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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der numerischen Untersuchung der kohärenten
Kontrolle von Halbleiter Quantenpunkten. Die Arbeit gliedert sich dabei in zwei
Teile. Der erste Teil befasst sich mit der theoretischen Untersuchung verschiedener
Quantenpunktsystem im Rahmen der k · p -Theorie. Der Schwerpunkt liegt dabei
auf der Abhängigkeit von Dipol- und Coulombmatrixelementen von grundlegenden
Parametern wie Form und Materialkomposition der Quantenpunkte. In diesem Ab-
schnitt wird gezeigt, dass Gitterverspannungen, die bei gängigen Herstellungsmeth-
oden unumgänglich sind, einen signifikanten Einfluss auf die betrachteten Systeme
haben.
Im zweiten Teil der Arbeit werden zwei Experimente zur kohärenten Kontrolle von
Halbleiter Quantenpunkten durch externe elektrische Felder modelliert. Das erste der
beiden Experimente demonstriert die kohärente Phasenkontrolle an einem Exziton
Zweiniveausystem. Das zweite Experiment befasst sich mit der robusten Populationsin-
version, ebenfalls in einem Exziton Zweiniveausystem, durch eine sogenannte schnelle
adiabatische Passage. Die Ergebnisse zeigen, dass Phasenkontrolle und kontrollierte
Populationsinversion auf Pikosekundenzeitskala möglich sind.
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Abstract

The present work covers numerical studies on the coherent control of semiconductor
quantum dots. The work is divided into two parts. The first of which covers theoretical
studies of different quantum dot systems within k · p theory. Focus of this part lies
on investigation of the dependence of dipole and Coulomb matrix elements on system
parameters as shape and material composition of the quantum dots. Within this part
it is shown that lattice strain, which is unavoidable in common growth techniques, has
a significant impact on the treated systems.
The second part of this work covers the theoretical treatment of two experiments
aiming at the coherent control of semiconductor quantum dots by means of external
electric fields. The first experiment shows coherent phase control on an exciton two
level system while the second experiment treats robust population inversion of such a
two level systems by so called rapid adiabatic passage. The results show that phase
control and robust population inversion are possible at picosecond time scales.

3





1. Introduction

Semiconductor quantum dots, as treated within this work, are nano-scale islands of

semiconductor material embedded in a matrix of host material. Due to their unique

properties which render them promising systems for various fields of application, quan-

tum dots have drawn a lot of attention within the last decades. Among possible appli-

cations, quantum dots have been discussed as qubits or photon sources for quantum

information processing [1, 2, 3, 4, 5, 6], single-photon sources [7, 8, 9, 10, 11, 12], and

sources of entangled photon pairs [13, 14, 15, 16, 17, 18]. Over the years of research, so-

phisticated growth techniques have been developed, which allow a reasonable amount

of control over the size of the quantum dots, utilizing self-assembly of the quantum

dots under controlled environmental conditions.

Figure 1.1.: Schematic representation of quantum dot self-assembly by Stranski-
Krastanov growth. a) Starting from an unstrained layer of the host material one starts
depositing the quantum dot material b). At a critical thickness depending on the lattice
mismatch between the dot material and the material of the host matrix, system strain
relaxes by spontaneous island formation c). The quantum dots are then usually capped
by another layer of the host material d).

Nowadays, self-assembled semiconductor quantum dots are typically grown by molec-

ular beam epitaxy in Stranski-Krastanov growth mode, as depicted in figure 1.1. This

technique allows embedding of the quantum dot into electrically active structures such

as Schottky diodes. Controlled preparation of high quality samples with tailored prop-

erties is an art of its own and a complete description of the topic is outside the scope of

this work. However, in order to stress the importance of strain terms in realistic simula-

tions, at least a brief description of the fundamental mechanism of Stranski-Krastanov
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1. Introduction

growth will be given.

Starting from a reasonable thick layer of the matrix material, such that the top layers

of the matrix material may be considered unstrained, one starts layer deposition of the

quantum dot material which exhibits a lattice mismatch with respect to the matrix

material. Depending on the exact lattice mismatch, at some critical layer thickness

the accumulated elastic energy will relax by spontaneous island formation. For the

considered InAs quantum dots in a GaAs matrix the critical thickness is ∼ 1.7 mono

layers of InAs. This process, however, just minimizes the elastic energy, i.e. there is

still strain in the system. Depositing more quantum dot material, the islands grow

larger laterally and in growth direction which gives a decent degree of control over the

quantum confinement. Special control over the height of the resulting quantum dots

may be gained using the so-called flush-capping technique. Here, the quantum dots

are only partially overgrown. Then the substrate temperature is increased beyond a

critical value at which part of the uncovered quantum dot material may desorp from

the sample [19, 20]. As a last step, the quantum dots are covered with matrix material.

The actual steps taken during the overgrow process may still influence the shape and

material composition of the assembled quantum dots and the wetting layer [20, 21].

Considering applications for quantum information processing it is highly desirable to

grow single quantum dots or single quantum dot molecules which are composed of two

vertically stacked single quantum dots. The growth of low density quantum dot sam-

ples by metal-organic chemical vapour deposition has been demonstrated by Hsieh et

al. [22]. In the same year Chang et al. demonstrated an efficient single-photon source

based on low-density InGaAs quantum dot samples and photonic-crystal nanocavi-

ties [23]. Liang et al. demonstrated low-density sample growth by a combination of

droplet epitaxy and molecular beam epitaxy [24]. In 2016 low-density samples of quan-

tum dot molecules have been grown by Sharma [25] using a modified gradient approach

in molecular beam epitaxy.

1.1. Structure of the thesis

This work divided into three main parts. The first part focuses on determination of

the electronic structure of semiconductor heterostructures within k · p theory. In the

course of this part, quantum dots of different geometries will be considered and their

electronic structures will be compared to each other, working from a rather unphysical

model of a spherical quantum dot to a model which has been considered realistic on

basis of experimental results by Scheibner et al. [26]. On basis of the last model the

general influence of strain, presence of the wetting layer and inhomogeneous material

compositions inside the quantum dot will be discussed. In addition, as a step towards

more complex systems, a quantum dot molecule consisting of two vertically stacked

quantum dots will be discussed. After discussion of the general electronic structure

6



1.1. Structure of the thesis

of the considered systems, the calculation for various parameters entering into the

density matrix formalism on basis of the k ·p results will be explained and compared

for the considered systems.

The second part of this thesis focuses on the theoretical description of two experiments

aiming at coherent control of an exciton TLS by means of external electric fields

at picosecond time scales. The first of which is a Ramsey type experiment [27] to

demonstrate coherent phase control at time scales shorter than the decoherence time

of the exciton TLS. The second experiment deals with rapid adiabatic passage (RAP)

aiming at a robust, on demand population inversion of the quantum dot which is

highly desirable for both applications and lab research. The theoretical calculations in

this part of the thesis have been carried out in close collaboration with Alex Widhalm

and Dr. Amlan Mukherjee from the experimental group of Prof. Dr. Artur Zrenner at

Paderborn University and parts of the results for the Ramsey type experiment have

been published in [28]. A second publication for the RAP experiment is in preparation.
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2. Semiconductor Heterostructures

In order to properly describe the dynamics of any quantum system under the influ-

ence of external electromagnetic fields, one needs to know the electronic structure,

i.e. the eigenstates and the eigenenergies1 of this system. The theoretical toolbox for

calculating the electronic structure of bulk materials is quite versatile. On the abinitio

side of the spectrum density functional theory and derived methods are sophisticated

techniques relying on almost no experimental input. Despite the fact that many of

these methods fail to reproduce the exact band gaps observed in experiment, most

of them deliver reasonable estimates of the electronic structure of a semiconductor

in its ground state. A major strength of such methods is that at least in principle

the problem formulation in terms of exchange and correlation potentials is exact. The

first approximation is performed inserting parameterized forms of the exchange and

correlation potentials often determined from quantum Monte Carlo simulations. How-

ever, this is not the point which renders these methods inappropriate for simulation

of semiconductor heterostructures.

The major drawback resides in their atomistic nature, i.e. they take into account

individual atoms. As the number of atoms grows so does the number of electrons

which have to be treated explicitly. Using so-called pseudo-potential methods it is

possible to just treat the valence electrons of the atoms replacing the core electrons

by an effective potential [29, 30, 31]. Using sufficiently large super cells and periodic

boundary conditions, the given methods can still be used to simulate layered structures

such as semiconductor quantum wells. When it comes to quantum dots or other 3D

structures, however, the number of atoms grows rapidly and so does the computational

effort. Although, given enough resources, it would still be possible to solve such a

problem, the time required to do so is no longer acceptable.

On the other side of the spectrum of tools on finds fully empirical methods such as plain

effective-mass approximation to calculate the electronic structure of bulk materials.

The method was developed in the 1930s, when it was realized that the influence of a

periodic crystal potential could be modeled by an effective mass tensor [32]. In plain

effective-mass approximation one assumes a parabolic dispersion of the individual

bands

Enk = Enk0 +
~2k2

2m∗
(2.1)

1Strictly speaking, one does not need to know the exact eigenenergies since only energy differences
enter the respective equations of motion.
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2. Semiconductor Heterostructures

where Enk0 is the energy extremum of the band, usually evaluated at some high-

symmetry point of the Brillouin zone, and m∗ is the phenomenological effective mass

determining the curvature of the band dispersion. Both parameters have to be fitted

on a per-band basis to be able to properly describe bulk semiconductors at least in

the vicinity of the high-symmetry points of the Brillouin zone. Further apart from

these high-symmetry points, however, many semiconductors exhibit a significantly

non-parabolic dispersion which cannot be captured within this simple model. Due to

its simplicity this model can be used to simulate mesoscopic and macroscopic systems

at least on a qualitative basis given sufficiently accurate parameters of the involved

materials. On the other hand, also due to its simplicity, one should not expect this

model to quantitatively reproduce experimental data.

A method somewhat in between these two extremes is provided by a theory commonly

known as k·p theory which can be thought of as a more elaborate extension of effective-

mass theory. To be precise, the term k ·p theory nowadays describes a combination of

at least two methods. The first of which can be thought of as pure k · p theory. This

method has proven itself to be quite useful in calculations for bulk semiconductors,

but is of limited to no use for heterostructures. The second of which is the k ·p theory

with additional application of Envelope Function Approximation (EFA).

The electronic structure calculations within this work have been performed using the

nextnano++ software package [33] solving an eigenvalue problem arising from k · p
equations with applied EFA. The following sections present the basic considerations

for the theoretical treatment of semiconductor heterostructures within k · p theory

with applied EFA as it is implemented in nextnano.

2.1. General k · p theory

In the following, a brief derivation of the fundamental Hamiltonian matrix from which

the widely used 6x6k·p and 8x8k·p Hamiltonians emerge will be given. In doing so, the

focus will lie on the central results. More details on the derivation of the Hamiltonian

matrices used within the nextnano software package can be found in [34, 35, 36, 37]

since these publications are directly related to the development of nextnano. A more

step-wise derivation of the 6x6k · p Hamiltonian can be found in [38].

Starting point for the derivation is the stationary relativistic Pauli-Schrödinger equa-

tion (
p̂2

2m
+

1

4m2c2
(σ ×∇V (r)) p̂+ V (r) +

µBg0

2
σ ·B

)
Ψ(r) = EΨ(r). (2.2)

which is, apart from the additional spin-orbit coupling and Zeeman splitting term,

identical to the stationary single particle Schrödinger equation. For the moment, the

10



2.1. General k · p theory

Zeeman term will be dropped since it only lifts degeneracy of spin degenerate states.

The first step of the derivation is the transformation of the given Hamiltonian into the

so called Luttinger-Kohn basis [39] which is closely related to the Bloch basis. Given

a periodic potential V (r), according to the Bloch theorem the fundamental solutions

of (2.2) may be written as

Ψnk(r) = unk(r)eik·r (2.3)

where unk(r) are cell-periodic functions with respect to the underlying crystal lattice.

These functions build up an orthonormal basis for all values of k. Luttinger and

Kohn [39] proposed a different basis

χnk(r) = unk0(r)eik·r (2.4)

where k is now relative to k0. For this basis it was shown, that it builds up an or-

thonormal system as well.

As in the case for the conventional Bloch basis the m-th solution Ψm(r) in (2.2) is

expanded with respect to the new basis yielding the the following linear system for

the expansion coefficients∑
n′

Hnn′(k)cmn′(k) = Em(k)cmn(k) (2.5)

where

Hnn′(k) =

(
En′(k0) +

~2k2

2m

)
δnn′ +

~
m
k · πnn′ (2.6)

πnn′ =

∫
Ω
U∗n(r)

(
p̂+

1

4m2c2
σ ×∇V (r)

)
Un′(r)d3r (2.7)

Un(r) = unk0(r) (2.8)

showing the parabolic band dispersion well known from effective mass theory.

In order to keep the number of bands which have to be treated at a reasonably low

number, one somehow has to eliminate the bands in which one is not interested. The

procedure to achieve this decoupling is usually referred to as Löwdin perturbation, but

differs significantly from the method published by Löwdin [40]. The general procedure

is the following

1. divide the bands into two classes A and B, where class B contains only bands

which are not of primary interest.

2. divide the Hamiltonian into a part which couples class A and class B bands

3. apply a unitary transformation which eliminates the coupling to first order in k,

i.e. the resulting transformed Hamiltonian matrix H̄ is O(k2) correct.

11



2. Semiconductor Heterostructures

The division into class A and class B states was also part of the method proposed by

Löwdin, but instead of the given transformation, Löwdin derived formal expressions for

the expansion coefficients by simply reordering the linear system. These expressions,

however, contain the yet unknown eigenvalue of the solution and have to be solved

iteratively. The decoupling by unitary transformation has been used by Luttinger and

Kohn [39] to decouple the top most valence band states from the conduction band

states.

Following the derivations in [37], the decomposition of the Hamiltonian matrix using

Einstein summation convention is given as

H = H0 +H1 +H2 (2.9)

H0 =

(
En(k0) +

~2k2

2m

)
δnn′ (2.10)

H1 =
~
m
kiπ

i
nn′θn,n′ (2.11)

H2 =
~
m
kiπ

i
nn′(1− θn,n′) (2.12)

θn,n′ =

{
0 n and n′ belong to the same class

1 else
(2.13)

where πinn′ corresponds to the i-th component of πnn′ . It is easily seen that H1 de-

scribes the coupling among the different classes of bands. Having found a suitable

transformation, the Hamiltonian matrix is given by

H̄nn′ ≈H0,nn′ +
~
m
kiπ

i
nn′ (1− θnn′)

+
1

2

∑
m

~2

m2

(
kiπ

i
nmπ

j
mn′kj

En − Em
+
kjπ

j
nmπimn′ki

En′ − Em

)
θnmθmn′

(2.14)

Restricting this matrix to the class A bands which are of interest then yields

H̄nn′ =H0,nn′ +
~
m
kiπ

i
nn′

+
~2

2m2

∑
m∈B

kiπ
i
nm

(
1

En − Em
+

1

En′ − Em

)
πjmn′kj n, n′ ∈ A

(2.15)

A noteworthy point is that the influence of the class B bands is now isolated in

the summation term and purely defined in terms of matrix elements of the kinetic

momentum operator. These could in principle be determined from abinitio calculations

on the respective material system allowing for systematic truncation of the summation.

However, the approach commonly used in literature is to first determine which matrix

12



2.1. General k · p theory

elements of the momentum operator are allowed by symmetry of the crystal lattice.

The remaining summation is then usually collected into a single parameter which is

then in turn fitted to experimental data. For example Vurgaftmann et al. provide k ·p
parameter sets for a wide variety of III-V semiconductor compounds [41].

It is usually stressed that, due to boundary conditions at material interfaces, the

k vector components do not commute for heterostructures and the exact ordering

becomes crucial. In its current form the Hamiltonian matrix is only useful for bulk

calculations. In order to find the eigenstates of heterostructures one may apply the

EFA, which has been used by Luttinger and Kohn [39] to describe impurity states

in bulk semiconductors. First one introduces a position dependent expansion of the

desired state into the Luttinger-Kohn basis functions

Ψ(r) =
∑
n

Fn(r)χnk(r) (2.16)

Inserting this expansion into the underlying Schrödinger equation yields a similar

equation for the so-called spinor components Fn(r).∑
n′

Ĥnn′(r)Fn′(r) = EFn(r) (2.17)

where Ĥnn′(r) corresponds to the, now position dependent, k · p Hamiltonian with

any occurrence of k replaced by its real space representation, i.e. k → −i∇. In case

of an additional external potential one would add the term Vext(r)δnn′ to the matrix

operator. In principle, this approach introduces a new problem. When dealing with

heterostructures, one is faced with abrupt changes of the basis functions used for the

expansions since the Luttinger-Kohn basis is constructed from a local bulk Hamilto-

nian. This problem has already been addressed in literature, and e.g. Burt [42] has

justified the application of EFA to heterostructures.

Summarizing this section one finds

• for bulk semiconductors, the decoupled Hamiltonian for the class A bands of

interest is given by (2.15)

• the influence of class B bands is parameterized in terms of the matrix elements

of the kinetic momentum operator

• Exploiting symmetries, the influence of the class B bands can be captured by

a few parameters determined by direct calculation from atomistic models or by

fitting experimental data

• heterostructures can be treated using the same Hamiltonian as in the bulk case,

just replacing k by its real space representation.

13



2. Semiconductor Heterostructures

2.2. Multi-band k · p in nextnano

According to the documentation the Hamiltonian matrix, as implemented in nextnano++,

is divided as follows

Ĥnn′ = Ĥnn′,0 +Hnn′,S + Ĥnn′,SO + Ĥnn′,ZS (2.18)

with Ĥnn′,0 as the bulk k ·p Hamiltonian matrix without spin-orbit coupling or strain

effects, the strain Hamiltonian Ĥnn′,S , the spin-orbit coupling Hamiltonian Ĥnn′,SO,

and the Zeeman splitting Hamiltonian Ĥnn′,ZS . The bulk 8x8 k · p Hamiltonian in

momentum space without spin-orbit coupling is given by [36]2

Ĥ0 =



Hcc 0 Hsx
cv Hsy

cv Hsz
cv 0 0 0

0 Hcc 0 0 0 Hsx
cv Hsy

cv Hsx
cv

Hxs
cv 0 Hxx

vv Hxy
vv Hxz

vv 0 0 0

Hys
cv 0 Hyx

vv Hyy
vv Hyz

vv 0 0 0

Hzs
cv 0 Hzx

vv Hzy
vv Hzz

vv 0 0 0

0 Hxs
cv 0 0 0 Hxx

vv Hxy
vv Hxz

vv

0 Hys
cv 0 0 0 Hyx

vv Hyy
vv Hyz

vv

0 Hzs
cv 0 0 0 Hzx

vv Hzy
vv Hzz

vv


(2.19)

where the individual rows/columns correspond to the |S+〉, |S−〉, |X+〉, |Y+〉, |Z+〉,
|X−〉, |Y−〉, and |Z−〉-spinors respectively. The exact expressions for the Hνµ

vv and

Hνµ
cv depend on the crystal structure of the system of interest. For zinc-blende crystals

one finds

Hcc = Ec +
~2

2m0
Sk2 (2.20)

Hsx
cv = kyBkz + iPkx (2.21)

Hsy
cv = kzBkx + iPky (2.22)

Hsz
cv = kxBky + iPkz (2.23)

Hxs
cv = kzBky − ikxP (2.24)

Hys
cv = kxBkz − ikyP (2.25)

Hzs
cv = kyBkx − ikzP (2.26)

2In [36] it is pointed out that the particular ordering of the matrix elements allows efficient imple-
mentation of 6x6 k ·p and 8x8 k ·p calculations at once. For 6x6 k ·p calculations one only has to
drop the first two rows and columns of the given Hamiltonian and adjust some model parameters.

14



2.2. Multi-band k · p in nextnano

as well as

Hxx
vv = Ev,av +

~2

2m0
+ kxL

′kx + kyM
′ky + kzM

′kz (2.27)

Hxy
vv = kxN

+′ky + kyN
−′kx (2.28)

Hxz
vv = kxN

+′kz + kzN
−′kx (2.29)

Hyx
vv = kyN

+′kx + kxN
−′ky (2.30)

Hyy
vv = Ev,av +

~2

2m0
+ kxM

′kx + kyL
′ky + kzM

′kz (2.31)

Hyz
vv = kyN

+′kz + kzN
−′ky (2.32)

Hzx
vv = kzN

+′kx + kxN
−′kz (2.33)

Hzy
vv = kzN

+′ky + kyN
−′kz (2.34)

Hzz
vv = Ev,av +

~2

2m0
+ kxM

′kx + kyM
′ky + kzL

′kz. (2.35)

Where Ev,av is the average of the three conduction band edges. The N+′,N−′,L′, and

M ′ are the so called modified Dresselhaus-Kip-Kittel (DKK) parameters. The original

parameters N+,N−,L, and M have been defined for 6x6 k · p calculations where the

first conduction bands are treated in a perturbative manner [43]. Compared to the

original parameter set the modified DKK-parameters contain correction terms which

take into account that the first conduction bands are treated explicitly. According

to [36] one finds

L′ = L+
~2

2m0

EP
Eg

= L+
P 2

Eg
(2.36)

M ′ = M ′ (2.37)

N+′ = N+ +
P 2

Eg
(2.38)

N−′ = N− (2.39)

N ′ = N +
P 2

Eg
(2.40)
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2. Semiconductor Heterostructures

with the band gap Eg and EP defined in terms of Kane’s momentum element P [44]

as EP = 2mP 2/~2. The spin-orbit coupling Hamiltonian is given by

ĤSO =
∆SO

3



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −i 0 0 0 1

0 0 i 0 0 0 0 −i
0 0 0 0 0 −1 i 0

0 0 0 0 −1 0 i 0

0 0 0 0 −i −i 0 0

0 0 1 i 0 0 0 0


(2.41)

with the spin-orbit coupling parameter defined as

∆SO =
−3i~2

4m2c2

〈
X
∣∣(∇V × p))y

∣∣Z〉 (2.42)

It is easily seen that this part of the Hamiltonian acts only on the valence band states.

