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Abstract

Bainite is a steel microstructure with useful properties for the industry. It combines a high
toughness with a hardness value between that of pearlitic and martensitic steels. It occurs
as upper and lower bainite which can be distinguished by the size and place of carbides
precipitating from austenite or bainitic ferrite, respectively. While the phase transformation
from austenite to bainitic ferrite is considered to be displacive, the subsequent carbon
diffusion is crucial to the precipitation of carbides and in turn crucial to the formation
of the two different morphologies, upper and lower bainite. In this work a phase field
model is presented describing the complex transformation from austenite to upper and
lower bainite, considering the displacive phase transition from austenite to bainitic ferrite,
different diffusion mechanisms, the precipitation of carbides and anisotropic growth due to
eigenstrains. The model uses a thermodynamic framework which is derived in this work.
The framework is based on generalized stresses and forces providing a strict distinction
between universal laws, such as the first and second law of thermodynamics, and constitutive
equations which are chosen for the actual transformation process. Prototype models are
proposed and numerically solved using the finite element method. The results show the
capability of the derived thermodynamic framework and the expected behaviour of bainite.

Zusammenfassung

Bainit ist ein Gefüge mit hervorragenden Eigenschaften, das durch gezieltes Abkühlen
von Stahl entsteht. Durch dessen hohe Zähigkeit und gleichzeitig hohe Härte ist es für
unterschiedliche Einsatzzwecke in der Industrie sehr gut geeignet. Bainit tritt als oberer
und unterer Bainit auf. Die beiden Morphologien unterscheiden sich durch Größe und Ort
von Karbidausscheidungen. Während die Phasenumwandlung von Austenit zu bainitischem
Ferrit unabhängig von der Kohlenstoffdiffusion abläuft, ist die anschließend einsetzende
Diffusion für die Ausscheidung der Carbide von entscheidender Bedeutung. In dieser Arbeit
wird ein Modell präsentiert, das die Umwandlung von Austenit zu oberen und unteren
Bainit mit der Phasenfeldmethode beschreibt. Dabei werden die Phasenumwandlung von
Austenit zu bainitischen Ferrit, die anschließenden Diffusionsprozesse, das Ausscheiden
von Carbiden und das anisotrope Wachstum durch Eigendehnungen simuliert. Das Model
nutzt ein thermodynamisches Rahmenmodell, welches in dieser Arbeit hergeleitet wird und
auf der Theorie der generalisierten Spannungen basiert. Diese Formulierung bietet eine Un-
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terscheidung zwischen universellen physikalischen Gesetzen und konstitutiven Gleichungen,
die speziell für den abzubildenden Transformationsprozess gewählt werden. Das mathema-
tische Model wird numerisch mit der Methode der finiten Elemente gelöst. Die Ergebnisse
zeigen das Potenzial des Rahmenmodells und den beschriebenen Transformationsprozess
des Bainits.
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1 Introduction

In recent years bainitic steels have been attracting the attention of steel-producers and
engineers, because bainite provides a desirable combination of high ductility, enhanced
strength and high hardness. In industrial applications bainitic workpieces have gained a
growing importance, especially after hot-forming and quenching of relatively bulky parts,
as the cooling rates within large pieces are too slow to produce martensite, but high
enough to transform a considerable fraction into bainitic ferrite [31]. As an alternative to
traditional high-strength low alloy steels, dual-phase steels (DPS) consisting of bainite
and ferrite have gained increased popularity by the car and aerospace industry, because of
their advantages in formability and light-weight potential [21, 25]. The Deutsche Bahn, for
example, uses bainitic steel in an important part of railroad switches [24]. The so called
frog of a railroad switch, illustrated in Figure 1.1, is a heavily loaded workpiece which has
to be very hard. Bainite is the optimal material for such frogs and therefore, chosen for
the 15000 most loaded railroad switches in Germany.

Figure 1.1: Bainitic frog of a railroad switch with a transmission electron microscopy
image of the microstructure

The microstructural transformation of bainite is a complex process which is described

1



and simulated in this scientific work. In mechanics, as a part of physics, the observation
of an event, for example a movement or a phase transformation, is the starting point for
any scientific work and should ideally result in the successful description of this physical
event. To make such a description it is necessary to explain these observations which
often leads to the development of a mathematical model. In physics and especially in
mechanics the basis of the mathematical model is commonly a differential equation. In
today’s research in mechanics the fundamental equations, like the balances of linear and
angular momentum and the first and second law of thermodynamics are determined while
constitutive equations change depending on the material. The distinction between universal
physical laws and constitutive equations is a fundamental reason for the great success of
engineering mechanics. Simulations predicting deformations of complex structures such as
cars or planes are of high accuracy and widely used in the industry.

Macroscopic material properties of most materials in modern technology strongly depend
on their microstructure. Therefore, it is important to study and understand the phase
transformations on a microscopic level. The modeling of phase transformations plays an
important role in designing new materials with new properties. The different distributions
and morphologies of a microstructure are a result of complex transformations whose
evolution depends on the complex interaction between different physical phenomena,
such as chemical diffusion, mechanics (elasticity and plasticity), interfacial energies and
electro-magnetism.
Mechanics has many relations to materials sciences as the observations needed to

develop new models or constitutive equations originate in materials science. Several
groups of scientists in mechanics have found interesting problems in the field of phase
transformations. Phase transformations and mechanical problems are described by partial
differential equations and are solved, for example, with the finite element method. In this
field it is also possible to apply the strict separation between universal physical laws and
constitutive equations as successfully done in classical mechanics. This strict separation
is described in detail in Section 3.2 and in Paper B. Furthermore, a coupling of these
generalized stresses with mechanics can be found in Paper D.

2



2 The formation of bainite

2.1 Preliminaries on bainite

Bainite is a steel microstructure first observed by E. S. Davenport and Edgar Bain and
clearly identified in 1930 [27]. A distinction between two morphologies called upper and
lower bainite is made. The morphologies show different macroscopic mechanical behaviour
and different microstructural compositions. Both morphologies form when austenite is
cooled past a critical temperature. The microstructure consists of aggregates, termed
sheaves, of bainitic ferrite sub-units surrounded by carbides and retained austenite.

In the time-temperature-transformation diagram in Figure 2.1 (a) the pearlite area, the
bainite area at lower temperatures and the martensite start temperature underneath can
be seen. Pearlite is built at high temperatures and slow cooling rates. The microstructure
is two-phased and lamellar. Layers of carbide and ferrite alternate as shown in Figure 2.1
(b). The carbon separates in areas of high and low concentration where carbide and ferrite
grow cooperatively. Due to the high temperature the carbon is mobile and can move fast.
The martensite transformation proceeds completely different. If a steel workpiece is

cooled so fast that the pearlite and bainite areas in the time-temperature-transformation
diagram are not touched and the martensite start temperature is reached, martensite grows.
The transformation from austenite to martensite is very fast and diffusionless. The carbon
diffusion velocity is very low due to the low temperature. Furthermore, the transformation
is so fast that there is neither time for the carbon to diffuse nor to build accumulations
nor even to precipitate as carbides. Instead martensite forms displacive from face-centered
cubic austenite to a body-centered tetragonal form. The new martensite is highly strained
and supersaturated with carbon.
While there is a general agreement in science that the pearlite growth is cooperative

with the carbon diffusion and rather slowly, and that martensite forms diffusionless, very
fast and in a displacive manner, the growth of bainitic ferrite is controversially discussed
in materials science. The main disagreement is on whether the growth mechanism is
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Figure 2.1: (a) Schematic time-temperature-transformation diagram of steel and
(b) Schematic representation of pearlite growth

controlled by the diffusion of carbon as it is for pearlite or if it is displacive and diffusionless
as it is for martensite [27]. A majority of material scientists agree on the assumption that
the bainitic ferrite grows displacively and that it is supersaturated with carbon shortly
after the phase transformation [12]. This thesis follows this assumption.
The displacive transformation from austenite to bainitic ferrite can be regarded as a

deformation of the austenite phase combined with a change of the atomic configuration.
The resulting permanent strain is called transformation plasticity [12]. The transformation
starts after a fast cooling below a certain temperature, by applying stress to the specimen or
by a combination of both factors [12]. The habit plane and a displacement vector describe
an invariant plane strain which is a deformation system for transformation plasticity. The
transformation plasticity can be obtained at a much smaller yield stress than of the stable
austenite phase.

2.2 Morphologies and diffusion processes

The movement of the carbon within the supersaturated bainitic ferrite is strongly dependent
on the temperature as it influences the mobility and speed of the carbon atoms. This
dependency leads to two different morphologies, called upper and lower bainite. At high
temperatures (within the bainite nose, see Figure 2.1 (a)) the diffusion mobility is high
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Figure 2.2: Schematic visualisation of upper and lower bainite. Recreated [12]

and the carbon atoms are able to move out of the supersaturated bainitic ferrite into the
austenite phase. Within the enriched austenite phase, carbides precipitate at places where
the carbon concentration is high enough. The resulting microstructure is called upper
bainite.

In lower bainite the diffusion mobility is much lower, such that only a few atoms close to
the interface succeed in leaving the supersaturated bainitic ferrite into the austenite while
most of the carbon is trapped within the bainitic ferrite. There the remaining carbon
separates to build accumulations surrounded by areas with an equilibrium concentration.
At those carbon accumulations, carbides precipitate within the bainitic ferrite. This is the
main difference to upper bainite, where carbides precipitate only from the austenite phase.
The micrograph in Figure 3 of Paper B shows a microstructure of lower bainite with a
bainitic sheaf and circular carbides within the sheaf.

Figure 2.2 illustrates the two different processes in comparison. Both start with the grey
illustrated supersaturated bainitic ferrite. On the left hand side upper bainite is illustrated.
Here the carbon diffuses out of the bainitic ferrite into the surrounding austenite, leaving
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the bainitic ferrite with its equilibrium concentration of carbon, illustrated in white. On the
right hand side, the lower bainite transformation is illustrated. Opposed to the formation
of upper bainite, most of the carbon stays within the bainitic ferrite and accumulates while
only a small amount of carbon diffuses out of the bainitic ferrite. In both morphologies
carbides precipitate at accumulations of carbon. In upper bainite this takes place only
within the austenite phase while in lower bainite most of the carbides precipitate directly
within the bainitic ferrite.

The diffusion mechanisms of carbon in bainite are described and illustrated in Section 2
of Paper C.
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3 Generalized stresses and the phase
field method

3.1 Preliminaries on the phase field method

The phase field technique can be used to simulate the evolution of a microstructure on
the mesoscale. The main characteristics of the phase field method are functions which are
continuous in space and time, called phase field variables or order parameters specifying
the configurations, arrangements or densities of atoms [10]. The phase field variables vary
in the interface between two phases while they are nearly constant in bulk microstructures.
Due to the mandatory interface regions, this approach belongs to the diffusive interface
models. A main advantage of the these models is that there is no need to track the
interfaces during the phase transformation [17].

Phase-field models are based on partial differential equations. The most important
ones are the Ginzburg-Landau and the Cahn-Hilliard equations. They can be derived
from the general laws of thermodynamics and kinetic principles, for example with the
microforce balance [10]. Phase-field approaches are always continuous models, which do
not describe the behaviour of individual atoms, but the configurations of atoms. Hence,
the models contain material specific phenomenological properties that are determined
based on experimental or theoretical information [17].

Phase-field variables can be distinguished between conserved and non-conserved variables.
Composition variables describe concentrations or molar fractions. They are normally
conserved, since the number of atoms or moles of a component in a system is conserved.
Changes in the local concentration c of a certain component can only occur by fluxes J of
atoms of this component within the system. The conservation law holds for all conserved
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variables

∂c

∂t
= −∇ · J . (3.1)

The simplest example of a conserved phase field equation is Fick’s law of diffusion. A more
complex one is the Cahn-Hilliard equation.
Non-conserved phase field variables are used to distinguish between different phases,

microstructures or states of matter. They are often denoted by φ and can transform from
one to the other. They cannot be conserved.

More than a century ago van der Waals [3] was one of the first to use a density function
that varies continuously. In 1950, Ginzburg and Landau [1] published their theory of
superconductivity using order parameters and its gradients. Some years later Cahn and
Hilliard [2] presented their model for phase fields with higher order concentration gradients.
The concept of order parameters used today was introduced by Landau [4] 30 years ago.
More detailed historical information can be found in [17, 19].

Another important paper which has strongly inspired the present work was written by
Kobayashi [7] in 1993. The paper is about the simulation of dendritic growth by coupling a
Ginzburg-Landau equation with a heat equation. For the simulation of diffusion, especially
of diffusion across the interface of phases the names Wheeler, Boettinger and McFadden [5,
8, 11] are to be mentioned. In the field of phase transformations there are numerous papers
in which the phase field method is used, for example to simulate austenite-to-ferrite [14, 13]
and austenite-to-pearlite transitions [16]. Furthermore, the formation of Widmanstätten
patterns [15] and the important austenite-to-martensite transformation [18, 29] is simulated
with the phase field method.

Only a few models describe parts of the bainitic transformation. Song et al. [22] simulate
the transformation from austenite to upper bainite with the phase field method, though
neglecting the precipitation of carbides. The work by Arif and Qin [26] describes the
autocatalysis of sub-units. To the author’s knowledge, the first phase field models for the
lower bainitic transformation are presented in [34] and [33] simulating the separation of
carbon within the bainitic ferrite and the precipitation of carbides. In addition, this model
is e.g. applied in [37], extended to upper bainite considering the diffusion of carbon across
the interface in [38] and improved by coupling with mechanics in [39].
In recent years the phase field method has become an even more multifunctional tool.

There is already a large community working on phase field methods to predict crack
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nucleation and propagation e.g. [32] and fracture e.g. in [20, 23]. There are also scientists
studying tumour growth [30, 40] or the deformation processes in lithium-ion batteries [35]
by means of the phase field method.

3.2 The idea of generalized stresses

Gurtin and Fried [6, 9, 10] developed a framework for Ginzburg-Landau and Cahn-Hilliard
equations based on a balance law for so called “microforces“. Both equations describe
the configurations, arrangements or densities of atoms characterized by order parameters
to model phase transformations or diffusion processes. The equations can be derived
straightforward using a suitable free energy function and variational derivatives, but they
lack a deeper physical understanding and a separation between basic balance laws and
constitutive equations [10]. Gurtin and Fried propose a new way to derive these equations
by introducing microforces and microstresses comparable to those of continuum mechanics.
While forces in continuum mechanics change the state of movement or the shape of a
body, the new microforces change the configurations or arrangements of atoms on a much
smaller scale.

The key idea is to copy the most successful concept of continuum mechanics, the separa-
tion between basic balance laws and constitutive equations, which accelerated the progress
in mechanics fundamentally. Gurtin and Fried postulate that phase transformations and
movements of atoms (diffusion) take place due to microforces. They introduce a phase
order parameter φ which can be conserved (as c in equation (3.1)) or non-conserved, and a
vector stress ξ, a scalar internal body force π and an external body force γ. The integrals

∫
V
−ξ · ∇φ̇ dV,

∫
V
πφ̇ dV,

∫
V
γφ̇ dV (3.2)

describe powers on the atoms of V and are used to formulate a microforce balance

∇ · ξ + π + γ = 0 in V. (3.3)

This is shown in detail in Papers B and D for a multiphase model coupled to diffusion and
in case of Paper D, with mechanics. To achieve an evolution equation for φ constitutive
equations have to be specified. In this example that would be ξ, π and γ. These constitutive
equations cannot be chosen freely. They have to fulfil the first and the second law of
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thermodynamics. Especially with the help of the Clausius-Duhem inequality in Papers B
and D, restrictions for constitutive equations are formulated which are necessary conditions
for the validity of the model. The sketched derivation leads in the simplest case to the
classical Ginzburg-Landau equation

βφ̇ = r∆φ− f ′(φ) (3.4)

where f is a double-well potential and β and r are material parameters. The classical
Cahn-Hilliard equation

ċ = D∆ (f ′(c)− ρ∆c) , (3.5)

can be derived in the same manner. One main difference is that the conservation law (3.1)
is used. In equation (3.5) f ′ is again a double-well potential, D is a constant diffusion
coefficient and ρ is a constant material parameter.

The derivation within the framework of generalized stresses is very universal and can be
used to derive equations for diverse problems considering physical principles, such as the
microforce balance and the first and the second law of thermodynamics.

10



4 Objectives

The objectives of the present work are as follows:

• The first objective is to develop a thermodynamical framework based on general-
ized stresses as introduced by Gurtin [10] to model the lower and upper bainite
transformation. To do so a combination of a multiphase Ginzburg-Landau equation
and a Cahn-Hilliard diffusion equation is required which can be found in Paper
B. Furthermore, the coupling with mechanics is necessary, such that a multiphase
field/diffusion/mechanical framework is required which is derived in Paper D.

• The second objective is the development of prototype models based on the thermody-
namic frameworks to simulate the bainitic transformation. In this step constitutive
equations have be to proposed to achieve a coupled system of partial differential
equations. Prototype models can be found in each paper within this thesis. A main
challenge of this objective is the modelling of the carbon diffusion for upper and
lower bainite. The idea and resulting model can be found in Paper C.

• The third objective is a finite element implementation and programming of the
proposed system of partial differential equations. The documentations of the finite
element implementations can be found in each paper.

• The fourth objective is to solve some elementary initial boundary value problems on
a finite size domain. The results should show the transformation characteristics of
bainite. Results of the corresponding prototype models can be found in the related
papers.
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Abstract

Lower bainite is a steel microstructure composed of austenite, ferrite and car-

bides within the ferrite. The transformation of austenite to lower bainite is one

of the most complex transformation in steel. The carbon concentration of bainitic

ferrite is of major importance for the carbide precipitation. A phase-field model to

simulate the transformation of lower bainite including carbon diffusion and carbide

formation is presented in this work. The model is based on a classical phase-field ap-

proach coupled with a viscous Cahn-Hilliard equation to simulate the separation of

the carbon. During the isothermal simulation a sheaf of bainitic ferrite grows. The

carbon starts to diffuse within the supersaturated ferrite which can only contain a

fraction of the carbon which was stored in the austenite. At the accumulations of the

carbon concentration carbides are precipitated. The simulations show successfully

the described growth characteristics of the lower bainite transformation including

carbide formation.

Keywords: Phase-field, Bainite, Phase transformation, Diffusion, Cahn-Hilliard

1 Introduction

Bainite is a microstructure of steel that can be formed by heat treating. It can be build
by continuous cooling or isothermal between the temperatures of perlite and martensite
(250 ◦C – 550 ◦C). In materials science a distinction between upper bainite and lower
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bainite is made. Upper bainite forms at higher temperatures whereas lower bainite forms
at temperatures closer to the martensite start temperature. The transformation always
starts from austenite. At first bainitic ferrite sheaves grow from the borders of the grain.
These sheaves consists of smaller sub-units. Within the supersaturated ferritic sheaf the
carbon starts to diffuse, because ferrite can contain much less carbon than austenite [1].
In upper bainite the majority of the carbon partitions into austenite and precipitates as
carbides where the concentration is high enough. At lower temperatures the diffusion
is slower and most of the carbon cannot partition out of the ferrite. It starts to build
accumulations and precipitates as carbides within the sheaf. This movement of the carbon
within bainitic ferrite can be denoted as uphill diffusion. The resulting microstructure is
lower bainite.

Due to its advantageous balance of strength and ductility, bainite has applications in
the automotive industry, in highly loaded parts of the railway and in other divisions of
engineering. Models to describe the formation of bainite can be helpful tools to accelerate
the development of new applications, because the transformation is a very time-consuming
process.

In materials science the phase-field method is widely used to model diffusive/recon-
structive transformations as well as displacive ones [2, 3]. It is based on a system of
partial differential equations which describes the growth of phases and can be derived
from the Ginzburg-Landau equation [2]. The evolution of the so called order-parameters
is modeled. At the interfaces of the phases the parameters vary continuously. Therefore
the solution does not show sharp interfaces, but diffuse ones which can be governed by a
thickness parameter. The advantage of this approach is that it is not necessary to track
the interfaces.

Especially for steel there are many approaches describing the transformations auste-
nite-to-ferrite [4, 5], austenite-to-perlite [6], Widmanstätten formation [7], austenite-to-
martensite [8, 9] and others. Phase-field models with coupled diffusion equations exist,
too [10]. However there are few phase-field models for the bainitic transformation [11, 12],
because it is one of the most complex transformations in steel. Song et al. [12] simulate
the growth of a bainitic sheaf with the phase-field method combined with a modified Fick’s
diffusion equation to model the partitioning of carbon at the interface between bainitic
ferrite and austenite. This model is more relevant for upper bainite and it does not include
the precipitation of carbides. They show high-quality HRTEM images. Arif and Qin [11]
simulate the evolution of the subunits which arise on a lower scale than bainitic sheaf
growth. Therefore they do not show a partitioning of carbon within the bainitic ferrite
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phase but a diffusion out of the phase. Remarkable is the three dimensional autocatalysis
simulation. The formation of lower bainite, the partitioning of carbon within the bainitic
ferrite and the precipitation of carbides have, up to our knowledge, not been considered
until now.

There are other approaches simulating the evolution of bainite different to the phase-
field method in the literature. For example Sidhu et al. [13] present a model describing
the kinetics for an isothermal transformation. They calculate the volume fraction of bai-
nite depending on the transformation time and the temperature. Another work [14] also
focuses on the volume fraction growth and the incubation time of the bainitic transforma-
tion. Lambert-Perlade et al. [15] report about multi-scale crystallographic and metallo-
graphic investigations with analytical micromechanical models. Mahnken et al. [16] focus
on the multi-scale simulation of the transformation. On the micro level it is based on
an ordinary differential equation which considers the growth of different crystallographic
variants. Another publication [17] discusses a macroscopic model with transformation
plasticity.

In this work we present a model to simulate the bainitic transformation considering
bainitic ferrite, austenite, carbide and the diffusion of carbon within a bainitic sheaf.
The displacive transformation [1] between austenite and bainitic ferrite is described by a
phase-field method. To simulate the complex diffusion behavior of the carbon within the
bainitic ferrite the Cahn-Hilliard equation is used. This equation is central to materials
science because it describes the movement of atoms between cells [2] and has been applied
to simulate carbon diffusion before [7, 11]. Fick’s law cannot applied here, because it
does not describe uphill diffusion within one phase. The precipitation of carbides will
be simulated with the phase-field method again. We do not consider crystallographic
orientation, crystalline anisotropy or any kind of stress and strain.

An outline of this work is as follows: In Section 2 the governing equations of the
coupled initial boundary value problem are presented. Firstly the multi-phase-field model
based on the Ginzburg-Landau equation is derived from the local free energy. In a second
step this model is extended by anisotropy. In Subsection 2.3 the diffusion equation is
introduced. This equation is coupled to the phase propagation. The last subsection of
Section 2 is about the precipitation of carbides. Section 3 provides a detailed insight into
the implementation of the model. In Section 4 three numerical examples are presented
showing the lower bainitic transformation. The last section is a summary and gives an
outlook for further investigations.
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2 The phase-field theory

2.1 Governing equations

The phase-field model is based on the Ginzburg-Landau equation [2]. It can be derived
using a functional of the local free energy F which depends on the local phase-field order-
parameters φi and their spatial derivatives ∇φi [18, 19, 7]

F (φ1, ..., φn,∇φ1, ...,∇φn) =

∫

V

Np∑

i,j (i<j)

{
f intfij (φi, φj,∇φi,∇φj) + fpotij (φi, φj)

}
dV, (1)

where Np denotes the number of phases. The density of the local free energy functional
is defined as the sum of an interfacial energy density f intfij and a potential free energy
density fpotij . As a working solution we use the interfacial energy density [18] with the
gradient energy coefficient εij

f intfij =
1

2
εij (φi∇φj − φj∇φi)2 . (2)

For the potential energy term there are different approaches in the literature [3]. Figure
1 illustrates two commonly used potentials, the double well potential and the double
obstacle potential. We use the standard double well potential such that the potential free
energy reads [18]

fpotij =
1

4aij

[
φ2
iφ

2
j −mij

(
1

3
φ3
i + φ2

iφj −
1

3
φ3
j − φ2

jφi

)]
, (3)

where mij is the thermodynamic driving force and 1/aij is the potential constant between
the phases i and j.

By minimizing the local free energy the evolution equations of the phase-field order-
parameters are derived [18, 19]

φ̇i =

Np∑

j=1,j 6=i

1

τij

(
∇ ∂

∂∇φi
− ∂

∂φi

)
(f intfij + fpotij )

=

Np∑

j=1,j 6=i

1

τij

[
εij
(
φj∇2φi − φi∇2φj

)
− φiφj

2aij
(φj − φi − 2mij)

]
. (4)

The parameters εij, aij, τij, and mij are now replaced by the physical material parameters,
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Figure 1: Double well and double obstacle potential

interface mobility µij, interface energy σij, interface thickness ηij and the change of Gibbs
energy ∆Gij. Note that µij = µji, σij = σji and ηij = ηji but ∆Gij = −∆Gji.

τij =
ηij
µij

, aij =
ηij

72σij
, εij = σijηij, mij = −6∆Gijaij. (5)

The derivation of the equations (5) using the Gibbs-Thomson equation [20] can be found
in the appendix. With these results the evolution equation of the phase parameters reads

φ̇i =

Np∑

j=1,j 6=i
µij

[
σij

(
(φj∇2φi − φi∇2φj)−

36

η2
ij

φiφj(φj − φi)
)
− 6 ·∆Gij

ηij
φiφj

]
. (6)

For the lower bainitic transformation considered in this work Np = 3 phases are involved:

1. bainitic ferrite (φ1),

2. austenite (φ2) and

3. carbide (φ3).

