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Abstract

In this thesis, we provide an accessible introduction to the theory of locally convex
supermanifolds in the categorical approach with a focus on Lie supergroups and
the supergroup of superdiffeomorphisms. In this setting, a supermanifold is a
functor M: Gr — Man from the category of Grassmann algebras to the category
of locally convex manifolds that has certain local models, forming something akin
to an atlas. We give a mostly self-contained, concrete definition of supermanifolds
along these lines, closing several gaps in the literature on the way. If A,, € Gr is
the Grassmann algebra with n generators, we show that M,  has the structure of
a so called multilinear bundle over the base manifold Mpg. We use this fact to show
that the projective limit lim My, exists in the category of manifolds. In fact, this
gives us a faithful functor lim: SMan — Man from the category of supermanifolds
to the category of manifolds. This functor respects products, commutes with the
respective tangent functor and retains the respective Hausdorff property. In this
way, supermanifolds can be seen as a particular kind of infinite-dimensional fiber
bundles.

For Lie supergroups, we use similar techniques to show several useful trivial-
izations. For a Lie supergroup G, it holds Gy, = ker(G., ) x Gg as Lie groups,
where ker(G., ) is a so called polynomial group. Moreover, we construct a canon-
ical decomposition of G into a purely even and a purely odd part. Using this, we
are able to generalize the classical equivalence between Lie supergroups and super
Harish-Chandra pairs to the case of arbitrary locally convex Lie supergroups.

The supergroup of superdiffeomorphisms of M is a certain functor
SDiff(M): Gr — Set that captures even and odd aspects of supersmooth trans-
formations of M. As a tool for our study of superdiffeomorphisms, we introduce
spaces of sections of super vector bundles, and in particular super vector fields,
turning them into suitable locally convex spaces. We show that SDiff(M) has
essentially the same decompositions as a Lie supergroup for an arbitrary super-
manifold M and we discuss the respective components in detail. If M is a Banach
supermanifold such that My is finite-dimensional and o-compact, we are able to
turn the supergroup SDiff.(M) of superdiffeomorphisms with compact support
into a Lie supergroup.



German translation: In dieser Arbeit stellen wir eine zugéngliche Einfiihrung in
die Theorie lokalkonvexer Supermannigfaltigkeiten im Rahmen des kategoriellen
Ansatzes vor. Hierbei wird ein besonderer Schwerpunkt auf Lie-Supergruppen
und die Supergruppe der Superdiffeomorphismen gelegt. In diesem Zugang ist
eine Supermannigfaltigkeit ein Funktor M: Gr — Man von der Kategorie der
Grassmann-Algebren in die Kategorie der lokalkonvexen Mannigfaltigkeiten, der
bestimmte lokale Modelle besitzt, die etwas wie einen Atlas bilden. Wir geben
eine, im wesentlichen in sich geschlossene, konkrete Definition von Supermannig-
faltigkeiten, wobei wir einige Liicken in der Literatur schliefen. Wir zeigen, dass
M, ein sogenanntes multilineares Biindel {iber der Basis Mg ist, wenn A,, € Gr
die Grassmann-Algebra mit n Erzeugern ist. Wir nutzen dies aus um zu zeigen,
dass der projektive Limes @n M, in der Kategorie der Mannigfaltigkeiten ex-
istiert. Dies liefert uns einen treuen Funktor lim: SMan — Man von der Kate-
gorie der Supermannigfaltigkeiten in die Kategorie der Mannigfaltigkeiten. Dieser
Funktor erhélt Produkte, vertauscht mit dem jeweiligen Tangentialfunktor und
erhélt die jeweilige Hausdorff Eigenschaft. Auf diese Weise kénnen wir Superman-
nigfaltigkeiten als eine besondere Art von unendlich-dimensionalen Faserbiindeln
betrachten.

Mittels dhnlicher Techniken erhalten wir einige niitzliche Trivialisierungen von
Lie-Supergruppen. Fiir jede Lie-Supergruppe G gilt Gy, = ker(G., ) x Gg als
Lie Gruppe. Hierbei ist ker(G,, ) eine sogenannte polynomielle Gruppe. Dariiber
hinaus konstruieren wir eine kanonische Zerlegung von G in einen rein geraden und
einen rein ungeraden Teil. Dies erlaubt uns die klassische Aquivalenz zwischen
Lie-Supergruppen und Super-Harish-Chandra-Paaren auf den Fall lokalkonvexer
Lie-Supergruppen zu verallgemeinern.

Die Supergruppe der Superdiffeomorphismen von M ist ein bestimmter Funktor
SDiff(M): Gr — Man, der gewisse Aspekte gerader und ungerader Transforma-
tionen von M beschreibt. Als Hilfsmittel zur Untersuchung von Superdiffeomor-
phismen fiihren wir R&ume von Schnitten von Supervektorbiindeln, und insbeson-
dere Supervektorfelder, ein und geben ihnen die Struktur geeigneter lokalkonvexer
Réume. Wir zeigen, dass SDiff(M) sich im Wesentlichen genau wie eine Lie-
Supergruppe zerlegen lasst und untersuchen die Bestandteile im Detail. Falls M
eine Banach-Supermannigfaltigkeit mit o-kompakter, endlich-dimensionaler Ba-
sis My ist, gelingt es uns, der Supergruppe SDiff (M) der kompakt getragenen
Superdiffeomorphismen die Struktur einer Lie-Supergruppe zu geben.

vi



Introduction

In this thesis, we aim to provide an accessible introduction to the theory of infinite-
dimensional supermanifolds as defined by Molotkov in [38]. Beyond generalizing
his results and closing gaps in the literature, we attempt to lay the foundations of
a general structure theory for locally convex supermanifolds by discussing their in-
herent bundle structure. Applied to Lie supergroups, this enables us to understand
an arbitrary locally convex Lie supergroup in terms of its Lie superalgebra and
the action of its base Lie group thereon (i.e. in terms of its super Harish-Chandra
pair). Similar techniques let us describe the supergroup of superdiffeomorphisms
of a, not necessarily finite-dimensional, supermanifold in some detail, culminating
in the construction of a Lie supergroup structure for the superdiffeomorphisms of
an appropriate class of supermanifolds.

Supermanifolds were developed in the early 1970’s to provide a framework for a
geometry combining commuting and anticommuting coordinates, with the original
motivation coming from particle physics. There have been various, not all equiv-
alent, approaches to achieve this. The first, and most commonly used, rigorous
definition of a supermanifold is as a ringed space due to Berezin and Leites [9] (see
also [8]). The basic idea is to enlarge the structure sheaf of a manifold to a sheaf
of superrings that is locally isomorphic to the sheaf of functions with values in an
exterior algebra. In the case of real supermanifolds, an equivalent approach using
Hopf algebras was proposed shortly thereafter by Kostant in [32]. In an attempt
to make the language of supermanifolds more accessible to physicists, DeWitt [15]
and Rogers [43] introduced a definition of supermanifolds mirroring the one of
ordinary manifolds, which we will call the concrete approach. Simply put, from
this point of view supermanifolds are modelled locally on a certain exterior algebra
such that the transition functions satisfy suitable conditions. More recent works
in this regard include [53] and [44]. A comparison between the sheaf theoretic and
the concrete approach can be found in [4].

In many situations, infinite-dimensional objects arise naturally that one would
like to endow with an appropriate “super” structure. For example, it is well-known
that the even and odd vector fields of a finite-dimensional compact supermanifold
form a Fréchet super vector space. Other examples include mapping spaces be-
tween supermanifolds or supergroups of gauge transformations. However, all the
approaches mentioned are restricted to the finite-dimensional case. In fact, not
even all infinite-dimensional ordinary manifolds can be described by their sheaf of
functions (see [57]) and for supermanifolds additional obstacles appear (compare
[T, p.587]). These problems notwithstanding, in the case of analytic superman-
ifolds, Schmitt [48] was able to extend the sheaf theoretic approach to include
infinite-dimensional supermanifolds. More generally, following Kostant’s approach
via Hopf algebras and an idea of Batchelor from [7], a definition of R-Fréchet su-
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permanifolds using coalgebras was devised in [30]. With regard to the concrete
approach, possible topological problems which limit its applicability to infinite-
dimensions were suggested in [I].

The first rigorous definition of infinite-dimensional supermanifolds, and also the
one we will use in this work, is the categorical approach suggested by Molotkov in
[39][] In this approach supermanifolds are defined to be functors from the category
of finitely generated Grassmann algebras Gr to the category of manifolds Man
with additional local information contained in an ‘atlas’ consisting of certain nat-
ural transformations. Let us briefly relate this to the sheaf theoretic approach. In
the latter, the functor of points (i.e., the Yoneda embedding) has long been known
to be a useful tool (see for example [34]). Moreover, to fully understand the func-
tor of points, it suffices to consider supermanifolds whose base manifold is a single
point, the so called superpoints. The superpoints are parametrized by the Grass-
mann algebras and for every superpoint P the set of morphisms Homgyan (P, M)
to a given supermanifold M can be turned into a smooth manifold. In this way one
obtains a functor Gr — Man. Shvarts [52] and Voronov [54] had the idea to use
such functors to define finite-dimensional supermanifolds and Molotkov extended
this definition to infinite-dimensional supermanifolds ] We call this the categorical
approach.

Because of its close relation to the functor of points, some of the intuition from
the finite-dimensional situation carries over to the infinite-dimensional setting. For
example, the definition of an internal Hom and the related superdiffeomorphisms
are obtained quite easily in this way (see [40, 8.2, p.415 and 8.4, p.417|). Using
this, Hanisch [27] was able to endow the inner Hom object of two finite-dimensional
supermanifolds with a supermanifold structure in Molotkov’s framework. Another
nice feature of the categorical approach is that the definition of finite-dimensional
and infinite-dimensional supermanifolds, along with their morphisms and their
tangent bundles, is exactly the same. No special topological considerations are
necessary. Similarly, as has been shown in [I], it lends itself to easy generalization
beyond the real or complex case. What is more, many constructions and calcu-
lations can essentially be done pointwise, i.e., for every Grassmann algebra. This
means that for finite-dimensional supermanifolds one often only has to deal with
finite-dimensional ordinary manifolds.

Despite these advantages, the categorical approach has rarely been used and
even where it appears, it is usually only applied half-heartedly. For instance, when
superspaces of morphisms between supermanifolds are considered, the morphisms
are usually expressed in the sheaf theoretic language (see for example [47], [27]
and [12]). The reason for this lack of interest appears to be twofold. For one, the
categorical language of natural transformations, Grothendieck topologies, sheaves
in categories and so on is rather abstract and not part of the usual toolbox em-
ployed in the field of analysis. This is then exacerbated by the fact that Molotkov’s
foundational article [39] (resp. [40]) contains almost no proofs. While some proofs

IThroughout this work, we will cite the more readily available and slightly updated article [40].
2 Most statements in [40] are made for Banach supermanifolds but many can be easily trans-
ferred to Fréchet or locally convex supermanifolds (compare [40} 8.5, p.418]).




for Molotkov’s statements were subsequently offered by Sachse in [45] and [46],
he often falls back to the sheaf theoretic approach so that the statements are not
shown in their original generality and one obtains little intuition for the categorical
approach.

We attempt to remedy both of these problems in this thesis. On the one hand,
we give a complete definition of infinite-dimensional supermanifolds and their mor-
phisms, proving all statements that we use (with the rare exception where the proof
in the literature can directly be applied to our situation and is relatively straight-
forward). On the other hand, we simplify the categorical language as much as
possible. As it turns out, one can develop the categorical approach in fairly con-
crete terms closely resembling the definition of ordinary manifolds. In this way,
we completely avoid dealing with more involved questions like representability.

Remarkably, this concrete point of view leads to a canonical faithful functor
from the category of supermanifolds to the category of manifolds. This functor
has good properties such as respecting products (i.e., mapping Lie supergroups
to Lie groups), commuting with the respective tangent functor and retaining the
respective Hausdorff property. It can be turned into an equivalence of categories
if one considers a specific type of fiber bundles on the right-hand side. In other
words, we may consider supermanifolds as ordinary manifolds with a particular
kind of atlas in a canonical, well-behaved way. All non-trivial supermanifolds
are at best mapped to Fréchet manifolds and one wonders whether techniques of
infinite-dimensional analysis could prove useful in finite-dimensional superanalysis.

To streamline our work, we only consider supermanifolds over the base field R.
However, many of our constructions derive from [I] and [I0], where much more
general fields and even rings are considered. We have consciously formulated our
proofs in such a way that they can easily be generalized where possible. The
only noteworthy obstacles to such generalizations are Batchelor’s Theorem (which
necessitates a partition of unity) and combinatorial formulas which do not allow
for base rings with positive characteristic. For the latter, we indicate ways around
the problem.

Many standard constructions for supermanifolds and Lie supergroups are beyond
the scope of this thesis, but we hope to have provided the reader with the tools
to rectify this with relative ease. While equivalences between certain categories of
supermanifolds in the sheaf theoretic, the concrete and the categorical approach
have been discussed in some detail in [I], it is not immediately obvious how objects
like vector fields can be translated between the different points of view. More
work to this effect will be critical to enable one to pick and choose effectively
which approach is most suitable for the problem at hand. One final drawback of
our work that should not go unmentioned is that in trying to be as concrete as
possible, we lose some of the intuition offered by the functor of points approach.
Thus, a close reading of [40] is still advisable.

This thesis is organized in three parts. In Chapter [I, we summarize several
key concepts that are standard in their respective fields but are possibly not gen-
erally well-known. This includes the locally convex differential calculus, functor
categories, algebraic structures in categories and some multilinear super algebra.
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Chapter [2| discusses supermanifolds and super vector bundles. Lie supergroups
are dealt with in Chapter [3| Finally, in Chapter [4, we deal with the supergroup
of superdiffeomorphisms. To this end, we also introduce and topologize spaces
of sections of super vector bundles and discuss the group of automorphisms of a
supermanifold.

Supermanifolds

A Grassmann algebra is a free associative R-algebra A,, := R[\y,..., \,], where
the generators satisfy the relation \;A; = —A;)\;. There exists a natural grading
A, = A, 5@ A, 71 and the set of objects {R, Ay, Ay, ...} together with the graded
morphisms form the category Gr of Grassmann algebras. Generators of Grass-
mann algebras behave infinitesimally in the sense that A? = 0 and we will see that
for this reason (together with functoriality) the structure of supermanifolds has
many similarities to the structure of higher tangent bundles. This enables us to
make heavy use of the techniques developed by Bertram in [I0] for dealing with
higher tangent bundles, higher tangent groups and higher order diffeomorphism
groups.

As mentioned, we want to define supermanifolds as functors from the category
of Grassmann algebras to the category of manifolds with certain local models. In
analogy to ordinary manifolds, we begin by describing the differential calculus on
the model space:

1. Instead of a vector space, the model space of a supermanifold is a functor of
the form

E:Gr — Top, Aw— Ej:=(Ey®A;) ®(E;® A7),

where ' = Ey @ FE, is a Zsg-graded Hausdorff locally convex vector space and
E, is given the obvious product topology. Then E is a Ag-module and the
functor E has the structure of a so called R-module in the category Top.

2. Open subsets of the model space correspond to open subfunctors, i.e. functors

U: Gr — Top

such that Uy, C E, is open for all A € Gr and the inclusion is a natural
transformation. We call such functors super domains. One can show that
superdomains have the form

Uy = U X (E()@A%r) X (E1®AT),

where A%' is the nilpotent part of Ag.
3. Smooth functions correspond to supersmooth morphisms, i.e. natural transfor-
mations

f:uU—F




such that fx is smooth for all A € Gr and
deZ Z/{A XEA —>FA

is Ag-linear in the second component.

Using the infinitesimal behavior of the generators, one obtains an “exact Taylor
expansion” for supersmooth morphisms. This can then be used to identify a su-
persmooth morphism f: U — F with its skeleton, i.e., a family (fi)ren, of maps
fr:Ur — Altk(El, Fk mod 2) that are smooth in an appropriate sense. Skeletons
are of utmost importance for many proofs and the description of spaces of super-
smooth morphisms.

A supermanifold is defined to be a functor M: Gr — Man, A — M, such that
there exists an atlas of natural transformations ¢p®: U* — M from superdomains
U* to M for which any change of charts is supersmooth. If €5, : A,, — R denotes
the natural projection, we show that M., : M,, — Mg gives M, the structure
of a so called multilinear bundle of degree n over the base manifold My (compare
[10]). What is more, we show in Theorem that the family (Mjy)aear gives
one an inverse system of such bundles and that the limit lim | My, exists in the
category of manifolds. This provides us with the functor

lim: SMan — Man
—

from the category of supermanifolds to the category of manifolds mentioned above.
Multilinear bundles and their limits are discussed in Appendix [B]

In the sheaf theoretic approach every manifold together with its sheaf of func-
tions is clearly a supermanifold. For us the situation is a bit more complicated
since a manifold is not a functor Gr — Man. However, there exists a natural
embedding

t: Man — SMan

introduced by Molotkov in [38]. In Proposition [2.3.16, we give a description of
(M) via higher tangent bundles of the manifold M, which is particularly useful
for understanding Lie supergroups. Similarly, Molotkov constructed a faithful

functor
L : VBun — SMan

from the category of vector bundles to the category of supermanifolds. He showed
in [39] that any supermanifold whose base manifold allows a partition of unity is
(non-canonically) isomorphic to a supermanifold that comes from a vector bundle.
Since this result, generally known as Batchelor’s Theorem, is important for us and
[39] is rather difficult to find, we briefly summarize its proof.

Lie Supergroups

A Lie supergroup is simply a group object in the category SMan. In particular,
if G is a Lie supergroup then G, is a Lie group for every A € Gr. Taking the
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Lie algebra of each Lie group G, leads in a natural way to a Lie superalgebra g
functorially associated to G. We get a short exact sequence of Lie groups

1 — ker(G.,) = Grn — Gr — 1

that splits along G,,, with 75,: R — A the natural embedding. Since the group
operations are morphisms of multilinear bundles, we see that ker(G.,) is a poly-
nomial Lie group (see Appendix [C|and compare [10]), which provides us with an
exponential map

exp%: ga+ — ker(gaA)

that is a diffeomorphism even in the locally convex setting. Together with the
action of Gg on ker(G., ), this effectively describes the Lie group structure of Gy,
but the supersmooth structure is better understood with the trivialization

L(Gr)A X T1p — Ga, (g,v) —g- exp%(v).

Combining both, we generalize the classical correspondence between super Harish-
Chandra pairs and Lie supergroups to the case of arbitrary locally convex Lie
supergroups in Theorem [3.3.8] One consequence is that every Lie supergroup G
is completely determined by Ga,. A brief discussion of classical Lie supergroups
finishes the chapter.

The Supergroup of Superdiffeomorphisms

We start by discussing spaces of sections of super vector bundles. While we are
able to turn such spaces into locally convex vector spaces for arbitrary super vector
bundles, in the special case of super vector bundles whose fiber is Banach over a
Banach supermanifold with finite dimensional base, we introduce another topology
that is more suitable to our needs.

Next, we examine the structure of the group Aut(M) of automorphisms of a
supermanifold M. One has a short exact sequence

1 — Autig(M) — Aut(M) — Aut(M,,) — 1,

where Aut;q(M) is the group of automorphisms that are the identity on M,, and
Aut(My,) is just the group of vector bundle automorphisms of Mj,. The former
is a so called pro-polynomial group (see Appendix |C|) and when Batchelor’s The-
orem applies, the sequence splits. This enables us to turn the group Aut.(M) of
compactly supported automorphismsﬂ of a o-compact Banach supermanifold with
finite-dimensional base into a Lie group. The Lie group structure of Aut.(Mj,) is
discussed in Appendix [D] This generalizes results by Wockel and Sachse from [47],
where automorphisms of compact finite-dimensional supermanifolds were consid-
ered.

3Given the bundle structure of supermanifolds, “compactly supported” generally means com-
pactly supported on the base.




As mentioned, the categorical approach allows for an easy definition of the
supergroup SDiff(M) of superdiffeomorphisms of a supermanifold M. Even if
M is infinite-dimensional, SDiff(M) shows appropriate behavior as a functor
Gr — Set: It is a supergroup (i.e. a group object in the category SetGr) and
SDiff(M)r = Aut(M). Further, every supersmooth action of a Lie supergroup on
a supermanifold M factors through a natural action of the supergroup of superdif-
feomorphisms of M (see [40, Proposition 8.4.2, p.417]). Like with Lie supergroups,
we have a split short exact sequence

1 — ker(SDiff(M).,) — SDiff(M) — Aut(M) — 1,

where ker(SDiff(M)., ) is a polynomial group. Sachse and Wockel [47] attempted
to use this splitting to define a Lie supergroup structure on SDiff(M) in the case
of M being a compact finite-dimensional supermanifold. However, as already
discussed for Lie supergroups, this splitting does not explain the supersmooth
structure very well and the attempt failed (see Remark E] Instead, like for
Lie supergroups, we use a trivialization of the form

SDiff(M)g x X(M)7 — SDiff(M),

where SDiff(M)g is the supergroup of purely even superdiffeomorphisms and
X (M)g is the space of odd vector fields. If the structure of a Lie supergroup
on SDiff (M) exists, then ((Aut(M)) = SDiff (M) as Lie supergroups must hold.
Indeed, in the case of a o-compact finite-dimensional manifold M, we see that

J(Diff,(M)) = SDiff (1(M)).

More generally, if M is a o-compact Banach supermanifold with finite-dimensional
base, we are able to turn the compactly supported superdiffeomorphisms
SDiff.(M) into a Lie supergroup in this way. For arbitrary M, we use the higher
order tangent groups studied by Bertram in [I0] as a substitute of the functor ¢ to
describe SDiff (M) in some detail. The necessary constructions are discussed in

Appendix [E]

4] am thankful to C. Wockel and T. Ohrmann for pointing out that the change of charts obtained
in this way is not supersmooth.







1. Preliminaries and Notation

We set N:={1,2,...} and Ny := {0,1,2,...}, respectively. Let k € Ny. Through-
out this work, we will write k& := k& mod 2 € {0,1}. We denote by &; the
symmetrical group of order k and let sgn(c) € {1,—1} be the sign of a permu-
tation 0 € ;. If R is a unitary commutative ring and Fy,..., E;, E and F are
R-modules, we let L%(FEy,. .., Ey; F) be the R-module of R-k-multilinear maps

f:Eyx---x E, — F.
On LY(E; F) := L%(E, ... E; F), & acts from the left via
foo(v):=f(v7):= f(Ua(l), e ,Uo(k))

for f € L%(E; F), 0 € &y and v = (vy,...,v;) € E*. We denote by Alth(E; F) C
L% (E; F) the space of alternating R-k-multilinear maps.

If R is additionally a topological ring and the modules are topological R-modules,
we denote by L&(E, ..., Ey; F) and L%(E; F) the respective R-module of con-
tinuous R-k-multilinear maps and let Alt%(FE; F) be the subspace of continuous
alternating maps.

We let LY(E; F) = AUY(E; F) := F. If R = R, we simply write L*(E; F),
L¥(Ey,...,E F), LKE,, ..., E F), LF(E;F), Alt"(E; F) and Alt*(E; F). In

this case, we define the projection

A LNE F) — AWE(EF), fre Y ngf") foo,

geSy

which clearly also defines a projection A*: £*(E; F) — Alt"(E; F).

1.1. Partitions

We largely use the notation of [I0] for partitions. Let A be a finite set. A partition
of Ais a subset v = {vy,...,v} of the power set P(A) of A such that the sets v,
1 <4 </, are non-empty, pairwise disjoint and their union is A. In this situation,
we call A the total set of v and let v := A. We define the [length of the partition v
as {(v) := |v|. Furthermore, we denote by % (A) the set of all partitions of A and
by 2,(A) the set of all partitions of A of length ¢. If |A] is even, then we define
9 (A)g as those partitions which only contain sets of even cardinality and 2,(A)g
as the partitions from 2 (A)g of length ¢.

For k € N, we define P* := P({1,..., k}) and P% := P¥\{0}. Occasionally, it will
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be convenient to consider only subsets of even, resp. odd, cardinality and we define
P = {A e P |Al even}, P} := {A € P*: |A| odd} as well as P := P{\{0}. As
a convention, {i1,...,4,} € {1,...,k} is understood to imply i; < ... < i,. With
this, the lexicographic order induces a total order on the power set P* and every
partition v can be viewed as an ordered ¢(v)-tuple, which we will do in the sequel
(compare |10, MA.4, p.170]). There is another total order on P* that will be useful
for us: On P¥ and P¥, we use the order induced by P* but for all B € PE and all
C € Pk welet B < C. We will specify whenever we want to use this order which
we will call the graded lexicographic order. For a partition v = (vq,...,14), we
define e(v), resp. o(v), as the number of sets in v with even, resp. odd, cardinality.
In other words, in the graded lexicographic order, we have

n<...< Ve(v) < Ve(v)+1 < ... < Ve(v)+o(v) -

J/

Vv Vv
even cardinality odd cardinality

Let A be a finite set and v,w € P (A). We call v a refinement of w, or w coarser
than v, and write w <X v if for every set L € v there exists a set O € w such that
L C O. For w =<v and O € w, we define the v-induced partition of O by

Olv:={L ev|L C O} eP0).

In this situation, {wi|v, ... ,wew|v} is a partition of the finite set v. One easily
checks that this defines a one-to-one correspondence between partitions that are
coarser than v and 2 (v).

1.2. The Category of Grassmann Algebras

For any k € Ny, we let Ay := R[Aq, ..., A\x] be the unital associative algebra freely
generated by the generators A\; with the relation \;\; = —A;\; for all 4, 7 € N. Note
that this implies \;A; = 0. For I = {iy,...,4} CNwith 1 <4 < ... <iy <k,
we set A\; := A;; ---A;,. These so called Grassmann algebras have a natural Z,-
grading given by A5 = ®I€T§ MR and A7 = @Igﬂf AR which, with the
product topology, turns them into topological R-algebras. A morphism ¢: A — A’
between two Grassmann algebras is a morphism of unital R-algebras that is even
in the sense that

@(A;) € AL for i e {0,1}.

We denote by Gr the category of Grassmann algebras, and for every n € Ny, we
let Gr'™ be the full subcategory containing only the objects Ao, ..., A,. For the
sake of convenience, we let Gr'™) := Gr.

We denote the subalgebra of nilpotent elements of A by AT and set A%L = A7
and A%r = AT N Ag. For every m > n > 0, we fix morphisms &,,,,: A, — A, and

10
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Nnm : A — Ay, by setting

c ()\ ) L /\k if k § n
AR 0 otherwise

and 7, (M) = A for 1 < k£ < n. In the special case n = 0, we let ¢, =
Emo: Ay — Rand ny,, :=nom: R — Ay,

1.3. Locally Convex Manifolds

All locally convex vector spaces in this thesis are meant to be Hausdorff locally
convex R-vector spaces.

1.3.1. Differential calculus in locally convex spaces

A very general differential calculus for topological modules was developed in [I I]EI
We follow this approach but restrict ourselves to the case of Hausdorff locally
convex R-vector spaces. In this situation, the C*-maps coincide with the classical
CF-maps in the sense of Bastiani [5] (also known as Keller’s C*-maps, see [31]).
However, it is useful to keep the more general setting in mind since large parts
of this work can be easily generalized without substantial changes. See also [10,
Chapter I, p.14ff.] for a concise overview.

Definition 1.3.1. Let E, I be locally convex spaces, U C E be open and f: U —
F continuous. We define the open set Ul := {(z,v,t): v € U,z +tv € U} C
U x E x R and say that f is C! if there exists a continuous map

gl — F

such that
fla+tv) = fo) =t f(z,0,1)
for (z,v,t) € UM, The differential of f at x € U is then defined as

df(x): E— F, v df(z)(v) = fYz,0,0).

We also use the notation df (z,v) := df (x)(v). Inductively, we say f is C**1 if fI!
is C* for k € N. If f is C* for every k € N, we call f smooth or C*.

The usual rules for differentials apply and we sum them up and fix our notation
in the following remark.

Remark 1.3.2. In the situation of the definition, the map fI is unique and
df (z)(v) is linear in v. If f is C?, then for every v € E the partial map 9,f =
df (e,v) is C! and we define d*f(z)(vy,...,v) = Oy, -+ Oy, f(x) if f is C¥. The

ITo be precise: Hausdorff topological modules over commutative Hausdorff topological rings
whose unit group is dense.

11
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map d* f(z): E¥ — F is continuous, R-k-multilinear and symmetric. In particular
Schwarz’s theorem holds in this setting. If V' C U is open and f is C*, then the
restriction f|y is so. If g and f are C* and composable, then g o f is C* and we
have the the chain rule

d(g © f)(x,v) = dg(f(x)adf(xvv))

If h: U x Uy — F is C' we define dih(z1,22)(v1) := dh(zy,x9)(vy,0) and
doh(xq, x2)(ve) == dh(xy1,22)(0,v9) and we have the rule of partial differentials

dh(l‘l, 1'2)(1)1,1)2) = dlh(ﬂfl,l‘g)(vl) + dgh(Il,QTQ)(UQ).

If f is of the form (f1, f2) then f is C* if and only if f; and f, are C* and it holds
that df = (dfy, dfy).

The following lemma is well-known. As it is instrumental for the rest of the
work, we give a quick proof nevertheless. Clearly, the proof works in the most
general setting as well.

Lemma 1.3.3. Let n € N and F, ..., E, and F be locally convex spaces. Fach
continuous R-n-multilinear map f: E1 x --- x E, — F is automatically C* and
thus smooth by induction. In this case, we have

df (z)(v) = Zf(xl, e T 1, Vi L1y« 5 T

forz = (x1,...,2,),v=(v1,...0,) € By X -+- X E,.

Proof. Let yy; := x; and ;y; = v; for 1 <4 < n. With this we calculate

flatto)=fla)y=t- > Gy )

je{0,1}",0;>1

J/

f[l] (I7U7t)::

where ¢; := j; + ...+ j,. As fl is continuous, the statement follows. ]

Corollary 1.3.4. Let E, F, E' and F’ be locally convex spaces, U C E, U C E’ be
open and f: U — F and g: U — F' be smooth maps. Moreover, let a: F — F’
and : E' — E' be continuous linear maps such that B(U) C U’ and ao f = gof|y.
Then we have

aod'f=d"go (B|ly x ")
for all n € Ny.

Proof. This follows from applying the chain rule and Lemma to

d"(ao f)=d"(go Bly).

12
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1.3.2. Manifolds

With the above, the definition of manifolds over locally convex spaces is analogous
to the finite-dimensional case (see also [11, Section 8, p.253| or [10, Section 2,
p.20]). We fix a locally convex space E and let M be a topological space. A set
A = A{pa: Uy, — V,: a € A} such that U, C M and V,, C E are open, ¢, is a
homeomorphism, (J,c4 Ua = M and

Pap 1= Pa © 05 loswans) : 98(Ua NUs) — ¢a(Ua N Up)

and its inverse @g, are smooth is called a (smooth) atlas of M and the elements
of A are called charts of M P| Two atlases of M are equivalent if and only if their
union is again an atlas. Together with an equivalence class of atlases, M is called
a (smooth) manifold modelled on E and E is the model space of M. We usually
only mention a representative atlas of the equivalence class. Moreover, we will
generally assume manifolds to be Hausdorff.E] A manifold is called paracompact,
resp. o-compact, if it is so as a topological space and finite-dimensional if its model
space is finite-dimensional. If M and N are manifolds with the atlases {¢,: o € A}
and {¢,: f € B}, then {p, x ¢g: a € A, € B} is an atlas of M x N.

A continuous map f: M — N between two manifolds is a morphism of (smooth)
manifolds if for any charts p: U — ¢(U) of M and ¢: W — (W) of N the map

vofog™hipUNfTH(W)) — (W)

is smooth. This property is independent of the choice of atlases. If M and N are
manifolds, we denote by C*(M, N) the set of all smooth maps M — N and we
denote by Man the category of Hausdorff manifolds and their morphisms.

The definition of vector bundles or more general fiber bundles, their morphisms
and their products is similar to the finite-dimensional case and for it, we refer to
[11, p.255] or [I0, Section 3, p.22]. The particular charts of a bundle are called
bundle charts and they are elements of a bundle atlas. We write VBun for the
category of vector bundles.

The definition of the tangent bundle mwy: TM — M of a manifold M via
equivalence classes of smooth curves works as in the finite-dimensional case. For
locally convex R-vector spaces, this is equivalent to the more general definition in
[11, p.254] and [10, Section 3, p.22] (see [23]). For the elements of the tangent
bundle, we occasionally write [t — v;] € T,,, M, where t — v; denotes some curve
in M. In this notation one has

Tflt— v = [t — f(vr)] € Ty N,

if f: M — N is a smooth map between manifolds. If F'is a locally convex space,
one has a natural isomorphism TF = F' x F and if g: M — F is smooth, we also
write dg: TM — F for pryoT'g with the projection pry: F' x F' — F' onto the

2The index set A is just to simplify our notation, it does not belong to the data of the atlas A.
3This assumption is necessary to guarantee the existence of smooth partitions of unity for
finite-dimensional o-compact manifolds.

13
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second component. Like in the finite-dimensional case, the above defines a functor
T: Man — VBun and considering VBun as a subcategory of Man, we define
T° = idpan and 7™ := ToT™ ' Man — Man for n € N. Finally, if {¢,: a € A}
is an atlas of M, then {T'p,: a € A} is a bundle atlas of TM and there is a natural
isomorphism of vector bundles T(M x N) = TM x TN.

Smooth partitions of unity

A smooth partition of unity of a manifold M is an open covering (U;);e; of M
together with smooth maps h;: M — R, such that

(a) For all x € M, we have h;(z) > 0.
(b) The support of h; is contained in U; for all i € I.

(c¢) The covering is locally finite.
(d) For each z € M, we have ., hi(z) = 1.

In this situation, we say that (h;);es is a partition of unity that is subordinate to
(U;)ier. We say that a manifold M admits partitions of unity if it is paracompact
and for every locally finite open cover (U;) of M, we find smooth maps h;: M — R
that constitute a partition of unity subordinate to (U;) (see [33, p.34]|). Para-
compact (and in particular o-compact) finite-dimensional manifolds always admit
partitions of unity (compare [33, Corollary 3.8, p.38]).

Vector fields

Let M be a manifold modelled on a locally convex space E. A wvector field is a
smooth map X: M — TM such that my o X = idy;. We denote by X(M) the
R-vector space of vector fields. Let X,Y € X(M). If p: U, — V,, is a chart of M,
we define the local representation X% of X by

X¢:=dpoXop 'V, — E.
The space of vector fields is a Lie algebra with the Lie bracket locally given by
(X, Y]?(2) = dX?(2,Y*(x)) = dY*(w, X?(2))]

(see [I0, Theorem 4.2, p.25|). If M is finite-dimensional, we define the support of
X, supp(X), as the smallest closed subset X C M such that X|y\x = 0. With
this, we define the subspace of compactly supported vector fields

X.(M):={X € X(M): supp(X) is compact}.

4 We choose this order of X and Y to stay consistent with [10]. Traditionally, in the literature
the reverse order is used.

14
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Then X.(M) is a Lie subalgebra of X(M). If M is o-compact with an atlas A that
is countable and such that the family (U,),ca is a covering of M by relatively
compact open sets U, then giving X, (M) the topology that turns

X(M) - eV, E), X (X9)pea

peA

into an embedding makes X.(M) a locally convex Lie algebra. The induced topol-
ogy does not depend on the choice of A (see Lemma and Lemma [4.1.17] cf.

[18]).

1.4. Categories

We follow [49] in the standard definitions. Let us give a brief overview to fix our
notations. Throughout, we fix a universe U (see [49 3.2.1, p.17]) that contains
the natural numbers N as an element. Sets are then elements of U and classes are
subsets of 4. A category C consists of a class of objects |C| and a set of morphisms
Hom¢ (A, B) for any objects A, B such that we have a composition map

Home (B, C) x Home(A, B) — Home(A,C), (f,9)— fog

(where C' € C) that satisfies the usual conditions. In particular, we have a unique
identity morphism id4 € Hom¢(A, A). For f € Home¢(A, B) we also write f: A —
B and we call f an isomorphism if there exists f~' € Hom¢(B, A) such that
flof =ids and fo f~! = idg. As a shorthand, we write A € C instead of
A € |C|. A small category is a category whose objects form a set.

We denote by Set the category whose objects are sets and whose morphisms
are maps between sets. The category Top has topological spaces as objects and
continuous maps between them as morphisms. [

1.4.1. Functors and Functor Categories

Let C and D be categories. A functor T: C — D assigns to each A € C an
object T(A) € D and to each morphism f € Hom¢(A, B) a morphism T'(f) €
Homp(T'(A),T(B)) such that T'(ida) = idray and T(f o g) = T(f) o T'(g) hold
for all A, B,C € C and all f € Hom¢(B,C), g € Hom¢(A, B). Let S: C — D
be another functor. A natural transformation «: S — T consists of morphisms
ay: S(A) — T(A) for every A € C such that for every f € Home(A, B), we have
T(f)oas =apoS(f). We always have the natural transformation idy: 7" — T
defined by (idr)a = idpa) and if U: C — D is another functor and 3: T'— U is a
natural transformation, then the object-wise composition 54 0a 4 defines a natural
transformation foa: S — U.

If C is a small category, then the functors C — D are the objects and the natural
transformations are the morphisms of a category which we denote by D¢ (see [49,

Schubert, [49)], uses the notations [A, B]c for Hom¢(A, B), 14 for id4 and Ens for Set.
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Proposition 3.4.3, p.19]).

1.4.2. Algebraic Structures in Functor Categories

In any category D with finite products and a terminal object Z € D (see [49, 5.4.1,
p.35 and Section 7.3, p.49f.] for these notions), one can define a given algebraic
structurd’] on an object A € D by encoding the structure in certain commutative
diagrams. Let us use the example of groups to illustrate this general principle.
As multiplication, we now have a morphism pu: A x A — AJZ] the inversion is
described by a morphism 7: A — A and the neutral element corresponds to a
morphism e: Z — A. Denote by *: A — Z the unique morphism A — Z. Then
the relation between inversion and multiplication is given by

A\“‘“’” Ax A
(3,ida) Z\ I
Ax A . A

It is not difficult to see how one can also describe the properties of the neutral
element and associativity in this way. For details see [49, Section 11.1, p.96ff.]. In
this situation, we call (A, u, 1, e) a group in the category D or a group object.

This approach can be extended to structures where one object operates on an-
other, like modules, algebras and Lie algebras over a commutative ring. Morphisms
can also be defined using appropriate commutative diagrams and one obtains new
categories of objects with a given structure. For details see [49, Chapter 11, p.96ff.].
Let R € D be a commutative ring. We denote by Modg(D), Algg(D) and
LAlg(D) the categories of modules, algebras and Lie algebras over R in DF| If R
is an ordinary ring then Modg(Set), Alg,(Set) and LAlg,(Set) are just the cat-
egories of ordinary R-modules, R-algebras and R-Lie algebras, respectively. If R is
a topological ring, one obtains with Modg(Top), Algr(Top) and LAlg,(Top)
the usual topological modules, algebras and Lie algebras over R.

If C is a small category, then the functor category D¢ also has finite products
and a terminal object. A functor T € D¢ having an algebraic structure is then
equivalent to T'(A) having that structure in C for all A € C and T'(f) being a
morphism of that structure for all A, B € C and all f € Hom¢(A, B) (see |49,
Proposition 11.4.1, p.lOQ])EI Likewise, natural transformations are morphisms if

60One caveat: This means only algebraic structures where the operations are defined everywhere.
For example fields are excluded because the multiplicative inversion is only defined on a subset.

"Schubert uses the notation A A instead of A x A for the product.

8In [49, 11.3.7, p.101f.], one can clearly restrict oneself to objects over the same ring and restrict
morphisms to those which are the identity on the ring to obtain these categories.

9Tt is easy to generalize the proposition to the situation where one has an operation of another
object with an algebraic structure. In this case morphisms need to include morphisms on
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and only if they are so object-wise.

We are mainly interested in the case of the categories Set® " or TopGr(M with
the structures of modules, algebras and Lie algebras. With the above in mind, we
make the following definitions.

Definition 1.4.1. Let k € NgU {oo}. A group object in SetCr" (resp. TopGr(k)
etc.) is called a supergroup. Concretely, (G, i, 1,e) is a supergroup if and only if
(G(A), pia,ia, en) is a group for each A € Gr®) and G(p) is a morphism of groups
for each ¢ € Homg,m (A, A’). We call a supergroup H a sub-supergroup of a
supergroup G if H(A) C G(A) is a subgroup for each A € Gr. A morphism of
supergroups is a natural transformation f: G — G’ between supergroups G and G’,
such that fo: G(A) — G'(A) is a morphism of groups for each A € Gr.

Definition 1.4.2. Let k € Ny U {oc}. A (unitary) ring in Set®" is a functor
R: Gr®) — Set such that R(A) has a fixed (unitary) ring structure for all A €
Gr™ and R(p) is a morphism of rings for all ¢ € Homg,wm (A, A'). We call R
commutative if every R(A) is a commutative ring. Let R be a unitary ring in
Set®" . A (left) R-module in Set®™™ is a functor M: Gr®) — Set such that
M(A) is a (left) R(A)-module for every A € Gr® and M(p): M(A) — M(A') is
a morphism of additive groups with

M(e)(gm) = R(e)(g)M()(m)

for all g € R(A),m € M(A) and ¢ € Homg,w (A, A’). The object-wise module

(k)
tS™" . A natural transforma-

operations then define a natural transformation in Se
tion a: M — N between two R-modules in SetS™" is a morphism of R-modules
if v is a morphism of R(A)-modules for all A € Gr™. Then ModR(SetGr(k)) is
the category of R-modules in Set ",

An R-algebra A in Set®" over a commutative ring R in Set®" is an R-

module A in Set®" such that A(A) is an algebra over R(A) for every A € Gr™®

and such that
A(0) (nala, b)) = ua (A(o)(a), A(o) (b))

for all a,b € A(A) and ¢ € Homg,.m (A, A’), where (1a)cqpv denotes the algebra
multiplication. Then (u,) rcgr(® is a natural transformation. We call an R-algebra
A commutative (resp. associative, or Lie) if every A(A) is commutative (resp. an
associative algebra, or a Lie algebra). A natural transformation 5: A — B between
R- algebras in Set®™™ is a morphism of R-algebras if 55 is a morphism of algebras
over R(A) for all A € Gr™. Then AlgR(SetGr(k)) is the category of R-algebras
and LAlgR(SetGr(k)) is the category of R-Lie algebras in Set".

The definitions of rings, modules, algebras and Lie algebras in TopGrm is com-
pletely analogous.

both structures, e.g. morphisms of modules with a change of rings (see [49], 11.3.7, p.101f.]).
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Definition 1.4.3. Let £ € Ny U {oo}, let R be a unitary commutative ring in
SetS™ and My,...,M,, M € ModR(SetGr(M). We say that a natural transfor-
mation f: My x --- x M, — M is R-n-multilinear if f, is R(A)-n-multilinear for
every A € Gr™® and let

Lyp(My, ..., My; M) :={f: My x---x M, — M : fis R-n-multilinear}.

We define L (My, . .., M,; M) analogously for the case of Topc"r(k> if R is a unitary

. . . (k)
commutative ring in TopG’r .

Lemma 1.4.4. In the situation of Definition setting

7o f+g = (RMa)(r) - fa+ 9a) peqe®

for f,g € Lj(My,...,My; M) and r € R(R) turns Ly(My, ..., My; M) into
an R(R)-module in Set. On L%(My,...,My; M), &, acts from the left via
foo = (fao0)regew- The same is true for L{(M, ..., M,; M), resp.
Lo(M,, ..., My: M).

Proof. The first statement is easily seen because for every o € Homg,i (A, A'), we
have that M(p) is additive and

M () (R(ma)(r) - m) = R(o) (R(na)(r)) - M(e)(m) = R(na)(r) - M(0)(m)

holds for all » € R(R) and m € M(A). The second statement is obvious and the
same arguments work in the case of L1(My, ..., M,; M), resp. L}(My, ..., My; M).
O]

See also [40), Chapter 1, p.378ff.] for a more general approach.

1.5. Linear Superspaces and Superalgebras

For any multilinear algebraic structure like rings, modules or algebras, one can
define a corresponding “superalgebraic” structure. For this, generally speaking,
one fixes a Zo-grading such that the operations obey the principle “even times even
is even, even times odd is odd and odd times odd is even.” If a rule for permutating
elements is involved, one additionally has “permutating with even elements does
not involve an additional sign, permutating two odd elements does.”

Definition 1.5.1. We call a ring R a superring if it is Zo-graded, i.e., decomposes
into additive subgroups Ry @ R; such that

R;-R; C R

holds for 4, j € {0, 1}. If, additionally, R is a topological ring such that R = Ry® R,
holds as topological groups, we call R a topological superring.
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A (left) module with a Zy-grading M = M, & M, over a superring R with a unit
element is called an R-supermodule if

R;- M; C My

holds for 4,5 € {0,1}. If, additionally, R is a topological superring and M is a
topological R-module such that M = M, @& M, holds as topological groups, we call
M a topological R-supermodule. The part M is called even and M; is called odd. A
supermodule of the form My®{0}, resp. {0} @ Mj, is called purely even, resp. purely
odd. A morphism f: M — N of R-supermodules is a morphism of R-modules that
preserves the grading, i.e., f(M;) C N; for i € {0,1}. We denote by SMody the
category of R-supermodules. A morphism of topological supermodules shall be
additionally continuous and we denote by TopSMod, the category of topological
R-supermodules. The product M x N of two R-supermodules M, N is the R-
supermodule (Mg x Ny) @ (M; x Ny).

Every ring R can be considered as a purely even superring R & {0}.

Definition 1.5.2. Let R be a superring and M be an R-supermodule. An element
m € M is called homogeneous if m € My or m € M;. The parity p(m) of an
homogeneous element is defined as

0 if me Mo,
p(m) := .
1 if me Ml-

Definition 1.5.3. Let R be a unitary commutative superring, n € N and let M
and ;M = My ® ;M; for 1 < i < n be R-supermodules. An R-n-multilinear
morphism

friMx---x M—M

is called ewven if

JOGMy, .o, M;) © My

holds for ji,...,j, € {0,1}. We denote by L%(;M,...,,M;M) the space of
even R-n-multilinear morphisms ;M x --- x M — M. This space is obviously
an Rp-module. If R is a topological superring and all modules are topological
R-supermodules, then we denote by L%(,M,---,,M;M) the Ry-module of re-
spective continuous even R-n-multilinear maps.

The symmetrical group &,, acts from the left on (L% (M, ..., M; M) via

(f.0,)(v, ..., 0) = (=1)PaPLO f( g i 1Us jUs -y 0)

for f € (Lp(4+M, ..., M;M), homogeneous ,v,...,,v € ;M and any transposition
0j = (]7] + 1)

Of course, one can also define odd R-n-multilinear morphisms and turn the
space of all R-n-multilinear morphisms into an R-supermodule. See [40, Section
1.7, p383ft.] for this.
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Definition 1.5.4. A supermodule over a field K is called K-super vector space.
For p,q € Ny, we define the super vector space RPlI¢ := R? @ R? and if dim Fy = p
and dim E; = ¢, we call (p|q) the dimension of E.

We let SVec := SModg denote the category of R-super vector spaces. More-
over, we denote by SVec,,. the category of Hausdorff locally convex R-super vector
spaces and their continuous morphisms.

Definition 1.5.5. Let K be a field. A K-superalgebra is a K-super vector space
A = Ay @ A; that is an algebra with the multiplication u: A x A — A such that

,LL(AZ,AJ> - Am for Z,j S {O, 1}

A super algebra A is called associative, resp. unital, resp. topological if it is so as
an algebra. We say it is supercommutative if we have

p(a,b) = (_1)p(a)p(b)u(b7 a)

for all homogeneous elements a,b € A. A morphism of superalgebras is a morphism
of algebras that is a morphism of super vector spaces. We denote by SAlgy
the category of K-superalgebras. A morphism of topological superalgebras shall
additionally be continuous and we let TopSAlgy be the category of topological
K-superalgebras if K is a topological field.

Example 1.5.6. Every Grassmann algebra A € Gr is a topological R-
superalgebra that is associative, unital and supercommutative.

One can of course define superalgebras over superrings, but for our purposes the
above is sufficient.

Definition 1.5.7. Let K be a field. We call a K-superalgebra L a K-Lie superal-
gebra if its multiplication [-,-]: L x L — L is

(1) super antisymmetric, i.e., [a,b] = —(—1)P@P®)[p a] for all homogeneous ele-
ments a,b € L and

2) satisfies the super Jacobi identity, i.e.,
p Y
[a, [, c]] + (_1)p(a)p(b)+p(a)p(0) [, [c, a]] + (_1)p(a)p(c)+p(b)p(6) ¢, [a, 0] = 0
for all homogeneous elements a, b, c € L.

We call [+, -] the Lie superbracket of L. We denote by LSAlgy the category of K-Lie
superalgebras and by TopLSAlgy the category of topological K-Lie superalgebras
if K is a topological field.

The even part Lo of a Lie superalgebra L together with the restricted Lie su-
perbracket is clearly an ordinary Lie algebra.
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1.5 Linear Superspaces and Superalgebras

Remark 1.5.8. One can express the various additional properties of superalgebras
with the action of the symmetric group from Definition [1.5.3] Let A be a K-
superalgebra with the multiplication u: A x A — A. Then supercommutativity is
equivalent to p.(1,2) = u, super antisymmetry means p.(1,2) = —u and the super
Jacobi identity can be expressed by

> plespls,e).o =0
0€BG3,sgn(o)=1

In fact, Molotkov defines multilinear algebraic structures of a given super type by
simply substituting the usual action of the symmetric group on multilinear maps
with this graded version in [40], Section 1.9, p.385].

Superalgebraic structures can, of course, also be defined for general categories.
This is done in [40], Section 1.7, p.383f.].
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2. Supermanifolds

2.1. Open Subfunctors

Open subfunctors of functors from Top®* will play the same role as open subsets
of topological spaces in ordinary differential geometry. The following definitions
of intersections, restrictions, open covers and so on are intuitive and even provide
one with a Grothendieck topology on Top®* (see [I, Definition 3.17, p.591f.]).

Let k € NgU{oo} and F € Top®". For A, A’ € Gr®) and ¢ € Homg,m (A, A),
we set Fp := F(A) and F, := F(p).

Definition 2.1.1. Let & € NgU{oo} and F, F' € Set®" . We call F' a subfunctor
of F if for every A € Gr(k), we have F), C F, and these inclusions define a natural
transformation 7' — F. In this situation, we write 7' C F. For F, F € TopGr(k)
(or F,F' € ManGr(k)), we define subfunctors analogously. In this situation a
subfunctor F’ of F is called open if every F) is open in Fy.

Lemma /Definition 2.1.2. Let &k € Ny U {oc} and F € Set®" . For a subset
U C Fg, we define the restriction F|y by setting

Flo(A) = (F.,) "' (U) for A€ Gr®

and Fly(0) = Fplr|y(a) for morphisms o: A — A’. For functors F € TopGr(k) (or

F e ManGr(k)), we define the restriction analogously for open subsets U C Fg.
Then F|y is an open subfunctor of F.

Proof. Let z € F|y(A) and A € Gr™. Then Fey 0 Fo(x) = Fepoow) = Fo\ () €
U holds for all morphisms p: A — A’ since 5/ 0 p = €5. In the topological case,

we have that F_!(U) is open because F., is continuous. [

Lemma /Definition 2.1.3. Let k € NgU{o0}, F € TopGr(k) and F', F” be open
subfunctors of F. Then (F' NF")y := Fy N Fy and (F' NF"), := Fo|(znrr), for
AN eGr® and g e Homg, (A, A") defines an open subfunctor 7' N F" C F.

Proof. By definition F) N F} is open in Fu. If € F) N F}, then by functoriality
F,(x) € Fy, N Fy,, which shows that 7' N F” is a functor and that the inclusion
is a natural transformation. O

Definition 2.1.4. Let k € Ny U {oo} and F,F' € Top®". A natural trans-
formation f: F' — F is called an open embedding if fo: F), — Fa is an open
embedding for every A € Gr®.
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2 Supermanifolds

Lemma/Definition 2.1.5. Let £k € Ny U {o0}, F,F' € Top®" and f:F —
F be a natural transformation. Let A, A’ € Gr® and o € Homg, i (A, A") be
arbitrary.

(a) Let V C F be an open subfunctor. Setting f~'V, := f'(Va) and f~1V, :=
F,| -1y, defines an open subfunctor f~'V C F'.