In the bulk case it provides the splitting between the spin split off band and the heavy

and light hole bands.

2.3. Modeling strained structures

Considering semiconductors with a zinc blende crystal structure strain affects a given

system in two ways. First of all, if a crystal is put under strain, the periodicity of the

lattice is changed. The changed periodicity will result in renormalization of the band

edges and in consequence in a renormalization of the band gap. Van de Walle addressed

this in his model-solid theory for a plane interface between different semiconductor

materials [45].

As can be seen in figure 2.1, the band offsets at a semiconductor heterojunction are

significantly changed if strain is taken into account. This is especially important when

dealing with quantum wells or quantum dots. The second effect is generation of piezo

electric charge densities due to displacement of the center of masses for positive and

negative charge carriers within a unit cell. These charge densities induce an additional

electrostatic potential on top of the periodic potential provided by the bare crystal

atoms. In turn this will result in modified profiles for the band edges. The presence

of this effect, however, depends on the growth conditions. Figure 2.2 compares the

calculated band profiles for two different GaAs-InAs heterojunctions, each calculated

both considering and neglecting piezo-electric charge densities. It is easily seen, that

in case of a simple planar interface only the heterojunction grown onto the (111) plane

is affected by piezo-electric charges.

16
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Figure 2.1.: Calculated band edges across the interface between two half-spaces with
different semiconductor materials. a) k · p calculations without strain. b) k · p
calculations including strain.
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Figure 2.2.: Calculated bandedges for a,b) a GaAs-InAs heterojunction grown onto
the (001) plane of GaAs a) neglecting and b) considering piezoelectric charge densi-
ties. c,d) the same calculations as for a) and b), but for a heterojunction grown onto
the (111) plane of GaAs. The band profile for the heterojunction on the (001) plane
remains unaffected while the band profile for the heterojunction on the (111) plane is
significantly changed.
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2. Semiconductor Heterostructures

Within nextnano++ strain is considered on basis of a continuum model. By minimizing

the free elastic energy of the system [37]

F [ε] =
1

2

∑
i,j

∫
V
εi(r)Cijεj(r)d3r (2.43)

where Cij is the elastic tensor and

ε =



εxx
εyy
εzz
2εyz
2εzx
2εxy


=



∂
∂xux(r)
∂
∂yuy(r)
∂
∂zuz(r)

∂
∂yuz(r) + ∂

∂zuy(r)
∂
∂zux(r) + ∂

∂xuz(r)
∂
∂xuy(r) + ∂

∂yux(r)


(2.44)

with the position dependent displacement vector u(r) = (ux(r), uy(r), uz(r))T . Once

the strain components have been determined from the functional derivative

δF [ε]

δui
= 0 ∀i ∈ {x, y, z} (2.45)

the piezoelectric polarization in zinc blende structures is calculated from

P piezo(r) =

0 0 0 e14(r) 0 0

0 0 0 0 e14(r) 0

0 0 0 0 0 e14(r)

 ε(r). (2.46)

Here e14 is the piezo electric material constant. The polarization charges may then be

calculated from

ρpiezo(r) = −∇ · P piezo(r) (2.47)

if they are desired. If only the additional potential is needed, one can directly solve

−∇ε0εr(r)∇Φpiezo(r) = −∇ · P piezo(r) (2.48)

To this end, the part of the Hamiltonian matrix describing piezo electric charges can

be stated as

Hnn′,S = qΦpiezo(r)δnn′ . (2.49)

A thorough derivation of a eight-band k · p Hamiltonian for strained zinc-blende

crystals can be found in [46].
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2.4. Determination of optical matrix elements

2.4. Determination of optical matrix elements

Given a set of orthonormal eigenfunctions of a given system the matrix elements

describing optical transitions between these states can be determined in several ways.

A very simple definition of the dipole matrix element in real space is given as

〈µ〉ij = e 〈ϕi| r |ϕj〉 . (2.50)

When dealing with atomic eigenstates of a single atom located at the origin of the

coordinate system, this definition might give reasonably good results. When it comes

to semiconductor heterostructures, however, this approach has an obvious flaw, namely

the result of (2.50) strongly depends on the choice of the coordinate system.

A more suitable approach is using the more fundamental relation between the dipole

operator µ̂ and the momentum operator p̂ [47, 48]

〈µ̂〉ij =
ie~

m0 (εi − εj)
〈ϕi| p̂ |ϕj〉 (2.51)

Inserting the k · p expansion of the eigenstates yields

〈µ̂〉ij =
ie~

m0 (εi − εj)
∑
lm

∫
Ω
ui,l ∗ (r)F ∗i,l(r)p̂uj,m(r)Fj,m(r)d3r. (2.52)

Keeping in mind that, apart from a constant prefactor, the real space representation

of the momentum operator is given by the gradient and utilizing the fact that the

envelope functions are assumed to be slowly varying over rather mesoscopic length

scales, equation (2.52) may be rewritten as

〈µ̂〉ij =
ie~

m0 (εi − εj)
∑
lm

(
〈ui,l| p̂ |uj,m〉

∫
Ω
F ∗i,l(r)Fj,m(r)d3r

+δlm

∫
Ω
F ∗i,l(r)p̂Fj,m(r)d3r

) (2.53)

where the first term may be identified as the inter-band part and the second term

as the intra-band part of the optical matrix element. Considering piece wise homoge-

neous material distributions, the given equation should give reasonable results. When

inhomogeneous material distributions such as linearly increasing Indium content are

considered, the above equation fails to give reasonable results since the prefactor of

the integral in inter-band part is no longer constant. To this end the expectation value

of the momentum operator is calculated in a different way within this work.
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2. Semiconductor Heterostructures

Within the validity range of k·p theory the expectation value of the momentum matrix

may be approximated by a generalized version of the Hellman-Feynman theorem [49]

pανν′ ≈
∂Hνν′

∂kα
(2.54)

Considering that the spin-orbit terms as well as the strain terms in the 8x8k ·p Hamil-

tonian do no depend on k, it is sufficient to insert the Hamiltonian (2.19) into (2.54)

to calculate the expectation value of the momentum operator. Since the momentum

operator does not act on the spin variable, it is sufficient to calculate the single group

representation of the momentum matrix elements. Considering a slight reordering of

the basis functions one may write the momentum matrix elements with respect to the

full 8x8 k · p basis set as follows

~
m0

p8×8
ν =


~
m0

p4×4
ν 04×4

04×4 ~
m0

p4×4
ν

 (2.55)

where the first four rows/columns correspond to |S+〉, |X+〉, |Y+〉, and |Z+〉 and the

last four rows/columns to the spinors with negative spin respectively. Considering the

original ordering of the basis set as used for 2.19 the momentum matrix element reads

~
m0
p8×8
ν =

~
m0



pssν 0 psxν psyν pszν 0 0 0

0 pν 0 0 0 psxν psyν pszν
pxsν 0 pxxν pxyν pxzν 0 0 0

pysν 0 pyxν pyyν pyzν 0 0 0

pzsν 0 pzxν pzyν pzzν 0 0 0

0 pxsν 0 0 0 pxxν pxyν pxzν
0 pysν 0 0 0 pyxν pyyν pyzν
0 pzsν 0 0 0 pzxν pzyν pzzν


(2.56)

In the bulk case (2.56) can be directly used for calculation of the momentum ma-

trix elements. Considering heterostructures one has to replace kν by it’s real-space

representation −i∇ν for the structured directions [49].
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Applying the Hellman-Feynman theorem to the Hamiltonian (2.19) yields the following equations for the momentum matrix

elements.

~
m0

p4×4
x ≈


~2

2m0
(Skx + kxS) iP kzB Bky

−iP ~2
m0
kx + L′kx + kxL

′ N+′ky + kyN
−′ N+′kz + kzN

−′

Bkz kyN
+′ +N−′ky

~2
m0
kx +M ′kx + kxM

′ 0

kyB kzN
+′ +N−′kz 0 ~2

m0
kx +M ′kx + kxM

′

 (2.57)

~
m0

p4×4
y ≈


~2

2m0
(Sky + kyS) Bkz iP kxB

kzB
~2
m0
ky +M ′ky + kyM

′ kxN
+′ +N−′kx 0

−iP N+′kx + kxN
−′ ~2

m0
ky + L′ky + kyL

′ N+′kz + kzN
−′

Bkx 0 N+′ky + kyN
−′ ~2

m0
ky +M ′ky + kyM

′

 (2.58)

~
m0

p4×4
z ≈


~2

2m0
(Skz + kzS) kyB Bkx iP

Bky
~2
m0
kz +M ′kz + kzM

′ 0 kxN
+′ +N−′kx

kxB 0 ~2
m0
kz +M ′kz + kzM

′ kyN
+′ +N−′ky

−iP N+′kx + kxN
−′ N+′ky + kyN

−′ ~2
m0
kz + L′kz + kzL

′

 (2.59)
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2. Semiconductor Heterostructures

For the case of a bulk semiconductor at the Γ-point (2.57)-(2.59) reduce to

~
m0
p4×4
x ≈


0 iP 0 0

−iP 0 0 0

0 0 0 0

0 0 0 0

 (2.60)

~
m0
p4×4
y ≈


0 0 iP 0

0 0 0 0

−iP 0 0 0

0 0 0 0

 (2.61)

~
m0
p4×4
z ≈


0 0 0 iP

0 0 0 0

0 0 0 0

−iP 0 0 0

 (2.62)

If one is interested in the optical matrix elements for a given polarization of the exciting

light field one has to use proper linear combination of these. Considering for example

the optical matrix elements for left-circularly polarized light one has to calculate εσ+ ·p
where εσ+ = 1√

2
(~ex + i~ey).

Inserting (2.60) and (2.61) one finds

εσ+ · p =
m0

~


0 iP −P 0

−iP 0 0 0

P 0 0 0

0 0 0 0

 . (2.63)

The bulk eigenstates are the eigenstates of the total angular momentum operator,

namely: ∣∣∣∣S, 1

2

〉
c

= |S+〉 (2.64)∣∣∣∣S,−1

2

〉
c

= |S−〉 (2.65)∣∣∣∣32 , 3

2

〉
v

=− 1√
2

(|X+〉+ i |Y+〉) (2.66)∣∣∣∣32 , 1

2

〉
v

=− 1√
6

(|X−〉+ i |Y−〉) +

√
2

3
|Z+〉 (2.67)∣∣∣∣32 ,−1

2

〉
v

=
1√
6

(|X+〉+ i |Y+〉) +

√
2

3
|Z−〉 (2.68)
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2.5. Calculation of Coulomb matrix elements

∣∣∣∣12 , 1

2

〉
v

=
1√
3

(|X−〉+ i |Y−〉) +
1√
3
|Z+〉 (2.69)∣∣∣∣12 ,−1

2

〉
v

=
1√
3

(|X+〉+ i |Y+〉)− 1√
3
|Z−〉 (2.70)

As has been shown by Eissfeller [49] the optical dipole selection rules for circularly

polarized light hold

Transition σ+ σ−∣∣3
2 ,

3
2

〉
→
∣∣S, 1

2

〉
forbidden ok∣∣3

2 ,
1
2

〉
→
∣∣S,−1

2

〉
forbidden ok∣∣1

2 ,
1
2

〉
→
∣∣S,−1

2

〉
forbidden ok∣∣1

2 ,−
1
2

〉
→
∣∣S, 1

2

〉
ok forbidden∣∣3

2 ,−
1
2

〉
→
∣∣S, 1

2

〉
ok forbidden∣∣3

2 ,−
3
2

〉
→
∣∣S,−1

2

〉
ok forbidden

all other transitions forbidden forbidden

Table 2.1.: Optical selection rules for bulk semiconductors at the Γ-point, taken
from [49]

2.5. Calculation of Coulomb matrix elements

In the most general form the Coulomb matrix elements are given by

Vijkl = V0

∫∫
Ψ∗i (r1)Ψ∗j (r2)

1

|r1 − r2|
Ψk(r2)Ψl(r1)d3r1d

3r2 (2.71)

To calculate the Coulomb matrix elements in the context of k · p theory one has to

plug the proper wave function definitions into equation (2.71). As already pointed out

the spinor expansion of a given wave function reads

Ψn(r) =

8∑
j=1

Fn,j(r)Uj(r)

As Garcia pointed out [50] it is way more efficient to use the momentum space rep-

resentation of equation (2.71) to calculate the Coulomb matrix elements. Using a

symmetrized version of the Fourier transform (2.71) can be rewritten as

Vijkl =
1
√

2π
3

∫
Cil(q)Djk(q)V (q)d3q (2.72)
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with

Cij(q) =

∫
Ψ∗i (r)Ψj(r)e−iq·rd3r (2.73)

Dij(q) =

∫
Ψ∗i (r)Ψj(r)eiq·rd3r. (2.74)

Inserting the spinor expansion into (2.73) yields

Cij(q) =

8∑
n,m=1

∫
F ∗i,n(r)U∗n(r)Fj,m(r)Um(~r)e−iq·rd3r

=

8∑
n,m=1

∫
F ∗i,n(r)Fj,m(r)e−iq·rU∗n(r)Um(r)d3r (2.75)

Remembering that the Un(r) are rapidly oscillating over mesoscopic length scales one

can consider the Fi,n(r) as well as the phase term exp(−iq · r) as nearly constant

within a unit cell of the crystal and decompose last integral into a product of two

integrals

Cij(q) ≈
8∑

n,m=1

∫
F ∗i,n(r)Fj,m(r)e−iq·rd3r

∫
UC

U∗n(r)Um(r)d3r︸ ︷︷ ︸
=δn,m

=
8∑
n

∫
F ∗i,n(r)Fj,n(r)e−iq·rd3r. (2.76)

In a similar manner one finds

Dij(q) =
8∑
n

∫
F ∗i,n(r)Fj,n(r)eiq·rd3r. (2.77)

Once the individual spinor components of the considered wave functions are known

the Coulomb matrix elements can be calculated quite efficiently by performing two

Fast Fourier transforms (FFTs) and approximating (2.72) by a finite Riemann sum-

mation. Since V (q) contains a 1/q2 singularity, the voxel at q = 0 has to be treated

in a special way to get meaningful numerical results. Furthermore the FFT implicitly

assumes periodic boundary conditions such that one needs to add a lot of empty space

around the structure of interest to suppress artifacts from unphysical interactions with

neighboring unit cells. An additional major drawback of this method is that it is only

applicable in a homogeneous medium.

Another approach for efficient calculation of the Coulomb matrix elements in real space

is the so called Poisson Green’s function (PGF) method proposed by Zimmermann et

24



2.5. Calculation of Coulomb matrix elements

al. [51]. Equation (2.71) can be rewritten in the form

Vijkl =

∫∫
ρil(r1)G(r1, r2)ρjk(r2)d3r1d

3r2 (2.78)

where

ρil(r) = eΨ∗m(r)Ψp(r) (2.79)

ρjk(r) = eΨ∗n(r′)Ψo(r
′) (2.80)

are generalized, potentially complex valued charge densities and G(r, r′) is a general-

ized Coulomb Green’s function satisfying

∇r
(
εr(r)∇rG(r, r′)

)
= − 1

ε0
δ(r − r′) (2.81)

In case of a constant relative permittivity (2.81) reduces to the defining equation for

the free space Coulomb Green’s function. At this point it is advantageous to slightly

rewrite equation (2.78) to the following form

Vijkl =

∫
ρjk(r2)

∫
G(r1, r2)ρil(r1)d3r1d

3r2. (2.82)

The rightmost integral in the last equation can be identified as the Green’s function

representation of a generalized electrostatic potential satisfying Poisson’s equation in

a spatially inhomogeneous medium

∇r (εr(r)∇rΦ(r)) = −ρ(r)

ε0
(2.83)

which allows a last reformulation of the Coulomb matrix elements

Vijkl =

∫
ρjk(r2)Φil(r2)d3r2. (2.84)

In contrast to the original definition (2.71) this expression requires a single spatial

integral instead of a double integral which drastically reduces the computational costs

for evaluation of the Coulomb matrix elements numerically. However, now one needs

efficient ways to solve (2.83) in the first place as the determination of the generalized

electrostatic potential is now the most time consuming part in the evaluation of (2.84).

A semi efficient procedure to calculate the Coulomb matrix elements may look as

follows:

1. Pick a particular index pair (i, l)

2. Calculate the generalized electrostatic potential Φil(r) from (2.83)
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3. For all appearing pairs (j, k) calculate Vijkl from (2.84)

4. Repeat for all other pairs (i, l)

Looking at the original definition (2.71) of the Coulomb matrix elements one can easily

verify the following symmetry relations:

Vijkl = Vjilk = V ∗klij = V ∗lkji

Using these symmetry relations one may come up with a more effective way to calculate

the Coulomb matrix elements for a given basis set of eigenstates.

Data: The N envelope wave functions of the basis states

Result: The N4 Coulomb matrix elements Vijkl
Set up a dictionary D for all index tuples (i, j, k, l) initializing the mapped

value to true;

for i = 1 to N and l = m to N do

Calculate ρjk(r);

Calculate Φil(r) from (2.83);

for j = i to N and k = i to N do

if D[(i, j, k, l)] is set to true then

Calculate ρjk(r);

Calculate Vijkl from (2.84);

Set the values of Vjilk, Vklij , and Vlkji as well;

Set D[(i, j, k, l)], D[(j, i, l, k)], D[(k, l, i, j)], and D[(l, k, j, i)] to

false;

else
Pick the next index

end

end

end
Algorithm 1: Calculation of the Coulomb matrix elements

Considering a basis set of 16 eigenstates one can compute the 164 = 65536 matrix

elements with just 136 calculations of an electrostatic potential.

2.5.1. Approximating open boundary conditions

The implemented algorithm for calculation of the generalized electrostatic potential

uses a finite difference approximation of the Laplacian operator, mapping the differ-

ential equation (2.83) onto a sparse linear system. This system is solved using an

algebraic multigrid solver [52].
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2.5. Calculation of Coulomb matrix elements

As shown in the last section, the calculation of the Coulomb matrix elements - as

performed within this work - is a two-stage process involving the determination of a

generalized electrostatic potential. The proper choice of boundary conditions is quite

crucial since they implicitly define the solution of the electrostatic problem. In the given

situation the problem is to find boundary conditions for the electrostatic potential at

a finite distance from a given charge distribution while maintaining compatibility with

an open space solution where the usual boundary condition is imposed in the form

ϕ(r) →
r→∞

0. (2.85)

However, in practical calculation one is naturally confronted with a finite computa-

tional domain. In this situation forcing the electrostatic potential to zero would be

equivalent to introducing image charges outside the computational domain, which

ultimately falsifies the resulting potential inside the computational domain. A system-

atic way to suppress this error would be to add enough space around the given charge

density such that the potential is already close to zero on the boundary of the compu-

tational domain. Considering one-dimensional or two-dimensional problems this is a

reasonable way. In three dimensions, however, this approach is not feasible any more

since the computational effort and the required memory to solve the problem grow

rapidly to unpractical scales.

A variety of methods to mimic open boundary conditions have been developed for

algorithms using finite element methods. A feature common to most of these methods

is a partition of open space into an interior region, i.e. the actual computational domain

and an exterior region, see figure 2.3.

Figure 2.3.: Schematic partition of the unbounded open space into an interior and an
exterior region. Left: The interior region is the actual computational domain whereas
the treatment of the exterior region depends on the applied method. The boundary
Γext of the exterior region is understood in the limit r →∞.

The first mentioned truncation approach means setting ϕ(r) = 0 for r ∈ Γint. A simple
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improvement over this method has been introduced by Saito et al. [53]. They determine

two potential solutions, one of them using homogeneous Dirichlet boundary conditions

and one using homogeneous Neumann boundary conditions. The final potential is then

calculated averaging the two individual solutions.

Other methods rely on so called infinite elements which mimic the infinite extent of the

exterior domain by introduction of suitable decay functions to the finite elements [54]

or by singular mappings of the infinite space to a finite one [55].

Another interesting approach is application of so called asymptotic boundary con-

ditions, see for example [56, 57] or [58]. This makes use of the already mentioned

partition of the open space into two regions. In addition this approach utilizes the

assumption that the exterior region of the problem is source free, i.e. the electrostatic

potential satisfies the simple Laplace equation ∆ϕ(r) = 0. Making use of that as-

sumption, the potential in the exterior region is expressed via a multipole expansion

in spherical coordinates. Then special boundary operators which exactly cancel the

first few multipoles, mostly up to second order with a remainder term O(r−5), are

introduced and used to generate equations for the potential on Γint. Meeker [58] goes

one step further by introducing several artificial layers around the structure of interest

damping the potential more slowly towards zero. The drawback of this approach is

that it relies on spherical coordinates which makes the application to systems without

spherical symmetry somewhat hard.

A lot more approaches to approximate an infinite open space have been taken. A

review article by Chen et al. [59] lists 158 publications on that topic, two of which

are review articles by themselves listing even more publications. However, as it seems,

only the so called measured equation of invariance [60] would be applicable to a finite

differencing approach for solution of Poisson’s equation. However, this method relies

on the choice of suitable measuring functions.

In this work an approach similar to the asymptotic boundary conditions in finite ele-

ments is chosen. The infinite open space is partitioned into an exterior and an interior

region, see figure 2.4. It is assumed that the unknown boundary values of the potential

on Γint can be described reasonably well by a finite generalized multipole expansion.

