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Abstract

Bainite is a steel microstructure with useful properties for the industry. It combines a high
toughness with a hardness value between that of pearlitic and martensitic steels. It occurs
as upper and lower bainite which can be distinguished by the size and place of carbides
precipitating from austenite or bainitic ferrite, respectively. While the phase transformation
from austenite to bainitic ferrite is considered to be displacive, the subsequent carbon
diffusion is crucial to the precipitation of carbides and in turn crucial to the formation
of the two different morphologies, upper and lower bainite. In this work a phase field
model is presented describing the complex transformation from austenite to upper and
lower bainite, considering the displacive phase transition from austenite to bainitic ferrite,
different diffusion mechanisms, the precipitation of carbides and anisotropic growth due to
eigenstrains. The model uses a thermodynamic framework which is derived in this work.
The framework is based on generalized stresses and forces providing a strict distinction
between universal laws, such as the first and second law of thermodynamics, and constitutive
equations which are chosen for the actual transformation process. Prototype models are
proposed and numerically solved using the finite element method. The results show the

capability of the derived thermodynamic framework and the expected behaviour of bainite.

Zusammenfassung

Bainit ist ein Gefiige mit hervorragenden Eigenschaften, das durch gezieltes Abkiihlen
von Stahl entsteht. Durch dessen hohe Zahigkeit und gleichzeitig hohe Harte ist es fiir
unterschiedliche Einsatzzwecke in der Industrie sehr gut geeignet. Bainit tritt als oberer
und unterer Bainit auf. Die beiden Morphologien unterscheiden sich durch Grofle und Ort
von Karbidausscheidungen. Wahrend die Phasenumwandlung von Austenit zu bainitischem
Ferrit unabhéngig von der Kohlenstoffdiffusion ablauft, ist die anschliefend einsetzende
Diffusion fiir die Ausscheidung der Carbide von entscheidender Bedeutung. In dieser Arbeit
wird ein Modell prasentiert, das die Umwandlung von Austenit zu oberen und unteren
Bainit mit der Phasenfeldmethode beschreibt. Dabei werden die Phasenumwandlung von
Austenit zu bainitischen Ferrit, die anschlieBenden Diffusionsprozesse, das Ausscheiden
von Carbiden und das anisotrope Wachstum durch Eigendehnungen simuliert. Das Model
nutzt ein thermodynamisches Rahmenmodell, welches in dieser Arbeit hergeleitet wird und

auf der Theorie der generalisierten Spannungen basiert. Diese Formulierung bietet eine Un-
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terscheidung zwischen universellen physikalischen Gesetzen und konstitutiven Gleichungen,
die speziell fiir den abzubildenden Transformationsprozess gewéhlt werden. Das mathema-
tische Model wird numerisch mit der Methode der finiten Elemente gelost. Die Ergebnisse
zeigen das Potenzial des Rahmenmodells und den beschriebenen Transformationsprozess

des Bainits.
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1 Introduction

In recent years bainitic steels have been attracting the attention of steel-producers and
engineers, because bainite provides a desirable combination of high ductility, enhanced
strength and high hardness. In industrial applications bainitic workpieces have gained a
growing importance, especially after hot-forming and quenching of relatively bulky parts,
as the cooling rates within large pieces are too slow to produce martensite, but high
enough to transform a considerable fraction into bainitic ferrite [31]. As an alternative to
traditional high-strength low alloy steels, dual-phase steels (DPS) consisting of bainite
and ferrite have gained increased popularity by the car and aerospace industry, because of
their advantages in formability and light-weight potential [21, 25]. The Deutsche Bahn, for
example, uses bainitic steel in an important part of railroad switches [24]. The so called
frog of a railroad switch, illustrated in Figure 1.1, is a heavily loaded workpiece which has
to be very hard. Bainite is the optimal material for such frogs and therefore, chosen for

the 15000 most loaded railroad switches in Germany.

Figure 1.1: Bainitic frog of a railroad switch with a transmission electron microscopy
image of the microstructure

The microstructural transformation of bainite is a complex process which is described



and simulated in this scientific work. In mechanics, as a part of physics, the observation
of an event, for example a movement or a phase transformation, is the starting point for
any scientific work and should ideally result in the successful description of this physical
event. To make such a description it is necessary to explain these observations which
often leads to the development of a mathematical model. In physics and especially in
mechanics the basis of the mathematical model is commonly a differential equation. In
today’s research in mechanics the fundamental equations, like the balances of linear and
angular momentum and the first and second law of thermodynamics are determined while
constitutive equations change depending on the material. The distinction between universal
physical laws and constitutive equations is a fundamental reason for the great success of
engineering mechanics. Simulations predicting deformations of complex structures such as
cars or planes are of high accuracy and widely used in the industry.

Macroscopic material properties of most materials in modern technology strongly depend
on their microstructure. Therefore, it is important to study and understand the phase
transformations on a microscopic level. The modeling of phase transformations plays an
important role in designing new materials with new properties. The different distributions
and morphologies of a microstructure are a result of complex transformations whose
evolution depends on the complex interaction between different physical phenomena,
such as chemical diffusion, mechanics (elasticity and plasticity), interfacial energies and
electro-magnetism.

Mechanics has many relations to materials sciences as the observations needed to
develop new models or constitutive equations originate in materials science. Several
groups of scientists in mechanics have found interesting problems in the field of phase
transformations. Phase transformations and mechanical problems are described by partial
differential equations and are solved, for example, with the finite element method. In this
field it is also possible to apply the strict separation between universal physical laws and
constitutive equations as successfully done in classical mechanics. This strict separation
is described in detail in Section 3.2 and in Paper B. Furthermore, a coupling of these

generalized stresses with mechanics can be found in Paper D.



2 The formation of bainite

2.1 Preliminaries on bainite

Bainite is a steel microstructure first observed by E. S. Davenport and Edgar Bain and
clearly identified in 1930 [27]. A distinction between two morphologies called upper and
lower bainite is made. The morphologies show different macroscopic mechanical behaviour
and different microstructural compositions. Both morphologies form when austenite is
cooled past a critical temperature. The microstructure consists of aggregates, termed
sheaves, of bainitic ferrite sub-units surrounded by carbides and retained austenite.

In the time-temperature-transformation diagram in Figure 2.1 (a) the pearlite area, the
bainite area at lower temperatures and the martensite start temperature underneath can
be seen. Pearlite is built at high temperatures and slow cooling rates. The microstructure
is two-phased and lamellar. Layers of carbide and ferrite alternate as shown in Figure 2.1
(b). The carbon separates in areas of high and low concentration where carbide and ferrite
grow cooperatively. Due to the high temperature the carbon is mobile and can move fast.

The martensite transformation proceeds completely different. If a steel workpiece is
cooled so fast that the pearlite and bainite areas in the time-temperature-transformation
diagram are not touched and the martensite start temperature is reached, martensite grows.
The transformation from austenite to martensite is very fast and diffusionless. The carbon
diffusion velocity is very low due to the low temperature. Furthermore, the transformation
is so fast that there is neither time for the carbon to diffuse nor to build accumulations
nor even to precipitate as carbides. Instead martensite forms displacive from face-centered
cubic austenite to a body-centered tetragonal form. The new martensite is highly strained
and supersaturated with carbon.

While there is a general agreement in science that the pearlite growth is cooperative
with the carbon diffusion and rather slowly, and that martensite forms diffusionless, very
fast and in a displacive manner, the growth of bainitic ferrite is controversially discussed

in materials science. The main disagreement is on whether the growth mechanism is
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Figure 2.1: (a) Schematic time-temperature-transformation diagram of steel and
(b) Schematic representation of pearlite growth

controlled by the diffusion of carbon as it is for pearlite or if it is displacive and diffusionless
as it is for martensite [27]. A majority of material scientists agree on the assumption that
the bainitic ferrite grows displacively and that it is supersaturated with carbon shortly
after the phase transformation [12]. This thesis follows this assumption.

The displacive transformation from austenite to bainitic ferrite can be regarded as a
deformation of the austenite phase combined with a change of the atomic configuration.
The resulting permanent strain is called transformation plasticity [12]. The transformation
starts after a fast cooling below a certain temperature, by applying stress to the specimen or
by a combination of both factors [12]. The habit plane and a displacement vector describe
an invariant plane strain which is a deformation system for transformation plasticity. The
transformation plasticity can be obtained at a much smaller yield stress than of the stable

austenite phase.

2.2 Morphologies and diffusion processes

The movement of the carbon within the supersaturated bainitic ferrite is strongly dependent
on the temperature as it influences the mobility and speed of the carbon atoms. This
dependency leads to two different morphologies, called upper and lower bainite. At high

temperatures (within the bainite nose, see Figure 2.1 (a)) the diffusion mobility is high
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Figure 2.2: Schematic visualisation of upper and lower bainite. Recreated [12]

and the carbon atoms are able to move out of the supersaturated bainitic ferrite into the
austenite phase. Within the enriched austenite phase, carbides precipitate at places where
the carbon concentration is high enough. The resulting microstructure is called upper

bainite.

In lower bainite the diffusion mobility is much lower, such that only a few atoms close to
the interface succeed in leaving the supersaturated bainitic ferrite into the austenite while
most of the carbon is trapped within the bainitic ferrite. There the remaining carbon
separates to build accumulations surrounded by areas with an equilibrium concentration.
At those carbon accumulations, carbides precipitate within the bainitic ferrite. This is the
main difference to upper bainite, where carbides precipitate only from the austenite phase.
The micrograph in Figure 3 of Paper B shows a microstructure of lower bainite with a

bainitic sheaf and circular carbides within the sheaf.

Figure 2.2 illustrates the two different processes in comparison. Both start with the grey
illustrated supersaturated bainitic ferrite. On the left hand side upper bainite is illustrated.

Here the carbon diffuses out of the bainitic ferrite into the surrounding austenite, leaving



the bainitic ferrite with its equilibrium concentration of carbon, illustrated in white. On the
right hand side, the lower bainite transformation is illustrated. Opposed to the formation
of upper bainite, most of the carbon stays within the bainitic ferrite and accumulates while
only a small amount of carbon diffuses out of the bainitic ferrite. In both morphologies
carbides precipitate at accumulations of carbon. In upper bainite this takes place only
within the austenite phase while in lower bainite most of the carbides precipitate directly
within the bainitic ferrite.

The diffusion mechanisms of carbon in bainite are described and illustrated in Section 2

of Paper C.



3 Generalized stresses and the phase
field method

3.1 Preliminaries on the phase field method

The phase field technique can be used to simulate the evolution of a microstructure on
the mesoscale. The main characteristics of the phase field method are functions which are
continuous in space and time, called phase field variables or order parameters specifying
the configurations, arrangements or densities of atoms [10]. The phase field variables vary
in the interface between two phases while they are nearly constant in bulk microstructures.
Due to the mandatory interface regions, this approach belongs to the diffusive interface
models. A main advantage of the these models is that there is no need to track the

interfaces during the phase transformation [17].

Phase-field models are based on partial differential equations. The most important
ones are the Ginzburg-Landau and the Cahn-Hilliard equations. They can be derived
from the general laws of thermodynamics and kinetic principles, for example with the
microforce balance [10]. Phase-field approaches are always continuous models, which do
not describe the behaviour of individual atoms, but the configurations of atoms. Hence,
the models contain material specific phenomenological properties that are determined

based on experimental or theoretical information [17].

Phase-field variables can be distinguished between conserved and non-conserved variables.
Composition variables describe concentrations or molar fractions. They are normally
conserved, since the number of atoms or moles of a component in a system is conserved.
Changes in the local concentration ¢ of a certain component can only occur by fluxes J of

atoms of this component within the system. The conservation law holds for all conserved



variables

oc
—=-V-J. 3.1
The simplest example of a conserved phase field equation is Fick’s law of diffusion. A more

complex one is the Cahn-Hilliard equation.

Non-conserved phase field variables are used to distinguish between different phases,
microstructures or states of matter. They are often denoted by ¢ and can transform from

one to the other. They cannot be conserved.

More than a century ago van der Waals [3] was one of the first to use a density function
that varies continuously. In 1950, Ginzburg and Landau [1] published their theory of
superconductivity using order parameters and its gradients. Some years later Cahn and
Hilliard [2] presented their model for phase fields with higher order concentration gradients.
The concept of order parameters used today was introduced by Landau [4] 30 years ago.

More detailed historical information can be found in [17, 19].

Another important paper which has strongly inspired the present work was written by
Kobayashi [7] in 1993. The paper is about the simulation of dendritic growth by coupling a
Ginzburg-Landau equation with a heat equation. For the simulation of diffusion, especially
of diffusion across the interface of phases the names Wheeler, Boettinger and McFadden [5,
8, 11] are to be mentioned. In the field of phase transformations there are numerous papers
in which the phase field method is used, for example to simulate austenite-to-ferrite [14, 13|
and austenite-to-pearlite transitions [16]. Furthermore, the formation of Widmanstétten
patterns [15] and the important austenite-to-martensite transformation [18, 29] is simulated
with the phase field method.

Only a few models describe parts of the bainitic transformation. Song et al. [22] simulate
the transformation from austenite to upper bainite with the phase field method, though
neglecting the precipitation of carbides. The work by Arif and Qin [26] describes the
autocatalysis of sub-units. To the author’s knowledge, the first phase field models for the
lower bainitic transformation are presented in [34] and [33] simulating the separation of
carbon within the bainitic ferrite and the precipitation of carbides. In addition, this model
is e.g. applied in [37], extended to upper bainite considering the diffusion of carbon across

the interface in [38] and improved by coupling with mechanics in [39].

In recent years the phase field method has become an even more multifunctional tool.

There is already a large community working on phase field methods to predict crack



nucleation and propagation e.g. [32] and fracture e.g. in [20, 23]. There are also scientists
studying tumour growth [30, 40] or the deformation processes in lithium-ion batteries [35]

by means of the phase field method.

3.2 The idea of generalized stresses

Gurtin and Fried [6, 9, 10] developed a framework for Ginzburg-Landau and Cahn-Hilliard
equations based on a balance law for so called “microforces”. Both equations describe
the configurations, arrangements or densities of atoms characterized by order parameters
to model phase transformations or diffusion processes. The equations can be derived
straightforward using a suitable free energy function and variational derivatives, but they
lack a deeper physical understanding and a separation between basic balance laws and
constitutive equations [10]. Gurtin and Fried propose a new way to derive these equations
by introducing microforces and microstresses comparable to those of continuum mechanics.
While forces in continuum mechanics change the state of movement or the shape of a
body, the new microforces change the configurations or arrangements of atoms on a much
smaller scale.

The key idea is to copy the most successful concept of continuum mechanics, the separa-
tion between basic balance laws and constitutive equations, which accelerated the progress
in mechanics fundamentally. Gurtin and Fried postulate that phase transformations and
movements of atoms (diffusion) take place due to microforces. They introduce a phase
order parameter ¢ which can be conserved (as ¢ in equation (3.1)) or non-conserved, and a

vector stress &, a scalar internal body force 7 and an external body force . The integrals
/ —£-Véav, / 7 dV, / v dV (3.2)
1% v 1%
describe powers on the atoms of V' and are used to formulate a microforce balance
V-&€+m+~y=0 in V. (3.3)

This is shown in detail in Papers B and D for a multiphase model coupled to diffusion and
in case of Paper D, with mechanics. To achieve an evolution equation for ¢ constitutive
equations have to be specified. In this example that would be &, 7 and . These constitutive

equations cannot be chosen freely. They have to fulfil the first and the second law of



thermodynamics. Especially with the help of the Clausius-Duhem inequality in Papers B
and D, restrictions for constitutive equations are formulated which are necessary conditions
for the validity of the model. The sketched derivation leads in the simplest case to the

classical Ginzburg-Landau equation

86 =rAe — f'(9) (3.4)

where f is a double-well potential and § and r are material parameters. The classical

Cahn-Hilliard equation
¢ = DA(f'(¢) — pAc), (3.5)

can be derived in the same manner. One main difference is that the conservation law (3.1)
is used. In equation (3.5) f’ is again a double-well potential, D is a constant diffusion
coefficient and p is a constant material parameter.

The derivation within the framework of generalized stresses is very universal and can be
used to derive equations for diverse problems considering physical principles, such as the

microforce balance and the first and the second law of thermodynamics.
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4 Objectives

The objectives of the present work are as follows:

e The first objective is to develop a thermodynamical framework based on general-
ized stresses as introduced by Gurtin [10] to model the lower and upper bainite
transformation. To do so a combination of a multiphase Ginzburg-Landau equation
and a Cahn-Hilliard diffusion equation is required which can be found in Paper
B. Furthermore, the coupling with mechanics is necessary, such that a multiphase

field /diffusion /mechanical framework is required which is derived in Paper D.

e The second objective is the development of prototype models based on the thermody-
namic frameworks to simulate the bainitic transformation. In this step constitutive
equations have be to proposed to achieve a coupled system of partial differential
equations. Prototype models can be found in each paper within this thesis. A main
challenge of this objective is the modelling of the carbon diffusion for upper and

lower bainite. The idea and resulting model can be found in Paper C.

e The third objective is a finite element implementation and programming of the
proposed system of partial differential equations. The documentations of the finite

element implementations can be found in each paper.

e The fourth objective is to solve some elementary initial boundary value problems on
a finite size domain. The results should show the transformation characteristics of
bainite. Results of the corresponding prototype models can be found in the related

papers.
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Abstract

Lower bainite is a steel microstructure composed of austenite, ferrite and car-
bides within the ferrite. The transformation of austenite to lower bainite is one
of the most complex transformation in steel. The carbon concentration of bainitic
ferrite is of major importance for the carbide precipitation. A phase-field model to
simulate the transformation of lower bainite including carbon diffusion and carbide
formation is presented in this work. The model is based on a classical phase-field ap-
proach coupled with a viscous Cahn-Hilliard equation to simulate the separation of
the carbon. During the isothermal simulation a sheaf of bainitic ferrite grows. The
carbon starts to diffuse within the supersaturated ferrite which can only contain a
fraction of the carbon which was stored in the austenite. At the accumulations of the
carbon concentration carbides are precipitated. The simulations show successfully
the described growth characteristics of the lower bainite transformation including

carbide formation.

Keywords: Phase-field, Bainite, Phase transformation, Diffusion, Cahn-Hilliard

1 Introduction

Bainite is a microstructure of steel that can be formed by heat treating. It can be build
by continuous cooling or isothermal between the temperatures of perlite and martensite

(250 °C — 550 °C). In materials science a distinction between upper bainite and lower

15



bainite is made. Upper bainite forms at higher temperatures whereas lower bainite forms
at temperatures closer to the martensite start temperature. The transformation always
starts from austenite. At first bainitic ferrite sheaves grow from the borders of the grain.
These sheaves consists of smaller sub-units. Within the supersaturated ferritic sheaf the
carbon starts to diffuse, because ferrite can contain much less carbon than austenite [1].
In upper bainite the majority of the carbon partitions into austenite and precipitates as
carbides where the concentration is high enough. At lower temperatures the diffusion
is slower and most of the carbon cannot partition out of the ferrite. It starts to build
accumulations and precipitates as carbides within the sheaf. This movement of the carbon
within bainitic ferrite can be denoted as uphill diffusion. The resulting microstructure is
lower bainite.

Due to its advantageous balance of strength and ductility, bainite has applications in
the automotive industry, in highly loaded parts of the railway and in other divisions of
engineering. Models to describe the formation of bainite can be helpful tools to accelerate
the development of new applications, because the transformation is a very time-consuming
process.

In materials science the phase-field method is widely used to model diffusive/recon-
structive transformations as well as displacive ones [2, 3]. It is based on a system of
partial differential equations which describes the growth of phases and can be derived
from the Ginzburg-Landau equation [2|. The evolution of the so called order-parameters
is modeled. At the interfaces of the phases the parameters vary continuously. Therefore
the solution does not show sharp interfaces, but diffuse ones which can be governed by a
thickness parameter. The advantage of this approach is that it is not necessary to track
the interfaces.

Especially for steel there are many approaches describing the transformations auste-
nite-to-ferrite [4, 5|, austenite-to-perlite [6], Widmanstétten formation [7], austenite-to-
martensite [8, 9] and others. Phase-field models with coupled diffusion equations exist,
too [10]. However there are few phase-field models for the bainitic transformation [11, 12],
because it is one of the most complex transformations in steel. Song et al. [12] simulate
the growth of a bainitic sheaf with the phase-field method combined with a modified Fick’s
diffusion equation to model the partitioning of carbon at the interface between bainitic
ferrite and austenite. This model is more relevant for upper bainite and it does not include
the precipitation of carbides. They show high-quality HRTEM images. Arif and Qin [11]
simulate the evolution of the subunits which arise on a lower scale than bainitic sheaf

growth. Therefore they do not show a partitioning of carbon within the bainitic ferrite
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phase but a diffusion out of the phase. Remarkable is the three dimensional autocatalysis
simulation. The formation of lower bainite, the partitioning of carbon within the bainitic
ferrite and the precipitation of carbides have, up to our knowledge, not been considered
until now.

There are other approaches simulating the evolution of bainite different to the phase-
field method in the literature. For example Sidhu et al. [13]| present a model describing
the kinetics for an isothermal transformation. They calculate the volume fraction of bai-
nite depending on the transformation time and the temperature. Another work [14] also
focuses on the volume fraction growth and the incubation time of the bainitic transforma-
tion. Lambert-Perlade et al. [15] report about multi-scale crystallographic and metallo-
graphic investigations with analytical micromechanical models. Mahnken et al. [16] focus
on the multi-scale simulation of the transformation. On the micro level it is based on
an ordinary differential equation which considers the growth of different crystallographic
variants. Another publication [17]| discusses a macroscopic model with transformation
plasticity.

In this work we present a model to simulate the bainitic transformation considering
bainitic ferrite, austenite, carbide and the diffusion of carbon within a bainitic sheaf.
The displacive transformation [1] between austenite and bainitic ferrite is described by a
phase-field method. To simulate the complex diffusion behavior of the carbon within the
bainitic ferrite the Cahn-Hilliard equation is used. This equation is central to materials
science because it describes the movement of atoms between cells [2] and has been applied
to simulate carbon diffusion before |7, 11|. Fick’s law cannot applied here, because it
does not describe uphill diffusion within one phase. The precipitation of carbides will
be simulated with the phase-field method again. We do not consider crystallographic
orientation, crystalline anisotropy or any kind of stress and strain.