(b) If f is an open embedding, then f(F')x := fa(Fy) and f(F'), := Folp(F)a
define an open subfunctor f(F’) C F.

(c¢) Let U C F' be an open subfunctor. Then f|(A) := faluy, defines a natural
transformation fly: U — F.

Proof. (a) Because fy is continuous, f~'V, is open. For x € f~!1V,, naturality of
fimplies fa(Fy(x)) = V,(fa(z)) and therefore f~'V,(x) € f~' Fy.

(b) Because f is an open embedding, f(F’)s is open. For x € f(F’),, naturality
of f implies f(F"),(x) € f(F')a

(c) This is obvious. O

Definition 2.1.6. We call a set {f*: F* — F:a € A}EI of open embeddings a
covering if | J,c 4 fR(F§L) = Fa holds for all A € Gr®. In this situation, we define
for all pairs a, 3 € A an open subfunctor F*¢ C F* by Fe¥ .= (f¢) " (fX(FL) N
FYF)) and Fob = ]:ﬂfﬁﬁ as well as natural transformations fo?: Fof — Fha

by foF = (f)to f,‘i‘|f/c\y@ for all A, A’ € Gr™ and all morphisms o: A — A’.

Definition 2.1.7. For k € Ny U {oo} a functor F € Top® " is called Hausdorff
if Fy is Hausdorff for every A € Gr™®.

2.2. Superdomains

Superdomains take the role of open subsets of vector spaces in ordinary analy-
sis. Together with appropriately defined supersmooth morphisms between them,
they enable us to define supermanifolds from local data much in the same way as
for manifolds. The main result in this section is the description of supersmooth
morphisms through so called skeletons in Proposition [2.2.13] Since skeletons will
be our main tool for concrete calculations, other important results are a formula
for the composition (see Proposition and a formula for the inversion (see
Lemma [2.2.18)) in terms of skeletons. We follow [I] in this section, with only small
additions to accommodate k-superdomains (i.e., certain functors Gr® — Top).
With the exception of a concrete inversion formula, these results have already been
stated in [38].

At the end, we briefly discuss the correspondence between multilinear algebraic
structures of a given super type in Set (resp. Top) and algebraic structures of the
respective ordinary type in Set® (resp. Top®™).

L As with atlases before, the index set A is just used for the sake of an easier notation and not
part of the data of a covering.
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2.2 Superdomains

Lemma/Deﬁnition 2.2.1. For every F € SVec and k € Ny U {00}, we get a
functor B : Gr® s Set by setting

EY =B () = (B ® Ag) @ (B © Ay)

on objects A € Gr® and Eék) = E(k)(g) = (idg ®0)| 5 on morphisms g: A — A’
A

of Grassmann algebras. We abbreviate E := E(OO) F(k) = Ly ® {O}(k)
E(k) = {0} ® El(k) and let R" .= R {0}(k , Le. RA = Ag. Then E ®) is an
E(k)—module in SetGr(k). For £ € SVec,., we have a functor

B, qr® Top,

by giving Eff) the product topology. Then Fg\k) is a locally convex space and an

R®-module in TopGP(k).

If A C A is an R-vector subspace, we set E = (Ey® Ag) @ (B ® A1), where
Ay = ANAj and Ay := AN A;. Forn § < k, we will always consider the

natural embedding E(k) E(k) E;lz)m

Proof. 1t is easy to see that E® is a functor. In the locally convex case, we give
Ey®@ M5 = Hle?g ArEy, resp. By @ Ay = HIeT’f ArEq, the natural locally convex

vector space structure. Since every A € Gr is a Ag-algebra, Eka) is a Ag-module

with the obvious multiplication. This multiplication is continuous in the locally
convex case because its components are simply finite linear combinations. For

the same reason, E(Qk) is continuous and linear. That we have @(Qk)(:v) -E(Qk) (v) =

E(Qk) (x-v) forall x € EXC) and v € EXC), follows directly from the definition of the
multiplication. O

In the definition of super manifolds the functors E will play the same role as
vector spaces do for regular manifolds. Accordingly, we need a notion of open
subfunctors and appropriate “smooth morphisms” between open subfunctors. All
open subfunctors of Y C E for E € SVec,, are uniquely determined by Ug.

Lemma 2.2.2. Let k € NU{oo} and E € SVec,.. Recall the restriction from
Lemma/Definition|2.1.9. Every open subfunctor U C EY
(k)

lue =U.

arises as such a restric-

tion, i.e., we have E

Proof. For k = oo this is just [45, Proposition 3.5.8, p. 61|. The same proof holds
for k € Ny if one only considers A € Gr'® (see also [40, Section 3.1, p.388 £]). [

Definition 2.2.3. Let E,F € SVec, and k € Ny U {o0}. We call an open
subfunctor U C E® a k-superdomain. In the case of k = oo we simply call it a
superdomain. A natural transformation f: U — V of k-superdomains U C "
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2 Supermanifolds

and YV C 7o is called supersmooth if for all A € Gr'® the map fy: Uy — V, is
smooth and the derivative

de Z/{A X E (&) FXC)

is Ag-linear in the second component, i.e., for any x € Uy, the map

dfp(z,e): Eg\k) — Fg\k), v — dfa(x)(v)

is Ag-linear. We denote by SC*(U,V) the set of all supersmooth morphisms
f:uU—V.

It is obvious from the usual chain rule that the k-superdomains together with
the supersmooth natural transformations form a category, which we denote by
SDom®. In the case of k = 0o, we also use the notation SDom.

Note that for R-linear maps, it suffices to check Ag-linearity on the generators:
For E, F € SVec;. and an R-linear map L: E,, — Fj, with L(A\;z) = A\;L(z) for
all z € Ey and A\; € A, 5, we have

:L(Z)qt[:c Z)\]t[ —t L()

IePy IePy

wheret = > rePn Aty € Amﬁ, t; € R. Asit turns out, even natural transformations
that are merely “smooth” already have very convenient properties.

Lemma 2.2.4. Let E,F € SVec., k € NgyU{oo}, U C E® be an open subfunctor

and f: U — F* be a natural transformation such that f is smooth for all A €
Gr™® . Then for all n € Ny, the maps d"fy define a natural transformation

d"f: U x E® x . xEY S F®,

Proof. Let A,A’ € Gr™™ and let p: A — A be a morphism. Because we have
P4 fa = faol, and E;k)]ul\ = U,, Corollary [1.3.4] implies that

—k) . —(k —(k
F od = d"fa o Uy x B x -+ x BV,

Thus d"f is a natural transformation. Compare also [42, Lemma 3.6.5, p.812f.|
and [I, Lemma 2.15, p.577|. O

In the situation of the lemma, we write d f for the natural transformation defined
by dfy.
Lemma 2.2.5. Let E,F € SVec,,, k € NgU{oo}, U C E® be an open subfunctor

and f: U — F* be a natural tmnsformatzon such that fa is smooth for all A €

Gr®. Forn,m €N, A, € Gr® let € Up C Un,, and y; € M, E; C By,

where I; € P and 1 <i < n. Then, we have

n —(k
d fAm(xxylv"'vyn) S Afl"'AlnF?g Fg\jﬂ
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2.2 Superdomains

for ¢ = UL, L|l. If the sets I, are not pairwise disjoint, we have
d" . (@) (Y1, - - yn) = 0.

Proof. Consider d" fy,, as a map into []; pm )‘IF\II Let I := !, i, p € I and
define p: A, — A, by 0(A\,) = 0 and o()\;) = A; for j # p. By Lemma [2.2.4] we

have

0= d" fu, Up@)(EL (1), ..., BV () = FO@ s (@) (w1, -, 0)-

In other words, all components that do not contain A, are zero. Conversely, let
p' ¢ I and let ¢': A, — A, be a morphism given by ¢'(A\y) = 0 and g();) = \;
for j # p’. Then, we have

&, Uy (@) (ES (1), ES () = " fan (@) (W1, -, ),

but all components of Fgf) (d" fa,, () (Y1, - .., yn)) that contain A\, vanish. It follows
that d"fa,, ()(y1,...,yn) € Af, - -+ A1, Fp. Finally, assume that the sets [; are not
pairwise disjoint, for instance let p” occur in r > 1 sets. For ¢ € R, we define a
morphism ¢”: A, — Ay, by 0"(A\yr) := cApr and ¢”(N)) := A, for j # p”. We have

" fa U (@) (B (1), - B () = " fa (@) (s Y)-
But we also have (Fé’ﬁ)(d”flxm (@) (Y1, -, yn))), = c(d" fa, (@) (1, - yn)) ,, Which
implies d" fy,, (z)(y1, ..., yn) = 0. O

The next lemma, a variation of [I, Proposition 2.16, p.578]|, is one of the rare
cases where the proof for superdomains does not automatically translate to k-
superdomains. In a sense, it shows the infinitesimal character of the generators
A

Lemma 2.2.6. Let E, F' € SVec,,, k € NgU{oo}, U C EY be an open subfunctor

and f- U — IR be a natural transformation such that fp is smooth for all A €

GrY. Let 1 <p<k,zecl, \Eg\?j\ and y € EE\IZ)A Then, we have

fa(z +y) = falz) + dfa(z)(y).

Proof. Let ¢ € R. We define a morphism g.: A — A by o.(),) := ¢\, and
0c(A;) := \; for i # p. Then U, (x) = x and ESZ) (y) = cy. Therefore, we have

INE (@ + ) = In(E,) @) = 0=F,) (Julx +y) — Ja(@))
and thus fa(z +y) — fa(z) € FE\];)A. It follows that

¢ 10 y0) = IWEY (@ +1) — (W (B (@)
—FY(fa(x+y) — fa(@) = - fV(z,9,1).
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2 Supermanifolds

Taking the limit ¢ — 0, we see that f/[\l] (x,y,0) = f[[xl} (z,y,1) or in other words
falz +y) — fa(x) = dfa(z,y) (compare [I, Proposition 2.16, p.578|). O

Accordingly, we get the following variation of [I, Corollary 2.17, p.579|.

Proposition 2.2.7. Let E,F € SVec,., k € NgU {oc}, U C E® be an open

subfunctor and f: U — F* be o natural transformation such that fx is smooth
for all A € Gr'®. For z = To + 216?1 x;r € Uy, where n < k, zg € Ug and
T € )qu, we have

fan(@) = fan(@o) + D> Y dfa (20) (@, - Ty,

1€P7 weP (I)

Proof. We first define a suitable partition of P%. Let Z, := {{1}} and Z; :=
TPZF \ Tﬁr_l for 1 < j < n,ie., Z; contains all subsets that contain j but no larger
index. Set Tz, = Zlezj xr; then we can write © = x¢ + 2?21 xz,. We prove the
proposition by induction on the largest index of an odd generator appearing in
x. Lemma gives us the induction basis. Assume that the formula holds for
1 <m < n, ie., assume that

fAn(a:OjLZ;n:lij) I, (o) Z Z d“@) fy () (T Tuoggy)-

IePT we (I)

With this, differentiating in the direction of 7, ., gives us

den (x0+ Z;ﬂzl ij) ('rIerl) - den (mO) (xIm+1 )+
Z Z d@(W)+1fAn (xO)(wa RIS '/'EUJg(w) ) 13Im+1)

1P we (I)

Z Z d“’)fA (x0) xwl,...,xwl(m).

I€lpmt1 weP (1)

It follows from Lemma [2.2.6] that the addition of both equations results in the
desired formula for fa, (zo + Zj \ 7z,;) (compare [40, Section 10.2, p.421]). O

The proposition can be rewritten in the following way.

Lemma 2.2.8. Let E,F € SVec., k € NgU{oo}, U C EY be an open subfunctor

and f: U — F* be a naturdl transformation such that f is smooth for all A €

Gr™®. For A € Gr® firx € Ur, ng € Eij) and ny € EE\,) Then
0 1

o0

1
falx+ng+mny) = Z Tl dm+lfA($)(ZL0, L Mg, N, )

TV TV
m,1=0 m times I times

_Z ~d' fa(z)(ng +na,. .. no +na).
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2.2 Superdomains

Proof. Let A = A,,. By Lemma the sums are finite and after multilinear
expansion we only need to consider the summands that consist of partitions. For
any partition Z € % (I), I € P7 in graded lexicographic order containing m even
and [ odd sets, there appear exactly m!l! copies of the term

dm+lfA(x> (n0,117 .. 7n0,zma nl,Zm+17 s ’nl,l-m+l)
in the first sum because we have to consider all permutations of ngz,,...,n07,,,
resp. of n1z,.,,...,n1z7,,,- The first equality follows then from Proposition
(see also [I, Proposition 2.21, p.582]). The second equality holds because
multilinear expansion of d™*! fy(x)(ng + ni,...,no + ny) leads to (ml’Ll) copies of
d™ fa(z)(no, ..., ng,n1,...,n1) (m times ny and [ times n;) and (m;rl) . ﬁ =
1
— O

mll”

Corollary 2.2.9. Let E,F € SVeci,, k € Ny U {oo}, U € B be an open
subfunctor and f: U — F* be o natural transformation such that fy is smooth
for all A € Gr™) . If additionally dfs(z): Eg\k) — FXC) is Ng-linear for all xo € U,
then [ 1is supersmooth.

Proof. Let A = A,,. Because dfy(zg) is Ag-linear it follows by symmetry of the
higher derivatives that d™ fa(xo): Ef) X e X Egk) — FE{C) is Ag-m-multilinear for
allm e N. Let © =z + Y jcpn 27 and y = yo + Zfefpi yr where 7, yr € A\iE

and t € Ag. With Proposition [2.2.7] we calculate

Afa(@)(ty) = d(falwo) + D0 D A falw) (o s2,) ) (1)

1€P7 weP (I)

- de(l'o)(ty) + Z Z dé(W)—HfA(xO)(an s ,xw[(w),ty)

1€P7 weP (I)

:t<de(x0)(y)+ > dz(w)ﬂf/\(xg)(xwl,...,xwaw),y)) 0

1€P7 weP (I)

This was already stated in [40), Theorem 3.3.2, p.391] without proof. The corol-
lary simplifies some calculations considerably. A small example is the next lemma.

Lemma 2.2.10. Let k € NgU {0}, E, F € SVec;, andU C E® be an open sub-

functor. If f: U — F® s supersmooth, then df: U x Y 7
as well.

18 supersmooth

Proof. By Corollary 2.2.9] it suffices to calculate
d(dfa(zo, yo)) (t - u, t-v) = d* fa(wo)(yo, t - u) + dfa(zo)(t - v)
=t - d* fa(wo) (yo, w) +t - dfa(o)(v) = t - (d(dfa(zo, %0)) (v, 1)),

for (zo,y0) € Ur X Fg), (v,u) € Ef\k) X Fg\k) and t € Ag. O
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2 Supermanifolds

By induction, it follows that all higher derivatives of supersmooth maps are
supersmooth again. A more general but also more involved version was proved in
[1, Proposition 2.18, p.580].

We will now give an explicit description of supersmooth morphisms as so called
skeletons, which is essential for almost all applications. It was already stated in
[40, Proposition 3.3.3, p.391] and proofs can be found in [46, Theorem 4.11, p.20]
or in higher generality in [I, Proposition 3.4, p.584].

Definition 2.2.11. Let n € N, let Ey,...E, and F' be locally convex spaces

and U C FEj open. Denote by C*(U, L™"(FEy, ..., E,; F')) the set of maps f: U —
L'(Ey, ..., Ey; F) such that

P UX(Byx - x By — F, fx,v) = f(z)(v)
is smooth. In this situation, we define

d" f(z)(w,v) == O0) - - - Owr,0) f " (T, V),

formeNzeU,ve Eyx---xE,and w= (wy,...,wy,) € EJ". Analogously, we
define C>*(U, Alt" (E1; F)) as the set of maps f: U — Alt"(Ey; F') that are smooth
in the above sense.

Definition 2.2.12. Let k € Ny U {0}, E, F € SVec,. and U C E; open. A
(k- )skeleton is a family of maps (f,)o<n<k+1 such that f, € C°(U, Alt"(Ey; Fy)).
It will be convenient to set d°f,, := f,, and let d°f,,(z)(wy, . .., W, v) = d°fn(z)(v)
as well as d” fo(z)(w,v) := d" fo(z)(w) for x € U, w = (wy,...,w,) € EJ* and
v e kY.

Proposition 2.2.13 (|1, Proposition 3.4, p.584]). Let E, F' € SVec,., k € Ny U

{0}, U C E(k), Y C e open subfunctors and f € SC*(U,V). Then the
equation

k
I+ Am) = fo@)+ D > MA@ Wi, ),

=1 {il ..... il}eﬂjk

where © € Ug and y, € E1, defines a k-skeleton (f,),. For this skeleton, we have

o0

fay(@+ng+mny) = Z L d" fi(x)(no, ..., ng, 11, - .., 1), (2.1)

m!l! -~ ——
m times | times

m,l=0

where x € Ugr, ng € EX:)J ny € EEQT and N < k. Here it is understood that
N,0 )

dmfl(a:)()\hvl, ceey )\[H_mUH_m) = )\]1 s )\[Hmdmfl(.lf)(vl, Ce 7Ul+m)

for vy, ..., vy € Ey, Ui, ..., Upsr € By and |I;| even if 1 < j < m and odd if
m+1<j <m+1l. Conversely, every k-skeleton defines a supersmooth map via
formula and the skeleton of this map is the original one.
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2.2 Superdomains

Proof. Using Lemma instead of [1, Proposition 2.21, p.582], the proof follows
in the same way as [I, Proposition 3.4, p.584]. For the reader’s convenience, we
will sketch the steps using our notation. Let N < k. By Proposition [2.2.7| we have

N
.fAN (l"i‘Z;\;l Alyl) = Z Z dlfAN(x)()‘hyip"'7>\i1yiz>'

1=0 {iy,...i;}€PN

The maps on the right-hand side are symmetric in A; y;; but swapping two odd
generators leads to a sign change by the natural transformation property. With
Lemma one sees that this determines alternating maps in y;,, where it is un-
derstood that the odd generators can be pulled out in order of their appearance.
Now, one applies Proposition to derive formula . Note that by super-
smoothness, the alternating maps defined above determine d™*' fy completely.
To see that the right-hand side of formula defines a natural transformation
for a given skeleton is straightforward and supersmoothness then follows directly
or with Corollary 2.2.9] This supermooth map has the original skeleton by a
combinatorial argument similar to the one used for Lemma [2.2.8] O]

Remark 2.2.14. In the situation of the proposition above, we can use Proposition

[2.2.7 instead of Lemma [2.2.8 to get
Fan(tno+mn) =" Y Ad®D fo(x)(ny),

IEJ’N weP (I)

where the partitions w are in graded lexicographic order, A\, = A, -+ A and

nw = (n0,0Jl) P ,n07we(w)7n1,we(w)+17 st ,n17[(w)>'

Remark 2.2.15. Let f: U4/ — V be as in Proposition [2.2.13] We have already

seen that df: U x E® L F® i supersmooth. For A € Gr'®| & € U, y € E,
and x;,y; € E; ® A;r set u == x + 29+ x; and v := y + yo + y1. Then use the
proposition to calculate

We(w)

=1
Aa()(w) = 3 — (@) w0,
m,l=0 o
‘I—m‘dmfl<l')(y0,l'0,...7,1‘0,1'1,...71‘1)
-I—l-dmfl(a:)(xo,...,xo,yl,xl...,x1)>
=1
== Z 'l' <dm+1fl< )<y+y0,$0,...,$0,l’1,...,£C1)>+
m,l=0
=1
Z i (d frsa(z )(l’oa~--,$07?J1,I1~-,I1)>-
m,l=0

We see that the skeleton of df is given by

(df)n = dfn(prL[R7 prEO)(prh ce 7pr1) +n: Q[nfn(prMR)<pr27 pPry,. .. 7pr1>7
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2 Supermanifolds

with the projections pry, : Ur X Eg — Ug, prg,: Ur X Ey — Eg, the projection to
the first component pry: F; x E; — E; and the projection to the second argument
pry: E1 X E1 — E1

In the sequel, we will not differentiate between supersmooth morphisms and their
skeletons. In other words, if U, V, W are k-superdomains and f € SC*(U, V) has
the skeleton (f,)n, we will write (f,)n: U — V. If additionally g € SC*(V, W) has
the skeleton (g,), we let (gn)n o (fn)n be the skeleton of go f. For this composition
the concrete formula is given as follows.

Proposition 2.2.16 (compare [I, Proposition 3.7, p.586|). Let k € Ny U {00},

E € SVec,.,, U C E® be an open subfunctor and V,W € SDom™ . For two
supersmooth morphisms (f.).: U — V and (g.),: V — W the skeleton (h,), =
(gr)r o (fr)r is given by hg := go © fo for n =0 and otherwise by

@@ = Y DG x @) (22)
m,l,0€G,, A
(a,ﬁ)elrnml

forx € Up and v = (vy,...,v,) € ET, where v7 1= (Vo(1), - - -, Vo(n)),

I, = {(a, ) € @2N)" x 2Ng + 1)!| |a| + |B] = n},
fa = for X X fan, f5:=fa X X fz and

Ad=arl-anl, =51 Bl

Proof. By Proposition [2.2.13| (h,,),, is defined by
A(fa(z +1)) Zl'hl ..,y) for all A = A, € Gr®

where z € Ug, and y = Y7 \jy; € Eg\k).

n; = Z %fl(x)(y7ay>

le2N—i

For i € {0,1}, we let

Together with Proposition [2.2.13] this implies

o0

g (falz+y) = > : d"gi(fo(x))(no, ... 0, m1, .., n1). (2.3)

lll
m,[=0

Since in formula , h, only depends on (f,),<, and (g,)r<n, it suffices to
compare the component containing all odd generators of A = A,,, i.e., the com-
ponent I := {1,...,n}. The formula follows then by trivial induction. Mul-
tilinear expansion of the n; in formula shows that exactly those sum-
mands contribute, where the indices of all occurring f; add up to n. In other
words exactly those containing f, x fs with (a,3) € I} ,. Applying multilin-
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2.2 Superdomains

ear expansion to y, we see that for every (a,3) € I, , exactly all permutations
/\U(l) o ')‘J(n)%ﬁg(fa X fﬂ)(ya(l)w . 7ya(n)) for o € 671 appear in formula "
since equal indices cancel each other. The sign in the formula is explained by
)\0(1) cee )\U(n) = sgn(a))q. ]

Remark 2.2.17. Formula (2.2)) was already stated in [40, Proposition 3.3.3, p.91
f.] but the first proof in the literature was [1, Proposition 3.7, p.586]. Unfortu-
nately, the proof is incomplete and there is a small mistake in the formula (the
original one in [40] is correct), which is why we decided to give the proof in its

entirety. To see that our formula differs from the one proposed in [, consider
that in the situation of Proposition [2.2.16|the latter leads to

Z %dgl(ft)(i’f))(ﬁ(iﬁ')(-a% fi(@)(+)) (v1,v2,v3) = 0,
while in general

S 3 4o, (o)) (o) 0)s () (0)) (01, 02, 05) 0.

2
ceG3

Lemma 2.2.18. Let k € NU{oo}, E, F € SVec;. andU C E(k), Y C ) be open
subfunctors. A supersmooth morphism f: U — V is an isomorphism in SDom®
if and only if fa,: Un, — Va, s a diffeomorphism. In this case, using the same
notation as in formula , the inverse g has the skeleton

go: Ve — Uz, go(2') == f'(2),
g1: Vg — Altl(Fl;E1>7 91(1’/> = fl(QO(xl))fl and
gn: Ve — Alt"(F; Ey),

g”(l’/)m)/) = B Z %dmgl(xl)((fa X fﬁ) (QO(ZE/)) (UU))v
m,l<n,(g765)e[:“7 2162502

where n > 1, v' = (vi,...,v)) € FI* and v := (g1 (2")(v}), ..., q1(2")(v},)) € ET.

Y n

Proof. If a supersmooth morphism f: U — V is invertible, then clearly f, is a
diffeomorphism for every A € Gr®. Conversely, let fa, be a diffeomorphism.
Then fa,(x + M\v) = fo(x) + M fi(z)(v) for all x € Ug and v € E;. A direct
calculation shows that gy, (' + M\v') := go(2’) + A1g1(2")(v') is the inverse of fy,.
With the supersmooth morphism (g,),: V — U, we calculate

(9o @@ = 3 B g (@) (o x ) ) ()

ml<n(@B)EIT. ,
geG,

+ ) %Qn(fo(l‘))((fl X - f1) (@) (7)),

oeG,
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forn > 1, x € Ur, v € ET. Note that in the second summand the sum over &,, to-
gether with the factor # can be omitted because the expression is already alternat-
ing. With fo(x) := 2" and (fi(z)(v1), ..., fi(z)(v)) := o' it follows from the defini-
tion of g, that ((g,), o (f;);)n = 0. This implies (g,), o (f;)r = (i, Ciap,, 0,0, ...),
which is the skeleton of the identity id;,: U4 — U. Thus, (f,), has a left inverse.
Since the same construction also works for (g,),, the left inverse of (f,), also
has a left inverse. Therefore, (g,), is the inverse of (f,), and f is invertible in
SDom™®. ]

In general, it is quite difficult to check that smooth bijective maps between
locally convex spaces are diffeomorphisms. However, if the map has the form of
fa, in the above lemma, a result of Hamilton (|26, Theorem 5.3.1, p.102]) can be
directly generalized to the locally convex case. We do not need this result in the
sequel but since it might be of interest for inverting supersmooth maps, we state
it nevertheless.

Lemma 2.2.19 ([24, Lemma 2.3, p.11]). Let Ey, Ey and Fy be locally convex
spaces, U C Eqy open and f: U x Ey — Fy be smooth such that f, := f(x,s): By —
Fy is linear for all x € U. If f, is invertible for all x € U and g: U x F| —
Ey, (x,v) — f71(v) is continuous, then g is smooth. Moreover, we have

dig(,0)(w) = —g (2, di f (2, g(z,v)) (w))
forz e U, veF| and u € Ejy.

It is easy to generalize this to the situation where additionally a diffeomorphism
fo: U — V between open sets of locally convex spaces is involved.

2.2.1. Supersmooth multilinear algebra

Lemma/Definition 2.2.20. Let £ € NyU{oo}, n € N, ,F' € SVec for 1 <i < n,
E e€SVecand f: {F x---x  F — E be an even n-multilinear map. We define

?(k): 1—F(’€) Y e n_F(k) - E(k)

via multilinear expansion of ?XC)()\hvl, e ALUR) = A A f(ug, . vy,) for
AeGr® X, ... N\, €Aandv; € L77- Then f(k) is a natural transformation.
If no confusion is possible, we also write f instead of 7(k). It ,F € SVec,. for

. . . —(k) .
1 <i<n, E€SVec, and f is continuous, then f( ) is supersmooth.

Proof. That f is a natural transformation follows immediately from the definition.
Likewise, for continuous f it is obvious that f, is a continuous Ag-n-multilinear
map for every A € Gr'® and thus supersmooth. ]

Proposition 2.2.21 ([40, Proposition 2.1.1, p.387|). Let n € N and
Lo FE € SVec.
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2.2 Superdomains

(a) For k € NU{oo}, k > n the map
n n ok —k), = T
OLR(va-“anF;E)_)L@(lF()7"-7 F()§E( )7 f=1f

is an isomorphism of R-modules, where the R-module structure on the right-
hand side is as in Lemma|1.4.4).

(b) If | F, ..., F,E are topological super vector spaces, then
n n (k) (k) 7=(k) =
oLr(F, .. FiE) — Lo((F ..., F 5 E), [ f
is also an isomorphism of R-modules.

(c) If g1,...,9n are even R-multilinear maps such that for 1 < i < n the
codomain of g; is ;F, then for any f € (Lg(,F, ..., ,F; E), we have

fo<gl7"'7gn):fo(m7"‘7g_n)'
(d) If f € (Lg(\F,...,, F;E) and o € &, then we have

fo=Foo,

with the left-hand side as in Definition [1.5.5 and the right-hand side as in
Lemma(1.4.4].

Proof. The proof of (a) for the case k = oo given in [46], Proposition 3.1, p.10] can
be easily transferred to the case of k € N, k > n. _
In the situation of (b), it is obvious from the definition that [ €

E%(l_F(k), ce ,n_F(k);E(k)). Conversely, the map

i< x O F = Aaa B (o, ,0) = A fGv, o 00)

.....

is continuous for all 4;,...,4, € {0,1}, where 0 < ¢ < n denotes the number of
odd ;. It follows that f is continuous.

Statement (c) is obvious. For (d) let ;v € ,F'; 1 < i < n be homogeneous and
let I; € T’;(i’v)' Then, we have

fAk(AII 1’U7 e 7AI] j/U’AIj+1 ]+1v. . .,AITL n/U) -

(_1)p(jv)p(j+1v)/\h e )\nf(lv’ L 7jv7j+1v L 7nv)‘
This shows that f.(4,7 + 1) = fo(j, j+1) holds for any transposition (7, j+1) € &,,.
The general statement follows because the transpositions generate G,,. O
Corollary 2.2.22 (c.f. [40, Corollary 2.1.2, p.388|). The assignment E — BV
for objects and f — f for morphisms defines fully faithful functors

“: SModz — Mod_g (Set "),
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2 Supermanifolds

“: TopSMody — Modﬁ(k)(TopGr(k)),
for 1 <k, fully faithful functors

" SAlgy — Alg_ (Set®"),
“: TopSAlgg — Algﬁ(@(TopGr(k)),

for 2 < k and fully faithful functors

“: SLAlg; — LAlg_q(Set®"),
“: TopLSAlg; — LAlg_u (TopS"),

for k> 3. If A € SAlgy is associative, resp. unital, resp. supercommutative, then

—(k) . . . .
A" is associative, resp. unital, resp. commutative.

Proof. Let us first consider the non-topological cases. That the functors are fully
faithful follows from Proposition [2.2.21[a). In view of Remark [1.5.8] we see that
Proposition[2.2.21)(d) implies that an algebraic structures of a super type is mapped
to the respective normal algebraic structure. For the same reason, supercommu-
tative superalgebras map to commutative algebras. Note that & > 3 is necessary
for applying the proposition to the super Jacobi identity.

Proposition [2.2.21|(c) shows functoriality and that associativity is retained. Fi-

nally, if A € SAlgy has the unit element 1,4 and p is a terminal object of SetGr(k),

then z: p — Z(’“), za(pa) = Z;’f(l 4) clearly defines a neutral element of am.
With Proposition [2.2.21{(b), the topological case follows. Compare also [46, Corol-
lary 3.2 and Corollary 3.3, p.12]. O

(k

In particular, if one restricts the objects on the right-hand side to R )_modules

isomorphic to modules of the form F(k), so called superrepresentable @(k)—modules,

these functors establish equivalences of categories. More generally, it can be shown
that one gets an equivalence of categories from any category of multilinear “super-
algebraic” structures over R in Man to the respective category of multilinear
algebraic structures over R in SMan (see [40, Corollary 4.4.2, p.397])

2.2.2. Generalizations

One obvious generalization is to consider a differential calculus for other base fields
(or even rings) than R. A robust framework for this is provided by [11] and then
further developed for the super case in [I]. In the most general case, one has a
unital commutative Hausdorff topological ring R such that the group of units R*
is dense, i.e., integers need not necessarily be invertible. For simplicity’s sake, we
formulated our results over R but we made a conscious effort to make them easily
adaptable to more general situations.

2Tt is not immediately clear whether this result holds beyond Banach supermanifolds.
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2.3 Supermanifolds

In this way Lemma through Proposition can easily be shown to hold
in the most general case. While Corollary and Lemma [2.2.10] also translate,
our definition of supersmoothness just means Cj, 4 (together with smoothness over
R) in the terminology of [I]. Note however that Cj,4 is equivalent to C{5q if R is
an QQ-algebra and one has smoothness over R (see [Il, Proposition 2.18, p.580]). In
this case Lemma [2.2.§ Proposition [2.2.13] Proposition and Lemma [2.2.18
carry over as well.

It should be noted that Remark enables us to show an analog to Proposi-
tion if not all integers are invertible in R, i.e., supersmooth maps are given
by something like skeletons even in the most general case. The resulting analog
to the composition formula from Proposition can be obtained with general
results about multilinear bundles (compare Remark and a similar induction
as in Lemma[2.2.18leads to an inversion formula (compare [10, Theorem MA.6(2),
p.172|).

The second apparent generalization is to define morphisms of finite differentia-
bility order n € Ny. Given only k-superdomains with k& < n, one can simply define
k-skeletons where the differentiability class of the components is appropriately
chosen. For a more detailed discussion see [40, 10.1, p.420f.].

2.3. Supermanifolds

The construction of supermanifolds from superdomains is conceptually very close
to the respective construction of manifolds. In the categorical approach proposed
by Molotkov in [40], one defines a Grothendieck topology on Top®* that takes the
same role as the usual topology in the manifold case. As model space one uses
functors of the form E for E € SVec;, with open subfunctors I as the open subsets
(respectively functors isomorphic to such functors). A supermanifold is then a
functor M € Man®" together with an atlas consisting of natural transformations
p: U — M, such that the change of charts is supersmooth. Here a technical
problem arises. In this approach, the intersection of two chart domains in M is
defined as a fiber product in the category Man®", which is not guaranteed to be
a superdomain. This has to be demanded in the definition. We avoid this and
other technicalities by using concrete definitions of the model spaces. For a concise
version of the categorical approach see [1, p.591 ff.].

We introduce k-supermanifolds in the same way as supermanifolds by consider-
ing functors Man®" and obtain respective categories SMan® for k € NouU{oo}.
One has the obvious restriction functors 7% : SMan™ — SMan™ for n < m and
the embeddings «: SMan® — SMan® and :;: SMan — SMan®), which
play an important part in understanding the structure of supermanifolds. Note in
particular that SMan® =~ Man and SMan” =~ VBun.

These statements are not particularly difficult to prove and were already stated
in [38]. Noteworthy new results include the following. For any supermanifold M,
we show that M, has the natural structure of a so called multilinear bundle
of degree n over Mg. What is more, (M, )nen, forms an inverse system of
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2 Supermanifolds

multilinear bundles which enables us to obtain a functor
SMan — Man, M — lim M,
<—n

in Theorem [2.3.11] As already mentioned, this functor has good properties such
as respecting products. Another important result is the characterization of purely
even supermanifolds in terms of higher tangent bundles of the base manifold in

Proposition [2.3.16|

Definition 2.3.1. Let k € Ny U {oo}, E € SVec;. and M € Top®" Hausdorff.
Recall Definition We call a covering A := {p*: U* — M:a € A} of

M such that all 4 are open subfunctors of E™ an atlas of M if the natural
transformations
P = () 0 s s UM — U

are supersmooth for all a, 3 € A. Two atlases A and B are called equivalent if
their union AUB is again an atlas. As with ordinary manifolds, this clearly defines
an equivalence relation and we call the pair (M, [A]) a k-supermanifold modelled
on E. If k = co we also simply call M a supermanifold. We will usually omit [A]
from our notation and if we talk about an atlas of a supermanifold, it is meant to
belong to this equivalence class. An element of any of the equivalent atlases will
be called a chart of M. For any two charts ©* and ¢”, we call p** the change of
charts.

A morphism f: M — N of k-supermanifolds M and N is a natural transfor-
mation f: M — N such that for any chart ¢: 44 — M and any chart ¢: V — N

7o fop(regiwy: (o) (¥(V) =V

is supersmooth.

Note that the definition of morphisms between k-supermanifolds is independent
of the atlases, because change of charts satisfies the cocycle condition. As with
ordinary manifolds, one sees that the composition of two morphisms of superman-
ifolds is again a morphism by inserting charts between them. Thus, we get for
every k € NgU {oo} the category SMan® of k-supermanifolds. As always, we set
SMan := SMan®. For two k-supermanifolds M, A, we denote by SC*(M, N)
the set of supersmooth morphisms f: M — N

Definition 2.3.2. A k-supermanifold M modelled on £ € SVec, is a finite-
dimensional, Banach or Fréchet k-supermanifold if E is so. If E; = {0}, then
M is purely even and if Ey = {0}, then M is purely odd. We call Mg the base
manifold of M and say that M is o-compact if Mg is o-compact.

Remark 2.3.3. If one allows non-Hausdorff supermanifolds in the definition, it is
easily seen that a supermanifold M is Hausdorff if and only if its base manifold
is Hausdorff. In fact, this follows because M, is a fiber bundle over Mg whose
typical fiber is Hausdorff by Theorem below.
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2.3 Supermanifolds

To get some intuition for supermanifolds, we start with several simple observa-
tions.

Lemma 2.3.4. Let k € Ny U {oo} and M € SMan® with the atlas {p®: U* —
M:ae A}

(a) For every A € Gr'™® | {(p% Zé(u’?))_lz Y (UR) — U o € A} is an atlas of
M.

(b) For n < m < k+ 1, the inclusions M,, . : My, — My, are topological
embeddings and My, is a closed submanifold of My, .

(¢c) Forn <m <k+ 1, the projections M., : My, — My, are surjective.

Em,n

Proof. (a) This is obvious from the definition of a supermanifold, since the sets
e} (UF) form an open cover of My, o} Zg(u‘% Vis a homeomorphism and the change
of charts is smooth.

(b) Let M be modelled on £ € SVec;.. In the charts defined by ¢% and ¢}

as in (a), the map M has the form U, ,, and we have Uy = Uy (UF ) =

NMn,m
Ug N Ef: By naturality, we have of (U (US ) = My, N M, (0], UZ)).

(c) In the charts defined by ¢§ and ¢} asin (a), the map M., , has the form
which clearly defines a surjective map. O

NMn,m

U,

Em,n

Part (c) of this lemma already suggests that My, is some kind of fiber bundle
over My,. As we discuss below, this fiber bundle structure can be accurately
described via multilinear bundles. Like ordinary manifolds, supermanifolds and
morphisms thereof arise from local data.

Proposition 2.3.5 (see [I], Proposition 3.23, p.593|). Let k € NgU{0}, E € SVec,,
and let (U*)aea be a family of open subfunctors of E® and U C U™ be open
subfunctors for o, € A such that U** = U*. Further, let o® : U — UY* be
isomorphisms in SDom™ such that we have p*® = idye and " = " o Lo’
on U N U for all a,/,a” € A. Finally, for all o, € A and any two
points x € U, y € Z/l]g such that x ¢ L{ﬂgﬁ or gpi{ﬁ(m) =%y, let there exist open
neighbourhoods V- C US of x and V' C UL of y, such that ©2° (u]fgﬁ NV)nVv' =9.
Then there exists a, up to unique isomorphism, unique k-supermanifold M with
an atlas {p*: U* — M: o € A} such that that the change of charts coincides with
the @ defined above.

Moreover, let N' € SMan® have the atlas {P: VP — N: B € B} and let
U C U™ for o € A and 8 € B such that UBGBZ/?H%B =Ue. If fP U — VP is a
family of supersmooth maps such that ¥°% o foB o p¥'> = f&'F" op (gpa/a)—l(iiaﬁ) N
(fPYY(VEBY for all o, o € A, B, 8" € B, then there exists a unique supersmooth
morphism f: M — N with f** = (%)™ o f 0 ¢¥|jjas-

Proof. This follows exactly as in [1, Proposition 3.23, p.593|. Essentially, we use
the well-known equivalent statement for ordinary manifolds for every A € Gr*)
to construct My, resp. fa, and the rest follows from naturality. Note that
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UﬁeB U’ = = Ug implies U,BGB = UY for all A € Gr®. Moreover, if Mg
is Hausdorff then M, is Hausdorff for all A € Gr (compare Remark [2.3.3] - O

Lemma 2.3.6 (|40, Corollary 6.2.2, p.409|). Let k € N U {oo} and M,N €
SMan®. A supersmooth morphism f: M — N is an isomorphism in SMan®
if and only if fa,: Ma, — Na, is a diffeomorphism.

Proof. Clearly, f: M — N is an isomorphism if and only if fy: My — Nj
is bijective and the maps fy' define a supersmooth natural transformation for
every A € Gr™. In particular, fa, is a diffeomorphism in this situation. Let
{p*: U — M: a € A} be an atlas of M and {¢?: V¥ — N: 3 € B} be an
atlas of N. Let f: M — N be supersmooth such that f,, is a diffeomorphism.
For all & € A and 8 € B we define U*? := (f o o*) "L (¢%(VF)) C U~ and VP =
£ ((f 0 )T W V) = (7)1 (F (2 U)) C VP and let

[P = (W) o f 0@ gus U - V.

Since fr is also a diffeomorphism, the sets f}]}ga cover Ng and because every
ff;lﬂ is a diffeomorphism, there exist unique supersmooth inverse morphisms
(feB)=1: Vi 5 4 by Lemma For every a,o € A and 8,3 € B,
we have (¥FP)Lo foF o g’ — faB on Yof 0 (o)L 1Y¥'F).  Therefore,
(Fo9) 1 = () Lo (f2F) 1 o pB8 on VP N (%) "1 (VPP') and the morphisms
lead to a unique supersmooth morphism f~!: A" — M by Proposition[2.3.5 That
it is inverse to f follows from the local description of f~'o f and fo f~!. [

Definition 2.3.7. Let k& € Ny U {co} and M € SMan® be modelled on E €
SVec.. A subfunctor N of M is called a sub-supermanifold of M if there exist
sequentially closed vector subspaces Fy C Fy and F; C FEj such that for every
x € Ng there exists a chart ¢®: U* — M of M with z € g (Ug) such that

(U NTFY) = o (U) NN, where F := Fy & F, € SVec.

We call ¢ | g & sub- supermanifold chart of N'. Taking all sub-supermanifold
charts of N as the atlas turns A into a supermanifold and we always give A this
structure.

Lemma 2.3.8. Let k € NgU {00}, M € SMan®) and N be a sub-supermanifold
of M. Then the inclusion i: N' — M is supersmooth.

Proof. By definition of a subfunctor, the inclusion is a natural transformation.

Let M be modelled on E € SVec;.,, N be modelled on F' C E and {p*: U* —

M: a € A} be a collection of charts such that {¢®| , —m: «a E A} is an atlas of

N. In these charts the inclusion is just the inclusion U N R U“, which is
obviously supersmooth. ]

Lemma /Definition 2.3.9. Let k € NyU{co} and M € SMan”. For every open
subfunctor of U C M, we have U = M|y,. In this case U is a sub supermanifold
of M and if f: M — N is a supersmooth morphism to N € SMan® . then so is
flo: U — N. We call such sub-supermanifolds open sub-supermanifolds.
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Proof. That U = M|y, holds for k = oo follows directly from [45], Corollary 3.5.9,
p. 62] and the same proof works for k € Ny if one only considers A € Gr™. Let
{p*: UY — M: a € A} be an atlas of M. Then {¢®|o)-1(po@eywy: @ € A} is
an atlas of . With these charts, the supersmoothness of f|;, is obvious. O

Definition 2.3.10. Let k € Ny U {co} and M, N € SMan*) be modelled on
E,F € SVec,,. with atlases {¢®: U* — M: a € A} and {¢°: VP — N: 8 € B}.
We define the product M x N of M and N as the functor A — M, x Ny, resp.
0+— M, xN,, for A, \" € Gr® and p € Homg, (A, A'). We will always give
M x N the structure of a k-supermanifold modelled on E x F' defined by the atlas
{p* x PP U x VP - M x N: (o, B) € A x B}.

Clearly, the projections may: M X N — M and n: M x N — N are super-
smooth morphisms.

Recall the definition of multilinear bundles and inverse systems of multilinear
bundles from Appendix [Bl The following theorem shows that for a supermanifold
M, the manifolds M, are multilinear bundles of degree n over Mg and that
(Ma,,, M., ) is an inverse system of multilinear bundles. This lets us consider
supermanifolds as ordinary manifolds.

Theorem 2.3.11. Let k € Ny U {o0}, M,N € SMan® and f: M — N be
supersmooth. If M is modelled on E € SVec. with the atlas {¢*: o € A}, then
My, is a multilinear bundle of degree n over Mg with the fiber E + and the

bundle atlas {¢} : o € A} for every A, € Gr®) . Moreover, fr, : My, — Ny,
is a morphism of multilinear bundles of degree n. With this, we obtain a faithful
functor

SMan®¥) — MBun®,
defined by M +— My, and f — fa, for k € Ny. Furthermore, if k = oo, then
(Ma,,, Mc,...) is an inverse system of multilinear bundles with the adapted atlas
{(¢3 ) ':neNy,ae A} and

lim: SMan — MBun(®,
%

defined by M — lim | My, and [ — llnn fa,, is a faithful functor. Along the
forgetful functor, we have thus constructed faithful functors

SMan*) — Man

for k € NoU{oc}. All these functors respect products.

Proof. Let M be modelled on £ € SVec;.. We start by showing that {©} : UL —
My, a € A} is indeed a bundle atlas of a multilinear bundles of degree n. Let the
change of charts ¢* be defined by the skeleton (¢2”). We consider U = Ug x
1T repn ArEpyy as a trivial multilinear bundle over the n-multilinear space (Er) with
Ep == A\ Ejy. By naturality, we have (e )7t (./\/l;Aln ({z}) = Ug ) (e ({2})
for all v € g (Ug). In other words, the projection M., : My, — Mg turns My,
into a fiber bundle with typical fiber FA:;. Recall the sign of a partition defined in
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2 Supermanifolds

Remark . Then Ay, -+ Ay, = sgn(w)As for all I € P} and w € P (I). With
this, we use Remark [2.2.14] to calculate

P (@ + P gepy Arrr) = 03’ @)+ > Y Asen(w)d Wl () ()

1P weP (1)
for w in graded lexicographic order x; € Em for I € P and

Lo = (AanTwns -+ + s gy Loy )-

In the notation of multilinear bundles, the change of chart is thus given by the sum
of maps of the form (p?)% := sgn(w)d(e(“’))gpz‘(i )(z), which define an isomorphism
of n-multilinear spaces for every x € uﬂ‘gﬂ . Thus, M, is a multilinear bundle over
Mg of degree n with typical fiber (Ey).

For a morphism f: M — N, we first note that by naturality fz o M., =
N, o fa, and therefore f,, is a fiber bundle morphism over fg. In bundle charts,
we can make the exact same argument as above to see that f,, is a morphism of
multilinear bundles.

It follows that we have a functor SMan® — MBun® as described in the
theorem for £ € Ny. Next, we show that (M,,,, M., ) defines an inverse system
of multilinear bundles if M € SMan. We have M., o} =i ol for all
n < m and therefore 147 = is the chart representation of M., .. Hence, in terms
of multilinear bundles, M.,  is exactly the projection defined in Lemma (B.3.1]
It follows that My, |on = M., . (Ma,,) = My, and @f | = ¢} olUp —=
M. 0% shows that {(¢% )7':m € Ny, o € A} is indeed an adapted atlas.

On morphisms f: M — N, N € SMan, we have likewise fy, oM., . =N, .,
fa,, which shows that (fa, )men, is @ morphism of inverse systems of multilinear
bundles.

It is clear from the definitions that products of supermanifolds correspond to
products of inverse systems. ]

Remark 2.3.12. In [40, Remark 3.3.1, p.392] Molotkov constructs a functor
Man®" — Man by taking the disjoint union of the M, for M € Man®® and
A € Gr. He also considers this as a functor SMan — Man along the forgetful
functor. For one, this functor relies on a more general definition of manifolds where
the model spaces of different connected components may be non-isomorphic. More
critically, this functor does not respect products, leading Molotkov to state that
“Lie supergroups (groups of the category SMan) are not groups at all (considered
in Set” [40, Ibid.]. We hope to have convinced the reader with the above theorem
that Lie supergroups can be seen not only as groups but even as Lie groups in a
natural way.

Remark 2.3.13. Consider the following type of fiber bundles. For £ € SVec;.
let the base manifold M be modelled on Ejy, let the typical fiber be llnn EAi
and let the transition functions come from the limit of skeletons as in Theorem
[2.3.11] The morphisms of such bundles shall locally also come from limits of
skeletons. Obviously, these bundles are elements of MBun® and restricting to

(0]
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2.3 Supermanifolds

this subcategory turns the functor lim into an equivalence of categories. If F is

finite-dimensional, we have that hm E A+ is a Fréchet space. Consequently, non-
trivial finite-dimensional supermanlfolds are mapped to Fréchet manifolds under
lim.
%

One can reconstruct the original supermanifold M from lim M if one keeps track
of any atlas of lim M coming from the limit of an atlas of M. An interesting prob-
lem is whether one can at least recover the isomorphism class of a supermanifold
without a specific atlas.

Problem. Is the functor lln SMan — MBun™ injective on isomorphism

classes, i.e., do we have lim M = linj\/’ in MBun® if and only if we have
M = N in SMan?

If Mgr admits a smooth partition of unity, then it follows from Batchelor’s
Theorem below that this is the case because lim M = lim N in MBun>
. . . % . % .
implies My, = Ny, in VBun. Note that the functor lim: SMan — Man is not
injective on isomorphism classes. For example

imRO~ J] R=J][R=Rx [[] R=lLmRT"

TCN,|I|<o0, neN ICN,|I|<oo,
1| even |I] odd

in the category Man.

We have seen in Theorem how to embed the category of supermanifolds
into the category of manifolds. Conversely, one can also embed the category Man
into the category SMan. For this, let Dom denote the category consisting of
pairs (U, Ey) where Ej is a Hausdorff locally convex space and U C Ej is open and
where the morphisms are smooth maps between the open subsets.

Proposition 2.3.14 ([40, cf. Proposition 4.2.1, p.396|). Let k € Ny U {oco}. We
define a functor
12: Dom — SDom™®

by setting (Q(U) = B* |U and (fo) == (f0,0,0,...) for (U, Ey) € Dom and
E = Ey® {0} € SVec,.. This functor extends to a fully faithful functor

1) Man — SMan®.

In case of k = oo we also write .: Man — SMan. The functor 1: Man —
SMan'? is an equivalence of categories. All of these functors respect products.

Proof. 1t follows from the composition formula in Proposition that
0: Dom — SDom' is a functor. Let M be a manifold modelled on E, with
atlas {pa: Vo — U,: a € A}, Applying this functor to the change of charts
©Yap: Uap — Upa, defines an (up to unique isomorphism) unique supermanifold M
modelled on Ey ® {0} with the atlas {¢{((pa)™"): th(Us) — M: a € A} by Propo-
sition [2.3.5] If N € Man has the atlas {¢3: Vj — Uj: B € B} and f: M — N is
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2 Supermanifolds

a smooth map then the same proposition applied to fos = g0 fo (p,) " leads to
a unique morphism (2 (f): (3(M) — 2(N) such that (Lg(f))aﬁ = 19(fap). Func-
toriality follows again by the local definition of the composition of supersmooth
morphisms.

The uniqueness of this construction shows that . is faithful. On the other
hand, every supersmooth map g: ({(M) — (2(N) is determined by its local chart
descriptions ¢®?, whose skeletons have the form (g5, 0,0...) since .2 (M) is purely
even. Clearly, the maps gOB define a unique smooth map M — N whose image
under ¢ is g. We already know from Theorem [2.3.11] m 1| that M — MR and f — fr
defines a functor 0 : SMan® — Man and the above shows that 7'[‘0 o LO ~ idMan
and that /,0 o 7r0 1dSMan

It is obvious that the functor «{: Dom — SDom™ preserves products and from
this it follows immediately that ¢ : Man — SMan® also preserves products. [

Lemma 2.3.15. Let k € Ny U {oo}. For every supermanifold M € SMan®
we have that 1)(Mg) is a sub-supermanifold of M. If M is purely even, we have
L%(M]R) = ./\/l

Proof. Let M be modelled on E € SVec;. and let {¢*: U* — M: a € A} be

an atlas of M. If the changes of charts ¢ have the skeletons (¢27), then the
skeletons (¢5”,0,...) define 15(Mg) by Proposition [2.3.14, Because goaﬁ|mm
0

has the skeleton (¢5°,0,...), it follows that 19(Mpg) is a sub-supermanifold of M.
If M is purely even, then changes of charts have the form (37,0, ...) to begin
with and it follows (M) = M by Proposition m O

Purely even supermanifolds M can be described in terms of higher tangent bun-
dles of Mg. This will be particularly important for the theory of Lie supergroups.

Proposition 2.3.16. Let M be a manifold. Recall Example[B.3.4 Using Lemma
[B.2.9 and Theorem[2.3.11], there are isomorphisms

k.0 ko si—
LYo (M), =T M|9’3,+

of multilinear bundles of degree n for every n < k < oo. These isomorphisms are
natural in k and n in the sense that

(Lg(M)Ang(M)Ek,n) (TkM|(pk ) rkz:|fpk )

holds as inverse systems of multilinear bundles. It follows that A +— T’“M|;k
0,
can be made into a supermanifold isomorphic to 1(M).

