
Entwurf und Evaluierung einer kennzahlenorientierten

Gestaltung des Softwareentwicklungsprozesses in

produzierenden Betrieben

Der Fakultät für Elektrotechnik, Informatik und Mathematik der

Universität Paderborn

zur Erlangung des akademischen Grades eines

Dr. rer. nat.

eingereichte Dissertation

von

Dipl.-Ing. Andreas Deuter

Eingereicht im März 2018

Erster Gutachter: Prof. Dr. Gregor Engels

Zweiter Gutachter: Prof. Dr. Dennis Kundisch

Danksagung

Ich bedanke mich bei allen Personen, die mich bei der Erstellung dieser Dissertation

unterstützten.

Ich bedanke mich bei meinen Gutachtern Prof. Dr. Gregor Engels und Prof. Dr. Dennis

Kundisch für ihre stets konstruktive Kritik. Sie gaben mir die wesentlichen Impulse für

das wissenschaftliche Arbeiten. Recht herzlichen Dank!

Ich bedanke mich bei meinen ehemaligen Kollegen und Kolleginnen von Phoenix Contact.

Insbesondere bedanke ich mich bei Hans-Jürgen Koch, Detlev Kuschke, Werner Neuge-

bauer, Oliver Stallmann, Dr. Tobias Frank und Marco Hogrebe, die mich bei der Durch-

führung und der Auswertung der Softwaremessungen unterstützten. Bei allen anderen

nichtgenannten Kollegen und Kolleginnen bedanke ich mich für die vielen Gespräche über

das Dissertationsthema und für ihre wichtigen Anregungen.

Ich bedanke mich bei meinen jetzigen Kollegen und Kolleginnen der Hochschule

Ostwestfalen-Lippe für ihre Tipps und Hinweise.

Ich bedanke mich bei meinen Eltern, die mir meine akademische Laufbahn ermöglichten.

Mein innigster Dank gilt meiner Frau Gitta. Letztendlich war es ihr steter Rückhalt, der

mir die Kraft gab, diese Dissertation zu Ende zu führen.

Abstract

Increasing digitalization in the industrial sector is requiring ever more intelligent products.

Intelligent products are based on mechatronics with an increasing importance of software

for the added value of the products. Thus, manufacturing companies developing and

supplying intelligent products are challenged to most e�ciently design their software de-

veloping process as a part of their product development. The demands of this process

design are based on both, the strategic and operational goals of the manufacturing com-

pany. To successfully monitor the achievement of targets it is essential to implement

key �gures directly linked to the targets and acquired during the software development

process. For this reason it is necessary to place great emphasis on the acquisition of key

�gures when designing the software development process.

This thesis deals with the question how manufacturing companies can design their software

development process in a key �gure-oriented way, taking into account that the information

needs of the software teams directly involved in the process as well as those of the man-

agement shall be ful�lled. Due to their profound knowledge of the software domain, the

�rst target group can be supported by established software key �gures; this, however, is

not true for the management. For this reason, the main issue of this thesis focuses on the

question whether today's production key �gures can be used for the software development

process. As the manufacturing process is a central and directly value-adding process of

each manufacturing company, the management is familiar with production key �gures.

The results of this thesis were evaluated in cooperation with the company Phoenix Contact

Electronics GmbH, a manufacturing company within the sense of this thesis.

Zusammenfassung

Durch die zunehmende Digitalisierung werden in der Industrie immer mehr intelligente

Produkte benötigt. Intelligente Produkte beruhen auf der Mechatronik, wobei der Anteil

der Software an deren Wertschöpfung stetig steigt. Produzierende Betriebe, die intelligente

Produkte entwickeln und vertreiben, sind folglich aufgefordert, die Softwareentwicklungs-

prozesse als Teil der Produktentwicklung möglichst e�zient zu gestalten. Die Anforde-

rungen an diese Prozessgestaltung leiten sich aus den strategischen und operativen Zielen

eines produzierenden Betriebes ab. Um eine Zielerreichung überprüfen zu können, müssen

Kennzahlen eingesetzt werden. Sie zeichnen sich dadurch aus, dass sie in einem unmittel-

baren Zusammenhang zu den Zielen stehen und dass sie im Softwareentwicklungsprozess

erfasst werden. Um Letzteres zu gewährleisten, ist folglich die Kennzahlenerfassung in der

Gestaltung des Softwareentwicklungsprozesses zu beachten.

Diese Arbeit behandelt die Fragestellung, wie produzierende Betriebe den Softwareent-

wicklungsprozess kennzahlenorientiert gestalten können. Dabei wird berücksichtigt, dass

sowohl die Informationsbedürfnisse der unmittelbar im Prozess beteiligten Softwareteams

als auch die Informationsbedürfnisse des Managements befriedigt werden. Zwar können

etablierte Softwarekennzahlen die erste Zielgruppe aufgrund ihres ausgeprägten Wissens

über die Softwaredomäne unterstützen, allerdings nicht das Management. Der Fokus die-

ser Arbeit liegt aus diesem Grund in der Fragestellung, ob heutige Produktionskennzahlen

im Softwareentwicklungsprozess eingesetzt werden können. Das Management ist gut mit

Produktionskennzahlen vertraut, da der Produktionsprozess ein zentraler, direkt wert-

schöpfender Prozess eines jeden produzierenden Betriebes ist.

Die Ergebnisse dieser Arbeit wurden in Zusammenarbeit mit der Phoenix Contact

Electronics GmbH, einem produzierenden Betrieb im Sinne dieser Arbeit, evaluiert.

Inhaltsverzeichnis

1 Einleitung 1

1.1 Ausgangssituation und Abgrenzung . 1

1.2 Kennzahlenorientierte Gestaltung der Produktion 4

1.3 Kennzahlenorientierte Gestaltung der Softwareentwicklung 6

1.4 Forschungsfrage . 8

1.5 Methodische Vorgehensweise . 11

1.6 Aufbau der Arbeit . 14

1.7 Vorverö�entlichungen . 16

2 Grundlagen 17

2.1 Kennzahlen . 18

2.1.1 Begri�e und Eigenschaften . 18

2.1.2 Softwarekennzahlen . 21

2.1.3 Produktionskennzahlen . 36

2.2 Produktion und Softwareentwicklung . 38

2.3 Transfer und Bestimmung von Kennzahlen 40

2.3.1 Bewertungsgrundlagen . 41

2.3.2 Balanced Scorecard . 45

2.3.3 ISO/IEC/IEEE 15939 . 47

2.3.4 GQM-Methode . 49

2.3.5 Bewertung . 51

iv

2.4 Produktentstehungsprozess . 52

2.4.1 De�nition und Eigenschaften . 52

2.4.2 Systems Engineering . 53

2.5 Softwareentwicklungsprozess . 56

2.5.1 De�nition und Eigenschaften . 56

2.5.2 Softwareentwicklungsprozess beim Kooperationspartner 61

2.6 Zusammenfassung . 64

3 Transfer von Produktionskennzahlen 66

3.1 RGQM-Methode . 67

3.1.1 Konzept . 67

3.1.2 Bearbeitungsschritte . 69

3.2 Anwendungsbeispiel . 73

3.2.1 Einführung . 73

3.2.2 RGQM-Bearbeitungsschritte . 73

4 Bestimmung der Softwarekennzahlen 83

4.1 Vorgehen . 84

4.2 Anwendungsbeispiel . 86

4.2.1 Bestimmung der operativen Ziele 86

4.2.2 Bestimmung der Softwarekennzahlen 88

5 Gestaltung des Softwareentwicklungsprozesses 94

5.1 Vorgehen . 95

5.2 Sliced V-Modell . 97

5.2.1 Begri� und Anforderungen . 97

5.2.2 Eigenschaften . 99

5.2.3 Bewertung . 109

v

6 Ermittlung der Berechnungsgrundlagen 111

6.1 Notwendigkeit und Vorgehen . 112

6.2 Berechnungsgrundlagen der Softwarekennzahlen 113

6.2.1 Churn . 113

6.2.2 Aufwand für die Entwicklungsaktivitäten 118

6.2.3 Entwicklungsdauer . 118

6.2.4 Churn-Produktivität . 119

6.2.5 Churn-Liefergeschwindigkeit . 119

6.2.6 Anzahl an Work Items . 119

6.2.7 Aufwand für die Dokumentationsaktivitäten 121

6.2.8 Dokumentationsproduktivität . 121

6.2.9 Dokumentationsliefergeschwindigkeit 122

6.2.10 Prozentuale Verteilung von Fehlerattributen 122

6.2.11 Anzahl intern entdeckter Fehler . 123

6.2.12 Anzahl extern entdeckter Fehler . 123

6.2.13 Fehlerbehebungsrate . 124

6.2.14 Churn-Fehlerdichte . 124

6.3 Berechnung der SW-Produktionskennzahlen 125

6.3.1 First Pass Rate . 125

6.3.2 Technische Rückläuferrate . 127

6.3.3 Servicegrad . 128

6.3.4 Wertschöpfung . 129

6.3.5 Produktivität . 130

6.4 Bewertung der semantischen Äquivalenz 131

7 Entwicklung des Informationsverarbeitungssystems 136

7.1 Prototyp . 137

vi

7.2 Praxisnahe Anwendung . 139

7.3 Bewertung der Gestaltungsgrundsätze . 143

7.4 Praktische Anwendung . 145

8 Verallgemeinerung der Ergebnisse 151

8.1 Bestimmung von SW-Produktionskennzahlen 151

8.2 Gestaltung des Softwareentwicklungsprozesses 154

8.3 Aufbau eines Informationsverarbeitungssystems 155

9 Zusammenfassung und Ausblick 157

9.1 Zusammenfassung . 157

9.2 Ausblick . 161

9.2.1 Überführung in die betriebliche Praxis 161

9.2.2 Wissenschaftliche Fragestellungen 162

Literaturverzeichnis 164

A Bedeutung der Werte zur Fehlerklassi�zierung 178

B Praxisnahe Anwendung 181

vii

Abbildungsverzeichnis

1.1 Domänenübergreifender Entwicklungsprozess nach VDI 2206 [VDI04] . . . 2

1.2 Schematischer Ablauf einer kennzahlenorientierten Prozessgestaltung . . . 3

1.3 Beispiel einer kennzahlenorientierten Gestaltung des Produktionsprozesses 5

1.4 Vorgehen der Arbeit und Zuordnung zu den DR-Phasen 12

1.5 Zielsituation dieser Arbeit . 13

1.6 Aufbau dieser Arbeit . 15

2.1 Arten von Kennzahlen [Ben07] . 18

2.2 Teufelsquadrat nach [Sne87] . 22

2.3 Kategorien von Softwarequantitätskennzahlen 24

2.4 Prozess zur Ermittlung der Functional Size [ISO09] 25

2.5 Beispiel eines Uni�ed Di� Patches . 27

2.6 Erläuterung der prozentualen Fehlerverteilung 32

2.7 Allgemeines Qualitätsmodell in Anlehnung an [ISO10] 32

2.8 Quality in Use-Modell der ISO/IEC 25010 [ISO10] 33

2.9 Software Product Quality-Modell der ISO/IEC 25010 [ISO10] 33

2.10 Grundkonzept eines Kennzahlentransfers 43

2.11 Modell der Balanced Scorecard in Anlehnung an [KN92, Kap10] 46

2.12 Prozessmodell der Softwaremessung nach ISO/IEC/IEEE 15939 [ISO17] . . 47

2.13 Informationsmodell der ISO/IEC/IEEE 15939 [SMKN11] 49

2.14 Die Phasen der GQM-Methode nach [SB99] 50

viii

2.15 De�nitionsphase der GQM-Methode nach [SB99] 51

2.16 Phasen und Tätigkeiten des Produktlebenszyklus gemäÿ [ES09] 53

2.17 Komplexität von Produkten nach [Bru91] 54

2.18 Digitale Modelle in der Produktentwicklung gemäÿ [EKM17] 55

2.19 Struktur des SPEM-Metamodells gemäÿ [OMG17a] 57

2.20 Die Phasen in Scrum gemäÿ [Som12] . 59

2.21 V-Modell gemäÿ DIN EN 61508-3 [DKE10a] 62

3.1 Inhalt des Kapitels 3 in Bezug auf die Zielsituation dieser Arbeit 66

3.2 Phasen der RGQM-Methode . 68

3.3 RGQM-De�nitionsphase . 68

3.4 Bearbeitungsschritte in der RGQM-De�nitionsphase 69

4.1 Inhalt des Kapitels 4 in Bezug auf die Zielsituation dieser Arbeit 83

4.2 Relation zwischen strategischen und operativen Zielen 85

4.3 Relationen zwischen strategischen und operativen Zielen 88

5.1 Inhalt des Kapitels 5 in Bezug auf die Zielsituation dieser Arbeit 94

5.2 Vererbungszusammenhang der Sliced V-Modell-Artefakte 100

5.3 Beziehungen zwischen den Sliced V-Modell-Artefakten 101

5.4 Schematische Darstellung von V-Slices . 107

5.5 Bearbeitungsabfolge einzelner V-Slices . 107

5.6 Baselines im Sliced V-Modell . 108

6.1 Inhalt des Kapitels 6 in Bezug auf die Zielsituation dieser Arbeit 111

6.2 Zuordnung von Quelltextänderungen zu Softwarefunktionen 115

6.3 Ermittlung des Module Churn . 116

6.4 Ermittlung der Dokumentationsgröÿe einer Softwarefunktion 120

6.5 Aufbau des Version Churn . 126

ix

6.6 Aufbau des Product Churn . 128

7.1 Inhalt des Kapitels 7 in Bezug auf die Zielsituation dieser Arbeit 136

7.2 SofProSys-Screenshot . 138

7.3 SofProSys-Systemkontext . 138

7.4 Anzeige eines Uni�ed Di� Patches in TortoiseSVN 140

7.5 Gra�sche Darstellung der First Pass Rate in MS Excel 149

8.1 Vereinfachtes Work Item-basiertes Datenmodell 155

9.1 Integrierte Prozesssteuerung durch das Management 159

x

Tabellenverzeichnis

1.1 KVP-Beispiel beim Kooperationspartner 5

1.2 Vorverö�entlichungen zu dieser Arbeit . 16

2.1 Kosten-pro-Fehler-Analyse [Jon17] . 31

2.2 Ablaufartengliederung der REFA-Methodenlehre [REF92] 37

2.3 Bewertung der Methoden bzw. Prozessbeschreibungen 52

2.4 Ausgewählte Elemente des SPEM-Package MethodContent [OMG17a] . . . 58

2.5 Schematisches Konzept einer Traceability-Matrix 63

3.1 Auswahl der HW-Produktionskennzahlen 74

5.1 Work Item-Typen im Sliced V-Modell . 103

5.2 Attribute des Base Work Items . 103

5.3 Beispiele für Work Item-Typen . 104

5.4 Aufzählungstypen der Attribute des Defect Work Items 105

5.5 Zeitattribute des Task Work Items . 106

7.1 Versionsbezogene SofProSys-Softwarekennzahlen 141

7.2 Versionsbezogene SofProSys-SW-Produktionskennzahlen 141

7.3 Produktbezogene SofProSys-Kennzahlen 141

7.4 Versionsbezogene Softwarekennzahlen des Softwareproduktes 146

7.5 Versionsbezogene SW-Produktionskennzahlen des Softwareproduktes . . . 147

7.6 Produktbezogene Kennzahlen des Softwareproduktes 147

xi

7.7 Softwarekennzahlen einzelner Softwarefunktionen 149

8.1 Frage, Ziel, Interpretation des Ausnutzungsgrades in der Produktion 152

8.2 Frage und Ziel des Ausnutzungsgrades in der Softwareentwicklung 153

A.1 Wertemenge des Aufzählungstyps DefSeverity angelehnt an [PP11] 178

A.2 Wertemenge des Aufzählungstyps DefInternal [SSR+08] 179

A.3 Wertemenge des Aufzählungstyps DefExternal angelehnt an [ISO10] 180

B.1 Prozentuale Teilwerte des Attributs severity 181

B.2 Prozentuale Teilwerte des Attributs internal 181

B.3 Prozentuale Teilwerte des Attributs external 182

xii

Abkürzungsverzeichnis

ALM Application Lifecycle Management

AV Wertschöpfung

AVv Wertschöpfung für eine Softwareversion

BSC Balanced Scorecard

DR Design Research

Chds Single Defect Churn

Chdis Single Internal Defect Churn

Chdiv Version Internal Defect Churn

Chdxp Product External Defect Churn

Chdxs Single External Defect Churn

Chfile File Churn

Chfs Single Feature Churn

Chfv Version Feature Churn

Chm Module Churn

Chv Version Churn

Dv Entwicklungsdauer einer Softwareversion

DDchv Churn-Fehlerdichte einer Softwareversion

DFRp Fehlerbehebungsrate für ein Softwareprodukt

Docfs Dokumentationsgröÿe einer Softwarefunktion

Docfv Dokumentationsgröÿe einer Softwareversion

Edevv Ist-Aufwand der Entwicklungsaktivitäten für eine Softwareversion

Edocv Ist-Aufwand der Dokumentationsaktivitäten für eine Softwareversion

FPR First Pass Rate

Gkhw Zu einer HW-Produktionskennzahl gehörendes Ziel

Gksw Zu einer SW-Produktionskennzahl gehörendes Ziel

GQM Goal-Question-Metric

Ikhw Zu einer HW-Produktionskennzahl gehörende Interpretation

Iksw Zu einer SW-Produktionskennzahl gehörendes Interpretation

KB Kilobyte

xiii

KHW Menge an Hardware(HW)-Produktionskennzahlen

kHW Eine Hardware(HW)-Produktionskennzahl

KSW Menge an Software(SW)-Produktionskennzahlen

kSW Eine Software(SW)-Produktionskennzahl

KS Menge an Softwarekennzahlen

P Produktivität

Pchv Churn-Produktivität der Entwicklung einer Softwareversion

Pdocv Dokumentationsproduktivität einer Softwareversion

Pv Produktivität für eine Softwareversion

RGQM Reversed-Goal-Question-Metric

Qkhw Zu einer HW-Produktionskennzahl gehörende Frage

Qksw Zu einer SW-Produktionskennzahl gehörende Frage

SL Servicegrad

SLv Servicegrad für eine Softwareversion

TRR Technische Rückläuferrate

TRRp Technische Rückläuferrate für ein Softwareprodukt

Vchv Churn-Liefergeschwindigkeit einer Softwareversion

Vdocv Dokumentationsliefergeschwindigkeit einer Softwareversion

WI Work Item

Wdip Anzahl an intern entdeckten Fehlern für ein Softwareprodukt

Wdxp Anzahl an extern entdeckten Fehlern für ein Softwareprodukt

xiv

Kapitel 1

Einleitung

1.1 Ausgangssituation und Abgrenzung

Die Digitalisierung der Prozesse in der Industrie hat die Flexibilisierung der Produk-

tion, eine bessere Vernetzung von Entwicklungs- und Produktionsprozessen und folglich

die Stärkung der Wettbewerbsfähigkeit produzierender Betriebe zum Ziel. Die technische

Grundlage dafür sind intelligente Produkte, die eine weitestgehend selbstorganisierende

Produktion und deren Vernetzung zu den angrenzenden Prozessen ermöglichen sollen

[Pla17]. In Deutschland wird dieser Trend zur Digitalisierung der Produktionsprozesse als

Industrie 4.0 bezeichnet [KWH17]. Produzierende Betriebe, die in dieser Arbeit themati-

siert werden, stellen die für die Industrie 4.0 benötigten intelligenten Produkte mit eigenen

Produktionsmitteln her. Beispiele für intelligente Produkte im Kontext dieser Arbeit sind

speicherprogrammierbare Steuerungen oder regelbare Spannungsversorgungen.

Intelligente Produkte beruhen auf der Mechatronik. Sie werden durch ein Zusammen-

wirken mehrerer Domänen entwickelt, wie zum Beispiel der Mechanik, der Elektronik

und der Softwaretechnik [AG12]. Systems Engineering ist ein methodischer Ansatz für

die domänenübergreifende Entwicklung intelligenter Produkte. Der Begri� �Systems En-

gineering� ist zwar vielfältig de�niert, beschreibt im Wesentlichen jedoch das Manage-

ment parallellaufender Entwicklungsprozesse in den beteiligten Domänen [BB16]. Eine

konkrete Ausgestaltung eines auf den Methoden des Systems Engineering beruhenden

Entwicklungsprozesses beschreibt die VDI-Richtlinie 2206 [VDI04]. Der darin beschrie-

bene Entwicklungsprozess baut auf dem V-Modell auf, das aus der Softwareentwicklung

[Boe79] stammt und in der VDI 2206 an die Anforderungen an eine domänenübergrei-

fende Entwicklung angepasst wurde. Wie in Abbildung 1.1 gezeigt, erfolgt ausgehend

von den Produktanforderungen der domänenübergreifende Systementwurf. Es folgen die

domänenspezi�schen Entwürfe, die laut der VDI-Richtlinie 2206 meist getrennt in den be-

1

Kapitel 1. Einleitung

Mechanik

Elektronik

Softwaretechnik

Domänenspezifischer Entwurf

Eigenschaftsabsicherung

Anforderungen Produkt

Entwicklungsprozess

Abbildung 1.1: Domänenübergreifender Entwicklungsprozess nach VDI 2206 [VDI04]

teiligten Domänen erfolgen. In der Systemintegration werden die Ergebnisse der einzelnen

Domänen zusammengeführt und die Eigenschaften des intelligenten Produktes geprüft.

Der Umfang der Beteiligung der einzelnen Domänen in der Produktentwicklung hängt

von den Merkmalen des konkreten intelligenten Produktes ab, wobei die Softwaretech-

nik zunehmend eine strategische Rolle einnimmt, denn: �die Analysten sind sich einig,

dass seit etlichen Jahren die allermeisten Produktinnovationen in der Software begründet

sind� [Sen14]. Der softwaredomänenspezi�sche Entwurf wird Softwareentwicklungsprozess

genannt.

Es ist die strategische Aufgabe des Managements, also der Führungskräfte in den oberen

Hierarchieebenen wie zum Beispiel in der Bereichsleitung oder in der Geschäftsführung,

die durch Industrie 4.0 motivierten Prozessänderungen im Produktlebenszyklus intelligen-

ter Produkte im eigenen produzierenden Betrieb zu gestalten. Der Produktlebenszyklus

umfasst sowohl die Produktentwicklung als auch die Produktion.

Ausgangspunkt für die Gestaltung aller betrieblichen Prozesse ist die Unternehmensstra-

tegie. Um eine Strategie zu operationalisieren, sind vom Management strategische Ziele

zu formulieren, die den Ausgangspunkt für prozessgestaltende Maÿnahmen bilden. Für

jedes der strategischen Ziele sind Kennzahlen zu de�nieren, die die Zielerreichung der

strategischen Ziele anzeigen [See08]. Um die Kennzahlen auswerten zu können, muss in

der Prozessgestaltung deren Erfassung berücksichtigt werden: Der Prozess muss derart

gestaltet oder angepasst werden, dass Kennzahlen erfasst werden können.

Die Kennzahlen werden entsprechend den Informationsbedürfnissen des Managements

zusammengestellt und aufbereitet. Um die Kennzahlen beurteilen und interpretieren zu

können, muss das Management deren Semantik kennen. Für den Begri� �Semantik einer

2

Kapitel 1. Einleitung

Kennzahl� gibt es zwar keine allgemein anerkannte De�nition, allerdings sind aus der Li-

teratur mehrere Formen für die Beschreibung von Kennzahlen bekannt, zum Beispiel ein

Kennzahlenstammblatt [Ben07], ein Kennzahlensteckbrief [Küt10] oder ein Kennzahlen-

formular [HP07]. Diese möglichen Beschreibungsformen einer Kennzahl enthalten zahlrei-

che kennzahlenspezi�sche Informationen wie zum Beispiel Name, Maÿeinheit, Wertebe-

reich, Berechnungsgrundlagen und Interpretation. Durch die gesamtheitliche Kenntnis all

dieser Informationsinhalte entsteht beim Adressaten einer Kennzahl ein Verständnis über

deren Semantik. Diese Semantik ist jedoch oftmals betriebsspezi�sch. Damit ist gemeint,

dass eine Kennzahl mit demselben Namen in verschiedenen produzierenden Betrieben eine

unterschiedliche Bedeutung haben kann.

Abbildung 1.2 veranschaulicht den erläuterten Ablauf, der sich in zwei Phasen gliedert:

In der ersten Phase formuliert das Management die strategischen Ziele. Auf deren Basis

werden durch verschiedene Stakeholder in einem produzierenden Betrieb Kennzahlen de�-

niert, die für die Überprüfung der Zielerreichung der strategischen Ziele benötigt werden.

Sowohl die strategischen Ziele als auch die daraus de�nierten Kennzahlen sind die Basis

für die Gestaltung eines betrieblichen Prozesses. Die Gestaltung des Prozesses erfolgt wie-

derum von den verschiedenen Stakeholdern. Diese erste Phase ist die Gestaltungsphase,

deren Abläufe in Abbildung 1.2 mit dünnen Strichen gekennzeichnet sind. In der zwei-

ten Phase werden während der Durchführung des betrieblichen Prozesses die Kennzahlen

mit einem Informationsverarbeitungssystem erfasst. Damit ist ein IT-System gemeint, das

Daten aus dem betrieblichen Prozess ermittelt, zu Kennzahlen verarbeitet und diese gra-

�sch darstellt [Ben07]. Die gra�sch aufbereiteten Kennzahlen werden vom Management

interpretiert. Diese zweite Phase ist die Erfassungsphase, deren Abläufe in der Abbildung

mit dicken Strichen gekennzeichnet sind.

Strategische
Ziele Kennzahlen

InterpretationFormulierung

Definition
Prozess

Erfassung

Gestaltung

Management

Abbildung 1.2: Schematischer Ablauf einer kennzahlenorientierten Prozessgestaltung

3

Kapitel 1. Einleitung

Dieses Vorgehen wird in dieser Arbeit kennzahlenorientierte Prozessgestaltung genannt.

In den folgenden Abschnitten wird der Stand der kennzahlenorientierten Prozessgestal-

tung in der Produktion und in der Softwareentwicklung in produzierenden Betrieben als

Ausgangspunkt für die Herleitung der Forschungsfrage dargelegt.

1.2 Kennzahlenorientierte Gestaltung der Produktion

Der Produktionsprozess ist ein zentraler Prozess in produzierenden Betrieben, da er di-

rekt wertschöpfend ist. Er beein�usst in hohem Maÿe die Herstellkosten, die Lieferzeiten

und die Qualität der Produkte und trägt entscheidend zum wirtschaftlichen Erfolg der

produzierenden Betriebe bei.

Im Folgenden wird eine betriebsspezi�sche kennzahlenorientierte Gestaltung des Produk-

tionsprozesses von intelligenten Produkten am Beispiel des Geschäftsbereichs Automati-

sierung der Phoenix Contact Electronics GmbH, dem Kooperationspartner dieser Arbeit,

dargestellt. Die Phoenix Contact Gruppe ist ein weltweit führender Anbieter von elek-

trischer Verbindungs- und elektronischer Interfacetechnik sowie industrieller Automati-

sierungstechnik. Im Geschäftsbereich Automatisierung der Phoenix Contact Electronics

GmbH werden u.a. intelligente Produkte für die Fabrikautomatisierung entwickelt und

gefertigt. Beispiele für solche Produkte sind speicherprogrammierbare Steuerungen und

Feldgeräte mit industriellen Netzwerkanschlüssen. Der Verfasser dieser Arbeit arbeitete

viele Jahre beim Kooperationspartner. Der im Folgenden ausgeführte Stand der kennzah-

lenorientierten Prozessgestaltung in der Produktion wurde zum einen in unstrukturierter

Form beobachtet und basiert zum anderen auf Gesprächen mit dem Produktionsleiter,

dem Geschäftsbereichsleiter und ausgewählten Teamleitern. Einige der Gespräche wurden

in Form eines Interviews geführt.

Für die Veranschaulichung der kennzahlenorientierten Prozessgestaltung des Produkti-

onsprozesses dient Abbildung 1.3. Das Management formuliert strategische Ziele, zum

Beispiel die Erreichung einer hohen Fertigungsqualität. Basierend auf diesen strategi-

schen Zielen werden verschiedene Produktionskennzahlen de�niert, die die Zielerreichung

der strategischen Ziele anzeigen. Diese Produktionskennzahlen bilden die Menge KHW

(HW steht für Hardware). Ein Beispiel einer Produktionskennzahl ist die sogenannte

First Pass Rate (FPR). Die FPR ist das Verhältnis von den bestandenen Fertigungsend-

tests zu allen durchgeführten Fertigungsendtests. Beim Kooperationspartner wird jedes

einzelne gefertigte intelligente Produkt einem Fertigungsendtest unterzogen.

Ableitend aus den strategischen Zielen formulieren die Produktionsteams operative Ziele.

Das sind kurz- oder mittelfristige Ziele, die der Steuerung von konkreten Produktions-

4

Kapitel 1. Einleitung

Strategische
Ziele

KHW

InterpretationFormulierung

ProduktionsprozessGestaltung

Operative
Ziele

K HW
Erfassung

Verdichtung

Definition

Management

Produktionsteam

InterpretationFormulierung

Berücksichtigung

Definition

Erfassung

Abbildung 1.3: Beispiel einer kennzahlenorientierten Gestaltung des Produktionsprozesses

linien dienen. Die operativen Ziele sind der Ausgangspunkt für kontinuierliche Verbes-

serungsmaÿnahmen. Kontinuierliche Verbesserungsmaÿnahmen sind Teil von kontinuier-

lichen Verbesserungsprozessen (KVP), die viele kleine Änderungen bewirken, aus deren

Summe erhebliche Prozessverbesserungen erreicht werden können [Bec05]. Tabelle 1.1

zeigt ein KVP-Beispiel beim Kooperationspartner.

Neben den kontinuierlichen Verbesserungsmaÿnahmen werden auch strategische Maÿnah-

men realisiert. Diese Maÿnahmen müssen anders als die KVP-Maÿnahmen vom Manage-

ment bestätigt werden. Ein Beispiel dafür ist die Bescha�ung einer vollautomatisierten

Leiterplattenbestückungs- und Lötmaschine im Wert von ca. einer Million Euro.

Basierend auf den operativen Zielen werden mehrere Produktionskennzahlen de�niert.

Diese Produktionskennzahlen bilden die Menge K ′
HW . Beim Kooperationspartner sind

einige der Produktionskennzahlen, die Teil der Menge K ′
HW sind, auch Teil der Menge

KHW . Damit ist gemeint, dass diese Produktionskennzahlen mit dem gleichen Namen

und der gleichen Bedeutung in beiden Mengen verwendet werden. So ist zum Beispiel

die FPR Bestandteil in beiden Mengen, jedoch unterscheidet sie sich in dem zeitlichen

oder organisatorischen Geltungsbereich: Die Produktionskennzahlen in K ′
HW zeigen de-

Ist-Stand am 10.04.: 221 Geräte gefertigt mit FPR 87,78 %

Ursachen: 1. Lötfehler Handlötung

- Rangierplatine nicht richtig verlötet

2. Testadapter

- FE-Klammer kontaktiert nicht richtig

Maÿnahmen: 1. Mitarbeiter geschult

2. Adaptierung durch zwei Klammern

Ist-Stand am 27.05. 29 Geräte gefertigt mit FPR 96,67 %

Tabelle 1.1: KVP-Beispiel beim Kooperationspartner

5

Kapitel 1. Einleitung

taillierte Informationen zu einem Fertigungslos, zu einem Produktionstag etc. an. Die

Produktionskennzahlen in KHW zeigen verdichtete Informationen zu einer Fertigungs-

stätte, einem Quartal etc. an. KHW ist folglich eine verdichtete Darstellung von K ′
HW ,

an deren Aufbereitung die Produktionsteams beteiligt sind. Diese Aufbereitung ändert

allerdings nicht die Semantik der Produktionskennzahlen.

Die Produktionskennzahlen in K ′
HW werden im Produktionsprozess erfasst. Um diese in

KHW verdichtet dem Management zur Verfügung zu stellen, wird wie am folgenden Bei-

spiel der FPR gezeigt vorgegangen: Die FPR verschiedener Produktionslinien werden mit

Hilfe eines Informationsverarbeitungssystems erfasst und gehen in K ′
HW ein. Aus diesen

verschiedenen FPR wird eine FPR für die Produktionsstätte, in denen die Produktionslini-

en aufgebaut sind, zusammengeführt und inKHW gezeigt. Die FPR der Produktionsstätte

wird folglich nicht im Produktionsprozess erfasst, sondern wird durch eine mathematische

Weiterverarbeitung der FPR der Produktionslinien gebildet.

Die Erfassung der FPR ist seit langem in dem Produktionsprozess integriert: Die Pro-

duktionsteams tragen in einem Informationsverarbeitungssystem ein, ob ein gefertigtes

intelligentes Produkt den Fertigungsendtest bestanden hat, und das Informationsverar-

beitungssystem berechnet die FPR. Sowohl die Produktionsteams als auch das Manage-

ment verwenden seit Jahren die de�nierten Produktionskennzahlen. Ihre Bedeutung und

ihre Interpretation, also ihre Semantik, sind gut bekannt.

Es kann zusammengefasst werden, dass beim Kooperationspartner eine kennzahlenori-

entierte Gestaltung des Produktionsprozesses etabliert ist. Wie im folgenden Abschnitt

aufgeführt wird, gilt dies nicht für die kennzahlenorientierte Gestaltung des Softwareent-

wicklungsprozesses.

1.3 Kennzahlenorientierte Gestaltung der Softwareent-

wicklung

Der Prozessablauf für die Entwicklung intelligenter Produkte, die sowohl die Hardware-

als auch die Softwareentwicklung umfasst, ist in einem unternehmensweit gültigen Doku-

ment beschrieben. Der Produktentwicklungsprozess basiert auf mehreren Meilensteinen,

zu deren Erreichung bestimmte Kriterien zu erfüllen sind.

Die Überwachung der einzelnen Produktentwicklungsprojekte erfolgt mit Hilfe einer Pro-

jektmanagementdatenbank. In dieser werden Projektinformationen dokumentiert, wie

zum Beispiel Soll-/Ist-Termine der Meilensteine, Plan-/Ist-Aufwände der Produktent-

wicklungsprojekte und der Status der zu jedem Meilenstein zu erledigenden Aufgaben.

6

Kapitel 1. Einleitung

Aus der Projektdatenbank werden Berichte generiert, die u.a. die Abweichungen zwischen

Soll- und Ist-Terminen und zwischen Plan- und Ist-Aufwänden projektbezogen darstellen.

Diese Berichte werden in regelmäÿigen Terminen dem Management vorgestellt.

Das Management spiegelt diese Kennzahlen an den strategischen Zielen und bewirkt dar-

aufhin strategische Maÿnahmen. Ein Beispiel einer strategischen Maÿnahme ist in der

Erläuterung 1.1 beschrieben. Die Softwareteams setzen kontinuierlich Verbesserungsmaÿ-

nahmen um, zum Beispiel die Überarbeitung bestehender Programmierrichtlinien oder

die Einführung regelmäÿiger Code Reviews.

Softwarekennzahlen sind Gegenstand zahlreicher Verö�entlichungen [PP11, SSB10,
Kas08, FP97]. Sie können mit Hilfe des Teufelsquadrats kategorisiert werden. Das Teu-
felsquadrat ist ein Grundmodell der Softwarewirtschaftlichkeit, wobei dessen vier Ecken
die Leistungsziele hohe Qualität, hohe Quantität, geringe Entwicklungsdauer und geringe
Kosten symbolisieren [Sne87].
Für jede dieser Ecken gibt es Softwarekennzahlen: Für die Quantität gibt es zum Bei-
spiel Function Points [Alb79] oder Lines of Code [SSB10] und für die Qualität gibt es die
Fehlerbehebungsrate [PP11] oder die Fehlerdichte [FP97]. Der Kooperationspartner ist
bereits in der Lage, Softwarekennzahlen zu Kosten und Entwicklungsdauer zu erfassen,
jedoch nicht für Quantität und Qualität. Da jedoch bereits heute der Softwareentwick-
lungsprozess durch strategische und KVP-Maÿnahmen beein�usst wird, werden für die
Prozessgestaltung auch solche Softwarekennzahlen benötigt. Folgendes Beispiel der Ein-
führung eines Werkzeugs zum Architekturmanagement soll der Veranschaulichung dienen:
Die Softwareteams hatten analysiert, dass eine entworfene Softwarearchitektur oftmals
nicht mit der Implementierung übereinstimmt. Sie kamen zu der Einschätzung, dass dies
zu Qualitätsproblemen und zu Verzögerungen in der Freigabe einzelner Softwarefunktio-
nen führte, ohne diese genau quanti�zieren zu können. Daraufhin wurden kommerzielle
Softwarewerkzeuge für das Architekturmanagement bewertet. Es wurde ein Werkzeug aus-
gewählt und die Thematik dem Management dargelegt. Dieses folgte der Einschätzung,
dass ein derartiges Werkzeug notwendig sei und gab daraufhin die Geldmittel für die An-
scha�ung und die notwendigen Schulungsmaÿnahmen frei. Da jedoch Softwarekennzahlen
für die Quantität und die Qualität fehlen, ist es bislang nicht möglich, die Verringerung
der Qualitätsprobleme oder die Erhöhung der Verfügbarkeit einzelner Softwarefunktionen
zu den zugesagten Terminen zu quanti�zieren.

Erläuterung 1.1: Fehlende Softwarekennzahlen beim Kooperationspartner

In diesem bislang praktizierten Vorgehen sind zwar Elemente einer kennzahlenorientierten

Prozessgestaltung zu erkennen. Allerdings fehlen zwei wichtige Merkmale einer kennzah-

lenorientierten Prozessgestaltung des Softwareentwicklungsprozesses:

Zum einen fehlen wesentliche Softwarekennzahlen, die nach dem Stand der Technik für eine

Messung des Softwareentwicklungsprozesses benötigt werden. Dies wird in der Erläuterung

1.1 detailliert begründet. Zum anderen fehlt dem Management das Verständnis für die

Semantik von Softwarekennzahlen. Dies wurde in verschiedenen Gesprächen bestätigt,

in denen zum Beispiel nach der Bedeutung einiger der in Erläuterung 1.1 aufgeführten

Softwarekennzahlen gefragt wurde. Die Bedeutung ist dem Management nicht bekannt.

7

Kapitel 1. Einleitung

Aufgrund dieser fehlenden Merkmale sind sowohl das Management als auch die Softwa-

reteams nur unzureichend in der Lage, den Softwareentwicklungsprozess zu gestalten. Sie

können für die Bewertung der Zielerreichung strategischer und operativer Ziele lediglich

die bisherigen Kennzahlen aus der Projektmanagementdatenbank verwenden. Dies reicht

in Zukunft nicht mehr aus, da die Bedeutung des Softwareentwicklungsprozesses wächst.

Wie bereits in [Deu14] dargestellt, wird der Softwareentwicklungsprozess zu einem zen-

tralen Prozess in produzierenden Betrieben, von dem deren wirtschaftlicher Erfolg mehr

und mehr abhängt.

1.4 Forschungsfrage

Der dargestellte Stand der kennzahlenorientierten Gestaltung des Produktionsprozesses

und des Softwareentwicklungsprozesses ist spezi�sch für einen produzierenden Betrieb. Um

einschätzen zu können, inwiefern eine ähnliche Ausgangslage in anderen produzierenden

Betrieben anzutre�en ist, wurde eine Umfrage mit Unterstützung der IHK Ostwestfa-

len zu Bielefeld durchgeführt. Es wurde ein Fragebogen zum Umgang mit Produktions-

kennzahlen und Softwarekennzahlen erstellt.

Der Fragebogen wurde im Dezember 2015 an die Mitglieder des IHK-Arbeitskreises �IT�

verteilt. Es gab neun Rückläufer. Die Ergebnisse der Umfrage sind Indikatoren für eine ver-

gleichbare Situation der kennzahlenorientierten Prozessgestaltung des Produktions- und

des Softwareentwicklungsprozesses in weiteren produzierenden Betrieben, wie die Fragen

und Antworten in der Erläuterung 1.2 zeigen.

Frage: Arbeiten Sie im Rahmen ihrer Managementaufgaben mit Produktionskennzahlen,
mit denen Sie die E�zienz und die Qualität der Produktionsprozesse in Ihrem Unterneh-
men beobachten und steuern (z.B. durch die Vorgabe und Überprüfung von Zielwerten)?
Antworten: Diese Frage beantworteten acht Befragte mit �Ja�, ein Befragter mit �Nein�.
Die Mehrheit der Teilnehmer wendet demnach Produktionskennzahlen an.
Frage: Arbeiten Sie im Rahmen ihrer Managementaufgaben mit Softwarekennzahlen, mit
denen Sie die E�zienz und die Qualität der Softwareentwicklungsprozesse in Ihrem Be-
trieb beobachten und steuern (z.B. durch die Vorgabe und Überprüfung von Zielwerten)?
Antworten: Diese Frage beantworteten zwei Befragte mit �Ja�, sechs Befragte mit �Nein�
und ein Befragter machte keine Angabe. Die Mehrheit der Teilnehmer verwendet demnach
keine Softwarekennzahlen. Da sie keine Softwarekennzahlen verwenden und folglich deren
Semantik nicht zu kennen brauchen, ist ihnen die Semantik von Softwarekennzahlen nicht
bewusst.

Erläuterung 1.2: Teilergebnisse der IHK-Umfrage

Zur Herleitung des Forschungsbedarfes wird aufgrund der Beobachtungen beim

Kooperationspartner und den Antworten in der IHK-Umfrage von folgender Ist- und Ziel-

situation in produzierenden Betrieben ausgegangen:

8

Kapitel 1. Einleitung

Ist-Situation: Die kennzahlenorientierte Gestaltung des Produktionsprozesses ist eta-

bliert. Sowohl das Management als auch die Produktionsteams verwenden Produktions-

kennzahlen, deren Semantik sie kennen. Die kennzahlenorientierte Gestaltung des Soft-

wareentwicklungsprozesses ist teilweise etabliert. Zwar wirken das Management und die

Softwareteams auf den Softwareentwicklungsprozess ein, es werden jedoch wichtige Softwa-

rekennzahlen nicht eingesetzt und folglich wird deren Erfassung nicht in der Prozessgestal-

tung berücksichtigt. Auÿerdem ist das Management nicht in der Lage, Softwarekennzahlen

zu interpretieren, da es deren Semantik nicht kennt.

Zielsituation: Es ist sowohl die kennzahlenorientierte Gestaltung des Produktionspro-

zesses als auch die des Softwareentwicklungsprozesses etabliert. Das Management, die

Produktionsteams und die Softwareteams kennen die Semantik der für ihren Verantwor-

tungsbereich de�nierten Kennzahlen. Da die kennzahlenorientierte Gestaltung des Pro-

duktionsprozesses bereits etabliert ist, stellt sich die nachfolgende Forschungsfrage als

Grundlage dieser Arbeit:

Wie kann der Softwareentwicklungsprozess in produzierenden Betrieben kennzahlenorien-

tiert gestaltet werden?

Um die Zielsituation zu erreichen, sind die Kennzahlen für den Softwareentwicklungspro-

zess für das Management und die Softwareteams zielgruppenorientiert aufzubereiten. In

[DEHW13] wird argumentiert, dass das in der Softwaredomäne vorhandene Wissen über

die Softwaremessung �unbedingt zielgruppenorientiert� zu übersetzen sei. Dies sei not-

wendig, um die Bewertung von Softwareentwicklungsprozessen in der Praxis zu verbes-

sern. Vor diesem Hintergrund werden aus der Forschungsfrage drei Detailfragen abgeleitet,

deren Lösungen zur Verbesserung der Bewertung von Softwareentwicklungsprozessen in

produzierenden Betrieben beitragen sollen:

1. Für die Befriedigung der Informationsbedürfnisse des heutigen Managements zu

dem Softwareentwicklungsprozess reicht die Verwendung von Softwarekennzahlen,

die aus der Literatur bekannt sind, nicht aus, da das Management deren Seman-

tik nicht kennt. Um dieses Problem zu lösen, können drei Handlungsoptionen in

Betracht gezogen werden: Erstens könnte das Management das notwendige Wissen

aufbauen. Zweitens könnte es Softwaremanager, die die Semantik von Software-

kennzahlen kennen, in den oberen Hierarchieebenen der produzierenden Betriebe

etablieren. Drittens könnten bereits heute eingesetzte Produktionskennzahlen im

Softwareentwicklungsprozess verwendet werden. In dem Fall müsste die semanti-

sche Äquivalenz einer Produktionskennzahl hergestellt werden. Damit ist gemeint,

dass eine Produktionskennzahl ihre Bedeutung beibehält, auch wenn sie in der Soft-

waredomäne verwendet wird. Im letzteren Fall gäbe es zwei Ausprägungen dieser

Produktionskennzahl: Die Produktionskennzahl, die die Ergebnisse der Produktion

9

Kapitel 1. Einleitung

der Hardware eines intelligenten Produktes anzeigt, und die Produktionskennzahl,

die die Ergebnisse der Softwareentwicklung eines intelligenten Produktes anzeigt.

Zur Unterscheidung dieser Ausprägungen werden die Begri�e �HW-Produktions-

kennzahl� und �SW-Produktionskennzahl� eingeführt. Die Motivation für die Bear-

beitung der dritten Handlungsoption ist die vorhandene Kenntnis des Managements

über die Semantik der HW-Produktionskennzahlen. Es wird angenommen, dass die

Semantik der äquivalenten SW-Produktionskennzahlen vom Management in kurzer

Zeit verinnerlicht werden kann. Konkrete Indikatoren für das Interesse des Mana-

gements an der Umsetzung der dritten Handlungsoption sind die Ergebnisse der

IHK-Umfrage und ein Gespräch mit dem Geschäftsbereichsleiter des Kooperations-

partners. In der IHK-Umfrage wurde die Frage gestellt: �Würde es Ihnen in Ihren

Managementaufgaben helfen, Ihnen bekannte Produktionskennzahlen für das Be-

obachten der E�zienz und Qualität der Softwareentwicklungsprozesse anzuwenden

(egal, ob Sie dies für machbar halten oder nicht)?� Auf diese Frage antworteten sie-

ben Befragte mit �Ja� und zwei Befragte machten keine Angabe. Der Geschäftsbe-

reichsleiter des Kooperationspartners beantwortet diese Frage mit �Ja� und betonte

explizit sein Interesse an dieser Handlungsoption. Um diese Handlungsoption zu rea-

lisieren, stellt sich die Detailfrage: Wie können SW-Produktionskennzahlen, die die

Semantik der äquivalenten HW-Produktionskennzahlen beibehalten, bestimmt wer-

den?

2. SW-Produktionskennzahlen adressieren das Management und dienen der Überprü-

fung der strategischen Ziele. Die Softwareteams wie auch die Produktionsteams de-

�nieren hingegen die operativen Ziele. Für die Überprüfung der Zielerreichung der

operativen Ziele sind Softwarekennzahlen zu bestimmen. Dafür können bekannte

Methoden wie zum Beispiel die Goal-Question-Metric-Methode (GQM-Methode)

[BW84] angewendet werden. Sobald Softwarekennzahlen als auch SW-Produktions-

kennzahlen bestimmt wurden, ist der Softwareentwicklungsprozess entsprechend an-

zupassen. Um die de�nierten Kennzahlen erfassen zu können, stellt sich die Detailfra-

ge: Wie sollte der Softwareentwicklungsprozess aufgebaut sein, damit die de�nierten

SW-Produktionskennzahlen und Softwarekennzahlen erfasst werden können?

3. Die kennzahlenorientierte Prozessgestaltung beinhaltet ein Informationsverarbei-

tungssystem, das die SW-Produktionskennzahlen und Softwarekennzahlen erfasst

und verarbeitet. Die Anwender des Informationsverarbeitungssystems sind das Ma-

nagement und die Softwareteams. Um alle Kennzahlen dem Management und den

Softwareteams zuzuführen, stellt sich die Detailfrage: Wie sollte ein Informations-

verarbeitungssystem aufgebaut sein, das SW-Produktionskennzahlen und Software-

kennzahlen erfassen und verarbeiten kann?

10

Kapitel 1. Einleitung

Die Messbarkeit von Softwareentwicklungsprozessen in produzierenden Betrieben ist The-

ma in mehreren Publikationen. In [SMKN11] wird der Aufbau eines Softwarekennzah-

lensystems bei der Fa. Ericsson beschrieben. Jedoch ist es das Ziel, die Informations-

bedürfnisse von Personen, die für die Softwarequalität verantwortlich sind, zu befriedi-

gen. Daher waren Antworten auf eine mit der Detailfrage 1 vergleichbaren Frage, deren

Lösung die Informationsbedürfnisse des Managements befriedigen soll, nicht das Ziel die-

ser Publikation. In [Kil01] wird das interne Programm der Softwaremessung bei Nokia

beschrieben. Zwar werden darin Softwarekennzahlen aus Managementzielen bestimmt, al-

lerdings ist das Management nur für die Entwicklung zuständig, nicht für die Produktion,

und es kann nicht erkannt werden, wie die Erfassung von Softwarekennzahlen im Softwa-

reentwicklungsprozess integriert ist. In [ED07] wird neben den Grundlageninhalten zur

Softwaremessung auch die Einführung von Function Points bei der Fa. Bosch beschrie-

ben. Function Points, die in Abschnitt 2.1.2.1 vertiefend vorgestellt werden, sind Soft-

warekennzahlen für die Quantitätsmessung. In der Fallstudie bleibt allerdings o�en, wer

der Adressat der Function Points ist und ob das Management die Semantik von Function

Points kennt, sofern es der Adressat ist.

1.5 Methodische Vorgehensweise

Das Vorgehen dieser Arbeit gliedert sich in die Erstellung der konzeptionellen Grundla-

gen für die Beantwortung der Forschungsfragen, in eine praktische Evaluierung und in

eine Theoriebildung. Es orientiert sich an der methodischen Vorgehensweise des Design

Research (DR). DR analysiert die Anwendung von entworfenen IT-Artefakten, um Infor-

mationssysteme zu verstehen, zu erklären und zu verbessern [IV09]. Trotz der vorhandenen

einschlägigen Literatur, zum Beispiel [Ven06, PHBV08, SB12], gibt es jedoch weder eine

allgemein gültige DR-De�nition noch ein allgemein anerkanntes DR-Modell [IV09, Gol13].

Diese Arbeit orientiert sich daher an den Ausführungen in [Gol13]: DR besteht aus zwei

Aktivitäten: dem Entwurf eines oder mehrerer IT-Artefakte und der Theoriebildung. Die

IT-Artefakte, in dieser Arbeit sind es zum Beispiel die Lösungen zu den Detailfragen,

haben einen lokalen praktischen Bezug, beispielsweise im konkreten Umfeld eines produ-

zierenden Betriebes. Die lokalen Ergebnisse, die im Entwurf der IT-Artefakte gewonnen

werden, werden der Theoriebildung mit dem Ziel zugeführt, daraus allgemein anwendbare

Ergebnisse zu bilden. Der Entwurf eines IT-Artefakts setzt sich aus den Phasen Proble-

manalyse, Erstellen und Evaluierung zusammen. Die Phasen Erstellen und Evaluierung

können mehrfach durchlaufen werden, was in dieser Arbeit auch erfolgte. Abbildung 1.4

zeigt die schrittweise methodische Vorgehensweise dieser Arbeit und die Zuordnung dieser

zu den Phasen des Design Research.

11

Kapitel 1. Einleitung

Darlegung der Problemstellung

Grundlagen

Entwurf
(R-GQM,

Sliced V-Modell,
Formeln)

Entwurf SofProSys

Praxisnahe Verwendung
Praktische Verwendung

Vorgehen in dieser Arbeit

Problemanalyse

Erstellen

Evaluierung

Verallgemeinerung
(R-GQM,

Sliced V-Modell,
SofProSys)

Theoriebildung

Zuordnung zu Design Research

Abbildung 1.4: Vorgehen der Arbeit und Zuordnung zu den DR-Phasen

In der DR-Entwurfsphase Problemanalyse wird die Situation beim Kooperationspartner

dargestellt und zu einer Problemstellung zusammengefasst. Mit Hilfe der IHK-Umfrage

wird die Gültigkeit der Problemstellung in anderen produzierenden Betriebe bewertet.

Die DR-Entwurfsphase Erstellen widmet sich zunächst den für diese Arbeit relevanten

Grundlagen. Darauf folgt der konzeptionelle Entwurf für die Lösungen zu den Detailfra-

gen: Für die Beantwortung der ersten Detailfrage wird eine auf der GQM-Methode [BW84]

aufbauende neue Methode entworfen. Diese Methode wird Reversed-Goal-Question-

Metric-Methode (RGQM-Methode) genannt. Mit Hilfe der RGQM-Methode können HW-

Produktionskennzahlen in der Softwareentwicklung angewendet werden. Im nächsten

Schritt werden konkrete HW-Produktionskennzahlen beim Kooperationspartner ausge-

wählt und mit Hilfe der RGQM-Methode in SW-Produktionskennzahlen transferiert. Um

die SW-Produktionskennzahlen erfassen zu können, muss der zugrundeliegende Softwa-

reentwicklungsprozess bestimmte Anforderungen erfüllen. Diese Anforderungen werden

formuliert. Weitere Anforderungen ergeben sich aus der Bestimmung von Softwarekenn-

zahlen auf Grundlage der operativen Ziele. Für die Bestimmung der Softwarekennzahlen

wird die etablierte GQM-Methode verwendet.

Für die Beantwortung der zweiten Detailfrage wird das sogenannte Sliced V-Modell ent-

worfen. Das Sliced V-Modell ist ein Datenmodell, an dessen Gestaltung der Autor der

Arbeit maÿgeblich beteiligt war. Es beschreibt die im Softwareentwicklungsprozess des

Kooperationspartners genutzten Softwareartefakte und deren Zusammenhänge. Im Ent-

wurf des Sliced V-Modells werden die bei der Bestimmung der Kennzahlen formulier-

ten Anforderungen an den Softwareentwicklungsprozess berücksichtigt. Dem Entwurf des

12

Kapitel 1. Einleitung

Sliced V-Modells folgen die Berechnungsgrundlagen, das heiÿt die Formeln für die SW-

Produktionskennzahlen und für die Softwarekennzahlen.

Abschlieÿend wird in der DR-Entwurfsphase Erstellen ein Prototyp eines Informations-

verarbeitungssystems entwickelt, mit dessen Hilfe die dritte Detailfrage beantwortet wer-

den soll. Dieser Prototyp wird SofProSys genannt. Dies steht für: Software-Produktions-

kennzahlen-Informationsverarbeitungs-System.

Abbildung 1.5 zeigt die Zielsituation, die in dieser Arbeit in der Softwaredomäne erreicht

werden soll und die sich an der existierenden Situation im Produktionsprozess orientiert

(vgl. Abbildung 1.3). Wie in Abbildung 1.2 zeigen die dünnen Striche die Abläufe in der

Gestaltungsphase, die dicken Striche die Abläufe in der Erfassungsphase. Das Manage-

ment legt strategische Ziele fest. Die operativen Ziele werden aus den strategischen Zielen

abgeleitet. An der Bestimmung der operativen Ziele sind die Softwareteams aktiv beteiligt.

KSW ist die Menge der SW-Produktionskennzahlen, die aus KHW , also aus der bereits

existierende Menge an HW-Produktionskennzahlen, in die Softwaredomäne transferiert

wird. KHW und folglich KSW werden aus den strategischen Zielen bestimmt und zeigen

deren Zielerreichung an. KSW bedient die Informationsbedürfnisse des Managements. KS

ist die Menge der Softwarekennzahlen, die aus den operativen Zielen bestimmt wird und

deren Zielerreichung anzeigt. KS wird von den Softwareteams verwendet.

Folglich verwenden die Softwareteams und das Management unterschiedliche Kennzahlen.

Dies ist ein Unterschied zu der im Abschnitt 1.2 erläuterten Situation im Produktions-

prozess. Daher müssen sowohl die Erfassung von SW-Produktionskennzahlen als auch

die Erfassung von Softwarekennzahlen in der kennzahlenorientierten Gestaltung des Soft-

wareentwicklungsprozesses berücksichtigt werden. Es werden sowohl KSW als auch KS

im Softwareentwicklungsprozess erfasst, wobei auch eine Softwarekennzahl in KS für die

Berechnung einer SW-Produktionskennzahl in KSW verwendet werden könnte.

Strategische
Ziele

KSW

InterpretationFormulierung

Operative
Ziele

KS
Erfassung

Verdichtung

Management

Softwareteam

InterpretationFormulierung

Berücksichtigung

KHW
Definition Transfer

Definition

Software-
entwicklungsprozess

Gestaltung

Erfassung

Abbildung 1.5: Zielsituation dieser Arbeit

13

Kapitel 1. Einleitung

In der DR-Entwurfsphase Evaluierung wird die RGQM-Methode an fünf beim

Kooperationspartner eingesetzten HW-Produktionskennzahlen angewendet, aus denen

SW-Produktionskennzahlen gebildet werden. Die semantische Äquivalenz der beiden Aus-

prägungen einer Produktionskennzahl wird bewertet. Die Evaluierung des Sliced V-

Modells erfolgt in drei Schritten: durch die Betrachtung der Erfüllung der daran for-

mulierten Anforderungen, durch die Bewertung, ob die Berechnungsgrundlagen für alle

Kennzahlen erstellt werden können und durch die Implementierung von SofProSys als

Nachweis, dass alle Kennzahlen im Sliced V-Modell erfasst werden können. Die Evaluie-

rung von SofProSys erfolgt, indem der Prototyp sowohl praxisnah in einem Testumfeld als

auch praktisch beim Kooperationspartner verwendet wird. In der praktischen Verwendung

werden reale Softwareentwicklungsprozesse untersucht.

Die abschlieÿende Evaluierung, ob die Ergebnisse dieser Arbeit eine Lösung für die For-

schungsfrage darstellen, erfolgt zum einen durch den Geschäftsbereichsleiter des Koope-

rationspartners. Ihm werden die SW-Produktionskennzahlen der realen Softwareentwick-

lungsprozesse dargestellt und sie werden mit ihm diskutiert. Zum anderen werden die

Ergebnisse der Arbeit in der DR-Aktivität Theoriebildung verallgemeinert. Es wird erläu-

tert, wie produzierende Betriebe die Ergebnisse dieser Arbeit in ihr betriebliches Umfeld

übertragen können und dass diese Ergebnisse somit die Forschungsfrage beantworten.

1.6 Aufbau der Arbeit

Der Aufbau dieser Arbeit orientiert sich an den Aktivitäten des Design Research (vgl.

Abbildung 1.6). Wie bereits erwähnt, gab es mehrere DR-Iterationen. Sie werden jedoch

weder als eigene Kapitel ausgeführt noch explizit in dieser Arbeit beschrieben.

Die Kapitel 1 und 2 widmen sich der DR-Entwurfsphase Problemanalyse und den für diese

Arbeit relevanten Grundlagen.

Die Kapitel 3, 4, 5, 6 und 7 umfassen die DR-Entwurfsphase Erstellen und die DR-

Entwurfsphase Evaluierung. Es wird die RGQM-Methode entwickelt und es werden

betriebsspezi�sche HW-Produktionskennzahlen des Kooperationspartners ausgewählt, in

äquivalente SW-Produktionskennzahlen transferiert und somit die RGQM-Methode evalu-

iert. Mit Hilfe der GQM-Methode werden Softwarekennzahlen de�niert. Es wird das Sliced

V-Modell unter Berücksichtigung von Anforderungen, die während der Bestimmung der

Kennzahlen formuliert werden, entworfen. Für alle Kennzahlen werden die jeweiligen Be-

rechnungsgrundlagen ermittelt. Es wird SofProSys entwickelt und sowohl praxisnah als

auch praktisch angewendet. Mit der praktischen Anwendung wird evaluiert, inwiefern die

Ergebnisse der Arbeit eine Lösung für die Forschungsfrage darstellen.