Here, however, the multipole boundary conditions are not implemented by a special

set of boundary operators. Instead, the following procedure is used. The generalized

charge density defined only inside the interior region is used to calculate generalized

monopole, dipole, and quadrupole moments. From these generalized multipole mo-

ments the potential sufficiently far away from the generalized charge density can be

approximated as

ϕ(r) ≈ ϕm(r) + ϕd(r) + ϕq(r) (2.86)
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2.5. Calculation of Coulomb matrix elements

Figure 2.4.: Schematic illustrating the application of multipole Dirichlet Boundary
conditions. The black dots indicate regular grid points discretizing the interior region
of the problem. The red dots indicate grid points outside the region of interest to which
the multipole boundary conditions are applied.

with

ϕm(r) =
Q

4πεr
(2.87)

ϕd(r) =
1

4πε

p · r
r3

(2.88)

ϕq(r) =
1

4πε

rT ·Q · r
2r5

(2.89)

where Q is a generalized potentially complex valued charge, p is the generalized dipole

moment and Q is the generalized quadrupole tensor.

Discretizing the region of interest by a rectilinear grid with Nx, Ny, and Nz grid

points in x-, y-, and z-direction respectively, each point inside the region of interest is

uniquely defined by three indices i, j, and k where i ∈ [0;Nx − 1], j ∈ [0;Ny − 1], and

k ∈ [0;Nz − 1]. This results in a finite set of sampled potential values ϕ(rijk) =: ϕijk.

Using a second order accurate finite difference stencil, the discretized version of Pois-

son’s equation is given as

−
ρ(rijk)

ε
=
ϕi+1jk + ϕi−1jk

∆x2
+
ϕij+1k + ϕij−1k

∆y2
+
ϕijk+1 + ϕijk−1

∆z2

− 2

(
1

∆x2
+

1

∆y2
+

1

∆z2

)
ϕijk

(2.90)

Considering figure 2.4 as a cut plane through the interior region at a fixed value of

k, it becomes obvious that, in order to solve (2.90), one needs the potential values at

coordinates i = −1, i = Nx, j = −1, and j = Ny. However, using the known mapping

(ijk) → rijk, equations (2.86)-(2.89) can be used to calculate the needed potential
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values. The respective terms are then brought to the left hand side of (2.90), i.e. the

boundary conditions are incorporated by correcting the generalized charge density.

Repeating this procedure for all boundary points yields a closed linear set of Nx ·Ny ·
Nz equations for the unknown potential values inside the interior region. As already

mentioned, within this work an algebraic multigrid solver [52] is used to solve the

respective system3. Algebraic multigrid methods [61] are similar to geometric multigrid

methods [62] in the sense that the iterative solution of a given system is accelerated by

interpolation between finer (more equations) and coarser (fewer equations) systems.

Algebraic multigrid methods, however, have the clear advantage that they do not rely

on any geometrical information and perform the coarsening and interpolation purely

based on the structure of the coefficient matrix which easily allows application of

algebraic multigrid methods to problems involving unstructured meshes. Geometric

multigrid methods on the other hand usually set up a grid hierarchy by incrementally

doubling the step size of a given grid in each dimension. This restricts the applicability

of geometric multigrid methods to problems defined on rectilinear grids. To make the

maximum number of coarsenings possible, the number of grid points in each direction

has to be of the form Nν = 2n + 1 for some n > 1. Otherwise the grid hierarchy has

to be truncated after ∼3 levels to keep the boundary points.

As benchmark problems, systems with a known analytical solution have been inves-

tigated. Namely a homogeneously charged sphere, a Gaussian charge distribution, a

physical dipole as well as a physical quadrupole consisting of homogeneously charged

spheres.

Figure 2.5 shows an overview for the benchmark system consisting of a homogeneously

charged sphere centered at the origin of the computational domain. The radius of the

sphere has been chosen to be 5 a.u. where the total simulation domain is a cube with

a side length of 40 a.u. with the origin of the coordinate system centered at the center

of the cube. The charge density and the analytical known potential are given by

ρsph(r) =
Q

V

{
1 r ≤ R
0 r > R

(2.91)

ϕsph(r) =
Q

4πε0

1
r r > R
1
R

(
3
2 −

r2

2R2

)
r ≤ R

(2.92)

where R is the radius and V is the volume of the sphere. The charge density is chosen

such that the integrate charge equals one4.

3To be precise, the AMGCL library uses the multigrid iteration as a preconditioner for other iterative
methods

4The actual units of lengths and charge provide just an internal scaling of the obtained solution such
that they do not play an important role for the current benchmarking purposes.
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2.5. Calculation of Coulomb matrix elements

Figure 2.5.: Benchmark of the multipole Dirichlet boundary conditions for a ho-
mogeneously charged sphere. a) Discretized charge density, b) the analytically known
potential, c) numerical solution using homogeneous Dirichlet boundary conditions, and
d) numerical solution using multipole boundary conditions.

Looking at the isosurface plots, one easily observes significant deviations of the numer-

ical potential obtained using homogeneous Dirichlet boundary conditions (figure 2.5

c) ) from the analytically known solution (figure 2.5 b)). Although not quite visible in

figure 2.5, due to the homogeneous boundary conditions on all given boundaries the

obtained potential does not show the spherical symmetry one would expect given the

spherically symmetric charge density. The more obvious deviation is the fast decrease

of the numerical solution when approaching one of the boundaries.

In contrast, the solution using multipole boundary conditions (figure 2.5 d)) shows

almost no deviations from the analytically known solution.

An overview of the benchmark system of a Gaussian charge distribution is given in

figure 2.6. The system consists of a single Gaussian charge distribution centered at

the origin of the computational domain. The charge distribution and the analytically

known potential are given by

ρG(r) =
Q

σ3
√

2π
3 e
− r2

2σ2 (2.93)

ϕg(r) =
Q

4πε0r
erf

(
r√
2σ

)
(2.94)
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where σ is the decay length of the Gaussian function.

Figure 2.6.: Benchmark of the multipole Dirichlet boundary conditions for a Gaus-
sian charge distribution. a) Discretized charge density, b) the analytically known po-
tential, c) numerical solution using homogeneous Dirichlet boundary conditions, and
d) numerical solution using multipole boundary conditions.

As in the case of the homogeneously charged sphere, the charge density has been nor-

malized such that the integrated charge equals one. Again, the computational domain

is a cube of side length 40 a.u. with the origin of the coordinate system centered at

the center of the computational domain. The decay length for the Gaussian has been

chosen isotropic for all three coordinates such that one side of the computational do-

main spans over six decay lengths. As could be expected, the results obtained in this

case are quite similar to those obtained for the homogeneously charged sphere. In case

of homogeneous Dirichlet boundary conditions, the numerical solution of Poisson’s

equation drops off too fast. Again, not quite visible in 2.6 c), the numerical solution

does not show the spherical symmetry expectable from the spherical symmetry of the

charge distribution.

As for the homogeneously charged sphere, the numerical solution obtained using mul-

tipole boundary conditions shows almost no deviations from the analytical solution.
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Figure 2.7.: Benchmark of the multipole Dirichlet boundary conditions for a physical
dipole consisting of two homogeneously charged spheres. a) Discretized charge density,
b) the analytically known potential, c) numerical solution using homogeneous Dirichlet
boundary conditions, and d) numerical solution using multipole boundary conditions.

Figure 2.7 and 2.8 give an overview over the physical dipole and quadrupole respec-

tively. Both systems have been chosen to consist of several homogeneously charged

spheres. To this end, the charge density and the analytically known potential may

be written in terms of the charge density and potential of a homogeneously charged

sphere.

ρ(r) =
∑
i

ρsph(r − ri) (2.95)

ϕ(r) =
∑
i

ϕsph(r − ri) (2.96)

In case of the physical dipole the system consists of one homogeneously charged sphere

of integrated charge equal to one at r = (0, 0, 10)T (the red sphere in figure 2.7 a))

and another homogeneously charged sphere of integrated charge equal to minus one

at r(0, 0,−10)T (the blue sphere in figure 2.7 a)). Similarly the physical quadrupole

is given by two homogeneously charged spheres each of integrated charge equal to

one at r = (0, 0, 10)T and r = (0, 0,−10)T (the red spheres in figure 2.8 a)) and two

other homogeneously charged spheres each of integrated charge equal to minus one at

r = (10, 0, 0)T and r = (−10, 0, 0)T ( the blue spheres in figure 2.8 a)).
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Figure 2.8.: Benchmark of the multipole Dirichlet boundary conditions for a physical
quadrupole consisting of four homogeneously charged spheres. a) Discretized charge
density, b) the analytically known potential, c) numerical solution using homogeneous
Dirichlet boundary conditions, and d) numerical solution using multipole boundary
conditions.

So far only a qualitative comparison of the two boundary conditions has been given. In

order to give a quantitative comparison, the potential calculations have been performed

on a series of grids with decreasing grid spacing while keeping the total extent of the

computational domain fixed. The number of grid points per direction ranged from 51

to 201 giving grid spacings in the range from about 0.2 to about 0.8 arbitrary units.

Figures 2.9-2.12 show the benchmark results for the individual systems. The shown

error measure εrel is given as

εrel =
‖ϕref − ϕnum‖
‖ϕref‖

(2.97)

with the norm defined as

‖ϕ‖ =

√∑
ijk

ϕ∗ijkϕijk (2.98)

For each grid spacing special care has been taken to maintain the aforementioned

normalizations of the individual charge distributions in order to keep a fair comparison

to the analytical solution. Figures 2.9-2.12 show the benchmark results of the individual

systems.
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Figure 2.9.: Grid study for performance of the multipole Dirichlet boundary condi-
tions for a homogeneously charged sphere.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Grid spacing [a.u.]

10-4

10-3

10-2

10-1

100

ε r
el

0 DBC
MP DBC

Figure 2.10.: Grid study for performance of the multipole Dirichlet boundary con-
ditions for a Gaussian charge distribution.
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Figure 2.11.: Grid study for performance of the multipole Dirichlet boundary con-
ditions for a physical dipole consisting of two homogeneously charged spheres.
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Figure 2.12.: Grid study for performance of the multipole Dirichlet boundary con-
ditions for a physical quadrupole consisting of four homogeneously charged spheres.
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Figures 2.13 and 2.14 summarize the grid studies for the individual systems.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Grid spacing [a.u.]

10-2

10-1

100

ε r
el

Sphere 0 DBC
Gaussian 0 DBC
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Figure 2.13.: Overview of the grid studies for the considered benchmark systems
using homogeneous Dirichlet boundary conditions.
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Figure 2.14.: Overview of the grid studies for the considered benchmark systems
using multipole Dirichlet boundary conditions.
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As can be seen, the integrated relative error for the charge distributions exhibiting

a finite monopole moment is reduced by almost three orders of magnitude without

substantially increasing the computational burden. At first glance one would expect the

error to decrease in both cases with decreasing grid spacing. However, as the absolute

size of the computational domain is kept fixed, decreasing the grid spacing means

introducing new cells with erroneous potential values. Looking back at the definition

of the used norm, the grid spacing does not enter the norm such that one observes

an increasing error with decreasing grid spacing in case of homogeneous Dirichlet

boundary conditions.

Considering the seemingly poor performance of the multipole boundary conditions in

case of the physical dipole and quadrupole, one has to remember that the estimated

boundary values for the potential are calculated from the potentials of pure dipoles

and quadrupoles respectively. Given that, in the current setup, the boundaries of the

computational domain are quite close to the considered charge distributions, signif-

icant deviations were to be expected. Figure 2.15 shows the benchmark results for

a more compact physical quadrupole with longer distance to the boundaries of the

computational domain.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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10-3
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100

ε r
el
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Figure 2.15.: Overview of the grid studies for the considered benchmark systems
using multipole Dirichlet boundary conditions.

The error now shows the desired behavior for decreasing grid spacings in case of

multipole Dirichlet boundary conditions. As the monopole is the leading term in the

multipole expansion, this term is expected to contribute the most to the global error
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of the solution. Keeping in mind fabrication tolerances in the experiment, the current

implementation with a relative error on the order of 10−4 for the monopole term should

deliver results with reasonable accuracy.

A noteworthy point is that, strictly speaking, the multipole expansion works only for

homogeneous problems. If material inhomogeneities extend into the boundary region,

the estimated boundary values of the potential may differ significantly from the true

ones. In the current implementation the potential is calculated from a homogeneous

Poisson equation where the position dependent permittivity in (2.83) is replaced by a

volume averaged static permittivity.

2.5.2. Symmetry considerations on the optical and Coulomb matrix
elements

As has been shown in the last two sections, both, optical and Coulomb matrix elements

are determined by the shape of the single particle wave functions which of the involved

eigenstates. Since the shape of these wave functions is determined by the symmetry

of the underlying crystal lattice and, in case of heterostructures, the symmetry of the

given heterostructure, one may try to predict the matrix elements based on symme-

try considerations. Bester et al. have studied the influence of lattice symmetry on the

symmetry of heterostructures by taking examples of InAs quantum dots of different

shapes embedded in a GaAs host matrix. A first key point that is pointed out is,

C2v Basis E C2 σx σy
A1 z, x2, y2, z2 1 1 1 1
A2 xy 1 1 -1 -1
B1 x, xz 1 -1 1 -1
B2 y, yz 1 -1 -1 1

Table 2.2.: Character table of the C2v symmetry group, see e.g. [63, 64]

that quantum dots usually have a lower symmetry than is suggested by the shape of

the material distribution. Considering the lens shaped semiconductor quantum dots

discussed later in this work, the material distribution itself gives a so called C∞v sym-

metry [65]. This means that one may rotate the structure by an arbitrary angle about

the vertical growth direction without changing it. As Bester et al. point out [65], the

overall symmetry is reduced to C2v due to the zinc-blende symmetry of the underlying

crystal lattice. The so called character table of the C2v symmetry group is shown in

table 2.2. Where E denotes the neutral or unit element, C2 denotes a two-fold rota-

tion about the z-axis, σx a reflection about the xz-plane and σy a reflection about the

yz-plane respectively. The symbols in the first column denote the so called irreducible

representations whereas the second column gives basis functions which are invariant
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(up to a constant factor) under the symmetry transformations of the group. When

considering selection rules, one is interested in expectation values of the form〈
φ

(γ)
l

∣∣T (α)
∣∣φ(β)
m

〉
(2.99)

where the actual value is of secondary importance. At first, one is interested whether

the respective integral evaluates to zero or a finite value. If the integral evaluates to

a finite value, it describes an allowed transition. On the other hand, if the integral

evaluates to zero, the transition is forbidden. Following the reasoning in [63, 64] it is

sufficient to consider basis functions φ
(β)
m for a particular irreducible representation

D(β) and basis functions φ
(γ)
l corresponding to a irreducible representation D(γ). If

the operator T (α) transforms according to a irreducible representation D(α), then the

transformed functions T (α)φ
(β)
m will transform according to the product representation

[D(α)×D(β)] which may be reduced to a new representation D(α×β). According to [63]

the expectation value (2.99), due to a fundamental orthogonality relationship for basis

functions of irreducible representations of a given group G, is only symmetry allowed

if the basis φ
(γ)
l is contained in D(α×β).

For lens shaped Nitride quantum dots grown on a Wurzite substrate, Baer [66] has

shown that 1S-1S and 1P-1P optical transitions may not take place due to the reduced

C3v symmetry of the system. Similar results were found by Heitz et al. [67] for pyrami-

dal shaped InAs quantum dots which exhibit a C4v symmetry. In case of C2v symmetry

the aforementioned transitions are allowed. For the Coulomb matrix elements Baer has

shown, that additional matrix elements arise for the reduced symmetry compared to

the C∞v symmetry of the material distribution.

For lens shaped InAs/GaAs quantum dots Narvaez and Zunger predicted the presence

of optical transitions which would not be expected from effective mass models. How-

ever, the authors do not attribute this nominally forbidden transitions to a reduced

symmetry, but to finite band offsets and many body effects.
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2.6. Properties of selected Quantum Dot Systems

This section presents the results of electronic structure calculations for different semi-

conductor quantum dot systems. The presented systems consider InAs quantum dots

embedded in a GaAs host matrix, starting from the most simple model of a spherical

quantum dot, over an ellipsoidal quantum dot, to a model considered most realistic

based on the findings of Scheibner et al. [26]. The simpler models serve to show the

general shape dependence and consider pure binary materials, i.e. the quantum dot

regions contain pure InAs. The calculations for these models take all strain effects into

account. For the model of a lens shaped quantum dot the influence of strain and inho-

mogeneous material distributions inside the quantum dots will be treated in further

detail. Later on, the system of a quantum dot molecule consisting of two vertically

stacked quantum dots will be treated. Within the respective subsections, results of

the electronic structure calculations obtained from the nextnano++ software package

as well as the optical and Coulomb matrix elements calculated from the nextnano++

output will be presented. If not explicitly stated otherwise, calculations have been

performed considering each eight hole and electron states closest to the fundamental

energy gap between the electron and hole states. For each considered system, a table

containing the projections of the calculated eigenstates onto the bulk eigenstates is

given in appendix B. Although these numbers lack phase information, they can give a

first hint about changed optical selection rules due to state mixing.

A note on naming conventions for the forthcoming sections is in order to avoid mis-

understandings or confusion of concepts. The term band gap is used for the energy

gap between the hole eigenstate with the highest energy and the electron eigenstate

with the lowest energy for the respective quantum dot system, not for the fundamen-

tal energy gap between conduction band states and valence band states of the bulk

materials. Similarly, the term bandedge refers to the lowest lying electron or highest

lying hole eigenvalue respectively, not to the actual bandedge of the underlying bulk

materials.

In order to give a proper picture of the upcoming results, a side note of the boundary

conditions has to be given. The system of the given spherical quantum dot has been

calculated taking into account all strain effects using a ’safety-distance’ of 30 nm to

the actual end of the computational domain. The shown pictures only show the region

treated quantum-mechanically. As can be seen in the projection tables in the appendix,

the hole eigenstates show a significant state mixing. To this end one should not ex-

pect the hole eigenfunctions to resemble atomic functions. The substrate condition

(0-displacement) has been imposed on the lower boundary of the total computational

domain. Accordingly one should observe effects due to the broken symmetry.
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2.6.1. Spherical Quantum Dot

The general model considered for spherical quantum dot is depicted in figure 2.16. Here

a spherical quantum dot of pure InAs embedded in a GaAs host matrix is assumed.

The diameter of the quantum dot is chosen as d = 14.6nm which is already relatively

large. However, this model is not supposed to reproduce any experimental data. For the

moment one can assume that the size of the quantum dot just affects the confinement

energies and such the energy gap between the electron and the hole states. Due to the

spherical symmetry, the calculated eigenstates should look quite similar to atomic s-

and p-orbitals. However, this model is not supposed to reproduce any experimental

data. For the moment one can assume that the size of the quantum dot just affects

the confinement energies and such the energy gap between the electron and the hole

states.

Figure 2.16.: Model of a simple spherical quantum dot. For a spherical quantum dot
the only parameter is its diameter, denoted as d The blue region corresponds to the
GaAs host matrix whereas the green region is filled with InAs.

The calculated spectrum for the electron eigenstates (indices 9 and higher) in fig-

ure 2.17 looks quite similar to an atomic system.
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Figure 2.17.: Eigenvalue spectrum of a spherical quantum dot. Left: Eigenvalues
for all considered electron and hole states. Right: Eigenvalues of the considered hole
states.
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It consists of two degenerate eigenvalues directly at the band edge and a series of

six degenerate eigenvalues at a slightly higher energy. For the hole eigenstates (state

indices 1–8), the situation is quite different from what could be expected from simple

symmetry considerations, as can be seen on the right in figure 2.17. The considered

group of hole states can be divided into four pairs of degenerate eigenvalues. This is a

clear indication, that the symmetry breaking due to strain affects the hole eigenstates

much stronger than the electron states. Although this can only give a hint, a look at

the projections of the eigenstates onto the eigenstates of the total angular momentum

operator in table ?? in appendix B can help to clarify this. For the hole eigenstates one

observes a significant mixing of heavy hole and light hole states regardless of the state

index. For the electrons on the other hand, one observes a much weaker mixing with

one of the bulk eigenstates clearly dominating. However, as the eigenvalue spectrum

and the projections onto bulk eigenstates give only limited information about the

actual symmetries of the calculated eigenstates, one has to look at the wavefunctions

to get a more complete picture.

Figure 2.18.: Square modulus of the first eight electron wavefunctions for a spherical
quantum dot. As the eigenstates are spin-degenerate, only the four unique profiles of
the square modulus of the wavefunctions are shown: a) Square modulus of the s-like
electron wavefunctions, b) and c) linear combinations of px- and py-like wavefunctions,
and d) pz like wavefunctions

Figure 2.18 shows the square moduli of the eight calculated electron eigenstates. As the

states are spin degenerate, only the four unique profiles are shown. The shown square

moduli have symmetries which would have been expected from the spherical symme-

try of the material distribution. The first two eigenstates show a spherical symmetry
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similar to an atomic s−orbital while the next four eigenstates could be interpreted as

a linear combination of px- and py orbitals. The last two eigenstates show the symme-

try of an atomic pz-orbital. For the hole eigenstates, the picture looks quite different.

Here one finds a series of almost p−like wavefunctions shifted towards the upper hemi-

sphere of the quantum dot as can be seen in figure 2.19. For the wavefunctions shown

in figure 2.19 c) and d) one even observes two local maxima of the square modulus

per lobe.

Figure 2.19.: Square modulus of the first eight hole wavefunctions for a spherical
quantum dot. As the eigenstates are spin-degenerate, only the four unique profiles of
the square modulus of the wavefunctions are shown. The shown isosurfaces correspond
to the eigenstates a) 7 and 8, b) 5 and 6, c) 3 and 4, and d) 1 and 2.

