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Abstract

In this thesis, we provide an accessible introduction to the theory of locally convex
supermanifolds in the categorical approach with a focus on Lie supergroups and
the supergroup of superdiffeomorphisms. In this setting, a supermanifold is a
functorM : Gr!Man from the category of Grassmann algebras to the category
of locally convex manifolds that has certain local models, forming something akin
to an atlas. We give a mostly self-contained, concrete definition of supermanifolds
along these lines, closing several gaps in the literature on the way. If Λn ∈ Gr is
the Grassmann algebra with n generators, we show thatMΛn has the structure of
a so called multilinear bundle over the base manifoldMR. We use this fact to show
that the projective limit lim −nMΛn exists in the category of manifolds. In fact, this
gives us a faithful functor lim − : SMan!Man from the category of supermanifolds
to the category of manifolds. This functor respects products, commutes with the
respective tangent functor and retains the respective Hausdorff property. In this
way, supermanifolds can be seen as a particular kind of infinite-dimensional fiber
bundles.
For Lie supergroups, we use similar techniques to show several useful trivial-

izations. For a Lie supergroup G, it holds GΛn
∼= ker(GεΛn ) o GR as Lie groups,

where ker(GεΛn ) is a so called polynomial group. Moreover, we construct a canon-
ical decomposition of G into a purely even and a purely odd part. Using this, we
are able to generalize the classical equivalence between Lie supergroups and super
Harish-Chandra pairs to the case of arbitrary locally convex Lie supergroups.
The supergroup of superdiffeomorphisms of M is a certain functor

SDiff(M) : Gr ! Set that captures even and odd aspects of supersmooth trans-
formations ofM. As a tool for our study of superdiffeomorphisms, we introduce
spaces of sections of super vector bundles, and in particular super vector fields,
turning them into suitable locally convex spaces. We show that SDiff(M) has
essentially the same decompositions as a Lie supergroup for an arbitrary super-
manifoldM and we discuss the respective components in detail. IfM is a Banach
supermanifold such thatMR is finite-dimensional and σ-compact, we are able to
turn the supergroup SDiffc(M) of superdiffeomorphisms with compact support
into a Lie supergroup.



German translation: In dieser Arbeit stellen wir eine zugängliche Einführung in
die Theorie lokalkonvexer Supermannigfaltigkeiten im Rahmen des kategoriellen
Ansatzes vor. Hierbei wird ein besonderer Schwerpunkt auf Lie-Supergruppen
und die Supergruppe der Superdiffeomorphismen gelegt. In diesem Zugang ist
eine Supermannigfaltigkeit ein Funktor M : Gr ! Man von der Kategorie der
Grassmann-Algebren in die Kategorie der lokalkonvexen Mannigfaltigkeiten, der
bestimmte lokale Modelle besitzt, die etwas wie einen Atlas bilden. Wir geben
eine, im wesentlichen in sich geschlossene, konkrete Definition von Supermannig-
faltigkeiten, wobei wir einige Lücken in der Literatur schließen. Wir zeigen, dass
MΛn ein sogenanntes multilineares Bündel über der BasisMR ist, wenn Λn ∈ Gr
die Grassmann-Algebra mit n Erzeugern ist. Wir nutzen dies aus um zu zeigen,
dass der projektive Limes lim −nMΛn in der Kategorie der Mannigfaltigkeiten ex-
istiert. Dies liefert uns einen treuen Funktor lim − : SMan ! Man von der Kate-
gorie der Supermannigfaltigkeiten in die Kategorie der Mannigfaltigkeiten. Dieser
Funktor erhält Produkte, vertauscht mit dem jeweiligen Tangentialfunktor und
erhält die jeweilige Hausdorff Eigenschaft. Auf diese Weise können wir Superman-
nigfaltigkeiten als eine besondere Art von unendlich-dimensionalen Faserbündeln
betrachten.
Mittels ähnlicher Techniken erhalten wir einige nützliche Trivialisierungen von

Lie-Supergruppen. Für jede Lie-Supergruppe G gilt GΛn
∼= ker(GεΛn ) o GR als

Lie Gruppe. Hierbei ist ker(GεΛn ) eine sogenannte polynomielle Gruppe. Darüber
hinaus konstruieren wir eine kanonische Zerlegung von G in einen rein geraden und
einen rein ungeraden Teil. Dies erlaubt uns die klassische Äquivalenz zwischen
Lie-Supergruppen und Super-Harish-Chandra-Paaren auf den Fall lokalkonvexer
Lie-Supergruppen zu verallgemeinern.
Die Supergruppe der Superdiffeomorphismen vonM ist ein bestimmter Funktor

SDiff(M) : Gr!Man, der gewisse Aspekte gerader und ungerader Transforma-
tionen vonM beschreibt. Als Hilfsmittel zur Untersuchung von Superdiffeomor-
phismen führen wir Räume von Schnitten von Supervektorbündeln, und insbeson-
dere Supervektorfelder, ein und geben ihnen die Struktur geeigneter lokalkonvexer
Räume. Wir zeigen, dass SDiff(M) sich im Wesentlichen genau wie eine Lie-
Supergruppe zerlegen lässt und untersuchen die Bestandteile im Detail. FallsM
eine Banach-Supermannigfaltigkeit mit σ-kompakter, endlich-dimensionaler Ba-
sis MR ist, gelingt es uns, der Supergruppe SDiffc(M) der kompakt getragenen
Superdiffeomorphismen die Struktur einer Lie-Supergruppe zu geben.

vi



Introduction

In this thesis, we aim to provide an accessible introduction to the theory of infinite-
dimensional supermanifolds as defined by Molotkov in [38]. Beyond generalizing
his results and closing gaps in the literature, we attempt to lay the foundations of
a general structure theory for locally convex supermanifolds by discussing their in-
herent bundle structure. Applied to Lie supergroups, this enables us to understand
an arbitrary locally convex Lie supergroup in terms of its Lie superalgebra and
the action of its base Lie group thereon (i.e. in terms of its super Harish-Chandra
pair). Similar techniques let us describe the supergroup of superdiffeomorphisms
of a, not necessarily finite-dimensional, supermanifold in some detail, culminating
in the construction of a Lie supergroup structure for the superdiffeomorphisms of
an appropriate class of supermanifolds.
Supermanifolds were developed in the early 1970’s to provide a framework for a

geometry combining commuting and anticommuting coordinates, with the original
motivation coming from particle physics. There have been various, not all equiv-
alent, approaches to achieve this. The first, and most commonly used, rigorous
definition of a supermanifold is as a ringed space due to Berezin and Lěites [9] (see
also [8]). The basic idea is to enlarge the structure sheaf of a manifold to a sheaf
of superrings that is locally isomorphic to the sheaf of functions with values in an
exterior algebra. In the case of real supermanifolds, an equivalent approach using
Hopf algebras was proposed shortly thereafter by Kostant in [32]. In an attempt
to make the language of supermanifolds more accessible to physicists, DeWitt [15]
and Rogers [43] introduced a definition of supermanifolds mirroring the one of
ordinary manifolds, which we will call the concrete approach. Simply put, from
this point of view supermanifolds are modelled locally on a certain exterior algebra
such that the transition functions satisfy suitable conditions. More recent works
in this regard include [53] and [44]. A comparison between the sheaf theoretic and
the concrete approach can be found in [4].
In many situations, infinite-dimensional objects arise naturally that one would

like to endow with an appropriate “super” structure. For example, it is well-known
that the even and odd vector fields of a finite-dimensional compact supermanifold
form a Fréchet super vector space. Other examples include mapping spaces be-
tween supermanifolds or supergroups of gauge transformations. However, all the
approaches mentioned are restricted to the finite-dimensional case. In fact, not
even all infinite-dimensional ordinary manifolds can be described by their sheaf of
functions (see [57]) and for supermanifolds additional obstacles appear (compare
[1, p.587]). These problems notwithstanding, in the case of analytic superman-
ifolds, Schmitt [48] was able to extend the sheaf theoretic approach to include
infinite-dimensional supermanifolds. More generally, following Kostant’s approach
via Hopf algebras and an idea of Batchelor from [7], a definition of R-Fréchet su-
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Introduction

permanifolds using coalgebras was devised in [30]. With regard to the concrete
approach, possible topological problems which limit its applicability to infinite-
dimensions were suggested in [1].
The first rigorous definition of infinite-dimensional supermanifolds, and also the

one we will use in this work, is the categorical approach suggested by Molotkov in
[39].1 In this approach supermanifolds are defined to be functors from the category
of finitely generated Grassmann algebras Gr to the category of manifolds Man
with additional local information contained in an ‘atlas’ consisting of certain nat-
ural transformations. Let us briefly relate this to the sheaf theoretic approach. In
the latter, the functor of points (i.e., the Yoneda embedding) has long been known
to be a useful tool (see for example [34]). Moreover, to fully understand the func-
tor of points, it suffices to consider supermanifolds whose base manifold is a single
point, the so called superpoints. The superpoints are parametrized by the Grass-
mann algebras and for every superpoint P the set of morphisms HomSMan(P ,M)
to a given supermanifoldM can be turned into a smooth manifold. In this way one
obtains a functor Gr!Man. Shvarts [52] and Voronov [54] had the idea to use
such functors to define finite-dimensional supermanifolds and Molotkov extended
this definition to infinite-dimensional supermanifolds.2 We call this the categorical
approach.
Because of its close relation to the functor of points, some of the intuition from

the finite-dimensional situation carries over to the infinite-dimensional setting. For
example, the definition of an internal Hom and the related superdiffeomorphisms
are obtained quite easily in this way (see [40, 8.2, p.415 and 8.4, p.417]). Using
this, Hanisch [27] was able to endow the inner Hom object of two finite-dimensional
supermanifolds with a supermanifold structure in Molotkov’s framework. Another
nice feature of the categorical approach is that the definition of finite-dimensional
and infinite-dimensional supermanifolds, along with their morphisms and their
tangent bundles, is exactly the same. No special topological considerations are
necessary. Similarly, as has been shown in [1], it lends itself to easy generalization
beyond the real or complex case. What is more, many constructions and calcu-
lations can essentially be done pointwise, i.e., for every Grassmann algebra. This
means that for finite-dimensional supermanifolds one often only has to deal with
finite-dimensional ordinary manifolds.
Despite these advantages, the categorical approach has rarely been used and

even where it appears, it is usually only applied half-heartedly. For instance, when
superspaces of morphisms between supermanifolds are considered, the morphisms
are usually expressed in the sheaf theoretic language (see for example [47], [27]
and [12]). The reason for this lack of interest appears to be twofold. For one, the
categorical language of natural transformations, Grothendieck topologies, sheaves
in categories and so on is rather abstract and not part of the usual toolbox em-
ployed in the field of analysis. This is then exacerbated by the fact that Molotkov’s
foundational article [39] (resp. [40]) contains almost no proofs. While some proofs

1Throughout this work, we will cite the more readily available and slightly updated article [40].
2 Most statements in [40] are made for Banach supermanifolds but many can be easily trans-
ferred to Fréchet or locally convex supermanifolds (compare [40, 8.5, p.418]).
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for Molotkov’s statements were subsequently offered by Sachse in [45] and [46],
he often falls back to the sheaf theoretic approach so that the statements are not
shown in their original generality and one obtains little intuition for the categorical
approach.
We attempt to remedy both of these problems in this thesis. On the one hand,

we give a complete definition of infinite-dimensional supermanifolds and their mor-
phisms, proving all statements that we use (with the rare exception where the proof
in the literature can directly be applied to our situation and is relatively straight-
forward). On the other hand, we simplify the categorical language as much as
possible. As it turns out, one can develop the categorical approach in fairly con-
crete terms closely resembling the definition of ordinary manifolds. In this way,
we completely avoid dealing with more involved questions like representability.
Remarkably, this concrete point of view leads to a canonical faithful functor

from the category of supermanifolds to the category of manifolds. This functor
has good properties such as respecting products (i.e., mapping Lie supergroups
to Lie groups), commuting with the respective tangent functor and retaining the
respective Hausdorff property. It can be turned into an equivalence of categories
if one considers a specific type of fiber bundles on the right-hand side. In other
words, we may consider supermanifolds as ordinary manifolds with a particular
kind of atlas in a canonical, well-behaved way. All non-trivial supermanifolds
are at best mapped to Fréchet manifolds and one wonders whether techniques of
infinite-dimensional analysis could prove useful in finite-dimensional superanalysis.
To streamline our work, we only consider supermanifolds over the base field R.

However, many of our constructions derive from [1] and [10], where much more
general fields and even rings are considered. We have consciously formulated our
proofs in such a way that they can easily be generalized where possible. The
only noteworthy obstacles to such generalizations are Batchelor’s Theorem (which
necessitates a partition of unity) and combinatorial formulas which do not allow
for base rings with positive characteristic. For the latter, we indicate ways around
the problem.
Many standard constructions for supermanifolds and Lie supergroups are beyond

the scope of this thesis, but we hope to have provided the reader with the tools
to rectify this with relative ease. While equivalences between certain categories of
supermanifolds in the sheaf theoretic, the concrete and the categorical approach
have been discussed in some detail in [1], it is not immediately obvious how objects
like vector fields can be translated between the different points of view. More
work to this effect will be critical to enable one to pick and choose effectively
which approach is most suitable for the problem at hand. One final drawback of
our work that should not go unmentioned is that in trying to be as concrete as
possible, we lose some of the intuition offered by the functor of points approach.
Thus, a close reading of [40] is still advisable.
This thesis is organized in three parts. In Chapter 1, we summarize several

key concepts that are standard in their respective fields but are possibly not gen-
erally well-known. This includes the locally convex differential calculus, functor
categories, algebraic structures in categories and some multilinear super algebra.
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Introduction

Chapter 2 discusses supermanifolds and super vector bundles. Lie supergroups
are dealt with in Chapter 3. Finally, in Chapter 4, we deal with the supergroup
of superdiffeomorphisms. To this end, we also introduce and topologize spaces
of sections of super vector bundles and discuss the group of automorphisms of a
supermanifold.

Supermanifolds

A Grassmann algebra is a free associative R-algebra Λn := R[λ1, . . . , λn], where
the generators satisfy the relation λiλj = −λjλi. There exists a natural grading
Λn = Λn,0 ⊕ Λn,1 and the set of objects {R,Λ1,Λ2, . . .} together with the graded
morphisms form the category Gr of Grassmann algebras. Generators of Grass-
mann algebras behave infinitesimally in the sense that λ2

i = 0 and we will see that
for this reason (together with functoriality) the structure of supermanifolds has
many similarities to the structure of higher tangent bundles. This enables us to
make heavy use of the techniques developed by Bertram in [10] for dealing with
higher tangent bundles, higher tangent groups and higher order diffeomorphism
groups.
As mentioned, we want to define supermanifolds as functors from the category

of Grassmann algebras to the category of manifolds with certain local models. In
analogy to ordinary manifolds, we begin by describing the differential calculus on
the model space:
1. Instead of a vector space, the model space of a supermanifold is a functor of

the form

E : Gr! Top, Λ 7! EΛ := (E0 ⊗ Λ0)⊕ (E1 ⊗ Λ1),

where E = E0 ⊕ E1 is a Z2-graded Hausdorff locally convex vector space and
EΛ is given the obvious product topology. Then EΛ is a Λ0-module and the
functor E has the structure of a so called R-module in the category TopGr.

2. Open subsets of the model space correspond to open subfunctors, i.e. functors

U : Gr! Top

such that UΛ ⊆ EΛ is open for all Λ ∈ Gr and the inclusion is a natural
transformation. We call such functors super domains. One can show that
superdomains have the form

UΛ = UR × (E0 ⊗ Λ+
0

)× (E1 ⊗ Λ1),

where Λ+
0
is the nilpotent part of Λ0.

3. Smooth functions correspond to supersmooth morphisms, i.e. natural transfor-
mations

f : U ! F

4



such that fΛ is smooth for all Λ ∈ Gr and

dfΛ : UΛ × EΛ ! FΛ

is Λ0-linear in the second component.
Using the infinitesimal behavior of the generators, one obtains an “exact Taylor
expansion” for supersmooth morphisms. This can then be used to identify a su-
persmooth morphism f : U ! F with its skeleton, i.e., a family (fk)k∈N0 of maps
fk : UR ! Altk(E1, Fk mod 2) that are smooth in an appropriate sense. Skeletons
are of utmost importance for many proofs and the description of spaces of super-
smooth morphisms.
A supermanifold is defined to be a functorM : Gr!Man, Λ 7!MΛ such that

there exists an atlas of natural transformations ϕα : Uα !M from superdomains
Uα toM for which any change of charts is supersmooth. If εΛn : Λn ! R denotes
the natural projection, we show thatMεΛn

: MΛn !MR givesMΛn the structure
of a so called multilinear bundle of degree n over the base manifoldMR (compare
[10]). What is more, we show in Theorem 2.3.11 that the family (MΛ)Λ∈Gr gives
one an inverse system of such bundles and that the limit lim −nMΛn exists in the
category of manifolds. This provides us with the functor

lim − : SMan!Man

from the category of supermanifolds to the category of manifolds mentioned above.
Multilinear bundles and their limits are discussed in Appendix B.
In the sheaf theoretic approach every manifold together with its sheaf of func-

tions is clearly a supermanifold. For us the situation is a bit more complicated
since a manifold is not a functor Gr ! Man. However, there exists a natural
embedding

ι : Man! SMan

introduced by Molotkov in [38]. In Proposition 2.3.16, we give a description of
ι(M) via higher tangent bundles of the manifold M , which is particularly useful
for understanding Lie supergroups. Similarly, Molotkov constructed a faithful
functor

ι1∞ : VBun! SMan

from the category of vector bundles to the category of supermanifolds. He showed
in [39] that any supermanifold whose base manifold allows a partition of unity is
(non-canonically) isomorphic to a supermanifold that comes from a vector bundle.
Since this result, generally known as Batchelor’s Theorem, is important for us and
[39] is rather difficult to find, we briefly summarize its proof.

Lie Supergroups

A Lie supergroup is simply a group object in the category SMan. In particular,
if G is a Lie supergroup then GΛ is a Lie group for every Λ ∈ Gr. Taking the

5



Introduction

Lie algebra of each Lie group GΛ leads in a natural way to a Lie superalgebra g
functorially associated to G. We get a short exact sequence of Lie groups

1! ker(GεΛ)! GΛ ! GR ! 1

that splits along GηΛ
, with ηΛ : R ! Λ the natural embedding. Since the group

operations are morphisms of multilinear bundles, we see that ker(GεΛ) is a poly-
nomial Lie group (see Appendix C and compare [10]), which provides us with an
exponential map

expGΛ : gΛ+ ! ker(GεΛ)

that is a diffeomorphism even in the locally convex setting. Together with the
action of GR on ker(GεΛ), this effectively describes the Lie group structure of GΛ,
but the supersmooth structure is better understood with the trivialization

ι(GR)Λ × g1Λ ! GΛ, (g, v) 7! g · expGΛ(v).

Combining both, we generalize the classical correspondence between super Harish-
Chandra pairs and Lie supergroups to the case of arbitrary locally convex Lie
supergroups in Theorem 3.3.8. One consequence is that every Lie supergroup G
is completely determined by GΛ2 . A brief discussion of classical Lie supergroups
finishes the chapter.

The Supergroup of Superdiffeomorphisms

We start by discussing spaces of sections of super vector bundles. While we are
able to turn such spaces into locally convex vector spaces for arbitrary super vector
bundles, in the special case of super vector bundles whose fiber is Banach over a
Banach supermanifold with finite dimensional base, we introduce another topology
that is more suitable to our needs.
Next, we examine the structure of the group Aut(M) of automorphisms of a

supermanifoldM. One has a short exact sequence

1! Autid(M)! Aut(M)! Aut(MΛ1)! 1,

where Autid(M) is the group of automorphisms that are the identity onMΛ1 and
Aut(MΛ1) is just the group of vector bundle automorphisms ofMΛ1 . The former
is a so called pro-polynomial group (see Appendix C) and when Batchelor’s The-
orem applies, the sequence splits. This enables us to turn the group Autc(M) of
compactly supported automorphisms3 of a σ-compact Banach supermanifold with
finite-dimensional base into a Lie group. The Lie group structure of Autc(MΛ1) is
discussed in Appendix D. This generalizes results by Wockel and Sachse from [47],
where automorphisms of compact finite-dimensional supermanifolds were consid-
ered.

3Given the bundle structure of supermanifolds, “compactly supported” generally means com-
pactly supported on the base.

6



As mentioned, the categorical approach allows for an easy definition of the
supergroup SDiff(M) of superdiffeomorphisms of a supermanifold M. Even if
M is infinite-dimensional, SDiff(M) shows appropriate behavior as a functor
Gr ! Set: It is a supergroup (i.e. a group object in the category SetGr) and
SDiff(M)R = Aut(M). Further, every supersmooth action of a Lie supergroup on
a supermanifoldM factors through a natural action of the supergroup of superdif-
feomorphisms ofM (see [40, Proposition 8.4.2, p.417]). Like with Lie supergroups,
we have a split short exact sequence

1! ker(SDiff(M)εΛ)! SDiff(M)! Aut(M)! 1,

where ker(SDiff(M)εΛ) is a polynomial group. Sachse and Wockel [47] attempted
to use this splitting to define a Lie supergroup structure on SDiff(M) in the case
of M being a compact finite-dimensional supermanifold. However, as already
discussed for Lie supergroups, this splitting does not explain the supersmooth
structure very well and the attempt failed (see Remark 4.4.15).4 Instead, like for
Lie supergroups, we use a trivialization of the form

SDiff(M)0 ×X (M)1 ! SDiff(M),

where SDiff(M)0 is the supergroup of purely even superdiffeomorphisms and
X (M)1 is the space of odd vector fields. If the structure of a Lie supergroup
on SDiff(M) exists, then ι(Aut(M)) ∼= SDiff(M)0 as Lie supergroups must hold.
Indeed, in the case of a σ-compact finite-dimensional manifold M , we see that

ι(Diffc(M)) ∼= SDiffc(ι(M)).

More generally, ifM is a σ-compact Banach supermanifold with finite-dimensional
base, we are able to turn the compactly supported superdiffeomorphisms
SDiffc(M) into a Lie supergroup in this way. For arbitraryM, we use the higher
order tangent groups studied by Bertram in [10] as a substitute of the functor ι to
describe SDiff(M)0 in some detail. The necessary constructions are discussed in
Appendix E.

4I am thankful to C. Wockel and T. Ohrmann for pointing out that the change of charts obtained
in this way is not supersmooth.
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1. Preliminaries and Notation

We set N := {1, 2, . . .} and N0 := {0, 1, 2, . . .}, respectively. Let k ∈ N0. Through-
out this work, we will write k := k mod 2 ∈ {0, 1}. We denote by Sk the
symmetrical group of order k and let sgn(σ) ∈ {1,−1} be the sign of a permu-
tation σ ∈ Sk. If R is a unitary commutative ring and E1, . . . , Ek, E and F are
R-modules, we let LkR(E1, . . . , Ek;F ) be the R-module of R-k-multilinear maps

f : E1 × · · · × Ek ! F.

On LkR(E;F ) := LkR(E, . . . , E;F ), Sk acts from the left via

f ◦ σ(v) := f(vσ) := f(vσ(1), . . . , vσ(k))

for f ∈ LkR(E;F ), σ ∈ Sk and v = (v1, . . . , vk) ∈ Ek. We denote by AltkR(E;F ) ⊆
LkR(E;F ) the space of alternating R-k-multilinear maps.
IfR is additionally a topological ring and the modules are topologicalR-modules,

we denote by LkR(E1, . . . , Ek;F ) and LkR(E;F ) the respective R-module of con-
tinuous R-k-multilinear maps and let AltkR(E;F ) be the subspace of continuous
alternating maps.
We let L0

R(E;F ) = Alt0
R(E;F ) := F . If R = R, we simply write Lk(E;F ),

Lk(E1, . . . , Ek;F ), Lk(E1, . . . , Ek;F ), Lk(E;F ), Altk(E;F ) and Altk(E;F ). In
this case, we define the projection

Ak : Lk(E;F )! Altk(E;F ), f 7!
∑
σ∈Sk

sgn(σ)

k!
f ◦ σ,

which clearly also defines a projection Ak : Lk(E;F )! Altk(E;F ).

1.1. Partitions

We largely use the notation of [10] for partitions. Let A be a finite set. A partition
of A is a subset ν = {ν1, . . . , ν`} of the power set P(A) of A such that the sets νi,
1 ≤ i ≤ `, are non-empty, pairwise disjoint and their union is A. In this situation,
we call A the total set of ν and let ν := A. We define the length of the partition ν
as `(ν) := |ν|. Furthermore, we denote by P(A) the set of all partitions of A and
by P̀ (A) the set of all partitions of A of length `. If |A| is even, then we define
P(A)0 as those partitions which only contain sets of even cardinality and P̀ (A)0

as the partitions from P(A)0 of length `.
For k ∈ N, we define Pk := P({1, . . . , k}) and Pk+ := Pk\{∅}. Occasionally, it will

9



1 Preliminaries and Notation

be convenient to consider only subsets of even, resp. odd, cardinality and we define
Pk0 := {A ∈ Pk : |A| even}, Pk1 := {A ∈ Pk : |A| odd} as well as Pk0,+ := Pk0\{∅}. As
a convention, {i1, . . . , ir} ⊆ {1, . . . , k} is understood to imply i1 < . . . < ir. With
this, the lexicographic order induces a total order on the power set Pk and every
partition ν can be viewed as an ordered `(ν)-tuple, which we will do in the sequel
(compare [10, MA.4, p.170]). There is another total order on Pk that will be useful
for us: On Pk0 and Pk1, we use the order induced by Pk but for all B ∈ Pk0 and all
C ∈ Pk1, we let B < C. We will specify whenever we want to use this order which
we will call the graded lexicographic order . For a partition ν = (ν1, . . . , ν`), we
define e(ν), resp. o(ν), as the number of sets in ν with even, resp. odd, cardinality.
In other words, in the graded lexicographic order, we have

ν1 < . . . < νe(ν)︸ ︷︷ ︸
even cardinality

< νe(ν)+1 < . . . < νe(ν)+o(ν)︸ ︷︷ ︸
odd cardinality

.

Let A be a finite set and ν, ω ∈P(A). We call ν a refinement of ω, or ω coarser
than ν, and write ω � ν if for every set L ∈ ν there exists a set O ∈ ω such that
L ⊆ O. For ω � ν and O ∈ ω, we define the ν-induced partition of O by

O|ν := {L ∈ ν|L ⊆ O} ∈P(O).

In this situation, {ω1|ν, . . . , ω`(ω)|ν} is a partition of the finite set ν. One easily
checks that this defines a one-to-one correspondence between partitions that are
coarser than ν and P(ν).

1.2. The Category of Grassmann Algebras

For any k ∈ N0, we let Λk := R[λ1, . . . , λk] be the unital associative algebra freely
generated by the generators λi with the relation λiλj = −λjλi for all i, j ∈ N. Note
that this implies λiλi = 0. For I = {i1, . . . , i`} ⊆ N with 1 ≤ i1 < . . . < i` ≤ k,
we set λI := λi1 · · ·λi` . These so called Grassmann algebras have a natural Z2-
grading given by Λk,0 :=

⊕
I∈Pk0

λIR and Λk,1 :=
⊕

I∈Pk1
λIR which, with the

product topology, turns them into topological R-algebras. A morphism ϕ : Λ! Λ′

between two Grassmann algebras is a morphism of unital R-algebras that is even
in the sense that

ϕ(Λi) ⊆ Λ′
i

for i ∈ {0, 1}.

We denote by Gr the category of Grassmann algebras, and for every n ∈ N0, we
let Gr(n) be the full subcategory containing only the objects Λ0, . . . ,Λn. For the
sake of convenience, we let Gr(∞) := Gr.

We denote the subalgebra of nilpotent elements of Λ by Λ+ and set Λ+
1

:= Λ1

and Λ+
0

:= Λ+ ∩ Λ0. For every m ≥ n ≥ 0, we fix morphisms εm,n : Λm ! Λn and

10



1.3 Locally Convex Manifolds

ηn,m : Λn ! Λm by setting

εm,n(λk) :=

{
λk if k ≤ n

0 otherwise

and ηn,m(λk) = λk for 1 ≤ k ≤ n. In the special case n = 0, we let εΛm :=
εm,0 : Λm ! R and ηΛm := η0,m : R! Λm.

1.3. Locally Convex Manifolds

All locally convex vector spaces in this thesis are meant to be Hausdorff locally
convex R-vector spaces.

1.3.1. Differential calculus in locally convex spaces

A very general differential calculus for topological modules was developed in [11].1
We follow this approach but restrict ourselves to the case of Hausdorff locally
convex R-vector spaces. In this situation, the Ck-maps coincide with the classical
Ck-maps in the sense of Bastiani [5] (also known as Keller’s Ck

c -maps, see [31]).
However, it is useful to keep the more general setting in mind since large parts
of this work can be easily generalized without substantial changes. See also [10,
Chapter I, p.14ff.] for a concise overview.

Definition 1.3.1. Let E,F be locally convex spaces, U ⊆ E be open and f : U !
F continuous. We define the open set U [1] := {(x, v, t) : x ∈ U, x + tv ∈ U} ⊆
U × E × R and say that f is C1 if there exists a continuous map

f [1] : U [1] ! F

such that
f(x+ tv)− f(x) = t · f [1](x, v, t)

for (x, v, t) ∈ U [1]. The differential of f at x ∈ U is then defined as

df(x) : E ! F, v 7! df(x)(v) := f [1](x, v, 0).

We also use the notation df(x, v) := df(x)(v). Inductively, we say f is Ck+1 if f [1]

is Ck for k ∈ N. If f is Ck for every k ∈ N, we call f smooth or C∞.

The usual rules for differentials apply and we sum them up and fix our notation
in the following remark.

Remark 1.3.2. In the situation of the definition, the map f [1] is unique and
df(x)(v) is linear in v. If f is C2, then for every v ∈ E the partial map ∂vf :=
df(•, v) is C1 and we define dkf(x)(v1, . . . , vk) := ∂v1 · · · ∂vkf(x) if f is Ck. The

1To be precise: Hausdorff topological modules over commutative Hausdorff topological rings
whose unit group is dense.
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1 Preliminaries and Notation

map dkf(x) : Ek ! F is continuous, R-k-multilinear and symmetric. In particular
Schwarz’s theorem holds in this setting. If V ⊆ U is open and f is Ck, then the
restriction f |V is so. If g and f are Ck and composable, then g ◦ f is Ck and we
have the the chain rule

d(g ◦ f)(x, v) = dg(f(x), df(x, v)).

If h : U1 × U2 ! F is C1 we define d1h(x1, x2)(v1) := dh(x1, x2)(v1, 0) and
d2h(x1, x2)(v2) := dh(x1, x2)(0, v2) and we have the rule of partial differentials

dh(x1, x2)(v1, v2) = d1h(x1, x2)(v1) + d2h(x1, x2)(v2).

If f is of the form (f1, f2) then f is Ck if and only if f1 and f2 are Ck and it holds
that df = (df1, df2).

The following lemma is well-known. As it is instrumental for the rest of the
work, we give a quick proof nevertheless. Clearly, the proof works in the most
general setting as well.

Lemma 1.3.3. Let n ∈ N and E1, . . . , En and F be locally convex spaces. Each
continuous R-n-multilinear map f : E1 × · · · × En ! F is automatically C1 and
thus smooth by induction. In this case, we have

df(x)(v) =
n∑
i=1

f(x1, . . . , xi−1, vi, xi+1, . . . , xn)

for x = (x1, . . . , xn), v = (v1, . . . vn) ∈ E1 × · · · × En.

Proof. Let 0yi := xi and 1yi = vi for 1 ≤ i ≤ n. With this we calculate

f(x+ tv)− f(x) = t ·
∑

j∈{0,1}n,`j≥1

t`j−1f(j1y1, . . . , jnyn)

︸ ︷︷ ︸
f [1](x,v,t):=

,

where `j := j1 + . . .+ jn. As f [1] is continuous, the statement follows.

Corollary 1.3.4. Let E,F,E ′ and F ′ be locally convex spaces, U ⊆ E, U ′ ⊆ E ′ be
open and f : U ! F and g : U ′ ! F ′ be smooth maps. Moreover, let α : F ! F ′

and β : E ′ ! E ′ be continuous linear maps such that β(U) ⊆ U ′ and α◦f = g◦β|U .
Then we have

α ◦ dnf = dng ◦ (β|U × βn)

for all n ∈ N0.

Proof. This follows from applying the chain rule and Lemma 1.3.3 to

dn(α ◦ f) = dn(g ◦ β|U).

12



1.3 Locally Convex Manifolds

1.3.2. Manifolds

With the above, the definition of manifolds over locally convex spaces is analogous
to the finite-dimensional case (see also [11, Section 8, p.253] or [10, Section 2,
p.20]). We fix a locally convex space E and let M be a topological space. A set
A := {ϕα : Uα ! Vα : α ∈ A} such that Uα ⊆ M and Vα ⊆ E are open, ϕα is a
homeomorphism,

⋃
α∈A Uα = M and

ϕαβ := ϕα ◦ ϕ−1
β |ϕβ(Uα∩Uβ) : ϕβ(Uα ∩ Uβ)! ϕα(Uα ∩ Uβ)

and its inverse ϕβα are smooth is called a (smooth) atlas of M and the elements
of A are called charts of M .2 Two atlases of M are equivalent if and only if their
union is again an atlas. Together with an equivalence class of atlases, M is called
a (smooth) manifold modelled on E and E is the model space of M . We usually
only mention a representative atlas of the equivalence class. Moreover, we will
generally assume manifolds to be Hausdorff.3 A manifold is called paracompact,
resp. σ-compact, if it is so as a topological space and finite-dimensional if its model
space is finite-dimensional. IfM andN are manifolds with the atlases {ϕα : α ∈ A}
and {ψα : β ∈ B}, then {ϕα × ψβ : a ∈ A, β ∈ B} is an atlas of M ×N .
A continuous map f : M ! N between two manifolds is a morphism of (smooth)

manifolds if for any charts ϕ : U ! ϕ(U) of M and ψ : W ! ψ(W ) of N the map

ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(W ))! ψ(W )

is smooth. This property is independent of the choice of atlases. If M and N are
manifolds, we denote by C∞(M,N) the set of all smooth maps M ! N and we
denote by Man the category of Hausdorff manifolds and their morphisms.
The definition of vector bundles or more general fiber bundles , their morphisms

and their products is similar to the finite-dimensional case and for it, we refer to
[11, p.255] or [10, Section 3, p.22]. The particular charts of a bundle are called
bundle charts and they are elements of a bundle atlas. We write VBun for the
category of vector bundles.
The definition of the tangent bundle πM : TM ! M of a manifold M via

equivalence classes of smooth curves works as in the finite-dimensional case. For
locally convex R-vector spaces, this is equivalent to the more general definition in
[11, p.254] and [10, Section 3, p.22] (see [23]). For the elements of the tangent
bundle, we occasionally write [t 7! vt] ∈ Tv0M , where t 7! vt denotes some curve
in M . In this notation one has

Tf [t 7! vt] := [t 7! f(vt)] ∈ Tf(v0)N,

if f : M ! N is a smooth map between manifolds. If F is a locally convex space,
one has a natural isomorphism TF ∼= F × F and if g : M ! F is smooth, we also
write dg : TM ! F for pr2 ◦Tg with the projection pr2 : F × F ! F onto the

2The index set A is just to simplify our notation, it does not belong to the data of the atlas A.
3This assumption is necessary to guarantee the existence of smooth partitions of unity for
finite-dimensional σ-compact manifolds.
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1 Preliminaries and Notation

second component. Like in the finite-dimensional case, the above defines a functor
T : Man ! VBun and considering VBun as a subcategory of Man, we define
T 0 = idMan and T n := T ◦T n−1 : Man!Man for n ∈ N. Finally, if {ϕα : α ∈ A}
is an atlas ofM , then {Tϕα : α ∈ A} is a bundle atlas of TM and there is a natural
isomorphism of vector bundles T (M ×N) ∼= TM × TN .

Smooth partitions of unity

A smooth partition of unity of a manifold M is an open covering (Ui)i∈I of M
together with smooth maps hi : M ! R, such that

(a) For all x ∈M , we have hi(x) ≥ 0.

(b) The support of hi is contained in Ui for all i ∈ I.

(c) The covering is locally finite.

(d) For each x ∈M , we have
∑

i∈I hi(x) = 1.

In this situation, we say that (hi)i∈I is a partition of unity that is subordinate to
(Ui)i∈I . We say that a manifold M admits partitions of unity if it is paracompact
and for every locally finite open cover (Ui) ofM , we find smooth maps hi : M ! R
that constitute a partition of unity subordinate to (Ui) (see [33, p.34]). Para-
compact (and in particular σ-compact) finite-dimensional manifolds always admit
partitions of unity (compare [33, Corollary 3.8, p.38]).

Vector fields

Let M be a manifold modelled on a locally convex space E. A vector field is a
smooth map X : M ! TM such that πM ◦ X = idM . We denote by X(M) the
R-vector space of vector fields. Let X, Y ∈ X(M). If ϕ : Uϕ ! Vϕ is a chart of M ,
we define the local representation Xϕ of X by

Xϕ := dϕ ◦X ◦ ϕ−1 : Vϕ ! E.

The space of vector fields is a Lie algebra with the Lie bracket locally given by

[X, Y ]ϕ(x) = dXϕ(x, Y ϕ(x))− dY ϕ(x,Xϕ(x))4

(see [10, Theorem 4.2, p.25]). If M is finite-dimensional, we define the support of
X, supp(X), as the smallest closed subset K ⊆ M such that X|M\K = 0. With
this, we define the subspace of compactly supported vector fields

Xc(M) := {X ∈ X(M) : supp(X) is compact}.

4 We choose this order of X and Y to stay consistent with [10]. Traditionally, in the literature
the reverse order is used.
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1.4 Categories

Then Xc(M) is a Lie subalgebra of X(M). If M is σ-compact with an atlas A that
is countable and such that the family (Uϕ)ϕ∈A is a covering of M by relatively
compact open sets Uϕ, then giving Xc(M) the topology that turns

Xc(M)!
⊕
ϕ∈A

C∞(Vϕ, E), X 7! (Xϕ)ϕ∈A

into an embedding makes Xc(M) a locally convex Lie algebra. The induced topol-
ogy does not depend on the choice of A (see Lemma 4.1.9 and Lemma 4.1.17, cf.
[18]).

1.4. Categories

We follow [49] in the standard definitions. Let us give a brief overview to fix our
notations. Throughout, we fix a universe U (see [49, 3.2.1, p.17]) that contains
the natural numbers N as an element. Sets are then elements of U and classes are
subsets of U. A category C consists of a class of objects |C| and a set of morphisms
HomC(A,B) for any objects A,B such that we have a composition map

HomC(B,C)× HomC(A,B)! HomC(A,C), (f, g) 7! f ◦ g

(where C ∈ C) that satisfies the usual conditions. In particular, we have a unique
identity morphism idA ∈ HomC(A,A). For f ∈ HomC(A,B) we also write f : A!
B and we call f an isomorphism if there exists f−1 ∈ HomC(B,A) such that
f−1 ◦ f = idA and f ◦ f−1 = idB. As a shorthand, we write A ∈ C instead of
A ∈ |C|. A small category is a category whose objects form a set.
We denote by Set the category whose objects are sets and whose morphisms

are maps between sets. The category Top has topological spaces as objects and
continuous maps between them as morphisms. 5

1.4.1. Functors and Functor Categories

Let C and D be categories. A functor T : C ! D assigns to each A ∈ C an
object T (A) ∈ D and to each morphism f ∈ HomC(A,B) a morphism T (f) ∈
HomD(T (A), T (B)) such that T (idA) = idT (A) and T (f ◦ g) = T (f) ◦ T (g) hold
for all A,B,C ∈ C and all f ∈ HomC(B,C), g ∈ HomC(A,B). Let S : C ! D
be another functor. A natural transformation α : S ! T consists of morphisms
αA : S(A) ! T (A) for every A ∈ C such that for every f ∈ HomC(A,B), we have
T (f) ◦ αA = αB ◦ S(f). We always have the natural transformation idT : T ! T
defined by (idT )A = idT (A) and if U : C ! D is another functor and β : T ! U is a
natural transformation, then the object-wise composition βA ◦αA defines a natural
transformation β ◦ α : S ! U .
If C is a small category, then the functors C ! D are the objects and the natural

transformations are the morphisms of a category which we denote by DC (see [49,

5Schubert, [49], uses the notations [A,B]C for HomC(A,B), 1A for idA and Ens for Set.
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Proposition 3.4.3, p.19]).

1.4.2. Algebraic Structures in Functor Categories

In any category D with finite products and a terminal object Z ∈ D (see [49, 5.4.1,
p.35 and Section 7.3, p.49f.] for these notions), one can define a given algebraic
structure6 on an object A ∈ D by encoding the structure in certain commutative
diagrams. Let us use the example of groups to illustrate this general principle.
As multiplication, we now have a morphism µ : A × A ! A,7 the inversion is
described by a morphism i : A ! A and the neutral element corresponds to a
morphism e : Z ! A. Denote by ∗ : A ! Z the unique morphism A ! Z. Then
the relation between inversion and multiplication is given by

A
(idA,i) //

(i,idA)

��

∗

##

A× A

µ

��

Z
e

##
A× A µ

// A.

It is not difficult to see how one can also describe the properties of the neutral
element and associativity in this way. For details see [49, Section 11.1, p.96ff.]. In
this situation, we call (A, µ, i, e) a group in the category D or a group object .
This approach can be extended to structures where one object operates on an-

other, like modules, algebras and Lie algebras over a commutative ring. Morphisms
can also be defined using appropriate commutative diagrams and one obtains new
categories of objects with a given structure. For details see [49, Chapter 11, p.96ff.].
Let R ∈ D be a commutative ring. We denote by ModR(D), AlgR(D) and
LAlgR(D) the categories of modules, algebras and Lie algebras over R in D.8 If R
is an ordinary ring then ModR(Set), AlgR(Set) and LAlgR(Set) are just the cat-
egories of ordinary R-modules, R-algebras and R-Lie algebras, respectively. If R is
a topological ring, one obtains with ModR(Top), AlgR(Top) and LAlgR(Top)
the usual topological modules, algebras and Lie algebras over R.
If C is a small category, then the functor category DC also has finite products

and a terminal object. A functor T ∈ DC having an algebraic structure is then
equivalent to T (A) having that structure in C for all A ∈ C and T (f) being a
morphism of that structure for all A,B ∈ C and all f ∈ HomC(A,B) (see [49,
Proposition 11.4.1, p.102]).9 Likewise, natural transformations are morphisms if

6One caveat: This means only algebraic structures where the operations are defined everywhere.
For example fields are excluded because the multiplicative inversion is only defined on a subset.

7Schubert uses the notation A uA instead of A×A for the product.
8In [49, 11.3.7, p.101f.], one can clearly restrict oneself to objects over the same ring and restrict
morphisms to those which are the identity on the ring to obtain these categories.

