent-
wurf des Sliced V-Modells werden die bei der Bestimmung der Kennzahlen formulier-

ten Anforderungen an den Softwareentwicklungsprozess beriicksichtigt. Dem Entwurf des

12

Kapitel 1. FEinleitung

Sliced V-Modells folgen die Berechnungsgrundlagen, das heifst die Formeln fiir die SW-

Produktionskennzahlen und fiir die Softwarekennzahlen.

Abschliefend wird in der DR-Entwurfsphase FErstellen ein Prototyp eines Informations-
verarbeitungssystems entwickelt, mit dessen Hilfe die dritte Detailfrage beantwortet wer-
den soll. Dieser Prototyp wird SofProSys genannt. Dies steht fiir: Software-Produktions-

kennzahlen-Tnformationsverarbeitungs-System.

Abbildung 1.5 zeigt die Zielsituation, die in dieser Arbeit in der Softwaredoméne erreicht
werden soll und die sich an der existierenden Situation im Produktionsprozess orientiert
(vgl. Abbildung 1.3). Wie in Abbildung 1.2 zeigen die diinnen Striche die Abldufe in der
Gestaltungsphase, die dicken Striche die Abldufe in der Erfassungsphase. Das Manage-
ment legt strategische Ziele fest. Die operativen Ziele werden aus den strategischen Zielen
abgeleitet. An der Bestimmung der operativen Ziele sind die Softwareteams aktiv beteiligt.
Kgw ist die Menge der SW-Produktionskennzahlen, die aus Ky, also aus der bereits
existierende Menge an HW-Produktionskennzahlen, in die Softwaredoméne transferiert
wird. Kgw und folglich K¢y werden aus den strategischen Zielen bestimmt und zeigen
deren Zielerreichung an. Kgy bedient die Informationsbediirfnisse des Managements. Kg
ist die Menge der Softwarekennzahlen, die aus den operativen Zielen bestimmt wird und

deren Zielerreichung anzeigt. Kg wird von den Softwareteams verwendet.

Folglich verwenden die Softwareteams und das Management unterschiedliche Kennzahlen.
Dies ist ein Unterschied zu der im Abschnitt 1.2 erlduterten Situation im Produktions-
prozess. Daher miissen sowohl die Erfassung von SW-Produktionskennzahlen als auch
die Erfassung von Softwarekennzahlen in der kennzahlenorientierten Gestaltung des Soft-
wareentwicklungsprozesses beriicksichtigt werden. Es werden sowohl Kgy als auch Kg
im Softwareentwicklungsprozess erfasst, wobei auch eine Softwarekennzahl in Kg fiir die

Berechnung einer SW-Produktionskennzahl in Kgy verwendet werden konnte.

Management

Formulierung

Strategische
Ziele

Beriicksichtigung

Interpretation

Transfer

Erfassung

Verdichtung

Softwareteam Gestaltung

Software-
entwicklungsprozess

Formulierung Interpretation

Operative Definition Erfassung

Ziele

Abbildung 1.5: Zielsituation dieser Arbeit

13

Kapitel 1. FEinleitung

In der DR-Entwurfsphase Fuvaluierung wird die RGQM-Methode an fiinf beim
Kooperationspartner eingesetzten HW-Produktionskennzahlen angewendet, aus denen
SW-Produktionskennzahlen gebildet werden. Die semantische Aquivalenz der beiden Aus-
priagungen einer Produktionskennzahl wird bewertet. Die Evaluierung des Sliced V-
Modells erfolgt in drei Schritten: durch die Betrachtung der Erfiillung der daran for-
mulierten Anforderungen, durch die Bewertung, ob die Berechnungsgrundlagen fiir alle
Kennzahlen erstellt werden kénnen und durch die Implementierung von SofProSys als
Nachweis, dass alle Kennzahlen im Sliced V-Modell erfasst werden konnen. Die Evaluie-
rung von SofProSys erfolgt, indem der Prototyp sowohl praxisnah in einem Testumfeld als
auch praktisch beim Kooperationspartner verwendet wird. In der praktischen Verwendung

werden reale Softwareentwicklungsprozesse untersucht.

Die abschliefsende Evaluierung, ob die Ergebnisse dieser Arbeit eine Losung fiir die For-
schungsfrage darstellen, erfolgt zum einen durch den Geschéftsbereichsleiter des Koope-
rationspartners. Thm werden die SW-Produktionskennzahlen der realen Softwareentwick-
lungsprozesse dargestellt und sie werden mit ihm diskutiert. Zum anderen werden die
Ergebnisse der Arbeit in der DR-Aktivitat Theoriebildung verallgemeinert. Es wird erlédu-
tert, wie produzierende Betriebe die Ergebnisse dieser Arbeit in ihr betriebliches Umfeld

iibertragen konnen und dass diese Ergebnisse somit die Forschungsfrage beantworten.

1.6 Aufbau der Arbeit

Der Aufbau dieser Arbeit orientiert sich an den Aktivitdten des Design Research (vgl.
Abbildung 1.6). Wie bereits erwéhnt, gab es mehrere DR-Iterationen. Sie werden jedoch

weder als eigene Kapitel ausgefiihrt noch explizit in dieser Arbeit beschrieben.

Die Kapitel 1 und 2 widmen sich der DR-Entwurfsphase Problemanalyse und den fiir diese

Arbeit relevanten Grundlagen.

Die Kapitel 3, 4, 5, 6 und 7 umfassen die DR-Entwurfsphase FErstellen und die DR-
Entwurfsphase FEvaluierung. Es wird die RGQM-Methode entwickelt und es werden
betriebsspezifische HW-Produktionskennzahlen des Kooperationspartners ausgewihlt, in
dquivalente SW-Produktionskennzahlen transferiert und somit die RGQM-Methode evalu-
iert. Mit Hilfe der GQM-Methode werden Softwarekennzahlen definiert. Es wird das Sliced
V-Modell unter Beriicksichtigung von Anforderungen, die wihrend der Bestimmung der
Kennzahlen formuliert werden, entworfen. Fiir alle Kennzahlen werden die jeweiligen Be-
rechnungsgrundlagen ermittelt. Es wird SofProSys entwickelt und sowohl praxisnah als
auch praktisch angewendet. Mit der praktischen Anwendung wird evaluiert, inwiefern die

Ergebnisse der Arbeit eine Losung fiir die Forschungsfrage darstellen.

14

Kapitel 1. FEinleitung

Kapitel 1: Einleitung

Kapitel 2: Grundlagen

Problemanalyse

Kapitel 3: Transfer von Produktionskennzahlen

Kapitel 4: Bestimmung der Softwarekennzahlen

Erstellen

Kapitel 5: Gestaltung des Softwareentwicklungsprozesses

Kapitel 6: Ermittlung der Berechnungsgrundlagen

Evaluierung

Kapitel 7: Entwicklung des Informationsverarbeitungssystems

Kapitel 8: Verallgemeinerung der Ergebnisse

Theoriebildung

Kapitel 9: Zusammenfassung und Ausblick

Abbildung 1.6: Aufbau dieser Arbeit

Kapitel 8 widmet sich der DR-Aktivitdt Theoriebildung und verallgemeinert die Ergebnis-
se der Arbeit. Da die Ergebnisse in nur einem produzierenden Betrieb evaluiert werden,
wird hier dargelegt, dass sie sich prinzipiell in andere produzierende Betriebe iibertragen

lassen.

Das abschlieftende Kapitel 9, das keiner Design Research Aktivitit zugeordnet ist, fasst die
Inhalte der Arbeit zusammen, erliutert weitere Aktivititen fiir Uberfiihrung der Ergeb-
nisse der Arbeit in die betriebliche Praxis des Kooperationspartners und skizziert mogliche

auf dieser Arbeit aufbauende Forschungsvorhaben.

15

Kapitel 1. FEinleitung

1.7 Vorveroffentlichungen

Ausziige aus dieser Arbeit wurden in folgenden Publikationen verdffentlicht. Die Publika-

tionen sind chronologisch aufgefiihrt.

Hauptbezug zu Veroffentlichung

Kap. 5, 6

Kap. 6

[Deul2] Deuter, A.: Messung der Software-Produktivitit in einem
Work Item-basierten V-Modell, In: Metrikon 2012 - Prazis der
Software-Messung, Shaker Verlag, Aachen, 2012, S. 69-84

[Deul3| Deuter, A.: Slicing the V-model — Reduced effort, higher
flexibility, In: International Conference on Global Software Engi-
neering (ICGSE), 2013, S. 1-10

[DE14] Deuter, A.; Engels, G.: Measuring the Software Size of Sliced
V-model Projects, In: Joint Conference of the International Work-
shop on Software Measurement and the International Conference on
Software Process and Product Measurement (IWSM-MENSURA),
2014, S. 233-242

[Deul4| Deuter, A.: Software wird auch im Maschinenbau zur Kern-
kompetenz, In: IEE Elektrische Automatisierung-+ Antriebstechnik
10 (2014), S. 16-18

[DK15| Deuter, A.; Koch, H.-J.: Applying Manufacturing Perfor-
mance Figures to Measure Software Development Excellence, In:
Joint Conference of the International Workshop on Software Mea-
surement and the International Conference on Software Process and
Product Measurement (IWSM-MENSURA), 2015, S. 62-77

[DD15] Deuter, A.; Dreyer, J.: Reversed-GQM: Ein Ansatz zur Wie-
derverwendung von Kennzahlen, In: Metrikon 2015 - Praxis der
Software-Messung, Shaker Verlag, Aachen, 2015, S. 3-14

[Deul6| Deuter, A.: Software measurement in the context of Indus-
try 4.0, Workshop in Joint Conference of the International Work-
shop on Software Measurement and the International Conference on
Software Process and Product Measurement (IWSM-MENSURA),
2016

Tabelle 1.2: Vorveroffentlichungen zu dieser Arbeit

16

Kapitel 2

Grundlagen

Dieses Kapitel widmet sich den Grundlagen dieser Arbeit. Fiir die kennzahlenorientier-
te Prozessgestaltung wird ein Verstandnis von Kennzahlen benétigt. Daher werden in
diesem Kapitel zunéchst grundlegende Merkmale von Kennzahlen erldutert. Da die For-
schungsfrage bzw. die daraus abgeleiteten Detailfragen sowohl Softwarekennzahlen als
auch Produktionskennzahlen adressieren, erfolgt eine vertiefende Darstellung dieser beiden
Kennzahlenauspriagungen. In diesem Zusammenhang werden ebenfalls bekannte Grund-
sitze fiir die Gestaltung von Informationsverarbeitungssystemen aufgefiihrt, da diese fiir

die Losung der dritten Detailfrage zu beachten sind.

Da die erste Detailfrage einen Transfer von Kennzahlen der Produktionsdoméne in die
Softwaredoméne adressiert, wird zu der in der einschldgigen Literatur gefithrten Diskus-
sion zur Machbarkeit des Transfers von Methoden der Produktionsdoméne in die Soft-
waredoméne Stellung genommen. Anschliefend werden bekannte Beispiele fiir Kennzah-
lentransfers genannt und es wird dargelegt, dass diese als Losung fiir die erste Detail-
frage nicht geeignet sind. Daher werden existierende Methoden bzw. Prozessbeschrei-
bungen, mit denen Kennzahlen fiir betriebliche Prozesse methodisch bestimmt werden
konnen, dahingehend bewertet, ob sie als Ausgangspunkt fiir eine neu zu entwickelnde

Kennzahlentransfer-Methode geeignet sind.

Abschliefsend widmet sich dieses Kapitel den Grundlagen, die fiir die zweite Detailfrage
relevant sind: Es werden die wesentlichen Merkmale des Softwareentwicklungsprozesses,
der das Ziel der kennzahlenorientierten Prozessgestaltung ist, erldutert und es wird der

Softwareentwicklungsprozess des Kooperationspartners dargestellt.

17

Kapitel 2. Grundlagen

2.1 Kennzahlen

2.1.1 Begriffe und Eigenschaften

Kennzahlen sowie deren Anwendung, Auswahlkriterien und Gestaltungsgrundsétze sind
w.a. in [HP0O7, Ben07, Bro97, Pet08, Horl1l, BB10, Kiit10] umfangreich beschrieben. Die
folgenden Ausfithrungen erldutern ein fiir diese Arbeit notwendiges Grundverstindnis zu

Kennzahlen.

Kennzahlen sind Zahlen, die in verdichteter Form quantitativ oder qualitativ messbare
Sachverhalte wiedergeben. Es wird zwischen absoluten Kennzahlen und Verhéltniskenn-
zahlen unterschieden (Abbildung 2.1) [Ben07|. Absolute Kennzahlen beschreiben einen
Sachverhalt, ohne in Relation zu einer anderen Grofe gesetzt zu werden. Sie kdnnen ge-
mék [Ben07| in Einzelzahl, Summe, Differenz oder Mittelwert eingeteilt werden. Addition,

Subtraktion und Mittelwertbildung sind nur bei Werten gleicher Einheit moglich.

Kennzahlen

[1
Absolute Kennzahlen Verhaltniskennzahlen
|

[T T 1 [T 1
Einzelzahlen Summen Differenzen Mittelwerte Gliederungszahlen Beziehungszahlen Indexzahlen

Abbildung 2.1: Arten von Kennzahlen [Ben07]

Verhiltniskennzahlen zeigen das Verhéltnis von mehreren absoluten Kennzahlen an. Sie
konnen in Gliederungskennzahlen (Anteil einer Grofe an einer Gesamtmenge, zum Bei-
spiel Entwicklungskosten zu Gesamtkosten), Beziehungskennzahlen (Verhéltnis zweier un-
terschiedlicher Grofen, zum Beispiel Gewinn zu Eigenkapital) und Indexkennzahlen (zeit-
liche Entwicklung von Grofen, zum Beispiel Entwicklungskosten im Jahr 2014 zu Ent-

wicklungskosten im Jahr 2015) eingeteilt werden.

Kennzahlen dienen der Planung, Steuerung und Kontrolle von betrieblichen Aktivitdten
(Soll-Ist-Vergleich), lassen Trends erkennen (Ist-Kennwerte im Zeitvergleich) und kénnen

fiir ein internes oder externes Benchmarking herangezogen werden.

Kennzahlen werden von betrieblichen Entscheidungstriagern aller Hierarchieebenen ge-
nutzt. Die Entscheidungstriger legen beispielsweise die Soll-Werte einzelner Kennzahlen
fest. Weichen die Ist-Werte einzelner Kennzahlen von den Soll-Werten ab, werden Mafsnah-
men abgeleitet, um die Ist-Werte zu verbessern. Die Wirksamkeit der Mafnahmen wird
mit Hilfe der Ist-Werte {iberpriift. Kennzahlen haben somit eine Informationsfunktion.
Kennzahlen werden entsprechend den Informationsbediirfnissen der Adressaten in den ver-
schiedenen Hierarchieebenen aufbereitet. Abbildung 1.3 zeigt ein Beispiel: Darin werden

die Produktionskennzahlen beim Kooperationspartner entsprechend den Informations-

18

Kapitel 2. Grundlagen

bediirfnissen des Managements und der Produktionsteams prisentiert bzw. verdichtet.
Sofern die eingesetzten Kennzahlen das Management adressieren, sollte deren Verwen-

dung durch das Management bestétigt werden [BB10|.

Um eine Kennzahl eindeutig zu beschreiben, werden alle zu ihr gehérenden Informationen
in einem Dokument hinterlegt. Dieses kann ein Kennzahlenstammblatt [Ben07], ein Kenn-
zahlensteckbrief |[Kiit10| oder ein Kennzahlenformular |[HP07| sein. Die Informationen in
diesen Dokumenten zeigen die Bedeutung der Kennzahl, also deren Semantik, auf. Um den
Begriff ,Semantik einer Kennzahl® fiir diese Arbeit zu konkretisieren, wird festgelegt, dass
die nachfolgenden Informationen die Semantik einer Kennzahl umfassen. Diese Konkre-
tisierung wird benotigt, da fiir die Semantik einer Kennzahl keine allgemein anerkannte

Definition bekannt ist. Die bené6tigten Informationen sind:

e Name

e Mafseinheit

o Wertebereich

e Idealwert

e Moglichkeit der Festlegung von Soll-Werten
e Frage

o Ziel

e Interpretation

Diese Informationsinhalte werden an dem Beispiel der bereits in Abschnitt 1.2 eingefiihr-
ten First Pass Rate (Name) erkldrt: Die FPR ist eine Verhéltnisgrofe, die in Prozent (%)
angegeben wird. Der Wertebereich liegt zwischen 0 % und 100 %, wobei der Idealwert
100 % ist. Ein typischer Soll-Wert, der fiir eine Produktionslinie individuell festgelegt
werden kann, ist 98 %. Die FPR beantwortet die Frage: ,Wie ist das Verhéltnis von ge-
fertigten Produkten, die fehlerfrei getestet wurden, zu allen gefertigten Produkten? Die
FPR ist dem strategischen Ziel ,Hohe Fertigungsqualitit® zugeordnet. Diese abstrakte
Zielformulierung prisentiert die grundlegende Unternehmensstrategie des Kooperations-
partners, der sich als Qualitdtsanbieter in seinem Markt versteht. Das Ziel ist folglich we-
der quantifiziert noch terminiert. Der Begriff , Ziel“ bezieht sich in dieser Arbeit auf solche
abstrakten Ziele. Die Quantifizierung des Ziels und dessen Terminierung ergibt sich beim
Kooperationspartner durch die Formulierung von Soll-Werten fiir einen festgelegten Zeit-
raum, wie zum Beispiel: ,Fiir die Werkstattfertigung A ist in 2016 eine durchschnittliche
FPR von 96 % zu erreichen.“ Dabei wird die FPR wie folgt interpretiert:

19

Kapitel 2. Grundlagen

e Im Gegensatz zu rein mechanischen Produkten, die lediglich stichprobenartig ge-
priift werden, werden alle intelligenten Produkte einem Fertigungsendtest unterzo-
gen. Maximal ist zwar eine FPR von 100 % moglich, typische Ist-Werte liegen jedoch
zwischen 95 % und 98 %. Da es sich um hochpreisige intelligente Produkte handelt,
werden diejenigen Produkte, die den Fertigungsendtest nicht bestehen, inspiziert
und wenn moglich nachbearbeitet. Dies verursacht Nacharbeitskosten. Das Mana-
gement fordert, die Nacharbeitskosten moglichst gering zu halten und legt fiir jede
Produktionsstatte durchschnittliche jahrliche Soll-Werte fest. Die Produktionsteams
bestimmen daraus die jahrlichen Soll-Werte fiir die einzelnen Produktionslinien in
der Produktionsstéitte. Entsprechen die Ist-Werte den Soll-Werten, werden keine
Mafsnahmen eingeleitet. Sind die Ist-Werte geringer als die Soll-Werte, untersuchen
das Management, bzw. die Produktionsteams die Ursachen und leiten Mafsnahmen
ein. Ein Beispiel einer Mafnahme ist bereits in Tabelle 1.1 aufgefiihrt. Sollten die
Ist-Werte fiir eine Produktionsstétte nicht den Soll-Werten entsprechen, entscheidet
das Management gemeinsam mit den Produktionsteams iiber die Umsetzung stra-
tegischer Maknahmen wie zum Beispiel die Beschaffung von neuen Maschinen oder

Mitarbeiterqualifizierungsmafsnahmen.

Wie aus diesem Beispiel zu erkennen ist, beschreibt die Interpretation, wie die Adres-
saten einer Kennzahl auf die konkret erfassten Ist-Werte reagieren. Die Interpretation
ist folglich eine Handlungsbeschreibung des Adressaten. Da diese Handlungsbeschreibung
wihrend der Gestaltung der Kennzahl nicht bzw. nur schwierig formulierbar ist, ist sie
im operativen Prozess zu beobachten und zu formulieren. Dabei kann die Interpretation
personenspezifisch sein: So konnte zum Beispiel ein Manager auf eine Soll-Ist-Abweichung
der FPR mit der Einleitung einer Maknahme reagieren, ein anderer Manager hingegen
entscheidet sich fiir eine weitere Beobachtung der Soll-Werte, ohne eine sofortige Mafs-
nahme einzuleiten. Die Interpretation ist folglich ein nicht eineindeutig beschreibbarer

Informationsinhalt einer Kennzahl.

Eine wichtige Rolle fiir die Erfassung und Verarbeitung von Kennzahlen spielen Informati-
onsverarbeitungssysteme. Dies sind ['T-Systeme, die Daten aus einem Prozess ermitteln, zu
Kennzahlen verarbeiten und grafisch darstellen |[Ben07|. Voraussetzung fiir die IT-basierte
Kennzahlenerfassung ist die Erreichbarkeit der Datenquellen der Kennzahlen {iber ein
IT-Netzwerk. Informationsverarbeitungssysteme reduzieren in der Regel die Kosten der
Datenerfassung, -verarbeitung und -auswertung. Aufserdem erhohen sie die Objektivitit
der dargestellten Kennzahlen, da diese sonst unbewusst oder bewusst manipuliert werden
kénnen [Ben07]. Aus diesen Griinden werden bereits heute die Produktionskennzahlen

beim Kooperationspartner mit einem Informationsverarbeitungssystem erfasst.

20

Kapitel 2. Grundlagen

Bei der Gestaltung von Informationsverarbeitungssystemen sind verschiedene Grundsétze

zu beachten. In [HP07] werden folgende Gestaltungsgrundsétze empfohlen:

e Hohe Validitit: Die Informationsverarbeitungssysteme miissen korrekt messen.
e Beriicksichtigung der wesentlichen Kennzahlen.

e Einfluss der Entscheidungstriger: Die in einem Informationsverarbeitungssystem
enthaltenen Kennzahlen sollten unmittelbar von Entscheidungstriagern beeinfluss-
bar sein, das heifit die Entscheidungstriger sollten die notwendigen Befugnisse und
Kompetenzen haben, Mafknahmen, die die Ist-Werte der Kennzahlen dndern, einzu-

leiten.

e Ausgewogene Ausgestaltung hinsichtlich der Menge und des Zeithorizonts der Kenn-

zahlen.
e Festlegung von Soll-Werten, um Ist-Werte interpretieren zu konnen.

e Ausgestaltung unter Kosten-Nutzen-Bedingungen: Der Nutzen des Informations-
verarbeitungssystems rechtfertigt die Kosten fiir dessen Entwicklung und dessen
Betrieb.

e EKindeutige Darstellung der Kennzahlen, um Fehlinterpretationen zu vermeiden. Mit
Fehlinterpretation ist eine grundsétzlich falsche Interpretation, nicht die oben erldu-

terte personenspezifische Interpretation gemeint.

Vergleichbare, Informationsverarbeitungssysteme betreffende Gestaltungsgrundséitze wer-
den zum Beispiel in [Bal97, Kiit10| formuliert. Da diese grundsitzlich den oben aufge-
fithrten Gestaltungsgrundsitzen dhneln, werden die Gestaltungsgrundsitze aus [HPO7|
fiir den spéter folgenden Entwurf des Informationsverarbeitungssystems als geeignet an-

gesehen und daher beriicksichtigt.

2.1.2 Softwarekennzahlen

Im weiteren Verlauf der Arbeit werden die Begriffe ,Softwareprodukt®, ,Softwareversion®,
ySoftwarefunktion und ,Softwaredokumentation“ verwendet. Ein Softwareprodukt im
Kontext dieser Arbeit ist eine in einem intelligenten Produkt eingebettete Software oder
eine zu einem intelligenten Produkt gehorende Softwareanwendung, zum Beispiel eine
App. Eine Softwareversion ist ein definierter Entwicklungsstand eines Softwareproduktes.
Der definierte Entwicklungsstand enthalt neue Softwarefunktionen. Eine Softwarefunktion

ist ein spezifiziertes Verhalten des Softwareproduktes.

21

Kapitel 2. Grundlagen

Allerdings ist das Softwareprodukt bzw. eine Softwareversion nicht das einzige Ergebnis
des Softwareentwicklungsprozesses: In [HKLR84| wird der Begriff ,Software” definiert ,als
Menge von Programmen oder Daten zusammen mit begleitenden Dokumenten, die fiir ih-
re Anwendung notwendig oder hilfreich sind*. Die Bedeutung der Dokumentation wéchst
mit der zunehmenden Grofe von Softwareprodukten, da sie deren Verstdndnis und de-
ren Weiterentwicklung dient [MDO6]. Der Aufwand fiir die Erstellung der Dokumentation
variiert und kann in sicherheitsgerichteten Entwicklungen bis zu 50 % des Gesamtpro-
jektaufwands betragen [MSH*12]. Fiir die Erlauterung des Begriffs ,sicherheitsgerichtet*
wird auf den Abschnitt 2.5.2.1 verwiesen. Folglich sind Dokumente wie beispielsweise die
Anforderungs- oder die Testspezifikationen ebenfalls wichtige Ergebnisse des Softwareent-
wicklungsprozesses. In dieser Arbeit sind mit dem Begriff , Softwaredokumentation® solche

Dokumente gemeint.

Mit Hilfe von Softwarekennzahlen wird der Prozess der Erstellung von Softwareproduk-
ten, Softwareversionen und deren Dokumenten sowie deren quantitative und qualitative
Eigenschaften gemessen. Softwarekennzahlen kénnen verschiedenartig kategorisiert wer-
den: In [Kan03] wird zwischen Produkt-, Prozess- und Projektkennzahlen unterschieden.
In [SSB10] wird davon ausgegangen, dass Software eine multidimensionale Substanz ist,

die in drei Dimensionen messbar ist: Grofe, Komplexitdt und Qualitat.

Eine weitere Form der Kategorisierung zeigt das sogenannte Teufelsquadrat, das als ,ein
Grundmodell der Softwarewirtschaftlichkeit mit vier Ecken* bezeichnet wird [Sne87|. Die
Ecken symbolisieren das Spannungsfeld, in dem sich Softwareentwicklungsprozesse bewe-
gen: Sie sollen eine hohe Qualitdt und hohe Quantitédt bei geringer Entwicklungsdauer

und geringen Kosten erreichen (Abbildung 2.2).

Qualitat Quantitat
+ +
SN
N\~
~
| ~_
I ~
~

I ~

: |

| |

| |

| |

| -~

| -7

~

| -~

Ve
Entwicklungsdauer Kosten

Abbildung 2.2: Teufelsquadrat nach [Sne87|

22

Kapitel 2. Grundlagen

Das Trapez im Inneren des Quadrats symbolisiert die Wirtschaftlichkeit. Bei Erreichen
einer hohen Qualitit liegt der Schnittpunkt des Trapezes und der Diagonalen ,Qualitét-
Kosten® links oben. Bei hohen Kosten befindet sich der Schnittpunkt des Trapezes und
dieser Diagonalen im inneren Bereich des Teufelsquadrats und so fort. Abbildung 2.2
zeigt symbolisch einen Softwareentwicklungsprozess, fiir den eine hohe Qualitit, mittlere
bzw. geringe Quantitit, kurze Entwicklungsdauer und mittlere bzw. hohe Kosten erreicht
wurden. Die Attribute ,hoch®, ,mittel“ etc. sind fiir einen konkreten Softwareentwicklungs-

prozess mit Softwarekennzahlen zu quantifizieren.

Im weiteren Verlauf dieser Arbeit werden die Softwarekennzahlen geméif dem Teufelsqua-
drat kategorisiert. In den folgenden Abschnitten werden bekannte Softwarekennzahlen
erlautert, die fiir die Quantifizierung der Kategorien des Teufelsquadrats geeignet sind.
Alle Softwarekennzahlen in den einzelnen Kategorien sind den absoluten Kennzahlen zu-

zuordnen.

Zweck dieser Ausfithrungen ist es, mogliche Softwarekennzahlen fiir die Menge Kg zu
identifizieren, mit denen die Zielerreichung der operativen Ziele des Softwareentwicklungs-
prozesses beim Kooperationspartner {iberpriift werden kann (vgl. Abbildung 1.5). In den
Erlauterungen wird jeweils bewertet, ob die jeweilige Softwarekennzahl durch ein Infor-
mationsverarbeitungssystem erfasst werden kann. Nur solche Softwarekennzahlen sollen
fiir die spéter folgende Gestaltung des Softwareentwicklungsprozesses beim Kooperations-

partner berticksichtigt werden.

2.1.2.1 Quantitat

Softwarequantitiatskennzahlen, die sich auf ein Softwareprodukt bzw. eine Softwareversion
beziehen, kénnen in funktionale und in physikalische Kennzahlen unterschieden werden
[BGA14|. Funktionale Kennzahlen zeigen den Funktionsumfang des Softwareproduktes an,
wohingegen sich physikalische Kennzahlen auf den inneren Aufbau des Softwareproduk-
tes beziehen. Physikalische Kennzahlen konnen weiter untergliedert werden und zwar in
Quelltextkennzahlen, zum Beispiel Lines of Code, und in Prozesskennzahlen, zum Beispiel
die Anzahl gednderter Quelltextzeilen. Allerdings werden mit Prozesskennzahlen, wie sie
in [RD13] definiert sind, auch weitere Bearbeitungsaktivitéten, zum Beispiel Anzahl von
Commits, gemessen. Solche Kennzahlen konnen nicht den Softwarequantitidtskennzahlen
zugeordnet werden. Daher wird der Begriff Prozesskennzahl® fiir diese Arbeit eingegrenzt:
Es sind nur Kennzahlen gemeint, die Aussagen iiber die Anderungen des Quelltextes er-

moglichen.

Fiir Softwarequantititskennzahlen, die sich auf die Softwaredokumentation beziehen, sind

keine expliziten Bezeichnungen bekannt. Sie werden im Folgenden ,,Dokumentationskenn-

23

Kapitel 2. Grundlagen

Softwarequantitatskennzahlen

Funktionale Physikalische Dokumentations-
Kennzahlen Kennzahlen kennzahlen
Quelltext- Prozess-
kennzahlen kennzahlen
Function Points Lines of Code Anzahl gedanderter Anzahl Seiten
Anzahl Klassen Quelltextzeilen Anzahl Worter

Abbildung 2.3: Kategorien von Softwarequantitidtskennzahlen

zahlen® genannt. Abbildung 2.3 zeigt die erwdhnten Kategorien der Softwarequantitits-
kennzahlen. In den néchsten Abschnitten werden ausgewihlte Softwarequantititskenn-

zahlen aus diesen Kategorien erldutert.

2.1.2.1.1 Funktionale Kennzahlen

Bei der funktionalen Groffenmessung steht der Funktionsumfang der Software im Mittel-
punkt der Quantitiatsmessung [PP11]. Da Function Points die grofte Verbreitung aller
funktionalen Softwarequantititskennzahlen erlangt haben |[PP11|, wird an dieser Stelle
nur auf sie eingegangen, um die Idee der funktionalen Gréfsenmessung zu erldutern. Wei-
tere funktionale Kennzahlen sind Use-Case Points [Kar93| oder Object Points [BKK91].

Function Points wurden erstmals von Albrecht in [Alb79| definiert. Function Points nach
der Definition von Albrecht wurden in der Norm ISO/TEC 20926 normiert und sind
als JFPUG FPA“ (FPA: Function Point Analyse) bekannt [ISO09]. Ausgehend von den
IFPUG FPA entstanden weitere Methoden, mit denen Function Points ermittelt werden
kénnen [DA11]. Eine dieser Weiterentwicklungen ist die Norm ISO/IEC 19761 [ISO03|,
die als COSMIC Function Points (CFP) bekannt ist. Der folgende Absatz fasst das in

[Bal00] erlduterte Vorgehen bei der Ermittlung von Function Points zusammen:

Jede Anforderung an ein Softwareprodukt wird einer von fiinf Kategorien zugeordnet:
Eingabedaten, Abfragen, Ausgabedaten, Datenbestdnde, Referenzdateien. Anschliefsend
wird jede Produktanforderung in eine von drei Komplexititen eingeordnet: einfach, mittel,
komplex. Fiir jede Kombination Kategorie/Komplexitit wird eine Punktzahl definiert,

zum Beispiel wird eine Abfrage mittlerer Komplexitit mit vier Punkten gewichtet. Auf

24

Kapitel 2. Grundlagen

measure data
functions

determine counting
scope & boundaries, .
. . calculate functional
and identify — — size document & report
functional user
requirements

gather available
documentation

measure
— transactional —
functions

Abbildung 2.4: Prozess zur Ermittlung der Functional Size [ISO09]

diese Art und Weise werden alle Anforderungen an ein Softwareprodukt mit Punkten
bewertet. Die Summe aller Punkte sind die Function Points des Softwareprodukts, also

dessen funktionale Grofe.

Die Anzahl an Function Points wird durch geschulte Experten manuell ermittelt. Die
Norm ISO/IEC 20926 beschreibt den aus mehreren Teilaktivititen bestehenden Pro-
zess fiir die Ermittlung von Function Points (Abbildung 2.4). In diesem Prozess liegen
zwei wesentliche Kritikpunkte an den Function Points begriindet: Zum einen ist die
erstmalige Anwendung bei bestehenden Softwareprodukten kompliziert und erfordert die
Unterstiitzung von ausgebildeten Function Point Experten [Sym88, Car06]. Obwohl die
Anzahl an Function Points objektiv durch das Softwareprodukt vorgegeben wird, zeige
die Praxis, dass unterschiedliche Personen unterschiedliche Ergebnisse ermitteln [Abr14].
Zum anderen ist eine I'T-basierte Datenerfassung von Function Points schwer umzuset-
zen [JYWT11, KBNAJ11]. Zwar sind einige Ansétze zur IT-basierten Datenerfassung von
Function Points beschrieben [LH11, OBB*14, Kuil4|, die allerdings die vollsténdige Mo-
dellierung des zu messenden Softwareproduktes, zum Beispiel mit der Unified Modeling
Language (UML) [OMG17¢|, voraussetzen. Solche Modellierungsmethoden sind jedoch
in der Praxis nicht immer anzutreffen, beispielsweise ist die UML bei weitem nicht so

verbreitet ist, wie allgemein angenommen [Pet13].

2.1.2.1.2 Quelltextkennzahlen

Im Gegensatz zu funktionalen Kennzahlen betrachten Quelltextkennzahlen den inneren
Aufbau eines Softwareproduktes, indem sie die Anzahl der enthaltenen Softwareelemente
messen. Die bekannteste Messung ist die Zahlung von ,Lines of Code* (LOC). Andere Mog-
lichkeiten sind die Zahlung der Anzahl an Klassen, an Klassenmethoden und -attributen
[SSB10]. Die Messung von Lines of Code ist zwar relativ einfach zu realisieren, allerdings

wird ihre Eignung als Quantitatskennzahl in Frage gestellt. Dafiir gibt es mehrere Griinde:

25

Kapitel 2. Grundlagen

e Die Anzahl an LOC fiir das Losen einer Programmieraufgabe ist abhiangig von der

Programmiersprache [PP11].

e Es ist zwischen Zeilen und Anweisungen zu unterscheiden [Car06]. Ein Beispiel ist
die Unterscheidung zwischen Logical Lines of Code und Physical Lines of Code
[Kas08].

e Ein effektiv programmierter Code ist kiirzer als iippige Quelltextkonstrukte, die
bezogen auf Ressourcenverbrauch und Rechenintensitit kaum optimiert sind: ,better

programmers do more with less code” [FPGT04].

e LOC zeigen nicht die Intensitit der Bearbeitung des Quelltextes durch die Softwa-
reteams an. Damit ist gemeint, dass die Anzahl an LOC ungefihr konstant bleiben

kann, selbst wenn der Quelltext in groferem Make gedndert wird [RD13].

Quelltextkennzahlen kénnen I'T-basiert gemessen werden, zum Beispiel durch den Einsatz
von Werkzeugen fiir die statische Quelltextanalyse [PCL17, Klol17, Poll7].

2.1.2.1.3 Prozesskennzahlen

Prozesskennzahlen messen den Bearbeitungsprozess der Erstellung von Softwareproduk-
ten und Softwareversionen. Voraussetzung fiir die Messung von Prozesskennzahlen ist
die Anwendung von Versionsmanagementsystemen. Versionsmanagementsysteme ermog-
lichen die kontrollierte gemeinsame Bearbeitung und Erstellung von Softwareprodukten
unter Verwendung einer zentralen oder dezentralen Datenablage [LEPV10]. Beispiele fiir
Prozesskennzahlen sind Anzahl hinzugefiigter oder geldschter Quelltextzeilen und die An-

zahl gednderter Quelltextzeilen |[RD13|.

Die Anzahl geénderter, geloschter oder hinzugefiigter Quelltextzeilen wird Churn genannt
[ME98|. Churn wird definiert: “as the sum of the number of lines added, deleted, and mo-
dified in the source code.” [SJS12]. Eine Moglichkeit, den Churn konkret zu messen, ist die
Nutzung von sogenannten Unified Diff Patches [JAB12|. Unified Diff Patches beschrei-
ben den Namen der geinderten Datei und die Hinzufiigungen und Loéschungen, die in
dieser Datei erfolgt sind. Hinzugefiigte Zeilen werden mit einem ,+“ markiert, gelésch-
te Zeilen mit einem ,-“. Anderungen in einer Zeile werden durch eine Hinzufiigung und
eine Loschung markiert. Somit ldsst sich analysieren, wie viele Quelltextzeilen geldscht,
hinzugefiigt oder gedndert wurden. Abbildung 2.5 zeigt ein Beispiel eines Unified Diff
Patches.

Wie erwéhnt, dndern sich Quelltextkennzahlen nicht immer wesentlich, insbesondere wenn
die Softwareprodukte einen hohen Reifegrad erreicht haben und lediglich von Software-

version zu Softwareversion verbessert werden. In [RD13] wird hingegen aufgefiihrt, dass

26

Kapitel 2. Grundlagen

1 [Index: Program.cs

2 o e
3 ——— Program.cs ([Fevision 212459)

at +++ Program.cs ([Fewision 212580)

5 [@R -29,8 429,10 @@

<] bool test3erwver = false;

7

=] //for test purposes

2 - if (project.Count() == 0)

10 + if (project == ™0™

11 project = "FirstProject™:

12 + else if Iproject == 1"

13 + project = "IecondProject'™;

14

15 String output = project + ".osvT:
16 bool walidProject = true;

17

Abbildung 2.5: Beispiel eines Unified Diff Patches

sich Prozesskennzahlen selbst bei diesen Voraussetzungen deutlich stirker dndern als
Quelltextkennzahlen und dadurch Indikatoren fiir die Quantitit der Softwarednderungen
sind. Auferdem seien sie zur Analyse moglicher Fehlerquellen geeignet: In Softwarekom-
ponenten, die stark gedndert werden, ist die Wahrscheinlichkeit des Vorhandenseins von

Fehlern hoher als in Softwarekomponenten, die kaum geéndert werden.

Prozesskennzahlen sind I'T-basiert erfassbar, da der Quelltext in Versionsmanagementsys-
temen verwaltet wird. Versionsmanagementsysteme haben Schnittstellen, die sogenannten
Application Programming Interfaces (API), die von Informationsverarbeitungssystemen

verwendet werden koénnen.

2.1.2.1.4 Dokumentationskennzahlen

Die Softwaredokumentation erfolgt iiberwiegend in natiirlicher Sprache [Sne07|, fiir deren
Erstellung in der Regel Texteditoren wie zum Beispiel MS Word verwendet werden. Die
Messung der Quantitit der Softwaredokumentation ist mit Hilfe dieser Texteditoren mog-
lich. Zum Beispiel kénnen mit MS Word Worter, Zeichen und Seiten eines Dokuments
gezdhlt werden. Obwohl die Softwaredokumentation ein wichtiges Ergebnis des Software-
entwicklungsprozesses ist und folglich deren Erstellungsprozess stetig verbessert und ge-
messen werden sollte, sind Dokumentationskennzahlen kaum Gegenstand der Forschung.
Ein Beispiel ist aus [MR93| bekannt: Darin werden die erstellten Dokumentenseiten mit

der Entwicklungsdauer in ein Verhéltnis gesetzt.

Eine andere Méoglichkeit der Erstellung der Softwaredokumentation ergibt sich bei Anwen-
dung von IT-Systemen, mit denen sogenannte Work Items erfasst werden konnen: Work
Items beschreiben sowohl zu erledigende Aktivitdten im Softwareentwicklungsprozess, wie
zum Beispiel in [TS12], als auch Dokumentationselemente, etwa Produktanforderungen,

Testfille oder Fehlerbeschreibungen, wie zum Beispiel in [Moc03]. Durch das Zé&hlen von

27

Kapitel 2. Grundlagen

Work Ttems kann die Quantitit der Softwaredokumentation gemessen werden. Die Zih-
lung von Work Items ist IT-basiert moglich, da die verwaltenden IT-Systeme den Zugriff
iiber API implementieren, die von Informationsverarbeitungssystemen verwendet werden

konnen.

2.1.2.2 Kosten

Der {iberwiegende Teil der im Softwareentwicklungsprozess anfallenden Kosten sind die
Personalkosten [Sne87|. Die Personalkosten werden aus den geleisteten Aufwéinden, die
in der Regel in Stunden angegeben werden, und dem betriebsspezifischen Kostensatz pro
Stunde ermittelt. Der betriebsspezifische Kostensatz ist in der Regel abhdngig von der
Qualifikation des Mitarbeiters (Student, Facharbeiter, Ingenieur etc.) bzw. der durch-
gefilhrten Aufgabe (Test nach Anleitung, Entwurf einer Softwarearchitektur etc.). Die
Aufwinde werden in Soll-Aufwinde und Ist-Aufwinde unterschieden: Der Soll-Aufwand
ist der geplante Aufwand fiir die Bearbeitung einer Aufgabe im Softwareentwicklungspro-
zess, zum Beispiel die Implementierung einer Softwarefunktion. Der Ist-Aufwand ist der
tatséichlich geleistete Aufwand fiir die Bearbeitung der Aufgabe. Die Soll-Aufwinde bzw.
die Ist-Aufwinde fiir die Bearbeitung einzelner Aufgaben werden zu dem Soll-Aufwand

bzw. dem Ist-Aufwand fiir die Realisierung einer Softwareversion summiert.

Weitere Kosten im Softwareentwicklungsprozess entstehen zum Beispiel durch die Beschaf-
fung von Lizenzen und Computern oder durch die Nutzung von Cloud-Services. Da diese
Ressourcen in der Regel fiir die Entwicklung von mehreren Softwareprodukten eingesetzt
werden, kénnen diese Kosten nicht direkt einem einzelnen Softwareprodukt zugeordnet

werden.

Dariiber hinaus fallen indirekte Personalkosten in der Softwareentwicklung an. Dies ist
zum Beispiel bei international verteilten Softwareentwicklungen der Fall, bei denen die
Teams an mehreren Standorten in unterschiedlichen Lindern an einem Softwareprodukt
arbeiten. Die Ursachen fiir indirekte Personalkosten liegen dabei in den sprachlichen und
kulturellen Barrieren [LMT*10]. Indirekte Kosten sind lediglich abschétzbar und nicht

direkt messbar.

Die im Softwareentwicklungsprozess geplanten bzw. aufgewendeten Stunden sind IT-
basiert erfassbar, sofern sie in einer Datenablage, zum Beispiel zum Verwalten von Pro-
jektinformationen, eingetragen werden und die Daten aus der Datenablage mit Hilfe der

API erfasst werden konnen.

28

Kapitel 2. Grundlagen

2.1.2.3 Entwicklungsdauer

Die Entwicklungsdauer ist der Zeitraum zwischen dem Starttermin und dem Endtermin
der Entwicklung einer Softwareversion [BMS02|. Der Starttermin und der Endtermin kon-
nen fiir verschiedene Stakeholder des Softwareentwicklungsprozesses unterschiedlich sein.
Ein Kunde bzw. ein Auftraggeber konnte den Tag der Auslieferung der Softwareversion
als Endtermin betrachten, wohingegen das Entwicklungsteam bzw. der Dienstleister den

Tag der internen Freigabe als Endtermin ansehen.

Es ist keine allgemeingiiltige Definition fiir den Starttermin bzw. den Endtermin bekannt.
Um dennoch betriebsspezifisch die Entwicklungsdauer berechnen zu kénnen, miissen Start-
termin und Endtermin betriebsspezifisch definiert werden. Folgende Definitionen werden

zum Beispiel in [Kas08] vorgeschlagen:

e Starttermin: Tag der Freigabe der Anforderungen

e Endtermin: Tag der ersten Installation des Softwareproduktes

Unabhingig davon, wie der Endtermin einer Softwareversion definiert ist, sollten nach
diesem Termin keine Entwicklungsarbeiten an der Softwareversion erfolgen. Im weiteren
Verlauf der Arbeit wird der Begriff ,Endtermin“ in diesem Sinne verwendet. Eine Soft-
wareversion enthilt neue Softwarefunktionen. Fiir jede dieser Softwarefunktionen kann
jeweils individuell ein zugesagter Termin formuliert werden. Der zugesagte Termin ist das
einem Kunden genannte Datum, an dem die Auslieferung der Softwarefunktion erfolgen

soll.

Alle genannten Termine sind IT-basiert erfassbar, sofern sie in einer Datenablage, zum
Beispiel zum Verwalten von Projektinformationen, eingetragen werden und die Daten aus

der Datenablage mit Hilfe der API erfasst werden kénnen.

2.1.2.4 Qualitit

Die Erfassung von Softwarekennzahlen zu Quantitat, Kosten und Entwicklungsdauer oh-
ne eine Erfassung der Softwarequalitit ist nutzlos. Egal wie hoch die Quantitit, wie kurz
die Entwicklungsdauer oder wie gering die Kosten sind — ein minderwertiges Software-
produkt wird nicht erfolgreich sein: ,Without an accompanying assessment of product
quality, speed of production is meaningless [FP97|. Daher stellen Softwarequalititskenn-
zahlen einen wesentlichen Bestandteil in der Softwaremessung dar. Die Softwarequalitét
kann zum einen durch das Erfassen und Verarbeiten von Fehlermeldungen und zum ande-

ren durch das Erfassen und Verarbeiten von sogenannten Softwarequalititseigenschaften

29

Kapitel 2. Grundlagen

bestimmt werden. Dabei sollte die Messung der Qualitdt der Softwaredokumentation in

einer gesamtheitlichen Softwarequalitdtsmessung beriicksichtigt werden.

2.1.2.4.1 Fehlermeldungen

In [SLO3| wird ein Fehler wie folgt erlautert: Ein Fehler beschreibt einen Fehlerzustand
oder eine Fehlerwirkung. Ein Fehlerzustand ist der inkorrekte Teil eines Softwareproduk-
tes, der die Ursache fiir eine Fehlerwirkung ist. Eine Fehlerwirkung ist eine Abweichung
zwischen einem spezifizierten bzw. einem implizit erwarteten Soll-Verhalten und dem Ist-

Verhalten.

Fehler werden zu unterschiedlichen Zeitpunkten und von verschiedenen Stakeholdern ent-
deckt. Daher gibt es folgende Softwarekennzahlen, die die Anzahl von Fehlern anzeigen
(in Anlehnung an [PP11]):

e Anzahl intern entdeckter Fehler: Intern entdeckte Fehler sind Fehler, die im Zu-
sammenhang mit qualitdtssichernden Mafnahmen wéhrend des Softwareentwick-
lungsprozesses durch die Softwareteams vor dem Endtermin einer Softwareversion

entdeckt werden.

e Anzahl Restfehler: Restfehler sind Fehler, die nach Ubergabe der Softwareversion
an den Auftraggeber (Kunden) entdeckt werden. Ein Teil der Restfehler wird intern
durch die Softwareteams entdeckt, ein anderer Teil wird durch den Auftraggeber

(Kunden) entdeckt. Die letztgenannten Fehler sind eztern entdeckte Fehler.

o Anzahl aller Fehler: Summe aus der Anzahl intern entdeckter Fehler und der Anzahl
der Restfehler.

Aus diesen Softwarekennzahlen kann folgende weitere Softwarekennzahl bestimmt werden:

e Fehlerbehebungsrate: Verhéltnis von der Anzahl intern entdeckter Fehler und der
Anzahl aller Fehler.

Die Fehlerbehebungsrate ist eine Verhéltniskennzahl. Zwar wird auf Verhéltniskennzahlen
in einem eigenen Abschnitt eingegangen (Abschnitt 2.1.2.5). Jedoch wird die Fehlerbe-
hebungsrate in diesem Abschnitt erldutert, um das Verstidndnis von Fehlermeldungen zu
erleichtern. Die Fehlerbehebungsrate ist ein gutes Maf fiir die Effektivitdt der internen
Tests und sollte iiber 90 % liegen [SSB10|. Die Anzahl intern entdeckter Fehler sollte bei
hoherer Testintensitét steigen [Schll]. Daher ist die Fehlerbehebungsrate nur bei einer

addquaten Testdurchfiihrung eine aussagekriftige Softwarekennzahl.

30

Kapitel 2. Grundlagen

Zeitpunkt der Fehlerentdeckung Kosten
Entdeckung wihrend der Erstellung der Produktanforderungen 250 $
Entdeckung wihrend der Erstellung des Softwareentwurfs 500 $
Entdeckung wihrend der Programmierung und des Testens 1.250 $
Entdeckung nach dem Endtermin 5.000 $

Tabelle 2.1: Kosten-pro-Fehler-Analyse [Jonl7|

Das friihzeitige Entdecken eines Fehlers reduziert die Kosten einer Fehlerbehebung: In
[Jon17] sind die in Tabelle 2.1 gezeigten Kosten einer Fehlerbehebung in Abhéngigkeit
der Phase, in der der Fehler entdeckt wird, aufgefiihrt. Unabhingig davon, ob die in
der Tabelle aufgefiihrten Geldbetrige fiir eine bestimmte Projektumgebung tatsichlich

zutreffen, kann die dargestellte Tendenz verallgemeinert werden.

Alle entdeckten Fehler werden in der Regel hinsichtlich ihres sogenannten Schweregrades

eingeordnet. Eine mogliche Einordnung ist geméf [PP11] wie folgt:

e Kritischer Fehler: Die Anwendung ist oder wesentliche Funktionen der Anwendung

sind nicht verfiighar bzw. nutzbar.

e Schwerer Fehler: Eine wesentliche Funktion ist nicht verfiigbar oder liefert inkorrekte

Ergebnisse, aber es gibt einen Workaround.

e Leichter Fehler: Eine nicht wesentliche Funktion ist nicht verfiigbar oder liefert nicht

die richtigen Ergebnisse.

e Trivialer Fehler: Kleinerer Fehler, der die Nutzung der Anwendung nicht wesentlich

beeintrichtigt.

Der Schweregrad ist ein sogenanntes Fehlerattribut. Ein Fehlerattribut ist eine den Fehler
beschreibende Eigenschaft. Weitere typische Fehlerattribute sind zum Beispiel Name des
Melders, Datum der geplanten Behebung und der Status der Fehlerbehebung (geplant,
behoben etc.).

Aus der Analyse des Schweregrades der entdeckten Fehler kann eine prozentuale Verteilung
des Schweregrades iiber alle Fehler ermittelt werden. Die prozentuale Verteilung zeigt alle
prozentualen Teilwerte an. Ein prozentualer Teilwert zeigt das Verhéltnis der Fehler mit
einem bestimmten Schweregrad zur Anzahl aller Fehler an. Abbildung 2.6 veranschaulicht
diese Erlduterung: Sie zeigt ein Beispiel der prozentualen Verteilung des Schweregrades.
Der Teilwert fiir die kritischen Fehler betriagt 46 %. Um diesen Teilwert interpretieren zu

konnen, sollte die absolute Anzahl an Fehlern bekannt sein.

31

Kapitel 2. Grundlagen

Trivial
13,5%

Kritisch
46,2 %

Leicht
20,3 %

Schwer
20,0 %

Abbildung 2.6: Erlduterung der prozentualen Fehlerverteilung

Eine I'T-basierte Datenerfassung der prozentualen Verteilung bzw. der Anzahl aller Fehler
ist moglich, sofern die entdeckten Fehler in Werkzeugen fiir die Fehlerverwaltung einge-
tragen werden, zum Beispiel in Bugzilla [Bugl7]. Die API dieser Werkzeuge koénnen von

Informationsverarbeitungssystemen verwendet werden.

2.1.2.4.2 Qualitatseigenschaften

Die Erfassung und Verarbeitung von Fehlermeldungen unterstiitzen zwar in der Bewertung
der Qualitit des Softwareentwicklungsprozesses, sie ermoglichen allerdings keine qualita-
tive Einschitzung des Softwareproduktes. Ein Beispiel einer qualitativen Einschitzung ist
die Bewertung, ob ein Softwareprodukt gut nutzbar ist oder nicht. Derartige qualitative
Einschéitzungen werden erst durch die Definition und die Anwendung von sogenannten
Qualitdtsmodellen ermoglicht. Ein allgemeines Qualitdtsmodell ist in der Normenreihe
ISO/IEC 25000 definiert [ISO10] (Abbildung 2.7). Gemif diesem Qualitdtsmodell kann
die Softwarequalitit durch einzelne Charakteristiken, zum Beispiel durch die Funktiona-

[itdt, beschrieben werden.

Qualitat
| l l l
Charakteristik 1 Charakteristik 2 Charakteristik 3~ = Charakteristik m
|
| I |
Subcharakteristik 1 ~ Subcharakteristik 2 =~ = Subcharakteristik n
|
| | |
Qualitatseigenschaft 2 Qualitatseigenschaft 4 - Qualitatseigenschaft x
Qualitatseigenschaft 1 Qualitatseigenschaft 3 Qualitatseigenschafts ... Qualitatseigenschaft y

Abbildung 2.7: Allgemeines Qualitdtsmodell in Anlehnung an [ISO10]

32

Kapitel 2. Grundlagen

Den Charakteristiken werden Subcharakteristiken oder Qualitdtseigenschaften zugeord-
net. Charakteristiken und Subcharakteristiken sind nicht messbar, wohingegen die Quali-

tatseigenschaften messbar sind.

Die Norm ISO/IEC 25010 definiert aukerdem ein Qualitdtsmodell, das fiir die Bewer-
tung des Nutzens einer Software aus Sicht des Anwenders verwendet werden kann. Dieses
Quality in Use genannte Qualitdtsmodell enthélt die fiinf in der Abbildung 2.8 gezeigten
Charakteristiken. Die Norm ISO/TEC 25022 prézisiert das Quality in Use-Modell und
ordnet den Charakteristiken und Subcharakteristiken messbare Qualititseigenschaften zu
[ISO16a|. Ein Beispiel einer Qualitiatseigenschaft ist die task time, die der Charakteristik
efficiency zugeordnet ist. Sie zeigt die Dauer fiir die Erledigung einer Aufgabe durch den

Benutzer an.