The square moduli of the wavefunctions are of limited use when it comes to determi-

nation of the optical or Coulomb matrix elements which are required for simulations

of the system dynamics within the density matrix formalism. The general procedure

to calculate these matrix elements has been presented in sections 2.4 and 2.5. Since

calculations of the matrix elements involve rather non-trivial steps, one does not gain

too much new insight by examining the envelope wavefunctions of all spinors for all

eigenstates. Picking the first p-like electron eigenstate and the hole eigenstate closes

to the band gap as examples, figures 2.20 and 2.21 show the real part of the envelope

wavefunctions for the individual spinor components. For the electron eigenstate one

finds that the individual spinors are well localized inside the quantum dot with only

minor extend into the surrounding matrix while for the selected hole eigenstate the

spinors are mainly localized at the edge or outside of the quantum dot. Both results

are consistent with the square moduli presented in figures 2.18 and 2.19.
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Figure 2.20.: Real parts of the envelope wavefunctions for the first p-like electron
wavefunction of a spherical quantum dot. a) and b) show the real part of the S+ and S-
envelope wavefunction respectively. Similarly c) and d) the X envelope wavefunction,
e) and f) the Y envelope wavefunction, g) and h) the Z envelope wave function. A
finite admixture of valence band states is visible, however, the amplitude is at least
one order of magnitude smaller.
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Figure 2.21.: Real parts of the envelope wavefunctions for the first hole wavefunction
of a spherical quantum dot. a) and b) show the real part of the S+ and S- envelope
wavefunction respectively. Similarly c) and d) the X envelope wavefunction, e) and f)
the Y envelope wavefunction, g) and h) the Z envelope wave function.
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Optical and Coulomb matrix elements

The optical matrix elements have been calculated using equations (2.51) and (2.56).

As the dipole matrix elements scale inversely proportional to the energy difference

between the involved states, one might get a wrong impression about the strength of

intraband absorptions when exciting close to the band gap. To this end, here and in

the following the optical matrix elements are substituted as follows:

µ̃ij = −i (εi − εj)µij (2.100)

Considering excitation with a plane wave propagating into positive z-direction, the

following polarization vectors are defined:

σ+ =
1√
2

(1, i, 0)T (2.101)

σ− =
1√
2

(1,−i, 0)T (2.102)

(2.103)

Defining
∣∣µ̃ij∣∣ as the absolute value of the optical matrix element and

∣∣σ± · µ̃ij∣∣ as

the projection on σ± one obtains the graphs in figure 2.22 for the considered spherical

quantum dot.
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Figure 2.22.: Optical matrix elements for the considered spherical quantum dot. The
matrix elements are measured in units of eÅ.

As can be seen, the substituted optical matrix elements are dominated by interband

matrix elements while the intraband matrix elements are almost negligible. However,

as the spherical quantum dot is considered as a rather unphysical system, the matrix

elements will not be analyzed in further detail.

The Coulomb matrix elements have been determined using the PGF method described

in 2.5 without additional screening. As already mentioned in that section, the theo-

retical number of Coulomb matrix elements considering a set of 16 states is 65536.

Using simple symmetry relations this number can be reduced by a factor of four. Al-

though this gives a significant reduction, the remaining number of matrix elements is
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still way to large for detailed analysis of all matrix elements. As examples, here and

in the following, Coulomb matrix elements of the form Vijjl will be presented with j

corresponding to the first electron state or the first hole state at the respective band

edge. Figure 2.23 shows the respective results for the considered spherical quantum

dot. For both selected subsets of Coulomb matrix elements, the diagonal elements, i.e.

i = l are dominant. The off-diagonal elements are almost negligible.
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Figure 2.23.: Selected Coulomb matrix elements for the considered spherical quantum
dot measured in eV.

2.6.2. Ellipsoidal Quantum Dot

The next considered system is an ellipsoidal semiconductor quantum dot as depicted in

figure 2.24. Its diameter d is chosen to be d = 14.6 nm, its height is given by h = 3.65

nm. Considering symmetry, this system is still quite close to a spherical quantum dot

in the sense that one just has to squeeze the spherical quantum dot along the z-axis

in order to obtain the ellipsoidal one.

Figure 2.24.: Model of an ellipsoidal quantum dot. The diameter with respect to the
semi-major axis is denoted as d, the diameter with respect to the semi-minor axis as h
respectively. The blue region corresponds to the GaAs host matrix whereas the green
region is filled with InAs.

To this end, again from pure symmetry considerations, one would expect a series of

s- and p-like wavefunctions in the vicinity of the band gap. Here, however, one would
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not expect to find a pz-like state in the vicinity of the band gap since the confinement

length into z-direction is much smaller compared to the case of the spherical quantum

dot.

Figure 2.25 shows the calculated eigenvalue spectrum for the eight electron and hole

eigenstates closest to the band gap. As could be expected, for the electron one finds two

degenerate eigenvalues right at the band gap followed by four degenerate eigenvalues

and another pair of degenerate eigenvalues at a slightly larger energy.
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Figure 2.25.: Eigenvalue spectrum of an ellipsoidal quantum dot. For the calculations
eight hole eigenstates and eight electron eigenstates have been taken into account.

Figure 2.26.: Square modulus of the first eight electron wavefunctions for an ellip-
soidal quantum dot. As the states are spin degenerate, only the four unique profiles
are shown. The shown isosurfaces correspond to the state indices: a) 9 and 10, b) 11
and 12, c) 13 and 14, and d) 15 and 16.
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Similar to the case of the spherical quantum dot the eigenvalues spectrum of the hole

eigenstates can be divided into four pairs of degenerate eigenvalues. Based on this

observation one might be tempted to assume that one finds similar results for the

wave functions as well. Figures 2.26 and 2.27 show the square moduli of the calculated

electron and hole eigenstates respectively.

For the electrons one observes a sequence of an s-like wavefunction followed by two

wavefunctions given a linear combinations of px- and py-like wave functions. In this

case, due to the smaller confinement length in z-direction, the pz-like wavefunction

is replaced by a wavefunction with a strong similarity to an atomic d-orbital. The

term s-like may be misleading in this case as the shown square modulus of the first

two electron eigenstates does not exhibit full radial symmetry. However, similar to an

atomic s-orbital it has no internal nodes or node planes. Here and in the following

such wavefunctions will be referred to as s-like, regardless of full radial symmetry.

Figure 2.27.: Square modulus of the first eight hole wavefunctions for an ellipsoidal
quantum dot. As the states are spin degenerate, only the four unique profiles are
shown. The shown isosurfaces correspond to the state indices: a) 8 and 7, b) 6 and 5,
c) 4 and 3, and d) 2 and 1.

Based on symmetry considerations, one would expect similar results for the hole eigen-

states, but as in the case of the spherical quantum dot, the calculated square moduli

differ from the expected results. In this case, however, the actual results are signif-

icantly closer to the expected ones than in the case of the spherical quantum dot.

Possibly the first observation is that all hole eigenstates are well localized inside the

quantum dot in contrast to the observation in case of the spherical quantum dot. The

square modulus for the first two hole wavefunctions now shows the expected s-like
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symmetry. Similar to the electron eigenstates, the square modulus of the wavefunction

for the 7th and 8th hole eigenstate shows a d-like symmetry.

For the intermediate eigenstates, expected p-like symmetry is not achieved. Figures 2.28

and 2.29 show the envelope wavefunctions for the spinors of the first p-like electron

eigenstate and the first hole eigenstate respectively. Similar to the square moduli of

the wavefunctions a much greater similarity of the results is observable.

Figure 2.28.: Real parts of the envelope wavefunctions of the first p-like electron
wavefunction of an ellipsoidal quantum dot. a) and b) show the real part of the S+ and
S- envelope wavefunction respectively. Similarly c) and d) the X envelope wavefunction,
e) and f) the Y envelope wavefunction, g) and h) the Z envelope wave function.
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Figure 2.29.: Real parts of the envelope wavefunctions for the first hole wavefunction
of an ellipsoidal quantum dot. a) and b) show the real part of the S+ and S- envelope
wavefunction respectively. Similarly c) and d) the X envelope wavefunction, e) and f)
the Y envelope wavefunction, g) and h) the Z envelope wave function.
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Optical and Coulomb matrix elements

Figures 2.30 and 2.31 show the substituted optical matrix elements and selected

Coulomb matrix elements for the considered ellipsoidal quantum dot. For the opti-

cal matrix elements one observes that fewer elements have a significant magnitude

compared to the spherical quantum dot. As before, the matrix is dominated by inter-

band elements with strongest magnitude in the direct vicinity of the band gap.
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Figure 2.30.: Optical matrix elements for the considered ellipsoidal quantum dot
measured in eÅ.

Qualitatively there is no difference between the two selected subsets of Coulomb matrix

elements. And even from a quantitative point of view, the difference is not too big. As

before, the off-diagonal matrix elements are negligible in both cases.
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Figure 2.31.: Selected Coulomb matrix elements for the considered ellipsoidal quan-
tum dot measured in eV.
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2.6.3. Lens shaped Quantum Dot

Figure 2.32.: Model of a lens shaped quantum dot modeled by a semiellipsoid on top
of a thin layer. The base diameter of the quantum dot is denoted as d, the height of the
quantum dot and the width of the wetting layer as hd and hwl respectively. The blue
region marks the GaAs host matrix whereas the green regions correspond to InAs.

The considered lens shaped quantum dot has a base diameter of d = 14.6 nm and a

height of h = 2.9 nm. The thickness of the wetting layer is considered as hwl = 1 nm.

Figure 2.33 shows the calculated eigenvalue spectrum. Qualitatively the calculated

eigenvalue spectrum is quite similar to the spectrum of the ellipsoidal quantum dot

considered in the last subsection.
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Figure 2.33.: Eigenvalue spectrum of a lens shaped quantum dot. For the calculations
eight hole eigenstates and eight electron eigenstates have been taken into account.

As mentioned in the beginning of this section, the system of a lens shaped quantum

dot will be utilized to show the impact of different parameters which all affect the

strain in the system.

Influence of strain

The general influence of strain on the given lens shaped quantum dot is tremendous.

Neglecting the strain effects at all, i.e. neglecting band alignments, state mixing, and
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piezo electric charges, no bound hole states could be determined. The reason becomes

clear when looking at the bandedges in figure 2.34. While there is a sufficiently deep

potential well for electrons, the potential well for holes is too shallow to allow localized

hole states. This system could only be used as an electron trap.
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Figure 2.34.: Bandedge energies for the Γ and HH band along the growth direction
neglecting strain effects.
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Figure 2.35.: Left: Calculated eigenvalue spectra for three quantum dot systems
emphasizing different strain effects. Right: Spectral shifts due to presence of the wetting
layer and piezo electric charges.

In addition to a complete neglection of strain effects, two different setups have been

considered emphasizing different strain effects. Firstly, a quantum dot of the same size

without its wetting layer. Comparing this system to the original one should show the

impact of the strain field of the wetting layer. Secondly, the impact of piezo electric

charges on the given system is shown by calculations for an identical quantum dot

neglecting piezo electric charges. Figure 2.35 shows the calculated eigenvalue spectra

in comparison. Comparing the spectrum of the original system to the one without

wetting layer, one observes that the presence of the wetting layer results in a shift of
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the eigenvalues. This shift is, however, not uniform for all eigenvalues. For the hole

eigenstates the energies are slightly shifted towards smaller negative energies with the

states further apart from the band edge being shifted slightly stronger than the states

in the vicinity of the band edge.

Figure 2.36.: Square modulus of selected wavefunctions depending on different strain
effects. a) - c) The 7th electron eigenstate for a quantum dot without wetting layer,
without piezo electric charges, and with both wetting layer and piezo electric charges.
d)-f) Analogous plots for the 7th hole eigenstate.

For the electrons on the other hand, the eigenvalues are shifted towards smaller ener-

gies with a considerably larger shift than for the holes. Similar to the hole eigenvalues,

electron eigenvalues further apart from the band edge are affected stronger than eigen-

values in the vicinity of the band edge. The band gap is reduced from about 1.07 eV

without wetting layer to about 0.97 eV with wetting layer. Considering the effect of

piezo electric charges, one observes an almost uniform shift of the complete spectrum

towards lower energies with only minor fluctuations. This could be expected consid-

ering that these charges are included via an additional potential term which acts

uniformly on all states.

The impact of the different strain effects is most visible for the eigenstates further
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apart from the band gap. To this end, figure 2.36 shows the square modulus of the

electron and hole eigenstates with the largest distance to the band gap. For the electron

state the observed differences are much more obvious than for the hole eigenstate. The

overall shape of the hole eigenstate is not changed significantly. Presence of the wetting

layer leads to a small extend of the wavefunction into the wetting layer and the piezo

electric charges lead to a redistribution among the maxima of the square modulus.

The electron eigenstate on the other hand shows a significant change in both shape

and magnitude.
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Figure 2.37.: Comparison of the optical matrix elements considering several strain
effects. Left column: quantum dot without wetting layer. Middle column: quantum
dot with wetting layer, but without piezo electric charges. Right column: quantum dot
with wetting layer and piezo electric charges. The matrix elements are measured in
units of eÅ.
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Figure 2.37 shows the optical matrix elements for the considered systems in compari-

son. The optical matrix elements of the quantum dot without wetting layer look quite

similar to those of the ellipsoidal quantum dot. Adding the wetting layer while re-

moving piezo electric charges results in a reduction of matrix elements with significant

magnitude. Adding the piezo electric charges again results in a sort of revival of matrix

elements for both interband and intraband matrix elements.
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Figure 2.38.: Selected Coulomb matrix elements depending on different strain effects.
The matrix elements are measured in units of eV.

Figure 2.38 shows selected subsets of the Coulomb matrix elements for the considered

systems. Surprisingly, theses subsets do not change significantly when changing the

conditions. The only obvious changes are a slight increase of off-diagonal elements and

a reduction of the matrix elements with i, l ∈ {15, 16}.
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Influence of material inhomogeneities

Figure 2.39.: Cut planes through the center of a lens shaped quantum dot with
inhomogeneous Indium content. Left: Linear increase of the Indium content from the
wetting layer to the top of the quantum dot. Right: Trumpet shaped profile of the
Indium content.

A point which also affects strain in a given system are material inhomogeneities. Up

until now the considered quantum dots were composed of 100% InAs. In reality, how-

ever, due to the growth conditions during the Stranski-Krastanov growth, one may

be faced with substantial material inhomogeneities inside the quantum dots and the

wetting layer [68, 69, 70, 71]. In essence, the impact of material inhomogeneities is

twofold. Considering the ternary alloy InxGa1−xAs the lattice constant of the bulk

material depends on the Indium content x. Accordingly, if one considers a quantum

dot composed of this ternary, the strain in the system and in consequence both the

electronic structure and distribution of piezo electric charge densities can change sig-

nificantly if the Indium content shows a spatial dependence.
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Figure 2.40.: Left: Calculated eigenvalue spectra of a quantum dot with three differ-
ent material compositions. Right: Energy shifts compared to the homogeneous system.
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On the left figure 2.40 shows the calculated eigenvalue spectra for the three considered

material distributions in comparison. For both inhomogeneous compositions one ob-

serves that the electron states are much more affected by the material composition of

the quantum dot than the hole states. The energy shift when switching from the ho-

mogeneous material composition to one of the inhomogeneous compositions is almost

uniform for the hole eigenstates. For the electron on the other hand, the observed shift

has a significantly larger magnitude and is clearly nonuniform.

Figure 2.41 shows the square modulus of the electron and hole eigenstates with largest

distance to the band gap. Despite the significant shift of the eigenvalue, the overall

shape of the electron state does not change too much when switching to one of the

nonuniform material compositions. For the considered hole eigenstate, the only visible

effect seems to be an increase of contrast between maxima and minima and a slightly

stronger localization inside the quantum dot.

Figure 2.41.: Square modulus of selected wavefunctions depending on the material
composition. a)-c) The 7th electron eigenstate for homogeneous, linearly increasing,
and trumpet shaped Indium content. d)-f) Analogous plots for the 7th hole eigenstate.
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Figures 2.42 and 2.43 show the Coulomb and optical matrix elements for the considered

systems. For the Coulomb matrix elements the observation is quite similar to the one

for the different direct strain effects. The most obvious effect is a decrease of the

diagonal matrix elements with i, l ≥ 11.
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Figure 2.42.: Selected Coulomb matrix elements showing the impact of material
composition. The matrix elements are measured in units of eV.

The optical matrix elements show a significant dependence on the underlying material

composition of the quantum dot. Switching from a homogeneous to an inhomogeneous

composition reduces the number of matrix elements with a significant magnitude.

Considering the projection onto circular polarization, only two matrix elements in

the vicinity of the band gap retain a significant magnitude for the trumpet shaped

Indium content. This is consistent with the experimentally observed selection rules for

absorption of light by a quantum dot.
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Homogeneous Linear alloy Trumpet alloy

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5

Absolute value

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5
6

Absolute value

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5
6

Absolute value

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5

Projection on +

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5
6

Projection on +

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5
6

Projection on +

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5

Projection on 

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5
6

Projection on 

Final state i

4 8 12 16 Initia
l st

ate
 j

4
8

12
16

0
1
2
3
4
5
6

Projection on 

Figure 2.43.: Comparison of the optical matrix elements depending on the material
composition. Left column: quantum dot without wetting layer. Middle column: quan-
tum dot with wetting layer, but without piezo electric charges. Right column: quantum
dot with wetting layer and piezo electric charges. The matrix elements are measured
in units of eÅ.
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2.6.4. Quantum dot molecules

Figure 2.44.: Model of a semiconductor quantum dot molecule consisting of two
vertically stacked quantum dots. The base diameter and height of the bottom dot are
denoted as db and hb. The same holds for the top dot with index b replaced by index
t. The heights of the two wetting layers are denoted as hwl,b for the bottom dot and
hwl,t for the top dot respectively.

Conceptually, the treatment of quantum dot molecules is not different from that of

single quantum dots. In this work quantum dot molecules of two vertically stacked

single quantum dots as depicted in figure 2.44 are considered. The size parameters

and the distance between the individual dots have been chosen according to reported

values by Scheibner et al. [26] as given in table 2.3.

Parameter Value [nm]

db 14.6
hb 2.9
dt 17.9
ht 2.1
dQD 6.6

Table 2.3.: Calculation parameters for the quantum dot molecule.

Considering a sufficiently large distance between the two individual quantum dots, one

would expect the eigenstates of the quantum dot molecule to be just the eigenstates of

the individual quantum dots without any significant changes. Thus, one would for each

of the quantum dots expect a series of s- and p-like, if enough states are calculated,

maybe even d-like wavefunctions at least for the electrons.

From a simple point of view, if the distance between the dots is decreased, the eigen-

states of the individual dots might start overlapping such that they do not build up

an orthonormal set anymore. Any numerical method for diagonalization of the Hamil-

tonian will then find a set of potentially hybrid states. However, keeping in mind that

the strain in the system depends on the material distribution, the situation gets more

complicated since one has to consider perturbations of the original eigenstates other
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than simple overlaps.

In order to get a reasonable number of eigenstates for both quantum dots, calculations

for the quantum dot molecule were performed considering each 16 electron hole eigen-

states5, giving a total of 32 eigenstates. The calculated eigenvalue spectrum is shown

in figure 2.45. As in case of the other systems, the calculated eigenvalues come in pairs

due to spin degeneracy.
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Figure 2.45.: Calculated eigenvalue spectrum of a quantum dot molecule considering
each 16 electron and hole states.

Sorting the hole eigenstates according to their localization gives an energy spectrum

as shown on the right in figure 2.45. Looking at the sorted spectra it seems somewhat

surprising that the first p-like states of the top quantum dot (indices 5 and 6) and the

second p-like states of the bottom quantum dot (indices 3 and 4) show now significant

sign of hybridization despite the fact that they are energetically almost degenerate.

As already mentioned in a footnote, the calculated eigenstates are sorted in ascend-

ing order by their respective eigenvalue. This means that eigenstates with a similar

eigenvalue are not necessarily located in the same quantum dot.

Figure 2.46 shows the square modulus of the eight hole wavefunctions corresponding to

the eight eigenvalue pairs closes to the fundamental gap. The first thing one observes

is that the hole wavefunctions are still well localized in the individual quantum dots.

This is usually attributed to their higher effective mass. As can also be seen, obviously

the degeneracy of the p-like hole states has been lifted, since the first p-like state in the

bottom quantum dot is energetically followed by a p-like state in the upper quantum

dot.

Apart from the energetic reordering, the calculated results for the hole eigenstates

are not really surprising. Comparing just the spatial profile of the wavefunctions, the

5As the numeric solver inside nextnano just searches for the eigenvalues closest to the fundamen-
tal gap, it is not guaranteed, that one ends up with eigenstates equally distributed among both
quantum dots
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wavefunctions of the quantum dot molecule qualitatively correspond to what could be

expected based on the result for a single lens shaped or ellipsoidal quantum dot.

Figure 2.46.: Square modulus of the hole wavefunctions corresponding to the eight
eigenvalue pairs closest to the fundamental gap. The shown square moduli correspond
to a) eigenvalue 16, b) eigenvalue 14, c) eigenvalue 12, d) eigenvalue 10, e) eigenvalue
8, f) eigenvalue 6), g) eigenvalue 4, and h) eigenvalue 2.

For the electron wavefunctions one finds a quite complex picture. Figure 2.47 shows

the square modulus for the electron eigenstates corresponding to the first four pairs

of eigenvalues closest to the fundamental gap, similar to the picture already shown for

the hole eigenstates. While the s-like state for the bottom quantum dot is still localized

well inside the bottom quantum dot, the corresponding state of the top quantum dot
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already shows a finite extend into the bottom quantum dot. As this feature is not

quite visible in figure 2.47 b), figure 2.48 shows a close-up image of the wavefunction.

Figure 2.47.: Square modulus of the electron wavefunctions corresponding to the
eight eigenvalue pairs closest to the fundamental gap. The shown square moduli cor-
respond to a) eigenvalue 17, b) eigenvalue 19, c) eigenvalue 21, d) eigenvalue 23, e)
eigenvalue 25, f) eigenvalue 27, g) eigenvalue 29, and h) eigenvalue 31.