14

Kapitel 1. Einleitung

Kapitel 2: Grundlagen

Kapitel 5: Gestaltung des Softwareentwicklungsprozesses

Kapitel 7: Entwicklung des Informationsverarbeitungssystems

Kapitel 9: Zusammenfassung und Ausblick

Kapitel 4: Bestimmung der Softwarekennzahlen

Kapitel 3: Transfer von Produktionskennzahlen

Kapitel 1: Einleitung

P
ro

bl
em

an
al

ys
e

Er
st

el
le

n

Ev
al

u
ie

ru
n

g

Kapitel 8: Verallgemeinerung der Ergebnisse

Th
e

or
ie

bi
ld

u
n

g

Kapitel 6: Ermittlung der Berechnungsgrundlagen

Abbildung 1.6: Aufbau dieser Arbeit

Kapitel 8 widmet sich der DR-Aktivität Theoriebildung und verallgemeinert die Ergebnis-

se der Arbeit. Da die Ergebnisse in nur einem produzierenden Betrieb evaluiert werden,

wird hier dargelegt, dass sie sich prinzipiell in andere produzierende Betriebe übertragen

lassen.

Das abschlieÿende Kapitel 9, das keiner Design Research Aktivität zugeordnet ist, fasst die

Inhalte der Arbeit zusammen, erläutert weitere Aktivitäten für Überführung der Ergeb-

nisse der Arbeit in die betriebliche Praxis des Kooperationspartners und skizziert mögliche

auf dieser Arbeit aufbauende Forschungsvorhaben.

15

Kapitel 1. Einleitung

1.7 Vorverö�entlichungen

Auszüge aus dieser Arbeit wurden in folgenden Publikationen verö�entlicht. Die Publika-

tionen sind chronologisch aufgeführt.

Hauptbezug zu Verö�entlichung

Kap. 5, 6 [Deu12] Deuter, A.: Messung der Software-Produktivität in einem

Work Item-basierten V-Modell, In: Metrikon 2012 - Praxis der

Software-Messung, Shaker Verlag, Aachen, 2012, S. 69-84

Kap. 5 [Deu13] Deuter, A.: Slicing the V-model � Reduced e�ort, higher

�exibility, In: International Conference on Global Software Engi-

neering (ICGSE), 2013, S. 1-10

Kap. 6 [DE14] Deuter, A.; Engels, G.: Measuring the Software Size of Sliced

V-model Projects, In: Joint Conference of the International Work-

shop on Software Measurement and the International Conference on

Software Process and Product Measurement (IWSM-MENSURA),

2014, S. 233-242

Kap. 1 [Deu14] Deuter, A.: Software wird auch im Maschinenbau zur Kern-

kompetenz, In: IEE Elektrische Automatisierung+Antriebstechnik

10 (2014), S. 16-18

Kap. 6 [DK15] Deuter, A.; Koch, H.-J.: Applying Manufacturing Perfor-

mance Figures to Measure Software Development Excellence, In:

Joint Conference of the International Workshop on Software Mea-

surement and the International Conference on Software Process and

Product Measurement (IWSM-MENSURA), 2015, S. 62-77

Kap. 3 [DD15] Deuter, A.; Dreyer, J.: Reversed-GQM: Ein Ansatz zur Wie-

derverwendung von Kennzahlen, In: Metrikon 2015 - Praxis der

Software-Messung, Shaker Verlag, Aachen, 2015, S. 3-14

Kap. 3 [Deu16] Deuter, A.: Software measurement in the context of Indus-

try 4.0, Workshop in Joint Conference of the International Work-

shop on Software Measurement and the International Conference on

Software Process and Product Measurement (IWSM-MENSURA),

2016

Tabelle 1.2: Vorverö�entlichungen zu dieser Arbeit

16

Kapitel 2

Grundlagen

Dieses Kapitel widmet sich den Grundlagen dieser Arbeit. Für die kennzahlenorientier-

te Prozessgestaltung wird ein Verständnis von Kennzahlen benötigt. Daher werden in

diesem Kapitel zunächst grundlegende Merkmale von Kennzahlen erläutert. Da die For-

schungsfrage bzw. die daraus abgeleiteten Detailfragen sowohl Softwarekennzahlen als

auch Produktionskennzahlen adressieren, erfolgt eine vertiefende Darstellung dieser beiden

Kennzahlenausprägungen. In diesem Zusammenhang werden ebenfalls bekannte Grund-

sätze für die Gestaltung von Informationsverarbeitungssystemen aufgeführt, da diese für

die Lösung der dritten Detailfrage zu beachten sind.

Da die erste Detailfrage einen Transfer von Kennzahlen der Produktionsdomäne in die

Softwaredomäne adressiert, wird zu der in der einschlägigen Literatur geführten Diskus-

sion zur Machbarkeit des Transfers von Methoden der Produktionsdomäne in die Soft-

waredomäne Stellung genommen. Anschlieÿend werden bekannte Beispiele für Kennzah-

lentransfers genannt und es wird dargelegt, dass diese als Lösung für die erste Detail-

frage nicht geeignet sind. Daher werden existierende Methoden bzw. Prozessbeschrei-

bungen, mit denen Kennzahlen für betriebliche Prozesse methodisch bestimmt werden

können, dahingehend bewertet, ob sie als Ausgangspunkt für eine neu zu entwickelnde

Kennzahlentransfer-Methode geeignet sind.

Abschlieÿend widmet sich dieses Kapitel den Grundlagen, die für die zweite Detailfrage

relevant sind: Es werden die wesentlichen Merkmale des Softwareentwicklungsprozesses,

der das Ziel der kennzahlenorientierten Prozessgestaltung ist, erläutert und es wird der

Softwareentwicklungsprozess des Kooperationspartners dargestellt.

17

Kapitel 2. Grundlagen

2.1 Kennzahlen

2.1.1 Begri�e und Eigenschaften

Kennzahlen sowie deren Anwendung, Auswahlkriterien und Gestaltungsgrundsätze sind

u.a. in [HP07, Ben07, Bro97, Pet08, Hor11, BB10, Küt10] umfangreich beschrieben. Die

folgenden Ausführungen erläutern ein für diese Arbeit notwendiges Grundverständnis zu

Kennzahlen.

Kennzahlen sind Zahlen, die in verdichteter Form quantitativ oder qualitativ messbare

Sachverhalte wiedergeben. Es wird zwischen absoluten Kennzahlen und Verhältniskenn-

zahlen unterschieden (Abbildung 2.1) [Ben07]. Absolute Kennzahlen beschreiben einen

Sachverhalt, ohne in Relation zu einer anderen Gröÿe gesetzt zu werden. Sie können ge-

mäÿ [Ben07] in Einzelzahl, Summe, Di�erenz oder Mittelwert eingeteilt werden. Addition,

Subtraktion und Mittelwertbildung sind nur bei Werten gleicher Einheit möglich.

Kennzahlen

Absolute Kennzahlen Verhältniskennzahlen

Einzelzahlen Summen Differenzen Mittelwerte Gliederungszahlen Beziehungszahlen Indexzahlen

Abbildung 2.1: Arten von Kennzahlen [Ben07]

Verhältniskennzahlen zeigen das Verhältnis von mehreren absoluten Kennzahlen an. Sie

können in Gliederungskennzahlen (Anteil einer Gröÿe an einer Gesamtmenge, zum Bei-

spiel Entwicklungskosten zu Gesamtkosten), Beziehungskennzahlen (Verhältnis zweier un-

terschiedlicher Gröÿen, zum Beispiel Gewinn zu Eigenkapital) und Indexkennzahlen (zeit-

liche Entwicklung von Gröÿen, zum Beispiel Entwicklungskosten im Jahr 2014 zu Ent-

wicklungskosten im Jahr 2015) eingeteilt werden.

Kennzahlen dienen der Planung, Steuerung und Kontrolle von betrieblichen Aktivitäten

(Soll-Ist-Vergleich), lassen Trends erkennen (Ist-Kennwerte im Zeitvergleich) und können

für ein internes oder externes Benchmarking herangezogen werden.

Kennzahlen werden von betrieblichen Entscheidungsträgern aller Hierarchieebenen ge-

nutzt. Die Entscheidungsträger legen beispielsweise die Soll-Werte einzelner Kennzahlen

fest. Weichen die Ist-Werte einzelner Kennzahlen von den Soll-Werten ab, werden Maÿnah-

men abgeleitet, um die Ist-Werte zu verbessern. Die Wirksamkeit der Maÿnahmen wird

mit Hilfe der Ist-Werte überprüft. Kennzahlen haben somit eine Informationsfunktion.

Kennzahlen werden entsprechend den Informationsbedürfnissen der Adressaten in den ver-

schiedenen Hierarchieebenen aufbereitet. Abbildung 1.3 zeigt ein Beispiel: Darin werden

die Produktionskennzahlen beim Kooperationspartner entsprechend den Informations-

18

Kapitel 2. Grundlagen

bedürfnissen des Managements und der Produktionsteams präsentiert bzw. verdichtet.

Sofern die eingesetzten Kennzahlen das Management adressieren, sollte deren Verwen-

dung durch das Management bestätigt werden [BB10].

Um eine Kennzahl eindeutig zu beschreiben, werden alle zu ihr gehörenden Informationen

in einem Dokument hinterlegt. Dieses kann ein Kennzahlenstammblatt [Ben07], ein Kenn-

zahlensteckbrief [Küt10] oder ein Kennzahlenformular [HP07] sein. Die Informationen in

diesen Dokumenten zeigen die Bedeutung der Kennzahl, also deren Semantik, auf. Um den

Begri� �Semantik einer Kennzahl� für diese Arbeit zu konkretisieren, wird festgelegt, dass

die nachfolgenden Informationen die Semantik einer Kennzahl umfassen. Diese Konkre-

tisierung wird benötigt, da für die Semantik einer Kennzahl keine allgemein anerkannte

De�nition bekannt ist. Die benötigten Informationen sind:

� Name

� Maÿeinheit

� Wertebereich

� Idealwert

� Möglichkeit der Festlegung von Soll-Werten

� Frage

� Ziel

� Interpretation

Diese Informationsinhalte werden an dem Beispiel der bereits in Abschnitt 1.2 eingeführ-

ten First Pass Rate (Name) erklärt: Die FPR ist eine Verhältnisgröÿe, die in Prozent (%)

angegeben wird. Der Wertebereich liegt zwischen 0 % und 100 %, wobei der Idealwert

100 % ist. Ein typischer Soll-Wert, der für eine Produktionslinie individuell festgelegt

werden kann, ist 98 %. Die FPR beantwortet die Frage: �Wie ist das Verhältnis von ge-

fertigten Produkten, die fehlerfrei getestet wurden, zu allen gefertigten Produkten?� Die

FPR ist dem strategischen Ziel �Hohe Fertigungsqualität� zugeordnet. Diese abstrakte

Zielformulierung präsentiert die grundlegende Unternehmensstrategie des Kooperations-

partners, der sich als Qualitätsanbieter in seinem Markt versteht. Das Ziel ist folglich we-

der quanti�ziert noch terminiert. Der Begri� �Ziel� bezieht sich in dieser Arbeit auf solche

abstrakten Ziele. Die Quanti�zierung des Ziels und dessen Terminierung ergibt sich beim

Kooperationspartner durch die Formulierung von Soll-Werten für einen festgelegten Zeit-

raum, wie zum Beispiel: �Für die Werkstattfertigung A ist in 2016 eine durchschnittliche

FPR von 96 % zu erreichen.� Dabei wird die FPR wie folgt interpretiert:

19

Kapitel 2. Grundlagen

� Im Gegensatz zu rein mechanischen Produkten, die lediglich stichprobenartig ge-

prüft werden, werden alle intelligenten Produkte einem Fertigungsendtest unterzo-

gen. Maximal ist zwar eine FPR von 100 % möglich, typische Ist-Werte liegen jedoch

zwischen 95 % und 98 %. Da es sich um hochpreisige intelligente Produkte handelt,

werden diejenigen Produkte, die den Fertigungsendtest nicht bestehen, inspiziert

und wenn möglich nachbearbeitet. Dies verursacht Nacharbeitskosten. Das Mana-

gement fordert, die Nacharbeitskosten möglichst gering zu halten und legt für jede

Produktionsstätte durchschnittliche jährliche Soll-Werte fest. Die Produktionsteams

bestimmen daraus die jährlichen Soll-Werte für die einzelnen Produktionslinien in

der Produktionsstätte. Entsprechen die Ist-Werte den Soll-Werten, werden keine

Maÿnahmen eingeleitet. Sind die Ist-Werte geringer als die Soll-Werte, untersuchen

das Management bzw. die Produktionsteams die Ursachen und leiten Maÿnahmen

ein. Ein Beispiel einer Maÿnahme ist bereits in Tabelle 1.1 aufgeführt. Sollten die

Ist-Werte für eine Produktionsstätte nicht den Soll-Werten entsprechen, entscheidet

das Management gemeinsam mit den Produktionsteams über die Umsetzung stra-

tegischer Maÿnahmen wie zum Beispiel die Bescha�ung von neuen Maschinen oder

Mitarbeiterquali�zierungsmaÿnahmen.

Wie aus diesem Beispiel zu erkennen ist, beschreibt die Interpretation, wie die Adres-

saten einer Kennzahl auf die konkret erfassten Ist-Werte reagieren. Die Interpretation

ist folglich eine Handlungsbeschreibung des Adressaten. Da diese Handlungsbeschreibung

während der Gestaltung der Kennzahl nicht bzw. nur schwierig formulierbar ist, ist sie

im operativen Prozess zu beobachten und zu formulieren. Dabei kann die Interpretation

personenspezi�sch sein: So könnte zum Beispiel ein Manager auf eine Soll-Ist-Abweichung

der FPR mit der Einleitung einer Maÿnahme reagieren, ein anderer Manager hingegen

entscheidet sich für eine weitere Beobachtung der Soll-Werte, ohne eine sofortige Maÿ-

nahme einzuleiten. Die Interpretation ist folglich ein nicht eineindeutig beschreibbarer

Informationsinhalt einer Kennzahl.

Eine wichtige Rolle für die Erfassung und Verarbeitung von Kennzahlen spielen Informati-

onsverarbeitungssysteme. Dies sind IT-Systeme, die Daten aus einem Prozess ermitteln, zu

Kennzahlen verarbeiten und gra�sch darstellen [Ben07]. Voraussetzung für die IT-basierte

Kennzahlenerfassung ist die Erreichbarkeit der Datenquellen der Kennzahlen über ein

IT-Netzwerk. Informationsverarbeitungssysteme reduzieren in der Regel die Kosten der

Datenerfassung, -verarbeitung und -auswertung. Auÿerdem erhöhen sie die Objektivität

der dargestellten Kennzahlen, da diese sonst unbewusst oder bewusst manipuliert werden

können [Ben07]. Aus diesen Gründen werden bereits heute die Produktionskennzahlen

beim Kooperationspartner mit einem Informationsverarbeitungssystem erfasst.

20

Kapitel 2. Grundlagen

Bei der Gestaltung von Informationsverarbeitungssystemen sind verschiedene Grundsätze

zu beachten. In [HP07] werden folgende Gestaltungsgrundsätze empfohlen:

� Hohe Validität: Die Informationsverarbeitungssysteme müssen korrekt messen.

� Berücksichtigung der wesentlichen Kennzahlen.

� Ein�uss der Entscheidungsträger: Die in einem Informationsverarbeitungssystem

enthaltenen Kennzahlen sollten unmittelbar von Entscheidungsträgern beein�uss-

bar sein, das heiÿt die Entscheidungsträger sollten die notwendigen Befugnisse und

Kompetenzen haben, Maÿnahmen, die die Ist-Werte der Kennzahlen ändern, einzu-

leiten.

� Ausgewogene Ausgestaltung hinsichtlich der Menge und des Zeithorizonts der Kenn-

zahlen.

� Festlegung von Soll-Werten, um Ist-Werte interpretieren zu können.

� Ausgestaltung unter Kosten-Nutzen-Bedingungen: Der Nutzen des Informations-

verarbeitungssystems rechtfertigt die Kosten für dessen Entwicklung und dessen

Betrieb.

� Eindeutige Darstellung der Kennzahlen, um Fehlinterpretationen zu vermeiden. Mit

Fehlinterpretation ist eine grundsätzlich falsche Interpretation, nicht die oben erläu-

terte personenspezi�sche Interpretation gemeint.

Vergleichbare, Informationsverarbeitungssysteme betre�ende Gestaltungsgrundsätze wer-

den zum Beispiel in [Bal97, Küt10] formuliert. Da diese grundsätzlich den oben aufge-

führten Gestaltungsgrundsätzen ähneln, werden die Gestaltungsgrundsätze aus [HP07]

für den später folgenden Entwurf des Informationsverarbeitungssystems als geeignet an-

gesehen und daher berücksichtigt.

2.1.2 Softwarekennzahlen

Im weiteren Verlauf der Arbeit werden die Begri�e �Softwareprodukt�, �Softwareversion�,

�Softwarefunktion� und �Softwaredokumentation� verwendet. Ein Softwareprodukt im

Kontext dieser Arbeit ist eine in einem intelligenten Produkt eingebettete Software oder

eine zu einem intelligenten Produkt gehörende Softwareanwendung, zum Beispiel eine

App. Eine Softwareversion ist ein de�nierter Entwicklungsstand eines Softwareproduktes.

Der de�nierte Entwicklungsstand enthält neue Softwarefunktionen. Eine Softwarefunktion

ist ein spezi�ziertes Verhalten des Softwareproduktes.

21

Kapitel 2. Grundlagen

Allerdings ist das Softwareprodukt bzw. eine Softwareversion nicht das einzige Ergebnis

des Softwareentwicklungsprozesses: In [HKLR84] wird der Begri� �Software� de�niert �als

Menge von Programmen oder Daten zusammen mit begleitenden Dokumenten, die für ih-

re Anwendung notwendig oder hilfreich sind�. Die Bedeutung der Dokumentation wächst

mit der zunehmenden Gröÿe von Softwareprodukten, da sie deren Verständnis und de-

ren Weiterentwicklung dient [MD06]. Der Aufwand für die Erstellung der Dokumentation

variiert und kann in sicherheitsgerichteten Entwicklungen bis zu 50 % des Gesamtpro-

jektaufwands betragen [MSH+12]. Für die Erläuterung des Begri�s �sicherheitsgerichtet�

wird auf den Abschnitt 2.5.2.1 verwiesen. Folglich sind Dokumente wie beispielsweise die

Anforderungs- oder die Testspezi�kationen ebenfalls wichtige Ergebnisse des Softwareent-

wicklungsprozesses. In dieser Arbeit sind mit dem Begri� �Softwaredokumentation� solche

Dokumente gemeint.

Mit Hilfe von Softwarekennzahlen wird der Prozess der Erstellung von Softwareproduk-

ten, Softwareversionen und deren Dokumenten sowie deren quantitative und qualitative

Eigenschaften gemessen. Softwarekennzahlen können verschiedenartig kategorisiert wer-

den: In [Kan03] wird zwischen Produkt-, Prozess- und Projektkennzahlen unterschieden.

In [SSB10] wird davon ausgegangen, dass Software eine multidimensionale Substanz ist,

die in drei Dimensionen messbar ist: Gröÿe, Komplexität und Qualität.

Eine weitere Form der Kategorisierung zeigt das sogenannte Teufelsquadrat, das als �ein

Grundmodell der Softwarewirtschaftlichkeit mit vier Ecken� bezeichnet wird [Sne87]. Die

Ecken symbolisieren das Spannungsfeld, in dem sich Softwareentwicklungsprozesse bewe-

gen: Sie sollen eine hohe Qualität und hohe Quantität bei geringer Entwicklungsdauer

und geringen Kosten erreichen (Abbildung 2.2).

Entwicklungsdauer Kosten

Qualität Quantität

+ +

--

Abbildung 2.2: Teufelsquadrat nach [Sne87]

22

Kapitel 2. Grundlagen

Das Trapez im Inneren des Quadrats symbolisiert die Wirtschaftlichkeit. Bei Erreichen

einer hohen Qualität liegt der Schnittpunkt des Trapezes und der Diagonalen �Qualität-

Kosten� links oben. Bei hohen Kosten be�ndet sich der Schnittpunkt des Trapezes und

dieser Diagonalen im inneren Bereich des Teufelsquadrats und so fort. Abbildung 2.2

zeigt symbolisch einen Softwareentwicklungsprozess, für den eine hohe Qualität, mittlere

bzw. geringe Quantität, kurze Entwicklungsdauer und mittlere bzw. hohe Kosten erreicht

wurden. Die Attribute �hoch�, �mittel� etc. sind für einen konkreten Softwareentwicklungs-

prozess mit Softwarekennzahlen zu quanti�zieren.

Im weiteren Verlauf dieser Arbeit werden die Softwarekennzahlen gemäÿ dem Teufelsqua-

drat kategorisiert. In den folgenden Abschnitten werden bekannte Softwarekennzahlen

erläutert, die für die Quanti�zierung der Kategorien des Teufelsquadrats geeignet sind.

Alle Softwarekennzahlen in den einzelnen Kategorien sind den absoluten Kennzahlen zu-

zuordnen.

Zweck dieser Ausführungen ist es, mögliche Softwarekennzahlen für die Menge KS zu

identi�zieren, mit denen die Zielerreichung der operativen Ziele des Softwareentwicklungs-

prozesses beim Kooperationspartner überprüft werden kann (vgl. Abbildung 1.5). In den

Erläuterungen wird jeweils bewertet, ob die jeweilige Softwarekennzahl durch ein Infor-

mationsverarbeitungssystem erfasst werden kann. Nur solche Softwarekennzahlen sollen

für die später folgende Gestaltung des Softwareentwicklungsprozesses beim Kooperations-

partner berücksichtigt werden.

2.1.2.1 Quantität

Softwarequantitätskennzahlen, die sich auf ein Softwareprodukt bzw. eine Softwareversion

beziehen, können in funktionale und in physikalische Kennzahlen unterschieden werden

[BGA14]. Funktionale Kennzahlen zeigen den Funktionsumfang des Softwareproduktes an,

wohingegen sich physikalische Kennzahlen auf den inneren Aufbau des Softwareproduk-

tes beziehen. Physikalische Kennzahlen können weiter untergliedert werden und zwar in

Quelltextkennzahlen, zum Beispiel Lines of Code, und in Prozesskennzahlen, zum Beispiel

die Anzahl geänderter Quelltextzeilen. Allerdings werden mit Prozesskennzahlen, wie sie

in [RD13] de�niert sind, auch weitere Bearbeitungsaktivitäten, zum Beispiel Anzahl von

Commits, gemessen. Solche Kennzahlen können nicht den Softwarequantitätskennzahlen

zugeordnet werden. Daher wird der Begri� �Prozesskennzahl� für diese Arbeit eingegrenzt:

Es sind nur Kennzahlen gemeint, die Aussagen über die Änderungen des Quelltextes er-

möglichen.

Für Softwarequantitätskennzahlen, die sich auf die Softwaredokumentation beziehen, sind

keine expliziten Bezeichnungen bekannt. Sie werden im Folgenden �Dokumentationskenn-

23

Kapitel 2. Grundlagen

Softwarequantitätskennzahlen

Funktionale
Kennzahlen

Physikalische
Kennzahlen

Quelltext-
kennzahlen

Prozess-
kennzahlen

Function Points
..

Lines of Code
Anzahl Klassen

..

Anzahl geänderter
Quelltextzeilen

..

Dokumentations-
kennzahlen

Anzahl Seiten
Anzahl Wörter

..

Abbildung 2.3: Kategorien von Softwarequantitätskennzahlen

zahlen� genannt. Abbildung 2.3 zeigt die erwähnten Kategorien der Softwarequantitäts-

kennzahlen. In den nächsten Abschnitten werden ausgewählte Softwarequantitätskenn-

zahlen aus diesen Kategorien erläutert.

2.1.2.1.1 Funktionale Kennzahlen

Bei der funktionalen Gröÿenmessung steht der Funktionsumfang der Software im Mittel-

punkt der Quantitätsmessung [PP11]. Da Function Points die gröÿte Verbreitung aller

funktionalen Softwarequantitätskennzahlen erlangt haben [PP11], wird an dieser Stelle

nur auf sie eingegangen, um die Idee der funktionalen Gröÿenmessung zu erläutern. Wei-

tere funktionale Kennzahlen sind Use-Case Points [Kar93] oder Object Points [BKK91].

Function Points wurden erstmals von Albrecht in [Alb79] de�niert. Function Points nach

der De�nition von Albrecht wurden in der Norm ISO/IEC 20926 normiert und sind

als �IFPUG FPA� (FPA: Function Point Analyse) bekannt [ISO09]. Ausgehend von den

IFPUG FPA entstanden weitere Methoden, mit denen Function Points ermittelt werden

können [DA11]. Eine dieser Weiterentwicklungen ist die Norm ISO/IEC 19761 [ISO03],

die als COSMIC Function Points (CFP) bekannt ist. Der folgende Absatz fasst das in

[Bal00] erläuterte Vorgehen bei der Ermittlung von Function Points zusammen:

Jede Anforderung an ein Softwareprodukt wird einer von fünf Kategorien zugeordnet:

Eingabedaten, Abfragen, Ausgabedaten, Datenbestände, Referenzdateien. Anschlieÿend

wird jede Produktanforderung in eine von drei Komplexitäten eingeordnet: einfach, mittel,

komplex. Für jede Kombination Kategorie/Komplexität wird eine Punktzahl de�niert,

zum Beispiel wird eine Abfrage mittlerer Komplexität mit vier Punkten gewichtet. Auf

24

Kapitel 2. Grundlagen

gather available
documentation

determine counting
scope & boundaries,

and identify
functional user
requirements

measure data
functions

measure
transactional

functions

calculate functional
size

document & report

Abbildung 2.4: Prozess zur Ermittlung der Functional Size [ISO09]

diese Art und Weise werden alle Anforderungen an ein Softwareprodukt mit Punkten

bewertet. Die Summe aller Punkte sind die Function Points des Softwareprodukts, also

dessen funktionale Gröÿe.

Die Anzahl an Function Points wird durch geschulte Experten manuell ermittelt. Die

Norm ISO/IEC 20926 beschreibt den aus mehreren Teilaktivitäten bestehenden Pro-

zess für die Ermittlung von Function Points (Abbildung 2.4). In diesem Prozess liegen

zwei wesentliche Kritikpunkte an den Function Points begründet: Zum einen ist die

erstmalige Anwendung bei bestehenden Softwareprodukten kompliziert und erfordert die

Unterstützung von ausgebildeten Function Point Experten [Sym88, Car06]. Obwohl die

Anzahl an Function Points objektiv durch das Softwareprodukt vorgegeben wird, zeige

die Praxis, dass unterschiedliche Personen unterschiedliche Ergebnisse ermitteln [Abr14].

Zum anderen ist eine IT-basierte Datenerfassung von Function Points schwer umzuset-

zen [JYW+11, KBNAJ11]. Zwar sind einige Ansätze zur IT-basierten Datenerfassung von

Function Points beschrieben [LH11, OBB+14, Kui14], die allerdings die vollständige Mo-

dellierung des zu messenden Softwareproduktes, zum Beispiel mit der Uni�ed Modeling

Language (UML) [OMG17c], voraussetzen. Solche Modellierungsmethoden sind jedoch

in der Praxis nicht immer anzutre�en, beispielsweise ist die UML bei weitem nicht so

verbreitet ist, wie allgemein angenommen [Pet13].

2.1.2.1.2 Quelltextkennzahlen

Im Gegensatz zu funktionalen Kennzahlen betrachten Quelltextkennzahlen den inneren

Aufbau eines Softwareproduktes, indem sie die Anzahl der enthaltenen Softwareelemente

messen. Die bekannteste Messung ist die Zählung von �Lines of Code� (LOC). Andere Mög-

lichkeiten sind die Zählung der Anzahl an Klassen, an Klassenmethoden und -attributen

[SSB10]. Die Messung von Lines of Code ist zwar relativ einfach zu realisieren, allerdings

wird ihre Eignung als Quantitätskennzahl in Frage gestellt. Dafür gibt es mehrere Gründe:

25

Kapitel 2. Grundlagen

� Die Anzahl an LOC für das Lösen einer Programmieraufgabe ist abhängig von der

Programmiersprache [PP11].

� Es ist zwischen Zeilen und Anweisungen zu unterscheiden [Car06]. Ein Beispiel ist

die Unterscheidung zwischen Logical Lines of Code und Physical Lines of Code

[Kas08].

� Ein e�ektiv programmierter Code ist kürzer als üppige Quelltextkonstrukte, die

bezogen auf Ressourcenverbrauch und Rechenintensität kaum optimiert sind: �better

programmers do more with less code� [FPG+04].

� LOC zeigen nicht die Intensität der Bearbeitung des Quelltextes durch die Softwa-

reteams an. Damit ist gemeint, dass die Anzahl an LOC ungefähr konstant bleiben

kann, selbst wenn der Quelltext in gröÿerem Maÿe geändert wird [RD13].

Quelltextkennzahlen können IT-basiert gemessen werden, zum Beispiel durch den Einsatz

von Werkzeugen für die statische Quelltextanalyse [PCL17, Klo17, Pol17].

2.1.2.1.3 Prozesskennzahlen

Prozesskennzahlen messen den Bearbeitungsprozess der Erstellung von Softwareproduk-

ten und Softwareversionen. Voraussetzung für die Messung von Prozesskennzahlen ist

die Anwendung von Versionsmanagementsystemen. Versionsmanagementsysteme ermög-

lichen die kontrollierte gemeinsame Bearbeitung und Erstellung von Softwareprodukten

unter Verwendung einer zentralen oder dezentralen Datenablage [LEPV10]. Beispiele für

Prozesskennzahlen sind Anzahl hinzugefügter oder gelöschter Quelltextzeilen und die An-

zahl geänderter Quelltextzeilen [RD13].

Die Anzahl geänderter, gelöschter oder hinzugefügter Quelltextzeilen wird Churn genannt

[ME98]. Churn wird de�niert: �as the sum of the number of lines added, deleted, and mo-

di�ed in the source code.� [SJS12]. Eine Möglichkeit, den Churn konkret zu messen, ist die

Nutzung von sogenannten Uni�ed Di� Patches [JAB12]. Uni�ed Di� Patches beschrei-

ben den Namen der geänderten Datei und die Hinzufügungen und Löschungen, die in

dieser Datei erfolgt sind. Hinzugefügte Zeilen werden mit einem �+� markiert, gelösch-

te Zeilen mit einem �-�. Änderungen in einer Zeile werden durch eine Hinzufügung und

eine Löschung markiert. Somit lässt sich analysieren, wie viele Quelltextzeilen gelöscht,

hinzugefügt oder geändert wurden. Abbildung 2.5 zeigt ein Beispiel eines Uni�ed Di�

Patches.

Wie erwähnt, ändern sich Quelltextkennzahlen nicht immer wesentlich, insbesondere wenn

die Softwareprodukte einen hohen Reifegrad erreicht haben und lediglich von Software-

version zu Softwareversion verbessert werden. In [RD13] wird hingegen aufgeführt, dass

26

Kapitel 2. Grundlagen

Abbildung 2.5: Beispiel eines Uni�ed Di� Patches

sich Prozesskennzahlen selbst bei diesen Voraussetzungen deutlich stärker ändern als

Quelltextkennzahlen und dadurch Indikatoren für die Quantität der Softwareänderungen

sind. Auÿerdem seien sie zur Analyse möglicher Fehlerquellen geeignet: In Softwarekom-

ponenten, die stark geändert werden, ist die Wahrscheinlichkeit des Vorhandenseins von

Fehlern höher als in Softwarekomponenten, die kaum geändert werden.

Prozesskennzahlen sind IT-basiert erfassbar, da der Quelltext in Versionsmanagementsys-

temen verwaltet wird. Versionsmanagementsysteme haben Schnittstellen, die sogenannten

Application Programming Interfaces (API), die von Informationsverarbeitungssystemen

verwendet werden können.

2.1.2.1.4 Dokumentationskennzahlen

Die Softwaredokumentation erfolgt überwiegend in natürlicher Sprache [Sne07], für deren

Erstellung in der Regel Texteditoren wie zum Beispiel MS Word verwendet werden. Die

Messung der Quantität der Softwaredokumentation ist mit Hilfe dieser Texteditoren mög-

lich. Zum Beispiel können mit MS Word Wörter, Zeichen und Seiten eines Dokuments

gezählt werden. Obwohl die Softwaredokumentation ein wichtiges Ergebnis des Software-

entwicklungsprozesses ist und folglich deren Erstellungsprozess stetig verbessert und ge-

messen werden sollte, sind Dokumentationskennzahlen kaum Gegenstand der Forschung.

Ein Beispiel ist aus [MR93] bekannt: Darin werden die erstellten Dokumentenseiten mit

der Entwicklungsdauer in ein Verhältnis gesetzt.

Eine andere Möglichkeit der Erstellung der Softwaredokumentation ergibt sich bei Anwen-

dung von IT-Systemen, mit denen sogenannte Work Items erfasst werden können: Work

Items beschreiben sowohl zu erledigende Aktivitäten im Softwareentwicklungsprozess, wie

zum Beispiel in [TS12], als auch Dokumentationselemente, etwa Produktanforderungen,

Testfälle oder Fehlerbeschreibungen, wie zum Beispiel in [Moc03]. Durch das Zählen von

27

Kapitel 2. Grundlagen

Work Items kann die Quantität der Softwaredokumentation gemessen werden. Die Zäh-

lung von Work Items ist IT-basiert möglich, da die verwaltenden IT-Systeme den Zugri�

über API implementieren, die von Informationsverarbeitungssystemen verwendet werden

können.

2.1.2.2 Kosten

Der überwiegende Teil der im Softwareentwicklungsprozess anfallenden Kosten sind die

Personalkosten [Sne87]. Die Personalkosten werden aus den geleisteten Aufwänden, die

in der Regel in Stunden angegeben werden, und dem betriebsspezi�schen Kostensatz pro

Stunde ermittelt. Der betriebsspezi�sche Kostensatz ist in der Regel abhängig von der

Quali�kation des Mitarbeiters (Student, Facharbeiter, Ingenieur etc.) bzw. der durch-

geführten Aufgabe (Test nach Anleitung, Entwurf einer Softwarearchitektur etc.). Die

Aufwände werden in Soll-Aufwände und Ist-Aufwände unterschieden: Der Soll-Aufwand

ist der geplante Aufwand für die Bearbeitung einer Aufgabe im Softwareentwicklungspro-

zess, zum Beispiel die Implementierung einer Softwarefunktion. Der Ist-Aufwand ist der

tatsächlich geleistete Aufwand für die Bearbeitung der Aufgabe. Die Soll-Aufwände bzw.

die Ist-Aufwände für die Bearbeitung einzelner Aufgaben werden zu dem Soll-Aufwand

bzw. dem Ist-Aufwand für die Realisierung einer Softwareversion summiert.

Weitere Kosten im Softwareentwicklungsprozess entstehen zum Beispiel durch die Beschaf-

fung von Lizenzen und Computern oder durch die Nutzung von Cloud-Services. Da diese

Ressourcen in der Regel für die Entwicklung von mehreren Softwareprodukten eingesetzt

werden, können diese Kosten nicht direkt einem einzelnen Softwareprodukt zugeordnet

werden.

Darüber hinaus fallen indirekte Personalkosten in der Softwareentwicklung an. Dies ist

zum Beispiel bei international verteilten Softwareentwicklungen der Fall, bei denen die

Teams an mehreren Standorten in unterschiedlichen Ländern an einem Softwareprodukt

arbeiten. Die Ursachen für indirekte Personalkosten liegen dabei in den sprachlichen und

kulturellen Barrieren [LMT+10]. Indirekte Kosten sind lediglich abschätzbar und nicht

direkt messbar.

Die im Softwareentwicklungsprozess geplanten bzw. aufgewendeten Stunden sind IT-

basiert erfassbar, sofern sie in einer Datenablage, zum Beispiel zum Verwalten von Pro-

jektinformationen, eingetragen werden und die Daten aus der Datenablage mit Hilfe der

API erfasst werden können.

28

Kapitel 2. Grundlagen

2.1.2.3 Entwicklungsdauer

Die Entwicklungsdauer ist der Zeitraum zwischen dem Starttermin und dem Endtermin

der Entwicklung einer Softwareversion [BMS02]. Der Starttermin und der Endtermin kön-

nen für verschiedene Stakeholder des Softwareentwicklungsprozesses unterschiedlich sein.

Ein Kunde bzw. ein Auftraggeber könnte den Tag der Auslieferung der Softwareversion

als Endtermin betrachten, wohingegen das Entwicklungsteam bzw. der Dienstleister den

Tag der internen Freigabe als Endtermin ansehen.

Es ist keine allgemeingültige De�nition für den Starttermin bzw. den Endtermin bekannt.

Um dennoch betriebsspezi�sch die Entwicklungsdauer berechnen zu können, müssen Start-

termin und Endtermin betriebsspezi�sch de�niert werden. Folgende De�nitionen werden

zum Beispiel in [Kas08] vorgeschlagen:

� Starttermin: Tag der Freigabe der Anforderungen

� Endtermin: Tag der ersten Installation des Softwareproduktes

Unabhängig davon, wie der Endtermin einer Softwareversion de�niert ist, sollten nach

diesem Termin keine Entwicklungsarbeiten an der Softwareversion erfolgen. Im weiteren

Verlauf der Arbeit wird der Begri� �Endtermin� in diesem Sinne verwendet. Eine Soft-

wareversion enthält neue Softwarefunktionen. Für jede dieser Softwarefunktionen kann

jeweils individuell ein zugesagter Termin formuliert werden. Der zugesagte Termin ist das

einem Kunden genannte Datum, an dem die Auslieferung der Softwarefunktion erfolgen

soll.

Alle genannten Termine sind IT-basiert erfassbar, sofern sie in einer Datenablage, zum

Beispiel zum Verwalten von Projektinformationen, eingetragen werden und die Daten aus

der Datenablage mit Hilfe der API erfasst werden können.

2.1.2.4 Qualität

Die Erfassung von Softwarekennzahlen zu Quantität, Kosten und Entwicklungsdauer oh-

ne eine Erfassung der Softwarequalität ist nutzlos. Egal wie hoch die Quantität, wie kurz

die Entwicklungsdauer oder wie gering die Kosten sind � ein minderwertiges Software-

produkt wird nicht erfolgreich sein: �Without an accompanying assessment of product

quality, speed of production is meaningless� [FP97]. Daher stellen Softwarequalitätskenn-

zahlen einen wesentlichen Bestandteil in der Softwaremessung dar. Die Softwarequalität

kann zum einen durch das Erfassen und Verarbeiten von Fehlermeldungen und zum ande-

ren durch das Erfassen und Verarbeiten von sogenannten Softwarequalitätseigenschaften

29

Kapitel 2. Grundlagen

bestimmt werden. Dabei sollte die Messung der Qualität der Softwaredokumentation in

einer gesamtheitlichen Softwarequalitätsmessung berücksichtigt werden.

2.1.2.4.1 Fehlermeldungen

In [SL03] wird ein Fehler wie folgt erläutert: Ein Fehler beschreibt einen Fehlerzustand

oder eine Fehlerwirkung. Ein Fehlerzustand ist der inkorrekte Teil eines Softwareproduk-

tes, der die Ursache für eine Fehlerwirkung ist. Eine Fehlerwirkung ist eine Abweichung

zwischen einem spezi�zierten bzw. einem implizit erwarteten Soll-Verhalten und dem Ist-

Verhalten.

Fehler werden zu unterschiedlichen Zeitpunkten und von verschiedenen Stakeholdern ent-

deckt. Daher gibt es folgende Softwarekennzahlen, die die Anzahl von Fehlern anzeigen

(in Anlehnung an [PP11]):

� Anzahl intern entdeckter Fehler: Intern entdeckte Fehler sind Fehler, die im Zu-

sammenhang mit qualitätssichernden Maÿnahmen während des Softwareentwick-

lungsprozesses durch die Softwareteams vor dem Endtermin einer Softwareversion

entdeckt werden.

� Anzahl Restfehler: Restfehler sind Fehler, die nach Übergabe der Softwareversion

an den Auftraggeber (Kunden) entdeckt werden. Ein Teil der Restfehler wird intern

durch die Softwareteams entdeckt, ein anderer Teil wird durch den Auftraggeber

(Kunden) entdeckt. Die letztgenannten Fehler sind extern entdeckte Fehler.

� Anzahl aller Fehler: Summe aus der Anzahl intern entdeckter Fehler und der Anzahl

der Restfehler.

Aus diesen Softwarekennzahlen kann folgende weitere Softwarekennzahl bestimmt werden:

� Fehlerbehebungsrate: Verhältnis von der Anzahl intern entdeckter Fehler und der

Anzahl aller Fehler.

Die Fehlerbehebungsrate ist eine Verhältniskennzahl. Zwar wird auf Verhältniskennzahlen

in einem eigenen Abschnitt eingegangen (Abschnitt 2.1.2.5). Jedoch wird die Fehlerbe-

hebungsrate in diesem Abschnitt erläutert, um das Verständnis von Fehlermeldungen zu

erleichtern. Die Fehlerbehebungsrate ist ein gutes Maÿ für die E�ektivität der internen

Tests und sollte über 90 % liegen [SSB10]. Die Anzahl intern entdeckter Fehler sollte bei

höherer Testintensität steigen [Sch11]. Daher ist die Fehlerbehebungsrate nur bei einer

adäquaten Testdurchführung eine aussagekräftige Softwarekennzahl.

30

Kapitel 2. Grundlagen

Zeitpunkt der Fehlerentdeckung Kosten

Entdeckung während der Erstellung der Produktanforderungen 250 $

Entdeckung während der Erstellung des Softwareentwurfs 500 $

Entdeckung während der Programmierung und des Testens 1.250 $

Entdeckung nach dem Endtermin 5.000 $

Tabelle 2.1: Kosten-pro-Fehler-Analyse [Jon17]

Das frühzeitige Entdecken eines Fehlers reduziert die Kosten einer Fehlerbehebung: In

[Jon17] sind die in Tabelle 2.1 gezeigten Kosten einer Fehlerbehebung in Abhängigkeit

der Phase, in der der Fehler entdeckt wird, aufgeführt. Unabhängig davon, ob die in

der Tabelle aufgeführten Geldbeträge für eine bestimmte Projektumgebung tatsächlich

zutre�en, kann die dargestellte Tendenz verallgemeinert werden.

Alle entdeckten Fehler werden in der Regel hinsichtlich ihres sogenannten Schweregrades

eingeordnet. Eine mögliche Einordnung ist gemäÿ [PP11] wie folgt:

� Kritischer Fehler: Die Anwendung ist oder wesentliche Funktionen der Anwendung

sind nicht verfügbar bzw. nutzbar.

� Schwerer Fehler: Eine wesentliche Funktion ist nicht verfügbar oder liefert inkorrekte

Ergebnisse, aber es gibt einen Workaround.

� Leichter Fehler: Eine nicht wesentliche Funktion ist nicht verfügbar oder liefert nicht

die richtigen Ergebnisse.

� Trivialer Fehler: Kleinerer Fehler, der die Nutzung der Anwendung nicht wesentlich

beeinträchtigt.

Der Schweregrad ist ein sogenanntes Fehlerattribut. Ein Fehlerattribut ist eine den Fehler

beschreibende Eigenschaft. Weitere typische Fehlerattribute sind zum Beispiel Name des

Melders, Datum der geplanten Behebung und der Status der Fehlerbehebung (geplant,

behoben etc.).

Aus der Analyse des Schweregrades der entdeckten Fehler kann eine prozentuale Verteilung

des Schweregrades über alle Fehler ermittelt werden. Die prozentuale Verteilung zeigt alle

prozentualen Teilwerte an. Ein prozentualer Teilwert zeigt das Verhältnis der Fehler mit

einem bestimmten Schweregrad zur Anzahl aller Fehler an. Abbildung 2.6 veranschaulicht

diese Erläuterung: Sie zeigt ein Beispiel der prozentualen Verteilung des Schweregrades.

Der Teilwert für die kritischen Fehler beträgt 46 %. Um diesen Teilwert interpretieren zu

können, sollte die absolute Anzahl an Fehlern bekannt sein.

31

Kapitel 2. Grundlagen

Kritisch

Schwer

Leicht

Trivial

46,2 %

20,0 %

20,3 %

13,5 %

Abbildung 2.6: Erläuterung der prozentualen Fehlerverteilung

Eine IT-basierte Datenerfassung der prozentualen Verteilung bzw. der Anzahl aller Fehler

ist möglich, sofern die entdeckten Fehler in Werkzeugen für die Fehlerverwaltung einge-

tragen werden, zum Beispiel in Bugzilla [Bug17]. Die API dieser Werkzeuge können von

Informationsverarbeitungssystemen verwendet werden.

2.1.2.4.2 Qualitätseigenschaften

Die Erfassung und Verarbeitung von Fehlermeldungen unterstützen zwar in der Bewertung

der Qualität des Softwareentwicklungsprozesses, sie ermöglichen allerdings keine qualita-

tive Einschätzung des Softwareproduktes. Ein Beispiel einer qualitativen Einschätzung ist

die Bewertung, ob ein Softwareprodukt gut nutzbar ist oder nicht. Derartige qualitative

Einschätzungen werden erst durch die De�nition und die Anwendung von sogenannten

Qualitätsmodellen ermöglicht. Ein allgemeines Qualitätsmodell ist in der Normenreihe

ISO/IEC 25000 de�niert [ISO10] (Abbildung 2.7). Gemäÿ diesem Qualitätsmodell kann

die Softwarequalität durch einzelne Charakteristiken, zum Beispiel durch die Funktiona-

lität, beschrieben werden.

Qualität

Charakteristik 1 Charakteristik 2 Charakteristik 3 Charakteristik m

Subcharakteristik 1 Subcharakteristik 2 Subcharakteristik n

Qualitätseigenschaft x

Qualitätseigenschaft 3Qualitätseigenschaft 1 Qualitätseigenschaft y

 ...

 ...

 ...

 ...

Qualitätseigenschaft 2

Qualitätseigenschaft 5

Qualitätseigenschaft 4

Abbildung 2.7: Allgemeines Qualitätsmodell in Anlehnung an [ISO10]

32

Kapitel 2. Grundlagen

Den Charakteristiken werden Subcharakteristiken oder Qualitätseigenschaften zugeord-

net. Charakteristiken und Subcharakteristiken sind nicht messbar, wohingegen die Quali-

tätseigenschaften messbar sind.

Die Norm ISO/IEC 25010 de�niert auÿerdem ein Qualitätsmodell, das für die Bewer-

tung des Nutzens einer Software aus Sicht des Anwenders verwendet werden kann. Dieses

Quality in Use genannte Qualitätsmodell enthält die fünf in der Abbildung 2.8 gezeigten

Charakteristiken. Die Norm ISO/IEC 25022 präzisiert das Quality in Use-Modell und

ordnet den Charakteristiken und Subcharakteristiken messbare Qualitätseigenschaften zu

[ISO16a]. Ein Beispiel einer Qualitätseigenschaft ist die task time, die der Charakteristik

e�ciency zugeordnet ist. Sie zeigt die Dauer für die Erledigung einer Aufgabe durch den

Benutzer an.

Quality in Use

Effectivness Efficiency Satisfaction
Freedom
from risk

Context
coverage

Abbildung 2.8: Quality in Use-Modell der ISO/IEC 25010 [ISO10]

Des Weiteren beschreibt die Norm ISO/IEC 25010 ein Qualitätsmodell für die Anwend-

barkeit einer Software. Diese Software Product Quality genannte Qualitätsmodell enthält

die acht in der Abbildung 2.9 gezeigten Charakteristiken. Die Norm ISO/IEC 25023 prä-

zisiert das Software Product Quality-Modell und ordnet messbare Qualitätseigenschaften

den Charakteristiken und Subcharakteristiken zu [ISO16b]. Ein Beispiel einer Qualitäts-

eigenschaft ist die Functional correctness, die der Charakteristik Functional suitability

zugeordnet ist. Sie zeigt die Anzahl der Funktionen an, die korrekte Ergebnisse liefern.

Software Product Quality

Functional
suitability

Performance
efficieny

Compatibility Usability Reliability Security
Maintain-

ability
Portability

Abbildung 2.9: Software Product Quality-Modell der ISO/IEC 25010 [ISO10]

Die De�nition eines Qualitätsmodells ist in der betrieblichen Praxis eine Herausforde-

rung. Obwohl die Normen ISO/IEC 25022 und ISO/IEC 25023 die Qualitätsmodelle der

ISO/IEC 25010 präzisieren und messbare Qualitätseigenschaften vorschlagen, können we-

der die Charakteristiken noch die Qualitätseigenschaften in allen produzierenden Betrie-

ben angewendet werden. Die ISO/IEC 25010 betont daher, dass die Charakteristiken

33

Kapitel 2. Grundlagen

und die Subcharakteristiken aus den betrieblichen Gegebenheiten abzuleiten und ihnen

messbare Qualitätseigenschaften zuzuordnen sind.

In Abhängigkeit ihrer De�nition können die Qualitätseigenschaften IT-basiert erfasst wer-

den. Ein Beispiel einer IT-basierten Datenerfassung von Qualitätseigenschaften ist in

[DP12] beschrieben: Ausgehend von dem Qualitätsmodell der ISO/IEC 9126 [ISO01],

der Vorgängernorm der ISO/IEC 25010, werden Qualitätseigenschaften für die Anzei-

ge der inneren Qualität von Softwareprodukten festgelegt. Ein Beispiel einer IT-basiert

erfassbaren Qualitätseigenschaft ist die �le comment ratio, die der Subcharakteristik Ana-

lysability/Maintainability im Qualitätsmodell Software Product Quality zugeordnet ist.

2.1.2.4.3 Dokumentationsqualität

Da die Softwaredokumentation ein wichtiges Ergebnis des Softwareentwicklungsprozesses

ist, sollte sie Gegenstand von qualitativen Bewertungen sein. Der Messung der Quali-

tät der Softwaredokumentation widmen sich Textanalysemethoden wie zum Beispiel in

[Leh94, Sne05, GFL+13, Sne15, ASSH16]. In diesen Publikationen wird der Fokus auf die

Qualität der Anforderungen an die Softwareprodukte mit dem Ziel gelegt, die Qualität

der Anforderungen zu erhöhen. Eine Erhöhung der Qualität der Anforderungen reduziert

das Risiko von Widersprüchen und Fehlern in den nachfolgenden Phasen der Software-

entwicklung, etwa im Systementwurf oder in der Implementierung.

Die Bewertung der Qualität der Anforderungen erfolgt toolunterstützt, was bedeutet,

dass ein Textanalysetool alle Anforderungen hinsichtlich vorgegebener Kriterien automa-

tisiert prüft. Ein mögliches Kriterium ist die Zählung bestimmter Schlüsselwörter in einer

Anforderung, beispielsweise �wenn/dann�, �solange/bis� etc. [ASSH16]. Je mehr solcher

Schlüsselwörter in einer einzigen Anforderung verwendet werden, desto komplexer ist die-

se. Daraus wird geschlussfolgert, dass die Implementierung dieser Anforderungen schwierig

ist. Um die Implementierung zu vereinfachen, sollten daher solche Anforderungen umfor-

muliert bzw. geteilt werden.

Trotz der vorhandenen Publikationen und der darin zu sehenden Bestätigung, dass die

Dokumentationsqualität Gegenstand der Forschung ist, ist keine einheitliche Methode

hinsichtlich ihrer Messung bzw. ihrer Bewertung zu erkennen. Folglich sind die in den Pu-

blikationen genannten Kennzahlen, die die Dokumentationsqualität anzeigen (in [ASSH16]

ist das die sogenannte conjunctive complexity), spezi�sch für die jeweilige Methode.

34

Kapitel 2. Grundlagen

2.1.2.5 Verhältniskennzahlen

Die meisten der in den Abschnitten 2.1.2.1 bis 2.1.2.4 vorgestellten Softwarekennzah-

len sind den absoluten Kennzahlen zuzuordnen (vgl. Abbildung 2.1). Eine Ausnahme ist

die Fehlerbehebungsrate, die das Verhältnis der Projektfehlerrate zur Gesamtfehlerrate

darstellt. Da die Erläuterung der Fehlerbehebungsrate thematisch in den Kontext der

Softwarequalität gehört, wurde sie bereits in Abschnitt 2.1.2.4.1 erläutert.

Aus den anderen erläuterten absoluten Softwarekennzahlen können unterschiedliche Ver-

hältniskennzahlen gebildet werden. In der Literatur sind wiederholt die folgenden Ver-

hältniskennzahlen beschrieben:

2.1.2.5.1 Softwareproduktivität

Es gibt keine allgemein anerkannte De�nition des Begri�s �Softwareproduktivität�. Eine

von Petersen durchgeführte Analyse über Verö�entlichungen zur Softwareproduktivität

zeigt die Existenz vielfältiger Ansätze [Pet11]. Petersen fand insgesamt 586 Beiträge, von

denen er 38 im Detail analysierte. Viele dieser Verö�entlichungen enthalten teilweise völlig

verschiedene Ansichten darüber, wie die Softwareproduktivität zu erfassen sei.

Für diese Arbeit wird die Softwareproduktivität als das Verhältnis von Softwarequantität

und Aufwand betrachtet, wie dies auch in [Kas08, PP11] der Fall ist. Gleichung 2.1 zeigt

die aus dieser De�nition resultierende allgemeine Berechnungsformel.

Produktivität =
Quantität

Aufwand
(2.1)

In Abhängigkeit der verwendeten Quantitätskennzahl sind mögliche Maÿeinheiten der

Softwareproduktivität entweder Function Points
Hour

, LOC
Hour

oder Churn
Hour

(Churn ist ein Platzhalter

für die Maÿeinheit des Churns).

2.1.2.5.2 Liefergeschwindigkeit

Die Liefergeschwindigkeit (engl.: speed of delivery) ist eine Verhältniskennzahl, die die Ge-

schwindigkeit von Softwareentwicklungsprozessen anzeigt [Sym10, PP11]. In agilen Soft-

wareentwicklungsmethoden ist der Begri� �Velocity� gebräuchlich [HD06]. Die Lieferge-

schwindigkeit gibt an, welche Softwarequantität in einer bestimmten Zeit erstellt wurde.

Gleichung 2.2 zeigt die allgemeine Berechnungsformel.

Liefergeschwindigkeit =
Quantität

Entwicklungsdauer
(2.2)

35

Kapitel 2. Grundlagen

In Abhängigkeit der verwendeten Quantitätskennzahl sind mögliche Maÿeinheiten der

Liefergeschwindigkeit entweder Function Points
Day

, LOC
Day

oder Churn
Day

.

2.1.2.5.3 Fehlerdichte

Die Fehlerdichte (engl.: defect density) ist das Verhältnis von Quantität und Fehlerraten,

zum Beispiel �defects per source line of code� [NC14]. In [FP97] wird der Fehlerdichte

eine so hohe Bedeutung beigemessen, dass sie als �de facto standard measure of software

quality� bezeichnet wird. Gleichung 2.3 zeigt die allgemeine Berechnungsformel.

Fehlerdichte =
Anzahl Fehler

Quantität
(2.3)

In Abhängigkeit der verwendeten Quantitätskennzahl sind mögliche Maÿeinheiten der

Fehlerdichte entweder Defects
Function Points

, Defects
LOC

oder Defects
Churn

.

Wie bereits erwähnt, kann ein Fehler in zwei Phasen entdeckt werden:

� In der Phase der qualitätssichernden Maÿnahmen des Softwareentwicklungsprozesses

� In der Phase nach der Übergabe der Software an den Auftraggeber, auch �post

release� Phase genannt

Fehlerdichten können jeweils für eine dieser Phasen berechnet werden. Ein Beispiel ist

die Kennzahl �Post Release Defect Density� [Kas08]. Des Weiteren lässt sich die Fehler-

dichte über beide Phasen hinweg und über den vollständigen Lebenszyklus der Software

ermitteln. Die Fehlerdichte kann lediglich so präzise sein wie die Anzahl der tatsächlich

entdeckten Fehler. Die unentdeckten Fehler gehen nicht in die Berechnung der Fehlerdichte

ein.

Nachdem in diesem Abschnitt 2.1.2 mögliche Softwarekennzahlen für die Menge KS iden-

ti�ziert wurden, werden im nächsten Abschnitt Produktionskennzahlen und deren Ein-

satzgebiete erläutert.

2.1.3 Produktionskennzahlen

Menschen, Betriebsmittel (Maschinen) und Arbeitsgegenstände sind zentrale Systemele-

mente des Produktionsprozesses [SBL10]. Die Arbeitsgegenstände sind die Produkte oder

Teilprodukte, die von Menschen und Betriebsmitteln bearbeitet werden. Diese Bearbei-

tung ist in Abläufe gegliedert. Die jeweiligen Abläufe für die Systemelemente sind in

Ablaufarten unterteilt [REF92]. Tabelle 2.2 zeigt die Systemelemente und nennt Beispie-

le für Ablaufarten. Bezogen auf die aufgeführten Systemelemente wurden Produktions-

36

Kapitel 2. Grundlagen

Systemelement Beispiele für Ablaufarten

Mensch Haupttätigkeit

Nebentätigkeit

zusätzliche Tätigkeit

Betriebsmittel Hauptnutzung

Nebennutzung

zusätzliche Nutzung

Arbeitsgegenstand Verändern

Prüfen

Liegen

Tabelle 2.2: Ablaufartengliederung der REFA-Methodenlehre [REF92]

kennzahlen de�niert, so zum Beispiel in [REF92] und [HJK14]. Sie unterstützen die vor-

rangige Zielstellung von Produktionsprozessen: Die Einhaltung von Kostenvorgaben bzw.

stetige Reduzierung von Kosten. Die in [REF92] und [HJK14] genannten Produktions-

kennzahlen bezogen auf die Menschen sind zum Beispiel der Zeitgrad und die Arbeits-

produktivität, für die Betriebsmittel sind es die Gesamtanlagene�ektivität (engl.: Overall

Equipment E�ectiveness, kurz: OEE) und der Hauptnutzungsgrad, für die Arbeitsgegen-

stände die Durchlaufzeit und die Liefertermintreue.

Zeichnet sich die Produktion durch eine hohe Kapitalintensität aus, werden vor allem

Produktionskennzahlen zur Steuerung des Einsatzes der Betriebsmittel eingesetzt. Sind

die Arbeitskosten die dominierende Kostenart, werden vor allem Produktionskennzahlen

in Bezug auf die Menschen ausgewählt. Die ausgewählten Produktionskennzahlen sind

abhängig von den betriebsspezi�schen Produktionsabläufen. Ein produzierender Betrieb

wählt die eingesetzten Produktionskennzahlen individuell für sein Umfeld aus, wobei die

Semantik einzelner Produktionskennzahlen betriebsspezi�sch sein kann. Damit ist ge-

meint, dass eine Produktionskennzahl mit demselben Namen in verschiedenen produzie-

renden Betrieben eine unterschiedliche Bedeutung hat bzw. von einer allgemein anerkann-

ten De�nition abweicht. Erläuterung 2.1 zeigt dafür ein Beispiel.

Die Wertschöpfung und die bereits erwähnte First Pass Rate sind Produktionskennzahlen,

die beim Kooperationspartner verwendet werden. Sie sind, wie alle anderen Kennzahlen,

in unternehmensinternen Dokumenten beschrieben. Nicht alle beschriebenen Produktions-

kennzahlen kommen in allen Produktionslinien zum Einsatz, da sie zum Teil nur für spezi-

�sche Produktionsabläufe sinnvoll angewendet werden können oder sich entweder auf kapi-

talintensive oder personalintensive Produktionslinien beziehen. Aus diesen Produktions-

kennzahlen werden in dieser Arbeit einige ausgewählt, um sie in die Menge K ′
SW zu

transferieren und in der Softwaredomäne zu nutzen (vgl. Abbildung 1.5).

37

Kapitel 2. Grundlagen

Beim Kooperationspartner wird die Produktionskennzahl Wertschöpfung verwendet. Sie
zeigt die geplanten Fertigungskosten auf Basis der Arbeitspläne der Mitarbeiter und
der Maschinenauslastungen an. In [Pre08] wird die Wertschöpfung als der Bruttopro-
duktionswert abzüglich der Kosten für Roh-, Hilfs- und Betriebssto�e, Abschreibungen,
Fremddienstkosten und Kostensteuern de�niert. Die Wertschöpfung hat folglich beim
Kooperationspartner und in [Pre08] eine unterschiedliche Bedeutung. Dieses Beispiel
verdeutlicht die Wichtigkeit des Verständnisses der betriebsspezi�schen Semantik einer
Produktionskennzahl. Eine betriebsfremde Person würde die Wertschöpfung womöglich
falsch interpretieren und diese Fehlinterpretation in der Entscheidung zu prozessgestal-
tenden Maÿnahmen berücksichtigen.

Erläuterung 2.1: Beispiel einer betriebsspezi�schen Semantik einer Produktionskennzahl

Inwiefern ein Methoden- bzw. Kennzahlentransfer von der Produktionsdomäne in die

Softwaredomäne sinnvoll und möglich ist, wird im folgenden Abschnitt dargelegt.