Quality in Use

| | | | |
Freedom Context

Effectivness Efficiency Satisfaction .
from risk coverage

Abbildung 2.8: Quality in Use-Modell der ISO/IEC 25010 [ISO10]

Des Weiteren beschreibt die Norm ISO/IEC 25010 ein Qualitétsmodell fiir die Anwend-
barkeit einer Software. Diese Software Product Quality genannte Qualitdtsmodell enthélt
die acht in der Abbildung 2.9 gezeigten Charakteristiken. Die Norm ISO/IEC 25023 pré-
zisiert das Software Product Quality-Modell und ordnet messbhare Qualitdtseigenschaften
den Charakteristiken und Subcharakteristiken zu [ISO16b|. Ein Beispiel einer Qualitéits-
eigenschaft ist die Functional correctness, die der Charakteristik Functional suitability

zugeordnet ist. Sie zeigt die Anzahl der Funktionen an, die korrekte Ergebnisse liefern.

Software Product Quality
| [[I [[[|

Functional Performance - - . Maintain-
suitability efficieny Compatibility Usability Reliability Security ability

Portability

Abbildung 2.9: Software Product Quality-Modell der ISO/IEC 25010 [ISO10|

Die Definition eines Qualitdtsmodells ist in der betrieblichen Praxis eine Herausforde-
rung. Obwohl die Normen ISO/IEC 25022 und ISO/IEC 25023 die Qualitdtsmodelle der
ISO/IEC 25010 prézisieren und messbare Qualitéitseigenschaften vorschlagen, kénnen we-
der die Charakteristiken noch die Qualititseigenschaften in allen produzierenden Betrie-
ben angewendet werden. Die ISO/TEC 25010 betont daher, dass die Charakteristiken

33

Kapitel 2. Grundlagen

und die Subcharakteristiken aus den betrieblichen Gegebenheiten abzuleiten und ihnen

messbare Qualititseigenschaften zuzuordnen sind.

In Abhéngigkeit ihrer Definition kénnen die Qualitdtseigenschaften IT-basiert erfasst wer-
den. Ein Beispiel einer IT-basierten Datenerfassung von Qualititseigenschaften ist in
[DP12]| beschrieben: Ausgehend von dem Qualitdtsmodell der ISO/IEC 9126 [ISO01],
der Vorgéngernorm der ISO/IEC 25010, werden Qualititseigenschaften fiir die Anzei-
ge der inneren Qualitdt von Softwareprodukten festgelegt. Ein Beispiel einer IT-basiert
erfassbaren Qualitétseigenschaft ist die file comment ratio, die der Subcharakteristik Ana-

lysability / Maintainability im Qualitdtsmodell Software Product Quality zugeordnet ist.

2.1.2.4.3 Dokumentationsqualitit

Da die Softwaredokumentation ein wichtiges Ergebnis des Softwareentwicklungsprozesses
ist, sollte sie Gegenstand von qualitativen Bewertungen sein. Der Messung der Quali-
tiat der Softwaredokumentation widmen sich Textanalysemethoden wie zum Beispiel in
[Leh94, Sne05, GFL13, Snel5, ASSH16]. In diesen Publikationen wird der Fokus auf die
Qualitit der Anforderungen an die Softwareprodukte mit dem Ziel gelegt, die Qualitit
der Anforderungen zu erhéhen. Eine Erhchung der Qualitdt der Anforderungen reduziert
das Risiko von Widerspriichen und Fehlern in den nachfolgenden Phasen der Software-

entwicklung, etwa im Systementwurf oder in der Implementierung.

Die Bewertung der Qualitdt der Anforderungen erfolgt toolunterstiitzt, was bedeutet,
dass ein Textanalysetool alle Anforderungen hinsichtlich vorgegebener Kriterien automa-
tisiert priift. Ein mogliches Kriterium ist die Zdhlung bestimmter Schliisselworter in einer
Anforderung, beispielsweise ,wenn/dann“, ,solange/bis“ etc. [ASSH16]. Je mehr solcher
Schliisselworter in einer einzigen Anforderung verwendet werden, desto komplexer ist die-
se. Daraus wird geschlussfolgert, dass die Implementierung dieser Anforderungen schwierig
ist. Um die Implementierung zu vereinfachen, sollten daher solche Anforderungen umfor-

muliert bzw. geteilt werden.

Trotz der vorhandenen Publikationen und der darin zu sehenden Bestatigung, dass die
Dokumentationsqualitidt Gegenstand der Forschung ist, ist keine einheitliche Methode
hinsichtlich ihrer Messung bzw. ihrer Bewertung zu erkennen. Folglich sind die in den Pu-
blikationen genannten Kennzahlen, die die Dokumentationsqualitét anzeigen (in [ASSH16]

ist das die sogenannte conjunctive complexity), spezifisch fiir die jeweilige Methode.

34

Kapitel 2. Grundlagen

2.1.2.5 Verhaltniskennzahlen

Die meisten der in den Abschnitten 2.1.2.1 bis 2.1.2.4 vorgestellten Softwarekennzah-
len sind den absoluten Kennzahlen zuzuordnen (vgl. Abbildung 2.1). Eine Ausnahme ist
die Fehlerbehebungsrate, die das Verhéltnis der Projektfehlerrate zur Gesamtfehlerrate
darstellt. Da die Erlduterung der Fehlerbehebungsrate thematisch in den Kontext der
Softwarequalitit gehort, wurde sie bereits in Abschnitt 2.1.2.4.1 erldutert.

Aus den anderen erlduterten absoluten Softwarekennzahlen konnen unterschiedliche Ver-
hiltniskennzahlen gebildet werden. In der Literatur sind wiederholt die folgenden Ver-

haltniskennzahlen beschrieben:

2.1.2.5.1 Softwareproduktivitat

Es gibt keine allgemein anerkannte Definition des Begriffs ,Softwareproduktivitat”. Eine
von Petersen durchgefiihrte Analyse iiber Verdffentlichungen zur Softwareproduktivitat
zeigt die Existenz vielfaltiger Ansétze [Petll|. Petersen fand insgesamt 586 Beitrige, von
denen er 38 im Detail analysierte. Viele dieser Veroffentlichungen enthalten teilweise vollig

verschiedene Ansichten dariiber, wie die Softwareproduktivitit zu erfassen sei.

Fiir diese Arbeit wird die Softwareproduktivitit als das Verhéltnis von Softwarequantitét
und Aufwand betrachtet, wie dies auch in [Kas08, PP11] der Fall ist. Gleichung 2.1 zeigt

die aus dieser Definition resultierende allgemeine Berechnungsformel.

Quantitat

(2.1)

In Abhangigkeit der verwendeten Quantitdtskennzahl sind mogliche Maleinheiten der

Function Points = LOC qep Churn ((Opy ey jst ein Platzhalter
Hour > Hour Hour

Softwareproduktivitit entweder
fiir die Mafeinheit des Churns).

2.1.2.5.2 Liefergeschwindigkeit

Die Liefergeschwindigkeit (engl.: speed of delivery) ist eine Verhéltniskennzahl, die die Ge-
schwindigkeit von Softwareentwicklungsprozessen anzeigt [Sym10, PP11|. In agilen Soft-
wareentwicklungsmethoden ist der Begriff Velocity* gebriuchlich [HD06|. Die Lieferge-
schwindigkeit gibt an, welche Softwarequantitit in einer bestimmten Zeit erstellt wurde.
Gleichung 2.2 zeigt die allgemeine Berechnungsformel.

Quantitat
Entwicklungsdauer

Liefergeschwindigkeit = (2.2)

35

Kapitel 2. Grundlagen

In Abhéngigkeit der verwendeten Quantitdtskennzahl sind mdogliche Mafeinheiten der

Function Points LOC oder Churn)

Liefergeschwindigkeit entweder Day » Dag Day

2.1.2.5.3 Fehlerdichte

Die Fehlerdichte (engl.: defect density) ist das Verhéltnis von Quantitit und Fehlerraten,
zum Beispiel ,defects per source line of code“ [NC14|. In [FP97| wird der Fehlerdichte
eine so hohe Bedeutung beigemessen, dass sie als ,de facto standard measure of software

quality” bezeichnet wird. Gleichung 2.3 zeigt die allgemeine Berechnungsformel.

A F
Fehlerdichte = nzahl .e.mer (2.3)
Quantitat

In Abhéngigkeit der verwendeten Quantitdtskennzahl sind mogliche Maleinheiten der

. Defects Defects Defects
Fehlerdichte entweder z——="— === oder &=,

Wie bereits erwiahnt, kann ein Fehler in zwei Phasen entdeckt werden:

e In der Phase der qualitidtssichernden Mafsnahmen des Softwareentwicklungsprozesses

e In der Phase nach der Ubergabe der Software an den Auftraggeber, auch ,post

release” Phase genannt

Fehlerdichten konnen jeweils fiir eine dieser Phasen berechnet werden. Ein Beispiel ist
die Kennzahl ,Post Release Defect Density” [Kas08]. Des Weiteren lisst sich die Fehler-
dichte iiber beide Phasen hinweg und iiber den vollstindigen Lebenszyklus der Software
ermitteln. Die Fehlerdichte kann lediglich so prizise sein wie die Anzahl der tatséchlich
entdeckten Fehler. Die unentdeckten Fehler gehen nicht in die Berechnung der Fehlerdichte

ein.

Nachdem in diesem Abschnitt 2.1.2 mogliche Softwarekennzahlen fiir die Menge Kg iden-
tifiziert wurden, werden im néchsten Abschnitt Produktionskennzahlen und deren Ein-

satzgebiete erldutert.

2.1.3 Produktionskennzahlen

Menschen, Betriebsmittel (Maschinen) und Arbeitsgegensténde sind zentrale Systemele-
mente des Produktionsprozesses [SBL10|. Die Arbeitsgegenstinde sind die Produkte oder
Teilprodukte, die von Menschen und Betriebsmitteln bearbeitet werden. Diese Bearbei-
tung ist in Ablidufe gegliedert. Die jeweiligen Ablidufe fiir die Systemelemente sind in
Ablaufarten unterteilt [REF92|. Tabelle 2.2 zeigt die Systemelemente und nennt Beispie-

le fiir Ablaufarten. Bezogen auf die aufgefiihrten Systemelemente wurden Produktions-

36

Kapitel 2. Grundlagen

Systemelement Beispiele fiir Ablaufarten

Mensch Haupttatigkeit
Nebentatigkeit
zusitzliche Tatigkeit

Betriebsmittel Hauptnutzung
Nebennutzung

zusatzliche Nutzung

Arbeitsgegenstand Verdndern
Priifen

Liegen

Tabelle 2.2: Ablaufartengliederung der REFA-Methodenlehre [REF92]

kennzahlen definiert, so zum Beispiel in [REF92] und [HJK14|. Sie unterstiitzen die vor-
rangige Zielstellung von Produktionsprozessen: Die Einhaltung von Kostenvorgaben bzw.
stetige Reduzierung von Kosten. Die in [REF92| und |[HJK14| genannten Produktions-
kennzahlen bezogen auf die Menschen sind zum Beispiel der Zeitgrad und die Arbeits-
produktivitat, fiir die Betriebsmittel sind es die Gesamtanlageneffektivitét (engl.: Overall
Equipment Effectiveness, kurz: OEE) und der Hauptnutzungsgrad, fiir die Arbeitsgegen-

stande die Durchlaufzeit und die Liefertermintreue.

Zeichnet sich die Produktion durch eine hohe Kapitalintensitit aus, werden vor allem
Produktionskennzahlen zur Steuerung des Einsatzes der Betriebsmittel eingesetzt. Sind
die Arbeitskosten die dominierende Kostenart, werden vor allem Produktionskennzahlen
in Bezug auf die Menschen ausgewihlt. Die ausgewéahlten Produktionskennzahlen sind
abhéngig von den betriebsspezifischen Produktionsablaufen. Ein produzierender Betrieb
wihlt die eingesetzten Produktionskennzahlen individuell fiir sein Umfeld aus, wobei die
Semantik einzelner Produktionskennzahlen betriebsspezifisch sein kann. Damit ist ge-
meint, dass eine Produktionskennzahl mit demselben Namen in verschiedenen produzie-
renden Betrieben eine unterschiedliche Bedeutung hat bzw. von einer allgemein anerkann-

ten Definition abweicht. Erlauterung 2.1 zeigt dafiir ein Beispiel.

Die Wertschopfung und die bereits erwdhnte First Pass Rate sind Produktionskennzahlen,
die beim Kooperationspartner verwendet werden. Sie sind, wie alle anderen Kennzahlen,
in unternehmensinternen Dokumenten beschrieben. Nicht alle beschriebenen Produktions-
kennzahlen kommen in allen Produktionslinien zum Einsatz, da sie zum Teil nur fiir spezi-
fische Produktionsablidufe sinnvoll angewendet werden konnen oder sich entweder auf kapi-
talintensive oder personalintensive Produktionslinien beziehen. Aus diesen Produktions-
kennzahlen werden in dieser Arbeit einige ausgew&hlt, um sie in die Menge Ky, zu

transferieren und in der Softwaredoméne zu nutzen (vgl. Abbildung 1.5).

37

Kapitel 2. Grundlagen

Beim Kooperationspartner wird die Produktionskennzahl Wertschipfung verwendet. Sie
zeigt die geplanten Fertigungskosten auf Basis der Arbeitspldne der Mitarbeiter und
der Maschinenauslastungen an. In [Pre08] wird die Wertschopfung als der Bruttopro-
duktionswert abziiglich der Kosten fiir Roh-, Hilfs- und Betriebsstoffe, Abschreibungen,
Fremddienstkosten und Kostensteuern definiert. Die Wertschopfung hat folglich beim
Kooperationspartner und in [Pre08| eine unterschiedliche Bedeutung. Dieses Beispiel
verdeutlicht die Wichtigkeit des Verstdndnisses der betriebsspezifischen Semantik einer
Produktionskennzahl. Eine betriebsfremde Person wiirde die Wertschopfung womoglich
falsch interpretieren und diese Fehlinterpretation in der Entscheidung zu prozessgestal-
tenden Mafsnahmen beriicksichtigen.

Erlauterung 2.1: Beispiel einer betriebsspezifischen Semantik einer Produktionskennzahl

Inwiefern ein Methoden- bzw. Kennzahlentransfer von der Produktionsdoméne in die

Softwaredoméne sinnvoll und moglich ist, wird im folgenden Abschnitt dargelegt.

2.2 Produktion und Softwareentwicklung

Die Anwendung von Methoden der Produktionsdoméne in der Softwaredoméne ist ein in
der Wissenschaft und in der Praxis kontrovers diskutiertes Thema. Da diese Arbeit zum
Ziel hat, Produktionskennzahlen in der Softwaredoméne anzuwenden, agiert sie genau in

diesem Spannungsfeld.

Die Softwareentwicklung ist im Wesentlichen ein manueller Prozess, dessen Erfolg
stark von den Erfahrungen und Fahigkeiten der einzelnen Softwareentwickler abhiangt
[NCK'15]. Automatisierte Abldufe sind zwar im Softwaretest zunehmend anzutreffen,
jedoch weniger im Softwareentwurf oder in der Softwareprogrammierung. Jede entwickel-
te Software ist verschieden. Die Softwareentwicklung ist ein Prozess des ,jongoing desi-
gns“, d.h. Software wird kontinuierlich konzipiert und implementiert [Ste06]. Allerdings
werden in verschiedenen Softwareprodukten durchaus Aufgabenstellungen gel6st, die be-
reits in anderen Softwareprodukten gelost wurden. So zeigen die Beobachtungen beim
Kooperationspartner, dass bereits geloste Aufgabenstellungen zu einem spéteren Zeit-
punkt neu bearbeitet wurden, statt den zu der gelosten Aufgabenstellung gehdrenden
Quelltext wiederzuverwenden. Beispiele fiir mehrfach implementierte Aufgabenstellungen

sind Druck-, Dateispeicher - oder Dateiladefunktionen.

Der Test einer Softwareversion eines intelligenten Produktes ist dessen Baumusterpriifung
zuzuordnen. Eine Baumusterpriifung ist ein Verfahren, bei dem eine benannte Stelle be-
scheinigt, dass ein reprisentatives Muster des intelligenten Produktes die Bestimmungen
von Richtlinien, zum Beispiel der CE-Konformitétsrichtlinie, erfiillt [SB16]. Das bedeutet,
dass die Softwareversion zwar im Rahmen der Softwareentwicklung, allerdings nicht fiir

jedes produzierte intelligente Produkt, getestet wird.

38

Kapitel 2. Grundlagen

Im Gegensatz zu den dargestellten Eigenschaften der Softwareentwicklung wird im Pro-
duktionsprozess wiederholt ein identisches Produkt gefertigt. Der Grad der Automatisie-
rung hingt von den Merkmalen des konkreten intelligenten Produktes ab, ist jedoch hoher
als in der Softwareentwicklung. Ziel der Automatisierung sind deterministische Produkti-
onsprozesse, mit denen kontinuierlich definierte Liefer- und Qualitétsziele erreicht werden
kénnen. Diese Ziele, Determinismus und Vorhersehbarkeit, waren bislang und bleiben auch
fiir die Industrie 4.0 giiltig [Vol17].

Determinismus und Vorhersehbarkeit sind zweifelsohne giiltige Ziele fiir die Softwareent-
wicklung. Doch trotz vieler Jahre der Softwareforschung sind Softwareentwicklungsprozes-
se noch immer wenig vorhersehbar in Bezug auf Kosten, Termine oder Qualitit [NCK™*15].
Dies kann als ein Grund fiir die vielfaltigen Forschungsarbeiten angesehen werden, in de-

nen der Transfer von Produktionsmethoden in die Softwaredoméane untersucht wird.

Ein Beispiel eines derartigen Methodentransfers ist Kanban. Kanban ist eine Lean
Management-Produktionsmethode, die erstmalig bei Toyota eingesetzt wurde [Lik04|. Hi-
ranabe {ibertrug deren zugrundeliegenden Ideen und Konzepte und entwickelte eine Soft-
wareentwicklungsmethode, die Software-Kanban genannt wird |[Hir08|]. Software-Kanban
wird den agilen Softwareentwicklungsmethoden zugeordnet. Weitere Adaptionen von Lean
Management-Produktionsmethoden in der Softwareentwicklung werden in [PW10, SJ12]

beschrieben.

Naedele et al. prisentieren einen Ansatz, in dem Konzepte von Manufacturing Executi-
on Systems (MES) in der Softwareentwicklung angewendet werden [NCK*15|. Eine der
Aufgaben von MES in der Produktion ist die Datenerfassung und -verarbeitung, um die
Produktionsplanung und -steuerung zu optimieren. Naedele et al. haben ein vergleichba-
res Konzept fiir die Softwareentwicklung erarbeitet und somit eine Produktionsmethode

in die Softwaredoméne iibertragen.

Schneidewind argumentiert, es gidbe bereits mehr Schnittmengen zwischen Softwareent-
wicklung und Produktion als allgemein angenommen [Sch1l]. Er vergleicht eine kompo-
nentenorientierte Softwarearchitektur mit einer Materialstiickliste, sieht im Kompilier-
prozess einen Fertigungsprozess und vergleicht einen automatisierten Build-Prozess mit
einer Fertigungsautomatisierung. Diese Beispiele von Schnittmengen wiirden zeigen, dass
es eine gewisse Ahnlichkeit von Teilprozessen der Softwareentwicklung mit Teilprozessen
der Produktion gibe und somit ein Methodentransfer von der Produktionsdoméne in die

Softwaredoméine moglich sei.

Ein weiteres Beispiel eines Methodentransfers ist die Anwendung von Methoden zur Qua-
litdtssteuerung von Prozessen, beispielsweise wie die statistische Prozesskontrolle oder

Six Sigma. In verschiedenen Verdffentlichungen wurde diskutiert, ob derartige Methoden

39

Kapitel 2. Grundlagen

fiir die Softwaredoméne anwendbar sind [Car94, BBBC09, Sch11, Bin97, RSRL0S§|. In
[Car94, BBBCO09, Sch11, RSRLO08| wird dies positiv eingeschitzt, wogegen Binder meint,
dass Software und Produktion zu unterschiedlich seien und kein Methodentransfer méglich
sei [Bin97].

In Zuge von Veroffentlichungen, die im Laufe dieser Arbeit eingereicht wurden, gab es
zu diesem Themenkomplex unterschiedliche Kommentare der Gutachter. So teilten nicht
alle Gutachter die Einschitzung, dass Methoden aus der Produktion in die Doméne der
Softwareentwicklung iibertragbar sind. Andere dagegen ermunterten zu mehr Forschungs-

arbeiten auf diesem Gebiet.

Aus diesen Ausfithrungen ldsst sich schlussfolgern, dass die Anwendbarkeit von Produk-
tionsmethoden in der Softwaredomine uneinheitlich bewertet wird. Dieser Arbeit liegt
die Uberzeugung zugrunde, dass die Softwaredomine von der Produktionsdoméne lernen
kann und sollte, da zum einen Determinismus und Vorhersehbarkeit von Prozessen in
beiden Doménen zentrale Bediirfnisse sind und zum anderen Determinismus und Vorher-

sehbarkeit in der Produktion stirker ausgeprigt sind, als in der Softwaredoméne.

Eine Frage dieser Arbeit ist, wie das Management Produktionskennzahlen in der Softwa-
redoméne nutzen kann, um den Determinismus und die Vorhersehbarkeit in der Softwa-
reentwicklung zu verbessern. Den fiir die Beantwortung dieser Fragestellung bekannten

Grundlagen widmet sich der nichste Abschnitt.

2.3 Transfer und Bestimmung von Kennzahlen

Es sind lediglich wenige Beispiele bekannt, in denen Kennzahlen aus einer Doméne in
einer anderen Doméne genutzt werden bzw. in denen ein Kennzahlentransfer zwischen

zwel Doménen beschrieben wird.

Die Kennzahl ,Produktivitat® ist ein solches Beispiel: Die Produktivitit ist eine Kenn-
zahl, die ihren Ursprung in der Doméne der Betriebs- oder Volkswirtschaft hat. Sie wird
allerdings auch in der Softwareentwicklung angewendet [Pet11|, um die Wirtschaftlichkeit
von Softwareentwicklungen zu bewerten. In der einschlidgigen Literatur fehlen allerdings
Hinweise, dass der Transfer zwischen den unterschiedlichen Doménen auf Grundlage einer
methodischen Vorgehensweise erfolgte. Diese Vorgehensweise wire, sofern nachvollziehbar,

fiir diese Arbeit relevant.

Ein weiteres Beispiel ist aus [FHZ'15] bekannt. Darin werden zum einen die aus der
Produktionsdoméne bekannte Lernrate und zum anderen die aus der Entropie bekannte

Entropierate fiir die Qualitdtsmessung von I'TTIL-Prozessen in Cloud-Systemen in der IT-

40

Kapitel 2. Grundlagen

Doméne verwendet. Diese beiden Kennzahlen werden fiir die Bestétigung der in [FHZ*15]
formulierten Hypothesen angewendet. Allerdings fehlt eine Beschreibung dazu, wie die
Kennzahlen ausgewihlt und deren Eignung in der I'T-Doméne gepriift wurden. Eine nach-

vollziehbare methodische Vorgehensweise ware wiederum fiir diese Arbeit relevant.

Bei diesen beiden Beispielen handelt es sich zwar um einen Kennzahlentransfer, aller-
dings kann kein methodisches Vorgehen erkannt werden. Folglich ist in dieser Arbeit eine

nachvollziehbare Methode fiir einen Kennzahlentransfer zu entwickeln.

Es gibt jedoch einige Methoden fiir die methodische Bestimmung von Kennzahlen fiir
betriebliche Prozesse. Dabei werden zunichst strategische bzw. operative Ziele definiert
und erst danach werden fiir diese Ziele Kennzahlen bestimmt. Eine derartige methodische
Bestimmung ist notwendig, da Kennzahlen keinem Selbstzweck dienen diirfen. Sie sollten
nicht nur deswegen verwendet werden, weil sie messbar sind, sondern die Bestimmung von
Kennzahlen sollte sich vielmehr an den Zielen des produzierenden Betriebes orientieren.
Zudem birgt die Anwendung von isolierten bzw. zu keinem Ziel gehorenden Kennzahlen
die Gefahr von Fehlentscheidungen [Pre08§].

Da es bereits einige Methoden fiir die methodische Bestimmung von Kennzahlen gibt,
wird in den folgenden Abschnitten gepriift, ob eine dieser Methoden als Ausgangspunkt

fiir die in dieser Arbeit zu entwerfende Methode des Kennzahlentransfers dienen kann.

2.3.1 Bewertungsgrundlagen

Fiir die Bewertung, welche Methode als eine sogenannte Basismethode fiir einen Kennzah-
lentransfer dienen kann, werden in diesem Abschnitt Anforderungen an die Basismethode

formuliert. Diese Anforderungen sind das Ergebnis der folgenden Uberlegungen:

Es soll eine in einer Ausgangsdoméne vorhandene Kennzahl in eine Zieldoméne transfe-
riert werden. In einem erfolgreichen Transfer muss die in der Ausgangsdoméne giiltige
Semantik der Kennzahl in der Zieldoméne erhalten bleiben. Geméfs den Ausfithrungen
in Abschnitt 2.1.1 bilden der Name, die Mafeinheit, der Wertebereich, der Idealwert, die
Moglichkeit der Festlegung von Soll-Werten, die Frage, das Ziel und die Interpretation
die Semantik einer Kennzahl. Nach einem Kennzahlentransfer miissen folglich all diese
Informationsinhalte weiterhin fiir die Kennzahl beschreibbar sein. Des Weiteren miissen
sie in der Zieldoméne im Grundsatz identisch zu den Informationsinhalten der Ausgangs-
doméne sein. Mit der Formulierung ,im Grundsatz identisch” wird ausgedriickt, dass im
Idealfall alle Informationsinhalte in beiden Doménen identisch sind, dies jedoch aufgrund
der unterschiedlichen Doménen voraussichtlich nicht immer méglich sein wird. Es ist folg-

lich jeweils individuell zu bewerten, ob ein Informationsinhalt ,im Grundsatz identisch

41

Kapitel 2. Grundlagen

ist oder nicht. Folgende Kriterien, die jeweils einen Informationsinhalt in der Zieldoméne
mit dem dazugehorenden Informationsinhalt in der Ausgangsdoméne vergleichen, werden

einer derartigen Bewertung zugrunde gelegt:

e Der Name muss identisch sein.

e Die Mafeinheit muss identisch sein.

e Der Wertebereich muss identisch sein.
e Der Idealwert muss identisch sein.

e Soll-Werte miissen festgelegt werden konnen, konnen jedoch doménenspezifisch ver-

schieden sein.

e Die Frage ist im Satzbau identisch, jedoch steht sie im Kontext der jeweiligen Do-
méanen. Mit ,im Satzbau identisch” ist Folgendes gemeint: Wenn die Frage in der
Ausgangsdoméne wie folgt aufgebaut ist: ,Wie ist das Verhiltnis von ... zu ...7%
dann muss dieser Satzbau ebenfalls in der Zieldoméane gelten. Die Frageninhalte,

die in ein Verhiltnis gesetzt werden, sind allerdings doméanenspezifisch.
e Das Ziel muss identisch sein, doméinenspezifische Formulierungen sind erlaubt.

e Die Interpretation lisst erkennen, dass der Adressat der Kennzahl in beiden Domé-
nen im Grundsatz identisch auf die Ist-Werte der Kennzahl reagiert. Dies soll am
Beispiel der in Abschnitt 2.1 dargestellten Interpretation der FPR in der Produk-
tion erldutert werden: Wenn die FPR in der Softwareentwicklung angewendet wird,
dann kann das Management dhnlich wie in der Produktion auf Abweichungen zwi-
schen Soll- und Ist-Werten reagieren. Fine mogliche Mafnahme wire jedoch zum
Beispiel die Beschaffung von neuen Softwarewerkzeugen statt der Beschaffung von

neuen Maschinen.

Fiir den Transfer des Namens, der Makeinheit, des Wertebereichs und dessen Idealwert
sowie der Moglichkeit der Festlegung von Soll-Werten bedarf es keiner expliziten Me-
thode. So kénnte zum Beispiel festgelegt werden, dass eine FPR in der Softwaredoméne
aquivalent zur FPR in der Produktionsdoméne in % angegeben wird, den Wertebereich
von 0 % bis 100 % hat und deren Idealwert 100 % ist. Diese Festlegung ist jedoch nicht
ausreichend, da sie lediglich einen Namenstransfer und keinen fiir diese Arbeit benotig-
ten Kennzahlentransfer bedeuten wiirde. Es ist offensichtlich, dass ohne den Transfer der
weiteren, die Semantik einer Kennzahl beschreibenden Informationsinhalte eine semanti-
sche Aquivalenz zwischen der FPR in der Produktion und der FPR in der Software nicht

erreicht werden kann.

42

Kapitel 2. Grundlagen

Ausgangsdomadne Zieldomadne

Interpre- Interpre-
tation tation

Kennzahl

Name Name
MaReinheit MaReinheit
Wertebereich Wertebereich
Festlegung Soll-Wert Festlegung Soll-Wert
Frage Frage

Abbildung 2.10: Grundkonzept eines Kennzahlentransfers

Zwar kann der Satzbau der Frage ebenfalls schlicht iibertragen werden, jedoch miissen die
doménenspezifischen Frageninhalte durch ein strukturiertes Vorgehen ermittelt werden.
Diese Anforderung gilt ebenfalls fiir die Ubertragung des Ziels und der Interpretation.
Folglich sind das Ziel und die Interpretation unter Anwendung einer Methode zu transfe-

rieren, in der ebenfalls die doméanenspezifischen Frageninhalte der Frage ermittelt werden.

Eine Basismethode muss daher einige Eigenschaften aufweisen, die anhand Abbildung
2.10 erldutert werden. Diese Abbildung zeigt das Grundkonzept des zu entwickelnden

Kennzahlentransfers:

In der Ausgangsdomine existiert eine zu transferierende Kennzahl, die in der Zieldoméne
wiederverwendet werden soll. Die Kennzahl ist aus einem Ziel, das fiir die Ausgangsdo-
méane formuliert ist, abgeleitet und diesem Ziel zugeordnet. Sie wird durch den Namen,
die Mafseinheit und den Wertebereich beschrieben. Des Weiteren ist fiir sie ein doma-
nenspezifischer Soll-Wert vorgegeben und eine Frage formuliert. Die definierte Kennzahl
wird im Kontext der Prozessdurchfiihrung erfasst, verarbeitet und durch den Adressaten
der Kennzahl interpretiert. Wie in Abschnitt 2.1 dargelegt, ist die Interpretation eine
Handlungsbeschreibung der Reaktion des Adressaten auf die Soll-Werte. Da diese Reak-
tion individuell unterschiedlich sein kann, stellt die Interpretation einen nicht eindeutig

beschreibbaren Informationsinhalt einer Kennzahl dar.

Eine Kennzahl kann zwar mehreren Zielen zugeordnet sein, allerdings muss eines der Ziele

den Startpunkt des Kennzahlentransfers bilden. Soll diese Kennzahl in der Zieldoméne

43

Kapitel 2. Grundlagen

eingesetzt werden, ist dies nur moglich, wenn das konkret ausgewéhlte Ziel sowohl in der
Ausgangsdoméne als auch in der Zieldoméne giiltig ist. Falls die Kennzahl in der Ziel-
doméne einem anderen Ziel zugeordnet wird als die Kennzahl in der Ausgangsdomaéne,
bedient sie nicht die gleichen Informationsbediirfnisse des Managements bzw. der opera-

tiven Teams wie die Kennzahl in der Ausgangsdoméne.

Des Weiteren muss die Interpretation sowohl in der Ausgangsdoméne als auch in der
Zieldoméne im Grundsatz identisch sein. Wie bereits erldutert, ist damit gemeint, dass
der Adressat der Kennzahl auf die Soll-Werte der in der Zieldoméine erfassten Kennzahl
in im Grundsatz identischer Art und Weise reagiert wie auf die in der Ausgangsdoméne

erfassten Soll-Werte.

Neben dem Ziel und der Interpretation miissen der Name, die Mafeinheit, der Wertebe-
reich und der Idealwert identisch sein. Es ist naheliegend, dass ein Adressat nur dann die
transferierte Kennzahl im Grundsatz identisch interpretieren kann, wenn diese Anforde-
rung erfiillt ist. Ebenfalls muss die Moglichkeit der Festlegung eines Soll-Werts erhalten
bleiben. Dieser muss nach einem Kennzahlentransfer zwar nicht identisch sein, jedoch soll-
ten die Soll-Werte in der Zieldoméne tendenziell den Soll-Werten in der Ausgangsdoméne
dhnlich sein: Der Soll-Wert einer in der Softwareentwicklung angewendete FPR sollte
zum Idealwert von 100 % tendieren, und nicht etwa bei 10 % festgesetzt werden. Letzte-
res wiirde eine im Grundsatz identische Interpretation nicht zulassen. Abschliefend ist es
erforderlich, den Satzbau der Frage zu erhalten, um die Kennzahl semantisch dquivalent

zu transferieren.

Aus den Ausfithrungen des Grundkonzepts eines Kennzahlentransfers ergeben sich zwei
Anforderungen an die Basismethode. Die Erfiillung dieser Anforderungen ist die Voraus-
setzung fiir deren Eignung als Ausgangspunkt fiir die in dieser Arbeit zu entwerfende

Methode eines Kennzahlentransfers.

Anforderung 1 (Ziel-Kennzahl-Zuordnung) Die Basismethode stellt innerhalb einer

Domdane die Zuordnung zwischen einer Kennzahl und einem Ziel her.

Anforderung 2 (Interpretation-Kennzahl-Zuordnung) Die Basismethode stellt in-

nerhalb einer Domdane die Zuordnung zwischen einer Kennzahl und deren Interpretation

her.

In den folgenden Abschnitten werden mogliche Basismethoden bewertet. Deren Auswahl
erfolgt aufgrund folgender Uberlegungen:

Rein finanzwirtschaftliche Kennzahlensysteme wie zum Beispiel das Du-Pont-Schema
[Gla03| oder das ZVEI-Kennzahlensystem [ZVE70] werden nicht betrachtet, da die Soft-
wareentwicklung nicht mit Finanzkennzahlen gesteuert werden sollte. Die Steuerung soll-

te sich vielmehr an den strategischen Zielen eines produzierenden Betriebes orientieren,

44

Kapitel 2. Grundlagen

welche iiber die reinen Finanzziele hinausgehen. Eine etablierte Methode fiir die Steue-
rung eines produzierenden Betriebes auf Basis solcher Ziele ist die Balanced Scorecard
[KN92]. Des Weiteren gibt es in der Doméne der Softwareentwicklung zwei etablierte Me-
thoden bzw. Prozessbeschreibungen fiir die systematische Bestimmung von Softwarekenn-
zahlen: die Norm ISO/IEC/IEEE 15939 [ISO17] und die Goal-Question-Metric-Methode
(GQM-Methode) [BW84]. Da diese Arbeit die kennzahlenorientierte Gestaltung des Soft-
wareentwicklungsprozesses zum Ziel hat, werden neben der Balanced Scorecard die Norm
ISO/IEC 15939 und die GQM-Methode ebenfalls nidher betrachtet.

Weitere vorhandene Ansétze bzw. Methoden fiir die systematische Bestimmung von Kenn-
zahlen im Software- und IT-Umfeld, zum Beispiel [Wes99, Kiit10, Gauld| werden im
Weiteren nicht beriicksichtigt, da diese Anséitze bzw. Methoden auf eine der drei genann-
ten Methoden zuriickgefithrt werden konnen: In [Wes99| ist die GQM-Methode die Basis
fiir den darin beschrieben 12-stufigen Prozess zur Softwarekennzahlenbestimmung, den
Ausfiihrungen in |Kiit10| liegt die Balanced Scorecard zugrunde. In |Gauld]| wird die
COBIT-Methode, eine Methode zur Steuerung und Uberwachung der Unternehmens-IT,
umfassend beschrieben. Die COBIT-Methode beinhaltet den Aufbau von Kennzahlensys-

temen. Wie in [Gaul4| aufgefiihrt ist, wird dafiir die Balanced Scorecard verwendet.

Im Folgenden werden die drei genannten Methoden in der erwdhnten Reihenfolge in ei-
ner Vertiefung erldutert, die fiir eine Bewertung der oben aufgefiihrten Anforderungen

ausreichend ist.

2.3.2 Balanced Scorecard

Lange Zeit wurden fiir die Unternehmenssteuerung lediglich reine Finanzkennzahlensys-
teme eingesetzt. Allerdings setzte sich schrittweise die Erkenntnis durch, dass fiir eine
langfristige positive Unternehmensentwicklung neben dem Blick auf die Finanzen auch
eine gesamtheitliche Unternehmensbetrachtung erfolgen sollte. Mit dem Ziel einer solchen
gesamtheitlichen Betrachtung wurde die Balanced Scorecard (BSC) entwickelt [KN92].
Die Balanced Scorecard ermdoglicht die Betrachtung auf ein Unternehmen aus mehreren
Perspektiven: aus der Finanzperspektive, aus der Kundenperspektive, aus der internen

Prozessperspektive und der Lern-und Entwicklungsperspektive.

Ausgehend von seinen Strategien und Visionen sollte ein Unternehmen fiir jede dieser Per-
spektiven eine Mission formulieren, zu deren Konkretisierung Ziele zu formulieren sind.
Anhand dieser Ziele sind Kennzahlen zu bestimmen, die die Zielerreichung anzeigen. Auf
diese Weise entsteht ein Zusammenspiel aus den Strategien, den Visionen, den Missio-
nen, den Perspektiven, den Zielen und den Kennzahlen, wodurch eine gesamtheitliche

Betrachtung auf ein Unternehmen ermoglicht wird (Abbildung 2.11).

45

Kapitel 2. Grundlagen

Mission
Finanzperspektive
Ziel Kennzahl
Mission 1 Mission
Kundenperspektive Interne Prozessperspektive
Ziel Kennzahl Ziel Kennzahl
- Vision und Strategie >
[
Mission y

Lern- und
Entwicklungsperspektive

Ziel Kennzahl

Abbildung 2.11: Modell der Balanced Scorecard in Anlehnung an [KN92, Kapl0]

Die Anwendung der Balanced Scorecard ist nicht eingeschrinkt auf bestimmte Unterneh-
mens- bzw. Betriebstypen. In der einschligigen Literatur werden Beispiele ihrer Anwen-
dung u.a. in produzierenden Betrieben [KN92], in Kreditinstituten [FS99], in Softwarefir-
men [[PPS02] oder der Anwendung in IT-Abteilungen [Kiit10| aufgefiihrt.

Wie in Abbildung 2.11 zu erkennen ist, wird in der Balanced Scorecard ein eindeutiger
Zusammenhang zwischen einem Ziel und einer Kennzahl hergestellt. In [IPPS02| wird
zum Beispiel das strategische Ziel ,Neue Kunden gewinnen“ in der Kundenperspektive

formuliert, dem die Kennzahl ,Anzahl an Kunden“ zugeordnet ist.

Des Weiteren ist in der Abbildung 2.11 zu erkennen, dass ein Zusammenhang zwischen der
Interpretation und der Kennzahl nicht explizit hergestellt wird. Selbstverstindlich muss
der Adressat einer Kennzahl diese in irgendeiner Art und Weise interpretieren, um zu
bewerten, ob das dazugehorende Ziel erreicht wird bzw. ob Mafnahmen definiert werden
miissen, um die Zielerreichung zu ermdglichen. Der Begriff | Interpretation” wird in dem

Modell der Balanced Scorecard jedoch nicht verwendet.

46

Kapitel 2. Grundlagen

2.3.3 ISO/IEC/IEEE 15939

Die Norm ISO/IEC/IEEE 15939 Systems and software engineering-Measurement process
(deutsch: System- und Software-Engineering - Messverfahren) ist eine Prozessbeschrei-
bung und widmet sich dem ,Measurement Process®. Der Begriff wird definiert als: ,pro-
cess for establishing, planning, performing and evaluating measurement within an overall
project, enterprise or organizational measurement structure”. Dies beinhaltet den Aufbau

und die Anwendung eines Informationsverarbeitungssystems fiir Softwarekennzahlen.

Ein Beispiel fiir die praktische Anwendung der ISO/IEC/IEEE 15939 ist u.a. in [SMKN11]
erlautert. In anderen Publikation wird das Paradigma der ISO/IEC/IEEE 15939 unter der
Bezeichnung Practical Software Measurement (PSM) verwendet, zum Beispiel in [JLC12].
Aufgrund der Ahnlichkeiten von PSM und der ISO/IEC/IEEE 15939, kann die Norm als
die Standardisierung von PSM betrachtet werden.

Die Norm ISO/IEC/IEEE 15939 enthilt zum einen relevante Begriffsdefinitionen der
Softwaremessung, zum anderen beschreibt sie das Prozessmodell zum Aufbau und zur
Anwendung eines Informationsverarbeitungssystems fiir Softwarekennzahlen (Abbildung
2.12). Die Kreise zeigen alle Prozessaktivititen, wobei das grau hinterlegte Rechteck die
zentralen Prozessaktivitidten umrandet. Die Pfeile zeigen den Datenfluss. Das weils hin-
terlegte Rechteck symbolisiert den zu messenden Prozess, aus dem die Daten generiert

werden.

Das Prozessmodell unterstiitzt bei der Identifizierung von Aufgaben, die notwendig sind,

um Softwarekennzahlen zu definieren, auszuwéhlen und zu verbessern. In der Norm wer-

Requirements for Measurement Technical and Measurement User Feedback
| Management I

Information Needs @Information Products

Core Measurement Process

Planning
Information

[y

t Plan the
Measurement

Qacess

Establish &
Sustain
Measurement
Commitment

Perform the
Measurement
Process

Evaluate the
Measurement

Commitme

Y

Information
Products &
Performance
Measures

Information Products &
Evaluation Results

Measurement Experience Base

Scope of ISO/IEC 15939 Improvements Actions

Abbildung 2.12: Prozessmodell der Softwaremessung nach ISO/IEC/IEEE 15939 [ISO17]

47

Kapitel 2. Grundlagen

den jedoch keine konkreten Softwarekennzahlen vorgeschlagen. Im Folgenden werden die

Aktivitaten des Prozessmodells erlautert:

Establish & Sustain Measurement Commitment: Es wird der Bereich fiir die durch-
zufithrenden Messungen identifiziert sowie die Bereitschaft des Managements eingeholt,
Ressourcen fiir den Aufbau und fiir die kontinuierliche Verbesserung von Softwarekenn-
zahlensystemen dauerhaft bereitzustellen und die Messergebnisse aktiv fiir eine Prozess-
steuerung anzuwenden. Die Personalressourcen fiir den Aufbau des Informationsverarbei-

tungssystems werden zugewiesen.

Plan the Measurement Process: Es werden die Informationsbediirfnisse der Orga-
nisationseinheit ermittelt. Sie sind die Basis fiir die Bestimmung der Kennzahlen. Die
Verfahren fiir die Messung, fiir die Datenspeicherung und fiir die Anzeige der Kennzahlen

werden definiert und die Bewertungskriterien fiir die Kennzahlen erstellt.

Perform the Measurement Process: Es werden die Messverfahren in den zu mes-
senden Prozess integriert. Dies kann bewirken, dass der Prozess ggf. angepasst werden
muss, damit die Messverfahren durchgefiihrt werden konnen. Die Daten werden erfasst,
zu Kennzahlen verarbeitet und die Kennzahlen werden den Adressaten der Kennzahlen

zugefiihrt.

Evaluate the Measurement: Die Adressaten sichten und bewerten die Ist-Werte der
Kennzahlen. Gegebenenfalls werden Prozessverbesserungsmafinahmen definiert und um-

gesetzt.

Die ISO/IEC/IEEE 15939 betont die Bedeutung der Relation der ausgewihlten Software-
kennzahlen zu den Informationsbediirfnissen der Organisationseinheiten, wie beispielswei-
se einem produzierenden Betrieb. Die Informationsbediirfnisse entstehen in den techni-
schen und in den Managementprozessen und basieren auf den Zielen der Organisationsein-
heiten. Der Zusammenhang zwischen den Informationsbediirfnissen und dem Prozess wird
in einem Informationsmodell hergestellt (Abbildung 2.13). Die Informationsbediirfnisse
werden durch ein Informationsprodukt befriedigt. Letzteres enthilt einen oder mehrere
Indikatoren und dessen Interpretation. Es bildet sich aus einer oder mehreren, in der
Norm als ,abgeleitet* bezeichnete Kennzahlen (,derived measures”), die sich wiederum

aus Basiskennzahlen (,base measures) bilden, die im Prozess erfasst werden.

Wie in Abbildung 2.13 zu erkennen, wird in der Norm ein Zusammenhang zwischen Zie-
len (den Informationsbediirfnissen) und Kennzahlen hergestellt. Dabei handelt es sich
nicht um eine direkte Zuordnung, sondern mehrere Kennzahlen bilden Indikatoren, die
die Informationsbediirfnisse befriedigen. Die Interpretation ist ein wichtiger Teil des In-
formationsmodells und wird daher in der Norm mehrfach referenziert. Die Interpretation

basiert auf Indikatoren, die jeweils auf mehreren Kennzahlen aufbauen.

48

Kapitel 2. Grundlagen

O

0

Stakeholder with
Information Need

Information
Product

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Derived
Measure

ISO/IEC15939 Information Model

Measurement
Function

Abbildung 2.13: Informationsmodell der

2.3.4 GQM-Methode

Base Base
Measure Measure
Measurement Measurement
Method Method
Attribute Attribute
L | |
Raw Data Raw Data

I1SO/IEC/IEEE 15939 [SMKN11|

Der Goal-Question-Metric-Methode (GQM-Methode) [BW84| wird in der einschligigen

Literatur eine hohe Bedeutung beigemessen: Sie sei die Grundlage fiir jede Software-

messung [SSB10| bzw. es sei nachgewiesen, dass sie eine besonders effektive Methode zur

Auswahl von Softwarekennzahlen ist [FP97]. Beispiele fiir die praktische Anwendung der
GQM-Methode sind u.a. in [FLM798, SB99, Wes99, Moh08, HK15] aufgefiihrt.

Die GQM-Methode stellt die strategischen bzw. die operativen Ziele der Softwaremessung

in den Vordergrund. Ausgehend von diesen Zielen werden Fragen (Questions) formuliert,

die mit Kennzahlen beantwortet werden sollen. Erst danach werden die konkreten Kenn-

zahlen (Metrics) festgelegt. Die Vorgehensweise der Ermittlung der Ziele, Fragen und

Kennzahlen erfolgt schrittweise, wobei die Beschreibung der Vorgehensweise in den un-

49

Kapitel 2. Grundlagen

> Ziel < > Ziel-
erreichung
% Frage . g AntWO rt
=3
£
o Kennzahl » Messwerte
o Definition Interpretation
o A
A J
> Erfasste Daten
Planung Datenerfassung

Abbildung 2.14: Die Phasen der GQM-Methode nach [SB99|

terschiedlichen Publikationen nicht einheitlich ist. Zum Beispiel werden in [Bal97| sechs
Schritte beschrieben, in [SB99| werden vier Phasen erldutert. Im Kern ist die Vorgehens-
weise jedoch dhnlich, daher wird im Folgenden nur eine mogliche Vorgehensweise erldautert,
und zwar die in [SB99| beschriebene. Nach dieser werden wihrend der Anwendung der
GQM-Methode vier Phasen durchlaufen: Planung, Definition, Datenerfassung und Inter-
pretation (Abbildung 2.14).

Planungsphase: In der Planungsphase werden ein Projektteam etabliert, ein Projektplan
erstellt, der zu verbessernde Prozess identifiziert und das Einverstdndnis des Managements
zum geplanten Vorgehen eingeholt. In der Planungsphase ist es wichtig, die in dem Soft-
wareentwicklungsprozess beteiligten Mitarbeiter einzubinden. Es ist zu erkldren, wieso
die Messungen durchgefiihrt werden und dass eine aktive Mitarbeit die Voraussetzung fiir
eine erfolgreiche Durchfithrung der GQM-Methode ist.

Definitionsphase: In der Definitionsphase werden die zu messenden Kennzahlen iden-
tifiziert. Dabei werden zunéchst die Ziele der Messung definiert. Danach werden Fragen
erfasst, die die Ziele verfeinern und die mit konkreten Kennzahlen beantwortet werden
konnen. Abbildung 2.15 zeigt diesen Top-Down-Ansatz. Des Weiteren wird der Softwa-
reentwicklungsprozess danach bewertet, ob er die Messung aller Kennzahlen unterstiitzt.

Falls nicht, sind die dafiir notwendigen Anpassungen zu beschreiben und umzusetzen.

Datenerfassungsphase: Fiir jede Kennzahl wird bestimmt, wie sie erfasst wird. Die
Datenerfassung kann sowohl manuell als auch in elektronischer Form erfolgen. Es sollten
zunachst Probemessungen getétigt werden, auf deren Basis die Methoden der Datener-
fassung aktualisiert werden. Alle Messungen sollten im Kontext eines Informationsverar-
beitungssystems erfolgen, das in dieser Phase aufzubauen ist. Es werden alle Messwerte

erfasst.

20

Kapitel 2. Grundlagen

Goal

Question

Definition
Interpretation

Metric

M1 M2 M3 M4 M5 M6 M7

Abbildung 2.15: Definitionsphase der GQM-Methode nach [SB99)|

Interpretationsphase: Die erfassten Ist-Messwerte werden vom Adressaten der Kenn-
zahlen interpretiert. Dies erfolgt in umgekehrter Reihenfolge der Kennzahlendefinition:
Die Messwerte beantworten die Fragen und mit den beantworteten Fragen wird die Ziel-
erreichung iiberpriift (Abbildung 2.15). Neben der Interpretation der Messwerte erfolgt
eine Bewertung des GQM-Prozesses. Hierbei sind die beteiligten Personen zu befragen,
um deren Einschitzungen fiir mogliche Anpassungen in den nachfolgenden Messprozessen

zu beriicksichtigen.

Wie in der Abbildung 2.15 zu erkennen ist, stellt die Anwendung der GQM-Methode
top-down einen eindeutigen Zusammenhang zwischen einem Ziel und einer Kennzahl her.
Des Weiteren ist zu erkennen, dass die Kennzahlen bottom-up interpretiert werden, um
die Erreichung der Ziele zu bewerten. Letzteres erfolgt in der Interpretationsphase (vgl.
Abbildung 2.14).

2.3.5 Bewertung

Im Folgenden wird bewertet, ob die dargestellten Methoden bzw. Prozessbeschreibun-
gen die im Abschnitt 2.3.1 formulierten Anforderungen an eine Basismethode fiir den in
dieser Arbeit zu entwickelnden Kennzahlentransfer erfiillen. Tabelle 2.3 zeigt die Bewer-
tung: Ein ,+“ bedeutet, dass die Anforderung gut erfiillt wird. Ein ,0“ bedeutet, dass die

Anforderung mit Einschrankung erfiillt wird.

Die GQM-Methode erfiillt beide Anforderungen ohne Einschrinkung. Sie stellt jeweils

eindeutig einen Zusammenhang zwischen einem Ziel und einer Kennzahl bzw. zwischen

o1

Kapitel 2. Grundlagen

Anforderung BSC ISO/IEC/IEEE 15939 GQM
A1l: Ziel-Kennzahl-Zuordnung + 0 +
A2: Interpretation-Kennzahl-Zuordnung 0 0 +

Tabelle 2.3: Bewertung der Methoden bzw. Prozessbeschreibungen

einer Interpretation und einer Kennzahl her. Im Informationsmodell der ISO/TEC/TEEE
15939 sind zwar die Kennzahlen die Basis fiir Indikatoren, die die Informationsbediirfnisse,
also die Ziele, bedienen, allerdings fehlt die direkte Zuordnung zwischen einer Kennzahl
und einem Ziel. Diese Zuordnung erfolgt implizit, daher wird der Grad der Erfiillung der
Anforderung A2 mit einem ,0“ bewertet. Jedoch wird im Vergleich zur GQM-Methode
diese Zuordnung als schwicher bewertet. In dem Modell der Balanced Scorecard wird der
Begriff | Interpretation® nicht erwihnt. Folglich fehlt eine explizite Zuordnung zwischen
einer Kennzahl und einer Interpretation. Dies ist zwar in der Praxis implizit gegeben,
und daher wird die Erfiillung der Anforderung A2 mit einem ,0“ bewertet. Der Grad
der Erfiillung wird allerdings schwicher bewertet als der Grad der Erfiillung durch die
GQM-Methode.

Aus diesen Griinden wird die GQM-Methode als Basismethode fiir die Entwicklung einer
Methode fiir den Transfer von Produktionskennzahlen in die Doméne der Softwareent-
wicklung ausgewahlt. Bevor im Abschnitt 2.5 der Softwareentwicklungsprozess betrachtet

wird, widmet sich der néchste Abschnitt dem Prozess der Produktentstehung.

2.4 Produktentstehungsprozess

2.4.1 Definition und Eigenschaften

Produkte entstehen im Rahmen eines Produktentstehungsprozesses. Der Produktentste-
hungsprozess ist Teil des Produktlebenszyklus, dessen Phasen und Tétigkeiten Abbildung
2.16 zeigt. Der Produktentstehungsprozess umfasst die im gestrichelten Rechteck einge-
rahmten Phasen Anforderungen, Produktplanung, Entwicklung und Prozessplanung. Sein

Resultat sind sowohl das intelligente Produkt als auch die Produktionsunterlagen [ES09].

Intelligente Produkte beruhen auf der Mechatronik und entstehen durch das Zusammen-
wirken mehrerer Disziplinen zum Beispiel der Mechanik, der Elektronik (beides ist die
Hardware des Produktes) und der Softwaretechnik. Das Attribut intelligent bringt zum

Ausdruck, dass die Software ein dominanten Anteil zum Wert eines Produktes beitréagt.