The spatial hybridization becomes much more obvious for the electron states with

higher energies as can be seen in figure 2.47 e)-h). The wavefunctions in question show

a significant extent over both quantum dots. Based on this finding, it gets harder to

tell whether a given optical resonance in the system stems from a spatially direct or

indirect transition.
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2.6. Properties of selected Quantum Dot Systems

Figure 2.48.: Close-up image of the square modulus of the s-like eigenstate of the
top quantum dot. The wavefunction shows a small, yet finite extend into the bottom
quantum dot recognizable by the small blue dot in the lower half of the picture.

Optical and Coulomb matrix elements

The optical matrix elements and selected subsets of the Coulomb matrix elements are

shown in figures 2.49 and 2.50. The optical matrix elements are dominated by a set of

elements in the vicinity of the band gap.

Qualitatively the shown subsets of Coulomb matrix elements do not differ. One ob-

serves a slightly larger magnitude for Vi,16,16,l. For both subsets the off-diagonal ele-

ments for i, l < 16 are significantly smaller than for i, l > 16.
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Figure 2.49.: Selected Coulomb matrix elements for the considered quantum dot
molecule. The matrix elements are measured in units of eV.
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Figure 2.50.: Optical matrix elements for the considered quantum dot molecule. The
matrix elements are measured in units of eÅ.

2.7. Modelling quantum dot systems embedded in a

Schottky diode

Up to now, results for semiconductor quantum dots embedded in a homogeneous host

matrix have been shown. In case of single quantum dot, the growth conditions can

only affect the size and maybe to some extent the material composition of the re-

sulting quantum dots. This means, manipulating the growth conditions, one only has

static control over the electronic structure of the quantum dots. In order to investi-

gate Stark shifts and charged exciton complexes in case of single quantum dots [72]

as well as various charge configurations resulting from biexcitons in quantum dot

molecules [73, 26, 74], these systems have been embedded in Schottky diode struc-

tures. These structures allow the manipulation of the quantum dot systems by static

electric fields. Depending on the individual experiments, electric fields have been used

to Stark tune the quantum dot resonances or control tunneling rates of charge carriers.

Schottky diodes for quantum dot experiments usually consist of a highly doped back

contact followed by an intrinsic semiconductor layer containing the quantum dot sys-

tems. Sometimes super lattice structures are grown on top of the quantum dot layer

in order to prevent holes that have been generated optically inside the quantum dots

from tunneling to the Schottky contact on top of the structure. The bandedge profile

for an extremely simplified one dimensional model is shown in figure 2.51. By apply-

ing gate voltages at the Schottky contact (thought to be somewhere on the right) the

tilt of the bandedges across the quantum dot region, and thus the tunneling barrier

between the doped back contact and the quantum dots, may be manipulated. This

allows controlled charging and uncharging of the quantum dots. In addition, applying

static electric fields allows to operate the quantum dot in different regimes regarding

the recombination of optically generated electrons. For example, applying sufficiently

high bias voltages, the tunneling rates of electrons or holes may be tuned in such a

way that the respective charge carrier tunnels out of the quantum dot at time scales

considerably shorter than the radiative life time of a quantum dot exciton [75]. This
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2.7. Modelling quantum dot systems embedded in a Schottky diode

regime is commonly called photocurrent regime. On the other hand, the applied voltage

may also serve to suppress charge carrier tunneling, resulting in almost pure radiative

recombination of excitons.

Considering the dimensions of real world Schottky diode structures, it is not hard

to imagine that a 3D simulation of the complete device is unfeasible. Simple one

dimensional simulations in effective mass approximation have been performed for the

simplified structure shown in figure 2.51.
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Figure 2.51.: One-dimensional modal of a quantum dot embedded in a Schottky
diode structure. The potential well inside the GaAs region is supposed to correspond
to an InAs region.

These calculation gave at least 20 electron states located in the back contact before the

first electron state located inside the quantum dot. Considering that probably only a

few of these states near the Fermi level play a significant role for charging experiments,

a lot of computational resources would be wasted calculating irrelevant eigenstates.

Of course, these states affect the dynamics of the system via Coulomb interaction.

However, the occupation of these states will probably not change significantly dur-

ing typical experiments, such that their presence is better modeled by some sort of

interaction with a suitable charge carrier bath.
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2.7.1. Quantum Dot Molecule

The quantum dot molecule presented in section 2.6.4 will serve as an example system

since it nicely demonstrates several difficulties arising during the k · p calculations.

The effect of an applied voltage at the Schottky diode on the quantum dot system

may in first order be approximated by a constant electric field within the quantum

dot region. In order to model such an electric field nextnano++ provides so called

charge neutral contact regions which supply suitable boundary conditions for solution

of Poisson’s equation.

However, these contacts have to be used with care as well. As it turns out, presence

of piezo electric charges within the simulation domain result in unphysical potential

wells and barriers in the contact region. In order not to clutter the k · p results with

unphysical states located at the artificial wells, one has to make the distance of the

contacts from the region of interest sufficiently large. Luckily one does not have to

extend the quantum region such that the time for the actual k · p solution does not

scale dramatically.
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Figure 2.52.: Calculated eigenvalue spectra of a quantum dot molecule at different
applied voltages.

Figure 2.52 shows the calculated eigenvalue spectra of the considered quantum dot

molecule at several potential differences across the simulation space. In order to get a

better feeling for the respective potential landscape, figure 2.53 shows the band edges
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of the Γ conduction band and the heavy hole valence band for an applied potential

difference of 0.4 V. As can be seen, although the applied potential difference seems

quite high, the tilt of the band edges stays at a reasonable level.
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Figure 2.53.: Band edges of the Γ conduction band and the heavy hole valence band
evaluated on a line through the center of the stacked quantum dots.

Coming back to the eigenvalue spectra in figure 2.52 one observes another difficulty

which has already been mentioned. At a potential difference of 0.0 V across the simula-

tion domain, the calculated eigenstates are evenly distributed among the two quantum

dots with 8 electron and 8 hole eigenstates per dot. Considering absorption simulations

within the density matrix formalism, this might serve as a suitable basis set. Turning

up the potential difference, the situation changes significantly. Even at the lower of the

two applied potential differences, the eigenvalue solver delivers only a single electron

state in the top dot among the 16 calculated electron states. At the same time only

six of the 16 calculated hole eigenstates are located in the bottom quantum dot. In

order to spot the states which were present in the setup with 0 V applied potential

difference one would have to significantly increase the number of calculated eigenstates

and therefore the numerical effort. Although a direct comparison does not make too

much sense since one is dealing with different sets of eigenstates, figures 2.54 and 2.55

show the optical matrix elements and selected subsets of the Coulomb matrix elements

for the at the different applied potential differences.
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Figure 2.54.: Optical matrix elements, measured in units of eÅ, for the considered
quantum dot molecule at different applied potential differences.
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Figure 2.55.: Selected subsets of the Coulomb matrix elements, measured in eV, for
the considered quantum dot molecule at different potential differences.

Considering the presented problems and the computational effort for the solution at a

single applied potential difference, calculating a consistent set of optical and Coulomb

matrix elements for a quasi continuous set of potential differences is considered unfea-

sible.
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3. Modeling the dynamics of Quantum

Dots within density matrix formalism

3.1. Equations of motion for a general FLS

The density matrix formalism for FLSs is well known in literature and has already

found its way into textbooks governing the dynamics of atomic systems [76] as well

as semiconductor nanostructures under optical excitation [77, 47]. A general FLS may

be considered as given in figure 3.1. There is a finite set of single particle eigenstates

with given eigenvalues. As has been shown earlier, one does not have to make any

assumption on the exact localization of the corresponding single particle wave functions

since this information will be implicitly contained in the respective coupling elements

between the individual states.

Figure 3.1.: Sketch of a general FLS. The red arrows indicate possible couplings
between individual eigenstates via light-matter interaction whereas the blue arrows
indicate couplings via Coulomb interaction.

At the moment, only three assumptions are made:

1. the set of eigenstates is discrete, yet allowing for degenerate eigenstates

2. the real system is considered small compared to the wave length of the exciting

electric field

3. there is an energy gap between initially populated and initially empty eigenstates
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

The latter assumption is not really needed for the derivation of the equations of motion,

but is required if one wants to model absorption spectra of semiconductor nanostruc-

tures in their ground state. The second assumption on the other hand, is needed to

justify the use of an electric field which varies over time only. Considering systems with

geometrical extensions comparable to or larger than the wave length of the exciting

field, one would have to take retardation effects into account.

The optical couplings depicted in figure 3.1 are restricted to so-called interband cou-

plings. Depending on the eigenstates of the underlying system, finite intraband cou-

plings are of course possible. In this work, the energy gap between the initially popu-

lated states and the initially unpopulated states is considered to be significantly larger

than the energy gap between two initially populated or unpopulated states. If one

then considers optical excitation at frequencies close to the fundamental gap, intra-

band absorption should play only a minor role since the respective transition is driven

strongly off-resonant.

Using second quantization formulation where a†i creates an electron in state i and ai
destroys an electron in state i the total Hamiltonian of the FLS interacting with a

semi-classical light field may be written as

Ĥ = Ĥ0 + Ĥlm + ĤC (3.1)

Ĥ0 =
∑
i

εia
†
iai (3.2)

Ĥlm = −1

2
E(t) ·

∑
i 6=j
µija

†
iaj + µ∗ija

†
jai (3.3)

ĤC =
1

2

∑
i,j,k,l

Vijkla
†
ia
†
jakal (3.4)

where

ωij =
εi − εj

~
Looking into literature, people often make a distinction between operators acting on

initially populated states and operators acting on initially empty states even when

they are not using the electron-hole picture. While this may be helpful for determining

the exact nature of a given operator product of two or more operators, it is somewhat

inconvenient for a general derivation of equations of motion for a given system since one

quickly deals with an increasing number of different product patterns when deriving

the equations of motion. Using the fermionic anticommutation rules for the creation
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and annihilation operators [
ai, a

†
j

]
+

= δij (3.5)[
a

(†)
i , a

(†)
j

]
+

= 0 (3.6)

the temporal dynamics of the system can be described by the Heisenberg equations of

motion
d

dt
Ô = − i

~

[
Ô, Ĥ

]
+
∂

∂t
Ô (3.7)

where Ô may be an arbitrary, yet meaningful, operator. If the operator Ô is not

explicitly time dependent, the last term on the right hand side vanishes. Taking the

expectation value on both sides one obtains

d

dt

〈
Ô
〉

= − i
~

〈[
Ô, Ĥ

]〉
(3.8)

As the commutator is a linear operator the derivation of the equations of motion can

be carried out one at a time for each part of the total Hamiltonian.

Starting with the general operator product a†iaj one finds

d

dt

〈
a†iaj

〉∣∣∣∣
0

= iωij

〈
a†iaj

〉
(3.9)

d

dt

〈
a†iaj

〉∣∣∣∣
lm

=
i

~
E ·

∑
k

µjka
†
iak − µkia

†
kaj (3.10)

d

dt

〈
a†iaj

〉∣∣∣∣
C

=
1

2

∑
lmn

Vjlmna
†
ia
†
l aman +

1

2

∑
kmn

Vkjmna
†
ka
†
iaman

− 1

2

∑
kln

Vklina
†
ka
†
l ajan −

1

2

∑
klm

Vklmia
†
ka
†
l amaj . (3.11)

Equation (3.11) shows the onset of the well-known many body hierarchy. Evaluation

of the equation of motion for an operator product consisting of 2N operators requires

knowledge of the expectation value of operator products consisting of 2N + 2 opera-

tors. When considering bulk materials one is dealing with a quasi infinite number of

electrons in the system and an infinite hierarchy of equations1. However, when con-

sidering a system with a finite, manageable number of electrons, there is a natural

truncation of the many body hierarchy since any operator product which contains

more annihilation operators than electrons in the system has to evaluate to zero when

acting on the many particle wave function.

1Of course the number of electrons is not really infinite, but way too large to treat all electrons
explicitly
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

Throughout this thesis a finite number of electrons will be assumed such that the

many body hierarchy can be truncated without applying a correlation expansion [78]

or a perturbation expansion in powers of the electric field [79].

Although the derivation of the equations of motion for the higher order operator

products is, at least in principle, straight forward and requires only simple operator

algebra, it gets quite cumbersome and error prone with increasing number of factors in

the operator products. To this end as part of this thesis, a program was developed on

top of the SymPy library [80] which is able do derive symbolic equations of motion for

the required operator products given a system containing a fixed number of electrons.

In a second stage the symbolic equations are used to generate C++ code for numerical

solution of the equations of motion2.

In order to keep the notation cleaner, the following abbreviations are used:

ÔīN = a†i1a
†
i2
· · · a†iN/2aiN/2+1

· · · aiN (3.12)

ωīN =
εi1 + · · ·+ εiN/2 − εiN/2+1

− · · · − εiN
~

(3.13)

Using this notation and adding a phenomenological damping term the equations of

motion take the following general form

d

dt

〈
ÔīN

〉∣∣∣∣
0

= iωīN

〈
ÔīN

〉
(3.14)

d

dt

〈
ÔīN

〉∣∣∣∣
lm

=
∑
j̄N

glm,j̄N (t)
〈
Ôj̄N

〉
(3.15)

d

dt

〈
ÔīN

〉∣∣∣∣
C

=
∑
j̄N

gC,j̄N

〈
Ôj̄N

〉
+
∑
j̄N+2

gC,j̄N+2

〈
Ôj̄N+2

〉
(3.16)

d

dt

〈
ÔīN

〉∣∣∣∣
damp.

= −γīN
(〈
ÔīN ,eq.

〉
−
〈
ÔīN

〉)
(3.17)

where all summations are to be understood as sums over all coupled operator products.

The individual terms shall be discussed in more detail in the following paragraphs. The

first equation describes the free rotation of the expectation value within the complex

plane. Looking at the definition (3.13), one will see that the operator products fall

into two categories. The first category consists of operator products with pairwise

identical indices of creation and annihilation operators which will give ωīN = 0. These

operator products will be referred to as populations or density like quantities. The

second category consists of all operator products with ωīN 6= 0. In general these oper-

ator products can be thought of as products of microscopic polarizations or screened

microscopic polarizations.

2See appendices C.1 and C.2 for details about the implementation
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3.1. Equations of motion for a general FLS

The second equation describes the light-matter couplings among the operator prod-

ucts. The first thing one has to note is that due to energy conservation only operator

products with differing (effective) eigenfrequencies may be coupled directly by the

electric field. If, however, degeneracy is lifted by other terms from the Hamiltonian

one may see finite coupling. The coupling elements are of the form

glm,j̄N (t) = ± i
~
E(t) · µmn

where one index of the dipole matrix element comes from the multi index of the

operator product on the left hand side of the equation and one index comes from the

multi index of the coupled operator product. Without further knowledge about the

system or the exact electric field one can not infer further properties of the coupling

elements at this point.

The third equation describes the Coulomb coupling to operator products of equal or

higher order. The structure of the coupling coefficients is not quite special.

gC,j̄N(N+2)
= − i

~
∑
k̄4

αVk1,k2,k3,k4 α ∈ {−1, 1}

Again the summation is not to be understood as a summation over all possible multi

indices of length four. A noteworthy point is that the first term on the right hand

side is only present if N > 2 whereas the coupling to the next higher order is only

present if N < 2Nel if Nel is the number of electrons in the system. If N = 2Nel the

coupled operator would consist of Nel + 1 creation and Nel + 1 annihilation operators.

Application of such an operator product to a wave function of an Nel-electron system

always evaluates to zero.

The last equation describes the assumed phenomenological damping which, in general,

has to be taken with great care. In the current form this term describes a simple expo-

nential decay to some equilibrium value. In reality one may find competing mechanisms

which lead to decoherence and depopulation of excited states in combinations which

will break this simple exponential behavior. More realistic damping terms may be de-

rived using a formalism introduced by Lindblad [81]. A less mathematical description

can be found in [82]. The fundamental idea is coupling of a given quantum system S

to a large, but finite reservoir R giving a total system S +R. The Hamiltonian of the

total system is then given as a sum of three different terms

Ĥ = ĤS + ĤS,R + ĤR

where ĤS and ĤR describe the dynamics of the systems S and R in isolation whereas

ĤS,R governs coupling terms among S and R. Based on considerations for the evolution

of a pure state vector in a closed quantum system Schaller derives the so called master
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

equation in Lindblad form for the combined System S +R by taking the partial trace

over the System R

d

dt
ρ = Lρ = −i

[
Ĥ, ρ

]
+
∑
α,β

γα,β

(
AαρA

†
β −

1

2

{
A†βAα, ρ

})
. (3.18)

It is pointed out that in this general form Ĥ is a hermitian operator which can be

interpreted as an effective Hamiltonian governing the unitary evolution of the system,

but need not coincide with the original system Hamiltonian. In terms of the considered

FLS this means that for example the effective eigenenergies may shift due to coupling

with an external bath. The second term in equation (3.18) then describes dissipative

mechanisms leading to decay and decoherence in the considered system S.

Although phonon assisted dynamics have not been taken into account for the quantum

dot structures introduced in sections 2.6.1-2.6.4, a brief overview over the derivation

of the respective additional terms in the equations of motion shall be given, explaining

why these terms have not been taken into account for the considered structures.

Considering the presence of phonons, the Hamiltonian (3.1) has to be augmented by

two additional terms [83, 84], namely

Ĥph =
∑
µ,q

~ωµqb†µqbµq (3.19)

Ĥel−ph =
∑
ijqk,µ

gijµqa
†
i,k+q

(
bµq + b†µ,−q

)
ajk. (3.20)

The first equation describes the energy of the phonon system whereas the second

equation describes the electron-phonon coupling. The coupling elements in (3.20) are

given by

gijµq = g3d
ijµqFij(q) (3.21)

g3d
ijLOq =

√
e2~ωLO
2ε0V

(
1

εb
− 1

εst

)
1

q
(3.22)

g3d
ijLAq = δij

√
~q

2ρcLAV
Dī. (3.23)

Structurally, the given equations are not especially demanding or hard to understand.

However, the presence of the so called form factors Fij complicates the situation. The

form factors are given by

Fij(q) =

∫
Ω
ϕ∗i (r)ϕj(r)eiq·rd3r (3.24)
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3.1. Equations of motion for a general FLS

which can be interpreted as the Fourier transform of the wavefunction overlap. The

basic problem on incorporation of electron-phonon interaction for general structures

becomes quite obvious when looking at the expression for the form factors. Without

further simplifications due to structural symmetries, for each pair of state indices, i and

j, one has to calculate form factors for a sufficiently large fraction of the momentum

space explicitly for any direction. While the actual calculation for any pair of states

can be done quite efficiently using a 3d FFT, the sheer number of additional terms

appearing in the equation of motion renders a straight forward incorporation of these

terms infeasible in terms of computational effort on time integration of the equations

of motion. Another difficulty arises due to the fact, that, considering the quantum

dot systems embedded in Schottky diodes, the phonon dispersions may be changed

significantly. To this end, electron-phonon interaction has been neglected for most parts

of this work and dephasings and depopulation accordingly treated phenomenologically

via mono-exponential decay terms.

Coming back to the equations of motion (3.14)-(3.17) for a general FLS, it becomes

obvious that the number of coupling terms in the equations of motion rapidly grow

with an increasing number of electron states in the considered quantum system. To

this end, parallel evaluation of the time derivatives would be highly desirable from

a performance point of view. As it turns out, when using straight forward OpenMP

parallelization which is possible for most C/C++ compilers, performance craters and

the program runs even slower compared to single-threaded execution3. Accordingly

the implemented program uses single-threaded execution for the time integration.

3By the time of writing down this thesis, a phenomenon called false sharing has been identified as
the most probable cause of the performance penalty. See C.3 for further details.
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

3.2. Dynamics of a TLS

We consider a simple system consisting of just two allowed states. The state with

the lower energy is initially populated with a single electron. Since there is no other

electron to cause any Coulomb interaction the Hamiltonian of the system reduces to

Ĥ = ε0a
†
0a0 + ε1a

†
1a1 −E(t) ·

(
µ01a

†
0a1 + µ10a

†
1a0

)
. (3.25)

The Heisenberg equations of motion for this system are then given by

d

dt
a†0a0 =

i

~
E(t) · µ01a

†
0a1 −

i

~
E(t) · µ10a

†
1a0 (3.26)

d

dt
a†1a1 =

i

~
E(t) · µ10a

†
1a0 −

i

~
E(t) · µ01a

†
0a1 = − d

dt
a†0a0 (3.27)

d

dt
a†1a0 = iω10a

†
1a0 +

i

~
E(t) · µ01

(
a†1a1 − a†0a0

)
(3.28)

d

dt
a†0a1 = iω01a

†
0a1 +

i

~
E(t) · µ10

(
a†0a0 − a†1a1

)
(3.29)

where

ωij =
εi − εj

~
.

Looking of the first two equations one finds the conservation law

a†1a1 = 1− a†0a0 (3.30)

and the equations for the ’interband’ coherences reduce to

d

dt
a†1a0 = iω10a

†
1a0 +

i

~
E(t) · µ01

(
1− 2a†0a0

)
(3.31)

d

dt
a†0a1 = iω01a

†
0a1 +

i

~
E(t) · µ10

(
2a†0a0 − 1

)
(3.32)

Given the fact that

a†1a0 =
(
a†0a1

)†
⇒
〈
a†1a0

〉
=
〈
a†0a1

〉∗
one ends up with a system of two coupled equations fully describing the dynamics of

the two level system

d

dt

〈
a†0a0

〉
=
i

~
E(t) · µ01

〈
a†0a1

〉
− i

~
E(t) · µ10

〈
a†0a1

〉∗
(3.33)

d

dt

〈
a†0a1

〉
= iω01

〈
a†0a1

〉
+
i

~
E(t) · µ10

(
2
〈
a†0a0

〉
− 1
)

(3.34)

For numerical evaluation it is advantageous to transform these equations into a refer-

ence frame where the individual quantities vary slowly. This technique is commonly
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3.2. Dynamics of a TLS

known as rotating wave approximation (RWA) in literature. To this end one introduces

new quantities such that

〈
a†iaj

〉
=
〈̃
a†iaj

〉
ei(nijωl+δ)t (3.35)

which corresponds to the frequency decomposition

ωij = nijωl + δ.