2.2 Produktion und Softwareentwicklung

Die Anwendung von Methoden der Produktionsdomäne in der Softwaredomäne ist ein in

der Wissenschaft und in der Praxis kontrovers diskutiertes Thema. Da diese Arbeit zum

Ziel hat, Produktionskennzahlen in der Softwaredomäne anzuwenden, agiert sie genau in

diesem Spannungsfeld.

Die Softwareentwicklung ist im Wesentlichen ein manueller Prozess, dessen Erfolg

stark von den Erfahrungen und Fähigkeiten der einzelnen Softwareentwickler abhängt

[NCK+15]. Automatisierte Abläufe sind zwar im Softwaretest zunehmend anzutre�en,

jedoch weniger im Softwareentwurf oder in der Softwareprogrammierung. Jede entwickel-

te Software ist verschieden. Die Softwareentwicklung ist ein Prozess des �ongoing desi-

gns�, d.h. Software wird kontinuierlich konzipiert und implementiert [Ste06]. Allerdings

werden in verschiedenen Softwareprodukten durchaus Aufgabenstellungen gelöst, die be-

reits in anderen Softwareprodukten gelöst wurden. So zeigen die Beobachtungen beim

Kooperationspartner, dass bereits gelöste Aufgabenstellungen zu einem späteren Zeit-

punkt neu bearbeitet wurden, statt den zu der gelösten Aufgabenstellung gehörenden

Quelltext wiederzuverwenden. Beispiele für mehrfach implementierte Aufgabenstellungen

sind Druck-, Dateispeicher - oder Dateiladefunktionen.

Der Test einer Softwareversion eines intelligenten Produktes ist dessen Baumusterprüfung

zuzuordnen. Eine Baumusterprüfung ist ein Verfahren, bei dem eine benannte Stelle be-

scheinigt, dass ein repräsentatives Muster des intelligenten Produktes die Bestimmungen

von Richtlinien, zum Beispiel der CE-Konformitätsrichtlinie, erfüllt [SB16]. Das bedeutet,

dass die Softwareversion zwar im Rahmen der Softwareentwicklung, allerdings nicht für

jedes produzierte intelligente Produkt, getestet wird.

38

Kapitel 2. Grundlagen

Im Gegensatz zu den dargestellten Eigenschaften der Softwareentwicklung wird im Pro-

duktionsprozess wiederholt ein identisches Produkt gefertigt. Der Grad der Automatisie-

rung hängt von den Merkmalen des konkreten intelligenten Produktes ab, ist jedoch höher

als in der Softwareentwicklung. Ziel der Automatisierung sind deterministische Produkti-

onsprozesse, mit denen kontinuierlich de�nierte Liefer- und Qualitätsziele erreicht werden

können. Diese Ziele, Determinismus und Vorhersehbarkeit, waren bislang und bleiben auch

für die Industrie 4.0 gültig [Vol17].

Determinismus und Vorhersehbarkeit sind zweifelsohne gültige Ziele für die Softwareent-

wicklung. Doch trotz vieler Jahre der Softwareforschung sind Softwareentwicklungsprozes-

se noch immer wenig vorhersehbar in Bezug auf Kosten, Termine oder Qualität [NCK+15].

Dies kann als ein Grund für die vielfältigen Forschungsarbeiten angesehen werden, in de-

nen der Transfer von Produktionsmethoden in die Softwaredomäne untersucht wird.

Ein Beispiel eines derartigen Methodentransfers ist Kanban. Kanban ist eine Lean

Management-Produktionsmethode, die erstmalig bei Toyota eingesetzt wurde [Lik04]. Hi-

ranabe übertrug deren zugrundeliegenden Ideen und Konzepte und entwickelte eine Soft-

wareentwicklungsmethode, die Software-Kanban genannt wird [Hir08]. Software-Kanban

wird den agilen Softwareentwicklungsmethoden zugeordnet. Weitere Adaptionen von Lean

Management-Produktionsmethoden in der Softwareentwicklung werden in [PW10, SJ12]

beschrieben.

Naedele et al. präsentieren einen Ansatz, in dem Konzepte von Manufacturing Executi-

on Systems (MES) in der Softwareentwicklung angewendet werden [NCK+15]. Eine der

Aufgaben von MES in der Produktion ist die Datenerfassung und -verarbeitung, um die

Produktionsplanung und -steuerung zu optimieren. Naedele et al. haben ein vergleichba-

res Konzept für die Softwareentwicklung erarbeitet und somit eine Produktionsmethode

in die Softwaredomäne übertragen.

Schneidewind argumentiert, es gäbe bereits mehr Schnittmengen zwischen Softwareent-

wicklung und Produktion als allgemein angenommen [Sch11]. Er vergleicht eine kompo-

nentenorientierte Softwarearchitektur mit einer Materialstückliste, sieht im Kompilier-

prozess einen Fertigungsprozess und vergleicht einen automatisierten Build-Prozess mit

einer Fertigungsautomatisierung. Diese Beispiele von Schnittmengen würden zeigen, dass

es eine gewisse Ähnlichkeit von Teilprozessen der Softwareentwicklung mit Teilprozessen

der Produktion gäbe und somit ein Methodentransfer von der Produktionsdomäne in die

Softwaredomäne möglich sei.

Ein weiteres Beispiel eines Methodentransfers ist die Anwendung von Methoden zur Qua-

litätssteuerung von Prozessen, beispielsweise wie die statistische Prozesskontrolle oder

Six Sigma. In verschiedenen Verö�entlichungen wurde diskutiert, ob derartige Methoden

39

Kapitel 2. Grundlagen

für die Softwaredomäne anwendbar sind [Car94, BBBC09, Sch11, Bin97, RSRL08]. In

[Car94, BBBC09, Sch11, RSRL08] wird dies positiv eingeschätzt, wogegen Binder meint,

dass Software und Produktion zu unterschiedlich seien und kein Methodentransfer möglich

sei [Bin97].

In Zuge von Verö�entlichungen, die im Laufe dieser Arbeit eingereicht wurden, gab es

zu diesem Themenkomplex unterschiedliche Kommentare der Gutachter. So teilten nicht

alle Gutachter die Einschätzung, dass Methoden aus der Produktion in die Domäne der

Softwareentwicklung übertragbar sind. Andere dagegen ermunterten zu mehr Forschungs-

arbeiten auf diesem Gebiet.

Aus diesen Ausführungen lässt sich schlussfolgern, dass die Anwendbarkeit von Produk-

tionsmethoden in der Softwaredomäne uneinheitlich bewertet wird. Dieser Arbeit liegt

die Überzeugung zugrunde, dass die Softwaredomäne von der Produktionsdomäne lernen

kann und sollte, da zum einen Determinismus und Vorhersehbarkeit von Prozessen in

beiden Domänen zentrale Bedürfnisse sind und zum anderen Determinismus und Vorher-

sehbarkeit in der Produktion stärker ausgeprägt sind, als in der Softwaredomäne.

Eine Frage dieser Arbeit ist, wie das Management Produktionskennzahlen in der Softwa-

redomäne nutzen kann, um den Determinismus und die Vorhersehbarkeit in der Softwa-

reentwicklung zu verbessern. Den für die Beantwortung dieser Fragestellung bekannten

Grundlagen widmet sich der nächste Abschnitt.

2.3 Transfer und Bestimmung von Kennzahlen

Es sind lediglich wenige Beispiele bekannt, in denen Kennzahlen aus einer Domäne in

einer anderen Domäne genutzt werden bzw. in denen ein Kennzahlentransfer zwischen

zwei Domänen beschrieben wird.

Die Kennzahl �Produktivität� ist ein solches Beispiel: Die Produktivität ist eine Kenn-

zahl, die ihren Ursprung in der Domäne der Betriebs- oder Volkswirtschaft hat. Sie wird

allerdings auch in der Softwareentwicklung angewendet [Pet11], um die Wirtschaftlichkeit

von Softwareentwicklungen zu bewerten. In der einschlägigen Literatur fehlen allerdings

Hinweise, dass der Transfer zwischen den unterschiedlichen Domänen auf Grundlage einer

methodischen Vorgehensweise erfolgte. Diese Vorgehensweise wäre, sofern nachvollziehbar,

für diese Arbeit relevant.

Ein weiteres Beispiel ist aus [FHZ+15] bekannt. Darin werden zum einen die aus der

Produktionsdomäne bekannte Lernrate und zum anderen die aus der Entropie bekannte

Entropierate für die Qualitätsmessung von ITIL-Prozessen in Cloud-Systemen in der IT-

40

Kapitel 2. Grundlagen

Domäne verwendet. Diese beiden Kennzahlen werden für die Bestätigung der in [FHZ+15]

formulierten Hypothesen angewendet. Allerdings fehlt eine Beschreibung dazu, wie die

Kennzahlen ausgewählt und deren Eignung in der IT-Domäne geprüft wurden. Eine nach-

vollziehbare methodische Vorgehensweise wäre wiederum für diese Arbeit relevant.

Bei diesen beiden Beispielen handelt es sich zwar um einen Kennzahlentransfer, aller-

dings kann kein methodisches Vorgehen erkannt werden. Folglich ist in dieser Arbeit eine

nachvollziehbare Methode für einen Kennzahlentransfer zu entwickeln.

Es gibt jedoch einige Methoden für die methodische Bestimmung von Kennzahlen für

betriebliche Prozesse. Dabei werden zunächst strategische bzw. operative Ziele de�niert

und erst danach werden für diese Ziele Kennzahlen bestimmt. Eine derartige methodische

Bestimmung ist notwendig, da Kennzahlen keinem Selbstzweck dienen dürfen. Sie sollten

nicht nur deswegen verwendet werden, weil sie messbar sind, sondern die Bestimmung von

Kennzahlen sollte sich vielmehr an den Zielen des produzierenden Betriebes orientieren.

Zudem birgt die Anwendung von isolierten bzw. zu keinem Ziel gehörenden Kennzahlen

die Gefahr von Fehlentscheidungen [Pre08].

Da es bereits einige Methoden für die methodische Bestimmung von Kennzahlen gibt,

wird in den folgenden Abschnitten geprüft, ob eine dieser Methoden als Ausgangspunkt

für die in dieser Arbeit zu entwerfende Methode des Kennzahlentransfers dienen kann.

2.3.1 Bewertungsgrundlagen

Für die Bewertung, welche Methode als eine sogenannte Basismethode für einen Kennzah-

lentransfer dienen kann, werden in diesem Abschnitt Anforderungen an die Basismethode

formuliert. Diese Anforderungen sind das Ergebnis der folgenden Überlegungen:

Es soll eine in einer Ausgangsdomäne vorhandene Kennzahl in eine Zieldomäne transfe-

riert werden. In einem erfolgreichen Transfer muss die in der Ausgangsdomäne gültige

Semantik der Kennzahl in der Zieldomäne erhalten bleiben. Gemäÿ den Ausführungen

in Abschnitt 2.1.1 bilden der Name, die Maÿeinheit, der Wertebereich, der Idealwert, die

Möglichkeit der Festlegung von Soll-Werten, die Frage, das Ziel und die Interpretation

die Semantik einer Kennzahl. Nach einem Kennzahlentransfer müssen folglich all diese

Informationsinhalte weiterhin für die Kennzahl beschreibbar sein. Des Weiteren müssen

sie in der Zieldomäne im Grundsatz identisch zu den Informationsinhalten der Ausgangs-

domäne sein. Mit der Formulierung �im Grundsatz identisch� wird ausgedrückt, dass im

Idealfall alle Informationsinhalte in beiden Domänen identisch sind, dies jedoch aufgrund

der unterschiedlichen Domänen voraussichtlich nicht immer möglich sein wird. Es ist folg-

lich jeweils individuell zu bewerten, ob ein Informationsinhalt �im Grundsatz identisch�

41

Kapitel 2. Grundlagen

ist oder nicht. Folgende Kriterien, die jeweils einen Informationsinhalt in der Zieldomäne

mit dem dazugehörenden Informationsinhalt in der Ausgangsdomäne vergleichen, werden

einer derartigen Bewertung zugrunde gelegt:

� Der Name muss identisch sein.

� Die Maÿeinheit muss identisch sein.

� Der Wertebereich muss identisch sein.

� Der Idealwert muss identisch sein.

� Soll-Werte müssen festgelegt werden können, können jedoch domänenspezi�sch ver-

schieden sein.

� Die Frage ist im Satzbau identisch, jedoch steht sie im Kontext der jeweiligen Do-

mänen. Mit �im Satzbau identisch� ist Folgendes gemeint: Wenn die Frage in der

Ausgangsdomäne wie folgt aufgebaut ist: �Wie ist das Verhältnis von ... zu ...?�,

dann muss dieser Satzbau ebenfalls in der Zieldomäne gelten. Die Frageninhalte,

die in ein Verhältnis gesetzt werden, sind allerdings domänenspezi�sch.

� Das Ziel muss identisch sein, domänenspezi�sche Formulierungen sind erlaubt.

� Die Interpretation lässt erkennen, dass der Adressat der Kennzahl in beiden Domä-

nen im Grundsatz identisch auf die Ist-Werte der Kennzahl reagiert. Dies soll am

Beispiel der in Abschnitt 2.1 dargestellten Interpretation der FPR in der Produk-

tion erläutert werden: Wenn die FPR in der Softwareentwicklung angewendet wird,

dann kann das Management ähnlich wie in der Produktion auf Abweichungen zwi-

schen Soll- und Ist-Werten reagieren. Eine mögliche Maÿnahme wäre jedoch zum

Beispiel die Bescha�ung von neuen Softwarewerkzeugen statt der Bescha�ung von

neuen Maschinen.

Für den Transfer des Namens, der Maÿeinheit, des Wertebereichs und dessen Idealwert

sowie der Möglichkeit der Festlegung von Soll-Werten bedarf es keiner expliziten Me-

thode. So könnte zum Beispiel festgelegt werden, dass eine FPR in der Softwaredomäne

äquivalent zur FPR in der Produktionsdomäne in % angegeben wird, den Wertebereich

von 0 % bis 100 % hat und deren Idealwert 100 % ist. Diese Festlegung ist jedoch nicht

ausreichend, da sie lediglich einen Namenstransfer und keinen für diese Arbeit benötig-

ten Kennzahlentransfer bedeuten würde. Es ist o�ensichtlich, dass ohne den Transfer der

weiteren, die Semantik einer Kennzahl beschreibenden Informationsinhalte eine semanti-

sche Äquivalenz zwischen der FPR in der Produktion und der FPR in der Software nicht

erreicht werden kann.

42

Kapitel 2. Grundlagen

Ziel

Interpre-
tation

Ausgangsdomäne Zieldomäne

Kennzahl

Ziel

Interpre-
tation

Kennzahl

Name
Maßeinheit

Wertebereich
Festlegung Soll-Wert

Frage

Name
Maßeinheit

Wertebereich
Festlegung Soll-Wert

Frage

Abbildung 2.10: Grundkonzept eines Kennzahlentransfers

Zwar kann der Satzbau der Frage ebenfalls schlicht übertragen werden, jedoch müssen die

domänenspezi�schen Frageninhalte durch ein strukturiertes Vorgehen ermittelt werden.

Diese Anforderung gilt ebenfalls für die Übertragung des Ziels und der Interpretation.

Folglich sind das Ziel und die Interpretation unter Anwendung einer Methode zu transfe-

rieren, in der ebenfalls die domänenspezi�schen Frageninhalte der Frage ermittelt werden.

Eine Basismethode muss daher einige Eigenschaften aufweisen, die anhand Abbildung

2.10 erläutert werden. Diese Abbildung zeigt das Grundkonzept des zu entwickelnden

Kennzahlentransfers:

In der Ausgangsdomäne existiert eine zu transferierende Kennzahl, die in der Zieldomäne

wiederverwendet werden soll. Die Kennzahl ist aus einem Ziel, das für die Ausgangsdo-

mäne formuliert ist, abgeleitet und diesem Ziel zugeordnet. Sie wird durch den Namen,

die Maÿeinheit und den Wertebereich beschrieben. Des Weiteren ist für sie ein domä-

nenspezi�scher Soll-Wert vorgegeben und eine Frage formuliert. Die de�nierte Kennzahl

wird im Kontext der Prozessdurchführung erfasst, verarbeitet und durch den Adressaten

der Kennzahl interpretiert. Wie in Abschnitt 2.1 dargelegt, ist die Interpretation eine

Handlungsbeschreibung der Reaktion des Adressaten auf die Soll-Werte. Da diese Reak-

tion individuell unterschiedlich sein kann, stellt die Interpretation einen nicht eindeutig

beschreibbaren Informationsinhalt einer Kennzahl dar.

Eine Kennzahl kann zwar mehreren Zielen zugeordnet sein, allerdings muss eines der Ziele

den Startpunkt des Kennzahlentransfers bilden. Soll diese Kennzahl in der Zieldomäne

43

Kapitel 2. Grundlagen

eingesetzt werden, ist dies nur möglich, wenn das konkret ausgewählte Ziel sowohl in der

Ausgangsdomäne als auch in der Zieldomäne gültig ist. Falls die Kennzahl in der Ziel-

domäne einem anderen Ziel zugeordnet wird als die Kennzahl in der Ausgangsdomäne,

bedient sie nicht die gleichen Informationsbedürfnisse des Managements bzw. der opera-

tiven Teams wie die Kennzahl in der Ausgangsdomäne.

Des Weiteren muss die Interpretation sowohl in der Ausgangsdomäne als auch in der

Zieldomäne im Grundsatz identisch sein. Wie bereits erläutert, ist damit gemeint, dass

der Adressat der Kennzahl auf die Soll-Werte der in der Zieldomäne erfassten Kennzahl

in im Grundsatz identischer Art und Weise reagiert wie auf die in der Ausgangsdomäne

erfassten Soll-Werte.

Neben dem Ziel und der Interpretation müssen der Name, die Maÿeinheit, der Wertebe-

reich und der Idealwert identisch sein. Es ist naheliegend, dass ein Adressat nur dann die

transferierte Kennzahl im Grundsatz identisch interpretieren kann, wenn diese Anforde-

rung erfüllt ist. Ebenfalls muss die Möglichkeit der Festlegung eines Soll-Werts erhalten

bleiben. Dieser muss nach einem Kennzahlentransfer zwar nicht identisch sein, jedoch soll-

ten die Soll-Werte in der Zieldomäne tendenziell den Soll-Werten in der Ausgangsdomäne

ähnlich sein: Der Soll-Wert einer in der Softwareentwicklung angewendete FPR sollte

zum Idealwert von 100 % tendieren, und nicht etwa bei 10 % festgesetzt werden. Letzte-

res würde eine im Grundsatz identische Interpretation nicht zulassen. Abschlieÿend ist es

erforderlich, den Satzbau der Frage zu erhalten, um die Kennzahl semantisch äquivalent

zu transferieren.

Aus den Ausführungen des Grundkonzepts eines Kennzahlentransfers ergeben sich zwei

Anforderungen an die Basismethode. Die Erfüllung dieser Anforderungen ist die Voraus-

setzung für deren Eignung als Ausgangspunkt für die in dieser Arbeit zu entwerfende

Methode eines Kennzahlentransfers.

Anforderung 1 (Ziel-Kennzahl-Zuordnung) Die Basismethode stellt innerhalb einer

Domäne die Zuordnung zwischen einer Kennzahl und einem Ziel her.

Anforderung 2 (Interpretation-Kennzahl-Zuordnung) Die Basismethode stellt in-

nerhalb einer Domäne die Zuordnung zwischen einer Kennzahl und deren Interpretation

her.

In den folgenden Abschnitten werden mögliche Basismethoden bewertet. Deren Auswahl

erfolgt aufgrund folgender Überlegungen:

Rein �nanzwirtschaftliche Kennzahlensysteme wie zum Beispiel das Du-Pont-Schema

[Gla03] oder das ZVEI-Kennzahlensystem [ZVE70] werden nicht betrachtet, da die Soft-

wareentwicklung nicht mit Finanzkennzahlen gesteuert werden sollte. Die Steuerung soll-

te sich vielmehr an den strategischen Zielen eines produzierenden Betriebes orientieren,

44

Kapitel 2. Grundlagen

welche über die reinen Finanzziele hinausgehen. Eine etablierte Methode für die Steue-

rung eines produzierenden Betriebes auf Basis solcher Ziele ist die Balanced Scorecard

[KN92]. Des Weiteren gibt es in der Domäne der Softwareentwicklung zwei etablierte Me-

thoden bzw. Prozessbeschreibungen für die systematische Bestimmung von Softwarekenn-

zahlen: die Norm ISO/IEC/IEEE 15939 [ISO17] und die Goal-Question-Metric-Methode

(GQM-Methode) [BW84]. Da diese Arbeit die kennzahlenorientierte Gestaltung des Soft-

wareentwicklungsprozesses zum Ziel hat, werden neben der Balanced Scorecard die Norm

ISO/IEC 15939 und die GQM-Methode ebenfalls näher betrachtet.

Weitere vorhandene Ansätze bzw. Methoden für die systematische Bestimmung von Kenn-

zahlen im Software- und IT-Umfeld, zum Beispiel [Wes99, Küt10, Gau14] werden im

Weiteren nicht berücksichtigt, da diese Ansätze bzw. Methoden auf eine der drei genann-

ten Methoden zurückgeführt werden können: In [Wes99] ist die GQM-Methode die Basis

für den darin beschrieben 12-stu�gen Prozess zur Softwarekennzahlenbestimmung, den

Ausführungen in [Küt10] liegt die Balanced Scorecard zugrunde. In [Gau14] wird die

COBIT-Methode, eine Methode zur Steuerung und Überwachung der Unternehmens-IT,

umfassend beschrieben. Die COBIT-Methode beinhaltet den Aufbau von Kennzahlensys-

temen. Wie in [Gau14] aufgeführt ist, wird dafür die Balanced Scorecard verwendet.

Im Folgenden werden die drei genannten Methoden in der erwähnten Reihenfolge in ei-

ner Vertiefung erläutert, die für eine Bewertung der oben aufgeführten Anforderungen

ausreichend ist.

2.3.2 Balanced Scorecard

Lange Zeit wurden für die Unternehmenssteuerung lediglich reine Finanzkennzahlensys-

teme eingesetzt. Allerdings setzte sich schrittweise die Erkenntnis durch, dass für eine

langfristige positive Unternehmensentwicklung neben dem Blick auf die Finanzen auch

eine gesamtheitliche Unternehmensbetrachtung erfolgen sollte. Mit dem Ziel einer solchen

gesamtheitlichen Betrachtung wurde die Balanced Scorecard (BSC) entwickelt [KN92].

Die Balanced Scorecard ermöglicht die Betrachtung auf ein Unternehmen aus mehreren

Perspektiven: aus der Finanzperspektive, aus der Kundenperspektive, aus der internen

Prozessperspektive und der Lern-und Entwicklungsperspektive.

Ausgehend von seinen Strategien und Visionen sollte ein Unternehmen für jede dieser Per-

spektiven eine Mission formulieren, zu deren Konkretisierung Ziele zu formulieren sind.

Anhand dieser Ziele sind Kennzahlen zu bestimmen, die die Zielerreichung anzeigen. Auf

diese Weise entsteht ein Zusammenspiel aus den Strategien, den Visionen, den Missio-

nen, den Perspektiven, den Zielen und den Kennzahlen, wodurch eine gesamtheitliche

Betrachtung auf ein Unternehmen ermöglicht wird (Abbildung 2.11).

45

Kapitel 2. Grundlagen

Finanzperspektive

Ziel Kennzahl

Kundenperspektive

Ziel Kennzahl

Lern- und
Entwicklungsperspektive

Ziel Kennzahl

Interne Prozessperspektive

Ziel Kennzahl

Vision und Strategie

Mission

Mission

Mission

Mission

Abbildung 2.11: Modell der Balanced Scorecard in Anlehnung an [KN92, Kap10]

Die Anwendung der Balanced Scorecard ist nicht eingeschränkt auf bestimmte Unterneh-

mens- bzw. Betriebstypen. In der einschlägigen Literatur werden Beispiele ihrer Anwen-

dung u.a. in produzierenden Betrieben [KN92], in Kreditinstituten [FS99], in Software�r-

men [IPPS02] oder der Anwendung in IT-Abteilungen [Küt10] aufgeführt.

Wie in Abbildung 2.11 zu erkennen ist, wird in der Balanced Scorecard ein eindeutiger

Zusammenhang zwischen einem Ziel und einer Kennzahl hergestellt. In [IPPS02] wird

zum Beispiel das strategische Ziel �Neue Kunden gewinnen� in der Kundenperspektive

formuliert, dem die Kennzahl �Anzahl an Kunden� zugeordnet ist.

Des Weiteren ist in der Abbildung 2.11 zu erkennen, dass ein Zusammenhang zwischen der

Interpretation und der Kennzahl nicht explizit hergestellt wird. Selbstverständlich muss

der Adressat einer Kennzahl diese in irgendeiner Art und Weise interpretieren, um zu

bewerten, ob das dazugehörende Ziel erreicht wird bzw. ob Maÿnahmen de�niert werden

müssen, um die Zielerreichung zu ermöglichen. Der Begri� �Interpretation� wird in dem

Modell der Balanced Scorecard jedoch nicht verwendet.

46

Kapitel 2. Grundlagen

2.3.3 ISO/IEC/IEEE 15939

Die Norm ISO/IEC/IEEE 15939 Systems and software engineering-Measurement process

(deutsch: System- und Software-Engineering - Messverfahren) ist eine Prozessbeschrei-

bung und widmet sich dem �Measurement Process�. Der Begri� wird de�niert als: �pro-

cess for establishing, planning, performing and evaluating measurement within an overall

project, enterprise or organizational measurement structure�. Dies beinhaltet den Aufbau

und die Anwendung eines Informationsverarbeitungssystems für Softwarekennzahlen.

Ein Beispiel für die praktische Anwendung der ISO/IEC/IEEE 15939 ist u.a. in [SMKN11]

erläutert. In anderen Publikation wird das Paradigma der ISO/IEC/IEEE 15939 unter der

Bezeichnung Practical Software Measurement (PSM) verwendet, zum Beispiel in [JLC12].

Aufgrund der Ähnlichkeiten von PSM und der ISO/IEC/IEEE 15939, kann die Norm als

die Standardisierung von PSM betrachtet werden.

Die Norm ISO/IEC/IEEE 15939 enthält zum einen relevante Begri�sde�nitionen der

Softwaremessung, zum anderen beschreibt sie das Prozessmodell zum Aufbau und zur

Anwendung eines Informationsverarbeitungssystems für Softwarekennzahlen (Abbildung

2.12). Die Kreise zeigen alle Prozessaktivitäten, wobei das grau hinterlegte Rechteck die

zentralen Prozessaktivitäten umrandet. Die Pfeile zeigen den Daten�uss. Das weiÿ hin-

terlegte Rechteck symbolisiert den zu messenden Prozess, aus dem die Daten generiert

werden.

Das Prozessmodell unterstützt bei der Identi�zierung von Aufgaben, die notwendig sind,

um Softwarekennzahlen zu de�nieren, auszuwählen und zu verbessern. In der Norm wer-

Establish &
Sustain

Measurement
Commitment

Plan the
Measurement

Process

Perform the
Measurement

Process

Evaluate the
Measurement

Measurement Experience Base

Technical and
Management

Processes

Requirements for Measurement

Information Needs Information Products

Measurement User Feedback

Planning
Information

Commitment

Information
Products &

Performance
Measures

Information Products &
Evaluation Results

Improvements ActionsScope of ISO/IEC 15939

Core Measurement Process

Abbildung 2.12: Prozessmodell der Softwaremessung nach ISO/IEC/IEEE 15939 [ISO17]

47

Kapitel 2. Grundlagen

den jedoch keine konkreten Softwarekennzahlen vorgeschlagen. Im Folgenden werden die

Aktivitäten des Prozessmodells erläutert:

Establish & Sustain Measurement Commitment: Es wird der Bereich für die durch-

zuführenden Messungen identi�ziert sowie die Bereitschaft des Managements eingeholt,

Ressourcen für den Aufbau und für die kontinuierliche Verbesserung von Softwarekenn-

zahlensystemen dauerhaft bereitzustellen und die Messergebnisse aktiv für eine Prozess-

steuerung anzuwenden. Die Personalressourcen für den Aufbau des Informationsverarbei-

tungssystems werden zugewiesen.

Plan the Measurement Process: Es werden die Informationsbedürfnisse der Orga-

nisationseinheit ermittelt. Sie sind die Basis für die Bestimmung der Kennzahlen. Die

Verfahren für die Messung, für die Datenspeicherung und für die Anzeige der Kennzahlen

werden de�niert und die Bewertungskriterien für die Kennzahlen erstellt.

Perform the Measurement Process: Es werden die Messverfahren in den zu mes-

senden Prozess integriert. Dies kann bewirken, dass der Prozess ggf. angepasst werden

muss, damit die Messverfahren durchgeführt werden können. Die Daten werden erfasst,

zu Kennzahlen verarbeitet und die Kennzahlen werden den Adressaten der Kennzahlen

zugeführt.

Evaluate the Measurement: Die Adressaten sichten und bewerten die Ist-Werte der

Kennzahlen. Gegebenenfalls werden Prozessverbesserungsmaÿnahmen de�niert und um-

gesetzt.

Die ISO/IEC/IEEE 15939 betont die Bedeutung der Relation der ausgewählten Software-

kennzahlen zu den Informationsbedürfnissen der Organisationseinheiten, wie beispielswei-

se einem produzierenden Betrieb. Die Informationsbedürfnisse entstehen in den techni-

schen und in den Managementprozessen und basieren auf den Zielen der Organisationsein-

heiten. Der Zusammenhang zwischen den Informationsbedürfnissen und dem Prozess wird

in einem Informationsmodell hergestellt (Abbildung 2.13). Die Informationsbedürfnisse

werden durch ein Informationsprodukt befriedigt. Letzteres enthält einen oder mehrere

Indikatoren und dessen Interpretation. Es bildet sich aus einer oder mehreren, in der

Norm als �abgeleitet� bezeichnete Kennzahlen (�derived measures�), die sich wiederum

aus Basiskennzahlen (�base measures�) bilden, die im Prozess erfasst werden.

Wie in Abbildung 2.13 zu erkennen, wird in der Norm ein Zusammenhang zwischen Zie-

len (den Informationsbedürfnissen) und Kennzahlen hergestellt. Dabei handelt es sich

nicht um eine direkte Zuordnung, sondern mehrere Kennzahlen bilden Indikatoren, die

die Informationsbedürfnisse befriedigen. Die Interpretation ist ein wichtiger Teil des In-

formationsmodells und wird daher in der Norm mehrfach referenziert. Die Interpretation

basiert auf Indikatoren, die jeweils auf mehreren Kennzahlen aufbauen.

48

Kapitel 2. Grundlagen

Raw Data Raw Data

Attribute Attribute

Measurement
Method

Measurement
Method

Base
Measure

Base
Measure

Measurement
Function

Derived
Measure

Derived
Measure

(analysis)
Model

Indicator

Interpretation

Information
Product

Stakeholder with
Information Need

IS
O

/I
EC

15
93

9
 In

fo
rm

at
io

n
 M

o
d

e
l

Abbildung 2.13: Informationsmodell der ISO/IEC/IEEE 15939 [SMKN11]

2.3.4 GQM-Methode

Der Goal-Question-Metric-Methode (GQM-Methode) [BW84] wird in der einschlägigen

Literatur eine hohe Bedeutung beigemessen: Sie sei die Grundlage für jede Software-

messung [SSB10] bzw. es sei nachgewiesen, dass sie eine besonders e�ektive Methode zur

Auswahl von Softwarekennzahlen ist [FP97]. Beispiele für die praktische Anwendung der

GQM-Methode sind u.a. in [FLM+98, SB99, Wes99, Moh08, HK15] aufgeführt.

Die GQM-Methode stellt die strategischen bzw. die operativen Ziele der Softwaremessung

in den Vordergrund. Ausgehend von diesen Zielen werden Fragen (Questions) formuliert,

die mit Kennzahlen beantwortet werden sollen. Erst danach werden die konkreten Kenn-

zahlen (Metrics) festgelegt. Die Vorgehensweise der Ermittlung der Ziele, Fragen und

Kennzahlen erfolgt schrittweise, wobei die Beschreibung der Vorgehensweise in den un-

49

Kapitel 2. Grundlagen

P
ro

je
kt

p
la

n

Planung

Ziel

Frage

Kennzahl Messwerte

Antwort

Ziel-
erreichung

Erfasste Daten
Datenerfassung

Definition Interpretation

Abbildung 2.14: Die Phasen der GQM-Methode nach [SB99]

terschiedlichen Publikationen nicht einheitlich ist. Zum Beispiel werden in [Bal97] sechs

Schritte beschrieben, in [SB99] werden vier Phasen erläutert. Im Kern ist die Vorgehens-

weise jedoch ähnlich, daher wird im Folgenden nur eine mögliche Vorgehensweise erläutert,

und zwar die in [SB99] beschriebene. Nach dieser werden während der Anwendung der

GQM-Methode vier Phasen durchlaufen: Planung, De�nition, Datenerfassung und Inter-

pretation (Abbildung 2.14).

Planungsphase: In der Planungsphase werden ein Projektteam etabliert, ein Projektplan

erstellt, der zu verbessernde Prozess identi�ziert und das Einverständnis des Managements

zum geplanten Vorgehen eingeholt. In der Planungsphase ist es wichtig, die in dem Soft-

wareentwicklungsprozess beteiligten Mitarbeiter einzubinden. Es ist zu erklären, wieso

die Messungen durchgeführt werden und dass eine aktive Mitarbeit die Voraussetzung für

eine erfolgreiche Durchführung der GQM-Methode ist.

De�nitionsphase: In der De�nitionsphase werden die zu messenden Kennzahlen iden-

ti�ziert. Dabei werden zunächst die Ziele der Messung de�niert. Danach werden Fragen

erfasst, die die Ziele verfeinern und die mit konkreten Kennzahlen beantwortet werden

können. Abbildung 2.15 zeigt diesen Top-Down-Ansatz. Des Weiteren wird der Softwa-

reentwicklungsprozess danach bewertet, ob er die Messung aller Kennzahlen unterstützt.

Falls nicht, sind die dafür notwendigen Anpassungen zu beschreiben und umzusetzen.

Datenerfassungsphase: Für jede Kennzahl wird bestimmt, wie sie erfasst wird. Die

Datenerfassung kann sowohl manuell als auch in elektronischer Form erfolgen. Es sollten

zunächst Probemessungen getätigt werden, auf deren Basis die Methoden der Datener-

fassung aktualisiert werden. Alle Messungen sollten im Kontext eines Informationsverar-

beitungssystems erfolgen, das in dieser Phase aufzubauen ist. Es werden alle Messwerte

erfasst.

50

Kapitel 2. Grundlagen

Q1 Q2 Q3 Q4

M1 M2 M3 M4 M5 M6 M7

Goal

Question

Metric

D
ef

in
it

io
n

In
te

rp
re

ta
ti

o
n

Abbildung 2.15: De�nitionsphase der GQM-Methode nach [SB99]

Interpretationsphase: Die erfassten Ist-Messwerte werden vom Adressaten der Kenn-

zahlen interpretiert. Dies erfolgt in umgekehrter Reihenfolge der Kennzahlende�nition:

Die Messwerte beantworten die Fragen und mit den beantworteten Fragen wird die Ziel-

erreichung überprüft (Abbildung 2.15). Neben der Interpretation der Messwerte erfolgt

eine Bewertung des GQM-Prozesses. Hierbei sind die beteiligten Personen zu befragen,

um deren Einschätzungen für mögliche Anpassungen in den nachfolgenden Messprozessen

zu berücksichtigen.

Wie in der Abbildung 2.15 zu erkennen ist, stellt die Anwendung der GQM-Methode

top-down einen eindeutigen Zusammenhang zwischen einem Ziel und einer Kennzahl her.

Des Weiteren ist zu erkennen, dass die Kennzahlen bottom-up interpretiert werden, um

die Erreichung der Ziele zu bewerten. Letzteres erfolgt in der Interpretationsphase (vgl.

Abbildung 2.14).

2.3.5 Bewertung

Im Folgenden wird bewertet, ob die dargestellten Methoden bzw. Prozessbeschreibun-

gen die im Abschnitt 2.3.1 formulierten Anforderungen an eine Basismethode für den in

dieser Arbeit zu entwickelnden Kennzahlentransfer erfüllen. Tabelle 2.3 zeigt die Bewer-

tung: Ein �+� bedeutet, dass die Anforderung gut erfüllt wird. Ein �o� bedeutet, dass die

Anforderung mit Einschränkung erfüllt wird.

Die GQM-Methode erfüllt beide Anforderungen ohne Einschränkung. Sie stellt jeweils

eindeutig einen Zusammenhang zwischen einem Ziel und einer Kennzahl bzw. zwischen

51

Kapitel 2. Grundlagen

Anforderung BSC ISO/IEC/IEEE 15939 GQM

A1: Ziel-Kennzahl-Zuordnung + o +

A2: Interpretation-Kennzahl-Zuordnung o o +

Tabelle 2.3: Bewertung der Methoden bzw. Prozessbeschreibungen

einer Interpretation und einer Kennzahl her. Im Informationsmodell der ISO/IEC/IEEE

15939 sind zwar die Kennzahlen die Basis für Indikatoren, die die Informationsbedürfnisse,

also die Ziele, bedienen, allerdings fehlt die direkte Zuordnung zwischen einer Kennzahl

und einem Ziel. Diese Zuordnung erfolgt implizit, daher wird der Grad der Erfüllung der

Anforderung A2 mit einem �o� bewertet. Jedoch wird im Vergleich zur GQM-Methode

diese Zuordnung als schwächer bewertet. In dem Modell der Balanced Scorecard wird der

Begri� �Interpretation� nicht erwähnt. Folglich fehlt eine explizite Zuordnung zwischen

einer Kennzahl und einer Interpretation. Dies ist zwar in der Praxis implizit gegeben,

und daher wird die Erfüllung der Anforderung A2 mit einem �o� bewertet. Der Grad

der Erfüllung wird allerdings schwächer bewertet als der Grad der Erfüllung durch die

GQM-Methode.

Aus diesen Gründen wird die GQM-Methode als Basismethode für die Entwicklung einer

Methode für den Transfer von Produktionskennzahlen in die Domäne der Softwareent-

wicklung ausgewählt. Bevor im Abschnitt 2.5 der Softwareentwicklungsprozess betrachtet

wird, widmet sich der nächste Abschnitt dem Prozess der Produktentstehung.

2.4 Produktentstehungsprozess

2.4.1 De�nition und Eigenschaften

Produkte entstehen im Rahmen eines Produktentstehungsprozesses. Der Produktentste-

hungsprozess ist Teil des Produktlebenszyklus, dessen Phasen und Tätigkeiten Abbildung

2.16 zeigt. Der Produktentstehungsprozess umfasst die im gestrichelten Rechteck einge-

rahmten Phasen Anforderungen, Produktplanung, Entwicklung und Prozessplanung. Sein

Resultat sind sowohl das intelligente Produkt als auch die Produktionsunterlagen [ES09].

Intelligente Produkte beruhen auf der Mechatronik und entstehen durch das Zusammen-

wirken mehrerer Disziplinen zum Beispiel der Mechanik, der Elektronik (beides ist die

Hardware des Produktes) und der Softwaretechnik. Das Attribut intelligent bringt zum

Ausdruck, dass die Software ein dominanten Anteil zum Wert eines Produktes beiträgt.

52

Kapitel 2. Grundlagen

Anforderungen Produktplanung Entwicklung Prozessplanung Produktion Betrieb Recycling

Sammeln der
Anforderungen

Bestimmung der
Anforderungen

Projektplan

Methodik

Konzeption

Mechanische
Konstruktion

Elektrische/
Elektronische
Konstruktion

Software-
Konzeption

Testen

Dokumentation

Werkzeug-
design

Herstellungs-
konzept

Einkauf

Herstellung

Montage

Qualitäts-
sicherung

EntsorgungDistribution

Service

Wartung

Reperatur

Produktentstehungsprozess

Abbildung 2.16: Phasen und Tätigkeiten des Produktlebenszyklus gemäÿ [ES09]

In der Hardware- und Softwareentwicklung haben sich spezi�sche Entwurfstechniken eta-

bliert. Für die Hardwareentwicklung sei stellvertretend die VDI-Richtlinie 2221 [VDI93]

genannt. Bekannte Entwicklungsmethoden der Softwareentwicklung sind das Wasserfall-

Modell, das V-Modell und Scrum, auf die in Abschnitt 2.5 eingegangen wird. Für einen

umfangreichen Überblick über bekannte disziplinspezi�sche Entwurfsmethoden wird auf

[ERZ14] verwiesen.

Mechatronische Produkte erfordern aufgrund des Zusammenwirkens verschiedener Diszi-

plinen einen interdisziplinären Entwurfsansatz. Der Komplexitätsgrad der jeweiligen Ent-

wicklungsaufgabe ist abhängig von der Komplexität des konkreten Produkts [Ben07].

Unter dem Begri� Komplexität wird sowohl der innere Zusammenhang von Produkten als

auch deren Vielgestaltigkeit verstanden. Der innere Zusammenhang wird durch die Kon-

nektivität ausgedrückt und die Vielgestaltigkeit durch die Varietät [Bru91]. Abbildung

2.17 veranschaulicht den Begri� Komplexität von Produkten.

Durch die wachsende Komplexität intelligenter Produkte infolge ihrer höheren Konnekti-

vität und Vielgestaltigkeit, wächst zunehmend der Komplexitätsgrad der Entwicklungs-

aufgaben. Im sogenannten Systems Engineering wird eine Lösung gesehen, den stetig

wachsenden Komplexitätsgrad der Entwicklung intelligenter Produkte zu beherrschen.

2.4.2 Systems Engineering

Systems Engineering ist ein facettenreicher Begri�, was sich in einer relativ groÿen Anzahl

an De�nitionen äuÿert [Tsc16]. Im Wesentlichen wird darunter das Management parallel-

laufender Entwicklungsprozesse verschiedener Disziplinen über den gesamten Produktle-

benszyklus verstanden [BB16]. Es gibt zahlreiche Systems Engineering-Buchliteratur, zum

53

Kapitel 2. Grundlagen

Komplexität

Varietät Konnektivität

Arten der
Elemente

Anzahl der
Elemente

Arten der
Beziehungen

Anzahl der
Beziehungen

Abbildung 2.17: Komplexität von Produkten nach [Bru91]

Beispiel [Wei14, HdFV15, BB16] und einige der Themenfelder des Systems Engineering

sind in internationalen Normen standardisiert, zum Beispiel in der ISO/IEC/IEEE 42010

[ISO11] und in der ISO/IEC/IEEE 15288 [ISO15].

Die dem Systems Engineering zugrundeliegende Philosophie gliedert sich in das System-

denken und in ein Vorgehensmodell [Tsc16]. Das Ergebnis des Systemdenkens ist die

fachliche Beschreibung des Systems, das Vorgehensmodell beschreibt das Vorgehen in der

Systementwicklung.

Ziel der fachlichen Beschreibung des Systems ist zum einen die De�nition der Korrela-

tionen zwischen Systemanforderungen, Funktionen, Verhalten und Struktur des Systems

[EKM17]. Ein zentraler Systems Engineering-Gedanke ist es, die genannten Aspekte zu-

nächst unabhängig von einer technischen Lösung zu beschreiben. Damit soll eine frühzei-

tige Festlegung auf eine konkrete Umsetzung vermieden werden, also ob zum Beispiel eine

Produktfunktion durch Hardware oder Software realisiert wird. Eine frühzeitige Festle-

gung, zum Beispiel auf bekannte Lösungen, verhindert womöglich neue kreative Ansätze.

Zum anderen sollen im Prozess der Systemmodellierung alle Stakeholder frühzeitig in den

Produktentstehungsprozess eingebunden werden. Darin liegt ein weiterer Vorteil des Sys-

tems Engineering: Eine konsequente Umsetzung von Systems Engineering erfordert eine

ständige Kommunikation der Stakeholder untereinander. Missverständnisse, zum Beispiel

zwischen Hardwareentwickler und Softwareentwickler bezogen auf die Realisierung einer

Produktfunktion, die gegebenenfalls zu Projektverzögerungen führen würden, können ver-

mieden werden. Allerdings ist in vielen Unternehmen ein gesamtheitliches Bewusstsein für

Systems Engineering noch nicht zu erkennen, obwohl der Nutzen von Systems Engineering

in der Praxis anerkannt ist bzw. teilweise nachgewiesen werden kann [Elm08, GCW+13].

Die Themenfelder des Systems Engineering sind vielfältig: Der in der VDI-Richtlinie 2206

dargestellte Entwurfsprozess zeigt zum Beispiel das Anforderungsmanagement, den Sys-

tementwurf und die Systemintegration als Themenfelder (vgl. Abbildung 1.1)[VDI04]. Die

54

Kapitel 2. Grundlagen

Beschreibung eines Systems im klassischen Systems Engineering bzw. dessen Ergebnisdo-

kumentation der Themenfeldern erfolgt dokumentenbasiert. Das sogenannte Modell Based

System Engineering (MBSE) als eine Weiterführung des klassischen Systems Engineering

basiert hingegen auf digitalen Modellen, die entlang des Produktentstehungsprozesses in-

tegriert werden [EKM17].

Die digitalen Modelle sind zum einen systemübergreifend. Ein systemübergreifendes Mo-

dell wird Systemmodell genannt. Für die Systemmodellierung gibt es verschiedene Mo-

dellierungssprachen, zum Beispiel die System Modeling Language (SysML) [OMG17b]

und die Spezi�kationstechnik CONSENS, die aus den Arbeiten in [ADG+09] entstan-

den ist. Zum anderen sind die digitalen Modelle disziplinspezi�sch. Beispiele dafür sind

die M-CAD-Modelle in der Mechanik und die UML-Modelle in der Softwareentwicklung.

Abbildung 2.18 zeigt schematisch den Zusammenhang zwischen den Modellarten.

Systemmodell

M-CAD-Modelle

E-CAD-ModelleUML-Modelle

Simulationsmodelle

Abbildung 2.18: Digitale Modelle in der Produktentwicklung gemäÿ [EKM17]

Die aktuellen Herausforderungen des MBSE bestehen darin, die verschiedenen Model-

larten konsistent über den Produktlebenszyklus zu verwalten und Modellinformationen

bidirektional zwischen den verschiedenen Modellarten zu übertragen, um doppelte Daten-

eingaben und folglich Inkonsistenzen zu vermeiden. Als eine Lösung für diese Herausforde-

rungen werden Product Lifecycle Management (PLM)-Systeme angesehen. PLM-Systeme

sind �IT-Lösungen zur Umsetzung des für den Prozess der Produktentstehung notwendi-

gen Daten-Backbone� [ES09]. Dem Management von Systemmodellen in PLM-Systemen

widmete sich zum Beispiel das Forschungsprojekt mecPro2, dessen Ergebnisse in [EKM17]

verö�entlicht wurden. Allerdings lag der Fokus auf der e�zienten Verwaltung von SysML-

Modellen in PLM-Systemen. Folglich sind in mecPro2 keine Lösungen für den bidirektio-

nalen Informationsaustausch zwischen dem Systemmodell und den diszplinspezi�schen

Modellen entstanden. Einem alternativen Ansatz widmete sich das Forschungsprojekt

CRYSTAL [Cry17]. In diesem Forschungsprojekt wurde der Datenaustausch zwischen

55

Kapitel 2. Grundlagen

den verschiedenen Modellen bzw. zwischen den verschiedenen IT-Systemen, in denen die

Modelle verwaltet werden, auf Basis der OSLC-Spezi�kation (Open Services for Lifecycle

Collaboration) realisiert [OSL17]. Es wurden zwar einige Implementierungen realisiert,

dennoch stellt der abschlieÿende Bericht zur Einschätzung des Projektes fest, dass die

Kopplung von Modellen und IT-Systemen eine Herausforderung in der Praxis bleibt.

Da in diesen aktuellen Forschungsarbeiten keine grundsätzlichen Lösungen für die ein-

gangs genannte Herausforderung erarbeitet werden konnten, ist es naheliegend zu erwar-

ten, dass diese Herausforderungen auch in der Praxis ungelöst sind. Folglich kann für

diese Arbeit nicht davon ausgegangen werden, dass Systemmodelle, die mit Methoden des

Systems Engineering entwickelt werden, in die Modelle und Artefakte der domänenspe-

zi�schen Disziplinen konsistent übertragen werden. Vielmehr werden die Informationen

aus den Systemmodellen, sofern Systemmodelle vorhanden sind, manuell in die domä-

nenspezi�schen Modelle und Artefakte übertragen. Die einzelnen Domänen sind in der

Praxis nach wie vor relativ autarke Disziplinen im Rahmen des Produktentstehungspro-

zesses. Dies gilt auch für die Softwareentwicklung. Die in dieser Arbeit getätigte fokussierte

Betrachtung des Softwareentwicklungsprozesses als einen domänenspezi�schen Entwick-

lungsprozess mit stark wachsender strategischer Bedeutung ist daher gerechtfertigt.

2.5 Softwareentwicklungsprozess

2.5.1 De�nition und Eigenschaften

Ein Softwareentwicklungsprozess hat zum Ziel, in einem vereinbarten zeitlichen Rahmen

eine de�nierte Aufgabenstellung, und zwar die Erstellung eines Softwareproduktes bzw.

einer Softwareversion, durch einen bekannten Personenkreis zu erledigen. Um die Chancen

zu erhöhen, dass die Entwicklungsziele bezogen auf Qualität, Quantität, Entwicklungs-

dauer und Kosten (vgl. Teufelsquadrat in Abschnitt 2.1.2) erreicht werden, �sollte jede

Softwareentwicklung in einem festgelegten organisatorischen Rahmen erfolgen� [Bal00].

Dieser organisatorische Rahmen wird �Vorgehensmodell� genannt.

Ein Metamodell für die Beschreibung von Softwareentwicklungsprozessen bzw. Vorgehens-

modellen ist das Software Process Engineering Metamodel (SPEM) [OMG17a]. Motivation

für die Erstellung von SPEM war die Notwendigkeit, ein einheitliches Beschreibungsformat

für die Vielzahl an existierenden Vorgehensmodellen zu scha�en, da deren unterschiedliche

Beschreibungsformate eine Austauschbarkeit und Vergleichbarkeit kaum ermöglichen.

Das SPEM-Metamodell ist in UML modelliert. Es beschreibt mehrere Pakete, die verschie-

dene Elemente enthalten (Abbildung 2.19). Das Paket MethodContent enthält diejenigen

56

Kapitel 2. Grundlagen

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>> <<merge>>

<<merge>>

<<merge>>

Abbildung 2.19: Struktur des SPEM-Metamodells gemäÿ [OMG17a]

Elemente, mit denen die Prozesse eines Vorgehensmodells de�niert werden. Zur Model-

lierung von Prozessaufgaben, von Prozessrollen und von Prozessergebnissen sind die in

Tabelle 2.4 aufgeführten Elemente vorgesehen.

Obwohl das SPEM-Metamodell zahlreiche weitere Elemente enthält, soll nicht tiefer dar-

auf eingegangen werden, da im weiteren Verlauf dieser Arbeit lediglich auf die drei in

Tabelle 2.4 aufgeführten Elemente zur Beschreibung eines Vorgehensmodells Bezug ge-

nommen wird.

Eine Studie aus dem Jahr 2013 belegt, dass die Anwendung von Vorgehensmodellen, zu-

mindest in Deutschland, de facto durchgängig etabliert ist [KL14]. Lediglich 2,1 % der

befragten Personen gaben an, dass in ihrer Organisation keines der zur Auswahl angebote-

nen Vorgehensmodelle zur Anwendung kommt. Gleichzeitig wird in dieser Studie deutlich,

dass sehr viele verschiedene Vorgehensmodelle angewendet werden: Das Spektrum reicht

von agilen Vorgehensmodellen wie zum Beispiel Software-Kanban [Hir08] oder Scrum

[Sch95] bis hin zu den als traditionell einzuordnenden Vorgehensmodellen, wie beispiels-

weise dem Wasserfall-Modell oder dem V-Modell [Boe79].

Traditionelle Vorgehensmodelle werden auch als schwergewichtig bezeichnet [Han10]. Der

Grund für diese Attributierung soll am V-Modell erläutert werden:

Das V-Modell ist eine Erweiterung des Wasserfall-Modells mit integrierter Qualitätssiche-

rung durch de�nierte Veri�kations- und Validationsaktivitäten [Bal97]. Abbildung 2.21

57

Kapitel 2. Grundlagen

Element Beschreibung

RoleDe�nition Dieses Element beschreibt eine Prozessrolle, die im Software-

entwicklungsprozess aktiv ist. Die Beschreibung umfasst die

Fähigkeiten, die Kompetenzen und die Verantwortungen der

diese Prozessrolle ausfüllenden Person. Beispiele für jeman-

den, der diese Position innehaben kann, sind ein Program-

mierer oder ein Tester.

TaskDe�nition Dieses Element beschreibt eine Prozessaufgabe, die durch ei-

ne Prozessrolle erledigt wird. Sie beschreibt die Eingaben der

Prozessaufgabe und deren Ausgaben. Beispiele für eine Pro-

zessaufgabe sind die Erstellung eines Dokuments oder eine

Programmieraufgabe.

WorkProductDe�nition Dieses Element beschreibt die Ausgabe einer Prozessaufgabe.

Dies ist zum Beispiel ein Dokument oder ein Teil eines Quell-

textes.

Tabelle 2.4: Ausgewählte Elemente des SPEM-Package MethodContent [OMG17a]

zeigt ein Beispiel eines V-Modells. Die Phasen auf der linken Seite des �V� entsprechen

den Phasen des Wasserfall-Modells, wobei die Ergebnisse einer Phase vorliegen müssen,

bevor die nächste Phase beginnen kann. Die Ergebnisse einer Phase sind Dokumente.

Die Stärken des V-Modells liegen in der abgestuften Vorgehensweise von der Anforde-

rungsspezi�kation über das Design bis hin zur Implementierung. Jeder diese Stufen auf

der linken Seite des �V� ist eine dedizierte Phase des Tests auf der rechten Seite des �V�

zugeordnet. Softwareentwicklungen nach dem V-Modell haben einen starken Fokus auf

qualitätssichernden Maÿnahmen.

Die Schwergewichtigkeit des V-Modells ergibt sich aus diesem dokumentenbasierten Ab-

lauf an Phasen: Dokumente können je nach Softwareentwicklungsprojekt sehr umfangreich

sein und folglich kann ihre vollständige Erstellung lange Durchlaufzeiten eines Software-

entwicklungsprozesses bewirken. Auÿerdem leiten sich die Aufgaben in den weiteren Pha-

sen aus den erstellten Dokumenten ab. Sollten sich während des Softwareentwicklungs-

prozesses Änderungen zum Beispiel an den Anforderungen ergeben, so bewirken diese

Änderungen eine Nachbearbeitung aller abhängigen Dokumente, eine überarbeitete Pro-

jektplanung und gegebenenfalls Änderungen der geplanten Endtermine. Die Planung ist

nämlich eine zentrale Eigenschaft traditioneller Vorgehensmodelle: Alle Prozessaktivitäten

werden inhaltlich und zeitlich geplant, bevor an ihnen gearbeitet wird [Som12].

Bis in den frühen 1990er Jahren war die Ansicht weit verbreitet, dass nur eine sorg-

fältige Planung die Basis für eine erfolgreiche Softwareentwicklung ist. Allerdings setze

58

Kapitel 2. Grundlagen

sich zunehmend die Erkenntnis durch, dass der Planungsaufwand traditioneller Vorge-

hensmodelle für kleinere und mittlere Softwareprojekte zu groÿ ist und den gesamten

Softwareentwicklungsprozess beherrscht [Som12]. Daher wurden agile Vorgehensmodelle

vorgeschlagen, die auch leichtgewichtige Vorgehensmodelle genannt werden. Ziel der agilen

Vorgehensmodelle ist eine Fokussierung auf die Entwurfs- und Implementierungsaktivitä-

ten. Die zugrundeliegenden Paradigmen sind im Manifest für Agile Softwareentwicklung

beschrieben [Man17]. Die prinzipielle Vorgehensweise agiler Vorgehensmodelle wird im

Folgenden am Beispiel von Scrum erläutert. Die Erläuterungen sind eine Zusammenfas-

sung aus [Som12].

Scrum wurde erstmalig in [Sch95] präsentiert. Das Vorgehen in Scrum besteht aus drei

Phasen: einer allgemeinen Planungsphase, einer Serie an Sprint-Zyklen und einer Pro-

jektabschlussphase (Abbildung 2.20). In der allgemeinen Planungsphase werden die über-

geordneten Ziele des Softwareentwicklungsprojektes und die grobe Softwarearchitektur

festgelegt. In der Projektabschlussphase wird das Softwareentwicklungsprojekt vervoll-

ständigt, zum Beispiel durch eine Softwaredokumentation, und es erfolgt eine Projekt-

retrospektive, in der die positiven und negativen Aspekte des Projektes aufgearbeitet

werden. Das Herzstück von Scrum bilden die Sprint-Zyklen.

Grobplanung und
Architekturentwurf

Projektabschluss

Bewerten Auswählen

EntwickelnBesprechen

Sprint-Zyklus

Abbildung 2.20: Die Phasen in Scrum gemäÿ [Som12]

Ein Sprint ist eine Planungseinheit in der ausgesuchte Arbeitspakete bearbeitet werden.

Ein Sprint hat immer eine feste Dauer, meistens zwei oder vier Wochen. Am Ende ei-

nes Sprints müssen die Arbeitspakete erledigt sein, so dass immer eine funktionsfähi-

ge Software verfügbar ist. Die in einem Sprint zu bearbeitenden Arbeitspakete leiten

sich aus dem Produkt-Backlog ab, der Sammlung an Anforderungen an das Softwarepro-

jekt. Die Anforderungen werden Produkt-Backlog-Items genannt. In jedem Sprint werden

Produkt-Backlog-Items aus dem Produkt-Backlog ausgewählt und in das Sprint-Backlog

überführt. Ein groÿer Vorteil von Scrum gegenüber den traditionellen Vorgehensmodel-

len besteht in der Flexibilität der Auswahl der Produkt-Backlog-Items: Im Verlauf eines

59

Kapitel 2. Grundlagen

Scrum-Projektes wird die Reihenfolge der Bearbeitung der Produkt-Backlog-Items be-

stimmt, ursprünglich angedachte Produkt-Backlog-Items können verworfen werden und

neue, erst während des Projektverlaufs generierte Anforderungen können in das Produkt-

Backlog aufgenommen werden. Die Basis für diese Entscheidungen (Reihenfolge, Löschung

bzw. Hinzufügen von Anforderungen) ist die funktionsfähige Software, die zum Ende je-

des Sprints verfügbar ist und mit den Auftraggebern bzw. Stakeholdern des Software-

entwicklungsprojektes besprochen wird. Die Produkt-Backlog-Items sind folglich zentrale

Artefakte der Steuerung eines Scrum-Projektes. Die Idee der Steuerung eines Softwareent-

wicklungsprozesses mit Hilfe von Items wird in dem später folgenden Entwurf des Sliced

V-Modells aufgegri�en.

In [KL14] wird betont, dass die meisten Organisationen das jeweils verwendete Vorge-

hensmodell an ihre Bedürfnisse adaptieren. Dies wird �tailoring� genannt. Es kann folglich

davon ausgegangen werden, dass jede Organisation, jede Firma oder jeder produzierende

Betrieb ein spezi�sches Vorgehensmodell anwendet. Dies gilt auch für den Kooperations-

partner: Er setzt ein �getailortes� V-Modell der DIN EN 61508-3 ein. Das V-Modell der

DIN EN 61508-3 wird im nächsten Abschnitt erläutert.

In der Softwareentwicklung arbeiten viele Personen zusammen, die unterschiedliche Auf-

gaben haben, wie zum Beispiel Projektleitung, Programmierung oder Testen. Für die

Zusammenarbeit in der Softwareentwicklung werden zunehmend sogenannte �Collabo-

ration Tools� eingesetzt, die insbesondere in verteilten Softwareentwicklungen benötigt

werden [LEPV10, CA01]. Dies sind Werkzeuge, mit denen bestimmte Aufgaben während

der Softwareentwicklung durchgeführt werden, zum Beispiel Versionsmanagement, Fehler-

verfolgung oder Anforderungsmanagement. �Verteilte Softwareentwicklung� bedeutet zum

einen eine global verteilte Softwareentwicklung über mehrere Länder und zum anderen ei-

ne Verteilung über mehrere Standorte, die relativ nahe beieinanderliegen. So �nden zum

Beispiel die Softwareentwicklungen beim Kooperationspartner an zwei Standorten statt,

die lediglich 30 km auseinanderliegen. Selbst Softwareentwicklungen, die an einem Stand-

ort statt�nden und bei denen die beteiligten Personen in unterschiedlichen Gebäuden

arbeiten, kann als eine verteilte Softwareentwicklung angesehen werden.