Proof. To show that (X(M),, = T"M ’97954 holds, we simply compare the change

of charts. Let M be modelled on Ey and {@a: Vi — U,: a € A} be an atlas of
M. For a change of charts ¢**: U,s — Ugq, we have 1§(p*%) = (9*%,0,0,...) and
thus

B a4+ ey i) = @@) + Y Y Arsen(@)d gl () x).

1Py wePg(I)

44



2.3 Supermanifolds

where © € Usp and 7y = (Tuy, .-, Tuy,,) € Eg(w). On the other hand, we
know from Example [B.2.7(b) and the Lemma that the change of charts
for T*M]|, is given by

0,+

Tr o™ gs (04 Lpegy e1er) =™ (@) + Y Y emsgn(w)d®Woif (v)(x)

1Py wePy(I)

for the same x € U,p and z, € Ee(w). Therefore, there exists an isomorphism
T i§(M)a, — T*M|g, such that (F"’) = T*% gy oI 015(¢")y, is given by
the obvious 1somorphlsms of trivial k-multilinear bundles

(T5)*: §Ua)a, = Ua x [ MEo—=Usx [ erBo =T 5y, (Ua)~

1€75 1€%g

Note that for any k-multilinear bundle F' and n < k, we have (F ]?§+)|y1 =

Flyp  and it follows from the local description in Lemma that

(%)~ F|?,€ — F|ﬂ,n is just the respective projection of F|;. . This shows
0,4+

that (T"“M ]?k , £|?k ) is indeed an inverse system of multilinear bundles. It is

clear from the local description that I o «(M).,,, = 7|, o T%, which shows
: 5,
([’(M)Ak7L(M)5k,n) (TkM’(pk ) In€|g>k )
To turn A, — TFM \?k mto a supermanifold, one simply defines
0.+
(T*M |5 )o: T"MI,,  — T"M|p, for every morphism o: Ay — A, via
0,4+ 0,+ 0,+

L(M),: (M) A, — L(M),, and the above isomorphisms. The charts are then given
by (I o e(pat)ar)y, - 0

Proposition 2.3.17 ([40, cf. Proposition 4.2.1, p.396]). Let k € NU{oco}. There
1s a faithful functor
(},: VBun — SMan®.

The functor ti: VBun — SMan'V is an equivalence of categories. All these
functors respect products.

Proof. The proof is very similar to the proof of Proposition [2.3.14. Let 7: F' —
M be a vector bundle with typical fiber E; and bundle atlas {¢,: Vo, — U® x
Ey: o € A}. The change of bundle charts p,5: Uag X By — U, X Ey has the form
(gpgﬂ, gp‘fﬁ), where gogﬁz Uap — Upa is a smooth and gp‘f"B: Uap X Ey — Ej is smooth
and linear in the second component. Note that there exists an atlas of M such
that the change of charts is given by gogﬁ . Let M be modelled on E,. We define the

super vector space E := Fy @ F; and let 1 (U, x Ey) :=U* := _(k)|Ua, as well as

Ut = Ey,, forall a, B € A. Then il(¢°%) := (257, £57,0,0,...): UP — U
defines isomorphisms that satisfy the conditions of Proposition m 2.3.5| because by
the composition formula from Proposition [2.2.16] we have

((pg’y,gpf’y,o,(),.. ) (900 7()01570 0 ) (gpg'yo(pgﬁa(p?v09035(90?5)70707“')
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2 Supermanifolds

= (908677 90(1Wa 0,0,.. ) = L%(@M)

where defined. We let ¢} (F) be the supermanifold M defined in Proposition [2.3.5]
by the given change of charts.

Morphisms f: F — F’ of vector bundles have again the local form (f&°, fo),
where f” is linear in the second component and define skeletons (5, f27,0,0,...)
that satisfy Proposition In this way, we obtain a unique supersmooth mor-
phism ¢} (f): t}(F) — «1(F’). By the same argument as above, this construction
is functorial and, by uniqueness, the resulting functor is faithful. ]

Lemma 2.3.18 (|40, cf. Proposition 4.2.1, p.396]). Let k,n € NgU{oo} andn < k.
The restriction of functors Man®" 1o functors Man®" leads to functors

7. SMan® — SMan™, 7¥(M) = M™.
On morphisms, we write 7%(f) =: f™. These functors respect products and 7 =
7% o holds for all m < n. Identifying SMan® with Man and SMan? with

VBun via Proposition |2.5.14 and Proposition we have 78019 2 idyan and

W’f o L,i > idyvBun if £ > 0.

Proof. Let M, N € SMan®. Tt follows directly from the definition that A — M
for A € Gr™ defines an n-supermanifold M™ with the obvious restricted atlas.
Likewise, for morphisms f: M — N, one defines f™ by f [(x") = fy for A € Gr'™.
This construction is clearly functorial, respects products and satisfies 7% = 7%
for all m < n. To see 7r§ o Lg ~ idyan and 7r’f o L,lg 2 idvBun, one simply checks that
on the level of skeletons this composition does not change anything. ]

om

One can understand the projections 7% : SMan® — SMan™ and the embed-
dings (): Man — SMan® and tr: VBun — SMan® completely in terms of
skeletons. The former simply cuts skeletons (fy,...) down to (fo,..., fn). The
latter two extend skeletons (fy), resp. (fo, f1), to (fo,0,...), resp. (fo, f1,0,...).
Proposition ensures that the composition of two such skeletons is again of
this form, which is why these embeddings are well-defined.

A natural question is now whether two k-supermanifolds M®*) and N'®) such
that M™ = N ™ holds for 1 < n < k are automatically isomorphic as well.
In other words, whether a supersmooth isomorphism ™ : M® — N can be
lifted to an isomorphism f*): M®) — A/®) This will be discussed in the following
section on Batchelor’s Theorem.

Definition 2.3.19. We denote by p the supermanifold modelled on {0} @& {0}
that consists for every A € Gr of a single point. Let k € Ng U {oco}. A point of a

k-supermanifold M is a morphism z: p®) — M. We also write 2, 1= z4(p}").

Lemma 2.3.20. Let k € NgU{oo} and M € SMan®. For every point z: p® —
M and every A € Gr™ | we have x5 = M., (xr). Conversely, for every xgr € Mg
the assignment xp := M,, (zr) defines a point.
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2.3 Supermanifolds

Proof. For every A € Gr'®), we have

Moy () = 2 0 P (P) = 2.
Conversely, let xgr € My be given, z := M, (zr) and ¢ € Homg, ) (A, A’). Then
0ony = na and therefore M,y(xp) = M, , (zr) = 2o O

Hence, the points of a supermanifold can be identified with the usual points of
the base manifold.

2.3.1. Connection to the Sheaf Theoretic Approach

The full subcategory of finite-dimensional supermanifolds in the categorical ap-
proach is equivalent to the category of supermanifolds in the sheaf theoretic ap-
proach. This was already discussed in [54] and [38] but a more thorough and
general proof can be found in [I]. Let us briefly sketch the idea behind the equiv-
alence.

Let p,q € Ny and U C R”l4 be an open subfunctor. In terms of skeletons, we
have

q
SC*(U, R =C= (MR, P A’ (re; R)) >~ C°(Ug, R) ® A,
=0

Therefore, for any supermanifold M modelled on RP1%, the sheaf
U SC"O(M|U,@), U C Mg open,

is locally isomorphic to the sheaf Cgy ® A, as needed. One then checks that
morphisms of supermanifolds lead to appropriate morphisms of these sheaves along
the pullback.

2.3.2. Generalizations

Many of the generalizations for k-superdomains mentioned in can be applied
to supermanifolds without much difficulty such that the results in this section
carry over. As already mentioned, one can consider non-Hausdorff supermanifolds
by simply extending the category Man to non-Hausdorff manifolds. Analytic
supermanifolds can be defined by demanding that the skeletons are analytic in an
appropriate sense.

One should also note that many structural results do not rely on supersmooth-
ness. In view of Proposition and Lemma [2.2.5] one can define a subcategory

of Man®" of functors locally isomorphic to some E(k), E € SVec,. where the
changes of charts are simply natural transformations such that every component
is smooth. Then an analog to Theorem still holds and one obtains a ge-
ometry combining commuting and anticommuting coordinates with less stringent
symmetry conditions than for supermanifolds.

47



2 Supermanifolds

2.4. Batchelor's Theorem

The classical version of Batchelor’s Theorem (see [6]) states that any supermani-
fold, defined as a sheaf (M, Oy), is isomorphic to the supermanifold (M, T'(A F)),
where A F is the exterior bundle of a vector bundle F' that is determined by Oy.
The isomorphism is not canonical because its construction involves a partition of
unity.

Molotkov transfers this result to supermanifolds in our sense and generalizes
it to infinite-dimensional supermanifolds M in [39]. In his version, the vector
bundle M,, takes the role of F' in the classical version. Molotkov only consid-
ers Banach supermanifolds, but as we will see, his methods generalize to locally
convex supermanifolds. It appears that [39] is not well-known and since it is not
readily available, we describe his arguments in detail below. A closer look is also
worthwhile because the techniques employed are close to the ones used in [6] and
might make it easier to translate between the sheaf theoretic and the categorical
approach. In Remark below, we sketch an alternative proof of Batchelor’s
Theorem that relies only on our description of the automorphism group of a su-
permanifold.

Theorem 2.4.1 ([39, Corollary 4, p.279]). Let k € NU {oo} and M € SMan™®
be such that Mg admits smooth partitions of unity. If M' € SMan® is a k-

supermanifold such that MM and M’V are isomorphic, then M is isomorphic to
M. In particular M =2 1t (MWD).

In other words, if one restricts the categories VBun and SMan® to the re-
spective subcategories over finite-dimensional paracompact bases, the restricted
functor ¢} from Proposition [2.3.17] becomes essentially surjective.

Definition 2.4.2. Let &k € N. We call k-supermanifolds of the form ¢}(M®),
where MW is a vector bundle, supermanifolds of Batchelor type. An isomorphism
fi N — (J(MW) is called a Batchelor model of N. We say an atlas A :=
{p*: a € A} of a supermanifold is of Batchelor type if all changes of charts have
the form % = (5%, ©7.0,.. ).

Remark 2.4.3. It follows from Proposition [2.3.5]that a supermanifold is of Batch-
elor type if and only if it has an atlas of Batchelor type. For a supermanifold of
Batchelor type, the union of two atlases of Batchelor type is again of Batchelor
type because the atlases define the same vector bundle. This does not need to
be the case for arbitrary supermanifolds, which implies that there is no canonical
choice of a Batchelor model in general.

One can reformulate this result as follows. In the situation of the theo-
rem, any isomorphism f™: M® — M'™ can be lifted to an isomorphism
fOHD MO MFD for 1 < n < k (see [39, Theorem 1(a), p.273]). It
is not difficult to see that one may assume M’ = M, which we will do in the
sequel to simplify our explanations (compare [39, Proposition 2, p.277]).

Let us introduce some notation for this section. For M € SMan® and
k € Ny U {oo} consider the group Autiq, (M) of automorphisms f: M — M such
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2.4 Batchelor’s Theorem

that fg = ida,. We denote by G (M) the sheaf of groups over Mg defined by
U — Autig, (M]y) for every open U C Mg. The restriction morphisms are given in
the obvious way by Lemma/Definition [2.1.5)c). The restrictions are morphisms of
groups because we only consider automorphisms over the identity on the base man-
ifold. The functor 7 : SMan™ — SMan™ from Lemma leads to mor-
phisms ¢ : 6 (M™) — 6 (M™) of sheaves of groups for m < n < k-+1. Locally,
(7 ) s Autig, (MM |y) — Autig, (M™)]) just maps skeletons (id, fi, ..., f.) to
(id, f1, ..., fm). We define
6" (M) :=kergr,.

m

The elements of G (M) are exactly those which locally have the form
(id, ¢a, 0, ..., 0, fons1,---, fn).- In particular, we get a short exact sequence of
sheaves of groups

1= 6, (M) = 65 (M) — O (M) — 1

(see [39, Theorem 1, p.273f.]). Note that 67 (M) = 6 (M™+D). We sum up the
most relevant results from [39] about the structure of 677! (M) in the next lemma
and give a sketch of the proof.

Lemma 2.4.4 (compare [39, Theorem 1(d), p.274]). Let k € NU {oc}, n < k
and M € SMan™). Then 67 (M) is a sheaf of abelian groups and a Cite-
module. If M is a Banach supermanifold, then there exist canonical isomorphisms
of C3y, -modules

O (M) 2 T(A" T ( My, ; TMR)) if n+ 1 is even and
O (M) 2T (A" (My,; My,))  if n+ 1 is odd.

Proof. Let {p®: U* — M™D: q € A} be an atlas of M™) and U C My
be open. For f € G M)y, we set f* := (¢%)" ' o f o p® where we may
assume after restriction that o is a chart of M™*V|;. Locally, f has the form
f* = (idyg, ¢ia,0,...,0, f5,,). For g € 677 (M)y, we use Proposition to

calculate
(fa o ga) - (f © g)a = (idMH%» Cid, Oa cee 707 f??—i-l + gg—i—l)'

Thus, 6"1(M) is a sheaf of abelian groups. Let ©”® be a change of charts of
M@+ We again use Proposition [2.2.16| to get

(gpﬁo‘)_l of%o gp’Ba = (idu]g"" Cd,0,...,0, ferl),
where
£l (057 (@))() = dg§” () (fia (@) (7 (@) (), - 01 (2)(4)))

for n 41 even, z € U™ and

Fra (267 (@))(e) = @87 (2) (s () (91" (@) (), -, 1 (2) (1))
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forn+1odd, z € uﬁg’“. If M,, is a Banach vector bundle, this describes exactly
the change of charts for a section f,41: Mg|y — A" ( My, |v; TMg|y)), resp.
fos1: Mgy — A" ( My, |os My, o).

It is easy to see from these formulas that for a smooth map h: Mg|y — R with
the local description h* := h o ¢, the multiplication A - f, defined by

(h'f)a = (iduﬂ%,Cid,O,_”’O’hQ ' r?Jrl)’

leads to a Cfy,-module structure on 6" (M). This structure corresponds to
the C%_-module structure of the sheaves of sections defined above in the Banach
case. ]

We will now return to finding a lift for an isomorphism f™: M®™ — A
to an isomorphism f+D: MO+ o MO+ Tet M € SMan® be modelled
on E € SVec,. with atlas {gpa: U* - M: a € A} and n < k. Locally, we
have isomorphisms @ : Y™ — (f*®) of the form (idye, fln)’a, A ). By
Lemma these can be lifted to isomorphisms (1) g ("+1 — Z/{a (n+1)
in SDom™ ™D of the form (idye, Fore e Fey where fOED 1
Alt"™(Ey; Erz) is an arbitrary map which is smooth in the sense of skeletons.

The morphisms f#™+) and @0+ o falntl) o Heu(nt) differ on YP+D)
only in the (n + 1)-th components of their skeletons because higher components
do not affect the composition of any lower components. The difference is given by
a unique element h%* € 61 (UP) such that

fﬁ,(nJrl) _ (paﬁ,(nJrl) o foz,(n+1) o Cpﬁa’(n+1) o h,@a

and one checks that these h%® define a cocycle in G71(M) via hf* := P+ o
RP o (PP D)=L on B+ (Be(n+1)) - This cocycle describes the obstacle to
lifting £ to f*Y (see [39, Theorem 3, p.277]). If Mg admits smooth partitions
of unity, then 6**(M) is a fine sheaf by Lemma and thus acyclic. Therefore,
the cocycle constructed above vanishes and a lift exists.

Remark 2.4.5. Mirroring the proof of the fact that for fine sheaves the higher
Cech cohomologies vanish, one can directly construct the lift via a partition of
unity. In the situation above, we assume that (% (Ug))aca is a locally finite cover
of Mg and that (p,)aca is a partition of unity subordinate to this cover. With
the module structure from Lemma [2.4.4] we define

£ ((906‘)‘1 0 (ZPB : 71/3") 0 90“>n+1,

BeA

where pg - hP is continued to @@ () (Y +1)) by zero. Tt is elementary to check

that the change of charts is well-defined for the resulting local descriptions of
f(n—‘rl).
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2.5. Super Vector Bundles

In analogy to our definition of supermanifolds, we give a definition of super vector
bundles as supermanifolds with a particular kind of bundle atlas. In this, we follow
[40, Definition 5.1, p.29|. See also [47]. While a bit cumbersome, it will be useful
to describe the change of bundle charts and the local form of bundle morphisms
in terms of skeletons.

Definition 2.5.1 (compare [40, Subsection 1.3, p.5|). Let E,F,H € SVec,
ke NgU{oo} and d € AV

f:U x E® o F® is called a U-family of R-linear morphisms if for every
A € Gr™ and every u € Uy, the map

be an open subfunctor. A supersmooth morphism

=k =k
falu,e): EE\) — FE\)
is Ag-linear.

Lemma 2.5.2. In the situation of Definition let f: U X E® S FY pe g
supersmooth morphism. Then f is a U-family of R-linear morphisms if and only

if for all A € Gr™® | we have

de((u, O)) ((O, v)) = fa(u,v) foru €Uy, v e EXC).

Proof. If the equality holds, then f is an U-family of R-linear morphisms because
the derivative dfy is Ag-linear at every u € Uy. The converse is true because any
Ag-linear map is in particular R-linear and thus the derivative of such a map is
the map itself. m

Lemma 2.5.3. In the situation of Definition let f-U x E® S F™ pe

supersmooth _morphism with the skeleton (fu)n. We set U := Ug. Then f is an
U-family of R-linear morphisms if and only if every f, has the form

fn :fn<prU7 prEo)((prD 0)7 SRR (prlv O))
+tn- anfn(prU7 0)((Oa pr2)> (prlﬁ 0)7 SRR (pr17 0))7

with f,(pry, pry,)((pry,0), ..., (pry,0)) linear in the second component and where
pry: UxEy — U, prg,: UxEy — Ey, pry: Hy X By — Hy and pry: Hy X By — Fy
are the respective projections.

Proof. Let f:U X E® o F® pe an U-family of R-linear morphisms. Choos-
ing u := x + Zle Avi, + € U and y; € H;, Proposition implies that
oz, 9)((y1,0)s -, (Yn,s)) must be linear in Ey @ E; & --- © E;. We use the mul-
tilinearity of f,(z,v)(s) to calculate

fn(x7v)(<y1>wl)7 R (ynawn>> =

fn(x7v>((y170)7 T (ymO)) + an(m7v)((y170)7 M) (Oawi)v ) (yn’o)) =
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2 Supermanifolds

(fn(il?, v)((prlv O)a Tt (prla O))"’
n: anfn<$’ O)((0> p1"2), (prlv O)? ) (prla O)))((yb wl)? ot (ynv wn))

for v € Ey and w; € Fy. The second equality follows because for v € Ey, we have

falz,v+0)((11,0), ., (0,wi), - ., (yn, 0)) =
fn(m7v)(<y170)> Tt (Oawi)v ) (yn,o)) + fn(xav,)((yla())v ) (070)’ ] (ymo))

Conversely, let (f,), have the aforementioned form. Let A € Gr® (z,y) €
U x Ey and (z;,y;) € (H; @ Ei) ® AT, i € {0,1}. To simplify our notation, we

(k) )

consider Hf\k) CHoFE, and Eg\k) CH® Eg\k in the obvious way. One sees

dmfl(.r,y)((l'o,yo>, Tt (l‘o,@/o), (Ilvyl)v ey (x17y1)) =
dmfl(x7y)(x07 <oy Lo, Ty - - 73:1) +m- dm_lfl(%yo)(ﬂfoa e Lo, L1y - - 7'771)
+ [- dmfl(x)(l'o, <oy X0y Y1, L1 - .$1),

where the last two summands are understood to be zero for m = 0 and [ = 0,
respectively. For u = x 4+ 2o+ x; and v = y 4+ yo + y1, we use Remark [2.2.15| to get

o

Falw)(®) = 3~ (a7 e ) (@ o, )

mll!
m,l=0

+m-dm_lfl(x,yo)(xo,...,xo,xl,...,xl) (24)
+1-d"fi(x)(zo, ..., T0, Y1, %1 - .. ,a:l)).

Comparing the terms, Proposition [2.2.13|implies that dfa(u)(v) = fa(u,v) and the
result follows from Lemma 2.5.2] O

Definition 2.5.4. Let E, F € SVec,., k € NgU {oc} and let £, M € SMan®
be such that £ is modelled on £ & F and M is modelled on E together with a
supersmooth morphism 7: £ — M such that mp: E4 — M, is a vector bundle

with fiber Fg\k) for all A € Gr'™. A bundle atlas of £ is an atlas A := {T®: U* x
Y e ye - E(k), a € A} such that {U{: o € A} is a bundle atlas of £y and
the change of two charts U® and ¥# has the form W?: *# x O ype T
with U = (¢ 1*%) where

(i) ¢*: U — UP* and

33 af . 7408 (k) (k) . af . = ..

(i) p*: U x F7 — F is an U*P-family of R-linear maps.
The elements of A are called bundle charts. Two bundle atlases are equivalent
if their union is again a bundle atlas. We call 7: &€ — M together with an

equivalence class of bundle atlases a k-super vector bundle over the base M with
typical fiber F. The morphism 7 is called the projection to the base.
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2.5 Super Vector Bundles

Let £ be another k-super vector bundle with typical fiber ' € SVec;. and base
N. A supersmooth morphism f: & — &' is a morphism of super vector bundles,
if in bundle charts U of £ and W' of £, it has the form (h®®’, g**'), where

(i) hee': Y — Y™, U™ CU* and

) (k)

(ii) go: U~ x FY L7 s a U family of R-linear maps.

Clearly, the h®" define a supersmooth morphism h: M — A such that 7y o f =
h o mn. We say that f is a morphism over h. The k-super vector bundles and
their morphisms form a category, which we denote by SVBun(k), resp. SVBun if

k = oo.

By this definition, a k-super vector bundle can be seen as a functor Gr® —
VBun. This point of view is taken by Molotkov in [40].

Remark 2.5.5. It follows from Proposition that, if one has a collection of
change of charts that satisfy the conditions of Definition [2.5.4] then one gets a
(up to unique isomorphism) unique super vector bundle. In the notation of the
definition, the ¢ then define the base supermanifold M and the bundle projection
is locally given by

(¢™) P omo WU = prya: U™ X Y ye

In the same way, morphisms of super vector bundles are determined by their local
description.

Lemma /Definition 2.5.6. Let k € Ny U {oc}, let £ be a k-super vector bundle
with typical fiber F' € SVec;, over M modelled on E € SVec;, and let z: p*) —
M be a point of M. We define &,, the fiber of £ at x, by setting (£,)r =
(ma) " ({zp}) for every A € Gr™. Then &, is a sub-supermanifold of £ and &,

o . = —(k
is, in a canonical way, an R-module such that £, = F ®)

Proof. Let {U*: YU* xF* L e ae A} be a bundle atlas of £ with corresponding
atlas {¢%: U — M: o € A} of M. Let ¢*: U* — M be such that zg € ¢%(US).
We may assume that 0 € Ug and that ¢ (0) = zg, because the translation defined
by Eka) — Ff\k), v — v — (%) Y(zg) is clearly an isomorphism in SMan®. Let
A € Gr'™. We have y, € (£,)a if and only if (mr¢)a(ya) = x holds and thus if

and only if y, € Ei(mf) X Ff\k)) holds. Therefore, £, is a sub-supermanifold of

E. We define an R-module structure on &, via the isomorphism
W0 (0,id w): F — &,

The R-module structure on &, does not depend on U because a change of bundle
charts leads to an isomorphism of R-modules in the second component. O
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2 Supermanifolds

Lemma 2.5.7. Let k € NgU {00} and let £ and &' be k-super vector bundles over

MandN. If f: £ — & is a morphism of k-super vector bundles over g: M — N,
then for every point x of M the morphism

f‘gz: & — g;om
is a well-defined morphism of R-modules (and in particular supersmooth,).

Proof. Let A € Gr'® and ya € (E:)a. We have

yr — (€
(WM)Al l(ﬂ/\/)/\

A —5r = 9a(7a)

and ga(xa) = (g o x)s implies that the morphism is well-defined. In charts the
second component of f is R-linear. Thus, f|g¢, is a morphism of R-modules. O

Lemma 2.5.8. The functors 12, 1} and ©% from Proposition |2.3.14, Proposition
and Lemma extend to functors

- SVBun®” — SVBun® for k € Ny U {o0},
ik: SVBunY — SVBun® for k € NU {0} and
7. SVBun®) — SVBun'™ for k € NyU {o0}, 0 <n < k.

1 k 0~ k 1 ~:
With these functors, we have g o 1) = idgygun© and 77 ot = idgygun® -

Proof. Let us consider 10 and ¢}, as functors SMan® — SMan® and SMan‘) —

SMan®. Let k € Ny U >}, E € SVec,.,, U C E(k). We see from the concrete
description in Lemma that every U-family of R-linear morphisms is mapped
to an U-family of R-linear morphisms under the original functors. From this, the
result follows. ]

Note also that for any super vector bundle £ with base M and typical fiber F,
the inverse limit lim £ is in a natural way a vector bundle over lim M with typical

fiber lim F.
pini—

2.5.1. The Change of Parity Functor

The space of sections of a super vector bundle can be turned into a vector space,
as we will see below. However, in a sense this describes only the even sections.
To incorporate odd sections and obtain a super vector space of sections, we need
the so called change of parity functor. On super vector spaces this functor simply
swaps the even and odd parts. Doing this fiberwise, one gets the change of parity
functor for super vector bundles. As before, it will be useful to express this functor
in terms of skeletons.
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2.5 Super Vector Bundles

Definition 2.5.9. Let E, F' € SVec;. and f: E — F be a morphism. We define
a functor II: SVec,, — SVec,. by setting II(E); := E7 and II(f); := fiz7 for
i €{0,1} . Now, let A=A, € Gr,n € Nand g: £y — F, be R-linear such that
there exist linear maps

90y Eo — F, and gay: By = II(F),

with g(Arvr) = Argy(vr) for I € PP, vp € E;, i € {0,1}. We call such a map g

parity changeable. We define a parity changeable map

a(g): II(E), — II(F),

by setting IIx(g)() = g for i € {0, 1}.

_ Note that in the above situation g is automatically Ag-linear and we have
IA(IA(g)) = g. What is more, with f) := fo and f1) := fi, we see that f,
is parity changeable and it follows Iy (f,) = II(f),.

Lemma 2.5.10. Let B, F, H € SVec,.,, A = A,, € Gr withn € N and let f: Ey —
Fy, g: Fx — Hy be parity changeable. Then go f is also parity changeable and we
have

ﬁA(g of)= ﬁA(g) OﬁA(f)'
Proof. Let f), fa) and g(), gay be as in Definition 2.5.9 For I € P}, v € E;,
i€{0,1} let
FOW) = Arfey () = Ar Y Agwy,
Jepn

where w; € Fm. It follows that

(g0 F)Arw) = > Mg (ws):

Jepn

This implies that go f is parity changeable with (go f)©) = go fo) and (go f)a) =

TA(g) o fy- Thus, Ta(go f)() = Ta(g) © fay and Tx(g o f) ) = g o fro). Applying
this to I (g) o A (f), we get

(TIa(g) o TIA(f)) 0y = Ta(g) o TTA(f)(0) = T (g) © fay

and

(Ta(g) o IA(f)) 1) = Ta(Ma(9)) o TIA(f) 1y = g © fro)

and therefore
ﬁA(gof> ZﬁA(Q)OﬁA(f)~ u

Lemma 2.5.11. Let E,F,H € SVec,, k € NU {0}, U C Y be an open
subfunctor and let f: U x E® o F* be an U-family of R-linear morphisms.
ForneN, A=A, € Gr'™™ and u € Uy, the map fa(u,s): Fg\k) — _E\k) is parity
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2 Supermanifolds

changeable. Defining (TL(f))a(u,«) := a(fa(u,)) leads to anU-family of R-linear

morphisms
T(f): u x 0B — )",

The skeleton of II(f) has the components

fO = h (prU)(er(E)o) and
fi = fira(pry) (Progey,, P15 - - -, PIy) + 1 - A fi_1(pry, pry) (pry, . . ., pry)

for 1 >0, where we consider

A i1 (pry, pry)(pry, - .., pry): U x T(E)g — AW (H, @ TI(E)y; TI(F);) and
Frir (0r) (Pria(gygs Pr1s - -5 P11): U X TH(E)g — Alt'(Hy & TI(E)y; TI(F)y)

with the projections pry: UXI(E)g — U, pryyg,: UXII(E)o — II(E)o, pry: Hyx
II(E); — Hy and pry: Hy x II(E); — II(E);.

_ — = , (k) =(h)
Proof. Let U := Ur. We set II(f)r := H(f)a, |uxe : Ur X II(E)p" — II(F)g " so
that TI(f), is defined for all A € Gr™. To simplify our notation, we consider

HXC) CH® Egk) and Eka) CH® Eg\k) in the obvious way. Let x € U, z¢ € FOX?,
()

xr1 € EXC) and yy € FOAIC , Y1 € EXC) For u = x 4+ 9+ 1 and v = yo + ¥, we use
formula (2.4]) to get

1
fA(uav) = Z —m'l‘derlfl(x)(yo, Xoyeo-3 X0y L1y - - ,{El)—|—
ml=0 "
i m]_llldmfl‘f‘l('r)(x()w“7x07y171'1...,l'1),
ml=0

Therefore, fx(u,.) is parity changeable with

oo

1
(falu, )0 = Z mdmﬂﬁ(x)(.,xo,...,xo,xl,...,xl) and
ml=0 "
=1
(falu, o))y = Z mdmflﬂ(ﬂf)(%o,-~~,5507-7551 e T1).
m,l=0 o

In the next step, we show that (f,), is the skeleton of II(f). Let § € II(E)o,

o € (E)Ogl and §; € H(E)lf\k). We calculate

dmﬁ<ﬂf,g)((]}0,go), R (x(]?g[)); (3317 gl)a ceey (3317 gl)) -
dmfl—l—l(x)(an s 7‘@07:&%%‘17 s 7'1:1) +m- dm_lfl—‘rl(x)(xm e ax()?g()wrla s 7x1)
+1-d" fioi(x, 1) (20, . .., 0, 21, ..., 71),

where the last two summands are zero for m = 0 and [ = 0, respectively. Note
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2.5 Super Vector Bundles

that

l- dmfl_l(x,@jl)(l’o, ey Loy L1y e ,iL‘l) =1- dm+1fl_1($)(g1,$o, ey Loy L1y ,33‘1)

holds because of Lemma [2.5.3, If f: U x H(E)(k) — (F)(k) is the morphism
defined by (f,,)n, then it follows

~ ~ .. S
fA(ua U) = Z m_'l'd fl—‘rl(x)(x[)) 2oy Y + Yo, L1y .- - ,$1)+
m,l=0
i Lalm“f(.tzs)(~ T To, T 1)
T l Y1, Zoy---,%o,L1--.,21
m,l=0
for & = §j + 9o + #1. This is exactly (IL(f))a(u, ). O

Corollary 2.5.12. Let E, E',F, F',H, H' € SVec,,, k € NU {00} andd C H",

Y C 7% pe open subfunctors. Moreover, let f: U X E® S F® pe an U-family
of R-linear morphisms, g: V x S 7% be an V-family of R-linear morphisms
and h: U — 'V be supersmooth. Then g o (h, f): U x B 7™
of R-linear morphisms and we have

(g o (h, f)) =(g) o (h,I(f))-

In addition, we have II(II(f)) = f.

1s an U-famaly

Proof. This follows from the pointwise definition of IT in Lemma 2.5.11|and Lemma
2.5.10 O

Proposition 2.5.13. For k € NU{oo} let m: € — M be a k-super vector bundle
with typical fiber F' € SVec,., bundle atlas {¥*: U™ x P g a € A} and
the respective change of charts W8 = (¢*% ) «, 8 € A. Then the morphisms
(68 TI(v*?)) define a k-super vector bundle II(E) over M with typical fiber TI(F).

Let 7' & — M’ be another k-vector bundle and f: & — E' be a morphism of
k-super vector bundles over h: M — M'. If f has the local form (g, ), then
(g™ TI(p™")) defines a morphism II(f): TL(E) — TI(E') over h. This construction
s functorial and defines an equivalence of categories

TI: SVBun®® — SVBun®.

Proof. Inlight of Remark[2.5.5] it follows from Corollary[2.5.12)that the morphisms
(68 T1(¢)*?)) define a super vector bundle. That II is well-defined on morphisms
and functorial follows by the same argument. The corollary also implies that
I(TI(E)) = € and TI(TI(f)) = f hold under this identification, which shows that II
is an equivalence of categories. O
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2.6. The Tangent Bundle of a Supermanifold

In this section, we expand on the definition of the tangent functor T for super-
manifolds given by Molotkov (see [40], Section 5.3, p. 404f.]).

Let k € Ny U {oo} and M € ManS"". We define a functor TM € Man®"
by setting (TM)y = TMy := TM, for all A € Gr™ and (TM), = TM, =
TMy: TMy — TMy for all p € Homg, (A, A'). It follows from the functo-
riality of T: Man — Man that 7M is indeed a functor. By the same argu-
ment, the bundle projections 7{™: T M, — M, define a natural transformation
M TM — M.

If N € Man®" and f: M — N is a natural transformation, then it is easy
to see that setting T fo := T fa: TMp — TN, for all A € Gr'® defines a natural
transformation 7 f: TM — TN and that this gives us a functor 7T : Man®"
Man®". We obviously have 77V o Tf = f o 7TM.

Lemma 2.6.1. Let k € NyU{oo} and M € SMan® be modelled on E € SVec,,
with the atlas {p®: U* — M: o € A}. Then TM is a k-super vector bundle
over M with typical fiber E, the bundle atlas {T¢*: TU* — TM: a € A} and
the projection 7M. If f: M — N is a morphism of k-supermanifolds, then
Tf:TM — TN is a morphism of k-super vector bundles and the above defines
a functor

7: SMan® — SVBun™®.

Proof. That {T¢*: TU* — TM: a € A} is a covering is obvious. By functorial-
ity, we have

T(") o T =T
on TUY = U x E™ for all a, B € A and by definition, we have

T(pocﬁ _ (5004/37 dspaﬁ)i U % E(k) U« E(k),

which is a supersmooth morphism because of Lemma [2.2.10, Clearly, each
M TMy — M, is a vector bundle and we have that

((pa)’l oMo T U™ X F(k) — U“

is simply the projection and thus supersmooth. Since, by definition, dp®? is an
U*P-family of R-linear morphisms, the above atlas is indeed a bundle atlas for
TM. In such charts, 7f has locally the form (f**,df*?) and therefore is a
morphism of k-super vector bundles for the same reason. Functoriality follows

from the functoriality of 7 as a functor Man®" — Man®" . ]

In the situation of the lemma, we call T M the tangent bundle of M. We will
write 77 M: T M — M for the bundle projection and 7, M instead of (T M), for
the fiber of T M at a point = of M.
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2.6 The Tangent Bundle of a Supermanifold

Lemma 2.6.2. For every M € SMan, we have
lim 7 M = Tlim M
— —

in MBun'™ with the functor im from Theorem . Moreover,
@WTM = 72 M polds for the bundle projections 7’ ™: TM — M and
M, T'lim M — lim M. For morphisms f: M — N of supermanifolds, we
have

i 7/ = T'lim
under the above identification.

Proof. This follows from the definition of 7 M, Lemma [B.3.5] and the definition

of lin in Theorem [2.3.11] O

Remark 2.6.3. In view of Lemma [2.6.2] it seems likely that one can describe
higher tangent bundles, higher jet bundles and higher tangent Lie supergroups
analogously to [10].

Lemma 2.6.4. Let k € Ny U {oco} and M € SMan®. With the functors from
Lemma we have TiH(M) = 2(TM) for n € {0,1},n < k in SVBun®
and Tk (M) = 78(TM) for 0 <n <k in SVBun™.

Proof. With any atlas A := {p*: a € A} of M it is obvious that applying 7 o ¢}
and ¢} o T to a change of charts leads to the same morphism. The same is true
for T on* and 7 o T. O
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3. Lie Supergroups

Recall supergroups as defined in Definition [I.4.1]

Definition 3.0.1. Let £ € NoU {oco}. A k-Lie supergroup is a group object in the
category SMan®. Denote by LSGrp™® the category that has Lie supergroups as
objects and supersmooth morphisms of supergroups as morphisms. We call co-Lie
supergroups Lie supergroups and set LSGrp := LSGrp'™.

In other words, for G € LSGrp™ there exists a supersmooth multiplication
G x G — G, asupersmooth inversion ¢: G — G and a neutral element e such
that the usual commutative diagrams defining a group commute. Here e: p — G
is a point of G. We also write G = (G, u,i,e). In particular, (Ga, i, ia,€n) 18
a Lie group for every A € Gr®. It follows immediately from naturality that
G,: Go — Gu is a morphism of Lie groups for every ¢ € Homg.m (A, A). A
morphism of k-Lie supergroups is a supersmooth morphism f: G — H between
k-Lie supergroups G and H such that fj: Gy — H, is a morphism of Lie groups
for every A € Gr™.

Note that Proposition shows that the category of 0O-supermanifolds is
equivalent to the category of ordinary Lie groups. Similarly, by Proposition [2.3.17]
LSGrp" is equivalent to the category of group objects in the category of vector
bundles .

We will see that every Lie supergroup has an associated Lie superalgebra which
contains a lot of information about the Lie supergroup: For every k-Lie supergroup
G and every A € Gr™™, we have a split short exact sequence of Lie groups

1 —kerG., — Gy — Gr — 1,

where ker G, is a nilpotent Lie group that is completely determined by the Lie
superalgebra of G. Moreover, the action of Gg on kerG., is determined by a
representation of the Lie superalgebra, which leads to the so called super Harish-
Chandra pair. It is a classical result that the categories of finite-dimensional
Lie supergroups and finite-dimensional super Harish-Chandra pairs are equivalent
and we show in Theorem that this also holds for arbitrary locally convex
supermanifolds.

It is not difficult to construct an appropriate Lie group for every A € Gr starting
from a super Harish-Chandra pair. Supersmoothness is more problematic. One
issue is that the Lie groups involved need not have an exponential map that is
a diffeomorphism in a neighborhood of zero. This can be circumvented because
ker G., is a polynomial Lie group (see Appendix and thus has an exponen-
tial map that is a global chart. We use this exponential map to get a canonical
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isomorphism

L(Gr) X 01 =G,

where g, is the odd part of the Lie superalgebra of G. This enables us to concretely
construct a Lie supergroup starting from a super Harish-Chandra pair.

The equivalence between k-Lie supergroups and super Harish-Chandra pairs
holds for k > 3 and it follows that all the categories LSGrp™* are equivalent
for k > 3. We finish this chapter by discussing some classical examples of Lie
supergroups.

Definition 3.0.2. Let k£ € Ny U {oco} and G = (G, u1,,€) be a k-Lie supergroup.
A centered chart of G is a chart p: U — G such that 0 € Ur and pg(0) = eg.

For E € SVec,. translation by elements x € Ej defines a supersmooth morphism
and therefore centered charts always exist. There are many results from standard
Lie theory that can be transfered to Lie supergroups with relative ease. For now,
we just mention the following.

Lemma/Definition 3.0.3. Let H and N be Lie supergroups and a: HxN — N
a supersmooth morphism such that ay, is a group action by automorphisms for all
A € Gr. Then A — (Nj X4, Ha) defines a Lie supergroup N %, H which we call
the semidirect product of N and H (with respect to a).

Proof. For all A € Gr, we have the multiplication
(Na X Hp) X (Ny X Hp) = Na x Hp,  (n,h) - (0, 1)) := (nax(h,n'), hh')
and the inversion
Na X Hpy — Ny x Ha, (n,h)™Fi=(aa(h 0, R

which define supersmooth morphisms. O

3.1. The Lie Superalgebra of a Lie Supergroup

Let k € NU {oco} and G € LSGrp®. For every A € Gr'¥) we have the Lie
algebra L(Ga) = T.,Ga with the bracket [-,-]a: L(Ga) x L(Gx) — L(Ga). Since G,
is a morphism of Lie groups for every ¢ € Homg, ) (A, A'), 1., G, is a morphism
of Lie algebras and thus [, ]: 7.G x T.G — 7T.G defines a natural transformation.

Lemma/Definition 3.1.1. Let £ € NU {0}, G = (G,p,1,e) be a k-Lie su-
pergroup and let g := T,,Gr ® Tt ker(gel\l) = T.Gx, € SVec;.. There exists a
canonical isomorphism of R™_modules §® =~ 7.G. Together with the induced Lie

bracket, g* is a Lie algebra over Rr" and we call it the Lie algebra of G. We set
L(G) :=g. For any morphism f: G — H of Lie supergroups, we have a morphism

L(f) :=="Tefa: L(G) — L(H)
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of Lie algebras over R™ and this defines a functor
L: LSGrp® — LAlg_u (Top®").

Proof. Let G be modelled on E € SVec;. and ¢: Y — G be a centered chart. We
subsequently identify %E(k) = E(k). On the one hand, we have the isomorphism
of @(k)—modules Top: E(k) — T.G from Lemma/Definition [2.5.6, On the other
hand, we have an isomorphism of R™ _modules Toon, : Y L(G). Thus Top o

(Town,)t: L(G) — T.G is an isomorphism. If ¢): V — G is another centered chart,
then

T o Top = To(w ' o) BV — B

is a linear supersmooth map and therefore

Tov o Top = To(b o p)a, = Totbx! o Towna, = (Tota,) " © Topa,

holds by Corollary [2.2.22] Hence, the isomorphism does not depend on the chart.
We check the supersmoothness of the Lie bracket in local coordinates. An open
subfunctor U’ C U exists such that 0 € Uy and pr(pr(Up), er(Ug)) C er(Ur).
We define the local multiplication

m:U/XZ/{/—>U, m = gOilouO(QO’u/XCp’u/)
and write v' € Eg\k) for v = Topa(v') € TeGa. Then we have
([U, w]/\)/ = d(Q)mA«Ov 0)7 (07 wl)v (Ula O)) - d(Q)mA«Ov 0)7 (07 UI)? (wlv O))

for all v,w € T.Gy (see the proof of the smoothness of the Lie algebra of a Lie
group from [23]). Supersmoothness follows now from Lemma [2.2.10]

Finally, let f: G — H be a morphism of Lie supergroups. Then T.fx is a
morphism of Lie algebras for every A € Gr®). In respective centered charts,

we can repeat the argument from above to see that the induced morphism is
Tefa, - L(G) — L(#H). Functoriality is obvious. O

In particular, any k-Lie supergroup G can be modelled on L(G) € SVec,.. Of
course, one could also directly define 7.G as the Lie algebra of G, which is how
it is generally done (see for example |40, Section 7.2, p.412]). This has some
conceptual advantages but the definition we chose can be used more directly in
our applications.

Corollary 3.1.2. Let k € NU {0}, k > 3 and G = (G, u,i,¢e) be a k-Lie super-
group. Then the Lie algebra 1.(G) induces a canonical Lie superalgebra structure
on g:= TG, =T, Gr ® T¢, ker(Ge, ). Moreover, if f: G — H is a morphism of
k-Lie supergroups then T.fx, is a morphism of Lie superalgebras and we obtain a
functor

sL: LSGrp*) — TopLSAlgy.
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3 Lie Supergroups

Proof. With L(G) = "), we obtain the unique structure of a topological Lie
superalgebra on g from Corollary [2.2.22] The same corollary applies to morphisms
and functoriality follows. ]

3.2. Trivializations and the Exponential Map

We will show that every Lie supergroup is a simple supermanifold in the following
sense.

Definition 3.2.1 ([40, p. 396]). Let k € Ny U {oo} and M € SMan*) modelled
on E € SVec,.. We call M simple if there exists an isomorphism

(k)

M2 (Mg) x By

In particular every simple supermanifold is isomorphic to a supermanifold of
Batchelor type defined by a trivial vector bundle.

Lemma 3.2.2. Let k e NU {0}, G = (G, i 4, ¢e) a k-Lie supergroup modelled on

E € SVec;. and f: E(k) — G supersmooth such that fy, is a diffeomorphism onto
ker(Ge, ). Then,

Uy (10(Gr) X By )a = Gay  (2,0) = pua(z, fa(v))

for A € Gr'™) | defines an isomorphism of k-supermanifolds U : 19(Gg) XE(k) — G.

Proof. Clearly, ¥ is supersmooth and by Lemma it is enough to show that
Wy, is a diffcomorphism. For g € Gy,, we have G, (9)~' - g € ker(G., ) and the
inverse of Wy, is given by

(k)

gAl — (Lg(gR) X E )An g (gaAl (9)7 lel(gsAl (g)_l ’ g))’

which is smooth. O

Proposition 3.2.3. Let k € Ng U {oo}. FEvery k-Lie supergroup is a simple k-
supermanifold.

Proof. The case k = 0 is trivial. Let £ > 1 and let G = (G, u,7,¢e) be a k-Lie
supergroup modelled on £ € SVec;. with the centered chart p: U4 — G. By
functoriality, we have ¢u, (EX?) = ker(G.,, ). Because py, is a diffeomorphism, it

follows that @]E<k> satisfies the conditions of Lemma W O

This was already stated without proof in [40, Proposition 7.4.1, p.413| for Ba-
nach Lie supergroups. As Molotkov used the exponential map, our result is a
generalization. We will see in Corollary that there is a chart independent
way to construct such a trivialization. Proposition gives us a good idea of
the supersmooth structure of Lie supergroups. However, the group structure is
better captured by a different trivialization.
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3.2 Trivializations and the Exponential Map

For a k-Lie supergroup G one immediately obtains for each 0 < m < n < k
a short exact sequence of Lie groups along the morphism G, ., that splits along
G- The most interesting case is m = 0 (compare [40, Section 7.4, p.413]).

Lemma 3.2.4. Let k € NU {oco} and let G = (G, p,i,€) be a k-Lie supergroup.
For each n < k, one has a short exact sequence of Lie groups

Gey,
1 — ker(G., ) = Ga, Or — 1

that splits along Gy, . The group ker(G., ) is a closed Lie subgroup of Ga, and
can be given the structure of a polynomial group of degree at mostn. If f: G — H
s a morphism of Lie supergroups, we have the commutative diagram

ker(Ge, ) 9, Or

fAn|ker(ggAn)l LfAn \fR

ker(He,, ) Ha, Hr

and fAn‘ker(geA ) is a morphism of polynomial Lie groups.
Proof. Tt is obvious by functoriality of G that the exact sequence splits as claimed.
Let G be modelled on F € SVec,. and let ¢p: U — G be a centered chart of G. By

naturality, we have ker(G., ) = va, (EE@), thus ker(G., ) is a closed Lie subgroup
of Gx,. In this global chart, the multiplication and inversion of ker(G. A, ) are
morphisms of n-multilinear spaces by Theorem and therefore polynomial
of degree at most n by Example [C.1.3[a). The same holds true for the iterated
multiplications. As a result, ker(G., ) is a polynomial group of degree at most n.

Since fy, is a morphism of multilinear bundles over fg, commutativity of the di-
agram is obvious and in charts of the form ¢, \Eﬁ, it is apparent that f |ker(g5An)

is a polynomial morphism. ]

Lemma 3.2.5. Let G be a Lie supergroup. There exists a split short exact sequence
of Lie groups

1 — lim ker(G., )< lim Gy, — Gr — 1,
where G© = Llr_nn ker(geAn) 15 a pro-polynomaial closed Lie subgroup of lﬂln Gn,, -
For a morphism f: G — H of Lie supergroups the diagram
lim ker(G., ) ——lim G\, —Gr
l}ilnf/\ngfl jI}Lnann lfﬂ%
lim ker(H., ) ——=1lim Ha, —=Hr
commutes.

Proof. Note that by Theorem [2.3.11 lim Gy, is indeed a Lie group. Let G be
modelled on E € SVec;. and let ¢: U/ — G be a centered chart of G. Let m < n.
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3 Lie Supergroups

By naturality, the projection maps
ggn,m |ker(g5An) : ker(g"f/\n) - ker<gEAm)

have the form E. |z . in the chart ¢ and are thus polynomial. Interpreting
’ A

ker(G., ) as a multilinear bundle with base {er}, it follows that lim ker(G., )
is a pro-polynomial Lie group. It is closed in @g because linn ker(G., ) =

liﬂln PAn (EA; ).

Let ¢: V — G be a chart. In the charts @Zzﬂgl and linn 1y, the projection
liﬁln Ga, — O is given by the projection llnn Vi, — Vg and is therefore smooth.
Conversely, the embeddings G, : Gr — G, define an embedding Gr — lim Gy,
which in the above charts is simply the embedding Vg — @n Vy, and thus
smooth. This embedding obviously defines a splitting.

In view of Lemma [3.2.4] the commutativity of the diagram is obvious. O

Proposition 3.2.6. Let k € NU{oc} and let G = (G, p, i, €) be a k-Lie supergroup.
For every A € Gr™ there exists a unique exponential map

exp%: L(G)p+ — ker(G.,)

mapping 0 to ex such that
(a) exp§ is a diffeomorphism,
(b) the induced multiplication on L(G)+ is the BCH multiplication with respect
to the restriction of the Lie bracket |-, ]y of L(G)a,

. S *)
(¢) (exp$)aeqr® 5 a natural transformation in Man®"" and

(d) identifying L(G)a = T.Gan as in Lemma/Definition we have that
Toexp = idrg),, - In particular Ty exp{ is Ag-linear.
If f: G — H is a morphism of k-Lie supergroups, then

fao exp/g\ = exp% OL(f)A|L(g)A+ for every A € Gr®,

Proof. We assume without loss of generality that G is modelled on L(G),,. Let
w: U — G be a centered chart with & C L(G) and let A € Gr'®. We have shown
in Lemmam that palrig),, : L(G)a+ — ker(Ge,) is a diffeomorphism that turns
L(G)a+ into a polynomial group. Denote by expy: L(G)a+ — L(G)a+ the chart

dependent exponential map of this polynomial group. Identifying ToL(G)s, =
L(G)a, in the usual way, we define

expj = ¢ 0 exp} o Towx, ,IL(@),

Let ¢: V — G be another centered chart. Then ¢X10@A|L(g)/\+ cL(G)a+ — L(G)a+
is a polynomial isomorphism of the respective induced polynomial groups. We have
Toen, o (Tovx )™ = To(¢~' 0 9)a, and therefore Lemma |C.2.2| implies that

Yt o paoexpf oTo(w T o W)asz @), = exp}
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3.2 Trivializations and the Exponential Map

holds, which shows that exp/g\ is well-defined. By definition, exp/g\ is a diffeomor-
phism and Topa,, is a Lie algebra isomorphism from L(G), considered as the
chart dependent Lie algebra to the usual Lie algebra of L(G),. Thus, the mul-
tiplication in terms of exp% is the BCH multiplication with respect to the usual
(restricted) Lie bracket. Let ¢ € Homg,(A,A’) then the naturality of ¢ implies
that L(G), restricts to a linear morphism of the chart dependent polynomial groups

L(G)u@),s — L(9)Lg),. .- It follows again from Lemma that (exp})cqe®

: . (k)
is a natural transformation in Man®*

Grk)

and thus (expf),cq,» is also a natural

transformation in Man . By Theorem [C.2.1| we have Tyexp? = idyg),, and
with the identifications of @, Ty expg = idyg),, follows from the chain rule. That
exp/g\ is unique is obvious because the Lie algebra morphisms idy,g
to the group morphism idger(g. ,)-

Let H be a Lie supergroup, ¢: W — H be a centered chart with W C L(H)
and define the chart dependent exponential map expi of ker(H.,) as above. If
f:G — H is a morphism of Lie supergroups then ‘W = ¢ lo fyo gpA|L(g)A+ is

)+ corresponds

a polynomial morph1sm of polynomial groups and thus f 1P oexpy = exp 2 oTh fj{w
holds by Lemma 2l Using the isomorphism Topp, o To¢ ' : TeH — L(H), the
definition of the exponentlal map now implies the equality

fa o expf = exp} oL(f)alL(g),
]

Corollary 3.2.7. Let k € NU {00}, let G = (G, pu,i,¢e) be a k-Lie supergroup,
g € SVecy, with g% = L(G) and exp? := (exp$) yeqe the natural transformation
from Proposition . Then,

19 (Gr) x 91 — G, po (idbg(g]g) x exp? ]ﬁ(k))
is an tsomorphism of k-supermanifolds.