Considering resonant excitation, i.e. ωl = ω10, insertion of (3.35) into (3.33) and (3.34)

yields

d

dt

〈
a†0a0

〉
=
i

~
E(t) · µ01

〈̃
a†0a1

〉
ein01ωlt − i

~
E(t) · µ10

〈̃
a†0a1

〉∗
e−in01ωlt (3.36)

d

dt

〈̃
a†0a1

〉
=
i

~
E(t) · µ10

(
2
〈
a†0a0

〉
− 1
)
e−in01ωlt (3.37)

To further simplify these equations consider the exciting electric field to be of the

following form

E(t) = E0e
iωlt +E∗0e

−iωlt (3.38)

Since ω01 < 0 one finds n01 = −1 in case of resonant excitation. Substituting n01 = −1

and inserting (3.38) yields

d

dt

〈
a†0a0

〉
=
i

~
E0 · µ01

〈̃
a†0a1

〉
+
i

~
E∗0 · µ01

〈̃
a†0a1

〉
e−2iωlt

− i

~
E0 · µ10

〈̃
a†0a1

〉∗
e2iωlt − i

~
E∗0 · µ10

〈̃
a†0a1

〉∗
(3.39)

d

dt

〈̃
a†0a1

〉
=
i

~
E0 · µ10

(
2
〈
a†0a0

〉
− 1
)
e2iωlt +

i

~
E∗0 · µ10

(
2
〈
a†0a0

〉
− 1
)

(3.40)

If the energy difference between the two eigenstates is on the order of 1 eV the terms

containing the exponential factors are rapidly oscillating and tend to average out

during time integration (Riemann-Lebesgue lemma). So in order to further simplify

the equations one may just drop these terms and ends up with

d

dt

〈
a†0a0

〉
=
i

~
E0 · µ01

〈̃
a†0a1

〉
− i

~
E∗0 · µ10

〈̃
a†0a1

〉∗
(3.41)

d

dt

〈̃
a†0a1

〉
=
i

~
E∗0 · µ10

(
2
〈
a†0a0

〉
− 1
)

(3.42)
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

Equations (3.41)-(3.42) are called the optical Bloch equations as their structure is

identical to the equations governing the dynamics of a spin 1/2 particle in an external

magnetic field. Since all appearing quantities are now just slowly varying one may use

a much larger time step when numerically solving the equations. However, one has to

take care if the energy difference between the states get small. In this case neglection

of the exponential terms might introduce significant errors.
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Figure 3.2.: Rabi oscillations of the excited state population. Left: Time resolved
Rabi oscillations of the population of the excited state at a pulse area of 8π of the
exciting light field. Right: Final population of the excited state depending on the pulse
area of the exciting pulse.

Although equations (3.41)-(3.42) are useful to gain general insight of the dynamics

of a quantum system under the influence of an external electric field they are not

quite useful for modeling realistic systems. In their current form these equations are

not able to describe the decay of microscopic polarizations or generated population of

the excited state observed in experiments since all terms appearing on the right-hand

side are products containing the external electric field. In short this means that once

the exciting pulse is gone the given quantities will not change their absolute values

any more. A straightforward fix is provided by introducing phenomenological damping

terms

d

dt

〈
a†0a0

〉∣∣∣∣
damp.

= − 1

T1︸︷︷︸
γ1

(
1−

〈
a†0a0

〉)
(3.43)

d

dt

〈̃
a†0a1

〉∣∣∣∣∣
damp.

= − 1

T2︸︷︷︸
γ2

〈̃
a†0a1

〉
. (3.44)

These terms lead to a exponential decay of the induced microscopic polarization and

the excited charge carrier density at the cost of two additional fitting parameters.

In general both of the introduced decays are caused by a combination of different
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3.2. Dynamics of a TLS

effects and by no means independent of each other. For example the dephasing of

the microscopic polarization results from so called pure dephasing mechanisms, i.e.

processes which do not alter the populations, and processes which lead to a change in

the population [85]. As Skinner puts it, pure dephasing can be described by processes

whose sole effect is a stochastic change of the eigenenergies in the system resulting in

the loss of a defined phase difference between the two eigenstates in the system. For

a two level system the dephasing time of the microscopic polarization may be written

as
1

T2
=

1

T2,pure
+

1

2T1
. (3.45)

The interrelation of the two decay constants arises from the fact that any process that

destroys population of the excited state automatically destroys the polarization of the

system as well. In the so called coherent limit (T2,pure = 0) one finds T2 = 2T1 [86].

This corresponds to the case in which only spontaneous radiative decay is considered

as a process destroying population in the excited state.

Figure 3.3 shows the normalized values of |p| and n1 over time where

p :=
〈
a†0a1

〉
n1 :=

〈
a†1a1

〉
and T1 = 400 ps considering a Gaussian excitation with 50 ps full width at half

intensity (FWHI).
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Figure 3.3.: Normalized values of |p| and |n1| over time
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

3.3. Modeling Ramsey-type experiments in terms of a FLS 4

The original experiment proposed by Ramsey [27] was designed for molecular beams

and basically consisted of two interaction zones with oscillating fields with a non-

interacting zone of variable length between them. Nowadays, similar experiments can

be performed using a suitable pulsed laser source. Recently such a setup has been used

by the experimental group of Artur Zrenner at Paderborn University to demonstrate

coherent control of a field tunable quantum dot embedded in a Schottky diode. The

quantum dot is illuminated with a sequence of two π
2 pulses with a variable pulse delay

To as depicted in figure 3.4 a). The applied bias voltage at the gate electrode controls

the detuning of the fundamental exciton resonance in the quantum dot from the central

frequency of the two laser fields. Depending on the detuning, the superposition state

generated by the first optical pulse picks up a certain phase between the two optical

pulses and the second laser pulse may interact constructively or destructively with it,

i.e the laser may cause a complete population inversion or a complete depopulation as

depicted in figure 3.4 b). In addition to the static voltage used to tune the quantum
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Figure 3.4.: Schematic pulse sequence for the Ramsey type experiments. Left: Se-
quence of the optical pulses. Right: Temporal evolution of the population of the excited
state for constructive and destructive interaction between the generated superposition
state and the second laser pulse.

dot resonance, the experimental setup allows for application of an ultra fast electric

control pulse which adds to the already applied gate voltage and may be used to change

the phase picked up by the superposition state between the two optical pulses.

Figure 3.5 shows the Ramsey fringe pattern depending on the applied bias voltage

without an applied control pulse. The extremal points with a small magnitude of the

photocurrent correspond to a destructive interaction of the second laser pulse with

the generated superposition state whereas the extremal points with larger magnitude

of the photocurrent correspond to constructive interaction. As measuring the current

4Parts of the results presented in this section have been published in [28]
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Figure 3.5.: Photocurrent signal from a quantum dot embedded in a Schottky diode
depending on the applied bias voltage. The data have been kindly provided by the
experimental group of Prof. Dr. Artur Zrenner, by now published in [28]

produced by a single electron is pretty demanding, the experiment is performed with

a pulsed laser source which generates the optical pulse pairs with a repetition rate of

∼80 MHz. The measured peak magnitude of the photocurrent corresponds roughly to

a little below one extracted electron per optical pulse pair.

In order to accurately model the experimental data, one has to think about how the

photocurrent signal is generated. Considering constructive interaction of the second

laser pulse with the superposition state generated by the first laser pulse, the pair

of optical pulses creates a single exciton. Sticking to the pure electron picture, the

given pulse sequence promotes a single electron from its ground state to an excited

state. In order to generate a measurable current signal, the electron has to tunnel out

of the quantum dot, most probably to the back contact of the Schottky diode. For

simplicity, equal tunneling rates for electrons and holes may be assumed, such that

at the same time the excited electron tunnels to the back contact the hole tunnels to

the gate electrode, resulting in a net current of one electron per pulse pair. So, one

possibility to model the experiment is to integrate the equations of motion for a TLS

in the coherent limit using the population decay term as a feed for the photocurrent

signal. The resulting equations of motion are given in (3.46)-(3.49)
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

d

dt
p(t) = i

Ω0

2
(n1(t)− n0(t))− iδp(t)−

(
2

T1

)
p (3.46)

d

dt
n0(t) = i

Ω0

2
(p∗(t)− p(t)) +

1

T1
(1− n0(t)) (3.47)

d

dt
n1(t) = i

Ω0

2
(p(t)− p ∗ (t))− 1

T1
n1(t) (3.48)

d

dt
PC(t) =

1

T1
n1 (3.49)

Integrating these equations with T1 = 350 ps, yields a theoretical fringe pattern as

given in figure 3.6. The optical pulses have been modeled by two Gaussian functions

with a FWHI value of 5 ps and an amplitude adjusted to give a pulse area of π
2 for

each of the pulses. In comparison to the experimentally obtained signal in figure 3.5

one observes a comparable peak magnitude of the photocurrent signal whereas the

current minima of the experimental curve get closer to zero compared to the calculated

photocurrent signal. In principal, one can get the current minima closer to zero by

increasing the value of T1 since this decreases the pick up of signal between the two

pulses. Calculated fringe patterns for different values of T1 are plotted in figure 3.7.
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Figure 3.6.: Calculated photocurrent signal without applied control pulse.

As can be seen so far, the minima and maxima of the fringe pattern depend on the

tunneling time T1. Defining the current difference of two neighboring extremal points
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Figure 3.7.: Calculated photocurrent signal using TLS equations of motion in the
coherent limit with T1=280 ps.

of the fringe pattern as fringe contrast, one observes an asymmetric loss of fringe

contrast for the experimentally obtained signal. Looking at the calculated signals in

figures 3.7, the loss of fringe contrast is totally symmetric, regardless of the chosen

value of T1. In this regard, the description of the experiment in terms of a TLS delivers

results comparable to the experimental data, but is not able to reproduce all features

seen in the experiment.

As already mentioned in the beginning of this section, the experimental setup allows

application of ultra fast electronic pulses which act on top of the applied static voltage

and may change the phase picked up between the two optical pulses. Schematically one

can think of a pulse sequence as given in figure 3.8. The shown schematic represents

a somewhat idealized pulse sequence for this kind of experiment. In principle such

a pulse sequence could be achieved by increasing the delay between the two optical

pulses. In practice, however, the delay values are strongly limited by the life time of

the excitons in the quantum dot system. In the limit of delays longer than the exciton

life time, the two optical pulses would generate independent photocurrent signals and

one would totally loose contrast. On the other hand, considering short optical pulses

with a small delay, this setup could be used to sample the electric field generated by

the control pulse. As already mentioned, the applied control voltage acts on top of an

already applied voltage. So the total voltage determining the detuning of the exciton
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is given by

V (t) = Vstatic + Vc(t)
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Figure 3.8.: Ramsey-type experiment with applied control pulse. Left: Schematic
pulse sequence. Right: Experimental photocurrent signals showing a phase change of
the fringe pattern from 0 to 3π. The data have been kindly provided by the experi-
mental group of Prof. Dr. Artur Zrenner, by now published in [28]

resulting in a time dependent detuning of the form

δ(t) = C (Vstatic + Vc(t)) (3.50)

where C is a calibration constant depending on the exact structure of the diode. From

absorption measurements in the photocurrent regime C has been estimated as ∼ 1.78

meV/V. In the limit of ultra short optical pulses, the phase picked up between the

two optical pulses is given as

Φ =

∫ t0+To

t0

C (Vstatic + Vc(t)) dt = C

∫ To

t0

Vstaticdt︸ ︷︷ ︸
Φstatic

+C

∫ To

t0

Vc(t)dt︸ ︷︷ ︸
∆Φ

(3.51)

If the delay To is chosen such that V (t) varies significantly only at timescales consid-

erably larger than To, the second term in (3.51) may be approximated as

∆Φ ≈ CVc(t0)To (3.52)

giving

Vc(t0) ≈ ∆Φ

CTo
. (3.53)

This means, by measuring the phase change of a given fringe pattern while scanning

the value of t0 over the applied control pulse, one is able to reconstruct the electric

signal of the control pulse. Leaving the limit of short optical pulses and small pulse
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Figure 3.9.: Photocurrent signal obtained by scanning the optical pulse pair over the
applied control pulse. The data have been kindly provided by the experimental group
of Prof. Dr. Artur Zrenner, by now published in [28].

delays, the fundamental reasoning stays the same, but the measured phase difference

gives information only about the integral over the control voltage. Actually, in order

to nicely resolve the phase change of a complete fringe pattern like the experimental

data shown above, one has to consider sufficiently large delays of the optical pulses

since the pulse delay limits the maximum number of visible fringes when keeping the

interval of scanned bias voltages fixed.

As the experimental setup did not allow full control over the shape of the applied

control pulse, an attempt was made to retrieve the actual form of the pulse by afore-

mentioned sampling technique. By scanning the optical pulse pair over the control

π control pulse the photocurrent signal plotted in figure 3.9 has been obtained. As

can be seen, the sampling curve is quite nontrivial. By simple reasoning one can only

conclude two things. Firstly, the applied control pulse is significantly longer than the

delay between the optical pulses. Secondly, the pulse has to be asymmetric. The first

observation gets immediately clear by looking at the sampling signal. For the second

observation one needs to recall the integral representation of the additional phase pick

up due to the control pulse

∆Φ = C

∫ t0+To

t0

Vc(t)dt.
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

If the control pulse were symmetric with respect to some point in time, one would

expect to find a symmetric sampling signal with maximum amplitude when the control

pulse is centered between the two optical pulses, i.e. the peak voltage is located at

t = t0 + To
2 . However, in order to accurately model the experimental data for applied

control pulses, a reasonable approximation of the control voltage signal is needed. As

the number of pulse shapes resulting in the observed sampling signal is unlimited, at

least in principle, a simple Gaussian function has been chosen for the control voltage.

V (t) = V0e
−
(
t−Tc
τc

)2

(3.54)

Using an optical pulse pair with the first pulse fixed at t = 0 and To = 100 ps, the

free parameter Tc may serve as an equivalent for the delay value from the experiment.

The aim was then to find proper values for V0 and τc in order to give a rise time of the

photocurrent signal comparable to the one observed in experiment, i.e. a phase change

from 0 to π on the order of 100 ps. Fixing the value of V0 to 13 mV, calculations for

different values of τc have been performed in order to find a pulse width giving the

desired rise time. The results are shown in figure 3.10. As has already been predicted,
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Figure 3.10.: Calculated photocurrent sampling signal for different widths of the
control pulse.

the calculated signals are symmetric about a delay value of 50 ps which corresponds to

the center of the time interval defined by the two optical pulses. The rise times obtained
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3.3. Modeling Ramsey-type experiments in terms of a FLS

for the two shorter control pulses seems somewhat too low whereas the rise times of

70 ps and 80 ps pulses are quite close to the rise time observed in experiment. Looking

closer, one observes some sort of saturation behavior for the 80 ps pulse, recognizable

by the flat behavior of the curve around 50 ps delay. This is an indication, that the

maximum phase change which may be caused by this pulse, is already beyond π. For

this reason, τc = 70 ps has been chosen as the width value for the control pulse while

searching for a suitable value of the amplitude V0. Figure 3.11 shows the calculated

sampling signals for different amplitudes of the control pulse.
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Figure 3.11.: Calculated photocurrent sampling signal for different amplitudes of the
control pulse.

As can be seen, the full phase change of π can not be achieved for pulse amplitudes

smaller than 13 mV. For amplitudes larger than 13 mV, the already mentioned satu-

ration behavior gets visible. However, for the pulse amplitudes of 15 mV and 16 mV

one observes some oscillatory behavior around a delay of 50 ps. This clearly indicates

that the maximum phase change goes significantly beyond π. For this reason, V0 = 13

mV, τc = 70 ps and Tc = 50 ps haven been chosen as parameters for the π control

pulse. Considering the 2π and 3π control pulses, the width and delay have been kept

fixed and just the amplitude has been scaled up. The results are shown in figure 3.12.

Table 3.1 summarizes the parameters for the three control pulses.

Although the desired shift of the fringe pattern compared to the pattern obtained

without applied control pulse has been achieved, deviations from the experimental
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Figure 3.12.: Calculated fringe patterns with applied π, 2π, and 3π control pulses.
Top left: π control pulse. Top right: 2π control pulse. Bottom left: 3π control pulse.
Bottom right: Photocurrent signals from the experiment already shown in figure 3.8

data presented in figure 3.8 are quite obvious. From the theoretical curves one would

conclude that the applied control pulse merely shifts the fringe pattern towards larger

negative bias voltages. This shift feature is also visible in the experimental data. How-

ever, the experimental curves suffer from a significant loss of fringe contrast with

increasing phase shift which can not be reproduced by the theory so far. In addition

to the obviously missing loss of contrast, another issue still not addressed is the asym-

metric loss of fringe contrast which is visible in the experimental data, but not in the

calculated curves. The only free parameter considering the underlying TLS so far is the

tunneling time T1. As has been shown, changing this parameter does not change the

symmetry of the calculated curves. However, the data shown in figure 3.7also indicate

that a smaller T1 value leads to a reduced fringe contrast. To this end, the desired

asymmetric loss of fringe contrast could be easily accounted for by introduction of a

voltage dependent tunneling time. From a physical point of view, this makes perfect

sense when keeping in mind that the quantum dot is embedded in a Schottky diode.

Changing the applied bias voltage results in a different tunneling barrier for electrons

towards the back contact with higher tunneling rates at larger negative bias voltages.
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3.3. Modeling Ramsey-type experiments in terms of a FLS

Parameter π 2π 3π

V0 [mV] 13 26 41
Tc [ps] 50 50 50
τc [ps] 70 70 70

Table 3.1.: Fitted parameters for π, 2π, and 3π control pulses centered between the
two optical pulses.

In order to account for the voltage dependent, eventually asymmetric, tunneling rates

for electrons and holes, a model which has been previously used in the description

of a similar experiment [87] has been adopted and shall be explained in the follow-

ing. Within a dressed state picture one might think as follows. In its ground state,

the quantum dot contains no excitons, i.e. it is empty, while in its excited state the

quantum dot contains a single exciton. Both charge carriers may tunnel individually

from the quantum dot, giving rise to two additional states in the given picture. The

first of these states results from the electron tunneling out of the quantum dot, once

the exciton state has been prepared, leaving the quantum dot in a positively charged

state. The second state arises if the hole tunnels out of the quantum dot, leaving the

quantum dot in a negatively charged state. Figure 3.13 gives a graphical illustration.

A noteworthy point is, that the single charge states may not be excited by interaction

Figure 3.13.: Modified model to account for asymmetric tunneling rates of electrons
and holes. The diagram on the bottom indicates the decay channels by which the
system can relax to its ground state.
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

with an optical field but result solely from tunneling events.

The equations of motion in RWA for this system are

d

dt
ρ01 = i

Ω0

2
eiΦ
(
ρ11e

−iΦ − ρ00e
iΦ
)
− iδρ01 −

(
γr + γe + γhh

2

)
ρ01 (3.55)

d

dt
ρ00 = i

Ω0

2

(
ρ10e

iΦ − ρ01e
−iΦ)+ γrρ11 + γhhρhh + γeρe (3.56)

d

dt
ρ11 = i

Ω0

2

(
ρ01e

−iΦ − ρ10e
iΦ
)
− (γr + γe + γhh)︸ ︷︷ ︸

=:Γ

ρ11 (3.57)

d

dt
ρhh = γeρ11 − γhhρhh (3.58)

d

dt
ρe = γhhρ11 − γeρe (3.59)

d

dt
PC = (γe + γhh) ρ11 (3.60)

For simplicity, the radiative recombination rate γr and the hole tunneling rate γhh
are assumed to be constant. An approximated expression for the tunneling rate of a

charge carrier confined in a quantum dot is given by

γt =
~

8m∗a2
exp

(
−4
√

2m∗

3eE~
√
Econf

3

)
(3.61)

with the effective mass m∗, the height of the quantum dot a, the static electric field

E, and the confinement energy Econf . Although the height of the quantum dot and

the confinement energy are not known, the given equation predicts that the following

proportionality should hold:

γt = A exp

(
−B
V

)
+ Ct

provided that the static electric field is proportional to the applied bias voltage. The

additive constant is introduced to account for eventual finite tunneling rates at 0

applied voltage. Values A, B and Ct have been determined by fitting the peak width

of absorption peaks measured in the photocurrent regime. Assuming a Lorentzian line

shape and that the width is dominated by electron tunneling, the following values have

been determined

Parameter Value

A 0.00153086 1/fs
B -4.38 1/V
Ct 4.88757·10−6 1/fs
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3.3. Modeling Ramsey-type experiments in terms of a FLS

Considering a finite hole tunneling rate and radiative recombination rate each of 1 ns,

the fitted parameters have been adjusted to

Parameter Value

A 0.00153086 1/fs
B -5 1/V
Ct 6.10947·10−6 1/fs

However, considering a voltage dependent decay rate may not explain the systematic

loss of fringe contrast for stronger control pulses observed in the experiment. A mech-

anism discussed as a candidate to explain the loss of fringe contrast is time jitter.

Considering that the synchronization of the optical pulses and the control pulses is

not perfect, the control pulse might produce different phase changes for subsequent

shots during a measurement. As the measured photocurrent can be thought of as the

average photocurrent from a series of subsequent shots, a possible way to account for

time jitter is drawing the center of the control pulse from a given random distribution.

Considering the control pulses centered between the two optical pulses the required

interval from which the center of the control pulse is drawn is far too big to match

experimental reality. Looking closer at the experimental data one observes that the

fringe envelope is shifted towards larger negative bias voltages for increasing strength

of the control pulse.
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Figure 3.14.: Calculated photocurrent signals for time jittered control pulses.
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This is an indication, that either of the optical pulses has a significant overlap with the

control pulse. To this end, a new set of control pulses centered on the first optical pulse

has been set up, considering the interval [-5.5ps;5.5ps] for the center of the respective

control pulse. Figure 3.14 shows the simulation results.