Der Zugri� von verteilten Arbeitsplätzen auf alle im Softwareentwicklungsprozess entste-

henden Daten, die zeitgleiche Bearbeitung von Dokumenten, E-Mail-Benachrichtigungen

bei Änderungen von Daten, die zentrale Speicherung von Daten und vieles mehr sind

Grundfunktionen von Collaboration Tools. Sie vereinfachen die Zusammenarbeit in ver-

teilten Softwareentwicklungen, da alle beteiligten Personen jederzeit auf die aktuellsten

Daten zugreifen können.

Während sich etliche Collaboration Tools auf eine bestimmte Facette der Softwareentwick-

lung konzentrieren, also zum Beispiel nur auf das Anforderungsmanagement wie IBM

60

Kapitel 2. Grundlagen

Rational DOORS [DOO17], haben Systeme für das sogenannte �Application Lifecycle

Management� (ALM-Systeme) das Ziel, den gesamten Softwareentwicklungsprozess zu

unterstützen. ALM-Systeme sind werkzeugbasierte Lösungen für die Koordination von

Softwareentwicklungsaktivitäten sowie für das Management von Softwareartefakten, zum

Beispiel von Produktanforderungen oder von Testfällen [Juk11]. Ein ALM-System kann

folglich als ein umfassendes Collaboration Tool angesehen werden.

Da Collaboration Tools in der Regel den Zugri� auf die gespeicherten Daten IT-basiert

über API ermöglichen, können Informationsverarbeitungssysteme auf diese Daten zugrei-

fen. Die Nutzung von Collaboration Tools vereinfacht folglich die IT-basierte Erfassung

von Softwarekennzahlen.

2.5.2 Softwareentwicklungsprozess beim Kooperationspartner

2.5.2.1 V-Modell der DIN EN 61508-3

Der Softwareentwicklungsprozess beim Kooperationspartner orientiert sich an der DIN

EN 61508. Die DIN EN 61508 ist eine aus acht Teilen bestehende Normenreihe für die

Entwicklung von sicherheitsgerichteten Produkten. Sicherheitsgerichtete Produkte wer-

den entworfen, um gefahrbringende Zustände zu verhindern [DKE10b]. Ein gefahrbrin-

gender Zustand ist ein Zustand, in dem Menschen und/oder Maschinen gefährdet sind.

Die Anforderungen an die Softwareentwicklung und das V-Modell sind im dritten Teil der

Normenreihe, der DIN EN 61508-3, beschrieben [DKE10a].

Der Kooperationspartner nutzt die DIN EN 61508 seit Beginn der Entwicklung der ers-

ten sicherheitsgerichteten Produkte. In der Softwareentwicklung wurde die Norm zu-

nächst nur für die Entwicklung sicherheitsgerichteter Softwareprodukte verwendet. Später

wurde entschieden, das V-Modell der DIN EN 61508-3 auch für die Entwicklung nicht-

sicherheitsgerichteter Softwareprodukte zu verwenden.

Das V-Modell der DIN EN 61508-3 ist in mehrere Phasen aufgeteilt, in denen de�nierte

Aktivitäten statt�nden (Abbildung 2.21). In der DIN EN 61508-3 heiÿt es: �Die Ergeb-

nisse der Aktivitäten im Softwaresicherheitslebenszyklus müssen dokumentiert werden�.

Die während einer Phase entstandenen Dokumente sind die Ausgaben dieser Phase, die

gleichzeitig die Eingaben für die nächste Phase darstellen. Beispiele für Ausgaben sind

die Spezi�kation der Anforderungen an die Sicherheit der Software und die Spezi�kation

des Softwaresystementwurfs.

Die inhaltliche Tiefe der Dokumentation wird zwar nicht durch die Norm vorgeschrieben,

in der Praxis wird jedoch detailliert dokumentiert. Der Grund dafür ist, dass sicherheits-

gerichtete Produkte erst verkauft werden dürfen, nachdem unabhängige Prü�nstitute ein

61

Kapitel 2. Grundlagen

Spezifikation der
Anforderung an die

Sicherheit der
Software

Softwarearchitektur

Software-
Systementwurf

Modulentwurf

Codierung

Modultest

Integrationstest
(Module)

Integrationstest
(Bauteile, Teilsysteme,

prog. Elektronik)

Validierungsprüfung

Validierung

Verifikation

Ausgabe

Abbildung 2.21: V-Modell gemäÿ DIN EN 61508-3 [DKE10a]

Produktzerti�kat erteilt haben. Die Prü�nstitute vergeben das Zerti�kat erst nach einer

Prüfung der Vollständigkeit und Korrektheit der Dokumentation und der Traceability.

Die DIN EN 61508-3 fordert eine Vorwärts- und eine Rückwärtstraceability zwischen

allen Eingaben und Ausgaben. Traceability �refers to the ability to describe and follow

the life of a requirement, in both a forwards and backwards direction� [GF94]. Ein aktives

Traceability-Management erhöht die Qualität von Softwareentwicklungen [WP10]. Bei

Anwendung des V-Modells der DIN 61850-3 muss eindeutig nachvollziehbar sein, wie die

Ergebnisse einer Phase in den Ergebnissen der nächsten Phase berücksichtigt werden, wie

zum Beispiel eine Anforderung in der Softwarearchitektur berücksichtigt wird.

2.5.2.2 Anpassungen an das DIN EN 61508-3 V-Modell

Beim Kooperationspartner wurden die von der DIN EN 61850-3 geforderten Dokumente

ursprünglich mit MS Word erstellt. Um die Traceability nachzuweisen, wurden einzelne

Abschnitte in den Dokumenten mit einer eindeutigen Identi�kationsnummer (ID) mar-

kiert. Diese IDs wurden in Traceability-Matrizen eingetragen, die mit MS Excel erstellt

wurden. Eine Traceability-Matrix zeigt den Zusammenhang zwischen den IDs zweier Do-

kumente. Tabelle 2.5 zeigt das Konzept einer Traceability-Matrix.

62

Kapitel 2. Grundlagen

Dokument A:

Dokument B:
ID101 ID242 ID345 ID556 ID789

ID100 x

ID223 x

ID320 x x

ID894 x

Tabelle 2.5: Schematisches Konzept einer Traceability-Matrix

Diese Vorgehensweise erwies sich als aufwendig und fehleranfällig, insbesondere wenn meh-

rere tausend IDs in der Entwicklung eines Softwareproduktes verwaltet werden mussten.

Zu jeder Änderung in einem Dokument musste über die Traceability-Matrizen analysiert

werden, welche Textpassagen in den nachfolgenden Dokumenten von dieser Änderung be-

tro�en sein könnten. Jede neue ID musste in die Traceability-Matrizen überführt werden.

Da diese und ähnliche Bearbeitungsschritte mehrere Minuten dauern konnten, empfanden

die Mitarbeiter dieses Vorgehen als mühsam. Auÿerdem kam es aufgrund der Gröÿe der

Dokumente und der Traceability-Matrizen regelmäÿig zu Fehlern (zum Beispiel indem ein

Kreuz in der Traceability-Matrix falsch gesetzt wurde), sodass zeitintensive Dokumenten-

reviews durchgeführt werden mussten.

Zudem erwies sich das teamübergreifende Dokumentenmanagement mit MS Word als

kompliziert. Die Dokumente wurden in einem Netzwerklaufwerk gespeichert. Die Mitarbei-

ter wurden nicht automatisch über Änderungen an den Dokumenten informiert, sondern

der Mitarbeiter, der eine Änderung vorgenommen hatte, musste die anderen Mitarbeiter

informieren. Zudem war ein gleichzeitiges Bearbeiten von Dokumenten nicht möglich.

Aus den aufgeführten Gründen benötigte der Kooperationspartner eine Lösung, um die

bestehenden Nachteile in der Anwendung des V-Modells zu beheben. Die Auswahl eines

alternativen Vorgehensmodells wurde nicht in Betracht gezogen, da ein Teil der Softwa-

reprodukte zerti�ziert wird und Voraussetzung für die Zerti�zierung die Anwendung des

V-Modells der DIN EN 61508-3 ist. Der Kooperationspartner hatte daher geprüft, wie

die aufgeführten Nachteile beseitigt werden könnten. Als Ergebnis dieser Prüfung wurde

die Einführung eines ALM-Systems beschlossen und in internen Prozessbeschreibungen

wurde de�niert, wie das V-Modell der DIN EN 61508-3 in dem ALM-System zu realisie-

ren ist. Des Weiteren wurde im Zuge dessen das Versionsmanagementsystem gewechselt.

Mittlerweile werden folgende Collaboration Tools eingesetzt:

� ALM-System: Polarion ALM [Sie17]

� Versionsmanagementsystem: Subversion [Apa17]

63

Kapitel 2. Grundlagen

Die Einführung des angepassten V-Modells erfolgte schrittweise über mehrere Jahre. Wäh-

rend seiner Gestaltung wurde die Erfassung von Kennzahlen nicht berücksichtigt, da zu

dem Zeitpunkt der Anpassung sämtliche Entwicklungskennzahlen in der im Abschnitt

1.3 erläuterten Projektmanagementdatenbank erfasst wurden. Wie bereits begründet, ist

dieses Vorgehen für die Softwareentwicklung nicht mehr ausreichend.

2.6 Zusammenfassung

Dieser Arbeit liegt die Überzeugung zugrunde, dass die Domäne der Softwareentwicklung

von der Produktionsdomäne lernen kann und grundsätzlich Methoden und Kennzahlen

von der Produktionsdomäne in die Softwaredomäne transferiert werden können.

Kennzahlen sind Zahlen, die in verdichteter Form quantitativ oder qualitativ messbare

Sachverhalte wiedergeben. Für ihr Verständnis muss ein Adressat einer Kennzahl deren

Semantik verstehen. Da aus der Literatur keine einheitliche De�nition für die Semantik

einer Kennzahl bekannt ist, wird für diese Arbeit de�niert, dass der Name, die Maÿeinheit,

der Wertebereich, der Idealwert, die Möglichkeit der Vergabe von Soll-Werten, das Ziel,

die Frage und die Interpretation die Semantik einer Kennzahl beschreiben.

Kennzahlen werden mit Hilfe von Informationsverarbeitungssystemen erfasst und ver-

arbeitet. Im Entwurf eines Informationsverarbeitungssystems sind verschiedene Gestal-

tungsgrundsätze zu berücksichtigen, die im Abschnitt 2.1.1 aufgeführt sind.

Es sind keine Beispiele bekannt, in denen Produktionskennzahlen in der Domäne der Soft-

wareentwicklung genutzt werden. Folglich fehlt eine Methode, mit der HW-Produktions-

kennzahlen in die Domäne der Softwareentwicklung transferiert werden können. Diese

Aufgabenstellung ist in dieser Arbeit zu lösen. Es gibt mehrere Methoden bzw. Prozessbe-

schreibungen, mit denen sich Kennzahlen zielorientiert bestimmen lassen, von denen drei

näher betrachtet wurden: die Balanced Scorecard, die Norm ISO/IEC/IEEE 15939 und

die GQM-Methode. Grundsätzlich sind alle drei Methoden bzw. Prozessbeschreibungen

als Basismethode für eine neu zu entwickelnde Kennzahlentransfermethode geeignet. Da

allerdings die GQM-Methode die Anforderungen an eine Basismethode am besten erfüllt,

wird sie als Basismethode gewählt. Die neu zu entwickelnde Methode muss gewährleisten,

dass die Semantik der HW-Produktionskennzahlen nach dem Kennzahlentransfer erhalten

bleibt.

Vorgehensmodelle bilden den organisatorischen Rahmen von Softwareentwicklungspro-

zessen. Bei der praktischen Umsetzung von Vorgehensmodellen sollten sogenannte Col-

laboration Tools angewendet werden. Deren Einsatz verbessert die Zusammenarbeit im

Softwareentwicklungsprozess und vereinfacht die Datenerfassung mit Hilfe eines Informa-

64

Kapitel 2. Grundlagen

tionsverarbeitungssystems. Der Kooperationspartner wendet ein auf der DIN EN 61508-3

basierendes V-Modell unter Einbeziehung eines ALM-Systems und eines Versionsmana-

gementsystem an. Allerdings wurde in der Gestaltung dieses angepassten V-Modells die

Erfassung von Kennzahlen nicht berücksichtigt. Die Aufgabenstellung, das V-Modell ent-

sprechend zu gestalten und die Erfassung von SW-Produktionskennzahlen und Software-

kennzahlen zu ermöglichen, ist in dieser Arbeit zu lösen.

Für die Erreichung der in der Abbildung 1.5 gezeigten Zielsituation ist es auÿerdem not-

wendig, die Softwarekennzahlen in der Menge KS aus den operativen Zielen zu bestim-

men. Dafür wären grundsätzlich wiederum die Balanced Scorecard, die ISO/IEC/IEEE

15939 und die GQM-Methode geeignet. Da letztere als Basismethode für eine Kennzah-

lentransfermethode ausgewählt wurde, wird festgelegt, sie auch für die Bestimmung der

Softwarekennzahlen zu verwenden, um eine einheitliche Methode für das Lösen mehrerer

Aufgabenstellungen dieser Arbeit einzusetzen.

65

Kapitel 3

Transfer von Produktionskennzahlen

Dieses Kapitel widmet sich der ersten Detailfrage dieser Arbeit: Wie können SW-

Produktionskennzahlen, die die Semantik der äquivalenten HW-Produktionskennzahlen

beibehalten, gebildet werden? Es wird eine auf der GQM-Methode aufbauende Metho-

de entwickelt, mit der Produktionskennzahlen in die Domäne der Softwareentwicklung

transferiert werden können. Diese Methode wird Reversed-Goal-Question-Metric-Methode

(RGQM-Methode) genannt. Des Weiteren wird ein Anwendungsbeispiel der RGQM-

Methode erläutert. Die Inhalte dieses Kapitels entstanden iterativ in den Design Research-

Entwurfsphasen Erstellen und Evaluierung (vgl. Abschnitt 1.5).

Erste Konzepte der RGQM-Methode wurden in [DD15] verö�entlicht und in einem Work-

shop einem Fachpublikum zur Diskussion gestellt [Deu16]. Abbildung 3.1 zeigt, welche

Inhalte in diesem Kapitel behandelt werden und an welcher Stelle diese Inhalte zur Errei-

chung der Zielsituation dieser Arbeit beitragen. Das graue Rechteck markiert den Inhalt:

den Transfer der Kennzahlen in KHW nach KSW mit Hilfe der RGQM-Methode.

Strategische
Ziele

KSW

InterpretationFormulierung

Operative
Ziele

KS
Erfassung

Verdichtung

Management

Softwareteam

InterpretationFormulierung

Berücksichtigung

KHW
Definition Transfer

Definition

Software-
entwicklungsprozess

Gestaltung

Erfassung

Abbildung 3.1: Inhalt des Kapitels 3 in Bezug auf die Zielsituation dieser Arbeit

66

Kapitel 3. Transfer von Produktionskennzahlen

3.1 RGQM-Methode

Im Abschnitt 2.3.1 wurde das Grundkonzept des angestrebten Kennzahlentransfers er-

läutert und in Abbildung 2.10 schematisch dargestellt. Mit einer Basismethode ist eine

existierende Methode für die Bestimmung von Kennzahlen gemeint. Damit mit der Ba-

sismethode das Grundkonzept realisiert werden kann, muss sowohl ein eindeutiger Zu-

sammenhang zwischen Ziel und Kennzahl als auch zwischen Interpretation und Kennzahl

hergestellt werden (vgl. Anforderungen A1 und A2 in Abschnitt 2.3.1).

Für die Auswahl der Basismethode wurden drei Methoden näher betrachtet: die Balanced

Scorecard, die Norm ISO/IEC/IEEE 15939 und die GQM-Methode. Wie im Abschnitt

2.3.5 aufgeführt, erfüllen zwar alle drei Methoden beide Anforderungen, die Balanced Sco-

recard und die Norm ISO/IEC/IEEE 15939 jedoch nur eingeschränkt. Die GQM-Methode

erfüllt beide Anforderungen ohne Einschränkung. Sie wird daher als Basismethode für die

im folgenden Abschnitt beschriebene Methode zum Kennzahlentransfer ausgewählt.

3.1.1 Konzept

Wie bereits in Abschnitt 2.3.4 erläutert, spielen in der GQM-Methode das Ziel und die

Interpretation einer Kennzahl folgende Rollen: das Ziel ist der Ausgangspunkt für die Be-

stimmung einer Kennzahl, die Interpretation unterstützt bei der Überprüfung der Zieler-

reichung. Mit Hilfe der in diesem Abschnitt entworfenen RQGM-Methode werden sowohl

das Ziel als auch die Interpretation einer HW-Produktionskennzahl in die Domäne der

Softwareentwicklung übertragen. Durch diese Übertragung entsteht eine SW-Produktions-

kennzahl.

Die RQGM-Methode übernimmt das in Abschnitt 2.3.4 beschriebene Phasenmodell der

GQM-Methode mit den vier Phasen Planung, De�nition, Datenerfassung und Interpre-

tation (Abbildung 3.2). Der Planungsphase und der Interpretationsphase wird das Vor-

gehen der Planungsphase bzw. der Interpretationsphase der GQM-Methode zugrunde ge-

legt. Das bedeutet, dass sich in diesen beiden Phasen die RGQM-Methode nicht von der

GQM-Methode unterscheidet. In der Datenerfassungsphase werden die SW-Produktions-

kennzahlen erfasst. Die genaue Implementierung der Datenerfassung hängt von den ein-

zelnen Kennzahlen ab.

In der RGQM-De�nitionsphase wird der Weg der zielorientierten Bestimmung von Kenn-

zahlen der GQM-Methode genutzt, jedoch wird dieser Weg zunächst in entgegengesetzter

Richtung durchlaufen. Abbildung 3.3 zeigt schematisch die RGQM-De�nitionsphase, die

eine konkrete Umsetzung des im Abschnitt 2.3.1 erläuterten Grundkonzepts eines Kenn-

zahlentransfers darstellt (vgl. Abbildung 2.10).

67

Kapitel 3. Transfer von Produktionskennzahlen

Frage

P
ro

je
kt

p
la

n

Planung

Ziel

Frage

Kennzahl Messwerte

Antwort

Ziel-
erreichung

Erfasste Daten

Datenerfassung

Definition
Interpretation

Kennzahl

V
er

gl
e

ic
h

In
te

rp
re

ta
ti

o
n

Abbildung 3.2: Phasen der RGQM-Methode

Die gestrichelte Linie symbolisiert das logische Ergebnis des Kennzahlentransfers: Eine

existierende HW-Produktionskennzahl kHW wird in eine SW-Produktionskennzahl kSW

transferiert. Die durchgezogenen Linien symbolisieren den Abarbeitungspfad des Kenn-

zahlentransfers. Dabei wird ausgehend von kHWdie dazugehörende Frage Qkhw und das

dazugehörende Ziel Gkhw für den Produktionsprozess ermittelt. Es wird geprüft, ob das

Ziel nicht nur für den Produktionsprozess gültig ist, sondern auch auf den Softwareent-

wicklungsprozess übertragen werden kann (Gksw). Damit ein Ziel übertragen werden kann,

sollte es abstrakt formuliert sein.

Wie in Abschnitt 2.1.1 erläutert, ist ein abstraktes Ziel weder terminiert noch quanti�ziert.

Konkret formulierte Ziele sind dagegen terminiert und quanti�ziert und stehen somit in

direktem Bezug zur Produktion. Daher ist ein Transfer konkreter Ziele nicht möglich.

Falls das Ziel übertragen werden kann, wird im Anschluss das zielorientierte Bestimmen

einer Kennzahl gemäÿ GQM-Methode angewendet und die Frage Qksw formuliert. Im

Qkhw

kHW

Gkhw

Qksw

kSW

Gksw

Produktion Softwareentwicklung

En
tg

eg
en

ge
se

tz
te

 D
ef

in
it

io
n

D
ef

in
it

io
n

Ikhw Iksw

Abbildung 3.3: RGQM-De�nitionsphase

68

Kapitel 3. Transfer von Produktionskennzahlen

Unterschied zur GQM-Methode steht jedoch die Kennzahl bereits fest, mit der die Frage

beantwortet wird: Es ist die SW-Produktionskennzahl kSW . Anders als bei der GQM-

Methode muss folglich eine neue Kennzahl nicht bestimmt werden. Abschlieÿend wird

bewertet, ob die Interpretation Iksw der SW-Produktionskennzahl im Grundsatz identisch

zur der Interpretation Ikhw der HW-Produktionskennzahl ist. Nur wenn all diese Schritte

erfolgreich abgearbeitet werden können, ist die Produktionskennzahl transferierbar.

Die RGQM-De�nitionsphase setzt sich aus acht aufeinanderfolgenden Bearbeitungsschrit-

ten zusammen, die im folgenden Abschnitt erläutert werden.

3.1.2 Bearbeitungsschritte

Abbildung 3.4 ordnet die acht RGQM-Bearbeitungsschritte in die RGQM-

De�nitionsphase ein. Sie beginnt mit der Identi�zierung einer HW-Produktionskennzahl

kHW (1O) und endet mit der Ermittlung der Interpretation der SW-Produktionskennzahl

kSW (8O).

Für die Durchführung der RGQM-Methode ist ein Team verantwortlich, das in der

RGQM-Planungsphase zusammengestellt wird (vgl. Abschnitt 2.3.4). Im Folgenden wer-

den die RGQM-Bearbeitungsschritte zwar im Passiv beschrieben, dennoch ist ein aktive

Durchführung der RGQM-Methode durch das Projektteam bzw. durch eine benannte

Person gemeint.

Bearbeitungsschritt 1 (Identi�zierung der HW-Produktionskennzahl kHW):

Alle im Produktionsprozess eingesetzten HW-Produktionskennzahlen werden gesichtet.

Es wird analysiert, welche dieser HW-Produktionskennzahlen das Management verwen-

det und folglich Teil der Menge KHW sind (vgl. Abbildung 1.3). In der Regel werden nicht

Qkhw

kHW

Gkhw

Qksw

kSW

Gksw

Produktion Softwareentwicklung

En
tg

eg
en

ge
se

tz
te

 D
ef

in
it

io
n

D
ef

in
it

io
n

Ikhw Iksw

1

2

3

4

5

6

7

8

Abbildung 3.4: Bearbeitungsschritte in der RGQM-De�nitionsphase

69

Kapitel 3. Transfer von Produktionskennzahlen

alle in einem produzierenden Betrieb de�nierten HW-Produktionskennzahlen vom Mana-

gement genutzt. Dies ist zum Beispiel der Fall, wenn sie ausschlieÿlich der Überprüfung

operativer Ziele dienen und folglich Teil der Menge K ′
HW sind.

Anhand der vom Management verwendeten HW-Produktionskennzahlen ist zu entschei-

den, für welche der HW-Produktionskennzahlen der RGQM-Bearbeitungsprozess gestar-

tet wird. Insbesondere wenn die RGQM-Methode erstmalig angewendet wird, sollte die

Anzahl der ausgewählten HW-Produktionskennzahlen begrenzt werden, um Erfahrungen

in der Anwendung der RGQM-Methode zu sammeln. Zwar stehen dann dem Management

noch nicht alle benötigten Kennzahlen zur Steuerung des Softwareentwicklungsprozesses

zur Verfügung. Dennoch sind, anders als vor der erstmaligen Anwendung der RQGM-

Methode, bereits einige SW-Produktionskennzahlen verfügbar, was als eine Verbesserung

der Ausgangssituation angesehen wird.

Bearbeitungsschritt 2 (Identi�zierung der zu kHW gehörenden Frage Qkhw):

Im nächsten Schritt wird Qkhw ermittelt. Dies ist die produktionsspezi�sche Frage, die mit

kHW beantwortet wird. Falls kHW mit der GQM-Methode hergeleitet wurde, existiert be-

reits die Frage Qkhw. Sie kann folglich durch Sichtung der vorhandenen GQM-Unterlagen

(Protokolle etc.) ermittelt werden. Da die GQM-Methode ihren Ursprung in der Softwa-

redomäne hat, ist es zwar unwahrscheinlich, dass die GQM-Methode in der Produktions-

domäne verwendet wird, auszuschlieÿen ist dies jedoch nicht. Falls kHW nicht mit der

GQM-Methode hergeleitet wurde bzw. keine Frage existiert, wird die Frage ermittelt.

Bearbeitungsschritt 3 (Identi�zierung des zu Qkhw gehörenden Ziels Gkhw):

Gkhw ist das für den Produktionsprozess formulierte strategische Ziel, dem die Frage Qkhw

zugeordnet ist. Falls kHW und folglich Qkhw ursprünglich mit der GQM-Methode herge-

leitet wurden, werden wiederum die existierenden GQM-Unterlagen genutzt, um Gkhw

zu notieren. Andernfalls wird unter Einbindung des Managements das strategische Ziel

Gkhw ermittelt, dem Qkhw zugeordnet ist. Falls es zwar strategische Ziele gibt, aber keines

davon Qkhw zugeordnet werden kann, muss explizit das strategische Ziel Gkhw formuliert

werden. Es wird angenommen, dass die Formulierung eines strategischen Ziels Gkhw mög-

lich ist. Andernfalls wäre die Nutzung von kHW in Frage zu stellen: Sie wird zwar vom

Management genutzt, aber ihre Erfassung dient keinem strategischen Ziel.

Bearbeitungsschritt 4 (Identi�zierung der Interpretation Ikhw):

Aus Abschnitt 2.1.1 ist bekannt, dass die Interpretation keinen eineindeutig beschreibba-

ren Informationsinhalt einer Kennzahl darstellt. Sie ist vielmehr eine Handlungsbeschrei-

bung des Adressaten der Kennzahl, der auf die Ist-Werte der Kennzahl reagiert. In diesem

RGQM-Bearbeitungsschritt wird folglich festgestellt, wie das Management die Ist-Werte

der HW-Produktionskennzahl kHW für die Überprüfung der Erreichung des dazugehören-

den strategischen Ziels verwendet. Dies können Soll-/Ist-Wert-Vergleiche, Grenzwertüber-

70

Kapitel 3. Transfer von Produktionskennzahlen

prüfungen oder Trendanalysen sein. Des Weiteren wird ermittelt, wie das Management

reagiert, wenn Ziele nicht erreicht werden. So kann es zum Beispiel ad-hoc-Maÿnahmen

einleiten, wenn die Ist-Werte bestimmte Grenzwerte über- oder unterschreiten.

In diesem RQGM-Bearbeitungsschritt wird identi�ziert, welches Verständnis das Mana-

gement von kHW hat, für wie wichtig es kHW für die Produktionssteuerung erachtet und

wie es auf abweichende Ist-Werte reagiert.

Bearbeitungsschritt 5 (Prüfung der Gültigkeit von Gksw):

Mit diesem Schritt beginnt der Transfer von kHW in die Softwaredomäne. Es wird bewer-

tet, ob das zu kHW gehörende strategische Ziel Gkhw auch, aus Sicht des Managements, auf

den Softwareentwicklungsprozess übertragen werden sollte. Falls ja, müssen gegebenenfalls

produktionsspezi�sche Begri�e, sofern sie in Gkhw verwendet werden, durch softwarespe-

zi�sche Begri�e ersetzt werden. Folglich wird aus Gkhw ein für die Softwaredomäne ange-

passtes Ziel Gksw. Ein Beispiel für ein übertragbares strategisches Ziel mit angepassten

domänenspezi�schen Begri�en ist:

Gkhw: Verkürzung der durchschnittlichen Durchlaufzeiten in der Produktion

Gksw: Verkürzung der durchschnittlichen Entwicklungsdauer in der Softwareentwicklung

Sollte das Management zu der Einschätzung gelangen, dass Gkhw nicht für den Softwa-

reentwicklungsprozess gilt, ist der RGQM-Bearbeitungsprozess für die HW-Produktions-

kennzahl kHW beendet. Sie kann nicht in die Softwaredomäne transferiert werden.

Bearbeitungsschritt 6 (Formulierung der softwarespezi�schen Frage Qksw):

Falls Gkhw auf den Softwareentwicklungsprozess übertragen werden soll, wird im nächsten

Schritt die Frage formuliert, die die SW-Produktionskennzahl beantwortet. Es wird be-

wertet, wie der Satzbau der Frage Qkhw in den Satzbau der Frage Qksw überführt werden

kann. Wie im Abschnitt 2.3.1 aufgeführt ist es notwendig, dass der Satzbau der Frage

Qkhw übernommen wird. Die Frageninhalte in der Frage Qksw, beispielsweise �Wie ist das

Verhältnis von...zu..?�, dürfen dagegen spezi�sch für die Domäne der Softwareentwicklung

sein. Um die Frageninhalte der Frage Qksw zu ermitteln, werden die Frageninhalte der Fra-

ge Qkhw in softwaredomänenspezi�sche Frageninhalte abgebildet. Dieser Vorgang wird als

�Mapping� bezeichnet. Das Mapping jedes einzelnen Frageninhaltes wird begründet.

Bearbeitungsschritt 7 (Ermittlung der Berechnungsgrundlagen von ksw):

Da khw bereits im Produktionsprozess erfasst und vom Management verwendet wird,

sind die dazugehörenden Berechnungsgrundlagen de�niert. Diese sind abhängig von der

Kennzahl selbst und von der Frage, ob es sich um eine absolute Kennzahl oder eine

Verhältniskennzahl handelt. Da ksw in einer anderen Domäne als khw erfasst wird, kann

die Berechnungsgrundlage für ksw von der Berechnungsgrundlage für khw abweichen.

71

Kapitel 3. Transfer von Produktionskennzahlen

Während der Erstellung der Berechnungsgrundlagen wird bewertet, ob die für khw gel-

tenden Semantikmerkmale Maÿeinheit, Wertebereich, Idealwert und Möglichkeit der Fest-

legung von Soll-Werten auf ksw übertragbar sind. Dies erfolgt auf Basis einer konkreten

Berechnungsformel. Ist zum Beispiel khw eine Verhältniskennzahl, die in % angegeben

wird und den Wertebereich von 0 % bis 100 % hat, muss die Berechnungsformel für ksw

die Übertragung der aufgeführten Semantikmerkmale ermöglichen. In Gleichung 3.1 ist

die Berechnungsformel für dieses Beispiel gezeigt.

ksw =
Acond

Aall

(3.1)

mit:

Aall Alle Artefakte

Acond Artefakte, für die eine Bedingung gilt

ksw ist ebenfalls eine Verhältniskennzahl, die in % angegeben wird. Es ist naheliegend,

dass das Semantikmerkmal Name ohne gesonderte Prüfung übertragen wird.

Bearbeitungsschritt 8 (Ermittlung der Interpretation Iksw):

ksw kann transferiert werden, wenn die RGQM-Bearbeitungsschritte 1 bis 7 erfolgreich

sind und wenn ksw eine im Grundsatz identische Interpretation erlaubt wie khw. Wie

bereits in Abschnitt 2.3.1 erläutert, ist damit gemeint, dass das Management auf die Soll-

Werte von ksw ähnlich reagieren würde wie auf die Soll-Werte von khw. Um dies zu prüfen,

wird mit dem Management erörtert, wie es ksw für die Überprüfung der Zielerreichung

strategischer Ziele verwenden würde. Diese Reaktion wird notiert. In deren Beschreibung

können softwaredomänenspezi�sche Begri�e verwendet werden. Dieser zunächst theoreti-

schen Betrachtung folgt eine praktische Evaluierung. Diese ist jedoch erst möglich, wenn

ein Informationsverarbeitungssystem verfügbar ist und damit Ist-Werte von ksw erfasst

werden.

Nach Abarbeitung aller RGQM-Bearbeitungsschritte hat die SW-Produktionskennzahl

ksw die meisten der im Abschnitt 2.1.1 de�nierten Semantikmerkmale der HW-

Produktionskennzahl khw übernommen und zwar: Name, Maÿeinheit, Wertebereich, Ide-

alwert, Möglichkeit der Festlegung von Soll-Werten, Ziel und Interpretation (hier mit der

Einschränkung im Grundsatz identisch).

Die Frage, die mit der SW-Produktionskennzahl beantwortet wird und die ein weiteres Se-

mantikmerkmal darstellt, ist zwar im Satzbau identisch, jedoch können die Frageninhalte

verschieden sein. Obwohl folglich eine andere Frage generiert wird, kann ein Manager mit

der SW-Produktionskennzahl in gleicher Art und Weise arbeiten, wie mit der dazugehö-

renden HW-Produktionskennzahl. Dies ist möglich, weil:

72

Kapitel 3. Transfer von Produktionskennzahlen

� die Fragestellung durch den gleichen Satzbau erhalten bleibt, wobei domänenspezi-

�sche Frageninhalte verwendet werden,

� und weil beide Ausprägungen der Produktionskennzahl den Zielen Gkhw bzw. Gksw

zugeordnet sind, wobei Gksw das transferierte Gkhw ist,

� und weil beide Ausprägungen der Produktionskennzahl im Grundsatz identisch in-

terpretiert werden.

Für die Vertiefung des Verständnisses der RGQM-Methode wird im nächsten Abschnitt

ein Anwendungsbeispiel beim Kooperationspartner dargestellt.

3.2 Anwendungsbeispiel

3.2.1 Einführung

In dem Anwendungsbeispiel werden fünf HW-Produktionskennzahlen transferiert. Die fol-

gende Erläuterung orientiert sich an der Reihenfolge der RGQM-Bearbeitungsschritte: In

jedem RGQM-Bearbeitungsschritt werden jeweils alle fünf HW-Produktionskennzahlen

genannt. Folglich wird nicht für jede einzelne HW-Produktionskennzahl jeweils ein

RGQM-Bearbeitungsschritt erläutert.

Zunächst werden die RGQM-Bearbeitungsschritte 1 bis 6 dargestellt. Die RGQM-

Bearbeitungsschritte 7 und 8 werden im Abschnitt 6.3 erläutert, da für deren Nach-

vollziehbarkeit das Datenmodell des Softwareentwicklungsprozesses bekannt sein sollte,

welches in Abschnitt 5.2.2 beschrieben wird. Im Laufe des Anwendungsbeispiels entste-

hen Anforderungen an den Softwareentwicklungsprozess, die in dessen Gestaltung zu be-

rücksichtigen sind. Sie müssen erfüllt werden, damit die SW-Produktionskennzahlen von

einem Informationsverarbeitungssystem erfasst werden können.

3.2.2 RGQM-Bearbeitungsschritte

3.2.2.1 RGQM-Bearbeitungsschritt 1

Der Geschäftsbereichsleiter beim Kooperationspartner wurde befragt, welche der in

den unternehmensinternen Dokumenten beschriebenen HW-Produktionskennzahlen er

im Rahmen seiner aktuellen Managementtätigkeit für die Steuerung und Überwachung

von Produktionsprozessen nutzt. Aus den von ihm genannten sieben HW-Produktions-

kennzahlen wurden die in Tabelle 3.1 gezeigten HW-Produktionskennzahlen ausgewählt.

73

Kapitel 3. Transfer von Produktionskennzahlen

Nr. HW-Produktionskennzahl Beschreibung

k10.1.1hw First Pass Rate [%] Verhältnis von gefertigten Produkten, die

den Fertigungsendtest bestehen, zu allen ge-

fertigten Produkten

k11.1.1hw Technische Rückläuferrate [%] Verhältnis von aus technischen Gründen

von Kunden zurückgeschickten Produkten

zu allen gefertigten Produkten

k12.1.1hw Servicegrad [%] Verhältnis termingerecht gefertigter Auf-

tragspositionen zu allen gefertigten Auf-

tragspositionen

k13.1.1hw Wertschöpfung [e] Die auf Basis von Arbeitsplänen der Mitar-

beiter und Maschinenauslastungen ermittel-

ten Fertigungsplankosten, multipliziert mit

der Anzahl gefertigter Produkte

k13.2.1hw Produktivität [e/h] Verhältnis von Wertschöpfung zu Ist-

Stunden der Mitarbeiter

Tabelle 3.1: Auswahl der HW-Produktionskennzahlen

Diese Auswahl basiert zum einen auf der vom Geschäftsbereichsleiter eingeschätztenWich-

tigkeit der HW-Produktionskennzahlen. Zum anderen erfolgte die Auswahl aufgrund sei-

nes Wunsches, den Einsatz dieser HW-Produktionskennzahlen im Softwareentwicklungs-

prozess zu evaluieren. Zum Beispiel begründete er den Wunsch an den Servicegrad wie

folgt:

Der Geschäftsbereichsleiter sei zwar in der Lage, die Lieferqualität von groÿen Softwa-

refunktionen, die in der Regel von Groÿkunden gefordert werden, einzuschätzen. Jedoch

könne er die Lieferqualität der vielen kleineren Softwarefunktionen nicht bewerten, da ihm

diese kleineren Softwarefunktionen nicht bekannt seien. Die groÿen Softwarefunktionen

werden den Groÿkunden zu Terminen geliefert, an deren Vereinbarung der Geschäftsbe-

reichsleiter mitgewirkt hat. Durch regelmäÿige Abstimmungen mit den Groÿkunden und

den Softwareentwicklungsteams kann er einschätzen, ob diese Termine tatsächlich ein-

gehalten wurden bzw. wie groÿ die Lieferverzögerungen sind. Die Erwartung an die SW-

Produktionskennzahl Servicegrad sei, dass er damit auch die Lieferqualität der vielen klei-

nen Softwarefunktionen bewerten könne. Genau dies ist mit der HW-Produktionskennzahl

Servicegrad für die Produktion möglich, wobei es sich dabei um Auftragspositionen statt

um Softwarefunktionen handelt. In ähnlicher Art und Weise äuÿerte er Wünsche für die

anderen ausgewählten HW-Produktionskennzahlen.

Wie im Folgenden aufgeführt, gibt es für die First Pass Rate, für die Technische Rück-

läuferrate und den Servicegrad je ein zugeordnetes strategisches Ziel (G10khw, G11khw,

74

Kapitel 3. Transfer von Produktionskennzahlen

G12khw). Die Wertschöpfung und die Produktivität werden einem strategischen Ziel

G13khw zugeordnet, beantworten dabei jedoch unterschiedliche Fragen. Die Nummerie-

rung dieser beiden HW-Produktionskennzahlen beginnt daher mit der Zi�er 13. Wie in

Abschnitt 4.2 begründet wird, erfolgt eine 10er-Nummerierung, um strategische von ope-

rativen Zielen unterscheiden zu können.

Wie bereits in Abschnitt 1.2 erläutert, sind die beim Kooperationspartner eingesetzten

HW-Produktionskennzahlen betriebsspezi�sch. Damit ist gemeint, dass die Auswahl und

ihre Semantik betriebsspezi�sch sind. Die fünf HW-Produktionskennzahlen in Tabelle 3.1

bestätigen die Erläuterung: Für die First Pass Rate, die Technische Rückläuferrate und

den Servicegrad ist nicht bekannt, ob sie mit diesem Namen und der in der Tabelle 3.1

aufgeführten Beschreibung in anderen produzierenden Betrieben verwendet werden. Die

Wertschöpfung und die Produktivität sind Kennzahlen, deren allgemein bekannte De-

�nitionen von den Beschreibungen in Tabelle 3.1 abweichen. In der Erläuterung 2.1 in

Abschnitt 2.1.3 wurde bereits die betriebsspezi�sche Semantik der Wertschöpfung be-

schrieben, die von der allgemein anerkannten De�nition abweicht. Die Produktivität ist

allgemein als eine betriebs- bzw. volkswirtschaftliche Kennzahl bekannt, die das Verhält-

nis von Aufwand und Ergebnis anzeigt. Diese De�nition weicht von der Bedeutung der

Produktivitätskennzahl beim Kooperationspartner ab.

3.2.2.2 RGQM-Bearbeitungsschritte 2 bis 4

Um die zu den HW-Produktionskennzahlen gehörenden Fragen, Ziele und Interpretatio-

nen zu bestimmen, fanden mehrere Interviews mit einem Gruppenleiter der Produktion

und dem Geschäftsbereichsleiter statt. Dies erfolgte in drei Schritten: Zunächst wurden

die Fragen ermittelt und danach das Ziel formuliert. Im dritten Schritt wurde von den

Gesprächsteilnehmern erläutert, wie sie auf die Ist-Werte der HW-Produktionskennzahlen

reagieren und so deren Interpretation erfragt.

Die auf diese Art und Weise ermittelten Fragen, Ziele und Interpretationen der einzel-

nen HW-Produktionskennzahlen werden in den folgenden Abschnitten aufgeführt. Wie

in Abschnitt 2.1.1 erläutert, werden die Ziele abstrakt formuliert und repräsentieren die

Unternehmensstrategie. Die Ziele sind folglich weder quanti�ziert noch terminiert. Eine

Quanti�zierung bzw. Terminierung erfolgt jeweils im spezi�schen Kontext einer Produkti-

onslinie, für die bestimmte Soll-Werte in einer bestimmten zeitlichen Periode, zum Beispiel

in einem Monat, zu erreichen sind. Wie in den folgenden Abschnitten ersichtlich wird, ist

die Frage, die eine HW-Produktionskennzahl beantwortet, im Prinzip identisch zu deren

Beschreibung in Tabelle 3.1. Das ist naheliegend für Kennzahlenbeschreibungen: Die Be-

schreibung sollte möglichst präzise darstellen, welche Information eine Kennzahl anzeigt

und welche Frage folglich durch die Kennzahl beantwortet wird.

75

Kapitel 3. Transfer von Produktionskennzahlen

3.2.2.2.1 First Pass Rate

Die Frage, die durch die First Pass Rate (FPR) beantwortet wird, lautet:

� Q10.1khw: Wie ist das Verhältnis von gefertigten Produkte, die fehlerfrei getestet

wurden, zu allen gefertigten Produkten?

Das zur First Pass Rate und zu der Frage gehörende Ziel lautet:

� G10khw: Hohe Fertigungsqualität

Die First Pass Rate wird wie folgt interpretiert:

� Wie bereits erwähnt, werden alle gefertigten intelligente Produkte im Gegensatz zu

rein mechanischen Produkten, die lediglich stichprobenartig getestet werden, einem

Fertigungsendtest unterzogen. Zwar ist eine maximale FPR von 100 % möglich, ty-

pische Ist-Werte liegen jedoch zwischen 95 % und 98 %. Da es sich um hochpreisige

intelligente Produkte handelt, werden diejenigen Produkte, die den Fertigungsend-

test nicht bestehen, inspiziert und wenn möglich nachbearbeitet. Dies verursacht

Nacharbeitskosten. Das Management fordert, die Nacharbeitskosten möglichst ge-

ring zu halten und legt für jede Produktionsstätte durchschnittliche jährliche Soll-

Werte fest. Die Produktionsteams bestimmen daraus die jährlichen Soll-Werte für

die einzelnen Produktionslinien in der Produktionsstätte. Wenn die Ist-Werte den

Soll-Werten entsprechen, werden keine Maÿnahmen eingeleitet. Sind die Ist-Werte

geringer als die Soll-Werte, untersuchen das Management bzw. die Produktions-

teams die Ursachen und leiten Maÿnahmen ein. Ein entsprechendes, auf eine kon-

krete Produktionslinie bezogenes Beispiel wurde bereits in Tabelle 1.1 in Abschnitt

1.2 gezeigt. Sollten die Ist-Werte für eine Produktionsstätte nicht den Soll-Werten

entsprechen, entscheidet das Management gemeinsam mit den Produktionsteams

über die Umsetzung strategischer Maÿnahmen, beispielsweise die Bescha�ung von

neuen Maschinen oder die Durchführung von Mitarbeiterquali�zierungsmaÿnahmen.

3.2.2.2.2 Technische Rückläuferrate

Die Frage, die durch die Technische Rückläuferrate (TRR) beantwortet wird, lautet:

� Q11.1khw: Wie ist das Verhältnis von ausgelieferten Produkten, die aufgrund eines

technischen Defekts reklamiert werden, zu allen gefertigten Produkten? (Anmer-

kung: Es gibt auch andere Gründe für Reklamationen, zum Beispiel eine falsche

Lieferung. Diese Reklamationen gehen nicht in die TRR ein.)

76

Kapitel 3. Transfer von Produktionskennzahlen

Das zur Technischen Rückläuferrate und zu der Frage gehörenden Ziel lautet:

� G11khw: Hohe Kundenzufriedenheit

Die Technische Rückläuferrate wird wie folgt interpretiert:

� Die TRR beträgt idealerweise 0 %. Sie liegt meist unter 5 %. Jedes reklamierte

Produkt wird inspiziert und wenn möglich repariert. Selbst wenn ein reklamiertes

Produkt nicht repariert wird, entstehen Nacharbeitskosten durch die Inspektion.

Das Management fordert, die Nacharbeitskosten durch eine niedrige TRR mög-

lichst gering zu halten. Es legt für jede Produktionsstätte durchschnittliche jährli-

che Soll-Werte fest. Die Produktionsteams leiten daraus die jährlichen Soll-Werte

für die einzelnen Produktionslinien in der Produktionsstätte ab. Die Maÿnahmen

bei Abweichungen von Soll- und Ist-Werten ähneln den Maÿnahmen, die bei der

Interpretation der FPR aufgeführt wurden.

3.2.2.2.3 Servicegrad

Die Frage, die durch den Servicegrad beantwortet wird, lautet:

� Q12.1khw: Wie ist das Verhältnis von Auftragspositionen, die zum Bestätigungster-

min geliefert wurden, zu allen Auftragspositionen?

Das zum Servicegrad und zu der Frage gehörende Ziel lautet:

� G12khw: Hohe Lieferqualität

Der Servicegrad wird wie folgt interpretiert:

� Die Produktion bestätigt dem Vertrieb die Liefertermine für die eingegangenen Auf-

tragspositionen. Das Management fordert, diese Termine einzuhalten. Im Idealfall

beträgt der Servicegrad 100 %. In den meisten Fällen liegen die Werte über 95 %. Das

Management legt für jede Produktionsstätte durchschnittliche jährliche Soll-Werte

fest. Die Produktionsteams leiten daraus die jährlichen Soll-Werte für die einzelnen

Produktionslinien in der Produktionsstätte ab. Bei Abweichungen zwischen Soll-

und Ist-Werten �ndet eine Untersuchung der Ursachen statt. Die Ursachen können

sehr unterschiedlich sein. So können zum Beispiel benötigte Bauteile für die Ferti-

gung der Auftragspositionen gefehlt haben oder die Priorität von Auftragspositionen

wurde geändert. In Abhängigkeit von den Ursachen werden ggf. geeignete Maÿnah-

men eingeleitet, zum Beispiel eine Erhöhung des Lagerbestands von Bauteilen.

77

Kapitel 3. Transfer von Produktionskennzahlen

3.2.2.2.4 Wertschöpfung

Die Frage, die durch die Wertschöpfung beantwortet wird, lautet:

� Q13.1khw: Wie hoch sind die Fertigungsplankosten (ohne Berücksichtigung der Ma-

terialkosten) der produzierten Ist-Menge?

Das zur Wertschöpfung und zu der Frage gehörende Ziel lautet:

� G13khw: Hohe Fertigungsrentabilität

Die Wertschöpfung wird wie folgt interpretiert:

� Die Fertigungsplankosten werden pro Produkttyp ermittelt. Die Wertschöpfung gibt

die Fertigungsplankosten der produzierten Ist-Menge an. Die Fertigungsplankosten

für ein Produkt werden bei der Gestaltung des Produktlistenpreises berücksichtigt.

Sie müssen zur Wettbewerbsfähigkeit des Produktes beitragen und eine Marge pro

Produkt erlauben. Daher werden die Fertigungsplankosten bzw. die zugrundeliegen-

den Fertigungsabläufe kontinuierlich angepasst, um die Wertschöpfung zu senken

und somit die Wettbewerbsfähigkeit des betre�enden intelligenten Produktes zu

erhöhen. Diese Anpassungen erfolgen während der gesamten Lebenszeit des intel-

ligenten Produktes. Die Wertschöpfung ist zudem eine Eingangskennzahl für die

Berechnung der Produktivität.

3.2.2.2.5 Produktivität

Die Frage, die durch die Produktivität beantwortet wird, lautet:

� Q13.2khw: Wie ist das Verhältnis von der Wertschöpfung zu den Ist-Stunden, die

der Fertigung des Produktes direkt zugeordnet werden können?

Das zur Produktivität und zu der Frage gehörende Ziel ist identisch mit dem der Wert-

schöpfung und lautet:

� Q13khw: Hohe Fertigungsrentabilität

Die Produktivität wird wie folgt interpretiert:

78

Kapitel 3. Transfer von Produktionskennzahlen

� Der Verlauf der Produktivität wird in Trends angezeigt. Der Trend sollte gleich-

bleibend oder steigend sein. Sinkende Ist-Werte der Produktivität sind ein Indika-

tor dafür, dass die Produktionsmitarbeiter einen wachsenden Teil ihrer Arbeitszeit

nicht wertschöpfend einsetzen. In diesem Fall wird untersucht, welche Ursachen es

dafür gibt. Diese Ursachen werden gezielt adressiert und beseitigt.

3.2.2.3 RGQM-Bearbeitungsschritt 5

Nach der Erfassung der Fragen, Ziele und Interpretation der ausgewählten HW-

Produktionskennzahlen wurde mit dem Geschäftsbereichsleiter bewertet, ob die jeweiligen

Ziele auf die Softwareentwicklung übertragen werden können. Dies wurde vom Geschäfts-

bereichsleiter bestätigt: Alle ermittelten Ziele sind für den Kooperationspartner zentrale

strategische Ziele, die sowohl für die Produktion als auch für die Softwareentwicklung

gelten. Lediglich das Wort Fertigung müsse durch das Wort Softwareentwicklung ausge-

tauscht werden. Daraufhin wurden folgende strategischen Ziele für die Softwareentwick-

lung formuliert:

� G10ksw: Hohe Softwareentwicklungsqualität

� G11ksw: Hohe Kundenzufriedenheit

� G12ksw: Hohe Lieferqualität

� G13ksw: Hohe Softwareentwicklungsrentabilität

Wie ersichtlich ist, wird die Abstraktionsebene der Zielformulierung nicht geändert. Das

heiÿt, die Ziele für die Softwareentwicklung sind wie die Ziele für die Produktion weder

quanti�ziert noch terminiert. Eine Quanti�zierung bzw. Terminierung erfolgt wiederum

jeweils in einem spezi�schen Kontext, zum Beispiel im Kontext der Entwicklung einer

Softwareversion.

3.2.2.4 RGQM-Bearbeitungsschritt 6

Da die Ziele übertragen werden können, wurden im nächsten Bearbeitungsschritt die von

diesen Zielen ableitbaren softwaredomänenspezi�schen Fragen formuliert, die von diesen

Zielen abgeleitet werden können. Beantwortet werden diese Fragen mit den jeweiligen SW-

Produktionskennzahlen, also der First Pass Rate, der Technischen Rückläuferrate usw.

Wie in Abschnitt 2.3.1 erläutert, müssen der Satzbau der ursprünglichen Frage und der

Satzbau der neuen Frage identisch sein, um die Semantik der HW-Produktionskennzahl

79

Kapitel 3. Transfer von Produktionskennzahlen

zu erhalten. Dies war bei allen Fragen möglich und wurde berücksichtigt. Die Fragenin-

halte müssen allerdings durch softwaredomänenspezi�sche Begri�e ersetzt werden. Dabei

wurde jeweils ein Frageninhalt einer Ausgangsfrage in einen Frageninhalt einer Zielfrage

gemappt. Die folgende Au�istung zeigt und erläutert das festgelegte Mapping:

� Gefertigte Produkte, die den Fertigungsendtest bestehen: Dieser Frageninhalt wird

auf die Quelltextänderungen, die der Implementierung von Softwarefunktionen zuge-

ordnet werden können, gemappt. Idealerweise bestehen alle gefertigten Produkte den

Fertigungsendtest und alle Quelltextänderungen dienen der Implementierung neuer

Softwarefunktionen. Folglich symbolisieren beide Frageninhalte Prozessaktivitäten,

die im ersten Anlauf erfolgreich realisiert wurden. Allerdings gibt es fehlerhaft ge-

fertigte Produkte und Quelltextimplementierungen, die der Behebung von Fehlern

zuzuordnen sind. Beides verursacht zu vermeidende Nacharbeitskosten.

� Alle gefertigten Produkte: Dieser Frageninhalt wird auf alle Quelltextänderungen

gemappt. Darin sind Quelltextänderungen, die Fehlerbehebungen zugeordnet wer-

den können, enthalten.

� Aus technischen Gründen von Kunden zurückgeschickte Produkte: Dieser Fragen-

inhalt wird auf Quelltextänderungen, die der Implementierung extern entdeckter

Fehler zugeordnet werden können, gemappt. Beide Frageninhalte verursachen zu

vermeidende Nacharbeitskosten.

� Termingerecht gefertigte Auftragspositionen: Dieser Frageninhalt wird auf die Soft-

warefunktionen, die zum zugesagten Termin geliefert wurden, gemappt. Eine

Softwarefunktion wird als Äquivalent einer Auftragsposition angesehen und sollte

wie eine Auftragsposition termingerecht geliefert werden.

� Alle gefertigten Auftragspositionen: Dieser Frageninhalt wird auf alle Softwarefunk-

tionen gemappt. Darin sind die nicht zum zugesagten Termin gelieferten Software-

funktionen enthalten.

� Fertigungsplankosten der Ist-Menge: Dieser Frageninhalt wird auf die geplanten

Kosten für die Entwicklung neuer Softwarefunktionen gemappt. Die geplanten Soft-

wareentwicklungskosten werden als Äquivalent der Fertigungsplankosten angesehen,

da in letzteren die Materialkosten nicht enthalten sind.

� Ist-Stunden der Mitarbeiter: Dieser Frageninhalt wird auf die Ist-Stunden, die der

Entwicklung der Softwareversion direkt zugeordnet werden können, gemappt. Beide

Arten von Ist-Stunden zeigen den tatsächlichen Aufwand der beteiligten Mitarbeiter

an und werden daher als äquivalent angesehen.

80

Kapitel 3. Transfer von Produktionskennzahlen

Auf Basis dieses Mappings wurden im Anschluss folgende Fragen formuliert (in den Klam-

mern steht die jeweils dazugehörende SW-Produktionskennzahl):

� Q10.1ksw(First Pass Rate): Wie ist das Verhältnis von Quelltextänderungen, die

der Implementierung von Softwarefunktionen zugeordnet werden können, zu allen

Quelltextänderungen?

� Q11.1ksw(Technische Rückläuferrate): Wie ist das Verhältnis von Quelltext-

änderungen, die der Implementierung extern entdeckter Fehler zugeordnet werden

können, zu allen Quelltextänderungen?

� Q12.1ksw(Servicegrad): Wie ist das Verhältnis von Softwarefunktionen, die zum zu-

gesagten Termin geliefert wurden, zu allen gelieferten Softwarefunktionen?

� Q13.1ksw(Wertschöpfung): Wie hoch sind die geplanten Kosten für die Entwicklung

neuer Softwarefunktionen?

� Q13.2ksw(Produktivität): Wie ist das Verhältnis von der Wertschöpfung zu den ge-

leisteten Ist-Stunden, die der Entwicklung der Softwareversion direkt zugeordnet

werden können?

Um diese Fragen mit den jeweiligen SW-Produktionskennzahlen beantworten zu können,

muss der Softwareentwicklungsprozess folgende Anforderungen erfüllen, die in dessen Ge-

staltung zu berücksichtigen sind:

Anforderung 1 (Zuordnung Quelltextänderungen) Der Softwareentwicklungspro-

zess muss es ermöglichen, Quelltextänderungen sowohl der Implementierung neuer Soft-

warefunktionen als auch der Behebung intern und extern entdeckter Fehler zuzuordnen

und diese Zuordnungen zu erfassen.

Anforderung 2 (Termine Softwarefunktionen) Der Softwareentwicklungsprozess

muss es ermöglichen, neue Softwarefunktionen individuell mit einem zugesagten Termin

zu markieren und diesen zugesagten Termin sowie den Freigabetermin der Software-

funktion zu erfassen.

Anforderung 3 (Soll-/Ist-Stunden) Der Softwareentwicklungsprozess muss es ermög-

lichen, die Soll-Aufwände für die Entwicklung von Softwarefunktionen und die Ist-

Aufwände, die für die Entwicklung einer Softwareversion geleistet wurden, zu erfassen.

Es reicht aus, die Aufwände zu erfassen, da sich die Kosten direkt aus den Aufwänden

bestimmen lassen.

81

Kapitel 3. Transfer von Produktionskennzahlen

Die Erfüllung dieser Anforderungen durch den Softwareentwicklungsprozess ist die Vor-

aussetzung dafür, dass ein Informationsverarbeitungssystem die fünf SW-Produktions-

kennzahlen erfassen kann.

3.2.2.5 RGQM-Bearbeitungsschritte 7 und 8

Im RGQM-Bearbeitungsschritt 7 werden die Berechnungsgrundlagen der SW-

Produktionskennzahlen erstellt. Die Berechnungsgrundlagen der in diesem Kapitel be-

stimmten SW-Produktionskennzahlen werden allerdings erst in Abschnitt 6.3 aufgeführt.

Um diese nachzuvollziehen, sollte das Datenmodell des Softwareentwicklungsprozesses be-

kannt sein, welches in Abschnitt 5.2.2 erläutert wird. Im RGQM-Bearbeitungsschritt 8

wird überprüft, ob die SW-Produktionskennzahlen eine im Grundsatz identische Inter-

pretation wie die der jeweiligen HW-Produktionskennzahlen erlauben. Die Interpretation

jeder einzelnen SW-Produktionskennzahl wird gemeinsam mit deren Berechnungsgrundla-

gen in Abschnitt 6.3 aufgeführt. Zudem wird in Abschnitt 6.3 die semantische Äquivalenz

der beiden Ausprägungen einer Produktionskennzahl bewertet. Um diese Bewertung nach-

vollziehen zu können, sollte wiederum das Datenmodell des Softwareentwicklungsprozesses

bekannt sein.

Während der Anwendung der RQGM-Methode wurden die Anforderungen A1 bis A3

formuliert, die der Softwareentwicklungsprozess beim Kooperationspartner erfüllen muss.

Weitere Anforderungen ergeben sich in dem Prozess der Bestimmung von Softwarekenn-

zahlen, dem sich das nächste Kapitel widmet.

82

Kapitel 4

Bestimmung der Softwarekennzahlen

Für die in dieser Arbeit zu erreichende Zielsituation der kennzahlenorientierten Gestal-

tung des Softwareentwicklungsprozesses sind neben den SW-Produktionskennzahlen auch

Softwarekennzahlen zu bestimmen. Während die SW-Produktionskennzahlen das Mana-

gement adressieren, erfüllen die Softwarekennzahlen die Informationsbedürfnisse der Soft-

wareteams. In diesem Kapitel wird das prinzipielle Vorgehen für die Bestimmung der Soft-

warekennzahlen und ein Anwendungsbeispiel beim Kooperationspartner erläutert. In dem

Anwendungsbeispiel werden weitere Anforderungen formuliert, die in der Gestaltung des

Softwareentwicklungsprozesses berücksichtigt werden müssen. Die Inhalte dieses Kapitels

entstanden iterativ in den Design Research-Entwurfsphasen Erstellen und Evaluierung

(vgl. Abschnitt 1.5).

Abbildung 4.1 zeigt, welche Inhalte in diesem Kapitel behandelt werden und an welcher

Stelle diese Inhalte zur Erreichung der Zielsituation dieser Arbeit beitragen. Die graue

Fläche markiert den Inhalt: die Herleitung der operativen Ziele und die Bestimmung der

Softwarekennzahlen.

Strategische
Ziele

KSW

InterpretationFormulierung

Operative
Ziele

KS
Erfassung

Verdichtung

Management

Softwareteam

InterpretationFormulierung

Berücksichtigung

KHW
Definition Transfer

Definition

Software-
entwicklungsprozess

Gestaltung

Erfassung

Abbildung 4.1: Inhalt des Kapitels 4 in Bezug auf die Zielsituation dieser Arbeit

83

Kapitel 4. Bestimmung der Softwarekennzahlen

4.1 Vorgehen

Ausgangspunkt für die kennzahlenorientierte Gestaltung des Softwareentwicklungsprozes-

ses sind die die vom Management formulierten strategischen Ziele. Um diese zu operatio-

nalisieren, werden daraus unter Einbindung der Softwareteams operative Ziele abgeleitet.