52

Kapitel 2. Grundlagen

Produktentstehungsprozess |

> Anforderung> Produktplan% Entwu:klur> Prozessplan)ng> Produktlo> Betrleb> Recycllng>

Sammeln der Bestimmung der Mechanische Werkzeug- |HersteIIung Distribution ~ Entsorgung
Anforderungen Anforderungen Konstruktion design

|Montage Service
Projektplan Elektrische/ Herstellungs- |
Elektronische konzept IQualitats- Wartung
Methodik Konstruktion :sicherung
Einkauf : Reperatur
Konzeption Software- I
Konzeption :
I
Testen :
I
I
I

Dokumentation

Abbildung 2.16: Phasen und Tétigkeiten des Produktlebenszyklus geméifs [ES09]

In der Hardware- und Softwareentwicklung haben sich spezifische Entwurfstechniken eta-
bliert. Fiir die Hardwareentwicklung sei stellvertretend die VDI-Richtlinie 2221 [VDI93]
genannt. Bekannte Entwicklungsmethoden der Softwareentwicklung sind das Wasserfall-
Modell, das V-Modell und Scrum, auf die in Abschnitt 2.5 eingegangen wird. Fiir einen
umfangreichen Uberblick iiber bekannte disziplinspezifische Entwurfsmethoden wird auf
[ERZ14] verwiesen.

Mechatronische Produkte erfordern aufgrund des Zusammenwirkens verschiedener Diszi-
plinen einen interdisziplindren Entwurfsansatz. Der Komplexitéitsgrad der jeweiligen Ent-
wicklungsaufgabe ist abhingig von der Komplexitit des konkreten Produkts [Ben07].
Unter dem Begrift Kompleritit wird sowohl der innere Zusammenhang von Produkten als
auch deren Vielgestaltigkeit verstanden. Der innere Zusammenhang wird durch die Kon-
nektivitat ausgedriickt und die Vielgestaltigkeit durch die Varietdt [Bru91]. Abbildung
2.17 veranschaulicht den Begriff Komplexitit von Produkten.

Durch die wachsende Komplexitét intelligenter Produkte infolge ihrer hheren Konnekti-
vitdt und Vielgestaltigkeit, widchst zunehmend der Komplexitidtsgrad der Entwicklungs-
aufgaben. Im sogenannten Systems FEngineering wird eine Lésung gesehen, den stetig

wachsenden Komplexitiatsgrad der Entwicklung intelligenter Produkte zu beherrschen.

2.4.2 Systems Engineering

Systems Engineering ist ein facettenreicher Begriff, was sich in einer relativ grofen Anzahl
an Definitionen dufert [Tsc16]|. Im Wesentlichen wird darunter das Management parallel-
laufender Entwicklungsprozesse verschiedener Disziplinen iiber den gesamten Produktle-

benszyklus verstanden [BB16|. Es gibt zahlreiche Systems Engineering-Buchliteratur, zum

23

Kapitel 2. Grundlagen

Komplexitat
[|
Varietat Konnektivitat
[| [|
Arten der Anzahl der Arten der Anzahl der
Elemente Elemente Beziehungen Beziehungen

Abbildung 2.17: Komplexitéit von Produkten nach [Bru9l|

Beispiel [Weil4, HIFV15, BB16] und einige der Themenfelder des Systems Engineering
sind in internationalen Normen standardisiert, zum Beispiel in der ISO/IEC/IEEE 42010
[ISO11] und in der ISO/IEC/IEEE 15288 [ISO15|.

Die dem Systems Engineering zugrundeliegende Philosophie gliedert sich in das System-
denken und in ein Vorgehensmodell |[Tsc16]. Das Ergebnis des Systemdenkens ist die
fachliche Beschreibung des Systems, das Vorgehensmodell beschreibt das Vorgehen in der

Systementwicklung.

Ziel der fachlichen Beschreibung des Systems ist zum einen die Definition der Korrela-
tionen zwischen Systemanforderungen, Funktionen, Verhalten und Struktur des Systems
[EKM17]. Ein zentraler Systems Engineering-Gedanke ist es, die genannten Aspekte zu-
néchst unabhéngig von einer technischen Losung zu beschreiben. Damit soll eine friihzei-
tige Festlegung auf eine konkrete Umsetzung vermieden werden, also ob zum Beispiel eine
Produktfunktion durch Hardware oder Software realisiert wird. Eine friihzeitige Festle-

gung, zum Beispiel auf bekannte Losungen, verhindert womoglich neue kreative Ansétze.

Zum anderen sollen im Prozess der Systemmodellierung alle Stakeholder friihzeitig in den
Produktentstehungsprozess eingebunden werden. Darin liegt ein weiterer Vorteil des Sys-
tems Engineering: Eine konsequente Umsetzung von Systems Engineering erfordert eine
stindige Kommunikation der Stakeholder untereinander. Missverstandnisse, zum Beispiel
zwischen Hardwareentwickler und Softwareentwickler bezogen auf die Realisierung einer
Produktfunktion, die gegebenenfalls zu Projektverzogerungen fithren wiirden, kénnen ver-
mieden werden. Allerdings ist in vielen Unternehmen ein gesamtheitliches Bewusstsein fiir
Systems Engineering noch nicht zu erkennen, obwohl der Nutzen von Systems Engineering

in der Praxis anerkannt ist bzw. teilweise nachgewiesen werden kann [Elm08, GCW'13|.

Die Themenfelder des Systems Engineering sind vielfaltig: Der in der VDI-Richtlinie 2206
dargestellte Entwurfsprozess zeigt zum Beispiel das Anforderungsmanagement, den Sys-
tementwurf und die Systemintegration als Themenfelder (vgl. Abbildung 1.1)[VDIO04|. Die

o4

Kapitel 2. Grundlagen

Beschreibung eines Systems im klassischen Systems Engineering bzw. dessen Ergebnisdo-
kumentation der Themenfeldern erfolgt dokumentenbasiert. Das sogenannte Modell Based
System Engineering (MBSE) als eine Weiterfithrung des klassischen Systems Engineering
basiert hingegen auf digitalen Modellen, die entlang des Produktentstehungsprozesses in-
tegriert werden [EKM17].

Die digitalen Modelle sind zum einen systemiibergreifend. Ein systemiibergreifendes Mo-
dell wird Systemmodell genannt. Fiir die Systemmodellierung gibt es verschiedene Mo-
dellierungssprachen, zum Beispiel die System Modeling Language (SysML) [OMGI17b|
und die Sperzifikationstechnik CONSENS, die aus den Arbeiten in [ADGT09| entstan-
den ist. Zum anderen sind die digitalen Modelle disziplinspezifisch. Beispiele dafiir sind
die M-CAD-Modelle in der Mechanik und die UML-Modelle in der Softwareentwicklung.

Abbildung 2.18 zeigt schematisch den Zusammenhang zwischen den Modellarten.

Systemmodell \
\»

M-CAD-Modelle

Simulationsmodelle <&

A Z

UML-Modelle E-CAD-Modelle

Abbildung 2.18: Digitale Modelle in der Produktentwicklung gemif [EKM17]

Die aktuellen Herausforderungen des MBSE bestehen darin, die verschiedenen Model-
larten komsistent iiber den Produktlebenszyklus zu verwalten und Modellinformationen
bidirektional zwischen den verschiedenen Modellarten zu {ibertragen, um doppelte Daten-
eingaben und folglich Inkonsistenzen zu vermeiden. Als eine Losung fiir diese Herausforde-
rungen werden Product Lifecycle Management (PLM)-Systeme angesehen. PLM-Systeme
sind IT-Lésungen zur Umsetzung des fiir den Prozess der Produktentstehung notwendi-
gen Daten-Backbone [ES09]. Dem Management von Systemmodellen in PLM-Systemen
widmete sich zum Beispiel das Forschungsprojekt mecPro?, dessen Ergebnisse in [EKM17|
verdffentlicht wurden. Allerdings lag der Fokus auf der effizienten Verwaltung von SysML-
Modellen in PLM-Systemen. Folglich sind in mecPro? keine Losungen fiir den bidirektio-
nalen Informationsaustausch zwischen dem Systemmodell und den diszplinspezifischen
Modellen entstanden. Einem alternativen Ansatz widmete sich das Forschungsprojekt

CRYSTAL [Cryl7]. In diesem Forschungsprojekt wurde der Datenaustausch zwischen

95

Kapitel 2. Grundlagen

den verschiedenen Modellen bzw. zwischen den verschiedenen IT-Systemen, in denen die
Modelle verwaltet werden, auf Basis der OSLC-Spezifikation (Open Services for Lifecycle
Collaboration) realisiert [OSL17|. Es wurden zwar einige Implementierungen realisiert,
dennoch stellt der abschliefsende Bericht zur Einschitzung des Projektes fest, dass die

Kopplung von Modellen und IT-Systemen eine Herausforderung in der Praxis bleibt.

Da in diesen aktuellen Forschungsarbeiten keine grundséitzlichen Losungen fiir die ein-
gangs genannte Herausforderung erarbeitet werden konnten, ist es naheliegend zu erwar-
ten, dass diese Herausforderungen auch in der Praxis ungel6st sind. Folglich kann fiir
diese Arbeit nicht davon ausgegangen werden, dass Systemmodelle, die mit Methoden des
Systems Engineering entwickelt werden, in die Modelle und Artefakte der doménenspe-
zifischen Disziplinen konsistent {ibertragen werden. Vielmehr werden die Informationen
aus den Systemmodellen, sofern Systemmodelle vorhanden sind, manuell in die doma-
nenspezifischen Modelle und Artefakte iibertragen. Die einzelnen Doménen sind in der
Praxis nach wie vor relativ autarke Disziplinen im Rahmen des Produktentstehungspro-
zesses. Dies gilt auch fiir die Softwareentwicklung. Die in dieser Arbeit getétigte fokussierte
Betrachtung des Softwareentwicklungsprozesses als einen doméanenspezifischen Entwick-

lungsprozess mit stark wachsender strategischer Bedeutung ist daher gerechtfertigt.

2.5 Softwareentwicklungsprozess

2.5.1 Definition und Eigenschaften

Ein Softwareentwicklungsprozess hat zum Ziel, in einem vereinbarten zeitlichen Rahmen
eine definierte Aufgabenstellung, und zwar die Erstellung eines Softwareproduktes bzw.
einer Softwareversion, durch einen bekannten Personenkreis zu erledigen. Um die Chancen
zu erhohen, dass die Entwicklungsziele bezogen auf Qualitdt, Quantitit, Entwicklungs-
dauer und Kosten (vgl. Teufelsquadrat in Abschnitt 2.1.2) erreicht werden, ,sollte jede
Softwareentwicklung in einem festgelegten organisatorischen Rahmen erfolgen [Bal00).

Dieser organisatorische Rahmen wird ,Vorgehensmodell“ genannt.

Ein Metamodell fiir die Beschreibung von Softwareentwicklungsprozessen bzw. Vorgehens-
modellen ist das Software Process Engineering Metamodel (SPEM) [OMG17a]. Motivation
fiir die Erstellung von SPEM war die Notwendigkeit, ein einheitliches Beschreibungsformat
fiir die Vielzahl an existierenden Vorgehensmodellen zu schaffen, da deren unterschiedliche

Beschreibungsformate eine Austauschbarkeit und Vergleichbarkeit kaum ermoglichen.

Das SPEM-Metamodell ist in UML modelliert. Es beschreibt mehrere Pakete, die verschie-
dene Elemente enthalten (Abbildung 2.19). Das Paket MethodContent enthilt diejenigen

o6

Kapitel 2. Grundlagen

MethodPlugin
__________ <<merge>>_ _ _ _ _ ___
\
\
\
\
Ve N \
Pl ‘c<merge>> \
Vs \ \
- \
: ProcessWithMethods |
|
| L __ <<merge>> MethodContent
1
: _____ R
| |
|<< >> | !
ls<merge | - I<<merge>>
| | <<merge>> Y erge
| . g
| :<<merge>> ProcessBehavior P
| | ManagedContent
| |
| |
| |
|
| * Z
oS P sStructure | - /
~ roces /
\\\A ‘/«’merge» /<<merge>>
/
Core
»
" T~~~ _ <<merge>>
Bt

Abbildung 2.19: Struktur des SPEM-Metamodells geméf [OMG17a]

Elemente, mit denen die Prozesse eines Vorgehensmodells definiert werden. Zur Model-
lierung von Prozessaufgaben, von Prozessrollen und von Prozessergebnissen sind die in

Tabelle 2.4 aufgefiihrten Elemente vorgesehen.

Obwohl das SPEM-Metamodell zahlreiche weitere Elemente enthélt, soll nicht tiefer dar-
auf eingegangen werden, da im weiteren Verlauf dieser Arbeit lediglich auf die drei in
Tabelle 2.4 aufgefiihrten Elemente zur Beschreibung eines Vorgehensmodells Bezug ge-

nommen wird.

Eine Studie aus dem Jahr 2013 belegt, dass die Anwendung von Vorgehensmodellen, zu-
mindest in Deutschland, de facto durchgéngig etabliert ist [KL14]. Lediglich 2,1 % der
befragten Personen gaben an, dass in ihrer Organisation keines der zur Auswahl angebote-
nen Vorgehensmodelle zur Anwendung kommt. Gleichzeitig wird in dieser Studie deutlich,
dass sehr viele verschiedene Vorgehensmodelle angewendet werden: Das Spektrum reicht
von agilen Vorgehensmodellen wie zum Beispiel Software-Kanban [Hir08| oder Scrum
[Sch95] bis hin zu den als traditionell einzuordnenden Vorgehensmodellen, wie beispiels-
weise dem Wasserfall-Modell oder dem V-Modell [BoeT79).

Traditionelle Vorgehensmodelle werden auch als schwergewichtig bezeichnet [Han10]. Der
Grund fiir diese Attributierung soll am V-Modell erldutert werden:

Das V-Modell ist eine Erweiterung des Wasserfall-Modells mit integrierter Qualitatssiche-
rung durch definierte Verifikations- und Validationsaktivitdten [Bal97]. Abbildung 2.21

57

Kapitel 2. Grundlagen

Element Beschreibung

RoleDefinition Dieses Element beschreibt eine Prozessrolle, die im Software-
entwicklungsprozess aktiv ist. Die Beschreibung umfasst die
Fahigkeiten, die Kompetenzen und die Verantwortungen der
diese Prozessrolle ausfiillenden Person. Beispiele fiir jeman-
den, der diese Position innehaben kann, sind ein Program-
mierer oder ein Tester.

TaskDefinition Dieses Element beschreibt eine Prozessaufgabe, die durch ei-
ne Prozessrolle erledigt wird. Sie beschreibt die Eingaben der
Prozessaufgabe und deren Ausgaben. Beispiele fiir eine Pro-
zessaufgabe sind die Erstellung eines Dokuments oder eine
Programmieraufgabe.

WorkProductDefinition Dieses Element beschreibt die Ausgabe einer Prozessaufgabe.
Dies ist zum Beispiel ein Dokument oder ein Teil eines Quell-

textes.

Tabelle 2.4: Ausgewéhlte Elemente des SPEM-Package MethodContent [OMG17a]

zeigt ein Beispiel eines V-Modells. Die Phasen auf der linken Seite des ,V* entsprechen
den Phasen des Wasserfall-Modells, wobei die Ergebnisse einer Phase vorliegen miissen,
bevor die nachste Phase beginnen kann. Die Ergebnisse einer Phase sind Dokumente.
Die Stérken des V-Modells liegen in der abgestuften Vorgehensweise von der Anforde-
rungsspezifikation iiber das Design bis hin zur Implementierung. Jeder diese Stufen auf
der linken Seite des ,V* ist eine dedizierte Phase des Tests auf der rechten Seite des ,V*
zugeordnet. Softwareentwicklungen nach dem V-Modell haben einen starken Fokus auf

qualitatssichernden Mafnahmen.

Die Schwergewichtigkeit des V-Modells ergibt sich aus diesem dokumentenbasierten Ab-
lauf an Phasen: Dokumente kdnnen je nach Softwareentwicklungsprojekt sehr umfangreich
sein und folglich kann ihre vollstindige Erstellung lange Durchlaufzeiten eines Software-
entwicklungsprozesses bewirken. Auferdem leiten sich die Aufgaben in den weiteren Pha-
sen aus den erstellten Dokumenten ab. Sollten sich wiahrend des Softwareentwicklungs-
prozesses Anderungen zum Beispiel an den Anforderungen ergeben, so bewirken diese
Anderungen eine Nachbearbeitung aller abhiingigen Dokumente, eine iiberarbeitete Pro-
jektplanung und gegebenenfalls Anderungen der geplanten Endtermine. Die Planung ist
namlich eine zentrale Eigenschaft traditioneller Vorgehensmodelle: Alle Prozessaktivitéten

werden inhaltlich und zeitlich geplant, bevor an ihnen gearbeitet wird [Som12|.

Bis in den friihen 1990er Jahren war die Ansicht weit verbreitet, dass nur eine sorg-

faltige Planung die Basis fiir eine erfolgreiche Softwareentwicklung ist. Allerdings setze

o8

Kapitel 2. Grundlagen

sich zunehmend die Erkenntnis durch, dass der Planungsaufwand traditioneller Vorge-
hensmodelle fiir kleinere und mittlere Softwareprojekte zu groft ist und den gesamten
Softwareentwicklungsprozess beherrscht [Som12|. Daher wurden agile Vorgehensmodelle
vorgeschlagen, die auch leichtgewichtige Vorgehensmodelle genannt werden. Ziel der agilen
Vorgehensmodelle ist eine Fokussierung auf die Entwurfs- und Implementierungsaktivita-
ten. Die zugrundeliegenden Paradigmen sind im Manifest fiir Agile Softwareentwicklung
beschrieben [Man17]. Die prinzipielle Vorgehensweise agiler Vorgehensmodelle wird im
Folgenden am Beispiel von Scrum erldutert. Die Erlauterungen sind eine Zusammenfas-

sung aus [Som12].

Scrum wurde erstmalig in [Sch95| présentiert. Das Vorgehen in Scrum besteht aus drei
Phasen: einer allgemeinen Planungsphase, einer Serie an Sprint-Zyklen und einer Pro-
jektabschlussphase (Abbildung 2.20). In der allgemeinen Planungsphase werden die iiber-
geordneten Ziele des Softwareentwicklungsprojektes und die grobe Softwarearchitektur
festgelegt. In der Projektabschlussphase wird das Softwareentwicklungsprojekt vervoll-
standigt, zum Beispiel durch eine Softwaredokumentation, und es erfolgt eine Projekt-
retrospektive, in der die positiven und negativen Aspekte des Projektes aufgearbeitet

werden. Das Herzstiick von Scrum bilden die Sprint-Zyklen.

Auswdhlen

Bewerten

(I

Grobplanung und
Architekturentwurf

Projektabschluss

i

(—

Besprechen Entwickeln

Sprint-Zyklus

Abbildung 2.20: Die Phasen in Scrum geméf [Som12]

Ein Sprint ist eine Planungseinheit in der ausgesuchte Arbeitspakete bearbeitet werden.
Ein Sprint hat immer eine feste Dauer, meistens zwei oder vier Wochen. Am Ende ei-
nes Sprints miissen die Arbeitspakete erledigt sein, so dass immer eine funktionsfahi-
ge Software verfiighar ist. Die in einem Sprint zu bearbeitenden Arbeitspakete leiten
sich aus dem Produkt-Backlog ab, der Sammlung an Anforderungen an das Softwarepro-
jekt. Die Anforderungen werden Produkt-Backlog-Items genannt. In jedem Sprint werden
Produkt-Backlog-Ttems aus dem Produkt-Backlog ausgewihlt und in das Sprint-Backlog
iiberfiithrt. Ein grofler Vorteil von Scrum gegeniiber den traditionellen Vorgehensmodel-

len besteht in der Flexibilitdt der Auswahl der Produkt-Backlog-Items: Im Verlauf eines

29

Kapitel 2. Grundlagen

Scrum-Projektes wird die Reihenfolge der Bearbeitung der Produkt-Backlog-Ttems be-
stimmt, urspriinglich angedachte Produkt-Backlog-Items konnen verworfen werden und
neue, erst wihrend des Projektverlaufs generierte Anforderungen kénnen in das Produkt-
Backlog aufgenommen werden. Die Basis fiir diese Entscheidungen (Reihenfolge, Loschung
bzw. Hinzufiigen von Anforderungen) ist die funktionsfihige Software, die zum Ende je-
des Sprints verfiigbar ist und mit den Auftraggebern bzw. Stakeholdern des Software-
entwicklungsprojektes besprochen wird. Die Produkt-Backlog-Items sind folglich zentrale
Artefakte der Steuerung eines Scrum-Projektes. Die Idee der Steuerung eines Softwareent-
wicklungsprozesses mit Hilfe von Items wird in dem spéter folgenden Entwurf des Sliced
V-Modells aufgegriffen.

In [KL14] wird betont, dass die meisten Organisationen das jeweils verwendete Vorge-
hensmodell an ihre Bediirfnisse adaptieren. Dies wird ,tailoring* genannt. Es kann folglich
davon ausgegangen werden, dass jede Organisation, jede Firma oder jeder produzierende
Betrieb ein spezifisches Vorgehensmodell anwendet. Dies gilt auch fiir den Kooperations-
partner: Er setzt ein ,getailortes” V-Modell der DIN EN 61508-3 ein. Das V-Modell der
DIN EN 61508-3 wird im néchsten Abschnitt erlautert.

In der Softwareentwicklung arbeiten viele Personen zusammen, die unterschiedliche Auf-
gaben haben, wie zum Beispiel Projektleitung, Programmierung oder Testen. Fiir die
Zusammenarbeit in der Softwareentwicklung werden zunehmend sogenannte ,Collabo-
ration Tools” eingesetzt, die insbesondere in verteilten Softwareentwicklungen bendtigt
werden [LEPV10, CAO01]. Dies sind Werkzeuge, mit denen bestimmte Aufgaben wihrend
der Softwareentwicklung durchgefiihrt werden, zum Beispiel Versionsmanagement, Fehler-
verfolgung oder Anforderungsmanagement. ,Verteilte Softwareentwicklung” bedeutet zum
einen eine global verteilte Softwareentwicklung iiber mehrere Lander und zum anderen ei-
ne Verteilung {iber mehrere Standorte, die relativ nahe beieinanderliegen. So finden zum
Beispiel die Softwareentwicklungen beim Kooperationspartner an zwei Standorten statt,
die lediglich 30 km auseinanderliegen. Selbst Softwareentwicklungen, die an einem Stand-
ort stattfinden und bei denen die beteiligten Personen in unterschiedlichen Gebaduden

arbeiten, kann als eine verteilte Softwareentwicklung angesehen werden.

Der Zugriff von verteilten Arbeitsplitzen auf alle im Softwareentwicklungsprozess entste-
henden Daten, die zeitgleiche Bearbeitung von Dokumenten, E-Mail-Benachrichtigungen
bei Anderungen von Daten, die zentrale Speicherung von Daten und vieles mehr sind
Grundfunktionen von Collaboration Tools. Sie vereinfachen die Zusammenarbeit in ver-
teilten Softwareentwicklungen, da alle beteiligten Personen jederzeit auf die aktuellsten

Daten zugreifen kénnen.

Wahrend sich etliche Collaboration Tools auf eine bestimmte Facette der Softwareentwick-

lung konzentrieren, also zum Beispiel nur auf das Anforderungsmanagement wie IBM

60

Kapitel 2. Grundlagen

Rational DOORS [DOO17|, haben Systeme fiir das sogenannte ,Application Lifecycle
Management (ALM-Systeme) das Ziel, den gesamten Softwareentwicklungsprozess zu
unterstiitzen. ALM-Systeme sind werkzeugbasierte Losungen fiir die Koordination von
Softwareentwicklungsaktivitdten sowie fiir das Management von Softwareartefakten, zum
Beispiel von Produktanforderungen oder von Testfdllen [Juk11]|. Ein ALM-System kann

folglich als ein umfassendes Collaboration Tool angesehen werden.

Da Collaboration Tools in der Regel den Zugriff auf die gespeicherten Daten IT-basiert
iiber API ermoglichen, kénnen Informationsverarbeitungssysteme auf diese Daten zugrei-
fen. Die Nutzung von Collaboration Tools vereinfacht folglich die I'T-basierte Erfassung

von Softwarekennzahlen.

2.5.2 Softwareentwicklungsprozess beim Kooperationspartner
2.5.2.1 V-Modell der DIN EN 61508-3

Der Softwareentwicklungsprozess beim Kooperationspartner orientiert sich an der DIN
EN 61508. Die DIN EN 61508 ist eine aus acht Teilen bestehende Normenreihe fiir die
Entwicklung von sicherheitsgerichteten Produkten. Sicherheitsgerichtete Produkte wer-
den entworfen, um gefahrbringende Zustédnde zu verhindern [DKE10b|. Ein gefahrbrin-
gender Zustand ist ein Zustand, in dem Menschen und/oder Maschinen gefdhrdet sind.
Die Anforderungen an die Softwareentwicklung und das V-Modell sind im dritten Teil der
Normenreihe, der DIN EN 61508-3, beschrieben [DKE10a].

Der Kooperationspartner nutzt die DIN EN 61508 seit Beginn der Entwicklung der ers-
ten sicherheitsgerichteten Produkte. In der Softwareentwicklung wurde die Norm zu-
nachst nur fiir die Entwicklung sicherheitsgerichteter Softwareprodukte verwendet. Spater
wurde entschieden, das V-Modell der DIN EN 61508-3 auch fiir die Entwicklung nicht-

sicherheitsgerichteter Softwareprodukte zu verwenden.

Das V-Modell der DIN EN 61508-3 ist in mehrere Phasen aufgeteilt, in denen definierte
Aktivitidten stattfinden (Abbildung 2.21). In der DIN EN 61508-3 heifst es: ,Die Ergeb-
nisse der Aktivitdten im Softwaresicherheitslebenszyklus miissen dokumentiert werden®.
Die wihrend einer Phase entstandenen Dokumente sind die Ausgaben dieser Phase, die
gleichzeitig die Eingaben fiir die néchste Phase darstellen. Beispiele fiir Ausgaben sind
die Spezifikation der Anforderungen an die Sicherheit der Software und die Spezifikation

des Softwaresystementwurfs.

Die inhaltliche Tiefe der Dokumentation wird zwar nicht durch die Norm vorgeschrieben,
in der Praxis wird jedoch detailliert dokumentiert. Der Grund dafiir ist, dass sicherheits-

gerichtete Produkte erst verkauft werden diirfen, nachdem unabhéngige Priifinstitute ein

61

Kapitel 2. Grundlagen

Spezifikation der Validierung
Anforderung an die - .
Sicherheit der Validierungspriifung
Software
Ausgabe

Verifikation Integrationstest
---------------------- (Bauteile, Teilsysteme,

prog. Elektronik)

Software- | Integrationstest
Systementwurf (Module)
Modulentwurf =~ [«=--sssssesecscsoceceocococeocooonona- Modultest
A
Codierung

Abbildung 2.21: V-Modell geméf DIN EN 61508-3 [DKE10a)

Produktzertifikat erteilt haben. Die Priifinstitute vergeben das Zertifikat erst nach einer
Priifung der Vollstandigkeit und Korrektheit der Dokumentation und der Traceability.

Die DIN EN 61508-3 fordert eine Vorwérts- und eine Riickwértstraceability zwischen
allen Eingaben und Ausgaben. Traceability ,refers to the ability to describe and follow
the life of a requirement, in both a forwards and backwards direction” [GF94|. Ein aktives
Traceability-Management erhoht die Qualitdt von Softwareentwicklungen [WP10]. Bei
Anwendung des V-Modells der DIN 61850-3 muss eindeutig nachvollziehbar sein, wie die
Ergebnisse einer Phase in den Ergebnissen der néchsten Phase beriicksichtigt werden, wie

zum Beispiel eine Anforderung in der Softwarearchitektur beriicksichtigt wird.

2.5.2.2 Anpassungen an das DIN EN 61508-3 V-Modell

Beim Kooperationspartner wurden die von der DIN EN 61850-3 geforderten Dokumente
urspriinglich mit MS Word erstellt. Um die Traceability nachzuweisen, wurden einzelne
Abschnitte in den Dokumenten mit einer eindeutigen Identifikationsnummer (ID) mar-
kiert. Diese IDs wurden in Traceability-Matrizen eingetragen, die mit MS Excel erstellt
wurden. Eine Traceability-Matrix zeigt den Zusammenhang zwischen den IDs zweier Do-

kumente. Tabelle 2.5 zeigt das Konzept einer Traceability-Matrix.

62

Kapitel 2. Grundlagen

Dokument B:
ID101 1ID242 1D345 1ID556 ID789
Dokument A:
1D100 X
1D223 X
1D320 X X
1D894 X

Tabelle 2.5: Schematisches Konzept einer Traceability-Matrix

Diese Vorgehensweise erwies sich als aufwendig und fehleranfillig, insbesondere wenn meh-
rere tausend IDs in der Entwicklung eines Softwareproduktes verwaltet werden mussten.
Zu jeder Anderung in einem Dokument musste iiber die Traceability-Matrizen analysiert
werden, welche Textpassagen in den nachfolgenden Dokumenten von dieser Anderung be-
troffen sein konnten. Jede neue ID musste in die Traceability-Matrizen iiberfiihrt werden.
Da diese und dhnliche Bearbeitungsschritte mehrere Minuten dauern konnten, empfanden
die Mitarbeiter dieses Vorgehen als mithsam. Aufserdem kam es aufgrund der Grofe der
Dokumente und der Traceability-Matrizen regelmékig zu Fehlern (zum Beispiel indem ein
Kreuz in der Traceability-Matrix falsch gesetzt wurde), sodass zeitintensive Dokumenten-

reviews durchgefiihrt werden mussten.

Zudem erwies sich das teamiibergreifende Dokumentenmanagement mit MS Word als
kompliziert. Die Dokumente wurden in einem Netzwerklaufwerk gespeichert. Die Mitarbei-
ter wurden nicht automatisch iiber Anderungen an den Dokumenten informiert, sondern
der Mitarbeiter, der eine Anderung vorgenommen hatte, musste die anderen Mitarbeiter

informieren. Zudem war ein gleichzeitiges Bearbeiten von Dokumenten nicht moglich.

Aus den aufgefiihrten Griinden benétigte der Kooperationspartner eine Losung, um die
bestehenden Nachteile in der Anwendung des V-Modells zu beheben. Die Auswahl eines
alternativen Vorgehensmodells wurde nicht in Betracht gezogen, da ein Teil der Softwa-
reprodukte zertifiziert wird und Voraussetzung fiir die Zertifizierung die Anwendung des
V-Modells der DIN EN 61508-3 ist. Der Kooperationspartner hatte daher gepriift, wie
die aufgefiihrten Nachteile beseitigt werden konnten. Als Ergebnis dieser Priifung wurde
die Einfiihrung eines ALM-Systems beschlossen und in internen Prozessbeschreibungen
wurde definiert, wie das V-Modell der DIN EN 61508-3 in dem ALM-System zu realisie-
ren ist. Des Weiteren wurde im Zuge dessen das Versionsmanagementsystem gewechselt.

Mittlerweile werden folgende Collaboration Tools eingesetzt:

e ALM-System: Polarion ALM [Siel7|

e Versionsmanagementsystem: Subversion [Apal7|

63

Kapitel 2. Grundlagen

Die Einfiihrung des angepassten V-Modells erfolgte schrittweise {iber mehrere Jahre. Wiah-
rend seiner Gestaltung wurde die Erfassung von Kennzahlen nicht beriicksichtigt, da zu
dem Zeitpunkt der Anpassung sdmtliche Entwicklungskennzahlen in der im Abschnitt
1.3 erlauterten Projektmanagementdatenbank erfasst wurden. Wie bereits begriindet, ist

dieses Vorgehen fiir die Softwareentwicklung nicht mehr ausreichend.

2.6 Zusammenfassung

Dieser Arbeit liegt die Uberzeugung zugrunde, dass die Domiine der Softwareentwicklung
von der Produktionsdoméne lernen kann und grundséitzlich Methoden und Kennzahlen

von der Produktionsdomaéane in die Softwaredoméne transferiert werden konnen.

Kennzahlen sind Zahlen, die in verdichteter Form quantitativ oder qualitativ messbare
Sachverhalte wiedergeben. Fiir ihr Verstdndnis muss ein Adressat einer Kennzahl deren
Semantik verstehen. Da aus der Literatur keine einheitliche Definition fiir die Semantik
einer Kennzahl bekannt ist, wird fiir diese Arbeit definiert, dass der Name, die Mafeinheit,
der Wertebereich, der Idealwert, die Mdoglichkeit der Vergabe von Soll-Werten, das Ziel,

die Frage und die Interpretation die Semantik einer Kennzahl beschreiben.

Kennzahlen werden mit Hilfe von Informationsverarbeitungssystemen erfasst und ver-
arbeitet. Im Entwurf eines Informationsverarbeitungssystems sind verschiedene Gestal-

tungsgrundsitze zu beriicksichtigen, die im Abschnitt 2.1.1 aufgefiihrt sind.

Es sind keine Beispiele bekannt, in denen Produktionskennzahlen in der Doméne der Soft-
wareentwicklung genutzt werden. Folglich fehlt eine Methode, mit der HW-Produktions-
kennzahlen in die Doméne der Softwareentwicklung transferiert werden konnen. Diese
Aufgabenstellung ist in dieser Arbeit zu 16sen. Es gibt mehrere Methoden bzw. Prozessbe-
schreibungen, mit denen sich Kennzahlen zielorientiert bestimmen lassen, von denen drei
niher betrachtet wurden: die Balanced Scorecard, die Norm ISO/IEC/IEEE 15939 und
die GQM-Methode. Grundsitzlich sind alle drei Methoden bzw. Prozessbeschreibungen
als Basismethode fiir eine neu zu entwickelnde Kennzahlentransfermethode geeignet. Da
allerdings die GQM-Methode die Anforderungen an eine Basismethode am besten erfiillt,
wird sie als Basismethode gewahlt. Die neu zu entwickelnde Methode muss gewéhrleisten,
dass die Semantik der HW-Produktionskennzahlen nach dem Kennzahlentransfer erhalten
bleibt.

Vorgehensmodelle bilden den organisatorischen Rahmen von Softwareentwicklungspro-
zessen. Bei der praktischen Umsetzung von Vorgehensmodellen sollten sogenannte Col-
laboration Tools angewendet werden. Deren Einsatz verbessert die Zusammenarbeit im

Softwareentwicklungsprozess und vereinfacht die Datenerfassung mit Hilfe eines Informa-

64

Kapitel 2. Grundlagen

tionsverarbeitungssystems. Der Kooperationspartner wendet ein auf der DIN EN 61508-3
basierendes V-Modell unter Einbeziehung eines ALM-Systems und eines Versionsmana-
gementsystem an. Allerdings wurde in der Gestaltung dieses angepassten V-Modells die
Erfassung von Kennzahlen nicht beriicksichtigt. Die Aufgabenstellung, das V-Modell ent-
sprechend zu gestalten und die Erfassung von SW-Produktionskennzahlen und Software-

kennzahlen zu ermoglichen, ist in dieser Arbeit zu l6sen.

Fiir die Erreichung der in der Abbildung 1.5 gezeigten Zielsituation ist es auferdem not-
wendig, die Softwarekennzahlen in der Menge Kg aus den operativen Zielen zu bestim-
men. Dafiir wiren grundsétzlich wiederum die Balanced Scorecard, die ISO/IEC/IEEE
15939 und die GQM-Methode geeignet. Da letztere als Basismethode fiir eine Kennzah-
lentransfermethode ausgewihlt wurde, wird festgelegt, sie auch fiir die Bestimmung der
Softwarekennzahlen zu verwenden, um eine einheitliche Methode fiir das Losen mehrerer

Aufgabenstellungen dieser Arbeit einzusetzen.

65

Kapitel 3

Transfer von Produktionskennzahlen

Dieses Kapitel widmet sich der ersten Detailfrage dieser Arbeit: Wie kdnnen SW-
Produktionskennzahlen, die die Semantik der dquivalenten HW-Produktionskennzahlen
beibehalten, gebildet werden? Es wird eine auf der GQM-Methode aufbauende Metho-
de entwickelt, mit der Produktionskennzahlen in die Domé&ne der Softwareentwicklung
transferiert werden konnen. Diese Methode wird Reversed-Goal-Question-Metric-Methode
(RGQM-Methode) genannt. Des Weiteren wird ein Anwendungsbeispiel der RGQM-
Methode erldutert. Die Inhalte dieses Kapitels entstanden iterativ in den Design Research-

Entwurfsphasen Erstellen und FEvaluierung (vgl. Abschnitt 1.5).

Erste Konzepte der RGQM-Methode wurden in [DD15] veréffentlicht und in einem Work-
shop einem Fachpublikum zur Diskussion gestellt [Deul6]. Abbildung 3.1 zeigt, welche
Inhalte in diesem Kapitel behandelt werden und an welcher Stelle diese Inhalte zur Errei-

chung der Zielsituation dieser Arbeit beitragen. Das graue Rechteck markiert den Inhalt:
den Transfer der Kennzahlen in Ky nach Kgy mit Hilfe der RGQM-Methode.

Management
Formulierung Interpretation T
Strategische Transfer \
Ziel Kiw e Ksw
1ele Erfassung
Berlicksichtigung Verdichtu ng*
Softwareteam Gestaltung Software-
entwicklungsprozess
Formulierung Interpretation
Operative Definition Erfassung

Ziele

Abbildung 3.1: Inhalt des Kapitels 3 in Bezug auf die Zielsituation dieser Arbeit

66

Kapitel 3. Transfer von Produktionskennzahlen

3.1 RGQM-Methode

Im Abschnitt 2.3.1 wurde das Grundkonzept des angestrebten Kennzahlentransfers er-
lautert und in Abbildung 2.10 schematisch dargestellt. Mit einer Basismethode ist eine
existierende Methode fiir die Bestimmung von Kennzahlen gemeint. Damit mit der Ba-
sismethode das Grundkonzept realisiert werden kann, muss sowohl ein eindeutiger Zu-
sammenhang zwischen Ziel und Kennzahl als auch zwischen Interpretation und Kennzahl
hergestellt werden (vgl. Anforderungen Al und A2 in Abschnitt 2.3.1).

Fiir die Auswahl der Basismethode wurden drei Methoden nidher betrachtet: die Balanced
Scorecard, die Norm ISO/IEC/IEEE 15939 und die GQM-Methode. Wie im Abschnitt
2.3.5 aufgefiihrt, erfiillen zwar alle drei Methoden beide Anforderungen, die Balanced Sco-
recard und die Norm ISO/IEC/IEEE 15939 jedoch nur eingeschrinkt. Die GQM-Methode
erfiillt beide Anforderungen ohne Einschrankung. Sie wird daher als Basismethode fiir die

im folgenden Abschnitt beschriebene Methode zum Kennzahlentransfer ausgewihlt.

3.1.1 Konzept

Wie bereits in Abschnitt 2.3.4 erldutert, spielen in der GQM-Methode das Ziel und die
Interpretation einer Kennzahl folgende Rollen: das Ziel ist der Ausgangspunkt fiir die Be-
stimmung einer Kennzahl, die Interpretation unterstiitzt bei der Uberpriifung der Zieler-
reichung. Mit Hilfe der in diesem Abschnitt entworfenen RQGM-Methode werden sowohl
das Ziel als auch die Interpretation einer HW-Produktionskennzahl in die Doméne der
Softwareentwicklung iibertragen. Durch diese Ubertragung entsteht eine SW-Produktions-

kennzahl.

Die RQGM-Methode iibernimmt das in Abschnitt 2.3.4 beschriebene Phasenmodell der
GQM-Methode mit den vier Phasen Planung, Definition, Datenerfassung und Interpre-
tation (Abbildung 3.2). Der Planungsphase und der Interpretationsphase wird das Vor-
gehen der Planungsphase bzw. der Interpretationsphase der GQM-Methode zugrunde ge-
legt. Das bedeutet, dass sich in diesen beiden Phasen die RGQM-Methode nicht von der
GQM-Methode unterscheidet. In der Datenerfassungsphase werden die SW-Produktions-
kennzahlen erfasst. Die genaue Implementierung der Datenerfassung hangt von den ein-

zelnen Kennzahlen ab.

In der RGQM-Definitionsphase wird der Weg der zielorientierten Bestimmung von Kenn-
zahlen der GQM-Methode genutzt, jedoch wird dieser Weg zunéchst in entgegengesetzter
Richtung durchlaufen. Abbildung 3.3 zeigt schematisch die RGQM-Definitionsphase, die
eine konkrete Umsetzung des im Abschnitt 2.3.1 erlauterten Grundkonzepts eines Kenn-
zahlentransfers darstellt (vgl. Abbildung 2.10).

67

Kapitel 3. Transfer von Produktionskennzahlen

[. [- Ziel-
L Ziel = .
erreichung
c
Frage © ®| Frage = L Antwort
c KT
© W =
o o 2
£ > 9
ko Kennzahl e Kennzahl > Messwerte
p Interpretation
Definition A
> Erfasste Daten |
Planung Datenerfassung

Abbildung 3.2: Phasen der RGQM-Methode

Die gestrichelte Linie symbolisiert das logische Ergebnis des Kennzahlentransfers: Eine
existierende HW-Produktionskennzahl kg, wird in eine SW-Produktionskennzahl kgy,
transferiert. Die durchgezogenen Linien symbolisieren den Abarbeitungspfad des Kenn-
zahlentransfers. Dabei wird ausgehend von kg die dazugehorende Frage Qpn,, und das
dazugehorende Ziel Gy, fiir den Produktionsprozess ermittelt. Es wird gepriift, ob das
Ziel nicht nur fiir den Produktionsprozess giiltig ist, sondern auch auf den Softwareent-
wicklungsprozess iibertragen werden kann (Gjg,). Damit ein Ziel iibertragen werden kann,

sollte es abstrakt formuliert sein.

Wie in Abschnitt 2.1.1 erldutert, ist ein abstraktes Ziel weder terminiert noch quantifiziert.
Konkret formulierte Ziele sind dagegen terminiert und quantifiziert und stehen somit in

direktem Bezug zur Produktion. Daher ist ein Transfer konkreter Ziele nicht moglich.

Falls das Ziel iibertragen werden kann, wird im Anschluss das zielorientierte Bestimmen

einer Kennzahl gemaf GQM-Methode angewendet und die Frage (js, formuliert. Im

Produktion Softwareentwicklung

G.khw > G.ksw

Entgegengesetzte Definition
Definition

Abbildung 3.3: RGQM-Definitionsphase

68

Kapitel 3. Transfer von Produktionskennzahlen

Unterschied zur GQM-Methode steht jedoch die Kennzahl bereits fest, mit der die Frage
beantwortet wird: Es ist die SW-Produktionskennzahl kgy,. Anders als bei der GQM-
Methode muss folglich eine neue Kennzahl nicht bestimmt werden. Abschliefend wird
bewertet, ob die Interpretation I, der SW-Produktionskennzahl im Grundsatz identisch
zur der Interpretation Iy, der HW-Produktionskennzahl ist. Nur wenn all diese Schritte

erfolgreich abgearbeitet werden konnen, ist die Produktionskennzahl transferierbar.

Die RGQM-Definitionsphase setzt sich aus acht aufeinanderfolgenden Bearbeitungsschrit-

ten zusammen, die im folgenden Abschnitt erliutert werden.

3.1.2 Bearbeitungsschritte

Abbildung 3.4 ordnet die acht RGQM-Bearbeitungsschritte in die RGQM-
Definitionsphase ein. Sie beginnt mit der Identifizierung einer HW-Produktionskennzahl
kgw (D) und endet mit der Ermittlung der Interpretation der SW-Produktionskennzahl

ksw (®).

Fiir die Durchfiihrung der RGQM-Methode ist ein Team verantwortlich, das in der
RGQM-Planungsphase zusammengestellt wird (vgl. Abschnitt 2.3.4). Im Folgenden wer-
den die RGQM-Bearbeitungsschritte zwar im Passiv beschrieben, dennoch ist ein aktive
Durchfiihrung der RGQM-Methode durch das Projektteam bzw. durch eine benannte

Person gemeint.

Bearbeitungsschritt 1 (Identifizierung der HW-Produktionskennzahl kg):

Alle im Produktionsprozess eingesetzten HW-Produktionskennzahlen werden gesichtet.
Es wird analysiert, welche dieser HW-Produktionskennzahlen das Management verwen-
det und folglich Teil der Menge Ky sind (vgl. Abbildung 1.3). In der Regel werden nicht

Produktion Softwareentwicklung
A

c Gkhw > Gksw

Qo

=

=

&

()

a

[J] c

i Q

= =

2 £
[}

a0 o

[J]

5 O, OO ©.

(V)

[T}

X

[

w

@kHW ___ > ksw@ v

Abbildung 3.4: Bearbeitungsschritte in der RGQM-Definitionsphase

69

Kapitel 3. Transfer von Produktionskennzahlen

alle in einem produzierenden Betrieb definierten HW-Produktionskennzahlen vom Mana-
gement genutzt. Dies ist zum Beispiel der Fall, wenn sie ausschlieklich der Uberpriifung

operativer Ziele dienen und folglich Teil der Menge Ky sind.

Anhand der vom Management verwendeten HW-Produktionskennzahlen ist zu entschei-
den, fiir welche der HW-Produktionskennzahlen der RGQM-Bearbeitungsprozess gestar-
tet wird. Insbesondere wenn die RGQM-Methode erstmalig angewendet wird, sollte die
Anzahl der ausgewahlten HW-Produktionskennzahlen begrenzt werden, um Erfahrungen
in der Anwendung der RGQM-Methode zu sammeln. Zwar stehen dann dem Management
noch nicht alle bendtigten Kennzahlen zur Steuerung des Softwareentwicklungsprozesses
zur Verfiigung. Dennoch sind, anders als vor der erstmaligen Anwendung der RQGM-
Methode, bereits einige SW-Produktionskennzahlen verfiighbar, was als eine Verbesserung

der Ausgangssituation angesehen wird.

Bearbeitungsschritt 2 (Identifizierung der zu kyy gehdrenden Frage Qppy):

Im néchsten Schritt wird Qyp,, ermittelt. Dies ist die produktionsspezifische Frage, die mit
kgw beantwortet wird. Falls kg mit der GQM-Methode hergeleitet wurde, existiert be-
reits die Frage Qg Sie kann folglich durch Sichtung der vorhandenen GQM-Unterlagen
(Protokolle etc.) ermittelt werden. Da die GQM-Methode ihren Ursprung in der Softwa-
redoméne hat, ist es zwar unwahrscheinlich, dass die GQM-Methode in der Produktions-
doméne verwendet wird, auszuschliefen ist dies jedoch nicht. Falls kgy nicht mit der

GQM-Methode hergeleitet wurde bzw. keine Frage existiert, wird die Frage ermittelt.

Bearbeitungsschritt 3 (Identifizierung des zu Q. gehdrenden Ziels Gy,):

Grhy ist das fiir den Produktionsprozess formulierte strategische Ziel, dem die Frage Qpnw
zugeordnet ist. Falls kyy und folglich Qp,, urspriinglich mit der GQM-Methode herge-
leitet wurden, werden wiederum die existierenden GQM-Unterlagen genutzt, um Gy,
zu notieren. Andernfalls wird unter Einbindung des Managements das strategische Ziel
Grnw ermittelt, dem Qppe zugeordnet ist. Falls es zwar strategische Ziele gibt, aber keines
davon Qg zugeordnet werden kann, muss explizit das strategische Ziel Gy, formuliert
werden. Es wird angenommen, dass die Formulierung eines strategischen Ziels Gy, mog-
lich ist. Andernfalls wire die Nutzung von kgy in Frage zu stellen: Sie wird zwar vom

Management genutzt, aber ihre Erfassung dient keinem strategischen Ziel.

Bearbeitungsschritt 4 (Identifizierung der Interpretation Iy,):

Aus Abschnitt 2.1.1 ist bekannt, dass die Interpretation keinen eineindeutig beschreibba-
ren Informationsinhalt einer Kennzahl darstellt. Sie ist vielmehr eine Handlungsbeschrei-
bung des Adressaten der Kennzahl, der auf die Ist-Werte der Kennzahl reagiert. In diesem
RGQM-Bearbeitungsschritt wird folglich festgestellt, wie das Management die Ist-Werte
der HW-Produktionskennzahl kg fiir die Uberpriifung der Erreichung des dazugehdren-

den strategischen Ziels verwendet. Dies kénnen Soll- /Tst-Wert-Vergleiche, Grenzwertiiber-

70

Kapitel 3. Transfer von Produktionskennzahlen

priifungen oder Trendanalysen sein. Des Weiteren wird ermittelt, wie das Management
reagiert, wenn Ziele nicht erreicht werden. So kann es zum Beispiel ad-hoc-Mafnahmen

einleiten, wenn die Ist-Werte bestimmte Grenzwerte iiber- oder unterschreiten.

In diesem RQGM-Bearbeitungsschritt wird identifiziert, welches Verstéindnis das Mana-
gement von kg hat, fiir wie wichtig es kg fiir die Produktionssteuerung erachtet und

wie es auf abweichende Ist-Werte reagiert.

Bearbeitungsschritt 5 (Priifung der Giiltigkeit von Gy,):

Mit diesem Schritt beginnt der Transfer von kgy in die Softwaredoméne. Es wird bewer-
tet, ob das zu kyyw gehorende strategische Ziel Gy, auch, aus Sicht des Managements, auf
den Softwareentwicklungsprozess tibertragen werden sollte. Falls ja, miissen gegebenenfalls
produktionsspezifische Begriffe, sofern sie in Gy, verwendet werden, durch softwarespe-
zifische Begriffe ersetzt werden. Folglich wird aus Gy, ein fiir die Softwaredoméne ange-
passtes Ziel Gyg,. Ein Beispiel fiir ein iibertragbares strategisches Ziel mit angepassten

doménenspezifischen Begriffen ist:

Grnw: Verkiirzung der durchschnittlichen Durchlaufzeiten in der Produktion

Grsw: Verkiirzung der durchschnittlichen Entwicklungsdauer in der Softwareentwicklung

Sollte das Management zu der Einschitzung gelangen, dass Gjp, nicht fiir den Softwa-
reentwicklungsprozess gilt, ist der RGQM-Bearbeitungsprozess fiir die HW-Produktions-

kennzahl kyy beendet. Sie kann nicht in die Softwaredoméne transferiert werden.

Bearbeitungsschritt 6 (Formulierung der softwarespezifischen Frage Qs):

Falls Gp,, auf den Softwareentwicklungsprozess iibertragen werden soll, wird im néchsten
Schritt die Frage formuliert, die die SW-Produktionskennzahl beantwortet. Es wird be-
wertet, wie der Satzbau der Frage Q. in den Satzbau der Frage (s, iiberfiihrt werden
kann. Wie im Abschnitt 2.3.1 aufgefiihrt ist es notwendig, dass der Satzbau der Frage
Qihw libernommen wird. Die Frageninhalte in der Frage Qxs., beispielsweise ,Wie ist das
Verhéltnis von...zu..?, diirfen dagegen spezifisch fiir die Doméne der Softwareentwicklung
sein. Um die Frageninhalte der Frage Qx4 zu ermitteln, werden die Frageninhalte der Fra-
ge Qrnw in softwaredominenspezifische Frageninhalte abgebildet. Dieser Vorgang wird als

,Mapping* bezeichnet. Das Mapping jedes einzelnen Frageninhaltes wird begriindet.

Bearbeitungsschritt 7 (Ermittlung der Berechnungsgrundlagen von kg,):

Da kp,, bereits im Produktionsprozess erfasst und vom Management verwendet wird,
sind die dazugehdrenden Berechnungsgrundlagen definiert. Diese sind abhéngig von der
Kennzahl selbst und von der Frage, ob es sich um eine absolute Kennzahl oder eine
Verhiltniskennzahl handelt. Da k,,, in einer anderen Doméne als kj,, erfasst wird, kann

die Berechnungsgrundlage fiir k,, von der Berechnungsgrundlage fiir kj,, abweichen.

71

Kapitel 3. Transfer von Produktionskennzahlen

Wiéhrend der Erstellung der Berechnungsgrundlagen wird bewertet, ob die fiir kj,, gel-
tenden Semantikmerkmale Mafseinheit, Wertebereich, Idealwert und Mdéglichkeit der Fest-
legung von Soll-Werten auf kg, libertragbar sind. Dies erfolgt auf Basis einer konkreten
Berechnungsformel. Ist zum Beispiel ky,, eine Verhéltniskennzahl, die in % angegeben
wird und den Wertebereich von 0 % bis 100 % hat, muss die Berechnungsformel fiir k,,
die Ubertragung der aufgefiihrten Semantikmerkmale ermdglichen. In Gleichung 3.1 ist

die Berechnungsformel fiir dieses Beispiel gezeigt.

(3.1)

mit:
Aun Alle Artefakte
Acond Artefakte, flir die eine Bedingung gilt

ks ist ebenfalls eine Verhaltniskennzahl, die in % angegeben wird. Es ist naheliegend,

dass das Semantikmerkmal Name ohne gesonderte Priifung iibertragen wird.

Bearbeitungsschritt 8 (Ermittlung der Interpretation I;,):

ks kann transferiert werden, wenn die RGQM-Bearbeitungsschritte 1 bis 7 erfolgreich
sind und wenn k,, eine im Grundsatz identische Interpretation erlaubt wie kj,,. Wie
bereits in Abschnitt 2.3.1 erldutert, ist damit gemeint, dass das Management auf die Soll-
Werte von kg, dhnlich reagieren wiirde wie auf die Soll-Werte von kj,,. Um dies zu priifen,
wird mit dem Management erdrtert, wie es ky, fiir die Uberpriifung der Zielerreichung
strategischer Ziele verwenden wiirde. Diese Reaktion wird notiert. In deren Beschreibung
kénnen softwaredoménenspezifische Begriffe verwendet werden. Dieser zunéchst theoreti-
schen Betrachtung folgt eine praktische Evaluierung. Diese ist jedoch erst moglich, wenn
ein Informationsverarbeitungssystem verfiighar ist und damit Ist-Werte von kg, erfasst

werden.

Nach Abarbeitung aller RGQM-Bearbeitungsschritte hat die SW-Produktionskennzahl
ke, die meisten der im Abschnitt 2.1.1 definierten Semantikmerkmale der HW-
Produktionskennzahl £y, iibernommen und zwar: Name, Mafeinheit, Wertebereich, Ide-
alwert, Mdéglichkeit der Festlequng von Soll-Werten, Ziel und Interpretation (hier mit der

Einschréankung im Grundsatz identisch).