An outline of this work is as follows: In Section 2 the governing equations of the
coupled initial boundary value problem are presented. Firstly the multi-phase-field model
based on the Ginzburg-Landau equation is derived from the local free energy. In a second
step this model is extended by anisotropy. In Subsection 2.3 the diffusion equation is
introduced. This equation is coupled to the phase propagation. The last subsection of
Section 2 is about the precipitation of carbides. Section 3 provides a detailed insight into
the implementation of the model. In Section 4 three numerical examples are presented
showing the lower bainitic transformation. The last section is a summary and gives an

outlook for further investigations.
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2 The phase-field theory

2.1 Governing equations

The phase-field model is based on the Ginzburg-Landau equation [2]. It can be derived
using a functional of the local free energy F' which depends on the local phase-field order-

parameters ¢; and their spatial derivatives V¢, [18, 19, 7]

Np
F(01,0s60, V0100 = [ 50 {70661, 90.V05) + 0o v, (1)
Vi (i<))

where N, denotes the number of phases. The density of the local free energy functional

is defined as the sum of an interfacial energy density fimtf

5 and a potential free energy

density ff'ft. As a working solution we use the interfacial energy density [18] with the
gradient energy coefficient ¢;;

fi = i (6:iVe; — & V). (2)
For the potential energy term there are different approaches in the literature [3]. Figure
1 illustrates two commonly used potentials, the double well potential and the double

obstacle potential. We use the standard double well potential such that the potential free
energy reads [18]

pot_L 2.2 13 2,_13_2.
fij = Tay, |:¢Z ¢j My (3¢1 + 07 9; 3¢j ¢]¢z)} ) (3)

where m;; is the thermodynamic driving force and 1/a;; is the potential constant between
the phases ¢ and j.
By minimizing the local free energy the evolution equations of the phase-field order-

parameters are derived [18, 19|

Np

- 1 o 0 oy
¢i = j:lzj;,éi Tij <V8V¢i a@) (fij + fz.j )
Np 1 ¢¢

— Z P |:€ij (%Vz@ - ¢z’V2¢j) - 2;.7 (925] — ¢ — 2mij) ) ()
j=14#i " .

The parameters €;;, a;;, 7;;, and m,;; are now replaced by the physical material parameters,
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Figure 1: Double well and double obstacle potential

interface mobility p;;, interface energy o;;, interface thickness 7;; and the change of Gibbs

energy AGW Note that Mij = Hjiy, Oi5 = O and Nij = 1ji but AGZJ = —AGJZ

Nij Nij
Tij = —, Qi = oo €5 = 0ijNij, m;; = —6AG;ja;;. )
J 1 J 20, J 37135 J 3 Qij (5)

The derivation of the equations (5) using the Gibbs-Thomson equation [20] can be found

in the appendix. With these results the evolution equation of the phase parameters reads

N,
. » 36 6 . AGZ
(bi — E Hij |:O'ij (((ﬁj VQEZ% — 451- 72(25]') 2 ¢1¢J(¢J (bz)) _ —]¢Z¢]‘| (6)
j=1,j#i mj !

For the lower bainitic transformation considered in this work /V,, = 3 phases are involved:
1. bainitic ferrite (¢1),
2. austenite (¢2) and

3. carbide (¢3).

2.2 Phase-field anisotropy

To simulate the typical slim form of bainite sheaves an anisotropic phase-field model as
presented by [21| and [22] is used. The interface energy o;; is redefined as a function of

the actual growth direction 6 and of a predefined main growth direction called 6,

oij = 0i;(0, 0p). (7)
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To be specific we use
0i;(0,6) = agj (14 s-cos(f —0y)), (8)

where J?j is the constant material parameter of the interface energy between phases ¢ and
j. In this approach anisotropy is only present between the ferrite and austenite phases.
Therefore 012 and 6 read

91

019 = 0% - (1+5-cos(f —6)), where 6 = arctan %. 9)

ox

The parameter s is used to calibrate the strength of anisotropy. Since only one sheaf shall
be simulated the main growth direction 6y of the ferrite can be chosen arbitrary. This

anisotropy approach is a simplification and an issue for further investigations.

2.3 Carbon diffusion

The diffusion of carbon is crucial for modeling carbide precipitation. The ferrite can
contain considerably less carbon. For example it may only contain 0.022 wt.% carbon
at about 1000 K [23|. Prior to the transformation of austenite to ferrite, the austenite
may contain much more carbon, which depends on the actual alloy. During the lower
bainitic transformation the transition from austenite to ferrite is too fast for the carbon
to diffuse out of the austenite. That is why the carbon starts to diffuse within the super-
saturated ferrite and builds accumulations of high concentration due to its lower energy
level. This mechanism named uphill diffusion continues until it reaches the maximum
carbon concentration of 6.67 wt.% [24]. At this stage the carbide precipitation starts.
In this case uphill diffusion cannot be described by Fick’s law. Therefore we use
the Cahn-Hilliard equation [25, 26, 27|, which is widely used in material modeling, espe-
cially for carbon diffusion [7]. In contrast to the phase-field equation, the Cahn-Hilliard
equation, describing the transport of atoms between unit cells, is a conservation law [2].

Here we use a viscous Cahn-Hilliard formulation due to its superior characteristics for
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homogenization [28]

1. J=—-p1MVn

2. n=ac —bViec+ df'(c)

3. fle) = (Xpyg — ¢)*(Xoa — ¢)?

4. f'(e) = =2(Xve — ¢)(Xoa — ¢)* = 2(Xoa — ¢)(Xvg — ¢)*. (10)

In equation (10.1) the diffusion flux J is defined as the product of the ferrite phase
parameter ¢, the diffusion coefficient M and the gradient of chemical potential . Specific
in this work is the phase parameter ¢;. Due to the fact that it only varies between 1 and
0 it does not change the characteristics of the diffusion. The diffusion equation is coupled
with the phase-field model by this parameter, because the diffusion flux can only be
nonzero in an area where the ferrite ¢; dominates. This model is physically reasonable
because this kind of diffusion takes only place within the bainitic ferrite. The function f
in equation (10.3) is a double well potential as plotted in Figure 2. It restricts the carbon
concentration to remain between the upper Xog and lower Xy concentration limit.
Using the mass conservation law one finally obtains the evolution equation for the

carbon concentration:

¢=-V-J=pMV*n+ Ve MVn. (11)

2.4 Carbide precipitation

The precipitation of carbides occurs only at places where the local carbon concentration
is at its high point Xpog = 6.67wt.%. To model this physical behavior the interface
mobility parameter p13 between bainitic ferrite and carbide is defined as a function of the
local carbon concentration. With regard to the numerical implementation a smooth step

function is defined

0 if ¢ < Xog—¢
ps(c) = pls - 4 1 if ¢ > Xog (12)

1 1 o (T
5 T 5-sin(f-c+

e

o 13

- Xog) else,

where 195 is the constant material parameter of the interface mobility and ¢ governs the

transition zone illustrated in Figure 3. For the simulations presented in this work ¢ = 1
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the Cahn-Hilliard equation precipitation

is used. The advantage in extending the interface mobility parameter rather than the

change of Gibbs energy AG, is that the carbide nucleuses cannot decline to zero while

the carbon concentration is low.

3 Numerical implementation

The system of partial differential equations (6), (9), (11) and (12) is solved using a finite
element method in space. The resulting nonlinear system of equations is solved with
Newton’s method. In the two dimensional space quadrilateral elements with linear shape
functions are used. The model described above has four unknowns per node: ferrite ¢,
austenite ¢q, carbide ¢3 and the carbon concentration c. Since the Cahn-Hilliard equation
(11) has fourth-order derivatives the chemical potential 7 in equations (10) will also be
used for discretization, thus leading to five unknowns per node: [c n o1 ¢y ¢3 T.

The weak form of equation (6) with the test function v, using Gauss’s theorem and

homogeneous Neumann boundary conditions reads

Np
/Vwéi dV:/V.Z i {Uij (VV¢(v¢j¢i_v¢i¢j>

=1,

¥

> _ GAGZJ

- 2—26%@%(% — ;) 1/¢¢i¢]} dv. (13)

ij

The diffusion equation (11) can be written in weak form as

/ Ve dV — / Ve MV dV — / VN MV dV =0, (14)
|4 \%4 1%
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where v, denotes the test function for the carbon concentration. Using Gauss’s theorem

and homogeneous boundary conditions we end with
/ v.e dV + / Vv.pyMVn dV = 0. (15)
v 1%

Since the chemical potential should also be discretized the weak form of the evolution

equation of 7 defined in equation (10.2) can be derived as
/ vyn dV = / vpac + bV, Ve + v,d(yc® + Be® + ac+ &) dV =0 (16)
1% 1%
with the derivative of the generalized carbon potential function

f'(c) = vc® + Bc* + ac+ €, where
a=—2X3q —2Xte — 8XyaXog ,
B =6Xoc + 6Xvq , (17)
v =4,
¢ =2XyaXpo +2Xoa X -

x Nodal quantities are denoted by the superimposed hat (A) The degrees of freedom at

. .. a7
every node are d = [Q N ¢1 ¢o ¢3| . The four shape functions per element are inside

the row vector N, so that the quantities ¢, n and the ¢; can be written as scalar products:

c=Né, n= N, ¢;=Ng¢; , i=1,23 (18)

For gradient terms the matrix B is defined as

N N
_ —w] i N, - (19
N ' ox
_7y
The gradients of the unknowns read
Ve=Be,  Vn=DBij, Vé; =B, i=123 (20)

The test functions are formulated analogously. The time dependence is discretized with
an implicit Euler method. Nodal quantities with a superscript (-)"~! denote the solution

of the last time step. The current one which is denoted by (-)" is omitted for brevity.
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A local residual vector can now be defined as R = [R° R" R%]" with

1
‘= [ — NTN dQ 21
o= [ NN an (21)
Qe
~n _ ~n—1
B = [a¥"N) S5 d(E + a(NTN)E+ N (NP
Qe
+yNT(Ne)*) +b(B"B)e — (NTN)7j dQ, (22)
AT An 1
o T ?z _—z T " T n n
R = [ N'N + Z wig |0\ — (BTB)o, - (No,) + (B'B)o, - (No)
Qe J=L1j#1

- BNTNG - 6 )06 (v ¢>)+ S AGuNT (6 ()| d. (23

772 ¥ ij

For Newton’s method the tangent of the residual function R is needed:

(K K7 K 0 0|
K" K™ 0 0 0
Kzi%z I GO L < B (24)
= 0 0 K% [9202 [P203
e o e e oo

where the matrix entries are calculated as follows:

N,
4 OR% L j
K% = a—A = ﬂTﬂ—t + Mij |:0-ij ((ETE)(MQJ)
0. g J=1,j#

— (B"B)(N¢,) — f]—GNTN(Ngb )-(2-0,— @)) LN (N@j)] dQ, (25)

1] Mij

OR?
9,

K%% —

= [y o - BRI

F BTG, N - SpNTN(ND) (N (6,26 ) + - AGNTN - (NG| do, (20

ij (]
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OR® 0 7
KW:W:/ %[%(-(ETW (No,) + (B"B)d, - (No,)

Qe

- ;’—6NTM¢ —,)(No,) - (Mgﬁg)) + %AGM(MTﬂ)él : (ﬂgfg)} N dQ, (27)
1) )

OR%s 0 N R .
K% = re Z/% {%’( (B"B)d, - (No,) + (B"B)o, - (N9))

Qe
36 A A - 6 - .
- NN, - 8 (95 ) + S AGNTN, (3] A de, 29
ij E

1

K¢ = [ — . NTN dQ 2

K= [ 5 NN a0, (29)
Qe

K™= / _NTN g, (30)

K :/M. (Mél)ﬁTﬁ s, (31)

K™ = / Ait "NTN —b-B"B +d(a- (NTN) - 28 (N'N) - (N¢)
Qe
—3y- (NTN) - (N&)?) dQ, (32)

aRC
Ko = / M - (N(B"B)) ) d€. (33)
To evaluate the integrals a Gauss-Legendre rule is used.

4 Numerical examples

4.1 Basics

In this section three numerical examples for lower bainitic transformation are presented.

The evolution of a ferrite nucleus and the ensuing diffusion of carbon within this phase are
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Parameter Symbol Value/Unit

Strength of the anisotropy S 0.5

Maximum carbon concentration in ferrite Xve  0.0704 wt.% [12]
Maximum carbon concentration in steel Xoa  6.67 wt.% [24]
Bainitic main growth direction Oo 0°
Cahn-Hilliard viscosity factor a 0.00002 s
Cahn-Hilliard balance factor b 0.00016 pm?
Cahn-Hilliard potential factor d 0.014 1111112
Diffusion coefficient in bainitic ferrite M 0.02 WSHQ
Bainitic ferrite/austenite interface energy 012 0.001 ur{r@
Bainitic ferrite/carbide interface energy 013 0.001 m‘LQ
Austenite/carbide interface energy 093 0 }HJDQ

Bainitic ferrite/austenite interface mobility 12 0.5 pjrf
Bainitic ferrite/carbide interface mobility il 0.5 p;j
Austenite/carbide interface mobility H23 0 555

Gibbs free energy between bainitic ferrite and austenite AG1o 1.07 pfn?,
Gibbs free energy between bainitic ferrite and carbide AG13 —0.865 #JW
Gibbs free energy between austenite and carbide AGos 0 pgnS
Interfacial thickness Mij 0.17pum

Table 1: Material parameters for the phase-field method and the Cahn-Hilliard equation.

calculated. The precipitation of carbides completes the simulations. The first example
“Low carbon” starts with initially 1.93 wt.% and the second one with 3.0 wt.%. Small
randomly distributed perturbations are added to both initial conditions. The third ex-
ample starts without perturbations in the carbon field and exactly 1.93 wt.% of carbon
concentration. All remaining parameters do not change.

In materials science it is common sense that the bainitic nucleation is based on pre-
formed nucleuses [29]. Therefore a small nucleus of ferrite is implemented as an initial
condition. The growth of the bainitic sheaf will start at this nucleus. Furthermore very
weak nucleuses (around ¢3 = 0.01) of carbide are randomly distributed over the domain.
The austenite phase completes to one. For physical reasons all variable fields are imple-
mented with homogeneous Neumann boundary conditions.

Table 1 shows all required parameters for the model. Most of the them are only
tentative and are an issue for further investigations. They are used as a working solution
to qualitatively model lower bainitic transformations. Some of them may be determined
with the CALPHAD method [12]. The parameters depend on the actual alloy and the
transformation temperature (e.g. AG;;(T")). Due to the small interfacial thickness, a very
fine discretization of the 3pm x 3pm area is needed. For the following examples a grid

with 16384 elements and an edge length of 0.0234 pm is used to have at least 7 elements
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for the diffuse interfaces which have a width of n;; = 0.17pm. The results of all three
simulations show a phase transition over a period of 30s discretized with a step size of
At = 0.05s.

4.2 Example 1: Low carbon

a) Austenite

b) Bainitic ferrite

c¢) Carbon concentration

d) Carbide

Os 5s 15s 30s

Figure 4: Example 1: Lower bainitic transformation after 0s, 5s, 15s and 30s.

Figure 4 shows the evolution of the three phases and the carbon concentration of
Example 1. Part a) shows the austenite, part b) the bainitic ferrite, ¢) shows the carbon
concentration and d) the carbide phase. The initial conditions can be seen in the left

column. As described in Subsection 4.1 a small nucleus of bainitic ferrite is introduced
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Figure 5: Example 1: Initial conditions of a) carbon concentration and b) carbide phase.

on the left side. The carbon concentration and the carbides are uniformly distributed
with small randomly distributed perturbations which can be seen in Figure 5 due to the
different scale. The second column of Figure 4 shows the fields after 5s. It can be seen
that the sharp interfaces of the initial conditions between the austenite and the bainitic
ferrite become diffuse and the sheaf grows. The carbon starts to diffuse within the bainitic
ferrite and build accumulations. These accumulations have globular or elliptical shapes.
As shown in Section 2.3 the segregation of carbon can only take place within the bainitic
ferrite. There are no visible changes in the carbide phase. The third column shows
the results after 15s. The bainitic sheaf grows and within the ferrite the old carbon
accumulations merge to a larger one while new accumulations grow near the boundary of
the sheaf. The new ones have an elliptical shape again. One carbide on the left boundary
is now visible. In addition two small nucleuses of carbide grow within the bainitic sheaf at
places with maximum carbon concentration. The last column in Figure 4 shows the results
of the simulation after 30s. The bainitic sheaf nearly fills the whole domain. In addition to
the merged carbon accumulations there are many smaller elliptical accumulations which
grow along with the moving interface. There are more carbides now. The carbides have
the same shape as the carbon accumulations.

Figure 6 additionally shows the phases and the carbon concentration over time at two
points. The point P; in Figure 6.a is located at * = 1.5um, y =1.5pum, point Py in
Figure 6.b at x = 2pm, y = 2pm. The left axis is used for the carbon concentration
in wt.% while the right axis is the scale for the phases varying between zero and one.
The phases plotted are austenite, bainitic ferrite, carbide and the sum of all phases. The
sum is just an error variable, which stays perfectly at one at all time. At the beginning

austenite is the dominating phase at both points. All other phases are close to zero. The
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Figure 6: Example 1: Phases and carbon concentration over time at points a) Py (x =
1.5pm, y =1.5um) and b) Py (z = 2pm, y = 2 pm)

carbon concentration has its initial condition at around 1.93wt.%. This concentration
does not change until the phase transition starts. In Figure 6.a the carbon concentration
declines firstly when the bainitic phase starts to grow. However after a short time period
the concentration increases. The chosen point is placed within a carbon accumulation, but
not in the center of it. That is why the carbon concentration starts to decrease but than
rises to its maximum value of Xpg = 6.67 wt.%. Shortly after the carbon concentration
reaches the top the bainitic ferrite declines and the carbide starts to precipitate. At
30s the phase transformation between bainitic ferrite and carbide is completed. Figure
6.b shows the evolution of the phases at a point with minimum carbon concentration. The
carbon starts to diffuse right after the bainitic ferrite starts to grow but than it converges
to the minimum concentration. That is why the carbide phase stays zero and the bainitic

ferrite becomes the dominating phase at this local point.

4.3 Example 2: High carbon

The second example has 3.0 wt.% carbon and the initial nucleus of bainitic ferrite has a
slightly different shape as can be seen in Figure 7. Here again initial conditions for the
carbon concentration and the carbide phase as seen in Figure 5 are applied. After 5s the
bainitic nucleus has grown. Within this supersaturated nucleus the carbon moves to build
maxima surrounded by an area with nearly no carbon left. In contrast to Example 1 the
largest carbon accumulation has a lamellar shape. There are no carbides visible yet. The
plots of the next instant of time show more lamellar carbon accumulations. One carbide

at the left boundary and shades of more growing carbides are already visible. The last
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column shows the results after 30s. Comparing the carbon field with the one at t = 155
it can be observed that some accumulations merge. The main difference between the two
examples is the shape of the carbides. The initial carbon concentration differs while all
other parameters, initial and boundary conditions are the same. Due to this it can be said

that the initial carbon concentration influences the shape of the carbides significantly.

=3

c¢) Carbon concentration

a) Austenite

b) Bainitic ferrite

B)).\

.
5s 15s

Figure 7: Example 2: Lower bainitic transformation after 0s, 5s, 15s and 30s: a) Austen-
ite, b) Bainitic ferrite, ¢) Carbon concentration in wt.%, d) Carbides.

d) Carbide

Os 30s

The results for two points are plotted over time in Figure 8. The diagrams show the
carbon concentration, the bainitic ferrite, austenite, carbides and the sum of phases over

the time measured in seconds. The scale of the carbon concentration is on the left side
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Figure 8: Example 2: Phases and carbon concentration over time at points a) Py (x =
2um, y = 2pm) and b) P3 (z = 0.5pm, y =1 pm)

and the values are given in wt.% whereas the phases are measured on the right axis. The
point plotted in Figure 8.a is located in a ferrite area. After about 13s the austenite starts
to transform to bainitic ferrite. That is exactly the time when carbon starts to diffuse,
because the new built ferrite is supersaturated. After a short wave, the carbon declines.
Due to this, the carbide does not even start to grow at this location. It remains constant
close to zero, at its initial value.

The phase transformation plotted in Figure 8.b is more complex. The bainitic trans-
formation starts in the same way with a growing bainitic ferrite phase. Then the carbon
starts to diffuse. It runs through some ups and downs until it reaches its maximum con-
centration Xpg = 6.67 wt.%. Because of this the carbide phase slowly starts to grow while
the bainitic ferrite decreases in the same way. At the end of the simulation this material

point consists of nearly 100 % carbide. The sum of the phases is one all the time.

4.4 Example 3: Influence of the initial carbon perturbation

The results above show that the shapes of the carbides vary dependent on the average
initial carbon concentration. Other numerical examples also show a dependence on the
perturbation of the initial carbon concentration. In this third example the initial per-
turbation of the carbon is disabled. All other parameters are the same as in Example 1.
Figure 9 shows the carbon concentration of Example 3 in part a) and of Example 1 in
part b) at the same time. While in Example 1 the diffusion in the supersaturated ferrite
starts directly, it takes about 16s to start the diffusion without any perturbation. As

a result of this the carbon accumulations are smaller, the carbides precipitate later and
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Figure 9: Carbon concentration in wt.%: a) Example 3 without and b) Example 1 with
initial perturbations.

their extensions are also smaller.

5 Conclusions and outlook

In this work, a phase-field model to simulate the formation of lower bainite is presented.
Simulations showing the described transformation kinetics are performed. The microstruc-
ture evolution including the coupled carbon diffusion is successfully shown. A single
bainitic sheaf grows during isothermal transformation by means of the phase-field method.
Within the bainitic sheaf carbon starts to diffuse governed by the Cahn-Hilliard equation.
At places where the carbon concentration reaches its maximum carbides precipitate. As
demonstrated in the examples the carbides may have lamellar or globular shapes.
However, parameter identification has not been taken into account in this work. This
will be done in future work using the CALPHAD method. Besides it will be necessary
to simulate the carbide precipitation within the residual austenite. A coupling with the
mechanical problem will be introduced in further work to improve the anisotropic phase

growth and goal-oriented adaptivity [30] might be a worthwhile objective.
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Appendix

The aim of this appendix is to derive relationships between the four basic parameters
€ij, Wij, Tij, Mi; of equation (4) and the physical material parameters, interface mobility s;;,
interface energy o;;, interface thickness 7;; and the change of Gibbs energy AG;;. The
results are shown in equations (5). The change of coefficients will here be done using a
two phases model for brevity. With N, = 2, ¢, = (1 — ¢;) and V¢; = —V¢; it follows

from equation (4)

; [ (1 — ¢
¢; = i € ((1— 1) V3¢ — &:V(—=Vy)) — M(l — Qi — ¢ — 2mij)}
i | aij
= % €ij <V2¢i — V20 + ¢iv2¢z’) — W(l —2¢; — 2mij):|
_ 1 -EijVQ . — ¢l — 1) (1 — ¢i) + Mmij]
Tij L aij 2 aij
17 9 1 1 my;
= —|€;V i — —di(1 — &) (5 - ¢z‘) +—¢i(1 - ¢z):| (A1)
i | aij ai;
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For the next steps we define:

¢ = Qay T 1= Tij, Y= E‘j’ € 1= €5, m = a_” (A.2)

With equation (A.2) equation (A.1) can be written as [20, 3|
. 1
o= 0 - 10(1-0) (5 - 0) + mo(l - 0), (A3

According to [20] and [3] the stationary one-dimensional solution for equation (A.3) is

6(r) = 3 tanh (3%) +3 (A)

where the boundary values of the interface are ¢p(x = —1/2) =~ 0.05 and ¢(z = n/2) ~ 0.95

as shown in Figure 10.a.