Wie bereits in Abschnitt 2.1.1 dargelegt, sind die strategischen Ziele im Kontext dieser

Arbeit von abstrakter Natur und weder quanti�ziert noch terminiert. Ein Beispiel ist das

Ziel �Hohe Fertigungsqualität�. Für diese Arbeit wird diese abstrakte Formulierung der

strategischen Ziele ebenfalls für die Formulierung der operativen Ziele verwendet. Ein im

Folgenden aufgeführtes Anwendungsbeispiel lautet �Leistungse�ziente Programmierung�.

Um strategische in operative Ziele zu überführen, können verschiedene Ansätze gewählt

werden, von denen drei im Folgenden kurz dargestellt werden:

� Hierarchische Balanced Scorecards (vgl. Abschnitt 2.3.2): In [FS99] wird dargelegt,

dass jeweils eine individuelle Balanced Scorecard für jede Hierarchieebene eines pro-

duzierenden Betriebes erarbeitet werden kann. Dabei sind die strategischen Zie-

le in der Balanced Scorecard der Managementebene und die operativen Ziele in

den Balanced Scorecards der unteren Hierarchieebenen aufgeführt. So entsteht ein

Netz miteinander verwobener Balanced Scorecards. Bei Anwendung dieses Ansat-

zes müssten die Softwareteams, also die Hierarchieebene der Softwareentwicklung,

ebenfalls eine eigene Balanced Scorecard entwickeln.

� GQM+Strategies® (vgl. Abschnitt 2.3.4): Dieses ist eine auf der GQM-Methode

aufbauende Methode, mit der Ziele über mehrere Unternehmenshierarchien ver-

knüpft werden [BHL+07]. Durch die Anwendung von GQM+Strategies® entsteht

ein Modell, das den Zusammenhang aller Ziele, folglich auch der strategischen und

operativen Ziele, und die für die Zielüberprüfung notwendigen Messaktivitäten zeigt

[HMT09]. Bei Anwendung dieses Ansatzes können die Softwareteams schrittweise die

operativen Ziele aus den strategischen Zielen ableiten.

� Pragmatische Vorgehensweise: Neben der Anwendung eines dieser beiden methodi-

schen Ansätze kann die Ableitung der operativen Ziele aus den strategischen Zielen

auch pragmatisch erfolgen, indem die Softwareteams unter Kenntnis der strategi-

schen Ziele ihre operativen Ziele de�nieren. Dieser De�nitionsprozess erfolgt mit

geeigneten, im Betrieb bewährten Methoden, beispielsweise der Durchführung von

Workshops.

Welche der genannten Methoden anzuwenden ist, hängt von den Erfahrungswerten ei-

nes produzierenden Betriebes im Umgang mit diesen Methoden ab. Damit ist gemeint,

84

Kapitel 4. Bestimmung der Softwarekennzahlen

dass ein produzierender Betrieb den Ansatz hierarchischer Balanced Scorecards nutzen

kann, sofern bereits Erfahrungen mit der Balanced Scorecard auf einer Hierarchieebene

vorhanden sind. Liegen schon Erfahrungen mit der GQM-Methode vor, kann die darauf

aufbauende GQM+Strategies® genutzt werden.

Ziel dieser Arbeit ist es nicht, diese oder andere geeignete Methoden für die Überführung

von strategischen in operative Ziele zu bewerten. Daher erfolgt hier kein Vorschlag für

oder gegen eine der drei genannten Möglichkeiten. Es wird allerdings betont, dass der

Prozess der Zielableitung für die kennzahlenorientierte Gestaltung des Softwareentwick-

lungsprozesses notwendig ist.

Unabhängig davon, welcher Ansatz von einem produzierenden Betrieb gewählt wird, ste-

hen als Ergebnis des Ansatzes die formulierten operativen Ziele zur Verfügung. Um sicher-

zustellen, dass für alle strategischen Ziele jeweils mindestens ein operatives Ziel formuliert

wurde bzw. dass jedes operative Ziel einen Bezug zu einem strategischen Ziel hat, sollte

die Relation der Ziele gra�sch dargestellt werden. Eine exemplarische Darstellung dieses

Zusammenhangs zeigt die Abbildung 4.2.

Strategisches
Ziel 10

Operatives
Ziel 20

Operatives
Ziel 21

Strategisches
Ziel 11

Operatives
Ziel 22

Operatives
Ziel 23

Abbildung 4.2: Relation zwischen strategischen und operativen Zielen

Damit in einer solchen Gra�k schnell erkennbar ist, ob es sich um ein strategisches oder

um ein operatives Ziel handelt, ist eine Syntax zu de�nieren, die eine Unterscheidung

ermöglicht. Beispielsweise können unterschiedliche Symbole, GS vs. GO, oder jeweils ein

anderer Nummernkreis genutzt werden. Letzteres ist in der Abbildung 4.2 der Fall.

Da sich sowohl strategische als auch operative Ziele ändern können, sollte die Relation

zwischen diesen beiden Zieltypen in regelmäÿigen zeitlichen Abständen, beispielsweise

einmal pro Jahr, bewertet und ggf. überarbeitet werden.

Der Formulierung der operativen Ziele für die Softwareentwicklung folgt die Bestimmung

der Softwarekennzahlen, mit denen die Zielerreichung der operativen Ziele überprüft wer-

den kann. Für diesen Prozess der Softwarekennzahlenbestimmung sollten anerkannte Me-

85

Kapitel 4. Bestimmung der Softwarekennzahlen

thoden wie die GQM-Methode (vgl. Abschnitt 2.3.4) oder die Norm ISO/IEC/IEEE 15939

(vgl. Abschnitt 2.3.3) angewendet werden. Nach Anwendung dieser Vorgehensweise ste-

hen dem produzierenden Betrieb die Softwarekennzahlen zur Verfügung, deren Erfas-

sung durch den Softwareentwicklungsprozess ermöglicht werden muss. In dem Prozess der

Kennzahlenbestimmung sollte abgewägt werden, ob bereits existierende Softwarekenn-

zahlen (vgl. Abschnitt 2.1.2) für die Überprüfung der Zielerreichung geeignet oder ob

betriebsspezi�sche Softwarekennzahlen neu zu de�nieren sind.

4.2 Anwendungsbeispiel

In diesem Abschnitt wird die Bestimmung der Softwarekennzahlen beim Kooperations-

partner erläutert. Zunächst wird dargelegt, wie die operativen Ziele bestimmt wurden, und

die Relation zwischen den operativen Ziele zu den strategischen Zielen wird hergestellt.

Im Anschluss wird das Vorgehen bei der Bestimmung der Softwarekennzahlen erläutert

und die in diesem Prozess bestimmten Softwarekennzahlen werden aufgeführt.

4.2.1 Bestimmung der operativen Ziele

Um die operativen Ziele aus den strategischen Zielen beim Kooperationspartner herzu-

leiten, wurde eine pragmatische Vorgehensweise zugrunde gelegt. Die strategischen Ziele

sind diejenigen Ziele, die mit Hilfe der RGQM-Methode ermittelt wurden (vgl. Abschnitt

3.2.2.3). Dies sind:

� G10ksw: Hohe Softwareentwicklungsqualität

� G11ksw: Hohe Kundenzufriedenheit

� G12ksw: Hohe Lieferqualität

� G13ksw: Hohe Softwareentwicklungsrentabilität

Aus diesen Zielen hat der Verfasser dieser Arbeit zunächst mehrere operative Ziele ab-

geleitet und diese mit einigen Stakeholdern aus der Softwareentwicklung besprochen. Als

Ergebnis dieser Diskussionen wurden fünf operative Ziele für die Softwareentwicklung

formuliert.

Um die Nummern für die strategischen und operativen Ziele zu vergeben, wird das oben

erwähnte Prinzip eines unterschiedlichen Nummernkreises genutzt: Die strategischen Ziele

erhalten eine 10er-Nummer, den operativen Zielen wird eine 20er-Nummer zugewiesen.

86

Kapitel 4. Bestimmung der Softwarekennzahlen

Im Folgenden werden die de�nierten operativen Ziele für die Softwareentwicklung genannt

und erläutert:

G20ks Leistungse�ziente Programmierung:

Die Programmierung ist eine Hauptaufgabe in der Softwareentwicklung. Mit dem Be-

gri� �leistungse�zient� ist ein möglichst ausgewogenes, sich kontinuierlich verbesserndes

Verhältnis der Softwarequantität zu den Kosten und zur Entwicklungsdauer gemeint.

G21ks Leistungse�zientes Dokumentieren:

Das Dokumentieren ist eine wesentliche Aufgabe im Softwareentwicklungsprozess (vgl.

Abschnitt 2.1.2.1). Wie bei den Entwicklungsaktivitäten ist auch hier mit dem Begri�

�leistungse�zient� ein möglichst ausgewogenes, sich kontinuierlich verbesserndes Verhält-

nis der Quantität der erstellten Softwaredokumentation zu den Kosten und zur Entwick-

lungsdauer gemeint.

G22ks Gezielte Bearbeitung von Qualitätsschwerpunkten:

Bislang sind beim Kooperationspartner Qualitätsschwerpunkte nicht systematisch erkenn-

bar. Qualitätsschwerpunkte zeigen auf, welche Softwarequalitätseigenschaften (vgl. Ab-

schnitt 2.1.2.4.2) in einem Softwareprodukt zu verbessern sind, mit welcher Priorisierung

diese Verbesserungen zu bearbeiten sind und welche Ursachen in der Programmierung

für Softwarequalitätseinschränkungen verantwortlich sind. Bislang erfolgen derartige Ein-

schätzungen unsystematisch in Teammeetings, indem die Teammitglieder beispielsweise

einschätzen, dass einige Berechnungszeiten zu lange dauern. Sie ändern daraufhin das

Softwareprodukt, um diese Einschränkungen zu beheben. Diesen Einschätzungen fehlt

jedoch eine quantitativ auswertbare Datenbasis.

G23ks Objektive Bewertung der Fehlermenge:

Entdeckte Fehler führen regelmäÿig zu Diskussionen zwischen Vertriebs- und Entwick-

lungsmitarbeitern. Damit ist gemeint, dass Vertriebsmitarbeiter immer wieder wegen ein-

zelnen von Kunden entdeckten Fehlern die Leistungsfähigkeit der Softwareentwicklung in

Frage stellen. Objektiv nachweisbare Qualitätsverbesserungen, mit denen derartige Dis-

kussionen versachlicht werden könnten, fehlen.

G24ks Reduzierung der Fehlermenge:

Die Anzahl an Fehlern zu reduzieren, ist eine kontinuierliche Aufgabe im Softwareent-

wicklungsprozess. Bislang ist es möglich, die Anzahl entdeckter Fehler zu quanti�zieren.

Allerdings ist diese Anzahl nur aussagekräftig, wenn sie in Relation zur Softwarequantität

gesetzt wird. Bislang ist es nicht möglich, diese Relation herzustellen.

Alle operativen Ziele stehen in Relation zu einem oder mehreren strategischen Zielen,

wobei es für jedes strategische Ziel mindestens ein operatives Ziel gibt. Abbildung 4.3

zeigt die Zielrelationen des Anwendungsbeispiels.

87

Kapitel 4. Bestimmung der Softwarekennzahlen

G13ksw: Hohe
Softwareentwicklungs-

qualität

G12ksw: Hohe
Kundenzufriedenheit

G10ksw: Hohe
Lieferqualität

G11ksw: Hohe
Softwareentwicklungs-

rentabilität

G21ks: Leistungseffiziente
Programmierung

G20ks: Leistungs-
effizientes

Dokumentieren

G22ks: Gezielte Bear-
beitung von Qualitäts-

schwerpunkten

G23ks: Objektive
Bewertung der
Fehlermenge

G24ks: Reduzierung der
Fehlermenge

Abbildung 4.3: Relationen zwischen strategischen und operativen Zielen

4.2.2 Bestimmung der Softwarekennzahlen

Der Formulierung der operativen Ziele folgt die Bestimmung von dazugehörenden Softwa-

rekennzahlen. Dafür wird die GQM-Methode verwendet. Die einschlägige Literatur misst

der GQM-Methode eine hohe Bedeutung bei und beschreibt deren erfolgreiche Anwendung

in der Praxis. Dies ist ein Grund dafür, dass beim Kooperationspartner die GQM-Methode

für die Bestimmung von Softwarekennzahlen ausgewählt wurde. Der zweite Grund ist, dass

die RGQM-Methode auf der GQM-Methode aufbaut und somit beim Kennzahlentransfer

ähnlich wie bei der Bestimmung der Softwarekennzahlen vorgegangen werden kann.

Für jedes operative Ziel wurden mehrere Fragen formuliert und für jede Frage wurde min-

destens eine Softwarekennzahl bestimmt. Dieser Prozess, der der GQM-De�nitionsphase

zuzuordnen ist (vgl. Abbildung 2.14), wurde vom Verfasser dieser Arbeit durchgeführt.

Die Prozessergebnisse wurden von mehreren Stakeholdern aus der Softwareentwicklung

geprüft.

In den folgenden Abschnitten werden die Ergebnisse des Prozesses und einige zum Ver-

ständnis notwendige Erläuterungen aufgeführt. Auf eine vertiefende Darstellung wird ver-

zichtet, da lediglich eine anerkannte Methode angewendet wird und keine neuen wissen-

schaftliche Erkenntnisse gewonnen werden.

Für die Erläuterung der folgenden Softwarekennzahlen wie Churn, intern und extern ent-

deckte Fehler, Liefergeschwindigkeit etc. wird auf den Abschnitt 2.1.2 verwiesen.

4.2.2.1 Leistungse�ziente Programmierung

Um das abstrakt formulierte Ziel �leistungse�ziente Programmierung� zu quanti�zieren,

sind folgende Fragen zu beantworten:

� Q20.1ks: Wie viel Software wurde erstellt?

� Q20.2ks: Wie viele Stunden wurden für die Erstellung der Software aufgewendet?

� Q20.3ks: Wie lange hat das Softwareentwicklungsprojekt gedauert?

88

Kapitel 4. Bestimmung der Softwarekennzahlen

� Q20.4ks: Wie hoch ist die Produktivität bezogen auf die erstellte Software?

� Q20.5ks: Wie hoch ist die Liefergeschwindigkeit bezogen auf die erstellte Software?

Für jede dieser Fragen wurde je eine Softwarekennzahl identi�ziert, mit der die jeweilige

Frage beantwortet werden kann:

� k20.1.1s: Churn

� k20.2.1s: Aufwand für die Entwicklungsaktivitäten

� k20.3.1s: Entwicklungsdauer

� k20.4.1s: Churn-Produktivität

� k20.5.1s: Churn-Liefergeschwindigkeit

Um die Softwarequantität zu bestimmen, wurde der Churn ausgewählt. Wie in Abschnitt

2.1.2.1.3 erläutert, ist der Churn zum einen ein aussagekräftiges Maÿ für die Menge der

bearbeiteten Software (es werden die Änderungen des Quelltextes berücksichtigt), zum

anderen kann der Churn automatisiert gemessen werden. LOC zeigen hingegen nicht die

Menge der tatsächlichen Softwarebearbeitungen an. Function Points können im Umfeld

des Kooperationspartners nicht automatisiert gemessen werden, da die dafür notwendigen

Voraussetzungen nicht vorhanden sind: Es fehlen über den Produktlebenszyklus konsis-

tente UML-Modelle aller Softwareprodukte.

Der Churn beschreibt die Menge aller Quelltextänderungen an einer Softwareversion bzw.

an einem Softwareprodukt. Er ist entsprechend zuzuordnen. Der Softwareentwicklungs-

prozess muss folglich eine solche Zuordnung ermöglichen. Da bereits die ähnliche Anfor-

derung A1 die Zuordnung von Quelltextänderungen umfasst, wird folgende ergänzende

Anforderung an den Softwareentwicklungsprozess formuliert, die in dessen Gestaltung be-

rücksichtigt werden muss:

Anforderung 4 (Erweiterte Zuordnung Quelltextänderungen) Der Softwareent-

wicklungsprozess muss es ermöglichen, alle Quelltextänderungen einer Softwareversion

zuzuordnen und diese Zuordnung zu erfassen. Durch eine derartige Zuordnung zu einer

Softwareversion ist es auch möglich, die Quelltextänderungen einem Softwareprodukt zu-

zuordnen.

Um die weiteren Softwarekennzahlen ermitteln zu können, muss der Softwareentwicklungs-

prozess ebenfalls die Anforderungen A5 und A6 erfüllen.

Anforderung 5 (Entwicklungsaufwand) Der Softwareentwicklungsprozess muss es

ermöglichen, den Ist-Aufwand der Entwicklungsaktivitäten zu erfassen.

89

Kapitel 4. Bestimmung der Softwarekennzahlen

Anforderung 6 (Start und Ende) Der Softwareentwicklungsprozess muss es ermögli-

chen, den Starttermin und den Endtermin einer Softwareversion zu erfassen.

4.2.2.2 Leistungse�zientes Dokumentieren

Um das abstrakt formulierte Ziel �leistungse�zientes Dokumentieren� zu quanti�zieren,

sind folgende Fragen zu beantworten:

� Q21.1ks: Wie viel Softwaredokumentation wurde erstellt?

� Q21.2ks: Wie viele Stunden wurden für die Erstellung der Softwaredokumentation

aufgewendet?

� Q21.3ks: Wie lange hat das Softwareentwicklungsprojekt gedauert?

� Q21.4ks: Wie hoch ist die Produktivität bezogen auf die erstellte Softwaredokumen-

tation?

� Q21.5ks: Wie hoch ist die Liefergeschwindigkeit bezogen auf die erstellte Software-

dokumentation?

Für jede dieser Fragen wurde je eine Softwarekennzahl identi�ziert, mit der die jeweilige

Frage beantwortet werden kann:

� k21.1.1s: Anzahl an Work Items (vgl. Abschnitt 2.1.2.1.4)

� k21.2.1s: Aufwand für die Dokumentationsaktivitäten

� k21.3.1s: Entwicklungsdauer (wird von G20ks übernommen)

� k21.4.1s: Dokumentationsproduktivität

� k21.5.1s: Dokumentationsliefergeschwindigkeit

Die Auswahl der Kennzahl Anzahl an Work Items erfolgte aufgrund der Art und Weise

der Implementierung des V-Modells beim Kooperationspartner: Wie bereits in Abschnitt

2.5.2.2 erläutert, wird ein ALM-System verwendet, in dem einzelne Dokumentationsarte-

fakte, zum Beispiel Anforderungen oder Testfälle, als Work Items verwaltet werden. Auf

die Details der Verwaltung wird in Kapitel 5 eingegangen. Diese Art der Erfassung der

Dokumentationsgröÿe zeigt nicht an, wie viel Text in einem Work Item formuliert wurde.

Da Work Items kleine Informationseinheiten sind, umfasst der Text in der Regel wenige

Zeilen. Es wäre zwar möglich, die Anzahl der Work Items mit einer durchschnittlichen

Anzahl an Zeilen zu multiplizieren. Da bislang keine Erfahrungen existieren, wie viele

90

Kapitel 4. Bestimmung der Softwarekennzahlen

Zeilen durchschnittlich in Work Items eingetragen werden, wird darauf verzichtet und nur

die Anzahl an Work Items als Softwarekennzahl bestimmt.

Um diese Softwarekennzahlen erfasst zu können, muss der Softwareentwicklungsprozess

die Anforderungen A7 und A8 erfüllen.

Anforderung 7 (Softwaredokumentation) Der Softwareentwicklungsprozess muss es

ermöglichen, Work Items einer Softwareversion zuzuordnen und die jeweils erstellte An-

zahl an Work Items zu erfassen. Durch eine derartige Zuordnung zu einer Softwareversion

ist es auch möglich, die Work Items einem Softwareprodukt zuzuordnen.

Anforderung 8 (Dokumentationsaufwand) Der Softwareentwicklungsprozess muss

es ermöglichen, den Ist-Aufwand der Dokumentationsaktivitäten zu erfassen.

4.2.2.3 Gezielte Bearbeitung von Qualitätsschwerpunkten

Um Qualitätsschwerpunkte gezielt bearbeitet zu können, ist die Frage zu beantworten:

� Q22.1ks: Wo liegen die Qualitätsschwerpunkte?

Für die Beantwortung der Frage Q22.1ks müssen alle entdeckten Fehler kategorisierbar

sein, um eine prozentuale Verteilung der Qualitätsschwerpunkte feststellen zu können.

Jeder Fehler muss mit Attributen beschrieben werden können, die die Softwarequalitäts-

eigenschaften, die Fehlerursachen und den Schweregrad des Fehlers anzeigen. Die oben

genannte Frage wird mit folgenden Softwarekennzahlen beantwortet:

� k22.1.1s: Prozentuale Verteilung von Softwarequalitätseigenschaften

� k22.1.2s: Prozentuale Verteilung von Fehlerursachen in der Programmierung

� k22.1.3s: Prozentuale Verteilung von Fehlerschweregraden

Wie in Abschnitt 2.1.2.4.1 erläutert, ist die prozentuale Verteilung keine einzelne Softwa-

rekennzahl, sondern zeigt die Teilwerte der einzelnen Fehlereinordnungen an.

Um die prozentualen Verteilungen erfassen zu können, muss der Softwareentwicklungs-

prozess die Anforderung A9 erfüllen.

Anforderung 9 (Fehlerattribute) Der Softwareentwicklungsprozess muss es ermögli-

chen, Fehlerattribute zu erfassen.

91

Kapitel 4. Bestimmung der Softwarekennzahlen

4.2.2.4 Objektive Bewertung der Fehlermenge

Um objektiv bewerten zu können, wie viele Fehler durch interne qualitätssichernde Maÿ-

nahmen und wie viele erst durch die Kunden entdeckt wurden, ist die Frage zu beantwor-

ten:

� Q23.1ks: Wie ist das Verhältnis von intern zu extern entdeckten Fehlern?

Um diese Frage beantworten zu können, wurden folgende Softwarekennzahlen identi�ziert:

� k23.1.1s: Anzahl intern entdeckter Fehler

� k23.1.2s: Anzahl extern entdeckter Fehler

� k23.1.3s: Fehlerbehebungsrate

Damit diese Softwarekennzahlen erfasst werden können, muss der Softwareentwicklungs-

prozess die Anforderung A10 erfüllen.

Anforderung 10 (Fehlerzuordnung) Der Softwareentwicklungsprozess muss es er-

möglichen, Fehler einer Softwareversion zuzuordnen und diese in intern und extern ent-

deckte Fehler zu unterscheiden. Durch eine derartige Zuordnung zu einer Softwareversion

ist es auch möglich, die Fehler einem Softwareprodukt zuzuordnen.

4.2.2.5 Reduzierung der Fehlermenge

UmQualitätsverbesserungen objektiv nachweisen zu können, ist die Frage zu beantworten:

� Q24.1ks: Wie viele Fehler pro Softwaremengeneinheit wurden entdeckt? Da der

Churn für die Bestimmung der Softwaremengen ermittelt wurde, wird die Frage

präzisiert: Wie viele Fehler pro KB Churn wurden entdeckt?

Für die Beantwortung dieser Frage wurden die folgende Softwarekennzahl identi�ziert:

� k24.1.1s: Churn-Fehlerdichte

Zur Erfassung der Churn-Fehlerdichte ist keine weitere Anforderung durch den Softwa-

reentwicklungsprozess zu erfüllen, da die Erfassung durch die Erfüllung der vorherigen

Anforderungen möglich ist.

92

Kapitel 4. Bestimmung der Softwarekennzahlen

Durch die Anwendung der in Kapitel 3 beschriebenen RQGM-Methode und der in diesem

Kapitel erläuterten Bestimmung der Softwarekennzahlen wurden die Anforderungen A1

bis A10 erfasst. Nur wenn der Softwareentwicklungsprozess beim Kooperationspartner die-

se Anforderungen erfüllt, ist die Erfassung aller bestimmten SW-Produktionskennzahlen

und Softwarekennzahlen möglich. Der Gestaltung des Softwareentwicklungsprozesses un-

ter Berücksichtigung dieser Anforderungen widmet sich das nächste Kapitel.

93

Kapitel 5

Gestaltung des

Softwareentwicklungsprozesses

Dieses Kapitel widmet sich der zweiten Detailfrage dieser Arbeit:Wie sollte der Software-

entwicklungsprozess aufgebaut sein, damit die de�nierten SW-Produktionskennzahlen und

Softwarekennzahlen erfasst werden können? Es wird das prinzipielle Vorgehen der Gestal-

tung des Softwareentwicklungsprozesses und ein Anwendungsbeispiel beim Kooperations-

partner erläutert. Darin wird das sogenannte Sliced V-Modell entworfen. Die Inhalte

dieses Kapitels entstanden iterativ in den Design Research-Entwurfsphasen Erstellen

und Evaluierung (vgl. Abschnitt 1.5). Erste Konzepte des Sliced V-Modells wurden in

[Deu12, Deu13] verö�entlicht.

Abbildung 5.1 zeigt, welche Inhalte in diesem Kapitel behandelt werden und an welcher

Stelle diese Inhalte zur Erreichung der Zielsituation dieser Arbeit beitragen. Die graue

Fläche markiert den Inhalt: die Gestaltung des Softwareentwicklungsprozesses, um darin

die Kennzahlen für KSW und KS erfassen zu können.

Software-
entwicklungsprozess

Strategische
Ziele

KSW

InterpretationFormulierung

Operative
Ziele

KS
Erfassung

Verdichtung

Management

Softwareteam

InterpretationFormulierung

Berücksichtigung

KHW
Definition Transfer

Definition

Gestaltung

Erfassung

Abbildung 5.1: Inhalt des Kapitels 5 in Bezug auf die Zielsituation dieser Arbeit

94

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

5.1 Vorgehen

Wie in Abschnitt 2.5.1 dargelegt, beschreibt ein Vorgehensmodell den organisatorischen

Rahmen des Softwareentwicklungsprozesses. Mit der Aktivität Gestaltung des Software-

entwicklungsprozesses ist folglich entweder die Auswahl eines Vorgehensmodells oder die

Änderung eines bereits vorhandenen Vorgehensmodells gemeint.

In dieser Arbeit kann keine Empfehlung für ein bestimmtes Vorgehensmodell gegeben

werden. Die Auswahl ist vom jeweiligen produzierenden Betrieb individuell zu tätigen.

Um allerdings Kennzahlen aus dem Softwareentwicklungsprozess IT-basiert erfassen zu

können, sollten für die Implementierung des gewählten Vorgehensmodells ein bzw. mehrere

Collaboration Tools genutzt werden (vgl. Abschnitt 2.5.1).

Die Gestaltung des Softwareentwicklungsprozesses berücksichtigt zum einen die spezi�-

schen Bedürfnisse des produzierenden Betriebes und zum anderen die Anforderungen an

den Softwareentwicklungsprozess, die bei der Bestimmung der SW-Produktionskennzahlen

und der Softwarekennzahlen formuliert wurden. Ein Beispiel für die Berücksichtigung

betriebsspezi�scher Bedürfnisse ist die De�nition von betriebsspezi�schen Rollen und ein

dafür angepasstes Rechtemanagement in einem Collaboration Tool.

Um die Anforderungen an den Softwareentwicklungsprozess erfüllen zu können, die bei der

Bestimmung der SW-Produktionskennzahlen und der Softwarekennzahlen formuliert wur-

den, muss ein Datenmodell erstellt werden. Es beschreibt die im Softwareentwicklungspro-

zess entstehenden Softwareartefakte, wie zum Beispiel Produktanforderungen oder Test-

fälle. Diese durch das Datenmodell beschriebenen Softwareartefakte sind der WorkPro-

ductDe�nition-Klasse des SPEM-Metamodells (vgl. Abschnitt 2.5.1) zuzuordnen.

Um das Datenmodell zu beschreiben, wird UML als eine etablierte Modellierungssprache

verwendet. Konkret wird das UML-Klassendiagramm genutzt: Die Softwareartefakte und

deren Beziehungen werden darin anschaulich dargestellt. Auf diese Art und Weise ent-

steht ein Datenmodell, das die Anforderungen erfüllt, die während der Bestimmung der

SW-Produktionskennzahlen und der Softwarekennzahlen formuliert wurden. Das bedeutet

auch, dass in dem Datenmodell alle benötigten UML-Relationen enthalten sind.

Erläuterung 5.1 zeigt ein Beispiel, wie eine Anforderung an den Softwareentwicklungspro-

zess in einem Datenmodell berücksichtigt wird.

95

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Bei der Bestimmung von Softwarekennzahlen wurde folgende Kennzahl bestimmt: �Durch-
schnittliche Menge von Testfällen, die einer Produktanforderung zugeordnet sind�. Um
diese Kennzahl zu erfassen, muss in der Gestaltung des Softwareentwicklungsprozesses
Folgendes ermöglicht werden: Im Softwareentwicklungsprozess muss jeder Testfall einer
Produktanforderung zugeordnet werden können.
Diese Anforderung an den Softwareentwicklungsprozess muss das Datenmodell berücksich-
tigen. Die folgende Abbildung zeigt den Auszug eines UML-Klassendiagramms, in dem
dies realisiert ist. Wie zu erkennen ist, gibt es eine UML-Aggregationsbeziehung zwischen
einer Produktanforderung (Requirement) und einem Testfall (Test Case).

Requirement Test Case1 1..*

Die weiteren gezeigten Eigenschaften des Softwareentwicklungsprozesses, wie zum Bei-
spiel, dass zu jeder Produktanforderung mindestens ein Testfall existieren muss, können
sich aus betriebsspezi�schen Bedürfnissen an den Softwareentwicklungsprozess ergeben,
die dieses vorschreiben.

Erläuterung 5.1: Anforderungen an den Softwareentwicklungsprozess und Datenmodell

Die Bewertung, ob das Datenmodell alle formulierten Anforderungen erfüllt, erfolgt mehr-

stu�g durch:

1. eine manuelle Prüfung des Datenmodells,

2. die Erstellung der Berechnungsgrundlagen aller Kennzahlen,

3. und die Implementierung eines Informationsverarbeitungssystems.

Um ein Informationsverarbeitungssystem implementieren zu können, ist eine vollständige

Modellierung des Softwareentwicklungsprozesses unter Anwendung weiterer Klassen aus

dem SPEM-Metamodell, wie zum Beispiel der RoleDe�nition-Klasse oder der TaskDe�ni-

tion-Klasse, nicht nötig. Eine vollständige Modellierung wird zwar jedem produzierenden

Betrieb empfohlen. Jedoch ist es für die Kennzahlenerfassung unerheblich, wer die Ar-

beitsergebnisse erzeugt hat und wie derjenige dabei vorgegangen ist, denn es werden nur

die Arbeitsergebnisse benötigt, die dem Datenmodell entnommen werden können.

Das in diesem Abschnitt erläuterte Vorgehen kam beim Kooperationspartner zum Einsatz.

Im folgenden Abschnitt wird das entwickelte Datenmodell vorgestellt.

96

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

5.2 Sliced V-Modell

5.2.1 Begri� und Anforderungen

Wie in Abschnitt 2.5.2.2 erläutert, setzt der Kooperationspartner ein auf dem V-Modell

der DIN EN 61508-3 beruhendes Vorgehensmodell ein. Im Zuge einer Prozessverbesse-

rungsmaÿnahme wurde das Verfahren, das die Nutzung von MS Word-Dokumenten und

deren Ablage auf Netzwerklaufwerken vorsah, schrittweise durch die Nutzung eines ALM-

Systems ersetzt. In diesem ALM-System werden alle Dokumente und Entwicklungsinfor-

mationen eingetragen. Des Weiteren wurde im Rahmen der Einführung des ALM-Systems

ein vorhandenes Versionsmanagementsystem gegen ein neues ausgetauscht. In internen

Prozessbeschreibungen ist die Realisierung des V-Modells der DIN EN 61508-3 in dem

ALM-System und in dem Versionsmanagementsystem erläutert. Diese internen Prozess-

beschreibungen erklären zwar die Aktivitäten im Umgang mit den beiden Systemen und

benennen die dafür verantwortlichen Personen, es fehlt jedoch ein Datenmodell, das die

im Softwareentwicklungsprozess entstehenden Softwareartefakte beschreibt. Um ein Infor-

mationsverarbeitungssystem aufzubauen, wird das Datenmodell benötigt, damit die Be-

rechnungsgrundlagen der SW-Produktionskennzahlen und Softwarekennzahlen de�niert

und durch ein Informationsverarbeitungssystem implementiert werden können.

Wie im vorherigen Abschnitt dargelegt, erfolgt die Beschreibung des Datenmodells in

Form von UML-Klassendiagrammen. In dem Datenmodell muss das V-Modell der DIN

EN 61508-3 berücksichtigt werden, da es das gewählte Vorgehensmodell des Kooperati-

onspartners ist. In dem Datenmodell muss folglich zum einen eindeutig erkennbar sein,

dass die Ergebnisse der einzelnen Phasen des V-Modells, wie beispielsweise eine Anfor-

derungsspezi�kation, berücksichtigt werden. Zum anderen müssen die Validations- und

Veri�kationsbeziehungen der DIN EN 61508-3 erhalten bleiben (vgl. Abbildung 2.21).

Aufgrund dieser Randbedingung wurde in dieser Arbeit keine weitere Option des inhalt-

lichen Aufbaus des Datenmodells geprüft.

Da das Datenmodell auf dem V-Modell der DIN EN 61508-3 aufbaut, wird es als dessen

Verfeinerung betrachtet. Diese Verfeinerung wird Sliced V-Modell genannt. Das Sliced

V-Modell beschreibt die Dokumente der DIN EN 61508-3, die allerdings keine traditio-

nellen Dokumente darstellen. Vielmehr sind es Container für Work Items, in denen die

eigentlichen Dokumenteninhalte eingetragen werden. Die Work Items sind untereinan-

der verbunden und bilden dokumentenübergreifend �Scheibchen� von Work Items. Diese

�Scheibchen� begründen den Namen Sliced V-Modell.

Um alle bestimmten SW-Produktionskennzahlen und Softwarekennzahlen erfassen zu kön-

nen, werden bei der Erstellung des Sliced V-Modells die in den Abschnitten 3.2.2.4 und

97

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

4.2.2 ermittelten Anforderungen an den Softwareentwicklungsprozess berücksichtigt. Im

Folgenden werden alle Anforderungen zusammenfassend aufgeführt:

A1 Zuordnung Quelltextänderungen:

Der Softwareentwicklungsprozess muss es ermöglichen, Quelltextänderungen sowohl der

Implementierung neuer Softwarefunktionen als auch der Behebung intern und extern ent-

deckter Fehler zuzuordnen und diese Zuordnungen zu erfassen.

A2 Termine Softwarefunktionen:

Der Softwareentwicklungsprozess muss es ermöglichen, neue Softwarefunktionen individu-

ell mit einem zugesagten Termin zu markieren und diesen zugesagten Termin sowie den

Freigabetermin der Softwarefunktion zu erfassen.

A3 Soll-/Ist-Stunden:

Der Softwareentwicklungsprozess muss es ermöglichen, die Soll-Aufwände für die Ent-

wicklung von Softwarefunktionen und die Ist-Aufwände, die für die Entwicklung einer

Softwareversion geleistet wurden, zu erfassen.

A4 Erweiterte Zuordnung Quelltextänderungen:

Der Softwareentwicklungsprozess muss es ermöglichen, alle Quelltextänderungen einer

Softwareversion zuzuordnen und diese Zuordnung zu erfassen.

A5 Entwicklungsaufwand:

Der Softwareentwicklungsprozess muss es ermöglichen, den Ist-Aufwand der Entwicklungs-

aktivitäten zu erfassen.

A6 Start und Ende:

Der Softwareentwicklungsprozess muss es ermöglichen, den Starttermin und den Endter-

min einer Softwareversion zu erfassen.

A7 Softwaredokumentation:

Der Softwareentwicklungsprozess muss es ermöglichen, Work Items einer Softwareversion

zuzuordnen und die jeweils erstellte Anzahl an Work Items zu erfassen.

A8 Dokumentationsaufwand:

Der Softwareentwicklungsprozess muss es ermöglichen, den Ist-Aufwand der Dokumenta-

tionsaktivitäten zu erfassen.

A9 Fehlerattribute:

Der Softwareentwicklungsprozess muss es ermöglichen, Fehlerattribute zu erfassen.

A10 Fehlerzuordnung:

Der Softwareentwicklungsprozess muss es ermöglichen, Fehler einer Softwareversion zuzu-

ordnen und diese in intern und extern entdeckte Fehler zu unterscheiden.

98

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

5.2.2 Eigenschaften

Das Sliced V-Modell enthält die nachfolgend aufgeführten Artefakte. Die Au�istung zeigt

zunächst den Namen der Artefakte und in welchem IT-System (ALM-System oder Ver-

sionsmanagementsystem) die Artefakte verwaltet werden. In weiteren Verlauf dieses Ab-

schnitts werden die Artefakte detailliert erläutert.

� Storage (ALM-System)

� Document (ALM-System)

� Work Item (ALM-System)

� Link (ALM-System)

� Repository (Versionsmanagementsystem)

� Revision (Versionsmanagementsystem)

� Baseline (ALM-System)

Abbildungen 5.2 und 5.3 zeigen das Datenmodell, anhand dessen die aufgeführten Arte-

fakte erläutert werden. Abbildung 5.2 stellt die Vererbungszusammenhänge der Artefakte

dar, Abbildung 5.3 gibt die Beziehungen zwischen den Artefakten wieder.

Das Storage ist das zentrale Artefakt des Datenmodells, mit dem alle weiteren Artefakte

verbunden sind. Das Storage existiert über den gesamten Lebenszyklus des Softwarepro-

duktes. Beim Anlegen des Sliced V-Modell Storage enthält es noch keine der anderen

Artefakte, diese werden nach und nach hinzugefügt.

Ein Document enthält die Dokumentation, die in einer bestimmten Phase des V-

Modells der DIN EN 61508-3 erstellt wird. In einem Sliced V-Modell gibt es verschie-

dene Document-Typen. Um eine neue Softwareversion zu entwickeln, wird zunächst ein

Feature Set Document erstellt. Es enthält alle zu entwickelnden neuen Softwarefunktio-

nen (die Features). Die sich aus den neuen Softwarefunktionen ergebenen konkreten Pro-

duktanforderungen an die Softwareversion werden in einem oder mehreren Requirements

Speci�cation Documents eingetragen. Es folgen die weiteren Dokumente, die die DIN EN

61508-3 vorschreibt: System Design Document, Module Design Document und mehrere

Test Documents. Um Aufgaben zu verwalten, die während der Entwicklung der neuen Soft-

wareversion zu erledigen sind, wird jeweils mindestens ein Task Document angelegt. Die

Fehler, die während der internen qualitätssichernden Maÿnahmen entdeckt werden (vor

dem Endtermin einer Softwareversion), und die Fehler, die extern von Kunden (nach dem

Endtermin einer Softwareversion) gefunden werden, werden jeweils in getrennte Defect

99

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

B
as

e
W

o
rk

 I
te

m

Te
st

 W
o

rk
 It

em
Fe

at
ur

e
 W

o
rk

 It
e

m

R
eq

ui
re

m
e

nt
 W

or
k

It
em

D
es

ig
n

W
o

rk
 It

em

M
o

du
le

 W
or

k
It

e
m

Ta
sk

 W
o

rk
 I

te
m

D
ef

ec
t

W
o

rk
 It

e
m

A
cc

ep
ta

nc
e

Te
st

 W
or

k
It

e
m

Sy
st

e
m

 T
es

t
W

or
k

It
em

In
te

gr
at

io
n

Te
st

 W
or

k
It

e
m

M
o

du
le

 T
e

st
 W

o
rk

 I
te

m

D
oc

um
en

t

Fe
at

ur
e

 S
et

 D
oc

um
en

t

R
eq

ui
re

m
e

nt
s

Sp
ec

if
ic

at
io

n
D

o
cu

m
en

t

Sy
st

e
m

 D
e

si
gn

 D
oc

u
m

en
t

M
o

du
le

 D
es

ig
n

D
o

cu
m

e
nt

Ta
sk

 D
o

cu
m

en
t

D
ef

ec
t

D
o

cu
m

en
t

In
te

rn
a

l D
ef

ec
t

D
o

cu
m

e
nt

Ex
te

rn
al

 D
ef

ec
t

D
o

cu
m

en
t

A
cc

ep
ta

nc
e

Te
st

D

oc
um

en
t

Sy
st

e
m

 T
es

t
D

o
cu

m
e

nt

In
te

gr
at

io
n

Te
st

D

oc
um

en
t

M
o

du
le

 T
e

st
 D

o
cu

m
en

t

n
am

e
 :

St
ri

ng
id

 :
G

ui
d

ti
tl

e
: S

tr
in

g
d

es
cr

ip
ti

o
n

 :
St

ri
ng

in
te

rn
al

 :
D

ef
In

te
rn

al
ex

te
rn

al
 :

D
ef

Ex
te

rn
al

se
ve

ri
ty

 :
 D

ef
Se

ve
ri

ty

d
ue

D
at

e
: D

at
e

Ti
m

e

ac
ti

vi
ty

T
yp

e
: A

ct
iv

it
yT

yp
e

in
it

ia
lE

st
im

at
e

: I
nt

eg
er

ti
m

eS
pe

nt
 :

In
te

ge
r

Abbildung 5.2: Vererbungszusammenhang der Sliced V-Modell-Artefakte

100

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

R
eq

ui
re

m
e

nt
s

W
or

k
It

em

D
es

ig
n

W
o

rk
 It

em

M
o

du
le

 W
or

k
It

e
m

Sy
st

e
m

 T
es

t
W

or
k

It
em

In
te

gr
at

io
n

Te
st

 W
or

k
It

e
m

M
o

du
le

 T
e

st
 W

o
rk

 I
te

m

R
ev

is
io

n

ve
ri

fi
es

ve
ri

fi
es

ve
ri

fi
es

1

1

1

1
..*

1
..*

1
..*

re
la

te
s

to

1

1
..*

ve
ri

fi
es1

1
..*

ve
ri

fi
es1

1
..*

Fe
at

ur
e

 W
o

rk
 It

e
m

ve
ri

fi
es

Fe
at

ur
e

 S
et

 D
oc

um
en

t

1
..

*

R
eq

ui
re

m
e

nt
s

Sp
ec

if
ic

at
io

n
D

o
cu

m
en

t

1
..*

1

1
..*

Sy
st

e
m

 D
e

si
gn

 D
oc

u
m

en
t

1
..*

M
o

du
le

 D
es

ig
n

D
o

cu
m

e
nt

1
..*

R
ep

os
it

or
y

M
o

du
le

 T
e

st
 D

o
cu

m
en

t

In
te

gr
at

io
n

Te
st

D

oc
um

en
t

Sy
st

e
m

 T
es

t
D

o
cu

m
e

nt

A
cc

ep
ta

nc
e

Te
st

D

oc
um

en
t

A
cc

ep
ta

nc
e

Te
st

 W
or

k
It

e
m

1
..*

1
..*

1
..

*

1
..*

va
lid

a
te

s

1
..

*

1
..*

1

St
o

ra
ge

1
..*

1
..*

1
..*

1
..*

1
..

*

1
..*

1
..*

1
..*

In
te

rn
a

l D
ef

ec
t

D
o

cu
m

e
nt

D
ef

ec
t

W
o

rk
 It

e
m

1
..*

1
1

..*
1

..*

Ta
sk

 D
o

cu
m

en
t

Ta
sk

 W
o

rk
 I

te
m

1
..*

1
..*

ac
ti

vi
ty

T
yp

e
: A

ct
iv

it
yT

yp
e

in
it

ia
lE

st
im

at
e

: I
nt

eg
er

ti
m

eS
pe

nt
 :

In
te

ge
r

re
la

te
s

to
1

..*
1

..*

1

*

re
la

te
s

to

B
as

el
in

e

b
lt

yp
e

: B
as

el
in

eT
yp

e
2

..*

d
ue

D
at

e
: D

at
e

Ti
m

e

in
te

rn
al

 :
D

ef
In

te
rn

al
ex

te
rn

al
 :

D
ef

Ex
te

rn
al

se
ve

ri
ty

 :
D

ef
Se

ve
ri

ty
re

la
te

s
to

Ex
te

rn
al

 D
ef

ec
t

D
o

cu
m

en
t

re
la

te
s

to

b
lD

at
e

 :
D

at
e

Ti
m

e

Abbildung 5.3: Beziehungen zwischen den Sliced V-Modell-Artefakten

101

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Documents eingetragen: Es gibt für jede Softwareversion ein Defect Document für die

intern entdeckten Fehler und für jedes Softwareprodukt, also in jedem Storage, ein oder

mehrere Dokumente für die extern entdeckten Fehler.

Die Namen der Feature Set Documents, der Defect Documents und der Task Documents

werden gemäÿ festgelegten Regeln gebildet. Dadurch können sie durch ein Informations-

verarbeitungssystem identi�ziert werden. Folgende Dokumentennamen zeigen Beispiele

für die Regeln:

� Features_V1_20: Enthält alle Features, die zur Softwareversion V1.20 umzusetzen

sind. Ein Feature Set Document wird für jede Softwareversion angelegt.

� Tasks_V1_20: Enthält alle projektspezi�schen Aktivitäten, die für die Software-

version V1.20 zu erledigen sind. Ein Task Document wird für jede Softwareversion

angelegt.

� Defects_V1_20: Enthält alle Fehler, die während der internen qualitätssichernden

Maÿnahmen für die Softwareversion V1.20 entdeckt wurden. Dieses Dokument wird

Internal Defect Document genannt und wird für jede Softwareversion angelegt.

� ExtDefects_All: Enthält alle extern entdeckten Fehler. Dieses Dokument wird

External Defect Document genannt. Es gibt mindestens ein Dokument für ein

Softwareprodukt.

Die Documents enthalten Work Items und sind folglich Container von Work Items. Work

Items wurden in Abschnitt 2.1.2.1.4 eingeführt: Sie beschreiben sowohl zu erledigende

Aktivitäten im Entwicklungsprozess als auch Dokumentationsartefakte, wie zum Beispiel

Produktanforderungen, Testfälle oder Fehlerbeschreibungen. In einem Sliced V-Modell

werden verschiedene Typen von Work Items verwendet, die in Tabelle 5.1 aufgeführt

sind.

In einem Document dürfen nur Work Items eines Typs vorkommen. Ein Beispiel:

Ein Requirements Speci�cation Document (eine Anforderungsspezi�kation) enthält nur

Requirements Work Items. Allerdings kann es mehrere Requirements Speci�cation

Documents geben.

Jeder Work Item-Typ besitzt mindestens die in Tabelle 5.2 aufgeführten Attribute, die

vom Base Work Item vererbt werden. Sie werden Standardattribute genannt. Darüber

hinaus verfügen einige Work Item-Typen über weitere Attribute, die in den nächsten

Absätzen erläutert werden.

Für das Verständnis der Work Item-Typen ist in Tabelle 5.3 ein Beispiel aufgeführt. Es

bezieht sich auf eine neue Softwarefunktion einer SPS-Software, die sogenannte optische

102

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Work Item-Typ Beschreibung

Feature Beschreibung einer Softwarefunktion

Requirement Detaillierte Produktanforderung zu einer Softwarefunktion

Design High Level-Softwaredesign, zum Beispiel Softwarearchitektur

Module Low Level-Softwaredesign in Ergänzung zum Quelltext und zu

Programmkommentaren

Test Basistyp für die Test Work Item-Typen

Acceptance Test Testbeschreibung eines Abnahmetests

System Test Testbeschreibung eines Systemtests

Integration Test Testbeschreibung eines Integrationstests

Module Test Testbeschreibung eines Modultests

Defect Fehlerbeschreibung

Task Zu erledigende Dokumentations- bzw. Entwicklungsaktivitäten

Tabelle 5.1: Work Item-Typen im Sliced V-Modell

Pro�net-Diagnose. Pro�net ist ein industrielles Ethernet-Protokoll, über das eine SPS mit

sogenannten Pro�net-Geräten Daten austauschen kann. Diese neue Softwarefunktion wird

in einem Feature Work Item vermerkt. Um diese Softwarefunktion zu realisieren, müssen

mehrere Anforderungen, mehrere Designerweiterungen, mehrere Testfälle und mehrere

Aufgaben formuliert und umgesetzt werden. In Tabelle 5.3 ist jeweils nur ein Beispiel für

einen Work Item-Typ bzw. nur für einen vom Test Work Item abgeleiteten Typen gezeigt.

Ein Feature Work Item, das in ein Feature Set Document eingetragen wird, enthält zusätz-

lich zu den Standardattributen das Attribut dueDate. In diesem Attribut wird notiert, zu

welchem Termin die Fertigstellung einer Softwarefunktion zugesagt ist.

Vom Test Work Item sind weitere Work Item-Typen für jede sogenannte Teststufe ab-

geleitet. Eine Teststufe ist �eine Gruppe von Testaktivitäten, die gemeinsam ausgeführt

und verwaltet werden� [SL03]. Beispiele einer Teststufe im V-Modell der DIN EN 61508-3

sind der Modultest oder der Integrationstest. Die abgeleiteten Work Item-Typen sind:

Acceptance Test Work Item, System Test Work Item, Integration Test Work Item und

Module Test Work Item.

Attributname Typ Beschreibung

id Guid Identi�kator, um ein Work Item eindeutig im ALM-System

identi�zieren zu können. Wird automatisch generiert

title String Titel des Work Items

description String Inhalt des Work Items (Text, Bilder)

Tabelle 5.2: Attribute des Base Work Items

103

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Work Item-Typ Attribut title Attribut description

Feature Optische Pro�net-
Diagnose

Optische Pro�net-Diagnose
gemäÿ Pro�net-Spezi�kation V2.3

Requirement Anzeige Pro�net-
Gerät im
SPS-Display

Wenn ein Pro�net-Gerät einen Alarm
der optischen Diagnose meldet, muss
die Adresse des Pro�net-Geräts im SPS-
Display angezeigt werden

Design Systemarchitektur
Optische Diagnose

Erweiterung UML-Klassendiagramm
um Klasse OptDiagData (siehe
UML-Werkzeug)

Module Auswertung Pro�net-
Alarm

Implementierung der Funktion
receiveOptAlarm

System Test Anzeige Pro�net-
Gerät

Schritt 1: Starten der SPS
Schritt 2: Reduzierung der optischen
Leistung zwischen Gerät 1 und 2
Erwartetes Ergebnis: Die Adresse des
Pro�net-Geräts 2 wird angezeigt

Defect Falsche Adresse
des Pro�net-Geräts

Die Adresse des Pro�net-Geräts 1 wird an-
statt der Adresse des Pro�net-Geräts 2 an-
gezeigt

Task Erweiterung der
Systemarchitektur

Check-Out Klassendiagramm,
Bearbeiten, Check-In

Tabelle 5.3: Beispiele für Work Item-Typen

Das Defect Work Item besitzt zusätzlich zu den Standardattributen folgende weitere At-

tribute, mit denen verschiedene Stakeholder eines Softwareproduktes ihre Sicht auf einen

Fehler ausdrücken können:

� Ein Softwareentwickler trägt in dem Attribut internal die von ihm erkannten Ur-

sachen des entdeckten Fehlers ein. Dieses Attribut hat den Datentyp DefInternal.

Dies ist ein Aufzählungstyp, dessen Wertemenge [SSR+08] entnommen ist.

� Die Bewertung eines Anwenders des Softwareproduktes, hinsichtlich der Frage, wel-

che Qualitätseigenschaft des Softwareproduktes durch den entdeckten Fehler be-

einträchtigt ist, wird in das Attribut external eingetragen. Dieses Attribut hat den

Datentyp DefExternal. Dies ist ein Aufzählungstyp, dessen Wertemenge an die Qua-

litätscharakteristiken der ISO/IEC 25010 angelehnt ist.

� Ein Produktverantwortlicher nutzt das Attribut severity und bewertet damit den

Schweregrad des Fehlers. Dieses Attribut hat den Datentyp DefSeverity. Dies ist ein

Aufzählungstyp, dessen Wertemenge [PP11] entstammt.

104

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Tabelle 5.4 zeigt die genannten Aufzählungstypen und deren Wertemengen. Die Bedeu-

tung der Werte in den Wertemengen wird im Anhang A erläutert. Um die extern entdeck-

ten Fehler einer Softwareversion zuzuordnen, enthält das Defect Work Item ein weiteres

Attribut, swVersion vom Typ String. Darin wird die Softwareversion eingetragen, in der

der Fehler entdeckt wurde.

Das Task Work Item besitzt zusätzlich zu den Standardattributen die in Tabelle 5.5 gezeig-

ten Attribute. Die Zeitbasis für diese Attribute sind Stunden. Das Attribut initialEstimate

dient der Planung einer Aufgabe. Das Attribut timeSpent gibt den für diese Aktivität er-

brachten Aufwand wieder.

Aufzählungstyp Beschreibung Wertemenge

DefInternal Bewertung eines Fehlers aus Algorithm, method

Sicht eines Entwicklers Assignment, initialization

Checking

Data

External interface

Internal interface

Logic

Non-functional

Timing, optimization

Other

DefExternal Bewertung eines Fehlers aus Documentation

Sicht eines Anwenders Functionality

Handling

Optic

Performance

Stability

DefSeverity Bewertung eines Fehlers aus Critical

Sicht eines Major

Produktverantwortlichen Neutral

Minor

Trivial

Tabelle 5.4: Aufzählungstypen der Attribute des Defect Work Items

Um Dokumentationsaktivitäten und Entwicklungsaktivitäten zu unterscheiden, enthält

das Task Work Item das Attribut activityType vom Typ ActityType. Dies ist ein Auf-

zählungstyp mit der Wertemenge {documentation, development}. Dokumentationsakti-

vitäten umfassen alle Aufgaben für die Erstellung und die P�ege der Entwicklungsdo-

kumentation, zum Beispiel Erstellen einer Testspezi�kation. Bei Entwicklungsaktivitäten

105

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Attributname Typ Beschreibung

initialEstimate Integer Initial abgeschätzte Zeit in Stunden, die notwendig ist, um

die Aktivität zu erledigen

timeSpent Integer Tatsächliche Zeit in Stunden, die für die Erledigung der

Aktivität aufgebracht wurde

Tabelle 5.5: Zeitattribute des Task Work Items

handelt es sich um alle Aufgaben für die Realisierung des Softwareproduktes, zum Beispiel

Programmieren einer Klassenmethode.

Work Items können untereinander in Beziehung gesetzt werden. Eine derartige Beziehung

ist ein Link. Ein Link zeigt einen Informationszusammenhang der beiden verbundenen

Work Items an und hat einen Typ und eine Richtung. Die DIN EN 61508-3 de�niert die

Traceability-Regeln Validierung, Veri�kation und Ausgabe. Um diese Regeln im Sliced

V-Modell umzusetzen, werden die Linktypen validates und veri�es de�niert, mit denen

Work Items verlinkt werden können. Da die Traceability-Regel der DIN EN 61508-3 Aus-

gabe dieselben Artefakte verbindet wie die Traceability-Regel Veri�kation (vgl. Abbil-

dung 2.21), nur in entgegengesetzter Richtung, wird diese Traceability-Regel im Sliced

V-Modell nicht genutzt. Für das Traceability Management bietet sie keinen inhaltlichen

Mehrwert: Da die Work Items in einem Sliced V-Modell über mindestens einen Link in

Beziehung gesetzt werden, ist die Traceability entlang des V-Modells gewährleistet. Das

Verwalten von Traceability-Matrizen entfällt (vgl. Tabelle 2.5), da ALM-Systeme in der

Lage sind, Traceability-Berichte automatisiert zu erstellen. Der Aufwand des Traceability-

Managements reduziert sich somit auf das Setzen der Links und auf die Auswertung der

Traceability-Berichte.

Da die Dokumente in Work Items aufgeteilt werden und die Work Items dokumentenüber-

greifend verlinkt sind, bilden sich dokumentenübergreifende �Scheibchen� (Abbildung 5.4).

Wie schon erwähnt, begründet dies den Namen Sliced V-Modell. Das ausgehend von einem

Feature Work Item gebildete �V� wird V-Slice genannt.

Das Sliced V-Modell stellt einer Verfeinerung des V-Modells dar. Der in Abschnitt 2.5.1 er-

läuterte Nachteil des V-Modells, demnach eine nächste Entwicklungsphase erst begonnen

werden kann, wenn ein vollständiges Dokument erstellt ist, entfällt im Sliced V-Modell.

Die Steuerung der Entwicklungsphasen erfolgt im Sliced V-Modell nicht dokumentenori-

entiert, sondern Work Item-orientiert. Damit ist gemeint, dass zwar einzelne Work Items

innerhalb einer V-Slice in einer bestimmten Reihenfolge zu erstellen sind, allerdings erfolgt

die Bearbeitung einzelner V-Slices unabhängig voneinander.

Grundsätzlich kann im Sliced V-Modell jede Softwarefunktion einzeln und unabhängig

von anderen Softwarefunktionen spezi�ziert, implementiert und getestet werden.

106

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Requirement
Work Item

...

Design Work
Item

...

Module Work
Item

...

System Test Work
Item

...

Integration Test
Work Item

...

Module Test
Work Item

...

Requirement Specification
Document

Feature Work
Item

...

Feature Set Document

System Design
Document

Module Design
Document

Module Test Document

Integration Test Document

System Test Document

Acceptance Test
Work Item

...

Acceptance Test Document

Abbildung 5.4: Schematische Darstellung von V-Slices

Abbildung 5.5 zeigt exemplarisch drei Softwarefunktionen, die jeweils in einer V-Slice

bearbeitet werden. Für jede Softwarefunktion wird ein Feature Work Item erzeugt, das

den Startpunkt einer einzelnen V-Slice darstellt. Wie in der Abbildung gezeigt, können

die V-Slices zeitlich versetzt bearbeitet werden.

Die Steuerung der Bearbeitung der V-Slices bzw. der einzelnen Work Items innerhalb einer

V-Slice erfolgt durch die Task Work Items. Sie können, ähnlich wie die Backlog-Items in

Scrum, erfasst und innerhalb eines Sprint-Zyklus bearbeitet werden. Task Work Items

können vor jedem Sprint-Zyklus neu de�niert, verworfen oder geändert werden. Da jede

V-Slice ein �Mini-V� darstellt, kann das Sliced V-Modell als ein agiles Vorgehensmodell

angesehen werden, in dem die Qualitätseigenschaften des V-Modells integriert sind.

tEndtermin

„V“ slice Feature Work Item A

Starttermin

„V“ slice Feature Work Item B

„V“ slice Feature Work Item C

Abbildung 5.5: Bearbeitungsabfolge einzelner V-Slices

107

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

Ein Repository ist die Datenablage eines Versionsmanagementsystems [Pop13]. Eine

Revision ist eine im Repository gespeicherte Änderung, wie zum Beispiel die Änderung

an einer Quelltext-Datei. Die im Repository gespeicherten Revisionen sind entweder mit

einem Module Work Item oder mit einem Defect Work Item verlinkt.

Das Sliced V-Modell Storage und damit alle darin enthaltenen Work Items und Dokumen-

te wird zu de�nierten Zeitpunkten mit Hilfe einer Baseline �eingefroren�. Eine Baseline ist

�a reference con�guration from which to identify and to control change� [DCKV08]. Sie

enthält die vollständige Dokumentation des Sliced V-Modell Storage zu dem Zeitpunkt,

an dem die Baseline erstellt wurde. Die Inhalte der Dokumente und der Work Items sind

folglich abhängig von der Baseline. Abbildung 5.6 zeigt dies exemplarisch anhand einiger

Dokumenttypen im Sliced V-Modell.

Eine Baseline wird jeweils zum Starttermin und zum Endtermin einer Softwareversion er-

stellt. Der Tag der Erstellung wird im Attribut blDate des Typs Baseline gespeichert. Die

genaue De�nition von �Starttermin� und �Endtermin� ist jeweils durch die Stakeholder

festzulegen (vgl. Abschnitt 2.1.2.3). Um diese Unterscheidung an dem im Klassendia-

gramm gezeigten Typ Baseline vorzunehmen, besitzt dieser Typ das Attribut blType vom

Typ BaselineType. Dieses ist ein Aufzählungstyp mit der Wertemenge {start, end}. Im

Folgenden wird eine Baseline, die in diesem Attribut den Wert {start} gesetzt hat, Start-

Baseline genannt. Eine Baseline, die in diesem Attribut den Wert {end} gesetzt hat, wird

End-Baseline genannt.