Die Frage, die mit der SW-Produktionskennzahl beantwortet wird und die ein weiteres Se-
mantikmerkmal darstellt, ist zwar im Satzbau identisch, jedoch kénnen die Frageninhalte
verschieden sein. Obwohl folglich eine andere Frage generiert wird, kann ein Manager mit
der SW-Produktionskennzahl in gleicher Art und Weise arbeiten, wie mit der dazugehd-

renden HW-Produktionskennzahl. Dies ist moglich, weil:

72

Kapitel 3. Transfer von Produktionskennzahlen

e die Fragestellung durch den gleichen Satzbau erhalten bleibt, wobei doménenspezi-

fische Frageninhalte verwendet werden,

e und weil beide Auspriagungen der Produktionskennzahl den Zielen Gy, bzw. Gy

zugeordnet sind, wobei Gy, das transferierte Gy, ist,

e und weil beide Ausprigungen der Produktionskennzahl im Grundsatz identisch in-

terpretiert werden.

Fiir die Vertiefung des Verstindnisses der RGQM-Methode wird im néchsten Abschnitt

ein Anwendungsbeispiel beim Kooperationspartner dargestellt.

3.2 Anwendungsbeispiel

3.2.1 Einfiihrung

In dem Anwendungsbeispiel werden fiinf HW-Produktionskennzahlen transferiert. Die fol-
gende Erlauterung orientiert sich an der Reihenfolge der RGQM-Bearbeitungsschritte: In
jedem RGQM-Bearbeitungsschritt werden jeweils alle fiinf HW-Produktionskennzahlen
genannt. Folglich wird nicht fiir jede einzelne HW-Produktionskennzahl jeweils ein
RGQM-Bearbeitungsschritt erlautert.

Zunéchst werden die RGQM-Bearbeitungsschritte 1 bis 6 dargestellt. Die RGQM-
Bearbeitungsschritte 7 und 8 werden im Abschnitt 6.3 erldutert, da fiir deren Nach-
vollziehbarkeit das Datenmodell des Softwareentwicklungsprozesses bekannt sein sollte,
welches in Abschnitt 5.2.2 beschrieben wird. Im Laufe des Anwendungsbeispiels entste-
hen Anforderungen an den Softwareentwicklungsprozess, die in dessen Gestaltung zu be-
riicksichtigen sind. Sie miissen erfiillt werden, damit die SW-Produktionskennzahlen von

einem Informationsverarbeitungssystem erfasst werden konnen.

3.2.2 RGQM-Bearbeitungsschritte
3.2.2.1 RGQM-Bearbeitungsschritt 1

Der Geschiftsbereichsleiter beim Kooperationspartner wurde befragt, welche der in
den unternehmensinternen Dokumenten beschriebenen HW-Produktionskennzahlen er
im Rahmen seiner aktuellen Managementtitigkeit fiir die Steuerung und Uberwachung
von Produktionsprozessen nutzt. Aus den von ihm genannten sieben HW-Produktions-

kennzahlen wurden die in Tabelle 3.1 gezeigten HW-Produktionskennzahlen ausgewéhlt.

73

Kapitel 3. Transfer von Produktionskennzahlen

Nr. HW-Produktionskennzahl Beschreibung

k10.1.1p, First Pass Rate | %] Verhéltnis von gefertigten Produkten, die
den Fertigungsendtest bestehen, zu allen ge-

fertigten Produkten

k11.1.1, Technische Riicklduferrate [%] Verhéiltnis von aus technischen Griinden
von Kunden zuriickgeschickten Produkten

zu allen gefertigten Produkten

k12.1.1p, Servicegrad | %] Verhéltnis termingerecht gefertigter Auf-
tragspositionen zu allen gefertigten Auf-
tragspositionen

k13.1.1p, Wertschopfung [€] Die auf Basis von Arbeitspldnen der Mitar-

beiter und Maschinenauslastungen ermittel-
ten Fertigungsplankosten, multipliziert mit
der Anzahl gefertigter Produkte

k13.2.1p, Produktivitét [€/h] Verhéltnis von Wertschépfung zu Ist-
Stunden der Mitarbeiter

Tabelle 3.1: Auswahl der HW-Produktionskennzahlen

Diese Auswahl basiert zum einen auf der vom Geschéftsbereichsleiter eingeschitzten Wich-
tigkeit der HW-Produktionskennzahlen. Zum anderen erfolgte die Auswahl aufgrund sei-
nes Wunsches, den Einsatz dieser HW-Produktionskennzahlen im Softwareentwicklungs-
prozess zu evaluieren. Zum Beispiel begriindete er den Wunsch an den Servicegrad wie
folgt:

Der Geschiftsbereichsleiter sei zwar in der Lage, die Lieferqualitit von grofsen Softwa-
refunktionen, die in der Regel von Grofskunden gefordert werden, einzuschétzen. Jedoch
konne er die Lieferqualitéit der vielen kleineren Softwarefunktionen nicht bewerten, da ihm
diese kleineren Softwarefunktionen nicht bekannt seien. Die grofen Softwarefunktionen
werden den Grofskunden zu Terminen geliefert, an deren Vereinbarung der Geschéftsbe-
reichsleiter mitgewirkt hat. Durch regelméfige Abstimmungen mit den Grofkunden und
den Softwareentwicklungsteams kann er einschitzen, ob diese Termine tatséchlich ein-
gehalten wurden bzw. wie grof die Lieferverzdgerungen sind. Die Erwartung an die SW-
Produktionskennzahl Servicegrad sei, dass er damit auch die Lieferqualitét der vielen klei-
nen Softwarefunktionen bewerten kénne. Genau dies ist mit der HW-Produktionskennzahl
Servicegrad fiir die Produktion mdoglich, wobei es sich dabei um Auftragspositionen statt
um Softwarefunktionen handelt. In dhnlicher Art und Weise dufserte er Wiinsche fiir die

anderen ausgewahlten HW-Produktionskennzahlen.

Wie im Folgenden aufgefiihrt, gibt es fiir die First Pass Rate, fiir die Technische Riick-

lauferrate und den Servicegrad je ein zugeordnetes strategisches Ziel (G10xpw, G11lgpu,

74

Kapitel 3. Transfer von Produktionskennzahlen

G12jp). Die Wertschopfung und die Produktivitdt werden einem strategischen Ziel
G13kne zugeordnet, beantworten dabei jedoch unterschiedliche Fragen. Die Nummerie-
rung dieser beiden HW-Produktionskennzahlen beginnt daher mit der Ziffer 13. Wie in
Abschnitt 4.2 begriindet wird, erfolgt eine 10er-Nummerierung, um strategische von ope-

rativen Zielen unterscheiden zu konnen.

Wie bereits in Abschnitt 1.2 erldutert, sind die beim Kooperationspartner eingesetzten
HW-Produktionskennzahlen betriebsspezifisch. Damit ist gemeint, dass die Auswahl und
ihre Semantik betriebsspezifisch sind. Die fiinf HW-Produktionskennzahlen in Tabelle 3.1
bestitigen die Erlduterung: Fiir die First Pass Rate, die Technische Riicklduferrate und
den Servicegrad ist nicht bekannt, ob sie mit diesem Namen und der in der Tabelle 3.1
aufgefithrten Beschreibung in anderen produzierenden Betrieben verwendet werden. Die
Wertschopfung und die Produktivitat sind Kennzahlen, deren allgemein bekannte De-
finitionen von den Beschreibungen in Tabelle 3.1 abweichen. In der Erlauterung 2.1 in
Abschnitt 2.1.3 wurde bereits die betriebsspezifische Semantik der Wertschépfung be-
schrieben, die von der allgemein anerkannten Definition abweicht. Die Produktivitét ist
allgemein als eine betriebs- bzw. volkswirtschaftliche Kennzahl bekannt, die das Verhilt-
nis von Aufwand und Ergebnis anzeigt. Diese Definition weicht von der Bedeutung der

Produktivitatskennzahl beim Kooperationspartner ab.

3.2.2.2 RGQM-Bearbeitungsschritte 2 bis 4

Um die zu den HW-Produktionskennzahlen gehorenden Fragen, Ziele und Interpretatio-
nen zu bestimmen, fanden mehrere Interviews mit einem Gruppenleiter der Produktion
und dem Geschiftsbereichsleiter statt. Dies erfolgte in drei Schritten: Zunéchst wurden
die Fragen ermittelt und danach das Ziel formuliert. Im dritten Schritt wurde von den
Gesprichsteilnehmern erldautert, wie sie auf die Ist-Werte der HW-Produktionskennzahlen

reagieren und so deren Interpretation erfragt.

Die auf diese Art und Weise ermittelten Fragen, Ziele und Interpretationen der einzel-
nen HW-Produktionskennzahlen werden in den folgenden Abschnitten aufgefiihrt. Wie
in Abschnitt 2.1.1 erldutert, werden die Ziele abstrakt formuliert und représentieren die
Unternehmensstrategie. Die Ziele sind folglich weder quantifiziert noch terminiert. Eine
Quantifizierung bzw. Terminierung erfolgt jeweils im spezifischen Kontext einer Produkti-
onslinie, fiir die bestimmte Soll-Werte in einer bestimmten zeitlichen Periode, zum Beispiel
in einem Monat, zu erreichen sind. Wie in den folgenden Abschnitten ersichtlich wird, ist
die Frage, die eine HW-Produktionskennzahl beantwortet, im Prinzip identisch zu deren
Beschreibung in Tabelle 3.1. Das ist naheliegend fiir Kennzahlenbeschreibungen: Die Be-
schreibung sollte méglichst préazise darstellen, welche Information eine Kennzahl anzeigt

und welche Frage folglich durch die Kennzahl beantwortet wird.

75

Kapitel 3. Transfer von Produktionskennzahlen

3.2.2.2.1 First Pass Rate

Die Frage, die durch die First Pass Rate (FPR) beantwortet wird, lautet:

e (Q10.1;p,: Wie ist das Verhiltnis von gefertigten Produkte, die fehlerfrei getestet

wurden, zu allen gefertigten Produkten?
Das zur First Pass Rate und zu der Frage gehorende Ziel lautet:
e (G10gp.,: Hohe Fertigungsqualitit
Die First Pass Rate wird wie folgt interpretiert:

e Wie bereits erwdhnt, werden alle gefertigten intelligente Produkte im Gegensatz zu
rein mechanischen Produkten, die lediglich stichprobenartig getestet werden, einem
Fertigungsendtest unterzogen. Zwar ist eine maximale FPR von 100 % moglich, ty-
pische Ist-Werte liegen jedoch zwischen 95 % und 98 %. Da es sich um hochpreisige
intelligente Produkte handelt, werden diejenigen Produkte, die den Fertigungsend-
test nicht bestehen, inspiziert und wenn moglich nachbearbeitet. Dies verursacht
Nacharbeitskosten. Das Management fordert, die Nacharbeitskosten moglichst ge-
ring zu halten und legt fiir jede Produktionsstitte durchschnittliche jahrliche Soll-
Werte fest. Die Produktionsteams bestimmen daraus die jahrlichen Soll-Werte fiir
die einzelnen Produktionslinien in der Produktionsstitte. Wenn die Ist-Werte den
Soll-Werten entsprechen, werden keine Mafnahmen eingeleitet. Sind die Ist-Werte
geringer als die Soll-Werte, untersuchen das Management bzw. die Produktions-
teams die Ursachen und leiten Mafsnahmen ein. Ein entsprechendes, auf eine kon-
krete Produktionslinie bezogenes Beispiel wurde bereits in Tabelle 1.1 in Abschnitt
1.2 gezeigt. Sollten die Ist-Werte fiir eine Produktionsstatte nicht den Soll-Werten
entsprechen, entscheidet das Management gemeinsam mit den Produktionsteams
iiber die Umsetzung strategischer Mafknahmen, beispielsweise die Beschaffung von

neuen Maschinen oder die Durchfiihrung von Mitarbeiterqualifizierungsmafsnahmen.

3.2.2.2.2 Technische Riickliuferrate

Die Frage, die durch die Technische Riicklduferrate (TRR) beantwortet wird, lautet:

o Q11.1;p,: Wie ist das Verhiltnis von ausgelieferten Produkten, die aufgrund eines
technischen Defekts reklamiert werden, zu allen gefertigten Produkten? (Anmer-
kung: Es gibt auch andere Griinde fiir Reklamationen, zum Beispiel eine falsche

Lieferung. Diese Reklamationen gehen nicht in die TRR ein.)

76

Kapitel 3. Transfer von Produktionskennzahlen

Das zur Technischen Riicklauferrate und zu der Frage gehérenden Ziel lautet:
e (G11,3,,: Hohe Kundenzufriedenheit
Die Technische Riicklauferrate wird wie folgt interpretiert:

e Die TRR betragt idealerweise 0 %. Sie liegt meist unter 5 %. Jedes reklamierte
Produkt wird inspiziert und wenn moglich repariert. Selbst wenn ein reklamiertes
Produkt nicht repariert wird, entstehen Nacharbeitskosten durch die Inspektion.
Das Management fordert, die Nacharbeitskosten durch eine niedrige TRR mog-
lichst gering zu halten. Es legt fiir jede Produktionsstitte durchschnittliche jahrli-
che Soll-Werte fest. Die Produktionsteams leiten daraus die jahrlichen Soll-Werte
fiir die einzelnen Produktionslinien in der Produktionsstéitte ab. Die Mafnahmen
bei Abweichungen von Soll- und Ist-Werten dhneln den Mafnahmen, die bei der

Interpretation der FPR aufgefiihrt wurden.

3.2.2.2.3 Servicegrad

Die Frage, die durch den Servicegrad beantwortet wird, lautet:

o Q12.14p,: Wie ist das Verhéltnis von Auftragspositionen, die zum Bestatigungster-

min geliefert wurden, zu allen Auftragspositionen?
Das zum Servicegrad und zu der Frage gehoérende Ziel lautet:
e (G12;,,: Hohe Lieferqualitat
Der Servicegrad wird wie folgt interpretiert:

e Die Produktion bestéitigt dem Vertrieb die Liefertermine fiir die eingegangenen Auf-
tragspositionen. Das Management fordert, diese Termine einzuhalten. Im Idealfall
betriagt der Servicegrad 100 %. In den meisten Fallen liegen die Werte iiber 95 %. Das
Management legt fiir jede Produktionsstéitte durchschnittliche jahrliche Soll-Werte
fest. Die Produktionsteams leiten daraus die jéahrlichen Soll-Werte fiir die einzelnen
Produktionslinien in der Produktionsstitte ab. Bei Abweichungen zwischen Soll-
und Ist-Werten findet eine Untersuchung der Ursachen statt. Die Ursachen kénnen
sehr unterschiedlich sein. So kénnen zum Beispiel benotigte Bauteile fiir die Ferti-
gung der Auftragspositionen gefehlt haben oder die Prioritdt von Auftragspositionen
wurde gedndert. In Abhéngigkeit von den Ursachen werden ggf. geeignete Mafnah-

men eingeleitet, zum Beispiel eine Erhohung des Lagerbestands von Bauteilen.

7

Kapitel 3. Transfer von Produktionskennzahlen

3.2.2.2.4 Wertschopfung

Die Frage, die durch die Wertschopfung beantwortet wird, lautet:

e (13.1p,: Wie hoch sind die Fertigungsplankosten (ohne Beriicksichtigung der Ma-

terialkosten) der produzierten Ist-Menge?
Das zur Wertschépfung und zu der Frage gehorende Ziel lautet:

e (G13;}.,: Hohe Fertigungsrentabilitit

Die Wertschopfung wird wie folgt interpretiert:

e Die Fertigungsplankosten werden pro Produkttyp ermittelt. Die Wertschopfung gibt
die Fertigungsplankosten der produzierten Ist-Menge an. Die Fertigungsplankosten
fiir ein Produkt werden bei der Gestaltung des Produktlistenpreises beriicksichtigt.
Sie miissen zur Wettbewerbsfihigkeit des Produktes beitragen und eine Marge pro
Produkt erlauben. Daher werden die Fertigungsplankosten bzw. die zugrundeliegen-
den Fertigungsablaufe kontinuierlich angepasst, um die Wertschépfung zu senken
und somit die Wettbewerbsfihigkeit des betreffenden intelligenten Produktes zu
erhohen. Diese Anpassungen erfolgen wihrend der gesamten Lebenszeit des intel-

ligenten Produktes. Die Wertschdpfung ist zudem eine Eingangskennzahl fiir die

Berechnung der Produktivitat.

3.2.2.2.5 Produktivitat

Die Frage, die durch die Produktivitat beantwortet wird, lautet:

o (Q13.2;p,: Wie ist das Verhéltnis von der Wertschopfung zu den Ist-Stunden, die

der Fertigung des Produktes direkt zugeordnet werden kénnen?

Das zur Produktivitidt und zu der Frage gehorende Ziel ist identisch mit dem der Wert-

schépfung und lautet:

o (Q13pn.: Hohe Fertigungsrentabilitat

Die Produktivitiat wird wie folgt interpretiert:

78

Kapitel 3. Transfer von Produktionskennzahlen

e Der Verlauf der Produktivitdt wird in Trends angezeigt. Der Trend sollte gleich-
bleibend oder steigend sein. Sinkende Ist-Werte der Produktivitit sind ein Indika-
tor dafiir, dass die Produktionsmitarbeiter einen wachsenden Teil ihrer Arbeitszeit
nicht wertschopfend einsetzen. In diesem Fall wird untersucht, welche Ursachen es

dafiir gibt. Diese Ursachen werden gezielt adressiert und beseitigt.

3.2.2.3 RGQM-Bearbeitungsschritt 5

Nach der Erfassung der Fragen, Ziele und Interpretation der ausgewihlten HW-
Produktionskennzahlen wurde mit dem Geschiftsbereichsleiter bewertet, ob die jeweiligen
Ziele auf die Softwareentwicklung iibertragen werden kénnen. Dies wurde vom Geschifts-
bereichsleiter bestatigt: Alle ermittelten Ziele sind fiir den Kooperationspartner zentrale
strategische Ziele, die sowohl fiir die Produktion als auch fiir die Softwareentwicklung
gelten. Lediglich das Wort Fertigung miisse durch das Wort Softwareentwicklung ausge-
tauscht werden. Darauthin wurden folgende strategischen Ziele fiir die Softwareentwick-

lung formuliert:

G104,: Hohe Softwareentwicklungsqualitéit

G11},4,: Hohe Kundenzufriedenheit

G12,: Hohe Lieferqualitit

G'13,,: Hohe Softwareentwicklungsrentabilitéit

Wie ersichtlich ist, wird die Abstraktionsebene der Zielformulierung nicht gedndert. Das
heifst, die Ziele fiir die Softwareentwicklung sind wie die Ziele fiir die Produktion weder
quantifiziert noch terminiert. Eine Quantifizierung bzw. Terminierung erfolgt wiederum
jeweils in einem spezifischen Kontext, zum Beispiel im Kontext der Entwicklung einer

Softwareversion.

3.2.2.4 RGQM-Bearbeitungsschritt 6

Da die Ziele iibertragen werden kénnen, wurden im néchsten Bearbeitungsschritt die von
diesen Zielen ableitbaren softwaredoménenspezifischen Fragen formuliert, die von diesen
Zielen abgeleitet werden kdnnen. Beantwortet werden diese Fragen mit den jeweiligen SW-

Produktionskennzahlen, also der First Pass Rate, der Technischen Riicklauferrate usw.

Wie in Abschnitt 2.3.1 erldutert, miissen der Satzbau der urspriinglichen Frage und der

Satzbau der neuen Frage identisch sein, um die Semantik der HW-Produktionskennzahl

79

Kapitel 3. Transfer von Produktionskennzahlen

zu erhalten. Dies war bei allen Fragen mdéglich und wurde beriicksichtigt. Die Fragenin-
halte miissen allerdings durch softwaredoméanenspezifische Begriffe ersetzt werden. Dabei
wurde jeweils ein Frageninhalt einer Ausgangsfrage in einen Frageninhalt einer Zielfrage

gemappt. Die folgende Auflistung zeigt und erldutert das festgelegte Mapping:

o Gefertigte Produkte, die den Fertigungsendtest bestehen: Dieser Frageninhalt wird

auf die Quelltextinderungen, die der Implementierung von Softwarefunktionen zuge-
ordnet werden konnen, gemappt. Idealerweise bestehen alle gefertigten Produkte den
Fertigungsendtest und alle Quelltextdnderungen dienen der Implementierung neuer
Softwarefunktionen. Folglich symbolisieren beide Frageninhalte Prozessaktivititen,
die im ersten Anlauf erfolgreich realisiert wurden. Allerdings gibt es fehlerhaft ge-
fertigte Produkte und Quelltextimplementierungen, die der Behebung von Fehlern

zuzuordnen sind. Beides verursacht zu vermeidende Nacharbeitskosten.

o Alle gefertigten Produkte: Dieser Frageninhalt wird auf alle Quelltextinderungen

gemappt. Darin sind Quelltextdnderungen, die Fehlerbehebungen zugeordnet wer-

den konnen, enthalten.

e Aus technischen Griinden von Kunden zuriickgeschickte Produkte: Dieser Fragen-

inhalt wird auf Quelltextinderungen, die der Implementierung extern entdeckter
Fehler zugeordnet werden kionnen, gemappt. Beide Frageninhalte verursachen zu

vermeidende Nacharbeitskosten.

e Termingerecht gefertigte Auftragspositionen: Dieser Frageninhalt wird auf die Soft-

warefunktionen, die zum zugesagten Termin geliefert wurden, gemappt. Eine
Softwarefunktion wird als Aquivalent einer Auftragsposition angesehen und sollte

wie eine Auftragsposition termingerecht geliefert werden.

e Alle gefertigten Auftragspositionen: Dieser Frageninhalt wird auf alle Softwarefunk-

tionen gemappt. Darin sind die nicht zum zugesagten Termin gelieferten Software-

funktionen enthalten.

e Fertigungsplankosten der Ist-Menge: Dieser Frageninhalt wird auf die geplanten

Kosten fir die Entwicklung neuer Softwarefunktionen gemappt. Die geplanten Soft-
wareentwicklungskosten werden als Aquivalent der Fertigungsplankosten angesehen,

da in letzteren die Materialkosten nicht enthalten sind.

e Ist-Stunden der Mitarbeiter: Dieser Frageninhalt wird auf die Ist-Stunden, die der

Entwicklung der Softwareversion direkt zugeordnet werden konnen, gemappt. Beide
Arten von Ist-Stunden zeigen den tatsidchlichen Aufwand der beteiligten Mitarbeiter

an und werden daher als dquivalent angesehen.

80

Kapitel 3. Transfer von Produktionskennzahlen

Auf Basis dieses Mappings wurden im Anschluss folgende Fragen formuliert (in den Klam-

mern steht die jeweils dazugehtrende SW-Produktionskennzahl):

e (10.1;,,(First Pass Rate): Wie ist das Verhéltnis von Quelltextanderungen, die
der Implementierung von Softwarefunktionen zugeordnet werden kénnen, zu allen

Quelltextinderungen?

e (Q11.1;4,(Technische Riicklduferrate): Wie ist das Verhdltnis von Quelltext-
anderungen, die der Implementierung extern entdeckter Fehler zugeordnet werden

kénnen, zu allen Quelltextéinderungen?

o (Q12.1;,,(Servicegrad): Wie ist das Verhéltnis von Softwarefunktionen, die zum zu-

gesagten Termin geliefert wurden, zu allen gelieferten Softwarefunktionen?

o (Q13.1;5,(Wertschopfung): Wie hoch sind die geplanten Kosten fiir die Entwicklung

neuer Softwarefunktionen?

o ()13.2;, (Produktivitéit): Wie ist das Verhiltnis von der Wertschépfung zu den ge-
leisteten Ist-Stunden, die der Entwicklung der Softwareversion direkt zugeordnet

werden konnen?

Um diese Fragen mit den jeweiligen SW-Produktionskennzahlen beantworten zu konnen,
muss der Softwareentwicklungsprozess folgende Anforderungen erfiillen, die in dessen Ge-

staltung zu beriicksichtigen sind:

Anforderung 1 (Zuordnung Quelltextinderungen) Der Softwareentwicklungspro-
zess muss es ermdglichen, Quelltextinderungen sowohl der Implementierung neuer Soft-
warefunktionen als auch der Behebung intern und extern entdeckter Fehler zuzuordnen

und diese Zuordnungen zu erfassen.

Anforderung 2 (Termine Softwarefunktionen) Der Softwareentwicklungsprozess
muss es ermoglichen, neue Softwarefunktionen individuell mit einem zugesagten Termin
zu markieren und diesen zugesagten Termin sowie den Freigabetermin der Software-

funktion zu erfassen.

Anforderung 3 (Soll-/Ist-Stunden) Der Softwareentwicklungsprozess muss es ermag-
lichen, die Soll-Aufwdnde fir die Entwicklung von Softwarefunktionen und die Ist-

Aufwinde, die fiir die Entwicklung einer Softwareversion geleistet wurden, zu erfassen.

Es reicht aus, die Aufwéinde zu erfassen, da sich die Kosten direkt aus den Aufwinden

bestimmen lassen.

81

Kapitel 3. Transfer von Produktionskennzahlen

Die Erfiillung dieser Anforderungen durch den Softwareentwicklungsprozess ist die Vor-
aussetzung dafiir, dass ein Informationsverarbeitungssystem die fiinf SW-Produktions-

kennzahlen erfassen kann.

3.2.2.5 RGQM-Bearbeitungsschritte 7 und 8

Im RGQM-Bearbeitungsschritt 7 werden die Berechnungsgrundlagen der SW-
Produktionskennzahlen erstellt. Die Berechnungsgrundlagen der in diesem Kapitel be-
stimmten SW-Produktionskennzahlen werden allerdings erst in Abschnitt 6.3 aufgefiihrt.
Um diese nachzuvollziehen, sollte das Datenmodell des Softwareentwicklungsprozesses be-
kannt sein, welches in Abschnitt 5.2.2 erlautert wird. Im RGQM-Bearbeitungsschritt 8
wird iiberpriift, ob die SW-Produktionskennzahlen eine im Grundsatz identische Inter-
pretation wie die der jeweiligen HW-Produktionskennzahlen erlauben. Die Interpretation
jeder einzelnen SW-Produktionskennzahl wird gemeinsam mit deren Berechnungsgrundla-
gen in Abschnitt 6.3 aufgefiihrt. Zudem wird in Abschnitt 6.3 die semantische Aquivalenz
der beiden Auspragungen einer Produktionskennzahl bewertet. Um diese Bewertung nach-
vollziehen zu konnen, sollte wiederum das Datenmodell des Softwareentwicklungsprozesses

bekannt sein.

Wihrend der Anwendung der RQGM-Methode wurden die Anforderungen Al bis A3
formuliert, die der Softwareentwicklungsprozess beim Kooperationspartner erfiillen muss.
Weitere Anforderungen ergeben sich in dem Prozess der Bestimmung von Softwarekenn-

zahlen, dem sich das néchste Kapitel widmet.

82

Kapitel 4

Bestimmung der Softwarekennzahlen

Fiir die in dieser Arbeit zu erreichende Zielsituation der kennzahlenorientierten Gestal-
tung des Softwareentwicklungsprozesses sind neben den SW-Produktionskennzahlen auch
Softwarekennzahlen zu bestimmen. Wihrend die SW-Produktionskennzahlen das Mana-
gement adressieren, erfiillen die Softwarekennzahlen die Informationsbediirfnisse der Soft-
wareteams. In diesem Kapitel wird das prinzipielle Vorgehen fiir die Bestimmung der Soft-
warekennzahlen und ein Anwendungsbeispiel beim Kooperationspartner erlautert. In dem
Anwendungsbeispiel werden weitere Anforderungen formuliert, die in der Gestaltung des
Softwareentwicklungsprozesses beriicksichtigt werden miissen. Die Inhalte dieses Kapitels
entstanden iterativ in den Design Research-Entwurfsphasen FErstellen und FEvaluierung
(vgl. Abschnitt 1.5).

Abbildung 4.1 zeigt, welche Inhalte in diesem Kapitel behandelt werden und an welcher
Stelle diese Inhalte zur Erreichung der Zielsituation dieser Arbeit beitragen. Die graue
Fliache markiert den Inhalt: die Herleitung der operativen Ziele und die Bestimmung der

Softwarekennzahlen.

Management

Formulierung Interpretation

/

Strategische
Ziele

Transfer

Erfassung

Berticks|chtigung Verdichtung

Softwareteam Gestaltung

Software-
entwicklungsprozess

Formuligrung Interpretation*

Definiti Erfassun
efinition ©< g

Abbildung 4.1: Inhalt des Kapitels 4 in Bezug auf die Zielsituation dieser Arbeit

Operative
Ziele

83

Kapitel 4. Bestimmung der Softwarekennzahlen

4.1 Vorgehen

Ausgangspunkt fiir die kennzahlenorientierte Gestaltung des Softwareentwicklungsprozes-
ses sind die die vom Management formulierten strategischen Ziele. Um diese zu operatio-
nalisieren, werden daraus unter Einbindung der Softwareteams operative Ziele abgeleitet.
Wie bereits in Abschnitt 2.1.1 dargelegt, sind die strategischen Ziele im Kontext dieser
Arbeit von abstrakter Natur und weder quantifiziert noch terminiert. Ein Beispiel ist das
Ziel Hohe Fertigungsqualitit®. Fiir diese Arbeit wird diese abstrakte Formulierung der
strategischen Ziele ebenfalls fiir die Formulierung der operativen Ziele verwendet. Ein im

Folgenden aufgefiihrtes Anwendungsheispiel lautet ,Leistungseffiziente Programmierung®.

Um strategische in operative Ziele zu iiberfithren, konnen verschiedene Ansétze gewahlt

werden, von denen drei im Folgenden kurz dargestellt werden:

e Hierarchische Balanced Scorecards (vgl. Abschnitt 2.3.2): In [FS99| wird dargelegt,

dass jeweils eine individuelle Balanced Scorecard fiir jede Hierarchieebene eines pro-

duzierenden Betriebes erarbeitet werden kann. Dabei sind die strategischen Zie-
le in der Balanced Scorecard der Managementebene und die operativen Ziele in
den Balanced Scorecards der unteren Hierarchieebenen aufgefiihrt. So entsteht ein
Netz miteinander verwobener Balanced Scorecards. Bei Anwendung dieses Ansat-
zes miissten die Softwareteams, also die Hierarchieebene der Softwareentwicklung,

ebenfalls eine eigene Balanced Scorecard entwickeln.

e GQMTStrategies® (vgl. Abschnitt 2.3.4): Dieses ist eine auf der GQM-Methode
aufbauende Methode, mit der Ziele iiber mehrere Unternehmenshierarchien ver-
kniipft werden [BHL*07]. Durch die Anwendung von GQM*Strategies® entsteht

ein Modell, das den Zusammenhang aller Ziele, folglich auch der strategischen und

operativen Ziele, und die fiir die Zieliiberpriifung notwendigen Messaktivititen zeigt
[HMT09]. Bei Anwendung dieses Ansatzes konnen die Softwareteams schrittweise die

operativen Ziele aus den strategischen Zielen ableiten.

e Pragmatische Vorgehensweise: Neben der Anwendung eines dieser beiden methodi-

schen Ansétze kann die Ableitung der operativen Ziele aus den strategischen Zielen
auch pragmatisch erfolgen, indem die Softwareteams unter Kenntnis der strategi-
schen Ziele ihre operativen Ziele definieren. Dieser Definitionsprozess erfolgt mit
geeigneten, im Betrieb bewédhrten Methoden, beispielsweise der Durchfiihrung von
Workshops.

Welche der genannten Methoden anzuwenden ist, hidngt von den Erfahrungswerten ei-

nes produzierenden Betriebes im Umgang mit diesen Methoden ab. Damit ist gemeint,

84

Kapitel 4. Bestimmung der Softwarekennzahlen

dass ein produzierender Betrieb den Ansatz hierarchischer Balanced Scorecards nutzen
kann, sofern bereits Erfahrungen mit der Balanced Scorecard auf einer Hierarchieebene
vorhanden sind. Liegen schon Erfahrungen mit der GQM-Methode vor, kann die darauf

aufbauende GQM ' Strategies® genutzt werden.

Ziel dieser Arbeit ist es nicht, diese oder andere geeignete Methoden fiir die Uberfiihrung
von strategischen in operative Ziele zu bewerten. Daher erfolgt hier kein Vorschlag fiir
oder gegen eine der drei genannten Moglichkeiten. Es wird allerdings betont, dass der
Prozess der Zielableitung fiir die kennzahlenorientierte Gestaltung des Softwareentwick-

lungsprozesses notwendig ist.

Unabhéngig davon, welcher Ansatz von einem produzierenden Betrieb gewihlt wird, ste-
hen als Ergebnis des Ansatzes die formulierten operativen Ziele zur Verfiigung. Um sicher-
zustellen, dass fiir alle strategischen Ziele jeweils mindestens ein operatives Ziel formuliert
wurde bzw. dass jedes operative Ziel einen Bezug zu einem strategischen Ziel hat, sollte

die Relation der Ziele grafisch dargestellt werden. Eine exemplarische Darstellung dieses

Strategisches
Ziel 11

Operatives Operatives
Ziel 20 Ziel 22
Operatives Operatives
Ziel 21 Ziel 23

Abbildung 4.2: Relation zwischen strategischen und operativen Zielen

Zusammenhangs zeigt die Abbildung 4.2.

Strategisches
Ziel 10

Damit in einer solchen Grafik schnell erkennbar ist, ob es sich um ein strategisches oder
um ein operatives Ziel handelt, ist eine Syntax zu definieren, die eine Unterscheidung
ermoglicht. Beispielsweise konnen unterschiedliche Symbole, G vs. G, oder jeweils ein

anderer Nummernkreis genutzt werden. Letzteres ist in der Abbildung 4.2 der Fall.

Da sich sowohl strategische als auch operative Ziele &ndern konnen, sollte die Relation
zwischen diesen beiden Zieltypen in regelméfigen zeitlichen Abstinden, beispielsweise

einmal pro Jahr, bewertet und ggf. iiberarbeitet werden.

Der Formulierung der operativen Ziele fiir die Softwareentwicklung folgt die Bestimmung
der Softwarekennzahlen, mit denen die Zielerreichung der operativen Ziele iiberpriift wer-

den kann. Fiir diesen Prozess der Softwarekennzahlenbestimmung sollten anerkannte Me-

85

Kapitel 4. Bestimmung der Softwarekennzahlen

thoden wie die GQM-Methode (vgl. Abschnitt 2.3.4) oder die Norm ISO/TEC/IEEE 15939
(vgl. Abschnitt 2.3.3) angewendet werden. Nach Anwendung dieser Vorgehensweise ste-
hen dem produzierenden Betrieb die Softwarekennzahlen zur Verfiigung, deren Erfas-
sung durch den Softwareentwicklungsprozess ermoglicht werden muss. In dem Prozess der
Kennzahlenbestimmung sollte abgewigt werden, ob bereits existierende Softwarekenn-
zahlen (vgl. Abschnitt 2.1.2) fiir die Uberpriifung der Zielerreichung geeignet oder ob

betriebsspezifische Softwarekennzahlen neu zu definieren sind.

4.2 Anwendungsbeispiel

In diesem Abschnitt wird die Bestimmung der Softwarekennzahlen beim Kooperations-
partner erlautert. Zunachst wird dargelegt, wie die operativen Ziele bestimmt wurden, und
die Relation zwischen den operativen Ziele zu den strategischen Zielen wird hergestellt.
Im Anschluss wird das Vorgehen bei der Bestimmung der Softwarekennzahlen erlautert

und die in diesem Prozess bestimmten Softwarekennzahlen werden aufgefiihrt.

4.2.1 Bestimmung der operativen Ziele

Um die operativen Ziele aus den strategischen Zielen beim Kooperationspartner herzu-
leiten, wurde eine pragmatische Vorgehensweise zugrunde gelegt. Die strategischen Ziele
sind diejenigen Ziele, die mit Hilfe der RGQM-Methode ermittelt wurden (vgl. Abschnitt
3.2.2.3). Dies sind:

(G10gs,: Hohe Softwareentwicklungsqualitit

G114, Hohe Kundenzufriedenheit

G'12;4,: Hohe Lieferqualitét

G13ksw: Hohe Softwareentwicklungsrentabilitit

Aus diesen Zielen hat der Verfasser dieser Arbeit zunichst mehrere operative Ziele ab-
geleitet und diese mit einigen Stakeholdern aus der Softwareentwicklung besprochen. Als
Ergebnis dieser Diskussionen wurden fiinf operative Ziele fiir die Softwareentwicklung

formuliert.

Um die Nummern fiir die strategischen und operativen Ziele zu vergeben, wird das oben
erwahnte Prinzip eines unterschiedlichen Nummernkreises genutzt: Die strategischen Ziele

erhalten eine 10er-Nummer, den operativen Zielen wird eine 20er-Nummer zugewiesen.

86

Kapitel 4. Bestimmung der Softwarekennzahlen

Im Folgenden werden die definierten operativen Ziele fiir die Softwareentwicklung genannt
und erlautert:

G20 Leistungseffiziente Programmierung:

Die Programmierung ist eine Hauptaufgabe in der Softwareentwicklung. Mit dem Be-
griff | leistungseffizient” ist ein mdglichst ausgewogenes, sich kontinuierlich verbesserndes

Verhéltnis der Softwarequantitit zu den Kosten und zur Entwicklungsdauer gemeint.

G21;, Leistungseffizientes Dokumentieren:

Das Dokumentieren ist eine wesentliche Aufgabe im Softwareentwicklungsprozess (vgl.
Abschnitt 2.1.2.1). Wie bei den Entwicklungsaktivitdten ist auch hier mit dem Begriff
seistungseffizient” ein moglichst ausgewogenes, sich kontinuierlich verbesserndes Verhilt-
nis der Quantitit der erstellten Softwaredokumentation zu den Kosten und zur Entwick-

lungsdauer gemeint.

G22;, Gezielte Bearbeitung von Qualititsschwerpunkten:

Bislang sind beim Kooperationspartner Qualitdtsschwerpunkte nicht systematisch erkenn-
bar. Qualitdtsschwerpunkte zeigen auf, welche Softwarequalitdtseigenschaften (vgl. Ab-
schnitt 2.1.2.4.2) in einem Softwareprodukt zu verbessern sind, mit welcher Priorisierung
diese Verbesserungen zu bearbeiten sind und welche Ursachen in der Programmierung
fiir Softwarequalitidtseinschrankungen verantwortlich sind. Bislang erfolgen derartige Ein-
schitzungen unsystematisch in Teammeetings, indem die Teammitglieder beispielsweise
einschitzen, dass einige Berechnungszeiten zu lange dauern. Sie &ndern darauthin das
Softwareprodukt, um diese Einschrinkungen zu beheben. Diesen FEinschitzungen fehlt

jedoch eine quantitativ auswertbare Datenbasis.

G23;; Objektive Bewertung der Fehlermenge:

Entdeckte Fehler fiihren regelméfig zu Diskussionen zwischen Vertriebs- und Entwick-
lungsmitarbeitern. Damit ist gemeint, dass Vertriebsmitarbeiter immer wieder wegen ein-
zelnen von Kunden entdeckten Fehlern die Leistungsfahigkeit der Softwareentwicklung in
Frage stellen. Objektiv nachweisbare Qualitdtsverbesserungen, mit denen derartige Dis-

kussionen versachlicht werden konnten, fehlen.

G224, Reduzierung der Fehlermenge:

Die Anzahl an Fehlern zu reduzieren, ist eine kontinuierliche Aufgabe im Softwareent-
wicklungsprozess. Bislang ist es moglich, die Anzahl entdeckter Fehler zu quantifizieren.
Allerdings ist diese Anzahl nur aussagekriftig, wenn sie in Relation zur Softwarequantitit

gesetzt wird. Bislang ist es nicht moglich, diese Relation herzustellen.

Alle operativen Ziele stehen in Relation zu einem oder mehreren strategischen Zielen,
wobei es fiir jedes strategische Ziel mindestens ein operatives Ziel gibt. Abbildung 4.3

zeigt die Zielrelationen des Anwendungsbeispiels.

87

Kapitel 4. Bestimmung der Softwarekennzahlen

G11,,: Hohe
Softwareentwicklungs-
rentabilitat

G13,,,: Hohe
Softwareentwicklungs-

qualitat
G24,,: Reduzierung der
Fehlermenge

Abbildung 4.3: Relationen zwischen strategischen und operativen Zielen

G10y,: Hohe
Lieferqualitat

G12,,: Hohe
Kundenzufriedenheit

G22,: Gezielte Bear-
beitung von Qualitats-
schwerpunkten

G20,: Leistungs-
effizientes
Dokumentieren

G23,,: Objektive
Bewertung der
Fehlermenge

G21,,: Leistungseffiziente
Programmierung

4.2.2 Bestimmung der Softwarekennzahlen

Der Formulierung der operativen Ziele folgt die Bestimmung von dazugehérenden Softwa-
rekennzahlen. Dafiir wird die GQM-Methode verwendet. Die einschlégige Literatur misst
der GQM-Methode eine hohe Bedeutung bei und beschreibt deren erfolgreiche Anwendung
in der Praxis. Dies ist ein Grund dafiir, dass beim Kooperationspartner die GQM-Methode
fiir die Bestimmung von Softwarekennzahlen ausgewahlt wurde. Der zweite Grund ist, dass
die RGQM-Methode auf der GQM-Methode aufbaut und somit beim Kennzahlentransfer

dhnlich wie bei der Bestimmung der Softwarekennzahlen vorgegangen werden kann.

Fiir jedes operative Ziel wurden mehrere Fragen formuliert und fiir jede Frage wurde min-
destens eine Softwarekennzahl bestimmt. Dieser Prozess, der der GQM-Definitionsphase
zuzuordnen ist (vgl. Abbildung 2.14), wurde vom Verfasser dieser Arbeit durchgefiihrt.
Die Prozessergebnisse wurden von mehreren Stakeholdern aus der Softwareentwicklung

gepriift.

In den folgenden Abschnitten werden die Ergebnisse des Prozesses und einige zum Ver-
stdndnis notwendige Erlauterungen aufgefiihrt. Auf eine vertiefende Darstellung wird ver-
zichtet, da lediglich eine anerkannte Methode angewendet wird und keine neuen wissen-

schaftliche Erkenntnisse gewonnen werden.

Fiir die Erlduterung der folgenden Softwarekennzahlen wie Churn, intern und extern ent-

deckte Fehler, Liefergeschwindigkeit etc. wird auf den Abschnitt 2.1.2 verwiesen.

4.2.2.1 Leistungseffiziente Programmierung

Um das abstrakt formulierte Ziel ,leistungseffiziente Programmierung® zu quantifizieren,

sind folgende Fragen zu beantworten:

e (D20.1;,: Wie viel Software wurde erstellt?
e (Q20.2;5: Wie viele Stunden wurden fiir die Erstellung der Software aufgewendet?

e (Q20.3;5: Wie lange hat das Softwareentwicklungsprojekt gedauert?

38

Kapitel 4. Bestimmung der Softwarekennzahlen

e (Q20.4;,: Wie hoch ist die Produktivitit bezogen auf die erstellte Software?

e (Q20.5;5: Wie hoch ist die Liefergeschwindigkeit bezogen auf die erstellte Software?

Fiir jede dieser Fragen wurde je eine Softwarekennzahl identifiziert, mit der die jeweilige

Frage beantwortet werden kann:

e £20.1.1,: Churn

k20.2.14: Aufwand fiir die Entwicklungsaktivitaten

k20.3.1,: Entwicklungsdauer

k20.4.15: Churn-Produktivitét

k20.5.15: Churn-Liefergeschwindigkeit

Um die Softwarequantitét zu bestimmen, wurde der Churn ausgewéhlt. Wie in Abschnitt
2.1.2.1.3 erldutert, ist der Churn zum einen ein aussagekriftiges Mafs fiir die Menge der
bearbeiteten Software (es werden die Anderungen des Quelltextes beriicksichtigt), zum
anderen kann der Churn automatisiert gemessen werden. LOC zeigen hingegen nicht die
Menge der tatsdchlichen Softwarebearbeitungen an. Function Points kénnen im Umfeld
des Kooperationspartners nicht automatisiert gemessen werden, da die dafiir notwendigen
Voraussetzungen nicht vorhanden sind: Es fehlen iiber den Produktlebenszyklus konsis-
tente UML-Modelle aller Softwareprodukte.

Der Churn beschreibt die Menge aller Quelltextdnderungen an einer Softwareversion bzw.
an einem Softwareprodukt. Er ist entsprechend zuzuordnen. Der Softwareentwicklungs-
prozess muss folglich eine solche Zuordnung ermoglichen. Da bereits die dhnliche Anfor-
derung Al die Zuordnung von Quelltextdnderungen umfasst, wird folgende ergéinzende
Anforderung an den Softwareentwicklungsprozess formuliert, die in dessen Gestaltung be-

riicksichtigt werden muss:

Anforderung 4 (Erweiterte Zuordnung Quelltextinderungen) Der Softwareent-
wicklungsprozess muss es ermdglichen, alle Quelltextinderungen einer Softwareversion
zuzuordnen und diese Zuordnung zu erfassen. Durch eine derartige Zuordnung zu einer
Softwareversion ist es auch maoglich, die Quelltextinderungen einem Softwareprodukt zu-

zuordnen.

Um die weiteren Softwarekennzahlen ermitteln zu konnen, muss der Softwareentwicklungs-

prozess ebenfalls die Anforderungen A5 und A6 erfiillen.

Anforderung 5 (Entwicklungsaufwand) Der Softwareentwicklungsprozess muss es

ermaglichen, den Ist-Aufwand der Entwicklungsaktivititen zu erfassen.

89

Kapitel 4. Bestimmung der Softwarekennzahlen

Anforderung 6 (Start und Ende) Der Softwareentwicklungsprozess muss es ermdgli-

chen, den Starttermin und den Endtermin einer Softwareversion zu erfassen.

4.2.2.2 Leistungseffizientes Dokumentieren

Um das abstrakt formulierte Ziel ,leistungseffizientes Dokumentieren® zu quantifizieren,
sind folgende Fragen zu beantworten:
e (D21.1;,: Wie viel Softwaredokumentation wurde erstellt?

o (Q21.2;,: Wie viele Stunden wurden fiir die Erstellung der Softwaredokumentation

aufgewendet?
o (21.3;5: Wie lange hat das Softwareentwicklungsprojekt gedauert?

e (D21.4;,: Wie hoch ist die Produktivitit bezogen auf die erstellte Softwaredokumen-

tation?

e (Q21.5,5: Wie hoch ist die Liefergeschwindigkeit bezogen auf die erstellte Software-

dokumentation?

Fiir jede dieser Fragen wurde je eine Softwarekennzahl identifiziert, mit der die jeweilige

Frage beantwortet werden kann:

e k21.1.15: Anzahl an Work Items (vgl. Abschnitt 2.1.2.1.4)

k21.2.1,: Aufwand fiir die Dokumentationsaktivititen

k21.3.15: Entwicklungsdauer (wird von G20y, iibernommen)

k21.4.1,: Dokumentationsproduktivitét

k21.5.1,: Dokumentationsliefergeschwindigkeit

Die Auswahl der Kennzahl Anzahl an Work Items erfolgte aufgrund der Art und Weise
der Implementierung des V-Modells beim Kooperationspartner: Wie bereits in Abschnitt
2.5.2.2 erldutert, wird ein ALM-System verwendet, in dem einzelne Dokumentationsarte-
fakte, zum Beispiel Anforderungen oder Testfille, als Work Items verwaltet werden. Auf
die Details der Verwaltung wird in Kapitel 5 eingegangen. Diese Art der Erfassung der
Dokumentationsgrofe zeigt nicht an, wie viel Text in einem Work Item formuliert wurde.
Da Work Items kleine Informationseinheiten sind, umfasst der Text in der Regel wenige
Zeilen. Es wire zwar moglich, die Anzahl der Work Items mit einer durchschnittlichen

Anzahl an Zeilen zu multiplizieren. Da bislang keine Erfahrungen existieren, wie viele

90

Kapitel 4. Bestimmung der Softwarekennzahlen

Zeilen durchschnittlich in Work Ttems eingetragen werden, wird darauf verzichtet und nur

die Anzahl an Work [tems als Softwarekennzahl bestimmt.

Um diese Softwarekennzahlen erfasst zu konnen, muss der Softwareentwicklungsprozess
die Anforderungen A7 und AS erfiillen.

Anforderung 7 (Softwaredokumentation) Der Softwareentwicklungsprozess muss es
ermaglichen, Work Items einer Softwareversion zuzuordnen und die jeweils erstellte An-
zahl an Work Items zu erfassen. Durch eine derartige Zuordnung zu einer Softwareversion

st es auch mdglich, die Work Items einem Softwareprodukt zuzuordnen.

Anforderung 8 (Dokumentationsaufwand) Der Softwareentwicklungsprozess muss

es ermoglichen, den Ist-Aufwand der Dokumentationsaktivititen zu erfassen.

4.2.2.3 Gezielte Bearbeitung von Qualitidtsschwerpunkten

Um Qualitdtsschwerpunkte gezielt bearbeitet zu konnen, ist die Frage zu beantworten:

e (D22.1;,: Wo liegen die Qualititsschwerpunkte?

Fiir die Beantwortung der Frage ()22.1;5 miissen alle entdeckten Fehler kategorisierbar
sein, um eine prozentuale Verteilung der Qualitdtsschwerpunkte feststellen zu konnen.
Jeder Fehler muss mit Attributen beschrieben werden konnen, die die Softwarequalitéits-
eigenschaften, die Fehlerursachen und den Schweregrad des Fehlers anzeigen. Die oben
genannte Frage wird mit folgenden Softwarekennzahlen beantwortet:

o k22.1.1,: Prozentuale Verteilung von Softwarequalitidtseigenschaften

e k22.1.2;: Prozentuale Verteilung von Fehlerursachen in der Programmierung

o k22.1.3,: Prozentuale Verteilung von Fehlerschweregraden
Wie in Abschnitt 2.1.2.4.1 erldutert, ist die prozentuale Verteilung keine einzelne Softwa-

rekennzahl, sondern zeigt die Teilwerte der einzelnen Fehlereinordnungen an.

Um die prozentualen Verteilungen erfassen zu kénnen, muss der Softwareentwicklungs-

prozess die Anforderung A9 erfiillen.

Anforderung 9 (Fehlerattribute) Der Softwareentwicklungsprozess muss es ermdgli-

chen, Fehlerattribute zu erfassen.

91

Kapitel 4. Bestimmung der Softwarekennzahlen

4.2.2.4 Objektive Bewertung der Fehlermenge

Um objektiv bewerten zu konnen, wie viele Fehler durch interne qualitidtssichernde Mafs-
nahmen und wie viele erst durch die Kunden entdeckt wurden, ist die Frage zu beantwor-

ten:

e (023.1;,: Wie ist das Verhéltnis von intern zu extern entdeckten Fehlern?

Um diese Frage beantworten zu konnen, wurden folgende Softwarekennzahlen identifiziert:

e £23.1.1,: Anzahl intern entdeckter Fehler
e £23.1.2,: Anzahl extern entdeckter Fehler

e k23.1.3,: Fehlerbehebungsrate

Damit diese Softwarekennzahlen erfasst werden konnen, muss der Softwareentwicklungs-

prozess die Anforderung A10 erfiillen.

Anforderung 10 (Fehlerzuordnung) Der Softwareentwicklungsprozess muss es er-
moglichen, Fehler einer Softwareversion zuzuordnen und diese in intern und extern ent-
deckte Fehler zu unterscheiden. Durch eine derartige Zuordnung zu einer Softwareversion

st es auch maglich, die Fehler einem Softwareprodukt zuzuordnen.

4.2.2.5 Reduzierung der Fehlermenge

Um Qualititsverbesserungen objektiv nachweisen zu kénnen, ist die Frage zu beantworten:

o (D24.1;: Wie viele Fehler pro Softwaremengeneinheit wurden entdeckt? Da der
Churn fiir die Bestimmung der Softwaremengen ermittelt wurde, wird die Frage

prizisiert: Wie viele Fehler pro KB Churn wurden entdeckt?

Fiir die Beantwortung dieser Frage wurden die folgende Softwarekennzahl identifiziert:
e k24.1.1,: Churn-Fehlerdichte
Zur Erfassung der Churn-Fehlerdichte ist keine weitere Anforderung durch den Softwa-

reentwicklungsprozess zu erfiillen, da die Erfassung durch die Erfiillung der vorherigen

Anforderungen moglich ist.

92

Kapitel 4. Bestimmung der Softwarekennzahlen

Durch die Anwendung der in Kapitel 3 beschriebenen RQGM-Methode und der in diesem
Kapitel erlduterten Bestimmung der Softwarekennzahlen wurden die Anforderungen Al
bis A10 erfasst. Nur wenn der Softwareentwicklungsprozess beim Kooperationspartner die-
se Anforderungen erfiillt, ist die Erfassung aller bestimmten SW-Produktionskennzahlen
und Softwarekennzahlen moglich. Der Gestaltung des Softwareentwicklungsprozesses un-

ter Berticksichtigung dieser Anforderungen widmet sich das néchste Kapitel.

93

Kapitel 5

Gestaltung des

Softwareentwicklungsprozesses

Dieses Kapitel widmet sich der zweiten Detailfrage dieser Arbeit: Wie sollte der Software-
entwicklungsprozess aufgebaut sein, damit die definierten SW-Produktionskennzahlen und
Softwarekennzahlen erfasst werden kénnen? Es wird das prinzipielle Vorgehen der Gestal-
tung des Softwareentwicklungsprozesses und ein Anwendungsbeispiel beim Kooperations-
partner erlautert. Darin wird das sogenannte Sliced V-Modell entworfen. Die Inhalte
dieses Kapitels entstanden iterativ in den Design Research-Entwurfsphasen FErstellen
und FEvaluierung (vgl. Abschnitt 1.5). Erste Konzepte des Sliced V-Modells wurden in
[Deul2, Deul3| versffentlicht.

Abbildung 5.1 zeigt, welche Inhalte in diesem Kapitel behandelt werden und an welcher
Stelle diese Inhalte zur Erreichung der Zielsituation dieser Arbeit beitragen. Die graue
Flache markiert den Inhalt: die Gestaltung des Softwareentwicklungsprozesses, um darin

die Kennzahlen fir Kgy und Kg erfassen zu konnen.

Management

Formulierung Interpretation

Strategische Transfer
Z~ | KSW
lele Erfassung
Berlicksichtigung Verdichtung}
Softwareteam Gestaltung Softwarg-
entwicklungsprozess
Formulierung Interpretation |
Operative Definition Erfassung
. > Ks
Ziele .