2.2 Phase-field anisotropy

To simulate the typical slim form of bainite sheaves an anisotropic phase-field model as
presented by [21] and [22] is used. The interface energy σij is redefined as a function of
the actual growth direction θ and of a predefined main growth direction called θ0

σij = σij(θ, θ0). (7)
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To be specific we use

σij(θ, θ0) = σ0
ij · (1 + s · cos(θ − θ0)), (8)

where σ0
ij is the constant material parameter of the interface energy between phases i and

j. In this approach anisotropy is only present between the ferrite and austenite phases.
Therefore σ12 and θ read

σ12 = σ0
12 · (1 + s · cos(θ − θ0)), where θ = arctan

∂φ1
∂y

∂φ1
∂x

. (9)

The parameter s is used to calibrate the strength of anisotropy. Since only one sheaf shall
be simulated the main growth direction θ0 of the ferrite can be chosen arbitrary. This
anisotropy approach is a simplification and an issue for further investigations.

2.3 Carbon diffusion

The diffusion of carbon is crucial for modeling carbide precipitation. The ferrite can
contain considerably less carbon. For example it may only contain 0.022 wt.% carbon
at about 1000 K [23]. Prior to the transformation of austenite to ferrite, the austenite
may contain much more carbon, which depends on the actual alloy. During the lower
bainitic transformation the transition from austenite to ferrite is too fast for the carbon
to diffuse out of the austenite. That is why the carbon starts to diffuse within the super-
saturated ferrite and builds accumulations of high concentration due to its lower energy
level. This mechanism named uphill diffusion continues until it reaches the maximum
carbon concentration of 6.67 wt.% [24]. At this stage the carbide precipitation starts.

In this case uphill diffusion cannot be described by Fick’s law. Therefore we use
the Cahn-Hilliard equation [25, 26, 27], which is widely used in material modeling, espe-
cially for carbon diffusion [7]. In contrast to the phase-field equation, the Cahn-Hilliard
equation, describing the transport of atoms between unit cells, is a conservation law [2].
Here we use a viscous Cahn-Hilliard formulation due to its superior characteristics for
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homogenization [28]

1. J = −φ1M∇η
2. η = aċ− b∇2c+ df ′(c)

3. f(c) = (XUG − c)2(XOG − c)2

4. f ′(c) = −2(XUG − c)(XOG − c)2 − 2(XOG − c)(XUG − c)2. (10)

In equation (10.1) the diffusion flux J is defined as the product of the ferrite phase
parameter φ1, the diffusion coefficientM and the gradient of chemical potential η. Specific
in this work is the phase parameter φ1. Due to the fact that it only varies between 1 and
0 it does not change the characteristics of the diffusion. The diffusion equation is coupled
with the phase-field model by this parameter, because the diffusion flux can only be
nonzero in an area where the ferrite φ1 dominates. This model is physically reasonable
because this kind of diffusion takes only place within the bainitic ferrite. The function f
in equation (10.3) is a double well potential as plotted in Figure 2. It restricts the carbon
concentration to remain between the upper XOG and lower XUG concentration limit.

Using the mass conservation law one finally obtains the evolution equation for the
carbon concentration:

ċ = −∇ · J = φ1M∇2η +∇φ1M∇η. (11)

2.4 Carbide precipitation

The precipitation of carbides occurs only at places where the local carbon concentration
is at its high point XOG = 6.67wt.%. To model this physical behavior the interface
mobility parameter µ13 between bainitic ferrite and carbide is defined as a function of the
local carbon concentration. With regard to the numerical implementation a smooth step
function is defined

µ13(c) = µ0
13 ·





0 if c < XOG − ε
1 if c > XOG

1
2

+ 1
2
· sin(π

ε
· c+ π

2
− π

ε
·XOG) else,

(12)

where µ0
13 is the constant material parameter of the interface mobility and ε governs the

transition zone illustrated in Figure 3. For the simulations presented in this work ε = 1
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is used. The advantage in extending the interface mobility parameter rather than the
change of Gibbs energy ∆G, is that the carbide nucleuses cannot decline to zero while
the carbon concentration is low.

3 Numerical implementation

The system of partial differential equations (6), (9), (11) and (12) is solved using a finite
element method in space. The resulting nonlinear system of equations is solved with
Newton’s method. In the two dimensional space quadrilateral elements with linear shape
functions are used. The model described above has four unknowns per node: ferrite φ1,
austenite φ2, carbide φ3 and the carbon concentration c. Since the Cahn-Hilliard equation
(11) has fourth-order derivatives the chemical potential η in equations (10) will also be

used for discretization, thus leading to five unknowns per node:
[
c η φ1 φ2 φ3

]T
.

The weak form of equation (6) with the test function νφ, using Gauss’s theorem and
homogeneous Neumann boundary conditions reads

∫

V

νφφ̇i dV =

∫

V

Np∑

j=1,j 6=i
µij

[
σij

(
∇νφ(∇φjφi −∇φiφj)

− 36

η2
ij

νφφiφj(φj − φi)
)
− 6∆Gij

ηij
νφφiφj

]
dV. (13)

The diffusion equation (11) can be written in weak form as

∫

V

νcċ dV −
∫

V

νcφ1M∇2η dV −
∫

V

νc∇φ1M∇η dV = 0, (14)
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where νc denotes the test function for the carbon concentration. Using Gauss’s theorem
and homogeneous boundary conditions we end with

∫

V

νcċ dV +

∫

V

∇νcφ1M∇η dV = 0. (15)

Since the chemical potential should also be discretized the weak form of the evolution
equation of η defined in equation (10.2) can be derived as

∫

V

νηη dV =

∫

V

νηaċ+ b∇νη∇c+ νηd(γc3 + βc2 + αc+ ξ) dV = 0 (16)

with the derivative of the generalized carbon potential function

f ′(c) = γc3 + βc2 + αc+ ξ ,where

α = −2X2
OG − 2X2

UG − 8XUGXOG ,

β = 6XOG + 6XUG ,

γ = −4 ,

ξ = 2XUGX
2
OG + 2XOGX

2
UG .

(17)

x Nodal quantities are denoted by the superimposed hat (̂·). The degrees of freedom at

every node are d̂ =
[
ĉ η̂ φ̂1 φ̂2 φ̂3

]T
. The four shape functions per element are inside

the row vector N , so that the quantities c, η and the φi can be written as scalar products:

c = Nĉ , η = Nη̂ , φi = Nφ̂i , i = 1, 2, 3. (18)

For gradient terms the matrix B is defined as

B =

[
N ,x

N ,y

]
, with N ,x =

∂N

∂x
. (19)

The gradients of the unknowns read

∇c = Bĉ , ∇η = Bη̂ , ∇φi = Bφ̂i , i = 1, 2, 3. (20)

The test functions are formulated analogously. The time dependence is discretized with
an implicit Euler method. Nodal quantities with a superscript (·)n−1 denote the solution
of the last time step. The current one which is denoted by (·)n is omitted for brevity.
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A local residual vector can now be defined as R = [Rc Rη Rφi ]T with

Rc =

∫

Ωe

1

∆t
NTN dΩ, (21)

Rη =

∫

Ωe

a(NTN) · ĉ
n − ĉn−1

∆t
+ d
(
ξ + α(NTN)ĉ+ βNT (Nĉ)2

+ γNT (Nĉ)3
)

+ b(BTB)ĉ− (NTN)η̂ dΩ, (22)

Rφi =

∫

Ωe

NTN
φ̂
n

i
− φ̂n−1

i

∆t
+

Np∑

j=1,j 6=i
µij

[
σij

(
− (BTB)φ̂

j
· (Nφ̂

i
) + (BTB)φ̂

i
· (Nφ̂

j
)

− 36

η2
ij

NTN(φ̂
i
− φ̂

j
)(Nφ̂

i
) · (Nφ̂

j
)

)
+

6

ηij
∆GijN

T · (Nφ̂
i
) · (Nφ̂

j
)

]
dΩ. (23)

For Newton’s method the tangent of the residual function R is needed:

K =
∂R

∂d̂
=




Kcc Kcη Kcφ1 0 0

Kηc Kηη 0 0 0

Kφ1c 0 Kφ1φ1 Kφ1φ2 Kφ1φ3

0 0 Kφ2φ1 Kφ2φ2 Kφ2φ3

Kφ3c 0 Kφ3φ1 Kφ3φ2 Kφ3φ3



, (24)

where the matrix entries are calculated as follows:

Kφiφi =
∂Rφi

∂φ̂
i

=

∫

Ωe

NTN
1

∆t
+

Np∑

j=1,j 6=i
µij

[
σij

(
(BTB)(Nφ̂

j
)

− (BTB)(Nφ̂
i
)− 36

η2
ij

NTN(Nφ̂
j
) · (2 · φ̂

i
− φ̂

j
)

)
+

6

ηij
∆GijN

TN · (Nφ̂
j
)

]
dΩ, (25)

Kφiφj =
∂Rφi

∂φ̂
j

=

∫

Ωe

µij

[
σij

(
− (BTB)(Nφ̂

i
)

+ (BTB)φ̂
i
·N − 36

η2
ij

NTN(Nφ̂
i
) · (N · (φ̂

i
− 2φ̂

j
)

)
+

6

ηij
∆GijN

TN · (Nφ̂
i
)

]
dΩ, (26)
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Kφ1c =
∂Rφ1

∂ĉ
=

∫

Ωe

∂µ13

∂ĉ

[
σij

(
− (BTB)φ̂

3
· (Nφ̂

1
) + (BTB)φ̂

1
· (Nφ̂

3
)

− 36

η2
ij

NTN(φ̂
1
− φ̂

3
)(Nφ̂

1
) · (Nφ̂

3
)

)
+

6

ηij
∆Gij(N

TN)φ̂
1
· (Nφ̂

3
)

]
·N dΩ, (27)

Kφ3c =
∂Rφ3

∂ĉ
=

∫

Ωe

∂µ31

∂ĉ

[
σij

(
− (BTB)φ̂

1
· (Nφ̂

3
) + (BTB)φ̂

3
· (Nφ̂

1
)

− 36

η2
ij

NTN(φ̂
3
− φ̂

1
)(Nφ̂

3
) · (Nφ̂

1
)

)
+

6

ηij
∆Gij(N

TN)φ̂
3
· (Nφ̂

1
)

]
·N dΩ, (28)

Kcc =

∫

Ωe

1

∆t
·NTN dΩ, (29)

Kηη =

∫

Ωe

−NTN dΩ, (30)

Kcη =

∫

Ωe

M · (Nφ̂
1
)BTB dΩ, (31)

Kηc =

∫

Ωe

a

∆t
·NTN − b ·BTB + d(α · (NTN)− 2β · (NTN) · (Nĉ)

− 3γ · (NTN) · (Nĉ)2) dΩ, (32)

Kcφ1 =
∂Rc

∂φ̂
1

=

∫

Ωe

M ·
(
N(BTB)

)
η̂ dΩ. (33)

To evaluate the integrals a Gauss-Legendre rule is used.

4 Numerical examples

4.1 Basics

In this section three numerical examples for lower bainitic transformation are presented.
The evolution of a ferrite nucleus and the ensuing diffusion of carbon within this phase are
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Parameter Symbol Value/Unit
Strength of the anisotropy s 0.5
Maximum carbon concentration in ferrite XUG 0.0704 wt.% [12]
Maximum carbon concentration in steel XOG 6.67 wt.% [24]
Bainitic main growth direction θ0 0◦

Cahn-Hilliard viscosity factor a 0.00002 s
Cahn-Hilliard balance factor b 0.00016 µm2

Cahn-Hilliard potential factor d 0.014 1
µm2

Diffusion coefficient in bainitic ferrite M 0.02 µm2

s
Bainitic ferrite/austenite interface energy σ12 0.001 J

µm2

Bainitic ferrite/carbide interface energy σ13 0.001 J
µm2

Austenite/carbide interface energy σ23 0 J
µm2

Bainitic ferrite/austenite interface mobility µ12 0.5 µm4

Js
Bainitic ferrite/carbide interface mobility µ0

13 0.5 µm4

Js
Austenite/carbide interface mobility µ23 0 µm4

Js
Gibbs free energy between bainitic ferrite and austenite ∆G12 1.07 J

µm3

Gibbs free energy between bainitic ferrite and carbide ∆G13 −0.865 J
µm3

Gibbs free energy between austenite and carbide ∆G23 0 J
µm3

Interfacial thickness ηij 0.17µm

Table 1: Material parameters for the phase-field method and the Cahn-Hilliard equation.

calculated. The precipitation of carbides completes the simulations. The first example
“Low carbon” starts with initially 1.93wt.% and the second one with 3.0wt.%. Small
randomly distributed perturbations are added to both initial conditions. The third ex-
ample starts without perturbations in the carbon field and exactly 1.93wt.% of carbon
concentration. All remaining parameters do not change.

In materials science it is common sense that the bainitic nucleation is based on pre-
formed nucleuses [29]. Therefore a small nucleus of ferrite is implemented as an initial
condition. The growth of the bainitic sheaf will start at this nucleus. Furthermore very
weak nucleuses (around φ3 = 0.01) of carbide are randomly distributed over the domain.
The austenite phase completes to one. For physical reasons all variable fields are imple-
mented with homogeneous Neumann boundary conditions.

Table 1 shows all required parameters for the model. Most of the them are only
tentative and are an issue for further investigations. They are used as a working solution
to qualitatively model lower bainitic transformations. Some of them may be determined
with the CALPHAD method [12]. The parameters depend on the actual alloy and the
transformation temperature (e.g. ∆Gij(T )). Due to the small interfacial thickness, a very
fine discretization of the 3 µm × 3 µm area is needed. For the following examples a grid
with 16384 elements and an edge length of 0.0234 µm is used to have at least 7 elements
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for the diffuse interfaces which have a width of ηij = 0.17 µm. The results of all three
simulations show a phase transition over a period of 30 s discretized with a step size of
∆t = 0.05 s.

4.2 Example 1: Low carbon

a) Austenite

0
0.2
0.4
0.6
0.8
1

b) Bainitic ferrite

0
0.2
0.4
0.6
0.8
1

c) Carbon concentration

0

2

4

6

d) Carbide

0
0.2
0.4
0.6
0.8
1

0 s 5 s 15 s 30 s

Figure 4: Example 1: Lower bainitic transformation after 0 s, 5 s, 15 s and 30 s.

Figure 4 shows the evolution of the three phases and the carbon concentration of
Example 1. Part a) shows the austenite, part b) the bainitic ferrite, c) shows the carbon
concentration and d) the carbide phase. The initial conditions can be seen in the left
column. As described in Subsection 4.1 a small nucleus of bainitic ferrite is introduced
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Figure 5: Example 1: Initial conditions of a) carbon concentration and b) carbide phase.

on the left side. The carbon concentration and the carbides are uniformly distributed
with small randomly distributed perturbations which can be seen in Figure 5 due to the
different scale. The second column of Figure 4 shows the fields after 5 s. It can be seen
that the sharp interfaces of the initial conditions between the austenite and the bainitic
ferrite become diffuse and the sheaf grows. The carbon starts to diffuse within the bainitic
ferrite and build accumulations. These accumulations have globular or elliptical shapes.
As shown in Section 2.3 the segregation of carbon can only take place within the bainitic
ferrite. There are no visible changes in the carbide phase. The third column shows
the results after 15 s. The bainitic sheaf grows and within the ferrite the old carbon
accumulations merge to a larger one while new accumulations grow near the boundary of
the sheaf. The new ones have an elliptical shape again. One carbide on the left boundary
is now visible. In addition two small nucleuses of carbide grow within the bainitic sheaf at
places with maximum carbon concentration. The last column in Figure 4 shows the results
of the simulation after 30 s. The bainitic sheaf nearly fills the whole domain. In addition to
the merged carbon accumulations there are many smaller elliptical accumulations which
grow along with the moving interface. There are more carbides now. The carbides have
the same shape as the carbon accumulations.

Figure 6 additionally shows the phases and the carbon concentration over time at two
points. The point P1 in Figure 6.a is located at x = 1.5 µm, y = 1.5 µm, point P2 in
Figure 6.b at x = 2 µm, y = 2 µm. The left axis is used for the carbon concentration
in wt.% while the right axis is the scale for the phases varying between zero and one.
The phases plotted are austenite, bainitic ferrite, carbide and the sum of all phases. The
sum is just an error variable, which stays perfectly at one at all time. At the beginning
austenite is the dominating phase at both points. All other phases are close to zero. The
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Figure 6: Example 1: Phases and carbon concentration over time at points a) P1 (x =
1.5 µm, y = 1.5 µm) and b) P2 (x = 2 µm, y = 2 µm)

carbon concentration has its initial condition at around 1.93wt.%. This concentration
does not change until the phase transition starts. In Figure 6.a the carbon concentration
declines firstly when the bainitic phase starts to grow. However after a short time period
the concentration increases. The chosen point is placed within a carbon accumulation, but
not in the center of it. That is why the carbon concentration starts to decrease but than
rises to its maximum value of XOG = 6.67wt.%. Shortly after the carbon concentration
reaches the top the bainitic ferrite declines and the carbide starts to precipitate. At
30 s the phase transformation between bainitic ferrite and carbide is completed. Figure
6.b shows the evolution of the phases at a point with minimum carbon concentration. The
carbon starts to diffuse right after the bainitic ferrite starts to grow but than it converges
to the minimum concentration. That is why the carbide phase stays zero and the bainitic
ferrite becomes the dominating phase at this local point.

4.3 Example 2: High carbon

The second example has 3.0 wt.% carbon and the initial nucleus of bainitic ferrite has a
slightly different shape as can be seen in Figure 7. Here again initial conditions for the
carbon concentration and the carbide phase as seen in Figure 5 are applied. After 5 s the
bainitic nucleus has grown. Within this supersaturated nucleus the carbon moves to build
maxima surrounded by an area with nearly no carbon left. In contrast to Example 1 the
largest carbon accumulation has a lamellar shape. There are no carbides visible yet. The
plots of the next instant of time show more lamellar carbon accumulations. One carbide
at the left boundary and shades of more growing carbides are already visible. The last
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column shows the results after 30 s. Comparing the carbon field with the one at t = 15 s
it can be observed that some accumulations merge. The main difference between the two
examples is the shape of the carbides. The initial carbon concentration differs while all
other parameters, initial and boundary conditions are the same. Due to this it can be said
that the initial carbon concentration influences the shape of the carbides significantly.
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Figure 7: Example 2: Lower bainitic transformation after 0 s, 5 s, 15 s and 30 s: a) Austen-
ite, b) Bainitic ferrite, c) Carbon concentration inwt.%, d) Carbides.

The results for two points are plotted over time in Figure 8. The diagrams show the
carbon concentration, the bainitic ferrite, austenite, carbides and the sum of phases over
the time measured in seconds. The scale of the carbon concentration is on the left side
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Figure 8: Example 2: Phases and carbon concentration over time at points a) P2 (x =
2 µm, y = 2 µm) and b) P3 (x = 0.5 µm, y = 1 µm)

and the values are given in wt.% whereas the phases are measured on the right axis. The
point plotted in Figure 8.a is located in a ferrite area. After about 13 s the austenite starts
to transform to bainitic ferrite. That is exactly the time when carbon starts to diffuse,
because the new built ferrite is supersaturated. After a short wave, the carbon declines.
Due to this, the carbide does not even start to grow at this location. It remains constant
close to zero, at its initial value.

The phase transformation plotted in Figure 8.b is more complex. The bainitic trans-
formation starts in the same way with a growing bainitic ferrite phase. Then the carbon
starts to diffuse. It runs through some ups and downs until it reaches its maximum con-
centration XOG = 6.67wt.%. Because of this the carbide phase slowly starts to grow while
the bainitic ferrite decreases in the same way. At the end of the simulation this material
point consists of nearly 100 % carbide. The sum of the phases is one all the time.

4.4 Example 3: Influence of the initial carbon perturbation

The results above show that the shapes of the carbides vary dependent on the average
initial carbon concentration. Other numerical examples also show a dependence on the
perturbation of the initial carbon concentration. In this third example the initial per-
turbation of the carbon is disabled. All other parameters are the same as in Example 1.
Figure 9 shows the carbon concentration of Example 3 in part a) and of Example 1 in
part b) at the same time. While in Example 1 the diffusion in the supersaturated ferrite
starts directly, it takes about 16 s to start the diffusion without any perturbation. As
a result of this the carbon accumulations are smaller, the carbides precipitate later and
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Figure 9: Carbon concentration inwt.%: a) Example 3 without and b) Example 1 with
initial perturbations.

their extensions are also smaller.

5 Conclusions and outlook

In this work, a phase-field model to simulate the formation of lower bainite is presented.
Simulations showing the described transformation kinetics are performed. The microstruc-
ture evolution including the coupled carbon diffusion is successfully shown. A single
bainitic sheaf grows during isothermal transformation by means of the phase-field method.
Within the bainitic sheaf carbon starts to diffuse governed by the Cahn-Hilliard equation.
At places where the carbon concentration reaches its maximum carbides precipitate. As
demonstrated in the examples the carbides may have lamellar or globular shapes.

However, parameter identification has not been taken into account in this work. This
will be done in future work using the CALPHAD method. Besides it will be necessary
to simulate the carbide precipitation within the residual austenite. A coupling with the
mechanical problem will be introduced in further work to improve the anisotropic phase
growth and goal-oriented adaptivity [30] might be a worthwhile objective.
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Appendix

The aim of this appendix is to derive relationships between the four basic parameters
εij, aij, τij, mij of equation (4) and the physical material parameters, interface mobility µij,
interface energy σij, interface thickness ηij and the change of Gibbs energy ∆Gij. The
results are shown in equations (5). The change of coefficients will here be done using a
two phases model for brevity. With Np = 2, φj = (1 − φi) and ∇φj = −∇φi it follows
from equation (4)

φ̇i =
1

τij

[
εij
(
(1− φi)∇2φi − φi∇(−∇φi)

)
− φi(1− φi)

2aij
(1− φi − φi − 2mij)

]

=
1

τij

[
εij
(
∇2φi − φi∇2φi + φi∇2φi

)
− φi(1− φi)

2aij
(1− 2φi − 2mij)

]

=
1

τij

[
εij∇2φi −

φi(1− φi)
aij

(
1

2
− φi

)
+
φi(1− φi)

aij
mij

]

=
1

τij

[
εij∇2φi −

1

aij
φi(1− φi)

(
1

2
− φi

)
+
mij

aij
φi(1− φi)

]
. (A.1)
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For the next steps we define:

φ̇ := φ̇α, τ := τij, γ :=
1

aij
, ε := εij, m :=

mij

aij
. (A.2)

With equation (A.2) equation (A.1) can be written as [20, 3]

τ φ̇ = ε∇2φ− γφ(1− φ)

(
1

2
− φ
)

+mφ(1− φ). (A.3)

According to [20] and [3] the stationary one-dimensional solution for equation (A.3) is

φ(x) =
1

2
tanh

(
3x

η

)
+

1

2
, (A.4)

where the boundary values of the interface are φ(x = −η/2) ≈ 0.05 and φ(x = η/2) ≈ 0.95

as shown in Figure 10.a.

a) 0
0.05

0.95

x- η/2 η/2

η
0.5

 Φ(x)

v

b)
ηi

j x
s
r

Figure 10: a) Stationary one-dimensional solution, b) two-phase model [20]

The two-phase model can be plotted schematically as shown in Figure 10.b. The two
coordinates s and r are introduced. Both are parallel to the x coordinate. The current
location of the interface center is described by s. The r coordinate is the corresponding
cylindrical coordinate. From Figure 10 b) it is easy to see that

x = r − s (A.5)

holds. The Laplacian operator in two-dimensional cylindrical coordinates is

∆φ = ∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂ϕ2
. (A.6)

With the assumption that the phase variable cannot change in the parallel direction to
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the interface (= ϕ direction),

∂φ

∂ϕ
= 0,

∂2φ

∂ϕ2
= 0 (A.7)

it follows directly for equation (A.6)

∆φ = ∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
. (A.8)

Because x and r point to the same material point inside the interface, it follows that

∂φ

∂r
=
∂φ

∂x
,

∂2φ

∂r2
=
∂2φ

∂x2
. (A.9)

The equations (A.8) and (A.9) inserted into (A.3) yield

τ φ̇ = ε

[
∂2

∂x2
+

1

r

∂

∂x

]
φ− γφ(1− φ)

(
1

2
− φ
)

+mφ(1− φ). (A.10)

The time derivative of the phase-field variable can be determined by the chain rule:

φ̇ =
∂φ

∂t
=
∂φ

∂x

∂x

∂t
=
∂φ

∂x
v. (A.11)

The variable v is the velocity of the interface. It is assumed that the interface thickness
η is constant. With (A.11) it follows for (A.10)

[
τv − ε1

r

]
∂φ

∂x
− ε∂

2φ

∂x2
= −γφ(1− φ)

(
1

2
− φ
)

+mφ(1− φ). (A.12)

To determine the derivatives of the stationary solution, it is firstly converted into its
exponential notation

φ(x) =
1

2
tanh

(
3x

η

)
+

1

2
=

e(6x/η)

e(6x/η) + 1
. (A.13)
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The derivatives are then

∂φ

∂x
=

6e(6x/η)

η (e(6x/η) + 1)
2 =

6

η

e(6x/η)

e(6x/η) + 1

1

e(6x/η) + 1
=

6

η
φ(1− φ) (A.14)

∂2φ

∂x2
= −36e(6x/η)

(
e(6x/η) − 1

)

η2 (e(6x/η) + 1)
3 =

72

η2

e(6x/η)

(e(6x/η) + 1)
2

−1
(
e(6x/η) − 1

)

2 (e(6x/η) + 1)

=
72

η2
φ(1− φ)

(
1

2
− φ
)

(A.15)

with

(1− φ) = 1− e(6x/η)

e(6x/η) + 1
=
e(6x/η) + 1

e(6x/η) + 1
− e(6x/η)

e(6x/η) + 1
=

1

e(6x/η) + 1
(A.16)

and

(
1

2
− φ
)

=
1

2
− e(6x/η)

e(6x/η) + 1
=

1

2

(
e(6x/η) + 1

e(6x/η) + 1
− 2e(6x/η)

e(6x/η) + 1

)
=

1

2

(−e(6x/η) + 1

e(6x/η) + 1

)

= −1

2

(
e(6x/η) − 1

e(6x/η) + 1

)
. (A.17)

The equations (A.14) and (A.15) inserted in (A.12) deliver

[
τv − ε1

r

]
6

η
=

(
ε
72

η2
− γ
)(

1

2
− φ
)

+m. (A.18)

Equation (A.18) becomes independent of φ once the product

(
ε
72

η2
− γ
)(

1

2
− φ
)

= 0. (A.19)

This will be the case if the condition

γ = ε
72

η2
(A.20)

is fulfilled. Thus equation (A.18) simplifies to

v =
η

τ

[
ε

η

1

r
+
m

6

]
. (A.21)
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According to [3] the Gibbs-Thomson equation is

v = µ [σκ−∆f ] (A.22)

with the already known physical coefficients. The comparison of equation (A.21) with
equation (A.22) allows one to obtain relationships between the phase-field parameters
(εij, aij, τij and mij) and the physical material parameters (µij, σij, ηij and ∆Gij):

µ =
η

τ
, σ =

ε

η
, κ =

1

r
, ∆f = −m

6
. (A.23)

After transposing and with equation (A.19) it follows

ε = ση , γ = 72
σ

η
, τ =

η

µ
, m = −6∆f . (A.24)

The back substitution with equation (A.2) yields

τij =
ηij
µij

, aij =
ηij

72σij
, εij = σijηij , mij = −6∆Gijaij , (A.25)

where

∆fij = ∆Gij (A.26)

and due to the symmetry

εij = εji, aij = aji, mij = −mji, σij = σji, ∆Gij = −∆Gji (A.27)

hold.
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Abstract

A thermodynamic framework for a coupled Ginzburg-Landau and Cahn-Hilliard

system is presented in this work. It is based on the concept of generalized stresses

and microforce balances as introduced by Gurtin (1996). His concept is extended to

compute phase changes and diffusion simultaneously on the same domain and adding

coupling terms between the quantities. The resulting thermodynamic framework

distinguishes between basic balance laws which are universal and constitutive equa-

tions which depend on the specific material. As an application the transformation

of austenite to lower bainite is simulated in this work. The multiphase field model

describes the evolution of bainitic ferrite and the precipitation of carbides while the

Cahn-Hilliard equation governs the carbon diffusion within the bainitic ferrite.