®(x)
0.95

0.5

Figure 10: a) Stationary one-dimensional solution, b) two-phase model [20]

The two-phase model can be plotted schematically as shown in Figure 10.b. The two
coordinates s and r are introduced. Both are parallel to the x coordinate. The current
location of the interface center is described by s. The r coordinate is the corresponding

cylindrical coordinate. From Figure 10 b) it is easy to see that
r=r—s (A.5)

holds. The Laplacian operator in two-dimensional cylindrical coordinates is

P 109 10%

2=V Ga o g

(A.6)

With the assumption that the phase variable cannot change in the parallel direction to
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the interface (= ¢ direction),

8¢_O o

it follows directly for equation (A.6)

0° 0
Ap= V¢ = a—$+%a—f. (A-8)

Because x and r point to the same material point inside the interface, it follows that

o9 _0¢  O¢_ 0%

or  Ox’ or: 0z (A.9)
The equations (A.8) and (A.9) inserted into (A.3) yield
. 2 10 1
TH=¢ {@‘f‘;%} ¢ —79(1 —¢) <§—¢) +mo(l — ¢). (A.10)
The time derivative of the phase-field variable can be determined by the chain rule:
. 09  09dxr 09
TR P TR T (A.11)

The variable v is the velocity of the interface. It is assumed that the interface thickness
n is constant. With (A.11) it follows for (A.10)

ro-e] 22 00 _ 51— g) (3-0) +moi-0. (a1

r| oz 68:162

To determine the derivatives of the stationary solution, it is firstly converted into its

exponential notation

1 3 1 e(62/m)
— “tanh S — A.13
¢l) = 3 tan ( " ) Ty T 11 (A.13)
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The derivatives are then

L) Ge(6x/m) 6 e6z/n) 1 6

or - 77(6(69:/77) + 1)2 - 5 e6z/n) 11 e(6z/n) 4 1 - Eqﬁ(l —¢)
926 36e02/m (e®x/m —1) 72 eOzm 1 (e5/m) 1)
Ox? n? (e2/m + 1) n? (e®2/m) 41)% 2 (e®/m 4-1)

~Zo1-0) (5-0)

with

e(6z/m) e(6z/n) 4 1 e(6/m) 1

(I—-¢)=1- eOx/m) 11 e®x/m) + 1  e®x/m) 41  ea/m) 4+ 1

2 el6a/m) 11 6z/m) 1  el6a/m) 41

1 [e6z/m) _ 1
) (e<61‘/ﬂ> T 1) '

The equations (A.14) and (A.15) inserted in (A.12) deliver

2 () -9
r|lmn n 2

Equation (A.18) becomes independent of ¢ once the product

(2 (4)-o

This will be the case if the condition
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(A.14)

(A.15)

(A.16)

)

(A.17)
(A.18)

(A.19)

(A.20)

(A.21)



According to [3] the Gibbs-Thomson equation is
v=plok — Af] (A.22)

with the already known physical coefficients. The comparison of equation (A.21) with
equation (A.22) allows one to obtain relationships between the phase-field parameters

(€5, aij, 7;; and my;) and the physical material parameters (u;;, 05, 17;; and AGj;):

1
uzﬂ, 0:5, k= -, Af:—m. (A.23)
T n r 6
After transposing and with equation (A.19) it follows
e=on, 7:72€, TIQ, m = —6Af. (A.24)
n H
The back substitution with equation (A.2) yields
Ti'zﬁa a’i':ﬂ7 €5 = 04Nij mZ:_6AGza’Z7 (A25)
I 1T 720, j i j i
where
Afij = AGy; (A.26)

and due to the symmetry
eij = Ejia aij = aji, mz-j = —mji, Uij = Uji) AG” = —AG]Z (A27)

hold.
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Abstract

A thermodynamic framework for a coupled Ginzburg-Landau and Cahn-Hilliard
system is presented in this work. It is based on the concept of generalized stresses
and microforce balances as introduced by Gurtin (1996). His concept is extended to
compute phase changes and diffusion simultaneously on the same domain and adding
coupling terms between the quantities. The resulting thermodynamic framework
distinguishes between basic balance laws which are universal and constitutive equa-
tions which depend on the specific material. As an application the transformation
of austenite to lower bainite is simulated in this work. The multiphase field model
describes the evolution of bainitic ferrite and the precipitation of carbides while the

Cahn-Hilliard equation governs the carbon diffusion within the bainitic ferrite.

Keywords: Multiphase field method, Cahn-Hilliard diffusion, Lower bainitic trans-

formation, Thermodynamic framework, Microforce balance

1 Introduction

The phase field method is widely used in materials science to model phase transformations

[12, 26]. There are several approaches describing for example Widmanstétten formation
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[30], austenite-to-martensite transformations [31, 23], austenite-to-ferrite [19, 14] and
austenite-to-perlite transitions [27]. Phase-field approaches for the bainitic transformation
are presented in [5, 25|, however they do not consider the precipitation of carbides and are

not based on a thermodynamic framework.

W\ W
"l i

Figure 1: Lower bainite TEM image ob- Figure 2: Lower bainite BFTEM micro-
tained by isothermal heat treated at 350 °C  graph. (©) Chair of Materials Science, Pader-
[22]. Reprinted from [22], (©) 2007 Elsevier — born University.

B.V., with permission from Elsevier.

2.5pm

¢l Growth tip of
Bainite sheaf

fa Bainite sheaf

Figure 3: HRTEM micrograph of 100Cr6 isothermally heat treated at 260°C for 2500
s [25]. Reprinted from [25], (© 2011 by The Minerals, Metals, & Materials Society, John
Wiley & Sons, Inc., with permission from John Wiley & Sons, Inc.

The bainitic transformation starts with austenite and a uniformly distributed carbon
concentration. During the isothermal heat treatment a phase called bainitic ferrite grows
which can contain less carbon as austenite in its equilibrium state. The nuclei are called
bainitic sheaves and consist of subunits. After the displacive transformation from austenite
to bainitic ferrite at low temperatures, the ferrite is supersaturated with carbon, which

therefore begins to diffuse [7]. Due to separation kinetics the carbon starts to build
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accumulations where subsequently carbides precipitate. All these processes are running
within the bainitic ferrite phase while only a few carbides precipitate between the bainitic
sheaves. This transformation is called lower bainitic transformation.

At higher temperatures the carbon can diffuse out of the bainitic ferrite and carbides
precipitate within the austenite phase. The corresponding microstructure is called upper
bainite, however not considered in this paper.

Figure 1 shows a micrograph of a lower bainitic sheaf transformed at 350 °C [22]. The
sheaf has a typical plate-like form. The dark needles are small lenticular carbides at an
angle of about 55° — 60° to the main growth direction of the sheaf [22]. They tend to
adopt a single crystallographic variant [7]. Figure 2 presents a BFTEM micrograph at
a smaller scale. Needle-like carbides within the bainitic sheaf can be seen here. Figure
3 shows an HRTEM micrograph of 100Cr6 isothermally heat treated at 260°C for 2500
s [25]. In contrast to Figures 1 and 2 there are rather large carbides with globular shapes
within the lower bainite sheaf. More TEM micrographs can be found in the literature e.g.
in [6, 15].

A continuum thermodynamic framework for Ginzburg-Landau and Cahn-Hilliard
equations based on fundamental balance laws is proposed by Gurtin and Fried [10, 12]
to derive a two-phase field model and a conservative diffusion model. In addition to
balance laws of classical continuum mechanics they introduce a balance law for microforces
considering generalized stresses, external forces and internal forces. These microforces
perform work in conjunction with the time derivative of an order parameter ¢ which
characterizes the configuration of atoms, for example a specific microstructure or phase. A
multiphase field model coupled with deformation is introduced in [11]. The motivation
lies in the strict separation between basic balance laws and constitutive equations as it is
common in continuum mechanics. While constitutive equations may change for different
materials the balance laws and especially the dissipation inequality must hold in any case.
In other works [3, 2] the generalized Ginzburg-Landau formulation for a two-phase field
model is extended with a diffusion equation by means of Fick’s law.

The objective of this work is to extend the thermodynamic framework of [3, 2, 12] for
a coupled Ginzburg-Landau — Cahn-Hilliard system considering an arbitrary number of
phases. Our framework is based on the concept of generalized stresses, where microforces
and microstresses for every phase and the concentration are introduced. In a prototype
model the lower bainitic transformation, as described above, will be simulated using the
thermodynamic framework. We consider an isothermal transformation from austenite to

lower bainite, neglecting other phases like pearlite or martensite which may occur during a
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more complex cooling down process. Furthermore we neglect the influence of stresses and
strains. The characteristic precipitation of carbides within the bainitic ferrite is modeled
here, while the precipitation of carbides within the austenite, which is significant for upper
bainite, is neglected. All these aspects are parts of future work.

This work is organized as follows. Section 2 describes the thermodynamic framework.
It begins with the balances of microforces and the conservation of energy. Afterwards a
Clausius-Duhem inequality is introduced to formulate restrictions for constitutive equa-
tions. Finally evolution equations are presented. In Section 3 a prototype model with
corresponding constitutive equations is proposed to simulate the lower bainitic transfor-
mation. Especially the coupling between diffusion and phase transformation is applied.
Section 4 gives an insight into the numerical implementation. Finally, Section 5 shows two
representative examples for the coupled phase field - diffusion system to model the lower

bainitic transformation and compares the results with the micrographs in Figures 1 - 3.

2 Thermodynamic framework

2.1 Balances of forces and conservation of energy

We introduce order parameters ¢;,¢ = 1, .., N,,, to identify N, different configurations of
atoms which are denoted as phases. In order to describe the balance laws for the related
multiphase field model a system of generalized forces with N, vector phase stresses &;,
internal scalar phase forces m; and external scalar phase forces +; over the volume B is

proposed. Given an arbitrary control volume V' as a subregion of B the integrals
/ —& -V dV, / mid; dV / vidi dV, i=1,..,N, (1)
v v v

characterize the power performed on the atomic configurations within V', which is an
extension of the concept by Gurtin [12] and Ammar et al. [4] for one phase.

Over the volume B a concentration field ¢ and its gradient Ve are defined. In order to
perform power, in the same manner as in terms (1), a scalar internal diffusion force w and

a vector diffusion stress A are introduced

/ —X-VédV, / we dV. (2)
14 14

Note, that an external force is not needed to derive the diffusion equation and therefore

is skipped for brevity. The phase forces in (1) and the diffusion forces in (2) are also
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referred to as microforces. The stresses are referred to as microstresses in literature [12, 3.
The system of microforces and microstresses in (1) and (2) shall be consistent with the

microforce balance for each control volume V
Np
> (—/gi-w; dv+/m¢'i dV+/%q§,~ dV) —/ A-Vc’dV+/wédV:0.
i=1 \4 \%4 Vv \% \%
(3)
Using Gauss theorem renders

Np

Z(— & - o -ndA+/VV-£i-¢§i dV+/‘/Wiqﬁi dv+/v%¢'i dv)

i=1 oV

—/ A-C -ndA—i—/V-)\-c'dV—i-/wc'dV:O, (4)
ov v 14

where n is the outward unit normal vector to V. Transforming equation (4) leads to

Np

- i 0 -mdA V& A+ ) ¢ dV
Z( b naas [ (V6 tmrn)d )

=1

—/ A-¢ -ndA—l—/(V-/\—I—w)c'dV:O. (5)
av v

Equation (5) is satisfied for any fields ¢; and ¢ if and only if

V-&+m+v=0in V for i=1,...,N, (6)
V- A+w=0in V, (7)

& -n=0 on OV for i=1,.., N, (8)
A-n=0 on 9V. (9)

The equations (6) and (7) express the local microforce balances while the equations (8)
and (9) represent the Neumann boundary conditions.
According to the principle of conservation of energy and neglecting kinetic energy, the

time derivative of the internal energy & is equal to the external power P

£ =P, (10)

47



The internal energy rate & is related to a local internal energy rate é as
S:/}dw (11)
1%
Following [2] the external power Pt is equal to the negative internal power P™
Pext — _Pint, (12)

which is the sum of all powers on atoms of V' with internal contribution in (1) and (2)

Np
pint — /v (wc’ —A-Ve+ ;(Wi¢i —&- V¢i)> dav. (13)

Inserting equations (11)-(13) into equation (10) leads to the following local internal energy

rate:
Np
i=1

2.2 Dissipation inequality /entropy principle

The second law of thermodynamics can be formulated as the Clausius-Duhem inequality
[1, 20, 24] in global form

/@dvz—/'¢-nma (15)
|4 oV

where s is the local entropy density and ® the vector entropy flux, defined as, [2, 29]

J
P = —h (16)

This definition introduces three additional quantities: The absolute temperature 7', the
scalar chemical potential p and the chemical flux J which describes the flux of the

concentration c. A mass conservation renders

6=-V-J. (17)
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Inserting equation (16) into the inequality (15) and using Gauss’s theorem leads to a local

form of inequality (15)
Ts— V- (uJ) > 0. (18)

The Helmholtz energy v is obtained from the internal energy e by a Legendre transformation

with respect to the temperature 1" and the entropy s
=e—Ts. (19)

The energy equation (14) and the entropy inequality (18) can be linked using the time
derivative of the Helmholtz energy equation (19). For the isothermal case and with the

mass conservation (17) this leads to the local dissipation inequality

Np

—¢+>\-Vc'—wc'+uc‘—J-Vu+Z<£i-V¢i—wi¢§i>20. (20)

=1

2.3 Restrictions to constitutive equations imposed by the sec-

ond law of thermodynamics

The local dissipation inequality (20) is used next to formulate restrictions to constitutive
equations. To this end, in the first step we choose constitutive variables based on the work
of Gurtin [12]. He allows the constitutive equations to depend on the order parameter ¢
and its derivatives V¢ and ¢ to model capillarity and transition kinetics [12]. Further gen-
eralizations by means of more constitutive variables and especially higher order derivatives
of the order parameter are possible. However this is not within the scope of this paper
since it is not needed for our prototype example.

Our framework should be capable of describing NV, phases. Therefore the order
parameters ¢; and its derivatives range from ¢ = 0 to ¢ = IV,. Furthermore, ¢, Ve and ¢
are appended to the constitutive variables together with the chemical potential p and
its gradient Vy for the diffusion process as described by Gurtin [12]. For convenience all

constitutive variables are combined in the vector

z = [Cv VC, é: s, VM? {¢’L7 V(bh (bz}fvzpl] (21)

The second step is to define the remaining quantities in the local dissipation inequality

(20) by use of constitutive equations. In detail these are the Helmholtz energy v, the
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stresses &;, A, the internal forces 7;, w and the chemical flux J, which, for the time being,

are assumed to be dependent on the vector z and combined as a vector
Z(2) = [(2), J(2), &(2), A(2), {7(2), &(2)}n], Nz=4+2N,  (22)

with the dimension Nj.

In the next step the time derivative of the Helmholtz energy

¢_az@<z>a_c 0(z) OVe  dp(z) e | 0d(z)Ou  d(z) OV
~ Jdc Ot OVe Ot oc Ot op Ot  OVu Ot

.S (awz) 06, 0U(z) OV6:  00(2) aﬁ) (23

O¢p; Ot OV, Ot dp; Ot

=1

is inserted into the dissipation inequality (20):

(u —&(z) - &g@)) ¢t <5\(z) = (Mz)) ve W), 0z, WG,

c oVe oc ol ovVu
N, ~ ~ ~
A S 0(2) | o A W(z)\ ;  0Y(z)
2 Vo, 96, 96,

(24)

From the requirement that the inequality (24) must hold for arbitrary values of z and
the higher order derivatives V¢, ¢, i1, Vi, ¢, V; which appear in inequality (24) at any
time and any material point one can conclude certain restrictions. As outlined next, three
groups of terms in the inequality (24) may be distinguished.

The first group contains all products with the derivatives ¢, ji, Vi and ngZ in inequality
(24). The characteristic property of these quantities is that they are not constitutive
variables of the vector z and thus they appear linearly in (24). Therefore, one could
easily find values for z and the higher order derivatives which would violate (24) and

consequently it follows as necessary conditions

a¢(z) _ 07 8¢_(z) — O, for 7 = 17 '-'7NP‘
oV 9,

(25)

The equations (25) indicate that the Helmholtz energy function ¥ (z) does not depend on
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¢, w, Vi and ¢; but only on the variables Z, resulting into
O(2), where Z=[c, Ve, {¢:;, Vi }o7]. (26)

The second group consists of those terms containing V¢; or Vé in inequality (24). As
for group one, the related higher order derivatives are not constitutive variables of the
vector z and thus they appear linearly in (24). In contrast to group one, the corresponding
factors are composed of additive terms. Again V¢; and Vé could be chosen to violate
inequality (24). Thus it can be stated without loss of generality that the factors have to

be zero as necessary conditions, leading to

and & (z) = g@i) for i=1,...,N,. (27)

oVe

The restrictions (27) define relations between constitutive equations (22) and therefore
reduce its number to 3 + N, < Nz. These results show that the constitutive equations §;
and X are no longer independent but directly dependent on the choice of @@(2)

With the results (26) and (27) the dissipation inequality (24) reduces to

Ve d(z) - (@(z) + 82/(;(62) - u) =3 (fri(Z) 4 82(;)) 6i>0.  (28)

All remaining terms occurring in inequality (28) are part of group three. The characteristic
property is that Vpu, ¢ and ¢; are constitutive variables of the vector z and therefore may
appear linearly or nonlinearly in inequality (28). Since it is not known whether the terms
violate the inequality, they cannot be set to zero as a necessary condition. Instead the

inequality (28) can be written as a reduced dissipation

Np
D=-Vu - J(z)—w™i—) x>0 (29)

i=1

with additional quantities

4 = o(z) + a%ig) — i, (30)
7l = 7.(2) ag}f)’ =1,...,N, (31)
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They are chosen as

wh = —1(2)¢, (32)
ﬂ-;l’is = _61(z>¢17 1= 17 SE) Np: (33)

where 7(z) and (;(z) are constitutive moduli. The chemical flux is chosen as
J(z) = A=), (34)

where A(z) is the second order mobility tensor [12]. Inserting the definitions (30)-(34)

into the dissipation inequality (29) renders

D=Vu Al)Vu+7(2)+ Y Biz)d > 0. (35)

i=1

The inequality (35) holds for any choice of Vi, ¢ and ngZ if and only if
7(z) >0, Bi(z) >0, s-A(z)s>0 Vs. (36)

In conclusion we are left with 3 + NN, constitutive equations describing the Helmholtz
energy 1 (Z), the constitutive moduli 5;(z), 7(z) and the mobility tensor A(z). They have
to fulfill the criteria of (26) and (36). Every set of functions that satisfies these restrictions
is in accordance with the microforce balance equations (6) and (7), mass conservation (17),
the first (10) and the second law of thermodynamics (15).

7, S. 5ff]

2.4 Evolution equations

Combining equations (30) and (32) with the force balance (7) and equation (27) yields an

expression for the chemical potential

LI

9 Ve +7(2)c. (37)
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Inserting equation (34) with (37) for the chemical potential into the mass conservation

law (17) one obtains the viscous Cahn-Hilliard equation [§]

. B 0 (2) (%) .
¢=V-(A(z)Vu)=V- <A(z)V ( 5 \ Ve + T(z)c>) : (38)

Remark 1: Setting 7(z) = 0, ¢.(c, Ve) = f(c) + 2p|Vc|> and A(z) = k1 in equation
(38) leads to the standard Cahn-Hilliard equation

¢=rA(f'(c) — pAc). (39)
Alternatively, choosing 1.(c, V) = 1¢? leads to Fick’s second law of diffusion
¢ = KkAc. (40)

The evolution equations for the multiphase field can be formulated with equations (31)

and (33), the microforce balance (6) and equation (27)

b= 1 (v aw@_&”(g)ﬂi), i=1,..N, (41)

Bi(z) OV, 0o

Remark 2: The evolution equation (41) is the most general partial differential equation
for a multiphase field model. With the choice N, = 1, f(z) = const. > 0, 1(z) =
f(®) + 3r|V¢|* and v = 0 it leads to the classical GINZBURG-LANDAU equation

Bo=1A¢ — f(). (42)

3 A prototype model for lower bainite

3.1 Helmholtz energy

The framework of Section 2 is now specialized to simulate the lower bainitic transformation
with three phases (N, = 3) and the evolution of the carbon concentration c. Therefore the

phases
1. bainitic ferrite (¢y),

2. austenite (¢2) and
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3. carbide (¢3)

are introduced where the corresponding order parameters ¢1, ¢, ¢3 vary between 0 and 1.

~ ~

D(Z) = Ve(e, V) + g1, b, d3, Vor, Voo, Viby) (43)

where 1[)0(0, Ve) and @@(ﬁ(gbl, G2, 03, Vo1, Vo, Vos3) are Helmholtz energies for diffusion and
phase fields, respectively. The diffusion part 150(67 Ve) required for the viscous Cahn-
Hilliard equation (38) is proposed as

~

te(c, Ve) = f(e) + %pIVCIQ, where  f(c) = d(ceq — €)*(Cears — €)%, (44)

where p is the diffusion gradient energy coefficient and f(c) is a potential free energy
density function. It is a double well potential with roots at c.q and cearn. Due to this
definition the carbon concentration varies between the maximal carbon concentration in
equilibrium bainitic ferrite c.q = 0.0704 wt.% [25] which is also the effective minimum
carbon concentration of the overall model and the carbon concentration of carbide ceap, =
6.67wt.% [13].

The equations (44) only consider the diffusion within the bainitic ferrite, because
the characteristic separation of carbon takes place within this phase. Consequently, this
separation leads to the precipitation of carbides within the bainitic ferrite. Additionally,
diffusion of carbon within austenite occurs. However, this effect is regarded as negligible,
compared to the diffusion within the bainitic ferrite phase.

For the multiphase field part in equation (43) we choose

N, N,

. gy |

Vo1, 02, 63, V1, Vo, Vbg) = > > o [1ig(90,05, V60, V0,) + 936 6)] - (45)
i=1 j>i Y

with the interfacial energy density h;;(¢;, ¢j, Vi, V¢;) and the potential energy g:;(¢s, ¢;)
between two phases 7 and j. The phase energy coefficients are denoted by ¢;;. The

interfacial energy density is chosen, following [28], as

1

with the phase gradient energy coefficient «;;. The potential or chemical energy density
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gi; between two phases ¢ and j is chosen as a simple double well potential

1

4@,‘]‘

Qz'j(cbz’, ¢j) =

& 5, (47)

where a;; is the potential constant. The potential energy density functions (47) describe
double well potentials to separate areas with high or low densities or different phases.

A coupling between the phase fields and the carbon concentration is not defined within
this Helmholtz energy term. This could be achieved using the mobility tensor A(z), the

constitutive moduli f;(2z), 7(z) and the external scalar forces ;.

3.2 Constitutive moduli and evolution equations

In this subsection we provide proposals for the constitutive moduli 7, 5; and the mobility
tensor A introduced in equations (32)-(34). The constitutive moduli 7(2) in equation (32)

and f;(z) in equation (33) are chosen as constant material parameters

7(z) =T = const. , (48)
Bi(z) = B; = const. (49)

In order to describe the diffusion of carbon within the bainitic ferrite a simple choice for

the second-order mobility tensor A(z) in equation (34) is
A(z) = A(¢1) = ¢1 - K1, (50)

where k is a constant. In this way the flux J will be zero if ¢, representing the bainite
phase, is zero, otherwise the carbon will diffuse. This constitutes an important coupling
between the phase field and the diffusion model.