Abbildung 5.1: Inhalt des Kapitels 5 in Bezug auf die Zielsituation dieser Arbeit

94

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

5.1 Vorgehen

Wie in Abschnitt 2.5.1 dargelegt, beschreibt ein Vorgehensmodell den organisatorischen
Rahmen des Softwareentwicklungsprozesses. Mit der Aktivitit Gestaltung des Software-
entwicklungsprozesses ist folglich entweder die Auswahl eines Vorgehensmodells oder die

Anderung eines bereits vorhandenen Vorgehensmodells gemeint.

In dieser Arbeit kann keine Empfehlung fiir ein bestimmtes Vorgehensmodell gegeben
werden. Die Auswahl ist vom jeweiligen produzierenden Betrieb individuell zu tétigen.
Um allerdings Kennzahlen aus dem Softwareentwicklungsprozess I'T-basiert erfassen zu
konnen, sollten fiir die Implementierung des gewdhlten Vorgehensmodells ein bzw. mehrere
Collaboration Tools genutzt werden (vgl. Abschnitt 2.5.1).

Die Gestaltung des Softwareentwicklungsprozesses beriicksichtigt zum einen die spezifi-
schen Bediirfnisse des produzierenden Betriebes und zum anderen die Anforderungen an
den Softwareentwicklungsprozess, die bei der Bestimmung der SW-Produktionskennzahlen
und der Softwarekennzahlen formuliert wurden. Ein Beispiel fiir die Beriicksichtigung
betriebsspezifischer Bediirfnisse ist die Definition von betriebsspezifischen Rollen und ein

dafiir angepasstes Rechtemanagement in einem Collaboration Tool.

Um die Anforderungen an den Softwareentwicklungsprozess erfiillen zu konnen, die bei der
Bestimmung der SW-Produktionskennzahlen und der Softwarekennzahlen formuliert wur-
den, muss ein Datenmodell erstellt werden. Es beschreibt die im Softwareentwicklungspro-
zess entstehenden Softwareartefakte, wie zum Beispiel Produktanforderungen oder Test-
fille. Diese durch das Datenmodell beschriebenen Softwareartefakte sind der WorkPro-
ductDefinition-Klasse des SPEM-Metamodells (vgl. Abschnitt 2.5.1) zuzuordnen.

Um das Datenmodell zu beschreiben, wird UML als eine etablierte Modellierungssprache
verwendet. Konkret wird das UML-Klassendiagramm genutzt: Die Softwareartefakte und
deren Beziehungen werden darin anschaulich dargestellt. Auf diese Art und Weise ent-
steht ein Datenmodell, das die Anforderungen erfiillt, die wihrend der Bestimmung der
SW-Produktionskennzahlen und der Softwarekennzahlen formuliert wurden. Das bedeutet

auch, dass in dem Datenmodell alle benotigten UML-Relationen enthalten sind.

Erlauterung 5.1 zeigt ein Beispiel, wie eine Anforderung an den Softwareentwicklungspro-

zess in einem Datenmodell beriicksichtigt wird.

95

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Bei der Bestimmung von Softwarekennzahlen wurde folgende Kennzahl bestimmt: ,Durch-
schnittliche Menge von Testfillen, die einer Produktanforderung zugeordnet sind“. Um
diese Kennzahl zu erfassen, muss in der Gestaltung des Softwareentwicklungsprozesses
Folgendes erméglicht werden: Im Softwareentwicklungsprozess muss jeder Testfall einer
Produktanforderung zugeordnet werden kénnen.

Diese Anforderung an den Softwareentwicklungsprozess muss das Datenmodell beriicksich-
tigen. Die folgende Abbildung zeigt den Auszug eines UML-Klassendiagramms, in dem
dies realisiert ist. Wie zu erkennen ist, gibt es eine UML-Aggregationsbeziehung zwischen
einer Produktanforderung (Requirement) und einem Testfall (Test Case).

Requirement 1 1..% Test Case

Die weiteren gezeigten Eigenschaften des Softwareentwicklungsprozesses, wie zum Bei-
spiel, dass zu jeder Produktanforderung mindestens ein Testfall existieren muss, kénnen
sich aus betriebsspezifischen Bediirfnissen an den Softwareentwicklungsprozess ergeben,
die dieses vorschreiben.

Erlauterung 5.1: Anforderungen an den Softwareentwicklungsprozess und Datenmodell

Die Bewertung, ob das Datenmodell alle formulierten Anforderungen erfiillt, erfolgt mehr-
stufig durch:

1. eine manuelle Priifung des Datenmodells,
2. die Erstellung der Berechnungsgrundlagen aller Kennzahlen,

3. und die Implementierung eines Informationsverarbeitungssystems.

Um ein Informationsverarbeitungssystem implementieren zu kdnnen, ist eine vollsténdige
Modellierung des Softwareentwicklungsprozesses unter Anwendung weiterer Klassen aus
dem SPEM-Metamodell, wie zum Beispiel der RoleDefinition-Klasse oder der TaskDefini-
tion-Klasse, nicht notig. Eine vollstindige Modellierung wird zwar jedem produzierenden
Betrieb empfohlen. Jedoch ist es fiir die Kennzahlenerfassung unerheblich, wer die Ar-
beitsergebnisse erzeugt hat und wie derjenige dabei vorgegangen ist, denn es werden nur

die Arbeitsergebnisse bendotigt, die dem Datenmodell entnommen werden kénnen.

Das in diesem Abschnitt erlduterte Vorgehen kam beim Kooperationspartner zum Einsatz.

Im folgenden Abschnitt wird das entwickelte Datenmodell vorgestellt.

96

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

5.2 Sliced V-Modell

5.2.1 Begriff und Anforderungen

Wie in Abschnitt 2.5.2.2 erlautert, setzt der Kooperationspartner ein auf dem V-Modell
der DIN EN 61508-3 beruhendes Vorgehensmodell ein. Im Zuge einer Prozessverbesse-
rungsmafknahme wurde das Verfahren, das die Nutzung von MS Word-Dokumenten und
deren Ablage auf Netzwerklaufwerken vorsah, schrittweise durch die Nutzung eines ALM-
Systems ersetzt. In diesem ALM-System werden alle Dokumente und Entwicklungsinfor-
mationen eingetragen. Des Weiteren wurde im Rahmen der Einfithrung des ALM-Systems
ein vorhandenes Versionsmanagementsystem gegen ein neues ausgetauscht. In internen
Prozessbeschreibungen ist die Realisierung des V-Modells der DIN EN 61508-3 in dem
ALM-System und in dem Versionsmanagementsystem erldutert. Diese internen Prozess-
beschreibungen erkldren zwar die Aktivitdten im Umgang mit den beiden Systemen und
benennen die dafiir verantwortlichen Personen, es fehlt jedoch ein Datenmodell, das die
im Softwareentwicklungsprozess entstehenden Softwareartefakte beschreibt. Um ein Infor-
mationsverarbeitungssystem aufzubauen, wird das Datenmodell benétigt, damit die Be-
rechnungsgrundlagen der SW-Produktionskennzahlen und Softwarekennzahlen definiert

und durch ein Informationsverarbeitungssystem implementiert werden kénnen.

Wie im vorherigen Abschnitt dargelegt, erfolgt die Beschreibung des Datenmodells in
Form von UML-Klassendiagrammen. In dem Datenmodell muss das V-Modell der DIN
EN 61508-3 beriicksichtigt werden, da es das gewihlte Vorgehensmodell des Kooperati-
onspartners ist. In dem Datenmodell muss folglich zum einen eindeutig erkennbar sein,
dass die Ergebnisse der einzelnen Phasen des V-Modells, wie beispielsweise eine Anfor-
derungsspezifikation, beriicksichtigt werden. Zum anderen miissen die Validations- und
Verifikationsbeziehungen der DIN EN 61508-3 erhalten bleiben (vgl. Abbildung 2.21).
Aufgrund dieser Randbedingung wurde in dieser Arbeit keine weitere Option des inhalt-

lichen Aufbaus des Datenmodells gepriift.

Da das Datenmodell auf dem V-Modell der DIN EN 61508-3 aufbaut, wird es als dessen
Verfeinerung betrachtet. Diese Verfeinerung wird Sliced V-Modell genannt. Das Sliced
V-Modell beschreibt die Dokumente der DIN EN 61508-3, die allerdings keine traditio-
nellen Dokumente darstellen. Vielmehr sind es Container fiir Work Items, in denen die
eigentlichen Dokumenteninhalte eingetragen werden. Die Work Items sind untereinan-
der verbunden und bilden dokumenteniibergreifend ,Scheibchen“ von Work Ttems. Diese
,Scheibchen” begriinden den Namen Sliced V-Modell.

Um alle bestimmten SW-Produktionskennzahlen und Softwarekennzahlen erfassen zu kon-
nen, werden bei der Erstellung des Sliced V-Modells die in den Abschnitten 3.2.2.4 und

97

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

4.2.2 ermittelten Anforderungen an den Softwareentwicklungsprozess beriicksichtigt. Im

Folgenden werden alle Anforderungen zusammenfassend aufgefiihrt:

A1l Zuordnung Quelltextinderungen:

Der Softwareentwicklungsprozess muss es ermoglichen, Quelltextdnderungen sowohl der
Implementierung neuer Softwarefunktionen als auch der Behebung intern und extern ent-
deckter Fehler zuzuordnen und diese Zuordnungen zu erfassen.

A2 Termine Softwarefunktionen:

Der Softwareentwicklungsprozess muss es ermoglichen, neue Softwarefunktionen individu-
ell mit einem zugesagten Termin zu markieren und diesen zugesagten Termin sowie den
Freigabetermin der Softwarefunktion zu erfassen.

A3 Soll-/Ist-Stunden:

Der Softwareentwicklungsprozess muss es ermoglichen, die Soll-Aufwénde fiir die Ent-
wicklung von Softwarefunktionen und die Ist-Aufwiinde, die fiir die Entwicklung einer
Softwareversion geleistet wurden, zu erfassen.

A4 Erweiterte Zuordnung Quelltextidnderungen:

Der Softwareentwicklungsprozess muss es ermoglichen, alle Quelltextdnderungen einer
Softwareversion zuzuordnen und diese Zuordnung zu erfassen.

A5 Entwicklungsaufwand:

Der Softwareentwicklungsprozess muss es ermoglichen, den Ist-Aufwand der Entwicklungs-
aktivitdten zu erfassen.

A6 Start und Ende:

Der Softwareentwicklungsprozess muss es ermoglichen, den Starttermin und den Endter-
min einer Softwareversion zu erfassen.

AT Softwaredokumentation:

Der Softwareentwicklungsprozess muss es ermoglichen, Work Items einer Softwareversion
zuzuordnen und die jeweils erstellte Anzahl an Work Items zu erfassen.

A8 Dokumentationsaufwand:

Der Softwareentwicklungsprozess muss es ermoglichen, den Ist-Aufwand der Dokumenta-
tionsaktivitdten zu erfassen.

A9 Fehlerattribute:

Der Softwareentwicklungsprozess muss es ermoglichen, Fehlerattribute zu erfassen.

A10 Fehlerzuordnung:

Der Softwareentwicklungsprozess muss es ermoglichen, Fehler einer Softwareversion zuzu-

ordnen und diese in intern und extern entdeckte Fehler zu unterscheiden.

98

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

5.2.2 Eigenschaften

Das Sliced V-Modell enthilt die nachfolgend aufgefithrten Artefakte. Die Auflistung zeigt
zunédchst den Namen der Artefakte und in welchem IT-System (ALM-System oder Ver-
sionsmanagementsystem) die Artefakte verwaltet werden. In weiteren Verlauf dieses Ab-

schnitts werden die Artefakte detailliert erlautert.

e Storage (ALM-System)

e Document (ALM-System)

e Work Item (ALM-System)

e Link (ALM-System)

e Repository (Versionsmanagementsystem)
e Revision (Versionsmanagementsystem)

e Baseline (ALM-System)

Abbildungen 5.2 und 5.3 zeigen das Datenmodell, anhand dessen die aufgefiihrten Arte-
fakte erldutert werden. Abbildung 5.2 stellt die Vererbungszusammenhénge der Artefakte
dar, Abbildung 5.3 gibt die Beziehungen zwischen den Artefakten wieder.

Das Storage ist das zentrale Artefakt des Datenmodells, mit dem alle weiteren Artefakte
verbunden sind. Das Storage existiert iiber den gesamten Lebenszyklus des Softwarepro-
duktes. Beim Anlegen des Sliced V-Modell Storage enthélt es noch keine der anderen

Artefakte, diese werden nach und nach hinzugefiigt.

Ein Document enthélt die Dokumentation, die in einer bestimmten Phase des V-
Modells der DIN EN 61508-3 erstellt wird. In einem Sliced V-Modell gibt es verschie-
dene Document-Typen. Um eine neue Softwareversion zu entwickeln, wird zunéchst ein
Feature Set Document erstellt. Es enthilt alle zu entwickelnden neuen Softwarefunktio-
nen (die Features). Die sich aus den neuen Softwarefunktionen ergebenen konkreten Pro-
duktanforderungen an die Softwareversion werden in einem oder mehreren Requirements
Specification Documents eingetragen. Es folgen die weiteren Dokumente, die die DIN EN
61508-3 vorschreibt: System Design Document, Module Design Document und mehrere
Test Documents. Um Aufgaben zu verwalten, die wihrend der Entwicklung der neuen Soft-
wareversion zu erledigen sind, wird jeweils mindestens ein Task Document angelegt. Die
Fehler, die wihrend der internen qualitétssichernden Mafnahmen entdeckt werden (vor
dem Endtermin einer Softwareversion), und die Fehler, die extern von Kunden (nach dem

Endtermin einer Softwareversion) gefunden werden, werden jeweils in getrennte Defect

99

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

wia}| }4Op\ 3531 3NPON

ET]
340 3591 Uoljes8aiu|

W3] YI0MN 159 WSAS

E]
34O/ 3591 @oue}ddY

\/

B PSS TR VELE .

|euJa3IX342Q : [BUISIXD
JeuRulyRQ : [BUJDIUI

wia}| Y40/ 33942

19891U] : Juadsowiy

J93891u] : @1eWIIST|RINUI
adA1Aunnay : adA | Ainoe

wia}| YoM Ysel

jusawndo(Q Paja(Q |eussiu|

jusawind0(Q 133j2(Q |ews1xy

wa}| Y40/\ 3NPON

juswindoq 13342

JuaWNd0Q Ysel

1UaWNd0Q 353 3|NPOIA|

w)| Mo udisag

juawnooq udisaq 3|NPON

TUawnooq
159) uoijessa|

wia}| 3o/ JuBWalnbay

uswn20Qq udisag walsAs

UBWND0(353] WaASAS

wiay oM Is3L

\/

awi] ajeq : aieganp

wia}| 34O 24n3ea

JUSWNO0Qg UOEednads
sjuawalinbay

BUINS © uonduosep
sulns : 9y
pno : pi

wy| 3Jop aseg

TUSWNo0Qq
1539] 9oueidandy

\

1UaWNJ0(39S aJn1eaq

8u1ns : sweu

juswnsog

Abbildung 5.2: Vererbungszusammenhang der Sliced V-Modell-Artefakte
100

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

1

awilaleq : aAeq|q
adAjauljeseq : adAyq T
auljeseg
[Josoyu[: JuadSowy
Jagayu) : 21eWIISI[RINUI
adA JAuAnoy : adA 1 Avnnoe *T
W3} S4OM diseL uaWNd0Q ysel
T
01 sajefas
* 1UWNI0Q 193§3([BWIANXT
T
[IEYENEGHISTELES
03 SABRI————B |eusaIxzyaq : [RUISIN
T |eusauyaq : feusayur [+T T
w3y }40M 19352d U3WN20(P343Q |euUIA|
..H *..H . .
T smepi—t b
—— o031 sajepy a8elols
*'T
uoIsInay Aioyisoday
T . T
* T *H
*..ﬁ M
SNy —
JuaWn20Q 1531 3|NPOA| Wia}| %40M 3s3L 3INPON wia)| YoM 3NPOIAI Juawnoq usisag 3|npo
T
*'T 1
«T T —
*H H P
SIJUIN—— P T 1 juswnd0Q udisaqg walsAs
TUaWN20Qq way 3 E S3IJLIAA -
159 uoijedau| 34O/ 3531 UoIjesSalu| wia3 HoM usiseq -
T
T T
T T
T T 3
SIS T —seuuen Juawndoq uoljedynads
i Suawalinbay
WBWN20(Q 1591 WalsAs w3 4o 58 warshs w3 Y40 M sudwainbay
T T T
*'T
. T
_ 1epien N awi] ajeq : aleganp
TUaWN20Qq Wy T N
159] 92ue1daddy 34O 159 92ue1daddy Wid}| }40/M 3injesy JUaWN0(39S aJnjea4

01 sa1ep.

Beziehungen zwischen den Sliced V-Modell-Artefakten

Abbildung 5.3

101

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Documents eingetragen: Es gibt fiir jede Softwareversion ein Defect Document fiir die
intern entdeckten Fehler und fiir jedes Softwareprodukt, also in jedem Storage, ein oder

mehrere Dokumente fiir die extern entdeckten Fehler.

Die Namen der Feature Set Documents, der Defect Documents und der Task Documents
werden gemif festgelegten Regeln gebildet. Dadurch konnen sie durch ein Informations-
verarbeitungssystem identifiziert werden. Folgende Dokumentennamen zeigen Beispiele

fiir die Regeln:

e Features V1 20: Enthilt alle Features, die zur Softwareversion V1.20 umzusetzen

sind. Ein Feature Set Document wird fiir jede Softwareversion angelegt.

e Tasks V1 20: Enthilt alle projektspezifischen Aktivititen, die fiir die Software-
version V1.20 zu erledigen sind. Ein Task Document wird fiir jede Softwareversion

angelegt.

e Defects V1 20: Enthilt alle Fehler, die wihrend der internen qualitidtssichernden
Mafnahmen fiir die Softwareversion V1.20 entdeckt wurden. Dieses Dokument wird

Internal Defect Document genannt und wird fiir jede Softwareversion angelegt.

e ExtDefects All: Enthélt alle extern entdeckten Fehler. Dieses Dokument wird
External Defect Document genannt. Es gibt mindestens ein Dokument fiir ein

Softwareprodukt.

Die Documents enthalten Work Items und sind folglich Container von Work Items. Work
Items wurden in Abschnitt 2.1.2.1.4 eingefiihrt: Sie beschreiben sowohl zu erledigende
Aktivitdten im Entwicklungsprozess als auch Dokumentationsartefakte, wie zum Beispiel
Produktanforderungen, Testfdlle oder Fehlerbeschreibungen. In einem Sliced V-Modell
werden verschiedene Typen von Work Items verwendet, die in Tabelle 5.1 aufgefiihrt

sind.

In einem Document diirfen nur Work Items eines Typs vorkommen. Ein Beispiel:
Ein Requirements Specification Document (eine Anforderungsspezifikation) enthélt nur
Requirements Work Items. Allerdings kann es mehrere Requirements Specification

Documents geben.

Jeder Work Ttem-Typ besitzt mindestens die in Tabelle 5.2 aufgefiihrten Attribute, die
vom Base Work Item vererbt werden. Sie werden Standardattribute genannt. Dariiber
hinaus verfiigen einige Work Item-Typen {iber weitere Attribute, die in den néchsten

Absétzen erldutert werden.

Fiir das Verstdndnis der Work Item-Typen ist in Tabelle 5.3 ein Beispiel aufgefiihrt. Es

bezieht sich auf eine neue Softwarefunktion einer SPS-Software, die sogenannte optische

102

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Work Item-Typ

Beschreibung

Feature
Requirement
Design
Module

Test
Acceptance Test
System Test
Integration Test
Module Test
Defect

Task

Beschreibung einer Softwarefunktion

Detaillierte Produktanforderung zu einer Softwarefunktion
High Level-Softwaredesign, zum Beispiel Softwarearchitektur
Low Level-Softwaredesign in Ergénzung zum Quelltext und zu
Programmkommentaren

Basistyp fiir die Test Work Item-Typen

Testbeschreibung eines Abnahmetests

Testbeschreibung eines Systemtests

Testbeschreibung eines Integrationstests

Testbeschreibung eines Modultests

Fehlerbeschreibung

Zu erledigende Dokumentations- bzw. Entwicklungsaktivitaten

Tabelle 5.1: Work Item-Typen im Sliced V-Modell

Profinet-Diagnose. Profinet ist ein industrielles Ethernet-Protokoll, iiber das eine SPS mit
sogenannten Profinet-Gerédten Daten austauschen kann. Diese neue Softwarefunktion wird
in einem Feature Work Item vermerkt. Um diese Softwarefunktion zu realisieren, miissen
mehrere Anforderungen, mehrere Designerweiterungen, mehrere Testfdlle und mehrere
Aufgaben formuliert und umgesetzt werden. In Tabelle 5.3 ist jeweils nur ein Beispiel fiir

einen Work Item-Typ bzw. nur fiir einen vom Test Work Item abgeleiteten Typen gezeigt.

Ein Feature Work Item, das in ein Feature Set Document eingetragen wird, enthélt zusitz-
lich zu den Standardattributen das Attribut dueDate. In diesem Attribut wird notiert, zu

welchem Termin die Fertigstellung einer Softwarefunktion zugesagt ist.

Vom Test Work Item sind weitere Work Item-Typen fiir jede sogenannte Teststufe ab-
geleitet. Eine Teststufe ist ,eine Gruppe von Testaktivititen, die gemeinsam ausgefiihrt
und verwaltet werden® [SLO3]. Beispiele einer Teststufe im V-Modell der DIN EN 61508-3
sind der Modultest oder der Integrationstest. Die abgeleiteten Work Item-Typen sind:
Acceptance Test Work Item, System Test Work Item, Integration Test Work Item und
Module Test Work Item.

Attributname Typ Beschreibung

id Guid Identifikator, um ein Work Item eindeutig im ALM-System
identifizieren zu kénnen. Wird automatisch generiert

title String Titel des Work Items

description String Inhalt des Work Ttems (Text, Bilder)

Tabelle 5.2: Attribute des Base Work Items

103

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Work Item-Typ Attribut title

Attribut description

Feature Optische Profinet-
Diagnose

Requirement Anzeige Profinet-
Gerét im
SPS-Display

Design Systemarchitektur
Optische Diagnose

Module Auswertung Profinet-

Alarm

System Test Anzeige Profinet-

Gerat

Defect Falsche Adresse
des Profinet-Gerats
Task Erweiterung der

Systemarchitektur

Optische Profinet-Diagnose
gemif Profinet-Spezifikation V2.3

Wenn ein Profinet-Geridt einen Alarm
der optischen Diagnose meldet, muss
die Adresse des Profinet-Gerits im SPS-
Display angezeigt werden

Erweiterung UML-Klassendiagramm
um Klasse OptDiagData (siehe
UML-Werkzeug)

Implementierung der Funktion
receive OptAlarm

Schritt 1: Starten der SPS

Schritt 2: Reduzierung der optischen
Leistung zwischen Gerédt 1 und 2
Erwartetes Ergebnis: Die Adresse des
Profinet-Geréats 2 wird angezeigt

Die Adresse des Profinet-Gerats 1 wird an-
statt der Adresse des Profinet-Gerats 2 an-
gezeigt

Check-Out Klassendiagramm,
Bearbeiten, Check-In

Tabelle 5.3: Beispiele fiir Work Ttem-Typen

Das Defect Work Item besitzt zusétzlich zu den Standardattributen folgende weitere At-

tribute, mit denen verschiedene Stakeholder eines Softwareproduktes ihre Sicht auf einen

Fehler ausdriicken konnen:

e Ein Softwareentwickler tragt in dem Attribut internal die von ihm erkannten Ur-
sachen des entdeckten Fehlers ein. Dieses Attribut hat den Datentyp DefInternal.

Dies ist ein Aufzéhlungstyp, dessen Wertemenge [SSRT08| entnommen ist.

e Die Bewertung eines Anwenders des Softwareproduktes, hinsichtlich der Frage, wel-

che Qualititseigenschaft des Softwareproduktes durch den entdeckten Fehler be-

eintrichtigt ist, wird in das Attribut external eingetragen. Dieses Attribut hat den

Datentyp DefFExternal. Dies ist ein Aufzahlungstyp, dessen Wertemenge an die Qua-
litdtscharakteristiken der ISO/IEC 25010 angelehnt ist.

e Ein Produktverantwortlicher nutzt das Attribut severity und bewertet damit den

Schweregrad des Fehlers. Dieses Attribut hat den Datentyp DefSeverity. Dies ist ein

Aufzéhlungstyp, dessen Wertemenge [PP11] entstammt.

104

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Tabelle 5.4 zeigt die genannten Aufzdhlungstypen und deren Wertemengen. Die Bedeu-
tung der Werte in den Wertemengen wird im Anhang A erldutert. Um die extern entdeck-
ten Fehler einer Softwareversion zuzuordnen, enthilt das Defect Work Item ein weiteres
Attribut, swVersion vom Typ String. Darin wird die Softwareversion eingetragen, in der
der Fehler entdeckt wurde.

Das Task Work Item besitzt zusétzlich zu den Standardattributen die in Tabelle 5.5 gezeig-
ten Attribute. Die Zeitbasis fiir diese Attribute sind Stunden. Das Attribut nitial Estimate
dient der Planung einer Aufgabe. Das Attribut timeSpent gibt den fiir diese Aktivitét er-

brachten Aufwand wieder.

Aufzihlungstyp Beschreibung Wertemenge
DefInternal Bewertung eines Fehlers aus Algorithm, method
Sicht eines Entwicklers Assignment, initialization
Checking
Data

External interface
Internal interface
Logic

Non-functional
Timing, optimization
Other

DefExternal Bewertung eines Fehlers aus Documentation

Sicht eines Anwenders Functionality
Handling
Optic
Performance
Stability

DefSeverity Bewertung eines Fehlers aus Critical

Sicht eines Major
Produktverantwortlichen Neutral
Minor

Trivial

Tabelle 5.4: Aufzahlungstypen der Attribute des Defect Work Items

Um Dokumentationsaktivititen und Entwicklungsaktivitdten zu unterscheiden, enthéalt
das Task Work Item das Attribut activityType vom Typ ActityType. Dies ist ein Auf-
zéhlungstyp mit der Wertemenge {documentation, development}. Dokumentationsakti-
vitdten umfassen alle Aufgaben fiir die Erstellung und die Pflege der Entwicklungsdo-

kumentation, zum Beispiel Erstellen einer Testspezifikation. Bei Entwicklungsaktivititen

105

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Attributname Typ Beschreibung

initialEstimate Integer Initial abgeschéitzte Zeit in Stunden, die notwendig ist, um
die Aktivitit zu erledigen

timeSpent Integer Tatsdchliche Zeit in Stunden, die fiir die Erledigung der
Aktivitat aufgebracht wurde

Tabelle 5.5: Zeitattribute des Task Work Items

handelt es sich um alle Aufgaben fiir die Realisierung des Softwareproduktes, zum Beispiel

Programmieren einer Klassenmethode.

Work Items kénnen untereinander in Beziehung gesetzt werden. Eine derartige Beziehung
ist ein Link. Ein Link zeigt einen Informationszusammenhang der beiden verbundenen
Work Ttems an und hat einen Typ und eine Richtung. Die DIN EN 61508-3 definiert die
Traceability-Regeln Validierung, Verifikation und Ausgabe. Um diese Regeln im Sliced
V-Modell umzusetzen, werden die Linktypen wvalidates und verifies definiert, mit denen
Work Items verlinkt werden konnen. Da die Traceability-Regel der DIN EN 61508-3 Aus-
gabe dieselben Artefakte verbindet wie die Traceability-Regel Verifikation (vgl. Abbil-
dung 2.21), nur in entgegengesetzter Richtung, wird diese Traceability-Regel im Sliced
V-Modell nicht genutzt. Fiir das Traceability Management bietet sie keinen inhaltlichen
Mehrwert: Da die Work Items in einem Sliced V-Modell iiber mindestens einen Link in
Beziehung gesetzt werden, ist die Traceability entlang des V-Modells gewahrleistet. Das
Verwalten von Traceability-Matrizen entfillt (vgl. Tabelle 2.5), da ALM-Systeme in der
Lage sind, Traceability-Berichte automatisiert zu erstellen. Der Aufwand des Traceability-
Managements reduziert sich somit auf das Setzen der Links und auf die Auswertung der

Traceability-Berichte.

Da die Dokumente in Work Items aufgeteilt werden und die Work Items dokumenteniiber-
greifend verlinkt sind, bilden sich dokumenteniibergreifende ,Scheibchen* (Abbildung 5.4).
Wie schon erwéhnt, begriindet dies den Namen Sliced V-Modell. Das ausgehend von einem

Feature Work Item gebildete V¢ wird V-Slice genannt.

Das Sliced V-Modell stellt einer Verfeinerung des V-Modells dar. Der in Abschnitt 2.5.1 er-
lauterte Nachteil des V-Modells, demnach eine néchste Entwicklungsphase erst begonnen
werden kann, wenn ein vollstindiges Dokument erstellt ist, entfillt im Sliced V-Modell.
Die Steuerung der Entwicklungsphasen erfolgt im Sliced V-Modell nicht dokumentenori-
entiert, sondern Work Item-orientiert. Damit ist gemeint, dass zwar einzelne Work Items
innerhalb einer V-Slice in einer bestimmten Reihenfolge zu erstellen sind, allerdings erfolgt

die Bearbeitung einzelner V-Slices unabhéngig voneinander.

Grundsétzlich kann im Sliced V-Modell jede Softwarefunktion einzeln und unabhéngig

von anderen Softwarefunktionen spezifiziert, implementiert und getestet werden.

106

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Acceptance Test Document

Acceptance Test
Work Item

Feature Set Document

Feature Work
Item

System Test Document
Document

Requirement Specification
Requirement 7 System Test Work
Work Item Item

SystemyDesign
Document
Design Work
Item

[/

Integration Test Document

Integration Test
Work Item

Module Design Module Test Document

Module Test
Work Item

Module Work 7
Item

[/

Abbildung 5.4: Schematische Darstellung von V-Slices

Abbildung 5.5 zeigt exemplarisch drei Softwarefunktionen, die jeweils in einer V-Slice
bearbeitet werden. Fiir jede Softwarefunktion wird ein Feature Work Item erzeugt, das
den Startpunkt einer einzelnen V-Slice darstellt. Wie in der Abbildung gezeigt, konnen

die V-Slices zeitlich versetzt bearbeitet werden.

Die Steuerung der Bearbeitung der V-Slices bzw. der einzelnen Work Items innerhalb einer
V-Slice erfolgt durch die Task Work Items. Sie kénnen, dhnlich wie die Backlog-Items in
Scrum, erfasst und innerhalb eines Sprint-Zyklus bearbeitet werden. Task Work Items
konnen vor jedem Sprint-Zyklus neu definiert, verworfen oder geéndert werden. Da jede
V-Slice ein ,Mini-V*“ darstellt, kann das Sliced V-Modell als ein agiles Vorgehensmodell

angesehen werden, in dem die Qualitdtseigenschaften des V-Modells integriert sind.

,V“slice Feature Work Item A

,V*“ slice Feature Work Item B

,V“ slice Feature Work Item C

1 1 »

Starttermin Endtermin t

Abbildung 5.5: Bearbeitungsabfolge einzelner V-Slices

107

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Ein Repository ist die Datenablage eines Versionsmanagementsystems |[Popl3]. Eine
Revision ist eine im Repository gespeicherte Anderung, wie zum Beispiel die Anderung
an einer Quelltext-Datei. Die im Repository gespeicherten Revisionen sind entweder mit

einem Module Work Item oder mit einem Defect Work Item verlinkt.

Das Sliced V-Modell Storage und damit alle darin enthaltenen Work Items und Dokumen-
te wird zu definierten Zeitpunkten mit Hilfe einer Baseline ,eingefroren®. Eine Baseline ist
,a reference configuration from which to identify and to control change* [DCKVO0S§]. Sie
enthilt die vollstindige Dokumentation des Sliced V-Modell Storage zu dem Zeitpunkt,
an dem die Baseline erstellt wurde. Die Inhalte der Dokumente und der Work Items sind
folglich abhingig von der Baseline. Abbildung 5.6 zeigt dies exemplarisch anhand einiger
Dokumenttypen im Sliced V-Modell.

Eine Baseline wird jeweils zum Starttermin und zum Endtermin einer Softwareversion er-
stellt. Der Tag der Erstellung wird im Attribut 6{Date des Typs Baseline gespeichert. Die
genaue Definition von ,Starttermin“ und ,Endtermin® ist jeweils durch die Stakeholder
festzulegen (vgl. Abschnitt 2.1.2.3). Um diese Unterscheidung an dem im Klassendia-
gramm gezeigten Typ Baseline vorzunehmen, besitzt dieser Typ das Attribut blType vom
Typ BaselineType. Dieses ist ein Aufzéhlungstyp mit der Wertemenge {start, end}. Im
Folgenden wird eine Baseline, die in diesem Attribut den Wert {start} gesetzt hat, Start-
Baseline genannt. Eine Baseline, die in diesem Attribut den Wert {end} gesetzt hat, wird

End-Baseline genannt.

Baseline V1.0 (2016-12-31) Baseline V1.0 (2016-12-31)

Baseline V1.1 (2017-06-01)

Feature Work
Item

Baseline V1.1 (2017-06-01)

Acceptance Test
Work Item

Baseline V1.0 (2016-12-31) Baseline V1.0 (2016-12-31)

Baseling V1.1 (2017-06-01)

Requiement /.
Work Item

Baseline V1.1 (2017-06-01)

System Test
Work Item

Baseline V1.0 (2016-12-31)
Baselin& V1.1 (2017-06-01) /
Design Work
item /

Baseline V1.0 (2016-12-31)
Baseline V1.1 (2017-06-01)

Integration Test
Work Item

Baseline V1.0 (2016-12-31) Baseline V1.0 (2016-12-31)
Baseline V1.1 (2017-06-01)

BaselinejV/1.1 (2017-06-01)

Module Test
Item /

Abbildung 5.6: Baselines im Sliced V-Modell

108

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

5.2.3 Bewertung

Um zu bewerten, ob das Sliced V-Modell geeignet ist, die im Anwendungsbeispiel be-
stimmten SW-Produktionskennzahlen und Softwarekennzahlen zu erfassen (vgl. Abschnitt
3 und 4), erfolgt als erstes eine manuelle Priifung, ob die Anforderungen Al bis A10 er-
fiillt werden. Diese Priifung wird in den néchsten beiden Kapiteln durch zwei weitere
Priifschritte, ndmlich Erstellung der Berechnungsgrundlagen aller Kennzahlen und Imple-
mentierung eines Informationsverarbeitungssystems, vervollstindigt. Die manuelle Prii-

fung der Erfiillung der Anforderungen ergibt folgende Ergebnisse:

A1 Zuordnung Quelltextinderungen und A4 Erweiterte Zuordnung Quelltext-
dnderungen: Jede Revision im Repository ist entweder mit einem Defect Work Item oder
einem Module Work Item verlinkt. Letztere sind immer mit einem Feature Work Item in-
direkt verlinkt, das heifst, sie sind mit Design Work Items verlinkt, die mit Requirements
Work Items verlinkt sind, welche wiederum mit Feature Work Items verlinkt sind. Somit
lasst sich eindeutig nachvollziehen, welche Quelltextdnderungen aufgrund einer Fehler-
behebung bzw. fiir die Umsetzung einer neuen Softwarefunktion erfolgten. Sowohl die
Defect Work Items als auch die Module Work Items kénnen einer Softwareversion zu-
geordnet werden. Die Menge aller Feature Set Documents sind einem Sliced V-Modell
Storage zugewiesen, das ein Softwareprodukt reprasentiert. Alle Quelltextinderungen las-
sen sich somit einer Softwareversion und folglich dem Softwareprodukt zuordnen. Die
Unterscheidung zwischen intern und extern entdeckten Fehlern findet iiber die Internal

Defect Documents bzw. External Defect Documents statt.

A2 Termine Softwarefunktionen: Die Zieltermine einer Softwarefunktion werden in
das Attribut dueDate eines Feature Work Items eingetragen. Der Endtermin einer Soft-

wareversion wird mit Hilfe einer End-Baseline vermerkt.

A3 Soll-/Ist-Stunden: Der Soll-Aufwand einer Softwarefunktion wird im Attribut in-
itialEstimate eines Feature Work Items eingetragen. Die Summe aller Eintrige in diesem
Attribut ist der Soll-Aufwand aller fiir eine Softwareversion geplanten Softwarefunktio-
nen. Die tatséchlich geleisteten Aufwénde werden im Attribut timeSpent eines Task Work
Items vermerkt. Jedes dieser Work Items ist einem Feature Set Document zugeordnet.

Somit kann der Ist-Aufwand einer Softwareversion ermittelt werden.

A5 Entwicklungsaufwand und A8 Dokumentationsaufwand: Die tatsiachlich ge-
leisteten Aufwinde werden im Attribut tzmeSpent in den Task Work Items vermerkt. Diese
Work Items werden durch das Attribut activityType in Entwicklungs- und Dokumenta-
tionsaktivitdten unterschieden. Da jedes dieser Work Items einem Feature Set Document
zugeordnet ist, konnen der Ist-Entwicklungsaufwand und der Ist-Dokumentationsaufwand

einer Softwareversion ermittelt werden.

109

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

A6 Start und Ende: Der Starttermin und der Endtermin einer Softwareversion werden
durch die Start-Baseline und die End-Baseline vermerkt. Die Entwicklungsdauer kann aus

der Differenz der jeweiligen Kalendertage ermittelt werden.

A7 Softwaredokumentation: Ausgehend von den Feature Work Items in einem Feature
Set Document sind alle fiir eine Softwareversion erstellten Work Items untereinander ver-
linkt. Sie lassen sich somit dieser Softwareversion zuordnen und kénnen durchgezihlt
werden. Die intern entdeckten Fehler konnen aufgrund der festgelegten Syntax des Doku-
mentennamens des jeweiligen Internal Defect Documents ebenfalls einer Softwareversion
zugeordnet werden. Alle Work Items gehoren zu einem Sliced V-Modell Storage und lassen

sich folglich einem Softwareprodukt zuordnen.

A9 Fehlerattribute: Die Defect Work Items besitzen die Attribute internal, external und
severity. In diesen Attributen werden jeweils die fiir die einzelnen Kategorien definierten
Werte eingetragen, aus denen die prozentualen Teilwerte aller Fehlerattribute berechnet

werden konnen.

A10 Fehlerzuordnung: Alle intern entdeckten Fehler sind in einem Internal Defect
Document als Defect Work Items eingetragen und konnen somit einer Softwareversion
zugeordnet werden. Alle extern entdeckten Fehler sind in einem Ezternal Defect Document
eingetragen und lassen sich folglich dem Softwareprodukt zuordnen. Die Anzahl der intern
und extern entdeckten Fehler kann gezdhlt werden und auf deren Basis ist es moglich, die

Fehlerbehebungsrate zu berechnen.

Die manuelle Priifung zeigt, dass das Sliced V-Modell alle Anforderungen erfiillt, um
durch ein Informationsverarbeitungssystem die bestimmten SW-Produktionskennzahlen
und Softwarekennzahlen erfassen zu kénnen. Da alle Daten eines Sliced V-Modell Storage
in einem ALM-System bzw. in einem Versionsmanagementsystem gespeichert werden, ist
eine I'T-basierte Datenerfassung und -verarbeitung realisierbar. Wie in Abschnitt 2.1 er-
lautert, sollten Kennzahlen automatisiert erfasst und verarbeitet werden, da so die Kosten
der Datenerfassung reduziert und die Objektivitit der Kennzahlenwerte erh6ht werden.
Voraussetzung dafiir ist die I'T-basierte Erreichbarkeit der Datenquellen der Kennzahlen,
was durch die Nutzung eines ALM-Systems und eines Versionsmanagementsystems in
einem Sliced V-Modell gegeben ist. Sowohl ALM-Systeme als auch Versionsmanagement-
systeme ermoglichen den Zugriff auf ihre Daten iiber API, die durch andere I'T-Systeme

verwendet werden konnen.

Nachdem das Datenmodell des Softwareentwicklungsprozesses entwickelt wurde, kénnen
die Berechnungsgrundlagen der SW-Produktionskennzahlen und der Softwarekennzahlen

erstellt werden. Diesem Themenkomplex widmet sich das néchste Kapitel.

110

Kapitel 6

Ermittlung der Berechnungsgrundlagen

Dieses Kapitel widmet sich den Berechnungsgrundlagen der Kennzahlen. Es werden die
Notwendigkeit von Berechnungsgrundlagen, das prinzipielle Vorgehen bei deren Erstel-
lung und die Berechnungsgrundlagen der in den vorherigen Kapiteln bestimmten SW-
Produktionskennzahlen und Softwarekennzahlen gezeigt. Diese Berechnungsgrundlagen
setzen die Anwendung des Sliced V-Modells voraus. Zunéchst werden die Berechnungs-
grundlagen der Softwarekennzahlen und danach die der SW-Produktionskennzahlen auf-
gefiihrt, da einige SW-Produktionskennzahlen aus Softwarekennzahlen gebildet werden.
Die Inhalte dieses Kapitels entstanden iterativ in den Design Research-Entwurfsphasen
FErstellen und Evaluierung (vgl. Abschnitt 1.5).

Abbildung 6.1 zeigt die Inhalte dieses Kapitels und an welcher Stelle diese Inhalte zur
Erreichung der Zielsituation dieser Arbeit beitragen. Die grauen Rechtecke markieren den

Inhalt: die Berechnungsgrundlagen der Kennzahlen in Kgy und Kg.

Management

Interpretation T
Strategische “\Pefinition Transfer / \}4
i K.
2 \j/ Erfassung

Formulierung

Berlicksichtigung Verdichtu ng*
Softwareteam Gestaltung Software-
entwicklungsprozess
Formulierung Interpretation f
Operative Definition < Erfassung
K
Ziele w"

Abbildung 6.1: Inhalt des Kapitels 6 in Bezug auf die Zielsituation dieser Arbeit

111

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.1 Notwendigkeit und Vorgehen

Um ein Informationsverarbeitungssystem zu implementieren, ist es erforderlich, die Be-
rechnungsgrundlagen aller Kennzahlen zu ermitteln. Aus den Berechnungsgrundlagen
muss hervorgehen, auf welchen Datenquellen die Berechnung der Kennzahlen beruht. Es
konnen folglich nur Datenquellen genutzt werden, die tatsdchlich in dem Datenmodell
des Softwareentwicklungsprozesses vorhanden sind. Wie in Abschnitt 5.1 erldutert, ist die
Erstellung der Berechnungsgrundlagen ein Teil der Uberpriifung, ob ein Datenmodell die
Anforderungen an einen Softwareentwicklungsprozess erfiillt, wie sie bei der Bestimmung

der Kennzahlen formuliert wurden.

Des Weiteren zeigen die Berechnungsgrundlagen, wie ein Informationsverarbeitungssys-
tem die Daten aus den Datenquellen zu Kennzahlen verarbeiten soll. Dies gilt sowohl fiir
die absoluten Kennzahlen, die in Einzelzahlen, Summe, Differenz und Mittelwert einge-
teilt werden, als auch fiir Verhéltniskennzahlen, die das Verhéltnis von zwei oder mehr
absoluten Kennzahlen anzeigen (vgl. Abschnitt 2.1.1). Um in einem Informationsverar-
beitungssystem die Berechnung einer Verhaltniskennzahl implementieren zu kénnen, muss
zundchst die Erfassung der darin eingehenden absoluten Kennzahlen implementiert wer-

den.

Bei der Erstellung der Berechnungsgrundlagen der absoluten Kennzahlen wird das zu-
grundeliegende Datenmodell analysiert und die dazugehdérenden Datenquellen identifi-
ziert. Dies ist ein manueller Vorgang, fiir den keine systematische Methode bekannt ist.
Sind die Datenquellen analysiert, wird eine konkrete mathematische Formel ermittelt, mit
der die jeweilige Kennzahl aus den Datenquellen berechnet wird: Sie zeigt die Additions-,
Differenz- oder Mittelwertberechnung (vgl. Abschnitt 2.1.1).

Um die Berechnungsgrundlagen der Verhiltniskennzahlen zu ermitteln, ist eine Analyse
des Datenmodells nicht notwendig, da in deren mathematischen Formeln lediglich die
absoluten Kennzahlen beriicksichtigt werden und somit keine direkte Datenerfassung aus

dem Datenmodell erfolgt.

Die Berechnungsgrundlagen sind durch ein Review von geeigneten Experten zu priifen.
Dafiir konnen Review-Methoden aus dem Methodenbaukasten fiir statische Testverfahren,

beispielsweise informelles Review oder Walkthrough, angewendet werden [SLO3].

In den folgenden Abschnitten werden fiir das Anwendungsbeispiel beim Kooperations-
partner die Berechnungsgrundlagen aller bestimmten Softwarekennzahlen und SW-
Produktionskennzahlen erldutert. Deren Erstellung orientiert sich an dem dargestellten

Vorgehen. In allen Formeln wird auf die Angabe von Mafeinheiten verzichtet.

112

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.2 Berechnungsgrundlagen der Softwarekennzahlen

Alle nachfolgenden Softwarekennzahlen werden jeweils fiir eine Softwareversion berechnet
und sollten zum Endtermin der Softwareversion erfasst werden. Dies ermdoglicht die kon-
tinuierliche Beobachtung des Softwareentwicklungsprozesses von Softwareversion zu Soft-
wareversion. Zwar wire es moglich, die Softwarekennzahlen zu jedem beliebigen Zeitpunkt
nach dem Endtermin zu erfassen, da die Softwareartefakte dauerhaft in dem ALM-System
bzw. dem Versionsmanagementsystem gespeichert werden und der Bezug der Softwarear-
tefakte zu einer Softwareversion durch das Sliced V-Modell eindeutig hergestellt wird. Um
jedoch den Softwareentwicklungsprozess kontinuierlich zu verbessern, sollte die Bewertung

der Softwarekennzahlen unmittelbar nach dem Endtermin erfolgen.

Eine Ausnahme bildet die Fehlerbehebungsrate (vgl. Abschnitt 2.1.2.4.1): Sie wird nur fiir
das Softwareprodukt berechnet. Der Grund dafiir liegt darin, dass die in einer Software-
version enthaltenen Fehler zum Teil erst Jahre nach dem Endtermin der Softwareversion
entdeckt werden. Da zum Endtermin noch keine extern entdeckten Fehler bekannt sein
konnen und folglich die Fehlerbehebungsrate immer 100 % betrigt, ist eine Erfassung der
Fehlerbehebungsrate bezogen auf eine Softwareversion am Endtermin nicht sinnvoll. Zwar
werden extern entdeckte Fehler einer Softwareversion zugeordnet, indem das Attribut
swVersion an einem Defect Work Item entsprechend gefiillt wird (vgl. Abschnitt 5.2.2) und
folglich ware es moglich, nachtraglich die Fehlerbehebungsrate fiir eine Softwareversion zu
berechnen und zu bewerten. Allerdings ist zu diesem Zeitpunkt, der deutlich nach dem
Endtermin der Softwareversion liegt, das Wissen iiber die Entwicklung dieser Software-
version in den beteiligten Softwareteams nicht mehr so présent wie an dem Endtermin
selbst. Die Definition und Durchfiihrung von kontinuierlichen Verbesserungsmafnahmen
wire in dem Fall nicht ohne weiteres mdoglich, da sich die Rahmenbedingungen des Softwa-
reentwicklungsprozesses bereits geindert haben kénnen. Geénderte Rahmenbedingungen

sind zum Beispiel neue Mitarbeiter im Softwareteam.

Die Fehlerbehebungsrate ist daher als ein Indikator fiir den Erfolg aller qualitidtssichern-
den Mafknahmen zu betrachten, die im Laufe der Entwicklung eines Softwareproduktes
erfolgten. Sie sollte in regelméfigen zeitlichen Abstdnden erfasst werden, zum Beispiel in
festen Zeitabstinde, wie zum Beispiel einmal im Quartal, oder jeweils an einem Endtermin

einer Softwareversion.

6.2.1 Churn

Der Churn als Softwarekennzahl wurde in Abschnitt 4.2.2.1 bestimmt. Mit dem Churn

kann die Frage beantwortet werden, wie viel Software erstellt wurde. Da die Erstellung

113

Kapitel 6. Ermittlung der Berechnungsgrundlagen

der Software mehreren Aktivitdten zugeordnet werden kann, zum Beispiel den Arbeiten
an einer Softwarefunktion oder der Behebung eines Fehlers, werden im Folgenden mehrere

Churn-Kennzahlen eingefiihrt.

Im Sliced V-Modell konnen die Quelltextinderungen, die aufgrund der Umsetzung ei-
ner Softwarefunktion oder einer Fehlerbehebung erfolgten, eindeutig der Softwarefunktion
oder dem Fehler zugeordnet werden. Zur Erlauterung soll die Abbildung 6.2 dienen: Aus-
gehend von dem Feature Work Item, in dem die Softwarefunktion formuliert ist, kénnen
die verlinkten Work Items schrittweise erkannt werden. Am Ende dieser Work Item Links
befinden sich die Module Work Items. Sie sind mit den Revisionen verlinkt, die die Quell-
textanderungen enthalten. Die Defect Work Items sind unmittelbar mit den Revisionen

verlinkt.

Zur Messung des Churn wird ein Unified Diff Patch genutzt. Dies ist ein Text (vgl. Abbil-
dung 2.5), dessen Grofe in Kilobyte [KB| angegeben wird. Der Churn, der einer einzelnen
Softwarefunktion zugeordnet wird, wird Single Feature Churn genannt. Die Gleichungen
6.1 und 6.2 zeigen dessen Berechnung. Es werden zunichst die Churns, die die Quell-
textanderungen zwischen den Sténden einzelner Dateien anzeigen, erfasst und summiert.
Die Dateistdnde sind Teil der Revisionen, die mit Module Work Items verlinkt sind. Die
Summe bildet den Module Churn. Danach werden alle Module Churns summiert, die {iber
eine V-Slice einem Feature Work Item zugeordnet werden konnen. Die V-Slice wird dabei

von unten nach oben verfolgt.

k
Chy =Y _ Chya, (6.1)
=0
l
Chy, =Y Chuy, (6.2)
=0

mit:

Chyie File Churn: Summe der Grofe der Unified Diff Patches fiir eine einzelne
Datei (eine einzelne Datei kann mehrfach gedndert werden)

Chyp, Module Churn: Summe aller File Churns, die dem Module Work Item
zugeordnet sind

Chy, Single Feature Churn: Summe aller Module Churns, die dem Feature Work
Itemzugeordnet sind

k Anzahl aller Dateien in einer Revision, die mit einem Module Work Item
verlinkt sind

l Anzahl an Module Work Items in einer V-Slice

Chy, und Chy, haben die Mafeinheit KB (Kilobyte).

114

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Feature Work Item

1

Requirement Work Item

Il

verifies

verifies__1..%]

Design Work Item

Il

verifies 1.4

Module Work Item

Repository 1 * Revision
relates to——————

1.* 1..

Defect Work Item

1
[¢——relates to

Abbildung 6.2: Zuordnung von Quelltextdnderungen zu Softwarefunktionen

Fiir die Veranschaulichung dieser Gleichungen soll Abbildung 6.3 dienen. Sie zeigt die
Ermittlung eines Module Churn: Um Chg;. zu berechnen, werden zunéchst die Churns
zwischen den Stinden der Dateien, die in den Revisionen gedndert wurden, ermittelt.
Zum Beispiel wird der Churn zwischen dem Stand der Datei A in Revision 3478 und dem
Stand der Datei A in Revision 2604 sowie der Churn zwischen dem Stand der Datei C in
Revision 3478 und dem Stand der Datei C in Revision 1974 ermittelt. Da der Churn jeweils
zwischen zwei aufeinanderfolgenden Dateistinden ermittelt wird, ist fiir die niedrigste
Revision mit der Nummer 1974, die mit dem analysierten Module Work Item verlinkt ist,
festzustellen, in welcher Revision die Datei C zuletzt gedindert wurde (in der Abbildung
schematisch fiir die Datei C durch die gepunktete Linie dargestellt). Da diese Revision
nicht mit dem Module Work Item verlinkt ist, muss ein Informationsverarbeitungssystem

die entsprechenden Informationen aus dem Versionsmanagementsystem auswerten.

Nicht jede Datei in einer Revision ist eine Quelltextdatei, sondern sie kann auch eine
Konfigurationsdatei sein (xml, ini etc.), die fiir die Umsetzung einer Softwarefunktion
benétigt wird. Bei der praktischen Ausgestaltung des Informationsverarbeitungssystems

ist zu entscheiden, welche Dateitypen in der Berechnung von C'hy, zu beriicksichtigen sind.

115

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Module Work Item Ch,,= Z Chgire

Revision 3478 Datei B

Datei B

Revision 2604

Revision 1974

O
Abbildung 6.3: Ermittlung des Module Churn

Wie bereits in Abschnitt 2.1.2.1 im Bild 2.5 dargestellt, zeigt ein Unified Diff Patch sowohl
Hinzufiigungen und Anderungen als auch Loschungen an. Loschungen sind als Arbeits-
ergebnisse einer Softwareentwicklung anzusehen und sollten gemessen werden: Beispiels-
weise konnen Optimierungen des Quelltexts zur Entfernung von nicht mehr benétigten

Quelltextfragmenten fiihren.

Auf die gleiche Weise wird der Churn ermittelt, der einer Fehlerbehebung zugeordnet

wird. Er wird Single Defect Churn genannt und wird wie in Gleichung 6.3 berechnet.

Cha, = Chyie, (6.3)
=0

mit:
Chy, Single Defect Churn: Summe aller File Churns, die dem Work Item vom
Typ ,defect” zugeordnet sind

m Anzahl der Dateien in einer Revision (fiir ein Defect Work Item)

Chg, hat die Mafeinheit KB (Kilobyte).

Wie in Abschnitt 2.1.2.4.1 aufgefiihrt, werden Fehler in intern entdeckte Fehler und in
extern entdeckte Fehler unterschieden. Aufgrund dieser Unterscheidungsmdoglichkeit wird
der Begriff Single Defect Churn prazisiert: Der Single Defect Churn eines intern entdeckten
Fehlers wird Single Internal Defect Churn (Chg;,) genannt, der Single Defect Churn eines
extern entdeckten Fehlers heift Single External Defect Churn (Chgy,).