9It is easy to generalize the proposition to the situation where one has an operation of another
object with an algebraic structure. In this case morphisms need to include morphisms on
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and only if they are so object-wise.
We are mainly interested in the case of the categories SetGr(k)

or TopGr(k)

with
the structures of modules, algebras and Lie algebras. With the above in mind, we
make the following definitions.

Definition 1.4.1. Let k ∈ N0 ∪ {∞}. A group object in SetGr(k)

(resp. TopGr(k)

etc.) is called a supergroup. Concretely, (G, µ, i, e) is a supergroup if and only if
(G(Λ), µΛ, iΛ, eΛ) is a group for each Λ ∈ Gr(k) and G(%) is a morphism of groups
for each % ∈ HomGr(k)(Λ,Λ′). We call a supergroup H a sub-supergroup of a
supergroup G if H(Λ) ⊆ G(Λ) is a subgroup for each Λ ∈ Gr. A morphism of
supergroups is a natural transformation f : G ! G ′ between supergroups G and G ′,
such that fΛ : G(Λ)! G ′(Λ) is a morphism of groups for each Λ ∈ Gr.

Definition 1.4.2. Let k ∈ N0 ∪ {∞}. A (unitary) ring in SetGr(k)

is a functor
R : Gr(k) ! Set such that R(Λ) has a fixed (unitary) ring structure for all Λ ∈
Gr(k) and R(%) is a morphism of rings for all % ∈ HomGr(k)(Λ,Λ′). We call R
commutative if every R(Λ) is a commutative ring. Let R be a unitary ring in
SetGr(k)

. A (left) R-module in SetGr(k)

is a functor M : Gr(k) ! Set such that
M(Λ) is a (left) R(Λ)-module for every Λ ∈ Gr(k) and M(%) : M(Λ) ! M(Λ′) is
a morphism of additive groups with

M(%)(gm) = R(%)(g)M(%)(m)

for all g ∈ R(Λ),m ∈ M(Λ) and % ∈ HomGr(k)(Λ,Λ′). The object-wise module
operations then define a natural transformation in SetGr(k)

. A natural transforma-
tion α : M ! N between two R-modules in SetGr(k)

is a morphism of R-modules
if αΛ is a morphism of R(Λ)-modules for all Λ ∈ Gr(k). Then ModR(SetGr(k)

) is
the category of R-modules in SetGr(k)

.
An R-algebra A in SetGr(k)

over a commutative ring R in SetGr(k)

is an R-
module A in SetGr(k)

such that A(Λ) is an algebra over R(Λ) for every Λ ∈ Gr(k)

and such that
A(%)

(
µΛ(a, b)

)
= µΛ′

(
A(%)(a), A(%)(b)

)
for all a, b ∈ A(Λ) and % ∈ HomGr(k)(Λ,Λ′), where (µΛ)Λ∈Gr(k) denotes the algebra
multiplication. Then (µΛ)Λ∈Gr(k) is a natural transformation. We call an R-algebra
A commutative (resp. associative, or Lie) if every A(Λ) is commutative (resp. an
associative algebra, or a Lie algebra). A natural transformation β : A! B between
R- algebras in SetGr(k)

is a morphism of R-algebras if βΛ is a morphism of algebras
over R(Λ) for all Λ ∈ Gr(k). Then AlgR(SetGr(k)

) is the category of R-algebras
and LAlgR(SetGr(k)

) is the category of R-Lie algebras in SetGr(k)

.
The definitions of rings, modules, algebras and Lie algebras in TopGr(k)

is com-
pletely analogous.

both structures, e.g. morphisms of modules with a change of rings (see [49, 11.3.7, p.101f.]).
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Definition 1.4.3. Let k ∈ N0 ∪ {∞}, let R be a unitary commutative ring in
SetGr(k)

and M1, . . . ,Mn,M ∈ModR(SetGr(k)

). We say that a natural transfor-
mation f : M1 × · · · ×Mn ! M is R-n-multilinear if fΛ is R(Λ)-n-multilinear for
every Λ ∈ Gr(k) and let

LnR(M1, . . . ,Mn;M) := {f : M1 × · · · ×Mn !M : f is R-n-multilinear}.

We define LnR(M1, . . . ,Mn;M) analogously for the case of TopGr(k)

if R is a unitary
commutative ring in TopGr(k)

.

Lemma 1.4.4. In the situation of Definition 1.4.3, setting

r · f + g := (R(ηΛ)(r) · fΛ + gΛ)Λ∈Gr(k)

for f, g ∈ LnR(M1, . . . ,Mn;M) and r ∈ R(R) turns LnR(M1, . . . ,Mn;M) into
an R(R)-module in Set. On LnR(M1, . . . ,M1;M), Sn acts from the left via
f ◦ σ := (fΛ ◦ σ)Λ∈Gr(k). The same is true for LnR(M1, . . . ,Mn;M), resp.
LnR(M1, . . . ,M1;M).

Proof. The first statement is easily seen because for every % ∈ HomGr(k)(Λ,Λ′), we
have that M(%) is additive and

M(%)
(
R(ηΛ)(r) ·m

)
= R(%)

(
R(ηΛ)(r)) ·M(%)(m) = R(ηΛ′)(r) ·M(%)(m)

holds for all r ∈ R(R) and m ∈ M(Λ). The second statement is obvious and the
same arguments work in the case of LnR(M1, . . . ,Mn;M), resp. LnR(M1, . . . ,M1;M).

See also [40, Chapter 1, p.378ff.] for a more general approach.

1.5. Linear Superspaces and Superalgebras

For any multilinear algebraic structure like rings, modules or algebras, one can
define a corresponding “superalgebraic” structure. For this, generally speaking,
one fixes a Z2-grading such that the operations obey the principle “even times even
is even, even times odd is odd and odd times odd is even.” If a rule for permutating
elements is involved, one additionally has “permutating with even elements does
not involve an additional sign, permutating two odd elements does.”

Definition 1.5.1. We call a ring R a superring if it is Z2-graded, i.e., decomposes
into additive subgroups R0 ⊕R1 such that

Ri ·Rj ⊆ Ri+j

holds for i, j ∈ {0, 1}. If, additionally, R is a topological ring such that R ∼= R0⊕R1

holds as topological groups, we call R a topological superring.
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1.5 Linear Superspaces and Superalgebras

A (left) module with a Z2-gradingM = M0⊕M1 over a superring R with a unit
element is called an R-supermodule if

Ri ·Mj ⊆Mi+j

holds for i, j ∈ {0, 1}. If, additionally, R is a topological superring and M is a
topological R-module such thatM ∼= M0⊕M1 holds as topological groups, we call
M a topological R-supermodule. The partM0 is called even andM1 is called odd. A
supermodule of the formM0⊕{0}, resp. {0}⊕M1, is called purely even, resp. purely
odd . A morphism f : M ! N of R-supermodules is a morphism of R-modules that
preserves the grading, i.e., f(Mi) ⊆ Ni for i ∈ {0, 1}. We denote by SModR the
category of R-supermodules. A morphism of topological supermodules shall be
additionally continuous and we denote by TopSModR the category of topological
R-supermodules. The product M × N of two R-supermodules M,N is the R-
supermodule (M0 ×N0)⊕ (M1 ×N1).

Every ring R can be considered as a purely even superring R⊕ {0}.

Definition 1.5.2. Let R be a superring andM be an R-supermodule. An element
m ∈ M is called homogeneous if m ∈ M0 or m ∈ M1. The parity p(m) of an
homogeneous element is defined as

p(m) :=

{
0 if m ∈M0,

1 if m ∈M1.

Definition 1.5.3. Let R be a unitary commutative superring, n ∈ N and let M
and iM = iM0 ⊕ iM1 for 1 ≤ i ≤ n be R-supermodules. An R-n-multilinear
morphism

f : 1M × · · · × nM !M

is called even if
f(1Mj1 , . . . , nMjn) ⊆Mj1+···+jn

holds for j1, . . . , jn ∈ {0, 1}. We denote by 0L
n
R(1M, . . . , nM ;M) the space of

even R-n-multilinear morphisms 1M × · · · × nM ! M . This space is obviously
an R0-module. If R is a topological superring and all modules are topological
R-supermodules, then we denote by 0LnR(1M, · · · , nM ;M) the R0-module of re-
spective continuous even R-n-multilinear maps.
The symmetrical group Sn acts from the left on 0L

n
R(1M, . . . , 1M ;M) via

(f.σj)(1v, . . . , nv) := (−1)p(1v)p(nv)f(1v, . . . , j+1v, jv, . . . , nv)

for f ∈ 0L
n
R(1M, . . . , 1M ;M), homogeneous 1v, . . . , nv ∈ 1M and any transposition

σj := (j, j + 1).

Of course, one can also define odd R-n-multilinear morphisms and turn the
space of all R-n-multilinear morphisms into an R-supermodule. See [40, Section
1.7, p383ff.] for this.
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1 Preliminaries and Notation

Definition 1.5.4. A supermodule over a field K is called K-super vector space.
For p, q ∈ N0, we define the super vector space Rp|q := Rp ⊕ Rq and if dimE0 = p
and dimE1 = q, we call (p|q) the dimension of E.
We let SVec := SModR denote the category of R-super vector spaces. More-

over, we denote by SVeclc the category of Hausdorff locally convex R-super vector
spaces and their continuous morphisms.

Definition 1.5.5. Let K be a field. A K-superalgebra is a K-super vector space
A = A0 ⊕ A1 that is an algebra with the multiplication µ : A× A! A such that

µ(Ai, Aj) ⊆ Ai+j for i, j ∈ {0, 1}.

A super algebra A is called associative, resp. unital, resp. topological if it is so as
an algebra. We say it is supercommutative if we have

µ(a, b) = (−1)p(a)p(b)µ(b, a)

for all homogeneous elements a, b ∈ A. A morphism of superalgebras is a morphism
of algebras that is a morphism of super vector spaces. We denote by SAlgK
the category of K-superalgebras. A morphism of topological superalgebras shall
additionally be continuous and we let TopSAlgK be the category of topological
K-superalgebras if K is a topological field.

Example 1.5.6. Every Grassmann algebra Λ ∈ Gr is a topological R-
superalgebra that is associative, unital and supercommutative.

One can of course define superalgebras over superrings, but for our purposes the
above is sufficient.

Definition 1.5.7. Let K be a field. We call a K-superalgebra L a K-Lie superal-
gebra if its multiplication [·, ·] : L× L! L is

(1) super antisymmetric, i.e., [a, b] = −(−1)p(a)p(b)[b, a] for all homogeneous ele-
ments a, b ∈ L and

(2) satisfies the super Jacobi identity , i.e.,

[a, [b, c]] + (−1)p(a)p(b)+p(a)p(c)[b, [c, a]] + (−1)p(a)p(c)+p(b)p(c)[c, [a, b]] = 0

for all homogeneous elements a, b, c ∈ L.

We call [·, ·] the Lie superbracket of L. We denote by LSAlgK the category of K-Lie
superalgebras and by TopLSAlgK the category of topological K-Lie superalgebras
if K is a topological field.

The even part L0 of a Lie superalgebra L together with the restricted Lie su-
perbracket is clearly an ordinary Lie algebra.
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1.5 Linear Superspaces and Superalgebras

Remark 1.5.8. One can express the various additional properties of superalgebras
with the action of the symmetric group from Definition 1.5.3. Let A be a K-
superalgebra with the multiplication µ : A×A! A. Then supercommutativity is
equivalent to µ.(1, 2) = µ, super antisymmetry means µ.(1, 2) = −µ and the super
Jacobi identity can be expressed by∑

σ∈S3,sgn(σ)=1

µ(•, µ(•, •)).σ = 0.

In fact, Molotkov defines multilinear algebraic structures of a given super type by
simply substituting the usual action of the symmetric group on multilinear maps
with this graded version in [40, Section 1.9, p.385].

Superalgebraic structures can, of course, also be defined for general categories.
This is done in [40, Section 1.7, p.383f.].
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2. Supermanifolds

2.1. Open Subfunctors

Open subfunctors of functors from TopGr will play the same role as open subsets
of topological spaces in ordinary differential geometry. The following definitions
of intersections, restrictions, open covers and so on are intuitive and even provide
one with a Grothendieck topology on TopGr (see [1, Definition 3.17, p.591f.]).
Let k ∈ N0∪{∞} and F ∈ TopGr(k)

. For Λ,Λ′ ∈ Gr(k) and % ∈ HomGr(k)(Λ,Λ′),
we set FΛ := F(Λ) and F% := F(%).

Definition 2.1.1. Let k ∈ N0∪{∞} and F ,F ′ ∈ SetGr(k)

. We call F ′ a subfunctor
of F if for every Λ ∈ Gr(k), we have F ′Λ ⊆ FΛ and these inclusions define a natural
transformation F ′ ! F . In this situation, we write F ′ ⊆ F . For F ,F ′ ∈ TopGr(k)

(or F ,F ′ ∈ ManGr(k)

), we define subfunctors analogously. In this situation a
subfunctor F ′ of F is called open if every F ′Λ is open in FΛ.

Lemma/Definition 2.1.2. Let k ∈ N0 ∪ {∞} and F ∈ SetGr(k)

. For a subset
U ⊆ FR, we define the restriction F|U by setting

F|U(Λ) := (FεΛ)−1(U) for Λ ∈ Gr(k)

and F|U(%) := F%|F|U (Λ) for morphisms % : Λ! Λ′. For functors F ∈ TopGr(k)

(or
F ∈ ManGr(k)

), we define the restriction analogously for open subsets U ⊆ FR.
Then F|U is an open subfunctor of F .

Proof. Let x ∈ F|U(Λ) and Λ ∈ Gr(k). Then FεΛ′ ◦ F%(x) = FεΛ′◦%(x) = FεΛ(x) ∈
U holds for all morphisms % : Λ ! Λ′ since εΛ′ ◦ % = εΛ. In the topological case,
we have that F−1

εΛ
(U) is open because FεΛ is continuous.

Lemma/Definition 2.1.3. Let k ∈ N0∪{∞}, F ∈ TopGr(k)

and F ′,F ′′ be open
subfunctors of F . Then (F ′ ∩ F ′′)Λ := F ′Λ ∩ F ′′Λ and (F ′ ∩ F ′′)% := F%|(F ′∩F ′′)Λ

for
Λ,Λ′ ∈ Gr(k) and % ∈ HomGr(k)(Λ,Λ′) defines an open subfunctor F ′ ∩ F ′′ ⊆ F .

Proof. By definition F ′Λ ∩F ′′Λ is open in FΛ. If x ∈ F ′Λ ∩F ′′Λ, then by functoriality
F%(x) ∈ F ′Λ′ ∩ F ′′Λ′ , which shows that F ′ ∩ F ′′ is a functor and that the inclusion
is a natural transformation.

Definition 2.1.4. Let k ∈ N0 ∪ {∞} and F ,F ′ ∈ TopGr(k)

. A natural trans-
formation f : F ′ ! F is called an open embedding if fΛ : F ′Λ ! FΛ is an open
embedding for every Λ ∈ Gr(k).
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2 Supermanifolds

Lemma/Definition 2.1.5. Let k ∈ N0 ∪ {∞}, F ,F ′ ∈ TopGr(k)

and f : F ′ !
F be a natural transformation. Let Λ,Λ′ ∈ Gr(k) and % ∈ HomGr(k)(Λ,Λ′) be
arbitrary.

(a) Let V ⊆ F be an open subfunctor. Setting f−1VΛ := f−1
Λ (VΛ) and f−1V% :=

F ′%|f−1VΛ
defines an open subfunctor f−1V ⊆ F ′.

(b) If f is an open embedding, then f(F ′)Λ := fΛ(F ′Λ) and f(F ′)% := F%|f(F ′)Λ

define an open subfunctor f(F ′) ⊆ F .

(c) Let U ⊆ F ′ be an open subfunctor. Then f |U(Λ) := fΛ|UΛ
defines a natural

transformation f |U : U ! F .

Proof. (a) Because fΛ is continuous, f−1VΛ is open. For x ∈ f−1VΛ, naturality of
f implies fΛ′(F ′%(x)) = V%(fΛ(x)) and therefore f−1V%(x) ∈ f−1FΛ′ .
(b) Because f is an open embedding, f(F ′)Λ is open. For x ∈ f(F ′)Λ, naturality

of f implies f(F ′)%(x) ∈ f(F ′)Λ′ .
(c) This is obvious.

Definition 2.1.6. We call a set {fα : Fα ! F : α ∈ A}1 of open embeddings a
covering if

⋃
α∈A f

α
Λ(FαΛ) = FΛ holds for all Λ ∈ Gr(k). In this situation, we define

for all pairs α, β ∈ A an open subfunctor Fαβ ⊆ Fα by FαβΛ := (fαΛ)−1(fαΛ(FαΛ) ∩
fβΛ(FβΛ)) and Fαβ% := Fα% |FαβΛ

as well as natural transformations fαβ : Fαβ ! Fβα

by fαβΛ := (fβΛ)−1 ◦ fαΛ |FαβΛ
for all Λ,Λ′ ∈ Gr(k) and all morphisms % : Λ! Λ′.

Definition 2.1.7. For k ∈ N0 ∪ {∞} a functor F ∈ TopGr(k)

is called Hausdorff
if FΛ is Hausdorff for every Λ ∈ Gr(k).

2.2. Superdomains

Superdomains take the role of open subsets of vector spaces in ordinary analy-
sis. Together with appropriately defined supersmooth morphisms between them,
they enable us to define supermanifolds from local data much in the same way as
for manifolds. The main result in this section is the description of supersmooth
morphisms through so called skeletons in Proposition 2.2.13. Since skeletons will
be our main tool for concrete calculations, other important results are a formula
for the composition (see Proposition 2.2.16) and a formula for the inversion (see
Lemma 2.2.18) in terms of skeletons. We follow [1] in this section, with only small
additions to accommodate k-superdomains (i.e., certain functors Gr(k) ! Top).
With the exception of a concrete inversion formula, these results have already been
stated in [38].
At the end, we briefly discuss the correspondence between multilinear algebraic

structures of a given super type in Set (resp. Top) and algebraic structures of the
respective ordinary type in SetGr (resp. TopGr).

1As with atlases before, the index set A is just used for the sake of an easier notation and not
part of the data of a covering.
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2.2 Superdomains

Lemma/Definition 2.2.1. For every E ∈ SVec and k ∈ N0 ∪ {∞}, we get a
functor E(k)

: Gr(k) ! Set by setting

E
(k)

Λ := E
(k)

(Λ) := (E0 ⊗ Λ0)⊕ (E1 ⊗ Λ1)

on objects Λ ∈ Gr(k) and E(k)

% := E
(k)

(%) := (idE ⊗%)|
E

(k)
Λ

on morphisms % : Λ! Λ′

of Grassmann algebras. We abbreviate E := E
(∞), E0

(k)
:= E0 ⊕ {0}

(k)
and

E1
(k)

:= {0} ⊕ E1

(k)
and let R(k)

:= R⊕ {0}
(k)

, i.e., R(k)

Λ = Λ0. Then E
(k) is an

R(k)-module in SetGr(k)

. For E ∈ SVeclc, we have a functor

E
(k)

: Gr(k) ! Top,

by giving E(k)

Λ the product topology. Then E(k)

Λ is a locally convex space and an
R(k)-module in TopGr(k)

.
If ∆ ⊆ Λ is an R-vector subspace, we set E(k)

∆ := (E0 ⊗∆0)⊕ (E1 ⊗∆1), where
∆0 := ∆ ∩ Λ0 and ∆1 := ∆ ∩ Λ1. For n ≤ m ≤ k, we will always consider the
natural embedding E(k)

Λn ⊆ E
(k)

Λm via E(k)

ηn,m .

Proof. It is easy to see that E(k) is a functor. In the locally convex case, we give
E0⊗Λk,0 =

∏
I∈Pk0

λIE0, resp. E1⊗Λk,1 =
∏

I∈Pk1
λIE1, the natural locally convex

vector space structure. Since every Λ ∈ Gr is a Λ0-algebra, E
(k)

Λ is a Λ0-module
with the obvious multiplication. This multiplication is continuous in the locally
convex case because its components are simply finite linear combinations. For
the same reason, E(k)

% is continuous and linear. That we have R(k)

% (x) · E(k)

% (v) =

E
(k)

% (x · v) for all x ∈ R(k)

Λ and v ∈ E(k)

Λ , follows directly from the definition of the
multiplication.

In the definition of super manifolds the functors E will play the same role as
vector spaces do for regular manifolds. Accordingly, we need a notion of open
subfunctors and appropriate “smooth morphisms” between open subfunctors. All
open subfunctors of U ⊆ E for E ∈ SVeclc are uniquely determined by UR.

Lemma 2.2.2. Let k ∈ N ∪ {∞} and E ∈ SVeclc. Recall the restriction from
Lemma/Definition 2.1.2. Every open subfunctor U ⊆ E

(k) arises as such a restric-
tion, i.e., we have E(k)|UR = U .

Proof. For k =∞ this is just [45, Proposition 3.5.8, p. 61]. The same proof holds
for k ∈ N0 if one only considers Λ ∈ Gr(k) (see also [40, Section 3.1, p.388 f.]).

Definition 2.2.3. Let E,F ∈ SVeclc and k ∈ N0 ∪ {∞}. We call an open
subfunctor U ⊆ E

(k) a k-superdomain. In the case of k = ∞ we simply call it a
superdomain. A natural transformation f : U ! V of k-superdomains U ⊆ E

(k)

25



2 Supermanifolds

and V ⊆ F
(k) is called supersmooth if for all Λ ∈ Gr(k) the map fΛ : UΛ ! VΛ is

smooth and the derivative

dfΛ : UΛ × E
(k)

Λ ! F
(k)

Λ

is Λ0-linear in the second component, i.e., for any x ∈ UΛ, the map

dfΛ(x, •) : E
(k)

Λ ! F
(k)

Λ , v 7! dfΛ(x)(v)

is Λ0-linear. We denote by SC∞(U ,V) the set of all supersmooth morphisms
f : U ! V .
It is obvious from the usual chain rule that the k-superdomains together with

the supersmooth natural transformations form a category, which we denote by
SDom(k). In the case of k =∞, we also use the notation SDom.
Note that for R-linear maps, it suffices to check Λ0-linearity on the generators:

For E,F ∈ SVeclc and an R-linear map L : EΛn ! FΛn with L(λIx) = λIL(x) for
all x ∈ EΛ and λI ∈ Λn,0, we have

L(t · x) = L
( ∑
I∈Pn0

λItI · x
)

=
∑
I∈Pn0

λItI · L(x) = t · L(x),

where t =
∑

I∈Pn0
λItI ∈ Λn,0, tI ∈ R. As it turns out, even natural transformations

that are merely “smooth” already have very convenient properties.

Lemma 2.2.4. Let E,F ∈ SVeclc, k ∈ N0∪{∞}, U ⊆ E
(k) be an open subfunctor

and f : U ! F
(k) be a natural transformation such that fΛ is smooth for all Λ ∈

Gr(k). Then for all n ∈ N0, the maps dnfΛ define a natural transformation

dnf : U × E(k) × · · · × E(k)
! F

(k)
.

Proof. Let Λ,Λ′ ∈ Gr(k) and let % : Λ ! Λ be a morphism. Because we have
F

(k)

% ◦ fΛ = fΛ′ ◦ U% and E(k)

% |UΛ
= U%, Corollary 1.3.4 implies that

F
(k)

% ◦ dnfΛ = dnfΛ′ ◦ (U% × E
(k)

% × · · · × E
(k)

% ).

Thus dnf is a natural transformation. Compare also [42, Lemma 3.6.5, p.812f.]
and [1, Lemma 2.15, p.577].

In the situation of the lemma, we write df for the natural transformation defined
by dfΛ.

Lemma 2.2.5. Let E,F ∈ SVeclc, k ∈ N0∪{∞}, U ⊆ E
(k) be an open subfunctor

and f : U ! F
(k) be a natural transformation such that fΛ is smooth for all Λ ∈

Gr(k). For n,m ∈ N, Λm ∈ Gr(k) let x ∈ UR ⊆ UΛm and yi ∈ λIiE|Ii| ⊆ E
(k)

Λm,
where Ii ∈ Pm+ and 1 ≤ i ≤ n. Then, we have

dnfΛm(x)(y1, . . . , yn) ∈ λI1 · · ·λInF` ⊆ F
(k)

Λm ,
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2.2 Superdomains

for ` := |
⋃n
i=1 Ii|. If the sets Ii are not pairwise disjoint, we have

dnfΛm(x)(y1, . . . , yn) = 0.

Proof. Consider dnfΛm as a map into
∏

I∈Pm λIF|I|. Let I :=
⋃n
i=1 Ii, p ∈ I and

define % : Λm ! Λm by %(λp) = 0 and %(λj) = λj for j 6= p. By Lemma 2.2.4, we
have

0 = dnfΛm(U%(x))
(
E

(k)

% (y1), . . . , E
(k)

% (yn)
)

= F
(k)

% (dnfΛm(x)(y1, . . . , yn)).

In other words, all components that do not contain λp are zero. Conversely, let
p′ /∈ I and let %′ : Λm ! Λm be a morphism given by %′(λp′) = 0 and %(λj) = λj
for j 6= p′. Then, we have

dnfΛm(U%′(x))
(
E

(k)

%′ (y1), . . . , E
(k)

%′ (yn)
)

= dnfΛm(x)(y1, . . . , yn),

but all components of F (k)

%′ (dnfΛm(x)(y1, . . . , yn)) that contain λp′ vanish. It follows
that dnfΛm(x)(y1, . . . , yn) ∈ λI1 · · ·λInF`. Finally, assume that the sets Ii are not
pairwise disjoint, for instance let p′′ occur in r > 1 sets. For c ∈ R, we define a
morphism %′′ : Λm ! Λm by %′′(λp′′) := cλp′′ and %′′(λj) := λj for j 6= p′′. We have

dnfΛm(U%′′(x))
(
E

(k)

%′′ (y1), . . . , E
(k)

%′′ (yn)
)

= crdnfΛm(x)(y1, . . . , yn).

But we also have
(
F

(k)

%′′ (d
nfΛm(x)(y1, . . . , yn))

)
I

= c
(
dnfΛm(x)(y1, . . . , yn)

)
I
, which

implies dnfΛm(x)(y1, . . . , yn) = 0.

The next lemma, a variation of [1, Proposition 2.16, p.578], is one of the rare
cases where the proof for superdomains does not automatically translate to k-
superdomains. In a sense, it shows the infinitesimal character of the generators
λi.

Lemma 2.2.6. Let E,F ∈ SVeclc, k ∈ N0∪{∞}, U ⊆ E
(k) be an open subfunctor

and f : U ! F
(k) be a natural transformation such that fΛ is smooth for all Λ ∈

Gr(k). Let 1 ≤ p ≤ k, x ∈ UΛ \ E
(k)

λpΛ and y ∈ E(k)

λpΛ. Then, we have

fΛ(x+ y) = fΛ(x) + dfΛ(x)(y).

Proof. Let c ∈ R. We define a morphism %c : Λ ! Λ by %c(λp) := cλp and
%c(λi) := λi for i 6= p. Then U%c(x) = x and E(k)

%c (y) = cy. Therefore, we have

fΛ(E
(k)

%0
(x+ y))− fΛ(E

(k)

%0
(x)) = 0 = F

(k)

%0
(fΛ(x+ y)− fΛ(x))

and thus fΛ(x+ y)− fΛ(x) ∈ F (k)

λpΛ. It follows that

c · f [1]
Λ (x, y, c) = fΛ

(
E

(k)

%c (x+ y)
)
− fΛ

(
E

(k)

%c (x)
)

= F
(k)

%c (fΛ(x+ y)− fΛ(x)) = c · f [1]
Λ (x, y, 1).

27
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Taking the limit c ! 0, we see that f [1]
Λ (x, y, 0) = f

[1]
Λ (x, y, 1) or in other words

fΛ(x+ y)− fΛ(x) = dfΛ(x, y) (compare [1, Proposition 2.16, p.578]).

Accordingly, we get the following variation of [1, Corollary 2.17, p.579].

Proposition 2.2.7. Let E,F ∈ SVeclc, k ∈ N0 ∪ {∞}, U ⊆ E
(k) be an open

subfunctor and f : U ! F
(k) be a natural transformation such that fΛ is smooth

for all Λ ∈ Gr(k). For x := x0 +
∑

I∈Pn+
xI ∈ UΛn, where n ≤ k, x0 ∈ UR and

xI ∈ λIE|I|, we have

fΛn(x) = fΛn(x0) +
∑
I∈Pn+

∑
ω∈P(I)

d`(ω)fΛn(x0)(xω1 , . . . , xω`(ω)
).

Proof. We first define a suitable partition of Pn+. Let I1 := {{1}} and Ij :=

P
j
+ \ P

j−1
+ for 1 < j ≤ n, i.e., Ij contains all subsets that contain j but no larger

index. Set xIj :=
∑

I∈Ij xI ; then we can write x = x0 +
∑n

j=1 xIj . We prove the
proposition by induction on the largest index of an odd generator appearing in
x. Lemma 2.2.6 gives us the induction basis. Assume that the formula holds for
1 ≤ m < n, i.e., assume that

fΛn

(
x0 +

∑m
j=1 xIj

)
= fΛn(x0) +

∑
I∈Pm+

∑
ω∈P(I)

d`(ω)fΛn(x0)(xω1 , . . . , xω`(ω)
).

With this, differentiating in the direction of xIm+1 gives us

dfΛn

(
x0+

∑m
j=1 xIj

)(
xIm+1

)
= dfΛn(x0)(xIm+1)+∑

I∈Pm+

∑
ω∈P(I)

d`(ω)+1fΛn(x0)(xω1 , . . . , xω`(ω)
, xIm+1)

=
∑

I∈Im+1

∑
ω∈P(I)

d`(ω)fΛn(x0)(xω1 , . . . , xω`(ω)
).

It follows from Lemma 2.2.6 that the addition of both equations results in the
desired formula for fΛn(x0 +

∑m+1
j=1 xIj) (compare [40, Section 10.2, p.421]).

The proposition can be rewritten in the following way.

Lemma 2.2.8. Let E,F ∈ SVeclc, k ∈ N0∪{∞}, U ⊆ E
(k) be an open subfunctor

and f : U ! F
(k) be a natural transformation such that fΛ is smooth for all Λ ∈

Gr(k). For Λ ∈ Gr(k) fix x ∈ UR, n0 ∈ E
(k)

Λ+

0

and n1 ∈ E
(k)

Λ1
. Then

fΛ(x+ n0 + n1) =
∞∑

m,l=0

1

m!l!
· dm+lfΛ(x)(n0, . . . , n0︸ ︷︷ ︸

m times

, n1, . . . , n1︸ ︷︷ ︸
l times

)

=
∞∑
i=0

1

i!
· difΛ(x)(n0 + n1, . . . , n0 + n1).
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Proof. Let Λ = Λn. By Lemma 2.2.5 the sums are finite and after multilinear
expansion we only need to consider the summands that consist of partitions. For
any partition I ∈P(I), I ∈ Pn+ in graded lexicographic order containing m even
and l odd sets, there appear exactly m!l! copies of the term

dm+lfΛ(x)(n0,I1 , . . . , n0,Im , n1,Im+1 , . . . , n1,Im+l
)

in the first sum because we have to consider all permutations of n0,I1 , . . . , n0,Im ,
resp. of n1,Im+1 , . . . , n1,Im+l

. The first equality follows then from Proposition
2.2.7 (see also [1, Proposition 2.21, p.582]). The second equality holds because
multilinear expansion of dm+lfΛ(x)(n0 + n1, . . . , n0 + n1) leads to

(
m+l
l

)
copies of

dm+lfΛ(x)(n0, . . . , n0, n1, . . . , n1) (m times n0 and l times n1) and
(
m+l
l

)
· 1

(m+l)!
=

1
m!l!

.

Corollary 2.2.9. Let E,F ∈ SVeclc, k ∈ N0 ∪ {∞}, U ⊆ E
(k) be an open

subfunctor and f : U ! F
(k) be a natural transformation such that fΛ is smooth

for all Λ ∈ Gr(k). If additionally dfΛ(x0) : E
(k)

Λ ! F
(k)

Λ is Λ0-linear for all x0 ∈ UR,
then f is supersmooth.

Proof. Let Λ = Λn. Because dfΛ(x0) is Λ0-linear it follows by symmetry of the
higher derivatives that dmfΛ(x0) : E

(k)

Λ × · · · ×E
(k)

Λ ! F
(k)

Λ is Λ0-m-multilinear for
all m ∈ N. Let x = x0 +

∑
I∈Pn+

xI and y = y0 +
∑

I∈Pn+
yI where xI , yI ∈ λIE|I|

and t ∈ Λ0. With Proposition 2.2.7, we calculate

dfΛ(x)(ty) = d
(
fΛ(x0) +

∑
I∈Pn+

∑
ω∈P(I)

d`(ω)fΛ(x0)(xω1 , . . . , xω`(ω)
)
)

(ty)

= dfΛ(x0)(ty) +
∑
I∈Pn+

∑
ω∈P(I)

d`(ω)+1fΛ(x0)(xω1 , . . . , xω`(ω)
, ty)

= t
(
dfΛ(x0)(y) +

∑
I∈Pn+

∑
ω∈P(I)

d`(ω)+1fΛ(x0)(xω1 , . . . , xω`(ω)
, y)
)
.

This was already stated in [40, Theorem 3.3.2, p.391] without proof. The corol-
lary simplifies some calculations considerably. A small example is the next lemma.

Lemma 2.2.10. Let k ∈ N0 ∪ {∞}, E,F ∈ SVeclc and U ⊆ E
(k) be an open sub-

functor. If f : U ! F
(k) is supersmooth, then df : U ×E(k)

! F
(k) is supersmooth

as well.

Proof. By Corollary 2.2.9, it suffices to calculate

d
(
dfΛ(x0, y0)

)
(t · u, t · v) = d2fΛ(x0)(y0, t · u) + dfΛ(x0)(t · v)

= t · d2fΛ(x0)(y0, u) + t · dfΛ(x0)(v) = t ·
(
d
(
dfΛ(x0, y0)

)
(v, u)

)
,

for (x0, y0) ∈ UR × E
(k)

R , (v, u) ∈ E(k)

Λ × E
(k)

Λ and t ∈ Λ0.
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By induction, it follows that all higher derivatives of supersmooth maps are
supersmooth again. A more general but also more involved version was proved in
[1, Proposition 2.18, p.580].
We will now give an explicit description of supersmooth morphisms as so called

skeletons, which is essential for almost all applications. It was already stated in
[40, Proposition 3.3.3, p.391] and proofs can be found in [46, Theorem 4.11, p.20]
or in higher generality in [1, Proposition 3.4, p.584].

Definition 2.2.11. Let n ∈ N, let E0, . . . En and F be locally convex spaces
and U ⊆ E0 open. Denote by C∞(U,Ln(E1, . . . , En;F )) the set of maps f : U !
Ln(E1, . . . , En;F ) such that

f∧ : U × (E1 × · · · × En)! F, f∧(x, v) := f(x)(v)

is smooth. In this situation, we define

dmf(x)(w, v) := ∂(wm,0) . . . ∂(w1,0)f
∧(x, v),

for m ∈ N, x ∈ U , v ∈ E1×· · ·×En and w = (w1, . . . , wm) ∈ Em
0 . Analogously, we

define C∞(U,Altn(E1;F )) as the set of maps f : U ! Altn(E1;F ) that are smooth
in the above sense.

Definition 2.2.12. Let k ∈ N0 ∪ {∞}, E,F ∈ SVeclc and U ⊆ E0 open. A
(k-)skeleton is a family of maps (fn)0≤n<k+1 such that fn ∈ C∞(U,Altn(E1;Fn)).
It will be convenient to set d0fn := fn and let d0fn(x)(w1, . . . , wm, v) := d0fn(x)(v)
as well as dmf0(x)(w, v) := dmf0(x)(w) for x ∈ U , w = (w1, . . . , wm) ∈ Em

0 and
v ∈ En

1 .

Proposition 2.2.13 ([1, Proposition 3.4, p.584]). Let E,F ∈ SVeclc, k ∈ N0 ∪
{∞}, U ⊆ E

(k), V ⊆ F
(k) be open subfunctors and f ∈ SC∞(U ,V). Then the

equation

fΛk

(
x+

∑k
l=1 λlyl

)
= f0(x) +

k∑
l=1

∑
{i1,...,il}∈Pk

λIfl(x)(yi1 , . . . , yil),

where x ∈ UR and yl ∈ E1, defines a k-skeleton (fn)n. For this skeleton, we have

fΛN (x+ n0 + n1) =
∞∑

m,l=0

1

m!l!
· dmfl(x)(n0, . . . , n0︸ ︷︷ ︸

m times

, n1, . . . , n1︸ ︷︷ ︸
l times

), (2.1)

where x ∈ UR, n0 ∈ E
(k)

Λ+

N,0

, n1 ∈ E
(k)

ΛN,1
and N ≤ k. Here it is understood that

dmfl(x)(λI1v1, . . . , λIl+mvl+m) = λI1 · · ·λIl+mdmfl(x)(v1, . . . , vl+m)

for v1, . . . , vm ∈ E0, vm+1, . . . , vm+l ∈ E1 and |Ij| even if 1 ≤ j ≤ m and odd if
m + 1 ≤ j ≤ m + l. Conversely, every k-skeleton defines a supersmooth map via
formula (2.1) and the skeleton of this map is the original one.
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Proof. Using Lemma 2.2.8 instead of [1, Proposition 2.21, p.582], the proof follows
in the same way as [1, Proposition 3.4, p.584]. For the reader’s convenience, we
will sketch the steps using our notation. Let N ≤ k. By Proposition 2.2.7 we have

fΛN

(
x+

∑N
l=1 λlyl

)
=

N∑
l=0

∑
{i1,...,il}∈PN

dlfΛN (x)(λi1yi1 , . . . , λilyil).

The maps on the right-hand side are symmetric in λijyij but swapping two odd
generators leads to a sign change by the natural transformation property. With
Lemma 2.2.5 one sees that this determines alternating maps in yij , where it is un-
derstood that the odd generators can be pulled out in order of their appearance.
Now, one applies Proposition 2.2.7 to derive formula (2.1). Note that by super-
smoothness, the alternating maps defined above determine dm+lfΛN completely.
To see that the right-hand side of formula (2.1) defines a natural transformation

for a given skeleton is straightforward and supersmoothness then follows directly
or with Corollary 2.2.9. This supermooth map has the original skeleton by a
combinatorial argument similar to the one used for Lemma 2.2.8.

Remark 2.2.14. In the situation of the proposition above, we can use Proposition
2.2.7 instead of Lemma 2.2.8 to get

fΛN (x+ n0 + n1) =
∑
I∈PN+

∑
ω∈P(I)

λωd
(e(ω))fo(ω)(x)(nω),

where the partitions ω are in graded lexicographic order, λω = λω1 · · ·λω`(ω)
and

nω := (n0,ω1 , . . . , n0,ωe(ω)
, n1,ωe(ω)+1

, . . . , n1,`(ω)).

Remark 2.2.15. Let f : U ! V be as in Proposition 2.2.13. We have already
seen that df : U × E(k)

! F
(k) is supersmooth. For Λ ∈ Gr(k), x ∈ UR, y ∈ E0

and xi, yi ∈ Ei ⊗ Λ+
i set u := x + x0 + x1 and v := y + y0 + y1. Then use the

proposition to calculate

dfΛ(u)(v) =
∞∑

m,l=0

1

m!l!
·
(
dm+1fl(x)(y, x0, . . . , x0, x1, . . . , x1)

+m · dmfl(x)(y0, x0, . . . , x0, x1, . . . , x1)

+ l · dmfl(x)(x0, . . . , x0, y1, x1 . . . , x1)
)

=
∞∑

m,l=0

1

m!l!
·
(
dm+1fl(x)(y + y0, x0, . . . , x0, x1, . . . , x1)

)
+

∞∑
m,l=0

1

m!l!
·
(
dmfl+1(x)(x0, . . . , x0, y1, x1 . . . , x1)

)
.

We see that the skeleton of df is given by

(df)n = dfn(prUR , prE0
)(pr1, . . . , pr1) + n · Anfn(prUR)(pr2, pr1, . . . , pr1),
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with the projections prUR : UR × E0 ! UR, prE0
: UR × E0 ! E0, the projection to

the first component pr1 : E1×E1 ! E1 and the projection to the second argument
pr2 : E1 × E1 ! E1.

In the sequel, we will not differentiate between supersmooth morphisms and their
skeletons. In other words, if U ,V ,W are k-superdomains and f ∈ SC∞(U ,V) has
the skeleton (fn)n, we will write (fn)n : U ! V . If additionally g ∈ SC∞(V ,W) has
the skeleton (gn)n we let (gn)n ◦ (fn)n be the skeleton of g ◦f . For this composition
the concrete formula is given as follows.

Proposition 2.2.16 (compare [1, Proposition 3.7, p.586]). Let k ∈ N0 ∪ {∞},
E ∈ SVeclc, U ⊆ E

(k) be an open subfunctor and V ,W ∈ SDom(k). For two
supersmooth morphisms (fr)r : U ! V and (gr)r : V ! W the skeleton (hn)n :=
(gr)r ◦ (fr)r is given by h0 := g0 ◦ f0 for n = 0 and otherwise by

hn(x)(v) =
∑

m,l;σ∈Sn,
(α,β)∈Inm,l

sgn(σ)

m!l!α!β!
dmgl(f0(x))

(
(fα × fβ)(x)(vσ)

)
(2.2)

for x ∈ UR and v = (v1, . . . , vn) ∈ En
1 , where vσ := (vσ(1), . . . , vσ(n)),

Inm,l :=
{

(α, β) ∈ (2N)m × (2N0 + 1)l| |α|+ |β| = n
}
,

fα := fα1 × · · · × fαm , fβ := fβ1 × · · · × fβl and
α! = α1! · · ·αm!, β! = β1! · · · βl!.

Proof. By Proposition 2.2.13 (hn)n is defined by

gΛ(fΛ(x+ y)) =
∞∑
l=0

1

l!
hl(x)(y, . . . , y) for all Λ = Λn ∈ Gr(k),

where x ∈ UR, and y =
∑n

j=1 λjyj ∈ E
(k)

Λ . For i ∈ {0, 1}, we let

ni :=
∑
l∈2N−i

1

l!
fl(x)(y, . . . , y).

Together with Proposition 2.2.13, this implies

gΛ(fΛ(x+ y)) =
∞∑

m,l=0

1

m!l!
dmgl(f0(x))(n0, . . . , n0, n1, . . . , n1). (2.3)

Since in formula (2.2), hn only depends on (fr)r≤n and (gr)r≤n, it suffices to
compare the component containing all odd generators of Λ = Λn, i.e., the com-
ponent I := {1, . . . , n}. The formula follows then by trivial induction. Mul-
tilinear expansion of the ni in formula (2.3) shows that exactly those sum-
mands contribute, where the indices of all occurring fi add up to n. In other
words exactly those containing fα × fβ with (α, β) ∈ Inm,l. Applying multilin-
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ear expansion to y, we see that for every (α, β) ∈ Inm,l exactly all permutations
λσ(1) · · ·λσ(n)

1
α!β!

(fα × fβ)(yσ(1), . . . , yσ(n)) for σ ∈ Sn appear in formula (2.3)
since equal indices cancel each other. The sign in the formula is explained by
λσ(1) · · ·λσ(n) = sgn(σ)λI .