From equations (37), (43) and (44) we obtain for the chemical potential

L0

5 pAc + T¢. (51)

The evolution equation (38) for the diffusion reads with equation (50):

¢ =01kAp+ VoV

= p1kA <8f_(c) — pAc + Tc'> + Vo1kV (8f_(c) — pAc + TC') : (52)
dc dc
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The evolution equations (41) for the specific constitutive laws (43), (45)-(47) and (49)

become

Np
¢ =

J=1j#i

Pi9;
QCLZ‘J'

(Oéij (0;A¢; — $iAp;) — (¢ — ¢z)) + Yis

1
B’L qij
for i=1,...,N,. (53)

Details on the derivatives of the Helmholtz energy (%) in (45)-(47) can be found in [28].

3.3 Change of parameters

For a better physical interpretation of the phase field model, all material parameters of
the phase field evolution equations (53) are changed according to [18].

The phase gradient energy coefficients cj;, the potential constants a;;, the phase
energy coefficients ¢;; and the dissipative moduli 3; are replaced by the physical material
parameters, interface mobilities (;;, interface energies o;; and interface thicknesses 7;;

Tij ij
Bigij = CT;’ ij = = Oj'ij’ Qij = Oiij- (54)

The derivation of the equations (54) using the Gibbs-Thomson equation [18] can be found
in the appendix of [9].

The external microforces 7; for the phase field are specified on the basis of [28] as a
sum of external forces 7;; which perform work on the phase transition only between the

phases ¢ and j

N, N,

L 5O6¢ AG,

Z Yij = Z gj 7 ) Gi ¢j7 (55)
J=Lj#i J=Llj#i

where AG;; are the change of Gibbs energies which may be a function of z. The arbitrary
factor 6 has been introduced to be consistent with the evolution equations of [9, 18]. Note
the relations (;; = (i, 045 = 0j; and 1;; = n;; but AG,; = —AG;.

With equations (55) and (54) the evolution equation (53) reads

6 - AG;;(2)

]

Np
Z Gij |:0'z'j <(¢jA¢i — ¢iAd;) — %@%’(% - ¢z)> Gi0;

=1,

for i=1,..,N,. (56)
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3.4 Carbide precipitation

The formation of carbides is a central mechanism of the lower bainitic transformation since
it influences significantly the macroscopic material characteristics of bainite. However the
simulation of this precipitation process yields several challenges. Firstly the phase field
equation (56) does not provide the growth of any phase ¢; whose value is zero over the
whole domain. To avoid this difficulty nuclei of carbides are defined as initial conditions.
Secondly the formation of carbide is a process which starts after the phase transformation
of austenite-to-bainitic ferrite and the ensuing carbon diffusion. During this process the
nuclei of carbide converge to zero, so that they are not able to grow any more. This
difficulty has been tackled in our paper [9] by defining the interface mobility (;; as a
function of the carbon concentration. The interface mobility is zero while the carbon
concentration is low. In this way the nuclei of carbide are prevented to vanish.

However the approach of [9] cannot be integrated easily in the presented concept of
generalized forces. Therefore we present an alternative approach based on changes of

Gibbs energies

where
WO o =3y =3
U(¢i7¢jyc) - ¢3 (58)
1 otherwise

and AGY; is a constant material parameter. The function w(c) is a smooth unit step

function used in [9]

0 for ¢ < Ceayp, — €
w(c) =<1 for ¢ > cearp (59)

1 1 : s
5+ 5-sin(Z-c+

IR

— T Ccarb) Otherwise,

where the parameter ¢ governs the transition zone between ¢ = 1 for high carbon and
e = 0 for low carbon concentration.

The equations (57) - (59) do not change the transformation kinetics between austenite
(¢2) and bainitic ferrite (¢1). For phase transitions involving carbide (¢3) the thermody-

namic driving force will be zero if the carbon concentration is low. Carbides will precipitate
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in supersaturated steel if the local carbon concentration is at ceam = 6.67 wt.% [13]. This
is governed by the step function w. The function v ensures that the carbide phase can

grow even if the nuclei have become very small in time.

Remark 3: In our previous approach [9] we implemented the carbide precipitation by

defining the interface mobility

0 for ¢ < Cegr, — €
Gile)=1<¢1 for ¢ > cearp

1 1 A (T
5 T 5-sin(Z-c+

ol

— T Cearp) Otherwise,

which is identical to the function in (59). In the new approach of this work the step
function w(c) is integrated into the external scalar forces 7; which are transfered to the

changes of Gibbs energies AG;;(z) by equation (55).

3.5 Anisotropic phase growth

The characteristic slim shapes of the bainite sheaves are modeled using an anisotropic
extension of the phase-field model as presented by [17] and [16] and used in [9]. The
interface energy parameters o;; are manipulated depending on the local gradient V¢, and

a predefined growth direction 6,
Uij = O'Z](Q(V¢Z)7 90) (60)

In lower bainite the transformation from austenite to bainitic ferrite shows an anisotropic

behavior. Therefore only 015 needs to be defined as

961

012 = 0% - (1 +7-cos(d — fy)), with 6= arctan o2, (61)

ox

where 0¥, is the isotropic interface energy and r is a measure of the strength of anisotropy.
The main growth direction 6y of the ferrite which could be chosen arbitrary. Here it is set
to 00 = 0°.
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4 Numerical implementation

Numerical solutions for the evolution equations (52) and (56) are obtained with the finite
element method for two dimensional problems. For time discretization an implicit Euler
scheme is implemented. The resulting nonlinear system of equations is solved iteratively
with Newton’s method. The implementation is straightforward as described in [9].

For the finite element method quadrilateral elements with linear shape functions are
used. The equation (51) for the chemical potential p will be discretized, because the

Cahn-Hilliard equation (52) has fourth-order derivatives. Due to this procedure the model

T
has five unknowns per node: [c pwop1 o ¢3i| . The diffusion equation (52) can be

written in weak form as

/ vt dV — / Vep1 KA dV — / v.Vo1kVpu dV =0, (62)
1% 1% 1%

where v, denotes the test function for the carbon concentration. Using Gauss’s theorem

and homogeneous boundary conditions we obtain

/ v.c dV +/ Vv.p1kVu dV = 0. (63)
1% 1%

Since the chemical potential p should also be discretized, the weak form for the evolution

equation of p in equation (51) can be derived as
/ v, ¢+ pVu,NVe+v,(gc® + pc® +oc+ 1) —v,pu dV =0 (64)
v
with the derivative of the generalized carbon potential function

f'(c) = d(qc* + pc® + oc + 1) ,where

2 2
0 = 2Cea1 + 2Coq + 8CeqCearb

b= —06ccarb — 6Ceq ) (65)
qg=4,
[l = —QCeqczarb — 2ccarbc§q )

The weak form of the phase field evolution equation (56) with test function vy, again

29



using Gauss’s theorem and homogeneous Neumann boundary conditions, reads

N
. P 36
/VV¢¢¢ dV = /Vj%# Gij |:Uz'j (VV¢(V¢j¢i — Vip;) — %Mﬁqbiqu(qu - ¢z))
_ Mi—w%@%] dv. (66)

~

The degrees of freedom at every node, which are denoted by the superimposed hat (-),

. . AT
are d = [Q i 91 92 93 . The row vector N contains the shape functions, such that the

quantities ¢, p and the ¢; can be written as scalar products:

¢c=Ne, pw=Nj, ¢; =N, i=1,2,3. (67)

The matrix B used for gradient terms is defined as

N N
B— [—] Cowith N, =& (68)
M?y , 81:
The gradients read
Ve=Be,  Vu=Bj,  V¢i=Bo, i=123 (69)

In the same manner the shape functions are used for the test functions vy, v, and v,. As
mentioned above the time dependence is discretized with an implicit Euler method. The
superscript (+)" signals the time step of the solution. The actual time step is denoted by
n, which is in most cases omitted for brevity.

The residuum vector is defined as R = [R° R* R%]T with

~n _ ~n—1 R
L= /(MTM) ’ % + - (Nep1)B" Bji dS, (70)
Qe
én - én—l
E’U’ :/T(MTM) . T—i_d(MTl—FO(ﬂTﬂ)é—i—pﬂT(M)Q

+gN"(Ne)*) + p(B"B)e — (NTN)j d2, (71)
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N _ ~n—1 N, ) R ) A
Rom [N EE S G (- @B, 6) - (BB - (3)

Qe At J=1,j#i
A . . 6 . .
- BNTNG, - 6)(0) - (¥6) ) + AN (N6 (6,)] an. (72
i 1)

The integrals are calculated with a Gauss-Legendre rule. To solve the system of algebraic

equations Newton’s method is used. Therefore the tangent of the residual function R is

needed
(K* Kv K 0 0|
K K" 0 0 0
K OB _gee g gee gee gos : (73)
od ;@C 8 E¢2¢1 E¢2¢2 E@qﬁa
oo e s o

with the following matrix entries

Np

¢i¢i_aR¢i— T L |: ( T Y —(BTBY -
B =" —Q/M N t+j§#<u o (B'B)(NS) — (B'B)o, - N
36 oo .
- BNTNWG) N6, - )
ij
o (MG N (i) + PREENT . ) (04 ) | a7

i

K%% — A

—J

b3 N N o A N
O = [ |ou( @B+ BB N - BN NG N6, )
=

[

.8 (Aamzwm (V) + 22Cu(2)
Mij - 0¢

—Jj

N6 (3| e, @)

| IS |
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Ko _ 03‘“ Z ¢, 398G N (g ) (g ) do. (76)

4§ e e 08 T
1

K= | — . NTN dQ

K / NN Ao, ()
Qe

R — / _NTN d0, (78)
Qe

K — / k- (N$1)B'B do, (79)
Qe

Kuc:/Ait.MTﬂ+p-§T§+d(o-(ﬂTﬂ)#-Qp-(ﬂTﬂ)'(M)
Qe

+3¢- (N'N) - (Ne)*) d, (80)

ORC
5@1

Ko — = /,{ - (B"B)aN dS2. (81)

e

5 Representative numerical examples

5.1 Preliminary remarks

The results of two example calculations of the prototype model for lower bainite are
presented in this section. They give an impression of possible applications of the thermo-
dynamic framework derived in this work.

As initial conditions nuclei of bainitic ferrite and carbide are generated. While the
ferrite nucleus is strong (¢; = 1) and concentrated at a single location, carbide nuclei are
spread over the whole domain and are very weak (max(¢3) = 0.01). The distribution and
the strength of the carbide nuclei are random. This approach is supported by the fact that
the bainitic nucleation is based on preformed nuclei [21]. The carbon concentration has a
constant initial condition of 1.87 wt.% with small randomly distributed perturbations. All
equations are implemented with homogeneous Neumann boundary conditions.

The first example “slower diffusion” uses a diffusion coefficient of x = 0.008 pm?/s
whereas the second example exhibits a rather “faster diffusion” with x = 0.02 pm?/s.

Different values for the diffusion coefficient may occur due to different cooling temperatures.
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Parameter Symbol Value/Unit

Strength of the anisotropy r 0.5

Maximum carbon concentration in ferrite Ceq 0.0704 wt.% [25]
Maximum carbon concentration in steel Cearb 6.67 wt.% [13]
Bainitic main growth direction Bo 0°
Cahn-Hilliard viscosity factor T 0.00002 s
Cahn-Hilliard balance factor P 0.00016 pm?
Cahn-Hilliard potential factor d 0.014 mln2
Bainitic ferrite/Austenite interface energy 012 0.001 }H‘LQ
Bainitic ferrite/Carbide interface energy 013 0.001 p;]n2
Austenite/Carbide interface energy 093 0 p;IHQ

Bainitic ferrite/Austenite interface mobility C12 0.5 1?;4
Bainitic ferrite/Carbide interface mobility ¢y 0.5 ”J—nj
Austenite/Carbide interface mobility (o3 0 1?24

Gibbs energy between Bainitic ferrite and Austenite AG1s —0.0755 W‘LB
Gibbs energy between bainitic ferrite and carbide AG13  0.061 ﬁ
Gibbs energy between austenite and carbide AGos 0 pilg
Interfacial thickness i 0.17pm

Step function width € 0.1

Table 1: Material parameters

However the values here are hypothetical and used to show how the shapes of the carbides
vary depending on the diffusion coefficient. Both calculations run over a period of 30s
with a time step size of At = 0.05s.

All other values for the parameters introduced in the previous sections can be found
in Table 1. They are an issue of further investigations since most of them are tentative.
The mesh of the finite element method used to solve the problem divides the 3jum x 3 pm
domain into 16384 elements. This fine grid ensures that at least 7 elements describe the

diffuse interface between two phases with the given interface width of 7;; = 0.17 pm.
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a) Austenite

) Bainitic ferrite

. . |
J

) Carbide

d) Carbon concentration

Os 5s 15s 30s

Figure 4: Slower diffusion: Lower bainitic transformation after 0s, 5s, 15s and 30s.
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5.2 Example 1: Slower diffusion

The evolution of the three phases and the motion of the carbon is shown in Figure 4. From
top to bottom we have: austenite, bainitic ferrite, carbide and carbon concentration with
corresponding initial conditions in first column. One can see the initial bainitic ferrite
nucleus on the left boundary. The small nuclei of the carbide cannot be seen due to
the chosen scaling. The perturbations of the initial carbon concentration can be hardly
seen, either. For further information see [9]. The next columns depict the corresponding
evolutions after 5s, 15s and 30s, respectively. After 5s the bainitic ferrite grows and
has its typical slim shape. There are still no carbides and the carbon concentration field
shows only very little change within the area of the bainitic ferrite. At 15s accumulations
of carbon are visible while the surrounding field declines to the minimum concentration.
This is the typical diffusion process of lower bainite. The ferrite can contain much less
carbon than the austenite. Due to the fact that the ferrite sheaf grows too fast, the carbon
cannot diffuse out of it instead it starts to build accumulations within the phase. Carbides
precipitate at the places of the carbon accumulations. The carbides closer to the left
boundary are larger, because the bainitic sheaf growth from left to right. Furthermore it
can be seen that the diffusion process is slower than the phase transformation, because
the carbon concentration changes only in about half of the ferrite area. The last column
shows the results after 30s. The carbides have globular or elliptical shapes. The difference
between the conserved diffusion of the carbon and the non-conserved phase evolution can
be seen in this figure.

The lenticular shape of the sheaf in Figure 4 can be compared with the micrographs in
Figures 1 and 3. The distribution of the carbides is similar those in the micrograph in
Figure 2. However the carbides do not show the expected shape and orientation. This is

part of further investigations.
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a) Austenite

) Bainitic ferrite

) Carbide

) Carbon concentration

Figure 5: Faster diffusion: Lower bainitic transformation after 0s, 5s, 15s and 30s.

0.8
0.6
0.4

°

)OO‘O o

Yy

S N A

wt.%

15s 30s

66



5.3 Example 2: Faster diffusion

Figure 5 shows the results of the second example with a higher diffusion coefficient k. It
is structured in the same way as Figure 4. In comparison with Example 1 the carbon
starts to move earlier which can be seen in part d) of Figure 4 and 5 after 5s. While
the concentration field in the first example hardly changes at all, the field in the second
example shows already a maximum. The more important consequence of the higher
diffusion coefficient is that the size of the accumulations increase and thereby the carbide
precipitations are larger, too. The results of this example also show the characteristics of

globular and rather large carbides as in the micrograph in Figure 3.

5.4 Comparison of results with different diffusion coefficients

Figure 6 shows two plots of the different fields over the time. The left axis has a scale for
the carbon concentration in wt.%. with a range from 0 wt.% to 7wt.%. The scale on the
right axis of both diagrams represents the phase field order parameters. They vary between
0 and 1. The solid lines show results from Example 1 with a low diffusion coefficient and
the dashed lines show the results of the second example with faster diffusion.

The data plotted in Figure 6.a are calculated for the point P, (x = 0.98438 um,
y = 0.98438 um) as marked in Figures 4.a and 5.a. The carbon concentration is at around
1.87wt.% and austenite is the dominating microstructure, which is not plotted here for
clarity. While in both situations the initial status is the same, evolutions of the fields
differ from the instant on when the bainitic ferrite phase starts to grow. The beginning of
the phase transformation between austenite and bainitic ferrite marks the instant when
diffusion of the carbon starts, because the bainitic ferrite can contain much less carbon
than austenite. One can see that while the faster diffusion (dashed line) directly starts to
move the carbon, the slower diffusion almost does not change the concentration at all. It
starts about 5s later. The ups and downs of the carbon field are due to spacial interactions
with neighboring points. It can be reasoned that the point is not in the middle of a carbon
accumulation. The transformation from bainitic ferrite to carbide starts very rapidly, when
the carbon reaches maximum concentration. This can be observed for the slow (solid line)
diffusion. The rather soft transformation for the faster one is also reasoned by spacial
interactions. There are already carbides at neighboring points.

Diagram 6.b shows results from Point P, (x = 0.98438 pm, y = 1.5938 pm) as marked
in Figures 4.a and 5.a. Here the phenomena can be seen even better, because directly

when the bainitic ferrite lines crosses those of the carbon concentration, the concentration
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Figure 6: Phases and carbon concentration over time at a) P, and b) P, as marked in
Figures 4 and 5. Solid lines denote slower diffusion, dashed lines faster diffusion.

with the faster diffusion coefficient changes rapidly and increases to its maxima. The
concentration of carbon in Example 1 does not change for the next few seconds before it
starts to move slowly. However the mean increase of carbon is almost in parallel, showing

that now the diffusion is similarly fast.

6 Conclusion

The thermodynamical framework presented in this work can be used to develop consti-
tutive equations for many kinds of phase transformations between several phases. The
transformations may be coupled to a diffusion process. The Cahn-Hilliard equation used
in this framework provides a wide area of diffusion models. It includes the classical
Cahn-Hilliard, a viscous Cahn-Hilliard and Fick’s Law. Basic universal laws, such as
the microforce balances, the energy conservation law, the mass conversation law and
the entropy inequality are strictly separated from constitutive laws which depend on the
specific material. As a prototype application of the framework the simulation of the lower
bainitic transformation is presented. Within this specific formulation the coupling between
different phase order parameters and the diffusion model can be seen. In future work we

plan to extend the framework to deformable continua.
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Abstract

Bainite is a steel microstructure consisting of three phases, bainitic ferrite, austen-
ite and carbides. It forms in two different morphologies, upper and lower bainite,
where different diffusion mechanisms are dominant. The aim of this work is to
simulate both transformations within a unified model. To this end, we extend an
own previously published model for lower bainite with diffusion across the phase
interface. As a central idea we introduce weighted Helmholtz energy functions and a
weighted mobility tensor, respectively. The individual Helmholtz energy functions
and mobility terms are related to the different diffusion mechanisms which are
responsible for the formation of both morphologies. Two representative examples
illustrate the capability of the coupled phase field/diffusion model and show the

expected behaviour.

Keywords: Coupled phase field/diffusion model, bainite, multiphase field method,
Cahn-Hilliard diffusion, diffusion across the interface, lower bainitic transformation,

upper bainitic transformation, thermodynamic framework, microforce balance

1 Introduction

The bainitic microstructure of steel shows two different morphologies, upper and lower
bainite. The transformation of both morphologies starts with a displacive austenite-to-
bainitic-ferrite transition at preformed nuclei as observed by Olson et al. [1]. The bainitic

ferrite grows in wedge-shaped sheaves, which are divided in sub-units. Subsequently (not

5



simultaneously) carbon starts to move, where however the pertinent diffusion mechanisms
are significantly different.

In lower bainite carbon undergoes a separation process within a supersaturated bainitic
ferrite phase [2]. It builds accumulations of carbon, where carbides precipitate. This
transformation mechanism is noticed e.g. by Bhadeshia who also showed that carbides
in lower bainite precipitate directly from the bainitic ferrite [3]. Only a small amount of
carbon diffuses across the interface into the austenite.

Upper bainite grows at temperatures between the pearlite formation and the lower
bainite formation. The transformation from austenite to bainitic ferrite is comparable to
the lower bainite formation. After this transformation most of the carbon within the su-
persaturated bainitic ferrite diffuses across the interface into the austenite. This movement
is particularly strong near the interface and stops when the equilibrium concentration
is reached. In between two sheaves the concentration of carbon may become very high,
which leads to precipitation of carbides out of the austenite. Depending on other alloying
elements, like Silicon or Chromium, the precipitation of carbides is suppressed such that
the austenite phase does not transform and remains as residual or retained austenite.

The displacive growth of the ferritic sub-units is accompanied by invariant-plane strain
deformation arising from a strain energy [2]. The resulting permanent strain is called
transformation plasticity [2]. Furthermore, the austenite-to-bainitic-ferrite transition
cannot be caused only by cooling to a certain temperature but also by applying stress or a
combination of both [2]. The transformation plasticity can cause anisotropic changes in
shape without an applied stress.

In the literature there are several models simulating phase transformations in steel [4],
for example austenite-to-ferrite by Militzer et al. [5], Huang et al. [6], Mecozzi et al. [7],
austenite-to-pearlite by Steinbach and Apel [8], austenite-to-martensite transformations
by Yamanaka et al, Schmitt et al. [9, 10] and Widmanstéatten formation by Yamanaka
et al. [11]. However, only a few models are able to describe phenomena of the bainitic
transformation. Arif and Qin [12] show the autocatalysis event between two sub-units
and Song at al. [13] describe the growth of upper bainitic ferrite neglecting the formation
of carbides. A model concept for the lower bainitic transformation is proposed in [14]
and [15] considering carbon separation within the bainitic ferrite and the precipitation
of carbides. It is thereafter applied in [16]. In [17] a multi-scale model for the bainitic
transformation considering multi-variant polycristallines is presented. To the authors best
knowledge, a model accounting for upper and lower bainitic transformation is not available

so far.
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This work focuses on the isothermal simulation of upper and lower bainite growth. We
model a displacive transformation from austenite to bainitic ferrite, the subsequent (not
simultaneous) diffusion of carbon and the resulting precipitation of carbides. We point out
that we do not consider any cooperative or diffusion controlled growth as it is known for
pearlite. The transformation is modelled with a coupled phase-field /diffusion approach,
which is based on a coupled Ginzburg-Landau/Cahn-Hilliard system of equations. The
thermodynamic framework developed in [15] for a lower bainite model with a simpler
carbon diffusion is used. It is based on generalized forces and stresses as introduced by
Gurtin and Fried [18, 19, 20]. In order to account for both, upper and lower bainitic
transformation, within a unified model we extend the lower bainitic simulation of [15]
with diffusion across the phase interface as presented by Wheeler et al. [21]. As a central
idea we introduce weighted Helmholtz energy functions and a weighted mobility tensor,
respectively. The individual Helmholtz energy functions and mobility terms are related
to the different diffusion mechanisms which are responsible for the formation of the two
different morphologies. The weighting is achieved by individual scalar functions depending
on the temperature. At high temperatures, these functions guarantee diffusion across the
interface and balancing diffusion within the bulk phases of the corresponding interface. The
lower transformation model presented here is an extension of [15]. Due to the weighting
functions the model shows a strong carbon separation process within the bainitic ferrite
and additionally diffusion across the interface. Furthermore the precipitation of carbides
within the austenite can be described with the proposed diffusion model. The anisotropic
phase growth is modelled with a phase field based scheme [22]. A coupling with strain and
stress effects is not part of this work. We plan to extend our thermodynamic framework
in [15] to consider the related strain energy in future work.