Proof. We only need to check that exp \ c 3™ — G satisfies the conditions of

Lemma . Because of Corollary [2. supersmoothness of exp¥ ] " 91 — G

needs only To be checked at 0, Where T holds by Proposition [3.2.6] Tt follows from

the same proposition that expY |f(k:) glg\) — ker(G. Ay ) is a diffeomorphism. O

Corollary 3.2.8. Let k € NU {0}, k > 3, let G = (G, u,i,e), H be k-Lie
supergroups and let f: G — H be a morphism of k-Lie supergroups. Then f is
completely determined by fr and T.f, .

Proof By Lemma f is completely determined by fr and fi |ker(g., ) for all A €

Gr®. Prop051t10n implies that fa|ker( (G-,) 18 determined by the Lie algebra
morphism Tofa, Which in turn is determined by the Lie superalgebra morphism
Tefa, because of Corollary O

Proposition 3.2.9. Let k € NU{o0}, G = (G, u,i,¢e) be a k-Lie supergroup and
g := sL(G). For every A € Gr'® and every g € Ggr, we define the conjugation
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3 Lie Supergroups

Con: Gn — G, h— Gy (9) - h -Gy (g7h). Then (cya)pegrw 1S an isomorphism
of Lie supergroups. With this, we define Ad, := L(cy): g® — g, For every
A € Gr'® | we have that

(a) the map Adgy: ﬁxﬂ) — ﬁg\k) is an isomorphism of Lie algebras,

(b) forv e ﬁg\@ the equality
Cg.A © exp/g\(v) = exp/g\ 0Adga(v)

holds and

(c) the map G X ﬁff) — ﬁg\k), (g,v) — Adya(v) is a smooth gfroup action such

that (dAd, (v))(w) = [w,v], holds for w € T, ,Gg, v € gA . Here Ad, A(v)
denotes the map Gg — ﬁgf), g — Ady(v) and [ ,+] is the Lie superbmcket of
g.

Proof. The conjugation map G X G — G defined by Gy x Gy — Gp, (g,h) —
g-h-g!is clearly supersmooth. Therefore, it suffices to see that ¢, is a natural
transformation. This follows because G, 0 G,, = G, , holds for all A, A" € Gr®)
and ¢ € Homg, (A, A’). That each ¢, is an isomorphism of groups is obvious
and by supersmoothness it maps zero to zero in any centered chart and restricts
to a polynomial map ﬁﬁ — ﬁg\k;)

With Lemma,/Definition [3.1.1 (a) is obvious and (b) follows from Proposi-
tion m To see (c), let U C ﬁ(k) be an open subfunctor such that 0 € Up

and ¢: U — G be a centered chart. We set U, = Z/{|%1(CAWRWR))) and define

by = oy 0 con © aly,. That G x ﬁg\ — ggk), (g,v) — Adga(v) is a smooth
group action is obvious because Gg X Gp, — gAl, (g,h) — cga,(h) is so. Denote
by [ J¢ the chart dependent Lie bracket on g*) and let Adf = T.cg. Then,
(dAd, A(0))(w) = [w,?]#, holds for o € gy and w € gA by the respective re-
sult for ordinary Lie groups (see Proposition m Applying the Lie algebra
isomorphism Toea, : (8%, [, -]¢) — @*, [, ]) to this, yields (c). O

In the situation of the proposition, we call Ad, 5 the adjoint action of Gr on g,.
By Corollary [2.2.22| the adjoint action leads to an action of Gg on sL(G).

Remark 3.2.10. By taking inverse limits one can easily transfer the statements

of Proposition and Proposition W to lim ker(g., ) to understand the
structure of the Lie group lim Gy,

The next lemma describes morphisms of Lie supergroups in terms of the trivi-
alization from Corollary [3.2.7]

Lemma 3.2.11. Let k € NU {0}, k > 3, let G = (G, u,i,e), ’H be k-Lie
supergroups with sL(G) = g, sL(H) = b and let ®9: Q(Gr) x ¥ — G,

O 1) (Hg) x E(k) — H be the isomorphisms from Corollary (3.2.7. Then, a
supersmooth morphism f: G — H is a morphism of k-Lie supergroups if and only
if (@)~ o fo®9 =10(fy) x fi, where
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3.2 Trivializations and the Exponential Map

(a) fo: Gr — Hg is a morphism of Lie groups,
(b) fi: g1 — g1 is a continuous linear map,
(c) sL(:2(fo)) @ f1: g — b is a morphism of Lie superalgebras and

(d) the equality

SL(Lg(fo)) © fip 0 Adg,A = Ad?f-(t)(g),/\ © SL(Lg(fo)) @ fi,

holds for all g € G and A € Gr™ | where AdY and Ad™ are defined as in
Proposition [3.2.9.

In this situation, we have fi =sL(f)|s, and fo = fr.

Proof. Note that indeed sL(¢0(Gr)) = go. We give t(Gg) x g1 and 19 (Hg) x [

the induced Lie supergroup structures. By Proposition [3.2.6, we have T expg =

idyg),, - Moreover, since P9 = o (idLg(gR)Xeng ‘7(,6)) holds, it follows that
91

L(®Y): §o ® g1 — @ is just the addition, i.e., L(:Q(Gr) x g1™) = g*). Because we
use the induced Lie supergroup structure, we have exp?y = ®9 o expLg(gR)Xﬁk) with
this identification, which implies eprg(gR)Xﬁk) ’gT(’“ = idﬁw).

Let f: G — H be a morphism of k-Lie supergroups. Since L(f) is @(k)—linear,
we can use Proposition to get

0 —(k) 0 —(k)
L(f) g = expt®X0 0L ()| = f o exp® @O ) = flow).

We set fi := L(f) s~ In other words, we have f; = sL(f)l,. Since a morphism
on purely even supermanifolds is determined by the morphism on the base mani-
fold, we have fl,0g,) = t(fr) and we set fo := fg. Then L(f) = sL(.(fo)) ® f1 and

k

property (d) follows from Lemma together with Proposition |3.2.9, Moreover,

for g € 10(Gr)a and v € 14", we have

Ialg - expi(v)) = fa(g) - falexpi(v) = i(fo)alg) - expX (fia(v))

and therefore (®")~'o f o ®9 = 10(fy) x f1.
Conversely, assume that fy and f; have the properties (a) to (d). With the usual
identifications 7.G = L(G) and T.H = L(H), it follows from Lemma that

fat+ = expj\{ osL(¢(fo)) @ flAlﬁ(Aki o (eXp%)—l: ker(G.,) — ker(H.,)

is a morphism of Lie groups with Ty fa+ = sL(c(fo)) @ fialge . This implies that
At _
Fat er(@ (@a)e) = U (fo)Alker(9 (ga).,) and that (exp)) "o fa+ oexpj ’g—lgw = fia- For

g € ker(1{(Gr),) and v € ﬁg\k), the equality

(@X) 7" o far 0 X(g,v) = ((fo)alg), Fia(v))
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3 Lie Supergroups

follows, which means that (2(fo)s X EA‘ker(Lg ( is a morphism of groups.

OR)ep ) XTI

By definition, the actions of Gg on ﬁg@ induced by the action of Gg on ker(G., )
and ker(:9(Gr)., ) X EXC) are the same. Because of (d), Proposition together

with Lemma [A.3.4] show that

((Lg(f())/\ X EA|ker(L2(glR) )XETE\k)) X fO) :

EA

(ker(12(Ga)ey) X G10) % Ga — (ker(0(Ha)-y) X Bry) % Ha

is a morphism of groups. But this map corresponds to 12(fo)a X fi under the
splitting from Lemma [3.2.4] [

3.3. Super Harish-Chandra Pairs

We have seen that for any Lie supergroup G, the Lie groups G, are completely
determined by sL(G) and the action of Gg on sL(G) induced by the adjoint action.
The pair (Gg,sL(G)) forms a so called super Harish-Chandra pair. Conversely, we
will show that in fact all super Harish-Chandra pairs define a Lie supergroup and
that one obtains an equivalence of categories in this way. For finite-dimensional
Lie supergroups this is a classical result by Kostant [32] (for a sheaf theoretic
treatment see for example [I4]). Neeb and Salmasian, [42], generalized this to
the case of infinite-dimensional Lie supergroups G modelled on Mackey complete
super vector spaces such that Gg has a smooth exponential map. For this, they
used techniques not dissimilar to the classical proof via the universal enveloping
superalgebra.

In our setting, this result was stated for Banach Lie supergroups without proof
by Molotkov in [40]. It appears likely that Molotkov used the exponential map as
a chart to show this. In contrast, our proof holds for arbitrary Lie supergroups
and uses the preceding trivializations to construct concrete quasi-inverse functors.

Definition 3.3.1. The pair (G, g) of a Lie group G and a locally convex R-Lie
superalgebra g together with a morphism of groups Adg: G — Aut(g) is called a
super Harish-Chandra pair if

(1) go = L(G),

(2) the map
Gxg—g, (9,0) — Adg(9)(v)

is smooth and
(3) if weset ¢,: G — g, g+ Adg(g)(v) for v € g, then d,c,(e) = [w,v] holds

for every w € go, where e denotes the identity element of G and [-, -] the Lie
superbracket of g.

Let (H,H) be another super Harish-Chandra pair with the morphism Ady: H X
h — bh. A morphism between (G,g) and (H,b) is a pair (fy, f) such that
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fo: G — H is a morphism of Lie groups,

(a
(b

)

) f: g — bis a continuous morphism of Lie superalgebras,
(c) we have fl|,, = T.fo and
(d) Ady(fo(g)) o f = foAdg(g) holds for all g € G.

The composition of morphisms is defined in the obvious way and super Harish-
Chandra pairs and their morphisms form a category which we denote by SHCP.

Lemma 3.3.2. Let k € NU {oo}, k > 3 and let G = (G,p,i,e) be a k-
Lie supergroup. For g € Gg, let cga, be as in Proposition [3.2.9  The action
Adg: Gr x TcGa, — TeGa,, (9,v) — Tecgn, (v) defines a super Harish-Chandra
pair (Gg,sL(G)). If f: G — H is a morphism of Lie supergroups then (fr,sL(f))

is a morphism of super Harish-Chandra pairs and in this way we get a functor
#%) . LSGrp®) — SHCP.

Proof. That (Ggr,sL(G)) is a super Harish-Chandra pair follows from Proposition
together with Corollary [2.2.22]

Let f: G — H be a morphism of Lie supergroups. We already know from
Corollary that sL(f) = T.fa, is a morphism of Lie superalgebras and that
this assignment is functorial. Consider Gg C Gy, and Hg C Hy, via G, and H,, .
Clearly, we have T., fg = Tofa,|7.g.- For h € Hg, define c}*: Hp, — Ha,, W —
hh'h~L. Tt follows from Lemma that fr, oc, = c}'];( 9 ©° fa,- Taking derivatives
at ey, now shows T fa, c Adg(g) = Ady(fr(g)) © Tefa,- O

Our objective is to show that this correspondence establishes an equivalence of
categories LSGrp®™ — SHCP for k > 3. Let us sketch how the quasi-inverse
functor SHCP — LSGrp® is constructed. Given a super Harish-Chandra pair
(G,g), where [-,-] is the Lie superbracket of g, we can define a nilpotent group
N, for every A € Gr™® by considering g,+ together with the BCH multiplication
of the nilpotent Lie algebra [-,-],|5,, xg,,- Then G acts on Ny via the induced
action Adg: G X gy+ — Ga+. Setting Go := Ny x G, we use Corollary
to get an appropriate supersmooth structure (2(G) x ﬁ(k) > G. The proof is
complicated by the fact that the Lie group G does necessarily have an exponential
map. However, we have seen that ker(G.,) has an exponential map and we will
show in the following lemmas that this exponential map has sufficiently good
properties for our needs.

Definition 3.3.3. For £ € NU {c0} and F € SVec,., we define a subfunctor
5. Gr'®) — Top of E® by

for A € Gr" and e
B, =E, |z
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3 Lie Supergroups

for 0 € Homg,m (A, A).

Lemma 3.3.4. Let k € NU {oc}, E,F € SVec, and f: B — F"7 4

morphism in Man®" such that fa is a diffeomorphism for all A € Gr'®). Then,

f is an isomorphism in Man®". If additionally the derivative of fa is Ag-linear
at every point, then so is the derivative of fy .

Proof. Let A, A’ € Gr™®. For o € Homg,m (A, A"), we have

ORI (R 1 k)t
fA’OEé) OfAlef_;) OfAOfAleé) )

_(k)7+

which implies that f;,' o ¥ = F(Qk)’+ o fy'. Similarly, let the derivative of fy

.=
. . —(k),
be Ag-linear at every point. For z,v € Ex) T and A 1 € Ay, we calculate

dfn (3 (@), Ardf (e, 0)) = Apv = dfn(fx (), df (@A),
from which dfy ! (z, \jv) = A\rdfy ' (z,v) follows. O

Lemma 3.3.5. Let g be a locally convex R-Lie superalgebra with the bracket [-,-].
For k € NU {co} and A € Gr'®), let ﬁg\k)* X ﬁg\k)’Jr — ﬁxg)’J“ denote the BCH

R . . . . —+
multiplication with respect to the nilpotent Lie bracket |-, -]A = [, ']A|§(k),+ WGt
A A

Then (¥p)peqem defines a natural transformation x: Gr® — Man and the

derivative of xp is Ag-linear at every point. Moreover, the natural transforma-
tion ¥ defined by

) L=kt = (k) =(k),+
Wy = M'fo&’“’*xgﬁk’“)‘ Goa X T — 8y (vo,v1) = vg *p vt

Grk)

18 an isomorphism in Man and the derivative of Uy is Ag-linear at every point

for every A € Gr®),

Proof. Clearly, A — mx defines a natural transformation. From this, it easily

GrR

follows that * is a morphism in Man . The finite sum over combinations of

mx that defines %, is just the restriction of the same sum using [-, -], instead,
which is supersmooth. Therefore, the derivative of %, is Ag-linear at all points.
Interpreting g4 as a multilinear space, one sees that ¥, is a morphism of mul-
tilinear spaces whose linear part is the identity. Therefore, W, is invertible by
Theorem [B.1.2l The claim follows now from Lemma [3.3.4 ]

Lemma 3.3.6. Let k € NU {0}, E,F,H € SVec, f: E® S FW pe super-
smooth and g: FOT S DT pe g morphism in Man®" If, for all A € Gr™,
we have fA(_EXC)) < Fff)’Jr and the derivative of gp is Ag-linear at every point,

then go f: E — H 1is supersmooth. If E is purely odd, then it suffices that the
derwative of gx 1s Ag-linear at zero.

Proof. The inclusion 79 L 5% s a morphism in Man®" such that the
derivative of its A-components is Ag-linear at all points for all A € Gr™®. Thus,
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go f: E® S HY s a morphism in Man®" and the derivative of (go f)ais

Ag-linear at all points by the chain rule. If F is purely odd, then we have f;(0) =0
and the claim follows from Corollary [2.2.9] O

Proposition 3.3.7. Let (G, g) together with Adg be a super Harish-Chandra pair.
Let k € NU {0}, k > 3. Then a canonical Lie supergroup structure exists on
D(G) x gi® such that sL(Q(G) x g1®) = g. If (fo, f) is a morphism between the
super Harish-Chandra pairs (G, g) and (H,bH) then ()(fo) X flg s a morphism of
the respective k-Lie supergroups and this defines a functor

#® . SHCP — LSGrp™

such that %(k) o j{(k) = idSHCP-

Proof. Let e € G be the neutral element and [-, -] be the Lie superbracket of g. For
A e Gr(k), we define n§ := ﬁg\]i) together with the continuous nilpotent Lie bracket
[, ]as and give N := n§ the structure of a polynomial Lie group with the BCH

multiplication. Clearly n/C('G = %S@ is a closed Lie subalgebra and we let N'{ be

0
the respective closed Lie subgroup. By Corollary [2.2.22, Adg(g),: ﬁxg) — ﬁs\k) is

a continuous morphism of Lie algebras for every g € GG and this induces a smooth
group action by automorphisms Adg,: G x N — NE, (g9,v) — Adg(g)(v).
Therefore, we have the Lie groups G, := N x G for every A € Gr® and because
Adg(g) is an even map, this group has the closed Lie subgroup Ong = N, fﬁ X G,
Since go is just the Lie algebra of G, we obtain an isomorphism of Lie groups
ker(:2(G)e, ) —>N/\G6 via

—(k) eprg (@)

Jop+ ————— ker(Lg(G)sA)

Ju

G G

G
where eXpNAﬁ = idni is the exponential map of N, Ay~ Moreover, by Proposition

the action of COJ = 12(G)r with respect to the respective exponential map
is in both cases the same. Thus, we will subsequently identify ¢{(G)x = G, for
all A € Gr®. It follows from Lemma [3.3.5 and the definition of the semidirect
product that

2p: R(Ga x Ty = Gar (g.0) = g0
is bijective for every A € Gr'®). We will show that ® := (PA) peqrw defines a Lie

supergroup structure on G. For this, we first calculate the supersmoothness of the
conjugation defined by

UA:LQ(G)AXEE\IC)_)EE\M’ (g7U1>'_>g'U1.gil'

Writing g = go - vo with go € G and vy € N, and letting A = A,,, we use Lemma
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to calculate

[e.9]

IR l o7 T
Go-vo-vr-vgt gt =) = [AdG(go)A(UO)aAdG(QO)A(Ul) o
m—0 . ,m
where [vo, v1] ,,, = [v0, [v0, V1] 4], for m >0 and [vo,v1]y o =11 € EX“). Note

that [vg, 1]y, ,, = 0 for m > n. It follows that o, is well-defined. By Corollary

2.2.9] it is enough to check supersmoothness at points of the form (¢(G),, (¢0),0),
go € Ggr. But, we have dios(t2(G)n,(90),0) = 0 and daoa(th(G)ys(90),0) =
oA (t2(G)ya(90), «), which are both Ag-linear.

With this, we can show the supersmoothness of the group operations. Let
i 12(G) x gl(k) (@) x §1™® be the inversion. The restriction i.0(g) 1s just the

inversion in .Y (G) and therefore supersmooth. The inverse of v; € ﬁxﬁ) is given by

k)

—vy thus i|;w is also supersmooth. Let (g,v1) € ((G)a x QHX . Then, we have

(g-v)t=vtgt=g" gyt g = gt coa(g—w)
N ——

and hence, the inversion is supersmooth. Similarly, for the multiplication
p: (Q(G) x @*)?2 — (G x gi®), the restriction pl,0 0(G)xul(c) 18 the multiplica-

tion in (2 (&) and therefore supersmooth. For the restrlctlon [lgr ) e : (3 ")? —

2(G) x g™, we use the isomorphism ¥ from Lemma m to obtain

LG
vy - U] = expjf( )oproA (T3 (vr - Ul)) pry s (T3 (vs - Ul))

~~

ELk(G’)A Eng\k)

where vy, v] € ﬁg\k) and pry: (2(G) x 1™ — L(Q), pry: A(G) x G® — g@®) are

the projections. With Lemma and Lemma m it follows that u|
is supersmooth. If additionally ¢, ¢’ € (2(G)x, then we have

k)

1R xgr®)

g-v1-g -y :g‘gl'UA(g,_lavl)'Ui,

which together with the above shows supersmoothness of .

By Remark [A.3.3] we have L(Gy) = ﬁsf). Let 12(G) x g1™ have the Lie super-
group structure induced by ®. Since ®, is the restriction of the multiplication, it
follows that L(®,) is just the addition gog\) X gl(k) — gg\k), (vo, v1) — vo+v1. Thus,
L(G) = g™® holds and it follows sL(:{(G) x @7 <k>) ~g. Identlfylng ToNS = 0§, the
adjoint action of GG on L(g) A is by definition Adg: G x g* — §* and therefore,
we have #60) (1(G) x ;™) = (G, g).

Finally, let (H,b) together with Ady be another super Harish-Chandra pair and
(fo, f): (G,g) — (H,H) be a morphism of super Harish-Chandra pairs. Setting
f1 := fla,, we have that fy and f; satisfy the conditions of Lemma [3.2.11] Thus,

D(fo) x fi: UG x @™ — Q(H) x 5" is a morphism of Lie supergroups.
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The functoriality of # (¥ is obvious. _Under the identifications above, we have
(10(fo) x filg ) = fo and sL(:(fo) x f1) = f and therefore #*) o KB (f,, f) =
(f07 f) ]

Theorem 3.3.8. For k € NU{oo}, k > 3, the functors #* : LSGrp* — SHCP
from Lemma and H*: SHCP — LSGrp"™ from Proposition m are
quasi-inverse to each other, i.e., establish an equivalence of categories

LSGrp™ ~ SHCP.

Proof. We have already shown #®) o A *) = idggep in Proposition m
Conversely, let G = (G, u,i,e) be a Lie supergroup with g := sL(G) and let
®9: k(Gr) x g1 — G be the isomorphism from Corollary . We equip
(Gr) x 9™ with the induced k-Lie supergroup structure. On the other hand,
we have H*) o #60)(G) = H ¥ (Gg,sL(G)) = 2(Gr) x g1¥) and we have seen in
Proposition [3.3.7] that the adjoint action is the same in both cases. Therefore, it
follows from Lemma [3.2.11] that ¢{(idg,) x g1 : 12(Gg) x @1 (k) — H*) 0 #6*#)(G)
is an isomorphism of k-Lie supergroups.

Let H be another k-Lie supergroup and f: G — H be a morphism of k-Lie
supergroups. Setting f, := sL(f)|,,, we have A ® o W) (f) = 1)(fr) x f1, which

is exactly the morphism «{(f) x fi: (2(Gr) x gi¥ — 0 (Hg) x m(k) obtained in

Lemma [3.2.11] O

Corollary 3.3.9. Forn,k € NU{co}, 3 <n <k, we have

LSGrp® =~ LSGrp™.

The projection functor 7%: LSGrp®™ — LSGrp™ obtained from Lemma
15 fully faithful and essentially surjective.

Proof. This follows from Theorem because the projection functor does not
change the associated super Harish-Chandra pair. O]

In the Banach case, this was already stated in [40, Proposition 7.7.1, p.414].
One can easily deal with LSGrp® and LSGrp") by embedding these categories
into LSGrp via Proposition and Proposition [2.3.17 We leave the special
case of LSGrp® for future work. Here, Corollary oes not apply and the
Lie algebra of a 2-Lie supergroup is not necessarily related to a Lie superalgebra
in the required manner. It should be noted that for k£ > 3, any k-Lie supergroup
G is nevertheless completely determined by 75(G), because the Lie algebra L(Ga,)
already determines the Lie superalgebra of G.

3.3.1. Generalizations

Any of the generalizations for supermanifolds discussed in [2.3.2] leads to a general-
ization of Lie supergroups, and structure results like Proposition and Lemma
[3.2.4 hold even in the most general setting. The biggest problem regarding the
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super Harish-Chandra pair construction is the existence of a suitable exponential
map, which cannot be assumed if the characteristic of the base ring is not zero.
It seems likely that one can instead use an analog of the right and left trivializa-
tions introduced in [I0, Section 24, p.116 ff.| to obtain a correspondence to super
Harish-Chandra pairs in this case (see for an overview).

3.4. Lie Supergroups with a Smooth Exponential
Map

Definition 3.4.1. Let k € Ny U {oc}. We say a k-Lie supergroup G = (G, u, 1, €)
has a smooth exponential map expY if G, has a smooth exponential map
expi: TGa — Gy for every A € Gr®.

In particular, every Banach k-Lie supergroup has a smooth exponential map.

We will usually consider the exponential map as a morphism exp9: L(G) — G via
Lemma/Definition [3.1.1]

Lemma 3.4.2. Let k € Ny U {oo} and let G be a k-Lie supergroup that has a
smooth exponential map exp®. Then expY: L(G) — G is a well-defined morphism

) (k)
in Man®™ .

Proof. Let A,A’ € Gr'™® and ¢ € Homg, i (A, A’). Then, by naturality of the
ordinary exponential map, we have the commutative diagram

g
Gn ——— G

exp%T ]expi,
L(9)
L(G)x —=L(G)a-
Therefore, exp? is a natural transformation. O

If G has a smooth exponential map exp¥ then, by uniqueness, the restriction
exp% ]L(g)A . corresponds to the exponential map defined in Proposition , which
is why we use the same notation in both cases.

In [42] a Lie supergroup G is defined as a Lie supergroup in our sense such that
Gr has a smooth exponential map and the model space is Mackey complete (see
[42, Section 4 and Definition 4.1, p.813|). It is then shown in [42, Proposition
4.3.2, p.815] that in this case G automatically has a smooth exponential map as

defined above.

Lemma 3.4.3. Let k € Ny U {00}, let (G, u,i,e) be a Banach k-Lie supergroup
and let g € SVec,, such that g% = L(G). Then an open subfunctor U C g"* exists
such that the restriction exp9|y: U — G of the exponential map of G is a chart of

g.

76
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Proof. Let U C go be open such that expf|y: U — expd(U) is a diffeomorphism
and set U := gly. Then exp, := )(expf): (Y(U) — 2(Gr) C G is a chart. It
follows from Corollary that exp := p o (expy x exp;): U — G is a chart and
by functoriality, we have expf(Uy) C exp,(Uy) for all A € Gr. Next, we check
that exp{ |y, : Un — exp,(Uy) is bijective. There exists an open zero-neighborhood
U’ C Uy, such that exp/g\1| vr is a chart of Gy,. After shrinking, we may assume
U' =UxU; C goxAig:1. In a chart, it follows from Proposition and Lemma
2.2.5| that exp%n (x,.) is a morphism of n-multilinear bundles for every =z € U.
In particular, exp§ (,.) is a linear map to the fiber G_! ({x}) It follows that

exp/g\1 |MA1 is bijective, which implies that exp A|MA is bljectlve by Theorem m

It now suffices to check that (exp9)~! o exp is supersmooth. For A € Gr®)

let X € (U)y and Y € gi%). Then, we have that (expy)a(X) = exp§(X) and
(expy)a(Y) = exp{(Y). Therefore, for X,Y close enough to zero, (exp{)~' o
expy (X, Y) is given by the BCH series with respect to the Lie bracket [-,:]5 of
L(G)a. After shrinking U again, we may assume that this is the case for X € U,

Y = 0. Thus, for X € ﬁf\k) and Y € EE\I{), we have

0.7 ((exp9); ! 0 expy)(X,0) = X + Z X YA Al

i times

where P; is a rational number coming from the factors of the BCH series. This
expression is clearly Ag-linear and thus supersmoothness follows from Corollary
2.2.9 m

Lemma 3.4.4. Let k € NoU {oo} and let G be a k-Lie supergroup with a smooth
exponential map exp?. If an open subfunctor U C L(G) with 0 € Uy exists such
that exp¥ |y, is supersmooth, then exp¥ is supersmooth.

Proof. For n € N, we define an open subfunctor nid C L(G) by (nid)x := n - Ux.
We have L(G)x = U,eyUa for all A € Gr and therefore it suffices to show
supersmoothness of exp? |,z;. Because multiplication with scalars is supersmooth,

so is expf [nar, = (expf i, (1)) (compare [23]). O

Corollary 3.4.5. Let k € Ny U {00} and let G be a Banach k-Lie supergroup.
Then G has a supersmooth exponential map exp?: L(G) — G.

This was already stated without proof in [40, Proposition 7.3.1, p.413|. It is
possible to prove automatic supersmoothness of the exponential map beyond the
Banach case. We leave this for future work.

3.5. Examples

One classical Lie supergroup comes from the unit group of a superalgebra. In our
setting this was already mentioned in [40, Example 7.1.1, p.411]| (see also [46} 4.7,
p.27f.]), but since it is very instructive let us discuss a slightly more general version
here.
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3 Lie Supergroups

Definition 3.5.1. A continuous inverse algebra is a locally convex unital associa-
tive R-algebra A such that the group of units A* is open in A and the inversion
j: A* — A is continuous.

Proposition 3.5.2 ([I8, Proposition 2.2, p.15|). If A is a continuous inverse
algebra, then A* considered as an open submanifold of A is a Lie group.

Let A be a topological R-superalgebra such that Ag is a continuous inverse
algebra with the unit element 14. Since the multiplication pu: A x A — A is a
continuous even bilinear map, it follows from Corollary that i: A — A is
a supersmooth morphism that turns A, into a topological algebra with the unit
element A,, (14) = 14 for all A € Gr.

Proposition 3.5.3. Let A be a topological R-superalgebra such that Ag is a con-
tinuous inverse algebra with the unit element 14. Define A := A and A* := Z|Ag.
Then, for every A € Gr, we have (Ay)* = A} and the inversion i: A — A is a
supersmooth morphism. In particular, A* is a Lie supergroup.

Proof. Let u be the multiplication of A. We have

Ba, (M X A Yirem) = Y AAXYs = Y MAXGY,
I1,Jepn 1,JePn, INJ=0

where X;,Y; € Am. Thus, &z has the skeleton (pq, p1, 12,0, . ..) with

Mo A(Z) - A07 (X())}/[-)) = XO%)
pi: Ay — AN(AT AY),  pn(Xo, Y0) (X1, Y1) = XoY1 + X1,
M2 A(Q) - Ath(A%; Ag),  pa(Xo, Yb)((Xb Y1), (X, Y2)) = X1Ys + XoYi.

We construct the inversion inductively. Let j: A — Ap be the inversion of Aj.
We define i® = j. For k € Ny assume i*) has the skeleton (ig,...,i;). We set
i* D = (ig, ..., i1, 0). Then, we have

—(k+1

1% ) e} (idA(k-‘-l),%(k_‘—l)) = (01A7 0, e ,0, 9k+1)

for some gpy1: Ao — AWT(A; AD). Define ipyy = p(iols), —grsi(s)): Ag —
ALtFT (A Az) and let i*+Y = (ig, ... ig,ixy1). With this, we calculate p**+V o
(id g+, %Y = (¢1,,0,...,0). Then i := (ig,i1,...): AX — A defined in this
way is the supersmooth inverse.

We have shown that every X € A7 is invertible. Conversely, if X € A, is
invertible, then so is A., (X) € Ap, which implies X € AJ. O

The Lie algebra of A is then given by [X,Y], =i, (X,Y) — iy (Y, X) for every
A € Gr and XY € A, and the Lie superbracket [-, -] of A is

[Xo+X1,Y0+Y1] = (XoYo—YoX0)+(XoY1 — Y1 Xo+ X1 Yo — Yo X))+ (X1 Y1+ Y1 .Xy)

for Xo,Yy € Ag and X,,Y; € A;. In other words, [X,Y] = XY — (=1)PXr0)y X
for homogeneous elements X,Y € A and p as in Definition [1.5.2]
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3.5.1. The General Linear Lie Supergroup

As one application of Proposition [3.5.3] we get the classical general linear super-
group. Let p,q € Ng. We define a super vector space M,,(R) by setting

Myjq(R)o := { (glg) € RPHOPH, A ¢ RPP, D € quq} and

M,y(R); = { (gzg) € RPHIPHI. B e RPX4 C € RW} .

The even matrices Mp|q(R)o, resp. the odd matrices My4(R), can be understood
as even, resp. odd, endomorphisms Rl — RPl4. Clearly, M,|4(R) together with the
normal matrix multiplication is a topological R-superalgebra and (M,,(R)o)* =
{M € Mp4(R)o: M invertible} is a continuous inverse algebra with unity. Thus,
GLo(R) := My (R)[a,, (m)o)« 18 @ Lie supergroup. Elements M € GL,4(R),, can
be written as

= () 2 (o) s 2 (e

where Ay and D, are invertible. The multiplication is the ordinary multiplication
in M,4(R) ® A, and the Lie superalgebra is gl (R) := M,4(R) with the Lie

plg
superbracket given as [X,Y] = XY — (=1)?¥P0)Y X for homogeneous elements

X,Y € gl,,(R) and p as in Definition [1.5.2,
More generally, let A be a topological supercommutative R-superalgebra such
that Ay is a continuous inverse algebra. One can define M,,(A) analogously to

above. Note that a matrix M € My,(A); now has the form

(S5
v-(51s)

where i € {0,1}, S1 € A7, Sy € AL, Sy € ALY and Sy € AP (see [14] Section
1.4, p.10ff]). Interestingly, M € M,,(A)o is 1nvert1ble if and only if S; and S, are

invertible. Indeed, we have

SHo SplSy ) . 0 |S7'S ) .
( 0[5 >'(53 s, ) =4t s o) TR
where N is nilpotent since A is supercommutative. The inverse of id +N is thus
given by the (finite) Neumann series. It is elementary to check that GL,4(A) =

Mp|q(A)|(Mp|q(A)0)>< is again a Lie supergroup.

Typical Lie sub-supergroups like the special linear Lie supergroup (see for ex-
ample |14, Examples 11.1.13, p.206]) can be defined using the same approach.
However, if they do not arise from open subsets of a super vector space, the super-
smooth structure is more complicated. If A is a Banach superalgebra, a restriction
of the exponential map is a chart. Otherwise, one can use Corollary [3.2.7]
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4. Superdiffeomorphisms

In this chapter, we discuss the supergroup of superdiffeomorphisms. For this, we
first turn to vector fields and automorphisms of supermanifolds.

4.1. Spaces of Sections of Super Vector Bundles

While only even and odd vector fields of supermanifolds are necessary to deal
with automorphisms and superdiffeomorphisms, we consider also general sections
of super vector bundles. For an arbitrary super vector bundle 7: &€ — M, we
turn the space of sections I'(€) into a locally convex space. If £ is a Banach
supermanifold and My is finite-dimensional, we introduce another topology on
['(€), which is more suitable for the Lie group structures we are interested in. We
also define respective spaces of compactly supported sections I'.(£).

4.1.1. Spaces of Supersmooth Morphisms

Recall Definition 2.2.12] For n € Ny, E, F € SVec,. and U C Ej open, we equip
C>(U, Alt"(E; Fy)) with the Hausdorff locally convex topology that turns

C*(U, At"(Ey; Fy)) — C*°(U x B}, Fy), fr—

into an embedding and denote this Space by C>*(U, Alt" (E}; Fr))e. For more de-
tails on the topology of C*(U x E}, Fy) see m If £ and F' are Banach super
vector spaces, we denote by Alt"(Ey; F =)y the space Alt"(Ey; Fy) together with
the topology of bounded convergence, which is a Banach space. If additionally
is finite-dimensional, we have that

C(U, A" (Ey; Fr)) — C(U, Alt"(Ey; Fr)y), fr f

is an isomorphism by Lemma[A.2.12] We write C*°(U, Alt"(E1; Fy)), for the space
C>(U, Alt"(Ey; Fy)) equipped with the induced topology.

Definition 4.1.1. Let £ € N, U {0}, E, F € SVec;. and U C E™ be an open

subfunctor. We turn SC®U, F )) into a Hausdorff locally convex vector space
such that

k
se=, FY) = T] ¢ (Us, A" (By; Fr))..,

and denote this topological vector space by SC* (U, F(k))c. Likewise, if ) is finite-

dimensional and FEj, F' are Banach spaces, we turn SC>(U ,F(k)) into a Hausdorff
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locally convex vector space such that

k
se, FY) = [T e U, Al (Er; Fr))s,

n=0

and denote this topological vector space by SC* (U ,F(k))b.

(k

Lemma 4.1.2. Let k € Ny U {0}, E,F € SVec,. and Y C E ) be an open

subfunctor. If V C U is an open subfunctor, then the restriction
se=, FY). - sc*w., FM),, fr flv

1s continuous and linear. If Eq is finite dimensional and Ey, F' are Banach spaces,
then 0 o
se=, FY), — Sc*W, F), fro flv

1s also continuous and linear.

Proof. With Lemma [A.1.2] both claims follow from Lemma [A.2.4] O

Lemma 4.1.3. Let k € NgU {0}, E,F,H € SVec;. and U C E® be an open

subfunctor. If f: U X H L " g supersmooth, then

Se, FY), — SC=U, )., v fo (idy,7)
18 smooth. If Ey is finite-dimensional and E1, F, H are Banach spaces, then
Se=, F )y — SCxU, ), 5 fo (idu,7)

18 also smooth.

Proof. Using the concatenation formula for skeletons (2.2)) and Lemma this
follows from and Proposition in the first case and Lemma and Propo-
sition [A~2.1] in the second case. O

Lemma 4.1.4. Let k € NgU {0}, E, F, H € SVec;. and U C E(k), VY C F* be
open subfunctors. If f: U — V is supersmooth, then the “pullback”

s>, H™), — sc=U, ™)., y—~of

is a continuous linear map. If Eq is finite-dimensional and Ey, F, H are Banach
spaces, then

sCxW, HY), — SC*UHY ), v yof
1s also continuous and linear.
Proof. Tt follows from the concatenation formula for skeletons ([2.2)) that both maps

are linear. Using Lemma [A.1.2] continuity follows from Lemma in the first
case and Lemma [A.2.74] and Lemma [A.2.2] in the second case. O
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4.1.2. The vector space structure of the space of sections

Definition 4.1.5. Let k € Ny U {oo} and 7: € — M be a k-super vector bundle.
A section of £ is a supersmooth morphism o: M — & such that moo =idy. We
denote the set of sections by I'(E).

In the situation of the definition, let M be modelled on FE E SVec;. and let £

have the typical fiber F' € SVec;.. Let further {¥~: U* x FY L giae A} be
a bundle atlas of £ and {¢®: U* — M: a € A} the corresponding atlas of M.

Any section o: M — & has then the local form (V*)"' oo o ¢™: U* — U* x Y.
Because m o 0 = idy, we see that the first component of this morphism is idye.
Thus, we define

o 1= prow o(¥) oo™ Ut — Y,

We arrive at the injective map

0:1(€) — [[se=wu*.F"), o o (4.1)

a€cA

Let the change of charts U = (¢*7 1)*%) be as in Definition Calculating
the change of charts for o, we get

™8 o (idgga, 0%)|pgas = o o 2P,

On the other hand, by Proposition [2.3.5] a family of morphisms with this property
uniquely defines a section. It follows

im(0) = {aa e [[sc=w,F"): a,p € 4,

acA

(1% o (idye, o)) = (07 0 6°7) on uaﬁ}. (4.2)

The right-hand side is clearly linear in (o), € [, O Uy, Alt"(E:; Fy)). For the
left-hand side, we use Lemma to calculate

1
(waﬁ o (idua, O.a))n =nl Q["( Z mwsézuﬁdb’ﬁ’ O)(O’la, .)
n>l odd o
+ Y m _l Tl (i, o)) (43)
n>l even

on UP. This expression is also linear in (0%), € C>(Ug, Alt"(Ey; Fy)) and
R n n R

therefore im(©) is a subspace of [] .4 SCOO(L{O‘,F(k)).

Lemma 4.1.6. Let k € NgU {oo} and let m: € — M be a k-super vector bundle
with typical fiber F' € SVec,. over a k-supermanifold M modelled on E € SVec;..
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(k

For a bundle atlas A == {U*: U* x F - = A} the image of the injection

O.: &) — H SCOO(UO‘,F(k))C, o 0%,
acA

15 a closed vector subspace. If Ey is finite-dimensional and Fy, F' are Banach spaces
then the same holds for

O,: T'(€) — H SCOO(UQ,F(k))b, o o
a€cA

In both cases, the topology induced on I'(E) only depend on the equivalence class

of A.

Proof. The proof works essentially like the one for vector bundles (see [22, Lemma
3.7 and Lemma 3.9, p.10 f.]). By Lemma and Lemma [4.1.3] the map

« af : «
0% = ¢ o (idyes, 0 |u§5)
is smooth. Likewise, it follows Lemma and Lemma that
B B ap
o’ —o |u§a o ¢

is continuous and linear. This implies that im(©,), resp. im(6y), is closed because
equalizers of continuous maps are closed in the case of Hausdorff spaces.

Let B = {U?: 8 € B} € [A] be another bundle atlas. Because BU A is an
equivalent atlas, it suffices to assume A C B. For § € B define

O5: T'(E) — SCOO(U’B,F(]C))C, o—o”.

The initial topology with respect to (64)aeca (the topology induced by ©,) is clearly
coarser than the one with respect to (03)sep. It remains to be seen that 65 is
continuous for every g € B. We have that {Mﬁga: a € A} is an open cover of Mﬂg )
By Lemma [A.2.4] it suffices to see that the map o — 95(0)\%?& is continuous for
all @« € A. But, we have

95(0)|u§a = (waﬁ © (iduaﬁa 004(0)|u‘15)) o ¢ﬁa

and therefore 65 is continuous by the first part of the proof. The same arguments
work for I'(E),. O

In the situation of the lemma, we denote by I'(£)., resp. T'(£),, the vector space
['(€) together with the topology induced by ©,, resp. Oy.

Definition 4.1.7. Let k € Ny and 7: &€ — M be a k-super vector bundle with

typical fiber F' € SVec,, with bundle atlas {U*: U, x F(k) — &:a € A} and
corresponding atlas {¢*: U* — M: a € A} of M. For an open sub-supermanifold
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U of M, we define the restricted bundle &y := 6’(#)§1(UR)' The atlas

TP o1 o oy 7 @ € A

turns &y, into a k-super vector bundle over U. For a section o € I'(£), one easily
sees that the restriction o)y defines a section oy : U — Ely.

Definition 4.1.8. Let £ € Ny U {co} and let 7: & — M be a k-super vector
bundle. Let o € I'(E). We define supp(c), the support of o, as the smallest closed

set K C Mg such that U‘M|MR\K = 0. The compactly supported sections of £ are
defined as
(&) :={ocel(€): supp(o) compact}.

Clearly, I'x(€) and I'.(€) are subspaces of I'(€).

Lemma 4.1.9. Let k € NgU {00} and let m: € — M be a k-super vector bundle
with typical fiber F' over a o-compact supermanifold M modelled on E € SVec;..

Let A := {U*: U* x Y Leac A} be an atlas of £ such that A is countable
and such that for the corresponding atlas {¢“: U* — M: a € A} of M it holds
that (¢%(US))aca is a locally finite covering of Mg by relatively compact sets. Then

QA T(E) — P seu, TY)., o 0°

acA

15 a well-defined injective map with closed image. If additionally Ey, F' are Banach
spaces then the same holds for

O To(€) = P sc=we, Ty, o0t

acA

In both cases all equivalent bundle atlases that satisfy the above conditions induce
the same topology on T'.(£).

Proof. For o € I'.(€) it follows from that almost all 0%, & € A are zero in
this situation. Therefore Q2 resp. Qf', is well-defined and obviously injective. If
B is a bundle atlas equivalent to A that satisfies the conditions of the lemma, then
so is BU A. Thus, we only need to show that the topology induced on I'.(€) is
the same if A C B. Let B := {U#: Y’ x N p € B} be such an atlas with
corresponding atlas {¢®: U? — M: 3 € B}. If we can find smooth maps ® and
> such that the following diagram commutes, the proof is finished

I'e(€)

00 (7 00 TR 0o —(k)
Doca SCZUFT). PBpep SCWUP F)..
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Defining

o: Pscu’, FY). — @Psc=u, FY).,  (0%)sen — (0%)aca

BeB a€cA

clearly leads to a commutative diagram and it is easy to see with Lemma
that this map is smooth. Let now (h/,)aca be a smooth partition of unity on Mg
subordinate to (¢%(Ug))aca and set h, := hl, o ¢§. For 5 € B define the finite set
Ag:={a e A: ¢2U) N G2 UL # 0} and let

250 @ sexwe, FY). — sexw’ FY)..

OtGAB

(Ua)aeAﬁ — Z (¢aﬁ o (idya, by - 0%) 0 ¢6a|u]§°‘)~7

aGAg

where the tilde indicates that the respective skeletons are continued by zero from
Mﬂga to Uﬂg. It follows from Lemma , Lemma m, Lemma and Lemma
[{.1.4] that ¥4 is smooth. Because the respective coverings are locally finite, the
sets Ag satisfy the conditions of Lemma and we see that

2 @sexwf, FY). - @S2 T (0%aca = (S5((0)aeas)) s

acA peB

is smooth. Because ¢*? o (idye, ho - 0®) 0 ¢°*Jysa = ((hl, o o) - )|
that

use s it follows

Za((0acas) = D (U 062) - 0”)lge) =07

(XEA[;
for all o € T'.(£), hence ¥ makes the above diagram commutative. To see that
im(Q4) is closed, simply let A = B in the construction above. Then ¥ is a smooth

left inverse of the inclusion im(Q4) — @@, , SC=(U?, F(k))c. The same arguments
apply in the case of Q. ]

In the situation of the lemma, we denote by I'.(€)., resp. by I'.(&), the vector
space I'.(€) equipped with the topology induced by Q2 resp. 7'.

(k

Definition 4.1.10. Let k € Ny U {0}, F € SVec,. and U C E ' be an open

subfunctor. For n < k, we define
] (k) >n . __ [e%S) (k) . _
SCU,E )" ={feSCU,E): f=(0,...,0, fn,.. )}

With the induced topology SC“(U,E(k))E" is a closed subspace of SCm(M,E(k))
for which we write SC*(U ’E(k’))czn. If £ and F are Banach spaces and Ej is
finite-dimensional, we write SC* (U ,E(k))bz" for the respective closed subspace of

sc= U, B,
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4.1 Spaces of Sections of Super Vector Bundles

Lemma /Definition 4.1.11. Let & € Ny U {co} and let £ be a k-super vector
bundle with typical fiber F' € SVec,. and bundle atlas A = {0 [ x F) —
E: a € A}, where U* C E(k) for £ € SVec;.. For 0 < n < k define

N2 :={ceTl(&):0"¢c SCOO(L{O‘,F(IC))Z" for all o« € A}.

Then T'(£)=" is a closed subspace of T'(£).. In the situation of Lemma we set
L. (E)2" :=T(E)2"NT (). Then I'.(E)=" is a closed subspace of T'.(€).. We write
[.(E)z" for this space equipped with the induced topology. If additionally E;, F

are Banach spaces, then we define the spaces I'(€);" and I'.(€);" analogously and

see that they are closed in I'(£), and I'.(€), respectively.

Proof. With Proposition [2.2.16] and formula (4.3)), one sees that I'(£)=" and
[.(€)2™ are subspaces of T'(€) because only components of lower or equal de-
gree contribute to the respective component in the change of charts. The re-

spective subspaces are closed because SCOO(Z/{O‘,F(IC))CZ" - SCOO(Z/{O‘,F(’C))C and
SCOO(L{O‘,F(k))bZ" - SCm(UQ,F(k))b are closed subspaces in the respective situa-
tion. U

Lemma 4.1.12. Let n € Ny U {oo} and & € SVBun™. The functors 12, 1 and
mp define continuous linear maps

B:T(E)e = T((E))ey, o 1i(0) formne{0,1}, n<k<oo and
T D(E)e = T(mp(E))ey o mp(c) for0<k<n.

When defined, one obtains analogously continuous linear maps for T'c(E)e, T(E)y
and T'o(E)p.

Proof. Let £ have the base M. From the local definition of the projection
m: € — M and Lemmait is clear that i (mm) = Ty (1 (E) = 1F(M)
and T (Tam) = Mooy s T (E) — (M), respectively. By functoriality, it follows
that sections are indeed mapped to sections. In a trivialization linearity and con-
tinuity are obvious. Thus, by the definition of the vector space topology on the
spaces of sections, it follows from Lemma and Lemma that the above

maps are continuous and linear. O

Lemma 4.1.13. Let k € NU{oo} and letm: &€ - M and n': & — M’ be k-super
vector bundles. If f: & — &' is an isomorphism of k-super vector bundles over
h: M — M, then we have linear isomorphisms

L(E)=" —=T(£)2", o+ foooh™ and
LE)Z" - TUE)Z", o foooh™

for 0 <n <k.

Proof. Because

TofoXoht'=homoXoh '=hoh™ =idpyy
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holds, we have indeed an morphism I'(£) — I'(£’) with the inverse defined by
o'+ f~Y oo’ o h. That this morphism is linear follows locally along the lines of
formula ([£.3). With the same formula one also sees that the degree of the non-zero
part of the skeleton of o cannot decrease and thus we have isomorphisms I'(£)=" —
['(&)2". Tt is easy to see that supp(f oo o h™') = hg(supp(c)) and therefore
compactly supported sections are mapped to compactly supported sections. O]

4.1.3. Vector fields

Definition 4.1.14. Let k € Ny U {00} and M € SMan”. We denote by
X (M) := T'(TM) the even vector fields of M and by X.(M)g := T'.(TM)
the even wvector fields of M with compact support. 1If k > 0, we define the
odd vector fields of M by X(M); := T'IITM) and the odd vector fields of M
with compact support by X, (M)t := T(IITM). In this case, we let X (M) =
X(M)g® X(M); € SVec,. and X (M) = X (M) & X.(M); € SVec.. If
A= {p*: o € A} is an atlas of M, we denote by X the trivialization of X as
n (4.1, with respect to the bundle atlas {T¢*: a € A} if X € X (M) and with
respect to the bundle atlas {II(T¢): a € A} if X € X(M)1.

Remark 4.1.15. Let k € NgU{oo} and M € SMan® be modelled on E € SVec;,
with the atlas A = {p*: U* — M: a € A}. We see that for X € X(M)g and
a, B € A, we have

dp™ (idya, X)|yas = X7 0 o

and with Remark [2.2.15| and formula (4.3)), we calculate

« . «a n n! @ . :
(A o (idya, X)[ypen)n =2 ( > WUW ()X yos,1dpy, - 1dp,)

n>l even

T Z ' |l|90n l+1( )(Xla’u]gﬁ,idEl,-..,idEl)),

n>l odd
If A is an atlas of Batchelor type, the formula simplifies to
(™ o (idye, X |yfes )n =
(g (0o, X0 ) (i) + 00 (e (XS o) (4)
_XB( )(301 7"-7¢?5):<Xﬁogpaﬂ)n
if n is odd and
(dp™ o (idye, X*)ges ) = dipy” (D100, X |yos) = (4.5)
X6 (@", ) = (X0 0 o),

if n is even. In particular, formula (4.4) and (4.5) imply that if A is an at-
las of Batchelor type, then the even vector fields of the local form X< =

(0,0,..., X% X% ,,0,...) form a closed subspace of X (M)g for every even n with
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0 < n < k. Let us also describe the odd vector fields. First of all, we see from
Lemma [2.5.17] that

(ﬁ(d%’aﬁ))n :Spiil(pruﬂgﬂ)(prnw)o, pry, ..., pry)
+n- andSO(ﬁl(pruﬂgB» er(E)l)(prla .o, PIy)

for n.> 0 and (TI(dp*?))e = ©5° (pruﬁﬁ)(prn( #),)- Therefore, we get
(I(dg™?) o (idye, Y'*)[yes ) =

1 a « . .
n!-QL"( Z m_—l)m%iu(]@ruﬂgﬁ)(yz yers1dey, -5 1dg,)

n>l even

1 a (0% . .
b Y e W) ids, - id))
n>l odd e

= (Yﬂ © Spaﬁ)n
for Y € X(M)g and n > 0. For n = 0, we have
(T(dp™) © (idye, Y uges)o = &7 (Pryyes) (Y lymsa) = Yo © 057
If A is an atlas of Batchelor type, this simplifies to
(T(dp™) o (idye, Y *)|pges ) = @17 (Pryyes) (Vi |yes)
=Y (e67)(er", .0t = (VP 0 ™),
for n even and
(T(dg™?) © (idya, Y ) |ggas ) =
d9036 (prz,{lgﬁa Yna|u§5) +n- %nd¢?6<pru§57 Ynafl |u§ﬁ)<idE1>
= Y267 (@17, o) = (VP o ™),
for n odd.

Lemma 4.1.16. Let k € NoU{co} and M € SMan®) with atlas A == {o®: U* —
M:a € A}, Then X(M)g is a Lie algebra with the Lie bracket |-, -] given by

[X,Y]* = dX® o (idye, Y*) — dY* o (idye, X®)

fora € Aand XY € X(M)g. For every 0 < n < k, the subspace X(M)ﬁzn is
a Lie subalgebra of X(M)g. Moreover, if Mg is finite-dimensional, then X.(M)g
and XC(M)?L are also Lie subalgebras of X (M)g.

Proof. We start with the case k = co. By Lemma|2.6.2} every vector field X : M —
TM maps to a vector field X := limX: limM — Tlim M. With the atlas

{g~ = limp®: a € A}, we know from |10, Theorem 4.2, p.25| that the Lie bracket
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of X and Y is locally given by
ngbo‘ o (idlimu"‘> 5}@&) - d}}cﬁa 9 (id]imua, XSBQ)
— —
But since we have
dX% o (o, Y?") = 1limdX® o (idye, Y'®),

it follows that [X,Y]* as defined in the lemma gives us a unique vector field

[X,Y]: M — TM. The calculations in Remark [4.1.15| show that the degree of

the resulting alternating maps does not decrease. Therefore, X (M)GZ" is closed

under the Lie bracket. From the local definition of the bracket, it follows that
supp([X,Y]) C supp(X) Nsupp(Y). Hence, X.(M); and Xc(./\/l)ﬁzn are also Lie
subalgebras in case of finite-dimensional M.