116

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Bis zu diesem Punkt sind die Churns einer einzelnen Softwarefunktion bzw. einem ein-
zelnen Fehler zugeordnet. Wéahrend der Entwicklung einer Softwareversion werden meh-
rere Softwarefunktionen umgesetzt und mehrere Fehler entdeckt. Folglich kénnen Churn-
Kennzahlen fiir eine Softwareversion ermittelt werden. Diese ergeben sich aus den Sum-
men der Churn-Kennzahlen einzelner Softwarefunktionen bzw. einzelner Fehler, wie die

Gleichungen 6.4 und 6.5 zeigen.

=0
Chai, = Y Chai,, (6.5)
j=0

Chy, Version Feature Churn: Summe aller Single Feature Churns der Feature
Work Items in einem Feature Set Document
Chg;, Version Internal Defect Churn: Summe aller Single Internal Defect Churns

der Defect Work Items in einem Internal Defect Document

n Anzahl der Feature Work Items in einem Feature Set Document
0 Anzahl der Defect Work Items in einem Internal Defect
Document

Chy, und Chg;, haben die Mafeinheit KB (Kilobyte).

Wie in Abschnitt 5.2.2 erldutert, werden in einem Sliced V-Modell Storage die extern
entdeckten Fehler in ein dediziertes Dokument, das External Defect Document, eingetra-
gen. Die darin eingetragenen Fehler sind keiner einzelnen Softwareversion, sondern dem
Softwareprodukt zugeordnet. Daher zahlt der Churn der Behebung extern entdeckter Feh-
ler nicht zur Entwicklung der Softwareversion, sondern zum Softwareprodukt. Gleichung

6.6 zeigt die Berechnung.

p
Chaz, = Y Chaa,, (6.6)
=0

mit:
Chay, Product External Defect Churn: Summe aller Single External Defect Churns
der Defect Work Items in einem FExternal Defect Document

P Anzahl der Defect Work Items im FExternal Defect Document

Chgy, hat die Makeinheit KB (Kilobyte).

117

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.2.2 Aufwand fiir die Entwicklungsaktivitiaten

Der Aufwand fiir die Entwicklungsaktivitdten als Softwarekennzahl wurde in Abschnitt
4.2.2.1 bestimmt.

Wie in Abschnitt 5.2.2 erldutert, werden im Sliced V-Modell die geplanten und die tatsich-
lichen Aufwinde in den Attributen initialEstimate und timeSpent der Task Work Items
eingetragen. Aus den Werten in diesen Attributen werden die Soll- und Ist-Aufwénde der

Entwicklung einer Softwareversion ermittelt. Gleichung 6.7 zeigt deren Berechnung.

q
Edevv = Z TSdevi (67)
=0

mit:
TS ey Wert im Attribut timeSpent in einem Task Work Item bei
dem das Attribut activity Type auf den Wert development gesetzt ist
Egen, Ist-Aufwand der Entwicklungsaktivititen fiir eine Softwareversion
q Anzahl an Task Work Items im Task Document, bei
denen das Attribut activity Type auf den Wert development gesetzt ist

T'Sger und Ejge,, haben die Makeinheit h (Stunden).

6.2.3 Entwicklungsdauer

Die Entwicklungsdauer als Softwarekennzahl wurde in Abschnitt 4.2.2.1 bestimmt. Die
Entwicklungsdauer einer Softwareversion ist die absolute Anzahl an Tagen, die zwischen
dem Tag, an dem die Start-Baseline erstellt wurde, und dem Tag, an dem die End-Baseline
erstellt wurde, vergangen sind. Im Sliced V-Modell wird das jeweilige Datum im Attribut

blDate des Typs Baseline gespeichert. Gleichung 6.8 zeigt die Berechnung.

D, = Bg, — Bg, (6.8)
mit:
D, Entwicklungsdauer einer Softwareversion
Bg, Tag der Erstellung der End-Baseline einer Softwareversion
Bg, Tag der Erstellung der Start-Baseline einer Softwareversion

D, hat die Mafeinheit d (days).

118

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.2.4 Churn-Produktivitat

Die Churn-Produktivitat als Softwarekennzahl wurde in Abschnitt 4.2.2.1 bestimmt. Die
Churn-Produktivitat einer Softwareversion ist das Verhéltnis der Summe des Version
Feature Churn und des Version Internal Defect Churn zum Ist-Aufwand der Entwick-

lungsaktivitdten an dieser Softwareversion, wie Gleichung 6.9 zeigt.

(6.9)

mit:

P, Churn-Produktivitiat der Entwicklung einer Softwareversion

Die Mafeinheit der Churn-Produktivitit ist £2 (Kilobyte pro Stunde).

6.2.5 Churn-Liefergeschwindigkeit

Die Churn-Liefergeschwindigkeit als Softwarekennzahl wurde in Abschnitt 4.2.2.1 be-
stimmt. Die Churn-Liefergeschwindigkeit einer Softwareversion ist das Verhéaltnis der
Grofe des Churn und der Entwicklungsdauer der Softwareversion. Bei der Berechnung
der Churn-Liefergeschwindigkeit werden entsprechend Gleichung 6.10 sowohl der Version

Feature Churn als auch der Version Internal Defect Churn beriicksichtigt.

Chfv + Chdiv

Ven, = D,

(6.10)

mit:

Ven, Churn-Liefergeschwindigkeit einer Softwareversion

Die Mafeinheit der Churn-Liefergeschwindigkeit ist £2 (Kilobyte pro Tag).

6.2.6 Anzahl an Work Items

Die Anzahl an Work Items als Softwarekennzahl wurde in Abschnitt 4.2.2.2 bestimmt. In
einem Sliced V-Modell kénnen die Work Items gezahlt werden, die mit einem Feature Work
Item verlinkt sind. Diese Anzahl gibt die Dokumentationsgrofe einer Softwarefunktion

wieder. Gleichung 6.11 zeigt die Berechnung.

119

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Ts ds ms ts
Docy, =1+ i+ i+ Y i+>» i (6.11)
=0 =0 =0 =0

mit:
Docy, Dokumentationsgroke einer Softwarefunktion
Ts Anzahl an Requirements Work Items in einer V-Slice
ds Anzahl an Design Work Items in einer V-Slice
M Anzahl an Module Work Items in einer V-Slice
ts Anzahl an Work Item-Typen, die vom Test Work Item abgeleitet sind,

in einer V-Slice

Docy, hat die Mafkeinheit WI (Work Items).

Das Feature Work Item geht als Summand 1 in die Berechnung der Dokumentations-
groke einer Softwarefunktion ein, da es ein Bestandteil einer V-Slice ist. Abbildung 6.4

veranschaulicht die Berechnung von Docy, .

Die Dokumentationsgrofe einer Softwareversion ist die Summe der Dokumentationsgrofen
aller Softwarefunktionen, die in dieser Softwareversion implementiert wurden. Sie wird

gemals Gleichung 6.12 ermittelt.

DOCfS =

Acceptance Test Work

Feature Work Item
ltem

1 L al{dates----mmrmrrrreeeeeeeee e
-
I : Requirements Work Item System Test Work Item
s verifies
@ E | ——— 41 Validates *
i=0
T
d : . Integration Test Work
ZS | verifies Design Work Item Item
— S rifjeg--m-nnzzzzeaaeeeeeeeeeees
+ .
<> i=0 * 1
A
i1
ver\[ﬁes Module Work Item Module Test Work Item

erifies---------

mS
O
i=0 !

Abbildung 6.4: Ermittlung der Dokumentationsgrofe einer Softwarefunktion

120

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Doc; = Docy. 6.12
fo fe,
i=0

mit:
Docy, Dokumentationsgrofe einer Softwareversion

r Anzahl aller Feature Work Items in einem Feature Set Document

Docy, hat die Mafeinheit WI (Work Items).

6.2.7 Aufwand fiir die Dokumentationsaktivitaten

Der Aufwand fiir die Dokumentationsaktivitaten als Softwarekennzahl wurde in Abschnitt
4.2.2.2 bestimmt. Diese Softwarekennzahl wird in der gleichen Art und Weise wie der
Aufwand fiir die Entwicklungsaktivititen erfasst, jedoch werden die Task Work Items
ausgewertet, bei denen das Attribut activity Type auf den Wert documentation gesetzt ist.

Gleichung 6.13 zeigt die Berechnung.

Edocu - ZTSdoci (613)
=0

mit:
TSgoe Wert im Attribut timeSpent in einem Task Work Item, bei
dem das Attribut activity Type auf den Wert documentation gesetzt ist
Eioc, Ist-Aufwand der Dokumentationsaktivitéiten fiir eine Softwareversion
S Anzahl an Task Work Items im Task Document, bei

denen das Attribut activity Type auf den Wert documentation gesetzt ist

T'Sg0c und Ey,., haben die Mafeinheit h (Stunden).

6.2.8 Dokumentationsproduktivitat

Die Dokumentationsproduktivitit als Softwarekennzahl wurde in Abschnitt 4.2.2.2 be-
stimmt. Die Dokumentationsproduktivitit einer Softwareversion ist das Verhéaltnis der
Dokumentationsgrife einer Softwareversion zu den fiir die Softwareversion geleisteten

Ist-Aufwéinden der Dokumentationsaktivititen. Gleichung 6.9 zeigt die Berechnung.

121

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Docy
P . 6.14
doc Edocu ()
mit:
Pioe, Dokumentationsproduktivitit einer Softwareversion

Die Makeinheit der Dokumentationsproduktivitét ist % (Work Ttems pro Stunde).

6.2.9 Dokumentationsliefergeschwindigkeit

Die Dokumentationsliefergeschwindigkeit als Softwarekennzahl wurde in Abschnitt 4.2.2.2
bestimmt. Die Dokumentationsliefergeschwindigkeit einer Softwareversion ist entspre-
chend Gleichung 6.15 das Verhéltnis der Dokumentationsgrofe einer Softwareversion zu

der Entwicklungsdauer der Softwareversion.

Docy,
D,

Vioe, = (6.15)
mit:

Vioe, Dokumentationsliefergeschwindigkeit einer Softwareversion

Die MaReinheit der Dokumentationsliefergeschwindigkeit ist *£ (Work Items pro Tag).

6.2.10 Prozentuale Verteilung von Fehlerattributen

Die prozentuale Verteilung von Fehlerattributen wurde in Abschnitt 4.2.2.3 bestimmt.
Dort sind drei verschiedene prozentuale Verteilungen genannt: die der Softwarequalititsei-
genschaften, die der Fehlerursachen in der Programmierung und die der Fehlerschweregra-
de. Da alle drei Varianten identisch berechnet werden, zeigt dieser Abschnitt exemplarisch

die Berechnungsgrundlage fiir eine der Varianten.

Wie in Abschnitt 2.1.2.4.1 erldutert, zeigt die prozentuale Verteilung alle prozentualen
Teilwerte an. Ein prozentualer Teilwert gibt das Verhéltnis der Fehler mit einer bestimm-
ten Einordnung zur Anzahl aller Fehler wieder. Ein Beispiel eines prozentualen Teilwerts

fiir die Fehler, die mit dem Schweregrad kritisch markiert sind, zeigt die Gleichung 6.16.

SV, =22 (6.16)

di

?
i=0

122

Kapitel 6. Ermittlung der Berechnungsgrundlagen

mit:
di Anzahl an Defect Work Items in einem Internal Defect Document
cr Anzahl an Defect Work Items in einem Internal Defect Document,
die den Wert ,critical® im Attribut ,severity” enthalten
SV.. Prozentualer Teilwert fiir Defect Work Items in einem Internal

Defect Document, die den Wert critical im Attribut severity enthalten

SV, ist eine Verhaltnisgroke, die in % angegeben wird.

Die Berechnung aller weiteren prozentualen Teilwerte erfolgt dquivalent zur gezeigten

Berechnung. Auf die Darstellung jeder einzelnen Gleichung wird daher verzichtet.

6.2.11 Anzahl intern entdeckter Fehler

Die Anzahl intern entdeckter Fehler wurde in Abschnitt 4.2.2.4 bestimmt. Die intern
entdeckten Fehler werden in den einzelnen Internal Defect Documents eingetragen. Die
Anzahl aller fiir ein Softwareprodukt intern entdeckten Fehler ist folglich die Summe der

Fehler in den einzelnen Internal Defect Documents. Gleichung 6.17 zeigt die Berechnung.

U di
Wai, = > (> i) (6.17)
i=0 =0
mit:
Wai, Anzahl an intern entdeckten Fehlern fiir ein Softwareprodukt
u Anzahl aller Internal Defect Documents in einem Sliced V-Modell Storage

Wy, hat die Mafeinheit WI (Work Items).

6.2.12 Anzahl extern entdeckter Fehler

Die Anzahl extern entdeckter Fehler wurde in Abschnitt 4.2.2.4 bestimmt. Die extern
entdeckten Fehler werden in die einzelnen FExternal Defect Documents eingetragen. Die
Anzahl aller fiir ein Softwareprodukt extern entdeckten Fehler ist folglich die Summe der

Fehler in den einzelnen Fzternal Defect Documents. Gleichung 6.18 zeigt die Berechnung.

w dzx

Wi, = > (O) (6.18)

=0 =0

123

Kapitel 6. Ermittlung der Berechnungsgrundlagen

mit
Wie, Anzahl an extern entdeckten Fehlern fiir ein Softwareprodukt
dx Anzahl an Defect Work Items in einem Ezternal Defect
Document
w Anzahl an Ezternal Defect Documents in einem Sliced V-Modell Storage

Wi, hat die Makeinheit W1 (Work Items).

6.2.13 Fehlerbehebungsrate

Die Fehlerbehebungsrate wurde in Abschnitt 4.2.2.4 bestimmt. Sie ist das Verhéltnis der
Fehler, die im Zusammenhang mit qualitdtssichernden Maknahmen wahrend der Ent-
wicklung intern entdeckt werden, zu den Fehlern, die nach dem Endtermin einer Soft-
wareversion vom Auftraggeber entdeckt werden (Abschnitt 2.1.2.4). Wie zu Beginn des
Abschnitts 6.2 erldutert, wird die Fehlerbehebungsrate nicht fiir eine einzelne Software-

version ermittelt, sondern fiir das Softwareprodukt. Gleichung 6.19 zeigt ihre Berechnung.

Wi,

DFR, =
P Wl + Wiy,

(6.19)

mit:

DFR, Fehlerbehebungsrate fiir ein Softwareprodukt

DF'R, ist eine Verhéltnisgrofe, die in % angegeben wird.

6.2.14 Churn-Fehlerdichte

Die Churn-Fehlerdichte wurde in Abschnitt 4.2.2.5 bestimmt. Sie zeigt an, wie viele in-
tern entdeckte Fehler pro K B Churn entdeckt wurden. Bei der Berechnung der Churn-
Fehlerdichte fiir eine Softwareversion werden entsprechend Gleichung 6.20 sowohl der Ver-

ston Feature Churn als auch der Version Internal Defect Churn berticksichtigt.

di
i
=0

D,y ————=0
" Chy, + Chy,

(6.20)

mit:

DD, Churn-Fehlerdichte einer Softwareversion

DD, hat die Mafeinheit 2L (Work Items pro Kilobyte).

124

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.3 Berechnung der SW-Produktionskennzahlen

Im Abschnitt 3.2 wurde begonnen, die RGQM-Methode an einem Anwendungsbeispiel
zu demonstrieren und die Anwendung der RGQM-Bearbeitungsschritte 1 bis 6 wur-
de erlautert. Fiir das Anwendungsbeispiel steht die Erlauterung der RGQM-Bearbei-
tungsschritte 7 und 8 aus. Diese erfolgt in diesem Abschnitt. Wie in Abschnitt 3.1.2
erlautert, werden im RGQM-Bearbeitungsschritt 7 die Berechnungsgrundlagen der SW-
Produktionskennzahlen ermittelt und im RGQM-Bearbeitungsschritt 8 wird iiberpriift, ob
die SW-Produktionskennzahlen die Interpretation der dazugehérenden HW-Produktions-

kennzahlen beibehalten.

In den folgenden Abschnitten werden zunéchst die Berechnungsgrundlagen und die Inter-
pretationen der SW-Produktionskennzahlen erldutert, in Abschnitt 6.4 wird die Seman-
tik der beiden Auspragungen einer Produktionskennzahl verglichen. In einem Gesprich
mit dem Geschiftsbereichsleiter des Kooperationspartners wurde gepriift, ob die Inter-
pretation beibehalten wird. Vorab wurden ihm die zu den SW-Produktionskennzahlen

gehorenden Fragen und die jeweiligen Berechnungsformeln vorgestellt und erlautert.

Alle nachfolgenden SW-Produktionskennzahlen werden jeweils fiir eine Softwareversion
berechnet und sollten zum Endtermin der Softwareversion erfasst werden. Dies ermdglicht
die kontinuierliche Beobachtung des Softwareentwicklungsprozesses von Softwareversion
zu Softwareversion. Eine Ausnahme bildet die Technische Riicklauferrate: Sie wird nur
fiir das Softwareprodukt erfasst. Die Begriindung ist identisch wie bei der Softwarekenn-
zahl Fehlerbehebungsrate: Fehler in einer Softwareversion werden zum Teil erst Jahre nach
dem Endtermin der Softwareversion entdeckt. Daher ist eine Berechnung der Technischen
Riicklauferrate zum Endtermin einer Softwareversion nicht mdglich. Sie ist wie die Feh-
lerbehebungsrate als ein Indikator fiir den Erfolg aller qualitdtssichernden Mafnahmen
zu betrachten, die im Laufe der Entwicklung eines Softwareproduktes erfolgten. Sie soll-
te ebenfalls in regelméfigen zeitlichen Abstinden erfasst werden. Die dafiir moglichen

Optionen wurden bereits zu Beginn des Abschnitts 6.2 erlautert.

6.3.1 First Pass Rate

Die Frage, die die First Pass Rate beantwortet soll, lautet: Wie ist das Verhdltnis von
Quelltertinderungen, die der Implementierung von Softwarefunktionen zugeordnet werden

kénnen, zu allen Quelltertinderungen?

Um die Grofe der Quelltextdnderungen zu messen, wird der Churn verwendet. Wie in
Abschnitt 6.2.1 gezeigt, gibt es mehrere Churn-Kennzahlen: Der Version Feature Churn

zeigt die Grofke der Quelltextinderungen an, die fiir die Implementierung einer Software-

125

Kapitel 6. Ermittlung der Berechnungsgrundlagen

funktion vorgenommen wurden. Der Version Internal Defect Churn entspricht der Grofe
der Quelltextinderungen, die fiir die Fehlerbehebung intern entdeckter Fehler vorgenom-
men wurden. Diese beiden Softwarekennzahlen bilden die Gesamtgrofe des Churns einer
Softwareversion, der Version Churn (Ch,) genannt wird. Abbildung 6.5 zeigt schematisch

den Aufbau des Version Churn.

Version Internal
Defect Churn Chy;,

>

S

. C
Version 5
Ch <

Feature fv O
Churn 5
‘@

p -

Q

>

Abbildung 6.5: Aufbau des Version Churn

Diese Churn-Kennzahlen bilden die Basis fiir die Beantwortung der Frage und die Berech-

nung der First Pass Rate, die in Gleichung 6.21 gezeigt wird.

Chy
FPR, = —————— 6.21
Chy, + Chg, ()
mit:
FPR, First Pass Rate fiir eine Softwareversion

F PR, ist eine Verhiltnisgroke, die in % angegeben wird.

Interpretation: Der Idealwert der First Pass Rate ist 100 %. Ein hoher Ist-Wert der
First Pass Rate zeigt an, dass die Fehler, die durch qualitdtssichernde Mafsnahmen in-
tern entdeckt wurden, wenig Quelltextdnderungen verursachen bzw. dass wenige Fehler
entdeckt wurden. Beides sind Indikatoren fiir eine hohe Softwareentwicklungsqualitit und
stehen damit fiir geringe Nacharbeitskosten, die durch fehlerbereinigende Programmierak-

tivitaten anfallen.

Es wird davon ausgegangen, dass die Ist-Werte der First Pass Rate in der Softwareent-

wicklung kleiner sein werden als die Ist-Werte der First Pass Rate in der Produktion. Dies

126

Kapitel 6. Ermittlung der Berechnungsgrundlagen

wird damit begriindet, dass der Automatisierungsgrad in der Produktion hoher ist als in
der Softwareentwicklung. Wie bereits in Abschnitt 2.2 aufgefiihrt, wird in der Produktion
wiederholt ein identisches Produkt gefertigt, wihrend die Softwareentwicklung einen Pro-
zess des ,ongoing design® darstellt, der durch eine starke manuelle Bearbeitung gepragt
ist. Manuelle Tatigkeiten konnen als fehleranfilliger angesehen werden als automatisierte
Bearbeitungsvorgéinge. Unabhéingig von den tatsichlichen Ist-Werten ist es moéglich, Ab-
weichungen von den Soll-Werten zu erkennen und {iber die Umsetzung von Mafnahmen

zur Verbesserung der First Pass Rate zu entscheiden.

6.3.2 Technische Ricklauferrate

Die Frage, die die Technische Riicklduferrate beantworten soll, lautet: Wie ist das Verhdlt-
nis von Quelltextinderungen, die der Implementierung extern entdeckter Fehler zugeordnet

werden konnen, zu allen Quelltertinderungen?

Der Product External Defect Churn zeigt die Grofe der Quelltextinderungen an, die
fiir die Fehlerbehebung extern entdeckter Fehler vorgenommen wurden. Diese Churn-
Kennzahl wird nicht fiir eine einzelne Softwareversion ermittelt, sondern fiir das Software-

produkt.

Die Grofbe der Quelltextidnderungen fiir ein Softwareprodukt, die durch die Entwicklung
neuer Softwarefunktionen und die Behebung intern entdeckter Fehler erfolgen, wird durch
die Summe aller Version Feature Churns und aller Version Internal Defect Churns an-
gezeigt. Die jeweiligen Summenkennzahlen werden Product Feature Churn (Chy,) bzw.
Product Internal Defect Churn (Chg;,) genannt. Deren Addition ergibt den sogenannten
Product Churn (Ch,). Abbildung 6.6 zeigt schematisch den Autbau des Product Churn.

Die genannten Churn-Kennzahlen bilden die Basis fiir die Beantwortung der Frage und

die Berechnung der Technischen Riicklduferrate, die in Gleichung 6.22 gezeigt wird.
Ch,

(Chy,, + Cha;,,) + Chyy,

TRR, = (6.22)

(2

ygt

mit:
TRR, Technische Riicklauferrate fiir ein Softwareprodukt
w Anzahl an Softwareversionen

TRR, ist eine Verhiltnisgrofe, die in % angegeben wird.

Interpretation: Der Idealwert der Technischen Riicklduferrate ist 0 %. Ein kleiner Ist-

Wert der Technischen Riicklduferrate zeigt an, dass extern entdeckte Fehler wenig Nach-

127

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Product External
Defect Churn b

Product Internal Chyj

Q

Defect Churn p S
<

Product 2
Feature Chy O

p ©

Churn S

Ee)

o

a

Abbildung 6.6: Aufbau des Product Churn

arbeiten bewirkt haben bzw. dass wenige Fehler entdeckt wurden und somit die Nachar-

beitskosten fiir fehlerbereinigende Programmieraktivitdten gering waren.

Es kann an dieser Stelle nicht eingeschitzt werden, wie stark die Ist-Werte der Technischen
Riicklauferrate in der Softwareentwicklung von den Ist-Werten der Technischen Riicklau-
ferrate in der Produktion abweichen werden. Die Ist-Werte in der Softwareentwicklung
kénnten die heutigen geringen Ist-Werte in der Produktion erreichen, sofern die Qualitét
der ausgelieferten Software ausreichend hoch ist. Durch einen Vergleich von Soll- und Ist-
Werten kann das Management iiber die Umsetzung von Mafknahmen zur Verbesserung

der Technischen Riicklauferrate entscheiden.

6.3.3 Servicegrad

Die Frage, die der Servicegrad beantworten soll, lautet: Wie ist das Verhdltnis von Soft-
warefunktionen, die zum zugesagten Termin geliefert wurden, zu allen gelieferten Softwa-

refunktionen?

Im Sliced V-Modell enthalten die Feature Work Items das Attribut dueDate, in dem der
zugesagte Termin der Softwarefunktion notiert wird. Um den Servicegrad einer Software-
version zu ermitteln, werden alle in einem Feature Set Document enthaltenen Feature
Work Items, in denen das dueDate dem Datum der End-Baseline entspricht bzw. nach

dem Datum der End-Baseline liegt, mit allen Feature Work Items in ein Verhiltnis gesetzt.

128

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Gleichung 6.23 zeigt die dazugehorende Berechnung:

feo
>
SL, = JT—O (6.23)
>
i=0
mit:
SL, Servicegrad fiir eine Softwareversion
fo Anzahl an Softwarefunktionen, die in einer Softwareversion realisiert

wurden (erledigte Feature Work Items in dem Feature Set
Dokument der entsprechenden Softwareversion)
fe, Anzahl an Softwarefunktionen, die in einer Softwareversion und zum
zugesagten Termin realisiert wurden (Feature Work Items, bei
denen das Datum im Attribut dueDate nach dem Endtermin liegt bzw.

mit dem Endtermin identisch ist)

SL, ist eine Verhaltnisgrofke, die in % angegeben wird.

Interpretation: Der Idealwert des Servicegrades ist 100 %. Das wiirde bedeuten, dass alle
Softwarefunktionen einer Softwareversion spétestens zum zugesagten Termin freigegeben
sind. Ein niedriger Ist-Wert des Servicegrades ist ein Indikator dafiir, dass mehrere Softwa-
refunktionen nicht zum zugesagten Termin freigegeben sind und somit die Lieferqualitét
beeintrachtigt ist. Ebenso wie ein niedriger Wert des Servicegrads in der Produktion,
zeigt ein niedriger Ist-Wert des Servicegrades in der Softwareentwicklung nicht an, wie
grof die Lieferverzogerungen sind. Durch einen Vergleich von Soll- und Ist-Werten kann
das Management iiber die Umsetzung von Mafnahmen zur Verbesserung der Ist-Werte

entscheiden.

6.3.4 Wertschopfung

Die Frage, die die Wertschopfung beantworten soll, lautet: Wie hoch sind die geplanten

Kosten fiir die Entwicklung neuer Softwarefunktionen?

Der geplante Entwicklungsaufwand fiir die Umsetzung einer neuen Softwarefunktion, die
im Sliced V-Modell mit einem Feature Work Item beschrieben wird, wird in dem Attri-
but initialEstimate in den Task Work Items eingetragen, die mit dem Feature Work Item
verlinkt sind. Bei der Ermittlung der Wertschépfung werden sowohl die geplanten Ent-
wicklungsaktivitaten, also die Task Work Items mit dem Wert development im Attribut

activity Type, als auch die geplanten Dokumentationsaktivitdten, also die Task Work Items

129

Kapitel 6. Ermittlung der Berechnungsgrundlagen

mit dem Wert documentation im Attribut activity Type, beriicksichtigt. Um die geplanten
Softwareentwicklungskosten zu berechnen, werden alle Werte im Attribut initialEstimate
summiert und mit einem betriebsspezifischen Stundensatz multipliziert, wie Gleichung

6.24 zeigt:

AV, =Y IE; - H, (6.24)
i=0
mit:
AV, Wertschopfung fiir eine Softwareversion
IE; Geplanter Aufwand einer Aktivitit, die mit der Realisierung einer

Softwarefunktion zusammenhéngt (Wert im Attribut initialEstimate
eines Task Work Items, das mit einem Feature Work Item
verlinkt ist)

H, Betriebsspezifischer Stundensatz

T Anzahl aller Task Work Items, die mit Feature Work Items

verlinkt sind, die in einem Feature Set Document stehen

Die Mafkeinheit fiir AV, ist € (Euro).

Interpretation: Die Wertschopfung in der Softwareentwicklung entspricht den Entwick-
lungsplankosten einer Softwareversion. Die aus den geplanten Aufwinden der einzelnen
Aktivitdten resultierende Wertschopfung in der Softwareentwicklung hat ebenso wie die
Wertschopfung in der Produktion keinen Wertebereich: Ihre Grofse hdangt von den konkre-
ten Softwarefunktionen bzw. dem zu fertigenden Produkt ab. Aquivalent zur Wertschop-
fung in der Produktion ist die Wertschopfung in der Softwareentwicklung kein Indikator

dafiir, ob die Softwarefunktionen einen Kundennutzen bieten.

Die Wertschopfung in der Softwareentwicklung kann in der Preisbhildung der Software-
produkte beriicksichtigt werden: Die Einnahmen aus den verkauften Softwareprodukten

sollten idealerweise hoher als die Wertschopfung sein.

Aquivalent zur Wertschépfung in der Produktion wird die Wertschépfung in der Softwa-

reentwicklung benétigt, um die Produktivitdt zu berechnen.

6.3.5 Produktivitat

Die Frage, die die Produktivitdt beantworten soll, lautet: Wie ist das Verhdltnis von der
Wertschopfung zu den geleisteten Ist-Stunden, die der Entwicklung der Softwareversion

direkt zugeordnet werden kénnen?

130

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Die Ist-Stunden der Entwicklung einer Softwareversion entsprechen in einem Sliced V-
Modell der Summe der Werte in dem Attribut timeSpent aller Task Work Items, die fiir
eine Softwareversion angelegt wurden. Dies sind der Aufwand der Entwicklungsaktivitdten
(Abschnitt 6.2.2) und der Aufwand der Dokumentationsaktivitdten Abschnitt 6.2.7. Diese
Ist-Stunden werden nach Gleichung 6.25 in ein Verhéltnis zu der Wertschépfung gesetzt.

AV,

=Y 6.25
Edevv + Edocu ()

v

mit:

P, Produktivitét fiir eine Softwareversion

Die MaReinheit fiir P, ist £ (Euro pro Stunde).

Interpretation: Die Produktivitit sollte in einem Team tendenziell unverdndert blei-
ben oder steigen. Sinkt die Produktivitat, konnte das ein dafiir Indikator sein, dass die
Mitarbeiter zu einem wachsenden Teil ihrer Arbeitszeit nicht an der Umsetzung neu-
er Softwarefunktionen arbeiten. Da in der Softwareentwicklung keine Maschinenkosten
in der Wertschopfung beriicksichtigt werden, betrigt der ideale Wert der Produktivitéit:
Betriebsspezifischer Stundensatz/h oder hoher. Ein Beispiel: Wenn der betriebsspezifische
Stundensatz 70 € betrigt, ist der Idealwert fiir die Produktivitat 70%. In diesem Fall
zeigt die Produktivitit an, dass sdmtliche Aufwinde in der Softwareentwicklung fiir die
Umsetzung neuer Softwarefunktionen aufgebracht werden. Werte unter 70% konnten ein
Indikator dafiir sein, dass die Softwareteams einen Teil ihrer Arbeitszeit nicht wertschop-

fend einsetzen.

6.4 Bewertung der semantischen Aquivalenz

Erginzend zu den Berechnungsgrundlagen der SW-Produktionskennzahlen erfolgt ei-
ne Priifung der semantischen Aquivalenz der beiden Ausprigungen einer Produktions-
kennzahl. Geméf den Ausfithrungen in Abschnitt 2.1.1 bilden der Name, die Mafeinheit,
der Wertebereich, der Idealwert, die Moglichkeit der Festlegung von Soll-Werten, die Fra-

ge, das Ziel und die Interpretation die Semantik einer Kennzahl.

Um die semantische Aquivalenz der beiden Ausprigungen einer Produktionskennzahl
zu priifen, werden diese beschreibenden Informationen in Tabelle 6.1 gegeniibergestellt.
Da die jeweiligen Interpretationen in den vorhergehenden Abschnitten dargestellt wur-
den, wird auf den Abschnitt verwiesen, in dem die Interpretation der jeweiligen HW-

Produktionskennzahl bzw. SW-Produktionskennzahl aufgefiihrt wurde.

131

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Produktion Softwareentwicklung
First Pass Rate
Mafeinheit % %
Wertebereich 0...100 % 0...100 %
Idealwert 100 % 100 %
Festlegung
Soll-Werte moglich moglich
Ziel Hohe Fertigungsqualitat Hohe Softwareentwicklungsquali-
tat
Frage Wie ist das Verhiltnis von ge- Wie ist das Verhiltnis von Quell-
fertigten Produkten, die fehlerfrei textdnderungen, die der Imple-
getestet wurden, zu allen gefertig- mentierung von Softwarefunktio-
ten Produkten? nen zugeordnet werden kénnen, zu
allen Quelltextdnderungen?
Interpretation Abschnitt 3.2.2.2.1 Abschnitt 6.3.1

Die Interpretationen sind im Grundsatz identisch. Durch einen Vergleich

von Soll-Werten und Ist-Werten entscheidet das Management iiber die

Umsetzung von Mafnahmen zur Verbesserung der Ist-Werte. Die Soll-

Werte konnen allerdings unterschiedlich sein.

Technische Riickliuferrate

Mafeinheit % %

Wertebereich 0...100 % 0...100 %

Idealwert 0% 0%

Festlegung

Soll-Werte moglich moglich

Ziel Hohe Kundenzufriedenheit Hohe Kundenzufriedenheit

Frage Wie ist das Verhiltnis von ausge- Wie ist das Verhiltnis von Quell-
lieferten Produkten, die aufgrund textdnderungen, die der Imple-
eines technischen Defekts rekla- mentierung extern entdeckter Feh-
miert werden, zu allen ausgeliefer- ler zugeordnet werden konnen, zu
ten Produkten? allen Quelltextéinderungen?

Interpretation Abschnitt 3.2.2.2.2 Abschnitt 6.3.2

Die Interpretationen sind im Grundsatz identisch. Durch einen Vergleich

von Soll-Werten und Ist-Werten entscheidet das Management {iber die

Umsetzung von Mafnahmen zur Verbesserung der Ist-Werte. Die Soll-

Werte konnen allerdings unterschiedlich sein.

Fortsetzung der Tabelle auf der nachsten Seite...

132

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Servicegrad

Mafeinheit % %

Wertebereich 0...100 % 0...100 %

Idealwert 100 % 100 %

Festlegung

Soll-Werte moglich moglich

Ziel Hohe Lieferqualitét Hohe Lieferqualitét

Frage Wie ist das Verhiltnis von Auf- Wie ist das Verhéltnis von Softwa-
tragspositionen, die zum Bestédti- refunktionen, die zum zugesagten
gungstermin geliefert wurden, zu Termin geliefert wurden, zu allen
allen Auftragspositionen? gelieferten Softwarefunktionen?

Interpretation Abschnitt 3.2.2.2.3 Abschnitt 6.3.3
Die Interpretationen sind im Grundsatz identisch. Durch einen Vergleich
von Soll-Werten und Ist-Werten entscheidet das Management {iber die
Umsetzung von Mafnahmen zur Verbesserung der Ist-Werte. Die Soll-
Werte konnen allerdings unterschiedlich sein.

Wertschopfung

Mafseinheit € €

Wertebereich spezifisch spezifisch

Idealwert spezifisch spezifisch

Festlegung

Soll-Werte moglich moglich

Ziel Hohe Fertigungsrentabilitét Hohe Softwareentwicklungsrenta-

bilitat

Frage Wie hoch sind die Fertigungs- Wie hoch sind die geplanten Kos-
plankosten (ohne Beriicksichti- ten fiir die Entwicklung neuer Soft-
gung der Materialkosten)? warefunktionen?

Interpretation Abschnitt 3.2.2.2.4 Abschnitt 6.3.4

Die Interpretation ist im Grundsatz identisch. Das Management kann er-

kennen, wie hoch die wertschépfend eingesetzten Kosten sind. Die Wert-

schopfung kann und sollte in der Preisbildung beriicksichtigt werden.

Fortsetzung der Tabelle auf der nachsten Seite...

133

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Produktivitéit

Mafeinheit €/h €/h

Wertebereich spezifisch spezifisch

Idealwert spezifisch spezifisch

Festlegung

Soll-Werte moglich moglich

Ziel Hohe Fertigungsrentabilitat Hohe Softwareentwicklungsrenta-

bilitat

Frage Wie ist das Verhdltnis von Wie ist das Verhiltnis von der
der Wertschopfung zu den Ist- Wertschopfung zu den geleisteten
Stunden, die der Fertigung des Ist-Stunden, die der Entwicklung
Produktes direkt zugeordnet der Softwareversion direkt zuge-
werden kénnen? ordnet werden kénnen?

Interpretation Abschnitt 3.2.2.2.5 Abschnitt 6.3.5
Die Interpretation ist im Grundsatz identisch. Das Management kann die
Trends der Produktivitdt beobachten und erkennen, ob die iiberwiegende
Arbeitszeit der Mitarbeiter wertschopfend eingesetzt wird. Die konkre-
ten Ist-Werte der Produktivitdt sind allerdings in den beiden Doménen
unterschiedlich.

Tabelle 6.1: Semantische Aquivalenz der HW- und SW-Produktionskennzahlen

Bei der Priifung der semantischen Aquivalenz der jeweiligen Ausprigung einer

Produktionskennzahl kann zusammenfassend Folgendes festgestellt werden:

1. Die MaBeinheiten sind identisch.

2. Bei den Produktionskennzahlen mit einem vorgegebenen Wertebereich sind sowohl

der Wertebereich als auch der Idealwert innerhalb des Wertebereichs identisch.
3. Die Soll-Werte konnen in den beiden Doménen unterschiedlich sein.
4. Die Ziele sind identisch, enthalten jedoch zum Teil doméanenspezifische Begriffe.
5. Die Fragen sind im Satzbau identisch. Die Frageninhalte unterscheiden sich.

6. Die SW-Produktionskennzahl erlaubt die im Grundsatz gleiche Interpretation wie

die dazugehorende HW-Produktionskennzahl.

Die unter Punkt 1, 2 und 4 aufgefiihrten Erkenntnisse zeigen, dass die jeweiligen Seman-
tikmerkmale gleich sind. Punkt 3 besagt, dass die Soll-Werte in der Produktionsdoméne

und die Soll-Werte in der Softwaredoméne unterschiedlich sein konnen. Dies spricht einer

134

Kapitel 6. Ermittlung der Berechnungsgrundlagen

semantischen Aquivalenz nicht entgegen: Das Management legt bereits heute unterschied-
liche Soll-Werte fiir eine bestimmte HW-Produktionskennzahl fiir unterschiedliche Pro-
duktionsstétten fest. Jede Produktionsstitte zeichnet sich durch spezifische Eigenschaften
aus, daher konnen in der Regel nicht die gleichen Soll-Wertvorgaben gelten. Die Steuerung
der Produktionsstatten erfolgt durch den Vergleich von Ist- und Soll-Werten. Aus diesem
Grund kann das Management beliebige Soll-Werte fiir die SW-Produktionskennzahlen
festlegen: Um die Zielerreichung zu iiberpriifen, ist auch hier nicht der Vergleich des Ist-
Wertes mit dem Idealwert von 100 % relevant, sondern der Vergleich des Ist-Wertes mit

dem vom Management vorgegebenen Soll-Wert.

Die Erkenntnis unter Punkt 5 liefse die Schlussfolgerung zu, dass die beiden Auspragungen
einer Produktionskennzahl semantisch nicht dquivalent sind. Es wird jedoch argumentiert,
dass die Semantik der Frage im Grundsatz identisch und damit semantisch dquivalent
ist, da der Satzbau identisch ist. Zwar sind die Frageninhalte unterschiedlich, dennoch
unterstiitzt der Satzbau eine im Grundsatz identische Interpretation. Dies soll am Beispiel
der First Pass Rate dargelegt werden: Die Frage, die beantwortet wird, ist eine Frage zu
einem Verhéaltnis von etwas ,(Gutem” zu etwas ,Schlechtem®”. Wiahrend das Management
diese Frageninhalte fiir die Produktionsdoméne kennt, ist es nicht zwingend notwendig,
dass es auch die entsprechenden Frageninhalte der Frage fiir die SW-Produktionskennzahl
kennt. Es muss lediglich verstehen, dass das in der Frage beschriebene Verhiltnis der

Frageninhalte zu dem Idealwert tendieren sollte.

Basierend auf den Ausfithrungen in diesem Abschnitt 1isst sich schlussfolgern, dass fiir al-
le fiinf Produktionskennzahlen die SW-Produktionskennzahl und die dazugehérende HW-
Produktionskennzahl semantisch dquivalent sind. Die RQGM-Methode ist geeignet, um
SW-Produktionskennzahlen zu bestimmen und wird folglich als eine Antwort auf die ers-
te Detailfrage dieser Arbeit angesehen: Wie kinnen SW-Produktionskennzahlen, die die

Semantik der dquivalenten HW-Produktionskennzahlen beibehalten, bestimmt werden?

Als Antwort auf die zweite Detailfrage: Wie sollte der Softwareentwicklungsprozess auf-
gebaut sein, damit die definierten SW-Produktionskennzahlen und Softwarekennzahlen er-
fasst werden kénnen? wird das Sliced V-Modell angesehen. In Abschnitt 5.2.3 wurde
durch eine manuelle Priifung eine erste Bestitigung geliefert, dass das Sliced V-Modell
die in den Kapiteln 3 und 4 formulierten Anforderungen grundsétzlich erfiillt. Durch die
Ermittlung der Berechnungsgrundlagen aller Kennzahlen in diesem Kapitel erfolgte eine
weitere Bestitigung. Die abschliekende Bestitigung erfolgt durch die Implementierung ei-
nes Informationsverarbeitungssystems, mit der die dritte Detailfrage beantwortet werden
soll: Wie sollte ein Informationsverarbeitungssystem aufgebaut sein, das SW-Produktions-
kennzahlen und Softwarekennzahlen erfassen und verarbeiten kann? Der Implementierung

eines Informationsverarbeitungssystems widmet sich das folgende Kapitel.

135

Kapitel 7

Entwicklung des

Informationsverarbeitungssystems

Dieses Kapitel widmet sich der dritten Detailfrage dieser Arbeit: Wie sollte ein Informa-
tionsverarbeitungssystem aufgebaut sein, das Softwarekennzahlen und SW-Produktions-
kennzahlen erfassen und verarbeiten kann? sowie der Evaluierung der Forschungsfrage.
Dafiir wird ein Prototyp eines Informationsverarbeitungssystems, genannt SofProSys, ent-
wickelt, der sowohl praxisnah als auch praktisch angewendet wird. Auferdem wird die
Einhaltung der empfohlenen Gestaltungsgrundsétze fiir Informationsverarbeitungssyste-
me (vgl. Abschnitt 2.1) bewertet. Die Inhalte dieses Kapitels entstanden iterativ in den
Design Research-Entwurfsphasen Erstellen und Evaluierung (vgl. Abschnitt 1.5).

Abbildung 7.1 zeigt, welche Inhalte in diesem Kapitel behandelt werden und an welcher
Stelle diese Inhalte zur Erreichung der Zielsituation dieser Arbeit beitragen. Das graue
Rechteck markiert den Inhalt: die Erfassung der Kennzahlen fiir Ksy und Kg und deren

Interpretation durch das Management bzw. durch die Softwareteams.

Management

Formulierung Interpretation

Strategische
Ziele

Beriicksichtigung

Erfassung

Verdichtung

Softwareteam

Software-
entwicklungsprozess

Formulierung Interpretation

Operative Definition Erfassung

Ziele

Abbildung 7.1: Inhalt des Kapitels 7 in Bezug auf die Zielsituation dieser Arbeit

136

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

7.1 Prototyp

Das Ziel der Entwicklung und Anwendung des Prototyps ist es, eine Losung fiir die dritte
Detailfrage zu erarbeiten. Der Prototyp muss folglich in der Lage sein, Softwarekennzah-
len und SW-Produktionskennzahlen zu erfassen und zu verarbeiten. Das dieser Kennzah-
lenerfassung und -verarbeitung zugrunde liegende Datenmodell ist das Sliced V-Modell.
Die Softwareartefakte eines Sliced V-Modells werden mit einem ALM-System und einem
Versionsmanagementsystem verwaltet. Bei der Implementierung von SofProSys miissen
folglich die technischen Eigenschaften dieser Collaboration Tools, wie zum Beispiel deren
API, beriicksichtigt werden. Es ist nicht Anspruch dieser Arbeit, ein allgemein anwend-
bares Informationsverarbeitungssystem zu entwerfen, das die Daten aus verschiedenen
ALM-Systemen bzw. Versionsmanagementsystemen verarbeiten kann. Es ist vielmehr das
Ziel, die Eigenschaften eines Informationsverarbeitungssystems als Losung der dritten De-
tailfrage an einem konkreten Beispiel aufzuzeigen. SofProSys erfasst die Daten aus den
beim Kooperationspartner eingesetzten Collaboration Tools. Wie bereits in Abschnitt
2.5.2.2 erlautert, sind dies Polarion ALM und Subversion.

Damit der Prototyp als eine Losung fiir die dritte Detailfrage angesehen werden kann,

muss er die folgenden Anforderungen erfiillen:

Anforderung 1 (Korrektheit der Kennzahlen) Alle erfassten Kennzahlen missen
den im ALM-System und im Versionsmanagementsystem gespeicherten Daten entspre-

chen.

Anforderung 2 (Erfassung aller Kennzahlen) Alle in den vorherigen Kapiteln defi-
nierten Softwarekennzahlen und SW-Produktionskennzahlen miissen erfasst werden kdin-

nen und sie missen plausibel sein, d.h. sie sind ein reales Abbild der Softwareentwicklung.

Sofern die Anforderung 2 erfiillt wird, wird dies neben der manuellen Priifung (vgl. Ab-
schnitt 5.2.3) und der Erstellung der Berechnungsgrundlagen (vgl. Kapitel 6) als ab-
schlieftende Bestédtigung angesehen, dass das Sliced V-Modell alle Anforderungen an seine

Gestaltung erfiillt.

SofProSys wurde mit der Programmierumgebung MS Visual Studio in der Programmier-
sprache C# erstellt. Es handelt sich dabei um eine sogenannte Konsolenanwendung. Damit
ist gemeint, dass SofProSys keine grafische Benutzeroberfliche aufweist. Simtliche Konfi-
gurationsinformationen, wie zum Beispiel der Name des auszuwertenden Sliced V-Modell
Storage, werden in der Konsole vorgenommen. Abbildung 7.2 vermittelt einen Eindruck

iiber die Bedienung von SofProSys.

Die eingesetzten Collaboration Tools verfiigen {iber folgende Schnittstellen: Auf die in

Polarion ALM gespeicherten Daten wird mit Hilfe einer SQL-Datenbank und Webservices

137

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

is installed.

0 So0fFr

ir Abort):

internal defect module from £CBE document name awtomatically? {w/n):y

e development tasks tomatically? (w/n):y

to Polarion database
d to Polarion database...

Abbildung 7.2: SofProSys-Screenshot

zugegriffen. Die in Subversion gespeicherten Daten werden mit Hilfe der Subversion-API
erfasst. SofProSys erfasst schrittweise die Daten aus beiden Collaboration Tools unter
Anwendung dieser Schnittstellen, verarbeitet sie und speichert die Ergebnisse in mehreren
MS Excel-Dateien. Abbildung 7.3 zeigt den SofProSys-Systemkontext.

Eine grafische Aufbereitung der erfassten und verarbeiteten Daten ist nicht im Funk-
tionsumfang von SofProSys enthalten. Sofern eine grafische Aufbereitung wiahrend der
praxisnahen bzw. praktischen Anwendung benétigt wurde, erfolgte die Aufbereitung der
Daten mit MS Excel-Bordmitteln.

Wie in Abschnitt 5.2.1 erwdhnt, basiert das Sliced V-Modell auf internen Prozessbe-
schreibungen des Kooperationspartners. In den internen Prozessbeschreibungen werden
betriebsspezifische Begriffe genutzt, die im Sliced V-Modell aus Griinden der Abstrak-
tion nicht verwendet wurden. Wahrend der Entwicklung von SofProSys mussten diese
betriebsspezifischen Begriffe jedoch verwendet werden, da zum einen nur mit diesen die
Datenbankabfragen korrekt funktionieren und zum anderen die Gesprachspartner mit den

ihnen vertrauten Termini in der praktischen Anwendung arbeiten kénnen.

SQL-Interface Polarion ALM
Datenbank
SofProSys
MS Excel-Dateien O\
Subversion AP Subversion
Repository

Abbildung 7.3: SofProSys-Systemkontext

138

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Dem Datenmodell von SofProSys liegt das Sliced V-Modells zugrunde. In der Entwicklung
wurden das beim Kooperationspartner eingesetzte ALM-System und das Versionsmana-
gementsystem verwendet. Im Sliced V-Modell Storage von SofProSys wurden die Termini
des Kooperationspartner verwendet. SofProSys wurde im Laufe dieser Arbeit kontinuier-

lich iiber mehrere Jahre entwickelt. In dieser Zeit entstanden drei Softwareversionen.

7.2 Praxisnahe Anwendung

Die praxisnahe Anwendung wurde vom Verfasser dieser Arbeit durchgefiihrt. Sie erfolgte
auf Basis der Entwicklungsdaten von SofProSys. Da SofProSys auf dem Sliced V-Modell
basiert, konnen die Softwareartefakte des dazugehorigen Sliced V-Modell Storage durch
SofProSys erfasst und verarbeitet werden. Diese Form der Anwendung ist praxisnah,
da es sich bei dem untersuchten Softwareprodukt nicht um ein reales Softwareprodukt
eines produzierenden Betriebes handelt. Um die Entwicklungsarbeiten zu unterstiitzen,
wurde ein sogenanntes Dummy Sliced V-Modell genutzt. Ein Dummy Sliced V-Modell
ist ein Sliced V-Modell Storage, das zwar alle Softwareartefakte eines Sliced V-Modells
in einer ausreichenden Menge enthélt, allerdings keinen Bezug zu einem tatsichlichen
Softwareprodukt aufweist. So lauten zum Beispiel die Titel der Requirements Work Items
lediglich ,,Test Requirement1”, [Test Requirement2“ usw. Diese Work Items wurden mit
anderen exemplarischen Work Items geméifs den Regeln des Sliced V-Modells verlinkt. Die
Module Work Items wurden nicht mit Anderungen an realen Quelltextdateien verlinkt,

sondern lediglich mit Anderungen an Textdateien, die einen frei gewihlten Text enthalten.

Um zu iiberpriifen, ob die Anforderungen 1 und 2 erfiillt werden, wurde SofProSys getes-
tet. Dieser Test kann allerdings nicht als ein vollwertiger systematischer Test, wie er zum
Beispiel in [SL0O3| beschrieben ist, angesehen werden. Da es sich bei SofProSys um einen

Prototyp handelt, wird die nachfolgend dargestellte Testtiefe als ausreichend angesehen.

Uberpriifung der Anforderung 1:

Es wurde stichprobenartig gepriift, ob die im ALM-System und im Versionsmana-
gementsystem gespeicherten Daten mit den von SofProSys erfassten und angezeig-
ten Werten iibereinstimmen. So wurde zum Beispiel mit Hilfe der Polarion ALM-
Benutzerschnittstelle die Anzahl aller Work Items, die mit einem Feature Work Item ver-
linkt sind, manuell gezéhlt, um die Dokumentationsgrofe einer Softwarefunktion Docy
zu ermitteln. Der auf diese Art und Weise manuell erfasste Wert wurde mit den Werten
verglichen, die SofProSys fiir diese Softwarefunktion ermittelt hat. Des Weiteren wurden
manuell die Aufwénde fiir eine Softwareversion erfasst, indem die eingetragenen Stun-
den aller zu dieser Softwareversion gehorenden Task Work Items addiert wurden. Diese

manuell ermittelten Werte wurden mit den von SofProSys erfassten Werten verglichen.

139

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Um die erfassten Churngrofsen fiir ein Work Ttem zu iiberpriifen, wurden die mit die-
sem Work Item verlinkten Revisionen wie folgt analysiert: Zunichst wurde mit Polarion
ALM-Bordmitteln festgestellt, welche Revisionen mit dem Work Item verlinkt sind. Diese
Revisionen wurden darauthin mit der Subversion Client Software TortoiseSVN untersucht
[TOR17|: Es wurde mit Bordmitteln von TortoiseSVN fiir jede gedinderte Datei in einer
Revision der Unified Diff Patches zur Vorgéngerversion dieser Datei ermittelt. Abbildung
7.4 zeigt die Vorgehensweise in TortoiseSVN. Danach wurde die Textgrofe in KB fiir je-

516 &M

= i
515 & Compare revisions
514 4 Show differences as unified diff
513 & &t Blame revisions
512 & . -
¥} Revert changes from these revisions
511 &
510 &l 4 g){ Merge revisions to...
EES TTJI - Edit authaor

Abbildung 7.4: Anzeige eines Unified Diff Patches in TortoiseSVN

des einzelne Unified Diff Patch manuell ermittelt, um anschliefend die einzelnen Werte
zu summieren. Dieser manuell ermittelte Wert einer Churn-Kennzahl wurde mit dem von

SofProSys automatisiert erfassten Wert verglichen.

Alle beschriebenen Tests waren erfolgreich. Dies wird als Bestétigung angesehen, dass die
Anforderung 1 von SofProSys erfiillt wird. Wie erwéihnt, erfolgte allerdings kein systema-

tischer Test. Daher kénnen Fehler in SofProSys nicht ausgeschlossen werden.

Uberpriifung der Anforderung 2:

Es wurde iiberpriift, ob alle Softwarekennzahlen und SW-Produktionskennzahlen im
Sliced V-Modell erfasst werden kénnen. Dabei wurde beriicksichtigt, dass einige der Daten
im Sliced V-Modell Storage von SofProSys simuliert sind. Damit ist gemeint, dass zum
Beispiel Daten fiir die zugesagten Termine einer Softwarefunktion willkiirlich gesetzt wur-
den. Der Grund dafiir liegt darin, dass es keinen realen Kunden fiir SofProSys gibt. Aus
demselben Grund wurden auch extern entdeckte Fehler simuliert, das heifst, es wurden in
das Ezxternal Defect Document einige Fehler eingetragen und mit Revisionen verkniipft.
Die Fehlerklassifizierung an Defect Work Items (vgl. Tabelle 5.4) erfolgte durch den Ver-
fasser der Arbeit. Es handelte sich also nicht um die Einschédtzung eines Kunden oder
eines Produktverantwortlichen. Des Weiteren wurde der betriebsspezifische Stundensatz

mit 70 € willkiirlich festgelegt.