Remark 2.2.17. Formula (2.2) was already stated in [40, Proposition 3.3.3, p.91
f.] but the first proof in the literature was [1, Proposition 3.7, p.586]. Unfortu-
nately, the proof is incomplete and there is a small mistake in the formula (the
original one in [40] is correct), which is why we decided to give the proof in its
entirety. To see that our formula differs from the one proposed in [1], consider
that in the situation of Proposition 2.2.16 the latter leads to∑

σ∈S2

1

2
dg1(f0(x))

(
f2(x)(•σ), f1(x)(•)

)
(v1, v2, v3) = 0,

while in general∑
σ∈S3

sgn(σ)

2
dg1(f0(x))

(
f2(x)(•), f1(x)(•)

)
(v1, v2, v3)σ 6= 0.

Lemma 2.2.18. Let k ∈ N∪{∞}, E,F ∈ SVeclc and U ⊆ E
(k)
,V ⊆ F

(k) be open
subfunctors. A supersmooth morphism f : U ! V is an isomorphism in SDom(k)

if and only if fΛ1 : UΛ1 ! VΛ1 is a diffeomorphism. In this case, using the same
notation as in formula (2.2), the inverse g has the skeleton

g0 : VR ! UR, g0(x′) := f−1
0 (x′),

g1 : VR ! Alt1(F1;E1), g1(x′) := f1(g0(x′))−1 and
gn : VR ! Altn(F1;E1),

gn(x′)(v′) := −
∑

m,l<n,(α,β)∈Inm,l,
σ∈Sn

sgn(σ)

m!l!α!β!
dmgl(x

′)
(
(fα × fβ) (g0(x′)) (vσ)

)
,

where n > 1, v′ = (v′1, . . . , v
′
n) ∈ F n

1 and v := (g1(x′)(v′1), . . . , g1(x′)(v′n)) ∈ En
1 .

Proof. If a supersmooth morphism f : U ! V is invertible, then clearly fΛ is a
diffeomorphism for every Λ ∈ Gr(k). Conversely, let fΛ1 be a diffeomorphism.
Then fΛ1(x + λ1v) = f0(x) + λ1f1(x)(v) for all x ∈ UR and v ∈ E1. A direct
calculation shows that gΛ1(x′ + λ1v

′) := g0(x′) + λ1g1(x′)(v′) is the inverse of fΛ1 .
With the supersmooth morphism (gn)n : V ! U , we calculate

((gr)r ◦ (fr)r)n(x)(v) =
∑

m,l<n,(α,β)∈Inm,l,
σ∈Sn

sgn(σ)

m!l!α!β!
dmgl(f0(x))

(
(fα × fβ) (x) (vσ)

)

+
∑
σ∈Sn

1

n!
gn(f0(x))

(
(f1 × · · · × f1)(x)(vσ)

)
,
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for n > 1, x ∈ UR, v ∈ En
1 . Note that in the second summand the sum over Sn to-

gether with the factor 1
n!

can be omitted because the expression is already alternat-
ing. With f0(x) := x′ and (f1(x)(v1), . . . , f1(x)(v)) := v′ it follows from the defini-
tion of gn that ((gr)r ◦ (fr)r)n = 0. This implies (gr)r ◦ (fr)r = (idUR , cidE1

, 0, 0, . . .),
which is the skeleton of the identity idU : U ! U . Thus, (fn)n has a left inverse.
Since the same construction also works for (gn)n, the left inverse of (fn)n also
has a left inverse. Therefore, (gn)n is the inverse of (fn)n and f is invertible in
SDom(k).

In general, it is quite difficult to check that smooth bijective maps between
locally convex spaces are diffeomorphisms. However, if the map has the form of
fΛ1 in the above lemma, a result of Hamilton ([26, Theorem 5.3.1, p.102]) can be
directly generalized to the locally convex case. We do not need this result in the
sequel but since it might be of interest for inverting supersmooth maps, we state
it nevertheless.

Lemma 2.2.19 ([24, Lemma 2.3, p.11]). Let E0, E1 and F1 be locally convex
spaces, U ⊆ E0 open and f : U×E1 ! F1 be smooth such that fx := f(x, •) : E1 !
F1 is linear for all x ∈ U . If fx is invertible for all x ∈ U and g : U × F1 !
E1, (x, v) 7! f−1

x (v) is continuous, then g is smooth. Moreover, we have

d1g(x, v)(u) = −g
(
x, d1f

(
x, g(x, v)

)
(u)
)

for x ∈ U , v ∈ F1 and u ∈ E0.

It is easy to generalize this to the situation where additionally a diffeomorphism
f0 : U ! V between open sets of locally convex spaces is involved.

2.2.1. Supersmooth multilinear algebra

Lemma/Definition 2.2.20. Let k ∈ N0∪{∞}, n ∈ N, iF ∈ SVec for 1 ≤ i ≤ n,
E ∈ SVec and f : 1F × · · · × nF ! E be an even n-multilinear map. We define

f
(k)

: 1F
(k) × · · · × nF

(k)
! E

(k)

via multilinear expansion of f (k)

Λ (λI1v1, . . . , λInvn) := λI1 · · ·λInf(v1, . . . , vn) for
Λ ∈ Gr(k), λI1 , . . . , λIn ∈ Λ and vi ∈ iF |Ii|. Then f

(k) is a natural transformation.

If no confusion is possible, we also write f instead of f (k). If iF ∈ SVeclc for
1 ≤ i ≤ n, E ∈ SVeclc and f is continuous, then f (k) is supersmooth.

Proof. That f is a natural transformation follows immediately from the definition.
Likewise, for continuous f it is obvious that fΛ is a continuous Λ0-n-multilinear
map for every Λ ∈ Gr(k) and thus supersmooth.

Proposition 2.2.21 ([40, Proposition 2.1.1, p.387]). Let n ∈ N and
1F, . . . , nF,E ∈ SVec.
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(a) For k ∈ N ∪ {∞}, k ≥ n the map

0L
n
R(1F, . . . , nF ;E)! LnR(1F

(k)
, . . . , nF

(k)
;E

(k)
), f 7! f

is an isomorphism of R-modules, where the R-module structure on the right-
hand side is as in Lemma 1.4.4.

(b) If 1F, . . . , nF,E are topological super vector spaces, then

0L
n
R(1F, . . . , nF ;E)! LnR(1F

(k)
, . . . , nF

(k)
;E

(k)
), f 7! f

is also an isomorphism of R-modules.

(c) If g1, . . . , gn are even R-multilinear maps such that for 1 ≤ i ≤ n the
codomain of gi is iF , then for any f ∈ 0L

n
R(1F, . . . , nF ;E), we have

f ◦ (g1, . . . , gn) = f ◦ (g1, . . . , gn).

(d) If f ∈ 0L
n
R(1F, . . . , nF ;E) and σ ∈ Sn, then we have

f.σ = f ◦ σ,

with the left-hand side as in Definition 1.5.3 and the right-hand side as in
Lemma 1.4.4.

Proof. The proof of (a) for the case k =∞ given in [46, Proposition 3.1, p.10] can
be easily transferred to the case of k ∈ N, k ≥ n.
In the situation of (b), it is obvious from the definition that f ∈
LnR(1F

(k)
, . . . , nF

(k)
;E

(k)
). Conversely, the map

1Fi1 × · · · × nFin ! λ{1,...,`}E`, (1v, . . . , nv) 7! λ{1,...,`}f(1v, . . . , nv)

is continuous for all i1, . . . , in ∈ {0, 1}, where 0 ≤ ` ≤ n denotes the number of
odd ij. It follows that f is continuous.
Statement (c) is obvious. For (d) let iv ∈ iF , 1 ≤ i ≤ n be homogeneous and

let Ii ∈ Pkp(iv). Then, we have

fΛk
(λI1 1v, . . . , λIj jv, λIj+1 j+1v . . . , λIn nv) =

(−1)p(jv)p(j+1v)λI1 · · ·λnf(1v, . . . , jv, j+1v . . . , nv).

This shows that f.(j, j + 1) = f◦(j, j+1) holds for any transposition (j, j+1) ∈ Sn.
The general statement follows because the transpositions generate Sn.

Corollary 2.2.22 (c.f. [40, Corollary 2.1.2, p.388]). The assignment E ! E
(k)

for objects and f ! f for morphisms defines fully faithful functors

· : SModR !ModR(k)(SetGr(k)

),

35



2 Supermanifolds

· : TopSModR !ModR(k)(TopGr(k)

),

for 1 ≤ k, fully faithful functors

· : SAlgR ! AlgR(k)(SetGr(k)

),

· : TopSAlgR ! AlgR(k)(TopGr(k)

),

for 2 ≤ k and fully faithful functors

· : SLAlgR ! LAlgR(k)(SetGr(k)

),

· : TopLSAlgR ! LAlgR(k)(TopGr(k)

),

for k ≥ 3. If A ∈ SAlgR is associative, resp. unital, resp. supercommutative, then
A

(k) is associative, resp. unital, resp. commutative.

Proof. Let us first consider the non-topological cases. That the functors are fully
faithful follows from Proposition 2.2.21(a). In view of Remark 1.5.8, we see that
Proposition 2.2.21(d) implies that an algebraic structures of a super type is mapped
to the respective normal algebraic structure. For the same reason, supercommu-
tative superalgebras map to commutative algebras. Note that k ≥ 3 is necessary
for applying the proposition to the super Jacobi identity.
Proposition 2.2.21(c) shows functoriality and that associativity is retained. Fi-

nally, if A ∈ SAlgR has the unit element 1A and p is a terminal object of SetGr(k)

,
then z : p ! A

(k)
, zΛ(pΛ) := A

(k)

ηΛ
(1A) clearly defines a neutral element of A(k).

With Proposition 2.2.21(b), the topological case follows. Compare also [46, Corol-
lary 3.2 and Corollary 3.3, p.12].

In particular, if one restricts the objects on the right-hand side to R(k)-modules
isomorphic to modules of the form E

(k), so called superrepresentable R(k)-modules,
these functors establish equivalences of categories. More generally, it can be shown
that one gets an equivalence of categories from any category of multilinear “super-
algebraic” structures over R in Man to the respective category of multilinear
algebraic structures over R in SMan (see [40, Corollary 4.4.2, p.397]).2

2.2.2. Generalizations

One obvious generalization is to consider a differential calculus for other base fields
(or even rings) than R. A robust framework for this is provided by [11] and then
further developed for the super case in [1]. In the most general case, one has a
unital commutative Hausdorff topological ring R such that the group of units R×
is dense, i.e., integers need not necessarily be invertible. For simplicity’s sake, we
formulated our results over R but we made a conscious effort to make them easily
adaptable to more general situations.

2It is not immediately clear whether this result holds beyond Banach supermanifolds.
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In this way Lemma 2.2.4 through Proposition 2.2.7 can easily be shown to hold
in the most general case. While Corollary 2.2.9 and Lemma 2.2.10 also translate,
our definition of supersmoothness just means C1

MS (together with smoothness over
R) in the terminology of [1]. Note however that C1

MS is equivalent to C∞MS if R is
an Q-algebra and one has smoothness over R (see [1, Proposition 2.18, p.580]). In
this case Lemma 2.2.8, Proposition 2.2.13, Proposition 2.2.16 and Lemma 2.2.18
carry over as well.
It should be noted that Remark 2.2.14 enables us to show an analog to Proposi-

tion 2.2.13 if not all integers are invertible in R, i.e., supersmooth maps are given
by something like skeletons even in the most general case. The resulting analog
to the composition formula from Proposition 2.2.16 can be obtained with general
results about multilinear bundles (compare Remark B.1.3) and a similar induction
as in Lemma 2.2.18 leads to an inversion formula (compare [10, Theorem MA.6(2),
p.172]).
The second apparent generalization is to define morphisms of finite differentia-

bility order n ∈ N0. Given only k-superdomains with k ≤ n, one can simply define
k-skeletons where the differentiability class of the components is appropriately
chosen. For a more detailed discussion see [40, 10.1, p.420f.].

2.3. Supermanifolds

The construction of supermanifolds from superdomains is conceptually very close
to the respective construction of manifolds. In the categorical approach proposed
by Molotkov in [40], one defines a Grothendieck topology on TopGr that takes the
same role as the usual topology in the manifold case. As model space one uses
functors of the form E for E ∈ SVeclc with open subfunctors U as the open subsets
(respectively functors isomorphic to such functors). A supermanifold is then a
functorM∈ManGr together with an atlas consisting of natural transformations
ϕ : U ! M, such that the change of charts is supersmooth. Here a technical
problem arises. In this approach, the intersection of two chart domains in M is
defined as a fiber product in the category ManGr, which is not guaranteed to be
a superdomain. This has to be demanded in the definition. We avoid this and
other technicalities by using concrete definitions of the model spaces. For a concise
version of the categorical approach see [1, p.591 ff.].
We introduce k-supermanifolds in the same way as supermanifolds by consider-

ing functors ManGr(k)

and obtain respective categories SMan(k) for k ∈ N0∪{∞}.
One has the obvious restriction functors πmn : SMan(m) ! SMan(n) for n ≤ m and
the embeddings ι0k : SMan(0) ! SMan(k) and ι1k : SMan(1) ! SMan(k), which
play an important part in understanding the structure of supermanifolds. Note in
particular that SMan(0) ∼= Man and SMan(1) ∼= VBun.
These statements are not particularly difficult to prove and were already stated

in [38]. Noteworthy new results include the following. For any supermanifoldM,
we show that MΛn has the natural structure of a so called multilinear bundle
of degree n over MR. What is more, (MΛn)n∈N0 forms an inverse system of
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2 Supermanifolds

multilinear bundles which enables us to obtain a functor

SMan!Man, M 7! lim −nMΛn

in Theorem 2.3.11. As already mentioned, this functor has good properties such
as respecting products. Another important result is the characterization of purely
even supermanifolds in terms of higher tangent bundles of the base manifold in
Proposition 2.3.16.

Definition 2.3.1. Let k ∈ N0 ∪ {∞}, E ∈ SVeclc andM ∈ TopGr(k)

Hausdorff.
Recall Definition 2.1.6. We call a covering A := {ϕα : Uα ! M : α ∈ A} of
M such that all Uα are open subfunctors of E(k) an atlas of M if the natural
transformations

ϕαβ := (ϕβ)−1 ◦ ϕα|Uαβ : Uαβ ! Uβα

are supersmooth for all α, β ∈ A. Two atlases A and B are called equivalent if
their union A∪B is again an atlas. As with ordinary manifolds, this clearly defines
an equivalence relation and we call the pair (M, [A]) a k-supermanifold modelled
on E. If k =∞ we also simply callM a supermanifold . We will usually omit [A]
from our notation and if we talk about an atlas of a supermanifold, it is meant to
belong to this equivalence class. An element of any of the equivalent atlases will
be called a chart ofM. For any two charts ϕα and ϕβ, we call ϕαβ the change of
charts .
A morphism f : M ! N of k-supermanifoldsM and N is a natural transfor-

mation f : M! N such that for any chart ϕ : U !M and any chart ψ : V ! N

ψ−1 ◦ f ◦ ϕ|(f◦ϕ)−1(ψ(V)) : (f ◦ ϕ)−1(ψ(V))! V

is supersmooth.

Note that the definition of morphisms between k-supermanifolds is independent
of the atlases, because change of charts satisfies the cocycle condition. As with
ordinary manifolds, one sees that the composition of two morphisms of superman-
ifolds is again a morphism by inserting charts between them. Thus, we get for
every k ∈ N0∪{∞} the category SMan(k) of k-supermanifolds. As always, we set
SMan := SMan(∞). For two k-supermanifoldsM,N , we denote by SC∞(M,N )
the set of supersmooth morphisms f : M! N .

Definition 2.3.2. A k-supermanifold M modelled on E ∈ SVeclc is a finite-
dimensional , Banach or Fréchet k-supermanifold if E is so. If E1 = {0}, then
M is purely even and if E0 = {0}, then M is purely odd . We call MR the base
manifold ofM and say thatM is σ-compact ifMR is σ-compact.

Remark 2.3.3. If one allows non-Hausdorff supermanifolds in the definition, it is
easily seen that a supermanifold M is Hausdorff if and only if its base manifold
is Hausdorff. In fact, this follows because MΛ is a fiber bundle over MR whose
typical fiber is Hausdorff by Theorem 2.3.11 below.
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2.3 Supermanifolds

To get some intuition for supermanifolds, we start with several simple observa-
tions.

Lemma 2.3.4. Let k ∈ N0 ∪ {∞} and M ∈ SMan(k) with the atlas {ϕα : Uα !
M : α ∈ A}.

(a) For every Λ ∈ Gr(k), {(ϕαΛ|
ϕαΛ(UαΛ )

UαΛ
)−1 : ϕαΛ(UαΛ) ! UαΛ : α ∈ A} is an atlas of

MΛ.

(b) For n ≤ m < k + 1, the inclusions Mηn,m : MΛn ! MΛm are topological
embeddings andMΛn is a closed submanifold ofMΛm.

(c) For n ≤ m < k + 1, the projectionsMεm,n : MΛm !MΛn are surjective.

Proof. (a) This is obvious from the definition of a supermanifold, since the sets
ϕαΛ(UαΛ) form an open cover ofMΛ, ϕαΛ|

ϕαΛ(UαΛ )

UαΛ
is a homeomorphism and the change

of charts is smooth.
(b) LetM be modelled on E ∈ SVeclc. In the charts defined by ϕαΛn and ϕαΛm

as in (a), the map Mηn,m has the form Uηn,m and we have UαΛn ∼= U
α
ηn,m(UαΛn) =

UαΛm ∩ E
(k)

Λn . By naturality, we have ϕαΛm(Uαηn,m(UαΛn)) =MΛm ∩Mηn,m(ϕαΛn(UαΛn)).
(c) In the charts defined by ϕαΛn and ϕαΛm as in (a), the mapMεm,n has the form
Uεm,n which clearly defines a surjective map.

Part (c) of this lemma already suggests thatMΛm is some kind of fiber bundle
over MΛn . As we discuss below, this fiber bundle structure can be accurately
described via multilinear bundles. Like ordinary manifolds, supermanifolds and
morphisms thereof arise from local data.

Proposition 2.3.5 (see [1, Proposition 3.23, p.593]). Let k ∈ N0∪{0}, E ∈ SVeclc

and let (Uα)α∈A be a family of open subfunctors of E(k) and Uαα′ ⊆ Uα be open
subfunctors for α, α′ ∈ A such that Uαα = Uα. Further, let ϕαα′ : Uαα′ ! Uα′α be
isomorphisms in SDom(k) such that we have ϕαα = idUα and ϕαα′′ = ϕα

′α′′ ◦ ϕαα′

on Uαα′ ∩ Uαα′′ for all α, α′, α′′ ∈ A. Finally, for all α, β ∈ A and any two
points x ∈ UαR , y ∈ U

β
R such that x /∈ UαβR or ϕαβR (x) 6= y, let there exist open

neighbourhoods V ⊆ UαR of x and V ′ ⊆ UβR of y, such that ϕαβR
(
UαβR ∩ V

)
∩ V ′ = ∅.

Then there exists a, up to unique isomorphism, unique k-supermanifold M with
an atlas {ϕα : Uα !M : α ∈ A} such that that the change of charts coincides with
the ϕαα′ defined above.
Moreover, let N ∈ SMan(k) have the atlas {ψβ : Vβ ! N : β ∈ B} and let
Ũαβ ⊆ Uα for α ∈ A and β ∈ B such that

⋃
β∈B Ũ

αβ
R = UαR . If fαβ : Ũαβ ! Vβ is a

family of supersmooth maps such that ψββ′ ◦ fαβ ◦ϕα′α = fα
′β′ on (ϕα

′α)−1(Ũαβ)∩
(fα

′β′)−1(Vβ′β) for all α, α′ ∈ A, β, β′ ∈ B, then there exists a unique supersmooth
morphism f : M! N with fαβ = (ψβ)−1 ◦ f ◦ ϕα|Ũαβ .

Proof. This follows exactly as in [1, Proposition 3.23, p.593]. Essentially, we use
the well-known equivalent statement for ordinary manifolds for every Λ ∈ Gr(k)

to construct MΛ, resp. fΛ, and the rest follows from naturality. Note that
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⋃
β∈B Ũ

αβ
R = UαR implies

⋃
β∈B Ũ

αβ
Λ = UαΛ for all Λ ∈ Gr(k). Moreover, if MR

is Hausdorff thenMΛ is Hausdorff for all Λ ∈ Gr (compare Remark 2.3.3).

Lemma 2.3.6 ([40, Corollary 6.2.2, p.409]). Let k ∈ N ∪ {∞} and M,N ∈
SMan(k). A supersmooth morphism f : M ! N is an isomorphism in SMan(k)

if and only if fΛ1 : MΛ1 ! NΛ1 is a diffeomorphism.

Proof. Clearly, f : M ! N is an isomorphism if and only if fΛ : MΛ ! NΛ

is bijective and the maps f−1
Λ define a supersmooth natural transformation for

every Λ ∈ Gr(k). In particular, fΛ1 is a diffeomorphism in this situation. Let
{ϕα : Uα ! M : α ∈ A} be an atlas of M and {ψβ : Vβ ! N : β ∈ B} be an
atlas of N . Let f : M ! N be supersmooth such that fΛ1 is a diffeomorphism.
For all α ∈ A and β ∈ B we define Ũαβ := (f ◦ ϕα)−1(ψβ(Vβ)) ⊆ Uα and Ṽβα :=
fαβ
(
(f ◦ ϕα)−1(ψβ(Vβ))

)
= (ψβ)−1(f(ϕα(Uα))) ⊆ Vβ and let

fαβ := (ψβ)−1 ◦ f ◦ ϕα|Ũαβ : Ũαβ ! Ṽβα.

Since fR is also a diffeomorphism, the sets ṼβαR cover NR and because every
fαβΛ1

is a diffeomorphism, there exist unique supersmooth inverse morphisms
(fαβ)−1 : Ṽβα ! Ũαβ by Lemma 2.2.18. For every α, α′ ∈ A and β, β′ ∈ B,
we have (ψβ

′β)−1 ◦ fα′β′ ◦ ϕαα′ = fαβ on Ũαβ ∩ (ϕαα
′
)−1(Ũα′β′). Therefore,

(fαβ)−1 = (ϕαα
′
)−1 ◦ (fα

′β′)−1 ◦ ψββ′ on Ṽβα ∩ (ψββ
′
)−1(Ṽββ′) and the morphisms

lead to a unique supersmooth morphism f−1 : N !M by Proposition 2.3.5. That
it is inverse to f follows from the local description of f−1 ◦ f and f ◦ f−1.

Definition 2.3.7. Let k ∈ N0 ∪ {∞} and M ∈ SMan(k) be modelled on E ∈
SVeclc. A subfunctor N of M is called a sub-supermanifold of M if there exist
sequentially closed vector subspaces F0 ⊆ E0 and F1 ⊆ E1 such that for every
x ∈ NR there exists a chart ϕα : Uα ! M of M with x ∈ ϕαR(UαR ) such that
ϕα(Uα ∩ F (k)

) = ϕα(Uα) ∩N , where F := F0 ⊕ F1 ∈ SVeclc.
We call ϕα|Uα∩F (k) a sub-supermanifold chart ofN . Taking all sub-supermanifold

charts of N as the atlas turns N into a supermanifold and we always give N this
structure.

Lemma 2.3.8. Let k ∈ N0 ∪ {∞},M∈ SMan(k) and N be a sub-supermanifold
ofM. Then the inclusion i : N !M is supersmooth.

Proof. By definition of a subfunctor, the inclusion is a natural transformation.
Let M be modelled on E ∈ SVeclc, N be modelled on F ⊆ E and {ϕα : Uα !
M : α ∈ A} be a collection of charts such that {ϕα|Uα∩F (k) : α ∈ A} is an atlas of

N . In these charts the inclusion is just the inclusion Uα ∩ F (k)
! Uα, which is

obviously supersmooth.

Lemma/Definition 2.3.9. Let k ∈ N0∪{∞} andM∈ SMan(k). For every open
subfunctor of U ⊆ M, we have U =M|UR . In this case U is a sub-supermanifold
ofM and if f : M! N is a supersmooth morphism to N ∈ SMan(k), then so is
f |U : U ! N . We call such sub-supermanifolds open sub-supermanifolds .
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Proof. That U =M|UR holds for k =∞ follows directly from [45, Corollary 3.5.9,
p. 62] and the same proof works for k ∈ N0 if one only considers Λ ∈ Gr(k). Let
{ϕα : Uα !M : α ∈ A} be an atlas of M. Then {ϕα|(ϕα)−1(ϕα(Uα)∩U) : α ∈ A} is
an atlas of U . With these charts, the supersmoothness of f |U is obvious.

Definition 2.3.10. Let k ∈ N0 ∪ {∞} and M,N ∈ SMan(k) be modelled on
E,F ∈ SVeclc with atlases {ϕα : Uα !M : α ∈ A} and {ψβ : Vβ ! N : β ∈ B}.
We define the product M×N ofM and N as the functor Λ 7!MΛ ×NΛ, resp.
% 7! M% × N%, for Λ,Λ′ ∈ Gr(k) and % ∈ HomGr(k)(Λ,Λ′). We will always give
M×N the structure of a k-supermanifold modelled on E×F defined by the atlas
{ϕα × ψβ : Uα × Vβ !M×N : (α, β) ∈ A×B}.

Clearly, the projections πM : M×N !M and πN : M×N ! N are super-
smooth morphisms.
Recall the definition of multilinear bundles and inverse systems of multilinear

bundles from Appendix B. The following theorem shows that for a supermanifold
M, the manifolds MΛn are multilinear bundles of degree n over MR and that
(MΛm ,Mεm,n) is an inverse system of multilinear bundles. This lets us consider
supermanifolds as ordinary manifolds.

Theorem 2.3.11. Let k ∈ N0 ∪ {∞}, M,N ∈ SMan(k) and f : M ! N be
supersmooth. If M is modelled on E ∈ SVeclc with the atlas {ϕα : α ∈ A}, then
MΛn is a multilinear bundle of degree n over MR with the fiber EΛ+

n
and the

bundle atlas {ϕαΛn : α ∈ A} for every Λn ∈ Gr(k). Moreover, fΛn : MΛn ! NΛn

is a morphism of multilinear bundles of degree n. With this, we obtain a faithful
functor

SMan(k) !MBun(k),

defined by M 7! MΛk and f 7! fΛk for k ∈ N0. Furthermore, if k = ∞, then
(MΛm ,Mεm,n) is an inverse system of multilinear bundles with the adapted atlas
{(ϕαΛn)−1 : n ∈ N0, α ∈ A} and

lim − : SMan!MBun(∞),

defined by M 7! lim −nMΛn and f 7! lim −n fΛn, is a faithful functor. Along the
forgetful functor, we have thus constructed faithful functors

SMan(k) !Man

for k ∈ N0 ∪ {∞}. All these functors respect products.

Proof. LetM be modelled on E ∈ SVeclc. We start by showing that {ϕαΛn : UαΛn !
MΛn : α ∈ A} is indeed a bundle atlas of a multilinear bundles of degree n. Let the
change of charts ϕαβ be defined by the skeleton (ϕαβn ). We consider UαΛn = UαR ×∏

I∈Pn+
λIE|I| as a trivial multilinear bundle over the n-multilinear space (EI) with

EI := λIE|I|. By naturality, we have (ϕαΛn)−1
(
M−1

εΛn
({x})

)
= (UαΛn)−1

(
ϕ−1
R ({x})

)
for all x ∈ ϕαR(UαR ). In other words, the projectionMεΛn

: MΛn !MR turnsMΛn

into a fiber bundle with typical fiber EΛ+
n
. Recall the sign of a partition defined in
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Remark B.1.6. Then λω1 · · ·λω`(ω)
= sgn(ω)λI for all I ∈ Pn+ and ω ∈P(I). With

this, we use Remark 2.2.14 to calculate

ϕαβ
(
x+

∑
I∈Pn+

λIxI
)

= ϕαβ0 (x) +
∑
I∈Pn+

∑
ω∈P(I)

λIsgn(ω)d(e(ω))ϕαβo(ω)(x)(xω)

for ω in graded lexicographic order xI ∈ E|I| for I ∈ Pn+ and

xω := (λω1xω1 , . . . , λω`(ω)
xω`(ω)

).

In the notation of multilinear bundles, the change of chart is thus given by the sum
of maps of the form (ϕαβ)ωx := sgn(ω)d(e(ω))ϕαβo(ω)(x), which define an isomorphism
of n-multilinear spaces for every x ∈ UαβR . Thus,MΛn is a multilinear bundle over
MR of degree n with typical fiber (EI).
For a morphism f : M ! N , we first note that by naturality fR ◦ MεΛn

=
NεΛn ◦fΛn and therefore fΛn is a fiber bundle morphism over fR. In bundle charts,
we can make the exact same argument as above to see that fΛn is a morphism of
multilinear bundles.
It follows that we have a functor SMan(k) ! MBun(k) as described in the

theorem for k ∈ N0. Next, we show that (MΛm ,Mεm,n) defines an inverse system
of multilinear bundles ifM∈ SMan. We haveMεm,n ◦ ϕαΛm = ϕαΛn ◦ U

α
εm,n for all

n ≤ m and therefore Uαεkm,n is the chart representation ofMεm,n . Hence, in terms
of multilinear bundles, Mεm,n is exactly the projection defined in Lemma B.3.1.
It follows that MΛm |Pn+ = Mεm,n(MΛm) = MΛn and ϕαΛm |Pn+ = ϕαΛm ◦ U

α
ηn,m =

Mηn,m ◦ ϕαΛn shows that {(ϕαΛm)−1 : m ∈ N0, α ∈ A} is indeed an adapted atlas.
On morphisms f : M! N , N ∈ SMan, we have likewise fΛn ◦Mεm,n = Nεm,n ◦

fΛm which shows that (fΛm)m∈N0 is a morphism of inverse systems of multilinear
bundles.
It is clear from the definitions that products of supermanifolds correspond to

products of inverse systems.

Remark 2.3.12. In [40, Remark 3.3.1, p.392] Molotkov constructs a functor
ManGr ! Man by taking the disjoint union of the MΛ for M ∈ ManGr and
Λ ∈ Gr. He also considers this as a functor SMan ! Man along the forgetful
functor. For one, this functor relies on a more general definition of manifolds where
the model spaces of different connected components may be non-isomorphic. More
critically, this functor does not respect products, leading Molotkov to state that
“Lie supergroups (groups of the category SMan) are not groups at all (considered
in Set” [40, Ibid.]. We hope to have convinced the reader with the above theorem
that Lie supergroups can be seen not only as groups but even as Lie groups in a
natural way.

Remark 2.3.13. Consider the following type of fiber bundles. For E ∈ SVeclc
let the base manifold M be modelled on E0, let the typical fiber be lim −nEΛ+

n

and let the transition functions come from the limit of skeletons as in Theorem
2.3.11. The morphisms of such bundles shall locally also come from limits of
skeletons. Obviously, these bundles are elements of MBun(∞) and restricting to
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this subcategory turns the functor lim − into an equivalence of categories. If E is
finite-dimensional, we have that lim −nEΛ+

n
is a Fréchet space. Consequently, non-

trivial finite-dimensional supermanifolds are mapped to Fréchet manifolds under
lim −.

One can reconstruct the original supermanifoldM from lim −M if one keeps track
of any atlas of lim −M coming from the limit of an atlas ofM. An interesting prob-
lem is whether one can at least recover the isomorphism class of a supermanifold
without a specific atlas.

Problem. Is the functor lim − : SMan ! MBun(∞) injective on isomorphism
classes, i.e., do we have lim −M

∼= lim −N in MBun(∞) if and only if we have
M∼= N in SMan?

If MR admits a smooth partition of unity, then it follows from Batchelor’s
Theorem 2.4.1 below that this is the case because lim −M

∼= lim −N in MBun(∞)

impliesMΛ1
∼= NΛ1 in VBun. Note that the functor lim − : SMan !Man is not

injective on isomorphism classes. For example

lim −R1|0 ∼=
∏

I⊆N,|I|<∞,
|I| even

R ∼=
∏
n∈N

R ∼= R×
∏

I⊆N,|I|<∞,
|I| odd

R ∼= lim −R0|1

in the category Man.
We have seen in Theorem 2.3.11 how to embed the category of supermanifolds

into the category of manifolds. Conversely, one can also embed the category Man
into the category SMan. For this, let Dom denote the category consisting of
pairs (U,E0) where E0 is a Hausdorff locally convex space and U ⊆ E0 is open and
where the morphisms are smooth maps between the open subsets.

Proposition 2.3.14 ([40, cf. Proposition 4.2.1, p.396]). Let k ∈ N0 ∪ {∞}. We
define a functor

ι0k : Dom! SDom(k)

by setting ι0k(U) := E
(k)|U and ι0k(f0) := (f0, 0, 0, . . .) for (U,E0) ∈ Dom and

E := E0 ⊕ {0} ∈ SVeclc. This functor extends to a fully faithful functor

ι0k : Man! SMan(k).

In case of k = ∞ we also write ι : Man ! SMan. The functor ι00 : Man !
SMan(0) is an equivalence of categories. All of these functors respect products.

Proof. It follows from the composition formula in Proposition 2.2.16 that
ι0k : Dom ! SDom(k) is a functor. Let M be a manifold modelled on E0 with
atlas {ϕα : Vα ! Uα : α ∈ A}. Applying this functor to the change of charts
ϕαβ : Uαβ ! Uβα, defines an (up to unique isomorphism) unique supermanifoldM
modelled on E0⊕{0} with the atlas {ι0k

(
(ϕα)−1

)
: ι0k(Uα)!M : α ∈ A} by Propo-

sition 2.3.5. If N ∈Man has the atlas {ψβ : V ′β ! U ′β : β ∈ B} and f : M ! N is
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a smooth map then the same proposition applied to fαβ = ψβ ◦ f ◦ (ϕα)−1 leads to
a unique morphism ι0k(f) : ι0k(M) ! ι0k(N) such that

(
ι0k(f)

)αβ
= ι0k(fαβ). Func-

toriality follows again by the local definition of the composition of supersmooth
morphisms.
The uniqueness of this construction shows that ι0k is faithful. On the other

hand, every supersmooth map g : ι0k(M)! ι0k(N) is determined by its local chart
descriptions gαβ, whose skeletons have the form (gαβ0 , 0, 0 . . .) since ι0k(M) is purely
even. Clearly, the maps gαβ0 define a unique smooth map M ! N whose image
under ι0k is g. We already know from Theorem 2.3.11 thatM 7!MR and f 7! fR
defines a functor π0

0 : SMan(0) !Man and the above shows that π0
0 ◦ ι00 ∼= idMan

and that ι00 ◦ π0
0
∼= idSMan.

It is obvious that the functor ι0k : Dom! SDom(k) preserves products and from
this it follows immediately that ι0k : Man! SMan(k) also preserves products.

Lemma 2.3.15. Let k ∈ N0 ∪ {∞}. For every supermanifold M ∈ SMan(k),
we have that ι0k(MR) is a sub-supermanifold ofM. IfM is purely even, we have
ι0k(MR) ∼=M.

Proof. Let M be modelled on E ∈ SVeclc and let {ϕα : Uα ! M : α ∈ A} be
an atlas of M. If the changes of charts ϕαβ have the skeletons (ϕαβn ), then the
skeletons (ϕαβ0 , 0, . . .) define ιk0(MR) by Proposition 2.3.14. Because ϕαβ|

E0⊕{0}
(k)

has the skeleton (ϕαβ0 , 0, . . .), it follows that ι0k(MR) is a sub-supermanifold ofM.
If M is purely even, then changes of charts have the form (ϕαβ0 , 0, . . .) to begin
with and it follows ι0k(MR) ∼=M by Proposition 2.3.5.

Purely even supermanifoldsM can be described in terms of higher tangent bun-
dles ofMR. This will be particularly important for the theory of Lie supergroups.

Proposition 2.3.16. Let M be a manifold. Recall Example B.3.4. Using Lemma
B.2.9 and Theorem 2.3.11, there are isomorphisms

Γkn : ι0k(M)Λn ! T kM |−Pn0,+

of multilinear bundles of degree n for every n ≤ k <∞. These isomorphisms are
natural in k and n in the sense that

(ι0k(M)Λk , ι
0
k(M)εk,n) ∼=

(
T kM |−

Pk0,+
, πkn|−Pk0,+

)
holds as inverse systems of multilinear bundles. It follows that Λk 7! T kM |−

Pk0,+

can be made into a supermanifold isomorphic to ι(M).

Proof. To show that ιk0(M)Λn
∼= T nM |−Pn0,+ holds, we simply compare the change

of charts. Let M be modelled on E0 and {ϕα : Vα ! Uα : α ∈ A} be an atlas of
M . For a change of charts ϕαβ : Uαβ ! Uβα, we have ιk0(ϕαβ) = (ϕαβ, 0, 0, . . .) and
thus

ιk0(ϕαβ)Λn

(
x+

∑
I∈Pn0,+

λIxI
)

= ϕαβ(x) +
∑
I∈Pn0,+

∑
ω∈P0(I)

λIsgn(ω)d(e(ω))ϕαβo(ω)(x)(xω),
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where x ∈ Uαβ and xω = (xω1 , . . . , xω`(ω)
) ∈ E

e(ω)
0 . On the other hand, we

know from Example B.2.7(b) and the Lemma B.2.9 that the change of charts
for T kM |−

Pk0,+
is given by

T kϕαβ|−Pn0,+
(
x+

∑
I∈Pn0,+

εIxI
)

= ϕαβ(x) +
∑
I∈Pn0,+

∑
ω∈P0(I)

εIsgn(ω)d(e(ω))ϕαβo(ω)(x)(xω)

for the same x ∈ Uαβ and xω ∈ E
e(ω)
0 . Therefore, there exists an isomorphism

Γkn : ιk0(M)Λn ! T kM |−Pn0,+ such that (Γkn)α := T kϕα|−Pn0,+ ◦ Γkn ◦ ιk0(ϕα)−1
Λn

is given by
the obvious isomorphisms of trivial k-multilinear bundles

(Γkn)α : ιk0(Uα)Λn = Uα ×
∏

I∈Pn0,+

λIE0 ! Uα ×
∏

I∈Pn0,+

εIE0 = T k|Pn0,+(Uα)−.

Note that for any k-multilinear bundle F and n ≤ k, we have (F |Pk0,+)|Pn+ =

F |Pn0,+ and it follows from the local description in Lemma B.3.1 that
(qkn)− : F |−

Pk0,+
! F |−Pn0,+ is just the respective projection of F |−

Pk0,+
. This shows

that
(
T kM |−

Pk0,+
, πkn|−Pk0,+

)
is indeed an inverse system of multilinear bundles. It is

clear from the local description that Γnn ◦ ι(M)εk,n = πkn|−Pk0,+ ◦ Γkk, which shows

(ι(M)Λk , ι(M)εk,n) ∼=
(
T kM |−

Pk0,+
, πkn|−Pk0,+

)
.

To turn Λk 7! T kM |−
Pk0,+

into a supermanifold, one simply defines

(T kM |−
Pk0,+

)% : T kM |−
Pk0,+

! T nM |−Pn0,+ for every morphism % : Λk ! Λn via
ι(M)% : ι(M)Λk ! ι(M)Λn and the above isomorphisms. The charts are then given
by (Γkk ◦ ι(ϕ−1

α )Λk

)
Λk
.

Proposition 2.3.17 ([40, cf. Proposition 4.2.1, p.396]). Let k ∈ N∪ {∞}. There
is a faithful functor

ι1k : VBun! SMan(k).

The functor ι11 : VBun ! SMan(1) is an equivalence of categories. All these
functors respect products.

Proof. The proof is very similar to the proof of Proposition 2.3.14. Let π : F !
M be a vector bundle with typical fiber E1 and bundle atlas {ϕα : Vα ! Uα ×
E1 : α ∈ A}. The change of bundle charts ϕαβ : Uαβ×E1 ! Uβα×E1 has the form
(ϕαβ0 , ϕαβ1 ), where ϕαβ0 : Uαβ ! Uβα is a smooth and ϕαβ1 : Uαβ×E1 ! E1 is smooth
and linear in the second component. Note that there exists an atlas of M such
that the change of charts is given by ϕαβ0 . LetM be modelled on E0. We define the
super vector space E := E0 ⊕ E1 and let ι11(Uα × E1) := Uα := E

(k)|Uα , as well as
Uαβ := E

(k)|Uαβ , for all α, β ∈ A. Then i11(ϕαβ) := (ϕαβ0 , ϕαβ1 , 0, 0, . . .) : Uαβ ! Uβα
defines isomorphisms that satisfy the conditions of Proposition 2.3.5 because by
the composition formula from Proposition 2.2.16, we have

(ϕβγ0 , ϕβγ1 , 0, 0, . . .) ◦ (ϕαβ0 , ϕαβ1 , 0, 0, . . .) = (ϕβγ0 ◦ ϕ
αβ
0 , ϕβγ1 ◦ ϕ

αβ
0 (ϕαβ1 ), 0, 0, . . .)
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2 Supermanifolds

= (ϕαγ0 , ϕαγ1 , 0, 0, . . .) = ι11(ϕαγ)

where defined. We let ι1k(F ) be the supermanifoldM defined in Proposition 2.3.5
by the given change of charts.
Morphisms f : F ! F ′ of vector bundles have again the local form (fαβ0 , fαβ1 ),

where fαβ1 is linear in the second component and define skeletons (fαβ0 , fαβ1 , 0, 0, . . .)
that satisfy Proposition 2.3.5. In this way, we obtain a unique supersmooth mor-
phism ι11(f) : ι11(F ) ! ι11(F ′). By the same argument as above, this construction
is functorial and, by uniqueness, the resulting functor is faithful.

Lemma 2.3.18 ([40, cf. Proposition 4.2.1, p.396]). Let k, n ∈ N0∪{∞} and n ≤ k.
The restriction of functors ManGr(k)

to functors ManGr(n)

leads to functors

πkn : SMan(k) ! SMan(n), πkn(M) =:M(n).

On morphisms, we write πkn(f) =: f (n). These functors respect products and πkm =
πkn ◦ πnm holds for all m ≤ n. Identifying SMan(0) with Man and SMan(1) with
VBun via Proposition 2.3.14 and Proposition 2.3.17, we have πk0 ◦ ι0k ∼= idMan and
πk1 ◦ ι1k ∼= idVBun if k > 0.

Proof. LetM,N ∈ SMan(k). It follows directly from the definition that Λ!MΛ

for Λ ∈ Gr(n) defines an n-supermanifoldM(n) with the obvious restricted atlas.
Likewise, for morphisms f : M! N , one defines f (n) by f (n)

Λ := fΛ for Λ ∈ Gr(n).
This construction is clearly functorial, respects products and satisfies πkm = πkn◦πnm
for all m ≤ n. To see πk0 ◦ ι0k ∼= idMan and πk1 ◦ ι1k ∼= idVBun, one simply checks that
on the level of skeletons this composition does not change anything.