Keywords: Multiphase field method, Cahn-Hilliard diffusion, Lower bainitic trans-

formation, Thermodynamic framework, Microforce balance

1 Introduction

The phase field method is widely used in materials science to model phase transformations

[12, 26]. There are several approaches describing for example Widmanstätten formation
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[30], austenite-to-martensite transformations [31, 23], austenite-to-ferrite [19, 14] and

austenite-to-perlite transitions [27]. Phase-field approaches for the bainitic transformation

are presented in [5, 25], however they do not consider the precipitation of carbides and are

not based on a thermodynamic framework.

Figure 1: Lower bainite TEM image ob-
tained by isothermal heat treated at 350 ◦C
[22]. Reprinted from [22], © 2007 Elsevier
B.V., with permission from Elsevier.

Figure 2: Lower bainite BFTEM micro-
graph. © Chair of Materials Science, Pader-
born University.

Figure 3: HRTEM micrograph of 100Cr6 isothermally heat treated at 260◦C for 2500
s [25]. Reprinted from [25], © 2011 by The Minerals, Metals, & Materials Society, John
Wiley & Sons, Inc., with permission from John Wiley & Sons, Inc.

The bainitic transformation starts with austenite and a uniformly distributed carbon

concentration. During the isothermal heat treatment a phase called bainitic ferrite grows

which can contain less carbon as austenite in its equilibrium state. The nuclei are called

bainitic sheaves and consist of subunits. After the displacive transformation from austenite

to bainitic ferrite at low temperatures, the ferrite is supersaturated with carbon, which

therefore begins to diffuse [7]. Due to separation kinetics the carbon starts to build
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accumulations where subsequently carbides precipitate. All these processes are running

within the bainitic ferrite phase while only a few carbides precipitate between the bainitic

sheaves. This transformation is called lower bainitic transformation.

At higher temperatures the carbon can diffuse out of the bainitic ferrite and carbides

precipitate within the austenite phase. The corresponding microstructure is called upper

bainite, however not considered in this paper.

Figure 1 shows a micrograph of a lower bainitic sheaf transformed at 350 ◦C [22]. The

sheaf has a typical plate-like form. The dark needles are small lenticular carbides at an

angle of about 55◦ − 60◦ to the main growth direction of the sheaf [22]. They tend to

adopt a single crystallographic variant [7]. Figure 2 presents a BFTEM micrograph at

a smaller scale. Needle-like carbides within the bainitic sheaf can be seen here. Figure

3 shows an HRTEM micrograph of 100Cr6 isothermally heat treated at 260◦C for 2500

s [25]. In contrast to Figures 1 and 2 there are rather large carbides with globular shapes

within the lower bainite sheaf. More TEM micrographs can be found in the literature e.g.

in [6, 15].

A continuum thermodynamic framework for Ginzburg-Landau and Cahn-Hilliard

equations based on fundamental balance laws is proposed by Gurtin and Fried [10, 12]

to derive a two-phase field model and a conservative diffusion model. In addition to

balance laws of classical continuum mechanics they introduce a balance law for microforces

considering generalized stresses, external forces and internal forces. These microforces

perform work in conjunction with the time derivative of an order parameter φ which

characterizes the configuration of atoms, for example a specific microstructure or phase. A

multiphase field model coupled with deformation is introduced in [11]. The motivation

lies in the strict separation between basic balance laws and constitutive equations as it is

common in continuum mechanics. While constitutive equations may change for different

materials the balance laws and especially the dissipation inequality must hold in any case.

In other works [3, 2] the generalized Ginzburg-Landau formulation for a two-phase field

model is extended with a diffusion equation by means of Fick’s law.

The objective of this work is to extend the thermodynamic framework of [3, 2, 12] for

a coupled Ginzburg-Landau – Cahn-Hilliard system considering an arbitrary number of

phases. Our framework is based on the concept of generalized stresses, where microforces

and microstresses for every phase and the concentration are introduced. In a prototype

model the lower bainitic transformation, as described above, will be simulated using the

thermodynamic framework. We consider an isothermal transformation from austenite to

lower bainite, neglecting other phases like pearlite or martensite which may occur during a
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more complex cooling down process. Furthermore we neglect the influence of stresses and

strains. The characteristic precipitation of carbides within the bainitic ferrite is modeled

here, while the precipitation of carbides within the austenite, which is significant for upper

bainite, is neglected. All these aspects are parts of future work.

This work is organized as follows. Section 2 describes the thermodynamic framework.

It begins with the balances of microforces and the conservation of energy. Afterwards a

Clausius-Duhem inequality is introduced to formulate restrictions for constitutive equa-

tions. Finally evolution equations are presented. In Section 3 a prototype model with

corresponding constitutive equations is proposed to simulate the lower bainitic transfor-

mation. Especially the coupling between diffusion and phase transformation is applied.

Section 4 gives an insight into the numerical implementation. Finally, Section 5 shows two

representative examples for the coupled phase field - diffusion system to model the lower

bainitic transformation and compares the results with the micrographs in Figures 1 - 3.

2 Thermodynamic framework

2.1 Balances of forces and conservation of energy

We introduce order parameters φi, i = 1, .., Np, to identify Np different configurations of

atoms which are denoted as phases. In order to describe the balance laws for the related

multiphase field model a system of generalized forces with Np vector phase stresses ξi,

internal scalar phase forces πi and external scalar phase forces γi over the volume B is

proposed. Given an arbitrary control volume V as a subregion of B the integrals

∫

V

−ξi · ∇φ̇i dV,
∫

V

πiφ̇i dV,

∫

V

γiφ̇i dV, i = 1, ..., Np (1)

characterize the power performed on the atomic configurations within V , which is an

extension of the concept by Gurtin [12] and Ammar et al. [4] for one phase.

Over the volume B a concentration field c and its gradient ∇c are defined. In order to

perform power, in the same manner as in terms (1), a scalar internal diffusion force ω and

a vector diffusion stress λ are introduced

∫

V

−λ · ∇ċ dV,
∫

V

ωċ dV. (2)

Note, that an external force is not needed to derive the diffusion equation and therefore

is skipped for brevity. The phase forces in (1) and the diffusion forces in (2) are also
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referred to as microforces. The stresses are referred to as microstresses in literature [12, 3].

The system of microforces and microstresses in (1) and (2) shall be consistent with the

microforce balance for each control volume V

Np∑

i=1

(
−
∫

V

ξi · ∇φ̇i dV +

∫

V

πiφ̇i dV +

∫

V

γiφ̇i dV

)
−
∫

V

λ · ∇ċ dV +

∫

V

ωċ dV = 0.

(3)

Using Gauss theorem renders

Np∑

i=1

(
−
∫

∂V

ξi · φ̇i · n dA+

∫

V

∇ · ξi · φ̇i dV +

∫

V

πiφ̇i dV +

∫

V

γiφ̇i dV

)

−
∫

∂V

λ · ċ · n dA+

∫

V

∇ · λ · ċ dV +

∫

V

ωċ dV = 0, (4)

where n is the outward unit normal vector to ∂V . Transforming equation (4) leads to

Np∑

i=1

(
−
∫

∂V

ξi · φ̇i · n dA+

∫

V

(∇ · ξi ·+πi + γi) φ̇i dV

)

−
∫

∂V

λ · ċ · n dA+

∫

V

(∇ · λ+ ω) ċ dV = 0. (5)

Equation (5) is satisfied for any fields φ̇i and ċ if and only if

∇ · ξi + πi + γi = 0 in V for i = 1, ..., Np, (6)

∇ · λ+ ω = 0 in V, (7)

ξi · n = 0 on ∂V for i = 1, ..., Np, (8)

λ · n = 0 on ∂V . (9)

The equations (6) and (7) express the local microforce balances while the equations (8)

and (9) represent the Neumann boundary conditions.

According to the principle of conservation of energy and neglecting kinetic energy, the

time derivative of the internal energy E is equal to the external power Pext

Ė = Pext. (10)
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The internal energy rate Ė is related to a local internal energy rate ė as

Ė =

∫

V

ė dV. (11)

Following [2] the external power Pext is equal to the negative internal power P int

Pext = −P int, (12)

which is the sum of all powers on atoms of V with internal contribution in (1) and (2)

P int =

∫

V

(
ωċ− λ · ∇ċ+

Np∑

i=1

(πiφ̇i − ξi · ∇φ̇i)
)

dV. (13)

Inserting equations (11)-(13) into equation (10) leads to the following local internal energy

rate:

ė = λ · ∇ċ− ωċ+

Np∑

i=1

(
ξi · ∇φ̇i − φ̇iπi

)
. (14)

2.2 Dissipation inequality/entropy principle

The second law of thermodynamics can be formulated as the Clausius-Duhem inequality

[1, 20, 24] in global form

∫

V

ṡ dV ≥ −
∫

∂V

Φ · n dA, (15)

where s is the local entropy density and Φ the vector entropy flux, defined as, [2, 29]

Φ = −µJ
T
. (16)

This definition introduces three additional quantities: The absolute temperature T , the

scalar chemical potential µ and the chemical flux J which describes the flux of the

concentration c. A mass conservation renders

ċ = −∇ · J . (17)
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Inserting equation (16) into the inequality (15) and using Gauss’s theorem leads to a local

form of inequality (15)

T ṡ−∇ · (µJ) ≥ 0. (18)

The Helmholtz energy ψ is obtained from the internal energy e by a Legendre transformation

with respect to the temperature T and the entropy s

ψ = e− Ts. (19)

The energy equation (14) and the entropy inequality (18) can be linked using the time

derivative of the Helmholtz energy equation (19). For the isothermal case and with the

mass conservation (17) this leads to the local dissipation inequality

−ψ̇ + λ · ∇ċ− ωċ+ µċ− J · ∇µ+

Np∑

i=1

(
ξi · ∇φ̇i − πiφ̇i

)
≥ 0. (20)

2.3 Restrictions to constitutive equations imposed by the sec-

ond law of thermodynamics

The local dissipation inequality (20) is used next to formulate restrictions to constitutive

equations. To this end, in the first step we choose constitutive variables based on the work

of Gurtin [12]. He allows the constitutive equations to depend on the order parameter φ

and its derivatives ∇φ and φ̇ to model capillarity and transition kinetics [12]. Further gen-

eralizations by means of more constitutive variables and especially higher order derivatives

of the order parameter are possible. However this is not within the scope of this paper

since it is not needed for our prototype example.

Our framework should be capable of describing Np phases. Therefore the order

parameters φi and its derivatives range from i = 0 to i = Np. Furthermore, c,∇c and ċ

are appended to the constitutive variables together with the chemical potential µ and

its gradient ∇µ for the diffusion process as described by Gurtin [12]. For convenience all

constitutive variables are combined in the vector

z = [c, ∇c, ċ, µ, ∇µ, {φi, ∇φi, φ̇i}Np

i=1]. (21)

The second step is to define the remaining quantities in the local dissipation inequality

(20) by use of constitutive equations. In detail these are the Helmholtz energy ψ, the
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stresses ξi,λ, the internal forces πi, ω and the chemical flux J , which, for the time being,

are assumed to be dependent on the vector z and combined as a vector

Z(z) = [ψ̂(z), Ĵ(z), ω̂(z), λ̂(z), {π̂i(z), ξ̂i(z)}Np

i=1], NZ = 4 + 2Np (22)

with the dimension NZ .

In the next step the time derivative of the Helmholtz energy

ψ̇ =
∂ψ̂(z)

∂c

∂c

∂t
+
∂ψ̂(z)

∂∇c
∂∇c
∂t

+
∂ψ̂(z)

∂ċ

∂ċ

∂t
+
∂ψ̂(z)

∂µ

∂µ

∂t
+
∂ψ̂(z)

∂∇µ
∂∇µ
∂t

+

Np∑

i=1

(
∂ψ̂(z)

∂φi

∂φi
∂t

+
∂ψ̂(z)

∂∇φi
∂∇φi
∂t

+
∂ψ̂(z)

∂φ̇i

∂φ̇i
∂t

)
(23)

is inserted into the dissipation inequality (20):

(
µ− ω̂(z)− ∂ψ̂(z)

∂c

)
ċ+

(
λ̂(z)− ∂ψ̂(z)

∂∇c

)
∇ċ− ∂ψ̂(z)

∂ċ
c̈− ∂ψ̂(z)

∂µ
µ̇− ∂ψ̂(z)

∂∇µ ∇µ̇

−∇µ · Ĵ(z) +

Np∑

i=1

[(
ξ̂i(z)− ∂ψ̂(z)

∂∇φi

)
∇φ̇i −

(
π̂i(z) +

∂ψ̂(z)

∂φi

)
φ̇i −

∂ψ̂(z)

∂φ̇i
φ̈i

]
≥ 0.

(24)

From the requirement that the inequality (24) must hold for arbitrary values of z and

the higher order derivatives ∇ċ, c̈, µ̇,∇µ̇, φ̈i,∇φ̇i which appear in inequality (24) at any

time and any material point one can conclude certain restrictions. As outlined next, three

groups of terms in the inequality (24) may be distinguished.

The first group contains all products with the derivatives c̈, µ̇,∇µ̇ and φ̈i in inequality

(24). The characteristic property of these quantities is that they are not constitutive

variables of the vector z and thus they appear linearly in (24). Therefore, one could

easily find values for z and the higher order derivatives which would violate (24) and

consequently it follows as necessary conditions

∂ψ̂(z)

∂ċ
= 0,

∂ψ̂(z)

∂µ
= 0,

∂ψ̂(z)

∂∇µ = 0,
∂ψ̂(z)

∂φ̇i
= 0, for i = 1, ..., Np. (25)

The equations (25) indicate that the Helmholtz energy function ψ̂(z) does not depend on
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ċ, µ, ∇µ and φ̇i but only on the variables z̃, resulting into

ψ̂(z̃), where z̃ = [c,∇c, {φi,∇φi}Np

i=1]. (26)

The second group consists of those terms containing ∇φ̇i or ∇ċ in inequality (24). As

for group one, the related higher order derivatives are not constitutive variables of the

vector z and thus they appear linearly in (24). In contrast to group one, the corresponding

factors are composed of additive terms. Again ∇φ̇i and ∇ċ could be chosen to violate

inequality (24). Thus it can be stated without loss of generality that the factors have to

be zero as necessary conditions, leading to

λ̂(z) =
∂ψ̂(z̃)

∂∇c and ξ̂i(z) =
∂ψ̂(z̃)

∂∇φi
for i = 1, ..., Np. (27)

The restrictions (27) define relations between constitutive equations (22) and therefore

reduce its number to 3 +Np < NZ . These results show that the constitutive equations ξi

and λ are no longer independent but directly dependent on the choice of ψ̂(z̃).

With the results (26) and (27) the dissipation inequality (24) reduces to

−∇µ · Ĵ(z)−
(
ω̂(z) +

∂ψ̂(z̃)

∂c
− µ

)
ċ−

Np∑

i=1

(
π̂i(z) +

∂ψ̂(z̃)

∂φi

)
φ̇i ≥ 0. (28)

All remaining terms occurring in inequality (28) are part of group three. The characteristic

property is that ∇µ, ċ and φ̇i are constitutive variables of the vector z and therefore may

appear linearly or nonlinearly in inequality (28). Since it is not known whether the terms

violate the inequality, they cannot be set to zero as a necessary condition. Instead the

inequality (28) can be written as a reduced dissipation

D = −∇µ · Ĵ(z)− ωdisċ−
Np∑

i=1

πdisi φ̇i ≥ 0 (29)

with additional quantities

ωdis = ω̂(z) +
∂ψ̂(z̃)

∂c
− µ, (30)

πdisi = π̂i(z) +
∂ψ̂(z̃)

∂φi
, i = 1, ..., Np . (31)
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They are chosen as

ωdis = −τ(z)ċ, (32)

πdisi = −βi(z)φ̇i, i = 1, ..., Np, (33)

where τ(z) and βi(z) are constitutive moduli. The chemical flux is chosen as

Ĵ(z) = −A(z)∇µ, (34)

where A(z) is the second order mobility tensor [12]. Inserting the definitions (30)-(34)

into the dissipation inequality (29) renders

D = ∇µ ·A(z)∇µ+ τ(z)ċ2 +

Np∑

i=1

βi(z)φ̇i
2 ≥ 0. (35)

The inequality (35) holds for any choice of ∇µ, ċ and φ̇i if and only if

τ(z) ≥ 0, βi(z) ≥ 0, s ·A(z)s ≥ 0 ∀s. (36)

In conclusion we are left with 3 +Np constitutive equations describing the Helmholtz

energy ψ(z̃), the constitutive moduli βi(z), τ(z) and the mobility tensor A(z). They have

to fulfill the criteria of (26) and (36). Every set of functions that satisfies these restrictions

is in accordance with the microforce balance equations (6) and (7), mass conservation (17),

the first (10) and the second law of thermodynamics (15).

[7, S. 5ff]

2.4 Evolution equations

Combining equations (30) and (32) with the force balance (7) and equation (27) yields an

expression for the chemical potential

µ =
∂ψ̂(z̃)

∂c
−∇ · ∂ψ̂(z̃)

∂∇c + τ(z)ċ. (37)
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Inserting equation (34) with (37) for the chemical potential into the mass conservation

law (17) one obtains the viscous Cahn-Hilliard equation [8]

ċ = ∇ · (A(z)∇µ) = ∇ ·
(
A(z)∇

(
∂ψ̂(z̃)

∂c
−∇ · ∂ψ̂(z̃)

∂∇c + τ(z)ċ

))
. (38)

Remark 1: Setting τ(z) = 0, ψ̂c(c,∇c) = f(c) + 1
2
ρ|∇c|2 and A(z) = κ1 in equation

(38) leads to the standard Cahn-Hilliard equation

ċ = κ∆ (f ′(c)− ρ∆c) . (39)

Alternatively, choosing ψ̂c(c,∇c) = 1
2
c2 leads to Fick’s second law of diffusion

ċ = κ∆c. (40)

The evolution equations for the multiphase field can be formulated with equations (31)

and (33), the microforce balance (6) and equation (27)

φ̇i =
1

βi(z)

(
∇ · ∂ψ̂(z̃)

∂∇φi
− ∂ψ̂(z̃)

∂φi
+ γi

)
, i = 1, ..., Np. (41)

Remark 2: The evolution equation (41) is the most general partial differential equation

for a multiphase field model. With the choice Np = 1, β(z) = const. > 0, ψ̂(z) =

f(φ) + 1
2
r|∇φ|2 and γ = 0 it leads to the classical Ginzburg-Landau equation

βφ̇ = r∆φ− f ′(φ). (42)

3 A prototype model for lower bainite

3.1 Helmholtz energy

The framework of Section 2 is now specialized to simulate the lower bainitic transformation

with three phases (Np = 3) and the evolution of the carbon concentration c. Therefore the

phases

1. bainitic ferrite (φ1),

2. austenite (φ2) and
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3. carbide (φ3)

are introduced where the corresponding order parameters φ1, φ2, φ3 vary between 0 and 1.

ψ̂(z̃) = ψ̂c(c,∇c) + ψ̂φ(φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) (43)

where ψ̂c(c,∇c) and ψ̂φ(φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) are Helmholtz energies for diffusion and

phase fields, respectively. The diffusion part ψ̂c(c,∇c) required for the viscous Cahn-

Hilliard equation (38) is proposed as

ψ̂c(c,∇c) = f(c) +
1

2
ρ|∇c|2, where f(c) = d(ceq − c)2(ccarb − c)2, (44)

where ρ is the diffusion gradient energy coefficient and f(c) is a potential free energy

density function. It is a double well potential with roots at ceq and ccarb. Due to this

definition the carbon concentration varies between the maximal carbon concentration in

equilibrium bainitic ferrite ceq = 0.0704 wt.% [25] which is also the effective minimum

carbon concentration of the overall model and the carbon concentration of carbide ccarb =

6.67 wt.% [13].

The equations (44) only consider the diffusion within the bainitic ferrite, because

the characteristic separation of carbon takes place within this phase. Consequently, this

separation leads to the precipitation of carbides within the bainitic ferrite. Additionally,

diffusion of carbon within austenite occurs. However, this effect is regarded as negligible,

compared to the diffusion within the bainitic ferrite phase.

For the multiphase field part in equation (43) we choose

ψ̂φ(φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) =

Np∑

i=1

Np∑

j>i

1

qij
[hij(φi, φj,∇φi,∇φj) + gij(φi, φj)] (45)

with the interfacial energy density hij(φi, φj,∇φi,∇φj) and the potential energy gij(φi, φj)

between two phases i and j. The phase energy coefficients are denoted by qij. The

interfacial energy density is chosen, following [28], as

hij(φi, φj,∇φi,∇φj) =
1

2
αij(φi∇φj − φj∇φi)2 (46)

with the phase gradient energy coefficient αij. The potential or chemical energy density
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gij between two phases i and j is chosen as a simple double well potential

gij(φi, φj) =
1

4aij
φ2
iφ

2
j , (47)

where aij is the potential constant. The potential energy density functions (47) describe

double well potentials to separate areas with high or low densities or different phases.

A coupling between the phase fields and the carbon concentration is not defined within

this Helmholtz energy term. This could be achieved using the mobility tensor A(z), the

constitutive moduli βi(z), τ(z) and the external scalar forces γi.

3.2 Constitutive moduli and evolution equations

In this subsection we provide proposals for the constitutive moduli τ, βi and the mobility

tensor A introduced in equations (32)-(34). The constitutive moduli τ(z) in equation (32)

and βi(z) in equation (33) are chosen as constant material parameters

τ(z) = τ = const. , (48)

βi(z) = βi = const. (49)

In order to describe the diffusion of carbon within the bainitic ferrite a simple choice for

the second-order mobility tensor A(z) in equation (34) is

A(z) = A(φ1) = φ1 · κ1, (50)

where κ is a constant. In this way the flux J will be zero if φ1, representing the bainite

phase, is zero, otherwise the carbon will diffuse. This constitutes an important coupling

between the phase field and the diffusion model.

From equations (37), (43) and (44) we obtain for the chemical potential

µ =
∂f(c)

∂c
− ρ∆c+ τ ċ. (51)

The evolution equation (38) for the diffusion reads with equation (50):

ċ = φ1κ∆µ+∇φ1κ∇µ

= φ1κ∆

(
∂f(c)

∂c
− ρ∆c+ τ ċ

)
+∇φ1κ∇

(
∂f(c)

∂c
− ρ∆c+ τ ċ

)
. (52)
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The evolution equations (41) for the specific constitutive laws (43), (45)-(47) and (49)

become

φ̇i =

Np∑

j=1,j 6=i

1

βiqij

(
αij (φj∆φi − φi∆φj)−

φiφj
2aij

(φj − φi)
)

+ γi,

for i = 1, ..., Np . (53)

Details on the derivatives of the Helmholtz energy ψ̂(z̃) in (45)-(47) can be found in [28].