An outline of this work is as follows: In Section 2 the three diffusion mechanisms
required to model the bainite transformation are described in detail. Section 3 recalls the
thermodynamic framework for coupled Ginzburg-Landau/Cahn-Hilliard systems based on
generalized stresses [15]. In Section 4 a prototype model for upper and lower bainite is
introduced. The corresponding constitutive equations include various Helmholtz energy
functions, dissipation moduli and diffusion mobility terms. The section ends with evolution
equations for order parameters and carbon concentration. Section 5 briefly describes the
finite element implementation of the unified bainite transformation model. The resulting
algebraic system of equations mirrors the coupling of the different physical phenomena.
In Section 6 numerical examples for upper and lower bainite are presented and discussed.

The last section is a conclusion summarizing the outcome of this paper and giving an
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outlook for further investigations.
Notations: Vectors a and second-order tensors A are bold and matrices B are
underlined. In the three-dimensional Cartesian coordinate system, the gradient and the

Laplacian, respectively, of a scalar field a(x) are given by

1. Va(z) = Z agg) e 2. Aa(z) = V-Va(z) = Z ag‘;f). (1)

(2

where e;,7 = 1,2,3 are standard unit vectors and z; are the coordinates of . The

divergence of a vector field a(x) reads

3

V@)= Y 5% 2

i=1

2 Diffusion mechanisms in upper and lower bainite

The main challenge of this work is the modelling of carbon diffusion to account for different
movements of carbon within the various phases and morphologies. To this end as a
model assumption, we introduce three different diffusion processes which are involved for
both, upper and lower bainite, as illustrated in Figure 1 and henceforth denoted as Type
I, Type IT and Type III, respectively. In Figure 1 two phases are coloured in red and
yellow, respectively, with a diffuse interface in between. Moreover the interface regions are

illustrated by black dashed lines.

[. Separation within a phase: The separation diffusion process leads to accumulations
of carbon at a high concentration limit within a bulk area of carbon at a low
concentration limit. According to the schematic diagram in Figure 1.1, the separation
takes place only within one phase. The carbon atoms, illustrated as dots, accumulate

at certain places, while there are almost no atoms left in between.

I1. Accumulation within an interface: This diffusion process governs the movement
of the carbon in the diffuse interface region between two phases. As illustrated
in Figure 1.1, initially uniformly distributed carbon atoms are transported to one

specific side of the diffuse interface, thus resulting into a non-uniform distribution.

III. Balancing within the phases: The balancing mechanism distributes the atoms over a
certain domain, e.g. a phase, such that the concentration of the solute is uniformly

distributed as shown in Figure 1.III within both phases. It may also be referred
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as Fick’s type diffusion. The concentrations in different phases may differ. For the
specific case in Figure 1.I11, the balancing process especially moves carbon atoms
which are accumulated within the interface but close to the bulk phase, into the
bulk phase, while on the other side of the interface it pushes atoms into the empty

interface.

Accumulation within an interface (Type II) in combination with the balancing process
(Type III) moves atoms from one phase into the other, henceforth denoted as diffusion

across the interface (Type 1T 4+ Type II1), see Figure 1.

Type 1. Separation within a phase

Diffusion across
the interface

J

Figure 1: Schematics of three diffusion mechanisms

Table 1 links the above three diffusion processes to the phases and morphologies of
upper and lower bainite. In upper bainite there is no separation process within a phase,
but an accumulation within the diffuse interface (Type II) and a balancing process (Type
IIT) which assists the diffusion across the interface between bainitic ferrite and austenite.
Separation works also between bainitic ferrite and carbide in upper bainite. The nucleating
carbides attract surrounding carbon to stabilize itself and grow faster.

In lower bainitic ferrite, the most significant diffusion mechanism is the separation
process (Type I), which takes place only within bainitic ferrite as documented in Table
1. Additionally, there is an accumulation process within the interface between bainitic
ferrite and austenite, but at a much weaker level than in upper bainite. The transported
carbon can diffuse into the whole austenite region with the balancing mechanism which
does not occur within the bainitic ferrite where the separation process governs the flow to

the interface.
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For both morphologies, upper and lower bainite, the carbon concentration influences
especially the precipitation of carbides. The phase transformation from austenite to
bainitic ferrite is displacive. Consequently the phase transformation is independent from
the carbon diffusion which is a subsequent process governing the precipitation of carbides
and the growth of residual austenite.

Type I and Type III describe diffusion processes within phases and therefore are
independent of any model to simulate or identify the phases. In this work the phase
field method is chosen to simulate the phases. This method uses non-sharp but diffuse
interfaces between phases. Therefore we choose diffusion Type II to simulate the movement
of carbon within the diffuse interface. Due to computational limits the interface width
of the representative examples in Section 6 is oversized and therefore a rather crude

approximation for the real process.

Bainitic ferrite Austenite Carbide
Diffusion mechanisms upper | lower | upper | lower | upper | lower
I. Separation within a phase *
II. Accumulation within an interface ° * . * °
I1I. Balancing within the phases ° . *

Table 1: Carbon diffusion processes within different phases and morphologies of bainite:
symbol e marks diffusion mechanisms occurring in upper bainite and symbol * those
occurring in lower bainite.

3 Coupled Ginzburg-Landau/Cahn-Hilliard

framework

In this work phase transformations are modelled with a multiphase Ginzburg-Landau
equation which is coupled to a Cahn-Hilliard type diffusion equation. A thermodynamic
framework for such a coupled problem is derived in [15]. It is based on generalized stresses
and forces proposed over a volume B with an arbitrary control volume V' as a subregion
of B and the boundary 9V with outward normal unit vector n € R®. All underlying

constitutive variables of the model are summarized in the vector

z=1lc, Ve, ¢, pu, Vi, {¢i, Vo, ¢z}fvzp1]> (3)

where ¢ denotes the concentration of a solute, p is the corresponding chemical potential, ¢;
are the phase order parameters satisfying 0 < ¢; < 1, Zi\/:pl ¢; = 1 and N, is the number
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of phases.
Generally, constitutive equations may depend on the constitutive variables z. However,

as extensively discussed in [15] and [18] the Helmholtz energy function

b =1)(2) (4)

depends only on the reduced constitutive variables

z = [c, Ve, {¢i, Vor}in]. (5)

The boundary value problem for the chemical potential reads

0v(Z e
= z/é(cz) -V §V<zc) +7(z) on V, (6)
Viu-n=p on IV, (7)

with constitutive modulus 7(z) > 0 and prescribed out-flux zi. The initial boundary value

problem for the diffusion of a solute in [15] reads

¢=V-(A(z)-Vu) on V, (8)
c(t=0)=c¢y on V, (9)
Ve-n=¢ on 9V, (10)

with positive semi-definite second-order mobility tensor A(z), prescribed initial value ¢
and prescribed out-flux ¢ on the boundary. Phase transformations are described by the

phase order parameters ¢; satisfying the initial boundary value problem

! 0U(2)  o(Z) -
9= Bi(z) (V- oV o, - 0o, +%) , t=1,...,N, on V, (11)
¢i(t = 0) = ¢ on V, (12)
Véi-n=¢; on OV. (13)

Here ~; are external phase forces, 3;(z) > 0 are constitutive moduli and ¢; and ¢;
are prescribed initial values and out-fluxes, respectively. Please recall, that equation
(8) together with (6) constitutes a conservative fourth order Cahn-Hilliard differential

equation, whereas equation (11) governing multiphase transformations is a non-conservative
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second-order Ginzburg-Landau equation.

4 A prototype model for upper and lower bainite

This section specifies the governing equations of the thermodynamic framework in Section
3. Thereby, to account for upper and lower bainite we provide an extension of the governing
equations in [15]. The prototype model developed in this paper describes the growth of
N, = 3 phases

1. bainitic ferrite (¢1),
2. austenite (¢) and
3. carbide (¢3)

to simulate upper and lower bainite formation. Moreover, ¢ introduced in equation (3)

represents the carbon concentration.

4.1 Weighted Helmholtz energy

The Helmholtz energy function is a key ingredient to capture the different diffusion
mechanisms of Table 1 for bainite. As a specification of equation (4) it is postulated as a

sum of two energies

~

D(Z) = Pe(c, V) + bg(c, b1, da, b3, Vb, Vo, Vebs), (14)

with a purely diffusive part ¢, and a phase-field part 1% with coupling terms. The diffusive

part is again a sum of two energies

~ ~ ~

Ye(c,Ve) = we(0)s(c) + ws(0)s(c, Ve). (15)

Here the energy term z/}f(c) accounts for the balancing diffusion (Type III) according
to Figure 1.II1, which will result into Fick’s type of diffusion and 1[)5(0, Ve¢) governs the
separation of carbon (Type I) according to Figure 1.1. As explained in Section 2 the carbon
in upper bainite diffuses across the interface Type II++III) into the austenite phase while
in lower bainite the diffusion across the interface is of minor importance compared to the
separation Type I). In equation (15) this combined effect is accounted for by weighting

functions w; and ws, respectively, which weight the different diffusion mechanism to
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Figure 2: Weighting functions for different diffusion processes

distinguish upper from lower bainite and therefore are dependent on the temperature 6.

Figure 2 illustrates both weighting functions versus the temperature ¢ defined as

f01”6<8D—€9

for 8 > 0p + ¢y (16)

wy(0) =1
() (524 e
and
1 for 0 < 0p — ¢
w,(0) = for & > 0p +eg (17)

0

1 L 1 L —

Z_=b N “Dlsinln 0 —bp +1 otherwise.
2 2 2 2 2¢e0

Here 6 is the temperature of the isothermal transformation, 8 is the transition temperature
marking the boundary between upper and lower bainite, ¢4 is a factor to soften the sharp
boundary for better numerical characteristics and Lp ensures the coaction of both diffusion

mechanisms. Note, that both functions w; and w, satisfy the completeness condition
wy(0) +ws(0) = 1. (18)

On one hand, for the separation (Type I) in lower bainite according to Table 1 a
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Cahn-Hilliard equation is formulated. A suitable Helmholtz energy is postulated as

~

Jule, V) = f() + 5plVel? (19)
(6) = d{ceq = € (ces — % (20)

where p is a Cahn-Hilliard balance factor, f(c) is a double well energy function, cq is the
equilibrium carbon concentration in bainitic ferrite and c¢,1, is the carbon concentration
of the carbides. These two concentrations define the limits of the separation process.

On the other hand, for the balancing Fick’s diffusion (Type III) required for the

diffusion across the interface, we introduce

0 Ceq lIl(Ceq - C) — Ccarb 1n(Ccarb - C) + Cln(—czzgi_cc)
Yi(c) = : (21)

Ceq — Ccarb

Remarks 1:

1. Equation (21) is a modification of Wheeler et al. [21], where the original bounds 0

and 1 are replaced with cearp, and ceq.

2. The balancing diffusion mechanism tackled in equation (21) is important for the
upper bainitic transformation, however has minor significance for the lower bainitic
transformation. This can be reflected by a high weighting of the separation (w; = 0.9)
and a low weighting of the diffusion across the interface (w; = 0.1) for 6 < 0p.
Alternatively, the intensity of the different diffusion mechanisms can be governed by

the diffusion coefficients introduced in the next subsection.

3. It is not obvious that equation (21) leads to Fick’s type diffusion within the framework
used in this work. For clarification, a detailed mathematical justification is provided

in Appendix A.

The Helmholtz energy for the phase transformation in equation (14) is proposed as

~

¢¢(Ca ¢17 QbQ, ¢37 v¢1a v¢2a v¢3) =

N, N,

Z Zq_lj [hij (@i, @5, Vi, Vi) + (1 + ¢ 545 wy) gij(¢i, ¢5)]  (22)

i=1 j>i 1°

with the interfacial energy density h;;(¢i, @5, Vi, V@) and the potential energy g;;(¢s, ¢;)

between two phases ¢ and j. The phase energy coefficients are denoted by ¢;;. Compared
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to [15] we introduce the additional term ¢ s;; wy, where s;; are interface diffusion factors
which govern the accumulation of carbon within the interface (Type II) between phases i

and j according to Figure 1.II. The interfacial energy density is chosen, following [23], as
1
hij (i, @5, Vi, Vo) = §aij(¢jv¢i — iV ;) (23)

with the phase gradient energy coefficient «;;. The potential or chemical energy density

gi; between two phases ¢ and j is chosen as a simple double well potential

1

4&,']‘

9i (Gi, b5) = — 077, (24)

where a;; are potential constants.

4.2 Evolution equations

The constitutive moduli 7, 5; and the mobility tensor A introduced in equations (6), (11)
and (8), respectively, have to be specified, in order to gain the evolution equations for the

concentration field ¢ and the phase order parameters ¢;. We postulate the constant moduli

7(z) = Tws = const., (25)

Bi(z) = B; = const. (26)

In order to account for both, separation within a phase (Type I) and diffusion across the
interface (Type II + Type III), the mobility tensor A is postulated as the sum of two
terms, weighted by wy and w; introduced in equations (16) and (17),

A(z) = (wyDys(9) folc) + wsDy(9)) 1, (27)
where
Dy(6) =605 29
Dy(¢) = Zp:(biDsi (29)
fale) = (¢ = ceq) (Cears — ¢)- (30)
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In equations (28) and (29) Dy; and Dy; are diffusion coefficients for diffusion across the

interface and Cahn-Hilliard diffusion, respectively.

Remarks 2

1. The function f, in equation (30) is required to limit the accumulation process within

the interface (Figure 1.II) with an upper and lower bound, ¢, and ceq, respectively.

2. As shown in equation (A.4) of Appendix A the function f, affects also the balancing
diffusion (Figure 1.III) which is additionally needed to model diffusion across the
interface as discussed in Section 2. In order to preserve Fick’s type diffusion, the
corresponding Helmholtz energy (21) is postulated to fulfil

ooy 31

Further details on this approach are explained in Appendix A.

Having specified all constitutive equations, the evolution equations can be assembled
based on the thermodynamic framework in Section 3. To derive the concentration evolution
equation, the chemical potential is needed. Inserting the Helmholtz energy equation (14)

and the dissipation modulus (25) into equation (6) render a weighted chemical potential

b= wfty + Wsls, (32)
where
N, N,
aw P p
f +ZZ Vi 367, (33)
=1 j>1
0
s = 8_£ — pAc+ T¢. (34)
and for brevity
Sij
J 40’2]Q2] ( )

The next equation describes the concentration field c. Inserting equation (32) into the
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evolution equation (8) leads to
¢ = V(s A(2)Viip) + V-(0,A(2) Vo). (36)

The next natural step would be to insert uy (33) and s (34) into equation (36).
However, to avoid fourth order derivatives in the evolution equation of the concentration
¢, the separation part p, of the chemical potential (34) is not inserted into equation (36)
which would lead to difficulties for the finite element implementation, described in the
next section. Therefore only p from equation (33) is inserted into equation (36).

The product of A(z) -V leads to simplifications of the resulting evolution equation.
The lengthy algebra describing the steps in detail can be found in Appendix A. The

evolution equation of the concentration field ¢ reads

¢ =wiVD(9) - Ve+ wiDy(¢)Ac+ wwpVDy(¢) GQgD;(c) Ve
%) %)
+ wswas(gb)%(c)(ch + wswyDs (@) g;(c) Ac
0
+ (689D + 03Dy Ve 4 w0, vD.(0))
NP NP
: Z Z vij (20:07V ¢; + 20,07V ¢;)
i=1 j>i
+ (wiDs(9) fyle) + wswyDy(6))
N, N,
D0 205 (Voidi Vi + V0V, + 4did VoV e, + 6,07 Ao + dis Agy)
i=1 j>i
dfy(c) 2
+ | wswV D () fy(c) + wswaf(gb)—ac Ve+wiVDs(o) | - Vi

+ (wsws Dy(9) fo(€) + wiDy(9)) Aps  (37)

The evolution equation for the phase order parameters ¢; is derived by inserting the

Helmholtz energy equation (14) into equation (11)

N,
b= > — (Oéij (9jAp;i — diAG;) — 2i0; (1 +'é sy 0g) (¢5 — @')) + %,
j=1,ji ﬁqu 2@1]

for i=1,..,N,. (38)
According to [7] the material parameters of equation (38), namely the phase gradient
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energy coefficients «;;, the potential constants a;;, the phase energy coefficients ¢;; and
the dissipative moduli 3; are replaced by the interface mobilities (;;, interface energies o;;
and interface thicknesses 7;;

U Mij
Bz’%’j = CT;’ Q55 = 720]1']'7 Q5 = 0515 (39)

Details of this parameter change (39) using the Gibbs-Thomson equation [7] can be found
in the appendix of [14].
Furthermore we postulate the external forces ~; of equation (38) as sums over all phases

N, which perform work on the phase transition between two phases ¢ and j

Np Np

Vi = Z%g’Z—ZM@% (40)

j=1,ji ot

In equation (40) AG;; describe the change of Gibbs energies between the phases i and j.
The arbitrary factor 6 has been introduced to be consistent with the evolution equations
of [14, 7] Note the relations Cij = Cjiv 045 = 04 and Nij = MNji but AGU = —AGﬂ

The evolution equation for the phase order parameters (38) is finally written as

50 (1 +c Sij wf)¢z¢] (¢ ¢z))

6AGU( z)
Th]

Np
> G [%’ ((%’Acbz $ilg;) —

J=Lj#i ”

gzﬁzgzsj] for i=1,..,N, (41)

To model anisotropy a widely used approach by Kobayashi [22] and G.B. McFadden et
al. [24] is implemented. The interface energy parameters o;; depend on the local gradient
V¢; and a predefined growth direction 6y [15]

O-z'j = UZJ(Q(V(m), 90) (42)

The anisotropic transformation from austenite to bainitic ferrite is modelled with

3¢1

o132 =0y - (147 -cos(f — b)), where 6= arctan W (43)
oz

In the sequel, the strength of anisotropy is set to » = 0.5, the main growth direction is

0y = 0° and 07, is the isotropic interface energy [15].
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To model the precipitation of carbides as described in Section 1 and Section 2 we

provide the following set of equations for the Gibbs energy, as presented in [15]:

AG;i(z) = AG% v(¢i, ¢5,¢) (44)
where
w(c) , ,
f =3Vvji=3
v(¢i, @5, ¢) = Pi+es o ’ (45)

1 otherwise

and AG% are constant material parameters describing the differences in Gibbs energy

between phases ¢ and j. Furthermore w(c) is a smooth unit step function, defined as

0 for ¢ < Cear, — €

U)(C) - 1 for ¢ > Ccarb (46)
1 1 . .
3+ gsin(fe+ § — Tcean) otherwise,

where the parameter & describes the width of the smooth step.

The idea of equations (44)-(46) is that the carbide phase will grow only if the carbon
concentration at the certain place is high enough. To be specific, it must reach ceap =
6.67 wt.% [25], to start the formation of carbides.

Remarks 3:

1. In general the Gibbs energy AG;;(2z) is a function of the temperature and the
carbon concentration. The model presented in this paper considers only isothermal
processes such that the temperature dependence can be neglected. Furthermore the
transformation from austenite (¢9) to bainitic ferrite (¢;) is displacive, which means
that it does not depend on the local concentration of carbon, which is constant over

the process at the transformation places.

2. In equation (45) we introduce a very small numerical perturbation e, > 0 to prevent
a division by zero in the case that ¢35 = 0. The divisor ¢3 guarantees a growth of the

¢3 phase even if the current value of ¢3 is close to zero.
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5 Numerical implementation

In this section information about the numerical implementation is provided. The system
of partial differential equations (34), (37) and (41) is solved with the finite element method
in a two dimensional space. Quadrilateral elements with linear shape functions are used
for the finite element formulation. For time discretization the backward Euler method is
used. The resulting algebraic system of equations is solved with Newton’s method.

As already mentioned in Section 4.2 the chemical potential g for the lower bainitic
transformation is not inserted into the evolution equation of the concentration (37), instead
it will be handled as a separate degree of freedom to avoid fourth order derivatives. Taking
three phases into account leads to five unknowns c, us, ¢1, @2, @3 per finite element node.
A possibility to avoid the chemical potential i, as an additional degree of freedom is given
by the isogeometric finite element method [26, 27|, which is therefore considered for future
work.

The weak formulation of the lower chemical potential (34) reads

af(c)
dc

/ vuté+ pV,Ne+ v, —vups dV = 0. (47)
1%

where v, denotes the test function for the lower chemical potential. The weak formulation
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of the diffusion equation (37) reads

/ vee dV = / vewiVD(¢)Ve dV + / vewiDy(¢)Ac dV
|4 14 |4

”
+/ VcwswfVDs(gzﬁ)a Yy(e) Ve dV+/ vewsws Dy (o)
1% dc? 1%

0% (c)
—i—/vycwswas(gb) 02 Ac dV

9y (c)

563 (Ve)? dV

+ [ 5 (@3VDO)(0) + 3D @)V Syle) + wawe, VD)

Z Z 20;5(Vitid} + 070,V ;) dV + / ve (wiDg(¢) fq(c) +wsw;Dy(9))

zl]>1,

Z Z 20, (Adigit; + (Vi)’ 0] + AV Gihid;V b; + Al d; + (Vb;)*¢%) dV

i=1 j>i

+ /Vyc(wfwsva(gb)fq(C) + wfwst(¢)qu(C) + w§VDs(¢)) ' VMS av

+K/Vc(wfwst(¢)fq(C)+wgDs(¢))Aﬂs dv, (48)

where v, is the test function needed for the finite element formulation.
The weak formulation of the phase field evolution equations (41) with its v, and already

applied Gauss theorem and homogeneous Neumann boundary conditions read

/V¢¢z dV = / Z Gij {‘71] (VV¢(V¢J¢1 Vio;)

J=1,j#i

— g%@qﬁj(l + ¢ sij wy) (@5 — ﬁbz‘))

ij

6AGy;(z)

j

———VpPi®; (49)

For the matrix formulation we denote the degrees of freedom at every node with the
superimposed hat ( ) and introduce a row vector IV containing the shape function values.

As a result the following scalar products can be used:

c=Ne¢, f1s = Nyis ¢i=Ng; , i=1,2,3 (50)

Ve=Be, Vs = Bjis . V¢ = Boi, i=1,2,3. (51)
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where

N, : _ ON
B = [N ] , with N, = o (52)

—Y

The relations in equations (50) and (51) can be formulated for the test functions vy, v,
and v, respectively. The actual time step is described by the superimposed n, which is
only used inside the backward Euler terms and omitted for brevity in other parts.