One can understand the projections πkn : SMan(k) ! SMan(n) and the embed-
dings ι0k : Man ! SMan(k) and ι1k : VBun ! SMan(k) completely in terms of
skeletons. The former simply cuts skeletons (f0, . . .) down to (f0, . . . , fn). The
latter two extend skeletons (f0), resp. (f0, f1), to (f0, 0, . . .), resp. (f0, f1, 0, . . .).
Proposition 2.2.16 ensures that the composition of two such skeletons is again of
this form, which is why these embeddings are well-defined.
A natural question is now whether two k-supermanifolds M(k) and N (k) such

that M(n) ∼= N (n) holds for 1 < n < k are automatically isomorphic as well.
In other words, whether a supersmooth isomorphism f (n) : M(n) ! N (n) can be
lifted to an isomorphism f (k) : M(k) ! N (k). This will be discussed in the following
section on Batchelor’s Theorem.

Definition 2.3.19. We denote by p the supermanifold modelled on {0} ⊕ {0}
that consists for every Λ ∈ Gr of a single point. Let k ∈ N0 ∪ {∞}. A point of a
k-supermanifoldM is a morphism x : p(k) !M. We also write xΛ := xΛ(p

(k)
Λ ).

Lemma 2.3.20. Let k ∈ N0∪{∞} andM∈ SMan(k). For every point x : p(k) !
M and every Λ ∈ Gr(k), we have xΛ =MηΛ

(xR). Conversely, for every xR ∈MR
the assignment xΛ :=MηΛ

(xR) defines a point.

46



2.3 Supermanifolds

Proof. For every Λ ∈ Gr(k), we have

MηΛ
(xR) = xΛ ◦ p(k)

ηΛ
(p

(k)
R ) = xΛ.

Conversely, let xR ∈MR be given, xΛ :=MηΛ
(xR) and % ∈ HomGr(k)(Λ,Λ′). Then

% ◦ ηΛ = ηΛ′ and thereforeM%(xΛ) =MηΛ′
(xR) = xΛ′ .

Hence, the points of a supermanifold can be identified with the usual points of
the base manifold.

2.3.1. Connection to the Sheaf Theoretic Approach

The full subcategory of finite-dimensional supermanifolds in the categorical ap-
proach is equivalent to the category of supermanifolds in the sheaf theoretic ap-
proach. This was already discussed in [54] and [38] but a more thorough and
general proof can be found in [1]. Let us briefly sketch the idea behind the equiv-
alence.
Let p, q ∈ N0 and U ⊆ Rp|q be an open subfunctor. In terms of skeletons, we

have

SC∞(U ,R1|1) = C∞
(
UR,

q⊕
i=0

Alti(Rq;R)
)
∼= C∞(UR,R)⊗ Λq.

Therefore, for any supermanifoldM modelled on Rp|q, the sheaf

U 7! SC∞(M|U ,R1|1), U ⊆MR open,

is locally isomorphic to the sheaf C∞Rp ⊗ Λq as needed. One then checks that
morphisms of supermanifolds lead to appropriate morphisms of these sheaves along
the pullback.

2.3.2. Generalizations

Many of the generalizations for k-superdomains mentioned in 2.2.2 can be applied
to supermanifolds without much difficulty such that the results in this section
carry over. As already mentioned, one can consider non-Hausdorff supermanifolds
by simply extending the category Man to non-Hausdorff manifolds. Analytic
supermanifolds can be defined by demanding that the skeletons are analytic in an
appropriate sense.
One should also note that many structural results do not rely on supersmooth-

ness. In view of Proposition 2.2.7 and Lemma 2.2.5, one can define a subcategory
of ManGr(k)

of functors locally isomorphic to some E(k), E ∈ SVeclc where the
changes of charts are simply natural transformations such that every component
is smooth. Then an analog to Theorem 2.3.11 still holds and one obtains a ge-
ometry combining commuting and anticommuting coordinates with less stringent
symmetry conditions than for supermanifolds.
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2.4. Batchelor’s Theorem

The classical version of Batchelor’s Theorem (see [6]) states that any supermani-
fold, defined as a sheaf (M,OM), is isomorphic to the supermanifold (M,Γ(

∧
F )),

where
∧
F is the exterior bundle of a vector bundle F that is determined by OM .

The isomorphism is not canonical because its construction involves a partition of
unity.
Molotkov transfers this result to supermanifolds in our sense and generalizes

it to infinite-dimensional supermanifolds M in [39]. In his version, the vector
bundle MΛ1 takes the role of F in the classical version. Molotkov only consid-
ers Banach supermanifolds, but as we will see, his methods generalize to locally
convex supermanifolds. It appears that [39] is not well-known and since it is not
readily available, we describe his arguments in detail below. A closer look is also
worthwhile because the techniques employed are close to the ones used in [6] and
might make it easier to translate between the sheaf theoretic and the categorical
approach. In Remark 4.2.7 below, we sketch an alternative proof of Batchelor’s
Theorem that relies only on our description of the automorphism group of a su-
permanifold.

Theorem 2.4.1 ([39, Corollary 4, p.279]). Let k ∈ N ∪ {∞} and M ∈ SMan(k)

be such that MR admits smooth partitions of unity. If M′ ∈ SMan(k) is a k-
supermanifold such thatM(1) andM′(1) are isomorphic, thenM is isomorphic to
M′. In particularM∼= ι1k(M(1)).

In other words, if one restricts the categories VBun and SMan(k) to the re-
spective subcategories over finite-dimensional paracompact bases, the restricted
functor ι1k from Proposition 2.3.17 becomes essentially surjective.

Definition 2.4.2. Let k ∈ N. We call k-supermanifolds of the form ι1k(M(1)),
whereM(1) is a vector bundle, supermanifolds of Batchelor type. An isomorphism
f : N ! ι1k(M(1)) is called a Batchelor model of N . We say an atlas A :=
{ϕα : α ∈ A} of a supermanifold is of Batchelor type if all changes of charts have
the form ϕαβ = (ϕαβ0 , ϕαβ1 , 0, . . .).

Remark 2.4.3. It follows from Proposition 2.3.5 that a supermanifold is of Batch-
elor type if and only if it has an atlas of Batchelor type. For a supermanifold of
Batchelor type, the union of two atlases of Batchelor type is again of Batchelor
type because the atlases define the same vector bundle. This does not need to
be the case for arbitrary supermanifolds, which implies that there is no canonical
choice of a Batchelor model in general.

One can reformulate this result as follows. In the situation of the theo-
rem, any isomorphism f (n) : M(n) ! M′(n) can be lifted to an isomorphism
f (n+1) : M(n+1) ! M′(n+1) for 1 ≤ n < k (see [39, Theorem 1(a), p.273]). It
is not difficult to see that one may assume M′ = M, which we will do in the
sequel to simplify our explanations (compare [39, Proposition 2, p.277]).
Let us introduce some notation for this section. For M ∈ SMan(k) and

k ∈ N0 ∪ {∞} consider the group AutidR(M) of automorphisms f : M!M such
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that fR = idMR . We denote by O(M) the sheaf of groups over MR defined by
U 7! AutidR(M|U) for every open U ⊆MR. The restriction morphisms are given in
the obvious way by Lemma/Definition 2.1.5(c). The restrictions are morphisms of
groups because we only consider automorphisms over the identity on the base man-
ifold. The functor πnm : SMan(n) ! SMan(m) from Lemma 2.3.18 leads to mor-
phisms ϕnm : O(M(n))! O(M(m)) of sheaves of groups for m ≤ n < k+1. Locally,
(ϕnm)U : AutidR(M(n)|U) ! AutidR(M(m)|U) just maps skeletons (id, f1, . . . , fn) to
(id, f1, . . . , fm). We define

On
m(M) := kerϕnm.

The elements of On
m(M) are exactly those which locally have the form

(id, cid, 0, . . . , 0, fm+1, . . . , fn). In particular, we get a short exact sequence of
sheaves of groups

1! On+1
n (M) ↪! On+1

0 (M)! On
0 (M)! 1

(see [39, Theorem 1, p.273f.]). Note that On+1
0 (M) = O(M(n+1)). We sum up the

most relevant results from [39] about the structure of On+1
n (M) in the next lemma

and give a sketch of the proof.

Lemma 2.4.4 (compare [39, Theorem 1(d), p.274]). Let k ∈ N ∪ {∞}, n < k
and M ∈ SMan(k). Then On+1

n (M) is a sheaf of abelian groups and a C∞MR
-

module. IfM is a Banach supermanifold, then there exist canonical isomorphisms
of C∞MR

-modules

On+1
n (M) ∼= Γ(Altn+1(MΛ1 ;TMR)) if n+ 1 is even and

On+1
n (M) ∼= Γ(Altn+1(MΛ1 ;MΛ1)) if n+ 1 is odd.

Proof. Let {ϕα : Uα ! M(n+1) : α ∈ A} be an atlas of M(n+1) and U ⊆ MR
be open. For f ∈ On+1

n (M)U , we set fα := (ϕα)−1 ◦ f ◦ ϕα, where we may
assume after restriction that ϕα is a chart of M(n+1)|U . Locally, f has the form
fα = (idUαR , cid, 0, . . . , 0, f

α
n+1). For g ∈ On+1

n (M)U , we use Proposition 2.2.16 to
calculate

(fα ◦ gα) = (f ◦ g)α = (idUαR , cid, 0, . . . , 0, f
α
n+1 + gαn+1).

Thus, On+1
n (M) is a sheaf of abelian groups. Let ϕβα be a change of charts of

M(n+1)|U . We again use Proposition 2.2.16 to get

(ϕβα)−1 ◦ fα ◦ ϕβα = (idUβαR
, cid, 0, . . . , 0, f

β
n+1),

where

fβn+1(ϕαβ0 (x))(•) = dϕαβ0 (x)
(
fαk+1(x)

(
ϕβα1 (x)(•), . . . , ϕβα1 (x)(•)

))
for n+ 1 even, x ∈ UβαR and

fβn+1(ϕαβ0 (x))(•) = ϕαβ1 (x)
(
fαk+1(x)

(
ϕβα1 (x)(•), . . . , ϕβα1 (x)(•)

))
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for n + 1 odd, x ∈ UβαR . IfMΛ1 is a Banach vector bundle, this describes exactly
the change of charts for a section fn+1 : MR|U ! Altn+1(MΛ1|U ;TMR|U)), resp.
fn+1 : MR|U ! Altn+1(MΛ1|U ;MΛ1|U).
It is easy to see from these formulas that for a smooth map h : MR|U ! R with

the local description hα := h ◦ ϕα0 , the multiplication h · f , defined by

(h · f)α = (idUαR , cid, 0, . . . , 0, h
α · fαn+1),

leads to a C∞MR
-module structure on On+1

n (M). This structure corresponds to
the C∞MR

-module structure of the sheaves of sections defined above in the Banach
case.

We will now return to finding a lift for an isomorphism f (n) : M(n) ! M(n)

to an isomorphism f (n+1) : M(n+1) ! M(n+1). Let M ∈ SMan(k) be modelled
on E ∈ SVeclc with atlas {ϕα : Uα ! M : α ∈ A} and n < k. Locally, we
have isomorphisms f (n),α : Uα,(n) ! Uα,(n) of the form (idUαR , f

(n),α
1 , . . . , f

(n),α
n ). By

Lemma 2.2.18, these can be lifted to isomorphisms f̃α,(n+1) : Uα,(n+1) ! Uα,(n+1)

in SDom(n+1) of the form (idUαR , f
(n),α
1 , . . . , f

(n),α
n , f̃

(n+1),α
n+1 ), where f̃ (n+1),α

n+1 : UαR !
Altn+1(E1;En+1) is an arbitrary map which is smooth in the sense of skeletons.
The morphisms f̃β,(n+1) and ϕαβ,(n+1) ◦ f̃α,(n+1) ◦ ϕβα,(n+1) differ on Uβα,(n+1)

only in the (n + 1)-th components of their skeletons because higher components
do not affect the composition of any lower components. The difference is given by
a unique element hβα ∈ On+1

n (Uβα) such that

f̃β,(n+1) = ϕαβ,(n+1) ◦ f̃α,(n+1) ◦ ϕβα,(n+1) ◦ hβα

and one checks that these hβα define a cocycle in On+1
n (M) via h̃βα := ϕβ,(n+1) ◦

hβα ◦ (ϕβ,(n+1))−1 on ϕβ,(n+1)(Uβα,(n+1)). This cocycle describes the obstacle to
lifting f (n) to f (n+1) (see [39, Theorem 3, p.277]). IfMR admits smooth partitions
of unity, then On+1

n (M) is a fine sheaf by Lemma 2.4.4 and thus acyclic. Therefore,
the cocycle constructed above vanishes and a lift exists.

Remark 2.4.5. Mirroring the proof of the fact that for fine sheaves the higher
Čech cohomologies vanish, one can directly construct the lift via a partition of
unity. In the situation above, we assume that (ϕαR(UαR ))α∈A is a locally finite cover
of MR and that (ρα)α∈A is a partition of unity subordinate to this cover. With
the module structure from Lemma 2.4.4, we define

f
(n+1),α
n+1 :=

(
(ϕα)−1 ◦

(∑
β∈A

ρβ · h̃βα
)
◦ ϕα

)
n+1

,

where ρβ · h̃βα is continued to ϕα,(n+1)(Uα,(n+1)) by zero. It is elementary to check
that the change of charts is well-defined for the resulting local descriptions of
f (n+1).
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2.5. Super Vector Bundles

In analogy to our definition of supermanifolds, we give a definition of super vector
bundles as supermanifolds with a particular kind of bundle atlas. In this, we follow
[40, Definition 5.1, p.29]. See also [47]. While a bit cumbersome, it will be useful
to describe the change of bundle charts and the local form of bundle morphisms
in terms of skeletons.

Definition 2.5.1 (compare [40, Subsection 1.3, p.5]). Let E,F,H ∈ SVeclc,
k ∈ N0 ∪ {∞} and U ⊆ H

(k) be an open subfunctor. A supersmooth morphism
f : U × E

(k)
! F

(k) is called a U-family of R-linear morphisms if for every
Λ ∈ Gr(k) and every u ∈ UΛ, the map

fΛ(u, •) : E
(k)

Λ ! F
(k)

Λ

is Λ0-linear.

Lemma 2.5.2. In the situation of Definition 2.5.1, let f : U × E(k)
! F

(k) be a
supersmooth morphism. Then f is a U-family of R-linear morphisms if and only
if for all Λ ∈ Gr(k), we have

dfΛ

(
(u, 0)

)(
(0, v)

)
= fΛ(u, v) for u ∈ UΛ, v ∈ E

(k)

Λ .

Proof. If the equality holds, then f is an U -family of R-linear morphisms because
the derivative dfΛ is Λ0-linear at every u ∈ UΛ. The converse is true because any
Λ0-linear map is in particular R-linear and thus the derivative of such a map is
the map itself.

Lemma 2.5.3. In the situation of Definition 2.5.1, let f : U × E(k)
! F

(k) be a
supersmooth morphism with the skeleton (fn)n. We set U := UR. Then f is an
U-family of R-linear morphisms if and only if every fn has the form

fn =fn(prU , prE0
)((pr1, 0), . . . , (pr1, 0))

+ n · Anfn(prU , 0)((0, pr2), (pr1, 0), . . . , (pr1, 0)),

with fn(prU , prE0
)((pr1, 0), . . . , (pr1, 0)) linear in the second component and where

prU : U×E0 ! U , prE0
: U×E0 ! E0, pr1 : H1×E1 ! H1 and pr2 : H1×E1 ! E1

are the respective projections.

Proof. Let f : U × E
(k)
! F

(k) be an U -family of R-linear morphisms. Choos-
ing u := x +

∑k
i=1 λiyi, x ∈ U and yi ∈ H1, Proposition 2.2.13 implies that

fn(x, •)((y1, •), . . . , (yn, •)) must be linear in E0 ⊕ E1 ⊕ · · · ⊕ E1. We use the mul-
tilinearity of fn(x, v)(•) to calculate

fn(x, v)((y1, w1), . . . , (yn, wn)) =

fn(x, v)((y1, 0), . . . , (yn, 0)) +
n∑
i=1

fn(x, v)((y1, 0), . . . , (0, wi), . . . , (yn, 0)) =
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(
fn(x, v)((pr1, 0), . . . , (pr1, 0))+

n · Anfn(x, 0)((0, pr2), (pr1, 0), . . . , (pr1, 0))
)
((y1, w1), . . . , (yn, wn))

for v ∈ E0 and wi ∈ E1. The second equality follows because for v′ ∈ E0, we have

fn(x, v + v′)((y1, 0), . . . , (0, wi), . . . , (yn, 0)) =

fn(x, v)((y1, 0), . . . , (0, wi), . . . , (yn, 0)) + fn(x, v′)((y1, 0), . . . , (0, 0), . . . , (yn, 0)).

Conversely, let (fn)n have the aforementioned form. Let Λ ∈ Gr(k), (x, y) ∈
U × E0 and (xi, yi) ∈ (Hi ⊕ Ei) ⊗ Λ+

i
, i ∈ {0, 1}. To simplify our notation, we

consider H(k)

Λ ⊆ H ⊕ E(k)

Λ and E(k)

Λ ⊆ H ⊕ E(k)

Λ in the obvious way. One sees

dmfl(x, y)((x0, y0), . . . , (x0, y0), (x1, y1), . . . , (x1, y1)) =

dmfl(x, y)(x0, . . . , x0, x1, . . . , x1) +m · dm−1fl(x, y0)(x0, . . . , x0, x1, . . . , x1)

+ l · dmfl(x)(x0, . . . , x0, y1, x1 . . . x1),

where the last two summands are understood to be zero for m = 0 and l = 0,
respectively. For u = x+x0 +x1 and v = y+ y0 + y1, we use Remark 2.2.15 to get

dfΛ(u)(v) =
∞∑

m,l=0

1

m!l!
·
(
dmfl(x, y)(x0, . . . , x0, x1, . . . , x1)

+m · dm−1fl(x, y0)(x0, . . . , x0, x1, . . . , x1) (2.4)

+ l · dmfl(x)(x0, . . . , x0, y1, x1 . . . , x1)
)
.

Comparing the terms, Proposition 2.2.13 implies that dfΛ(u)(v) = fΛ(u, v) and the
result follows from Lemma 2.5.2.

Definition 2.5.4. Let E,F ∈ SVeclc, k ∈ N0 ∪ {∞} and let E ,M ∈ SMan(k)

be such that E is modelled on E ⊕ F and M is modelled on E together with a
supersmooth morphism π : E ! M such that πΛ : EΛ ! MΛ is a vector bundle
with fiber F (k)

Λ for all Λ ∈ Gr(k). A bundle atlas of E is an atlas A := {Ψα : Uα ×
F

(k)
! E : Uα ⊆ E

(k)
, α ∈ A} such that {Ψα

Λ : α ∈ A} is a bundle atlas of EΛ and
the change of two charts Ψα and Ψβ has the form Ψαβ : Uαβ × F (k)

! Uβα × F (k)

with Ψαβ = (φαβ, ψαβ), where

(i) φαβ : Uαβ ! Uβα and

(ii) ψαβ : Uαβ × F (k)
! F

(k) is an Uαβ-family of R-linear maps.

The elements of A are called bundle charts . Two bundle atlases are equivalent
if their union is again a bundle atlas. We call π : E ! M together with an
equivalence class of bundle atlases a k-super vector bundle over the base M with
typical fiber F . The morphism π is called the projection to the base.
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2.5 Super Vector Bundles

Let E ′ be another k-super vector bundle with typical fiber F ′ ∈ SVeclc and base
N . A supersmooth morphism f : E ! E ′ is a morphism of super vector bundles ,
if in bundle charts Ψα of E and Ψ′α

′ of E ′, it has the form (hαα
′
, gαα

′
), where

(i) hαα′ : Uαα′ ! Uα′ , Uαα′ ⊆ Uα and

(ii) gαα′ : Uαα′ × F (k)
! F ′

(k) is a Uαα′-family of R-linear maps.

Clearly, the hαα′ define a supersmooth morphism h : M! N such that πN ◦ f =
h ◦ πM. We say that f is a morphism over h. The k-super vector bundles and
their morphisms form a category, which we denote by SVBun(k), resp. SVBun if
k =∞.

By this definition, a k-super vector bundle can be seen as a functor Gr(k) !
VBun. This point of view is taken by Molotkov in [40].

Remark 2.5.5. It follows from Proposition 2.3.5 that, if one has a collection of
change of charts that satisfy the conditions of Definition 2.5.4, then one gets a
(up to unique isomorphism) unique super vector bundle. In the notation of the
definition, the φαβ then define the base supermanifoldM and the bundle projection
is locally given by

(φα)−1 ◦ π ◦Ψα := prUα : Uα × F (k)
! Uα.

In the same way, morphisms of super vector bundles are determined by their local
description.

Lemma/Definition 2.5.6. Let k ∈ N0 ∪ {∞}, let E be a k-super vector bundle
with typical fiber F ∈ SVeclc overM modelled on E ∈ SVeclc and let x : p(k) !
M be a point of M. We define Ex, the fiber of E at x, by setting (Ex)Λ :=
(πM)−1({xΛ}) for every Λ ∈ Gr(k). Then Ex is a sub-supermanifold of E and Ex
is, in a canonical way, an R-module such that Ex ∼= E

(k).

Proof. Let {Ψα : Uα×F (k)
! E : α ∈ A} be a bundle atlas of E with corresponding

atlas {φα : Uα !M : α ∈ A} ofM. Let φα : Uα !M be such that xR ∈ φαR(UαR ).
We may assume that 0 ∈ UαR and that φαR(0) = xR, because the translation defined
by E(k)

Λ ! E
(k)

Λ , v 7! v − (ϕαR)−1(xR) is clearly an isomorphism in SMan(k). Let
Λ ∈ Gr(k). We have yΛ ∈ (Ex)Λ if and only if (πM)Λ(yΛ) = xΛ holds and thus if
and only if yΛ ∈ Ψα

Λ({0}
(k)

Λ × F
(k)

Λ ) holds. Therefore, Ex is a sub-supermanifold of
E . We define an R-module structure on Ex via the isomorphism

Ψα ◦ (0, id
F

(k)) : F
(k)
! Ex.

The R-module structure on Ex does not depend on Ψα because a change of bundle
charts leads to an isomorphism of R-modules in the second component.
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Lemma 2.5.7. Let k ∈ N0 ∪{∞} and let E and E ′ be k-super vector bundles over
M and N . If f : E ! E ′ is a morphism of k-super vector bundles over g : M! N ,
then for every point x ofM the morphism

f |Ex : Ex ! E ′g◦x

is a well-defined morphism of R-modules (and in particular supersmooth).

Proof. Let Λ ∈ Gr(k) and yΛ ∈ (Ex)Λ. We have

yΛ
fΛ //

(πM)Λ

��

(E ′)Λ

(πN )Λ

��
xΛ gΛ

// gΛ(xΛ)

and gΛ(xΛ) = (g ◦ x)Λ implies that the morphism is well-defined. In charts the
second component of f is R-linear. Thus, f |Ex is a morphism of R-modules.

Lemma 2.5.8. The functors ι0k, ι1k and πkn from Proposition 2.3.14, Proposition
2.3.17 and Lemma 2.3.18 extend to functors

ι0k : SVBun(0) ! SVBun(k) for k ∈ N0 ∪ {∞},
ι1k : SVBun(1) ! SVBun(k) for k ∈ N ∪ {∞} and
πkn : SVBun(k) ! SVBun(n) for k ∈ N0 ∪ {∞}, 0 ≤ n ≤ k.

With these functors, we have πk0 ◦ ι0k ∼= idSVBun(0) and πk1 ◦ ι1k ∼= idSVBun(1).

Proof. Let us consider ι0k and ι1k as functors SMan(0) ! SMan(k) and SMan(1) !

SMan(k). Let k ∈ N0 ∪ {∞}, E ∈ SVeclc, U ⊆ E
(k). We see from the concrete

description in Lemma 2.5.3 that every U -family of R-linear morphisms is mapped
to an U -family of R-linear morphisms under the original functors. From this, the
result follows.

Note also that for any super vector bundle E with baseM and typical fiber F ,
the inverse limit lim − E is in a natural way a vector bundle over lim −M with typical
fiber lim −F .

2.5.1. The Change of Parity Functor

The space of sections of a super vector bundle can be turned into a vector space,
as we will see below. However, in a sense this describes only the even sections.
To incorporate odd sections and obtain a super vector space of sections, we need
the so called change of parity functor. On super vector spaces this functor simply
swaps the even and odd parts. Doing this fiberwise, one gets the change of parity
functor for super vector bundles. As before, it will be useful to express this functor
in terms of skeletons.
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Definition 2.5.9. Let E,F ∈ SVeclc and f : E ! F be a morphism. We define
a functor Π: SVeclc ! SVeclc by setting Π(E)i := Ei+1 and Π(f)i := fi+1 for
i ∈ {0, 1} . Now, let Λ = Λn ∈ Gr, n ∈ N and g : EΛ ! FΛ be R-linear such that
there exist linear maps

g(0) : E0 ! FΛ and g(1) : E1 ! Π(F )Λ

with g(λIvI) = λIg(i)(vI) for I ∈ Pni , vI ∈ Ei, i ∈ {0, 1}. We call such a map g
parity changeable. We define a parity changeable map

ΠΛ(g) : Π(E)Λ ! Π(F )Λ

by setting ΠΛ(g)(i) := g(i+1) for i ∈ {0, 1}.

Note that in the above situation g is automatically Λ0-linear and we have
ΠΛ(ΠΛ(g)) = g. What is more, with f(0) := f0 and f(1) := f1, we see that fΛ

is parity changeable and it follows ΠΛ(fΛ) = Π(f)Λ.

Lemma 2.5.10. Let E,F,H ∈ SVeclc, Λ = Λn ∈ Gr with n ∈ N and let f : EΛ !
FΛ, g : FΛ ! HΛ be parity changeable. Then g ◦ f is also parity changeable and we
have

ΠΛ(g ◦ f) = ΠΛ(g) ◦ ΠΛ(f).

Proof. Let f(0), f(1) and g(0), g(1) be as in Definition 2.5.9. For I ∈ Pni , v ∈ Ei,
i ∈ {0, 1} let

f(λIv) = λIf(i)(v) = λI
∑
J∈Pn

λJwJ ,

where wJ ∈ F|I|+|J |. It follows that

(g ◦ f)(λIv) =
∑
J∈Pn

λIλJg(|I|+|J |)(wJ).

This implies that g ◦f is parity changeable with (g ◦f)(0) = g ◦f(0) and (g ◦f)(1) =
ΠΛ(g) ◦ f(1). Thus, ΠΛ(g ◦ f)(0) = ΠΛ(g) ◦ f(1) and ΠΛ(g ◦ f)(1) = g ◦ f(0). Applying
this to ΠΛ(g) ◦ ΠΛ(f), we get

(ΠΛ(g) ◦ ΠΛ(f))(0) = ΠΛ(g) ◦ ΠΛ(f)(0) = ΠΛ(g) ◦ f(1)

and
(ΠΛ(g) ◦ ΠΛ(f))(1) = ΠΛ(ΠΛ(g)) ◦ ΠΛ(f)(1) = g ◦ f(0)

and therefore

ΠΛ(g ◦ f) = ΠΛ(g) ◦ ΠΛ(f).

Lemma 2.5.11. Let E,F,H ∈ SVeclc, k ∈ N ∪ {∞}, U ⊆ H
(k) be an open

subfunctor and let f : U × E
(k)
! F

(k) be an U-family of R-linear morphisms.
For n ∈ N, Λ = Λn ∈ Gr(k) and u ∈ UΛ, the map fΛ(u, •) : E

(k)

Λ ! F
(k)

Λ is parity
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changeable. Defining (Π(f))Λ(u, •) := ΠΛ(fΛ(u, •)) leads to an U-family of R-linear
morphisms

Π(f) : U × Π(E)
(k)
! Π(F )

(k)
.

The skeleton of Π(f) has the components

f̃0 = f1(prU)(prΠ(E)0
) and

f̃l = fl+1(prU)(prΠ(E)0
, pr1, . . . , pr1) + l · Alfl−1(prU , pr2)(pr1, . . . , pr1)

for l > 0, where we consider

Alfl−1(prU , pr2)(pr1, . . . , pr1) : U × Π(E)0 ! Altl(H1 ⊕ Π(E)1; Π(F )k) and

fl+1(prU)(prΠ(E)0
, pr1, . . . , pr1) : U × Π(E)0 ! Altl(H1 ⊕ Π(E)1; Π(F )k)

with the projections prU : U×Π(E)0 ! U , prΠ(E)0
: U×Π(E)0 ! Π(E)0, pr1 : H1×

Π(E)1 ! H1 and pr2 : H1 × Π(E)1 ! Π(E)1.

Proof. Let U := UR. We set Π(f)R := Π(f)Λ1|U×E1 : UR × Π(E)
(k)

R ! Π(F )
(k)

R so
that Π(f)Λ is defined for all Λ ∈ Gr(k). To simplify our notation, we consider
H

(k)

Λ ⊆ H ⊕ E(k)

Λ and E(k)

Λ ⊆ H ⊕ E(k)

Λ in the obvious way. Let x ∈ U , x0 ∈ H0
(k)

Λ+ ,
x1 ∈ H1

(k)

Λ and y0 ∈ E0
(k)

Λ , y1 ∈ E1
(k)

Λ . For u = x+ x0 + x1 and v = y0 + y1, we use
formula (2.4) to get

fΛ(u, v) =
∞∑

m,l=0

1

m!l!
dm+1fl(x)(y0, x0, . . . , x0, x1, . . . , x1)+

∞∑
m,l=0

1

m!l!
dmfl+1(x)(x0, . . . , x0, y1, x1 . . . , x1).

Therefore, fΛ(u, •) is parity changeable with

(fΛ(u, •))(0) =
∞∑

m,l=0

1

m!l!
dm+1fl(x)(•, x0, . . . , x0, x1, . . . , x1) and

(fΛ(u, •))(1) =
∞∑

m,l=0

1

m!l!
dmfl+1(x)(x0, . . . , x0, •, x1 . . . , x1).

In the next step, we show that (f̃n)n is the skeleton of Π(f). Let ỹ ∈ Π(E)0,
ỹ0 ∈ Π(E)0

(k)

Λ+ and ỹ1 ∈ Π(E)1

(k)

Λ . We calculate

dmf̃l(x, ỹ)((x0, ỹ0), . . . , (x0, ỹ0), (x1, ỹ1), . . . , (x1, ỹ1)) =

dmfl+1(x)(x0, . . . , x0, ỹ, x1, . . . , x1) +m · dm−1fl+1(x)(x0, . . . , x0, ỹ0, x1, . . . , x1)

+ l · dmfl−1(x, ỹ1)(x0, . . . , x0, x1, . . . , x1),

where the last two summands are zero for m = 0 and l = 0, respectively. Note
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that

l · dmfl−1(x, ỹ1)(x0, . . . , x0, x1, . . . , x1) = l · dm+1fl−1(x)(ỹ1, x0, . . . , x0, x1, . . . , x1)

holds because of Lemma 2.5.3. If f̃ : U × Π(E)
(k)
! Π(F )

(k)
is the morphism

defined by (f̃n)n, then it follows

f̃Λ(u, ṽ) =
∞∑

m,l=0

1

m!l!
dmfl+1(x)(x0, . . . , x0, ỹ + ỹ0, x1, . . . , x1)+

∞∑
m,l=0

1

m!l!
dm+1fl(x)(ỹ1, x0, . . . , x0, x1 . . . , x1)

for ṽ = ỹ + ỹ0 + ỹ1. This is exactly (Π(f))Λ(u, ṽ).

Corollary 2.5.12. Let E,E ′, F, F ′, H,H ′ ∈ SVeclc, k ∈ N ∪ {∞} and U ⊆ H
(k),

V ⊆ H ′
(k) be open subfunctors. Moreover, let f : U × E(k)

! F
(k) be an U-family

of R-linear morphisms, g : V×E ′(k)
! F ′

(k) be an V-family of R-linear morphisms
and h : U ! V be supersmooth. Then g ◦ (h, f) : U × E(k)

! F ′
(k) is an U-family

of R-linear morphisms and we have

Π(g ◦ (h, f)) = Π(g) ◦ (h,Π(f)).

In addition, we have Π(Π(f)) = f .

Proof. This follows from the pointwise definition of Π in Lemma 2.5.11 and Lemma
2.5.10.

Proposition 2.5.13. For k ∈ N∪ {∞} let π : E !M be a k-super vector bundle
with typical fiber F ∈ SVeclc, bundle atlas {Ψα : Uα × F

(k)
! E : α ∈ A} and

the respective change of charts Ψαβ = (φαβ, ψαβ), α, β ∈ A. Then the morphisms
(φαβ,Π(ψαβ)) define a k-super vector bundle Π(E) overM with typical fiber Π(F ).
Let π′ : E ′ !M′ be another k-vector bundle and f : E ! E ′ be a morphism of

k-super vector bundles over h : M!M′. If f has the local form (gαα
′
, ϕαα

′
), then

(gαα
′
,Π(ϕαα

′
)) defines a morphism Π(f) : Π(E)! Π(E ′) over h. This construction

is functorial and defines an equivalence of categories

Π: SVBun(k) ! SVBun(k).

Proof. In light of Remark 2.5.5, it follows from Corollary 2.5.12 that the morphisms
(φαβ,Π(ψαβ)) define a super vector bundle. That Π is well-defined on morphisms
and functorial follows by the same argument. The corollary also implies that
Π(Π(E)) ∼= E and Π(Π(f)) ∼= f hold under this identification, which shows that Π
is an equivalence of categories.
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2.6. The Tangent Bundle of a Supermanifold

In this section, we expand on the definition of the tangent functor T for super-
manifolds given by Molotkov (see [40, Section 5.3, p. 404f.]).
Let k ∈ N0 ∪ {∞} andM ∈ ManGr(k)

. We define a functor TM ∈ ManGr(k)

by setting (TM)Λ = TMΛ := TMΛ for all Λ ∈ Gr(k) and (TM)% = TM% :=
TM% : TMΛ ! TMΛ′ for all % ∈ HomGr(k)(Λ,Λ′). It follows from the functo-
riality of T : Man ! Man that TM is indeed a functor. By the same argu-
ment, the bundle projections πTMΛ : TMΛ !MΛ define a natural transformation
πTM : TM!M.
If N ∈ ManGr(k)

and f : M ! N is a natural transformation, then it is easy
to see that setting T fΛ := TfΛ : TMΛ ! T NΛ for all Λ ∈ Gr(k) defines a natural
transformation T f : TM! T N and that this gives us a functor T : ManGr(k)

!

ManGr(k)

. We obviously have πT N ◦ T f = f ◦ πTM.

Lemma 2.6.1. Let k ∈ N0 ∪{∞} andM∈ SMan(k) be modelled on E ∈ SVeclc
with the atlas {ϕα : Uα ! M : α ∈ A}. Then TM is a k-super vector bundle
over M with typical fiber E, the bundle atlas {T ϕα : T Uα ! TM : α ∈ A} and
the projection πTM. If f : M ! N is a morphism of k-supermanifolds, then
T f : TM ! T N is a morphism of k-super vector bundles and the above defines
a functor

T : SMan(k) ! SVBun(k).

Proof. That {T ϕα : T Uα ! TM : α ∈ A} is a covering is obvious. By functorial-
ity, we have

T (ϕβ)−1 ◦ T ϕα = T ϕαβ

on T Uαβ = Uαβ × E(k) for all α, β ∈ A and by definition, we have

T ϕαβ = (ϕαβ, dϕαβ) : Uαβ × E(k)
! Uβα × E(k)

,

which is a supersmooth morphism because of Lemma 2.2.10. Clearly, each
πTMΛ : TMΛ !MΛ is a vector bundle and we have that

(ϕα)−1 ◦ πTM ◦ T ϕα : Uα × E(k)
! Uα

is simply the projection and thus supersmooth. Since, by definition, dϕαβ is an
Uαβ-family of R-linear morphisms, the above atlas is indeed a bundle atlas for
TM. In such charts, T f has locally the form (fαβ

′
, dfαβ

′
) and therefore is a

morphism of k-super vector bundles for the same reason. Functoriality follows
from the functoriality of T as a functor ManGr(k)

!ManGr(k)

.

In the situation of the lemma, we call TM the tangent bundle of M. We will
write πTM : TM!M for the bundle projection and TxM instead of (TM)x for
the fiber of TM at a point x ofM.
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Lemma 2.6.2. For everyM∈ SMan, we have

lim − TM
∼= T lim −M

in MBun(∞) with the functor lim − from Theorem 2.3.11. Moreover,
lim −π

TM = π
T lim −M holds for the bundle projections πTM : TM ! M and

π
T lim −M : T lim −M ! lim −M. For morphisms f : M ! N of supermanifolds, we

have
lim − T f = T lim − f

under the above identification.

Proof. This follows from the definition of TM, Lemma B.3.5 and the definition
of lim − in Theorem 2.3.11.

Remark 2.6.3. In view of Lemma 2.6.2, it seems likely that one can describe
higher tangent bundles, higher jet bundles and higher tangent Lie supergroups
analogously to [10].

Lemma 2.6.4. Let k ∈ N0 ∪ {∞} and M ∈ SMan(k). With the functors from
Lemma 2.5.8, we have T ιnk(M) ∼= ιnk(TM) for n ∈ {0, 1}, n ≤ k in SVBun(k)

and T πkn(M) ∼= πkn(TM) for 0 ≤ n ≤ k in SVBun(n).

Proof. With any atlas A := {ϕα : α ∈ A} ofM it is obvious that applying T ◦ ιnk
and ιnk ◦ T to a change of charts leads to the same morphism. The same is true
for T ◦ πkn and πkn ◦ T .
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3. Lie Supergroups

Recall supergroups as defined in Definition 1.4.1.

Definition 3.0.1. Let k ∈ N0∪{∞}. A k-Lie supergroup is a group object in the
category SMan(k). Denote by LSGrp(k) the category that has Lie supergroups as
objects and supersmooth morphisms of supergroups as morphisms. We call∞-Lie
supergroups Lie supergroups and set LSGrp := LSGrp(∞).

In other words, for G ∈ LSGrp(k) there exists a supersmooth multiplication
µ : G × G ! G, a supersmooth inversion i : G ! G and a neutral element e such
that the usual commutative diagrams defining a group commute. Here e : p ! G
is a point of G. We also write G = (G, µ, i, e). In particular, (GΛ, µΛ, iΛ, eΛ) is
a Lie group for every Λ ∈ Gr(k). It follows immediately from naturality that
G% : GΛ ! GΛ′ is a morphism of Lie groups for every % ∈ HomGr(k)(Λ,Λ′). A
morphism of k-Lie supergroups is a supersmooth morphism f : G ! H between
k-Lie supergroups G and H such that fΛ : GΛ ! HΛ is a morphism of Lie groups
for every Λ ∈ Gr(k).
Note that Proposition 2.3.14 shows that the category of 0-supermanifolds is

equivalent to the category of ordinary Lie groups. Similarly, by Proposition 2.3.17,
LSGrp(1) is equivalent to the category of group objects in the category of vector
bundles .
We will see that every Lie supergroup has an associated Lie superalgebra which

contains a lot of information about the Lie supergroup: For every k-Lie supergroup
G and every Λ ∈ Gr(k), we have a split short exact sequence of Lie groups

1! kerGεΛ ! GΛ ! GR ! 1,

where kerGεΛ is a nilpotent Lie group that is completely determined by the Lie
superalgebra of G. Moreover, the action of GR on kerGεΛ is determined by a
representation of the Lie superalgebra, which leads to the so called super Harish-
Chandra pair. It is a classical result that the categories of finite-dimensional
Lie supergroups and finite-dimensional super Harish-Chandra pairs are equivalent
and we show in Theorem 3.3.8 that this also holds for arbitrary locally convex
supermanifolds.
It is not difficult to construct an appropriate Lie group for every Λ ∈ Gr starting

from a super Harish-Chandra pair. Supersmoothness is more problematic. One
issue is that the Lie groups involved need not have an exponential map that is
a diffeomorphism in a neighborhood of zero. This can be circumvented because
kerGεΛ is a polynomial Lie group (see Appendix C) and thus has an exponen-
tial map that is a global chart. We use this exponential map to get a canonical
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isomorphism
ι(GR)× g1

∼= G,

where g1 is the odd part of the Lie superalgebra of G. This enables us to concretely
construct a Lie supergroup starting from a super Harish-Chandra pair.
The equivalence between k-Lie supergroups and super Harish-Chandra pairs

holds for k ≥ 3 and it follows that all the categories LSGrp(k) are equivalent
for k ≥ 3. We finish this chapter by discussing some classical examples of Lie
supergroups.

Definition 3.0.2. Let k ∈ N0 ∪ {∞} and G = (G, µ, i, e) be a k-Lie supergroup.
A centered chart of G is a chart ϕ : U ! G such that 0 ∈ UR and ϕR(0) = eR.

For E ∈ SVeclc translation by elements x ∈ E0 defines a supersmooth morphism
and therefore centered charts always exist. There are many results from standard
Lie theory that can be transfered to Lie supergroups with relative ease. For now,
we just mention the following.

Lemma/Definition 3.0.3. Let H and N be Lie supergroups and α : H×N ! N
a supersmooth morphism such that αΛ is a group action by automorphisms for all
Λ ∈ Gr. Then Λ 7! (NΛ oαΛ

HΛ) defines a Lie supergroup N oαH which we call
the semidirect product of N and H (with respect to α).

Proof. For all Λ ∈ Gr, we have the multiplication

(NΛ ×HΛ)× (NΛ ×HΛ)! NΛ ×HΛ, (n, h) · (n′, h′) := (nαΛ(h, n′), hh′)

and the inversion

NΛ ×HΛ ! NΛ ×HΛ, (n, h)−1 := (αΛ(h−1, n−1), h−1)

which define supersmooth morphisms.

3.1. The Lie Superalgebra of a Lie Supergroup

Let k ∈ N ∪ {∞} and G ∈ LSGrp(k). For every Λ ∈ Gr(k), we have the Lie
algebra L(GΛ) = TeΛGΛ with the bracket [·, ·]Λ : L(GΛ)× L(GΛ)! L(GΛ). Since G%
is a morphism of Lie groups for every % ∈ HomGr(k)(Λ,Λ′), TeΛG% is a morphism
of Lie algebras and thus [·, ·] : TeG × TeG ! TeG defines a natural transformation.

Lemma/Definition 3.1.1. Let k ∈ N ∪ {∞}, G = (G, µ, i, e) be a k-Lie su-
pergroup and let g := TeRGR ⊕ TeΛ1

ker(GεΛ1
) = TeGΛ1 ∈ SVeclc. There exists a

canonical isomorphism of R(k)-modules g(k) ∼= TeG. Together with the induced Lie
bracket, g(k) is a Lie algebra over R(k) and we call it the Lie algebra of G. We set
L(G) := g. For any morphism f : G ! H of Lie supergroups, we have a morphism

L(f) := TefΛ1 : L(G)! L(H)
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of Lie algebras over R(k) and this defines a functor

L: LSGrp(k) ! LAlgR(k)(TopGr(k)

).