For £ € Ny, we can repeat the same arguments with the vector field

XA;@.:MA;CHTMA;C- D

Lemma 4.1.17. Let k € NgU{oo} and let M € SMan™ be Banach supermanifold
such that Mg is finite-dimensional. Then X(M)g, is a topological Lie algebra. If
Mg is o-compact, then X, (M)g, is a topological Lie algebra as well.

Proof. Let M be modelled on £ € SVec;. and U C E(k). By definition of the
topology of X'(M)g,, resp. Xe(M)g,, and the local form of the Lie bracket, it
suffices to see that

s>, EY), x sc=u, By, — sc>w, EY),, (X,Y)— dX o (idy,Y)
is smooth. This follows from Lemma [A2.74 O
Lemma 4.1.18. Let n € NgU {oo} and M € SMan™. The linear maps
R X(M)g— X (M))g, X (X) forne{0,1}, n <k < oo and
T X(M)g — X(mp(M))g, X —mp(X) for0<k<n

given by Lemmalf.1.19 together with Lemma are Lie algebra morphisms. The
same holds true for the respective maps for X.(M)g if Mg is finite-dimensional.

Proof. This follows immediately by applying the functors to the local definition of
the Lie bracket. 0

4.2. The Automorphism Group of a
Supermanifold

In a sense, the group of automorphisms of a supermanifold is completely contained
in the supergroup of superdiffeomorphisms. However, an examination of the for-
mer provides one with valuable insights for the latter, which has a much more
complicated structure.
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4.2 The Automorphism Group of a Supermanifold

Let k € No U {co} and M € SMan®). We denote by
Aut(M) == {f € SC*(M, M): f invertible}

the group of automorphisms of M. Let k > 0 and recall the functor
ik SMan® — SMan¥ from Lemma [2.3.18 We have a short exact sequence of
groups

ﬂ_k
1 — ker(n¥) — Aut(M) — Aut(MP) - 1

and it follows immediately from the definition of 7% that
Autig(M) == {f € Aut(M): fy, =idm,, | = ker(7¥).

We will consider M1 as a vector bundle and Aut(M®) as the group of vector
bundle automorphisms via Proposition 2.3.17 If M is a supermanifold of Batch-
elor type, then the above sequence splits along ¢} : Aut(M®) — Aut(M) because
of Lemma 2.3.18

If My is finite-dimensional, we define the group of automorphisms of M with
compact support by

Aut(M) := {f € Aut(M): 3 K € Mg compact with flrq,,. .\ = i« }-

Clearly, Aut.(M) is a subgroup of Aut(M) and with Aut{;(M) := Autiq(M) N
Aut.(M), we again get a short exact sequence

1 — Auté (M) — Aute(M) 25 Aut (MD) — 1.

Note that under the identification from Proposition , Aut,(MW) corresponds
to the vector bundle automorphisms of M®) with compact support. In the Batch-
elor case, the sequence splits as before.

As it turns out, Autiq(M) is a so called pro-polynomial group that can be

described by the vector fields X (M)%Q. In the Batchelor case, the action of

Aut(MDP) on Autiy(M) can be understood as the pullback of the vector fields.
To turn Aut(M) into a Lie group, one then just needs that X (/\/l)ﬁ22 is a con-
tinuous Lie algebra and that Aut(/\/l(l)) can be turned into a Lie group that acts
smoothly on X (./\/1)622. This approach is the same as the one taken in [47] for finite-
dimensional compact supermanifolds, but our language is completely different and

our results are much more general.

Lemma 4.2.1. Let M be a supermanifold. Then (Aut(M™),en,, (T7)n<m) and
(Autid(M(m))meN, (W;")ngm) are inverse systems of groups and we have

lim Aut(M™) = Aut(M)  and lim Autig(M™) = Autig(M)

as groups.

Proof. That we have inverse systems of groups follows from Lemma [2.3.18|and that
the equalities hold is obvious from the definition of supersmooth morphisms. [J
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4.2.1. Local considerations

Lemma 4.2.2. Let k € NU{oo}, F € SVec;. andU C " be an open subfunctor.
We give Autiq(U) the vector space structure induced by the bijection

SC=U, B — Autia@), (0,0, fa, .. ) = (e, Cuay » for - )-

If k € N or Ey is finite-dimensional, then Autiq(U) is a polynomial group of degree
at most min{k, dim(FE,)}. If k = oo and E\ is infinite-dimensional, then Autiq(U)
18 a pro-polynomial group. The Lie bracket is given by

(X, Y] =dX o (idy,Y) — dY o (idy, X)
in both cases.

Proof. Let k € N, f, g € Aut;q(U) and recall formula (2.2)) from Proposition [2.2.16

to see |
n! o
(g0 flals) = ; e Y 9i() ((fa X £3)(5)).
(@B)eln

Because the other cases are trivial, we may assume min{k, dim(F;)} > n > 1. This
expression is polynomial in (g,),~1, (f+)r>1 and the number of g,, f, with r > 1
that can appear in a summand is bounded by n. The same argument applies to the
iterated products. Because of Lemma [2.2.18] the inversion is a polynomial map.
Let g = idy +X and f = idy +Y with X,Y € SCOO(U,E(IC))ZQ. Then the part of
the composition linear in both X and Y has the n-th component

. n n! . . .
(dX o (idy, ) = 2 ( 3 o) (¥ s )+

n>l even

n! . . .

Y i Xar(ide ) (Vi ,ldEl))a
(n— D!

n>l odd

where the equality follows from Remark [4.1.15, Therefore, the Lie bracket is as

claimed by

Let now £ = oo and 1 < n < n < oo. The morphism of groups
7 Autig(U™) — Autig(U™) is linear and thus Autyg(U) = lim Autig(U™)
is pro-polynomial. That the Lie bracket is correct also follows from the case of
finite k£ by taking the limit. ]

In the situation above, we denote by expy,: SCOO(Z/{,E(k))Z2 — Auti(U) the
exponential map of the polynomial, resp. pro-polynomial, group.

Lemma 4.2.3. Let k € NU{oo} and E € SVec,. such that Fy is finite-dimensional
and F1 is a Banach space. Then the global chart

expy SCOO(U,F(’C))I?Z — Autiq(U)
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turns Autiq(U) into a Lie group for any open subfunctor U C AR

Proof. By Lemma {4.1.17| the Lie bracket of SCOO(L{,E(k))l)Z2 is continuous. Thus,
the claim follows from Lemma and Lemma [C.3.1] []

The next two lemmas are the main tools to go from the local to the global
situation.

Lemma 4.2.4. Let k € NU{oo}, F € SVec;. andU C B be an open subfunctor.
If V C U is an open subfunctor, then we have

expy (X)[y = expy(X|y)
for all X € SC=U, E™)>2.
Proof. For k € N this follows immediately from Lemma because
Autig(U) — Autia(V), [+ flv

is a linear group morphism. The result follows then for £k = oo by taking the
inverse limit because 7"(X|yom) = 7 (X)|pm for all X € SCOO(U,E(m)) and
1<n<m< oo. ]

Lemma 4.2.5. Let k € NU {oo}, E € SVecy. and let U € B and V < E™

be open subfunctors. For any invertible supersmooth morphism @: U — V), the
morphism
Adg,: Autid(Z/{) — Autid(V), f = @O f e} QOil

is a polynomial isomorphism of groups if k € N or dim(E}) < oco. If k = oo and
E, s infinite-dimensional, then Ad, is the limit of polynomial isomorphisms of
groups. Moreover, in both cases, we have

poexpy(X)op ' =expy, (dpo(p ', Xop™))
for all X € SC=(U, EV)=2.

Proof. Let k € N, ¢ = (0o, ..., 1) and o™ = (¢!, ..., ). For f € Autia(U),
we have fo @™t = ¢! + X where X € SCOQ(V,E(IC))22 and the sum is taken

in SCOO(V,F(k)). Clearly, X depends linearly on f. We only need to consider
1 <n < min{k,dim(E;)} and in this case we calculate

(ol 4+ X0 =2 Y g ) (e 4 Xa x (074 X))

myl;(a)ﬂ)elgl,l

After multilinear expansion, we see that the summands depend multilinearly on
X. Thus Ad,, is polynomial. Note that the summands where only terms of the
form ¢ x go/gl appear add up to zero.
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The linear term of Ad, consists of those summands that only contain one term
depending on X. In other words, we have

" nl " _ T
(L(Adp)(f))n = Z mzd @l(@ol)(%?l Xi%l)a
m+1>0;(, B)EIT | i=1

—

where o1 X; cpgl results from substituting ¢,, with X,, for 1 <¢ <m and ¢g,
with Xg;_,, for m <4 <[+ m. Using Remark [2.2.15] we calculate

(L(Adg)(X))n
. n! m - - - -
=2 Z ml-d pi(eg ) (pa’ x (XBNSO,B;’”"S%LI))

m,l,1>0;
(a76)611:7:1,7[

" n! m 1 -1 -1 —1

+91 ZZ Wmd 9%(900 )((Xangoaz""’goam)xgoﬁ )
m,l,m>0;
(e,B)EI]

= (dpo (¢!, X)),

and the claim follows from Lemma Consider now infinite-dimensional F;
and k = o0o. Let 1 <n < m < oo. By functoriality of 7", we have

W:Ln<Ad@(m)(f)) = Adnm(w(m))(ﬂz%f))

for all f € Autiq(@™). This implies Ad, = lim Ad,m. For X € SC>*(U, E)=2,
we have 77 (expy ) (X™)) = expym (7™(X ™)) because 77: Autyqg(U™) —
Autiq(U™) is a linear morphism of groups. With Remark [2.2.15] one easily sees
that 77(dX ™) = dz™(X ™). Overall, it follows

poexpy(X)op ! =expy (dpo (¢!, Xop™))

from the first part of the proof. ]

4.2.2. The global case

Proposition 4.2.6. Let k € NU {co0} and M € SMan® be modelled on E €
SVec,. with atlas {p*: U* — M: « € A}. For the bundle atlas {Tp*: o € A} of

TM, recall from Lemmal4.1.6 (using Lemma/Definition [{.1.11]) the embedding
0: x(M)2* - [[ sc=w, Bz, X [ x°
acA a€cA
and consider the injective morphism of groups

U: Autig(M) — H AutigU*), f (%)t o fop™

acA
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Then there exists a unique bijective map exp ,: 2((./\/1)622 — Autig(M) such that
the diagram

X(M)Z? oM > Autg(M)

[ [

HaEA SCOO (ua’ E(k'))ZQ Ha eXPyo HaeA Autld (ua)

commutes. If k € N and dim(F;) < oo, then this bijection turns Autiq(M) into
a polynomial group of degree at most min{k,dim(E,)}. Otherwise, Autiq(M)
becomes a pro-polynomial group. Neither exp,,, nor the topology induced on
Autiq (M) by the chosen topology ofX(./\/l)622, depend on the atlas. The Lie algebra

of Autig(M) is given by X(M)GZQ.

Proof. To see that exp,, is well-defined and bijective, it suffices to show
[T, expye (im(©)) = im(¥) since the maps expy. are bijective for all o« € A. Like
always, let % : UY*® — UP* be the change of charts for any two charts ¢ and ¢°.
We have [],., X* € im(0) if and only if d(¢”*) ™ o (¢, X*|yjas 0 p"*) = XP |50
for all o, 8 € A. By Lemma this is true if and only if

(7)™ 0 expyyas (X *[yas) 0 % = expypa (X7 |ysa)

holds for all a, 5 € A. It follows from Lemma that this is exactly the con-
dition for [T, 4 expya(X®) to be in im(¥). Thus, [], expye (im(0)) C im(V).
For (f*)aeca € im(¥), we repeat the same argument in reverse to get the other

inclusion. Because the vector space structure of X (./\/1)622 is given by the vec-

tor space structure of [], ., SCOO(L{O‘,E(k))ZQ, it follows from Lemma [4.2.2| that
Autig(M) has the described structure of a polynomial, resp. pro-polynomial,
group. Proposition shows that exp,,(X) is already uniquely determined
by ((¢%) L oexp(X) o @) aea for all X € X(M)?. By Lemma@ the topology
of X <'M>622 does not depend on the atlas and thus neither does the topology of
Autiq(M). By the local definition of the Lie bracket together with Lemma [4.2.2]
it is obvious that X(/\/l)ﬁ22 is the Lie algebra of Auti(M). O

Remark 4.2.7. Proposition [£.2.6 enables us to give an alternative proof of Batch-
elor’s Theorem. Let k& € N U {oco} and let M be a k-supermanifold. Then
an isomorphism f™: M®™ — M® with fy, = idpm,, and 1 < n < k can
be lifted to an isomorphism f"1: M®+) — M@+ if and only if the vector
field X™ € X(M(”))622 with exp v (X™) = £ can be lifted to a vector field
X e X(M™+D)22 ] If Mg admits smooth partitions of unity, the lift of X can
be constructed with standard arguments.

Corollary 4.2.8. Let k € NU {oo} and let M € SMan® be a o-compact k-
supermanifold modelled on E € SVec;.. Then the restriction

eXpPiy 1= €XP |XC(M)§2: XC(M)GZ2 — Autiy (M)
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4 Superdiffeomorphisms

is a well-defined bijection that turns Autiy (M) into a polynomial group if
min{k, dim(F)} < oo and into a pro-polynomial group otherwise. The Lie al-
gebra of Aut;(M) is XC(M)622.

Proof. Let {¢o*: U — M: a € A} be an atlas of M such that (p§(UZ))s is a
locally finite cover of My by relatively compact sets. Recall the maps © and ¥
from Proposition [£.2.6] It follows from the definition and our choice of the atlas
that for X € X(M)%Z, we have X € XC(M)§2 if and only if (©(X)), = 0 for
almost all o € A. Likewise, for f € Autijq(M), we have f € Aut{;(M) if and only

if (W(f))a = (idye, ciag, ,0,...) for almost all & € A. The claim follows now from
Proposition [4.2.6] O

Remark 4.2.9. In the situation of the corollary above, we get the following com-
mutative diagram corresponding to the diagram in Proposition [4.2.6}

X (M)Z? P » AutS, (M)

0
jG‘XC(M)gz £W|Auc§d(M)

DocsSC(e B2 S T At (u”).

ac

Proposition 4.2.10. Let k € NU {co} and let M € SMan'® be modelled on
E € SVec,. such that Ey is finite-dimensional and Ey is a Banach space. Then
the global chart

exXp X(M%i — Autig(M)

turns Autiq(M) into a Lie group with the Lie algebra X(M)azi If, in addition,
Mg is o-compact, then Aut{(M) becomes a Lie group with the global chart

expiy X (M)Z2 — Aut (M)

0,b

and the Lie algebra XC(M)ﬁzi

Proof. In view of Proposition [£.2.6] and Remark [£.2.9] both results follows imme-
diately from Lemma [4.2.3] O

Lemma 4.2.11. Let k € NU {o0}, M € SMan®), f € Aut(M) and X €
X(M)gz. Then we have
expp(TfoXof™) = foexpy(X)of
Proof. Let A= {p*U* - M: a € A} be an atlas of M. For a o, € A we
define U := f~H(p*(U*?)) and f*° := (¢”)" o f 0 p*|jjas. Then we have
TP o X () =T (") oTfoXo foy’| s

and the result follows from Lemma [4.2.5] ]
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4.2 The Automorphism Group of a Supermanifold

Lemma 4.2.12. Let k € NU{oo} and M be a o-compact Banach k-supermanifold
of Batchelor type with finite-dimensional base. If we identify Aut.(MD) =
1L (Aut (MW)), then the actions

B Aut(MY) x X(M)g, = X (M), (f,X) = TfoXof!
and
Be: Autc(./\/l(l)) X XC(M)G,I) — XM)gy, (f,X)—=TfoXo !

are smooth. These actions restrict to smooth actions Autc(./\/l(l)) X X(M)ﬁzi —
X(M)ﬁzi and Aut(MW) x Xc(/\/l)azi — XC(M)BZZ. Moreover, the action

Autc(,/\/l(l)) X Xc(M)ib — XC('A/I)T,bv <f7X) —s ﬁ(Tf) o X o ffl

18 smooth.

Proof. We identify MM with the vector bundle over M := Mg, Aut.,(M®) with
the compactly supported vector bundle morphisms and use the notations from
Chapter D] Let {¢: U' — M: i € N} be the atlas defined by ¢f(Ug) = U; and
7 = ¢, o ((¢k) !, idg, ). Recall the covering (W;)sen of M from Remark [D.2.1]
We set U; := (%)~ 1), V= (p%)~1(V;) and W, = (%)~ (W;). First, we show
that for each f € Aut,(M™) the automorphism

XC(M)G,b - XC(M)ﬁ,bv X—TfoXo f_l

is smooth. Let X¥' := pr, o7 (¢") 1o X oy denote the usual trivialization. The set
{ftoy": i e N} is also a locally finite atlas of M because f is an automorphism
of M. Thus, the mapping

X @rnoT(p) o foXof o = X/

i€eN 1€N

is smooth by definition of the topology on X, (M)g,. Therefore, the mapping

XH@(TfoXoflypi

€N

is smooth as well, which implies the claim. For X € X'(M)5, the same argu-
ment works after substituting direct sums with products. By Lemma [A.3.1] it
now suffices to show that . is smooth on O x X (M)g,; for some open unity
neighborhood O C Gau,(MW) o S(O) C Aut (M®D). Thus, we may check
smoothness separately for open subsets of Gau.(M®) and Diff.(Mg). For f € O,
we define the local descriptions f* = (fg, f1,0,...) := (¢')"" o f o ¢'[ys and
()= (D H0,..) = (¢") o floy Uiy, - With this, the action on
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4 Superdiffeomorphisms

X € X(M)g, is given locally by
pry 0T () L0 T 0 X 0 Lo gy, = dff o (idys, X#) o (/)L

More specifically, by Remark [2.2.15] (df o (idy,, X*') o (f1)~"), equals

i

X = dfi (L XS () forn=0,

. o 1 , 4.6
XL = ()X ()G DY) TornsOeven

and

7

X{Mr =f) DT (o) ()7 for n =1,
X5 =A™ D)+ (4.7)
n A df () (XL () 1)((f1)* s (D7D

for n > 1 odd. For X € X.(M)g,, define the projections pg (X) := X%, resp.
p‘z(X) := X*'1% Furthermore, let Q = @, (O) and p;: X.(M) — C>(U;, Ey) be
like in Remark |

If we find an open zero- nelghborhood Q C Q and smooth maps B Qi X
[ C (0 AW (Ey; En)y) — TL, C=(Vs A (Ex: Ey)y), where py(©) € 9, C
C>(U;, Ep) open, such that for

B: ﬁ X XC(M)B,Z; - XC(M)G,ba (Y> X) = BC(S(eng OY)’ X)a

we have 8(pi(Y), pg. (X)) = py, (B(Y, X)) forall Y € Qand X € X, (M)g,, then
smoothness follows from Lemma [A.1.4] N

We construct open sets §2; and smooth maps ¢;: Q; — O such that (;(Y)|w,
depends only on p;(Y)|w, like in Remark [D.2.20 Let 8¢ be defined by the local
action of f S(Q( ) € S(¢()) on IL.- COO(UZ,Alt"(El,E )») as in formula

and (4.7). By Remark 3, this actlon depends only on p;(Y)|w, if Y € Q.
By Proposmon 7] and Corollary [A.2.13] it suffices to see that the map

(CARRE ﬁichm(ﬁi, AW (Ey; Bn)y) X Vix E? — By, (Y, X, z,0) — X' (z,0)

n=0

is smooth. But this is true because the map can be written using the smooth

evaluations from Proposition [A.2.8] Lemma and Remark [D.3.6]

All that remains to be seen is that there exists an open unity neighborhood of
Gau.(MW) which acts smoothly on X.(M)g,. The argument is essentially the
same as before. Note that for the embedding

Gau (MW) — H* C*(U;,Glg,), fr (fi)ien

€N

like in (D.2), the skeletons (idg , f; 0 ¢}, 0, . ..) correspond to the local descriptions
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4.2 The Automorphism Group of a Supermanifold

above (we do not need to restrict to ‘71 or WZ because these maps are the identity
on the base manifold). Let P C gl be as in Remark and Q; := C>*(U,, P).
Then the mappings

Qi x [[ (U, A" (By; Br)) — [ [ €°(Ui, A" (Ey; Er))

defined by the local action of (echlEl)i(Qi) as in formula 1' and {) are
smooth by Lemma because of the same arguments as before. Overall,

smoothness follows again from Lemma

Checking that 3 is smooth on O x X'(M)g, is much simpler. We only need to
see that the components and depend smoothly on X and f and this
follows directly by using the same evaluations as above. That the actions restrict
to actions on the closed subspaces X (M)ﬁzi and XC(M%;? follows from Lemma

AII3 |
In the case of X € X.(M)q,, we set X?' := pry olI(T¢") o X o(¢")~. With this,
the same arguments as above show that

XC<M)T,b - XC(M>T,bv X = ﬁ(Tf) oXo f_l

is smooth for every f € Aut, (M), We again use Remark 4.1.15( to calculate
(IL(f7) o idys, X#') o (¢') ! s

AU D)D) D)
for even n and as
A ()7 X (D™ D7)+
n - ()™ (X () D™ D7) D7)
for odd n. From here the same arguments as before show smoothness. O

Proposition 4.2.13. Let k € NU {co} and let M € SMan¥) be a o-compact
Banach k-supermanifold of Batchelor type with finite-dimensional base. Then

Aut (M) = Auts (M) x Aut,(MD)
is a Lie group with the Lie algebra X.(M)g, and
Auty (M) = Autig(M) x Aut (MD)
is a Lie group with the Lie algebra X(M)ﬁzg ® X (MWD)g,.

Proof. Let M be modelled on E € SVec,.. That Aut.(M) and Auty (M) are

Lie groups follows from Proposition Lemma and Lemma [4.2.12, We
already know that Aut.(M) has the Lie bracket X,.(M™)g, from Lemma

and that Aut;q(M) has the Lie bracket XC(M)GZI% from Corollary 4.2.8] By Remark
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4 Superdiffeomorphisms

[A.3.3] we need to calculate the derivative of the map

Aut,(MD) = X (M)Z2, (f,X)—TfoXof

0,b?

for an arbitrary X € XC(M)ﬁzi at the identity. To this end, let ev: Aut,(M®M) x
MO — MW be the evaluation, let evy: Aut,(MW) x TMD — TMD be as in
Remark |D.3.6and let [t — , f] € TiqAut.(MD) be identified with Y € X,(MM)g,

as in Lemma[D.3.9, Note that the lemma implies that [t — ,f!] corresponds to
—Y. We use the same notation as in Lemmal[4.2.12|for an atlas {¢*: U' — M:i €
N} of Batchelor type and the localization ,f* (for ¢ small enough this is well-
defined). Because of Corollary , we may simply calculate the derivative of
the n-th component of the local description of (T ,f o X o,f~1)#" after evaluating
in z € U; and v1,...,v, € Ey. To simplify our notation, identify ¢ with (%)™
which is possible because the atlas is of Batchelor type. Note that we have

[t (o) o, fop(x,v)]=T(p) oY oy (r,v)= Y“”i(:c, v1).

Recall the formulas (4.6) and (4.7) from the proof of Lemma [4.2.12| For even

n > 0, we have to calculate the derivative of
tr d o (07 @) X2 (S0 T @)D T @), (D) 7 ()
at zero. With Lemma and the chain rule, the result is
dYy' (2, XE' () (01, .. 00)) + dXE (2, =Y () (01, - ., va)
+ ZX;fi(a:)(vl, ce —Yfpi(a:, V), ., Up)
- (dYg"i(:c,X“’i(a:)(., ) — X (2, YE () (s o) —
n WX () (Y (2)(), e .))(vl, ).
Likewise, for odd n > 1, we consider the derivative of the map
Er (20 LS T D) ™D ™ D7 D)+
ST () (tfi)_1)> (@, 01, -, 0n)
at zero. By the same arguments as before, this results in
(n ALY (2, X (@) (o)) (o) + Y (@) (X (@) (e o))
— dXE (2, YE (@) oy o y0) =1 AXE (2) (VP (2)() 0, .))(m, V).

Comparing the formulas with the calculations in Remark 4.1.15| it follows that
the derivative of t — T',f o X o,f~" at zero is [Y, X]. The same calculations show
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4.2 The Automorphism Group of a Supermanifold

that Autp .(M) has the Lie algebra X(M)gi D X (MD)g. O

Corollary 4.2.14. Let k € N U {oo} and let M € SMan™ be a o-compact
Banach k-supermanifold with finite-dimensional base. Let g: M — L,lﬁ(/\/l(l)) be

a Batchelor model of M. Then we turn Aut.(M), resp. Autp.(M), into a Lie
group via the isomorphism of groups

0, Aut.(th(MM)) — Aut. (M), frsgofog™t resp.
0y Autp (1 (M) = Aut (M), frgofog™

Both Lie group structures do not depend on the Batchelor model.

Proof. Let ¢': M — 1.(MW) be another Batchelor model and let Aut.(M)" de-
note the Lie group Aut.(M) with respect to the Batchelor model ¢’. The identity
Aut (M) — Aut.(M) is smooth if and only if Oy o O1: Aute(i(MD)) —
Aut,(th(MM)) is smooth. But this map is just the conjugation with ¢’ o g7?,

which is smooth. The proof for Auty (M) is the same. O

Lemma 4.2.15. Let k € NU {oo} and let M € SMan™ be a o-compact Banach
k-supermanifold with finite-dimensional base. Then the linear group actions

Aut(M) x Xc(M)ﬁ,b - XC(M)E,bv (f;X)—=TfoXo f*1

and

Aut (M) x XC(M)T,I; - XC(M)T,ba (f, X) — ﬁ(Tf) oXof!

are smooth.

Proof. Let M be modelled on EF € SVec;.. We may assume that M is of Batchelor
type, that A := {o®: U*: M: o € A} is an atlas of Batchelor type, A is countable
and (pg(Ug)) is a locally finite cover by relatively compact sets of Mg. Because
of the way the smooth structure on Aut.(M) is defined, it suffices to check that
the respective actions of Aut.(M®) and Autf,(M) are smooth. That the former
is smooth was shown in Lemma[4.2.12] By definition of the topologies and Lemma
[A.1.4] it suffices to calculate the latter action locally. The local version of the first
action is given by

SCOO(Z/{O{,F(’C)%EZ % SCOO((/[a’E(k))b N SCOO(UQ,E(k))b7

(f, X) = d(idye +f) o (idya, X) o (idya +f) 7"

The smoothness of this map follows from the fact that the inversion in Autq (i)
is smooth and by applying Lemma to the formulas given in Proposition
2.2.16| and Remark 4.1.15,. The local version of the second action is given by

Sc= U, EM)2? x sceue, THE)®), — SC= U, TH(E)®),,

(f, X) — TI(d(idye +£)) © (idye, X) o (idye +f) 7.
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4 Superdiffeomorphisms

With the formula from Lemma [2.5.11] together with Lemma [A.2.2] we see that
that

>2

scxwe, Bz = sexue x WEY), TEY))Z, f e T(d(idye +1))

is smooth. Therefore, the second action is smooth by the same arguments as
before. ]

4.3. The Functor of Supermorphisms and
Superdiffeomorphisms

In a sense, the set of supersmooth morphisms SC*(M,N') between two super-
manifolds M and A only consists of the even morphisms. To get the full picture,
we need to define a functor SACC”(M,N ): Gr — Set that describes also higher
points of the supersmooth morphisms. One has a composition law that turns
32300(/\/1, M) into a monoid in Set®*. The supergroup of superdiffeomorphisms is
then defined as the subfunctor of S'EOO(M, M) consisting of invertible elements.

For everything that follows, it will be integral to understand Grassmann algebras
as purely odd supermanifolds. As mentioned in the introduction, in the sheaf
theoretic approach this is trivial. However, in the categorical approach, this is
more involved.

4.3.1. Superpoints

Consider RC R* CR* C ... C @,y R. For the remainder of this work, we fix a
basis (0;)ien of @, R such that vy, ..., v, is a basis of R™ for all n € N. For a set
I'={i,...,i} € PP withi; < ... <4, wedefine vy := v A...Ab; € Alt"(R™;R).
It is well-known that the wedge product turns A(R")* := @,,.,, Alt"(R™; R) into
an R-superalgebra and that o

Ay — B AWRER),  (ard)ier — Y arv; (4.8)

0<r<n Iepn

is an isomorphism of R-superalgebras. We cannot avoid fixing a base because we
need consistent isomorphisms (4.8) for all n € N. This should be understood as
analogous to fixing the generators \;.

Definition 4.3.1. Let SPoint denote the full subcategory of SMan consisting
of finite-dimensional purely odd supermanifolds whose base manifold consists of a
single point.

Lemma 4.3.2. Let Gr° be the dual category of Gr. There exists an equivalence
of categories

P: Gr° — SPoint

such that P(A,) = RO, To avoid clunky notation, we will also consider P as a
contravariant functor Gr — SPoint.

102



4.3 The Functor of Supermorphisms and Superdiffeomorphisms

Proof. This follows from [Il, Theorem 3.13, p.589]. See also [40, Section 8.1, p.415|
and [46, Proposition 2.8, p.§|. O

Let us explain how P acts on morphisms. We identify an element z =

(ajAp)repn € A, where a; € R, with the skeletons (Eleﬂ?" = amI) ie.,

0<i<n’

we can see T as a supersmooth morphism z: RO — R For any super-
smooth morphism (f;);: RO™ — RO we then get a morphism of superalgebras
0: Ny — Ay, ©— xo(f); (compare [1, Corollary 3.6, p.585|). Conversely, o()\;)
corresponds to the skeleton defining the i-th component (with respect to the basis

(v:)) of (fi)i-

4.3.2. Internal Hom objects and supermorphisms

Let C be a category with products and B € C. An internal Hom functor is a
functor Hom,(B,.): C — C that satisfies

Hom¢ (A, Hom,(B,C)) = Home(A x B,C) for all A,C €C

(see for example [35], p.180]). Of course, in general inner Hom functors need not
exist but for appropriate objects A, B and C' one might at least find an internal
Hom object Hom. (B, C) € C satisfying the above. In our situation, the following
fact gives us necessary properties an internal Hom object needs to have.

Corollary 4.3.3 ([40, Corollary 8.1.2]). For every M € SMan and every A € Gr
there exists an isomorphism of sets

My =2 SCZ(P(A), M)
natural both in M and A.
Assuming that Homgy;,, (M, N) exists for M, N' € SMan, it follows
Homgpgan (M, N)a = SC*(P(A), Homgypan (M, N)) = SCZ(P(A) x M, N)
for all A € Gr. We simply take this as the definition of a functor
SCT(M,N): Gr — Set, A SC®(P(A) x M, N).
For morphisms ¢ € Homg,(A, A’), we define

SCT(M,N)y: SC (M, N)y — 8C (M, N,
[ fo(P(o) xidpy).

Functoriality follows immediately from the properties of the contravariant functor
P. We call this functor the functor of supermorphisms (of M to N'). Further
motivation for the functor of supermorphisms can be found in [45, Section 3.3.3,
p.54] and [40, Section 8.2, p.415|.
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This raises the question for which supermanifolds M, N the functor
@m(/\/t, N) can be given the structure of a supermanifold. For finite-dimensional
supermanifolds this has been achieved in [27]. See also [40l Section 8.5, p.418].

A nice feature of the functor of supermorphisms is that one has a natural com-
position. Let M, M', M” € SMan. For every A € Gr, we define a map

oyt SCT(M, M)y x SCT(M, M)y — SC (M, M"),
(9, f) = fong == [ o (idpey,9)-
This defines a natural transformation
o: 8CT (M, M) x 8C (M, M") = 8C” (M, M")

because for all o € Homg, (A, A), f € EEOO(M’,M”)A and g € S'EOO(M,M’)A,
we have

f o (idpay, 9) © (P(o) x idum) = f o (P(0), (g o (P(o),idum)))

= (f o (P(o) x ida)) o (idp(ay, g o (P(0) x id)). (4.9)

This natural transformation is associative in the sense that for every A € Gr, we
have

(for(goph)) = fo (idpeay, g o (idp(a), b))
= (f o (idP(A)>g)) © (idP(A)> h) = (fopg)oph,
for all f € @OO(M’,M")A, g € S'EOO(M,M')A and h € @OO(N,M)A, where

N € SMan. If one just considers EEOO(M, M), then there exists a unit element
e for the composition. Defining

em: Gr — Set, A~ {pry;: P(A) x M — M},

we see that ens is a subfunctor of SZ’OO(M,M) and for every A € Gr, we
have that ey(A) is the unit element of o, : @OO(M,M)A X S’EOO(M,M)A —
SACOO(M, M) . In other words, gZTOO(M, M) is a monoid with the unit element
e in the category Set©r.

Definition 4.3.4. Let M, N € SMan, A € Gr and f € gaoo(./\/l,./\/)/\. We say
f is inwvertible if there exists a morphism f~! € SCOO(N, M) such that

foaf™ ' =en(A) and floyf =em(A).
If an inverse exists it is unique.

The above discussion of supermorphisms is largely taken from [47, Section 5,
p.301 ff.|. For a slightly different approach see also [40, Section 8.3, p.416 f.].
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Remark 4.3.5. One can identify SC_ (M, N), with a subset of SC®(P(A) x
M, P(A) x M) by mapping

Uy SC (M, N)y — SC(P(A) x M, P(A) x N, f = (idp(n), f)-
Restricting the map
SC=(P(A) x M, P(A) x N) = 8C™ (M, N)x, = pryof’

to the image of W, gives us an inverse. If N/ = M, then W, is clearly a mor-
phism of monoids. In particular, the unit element of SC (M, M), corresponds

to idp(a)xm and the inverse of an invertible morphism f € SAC“’(M, M), corre-
sponds to (idps), f)~'. Conversely, if (idp(a), f) is invertible, then f is invertible
with = = pryo(idpay, f) 7'

Lemma 4.3.6. Let E, F € SVec,,, U C E andV C F be open subfunctors. Then
fe SEOO(U, V), is invertible if and only if SEOO(Z/{, V)en, (f) is an isomorphism.
In this case f = (idp(a,), f) is an isomorphism and the inverse g of f has the
skeleton

n

go: Ve — U, go(2') == fo (),

g1: Ve — AN (R" @ F1; Ey),  gi(2') := pr) Ofl(go(fl))_l and

ge: Ve — AltF(R" @ Fy; Ey),

o)) = =Y 2 g @) (% ) ) (),

m,l<k;(a,5)€[§hl,
€Sy

where k> 1, pry: R™ x Fy — F\ is the projection, v' = (v}, ...,v;) € (R" & Fy)*
and v = (F(g0()) (). F(gola)) (1)) € (R" @ B3 )

Proof. Let A := A,. Because éﬁm(u , V), respects the composition, it maps
invertible elements to invertible elements. Conversely, let h := S’EOO(U Wen(f)
be an isomorphism. By Remark and Lemma [2.2.18] f is invertible if and
only if fM: P(A) x U — P(A) x V is invertible. Note that fr = fg = hg has
the inverse hﬂgl. In terms of skeletons, we have that fo = fo = ho:Ur — Vi
is a diffeomorphism and f; € C®(Ug, Alt'(R® @ E1; F})). In particular we have
fi1 € C=®(Ug, Alt'(R"™, ) and fio € C®(Ur, Alt' (Ey, F)) such that

fi(x) = fu(z)(pry) + fi2(z)(pry)

for x € Ur with the projections pr;: R" x F; — R"™ and pry: R” x E} — Ej.
Because hy, = (f o (P(aA),idu)) it follows h; = f12 and therefore, we have
ffgl S COO(VR,Alt1<F1, El)) for

Ay?

fit: Ve = AN (FL Ey), 2/ (fia(2)
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We define
fi Ve — AR Ey), o' — —f5 () o fuu(fi'(2))) and
Jit= ) er) + fio (+)(prh),

with the projections prj: R” x F; — R" and pry: R" x F; — F}. It follows

Fi2 (fo(@)) (frz(z) (v2) + fra(@)(v1)) + fii' (fo(@))(v1) = w2

for all ¥ € Ugp and v = (v;,v9) € R™ x E;.  This implies (f;', fi'!)
fo = prg): PA)D x UV — YD, In the same way, one sees (fo, f1)
(idpyw, (fo 5 i) = pr)).  Therefore, fO is invertible with (f()=! =
(idpyo, (fg ' fi1)). With this, the formula follows from Lemma [2.2.18] O

o O

Corollary 4.3.7. Let M,N € SMan and A € Gr. Then [ € @OO(M,N)A is
invertible if and only if SCOO(M,N)gA(f) is an isomorphism.

Proof. Because 3800(/\/1,/\/ )e, respects the composition, it maps invertible ele-

ments to invertible elements. Conversely, let SC~ (M, N)., (f) be an isomorphism.
By Remark and Lemma , we just need to see is that V) is an isomor-
phism in SMan" for

f = (idp(A), f) P(A) XM — P(A) x N.

Since f© = £ ig a diffeomorphism and £ is a morphism of vector bundles over
O it suffices to see this locally. Thus, the claim follows from Lemma 4.3.6, O

4.3.3. The local structure of the functor of supermorphisms

To analyze the structure of the superdiffeomorphisms, it is important to have a
good understanding of the local description of the functor of supermorphisms in
terms of skeletons. As we will see, for E, F' € SVec;. one has a decomposition

AR @ ExF) 2 @ oanAtd (EsR e @ onAdV(E;F).

1ePn |1|<1 1ePn |1|<1

If 4 C E is an open subfunctor and one identifies \; and v, this leads to

SC™ (U, F)a, = SCZU,F) & SCZU,TI(F)),

as A, g-modules (see [40, 10.6, p.426 f.]). We give a concrete description of the
composition in these terms. Heuristically speaking, the v; can be pulled out of the
composition formula (2.2). However, if |I| is odd, additional signs appear.

For the following general constructions let E, F' be R-vector spaces and let
m,n,k € Ng. We define a map

L™R%R) x L"(R* @ E; F) — L™"(R* @ E; F), (f,L)— f-L,
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4.3 The Functor of Supermorphisms and Superdiffeomorphisms

where f - L(v) = f(pri(v1),...,pr1(vm)) © L(Umt1, .-, Upgn) for v =
(V1 .+, Umin) € R¥ @ E™™M and where pr;: RF x E — RF is the projection.
We consider Alt™(E; F) C Alt™(RF @ E; F) in the obvious way and define by A L
for L € AIt™(E; F) as above. Note that with this, the wedge product can be

written as
(n+m)!

vy Aby = .
min.

an—i-m(nl . UJ)
for I,.J € P* with |I| = n and |J| = m. Analogously, we define

(n+m)!

vy AL =
nlm!

an+m(U[ . L),
for I € P* with |I| =n and L € Alt™(R* @ E; F).

If £, F are locally convex, U is an open subset of a locally convex space and
f e (U, At™(R* @ E; F)), then we define v; A f pointwise. Clearly, one has
;A f €C®U, A" (RF@ E; F)). Note that with the inclusion j: F — R¥ x E,
the map

C=(U, At™(E; F)), — C=(U, At™(R* @ E; F))., f— f()(2, .., 52)

is continuous and has an continuous left-inverse given by g +— g(s)(pry, ..., pry) by
Lemma [A.2.2] Thus, C*(U, Alt™(E; F)). can be considered as a closed subspace
of C*(U, At™(R* @ E; F)).. If E and F are Banach spaces and U is a subset of
a finite-dimensional space, the same is obviously true for C*(U, Alt"(E; F'),) and
C(U, Alt™(RF @ E; F),).

Lemma 4.3.8 (compare [40, 10.6, p.426 f.|). Let B, F € SVec;,. and U C E be
an open subfunctor. We turn S'Z’OO(U,F) into a functor E'EOO(U,F)C: Gr — Top
by setting @OO(Z/{,F)C,A = SC®(P(A) x U, F)en. Defining H := SC®(U, F). ®
SC®(U,TI(F)). € SVec., we have SACC’O(U F). =2 H as topolagzca,l R-modules.
If Ey is ﬁmte dimensional and E1, F' are Banach spaces, deﬁne SC U, F), in
analogy to Sc™ U, F).. Then an analogous statement holds for Sc™ U, F)y.

Proof. Let o € Homgy(Ap, A). Then
SCT (U, B)y: SC (U, E)ep, — SC” (U, E)en

is linear and continuous by Lemma [4.1.4] By Corollary we have

SC (U, E)en 2ﬁ<énlAC°°(uR,Alt (Ev; F7))e
=0 IePy

& @) o1 A C* Ue, Al (Ey; Frp)).)

Iepy

g ﬁAn?
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turning Sc™ (U, E).a, = H,, into a topological A, g-module under the identifica-
tion 1} . The same arguments work for Sc™ (U, E)p A, in the other case. What re-
mains to be seen is that H, equals SAC°°(L1 , "), under this identification. Let P(p)
have the skeleton (g;)o<i<n. Note that g = 0 for even [. Let f € S‘EOO(Z/{,F)A”
Since @OO(Z/{,F)Q is linear, we may assume f = (0,...,0,0;5A ;f;,0,...) for some
J e Pr i e {0,1} with j := |J| and ,f,, € C®(Ur, Alt" 7 (E}; F5)). We have
to show that the skeleton of f o (P(0) x idy) is given by o(v;) A ;fmn, where we
identify A(R™)* with A, as in (4.8). We have

(oo = (s (o) = 3 By 0.

BEI ;,0€6, ']'B‘
This yields
e D eI B ]

5617 TGGT+m —j

where prg,: R" x B; — R" and prg, : R" x E; — E; are the projections. Let (0});
denote the skeleton of P(p) x idy,. We have to show that the above sum equals
(f o (0))1)r+m—;- By definition of the composition, we have

Fo@rms= > @ a ). @10)
perytm,
UEGT+m7j

Recall that vy A jfm = D s ]S(fz(z)) (0s(prh,)) - (s fm(pry, M(7). For every
T € G, the contribution to is zero unless 3 ;) = 1 for all 7(i) > j. Thus,
the relevant 8’ are determlned by ﬁ' = f3; for some B € Iy, when 7(i) < j.
By Lemma [A.2.17, we have the same contrlbutlon to the outer sum for every
T€EG, Therefore we may substitute v; A ;f,, in (4.10) with W(U](ern)) :

(me(prg;j)) while letting the sum run over ' = (f,...,06;,1,...,1) with 5 €
I ;- Because 8! = j!, this yields the proposed equality. ]

Lemma 4.3.9. Let n,k € Ny, E,FF € SVec,. and U C E; open. For f €
C(U, At™(RF @ Ey; Fy)) and I € P*, we have

d(o; A f) = v Adf € CZ(U x Ey, Alt"T(R* @ Ey; Fy)).
Proof. This is obvious from the definitions. ]

Corollary 4.3.10. LetnENo, E F H € SVeclc,Z/{CE VCF,WCH be
open subfunctors and f € SC_ (VIW)a,, g € Sc™ (U, V), . We decompose

gr = Z Z UI/\IgT and fr: Z Z UI/\Ifr

0<I<r IePn |I|=1 0<I<r IePn |I|=1
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4.3 The Functor of Supermorphisms and Superdiffeomorphisms

with ,g, € C°Ug, Alt" " T(Ey; 7)) and ,f, € C®°(Ve, Alt"VI(Fy; Hy)). Then, we
have

(fo(idpn,y @)= > > >

m,l, I= (IO I,..., m+l) a,8 GI’"_"OV
BC{l,..;n} €9y 141 (B), zo<l( V€l 124

L—SI m
vy, A oy ARRIWA Ulm+l ! (@hd Iofl((Z)QO)(Iga X 195)7

NI
()M (L~ sl )

m'(l — io)!O&]!B[!

where is == |I4|, N, (a,@ : Zfz’; T Vi (v — dy) with v, := oy for t < m and

Y = Pi_m else, L := (r—zo— =), = (0 — Ay, Q= ), Br =
(Br—imi1s- - Bi—imas1) 00 1 2= (1 XX, Ga) 05 well as g = <Im+lgﬁl S
X +lggl) and where s{a g) U the number of indices for which v; —1; =0, i.e.,

for which 1,9 € C(Ug, I's;).

Proof. This is an immediate consequence of the ordinary formula for the compo-
sition of skeletons ([2.2)) together with Lemma [4.3.9) Lemma |A.2.18 and Lemma
A2.19 O

Lemma 4.3.11. Let E, E’,F,fi € SVec,e and U C E,V < E' be open sub-
functors. Let further f: U x F — H be an U-family of R-linear maps and
g €SC (V,F)a, be a supersmooth morphism for n € Ny. Then, we have

f 1dM7 ZUI/\f 1dZ,[7[g +ZUI/\H (idbhlg)

ey ey
if we decompose g = > ;cpn 01 A ;g with ;g € SC®(V,F) for |I| even and ;g €
SC*(V,II(F)) for |I| odd.

Proof. With I € P*, i := |I| > m, we use Lemma [A.2.1§| and Lemma
(compare formula (4.3))) to calculate

(f o (idu, 01 A 19))m
- le( Y i fmerer (g, 0) (01 A pgimi(pry, ) (pras), iy ™)

m>1 odd,
1>i
+ > s (Pr, 01 A g z(prvR)(przs))(prT*l))
m2>1l even,
>
m—i m—i)! —1 m—
=0, A ( Y it fmers (P, 0) (g (pry,) (15 ), pri™)
m>1 odd,
1>i
+ Z (m l)'(l B) |fm l(prL{RaIgl Z(prvm)(pr?) Z)><prT_l))
m>llze;ven
o A\ (f o] (idu, Ig))m_i if [ € 'J)g,
o7 A(T(f) o (idy, 19))mi  if T € P,
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4 Superdiffeomorphisms

with the projections pry, : Ur X Vg — Ug, pry, : Ur X Vg — Vg, prog: B1 X R™ X
El — R" x Ef, pryg: By x R" x B} — E} and pr;: By x R” x Ef — Ej. The last
equality follows from Lemma for I € P} and from Lemma for I € P,
respectively. The claim follows now by linearity. ]

Remark 4.3.12. One nice application of Lemma is that it enables us to
decompose the so called supersections. Let 7: &€ — M be a super vector bundle
with typical fiber F© € SVec;,.. As we have discussed, one can give the sections
['(E) the structure of a locally convex vector space. Like with supermorphisms,
this only describes the even sections. To incorporate odd sections, one can proceed
as follows. It is not difficult to see that for a supersmooth map f: M — N one
has a canonical pullback super vector bundle f*€ — N by letting f*Ey = fi€a
(compare [40, Section 5.2, p.403]). For every A € Gr let pry,: P(A) x M — M
be the projection. We define the supersections as a functor f(é’ )e: Gr — Top by
letting

L(E)en = D(mh pm(E))er

The sections o: P(A) x M — 73 \(€) have the local form o® € SEOO(U“,F)QA

and the topological Ag-module structure of SEOO(L{O‘, F). turns f(é’ ) into a topo-
logical R-module. Applying Lemma to the change of charts, one sees that
f(é‘)c >~ (&), ® I'(II(E)). holds as topological R-modules (for an abstract, non-
topological version of this see [40, Section 10.7, p.428]). Of course, for an appro-
priate bundle £, one achieves the same results for f(ﬁ )» and one can also consider
compactly supported supersections. It will be convenient for us to directly work

with I'(€). @ I'(II(€)). instead of the supersections, which is why we leave the de-
tails to the reader. Nevertheless, we mention this fact as it greatly generalizes a
long standing claim by Molotkov (see [40, Section 8.5, p.418]).

4.3.4. Superdiffeomorphisms
Definition 4.3.13. Let M € SMan. For every A € Gr, we define

SDIff (M) := {f € SC" (M, M),: f invertible}.

In view of Remark this means that the group SDiff (M), can be identified
with the subgroup of Aut(P(A) x M) consisting of isomorphisms f: P(A) x M —
P(A) x M such that prp,)of = idp(s) for the projection prpy: P(A) x M —
P(A).

Proposition 4.3.14 (compare [47, Proposition 6.1, p.308|). Let M € SMan. The

assignment A +— SDiff (M) defines a subfunctor ofSE“’(M, M). This subfunctor
is a supergroup, i.e., a group object in Set®T, which we call the supergroup of
superdiffeomorphisms.

Proof. By definition, every SDiff(M), is a group. Since

SCT (M, M),: 8C (M, M)y — 8C (M, M)y
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is a morphism of monoids for o € Homg, (A, \), it follows that SC~ (M, M),(f)
is invertible if f € SDiff(M),. Therefore,

SDiff (M), := SC (M, M), |spi(a), : SDff (M) — SDiff (M)

is a well-defined morphism of groups. This also shows that SDiff (M) is a subfunc-
tor of SC (M, M). O

Lemma 4.3.15. If M € SMan, then we have
SDIff(M) = SC™ (M, M) ausa)-
Proof. This follows directly from Corollary [

An alternative proof can be found in [47, Theorem 6.1, p.310] but the proof
only works for finite-dimensional supermanifolds M because the description of
SBOO(M,M) as morphisms of superalgebras in [47, Section 5.2, p.303| does not
carry over to the infinite-dimensional case. Instead, we followed a remark by
Molotkov in [40, Section 10.6, p.426|.

4.4. The Supergroup of Superdiffeomorphisms

Concerning the supergroup of superdiffeomorphisms, we have two objectives. First,
we want to describe the structure of this supergroup for arbitrary supermanifolds.
Second, we want to find a class of supermanifolds for which the superdiffeomor-
phisms are a Lie supergroup.

Even for an arbitrary infinite-dimensional supermanifold M, the superdiffeo-
morphisms SDiff(M) display a lot of similarities to Lie supergroups. For every
A € Gr, we have a short exact sequence of groups

1 — ker(SDiff(M).,) — SDiff(M), — Aut(M) — 1
that splits along SDiff(M),,,. We set
SDiffiq(M) := ker(SDiff(M)., ) = SDiff (M)_ ({idr})

which clearly defines a subfunctor SDiff;q(M): Gr — Set of SDiff(M). We show
that SDiff;q(M), can be turned into a polynomial group that is isomorphic to
X (M)g @ X (M)1,+ equipped with the BCH multiplication and that the resulting
exponential maps exp , define a natural transformation. Moreover, we are able
to define a sub-supergroup SDiff(M)g of purely even superdiffeomorphisms and
obtain a natural trivialization

SDiff(M)g o x X (M), — SDiIff(M)s, (f, X) > fo, expaa(X).

The structure of SDiff (M)g can be described in detail. One also has a short exact
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4 Superdiffeomorphisms

sequence

1 — SDiff(M)=3 — SDiff(M)g , — SDiff(MM)5, — 1,
where SDiff (M)gi is a pro-polynomial group and SDiff (./\/l(l))@ A can be expressed

in terms of the higher order automorphisms of the vector bundle M® (see .
This sequence corresponds to the decomposition

1 — Autig(M) — Aut(M) — Aut(MD) =1

and it also splits for supermanifolds of Batchelor type.

The main difficulty in turning SDiff(M) into a Lie supergroup is providing
SDiff(M)r = Aut(M) with a Lie group structure. Consequently, if My is finite-
dimensional, we define the supergroup of compactly supported superdiffeomor-
phisms SDiff.(M) and are able to give it the structure of a Lie supergroup if Mg
is additionally o-compact and M is a Banach supermanifold. For this, the above
trivializations are crucial. For example, we have

L(Aute(M)) = t(Autfy(M)) x t(Aut(MY)) 2 SDiff.(M)=? » SDiff.(M D)

if Aut.(M) is a Lie group.

As with the automorphism group, we start by directly showing that SDiff;q (1)
is a polynomial group for every superdomain U and every A € Gr. Then the
global case follows much in the same way.

4.4.1. The local structure of SDiff;3(M)

Let n € N, E € SVec;, and U C E be an open subfunctor. We set

SCTU B = Y 0, ASCOWUE)+ Y vy ASCE(U,TI(E))

I€Py . IePy

and conclude from Lemma that A — SC (U, E)x+ defines a subfunctor of
SC™ (U, E).

Let M be a supermanifold modelled on E and ¢: Y — M be a chart. By
definition, for any f € SDiff;q(M),, the chart representation f¢ := ¢~ to fo
(idp(a,) x¢) € SDiffiq(U)a, C EEOO(Z/{,F)AH decomposes as pry, + Zlefpﬁ or A f¥?
with the projection pr,;: P(A) x U — U, f? € SCU,FE) for I € P;, and

feeSCU,II(R)) for I € PY.