3.3 Change of parameters

For a better physical interpretation of the phase field model, all material parameters of

the phase field evolution equations (53) are changed according to [18].

The phase gradient energy coefficients αij, the potential constants aij, the phase

energy coefficients qij and the dissipative moduli βi are replaced by the physical material

parameters, interface mobilities ζij, interface energies σij and interface thicknesses ηij

βiqij =
ηij
ζij
, aij =

ηij
72σij

, αij = σijηij. (54)

The derivation of the equations (54) using the Gibbs-Thomson equation [18] can be found

in the appendix of [9].

The external microforces γi for the phase field are specified on the basis of [28] as a

sum of external forces γij which perform work on the phase transition only between the

phases i and j

γi =

Np∑

j=1,j 6=i
γij = −

Np∑

j=1,j 6=i

6ζij ·∆Gij(z)

ηij
φi φj, (55)

where ∆Gij are the change of Gibbs energies which may be a function of z. The arbitrary

factor 6 has been introduced to be consistent with the evolution equations of [9, 18]. Note

the relations ζij = ζji, σij = σji and ηij = ηji but ∆Gij = −∆Gji.

With equations (55) and (54) the evolution equation (53) reads

φ̇i =

Np∑

j=1,j 6=i
ζij

[
σij

(
(φj∆φi − φi∆φj)−

36

η2
ij

φiφj(φj − φi)
)
− 6 ·∆Gij(z)

ηij
φiφj

]

for i = 1, ..., Np. (56)
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3.4 Carbide precipitation

The formation of carbides is a central mechanism of the lower bainitic transformation since

it influences significantly the macroscopic material characteristics of bainite. However the

simulation of this precipitation process yields several challenges. Firstly the phase field

equation (56) does not provide the growth of any phase φi whose value is zero over the

whole domain. To avoid this difficulty nuclei of carbides are defined as initial conditions.

Secondly the formation of carbide is a process which starts after the phase transformation

of austenite-to-bainitic ferrite and the ensuing carbon diffusion. During this process the

nuclei of carbide converge to zero, so that they are not able to grow any more. This

difficulty has been tackled in our paper [9] by defining the interface mobility ζij as a

function of the carbon concentration. The interface mobility is zero while the carbon

concentration is low. In this way the nuclei of carbide are prevented to vanish.

However the approach of [9] cannot be integrated easily in the presented concept of

generalized forces. Therefore we present an alternative approach based on changes of

Gibbs energies

∆Gij(z) = ∆G0
ij v(φi, φj, c) (57)

where

v(φi, φj, c) =





w(c)

φ2
3

for i = 3 ∨ j = 3

1 otherwise

(58)

and ∆G0
ij is a constant material parameter. The function w(c) is a smooth unit step

function used in [9]

w(c) =





0 for c < ccarb − ε
1 for c > ccarb

1
2

+ 1
2
· sin(π

ε
· c+ π

2
− π

ε
· ccarb) otherwise,

(59)

where the parameter ε governs the transition zone between ε = 1 for high carbon and

ε = 0 for low carbon concentration.

The equations (57) - (59) do not change the transformation kinetics between austenite

(φ2) and bainitic ferrite (φ1). For phase transitions involving carbide (φ3) the thermody-

namic driving force will be zero if the carbon concentration is low. Carbides will precipitate
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in supersaturated steel if the local carbon concentration is at ccarb = 6.67 wt.% [13]. This

is governed by the step function w. The function v ensures that the carbide phase can

grow even if the nuclei have become very small in time.

Remark 3: In our previous approach [9] we implemented the carbide precipitation by

defining the interface mobility

ζij(c) =





0 for c < ccarb − ε
1 for c > ccarb

1
2

+ 1
2
· sin(π

ε
· c+ π

2
− π

ε
· ccarb) otherwise,

which is identical to the function in (59). In the new approach of this work the step

function w(c) is integrated into the external scalar forces γi which are transfered to the

changes of Gibbs energies ∆Gij(z) by equation (55).

3.5 Anisotropic phase growth

The characteristic slim shapes of the bainite sheaves are modeled using an anisotropic

extension of the phase-field model as presented by [17] and [16] and used in [9]. The

interface energy parameters σij are manipulated depending on the local gradient ∇φi and

a predefined growth direction θ0

σij = σij(θ(∇φi), θ0). (60)

In lower bainite the transformation from austenite to bainitic ferrite shows an anisotropic

behavior. Therefore only σ12 needs to be defined as

σ12 = σ0
12 · (1 + r · cos(θ − θ0)), with θ = arctan

∂φ1
∂y

∂φ1
∂x

, (61)

where σ0
12 is the isotropic interface energy and r is a measure of the strength of anisotropy.

The main growth direction θ0 of the ferrite which could be chosen arbitrary. Here it is set

to θ0 = 0◦.
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4 Numerical implementation

Numerical solutions for the evolution equations (52) and (56) are obtained with the finite

element method for two dimensional problems. For time discretization an implicit Euler

scheme is implemented. The resulting nonlinear system of equations is solved iteratively

with Newton’s method. The implementation is straightforward as described in [9].

For the finite element method quadrilateral elements with linear shape functions are

used. The equation (51) for the chemical potential µ will be discretized, because the

Cahn-Hilliard equation (52) has fourth-order derivatives. Due to this procedure the model

has five unknowns per node:
[
c µ φ1 φ2 φ3

]T
. The diffusion equation (52) can be

written in weak form as

∫

V

νcċ dV −
∫

V

νcφ1κ∆µ dV −
∫

V

νc∇φ1κ∇µ dV = 0, (62)

where νc denotes the test function for the carbon concentration. Using Gauss’s theorem

and homogeneous boundary conditions we obtain

∫

V

νcċ dV +

∫

V

∇νcφ1κ∇µ dV = 0. (63)

Since the chemical potential µ should also be discretized, the weak form for the evolution

equation of µ in equation (51) can be derived as

∫

V

νµτ ċ+ ρ∇νµ∇c+ νµ(qc3 + pc2 + oc+ l)− νµµ dV = 0 (64)

with the derivative of the generalized carbon potential function

f ′(c) = d(qc3 + pc2 + oc+ l) ,where

o = 2c2
carb + 2c2

eq + 8ceqccarb ,

p = −6ccarb − 6ceq ,

q = 4 ,

l = −2ceqc
2
carb − 2ccarbc

2
eq .

(65)

The weak form of the phase field evolution equation (56) with test function νφ, again
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using Gauss’s theorem and homogeneous Neumann boundary conditions, reads

∫

V

νφφ̇i dV =

∫

V

Np∑

j=1,j 6=i
ζij

[
σij

(
∇νφ(∇φjφi −∇φiφj)−

36

η2
ij

νφφiφj(φj − φi)
)

− 6∆Gij(z)

ηij
νφφiφj

]
dV. (66)

The degrees of freedom at every node, which are denoted by the superimposed hat (̂·),
are d̂ =

[
ĉ µ̂ φ̂

1
φ̂

2
φ̂

3

]T
. The row vector N contains the shape functions, such that the

quantities c, µ and the φi can be written as scalar products:

c = Nĉ , µ = Nµ̂ , φi = Nφ̂i , i = 1, 2, 3. (67)

The matrix B used for gradient terms is defined as

B =

[
N ,x

N ,y

]
, with N ,x =

∂N

∂x
. (68)

The gradients read

∇c = Bĉ , ∇µ = Bµ̂ , ∇φi = Bφ̂i , i = 1, 2, 3. (69)

In the same manner the shape functions are used for the test functions νφ, νc and νµ. As

mentioned above the time dependence is discretized with an implicit Euler method. The

superscript (·)n signals the time step of the solution. The actual time step is denoted by

n, which is in most cases omitted for brevity.

The residuum vector is defined as R = [Rc Rµ Rφi ]T with

Rc =

∫

Ωe

(NTN) · ĉ
n − ĉn−1

∆t
+ κ · (Nφ̂1)BTBµ̂ dΩ, (70)

Rµ =

∫

Ωe

τ(NTN) · ĉ
n − ĉn−1

∆t
+ d
(
NT l + o(NTN)ĉ+ pNT (Nĉ)2

+ qNT (Nĉ)3
)

+ ρ(BTB)ĉ− (NTN)µ̂ dΩ, (71)
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Rφi =

∫

Ωe

NTN
φ̂
n

i
− φ̂n−1

i

∆t
+

Np∑

j=1,j 6=i
ζij

[
σij

(
− (BTB)φ̂

j
· (Nφ̂

i
) + (BTB)φ̂

i
· (Nφ̂

j
)

− 36

η2
ij

NTN(φ̂
i
− φ̂

j
)(Nφ̂

i
) · (Nφ̂

j
)

)
+

6

ηij
∆Gij(z)NT · (Nφ̂

i
) · (Nφ̂

j
)

]
dΩ. (72)

The integrals are calculated with a Gauss-Legendre rule. To solve the system of algebraic

equations Newton’s method is used. Therefore the tangent of the residual function R is

needed

K =
∂R

∂d̂
=




Kcc Kcµ Kcφ1 0 0

Kµc Kµµ 0 0 0

Kφ1c 0 Kφ1φ1 Kφ1φ2 Kφ1φ3

Kφ2c 0 Kφ2φ1 Kφ2φ2 Kφ2φ3

Kφ3c 0 Kφ3φ1 Kφ3φ2 Kφ3φ3



, (73)

with the following matrix entries

Kφiφi =
∂Rφi

∂φ̂
i

=

∫

Ωe

NTN
1

∆t
+

Np∑

j=1,j 6=i
ζij

[
σij

(
(BTB)(Nφ̂

j
)− (BTB)φ̂

j
·N

− 36

η2
ij

NTN(Nφ̂
j
) ·N(2φ̂

i
− φ̂

j
)

)

+
6

ηij

(
∆Gij(z)NTN · (Nφ̂

j
) +

∂∆Gij(z)

∂φ̂
i

NT · (Nφ̂
i
) · (Nφ̂

j
)

)]
dΩ, (74)

Kφiφj =
∂Rφi

∂φ̂
j

=

∫

Ωe

ζij

[
σij

(
−(BTB)(Nφ̂

i
)+(BTB)φ̂

i
·N− 36

η2
ij

NTN(Nφ̂
i
)·N(φ̂

i
−2φ̂

j
)

)

+
6

ηij

(
∆Gij(z)NTN · (Nφ̂

i
) +

∂∆Gij(z)

∂φ̂
j

NT · (Nφ̂
i
) · (Nφ̂

j
)

)]
dΩ, (75)
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Kφic =
∂Rφi

∂ĉ
=

∫

Ωe

Np∑

j=1,j 6=i
ζij

6

ηij

∂∆Gij(z)

∂ĉ
NT · (Nφ̂

i
) · (Nφ̂

j
) dΩ. (76)

Kcc =

∫

Ωe

1

∆t
·NTN dΩ, (77)

Kµµ =

∫

Ωe

−NTN dΩ, (78)

Kcµ =

∫

Ωe

κ · (Nφ̂1)BTB dΩ, (79)

Kµc =

∫

Ωe

τ

∆t
·NTN + ρ ·BTB + d(o · (NTN) + 2p · (NTN) · (Nĉ)

+ 3q · (NTN) · (Nĉ)2) dΩ, (80)

Kcφ1 =
∂Rc

∂φ̂
1

=

∫

Ωe

κ · (BTB)µ̂N dΩ. (81)

5 Representative numerical examples

5.1 Preliminary remarks

The results of two example calculations of the prototype model for lower bainite are

presented in this section. They give an impression of possible applications of the thermo-

dynamic framework derived in this work.

As initial conditions nuclei of bainitic ferrite and carbide are generated. While the

ferrite nucleus is strong (φ1 = 1) and concentrated at a single location, carbide nuclei are

spread over the whole domain and are very weak (max(φ3) = 0.01). The distribution and

the strength of the carbide nuclei are random. This approach is supported by the fact that

the bainitic nucleation is based on preformed nuclei [21]. The carbon concentration has a

constant initial condition of 1.87 wt.% with small randomly distributed perturbations. All

equations are implemented with homogeneous Neumann boundary conditions.

The first example “slower diffusion” uses a diffusion coefficient of κ = 0.008 µm2/s

whereas the second example exhibits a rather “faster diffusion” with κ = 0.02 µm2/s.

Different values for the diffusion coefficient may occur due to different cooling temperatures.
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Parameter Symbol Value/Unit

Strength of the anisotropy r 0.5

Maximum carbon concentration in ferrite ceq 0.0704 wt.% [25]

Maximum carbon concentration in steel ccarb 6.67 wt.% [13]

Bainitic main growth direction θ0 0◦

Cahn-Hilliard viscosity factor τ 0.00002 s

Cahn-Hilliard balance factor ρ 0.00016 µm2

Cahn-Hilliard potential factor d 0.014 1
µm2

Bainitic ferrite/Austenite interface energy σ12 0.001 J
µm2

Bainitic ferrite/Carbide interface energy σ13 0.001 J
µm2

Austenite/Carbide interface energy σ23 0 J
µm2

Bainitic ferrite/Austenite interface mobility ζ12 0.5 µm4

Js

Bainitic ferrite/Carbide interface mobility ζ0
13 0.5 µm4

Js

Austenite/Carbide interface mobility ζ23 0 µm4

Js

Gibbs energy between Bainitic ferrite and Austenite ∆G12 −0.0755 J
µm3

Gibbs energy between bainitic ferrite and carbide ∆G13 0.061 J
µm3

Gibbs energy between austenite and carbide ∆G23 0 J
µm3

Interfacial thickness η 0.17µm

Step function width ε 0.1

Table 1: Material parameters

However the values here are hypothetical and used to show how the shapes of the carbides

vary depending on the diffusion coefficient. Both calculations run over a period of 30 s

with a time step size of ∆t = 0.05 s.

All other values for the parameters introduced in the previous sections can be found

in Table 1. They are an issue of further investigations since most of them are tentative.

The mesh of the finite element method used to solve the problem divides the 3 µm× 3 µm

domain into 16384 elements. This fine grid ensures that at least 7 elements describe the

diffuse interface between two phases with the given interface width of ηij = 0.17 µm.
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Figure 4: Slower diffusion: Lower bainitic transformation after 0 s, 5 s, 15 s and 30 s.
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5.2 Example 1: Slower diffusion

The evolution of the three phases and the motion of the carbon is shown in Figure 4. From

top to bottom we have: austenite, bainitic ferrite, carbide and carbon concentration with

corresponding initial conditions in first column. One can see the initial bainitic ferrite

nucleus on the left boundary. The small nuclei of the carbide cannot be seen due to

the chosen scaling. The perturbations of the initial carbon concentration can be hardly

seen, either. For further information see [9]. The next columns depict the corresponding

evolutions after 5 s, 15 s and 30 s, respectively. After 5 s the bainitic ferrite grows and

has its typical slim shape. There are still no carbides and the carbon concentration field

shows only very little change within the area of the bainitic ferrite. At 15 s accumulations

of carbon are visible while the surrounding field declines to the minimum concentration.

This is the typical diffusion process of lower bainite. The ferrite can contain much less

carbon than the austenite. Due to the fact that the ferrite sheaf grows too fast, the carbon

cannot diffuse out of it instead it starts to build accumulations within the phase. Carbides

precipitate at the places of the carbon accumulations. The carbides closer to the left

boundary are larger, because the bainitic sheaf growth from left to right. Furthermore it

can be seen that the diffusion process is slower than the phase transformation, because

the carbon concentration changes only in about half of the ferrite area. The last column

shows the results after 30 s. The carbides have globular or elliptical shapes. The difference

between the conserved diffusion of the carbon and the non-conserved phase evolution can

be seen in this figure.

The lenticular shape of the sheaf in Figure 4 can be compared with the micrographs in

Figures 1 and 3. The distribution of the carbides is similar those in the micrograph in

Figure 2. However the carbides do not show the expected shape and orientation. This is

part of further investigations.
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Figure 5: Faster diffusion: Lower bainitic transformation after 0 s, 5 s, 15 s and 30 s.
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5.3 Example 2: Faster diffusion

Figure 5 shows the results of the second example with a higher diffusion coefficient κ. It

is structured in the same way as Figure 4. In comparison with Example 1 the carbon

starts to move earlier which can be seen in part d) of Figure 4 and 5 after 5 s. While

the concentration field in the first example hardly changes at all, the field in the second

example shows already a maximum. The more important consequence of the higher

diffusion coefficient is that the size of the accumulations increase and thereby the carbide

precipitations are larger, too. The results of this example also show the characteristics of

globular and rather large carbides as in the micrograph in Figure 3.

5.4 Comparison of results with different diffusion coefficients

Figure 6 shows two plots of the different fields over the time. The left axis has a scale for

the carbon concentration in wt.%. with a range from 0 wt.% to 7 wt.%. The scale on the

right axis of both diagrams represents the phase field order parameters. They vary between

0 and 1. The solid lines show results from Example 1 with a low diffusion coefficient and

the dashed lines show the results of the second example with faster diffusion.

The data plotted in Figure 6.a are calculated for the point P1 (x = 0.98438 µm,

y = 0.98438 µm) as marked in Figures 4.a and 5.a. The carbon concentration is at around

1.87 wt.% and austenite is the dominating microstructure, which is not plotted here for

clarity. While in both situations the initial status is the same, evolutions of the fields

differ from the instant on when the bainitic ferrite phase starts to grow. The beginning of

the phase transformation between austenite and bainitic ferrite marks the instant when

diffusion of the carbon starts, because the bainitic ferrite can contain much less carbon

than austenite. One can see that while the faster diffusion (dashed line) directly starts to

move the carbon, the slower diffusion almost does not change the concentration at all. It

starts about 5 s later. The ups and downs of the carbon field are due to spacial interactions

with neighboring points. It can be reasoned that the point is not in the middle of a carbon

accumulation. The transformation from bainitic ferrite to carbide starts very rapidly, when

the carbon reaches maximum concentration. This can be observed for the slow (solid line)

diffusion. The rather soft transformation for the faster one is also reasoned by spacial

interactions. There are already carbides at neighboring points.

Diagram 6.b shows results from Point P2 (x = 0.98438 µm, y = 1.5938 µm) as marked

in Figures 4.a and 5.a. Here the phenomena can be seen even better, because directly

when the bainitic ferrite lines crosses those of the carbon concentration, the concentration
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Figure 6: Phases and carbon concentration over time at a) P1 and b) P2 as marked in
Figures 4 and 5. Solid lines denote slower diffusion, dashed lines faster diffusion.

with the faster diffusion coefficient changes rapidly and increases to its maxima. The

concentration of carbon in Example 1 does not change for the next few seconds before it

starts to move slowly. However the mean increase of carbon is almost in parallel, showing

that now the diffusion is similarly fast.

6 Conclusion

The thermodynamical framework presented in this work can be used to develop consti-

tutive equations for many kinds of phase transformations between several phases. The

transformations may be coupled to a diffusion process. The Cahn-Hilliard equation used

in this framework provides a wide area of diffusion models. It includes the classical

Cahn-Hilliard, a viscous Cahn-Hilliard and Fick’s Law. Basic universal laws, such as

the microforce balances, the energy conservation law, the mass conversation law and

the entropy inequality are strictly separated from constitutive laws which depend on the

specific material. As a prototype application of the framework the simulation of the lower

bainitic transformation is presented. Within this specific formulation the coupling between

different phase order parameters and the diffusion model can be seen. In future work we

plan to extend the framework to deformable continua.
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Abstract

Bainite is a steel microstructure consisting of three phases, bainitic ferrite, austen-

ite and carbides. It forms in two different morphologies, upper and lower bainite,

where different diffusion mechanisms are dominant. The aim of this work is to

simulate both transformations within a unified model. To this end, we extend an

own previously published model for lower bainite with diffusion across the phase

interface. As a central idea we introduce weighted Helmholtz energy functions and a

weighted mobility tensor, respectively. The individual Helmholtz energy functions

and mobility terms are related to the different diffusion mechanisms which are

responsible for the formation of both morphologies. Two representative examples

illustrate the capability of the coupled phase field/diffusion model and show the

expected behaviour.

Keywords: Coupled phase field/diffusion model, bainite, multiphase field method,

Cahn-Hilliard diffusion, diffusion across the interface, lower bainitic transformation,

upper bainitic transformation, thermodynamic framework, microforce balance

1 Introduction

The bainitic microstructure of steel shows two different morphologies, upper and lower

bainite. The transformation of both morphologies starts with a displacive austenite-to-

bainitic-ferrite transition at preformed nuclei as observed by Olson et al. [1]. The bainitic

ferrite grows in wedge-shaped sheaves, which are divided in sub-units. Subsequently (not
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simultaneously) carbon starts to move, where however the pertinent diffusion mechanisms

are significantly different.

In lower bainite carbon undergoes a separation process within a supersaturated bainitic

ferrite phase [2]. It builds accumulations of carbon, where carbides precipitate. This

transformation mechanism is noticed e.g. by Bhadeshia who also showed that carbides

in lower bainite precipitate directly from the bainitic ferrite [3]. Only a small amount of

carbon diffuses across the interface into the austenite.

Upper bainite grows at temperatures between the pearlite formation and the lower

bainite formation. The transformation from austenite to bainitic ferrite is comparable to

the lower bainite formation. After this transformation most of the carbon within the su-

persaturated bainitic ferrite diffuses across the interface into the austenite. This movement

is particularly strong near the interface and stops when the equilibrium concentration

is reached. In between two sheaves the concentration of carbon may become very high,

which leads to precipitation of carbides out of the austenite. Depending on other alloying

elements, like Silicon or Chromium, the precipitation of carbides is suppressed such that

the austenite phase does not transform and remains as residual or retained austenite.

The displacive growth of the ferritic sub-units is accompanied by invariant-plane strain

deformation arising from a strain energy [2]. The resulting permanent strain is called

transformation plasticity [2]. Furthermore, the austenite-to-bainitic-ferrite transition

cannot be caused only by cooling to a certain temperature but also by applying stress or a

combination of both [2]. The transformation plasticity can cause anisotropic changes in

shape without an applied stress.

In the literature there are several models simulating phase transformations in steel [4],

for example austenite-to-ferrite by Militzer et al. [5], Huang et al. [6], Mecozzi et al. [7],

austenite-to-pearlite by Steinbach and Apel [8], austenite-to-martensite transformations

by Yamanaka et al, Schmitt et al. [9, 10] and Widmanstätten formation by Yamanaka

et al. [11]. However, only a few models are able to describe phenomena of the bainitic

transformation. Arif and Qin [12] show the autocatalysis event between two sub-units

and Song at al. [13] describe the growth of upper bainitic ferrite neglecting the formation

of carbides. A model concept for the lower bainitic transformation is proposed in [14]

and [15] considering carbon separation within the bainitic ferrite and the precipitation

of carbides. It is thereafter applied in [16]. In [17] a multi-scale model for the bainitic

transformation considering multi-variant polycristallines is presented. To the authors best

knowledge, a model accounting for upper and lower bainitic transformation is not available

so far.
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This work focuses on the isothermal simulation of upper and lower bainite growth. We

model a displacive transformation from austenite to bainitic ferrite, the subsequent (not

simultaneous) diffusion of carbon and the resulting precipitation of carbides. We point out

that we do not consider any cooperative or diffusion controlled growth as it is known for

pearlite. The transformation is modelled with a coupled phase-field/diffusion approach,

which is based on a coupled Ginzburg-Landau/Cahn-Hilliard system of equations. The

thermodynamic framework developed in [15] for a lower bainite model with a simpler

carbon diffusion is used. It is based on generalized forces and stresses as introduced by

Gurtin and Fried [18, 19, 20]. In order to account for both, upper and lower bainitic

transformation, within a unified model we extend the lower bainitic simulation of [15]

with diffusion across the phase interface as presented by Wheeler et al. [21]. As a central

idea we introduce weighted Helmholtz energy functions and a weighted mobility tensor,

respectively. The individual Helmholtz energy functions and mobility terms are related

to the different diffusion mechanisms which are responsible for the formation of the two

different morphologies. The weighting is achieved by individual scalar functions depending

on the temperature. At high temperatures, these functions guarantee diffusion across the

interface and balancing diffusion within the bulk phases of the corresponding interface. The

lower transformation model presented here is an extension of [15]. Due to the weighting

functions the model shows a strong carbon separation process within the bainitic ferrite

and additionally diffusion across the interface. Furthermore the precipitation of carbides

within the austenite can be described with the proposed diffusion model. The anisotropic

phase growth is modelled with a phase field based scheme [22]. A coupling with strain and

stress effects is not part of this work. We plan to extend our thermodynamic framework

in [15] to consider the related strain energy in future work.

An outline of this work is as follows: In Section 2 the three diffusion mechanisms

required to model the bainite transformation are described in detail. Section 3 recalls the

thermodynamic framework for coupled Ginzburg-Landau/Cahn-Hilliard systems based on

generalized stresses [15]. In Section 4 a prototype model for upper and lower bainite is

introduced. The corresponding constitutive equations include various Helmholtz energy

functions, dissipation moduli and diffusion mobility terms. The section ends with evolution

equations for order parameters and carbon concentration. Section 5 briefly describes the

finite element implementation of the unified bainite transformation model. The resulting

algebraic system of equations mirrors the coupling of the different physical phenomena.

In Section 6 numerical examples for upper and lower bainite are presented and discussed.

The last section is a conclusion summarizing the outcome of this paper and giving an
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outlook for further investigations.