Baseline V1.0 (2016-12-31)

Baseline V1.0 (2016-12-31)

Baseline V1.0 (2016-12-31)Baseline V1.0 (2016-12-31)

Baseline V1.0 (2016-12-31)

Baseline V1.0 (2016-12-31)

Requirement
Work Item

...

Design Work
Item

...

Module Work
Item

...

System Test
Work Item

...

Integration Test
Work Item

...

Module Test
Work Item

...

Baseline V1.1 (2017-06-01)

Baseline V1.1 (2017-06-01)

Baseline V1.1 (2017-06-01)
Baseline V1.1 (2017-06-01)

Baseline V1.1 (2017-06-01)

Baseline V1.1 (2017-06-01)

Baseline V1.0 (2016-12-31)

Feature Work
Item

...

Baseline V1.1 (2017-06-01)

Baseline V1.0 (2016-12-31)

Acceptance Test
Work Item

...

Baseline V1.1 (2017-06-01)

Abbildung 5.6: Baselines im Sliced V-Modell

108

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

5.2.3 Bewertung

Um zu bewerten, ob das Sliced V-Modell geeignet ist, die im Anwendungsbeispiel be-

stimmten SW-Produktionskennzahlen und Softwarekennzahlen zu erfassen (vgl. Abschnitt

3 und 4), erfolgt als erstes eine manuelle Prüfung, ob die Anforderungen A1 bis A10 er-

füllt werden. Diese Prüfung wird in den nächsten beiden Kapiteln durch zwei weitere

Prüfschritte, nämlich Erstellung der Berechnungsgrundlagen aller Kennzahlen und Imple-

mentierung eines Informationsverarbeitungssystems, vervollständigt. Die manuelle Prü-

fung der Erfüllung der Anforderungen ergibt folgende Ergebnisse:

A1 Zuordnung Quelltextänderungen und A4 Erweiterte Zuordnung Quelltext-

änderungen: Jede Revision im Repository ist entweder mit einem Defect Work Item oder

einem Module Work Item verlinkt. Letztere sind immer mit einem Feature Work Item in-

direkt verlinkt, das heiÿt, sie sind mit Design Work Items verlinkt, die mit Requirements

Work Items verlinkt sind, welche wiederum mit Feature Work Items verlinkt sind. Somit

lässt sich eindeutig nachvollziehen, welche Quelltextänderungen aufgrund einer Fehler-

behebung bzw. für die Umsetzung einer neuen Softwarefunktion erfolgten. Sowohl die

Defect Work Items als auch die Module Work Items können einer Softwareversion zu-

geordnet werden. Die Menge aller Feature Set Documents sind einem Sliced V-Modell

Storage zugewiesen, das ein Softwareprodukt repräsentiert. Alle Quelltextänderungen las-

sen sich somit einer Softwareversion und folglich dem Softwareprodukt zuordnen. Die

Unterscheidung zwischen intern und extern entdeckten Fehlern �ndet über die Internal

Defect Documents bzw. External Defect Documents statt.

A2 Termine Softwarefunktionen: Die Zieltermine einer Softwarefunktion werden in

das Attribut dueDate eines Feature Work Items eingetragen. Der Endtermin einer Soft-

wareversion wird mit Hilfe einer End-Baseline vermerkt.

A3 Soll-/Ist-Stunden: Der Soll-Aufwand einer Softwarefunktion wird im Attribut in-

itialEstimate eines Feature Work Items eingetragen. Die Summe aller Einträge in diesem

Attribut ist der Soll-Aufwand aller für eine Softwareversion geplanten Softwarefunktio-

nen. Die tatsächlich geleisteten Aufwände werden im Attribut timeSpent eines Task Work

Items vermerkt. Jedes dieser Work Items ist einem Feature Set Document zugeordnet.

Somit kann der Ist-Aufwand einer Softwareversion ermittelt werden.

A5 Entwicklungsaufwand und A8 Dokumentationsaufwand: Die tatsächlich ge-

leisteten Aufwände werden im Attribut timeSpent in den Task Work Items vermerkt. Diese

Work Items werden durch das Attribut activityType in Entwicklungs- und Dokumenta-

tionsaktivitäten unterschieden. Da jedes dieser Work Items einem Feature Set Document

zugeordnet ist, können der Ist-Entwicklungsaufwand und der Ist-Dokumentationsaufwand

einer Softwareversion ermittelt werden.

109

Kapitel 5. Gestaltung des Softwareentwicklungsprozesses

A6 Start und Ende: Der Starttermin und der Endtermin einer Softwareversion werden

durch die Start-Baseline und die End-Baseline vermerkt. Die Entwicklungsdauer kann aus

der Di�erenz der jeweiligen Kalendertage ermittelt werden.

A7 Softwaredokumentation: Ausgehend von den Feature Work Items in einem Feature

Set Document sind alle für eine Softwareversion erstellten Work Items untereinander ver-

linkt. Sie lassen sich somit dieser Softwareversion zuordnen und können durchgezählt

werden. Die intern entdeckten Fehler können aufgrund der festgelegten Syntax des Doku-

mentennamens des jeweiligen Internal Defect Documents ebenfalls einer Softwareversion

zugeordnet werden. Alle Work Items gehören zu einem Sliced V-Modell Storage und lassen

sich folglich einem Softwareprodukt zuordnen.

A9 Fehlerattribute:DieDefect Work Items besitzen die Attribute internal, external und

severity. In diesen Attributen werden jeweils die für die einzelnen Kategorien de�nierten

Werte eingetragen, aus denen die prozentualen Teilwerte aller Fehlerattribute berechnet

werden können.

A10 Fehlerzuordnung: Alle intern entdeckten Fehler sind in einem Internal Defect

Document als Defect Work Items eingetragen und können somit einer Softwareversion

zugeordnet werden. Alle extern entdeckten Fehler sind in einem External Defect Document

eingetragen und lassen sich folglich dem Softwareprodukt zuordnen. Die Anzahl der intern

und extern entdeckten Fehler kann gezählt werden und auf deren Basis ist es möglich, die

Fehlerbehebungsrate zu berechnen.

Die manuelle Prüfung zeigt, dass das Sliced V-Modell alle Anforderungen erfüllt, um

durch ein Informationsverarbeitungssystem die bestimmten SW-Produktionskennzahlen

und Softwarekennzahlen erfassen zu können. Da alle Daten eines Sliced V-Modell Storage

in einem ALM-System bzw. in einem Versionsmanagementsystem gespeichert werden, ist

eine IT-basierte Datenerfassung und -verarbeitung realisierbar. Wie in Abschnitt 2.1 er-

läutert, sollten Kennzahlen automatisiert erfasst und verarbeitet werden, da so die Kosten

der Datenerfassung reduziert und die Objektivität der Kennzahlenwerte erhöht werden.

Voraussetzung dafür ist die IT-basierte Erreichbarkeit der Datenquellen der Kennzahlen,

was durch die Nutzung eines ALM-Systems und eines Versionsmanagementsystems in

einem Sliced V-Modell gegeben ist. Sowohl ALM-Systeme als auch Versionsmanagement-

systeme ermöglichen den Zugri� auf ihre Daten über API, die durch andere IT-Systeme

verwendet werden können.

Nachdem das Datenmodell des Softwareentwicklungsprozesses entwickelt wurde, können

die Berechnungsgrundlagen der SW-Produktionskennzahlen und der Softwarekennzahlen

erstellt werden. Diesem Themenkomplex widmet sich das nächste Kapitel.

110

Kapitel 6

Ermittlung der Berechnungsgrundlagen

Dieses Kapitel widmet sich den Berechnungsgrundlagen der Kennzahlen. Es werden die

Notwendigkeit von Berechnungsgrundlagen, das prinzipielle Vorgehen bei deren Erstel-

lung und die Berechnungsgrundlagen der in den vorherigen Kapiteln bestimmten SW-

Produktionskennzahlen und Softwarekennzahlen gezeigt. Diese Berechnungsgrundlagen

setzen die Anwendung des Sliced V-Modells voraus. Zunächst werden die Berechnungs-

grundlagen der Softwarekennzahlen und danach die der SW-Produktionskennzahlen auf-

geführt, da einige SW-Produktionskennzahlen aus Softwarekennzahlen gebildet werden.

Die Inhalte dieses Kapitels entstanden iterativ in den Design Research-Entwurfsphasen

Erstellen und Evaluierung (vgl. Abschnitt 1.5).

Abbildung 6.1 zeigt die Inhalte dieses Kapitels und an welcher Stelle diese Inhalte zur

Erreichung der Zielsituation dieser Arbeit beitragen. Die grauen Rechtecke markieren den

Inhalt: die Berechnungsgrundlagen der Kennzahlen in KSW und KS.

Strategische
Ziele

KSW

InterpretationFormulierung

Operative
Ziele

KS
Erfassung

Verdichtung

Management

Softwareteam

InterpretationFormulierung

Berücksichtigung

KHW
Definition Transfer

Definition

Software-
entwicklungsprozess

Gestaltung

Erfassung

Abbildung 6.1: Inhalt des Kapitels 6 in Bezug auf die Zielsituation dieser Arbeit

111

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.1 Notwendigkeit und Vorgehen

Um ein Informationsverarbeitungssystem zu implementieren, ist es erforderlich, die Be-

rechnungsgrundlagen aller Kennzahlen zu ermitteln. Aus den Berechnungsgrundlagen

muss hervorgehen, auf welchen Datenquellen die Berechnung der Kennzahlen beruht. Es

können folglich nur Datenquellen genutzt werden, die tatsächlich in dem Datenmodell

des Softwareentwicklungsprozesses vorhanden sind. Wie in Abschnitt 5.1 erläutert, ist die

Erstellung der Berechnungsgrundlagen ein Teil der Überprüfung, ob ein Datenmodell die

Anforderungen an einen Softwareentwicklungsprozess erfüllt, wie sie bei der Bestimmung

der Kennzahlen formuliert wurden.

Des Weiteren zeigen die Berechnungsgrundlagen, wie ein Informationsverarbeitungssys-

tem die Daten aus den Datenquellen zu Kennzahlen verarbeiten soll. Dies gilt sowohl für

die absoluten Kennzahlen, die in Einzelzahlen, Summe, Di�erenz und Mittelwert einge-

teilt werden, als auch für Verhältniskennzahlen, die das Verhältnis von zwei oder mehr

absoluten Kennzahlen anzeigen (vgl. Abschnitt 2.1.1). Um in einem Informationsverar-

beitungssystem die Berechnung einer Verhältniskennzahl implementieren zu können, muss

zunächst die Erfassung der darin eingehenden absoluten Kennzahlen implementiert wer-

den.

Bei der Erstellung der Berechnungsgrundlagen der absoluten Kennzahlen wird das zu-

grundeliegende Datenmodell analysiert und die dazugehörenden Datenquellen identi�-

ziert. Dies ist ein manueller Vorgang, für den keine systematische Methode bekannt ist.

Sind die Datenquellen analysiert, wird eine konkrete mathematische Formel ermittelt, mit

der die jeweilige Kennzahl aus den Datenquellen berechnet wird: Sie zeigt die Additions-,

Di�erenz- oder Mittelwertberechnung (vgl. Abschnitt 2.1.1).

Um die Berechnungsgrundlagen der Verhältniskennzahlen zu ermitteln, ist eine Analyse

des Datenmodells nicht notwendig, da in deren mathematischen Formeln lediglich die

absoluten Kennzahlen berücksichtigt werden und somit keine direkte Datenerfassung aus

dem Datenmodell erfolgt.

Die Berechnungsgrundlagen sind durch ein Review von geeigneten Experten zu prüfen.

Dafür können Review-Methoden aus dem Methodenbaukasten für statische Testverfahren,

beispielsweise informelles Review oder Walkthrough, angewendet werden [SL03].

In den folgenden Abschnitten werden für das Anwendungsbeispiel beim Kooperations-

partner die Berechnungsgrundlagen aller bestimmten Softwarekennzahlen und SW-

Produktionskennzahlen erläutert. Deren Erstellung orientiert sich an dem dargestellten

Vorgehen. In allen Formeln wird auf die Angabe von Maÿeinheiten verzichtet.

112

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.2 Berechnungsgrundlagen der Softwarekennzahlen

Alle nachfolgenden Softwarekennzahlen werden jeweils für eine Softwareversion berechnet

und sollten zum Endtermin der Softwareversion erfasst werden. Dies ermöglicht die kon-

tinuierliche Beobachtung des Softwareentwicklungsprozesses von Softwareversion zu Soft-

wareversion. Zwar wäre es möglich, die Softwarekennzahlen zu jedem beliebigen Zeitpunkt

nach dem Endtermin zu erfassen, da die Softwareartefakte dauerhaft in dem ALM-System

bzw. dem Versionsmanagementsystem gespeichert werden und der Bezug der Softwarear-

tefakte zu einer Softwareversion durch das Sliced V-Modell eindeutig hergestellt wird. Um

jedoch den Softwareentwicklungsprozess kontinuierlich zu verbessern, sollte die Bewertung

der Softwarekennzahlen unmittelbar nach dem Endtermin erfolgen.

Eine Ausnahme bildet die Fehlerbehebungsrate (vgl. Abschnitt 2.1.2.4.1): Sie wird nur für

das Softwareprodukt berechnet. Der Grund dafür liegt darin, dass die in einer Software-

version enthaltenen Fehler zum Teil erst Jahre nach dem Endtermin der Softwareversion

entdeckt werden. Da zum Endtermin noch keine extern entdeckten Fehler bekannt sein

können und folglich die Fehlerbehebungsrate immer 100 % beträgt, ist eine Erfassung der

Fehlerbehebungsrate bezogen auf eine Softwareversion am Endtermin nicht sinnvoll. Zwar

werden extern entdeckte Fehler einer Softwareversion zugeordnet, indem das Attribut

swVersion an einem Defect Work Item entsprechend gefüllt wird (vgl. Abschnitt 5.2.2) und

folglich wäre es möglich, nachträglich die Fehlerbehebungsrate für eine Softwareversion zu

berechnen und zu bewerten. Allerdings ist zu diesem Zeitpunkt, der deutlich nach dem

Endtermin der Softwareversion liegt, das Wissen über die Entwicklung dieser Software-

version in den beteiligten Softwareteams nicht mehr so präsent wie an dem Endtermin

selbst. Die De�nition und Durchführung von kontinuierlichen Verbesserungsmaÿnahmen

wäre in dem Fall nicht ohne weiteres möglich, da sich die Rahmenbedingungen des Softwa-

reentwicklungsprozesses bereits geändert haben können. Geänderte Rahmenbedingungen

sind zum Beispiel neue Mitarbeiter im Softwareteam.

Die Fehlerbehebungsrate ist daher als ein Indikator für den Erfolg aller qualitätssichern-

den Maÿnahmen zu betrachten, die im Laufe der Entwicklung eines Softwareproduktes

erfolgten. Sie sollte in regelmäÿigen zeitlichen Abständen erfasst werden, zum Beispiel in

festen Zeitabstände, wie zum Beispiel einmal im Quartal, oder jeweils an einem Endtermin

einer Softwareversion.

6.2.1 Churn

Der Churn als Softwarekennzahl wurde in Abschnitt 4.2.2.1 bestimmt. Mit dem Churn

kann die Frage beantwortet werden, wie viel Software erstellt wurde. Da die Erstellung

113

Kapitel 6. Ermittlung der Berechnungsgrundlagen

der Software mehreren Aktivitäten zugeordnet werden kann, zum Beispiel den Arbeiten

an einer Softwarefunktion oder der Behebung eines Fehlers, werden im Folgenden mehrere

Churn-Kennzahlen eingeführt.

Im Sliced V-Modell können die Quelltextänderungen, die aufgrund der Umsetzung ei-

ner Softwarefunktion oder einer Fehlerbehebung erfolgten, eindeutig der Softwarefunktion

oder dem Fehler zugeordnet werden. Zur Erläuterung soll die Abbildung 6.2 dienen: Aus-

gehend von dem Feature Work Item, in dem die Softwarefunktion formuliert ist, können

die verlinkten Work Items schrittweise erkannt werden. Am Ende dieser Work Item Links

be�nden sich die Module Work Items. Sie sind mit den Revisionen verlinkt, die die Quell-

textänderungen enthalten. Die Defect Work Items sind unmittelbar mit den Revisionen

verlinkt.

Zur Messung des Churn wird ein Uni�ed Di� Patch genutzt. Dies ist ein Text (vgl. Abbil-

dung 2.5), dessen Gröÿe in Kilobyte [KB] angegeben wird. Der Churn, der einer einzelnen

Softwarefunktion zugeordnet wird, wird Single Feature Churn genannt. Die Gleichungen

6.1 und 6.2 zeigen dessen Berechnung. Es werden zunächst die Churns, die die Quell-

textänderungen zwischen den Ständen einzelner Dateien anzeigen, erfasst und summiert.

Die Dateistände sind Teil der Revisionen, die mit Module Work Items verlinkt sind. Die

Summe bildet den Module Churn. Danach werden alle Module Churns summiert, die über

eine V-Slice einem Feature Work Item zugeordnet werden können. Die V-Slice wird dabei

von unten nach oben verfolgt.

Chm =
k∑

i=0

Chfilei (6.1)

Chfs =
l∑

j=0

Chmj
(6.2)

mit:

Chfile File Churn: Summe der Gröÿe der Uni�ed Di� Patches für eine einzelne

Datei (eine einzelne Datei kann mehrfach geändert werden)

Chm Module Churn: Summe aller File Churns, die dem Module Work Item

zugeordnet sind

Chfs Single Feature Churn: Summe aller Module Churns, die dem Feature Work

Itemzugeordnet sind

k Anzahl aller Dateien in einer Revision, die mit einem Module Work Item

verlinkt sind

l Anzahl an Module Work Items in einer V-Slice

Chm und Chfs haben die Maÿeinheit KB (Kilobyte).

114

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Requirement Work Item

Design Work Item

Module Work Item

Revision

relates to

1

1..*

verifies

1

1..*

verifies

1

1..*

Feature Work Item

verifies

1

1..*

1..*

Repository

1
1..*

Defect Work Item

1..*

1
relates to

Abbildung 6.2: Zuordnung von Quelltextänderungen zu Softwarefunktionen

Für die Veranschaulichung dieser Gleichungen soll Abbildung 6.3 dienen. Sie zeigt die

Ermittlung eines Module Churn: Um Chfile zu berechnen, werden zunächst die Churns

zwischen den Ständen der Dateien, die in den Revisionen geändert wurden, ermittelt.

Zum Beispiel wird der Churn zwischen dem Stand der Datei A in Revision 3478 und dem

Stand der Datei A in Revision 2604 sowie der Churn zwischen dem Stand der Datei C in

Revision 3478 und dem Stand der Datei C in Revision 1974 ermittelt. Da der Churn jeweils

zwischen zwei aufeinanderfolgenden Dateiständen ermittelt wird, ist für die niedrigste

Revision mit der Nummer 1974, die mit dem analysierten Module Work Item verlinkt ist,

festzustellen, in welcher Revision die Datei C zuletzt geändert wurde (in der Abbildung

schematisch für die Datei C durch die gepunktete Linie dargestellt). Da diese Revision

nicht mit dem Module Work Item verlinkt ist, muss ein Informationsverarbeitungssystem

die entsprechenden Informationen aus dem Versionsmanagementsystem auswerten.

Nicht jede Datei in einer Revision ist eine Quelltextdatei, sondern sie kann auch eine

Kon�gurationsdatei sein (xml, ini etc.), die für die Umsetzung einer Softwarefunktion

benötigt wird. Bei der praktischen Ausgestaltung des Informationsverarbeitungssystems

ist zu entscheiden, welche Dateitypen in der Berechnung von Chfs zu berücksichtigen sind.

115

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Revision 3478

Datei A

Datei B

Datei C

Revision 2604

Datei A

Datei B

Datei D

Revision 1974

Datei C

Datei D

Chfile

Module Work Item Chm= Chfile

Chfile

Chfile

Chfile

Chfile

Abbildung 6.3: Ermittlung des Module Churn

Wie bereits in Abschnitt 2.1.2.1 im Bild 2.5 dargestellt, zeigt ein Uni�ed Di� Patch sowohl

Hinzufügungen und Änderungen als auch Löschungen an. Löschungen sind als Arbeits-

ergebnisse einer Softwareentwicklung anzusehen und sollten gemessen werden: Beispiels-

weise können Optimierungen des Quelltexts zur Entfernung von nicht mehr benötigten

Quelltextfragmenten führen.

Auf die gleiche Weise wird der Churn ermittelt, der einer Fehlerbehebung zugeordnet

wird. Er wird Single Defect Churn genannt und wird wie in Gleichung 6.3 berechnet.

Chds =
m∑
i=0

Chfilei (6.3)

mit:

Chds Single Defect Churn: Summe aller File Churns, die dem Work Item vom

Typ �defect� zugeordnet sind

m Anzahl der Dateien in einer Revision (für ein Defect Work Item)

Chds hat die Maÿeinheit KB (Kilobyte).

Wie in Abschnitt 2.1.2.4.1 aufgeführt, werden Fehler in intern entdeckte Fehler und in

extern entdeckte Fehler unterschieden. Aufgrund dieser Unterscheidungsmöglichkeit wird

der Begri� Single Defect Churn präzisiert: Der Single Defect Churn eines intern entdeckten

Fehlers wird Single Internal Defect Churn (Chdis) genannt, der Single Defect Churn eines

extern entdeckten Fehlers heiÿt Single External Defect Churn (Chdxs).

116

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Bis zu diesem Punkt sind die Churns einer einzelnen Softwarefunktion bzw. einem ein-

zelnen Fehler zugeordnet. Während der Entwicklung einer Softwareversion werden meh-

rere Softwarefunktionen umgesetzt und mehrere Fehler entdeckt. Folglich können Churn-

Kennzahlen für eine Softwareversion ermittelt werden. Diese ergeben sich aus den Sum-

men der Churn-Kennzahlen einzelner Softwarefunktionen bzw. einzelner Fehler, wie die

Gleichungen 6.4 und 6.5 zeigen.

Chfv =
n∑

i=0

Chfsi (6.4)

Chdiv =
o∑

j=0

Chdisj (6.5)

mit:

Chfv Version Feature Churn: Summe aller Single Feature Churns der Feature

Work Items in einem Feature Set Document

Chdiv Version Internal Defect Churn: Summe aller Single Internal Defect Churns

der Defect Work Items in einem Internal Defect Document

n Anzahl der Feature Work Items in einem Feature Set Document

o Anzahl der Defect Work Items in einem Internal Defect

Document

Chfv und Chdiv haben die Maÿeinheit KB (Kilobyte).

Wie in Abschnitt 5.2.2 erläutert, werden in einem Sliced V-Modell Storage die extern

entdeckten Fehler in ein dediziertes Dokument, das External Defect Document, eingetra-

gen. Die darin eingetragenen Fehler sind keiner einzelnen Softwareversion, sondern dem

Softwareprodukt zugeordnet. Daher zählt der Churn der Behebung extern entdeckter Feh-

ler nicht zur Entwicklung der Softwareversion, sondern zum Softwareprodukt. Gleichung

6.6 zeigt die Berechnung.

Chdxp =

p∑
i=0

Chdxsi
(6.6)

mit:

Chdxp Product External Defect Churn: Summe aller Single External Defect Churns

der Defect Work Items in einem External Defect Document

p Anzahl der Defect Work Items im External Defect Document

Chdxp hat die Maÿeinheit KB (Kilobyte).

117

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.2.2 Aufwand für die Entwicklungsaktivitäten

Der Aufwand für die Entwicklungsaktivitäten als Softwarekennzahl wurde in Abschnitt

4.2.2.1 bestimmt.

Wie in Abschnitt 5.2.2 erläutert, werden im Sliced V-Modell die geplanten und die tatsäch-

lichen Aufwände in den Attributen initialEstimate und timeSpent der Task Work Items

eingetragen. Aus den Werten in diesen Attributen werden die Soll- und Ist-Aufwände der

Entwicklung einer Softwareversion ermittelt. Gleichung 6.7 zeigt deren Berechnung.

Edevv =

q∑
i=0

TSdevi (6.7)

mit:

TSdev Wert im Attribut timeSpent in einem Task Work Item bei

dem das Attribut activityType auf den Wert development gesetzt ist

Edevv Ist-Aufwand der Entwicklungsaktivitäten für eine Softwareversion

q Anzahl an Task Work Items im Task Document, bei

denen das Attribut activityType auf den Wert development gesetzt ist

TSdev und Edevv haben die Maÿeinheit h (Stunden).

6.2.3 Entwicklungsdauer

Die Entwicklungsdauer als Softwarekennzahl wurde in Abschnitt 4.2.2.1 bestimmt. Die

Entwicklungsdauer einer Softwareversion ist die absolute Anzahl an Tagen, die zwischen

dem Tag, an dem die Start-Baseline erstellt wurde, und dem Tag, an dem die End-Baseline

erstellt wurde, vergangen sind. Im Sliced V-Modell wird das jeweilige Datum im Attribut

blDate des Typs Baseline gespeichert. Gleichung 6.8 zeigt die Berechnung.

Dv = BEv −BSv (6.8)

mit:

Dv Entwicklungsdauer einer Softwareversion

BEv Tag der Erstellung der End-Baseline einer Softwareversion

BSv Tag der Erstellung der Start-Baseline einer Softwareversion

Dv hat die Maÿeinheit d (days).

118

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.2.4 Churn-Produktivität

Die Churn-Produktivität als Softwarekennzahl wurde in Abschnitt 4.2.2.1 bestimmt. Die

Churn-Produktivität einer Softwareversion ist das Verhältnis der Summe des Version

Feature Churn und des Version Internal Defect Churn zum Ist-Aufwand der Entwick-

lungsaktivitäten an dieser Softwareversion, wie Gleichung 6.9 zeigt.

Pchv =
Chfv + Chdiv

Edevv

(6.9)

mit:

Pchv Churn-Produktivität der Entwicklung einer Softwareversion

Die Maÿeinheit der Churn-Produktivität ist KB
h

(Kilobyte pro Stunde).

6.2.5 Churn-Liefergeschwindigkeit

Die Churn-Liefergeschwindigkeit als Softwarekennzahl wurde in Abschnitt 4.2.2.1 be-

stimmt. Die Churn-Liefergeschwindigkeit einer Softwareversion ist das Verhältnis der

Gröÿe des Churn und der Entwicklungsdauer der Softwareversion. Bei der Berechnung

der Churn-Liefergeschwindigkeit werden entsprechend Gleichung 6.10 sowohl der Version

Feature Churn als auch der Version Internal Defect Churn berücksichtigt.

Vchv =
Chfv + Chdiv

Dv

(6.10)

mit:

Vchv Churn-Liefergeschwindigkeit einer Softwareversion

Die Maÿeinheit der Churn-Liefergeschwindigkeit ist KB
d

(Kilobyte pro Tag).

6.2.6 Anzahl an Work Items

Die Anzahl an Work Items als Softwarekennzahl wurde in Abschnitt 4.2.2.2 bestimmt. In

einem Sliced V-Modell können die Work Items gezählt werden, die mit einem Feature Work

Item verlinkt sind. Diese Anzahl gibt die Dokumentationsgröÿe einer Softwarefunktion

wieder. Gleichung 6.11 zeigt die Berechnung.

119

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Docfs = 1 +
rs∑
i=0

i+
ds∑
i=0

i+
ms∑
i=0

i+
ts∑
i=0

i (6.11)

mit:

Docfs Dokumentationsgröÿe einer Softwarefunktion

rs Anzahl an Requirements Work Items in einer V-Slice

ds Anzahl an Design Work Items in einer V-Slice

ms Anzahl an Module Work Items in einer V-Slice

ts Anzahl an Work Item-Typen, die vom Test Work Item abgeleitet sind,

in einer V-Slice

Docfs hat die Maÿeinheit WI (Work Items).

Das Feature Work Item geht als Summand 1 in die Berechnung der Dokumentations-

gröÿe einer Softwarefunktion ein, da es ein Bestandteil einer V-Slice ist. Abbildung 6.4

veranschaulicht die Berechnung von Docfs .

Die Dokumentationsgröÿe einer Softwareversion ist die Summe der Dokumentationsgröÿen

aller Softwarefunktionen, die in dieser Softwareversion implementiert wurden. Sie wird

gemäÿ Gleichung 6.12 ermittelt.

Doc f s

Requirements Work Item

Design Work Item

Module Work Item

System Test Work Item

Integration Test Work
Item

Module Test Work Item

validates

verifies

verifies

1

1

1

*

*

*

verifies

1

*

verifies

1

*

+

+

+

+

Feature Work Item Acceptance Test Work
Item

validates

verifies

+ 1

=




sr

i

i
0




st

i

i
0




sd

i

i
0




sm

i

i
0

Abbildung 6.4: Ermittlung der Dokumentationsgröÿe einer Softwarefunktion

120

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Docfv =
r∑

i=0

Docfsj (6.12)

mit:

Docfv Dokumentationsgröÿe einer Softwareversion

r Anzahl aller Feature Work Items in einem Feature Set Document

Docfv hat die Maÿeinheit WI (Work Items).

6.2.7 Aufwand für die Dokumentationsaktivitäten

Der Aufwand für die Dokumentationsaktivitäten als Softwarekennzahl wurde in Abschnitt

4.2.2.2 bestimmt. Diese Softwarekennzahl wird in der gleichen Art und Weise wie der

Aufwand für die Entwicklungsaktivitäten erfasst, jedoch werden die Task Work Items

ausgewertet, bei denen das Attribut activityType auf den Wert documentation gesetzt ist.

Gleichung 6.13 zeigt die Berechnung.

Edocv =
s∑

i=0

TSdoci (6.13)

mit:

TSdoc Wert im Attribut timeSpent in einem Task Work Item, bei

dem das Attribut activityType auf den Wert documentation gesetzt ist

Edocv Ist-Aufwand der Dokumentationsaktivitäten für eine Softwareversion

s Anzahl an Task Work Items im Task Document, bei

denen das Attribut activityType auf den Wert documentation gesetzt ist

TSdoc und Edocv haben die Maÿeinheit h (Stunden).

6.2.8 Dokumentationsproduktivität

Die Dokumentationsproduktivität als Softwarekennzahl wurde in Abschnitt 4.2.2.2 be-

stimmt. Die Dokumentationsproduktivität einer Softwareversion ist das Verhältnis der

Dokumentationsgröÿe einer Softwareversion zu den für die Softwareversion geleisteten

Ist-Aufwänden der Dokumentationsaktivitäten. Gleichung 6.9 zeigt die Berechnung.

121

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Pdocv =
Docfv
Edocv

(6.14)

mit:

Pdocv Dokumentationsproduktivität einer Softwareversion

Die Maÿeinheit der Dokumentationsproduktivität ist WI
h

(Work Items pro Stunde).

6.2.9 Dokumentationsliefergeschwindigkeit

Die Dokumentationsliefergeschwindigkeit als Softwarekennzahl wurde in Abschnitt 4.2.2.2

bestimmt. Die Dokumentationsliefergeschwindigkeit einer Softwareversion ist entspre-

chend Gleichung 6.15 das Verhältnis der Dokumentationsgröÿe einer Softwareversion zu

der Entwicklungsdauer der Softwareversion.

Vdocv =
Docfv
Dv

(6.15)

mit:

Vdocv Dokumentationsliefergeschwindigkeit einer Softwareversion

Die Maÿeinheit der Dokumentationsliefergeschwindigkeit ist WI
d

(Work Items pro Tag).

6.2.10 Prozentuale Verteilung von Fehlerattributen

Die prozentuale Verteilung von Fehlerattributen wurde in Abschnitt 4.2.2.3 bestimmt.

Dort sind drei verschiedene prozentuale Verteilungen genannt: die der Softwarequalitätsei-

genschaften, die der Fehlerursachen in der Programmierung und die der Fehlerschweregra-

de. Da alle drei Varianten identisch berechnet werden, zeigt dieser Abschnitt exemplarisch

die Berechnungsgrundlage für eine der Varianten.

Wie in Abschnitt 2.1.2.4.1 erläutert, zeigt die prozentuale Verteilung alle prozentualen

Teilwerte an. Ein prozentualer Teilwert gibt das Verhältnis der Fehler mit einer bestimm-

ten Einordnung zur Anzahl aller Fehler wieder. Ein Beispiel eines prozentualen Teilwerts

für die Fehler, die mit dem Schweregrad kritisch markiert sind, zeigt die Gleichung 6.16.

SVcr =

cr∑
i=0

i

di∑
i=0

i

(6.16)

122

Kapitel 6. Ermittlung der Berechnungsgrundlagen

mit:

di Anzahl an Defect Work Items in einem Internal Defect Document

cr Anzahl an Defect Work Items in einem Internal Defect Document,

die den Wert �critical� im Attribut �severity� enthalten

SVcr Prozentualer Teilwert für Defect Work Items in einem Internal

Defect Document, die den Wert critical im Attribut severity enthalten

SVcr ist eine Verhältnisgröÿe, die in % angegeben wird.

Die Berechnung aller weiteren prozentualen Teilwerte erfolgt äquivalent zur gezeigten

Berechnung. Auf die Darstellung jeder einzelnen Gleichung wird daher verzichtet.

6.2.11 Anzahl intern entdeckter Fehler

Die Anzahl intern entdeckter Fehler wurde in Abschnitt 4.2.2.4 bestimmt. Die intern

entdeckten Fehler werden in den einzelnen Internal Defect Documents eingetragen. Die

Anzahl aller für ein Softwareprodukt intern entdeckten Fehler ist folglich die Summe der

Fehler in den einzelnen Internal Defect Documents. Gleichung 6.17 zeigt die Berechnung.

Wdip =
u∑

i=0

(
di∑
i=0

i) (6.17)

mit:

Wdip Anzahl an intern entdeckten Fehlern für ein Softwareprodukt

u Anzahl aller Internal Defect Documents in einem Sliced V-Modell Storage

Wdip hat die Maÿeinheit WI (Work Items).

6.2.12 Anzahl extern entdeckter Fehler

Die Anzahl extern entdeckter Fehler wurde in Abschnitt 4.2.2.4 bestimmt. Die extern

entdeckten Fehler werden in die einzelnen External Defect Documents eingetragen. Die

Anzahl aller für ein Softwareprodukt extern entdeckten Fehler ist folglich die Summe der

Fehler in den einzelnen External Defect Documents. Gleichung 6.18 zeigt die Berechnung.

Wdxp =
w∑
i=0

(
dx∑
i=0

i) (6.18)

123

Kapitel 6. Ermittlung der Berechnungsgrundlagen

mit:

Wdxp Anzahl an extern entdeckten Fehlern für ein Softwareprodukt

dx Anzahl an Defect Work Items in einem External Defect

Document

w Anzahl an External Defect Documents in einem Sliced V-Modell Storage

Wdxp hat die Maÿeinheit WI (Work Items).

6.2.13 Fehlerbehebungsrate

Die Fehlerbehebungsrate wurde in Abschnitt 4.2.2.4 bestimmt. Sie ist das Verhältnis der

Fehler, die im Zusammenhang mit qualitätssichernden Maÿnahmen während der Ent-

wicklung intern entdeckt werden, zu den Fehlern, die nach dem Endtermin einer Soft-

wareversion vom Auftraggeber entdeckt werden (Abschnitt 2.1.2.4). Wie zu Beginn des

Abschnitts 6.2 erläutert, wird die Fehlerbehebungsrate nicht für eine einzelne Software-

version ermittelt, sondern für das Softwareprodukt. Gleichung 6.19 zeigt ihre Berechnung.

DFRp =
WIdip

WIdip +WIdxp

(6.19)

mit:

DFRp Fehlerbehebungsrate für ein Softwareprodukt

DFRp ist eine Verhältnisgröÿe, die in % angegeben wird.

6.2.14 Churn-Fehlerdichte

Die Churn-Fehlerdichte wurde in Abschnitt 4.2.2.5 bestimmt. Sie zeigt an, wie viele in-

tern entdeckte Fehler pro KB Churn entdeckt wurden. Bei der Berechnung der Churn-

Fehlerdichte für eine Softwareversion werden entsprechend Gleichung 6.20 sowohl der Ver-

sion Feature Churn als auch der Version Internal Defect Churn berücksichtigt.

Dchv =

di∑
i=0

i

Chfv + Chdiv

(6.20)

mit:

DDchv Churn-Fehlerdichte einer Softwareversion

DDchv hat die Maÿeinheit WI
KB

(Work Items pro Kilobyte).

124

Kapitel 6. Ermittlung der Berechnungsgrundlagen

6.3 Berechnung der SW-Produktionskennzahlen

Im Abschnitt 3.2 wurde begonnen, die RGQM-Methode an einem Anwendungsbeispiel

zu demonstrieren und die Anwendung der RGQM-Bearbeitungsschritte 1 bis 6 wur-

de erläutert. Für das Anwendungsbeispiel steht die Erläuterung der RGQM-Bearbei-

tungsschritte 7 und 8 aus. Diese erfolgt in diesem Abschnitt. Wie in Abschnitt 3.1.2

erläutert, werden im RGQM-Bearbeitungsschritt 7 die Berechnungsgrundlagen der SW-

Produktionskennzahlen ermittelt und im RGQM-Bearbeitungsschritt 8 wird überprüft, ob

die SW-Produktionskennzahlen die Interpretation der dazugehörenden HW-Produktions-

kennzahlen beibehalten.

In den folgenden Abschnitten werden zunächst die Berechnungsgrundlagen und die Inter-

pretationen der SW-Produktionskennzahlen erläutert, in Abschnitt 6.4 wird die Seman-

tik der beiden Ausprägungen einer Produktionskennzahl verglichen. In einem Gespräch

mit dem Geschäftsbereichsleiter des Kooperationspartners wurde geprüft, ob die Inter-

pretation beibehalten wird. Vorab wurden ihm die zu den SW-Produktionskennzahlen

gehörenden Fragen und die jeweiligen Berechnungsformeln vorgestellt und erläutert.

Alle nachfolgenden SW-Produktionskennzahlen werden jeweils für eine Softwareversion

berechnet und sollten zum Endtermin der Softwareversion erfasst werden. Dies ermöglicht

die kontinuierliche Beobachtung des Softwareentwicklungsprozesses von Softwareversion

zu Softwareversion. Eine Ausnahme bildet die Technische Rückläuferrate: Sie wird nur

für das Softwareprodukt erfasst. Die Begründung ist identisch wie bei der Softwarekenn-

zahl Fehlerbehebungsrate: Fehler in einer Softwareversion werden zum Teil erst Jahre nach

dem Endtermin der Softwareversion entdeckt. Daher ist eine Berechnung der Technischen

Rückläuferrate zum Endtermin einer Softwareversion nicht möglich. Sie ist wie die Feh-

lerbehebungsrate als ein Indikator für den Erfolg aller qualitätssichernden Maÿnahmen

zu betrachten, die im Laufe der Entwicklung eines Softwareproduktes erfolgten. Sie soll-

te ebenfalls in regelmäÿigen zeitlichen Abständen erfasst werden. Die dafür möglichen

Optionen wurden bereits zu Beginn des Abschnitts 6.2 erläutert.

6.3.1 First Pass Rate

Die Frage, die die First Pass Rate beantwortet soll, lautet: Wie ist das Verhältnis von

Quelltextänderungen, die der Implementierung von Softwarefunktionen zugeordnet werden

können, zu allen Quelltextänderungen?

Um die Gröÿe der Quelltextänderungen zu messen, wird der Churn verwendet. Wie in

Abschnitt 6.2.1 gezeigt, gibt es mehrere Churn-Kennzahlen: Der Version Feature Churn

zeigt die Gröÿe der Quelltextänderungen an, die für die Implementierung einer Software-

125

Kapitel 6. Ermittlung der Berechnungsgrundlagen

funktion vorgenommen wurden. Der Version Internal Defect Churn entspricht der Gröÿe

der Quelltextänderungen, die für die Fehlerbehebung intern entdeckter Fehler vorgenom-

men wurden. Diese beiden Softwarekennzahlen bilden die Gesamtgröÿe des Churns einer

Softwareversion, der Version Churn (Chv) genannt wird. Abbildung 6.5 zeigt schematisch

den Aufbau des Version Churn.

Version
Feature
Churn

Version Internal
Defect Churn

V
er

si
on

 C
hu

rn

Ch di v

Ch f v

C
h

 v

Abbildung 6.5: Aufbau des Version Churn

Diese Churn-Kennzahlen bilden die Basis für die Beantwortung der Frage und die Berech-

nung der First Pass Rate, die in Gleichung 6.21 gezeigt wird.

FPRv =
Chfv

Chfv + Chdiv

(6.21)

mit:

FPRv First Pass Rate für eine Softwareversion

FPRv ist eine Verhältnisgröÿe, die in % angegeben wird.

Interpretation: Der Idealwert der First Pass Rate ist 100 %. Ein hoher Ist-Wert der

First Pass Rate zeigt an, dass die Fehler, die durch qualitätssichernde Maÿnahmen in-

tern entdeckt wurden, wenig Quelltextänderungen verursachen bzw. dass wenige Fehler

entdeckt wurden. Beides sind Indikatoren für eine hohe Softwareentwicklungsqualität und

stehen damit für geringe Nacharbeitskosten, die durch fehlerbereinigende Programmierak-

tivitäten anfallen.

Es wird davon ausgegangen, dass die Ist-Werte der First Pass Rate in der Softwareent-

wicklung kleiner sein werden als die Ist-Werte der First Pass Rate in der Produktion. Dies

126

Kapitel 6. Ermittlung der Berechnungsgrundlagen

wird damit begründet, dass der Automatisierungsgrad in der Produktion höher ist als in

der Softwareentwicklung. Wie bereits in Abschnitt 2.2 aufgeführt, wird in der Produktion

wiederholt ein identisches Produkt gefertigt, während die Softwareentwicklung einen Pro-

zess des �ongoing design� darstellt, der durch eine starke manuelle Bearbeitung geprägt

ist. Manuelle Tätigkeiten können als fehleranfälliger angesehen werden als automatisierte

Bearbeitungsvorgänge. Unabhängig von den tatsächlichen Ist-Werten ist es möglich, Ab-

weichungen von den Soll-Werten zu erkennen und über die Umsetzung von Maÿnahmen

zur Verbesserung der First Pass Rate zu entscheiden.

6.3.2 Technische Rückläuferrate

Die Frage, die die Technische Rückläuferrate beantworten soll, lautet:Wie ist das Verhält-

nis von Quelltextänderungen, die der Implementierung extern entdeckter Fehler zugeordnet

werden können, zu allen Quelltextänderungen?

Der Product External Defect Churn zeigt die Gröÿe der Quelltextänderungen an, die

für die Fehlerbehebung extern entdeckter Fehler vorgenommen wurden. Diese Churn-

Kennzahl wird nicht für eine einzelne Softwareversion ermittelt, sondern für das Software-

produkt.

Die Gröÿe der Quelltextänderungen für ein Softwareprodukt, die durch die Entwicklung

neuer Softwarefunktionen und die Behebung intern entdeckter Fehler erfolgen, wird durch

die Summe aller Version Feature Churns und aller Version Internal Defect Churns an-

gezeigt. Die jeweiligen Summenkennzahlen werden Product Feature Churn (Chfp) bzw.

Product Internal Defect Churn (Chdip) genannt. Deren Addition ergibt den sogenannten

Product Churn (Chp). Abbildung 6.6 zeigt schematisch den Aufbau des Product Churn.

Die genannten Churn-Kennzahlen bilden die Basis für die Beantwortung der Frage und

die Berechnung der Technischen Rückläuferrate, die in Gleichung 6.22 gezeigt wird.

TRRp =
Chdxp

w∑
i=1

(Chfvi + Chdivi) + Chdxp

(6.22)

mit:

TRRp Technische Rückläuferrate für ein Softwareprodukt

w Anzahl an Softwareversionen

TRRp ist eine Verhältnisgröÿe, die in % angegeben wird.

Interpretation: Der Idealwert der Technischen Rückläuferrate ist 0 %. Ein kleiner Ist-

Wert der Technischen Rückläuferrate zeigt an, dass extern entdeckte Fehler wenig Nach-

127

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Product
Feature
Churn

Product External
Defect Churn

Pr
od

uc
t

Ch
ur

n

Product Internal
Defect Churn

Ch dx p

Ch di p

Ch f p

C
h

 p

Abbildung 6.6: Aufbau des Product Churn

arbeiten bewirkt haben bzw. dass wenige Fehler entdeckt wurden und somit die Nachar-

beitskosten für fehlerbereinigende Programmieraktivitäten gering waren.

Es kann an dieser Stelle nicht eingeschätzt werden, wie stark die Ist-Werte der Technischen

Rückläuferrate in der Softwareentwicklung von den Ist-Werten der Technischen Rückläu-

ferrate in der Produktion abweichen werden. Die Ist-Werte in der Softwareentwicklung

könnten die heutigen geringen Ist-Werte in der Produktion erreichen, sofern die Qualität

der ausgelieferten Software ausreichend hoch ist. Durch einen Vergleich von Soll- und Ist-

Werten kann das Management über die Umsetzung von Maÿnahmen zur Verbesserung

der Technischen Rückläuferrate entscheiden.

6.3.3 Servicegrad

Die Frage, die der Servicegrad beantworten soll, lautet: Wie ist das Verhältnis von Soft-

warefunktionen, die zum zugesagten Termin geliefert wurden, zu allen gelieferten Softwa-

refunktionen?

Im Sliced V-Modell enthalten die Feature Work Items das Attribut dueDate, in dem der

zugesagte Termin der Softwarefunktion notiert wird. Um den Servicegrad einer Software-

version zu ermitteln, werden alle in einem Feature Set Document enthaltenen Feature

Work Items, in denen das dueDate dem Datum der End-Baseline entspricht bzw. nach

dem Datum der End-Baseline liegt, mit allen Feature Work Items in ein Verhältnis gesetzt.

128

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Gleichung 6.23 zeigt die dazugehörende Berechnung:

SLv =

fcv∑
i=0

i

fv∑
i=0

i

(6.23)

mit:

SLv Servicegrad für eine Softwareversion

fv Anzahl an Softwarefunktionen, die in einer Softwareversion realisiert

wurden (erledigte Feature Work Items in dem Feature Set

Dokument der entsprechenden Softwareversion)

fcv Anzahl an Softwarefunktionen, die in einer Softwareversion und zum

zugesagten Termin realisiert wurden (Feature Work Items, bei

denen das Datum im Attribut dueDate nach dem Endtermin liegt bzw.

mit dem Endtermin identisch ist)

SLv ist eine Verhältnisgröÿe, die in % angegeben wird.

Interpretation: Der Idealwert des Servicegrades ist 100 %. Das würde bedeuten, dass alle

Softwarefunktionen einer Softwareversion spätestens zum zugesagten Termin freigegeben

sind. Ein niedriger Ist-Wert des Servicegrades ist ein Indikator dafür, dass mehrere Softwa-

refunktionen nicht zum zugesagten Termin freigegeben sind und somit die Lieferqualität

beeinträchtigt ist. Ebenso wie ein niedriger Wert des Servicegrads in der Produktion,

zeigt ein niedriger Ist-Wert des Servicegrades in der Softwareentwicklung nicht an, wie

groÿ die Lieferverzögerungen sind. Durch einen Vergleich von Soll- und Ist-Werten kann

das Management über die Umsetzung von Maÿnahmen zur Verbesserung der Ist-Werte

entscheiden.

6.3.4 Wertschöpfung

Die Frage, die die Wertschöpfung beantworten soll, lautet: Wie hoch sind die geplanten

Kosten für die Entwicklung neuer Softwarefunktionen?

Der geplante Entwicklungsaufwand für die Umsetzung einer neuen Softwarefunktion, die

im Sliced V-Modell mit einem Feature Work Item beschrieben wird, wird in dem Attri-

but initialEstimate in den Task Work Items eingetragen, die mit dem Feature Work Item

verlinkt sind. Bei der Ermittlung der Wertschöpfung werden sowohl die geplanten Ent-

wicklungsaktivitäten, also die Task Work Items mit dem Wert development im Attribut

activityType, als auch die geplanten Dokumentationsaktivitäten, also die Task Work Items

129

Kapitel 6. Ermittlung der Berechnungsgrundlagen

mit dem Wert documentation im Attribut activityType, berücksichtigt. Um die geplanten

Softwareentwicklungskosten zu berechnen, werden alle Werte im Attribut initialEstimate

summiert und mit einem betriebsspezi�schen Stundensatz multipliziert, wie Gleichung

6.24 zeigt:

AVv =
x∑

i=0

IEfi ·Hr (6.24)

mit:

AVv Wertschöpfung für eine Softwareversion

IEf Geplanter Aufwand einer Aktivität, die mit der Realisierung einer

Softwarefunktion zusammenhängt (Wert im Attribut initialEstimate

eines Task Work Items, das mit einem Feature Work Item

verlinkt ist)

Hr Betriebsspezi�scher Stundensatz

x Anzahl aller Task Work Items, die mit Feature Work Items

verlinkt sind, die in einem Feature Set Document stehen

Die Maÿeinheit für AVv ist e (Euro).

Interpretation: Die Wertschöpfung in der Softwareentwicklung entspricht den Entwick-

lungsplankosten einer Softwareversion. Die aus den geplanten Aufwänden der einzelnen

Aktivitäten resultierende Wertschöpfung in der Softwareentwicklung hat ebenso wie die

Wertschöpfung in der Produktion keinen Wertebereich: Ihre Gröÿe hängt von den konkre-

ten Softwarefunktionen bzw. dem zu fertigenden Produkt ab. Äquivalent zur Wertschöp-

fung in der Produktion ist die Wertschöpfung in der Softwareentwicklung kein Indikator

dafür, ob die Softwarefunktionen einen Kundennutzen bieten.

Die Wertschöpfung in der Softwareentwicklung kann in der Preisbildung der Software-

produkte berücksichtigt werden: Die Einnahmen aus den verkauften Softwareprodukten

sollten idealerweise höher als die Wertschöpfung sein.

Äquivalent zur Wertschöpfung in der Produktion wird die Wertschöpfung in der Softwa-

reentwicklung benötigt, um die Produktivität zu berechnen.

6.3.5 Produktivität

Die Frage, die die Produktivität beantworten soll, lautet: Wie ist das Verhältnis von der

Wertschöpfung zu den geleisteten Ist-Stunden, die der Entwicklung der Softwareversion

direkt zugeordnet werden können?

130

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Die Ist-Stunden der Entwicklung einer Softwareversion entsprechen in einem Sliced V-

Modell der Summe der Werte in dem Attribut timeSpent aller Task Work Items, die für

eine Softwareversion angelegt wurden. Dies sind der Aufwand der Entwicklungsaktivitäten

(Abschnitt 6.2.2) und der Aufwand der Dokumentationsaktivitäten Abschnitt 6.2.7. Diese

Ist-Stunden werden nach Gleichung 6.25 in ein Verhältnis zu der Wertschöpfung gesetzt.

Pv =
AVv

Edevv + Edocv

(6.25)

mit:

Pv Produktivität für eine Softwareversion

Die Maÿeinheit für Pv ist eh (Euro pro Stunde).

Interpretation: Die Produktivität sollte in einem Team tendenziell unverändert blei-

ben oder steigen. Sinkt die Produktivität, könnte das ein dafür Indikator sein, dass die

Mitarbeiter zu einem wachsenden Teil ihrer Arbeitszeit nicht an der Umsetzung neu-

er Softwarefunktionen arbeiten. Da in der Softwareentwicklung keine Maschinenkosten

in der Wertschöpfung berücksichtigt werden, beträgt der ideale Wert der Produktivität:

Betriebsspezi�scher Stundensatz/h oder höher. Ein Beispiel: Wenn der betriebsspezi�sche

Stundensatz 70 e beträgt, ist der Idealwert für die Produktivität 70e
h
. In diesem Fall

zeigt die Produktivität an, dass sämtliche Aufwände in der Softwareentwicklung für die

Umsetzung neuer Softwarefunktionen aufgebracht werden. Werte unter 70e
h
könnten ein

Indikator dafür sein, dass die Softwareteams einen Teil ihrer Arbeitszeit nicht wertschöp-

fend einsetzen.

6.4 Bewertung der semantischen Äquivalenz

Ergänzend zu den Berechnungsgrundlagen der SW-Produktionskennzahlen erfolgt ei-

ne Prüfung der semantischen Äquivalenz der beiden Ausprägungen einer Produktions-

kennzahl. Gemäÿ den Ausführungen in Abschnitt 2.1.1 bilden der Name, die Maÿeinheit,

der Wertebereich, der Idealwert, die Möglichkeit der Festlegung von Soll-Werten, die Fra-

ge, das Ziel und die Interpretation die Semantik einer Kennzahl.

Um die semantische Äquivalenz der beiden Ausprägungen einer Produktionskennzahl

zu prüfen, werden diese beschreibenden Informationen in Tabelle 6.1 gegenübergestellt.

Da die jeweiligen Interpretationen in den vorhergehenden Abschnitten dargestellt wur-

den, wird auf den Abschnitt verwiesen, in dem die Interpretation der jeweiligen HW-

Produktionskennzahl bzw. SW-Produktionskennzahl aufgeführt wurde.

131

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Produktion Softwareentwicklung

First Pass Rate

Maÿeinheit % %

Wertebereich 0...100 % 0...100 %

Idealwert 100 % 100 %

Festlegung

Soll-Werte möglich möglich

Ziel Hohe Fertigungsqualität Hohe Softwareentwicklungsquali-

tät

Frage Wie ist das Verhältnis von ge-

fertigten Produkten, die fehlerfrei

getestet wurden, zu allen gefertig-

ten Produkten?

Wie ist das Verhältnis von Quell-

textänderungen, die der Imple-

mentierung von Softwarefunktio-

nen zugeordnet werden können, zu

allen Quelltextänderungen?

Interpretation Abschnitt 3.2.2.2.1 Abschnitt 6.3.1

Die Interpretationen sind im Grundsatz identisch. Durch einen Vergleich

von Soll-Werten und Ist-Werten entscheidet das Management über die

Umsetzung von Maÿnahmen zur Verbesserung der Ist-Werte. Die Soll-

Werte können allerdings unterschiedlich sein.

Technische Rückläuferrate

Maÿeinheit % %

Wertebereich 0...100 % 0...100 %

Idealwert 0 % 0 %

Festlegung

Soll-Werte möglich möglich

Ziel Hohe Kundenzufriedenheit Hohe Kundenzufriedenheit

Frage Wie ist das Verhältnis von ausge-

lieferten Produkten, die aufgrund

eines technischen Defekts rekla-

miert werden, zu allen ausgeliefer-

ten Produkten?

Wie ist das Verhältnis von Quell-

textänderungen, die der Imple-

mentierung extern entdeckter Feh-

ler zugeordnet werden können, zu

allen Quelltextänderungen?

Interpretation Abschnitt 3.2.2.2.2 Abschnitt 6.3.2

Die Interpretationen sind im Grundsatz identisch. Durch einen Vergleich

von Soll-Werten und Ist-Werten entscheidet das Management über die

Umsetzung von Maÿnahmen zur Verbesserung der Ist-Werte. Die Soll-

Werte können allerdings unterschiedlich sein.

Fortsetzung der Tabelle auf der nächsten Seite...

132

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Servicegrad

Maÿeinheit % %

Wertebereich 0...100 % 0...100 %

Idealwert 100 % 100 %

Festlegung

Soll-Werte möglich möglich

Ziel Hohe Lieferqualität Hohe Lieferqualität

Frage Wie ist das Verhältnis von Auf-

tragspositionen, die zum Bestäti-

gungstermin geliefert wurden, zu

allen Auftragspositionen?

Wie ist das Verhältnis von Softwa-

refunktionen, die zum zugesagten

Termin geliefert wurden, zu allen

gelieferten Softwarefunktionen?

Interpretation Abschnitt 3.2.2.2.3 Abschnitt 6.3.3

Die Interpretationen sind im Grundsatz identisch. Durch einen Vergleich

von Soll-Werten und Ist-Werten entscheidet das Management über die

Umsetzung von Maÿnahmen zur Verbesserung der Ist-Werte. Die Soll-

Werte können allerdings unterschiedlich sein.

Wertschöpfung

Maÿeinheit e e

Wertebereich spezi�sch spezi�sch

Idealwert spezi�sch spezi�sch

Festlegung

Soll-Werte möglich möglich

Ziel Hohe Fertigungsrentabilität Hohe Softwareentwicklungsrenta-

bilität

Frage Wie hoch sind die Fertigungs-

plankosten (ohne Berücksichti-

gung der Materialkosten)?

Wie hoch sind die geplanten Kos-

ten für die Entwicklung neuer Soft-

warefunktionen?

Interpretation Abschnitt 3.2.2.2.4 Abschnitt 6.3.4

Die Interpretation ist im Grundsatz identisch. Das Management kann er-

kennen, wie hoch die wertschöpfend eingesetzten Kosten sind. Die Wert-

schöpfung kann und sollte in der Preisbildung berücksichtigt werden.

Fortsetzung der Tabelle auf der nächsten Seite...

133

Kapitel 6. Ermittlung der Berechnungsgrundlagen

Produktivität

Maÿeinheit e/h e/h

Wertebereich spezi�sch spezi�sch

Idealwert spezi�sch spezi�sch

Festlegung

Soll-Werte möglich möglich

Ziel Hohe Fertigungsrentabilität Hohe Softwareentwicklungsrenta-

bilität

Frage Wie ist das Verhältnis von

der Wertschöpfung zu den Ist-

Stunden, die der Fertigung des

Produktes direkt zugeordnet

werden können?

Wie ist das Verhältnis von der

Wertschöpfung zu den geleisteten

Ist-Stunden, die der Entwicklung

der Softwareversion direkt zuge-

ordnet werden können?

Interpretation Abschnitt 3.2.2.2.5 Abschnitt 6.3.5

Die Interpretation ist im Grundsatz identisch. Das Management kann die

Trends der Produktivität beobachten und erkennen, ob die überwiegende

Arbeitszeit der Mitarbeiter wertschöpfend eingesetzt wird. Die konkre-

ten Ist-Werte der Produktivität sind allerdings in den beiden Domänen

unterschiedlich.

Tabelle 6.1: Semantische Äquivalenz der HW- und SW-Produktionskennzahlen

Bei der Prüfung der semantischen Äquivalenz der jeweiligen Ausprägung einer

Produktionskennzahl kann zusammenfassend Folgendes festgestellt werden:

1. Die Maÿeinheiten sind identisch.

2. Bei den Produktionskennzahlen mit einem vorgegebenen Wertebereich sind sowohl

der Wertebereich als auch der Idealwert innerhalb des Wertebereichs identisch.

3. Die Soll-Werte können in den beiden Domänen unterschiedlich sein.

4. Die Ziele sind identisch, enthalten jedoch zum Teil domänenspezi�sche Begri�e.

5. Die Fragen sind im Satzbau identisch. Die Frageninhalte unterscheiden sich.

6. Die SW-Produktionskennzahl erlaubt die im Grundsatz gleiche Interpretation wie

die dazugehörende HW-Produktionskennzahl.

Die unter Punkt 1, 2 und 4 aufgeführten Erkenntnisse zeigen, dass die jeweiligen Seman-

tikmerkmale gleich sind. Punkt 3 besagt, dass die Soll-Werte in der Produktionsdomäne

und die Soll-Werte in der Softwaredomäne unterschiedlich sein können. Dies spricht einer

134

Kapitel 6. Ermittlung der Berechnungsgrundlagen

semantischen Äquivalenz nicht entgegen: Das Management legt bereits heute unterschied-

liche Soll-Werte für eine bestimmte HW-Produktionskennzahl für unterschiedliche Pro-

duktionsstätten fest. Jede Produktionsstätte zeichnet sich durch spezi�sche Eigenschaften

aus, daher können in der Regel nicht die gleichen Soll-Wertvorgaben gelten. Die Steuerung

der Produktionsstätten erfolgt durch den Vergleich von Ist- und Soll-Werten. Aus diesem

Grund kann das Management beliebige Soll-Werte für die SW-Produktionskennzahlen

festlegen: Um die Zielerreichung zu überprüfen, ist auch hier nicht der Vergleich des Ist-

Wertes mit dem Idealwert von 100 % relevant, sondern der Vergleich des Ist-Wertes mit

dem vom Management vorgegebenen Soll-Wert.