Proof. Let G be modelled on E ∈ SVeclc and ϕ : U ! G be a centered chart. We
subsequently identify T0E

(k) ∼= E
(k). On the one hand, we have the isomorphism

of R(k)-modules T0ϕ : E
(k)
! TeG from Lemma/Definition 2.5.6. On the other

hand, we have an isomorphism of R(k)-modules T0ϕΛ1 : E
(k)
! L(G). Thus T0ϕ ◦

(T0ϕΛ1)−1 : L(G)! TeG is an isomorphism. If ψ : V ! G is another centered chart,
then

Teψ−1 ◦ T0ϕ = T0(ψ−1 ◦ ϕ) : E
(k)
! E

(k)

is a linear supersmooth map and therefore

T0ψ
−1 ◦ T0ϕ = T0(ψ−1 ◦ ϕ)Λ1 = T0ψ

−1
Λ1
◦ T0ϕΛ1 = (T0ψΛ1)−1 ◦ T0ϕΛ1

holds by Corollary 2.2.22. Hence, the isomorphism does not depend on the chart.
We check the supersmoothness of the Lie bracket in local coordinates. An open
subfunctor U ′ ⊆ U exists such that 0 ∈ U ′R and µR(ϕR(U ′R), ϕR(U ′R)) ⊆ ϕR(UR).
We define the local multiplication

m : U ′ × U ′ ! U , m := ϕ−1 ◦ µ ◦ (ϕ|U ′ × ϕ|U ′)

and write v′ ∈ E(k)

Λ for v = T0ϕΛ(v′) ∈ TeGΛ. Then we have

([v, w]Λ)′ = d(2)mΛ((0, 0), (0, w′), (v′, 0))− d(2)mΛ((0, 0), (0, v′), (w′, 0))

for all v, w ∈ TeGΛ (see the proof of the smoothness of the Lie algebra of a Lie
group from [23]). Supersmoothness follows now from Lemma 2.2.10.
Finally, let f : G ! H be a morphism of Lie supergroups. Then TefΛ is a

morphism of Lie algebras for every Λ ∈ Gr(k). In respective centered charts,
we can repeat the argument from above to see that the induced morphism is
TefΛ1 : L(G)! L(H). Functoriality is obvious.

In particular, any k-Lie supergroup G can be modelled on L(G) ∈ SVeclc. Of
course, one could also directly define TeG as the Lie algebra of G, which is how
it is generally done (see for example [40, Section 7.2, p.412]). This has some
conceptual advantages but the definition we chose can be used more directly in
our applications.

Corollary 3.1.2. Let k ∈ N ∪ {∞}, k ≥ 3 and G = (G, µ, i, e) be a k-Lie super-
group. Then the Lie algebra L(G) induces a canonical Lie superalgebra structure
on g := TeGΛ1 = TeRGR ⊕ TeΛ1

ker(GεΛ1
). Moreover, if f : G ! H is a morphism of

k-Lie supergroups then TefΛ1 is a morphism of Lie superalgebras and we obtain a
functor

sL: LSGrp(k) ! TopLSAlgR.
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3 Lie Supergroups

Proof. With L(G) = g(k), we obtain the unique structure of a topological Lie
superalgebra on g from Corollary 2.2.22. The same corollary applies to morphisms
and functoriality follows.

3.2. Trivializations and the Exponential Map

We will show that every Lie supergroup is a simple supermanifold in the following
sense.

Definition 3.2.1 ([40, p. 396]). Let k ∈ N0 ∪ {∞} andM ∈ SMan(k) modelled
on E ∈ SVeclc. We callM simple if there exists an isomorphism

M∼= ι0k(MR)× E1
(k)
.

In particular every simple supermanifold is isomorphic to a supermanifold of
Batchelor type defined by a trivial vector bundle.

Lemma 3.2.2. Let k ∈ N ∪ {∞}, G = (G, µ, i, e) a k-Lie supergroup modelled on
E ∈ SVeclc and f : E1

(k)
! G supersmooth such that fΛ1 is a diffeomorphism onto

ker(GεΛ1
). Then,

ΨΛ : (ι0k(GR)× E1
(k)

)Λ ! GΛ, (x, v) 7! µΛ(x, fΛ(v))

for Λ ∈ Gr(k), defines an isomorphism of k-supermanifolds Ψ: ι0k(GR)×E1
(k)
! G.

Proof. Clearly, Ψ is supersmooth and by Lemma 2.3.6 it is enough to show that
ΨΛ1 is a diffeomorphism. For g ∈ GΛ1 , we have GεΛ1

(g)−1 · g ∈ ker(GεΛ1
) and the

inverse of ΨΛ1 is given by

GΛ1 ! (ι0k(GR)× E1
(k)

)Λ1 , g 7!
(
GεΛ1

(g), f−1
Λ1

(GεΛ1
(g)−1 · g)

)
,

which is smooth.

Proposition 3.2.3. Let k ∈ N0 ∪ {∞}. Every k-Lie supergroup is a simple k-
supermanifold.

Proof. The case k = 0 is trivial. Let k ≥ 1 and let G = (G, µ, i, e) be a k-Lie
supergroup modelled on E ∈ SVeclc with the centered chart ϕ : U ! G. By
functoriality, we have ϕΛ1(E

(k)

Λ+
1

) = ker(GεΛ1
). Because ϕΛ1 is a diffeomorphism, it

follows that ϕ|
E1

(k) satisfies the conditions of Lemma 3.2.2.

This was already stated without proof in [40, Proposition 7.4.1, p.413] for Ba-
nach Lie supergroups. As Molotkov used the exponential map, our result is a
generalization. We will see in Corollary 3.2.7 that there is a chart independent
way to construct such a trivialization. Proposition 3.2.3 gives us a good idea of
the supersmooth structure of Lie supergroups. However, the group structure is
better captured by a different trivialization.
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For a k-Lie supergroup G one immediately obtains for each 0 ≤ m < n ≤ k
a short exact sequence of Lie groups along the morphism Gεn,m that splits along
Gηm,n . The most interesting case is m = 0 (compare [40, Section 7.4, p.413]).

Lemma 3.2.4. Let k ∈ N ∪ {∞} and let G = (G, µ, i, e) be a k-Lie supergroup.
For each n ≤ k, one has a short exact sequence of Lie groups

1 −! ker(GεΛn ) ↪−! GΛn

GεΛn−−−! GR −! 1

that splits along GηΛn
. The group ker(GεΛn ) is a closed Lie subgroup of GΛn and

can be given the structure of a polynomial group of degree at most n. If f : G ! H
is a morphism of Lie supergroups, we have the commutative diagram

ker(GεΛn ) //

fΛn |ker(GεΛn )

��

GΛn

fΛn

��

// GR
fR
��

ker(HεΛn
) //HΛn

//HR

and fΛn|ker(GεΛn ) is a morphism of polynomial Lie groups.

Proof. It is obvious by functoriality of G that the exact sequence splits as claimed.
Let G be modelled on E ∈ SVeclc and let ϕ : U ! G be a centered chart of G. By
naturality, we have ker(GεΛn ) = ϕΛn(E

(k)

Λ+
n

), thus ker(GεΛn ) is a closed Lie subgroup
of GΛn . In this global chart, the multiplication and inversion of ker(GεΛn ) are
morphisms of n-multilinear spaces by Theorem 2.3.11 and therefore polynomial
of degree at most n by Example C.1.3(a). The same holds true for the iterated
multiplications. As a result, ker(GεΛn ) is a polynomial group of degree at most n.
Since fΛn is a morphism of multilinear bundles over fR, commutativity of the di-

agram is obvious and in charts of the form ϕΛn|E
Λ+
n

, it is apparent that fΛn|ker(GεΛn )

is a polynomial morphism.

Lemma 3.2.5. Let G be a Lie supergroup. There exists a split short exact sequence
of Lie groups

1 −! lim −n ker(GεΛn ) ↪−! lim −n GΛn −! GR −! 1,

where G∞+ := lim −n ker(GεΛn ) is a pro-polynomial closed Lie subgroup of lim −n GΛn.
For a morphism f : G ! H of Lie supergroups the diagram

lim −n ker(GεΛn ) //

lim −n
fΛn |G∞+

��

lim −n GΛn

lim −n
fΛn

��

// GR
fR

��
lim −n ker(HεΛn

) // lim −nHΛn
//HR

commutes.

Proof. Note that by Theorem 2.3.11 lim −n GΛn is indeed a Lie group. Let G be
modelled on E ∈ SVeclc and let ϕ : U ! G be a centered chart of G. Let m ≤ n.
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By naturality, the projection maps

Gεn,m|ker(GεΛn ) : ker(GεΛn )! ker(GεΛm )

have the form Eεn,m|E
Λ+
n

in the chart ϕ and are thus polynomial. Interpreting
ker(GεΛn ) as a multilinear bundle with base {eR}, it follows that lim −n ker(GεΛn )
is a pro-polynomial Lie group. It is closed in lim −G because lim −n ker(GεΛn ) =

lim −n ϕΛn(EΛ+
n

).
Let ψ : V ! G be a chart. In the charts ψ−1

R and lim −n ψΛn , the projection
lim −n GΛn −! GR is given by the projection lim −n VΛn ! VR and is therefore smooth.
Conversely, the embeddings GηΛn

: GR ! GΛn define an embedding GR ! lim −n GΛn ,
which in the above charts is simply the embedding VR ↪! lim −n VΛn and thus
smooth. This embedding obviously defines a splitting.
In view of Lemma 3.2.4, the commutativity of the diagram is obvious.

Proposition 3.2.6. Let k ∈ N∪{∞} and let G = (G, µ, i, e) be a k-Lie supergroup.
For every Λ ∈ Gr(k) there exists a unique exponential map

expGΛ : L(G)Λ+ ! ker(GεΛ)

mapping 0 to eΛ such that
(a) expGΛ is a diffeomorphism,
(b) the induced multiplication on L(G)Λ+ is the BCH multiplication with respect

to the restriction of the Lie bracket [·, ·]Λ of L(G)Λ,
(c) (expGΛ)Λ∈Gr(k) is a natural transformation in ManGr(k)

and
(d) identifying L(G)Λ

∼= TeGΛ as in Lemma/Definition 3.1.1, we have that
T0 expGΛ = idL(G)Λ+ . In particular T0 expGΛ is Λ0-linear.

If f : G ! H is a morphism of k-Lie supergroups, then

fΛ ◦ expGΛ = expHΛ ◦L(f)Λ|L(G)Λ+ for every Λ ∈ Gr(k).

Proof. We assume without loss of generality that G is modelled on L(G)Λ1 . Let
ϕ : U ! G be a centered chart with U ⊆ L(G) and let Λ ∈ Gr(k). We have shown
in Lemma 3.2.4 that ϕΛ|L(G)Λ+ : L(G)Λ+ ! ker(GεΛ) is a diffeomorphism that turns
L(G)Λ+ into a polynomial group. Denote by expϕΛ : L(G)Λ+ ! L(G)Λ+ the chart
dependent exponential map of this polynomial group. Identifying T0L(G)Λ1

∼=
L(G)Λ1 in the usual way, we define

expGΛ := ϕΛ ◦ expϕΛ ◦T0ϕ
−1
Λ1 Λ
|L(G)Λ+ .

Let ψ : V ! G be another centered chart. Then ψ−1
Λ ◦ϕΛ|L(G)Λ+ : L(G)Λ+ ! L(G)Λ+

is a polynomial isomorphism of the respective induced polynomial groups. We have
T0ϕ

−1
Λ1
◦ (T0ψ

−1
Λ1

)−1 = T0(ϕ−1 ◦ ψ)Λ1 and therefore Lemma C.2.2 implies that

ψ−1
Λ ◦ ϕΛ ◦ expϕΛ ◦T0(ϕ−1 ◦ ψ)Λ1Λ|L(G)Λ+ = expψΛ
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holds, which shows that expGΛ is well-defined. By definition, expGΛ is a diffeomor-
phism and T0ϕΛ1Λ is a Lie algebra isomorphism from L(G)Λ considered as the
chart dependent Lie algebra to the usual Lie algebra of L(G)Λ. Thus, the mul-
tiplication in terms of expGΛ is the BCH multiplication with respect to the usual
(restricted) Lie bracket. Let % ∈ HomGr(Λ,Λ

′) then the naturality of ϕ implies
that L(G)% restricts to a linear morphism of the chart dependent polynomial groups
L(G)L(G)Λ+ ! L(G)L(G)Λ′+

. It follows again from Lemma C.2.2 that (expϕΛ)Λ∈Gr(k)

is a natural transformation in ManGr(k)

and thus (expGΛ)Λ∈Gr(k) is also a natural
transformation in ManGr(k)

. By Theorem C.2.1, we have T0 expϕL = idL(G)Λ+ and
with the identifications of (d), T0 expGΛ = idL(G)Λ+ follows from the chain rule. That
expGΛ is unique is obvious because the Lie algebra morphisms idL(G)Λ+ corresponds
to the group morphism idker(GεΛ ).
Let H be a Lie supergroup, φ : W ! H be a centered chart with W ⊆ L(H)

and define the chart dependent exponential map expφΛ of ker(HεΛ) as above. If
f : G ! H is a morphism of Lie supergroups then fφϕΛ := φ−1

Λ ◦ fΛ ◦ ϕΛ|L(G)Λ+ is
a polynomial morphism of polynomial groups and thus fφϕΛ ◦ expϕΛ = expφΛ ◦T0f

φϕ
Λ

holds by Lemma C.2.2. Using the isomorphism T0φΛ1 ◦ T0φ
−1 : TeH ! L(H), the

definition of the exponential map now implies the equality

fΛ ◦ expGΛ = expHΛ ◦L(f)Λ|L(G)Λ+ .

Corollary 3.2.7. Let k ∈ N ∪ {∞}, let G = (G, µ, i, e) be a k-Lie supergroup,
g ∈ SVeclc with g(k) = L(G) and expG := (expGΛ)Λ∈Gr(k) the natural transformation
from Proposition 3.2.6. Then,

ΦG : ι0k(GR)× g1
(k) ! G, µ ◦ (idι0k(GR)× expG |g1

(k))

is an isomorphism of k-supermanifolds.

Proof. We only need to check that expG |g1
(k) : g1

(k) ! G satisfies the conditions of
Lemma 3.2.2. Because of Corollary 2.2.9, supersmoothness of expG |g1

(k) : g1
(k) ! G

needs only to be checked at 0, where it holds by Proposition 3.2.6. It follows from
the same proposition that expG |

g1
(k)
Λ1

: g1
(k)
Λ1
! ker(GεΛ1

) is a diffeomorphism.

Corollary 3.2.8. Let k ∈ N ∪ {∞}, k ≥ 3, let G = (G, µ, i, e), H be k-Lie
supergroups and let f : G ! H be a morphism of k-Lie supergroups. Then f is
completely determined by fR and TefΛ1.

Proof. By Lemma 3.2.4 f is completely determined by fR and fΛ|ker(GεΛ ) for all Λ ∈
Gr(k). Proposition 3.2.6 implies that fΛ|ker(GεΛ ) is determined by the Lie algebra
morphism TefΛ, which in turn is determined by the Lie superalgebra morphism
TefΛ1 because of Corollary 3.1.2.

Proposition 3.2.9. Let k ∈ N ∪ {∞}, G = (G, µ, i, e) be a k-Lie supergroup and
g := sL(G). For every Λ ∈ Gr(k) and every g ∈ GR, we define the conjugation
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cg,Λ : GΛ ! GΛ, h 7! GηΛ
(g) · h · GηΛ

(g−1). Then (cg,Λ)Λ∈Gr(k) is an isomorphism
of Lie supergroups. With this, we define Adg := L(cg) : g(k) ! g(k). For every
Λ ∈ Gr(k), we have that

(a) the map Adg,Λ : g
(k)
Λ ! g

(k)
Λ is an isomorphism of Lie algebras,

(b) for v ∈ g
(k)

Λ+ the equality

cg,Λ ◦ expGΛ(v) = expGΛ ◦Adg,Λ(v)

holds and

(c) the map G × g
(k)
Λ ! g

(k)
Λ , (g, v) 7! Adg,Λ(v) is a smooth group action such

that (dAd•,Λ(v))(w) = [w, v]Λ holds for w ∈ TeRGR, v ∈ g
(k)
Λ . Here Ad•,Λ(v)

denotes the map GR ! g
(k)
Λ , g 7! Adg(v) and [·, ·] is the Lie superbracket of

g.

Proof. The conjugation map G × G ! G defined by GΛ × GΛ ! GΛ, (g, h) 7!
g · h · g−1 is clearly supersmooth. Therefore, it suffices to see that cg is a natural
transformation. This follows because G% ◦ GηΛ

= GηΛ′
holds for all Λ,Λ′ ∈ Gr(k)

and % ∈ HomGr(k)(Λ,Λ′). That each cg,Λ is an isomorphism of groups is obvious
and by supersmoothness it maps zero to zero in any centered chart and restricts
to a polynomial map g

(k)

Λ+ ! g
(k)

Λ+ .
With Lemma/Definition 3.1.1, (a) is obvious and (b) follows from Proposi-

tion 3.2.6. To see (c), let U ⊆ g(k) be an open subfunctor such that 0 ∈ UR
and ϕ : U ! G be a centered chart. We set Ug := U|ϕ−1

R (c−1
g,R(ϕR(UR))) and define

cϕg,Λ := ϕ−1
Λ ◦ cg,Λ ◦ ϕΛ|Ug . That G × g

(k)
Λ ! g

(k)
Λ , (g, v) 7! Adg,Λ(v) is a smooth

group action is obvious because GR × GΛ1 ! GΛ1 , (g, h) 7! cg,Λ1(h) is so. Denote
by [·, ·]ϕ the chart dependent Lie bracket on g(k) and let Adϕg := Tecϕg . Then,
(dAd•,Λ(ṽ))(w̃) = [w̃, ṽ]ϕΛ holds for ṽ ∈ g0 and w̃ ∈ g

(k)
Λ by the respective re-

sult for ordinary Lie groups (see Proposition A.3.2). Applying the Lie algebra
isomorphism T0ϕΛ1 : (g(k), [·, ·]ϕ)! (g(k), [·, ·]) to this, yields (c).

In the situation of the proposition, we call Ad•,Λ the adjoint action of GR on gΛ.
By Corollary 2.2.22 the adjoint action leads to an action of GR on sL(G).

Remark 3.2.10. By taking inverse limits one can easily transfer the statements
of Proposition 3.2.6 and Proposition 3.2.9 to lim −n ker(GεΛn ) to understand the
structure of the Lie group lim −n GΛn .

The next lemma describes morphisms of Lie supergroups in terms of the trivi-
alization from Corollary 3.2.7.

Lemma 3.2.11. Let k ∈ N ∪ {∞}, k ≥ 3, let G = (G, µ, i, e), H be k-Lie
supergroups with sL(G) := g, sL(H) := h and let ΦG : ι0k(GR) × g1

(k) ! G,
ΦH : ι0k(HR) × h1

(k)
! H be the isomorphisms from Corollary 3.2.7. Then, a

supersmooth morphism f : G ! H is a morphism of k-Lie supergroups if and only
if (ΦH)−1 ◦ f ◦ ΦG = ι0k(f0)× f1, where
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(a) f0 : GR ! HR is a morphism of Lie groups,

(b) f1 : g1 ! g1 is a continuous linear map,

(c) sL(ι0k(f0))⊕ f1 : g! h is a morphism of Lie superalgebras and

(d) the equality

sL(ι0k(f0))⊕ f1Λ ◦ AdGg,Λ = AdHf0(g),Λ ◦ sL(ι0k(f0))⊕ f1Λ

holds for all g ∈ GR and Λ ∈ Gr(k), where AdG and AdH are defined as in
Proposition 3.2.9.

In this situation, we have f1 = sL(f)|g1 and f0 = fR.

Proof. Note that indeed sL(ι0k(GR)) = g0. We give ι0k(GR)×g1
(k) and ι0k(HR)×h1

(k)

the induced Lie supergroup structures. By Proposition 3.2.6, we have T0 expGΛ =
idL(G)Λ+ . Moreover, since ΦG = µ ◦ (idι0k(GR)×expG |

g1
(k)

) holds, it follows that

L(ΦG) : g0 ⊕ g1 ! g is just the addition, i.e., L(ι0k(GR)× g1
(k)) = g(k). Because we

use the induced Lie supergroup structure, we have expG = ΦG ◦ expι
0
k(GR)×g1

(k) with
this identification, which implies expι

0
k(GR)×g1

(k) |g1
(k) = idg1

(k) .

Let f : G ! H be a morphism of k-Lie supergroups. Since L(f) is R(k)-linear,
we can use Proposition 3.2.6 to get

L(f)|g1
(k) = expι

0
k(HR)×h1

(k)

◦L(f)|g1
(k) = f ◦ expι

0
k(GR)×g1

(k) |g1
(k) = f |g1

(k) .

We set f1 := L(f)|g1
(k) . In other words, we have f1 = sL(f)|g1 . Since a morphism

on purely even supermanifolds is determined by the morphism on the base mani-
fold, we have f |ι0k(GR) = ι0k(fR) and we set f0 := fR. Then L(f) = sL(ι(f0))⊕ f1 and
property (d) follows from Lemma 3.2.4 together with Proposition 3.2.9. Moreover,
for g ∈ ι0k(GR)Λ and v ∈ g1

(k)
Λ , we have

fΛ(g · expGΛ(v)) = fΛ(g) · fΛ(expGΛ(v)) = ι0k(f0)Λ(g) · expHΛ (f1Λ(v))

and therefore (ΦH)−1 ◦ f ◦ ΦG = ι0k(f0)× f1.
Conversely, assume that f0 and f1 have the properties (a) to (d). With the usual

identifications TeG ∼= L(G) and TeH ∼= L(H), it follows from Lemma C.2.2 that

fΛ+ := expHΛ ◦sL(ι(f0))⊕ f1Λ|g(k)

Λ+
◦ (expGΛ)−1 : ker(GεΛ)! ker(HεΛ)

is a morphism of Lie groups with T0fΛ+ = sL(ι(f0))⊕ f1Λ|g(k)

Λ+
. This implies that

fΛ+|ker(ι0k(GR)εΛ ) = ι0k(f0)Λ|ker(ι0k(GR)εΛ ) and that (expHΛ )−1◦fΛ+ ◦expGΛ |g1
(k)
Λ

= f1Λ. For

g ∈ ker(ι0k(GR)εΛ) and v ∈ g1
(k)
Λ , the equality

(ΦHΛ )−1 ◦ fΛ+ ◦ ΦGΛ(g, v) = (ι(f0)Λ(g), f1Λ(v))
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follows, which means that ι0k(f0)Λ × f1Λ|ker(ι0k(GR)εΛ )×g1Λ
is a morphism of groups.

By definition, the actions of GR on g
(k)

Λ+ induced by the action of GR on ker(GεΛ)

and ker(ι0k(GR)εΛ)× g1
(k)
Λ are the same. Because of (d), Proposition 3.2.9 together

with Lemma A.3.4 show that(
(ι0k(f0)Λ × f1Λ|ker(ι0k(GR)εΛ )×g1

(k)
Λ

)× f0

)
:

(ker(ι0k(GR)εΛ)× g1
(k)
Λ ) o GR ! (ker(ι0k(HR)εΛ)× h1

(k)

Λ ) oHR

is a morphism of groups. But this map corresponds to ι0k(f0)Λ × f1Λ under the
splitting from Lemma 3.2.4.

3.3. Super Harish-Chandra Pairs

We have seen that for any Lie supergroup G, the Lie groups GΛ are completely
determined by sL(G) and the action of GR on sL(G) induced by the adjoint action.
The pair (GR, sL(G)) forms a so called super Harish-Chandra pair. Conversely, we
will show that in fact all super Harish-Chandra pairs define a Lie supergroup and
that one obtains an equivalence of categories in this way. For finite-dimensional
Lie supergroups this is a classical result by Kostant [32] (for a sheaf theoretic
treatment see for example [14]). Neeb and Salmasian, [42], generalized this to
the case of infinite-dimensional Lie supergroups G modelled on Mackey complete
super vector spaces such that GR has a smooth exponential map. For this, they
used techniques not dissimilar to the classical proof via the universal enveloping
superalgebra.
In our setting, this result was stated for Banach Lie supergroups without proof

by Molotkov in [40]. It appears likely that Molotkov used the exponential map as
a chart to show this. In contrast, our proof holds for arbitrary Lie supergroups
and uses the preceding trivializations to construct concrete quasi-inverse functors.

Definition 3.3.1. The pair (G, g) of a Lie group G and a locally convex R-Lie
superalgebra g together with a morphism of groups AdG : G! Aut(g) is called a
super Harish-Chandra pair if

(1) g0 = L(G),

(2) the map
G× g! g, (g, v) 7! AdG(g)(v)

is smooth and

(3) if we set cv : G ! g, g 7! AdG(g)(v) for v ∈ g, then dwcv(e) = [w, v] holds
for every w ∈ g0, where e denotes the identity element of G and [·, ·] the Lie
superbracket of g.

Let (H, h) be another super Harish-Chandra pair with the morphism AdH : H ×
h! h. A morphism between (G, g) and (H, h) is a pair (f0, f) such that

70



3.3 Super Harish-Chandra Pairs

(a) f0 : G! H is a morphism of Lie groups,

(b) f : g! h is a continuous morphism of Lie superalgebras,

(c) we have f |g0 = Tef0 and

(d) AdH(f0(g)) ◦ f = f ◦ AdG(g) holds for all g ∈ G.

The composition of morphisms is defined in the obvious way and super Harish-
Chandra pairs and their morphisms form a category which we denote by SHCP.

Lemma 3.3.2. Let k ∈ N ∪ {∞}, k ≥ 3 and let G = (G, µ, i, e) be a k-
Lie supergroup. For g ∈ GR, let cg,Λ1 be as in Proposition 3.2.9. The action
AdG : GR × TeGΛ1 ! TeGΛ1 , (g, v) 7! Tecg,Λ1(v) defines a super Harish-Chandra
pair (GR, sL(G)). If f : G ! H is a morphism of Lie supergroups then (fR, sL(f))
is a morphism of super Harish-Chandra pairs and in this way we get a functor

H(k) : LSGrp(k) ! SHCP.

Proof. That (GR, sL(G)) is a super Harish-Chandra pair follows from Proposition
3.2.9 together with Corollary 2.2.22.
Let f : G ! H be a morphism of Lie supergroups. We already know from

Corollary 3.1.2 that sL(f) = TefΛ1 is a morphism of Lie superalgebras and that
this assignment is functorial. Consider GR ⊆ GΛ1 andHR ⊆ HΛ1 via GηΛ1

andHηΛ1
.

Clearly, we have TeRfR = TefΛ1|TeGR . For h ∈ HR, define cHh : HΛ1 ! HΛ1 , h
′ 7!

hh′h−1. It follows from Lemma 3.2.4 that fΛ1 ◦ cg = cHfR(g) ◦fΛ1 . Taking derivatives
at eΛ1 now shows TefΛ1 ◦ AdG(g) = AdH(fR(g)) ◦ TefΛ1 .

Our objective is to show that this correspondence establishes an equivalence of
categories LSGrp(k) ! SHCP for k ≥ 3. Let us sketch how the quasi-inverse
functor SHCP ! LSGrp(k) is constructed. Given a super Harish-Chandra pair
(G, g), where [·, ·] is the Lie superbracket of g, we can define a nilpotent group
NΛ for every Λ ∈ Gr(k) by considering gΛ+ together with the BCH multiplication
of the nilpotent Lie algebra [·, ·]Λ|gΛ+×gΛ+ . Then G acts on NΛ via the induced
action AdG : G × gΛ+ ! gΛ+ . Setting GΛ := NΛ o G, we use Corollary 3.2.7
to get an appropriate supersmooth structure ι0k(G) × g1

(k) ∼= G. The proof is
complicated by the fact that the Lie group G does necessarily have an exponential
map. However, we have seen that ker(GεΛ) has an exponential map and we will
show in the following lemmas that this exponential map has sufficiently good
properties for our needs.

Definition 3.3.3. For k ∈ N ∪ {∞} and E ∈ SVeclc, we define a subfunctor
E

(k),+
: Gr(k) ! Top of E(k) by

E
(k),+

Λ := E
(k)

Λ+

for Λ ∈ Gr(k) and
E

(k),+

% := E
(k)

% |E(k)

Λ+
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for % ∈ HomGr(k)(Λ,Λ′).

Lemma 3.3.4. Let k ∈ N ∪ {∞}, E,F ∈ SVeclc and f : E
(k),+

! F
(k),+ a

morphism in ManGr(k)

such that fΛ is a diffeomorphism for all Λ ∈ Gr(k). Then,
f is an isomorphism in ManGr(k)

. If additionally the derivative of fΛ is Λ0-linear
at every point, then so is the derivative of f−1

Λ .

Proof. Let Λ,Λ′ ∈ Gr(k). For % ∈ HomGr(k)(Λ,Λ′), we have

fΛ′ ◦ E
(k),+

% ◦ f−1
Λ = E

(k),+

% ◦ fΛ ◦ f−1
Λ = E

(k),+

% ,

which implies that f−1
Λ′ ◦ E

(k),+

% = E
(k),+

% ◦ f−1
Λ . Similarly, let the derivative of fΛ

be Λ0-linear at every point. For x, v ∈ E(k),+

Λ and λI ∈ Λ0, we calculate

dfΛ(f−1
Λ (x), λIdf

−1
Λ (x, v)) = λIv = dfΛ(f−1

Λ (x), df−1
Λ (x, λIv)),

from which df−1
Λ (x, λIv) = λIdf

−1
Λ (x, v) follows.

Lemma 3.3.5. Let g be a locally convex R-Lie superalgebra with the bracket [·, ·].
For k ∈ N ∪ {∞} and Λ ∈ Gr(k), let ∗Λ : g

(k),+
Λ × g

(k),+
Λ ! g

(k),+
Λ denote the BCH

multiplication with respect to the nilpotent Lie bracket [·, ·]
+

Λ := [·, ·]Λ|g(k),+
Λ ×g(k),+

Λ
.

Then (∗Λ)Λ∈Gr(k) defines a natural transformation ∗ : Gr(k) ! Man and the
derivative of ∗Λ is Λ0-linear at every point. Moreover, the natural transforma-
tion Ψ defined by

ΨΛ := ∗Λ|g0
(k),+
Λ ×g1

(k)
Λ

: g0
(k),+
Λ × g1

(k)
Λ ! g

(k),+
Λ , (v0, v1) 7! v0 ∗Λ v1,

is an isomorphism in ManGr(k)

and the derivative of ΨΛ is Λ0-linear at every point
for every Λ ∈ Gr(k).

Proof. Clearly, Λ 7! [·, ·]
+

Λ defines a natural transformation. From this, it easily
follows that ∗ is a morphism in ManGr(k)

. The finite sum over combinations of
[·, ·]

+

Λ that defines ∗Λ is just the restriction of the same sum using [·, ·]Λ instead,
which is supersmooth. Therefore, the derivative of ∗Λ is Λ0-linear at all points.
Interpreting g+

Λ as a multilinear space, one sees that ΨΛ is a morphism of mul-
tilinear spaces whose linear part is the identity. Therefore, ΨΛ is invertible by
Theorem B.1.2. The claim follows now from Lemma 3.3.4.

Lemma 3.3.6. Let k ∈ N ∪ {∞}, E,F,H ∈ SVeclc, f : E
(k)
! F

(k) be super-
smooth and g : F

(k),+
! H

(k),+ be a morphism in ManGr(k)

. If, for all Λ ∈ Gr(k),
we have fΛ(E

(k)

Λ ) ⊆ F
(k),+

Λ and the derivative of gΛ is Λ0-linear at every point,
then g ◦ f : E ! H is supersmooth. If E is purely odd, then it suffices that the
derivative of gΛ is Λ0-linear at zero.

Proof. The inclusion H
(k),+

! H
(k) is a morphism in ManGr(k)

such that the
derivative of its Λ-components is Λ0-linear at all points for all Λ ∈ Gr(k). Thus,
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g ◦ f : E
(k)
! H

(k) is a morphism in ManGr(k)

and the derivative of (g ◦ f)Λ is
Λ0-linear at all points by the chain rule. If E is purely odd, then we have fΛ(0) = 0
and the claim follows from Corollary 2.2.9.

Proposition 3.3.7. Let (G, g) together with AdG be a super Harish-Chandra pair.
Let k ∈ N ∪ {∞}, k ≥ 3. Then a canonical Lie supergroup structure exists on
ι0k(G)× g1

(k) such that sL(ι0k(G)× g1
(k)) ∼= g. If (f0, f) is a morphism between the

super Harish-Chandra pairs (G, g) and (H, h) then ι0k(f0)× f |g1 is a morphism of
the respective k-Lie supergroups and this defines a functor

K(k) : SHCP! LSGrp(k)

such that H(k) ◦K(k) ∼= idSHCP.

Proof. Let e ∈ G be the neutral element and [·, ·] be the Lie superbracket of g. For
Λ ∈ Gr(k), we define nGΛ := g

(k)

Λ+ together with the continuous nilpotent Lie bracket
[·, ·]Λ+ and give NG

Λ := nGΛ the structure of a polynomial Lie group with the BCH
multiplication. Clearly nGΛ0

:= g0
(k)

Λ+ is a closed Lie subalgebra and we let NG
Λ0

be
the respective closed Lie subgroup. By Corollary 2.2.22, AdG(g)Λ : g

(k)
Λ ! g

(k)
Λ is

a continuous morphism of Lie algebras for every g ∈ G and this induces a smooth
group action by automorphisms AdGΛ : G × NG

Λ ! NG
Λ , (g, v) 7! AdG(g)(v).

Therefore, we have the Lie groups GΛ := NG
Λ oG for every Λ ∈ Gr(k) and because

AdG(g) is an even map, this group has the closed Lie subgroup GΛ0
:= NG

Λ0
o G.

Since g0 is just the Lie algebra of G, we obtain an isomorphism of Lie groups
ker(ι0k(G)εΛ)! NG

Λ0
via

g0
(k)

Λ+

id

��

expι
0
k(G)

// ker(ι0k(G)εΛ)

��
nGΛ0

exp
NGΛ

0

// NG
Λ0
,

where exp
NGΛ

0 = idnGΛ
0

is the exponential map of NΛ0
. Moreover, by Proposition

3.2.9, the action of G = ι0k(G)R with respect to the respective exponential map
is in both cases the same. Thus, we will subsequently identify ι0k(G)Λ

∼= GΛ0
for

all Λ ∈ Gr(k). It follows from Lemma 3.3.5 and the definition of the semidirect
product that

ΦΛ : ι0k(G)Λ × g1
(k)
Λ ! GΛ, (g, v) 7! g · v

is bijective for every Λ ∈ Gr(k). We will show that Φ := (ΦΛ)Λ∈Gr(k) defines a Lie
supergroup structure on G. For this, we first calculate the supersmoothness of the
conjugation defined by

σΛ : ι0k(G)Λ × g1
(k)
Λ ! g1

(k)
Λ , (g, v1) 7! g · v1 · g−1.

Writing g = g0 · v0 with g0 ∈ G and v0 ∈ NΛ and letting Λ = Λn, we use Lemma
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C.2.7 to calculate

g0 · v0 · v1 · v−1
0 · g−1

0 =
∞∑
m=0

1

m!

[
AdG(g0)Λ(v0),AdG(g0)Λ(v1)

]
Λ,m

,

where [v0, v1]Λ,m := [v0, [v0, v1]Λ,m−1]
Λ
for m > 0 and [v0, v1]Λ,0 := v1 ∈ g1

(k)
Λ . Note

that [v0, v1]Λn,m = 0 for m > n. It follows that σΛ is well-defined. By Corollary
2.2.9, it is enough to check supersmoothness at points of the form (ι0k(G)ηΛ

(g0), 0),
g0 ∈ GR. But, we have d1σΛ(ι0k(G)ηΛ

(g0), 0) = 0 and d2σΛ(ι0k(G)ηΛ
(g0), 0) =

σΛ(ι0k(G)ηΛ
(g0), •), which are both Λ0-linear.

With this, we can show the supersmoothness of the group operations. Let
i : ι0k(G)× g1

(k) ! ι0k(G)× g1
(k) be the inversion. The restriction i|ι0k(G) is just the

inversion in ι0k(G) and therefore supersmooth. The inverse of v1 ∈ g1
(k)
Λ is given by

−v1 thus i|g1
(k) is also supersmooth. Let (g, v1) ∈ ι0k(G)Λ × g1

(k)
Λ . Then, we have

(g · v1)−1 = v−1
1 · g−1 = g−1 · g · v−1

1 · g−1 = g−1︸︷︷︸
∈ι0k(G)Λ

·σΛ(g,−v1)︸ ︷︷ ︸
∈g1

(k)
Λ

and hence, the inversion is supersmooth. Similarly, for the multiplication
µ : (ι0k(G) × g1

(k))2 ! ι0k(G) × g1
(k), the restriction µ|ι0k(G)×ι0k(G) is the multiplica-

tion in ι0k(G) and therefore supersmooth. For the restriction µ|g1
(k)×g1

(k) : (g1
(k))2 !

ι0k(G)× g1
(k), we use the isomorphism Ψ from Lemma 3.3.5 to obtain

v1 · v′1 = exp
ι0k(G)

Λ ◦ pr0,Λ

(
Ψ−1

Λ (v1 · v′1)
)︸ ︷︷ ︸

∈ι0k(G)Λ

· pr1,Λ

(
Ψ−1

Λ (v1 · v′1)
)︸ ︷︷ ︸

∈g1
(k)
Λ

,

where v1, v
′
1 ∈ g1

(k)
Λ and pr0 : ι0k(G)× g1

(k) ! ι0k(G), pr1 : ι0k(G)× g1
(k) ! g1

(k) are
the projections. With Lemma 3.3.5 and Lemma 3.3.6, it follows that µ|g1

(k)×g1
(k)

is supersmooth. If additionally g, g′ ∈ ι0k(G)Λ, then we have

g · v1 · g′ · v′1 = g · g′ · σΛ(g′−1, v1) · v′1,

which together with the above shows supersmoothness of µ.
By Remark A.3.3, we have L(GΛ) = g

(k)
Λ . Let ι0k(G) × g1

(k) have the Lie super-
group structure induced by Φ. Since ΦΛ is the restriction of the multiplication, it
follows that L(ΦΛ) is just the addition g0

(k)
Λ ×g1

(k)
Λ ! g

(k)
Λ , (v0, v1) 7! v0+v1. Thus,

L(G) = g(k) holds and it follows sL(ι0k(G)×g1
(k)) ∼= g. Identifying T0NG

Λ
∼= nGΛ , the

adjoint action of G on L(G)Λ is by definition AdG : G× g(k) ! g(k) and therefore,
we have H(k)(ι0k(G)× g1

(k)) ∼= (G, g).
Finally, let (H, h) together with AdH be another super Harish-Chandra pair and

(f0, f) : (G, g) ! (H, h) be a morphism of super Harish-Chandra pairs. Setting
f1 := f |g1 , we have that f0 and f1 satisfy the conditions of Lemma 3.2.11. Thus,
ι0k(f0) × f1 : ι0k(G) × g1

(k) ! ι0k(H) × h1
(k) is a morphism of Lie supergroups.
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The functoriality of K(k) is obvious. Under the identifications above, we have
(ι0k(f0) × f1|g1)R = f0 and sL(ι0k(f0) × f1) = f and therefore H(k) ◦K(k)(f0, f) =
(f0, f).

Theorem 3.3.8. For k ∈ N∪{∞}, k ≥ 3, the functors H(k) : LSGrp(k) ! SHCP
from Lemma 3.3.2 and K(k) : SHCP ! LSGrp(k) from Proposition 3.3.7 are
quasi-inverse to each other, i.e., establish an equivalence of categories

LSGrp(k) ∼= SHCP.

Proof. We have already shown H(k) ◦ K(k) ∼= idSHCP in Proposition 3.3.7.
Conversely, let G = (G, µ, i, e) be a Lie supergroup with g := sL(G) and let
ΦG : ιk0(GR) × g1 ! G be the isomorphism from Corollary 3.2.7. We equip
ι0k(GR) × g1

(k) with the induced k-Lie supergroup structure. On the other hand,
we have K(k) ◦H(k)(G) = K(k)(GR, sL(G)) = ι0k(GR) × g1

(k) and we have seen in
Proposition 3.3.7 that the adjoint action is the same in both cases. Therefore, it
follows from Lemma 3.2.11 that ι0k(idGR)× g1

(k) : ι0k(GR)× g1(k)! K(k) ◦H(k)(G)
is an isomorphism of k-Lie supergroups.
Let H be another k-Lie supergroup and f : G ! H be a morphism of k-Lie

supergroups. Setting f1 := sL(f)|g1 , we have K(k) ◦H(k)(f) = ι0k(fR)× f1, which
is exactly the morphism ι0k(fR) × f1 : ι0k(GR) × g1

(k) ! ι0k(HR) × h1
(k) obtained in

Lemma 3.2.11.

Corollary 3.3.9. For n, k ∈ N ∪ {∞}, 3 ≤ n ≤ k, we have

LSGrp(k) ∼= LSGrp(n).

The projection functor πkn : LSGrp(k) ! LSGrp(n) obtained from Lemma 2.3.18
is fully faithful and essentially surjective.

Proof. This follows from Theorem 3.3.8 because the projection functor does not
change the associated super Harish-Chandra pair.

In the Banach case, this was already stated in [40, Proposition 7.7.1, p.414].
One can easily deal with LSGrp(0) and LSGrp(1) by embedding these categories
into LSGrp via Proposition 2.3.14 and Proposition 2.3.17. We leave the special
case of LSGrp(2) for future work. Here, Corollary 2.2.22 does not apply and the
Lie algebra of a 2-Lie supergroup is not necessarily related to a Lie superalgebra
in the required manner. It should be noted that for k ≥ 3, any k-Lie supergroup
G is nevertheless completely determined by πk2(G), because the Lie algebra L(GΛ2)
already determines the Lie superalgebra of G.

3.3.1. Generalizations

Any of the generalizations for supermanifolds discussed in 2.3.2, leads to a general-
ization of Lie supergroups, and structure results like Proposition 3.2.3 and Lemma
3.2.4 hold even in the most general setting. The biggest problem regarding the
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super Harish-Chandra pair construction is the existence of a suitable exponential
map, which cannot be assumed if the characteristic of the base ring is not zero.
It seems likely that one can instead use an analog of the right and left trivializa-
tions introduced in [10, Section 24, p.116 ff.] to obtain a correspondence to super
Harish-Chandra pairs in this case (see E.1 for an overview).

3.4. Lie Supergroups with a Smooth Exponential
Map

Definition 3.4.1. Let k ∈ N0 ∪ {∞}. We say a k-Lie supergroup G = (G, µ, i, e)
has a smooth exponential map expG if GΛ has a smooth exponential map
expGΛ : TeGΛ ! GΛ for every Λ ∈ Gr(k).

In particular, every Banach k-Lie supergroup has a smooth exponential map.
We will usually consider the exponential map as a morphism expG : L(G)! G via
Lemma/Definition 3.1.1.

Lemma 3.4.2. Let k ∈ N0 ∪ {∞} and let G be a k-Lie supergroup that has a
smooth exponential map expG. Then expG : L(G) ! G is a well-defined morphism
in ManGr(k)

.