Notations: Vectors a and second-order tensors A are bold and matrices B are

underlined. In the three-dimensional Cartesian coordinate system, the gradient and the

Laplacian, respectively, of a scalar field α(x) are given by

1. ∇α(x) =
3∑

i=1

∂α(x)

∂xi
ei 2. ∆α(x) = ∇·∇α(x) =

3∑

i=1

∂2α(x)

∂x2
i

. (1)

where ei, i = 1, 2, 3 are standard unit vectors and xi are the coordinates of x. The

divergence of a vector field a(x) reads

∇·a(x) =
3∑

i=1

∂ai
∂xi

. (2)

2 Diffusion mechanisms in upper and lower bainite

The main challenge of this work is the modelling of carbon diffusion to account for different

movements of carbon within the various phases and morphologies. To this end as a

model assumption, we introduce three different diffusion processes which are involved for

both, upper and lower bainite, as illustrated in Figure 1 and henceforth denoted as Type

I, Type II and Type III, respectively. In Figure 1 two phases are coloured in red and

yellow, respectively, with a diffuse interface in between. Moreover the interface regions are

illustrated by black dashed lines.

I. Separation within a phase: The separation diffusion process leads to accumulations

of carbon at a high concentration limit within a bulk area of carbon at a low

concentration limit. According to the schematic diagram in Figure 1.I, the separation

takes place only within one phase. The carbon atoms, illustrated as dots, accumulate

at certain places, while there are almost no atoms left in between.

II. Accumulation within an interface: This diffusion process governs the movement

of the carbon in the diffuse interface region between two phases. As illustrated

in Figure 1.II, initially uniformly distributed carbon atoms are transported to one

specific side of the diffuse interface, thus resulting into a non-uniform distribution.

III. Balancing within the phases : The balancing mechanism distributes the atoms over a

certain domain, e.g. a phase, such that the concentration of the solute is uniformly

distributed as shown in Figure 1.III within both phases. It may also be referred
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as Fick’s type diffusion. The concentrations in different phases may differ. For the

specific case in Figure 1.III, the balancing process especially moves carbon atoms

which are accumulated within the interface but close to the bulk phase, into the

bulk phase, while on the other side of the interface it pushes atoms into the empty

interface.

Accumulation within an interface (Type II) in combination with the balancing process

(Type III) moves atoms from one phase into the other, henceforth denoted as diffusion

across the interface (Type II + Type III), see Figure 1.

Type I. Separation within a phase

Type II. Accumulation within an interface

Type III. Balancing within the phases





Diffusion across

the interface

Figure 1: Schematics of three diffusion mechanisms

Table 1 links the above three diffusion processes to the phases and morphologies of

upper and lower bainite. In upper bainite there is no separation process within a phase,

but an accumulation within the diffuse interface (Type II) and a balancing process (Type

III) which assists the diffusion across the interface between bainitic ferrite and austenite.

Separation works also between bainitic ferrite and carbide in upper bainite. The nucleating

carbides attract surrounding carbon to stabilize itself and grow faster.

In lower bainitic ferrite, the most significant diffusion mechanism is the separation

process (Type I), which takes place only within bainitic ferrite as documented in Table

1. Additionally, there is an accumulation process within the interface between bainitic

ferrite and austenite, but at a much weaker level than in upper bainite. The transported

carbon can diffuse into the whole austenite region with the balancing mechanism which

does not occur within the bainitic ferrite where the separation process governs the flow to

the interface.
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For both morphologies, upper and lower bainite, the carbon concentration influences

especially the precipitation of carbides. The phase transformation from austenite to

bainitic ferrite is displacive. Consequently the phase transformation is independent from

the carbon diffusion which is a subsequent process governing the precipitation of carbides

and the growth of residual austenite.

Type I and Type III describe diffusion processes within phases and therefore are

independent of any model to simulate or identify the phases. In this work the phase

field method is chosen to simulate the phases. This method uses non-sharp but diffuse

interfaces between phases. Therefore we choose diffusion Type II to simulate the movement

of carbon within the diffuse interface. Due to computational limits the interface width

of the representative examples in Section 6 is oversized and therefore a rather crude

approximation for the real process.

Bainitic ferrite Austenite Carbide
Diffusion mechanisms upper lower upper lower upper lower
I. Separation within a phase ∗
II. Accumulation within an interface • ∗ • ∗ •
III. Balancing within the phases • • ∗

Table 1: Carbon diffusion processes within different phases and morphologies of bainite:
symbol • marks diffusion mechanisms occurring in upper bainite and symbol ∗ those
occurring in lower bainite.

3 Coupled Ginzburg-Landau/Cahn-Hilliard

framework

In this work phase transformations are modelled with a multiphase Ginzburg-Landau

equation which is coupled to a Cahn-Hilliard type diffusion equation. A thermodynamic

framework for such a coupled problem is derived in [15]. It is based on generalized stresses

and forces proposed over a volume B with an arbitrary control volume V as a subregion

of B and the boundary ∂V with outward normal unit vector n ∈ R3. All underlying

constitutive variables of the model are summarized in the vector

z = [c, ∇c, ċ, µ, ∇µ, {φi, ∇φi, φ̇i}Np

i=1], (3)

where c denotes the concentration of a solute, µ is the corresponding chemical potential, φi

are the phase order parameters satisfying 0 ≤ φi ≤ 1,
∑Np

i=1 φi = 1 and Np is the number
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of phases.

Generally, constitutive equations may depend on the constitutive variables z. However,

as extensively discussed in [15] and [18] the Helmholtz energy function

ψ = ψ̂(z̃) (4)

depends only on the reduced constitutive variables

z̃ = [c,∇c, {φi,∇φi}Np

i=1]. (5)

The boundary value problem for the chemical potential reads

µ =
∂ψ̂(z̃)

∂c
−∇·∂ψ̂(z̃)

∂∇c + τ(z) on V, (6)

∇µ · n = µ̄ on ∂V, (7)

with constitutive modulus τ(z) ≥ 0 and prescribed out-flux µ̄. The initial boundary value

problem for the diffusion of a solute in [15] reads

ċ = ∇·(A(z) · ∇µ) on V, (8)

c(t = 0) = c0 on V, (9)

∇c · n = c̄ on ∂V, (10)

with positive semi-definite second-order mobility tensor A(z), prescribed initial value c0

and prescribed out-flux c̄ on the boundary. Phase transformations are described by the

phase order parameters φi satisfying the initial boundary value problem

φ̇i =
1

βi(z)

(
∇·∂ψ̂(z̃)

∂∇φi
− ∂ψ̂(z̃)

∂φi
+ γi

)
, i = 1, ..., Np on V, (11)

φi(t = 0) = φi0 on V, (12)

∇φi · n = φ̄i on ∂V. (13)

Here γi are external phase forces, βi(z) ≥ 0 are constitutive moduli and φi0 and φ̄i

are prescribed initial values and out-fluxes, respectively. Please recall, that equation

(8) together with (6) constitutes a conservative fourth order Cahn-Hilliard differential

equation, whereas equation (11) governing multiphase transformations is a non-conservative
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second-order Ginzburg-Landau equation.

4 A prototype model for upper and lower bainite

This section specifies the governing equations of the thermodynamic framework in Section

3. Thereby, to account for upper and lower bainite we provide an extension of the governing

equations in [15]. The prototype model developed in this paper describes the growth of

Np = 3 phases

1. bainitic ferrite (φ1),

2. austenite (φ2) and

3. carbide (φ3)

to simulate upper and lower bainite formation. Moreover, c introduced in equation (3)

represents the carbon concentration.

4.1 Weighted Helmholtz energy

The Helmholtz energy function is a key ingredient to capture the different diffusion

mechanisms of Table 1 for bainite. As a specification of equation (4) it is postulated as a

sum of two energies

ψ̂(z̃) = ψ̂c(c,∇c) + ψ̂φ(c, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3), (14)

with a purely diffusive part ψ̂c and a phase-field part ψ̂φ with coupling terms. The diffusive

part is again a sum of two energies

ψ̂c(c,∇c) = wf (θ)ψ̂f (c) + ws(θ)ψ̂s(c,∇c). (15)

Here the energy term ψ̂f(c) accounts for the balancing diffusion (Type III) according

to Figure 1.III, which will result into Fick’s type of diffusion and ψ̂s(c,∇c) governs the

separation of carbon (Type I) according to Figure 1.I. As explained in Section 2 the carbon

in upper bainite diffuses across the interface Type II+III) into the austenite phase while

in lower bainite the diffusion across the interface is of minor importance compared to the

separation Type I). In equation (15) this combined effect is accounted for by weighting

functions wf and ws, respectively, which weight the different diffusion mechanism to
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Figure 2: Weighting functions for different diffusion processes

distinguish upper from lower bainite and therefore are dependent on the temperature θ.

Figure 2 illustrates both weighting functions versus the temperature θ defined as

wf (θ) =





0 for θ < θD − εθ
1 for θ > θD + εθ
1

2
+
LD
2

+

(
1

2
− LD

2

)
sin

(
π

(
θ − θD

2εθ
+ 2

))
otherwise

(16)

and

ws(θ) =





1 for θ < θD − εθ
0 for θ > θD + εθ
1

2
− LD

2
+

(
1

2
− LD

2

)
sin

(
π

(
θ − θD

2εθ
+ 1

))
otherwise.

(17)

Here θ is the temperature of the isothermal transformation, θD is the transition temperature

marking the boundary between upper and lower bainite, εθ is a factor to soften the sharp

boundary for better numerical characteristics and LD ensures the coaction of both diffusion

mechanisms. Note, that both functions wf and ws satisfy the completeness condition

wf (θ) + ws(θ) = 1. (18)

On one hand, for the separation (Type I) in lower bainite according to Table 1 a
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Cahn-Hilliard equation is formulated. A suitable Helmholtz energy is postulated as

ψ̂s(c,∇c) = f(c) +
1

2
ρ|∇c|2, (19)

f(c) = d(ceq − c)2(ccarb − c)2. (20)

where ρ is a Cahn-Hilliard balance factor, f(c) is a double well energy function, ceq is the

equilibrium carbon concentration in bainitic ferrite and ccarb is the carbon concentration

of the carbides. These two concentrations define the limits of the separation process.

On the other hand, for the balancing Fick’s diffusion (Type III) required for the

diffusion across the interface, we introduce

ψ̂f (c) =
ceq ln(ceq − c)− ccarb ln(ccarb − c) + c ln( ccarb−c

ceq−c )

ceq − ccarb

. (21)

Remarks 1:

1. Equation (21) is a modification of Wheeler et al. [21], where the original bounds 0

and 1 are replaced with ccarb and ceq.

2. The balancing diffusion mechanism tackled in equation (21) is important for the

upper bainitic transformation, however has minor significance for the lower bainitic

transformation. This can be reflected by a high weighting of the separation (ws = 0.9)

and a low weighting of the diffusion across the interface (wf = 0.1) for θ < θD.

Alternatively, the intensity of the different diffusion mechanisms can be governed by

the diffusion coefficients introduced in the next subsection.

3. It is not obvious that equation (21) leads to Fick’s type diffusion within the framework

used in this work. For clarification, a detailed mathematical justification is provided

in Appendix A.

The Helmholtz energy for the phase transformation in equation (14) is proposed as

ψ̂φ(c, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) =

Np∑

i=1

Np∑

j>i

1

qij
[hij(φi, φj,∇φi,∇φj) + (1 + c sij wf ) gij(φi, φj)] (22)

with the interfacial energy density hij(φi, φj,∇φi,∇φj) and the potential energy gij(φi, φj)

between two phases i and j. The phase energy coefficients are denoted by qij. Compared
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to [15] we introduce the additional term c sij wf , where sij are interface diffusion factors

which govern the accumulation of carbon within the interface (Type II) between phases i

and j according to Figure 1.II. The interfacial energy density is chosen, following [23], as

hij(φi, φj,∇φi,∇φj) =
1

2
αij(φj∇φi − φi∇φj)2 (23)

with the phase gradient energy coefficient αij. The potential or chemical energy density

gij between two phases i and j is chosen as a simple double well potential

gij(φi, φj) =
1

4aij
φ2
iφ

2
j , (24)

where aij are potential constants.

4.2 Evolution equations

The constitutive moduli τ, βi and the mobility tensor A introduced in equations (6), (11)

and (8), respectively, have to be specified, in order to gain the evolution equations for the

concentration field c and the phase order parameters φi. We postulate the constant moduli

τ(z) = τws = const., (25)

βi(z) = βi = const. (26)

In order to account for both, separation within a phase (Type I) and diffusion across the

interface (Type II + Type III), the mobility tensor A is postulated as the sum of two

terms, weighted by wf and ws introduced in equations (16) and (17),

A(z) = (wfDf (φ)fq(c) + wsDs(φ)) 1, (27)

where

Df (φ) =

Np∑

i=1

φiDfi, (28)

Ds(φ) =

Np∑

i=1

φiDsi (29)

fq(c) = (c− ceq)(ccarb − c). (30)
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In equations (28) and (29) Dfi and Dsi are diffusion coefficients for diffusion across the

interface and Cahn-Hilliard diffusion, respectively.

Remarks 2:

1. The function fq in equation (30) is required to limit the accumulation process within

the interface (Figure 1.II) with an upper and lower bound, ccarb and ceq, respectively.

2. As shown in equation (A.4) of Appendix A the function fq affects also the balancing

diffusion (Figure 1.III) which is additionally needed to model diffusion across the

interface as discussed in Section 2. In order to preserve Fick’s type diffusion, the

corresponding Helmholtz energy (21) is postulated to fulfil

fq(c)
∂2ψ̂f (c)

∂c2
= 1. (31)

Further details on this approach are explained in Appendix A.

Having specified all constitutive equations, the evolution equations can be assembled

based on the thermodynamic framework in Section 3. To derive the concentration evolution

equation, the chemical potential is needed. Inserting the Helmholtz energy equation (14)

and the dissipation modulus (25) into equation (6) render a weighted chemical potential

µ = wfµf + wsµs, (32)

where

µf =
∂ψ̂f (c)

∂c
+

Np∑

i=1

Np∑

j>i

vijφ
2
iφ

2
j , (33)

µs =
∂f

∂c
− ρ∆c+ τ ċ. (34)

and for brevity

vij =
sij

4aijqij
. (35)

The next equation describes the concentration field c. Inserting equation (32) into the
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evolution equation (8) leads to

ċ = ∇·(wfA(z)∇µf ) +∇·(wsA(z)∇µs). (36)

The next natural step would be to insert µf (33) and µs (34) into equation (36).

However, to avoid fourth order derivatives in the evolution equation of the concentration

c, the separation part µs of the chemical potential (34) is not inserted into equation (36)

which would lead to difficulties for the finite element implementation, described in the

next section. Therefore only µf from equation (33) is inserted into equation (36).

The product of A(z) · ∇µf leads to simplifications of the resulting evolution equation.

The lengthy algebra describing the steps in detail can be found in Appendix A. The

evolution equation of the concentration field c reads

ċ = w2
f∇Df (φ) · ∇c+ w2

fDf (φ)∆c+ wswf∇Ds(φ)
∂2ψ̂f (c)

∂c2
∇c

+ wswfDs(φ)
∂3ψ̂f (c)

∂c3
(∇c)2 + wswfDs(φ)

∂2ψ̂f (c)

∂c2
∆c

+

(
w2
f∇Df (φ)fq(c) + w2

fDf (φ)
∂fq(c)

∂c
∇c+ wswf∇Ds(φ)

)

·
Np∑

i=1

Np∑

j>i

vij
(
2φiφ

2
j∇φi + 2φjφ

2
i∇φj

)

+
(
w2
fDf (φ)fq(c) + wswfDs(φ)

)

Np∑

i=1

Np∑

j>i

2vij
(
∇φiφ2

j∇φi +∇φjφ2
i∇φj + 4φiφj∇φi∇φj + φjφ

2
i∆φj + φiφ

2
j∆φi

)

+

(
wswf∇Df (φ)fq(c) + wswfDf (φ)

∂fq(c)

∂c
∇c+ w2

s∇Ds(φ)

)
· ∇µs

+
(
wswfDf (φ)fq(c) + w2

sDs(φ)
)

∆µs (37)

The evolution equation for the phase order parameters φi is derived by inserting the

Helmholtz energy equation (14) into equation (11)

φ̇i =

Np∑

j=1,j 6=i

1

βiqij

(
αij (φj∆φi − φi∆φj)−

φiφj · (1 + c sij wf )

2aij
(φj − φi)

)
+ γi,

for i = 1, ..., Np . (38)

According to [7] the material parameters of equation (38), namely the phase gradient
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energy coefficients αij, the potential constants aij, the phase energy coefficients qij and

the dissipative moduli βi are replaced by the interface mobilities ζij, interface energies σij

and interface thicknesses ηij

βiqij =
ηij
ζij
, aij =

ηij
72σij

, αij = σijηij. (39)

Details of this parameter change (39) using the Gibbs-Thomson equation [7] can be found

in the appendix of [14].

Furthermore we postulate the external forces γi of equation (38) as sums over all phases

Np which perform work on the phase transition between two phases i and j

γi =

Np∑

j=1,j 6=i
γij = −

Np∑

j=1,j 6=i

6ζij∆Gij(z)

ηij
φi φj. (40)

In equation (40) ∆Gij describe the change of Gibbs energies between the phases i and j.

The arbitrary factor 6 has been introduced to be consistent with the evolution equations

of [14, 7]. Note the relations ζij = ζji, σij = σji and ηij = ηji but ∆Gij = −∆Gji.

The evolution equation for the phase order parameters (38) is finally written as

φ̇i =

Np∑

j=1,j 6=i
ζij

[
σij

(
(φj∆φi − φi∆φj)−

36

η2
ij

(1 + c sij wf )φiφj(φj − φi)
)

− 6∆Gij(z)

ηij
φiφj

]
for i = 1, ..., Np. (41)

To model anisotropy a widely used approach by Kobayashi [22] and G.B. McFadden et

al. [24] is implemented. The interface energy parameters σij depend on the local gradient

∇φi and a predefined growth direction θ0 [15]

σij = σij(θ(∇φi), θ0). (42)

The anisotropic transformation from austenite to bainitic ferrite is modelled with

σ12 = σ0
12 · (1 + r · cos(θ − θ0)), where θ = arctan

∂φ1
∂y

∂φ1
∂x

. (43)

In the sequel, the strength of anisotropy is set to r = 0.5, the main growth direction is

θ0 = 0◦ and σ0
12 is the isotropic interface energy [15].
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To model the precipitation of carbides as described in Section 1 and Section 2 we

provide the following set of equations for the Gibbs energy, as presented in [15]:

∆Gij(z) = ∆G0
ij v(φi, φj, c) (44)

where

v(φi, φj, c) =





w(c)

φ2
3+εφ

for i = 3 ∨ j = 3

1 otherwise

(45)

and ∆G0
ij are constant material parameters describing the differences in Gibbs energy

between phases i and j. Furthermore w(c) is a smooth unit step function, defined as

w(c) =





0 for c < ccarb − ε
1 for c > ccarb

1
2

+ 1
2

sin(π
ε
c+ π

2
− π

ε
ccarb) otherwise,

(46)

where the parameter ε describes the width of the smooth step.

The idea of equations (44)-(46) is that the carbide phase will grow only if the carbon

concentration at the certain place is high enough. To be specific, it must reach ccarb =

6.67 wt.% [25], to start the formation of carbides.

Remarks 3:

1. In general the Gibbs energy ∆Gij(z) is a function of the temperature and the

carbon concentration. The model presented in this paper considers only isothermal

processes such that the temperature dependence can be neglected. Furthermore the

transformation from austenite (φ2) to bainitic ferrite (φ1) is displacive, which means

that it does not depend on the local concentration of carbon, which is constant over

the process at the transformation places.

2. In equation (45) we introduce a very small numerical perturbation εφ > 0 to prevent

a division by zero in the case that φ3 = 0. The divisor φ2
3 guarantees a growth of the

φ3 phase even if the current value of φ3 is close to zero.
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5 Numerical implementation

In this section information about the numerical implementation is provided. The system

of partial differential equations (34), (37) and (41) is solved with the finite element method

in a two dimensional space. Quadrilateral elements with linear shape functions are used

for the finite element formulation. For time discretization the backward Euler method is

used. The resulting algebraic system of equations is solved with Newton’s method.

As already mentioned in Section 4.2 the chemical potential µs for the lower bainitic

transformation is not inserted into the evolution equation of the concentration (37), instead

it will be handled as a separate degree of freedom to avoid fourth order derivatives. Taking

three phases into account leads to five unknowns c, µs, φ1, φ2, φ3 per finite element node.

A possibility to avoid the chemical potential µs as an additional degree of freedom is given

by the isogeometric finite element method [26, 27], which is therefore considered for future

work.

The weak formulation of the lower chemical potential (34) reads

∫

V

νµτ ċ+ ρ∇νµ∇c+ νµ
∂f(c)

∂c
− νµµs dV = 0. (47)

where νµ denotes the test function for the lower chemical potential. The weak formulation
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of the diffusion equation (37) reads

∫

V

νcċ dV =

∫

V

νcw
2
f∇Df (φ)∇c dV +

∫

V

νcw
2
fDf (φ)∆c dV

+

∫

V

νcwswf∇Ds(φ)
∂2ψ̂f (c)

∂c2
∇c dV +

∫

V

νcwswfDs(φ)
∂3ψ̂f (c)

∂c3
(∇c)2 dV

+

∫

V

νcwswfDs(φ)
∂2ψ̂f (c)

∂c2
∆c dV

+

∫

V

νc
(
w2
f∇Df (φ)fq(c) + w2

fDf (φ)∇fq(c) + wswf∇Ds(φ)
)

·
Np∑

i=1

Np∑

j>i

2vij(∇φiφiφ2
j + φ2

iφj∇φj) dV +

∫

V

νc
(
w2
fDf (φ)fq(c) + wswfDs(φ)

)

Np∑

i=1

Np∑

j>i

2vij(∆φiφiφ
2
j + (∇φi)2φ2

j + 4∇φiφiφj∇φj + ∆φjφ
2
iφj + (∇φj)2φ2) dV

+

∫

V

νc(wfws∇Df (φ)fq(c) + wfwsDf (φ)∇fq(c) + w2
s∇Ds(φ)) · ∇µs dV

+

∫

V

νc(wfwsDf (φ)fq(c) + w2
sDs(φ))∆µs dV, (48)

where νc is the test function needed for the finite element formulation.

The weak formulation of the phase field evolution equations (41) with its νφ and already

applied Gauss theorem and homogeneous Neumann boundary conditions read

∫

V

νφφ̇i dV =

∫

V

Np∑

j=1,j 6=i
ζij

[
σij

(
∇νφ(∇φjφi −∇φiφj)

− 36

η2
ij

νφφiφj(1 + c sij wf )(φj − φi)
)
− 6∆Gij(z)

ηij
νφφiφj

]
dV. (49)

For the matrix formulation we denote the degrees of freedom at every node with the

superimposed hat (̂·) and introduce a row vector N containing the shape function values.

As a result the following scalar products can be used:

c = Nĉ , µs = Nµ̂s , φi = Nφ̂i , i = 1, 2, 3. (50)

The gradient terms are described by

∇c = Bĉ , ∇µs = Bµ̂s , ∇φi = Bφ̂i , i = 1, 2, 3. (51)
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where

B =

[
N ,x

N ,y

]
, with N ,x =

∂N

∂x
. (52)

The relations in equations (50) and (51) can be formulated for the test functions νφ, νc

and νµ respectively. The actual time step is described by the superimposed n, which is

only used inside the backward Euler terms and omitted for brevity in other parts.