Die Erkenntnis unter Punkt 5 lieÿe die Schlussfolgerung zu, dass die beiden Ausprägungen

einer Produktionskennzahl semantisch nicht äquivalent sind. Es wird jedoch argumentiert,

dass die Semantik der Frage im Grundsatz identisch und damit semantisch äquivalent

ist, da der Satzbau identisch ist. Zwar sind die Frageninhalte unterschiedlich, dennoch

unterstützt der Satzbau eine im Grundsatz identische Interpretation. Dies soll am Beispiel

der First Pass Rate dargelegt werden: Die Frage, die beantwortet wird, ist eine Frage zu

einem Verhältnis von etwas �Gutem� zu etwas �Schlechtem�. Während das Management

diese Frageninhalte für die Produktionsdomäne kennt, ist es nicht zwingend notwendig,

dass es auch die entsprechenden Frageninhalte der Frage für die SW-Produktionskennzahl

kennt. Es muss lediglich verstehen, dass das in der Frage beschriebene Verhältnis der

Frageninhalte zu dem Idealwert tendieren sollte.

Basierend auf den Ausführungen in diesem Abschnitt lässt sich schlussfolgern, dass für al-

le fünf Produktionskennzahlen die SW-Produktionskennzahl und die dazugehörende HW-

Produktionskennzahl semantisch äquivalent sind. Die RQGM-Methode ist geeignet, um

SW-Produktionskennzahlen zu bestimmen und wird folglich als eine Antwort auf die ers-

te Detailfrage dieser Arbeit angesehen: Wie können SW-Produktionskennzahlen, die die

Semantik der äquivalenten HW-Produktionskennzahlen beibehalten, bestimmt werden?

Als Antwort auf die zweite Detailfrage: Wie sollte der Softwareentwicklungsprozess auf-

gebaut sein, damit die de�nierten SW-Produktionskennzahlen und Softwarekennzahlen er-

fasst werden können? wird das Sliced V-Modell angesehen. In Abschnitt 5.2.3 wurde

durch eine manuelle Prüfung eine erste Bestätigung geliefert, dass das Sliced V-Modell

die in den Kapiteln 3 und 4 formulierten Anforderungen grundsätzlich erfüllt. Durch die

Ermittlung der Berechnungsgrundlagen aller Kennzahlen in diesem Kapitel erfolgte eine

weitere Bestätigung. Die abschlieÿende Bestätigung erfolgt durch die Implementierung ei-

nes Informationsverarbeitungssystems, mit der die dritte Detailfrage beantwortet werden

soll: Wie sollte ein Informationsverarbeitungssystem aufgebaut sein, das SW-Produktions-

kennzahlen und Softwarekennzahlen erfassen und verarbeiten kann? Der Implementierung

eines Informationsverarbeitungssystems widmet sich das folgende Kapitel.

135

Kapitel 7

Entwicklung des

Informationsverarbeitungssystems

Dieses Kapitel widmet sich der dritten Detailfrage dieser Arbeit: Wie sollte ein Informa-

tionsverarbeitungssystem aufgebaut sein, das Softwarekennzahlen und SW-Produktions-

kennzahlen erfassen und verarbeiten kann? sowie der Evaluierung der Forschungsfrage.

Dafür wird ein Prototyp eines Informationsverarbeitungssystems, genannt SofProSys, ent-

wickelt, der sowohl praxisnah als auch praktisch angewendet wird. Auÿerdem wird die

Einhaltung der empfohlenen Gestaltungsgrundsätze für Informationsverarbeitungssyste-

me (vgl. Abschnitt 2.1) bewertet. Die Inhalte dieses Kapitels entstanden iterativ in den

Design Research-Entwurfsphasen Erstellen und Evaluierung (vgl. Abschnitt 1.5).

Abbildung 7.1 zeigt, welche Inhalte in diesem Kapitel behandelt werden und an welcher

Stelle diese Inhalte zur Erreichung der Zielsituation dieser Arbeit beitragen. Das graue

Rechteck markiert den Inhalt: die Erfassung der Kennzahlen für KSW und KS und deren

Interpretation durch das Management bzw. durch die Softwareteams.

Strategische
Ziele

KSW

InterpretationFormulierung

Operative
Ziele

KS
Erfassung

Verdichtung

Management

Softwareteam

InterpretationFormulierung

Berücksichtigung

KHW
Definition Transfer

Definition

Software-
entwicklungsprozess

Gestaltung

Erfassung

Abbildung 7.1: Inhalt des Kapitels 7 in Bezug auf die Zielsituation dieser Arbeit

136

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

7.1 Prototyp

Das Ziel der Entwicklung und Anwendung des Prototyps ist es, eine Lösung für die dritte

Detailfrage zu erarbeiten. Der Prototyp muss folglich in der Lage sein, Softwarekennzah-

len und SW-Produktionskennzahlen zu erfassen und zu verarbeiten. Das dieser Kennzah-

lenerfassung und -verarbeitung zugrunde liegende Datenmodell ist das Sliced V-Modell.

Die Softwareartefakte eines Sliced V-Modells werden mit einem ALM-System und einem

Versionsmanagementsystem verwaltet. Bei der Implementierung von SofProSys müssen

folglich die technischen Eigenschaften dieser Collaboration Tools, wie zum Beispiel deren

API, berücksichtigt werden. Es ist nicht Anspruch dieser Arbeit, ein allgemein anwend-

bares Informationsverarbeitungssystem zu entwerfen, das die Daten aus verschiedenen

ALM-Systemen bzw. Versionsmanagementsystemen verarbeiten kann. Es ist vielmehr das

Ziel, die Eigenschaften eines Informationsverarbeitungssystems als Lösung der dritten De-

tailfrage an einem konkreten Beispiel aufzuzeigen. SofProSys erfasst die Daten aus den

beim Kooperationspartner eingesetzten Collaboration Tools. Wie bereits in Abschnitt

2.5.2.2 erläutert, sind dies Polarion ALM und Subversion.

Damit der Prototyp als eine Lösung für die dritte Detailfrage angesehen werden kann,

muss er die folgenden Anforderungen erfüllen:

Anforderung 1 (Korrektheit der Kennzahlen) Alle erfassten Kennzahlen müssen

den im ALM-System und im Versionsmanagementsystem gespeicherten Daten entspre-

chen.

Anforderung 2 (Erfassung aller Kennzahlen) Alle in den vorherigen Kapiteln de�-

nierten Softwarekennzahlen und SW-Produktionskennzahlen müssen erfasst werden kön-

nen und sie müssen plausibel sein, d.h. sie sind ein reales Abbild der Softwareentwicklung.

Sofern die Anforderung 2 erfüllt wird, wird dies neben der manuellen Prüfung (vgl. Ab-

schnitt 5.2.3) und der Erstellung der Berechnungsgrundlagen (vgl. Kapitel 6) als ab-

schlieÿende Bestätigung angesehen, dass das Sliced V-Modell alle Anforderungen an seine

Gestaltung erfüllt.

SofProSys wurde mit der Programmierumgebung MS Visual Studio in der Programmier-

sprache C# erstellt. Es handelt sich dabei um eine sogenannte Konsolenanwendung. Damit

ist gemeint, dass SofProSys keine gra�sche Benutzerober�äche aufweist. Sämtliche Kon�-

gurationsinformationen, wie zum Beispiel der Name des auszuwertenden Sliced V-Modell

Storage, werden in der Konsole vorgenommen. Abbildung 7.2 vermittelt einen Eindruck

über die Bedienung von SofProSys.

Die eingesetzten Collaboration Tools verfügen über folgende Schnittstellen: Auf die in

Polarion ALM gespeicherten Daten wird mit Hilfe einer SQL-Datenbank und Webservices

137

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Abbildung 7.2: SofProSys-Screenshot

zugegri�en. Die in Subversion gespeicherten Daten werden mit Hilfe der Subversion-API

erfasst. SofProSys erfasst schrittweise die Daten aus beiden Collaboration Tools unter

Anwendung dieser Schnittstellen, verarbeitet sie und speichert die Ergebnisse in mehreren

MS Excel-Dateien. Abbildung 7.3 zeigt den SofProSys-Systemkontext.

Eine gra�sche Aufbereitung der erfassten und verarbeiteten Daten ist nicht im Funk-

tionsumfang von SofProSys enthalten. Sofern eine gra�sche Aufbereitung während der

praxisnahen bzw. praktischen Anwendung benötigt wurde, erfolgte die Aufbereitung der

Daten mit MS Excel-Bordmitteln.

Wie in Abschnitt 5.2.1 erwähnt, basiert das Sliced V-Modell auf internen Prozessbe-

schreibungen des Kooperationspartners. In den internen Prozessbeschreibungen werden

betriebsspezi�sche Begri�e genutzt, die im Sliced V-Modell aus Gründen der Abstrak-

tion nicht verwendet wurden. Während der Entwicklung von SofProSys mussten diese

betriebsspezi�schen Begri�e jedoch verwendet werden, da zum einen nur mit diesen die

Datenbankabfragen korrekt funktionieren und zum anderen die Gesprächspartner mit den

ihnen vertrauten Termini in der praktischen Anwendung arbeiten können.

Polarion ALM
Datenbank

Subversion
Repository

SofProSys

SQL-Interface

Subversion API

MS Excel-Dateien

Abbildung 7.3: SofProSys-Systemkontext

138

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Dem Datenmodell von SofProSys liegt das Sliced V-Modells zugrunde. In der Entwicklung

wurden das beim Kooperationspartner eingesetzte ALM-System und das Versionsmana-

gementsystem verwendet. Im Sliced V-Modell Storage von SofProSys wurden die Termini

des Kooperationspartner verwendet. SofProSys wurde im Laufe dieser Arbeit kontinuier-

lich über mehrere Jahre entwickelt. In dieser Zeit entstanden drei Softwareversionen.

7.2 Praxisnahe Anwendung

Die praxisnahe Anwendung wurde vom Verfasser dieser Arbeit durchgeführt. Sie erfolgte

auf Basis der Entwicklungsdaten von SofProSys. Da SofProSys auf dem Sliced V-Modell

basiert, können die Softwareartefakte des dazugehörigen Sliced V-Modell Storage durch

SofProSys erfasst und verarbeitet werden. Diese Form der Anwendung ist praxisnah,

da es sich bei dem untersuchten Softwareprodukt nicht um ein reales Softwareprodukt

eines produzierenden Betriebes handelt. Um die Entwicklungsarbeiten zu unterstützen,

wurde ein sogenanntes Dummy Sliced V-Modell genutzt. Ein Dummy Sliced V-Modell

ist ein Sliced V-Modell Storage, das zwar alle Softwareartefakte eines Sliced V-Modells

in einer ausreichenden Menge enthält, allerdings keinen Bezug zu einem tatsächlichen

Softwareprodukt aufweist. So lauten zum Beispiel die Titel der Requirements Work Items

lediglich �Test Requirement1�, �Test Requirement2� usw. Diese Work Items wurden mit

anderen exemplarischen Work Items gemäÿ den Regeln des Sliced V-Modells verlinkt. Die

Module Work Items wurden nicht mit Änderungen an realen Quelltextdateien verlinkt,

sondern lediglich mit Änderungen an Textdateien, die einen frei gewählten Text enthalten.

Um zu überprüfen, ob die Anforderungen 1 und 2 erfüllt werden, wurde SofProSys getes-

tet. Dieser Test kann allerdings nicht als ein vollwertiger systematischer Test, wie er zum

Beispiel in [SL03] beschrieben ist, angesehen werden. Da es sich bei SofProSys um einen

Prototyp handelt, wird die nachfolgend dargestellte Testtiefe als ausreichend angesehen.

Überprüfung der Anforderung 1:

Es wurde stichprobenartig geprüft, ob die im ALM-System und im Versionsmana-

gementsystem gespeicherten Daten mit den von SofProSys erfassten und angezeig-

ten Werten übereinstimmen. So wurde zum Beispiel mit Hilfe der Polarion ALM -

Benutzerschnittstelle die Anzahl aller Work Items, die mit einem Feature Work Item ver-

linkt sind, manuell gezählt, um die Dokumentationsgröÿe einer Softwarefunktion Docfs

zu ermitteln. Der auf diese Art und Weise manuell erfasste Wert wurde mit den Werten

verglichen, die SofProSys für diese Softwarefunktion ermittelt hat. Des Weiteren wurden

manuell die Aufwände für eine Softwareversion erfasst, indem die eingetragenen Stun-

den aller zu dieser Softwareversion gehörenden Task Work Items addiert wurden. Diese

manuell ermittelten Werte wurden mit den von SofProSys erfassten Werten verglichen.

139

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Um die erfassten Churngröÿen für ein Work Item zu überprüfen, wurden die mit die-

sem Work Item verlinkten Revisionen wie folgt analysiert: Zunächst wurde mit Polarion

ALM -Bordmitteln festgestellt, welche Revisionen mit dem Work Item verlinkt sind. Diese

Revisionen wurden daraufhin mit der Subversion Client Software TortoiseSVN untersucht

[TOR17]: Es wurde mit Bordmitteln von TortoiseSVN für jede geänderte Datei in einer

Revision der Uni�ed Di� Patches zur Vorgängerversion dieser Datei ermittelt. Abbildung

7.4 zeigt die Vorgehensweise in TortoiseSVN. Danach wurde die Textgröÿe in KB für je-

Abbildung 7.4: Anzeige eines Uni�ed Di� Patches in TortoiseSVN

des einzelne Uni�ed Di� Patch manuell ermittelt, um anschlieÿend die einzelnen Werte

zu summieren. Dieser manuell ermittelte Wert einer Churn-Kennzahl wurde mit dem von

SofProSys automatisiert erfassten Wert verglichen.

Alle beschriebenen Tests waren erfolgreich. Dies wird als Bestätigung angesehen, dass die

Anforderung 1 von SofProSys erfüllt wird. Wie erwähnt, erfolgte allerdings kein systema-

tischer Test. Daher können Fehler in SofProSys nicht ausgeschlossen werden.

Überprüfung der Anforderung 2:

Es wurde überprüft, ob alle Softwarekennzahlen und SW-Produktionskennzahlen im

Sliced V-Modell erfasst werden können. Dabei wurde berücksichtigt, dass einige der Daten

im Sliced V-Modell Storage von SofProSys simuliert sind. Damit ist gemeint, dass zum

Beispiel Daten für die zugesagten Termine einer Softwarefunktion willkürlich gesetzt wur-

den. Der Grund dafür liegt darin, dass es keinen realen Kunden für SofProSys gibt. Aus

demselben Grund wurden auch extern entdeckte Fehler simuliert, das heiÿt, es wurden in

das External Defect Document einige Fehler eingetragen und mit Revisionen verknüpft.

Die Fehlerklassi�zierung an Defect Work Items (vgl. Tabelle 5.4) erfolgte durch den Ver-

fasser der Arbeit. Es handelte sich also nicht um die Einschätzung eines Kunden oder

eines Produktverantwortlichen. Des Weiteren wurde der betriebsspezi�sche Stundensatz

mit 70 e willkürlich festgelegt.

Mit der Messung des Sliced V-Modell Storage von SofProSys wurden die in den Tabellen

7.1, 7.2 und 7.3 aufgeführten Kennzahlen ermittelt. Die Softwarekennzahlen für die pro-

zentuale Verteilung der Werte in den Attributen, die einen Fehler klassi�zieren, sind in

Anhang B aufgeführt.

140

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Softwarekennzahl Version 1 Version 2 Version 3

Chfv [KB] 3.539 58 514

Chdiv [KB] 17 17 154

Edevv [h] 311 12 124

Pchv [KB
h
] 11,14 6,21 5,39

Dv [d] 1.115 191 103

Vchv [KB
d
] 3,19 0,39 6,49

Docfv [WI] 152 41 98

Edocv [h] 61 12 31

Pdocv [WI
h
] 2,49 3,42 3,16

Vdocv [WI
d
] 0,14 0,21 0,95

DDchv [WI
KB

] 0,0014 0,0268 0,0150

Tabelle 7.1: Versionsbezogene SofProSys-Softwarekennzahlen

SW-Produktionskennzahl Version 1 Version 2 Version 3

FPRv [%] 99,51 77,36 76,88

SLv [%] 100 95,18 91,23

AVv [e] 18.270 1.190 15.260

Pv [eh] 49,11 49,58 98,45

Tabelle 7.2: Versionsbezogene SofProSys-SW-Produktionskennzahlen

Diese Messung zeigte, dass SofProSys alle de�nierten SW-Produktionskennzahlen und

Softwarekennzahlen automatisiert erfassen und verarbeiten kann.

Die Werte einiger Kennzahlen konnten nicht auf Plausibilität geprüft werden, da folgende

Daten im Dummy Sliced-V-Modell Storage willkürlich gesetzt wurden:

� Die Fehlerbehebungsrate DFRp und die Technische Rückläuferrate TRRp, da es

keine realen extern entdeckten Fehler gibt.

� Der Servicegrad SLv, da es keine einem Kunden zugesagten Softwarefunktionen

gibt.

� Die Wertschöpfung AVv und die Produktivität Pv, da die Entwicklung nicht in einem

produzierenden Betrieb statt�ndet.

Kennzahl Wert

DFRp [%] 86,36

TRRp [%] 0,02

Tabelle 7.3: Produktbezogene SofProSys-Kennzahlen

141

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Alle weiteren Kennzahlen konnten mit kleineren Einschränkungen erfolgreich auf deren

Plausibilität geprüft werden:

Die Entwicklung der ersten Version von SofProSys dauerte gut drei Jahre. In diese Zeit

�elen die Programmierarbeiten, die zunächst darauf abzielten, die verschiedenen Schnitt-

stellen der Collaboration Tools anzusprechen und die ersten Datenbankabfragen zu imple-

mentieren. Des Weiteren wurde die Speicherung der Kennzahlen implementier, zunächst in

einer CSV-Datei, später in mehreren MS Excel-Dateien. Die erste Version von SofProSys

beinhaltete also die für die Datenerfassung und -verarbeitung notwendigen technischen

Voraussetzungen.

Während der Erarbeitung der ersten Version wurde das Sliced V-Modell kontinuierlich

entwickelt. Durch die fortlaufenden Anpassungen wurde SofProSys immer wieder geän-

dert. All dies erklärt den höheren Wert des Version Feature Churns in der Version 1 von

SofProSys gegenüber den Werten der beiden folgenden Versionen.

Dies erklärt ebenfalls den höheren Wert der Dokumentationsgröÿe der Version 1 gegenüber

den beiden folgenden Versionen. Der Unterschied in den Werten ist allerdings nicht so

groÿ wie beim Version Feature Churn. Dies ist plausibel, da während der Entwicklung der

ersten Version die Dokumentation weniger stark berücksichtigt wurde als in den anderen

Versionen. Die Implementierung, und nicht die Dokumentation, stand im Fokus der ersten

Version.

Der Softwareentwicklungsprozess von SofProSys enthielt keine systematischen qualitäts-

sichernden Maÿnahmen. Lediglich die oben aufgeführten Tests wurden durchgeführt. Die

Version 1 wurde kaum getestet. Dies erklärt den hohen Wert der First Pass Rate: Ohne

Test kann kein Fehler gefunden werden, und folglich gibt es keine Quelltextänderungen,

die Fehlerbehebungen zugeordnet werden können. Während der Entwicklung der Versio-

nen 2 und 3 wurde die praktische Anwendung beim Kooperationspartner berücksichtigt.

Während der praktischen Anwendung (vgl. Abschnitt 7.4) wurden Fehler entdeckt und

behoben. Daher sind die Werte der First Pass Rate in diesen Versionen geringer als in

der Version 1, die Werte der Version Internal Defect Churns und der Churn-Fehlerdichte

sind dagegen gröÿer.

Während der Entwicklung der Version 1 wurden keine Aufwände geplant und gebucht. Die

Planung und Buchung von Aufwänden wurde erst durch den späteren Entwurf der dazu-

gehörigen Kennzahlen notwendig. Um dennoch die mit der Planung und Buchung zusam-

menhängenden Kennzahlen prüfen zu können, wurden Soll-Aufwände und Ist-Aufwände

rückblickend für die Version 1 abgeschätzt. Daher kann die Plausibilität der Churn-

Produktivität Pchv und der Dokumentationsproduktivität Pdocv nicht vollständig bewertet

werden. Die Werte für die Versionen 2 und 3 sind plausibel.

142

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Es kann zusammengefasst werden, dass SofProSys die beiden Anforderungen an ein Infor-

mationsverarbeitungssystem erfüllt. SofProSys ist in der Lage, die Daten aus den Colla-

boration Tools korrekt zu erfassen und zu verarbeiten und alle bestimmten Kennzahlen zu

berechnen. Zwar konnte die Plausibilität nur eingeschränkt geprüft werden: Wo es möglich

war, ergab die Überprüfung jedoch plausible Werte, die den Realitäten der Softwareent-

wicklung von SofProSys entsprechen. Diese Zusammenfassung wird als dritte Bestätigung

angesehen, dass das Sliced V-Modell die in den Kapiteln 3 und 4 formulierten Anforderun-

gen erfüllt und folglich als eine Lösung für die zweite Detailfrage dieser Arbeit angesehen

werden kann (vgl. letzter Absatz in Kapitel 6).

7.3 Bewertung der Gestaltungsgrundsätze

Nach der praxisnahen Anwendung und der Überprüfung der Anforderungen an SofProSys

wird bewertet, ob SofProSys die in Abschnitt 2.1.1 aufgeführten empfohlenen Gestal-

tungsgrundsätze für den Aufbau von Informationsverarbeitungssystemen berücksichtigt

und folglich als eine Lösung für die dritte Detailfrage angesehen werden kann. Es folgen

die einzelnen Gestaltungsgrundsätze und die Bewertung:

Hohe Validität: Ein Kennzahlensystem muss korrekt messen, um eine hohe Validität

der Ist-Werte sicherzustellen. SofProSys erfasst alle Kennzahlen prinzipiell automatisiert.

Da es sich um einen Prototyp handelt, waren während der praxisnahen und praktischen

Anwendung manuelle Nachbearbeitungen notwendig. Diese könnten fehlerhaft sein und

folglich die Validität der Ist-Werte beeinträchtigen. Die manuellen Nachbereitungen wür-

den entfallen, falls SofProSys weiterentwickelt und für den Produktivbetrieb vorbereitet

wird. Die Validität müsste in jedem Fall durch einen systematischen Test sichergestellt

werden. Bislang wurden nur stichprobenartige Tests durchgeführt.

Berücksichtigung der wesentlichen Kennzahlen: Die Softwarekennzahlen wur-

den zielorientiert mit der GQM-Methode bestimmt. Die Auswahl der SW-Produktions-

kennzahlen erfolgte durch die Bestimmung der äquivalenten HW-Produktionskennzahlen.

Daher berücksichtigt der aktuelle Stand von SofProSys alle wesentlichen Kennzahlen. Die

kennzahlenorientierte Prozessgestaltung ist jedoch eine kontinuierliche Aktivität in einem

produzierenden Betrieb. Daher kann nicht ausgeschlossen werden, dass in Zukunft einige

der momentan berücksichtigten Kennzahlen als unwesentlich eingestuft werden, andere

bislang nicht berücksichtigte Kennzahlen dagegen in das Informationsverarbeitungssys-

tem aufgenommen werden.

Ein�uss der Entscheidungsträger: Dieser Gestaltungsgrundsatz besagt, dass die Wer-

te der Kennzahlen unmittelbar durch die Entscheidungsträgern beein�ussbar sein soll-

143

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

ten. Dies gilt für SofProSys : Sowohl das Management als auch die Softwareteams wir-

ken auf den Softwareentwicklungsprozess ein. Sie können damit die Ist-Werte der SW-

Produktionskennzahlen und der Softwarekennzahlen durch Umsetzung von Maÿnahmen

beein�ussen.

Ausgewogene Ausgestaltung hinsichtlich Menge und Zeithorizont: Dieser Ge-

staltungsgrundsatz kann mit dem gegenwärtigen Stand von SofProSys nicht bewertet

werden, da die Kennzahlen nicht gra�sch aufbereitet werden. In der gra�schen Aufberei-

tung ist zu berücksichtigen, dass die Informationsmenge von den Entscheidungsträgern

aufgenommen und in einen angemessenen zeitlichen Kontext gesetzt werden kann.

Festlegung von Soll-Werten, um Ist-Werte interpretieren zu können: Für einige

der Kennzahlen ist die Festlegung von Soll-Werten möglich, zum Beispiel für die First

Pass Rate, die Technische Rückläuferrate oder die Churn-Fehlerdichte. Jedoch fehlen bis-

lang Erfahrungen für realistische Soll-Werte. Für einige der Kennzahlen, zum Beispiel

für die Wertschöpfung, können keine Soll-Werte festgelegt werden, da sie abhängig von

der entwickelten Softwareversion sind. Solche Kennzahlen dienen zwar den Informations-

bedürfnissen der Entscheidungsträger, können jedoch nicht für eine Soll-/Ist-Steuerung

eingesetzt werden.

Ausgestaltung unter Kosten-Nutzen-Bedingungen: Dieser Gestaltungsgrundsatz

besagt, dass der Nutzen von SofProSys die Kosten für dessen Entwicklung und dessen Be-

trieb rechtfertigt. Der angestrebte Nutzen ist die Motivation für diese Arbeit. Allerdings

ist SofProSys bislang nicht im operativen Betrieb, so dass keine endgültige Aussage zum

Nutzen getätigt werden kann. Da SofProSys konzeptionell alle Daten automatisiert erfasst

und verarbeitet, sind die Kosten für die Nutzung gering. Da jedoch weitere IT-basierte

Funktionen und qualitätssichernde Maÿnahmen in der Ausgestaltung von SofProSys zu

berücksichtigen sind, lassen sich die Kosten für die vollständige Entwicklung nicht quanti�-

zieren. Lediglich die bisherigen Aufwände (551 h gemäÿ Tabelle 7.1) können berücksichtigt

werden. Eine abschlieÿende Bewertung dieses Gestaltungsgrundsatzes ist daher erst nach

Fertigstellung des produktiven Informationsverarbeitungssystems möglich.

Eindeutige Darstellung der Kennzahlen: Dieser Gestaltungsgrundsatz besagt, dass

die Darstellung der Kennzahlen eine grundsätzlich falsche Interpretation ausschlieÿen soll.

Da alle Softwarekennzahlen und SW-Produktionskennzahlen korrekt erfasst und in einem

Excel-Dokument dargestellt werden, sollte eine grundsätzlich falsche Interpretation ausge-

schlossen sein. Das Excel-Dokument ist allerdings sehr einfach gehalten, was eine intuitive

Bedienung erschweren könnte.

Es lässt sich schlussfolgern, dass SofProSys die empfohlenen Gestaltungsgrundsätze für

den Aufbau von Informationsverarbeitungssystemen weitestgehend erfüllt. Einige der

144

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Grundsätze können jedoch erst abschlieÿend bewertet werden, wenn SofProSys zu ei-

nem operativen Informationsverarbeitungssystem weiterentwickelt und über einen länge-

ren Zeitraum in der betrieblichen Praxis verwendet wird.

Da SofProSys sowohl die an den Prototypen gestellten Anforderungen erfüllt und die

Gestaltungsgrundsätze für den Aufbau von Informationsverarbeitungssystemen prinzipiell

erfüllt, kann SofProSys als eine Lösung für die dritte Detailfrage angesehen werden.

Nachdem die Lösungen für die drei Detailfragen dieser Arbeit entwickelt wurden, widmet

sich der nachfolgende Abschnitt der Evaluierung der Forschungsfrage.

7.4 Praktische Anwendung

Die praktische Anwendung fand beim Kooperationspartner statt. Es wurden die Sliced V-

Modell Storages von zwei Softwareprodukten gemessen. Der Kooperationspartner schränk-

te die Verö�entlichung der Ergebnisse ein und erlaubt nur die Darstellung und Erläuterung

der Softwarekennzahlen und SW-Produktionskennzahlen von einem der beiden Software-

produkte. Auÿerdem muss auf die Nennung der Softwareprodukte und der betriebsspezi-

�schen Stundensätze verzichtet werden.

Das untersuchte Softwareprodukt ist eine Windows-Desktop-Software für die Bedienung

von intelligenten Produkten, beispielsweise für deren Parametrierung oder Diagnose. Um

Rückwirkungen auf das operative ALM-System und das Versionsmanagementsystem zu

vermeiden, wurden das Sliced V-Modell Storage des Softwareproduktes und die dazugehö-

renden Repositories in dem Versionsmanagementsystem auf eine Testumgebung kopiert,

in der vorab Polarion ALM und Subversion installiert wurden.

Beim Kooperationspartner wurden zum Zeitpunkt der Messung nicht alle Eigenschaften

des Sliced V-Modells in die betriebliche Praxis überführt. Daher kommt es zu folgenden

Abweichungen von dem im Abschnitt 5.2.2 erläuterten Datenmodell bzw. in der Nutzung

einiger im Datenmodell vorgesehenen Informationseinheiten:

� Die Work Item-Attribute internal und external an Defect Work Items sind nicht vor-

handen, das Attribut dueDate an Feature Work Items wird nicht genutzt. Daher kön-

nen die darauf aufbauenden Softwarekennzahlen bzw. SW-Produktionskennzahlen

nicht ermittelt werden. Dies sind die prozentuale Verteilung der Werte der Attribute

internal und external und der Servicegrad.

� Des Weiteren werden zwar End-Baselines, jedoch keine Start-Baselines gesetzt.

Während der praktischen Anwendung wurden die Starttermine der einzelnen Soft-

wareversionen aus der beim Kooperationspartner eingesetzten Projektdatenbank

145

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

manuell ermittelt (vgl. Abschnitt 1.3). Wie in Abschnitt 2.1.2.3 erläutert, gibt es

keine allgemeingültige De�nition für den Starttermin und den Endtermin der Ent-

wicklung einer Softwareversion. Jeder produzierende Betrieb muss somit diese Ter-

mine betriebsspezi�sch bestimmen. Beim Kooperationspartner sind dies der Tag der

Freigabe der Anforderungen an eine Softwareversion bzw. der getesteten Software-

version.

Durch die Messung des Sliced V-Modell Storage des Softwareproduktes wurden die in

den Tabellen 7.4, 7.5 und 7.6 aufgeführten Kennzahlen ermittelt. Da die Nennung des be-

triebsspezi�schen Stundensatzes nicht erlaubt ist, wird den SW-Produktionskennzahlen

ein �ktiver Stundensatz von 10 e
h
zugrunde gelegt. Die prozentuale Verteilung der Wer-

te des Attributs severity, die den Schweregrad eines Fehlers klassi�zieren, werden nicht

aufgeführt: Die Messungen zeigten, dass die meisten entdeckten Fehler nicht klassi�ziert

wurden, das Attribut severity war mit dem voreingestellten Standardwert Neutral belegt.

Diese Messungen zeigten, dass SofProSys in der Lage ist, Softwarekennzahlen und SW-

Produktionskennzahlen in einem produzierenden Betrieb zu erfassen. Um die Plausibilität

der Werte der einzelnen Kennzahlen zu überprüfen, wurden sie in mehreren Meetings

einigen Stakeholdern aus der Softwareentwicklung vorgestellt.

Zunächst konnte die in den Kennzahlen erkennbare unterschiedliche Natur der drei Soft-

wareversionen bestätigt werden: Version 1 beinhaltete die Umsetzung zahlreicher neuer

Softwarefunktionen, Version 2 war im Wesentlichen geprägt von Fehlerkorrekturen an der

Version 1, und Version 3 beinhaltete wiederum neue Softwarefunktionen, allerdings nicht

in dem Umfang der Version 1.

Softwarekennzahl Version 1 Version 2 Version 3

Chfv [KB] 1.676 178 557

Chdiv [KB] 445 35 297

Edevv [h] 6.450 972 1.216

Pchv [KB
h
] 0,41 0,28 1,12

Dv [d] 550 192 218

Vchv [KB
d
] 3,86 1,11 3,92

Docfv [WI] 941 40 370

Edocv [h] 1.215 200 454

Pdocv [WI
h
] 0,15 0,04 0,30

Vdocv [WI
d
] 1,71 0,21 1,70

DDchv [WI
KB

] 0,0476 0,0141 0,0293

Tabelle 7.4: Versionsbezogene Softwarekennzahlen des Softwareproduktes

146

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

SW-Produktionskennzahl Version 1 Version 2 Version 3

FPRv [%] 79,02 83,59 65,20

SLv [%] - - -

AVv [e] 59.750 9.980 19.920

Pv [eh] 9,26 10,27 16,38

Tabelle 7.5: Versionsbezogene SW-Produktionskennzahlen des Softwareproduktes

Kennzahl Wert

DFRp [%] 70,47

TRRp [%] 10,28

Tabelle 7.6: Produktbezogene Kennzahlen des Softwareproduktes

Daher ist das Verhältnis der Softwarekennzahlen, die die Software- und Dokumentations-

quantität anzeigen, plausibel: In Version 1 haben die Softwarekennzahlen Chfv und Docfv

die gröÿten Werte, in Version 2 sind sie am kleinsten und in Version 3 weisen sie Werte

auf, die zwischen denen der Version 1 und Version 2 liegen.

Da die Softwareversionen unterschiedlicher Natur sind, sind die verschiedenen Werte der

Softwarekennzahlen der drei Softwareversionen für die Aufwände Edevv und Edocv und für

die Entwicklungsdauer Dv ebenfalls plausibel. Die Werte in der Version 1 sind am gröÿten,

die Werte der Version 2 am kleinsten und die Werte für die Version 3 liegen zwischen den

Werten der Version 1 und der Version 2.

Etwas überraschend war die Tatsache, dass der Schweregrad der Fehler kaum bewertet

wurde. Die Stakeholder sagten, zwar sei eine entsprechende Vorgabe in den vorhandenen

Prozessbeschreibungen enthalten, aber o�ensichtlich werden diese Vorgaben nicht durch-

gängig eingehalten. Sie würden dies in den nächsten Teammeetings thematisieren.

Des Weiteren ist das durch die First Pass Rate ausgedrückte Verhältnis der Churn-

Kennzahlen Chfv und Chdiv plausibel. Ohne dafür jemals konkrete Kennzahlen genutzt zu

haben, wurde von den befragten Stakeholdern abgeschätzt, dass ca. 20 % der Quelltext-

änderungen für eine Softwareversion wegen intern entdeckter Fehler erfolgen. Dies wurde

durch die First Pass Rate für Version 1 und Version 2 bestätigt. Der geringere Wert in

der Version 3 war allerdings auch plausibel, da in dieser Version die Entwicklungsum-

gebung, mit der das Softwareprodukt entwickelt wurde, auf eine höhere Softwareversion

umgestellt wurde. Durch diese Umstellung kam es zu zahlreichen Quelltextänderungen,

die intern entdeckten Fehlern zugeordnet wurden.

Es wurde nicht bezweifelt, dass die Werte in den Softwarekennzahlen für die Aufwände

Edevv und Edocv von SofProSys korrekt gemessen werden. Dennoch konnten die Unter-

schiede in den Werten der Softwarekennzahlen nicht erklärt werden, in die Edevv und Edocv

147

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

ein�ieÿen, und zwar in die Churn-Produktivität Pchv und in die Dokumentationsproduk-

tivität Pdocv . Eine mögliche Ursache könne die nicht sachgemäÿe Buchung von Stunden

durch die Mitarbeiter der Softwareteams sein. Es könne durchaus sein, dass Stunden, die

tatsächlich mit Dokumentationsaktivitäten verbracht wurden, den Entwicklungsaktivitä-

ten zugeordnet wurden und umgekehrt. Eine solche Fehlbuchung lasse sich in der täglichen

Praxis nicht ganz vermeiden.

Da die Churn-Produktivität durch die Messung erstmalig für die befragten Stakeholder

sichtbar wurde, konnte die deren Plausibilität nicht bestätigt bzw. bezweifelt werden. Die

Werte für die Dokumentationsproduktivität, wonach 0,15, 0,04 bzw. 0,30 Work Items

pro Stunde erstellt wurden, erschienen zu gering. Das Anlegen eines Work Items dauert

wenige Sekunden. Zwar werden danach die Work Items immer wieder geändert, jedoch

wurden höhere Werte erwartet. Ein Grund dafür könnte neben der inkorrekten Zuord-

nung der gebuchten Stunden die Erstellung des gra�schen Softwaredesigns auÿerhalb des

ALM-Systems sein. Die Daten des Softwaredesigns sind nicht in die Datenerfassung von

SofProSys eingebunden.

Es wurde positiv anerkannt, dass die zugrundeliegende IT-gestützte Datenerfassung eine

notwendige Voraussetzung für die Anwendung von SofProSys in der betrieblichen Praxis

sei. Um alle Softwarekennzahlen vollständig zu erfassen, müssten jedoch alle benötigten

Daten in den Softwareprojekten eingetragen werden. Das würde bedeuten, dass in der be-

trieblichen Praxis das Sliced V-Modell vollständig genutzt würde. Zwar könne SofProSys

verwendet werden, um auf fehlende Daten hinzuweisen, jedoch würden in der täglichen

Arbeit immer wieder Daten fehlen. Dies sei nicht ganz zu vermeiden. Es müsse ein länger-

fristiger Prozess gestartet werden, um in Schulungen oder mit anderen geeigneten Maÿ-

nahmen auf die Vollständigkeit des Sliced V-Modells hinzuwirken.

Die Anzeige von Detaildaten für einzelne Softwarefunktionen wurde begrüÿt. Wie in Ab-

schnitt 6.2 erläutert, werden die Menge des Churns und die Menge der Dokumentation

jeweils pro einzelner Softwarefunktion erfasst und erst danach für die Softwareversion

akkumuliert. Die Werte einzelner Softwarefunktionen werden von SofProSys angezeigt.

Tabelle 7.7 zeigt exemplarisch die Softwarekennzahlen zweier gemessener Softwarefunk-

tionen. Die Softwarekennzahlen Rev (Anzahl an Revisionen) und Files (Anzahl an ge-

änderten Quelltextdateien) sind zusätzlich Softwarekennzahlen, die SofProSys erfassen

kann. Diese Softwarekennzahlen wurden nicht von den operativen Zielen hergeleitet (vgl.

Abschnitt 4.2.2), sondern entstanden während der Entwicklung von SofProSys.

Es ist unmittelbar erkennbar, welche der beiden Softwarefunktionen eine �groÿe� Software-

funktion ist. �Groÿ� bedeutet, dass die Dokumentationsgröÿe Docfs und die Churn-Menge

Chfs vergleichsweise hohe Werte annehmen. Die Kenntnis der �Gröÿe� einer Software-

funktion könne, so das Meinungsbild der befragten Stakeholder, in der Testplanung und

148

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

Softwarefunktion DocfsDocfsDocfs ChfsChfsChfs RevRevRev F ilesF ilesF iles

A 21 WI 356 KB 25 121

B 7 WI 50 KB 5 8

Tabelle 7.7: Softwarekennzahlen einzelner Softwarefunktionen

in der Testdurchführung berücksichtigt werden: Eine �groÿe� Softwarefunkton müsse ein-

gehender getestet werden.

Die Plausibilität der Werte der aufgeführten Softwarekennzahlen und SW-Produktions-

kennzahlen konnte bestätigt werden. Jedoch wurde angemerkt, dass die gra�sche Dar-

stellung der Kennzahlen für einen produktiven Einsatz von SofProSys nicht ausreichen

würde. Dafür müssten die Softwarekennzahlen gra�sch aufbereitet werden, zum Beispiel

in Form von Diagrammen.

Nach den Gesprächen mit den Stakeholdern in der Softwareentwicklung zu den Softwa-

rekennzahlen wurden die SW-Produktionskennzahlen dem Geschäftsbereichsleiter vorge-

stellt. Die SW-Produktionskennzahlen wurden vorab gra�sch aufbereitet. Dies erfolgte

manuell mit MS Excel, da SofProSys dazu aktuell nicht in der Lage ist. Abbildung 7.5

zeigt die First Pass Rate der drei gemessenen Versionen als ein Beispiel für die gra�sch

aufbereiteten SW-Produktionskennzahlen.

Der Geschäftsbereichsleiter zeigte sich vom Format der Präsentation der Ergebnisse ei-

ner Softwareentwicklung beeindruckt: �Diese Form der Ergebnisdarstellung und die Ver-

wendung mir bekannter Produktionskennzahlen erleichtern deutlich die Bewertung der

Softwareergebnisse.� Ihm war klar, dass die Ist-Werte der einzelnen SW-Produktions-

Abbildung 7.5: Gra�sche Darstellung der First Pass Rate in MS Excel

149

Kapitel 7. Entwicklung des Informationsverarbeitungssystems

kennzahlen von den typischen Ist-Werten der HW-Produktionskennzahlen abweichen wer-

den. Dies sei jedoch nicht kritisch, da bereits heute Ist-Werte von HW-Produktions-

kennzahlen in verschiedenen Produktionslinien unterschiedlich sein können. Wichtig sei

es, bei der Einführung eines produktiven Informationsverarbeitungssystems sinnvolle Soll-

Werte für die einzelnen SW-Produktionskennzahlen festzulegen, die mit Ist-Werten ver-

glichen werden, um somit dieselben Steuerungs- und Überwachungsmechanismen zu eta-

blieren wie in der Produktion. Auf Grundlage der ersten Messergebnisse formulierte er als

erste Soll-Werte für die First Pass Rate 80 % und für die Technische Rückläuferrate 5 %.

Weiterhin äuÿerte er die Erwartungshaltung, dass die Softwareteams diejenigen Daten ein-

tragen, die eine Ermittlung des Servicegrades ermöglichen. Wie schon in Abschnitt 3.2.2.1

erläutert, sei ihm der Servicegrad wichtig, weil er die Lieferqualität der vielen kleineren

Softwarefunktionen nicht bewerten kann, da ihm diese kleineren Softwarefunktionen nicht

bekannt seien.

Obwohl ihm die Personalkosten für die Softwareentwicklungsteams bekannt sind, äuÿer-

te er sich positiv über den Einblick in die Zuordnung der Kosten zu den Softwareent-

wicklungsprojekten, die in der Wertschöpfung angezeigt werden. Es müsse mittelfristig

bewertet werden, wie die Wertschöpfung in der Preisbildung der Softwareprodukte oder

der darauf aufbauenden Servicedienstleistungen berücksichtigt werden kann. Des Weite-

ren ermögliche die Anzeige der Produktivität eine kontinuierliche Beobachtung, ob die

Personalkosten wertschöpfend eingesetzt werden.

Er fühlte sich darin bestätigt, dass die fünf mit ihm ausgewählten HW-Produktions-

kennzahlen, angewandt als SW-Produktionskennzahlen, eine wertvolle Unterstützung in

der Beobachtung des Softwareentwicklungsprozesses sein werden. Die SW-Produktions-

kennzahlen würden ihm eine im Grundsatz identische Interpretation wie die äquivalen-

ten HW-Produktionskennzahlen ermöglichen. Die Erreichung strategischer Ziele würde

in diesen SW-Produktionskennzahlen angezeigt. Des Weiteren begrüÿte er, dass durch

die in dieser Arbeit entworfenen Lösungen die Softwareentwicklungsteams in die Lage

versetzt werden, die Erreichung der operativen Ziele zu überprüfen. Er teilte die Bewer-

tung der Stakeholder aus der Softwareentwicklung, dass die SofProSys zugrunde liegende

IT-gestützte Datenerfassung eine notwendige Voraussetzung ist, um das Informationsver-

arbeitungssystem in die betriebliche Praxis zu überführen.

Alle Gesprächspartner des Kooperationspartners sehen in den gezeigten Ergebnissen eine

Lösung für die Fragestellung dieser Arbeit: Wie kann der Softwareentwicklungsprozess

in produzierenden Betrieben kennzahlenorientiert gestaltet werden? Zwar wurde sie in

nur einem produzierenden Betrieb evaluiert. Allerdings wird es als realistisch angesehen,

dass die bislang entwickelten Lösungen auch in andere produzierende Betriebe übertragen

werden können. Dies wird im folgenden Kapitel begründet.

150

Kapitel 8

Verallgemeinerung der Ergebnisse

Die in dieser Arbeit entwickelte kennzahlenorientierte Gestaltung des Softwareentwick-

lungsprozesses erfolgte in Zusammenarbeit mit dem Kooperationspartner und umfasst fol-

gende Ergebnisse: Mit der RGQM-Methode wurden betriebsspezi�sche SW-Produktions-

kennzahlen bestimmt. Die SW-Produktionskennzahlen dienen der Überprüfung strategi-

scher Ziele des Kooperationspartners. Softwarekennzahlen wurden mit der GQM-Methode

aus operativen Zielen hergeleitet. Der gestaltete Softwareentwicklungsprozess ist das Sliced

V-Modell. Der Prototyp des Informationsverarbeitungssystems setzt die Verwendung der

Collaboration Tools Polarion ALM und Subversion voraus. Folglich beziehen sich die bis-

herigen Lösungen auf die Fragestellungen dieser Arbeit auf die betriebsspezi�sche lokale

Umgebung des Kooperationspartners. Wie in Abschnitt 1.5 dargelegt, erfordert das me-

thodische Vorgehen nach dem Design Research-Paradigma eine Theoriebildung auf Basis

der entwickelten lokalen Forschungsergebnisse. Diesem Themengebiet widmet sich dieses

Kapitel, in dem dargestellt wird, wie die lokalen Forschungsergebnisse verallgemeinert und

auf andere produzierende Betriebe übertragen werden können.

8.1 Bestimmung von SW-Produktionskennzahlen

Um die SW-Produktionskennzahlen zu bestimmen, die die Semantik der äquivalenten

HW-Produktionskennzahlen beibehalten, wurde die RGQM-Methode entworfen und beim

Kooperationspartner evaluiert. Ausgangspunkt für den Entwurf war die Fragestellung, ob

Produktionskennzahlen in der Softwaredomäne angewendet werden können. Diese Frage-

stellung weckte ein hohes Interesse beim Management des Kooperationspartners, da es

ein sehr gutes Verständnis von Produktionskennzahlen hat und diese in der kennzahlen-

orientierten Gestaltung des Produktionsprozesses bereits verwendet. Die Ergebnisse der

im Abschnitt 1.4 erläuterten Umfrage der IHK Ostwestfalen zu Bielefeld werden als ein

151

Kapitel 8. Verallgemeinerung der Ergebnisse

Indikator angesehen, dass weitere produzierende Betriebe Interesse haben, Produktions-

kennzahlen in der Softwaredomäne zu nutzen. Die Rückläuferzahl der Fragebögen lässt

jedoch keinen Rückschluss darüber zu, wie ausgeprägt dieses Interesse ist. Daher kann

diese Verallgemeinerung lediglich eingeschränkt erfolgen.

Jeder produzierende Betrieb, der Produktionskennzahlen in der Softwaredomäne anwen-

den möchte, kann auf die RGQM-Methode zurückgreifen. Die RGQM-Methode ist nicht

auf die Anwendung im betriebsspezi�schen Umfeld des Kooperationspartners beschränkt.

An dem folgenden Beispiel der Produktionskennzahl Ausnutzungsgrad soll dies theoretisch

erläutert werden:

Der Ausnutzungsgrad ist eine Produktionskennzahl, die die Maschinenauslastung anzeigt.

Sie ist eine Verhältnisgröÿe, die in % angegeben wird. Deren Wertebereich liegt zwischen 0

% und 100 % und der Idealwert ist 100 %. Es können Soll-Werte für den Ausnutzungsgrad

festgelegt werden. Die Frage, das strategische Ziel und die Interpretation sind in Tabelle

8.1 aufgeführt. Die Frage, die mit dem Ausnutzungsgrad beantwortet wird, ist [Pre08] ent-

nommen. Das strategische Ziel und die Interpretation dieser Produktionskennzahl wurden

theoretisch festgelegt, das heiÿt es fand keine Befragung in einem produzierenden Betrieb

statt.

Für diese theoretische Betrachtung wird davon ausgegangen, dass das strategische Ziel

�E�ziente Nutzung aller vorhandenen Betriebsmittel� auch in der Softwaredomäne gültig

ist. Dann wäre es möglich, die in Tabelle 8.2 aufgeführte Frage für die Softwaredomäne

zu formulieren und, wie in der Tabelle aufgeführt, zu interpretieren. Die tatsächlichen

Berechnungsgrundlagen können für dieses theoretische Beispiel nicht ermittelt werden, da

dies konkret von der Art und Weise der Erfassung der genutzten Lizenzen

Ausnutzungsgrad

Frage Zu wie viel Prozent sind die vorhandenen Maschinen tatsächlich aus-

gelastet? [Pre08]

Ziel E�ziente Nutzung aller vorhandenen Betriebsmittel

Interpretation Der Ausnutzungsgrad ist das Verhältnis von Ist-Maschinenlaufstunden

und möglichen Maschinenlaufstunden [Pre08]. Ein hoher Wert des

Ausnutzungsgrades zeigt an, dass die Maschinen kontinuierlich im Ein-

satz sind. Stillstehende Maschinen tragen nicht zur Wertschöpfung bei.

Sie verursachen dennoch Kosten, zum Beispiel für die Wartung oder

durch die Flächennutzung. Das Management erwartet möglichst hohe

Werte für den Ausnutzungsgrad. Können diese Werte nicht erreicht

werden, müssen Maschinen aussortiert oder verkauft werden.

Tabelle 8.1: Frage, Ziel, Interpretation des Ausnutzungsgrades in der Produktion

152

Kapitel 8. Verallgemeinerung der Ergebnisse

Ausnutzungsgrad

Ziel E�ziente Nutzung aller vorhandenen Betriebsmittel

Frage Zu wie viel Prozent sind die vorhandenen Lizenzen von IT-Systemen,

die für die Softwareentwicklung benötigt werden, tatsächlich ausgelas-

tet?

Tabelle 8.2: Frage und Ziel des Ausnutzungsgrades in der Softwareentwicklung

eines IT-Systems abhängig ist. Gleichung 8.1 zeigt daher lediglich eine grundsätzlich mög-

liche Berechnungsgrundlage.

LF =
Lav

Lmax

(8.1)

mit:

LF Ausnutzungsgrad

Lav Durchschnittliche Anzahl genutzter Lizenzen

Lmax Maximal verfügbare Lizenzen

Die Maÿeinheit des Ausnutzungsgrades in der Softwaredomäne ist %. Der Wertbereich

liegt zwischen 0 % und 100 %. Der Idealwert beträgt 100 %. Der Ausnutzungsgrad in der

Softwareentwicklung wird wie folgt interpretiert:

Ein hoher Wert des Ausnutzungsgrades zeigt an, dass die bescha�ten Lizenzen tatsäch-

lich im Einsatz sind. Bescha�te, aber nicht genutzte Lizenzen haben unnötige Kosten

verursacht bzw. bewirken laufende Kosten, beispielsweise durch Wartungsgebühren. Das

Management verlangt, dass die bescha�ten Lizenzen tatsächlich genutzt werden. Falls

dies nicht möglich ist, sind die Wartungsverträge mit den Lieferanten anzupassen. Um

Änderungen im Ausnutzungsgrad festzustellen, sollte dieser in regelmäÿigen zeitlichen

Abständen, zum Beispiel einmal pro Quartal, erfasst werden.

Die Bewertung der semantischen Äquivalenz der beiden Ausprägungen des Ausnutzungs-

grades zeigt, dass der Name, der Wertebereich sowie der Idealwert identisch sind und

dass in beiden Domänen Soll-Werte für den Ausnutzungsgrad festgelegt werden können.

Das zum Ausnutzungsgrad gehörende strategische Ziel in der Produktion und in der Soft-

wareentwicklung ist identisch. Der Satzbau der jeweiligen Fragen ist ebenfalls identisch.

In beiden Domänen kann diese Kennzahl im Grundsatz in gleicher Weise interpretiert

werden.

Dieses theoretische Beispiel zeigt folglich, dass die RGQM-Methode verallgemeinert und

für andere als beim Kooperationspartner eingesetzte HW-Produktionskennzahlen ange-

wendet werden kann.

153

Kapitel 8. Verallgemeinerung der Ergebnisse

8.2 Gestaltung des Softwareentwicklungsprozesses

Der in dieser Arbeit gestaltete Softwareentwicklungsprozess ist das Sliced V-Modell, in

dem zum einen die durch die RGQM-Methode bestimmten SW-Produktionskennzahlen

und zum anderen Softwarekennzahlen erfasst werden können.

Ausgangspunkt für die Bestimmung von Softwarekennzahlen sind die operativen Ziele der

Softwareteams, die sich aus den strategischen Zielen des Managements ableiten. Es ist

naheliegend, dass die beim Kooperationspartner angewandte pragmatische Vorgehenswei-

se bei der Ableitung der operativen Ziele auf andere produzierende Betriebe übertragen

werden kann.

Um Softwarekennzahlen aus den operativen Zielen abzuleiten, wurde die GQM-Methode

angewendet. Die GQM-Methode ist seit langem verfügbar und ihre erfolgreiche Anwen-

dung ist in zahlreichen Verö�entlichungen beschrieben. Es ist folglich naheliegend, dass

die GQM-Methode von anderen produzierenden Betrieben genutzt werden kann.

Dem Sliced V-Modell liegt das Vorgehensmodell des Kooperationspartners zugrunde, das

V-Modell der DIN EN 61508-3. In der Gestaltung des Sliced V-Modells wurde die Er-

fassung der beim Kooperationspartner bestimmten SW-Produktionskennzahlen und Soft-

warekennzahlen berücksichtigt. Sollte ein produzierender Betrieb ein anderes Vorgehens-

modell als das V-Modell einsetzen, kann keine Aussage zur konkreten Vorgehensweise in

dessen Gestaltung getro�en werden. Das in Abschnitt 5.1 erläuterte Vorgehen sollte je-

doch für jedes beliebige Vorgehensmodell anwendbar sein. Ziel dieses Vorgehens ist es, ein

Datenmodell zu erstellen und in UML zu beschreiben.

Jeder produzierende Betrieb kann das Sliced V-Modell nutzen und es in sein betriebliches

Umfeld übertragen. In dieser Arbeit wurde ein Datenmodell entwickelt, das zwar die Ver-

wendung eines ALM-Systems und eines Versionsmanagementsystems voraussetzt, jedoch

nicht die beiden Collaboration Tools Polarion ALM und Subversion. Ein produzierender

Betrieb kann entsprechend seinen Anforderungen aus einer Reihe am Markt verfügbarer

alternativer Collaboration Tools auswählen und darin das Sliced V-Modell realisieren.

Wird das Sliced V-Modell nicht berücksichtigt, können dennoch einige der Anforderungen

an das Sliced V-Modell durch ein anderes Datenmodell erfüllt werden. Dies soll exem-

plarisch an den Anforderungen A1 Zuordnung Quelltextänderungen und A4 Erweiterte

Zuordnung Quelltextänderungen (vgl. Abschnitt 3.2.2.4 und 4.2.2.1) gezeigt werden:

Es ist eine Unterscheidung in feature churn und defect churn möglich, sofern Quelltext-

änderungen eindeutig der Implementierung einer Softwarefunktion und der Behebung

eines Fehlers zugeordnet werden können. Es genügt ein einfaches Work Item-basiertes

Datenmodell, in dem Work Items mit den Revisionen eines Versionsmanagementsystems

154

Kapitel 8. Verallgemeinerung der Ergebnisse

Revisions

relates to

1

1..*

Feature Work Item

1..*

Repository

1..*

Storage

Defect Work Item

1..*

*

relates to
1..*1..*

relates to

Abbildung 8.1: Vereinfachtes Work Item-basiertes Datenmodell

verknüpft werden können. Abbildung 8.1 zeigt eine mögliche Variante eines vereinfachten

Work Item-basierten Datenmodells.

Sofern die dargestellten Feature Work Items und Defect Work Items die einzigen Do-

kumentationselemente sind, die während der Softwareentwicklung entstehen, könnte in

diesem Fall ebenfalls die Anforderung A7 Softwaredokumentation (vgl. Abschnitt 4.2.2.2)

erfüllt werden, falls diese in dem jeweiligen produzierenden Betrieb formuliert würde.

8.3 Aufbau eines Informationsverarbeitungssystems

Der in dieser Arbeit entwickelte Prototyp eines Informationsverarbeitungssystems

(SofProSys) erfasst und verarbeitet Daten aus den Collaboration Tools Polarion ALM

und Subversion, den beim Kooperationspartner eingesetzten Collaboration Tools. Sofern

ein produzierender Betrieb genau diese Collaboration Tools verwendet, kann SofProSys

als Ausgangspunkt für ein betriebsspezi�sches Informationsverarbeitungssystem dienen.

Werden andere Collaboration Tools eingesetzt, muss ein Informationsverarbeitungssystem

neu entwickelt werden.

In der Ausgestaltung des Informationsverarbeitungssystems sind die Bedürfnisse des pro-

duzierenden Betriebes zu berücksichtigen. Dies betri�t die Art der Applikation (Desktop,

Webanwendung etc.), die Art der gra�schen Aufbereitung der Kennzahlen, ein Rechtema-

nagementsystem usw. Als Fazit wird es als naheliegend erachtet, dass ein produzierender

Betrieb in der Lage ist, ein mit SofProSys vergleichbares Informationsverarbeitungssystem

zu entwickeln und zu betreiben. Dabei sollten die Gestaltungsgrundsätze für Informati-

onsverarbeitungssysteme berücksichtigt werden (vgl. Abschnitt 2.1.1).

155

Kapitel 8. Verallgemeinerung der Ergebnisse

Es liegt ebenfalls nahe, dass der in dieser Arbeit aufgeführte Prozess der Evaluierung von

jedem produzierenden Betrieb nachvollzogen und durchgeführt werden kann. Das Infor-

mationsverarbeitungssystem ist anhand der Daten realer Softwareprojekte zu testen. Die

erfassten und verarbeiteten Daten sind von Personen, die diese Softwareprojekte kennen,

zu prüfen. Anschlieÿend wird das Management in die Evaluierung einbezogen.

Die Möglichkeit der Verallgemeinerung der lokalen Forschungsergebnisse dieser Arbeit

wurde in diesem Kapitel theoretisch dargelegt. Es erfolgte allerdings keine Evaluierung

der Generalisierbarkeit, zum Beispiel durch Anwendung der Forschungsergebnisse in ei-

nem weiteren produzierenden Betrieb. Daher muss kritisch festgestellt werden, dass die

Forschungsfrage dieser Arbeit lediglich für den lokalen Kontext eines produzierenden Be-

triebes beantwortet werden kann. Eine vollständige, tiefgehende und vor allem auf eine

breite Datenbasis aufgestellte Evaluierung fehlt. Es werden folglich weitere, auf dieser

Arbeit aufbauende Forschungsaktivitäten empfohlen. Dem Ausblick auf weiterführende

Forschungsaufgaben und der Zusammenfassung dieser Arbeit widmet sich das folgende

letzte Kapitel.

156

Kapitel 9

Zusammenfassung und Ausblick

Neben der Zusammenfassung (Abschnitt 9.1) geht dieses Kapitel auf die konkreten nächs-

ten Schritte für die betriebliche Operationalisierung der kennzahlenorientierten Gestal-

tung des Softwareentwicklungsprozesses beim Kooperationspartner sowie auf einige wis-

senschaftliche Fragestellungen für zukünftige Forschungsaktivitäten ein (Abschnitt 9.2).

9.1 Zusammenfassung

Diese Arbeit widmete sich der kennzahlenorientierten Gestaltung des Softwareentwick-

lungsprozesses in produzierenden Betrieben. Durch die mit dem Begri� �Industrie 4.0�

beschriebene industrielle Digitalisierung wächst für produzierende Betriebe die Notwen-

digkeit, intelligente Produkte zu entwickeln und zu vertreiben. Intelligente Produkte beru-

hen auf einem Zusammenwirken von mehreren Domänen, zum Beispiel der Mechanik, der

Elektronik und der Softwaretechnik. Sie werden folglich domänenübergreifend entwickelt.

Diese Arbeit ging davon aus, dass der Softwaretechnik eine besondere Bedeutung einge-

räumt werden kann, da ohne Software eine digitalisierte Industrie nicht möglich ist. Daher

gewinnt der Softwareentwicklungsprozess an strategischer Bedeutung in produzierenden

Betrieben.

Es ist die Aufgabe des Managements, strategisch wichtige Prozesse, folglich auch den

Softwareentwicklungsprozess, zu überwachen und zu gestalten. Mit dem Management

sind Führungskräfte in oberen Hierarchieebenen gemeint. Die Gestaltung von betrieb-

lichen Prozessen dient der Umsetzung von strategischen Zielen, die vom Management

formuliert werden. Für jedes der strategischen Ziele sind Kennzahlen zu de�nieren, die

die Zielerreichung anzeigen. Um dem Management die Kennzahlen zuführen zu können,

ist in der Prozessgestaltung deren Erfassung durch ein Informationsverarbeitungssystem

zu berücksichtigen.