Mit der Messung des Sliced V-Modell Storage von SofProSys wurden die in den Tabellen
7.1, 7.2 und 7.3 aufgefiihrten Kennzahlen ermittelt. Die Softwarekennzahlen fiir die pro-
zentuale Verteilung der Werte in den Attributen, die einen Fehler klassifizieren, sind in
Anhang B aufgefiihrt.

140

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Softwarekennzahl Version 1 Version 2 Version 3
Chy, |[KB] 3.539 58 514
Chai, | KB 17 17 154
Eiev, |h] 311 12 124
Po, | 5E] 11,14 6,21 5,39
D, [d| 1.115 191 103
Ven, |EE] 3,19 0,39 6,49
Docy, [WI] 152 41 98
Edoc, [N] 61 12 31
Poe, |7 2,49 3,42 3,16
Vidoe, | %] 0,14 0,21 0,95
DDy, | 5% 0,0014 0,0268 0,0150

Tabelle 7.1: Versionsbezogene SofProSys-Softwarekennzahlen

SW-Produktionskennzahl Version 1 Version 2 Version 3
FPR, |%] 99,561 77,36 76,88
SL, |%] 100 95,18 91,23
AV, |€] 18.270 1.190 15.260
P, 5] 49,11 49,58 98,45

Tabelle 7.2: Versionsbezogene SofProSys-SW-Produktionskennzahlen

Diese Messung zeigte, dass SofProSys alle definierten SW-Produktionskennzahlen und

Softwarekennzahlen automatisiert erfassen und verarbeiten kann.
Die Werte einiger Kennzahlen konnten nicht auf Plausibilitat gepriift werden, da folgende

Daten im Dummy Sliced-V-Modell Storage willkiirlich gesetzt wurden:

e Die Fehlerbehebungsrate DF R, und die Technische Riicklduferrate TRR,, da es

keine realen extern entdeckten Fehler gibt.

e Der Servicegrad SL,, da es keine einem Kunden zugesagten Softwarefunktionen
gibt.

e Die Wertschopfung AV, und die Produktivitdat P,, da die Entwicklung nicht in einem
produzierenden Betrieb stattfindet.

Kennzahl Wert
DFR, |%] 86,36
TRR, %] 0,02

Tabelle 7.3: Produktbezogene SofProSys-Kennzahlen

141

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Alle weiteren Kennzahlen konnten mit kleineren Einschrinkungen erfolgreich auf deren

Plausibilitit gepriift werden:

Die Entwicklung der ersten Version von SofProSys dauerte gut drei Jahre. In diese Zeit
fielen die Programmierarbeiten, die zunichst darauf abzielten, die verschiedenen Schnitt-
stellen der Collaboration Tools anzusprechen und die ersten Datenbankabfragen zu imple-
mentieren. Des Weiteren wurde die Speicherung der Kennzahlen implementier, zunéchst in
einer CSV-Datei, spéter in mehreren MS Excel-Dateien. Die erste Version von SofProSys
beinhaltete also die fiir die Datenerfassung und -verarbeitung notwendigen technischen

Voraussetzungen.

Wiéhrend der Erarbeitung der ersten Version wurde das Sliced V-Modell kontinuierlich
entwickelt. Durch die fortlaufenden Anpassungen wurde SofProSys immer wieder geén-
dert. All dies erklart den héheren Wert des Version Feature Churns in der Version 1 von

SofProSys gegeniiber den Werten der beiden folgenden Versionen.

Dies erklart ebenfalls den hoheren Wert der Dokumentationsgréfie der Version 1 gegeniiber
den beiden folgenden Versionen. Der Unterschied in den Werten ist allerdings nicht so
grofs wie beim Version Feature Churn. Dies ist plausibel, da wihrend der Entwicklung der
ersten Version die Dokumentation weniger stark berticksichtigt wurde als in den anderen
Versionen. Die Implementierung, und nicht die Dokumentation, stand im Fokus der ersten

Version.

Der Softwareentwicklungsprozess von SofProSys enthielt keine systematischen qualitéts-
sichernden Mafnahmen. Lediglich die oben aufgefiihrten Tests wurden durchgefiihrt. Die
Version 1 wurde kaum getestet. Dies erkldrt den hohen Wert der First Pass Rate: Ohne
Test kann kein Fehler gefunden werden, und folglich gibt es keine Quelltextdnderungen,
die Fehlerbehebungen zugeordnet werden kénnen. Wahrend der Entwicklung der Versio-
nen 2 und 3 wurde die praktische Anwendung beim Kooperationspartner beriicksichtigt.
Wiéhrend der praktischen Anwendung (vgl. Abschnitt 7.4) wurden Fehler entdeckt und
behoben. Daher sind die Werte der First Pass Rate in diesen Versionen geringer als in
der Version 1, die Werte der Version Internal Defect Churns und der Churn-Fehlerdichte

sind dagegen grofer.

Wihrend der Entwicklung der Version 1 wurden keine Aufwénde geplant und gebucht. Die
Planung und Buchung von Aufwéinden wurde erst durch den spéteren Entwurf der dazu-
gehorigen Kennzahlen notwendig. Um dennoch die mit der Planung und Buchung zusam-
menhingenden Kennzahlen priifen zu konnen, wurden Soll-Aufwinde und Ist-Aufwinde
riickblickend fiir die Version 1 abgeschétzt. Daher kann die Plausibilitit der Churn-
Produktivitat P, und der Dokumentationsproduktivitit Py,., nicht vollstandig bewertet

werden. Die Werte fiir die Versionen 2 und 3 sind plausibel.

142

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Es kann zusammengefasst werden, dass SofProSys die beiden Anforderungen an ein Infor-
mationsverarbeitungssystem erfiillt. SofProSys ist in der Lage, die Daten aus den Colla-
boration Tools korrekt zu erfassen und zu verarbeiten und alle bestimmten Kennzahlen zu
berechnen. Zwar konnte die Plausibilitdt nur eingeschrinkt gepriift werden: Wo es moglich
war, ergab die Uberpriifung jedoch plausible Werte, die den Realititen der Softwareent-
wicklung von SofProSys entsprechen. Diese Zusammenfassung wird als dritte Bestitigung
angesehen, dass das Sliced V-Modell die in den Kapiteln 3 und 4 formulierten Anforderun-
gen erfiillt und folglich als eine Losung fiir die zweite Detailfrage dieser Arbeit angesehen

werden kann (vgl. letzter Absatz in Kapitel 6).

7.3 Bewertung der Gestaltungsgrundsatze

Nach der praxisnahen Anwendung und der Uberpriifung der Anforderungen an SofProSys
wird bewertet, ob SofProSys die in Abschnitt 2.1.1 aufgefiihrten empfohlenen Gestal-
tungsgrundséitze fiir den Aufbau von Informationsverarbeitungssystemen beriicksichtigt
und folglich als eine Losung fiir die dritte Detailfrage angesehen werden kann. Es folgen

die einzelnen Gestaltungsgrundsitze und die Bewertung:

Hohe Validitit: Ein Kennzahlensystem muss korrekt messen, um eine hohe Validitét
der Ist-Werte sicherzustellen. SofProSys erfasst alle Kennzahlen prinzipiell automatisiert.
Da es sich um einen Prototyp handelt, waren wiahrend der praxisnahen und praktischen
Anwendung manuelle Nachbearbeitungen notwendig. Diese kénnten fehlerhaft sein und
folglich die Validitdt der Ist-Werte beeintrichtigen. Die manuellen Nachbereitungen wiir-
den entfallen, falls SofProSys weiterentwickelt und fiir den Produktivbetrieb vorbereitet
wird. Die Validitdt miisste in jedem Fall durch einen systematischen Test sichergestellt

werden. Bislang wurden nur stichprobenartige Tests durchgefiihrt.

Beriicksichtigung der wesentlichen Kennzahlen: Die Softwarekennzahlen wur-
den zielorientiert mit der GQM-Methode bestimmt. Die Auswahl der SW-Produktions-
kennzahlen erfolgte durch die Bestimmung der dquivalenten HW-Produktionskennzahlen.
Daher beriicksichtigt der aktuelle Stand von SofProSys alle wesentlichen Kennzahlen. Die
kennzahlenorientierte Prozessgestaltung ist jedoch eine kontinuierliche Aktivitét in einem
produzierenden Betrieb. Daher kann nicht ausgeschlossen werden, dass in Zukunft einige
der momentan beriicksichtigten Kennzahlen als unwesentlich eingestuft werden, andere
bislang nicht beriicksichtigte Kennzahlen dagegen in das Informationsverarbeitungssys-

tem aufgenommen werden.

Einfluss der Entscheidungstriger: Dieser Gestaltungsgrundsatz besagt, dass die Wer-

te der Kennzahlen unmittelbar durch die Entscheidungstrigern beeinflussbar sein soll-

143

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

ten. Dies gilt fiir SofProSys: Sowohl das Management als auch die Softwareteams wir-
ken auf den Softwareentwicklungsprozess ein. Sie kénnen damit die Ist-Werte der SW-
Produktionskennzahlen und der Softwarekennzahlen durch Umsetzung von Mafnahmen

beeinflussen.

Ausgewogene Ausgestaltung hinsichtlich Menge und Zeithorizont: Dieser Ge-
staltungsgrundsatz kann mit dem gegenwirtigen Stand von SofProSys nicht bewertet
werden, da die Kennzahlen nicht grafisch aufbereitet werden. In der grafischen Aufberei-
tung ist zu beriicksichtigen, dass die Informationsmenge von den Entscheidungstrigern

aufgenommen und in einen angemessenen zeitlichen Kontext gesetzt werden kann.

Festlegung von Soll-Werten, um Ist-Werte interpretieren zu kénnen: Fiir einige
der Kennzahlen ist die Festlegung von Soll-Werten moglich, zum Beispiel fiir die First
Pass Rate, die Technische Riicklauferrate oder die Churn-Fehlerdichte. Jedoch fehlen bis-
lang Erfahrungen fiir realistische Soll-Werte. Fiir einige der Kennzahlen, zum Beispiel
fiir die Wertschépfung, konnen keine Soll-Werte festgelegt werden, da sie abhingig von
der entwickelten Softwareversion sind. Solche Kennzahlen dienen zwar den Informations-
bediirfnissen der Entscheidungstréger, kénnen jedoch nicht fiir eine Soll-/Ist-Steuerung

eingesetzt werden.

Ausgestaltung unter Kosten-Nutzen-Bedingungen: Dieser Gestaltungsgrundsatz
besagt, dass der Nutzen von SofProSys die Kosten fiir dessen Entwicklung und dessen Be-
trieb rechtfertigt. Der angestrebte Nutzen ist die Motivation fiir diese Arbeit. Allerdings
ist SofProSys bislang nicht im operativen Betrieb, so dass keine endgiiltige Aussage zum
Nutzen getatigt werden kann. Da SofProSys konzeptionell alle Daten automatisiert erfasst
und verarbeitet, sind die Kosten fiir die Nutzung gering. Da jedoch weitere I'T-basierte
Funktionen und qualitdtssichernde Mafsnahmen in der Ausgestaltung von SofProSys zu
beriicksichtigen sind, lassen sich die Kosten fiir die vollstandige Entwicklung nicht quantifi-
zieren. Lediglich die bisherigen Aufwénde (551 h geméf Tabelle 7.1) konnen beriicksichtigt
werden. Eine abschlieflende Bewertung dieses Gestaltungsgrundsatzes ist daher erst nach

Fertigstellung des produktiven Informationsverarbeitungssystems moglich.

Eindeutige Darstellung der Kennzahlen: Dieser Gestaltungsgrundsatz besagt, dass
die Darstellung der Kennzahlen eine grundsétzlich falsche Interpretation ausschliefsen soll.
Da alle Softwarekennzahlen und SW-Produktionskennzahlen korrekt erfasst und in einem
Excel-Dokument dargestellt werden, sollte eine grundsétzlich falsche Interpretation ausge-
schlossen sein. Das Excel-Dokument ist allerdings sehr einfach gehalten, was eine intuitive

Bedienung erschweren konnte.

Es lasst sich schlussfolgern, dass SofProSys die empfohlenen Gestaltungsgrundsitze fiir

den Aufbau von Informationsverarbeitungssystemen weitestgehend erfiillt. Einige der

144

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Grundséitze kénnen jedoch erst abschliefend bewertet werden, wenn SofProSys zu ei-
nem operativen Informationsverarbeitungssystem weiterentwickelt und iiber einen lénge-

ren Zeitraum in der betrieblichen Praxis verwendet wird.

Da SofProSys sowohl die an den Prototypen gestellten Anforderungen erfiillt und die
Gestaltungsgrundsétze fiir den Aufbau von Informationsverarbeitungssystemen prinzipiell

erfiillt, kann SofProSys als eine Losung fiir die dritte Detailfrage angesehen werden.

Nachdem die Losungen fiir die drei Detailfragen dieser Arbeit entwickelt wurden, widmet

sich der nachfolgende Abschnitt der Evaluierung der Forschungsfrage.

7.4 Praktische Anwendung

Die praktische Anwendung fand beim Kooperationspartner statt. Es wurden die Sliced V-
Modell Storages von zwei Softwareprodukten gemessen. Der Kooperationspartner schrank-
te die Veroffentlichung der Ergebnisse ein und erlaubt nur die Darstellung und Erlauterung
der Softwarekennzahlen und SW-Produktionskennzahlen von einem der beiden Software-
produkte. Auferdem muss auf die Nennung der Softwareprodukte und der betriebsspezi-

fischen Stundensitze verzichtet werden.

Das untersuchte Softwareprodukt ist eine Windows-Desktop-Software fiir die Bedienung
von intelligenten Produkten, beispielsweise fiir deren Parametrierung oder Diagnose. Um
Riickwirkungen auf das operative ALM-System und das Versionsmanagementsystem zu
vermeiden, wurden das Sliced V-Modell Storage des Softwareproduktes und die dazugeho-
renden Repositories in dem Versionsmanagementsystem auf eine Testumgebung kopiert,

in der vorab Polarion ALM und Subversion installiert wurden.

Beim Kooperationspartner wurden zum Zeitpunkt der Messung nicht alle Eigenschaften
des Sliced V-Modells in die betriebliche Praxis iiberfiihrt. Daher kommt es zu folgenden
Abweichungen von dem im Abschnitt 5.2.2 erlduterten Datenmodell bzw. in der Nutzung

einiger im Datenmodell vorgesehenen Informationseinheiten:

e Die Work Item-Attribute internal und external an Defect Work Items sind nicht vor-
handen, das Attribut dueDate an Feature Work Items wird nicht genutzt. Daher kon-
nen die darauf aufbauenden Softwarekennzahlen bzw. SW-Produktionskennzahlen
nicht ermittelt werden. Dies sind die prozentuale Verteilung der Werte der Attribute

internal und external und der Servicegrad.

e Des Weiteren werden zwar End-Baselines, jedoch keine Start-Baselines gesetzt.
Wihrend der praktischen Anwendung wurden die Starttermine der einzelnen Soft-

wareversionen aus der beim Kooperationspartner eingesetzten Projektdatenbank

145

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

manuell ermittelt (vgl. Abschnitt 1.3). Wie in Abschnitt 2.1.2.3 erldutert, gibt es
keine allgemeingiiltige Definition fiir den Starttermin und den Endtermin der Ent-
wicklung einer Softwareversion. Jeder produzierende Betrieb muss somit diese Ter-
mine betriebsspezifisch bestimmen. Beim Kooperationspartner sind dies der Tag der
Freigabe der Anforderungen an eine Softwareversion bzw. der getesteten Software-

version.

Durch die Messung des Sliced V-Modell Storage des Softwareproduktes wurden die in
den Tabellen 7.4, 7.5 und 7.6 aufgefiihrten Kennzahlen ermittelt. Da die Nennung des be-
triebsspezifischen Stundensatzes nicht erlaubt ist, wird den SW-Produktionskennzahlen
ein fiktiver Stundensatz von 10 % zugrunde gelegt. Die prozentuale Verteilung der Wer-
te des Attributs severity, die den Schweregrad eines Fehlers klassifizieren, werden nicht
aufgefiihrt: Die Messungen zeigten, dass die meisten entdeckten Fehler nicht klassifiziert

wurden, das Attribut severity war mit dem voreingestellten Standardwert Neutral belegt.

Diese Messungen zeigten, dass SofProSys in der Lage ist, Softwarekennzahlen und SW-
Produktionskennzahlen in einem produzierenden Betrieb zu erfassen. Um die Plausibilitét
der Werte der einzelnen Kennzahlen zu iiberpriifen, wurden sie in mehreren Meetings

einigen Stakeholdern aus der Softwareentwicklung vorgestellt.

Zunéchst konnte die in den Kennzahlen erkennbare unterschiedliche Natur der drei Soft-
wareversionen bestatigt werden: Version 1 beinhaltete die Umsetzung zahlreicher neuer
Softwarefunktionen, Version 2 war im Wesentlichen gepriagt von Fehlerkorrekturen an der
Version 1, und Version 3 beinhaltete wiederum neue Softwarefunktionen, allerdings nicht

in dem Umfang der Version 1.

Softwarekennzahl Version 1 Version 2 Version 3
Chy, |[KBJ 1.676 178 557
Cha;, | KB 445 35 297
FEgev, |h] 6.450 972 1.216
Pu, |57 0,41 0,28 1,12
D, [d] 550 192 218
Ven, |EF] 3,86 1,11 3,92
Docy, [WI] 941 40 370
Egoc, [N 1.215 200 454
Pioc, [5] 0,15 0,04 0,30
Vidoe, %] 1,71 0,21 1,70
DD, 3% 0,0476 0,0141 0,0293

Tabelle 7.4: Versionsbezogene Softwarekennzahlen des Softwareproduktes

146

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

SW-Produktionskennzahl Version 1 Version 2 Version 3
FPR, |%] 79,02 83,59 65,20
SL, |%] - - -
AV, |€] 59.750 9.980 19.920
P, [£] 9,26 10,27 16,38

Tabelle 7.5: Versionsbezogene SW-Produktionskennzahlen des Softwareproduktes

Kennzahl Wert
DFR, |%] 70,47
TRR, |%] 10,28

Tabelle 7.6: Produktbezogene Kennzahlen des Softwareproduktes

Daher ist das Verhéltnis der Softwarekennzahlen, die die Software- und Dokumentations-
quantitit anzeigen, plausibel: In Version 1 haben die Softwarekennzahlen C'hy, und Docy,
die groften Werte, in Version 2 sind sie am kleinsten und in Version 3 weisen sie Werte

auf, die zwischen denen der Version 1 und Version 2 liegen.

Da die Softwareversionen unterschiedlicher Natur sind, sind die verschiedenen Werte der
Softwarekennzahlen der drei Softwareversionen fiir die Aufwinde Fg.,, und g, und fiir
die Entwicklungsdauer D, ebenfalls plausibel. Die Werte in der Version 1 sind am grofiten,
die Werte der Version 2 am kleinsten und die Werte fiir die Version 3 liegen zwischen den

Werten der Version 1 und der Version 2.

Etwas iiberraschend war die Tatsache, dass der Schweregrad der Fehler kaum bewertet
wurde. Die Stakeholder sagten, zwar sei eine entsprechende Vorgabe in den vorhandenen
Prozessbeschreibungen enthalten, aber offensichtlich werden diese Vorgaben nicht durch-

gingig eingehalten. Sie wiirden dies in den néichsten Teammeetings thematisieren.

Des Weiteren ist das durch die First Pass Rate ausgedriickte Verhiltnis der Churn-
Kennzahlen Chy, und Chy;, plausibel. Ohne dafiir jemals konkrete Kennzahlen genutzt zu
haben, wurde von den befragten Stakeholdern abgeschatzt, dass ca. 20 % der Quelltext-
dnderungen fiir eine Softwareversion wegen intern entdeckter Fehler erfolgen. Dies wurde
durch die First Pass Rate fiir Version 1 und Version 2 bestétigt. Der geringere Wert in
der Version 3 war allerdings auch plausibel, da in dieser Version die Entwicklungsum-
gebung, mit der das Softwareprodukt entwickelt wurde, auf eine héhere Softwareversion
umgestellt wurde. Durch diese Umstellung kam es zu zahlreichen Quelltextédnderungen,

die intern entdeckten Fehlern zugeordnet wurden.

Es wurde nicht bezweifelt, dass die Werte in den Softwarekennzahlen fiir die Aufwéinde
Eiep, und Eg,., von SofProSys korrekt gemessen werden. Dennoch konnten die Unter-

schiede in den Werten der Softwarekennzahlen nicht erklért werden, in die Fy.,, und Ey,..,

147

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

einfliefsen, und zwar in die Churn-Produktivitdt P.,, und in die Dokumentationsproduk-
tivitdt Pjy,.,. Eine mogliche Ursache kénne die nicht sachgeméfte Buchung von Stunden
durch die Mitarbeiter der Softwareteams sein. Es konne durchaus sein, dass Stunden, die
tatsachlich mit Dokumentationsaktivitdten verbracht wurden, den Entwicklungsaktivité-
ten zugeordnet wurden und umgekehrt. Eine solche Fehlbuchung lasse sich in der téglichen

Praxis nicht ganz vermeiden.

Da die Churn-Produktivitdt durch die Messung erstmalig fiir die befragten Stakeholder
sichtbar wurde, konnte die deren Plausibilitit nicht bestétigt bzw. bezweifelt werden. Die
Werte fiir die Dokumentationsproduktivitiat, wonach 0,15, 0,04 bzw. 0,30 Work Items
pro Stunde erstellt wurden, erschienen zu gering. Das Anlegen eines Work Items dauert
wenige Sekunden. Zwar werden danach die Work Items immer wieder gedndert, jedoch
wurden hohere Werte erwartet. Ein Grund dafiir konnte neben der inkorrekten Zuord-
nung der gebuchten Stunden die Erstellung des grafischen Softwaredesigns aufierhalb des
ALM-Systems sein. Die Daten des Softwaredesigns sind nicht in die Datenerfassung von

SofProSys eingebunden.

Es wurde positiv anerkannt, dass die zugrundeliegende IT-gestiitzte Datenerfassung eine
notwendige Voraussetzung fiir die Anwendung von SofProSys in der betrieblichen Praxis
sei. Um alle Softwarekennzahlen vollsténdig zu erfassen, miissten jedoch alle benétigten
Daten in den Softwareprojekten eingetragen werden. Das wiirde bedeuten, dass in der be-
trieblichen Praxis das Sliced V-Modell vollstandig genutzt wiirde. Zwar kénne SofProSys
verwendet werden, um auf fehlende Daten hinzuweisen, jedoch wiirden in der taglichen
Arbeit immer wieder Daten fehlen. Dies sei nicht ganz zu vermeiden. Es miisse ein ldnger-
fristiger Prozess gestartet werden, um in Schulungen oder mit anderen geeigneten Mal-
nahmen auf die Vollstdndigkeit des Sliced V-Modells hinzuwirken.

Die Anzeige von Detaildaten fiir einzelne Softwarefunktionen wurde begriift. Wie in Ab-
schnitt 6.2 erldutert, werden die Menge des Churns und die Menge der Dokumentation
jeweils pro einzelner Softwarefunktion erfasst und erst danach fiir die Softwareversion
akkumuliert. Die Werte einzelner Softwarefunktionen werden von SofProSys angezeigt.
Tabelle 7.7 zeigt exemplarisch die Softwarekennzahlen zweier gemessener Softwarefunk-
tionen. Die Softwarekennzahlen Rev (Anzahl an Revisionen) und Files (Anzahl an ge-
dnderten Quelltextdateien) sind zusétzlich Softwarekennzahlen, die SofProSys erfassen
kann. Diese Softwarekennzahlen wurden nicht von den operativen Zielen hergeleitet (vgl.

Abschnitt 4.2.2), sondern entstanden wihrend der Entwicklung von SofProSys.

Es ist unmittelbar erkennbar, welche der beiden Softwarefunktionen eine ,grofte’ Software-
funktion ist. ,Grok" bedeutet, dass die Dokumentationsgroéke Docy, und die Churn-Menge
Chys vergleichsweise hohe Werte annehmen. Die Kenntnis der ,Grofe” einer Software-

funktion konne, so das Meinungsbild der befragten Stakeholder, in der Testplanung und

148

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Softwarefunktion Docy, Chys Rev Files
A 21 W1 356 KB 25 121
B TWI 50 KB 5 8

Tabelle 7.7: Softwarekennzahlen einzelner Softwarefunktionen

in der Testdurchfiihrung beriicksichtigt werden: Eine ,grofse” Softwarefunkton miisse ein-

gehender getestet werden.

Die Plausibilitdt der Werte der aufgefiihrten Softwarekennzahlen und SW-Produktions-
kennzahlen konnte bestitigt werden. Jedoch wurde angemerkt, dass die grafische Dar-
stellung der Kennzahlen fiir einen produktiven Einsatz von SofProSys nicht ausreichen
wiirde. Dafiir miissten die Softwarekennzahlen grafisch aufbereitet werden, zum Beispiel

in Form von Diagrammen.

Nach den Gesprachen mit den Stakeholdern in der Softwareentwicklung zu den Softwa-
rekennzahlen wurden die SW-Produktionskennzahlen dem Geschiftsbereichsleiter vorge-
stellt. Die SW-Produktionskennzahlen wurden vorab grafisch aufbereitet. Dies erfolgte
manuell mit MS Excel, da SofProSys dazu aktuell nicht in der Lage ist. Abbildung 7.5
zeigt die First Pass Rate der drei gemessenen Versionen als ein Beispiel fiir die grafisch

aufbereiteten SW-Produktionskennzahlen.

Der Geschiftsbereichsleiter zeigte sich vom Format der Présentation der Ergebnisse ei-
ner Softwareentwicklung beeindruckt: ,,Diese Form der Ergebnisdarstellung und die Ver-
wendung mir bekannter Produktionskennzahlen erleichtern deutlich die Bewertung der

Softwareergebnisse.“ Thm war klar, dass die Ist-Werte der einzelnen SW-Produktions-

First Pass Rate (%):
100% =
83,599
79,02%

B0%

65,20%
60%
40%
20%
0%

Version 1 Version 2 Version 3

Abbildung 7.5: Grafische Darstellung der First Pass Rate in MS Excel

149

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

kennzahlen von den typischen Ist-Werten der HW-Produktionskennzahlen abweichen wer-
den. Dies sei jedoch nicht kritisch, da bereits heute Ist-Werte von HW-Produktions-
kennzahlen in verschiedenen Produktionslinien unterschiedlich sein kénnen. Wichtig sei
es, bei der Einfiihrung eines produktiven Informationsverarbeitungssystems sinnvolle Soll-
Werte fiir die einzelnen SW-Produktionskennzahlen festzulegen, die mit Ist-Werten ver-
glichen werden, um somit dieselben Steuerungs- und Uberwachungsmechanismen zu eta-
blieren wie in der Produktion. Auf Grundlage der ersten Messergebnisse formulierte er als
erste Soll-Werte fiir die First Pass Rate 80 % und fiir die Technische Riicklauferrate 5 %.

Weiterhin dufierte er die Erwartungshaltung, dass die Softwareteams diejenigen Daten ein-
tragen, die eine Ermittlung des Servicegrades ermdglichen. Wie schon in Abschnitt 3.2.2.1
erlautert, sei ihm der Servicegrad wichtig, weil er die Lieferqualitit der vielen kleineren
Softwarefunktionen nicht bewerten kann, da ihm diese kleineren Softwarefunktionen nicht

bekannt seien.

Obwohl ihm die Personalkosten fiir die Softwareentwicklungsteams bekannt sind, dufer-
te er sich positiv iiber den Einblick in die Zuordnung der Kosten zu den Softwareent-
wicklungsprojekten, die in der Wertschopfung angezeigt werden. Es miisse mittelfristig
bewertet werden, wie die Wertschopfung in der Preisbildung der Softwareprodukte oder
der darauf aufbauenden Servicedienstleistungen beriicksichtigt werden kann. Des Weite-
ren ermogliche die Anzeige der Produktivitit eine kontinuierliche Beobachtung, ob die

Personalkosten wertschépfend eingesetzt werden.

Er fiihlte sich darin bestitigt, dass die fiinf mit ihm ausgewidhlten HW-Produktions-
kennzahlen, angewandt als SW-Produktionskennzahlen, eine wertvolle Unterstiitzung in
der Beobachtung des Softwareentwicklungsprozesses sein werden. Die SW-Produktions-
kennzahlen wiirden ihm eine im Grundsatz identische Interpretation wie die dquivalen-
ten HW-Produktionskennzahlen ermoglichen. Die Erreichung strategischer Ziele wiirde
in diesen SW-Produktionskennzahlen angezeigt. Des Weiteren begriifste er, dass durch
die in dieser Arbeit entworfenen Losungen die Softwareentwicklungsteams in die Lage
versetzt werden, die Erreichung der operativen Ziele zu iiberpriifen. Er teilte die Bewer-
tung der Stakeholder aus der Softwareentwicklung, dass die SofProSys zugrunde liegende
IT-gestiitzte Datenerfassung eine notwendige Voraussetzung ist, um das Informationsver-

arbeitungssystem in die betriebliche Praxis zu iiberfiihren.

Alle Gesprichspartner des Kooperationspartners sehen in den gezeigten Ergebnissen eine
Lésung fiir die Fragestellung dieser Arbeit: Wie kann der Softwareentwicklungsprozess
in produzierenden Betrieben kennzahlenorientiert gestaltet werden? Zwar wurde sie in
nur einem produzierenden Betrieb evaluiert. Allerdings wird es als realistisch angesehen,
dass die bislang entwickelten Losungen auch in andere produzierende Betriebe iibertragen

werden konnen. Dies wird im folgenden Kapitel begriindet.

150

Kapitel 8

Verallgemeinerung der Ergebnisse

Die in dieser Arbeit entwickelte kennzahlenorientierte Gestaltung des Softwareentwick-
lungsprozesses erfolgte in Zusammenarbeit mit dem Kooperationspartner und umfasst fol-
gende Ergebnisse: Mit der RGQM-Methode wurden betriebsspezifische SW-Produktions-
kennzahlen bestimmt. Die SW-Produktionskennzahlen dienen der Uberpriifung strategi-
scher Ziele des Kooperationspartners. Softwarekennzahlen wurden mit der GQM-Methode
aus operativen Zielen hergeleitet. Der gestaltete Softwareentwicklungsprozess ist das Sliced
V-Modell. Der Prototyp des Informationsverarbeitungssystems setzt die Verwendung der
Collaboration Tools Polarion ALM und Subversion voraus. Folglich beziehen sich die bis-
herigen Losungen auf die Fragestellungen dieser Arbeit auf die betriebsspezifische lokale
Umgebung des Kooperationspartners. Wie in Abschnitt 1.5 dargelegt, erfordert das me-
thodische Vorgehen nach dem Design Research-Paradigma eine Theoriebildung auf Basis
der entwickelten lokalen Forschungsergebnisse. Diesem Themengebiet widmet sich dieses
Kapitel, in dem dargestellt wird, wie die lokalen Forschungsergebnisse verallgemeinert und

auf andere produzierende Betriebe iibertragen werden koénnen.

8.1 Bestimmung von SW-Produktionskennzahlen

Um die SW-Produktionskennzahlen zu bestimmen, die die Semantik der dquivalenten
HW-Produktionskennzahlen beibehalten, wurde die RGQM-Methode entworfen und beim
Kooperationspartner evaluiert. Ausgangspunkt fiir den Entwurf war die Fragestellung, ob
Produktionskennzahlen in der Softwaredoméane angewendet werden kdnnen. Diese Frage-
stellung weckte ein hohes Interesse beim Management des Kooperationspartners, da es
ein sehr gutes Verstandnis von Produktionskennzahlen hat und diese in der kennzahlen-
orientierten Gestaltung des Produktionsprozesses bereits verwendet. Die Ergebnisse der

im Abschnitt 1.4 erlauterten Umfrage der IHK Ostwestfalen zu Bielefeld werden als ein

151

Kapitel 8. Verallgemeinerung der Ergebnisse

Indikator angesehen, dass weitere produzierende Betriebe Interesse haben, Produktions-
kennzahlen in der Softwaredoméine zu nutzen. Die Riicklduferzahl der Fragebdgen ldsst
jedoch keinen Riickschluss dariiber zu, wie ausgepréigt dieses Interesse ist. Daher kann

diese Verallgemeinerung lediglich eingeschrénkt erfolgen.

Jeder produzierende Betrieb, der Produktionskennzahlen in der Softwaredoméne anwen-
den mochte, kann auf die RGQM-Methode zuriickgreifen. Die RGQM-Methode ist nicht
auf die Anwendung im betriebsspezifischen Umfeld des Kooperationspartners beschriankt.
An dem folgenden Beispiel der Produktionskennzahl Ausnutzungsgrad soll dies theoretisch

erlautert werden:

Der Ausnutzungsgrad ist eine Produktionskennzahl, die die Maschinenauslastung anzeigt.
Sie ist eine Verhaltnisgrofke, die in % angegeben wird. Deren Wertebereich liegt zwischen 0
% und 100 % und der Idealwert ist 100 %. Es konnen Soll-Werte fiir den Ausnutzungsgrad
festgelegt werden. Die Frage, das strategische Ziel und die Interpretation sind in Tabelle
8.1 aufgefiihrt. Die Frage, die mit dem Ausnutzungsgrad beantwortet wird, ist [Pre08| ent-
nommen. Das strategische Ziel und die Interpretation dieser Produktionskennzahl wurden
theoretisch festgelegt, das heiftt es fand keine Befragung in einem produzierenden Betrieb
statt.

Fiir diese theoretische Betrachtung wird davon ausgegangen, dass das strategische Ziel
yEffiziente Nutzung aller vorhandenen Betriebsmittel“ auch in der Softwaredoméne giiltig
ist. Dann wére es moglich, die in Tabelle 8.2 aufgefiihrte Frage fiir die Softwaredoméne
zu formulieren und, wie in der Tabelle aufgefiihrt, zu interpretieren. Die tatsichlichen
Berechnungsgrundlagen konnen fiir dieses theoretische Beispiel nicht ermittelt werden, da

dies konkret von der Art und Weise der Erfassung der genutzten Lizenzen

Ausnutzungsgrad

Frage Zu wie viel Prozent sind die vorhandenen Maschinen tatsédchlich aus-
gelastet? [Pre08]

Ziel Effiziente Nutzung aller vorhandenen Betriebsmittel

Interpretation Der Ausnutzungsgrad ist das Verhéltnis von Ist-Maschinenlaufstunden
und moglichen Maschinenlaufstunden [Pre08]. Ein hoher Wert des
Ausnutzungsgrades zeigt an, dass die Maschinen kontinuierlich im Ein-
satz sind. Stillstehende Maschinen tragen nicht zur Wertschopfung bei.
Sie verursachen dennoch Kosten, zum Beispiel fiir die Wartung oder
durch die Flachennutzung. Das Management erwartet moglichst hohe
Werte fiir den Ausnutzungsgrad. Kénnen diese Werte nicht erreicht

werden, miissen Maschinen aussortiert oder verkauft werden.

Tabelle 8.1: Frage, Ziel, Interpretation des Ausnutzungsgrades in der Produktion

152

Kapitel 8. Verallgemeinerung der Ergebnisse

Ausnutzungsgrad
Ziel Effiziente Nutzung aller vorhandenen Betriebsmittel
Frage Zu wie viel Prozent sind die vorhandenen Lizenzen von I'T-Systemen,

die fiir die Softwareentwicklung benotigt werden, tatséchlich ausgelas-
tet?

Tabelle 8.2: Frage und Ziel des Ausnutzungsgrades in der Softwareentwicklung

eines I'T-Systems abhéngig ist. Gleichung 8.1 zeigt daher lediglich eine grundséatzlich mog-

liche Berechnungsgrundlage.

L
LF = —™ 8.1
Lmax ()
mit:
LF Ausnutzungsgrad
Loy Durchschnittliche Anzahl genutzter Lizenzen

Lynox Maximal verfiighare Lizenzen

Die Mafeinheit des Ausnutzungsgrades in der Softwaredoméne ist %. Der Wertbereich
liegt zwischen 0 % und 100 %. Der Idealwert betragt 100 %. Der Ausnutzungsgrad in der
Softwareentwicklung wird wie folgt interpretiert:

Ein hoher Wert des Ausnutzungsgrades zeigt an, dass die beschafften Lizenzen tatséch-
lich im Einsatz sind. Beschaffte, aber nicht genutzte Lizenzen haben unnétige Kosten
verursacht bzw. bewirken laufende Kosten, beispielsweise durch Wartungsgebiihren. Das
Management verlangt, dass die beschafften Lizenzen tatséchlich genutzt werden. Falls
dies nicht moglich ist, sind die Wartungsvertrige mit den Lieferanten anzupassen. Um
Anderungen im Ausnutzungsgrad festzustellen, sollte dieser in regelmifigen zeitlichen

Abstidnden, zum Beispiel einmal pro Quartal, erfasst werden.

Die Bewertung der semantischen Aquivalenz der beiden Ausprigungen des Ausnutzungs-
grades zeigt, dass der Name, der Wertebereich sowie der Idealwert identisch sind und
dass in beiden Doménen Soll-Werte fiir den Ausnutzungsgrad festgelegt werden koénnen.
Das zum Ausnutzungsgrad gehdrende strategische Ziel in der Produktion und in der Soft-
wareentwicklung ist identisch. Der Satzbau der jeweiligen Fragen ist ebenfalls identisch.
In beiden Doménen kann diese Kennzahl im Grundsatz in gleicher Weise interpretiert

werden.

Dieses theoretische Beispiel zeigt folglich, dass die RGQM-Methode verallgemeinert und
fiir andere als beim Kooperationspartner eingesetzte HW-Produktionskennzahlen ange-

wendet werden kann.

153

Kapitel 8. Verallgemeinerung der Ergebnisse

8.2 Gestaltung des Softwareentwicklungsprozesses

Der in dieser Arbeit gestaltete Softwareentwicklungsprozess ist das Sliced V-Modell, in
dem zum einen die durch die RGQM-Methode bestimmten SW-Produktionskennzahlen

und zum anderen Softwarekennzahlen erfasst werden konnen.

Ausgangspunkt fiir die Bestimmung von Softwarekennzahlen sind die operativen Ziele der
Softwareteams, die sich aus den strategischen Zielen des Managements ableiten. Es ist
naheliegend, dass die beim Kooperationspartner angewandte pragmatische Vorgehenswei-
se bei der Ableitung der operativen Ziele auf andere produzierende Betriebe iibertragen

werden kann.

Um Softwarekennzahlen aus den operativen Zielen abzuleiten, wurde die GQM-Methode
angewendet. Die GQM-Methode ist seit langem verfiigbar und ihre erfolgreiche Anwen-
dung ist in zahlreichen Veroffentlichungen beschrieben. Es ist folglich naheliegend, dass

die GQM-Methode von anderen produzierenden Betrieben genutzt werden kann.

Dem Sliced V-Modell liegt das Vorgehensmodell des Kooperationspartners zugrunde, das
V-Modell der DIN EN 61508-3. In der Gestaltung des Sliced V-Modells wurde die Er-
fassung der beim Kooperationspartner bestimmten SW-Produktionskennzahlen und Soft-
warekennzahlen beriicksichtigt. Sollte ein produzierender Betrieb ein anderes Vorgehens-
modell als das V-Modell einsetzen, kann keine Aussage zur konkreten Vorgehensweise in
dessen Gestaltung getroffen werden. Das in Abschnitt 5.1 erlduterte Vorgehen sollte je-
doch fiir jedes beliebige Vorgehensmodell anwendbar sein. Ziel dieses Vorgehens ist es, ein

Datenmodell zu erstellen und in UML zu beschreiben.

Jeder produzierende Betrieb kann das Sliced V-Modell nutzen und es in sein betriebliches
Umfeld iibertragen. In dieser Arbeit wurde ein Datenmodell entwickelt, das zwar die Ver-
wendung eines ALM-Systems und eines Versionsmanagementsystems voraussetzt, jedoch
nicht die beiden Collaboration Tools Polarion ALM und Subversion. Ein produzierender
Betrieb kann entsprechend seinen Anforderungen aus einer Reihe am Markt verfiigbarer

alternativer Collaboration Tools auswihlen und darin das Sliced V-Modell realisieren.

Wird das Sliced V-Modell nicht beriicksichtigt, kénnen dennoch einige der Anforderungen
an das Sliced V-Modell durch ein anderes Datenmodell erfiillt werden. Dies soll exem-
plarisch an den Anforderungen A1 Zuordnung Quelltextinderungen und A4 Erweiterte

Zuordnung Quelltextanderungen (vgl. Abschnitt 3.2.2.4 und 4.2.2.1) gezeigt werden:

Es ist eine Unterscheidung in feature churn und defect churn moglich, sofern Quelltext-
dnderungen eindeutig der Implementierung einer Softwarefunktion und der Behebung
eines Fehlers zugeordnet werden konnen. Es geniigt ein einfaches Work Item-basiertes

Datenmodell, in dem Work Items mit den Revisionen eines Versionsmanagementsystems

154

Kapitel 8. Verallgemeinerung der Ergebnisse

Feature Work Item

Repository 1 Revisions
relates to————————

Storage

b relates toT

1.* 1.

Defect Work Item

[&—relates to

Abbildung 8.1: Vereinfachtes Work Item-basiertes Datenmodell

verkniipft werden konnen. Abbildung 8.1 zeigt eine mogliche Variante eines vereinfachten

Work Item-basierten Datenmodells.

Sofern die dargestellten Feature Work Items und Defect Work Items die einzigen Do-
kumentationselemente sind, die wihrend der Softwareentwicklung entstehen, konnte in
diesem Fall ebenfalls die Anforderung A7 Softwaredokumentation (vgl. Abschnitt 4.2.2.2)

erfiillt werden, falls diese in dem jeweiligen produzierenden Betrieb formuliert wiirde.

8.3 Aufbau eines Informationsverarbeitungssystems

Der in dieser Arbeit entwickelte Prototyp eines Informationsverarbeitungssystems
(SofProSys) erfasst und verarbeitet Daten aus den Collaboration Tools Polarion ALM
und Subversion, den beim Kooperationspartner eingesetzten Collaboration Tools. Sofern
ein produzierender Betrieb genau diese Collaboration Tools verwendet, kann SofProSys
als Ausgangspunkt fiir ein betriebsspezifisches Informationsverarbeitungssystem dienen.
Werden andere Collaboration Tools eingesetzt, muss ein Informationsverarbeitungssystem

neu entwickelt werden.

In der Ausgestaltung des Informationsverarbeitungssystems sind die Bediirfnisse des pro-
duzierenden Betriebes zu beriicksichtigen. Dies betrifft die Art der Applikation (Desktop,
Webanwendung etc.), die Art der grafischen Aufbereitung der Kennzahlen, ein Rechtema-
nagementsystem usw. Als Fazit wird es als naheliegend erachtet, dass ein produzierender
Betrieb in der Lage ist, ein mit SofProSys vergleichbares Informationsverarbeitungssystem
zu entwickeln und zu betreiben. Dabei sollten die Gestaltungsgrundsétze fiir Informati-

onsverarbeitungssysteme beriicksichtigt werden (vgl. Abschnitt 2.1.1).

155

Kapitel 8. Verallgemeinerung der Ergebnisse

Es liegt ebenfalls nahe, dass der in dieser Arbeit aufgefiithrte Prozess der Evaluierung von
jedem produzierenden Betrieb nachvollzogen und durchgefiihrt werden kann. Das Infor-
mationsverarbeitungssystem ist anhand der Daten realer Softwareprojekte zu testen. Die
erfassten und verarbeiteten Daten sind von Personen, die diese Softwareprojekte kennen,

zu priifen. Anschliefend wird das Management in die Evaluierung einbezogen.

Die Mdoglichkeit der Verallgemeinerung der lokalen Forschungsergebnisse dieser Arbeit
wurde in diesem Kapitel theoretisch dargelegt. Es erfolgte allerdings keine Evaluierung
der Generalisierbarkeit, zum Beispiel durch Anwendung der Forschungsergebnisse in ei-
nem weiteren produzierenden Betrieb. Daher muss kritisch festgestellt werden, dass die
Forschungsfrage dieser Arbeit lediglich fiir den lokalen Kontext eines produzierenden Be-
triebes beantwortet werden kann. Eine vollstindige, tiefgehende und vor allem auf eine
breite Datenbasis aufgestellte Evaluierung fehlt. Es werden folglich weitere, auf dieser
Arbeit aufbauende Forschungsaktivititen empfohlen. Dem Ausblick auf weiterfithrende
Forschungsaufgaben und der Zusammenfassung dieser Arbeit widmet sich das folgende
letzte Kapitel.

156

Kapitel 9
Zusammenfassung und Ausblick

Neben der Zusammenfassung (Abschnitt 9.1) geht dieses Kapitel auf die konkreten néchs-
ten Schritte fiir die betriebliche Operationalisierung der kennzahlenorientierten Gestal-
tung des Softwareentwicklungsprozesses beim Kooperationspartner sowie auf einige wis-

senschaftliche Fragestellungen fiir zukiinftige Forschungsaktivitdten ein (Abschnitt 9.2).

9.1 Zusammenfassung

Diese Arbeit widmete sich der kennzahlenorientierten Gestaltung des Softwareentwick-
lungsprozesses in produzierenden Betrieben. Durch die mit dem Begriff ,Industrie 4.0¢
beschriebene industrielle Digitalisierung wéchst fiir produzierende Betriebe die Notwen-
digkeit, intelligente Produkte zu entwickeln und zu vertreiben. Intelligente Produkte beru-
hen auf einem Zusammenwirken von mehreren Doménen, zum Beispiel der Mechanik, der
Elektronik und der Softwaretechnik. Sie werden folglich doméneniibergreifend entwickelt.
Diese Arbeit ging davon aus, dass der Softwaretechnik eine besondere Bedeutung einge-
rdaumt werden kann, da ohne Software eine digitalisierte Industrie nicht moglich ist. Daher
gewinnt der Softwareentwicklungsprozess an strategischer Bedeutung in produzierenden

Betrieben.

Es ist die Aufgabe des Managements, strategisch wichtige Prozesse, folglich auch den
Softwareentwicklungsprozess, zu iiberwachen und zu gestalten. Mit dem Management
sind Fiihrungskréfte in oberen Hierarchieebenen gemeint. Die Gestaltung von betrieb-
lichen Prozessen dient der Umsetzung von strategischen Zielen, die vom Management
formuliert werden. Fiir jedes der strategischen Ziele sind Kennzahlen zu definieren, die
die Zielerreichung anzeigen. Um dem Management die Kennzahlen zufiihren zu koénnen,
ist in der Prozessgestaltung deren Erfassung durch ein Informationsverarbeitungssystem

zu berticksichtigen.

157

Kapitel 9. Zusammenfassung und Ausblick

Eine Motivation fiir diese Untersuchung ergab sich aus der konkreten Situation beim
Kooperationspartner dieser Arbeit, dem Geschéftsbereich Automatisierungstechnik des
Unternehmens Phoenix Contact. Zwar gestaltet der Kooperationspartner bereits den Pro-
duktionsprozess mit der Vorgabe, Kennzahlen aus dem Produktionsprozess zu erfassen,
allerdings fehlt bislang eine kennzahlenorientierte Gestaltung des Softwareentwicklungs-
prozesses, und somit ein dazugehérendes Informationsverarbeitungssystem. Dies ist ein
IT-System, das Daten aus dem Prozess ermittelt, zu Kennzahlen verarbeitet und gra-
fisch darstellt [Ben07]. Daher ist das Management nur unzureichend in der Lage, den

Softwareentwicklungsprozess zu iiberwachen und zu steuern.

Eine weitere Motivation ergab sich aus einer Umfrage der IHK Ostwestfalen zu Bielefeld,
die darauf hindeutet, dass in anderen produzierenden Betrieben eine kennzahlenorientierte

Gestaltung des Softwareentwicklungsprozesses ebenfalls fehlt, aber auch gewiinscht ist.

Aus diesen Motivationen leitete sich die Forschungsfrage dieser Arbeit ab:
Wie kann der Softwareentwicklungsprozess in produzierenden Betrieben kennzahlenorien-

tiert gestaltet werden?

Aus der Forschungsfrage ergaben sich drei Detailfragestellungen, deren Herleitung in Ab-

schnitt 1.4 begriindet wurde.

1. Wie konnen SW-Produktionskennzahlen, die die Semantik der dquivalenten HW-

Produktionskennzahlen beibehalten, bestimmt werden?

2. Wie sollte der Softwareentwicklungsprozess aufgebaut sein, damit die definierten

SW-Produktionskennzahlen und Softwarekennzahlen erfasst werden konnen?

3. Wie sollte ein Informationsverarbeitungssystem aufgebaut sein, das SW-

Produktionskennzahlen und Softwarekennzahlen erfassen und verarbeiten kann?

Die Losungen fiir diese Fragen ermoglichen dem Management eine integrierte Prozess-
steuerung des Produktions- und Softwareentwicklungsprozesses. Abbildung 9.1 zeigt sche-
matisch diese Prozesssteuerung: Das Management iiberwacht und gestaltet den Produk-
tionsprozess mit der Menge an HW-Produktionskennzahlen Kpy. Da es mit der Se-
mantik dieser HW-Produktionskennzahlen vertraut ist, kann es ebenfalls den Software-
entwicklungsprozess mit Kgy, der Menge an semantisch dquivalenten SW-Produktions-

kennzahlen, iiberwachen und steuern.

Um die Fragestellung zur Bestimmung von SW-Produktionskennzahlen zu beantworten,
wurde in dieser Arbeit eine neue Methode entwickelt: die Reversed Goal-Question-Metric-
Methode (RGQM). Die RGQM-Methode besteht aus acht Bearbeitungsschritten und ba-
siert auf der bekannten GQM-Methode. Ausgehend von einer bereits in der Produkti-

onsdoméne eingesetzten HW-Produktionskennzahl werden die dazugehdrende Frage, das

158

Kapitel 9. Zusammenfassung und Ausblick

Management

Formylierung
Strategische
Ziele

Berticksichtigungy

Interpretation Interpretation

Definition

Transfer

<
Ksw

> <«
Erfassung Erfassung

Verdichtung Verdichtung

Gestaltung | Produktionsteam | | Softwareteam Gestaltung

Produktionsprozess Software-
P entwicklungsprozess

Formulierung Formulierung
Interpretation Interpretation:

Erfassung P Definition Operative Operative Definition p __Erfassung
o Hw Ziele Ziele s o~

Abbildung 9.1: Integrierte Prozesssteuerung durch das Management

Ziel und die Interpretation ermittelt. Falls das Ziel fiir den Softwareentwicklungsprozess
giiltig ist, wird eine doménenspezifische Frage formuliert, die mit einer SW-Produktions-
kennzahl beantwortet wird. In dieser Arbeit wurden mit der RGQM-Methode fiinf HW-
Produktionskennzahlen in SW-Produktionskennzahlen transferiert: First Pass Rate, Tech-

nische Rickliuferrate, Servicegrad, Wertschopfung und Produktivitdt.

Damit die SW-Produktionskennzahlen in dem Softwareentwicklungsprozess erfasst wer-
den konnen, muss dieser mehrere Anforderungen erfiillen. Diese Anforderungen wurden

wahrend der schrittweisen Bearbeitung der RGQM-Methode formuliert.

Gemaéls der Zielsituation in Abbildung 9.1 nutzen die Softwareteams Softwarekennzahlen,
die die Zielerreichung operativer Ziele anzeigen. Zur Bestimmung der Softwarekennzahlen
aus den operativen Zielen wurde die GQM-Methode angewendet. Es wurden fiinf operative
Ziele definiert, die dazugehorenden Fragen formuliert und Softwarekennzahlen bestimmt,
die die Fragen beantworten. Damit die Softwarekennzahlen in dem Softwareentwicklungs-
prozess erfasst werden konnen, muss dieser wiederum bestimmte Anforderungen erfiillen.

Diese wurden bei der Anwendung der GQM-Methode formuliert.

Zur Beantwortung der Fragestellung zum Aufbau des Softwareentwicklungsprozesses wur-
de das Vorgehensmodell des Kooperationspartners berticksichtigt. Dieses Vorgehensmodell
basiert auf dem V-Modell der DIN EN 61508-3. In dieser Arbeit wurde ein Datenmodell
fiir das V-Modell der DIN EN 61508-3 entwickelt und als UML-Klassendiagramm be-
schrieben. Es ist derart gestaltet, dass es die Anforderungen fiir die Erfassung der vorher
definierten SW-Produktionskennzahlen und Softwarekennzahlen erfiillt. Das Ergebnis die-
ser Gestaltung ist das Sliced V-Modell. Eine wesentliche Eigenschaft des Sliced V-Modells

ist die Anwendung von Work Items, die untereinander verlinkt werden.

Dem Entwurf des Sliced V-Modells und der Bestimmung von SW-Produktionskennzahlen
und Softwarekennzahlen folgte die Definition der Berechnungsgrundlagen aller Kenn-
zahlen. Die Semantik der HW-Produktionskennzahlen und der dazugehérenden SW-

Produktionskennzahlen wurde verglichen. Der Vergleich zeigte, dass durch die An-

159

Kapitel 9. Zusammenfassung und Ausblick

wendung der RGQM-Methode eine semantische Aquivalenz beider Ausprigungen einer

Produktionskennzahl erreicht wird.

Um die Fragestellung zum Aufbau des Informationsverarbeitungssystems zu beantworten,
wurde ein Prototyp, genannt SofProSys, entwickelt und angewendet. Bei der Entwicklung
von SofProSys wurde das Sliced V-Modell genutzt. Eine erste Anwendung von SofProSys
erfolgte auf Basis des Sliced V-Modells, das wihrend der Entwicklung von SofProSys
entstand. Diese praxisnahe Anwendung zeigte, dass alle definierten Kennzahlen erfasst
werden konnen. Damit wurde eine grundséitzliche Eignung des entworfenen Informations-

verarbeitungssystems fiir den Einsatz beim Kooperationspartner demonstriert.

Im Rahmen der praktischen Anwendung wurden zwei Softwareprodukte des Kooperati-
onspartners mit SofProSys analysiert. SofProSys konnte nahezu alle SW-Produktions-
kennzahlen und alle Softwarekennzahlen erfassen. Da einige fiir den Servicegrad bendétigte
Daten bislang nicht in den operativen Softwareentwicklungsprozess iiberfithrt wurden,
konnte der Servicegrad nicht erfasst werden. Um eine grafische Darstellung zu ermogli-
chen, mussten die Kennzahlen in den von SofProSys generierten MS Excel-Dateien ma-

nuell nachbearbeitet werden.