In the following the element residual terms are presented based on the weak formulations
(47), (48) and (49). All terms are obtained using Gauss’s theorem and homogeneous

Neumann boundary conditions ¢ = 0, ¢; = 0 in equations (10) and (13)

~n _ ~n—1 82 7,
B = / NTNS—E— 4 BTBe (w%Df(cb) + wfwst(@%(c))

+ B (w}Dg(9) fo(2) + wswrDs(9))

Ny, Np
> Z 20; (N6, (N2 BS, + N§ (N)*Bo))

+ B Bju, (wjwsDys(6) f(2) +wiDy(¢)) d, (53)

~n_ ~n—1 -
g = eSS sy gt - (N a0 6

R = / Nt _;? - Z G {a( (B"B)$ (Ng,) + (B"B)¢,(Ng )
J=1g#i
- DN sy (0N, - ) (00)(5) )

T]’L‘]

Tij

+ L0 ()N (50) (6| an. 69

The integrals are numerically computed with a Gauss-Legendre rule. As described above
Newton’s method is used to solve the non-linear system of equations. Hence the derivatives

of the residual function R = [R® R" R%]” with respect to all unknown variables
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Qgi]T are needed

[S%
I

ch Kcus chbo chbp

KUSC Kﬂs#s
e
quoc

Ko

(el (en)

with the matrices
Q =1,

] J=Lj#i
_ %NTN(l + Swwf(NC))(ﬂéj)ﬂ(Qéi - éﬂ'))

77”
0 Ty OBGE(Z) o
+n—”<AGU( NN )+ P2y (M)@%))} o G50

K%i%i —

/ G oo (- BT BIWG) + (BT BN

— 3—26MTM(1 + Sz]wf(&é))<ﬂél)ﬂ(éz - Qéj))

U
6 NGy ODCH(Z)
+U—U<AGU( INTN(NG,) + =y (Mg)(ﬂg))} a9, (59)

360, o
Z Cm{ UJNTNsuwa(¢ ¢ ) ((Mg)(ﬂ%»
Qe j=1,j#i 772]
6 OAG;(2) \ o1/ -
- PSS ENT (NG )6, | a9

Koic —
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B 8R"’

0%, (N ¢
K= / NN+ BB (waf<¢> +wyw.D,(6) %m)

6

+§Tw§Df<¢>afq(Nc ST 2w, ((N8) (N6, B, + NG (N5,B3,))

=1 3>t
3 7 ~
+ (B BjewyuDy(6) B 1 (B By, Dy (0) I N ag, (60)
forons — OB / _NTN 49, (61)
K o1,
C ch T ~ 2
K% = o B B(wjwsDy(9) fo(NE) + wiDy(e)) de2, (62)
s O,
OR" *f(c)
HsC _ o T T T
K 2 /AtN N+pB'B+ N 52 — =N d, (63)

Qe

C 2 n ~
O%i 0%, 09 de

L
e

+ B (w}Dg(9) fo(€) + wswrDs(9))

S 205 (BING )(NG,)? + (B )N(NG)* +2(BS ) (NS J(N,)N))

=L
7 [ 20Ds(9) OD4()
+B , AN

< 2, fq(&) + wwy 29 )

) e

N, N,
> 2uy (NS, )(NG,)*Bo, + N6 (N, )*Bo,))

+ BB, <w wsagg@ fq@wwza%(@M) a9 (64)

L R

6 Representative examples

In this section we present two examples to illustrate upper and lower bainitic transfor-
mations, respectively, on a 3pm x 3pum domain. As described in Section 5 the system
of partial differential equations is solved with a finite element method. Therefore the

domain is discretized into 16384 quadrilateral elements. Homogeneous Neumann boundary
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Parameter Symbol Value/Unit
Lower diffusion-across-the-interface parameter Lp 0.5

Maximum carbon concentration in ferrite Ceq 0.0704 wt.% [13]
Maximum carbon concentration in steel Cearb 6.67 wt.% [25]
Bainitic main growth direction Bo 0°
Cahn-Hilliard viscosity factor T 0.00002 s
Cahn-Hilliard balance factor p 0.00016 pm?
Cahn-Hilliard potential factor d 0.014 W
Bainitic ferrite/Austenite interface energy 012 0.001 mJHQ
Bainitic ferrite/Carbide interface energy 013 0.001 p;]n2
Austenite/Carbide interface energy 0923 0.001 ﬁ
Bainitic ferrite/Austenite interface mobility C12 200 pjrf
Bainitic ferrite/Carbide interface mobility (D 500 pjf
Austenite/Carbide interface mobility Co3 500 p}’;‘l
Gibbs energy between Bainitic ferrite and Austenite AGY, —0.045529 IH‘L 3
Gibbs energy between bainitic ferrite and carbide AGY;  0.1210588 piﬁ
Gibbs energy between austenite and carbide AGY, 0.1210588 o
Interfacial thickness n 0.17pm

Step function width € 0.1

Transition temperature 6p 350°C
Temperature step function width €p 1K

Interface diffusion coefficient bainitic ferrite — austenite $19 1.224#.%
Interface diffusion coefficient bainitic ferrite — carbide 513 1.44 th.%
Interface diffusion coefficient austenite — carbide $93 th_%
Cahn-Hilliard diffusion coefficient within bainitic ferrite Dy 20“—%12
Cahn-Hilliard diffusion coefficient within austenite Dgo 05
Cahn-Hilliard diffusion coefficient within carbide D3 0 1”:2

Fick’s diffusion coefficient within bainitic ferrite Dy lmez

Fick’s diffusion coefficient within austenite Dy 1 pr:Q

Fick’s diffusion coefficient within carbide Dys 0 1“:2

Table 2: Material parameters
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Figure 3: Upper bainitic transformation at 0s, 0.01s, 0.02824 s and 0.03s.

96



-
65F b
o 6 [
XX
K I |
g 5.5 — — Carbon concentration|| 98
Z 5¢ —— Bainitic ferrite
= 450 —— Austenite 1
6 5 1063
g Al 10.6 g
4 3 33 0.4 ;:_’é
o )
2 825! A
c N
o &2 Tt
wt.% ® 15) 192
O -----
1 L
05} 10
0 ‘ ‘ ‘ |
2 2.2 24 26 2.8 3
b) y in pm

Figure 4: Carbon accumulation within the diffuse interface in upper bainite: a) Subregion

A of Figure 3.d, b) intersection B-B carbon concentration and phases vs. y coordinate at
xr = 0.117 pm.

conditions (7), (10) and (13) are prescribed for all variables as
=0, c=0, ¢ =0, (65)

The carbon concentration has an initial condition of ¢(t = 0) = 1.87wt.% with small
random perturbations. The carbides ¢3 are initially zero, but do have small random
perturbations which are also uniformly distributed. The total time is 0.03s and the time
step is chosen as At = 0.00001s. The material parameters used for the examples are
summarized in Table 2. Most of the parameters are tentative and a field for further
investigations. We choose the same material parameters for upper and lower bainite, in

order to highlight differences in the diffusion mechanisms.
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Figure 5: Lower bainitic transformation at 0s, 0.01s, 0.02s and 0.03s.

98



7
65+ 1
6 L
?\; 55¢ {08
c St — — Carbon concentration ||
‘c 45¢ — Bainitic ferrite
= —— Austenite 106 .8
B 4 iD=
.l 8
§ 04 &
O 25+
c
% I B N A N 7 0.2
8 15F 10.
1 L
0.5F S 1o
0 : . s
2 2.2 24 2.6
b) vy in pm

Figure 6: Carbon accumulation within the diffuse interface in lower bainite: a) Subregion
C of Figure 5.d, b) intersection D-D carbon concentration and phases vs. y coordinate at
r = 0pm.

6.1 Upper bainite transformation

The first example illustrates an upper bainite transformation at ¢ = 700 K. The initial
conditions are visualized in the first column of Figure 3. There are two nuclei of bainitic
ferrite while austenite dominates the rest of the domain. Both nuclei grow and within the
bainitic ferrite the carbon concentration declines. In the second column of Figure 3, at
t = 0.01s, it can be seen that carbon moves across the interface out of the supersaturated
bainitic ferrite and into the austenite. This mechanism continues in the following time
steps while the bainitic ferrite grows. The carbon concentration ¢ within the austenite
phase increases close to the interface with the bainitic ferrite. At places where the carbon
concentration reaches its maximum of ¢ = 6.67 wt.% carbides ¢3 precipitate, as can be
seen in Figure 3.c at ¢ = 0.02824 s between both bainitic sheaves. The precipitation is
a self-enhancing process, because the carbide nucleus attracts the surrounding carbon
into the carbide phase which enforces the growth of the carbide. The carbides ¢3 limit
the growth of the bainitic ferrite ¢;. The transformation process of this example differs
fundamentally from the pearlite growth [28], even though both microstructures consist of
ferrite and carbide and the final structure may look similar. In bainite the ferrite growth
displacively, that is independently from the carbon movement, whereas the pearlite growth
is diffusional and ferrite and carbide grow cooperatively at the same time. In this example

it can be seen that the diffusion of carbon and the precipitation of carbides are subsequent
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processes in bainite.

Figure 4.a illustrates the subregion A of Figure 3.d at ¢ = 0.02824 s in detail. The two
horizontal dashed black lines show the limits of the interface between austenite (Figure
3.a) and bainitic ferrite (Figure 3.b). Figure 4.b shows the corresponding intersection
B-B of Figure 4 at x = 0.117 um. The carbon concentration, the bainitic ferrite and the
austenite phase are plotted vs. the y coordinate. The change of the carbon concentration
within the interface can be seen clearly here in both figures. The minimum and maximum
carbon concentrations are within the interface. This output is a result of Type II diffusion
(accumulation within the interface) as described in Section 2 in Figure 1.II. Furthermore
one can see the influence of Type III diffusion (balancing within in the phases). Due to this

mechanism the carbon concentration within the austenite domain increases significantly.

6.2 Lower bainite transformation

The second example at § = 600 K treats the lower bainitic case. The initial state in the
first column of Figure 5 is similar to upper bainitic transformation. It starts with nuclei of
bainitic ferrite ¢; at the left boundary while the rest of the domain is austenite. During
the ensuing time steps the nuclei grow. The bainitic sheaves ¢; become supersaturated,
such that the carbon starts to move. Due to the lower temperature and the likewise slower
diffusion speed, most of the carbon ¢ stays within the bainitic ferrite ¢;. Here it starts
to build accumulations. However some atoms accomplish to move across the interface
into the austenite as can be seen in Figure 5.d. At accumulations of carbon, carbides ¢3
precipitate. As it is typical for lower bainite, this precipitation process takes place within
the bainitic ferrite phase.

Comparable to Figure 4, Figure 6 illustrates the subregion C of Figure 5.d at ¢t = 0.02s
in detail. The two horizontal dashed black lines show again the limits of the interface
between austenite and bainitic ferrite. Figure 6.b shows the corresponding intersection
D-D of Figure 6 at x = 0pum. The carbon concentration, bainitic ferrite, austenite and
carbide phases are plotted vs. the y coordinate. In this example for lower bainite, it can
be seen that the diffusion across the interface plays a minor role. Due to the accumulation
within the interface (Type II diffusion Figure in 1.II) only a very little peak grows close to
the austenite phase. On the left side of the diagram there is an accumulation of carbon as

a result of separation within the bainitic ferrite (Type I diffusion).
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7 Conclusions

This work describes a new model for the simulation of the transformation of upper and
lower bainite. It is based on a thermodynamic framework of generalized forces and stresses
as published before [15]. The core of this unified model for both bainitic transformations
are weighted Helmholtz energy equations which lead to an extended Cahn-Hilliard diffusion
equation to model the movement of the carbon. It combines the typical Cahn-Hilliard
separation mechanism, which is used for the supersaturated lower bainitic ferrite, with
diffusion across the phase interface, as introduced by Wheeler et al. [21] and Fick’s law of
diffusion within the austenite.

The examples for upper and lower bainite show the expected characteristics. While
in upper bainite the carbon moves out of the supersaturated bainitic ferrite, most of the
carbon remains within the bainitic ferrite in lower bainite to build accumulations. At
places where the carbon concentration reaches its maximum, carbides precipitate. In lower
bainite this process takes place within the bainitic ferrite whereas in upper bainite the
carbides formate between bainitic sheaves within the austenite. An extension of this model
with coupled deformations and an implementation using the isogeometric finite element

method are planned for future work.

Appendix A

In this appendix we provide a detailed derivation of equation (37) starting from equation

(36). Inserting the mobility tensor A from equation (27) into equation (36) renders

¢ = V- [(wiDf(9) fy(c) + wswrDy(9)) Viuy]
+ V- [(wsw;Dy(9) fo(¢) + wDy(9)) Viis] . (A1)

Using equation (33) for the chemical potential 7, while leaving 5 we obtain

6= V- | (WEDA(6)1c) + w0y D)) <a¢f Sy w)]

i=1 5>t

+ V. [(wswaf((b)fq(C) + U)EDS<¢)) V/vbs} (AZ)
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Applying the gradient operator (as introduced in equation (1.1)) on the term in brackets

leads to

¢=V-| (wiDs(§) f4(c) + wawsDy(6))

i) g, Ny
( 8({2 Ve+ Z Z vij (2Vdigie; + 2¢?¢jv¢j)> ]

i=1 j>i

+ V- [(wswyDy(9) fo(e) + wiDs()) Vis] . (A3)

Applying the divergence operator in the last term and using the distributive law we obtain

0*;(c)
oc?

0*y(c)
oc?

=1

¢=V- Ve

wiDy(9) folc)

Ve+ wswrDy(¢)

N, Ny
+ (WiD () fo(c) + wswyDy()) Z Z vij (2Viit] + 2076,V ;) ]

i=1 j>i

+ (wswfVDf(qzﬁ)fq(c) + wswaf(¢)afaq—ic>Vc + w?VDS(ng)) Vs

+ (wswyDy(9) fo(c) + wlDa(9)) Apts, (A4)

where in the first term a product vanishes. The Helmholtz energy 1[) #(c) is postulated in

equation (21) to fulfil the condition

JACEAICR] (A5)

such that the first term in equation (A.4) reduces to w7Dy(¢)Ve. This leads to Fick’s
second law which is needed for the upper and lower bainitic transformation model as
documented in Table 1 and schematically illustrated as Type III in Figure 1.II1. The
function f,(c) defined in equation (30) is crucial for the diffusion across the interface,
because it limits the movement across the interface with an upper ce., and lower ceq

bound and is therefore a multiplier of the double well potentials (24) and its derivatives.
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The first and second derivative of the Helmholtz energy (21) are

n 1n Ccarb—C
00ile) _ M e (A.6)

dc Ceq — Ccarb7
O%hy(c) 1 1
oc2 (¢ — ceoq)(Cars — ) fylc)’ (A7)

such that the balancing condition (A.5) is satisfied.

Applying the divergence we end up with the evolution equation for ¢

¢ =wiVD(¢) - Ve+wiDs(¢)Ac+ wswpV Dy(¢) 8218022(0) Ve
B3 9%
e D)8 (90 1 w0, (6) T2
0
+ (VD100 + w0 e+ w010
Np Np
N iy (20i63V 6 + 26,67V ;)
i=1 j>i
+ (wiDy(9) fy(¢) + wewp Dy(¢))
Ny, Np
D 205 (Vi3 Vs + Vidi Vs + 41V oV o, + 6,67 Ab; + ¢ids Ady)
i=1 j>i
3fq(c) 2
+ (| wswyV Dy () folc) + wswaf(¢)—ac Ve+wiVDs(o) | - Vs

+ (wawy Dy (9) fo(c) + wiDy(9)) Aps, (A8)

where the first two terms can be identified as Fick’s second law with a diffusion coefficient
Dy(¢) and its gradient.

The first special case of the equation (A.8) with wy =1 and wy = 0 gives an evolution
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equation describing only Fick’s diffusion and diffusion across the interface

¢=VDs(¢) Ve+ Dy(p)Ac+ (VDf(¢)fq(c) + Df(¢)afaq—£c>Vc)
NP NP
D v (26:0V i + 26,67V ;)
+ (Dy(9) fo(c))
Np NP
>N 20 (Vid? Vs + V6iV s + 40i; VoV o, + 6,6 Ad; + 6167 A¢;) , (A9)
=1 3>t

while for w; = 0 and w, = 1 it reduces to a purely separating equation of Cahn-Hilliard

type

¢c= VD3(¢) Vi + DS(QS)ANS‘ (AlO)
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Abstract

The microstructure bainite in steels consists of three phases, namely bainitic
ferrite, austenite and carbide. Two different arrangements of these phases can be
observed denoted as upper and lower bainite which develop at different temperatures.
For both morphologies the growth starts with a displacive transformation from
austenite to bainitic ferrite. The bainitic sheaf has a preferred direction of growth due
to eigenstrains which evolve during the transformation. Subsequently a temperature
dependent diffusion process starts to redistribute the carbon and carbides precipitate
at accumulations of carbon. The goal of this work is to simulate the upper and lower
bainite transformation considering eigenstrain effects. To this end, we extend an own
previously developed model by mechanical contributions. The related coupling terms
of the phase field /diffusional /mechanical model are derived within a thermodynamic
framework. Two representative examples illustrate the capability of the extended

framework and show the expected transformation of upper and lower bainite.

1 Introduction

Bainite is a steel microstructure with useful properties since it has a high ultimate strength
combined with a higher ductility as tempered steels. The microstructure consists of

three different phases, that are bainitic ferrite, austenite and carbide which arrange to
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two different morphologies, upper bainite and lower bainite [1]. In materials science the
transformation from pure austenite to bainite is not fully understood and so far under
discussion [2]. We follow those scientists who describe the transformation from austenite
to bainitic ferrite as a displacive transformation independent of carbon diffusion. From
this it follows that bainitic ferrite must be supersaturated of carbon directly after the
phase transformation. In a subsequent process the carbon within the bainitic ferrite
diffuses, which is highly dependent on the temperature. At high temperatures the carbon
atoms are highly mobile. Those who are close to the interface to unsaturated austenite
diffuse across the interface while atoms in the bulk phase move in the direction of the
interface. At accumulations of carbon within the austenite, carbides precipitate. The
resulting microstructure is called upper bainite. In contrast to upper bainite, lower bainite
evolves at lower temperatures where the mobility of the carbon atoms is much lower.
Therefore, only a few carbon atoms close to the interface diffuse across the interface into
the austenite while most of the carbon stays within the supersaturated bainitic ferrite to
separate and build accumulations. Carbides precipitate at these accumulations within the
bainitic ferrite.

Phase transformations in steel and their simulations are important topics in materials
science and mechanics. There are several models simulating phase transformations with
the phase field model, some are summarized in a topical review by Steinbach [3]. One of the
first works about dendritic growth is published by Kobayashi [4]. Other important models
are presented by Militzer et al. [5], Huang et al. [6] and Mecozzi et al. [7] on the austenite-
to-ferrite transformation. Diffusion-controlled growth is simulated by Steinbach and Apel
[8] to model the austenite-to-pearlite transition whereas the martensite transformation
is investigated e.g. by Yamanaka et al. [9] and Schmitt et al. [10]. Widmanstatten
formation is simulated in [11]. There are a few models describing parts of the bainitic
transformation with the phase field method. Song et al. [12] simulate the growth of
upper bainite neglecting the precipitation of carbide and Arif and Qin [13] describe the
autocatalysis event between two subunits. To the authors knowledge, firstly a phase
field model for the lower bainitic transformation is presented in [14] and [15] showing the
separation of carbon within the bainitic ferrite and the precipitation of carbides. This
model is e.g. applied in [16] and extended to upper bainite in [17].

A further challenge of the multiphase field method is the modelling of the directed
growth of the bainitic ferrite. This effect has been modelled in [14], [15] and [17] in a
phenomenological way by manipulating the interface energy depending on the direction of

the gradient of the phase order parameter. In this work the directed growth is governed
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by a coupling with mechanical contributions such that the manipulated interface energy is
no longer required. At interfaces between phases, eigenstrains strains due to the phase
transformation are induced which lead to a directed growth of a new phase. The new
coupling terms have to be consistent with the multiphase field formulation of [17]. In
particular the mechanical contribution to the multiphase field evolution equation has to
govern on the expense of which phase j a new phase i may grow.

The model derived in this paper is based on the concept of generalized stresses as
introduced by Gurtin and Fried in [18], [19] and [20] and extended e.g. in [15] and in [21].
In this paper mechanical contributions are added to the framework. For this step we found
[10] and [22] inspiring.

This work is divided into the following sections: Section 2 describes the thermodynamic
framework for a coupled multiphase transformation, diffusion and deformation model
based on generalized forces. Section 3 is concerned with a prototype model for upper and
lower bainite. Here the constitutive equations are postulated and a set of resulting partial
differential equations is provided. Section 4 is concerned with the implementation of the
model equations whereas the numerical examples are shown in Section 5.

Notations: Vectors a and second-order tensors A are bold and matrices B are
underlined. In the three-dimensional Cartesian coordinate system, the gradient and the

Laplacian, respectively, of a scalar field a(x) are given by

> da(x) - 0*a(x)

1. Va(z) = Zl o, © 2. Aa(z) =V -Va(z) = Zl I (1)
where e;,7 = 1,2,3 are standard unit vectors and z; are the coordinates of . The
divergence of a vector field a(x) reads

3
(?al-
. — . 2
v ala) =30 5 )

2 Thermodynamic framework for generalized forces

coupled to mechanics

In this section the thermodynamic framework introduced in [15] is extended for deformable

continua, based on the work by Gurtin [20].
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2.1 Balance laws

Firstly, we introduce N, phase order parameters ¢; (i = 1,..., N,) and the concentration
of a solute c. Considering a body B with an arbitrary control volume V' as a subregion
of the body B and phase stresses §;, internal phase forces 7;, external phase forces v;, a

diffusion stress A and an internal diffusion force w. The integrals

P = / —& -V dV, P = / mig; dV, PP = / Yigi AV, i=1,...N,, (3)
|4 4 4

= / —A-Vedv, Pit= / we dV, (4)
1% %4

describe powers performed on the atomic configuration of V' as proposed in [15]. Further-

more, we introduce the powers
Pint :/ —P:VxudV, P = / b-udV, (5)
1% 1%

where P is the first Piola-Kirchhoff stress tensor, Vx is a gradient with respect to the
reference configuration, w4 is the time derivative of the displacement w and b is a body
force per unit reference volume. With the powers (3), (4) and (5) the microforce balance

equations

V&i+m+v=0in V for i=1,...Np, (6)
V- A4+w=0 in V, (7)

& -n=0 on 9V for i=1,.., N, (8)
A-n=0 on JV. (9)

and the balance of linear momentum
Vx - P+b=0 in V (10)

for non-accelerated systems is derived. The body force b is introduced for the sake of
completeness, but is not needed anymore and therefore, is set to zero b = 0.

The first law of thermodynamics
E=K+ P (11)
is used to ensure the conservation of energy, where & is the time derivative of the internal
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energy, K the kinetic energy and Pt the external power. The kinetic energy rate K = 0,
because only non-accelerated systems are considered and therefore, inertia effects are
neglected. A local internal energy rate é can be related to the global internal energy rate
£ as

£= / édv. (12)
v
Following [23] the external power P is equal to the negative internal power P
Pext — _Pint' (13)

The internal power is the sum of all powers on atoms of V' with internal contribution in
(3), (4) and (5)

Np
P =Py +P5 + P+ ) (P +Pi) (14)
=1
Np
:/ (—P : F+we—>\-vc‘+2(m¢i—gi-vaéi)) dv (15)
v i=1

where F' = 1+ Vxu is the deformation gradient. The internal power P™ in equation (15)
and the global internal energy rate of equation (12) are inserted into the first law (11) to
obtain a local form

Np
é:P:F+>\-vc'—wc‘+z(g-vgzéi—gz;m). (16)
=1

2.2 Dissipation inequality /entropy principle

The second law of thermodynamics is used to obtain the Clausius-Duhem inequality (see
e.g. [24, 25, 26]) in global form as follows

/dez—/fb-ndA, (17)
\% oV

where the local entropy density is denoted as s and ® is the vector entropy flux, defined
as, [23, 27

J

(18)
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This entropy flux introduces three additional quantities, the scalar chemical potential p,
the chemical flux J and the absolute temperature 7. A local form of inequality (17) is

obtained by applying Gauss’s theorem and inserting equation (18)
Ts— V- (uJ) > 0. (19)

In the next step we utilise the Helmholtz energy v, which is a thermodynamic function
of state like the internal energy e, the temperature 7" and the entropy s. They depend
only on the current state of the system and not on the path by which they arrived at their
present state. The Helmholtz energy ¢ is defined as

v =e—Ts. (20)

The time derivative of the Helmholtz energy 1 for the isothermal case reads

b =é—Ts. (21)
Inserting equation (21) into the inequality (19) leads to
—p4é—V - (uJ)>0. (22)

In the next step mass conservation of the concentration of a solute ¢ is applied. The

conservative quantity ¢ has to fulfil the mass conservation equation
¢=—V-J. (23)
Applying equation (23) and inserting equation (16) into inequality (22) the local dissipation
inequality reads
NP
—+ P F+ X Ve—witpe—J-Vu+ Y (si-wi—w,-) > 0. (24)
i=1
2.3 Restrictions to constitutive equations imposed by the sec-

ond law of thermodynamics

In this subsection restrictions to constitutive equations are formulated which are imposed

by the local dissipation inequality (24). This subsection is an extension of subsection 2.3
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n [15]. For convenience we define the constitutive variables

z = [Fa C, ch éa Hy V,U, {¢Z> V¢Z? ¢Z}f\2’1} (25)

and the constitutive functions

Z(z) = [P(z), ¥(2), J(2), &(2), A(z), {7i(z), &(2)}in), (26)

which, at this point, may depend on the constitutive variables z.