Lemma 4.4.1. Let n € N, E € SVec,. and U C E be an open subfunctor.
Then SDiffiq(U) s, is a polynomial group of degree at most n with the vector space
structure given by the bijection

SZ’OO(L{,E)A: — SDiffiq(U)a,,  (Xk)x = pry +(Xe)k,
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4.4 The Supergroup of Superdiffeomorphisms

with the projection pry: P(A,) x U — U. The morphism of groups SDiffiq(U), is
linear for each o € Homg, (A, A).

Proof. Let X,Y € Sc” (L{,E)Ai. By Corollary |4.3.10| each term that depends on
X or Y and that appears in the composition formula (pr,, +X) o (idpa,),Y), adds
at least one v; in the outer wedge product. Thus, the degree of the composition
is bounded by n and the same argument applies to the iterated product maps.
Lemma [4.3.6] shows that the inversion is also polynomial and Lemma and
Lemma[A.2.19khow that the degree of this polynomial is bounded by n. Under our
identification, SDiff;q(U), corresponds to SAC°°(u E)

which is linear.
O

9’3?:""(u,E>A+

We write

eXpPy A SEOO(L{, Ja+ — SDiffq(U) s
for the exponential map of SDiff;q(U)x.

Corollary 4.4.2. Let E € SVec,, and U C E be an open subfunctor. Then
(expy a)AcGr @5 a morphism in Set©r.

Proof. This follows immediately from Lemma because SDiffiq(U), is a linear
morphism of polynomial groups for each ¢ € Homg, (A, A’). ]

Lemma 4.4.3. Let E,F € SVec,,, U C E, V C F be open subfunctors and
Ae Gr. If o: U — V is an isomorphism, then

Ad, A SDiffiq(U)a — SDiffia(V)a, f = o fo(idpw X 1)
is a polynomial isomorphism of polynomial groups and we have
p o expy (X)o7 = expyp (dpo (¢, X o (idpw) x¢71)))
for each X € SEOO(U,E)A. This defines a natural transformation
Ad,: SDiffig(U) — SDiffiq (V).

Proof. 1t is obvious that Ad, , is an isomorphism of groups that defines a nat-
ural transformation. Let X € @OO(Z/{,E)M. Then X := X o (idp) x¢~!) €
EEOO(V,E)M depends linearly on X and we have (pr, +X) o (idp) xp ™) =
o' o pry, +X, with the projection pry,: P(A) x ¥V — V. The claim now follows
from an analogous calculation to the one in Lemma [4.2.5] O]

Lemma 4.4.4. Let E € SVec,, andUd C E, V C U be open subfunctors. Then
expy,a (X) [Py = expy(X|p@a)xv)
holds for all A € Gr and each X € SEOO(Z/I,E)M. In particular, the restrictions

SDiffiq(U)a — SDiffia(V)a, f = flpayxy
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are linear morphisms of polynomial groups that define a morphism in Set®*.

Proof. 1t is obvious that the restrictions are morphisms of groups and that they
define a natural transformation. Let X € SC (U, E)s. Then (pry, +X)|pa)xy =
pry, +X|pa)xy is linear. Thus, the claim follows from Lemma O

Lemma 4.4.5. Let n € N, E € SVec,, and U C E be an open subfunctor.
Under the bijection expy ,, : Sc™ (U, E)\+ — SDiffiq(U),, the Lie bracket of

SDiffiq(U) s, is given by
[D[/\IX,UJ/\ Y]:
oAby A (d;X o (idy, ,Y) —d ;Y o (idy, ;X)) if I1,J € Py,
or Aoy A (II(d [ X) o (idy, ,Y) — d ;Y o (idy, ;X)) if [ € Pp,J e Py,
U[/\UJ/\(CI XO(ldu,J ) _(dJY)O(idu,IX)) Zf[G??,JG?S,

o Aoy A (TI(d [ X) o (idy, ,Y) +TI(d ,Y) o (idy, ;X)) if I,J € Py,
for ;1 X,,Y € SC*(U,E) if € Py 04 and ;1 X, Y € SC*(U, I(E)) if I € Py.

Proof. Let X := Zle?i ;A ;X and Y = Zle?ﬁ v; A ;Y. Given the vector space

structure of SEOO(Z/{ ,E)+ and the definition of the Lie bracket in Section [C.2, we
have to calculate the part of

Y + X o (idp(,), pry +Y)

that is bilinear in X and Y. Obviously, we only need to consider X o
(idp(a,), Pryy +Y) and, since this expression is already linear in X, we may as-

sume X = vy A ;X for some I € P}. By Lemma [A.2.19, we have
(b7 A (X o (idp(a,)s (Pryy +Y)) ey = 01 A (X 0 (pry +Y)),

for each r € Ny. Using Proposition [2.2.16} we directly calculate the part of (;X o
(pry,, +Y)), that depends linearly on Y as

er Z < 'l'd Xl( )(YmaprElv"'aprEl)

m—4l=r,

+(m+1 'I'ZIXZ prEl,...,YmH,...,prEl))

7

:QIT Z ( |l|d[Xl( )(YmaprEl""aprEl)

+ mIXl( )(Ymﬂ,prEl,...,,...,prEl)>

— (d,X o (idy, Y)),.
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Here prp, : R" x By — E is the projection and the last equality is easily seen with
Remark [2.2.15] With this, Lemma |4.3.11| implies

A Xo(idy,Y)= > v, AdXo(idy, ,Y)+ Y oy ATI(d,X) o (idy, ,Y),

S Jery

from which the claim follows. OJ

Lemma 4.4.6. Let E € SVec,,. be such that @ is finite-dimensional and Fy is a
Banach space. For each open subfunctor U C E and each A € Gr, the bijection

eXPyyp " gaoo(u?E)b,M — SDiff;q(U)a

turns SDiffiq(U)x into a Lie group.

Proof. By Lemma it suffices to see that the Lie bracket is smooth. But this
is obvious by Lemma |4.4.5 and Lemma O

4.4.2. The structure of SDiff;q(M)

Proposition 4.4.7. Let A € Gr and let M be a supermanifold modelled on E €
SVec. with the atlas A == {p*: U* — M: o € A}. We consider the linear
mjective map

Or: X(M) i — [[SC™ U E)res (A1 X) 1y — ( 3 oA ,X"‘)

A
acA Iepn s

and the injective morphism of groups
Wy SDiffig(M)x — H SDiffia(U)a, = (%) o fo (idpa) x¢%).
acA
Then,
(a) ©y is continuous as a map X(M)cy+ — [[oea @OO(UQ,E)C,M and im(0©,)

18 closed,

(b) if M is a Banach supermanifold such that Mg is finite-dimensional, the
same holds for ©y as a map X(M)yy+ — [,ca SCOO(UO‘,E)Z),M and

(c) there exists a unique bijective map exppg: X (M), — SDiffig(M)y such
that the diagram

EYYZIWTN EXP M, A

> Slefld (M)A

\[('—)A J:\IJA
oo, — Taespyan . N
——— [].ca SDiffiq (U%)a

commutes.
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This turns SDiff;q(M)a into a polynomial group of degree at most n for A = A,,.
The family (exppa)acar defines a morphism in Set®" and neither eXpygp, NOT
the topology induced by the chosen topology of X (M) on SDiff;q(M),s, depend on
the atlas.

Proof. That ©, is continuous is obvious and that im(6,) is closed in both cases
follows from Lemma [4.1.6 The proof of the bijectivity of exp,, , is analogous to
the proof of Proposition |4.2.6 It again suffices to see [ ], expya 5 (im(©)) = im(¥).
For X € X(M),+ and o € A, we decompose O(X), into (07 A ;X*)epn with
[ X* € 8C™(U*,E) for I € Py, and ;X € SC*(U*,TIE) for I € P}. By Lemma
we have (X%)aea € im(©4,) if and only if for all «, f € A it holds that

d(¢") o (wﬁ"‘ X“O(idp ) X))

= Y d(®) o (9% 01 A X 0 (idpaa,) X))
Iery

= Z o7 A XP e = X'B|7D(An)xuﬁo"
repn

Then Lemma [1.4.4] and Lemma [4.4.3] show

(7)™ 0 expya 4, (X?) © (idpa,) x9™) = expysa (X |pa,)xuise),

which is exactly the condition for (exp(X®))aca to be in im(W,, ). Applying the
same argument in reverse shows that exp,, , is bijective. This also shows that
expya and the induced topology are independent of the atlas as in Proposition
. That (expa)acar is a natural transformation follows from Corollary
and the fact that (Oj)aeqr 18 @ natural transformation. The polynomial group
structure of SDiff;q(M), is obtained from Lemma as well as the linearity of
Ox. ]

Corollary 4.4.8. Let M € SMan be modelled on E € SVec,. with the atlas
= {p*:U* - M:«a € A} and let n € N be fizred. Under the bijection
eXpaga, - X (M)y+ — SDiffig(M)y,,, the Lie bracket of SDiffiq(M)y, is given by

([/\I X, AJ JY]An)a =

Ay (d X o (idy, ;Y*) —d ;Y o (idy, ;X)) if 1,7 € Py,
Ay (TI(d ;X ) o (idy, ;YY) —d ;Yo (idy, ;X)) if1ePy . Je Py,
ArAg(d X0 (idy, ,Y*) = TI(d ;Y*) o (idy, ; X)) if1ePrJePy,,

A (TI(d ;X ) o (idy, ;Y*) +TI(d ;Y o (idy, [ X)) if I, ] € PF,

for X = ZIGT” A XY = Zjegm A, Y € X(M),. and a € A. The family of

Lie brackets ([-,]a)acar IS a morphism in SetC*.

Proof. This is clear from Proposition [4.4.7] and Lemma [4.4.5] O
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Corollary 4.4.9. Omitting A\; and \; from the definition of the Lie bracket in
Corollary [4.4.8 gives us a Lie superalgebra

X(M) x X(M) — X(M).

Proof. The claim follows from Corollary|2.2.22] once we have extended the Lie alge-

bra X (M), + to a Lie algebra X'(M), . For this, consider X'(M)+ ®A45.X (M)g,

which is clearly a Lie subalgebra of X' (M), +. Identifying Aj4 5y and 1 turns it into
a Lie algebra over @(3), so that Corollary [2.2.22| can be applied. O

Corollary 4.4.10. Let M € SMan, n € N, I € P} and ;X € X(M)g. If
e UY — M is a chart of M, then we have

(0%, ) oexpya, (A1 X) o (idp(a,) X%, ) = Prya +05 A X%

Proof. This follows immediately from Proposition because the linear term of
eXPya p, 18 the identity. ]

Corollary 4.4.11. Let M be a Banach supermanifold such that Mg is finite-
dimensional. Then the global chart expygy: X(M)yyr — SDiffiq(M)a+ turns
SDiffiq(M), into a Lie group for each A € Gr.

Proof. In view of Lemma [A.1.2] this follows from Proposition [4.4.7) together with
Corollary [4.4.6] O

Lemma 4.4.12. Let M be a supermanifold and n € N be fized. Then, under the
bijection expy , : X (M), — SDiffiq(M)a, , the group action

Aut(M) x SDiffig(M)n,, (f,®) +— fo®o (idpa,) Xf_l)

corresponds to the group action

Ba, s Aut(M) x X(M), — XM), . (f, (Ar ; X)repn) = (Ar [ X)rern

n

where

(T f)o ;X of !, if I € P

Proof. In analogy to Lemma this follows by applying Lemma in local
coordinates and then using Lemma O

o {Tf o, Xof, if1€Py.,
X

4.4.3. Superdiffeomorphisms with compact support

Let M be a supermanifold such that My is finite-dimensional. For each A € Gr,
we define

SDiff (M), := {f € SDiff(M),: IK C Mg compact with

FIP@)x Mg = PPt g 3
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4 Superdiffeomorphisms

This clearly defines a sub-group object SDiff.(M) of SDiff (M), which we call the
superdiffeomorphisms with compact support. By definition, we have SDiff .(M)g =
Aut.(M). Moreover, if we set SDifff;(M), = SDiffo(M)-!({idr}), we get a
sub-group object SDiff{;(M) of SDiff;q(M) and a split short exact sequence of
groups

1 — SDiff§;(M)x — SDiff (M), — Aut.(M) — 1.

Lemma 4.4.13. Let M be a o-compact supermanifold such that Mg is finite-
dimensional. For each A € Gr, the exponential map expy, from Proposition
[4.4.7 restricts to a bijective map

expiyp i Xe(M)yr — SDIfffy (M),

turning SDiff{, (M) into a polynomial subgroup of SDiffiq(M)y. If A =
{p*: U* — M: a € A} is an atlas of M such that (%(US))aca s a locally
finite cover of Mg, then restricting ©5 and VW, from the proposition leads to the
commutative diagram

X (M) s 2PN » SDIffe, (M)

\[GA \[\I/A
B SC (U B) ps kLR D e SDitfia (U4,
where each SDiffiq(U*) 5 is considered as a vector space. The map Oy is continuous
as a map Xo(M)eps — Doca SC (U, E) a+ and its image is a closed subspace.
The same holds for ©, as a map Xe(M)ppr — Boca @OO(U",E)Z,,/W if M is a
Banach supermanifold. The respective topology induced on SDiffy;(M)a does not
depend on the atlas. The action from Lemmalf.{.13 restricts to an action

Ba: Aut (M) X Xo(M) o — Xe(M) 1.
Proof. By definition, an element X € X'(M),, is an element of X,(M),. if and
only if (©A(X))s = 0 holds for almost all &« € A. Likewise, an element f €
SDiffiq (M), is an element of SDiff; (M), if and only if (U5 (f))a = prye. holds for
almost all v € A. Tt follows from Lemma[4.1.9that ©, is continuous, that im(©,)
is a closed subspace and that the induced topology does not depend on the atlas.
The group action restricts as stated by Lemma [£.1.13] The lemma then follows
from Proposition [4.4. [

Proposition 4.4.14. Let M be a o-compact Banach supermanifold such that Mg
18 finite-dimensional. For each A € Gr, the global chart

turns SDiff;(M)a into a Lie group. Moreover, the action of Aut.(M) on
SDiffS, (M) is smooth and therefore SDiff.(M)y is a Lie group as well. For
each o € Homgy (A, A'), the morphism SDiff.(M), is a morphism of Lie groups.

118



4.4 The Supergroup of Superdiffeomorphisms

Proof. That SDiff{;(M), is a Lie group follows from Lemma and Lemma
together with Proposition [A.3.5] The smoothness of (5 follows from
Lemma and Lemma [£.4.12] Note that SDiff.(M),(f) = f holds for
f € Aut. (M) if we identify Aut.(M) with SDiff.(M),, (Aut.(M)). Thus, since
SDiff.(M), is a morphism of groups and since SDiff (M), and SDiff.(M),. arise
as semidirect products with Aut.(M), it suffices to calculate the smoothness of

SDift.(M), 2812:%%;2’ But, in the exponential charts, this is just the restriction
5 A (Xe(M)par . .
XC(M)bQ %2:, which is smooth. O

Remark 4.4.15. In view of Proposition [4.4.14] it is enticing to simply define
charts of SDiff.(M) by taking any chart of p: U — V of Aut.(M) and then
letting

a((Ar(1 X)) 1ewn) = exppg o (Ar(;X))1ern ) 0 9™ (pX)

for (Ar(;X))repn € Xe(M)p, with X € U. Modulo notations, this is in fact
the chart defined in [47, Section 7.6, p.321] for finite-dimensional compact super-
manifolds. This defines certainly a natural transformation. However, the change
of charts need not be supersmooth. The problem is that changing the chart of
Aut (M) does not affect the nilpotent part X.(M),,+, so that the derivative can-
not be Ag-linear.

4.4.4. Purely even superdiffeomorphisms

As mentioned at the beginning of this section, there exists a natural definition of
purely even superdiffeomorphisms SDiff(M)g for an arbitrary supermanifold M,
such that we have a decomposition

SDiff(M)g x X (M )y — SDiff(M).
Moreover, one has a short exact sequence

1 — SDiff(M)53 — SDiff(M)g , — SDiff(MW)5, — 1
that splits if M is of Batchelor type. We discuss all these components in detail
below, considering also compactly supported and topological versions. Once we
have seen that ¢(Aut.(M)) = SDiff.(M)g holds for o-compact Banach superman-
ifolds with finite-dimensional base Mg, it will be easy to turn SDiff.(M) into a
Lie supergroup. To emphasize naturality of this approach, let us also mention that
for such Mg, we obtain an isomorphism

Lemma/Definition 4.4.16. Let M € SMan be modelled on E € SVec,, and let
A € Gr be fixed. Then SDiffiq(M)g 5 := exp (X (M)g,+) is a polynomial sub-
group of SDiff;4(M), and these subgroups define a sub-supergroup SDiff;q(M ).
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4 Superdiffeomorphisms

The action of Aut(M) respects these groups and setting
SD]H(M)@A = SDIHld(M)ﬁ’A X Aut(M)

defines a sub-supergroup SDiff(M); of SDiff(M) that we will call the purely
even superdiffeomorphisms. The elements f € SDiffjq(M)g,, are character-
ized by the property that each chart representation f® of f decomposes as
f* = prya —|—Zlefpg+ o; A f* with ; f* € SC*(U, E).

If Mg is finite-dimensional, then analogous statements hold true for
SDiff{y(M)g and SDiff.(M)g defined by SDiff{y(M)g 5 := expp (Xe(M)gp+) and
SDiff.(M)5 o := SDiff(M)5 o x Aut.(M), respectively. If M is additionally a
o-compact Banach supermanifold, then SDiff.(M)g, is a closed Lie subgroup of
SDiff.(M),.

Proof. By Corollary 4.4.8 X (M)g, is a Lie subalgebra of X'(M), and therefore
X (M)g, defines a polynomial subgroup under the exponential map. With Lemma
4.4.12] we see that the semi-direct product is well-defined. Note that

1
H )\[X(M)ﬁ — SDiﬁid(M)ﬂAna ()\]X[)[ = H eXpM’A()\[ IX)7

1€vg 1€95 .

where the product is taken in ascending lexicographic order, is a morphism of
multilinear spaces whose linear part is the identity. Hence, it is bijective by The-
orem [B.1.2] With Corollary we can now make an induction analogous to
the one in Remark to see that the elements of SDiff;q(M),, are character-
ized as claimed. That SDiff(M), restricts to a map SDiff(M)g ,: SDiff(M)g, —
SDiff(M)g 5, for each ¢ € Homg,(A, A’) follows from the fact that ¢ is graded
together with Lemma [4.3.8

The same arguments and Lemmal[4.4.13|show that the respective statements also
hold in the case of compact support. That SDiff.(M)g , is a closed Lie subgroup of
SDiff.(M), in case of a o-compact Banach supermanifold M follows immediately
because X.(M)g,, is a closed subspace of X.(M)y,. O

Lemma 4.4.17. Let M be a supermanifold. For each A € Gr, the map

SDiff(M)ﬁ,A x X(M)gy — SDIff(M)s, (f, X) = fou eXpM,A(X)
15 a biyjection. If My is finite-dimensional, this restricts to a bijection
SDiffc(M%,A X Xc(M)TA — SDiffc(M)A.

Both bijections define natural transformations.

Proof. As a composition of natural transformations, both maps define natural

transformations. Since SDiff (M) 4 and SDiff (M), are both defined as semidirect
products with Aut(M), it suffices to show that the restriction

SDiﬁ‘id(M)ﬁjA X X(-A/I)TA — SDIHld(M>A
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4.4 The Supergroup of Superdiffeomorphisms

is bijective. But, this is a morphism of multilinear spaces if we identify both sides
with X' (M), via the respective exponential map. The linear component of this
morphism is then the identity. Thus, the morphism is bijective by Theorem [B.1.2]
The same arguments apply to the case of compact support. O

Splitting the purely even superdiffeomorphisms

Let M € SMan. By Lemma we have a short exact sequence

L},Oowi’o

0— XM)Z? = X(M)g == L (X(MD)g) — 0 (4.11)

0 [e.o]

of Lie algebras, where 1} (X (M®);5) is the Lie subalgebra of &X'(:} (M™))5 con-
sisting of vector fields X: tl(M®) — Tl (MW) with the local form X =
(X§, X¢,0,...) for any atlas of Batchelor type. The sequence obviously splits
canonically if M is of Batchelor type. If Mg is finite-dimensional, we obtain an
analogous sequence

1 o]
Lo OT 1

0 — X(M)F* = Xe(M)g = 15, (Xe(MY)5) — 0.

0 o0

If we give X'(M)g, resp. X.(M)g, a topology as in Lemma [4.1.6, resp. Lemma
[4.1.9) all the Lie subalgebras are closed.

Lemma 4.4.18. Let M € SMan and A € Gr. Setting

SDiﬁ“id(M)gi = eXpM,A(X(M)azzm) and

SDiﬂid(M(l))QA = eXpL})O(M(l)),A (Léo(X(M(l))ﬁ)A+)’

leads to sub-group objects SDiffid(/\/l)622 of SDiffiq(M) and SDiffiq(MM)5 of

SDiffiq(¢L (MWM)), respectively. We have a short exact sequence of groups

1 — SDiffia (M)Z3 — SDiffig (M) 4 — SDiffig(M )5, — 1

natural in A € Gr that splits canonically if M is of Batchelor type. If Mg is finite-

dimensional, then the same holds true for SDifffd(M)ﬁzi = expj&A(Xc(M)aZZM)

and SDifff(MW)g, = XD () A (Ll (X (MDO)g) a1 ). If additionally M is a
o-compact Banach supermanifold, this leads to a short exact sequence of Lie groups

1 — SDifffy (M)Z2 < SDiffg (M), — SDifff(MD), — 1

that also splits canonically if M is of Batchelor type.
Proof. By Corollary [2.2.22] the exact sequence (4.11)) leads to an exact sequence

0= X(MZ ., (Mg = T (MD)g) s — 0

0 A+

of Lie algebras. It follows from Lemma [C.2.2] that this leads to an exact sequence
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4 Superdiffeomorphisms

of groups that splits if the sequence of Lie algebras splits. The same argument
also works in the case of compact support. Let M be a o-compact Banach su-
permanifold such that My is finite-dimensional. Since X (M)ﬁzi C X(M)j, and

(X (MWD)5,) € Xo(1h(MW))g, are closed and since all the Lie algebra mor-
phisms are continuous, we get a sequence of Lie groups as claimed. O]

Lemma 4.4.19. Let M € SMan.
(a) For each A € Gr, the semidirect products

SDIH(M)GZi = SDlﬂld(M)?i X Autid(/\/l) and

SDiff (M W) 5 == SDiffia (M D)5 5 » ¢l (Aut(MD))

are well-defined and lead to sub-group objects SDiff(./\/l)a22 of SDiff (M) and

SDiff(MW)g of SDiff (1L (MW)), respectively. There exists a short evact
sequence of groups

1 — Slef(./\/l) — SDiff (M), — SDiff(M" )o,A — 1

natural in A € Gr that splits canonically if M is of Batchelor type.

(b) If Mg is finite-dimensional, then analogous statements to (a) hold for

SDiff(M)57 = SDifffy(M)53 » Autfy(M)  and
SDiff . (MM)g 5 == SDiffy (MP)g 4 x L (Aut(MD)).

(c) If M is a o-compact Banach supermanifold with finite-dimensional base, we
have a short exact sequence of Lie groups

1 — SDiff (M)Z3 — SDiff (M), — SDiffo(MW)g, — 1

that splits canonically if M is of Batchelor type.

Proof. (a) If X € X(M)Z* and f € Autiq(M) holds, then we have Tf o X o
fte X(/\/l)ﬁ22 by Lemma [4.1.13] Likewise, if X € X (M) has the local form
(X&, X, 0,...) in some atlas of Batchelor type, then 7 f o X o f~! also has this
form for f € 1L (Aut(M®)), because f has the local form (f3?, f°°,0,...). Thus,
the semidirect products are well-defined. With Lemma/Definition [4.4.16] we can
express each element of SDiff(M)g , uniquely as foexp 2 (X) with f € Aut(M)

and X € X(M)g,:. We define the projection SDiff (M)g , — SDiff(M®)g 4 via

fo eXpM,A<X) = L<1>o om°(f)o €XPag,A (Lc1>o o 7T1°O(X))-

This is a morphism of groups because 11 o 75 is a functor, (1 o WF'WM isa

morphism of Lie algebras and

too 0T (Tf oY o f71) = (T (1o 0 75°(f))) © (tee 0177 (Y)) © (100 0 71°(F 7))
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4.4 The Supergroup of Superdiffeomorphisms

holds for f € Aut(M) and Y € X(M);. Naturality in A follows because for all
0 € Homg, (A, '), we have SDiff (M) ,( foexp 4 (X)) = foexppga (X (M)g, (X))
(b)The same arguments apply to the case of compact support.
(c) This leads to an exact sequence of Lie groups as claimed, because the involved
Lie algebra morphisms are continuous and

Aute(M) = i (Aute(MW), [ 1 o m(f)
is smooth by the definition of the Lie group structure on Aut.(M). n
Lemma 4.4.20. Let M be a supermanifold

(a) For each A € Gr, the group SDIH(M); 1s pro-polynomial and admits an
exponential map

eXpiia: X(M)EZQA — SDiff(./\/l)GZ’i.

The exponential maps define a morphism in Set®T and the restriction to

>2 >2 o . .
X(M)=", resp. to .?\,’(/\/l)j ., s just the exponential map from Proposition
4.2.0, resp. from Lemmaz.g.]a

(b) If Mg s finite-dimensional, then analogous statements to (a) hold for
SDiffc(./\/l) and

>2
0,A

expj\’%i: XC(M)§2A — SDiffc(./\/l)gj\.
(c¢) If M is a o-compact Banach supermanifold with finite-dimensional base Mg,
then expj\’ii: XC(M)%A — SDiffC(/\/l)f22 is a global chart for the Lie group

structure defined in Lemma . This chart turns SDiff.. (M) into a Lie

supergroup such that
SDiff (M)5? =2 1(Aut{y(M))
holds as Lie supergroups.

Proof. (a) For all 0 < n < k < oo, the Lie algebra morphism 7%: X (M®); —
X (M™);5 defines a morphism of nilpotent Lie algebras

7E X(MB)2 X (M)

0 At 0 At

If we define SDiffiq(M™)=% for 1 < n < oo as X(M™)=?  equipped with the

0 At
BCH multiplication, we see Wlth Lemma [4.2.T1] that the group action by automor-

phisms
a: Autig(M™) x SDiffiq(M® )7 — SDiffjq(M™)=2

0.A"
(f, A1 X)1) = (AT fo Xof ™),
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4 Superdiffeomorphisms

is in each component I given by the action of the polynomial group Autid(/\/l(”))
on its own Lie algebra. Therefore, Lemma is satisfied and we obtain a
polynomial group SDiffid(M("))azi x Aut;q(M™) whose Lie bracket is given by

[-,-]™ . Here [-,-]™ denotes the Lie bracket of X(/\/l("))622. Clearly, we have

lim (SDiffia(M™)53 % Autia(M™))

3

= lim SDiffiq (M ™)Z3 % lim Autiq(M ™)
= SDiffig (M) % Autiq(M) = SDiff (M)=3.
Moreover, since the Lie bracket of the limit is [-,-], (for [-,-] the Lie bracket of

X (./\/1)622) one easily sees that the exponential map restricts to the exponential

map of Aut;q(M) and SDiffid(M)GZi as claimed. If we define

6,1\”

(X), f),

then we also have lim SDiff(/\/l(”))azz = SDiff(/\/l)gz under the above identifica-
tion, for ¢ € Homg,(A, A’). The naturality of (exp%i A)aear follows from Lemma
[C:3.2 because under the exponential map, the polynomial morphism of groups
SDiff (M(”))GZZ corresponds to the linear map X (M(”))gzg.

(b) This follows from the same arguments as in (a).

(c) Let M be a o-compact Banach supermanifold such that Mg is finite-
dimensional. We know that ¢(exp$,): XC(M)622 — 1(Autf;(M)) is a global chart
and in that chart we have

(X, f) = (X(ME)F?

e

ker(1(Autfy (M))e, ) = Xe(M)5?

0 A+

for all A € Gr. Here Xc(/\/l)a22 .+ is considered as a polynomial group with the
BCH multiplication with regard to the Lie bracket [-,:],+. The induced action of
Auté, (M) on X.(M)=? | is given by

0 At

Autfy (M) x X (M)Z2 | — X(M)Z? (f, A1 X)) = (MTfo Xof ).

0 At 0 AT’

>2

Since SDifffd(/\/l)gi induces the same group structure on X,(M)=",, and since

the actions of Aut{;(M) are the same by Lemma [4.4.12] we have ((Aut{,(M)) =
SDiffc(M)ﬁzi. By naturality, ¢(Auti;(M)), and SDiffC(M)GZZ both correspond to

XC(M)?Q for each o € Homg,(A,A’). Since expj\’,%i restricts to the respective

exponential maps, it is obvious that expf(f’i is a chart with respect to the smooth
structure from Lemma 4.4.19) O
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Proposition 4.4.21. Let M be a supermanifold.

(a) Let n € N. There exists an isomorphism of groups

SDiff(MW)5 . =2 Autrar(TFM M)

g
P8+

that is the identity on (i (Aut(M®D)) =  Aut(MW), such that
SDiffiq(MW),, = ”(M@))ﬁh:g+ holds.

(b) If Mg is finite-dimensional, then an analogous statement to (a) holds for

SDiff (MM)g 4, = AUtT"R<TkM(1)>C|ﬂ:3+'

(c) If M is a o-compact Banach supermanifold and Mg is finite-dimensional,
then SDiff.(MMW)5 can be turned into a Lie supergroup such that

SDiff (MM)5 = 1(Aut(MD))
holds.

Proof. (a) Let [-,-] denote the Lie bracket of X(MW);. From the definitions in
Lemma [4.4.18| and Lemma [4.4.19, we know that SDiff(./\/l(l))@An is isomorphic

to X(MD)5,+ x Aut(M®), where the group structure on X(MM)g, + is given

by the BCH multiplication with respect to the Lie bracket m/\x and the action
of Aut(MW) is given by ;X — A\ TfoXo ffor I € Py, X e XM
and f € Aut(MW). But, by Lemma/Definition , this is exactly the same
group structure as the one induced by AutTnR(T”./\/l(l))|3_,&Jr = X”(./\/l(l))6|9§g’+ X

Aut(MD) on X(MD)g,+ x Aut(MD),
(b) This follows from the same arguments as in (a).
(¢) It was shown in Lemma [E.3.9] that T"Autc(-/\/l(l))|g_>g+ =

Autpng(T ’"L./\/l(l))|ﬂ_>gJr holds. ~ Moreover, we know from Proposition [2.3.16
that t(Aut,(MD)),, = T”Au‘cc(/\/l<1))]3’,8+ holds as Lie groups such that
ker(v(Autc(MM)),, ) = (T"Autc(./\/l(l))|§g’+)idM(U. All that is left to see
is that under these identifications :(Aut.(M®)), and SDiff(MM)g, are
the same for all o € Homg,(A,A’). Since neither group morphism changes
the contribution of Aut.(M®) in the respective semidirect product, it is
enough to check this on ker(c(Aut.(MWM)).,) and SDiffj(MM)5,.  Let
expj\(AutC(M(l))): X MD)g,, — ker(e(Aut.(MD)).,) denote the unique dif-
feomorphism from Proposition [3.2.6f Then the group structure induced on
X (MD)g,s by expﬁ\(Autc(M( ))), is given by the BCH multiplication with
respect to [, -]y If Wp: ker(Aut (MW)). ) — SDiffj(M®M)g, is the
isomorphism obtained above, uniqueness of the exponential maps implies

e . :
Py o expj\(Autc(M D = expln and since both exponential maps are natural

transformations, so is (V5 )xeqr- O
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Corollary 4.4.22. Let M be a finite-dimensional o-compact manifold. Then we
have

SDiff.(«(M)) = (Diff.(M)) and
SDiff§,(¢(M)) x Diff (M) = (Diff (M))

as supergroups, turning SDiff.(¢(M)) and SDifff;(¢(M)) x Diff (M) into Lie super-
groups.

Proof. The first statement follows immediately by applying Proposition [4.4.21] to
the trivial bundle (¢(M))®) = M x {0}. The second statement follows analogously
to the proposition, using Lemma [E.2.4] ]

Remarkably, even for the full diffeomorphism group Diff(A/), the nilpotent
part ker(:(Diff (M)).,) is only identified with compactly supported superdiffeo-
morphisms. The reason behind this is that Diff (M) is modelled on X.(M).

We now understand the respective structure of SDiffiq(M )z and SDiff(M D)5
very well. All that remains to do, is to calculate the semi-direct product for the
case that M is a supermanifold of Batchelor type.

Lemma 4.4.23. Let M be a supermamfold of Batchelor type modelled on E €
SVec,.. Then SDiff(./\/l)>2 x SDiffia(MW)g  is a pro-polynomial group with the

Lie algebra

X(M)5?, & L (X (MD)g), 1 € X (M)gy

for each A e Gr. If MR s finite-dimensional, then the same holds for
SDiffc(M) x SDifff; (M W)y with the Lie algebra

X(M)Z? @ L (X (MD)g) 4

A

Proof. We already know from Lemma [4.4.18|that SDiffgq (/\/l) x SDiffiq (M W)

is a polynomial group with the correct Lie algebra. L1kew1se we have seen in
Lemma{.4.20[that SDiff (/\/l) is a pro-polynomial group that also has the correct

Lie algebra It only remains to be seen that the action of SDiff;q(M®)5, on
SDiff(M)=2

A restricted to a map

ﬁAZ SDiffid(M(l))aA X Autid(./\/l) — SDIH(M)EZE\
(where we consider Autiq(M) C SDiff (M) ) is pro-polynomial in an appropriate
way and leads to the correct Lie algebra. We have

99Af9/\9_1 €fo SDiffid(M)gi

for g € SDiffiq(MM)5, and f € Autia(M), because the part not dependent on
P(A) remains unchanged. It follows 8x(g, f) = (ftoygorforg™t, f) if we consider
Slef(/\/l)* = Slefld(/\/l)ﬁzi X Autiq(M). Since M is of Batchelor type, we may
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consider Autiq(M™) C Autiq(M) as a subset. Then

B SDiffig(MW)5 4 x Autig(M™) — X (M)

0 AT’

(9, f) — W((expij A)_l(f_19A99Af9Ag_l))

is well-defined, because f, for n < k does not contribute to the right-hand side.
Locally, it follows from Corollary m Lemma and Lemma [4.2.2) that 3

is polynomial and that we have exp+ M7 AC @n Q) 5 )
For the iterated actions of SDiffiq(M®)5, on SDiff(M)ﬁzi, it follows again

from Corollary and Lemma that the total multilinear degree in the el-
ements of SDiHid(M(l))ﬁ’ A is bounded by the number of generators of A. Therefore,

Lemma |C.2.4] is satisfied and SDiff(./\/l)>2 x SDiffiqa(MW)g 5 is a pro-polynomial
group.

By the definition of the respective pro-polynomial group structures, it suffices
to calculate the Lie bracket locally. Let &4 C E be an open subfunctoi and let
pry,: P(A,) x U — U be the projection. Further, let X € SCOQ(Z/{,E)ﬁ22 and
Y € @OO(U,E)AX with ¥V = Zle?g+nf A Y, where ;Y € SCOO(Z/I“),E(I)) -
SC>®(U,E). Let my denote the multiplication in SDiff(U)gi x SDiffiq(U™M)g 4,
For (my)11 as in , we directly calculate

((mA)M(Pru +X, pry +Y))k

k!
:Qlk< Z (k- Hl[ka’ l(lduR)( l?prEp'"vprEl)

k>l even - l)
+ Z 'Z'Xk l+1(1dlxl]R)<YzaprE17"'7prE1))
k>l odd

= (dX o) <ldu,Y))k
and with Corollary [4.3.10] we obtain

((ma)1,1(pry +Y, pry +X))k
( Z or A (d Yo (ide ) (X2)) k even

k>l even,
IePy o, [|=k—1

B > oA (Yalid)(X)) k odd

k>1 odd,
L 1€P8 1, [T|=k—1

= (ZIETG’JF vs A dIY<1dZ/{7X))k7

for £ > 0 and the projection prp : R" x By — E);. It follows from Lemma
and the definition of the Lie bracket [-, -] of X(M)g that

(ma) 11 (pry +Y, pry +X) = (ma)1a(pry +X,pry +Y) = > 0, A[[Y, X],
IePy |
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as well as

(ma)1a(pry +X, pry +Y7) — (ma )1 (pry +Y, pry +X) = Z by A X YT,
evy

hold. The same arguments apply in the case of compact support. [

Proposition 4.4.24. Let M be a o-compact Banach supermanifold of Batchelor
type with finite-dimensional base Mg. Then SDiff.(M)g is a purely even Lie
supergroup such that

SDiff.(M)g = SDiff (M)=? x SDiff(MM)5 2 1(Aut(M)).

Proof. We already know from Lemma [4.4.19| that there exists a split short exact
sequence of Lie groups

1 — SDiff,(M)Z2 — SDiff,(M)g 4 — SDiff (M), — 1

that is natural in A € Gr. By Lemma/Definition [3.0.3, we only need to show that
the action defined by

SDiffe(M™W)g 5 x SDiff(M)S{ — SDiff(M)F3,  (f,9) = forgonf™

is supersmooth. By Corollary [2.2.9] it suffices to check the derivative at points
from Aut,(M®) x Autf;(M) and by the definition of SDiff,(M)=> in Lemma

0.A
[4.4.20, we can consider the action

Ba: SDiff (M ))OA X X (M)a it (M)[TQA,
(f, X) = (expSix) " (fon expiia(X)onf ™)

instead. Let n € N and A := A,. It follows from Lemma that for f €
Aut.(MW) C SDiff ((MW)g 4, X € X.(M)gand I € Py, we have

Ba(f,\iX)=ATfoXof

In particular 55 (f,-) is Ag-linear. To see supersmoothness, we therefore only need
to check the derivative of ay := Ba(+, X). Let ¢: U — Aut.(MD) be the inverse
of a chart with U C X (M®M)5, 0 € U and ¢(0) = id, such that Typ = idx, (v,
holds under the identification TjqAut.(M®M) =2 X (MD); from Lemma [D.3.9] If
I Aut.(MD) — Aut (MD) denotes the left-multiplication by f, then [; o ¢ is
the inverse of a chart around f and ¢(ly o ¢) = ¢(l5) o t(¢) is a chart around the
point in ¢(Aut.(M1)) corresponding to f. We calculate

Ba(u(ly 0 9)a(Y), X) = Ba(elly)a, Ba(u(d)a(Y), X))

for Y € (X.(MM)5])a. Therefore, it suffices to calculate the derivative of ay at
the identity. Note that T"¢ is the identity on the axes, i.e., we have T"¢(e;Y) =
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e7Y in the notation of Section [E.Il With the identifications from Proposition
4.4.21], it follows that

UO)A(AIY) = T"lgy (ArY) = explya(ArY).
Using Lemma [4.4.23] and Lemma [C.3.3] we obtain

Ba(u(@)ArY), X) = (expfiga) ™ (explya(ArY) - expifa (X) - explya(AY) ™)
= N[V, X+ X, (4.12)

where [-,-] is the Lie bracket of X(M)z.  On the other hand, we have
daa(idyo),Y) = [Y, X] by Proposition [£.2.13] Differentiating in the first
component then shows that (8a)acar is supersmooth. Therefore, SDiff.(M)j is a
purely even Lie supergroup and since SDiff (M)gr = Aut.(M) holds, it follows
that SDiff.(M)g = ¢(Aut.(M)). O

4.4.5. The Lie supergroup structure of the
superdiffeomorphisms

The trivialization from Lemma [1.4.17] together with the Lie supergroup structure
discussed in Proposition [{.4.24] now finally allows us to turn SDiff.(M) into a
Lie supergroup for appropriate supermanifolds M. The construction of this Lie
supergroup is basically identical to the construction of a Lie supergroup from a
super Harish-Chandra pair in Proposition [3.3.7}

Theorem 4.4.25. Let M be a o-compact Banach supermanifold of Batchelor type
such that Mg is finite-dimensional. Then the natural transformation from Lemma

defined by the bijections
SDiff,(M)g ¥ XC<M)T,bA — SDiff (M)a,  (f, X) = fo, expiya(X)

for each A € Gr, turns SDiff (M) into a Lie supergroup.

Proof. Let [-,-]n denote the Lie bracket of X.(M),. Note that, by Proposition
, SDiff, (M) x Xe(M)7, is indeed a supermanifold so that we just have to
show that the group operations in SDiff.(M) are supersmooth. For this, we first
show supersmoothness of the conjugation given by

OA: SDiﬂ‘c(M)QA X XC(M)TJ?A - XC(M>T,bA
(f, X) (expj,t’A)_l (fQA eXPf\/t,A(X)QAf_l)~

Note that o, is well-defined because by Lemma we have

(eprvt,A)_l ( eXpﬁvt,A(Y)QA eXPf\/t,A(X)QA eprvt,A(—Y))

~ 1
k:1k!H’_/

k times
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and since Lemma [4.4.12] shows that

(expfiga) " (foa expliya(X)onf ) = D MITf)o KXo f!

Iepn

for A = Ay, YV € X(M)gps » X = Yjepn A X and f € Aute(M). By
Corollary [2.2.9] we only need to calculate the derivative at points of the form
(f,0) € Auto (M) x X (M)1y,. But, dioa(f,0)(.) = 0 and daoa(f,0)(s) = oa(f,.)
are both Ag-linear. It follows that o is supersmooth. Next, we need to see that
the purely odd multiplication, given by

LA XC(M)T,bAXXC(M)T,bA — SDiff ,(M)s, (X,Y) +— expf\,lyA(X)gA expf\/,’A(Y),

is supersmooth. Let W, be the map from Lemma [3.3.5] Then it follows from
Lemma and Lemma that the morphism defined by

Py XC(M)T,bA X XC(M)T,bA - XC(M)G,bA X XC(M)T,bA’

(X,Y) = Wy ((expha) " (1a(X,Y))

is supersmooth. Let pry: X (M), — &Xe(M)g, and pry: X (M), — Xe(M)g,
denote the corresponding supersmooth projections. By definition, we have

expiya(Proa 0Pa (X, Y))oexpiy 4 (pryp 0PA(X,Y)) = pa(X,Y)

for all X,V € X (M),,. Because we have expiy |y, = expSPiffe(Mg

0,b
Proposition and Lemma now show that (ua)aegr is supersmooth.
Next, we show the supersmoothness of the composition in SDiff.(M). Let
frg € SDiffo(M)g, and XY € A (M)g,,. We abbreviate X =
(explya) " (oalg™, exply 4 (X))). Then, we have

foa eXvat,A(X )ongoA eij\/{,A(Y> = fopgo, eXp.(;\/l,A(X )oA eXp.(;\/l,A(Y>

= forgon expiya(Prg s 0P (X, Y)) 0 explya(pry s 0P (X,Y)).

7

-~ -~

€SDiffc(M)g o GXC(M)T,bA

With the statements derived above, it follows that the composition is supersmooth,
because inversion and composition in SDiff.(M)g are supersmooth. Likewise, the
supersmoothness of the inversion follows from

(fon expia (X)) = explya(=X)onf " = flopon(f explya (X)) O

From the construction of the Lie supergroup structure, it is obvious that the
super Harish-Chandra pair associated to SDiff.(M) is given by (Aut.(M), X.(M))
together with the action from Lemma |4.2.15]

Theorem 4.4.26. Let M be a o-compact Banach supermanifold such that Mg
is finite-dimensional and let g: M — 11 (MW) be a Batchelor model. Then the
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isomorphisms of groups
Oy SDiff(M)a — SDiff. (e (MW)y,  fr go fol(idpn) xg™")

define a natural transformation O, i.e., an isomorphism of supergroups. The Lie
supergroup structure induced by this isomorphism on SDiff.(M) does not depend
on the Batchelor model.

Proof. Evidently, ©, 4 is an isomorphism of groups for each A € Gr. For p €
Homg, (A, A’) and f € SDiff .(M),, we calculate

Oy (SDiff(M),o(f)) = o (P(e) x ida) o (idp) xg™") =
go fo(idpny xg 1)0(7’( )>< idyy_(mm)) = SDiffe(1 (M™M),(044(f)),

which shows naturality. Let ¢’ also be a Batchelor model of M and let SDiff,(M)’
denote the Lie supergroup induced by ¢’. Then the identity SDiff. (M) —
SDiff (M)’ is supersmooth if and only if ©4 o ©,': SDiff.(:l (MM)) —
SDiff,. (11, (MW)) is supersmooth. But, for each A € Gr, the map O, 40(0, ) ! is
just the conjugation by ¢’ og~* in SDiff. (¢} (M™M)),, which defines a supersmooth
morphism by Proposition [3.2.9] O

Remark 4.4.27. If one wants to define supermorphisms or superdiffeomorphisms
for k-supermanifolds M, N with k € Ny, one runs into the following problem. One
cannot simply define SC~ (M, N)x as SC(P(A)® x M, N) because one would
lose all A\; € A with |I| > k. Locally, one can simply set

5C U, F)s, = P o ASCUTF) & @ or nSCWU,TI(F) ")

1ePy Iepn

for £, F € SVec;,. and an open subfunctor U C E®. The composition of such

supermorphisms is then just the usual composition, where one cuts of all maps
whose multilinear degree in F; is greater than k. Next, one needs to check that
this leads to a well-defined functor SAC°°(M,N ). For superdiffeomorphisms, it
appears to be easier to work directly with the pair (Aut(M), X(M)) instead.

For any two supermanifolds M and N, we define an evaluation morphism
ev: SC(M,N) x M — N
as follows. For morphisms z: P(A) — M and f: P(A) x M — N, we let
eva(f,z) := fo(idpny, z): P(A) = N,

where we identify M, = SC*(P(A), M) and Ny = SC*(P(A),N) via Corollary
(see [40} Section 8.3, p.416]). Molotkov [40, Proposition 8.4.2, p.417] states
that for any supersmooth action a: G x M — M of a Lie supergroup G on M,
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4 Superdiffeomorphisms

there exists a unique morphism a: G — SDiff(M) of supergroups such that
evo(a xidy) =«

holds. This approach for studying the properties of supersmooth actions of Lie
supergroups on supermanifolds seems to be a promising area for future research.
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A. Important Facts

A.1. Products, Inverse Limits and Direct Sums

Lemma A.1.1 (|21 Lemma 1.3, p.24]). Let E, F be locally convex spaces, U C E
open and f: U — F. If f(U) C F' for a closed vector subspace F' C F, then f is
smooth if and only if its co-restriction f| : U — F' is smooth.

Let J be a set and (Fj), e be a family of locally convex spaces. Then the product
1T e Fj equipped with the product topology is a Hausdorff locally convex space.

Lemma A.1.2 ([23]). Let E be a locally convex space, U C E open and (F});es
be a family of locally convex spaces. Let F := HjGJ F;j and let pr;: F' — Fj be the
projection onto the j-th component. A map f: U — F is smooth if and only if
Ji=prjof: U — Fj is smooth for every j € J. In this case, we have

df (z,y) = (dfj(a:,y))jeJ forallx €U and y € E.
Let J be a directed index set. The inverse limit

lim ;= {(%‘)jeJ € [[ics Fy: ¢l (;) = x; for all i < j}

—jeJ

of an inverse system ((F});e., (¢))i<;) of locally convex spaces, where ¢! : F; — F;
is continuous linear for all i < j, is a closed subset of | ;e Fj and thus a Hausdorft
locally convex space. A direct consequence of this is the following lemma.

Lemma A.1.3 ([23]). Let E,F be locally convex spaces, U C FE be open
and f: U — F be a map. Assume that F' = lmF; for an iwnverse system

((F})ies, (qf)igj) of locally convex spaces and continuous linear maps qg: F; — F,
with limit maps q;: F — F;. Then f is smooth if and only if g0 f: U — F; is
smooth for each i € J. In this case, we have

df (z,y) = (d(g; o f)((x,y)))ieJ forallz € U andy € E.

If I is a countable index set and (F;);cs is a family of locally convex spaces, then
the direct sum

E = @El = {(xi)iel - HEZ XT; = 0 for almOSt all 'Z}
i€l el

can be given a unique Hausdorff locally convex vector topology such that sets
of the form @, , U; := @,.; Ei N [];c; Ui for open zero-neighborhoods U; C E;
constitute a basis of zero-neighborhoods (see [29]).
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Lemma A.1.4 (|50, Lemma 4.15, p.32 f|). Let I,J be countable index sets and
(Ei)ier, (F;)jes be families of locally convex spaces. For everyi € I, let U; C E; be
an open zero neighborhood. Moreover, for every j € J, let I; C I be a finite subset
such that UjEJ I; = I and such that every ¢ € I is only contained in finitely many
I;. If for every j € J, we have a smooth map f;: @, ; Ui — F; with f;(0) =0,

iEIj
then the map

f: EB U, — GBFJ', (T3)ier (fj((xi)iefj»jej
el jeJ
1s also smooth.

In particular with / = J and I; := {j}, we see that a map between direct sums
defined by component-wise smooth maps is smooth (this is [I7, Proposition 7.1,
p.993]).

A.2. Mapping Spaces

Let £ and F' be locally convex spaces and U C E open. We give C*(U, F') the
topology that turns

Coo(Ua F) - H C(U X Ei7F)7 A (di’y)iENo

i€Np

into an embedding. Here C(U x E*, F') denotes the space of continuous functions
U x E' — F equipped with the compact-open topology, i.e., the vector space
topology generated by the sets

|K,V]:={yeClUxE"F): vy(K)CV},

where K ranges through the compact subsets of U x E* and V through the open
subsets of F'. This turns C*(U, F') into a Hausdorff locally convex vector space.
Note that for all £ € Ny the linear map

d*: C®(U,F) — C°(U x E*,F), fw~d"f
is continuous. We refer to [23| and [18] for more details.

Proposition A.2.1 (c.f. |22 Proposition 2.5, p.7|). Let E, F and H be locally
convex spaces, U C E open and f: U x F'— H smooth. Then the map

fe: C¥(UF) = C*(U,H), ~w— fol(idy,v)
18 smooth.

Lemma A.2.2 (c.f. [I8 Lemma 4.4, p.23|). Let E,E" and F be locally convex
spaces and U C E" and V C F be open. If f: U — V is a smooth map, then so is
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the “pullback”
C*(f,E):C*(V,E) - C*(U,E), ~y+>~vyof.

Lemma A.2.3. Let E, F be locally convex spaces and U C E open. Then for
every p € U, the point evaluation

evy,: CO(U,F) — F, ~vw—~v(p),

1$ a continuous linear map.

Proof. Obviously ev, is linear, and for any open subset V' C F', we have

ev, (V) ={y € C*(U,F): v(p) €V} = [{p}, V].

Since the inclusion C*(U, F') — C(U, F') is continuous, the statement follows. [
Lemma A.2.4 ([I8, Lemma 4.6, p.24]). Let E,F be locally convex spaces and
U C E open. For every open subset V- C U, the restriction map

pV:COO<U7F) _>COO<V7F)7 7H7’V7
is continuous. Moreover, for every open cover t of U, the topology on C*(U, F)
is initial with respect to the family (py)vey.
Lemma A.2.5 ([I8, Lemma 4.5, p.23]). Let E, F be locally convexr spaces and
U C FE open. If f: U — R is a smooth map, then so is the pointwise product

mys: C¥(U,F) — C*(U,F), ~v— f-7.

Lemma A.2.6. Let E, F be locally convex and U,V C E open. If h: U — R is a
smooth map with support supp(h) = K C U, then the map

m~h: C*(U,F)—C*V,F), v~ (h-7),

where

- hz)-~y(x) ifzeUNV,
' 0 else,

15 well-defined, linear and continuous.

Proof. We may assume U NV # () because the other case is trivial. We have
(h-¥) vk = 0and (h-7)|vay = h-v. Because (VNU)U(V\ K) =V, it follows
that (h - ) is smooth. The claim now results from Lemma and Lemma
[A.2.5] O

Proposition A.2.7 (cf. [18, Proposition 12.2, p.67| and [23]). Let E, F' be locally
convex vector spaces, V. C F open, H be a finite-dimensional vector space and
U C H open. Then a mapping g: V — C>®(U, E) is smooth if and only if

gV xU—=E, g¢\zy):=g(x)(y)
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18 smooth. In this case, we have

(d™g(z)(v))(u) = d™g" (@, u)((v1,0), ..., (vm,0))

formeN, x eV, v=(v,...,0,) € F" andu € U.