Proof. Let Λ,Λ′ ∈ Gr(k) and % ∈ HomGr(k)(Λ,Λ′). Then, by naturality of the
ordinary exponential map, we have the commutative diagram

GΛ
G% // GΛ′

L(G)Λ
L(G)% //

expGΛ

OO

L(G)Λ′ .

expG
Λ′

OO

Therefore, expG is a natural transformation.

If G has a smooth exponential map expG then, by uniqueness, the restriction
expGΛ |L(G)Λ+ corresponds to the exponential map defined in Proposition 3.2.6, which
is why we use the same notation in both cases.
In [42] a Lie supergroup G is defined as a Lie supergroup in our sense such that
GR has a smooth exponential map and the model space is Mackey complete (see
[42, Section 4 and Definition 4.1, p.813]). It is then shown in [42, Proposition
4.3.2, p.815] that in this case G automatically has a smooth exponential map as
defined above.

Lemma 3.4.3. Let k ∈ N0 ∪ {∞}, let (G, µ, i, e) be a Banach k-Lie supergroup
and let g ∈ SVeclc such that g(k) = L(G). Then an open subfunctor U ⊆ g(k) exists
such that the restriction expG|U : U ! G of the exponential map of G is a chart of
G.
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Proof. Let U ⊆ g0 be open such that expGR|U : U ! expGR(U) is a diffeomorphism
and set U := g|U . Then exp0 := ι0k(expGR) : ι0k(U) ! ι0k(GR) ⊆ G is a chart. It
follows from Corollary 3.2.7 that ẽxp := µ ◦ (exp0× exp1) : U ! G is a chart and
by functoriality, we have expGΛ(UΛ) ⊆ ẽxpΛ(UΛ) for all Λ ∈ Gr. Next, we check
that expGΛ|UΛ

: UΛ ! ẽxpΛ(UΛ) is bijective. There exists an open zero-neighborhood
U ′ ⊆ UΛ1 such that expGΛ1

|U ′ is a chart of GΛ1 . After shrinking, we may assume
U ′ = U ×U1 ⊆ g0×λ1g1. In a chart, it follows from Proposition 2.2.7 and Lemma
2.2.5 that expGΛn(x, •) is a morphism of n-multilinear bundles for every x ∈ U .
In particular, expGΛ1

(x, •) is a linear map to the fiber G−1
εΛ1

({x}). It follows that
expGΛ1

|UΛ1
is bijective, which implies that expGΛ|UΛ

is bijective by Theorem B.1.2.
It now suffices to check that (expG)−1 ◦ ẽxp is supersmooth. For Λ ∈ Gr(k)

let X ∈ ι0k(U)Λ and Y ∈ g1
(k)
Λ . Then, we have that (exp0)Λ(X) = expGΛ(X) and

(exp1)Λ(Y ) = expGΛ(Y ). Therefore, for X, Y close enough to zero, (expGΛ)−1 ◦
ẽxpΛ(X, Y ) is given by the BCH series with respect to the Lie bracket [·, ·]Λ of
L(G)Λ. After shrinking U again, we may assume that this is the case for X ∈ U ,
Y = 0. Thus, for X̃ ∈ g0

(k)
Λ and Ỹ ∈ g1

(k)
Λ , we have

∂(X̃,Ỹ )

(
(expG)−1

Λ ◦ ẽxpΛ

)
(X, 0) = X̃ + Ỹ +

∞∑
i=1

Pi · [X, [X, . . . , [X︸ ︷︷ ︸
i times

, Ỹ ]Λ . . .]Λ]Λ,

where Pi is a rational number coming from the factors of the BCH series. This
expression is clearly Λ0-linear and thus supersmoothness follows from Corollary
2.2.9.

Lemma 3.4.4. Let k ∈ N0 ∪ {∞} and let G be a k-Lie supergroup with a smooth
exponential map expG. If an open subfunctor U ⊆ L(G) with 0 ∈ UR exists such
that expG |U is supersmooth, then expG is supersmooth.

Proof. For n ∈ N, we define an open subfunctor nU ⊆ L(G) by (nU)Λ := n · UΛ.
We have L(G)Λ =

⋃
n∈N nUΛ for all Λ ∈ Gr and therefore it suffices to show

supersmoothness of expG |nU . Because multiplication with scalars is supersmooth,
so is expGΛ |nUΛ

= (expGΛ |UΛ
( 1
n
•))n (compare [23]).

Corollary 3.4.5. Let k ∈ N0 ∪ {∞} and let G be a Banach k-Lie supergroup.
Then G has a supersmooth exponential map expG : L(G)! G.

This was already stated without proof in [40, Proposition 7.3.1, p.413]. It is
possible to prove automatic supersmoothness of the exponential map beyond the
Banach case. We leave this for future work.

3.5. Examples

One classical Lie supergroup comes from the unit group of a superalgebra. In our
setting this was already mentioned in [40, Example 7.1.1, p.411] (see also [46, 4.7,
p.27f.]), but since it is very instructive let us discuss a slightly more general version
here.
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3 Lie Supergroups

Definition 3.5.1. A continuous inverse algebra is a locally convex unital associa-
tive R-algebra A such that the group of units A× is open in A and the inversion
j : A× ! A is continuous.

Proposition 3.5.2 ([18, Proposition 2.2, p.15]). If A is a continuous inverse
algebra, then A× considered as an open submanifold of A is a Lie group.

Let A be a topological R-superalgebra such that A0 is a continuous inverse
algebra with the unit element 1A. Since the multiplication µ : A × A ! A is a
continuous even bilinear map, it follows from Corollary 2.2.22 that µ : A ! A is
a supersmooth morphism that turns AΛ into a topological algebra with the unit
element AηΛ

(1A) = 1A for all Λ ∈ Gr.

Proposition 3.5.3. Let A be a topological R-superalgebra such that A0 is a con-
tinuous inverse algebra with the unit element 1A. Define A := A and A× := A|A×0 .
Then, for every Λ ∈ Gr, we have (AΛ)× = A×Λ and the inversion i : A× ! A is a
supersmooth morphism. In particular, A× is a Lie supergroup.

Proof. Let µ be the multiplication of A. We have

µΛn

(
(λIXI , λIYI)I∈Pn

)
=
∑
I,J∈Pn

λIλJXIYJ =
∑

I,J∈Pn,I∩J=∅

λIλJXIYJ ,

where XI , YI ∈ A|I|. Thus, µ has the skeleton (µ0, µ1, µ2, 0, . . .) with

µ0 : A2
0 ! A0, (X0, Y0) 7! X0Y0,

µ1 : A2
0 ! Alt1(A2

1;A1), µ1(X0, Y0)(X1, Y1) = X0Y1 +X1Y0,

µ2 : A2
0 ! Alt2(A2

1;A0), µ2(X0, Y0)
(
(X1, Y1), (X2, Y2)

)
= X1Y2 +X2Y1.

We construct the inversion inductively. Let j : A×0 ! A0 be the inversion of A×0 .
We define i(0) := j. For k ∈ N0 assume i(k) has the skeleton (i0, . . . , ik). We set
ĩ(k+1) := (i0, . . . , ik, 0). Then, we have

µ(k+1) ◦ (idA(k+1) , ĩ(k+1)) = (c1A , 0, . . . , 0, gk+1)

for some gk+1 : A0 ! Altk+1(A1;Ak). Define ik+1 := µ(i0(•),−gk+1(•)) : A0 !
Altk+1(A1;Ak) and let i(k+1) = (i0, . . . , ik, ik+1). With this, we calculate µ(k+1) ◦
(idA(k+1) , i(k+1)) = (c1A , 0, . . . , 0). Then i := (i0, i1, . . .) : A× ! A defined in this
way is the supersmooth inverse.
We have shown that every X ∈ A×Λ is invertible. Conversely, if X ∈ AΛ is

invertible, then so is AεΛ(X) ∈ A0, which implies X ∈ A×Λ .

The Lie algebra of A is then given by [X, Y ]Λ = µΛ(X, Y )− µΛ(Y,X) for every
Λ ∈ Gr and X, Y ∈ AΛ and the Lie superbracket [·, ·] of A is

[X0 +X1, Y0 +Y1] = (X0Y0−Y0X0)+(X0Y1−Y1X0 +X1Y0−Y0X1)+(X1Y1 +Y1X1)

for X0, Y0 ∈ A0 and X1, Y1 ∈ A1. In other words, [X, Y ] = XY − (−1)p(X)p(Y )Y X
for homogeneous elements X, Y ∈ A and p as in Definition 1.5.2.
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3.5.1. The General Linear Lie Supergroup

As one application of Proposition 3.5.3, we get the classical general linear super-
group. Let p, q ∈ N0. We define a super vector space Mp|q(R) by setting

Mp|q(R)0 :=

{(
A 0
0 D

)
∈ Rp+q×p+q : A ∈ Rp×p, D ∈ Rq×q

}
and

Mp|q(R)1 :=

{(
0 B
C 0

)
∈ Rp+q×p+q : B ∈ Rp×q, C ∈ Rq×p

}
.

The even matrices Mp|q(R)0, resp. the odd matrices Mp|q(R)1, can be understood
as even, resp. odd, endomorphisms Rp|q ! Rp|q. Clearly, Mp|q(R) together with the
normal matrix multiplication is a topological R-superalgebra and (Mp|q(R)0)× =
{M ∈ Mp|q(R)0 : M invertible} is a continuous inverse algebra with unity. Thus,
GLp|q(R) := Mp|q(R)|(Mp|q(R)0)× is a Lie supergroup. ElementsM ∈ GLp|q(R)Λn can
be written as

M =

(
A0 0
0 D0

)
+
∑
I∈Pn0,+

λI

(
AI 0
0 DI

)
+
∑
J∈Pn1

λJ

(
0 BJ

CJ 0

)
,

where A0 and D0 are invertible. The multiplication is the ordinary multiplication
in Mp|q(R) ⊗ Λn and the Lie superalgebra is glp|q(R) := Mp|q(R) with the Lie
superbracket given as [X, Y ] = XY − (−1)p(X)p(Y )Y X for homogeneous elements
X, Y ∈ glp|q(R) and p as in Definition 1.5.2.
More generally, let A be a topological supercommutative R-superalgebra such

that A0 is a continuous inverse algebra. One can define Mp|q(A) analogously to
above. Note that a matrix M ∈ Mp|q(A)i now has the form

M =

(
S1 S2

S3 S4

)
,

where i ∈ {0, 1}, S1 ∈ Ap×pi , S2 ∈ Ap×qi+1
, S3 ∈ Aq×pi+1

and S4 ∈ Aq×qi (see [14, Section
1.4, p.10ff.]). Interestingly, M ∈ Mp|q(A)0 is invertible if and only if S1 and S4 are
invertible. Indeed, we have(

S−1
1 0
0 S−1

4

)
·
(
S1 S2

S3 S4

)
= id +

(
0 S−1

1 S2

S−1
4 S3 0

)
=: id +N,

where N is nilpotent since A is supercommutative. The inverse of id +N is thus
given by the (finite) Neumann series. It is elementary to check that GLp|q(A) :=

Mp|q(A)|(Mp|q(A)0)× is again a Lie supergroup.
Typical Lie sub-supergroups like the special linear Lie supergroup (see for ex-

ample [14, Examples 11.1.13, p.206]) can be defined using the same approach.
However, if they do not arise from open subsets of a super vector space, the super-
smooth structure is more complicated. If A is a Banach superalgebra, a restriction
of the exponential map is a chart. Otherwise, one can use Corollary 3.2.7.

79





4. Superdiffeomorphisms
In this chapter, we discuss the supergroup of superdiffeomorphisms. For this, we
first turn to vector fields and automorphisms of supermanifolds.

4.1. Spaces of Sections of Super Vector Bundles

While only even and odd vector fields of supermanifolds are necessary to deal
with automorphisms and superdiffeomorphisms, we consider also general sections
of super vector bundles. For an arbitrary super vector bundle π : E ! M, we
turn the space of sections Γ(E) into a locally convex space. If E is a Banach
supermanifold and MR is finite-dimensional, we introduce another topology on
Γ(E), which is more suitable for the Lie group structures we are interested in. We
also define respective spaces of compactly supported sections Γc(E).

4.1.1. Spaces of Supersmooth Morphisms

Recall Definition 2.2.12. For n ∈ N0, E,F ∈ SVeclc and U ⊆ E0 open, we equip
C∞(U,Altn(E1;Fn)) with the Hausdorff locally convex topology that turns

C∞(U,Altn(E1;Fn))! C∞(U × En
1 , Fn), f 7! f∧

into an embedding and denote this space by C∞(U,Altn(E1;Fn))c. For more de-
tails on the topology of C∞(U × En

1 , Fn) see A.2. If E and F are Banach super
vector spaces, we denote by Altn(E1;Fn)b the space Altn(E1;Fn) together with
the topology of bounded convergence, which is a Banach space. If additionally E0

is finite-dimensional, we have that

C∞(U,Altn(E1;Fn))! C∞(U,Altn(E1;Fn)b), f 7! f

is an isomorphism by Lemma A.2.12. We write C∞(U,Altn(E1;Fn))b for the space
C∞(U,Altn(E1;Fn)) equipped with the induced topology.

Definition 4.1.1. Let k ∈ N0 ∪ {∞}, E,F ∈ SVeclc and U ⊆ E
(k) be an open

subfunctor. We turn SC∞(U , F (k)
) into a Hausdorff locally convex vector space

such that

SC∞(U , F (k)
) ∼=

k∏
n=0

C∞(UR,Altn(E1;Fn))c,

and denote this topological vector space by SC∞(U , F (k)
)c. Likewise, if E0 is finite-

dimensional and E1, F are Banach spaces, we turn SC∞(U , F (k)
) into a Hausdorff
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4 Superdiffeomorphisms

locally convex vector space such that

SC∞(U , F (k)
) ∼=

k∏
n=0

C∞(UR,Altn(E1;Fn))b,

and denote this topological vector space by SC∞(U , F (k)
)b.

Lemma 4.1.2. Let k ∈ N0 ∪ {∞}, E,F ∈ SVeclc and U ⊆ E
(k) be an open

subfunctor. If V ⊆ U is an open subfunctor, then the restriction

SC∞(U , F (k)
)c ! SC∞(V , F (k)

)c, f 7! f |V

is continuous and linear. If E0 is finite dimensional and E1, F are Banach spaces,
then

SC∞(U , F (k)
)b ! SC∞(V , F (k)

)b, f 7! f |V
is also continuous and linear.

Proof. With Lemma A.1.2, both claims follow from Lemma A.2.4.

Lemma 4.1.3. Let k ∈ N0 ∪ {∞}, E,F,H ∈ SVeclc and U ⊆ E
(k) be an open

subfunctor. If f : U × F (k)
! H

(k) is supersmooth, then

SC∞(U , F (k)
)c ! SC∞(U , H(k)

)c, γ 7! f ◦ (idU , γ)

is smooth. If E0 is finite-dimensional and E1, F,H are Banach spaces, then

SC∞(U , F (k)
)b ! SC∞(U , H(k)

)b, γ 7! f ◦ (idU , γ)

is also smooth.

Proof. Using the concatenation formula for skeletons (2.2) and Lemma A.1.2, this
follows from and Proposition A.2.1 in the first case and Lemma A.2.14 and Propo-
sition A.2.1 in the second case.

Lemma 4.1.4. Let k ∈ N0 ∪ {∞}, E,F,H ∈ SVeclc and U ⊆ E
(k), V ⊆ F

(k) be
open subfunctors. If f : U ! V is supersmooth, then the “pullback”

SC∞(V , H(k)
)c ! SC∞(U , H(k)

)c, γ 7! γ ◦ f

is a continuous linear map. If E0 is finite-dimensional and E1, F,H are Banach
spaces, then

SC∞(V , H(k)
)b ! SC∞(U , H(k)

)b, γ 7! γ ◦ f

is also continuous and linear.

Proof. It follows from the concatenation formula for skeletons (2.2) that both maps
are linear. Using Lemma A.1.2, continuity follows from Lemma A.2.2 in the first
case and Lemma A.2.14 and Lemma A.2.2 in the second case.
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4.1 Spaces of Sections of Super Vector Bundles

4.1.2. The vector space structure of the space of sections

Definition 4.1.5. Let k ∈ N0 ∪ {∞} and π : E !M be a k-super vector bundle.
A section of E is a supersmooth morphism σ : M! E such that π ◦σ = idM. We
denote the set of sections by Γ(E).

In the situation of the definition, letM be modelled on E ∈ SVeclc and let E
have the typical fiber F ∈ SVeclc. Let further {Ψα : Uα × F (k)

! E : α ∈ A} be
a bundle atlas of E and {φα : Uα ! M : a ∈ A} the corresponding atlas of M.
Any section σ : M! E has then the local form (Ψα)−1 ◦ σ ◦ φα : Uα ! Uα × F (k).
Because π ◦ σ = idM, we see that the first component of this morphism is idUα .
Thus, we define

σα := pr
F

(k) ◦(Ψα)−1 ◦ σ ◦ φα : Uα ! F
(k)
.

We arrive at the injective map

Θ: Γ(E)!
∏
α∈A

SC∞(Uα, F (k)
), σ 7! σα. (4.1)

Let the change of charts Ψαβ = (φαβ, ψαβ) be as in Definition 2.5.4. Calculating
the change of charts for σ, we get

ψαβ ◦ (idUα , σ
α)|Uαβ = σβ ◦ φαβ.

On the other hand, by Proposition 2.3.5 a family of morphisms with this property
uniquely defines a section. It follows

im(Θ) =
{
σα ∈

∏
α∈A

SC∞(Uα, F (k)
) : α, β ∈ A,

(ψαβ ◦ (idUα , σ
α)) = (σβ ◦ φαβ) on Uαβ

}
. (4.2)

The right-hand side is clearly linear in (σβn)n ∈
∏

nC
∞(UβR ,Altn(E1;Fn)). For the

left-hand side, we use Lemma 2.5.3 to calculate(
ψαβ ◦ (idUα , σ

α)
)
n

=n! · An
( ∑
n≥l odd

1

(n− l)!l!
ψαβn−l+1(idUαR , 0)(σαl , •)

+
∑

n≥l even

1

(n− l)!l!
ψαβn−l(idUαR , σ

α
l )(•)

)
(4.3)

on UαβR . This expression is also linear in (σαn)n ∈
∏

n C∞(UαR ,Altn(E1;Fn)) and
therefore im(Θ) is a subspace of

∏
α∈A SC

∞(Uα, F (k)
).

Lemma 4.1.6. Let k ∈ N0 ∪ {∞} and let π : E !M be a k-super vector bundle
with typical fiber F ∈ SVeclc over a k-supermanifoldM modelled on E ∈ SVeclc.
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4 Superdiffeomorphisms

For a bundle atlas A := {Ψα : Uα × F (k)
! E : α ∈ A} the image of the injection

Θc : Γ(E)!
∏
α∈A

SC∞(Uα, F (k)
)c, σ 7! σα,

is a closed vector subspace. If E0 is finite-dimensional and E1, F are Banach spaces
then the same holds for

Θb : Γ(E)!
∏
α∈A

SC∞(Uα, F (k)
)b, σ 7! σα.

In both cases, the topology induced on Γ(E) only depend on the equivalence class
of A.

Proof. The proof works essentially like the one for vector bundles (see [22, Lemma
3.7 and Lemma 3.9, p.10 f.]). By Lemma 4.1.2 and Lemma 4.1.3, the map

σα 7! ψαβ ◦ (idUαβ , σ
α|UαβR

)

is smooth. Likewise, it follows Lemma 4.1.2 and Lemma 4.1.4 that

σβ 7! σβ|UβαR
◦ φαβ

is continuous and linear. This implies that im(Θc), resp. im(Θb), is closed because
equalizers of continuous maps are closed in the case of Hausdorff spaces.
Let B = {Ψβ : β ∈ B} ∈ [A] be another bundle atlas. Because B ∪ A is an

equivalent atlas, it suffices to assume A ⊆ B. For β ∈ B define

θβ : Γ(E)! SC∞(Uβ, F (k)
)c, σ 7! σβ.

The initial topology with respect to (θα)α∈A (the topology induced by Θc) is clearly
coarser than the one with respect to (θβ)β∈B. It remains to be seen that θβ is
continuous for every β ∈ B. We have that {UβαR : α ∈ A} is an open cover of UβR .
By Lemma A.2.4 it suffices to see that the map σ 7! θβ(σ)|UβαR

is continuous for
all α ∈ A. But, we have

θβ(σ)|UβαR
=
(
ψαβ ◦ (idUαβ , θα(σ)|Uαβ)

)
◦ φβα

and therefore θβ is continuous by the first part of the proof. The same arguments
work for Γ(E)b.

In the situation of the lemma, we denote by Γ(E)c, resp. Γ(E)b, the vector space
Γ(E) together with the topology induced by Θc, resp. Θb.

Definition 4.1.7. Let k ∈ N0 and π : E ! M be a k-super vector bundle with
typical fiber F ∈ SVeclc with bundle atlas {Ψα : Uα × F

(k)
! E : α ∈ A} and

corresponding atlas {φα : Uα !M : α ∈ A} ofM. For an open sub-supermanifold
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4.1 Spaces of Sections of Super Vector Bundles

U ofM, we define the restricted bundle E|U := E|(π)−1
R (UR). The atlas

{Ψα|
(φα)−1(φα(Uα)∩U)×F (k) : α ∈ A}

turns E|U into a k-super vector bundle over U . For a section σ ∈ Γ(E), one easily
sees that the restriction σ|U defines a section σ|U : U ! E|U .

Definition 4.1.8. Let k ∈ N0 ∪ {∞} and let π : E ! M be a k-super vector
bundle. Let σ ∈ Γ(E). We define supp(σ), the support of σ, as the smallest closed
set K ⊆MR such that σ|M|MR\K

= 0. The compactly supported sections of E are
defined as

Γc(E) := {σ ∈ Γ(E) : supp(σ) compact}.

Clearly, ΓK(E) and Γc(E) are subspaces of Γ(E).

Lemma 4.1.9. Let k ∈ N0 ∪ {∞} and let π : E !M be a k-super vector bundle
with typical fiber F over a σ-compact supermanifoldM modelled on E ∈ SVeclc.
Let A := {Ψα : Uα × F (k)

! E : α ∈ A} be an atlas of E such that A is countable
and such that for the corresponding atlas {φα : Uα !M : α ∈ A} of M it holds
that (φαR(UαR ))α∈A is a locally finite covering ofMR by relatively compact sets. Then

ΩAc : Γc(E)!
⊕
α∈A

SC∞(Uα, F (k)
)c, σ 7! σα

is a well-defined injective map with closed image. If additionally E1, F are Banach
spaces then the same holds for

ΩAb : Γc(E)!
⊕
α∈A

SC∞(Uα, F (k)
)b, σ 7! σα.

In both cases all equivalent bundle atlases that satisfy the above conditions induce
the same topology on Γc(E).

Proof. For σ ∈ Γc(E) it follows from (4.2) that almost all σα, α ∈ A are zero in
this situation. Therefore ΩAc , resp. ΩAb , is well-defined and obviously injective. If
B is a bundle atlas equivalent to A that satisfies the conditions of the lemma, then
so is B ∪ A. Thus, we only need to show that the topology induced on Γc(E) is
the same if A ⊆ B. Let B := {Ψβ : Uβ × F (k)

! E : β ∈ B} be such an atlas with
corresponding atlas {φβ : Uβ !M : β ∈ B}. If we can find smooth maps Φ and
Σ such that the following diagram commutes, the proof is finished

Γc(E)

ΩA

vv
ΩB

((⊕
α∈A SC

∞(Uα, F (k)
)c

Σ //⊕
β∈B SC

∞(Uβ, F (k)
)c.

Φ
oo
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4 Superdiffeomorphisms

Defining

Φ:
⊕
β∈B

SC∞(Uβ, F (k)
)c !

⊕
α∈A

SC∞(Uα, F (k)
)c, (σβ)β∈B 7! (σα)α∈A

clearly leads to a commutative diagram and it is easy to see with Lemma A.1.4
that this map is smooth. Let now (h′α)α∈A be a smooth partition of unity onMR
subordinate to (φαR(UαR ))α∈A and set hα := h′α ◦ φαR. For β ∈ B define the finite set
Aβ := {α ∈ A : φαR(UαR ) ∩ φβR(UβR) 6= ∅} and let

Σβ :
⊕
α∈Aβ

SC∞(Uα, F (k)
)c ! SC∞(Uβ, F (k)

)c,

(σα)α∈Aβ 7!
∑
α∈Aβ

(
ψαβ ◦ (idUα , hα · σα) ◦ φβα|UβαR

)̃
,

where the tilde indicates that the respective skeletons are continued by zero from
UβαR to UβR . It follows from Lemma A.2.6, Lemma 4.1.2, Lemma 4.1.3 and Lemma
4.1.4 that Σβ is smooth. Because the respective coverings are locally finite, the
sets Aβ satisfy the conditions of Lemma A.1.4 and we see that

Σ:
⊕
α∈A

SC∞(Uβ, F (k)
)c !

⊕
β∈B

SC∞(Uα, F (k)
)c, (σα)α∈A 7!

(
Σβ

(
(σα)α∈Aβ

))
β∈B

is smooth. Because ψαβ ◦ (idUα , hα · σα) ◦ φβα|Uβα =
(
(h′α ◦ φ

β
R) · σβ

)
|UβαR

, it follows
that

Σβ((σα)α∈Aβ) =
∑
α∈Aβ

((
(h′α ◦ φ

β
R) · σβ

)
|UβαR

)̃
= σβ

for all σ ∈ Γc(E), hence Σ makes the above diagram commutative. To see that
im(ΩAc ) is closed, simply let A = B in the construction above. Then Σ is a smooth
left inverse of the inclusion im(ΩAc ) ↪!

⊕
α∈A SC

∞(Uα, F (k)
)c. The same arguments

apply in the case of ΩAb .

In the situation of the lemma, we denote by Γc(E)c, resp. by Γc(E)b, the vector
space Γc(E) equipped with the topology induced by ΩAc , resp. ΩAb .

Definition 4.1.10. Let k ∈ N0 ∪ {∞}, E ∈ SVeclc and U ⊆ E
(k) be an open

subfunctor. For n ≤ k, we define

SC∞(U , E(k)
)≥n := {f ∈ SC∞(U , E(k)

) : f = (0, . . . , 0, fn, . . .)}.

With the induced topology SC∞(U , E(k)
)≥n is a closed subspace of SC∞(U , E(k)

)

for which we write SC∞(U , E(k)
)≥nc . If E and F are Banach spaces and E0 is

finite-dimensional, we write SC∞(U , E(k)
)≥nb for the respective closed subspace of

SC∞(U , E(k)
)b.
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Lemma/Definition 4.1.11. Let k ∈ N0 ∪ {∞} and let E be a k-super vector
bundle with typical fiber F ∈ SVeclc and bundle atlas A = {Ψα : Uα × F (k)

!

E : α ∈ A}, where Uα ⊆ E
(k) for E ∈ SVeclc. For 0 ≤ n ≤ k define

Γ(E)≥n := {σ ∈ Γ(E) : σα ∈ SC∞(Uα, F (k)
)≥n for all α ∈ A}.

Then Γ(E)≥n is a closed subspace of Γ(E)c. In the situation of Lemma 4.1.9 we set
Γc(E)≥n := Γ(E)≥n∩Γc(E). Then Γc(E)≥n is a closed subspace of Γc(E)c. We write
Γc(E)≥nc for this space equipped with the induced topology. If additionally E1, F
are Banach spaces, then we define the spaces Γ(E)≥nb and Γc(E)≥nb analogously and
see that they are closed in Γ(E)b and Γc(E)b respectively.

Proof. With Proposition 2.2.16 and formula (4.3), one sees that Γ(E)≥n and
Γc(E)≥n are subspaces of Γ(E) because only components of lower or equal de-
gree contribute to the respective component in the change of charts. The re-
spective subspaces are closed because SC∞(Uα, F (k)

)≥nc ⊆ SC∞(Uα, F (k)
)c and

SC∞(Uα, F (k)
)≥nb ⊆ SC∞(Uα, F (k)

)b are closed subspaces in the respective situa-
tion.

Lemma 4.1.12. Let n ∈ N0 ∪ {∞} and E ∈ SVBun(n). The functors ι0k, ι1k and
πnk define continuous linear maps

ιnk : Γ(E)c ! Γ(ιnk(E))c, σ 7! ιnk(σ) for n ∈ {0, 1}, n ≤ k ≤ ∞ and
πnk : Γ(E)c ! Γ(πnk (E))c, σ 7! πnk (σ) for 0 ≤ k ≤ n.

When defined, one obtains analogously continuous linear maps for Γc(E)c, Γ(E)b
and Γc(E)b.

Proof. Let E have the base M. From the local definition of the projection
πM : E !M and Lemma 2.5.8 it is clear that ιnk(πM) = πιnk (M) : ιnk(E) ! ιnk(M)
and πnk (πM) = ππnk (M) : πnk (E) ! πnk (M), respectively. By functoriality, it follows
that sections are indeed mapped to sections. In a trivialization linearity and con-
tinuity are obvious. Thus, by the definition of the vector space topology on the
spaces of sections, it follows from Lemma A.1.2 and Lemma A.1.4 that the above
maps are continuous and linear.

Lemma 4.1.13. Let k ∈ N∪{∞} and let π : E !M and π′ : E ′ !M′ be k-super
vector bundles. If f : E ! E ′ is an isomorphism of k-super vector bundles over
h : M!M′, then we have linear isomorphisms

Γ(E)≥n ! Γ(E ′)≥n, σ 7! f ◦ σ ◦ h−1 and
Γc(E)≥n ! Γc(E ′)≥n, σ 7! f ◦ σ ◦ h−1

for 0 ≤ n ≤ k.

Proof. Because

π′ ◦ f ◦X ◦ h−1 = h ◦ π ◦X ◦ h−1 = h ◦ h−1 = idM′
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holds, we have indeed an morphism Γ(E) ! Γ(E ′) with the inverse defined by
σ′ 7! f−1 ◦ σ′ ◦ h. That this morphism is linear follows locally along the lines of
formula (4.3). With the same formula one also sees that the degree of the non-zero
part of the skeleton of σ cannot decrease and thus we have isomorphisms Γ(E)≥n !
Γ(E ′)≥n. It is easy to see that supp(f ◦ σ ◦ h−1) = hR(supp(σ)) and therefore
compactly supported sections are mapped to compactly supported sections.

4.1.3. Vector fields

Definition 4.1.14. Let k ∈ N0 ∪ {∞} and M ∈ SMan(k). We denote by
X (M)0 := Γ(TM) the even vector fields of M and by Xc(M)0 := Γc(TM)
the even vector fields of M with compact support. If k > 0, we define the
odd vector fields of M by X (M)1 := Γ(ΠTM) and the odd vector fields of M
with compact support by Xc(M)1 := Γc(ΠTM). In this case, we let X (M) :=
X (M)0 ⊕ X (M)1 ∈ SVeclc and Xc(M) := Xc(M)0 ⊕ Xc(M)1 ∈ SVeclc. If
A := {ϕα : α ∈ A} is an atlas of M, we denote by Xα the trivialization of X as
in (4.1), with respect to the bundle atlas {T ϕα : α ∈ A} if X ∈ X (M)0 and with
respect to the bundle atlas {Π(T ϕα) : α ∈ A} if X ∈ X (M)1.

Remark 4.1.15. Let k ∈ N0∪{∞} andM∈ SMan(k) be modelled on E ∈ SVeclc
with the atlas A = {ϕα : Uα ! M : α ∈ A}. We see that for X ∈ X (M)0 and
α, β ∈ A, we have

dϕαβ(idUα , X
α)|Uαβ = Xβ ◦ ϕαβ

and with Remark 2.2.15 and formula (4.3), we calculate

(dϕαβ ◦ (idUα , X
α)|Uαβ)n =An

( ∑
n≥l even

n!

(n− l)!l!
dϕαβn−l(•)(X

α
l |UαβR

, idE1 , . . . , idE1)

+
∑

n≥l odd

n!

(n− l)!l!
ϕαβn−l+1(•)(Xα

l |UαβR
, idE1 , . . . , idE1)

)
.

If A is an atlas of Batchelor type, the formula simplifies to

(dϕαβ ◦ (idUα , X
α)|Uαβ)n =

n · An
(
dϕαβ1 (prUαβR

, Xα
n−1|UαβR

)(idE1)
)

+ ϕαβ1 (prUαβR
)(Xα

n |UαβR
) (4.4)

= Xβ
n (ϕαβ0 )(ϕαβ1 , . . . , ϕαβ1 ) = (Xβ ◦ ϕαβ)n

if n is odd and

(dϕαβ ◦ (idUα , X
α)|Uαβ)n = dϕαβ0 (prUαβR

, Xα
n |UαβR

) = (4.5)

Xβ
n (ϕαβ0 )(ϕαβ1 , . . . , ϕαβ1 ) = (Xβ ◦ ϕαβ)n

if n is even. In particular, formula (4.4) and (4.5) imply that if A is an at-
las of Batchelor type, then the even vector fields of the local form Xα =
(0, 0, . . . , Xα

n , X
α
n+1, 0, . . .) form a closed subspace of X (M)0 for every even n with
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4.1 Spaces of Sections of Super Vector Bundles

0 ≤ n ≤ k. Let us also describe the odd vector fields. First of all, we see from
Lemma 2.5.11 that

(Π(dϕαβ))n =ϕαβn+1(prUαβR
)(prΠ(E)0

, pr1, . . . , pr1)

+n · Andϕαβn−1(prUαβR
, prΠ(E)1

)(pr1, . . . , pr1)

for n > 0 and (Π(dϕαβ))0 = ϕαβ1 (prUαβR
)(prΠ(E)0

). Therefore, we get

(Π(dϕαβ) ◦ (idUα , Y
α)|Uαβ)n =

n! · An
( ∑
n≥l even

1

(n− l)!l!
ϕαβn+1−l(prUαβR

)(Y α
l |UαβR

, idE1 , . . . , idE1)

+
∑

n≥l odd

1

(n− l)!l!
dϕαβn−l(prUαβR

, Y α
l |UαβR

)(idE1 , . . . , idE1)
)

= (Y β ◦ ϕαβ)n

for Y ∈ X (M)1 and n > 0. For n = 0, we have

(Π(dϕαβ) ◦ (idUα , Y
α)|Uαβ)0 = ϕαβ1 (prUαβR

)(Y α
0 |UαβR ) = Y β

0 ◦ ϕ
αβ
0 .

If A is an atlas of Batchelor type, this simplifies to

(Π(dϕαβ) ◦ (idUα , Y
α)|Uαβ)n = ϕαβ1 (prUαβR

)(Y α
n |UαβR

)

= Y β
n (ϕαβ0 )(ϕαβ1 , . . . , ϕαβ1 ) = (Y β ◦ ϕαβ)n

for n even and

(Π(dϕαβ) ◦ (idUα , Y
α)|Uαβ)n =

dϕαβ0 (prUαβR
, Y α

n |UαβR
) + n · Andϕαβ1 (prUαβR

, Y α
n−1|UαβR

)(idE1)

= Y β
n (ϕαβ0 )(ϕαβ1 , . . . , ϕαβ1 ) = (Y β ◦ ϕαβ)n

for n odd.

Lemma 4.1.16. Let k ∈ N0∪{∞} andM∈ SMan(k) with atlas A := {ϕα : Uα !
M : α ∈ A}. Then X (M)0 is a Lie algebra with the Lie bracket [·, ·] given by

[X, Y ]α = dXα ◦ (idUα , Y
α)− dY α ◦ (idUα , X

α)

for α ∈ A and X, Y ∈ X (M)0. For every 0 ≤ n ≤ k, the subspace X (M)≥n
0

is
a Lie subalgebra of X (M)0. Moreover, ifMR is finite-dimensional, then Xc(M)0

and Xc(M)≥n
0

are also Lie subalgebras of X (M)0.

Proof. We start with the case k =∞. By Lemma 2.6.2, every vector fieldX : M!
TM maps to a vector field X̃ := lim −X : lim −M ! T lim −M. With the atlas
{ϕ̃α := lim −ϕ

α : α ∈ A}, we know from [10, Theorem 4.2, p.25] that the Lie bracket
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4 Superdiffeomorphisms

of X̃ and Ỹ is locally given by

dX̃ ϕ̃α ◦ (idlim −U
α , Ỹ ϕ̃α)− dỸ ϕ̃α ◦ (idlim −U

α , X̃ ϕ̃α).

But since we have

dX̃ ϕ̃α ◦ (idlim −U
α , Ỹ ϕ̃α) = lim − dXα ◦ (idUα , Y

α),

it follows that [X, Y ]α as defined in the lemma gives us a unique vector field
[X, Y ] : M ! TM. The calculations in Remark 4.1.15 show that the degree of
the resulting alternating maps does not decrease. Therefore, X (M)≥n

0
is closed

under the Lie bracket. From the local definition of the bracket, it follows that
supp([X, Y ]) ⊆ supp(X) ∩ supp(Y ). Hence, Xc(M)0 and Xc(M)≥n

0
are also Lie

subalgebras in case of finite-dimensionalMR.
For k ∈ N0, we can repeat the same arguments with the vector field

XΛk : MΛk ! TMΛk .

Lemma 4.1.17. Let k ∈ N0∪{∞} and letM∈ SMan(k) be Banach supermanifold
such thatMR is finite-dimensional. Then X (M)0,b is a topological Lie algebra. If
MR is σ-compact, then Xc(M)0,b is a topological Lie algebra as well.

Proof. Let M be modelled on E ∈ SVeclc and U ⊆ E
(k). By definition of the

topology of X (M)0,b, resp. Xc(M)0,b, and the local form of the Lie bracket, it
suffices to see that

SC∞(U , E(k)
)b × SC∞(U , E(k)

)b ! SC∞(U , E(k)
)b, (X, Y ) 7! dX ◦ (idU , Y )

is smooth. This follows from Lemma A.2.14.

Lemma 4.1.18. Let n ∈ N0 ∪ {∞} andM∈ SMan(n). The linear maps

ιnk : X (M)0 ! X (ιnk(M))0, X 7! ιnk(X) for n ∈ {0, 1}, n ≤ k ≤ ∞ and
πnk : X (M)0 ! X (πnk (M))0, X 7! πnk (X) for 0 ≤ k ≤ n

given by Lemma 4.1.12 together with Lemma 2.6.4 are Lie algebra morphisms. The
same holds true for the respective maps for Xc(M)0 ifMR is finite-dimensional.

Proof. This follows immediately by applying the functors to the local definition of
the Lie bracket.

4.2. The Automorphism Group of a
Supermanifold

In a sense, the group of automorphisms of a supermanifold is completely contained
in the supergroup of superdiffeomorphisms. However, an examination of the for-
mer provides one with valuable insights for the latter, which has a much more
complicated structure.
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4.2 The Automorphism Group of a Supermanifold

Let k ∈ N0 ∪ {∞} andM∈ SMan(k). We denote by

Aut(M) := {f ∈ SC∞(M,M) : f invertible}

the group of automorphisms of M. Let k > 0 and recall the functor
πk1 : SMan(k) ! SMan(1) from Lemma 2.3.18. We have a short exact sequence of
groups

1! ker(πk1) −! Aut(M)
πk1−−! Aut(M(1))! 1

and it follows immediately from the definition of πk1 that

Autid(M) := {f ∈ Aut(M) : fΛ1 = idMΛ1
} = ker(πk1).

We will consider M(1) as a vector bundle and Aut(M(1)) as the group of vector
bundle automorphisms via Proposition 2.3.17. IfM is a supermanifold of Batch-
elor type, then the above sequence splits along ι11 : Aut(M(1))! Aut(M) because
of Lemma 2.3.18.
If MR is finite-dimensional, we define the group of automorphisms of M with

compact support by

Autc(M) := {f ∈ Aut(M) : ∃ K ⊆MR compact with f |M|MR\K
= idM|MR\K

}.

Clearly, Autc(M) is a subgroup of Aut(M) and with Autcid(M) := Autid(M) ∩
Autc(M), we again get a short exact sequence

1! Autcid(M) −! Autc(M)
πk1−−! Autc(M(1))! 1.

Note that under the identification from Proposition 2.3.17, Autc(M(1)) corresponds
to the vector bundle automorphisms ofM(1) with compact support. In the Batch-
elor case, the sequence splits as before.
As it turns out, Autid(M) is a so called pro-polynomial group that can be

described by the vector fields X (M)≥2

0
. In the Batchelor case, the action of

Aut(M(1)) on Autid(M) can be understood as the pullback of the vector fields.
To turn Aut(M) into a Lie group, one then just needs that X (M)≥2

0
is a con-

tinuous Lie algebra and that Aut(M(1)) can be turned into a Lie group that acts
smoothly on X (M)≥2

0
. This approach is the same as the one taken in [47] for finite-

dimensional compact supermanifolds, but our language is completely different and
our results are much more general.

Lemma 4.2.1. LetM be a supermanifold. Then
(
Aut(M(m))m∈N0 , (π

m
n )n≤m

)
and(

Autid(M(m))m∈N, (π
m
n )n≤m

)
are inverse systems of groups and we have

lim −m Aut(M(m)) = Aut(M) and lim −m Autid(M(m)) = Autid(M)

as groups.

Proof. That we have inverse systems of groups follows from Lemma 2.3.18 and that
the equalities hold is obvious from the definition of supersmooth morphisms.
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4.2.1. Local considerations

Lemma 4.2.2. Let k ∈ N∪{∞}, E ∈ SVeclc and U ⊆ E
(k) be an open subfunctor.

We give Autid(U) the vector space structure induced by the bijection

SC∞(U , E(k)
)≥2 ! Autid(U), (0, 0, f2, . . .) 7! (idUR , cidE1

, f2, . . .).

If k ∈ N or E1 is finite-dimensional, then Autid(U) is a polynomial group of degree
at most min{k, dim(E1)}. If k =∞ and E1 is infinite-dimensional, then Autid(U)
is a pro-polynomial group. The Lie bracket is given by

[X, Y ] = dX ◦ (idU , Y )− dY ◦ (idU , X)

in both cases.

Proof. Let k ∈ N, f, g ∈ Autid(U) and recall formula (2.2) from Proposition 2.2.16
to see

(g ◦ f)n(•) =
∑
m,l,

(α,β)∈Inm,l

n!

m!l!α!β!
· Andmgl(•)

(
(fα × fβ)(•)

)
.

Because the other cases are trivial, we may assume min{k, dim(E1)} ≥ n > 1. This
expression is polynomial in (gr)r>1, (fr)r>1 and the number of gr, fr with r > 1
that can appear in a summand is bounded by n. The same argument applies to the
iterated products. Because of Lemma 2.2.18 the inversion is a polynomial map.
Let g = idU +X and f = idU +Y with X, Y ∈ SC∞(U , E(k)

)≥2. Then the part of
the composition linear in both X and Y has the n-th component

(dX ◦ (idU , Y ))n = An
( ∑
n≥l even

n!

(n− l)!l!
dXn−l(idUR)(Yl, idE1 , . . . , idE1)+

∑
n≥l odd

n!

(n− l)!l!
Xn−l+1(idUR)(Yl, idE1 , . . . , idE1)

)
,

where the equality follows from Remark 4.1.15. Therefore, the Lie bracket is as
claimed by C.2.