Then the total time derivative of the Helmholtz energy becomes

¢_aw< 2)OF  0U(z)0c  O%(z)0Ve  0U(2) 06 00(z) Op  0v(z) OV
 OF Ot dc Ot ' 9Ve Ot o ot ' o ot OVup ot

N, o R . .
~ [ 0(z) 0p;  Op(z) OV  O(z) 0y
+Z< 96, Ot Ve ot | o4, az)' (27)

i=1

Inserting equation (27) into the local dissipation inequality (24) gives

(P(z)—ag—?> F+

4

de OV o 0 ”_ OV
) Y ah Y G bd Y
N,
vy ~ (¢ dY(2) B 0(2) 09(2)
W3 J(z)+; (EZ( ) — 8V¢Z>w’ ( i(z) + 90, )(b 2%, ¢i| >0

(28)

Next, the aim is to formulate restrictions to the constitutive equations (26) to fulfil
inequality (28) for arbitrary values of z and the higher order derivatives V¢, ¢, f1, V [z, ng“ Vgéi

at any time and any material point. Analogously to [15] and [20] all terms are analysed

by use of three different groups as indicated in equation (28):

1. The first group contains all terms with the higher derivatives ¢, j1, Vi and gbz in
inequality (28). The characteristic property of these quantities is that they appear

linearly in (28) which is straightforward because they are not constitutive variables
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of the vector z in equation (25). One could easily find values for z and the higher

order derivatives of group one which would violate (28) such that the relations

~ ~

(=) 01 (2) :
0, 0, oV 0, 2, 0, for i s, Ny, (29)

are necessary conditions to fulfil inequality (28), see [20] and [15]. From equations
(29) it can be concluded that the Helmholtz energy @@(z) cannot be a function of
¢, i, Vi and ¢Z as initially proposed in equation (26) but only of the variables Z,

resulting into

(2), where Z=[F,c, Ve, {¢:;, Vo }22]. (30)

. The second group consists of the three terms containing F', V¢; and Vé in inequality
(28). The argumentation for these terms goes along the same lines as for the first
group. As for group one, the related higher order derivatives are not constitutive
variables of the vector z in equation (25) and thus they appear linearly in (28). In
contrast to the first group, the corresponding factors are composed of additive terms
in inequality (28). Here F', V¢; and V¢ could be chosen to violate inequality (28).
Thus it can be stated without loss of generality that the factors have to be zero as

necessary conditions, leading to

~ ~

Pe) = 202 A - S8 g - S

for i=1,...,N,. (31)

While for both groups the argumentation goes along the same lines, the results differ.
As a result of the first group the number of constitutive variables for the Helmholtz
energy is reduced, see equation (30). Here the number of the constitutive equations
reduces to 3 + N,, because P(z), & and A\ are no longer independent but directly
dependent on the choice of 1(Z).

With the results of equations (30) and (31) the dissipation inequality (28) renders a

reduced dissipation as

=1

AL Np e
Due to our choice for z in equation (25) where the deformation gradient F' is a
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constitutive variable but not its time derivative F', the inequality (32) does not
contain a strain measurement anymore. Therefore, the following analysis does not

differ from [15] but is continued here for the sake of completeness.

. Group three consists of the remaining terms in inequality (32). Their characteristic
property is that Vu, ¢ and 9252 are constitutive variables of the vector z and therefore,
may appear linearly or non-linearly in inequality (32). Since it is not known whether
these terms violate the inequality (32), they cannot be set to zero as a necessary
condition [15]. One could of course choose the additive terms as zero again, however,
this would not be a necessary but only a sufficient condition and would lead to a

non-dissipative system. Instead inequality (32) is written as
Np
D=-Vu-J(z)—we—Y g >0 (33)
i=1

with additional quantities

s _ o, O0(E)
dis — o 34
az)+ S - (34

) oz
75 = 7,(2) g((;) =1,...N,. (35)

In the next step, we choose

wh = —7(2)¢, (36)
78 = —Bi(2)di, i=1,...,N,, (37)

where 7(z) and f;(z) are constitutive moduli. The chemical flux is chosen as
J(z) = —A(z)Vi, (38)

where A(z) is the second order mobility tensor [20]. Inserting the three definitions

(34)-(38) into the dissipation inequality (33) renders

D=V A2)Vu+71(2)+ Z Bi(2)di" > 0. (39)
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The inequality (39) holds for any choice of Vu, ¢ and ¢; if and only if
7(z) >0, fi(z) >0, s-A(z)s >0 Vs. (40)

The restrictions imposed by the second law of thermodynamics leads to 3 + N,
constitutive equations. These are the Helmholtz energy ¢(Z), the constitutive moduli
Bi(2z), 7(z) and the mobility tensor A(z), which have to fulfil the criteria of (30)
and (40). Every set of functions that satisfies these restrictions is in accordance with
the microforce balance equations (6) and (7), mass conservation (23), the first (11)

and the second law of thermodynamics (17) [15].

2.4 General partial differential equations

In order to simulate physical processes with the framework derived of the previous
subsections, evolution equations for the quantities ¢ and ¢; are derived. To this end, an

equation for the chemical potential p which is needed for the concentration c. Inserting

equation (34) into equation (36) eliminates w®* and gives
oPp(Z) | . .
p= d(‘;(c ) +w(z) + 1(2)c. (41)

Using the force balance (7) the constitutive relation w(z) in equation (41) can be replaced

by —V - X and further transformed using restriction (31.2) into

u:&g—f)—v-a;}—v(z;)—l—ﬂz)c’. (42)

The evolution equation for the concentration can be transformed in a straightforward

manner from the mass conservation law (23) using the chemical flux proposed in equation

(38)
¢=V-(A(2)Vp). (43)

Inserting equation (42) into equation (43) leads to the evolution equation of the concen-

tration, the viscous Cahn-Hilliard equation [28]

¢=V- (A(z)V <8@/g)(62) -V 8;/}V(z;) + T(z)c'>> : (44)
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Inserting equation (37) into equation (35) and using equations (6) and (31) leads to the

partial differential equations for the phase order parameters

i =

L (g 20()  00(2)
Bi(z) oV, P

4_%.), i=1,..,N, on V. (45)

Please recall, that equation (44) constitutes a conservative fourth order Cahn-Hilliard
differential equation, whereas equation (45) governing multiphase transformations is a
non-conservative second-order Ginzburg-Landau equation.

Inserting equation (31) into the balance of linear momentum (10) leads to

—0. (46)

3 A prototype model for upper and lower bainite

This section specifies the governing equations of the thermodynamic framework in section 2.
Thereby, to account for upper and lower bainite we provide an extension of the constitutive
equations in [15] and [17]. The prototype model developed in this paper describes the
growth of N, = 3 phases

1. bainitic ferrite (¢1),
2. austenite (¢») and
3. carbide (¢3)

to simulate upper and lower bainite formation. Moreover, ¢ represents the carbon concen-

tration and w is the displacement vector.

3.1 Diffusion mechanisms in upper and lower bainite

A main challenge describing the growth of upper and lower bainite is the carbon diffusion
which takes place subsequently to the phase transformation of austenite to bainitic ferrite.
As already stated in the Introduction there are two diffusional phenomena working during
the transition. As a model assumption we introduce three diffusion mechanisms which are
combined to describe the two phenomena separation within the bainitic ferrite in lower
bainite and diffusion across the interface for both morphologies. Our model ideas can be

found in detail in [17]. For the sake of completeness we provide a short summary here.
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The three diffusion mechanisms are shown in Figure 1 and are henceforth denoted as
Type I, Type II and Type 111, respectively. For the bainitic transformation, red colour
is used for bainitic ferrite and yellow represents austenite. The interface regions are
illustrated by black dashed lines.

I. Separation within a phase: Within the supersaturated lower bainitic ferrite the

carbon builds accumulations surrounded by an area of low concentration.

I1. Accumulation within an interface: Carbon atoms within the diffuse interface between
bainitic ferrite and austenite are moved from the supersaturated bainitic ferrite side
to the unsaturated austenite region. This mechanism is very strong in upper bainite

and rather weak in lower bainite.

III. Balancing within the phases: Here carbon atoms are distributed equally throughout
the phase. This mechanism governs a redistribution of carbon within the austenite
which is enriched only near the interface with the bainitic ferrite. Furthermore,
in upper bainitic ferrite, this mechanism, provides the transport of carbon atoms

towards the interface which is depleted of carbon due to Type II diffusion.

Accumulation within an interface (Type II) and balancing within the phases (Type

III) together are denoted as diffusion across the interface.

Type 1. Separation within a phase

Diffusion across
the interface

V

Figure 1: Schematics of three diffusion mechanisms [17]
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3.2 Weighted Helmholtz energy

In subsection 2.3 which is concerned with restrictions to constitutive equations and
subsection 2.4 which summarizes the temporarily results, it becomes clear that the
Helmholtz energy function is the most important constitutive equation of the model
presented in this paper. Amongst other equations the Helmholtz energy function is the
key ingredient to model the different diffusion types described in subsection 3.1.

The Helmholtz energy is postulated as a specification of equation (26) as

B(2) = Ye(e, Ve) + by(c, b, Vo) + val(on, F), (47)

where @/A)C(c, Ve) is a part which governs diffusion of Type I and Type III and does not
contain any coupling terms, whereas Qj}(ﬁ(c, ¢, Vi) contains the phase field energies and
governs the diffusion Type II. The energy (¢, €) includes the mechanical terms and
the coupling between deformations and phase fields. The diffusive part is a sum of two

energies

~ ~ ~

(e, Ve) = wy(T)hy(c) + ws(T)s(c, Vo), (48)

where both summands are weighted by functions w(7') and ws(7T'), respectively, which
depend on the temperature 7. The term '(Lf(C) is important for Type III diffusion and
multiplied with w; which governs the diffusion across the interface whereas ﬁs(c, Ve) is
relevant for Type I diffusion and multiplied with the corresponding weighting function wsy
for the separation which is only relevant for lower bainite. The weighting functions are

defined as

0 forT <Tp —er

wp(T) = ¢ 1 for T>Tp+er  (49)
1 Lp 1 Lp\ . T—-Tp .
-4+ — - — — 2 h
5 + 5 + (2 5 ) sin <7T ( 9y + )) otherwise

and

1 for T < Tp —er

w(T) = for T'>Tp +ep (50)

0

1 L 1 L T-T

- _=b + (== e D +1 otherwise.
2 2 2 2 2er
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Figure 2: Weighting functions for different diffusion processes

Here T is the temperature of the isothermal transformation, Tp is the transition
temperature marking the boundary between upper and lower bainite, 7 is a factor

to soften the sharp boundary for better numerical characteristics and Lp ensures the

interaction of both diffusion mechanisms.

Both weighting functions are illustrated in Figure 2 versus the temperature T'. Note,

that wy and wy satisfy the completeness condition
we(T) +wy(T) = 1. (51)

For further details on the weighting functions see [17].

For Type I diffusion (separation) a Cahn-Hilliard equation is used. To receive such an

equation a suitable Helmholtz energy is

~

1
9ule, V) = () + oVl (52)
fle) = d(ceq — €)*(ccary — ©)*. (53)
where ,/p is a measure of the interface thickness and f(c) is a double well energy function

limiting the separation process. The limits of the separation are defined by c.q which

is the equilibrium carbon concentration in bainitic ferrite and c.,,;, which is the carbon

concentration of carbides.
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For Type III diffusion we postulate

~ Ceq ln(Ceq - C) - Ccarb ln(ccarb ) + Cln(czarb_cc)

byle) = et (54)

Ceq — Ccarb

Details on this formulation can be found in [17].
For the multiphase field equation (47) a Helmholtz energy with a double sum formulation

is used

Vo br, Vou) = ZZ hij(dis 65, Vi, Vo) + (L + ¢ sij wy) gi(di¢y)] - (55)

zl]>z

where h;;(¢i, ¢;, Véi, Vo;) is an interfacial energy density and g;;(¢;, ¢;) is a potential
energy containing a double well potential between phases ¢ and j which is additionally
used to model Type II diffusion and therefore, multiplied by ¢ and an interface diffusion

factor s;;. The potential reads

1
TPt (56)

ij

Qz'j(cbz’, ¢j) =

where a;; are potential constants. Furthermore, we chose an interfacial energy density,
following [29]

hij(¢i, 05, Vi, V;) = %aij(¢jv¢i — $;V;)? (57)

where «;; is a phase gradient energy coefficient.
For the bainitic transformation model only infinitesimal strains are considered. There-

fore, the engineering strain tensor is
1 T
e=sym(F —1)= §(Vu + Vu') (58)
and the symmetric engineering stress tensor is
o=o’. (59)

The Helmholtz energy 1, in equation (47) can now be written as a function of €
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instead of F' and is proposed as

p p
Di
Ver(Pr, €) = Z Z U sgj¢i¢j> : Cij(e — €?j¢i¢j)> (60)
i=1 5>t
where s?j are eigenstrain tensors due to a phase transformation from phase i to j, p;; is a

coupling parameter and C;; are symmetric fourth order material tensors.

3.3 Coupled partial differential equations

In this section we formulate the model partial differential equations using the results of
subsections 2.4 and 3.2. For the diffusion equation (44) the mobility tensor A and the

constitutive moduli 7 must be chosen. In this case 7 is a constant
7(2) = Tws = const., (61)
while the mobility tensor is weighted like the Helmholtz energy (48) and reads
A(2) = (0;Dy(6)f,€) + w,Dy(6)) 1, (62)

where the diffusion coefficients D¢(¢) and Dy are proposed as

N, N,
L. Df(¢) = Z ¢iDyiy, 2. Dy(¢) = Z¢iDsi7 3. fq(c) = (c— Ceq)(ccarb —c), (63)
i=1 =1

where f, is chosen to limit the otherwise unbounded Type II diffusion between c., and

Ccarb-
Inserting equation (61) and (47) with equations (48) and (55) into equation (42) leads
to

A a&s(c, Ve) (e, Ve) ,
N:w ZZ Sz] Gij ¢z7¢]) T _wsv' W""wﬂ-c-

zl]>z

(64)

which we split up into

i = w (g + (T, (65)
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where using equations (56) and (52)

8 a p p SZ
1. ps = a]; Ac+71¢, 2. iy wf +ZZ Uqb gb], 3. vy = J”.

=1 5>t

Here pip and pus are chemical potentials for diffusion across the interface (Type II + Type
III) and separation (Type I), respectively.

Inserting equation (65) into the evolution equation (43) leads to
¢=V - (wA(2) Vi) + V- (wsA(2) V). (67)

In the next step we only insert the chemical potential for diffusion across the interface piy
(66.2) into the evolution equation (67), which leads to simplifications that can be found
in the appendix of [17]. The chemical potential for the separation p (66.1) is calculated
as a single degree of freedom to avoid fourth order derivatives. The partial differential

equation (67) of the concentration field ¢ reads

¢ =wiVD(9) - Ve+ wiDs(¢) Ac+ wawpV Dy(9) O°0(c) Ve

c?
A .
P (e + oy Dy(0) 2D

) fQ( )Vc—i-wswfVD (gzﬁ))

+ wswas (¢)

+ (69D + 03D
N, N,
3N vy (2006296, + 26,67V6;)
i=1 j>i

+ (WEDg () fo(c) + wewyDy(¢))

N, N,
D0 205 (Voidi Vo + V0 Vo, + 4did VoV, + 6,07 Ad; + dis Ad;)

i=1 j>i
+ (wswfVDf(d))fq(c) + wqu,«(@%iC)Vc + w?VDS(d))) - Vit

+ (waws D(9) fo(c) + w2 Dy(¢)) Ay (68)

For the partial differential equations governing the phase order parameters (45) an
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equation for the constitutive moduli 5;(z) is needed. We postulate

Bi(z) = B; = const. (69)

such that equation (45) using equation (55) reads

; SR Gipj - (1+ ¢ sij wy) i
(bi - J ;ﬁ Bz qij <Oézj (¢jA¢Z ¢1A¢]) B 2CLz‘j (¢ ¢1)> * E
Np
N ﬁl Z Pij (¢ — ¢j)€?j : Cij(e — €?j¢i¢j)7
b j=1g#

for i=1,..,N,. (70)

The external phase forces =;, introduced in (3) and appearing in equation (70), are
crucial for the phase field method since they are the thermodynamic driving forces governing
the phase growth. Due to the fact that the model presented here is a multiphase model,
where each phase may grow at the expense of any other remaining phase, we need to

postulate the external phase forces as connected functions between two phases ¢ and j

N, N,
- L 6AG;
Vi = Z Vijg = — Z ]( 2 ¢i &; (71)
j=1,j#i j=1,j#i g

and introduce the new quantity AG;; which is a Gibbs energy between two phases ¢ and j.
The arbitrary factor 6 is introduced to be consistent with the evolution equations of [14]
and [7].

For a better physical interpretation we change the material constants of equation (70)
according to [7]. The dissipative moduli 3;, the phase gradient energy coefficients «;;, the
potential constants a;; and the phase energy coefficients ¢;; are replaced by the interface
mobilities (;;, interface energies o;; and interface thicknesses 7;;

"hij G — Mg Qi = 03 bij
9 1) T 9 vy — Yty
Gij 720 Bi

ﬁiQij = = Tijgij‘ (72)

The parameter change (72) is done using the Gibbs-Thomson equation ([7]) as is presented
in detail in the appendix of [14]. Note, that (;; = (j;, 0;; = o and n;; = n;; but
AG;; = —AGy;.

With the new parameters (72) the final partial differential equations (70) governing
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the phase order parameters read

6AGy;(z)

1ij B TR

26 (1 +c Sij wf)¢z¢j (¢ gbz))

v

Np
> G {%‘ ((¢jA¢z‘ — ¢ilAg;) —

=1,

—1ij(¢; — p;)ey; - C (z—:—s?jgbigzﬁj)} for i=1,...,N, (73)

The coupling terms with the mechanical contribution in equation (73) are additional
thermodynamic driving forces which govern the growth of the phases.

As explained for the external phases forces ;, the coupling terms with the mechanical
contribution are connected functions between two phases ¢ and 7, too. Thereby any phase

i can grow on the expense of any phase j.

Remarks

1. The elastic energy in equation (60) is inspired by Schmitt et al. [10] and [22] who
simulate the growth of martensite variants from austenite but changed in a significant
way. To motivate the changes, the multiphase field formulation (73) is compared

with the multiphase field of [22] which reads

bi=—-M B;V +G <%§£ - LA@)] : (74)

where ¢; is a phase order parameter for phase i, M is a mobility factor, W the
elastic energy, G and L are material parameters. The function f yields a Landau

polynomial

flo) =1+ 5 <Z¢2) +5 (Z&) (Z&) (75)

where A, B and C' are temperature-dependent coefficients [22]. The elastic energy
W reads

1 )
(5 6:) = 5le —€"(@)] : C(di)e — ()],  with (76)
¢i) = Z ¢ie;,  C(pi) =Co+ Z $:(C; — Co), (77)
where € is the strain, €? is the eigenstrain, C is a material tensor of a parent phase

and C; is a material tensor of phase i [22].
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2. The differences between the multiphase field models in equations (73) and (74) are
obvious. In equation (73) all phase parameters occur in pairs of ¢; and ¢; whereas in
equations (74) - (77) ¢; occurs only on its own. Furthermore, the Laplace operator

is used in equation (73) on ¢; and ¢;.

3. The elastic energies 1, in (60) and W in (76) differ in the way that 1), uses double
sums while W uses only one sum. All material parameters in equation (73) have two
indices, describing the phase transformation between any phases ¢ and j while in
equation (76) only single indices occur. These differences lead to different multiphase
field methods as illustrated exemplarily in Figure 3. The phase field model in Figure
3.a) allows only the growth of the phases 2, 3,4 at the expense of phase 1, while the
model presented in Figure 3.b) allows the transformation from any phase into any

other phase.

4. The multiphase field formulation of equations (74) - (77) provides a model with a
parent phase ¢; as illustrated in Figure 3.a). The parent phase ¢ is present as an
initial condition and all other ¢ = 2, ..., n phases can grow out of this parent phase.
The parent phase itself is not computed or described by an equation, such that the
completeness condition ) ¢; = 1 is trivially satisfied. This is useful in their model
since all martensite variants grow out of the parent austenite. However, it is not
possible that any phase ¢; may grow directly out of phase ¢; if j # 1. Such a model
is not able to describe the bainitic transformation, because here bainitic ferrite grows
at the expense of austenite while carbide grows at the expense of bainitic ferrite or

austenite.

5. In the phase field model presented in this paper every phase can evolve at the
expense of all other phases as illustrated in Figure 3.b). This generality requires a
formulation which states clearly at whose expense a phase should grow, such that
the completeness condition Y ¢; = 1 is fulfilled. The model described in equation
(73) is able to simulate the growth of any phase k out of any other phase [, because
every term (y|...] of an evolution equation for ¢ can be found, with negative sign in
the evolution equation for ¢;. This requirement is obviously not fulfilled by equations
(74) - (77).

The Gibbs energy is used to model the precipitation of carbides. In case the carbon

concentration reaches the concentration of carbides (6.67wt.%), carbides precipitate.
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Figure 3: Multiphase field models where a) transformations between all phases are possible
and b) transformations can only evolve from the parent phase 1.

Therefore, we postulate as described in [15]:

AG;i(z) = AG% v(i, ¢, €) (78)
with
;U(C) fori=3Vvj=3
v(¢s, @, ¢) = ¢3 + €9 (79)
1 otherwise.

The variables AG% in equations (78) are constant Gibbs energies between phases i and j

and w is a smooth step function proposed as

0 for ¢ < cearh, — €
w(c) =141 for ¢ > cearb (80)
% + %Siﬂ(gc + % - gccarb) otherwise,

where the width of the smooth step is defined by the parameter ¢.