The photocurrent signals have been simulated by averaging 100 individual single shot

calculations for each bias voltage drawing the center of the respective control pulse from

a uniform probability distribution on the mentioned interval. Although no quantitative

agreement between the theoretical and the experimental data has been achieved, the

theoretical fringe patterns resemble the features seen in the experiment. For increasing

strength of the control pulse the envelope of the fringe pattern is shifted toward larger

negative bias voltages and the fringe patterns suffer from a significant loss of contrast

for stronger control pulses.

A similar effect can be achieved jittering the amplitude of the control pulses as can be

seen in figure 3.15. In this case the center of the control pulses has been fixed to the

center of the first optical pulse and its amplitude has been drawn from the interval

V0 ± 10 mV. As for the time jittered control pulses, the curves have been obtained by

averaging over 100 single shot calculations for each bias voltage.

Parameter π 2π 3π

V0 [mV] 60 120 180
Tc [ps] 0 0 0
τc [ps] 70 70 70

Table 3.2.: Fitted parameters for π, 2π, and 3π control pulses centered on the first
optical pulse.

For both time and amplitude jittered control pulses the theoretical photocurrent curves

show a stronger shift of the fringe envelope than the experimental curves which is a

clear indication that the amplitudes of the chosen pulses are too large. Nevertheless,

time and amplitude jitter can, at least in principle, explain the experimentally observed

loss of fringe contrast and overall shift of the fringe pattern towards larger negative

bias voltages. As the amplitude jitter needs a relatively large amplitude of 10 mV it

can possibly ruled out as a realistic candidate.

Another possible explanation for the loss of fringe contrast that has been discussed with

the group of Prof. Dr. Artur Zrenner is electron tunneling from the back contact into

the quantum dot. In the given experimental setup it is possible that the diode comes

close to the forward bias regime allowing electrons from the back contact to tunnel

into an unoccupied state of the quantum dot. The additional charge then dephases

the considered exciton TLS and may cause the loss of fringe contrast. In the current

model, however, this effect can not be captured.
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Figure 3.15.: Calculated photocurrent signals for amplitude jittered control pulses.

Based solely on model calculations, no final decision over the process underlying the

experimentally observed loss of fringe contrast can be made. Basically any process

that leads to a decoherence of the exciton TLS or randomized phase pickup between

the optical pulses can potentially cause the loss of fringe contrast.
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3.4. Modeling Rapid Adiabatic Passage in terms of a FLS5

Using the refined dressed state model introduced in the last section, theoretical cal-

culations to understand the measurements of another experiment performed in the

group of Prof. Dr. Artur Zrenner have been made. The given experiment is aimed at

robust state preparation by so called rapid adiabatic passage (RAP) using a single

optical pulse for the excitation. The basic phenomenon is quite well known in litera-

ture [88, 89, 90]. In general the term RAP is used to denote robust population transfer

from one quantum state to another. As Greentree et al. [89] propose, the given states

may even be spatially separated. The basic idea, at least for the considered experi-

ment, can be summarized as follows. Given a transition between two states in a given

quantum system, a time dependent detuning is imprinted to the given transition. In

theory it does not make any difference whether the transition frequency between the

two states or the frequency of the exciting field is varied. A key point is however, that

at some point during interaction with the external field the system should be excited

resonantly. On the left figure 3.16 shows an example of how the detuning may look

in a pulsed experiment. In the sketched setup, the point of zero detuning has been

chosen to coincide with the center of the excitation pulse.
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Figure 3.16.: Left: TLS detuning in a RAP experiment with zero detuning at the
intensity maximum of the exciting laser pulse. The grey shaded area indicates the
temporal intensity profile of the exciting laser pulse. Right: Time resolved exciton
population for a 4π-pulse neglecting all decay and decoherence mechanisms.

On the right figure 3.16 shows the calculated time resolved exciton population con-

sidering a 4π-pulse while neglecting all decay and decoherence mechanisms. For the

model introduced in the last section this means γe = γr = γhh ≡ 0. Without applied

chirp the population shows the expected oscillation ending up in the ground state after

the excitation is gone. With an applied linear chirp one observes a transition from the

5A joint publication with the group of Prof. Dr. Artur Zrenner is in preparation.
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ground state to the excited state, but the chirp suppresses the population oscillations.

In the sketched situation, application of a linear chirp with a slope of 5µeV/ps is suffi-

cient to almost totally suppress the population oscillation and replace it by a smooth

transition to the excited state.

In the considered experiment the two states of interest are the ground state consisting

of an empty quantum dot and the excited state where the quantum dot is populated

with a single exciton. The time dependent detuning is achieved by Stark tuning the

quantum dot exciton resonance via an ultra fast electric control pulse at the gate con-

tact of a Schottky diode6. Given a sufficiently strong laser pulse and a sufficiently fast

passage of the detuning through resonance, one expects to find a robust preparation

of the exciton state with respect to intensity fluctuations of the exciting light field.

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Amplitude [W1/2]

0

2

4

6

8

10

12

Ph
ot

oc
ur

re
nt

 [p
A

]

Without chirp
With chirp

0 1 2 3 4 5
Pulse area [π]

0

2

4

6

8

10

12

14

Ph
ot

oc
ur

re
nt

 [p
A

]

Without chirp
With chirp

Figure 3.17.: Left: Photocurrent measurements of an electrically tuned quantum dot
with and without applied chirp. Data have been kindly provided by the experimental
group of Prof. Dr. Artur Zrenner, publication is in preparation. Right: Calculated
photocurrent signal for pulse areas up to 5π

On the left side figure 3.17 shows the result of photocurrent measurements on the

electrically tuned quantum dot, both with and without applied chirp. The measure-

ments without applied chirp correspond to resonant excitation and show the expected

oscillating behavior indicating Rabi oscillations of the exciton population. A somewhat

counter-intuitive observation is that the photocurrent does not drop to zero at finite

amplitudes. Applying the simple model that has already been used for the Ramsey

experiment, this can be understood quite easily. In principle the photocurrent signal is

nothing but the time integrated non-radiative decay of the excited state of the exciton

TLS. Considering finite tunneling rates of electrons and holes, this decay starts as soon

as the optical pulse has generated population in the excited state.

The right side of figure 3.17 shows the calculated photocurrent signal up to a pulse

area of 5π with and without an applied chirp. The chirp has been chosen linear with

6Patent on the application of the electric chirp to the quantum dot submitted to DPMA on March
13, 2018
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a slope of 1.5 µeV/ps and zero detuning at the center of the optical pulse. For the

optical pulse a fixed width of 50 ps FWHI has been chosen. In order to achieve a finite

photocurrent signal using the model introduced in the last section γe = 1/400 1/ps,

γhh = 1 1/ns, and γr = 0 have been assumed. The finite value of γhh is needed for

consistency. In case γhh = 0 had been assumed, the given system would not relax into

its ground state, but into a state where ρhh = 1.

As can be seen, the qualitative agreement with the experimental data is quite good.

In case of resonant excitation one observes Rabi oscillations of the photocurrent sig-

nal with finite signal at even multiples of π whereas in case of an applied chirp to

the detuning of the TLS resonance one observes a well defined saturation behavior

with only small signal fluctuations left in the saturated part of the curve. Quantitative

agreement could not have been expected based on the simple model. However, before

switching back to the realistic model with voltage dependent tunneling rates, the gen-

eral dependence of the photocurrent signal on fundamental experimental parameters

shall be examined. The focus of these studies lies on the robustness of the photocurrent

signal.

The position of zero detuning is one of the first parameters which come to mind when

asking this question. For further investigation Gaussian shaped laser pulses, centered

at t = 0 with a width of 50 ps FWHI are assumed. A simple linear time dependence

of the form

δ(t) = mc (t− Tc) (3.62)

is assumed where Tc is the point of zero detuning. Assuming that the photocurrent

signal is directly proportional to the electric field intensity at the time of zero detuning,

one would expect a decreasing photocurrent signal for increasing absolute values of

Tc. Figure 3.18 shows the photocurrent signal and the temporal intensity profile of the

exciting laser pulse. Both curves have been normalized for easier comparison. As can

be seen, the curves are almost identical despite the photocurrent curve being a little

bit broader than the intensity curve. The broadening can be attributed to the finite

spectral width of the laser pulse and the TLS resonance.
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Figure 3.18.: Theoretical photocurrent signal depending on the time delay between
the intensity maximum of the exciting laser pulse and the point of zero detuning from
the TLS resonance.

Another interesting parameter is the energy range covered by the chirp. Increasing

the slope of the chirp while keeping the point of zero detuning fixed at the maximum

of the optical pulse, one should observe a smooth transition from a regime where

the photocurrent signal is dominated by Rabi oscillations to a regime where it shows

the desired saturation behavior. The origin of this transition is quite obvious. If the

energy range covered by the chirp is smaller than the spectral width of the exciting

laser pulse, the laser pulse has resonant components for its whole duration. Although

the obtained photocurrent signal may vary from the situation of resonant excitation,

one still expects oscillatory behavior depending on the pulse area. If, on the other

hand, the energy range of the chirp is significantly bigger than the spectral range of

the exciting laser pulse, the TLS is driven off-resonantly most of the time and one

expects the photocurrent signal to be dominated by the RAP signature.
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

Figure 3.19.: Calculated photocurrent signal depending on the pulse area at constant
temporal width of the exciting laser pulse and the slope of the chirp. Overlaid contour
lines indicate of constant photocurrent, their color does not correspond to the color
coded signal value.

Figure 3.19 shows the calculated photocurrent signal depending on pulse area of the

exciting laser pulse and the maximum detuning of the TLS during the chirp. As ex-

pected, the photocurrent signal shows a smooth transition from Rabi oscillations to

RAP. In addition one observes a shift of the saturation threshold towards larger pulse

areas for increasing chirp slope7. Although it might not have been obvious in the initial

consideration, this phenomenon can be understood quite easily. At higher chirp slopes

the time window in which the optical pulse is resonant with the exciton resonance is

shorter than at smaller chirp slopes. This shorter time window then requires stronger

optical pulses to generate the exciton.

A point which has not been addressed so far is the dependence on the length of the

optical pulse. When using an electric chirp, the optical pulse and the electric control

pulse have to be synchronized to obtain the desired RAP effect. In order to make the

synchronization easier, typical excitation pulses used in experiment exhibit a FWHI

of ∼50-100 ps. As the measured photocurrent signal generated by population decay

of the excited state, there is no guarantee for a high population of the excited state

given a high photocurrent signal, i.e. a high photocurrent signal does not guarantee

that the population has been coherently inverted. To this end, the photocurrent signal

7In this context pulse area is equivalent to pulse amplitude.
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3.4. Modeling Rapid Adiabatic Passage in terms of a FLS

has been calculated over a fixed range of optical pulse amplitudes and FWHI, in order

to identify parameter intervals giving coherent population inversion.

Resonant excitation 5 µeV/ps

Figure 3.20.: Calculated photocurrent signal depending on the amplitude and width
of the optical pulse considering linear detuning chirps with fixed slopes. Left: No chirp,
i.e. resonant excitation. Right: 5 µeV/ps

In the top row, figure 3.20 shows the calculated photocurrent signal depending on

the amplitude and width of the optical pulses both with and without applied electric

control pulse. In case of resonant excitation one observes the expected Rabi oscillations,

showing a clear dependence on both the amplitude and the width of the exciting
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

laser pulse. For higher pulse widths, the oscillations get faster and loose contrast, i.e.

the signal is starting to get more and more uniform. In case of an applied electric

control pulse, the calculated photocurrent signal shows a smooth transition from an

oscillating regime to a regime with quick saturation of the signal level. This transition

has already been discussed in context of the slope dependence for the electric chirp.

The main argument of finite temporal overlap of the exciting laser pulse and the TLS

resonance stays the same. In this case, however, the temporal overlap is changed by

changing the width of the optical pulse while keeping the slope of the chirp constant.

In comparison to the previously shown results, one finds a more or less universal

threshold pulse amplitude at which the RAP saturation occurs. However, as already

mentioned, the photocurrent signal on its own may be misleading since it is basically a

time integrated population decay. The middle row of figure 3.20 shows the maximum

population of the excited state for the same pulse parameters as for the calculated

photocurrent signal. Comparison of the maximum population of the excited state

and the photocurrent signal, confirms that there is no strict correlation between the

obtained photocurrent signal and the achieved maximum population of the excited

state. However, for the given model parameters the calculations indicate that the

system dynamics get more and more incoherent at larger pulse amplitudes for optical

pulses with an FWHI larger than 60 ps. Considering the robustness of the population

inversion, the achieved maximum population is no good measure either, because the

optical pulse might also depopulate the system after causing a relatively high maximum

population. In order to get a better measure, the bottom row figure 3.20 shows the

population at t = τo, i.e. roughly 0.5 FWHM after the pulse maximum. Comparing

these data with the photocurrent signal, one finds a much better correspondence of

density data and the photocurrent signal. Taking the population at t = τo as a measure,

the calculated data suggest a relatively small parameter window around the amplitude

0.1 and a FWHI of 50 ps if one aims for a high population inversion without significant

fluctuations on a changing pulse amplitude. Incoherent dynamics arise when the length

of the excitation pulse gets close of even bigger than the decoherence and population

decay times. To this end, in order to check whether a better population control can be

achieved, the simulations have been repeated with γe=1/420 ps and γr=0. Figure 3.21

shows the respective results.
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3.4. Modeling Rapid Adiabatic Passage in terms of a FLS

Resonant excitation 5 µeV/ps

Figure 3.21.: Calculated photocurrent signals and densities depending on the am-
plitude and width of the optical pulse with T1=420 ps. Top row: Photocurrent signal.
Middle row: Maximum population of the excited state during the simulation. Bottom
row: Population of the excited state at t = τo.

Figure 3.22 shows the population of the excited state at t = τo for a pulse width of 40

ps FWHI for chirped excitation using fixed and dynamic tunneling rates compared to

the population for resonant excitation. While the signal for resonant excitation shows

a more or less rapid oscillation, the density for both fixed and dynamic tunneling rates

is rather robust and does not show a significant decrease on the amplitude interval

[0.07,0.25]. Beyond the amplitude of 0.25 a significant decrease of the achieved popula-
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

tion is observable. Although the achieved exciton population of ∼ 0.7 for the dynamic

tunneling rates might seem suboptimal, the achieved robustness is quite promising.

As has been shown by the additional calculations, decreased tunneling rates may push

the achieved population well above 0.8.
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Figure 3.22.: Calculated photocurrent signals at a pulse width of 40 ps FWHI.
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3.4.1. Dynamics of a four level system

The systems considered so far could be modeled rather properly in terms of an exciton

TLS with additional states which are not coupled radiatively or via Coulomb inter-

action. Furthermore the optical and Coulomb matrix elements determined from the

k ·p eigenstates have been set rather unreflected until now. The simplest system with

changed dynamics due to Coulomb interaction that one can think of is a four level sys-

tem. The considered system consists of two initially populated and two empty states.

As only two electrons are considered, the hierarchy of equations of motion is naturally

truncated at the level of four point quantities. Among the four point quantities there

is a special subset of operator products of the form

a†ia
†
jajai

where both indices i and j correspond to excited, i.e. initially unpopulated states,

which can be interpreted as biexciton densities. Until now dynamics have been cal-

culated on a rather phenomenological level where exciton binding energies have been

assumed to included in the transition energy of a given TLS and proper excitation

has been modeled by directly setting time dependent values of the Rabi frequency Ω.

In this section the optical and dipole matrix elements calculated for the lens shaped

quantum dot with a trumpet shaped Indium content will be used to model the optical

absorption at the fundamental gap of the quantum dot system. In order to accomplish

this, the matrix elements for the two s-like hole eigenstates and the two s-like electron

eigenstates have been extracted from the results presented in 2.6.3. The extracted ma-

trix elements and eigenvalues have been used as input for the generated equations of

motion. For these calculations a phenomenological damping has been employed with a

decay rate of γ = 10−6/fs per polarization factor where polarization factors are consid-

ered as operator products of the form a†iaj with i 6= j. Density factors with i = j are

damped with 2γ. For example the screened polarization a†1a
†
2a2a3 would be damped

with 3γ = 2γ + 1γ since it contains a density factor and a polarization factor.
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Figure 3.23.: Dipole matrix elements extracted from the output for the lens shaped
quantum dot with trumpet shaped Indium content.
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3. Modeling the dynamics of Quantum Dots within density matrix formalism

Figure 3.23 shows the extracted optical matrix elements. As before scaled versions

of the optical matrix elements are shown. In this case, however, the diagonal 2 × 2

blocks vanish exactly since the respective states are degenerate such that a transition

between these states cannot be accomplished by optical fields. As can be seen from the

graphs only two transitions can be effectively accomplished via left- or right-circularly

polarized light respectively. For each of the two polarizations one transition has its final

state among the hole eigenstates and one has its final state among the electron states.

As such one can expect to find the optical selection rules known from experiment, i.e.

the quantum dot will preferably emit circularly polarized light if it is prepared in a

state with a single exciton. Accordingly, the aforementioned biexciton densities should

not be excited if circularly polarized excitation is considered.

Subsets of the extracted Coulomb matrix elements are shown in figure 3.24. Of course,

considering only the four states closest to the gap, one should not expect to find exciton

or biexciton binding energies which come close to experimentally determined values,

especially since no dielectric or dynamic screening effects have been taken into account

on determination of the Coulomb matrix elements. With a correct implementation of

the equations of motion one should, however, observe a single resonance in case of

circularly polarized excitation and a second resonance at a shifted energy in case of

linearly polarized excitation.
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Figure 3.24.: Selected subsets of the Coulomb matrix elements extracted from the
output for the lens shaped quantum dot with trumpet shaped Indium content.

Figure 3.25 shows the normalized absolute value of the calculated xx-component of

what is referred to as susceptibility tensor within the scope of this work, for both linear

and σ+ polarized excitation. To be more precise, the quantity χνµ is defined as follows

within this context.

χνµ(~ω) =
Pν(~ω)

Eµ(~ω)
(3.63)

Depending on the actual application, but especially in the context of wave mixing

experiments, one may find different definitions in literature, see for example [91]. As

can be seen, there is an additional resonance appearing around -4.5 meV for the case

of linear polarized excitation which is not present in case of circular polarization. For
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σ+ polarized excitation one observes only a very small signal peak around this energy.

As the observed signal level is rather low, resonant response can be definitely ruled

out in this case. To check whether this additional resonance really corresponds to a

biexciton-like state, calculations with varying pulse amplitudes of the excitation pulse

have been carried out. For a biexciton one should observe a vanishing signal weak

excitation pulses. Furthermore, compared to the fundamental resonance, the biexciton

resonance should exhibit Rabi oscillations at a smaller frequency. The results of these

calculations are shown in 3.26. As expected, the additional resonance present for linear

polarization does not show up in the color map for σ+ polarization. The fundamental

resonance undergoes several oscillations on the considered amplitude interval. In case

of linear polarization one observes a dim line around -4.5 meV in the color map. This

line shows oscillating behavior with respect to the pulse amplitude as well, but with a

much smaller frequency than the fundamental resonance.
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Figure 3.25.: Comparison of normalized χxx and
〈
a†3a
†
2a2a3

〉
for linear and σ+ po-

larized excitation.

Figure 3.26.: Normalized xx-component of the susceptibility tensor for varying am-
plitudes of the exciting laser pulse. Left: σ+ polarization. Right: Linear polarization.
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4. Summary and Outlook

In the first part of this work different semiconductor quantum dot systems have been

investigated within the k · p framework. There it has been shown that the geometry

and exact material composition of the quantum dots can have significant effects on

the optical matrix elements. Also for some of the Coulomb matrix elements including

indices corresponding to electron states further apart from the band gap are signif-

icantly reduced if inhomogeneous material compositions are considered instead of a

homogeneous quantum dot. It has further been shown that modeling a quantum dot

system embedded within a Schottky diode within k ·p theory is a nontrivial task since

the applied potential difference may lead to an energetic reordering of the calculated

eigenstates. Calculating a consistent set of basis states for density matrix calculations

gets a numerically demanding task since at larger potential differences a growing num-

ber of eigenstates is needed to retrieve all the eigenstates that have been calculated

without applied potential difference. While this does not pose a general restriction on

the determination of more realistic matrix elements for density matrix calculations, it

renders treatment of systems with a moderately large number of eigenstates infeasible,

especially if systems with applied potential differences are considered.

The second part of the thesis was dedicated to density matrix calculations to get

a better understanding of different experiments. First a Ramsey-type experiment has

been modeled to show that coherent phase control of an exciton FLS is possible within

the decoherence time of the TLS. In addition, time and amplitude jitter on the ap-

plied electric control pulses have been demonstrated to cause loss of fringe contrast

in calculated fringe patterns. Based on the needed magnitude of the amplitude jitter

this mechanism can be almost certain ruled out as the viable candidate to explain

loss of contrast in experiment. Secondly an experiment aimed at population inversion

by RAP has been modeled. It has been shown that the photocurrent has a strong

dependence on the point of zero detuning during the optical pulse. Furthermore a

smooth transition from a regime dominated by Rabi oscillations to a regime with adi-

abatic population transfer with increasing slope of the electric chirp has been shown.

The generated exciton population has been shown to be fairly robust against inten-

sity fluctuations over a relatively broad intensity interval where an experiment with

resonant excitation would have undergone several Rabi oscillations. Within the used

model, the achieved exciton population has been proven to be limited by the tunneling

rates. Although the achieve populations are below 90%, the shown robustness of the
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4. Summary and Outlook

generated population against intensity fluctuations within this experiment makes it

an interesting candidate for further improvement. As the performed calculations in-

dicate, reduction of the optical pulse length with simultaneous increase of the chirp

slope could push the generated population further up.