In the following the element residual terms are presented based on the weak formulations

(47), (48) and (49). All terms are obtained using Gauss’s theorem and homogeneous

Neumann boundary conditions c̄ = 0, φ̄i = 0 in equations (10) and (13)

Rc =

∫

Ωe

NTN
ĉn − ĉn−1

∆t
+BTBĉ

(
w2
fDf (φ) + wfwsDs(φ)

∂2ψ̂f (c)

∂c2

)

+BT (w2
fDf (φ)fq(ĉ) + wswfDs(φ))

Np∑

i=1

Np∑

j>i

2vij

(
(Nφ̂

i
)(Nφ̂

j
)2Bφ̂

i
+Nφ̂

j
(Nφ̂

i
)2Bφ̂

j
)
)

+BTBµ̂
l

(
wfwsDf (φ)fq(ĉ) + w2

sDs(φ)
)
dΩ, (53)

Rµs =

∫

Ωe

τ(NTN)
ĉn − ĉn−1

∆t
+NT ∂f(Nĉ)

∂c
+ ρ(BTB)ĉ− (NTN)µ̂s dΩ, (54)

Rφi =

∫

Ωe

NTN
φ̂
n

i
− φ̂n−1

i

∆t
+

Np∑

j=1,j 6=i
ζij

[
σij

(
− (BTB)φ̂

j
(Nφ̂

i
) + (BTB)φ̂

i
(Nφ̂

j
)

− 36

η2
ij

NT (1 + sijwf (Nĉ))N(φ̂
i
− φ̂

j
)
(

(Nφ̂
i
)(Nφ̂

j
)
))

+
6

ηij
∆Gij(z)NT (Nφ̂

i
)(Nφ̂

j
)

]
dΩ. (55)

The integrals are numerically computed with a Gauss-Legendre rule. As described above

Newton’s method is used to solve the non-linear system of equations. Hence the derivatives

of the residual function R = [Rc Rµs Rφi ]T with respect to all unknown variables
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d̂ = [ĉ µ̂ φ̂i]
T are needed

K =
∂R

∂d̂
=




Kcc Kcµs Kcφo Kcφp

Kµsc Kµsµs 0 0

Kφoc 0 Kφoφo Kφoφp

Kφpc 0 Kφpφo Kφpφp



, (56)

with the matrices

Kφiφi =
∂Rφi

∂φ̂
i

=

∫

Ωe

NTN
1

∆t
+

Np∑

j=1,j 6=i
ζij

[
σij

(
(BTB)(Nφ̂

j
)− (BTB)φ̂

j
N

− 36

η2
ij

NTN(1 + sijwf (Nĉ))(Nφ̂j)N(2φ̂
i
− φ̂

j
)

)

+
6

ηij

(
∆Gij(z)NTN(Nφ̂

j
) +

∂∆Gij(z)

∂φ̂
i

NT (Nφ̂
i
)(Nφ̂

j
)

)]
dΩ, (57)

Kφiφj =
∂Rφi

∂φ̂
j

=

∫

Ωe

ζij

[
σij

(
− (BTB)(Nφ̂

i
) + (BTB)φ̂

i
N

− 36

η2
ij

NTN(1 + sijwf (Nĉ))(Nφ̂i)N(φ̂
i
− 2φ̂

j
)

)

+
6

ηij

(
∆Gij(z)NTN(Nφ̂

i
) +

∂∆Gij(z)

∂φ̂
j

NT (Nφ̂
i
)(Nφ̂

j
)

)]
dΩ, (58)

Kφic =
∂Rφi

∂ĉ
=

∫

Ωe

Np∑

j=1,j 6=i
ζij

[
− 36σij

η2
ij

NTNsijwfN(φ̂
i
− φ̂

j
)
(

(Nφ̂
i
)(Nφ̂

j
)
)

+
6

ηij

∂∆Gij(z)

∂ĉ
NT (Nφ̂

i
)(Nφ̂

j
)

]
dΩ, (59)
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Kcc =
∂Rc

∂ĉ
=

∫

Ωe

1

∆t
NTN +BTB

(
w2
fDf (φ) + wfwsDs(φ)

∂2ψ̂u(Nĉ)

∂c2
N

)

+BTw2
fDf (φ)

∂fq(N̂c)

∂c
N

Np∑

i=1

Np∑

j>i

2vij

(
(Nφ̂

i
)(Nφ̂

j
)2Bφ̂

i
+Nφ̂

j
(Nφ̂

i
)2Bφ̂

j
)
)

+ (BTB)ĉwfwsDs(φ)
∂3ψ̂u(Nĉ)

∂c3
+ (BTB)µ̂

l
wfwsDf (φ)

∂fq(N̂c)

∂c
N dΩ, (60)

Kµsµs =
∂Rµs

∂µ̂s
=

∫

Ωe

−NTN dΩ, (61)

Kcµs =
∂Rc

∂µ̂s
=

∫

Ωe

BTB(wfwsDf (φ)fq(Nĉ) + w2
sDs(φ)) dΩ, (62)

Kµsc =
∂Rµs

∂ĉ
=

∫

Ωe

τ

∆t
NTN + ρBTB +NT ∂

2f(c)

∂c2
N dΩ, (63)

Kcφi =
∂Rc

∂φ̂i
=

∫

Ωe

BTBĉ

(
w2
f

∂Df (φ)

∂φ̂
i

N + wfws
∂Ds(φ)

∂φ̂
i

N
∂2ψ̂u(Nĉ)

∂c2

)

+BT (w2
fDf (φ)fq(ĉ) + wswfDs(φ))

Np∑

j=1,j 6=i
2vij

(
B(Nφ̂

i
)(Nφ̂

j
)2 + (Bφ̂

i
)N(Nφ̂

j
)2 + 2(Bφ̂

j
)(Nφ̂

j
)(Nφ̂

i
)N)

)

+BT

(
w2
f

∂Df (φ)

∂φ̂
i

fq(ĉ) + wswf
∂Ds(φ)

∂φ̂
i

)

Np∑

k=1

Np∑

j>k

2vkj

(
(Nφ̂

k
)(Nφ̂

j
)2Bφ̂

k
+Nφ̂

j
(Nφ̂

k
)2Bφ̂

j
)
)

+BTBµ̂
l

(
wfws

∂Df (φ)

∂φ̂
i

fq(ĉ)N + w2
s

∂Ds(φ)

∂φ̂
i

N

)
dΩ. (64)

6 Representative examples

In this section we present two examples to illustrate upper and lower bainitic transfor-

mations, respectively, on a 3 µm × 3 µm domain. As described in Section 5 the system

of partial differential equations is solved with a finite element method. Therefore the

domain is discretized into 16384 quadrilateral elements. Homogeneous Neumann boundary
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Parameter Symbol Value/Unit

Lower diffusion-across-the-interface parameter LD 0.5
Maximum carbon concentration in ferrite ceq 0.0704 wt.% [13]
Maximum carbon concentration in steel ccarb 6.67 wt.% [25]
Bainitic main growth direction θ0 0◦

Cahn-Hilliard viscosity factor τ 0.00002 s
Cahn-Hilliard balance factor ρ 0.00016 µm2

Cahn-Hilliard potential factor d 0.014 1
( wt.%)2

Bainitic ferrite/Austenite interface energy σ12 0.001 J
µm2

Bainitic ferrite/Carbide interface energy σ13 0.001 J
µm2

Austenite/Carbide interface energy σ23 0.001 J
µm2

Bainitic ferrite/Austenite interface mobility ζ12 200 µm4

Js

Bainitic ferrite/Carbide interface mobility ζ0
13 500 µm4

Js

Austenite/Carbide interface mobility ζ23 500 µm4

Js

Gibbs energy between Bainitic ferrite and Austenite ∆G0
12 −0.045529 J

µm3

Gibbs energy between bainitic ferrite and carbide ∆G0
13 0.1210588 J

µm3

Gibbs energy between austenite and carbide ∆G0
23 0.1210588 J

µm3

Interfacial thickness η 0.17µm
Step function width ε 0.1
Transition temperature θD 350◦C
Temperature step function width εθ 1 K
Interface diffusion coefficient bainitic ferrite → austenite s12 1.224 1

wt.%
Interface diffusion coefficient bainitic ferrite → carbide s13 1.44 1

wt.%
Interface diffusion coefficient austenite → carbide s23 0 1

wt.%

Cahn-Hilliard diffusion coefficient within bainitic ferrite Ds1 20 µm2

s

Cahn-Hilliard diffusion coefficient within austenite Ds2 0 µm2

s

Cahn-Hilliard diffusion coefficient within carbide Ds3 0 µm2

s

Fick’s diffusion coefficient within bainitic ferrite Df1 1 µm2

s

Fick’s diffusion coefficient within austenite Df2 1 µm2

s

Fick’s diffusion coefficient within carbide Df3 0 µm2

s

Table 2: Material parameters
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Figure 3: Upper bainitic transformation at 0 s, 0.01 s, 0.02824 s and 0.03 s.
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Figure 4: Carbon accumulation within the diffuse interface in upper bainite: a) Subregion
A of Figure 3.d, b) intersection B-B carbon concentration and phases vs. y coordinate at
x = 0.117 µm.

conditions (7), (10) and (13) are prescribed for all variables as

µ̄ = 0, c̄ = 0, φ̄i = 0. (65)

The carbon concentration has an initial condition of c(t = 0) = 1.87 wt.% with small

random perturbations. The carbides φ3 are initially zero, but do have small random

perturbations which are also uniformly distributed. The total time is 0.03 s and the time

step is chosen as ∆t = 0.00001 s. The material parameters used for the examples are

summarized in Table 2. Most of the parameters are tentative and a field for further

investigations. We choose the same material parameters for upper and lower bainite, in

order to highlight differences in the diffusion mechanisms.
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Figure 5: Lower bainitic transformation at 0 s, 0.01 s, 0.02 s and 0.03 s.
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Figure 6: Carbon accumulation within the diffuse interface in lower bainite: a) Subregion
C of Figure 5.d, b) intersection D-D carbon concentration and phases vs. y coordinate at
x = 0 µm.

6.1 Upper bainite transformation

The first example illustrates an upper bainite transformation at θ = 700 K. The initial

conditions are visualized in the first column of Figure 3. There are two nuclei of bainitic

ferrite while austenite dominates the rest of the domain. Both nuclei grow and within the

bainitic ferrite the carbon concentration declines. In the second column of Figure 3, at

t = 0.01 s, it can be seen that carbon moves across the interface out of the supersaturated

bainitic ferrite and into the austenite. This mechanism continues in the following time

steps while the bainitic ferrite grows. The carbon concentration c within the austenite

phase increases close to the interface with the bainitic ferrite. At places where the carbon

concentration reaches its maximum of c = 6.67 wt.% carbides φ3 precipitate, as can be

seen in Figure 3.c at t = 0.02824 s between both bainitic sheaves. The precipitation is

a self-enhancing process, because the carbide nucleus attracts the surrounding carbon

into the carbide phase which enforces the growth of the carbide. The carbides φ3 limit

the growth of the bainitic ferrite φ1. The transformation process of this example differs

fundamentally from the pearlite growth [28], even though both microstructures consist of

ferrite and carbide and the final structure may look similar. In bainite the ferrite growth

displacively, that is independently from the carbon movement, whereas the pearlite growth

is diffusional and ferrite and carbide grow cooperatively at the same time. In this example

it can be seen that the diffusion of carbon and the precipitation of carbides are subsequent
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processes in bainite.

Figure 4.a illustrates the subregion A of Figure 3.d at t = 0.02824 s in detail. The two

horizontal dashed black lines show the limits of the interface between austenite (Figure

3.a) and bainitic ferrite (Figure 3.b). Figure 4.b shows the corresponding intersection

B-B of Figure 4 at x = 0.117 µm. The carbon concentration, the bainitic ferrite and the

austenite phase are plotted vs. the y coordinate. The change of the carbon concentration

within the interface can be seen clearly here in both figures. The minimum and maximum

carbon concentrations are within the interface. This output is a result of Type II diffusion

(accumulation within the interface) as described in Section 2 in Figure 1.II. Furthermore

one can see the influence of Type III diffusion (balancing within in the phases). Due to this

mechanism the carbon concentration within the austenite domain increases significantly.

6.2 Lower bainite transformation

The second example at θ = 600 K treats the lower bainitic case. The initial state in the

first column of Figure 5 is similar to upper bainitic transformation. It starts with nuclei of

bainitic ferrite φ1 at the left boundary while the rest of the domain is austenite. During

the ensuing time steps the nuclei grow. The bainitic sheaves φ1 become supersaturated,

such that the carbon starts to move. Due to the lower temperature and the likewise slower

diffusion speed, most of the carbon c stays within the bainitic ferrite φ1. Here it starts

to build accumulations. However some atoms accomplish to move across the interface

into the austenite as can be seen in Figure 5.d. At accumulations of carbon, carbides φ3

precipitate. As it is typical for lower bainite, this precipitation process takes place within

the bainitic ferrite phase.

Comparable to Figure 4, Figure 6 illustrates the subregion C of Figure 5.d at t = 0.02 s

in detail. The two horizontal dashed black lines show again the limits of the interface

between austenite and bainitic ferrite. Figure 6.b shows the corresponding intersection

D-D of Figure 6 at x = 0 µm. The carbon concentration, bainitic ferrite, austenite and

carbide phases are plotted vs. the y coordinate. In this example for lower bainite, it can

be seen that the diffusion across the interface plays a minor role. Due to the accumulation

within the interface (Type II diffusion Figure in 1.II) only a very little peak grows close to

the austenite phase. On the left side of the diagram there is an accumulation of carbon as

a result of separation within the bainitic ferrite (Type I diffusion).
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7 Conclusions

This work describes a new model for the simulation of the transformation of upper and

lower bainite. It is based on a thermodynamic framework of generalized forces and stresses

as published before [15]. The core of this unified model for both bainitic transformations

are weighted Helmholtz energy equations which lead to an extended Cahn-Hilliard diffusion

equation to model the movement of the carbon. It combines the typical Cahn-Hilliard

separation mechanism, which is used for the supersaturated lower bainitic ferrite, with

diffusion across the phase interface, as introduced by Wheeler et al. [21] and Fick’s law of

diffusion within the austenite.

The examples for upper and lower bainite show the expected characteristics. While

in upper bainite the carbon moves out of the supersaturated bainitic ferrite, most of the

carbon remains within the bainitic ferrite in lower bainite to build accumulations. At

places where the carbon concentration reaches its maximum, carbides precipitate. In lower

bainite this process takes place within the bainitic ferrite whereas in upper bainite the

carbides formate between bainitic sheaves within the austenite. An extension of this model

with coupled deformations and an implementation using the isogeometric finite element

method are planned for future work.

Appendix A

In this appendix we provide a detailed derivation of equation (37) starting from equation

(36). Inserting the mobility tensor A from equation (27) into equation (36) renders

ċ = ∇·
[(
w2
fDf (φ)fq(c) + wswfDs(φ)

)
∇µf

]

+∇·
[(
wswfDf (φ)fq(c) + w2

sDs(φ)
)
∇µs

]
. (A.1)

Using equation (33) for the chemical potential µf , while leaving µs we obtain

ċ = ∇·
[
(
w2
fDf (φ)fq(c) + wswfDs(φ)

)
∇
(
∂ψ̂f (c)

∂c
+

Np∑

i=1

Np∑

j>i

sij
4aij

φ2
iφ

2
j

)]

+∇·
[(
wswfDf (φ)fq(c) + w2

sDs(φ)
)
∇µs

]
(A.2)
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Applying the gradient operator (as introduced in equation (1.1)) on the term in brackets

leads to

ċ = ∇·
[
(
w2
fDf (φ)fq(c) + wswfDs(φ)

)

(
∂2ψ̂f (c)

∂c2
∇c+

Np∑

i=1

Np∑

j>i

vij
(
2∇φiφiφ2

j + 2φ2
iφj∇φj

)
)]

+∇·
[(
wswfDf (φ)fq(c) + w2

sDs(φ)
)
∇µs

]
. (A.3)

Applying the divergence operator in the last term and using the distributive law we obtain

ċ = ∇·
[
w2
fDf (φ) fq(c)

∂2ψ̂f (c)

∂c2︸ ︷︷ ︸
=1

∇c+ wswfDs(φ)
∂2ψ̂f (c)

∂c2
∇c

+
(
w2
fDf (φ)fq(c) + wswfDs(φ)

) Np∑

i=1

Np∑

j>i

vij
(
2∇φiφiφ2

j + 2φ2
iφj∇φj

)
]

+

(
wswf∇Df (φ)fq(c) + wswfDf (φ)

∂fq(c)

∂c
∇c+ w2

s∇Ds(φ)

)
∇µs

+
(
wswfDf (φ)fq(c) + w2

sDs(φ)
)

∆µs, (A.4)

where in the first term a product vanishes. The Helmholtz energy ψ̂f (c) is postulated in

equation (21) to fulfil the condition

fq(c)
∂2ψ̂f (c)

∂c2
= 1, (A.5)

such that the first term in equation (A.4) reduces to w2
fDf(φ)∇c. This leads to Fick’s

second law which is needed for the upper and lower bainitic transformation model as

documented in Table 1 and schematically illustrated as Type III in Figure 1.III. The

function fq(c) defined in equation (30) is crucial for the diffusion across the interface,

because it limits the movement across the interface with an upper ccarb and lower ceq

bound and is therefore a multiplier of the double well potentials (24) and its derivatives.
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The first and second derivative of the Helmholtz energy (21) are

∂ψ̂f (c)

∂c
=

ln ccarb−c
ceq−c

ceq − ccarb

, (A.6)

∂2ψ̂f (c)

∂c2
=

1

(c− ceq)(ccarb − c)
=

1

fq(c)
, (A.7)

such that the balancing condition (A.5) is satisfied.

Applying the divergence we end up with the evolution equation for c

ċ = w2
f∇Df (φ) · ∇c+ w2

fDf (φ)∆c+ wswf∇Ds(φ)
∂2ψ̂f (c)

∂c2
∇c

+ wswfDs(φ)
∂3ψ̂f (c)

∂c3
(∇c)2 + wswfDs(φ)

∂2ψ̂f (c)

∂c2
∆c

+

(
w2
f∇Df (φ)fq(c) + w2

fDf (φ)
∂fq(c)

∂c
∇c+ wswf∇Ds(φ)

)

·
Np∑

i=1

Np∑

j>i

vij
(
2φiφ

2
j∇φi + 2φjφ

2
i∇φj

)

+
(
w2
fDf (φ)fq(c) + wswfDs(φ)

)

Np∑

i=1

Np∑

j>i

2vij
(
∇φiφ2

j∇φi +∇φjφ2
i∇φj + 4φiφj∇φi∇φj + φjφ

2
i∆φj + φiφ

2
j∆φi

)

+

(
wswf∇Df (φ)fq(c) + wswfDf (φ)

∂fq(c)

∂c
∇c+ w2

s∇Ds(φ)

)
· ∇µs

+
(
wswfDf (φ)fq(c) + w2

sDs(φ)
)

∆µs, (A.8)

where the first two terms can be identified as Fick’s second law with a diffusion coefficient

Df (φ) and its gradient.

The first special case of the equation (A.8) with wf = 1 and ws = 0 gives an evolution
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equation describing only Fick’s diffusion and diffusion across the interface

ċ = ∇Df (φ) · ∇c+Df (φ)∆c+

(
∇Df (φ)fq(c) +Df (φ)

∂fq(c)

∂c
∇c
)

·
Np∑

i=1

Np∑

j>i

vij
(
2φiφ

2
j∇φi + 2φjφ

2
i∇φj

)

+ (Df (φ)fq(c))

Np∑

i=1

Np∑

j>i

2vij
(
∇φiφ2

j∇φi +∇φjφ2
i∇φj + 4φiφj∇φi∇φj + φjφ

2
i∆φj + φiφ

2
j∆φi

)
, (A.9)

while for wf = 0 and ws = 1 it reduces to a purely separating equation of Cahn-Hilliard

type

ċ = ∇Ds(φ) · ∇µs +Ds(φ)∆µs. (A.10)
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Abstract

The microstructure bainite in steels consists of three phases, namely bainitic

ferrite, austenite and carbide. Two different arrangements of these phases can be

observed denoted as upper and lower bainite which develop at different temperatures.

For both morphologies the growth starts with a displacive transformation from

austenite to bainitic ferrite. The bainitic sheaf has a preferred direction of growth due

to eigenstrains which evolve during the transformation. Subsequently a temperature

dependent diffusion process starts to redistribute the carbon and carbides precipitate

at accumulations of carbon. The goal of this work is to simulate the upper and lower

bainite transformation considering eigenstrain effects. To this end, we extend an own

previously developed model by mechanical contributions. The related coupling terms

of the phase field/diffusional/mechanical model are derived within a thermodynamic

framework. Two representative examples illustrate the capability of the extended

framework and show the expected transformation of upper and lower bainite.

1 Introduction

Bainite is a steel microstructure with useful properties since it has a high ultimate strength

combined with a higher ductility as tempered steels. The microstructure consists of

three different phases, that are bainitic ferrite, austenite and carbide which arrange to
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two different morphologies, upper bainite and lower bainite [1]. In materials science the

transformation from pure austenite to bainite is not fully understood and so far under

discussion [2]. We follow those scientists who describe the transformation from austenite

to bainitic ferrite as a displacive transformation independent of carbon diffusion. From

this it follows that bainitic ferrite must be supersaturated of carbon directly after the

phase transformation. In a subsequent process the carbon within the bainitic ferrite

diffuses, which is highly dependent on the temperature. At high temperatures the carbon

atoms are highly mobile. Those who are close to the interface to unsaturated austenite

diffuse across the interface while atoms in the bulk phase move in the direction of the

interface. At accumulations of carbon within the austenite, carbides precipitate. The

resulting microstructure is called upper bainite. In contrast to upper bainite, lower bainite

evolves at lower temperatures where the mobility of the carbon atoms is much lower.

Therefore, only a few carbon atoms close to the interface diffuse across the interface into

the austenite while most of the carbon stays within the supersaturated bainitic ferrite to

separate and build accumulations. Carbides precipitate at these accumulations within the

bainitic ferrite.

Phase transformations in steel and their simulations are important topics in materials

science and mechanics. There are several models simulating phase transformations with

the phase field model, some are summarized in a topical review by Steinbach [3]. One of the

first works about dendritic growth is published by Kobayashi [4]. Other important models

are presented by Militzer et al. [5], Huang et al. [6] and Mecozzi et al. [7] on the austenite-

to-ferrite transformation. Diffusion-controlled growth is simulated by Steinbach and Apel

[8] to model the austenite-to-pearlite transition whereas the martensite transformation

is investigated e.g. by Yamanaka et al. [9] and Schmitt et al. [10]. Widmanstätten

formation is simulated in [11]. There are a few models describing parts of the bainitic

transformation with the phase field method. Song et al. [12] simulate the growth of

upper bainite neglecting the precipitation of carbide and Arif and Qin [13] describe the

autocatalysis event between two subunits. To the authors knowledge, firstly a phase

field model for the lower bainitic transformation is presented in [14] and [15] showing the

separation of carbon within the bainitic ferrite and the precipitation of carbides. This

model is e.g. applied in [16] and extended to upper bainite in [17].

A further challenge of the multiphase field method is the modelling of the directed

growth of the bainitic ferrite. This effect has been modelled in [14], [15] and [17] in a

phenomenological way by manipulating the interface energy depending on the direction of

the gradient of the phase order parameter. In this work the directed growth is governed
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by a coupling with mechanical contributions such that the manipulated interface energy is

no longer required. At interfaces between phases, eigenstrains strains due to the phase

transformation are induced which lead to a directed growth of a new phase. The new

coupling terms have to be consistent with the multiphase field formulation of [17]. In

particular the mechanical contribution to the multiphase field evolution equation has to

govern on the expense of which phase j a new phase i may grow.

The model derived in this paper is based on the concept of generalized stresses as

introduced by Gurtin and Fried in [18], [19] and [20] and extended e.g. in [15] and in [21].

In this paper mechanical contributions are added to the framework. For this step we found

[10] and [22] inspiring.

This work is divided into the following sections: Section 2 describes the thermodynamic

framework for a coupled multiphase transformation, diffusion and deformation model

based on generalized forces. Section 3 is concerned with a prototype model for upper and

lower bainite. Here the constitutive equations are postulated and a set of resulting partial

differential equations is provided. Section 4 is concerned with the implementation of the

model equations whereas the numerical examples are shown in Section 5.

Notations: Vectors a and second-order tensors A are bold and matrices B are

underlined. In the three-dimensional Cartesian coordinate system, the gradient and the

Laplacian, respectively, of a scalar field α(x) are given by

1. ∇α(x) =
3∑

i=1

∂α(x)

∂xi
ei 2. ∆α(x) = ∇ · ∇α(x) =

3∑

i=1

∂2α(x)

∂x2
i

. (1)

where ei, i = 1, 2, 3 are standard unit vectors and xi are the coordinates of x. The

divergence of a vector field a(x) reads

∇ · a(x) =
3∑

i=1

∂ai
∂xi

. (2)

2 Thermodynamic framework for generalized forces

coupled to mechanics

In this section the thermodynamic framework introduced in [15] is extended for deformable

continua, based on the work by Gurtin [20].
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2.1 Balance laws

Firstly, we introduce Np phase order parameters φi (i = 1, ..., Np) and the concentration

of a solute c. Considering a body B with an arbitrary control volume V as a subregion

of the body B and phase stresses ξi, internal phase forces πi, external phase forces γi, a

diffusion stress λ and an internal diffusion force ω. The integrals

P int
φ1 =

∫

V

−ξi · ∇φ̇i dV, P int
φ2 =

∫

V

πiφ̇i dV, Pext
φ =

∫

V

γiφ̇i dV, i = 1, ..., Np, (3)

P int
c1 =

∫

V

−λ · ∇ċ dV, P int
c2 =

∫

V

ωċ dV, (4)

describe powers performed on the atomic configuration of V as proposed in [15]. Further-

more, we introduce the powers

P int
M =

∫

V

−P : ∇Xu̇ dV, Pext
M =

∫

V

b · u̇ dV, (5)

where P is the first Piola-Kirchhoff stress tensor, ∇X is a gradient with respect to the

reference configuration, u̇ is the time derivative of the displacement u and b is a body

force per unit reference volume. With the powers (3), (4) and (5) the microforce balance

equations

∇ · ξi + πi + γi = 0 in V for i = 1, ..., Np, (6)

∇ · λ+ ω = 0 in V, (7)

ξi · n = 0 on ∂V for i = 1, ..., Np, (8)

λ · n = 0 on ∂V . (9)

and the balance of linear momentum

∇X · P + b = 0 in V (10)

for non-accelerated systems is derived. The body force b is introduced for the sake of

completeness, but is not needed anymore and therefore, is set to zero b = 0.