157

Kapitel 9. Zusammenfassung und Ausblick

Eine Motivation für diese Untersuchung ergab sich aus der konkreten Situation beim

Kooperationspartner dieser Arbeit, dem Geschäftsbereich Automatisierungstechnik des

Unternehmens Phoenix Contact. Zwar gestaltet der Kooperationspartner bereits den Pro-

duktionsprozess mit der Vorgabe, Kennzahlen aus dem Produktionsprozess zu erfassen,

allerdings fehlt bislang eine kennzahlenorientierte Gestaltung des Softwareentwicklungs-

prozesses, und somit ein dazugehörendes Informationsverarbeitungssystem. Dies ist ein

IT-System, das Daten aus dem Prozess ermittelt, zu Kennzahlen verarbeitet und gra-

�sch darstellt [Ben07]. Daher ist das Management nur unzureichend in der Lage, den

Softwareentwicklungsprozess zu überwachen und zu steuern.

Eine weitere Motivation ergab sich aus einer Umfrage der IHK Ostwestfalen zu Bielefeld,

die darauf hindeutet, dass in anderen produzierenden Betrieben eine kennzahlenorientierte

Gestaltung des Softwareentwicklungsprozesses ebenfalls fehlt, aber auch gewünscht ist.

Aus diesen Motivationen leitete sich die Forschungsfrage dieser Arbeit ab:

Wie kann der Softwareentwicklungsprozess in produzierenden Betrieben kennzahlenorien-

tiert gestaltet werden?

Aus der Forschungsfrage ergaben sich drei Detailfragestellungen, deren Herleitung in Ab-

schnitt 1.4 begründet wurde.

1. Wie können SW-Produktionskennzahlen, die die Semantik der äquivalenten HW-

Produktionskennzahlen beibehalten, bestimmt werden?

2. Wie sollte der Softwareentwicklungsprozess aufgebaut sein, damit die de�nierten

SW-Produktionskennzahlen und Softwarekennzahlen erfasst werden können?

3. Wie sollte ein Informationsverarbeitungssystem aufgebaut sein, das SW-

Produktionskennzahlen und Softwarekennzahlen erfassen und verarbeiten kann?

Die Lösungen für diese Fragen ermöglichen dem Management eine integrierte Prozess-

steuerung des Produktions- und Softwareentwicklungsprozesses. Abbildung 9.1 zeigt sche-

matisch diese Prozesssteuerung: Das Management überwacht und gestaltet den Produk-

tionsprozess mit der Menge an HW-Produktionskennzahlen KHW . Da es mit der Se-

mantik dieser HW-Produktionskennzahlen vertraut ist, kann es ebenfalls den Software-

entwicklungsprozess mit KSW , der Menge an semantisch äquivalenten SW-Produktions-

kennzahlen, überwachen und steuern.

Um die Fragestellung zur Bestimmung von SW-Produktionskennzahlen zu beantworten,

wurde in dieser Arbeit eine neue Methode entwickelt: die Reversed Goal-Question-Metric-

Methode (RGQM). Die RGQM-Methode besteht aus acht Bearbeitungsschritten und ba-

siert auf der bekannten GQM-Methode. Ausgehend von einer bereits in der Produkti-

onsdomäne eingesetzten HW-Produktionskennzahl werden die dazugehörende Frage, das

158

Kapitel 9. Zusammenfassung und Ausblick

Strategische
Ziele

KSW

Interpretation

Formulierung

Operative
Ziele

KS
Erfassung

Verdichtung

Management

Interpretation
Formulierung

Berücksichtigung

Transfer

Definition

Software-
entwicklungsprozess

Gestaltung

Erfassung

Produktionsteam

K HW
Operative

Ziele
Definition

Formulierung
Interpretation

KHW

Produktionsprozess

Erfassung

Gestaltung

Erfassung

Definition

Interpretation

Verdichtung

Softwareteam

Abbildung 9.1: Integrierte Prozesssteuerung durch das Management

Ziel und die Interpretation ermittelt. Falls das Ziel für den Softwareentwicklungsprozess

gültig ist, wird eine domänenspezi�sche Frage formuliert, die mit einer SW-Produktions-

kennzahl beantwortet wird. In dieser Arbeit wurden mit der RGQM-Methode fünf HW-

Produktionskennzahlen in SW-Produktionskennzahlen transferiert: First Pass Rate, Tech-

nische Rückläuferrate, Servicegrad, Wertschöpfung und Produktivität.

Damit die SW-Produktionskennzahlen in dem Softwareentwicklungsprozess erfasst wer-

den können, muss dieser mehrere Anforderungen erfüllen. Diese Anforderungen wurden

während der schrittweisen Bearbeitung der RGQM-Methode formuliert.

Gemäÿ der Zielsituation in Abbildung 9.1 nutzen die Softwareteams Softwarekennzahlen,

die die Zielerreichung operativer Ziele anzeigen. Zur Bestimmung der Softwarekennzahlen

aus den operativen Zielen wurde die GQM-Methode angewendet. Es wurden fünf operative

Ziele de�niert, die dazugehörenden Fragen formuliert und Softwarekennzahlen bestimmt,

die die Fragen beantworten. Damit die Softwarekennzahlen in dem Softwareentwicklungs-

prozess erfasst werden können, muss dieser wiederum bestimmte Anforderungen erfüllen.

Diese wurden bei der Anwendung der GQM-Methode formuliert.

Zur Beantwortung der Fragestellung zum Aufbau des Softwareentwicklungsprozesses wur-

de das Vorgehensmodell des Kooperationspartners berücksichtigt. Dieses Vorgehensmodell

basiert auf dem V-Modell der DIN EN 61508-3. In dieser Arbeit wurde ein Datenmodell

für das V-Modell der DIN EN 61508-3 entwickelt und als UML-Klassendiagramm be-

schrieben. Es ist derart gestaltet, dass es die Anforderungen für die Erfassung der vorher

de�nierten SW-Produktionskennzahlen und Softwarekennzahlen erfüllt. Das Ergebnis die-

ser Gestaltung ist das Sliced V-Modell. Eine wesentliche Eigenschaft des Sliced V-Modells

ist die Anwendung von Work Items, die untereinander verlinkt werden.

Dem Entwurf des Sliced V-Modells und der Bestimmung von SW-Produktionskennzahlen

und Softwarekennzahlen folgte die De�nition der Berechnungsgrundlagen aller Kenn-

zahlen. Die Semantik der HW-Produktionskennzahlen und der dazugehörenden SW-

Produktionskennzahlen wurde verglichen. Der Vergleich zeigte, dass durch die An-

159

Kapitel 9. Zusammenfassung und Ausblick

wendung der RGQM-Methode eine semantische Äquivalenz beider Ausprägungen einer

Produktionskennzahl erreicht wird.

Um die Fragestellung zum Aufbau des Informationsverarbeitungssystems zu beantworten,

wurde ein Prototyp, genannt SofProSys, entwickelt und angewendet. Bei der Entwicklung

von SofProSys wurde das Sliced V-Modell genutzt. Eine erste Anwendung von SofProSys

erfolgte auf Basis des Sliced V-Modells, das während der Entwicklung von SofProSys

entstand. Diese praxisnahe Anwendung zeigte, dass alle de�nierten Kennzahlen erfasst

werden können. Damit wurde eine grundsätzliche Eignung des entworfenen Informations-

verarbeitungssystems für den Einsatz beim Kooperationspartner demonstriert.

Im Rahmen der praktischen Anwendung wurden zwei Softwareprodukte des Kooperati-

onspartners mit SofProSys analysiert. SofProSys konnte nahezu alle SW-Produktions-

kennzahlen und alle Softwarekennzahlen erfassen. Da einige für den Servicegrad benötigte

Daten bislang nicht in den operativen Softwareentwicklungsprozess überführt wurden,

konnte der Servicegrad nicht erfasst werden. Um eine gra�sche Darstellung zu ermögli-

chen, mussten die Kennzahlen in den von SofProSys generierten MS Excel-Dateien ma-

nuell nachbearbeitet werden.

Die aufbereiteten MS Excel-Dateien wurden einigen Stakeholdern der Softwareteams

vorgestellt. Diese bestätigten, dass die erfassten Kennzahlen plausibel sind und dass

SofProSys die Softwareentwicklung unterstützen wird, sofern es in den operativen Betrieb

überführt wird. Jedoch müsste durch Mitarbeiterschulungen darauf hingewirkt werden,

die bisherigen Abweichungen in der Anwendung des Sliced V-Modells zu reduzieren.

Die gra�sch aufbereiteten SW-Produktionskennzahlen der beiden Softwareprodukte wur-

den dem Geschäftsbereichsleiter vorgestellt. Die gra�sche Aufarbeitung erfolgte mit Bord-

mitteln von MS Excel. Der Geschäftsbereichsleiter war nach der Präsentation der Dia-

gramme für die First Pass Rate und die Technischen Rückläuferrate sofort in der Lage,

eine zielgerichtete Diskussion zu führen. Insbesondere wurden die gemessenen Ist-Werte

erörtert. Ihm war sehr wohl bewusst, dass die Ist-Werte keinen Bezug zu den ihm bekann-

ten Ist-Werten aus der Produktion haben können. Jedoch zeigte er sich begeistert von der

Möglichkeit zukünftig das ihm vertraute Verfahren zur Überwachung und Steuerung des

Produktionsprozesses, also das Festlegen von Soll-Werten und die regelmäÿige Überprü-

fung der Ist-Werte, auch für den Softwareentwicklungsprozess anwenden zu können.

Es kann zusammengefasst werden, dass sowohl die praxisnahe als auch die praktische An-

wendung erfolgreich waren. Der Prototyp des Informationsverarbeitungssystems ist in der

Lage, Softwarekennzahlen und SW-Produktionskennzahlen, die die Semantik der dazuge-

hörenden HW-Produktionskennzahlen beibehalten, IT-gestützt zu erfassen und anzuzei-

gen. Eine IT-gestützte Datenerfassung und -verarbeitung ist für eine erfolgreiche Über-

160

Kapitel 9. Zusammenfassung und Ausblick

führung der kennzahlenorientierten Gestaltung des Softwareentwicklungsprozesses in die

betriebliche Praxis beim Kooperationspartner notwendig.

Im Rahmen dieser Arbeit wurde beim Kooperationspartner nicht evaluiert, ob die kenn-

zahlenorientierte Gestaltung des Softwareentwicklungsprozesses tatsächlich zur Errei-

chung der strategischen Ziele beiträgt. Eine derartige Evaluierung müsste über mehrere

Jahre erfolgen. Während dieser Zeit müssten ausgehend von den strategischen und opera-

tiven Zielen Maÿnahmen de�niert und umgesetzt und die Zielerreichung müsste mithilfe

der erfassten Kennzahlen überprüft werden.

Die Erkenntnisse dieser Arbeit wurden verallgemeinert. Es wurde theoretisch dargelegt,

dass sowohl die RGQM-Methode als auch SofProSys in anderen produzierenden Betrie-

ben eingesetzt werden könnten. So wurde die RGQM-Methode in einem theoretischen

Beispiel angewendet. Damit SofProSys in andere Umgebungen übertragen werden kann,

müsste entweder das Sliced V-Modell oder zumindest ein Work Item-basiertes Vorgehens-

modell, in dem die Quelltextänderungen in einem Versionsmanagementsystem eindeutig

einer Softwarefunktion oder einem Fehler zugeordnet werden, Anwendung �nden.

9.2 Ausblick

Obwohl in dieser Arbeit eine kennzahlenorientierte Gestaltung des Softwareentwicklungs-

prozesses erfolgreich entwickelt und evaluiert wurde, bedarf es weiterführender Aktivitä-

ten, um sie in die betriebliche Praxis des Kooperationspartners zu überführen. Darüber

hinaus ergeben sich wissenschaftliche Fragestellungen, die beantwortet werden sollten.

9.2.1 Überführung in die betriebliche Praxis

Die De�nition von strategischen und operativen Zielen sowie die Bestimmung von SW-

Produktionskennzahlen bzw. Softwarekennzahlen ist eine kontinuierliche Aufgabe in der

kennzahlenorientierten Prozessgestaltung. In dieser Arbeit wurde dieser Ablauf einmal

durchgeführt, in der betrieblichen Praxis sollte dies allerdings in regelmäÿigen Abständen

erfolgen. Darüber hinaus sollte kontinuierlich bewertet werden, ob die bislang de�nierten

Kennzahlen für die Anzeige der Zielerreichungen ausreichen und ob sie zur Verbesserung

des Softwareentwicklungsprozesses beitragen. Beispielsweise wäre zu prüfen, ob Kennzah-

len für die Anzeige der Qualität der Softwaredokumentation bestimmt werden sollten (vgl.

Abschnitt 2.1.2.4.3).

Die Ergebnisse der Arbeit wurden mit Hilfe eines Prototyps, SofProSys, evaluiert. Da-

mit der Prototyp im operativen Betrieb nutzbar ist, müsste er systematisch getestet und

161

Kapitel 9. Zusammenfassung und Ausblick

funktional ergänzt werden. Insbesondere fehlen Funktionen für die gra�sche Aufberei-

tung der Softwarekennzahlen und der SW-Produktionskennzahlen. Bislang werden diese

lediglich in Excel-Tabellen angezeigt, was die intuitive Bewertung und Interpretation der

Kennzahlen erschwert. Für die gra�sche Aufbereitung wäre eine Integration in eine sich

im Aufbau be�ndliche Webplattform denkbar. Ziel der Webplattform ist es, die HW-

Produktionskennzahlen zu erfassen und gra�sch aufzubereiten. Durch die Integration der

SW-Produktionskennzahlen würde ein Informationsverarbeitungssystem entstehen, das

dem Management einen homogenen Blick auf den Produktions- und Softwareentwick-

lungsprozess ermöglicht. Die in Abbildung 9.1 gezeigte integrierte Prozesssteuerung wäre

in der betrieblichen Praxis erreicht. Da sich allerdings diese Webplattform im Aufbau be-

�ndet, war es bislang nicht möglich, die Ergebnisse dieser Arbeit darin zu ergänzen. Bei

der gra�schen Aufbereitung der Kennzahlen sollten Gestaltungskriterien für Dashboards

berücksichtigt werden, wie sie zum Beispiel in [SNM15] aufgeführt sind.

Es kann davon ausgegangen werden, dass durch die Anwendung der Ergebnisse dieser Ar-

beit in der betrieblichen Praxis das Domänenwissen des Managements über den Softwa-

reentwicklungsprozess wachsen wird. Folglich wird das Management in Zukunft befähigt,

strategische Ziele zu formulieren, die nur für den Softwareentwicklungsprozess gelten. Zur

Überprüfung dieser strategische Ziele wird die Menge KSW durch Kennzahlen angerei-

chert, die aus diesen strategischen Zielen hergeleitet werden. Für diese Kennzahlen ist

kein Transferprozess nötig, sondern lediglich ein GQM-basierter Prozess zur Kennzahlen-

bestimmung. Das konkrete Vorgehen für die Anreicherung der Menge KSW mit derartigen

Kennzahlen ist das Thema weiterführender Aktivitäten.

9.2.2 Wissenschaftliche Fragestellungen

Eine regelmäÿige Fragestellung in der Softwareentwicklung ist die Schätzung des Auf-

wands und der Entwicklungsdauer für die Umsetzung neuer Softwarefunktionen. Durch

den in dieser Arbeit entwickelten Ansatz werden SW-Produktionskennzahlen und Softwa-

rekennzahlen �rückblickend� erfasst und ausgewertet. Daraus ergibt sich die Fragestellung,

inwiefern diese historischen Daten zur Schätzung des Aufwands und der Entwicklungs-

dauer neuer Softwarefunktionen verwendet werden können.

Der in dieser Arbeit entwickelte Ansatz der kennzahlenorientierten Gestaltung des Soft-

wareentwicklungsprozesses bewirkt ein präzises Datenmodell: das Sliced V-Modell. Durch

Kenntnis dieses Datenmodells ist ein Informationsverarbeitungssystem in der Lage, die

Softwarekennzahlen und SW-Produktionskennzahlen zu berechnen. Jedoch zeigt die Ar-

beit, dass das Eintragen aller benötigten Daten durch die Softwareteams in der betrieb-

lichen Praxis problematisch sein kann. Die Stakeholder in der Softwareentwicklung sind

162

Kapitel 9. Zusammenfassung und Ausblick

der Meinung, dass es immer Abweichungen vom Sliced V-Modell geben wird. Zwar könne

darauf hingewirkt werden, diese Abweichungen so gering wie möglich zu halten, ganz ver-

meidbar seien sie jedoch nicht. Ausgehend von dieser Situation wäre Gegenstand weiterer

Forschungsarbeiten die Fragestellung, wie eher unstrukturierte Daten für die Erfassung

von Softwarekennzahlen oder SW-Produktionskennzahlen verarbeitet werden können. Mit

Big Data-Technologien und Machine Learning-Algorithmen stehen mittlerweile Methoden

zur Verfügung, um unstrukturierte Daten auswerten und analysieren zu können. Ihre An-

wendung in der Domäne der Softwaremessung wurde zwar bereits als Themenkomplex

erkannt, konkrete Forschungsergebnisse fehlen jedoch bislang [HSD16].

Diese Arbeit war motiviert durch die zunehmende Digitalisierung der Industrie, in der

immer mehr intelligente Produkte benötigt werden. Intelligente Produkte beruhen auf

einem Zusammenwirken verschiedener Domänen, zum Beispiel der Mechanik, der Elek-

trotechnik/Elektronik und der Softwaretechnik. Da der Softwaretechnik in dieser Arbeit

eine besondere Rolle zugeordnet wurde, stand die kennzahlenorientierte Gestaltung des

Softwareentwicklungsprozesses im Mittelpunkt dieser Arbeit. Durch eine Ausweitung des

wissenschaftlichen Fokus auf die kennzahlenorientierte Gestaltung des domänenübergrei-

fenden, auf Methoden des Systems Engineerings basierenden Produktentwicklungsprozes-

ses würde sich die Frage stellen: Wie kann der domänenübergreifende Produktentwick-

lungsprozess in produzierenden Betrieben kennzahlenorientiert gestaltet werden?

Um diese Frage beantworten zu können, müsste der Produktentwicklungsprozess domä-

nenübergreifend untersucht und gestaltet werden. Der Produktentwicklungsprozess um-

fasst neben der Softwareentwicklung unter anderem die mechanische und elektrische Kon-

struktion (M-CAD/E-CAD). Die dazugehörenden Produktentwicklungsdaten werden in

PLM-Systemen verwaltet (vgl. Abschnitt 2.4.2). Alle in PLM-Systemen verwalteten Pro-

duktentwicklungsdaten können IT-basiert erfasst und verarbeitet werden.

163

Literaturverzeichnis

[Abr14] Abran, A.: Software Estimation: Transforming Dust into Pots of Gold? In:

Joint Conference of the International Workshop on Software Measurement

and the International Conference on Software Process and Product Measure-

ment (IWSM-MENSURA), 2014, S. 64-65

[ADG+09] Adelt, P. ; Donoth, J. ; Gausemeier, J. ; Geisler, J. ; Henkler, S.

; Kahl, S. ; Klöpper, B. ; Krupp, A. ; Münch, E. ; Oberthür, S. ;

Paiz, C. ; Porrmann, M. ; Radkowski, R. ; Romaus, C. ; Schmidt, A. ;

Schulz, B. ; Voecking, H. ;Witkowski, U. ;Witting, K. ; Znamensh-

chykov, O.: Selbstoptimierende Systeme des Maschinenbaus - De�nitionen,

Anwendungen, Konzepte. Verlagsschriftenreihe des Heinz Nixdorf Instituts,

Paderborn, 2009 (Bd. 234)

[AG12] Albers, A. ;Gausemeier, J.: Von der fachdisziplinorientierten Produktent-

wicklung zur Vorausschauenden und Systemorientierten Produktentstehung.

In: Smart Engineering. Springer Berlin Heidelberg, 2012, S. S. 17�29

[Alb79] Albrecht, A. J.: Measuring Application Development Productivity. In:

Proceedings of the IBM Application Development Symposium Bd. 83. IBM

Cooperation, 1979, S. 83�92

[Apa17] Apache Subversion. https://subversion.apache.org. [31.10.2017]

[ASSH16] Antinyan, V. ; Staron, M. ; Sandberg, A. ; Hansson, J.: A Complexity

Measure for Textual Requirements. In: Joint Conference of the International

Workshop on Software Measurement and the International Conference on

Software Process and Product Measurement (IWSM-MENSURA), 2016, S.

148�158

[Bal97] Balzert, H.: Lehrbuch der Software-Technik, Bd. 2: Software-Management,

Software-Qualitätssicherung, Unternehmensmodellierung . 1. Au�. Spektrum

Akademischer Verlag, 1997

164

Literaturverzeichnis

[Bal00] Balzert, H.: Lehrbuch der Softwaretechnik, Bd.1: Software-Entwicklung. 2.

Au�. Spektrum Akademischer Verlag GmbH, 2000

[BB10] Bailly, H. W. ; Bülow, F. von: Die ISO 9001:2008: Interpretation der

Anforderungen der DIN EN ISO 9001:2008-12 unter Berücksichtigung der

ISO 9004:2009. 6. Au�. TÜV Media GmbH, 2010

[BB16] Blanchard, B. S. ; Blyler, J. E.: System Engineering Management. 5.

Au�. Wiley, 2016

[BBBC09] Baldassarre, M. ; Boffoli, N. ; Bruno, G. ; Caivano, D.: Statisti-

cally Based Process Monitoring: Lessons from the Trench. In: Trustworthy

Software Development Processes Bd. 5543. Springer Berlin Heidelberg, 2009,

S. 11�23

[Bec05] Becker, T.: Prozesse in Produktion und Supply Chain optimieren. Springer

Berlin Heidelberg, 2005

[Ben07] Benson, A.: Qualitätssteigerung in komplexen Entwicklungsprojekten durch

prozessbegleitende Kennzahlensysteme: Vorgehen zur Herleitung, Einführung

und Anwendung. 1. Au�. Cuvillier Verlag, 2007

[BGA14] Bajwa, S. S. ;Gencel, C. ;Abrahamsson, P.: Software Product Size Mea-

surement Methods. In: Joint Conference of the International Workshop on

Software Measurement and the International Conference on Software Process

and Product Measurement (IWSM-MENSURA), 2014, S. 176�190

[BHL+07] Basili, V. ; Heidrich, J. ; Lindvall, M. ; Münch, J. ; Regardie, M. ;

Rombach, D. ; Seaman, C. ; Trendowicz, A.: Bridging The Gap Between

Business Strategy And Software Development. In: International Conference

on Information Systems (ICIS), 2007

[Bin97] Binder, R. V.: Can a manufacturing quality model work for software? In:

IEEE Software 14 (1997), Sep, Nr. 5, S. 101�105

[BKK91] Banker, R. D. ;Kauffman, R. J. ;Kumar, R.: An empirical test of object-

based output measurement metrics in a computer aided software engineering

(CASE) environment. In: Journal of Management Information Systems 8

(1991), Dezember, Nr. 3, S. 127�150

[BMS02] Barry, E. J. ; Mukhopadhyay, T. ; Slaughter, S. A.: Software Project

Duration and E�ort: An Empirical Study. In: Information Technology and

Management 3 (2002), Januar, Nr. 1-2, S. 113�136

165

Literaturverzeichnis

[Boe79] Boehm, B. W.: Guidelines for Verifying and Validating Software

Requirements and Design Speci�cations. In: European Conference on App-

lied Information Technology of the International Federation for Information

Processing (Euro IFIP), 1979, S. 711�719

[Bro97] Brown, M.: Kennzahlen: harte und weiche Faktoren erkennen, messen und

bewerten. Carl Hanser Verlag, 1997

[Bru91] Bruns, M.: Systemtechnik: Ingenieurwissenschaftliche Methodik zur inter-

disziplinären Systementwicklung. Springer Berlin Heidelberg, 1991

[Bug17] Bugzilla. http://www.bugzilla.org. [31.10.2017]

[BW84] Basili, V. ; Weiss, D.: A Methodology for Collecting Valid Software Engi-

neering Data. In: IEEE Transactions on Software Engineering SE-10 (1984),

Nov, Nr. 6, S. 728�738

[CA01] Carmel, E. ; Agarwal, R.: Tactical Approaches for Alleviating Distance

in Global Software Development. In: IEEE Software 18 (2001), März, Nr. 2,

S. 22�29

[Car94] Card, D.: Statistical process control for software? In: IEEE Software 11

(1994), May, Nr. 3, S. 95�97

[Car06] Card, D.: The Challenge of Productivity Measurement. In: Paci�c Nor-

thwest Software Quality Conference (PNSQC), 2006

[Cry17] CRYSTAL - Critical System Engineering Accelaration (2012-2016).

http://www.crystal-artemis.eu/, [31.10.2017]

[DA11] Dumke, R. ; Abran, A.: COSMIC Function Points: Theory and Advanced

Practices. Taylor & Francis, 2011

[DCKV08] Deininger, W. ; Cottingham, C. ; Kanner, L. ; Verbeke, M. A.: Sys-

tems Engineering Data Book (SEDB) � A Product Baseline De�nition and

Tracking Tool. In: International Conference on Systems Engineering (IC-

SENG), 2008, S. 19�24

[DD15] Deuter, A. ; Dreyer, J.: Reversed-GQM: Ein Ansatz zur Wiederverwen-

dung von Kennzahlen. In: Metrikon 2015 - Praxis der Software-Messung.

Shaker Verlag, Aachen, 2015, S. 3�14

[DE14] Deuter, A. ; Engels, G.: Measuring the Software Size of Sliced V-model

Projects. In: Joint Conference of the International Workshop on Software

166

Literaturverzeichnis

Measurement and the International Conference on Software Process and Pro-

duct Measurement (IWSM-MENSURA), 2014, S. 233�242

[DEHW13] Dumke, R. ; Ebert, C. ;Heidrich, J. ;Wille, C.: Messung und Bewertung

von Software. In: Informatik-Spektrum 36 (2013), Nr. 6, S. 508�519

[Deu12] Deuter, A.: Messung der Software-Produktivität in einem Work Item-

basierten V-Modell. In: Metrikon 2012 - Praxis der Software-Messung. Sha-

ker Verlag, Aachen, 2012, S. 69�84

[Deu13] Deuter, A.: Slicing the V-model - Reduced e�ort, higher �exibility. In:

International Conference on Global Software Engineering (ICGSE), 2013, S.

1�10

[Deu14] Deuter, A.: Software wird auch im Maschinenbau zur Kernkompetenz. In:

IEE Elektrische Automatisierung + Antriebstechnik 10 (2014), S. 16�18

[Deu16] Deuter, A.: Software measurement in the context of Industry 4.0. Workshop

in Joint Conference of the International Workshop on Software Measurement

and the International Conference on Software Process and Product Measu-

rement (IWSM-MENSURA), 2016

[DK15] Deuter, A. ; Koch, H.-J.: Applying Manufacturing Performance Figures to

Measure Software Development Excellence. In: Joint Conference of the In-

ternational Workshop on Software Measurement and the International Con-

ference on Software Process and Product Measurement (IWSM-MENSURA),

2015, S. 62�77

[DKE10a] DIN EN 61508-3: Funktionale Sicherheit sicherheitsbezogener elektri-

scher/elektronischer/programmierbarer elektronischer Systeme-Teil 3: Anfor-

derungen an Software. 2010

[DKE10b] DIN EN 61508-4: Funktionale Sicherheit sicherheitsbezogener elektri-

scher/elektronischer/programmierbarer elektronischer Systeme-Teil 4: Be-

gri�e und Abkürzungen. 2010

[DOO17] IBM Rational DOORS. http://www-03.ibm.com/software/products/de/ ra-

tidoor, [31.10.2017]

[DP12] Dondey, H. ; Peron, C.: Software Qualimetry at Schneider Electric - a

�eld background. In: Embedded Real Time Software and Systems ERTS2.

Toulouse, France, 2012

[ED07] Ebert, C. ; Dumke, R.: Software Measurement: Establish - Extract - Eva-

luate - Execute. Springer-Verlag Berlin Heidelberg, 2007

167

Literaturverzeichnis

[EKM17] Eigner, M. (Hrsg.) ; Koch, W. (Hrsg.) ; Muggeo, C. (Hrsg.): Modellba-

sierter Entwicklungsprozess cybertronischer Systeme: Der PLM-unterstützte

Referenzentwicklungsprozess für Produkte und Produktionssysteme. Springer

Vieweg, 2017

[Elm08] Elm, J. P.: A Study of Systems Engineering E�ectiveness - Initial Results.

In: 2008 2nd Annual IEEE Systems Conference, 2008, S. 1�7

[ERZ14] Eigner, M. (Hrsg.) ; Roubanov, D. (Hrsg.) ; Zafirov, R. (Hrsg.): Mo-

dellbasierte virtuelle Produktentwicklung. Springer Vieweg, Berlin Heidelberg,

2014

[ES09] Eigner, M. ; Stelzer, R.: Product Lifecycle Management: Ein Leitfaden

für Product Development und Life Cycle Management. 2. Au�. Springer

Berlin Heidelberg, 2009

[FHZ+15] Fiegler, A. ; Herden, S. ; Zwanziger, A. ; Meiÿner, M. ; Dumke, R.:

Qualitätsbemessung von automatisierten ITIL Prozessen in Cloud Systemen

am Beispiel der bedingten Entropie. In:Metrikon 2015 - Praxis der Software-

Messung. Shaker Verlag, Aachen, 2015, S. 133�146

[FLM+98] Fuggetta, A. ; Lavazza, L. ; Morasca, S. ; Cinti, S. ; Oldano, G.

; Orazi, E.: Applying GQM in an Industrial Software Factory. In: ACM

Transactions on Software Engineering and Methodology 7 (1998), Oktober,

Nr. 4, S. 411�448

[FP97] Fenton, N. ; Pfleeger, S. L.: Software metrics (2nd ed.): a rigorous and

practical approach. Boston, MA, USA : PWS Publishing Co., 1997

[FPG+04] Faulk, S. ; Porter, A. ; Gustafson, J. ; Tichy, W. ; Johnson, P. ;

Votta, L.: Measuring HPC productivity. In: International Journal of High

Performance Computing Applications (2004), S. 459�473

[FS99] Friedag, H. R. ; Schmidt, W.: Balanced Scorecard. Mehr als ein Kenn-

zahlensystem. Haufe Verlag, 1999

[Gau14] Gaulke, M.: Praxiswissen COBIT. 2. Au�. dpunkt.verlag, 2014

[GCW+13] Gausemeier, J. ; Czaja, A. M. ; Wiederkehr, O. ; Dumitrescu, R.

; Tschirner, C. ; Steffen, D.: Studie: Systems Engineering in der in-

dustriellen Praxis. In: 9. Paderborner Workshop: Ëntwurf mechatronischer

Systeme" (2013)

168

Literaturverzeichnis

[GF94] Gotel, O. C. Z. ; Finkelstein, C. W.: An analysis of the requirements tra-

ceability problem. In: International Conference on Requirements Engineering

(ICRE), 1994, S. 94�101

[GFL+13] Génova, G. ; Fuentes, J. M. ; Llorens, J. ; Hurtado, O. ;Moreno, V.:

A framework to measure and improve the quality of textual requirements.

In: Requirements Engineering 18 (2013), Nr. 1, S. 25�41

[Gla03] Gladen, W.: Kennzahlen- und Berichtssysteme. Gabler Verlag, 2003

[Gol13] Goldkuhl, G.: Action research vs. design research : using practice rese-

arch as a lens for comparison and integration. In: IT Artefact Design &

Workpractice Improvement (ADWI), 2013

[Han10] Hanser, E.: Agile Prozesse: Von XP über Scrum bis MAP. 1. Au�. Springer-

Verlag Berlin Heidelberg, 2010

[HD06] Hartmann, D. ; Dymond, R.: Appropriate agile measurement: Using me-

trics and diagnostics to deliver business value. In: Agile Conference (AGILE),

2006, S. 126�134

[HdFV15] Haberfellner, R. ; de Weck, O. ; Fricke, E. ; Vössner, S.: Systems

Engineering: Grundlagen und Anwendung. 13., aktualisierte Au�. Zürich :

Orell Füssli, 2015

[Hir08] Hiranabe, K.: Kanban Applied to Software Development: from Agile to

Lean. http://www.infoq.com/articles/hiranabe-lean-agile-kanban. 2008. �

[31.10.2017]

[HJK14] Hinrichsen, S. ; Jungkind, W. ; Könneker, M.: Industrial Engineering

- Begri�, Methodenauswahl und Lehrkonzept. In: Betriebspraxis & Arbeits-

forschung (2014), September, Nr. 221, S. 28�35

[HK15] Hartenstein, S. ; Könnecke, H.: Metrics for Evaluation of

Trustworthiness-By-Design Software Development Process. In: Metrikon

2015 - Praxis der Software-Messung. Shaker Verlag, Aachen., 2015, S. 95�106

[HKLR84] Hesse, W. ;Keutgen, H. ; Luft, A. ;Rombach, D.: Ein Begri�ssystem für

die Softwaretechnik - Vorschlag zur Terminologie. In: Informatik-Spektrum

7 (1984), S. 200�213

[HMT09] Heidrich, J. ;Münch, J. ;Trendowicz, A.: Messbasierte Ausrichtung von

Softwarestrategien an Geschäftszielen. In: Fachzeitschrift für Information

Management & Consulting (IM) (2009), Februar, S. 82�89

169

Literaturverzeichnis

[Hor11] Horvath, P.: Controlling. Franz Vahlen Verlag, 2011 (11. Au�)

[HP07] Hinrichsen, S. ; Peters, M.: Kennzahlensysteme. In: Lexikon Arbeitsge-

staltung: Best Practice im Arbeitsprozess. Universum-Verlag, 2007, S. 708�

710

[HSD16] Hentschel, J. ; Schmietendorf, A. ; Dumke, R.: Big Data bene�ts for

the Software Measurement Community. In: Joint Conference of the Interna-

tional Workshop on Software Measurement and the International Conference

on Software Process and Product Measurement (IWSM-MENSURA), 2016,

S. 108�114

[IPPS02] Ioannou, G. ; Papalexandris, A. ; Prastacos, G. ; Soderquist, E.:

Implementing a balanced scorecard at a software development company. In:

International Engineering Management Conference (IEMC) Bd. 2, 2002, S.

743�748

[ISO01] ISO/IEC 9126 - Software engineering - Product quality. 2001

[ISO03] ISO/IEC 19761:2003 - Software engineering - COSMIC-FFP - A functional

size measurement method. 2003

[ISO09] ISO/IEC 20926 - IFPUG Functional Size Measurement Method. 2009

[ISO10] ISO/IEC 25010 - Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - System and software qua-

lity models. 2010

[ISO11] ISO/IEC/IEEE 42010:2011 - Systems and software engineering - Architec-

ture description. 2011

[ISO15] ISO/IEC/IEEE 15288:2015 - Systems and software engineering � System life

cycle processes. 2015

[ISO16a] ISO/IEC 25022 - Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - Measurement of quality

in use. 2016

[ISO16b] ISO/IEC 25023 - Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - Measurement of system

and software product quality. 2016

[ISO17] ISO/IEC/IEEE 15939 - Systems and Software Engineering - Measurement

Process. 2017

170

Literaturverzeichnis

[IV09] Iivari, J. ; Venable, J.: Action research and design science research�

seemingly similar but decisively dissimilar. In: European Conference on

Information Systems (ECIS), 2009, S. 1�13

[JAB12] Jang, J. ; Agrawal, A. ; Brumley, D.: ReDeBug: Finding Unpatched

Code Clones in Entire OS Distributions. In: IEEE Symposium on Security

and Privacy (2012), S. 48�62

[JLC12] Jones, C. ; Layman, B. ; Clark, E.: Practical Software Measurement:

Objective Information for Decision Makers. Prentice Hall, 2012

[Jon17] Jones, C.: A short history of the cost per defect metric. http://

www.ifpug.org/Documents/Jones-CostPerDefectMetricVersion4.pdf, 2013,

[31.10.2017]

[Juk11] Jukka Kääriäinen: Towards an Application Lifecycle Management Fra-

mework. Bd. 179. VTT, 2011

[JYW+11] Jeng, B. ; Yeh, D. ; Wang, D. ; Chu, S.-L. ; Chen, C.-M.: A Speci�c

E�ort Estimation Method Using Function Point. In: Journal of Information

Science and Engineering 27 (2011), Nr. 4, S. 1363�1376

[Kan03] Kan, S.: Metrics and Models in Software Quality Engineering. 2nd. Addison-

Wesley, 2003

[Kap10] Kaplan, R. S.: Conceptual Foundations of the Balanced Scorecard. In:

Harvard Business School (2010)

[Kar93] Karner, G.: Resource Estimation for Objectory Projects. In: Objectory

Systems SF AB (1993)

[Kas08] Kasunic, M.: A Data Speci�cation for Software Project Performance Mea-

sures: Results of a Collaboration on Performance Measurement / Software

Engineering Institute. Carnegie Mellon University, Pittsburgh, Pennsylvania,

2008 (CMU/SEI-2008-TR-012)

[KBNAJ11] Khatibi Bardsiri, V. ; Norhayati Abang Jawawi, D.: Software Cost

Estimation Methods: A Review. In: Journal of Emerging Trends in Compu-

ting and Information Sciences 2 (2011), S. 21�29

[Kil01] Kilpi, T.: Implementing a software metrics program at Nokia. In: IEEE

Software 18 (2001), Nov, Nr. 6, S. 72�77

171

Literaturverzeichnis

[KL14] Kuhrmann, M. ; Linssen, O.: Welche Vorgehensmodelle nutzt Deutsch-

land? In: Projektmanagement und Vorgehensmodelle 2014, Gesellschaft für

Informatik e.V. (GI), 2014 (Gemeinsame Tagung der Fachgruppen Projekt-

management (WI-PM) und Vorgehensmodelle (WI-VM) im Fachgebiet Wirt-

schaftsinformatik der Gesellschaft für Informatik e.V.)

[Klo17] Klocwork. http://www.klocwork.com, [31.10.2017]

[KN92] Kaplan, R. S. ; Norton, D. P.: The Balanced Scorecard - Measures that

Drive Performance. In: Harvard Business Review (1992), Jan-Feb, S. 71�79

[Küt10] Kütz, M.: Kennzahlen in der IT. 4. Au�. Heidelberg : dpunkt.verlag, 2010

[Kui14] Kuijpers, C.: Automated FPA (eFPA) in SAP Environment. In: Joint

Conference of the International Workshop on Software Measurement and

the International Conference on Software Process and Product Measurement

(IWSM-MENSURA), 2014, S. 72�78

[KWH17] Kagermann, H. ; Wahlster, W. ; Helbig, J.: Umsetzungsempfehlungen

für das Zukunftsprojekt Industrie 4.0. https://www.bmbf.de/�les/ Umset-

zungsempfehlungen_Industrie4_0.pdf, 2013. [31.10.2017]

[Leh94] Lehner, F.: Software-Dokumentation und Messung der Dokumentations-

qualität. Carl Hanser Verlag, 1994

[LEPV10] Lanubile, F. ; Ebert, C. ; Prikladnicki, R. ; Vizcaíno, A.: Collabo-

ration Tools for Global Software Engineering. In: IEEE Software 27 (2010),

März, Nr. 2, S. 52�55

[LH11] Lind, K. ; Heldal, R.: A Model-based and Automated Approach to Size

Estimation of Embedded Software Components. In: International Conference

on Model Driven Engineering Languages and Systems (MODELS), 2011, S.

334�348

[Lik04] Liker, J.: The Toyota Way. 1st. McGraw-Hill, 2004

[LMT+10] Lamersdorf, A. ; Munch, J. ; Torre, A. ; Sánchez, C. ; Rombach,

D.: Estimating the E�ort Overhead in Global Software Development. In:

International Conference on Global Software Engineering (ICGSE), 2010, S.

267�276

[Man17] Manifest für Agile Softwareentwicklung. http://agilemanifesto.org,

[31.10.2017]

172

Literaturverzeichnis

[MD06] Muranko, B. ; Drechsler, R.: Technical Documentation of Software and

Hardware in Embedded Systems. In: International Conference on Very Large

Scale Integration (IFIP), 2006, S. 261�266

[ME98] Munson, J. C. ; Elbaum, S. G.: Code Churn: A Measure for Estimating

the Impact of Code Change. In: International Conference on Software Main-

tenance (ICSM), 1998, S. 24�31

[Moc03] Mockus, A.: Analogy Based Prediction of Work Item Flow in Software

Projects: a Case Study. In: International Symposium on Empirical Software

Engineering (ISESE), IEEE Computer Society, 2003, S. 110�119

[Moh08] Mohagheghi, P.: Evaluating Software Development Methodologies Based

on their Practices and Promises. In: International Conference in Software

Methodologies, Tools and Techniques (SOMET), 2008, S. 14�35

[MR93] Mayrhauser, A. von ; Roeseler, A.: Software process assessment and im-

provement using production models. In: International Conference on Com-

puter Software and Applications Conference (COMPSAC), 1993, S. 34�40

[MSH+12] Myklebust, T. ; Stålhane, T. ; Hanssen, G. K. ;Wien, T. ; Haugset,

B.: Scrum, documentation and the IEC 61508-3:2010 software standard. In:

Probabilistic Safety Assessment & Management Conference (PSAM), 2012

[NC14] Nugroho, A. ; Chaudron, M.: The impact of UML modeling on defect

density and defect resolution time in a proprietary system. In: Empirical

Software Engineering 19 (2014), Nr. 4, S. 926�954

[NCK+15] Naedele, M. ; Chen, H.-M. ; Kazman, R. ; Cai, Y. ; Xiao, L. ; Sil-

va, C. V.: Manufacturing Execution Systems. In: Journal of Systems and

Software 101 (2015), März, Nr. C, S. 59�68

[OBB+14] Oriou, A. ; Bronca, E. ; Bouzid, B. ;Guetta, O. ;Guillard, K.: Mana-

ge the automotive embedded software development cost & productivity with

the automation of a Functional Size Measurement Method (COSMIC). In:

Joint Conference of the International Workshop on Software Measurement

and the International Conference on Software Process and Product Measure-

ment (IWSM-MENSURA), 2014, S. 1�4

[OMG17a] OMG: Software & Systems Process Engineering Meta-Model Speci�cation.

http://www.omg.org/spec/SPEM/2.0/PDF, [31.10.2017]

[OMG17b] OMG: System Modeling Language. https://www.omg.org/spec/SysML,

[31.10.2017]

173

Literaturverzeichnis

[OMG17c] OMG: Uni�ed Modeling Language. https://www.omg.org/spec/UML/,

[31.10.2017]

[OSL17] OSLC-Open Services for Lifecycle Collaboration. http://open-services.net/,

[31.10.2017]

[PCL17] PC-Lint. http://www.gimpel.com/html/pcl.htm, [31.10.2017]

[Pet08] Peters, M.: Methodik zur Entwicklung und Evaluation von Ziel- und Kenn-

zahlensystemen für Produktentwicklungsprojekte in Virtuellen Unternehmen

der Luftfahrtzulieferindustrie, RWTH Aachen, Diss., 2008

[Pet11] Petersen, K.: Measuring and predicting software productivity: A systema-

tic map and review. In: Information and Software Technology 53 (2011), Nr.

4, S. 317�343

[Pet13] Petre, M.: UML in Practice. In: International Conference on Software

Engineering (ICSE), 2013, S. 722�731

[PHBV08] Pries-Heje, J. ; Baskerville, R. ; Venable, J. R.: Strategies for De-

sign Science Research Evaluation. In: European Conference on Information

Systems (ECIS), 2008, S. 1�12

[Pla17] Plattform Industrie 4.0: Was ist Industrie 4.0? http://www.plattform-

i40.de/I40/Navigation/DE/Industrie40/WasIndustrie40/was-ist-industrie-

40.html. [31.10.2017]

[Pol17] Polyspace. http://www.mathworks.de/products/polyspace, [31.10.2017]

[Pop13] Popp, G.: Kon�gurationsmanagement mit Subversion, Maven und Redmine

Grundlagen für Softwarearchitekten und Entwickler. 4. Au�. Heidelberg :

dpunkt Verlag, 2013

[PP11] Plewan, H.-J. ; Poensgen, B.: Produktive Softwareentwicklung - Bewer-

tung und Verbesserung von Produktivität und Qualität in der Praxis. 1. Au�.

Heidelberg : dpunkt.verlag, 2011

[Pre08] Preiÿler, P.: Betriebswirtschaftliche Kennzahlen: Formeln, Aussagekraft,

Sollwerte, Ermittlungsintervalle. Oldenbourg, 2008

[PW10] Petersen, K. ; Wohlin, C.: Software Process Improvement Through

the Lean Measurement (SPI-LEAM) Method. In: Journal of Systems and

Software 83 (2010), Juli, Nr. 7, S. 1275�1287

[RD13] Rahman, F. ; Devanbu, P.: How, and why, process metrics are better. In:

International Conference on Software Engineering (ICSE), 2013, S. 432�441

174

Literaturverzeichnis

[REF92] Methodenlehre des Arbeitsstudiums: Teil 2-Datenermittlung. 7. Au�. Mün-

chen : Carl Hanser Verlag, 1992

[RSRL08] Russ, R. ; Sperling, D. ; Rometsch, F. ; Louis, P.: Applying Six Sig-

ma in the Field of Software Engineering. In: Software Process and Product

Measurement Bd. 5338. Springer Berlin Heidelberg, 2008, S. 36�47

[SB99] Solingen, R. van ; Berghout, E.: The Goal/Question/Metric Method: A

Practical Guide for Quality Improvement of Software Development. McGraw-

Hill, 1999

[SB12] Sonnenberg, C. ; Brocke, J. vom: Evaluation Patterns for Design Science

Research Artefacts. In: Practical Aspects of Design Science Bd. 286. Springer

Berlin Heidelberg, 2012, S. 71�83

[SB16] Schucht, C. ; Berger, N.: Praktische Umsetzung der Maschinenrichtlinie.

Carl Hanser Verlag, 2016

[SBL10] Schlick, C. ; Bruder, R. ; Luczak, H.: Arbeitswissenschaft. Springer

Berlin Heidelberg, 2010

[Sch95] Schwaber, K.: SCRUM Development Process. In: Conference on Object

Oriented Programming Systems, Languages, and Applications (OOPSLA),

1995, S. 117�134

[Sch11] Schneidewind, N.: What can software engineers learn from manufacturing

to improve software process and product? In: Journal of Intelligent Manu-

facturing 22 (2011), Nr. 4, S. 597�606

[See08] Seeger, K.: Zielorientierte Prozessgestaltung - Die Prozesse an der Strategie

ausrichten. In: Zielorientierte Unternehmensführung. Wiesbaden : Gabler,

2008, S. 119�144

[Sen14] Sendler, U.: Industriegipfel Felda�ng - System Leadership 2030. Ein Resü-

mee erster Strategiegespräche zu Industrie 4.0. In: Informatik-Spektrum 37

(2014), Nr. 1, S. 54�72

[Sie17] Siemens Industry Software: Polarion ALM.

https://polarion.plm.automation.siemens.com/. [31.10.2017]

[SJ12] Swaminathan, B. ; Jain, K.: Implementing the Lean Concepts of Conti-

nuous Improvement and Flow on an Agile Software Development Project:

An Industrial Case Study. In: AGILE India, 2012, S. 10�19

175

Literaturverzeichnis

[SJS12] Sjoberg, D. I. ; Johnsen, A. ; Solberg, J.: Quantifying the E�ect of

Using Kanban versus Scrum: A Case Study. In: IEEE Software 29 (2012), S.

47�53

[SL03] Spillner, A. ; Linz, T.: Basiswissen Softwaretest: Aus- und Weiterbildung

zum Certi�ed Tester � Foundation Level nach ISTQB-Standard. 1. Au�.

Heidelberg : dpunkt.verlag, 2003

[SMKN11] Staron, M. ; Meding, W. ; Karlsson, G. ; Nilsson, C.: Developing

Measurement Systems: An Industrial Case Study. In: Journal of Software

Maintenance and Evolution 23 (2011), März, Nr. 2, S. 89�107

[Sne87] Sneed, H. M.: Softwaremanagement. 1. Au�. Köln : Verlagsgesellschaft

Rudolf Möller, 1987

[Sne05] Sneed, H.: Reverse Engineering deutschsprachiger Fachkonzepte. In: Work-

shop für Software Reengineering. Bad Honnef, 2005

[Sne07] Sneed, H.: Testing against Natural Language Requirements. In: Internatio-

nal Conference on Quality Software (QSIC), 2007, S. 380�387

[Sne15] Sneed, H.: Measuring the Degree of Requirement Ful�lment. In: Metrikon

2015 - Praxis der Software-Messung. Shaker Verlag, Aachen., 2015, S. 41�50

[SNM15] Staron, M. ; Niesel, K. ;Meding, W.: Selecting the Right Visualization of

Indicators and Measures - Dashboard Selection Model. In: Joint Conference

of the International Workshop on Software Measurement and the Interna-

tional Conference on Software Process and Product Measurement (IWSM-

MENSURA), 2015, S. 130�143

[Som12] Sommerville, I.: Software Engineering. 9. Au�. Pearson Education, 2012

[SSB10] Sneed, H. M. ; Seidl, R. ; Baumgartner, M.: Software in Zahlen die

Vermessung von Applikationen. Carl Hanser Verlag, 2010

[SSR+08] Seaman, C. B. ; Shull, F. ; Regardie, M. ; Elbert, D. ; Feldmann,

R. L. ; Guo, Y. ; Godfrey, S.: Defect Categorization: Making Use of a De-

cade of Widely Varying Historical Data. In: Proceedings of the Second ACM-

IEEE International Symposium on Empirical Software Engineering and Mea-

surement, 2008, S. 149�157

[Ste06] Stepanek, G.: Software Project Secrets: Why Software Projects Fail (Ex-

pert's Voice). 1. Apress, 2006

176

Literaturverzeichnis

[Sym88] Symons, C.: Function Point Analysis: Di�culties and Improvements. In:

IEEE Transactions on Software Engineering 14 (1988), S. 2�11

[Sym10] Symons, C.: Software Industry Performance: What You Measure Is What

You Get. In: IEEE Software 27 (2010), Nr. 6, S. 66�72

[TOR17] TortoiseSVN. http://tortoisesvn.tigris.org, [31.10.2017]

[TS12] Treude, C. ; Storey, M.-A.: Work Item Tagging: Communicating Con-

cerns in Collaborative Software Development. In: IEEE Transactions on

Software Engineering Bd. 38, 2012, S. 19�34

[Tsc16] Tschirner, C.: Rahmenwerk zur Integration des modellbasierten Systems

Engineering in die Produktentstehung mechatronischer Systeme, Universität

Paderborn, Dissertation, 2016

[VDI93] VDI-Richtlinie 2221 Methodik zum Entwickeln und Konstruieren technischer

Systeme und Produkte. 1993

[VDI04] VDI-Richtlinie 2206 Entwicklungsmethodik für mechatronische Systeme.

2004

[Ven06] Venable, J.: A Framework for Design Science Research Activities. In: Pro-

ceedings of the 2006 Emerging Trends and Challenges in Information Tech-

nology Management Bd. 1 and 2. Washington DC, USA, 2006

[Vol17] Volkwein, G.: Industrie 4.0 from both a user's and a

vendor's perspective. International Conference on System-

integrated Intelligence (SysInt2016), http://www.sysint-

conference.org/uploads/media/SysInt2016_Keynote_Volkwein.pdf.

[31.10.2017]

[Wei14] Weilkiens, T.: Systems Engineering mit SysML/UML: Anforderungen,

Analyse, Architektur. 3. Au�. dpunkt.verlag, 2014

[Wes99] Westfall, L.: 12 Steps to Useful Software Metrics. In: Paci�c Northwest

Software Quality Conference (PNSQC), 1999

[WP10] Winkler, S. ; Pilgrim, J.: A survey of traceability in requirements engi-

neering and model-driven development. In: Software & Systems Modeling 9

(2010), September, Nr. 4, S. 529�565

[ZVE70] ZVEI: ZVEI-Kennzahlensystem: Ein Instrument zur Unternehmenssteue-

rung. Zentralverband der Elektrotechnischen Industrie, 1970

177

Anhang A

Bedeutung der Werte zur

Fehlerklassi�zierung

Die folgenden Tabellen zeigen die Wertemengen der Aufzählungstypen, die beschreibende

Informationen eines Fehlers, d.h. eines Defect Work Items, enthalten. Sie werden für die

Qualitätsbewertung von Softwareversionen bzw. Softwareprodukten verwendet (vgl. Ab-

schnitt 5.2.2). Diese Wertemengen sind aus der Literatur entnommen bzw. bauen darauf

auf. Die jeweiligen Quellen sind in den Tabellenunterschriften angegeben.

Wert Beschreibung

Critical Die Anwendung oder wesentliche Funktionen der Anwendung sind nicht

mehr verfügbar bzw. nutzbar.

Major Eine wesentliche Funktion ist nicht mehr verfügbar oder liefert nicht die

richtigen Ergebnisse, aber es gibt einen Workaround.

Neutral Voreingestellter Standardwert: Fehler wurde noch nicht klassi�ziert.

Minor Eine nicht wesentliche Funktion ist nicht mehr verfügbar oder liefert nicht

die richtigen Ergebnisse.

Trivial Kleinerer Fehler, der die Verwendung der Anwendung nicht wesentlich

beeinträchtigt.

Tabelle A.1: Wertemenge des Aufzählungstyps DefSeverity angelehnt an [PP11]

178

Anhang A. Bedeutung der Werte zur Fehlerklassi�zierung

Wert Beschreibung

Algorithm,

method

An error in the sequence or set of steps used to solve a particular pro-

blem or computation, including mistakes in computations, incorrect im-

plementation of algorithms, or calls to an inappropriate function for the

algorithm being implemented.

Assignment,

initialization

A variable or data item that is assigned a value incorrectly or is not in-

itialized properly or where the initialization scenario is mishandled (e.g.,

incorrect publish or subscribe, incorrect opening of �le etc.).

Checking Inadequate checking for potential error conditions, or an inappropriate

response is speci�ed for error conditions.

Data Error in specifying or manipulating data items, incorrectly de�ned data

structure, pointer or memory allocation errors, or incorrect type conver-

sions.

External

interface

Errors in the user interface (including usability problems) or the interfa-

ces with other systems.

Internal

interface

Errors in the interfaces between system components, including mismat-

ched calling sequences and incorrect opening, reading, writing or closing

of �les and databases.

Logic Incorrect logical conditions on if, case or loop blocks, including incorrect

boundary conditions (�o� by one� errors are an example) being applied, or

incorrect expression (e.g., incorrect use of parentheses in a mathematical

expression).

Non-

functional

Includes non-compliance with standards, failure to meet non-functional

requirements such as portability and performance constraints, and lack

of clarity of the design or code to the reader - both in the comments and

the code itself.

Timing, opti-

mization

Errors that will cause timing (e.g., potential race conditions) or per-

formance problems (e.g., unnecessarily slow implementation of an algo-

rithm).

Other Anything that does not �t any of the above categories that is logged

during an inspection of a design artifact or source code.

Tabelle A.2: Wertemenge des Aufzählungstyps DefInternal [SSR+08]

179

Anhang A. Bedeutung der Werte zur Fehlerklassi�zierung

Wert Beschreibung

Documentation Incomplete instructions, mismatch between function and documentation,

missing documentation

Functionality Expected functionality is not met, functionality only works partially

Handling Not comfortable, easy to make an user error, unclear how to do, unne-

cessary information

Optic Spelling errors, incomplete sentences in a dialog, general appearance,

missing translation

Performance Time behavior too slow, resource allocation too high, resources needed

too high

Stability Program crash, data loss, data corruption, exception messages

Tabelle A.3: Wertemenge des Aufzählungstyps DefExternal angelehnt an [ISO10]

180

Anhang B

Praxisnahe Anwendung

Die folgenden Tabellen zeigen die prozentuale Verteilung der Werte in den einen Fehler

klassi�zierden Attributen. Diese Werte wurden exemplarisch während der praxisnahen

Anwendung eingetragen. Wie in Abschnitt 7.2 erläutert, erfolgte die Klassi�zierung durch

den Verfasser der Arbeit. Es handelt sich also nicht um die Einschätzung eines Kunden

oder eines Produktverantwortlichen.

Wert Version 1 Version 2 Version 3

Critical [%] 20 50 40

Major [%] 60 0 30

Minor [%] 20 0 30

Trivial [%] 0 50 0

Tabelle B.1: Prozentuale Teilwerte des Attributs severity

Wert Version 1 Version 2 Version 3

Algorithm, method [%] 0 0 20

Assignment, initialization [%] 0 50 30

Checking [%] 0 0 30

Data [%] 0 0 0

External interface [%] 20 0 0

Internal interface [%] 40 0 0

Logic [%] 40 0 10

Non-functional [%] 0 50 10

Timing, optimization [%] 0 0 0

Other [%] 0 0 0

Tabelle B.2: Prozentuale Teilwerte des Attributs internal

181

Anhang B. Praxisnahe Anwendung

Wert Version 1 Version 2 Version 3

Documentation [%] 0 0 0

Functionality [%] 40 50 70

Handling [%] 0 0 0

Optic [%] 0 50 10

Performance [%] 0 0 10

Stability [%] 60 0 10

Tabelle B.3: Prozentuale Teilwerte des Attributs external

182

	Einleitung
	Ausgangssituation und Abgrenzung
	Kennzahlenorientierte Gestaltung der Produktion
	Kennzahlenorientierte Gestaltung der Softwareentwicklung
	Forschungsfrage
	Methodische Vorgehensweise
	Aufbau der Arbeit
	Vorveröffentlichungen

	Grundlagen
	Kennzahlen
	Begriffe und Eigenschaften
	Softwarekennzahlen
	Produktionskennzahlen

	Produktion und Softwareentwicklung
	Transfer und Bestimmung von Kennzahlen
	Bewertungsgrundlagen
	Balanced Scorecard
	ISO/IEC/IEEE 15939
	GQM-Methode
	Bewertung

	Produktentstehungsprozess
	Definition und Eigenschaften
	Systems Engineering

	Softwareentwicklungsprozess
	Definition und Eigenschaften
	Softwareentwicklungsprozess beim Kooperationspartner

	Zusammenfassung

	Transfer von Produktionskennzahlen
	RGQM-Methode
	Konzept
	Bearbeitungsschritte

	Anwendungsbeispiel
	Einführung
	RGQM-Bearbeitungsschritte

	Bestimmung der Softwarekennzahlen
	Vorgehen
	Anwendungsbeispiel
	Bestimmung der operativen Ziele
	Bestimmung der Softwarekennzahlen

	Gestaltung des Softwareentwicklungsprozesses
	Vorgehen
	Sliced V-Modell
	Begriff und Anforderungen
	Eigenschaften
	Bewertung

	Ermittlung der Berechnungsgrundlagen
	Notwendigkeit und Vorgehen
	Berechnungsgrundlagen der Softwarekennzahlen
	Churn
	Aufwand für die Entwicklungsaktivitäten
	Entwicklungsdauer
	Churn-Produktivität
	Churn-Liefergeschwindigkeit
	Anzahl an Work Items
	Aufwand für die Dokumentationsaktivitäten
	Dokumentationsproduktivität
	Dokumentationsliefergeschwindigkeit
	Prozentuale Verteilung von Fehlerattributen
	Anzahl intern entdeckter Fehler
	Anzahl extern entdeckter Fehler
	Fehlerbehebungsrate
	Churn-Fehlerdichte

	Berechnung der SW-Produktionskennzahlen
	First Pass Rate
	Technische Rückläuferrate
	Servicegrad
	Wertschöpfung
	Produktivität

	Bewertung der semantischen Äquivalenz

	Entwicklung des Informationsverarbeitungssystems
	Prototyp
	Praxisnahe Anwendung
	Bewertung der Gestaltungsgrundsätze
	Praktische Anwendung

	Verallgemeinerung der Ergebnisse
	Bestimmung von SW-Produktionskennzahlen
	Gestaltung des Softwareentwicklungsprozesses
	Aufbau eines Informationsverarbeitungssystems

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick
	Überführung in die betriebliche Praxis
	Wissenschaftliche Fragestellungen

	Literaturverzeichnis
	Bedeutung der Werte zur Fehlerklassifizierung
	Praxisnahe Anwendung