Proposition A.2.8 (cf. [I8, Proposition 11.1, p.59|). Let M be a finite-
dimensional manifold and E a locally convex space. Then the evaluation map

ev: C*(M,E)x M — E, ev(f,x):= f(x)

18 smooth.

A.2.1. Spaces of partially multilinear smooth maps

Let n € N, let Ey, ..., E, and F be locally convex spaces and let U C Ej be open.
Recall Definition [2.2.11] It follows easily from Lemma[A.2.3|that the image of the

map
C®U,LY(Ey,...,Ey; F)) - C®(U X Ey X -+ x By, F), fw f"

is closed. We denote the space C*(U, L"(E}, ..., E,; F)) equipped with the in-
duced topology by C*(U, L™(E\, . . ., Ey; F)). and define C>°(U, Alt"(Ey; F)). anal-
ogously.

We denote by L"(FEy,..., E,; F), the space L"(F,..., E,; F) equipped with
the topology of uniform convergence on bounded sets (see for example [23]). We
define Alt"(E7; F), analogously. It is well-known that L£"(E;,..., E,; F), is a
Banach space if all involved spaces are Banach spaces. In this case the evaluation
map

LYEy, ... En;F)yx By x - x B, — F, (L,v) — L(v),

is continuous and so are compositions of the form

L(Ey, ... By F)yx L™(E,, ... E. E), —

m?

£n+m(E1, ce 7E7j—17 Ei, ce 7E7/n7 Ei+17 ce 7En7 F)b, (L, L,) = L(., L,(.), .),

where 1 <i<n,meN, and Ei,..., E/ are also Banach spaces (see for example
[33, Proposition 2.6, p.7]). One easily sees that in this case the projection

is continuous and that Alt"(Ey; F'), is closed in L™ (Ey; F),.

Lemma A.2.9. Let n € N, E, F and H be locally convex spaces and let U C H
be open. Then the linear map

A" C(U,LYE; F))e — C(U, AW(E; F))e, [ (z— A" f(2))
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is continuous. In particular, C*(U, At"(E; F)). is a closed vector subspace of
C=(U,L™(E; F))e.

Proof. This follows immediately from Lemma [A.2.2] and the definition of A™. [

Proposition A.2.10 ([20], cf. [23]). Letn € N, Ey, ..., E, and F be locally convex
spaces and U C Ey open. If f € C®°(U, L™(Ey, ..., Ey; F)), then f is smooth as a
map

f:U—=LYEy, ..., By F),

and as a map

FiU = LB, ..., Ey F)y
Furthermore, we have
d™ f(z)(w).v = d" Mz, v)((wy,0), ..., (Wy,0))
forallmeN, z €U, w= (wy,...,wy,) € By andv € By X -+ X E,.

Corollary A.2.11. Letn € N, let Ey, ..., E, and F be locally convex spaces and
let U C Ey open. If f € C°(U,L™(EY, ..., E,; F)), then f is smooth as a map

f:U—=LYEy, ..., B F),

and d" f(z)(w,v) as defined in Definition |2.2.11] coincides with d™ f(z)(w).v for
allmeN, zx € Ey,ve By X x E, andw € EJ.

Proof. This follows from Proposition [A.2.10] O

Lemma A.2.12. Let n € N, Ey,...,E,, F be Banach spaces, Ey be finite-
dimensional and U C Ey open. Then

C(U,LYEy,...,E; F)) = C(ULY(Ey,...,Ep; Fl), fref,
18 an isomorphism of vector spaces.

Proof. By Corollary the map is well-defined. Let W := F; x --- x E,,, let
g€ C®U,L(Ey,...,E;;F)y) andlet ¢: U xW — F, (z,w) — g(z,w). The
evaluation

eviy: LYNEy, .., By Fy x W — F,  (L,w) — L(w)

is smooth. Thus, the map ¢": U x W — F, (u,w) — evy(g(u),w) is smooth,
which implies g € C*(U, L"(Ey, ..., Ey; F)). ]

Corollary A.2.13. Letn € Ny, F1,...,E, and F be Banach spaces, H a locally
convex space, Ey finite-dimensional and let U C Ey as well as V. C H be open.

Then a map
iV = CULY(Ey,. .., Ey; F)y)
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18 smooth if and only if
(YN VXxUx (Byx-+xE,)—F, (z,u,v) — f(z)(u).v,
18 smooth. We have

(@™ f(x)(v)) (w).w = d™(f)"(x,u,w) ((v1,0,0), ..., (vm,0,0))
formeN, z eV, v=(v,...,05) EH", u e U andw € Ey X --- X E,.

Proof. Let W := Ey; x -+ x E, and evy : L"(Ey, ..., Ep; F)y x W — F, (L,v) —
L(v). If f is smooth, then by Proposition [A.2.7 f*: V x U — L"(E\, ..., E, F)
is smooth. But then, (x,u,v) — f(z)(u).v = evy (f*(z,u),v) is smooth. Con-
versely, if (f*)" is smooth, then so is f" by Corollary and it follows from
Proposition that f is smooth. The formula for the derivative follows from
the respective formulas for the derivative in the corollary and the proposition. [

Lemma A.2.14. Let n,l € N, Ey,...,E,, E},...,E] and F be Banach
spaces, FEq be finite-dimensional and U C Ey be open. Abbreviate W =
Co(U,LYEy,...,E; F)), W' = C®U,LYE},...,E;E,);) and W"
C(U,LYE,, ... E};Ey)).

(a) The bilinear map

WxW — U, LMY Ey,...,E,1,E,,...,E;F))),
(f,9) = (z = f(2)(+ g(2)()))
18 continuous.
(b) For m € N, the bilinear map
W x W" — C®(U, L™ YE,,...,Ey,E},....E,E\, ..., E.; F)y),
(f,9) = (2= d"f(2) (e, 9(x)(+))(-))
18 continuous. This is also true if n =0 orl = 0.

Proof. (a) As mentioned above, the composition
[: LYE;F)yx LYE;E)y — L NE, ... B E,...,E';F),,
(L, L) = L(s, L'(4))
is continuous. By Proposition [A.2.8] it follows that
WxW xU— LY E,... B, 1, B, ... E); F),,

(fag7u> = F(eVW(fa u)7eVW’(gau))

is continuous, where evy : W x U — L™(Ey,...,Ey; F)y and evyr: W x U —
LM(EY, ..., E}; E,), are the respective evaluations. The claim now follows from

Proposition [A2.7]
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(b) Using the the continuity of the composition, we see with Lemma [A.2.12| that
W — C®(U, L (Ey,...,Eo, B, ..., E; F)y), [ (az — dmf(a:)(.))

is continuous. Therefore, the claim follows from (a). O

Lemma A.2.15. Let E and F be locally convex spaces, let U be an open subset
of a locally convex space and let r,n € N. Then

B cxw A E; F)), — C(U, Al (R" @ E; F)).,
IeP |I|1<r

(f1)repn 1j<r — Z or A f1

IePn |I|<r

s an isomorphism of topological vector spaces. If E and F are Banach spaces and
U is a subset of a finite-dimensional space, then

P =W ATE; F)) — (U Al (R @ E; F),),
Iepn |I|<r

(fr)rern n<r — Z or A fr

IePn |I|<r

s an isomorphism, as well.

Proof. Both maps are obviously linear. That the first map is continuous follows
because for I € P, I = {iy,..., i}, ¢ <rand f € C*(U, Alt""“(E; F))., we have

(or Af)" = o (idy, )

with v: (R"® E)" — ET

1) 1= 3 B o oni e b)) ) 0

0'667'

and the projections pr;: R” x F — R" and pr,: R" x £ — E. We show that the
inverse is given by the continuous map

U C*(U, A (R"© E; F)). — @ c=(U, A (B F)).,
IePn|I|1<r

fr (= £@)((00,0), - (0,,0),55711(:)))

Y
IePn |I|<r

where I = {i1,...,4} and where jo: £ — R" @ E is the inclusion. It suffices
to show f(z)(v,w) = >, (or AU(f))(z)(v,w) for all z € U, w € ({0} & E)"*
and all v = ((v;,,0),...,(v;,0)). Using the antisymmetry of f(z)(v,.) and the
fact that the only contributing summand for fixed J := {iy,..., 4} is from the set
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vy A AIt"(F; E), we calculate

fowwy = S BTy ey () () (w7) = (0 AT () (0, ).

I(r — /)|
c€G),TEGC, _y K(T g)

Note that for every a € &, that is not of the form (o,7) € &, x &,_4, we have
vy - V(f)s(z)(v,w)* = 0. That the second map is an isomorphism follows easily
with Corollary and the same inverse map. O

Corollary A.2.16. Let n € Ny, E, F € SVeclC and U C FEy open. Identify
AR™)* =2 A, as in . Then [];2,C(U, Alt'(R" @ Ei; F)). is a topological

A, 5-module and we have
HC“’(U, At (R @ By; F)). =

[T () o1 A (W A (s B © @) s A C(U. A (i Fr). )

=0 IePy IeP?

If E and F are Banach spaces and FEy is finite-dimensional, then
[T, C(U, At (R" & Ey; F)y) is a topological A, g-module in the same way.

Proof. The associativity of the module multiplication can be seen in the same way
as the associativity of the usual wedge product (see for example [25, Proposition

5.30.1, p.141]). The rest follows from Lemma |A.2.15] O

Combinatorial formulas

Lemma A.2.17. Let ,m € No,m + 1 > 0 and let Ey, B\, E and F' be R-vector
spaces. Further, let g; € Alt'(F; Ey) for i € N even, g; € At/ (F; Ey) for j € N
odd and f € L™ (Ey,...,Eo, Ey,...,E;;E). Then for alln € N, 7 € &, and
e S,,, we have

Y A f(gaxgs)= Y. sen(MAF(7,7)(ga X gs).

(@,B)el?,, (a.B)el],

Proof. Let (o, 8) € I}, 7 € &, 7 € &, and (v,w) € F™ x F'. We partition
w into [ blocks w’ of length 3;, define w” as the tuple (wg,,...,ws) and let
Br = (Bra),-- - Bray)- Analogously, we define v* and o,,. With this notation, we
easily see f(s7,s7)(ga X g5)(v,w) = f(ga_, (v*"), g, (wP")). Since the length of the
blocks v is even and that of w% is odd, there exists a O(a,8) € 6, depending on
7 and 7 such that f(ga_, (v*), g5, (W) = f(ga_, X gs,)(v,w)°@» and sgn(r) =
sgn(0(qa,p)). Now, we have

> A f(gaxgs) = Y. A'f(ga, X gs) =

(.B)el}, (.B)€In
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(]

g1 (0 (a,6)) A" f (G, X gp, ) (7)) =
)EI:;LJ

sgn(M)A"f (7,7 (g X g5)- O

e,

m,

=)

(a,

(a7

=

Lemma A.2.18. Let k € N, E Ey,...,Ey and F be R-vector spaces, f €
LF(Ey,...,E;F), B € N¥ such that |B| = n and g, € AW (R" @ E; E)) with
g =95, A g1, where ;== |I| and g € Altﬁl_”(R“ @ E; E)). Then, we have

E%nf(gb s 7gk> -

(=N - (n—iy— ... —ip—3s)!

(Br =)+ (B —n)!

where N = ZJ LS (Bi—4) and s is the number of indices such that B —i; =
0, i.e., ,qi € £y constant.

[ SRVANPINVANS + F VAN Ql"_“_“'_i’“_sf(hgh . 7[kgk)7

Proof. For 1 <1<k, o €&, and 7 € &g, there exists a 7" € &,, with sgn(7') =
sgn(7) such that

sgn(o) f(g1,....sen(T)vg - 1 gi(s7), ..., g1)(s7) =
sen(o7)f(g1, ..., 00 - L9 ,gk)(.T/”).

Furthermore, there exists a p, € &,, with sgn(p;) = (—1)P1+++8-1)4 guch that

I f(gl, . ,Ilgl, . ,gk)(.pl) = f(gl, . ,U[l . Ilgl, . ,gk)(-).

The sign arises from swapping a block of length ¢; with the preceding block of
length £y + ...+ 5;—1. Using this, we calculate

_Q’lnf(gla'-'>gl7"'agk)

5|
sgn ( Z sgn(T) ( Y
Z e Y e o n 1 g) () ) ()
— 7)1g;! LY
aEGn TEGE, (Bl Zl)'zl'
Blln'
- Sgn(pl)ﬁ!(ﬁl — il)m!m” flon e n g 9n)
[ sen(p) S=0n AT F (g s 08) if By — 1 >0,
o (n—1 n—i . .
Sgn(pﬂ%bh AN (g G k) if B, — i, =0.

Applying this equality inductively, we get
Eﬁnf(t’h NG00 N g gr) =

(_I)N(n—il =g —8)!

(Br =)l (Br — ix)!

U[l VAN Ulk N gn_il_m_ik_sf(hgla S 7Ikgk?>7
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where N = ZJ L0 (B — ). O

Lemma A.2.19. Let I,n € Ny, Ey, E and F be R-vector spaces, [ € AltY(Ey; E)
and g; € AIt'(F; Ey) for odd i € N. Define g. := (0,¢}): R" x F* — R" x E; for
i>1 and ¢} := (idgn, g1). Then, we have

. . n—ay)l(e+0),_,
> EQ{ (01 A f)(gh) =01 A Y ( 5)15(1 = 1(g)
(B)ELF (a,B)EI&;i !
for I € P with i := |I|.
Proof. We calculate
> G ANk
(e,8))€l ;4
n! . sgn(t . ,
> ﬁ/uQ‘ ( 2 m(v Jor )>(gﬁ’)
(CHEIDISI AP TES it N
n! 1+ ,
DI Ut

(a ﬁ/)EISLH»l

> Mﬂ”nf - (f(gs))

. il
(a,B)GI&Z_Z 5
(n—i)l(i +1)! o
(Bl

To see the second equality note that by Lemma we have the same con-
tribution to the outer sum for every 7 € &;;;. Therefore, we may simply add
(7 + 1)!-times the summand for 7 = id. For the third equality, we use that for
(o, B') € Iy; 4, the contribution to the sum is zero unless 3} = 1 for j < 4. Thus, we

may assume ' = (1,...,1,54,..., ) for a unique («, ) € I{)‘J_i with gl =gl O

A.3. Lie Groups

A Lie group is a group object in the category Man. Just like for finite-dimensional
Lie groups, we have an associated locally convex Lie algebra structure on 7T.G
(where e € G is the unit element), denoted by L(G). Setting L(f) := T.f for a
morphism f: G — H, one obtains a functor from the category of Lie groups to
the category of locally convex topological Lie algebras. See [41] and [23] for more
details.

Lemma A.3.1 (|55, Lemma A.3.3, p.133|). Let G be a Lie group, M a manifold
and a: GXM — M a group action such that for every g € G the map a(g,+): M —
M is a diffeomorphism . Then « is smooth if and only if there exists an open unity
neighborhood U C G such that |y« s is smooth.
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A.3 Lie Groups

If G is a Lie group and g € G, then ¢,: G — G, h — ghg™' is an isomor-
phism of Lie groups. We obtain an isomorphism of Lie algebras Ad, = Ad(g) :=
L(cy): L(G) — L(G).

Proposition A.3.2 (|23]). Let G be a Lie group. Then
Ad: G x L(G) = L(G),  (g,v) = Ad(g)(v),
is smooth. If [-,-] is the Lie bracket of L(G), we have
dAd,(v)(w) = [w, ]
for w,v € L(G) and Ad.(v): G — L(G), g— Ady(v).

Remark A.3.3. Let N and G be Lie groups and a: G — Aut(/N) be a morphism
of groups that defines a smooth action (g,n) — a(g)(n) of G on N. Then the
semidirect product N x, G is a Lie group. Identify N 2 N x {eg} C N x, G and
G = {ey} x G C N x, G, where ey and eq are the respective neutral elements
of N and G. With this, we have gng™' = a(g)(n) for all ¢ € G and n € N and
therefore Ad(g, w) = L(a(g)).w for w € L(NN). Proposition implies now that
we have dAd,(v)(w) = [w,v] for v € L(G) and w € L(N).

Lemma A.3.4. Let G,G',N, N’ be groups and a: G — Aut(N), o' G —
Aut(N') morphisms of groups. If fo: G — G’ and f;: N — N’ are group mor-
phisms, then

fix fo: NxoG— N' %y G
is a group morphism if and only if &'(fo(g)) o f = f1 o a(g) holds for all g € G.

Proof. This follows by comparing

(f1 % fo)((n1,01) - (n2, 92)) = (fr(n1) fr(a(g1)(n2)), folg1) fo(g2))

and

(f1(n1), fo(g1)) - (f1(n2), folg2)) = (fr(n1)e (fo(91))(f1(n2)), folg1) fo(ge)). O

Proposition A.3.5 ([I7, Proposition 7.3, p.995]). Let (G;)icr be a family of
smooth Lie groups. Then there exists a uniquely determined Lie group structure
on the weak direct product

H* G = {(gi)ig € HGZ': g; = e for almost all i € I}
icl icl

modelled on the locally convex direct sum @, ; L(G;) such that, for some charts
vi: R — S; CL(G;) of G; around e taking e to 0, the mapping

PBsi— G @er— (7' @),oy

el el
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is a diffeomorphism of smooth manifolds onto an open subset of [[;c; Gi.

Lemma A.3.6. In the situation of Proposition[A.3.5, the projection
pr;- H Gi — Gy, (Ti)ier — x;
i€l
18 smooth for every 5 € I.

Proof. Since pr; is a group morphism, it suffices to see this in a unity neighborhood.
There it holds because the projection €, ; L(G;) — L(G,) is smooth. O

iel
Lemma A.3.7. Let G be a Lie group and M a compact manifold (possibly with
boundary). Then the evaluation map

ev: C¥(M,G) x M — G, (v,z) — v(z),
is smooth.

Proof. This follows from [2 Lemma 121, p.82] together with [3, Lemma 3.15,
p.199). 0

A.3.1. The Baker-Campbell-Hausdorff Series

If G is a Banach Lie group, then it has a smooth exponential map exp,: L(G) — G
that is a diffeomorphism on a zero-neighborhood. For XY € L(G) close enough
to zero, the multiplication in this diffeomorphism is given by the so called BCH
series

expg’ (expg(X) - expg(Y)) =

(=1

ad® ady - - - ad%f ad¥ ad’y (V)

X +
k;() (k+ (g +.. +a+1) pilai! - pilgitm!
pil‘!“h‘_>70
n times
—
where ad% = [X,[X,...,[X,.]...]]: L(G) — L(G) if [-,+] is the Lie bracket of

G; see [4Il, Section IV.1, p.360ff.] for details and generalizations. If we have
a nilpotent Lie algebra over a field of characteristic zero, this formula defines a
polynomial group multiplication, which we call BCH multiplication (see Appendix

).
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B. Multilinear Bundles

Multilinear bundles were introduced in [I0] to describe higher order tangent bun-
dles. As it turns out, the structure of supermanifolds is closely related to the
structure of multilinear bundles. One important addition introduced below, is the
inverse limit of multilinear bundles.

For this section, we fix the infinitesimal generators ¢, k € N, with the relations
gig; = €j&; and g;6; = 0. As usual, we set ¢ :=¢;, ---¢;, for [ = {iy,...,i,} C

(..., k)

B.1. Multilinear Spaces

Definition B.1.1 ([I0, MA.2, p.169]). Let & € N. A (locally convex) k-
dimensional cube is a family (FEj) rept of (locally convex) R-vector spaces with

the total space
E:=PE:.

k
IeP%

We denote the elements of E by v = Zle?’; vy or by v = (UI)Iefpi with v; € ET.
By abuse of notation, we will call £ a k-dimensional cube as well. For convenience,
we let a O-dimensional cube be defined by the total space {0}. The spaces E; are
called the azxes of E.

Let (E;) and (E}) be k-dimensional cubes. For each partition v € 2 (1), I € P,
let f” be an R-¢(v)-multilinear map

friB, =E, x...xE,, — E},
Vy 1= (Vuyy o5 Uyy) > f7(00).

A morphism of (locally convex) k-dimensional cubes E and E’ is a (continuous)
map of the form

fTE—E, > v Y Z £ ().

TePk Ie?k veP (I

The composition of two morphisms is simply the composition of maps. We define
the product E x E' by (E x E"):= E; x EJ.

Clearly f is a polynomial map in the sense of Appendix [C]and thus a morphism
f of k-multilinear bundles (that are also locally convex k-multilinear bundles) is
continuous if and only if all f* are continuous.
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B Multilinear Bundles

Theorem B.1.2.

(a) The (locally convex) k-dimensional cubes and their (continuous) morphisms
form a category, which we will call the category of (locally convex) k-
multilinear spaces.

(b) A morphism f: E — E' of k-dimensional cubes is invertible if and only
if f¥ is a bijection for all partitions of the form v = {I}, I € fPi, i.e.,
for all partitions of length one. In this case f~' is again a morphism of
k-dimensional cubes.

(c) If f: E — E' is a morphism of locally convex k-dimensional cubes such that
B is bijective with continuous inverse for all I € P, then f is invertible.

Proof. Ttems (a) and (b) are just [10, MA.6, p.172| and (c) follows from the in-
ductive construction in that proof. ]

We denote the category of k-multilinear spaces by MSpace®.

Remark B.1.3. Tt is calculated in the proof of [I0, Theorem MA.6, p.172| that
the composition of morphisms f: £ — E’, g: E' — E” of k-dimensional cubes
E,E" and E" is given by

(g0 /(W) =3 ¢ (fwuu(%l,,,), o fwe(wl'/(vwl(w)h,)) . (B.1)

w=v

Of course the sets w;|v, . .., Wy |V need not be in (graded) lexicographic order but

by abuse of notation, we also write ¢g* for the map that arises from permuting the
factors.

Definition B.1.4. Let (E;) be a k-dimensional cube. For P C ¥, we define the
restriction ((E|p)r) of (Er) by

E; ifleP
(Elp)r = .
(0} ifIePr\P.

It has the total space

Elp = @EJEB @ {0}

Jep IePk\P
When convenient, we identify the restriction E|p with the respective n-dimensional
cube in the obvious way if P = Pt C P* for n < k. If E|¢P§+ = F holds, i.e., if
E; ={0} for I € P}, we call E purely even.
Lemma B.1.5. Let P C iP’i be a subset such that {d> ;erar: I € Pya; € R} is a
subalgebra of Rley, ..., ex]. Then every morphism of k-multilinear spaces f: E —

E’ can be restricted in a natural way to a morphism f|p: E|lp — E'|p. This
restriction defines a functor

MSpace*) — MSpace”)
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that respects products.

Proof. Let E, E' be k-dimensional cubes and f: F — E’ be a morphism given by

ffrE, x---xXE

/
Ve(v) - EI?

forveP(I)and I € PE. If I ¢ P, then there exists 1 <4 < {(v) such that v; ¢ P,
which implies f(FE|p) C E’|p. Therefore, we can define f|p by setting (f|p)” := f*
if 1,...,v0) € P and (f|p)” := 0 else. Let E” be another k-dimensional cube
and g: £ — E” be a morphism. Since g(E’'|p) = g|p(F’'|p) holds, functoriality
follows. That the restriction respects products is obvious. O

The purely even k-dimensional cubes clearly form a full subcategory of
MSpace® which we denote by MSpaceék). It follows from Lemma |B.1.5|that we
have an essentially surjective restriction functor

MSpace®) — MSpace(@k), B Elpe  and  f— flg

for E, E' € MSpace) and f: E — E’ a morphism.

Definition B.1.6. Let I € P* and v = {v1,...,v} € P (I). We define a tuple
(v1]| - - - |ve) by concatenating the elements of vy, . . ., v in ascending order and define
sgn(v), the sign of v, as the sign of the permutation needed to bring this tuple
into strictly ascending order.

This definition depends on the order one chooses on the partitions. However,
the sign of a partition taken with regard to the lexicographic order is the same as
when one takes it with regard to the graded lexicographic order, because changing
the position of sets with even cardinality does not change the sign. We will only
use these two orders in the following.

Example B.1.7. Let v = {{2},{1,3}}. Then we get the tuple (v|1n) = (2,1,3)
and to permutate this tuple to (1,2, 3), the permutation ¢ = (1, 2) is needed. Thus
sgn(v) = —1.

Lemma B.1.8. Let E, E' € MSpacegf) and f: E — E' be a morphism defined by
the family (f*)vew g, k- Setting E~ := E, we let the morphism f~: E= — E'~
be given by (sgn(v) f*)vem 1,..k)- This defines a functor

T MSpace%k) — MSpace(ak).

The functor is inverse to itself and respects products.

Proof. Let E,E',E" € MSpace(ak) andlet f: E — E', g: E' — E” be morphisms.
To check functoriality, it suffices to assume I = {i1,...,is} € Pf, and v € Py(I)
because if any |v;| is odd, then f” = 0 holds. Recall formula from Remark
[B.1.3] On the one hand, we have

((g o f)_)y(v,,) = sgn(v) Z fiad (fwlll’(vwﬂ,,), . 7fw£(w)|u(vwe(w)ll/>> )

wePH(I), wv
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On the other hand, we calculate
(970 f7) (v) =
Z Sgn(w) ’ Sgn(w1| ) Sgn((w |V) (fWIly(vle)’ s 7fwz(w)|l/(vw£(w)‘y)> '

wxv

The sign sgn(v) describes the reordering of the tuple (11| --[vew)) to (i1, .., ).

For w < vlet wylv = {1, ... ,ng} € 2 (wj). Then sgn(w)-sgn(w;|v) - - - sgn(we)|v)
gives the sign of the reordering of the tuple (vj|---|v|---[vf]-- |Vé<w)) to
(i1,...,15). Since we only need to consider v; with even cardinality, reordering
(il v |- ] - |1/f£(w)) to (v1] -+ |vgw)) does not change the sign and it fol-
lows sgn(v) = sgn(w) - sgn(w;|v) - - - sgn(wy()|v). This implies g~ o f~ = (go f)~.
That the functor respects products is obvious. ]

The motivation for the lemma is essentially to substitute the infinitesimal gen-
erators ¢; with \;. For more details see Remark [B.2.10| below.

B.2. Multilinear Bundles
Definition B.2.1 (compare [10, 15.4, p.81]).

(a) Let E be a locally convex k-dimensional cube. A multilinear bundle (with
base M, of degree k) is a smooth fiber bundle F' over a manifold M with
typical fiber E together with an equivalence class of bundle atlases such that
the change of charts leads to an isomorphism of locally convex k-dimensional
cubes on the fibers.

(b) Let F' and F’ be multilinear bundles of degree k with base M, resp. M’. A
morphism of multilinear bundles is a smooth fiber bundle morphism f: F —
F’ that locally (i.e., in bundle charts) leads to a morphism of the respective
k-dimensional cubes in each fiber.

We identify multilinear bundles of degree zero with their base manifold in the
obvious way.

It follows from Theorem that the multilinear bundles form a category
which we denote by MBun. Multilinear bundles of degree k£ form a full subcate-
gory denoted by MBun®.

Remark B.2.2. The above definition means that in bundle charts a morphism
f: F — F’ of multilinear bundles of degree k with fiber E, resp. E’, has the form

UxE—-UXE, (x/(v)) < ZZf”v,,)

IE‘J”C ved? (I)
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where p: U — U’ is the local representation of the morphism induced by f on the
base manifolds and
fli B, x...xE

1
Vi(v) - EI

is a multilinear map for each x € U, I € P* and v € P (I). A function of this
form is smooth if and only if ¢: U — U’ is smooth and the maps (z,v,) — f¥(v,)
are all smooth. This can be easily checked by restricting to the closed subspaces
of E defined by a given partition.

Definition B.2.3. Let ' and F’ be multilinear bundles of degree k over M and
M’, with typical fiber E and E’. Further, let {¢,: Vo — U, X E: a € A} and
{5: V. — U, x E': f € B} be bundle atlases of F' and F’. We let the product
bundle F x F' be the multilinear bundle of degree k over M x M’ with typical
fiber £ x E’ given by the bundle atlas

{pa X Up: Voo x V) — (Uy x U)) X (E X E'): a € A, B € B}.

Lemma /Definition B.2.4. Let F' be a multilinear bundle of degree k& with typical
fiber E and bundle atlas {¢,: Vo, — U* x E: a € A}. Let P C P* be a subset
such that {),;era;: I € P,a; € R} is a subalgebra of Rley, ..., ;). Each change
of bundle charts pu5: Usp X E — Ugy X E of F restricts to a map

Yaplp: Uag X Elp — Uga X Elp.

We denote the multilinear bundle of degree k defined by the charts ¢q|(p)-1 (U, x £(p)
by F|p and call it a subbundle of F. If P = P% C P* for k < n, we identify F|p
with the respective multilinear bundle of degree n in the obvious way (compare to
Definition . Any morphism f: F' — F’ of multilinear bundles of degree k

restricts to a morphism f|p: F|p — F’|p. This restriction defines a functor
MBun® — MBun®

that respects products.

Proof. Applying Lemma pointwise to transition maps and morphisms of
multilinear bundles in their chart representation shows that F|p and f|p are well-
defined and that the restriction is functorial. That the restriction respects products
is obvious. O

Note that in the situation of the definition, the identification of Flp with a
bundle of degree n is not a morphism of multilinear bundles but only a diffeomor-
phism of manifolds. There are cases where a subbundle is a multilinear bundle of
lesser degree in a natural way that are not contained in the above definition. One
important example is the following.

Lemma /Definition B.2.5. Let 7: ' — M be a multilinear bundle of degree k
with typical fiber E. For each I € P*, we have a subbundle F|;;; which has the
structure of a vector bundle with fiber E; in a natural way. The 2¥ — 1 vector

bundles obtained in this way are called the azes of F.
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Proof. For any change of bundle charts pap: Usg X £ — Upy X E of F, we have
that the corresponding change of bundle charts

(Pa5|{l}: Uaﬁ X B — Uﬁa x B

of Fl¢y is linear in the second component. Thus the restricted charts define a
vector bundle with typical fiber E;. ]

Bertram uses the above fact in [I0, 15.4, p.81| to define multilinear bundles by
letting these axes take an analogous role to the axes in cubes. It is easy to see
that both definitions are equivalent but our definition via bundle charts makes the
relation of multilinear bundles to supermanifolds more direct.

Definition B.2.6. A purely even multilinear bundle is a multilinear bundle F'
of degree k such that F|3>g+ = F. The purely even multilinear bundles form a
full subcategory of MBun (resp. MBun®), which we denote by MBung (resp.
MBun(ak)) and we have the essentially surjective restriction functor

MBun — MBung, F Flp  and [ flp

for F, F' € MBun®) and f € Homyg o (F, F') (resp. MBun®) — MBun(k)).

0
Example B.2.7. Let k£ € N.

(a) Let U C FE be an open subset of a locally convex vector space E. Define
inductively TU := U x e, E, T?°U = T(U x e,E) = U x 6, FE X &3F X 169F
and so on. Then TFU = U x @ Ievk erkE is a trivial multilinear bundle over
U of degree k. The axes are the trivial vector bundles U x e; ' — U.

(b) Let M be a manifold with the atlas {p: V, — Uy: o € A}. Then T*M is a
multilinear bundle over M of degree k with the bundle atlas {T%¢,: T*V,, —
TFU,: o € A}. Let ¢as be a change of charts. Using (a), the corresponding
change of bundle charts is given by

T*pag (13 > 511}1) = <90a5($)7 Xk: Yo ), dm%ﬁ(f)%))

IePk m=1|Il=m  ve?(I)

(see [10, Theorem 7.5, p.47]). The axes of T*M are thus all isomorphic
to T'M and we write ;T M to differentiate between them. It also follows
from [I0, Theorem 7.5, p.47| that for each smooth map f: M — N between
manifolds, 7% f is a morphism of multilinear bundles and we get a functor
T*%: Man — MBun® in this way.

Lemma B.2.8. Letk € N and let f: M — N be a smooth map between manifolds.
For each I € P%, we have
T f(e;TM) C e/TN

with the notation of Example[B.2.7(b).
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B.2 Multilinear Bundles

Proof. This is obvious because T* f is a morphism of multilinear bundles. n

Lemma B.2.9. Applying the functor from Lemma pointwise to transition
maps and local chart representations of morphisms, we get a functor

“: MBung — MBung, F~F~ and hw~— h",

(F,F").  This functor is an

equivalence of categories and restricts to equivalences of categories MBun(ak) —

where F.F' € MBunék) and h € Homyg
0

MBun(ak). All these functors respect products.

Proof. Locally this is obvious in view of Remark and Lemma By
functoriality, applying this to all the change of charts of F' leads to new cocycles
that define a bundle F'~. Likewise, applying it pointwise to the chart representation
of a morphism h: F' — F” of purely even multilinear bundles leads in a functorial
way to a morphism A~ : F~ — F'~. Obviously (F'~)~ = F and (h~)~ = h under
this identification, which shows that the functor is an equivalence of categories.
That these functors respect products also follows because it is true locally. O

Remark B.2.10. The intuition behind the above equivalence of categories is as
follows. One can take the case of higher tangent bundles as exemplary and define
k-dimensional cubes as families (7 F;) of vector spaces. A morphism f: F — FE’
of k-multilinear spaces consists then as before of maps

froE, x---xE

/
Ve(v) - EI

for I € PX v € P (I), where it is understood that

JP (€0 Vs €y Vi) = Euy - “Euyg (o, ... ,v,,é(y)).
—_———

=€y

Because of the relations of the infinitesimal generators, this point of view also
explains why one only considers partitions for the morphisms and why the order
of the partitions can usually be disregarded.

We would like to substitute the generators ¢; with the odd generators \;. One
immediately sees that the order of the partition now plays a role, as a change of
signs might occur. However, as we have shown in Lemma [B.1.8| in the case of
purely even multilinear bundles a consistent choice can be made such that this
substitution leads to well-defined bundles and morphisms. In general this is not
the case. With the notation of Lemma one could define a new composition
law

(670 f7) =
S sen(ou)sgn(w)sen(wily) - senlwi )g” (F4, .., ol

w=v
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4(w)
1)
If all v; have even cardinality then sgn(o,,) = 1 and we get the same definition
as above. In general the formula does not appear to lead to natural manifold
structures though there is one interesting case where it does: If only those f*, where
v contains at most one set of odd cardinality, are not zero, the same argument as
before applies. This means that for a supermanifold M of Batchelor type, at least

M would be well-defined. However, morphisms remain problematic.

where o,), € &7 is the permutation that reorders (14]---|v) to (v

B.2.1. The tangent bundle of a multilinear bundle

Let F be a multilinear bundle of degree k over M with typical fiber E. Assume
that M is modelled on Ey and let ¢: U x E — V x E be a change of bundle charts.
Then by definition

@(xv (UI)IGTi) = 900<x) + Z Z bl/(I,UZ,),

IefP’fF ve? (1)

where ¢q: U — V is a diffeomorphism and b (x,.): E,, X -+ X E,,,, — Er are
multilinear maps for x € U, v € 2 (I). For y € Ey and (’U)[)Iefpi € E, we calculate

ng((ZU, (UI)IGTP?‘_)» (y’ (wf)feﬂ"j_)) -

L(v)
do(z,y) Z Z dib” (z,y,v,) Z Z Zb”(w,@"),

IEJ”C ved? (I) Ie‘?ﬁ_ ve (1) i=1

where U, := (Vyy, ...\ Uy yy Wiy Vpsys - - ) Vyy,,) € Ey. The corresponding change
of charts for the tangent bundle T'F is given by

(¢, dp): (U x Ey) x E* — (V x Ey) x E*.

For I € P% let pri: E; x E; — Ej be the projection to the first and pri: Er x Ef —
E; be the projection to the second component. Then

(9. 9) (. (vr)reps ) (0, (wr)geos ) = (o(a). dipo(ar, )+
>0 (P (@ w)) 4+ prd (i (@ yv) + SO b, 57)) )

1€Pk veP(I)

holds. Thus, TF can be seen as a multilinear bundle of degree k over T'M with
typical fiber £ x E. The exact same calculation shows that for a morphism of mul-
tilinear bundles f: F' — F’, the tangent map T f: TF — TF" is also a morphism
of multilinear bundles. We have thus shown:

Lemma B.2.11. For each k € Ny, the tangent functor T': Man — Man restricts

to a functor
T: MBun®® — MBun®

152
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The functor 7: MBun® — MBun® commutes with restrictions of bundles:

Lemma B.2.12. Let k € Ny, F € MBun®) and P C P% as in Lemma/Definition
B.2.4l Then (T'F)|p = T(F|p) holds as multilinear bundles. If f: F' — F' is a
morphism of multilinear bundles, then (T'f)|p =T(f|p): T(F|p) — T(F|p) holds
under the above identification.

Proof. Let F have typical fiber E and let the base M of F' be modelled on FEj.
Since each change of charts pus: Usp X E2 — Ugy X E of F' restricts to a map

SpaﬁlP: Ua,B X E’p — Uﬁa X E’P,
we have that dy,p restricts to

dpas|lp = d(@aplp): (Uap X Eo) X (E|p x E|p) — Uga X Elp.

It follows that (vas, dpas)lp = (paslp, dpas|p) holds. We can repeat the same
argument for morphisms. m

By using this lemma, we shall simply write T'F|p, resp. T f|p, for the respective
restrictions in the sequel.

B.3. Inverse Limits of Multilinear Bundles

Lemma B.3.1. Let k € Ny and F' be a multilinear bundle of degree k with typical
fiber E and the bundle atlas {pn: Vo, — Uy xE: o € A}. Forn < k, the projections

(qs)a: Ua X E— Uq X E‘Tia (l‘, (UI)IGTP?‘_) = (l‘, (UI)IGT’_,E)

define a smooth surjective morphism qy: F — Flpn with @alen 0 ¢ 0 93" = (q)a-

Proof. We only need to show that ¢* is well-defined, then smoothness and sur-
jectivity follow immediately. Let a, 8 € A, x € U,z and (v[)feg;{cF € Elpn. Then
Pas(, (v1)1) = @apley (z, (vr)r) holds for the change of bundle charts ¢,5. In
particular, we have @ga|pn © pas(z, (vr)r) = (, (vr)1). It follows

@palrn © (4h)5 0 Pap = (qh)a

on U, x E. With this, the lemma follows from the local description of smooth
maps between manifolds. O

Definition B.3.2. Let (F}))ren, be a family of multilinear bundles Fj, of degree k
with typical fiber E*®) and respective bundle atlas {gp&k) : va(’“) — U, xE®: o € A}
such that for all n < k, we have E(k)’?i = E™ and go&k)]gm = o with the
identifications from Definition and Lemma/Definition In particular
Fk’(pi = F,, and all F}, are bundles over Fy. Then the family

((F)kergs (@8)nsk),
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B Multilinear Bundles

where ¢* is defined as in Lemma , is called an inverse system of multilinear
bundles. We shall simply write (F}, ¢¥) in this situation. We call {¢¢: k € Ny, o €
A} an adapted atlas of (F},q"). Two adapted atlases of (Fy,¢*) are equivalent if
they lead to equivalent atlases for each Fj.

Let (Fg,¢¥) and (F},¢*) be inverse systems of multilinear bundles. A mor-
phism of inverse systems of multilinear bundles is a family (fx)ren, of morphisms
fr: Fr — F} of multilinear bundles such that ¢%o fr, = fuoqk for all n < k. We

write (fk)k:eNo : (Fk7 QZ) - (Flé7 q;zk)

Proposition B.3.3. The inverse system of multilinear bundles with their mor-
phisms are a subcategory of the category of inverse systems of topological spaces
and their morphisms. Let (Fy,q") be an inverse system of multilinear bundles and
{gp&k): k € No,a € A} be an adapted atlas of (Fy,q"). Then {lim o) o e A} s
an atlas of mk Fy. Equivalent adapted atlases of (F},, q") lead to equivalent atlases
of @k Fy.. With this manifold structure, link fr: lﬂlk F, — link F is smooth for
morphisms (fe)reng: (Fr, @%) — (F}, ¢*) of inverse systems of multilinear bundles.

Proof. Let F, have the typical fiber E®) and let Fy be modelled on Ejy. It is clear
from the local definition in Lemma that ¢% o ¢® = ¢F forallm <n < k. It
then follows from the definition that inverse systems of multilinear bundles, resp.
morphisms thereof, are inverse systems, resp. morphisms thereof, in the usual
sense. Clearly, the composition of two morphisms of inverse systems of multilinear
bundles is again a morphism of this type. Let {go&k): AN Uy xE®: ke Ny ac
A} be an adapted atlas of (F},¢*). By definition E}k) = E}n) holds for all n < k
and I € P7. Thus, for each a € A, the local projection

(@)U x [[ B — 0 x [] B

ek Iepn

is just the usual projection and lim, (Uy x EW) = Us % [Tjcn0cirj<ne Eimaxd)

which is an open subset of the locally convex space Ey x [] 1CN,0<|I|<o0 E}max(l)).
Also by definition, ¢* o eP) = oMo (¢%)q holds for all @ € A, n < k and therefore
lim gogk) . lim (Uyx E®) — lim_F, is well-defined and a homeomorphism because
«—k —k —k

each gpff) is so. We have already seen in Lemma m that the changes of charts
gogg : Upp x E®) — Upg, x E®) define a morphism of inverse systems of multilinear
bundles and that we have

. K 1. )\ —1 : k
lim, QD,(B) o lim, (gpg )) U0 = Lim, 90&/52

Clearly, lim (Uap X E®)) is an open subset of lim (Uq % E®)) and because gogfg, is

smooth for each k € Ny, so is lim gpfjg by Lemma |A.1.3]

®a e A}. Because

the index set Ny is countable and the maps ¢* are all surjective, the projections
@n: lim Fj, — F, are also surjective (see for example [16, Exercise 7.6.10, p. 269]).

It remains to be seen that lim, Fj is covered by {h%m]c %
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For each n € Ny and o € A, we have (¢7)~ (o) "1(U)) = (%)~ (U, x E™)
which implies

0 ' ((¢8)) 1 (Ua)) = lim (ot”) " (lim (U, x E™)).

Since the sets (o)1 (U*) cover Fy, the result follows. The change of charts with
an adapted atlas leads to smooth maps in the same way. Because ¢ : mk F,— F
is surjective and for each z € Fy, we have that g, ({z}) is homeomorphic to the
Hausdorff space llnk EW® it follows that lim F}, is Hausdorff.

Now, let (fi)reng: (Fis qn) (Fy, q) ) be a morphism of inverse systems of
multilinear bundles and {1&5 M.y 5 — U X E'® .k € Ny, B € B} be an adapted
atlas of (F},q"). We define

_ (k) (k)\—1
- wﬁ © fk‘ © (8001 ) ‘wgk)ofgl(vé(k))

for € B and a € A Because fk is a morphism of multilinear bundles, we have

o) o fk_l(Vﬁl(k)) = ( ) o fo ( )) x E® for all k € Ny. By definition,

(@) o f27 = 2P0 (¢h)a
holds and thus

lim 1/15 o lim fko(hm gog) = lim_ f

holds on lim (( a ofy ( )) x E'™) for all @ € A, B € B. These maps are
smooth by the same argument as above. O

We denote by MBun® the category of all manifolds arising as such a limit
(together with an equivalence class of atlases that come from limits of equivalent
adapted atlases) and morphisms that come from a respective limit of morphisms.
Taking the inverse limit gives us a functor from the category of inverse systems
of topological spaces to the category of topological spaces that respects products.
By the above, if we restrict this functor to the subcategory of inverse systems
of multilinear bundles (and the respective morphisms), we get a functor into the
category MBun®). We also get a functor to Man along the forgetful functor.

Example B.3.4. Let M be a manifold modelled on the locally convex space F
with the atlas {p,: V, — U,: @ € A}. For n € Ny we set 7 := idpny and
we have the natural projection 7"t TP M — T"M. For n < k, we define
inductively 7% = 7 o... 0 W,’}“ TFM — T"M. Continuing from Example
B.2.7(b), one easily sees that (T*M, 7%) is an inductive system of multilinear bun-
dles with the adapted atlas {T%¢,: T*V, — U, X HIG?k erE:a € Ajk € Nyt
It follows from Proposition m that T>°M := hm Tk]\/[ is a manifold with the
atlas {lim _¢.: a € A}. For any smooth map f M = N between manifolds,
one obviously has 7% o T*f = T"f o 7k if 7/*: T*N — T™N denotes the projec-
tion. Thus (T%f)ren, is a morphism of inductive systems of multilinear bundles
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B Multilinear Bundles

and T f = @k Trf: T®M — TN is smooth. Moreover, for any Lie group
(G, p,1,e), we get a Lie group (TG, T u, T, e) because the inverse limit pre-
serves products.

Lemma B.3.5. If (F}, ¢") is an inverse system of multilinear bundles, then so is
(TFy, Tq") and
Tlim, ((Fy, qy)) = lim, (T'Fy, T'qy)

holds as manifolds. If (fi)keny: (Fr,q®) — (F},q¥) is a morphism of inverse
systems of multilinear bundles, then so is (T fi)ren, and we have

under the above identification. In particular, we may consider T'lim ((Fj, q)) as

an object in MBun' in a natural way.

Proof. One easily sees from the local description of ¢* in Lemma that T'q*
is the projection TF — TFlpn. If {gogc): k € Ny, € A} is an adapted atlas of

F, it follows by functoriality of the tangent functor that {Tgo((f): k € Ng,a € A}
is an adapted atlas of (T'F}, Tq¥). For the same reason (T fi)ren,: (TFg, Tq") —

(TF},Tq") is again a morphism. By Lemma |A.1.3 dlim, gp% = lim dgp&’? holds

for any change of charts gogg Thus, the change of charts of T'lim ((Fk, ¢")) and
liink(TFk, Tq*) is the same. The same argument works for morphisms. ]

In other words, taking the inverse limit commutes with the tangent functor.
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C. Polynomial Groups

C.1. Basic Definitions

Polynomial groups were introduced in [I0] to construct a suitable exponential
map in the context of groups that have a multilinear structure. They are closely
related to formal groups (see [13]| or [51]). In characteristic zero, the categories
of Lie algebras and formal groups are equivalent (see [51], p.112]) and as we will
see, the category of polynomial groups corresponds to the category of nilpotent
Lie algebras. In our discussion, we follow [10, PG, p.192ff.]. While generalizations
to other base fields are possible, we only consider the real case to stay consistent
with the rest of this work.

Definition C.1.1. Let £ and F be (real) vector spaces. A homogeneous polyno-
mial map of degree k € N is a map pr: ' — F, such that for all v € E, we have
pe(v) = bi(v,...,v) for an R-k-multilinear map b,: E¥ — F. A homogeneous
polynomial map of degree 0 is a constant map py: £ — F. A polynomial map
p: E — Fis a finite sum p = Y py of homogeneous polynomial maps. The degree
of p is the largest index such that p, is non-zero.

Clearly, the composition of two polynomial maps is again a polynomial map.
In characteristic zero one can recover the homogeneous parts of a polynomial by
formal differential calculus (compare [10, PG, p.192|). In particular, if £ and F
are locally convex spaces then p is smooth if and only if all b, are continuous (see
[23]).

Let E, E'" and F be R-vector spaces and let ¢: £ x E' — F be a polynomial
map of degree k. We write

g(x,y) = D ralz,y),

r4+s<k

for the decomposition of ¢(z,y) into parts ¢, s(z,y) which are homogeneous of
degree r in x and homogeneous of degree s in y.

Definition C.1.2. A polynomial group of degree at most n is a vector space F
that has a group structure (E,m,i,0) such that m: Ex F — Eand i: £ — E
are polynomial maps and all iterated products

m®: E¥Y B (21,...,2) — 21 - T,

for k € N, are polynomial maps of degree at most n.

157
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Note that the iterated products are automatically polynomial because so is m =
m(® and the composition of polynomial maps is again polynomial.

Example C.1.3.

(a) Let E be a k-multilinear space. If F is a group such that the multiplication
and inversion are morphisms of k-multilinear spaces, then E is a polynomial
group of degree at most k. Indeed, that the maps are polynomials of degree
at most k follows from the definition of morphisms of k-multilinear spaces
and the iterated product maps are also morphisms of k-multilinear spaces.

(b) Let (G,m,i,e) be a Lie group modelled on Ey and ¢: U — V be a chart
of G such that e € U and ¢(e) = 0. Then the vector space structure
given by T*p: (T*G). — (T*E)o turns (T*G). into a polynomial group of
degree at most k for each £ € N. This follows because by Example m(b)
the multiplication (as well as the iterated product maps) and the inversion
are morphisms of k-multilinear spaces in the chart 7%p. This can also be
done without a chart using the left (or right) trivialization from Section
(compare [10, PG.2(2), p.193]).

C.2. The Lie Bracket and the Exponential Map

Now, let (E,m,i,0) be a polynomial group of degree n. By decomposing the
iterated multiplication maps into multihomogeneous parts, we write

() — (4
mY = Z mpi),m,pj'

D105 20
p1+...4+p; <k
In other words
(4) _
mphm’pj(xl, e ,ZL’j) = bl(l'l, e ,:CE, ey Ly ,.Z’]J)
Vv VvV
p1 times pj times

for a multilinear map b;: E' — F and [ = p;+...+p;. In this notation mﬁ) =mya

has a special meaning: One can show that
[I‘, y] = ml,l(xa y) - ml,l(y7 ZE)

defines a nilpotent Lie bracket on E (see [10, PG.3, p.193f.] and [13, Ch. III,
Par. 5, Prop. 1, p.299]). We denote E equipped with this Lie algebra structure
by L(E). To get some intuition, consider the following. It is quite obvious that
mo1(x,y) =y =mio(y,z) and iy (x) = —z for all z,y € E. Let now

a:ExE—E, (x,9) v~ m(z,m(y,i(z)) =ayz™"

be the conjugation. The map « is clearly polynomial and we calculate

a11(2,y) = ma (@, mo(y,io(z))) + moa(z, mia(y,i(x)))
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=mya(x,y) +mia(y, —z) = [z,y]

for z,y € E. Furthermore, we define

Vi B —FE, x~ Z m\)

and denote the homogeneous part of degree j of 1; by 1, ;. Note that all the above
maps are polynomials of degree at most n because m is so. By using ;. 5, one
obtains the following crucial theorem.

Theorem C.2.1 ([I0, Theorem PG.6, p.196]). Let E be a polynomial group of
degree n € N. Then there exists a unique exponential map, given by

"1
€eXpPg: L(E) — E, xXr = Z ﬁwj’j(x)’
=1/

with the following properties:
(a) the linear term of expy is the identity,
(b) for all X € E and s,t € R, one has expg((t+ $)X) = expp(tX) - expp(sX),

(c) expg is bijective and the inverse function is given by the polynomial map

(v
()

logy: E— L(E), z+— )

j=1

This exponential map has the same relation to one-parameter groups as the

exponential map of a Lie group. For X € FE, there exists exactly one poly-

nomial morphism of groups 7x: R — FE such that (yx);(1) = X and we have

expp(X) = vx(1) (see the proof of Theorem . From this, one easily deduces
the functoriality of the exponential map like in the Lie group case.

Lemma C.2.2. Let E and F' be polynomual groups and p: E — F be a polynomial
morphism of polynomial groups. Then the linear part L(p) of ¢ is a Lie algebra
morphism of L(E) to L(F) and the diagram

E—Y% .F
eXpET ]eXpF
L(E) 2L (R

commutes.

Proof. Let m and m/ be the multiplication of £ and F. We directly calculate

promiy = (pom)iy=(m'o(pxp)i= m/1,1(<P1 X $1),
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which shows that L(¢) = ¢ is a morphism of Lie algebras. Let vx: R — E be the
unique polynomial morphism of groups such that (7x):(1) = X € E. Then po~yx
is a polynomial morphism of groups and we have (¢ o vyx)1(1) = p1((7x)1(1)) =
L(¢)(X). Thus, ¢ o vx = 1) x) holds and ¢ o expg(X) = expp(L(p )(X)
follows.

Moreover, morphisms of Lie algebras uniquely determine morphisms of the re-
spective polynomial groups.

Lemma C.2.3. Let E and F be polynomial groups and ¢: L(E) — L(F) be a
morphism of Lie algebras. Then there exists a unique polynomial morphism of
groups ®: E — F such that L(®) = ¢.