The first law of thermodynamics

Ė = K̇ + Pext (11)

is used to ensure the conservation of energy, where Ė is the time derivative of the internal
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energy, K the kinetic energy and Pext the external power. The kinetic energy rate K̇ = 0,

because only non-accelerated systems are considered and therefore, inertia effects are

neglected. A local internal energy rate ė can be related to the global internal energy rate

Ė as

Ė =

∫

V

ė dV. (12)

Following [23] the external power Pext is equal to the negative internal power P int

Pext = −P int. (13)

The internal power is the sum of all powers on atoms of V with internal contribution in

(3), (4) and (5)

P int = P int
M + P int

c2 + P int
c1 +

Np∑

i=1

(P int
φ2 + P int

φ1 ) (14)

=

∫

V

(
−P : Ḟ + ωċ− λ · ∇ċ+

Np∑

i=1

(πiφ̇i − ξi · ∇φ̇i)
)

dV (15)

where F = 1 +∇Xu is the deformation gradient. The internal power P int in equation (15)

and the global internal energy rate of equation (12) are inserted into the first law (11) to

obtain a local form

ė = P : Ḟ + λ · ∇ċ− ωċ+

Np∑

i=1

(
ξi · ∇φ̇i − φ̇iπi

)
. (16)

2.2 Dissipation inequality/entropy principle

The second law of thermodynamics is used to obtain the Clausius-Duhem inequality (see

e.g. [24, 25, 26]) in global form as follows

∫

V

ṡ dV ≥ −
∫

∂V

Φ · n dA, (17)

where the local entropy density is denoted as s and Φ is the vector entropy flux, defined

as, [23, 27]

Φ = −µJ
T
. (18)
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This entropy flux introduces three additional quantities, the scalar chemical potential µ,

the chemical flux J and the absolute temperature T . A local form of inequality (17) is

obtained by applying Gauss’s theorem and inserting equation (18)

T ṡ−∇ · (µJ) ≥ 0. (19)

In the next step we utilise the Helmholtz energy ψ, which is a thermodynamic function

of state like the internal energy e, the temperature T and the entropy s. They depend

only on the current state of the system and not on the path by which they arrived at their

present state. The Helmholtz energy ψ is defined as

ψ = e− Ts. (20)

The time derivative of the Helmholtz energy ψ for the isothermal case reads

ψ̇ = ė− T ṡ. (21)

Inserting equation (21) into the inequality (19) leads to

−ψ̇ + ė−∇ · (µJ) ≥ 0. (22)

In the next step mass conservation of the concentration of a solute c is applied. The

conservative quantity c has to fulfil the mass conservation equation

ċ = −∇ · J . (23)

Applying equation (23) and inserting equation (16) into inequality (22) the local dissipation

inequality reads

−ψ̇ + P : Ḟ + λ · ∇ċ− ωċ+ µċ− J · ∇µ+

Np∑

i=1

(
ξi · ∇φ̇i − πiφ̇i

)
≥ 0. (24)

2.3 Restrictions to constitutive equations imposed by the sec-

ond law of thermodynamics

In this subsection restrictions to constitutive equations are formulated which are imposed

by the local dissipation inequality (24). This subsection is an extension of subsection 2.3
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in [15]. For convenience we define the constitutive variables

z = [F , c, ∇c, ċ, µ, ∇µ, {φi, ∇φi, φ̇i}Np

i=1]. (25)

and the constitutive functions

Z(z) = [P̂ (z), ψ̂(z), Ĵ(z), ω̂(z), λ̂(z), {π̂i(z), ξ̂i(z)}Np

i=1], (26)

which, at this point, may depend on the constitutive variables z.

Then the total time derivative of the Helmholtz energy becomes

ψ̇ =
∂ψ̂(z)

∂F

∂F

∂t
+
∂ψ̂(z)

∂c

∂c

∂t
+
∂ψ̂(z)

∂∇c
∂∇c
∂t

+
∂ψ̂(z)

∂ċ

∂ċ

∂t
+
∂ψ̂(z)

∂µ

∂µ

∂t
+
∂ψ̂(z)

∂∇µ
∂∇µ
∂t

+

Np∑

i=1

(
∂ψ̂(z)

∂φi

∂φi
∂t

+
∂ψ̂(z)

∂∇φi
∂∇φi
∂t

+
∂ψ̂(z)

∂φ̇i

∂φ̇i
∂t

)
. (27)

Inserting equation (27) into the local dissipation inequality (24) gives

(
P̂ (z)− ∂ψ̂(z)

∂F

)
: Ḟ

︸ ︷︷ ︸
2.

+

(
µ− ω̂(z)− ∂ψ̂(z)

∂c

)
ċ

︸ ︷︷ ︸
3.

+

(
λ̂(z)− ∂ψ̂(z)

∂∇c

)
∇ċ

︸ ︷︷ ︸
2.

−∂ψ̂(z)

∂ċ
c̈

︸ ︷︷ ︸
1.

−∂ψ̂(z)

∂µ
µ̇

︸ ︷︷ ︸
1.

−∂ψ̂(z)

∂∇µ ∇µ̇︸ ︷︷ ︸
1.

−∇µ · Ĵ(z)︸ ︷︷ ︸
3.

+

Np∑

i=1




(
ξ̂i(z)− ∂ψ̂(z)

∂∇φi

)
∇φ̇i

︸ ︷︷ ︸
2.

−
(
π̂i(z) +

∂ψ̂(z)

∂φi

)
φ̇i

︸ ︷︷ ︸
3.

−∂ψ̂(z)

∂φ̇i
φ̈i

︸ ︷︷ ︸
1.


 ≥ 0.

(28)

Next, the aim is to formulate restrictions to the constitutive equations (26) to fulfil

inequality (28) for arbitrary values of z and the higher order derivatives∇ċ, c̈, µ̇,∇µ̇, φ̈i,∇φ̇i
at any time and any material point. Analogously to [15] and [20] all terms are analysed

by use of three different groups as indicated in equation (28):

1. The first group contains all terms with the higher derivatives c̈, µ̇,∇µ̇ and φ̈i in

inequality (28). The characteristic property of these quantities is that they appear

linearly in (28) which is straightforward because they are not constitutive variables
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of the vector z in equation (25). One could easily find values for z and the higher

order derivatives of group one which would violate (28) such that the relations

∂ψ̂(z)

∂ċ
= 0,

∂ψ̂(z)

∂µ
= 0,

∂ψ̂(z)

∂∇µ = 0,
∂ψ̂(z)

∂φ̇i
= 0, for i = 1, ..., Np, (29)

are necessary conditions to fulfil inequality (28), see [20] and [15]. From equations

(29) it can be concluded that the Helmholtz energy ψ̂(z) cannot be a function of

ċ, µ, ∇µ and φ̇i as initially proposed in equation (26) but only of the variables z̃,

resulting into

ψ̂(z̃), where z̃ = [F , c,∇c, {φi,∇φi}Np

i=1]. (30)

2. The second group consists of the three terms containing Ḟ , ∇φ̇i and ∇ċ in inequality

(28). The argumentation for these terms goes along the same lines as for the first

group. As for group one, the related higher order derivatives are not constitutive

variables of the vector z in equation (25) and thus they appear linearly in (28). In

contrast to the first group, the corresponding factors are composed of additive terms

in inequality (28). Here Ḟ , ∇φ̇i and ∇ċ could be chosen to violate inequality (28).

Thus it can be stated without loss of generality that the factors have to be zero as

necessary conditions, leading to

P̂ (z) =
∂ψ̂(z)

∂F
, λ̂(z) =

∂ψ̂(z̃)

∂∇c , ξ̂i(z) =
∂ψ̂(z̃)

∂∇φi
for i = 1, ..., Np. (31)

While for both groups the argumentation goes along the same lines, the results differ.

As a result of the first group the number of constitutive variables for the Helmholtz

energy is reduced, see equation (30). Here the number of the constitutive equations

reduces to 3 +Np, because P̂ (z), ξi and λ are no longer independent but directly

dependent on the choice of ψ̂(z̃).

With the results of equations (30) and (31) the dissipation inequality (28) renders a

reduced dissipation as

D = −∇µ · Ĵ(z)−
(
ω̂(z) +

∂ψ̂(z̃)

∂c
− µ

)
ċ−

Np∑

i=1

(
π̂i(z) +

∂ψ̂(z̃)

∂φi

)
φ̇i ≥ 0. (32)

Due to our choice for z in equation (25) where the deformation gradient F is a
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constitutive variable but not its time derivative Ḟ , the inequality (32) does not

contain a strain measurement anymore. Therefore, the following analysis does not

differ from [15] but is continued here for the sake of completeness.

3. Group three consists of the remaining terms in inequality (32). Their characteristic

property is that ∇µ, ċ and φ̇i are constitutive variables of the vector z and therefore,

may appear linearly or non-linearly in inequality (32). Since it is not known whether

these terms violate the inequality (32), they cannot be set to zero as a necessary

condition [15]. One could of course choose the additive terms as zero again, however,

this would not be a necessary but only a sufficient condition and would lead to a

non-dissipative system. Instead inequality (32) is written as

D = −∇µ · Ĵ(z)− ωdisċ−
Np∑

i=1

πdisi φ̇i ≥ 0 (33)

with additional quantities

ωdis = ω̂(z) +
∂ψ̂(z̃)

∂c
− µ, (34)

πdisi = π̂i(z) +
∂ψ̂(z̃)

∂φi
, i = 1, ..., Np . (35)

In the next step, we choose

ωdis = −τ(z)ċ, (36)

πdisi = −βi(z)φ̇i, i = 1, ..., Np, (37)

where τ(z) and βi(z) are constitutive moduli. The chemical flux is chosen as

Ĵ(z) = −A(z)∇µ, (38)

where A(z) is the second order mobility tensor [20]. Inserting the three definitions

(34)-(38) into the dissipation inequality (33) renders

D = ∇µ ·A(z)∇µ+ τ(z)ċ2 +

Np∑

i=1

βi(z)φ̇i
2 ≥ 0. (39)
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The inequality (39) holds for any choice of ∇µ, ċ and φ̇i if and only if

τ(z) ≥ 0, βi(z) ≥ 0, s ·A(z)s ≥ 0 ∀s. (40)

The restrictions imposed by the second law of thermodynamics leads to 3 + Np

constitutive equations. These are the Helmholtz energy ψ(z̃), the constitutive moduli

βi(z), τ(z) and the mobility tensor A(z), which have to fulfil the criteria of (30)

and (40). Every set of functions that satisfies these restrictions is in accordance with

the microforce balance equations (6) and (7), mass conservation (23), the first (11)

and the second law of thermodynamics (17) [15].

2.4 General partial differential equations

In order to simulate physical processes with the framework derived of the previous

subsections, evolution equations for the quantities c and φi are derived. To this end, an

equation for the chemical potential µ which is needed for the concentration c. Inserting

equation (34) into equation (36) eliminates ωdis and gives

µ =
∂ψ̂(z̃)

∂c
+ ω̂(z) + τ(z)ċ. (41)

Using the force balance (7) the constitutive relation ω̂(z) in equation (41) can be replaced

by −∇ · λ and further transformed using restriction (31.2) into

µ =
∂ψ̂(z̃)

∂c
−∇ · ∂ψ̂(z̃)

∂∇c + τ(z)ċ. (42)

The evolution equation for the concentration can be transformed in a straightforward

manner from the mass conservation law (23) using the chemical flux proposed in equation

(38)

ċ = ∇ · (A(z)∇µ). (43)

Inserting equation (42) into equation (43) leads to the evolution equation of the concen-

tration, the viscous Cahn-Hilliard equation [28]

ċ = ∇ ·
(
A(z)∇

(
∂ψ̂(z̃)

∂c
−∇ · ∂ψ̂(z̃)

∂∇c + τ(z)ċ

))
. (44)

120



Inserting equation (37) into equation (35) and using equations (6) and (31) leads to the

partial differential equations for the phase order parameters

φ̇i =
1

βi(z)

(
∇ · ∂ψ̂(z̃)

∂∇φi
− ∂ψ̂(z̃)

∂φi
+ γi

)
, i = 1, ..., Np on V. (45)

Please recall, that equation (44) constitutes a conservative fourth order Cahn-Hilliard

differential equation, whereas equation (45) governing multiphase transformations is a

non-conservative second-order Ginzburg-Landau equation.

Inserting equation (31) into the balance of linear momentum (10) leads to

∇X ·
∂ψ̂(z)

∂F
= 0. (46)

3 A prototype model for upper and lower bainite

This section specifies the governing equations of the thermodynamic framework in section 2.

Thereby, to account for upper and lower bainite we provide an extension of the constitutive

equations in [15] and [17]. The prototype model developed in this paper describes the

growth of Np = 3 phases

1. bainitic ferrite (φ1),

2. austenite (φ2) and

3. carbide (φ3)

to simulate upper and lower bainite formation. Moreover, c represents the carbon concen-

tration and u is the displacement vector.

3.1 Diffusion mechanisms in upper and lower bainite

A main challenge describing the growth of upper and lower bainite is the carbon diffusion

which takes place subsequently to the phase transformation of austenite to bainitic ferrite.

As already stated in the Introduction there are two diffusional phenomena working during

the transition. As a model assumption we introduce three diffusion mechanisms which are

combined to describe the two phenomena separation within the bainitic ferrite in lower

bainite and diffusion across the interface for both morphologies. Our model ideas can be

found in detail in [17]. For the sake of completeness we provide a short summary here.
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The three diffusion mechanisms are shown in Figure 1 and are henceforth denoted as

Type I, Type II and Type III, respectively. For the bainitic transformation, red colour

is used for bainitic ferrite and yellow represents austenite. The interface regions are

illustrated by black dashed lines.

I. Separation within a phase: Within the supersaturated lower bainitic ferrite the

carbon builds accumulations surrounded by an area of low concentration.

II. Accumulation within an interface: Carbon atoms within the diffuse interface between

bainitic ferrite and austenite are moved from the supersaturated bainitic ferrite side

to the unsaturated austenite region. This mechanism is very strong in upper bainite

and rather weak in lower bainite.

III. Balancing within the phases : Here carbon atoms are distributed equally throughout

the phase. This mechanism governs a redistribution of carbon within the austenite

which is enriched only near the interface with the bainitic ferrite. Furthermore,

in upper bainitic ferrite, this mechanism, provides the transport of carbon atoms

towards the interface which is depleted of carbon due to Type II diffusion.

Accumulation within an interface (Type II) and balancing within the phases (Type

III) together are denoted as diffusion across the interface.

Type I. Separation within a phase

Type II. Accumulation within an interface

Type III. Balancing within the phases





Diffusion across

the interface

Figure 1: Schematics of three diffusion mechanisms [17]
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3.2 Weighted Helmholtz energy

In subsection 2.3 which is concerned with restrictions to constitutive equations and

subsection 2.4 which summarizes the temporarily results, it becomes clear that the

Helmholtz energy function is the most important constitutive equation of the model

presented in this paper. Amongst other equations the Helmholtz energy function is the

key ingredient to model the different diffusion types described in subsection 3.1.

The Helmholtz energy is postulated as a specification of equation (26) as

ψ̂(z̃) = ψ̂c(c,∇c) + ψ̂φ(c, φk,∇φk) + ψel(φk,F ), (47)

where ψ̂c(c,∇c) is a part which governs diffusion of Type I and Type III and does not

contain any coupling terms, whereas ψ̂φ(c, φk,∇φk) contains the phase field energies and

governs the diffusion Type II. The energy ψel(φk, ε) includes the mechanical terms and

the coupling between deformations and phase fields. The diffusive part is a sum of two

energies

ψ̂c(c,∇c) = wf (T )ψ̂f (c) + ws(T )ψ̂s(c,∇c), (48)

where both summands are weighted by functions wf(T ) and ws(T ), respectively, which

depend on the temperature T . The term ψ̂f(c) is important for Type III diffusion and

multiplied with wf which governs the diffusion across the interface whereas ψ̂s(c,∇c) is

relevant for Type I diffusion and multiplied with the corresponding weighting function ws

for the separation which is only relevant for lower bainite. The weighting functions are

defined as

wf (T ) =





0 for T < TD − εT
1 for T > TD + εT
1

2
+
LD
2

+

(
1

2
− LD

2

)
sin

(
π

(
T − TD

2εT
+ 2

))
otherwise

(49)

and

ws(T ) =





1 for T < TD − εT
0 for T > TD + εT
1

2
− LD

2
+

(
1

2
− LD

2

)
sin

(
π

(
T − TD

2εT
+ 1

))
otherwise.

(50)
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Figure 2: Weighting functions for different diffusion processes

Here T is the temperature of the isothermal transformation, TD is the transition

temperature marking the boundary between upper and lower bainite, εT is a factor

to soften the sharp boundary for better numerical characteristics and LD ensures the

interaction of both diffusion mechanisms.

Both weighting functions are illustrated in Figure 2 versus the temperature T . Note,

that wf and ws satisfy the completeness condition

wf (T ) + ws(T ) = 1. (51)

For further details on the weighting functions see [17].

For Type I diffusion (separation) a Cahn-Hilliard equation is used. To receive such an

equation a suitable Helmholtz energy is

ψ̂s(c,∇c) = f(c) +
1

2
ρ|∇c|2, (52)

f(c) = d(ceq − c)2(ccarb − c)2. (53)

where
√
ρ is a measure of the interface thickness and f(c) is a double well energy function

limiting the separation process. The limits of the separation are defined by ceq which

is the equilibrium carbon concentration in bainitic ferrite and ccarb which is the carbon

concentration of carbides.
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For Type III diffusion we postulate

ψ̂f (c) =
ceq ln(ceq − c)− ccarb ln(ccarb − c) + c ln( ccarb−c

ceq−c )

ceq − ccarb

. (54)

Details on this formulation can be found in [17].

For the multiphase field equation (47) a Helmholtz energy with a double sum formulation

is used

ψ̂φ(φk,∇φk) =

Np∑

i=1

Np∑

j>i

1

qij
[hij(φi, φj,∇φi,∇φj) + (1 + c sij wf ) gij(φi, φj)] (55)

where hij(φi, φj,∇φi,∇φj) is an interfacial energy density and gij(φi, φj) is a potential

energy containing a double well potential between phases i and j which is additionally

used to model Type II diffusion and therefore, multiplied by c and an interface diffusion

factor sij. The potential reads

gij(φi, φj) =
1

4aij
φ2
iφ

2
j , (56)

where aij are potential constants. Furthermore, we chose an interfacial energy density,

following [29]

hij(φi, φj,∇φi,∇φj) =
1

2
αij(φj∇φi − φi∇φj)2 (57)

where αij is a phase gradient energy coefficient.

For the bainitic transformation model only infinitesimal strains are considered. There-

fore, the engineering strain tensor is

ε = sym(F − 1) =
1

2
(∇u+∇uT ) (58)

and the symmetric engineering stress tensor is

σ = σT . (59)

The Helmholtz energy ψel in equation (47) can now be written as a function of ε
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instead of F and is proposed as

ψel(φk, ε) =

Np∑

i=1

Np∑

j>i

pij
2

(ε− ε0
ijφiφj) : Cij(ε− ε0

ijφiφj), (60)

where ε0
ij are eigenstrain tensors due to a phase transformation from phase i to j, pij is a

coupling parameter and Cij are symmetric fourth order material tensors.

3.3 Coupled partial differential equations

In this section we formulate the model partial differential equations using the results of

subsections 2.4 and 3.2. For the diffusion equation (44) the mobility tensor A and the

constitutive moduli τ must be chosen. In this case τ is a constant

τ(z) = τws = const., (61)

while the mobility tensor is weighted like the Helmholtz energy (48) and reads

A(z) = (wfDf (φ)fq(c) + wsDs(φ)) 1, (62)

where the diffusion coefficients Df (φ) and Ds are proposed as

1. Df (φ) =

Np∑

i=1

φiDfi, 2. Ds(φ) =

Np∑

i=1

φiDsi, 3. fq(c) = (c− ceq)(ccarb − c), (63)

where fq is chosen to limit the otherwise unbounded Type II diffusion between ceq and

ccarb.

Inserting equation (61) and (47) with equations (48) and (55) into equation (42) leads

to

µ = wf
∂ψ̂f (c)

∂c
+ wf

Np∑

i=1

Np∑

j>i

1

qij
sij gij(φi, φj) + ws

∂ψ̂s(c,∇c)
∂c

− ws∇ ·
∂ψ̂s(c,∇c)

∂∇c + wsτ ċ.

(64)

which we split up into

µ = wf (T )µf + ws(T )µs, (65)

126



where using equations (56) and (52)

1. µs =
∂f

∂c
− ρ∆c+ τ ċ, 2. µf =

∂ψ̂f (c)

∂c
+

Np∑

i=1

Np∑

j>i

vijφ
2
iφ

2
j , 3. vij =

sij
4aijqij

.

(66)

Here µf and µs are chemical potentials for diffusion across the interface (Type II + Type

III) and separation (Type I), respectively.

Inserting equation (65) into the evolution equation (43) leads to

ċ = ∇ · (wfA(z)∇µf ) +∇ · (wsA(z)∇µs). (67)

In the next step we only insert the chemical potential for diffusion across the interface µf

(66.2) into the evolution equation (67), which leads to simplifications that can be found

in the appendix of [17]. The chemical potential for the separation µs (66.1) is calculated

as a single degree of freedom to avoid fourth order derivatives. The partial differential

equation (67) of the concentration field c reads

ċ = w2
f∇Df (φ) · ∇c+ w2

fDf (φ)∆c+ wswf∇Ds(φ)
∂2ψ̂f (c)

∂c2
∇c

+ wswfDs(φ)
∂3ψ̂f (c)

∂c3
(∇c)2 + wswfDs(φ)

∂2ψ̂f (c)

∂c2
∆c

+

(
w2
f∇Df (φ)fq(c) + w2

fDf (φ)
∂fq(c)

∂c
∇c+ wswf∇Ds(φ)

)

·
Np∑

i=1

Np∑

j>i

vij
(
2φiφ

2
j∇φi + 2φjφ

2
i∇φj

)

+
(
w2
fDf (φ)fq(c) + wswfDs(φ)

)

Np∑

i=1

Np∑

j>i

2vij
(
∇φiφ2

j∇φi +∇φjφ2
i∇φj + 4φiφj∇φi∇φj + φjφ

2
i∆φj + φiφ

2
j∆φi

)

+

(
wswf∇Df (φ)fq(c) + wswfDf (φ)

∂fq(c)

∂c
∇c+ w2

s∇Ds(φ)

)
· ∇µs

+
(
wswfDf (φ)fq(c) + w2

sDs(φ)
)

∆µs. (68)

For the partial differential equations governing the phase order parameters (45) an
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equation for the constitutive moduli βi(z) is needed. We postulate

βi(z) = βi = const. (69)

such that equation (45) using equation (55) reads

φ̇i =

Np∑

j=1,j 6=i

1

βiqij

(
αij (φj∆φi − φi∆φj)−

φiφj · (1 + c sij wf )

2aij
(φj − φi)

)
+
γi
βi

− 1

βi

Np∑

j=1,j 6=i
pij(φi − φj)ε0

ij : Cij(ε− ε0
ijφiφj),

for i = 1, ..., Np . (70)

The external phase forces γi, introduced in (3) and appearing in equation (70), are

crucial for the phase field method since they are the thermodynamic driving forces governing

the phase growth. Due to the fact that the model presented here is a multiphase model,

where each phase may grow at the expense of any other remaining phase, we need to

postulate the external phase forces as connected functions between two phases i and j

γi =

Np∑

j=1,j 6=i
γij = −

Np∑

j=1,j 6=i

6∆Gij(z)

qij
φi φj (71)

and introduce the new quantity ∆Gij which is a Gibbs energy between two phases i and j.

The arbitrary factor 6 is introduced to be consistent with the evolution equations of [14]

and [7].

For a better physical interpretation we change the material constants of equation (70)

according to [7]. The dissipative moduli βi, the phase gradient energy coefficients αij, the

potential constants aij and the phase energy coefficients qij are replaced by the interface

mobilities ζij, interface energies σij and interface thicknesses ηij

βiqij =
ηij
ζij
, aij =

ηij
72σij

, αij = σijηij,
pij
βi

= rijζij. (72)

The parameter change (72) is done using the Gibbs-Thomson equation ([7]) as is presented

in detail in the appendix of [14]. Note, that ζij = ζji, σij = σji and ηij = ηji but

∆Gij = −∆Gji.

With the new parameters (72) the final partial differential equations (70) governing
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the phase order parameters read

φ̇i =

Np∑

j=1,j 6=i
ζij

[
σij

(
(φj∆φi − φi∆φj)−

36

η2
ij

(1 + c sij wf )φiφj(φj − φi)
)
− 6∆Gij(z)

ηij
φiφj

− rij(φi − φj)ε0
ij : Cij(ε− ε0

ijφiφj)

]
for i = 1, ..., Np. (73)

The coupling terms with the mechanical contribution in equation (73) are additional

thermodynamic driving forces which govern the growth of the phases.

As explained for the external phases forces γi, the coupling terms with the mechanical

contribution are connected functions between two phases i and j, too. Thereby any phase

i can grow on the expense of any phase j.

Remarks

1. The elastic energy in equation (60) is inspired by Schmitt et al. [10] and [22] who

simulate the growth of martensite variants from austenite but changed in a significant

way. To motivate the changes, the multiphase field formulation (73) is compared

with the multiphase field of [22] which reads

φ̇i = −M
[
∂W

∂φi
+G

(
1

L

∂f

∂φi
− L∆φi

)]
, (74)

where φi is a phase order parameter for phase i, M is a mobility factor, W the

elastic energy, G and L are material parameters. The function f yields a Landau

polynomial

f(φi) = 1 +
A

2

(∑

i

φ2
i

)
+
B

3

(∑

i

φ2
i

)
+
C

4

(∑

i

φ2
i

)2

, (75)

where A,B and C are temperature-dependent coefficients [22]. The elastic energy

W reads

W (ε, φi) =
1

2
[ε− ε0(φi)] : C(φi)[ε− ε0(φi)], with (76)

ε0(φi) =
∑

i

φiε
0
i , C(φi) = C0 +

∑

i

φi(Ci − C0), (77)

where ε is the strain, ε0
i is the eigenstrain, C is a material tensor of a parent phase

and Ci is a material tensor of phase i [22].
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2. The differences between the multiphase field models in equations (73) and (74) are

obvious. In equation (73) all phase parameters occur in pairs of φi and φj whereas in

equations (74) - (77) φi occurs only on its own. Furthermore, the Laplace operator

is used in equation (73) on φi and φj.

3. The elastic energies ψel in (60) and W in (76) differ in the way that ψel uses double

sums while W uses only one sum. All material parameters in equation (73) have two

indices, describing the phase transformation between any phases i and j while in

equation (76) only single indices occur. These differences lead to different multiphase

field methods as illustrated exemplarily in Figure 3. The phase field model in Figure

3.a) allows only the growth of the phases 2, 3, 4 at the expense of phase 1, while the

model presented in Figure 3.b) allows the transformation from any phase into any

other phase.