In the last part of the thesis a connection between the first and the second part has

been set up by calculating the absorption of a four level system based on the optical

and Coulomb matrix elements extracted from the k · p eigenstates. The calcula-

tions have shown, that these matrix elements qualitatively resemble optical selection

rules observed in experiment. Considering the calculated energy shift of the biexciton

resonance, quantitative agreement could not be expected since only four states have

been considered for the calculation. While it may be justified to neglect the electron

states at energies further apart from the fundamental gap since these states are not

excited at the considered frequencies, the neglected hole eigenstates are initially pop-

ulated with electrons and will certainly have an influence on the calculated spectra.

Furthermore no screening effects have been taken into account on calculation of the

Coulomb matrix elements. As a consequence single Coulomb matrix elements are prob-

ably overestimated in the current calculations. In order to account for the neglected

occupied electron states the number of calculated hole eigenstates in the k · p calcu-

lations would have to be increased until no more localized hole eigenstates are found.

This would, however, still not account for occupied electron states in the surrounding

semiconductor matrix.
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A. Third party software

The following table lists the third party software packages directly used within this

work. Individual software packages or libraries may depend on other software/libraries

to function properly. The reader is referred to the respective documentation pages for

further information about eventually used software packages.

Software Purpose License

nextnano++ Calculation of the eigenenergies and eigen-
states of given semiconductor heterostruc-
tures

commercial1

SymPy Derivation of symbolic equations of mo-
tion and code generation

BSD

fftw3 Calculation of absorption spectra GPL-2+
Matplotlib Visualization of calculated data PSF2

Numpy Direct and indirect use by using Mat-
plotlib

free software3

ParaView Visualization of 3D wavefunctions free software4

gcc Compilation of the C/C++ based parts of
the code

GPL

amgcl Solution of sparse linear systems on calcu-
lation of the CMEs

MIT license

Table A.1.: Third party software packages and libraries directly used in this work

1See documentation for used 3rd party software
2Licensed under PSF license, further details at https://matplotlib.org/users/license.html
3Licensed according to http://www.numpy.org/license.html (3-Clause BSD)
4ParaView itself is licensed under BSD license, but relies on 3rd party packages with different licenses.

See https://www.paraview.org/paraview-license/ for details.
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B. Projections of the quantum dot

eigenstates onto the bulk eigenstates

no. cb+ cb- hh+ lh+ lh- hh- so+ so- sum
1 0.005 0.002 0.388 0.272 0.175 0.092 0.022 0.044 0.044
2 0.002 0.005 0.092 0.175 0.272 0.388 0.044 0.022 0.022
3 0.005 0.002 0.382 0.321 0.127 0.106 0.016 0.042 0.042
4 0.002 0.005 0.106 0.127 0.321 0.382 0.042 0.016 0.016
5 0.004 0.002 0.368 0.320 0.121 0.132 0.017 0.037 0.037
6 0.002 0.004 0.132 0.121 0.320 0.368 0.037 0.017 0.017
7 0.004 0.002 0.335 0.226 0.213 0.168 0.023 0.029 0.029
8 0.002 0.004 0.168 0.213 0.226 0.335 0.029 0.023 0.023
9 0.032 0.921 0.001 0.006 0.012 0.017 0.007 0.004 0.004
10 0.921 0.032 0.017 0.012 0.006 0.001 0.004 0.007 0.007
11 0.158 0.772 0.005 0.010 0.011 0.027 0.012 0.004 0.004
12 0.772 0.158 0.027 0.011 0.010 0.005 0.004 0.012 0.012
13 0.757 0.172 0.027 0.011 0.011 0.006 0.005 0.011 0.011
14 0.172 0.757 0.006 0.011 0.011 0.027 0.011 0.005 0.005
15 0.693 0.237 0.012 0.027 0.012 0.004 0.008 0.007 0.007
16 0.237 0.693 0.004 0.012 0.027 0.012 0.007 0.008 0.008
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B. Projections of the quantum dot eigenstates onto the bulk eigenstates

Table B.1.: Projections of the eigenstates of an ellipsoidal quantum dot onto the bulk
eigenstates.

no. cb+ cb- hh+ lh+ lh- hh- so+ so-

1 0.005 0.002 0.549 0.085 0.072 0.250 0.015 0.015
2 0.002 0.005 0.250 0.072 0.085 0.549 0.022 0.022
3 0.002 0.004 0.320 0.059 0.066 0.525 0.013 0.013
4 0.004 0.002 0.525 0.066 0.059 0.320 0.010 0.010
5 0.006 0.001 0.729 0.066 0.037 0.139 0.008 0.008
6 0.001 0.006 0.139 0.037 0.066 0.729 0.013 0.013
7 0.000 0.005 0.002 0.010 0.038 0.936 0.005 0.005
8 0.005 0.000 0.936 0.038 0.010 0.002 0.004 0.004
9 0.822 0.106 0.014 0.032 0.008 0.002 0.010 0.010
10 0.106 0.822 0.002 0.008 0.032 0.014 0.007 0.007
11 0.741 0.170 0.023 0.026 0.013 0.005 0.010 0.010
12 0.170 0.741 0.005 0.013 0.026 0.023 0.011 0.011
13 0.558 0.353 0.018 0.022 0.017 0.012 0.010 0.010
14 0.353 0.558 0.012 0.017 0.022 0.018 0.011 0.011
15 0.138 0.762 0.006 0.014 0.024 0.033 0.015 0.015
16 0.762 0.138 0.033 0.024 0.014 0.006 0.009 0.009

Table B.2.: Projections of the eigenstates of a lens shaped quantum dot onto the
bulk eigenstates.

no. cb+ cb- hh+ lh+ lh- hh- so+ so-

1 0.000 0.009 0.008 0.047 0.064 0.838 0.031 0.031
2 0.009 0.000 0.838 0.064 0.047 0.008 0.004 0.004
3 0.007 0.001 0.800 0.060 0.036 0.077 0.004 0.004
4 0.001 0.007 0.077 0.036 0.060 0.800 0.015 0.015
5 0.001 0.006 0.161 0.030 0.046 0.735 0.015 0.015
6 0.006 0.001 0.735 0.046 0.030 0.161 0.006 0.006
7 0.002 0.003 0.362 0.017 0.021 0.586 0.005 0.005
8 0.003 0.002 0.586 0.021 0.017 0.362 0.004 0.004
9 0.003 0.928 0.000 0.004 0.036 0.014 0.005 0.005
10 0.928 0.003 0.014 0.036 0.004 0.000 0.011 0.011
11 0.406 0.513 0.009 0.019 0.022 0.012 0.009 0.009
12 0.513 0.406 0.012 0.022 0.019 0.009 0.009 0.009
13 0.834 0.085 0.020 0.031 0.009 0.002 0.010 0.010
14 0.085 0.834 0.002 0.009 0.031 0.020 0.009 0.009
15 0.463 0.461 0.008 0.021 0.021 0.008 0.009 0.009
16 0.461 0.463 0.008 0.021 0.021 0.008 0.009 0.009
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Table B.3.: Projections of the eigenstates of a lens shaped quantum dot neglecting
piezoelectric charge densities onto the bulk eigenstates.

no. cb+ cb- hh+ lh+ lh- hh- so+ so-

1 0.009 0.000 0.833 0.063 0.048 0.012 0.004 0.004
2 0.000 0.009 0.012 0.048 0.063 0.833 0.031 0.031
3 0.005 0.003 0.561 0.052 0.044 0.317 0.008 0.008
4 0.003 0.005 0.317 0.044 0.052 0.561 0.011 0.011
5 0.007 0.000 0.857 0.049 0.027 0.039 0.004 0.004
6 0.000 0.007 0.039 0.027 0.049 0.857 0.017 0.017
7 0.002 0.002 0.474 0.019 0.019 0.474 0.004 0.004
8 0.002 0.002 0.474 0.019 0.019 0.474 0.004 0.004
9 0.000 0.930 0.000 0.004 0.036 0.014 0.005 0.005
10 0.930 0.000 0.014 0.036 0.004 0.000 0.011 0.011
11 0.007 0.912 0.000 0.007 0.034 0.021 0.008 0.008
12 0.912 0.007 0.021 0.034 0.007 0.000 0.010 0.010
13 0.155 0.764 0.004 0.011 0.029 0.019 0.009 0.009
14 0.764 0.155 0.019 0.029 0.011 0.004 0.010 0.010
15 0.077 0.851 0.001 0.007 0.035 0.012 0.006 0.006
16 0.851 0.077 0.012 0.035 0.007 0.001 0.012 0.012

Table B.4.: Projections of the eigenstates of a lens shaped quantum dot neglecting
the wetting layer onto the bulk eigenstates.

no. cb+ cb- hh+ lh+ lh- hh- so+ so-

1 0.003 0.004 0.369 0.082 0.084 0.421 0.019 0.019
2 0.004 0.003 0.421 0.084 0.082 0.369 0.018 0.018
3 0.005 0.001 0.727 0.078 0.051 0.116 0.007 0.007
4 0.001 0.005 0.116 0.051 0.078 0.727 0.015 0.015
5 0.000 0.007 0.026 0.030 0.079 0.838 0.013 0.013
6 0.007 0.000 0.838 0.079 0.030 0.026 0.008 0.008
7 0.004 0.000 0.870 0.040 0.012 0.065 0.004 0.004
8 0.000 0.004 0.065 0.012 0.040 0.870 0.005 0.005
9 0.817 0.109 0.014 0.033 0.009 0.002 0.011 0.011
10 0.109 0.817 0.002 0.009 0.033 0.014 0.007 0.007
11 0.505 0.405 0.016 0.021 0.019 0.013 0.011 0.011
12 0.405 0.505 0.013 0.019 0.021 0.016 0.011 0.011
13 0.748 0.162 0.023 0.027 0.013 0.005 0.010 0.010
14 0.162 0.748 0.005 0.013 0.027 0.023 0.011 0.011
15 0.677 0.223 0.028 0.023 0.016 0.009 0.010 0.010
16 0.223 0.677 0.009 0.016 0.023 0.028 0.014 0.014
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C. Implementation details

C.1. Implementation details for the EOM generator

As already mentioned in chapter 3.1 the program for generation of the FLS equations

of motion is built on top of the SymPy library. In the current implementation the

program starts with the FLS Hamiltonian in the form

Ĥ = Ĥ0 + Ĥlm + ĤC

Ĥ0 =

Ns−1∑
m=0

εia
†
mam

Ĥlm = −E(t) · 1

2

Ns−1∑
m,n=0

µmna
†
man + µnma

†
nam

ĤC =
1

2

∑
m,n,o,p

Vmnopa
†
ma
†
naoap

where Ns is the number of states in the system. Note that the factor 1/2 in front of

the summation for the light-matter couplings is necessary to remove double counts

since both summation indices run from 0 to Ns−1. Using a modified implementation1

of SymPy’s fermion creation and annihilation operators the program starts with the

general two-point coherence Ôij := a†iaj , adds its general operator pattern a†a to a list

of known operator patterns and calculates the normal ordered form of the commutators[
Ôij , Ĥ0

]
,
[
Ôij , Ĥlm

]
,
[
Ôij , ĤC

]
Whenever the normal ordered form of one of these commutators contains a currently

unknown operator pattern2 this pattern is added to a list of currently unknown oper-

ator patterns for which the equations of motion have to be determined as well while

ensuring that the given pattern is valid and not already contained in the list of un-

known patterns. In this context an operator pattern is considered valid if it’s number

of annihilation operators does not exceed the number of electrons in the system.

1The original implementation was not able to deal with indexed operators.
2Within the pure electron picture only the commutator with ĤC can deliver unknown operator

patterns.
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After the first run for Ôij the program pops the first unknown operator pattern from

the list of unknown patterns, adds it to the list of known operator patterns and cal-

culates the normal ordered form of above commutators updating the list of unknown

operator patterns. This procedure is repeated until there are no more elements in the

list of unknown operator patterns.

The final form of the symbolic equations of motion for each operator pattern is then

calculated as

d

dt

〈
ÔīN

〉
= − i

~

([
ÔīN , Ĥ0

]
+
[
ÔīN , Ĥlm

]
+
[
ÔīN , ĤC

])

Figure C.1.: Flow chart of the algorithm to determine the symbolic equations of
motion for the required N-point quantities.

Once the symbolic equations of motion for the relevant operator patterns are known
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the program starts generating auxiliary C++ code for setup of a FLS calculation. Here

auxiliary means that only part of the simulation code is generated, namely the setup

of the light-matter coupling terms and the Coulomb coupling terms since these are the

only terms, at least within the pure electron picture, whose exact structure is hard to

predict. Figure C.1 shows the flow chart of the implemented algorithm.

C.2. Implementation details for the code generator

Since, without further approximations, there is no analytical solution for the FLS equa-

tions of motion, they have to be solved numerically. For this purpose the backbone of

a template class3 has been implemented, providing fundamental functions to calculate

the dynamics of a FLS under the influence of an external light field. The number of

states in the FLS serves as the only template parameter, so this number has to be

known at compile time.

Given the symbolic equations of motion generated by the EOM generator, most of the

FLS setup code is autogenerated, namely top-level and low-level code to:

• set up and initialize the array for the reduced density matrix

• set up the light-matter coupling terms

• set up the Coulomb coupling terms

The procedure to set up and initialize the density matrix is pretty straight forward.

The code generator extracts the valid operator patterns from the generated list of

equations of motion. Then, for each appearing operator pattern, the program creates

a map of valid operators of the form

īN → n n ∈ N

where īN corresponds to a valid operator multi-index. As a reminder, a multi-index is

considered valid if and only if the indices of all creation operators are pair-wise unequal

and the indices of all annihilation operators are pair-wise unequal as well. Summing

up the sizes of the individual maps one obtains the required size of the array for the re-

duced density matrix. Discarding the invalid operators one already drastically reduces

the size of the reduced density matrix as well as the number of coupling terms which

one would have had to examine for validity at run-time. For an additional perfor-

mance gain the program exploits hermitian symmetries by discarding operators whose

hermitian conjugate is already contained in the map of valid operators. Then, given

the desired initial state of the system in number state representation, the program

3A template class was chosen since one still has the freedom to allow a variable number of single-
particle eigenstates while allowing more aggressive compiler optimizations.
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calculates the expectation values of the different operators as well as their expecta-

tion values with respect to the ground state of the system which is needed for the

phenomenological damping terms. The expectation values with respect to the desired

initial state of the system then serve as initial values for the reduced density matrix

while the expectation values with respect to the ground state serve as equilibrium

values.

Although, at least in principle, the procedure to set up the light-matter and Coulomb

coupling terms is also quite straight forward, efficient implementation is a little bit

more complicated since the SymPy library is not so good at collecting equivalent sym-

bolic summations into a single symbolic summation, i.e. the symbolic light-matter in-

teraction parts of the equations of motion contain different summations addressing the

same operators, but with different summation indices. A naive one-to-one translation

of the individual coupling terms would therefore result in a potentially large number

of coupling terms addressing the same coupled operator. To overcome this problem,

the light-matter and Coulomb coupling terms are set up in a two stage process for

each valid operator.

1. Setup of coupling maps: Given a valid operator ÔīN the program examines the

symbolic coupling terms and converts the symbolic summations into explicit ones.

Each of the coupling terms is then of the general form

aj̄M

〈
Ôj̄M

〉
where M = N for light-matter coupling terms and M = N or M = N+2 for Coulomb

coupling terms and aj̄M is a numeric prefactor depending on the respective coupling

matrix element. The program now examines each of the explicit terms individually,

keeping track of a coupling map of the form

j̄M → αj̄M

If the current coupled operator is not contained within this map, the program adds

the respective entry

j̄M → aj̄M .

If it is already contained in the map, the program just increments the mapped value

by the value of aj̄M . In this way, at the end of stage one, for each operator one has the

respective coupling map

j̄M → αj̄M αj̄M =
∑

aj̄M .
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2. Setup of coupling vectors: While, in principle, the coupling maps obtained in

stage one, give the complete information for the individual operator couplings needed

for numerical solution of the equations of motion, their actual use in numeric cal-

culations has several drawbacks. The first and probably most severe one is memory

consumption. Instead of addressing the coupled operators by their position in the re-

duced density matrix, they are addressed by their complete multi-index. The second

drawback is a potential lack of performance. In the current implementation one has

the guaranty of a unique mapping, i.e. every key, namely the multi-index, is contained

once and only once in the mapping and has a single mapped value. However, the C++

standard does not put any restrictions on the internal memory layout of such maps.

This means the map entries are not guaranteed to be placed at sequential addresses

in memory which is a crucial requirement for efficient caching. As a consequence, de-

pending on the implementation of the C++ core libraries, using maps might result

in expensive memory look-ups during the time stepping4. The memory problem is

however far more severe.

To solve this problem the program replaces the map structure by a respective coupling

vector of the same size, containing key-value pairs of the form

(n, αn) n ∈ N, αn ∈ C

where the multi-index has been replaced by its offset in the array for the reduced

density matrix which has been determined during setup of that array.

4Since maps are typically optimized for fast look-up of specific keys, the underlying data structure
is most probably a binary search tree or a hash map.
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C.3. False sharing problem in multi-threaded FLS-simulations

As already mentioned in the main part of the thesis, a naive parallelization of the

Runge-Kutta integration for the FLS equations of motion yields worse performance

than the single-threaded serial implementation. Part of the performance penalty may

be attributed to the overhead introduced by spawning the individual threads at the

beginning of the time integration and the need to synchronize these threads after

each time step. A proper implementation of the OpenMP standard can, however,

pretty much minimize this overhead by keeping the respective threads alive instead of

deleting them after each time step.

A more subtle problem, called false sharing [92], is introduced by modern computer

architectures. To be more precise, the problem stems from the need to maintain cache

coherence among different CPUs in a multi-processor environment. Whenever a pro-

gram reads the value from a specific address in memory, the hardware fetches not only

the desired value, but a hole bunch of halo data which happens to fit on a so called

cache line. When just reading values from an array with contiguous memory layout,

this is quite desirable since caching reduces the number of accesses to main memory

which is quite slow. Assuming that one wants to read from an array called A, the

fetched cache line might schematically represented as in figure C.2.

Figure C.2.: Schematic representation of the prefetched cache line when reading from
an array with contiguous memory layout. The exact number of elements fitting on a
single cache line are determined by A’s underlying data type and the hardware size of
a cache line.

As long as the program instructions involve only read operations on the contents of

A, the number of threads which can access A in parallel is only limited by the total

number of threads supported by the system. On a multi-core platform one may face

the situation when two processors hold a copy of the exact same cache line as depicted

in figure C.3. This is usually the case, when two independent threads executing on

different processors happen to read from or write to adjacent elements of the same

array. While read operations are still unproblematic, the situation gets complicated,

when both threads happen to perform write operations. In order to get deterministic

results on multi-core platform, the hardware needs to maintain cache coherence, i.e.

once one of the two threads performs a write operation on the contents of the cache

line, the entire cache line is marked ’dirty’ on all other CPU’s forcing a reload of that

line once it was written back to memory by the thread modifying it in the first place.
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Figure C.3.: Schematic representation of the case when two threads executing on
different CPUs each hold a copy of the exact same cache line and access adjacent, but
otherwise independent elements of that cache line.

A straight forward implementation of the RK-4 algorithm uses temporary arrays to

hold the derivatives. The number of temporary arrays is somewhat irrelevant for the

current discussion. However, a construct frequently appearing when performing RK-4

integration on a system of equations may look as follows:

i n t i , j ;

f o r ( i =0; i<NumEqs ; i ++){
dy [ i ]= std : : complex<double > ( 0 . , 0 . ) ;

f o r ( j =0; j<NumRHSTerms ; j ++){
dy [ i ]+=RHS Term( i , j ) ;

}
}

with a straight forward OpenMP parallelized form given by

i n t i , j ;

#pragma omp p a r a l l e l f o r p r i v a t e ( i , j )

f o r ( i =0; i<NumEqs ; i ++){
dy [ i ]= std : : complex<double > ( 0 . , 0 . ) ;

f o r ( j =0; j<NumRHSTerms ; j ++){
// Pos s ib ly f a l s e shar ing

dy [ i ]+=RHS Term( i , j ) ;

}
}

where RHS Term just serves as a place holder for an arbitrary term appearing on the

right hand side of the respective equation of motion. As indicated by the comment in

the code, the update of dy[i] might cause false sharing problems in case dy happens

to exhibit contiguous memory layout.

There are several ways to circumvent the false sharing problem. First one could scatter

the contents of dy in memory such that no adjacent elements of dy happen to reside

on the same cache line. This would then lead to new performance issues due to lots of

cache misses in other parts of the Runge-Kutta loop. As another possibility one could

divide the temporary arrays into chunks ensuring that the respective chunks reside on
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different cache lines. Individual threads could then work on the independent chunks.

This would, however, result in highly platform dependent code since memory layout

and the size of a cache line may vary from platform to platform. The perhaps most

promising solution to the false sharing problem is introducing a thread-local temporal

variable which is used to accumulate the value of the derivative. Once the final value

of a given derivative is known, the respective element of dy is updated.

i n t i , j ;

s td : : complex<double> tmp ;

#pragma omp p a r a l l e l f o r p r i v a t e ( i , j , tmp)

f o r ( i =0; i<NumEqs ; i ++){
tmp=std : : complex<double > ( 0 . , 0 . ) ;

f o r ( j =0; j<NumRHSTerms ; j ++){
//No more f a l s e shar ing s i n c e every thread

// has i t s own tmp v a r i a b l e

tmp+=RHS Term( i , j ) ;

}
dy [ i ]=tmp ;

}

As the number of write operations to dy is now greatly reduced, the needed number

of reloads to maintain cache coherence is reduced accordingly, resulting in a more

performant program.
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Symbols

x Vector

ψ(x) Scalar field

A(x) Vector field

Â Scalar operator

Â† Hermitian conjugate operator

Â Vector operator

FFT Fast Fourier transform

EFA Envelope Function Approximation

PGF Poisson Green’s function

FLS few level system

TLS two level system

RAP rapid adiabatic passage

RWA rotating wave approximation

FWHI full width at half intensity

FWHM full width at half maximum
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