The equations (78)-(80) are chosen such that, carbides will grow only if the carbon
concentration reaches ce, = 6.67wt.% [30]. The divisor ¢2 in equation (79) guarantees
that the phase ¢3 can grow even if the current value of ¢3 is close to zero and the very
small constant numerical perturbation €, > 0 prevents the equation from dividing by zero
in case ¢3 = 0.

Redefining equation (46) for infinitesimal strain and inserting equation (60) renders a

partial differential equation for the mechanical problem

0Y(2) Yo
B oe v (Z Zpij@ij(e - €?j¢i¢j)) =0. (81)

i=1 j>i
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4 Numerical implementation

This section provides the information about the implementation. The resulting system of
partial differential equations (66.1), (68), (73) and (81) is solved numerically with the finite
element method in a two dimensional space. Furthermore, the backward Euler method is
used for the time discretization. For the finite element formulation quadrilateral elements
with linear shape functions are implemented. To solve the algebraic system of equation
Newton’s method is applied.

At every node the following seven unknowns are computed: c, pts, @1, P2, @3, Uz, uy. The
chemical potential u4 for the lower bainitic transformation is computed separately to avoid
fourth order derivates in equation (68). It would be sufficient to calculate only two of the
three phases. However, we calculate all of them to check that the sum is zero at every
time and position.

The lower chemical potential (66.1) reads in weak formulation

9f(c)

W — Vs dV = 0, (82)

/ v,7¢+ pVr,Ve+ v,
1%

where v, denotes the test function for the lower chemical potential. For the diffusion

equation (68) the weak formulation reads

/ Vet dV = / vewiVD(¢)Ve dV+/ vewiDy(¢)Ac dV
v v v

—i—/vycwswfVDs(d))MVc dV—l—/Vucwswas(gb)aggzg(C) (Ve)? av

oc?
0%y (c)
—i—/vucwswas(@ 02 Ac dV

+ [ 5 (@3VDO)(0) + D@V Iyle) + wiwsVD.(0)

Ny, N,

0D 20(Veidie] + 676,V e;) dV + /V ve (wiD() fo(c) + wswyDy(9))
i1 j>i

N, N,

DD 20(A¢igit) + (Vi) 67 + AV iid; Vo + A, + (V6;)¢%) dV

i=1 j>1

+ [ vl D106 + w0, Dy @)V ) + wEVDG) - Vi, dV

n / ve(w s, Dy(6) fo(€) + w2Dy(6)) Mgy dV, (83)
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where v, is the test function for the concentration ¢ needed for the finite element formulation.
The test functions for the phase order parameters are denoted as v, such that the
weak formulation of the phase field evolution equations (73) with applied Gauss theorem

and homogeneous Neumann boundary conditions read

36
/ V¢¢Z dv = / Z Cl] |:O'zg (VU¢<V¢J¢1 v¢z¢j) 7]2 V¢¢i¢j(1 +c Sij wf)((bj - (bz))
Jj=1,5#i Y

_ 6AGy(%)

(]

L Vy0i; — Vgrij (s — ¢j)€?j : Cije — 5%@%)} dv. (84)

With homogeneous Neumann boundary conditions the weak formulation of equation (81)

is derived as

O—/Vl/u (iipm i ( 5%@%‘)) dv. (85)

i=1 5>t

In the next step a matrix formulation is used where degrees of freedom at every node
are denoted with the superimposed hat (A) Furthermore, we introduce a row vector N

containing the shape function values, such that the degrees of freedom may be written as
c=Né,  p=Nji,, ¢=Né, i=123 (86)

while gradient terms are described by
Ve = Bé , Vus = Bjis V¢ =Bo;, i=123. (87)

where B is defined as

N T Ox

—Y

N
B= [—] . with N_= ON (88)

The displacement @ and the total strain € in Voigt notation read

>
I
I
I
|
~
1S
I

(89)

<

Ex
Il/ll’
[_], gy, where B,=
Y

= < =
== <

8

Y

The relations in equations (86) - (89) are used in the same manner for the test functions
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Vg, Ve, v, and v, respectively. The element residual terms are derived from the weak
formulations (82) - (85) and read

AT ~n—1 P
R = / NTN=—— + BB (w?Df(@ + wyw,Dy(9) 82§§2(C>>
Qe
+ BT (w3 Dy () f,(2) + waw;Dy(9))
N, N,
MR ((NG)(NG,)* B, + N6, (NG,BS))
+ ETE& (wfwst(¢)fq(§) + wgDs(gb)) dQ? (90)
AT ~n—1 ~
R = / S N e (v, do, (91)
Qe

bi T éj_é?_l al T o\ 4 1 T o\ 3 2
R” = /ﬂ N AL + Z Gj |oij| — (B ﬁ)fj(ﬂ?i) + (B ﬁ)ﬂ(ﬂg)

. J=1,j#i
36 DS, S 6 S
~ N1+ sy (NN, — 6,) (N9, (6) ) + OGN (NG (NG
—ri;N(9, — éj)ggj :C;(Byu - §?jﬂéiﬂéj) df2. (92)
N, Np o
R = [ 323 puBiC, (Ba - NG NG ) do (93)
O, =1 >i

The superimposed n is used in equations (90)-(92) to denote the actual time step in the
backward Euler terms. It is omitted for brevity in other parts. To evaluate the integrals a
Gauss-Legendre rule is applied.
The non-linear algebraic system of equations
R(d) =0 where R=[R" R" R* R'", d=[¢ i ¢

" (94)

>

is solved with Newton’s method. For that purpose the derivatives of the residual function
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(94) are needed

_ch Kcus chﬁo chﬁp Q T
9R KHee o Khets 0 0 0
K=—2=|K" 0 K% K% K%/ (95)
ac_l K@ac Q K PpPo Kﬁbp p K Ppu
0 0 K" K" K™
with the submatrices
i 1 Np R o
Ko = a{% - [N+ Y G [az-j ((BTE)(MQ].) —(B'B)) N
%4, j=1j#i

- SN+ sy () (626, ~ )
ij
+ (AGMz)MTMMg?j) + %g(z)mﬂ@@éj))

U

- TijMTM [§?j : Qz](ﬁf@ - §?]Mézﬂéj) + (ﬂél - Méj)é)j : Qij(_é)jﬂéj)] ] ds2, (96)

bi 0 2
K@'fbj — a@i = /CU |:O—ij ( — (ETE)(M?) + (ETE)Qlﬂ
TS

- SN+ sy (N (0N, 23,
ij

+ ni <AGij(z)MTﬂ(Méi)
ij

i MM(M@)(M@))

=Jj

—ri;NTN [—g?j :Cyy(Bya — ;NG NG ) + (N, — No el - @U(—g?jﬂg;)] } dQ, (97)

. OR" - 360, ) — ) (V) (N
R = = :/ .;éﬁml_ n%]MMS”waQ_%) (ﬂﬁ')(ﬂ?ﬁ))
= O, J=Li#

T ~ ~
o oe X (ﬂﬂ»)(ﬂg)] 40, (98)

135



. OR" all ) .
Ko = S = [ Gl (6, - N6 )NC00By ) A, (99)
- Qe J=1j#1
cc __ aEC _ 1 T T 2 82¢U(M)
Ke=S0 = [NV B §<waf<¢>+wfwst<¢> 2N
Qe
01,(Ne) \ S
cC ~ ~ ~ A ~ ~
+BiD 0= NS 2, (N6)(N6,)BS, + N9,(N9)Bd)
=1 7>
N 83 Au Né N a NC
+ (B By Dy(0) 2D (57 By, D,(0) P v a0, (100)
s
T (101)
Ofis
[
K = 58 — [ B Blurw.y(6),(N) + wD.(0) 49, (102
7S O
ORM T 2*f(c)
psc . = — - NT T T
g =28 — [ TNV 4 pBT B+ NN a, (103)
Qe

Kc@‘ — 8@6 _ /BTBé w]%anA(QS)M—f— wpw, aDsA@b)MaQwu(M)
2%, b, 0

+ B (w}Dg(¢) f4(2) + wswsDy(¢))

Np

> 205 (BING)(N ) + (B )N(NG,)* +2(Bo,) (N6, )(NG,)N))

J=1j#i
+5" (wi D) @) 4wy ag‘;f“’))

B %, 3
Np Np . . ) . R A
Y3 20, ((ﬂgkwg)@g +No. (Mk)@?j))
k=1 j>k

OD/(0) s o) 4 2 2Del0)
0. 0

R g

+ B Bji, (wfws M) Q. (104)
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2SS V= 0.V = 0.V =0

Figure 4: Quadratic domain: Geometry and boundary conditions

K= / BIC(¢1)B, d0 (105)
Qe
OR" Al

Kudh‘ = — :/ Z pijﬁ?@ij <_§?jﬂ<ﬂ?j)> dsl, (106)
0bi 4 iiisi

5 Representative examples

Two representative examples are presented in this section. They are chosen to demonstrate
the capability of the framework described in Section 2 and the prototype model in
Section 3. The finite element method explained in Section 4 is used to solve the system
of coupled partial differential equations. Both examples are solved on a domain of
[ = 180 nm x [ = 180 nm discretized into 16384 quadrilateral elements. We prescribe
homogeneous Neumann boundary conditions for the chemical potentials u, the carbon
concentration ¢ and all phase order parameters ¢;. As shown in Figure 4 the mechanical
problem is statically determined supported by Dirichlet boundary conditions such that the
boundaries are stress free. In that way, the formation of individual nuclei can be studied

[10]. The eigenstrain Y, reads in Voigt notation

0.1
el = |-0.3 (107)
0
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Parameter Symbol Value/Unit

Maximum carbon concentration in ferrite Tag 0.0704 wt.% [12]
Maximum carbon concentration in steel Cearb 6.67 wt.% [30]
Cahn-Hilliard viscosity factor T 2- 10*115
Cahn-Hilliard balance factor ) 0.576 nrn
Cahn-Hilliard potential factor d 0.014 (wt 0/)
Bainitic ferrite/austenite interface energy 012 9600 ——
Bainitic ferrite/carbide interface energy 013 9600 nI‘P
Austenite/carbide interface energy 093 9600 HEQ
Bainitic ferrite/austenite interface mobility (12 9.6-106 njf
Bainitic ferrite/carbide interface mobility (13 9.6-106 n}f
Austenite/carbide interface mobility (o3 9.6 - 10° nm4
Gibbs energy between bainitic ferrite and austenite AGY,  —2494. 153 —
Gibbs energy between bainitic ferrite and carbide AG(I)3 554.256 5
Gibbs energy between austenite and carbide AGY;  554.256 50
Interfacial thickness 7 17. 3205nm
Step function width € 0.1
Transition temperature Tp 625K
Temperature step function width eT 1K
Interface diffusion coefficient bainitic ferrite — austenite 5192 0.0068 =7
Interface diffusion coefficient bainitic ferrite — carbide $13

Interface diffusion coefficient austenite — carbide S93 Om
Cahn-Hilliard diffusion coefficient within bainitic ferrite Dy 2- 107%
Cahn-Hilliard diffusion coefficient within austenite Do 0“‘22
Cahn-Hilliard diffusion coeflicient within carbide D O%

Fick’s diffusion coefficient within bainitic ferrite Dy 4. 1010“71212
Fick’s diffusion coefficient within austenite Dysy 8- lOlon—ns12
Fick’s diffusion coefficient within carbide Dy mgz
Bainitic ferrite/austenite mechanical coupling parameter P12 1
Austenite/carbide mechanical coupling parameter P23 0

Bainitic ferrite/carbide mechanical coupling parameter P13 0

Bainitic ferrite/austenite phase field coupling parameter 719 1$
Austenite/carbide phase field coupling parameter 723 O%
Bainitic ferrite/carbide phase field coupling parameter 713 0~

Lower diffusion-across-the-interface parameter Lp 0.5

Young’s modulus E 77000 miﬁ
Possion’s ratio v 0.375

Table 1: Material parameters
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(a) Austenite

0.03
0.02
0.01

-0.02
-0.04
-0.06
-0.08

(e) Carbide

(f) Carbon concentration

Ons 0.5ns

Figure 5: Upper bainitic transformation at Ons, 0.5ns, 1.5ns, 2.0ns and 2.4 ns.
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(a) Austenite

(b) Bainitic ferrite

(e) Carbide

1
0.8
0.6
0.4
0.2
0

(f) Carbon concentration

wt.%
Ons

0.5ns 1.5ns 2.5ns 3ns
Figure 6: Lower bainitic transformation at Ons, 0.5ns, 1.5ns, 2.5ns and 3 ns.

(=R S N )
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and the corresponding material tensor C,, reads in Voigt notation

E(L—v) 1 v/(1—v)
Q122(1+y)-(1—21/)' y/(l—y) 1 0 (108)
0 0 (1—2)/(2(1—1))

where F is Young’s modulus and v is Poisson’s ratio. Only %, and C,, are considered, be-
cause a mechanical contribution is only taken into account for the displacive transformation
from austenite (¢1) to bainitic ferrite (¢2) and not for the precipitation of carbides.

The initial conditions are illustrated in the first columns of Figures 5 and 6. However, the
initial carbon concentration of ¢(t = 0) = 1.87 wt.% has very small random perturbations
which cannot be observed with the scale in Figure 6. These perturbations are needed
to start the separation of carbon. The same goes for the carbide phase ¢35 which is
zero initially but has very small random perturbations. The size of each time step is
At = 107'%s. The material parameters are summarized in Table 1. Most of the parameters

are tentative and a field for further investigations.

5.1 Upper bainite transformation

The first example in Figure 5 illustrates an upper bainite transformation at 7' = 700 K.
As the initial condition two nuclei of bainitic ferrite ¢, are proposed on the left and right
boundary. The strains €, and €, in Figure 5.c and 5.d, respectively are zero initially. After
0.5ns the nuclei grow in a directed way. Furthermore, strains can be observed in the
interface region. While there is no change in the carbide phase ¢35 a carbon movement
is observed. Carbon atoms leave the supersaturated bainitic ferrite to move across the
interface into the austenite subsequently to the phase transformation from austenite to
bainitic ferrite as described in subsection 3.1. During the next time steps this process
goes on, such that the bainitic ferrite grows in a pointed shape, due to the coupling with
the strains. Within the bainitic ferrite, the carbon starts to diffuse and move out of the
supersaturated phase into the austenite. At around 2.3ns the carbon concentration in
Figure 5 reaches it maximum. As a consequence carbides precipitate in between the two

sheaves of bainitic ferrite as described in the Introduction.
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5.2 Lower bainite transformation

The second example at T = 600 K shows a lower bainite transformation. The initial
conditions can be seen in the first column of Figure 6. There is a single circular nucleus of
bainitic ferrite ¢, on the left boundary while the rest of the domain is austenitic ¢o. We
refrain from a second nucleus, because the interesting part of the transformation in lower
bainite takes place within the bainitic ferrite and not between two bainitic sheaves. The
third phase ¢3 is naturally zero. At the beginning there are no strains and the carbon
is uniformly distributed over the domain. During the next time steps the bainitic ferrite
grows in a directed way with a tip at its front like in the upper bainite example, see Figure
5.b. The subsequent carbon diffusion is different here. Only a small amount of carbon
atoms reaches the interface of austenite and bainitic ferrite and succeed in leaving the
supersaturated phase while most of the carbon stays within the bainitic ferrite to build

accumulations. At these accumulations carbides precipitate.

6 Conclusions and outlook

In this work we present a framework for coupled multiphase, diffusion and mechanics models
based on generalized forces and stresses which is an extension of our previously published
work in [15]. Furthermore, we combine the framework with the diffusion mechanisms
introduced in [17]. To couple the multiphase field method with mechanics, a new energy
potential in equation (60) is introduced and implemented. The resulting model comes
close to the physical reality considering the displacive growth from austenite to bainitic
ferrite including the transformation strains which lead to directed growth of the bainitic
phase.

The numerical examples show the described transformation followed by carbon move-
ment. In upper bainite the carbon diffuses across the interface from the supersaturated
bainitic ferrite into the austenite while in lower bainite most of the carbon starts to
separate using a classical Cahn-Hilliard approach and stays within the bainitic ferrite.
At accumulations of carbon carbides precipitate subsequently. An implementation using
the isogemetric finite element method and an extension for non isothermal systems are

planned for future work.
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5 Summary of the papers

Paper A proposes a multiphase field model coupled to Cahn-Hilliard diffusion to simulate
the lower bainitic transformation. To the author’s knowledge, this is the first work
concerning a phase field model for the lower bainitic transformation considering the
subsequent carbon diffusion and precipitation of carbides. The main idea is to activate the
carbon diffusion within the bainitic ferrite phase, which grows displacively. The diffusion
equation used to simulate the supposed accumulation of carbon is the viscous Cahn-Hilliard
equation. At accumulations of carbon carbides precipitate due to a high concentration.
The precipitation of carbides is modelled using the phase field model. The finite element
method is applied to solve the system of coupled partial differential equations. The results
confirm the described transformation.

Paper B is concerned with a thermodynamic framework for a multiphase field model
coupled with Cahn-Hilliard diffusion. The focus of this paper is the derivation of the
evolution equations for phase order parameters and the carbon concentration. The
described framework is based on the concept of generalized stresses as introduced by
Gurtin [10]. A microforce balance for N, phases and the concentration of a solute is
derived and used in conjunction with the first and second law of thermodynamics to
formulate restrictions to constitutive equations. A prototype model with constitutive
equations for the lower bainitic transformation is proposed. The resulting system of partial
differential equations is solved using the finite element method. The numerical examples
are compared with micrographs and show similar microstructures.

Paper C focusses on the diffusion of carbon in bainite. While the previous papers only
consider the separation of carbon within the bainitic ferrite, here the diffusion of carbon
across the interface between bainitic ferrite and austenite is taken into account. This
extension enables the model to simulate the upper bainitic transformation and improves
the simulation of lower bainitic transformation. A new unified model is created which
can describe upper and lower bainite depending only on the constant temperature. A

weighted Helmholtz energy is introduced to distinguish between the diffusion mechanics.
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On the one hand, upper bainite grows at high temperatures where the carbon can diffuse
across the interface from the supersaturated bainitic ferrite into the austenite. On the
other hand, at low temperatures lower bainite grows where most of the carbon starts to
build accumulations within the bainitic ferrite while only a small amount of carbon moves
across the interface. To the author’s knowledge the model described in this paper is the
first one considering these two diffusion phenomena in one model and it is the first model
capable of describing upper and lower bainitic transformation. Numerical results achieved
with the finite element method show the subsequent diffusion of carbon. In the example
of upper bainite, the movement of carbon from the supersaturated bainitic ferrite into the
austenite can be seen. In addition the precipitation of carbides from the austenite phase
at accumulations of carbon is simulated. The lower bainite example shows that only a few
carbon atoms succeed in leaving the bainitic ferrite.

Paper D deals with the extension of the already published model to mechanics. The
thermodynamic framework introduced by Gurtin [10] and extended in Paper B is improved
in this work. The balance equations of linear momentum and angular momentum are added
to the framework and the first and second law of thermodynamics take deformations into
account, such that the number of restrictions imposed on the constitutive equations grows.
The key idea is to simulate the directed growth of the displacive transformation from
bainitic ferrite to austenite by coupling mechanics with the multiphase field equations. Due
to eigenstrains during the displacive transformation some growth directions are favoured,
such that the phase grows faster in these directions. This extension to the previous
model replaces a mechanism which manipulates the interface mobility dependent on the
local phase gradient and a specified growth angle. Numerical examples are calculated
with the phase field method considering seven unknowns per node. The results show the
directed growth of the bainitic ferrite for upper and lower bainite taking into account the

corresponding diffusion mechanisms and the precipitation of carbides.
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6 Summary

In this work, composed of four papers, a model to simulate the upper and lower bainitic
transformation is presented. Bainite is a steel microstructure with desirable macroscopic
qualities, like the combination of high toughness and high hardness. Thus, bainitic steels
have gained increased popularity for example in the aerospace and car industry. The
microstructure of bainite consists of bainitic ferrite, carbide and retained austenite. The
bainitic transformation is one of the most complex in steel. It starts with a displacive
transformation from austenite to bainitic ferrite. The carbon concentration and its diffusion
have no influence on the transformation, such that the bainitic ferrite is supersaturated
with carbon right after the phase transformation. In a subsequent process depending
on the temperature the carbon starts to diffuse due to the supersaturation. At high
temperatures the carbon atoms move across the interface into the austenite whereas
at lower temperatures most of the carbon stays within the bainitic ferrite and builds
accumulations. At places where the carbon concentration reaches its maximum carbides
precipitate. In upper bainite, at higher temperatures, the precipitation of carbides takes
place within the austenite phase whereas in lower bainite, at lower temperatures, the
precipitation of carbides takes place within the bainitic ferrite phase.

To simulate the described transformation a multiphase field method coupled to diffusion
and mechanics is developed. The coupled model is based on the concept of generalized
stresses and the microforce balance as described in Papers B and D. A thermodynamic
framework including the multiphase field, the carbon concentration and mechanics is
presented in this work to guarantee the strict separation between universal physical laws,
such as the balance equations, the first and the second law of thermodynamics, and
constitutive equations which differ depending on the material. In addition restrictions to
constitutive equations due to the second law of thermodynamics are derived and applied
to propose a prototype model for the bainitic transformation. The key ideas of the model
can be summarized in the following steps. The first step is the phase transformation

from austenite to bainitic ferrite coupled to mechanics to simulate the directed growth as
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presented in Paper D. The second step is the diffusion of carbon. To model the diffusion
of carbon in lower bainite a Cahn-Hilliard equation is implemented as published in Paper
A. The complex combined diffusion phenomena including diffusion across the interface
is considered for upper bainite and lower bainite in Paper C. In the third and last step
carbides precipitate at places where the carbon concentration reaches its maximum.

The system of partial differential equations is solved using the finite element method. The
numerical results of the four papers confirm the expected and described transformations

of upper and lower bainite.
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7 Outlook

A main part of the future work is the parameter identification for the models presented
in this work. Due to the small size and the high speed of the transformations difficulties
occur within this identification. One way to obtain parameters is to compare numerical
results with micrographs from transmission electron microscopy as done for example in
Paper B. To prove the timing of the transformation, which is a key part of the simulation,
in-situ experiments are needed. Another way to parameterise the model is to use results
of other simulations, such as atomistic simulations [28].

The models presented in this work are two dimensional representations of a three
dimensional problem. A next step could be the extension to three dimensions. However,
this would increase the already high computational costs and the development time.

Another step in future research could be the implementation of plastitcity. During the
displacive transformation from austenite to bainitic ferrite transformation plasticity occurs
which is not considered yet.

The models presented in this work consider isothermal transformations, as this is
the most common way to produce bainite. However, for future work an extension to a
thermo-multiphase-diffusion-mechanics model is reasonable. A simulation could start with
arbitrary initial conditions for the phases. In a first step the workpiece is heated until it
consists purely of austenite. In a next step a quenching process with holding at a certain
temperature or continuous cooling could be simulated. Depending on the temperature and
the temperature rate different phases, such as ferrite, pearlite, upper and lower bainite or
martensite may occur in such a simulation. This modelling idea could lead to a simulation
which describes diffusional and displacive transformations in one model depending on the
temperature. The thermodynamic framework, derived in Paper B and extended in Paper
D, has to be changed significantly to consider heat and temperature changes. The result
would be a model which can predict the ratio of the different phases depending on the

temperature profile.
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