4. The multiphase field formulation of equations (74) - (77) provides a model with a

parent phase φ1 as illustrated in Figure 3.a). The parent phase φ1 is present as an

initial condition and all other i = 2, ..., n phases can grow out of this parent phase.

The parent phase itself is not computed or described by an equation, such that the

completeness condition
∑
φi = 1 is trivially satisfied. This is useful in their model

since all martensite variants grow out of the parent austenite. However, it is not

possible that any phase φi may grow directly out of phase φj if j 6= 1. Such a model

is not able to describe the bainitic transformation, because here bainitic ferrite grows

at the expense of austenite while carbide grows at the expense of bainitic ferrite or

austenite.

5. In the phase field model presented in this paper every phase can evolve at the

expense of all other phases as illustrated in Figure 3.b). This generality requires a

formulation which states clearly at whose expense a phase should grow, such that

the completeness condition
∑
φi = 1 is fulfilled. The model described in equation

(73) is able to simulate the growth of any phase k out of any other phase l, because

every term ζkl[...] of an evolution equation for φk can be found, with negative sign in

the evolution equation for φl. This requirement is obviously not fulfilled by equations

(74) - (77).

The Gibbs energy is used to model the precipitation of carbides. In case the carbon

concentration reaches the concentration of carbides (6.67 wt.%), carbides precipitate.
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Figure 3: Multiphase field models where a) transformations between all phases are possible
and b) transformations can only evolve from the parent phase 1.

Therefore, we postulate as described in [15]:

∆Gij(z) = ∆G0
ij v(φi, φj, c) (78)

with

v(φi, φj, c) =





w(c)

φ2
3 + εφ

for i = 3 ∨ j = 3

1 otherwise.

(79)

The variables ∆G0
ij in equations (78) are constant Gibbs energies between phases i and j

and w is a smooth step function proposed as

w(c) =





0 for c < ccarb − ε
1 for c > ccarb

1
2

+ 1
2

sin(π
ε
c+ π

2
− π

ε
ccarb) otherwise,

(80)

where the width of the smooth step is defined by the parameter ε.

The equations (78)-(80) are chosen such that, carbides will grow only if the carbon

concentration reaches ccarb = 6.67 wt.% [30]. The divisor φ2
3 in equation (79) guarantees

that the phase φ3 can grow even if the current value of φ3 is close to zero and the very

small constant numerical perturbation εφ > 0 prevents the equation from dividing by zero

in case φ3 = 0.

Redefining equation (46) for infinitesimal strain and inserting equation (60) renders a

partial differential equation for the mechanical problem

∇ · ∂ψ̂(z)

∂ε
= ∇ ·

(
Np∑

i=1

Np∑

j>i

pijCij(ε− ε0
ijφiφj)

)
= 0. (81)
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4 Numerical implementation

This section provides the information about the implementation. The resulting system of

partial differential equations (66.1), (68), (73) and (81) is solved numerically with the finite

element method in a two dimensional space. Furthermore, the backward Euler method is

used for the time discretization. For the finite element formulation quadrilateral elements

with linear shape functions are implemented. To solve the algebraic system of equation

Newton’s method is applied.

At every node the following seven unknowns are computed: c, µs, φ1, φ2, φ3, ux, uy. The

chemical potential µs for the lower bainitic transformation is computed separately to avoid

fourth order derivates in equation (68). It would be sufficient to calculate only two of the

three phases. However, we calculate all of them to check that the sum is zero at every

time and position.

The lower chemical potential (66.1) reads in weak formulation

∫

V

νµτ ċ+ ρ∇νµ∇c+ νµ
∂f(c)

∂c
− νµµs dV = 0, (82)

where νµ denotes the test function for the lower chemical potential. For the diffusion

equation (68) the weak formulation reads

∫

V

νcċ dV =

∫

V

νcw
2
f∇Df (φ)∇c dV +

∫

V

νcw
2
fDf (φ)∆c dV

+

∫

V

νcwswf∇Ds(φ)
∂2ψ̂f (c)

∂c2
∇c dV +

∫

V

νcwswfDs(φ)
∂3ψ̂f (c)

∂c3
(∇c)2 dV

+

∫

V

νcwswfDs(φ)
∂2ψ̂f (c)

∂c2
∆c dV

+

∫

V

νc
(
w2
f∇Df (φ)fq(c) + w2

fDf (φ)∇fq(c) + wswf∇Ds(φ)
)

·
Np∑

i=1

Np∑

j>i

2vij(∇φiφiφ2
j + φ2

iφj∇φj) dV +

∫

V

νc
(
w2
fDf (φ)fq(c) + wswfDs(φ)

)

Np∑

i=1

Np∑

j>i

2vij(∆φiφiφ
2
j + (∇φi)2φ2

j + 4∇φiφiφj∇φj + ∆φjφ
2
iφj + (∇φj)2φ2) dV

+

∫

V

νc(wfws∇Df (φ)fq(c) + wfwsDf (φ)∇fq(c) + w2
s∇Ds(φ)) · ∇µs dV

+

∫

V

νc(wfwsDf (φ)fq(c) + w2
sDs(φ))∆µs dV, (83)
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where νc is the test function for the concentration c needed for the finite element formulation.

The test functions for the phase order parameters are denoted as νφ, such that the

weak formulation of the phase field evolution equations (73) with applied Gauss theorem

and homogeneous Neumann boundary conditions read

∫

V

νφφ̇i dV =

∫

V

Np∑

j=1,j 6=i
ζij

[
σij

(
∇νφ(∇φjφi−∇φiφj)−

36

η2
ij

νφφiφj(1 + c sij wf )(φj − φi)
)

− 6∆Gij(z)

ηij
νφφiφj − νφrij(φi − φj)ε0

ij : Cij(ε− ε0
ijφiφj)

]
dV. (84)

With homogeneous Neumann boundary conditions the weak formulation of equation (81)

is derived as

0 =

∫

V

∇νu ·
(

Np∑

i=1

Np∑

j>i

pijCij(ε− ε0
ijφiφj)

)
dV. (85)

In the next step a matrix formulation is used where degrees of freedom at every node

are denoted with the superimposed hat (̂·). Furthermore, we introduce a row vector N

containing the shape function values, such that the degrees of freedom may be written as

c = Nĉ , µs = Nµ̂s , φi = Nφ̂i , i = 1, 2, 3 (86)

while gradient terms are described by

∇c = Bĉ , ∇µs = Bµ̂s , ∇φi = Bφ̂i , i = 1, 2, 3. (87)

where B is defined as

B =

[
N ,x

N ,y

]
, with N ,x =

∂N

∂x
. (88)

The displacement û and the total strain ε in Voigt notation read

û =

[
ûx

ûy

]
, ε = Bf û =



εx

εy

γ


 , where Bf =



N ,x 0

0 N ,y

N ,y N ,x


 (89)

The relations in equations (86) - (89) are used in the same manner for the test functions
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νφ, νc, νµ and νu respectively. The element residual terms are derived from the weak

formulations (82) - (85) and read

Rc =

∫

Ωe

NTN
ĉn − ĉn−1

∆t
+BTBĉ

(
w2
fDf (φ) + wfwsDs(φ)

∂2ψ̂f (c)

∂c2

)

+BT (w2
fDf (φ)fq(ĉ) + wswfDs(φ))

Np∑

i=1

Np∑

j>i

2vij

(
(Nφ̂

i
)(Nφ̂

j
)2Bφ̂

i
+Nφ̂

j
(Nφ̂

i
)2Bφ̂

j
)
)

+BTBµ̂s
(
wfwsDf (φ)fq(ĉ) + w2

sDs(φ)
)
dΩ, (90)

Rµs =

∫

Ωe

τ(NTN)
ĉn − ĉn−1

∆t
+NT ∂f(Nĉ)

∂c
+ ρ(BTB)ĉ− (NTN)µ̂s dΩ, (91)

Rφi =

∫

Ωe

NTN
φ̂
n

i
− φ̂n−1

i

∆t
+

Np∑

j=1,j 6=i
ζij

[
σij

(
− (BTB)φ̂

j
(Nφ̂

i
) + (BTB)φ̂

i
(Nφ̂

j
)

− 36

η2
ij

NT (1 + sijwf (Nĉ))N(φ̂
i
− φ̂

j
)
(

(Nφ̂
i
)(Nφ̂

j
)
))

+
6

ηij
∆Gij(z)NT (Nφ̂

i
)(Nφ̂

j
)

− rijN(φ̂
i
− φ̂

j
)ε0
ij : Cij(Bf û− ε0

ijNφ̂iNφ̂j)

]
dΩ. (92)

Ru =

∫

Ωe

Np∑

i=1

Np∑

j>i

pijB
T
fCij(Bf û− ε0

ijNφ̂iNφ̂j) dΩ. (93)

The superimposed n is used in equations (90)-(92) to denote the actual time step in the

backward Euler terms. It is omitted for brevity in other parts. To evaluate the integrals a

Gauss-Legendre rule is applied.

The non-linear algebraic system of equations

R(d̂) = 0 where R = [Rc Rµs Rφi Ru]T , d̂ = [ĉ µ̂ φ̂i û]T (94)

is solved with Newton’s method. For that purpose the derivatives of the residual function
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(94) are needed

K =
∂R

∂d̂
=




Kcc Kcµs Kcφo Kcφp 0

Kµsc Kµsµs 0 0 0

Kφoc 0 Kφoφo Kφoφp Kφou

Kφpc 0 Kφpφo Kφpφp Kφpu

0 0 Kuφo Kuφp Kuu



, (95)

with the submatrices

Kφiφi =
∂Rφi

∂φ̂
i

=

∫

Ωe

NTN
1
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j=1,j 6=i
ζij
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ij
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)
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dΩ, (96)

Kφiφj =
∂Rφi
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dΩ, (97)

Kφic =
∂Rφi

∂ĉ
=

∫
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135



Kφiu =
∂Rφi

∂û
=

∫

Ωe

Np∑

j=1,j 6=i
ζijrijN

T
(

(Nφ̂
i
−Nφ̂

j
)ε0
ijC(φl)Bf
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dΩ, (99)

Kcc =
∂Rc

∂ĉ
=
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Kµsµs =
∂Rµs

∂µ̂s
=

∫

Ωe

−NTN dΩ, (101)

Kcµs =
∂Rc

∂µ̂s
=

∫

Ωe

BTB(wfwsDf (φ)fq(Nĉ) + w2
sDs(φ)) dΩ, (102)

Kµsc =
∂Rµs

∂ĉ
=
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Ωe

τ
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∇φi = 0,∇c = 0,∇µ = 0

Figure 4: Quadratic domain: Geometry and boundary conditions

Kuu =

∫

Ωe

BT
fC(φl)Bf dΩ (105)

Kuφi =
∂Ru

∂φ̂i
=

∫

Ωe

Np∑

j=1,j 6=i
pijB

T
fCij

(
−ε0

ijN(Nφ̂
j
)
)
dΩ, (106)

5 Representative examples

Two representative examples are presented in this section. They are chosen to demonstrate

the capability of the framework described in Section 2 and the prototype model in

Section 3. The finite element method explained in Section 4 is used to solve the system

of coupled partial differential equations. Both examples are solved on a domain of

l = 180 nm × l = 180 nm discretized into 16384 quadrilateral elements. We prescribe

homogeneous Neumann boundary conditions for the chemical potentials µ, the carbon

concentration c and all phase order parameters φi. As shown in Figure 4 the mechanical

problem is statically determined supported by Dirichlet boundary conditions such that the

boundaries are stress free. In that way, the formation of individual nuclei can be studied

[10]. The eigenstrain ε0
12 reads in Voigt notation

ε0
12 =




0.1

−0.3

0


 (107)

137



Parameter Symbol Value/Unit

Maximum carbon concentration in ferrite ceq 0.0704 wt.% [12]
Maximum carbon concentration in steel ccarb 6.67 wt.% [30]
Cahn-Hilliard viscosity factor τ 2 · 10−11s
Cahn-Hilliard balance factor ρ 0.576 nm2

Cahn-Hilliard potential factor d 0.014 1
( wt.%)2

Bainitic ferrite/austenite interface energy σ12 9600 J
nm2

Bainitic ferrite/carbide interface energy σ13 9600 J
nm2

Austenite/carbide interface energy σ23 9600 J
nm2

Bainitic ferrite/austenite interface mobility ζ12 9.6 · 106 nm4

Js

Bainitic ferrite/carbide interface mobility ζ13 9.6 · 106 nm4

Js

Austenite/carbide interface mobility ζ23 9.6 · 106 nm4

Js

Gibbs energy between bainitic ferrite and austenite ∆G0
12 −2494.153 J

nm3

Gibbs energy between bainitic ferrite and carbide ∆G0
13 554.256 J

nm3

Gibbs energy between austenite and carbide ∆G0
23 554.256 J

nm3

Interfacial thickness η 17.3205nm
Step function width ε 0.1
Transition temperature TD 625K
Temperature step function width εT 1 K
Interface diffusion coefficient bainitic ferrite → austenite s12 0.0068 1

wt.%
Interface diffusion coefficient bainitic ferrite → carbide s13 0.0098 1

wt.%
Interface diffusion coefficient austenite → carbide s23 0 1

wt.%

Cahn-Hilliard diffusion coefficient within bainitic ferrite Ds1 2 · 107 nm2

s

Cahn-Hilliard diffusion coefficient within austenite Ds2 0nm2

s

Cahn-Hilliard diffusion coefficient within carbide Ds3 0nm2

s

Fick’s diffusion coefficient within bainitic ferrite Df1 4 · 1010 nm2

s

Fick’s diffusion coefficient within austenite Df2 8 · 1010 nm2

s

Fick’s diffusion coefficient within carbide Df3 0nm2

s
Bainitic ferrite/austenite mechanical coupling parameter p12 1
Austenite/carbide mechanical coupling parameter p23 0
Bainitic ferrite/carbide mechanical coupling parameter p13 0
Bainitic ferrite/austenite phase field coupling parameter r12 1 1

nm
Austenite/carbide phase field coupling parameter r23 0 1

nm
Bainitic ferrite/carbide phase field coupling parameter r13 0 1

nm
Lower diffusion-across-the-interface parameter LD 0.5

Young’s modulus E 77000 N
mm2

Possion’s ratio ν 0.375

Table 1: Material parameters
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Figure 5: Upper bainitic transformation at 0 ns, 0.5 ns, 1.5 ns, 2.0 ns and 2.4 ns.
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Figure 6: Lower bainitic transformation at 0 ns, 0.5 ns, 1.5 ns, 2.5 ns and 3 ns.
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and the corresponding material tensor C12 reads in Voigt notation

C12 =
E(1− ν)

(1 + ν) · (1− 2ν)
·




1 ν/(1− ν) 0

ν/(1− ν) 1 0

0 0 (1− 2ν)/(2(1− ν))


 (108)

where E is Young’s modulus and ν is Poisson’s ratio. Only ε0
12 and C12 are considered, be-

cause a mechanical contribution is only taken into account for the displacive transformation

from austenite (φ1) to bainitic ferrite (φ2) and not for the precipitation of carbides.

The initial conditions are illustrated in the first columns of Figures 5 and 6. However, the

initial carbon concentration of c(t = 0) = 1.87 wt.% has very small random perturbations

which cannot be observed with the scale in Figure 6. These perturbations are needed

to start the separation of carbon. The same goes for the carbide phase φ3 which is

zero initially but has very small random perturbations. The size of each time step is

∆t = 10−10 s. The material parameters are summarized in Table 1. Most of the parameters

are tentative and a field for further investigations.

5.1 Upper bainite transformation

The first example in Figure 5 illustrates an upper bainite transformation at T = 700 K.

As the initial condition two nuclei of bainitic ferrite φ1 are proposed on the left and right

boundary. The strains εx and εy in Figure 5.c and 5.d, respectively are zero initially. After

0.5 ns the nuclei grow in a directed way. Furthermore, strains can be observed in the

interface region. While there is no change in the carbide phase φ3 a carbon movement

is observed. Carbon atoms leave the supersaturated bainitic ferrite to move across the

interface into the austenite subsequently to the phase transformation from austenite to

bainitic ferrite as described in subsection 3.1. During the next time steps this process

goes on, such that the bainitic ferrite grows in a pointed shape, due to the coupling with

the strains. Within the bainitic ferrite, the carbon starts to diffuse and move out of the

supersaturated phase into the austenite. At around 2.3 ns the carbon concentration in

Figure 5 reaches it maximum. As a consequence carbides precipitate in between the two

sheaves of bainitic ferrite as described in the Introduction.
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5.2 Lower bainite transformation

The second example at T = 600 K shows a lower bainite transformation. The initial

conditions can be seen in the first column of Figure 6. There is a single circular nucleus of

bainitic ferrite φ1 on the left boundary while the rest of the domain is austenitic φ2. We

refrain from a second nucleus, because the interesting part of the transformation in lower

bainite takes place within the bainitic ferrite and not between two bainitic sheaves. The

third phase φ3 is naturally zero. At the beginning there are no strains and the carbon

is uniformly distributed over the domain. During the next time steps the bainitic ferrite

grows in a directed way with a tip at its front like in the upper bainite example, see Figure

5.b. The subsequent carbon diffusion is different here. Only a small amount of carbon

atoms reaches the interface of austenite and bainitic ferrite and succeed in leaving the

supersaturated phase while most of the carbon stays within the bainitic ferrite to build

accumulations. At these accumulations carbides precipitate.

6 Conclusions and outlook

In this work we present a framework for coupled multiphase, diffusion and mechanics models

based on generalized forces and stresses which is an extension of our previously published

work in [15]. Furthermore, we combine the framework with the diffusion mechanisms

introduced in [17]. To couple the multiphase field method with mechanics, a new energy

potential in equation (60) is introduced and implemented. The resulting model comes

close to the physical reality considering the displacive growth from austenite to bainitic

ferrite including the transformation strains which lead to directed growth of the bainitic

phase.

The numerical examples show the described transformation followed by carbon move-

ment. In upper bainite the carbon diffuses across the interface from the supersaturated

bainitic ferrite into the austenite while in lower bainite most of the carbon starts to

separate using a classical Cahn-Hilliard approach and stays within the bainitic ferrite.

At accumulations of carbon carbides precipitate subsequently. An implementation using

the isogemetric finite element method and an extension for non isothermal systems are

planned for future work.
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5 Summary of the papers

Paper A proposes a multiphase field model coupled to Cahn-Hilliard diffusion to simulate
the lower bainitic transformation. To the author’s knowledge, this is the first work
concerning a phase field model for the lower bainitic transformation considering the
subsequent carbon diffusion and precipitation of carbides. The main idea is to activate the
carbon diffusion within the bainitic ferrite phase, which grows displacively. The diffusion
equation used to simulate the supposed accumulation of carbon is the viscous Cahn-Hilliard
equation. At accumulations of carbon carbides precipitate due to a high concentration.
The precipitation of carbides is modelled using the phase field model. The finite element
method is applied to solve the system of coupled partial differential equations. The results
confirm the described transformation.
Paper B is concerned with a thermodynamic framework for a multiphase field model

coupled with Cahn-Hilliard diffusion. The focus of this paper is the derivation of the
evolution equations for phase order parameters and the carbon concentration. The
described framework is based on the concept of generalized stresses as introduced by
Gurtin [10]. A microforce balance for Np phases and the concentration of a solute is
derived and used in conjunction with the first and second law of thermodynamics to
formulate restrictions to constitutive equations. A prototype model with constitutive
equations for the lower bainitic transformation is proposed. The resulting system of partial
differential equations is solved using the finite element method. The numerical examples
are compared with micrographs and show similar microstructures.
Paper C focusses on the diffusion of carbon in bainite. While the previous papers only

consider the separation of carbon within the bainitic ferrite, here the diffusion of carbon
across the interface between bainitic ferrite and austenite is taken into account. This
extension enables the model to simulate the upper bainitic transformation and improves
the simulation of lower bainitic transformation. A new unified model is created which
can describe upper and lower bainite depending only on the constant temperature. A
weighted Helmholtz energy is introduced to distinguish between the diffusion mechanics.
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On the one hand, upper bainite grows at high temperatures where the carbon can diffuse
across the interface from the supersaturated bainitic ferrite into the austenite. On the
other hand, at low temperatures lower bainite grows where most of the carbon starts to
build accumulations within the bainitic ferrite while only a small amount of carbon moves
across the interface. To the author’s knowledge the model described in this paper is the
first one considering these two diffusion phenomena in one model and it is the first model
capable of describing upper and lower bainitic transformation. Numerical results achieved
with the finite element method show the subsequent diffusion of carbon. In the example
of upper bainite, the movement of carbon from the supersaturated bainitic ferrite into the
austenite can be seen. In addition the precipitation of carbides from the austenite phase
at accumulations of carbon is simulated. The lower bainite example shows that only a few
carbon atoms succeed in leaving the bainitic ferrite.
Paper D deals with the extension of the already published model to mechanics. The

thermodynamic framework introduced by Gurtin [10] and extended in Paper B is improved
in this work. The balance equations of linear momentum and angular momentum are added
to the framework and the first and second law of thermodynamics take deformations into
account, such that the number of restrictions imposed on the constitutive equations grows.
The key idea is to simulate the directed growth of the displacive transformation from
bainitic ferrite to austenite by coupling mechanics with the multiphase field equations. Due
to eigenstrains during the displacive transformation some growth directions are favoured,
such that the phase grows faster in these directions. This extension to the previous
model replaces a mechanism which manipulates the interface mobility dependent on the
local phase gradient and a specified growth angle. Numerical examples are calculated
with the phase field method considering seven unknowns per node. The results show the
directed growth of the bainitic ferrite for upper and lower bainite taking into account the
corresponding diffusion mechanisms and the precipitation of carbides.
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6 Summary

In this work, composed of four papers, a model to simulate the upper and lower bainitic
transformation is presented. Bainite is a steel microstructure with desirable macroscopic
qualities, like the combination of high toughness and high hardness. Thus, bainitic steels
have gained increased popularity for example in the aerospace and car industry. The
microstructure of bainite consists of bainitic ferrite, carbide and retained austenite. The
bainitic transformation is one of the most complex in steel. It starts with a displacive
transformation from austenite to bainitic ferrite. The carbon concentration and its diffusion
have no influence on the transformation, such that the bainitic ferrite is supersaturated
with carbon right after the phase transformation. In a subsequent process depending
on the temperature the carbon starts to diffuse due to the supersaturation. At high
temperatures the carbon atoms move across the interface into the austenite whereas
at lower temperatures most of the carbon stays within the bainitic ferrite and builds
accumulations. At places where the carbon concentration reaches its maximum carbides
precipitate. In upper bainite, at higher temperatures, the precipitation of carbides takes
place within the austenite phase whereas in lower bainite, at lower temperatures, the
precipitation of carbides takes place within the bainitic ferrite phase.

To simulate the described transformation a multiphase field method coupled to diffusion
and mechanics is developed. The coupled model is based on the concept of generalized
stresses and the microforce balance as described in Papers B and D. A thermodynamic
framework including the multiphase field, the carbon concentration and mechanics is
presented in this work to guarantee the strict separation between universal physical laws,
such as the balance equations, the first and the second law of thermodynamics, and
constitutive equations which differ depending on the material. In addition restrictions to
constitutive equations due to the second law of thermodynamics are derived and applied
to propose a prototype model for the bainitic transformation. The key ideas of the model
can be summarized in the following steps. The first step is the phase transformation
from austenite to bainitic ferrite coupled to mechanics to simulate the directed growth as
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presented in Paper D. The second step is the diffusion of carbon. To model the diffusion
of carbon in lower bainite a Cahn-Hilliard equation is implemented as published in Paper
A. The complex combined diffusion phenomena including diffusion across the interface
is considered for upper bainite and lower bainite in Paper C. In the third and last step
carbides precipitate at places where the carbon concentration reaches its maximum.

The system of partial differential equations is solved using the finite element method. The
numerical results of the four papers confirm the expected and described transformations
of upper and lower bainite.
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7 Outlook

A main part of the future work is the parameter identification for the models presented
in this work. Due to the small size and the high speed of the transformations difficulties
occur within this identification. One way to obtain parameters is to compare numerical
results with micrographs from transmission electron microscopy as done for example in
Paper B. To prove the timing of the transformation, which is a key part of the simulation,
in-situ experiments are needed. Another way to parameterise the model is to use results
of other simulations, such as atomistic simulations [28].
The models presented in this work are two dimensional representations of a three

dimensional problem. A next step could be the extension to three dimensions. However,
this would increase the already high computational costs and the development time.

Another step in future research could be the implementation of plastitcity. During the
displacive transformation from austenite to bainitic ferrite transformation plasticity occurs
which is not considered yet.

The models presented in this work consider isothermal transformations, as this is
the most common way to produce bainite. However, for future work an extension to a
thermo-multiphase-diffusion-mechanics model is reasonable. A simulation could start with
arbitrary initial conditions for the phases. In a first step the workpiece is heated until it
consists purely of austenite. In a next step a quenching process with holding at a certain
temperature or continuous cooling could be simulated. Depending on the temperature and
the temperature rate different phases, such as ferrite, pearlite, upper and lower bainite or
martensite may occur in such a simulation. This modelling idea could lead to a simulation
which describes diffusional and displacive transformations in one model depending on the
temperature. The thermodynamic framework, derived in Paper B and extended in Paper
D, has to be changed significantly to consider heat and temperature changes. The result
would be a model which can predict the ratio of the different phases depending on the
temperature profile.
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