Let now k = ∞ and 1 ≤ n ≤ n < ∞. The morphism of groups
πmn : Autid(U (m)) ! Autid(U (n)) is linear and thus Autid(U) = lim −n Autid(U (n))
is pro-polynomial. That the Lie bracket is correct also follows from the case of
finite k by taking the limit.

In the situation above, we denote by expU : SC∞(U , E(k)
)≥2 ! Autid(U) the

exponential map of the polynomial, resp. pro-polynomial, group.

Lemma 4.2.3. Let k ∈ N∪{∞} and E ∈ SVeclc such that E0 is finite-dimensional
and E1 is a Banach space. Then the global chart

expU : SC∞(U , E(k)
)≥2
b ! Autid(U)
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turns Autid(U) into a Lie group for any open subfunctor U ⊆ E
(k).

Proof. By Lemma 4.1.17 the Lie bracket of SC∞(U , E(k)
)≥2
b is continuous. Thus,

the claim follows from Lemma C.2.5 and Lemma C.3.1.

The next two lemmas are the main tools to go from the local to the global
situation.

Lemma 4.2.4. Let k ∈ N∪{∞}, E ∈ SVeclc and U ⊆ E
(k) be an open subfunctor.

If V ⊆ U is an open subfunctor, then we have

expU(X)|V = expV(X|V)

for all X ∈ SC∞(U , E(k)
)≥2.

Proof. For k ∈ N this follows immediately from Lemma C.2.2 because

Autid(U)! Autid(V), f 7! f |V

is a linear group morphism. The result follows then for k = ∞ by taking the
inverse limit because πmn (X|V(m)) = πmn (X)|V(n) for all X ∈ SC∞(U , E(m)

) and
1 ≤ n ≤ m <∞.

Lemma 4.2.5. Let k ∈ N ∪ {∞}, E ∈ SVeclc and let U ⊆ E
(k) and V ⊆ E

(k)

be open subfunctors. For any invertible supersmooth morphism ϕ : U ! V, the
morphism

Adϕ : Autid(U)! Autid(V), f 7! ϕ ◦ f ◦ ϕ−1

is a polynomial isomorphism of groups if k ∈ N or dim(E1) < ∞. If k = ∞ and
E1 is infinite-dimensional, then Adϕ is the limit of polynomial isomorphisms of
groups. Moreover, in both cases, we have

ϕ ◦ expU(X) ◦ ϕ−1 = expV
(
dϕ ◦ (ϕ−1, X ◦ ϕ−1)

)
for all X ∈ SC∞(U , E(k)

)≥2.

Proof. Let k ∈ N, ϕ = (ϕ0, . . . , ϕk) and ϕ−1 = (ϕ−1
0 , . . . , ϕ−1

k ). For f ∈ Autid(U),
we have f ◦ ϕ−1 = ϕ−1 + X where X ∈ SC∞(V , E(k)

)≥2 and the sum is taken
in SC∞(V , E(k)

). Clearly, X depends linearly on f . We only need to consider
1 < n ≤ min{k, dim(E1)} and in this case we calculate

(ϕ ◦ (ϕ−1 +X))n = An
∑

m,l;(α,β)∈Inm,l

n!

m!l!α!β!
dmϕl(ϕ

−1
0 )((ϕ−1 +X)α × (ϕ−1 +X)β).

After multilinear expansion, we see that the summands depend multilinearly on
X. Thus Adϕ is polynomial. Note that the summands where only terms of the
form ϕ−1

α × ϕ−1
β appear add up to zero.
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The linear term of Adϕ consists of those summands that only contain one term
depending on X. In other words, we have

(L(Adϕ)(f))n = An
∑

m+l>0;(α,β)∈Inm,l

n!

m!l!α!β!

m+l∑
i=1

dmϕl(ϕ
−1
0 )
( ̂ϕ−1

α ×i ϕ−1
β

)
,

where ̂ϕ−1
α ×i ϕ−1

β results from substituting ϕαi with Xαi for 1 ≤ i ≤ m and ϕβi−m
with Xβi−m for m < i ≤ l +m. Using Remark 2.2.15, we calculate

(L(Adϕ)(X))n

= An
∑

m,l,l>0;
(α,β)∈Inm,l

n!

m!l!α!β!
l · dmϕl(ϕ−1

0 )
(
ϕ−1
α × (Xβ1 , ϕ

−1
β2
, . . . , ϕ−1

βl
)
)

+ An
∑

m,l,m>0;
(α,β)∈Inm,l

n!

m!l!α!β!
m · dmϕn(ϕ−1

0 )
(
(Xα1 , ϕ

−1
α2
, . . . , ϕ−1

αm)× ϕ−1
β

)
= (dϕ ◦ (ϕ−1, X))n

and the claim follows from Lemma C.2.2. Consider now infinite-dimensional E1

and k =∞. Let 1 ≤ n ≤ m <∞. By functoriality of πmn , we have

πmn (Adϕ(m)(f)) = Adπmn (ϕ(m))(π
m
n (f))

for all f ∈ Autid(U (m)). This implies Adϕ = lim −n Adϕ(n) . For X ∈ SC∞(U , E)≥2,
we have πmn (expU(m)(X(m))) = expU(n)(πmn (X(m))) because πmn : Autid(U (m)) !
Autid(U (n)) is a linear morphism of groups. With Remark 2.2.15, one easily sees
that πmn (dX(m)) = dπmn (X(m)). Overall, it follows

ϕ ◦ expU(X) ◦ ϕ−1 = expV
(
dϕ ◦ (ϕ−1, X ◦ ϕ−1)

)
from the first part of the proof.

4.2.2. The global case

Proposition 4.2.6. Let k ∈ N ∪ {∞} and M ∈ SMan(k) be modelled on E ∈
SVeclc with atlas {ϕα : Uα !M : α ∈ A}. For the bundle atlas {T ϕα : α ∈ A} of
TM, recall from Lemma 4.1.6 (using Lemma/Definition 4.1.11) the embedding

Θ: X (M)≥2

0
!
∏
α∈A

SC∞(Uα, E(k)
)≥2, X 7!

∏
α∈A

Xα

and consider the injective morphism of groups

Ψ: Autid(M)!
∏
α∈A

Autid(Uα), f 7! (ϕα)−1 ◦ f ◦ ϕα.
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Then there exists a unique bijective map expM : X (M)≥2

0
! Autid(M) such that

the diagram

X (M)≥2

0
Autid(M)

∏
α∈A SC

∞(Uα, E(k)
)≥2

∏
α∈A Autid(Uα)

expM

Θ Ψ∏
α expUα

commutes. If k ∈ N and dim(E1) < ∞, then this bijection turns Autid(M) into
a polynomial group of degree at most min{k, dim(E1)}. Otherwise, Autid(M)
becomes a pro-polynomial group. Neither expM, nor the topology induced on
Autid(M) by the chosen topology of X (M)≥2

0
, depend on the atlas. The Lie algebra

of Autid(M) is given by X (M)≥2

0
.

Proof. To see that expM is well-defined and bijective, it suffices to show∏
α expUα

(
im(Θ)

)
= im(Ψ) since the maps expUα are bijective for all α ∈ A. Like

always, let ϕαβ : Uαβ ! Uβα be the change of charts for any two charts ϕα and ϕβ.
We have

∏
α∈AX

α ∈ im(Θ) if and only if d(ϕβα)−1 ◦ (ϕβα, Xα|Uαβ ◦ϕβα) = Xβ|Uβα
for all α, β ∈ A. By Lemma 4.2.5 this is true if and only if

(ϕβα)−1 ◦ expUαβ(Xα|Uαβ) ◦ ϕβα = expUβα(Xβ|Uβα)

holds for all α, β ∈ A. It follows from Lemma 4.2.4 that this is exactly the con-
dition for

∏
α∈A expUα(Xα) to be in im(Ψ). Thus,

∏
α expUα

(
im(Θ)

)
⊆ im(Ψ).

For (fα)α∈A ∈ im(Ψ), we repeat the same argument in reverse to get the other
inclusion. Because the vector space structure of X (M)≥2

0
is given by the vec-

tor space structure of
∏

α∈A SC
∞(Uα, E(k)

)≥2, it follows from Lemma 4.2.2 that
Autid(M) has the described structure of a polynomial, resp. pro-polynomial,
group. Proposition 2.3.5 shows that expM(X) is already uniquely determined
by ((ϕα)−1 ◦ exp(X) ◦ϕα)α∈A for all X ∈ X (M)≥2

0
. By Lemma 4.1.6 the topology

of X (M)≥2

0
does not depend on the atlas and thus neither does the topology of

Autid(M). By the local definition of the Lie bracket together with Lemma 4.2.2,
it is obvious that X (M)≥2

0
is the Lie algebra of Autid(M).

Remark 4.2.7. Proposition 4.2.6 enables us to give an alternative proof of Batch-
elor’s Theorem. Let k ∈ N ∪ {∞} and let M be a k-supermanifold. Then
an isomorphism f (n) : M(n) ! M(n) with fΛ1 = idMΛ1

and 1 ≤ n < k can
be lifted to an isomorphism f (n+1) : M(n+1) ! M(n+1) if and only if the vector
field X(n) ∈ X (M(n))≥2

0
with expM(n)(X(n)) = f (n) can be lifted to a vector field

Xn+1 ∈ X (M(n+1))≥2. IfMR admits smooth partitions of unity, the lift of X can
be constructed with standard arguments.

Corollary 4.2.8. Let k ∈ N ∪ {∞} and let M ∈ SMan(k) be a σ-compact k-
supermanifold modelled on E ∈ SVeclc. Then the restriction

expcM := expM |Xc(M)≥2

0

: Xc(M)≥2

0
! Autcid(M)
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4 Superdiffeomorphisms

is a well-defined bijection that turns Autcid(M) into a polynomial group if
min{k, dim(E1)} < ∞ and into a pro-polynomial group otherwise. The Lie al-
gebra of Autcid(M) is Xc(M)≥2

0
.

Proof. Let {ϕα : Uα ! M : α ∈ A} be an atlas of M such that (ϕαR(UαR ))α is a
locally finite cover of MR by relatively compact sets. Recall the maps Θ and Ψ
from Proposition 4.2.6. It follows from the definition and our choice of the atlas
that for X ∈ X (M)≥2

0
, we have X ∈ Xc(M)≥2

0
if and only if (Θ(X))α = 0 for

almost all α ∈ A. Likewise, for f ∈ Autid(M), we have f ∈ Autcid(M) if and only
if (Ψ(f))α = (idUα , cidE1

, 0, . . .) for almost all α ∈ A. The claim follows now from
Proposition 4.2.6.

Remark 4.2.9. In the situation of the corollary above, we get the following com-
mutative diagram corresponding to the diagram in Proposition 4.2.6:

Xc(M)≥2

0
Autcid(M)

⊕
α∈A SC

∞(Uα, E(k)
)≥2

∏∗

α∈A
Autid(Uα).

expcM

Θ|
Xc(M)

≥2

0

Ψ|Autc
id

(M)⊕
α expUα

Proposition 4.2.10. Let k ∈ N ∪ {∞} and let M ∈ SMan(k) be modelled on
E ∈ SVeclc such that E0 is finite-dimensional and E1 is a Banach space. Then
the global chart

expM : X (M)≥2

0,b
! Autid(M)

turns Autid(M) into a Lie group with the Lie algebra X (M)≥2

0,b
. If, in addition,

MR is σ-compact, then Autcid(M) becomes a Lie group with the global chart

expcM : Xc(M)≥2

0,b
! Autcid(M)

and the Lie algebra Xc(M)≥2

0,b

Proof. In view of Proposition 4.2.6 and Remark 4.2.9, both results follows imme-
diately from Lemma 4.2.3.

Lemma 4.2.11. Let k ∈ N ∪ {∞}, M ∈ SMan(k), f ∈ Aut(M) and X ∈
X (M)

≥2

0
. Then we have

expM(T f ◦X ◦ f−1) = f ◦ expM(X) ◦ f−1.

Proof. Let A = {ϕα : Uα ! M : α ∈ A} be an atlas of M. For a α, β ∈ A we
define Ũαβ := f−1(ϕα(Uαβ)) and fαβ := (ϕβ)−1 ◦ f ◦ ϕα|Ũαβ . Then we have

T fαβ ◦Xα ◦ (fαβ)−1 = T (ϕβ)−1 ◦ T f ◦X ◦ f ◦ ϕβ|Ũβα

and the result follows from Lemma 4.2.5.
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4.2 The Automorphism Group of a Supermanifold

Lemma 4.2.12. Let k ∈ N∪{∞} andM be a σ-compact Banach k-supermanifold
of Batchelor type with finite-dimensional base. If we identify Autc(M(1)) ∼=
ι1∞(Autc(M(1))), then the actions

β : Autc(M(1))×X (M)0,b ! X (M)0,b, (f,X) 7! T f ◦X ◦ f−1

and

βc : Autc(M(1))×Xc(M)0,b ! Xc(M)0,b, (f,X) 7! T f ◦X ◦ f−1

are smooth. These actions restrict to smooth actions Autc(M(1)) × X (M)≥2

0,b
!

X (M)≥2

0,b
and Autc(M(1))×Xc(M)≥2

0,b
! Xc(M)≥2

0,b
. Moreover, the action

Autc(M(1))×Xc(M)1,b ! Xc(M)1,b, (f,X) 7! Π(T f) ◦X ◦ f−1

is smooth.

Proof. We identifyM(1) with the vector bundle over M :=MR, Autc(M(1)) with
the compactly supported vector bundle morphisms and use the notations from
Chapter D. Let {ϕi : U i !M : i ∈ N} be the atlas defined by ϕiR(U iR) = Ui and
τi = ϕiΛ1

◦ ((ϕiR)−1, idE1). Recall the covering (Wi)i∈N of M from Remark D.2.1.
We set Ũi := (ϕiR)−1(Ui), Ṽi := (ϕiR)−1(Vi) and W̃i := (ϕiR)−1(Wi). First, we show
that for each f ∈ Autc(M(1)) the automorphism

Xc(M)0,b ! Xc(M)0,b, X 7! Tf ◦X ◦ f−1

is smooth. Let Xϕi := pr2 ◦T (ϕi)−1◦X◦ϕi denote the usual trivialization. The set
{f−1 ◦ϕi : i ∈ N} is also a locally finite atlas ofM because f is an automorphism
ofM. Thus, the mapping

X 7!
⊕
i∈N

pr2 ◦T ((ϕi)−1 ◦ f) ◦X ◦ f−1 ◦ ϕi =
⊕
i∈N

Xf−1◦ϕi

is smooth by definition of the topology on Xc(M)0,b. Therefore, the mapping

X 7!
⊕
i∈N

(
Tf ◦X ◦ f−1

)ϕi
is smooth as well, which implies the claim. For X ∈ X (M)0,b the same argu-
ment works after substituting direct sums with products. By Lemma A.3.1, it
now suffices to show that βc is smooth on O × Xc(M)0,b for some open unity
neighborhood O ⊆ Gauc(M(1)) ◦ S(O) ⊆ Autc(M(1)). Thus, we may check
smoothness separately for open subsets of Gauc(M(1)) and Diffc(MR). For f ∈ O,
we define the local descriptions f i = (f i0, f

i
1, 0, . . .) := (ϕi)−1 ◦ f ◦ ϕi|Ui|

W̃i
and

(f i)−1 = ((f i0)−1, (f i1)−1, 0, . . .) := (ϕi)−1 ◦ f−1 ◦ ϕi|Ui|
Ṽi
. With this, the action on
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4 Superdiffeomorphisms

X ∈ X (M)0,b is given locally by

pr2 ◦T (ϕi)−1 ◦ T f ◦X ◦ f−1 ◦ ϕi|Ui|Vi = df i ◦ (idUi , X
ϕi) ◦ (f i)−1.

More specifically, by Remark 2.2.15, (df i ◦ (idUi , X
ϕi) ◦ (f i)−1)n equals

Xf i

0 := df i0
(
(f i0)−1, Xϕi

0 ((f i0)−1)
)

for n = 0,

Xf i

n := df i0

(
(f i0)−1, Xϕi

n ((f i0)−1)((f i1)−1, . . . , (f i1)−1)
)

for n > 0 even
(4.6)

and

Xf i

1 :=f i1((f i0)−1)(Xϕi

1 ((f i0)−1)((f i1)−1) for n = 1,

Xf i

n :=f i1((f i0)−1)(Xϕi

n ((f i0)−1)((f i1)−1, . . . , (f i1)−1))+

n · Andf i1((f i0)−1)
(
Xϕi

n−1((f i0)−1)((f i1)−1, . . . , (f i1)−1), (f i1)−1
) (4.7)

for n > 1 odd. For X ∈ Xc(M)0,b define the projections pŨi(X) := Xϕi , resp.

pṼi(X) := X
ϕi|

Ṽi . Furthermore, let Ω = ϕ−1
g (O) and ρi : Xc(M) ! C∞(Ui, E0) be

like in Remark D.2.2.
If we find an open zero-neighborhood Ω̃ ⊆ Ω and smooth maps βic : Ω̃i ×∏
n=0 C∞(Ũi,Altn(E1;En)b) !

∏
n=0 C∞(Ṽi,Altn(E1;En)b), where ρi(Ω̃) ⊆ Ω̃i ⊆

C∞(Ui, E0) open, such that for

β̃ : Ω̃×Xc(M)0,b ! Xc(M)0,b, (Y,X) 7! βc(S(expg ◦Y ), X),

we have βic(ρi(Y ), pŨi(X)) = pṼi
(
β̃(Y,X)

)
for all Y ∈ Ω̃ and X ∈ Xc(M)0,b, then

smoothness follows from Lemma A.1.4.
We construct open sets Ω̃i and smooth maps ζi : Ω̃i ! O such that ζi(Y )|Wi

depends only on ρi(Y )|Wi
like in Remark D.2.2. Let βic be defined by the local

action of f = S(ζi(Y )) ∈ S(ζi(Ω̃i)) on
∏

n=0 C∞(Ũi,Altn(E1;En)b) as in formula
(4.6) and (4.7). By Remark D.3.3, this action depends only on ρi(Y )|Wi

if Y ∈ Ω̃i.
By Proposition A.2.7 and Corollary A.2.13, it suffices to see that the map(
(βic)

∧
n

)∧
: Ω̃i×

∏
n=0

C∞(Ũi,Altn(E1;En)b)×Ṽi×En
1 ! E0, (Y,X, x, v) 7! Xf i

n (x, v)

is smooth. But this is true because the map can be written using the smooth
evaluations from Proposition A.2.8, Lemma D.3.5 and Remark D.3.6.
All that remains to be seen is that there exists an open unity neighborhood of

Gauc(M(1)) which acts smoothly on Xc(M)0,b. The argument is essentially the
same as before. Note that for the embedding

Gauc(M(1)) ↪!
∏∗

i∈N

C∞(Ui,GlE1), f 7! (fi)i∈N

like in (D.2), the skeletons (idŨi , fi ◦ϕ
i
0, 0, . . .) correspond to the local descriptions
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4.2 The Automorphism Group of a Supermanifold

above (we do not need to restrict to Ṽi or W̃i because these maps are the identity
on the base manifold). Let P ⊆ glE1

be as in Remark D.1.1 and Qi := C∞(Ui, P ).
Then the mappings

Qi ×
∏
n=0

C∞(Ũi,Altn(E1;En))!
∏
n=0

C∞(Ũi,Altn(E1;En))

defined by the local action of (expGlE1
)i∗(Qi) as in formula (4.6) and (4.7) are

smooth by Lemma D.3.4 because of the same arguments as before. Overall,
smoothness follows again from Lemma A.1.4.
Checking that β is smooth on O × X (M)0,b is much simpler. We only need to

see that the components (4.6) and (4.7) depend smoothly on X and f and this
follows directly by using the same evaluations as above. That the actions restrict
to actions on the closed subspaces X (M)≥2

0,b
and Xc(M)≥2

0,b
follows from Lemma

4.1.13.
In the case of X ∈ Xc(M)1,b, we set Xϕi := pr2 ◦Π(T ϕi)◦X ◦ (ϕi)−1. With this,

the same arguments as above show that

Xc(M)1,b ! Xc(M)1,b, X 7! Π(T f) ◦X ◦ f−1

is smooth for every f ∈ Autc(M(1)). We again use Remark 4.1.15 to calculate
(Π(f i) ◦ idUi , X

ϕi) ◦ (ϕi)−1 as

f i1((f i0)−1)(Xϕi

n ((f i0)−1)((f i1)−1, . . . , (f i1)−1))

for even n and as

df i0
(
(f i0)−1, Xϕi

n ((f i0)−1)((f i1)−1, . . . , (f i1)−1)
)
+

n · Andf i1(f i0)−1)
(
Xϕi

n−1(f i0)−1((f i1)−1, . . . , (f i1)−1), (f i1)−1
)

for odd n. From here the same arguments as before show smoothness.

Proposition 4.2.13. Let k ∈ N ∪ {∞} and let M ∈ SMan(k) be a σ-compact
Banach k-supermanifold of Batchelor type with finite-dimensional base. Then

Autc(M) = Autcid(M) o Autc(M(1))

is a Lie group with the Lie algebra Xc(M)0,b and

AutΠ,c(M) := Autid(M) o Autc(M(1))

is a Lie group with the Lie algebra X (M)≥2

0,b
⊕Xc(M(1))0,b.

Proof. Let M be modelled on E ∈ SVeclc. That Autc(M) and AutΠ,c(M) are
Lie groups follows from Proposition 4.2.10, Lemma 4.2.11 and Lemma 4.2.12. We
already know that Autc(M(1)) has the Lie bracket Xc(M(1))0,b from Lemma D.3.9
and that Autid(M) has the Lie bracket Xc(M)≥2

0,b
from Corollary 4.2.8. By Remark
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4 Superdiffeomorphisms

A.3.3, we need to calculate the derivative of the map

Autc(M(1))! Xc(M)≥2

0,b
, (f,X) 7! Tf ◦X ◦ f−1

for an arbitrary X ∈ Xc(M)≥2

0,b
at the identity. To this end, let ev : Autc(M(1))×

M(1) !M(1) be the evaluation, let evT : Autc(M(1))× TM(1) ! TM(1) be as in
Remark D.3.6 and let [t 7! tf ] ∈ TidAutc(M(1)) be identified with Y ∈ Xc(M(1))0,b

as in Lemma D.3.9. Note that the lemma implies that [t 7! tf
−1] corresponds to

−Y . We use the same notation as in Lemma 4.2.12 for an atlas {ϕi : U i !M : i ∈
N} of Batchelor type and the localization tf

i (for t small enough this is well-
defined). Because of Corollary A.2.13, we may simply calculate the derivative of
the n-th component of the local description of (T tf ◦X ◦ tf−1)ϕ

i after evaluating
in x ∈ Ũi and v1, . . . , vn ∈ E1. To simplify our notation, identify ϕi with (ϕi)(1)

which is possible because the atlas is of Batchelor type. Note that we have

[t 7! (ϕi)−1 ◦ tf ◦ ϕi(x, v1)] = T (ϕi)−1 ◦ Y ◦ ϕi(x, v1) = Y ϕi(x, v1).

Recall the formulas (4.6) and (4.7) from the proof of Lemma 4.2.12. For even
n > 0, we have to calculate the derivative of

t 7! d tf
i
0

(
(tf

i
0)−1(x), Xϕi

n ((tf
i
0)−1(x))((tf

i
1)−1(x, v1), . . . , (tf

i
1)−1(x, vn))

)
at zero. With Lemma D.3.11 and the chain rule, the result is

dY ϕi

0

(
x,Xϕi

n (x)(v1, . . . , vn)
)

+ dXϕi

n

(
x,−Y ϕi

0 (x)
)
(v1, . . . , vn)

+
n∑
j=1

Xϕi

n (x)(v1, . . . ,−Y ϕi

1 (x, vj), . . . , vn)

=
(
dY ϕi

0 (x,Xϕi

n (x)(•, . . . , •))− dXϕi

n (x, Y ϕi

0 (x))(•, . . . , •)−

n · AnXϕi

n (x)(Y ϕi

1 (x)(•), •, . . . , •)
)

(v1, . . . , vn).

Likewise, for odd n > 1, we consider the derivative of the map

t 7!
(
n · And tf

i
1((tf

i
0)−1)

(
Xϕi

n−1((tf
i
0)−1)((tf

i
1)−1, . . . , (tf

i
1)−1), (tf

i
1)−1

)
+

tf
i
1((tf

i
0)−1)(Xϕi

n ((tf
i
0)−1)((tf

i
1)−1, . . . , (tf

i
1)−1)

)
(x, v1, . . . , vn)

at zero. By the same arguments as before, this results in(
n · And1Y

ϕi

1

(
x,Xϕi

n−1(x)(•, . . . , •)
)
(•) + Y ϕi

1 (x)
(
Xϕi

n (x)(•, . . . , •)
)

− dXϕi

n (x, Y ϕi

0 (x))(•, . . . , •)− n · AnXϕi

n (x)(Y ϕi

1 (x)(•), •, . . . , •)
)

(v1, . . . , vn).

Comparing the formulas with the calculations in Remark 4.1.15, it follows that
the derivative of t 7! T tf ◦X ◦ tf−1 at zero is [Y,X]. The same calculations show

100



4.2 The Automorphism Group of a Supermanifold

that AutΠ,c(M) has the Lie algebra X (M)≥2

0,b
⊕Xc(M(1))0,b.

Corollary 4.2.14. Let k ∈ N ∪ {∞} and let M ∈ SMan(k) be a σ-compact
Banach k-supermanifold with finite-dimensional base. Let g : M ! ι1k(M(1)) be
a Batchelor model of M. Then we turn Autc(M), resp. AutΠ,c(M), into a Lie
group via the isomorphism of groups

Θg : Autc(ι
1
k(M(1)))! Autc(M), f 7! g ◦ f ◦ g−1, resp.

Θ′g : AutΠ,c(ι
1
k(M(1)))! AutΠ,c(M), f 7! g ◦ f ◦ g−1.

Both Lie group structures do not depend on the Batchelor model.

Proof. Let g′ : M ! ι1k(M(1)) be another Batchelor model and let Autc(M)′ de-
note the Lie group Autc(M) with respect to the Batchelor model g′. The identity
Autc(M) ! Autc(M)′ is smooth if and only if Θg′ ◦ Θ−1

g : Autc(ι
1
k(M(1))) !

Autc(ι
1
k(M(1))) is smooth. But this map is just the conjugation with g′ ◦ g−1,

which is smooth. The proof for AutΠ,c(M) is the same.

Lemma 4.2.15. Let k ∈ N∪ {∞} and letM∈ SMan(k) be a σ-compact Banach
k-supermanifold with finite-dimensional base. Then the linear group actions

Autc(M)×Xc(M)0,b ! Xc(M)0,b, (f,X) 7! T f ◦X ◦ f−1

and
Autc(M)×Xc(M)1,b ! Xc(M)1,b, (f,X) 7! Π(T f) ◦X ◦ f−1

are smooth.

Proof. LetM be modelled on E ∈ SVeclc. We may assume thatM is of Batchelor
type, that A := {ϕα : Uα : M : α ∈ A} is an atlas of Batchelor type, A is countable
and (ϕαR(UαR )) is a locally finite cover by relatively compact sets ofMR. Because
of the way the smooth structure on Autc(M) is defined, it suffices to check that
the respective actions of Autc(M(1)) and Autcid(M) are smooth. That the former
is smooth was shown in Lemma 4.2.12. By definition of the topologies and Lemma
A.1.4, it suffices to calculate the latter action locally. The local version of the first
action is given by

SC∞(Uα, E(k)
)≥2
b × SC

∞(Uα, E(k)
)b ! SC∞(Uα, E(k)

)b,

(f,X) 7! d(idUα +f) ◦ (idUα , X) ◦ (idUα +f)−1.

The smoothness of this map follows from the fact that the inversion in Autid(U)
is smooth and by applying Lemma A.2.14 to the formulas given in Proposition
2.2.16 and Remark 4.1.15. The local version of the second action is given by

SC∞(Uα, E(k)
)≥2
b × SC

∞(Uα,Π(E)(k))b ! SC∞(Uα,Π(E)(k))b,

(f,X) 7! Π(d(idUα +f)) ◦ (idUα , X) ◦ (idUα +f)−1.
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With the formula from Lemma 2.5.11 together with Lemma A.2.2, we see that
that

SC∞(Uα, E(k)
)≥2
b ! SC

∞(Uα × Π(E
(k)

),Π(E
(k)

)
)≥2

b
, f 7! Π(d(idUα +f))

is smooth. Therefore, the second action is smooth by the same arguments as
before.

4.3. The Functor of Supermorphisms and
Superdiffeomorphisms

In a sense, the set of supersmooth morphisms SC∞(M,N ) between two super-
manifoldsM and N only consists of the even morphisms. To get the full picture,
we need to define a functor ŜC

∞
(M,N ) : Gr ! Set that describes also higher

points of the supersmooth morphisms. One has a composition law that turns
ŜC
∞

(M,M) into a monoid in SetGr. The supergroup of superdiffeomorphisms is
then defined as the subfunctor of ŜC

∞
(M,M) consisting of invertible elements.

For everything that follows, it will be integral to understand Grassmann algebras
as purely odd supermanifolds. As mentioned in the introduction, in the sheaf
theoretic approach this is trivial. However, in the categorical approach, this is
more involved.

4.3.1. Superpoints

Consider R ⊆ R2 ⊆ R3 ⊆ . . . ⊆
⊕

i∈N R. For the remainder of this work, we fix a
basis (vi)i∈N of

⊕
i∈N R such that v1, . . . , vn is a basis of Rn for all n ∈ N. For a set

I = {i1, . . . , ir} ∈ Pn with i1 < . . . < ir, we define vI := v∗i1∧. . .∧v
∗
ir ∈ Altr(Rn;R).

It is well-known that the wedge product turns
∧

(Rn)∗ :=
⊕

0≤r≤nAltr(Rn;R) into
an R-superalgebra and that

Λn !
⊕

0≤r≤n

Altr(Rn;R), (aIλI)I∈Pn 7!
∑
I∈Pn

aIvI (4.8)

is an isomorphism of R-superalgebras. We cannot avoid fixing a base because we
need consistent isomorphisms (4.8) for all n ∈ N. This should be understood as
analogous to fixing the generators λi.

Definition 4.3.1. Let SPoint denote the full subcategory of SMan consisting
of finite-dimensional purely odd supermanifolds whose base manifold consists of a
single point.

Lemma 4.3.2. Let Gr◦ be the dual category of Gr. There exists an equivalence
of categories

P : Gr◦ ! SPoint

such that P(Λn) = R0|n. To avoid clunky notation, we will also consider P as a
contravariant functor Gr! SPoint.
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Proof. This follows from [1, Theorem 3.13, p.589]. See also [40, Section 8.1, p.415]
and [46, Proposition 2.8, p.8].

Let us explain how P acts on morphisms. We identify an element x =
(aIλI)I∈Pn ∈ Λn, where aI ∈ R, with the skeletons

(∑
I∈Pn,|I|=l aIvI

)
0≤l≤n, i.e.,

we can see x as a supersmooth morphism x : R0|n ! R1|1. For any super-
smooth morphism (fl)l : R0|m ! R0|n, we then get a morphism of superalgebras
% : Λn ! Λm, x 7! x ◦ (fl)l (compare [1, Corollary 3.6, p.585]). Conversely, %(λi)
corresponds to the skeleton defining the i-th component (with respect to the basis
(vi)) of (fl)l.

4.3.2. Internal Hom objects and supermorphisms

Let C be a category with products and B ∈ C. An internal Hom functor is a
functor HomC(B, •) : C ! C that satisfies

HomC(A,HomC(B,C)) ∼= HomC(A×B,C) for all A,C ∈ C

(see for example [35, p.180]). Of course, in general inner Hom functors need not
exist but for appropriate objects A,B and C one might at least find an internal
Hom object HomC(B,C) ∈ C satisfying the above. In our situation, the following
fact gives us necessary properties an internal Hom object needs to have.

Corollary 4.3.3 ([40, Corollary 8.1.2]). For everyM∈ SMan and every Λ ∈ Gr
there exists an isomorphism of sets

MΛ
∼= SC∞(P(Λ),M)

natural both inM and Λ.

Assuming that HomSMan(M,N ) exists forM,N ∈ SMan, it follows

HomSMan(M,N )Λ
∼= SC∞(P(Λ),HomSMan(M,N )) ∼= SC∞(P(Λ)×M,N )

for all Λ ∈ Gr. We simply take this as the definition of a functor

ŜC
∞

(M,N ) : Gr! Set, Λ 7! SC∞(P(Λ)×M,N ).

For morphisms % ∈ HomGr(Λ,Λ
′), we define

ŜC
∞

(M,N )% : ŜC
∞

(M,N )Λ ! ŜC
∞

(M,N )Λ′ ,

f 7! f ◦ (P(%)× idM).

Functoriality follows immediately from the properties of the contravariant functor
P . We call this functor the functor of supermorphisms (of M to N ). Further
motivation for the functor of supermorphisms can be found in [45, Section 3.3.3,
p.54] and [40, Section 8.2, p.415].
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4 Superdiffeomorphisms

This raises the question for which supermanifolds M, N the functor
ŜC
∞

(M,N ) can be given the structure of a supermanifold. For finite-dimensional
supermanifolds this has been achieved in [27]. See also [40, Section 8.5, p.418].
A nice feature of the functor of supermorphisms is that one has a natural com-

position. LetM,M′,M′′ ∈ SMan. For every Λ ∈ Gr, we define a map

◦Λ : ŜC
∞

(M,M′)Λ × ŜC
∞

(M′,M′′)Λ ! ŜC
∞

(M,M′′),

(g, f) 7! f◦Λg := f ◦ (idP(Λ), g).

This defines a natural transformation

◦ : ŜC
∞

(M,M′)× ŜC
∞

(M′,M′′)! ŜC
∞

(M,M′′)

because for all % ∈ HomGr(Λ
′,Λ), f ∈ ŜC

∞
(M′,M′′)Λ and g ∈ ŜC

∞
(M,M′)Λ,

we have

f ◦ (idP(Λ), g) ◦ (P(%)× idM) = f ◦
(
P(%), (g ◦ (P(%), idM))

)
= (f ◦ (P(%)× idM′)) ◦

(
idP(Λ), g ◦ (P(%)× idM)

)
. (4.9)

This natural transformation is associative in the sense that for every Λ ∈ Gr, we
have (

f◦Λ(g◦Λh)
)

= f ◦
(

idP(Λ), g ◦ (idP(Λ), h)
)

=
(
f ◦ (idP(Λ), g)

)
◦ (idP(Λ), h) = (f◦Λg)◦Λh,

for all f ∈ ŜC
∞

(M′,M′′)Λ, g ∈ ŜC
∞

(M,M′)Λ and h ∈ ŜC
∞

(N ,M)Λ, where
N ∈ SMan. If one just considers ŜC

∞
(M,M), then there exists a unit element

eM for the composition. Defining

eM : Gr! Set, Λ 7! {prM : P(Λ)×M!M},

we see that eM is a subfunctor of ŜC
∞

(M,M) and for every Λ ∈ Gr, we
have that eM(Λ) is the unit element of ◦Λ : ŜC

∞
(M,M)Λ × ŜC

∞
(M,M)Λ !

ŜC
∞

(M,M)Λ. In other words, ŜC
∞

(M,M) is a monoid with the unit element
eM in the category SetGr.

Definition 4.3.4. LetM,N ∈ SMan, Λ ∈ Gr and f ∈ ŜC
∞

(M,N )Λ. We say
f is invertible if there exists a morphism f−1 ∈ ŜC

∞
(N ,M)Λ such that

f◦Λf
−1 = eN (Λ) and f−1◦Λf = eM(Λ).

If an inverse exists it is unique.

The above discussion of supermorphisms is largely taken from [47, Section 5,
p.301 ff.]. For a slightly different approach see also [40, Section 8.3, p.416 f.].
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4.3 The Functor of Supermorphisms and Superdiffeomorphisms

Remark 4.3.5. One can identify ŜC
∞

(M,N )Λ with a subset of SC∞(P(Λ) ×
M,P(Λ)×M) by mapping

ΨΛ : ŜC
∞

(M,N )Λ ! SC∞(P(Λ)×M,P(Λ)×N ), f 7! (idP(Λ), f).

Restricting the map

SC∞(P(Λ)×M,P(Λ)×N )! ŜC
∞

(M,N )Λ, f ′ 7! prM ◦f ′,

to the image of ΨΛ gives us an inverse. If N = M, then ΨΛ is clearly a mor-
phism of monoids. In particular, the unit element of ŜC

∞
(M,M)Λ corresponds

to idP(Λ)×M and the inverse of an invertible morphism f ∈ ŜC
∞

(M,M)Λ corre-
sponds to (idP(Λ), f)−1. Conversely, if (idP(Λ), f) is invertible, then f is invertible
with f−1 = prM ◦(idP(Λ), f)−1.

Lemma 4.3.6. Let E,F ∈ SVeclc, U ⊆ E and V ⊆ F be open subfunctors. Then
f ∈ ŜC

∞
(U ,V)Λn is invertible if and only if ŜC

∞
(U ,V)εΛn (f) is an isomorphism.

In this case f̃ := (idP(Λn), f) is an isomorphism and the inverse g of f has the
skeleton

g0 : VR ! UR, g0(x′) := f−1
0 (x′),

g1 : VR ! Alt1(Rn ⊕ F1;E1), g1(x′) := pr′2 ◦f̃1(g0(x′))−1 and

gk : VR ! Altk(Rn ⊕ F1;E1),

gk(x
′)(v′) := −

∑
m,l<k;(α,β)∈Ikm,l,

σ∈Sk

sgn(σ)

m!l!α!β!
dmgl(x

′)
(
(f̃α × f̃β) (g0(x′)) (vσ)

)
,

where k > 1, pr′2 : Rn × F1 ! F1 is the projection, v′ = (v′1, . . . , v
′
k) ∈ (Rn ⊕ F1)k

and v :=
(
f̃1(g0(x′))−1(v′1), . . . , f̃1(g0(x′))−1(v′k)

)
∈ (Rn ⊕ E1)k.

Proof. Let Λ := Λn. Because ŜC
∞

(U ,V)εΛ respects the composition, it maps
invertible elements to invertible elements. Conversely, let h := ŜC

∞
(U ,V)εΛ(f)

be an isomorphism. By Remark 4.3.5 and Lemma 2.2.18, f is invertible if and
only if f̃ (1) : P(Λ) × U ! P(Λ) × V is invertible. Note that f̃R = fR = hR has
the inverse h−1

R . In terms of skeletons, we have that f̃0 = f0 = h0 : UR ! VR
is a diffeomorphism and f1 ∈ C∞(UR,Alt1(Rn ⊕ E1;F1)). In particular we have
f11 ∈ C∞(UR,Alt1(Rn, F1)) and f12 ∈ C∞(UR,Alt1(E1, F1)) such that

f1(x) = f11(x)(pr1) + f12(x)(pr2)

for x ∈ UR with the projections pr1 : Rn × E1 ! Rn and pr2 : Rn × E1 ! E1.
Because hΛ1 =

(
f ◦ (P(εΛ), idU)

)
Λ1
, it follows h1 = f12 and therefore, we have

f−1
12 ∈ C∞(VR,Alt1(F1, E1)) for

f−1
12 : VR ! Alt1(F1, E1), x′ 7! (f12(x′))−1.
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4 Superdiffeomorphisms

We define

f−1
11 : VR ! Alt1(Rn, E1), x′ 7! −f−1

12 (x′) ◦ f11(f−1
0 (x′)) and

f−1
1 := f−1

11 (•)(pr′1) + f−1
12 (•)(pr′2),

with the projections pr′1 : Rn × F1 ! Rn and pr′2 : Rn × F1 ! F1. It follows

f−1
12 (f0(x))

(
f12(x)(v2) + f11(x)(v1)

)
+ f−1

11 (f0(x))(v1) = v2

for all x ∈ UR and v = (v1, v2) ∈ Rn × E1. This implies (f−1
0 , f−1

1 ) ◦
f̃ (1) = pr

(1)
U : P(Λ)(1) × U (1) ! U (1). In the same way, one sees (f0, f1) ◦

(idP(Λ)(1) , (f−1
0 , f−1

1 )) = pr
(1)
V . Therefore, f̃ (1) is invertible with (f̃ (1))−1 =

(idP(Λ)(1) , (f−1
0 , f−1

1 )). With this, the formula follows from Lemma 2.2.18.

Corollary 4.3.7. Let M,N ∈ SMan and Λ ∈ Gr. Then f ∈ ŜC
∞

(M,N )Λ is
invertible if and only if ŜC

∞
(M,N )εΛ(f) is an isomorphism.

Proof. Because ŜC
∞

(M,N )εΛ respects the composition, it maps invertible ele-
ments to invertible elements. Conversely, let ŜC

∞
(M,N )εΛ(f) be an isomorphism.

By Remark 4.3.5 and Lemma 2.3.6, we just need to see is that f̃ (1) is an isomor-
phism in SMan(1) for

f̃ := (idP(Λ), f) : P(Λ)×M! P(Λ)×N .

Since f̃ (0) = f (0) is a diffeomorphism and f̃ (1) is a morphism of vector bundles over
f (0), it suffices to see this locally. Thus, the claim follows from Lemma 4.3.6.

4.3.3. The local structure of the functor of supermorphisms

To analyze the structure of the superdiffeomorphisms, it is important to have a
good understanding of the local description of the functor of supermorphisms in
terms of skeletons. As we will see, for E,F ∈ SVeclc one has a decomposition

Altl(Rn ⊕ E1;Fl)
∼=

⊕
I∈Pn0 ,|I|≤l

vI ∧ Altl−|I|(E1;Fl)⊕
⊕

I∈Pn1 ,|I|≤l

vI ∧ Altl−|I|(E1;Fl).

If U ⊆ E is an open subfunctor and one identifies λI and vI , this leads to

ŜC
∞

(U , F )Λn
∼= SC∞(U , F )⊕ SC∞(U ,Π(F ))Λn

as Λn,0-modules (see [40, 10.6, p.426 f.]). We give a concrete description of the
composition in these terms. Heuristically speaking, the vI can be pulled out of the
composition formula (2.2). However, if |I| is odd, additional signs appear.
For the following general constructions let E,F be R-vector spaces and let

m,n, k ∈ N0. We define a map

Lm(Rk;R)× Ln(Rk ⊕ E;F )! Lm+n(Rk ⊕ E;F ), (f, L) 7! f · L,
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4.3 The Functor of Supermorphisms and Superdiffeomorphisms

where f · L(v) := f(pr1(v1), . . . , pr1(vm)) · L(vm+1, . . . , vm+n) for v =
(v1, . . . , vm+n) ∈ Rk ⊕ Em+n and where pr1 : Rk × E ! Rk is the projection.
We consider Altm(E;F ) ⊆ Altm(Rk ⊕E;F ) in the obvious way and define vI ∧ L
for L ∈ Altm(E;F ) as above. Note that with this, the wedge product can be
written as

vI ∧ vJ =
(n+m)!

m!n!
An+m(vI · vJ)

for I, J ∈ Pk with |I| = n and |J | = m. Analogously, we define

vI ∧ L :=
(n+m)!

n!m!
An+m(vI · L),

for I ∈ Pk with |I| = n and L ∈ Altm(Rk ⊕ E;F ).
If E,F are locally convex, U is an open subset of a locally convex space and

f ∈ C∞(U,Altm(Rk ⊕ E;F )), then we define vI ∧ f pointwise. Clearly, one has
vI ∧f ∈ C∞(U,Altn+m(Rk⊕E;F )). Note that with the inclusion j2 : E ! Rk×E,
the map

C∞(U,Altm(E;F ))c ! C∞(U,Altm(Rk ⊕ E;F ))c, f 7! f(•)(j2, . . . , j2)

is continuous and has an continuous left-inverse given by g 7! g(•)(pr2, . . . , pr2) by
Lemma A.2.2. Thus, C∞(U,Altm(E;F ))c can be considered as a closed subspace
of C∞(U,Altm(Rk ⊕ E;F ))c. If E and F are Banach spaces and U is a subset of
a finite-dimensional space, the same is obviously true for C∞(U,Altm(E;F )b) and
C∞(U,Altm(Rk ⊕ E;F )b).