Proof. Let (L(E),*) be the nilpotent Lie algebra L(FE) equipped with the group
structure given by the BCH multiplication. By [10, Theorem PG.8, p.19§],
expg: (L(F),*) — F is an isomorphism of polynomial groups. Because ¢ is a
morphism of Lie algebras, ¢: (L(E),*) — (L(F),*) is a polynomial morphism of
groups. Then exppo¢ o exp;Jl: E — F is a polynomial morphism of groups as
well. We have L(expyo¢ o expy') = L(¢) = ¢ because ¢ is linear. Conversely, let
®: E' — F be a polynomial morphism of groups with L(®) = ¢. Then, we have

expp 0@ o expp(X) = expr' (V@) (x)(1)) = L(P)(X) = ¢(X)
for X € E. Uniqueness follows since expyp and expy are isomorphisms. ]

Since every nilpotent Lie algebra equipped with the BCH multiplication is a
polynomial group (see [10, PG.2(3), p.192]), the above lemmas together with [10]
Theorem PG.8, p.198] implies that the categories of nilpotent Lie algebras and
polynomial groups are equivalent (in characteristic zero).

Lemma C.2.4. Let E and F be polynomial groups and o : E — Aut(F) be a
morphism of groups such that the action a: E x F — F, (x,y) — o' (z)(y) is a
polynomial map and such that there exists n € N so that all iterated actions

a(k) Ek X F— Fv (xlv"'axk‘ay) ’—)Oé(Il,Oé(ZL‘Q,...,Oé(l'k,y)..-))

are polynomials of degree at most n. Then the semidirect product F x, E is a
polynomial group. If |-, g, [,-]r and |-, |Fru, g are the Lie brackets of E, F' and
F ., E respectively, we have

[(z,y), (x/,y/)]FmE = (041,1(3/,56/) - 041,1(19/7 ) + [x,x/]F’ [yvy/]E)

for (z,y), (z'y) € F x E.

Proof. That the semidirect product is a polynomial group is obvious. Let m” be
the multiplication of E, m the multiplication of F' and m be the multiplication in
F x4 E, ie., we have m((x,y), (2',y)) = (za(y,2'),yy’) for (z,y), (2'y') € F x E.
With this, we calculate

maa((2.9), (2,1) = (mg (@, 00 (y, @) + mi, (2, 00 (y, ), mi (4, 4)
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- (051,1(@/, x/) + mfl ('7:7 iL‘/), mlE:l (y7 y/))

and the assertion follows. O
Next, we consider polynomial groups that, in addition, are Lie groups.

Lemma C.2.5. A locally convex space E that is a polynomial group with the
multiplication m is a Lie group with respect to the global chart expg if and only if
the Lie bracket is continuous, or equivalently, if my1: E X E — E is continuous.

Proof. The Lie bracket is bilinear and thus smooth if it is continuous. That this
is equivalent to the continuity of m,; follows directly from the definition. The
multiplication in the chart expy is the BCH multiplication, which consists of a
finite sum of iterated Lie brackets and thus is smooth if and only if the Lie bracket
is continuous. The inversion is just the multiplication by —1 and thus smooth. []

Lemma C.2.6. Let E be a locally convex vector space that is a polynomial
Lie group (with the same wvector space structure). Then expg is a diffeomor-
phism and is the exponential map of E. Moreover, (L(E),*) is a Lie group and
expg: (L(E),*) — E is a polynomial isomorphism of polynomial Lie groups.

Proof. By Theorem , smoothness of expy and exp' follows from the smooth-
ness of the iterated multiplications. Likewise, it follows that the Lie bracket is
smooth and thus (L(E),*) is a Lie group. We know from [I0, Theorem PG.8,
p.198] that expy is a polynomial isomorphism of groups. Let v: R — E be a
one-parameter group. Then « is completely determined by 7/(0) = y1(1) = X € E
and it follows v(t) = expg(tX). Hence, expy is the exponential map of the Lie
group F. O

Lemma C.2.7. Let E be a polynomial group with the Lie bracket [-,-] and let
X, Y € E. Then, we have

expy’ (expg(X) - expg(Y) -expp(Y)™!) =Y + Z % ad’y (Y),

neN

where ad’y (V) := [X, [X,...[X,Y]..]].

Proof. First, note that the series terminates because the Lie bracket of F is nilpo-
tent. Let (X,Y) denote the Lie algebra generated by X and Y. By nilpotency of
the Lie bracket, (X,Y’) is a finite-dimensional nilpotent Lie subalgebra of L(E).
Thus, it carries a unique topology turning it into a topological Lie algebra and
equipped with the BCH multiplication, it becomes a finite-dimensional polyno-
mial Lie group. Then expg((X,Y)) is a subgroup of E that has the structure of
a finite-dimensional Lie group whose exponential map is simply the restricted ex-
ponential map of E. For finite-dimensional Lie groups, the formula is well-known
(see for example [28, Formula (9.11), p. 307]). O
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C Polynomial Groups

C.3. Pro-Polynomial Groups

For k € N, let (Ey,,m,i,e) be a polynomial group of degree at most k& and
for each | < k, let nF: By — E; be polynomial morphisms of groups such that
((Er)ken, (7})i1<k) is an inverse system of groups. The category of pro-polynomial
groups consists of objects of the form E := llnk Ey (in the category of groups)
and group morphisms lim ¢y : lim By — llnk((Fk)keN (m]%)1<1) for polynomial
morphisms of groups ¢y : £y — F} such that ¢ owf = ﬂ;kogpk for I < k. Moreover,
we define L(lim Ejy) := lim L(Ej) and L(p) := lim L(pyx), using that every
L(gx) is a polynomial morphism of polynomial groups. Finally, we let expy :=
lim _expg, , which is well-defined by Lemma . Note that exp is bijective with
the inverse expy' := @k expgi because taking the inverse limit is functorial. We
define the Lie bracket of £ as [, -] := lim [, ‘], where [+, ], denotes the Lie bracket
of Fj and the limit is taken in the category of Lie algebras. By definition, we have

[(%)kel\h (yk-)k:eN] = link (kmm(xk, yk) - km1,1(yk,$k))

= lim, ma 1 (2, Yr)ren) — my, oma (e, 2 )ken)-
The idea for considering pro-polynomial groups comes from |10, PG.9, p.198|.

Lemma C.3.1. Let F = @k Ey. be a pro-polynomaial group such that all Ey are
locally convex spaces and the projections wF are continuous. Then E is a Lie group

and the diffeomorphism @k expyp, 18 the exponential map of E.

Proof. Because all E} are nilpotent Lie groups isomorphic to L(E}) equipped with
the BCH multiplication, F is a Lie group by Lemma (compare [41, Example
IV.1.13, p.364]). Let m,: E — Ej be the canonical projection. If v: R — E is
a one-parameter group, then v, := 7, o v is a one-parameter group of Ej and

lim v = 7 holds. By Lemma A.1.3, we have 7/(0) = lim +;(0) and therefore
Lemma implies that expy 1s the exponential map of E. ]

Lemma C.3.2. Let E and F be pro-polynomial groups and let ¢: E — F be a
morphism of pro-polynomial groups. Then, we have p o expp = expp oL(yp).

Proof. This follows immediately from Lemma because taking the inverse
limit is functorial. [

Lemma C.3.3. Let E = m Ey. be a pro-polynomial group with the Lie bracket
[ = mk[7 Ik and X = (X,jkeN,Y = (Yi)ken € E. Then, we have

eXP;Jl (eXPE(X) cexpp(Y) - eXPE(X)_l) -

(Yk + Z %[Xk[Xk, [ X, Yaln .]k]k)

n times

keN

Proof. This follows immediately from Lemma [C.2.7] O
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D. The Lie Group of Vector
Bundle Automorphisms

To turn the automorphisms Aut(M) of a supermanifold M into a Lie group,
it is crucial to have a Lie group structure on the vector bundle automorphisms
Aut(MD). We achieve this for Aut.(MM) if M is a Banach supermanifold with
o-compact finite-dimensional base. The general idea for this is as follows.

Based on [56] it was shown in [50] that the group of compactly supported auto-
morphisms of a principal bundle (with a Banach Lie group as structure group) can
be turned into a Lie group. It is well-known that finite-dimensional vector bun-
dles are associated to their frame bundle. In our situation, where the typical fiber
is a Banach space, the same construction works. We then transfer the Lie group
structure of the group of compactly supported frame bundle automorphisms to the
group of compactly supported vector bundle automorphisms. We need additional
calculations that do not follow from [50], such as the smoothness of the evaluation
map and an exact description of the Lie algebra, and therefore, we cannot avoid
to recall some details from [50].

For this section, we fix a vector bundle 7m: F© — M with the Banach space E;
as typical fiber, where M is a finite-dimensional o-compact manifold modelled on
Ey. We denote by Aut(F') the group of vector bundle automorphisms of F i.e.,
diffeomorphisms f: F' — F such that there exists a diffeomorphism ¢: M — M
with

F—f>lj
M —2~ M.

Mapping an automorphism f to its diffeomorphism ¢ on the base defines a pro-
jection q: Aut(F) — Diff (M) to the diffeomorphism group Diff(M) of M. This
projection is obviously a morphism of groups. We define the gauge group of F
as Gau(F') := ker(q). Furthermore, we define the group of compactly supported
automorphisms of F' by
Aut (F) == {f € Aut(F'): 3K C M compact with f|—1ank) = idF|W_1(M\K)}.
Obviously, Aut.(F') is a subgroup of Aut(F) and we have the exact sequence of
groups
Gau.(F) — Aut.(F) - Diff (M),
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D The Lie Group of Vector Bundle Automorphisms

where Gau.(F) := Gau(F) N Aut.(F) and
Diff (M) := {f € Diff(M): 3K C M compact with f|ynx = ida\x}

is the group of diffeomorphisms with compact support .
For the remainder of this section, we fix locally finite open covers U := {U; C
M:ie N} and U :={V; C M:ie N} of M such that for all i € N, we have that

U; is relatively compact,

9 is a refinement of 4 such that V; C U;,

U, and V; are submanifolds with boundary of M and

there exists a smooth trivialization 7;: U; x E, — F.

Additionally, one can assume that around each U; a chart can be defined. For the
existence of such covers, we refer to [50]. By abuse of notation, we will also write
7; for the trivializations restricted to U;, V; and V;. For i, 7 € N, we have smooth
transition functions k;;: U; N U; — Glg, defined by 7, (1(x,v)) = (x, kij(x).v)
for x € U;NU;, v € Ey. Here Glg, C L(E4; Ey), denotes the group of continuous
automorphisms of E;. It is well-known that Glg, is a Banach Lie group mod-
elled on gly, = L(Ei; E1)y, whose exponential map expg, : glp, — Glg, is a
diffeomorphism around a zero-neighborhood (see [13| 111, §1.1, p.213|).

The frame bundle
We define the frame bundle

Fr(F) := U Iso(Ey; Fy),

zeM

where Iso(Ey; F,) € L(E; Fy)p is the Banach space of continuous vector space iso-
morphisms between E; and F, = 7~!({z}). Together with the obvious projection
Fr(F) — M, this defines a principal Glg,-bundle with the action

Fr(F) x Glg, — Fr(F), (p,A) — poA.
Every trivialization 7: U x E; — F of F corresponds to a local section
o:U — Fr(F), xw~ 7(z,.) € Iso(F1, F,) and a trivialization 7": U x Glg, —
Fr(F), (z,A) — 7(x,s) o A of the frame bundle. The transition functions
k:V — Glg, of the corresponding trivializations are the same. Given a vector

bundle automorphism f: F' — F'| one obtains an automorphism of principal bun-
dles f": Fr(F') — Fr(F) by setting

f’(T’($7A)) = fp o0 T(%,.) o A for (g;’A) e U x Glg,.
Conversely, for f': Fr(F) — Fr(F), we let

f(r(z,v)) == f'(r(x,s)).v for (z,v) € U x Ej.
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D.1 The Lie Group Structure of the Gauge Group

It is easy to see that these constructions are inverse to each other. Furthermore,
both automorphisms induce the same diffeomorphism on the base and compactly
supported automorphisms correspond to compactly supported automorphisms.

We denote by Aut.(Fr(F')) the group of compactly supported automorphisms
of Fr(F) and let Gau.(Fr(F')) be the subgroup of these automorphisms over the
identity. The Lie group structure on Aut.(Fr(F')) is realized as an extension of Lie
groups

Gauc(Fr(F)) — Aut.(Fr(F)) — Diff (M) m(ry,

where Diff (M) ry is the open subgroup of Diff.(M) such that f*F = F for all
[ € Diff (M) g(ry, i-e., the subgroup fixing the equivalence class [Fr(#)] under
pullbacks (compare [41, Example V.1.6(c), p.392]). Analogously, we want to turn

Gau(F) — Aut.(F) — Diff.(M) (D.1)

into an extension of Lie groups, where again Diff (M )z denotes the open subgroup
of Diff.(M) that fixes the equivalence class [F] under pullbacks (compare [41]
Example V.1.7(d), p.392]).

D.1. The Lie Group Structure of the Gauge
Group

Recall Proposition|A.3.5] If 7/ are the trivializations of Fr(F') corresponding to the
trivializations 7; of F' and if we let o;(x) := 7;(x, ), then the Lie group structure
on Gau.(Fr(F)) is given by the embedding

Gauc(Fr(F)) — H* C*(U;, Glg,), ¢ (pryo7 09 0 0y)ien
ieN

(see |50, Theorem 4.18, p.36]). Note that the Lie group structure induced on
Gau.(Fr(F)) does not depend on the trivialization by [50, Proposition 4.16, p.33].
Defining the embedding

®: Gau(F) — H* C*(U;,Glg,), ¥ (pryo 7' 0t oa)en, (D.2)
i€N

we see that we obtain the same closed subgroup of the weak direct product in both
cases because the transition maps are the same. Therefore, we get a Lie group
structure on Gau.(F") that is independent of the trivialization.

Remark D.1.1. A concrete chart can be described in the following way. Let

O = {(Th‘)z‘eN € @C”(Ui,g[El): ni(x) = Ad(kij(x)).n;(z) for z € UZHUJ}

€N
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D The Lie Group of Vector Bundle Automorphisms

and let Gy := im(®). If P C glp, is open such that expg,, [p is a diffeomorphism
to expay,, (P) =: P’ let

(expGlEl)i: C>(U;, P) — C®(U;, P), ni— expgy,,, ONi-
Let C := gg NP,y C°(U;, W) and €’ := Gg N H e C>(U;, P'). Then

(eXPelEl)*3 C—C'  (M)ien — ((echlEl)i(le’))ieN

is a diffeomorphism and the inverse of a chart of Gau.(F") around the identity.

D.2. The Lie Group Structure of the
Diffeomorphism Group

Recall the vector fields X.(M) of M with compact support from [1.3.2] We turn
X.(M) into a locally convex space such that

ED C*(U;, Ey), Y +— (pry o7'l-_1 o Y|u,)ien (D.3)

€N

becomes an embedding. Fix a Riemannian metric g on M and let exp, be the
corresponding Riemannian exponential map. It was shown in [19] that there exists
an open zero-neighborhood Q" C X.(M) such that the map

o, ' Q" — Diff (M), Y — exp,oY

is well-defined and bijective onto its image O” (see also [23], cf. [36]). The Lie
group structure on Diff (M) arises then from O” with the chart ¢,: O” — Q" and
Diff.(M) is an open subgroup. One has that

TaDiff (M) — X(M), [t v = (p— [t — v(p)])

is an isomorphism of locally convex Lie algebras. Following [19], we choose Q"
small enough such that f(V;) C U; for all i € Nand f € O". For technical reasons,
we need to consider even smaller open unity neighborhoods than O”. For this, we
fix a smooth partition of unity (h;);en subordinate to (V;);en. It was shown in [50,
Remark 5.10, p.44 f.| that there exists an open unity neighborhood O’ C 0" such
that O is symmetrical, O’ c O’ o O’ C 0" and such that (hi+...+h,)-p.(f) € O”
for all f € O, n € N. With the same argument, we also find an open symmetrical
unity neighborhood O C O’ such that (hy + ...+ hy,) - @4(f) € O holds for all
f € O, n e N. We fix the neighborhoods 0", O’ O and set Q= ¢, 1(0).

Remark D.2.1. We define the sets W} := {J;c, f(Vi) and W; : Ufeo FW.

)

The properties O' 0 @’ 0o @' C O” and f(V;) C U; for f € O" imply V; C W/ C
W; C U; and obviously (W/)ien and (W;);en are open locally finite covers of M.
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D.3 The Automorphism Group

Remark D.2.2. Let ¢;: U; — V; be charts of M and let p;: X.(M) — C*>(U;, Ey)
be the components of the embedding (D.3). Recall the covering (W;);en from
Remark We fix smooth maps h: U; — R that are constantly 1 on W; such
that supp(h;) C U;. The maps §;: C*(U;, Ey) — X.(M), given by

C*(Us, Eo) = Cgippny (Ui, Eo) = Xsupp(ny) (Us) — Xe(M),

supp

fo i f e To (@ile), (B fi)(4) = Yi = Y,
where Y; is the continuation of ¥; by 0, are smooth because of [18], Proposition 8.13,
p.50] and [I8, Lemma 4.24, p.34]. Let R := @,y Ri € @ C>=(U;, Ey) be an open
zero-neighborhood such that p~'(R) C 2. We define the open zero-neighborhoods
Q=& Q) NR; and Q = p‘l(@ieN Ql) C Q). This enables us to define smooth

maps

G: % — 0, Yie v, (&)
w, = Glpi(Y)|w, forall Y € Q, i € N.

with the property ¢ '(Y)

D.3. The Automorphism Group

Next, we construct a local section S: O — Aut.(F') such that Aut.(F') becomes
an extension of Lie groups. For this, we define smooth maps s;: O — O" o O’ by

s1(f) ==, (h1 - ¢4(f)) and
-1
si(f) == (sog‘l((hl + ot i) sog(f))) ° 0y’ ((h1 o h) sog(f)>
for i > 1. In the remainder, we abbreviate s;(f) = f; for f € O. From the
definition, it follows supp(f;) C V; for all i € N and all f € O and lim; ., f; o

---o f; = f as a pointwise limit. The limit becomes stationary because we have
f; = ida if V; Nsupp(f) = 0 and this condition holds for almost all 7 € N.

Remark D.3.1. Let f € O. By definition, we have

fiofi+1o"'ofi+p:

(0 (- hi) -0 (5)) o (4 -+ i) - ()

S/ O\

éESf éza’
and
f10f20"'fp:¢;1((h1+~-+hp)'%(f)) €O,
for all p,7 > 1.

We lift a diffeomorphism f € Diff (M) with supp(f) C V;, to f € Aut.(F) via

f(ri(z,0)) :==7(f(x),v) for (z,v) € V; x E; and (D.4)
f(p):=pforp g n (V).
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D The Lie Group of Vector Bundle Automorphisms

An easy direct calculation shows that this corresponds to the construction in [50]

for the frame bundle. Note that f is an automorphism over f and that ]?—/1 = f1
For f € Diff.(M), we define the local section (cf. [50, Definition 5.12, p.46])

S: O — Aut.(M), f limfio---ofi
The limit is well-defined because s;(f) = idp if V; Nsupp(f) = 0. Also S is a
section because S(f) is an automorphism over lim; .., fi o...o f; = f. It follows
in particular that Diff.(M )z is indeed an open subgroup of Diff.(A1).

Remark D.3.2. To see the smoothness of several natural actions of Aut.(F), it
is crucial to have a local formula in terms of transition functions for S(f)(7(z,v))
that is valid in neighborhoods of f and z. Such a formula was derived in [50]
Remark 5.13, p.46] for the frame bundle and since the transition maps are identical,
our formula will be essentially the same. However, since there was a small mistake
in the construction of the open neighborhoods of f and z, we will give a corrected
version here. Note that the correction carries over to the more general case of
principal fiber bundles in [50] and does not impact any other arguments made
there.

Fix f € O and © € V;. Let j; be the largest index such that z € Vj,. For v € E,
we calculate

fj1 (Ti(mv U)) = fjl (Tj1 (IE, k]l'l(x)v)) = Tj (fj1 (l‘)a k:jli(x)'v>’

Note that for z € Uj;, \ V},, we have f;, (z) = x and the formula is still valid. Next,
let jo be the largest index smaller than j; with f;, (z) € V},. Then we get

]Ejz (le (fjl ('CE)? k]ll(x)v)) - fj2 (sz (fjl ($), kj2j1 (fjl (.CE)) ’ k]ll(x)v))
= Tj, (fja © fiu (@) kjogy (3 (2)) - jra().0).

Eventually, this leads to j, < ... < j; such that there is no index j < j, with
fiso fj,_, 0o f;;(z) € V; and we have the formula

SN, 0)) = 73 (F@) i (firs 0+ (@) -+ k() 0)
=T (f(J;)? kl]e(f(x)) ’ kajz—1 (fje—l 0--+0 fj1 (ZL‘)) T kjli(x)'v>7 (D5)

where the last equality holds because f(V;) C U;. Note that by construction
flx)= fio o fi(x) = fj, o fj,_, oo f;(x) holds because the omitted factors
do not change the respective function value. There is an open neighborhood U C U;
of x such that U C Uj, and such that there is no index j > j; with 2’ € Vj for all
x' € U. The conditions for formula to hold for some other diffeomorphism
f'€ O and 2’ € U are as follows:

To-ofl(af) ¢V forj <t

fi oo 1 (a") ¢V for o1 <j<jp 1<p<{l—1and
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D.3 The Automorphism Group

‘oo fi(2)) €U, N,

Jp JIp+1

for1<p</{-—1.

The first condition means that the smallest relevant index is j,. The second con-
dition implies that fj ., is indeed the next relevant map after f] e fj1 and
the last condition guarantees that the transition maps k;, ,,;, are deﬁned for all
¢ —1 < p < 1. Since the evaluation map Diff (M) x M — M, (f',2') — f'(2)
is smooth and in particular continuous by [19, Proposition 6.2, p.28|, the finitely
many conditions above yield, after intersection, open neighborhoods Oy of f and
U, C U; of z such that formula holds for all (f',2") € Oy x U,.

Remark D.3.3. Note that we may substitute terms of the form f; o---o f;,
p > ¢ in formula with f; o f; y10---0 fj_10 f; because, by definition, the
additional maps do not change the respective function value. Now, Remark
implies that f;, o fj 11 0---0 fj,—10 fj, equals

(0 (ot ) ) o (ot ) )

for j, > 1 and
e (4 h3) ()

for j, = 1. In particular, the value of S(f)(7(x,v)) only depends on f|y, for
(x,v) € V; x Ey, with V; C W/ C W; C U; as in Remark [D.2.1}

To see that this turns Aut.(F') into a Lie group, one has to check that the map

w: O x O — Gau(F), (f,f)—S(f)oS(f)oS(fof)™

is smooth and that for each f € Diff.(M)(p), there exists an open identity neigh-
borhood Oy C O such that

wr: Ofp — Gau(F), f = woS(f) og[;_l oS(fof’of_l)_1

is smooth, where ¢y € Aut.(F') is an automorphism over f. With the corre-
spondence established above, this yields exactly the same maps as in [50]. Thus,
Aut.(F') becomes a Lie group such that is an extension of Lie groups. This
Lie group does not depend on the various choices made in the construction of .S
(compare |50, Remark 5.23, p.59]). Let C' and C” be as in Remark [D.1.1] Then

T HCxQ—CoS0), (GX)— (expaig, )+(G) © S(y(X)) (D.6)
is the inverse of a chart T of Aut.(F) around the identity.

Lemma D.3.4. The evaluation map
eVaan: Gau(F) X F — F,  (1,p) — ¥(p)

18 smooth.
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D The Lie Group of Vector Bundle Automorphisms

Proof. Recall the embedding ®: Gau.(F) — H*EN C>®(U;,Glg,). Fori € N, the
evaluation ev;: C’OO(E, Glg,) x U, — Glg, is smooth by Lemma |A.3.7| and the
projection pr;: H o C*>(U;, Glg,) — C>=(U;, Glg, ) is smooth by Lemma |A.3.6

Because we have evga, (¥, 7i(x,v)) = ev;(pr;(¢¥), x).v, the lemma follows since the
action Glg, x Fy — FEj is smooth. O

Lemma D.3.5 (cf. [56, Proposition 2.15, p.20]). The evaluation map

ev: AUtc(F) X P — Fa (wap) = eVp(d}) = w(p)

18 smooth.

Proof. By [55, Lemma A.3.3, p.133] it suffices to check smoothness on U x F for
some open unity neighborhood U C Aut.(F). We choose U = Gau.(F) o S(O).
Let (z,v) € Vi x E;. By Lemma [D.3.4] the evaluation Gau.(F) x F — F is smooth.
Therefore, we only need to show that the evaluation map depends smoothly on
the elements of O. For f € O, we choose open neighborhoods Oy of f and U, of
x as in Remark such that for all (f',2') € Of x U,, we have

Sl 0)) = 73 (@) ki (@) - Ky (F,, o0 (@) -+ Kga(a)-0)

for fixed indices j, < ... < ji. Since the evaluation map Diff.(M) x M — M is
smooth (see [19, Proposition 6.2, p.28|), it follows that this is a composition of
smooth maps. n

Remark D.3.6. It follows from Lemma that the tangent map
Tev: TAut (F)xTF —TF

is smooth. Let ¥ := [t — 4] € TAut.(F) and v := [t — v € TF. Then we
calculate

Tev(V,v) = [t — ty(vo)] + [t = tho(ve)] = [t — ¥u(vo)] + Tho(v).
In particular, the map
evp: Aut (F) x TF — TF, (¢,v) — Ty(v)

is smooth as well.

D.3.1. The Lie algebra of Aut.(F)

Lemma D.3.7. Recall Remark[E.3.60. Any bundle isomorphism over the identity
O: FyTM &y F — TF induces an isomorphism

Xe(M) x gau (F) — Xo(F)y, (X,G)— (p— O(p, X (n(p).G(p)))

of locally convex spaces.
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D.3 The Automorphism Group

Proof. Let (X,G) € X.(M) x gau (F') and
Y:F—TF, Y(p):=0(p X(x(p).Gp))

Clearly, Y is smooth and by definition, we have 77r oY = idp for the projection
mrp: TF — F. Let ¢ = (¢}, ¢4): 71(V;) — Vi x Ey be a bundle chart of F' and
G? = ¢ oG o (¢)~!. By [10, Theorem 10.5, p.62], we have

Ty oY o (') Yz, 0) = (z,v, X#0(z), G¥ (,v) + bi.(v, X (x))), (D.7)

where ' is the Christoffel symbol corresponding to ® in the chart ¢ (see |10,
10.4, p.61f]). Note that b’: V; x Ey x Ey — Ey, (z,v,w) — bi(v,w) is a smooth
map such that ! is bilinear for all x € Vi. In particular, the map Vi x By —
L(Ey; Ey)y, (z,w) — bi(s,w) is smooth by Proposition [A.2.10] We see that the
support of Y is the same as the union of the supports of X and G and that Y is
indeed an element of X.(F'). Since the map

Ooo(f/i?E(ﬁ - Ooo(f/iv G1E1)7 f = (ZE = bi('v f(:L‘)))

is smooth by Proposition , smoothness follows from formula together
with Lemma Conversely, for Y € X.(F), we define X := pry,, 00 oY oz,
and G := pr_z 0O ' oY where z);: M — TF is the zero section and pr_p: TF —
F, Tr: TF — TM are the projectors given in [10, 10.7, p.63]. It is easy to see
that this construction is inverse to the above and smoothness follows essentially
in the same way as before because of the local description of ©~! given in [10),
Theorem 10.5, p.62]. O

Remark D.3.8. Since M is o-compact and finite-dimensional, one can always
construct a linear connection on T'F'. By [10, Theorem 10.5, p.62| one then obtains
an associated isomorphism © as in Lemma [D.3.7 It will be useful in the following
to make this construction explicit in terms of the partition of unity (h;); and the
trivializations 7;. By abuse of notation, we will write b° for the Christoffel symbol
expressed with the trivialization 7; (instead of a bundle chart). The condition [10,
(10.2), p.62| for a family (b) to define a connection translates then to

VL (ij(z).u,v) = ki ()0 (u,v) + dkij(v).u,

forx € V;NV;, v € T,M and u € F,. For v € M let I, be the finite set
{i € N: 2z € V;}. We define

b (u,v) o= h()dka(v). (ki (x).w).

lel,

Note that k;;(x).k;i(x) = ky(z) implies

iy (0). (ks (2)) + by (). (ki (v)) = dka (o).
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D The Lie Group of Vector Bundle Automorphisms

With this, the following direct calculation shows that these b* define a connection.
=S hl(:z: (Fis (). (b (0)- (R (2).0)) ) + iy (0)-

lel,

- Z hy(x (dkll )k (x).u — dk:ij(v).u> + dk;;(v).u

lel,

= hi(@)dki(v) ki (x).u = b (kij () u, v).

el

Lemma D.3.9. Recall the evaluation map ev: Aut.(F) x F — F from Lemma

D.3.5. The map
U: TgAut (F) — Xo(F), v (pr Tevy(v))

18 an isomorphism of locally convexr Lie algebras.

Proof. By the definition of the respective topologies and Lemma [A.T.4] it suffices
to see the smoothness of

gau (F) x X.(M) = TiqAutk (F) — X(F)

in a trivialization. The local calculation will also show that V¥ is well-defined. Let
(G,X) € C xQand Y be as in (D.6). It follows

Taev, )T 1 G, X) = Tigev, oY (G, 0) + Tigev, ToyT (0, X).
For p = 7;(z,v), we calculate Tiqev, Ty Y 1(G,0) = T'ry(x,v,0,G"(x,v)) and

,I‘id evp TOT_l(O,X) =
[t — si(exp, o(tX))™(p)] + - + [t = sn(expy o(tX))™(p)],

I

where ~ denotes the lift defined in (D.4). Using the identification X.(M)
T Diff (M) via X + [t = exp, o(tX)], we see that

Tiasi[t — exp,o(tX)] = hy - X and
TidSi[t — engO(tX)] = —(h1 + -+ hi_l)X—i- (hl + - +h1) - X = hl - X.

Let I, :={j € N: z € V;} and for j € I, let v; € E; such that 7j(x,v;) = p. It
follows [t 1 s (expy (X))~ (5)] = [t — p] = T7(,0,0,0) for (p) & V; and

[t — s;(exp, o(tX))™(p)]
= [t = 7i(sj(expy o(tX))(2), v;)] = Tia,0,)7[t = (t(h;(2) - X(2)),0)]
= Tri(x, v, (hy - X)(x), dkij((hy - X)(x)).(kji(z).v))
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D.3 The Automorphism Group

if 7(p) € V;. Summing up, we arrive at
Tyev, TyT~ (G, X) =
7%3(1;0,)(( ). G, 0) + 3 hy(a)dy (X ))(kﬁ(xyv)).

JEly

With the connection from Remark [D.3.8] we see that this gives us exactly the
isomorphism from Lemma [D.3.7 Next, we show that we have a morphism of Lie
algebras. Let X"(Aut.(F')) be the Lie algebra of the right-invariant vector fields
of Aut.(F). Because X" (Aut.(F)) is a Lie subalgebra of X(Aut.(F)), we have an
embedding X" (Aut.(F)) — X(Aut.(F) x F) of Lie algebras via X — X X zp. Let
Uy TigAut.(F) — X" (Aut.(F)), X, — X be defined by X(f) := Tpf()?o), where
py is the multiplication from the right with f in Aut.(F'). It is well-known that
U, is an isomorphism, which we use to give TiqAut.(F') a Lie algebra structure.
Let Xo = [t — v;] € TiqAuto(F). Then

T ev(U1(Xo)(f), 2r(p)) = [t = v o f(p)] = T(Xo)(f(p))

for all p € F and f € Aut,(F). In other words Xy := W(X,) is ev-related to
X := VUy(Xp) under the above embedding, which implies that ¥ is a morphism

of Lie algebras. The idea for the last part of this proof is due to Milnor |37, p.
1041]. 0

Lemma D.3.10. The action
Aut (F) x Xo(F) = X(F), (f,X)—TfoXo f*1

induced by the action of Diff(F') on X(F') is the same as the one induced by the
action of Aut.(F) on TiqAut.(F).

Proof. Let V: TigAut.(F) — Xc(F) be the isomorphism from Lemma |D.3.9, Let
f € Auto(F) and Xo = [t — v;] € TiqAuto(F). If cy is the conjugation with f in
Aut.(F), we calculate

U(Tep(Xo) = U([t = fouvof])=(pr[t — fouvof (p))
= (p T o W(Z)(f ()
as needed. n
Lemma D.3.11. Let v := [t — v] € T?°F and Y € X.(F). Then
Teve(Y,v) = v+ TY (ug)

holds for the evaluation from Remark[D.3.6, whereY is identified with an element
of TiaAut(F) via Lemma[D.3.9 and the sum is taken in T, TF.
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D The Lie Group of Vector Bundle Automorphisms

Proof. Let [t — f;] € TigAut.(F) correspond to Y. We calculate

Tevr([t = (fi,v)]) = Teve([t — (fo,v)]) + T evr([t — (fi,v0)])
= [t = v] + [t = Tfivo)]-

For vy = [s — x5] € TF, we have

[t = Tfills = x])] = [t = [s = filz)]] = [s = [t = filz,)]
= [s = V(2] = TY (v),

where the second equality follows from Schwarz’s theorem.

174



E. Higher Order Tangent Groups

E.1. Higher Order Tangent Lie Groups

This section is mainly taken from [I0, Chapter 24, p.116 ff.]. We use the same
notation for the infinitesimal generators €; as in Chapter [Bl Let G be a Lie group
with multiplication m: G' x G — G and Lie algebra g. Then T*G becomes a Lie
group with the multiplication 7%m. The inclusions of the axes induce inclusions
g=(TGQ). — 1(TG). C (T*G).. Obviously, (T*G). is a closed Lie subgroup of

TG and we have a short exact sequence of Lie groups
1 — (T"GQ). - T"G — G — 1,

which splits along the zero section G — T*G such that T*G = (T*G). x G as Lie
groups. It is well known that T'G = g x G and in the same way, we get an iterated
(left) trivialization

’
Wy : @ ergx G—T'G, ((ejvr)r9) — g H ETVI,

k k
IePy IeP%

where all the products are taken in T*G and HT indicates that the product is
taken in ascending lexicographic order of the index sets (see [10, 24.3, p. 117]).
Formulas for the multiplication and inversion of the induced Lie group structure
on P repk €18 consist of iterated Lie brackets and are given in [10, Theorem 24.7,
p. 119]. The map Wy is an isomorphism of multilinear bundles over G that is the
identity map on the axes. It follows that (T*G). is a polynomial group and from
this, we get the following theorem.

Theorem E.1.1. Let G be a Lie group and k € N. There exists a unique diffeo-
morphism exprra, - (T*g)o — (T*G). such that

(a) the representation of exp(rkey, With respect to the left trivialization is poly-

nomial,

(b) TO eXp(Tkg)e = id(Tkg)O,

(c¢) for alln € Z and v € (T*g)o, we have exprrgy, (nv) = expgrg), (V)™
The inverse of exp(rkg), S polynomial.  For every Lie group automorphism
@: (T*G), — (T*G)., we have @ o expirg), = €xPirgy, oTop.  Identifying
(T g)y = ealeﬂ’i erg in the usual way, the exponential map can be extended in
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E Higher Order Tangent Groups

a G-invariant way to an isomorphism of multilinear bundles

exprrg: G X EB erg — TFG.

k
Tepk

With respect to exprrgy,, the group multiplication of (T*Q). is given by the BCH
multiplication with the nilpotent Lie algebra (T*g)o and the inversion is given by
multiplication with —1. On @Ie?i erg, we get the Lie bracket

Peox Pes— P e,

IePk IePk TePk

(gf(vawf))le?’jr = Z €I<[UV17wV2] + [UwaVl])?
TePk vePs(I)

where [-, -] denotes the Lie bracket of g.

Proof. This is essentially a combination of [10, Theorem 25.2, Theorem 25.4 and
Theorem 25.5, p. 124f.]. That exXp(rke), 18 a diffeomorphism follows from Lemma
C.2.6, With [I0, Theorem 7.5, p. 47f.], we get the formula for the Lie bracket on
P 1eh €10 by differentiating the bilinear Lie bracket [, ]. O

Corollary E.1.2. Let k € N, G be a Lie group with Lie algebra g, g € G and
Ady: g — g be the adjoint action. Then, with respect to exp(pkey, from Theorem
FE.1.1, the action of G on 69163”1 19 induced by the action of G on (T*G), is given

by

G x @ erg — @ €19, (g, (E]U[)[) — (€[Adg(11]))[.

k k
1ePk IePk

Proof. This follows by applying Theorem to the automorphism T%c,: T*G —
T*G, where ¢,: G — G, h+ ghg™"' is the conjugation. ]

As described in Remark|B.2.10, applying the functor ~ to purely even multilinear
spaces can be understood as a substitution of the generators ¢; with the generators
Ai. We use this point of view to make the following statement more readable.

Corollary E.1.3. Let k € N and G = (G, m,i,e) be a Lie group with the Lie
algebra (g, |-, -]). With expprg as in Theorem we have an isomorphism of
multilinear bundles

eXPrkg ’;’6+: G x GB Arg — TkG\;,5+.

IePf |

This isomorphism restricts to a polynomial map

eXp(TkG)e |9:I(§+: @ )\]g — (TkG)e|;,8+

IePf |
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E.2 Higher Order Diffeomorphism Groups

and turns ((TkG)e\;g+,m[;§+,i\;§+,e) into a polynomial group. The induced Lie

bracket [-, -] on ®I€T§+ Arg is given by
[)\[U,)\Jw]k = )\[/\J[U,w}
for I, J € fP’g# and v,w € g.

Proof. With the functoriality of the restriction to P4 0+ and the definition of ~
Lemma [B.2.9] this follows immediately from Theorem [E.1.1] D

E.2. Higher Order Diffeomorphism Groups

This section is mainly taken from [I0, Section 28, p.139ff.]. We subsequently
generalize these results to the group of vector bundle automorphisms.

Let M be a manifold modelled on Fy. We denote the space of sections of the
fiber bundle T*M — M by X*(M). A chart ¢: U — V of M gives rise to a bundle
chart T*p: T*U — T*V and in this chart a section X : M — T*M is given by

with smooth maps X7: V — Ej. There exists a natural group structure on X*(M)
that, in a chart representation, is given by

(X V) —x+251< z) + Y2 () +

1] -
S ¥ Zdé X5 (« (),...,Y,,f(x),...,y,,f(x))), (E.1)
=2 ve?,(I) j

where X7 and Y} are the respective summands in the chart representation of
X2 Y? e X*(M) and Y/\“j(x) means that this term is omitted. The inclusions of
the axes TM — ¢;TM C T*M induce inclusions

X(M) — XM(M), XX

Sections of this type are called wvectorial. Using vectorial sections and the group
structure of X*(M), one gets a canonical bijection

.
P ax(M) - xH(M), (X)) [] e X, (E.2)
IePk IePk

where []' is the product taken in X*(M) in ascending lexicographic order of the
indices I (see [10, Theorem 29.2, p. 144]).
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E Higher Order Tangent Groups

Remark E.2.1. Since we will use similar left trivializations at various other points,
let us explain in some detail why is bijective. We use induction over n in the
following way. Let X € X¥(M), n < k and let X¥(z) = x—i—ZIeﬂﬂ e X7 (x) for all
charts . Note that the property X7 = 0 for I ¢ P"} is invariant under change of
charts. Thus, X™ defined by (X™)#(z) = 90%—2316?1 er X7 (x) is also an element of

X*(M). By induction hypothesis, we can write X = H}ewi erXy. It follows from
E.1 ~that X 1= X -(X™)~1 has the local form X¥(z) = v+ ZI€T1+1\?1 er X7 ().
The XY ., are the local description of an element £, 1) X{n11} € X*(M) because
other components do not contribute under change of charts. Then, in the local
description of X - £(,413(=X{n+1}), only components with I € 9’1“, n+1¢€ I and

I # {n + 1} contribute. Continuing this process inductively with all remaining
sets [ € P\ P in lexicographic order finishes the proof.

This turns X*(M) into a k-multilinear space that is a polynomial group of degree
at most k with the induced vector space structure. As a consequence, one has the
following theorem.

Theorem E.2.2 (|10, Theorem 29.3, p.145|). Let k € N and let M be a manifold.
There exists a unique bijective exponential map

expy: @ erX(M) — X*(M)

k
repk

such that:
(a) In every chart representation expy is a polynomial map,
(b) for alln € Z and X € @Ie?i erX (M) we have exp,(nX) = (exp,(X))" and
(¢) we have expy(e;X) =¢e;X forall I € P, X € X(M).
Moreover, the multiplication on @Ie?i erX(M) with respect to exp,, is given by
the BCH multiplication with respect to the Lie bracket

P =x(M) x P erx(M) — @ e (M),

k k k
IePk IePk 1Pk

<€I(XI>}/}))I€(P§_ = Z (51/15V2[X1/1>YV2] +5u2€l/1 [Xuza 1/1])7
TePk vePs(I)

where [-,-] denotes the Lie bracket of X(M). The inversion with respect to expy
18 simply the multiplication with —1 and both multiplication and inversion are
morphisms of k-multilinear spaces.

Proof. For the most part, this is just [I0, Theorem 29.3, p.145|. That we have
the desired Lie bracket follows readily from the multiplication formula in [10]
Theorem 29.2, p.144]. With this Lie bracket, one sees from the formula of the
BCH multiplication that exp, is a morphism of k-multilinear spaces. For the
inversion this is obvious. [
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E.2 Higher Order Diffeomorphism Groups

Moreover, the pullback by diffeomorphisms defines a group action by automor-
phisms:

Ad: Diff (M) x X¥(M) — X*(M), (f,X)— Ady(X):=TFfoXo f "

The resulting semidirect product X*(M) x Diff (M) is isomorphic to the group
Diff kg (T*M) of automorphisms of T#*M that are smooth over the ring T*R.
This is primarily seen in [I0, Theorem 28.3(3), p.140|, but since in the theorem
the action of the diffeomorphisms is not given on the level of X*(M), we will
briefly explain why our description is the same. It is shown in [10, Theorem
28.3(1), p.139] that any X € X*(M) can be uniquely extended to a diffeomorphism
X € Diffyup(T*M) such that X o z = X for the zero section z: M — T*M.
Furthermore, it is shown that the action of f € Diff(M) on X is given by T f o
Xo Tk f=1. Clearly, we have T¥f~1 o 2 = z o f~. Therefore, it follows

kao)N(oka_loz:kao)?ozof_l:kaoXof_l,

In other words, 7% f o)?oka*1 is an extension of 7% f o X o f~! and by uniqueness
this shows that both descriptions are the same.

Remark E.2.3. Let X*(M) C X*(M) be the sections of T*M with compact
support, i.e., if X € X*(M), then there exists a smallest compact set supp(X) C
M such that X| M\supp(x) €quals the zero section. With the local product formula,
we easily see that for X, Y € X*(M), we have supp(X - Y) C supp(X) Nsupp(Y).
On the other hand, if X has compact support but Y does not, or vice versa, then
(X -Y) clearly does not have compact support. Thus, X*(M) is closed under
multiplication and inversion and therefore a subgroup of X*(M). Of course, the
inclusions of the axes are now given by X.(M) — e;X.(M) — X¥(M) and by the
same argument as for the inversion, the bijection restricts to a bijection

@ erx.(M) — XE(M).

TePk

Furthermore, one also sees that for f € Diff(M) and X € X¥M),
we have supp(T*f o X o f7!) = f(supp(X)) and therefore the semidi-
rect product X¥(M) x Diff(M) is defined and we get a respective subgroup
Diff g (T* M), C Diffpup(T*M). Finally, we denote by Diff g (T*M)¢ the sub-
group of Diff g (T*M) that corresponds to X¥(M) x Diff.(M).

Lemma E.2.4. If M is a o-compact finite-dimensional manifold, then there exist
natural isomorphisms of groups

(T*Diff (M))ia = X (M)

and
T*Diff (M) =2 Diffyug (T M).,.

179



E Higher Order Tangent Groups

The latter restricts to an isomorphism
TFDiff (M) = Diff pug (T M)C.

Proof. We identify (T*Diff(M))iq and X%(M) with @, pr e1X.(M) via the re-
spective exponential maps. It follows from Theorem and Theorem [E.2.2]
that both bijections induce exactly the same group structure on the direct sum.
Since the groups T*Diff(M) and Diff ;g (T*M),. both arise as semidirect prod-
ucts with the above direct sum, all that is left to show is that the action of
Diff (M) on the direct sum is the same for both groups. For this, it suffices
to compare the actions on the axes. Let f € Diff(M) and X € X.(M). In
the case of £;X € T*Diff(M), we calculated in Corollary that f acts by
Ady(erX) = e/Tf o X o f~1. If we interpret ;X € X¥(M), then we have seen
above that the action of f is given by T%f o ;X o f~! but by Lemma we
have

TFfoeXoft=eTfoXofL O

It is apparent that Bertram defined Diff 7xp (7% M) with the above connection to
T*Diff (M) in mind.

E.3. Higher Order Bundle Automorphism Groups

Definition E.3.1. Let 7: FF — M be a vector bundle with typical fiber F;, where
M is modelled on Ej. We define the subspace of bundle sections & (F) C X(F)
as the sections X : F' — T'F such that for every bundle chart p: V — U x E}, we
have the local description X¢ = (X, X7) with smooth maps X¢: U — Ey and
XY: U x E; — Ey, where the latter is linear in the second component.

Lemma E.3.2. In the situation of Definition % (F) is a Lie subalgebra of
X(F). Ifn’: F' — M’ is another vector bundle and X € I (F) and X' € X(F") are
U-related for a vector bundle isomorphism V: F — F', then we have X' € % (F").

Proof. Let ¢: V — U x E; be a bundle chart of F and X,Y € ¥ (F). For
(x,v) € U x Ey, we calculate

dX?((z,v), Yy (z,v))
= (dX¢ (2, Yy (@), diX{ ((2,v), Y (2)) + X{ (2, YY" (2, v))).

The second component of this expression is linear in v and thus so is the second
component of

(X, Y]?(z,v) = dX?((z,v), Y¥(z,0)) — dY¥((z,v), X?(z,0)).

For the second claim, let F” have typical fiber Ef, let M’ be modelled on E{, and
let ¢': V' — U’ x E{ be a bundle chart of F'. Let ¢ := (¢,11) be the local
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E.3 Higher Order Bundle Automorphism Groups

description of ¥ in ¢ and ¢'. After restricting, we may assume 1o(U) = U’. We
have ,
(T¥oX oW )" =pryodio (idyxp,, X¥) o™

Let v~ ! = (¢, 97 1). For (z,v) = (¥ 1(2"), ¢y (2, v")), where (2/,v") € U’ x By,

we calculate

pryody o (idyxp,, X¥)(x,v)
= (v, X (@), it (1 0), X§ (@) + (. X (2, 0))).

Because the second component of this expression is linear in v, we have shown
TVoXoUleX(F). m

Lemma /Definition E.3.3. Let 7: FF — M be a vector bundle with typical fiber
Ey, where M is modelled on E,. We define 2%(F) C X*(F) as those sections
X: F — TFF that with respect to a bundle chart ¢: V — U x E; (and the
respective chart T*yp) are represented by

X?(x,v) = (x,v) + Z er X (x,v),
TePk
with X7 = (X}fo,X}‘jl). Here X}foz U — Ey and X}flz U x Fy — E; are smooth
maps and the latter is linear in the second component. Then % *(F) is a polynomial

subgroup of X*(F) and the trivialization (E.2)) restricts to the trivialization

1

P o) -2 F), (XD [] X0,

k k
IePk IePk

where the product is taken in %*(F) in ascending lexicographic order. Likewise,
the exponential map from Theorem restricts to a bijective map

expy, : @ % (F) — XF(F)

TePk
with analogous properties. Finally, we define
Autpap(TFF) := XF(F) x Aut(F)
which is a subgroup of Diff pup(T*F).

Proof. Since X*(F) is a polynomial group, every Lie subalgebra is also a polyno-
mial subgroup. Thus, % *(F) is a polynomial subgroup by Lemma We have
again inclusions % (F) — X*(F), X +— ;X of the axes and we use the same
arguments as in Remark to see that the trivialization is bijective. From this,
we deduce that the exponential map restricts as needed. Lemma[E.3.2] shows that
the action of Aut(F) C Diff(F) on X*(F) is well-defined. O
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Remark E.3.4. Bertram introduces an additional infinitesimal generator to de-
scribe the structure of T*F in [10, Theorem 15.5, p.81|, which one could also use
to define Autpwg(T*F). However, this does not fit our needs because it would not
correspond to the way the generators A; relate to superdiffeomorphisms.

Definition E.3.5. Let FF — M be a vector bundle such that M is finite-
dimensional and let 7p: TF — F, as well as mp,: F' — M, be the projections.
For k € N, we define supp(X), the support of X € %*(F), as the smallest closed
subset K C M such that X |7r;1 (T (M\K)) = 0. We then let

XEF) = {X € X*(F): supp(X) is compact}.

Remark E.3.6. Let m: FF — M be a vector bundle with typical fiber £;. Com-

paring Definition and Remark {4.1.15, we see that & (F) and X (:}(F))5 can
be identified. Taking into account Definition [£.1.8 and Definition [E.3.5] the same

holds for X.(F) and X.(.}(F))g if M is finite-dimensional. If, in addition, F; is
a Banach space, we denote by X.(F), the space of sections &.(F) equipped with
the topology induced by X (¢;(F))g,. In other words, we consider X € % (F), to
have the local form

X% = (X§,XT7) e C™(U,, Ey) x C>*(Uy, Glg,),
where Fj is the model space of M.

Lemma E.3.7. Let F' be a vector bundle with finite-dimensional base manifold
M. Then X.(F) is a Lie subalgebra of % (F) and %k (F) is a polynomial subgroup
of X*(F) for every k € N. Moreover, the left trivialization and the exponential
map restrict to bijections

;
GB Ke(F) = XLF), (Xp)r— H er Xy

k k
IePk IePk

and
expy: @D er%(F) — XE(F).

k
IePh

Finally, the restricted action of Aut.(F) on XK (F) is well-defined and we let
Autprg(TPF), := XF(F) x Aut (F).

Proof. 1t follows immediately from the local description in Lemma that
supp(X - Y) C supp(X) Nsupp(Y). Thus, we can use the same arguments as
in Remark to see that F(F) is a subgroup of X*(F) and that the left
trivialization restricts as claimed. This implies that the exponential map restricts

as well. It also follows from the calculations in Lemma [E.3.2] that the action of
Aut.(F) on X*(F) is well-defined. O
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Lemma /Definition E.3.8. Let F' — M be a vector bundle and k£ € N. We con-
sider the polynomial group X*(F) = (X*(F),m,,0) as a k-multilinear space via
expy, : @IefPi 1% (F) — X*(F). Then E’)C’“(F)H,,(§+ = (96’“(F)|;,5+,m|;,5+,i|ﬂ:,5+,0)
is also a polynomial group and the group structure induced on &P IET}S# A I@C(F )

via exp, is given by the BCH multiplication with regard to the Lie bracket

%
»+
defined by

M X, N Y) = M\ [X Y] for XJY € X(F),

where [-, | denotes the Lie bracket of % (F'). We have a group action by automor-
phisms

Adly, + Aut(F) x XHF) — XHF),  (f,X) = Adgly, (X)
0,+ 0,+
and the induced action on € 1€, A (F) is given by
(f, M X) = MAdp(X) = \TfoXof!

for f € Aut(F), X € %(F) and I € P . We define the group

AutTkR<TkF)|;§+ = 96’“(F)|gj,(§+ X Aut(F).
If M is finite dimensional, we analogously define
AutTkR(TkF)C|;,5+ = 9)65(F)|9:§+ x Aut.(F)

via expf, from Lemma [E.3.7]
Proof. That X*(F)|,
0,+

multilinear spaces and the involved functors preserve products. The description of
the Lie bracket of €9 Iepk € 1 X(F) from Theorem shows that the Lie bracket

is as claimed. Since Ad; is an automorphism of the k-multilinear space X*(F),
Adf|;k acts well-defined as needed. The same arguments carry over to the case
0,+

is a group is obvious since m and ¢ are morphisms of k-

of com7pact support. ]

Lemma E.3.9. Let k € N and F be a Banach vector bundle over a o-compact
finite-dimensional base M. Then we have isomorphisms of groups

THAut.(F) = Autpep(TFF),

and

TFAut(F)|,, = Autpeg(THF)

|u_>g,+ Clo_ﬂg#'

Proof. By Theorem and Lemma [E.3.7, the Lie group (T*Aut.(F)),q and
the polynomial group &¥(F) induce the same group structure on @;cpr £1%(F)
because the induced Lie algebra on %.(F) is the same by Lemma |[D.3.9. That

Aut.(F') acts the same way in both cases follows like in Lemma using Lemma
[D.3.10jand Corollary[E.1.2] From this, we also obtain the second isomorphism. [
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