Die aufbereiteten MS Excel-Dateien wurden einigen Stakeholdern der Softwareteams
vorgestellt. Diese bestétigten, dass die erfassten Kennzahlen plausibel sind und dass
SofProSys die Softwareentwicklung unterstiitzen wird, sofern es in den operativen Betrieb
iiberfiihrt wird. Jedoch miisste durch Mitarbeiterschulungen darauf hingewirkt werden,

die bisherigen Abweichungen in der Anwendung des Sliced V-Modells zu reduzieren.

Die grafisch aufbereiteten SW-Produktionskennzahlen der beiden Softwareprodukte wur-
den dem Geschéftsbereichsleiter vorgestellt. Die grafische Aufarbeitung erfolgte mit Bord-
mitteln von MS Excel. Der Geschiftsbereichsleiter war nach der Prisentation der Dia-
gramme fiir die First Pass Rate und die Technischen Riicklduferrate sofort in der Lage,
eine zielgerichtete Diskussion zu fithren. Insbesondere wurden die gemessenen Ist-Werte
erortert. [hm war sehr wohl bewusst, dass die Ist-Werte keinen Bezug zu den ihm bekann-
ten Ist-Werten aus der Produktion haben kénnen. Jedoch zeigte er sich begeistert von der
Mbglichkeit zukiinftig das ihm vertraute Verfahren zur Uberwachung und Steuerung des
Produktionsprozesses, also das Festlegen von Soll-Werten und die regelmifige Uberprii-

fung der Ist-Werte, auch fiir den Softwareentwicklungsprozess anwenden zu kénnen.

Es kann zusammengefasst werden, dass sowohl die praxisnahe als auch die praktische An-
wendung erfolgreich waren. Der Prototyp des Informationsverarbeitungssystems ist in der
Lage, Softwarekennzahlen und SW-Produktionskennzahlen, die die Semantik der dazuge-
hérenden HW-Produktionskennzahlen beibehalten, I'T-gestiitzt zu erfassen und anzuzei-

gen. Bine IT-gestiitzte Datenerfassung und -verarbeitung ist fiir eine erfolgreiche Uber-

160

Kapitel 9. Zusammenfassung und Ausblick

fiihrung der kennzahlenorientierten Gestaltung des Softwareentwicklungsprozesses in die

betriebliche Praxis beim Kooperationspartner notwendig.

Im Rahmen dieser Arbeit wurde beim Kooperationspartner nicht evaluiert, ob die kenn-
zahlenorientierte Gestaltung des Softwareentwicklungsprozesses tatsdchlich zur Errei-
chung der strategischen Ziele beitriagt. Eine derartige Evaluierung miisste iiber mehrere
Jahre erfolgen. Wahrend dieser Zeit miissten ausgehend von den strategischen und opera-
tiven Zielen Mafknahmen definiert und umgesetzt und die Zielerreichung miisste mithilfe

der erfassten Kennzahlen iiberpriift werden.

Die Erkenntnisse dieser Arbeit wurden verallgemeinert. Es wurde theoretisch dargelegt,
dass sowohl die RGQM-Methode als auch SofProSys in anderen produzierenden Betrie-
ben eingesetzt werden konnten. So wurde die RGQM-Methode in einem theoretischen
Beispiel angewendet. Damit SofProSys in andere Umgebungen {ibertragen werden kann,
miisste entweder das Sliced V-Modell oder zumindest ein Work Item-basiertes Vorgehens-
modell, in dem die Quelltextdnderungen in einem Versionsmanagementsystem eindeutig

einer Softwarefunktion oder einem Fehler zugeordnet werden, Anwendung finden.

9.2 Ausblick

Obwohl in dieser Arbeit eine kennzahlenorientierte Gestaltung des Softwareentwicklungs-
prozesses erfolgreich entwickelt und evaluiert wurde, bedarf es weiterfiihrender Aktivité-
ten, um sie in die betriebliche Praxis des Kooperationspartners zu iiberfithren. Dariiber

hinaus ergeben sich wissenschaftliche Fragestellungen, die beantwortet werden sollten.

9.2.1 Uberfiihrung in die betriebliche Praxis

Die Definition von strategischen und operativen Zielen sowie die Bestimmung von SW-
Produktionskennzahlen bzw. Softwarekennzahlen ist eine kontinuierliche Aufgabe in der
kennzahlenorientierten Prozessgestaltung. In dieser Arbeit wurde dieser Ablauf einmal
durchgefiihrt, in der betrieblichen Praxis sollte dies allerdings in regelméfigen Abstinden
erfolgen. Dariiber hinaus sollte kontinuierlich bewertet werden, ob die bislang definierten
Kennzahlen fiir die Anzeige der Zielerreichungen ausreichen und ob sie zur Verbesserung
des Softwareentwicklungsprozesses beitragen. Beispielsweise wire zu priifen, ob Kennzah-
len fiir die Anzeige der Qualitét der Softwaredokumentation bestimmt werden sollten (vgl.
Abschnitt 2.1.2.4.3).

Die Ergebnisse der Arbeit wurden mit Hilfe eines Prototyps, SofProSys, evaluiert. Da-

mit der Prototyp im operativen Betrieb nutzbar ist, miisste er systematisch getestet und

161

Kapitel 9. Zusammenfassung und Ausblick

funktional erginzt werden. Insbesondere fehlen Funktionen fiir die grafische Aufberei-
tung der Softwarekennzahlen und der SW-Produktionskennzahlen. Bislang werden diese
lediglich in Excel-Tabellen angezeigt, was die intuitive Bewertung und Interpretation der
Kennzahlen erschwert. Fiir die grafische Aufbereitung wire eine Integration in eine sich
im Aufbau befindliche Webplattform denkbar. Ziel der Webplattform ist es, die HW-
Produktionskennzahlen zu erfassen und grafisch aufzubereiten. Durch die Integration der
SW-Produktionskennzahlen wiirde ein Informationsverarbeitungssystem entstehen, das
dem Management einen homogenen Blick auf den Produktions- und Softwareentwick-
lungsprozess ermdoglicht. Die in Abbildung 9.1 gezeigte integrierte Prozesssteuerung wire
in der betrieblichen Praxis erreicht. Da sich allerdings diese Webplattform im Aufbau be-
findet, war es bislang nicht moglich, die Ergebnisse dieser Arbeit darin zu erginzen. Bei
der grafischen Aufbereitung der Kennzahlen sollten Gestaltungskriterien fiir Dashboards

beriicksichtigt werden, wie sie zum Beispiel in [SNM15] aufgefiihrt sind.

Es kann davon ausgegangen werden, dass durch die Anwendung der Ergebnisse dieser Ar-
beit in der betrieblichen Praxis das Doméanenwissen des Managements {iber den Softwa-
reentwicklungsprozess wachsen wird. Folglich wird das Management in Zukunft befdhigt,
strategische Ziele zu formulieren, die nur fiir den Softwareentwicklungsprozess gelten. Zur
Uberpriifung dieser strategische Ziele wird die Menge Kgy durch Kennzahlen angerei-
chert, die aus diesen strategischen Zielen hergeleitet werden. Fiir diese Kennzahlen ist
kein Transferprozess notig, sondern lediglich ein GQM-basierter Prozess zur Kennzahlen-
bestimmung. Das konkrete Vorgehen fiir die Anreicherung der Menge Kgy mit derartigen

Kennzahlen ist das Thema weiterfiihrender Aktivitaten.

9.2.2 Wissenschaftliche Fragestellungen

Eine regelméfige Fragestellung in der Softwareentwicklung ist die Schatzung des Auf-
wands und der Entwicklungsdauer fiir die Umsetzung neuer Softwarefunktionen. Durch
den in dieser Arbeit entwickelten Ansatz werden SW-Produktionskennzahlen und Softwa-
rekennzahlen ,riickblickend® erfasst und ausgewertet. Daraus ergibt sich die Fragestellung,
inwiefern diese historischen Daten zur Schitzung des Aufwands und der Entwicklungs-

dauer neuer Softwarefunktionen verwendet werden konnen.

Der in dieser Arbeit entwickelte Ansatz der kennzahlenorientierten Gestaltung des Soft-
wareentwicklungsprozesses bewirkt ein prazises Datenmodell: das Sliced V-Modell. Durch
Kenntnis dieses Datenmodells ist ein Informationsverarbeitungssystem in der Lage, die
Softwarekennzahlen und SW-Produktionskennzahlen zu berechnen. Jedoch zeigt die Ar-
beit, dass das Eintragen aller benétigten Daten durch die Softwareteams in der betrieb-

lichen Praxis problematisch sein kann. Die Stakeholder in der Softwareentwicklung sind

162

Kapitel 9. Zusammenfassung und Ausblick

der Meinung, dass es immer Abweichungen vom Sliced V-Modell geben wird. Zwar kénne
darauf hingewirkt werden, diese Abweichungen so gering wie méglich zu halten, ganz ver-
meidbar seien sie jedoch nicht. Ausgehend von dieser Situation wire Gegenstand weiterer
Forschungsarbeiten die Fragestellung, wie eher unstrukturierte Daten fiir die Erfassung
von Softwarekennzahlen oder SW-Produktionskennzahlen verarbeitet werden kénnen. Mit
Big Data-Technologien und Machine Learning-Algorithmen stehen mittlerweile Methoden
zur Verfiigung, um unstrukturierte Daten auswerten und analysieren zu konnen. Ihre An-
wendung in der Doméne der Softwaremessung wurde zwar bereits als Themenkomplex

erkannt, konkrete Forschungsergebnisse fehlen jedoch bislang [HSD16].

Diese Arbeit war motiviert durch die zunehmende Digitalisierung der Industrie, in der
immer mehr intelligente Produkte benotigt werden. Intelligente Produkte beruhen auf
einem Zusammenwirken verschiedener Doménen, zum Beispiel der Mechanik, der Elek-
trotechnik /Elektronik und der Softwaretechnik. Da der Softwaretechnik in dieser Arbeit
eine besondere Rolle zugeordnet wurde, stand die kennzahlenorientierte Gestaltung des
Softwareentwicklungsprozesses im Mittelpunkt dieser Arbeit. Durch eine Ausweitung des
wissenschaftlichen Fokus auf die kennzahlenorientierte Gestaltung des doméneniibergrei-
fenden, auf Methoden des Systems Engineerings basierenden Produktentwicklungsprozes-
ses wiirde sich die Frage stellen: Wie kann der domdnenibergreifende Produktentwick-

lungsprozess in produzierenden Betrieben kennzahlenorientiert gestaltet werden?

Um diese Frage beantworten zu kdnnen, miisste der Produktentwicklungsprozess doma-
neniibergreifend untersucht und gestaltet werden. Der Produktentwicklungsprozess um-
fasst neben der Softwareentwicklung unter anderem die mechanische und elektrische Kon-
struktion (M-CAD/E-CAD). Die dazugehorenden Produktentwicklungsdaten werden in
PLM-Systemen verwaltet (vgl. Abschnitt 2.4.2). Alle in PLM-Systemen verwalteten Pro-

duktentwicklungsdaten kdnnen I'T-basiert erfasst und verarbeitet werden.

163

Literaturverzeichnis

[Abr14]

[ADG+09]

AG12]

[AIb79]

[Apal7]

[ASSH16]

[Bal97]

ABRAN, A.: Software Estimation: Transforming Dust into Pots of Gold? In:
Joint Conference of the International Workshop on Software Measurement

and the International Conference on Software Process and Product Measure-

ment (IWSM-MENSURA), 2014, S. 64-65

ADELT, P. ; DONOTH, J. ; GAUSEMEIER, J. ; GEISLER, J. ; HENKLER, S.
; KAHL, S. ; KLOPPER, B. ; KrRUuPP, A. ; MUNCH, E. ; OBERTHUR, S. ;
Paiz, C. ; PORRMANN, M. ; RADKOWSKI, R. ; RomaAus, C. ; SCHMIDT, A. ;
SCHULZ, B. ; VOECKING, H. ; WiTKOWSKI, U. ; WITTING, K. ; ZNAMENSH-
CHYKOV, O.: Selbstoptimierende Systeme des Maschinenbaus - Definitionen,
Anwendungen, Konzepte. Verlagsschriftenreihe des Heinz Nixdorf Instituts,
Paderborn, 2009 (Bd. 234)

ALBERS, A. ; GAUSEMEIER, J.: Von der fachdisziplinorientierten Produktent-
wicklung zur Vorausschauenden und Systemorientierten Produktentstehung.
In: Smart Engineering. Springer Berlin Heidelberg, 2012, S. S. 17-29

ALBRECHT, A. J.: Measuring Application Development Productivity. In:
Proceedings of the IBM Application Development Symposium Bd. 83. IBM
Cooperation, 1979, S. 83-92

Apache Subversion. https://subversion.apache.org. [31.10.2017]

ANTINYAN, V. ; STARON, M. ; SANDBERG, A. ; HANSSON, J.: A Complexity
Measure for Textual Requirements. In: Joint Conference of the International
Workshop on Software Measurement and the International Conference on
Software Process and Product Measurement (IWSM-MENSURA), 2016, S.
148-158

BALZERT, H.: Lehrbuch der Software-Technik, Bd. 2: Software-Management,
Software-Qualititssicherung, Unternehmensmodellierung . 1. Aufl. Spektrum
Akademischer Verlag, 1997

164

Literaturverzeichnis

[Bal00]

[BB10]

[BB16]

[BBBCOY]

[Bec05)|

[Ben07]

[BGA14|

[BHL*07]

[Bin97]

[BKKO1]

[BMS02]

BALZERT, H.: Lehrbuch der Softwaretechnik, Bd.1: Software- Entwicklung. 2.
Aufl. Spektrum Akademischer Verlag GmbH, 2000

BaiLry, H. W. ; BoLow, F. von: Die ISO 9001:2008: Interpretation der
Anforderungen der DIN EN ISO 9001:2008-12 unter Beriicksichtigung der
IS0 9004:2009. 6. Aufl. TUV Media GmbH, 2010

BLANCHARD, B. S. ; BLYLER, J. E.: System Engineering Management. 5.
Aufl. Wiley, 2016

BALDASSARRE, M. ; BorFroLI, N. ; BRUNO, G. ; CAIVANO, D.: Statisti-
cally Based Process Monitoring: Lessons from the Trench. In: Trustworthy
Software Development Processes Bd. 5543. Springer Berlin Heidelberg, 2009,
S. 11-23

BECKER, T.: Prozesse in Produktion und Supply Chain optimieren. Springer
Berlin Heidelberg, 2005

BENSON, A.: Qualitditssteigerung in komplexen Entwicklungsprojekten durch
prozessbegleitende Kennzahlensysteme: Vorgehen zur Herleitung, Einfihrung
und Anwendung. 1. Aufl. Cuvillier Verlag, 2007

BAJwA, S. S. ; GENCEL, C. ; ABRAHAMSSON, P.: Software Product Size Mea-
surement Methods. In: Joint Conference of the International Workshop on

Software Measurement and the International Conference on Software Process
and Product Measurement (IWSM-MENSURA), 2014, S. 176-190

Basivui, V. ; HEIDRICH, J. ; LINDVALL, M. ; MUNCH, J. ; REGARDIE, M. ;
RoMmBAcCH, D. ; SEAMAN, C. ; TRENDOWICZ, A.: Bridging The Gap Between
Business Strategy And Software Development. In: International Conference
on Information Systems (ICIS), 2007

BINDER, R. V.: Can a manufacturing quality model work for software? In:
IEEE Software 14 (1997), Sep, Nr. 5, S. 101-105

BANKER, R. D. ; KAUFFMAN, R. J. ; KUMAR, R.: An empirical test of object-
based output measurement metrics in a computer aided software engineering

(CASE) environment. In: Journal of Management Information Systems 8
(1991), Dezember, Nr. 3, S. 127-150

BARRY, E. J. ; MUKHOPADHYAY, T. ; SLAUGHTER, S. A.: Software Project
Duration and Effort: An Empirical Study. In: Information Technology and
Management 3 (2002), Januar, Nr. 1-2, S. 113-136

165

Literaturverzeichnis

[BoeT9|

[Bro97]

[Bru9l]

[Bug17]

[BW84]

|CAO1]

[Car94]

[Car06]

[Cry17]

[DA11]

[DCK V03]

[DD15]

IDE14]

BoeaMm, B. W.: Guidelines for Verifying and Validating Software
Requirements and Design Specifications. In: Furopean Conference on App-

lied Information Technology of the International Federation for Information
Processing (Euro IFIP), 1979, S. 711-719

BRrROWN, M.: Kennzahlen: harte und weiche Faktoren erkennen, messen und

bewerten. Carl Hanser Verlag, 1997

BRUNS, M.: Systemtechnik: Ingenieurwissenschaftliche Methodik zur inter-
disziplindren Systementwicklung. Springer Berlin Heidelberg, 1991

Bugzilla. http://www.bugzilla.org. [31.10.2017]

BasiLi, V. ; WEISS, D.: A Methodology for Collecting Valid Software Engi-
neering Data. In: IEEE Transactions on Software Engineering SE-10 (1984),
Nov, Nr. 6, S. 728-738

CARMEL, E. ; AGARWAL, R.: Tactical Approaches for Alleviating Distance
in Global Software Development. In: IEEE Software 18 (2001), Mérz, Nr. 2,
S. 22-29

CARD, D.: Statistical process control for software? In: IEFE Software 11
(1994), May, Nr. 3, S. 95-97

CARD, D.: The Challenge of Productivity Measurement. In: Pacific Nor-
thwest Software Quality Conference (PNSQC), 2006

CRYSTAL - Critical System Engineering Accelaration (2012-2016).
http://www.crystal-artemis.eu/, [31.10.2017|

DUMKE, R. ; ABRAN, A.: COSMIC Function Points: Theory and Advanced
Practices. Taylor & Francis, 2011

DEININGER, W. ; COTTINGHAM, C. ; KANNER, L. ; VERBEKE, M. A.: Sys-
tems Engineering Data Book (SEDB) — A Product Baseline Definition and

Tracking Tool. In: International Conference on Systems Engineering (I1C-
SENG), 2008, S. 19-24

DEUTER, A. ; DREYER, J.: Reversed-GQM: Ein Ansatz zur Wiederverwen-

dung von Kennzahlen. In: Metrikon 2015 - Prazis der Software-Messung.
Shaker Verlag, Aachen, 2015, S. 3-14

DEUTER, A. ; ENGELS, G.: Measuring the Software Size of Sliced V-model

Projects. In: Joint Conference of the International Workshop on Software

166

Literaturverzeichnis

[DEHW13]

[Deul2]

[Deul3]

[Deul4]

[Deul6]

[DK15]

[DKE10a]

[DKE10b]

[DOO17]

[DP12]

[EDO7]

Measurement and the International Conference on Software Process and Pro-
duct Measurement (IWSM-MENSURA), 2014, S. 233-242

DuMKE, R. ; EBERT, C. ; HEIDRICH, J. ; WILLE, C.: Messung und Bewertung
von Software. In: Informatik-Spektrum 36 (2013), Nr. 6, S. 508-519

DEUTER, A.: Messung der Software-Produktivitit in einem Work Item-
basierten V-Modell. In: Metrikon 2012 - Praxis der Software-Messung. Sha-
ker Verlag, Aachen, 2012, S. 69-84

DEUTER, A.: Slicing the V-model - Reduced effort, higher flexibility. In:
International Conference on Global Software Engineering (ICGSE), 2013, S.
1-10

DEUTER, A.: Software wird auch im Maschinenbau zur Kernkompetenz. In:
IEE Elektrische Automatisierung + Antriebstechnik 10 (2014), S. 16-18

DEUTER, A.: Software measurement in the context of Industry 4.0. Workshop
in Joint Conference of the International Workshop on Software Measurement

and the International Conference on Software Process and Product Measu-
rement (IWSM-MENSURA), 2016

DEUTER, A. ; KOCH, H.-J.: Applying Manufacturing Performance Figures to
Measure Software Development Excellence. In: Joint Conference of the In-

ternational Workshop on Software Measurement and the International Con-
ference on Software Process and Product Measurement (IWSM-MENSURA),
2015, S. 6277

DIN EN 61508-3: Funktionale Sicherheit sicherheitsbezogener elektri-
scher/elektronischer /programmierbarer elektronischer Systeme-Teil 3: Anfor-

derungen an Software. 2010

DIN EN 61508-4: Funktionale Sicherheit sicherheitsbezogener elektri-
scher/elektronischer /programmierbarer elektronischer Systeme-Teil 4: Be-
griffe und Abkiirzungen. 2010

IBM Rational DOORS. http://www-03.ibm.com /software/products/de/ ra-
tidoor, [31.10.2017]

DoNDEY, H. ; PERON, C.: Software Qualimetry at Schneider Electric - a
field background. In: Embedded Real Time Software and Systems ERTS?.

Toulouse, France, 2012

EBERT, C. ; DUMKE, R.: Software Measurement: Establish - Extract - Eva-

luate - Execute. Springer-Verlag Berlin Heidelberg, 2007

167

Literaturverzeichnis

[EKM17]

[ElmO8)]

[ERZ14]

[ES09)

[FHZ*15]

[FLM198|

[FP97]

[FPGT04]

[FS99)

[Gauld]

[GCW*13]

EIGNER, M. (Hrsg.) ; KocH, W. (Hrsg.) ; MUGGEO, C. (Hrsg.): Modellba-
sierter Entwicklungsprozess cybertronischer Systeme: Der PLM-unterstitzte

Referenzentwicklungsprozess fiir Produkte und Produktionssysteme. Springer
Vieweg, 2017

Eim, J. P.: A Study of Systems Engineering Effectiveness - Initial Results.
In: 2008 2nd Annual IEEE Systems Conference, 2008, S. 1-7

EIGNER, M. (Hrsg.) ; RouBANOv, D. (Hrsg.) ; ZAFIROV, R. (Hrsg.): Mo-
dellbasierte virtuelle Produktentwicklung. Springer Vieweg, Berlin Heidelberg,
2014

EIGNER, M. ; STELZER, R.: Product Lifecycle Management: Fin Leitfaden
fiir Product Development und Life Cycle Management. 2. Aufl. Springer
Berlin Heidelberg, 2009

FIEGLER, A. ; HERDEN, S. ; ZWANZIGER, A. ; MEISSNER, M. ; DUMKE, R.:
Qualitdtsbemessung von automatisierten ITIL Prozessen in Cloud Systemen
am Beispiel der bedingten Entropie. In: Metrikon 2015 - Prazxis der Software-
Messung. Shaker Verlag, Aachen, 2015, S. 133-146

FUuGGETTA, A. ; LAvazzA, L. ; MORAScA, S. ; CINTI, S. ; OLDANO, G.
; OrAZI, E.: Applying GQM in an Industrial Software Factory. In: ACM
Transactions on Software Engineering and Methodology 7 (1998), Oktober,
Nr. 4, S. 411-448

FENTON, N. ; PFLEEGER, S. L.: Software metrics (2nd ed.): a rigorous and
practical approach. Boston, MA, USA : PWS Publishing Co., 1997

FAULK, S. ; PORTER, A. ; GUSTAFSON, J. ; TicHYy, W. ; JOHNSON, P. ;
Vorta, L.: Measuring HPC productivity. In: International Journal of High
Performance Computing Applications (2004), S. 459-473

FrIEDAG, H. R. ; ScHMIDT, W.: Balanced Scorecard. Mehr als ein Kenn-

zahlensystem. Haufe Verlag, 1999
GAULKE, M.: Praziswissen COBIT. 2. Aufl. dpunkt.verlag, 2014

(GAUSEMEIER, J. ; CzAJA, A. M. ; WIEDERKEHR, O. ; DUMITRESCU, R.
; TSCHIRNER, C. ; STEFFEN, D.: Studie: Systems Engineering in der in-
dustriellen Praxis. In: 9. Paderborner Workshop: Entwurf mechatronischer
Systeme" (2013)

168

Literaturverzeichnis

[GF94]

[GFL*13]

[Gla03]

[Gol13]

|Han10]

[HDOG]|

[HdFV15]

[Hir08]

[HIK14]

[HK15|

[HKLR84|

[HMTO9]

GOTEL, O. C. Z. ; FINKELSTEIN, C. W.: An analysis of the requirements tra-

ceability problem. In: International Conference on Requirements Engineering

(ICRE), 1994, S. 94-101

GENOVA, G. ; FUENTES, J. M. ; LLORENS, J. ; HURTADO, O. ; MORENO, V.:
A framework to measure and improve the quality of textual requirements.

In: Requirements Engineering 18 (2013), Nr. 1, S. 25-41
GLADEN, W.: Kennzahlen- und Berichtssysteme. Gabler Verlag, 2003

GOLDKUHL, G.: Action research vs. design research : using practice rese-
arch as a lens for comparison and integration. In: IT Artefact Design €
Workpractice Improvement (ADWI), 2013

HANSER, E.: Agile Prozesse: Von XP diber Scrum bis MAP. 1. Aufl. Springer-
Verlag Berlin Heidelberg, 2010

HARTMANN, D. ; DYMOND, R.: Appropriate agile measurement: Using me-
trics and diagnostics to deliver business value. In: Agile Conference (AGILE),
2006, S. 126-134

HABERFELLNER, R. ; DE WECK, O. ; FRICKE, E. ; VOSSNER, S.: Systems

Engineering: Grundlagen und Anwendung. 13., aktualisierte Aufl. Ziirich :
Orell Fiissli, 2015

HIRANABE, K.: Kanban Applied to Software Development: from Agile to

Lean. http://www.infoq.com/articles/hiranabe-lean-agile-kanban. 2008. —
31.10.2017

HINRICHSEN, S. ; JUNGKIND, W. ; KONNEKER, M.: Industrial Engineering
- Begriff, Methodenauswahl und Lehrkonzept. In: Betriebsprazis ¢ Arbeits-
forschung (2014), September, Nr. 221, S. 28-35

HARTENSTEIN, S. ; KONNECKE, H.: Metrics for Evaluation of

Trustworthiness-By-Design Software Development Process. In: Metrikon
2015 - Prazis der Software-Messung. Shaker Verlag, Aachen., 2015, S. 95-106

HEesse, W. ; KEUTGEN, H. ; LUFT, A. ; ROMBACH, D.: Ein Begriffssystem fiir
die Softwaretechnik - Vorschlag zur Terminologie. In: Informatik-Spektrum
7 (1984), S. 200213

HEIDRICH, J. ; MUNCH, J. ; TRENDOWICZ, A.: Messbasierte Ausrichtung von

Softwarestrategien an Geschéftszielen. In: Fachzeitschrift fir Information
Management & Consulting (IM) (2009), Februar, S. 82-89

169

Literaturverzeichnis

[Horl1|

[HPO7]

[HSD16]

[IPPS02]

1S001]

[1S003]

[1SO09]

[1SO10]

[1SO11]

[1SO15]

[ISO16a]

ISO16b)

1SO17]

HORVATH, P.: Controlling. Franz Vahlen Verlag, 2011 (11. Aufl)

HINRICHSEN, S. ; PETERS, M.: Kennzahlensysteme. In: Lexikon Arbeitsge-
staltung: Best Practice im Arbeitsprozess. Universum-Verlag, 2007, S. 708—
710

HENTSCHEL, J. ; SCHMIETENDORF, A. ; DUMKE, R.: Big Data benefits for
the Software Measurement Community. In: Joint Conference of the Interna-
tional Workshop on Software Measurement and the International Conference
on Software Process and Product Measurement (IWSM-MENSURA), 2016,
S. 108-114

IoANNOU, G. ; PAPALEXANDRIS, A. ; PRASTACOS, G. ; SODERQUIST, E.:
Implementing a balanced scorecard at a software development company. In:
International Engineering Management Conference (IEMC) Bd. 2, 2002, S.
743-748

ISO/IEC 9126 - Software engineering - Product quality. 2001

ISO/IEC 19761:2003 - Software engineering - COSMIC-FFP - A functional

size measurement method. 2003
ISO/IEC 20926 - IFPUG Functional Size Measurement Method. 2009

ISO/IEC 25010 - Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software qua-
lity models. 2010

ISO/IEC/IEEE 42010:2011 - Systems and software engineering - Architec-
ture description. 2011

ISO/IEC/IEEE 15288:2015 - Systems and software engineering — System life

cycle processes. 2015

ISO/IEC 25022 - Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - Measurement of quality
i use. 2016

ISO/IEC 25023 - Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - Measurement of system
and software product quality. 2016

ISO/IEC/IEEFE 15939 - Systems and Software Engineering - Measurement
Process. 2017

170

Literaturverzeichnis

[IV09|

[JAB12]

[JLC12]

[Jon17]

[Juk11]

[JYWH11]

[Kan03|

[Kap10]

[Kar93)|

[Kas08|

[KBNAJ11]

[Kil01]

I1vARI, J. ; VENABLE, J.: Action research and design science research—

seemingly similar but decisively dissimilar. In: Furopean Conference on
Information Systems (ECIS), 2009, S. 1-13

JANG, J. ; AGRAWAL, A. ; BRUMLEY, D.: ReDeBug: Finding Unpatched
Code Clones in Entire OS Distributions. In: IEEE Symposium on Security
and Privacy (2012), S. 48-62

JONES, C. ; LAYMAN, B. ; CLARK, E.: Practical Software Measurement:
Objective Information for Decision Makers. Prentice Hall, 2012

JONEs, C.. A short history of the cost per defect metric. http://
www.ifpug.org/Documents/Jones-CostPerDefect Metric Version4.pdf, 2013,
[31.10.2017]

JUKKA KAARIAINEN: Towards an Application Lifecycle Management Fra-
mework. Bd. 179. VT, 2011

JENG, B. ; YEH, D. ; WANG, D. ; Cuu, S.-L. ; CHEN, C.-M.: A Specific
Effort Estimation Method Using Function Point. In: Journal of Information
Science and Engineering 27 (2011), Nr. 4, S. 1363-1376

KAN, S.: Metrics and Models in Software Quality Engineering. 2nd. Addison-
Wesley, 2003

KAPLAN, R. S.: Conceptual Foundations of the Balanced Scorecard. In:
Harvard Business School (2010)

KARNER, G.: Resource Estimation for Objectory Projects. In: Objectory
Systems SF AB (1993)

Kasunic, M.: A Data Specification for Software Project Performance Mea-
sures: Results of a Collaboration on Performance Measurement / Software

Engineering Institute. Carnegie Mellon University, Pittsburgh, Pennsylvania,
2008 (CMU/SEI-2008-TR-012)

KHATIBI BARDSIRI, V. ; NORHAYATI ABANG JAWAWI, D.: Software Cost
Estimation Methods: A Review. In: Journal of Emerging Trends in Compu-
ting and Information Sciences 2 (2011), S. 21-29

Kirpi, T.: TImplementing a software metrics program at Nokia. In: IEEFE
Software 18 (2001), Nov, Nr. 6, S. 72-77

171

Literaturverzeichnis

[KL14|

[Klo17]

[KN92]

[Kiit10]

[Kuil4]

[KWH17]

[Leh94]

[LEPV10]

[LH11]

[Lik04]

[ILMT*10

[Man17]

KUuHRMANN, M. ; LINSSEN, O.: Welche Vorgehensmodelle nutzt Deutsch-
land? In: Projektmanagement und Vorgehensmodelle 201/, Gesellschaft fiir
Informatik e.V. (GI), 2014 (Gemeinsame Tagung der Fachgruppen Projekt-
management (WI-PM) und Vorgehensmodelle (WI-VM) im Fachgebiet Wirt-
schaftsinformatik der Gesellschaft fiir Informatik e.V.)

Klocwork. http://www.klocwork.com, [31.10.2017]

KaprrAaN, R. S. ; NORTON, D. P.: The Balanced Scorecard - Measures that
Drive Performance. In: Harvard Business Review (1992), Jan-Feb, S. 71-79

KUTz, M.: Kennzahlen in der IT. 4. Aufl. Heidelberg : dpunkt.verlag, 2010

Kunpers, C.: Automated FPA (eFPA) in SAP Environment. In: Joint
Conference of the International Workshop on Software Measurement and

the International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2014, S. 72-78

KAGERMANN, H. ; WAHLSTER, W. ; HELBIG, J.: Umsetzungsempfehlungen
fir das Zukunftsprojekt Industrie 4.0. https://www.bmbf.de/files/ Umset-
zungsempfehlungen Industried 0.pdf, 2013. [31.10.2017]

LEHNER, F.: Software-Dokumentation und Messung der Dokumentations-
qualitdt. Carl Hanser Verlag, 1994

LANUBILE, F. ; EBERT, C. ; PRIKLADNICKI, R. ; VizCAINO, A.: Collabo-
ration Tools for Global Software Engineering. In: IEEE Software 27 (2010),
Marz, Nr. 2, S. 52-55

LinD, K. ; HELDAL, R.: A Model-based and Automated Approach to Size
Estimation of Embedded Software Components. In: International Conference
on Model Driven Engineering Languages and Systems (MODELS), 2011, S.
334-348

LIKER, J.: The Toyota Way. 1st. McGraw-Hill, 2004

LAMERSDORF, A. ; MUNCH, J. ; TORRE, A. ; SANCHEZ, C. ; ROMBACH,
D.: Estimating the Effort Overhead in Global Software Development. In:
International Conference on Global Software Engineering (ICGSE), 2010, S.
267-276

Manifest fiir Agile Softwareentwicklung. http://agilemanifesto.org,
[31.10.2017]

172

Literaturverzeichnis

[MDO6]

[ME9S]

[Moc03]

[Moh08]|

[MRO3]

IMSH*12]

INC14]

INCK*15]

[OBB*14]

[OMG17a|

[OMG17b)

MURANKO, B. ; DRECHSLER, R.: Technical Documentation of Software and

Hardware in Embedded Systems. In: International Conference on Very Large
Scale Integration (IFIP), 2006, S. 261-266

MUNsON, J. C. ; ELBAUM, S. G.: Code Churn: A Measure for Estimating
the Impact of Code Change. In: International Conference on Software Main-
tenance (ICSM), 1998, S. 24-31

Mockus, A.: Analogy Based Prediction of Work Item Flow in Software

Projects: a Case Study. In: International Symposium on Empirical Software
Engineering (ISESE), IEEE Computer Society, 2003, S. 110-119

MOHAGHEGHI, P.: Evaluating Software Development Methodologies Based

on their Practices and Promises. In: International Conference in Software
Methodologies, Tools and Techniques (SOMET), 2008, S. 14-35

MAYRHAUSER, A. von ; ROESELER, A.: Software process assessment and im-

provement using production models. In: International Conference on Com-
puter Software and Applications Conference (COMPSAC), 1993, S. 34-40

MYKLEBUST, T. ; STALHANE, T. ; HANSSEN, G. K. ; WIEN, T. ; HAUGSET,
B.: Scrum, documentation and the TEC 61508-3:2010 software standard. In:
Probabilistic Safety Assessment & Management Conference (PSAM), 2012

NUuGRrOHO, A. ; CHAUDRON, M.: The impact of UML modeling on defect
density and defect resolution time in a proprietary system. In: Empirical
Software Engineering 19 (2014), Nr. 4, S. 926-954

NAEDELE, M. ; CHEN, H.-M. ; KazMmaN, R. ; Car, Y. ; X1ao, L. ; Sit-
VA, C. V.: Manufacturing Execution Systems. In: Journal of Systems and
Software 101 (2015), Mérz, Nr. C, S. 59-68

ORIOU, A. ; BRONCA, E. ; BouzID, B. ; GUETTA, O. ; GUILLARD, K.: Mana-
ge the automotive embedded software development cost & productivity with
the automation of a Functional Size Measurement Method (COSMIC). In:
Joint Conference of the International Workshop on Software Measurement

and the International Conference on Software Process and Product Measure-
ment (IWSM-MENSURA), 2014, S. 1-4

OMG: Software € Systems Process Engineering Meta-Model Specification.
http://www.omg.org/spec/SPEM/2.0/PDF, [31.10.2017]

OMG: System Modeling Language. https://www.omg.org/spec/SysML,
31.10.2017]

173

Literaturverzeichnis

[OMG17c|

|0SL17]

[PCL17]

[Pet08]

[Pet11]

[Pet13]

[PHBVO0S|

[Plal7]

[Poll7]

[Pop13]

[PP11]

[Pre08]

[PW10]

[RD13]

OMG: Unified Modeling Language. https://www.omg.org/spec/UML/,
[31.10.2017]

OSLC-Open Services for Lifecycle Collaboration. http://open-services.net/,
[31.10.2017

PC-Lint. http://www.gimpel.com/html/pcl.htm, [31.10.2017]

PETERS, M.: Methodik zur Entwicklung und Evaluation von Ziel- und Kenn-

zahlensystemen fiir Produktentwicklungsprojekte in Virtuellen Unternehmen
der Luftfahrtzulieferindustrie, RWTH Aachen, Diss., 2008

PETERSEN, K.: Measuring and predicting software productivity: A systema-
tic map and review. In: Information and Software Technology 53 (2011), Nr.
4, S. 317-343

PETRE, M.: UML in Practice. In: International Conference on Software
Engineering (ICSE), 2013, S. 722-731

PriES-HEJE, J. ; BASKERVILLE, R. ; VENABLE, J. R.: Strategies for De-
sign Science Research Evaluation. In: Furopean Conference on Information
Systems (ECIS), 2008, S. 1-12

PLATTFORM INDUSTRIE 4.0: Was ist Industrie 4.0? http://www.plattform-
i40.de/140 /Navigation /DE/Industrie40/WasIndustrie40 /was-ist-industrie-
40.html. [31.10.2017]

Polyspace. http://www.mathworks.de/products/polyspace, [31.10.2017]

Porp, G.: Konfigurationsmanagement mit Subversion, Maven und Redmine
Grundlagen fir Softwarearchitekten und Entwickler. 4. Aufl. Heidelberg :
dpunkt Verlag, 2013

PLEWAN, H.-J. ; POENSGEN, B.: Produktive Softwareentwicklung - Bewer-
tung und Verbesserung von Produktivitit und Qualitdt in der Praxis. 1. Aufl.

Heidelberg : dpunkt.verlag, 2011

PREISSLER, P.: Betriebswirtschaftliche Kennzahlen: Formeln, Aussagekraft,
Sollwerte, Ermittlungsintervalle. Oldenbourg, 2008

PETERSEN, K. ; WOHLIN, C.: Software Process Improvement Through
the Lean Measurement (SPI-LEAM) Method. In: Journal of Systems and
Software 83 (2010), Juli, Nr. 7, S. 1275-1287

RAHMAN, F. ; DEVANBU, P.: How, and why, process metrics are better. In:
International Conference on Software Engineering (ICSE), 2013, S. 432-441

174

Literaturverzeichnis

[REF92

[RSRLOS]

[SBYY]

[SB12]

[SB16]

[SBL10)

[Sch95]

[Sch11]

[See08]

[Sen14]

[Sie17]

[ST12]

Methodenlehre des Arbeitsstudiums: Teil 2-Datenermittlung. 7. Aufl. Miin-
chen : Carl Hanser Verlag, 1992

Russ, R. ; SPERLING, D. ; ROMETSCH, F. ; Louis, P.: Applying Six Sig-
ma in the Field of Software Engineering. In: Software Process and Product
Measurement Bd. 5338. Springer Berlin Heidelberg, 2008, S. 3647

SOLINGEN, R. van ; BERGHOUT, E.: The Goal/Question/Metric Method: A
Practical Guide for Quality Improvement of Software Development. McGraw-
Hill, 1999

SONNENBERG, C. ; BROCKE, J. vom: Evaluation Patterns for Design Science

Research Artefacts. In: Practical Aspects of Design Science Bd. 286. Springer
Berlin Heidelberg, 2012, S. 71-83

ScuucHT, C. ; BERGER, N.: Praktische Umsetzung der Maschinenrichtlinie.
Carl Hanser Verlag, 2016

ScHLICK, C. ; BRUDER, R. ; Luczak, H.: Arbeitswissenschaft. Springer
Berlin Heidelberg, 2010

SCHWABER, K.: SCRUM Development Process. In: Conference on Object

Oriented Programming Systems, Languages, and Applications (OOPSLA),
1995, S. 117-134

SCHNEIDEWIND, N.: What can software engineers learn from manufacturing
to improve software process and product? In: Journal of Intelligent Manu-
facturing 22 (2011), Nr. 4, S. 597-606

SEEGER, K.: Zielorientierte Prozessgestaltung - Die Prozesse an der Strategie
ausrichten. In: Zielorientierte Unternehmensfithrung. Wiesbaden : Gabler,
2008, S. 119-144

SENDLER, U.: Industriegipfel Feldafing - System Leadership 2030. Ein Resii-

mee erster Strategiegespriache zu Industrie 4.0. In: Informatik-Spektrum 37
(2014), Nr. 1, S. 54-72

SIEMENS INDUSTRY SOFTWARE: Polarion ALM.

https://polarion.plm.automation.siemens.com/. [31.10.2017]

SWAMINATHAN, B. ; JAIN, K.: Implementing the Lean Concepts of Conti-

nuous Improvement and Flow on an Agile Software Development Project:
An Industrial Case Study. In: AGILE India, 2012, S. 10-19

175

Literaturverzeichnis

SIS12]

[SLO3]|

[SMKN11]

[Sne87]

[Sne05]

[Sne07]

[Snelb]

[SNM15]

[Som12]

SSB10]

[SSR*08]

[Ste06]

SJOBERG, D. I. ; JOHNSEN, A. ; SOLBERG, J.: Quantifying the Effect of
Using Kanban versus Scrum: A Case Study. In: IEEE Software 29 (2012), S.
47-53

SPILLNER, A. ; LINZ, T.: Basiswissen Softwaretest: Aus- und Weiterbildung
zum Certified Tester — Foundation Level nach ISTQB-Standard. 1. Aufl.
Heidelberg : dpunkt.verlag, 2003

STARON, M. ; MEDING, W. ; KARLSSON, G. ; NILSSON, C.: Developing

Measurement Systems: An Industrial Case Study. In: Journal of Software
Maintenance and Evolution 23 (2011), Mérz, Nr. 2, S. 89-107

SNEED, H. M.: Softwaremanagement. 1. Aufl. Koln : Verlagsgesellschaft
Rudolf Moller, 1987

SNEED, H.: Reverse Engineering deutschsprachiger Fachkonzepte. In: Work-
shop fiir Software Reengineering. Bad Honnef, 2005

SNEED, H.: Testing against Natural Language Requirements. In: Internatio-
nal Conference on Quality Software (QSIC), 2007, S. 380-387

SNEED, H.: Measuring the Degree of Requirement Fulfilment. In: Metrikon
2015 - Pramzis der Software-Messung. Shaker Verlag, Aachen., 2015, S. 41-50

STARON, M. ; NIESEL, K. ; MEDING, W.: Selecting the Right Visualization of
Indicators and Measures - Dashboard Selection Model. In: Joint Conference
of the International Workshop on Software Measurement and the Interna-

tional Conference on Software Process and Product Measurement (IWSM-
MENSURA), 2015, S. 130-143

SOMMERVILLE, 1.: Software Engineering. 9. Aufl. Pearson Education, 2012

SNEED, H. M. ; SEIDL, R. ; BAUMGARTNER, M.: Software in Zahlen die

Vermessung von Applikationen. Carl Hanser Verlag, 2010

SEAMAN, C. B. ; SHULL, F. ; REGARDIE, M. ; ELBERT, D. ; FELDMANN,
R. L.; Guo, Y. ; GODFREY, S.: Defect Categorization: Making Use of a De-
cade of Widely Varying Historical Data. In: Proceedings of the Second ACM-
IEEFE International Symposium on Empirical Software Engineering and Mea-
surement, 2008, S. 149-157

STEPANEK, G.: Software Project Secrets: Why Software Projects Fail (Ex-
pert’s Voice). 1. Apress, 2006

176

Literaturverzeichnis

[Sym8§|

[Sym10]

[TOR17]

[TS12]

[Tsc16|

[VDI93|

[VDI04|

[Ven06]

[Voll7]

[Weil4]

[Wes99|

[WP10]

[ZVET0]

SYMONS, C.: Function Point Analysis: Difficulties and Improvements. In:
IEEE Transactions on Software Engineering 14 (1988), S. 2-11

SYMONS, C.: Software Industry Performance: What You Measure Is What
You Get. In: IEEE Software 27 (2010), Nr. 6, S. 66-72

TortoiseSVN. http://tortoisesvn.tigris.org, [31.10.2017]

TREUDE, C. ; STOREY, M.-A.: Work Item Tagging: Communicating Con-

cerns in Collaborative Software Development. In: IEEE Transactions on
Software Engineering Bd. 38, 2012, S. 19-34

TSCHIRNER, C.: Rahmenwerk zur Integration des modellbasierten Systems
Engineering in die Produktentstehung mechatronischer Systeme, Universitét
Paderborn, Dissertation, 2016

VDI-Richtlinie 2221 Methodik zum Entwickeln und Konstruieren technischer
Systeme und Produkte. 1993

VDI-Richtlinie 2206 FEntwicklungsmethodik fiir mechatronische Systeme.
2004

VENABLE, J.: A Framework for Design Science Research Activities. In: Pro-
ceedings of the 2006 Emerging Trends and Challenges in Information Tech-
nology Management Bd. 1 and 2. Washington DC, USA, 2006

VOLKWEIN, G.: Industrie 4.0 from both a user’s and a
vendor’s perspective. International Conference on System-
integrated Intelligence (SysInt2016), http://www.sysint-

conference.org/uploads/media/SysInt2016 Keynote Volkwein.pdf.
31.10.2017

WEILKIENS, T.: Systems Engineering mit SysML/UML: Anforderungen,
Analyse, Architektur. 3. Aufl. dpunkt.verlag, 2014

WESTFALL, L.: 12 Steps to Useful Software Metrics. In: Pacific Northwest
Software Quality Conference (PNSQC), 1999

WINKLER, S. ; PILGRIM, J.: A survey of traceability in requirements engi-

neering and model-driven development. In: Software € Systems Modeling 9
(2010), September, Nr. 4, S. 529-565

LVEL ZVEI-Kennzahlensystem: Ein Instrument zur Unternehmenssteue-

rung. Zentralverband der Elektrotechnischen Industrie, 1970

177

Anhang A

Bedeutung der Werte zur

Fehlerklassifizierung

Die folgenden Tabellen zeigen die Wertemengen der Aufzahlungstypen, die beschreibende
Informationen eines Fehlers, d.h. eines Defect Work Items, enthalten. Sie werden fiir die
Qualitiatsbewertung von Softwareversionen bzw. Softwareprodukten verwendet (vgl. Ab-
schnitt 5.2.2). Diese Wertemengen sind aus der Literatur entnommen bzw. bauen darauf

auf. Die jeweiligen Quellen sind in den Tabellenunterschriften angegeben.

Wert Beschreibung

Critical Die Anwendung oder wesentliche Funktionen der Anwendung sind nicht

mehr verfiigbar bzw. nutzbar.

Major Eine wesentliche Funktion ist nicht mehr verfiighar oder liefert nicht die

richtigen Ergebnisse, aber es gibt einen Workaround.

Neutral Voreingestellter Standardwert: Fehler wurde noch nicht klassifiziert.

Minor Eine nicht wesentliche Funktion ist nicht mehr verfiigbar oder liefert nicht

die richtigen Ergebnisse.

Trivial Kleinerer Fehler, der die Verwendung der Anwendung nicht wesentlich

beeintrachtigt.

Tabelle A.1: Wertemenge des Aufzdhlungstyps DefSeverity angelehnt an [PP11]

178

Anhang A. Bedeutung der Werte zur Fehlerklassifizierung

Wert Beschreibung

Algorithm, An error in the sequence or set of steps used to solve a particular pro-

method blem or computation, including mistakes in computations, incorrect im-
plementation of algorithms, or calls to an inappropriate function for the
algorithm being implemented.

Assignment, A variable or data item that is assigned a value incorrectly or is not in-

initialization itialized properly or where the initialization scenario is mishandled (e.g.,
incorrect publish or subscribe, incorrect opening of file etc.).

Checking Inadequate checking for potential error conditions, or an inappropriate
response is specified for error conditions.

Data Error in specifying or manipulating data items, incorrectly defined data
structure, pointer or memory allocation errors, or incorrect type conver-
sions.

External Errors in the user interface (including usability problems) or the interfa-

interface ces with other systems.

Internal Errors in the interfaces between system components, including mismat-

interface ched calling sequences and incorrect opening, reading, writing or closing
of files and databases.

Logic Incorrect logical conditions on if, case or loop blocks, including incorrect
boundary conditions (,,off by one“ errors are an example) being applied, or
incorrect expression (e.g., incorrect use of parentheses in a mathematical
expression).

Non- Includes non-compliance with standards, failure to meet non-functional

functional requirements such as portability and performance constraints, and lack

of clarity of the design or code to the reader - both in the comments and
the code itself.

Timing, opti-

Errors that will cause timing (e.g., potential race conditions) or per-

mization formance problems (e.g., unnecessarily slow implementation of an algo-
rithm).
Other Anything that does not fit any of the above categories that is logged

during an inspection of a design artifact or source code.

Tabelle A.2: Wertemenge des Aufzdhlungstyps DefInternal [SSRT08]

179

Anhang A. Bedeutung der Werte zur Fehlerklassifizierung

Wert Beschreibung

Documentation Incomplete instructions, mismatch between function and documentation,

missing documentation

Functionality =~ Expected functionality is not met, functionality only works partially

Handling Not comfortable, easy to make an user error, unclear how to do, unne-

cessary information

Optic Spelling errors, incomplete sentences in a dialog, general appearance,

missing translation

Performance Time behavior too slow, resource allocation too high, resources needed
too high

Stability Program crash, data loss, data corruption, exception messages

Tabelle A.3: Wertemenge des Aufzdhlungstyps DefExternal angelehnt an [ISO10]

180

Anhang B

Praxisnahe Anwendung

Die folgenden Tabellen zeigen die prozentuale Verteilung der Werte in den einen Fehler

klassifizierden Attributen. Diese Werte wurden exemplarisch wiahrend der praxisnahen

Anwendung eingetragen. Wie in Abschnitt 7.2 erldutert, erfolgte die Klassifizierung durch

den Verfasser der Arbeit. Es handelt sich also nicht um die Einschidtzung eines Kunden

oder eines Produktverantwortlichen.

Wert Version 1 Version 2 Version 3
Critical |%] 20 50 40
Major %] 60 0 30
Minor %] 20 0 30
Trivial [%] 0 50 0

Tabelle B.1: Prozentuale Teilwerte des Attributs severity

Wert Version 1 Version 2 Version 3
Algorithm, method [%] 0 0 20
Assignment, initialization [%] 0 50 30
Checking [%] 0 0 30
Data [%] 0 0 0
External interface [%] 20 0 0
Internal interface [%)] 40 0 0
Logic |%] 40 0 10
Non-functional [%] 0 50 10
Timing, optimization [%] 0 0 0
Other |%)] 0 0 0

Tabelle B.2: Prozentuale Teilwerte des Attributs internal

181

Anhang B. Praxisnahe Anwendung

Wert Version 1 Version 2 Version 3
Documentation |%)| 0 0 0
Functionality |%] 40 50 70
Handling |%] 0 0 0
Optic |%] 0 50 10
Performance [%)] 0 0 10
Stability [%] 60 0 10

Tabelle B.3: Prozentuale Teilwerte des Attributs ezternal

182

	Einleitung
	Ausgangssituation und Abgrenzung
	Kennzahlenorientierte Gestaltung der Produktion
	Kennzahlenorientierte Gestaltung der Softwareentwicklung
	Forschungsfrage
	Methodische Vorgehensweise
	Aufbau der Arbeit
	Vorveröffentlichungen

	Grundlagen
	Kennzahlen
	Begriffe und Eigenschaften
	Softwarekennzahlen
	Produktionskennzahlen

	Produktion und Softwareentwicklung
	Transfer und Bestimmung von Kennzahlen
	Bewertungsgrundlagen
	Balanced Scorecard
	ISO/IEC/IEEE 15939
	GQM-Methode
	Bewertung

	Produktentstehungsprozess
	Definition und Eigenschaften
	Systems Engineering

	Softwareentwicklungsprozess
	Definition und Eigenschaften
	Softwareentwicklungsprozess beim Kooperationspartner

	Zusammenfassung

	Transfer von Produktionskennzahlen
	RGQM-Methode
	Konzept
	Bearbeitungsschritte

	Anwendungsbeispiel
	Einführung
	RGQM-Bearbeitungsschritte

	Bestimmung der Softwarekennzahlen
	Vorgehen
	Anwendungsbeispiel
	Bestimmung der operativen Ziele
	Bestimmung der Softwarekennzahlen

	Gestaltung des Softwareentwicklungsprozesses
	Vorgehen
	Sliced V-Modell
	Begriff und Anforderungen
	Eigenschaften
	Bewertung

	Ermittlung der Berechnungsgrundlagen
	Notwendigkeit und Vorgehen
	Berechnungsgrundlagen der Softwarekennzahlen
	Churn
	Aufwand für die Entwicklungsaktivitäten
	Entwicklungsdauer
	Churn-Produktivität
	Churn-Liefergeschwindigkeit
	Anzahl an Work Items
	Aufwand für die Dokumentationsaktivitäten
	Dokumentationsproduktivität
	Dokumentationsliefergeschwindigkeit
	Prozentuale Verteilung von Fehlerattributen
	Anzahl intern entdeckter Fehler
	Anzahl extern entdeckter Fehler
	Fehlerbehebungsrate
	Churn-Fehlerdichte

	Berechnung der SW-Produktionskennzahlen
	First Pass Rate
	Technische Rückläuferrate
	Servicegrad
	Wertschöpfung
	Produktivität

	Bewertung der semantischen Äquivalenz

	Entwicklung des Informationsverarbeitungssystems
	Prototyp
	Praxisnahe Anwendung
	Bewertung der Gestaltungsgrundsätze
	Praktische Anwendung

	Verallgemeinerung der Ergebnisse
	Bestimmung von SW-Produktionskennzahlen
	Gestaltung des Softwareentwicklungsprozesses
	Aufbau eines Informationsverarbeitungssystems

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick
	Überführung in die betriebliche Praxis
	Wissenschaftliche Fragestellungen

	Literaturverzeichnis
	Bedeutung der Werte zur Fehlerklassifizierung
	Praxisnahe Anwendung