Lemma 4.3.8 (compare [40, 10.6, p.426 f.]). Let E,F ∈ SVeclc and U ⊆ E be
an open subfunctor. We turn ŜC

∞
(U , F ) into a functor ŜC

∞
(U , F )c : Gr ! Top

by setting ŜC
∞

(U , F )c,Λ := SC∞(P(Λ) × U , F )c,Λ. Defining H := SC∞(U , F )c ⊕
SC∞(U ,Π(F ))c ∈ SVeclc, we have ŜC

∞
(U , F )c ∼= H as topological R-modules.

If E0 is finite-dimensional and E1, F are Banach spaces, define ŜC
∞

(U , F )b in
analogy to ŜC

∞
(U , F )c. Then an analogous statement holds for ŜC

∞
(U , F )b.

Proof. Let % ∈ HomGr(Λn,Λ). Then

ŜC
∞

(U , E)% : ŜC
∞

(U , E)c,Λn ! ŜC
∞

(U , E)c,Λ

is linear and continuous by Lemma 4.1.4. By Corollary A.2.16, we have

ŜC
∞

(U , E)c,Λn
∼=
∞∏
l=0

( ∞⊕
I∈Pn0

vI ∧ C∞(UR,Altl(E1;Fl))c

⊕
⊕
I∈Pn1

vI ∧ C∞(UR,Altl(E1;Fl+1))c

)
∼= HΛn ,
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turning ŜC
∞

(U , E)c,Λn
∼= HΛn into a topological Λn,0-module under the identifica-

tion (4.8). The same arguments work for ŜC
∞

(U , E)b,Λn in the other case. What re-
mains to be seen is that H% equals ŜC

∞
(U , F )% under this identification. Let P(%)

have the skeleton (%l)0≤l≤n. Note that %l = 0 for even l. Let f ∈ ŜC
∞

(U , F )Λn .
Since ŜC

∞
(U , F )% is linear, we may assume f = (0, . . . , 0, vJ ∧ Jfm, 0, . . .) for some

J ∈ Pni , i ∈ {0, 1} with j := |J | and Jfm ∈ C∞(UR,Altm−j(E1;Fm)). We have
to show that the skeleton of f ◦ (P(%) × idU) is given by %(vJ) ∧ Jfm, where we
identify

∧
(Rn)∗ with Λn as in (4.8). We have

(%(vJ))r = (vJ ◦ (%l)l)r =
∑

β∈Ir0,j ,σ∈Sr

sgn(σ)

j!β!
vJ(%β)(•σ).

This yields

(%(vJ))r ∧ Jfm =
∑

β∈Ir0,j ,τ∈Sr+m−j

sgn(τ)

j!β!(m− j)!
vJ(%β(pr

|β|
Rn)) · Jfm(prm−jE1

)(•τ ),

where prRn : Rn×E1 ! Rn and prE1
: Rn×E1 ! E1 are the projections. Let (%′l)l

denote the skeleton of P(%) × idU . We have to show that the above sum equals
(f ◦ (%′l)l)r+m−j. By definition of the composition, we have

(f ◦ (%′l)l)r+m−j =
∑

β′∈Ir+m−j0,m ,

σ∈Sr+m−j

sgn(σ)

m!β′!
(vJ ∧ Jfm)(%′β′)(•

σ). (4.10)

Recall that vJ ∧ Jfm =
∑

τ∈Sm
sgn(τ)
j!(m−j)!(vJ(prjRn)) · (Jfm(prm−jE1

))(•τ ). For every
τ ∈ Sm the contribution to (4.10) is zero unless β′τ(i) = 1 for all τ(i) > j. Thus,
the relevant β′ are determined by β′τ(i) = βi for some β ∈ Ir0,j when τ(i) ≤ j.
By Lemma A.2.17, we have the same contribution to the outer sum for every
τ ∈ Sm. Therefore, we may substitute vJ ∧ Jfm in (4.10) with m!

j!(m−j)!(vJ(prjRn)) ·
(Jfm(prm−jE1

)) while letting the sum run over β′ = (β1, . . . , βj, 1, . . . , 1) with β ∈
Ir0,j. Because β′! = β!, this yields the proposed equality.

Lemma 4.3.9. Let n, k ∈ N0, E,F ∈ SVeclc and U ⊆ E0 open. For f ∈
C∞(U,Altn(Rk ⊕ E1;Fn)) and I ∈ Pk, we have

d(vI ∧ f) = vI ∧ df ∈ C∞(U × E0,Altn+|I|(Rk ⊕ E1;Fn)).

Proof. This is obvious from the definitions.

Corollary 4.3.10. Let n ∈ N0, E,F,H ∈ SVeclc, U ⊆ E, V ⊆ F , W ⊆ H be
open subfunctors and f ∈ ŜC

∞
(V ,W)Λn, g ∈ ŜC

∞
(U ,V)Λn. We decompose

gr =
∑

0≤l≤r

∑
I∈Pn,|I|=l

vI ∧ Igr and fr =
∑

0≤l≤r

∑
I∈Pn,|I|=l

vI ∧ Ifr
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with Igr ∈ C∞(UR,Altr−|I|(E1;Fr)) and Ifr ∈ C∞(VR,Altr−|I|(F1;Hr)). Then, we
have

(f ◦ (idP(Λn), g))r =
∑
m,l,

B⊆{1,...,n}

∑
I=(I0,I1,...,Im+l)
∈Pm+l+1(B),i0≤l

∑
(α,β)∈Ir−i0m,l−i0

(−1)N
I
(α,β)(L− sI(α,β))!

m!(l − i0)!αI !βI !

vI0 ∧ vI1 ∧ . . . ∧ vIm+l
∧ AL−sI

(α,β)dm I0
fl(∅g0)(Igα × Igβ),

where is := |Is|, N I
(αβ) :=

∑l+m
j=2

∑j−1
t=1 ij · (γt − it) with γt := αt for t ≤ m and

γt = βt−m else, L := (r − i0 − · · · − im+l), αI := (α1 − i1, . . . , αm − im), βI :=
(β1−im+1, . . . βl−im+l) and Igα := (I1gα1×· · ·×Im

gαm) as well as Igβ := (Im+1
gβ1×

· · · × Im+l
gβl) and where sI(α,β) is the number of indices for which γj − ij = 0, i.e.,

for which
Ij
gγj ∈ C∞(UR, Fγj).

Proof. This is an immediate consequence of the ordinary formula for the compo-
sition of skeletons (2.2) together with Lemma 4.3.9, Lemma A.2.18 and Lemma
A.2.19.

Lemma 4.3.11. Let E,E ′, F,H ∈ SVeclc and U ⊆ E, V ⊆ E ′ be open sub-
functors. Let further f : U × F ! H be an U-family of R-linear maps and
g ∈ ŜC

∞
(V , F )Λn be a supersmooth morphism for n ∈ N0. Then, we have

f ◦ (idU , g) =
∑
I∈Pn0

vI ∧ f ◦ (idU , Ig) +
∑
I∈Pn1

vI ∧ Π(f) ◦ (idU , Ig)

if we decompose g =
∑

I∈Pn vI ∧ Ig with Ig ∈ SC∞(V , F ) for |I| even and Ig ∈
SC∞(V ,Π(F )) for |I| odd.

Proof. With I ∈ Pn, i := |I| ≥ m, we use Lemma A.2.18 and Lemma 2.5.3
(compare formula (4.3)) to calculate

(f ◦ (idU , vI ∧ Ig))m

= Am
( ∑
m≥l odd,

l≥i

m!
(m−l)!l!fm−l+1

(
prUR , 0

)
(vI ∧ Igl−i(prVR)(prl23), prm−l1 )

+
∑

m≥l even,
l≥i

m!
(m−l)!l!fm−l

(
prUR , vI ∧ Igl−i(prVR)(prl23)

)
(prm−l1 )

)

= vI ∧ Am−i
( ∑
m≥l odd,

l≥i

(m−i)!
(m−l+1)!(l−i)!fm−l+1

(
prUR , 0

)
(Igl−i(prVR)(prl−i3 ), prm−l1 )

+
∑

m≥l even,
l≥i

(m−i)!
(m−l)!(l−i)!fm−l

(
prUR , Igl−i(prVR)(prl−i3 )

)
(prm−l1 )

)

=

{
vI ∧ (f ◦ (idU , Ig))m−i if I ∈ Pn0 ,

vI ∧ (Π(f) ◦ (idU , Ig))m−i if I ∈ Pn1 ,
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with the projections prUR : UR × VR ! UR, prVR : UR × VR ! VR, pr23 : E1 × Rn ×
E ′1 ! Rn × E ′1, pr3 : E1 × Rn × E ′1 ! E ′1 and pr1 : E1 × Rn × E ′1 ! E1. The last
equality follows from Lemma 2.5.3 for I ∈ Pn0 and from Lemma 2.5.11 for I ∈ Pn1 ,
respectively. The claim follows now by linearity.

Remark 4.3.12. One nice application of Lemma 4.3.11 is that it enables us to
decompose the so called supersections. Let π : E !M be a super vector bundle
with typical fiber F ∈ SVeclc. As we have discussed, one can give the sections
Γ(E) the structure of a locally convex vector space. Like with supermorphisms,
this only describes the even sections. To incorporate odd sections, one can proceed
as follows. It is not difficult to see that for a supersmooth map f : M ! N one
has a canonical pullback super vector bundle f ∗E ! N by letting f ∗EΛ := f ∗ΛEΛ

(compare [40, Section 5.2, p.403]). For every Λ ∈ Gr let prM,Λ : P(Λ)×M!M
be the projection. We define the supersections as a functor Γ̂(E)c : Gr! Top by
letting

Γ̂(E)c,Λ := Γ(π∗Λ,M(E))c.

The sections σ : P(Λ) ×M ! π∗Λ,M(E) have the local form σα ∈ ŜC
∞

(Uα, F )c,Λ

and the topological Λ0-module structure of ŜC
∞

(Uα, F )c,Λ turns Γ̂(E) into a topo-
logical R-module. Applying Lemma 4.3.11 to the change of charts, one sees that
Γ̂(E)c ∼= Γ(E)c ⊕ Γ(Π(E))c holds as topological R-modules (for an abstract, non-
topological version of this see [40, Section 10.7, p.428]). Of course, for an appro-
priate bundle E , one achieves the same results for Γ̂(E)b and one can also consider
compactly supported supersections. It will be convenient for us to directly work
with Γ(E)c ⊕ Γ(Π(E))c instead of the supersections, which is why we leave the de-
tails to the reader. Nevertheless, we mention this fact as it greatly generalizes a
long standing claim by Molotkov (see [40, Section 8.5, p.418]).

4.3.4. Superdiffeomorphisms

Definition 4.3.13. LetM∈ SMan. For every Λ ∈ Gr, we define

SDiff(M)Λ := {f ∈ ŜC
∞

(M,M)Λ : f invertible}.

In view of Remark 4.3.5 this means that the group SDiff(M)Λ can be identified
with the subgroup of Aut(P(Λ)×M) consisting of isomorphisms f : P(Λ)×M!
P(Λ) ×M such that prP(Λ) ◦f = idP(Λ) for the projection prP(Λ) : P(Λ) ×M !
P(Λ).

Proposition 4.3.14 (compare [47, Proposition 6.1, p.308]). LetM∈ SMan. The
assignment Λ 7! SDiff(M)Λ defines a subfunctor of ŜC

∞
(M,M). This subfunctor

is a supergroup, i.e., a group object in SetGr, which we call the supergroup of
superdiffeomorphisms.

Proof. By definition, every SDiff(M)Λ is a group. Since

ŜC
∞

(M,M)% : ŜC
∞

(M,M)Λ ! ŜC
∞

(M,M)Λ′
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4.4 The Supergroup of Superdiffeomorphisms

is a morphism of monoids for % ∈ HomGr(Λ,Λ
′), it follows that ŜC

∞
(M,M)%(f)

is invertible if f ∈ SDiff(M)Λ. Therefore,

SDiff(M)% := ŜC
∞

(M,M)%|SDiff(M)Λ
: SDiff(M)Λ ! SDiff(M)Λ′

is a well-defined morphism of groups. This also shows that SDiff(M) is a subfunc-
tor of ŜC

∞
(M,M).

Lemma 4.3.15. IfM∈ SMan, then we have

SDiff(M) = ŜC
∞

(M,M)|Aut(M).

Proof. This follows directly from Corollary 4.3.7.

An alternative proof can be found in [47, Theorem 6.1, p.310] but the proof
only works for finite-dimensional supermanifolds M because the description of
ŜC
∞

(M,M) as morphisms of superalgebras in [47, Section 5.2, p.303] does not
carry over to the infinite-dimensional case. Instead, we followed a remark by
Molotkov in [40, Section 10.6, p.426].

4.4. The Supergroup of Superdiffeomorphisms

Concerning the supergroup of superdiffeomorphisms, we have two objectives. First,
we want to describe the structure of this supergroup for arbitrary supermanifolds.
Second, we want to find a class of supermanifolds for which the superdiffeomor-
phisms are a Lie supergroup.
Even for an arbitrary infinite-dimensional supermanifold M, the superdiffeo-

morphisms SDiff(M) display a lot of similarities to Lie supergroups. For every
Λ ∈ Gr, we have a short exact sequence of groups

1! ker(SDiff(M)εΛ)! SDiff(M)Λ ! Aut(M)! 1

that splits along SDiff(M)ηΛ
. We set

SDiff id(M)Λ := ker(SDiff(M)εΛ) = SDiff(M)−1
εΛ

({idM})

which clearly defines a subfunctor SDiff id(M) : Gr! Set of SDiff(M). We show
that SDiff id(M)Λ can be turned into a polynomial group that is isomorphic to
X (M)0 ⊕X (M)1Λ+ equipped with the BCH multiplication and that the resulting
exponential maps expM,Λ define a natural transformation. Moreover, we are able
to define a sub-supergroup SDiff(M)0 of purely even superdiffeomorphisms and
obtain a natural trivialization

SDiff(M)0,Λ ×X (M)1Λ ! SDiff(M)Λ, (f,X) 7! f◦Λ expM,Λ(X).

The structure of SDiff(M)0 can be described in detail. One also has a short exact
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4 Superdiffeomorphisms

sequence

1! SDiff(M)≥2

0,Λ
! SDiff(M)0,Λ ! SDiff(M(1))0,Λ ! 1,

where SDiff(M)≥2

0,Λ
is a pro-polynomial group and SDiff(M(1))0,Λ can be expressed

in terms of the higher order automorphisms of the vector bundleM(1) (see E.3).
This sequence corresponds to the decomposition

1! Autid(M)! Aut(M)! Aut(M(1))! 1

and it also splits for supermanifolds of Batchelor type.
The main difficulty in turning SDiff(M) into a Lie supergroup is providing

SDiff(M)R = Aut(M) with a Lie group structure. Consequently, ifMR is finite-
dimensional, we define the supergroup of compactly supported superdiffeomor-
phisms SDiffc(M) and are able to give it the structure of a Lie supergroup ifMR
is additionally σ-compact andM is a Banach supermanifold. For this, the above
trivializations are crucial. For example, we have

ι(Autc(M)) = ι(Autcid(M)) o ι(Autc(M(1))) ∼= SDiffc(M)≥2

0
o SDiffc(M(1))

if Autc(M) is a Lie group.
As with the automorphism group, we start by directly showing that SDiff id(U)Λ

is a polynomial group for every superdomain U and every Λ ∈ Gr. Then the
global case follows much in the same way.

4.4.1. The local structure of SDiff id(M)

Let n ∈ N, E ∈ SVeclc and U ⊆ E be an open subfunctor. We set

ŜC
∞

(U , E)Λ+ :=
∑
I∈Pn0,+

vI ∧ SC∞(U , E) +
∑
I∈Pn1

vI ∧ SC∞(U ,Π(E))

and conclude from Lemma 4.3.8 that Λ 7! ŜC
∞

(U , E)Λ+ defines a subfunctor of
ŜC
∞

(U , E).
Let M be a supermanifold modelled on E and ϕ : U ! M be a chart. By

definition, for any f ∈ SDiff id(M)Λn the chart representation fϕ := ϕ−1 ◦ f ◦
(idP(Λn)×ϕ) ∈ SDiff id(U)Λn ⊆ ŜC

∞
(U , E)Λn decomposes as prU +

∑
I∈Pn+

vI ∧ If
ϕ

with the projection prU : P(Λ) × U ! U , If
ϕ ∈ SC∞(U , E) for I ∈ Pn0,+ and

If
ϕ ∈ SC∞(U ,Π(E)) for I ∈ Pn1 .

Lemma 4.4.1. Let n ∈ N, E ∈ SVeclc and U ⊆ E be an open subfunctor.
Then SDiff id(U)Λn is a polynomial group of degree at most n with the vector space
structure given by the bijection

ŜC
∞

(U , E)Λ+
n
! SDiff id(U)Λn , (Xk)k 7! prU +(Xk)k,
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4.4 The Supergroup of Superdiffeomorphisms

with the projection prU : P(Λn)× U ! U . The morphism of groups SDiff id(U)% is
linear for each % ∈ HomGr(Λ,Λ

′).

Proof. Let X, Y ∈ ŜC
∞

(U , E)Λ+
n
. By Corollary 4.3.10 each term that depends on

X or Y and that appears in the composition formula (prU +X)◦ (idP(Λn), Y ), adds
at least one vi in the outer wedge product. Thus, the degree of the composition
is bounded by n and the same argument applies to the iterated product maps.
Lemma 4.3.6 shows that the inversion is also polynomial and Lemma A.2.18 and
Lemma A.2.19show that the degree of this polynomial is bounded by n. Under our
identification, SDiff id(U)% corresponds to ŜC

∞
(U , E)%|ŜC∞(U ,E)Λ+

which is linear.

We write
expU ,Λ : ŜC

∞
(U , E)Λ+ ! SDiff id(U)Λ

for the exponential map of SDiff id(U)Λ.

Corollary 4.4.2. Let E ∈ SVeclc and U ⊆ E be an open subfunctor. Then
(expU ,Λ)Λ∈Gr is a morphism in SetGr.

Proof. This follows immediately from Lemma C.2.2, because SDiff id(U)% is a linear
morphism of polynomial groups for each % ∈ HomGr(Λ,Λ

′).

Lemma 4.4.3. Let E,F ∈ SVeclc, U ⊆ E, V ⊆ F be open subfunctors and
Λ ∈ Gr. If ϕ : U ! V is an isomorphism, then

Adϕ,Λ : SDiff id(U)Λ ! SDiff id(V)Λ, f 7! ϕ ◦ f ◦ (idP(Λ)×ϕ−1)

is a polynomial isomorphism of polynomial groups and we have

ϕ ◦ expU ,Λ(X) ◦ ϕ−1 = expV,Λ
(
dϕ ◦ (ϕ−1, X ◦ (idP(Λ)×ϕ−1))

)
for each X ∈ ŜC

∞
(U , E)Λ. This defines a natural transformation

Adϕ : SDiff id(U)! SDiff id(V).

Proof. It is obvious that Adϕ,Λ is an isomorphism of groups that defines a nat-
ural transformation. Let X ∈ ŜC

∞
(U , E)Λ+ . Then X̃ := X ◦ (idP(Λ)×ϕ−1) ∈

ŜC
∞

(V , E)Λ+ depends linearly on X and we have (prU +X) ◦ (idP(Λ)×ϕ−1) =

ϕ−1 ◦ prV +X̃, with the projection prV : P(Λ) × V ! V . The claim now follows
from an analogous calculation to the one in Lemma 4.2.5.

Lemma 4.4.4. Let E ∈ SVeclc and U ⊆ E, V ⊆ U be open subfunctors. Then

expU ,Λ(X)|P(Λ)×V = expV(X|P(Λ)×V)

holds for all Λ ∈ Gr and each X ∈ ŜC
∞

(U , E)Λ+. In particular, the restrictions

SDiff id(U)Λ ! SDiff id(V)Λ, f 7! f |P(Λ)×V
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are linear morphisms of polynomial groups that define a morphism in SetGr.

Proof. It is obvious that the restrictions are morphisms of groups and that they
define a natural transformation. Let X ∈ ŜC

∞
(U , E)Λ. Then (prU +X)|P(Λ)×V =

prV +X|P(Λ)×V is linear. Thus, the claim follows from Lemma C.2.2.

Lemma 4.4.5. Let n ∈ N, E ∈ SVeclc and U ⊆ E be an open subfunctor.
Under the bijection expU ,Λn : ŜC

∞
(U , E)Λ+

n
! SDiff id(U)Λn, the Lie bracket of

SDiff id(U)Λn is given by

[vI ∧ IX, vJ ∧ JY ] =
vI ∧ vJ ∧

(
d IX ◦ (idU , JY )− d JY ◦ (idU , IX)

)
if I, J ∈ Pn0 ,

vI ∧ vJ ∧
(
Π(d IX) ◦ (idU , JY )− d JY ◦ (idU , IX)

)
if I ∈ Pn0 , J ∈ Pn1 ,

vI ∧ vJ ∧
(
d IX ◦ (idU , JY )− Π(d JY ) ◦ (idU , IX)

)
if I ∈ Pn1 , J ∈ Pn0 ,

vI ∧ vJ ∧
(
Π(d IX) ◦ (idU , JY ) + Π(d JY ) ◦ (idU , IX)

)
if I, J ∈ Pn1 ,

for IX, IY ∈ SC∞(U , E) if I ∈ Pn0,+ and IX, IY ∈ SC∞(U ,Π(E)) if I ∈ Pn1 .

Proof. Let X :=
∑

I∈Pn+
vI ∧ IX and Y :=

∑
I∈Pn+

vI ∧ IY . Given the vector space

structure of ŜC
∞

(U , E)Λ+
n
and the definition of the Lie bracket in Section C.2, we

have to calculate the part of

Y +X ◦ (idP(Λn), prU +Y )

that is bilinear in X and Y . Obviously, we only need to consider X ◦
(idP(Λn), prU +Y ) and, since this expression is already linear in X, we may as-
sume X = vI ∧ IX for some I ∈ Pn+. By Lemma A.2.19, we have

(vI ∧ IX ◦ (idP(Λn), (prU +Y ))r+|I| = vI ∧ (IX ◦ (prU +Y ))r

for each r ∈ N0. Using Proposition 2.2.16, we directly calculate the part of (IX ◦
(prU +Y ))r that depends linearly on Y as

Ar
∑

m+l=r,
m even

(
r!
m!l!

d IX l(•)(Ym, prE1
, . . . , prE1

)

+ r!
(m+1)!l!

l∑
i=1

IX l(•)(prE1
, . . . , Ym+1︸ ︷︷ ︸

i

, . . . , prE1
)
)

= Ar
∑

m+l=r,
m even

(
r!
m!l!

d IX l(•)(Ym, prE1
, . . . , prE1

)

+ r!
(m+1)!(l−1)! I

X l(•)(Ym+1, prE1
, . . . , , . . . , prE1

)
)

= (d IX ◦ (idU , Y ))r.
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Here prE1
: Rn×E1 ! E1 is the projection and the last equality is easily seen with

Remark 2.2.15. With this, Lemma 4.3.11 implies

d IX ◦ (idU , Y ) =
∑
J∈Pn0,+

vJ ∧ d IX ◦ (idU , JY ) +
∑
J∈Pn1

vJ ∧ Π(d IX) ◦ (idU , JY ),

from which the claim follows.

Lemma 4.4.6. Let E ∈ SVeclc be such that E0 is finite-dimensional and E1 is a
Banach space. For each open subfunctor U ⊆ E and each Λ ∈ Gr, the bijection

expU ,Λ : ŜC
∞

(U , E)b,Λ+ ! SDiff id(U)Λ

turns SDiff id(U)Λ into a Lie group.

Proof. By Lemma C.2.5 it suffices to see that the Lie bracket is smooth. But this
is obvious by Lemma 4.4.5 and Lemma A.2.14.

4.4.2. The structure of SDiff id(M)

Proposition 4.4.7. Let Λ ∈ Gr and letM be a supermanifold modelled on E ∈
SVeclc with the atlas A := {ϕα : Uα ! M : α ∈ A}. We consider the linear
injective map

ΘΛ : X (M)Λ+ !
∏
α∈A

ŜC
∞

(Uα, E)Λ+ , (λI IX)I∈Pn+ 7!
( ∑
I∈Pn+

vI ∧ IX
α
)
α∈A

and the injective morphism of groups

ΨΛ : SDiff id(M)Λ !
∏
α∈A

SDiff id(Uα)Λ, f 7! (ϕα)−1 ◦ f ◦ (idP(Λ)×ϕα).

Then,

(a) ΘΛ is continuous as a map X (M)cΛ+ !
∏

α∈A ŜC
∞

(Uα, E)c,Λ+ and im(ΘΛ)
is closed,

(b) if M is a Banach supermanifold such that MR is finite-dimensional, the
same holds for ΘΛ as a map X (M)bΛ+ !

∏
α∈A ŜC

∞
(Uα, E)b,Λ+ and

(c) there exists a unique bijective map expM,Λ : X (M)Λ+ ! SDiff id(M)Λ such
that the diagram

X (M)Λ+ SDiff id(M)Λ

∏
α∈A ŜC

∞
(Uα, E)Λ+

∏
α∈A SDiff id(Uα)Λ

expM,Λ

ΘΛ ΨΛ∏
α expUα,Λ

commutes.
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This turns SDiff id(M)Λ into a polynomial group of degree at most n for Λ = Λn.
The family (expM,Λ)Λ∈Gr defines a morphism in SetGr and neither expM,Λ, nor
the topology induced by the chosen topology of X (M) on SDiff id(M)Λ, depend on
the atlas.

Proof. That ΘΛ is continuous is obvious and that im(ΘΛ) is closed in both cases
follows from Lemma 4.1.6. The proof of the bijectivity of expM,Λ is analogous to
the proof of Proposition 4.2.6. It again suffices to see

∏
α expUα,Λ(im(Θ)) = im(Ψ).

For X ∈ X (M)Λ+
n

and α ∈ A, we decompose Θ(X)α into (vI ∧ IX
α)∈Pn+ with

IX
α ∈ SC∞(Uα, E) for I ∈ Pn0,+ and IX

α ∈ SC∞(Uα,ΠE) for I ∈ Pn1 . By Lemma
4.3.11 we have (Xα)α∈A ∈ im(ΘΛn) if and only if for all α, β ∈ A it holds that

d(ϕβα)−1 ◦
(
ϕβα, Xα ◦ (idP(Λn)×ϕβα)

)
=
∑
I∈Pn+

d(ϕβα)−1 ◦
(
ϕβα, vI ∧ IX

α ◦ (idP(Λn)×ϕβα)
)

=
∑
I∈Pn+

vI ∧ IX
β|Uβα = Xβ|P(Λn)×Uβα .

Then Lemma 4.4.4 and Lemma 4.4.3 show

(ϕβα)−1 ◦ expUα,Λn(Xa) ◦ (idP(Λn)×ϕβα) = expUβα(Xβ|P(Λn)×Uβα),

which is exactly the condition for (exp(Xα))α∈A to be in im(ΨΛn). Applying the
same argument in reverse shows that expM,Λ is bijective. This also shows that
expM,Λ and the induced topology are independent of the atlas as in Proposition
4.2.6. That (expM,Λ)Λ∈Gr is a natural transformation follows from Corollary 4.4.2
and the fact that (ΘΛ)Λ∈Gr is a natural transformation. The polynomial group
structure of SDiff id(M)Λ is obtained from Lemma 4.4.1 as well as the linearity of
ΘΛ.

Corollary 4.4.8. Let M ∈ SMan be modelled on E ∈ SVeclc with the atlas
A := {ϕα : Uα ! M : α ∈ A} and let n ∈ N be fixed. Under the bijection
expM,Λn : X (M)Λ+

n
! SDiff id(M)Λn, the Lie bracket of SDiff id(M)Λn is given by

([λI IX,λJ JY ]Λn)α =
λIλJ

(
d IX

α ◦ (idU , JY
α)− d JY

α ◦ (idU , IX
α)
)

if I, J ∈ Pn0,+,

λIλJ
(
Π(d IX

α) ◦ (idU , JY
α)− d JY

α ◦ (idU , IX
α)
)

if I ∈ Pn0,+, J ∈ Pn1 ,

λIλJ
(
d IX

α ◦ (idU , JY
α)− Π(d JY

α) ◦ (idU , IX
α)
)

if I ∈ Pn1 , J ∈ Pn0,+,

λIλJ
(
Π(d IX

α) ◦ (idU , JY
α) + Π(d JY

α) ◦ (idU , IX
α)
)

if I, J ∈ Pn1 ,

for X =
∑

I∈Pn+
λI IX, Y =

∑
J∈Pn+

λJ JY ∈ X (M)Λ+ and α ∈ A. The family of
Lie brackets ([·, ·]Λ)Λ∈Gr is a morphism in SetGr.

Proof. This is clear from Proposition 4.4.7 and Lemma 4.4.5.
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Corollary 4.4.9. Omitting λI and λJ from the definition of the Lie bracket in
Corollary 4.4.8 gives us a Lie superalgebra

X (M)×X (M)! X (M).

Proof. The claim follows from Corollary 2.2.22, once we have extended the Lie alge-
bra X (M)Λ+

3
to a Lie algebra X (M)Λ3

. For this, consider X (M)Λ+
3
⊕λ{4,5}X (M)0,

which is clearly a Lie subalgebra of X (M)Λ+
5
. Identifying λ{4,5} and 1 turns it into

a Lie algebra over R(3), so that Corollary 2.2.22 can be applied.

Corollary 4.4.10. Let M ∈ SMan, n ∈ N, I ∈ Pn+ and IX ∈ X (M)|I|. If
ϕα : Uα !M is a chart ofM, then we have

(ϕαΛn)−1 ◦ expM,Λn(λI IX) ◦ (idP(Λn)×ϕαΛn) = prUα +vI ∧ IX
α.

Proof. This follows immediately from Proposition 4.4.7 because the linear term of
expUα,Λn is the identity.

Corollary 4.4.11. Let M be a Banach supermanifold such that MR is finite-
dimensional. Then the global chart expM,Λ : X (M)bΛ+ ! SDiff id(M)Λ+ turns
SDiff id(M)Λ into a Lie group for each Λ ∈ Gr.

Proof. In view of Lemma A.1.2, this follows from Proposition 4.4.7 together with
Corollary 4.4.6.

Lemma 4.4.12. LetM be a supermanifold and n ∈ N be fixed. Then, under the
bijection expM,Λn : X (M)Λn

! SDiff id(M)Λn, the group action

Aut(M)× SDiff id(M)Λn , (f,Φ) 7! f ◦ Φ ◦ (idP(Λn)×f−1)

corresponds to the group action

βΛn : Aut(M)×X (M)Λn
! X (M)Λn

, (f, (λI IX)I∈Pn+) 7! (λI IX̃)I∈Pn+ ,

where

IX̃ :=

{
T f ◦ IX ◦ f−1, if I ∈ Pn0,+,

Π(T f) ◦ IX ◦ f−1, if I ∈ Pn1 .

Proof. In analogy to Lemma 4.2.11, this follows by applying Lemma 4.4.3 in local
coordinates and then using Lemma 4.3.11.

4.4.3. Superdiffeomorphisms with compact support

LetM be a supermanifold such thatMR is finite-dimensional. For each Λ ∈ Gr,
we define

SDiffc(M)Λ := {f ∈ SDiff(M)Λ : ∃K ⊆MR compact with
f |P(Λ)×M|MR\K

= prM|MR\K
}.
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This clearly defines a sub-group object SDiffc(M) of SDiff(M), which we call the
superdiffeomorphisms with compact support . By definition, we have SDiffc(M)R =
Autc(M). Moreover, if we set SDiffcid(M)Λ := SDiffc(M)−1

εΛ
({idM}), we get a

sub-group object SDiffcid(M) of SDiff id(M) and a split short exact sequence of
groups

1! SDiffcid(M)Λ ! SDiffc(M)Λ ! Autc(M)! 1.

Lemma 4.4.13. Let M be a σ-compact supermanifold such that MR is finite-
dimensional. For each Λ ∈ Gr, the exponential map expM,Λ from Proposition
4.4.7 restricts to a bijective map

expcM,Λ : Xc(M)Λ+ ! SDiffcid(M)Λ,

turning SDiffcid(M)Λ into a polynomial subgroup of SDiff id(M)Λ. If A :=
{ϕα : Uα ! M : α ∈ A} is an atlas of M such that (ϕαR(UαR ))α∈A is a locally
finite cover of MR, then restricting ΘΛ and ΨΛ from the proposition leads to the
commutative diagram

Xc(M)Λ+ SDiffcid(M)Λ

⊕
α∈A ŜC

∞
(Uα, E)Λ+

⊕
α∈A SDiff id(Uα)Λ,

expM,Λ

ΘΛ ΨΛ⊕
α expUα,Λ

where each SDiff id(Uα)Λ is considered as a vector space. The map ΘΛ is continuous
as a map Xc(M)cΛ+ !

⊕
α∈A ŜC

∞
(Uα, E)c,Λ+ and its image is a closed subspace.

The same holds for ΘΛ as a map Xc(M)bΛ+ !
⊕

α∈A ŜC
∞

(Uα, E)b,Λ+ if M is a
Banach supermanifold. The respective topology induced on SDiffcid(M)Λ does not
depend on the atlas. The action from Lemma 4.4.12 restricts to an action

βΛ : Autc(M)×Xc(M)Λ+ ! Xc(M)Λ+ .

Proof. By definition, an element X ∈ X (M)Λ+ is an element of Xc(M)Λ+ if and
only if (ΘΛ(X))α = 0 holds for almost all α ∈ A. Likewise, an element f ∈
SDiff id(M)Λ is an element of SDiffcid(M)Λ if and only if (ΨΛ(f))α = prUα holds for
almost all α ∈ A. It follows from Lemma 4.1.9 that ΘΛ is continuous, that im(ΘΛ)
is a closed subspace and that the induced topology does not depend on the atlas.
The group action restricts as stated by Lemma 4.1.13. The lemma then follows
from Proposition 4.4.7.

Proposition 4.4.14. LetM be a σ-compact Banach supermanifold such thatMR
is finite-dimensional. For each Λ ∈ Gr, the global chart

expcM,Λ : Xc(M)bΛ+ ! SDiffcid(M)Λ

turns SDiffcid(M)Λ into a Lie group. Moreover, the action of Autc(M) on
SDiffcid(M)Λ is smooth and therefore SDiffc(M)Λ is a Lie group as well. For
each % ∈ HomGr(Λ,Λ

′), the morphism SDiffc(M)% is a morphism of Lie groups.
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Proof. That SDiffcid(M)Λ is a Lie group follows from Lemma 4.4.13 and Lemma
4.4.6 together with Proposition A.3.5. The smoothness of βΛ follows from
Lemma 4.2.15 and Lemma 4.4.12. Note that SDiffc(M)%(f) = f holds for
f ∈ Autc(M) if we identify Autc(M) with SDiffc(M)ηΛ

(Autc(M)). Thus, since
SDiffc(M)% is a morphism of groups and since SDiffc(M)Λ and SDiffc(M)Λ′ arise
as semidirect products with Autc(M), it suffices to calculate the smoothness of
SDiffc(M)%|

SDiffcid(M)Λ′
SDiffcid(M)Λ

. But, in the exponential charts, this is just the restriction

Xc(M)b%|
Xc(M)bΛ′+

Xc(M)bΛ+
, which is smooth.

Remark 4.4.15. In view of Proposition 4.4.14, it is enticing to simply define
charts of SDiffc(M) by taking any chart of ϕ : U ! V of Autc(M) and then
letting

ϕΛ((λI(IX))I∈Pn) := expM,Λ((λI(IX))I∈Pn+) ◦ ϕ−1(∅X)

for (λI(IX))I∈Pn ∈ Xc(M)bΛ with ∅X ∈ U . Modulo notations, this is in fact
the chart defined in [47, Section 7.6, p.321] for finite-dimensional compact super-
manifolds. This defines certainly a natural transformation. However, the change
of charts need not be supersmooth. The problem is that changing the chart of
Autc(M) does not affect the nilpotent part Xc(M)bΛ+ , so that the derivative can-
not be Λ0-linear.

4.4.4. Purely even superdiffeomorphisms

As mentioned at the beginning of this section, there exists a natural definition of
purely even superdiffeomorphisms SDiff(M)0 for an arbitrary supermanifold M,
such that we have a decomposition

SDiff(M)0 ×X (M)1 ! SDiff(M).

Moreover, one has a short exact sequence

1! SDiff(M)≥2

0,Λ
! SDiff(M)0,Λ ! SDiff(M(1))0,Λ ! 1

that splits if M is of Batchelor type. We discuss all these components in detail
below, considering also compactly supported and topological versions. Once we
have seen that ι(Autc(M)) ∼= SDiffc(M)0 holds for σ-compact Banach superman-
ifolds with finite-dimensional base MR, it will be easy to turn SDiffc(M) into a
Lie supergroup. To emphasize naturality of this approach, let us also mention that
for suchMR, we obtain an isomorphism

ι(Diffc(MR)) ∼= SDiffc(ι(MR)).

Lemma/Definition 4.4.16. LetM∈ SMan be modelled on E ∈ SVeclc and let
Λ ∈ Gr be fixed. Then SDiff id(M)0,Λ := expM,Λ(X (M)0Λ+) is a polynomial sub-
group of SDiff id(M)Λ and these subgroups define a sub-supergroup SDiff id(M)0.
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4 Superdiffeomorphisms

The action of Aut(M) respects these groups and setting

SDiff(M)0,Λ := SDiff id(M)0,Λ o Aut(M)

defines a sub-supergroup SDiff(M)0 of SDiff(M) that we will call the purely
even superdiffeomorphisms . The elements f ∈ SDiff id(M)0,Λn are character-
ized by the property that each chart representation fα of f decomposes as
fα = prUα +

∑
I∈Pn0,+

vI ∧ If
α with If

α ∈ SC∞(Uα, E).
If MR is finite-dimensional, then analogous statements hold true for

SDiffcid(M)0 and SDiffc(M)0 defined by SDiffcid(M)0,Λ := expM,Λ(Xc(M)0Λ+) and
SDiffc(M)0,Λ := SDiffcid(M)0,Λ o Autc(M), respectively. If M is additionally a
σ-compact Banach supermanifold, then SDiffc(M)0,Λ is a closed Lie subgroup of
SDiffc(M)Λ.

Proof. By Corollary 4.4.8 X (M)0Λ is a Lie subalgebra of X (M)Λ and therefore
X (M)0Λ defines a polynomial subgroup under the exponential map. With Lemma
4.4.12, we see that the semi-direct product is well-defined. Note that

∏
I∈Pn0,+

λIX (M)0 ! SDiff id(M)0,Λn , (λIXI)I 7!
"∏

I∈Pn0,+

expM,Λ(λI IX),

where the product is taken in ascending lexicographic order, is a morphism of
multilinear spaces whose linear part is the identity. Hence, it is bijective by The-
orem B.1.2. With Corollary 4.4.10 we can now make an induction analogous to
the one in Remark E.2.1 to see that the elements of SDiff id(M)Λn are character-
ized as claimed. That SDiff(M)% restricts to a map SDiff(M)0,% : SDiff(M)0,Λ !
SDiff(M)0,Λ′ for each % ∈ HomGr(Λ,Λ

′) follows from the fact that % is graded
together with Lemma 4.3.8.
The same arguments and Lemma 4.4.13 show that the respective statements also

hold in the case of compact support. That SDiffc(M)0,Λ is a closed Lie subgroup of
SDiffc(M)Λ in case of a σ-compact Banach supermanifoldM follows immediately
because Xc(M)0,bΛ

is a closed subspace of Xc(M)bΛ.

Lemma 4.4.17. LetM be a supermanifold. For each Λ ∈ Gr, the map

SDiff(M)0,Λ ×X (M)1Λ ! SDiff(M)Λ, (f,X) 7! f◦Λ expM,Λ(X)

is a bijection. IfMR is finite-dimensional, this restricts to a bijection

SDiffc(M)0,Λ ×Xc(M)1Λ ! SDiffc(M)Λ.

Both bijections define natural transformations.

Proof. As a composition of natural transformations, both maps define natural
transformations. Since SDiff(M)0,Λ and SDiff(M)Λ are both defined as semidirect
products with Aut(M), it suffices to show that the restriction

SDiff id(M)0,Λ ×X (M)1Λ ! SDiff id(M)Λ
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4.4 The Supergroup of Superdiffeomorphisms

is bijective. But, this is a morphism of multilinear spaces if we identify both sides
with X (M)Λ+ via the respective exponential map. The linear component of this
morphism is then the identity. Thus, the morphism is bijective by Theorem B.1.2.
The same arguments apply to the case of compact support.

Splitting the purely even superdiffeomorphisms

LetM∈ SMan. By Lemma 4.1.18, we have a short exact sequence

0! X (M)≥2

0
↪! X (M)0

ι1∞◦π∞1−−−−! ι1∞(X (M(1))0)! 0 (4.11)

of Lie algebras, where ι1∞(X (M(1))0) is the Lie subalgebra of X (ι1∞(M(1)))0 con-
sisting of vector fields X : ι1∞(M(1)) ! T ι1∞(M(1)) with the local form Xα =
(Xα

0 , X
α
1 , 0, . . .) for any atlas of Batchelor type. The sequence obviously splits

canonically if M is of Batchelor type. If MR is finite-dimensional, we obtain an
analogous sequence

0! Xc(M)≥2

0
↪! Xc(M)0

ι1∞◦π∞1−−−−! ι1∞(Xc(M(1))0)! 0.

If we give X (M)0, resp. Xc(M)0, a topology as in Lemma 4.1.6, resp. Lemma
4.1.9, all the Lie subalgebras are closed.

Lemma 4.4.18. LetM∈ SMan and Λ ∈ Gr. Setting

SDiff id(M)≥2

0,Λ
:= expM,Λ(X (M)≥2

0 Λ+) and

SDiff id(M(1))0,Λ := expι1∞(M(1)),Λ

(
ι1∞(X (M(1))0)Λ+

)
,

leads to sub-group objects SDiff id(M)≥2

0
of SDiff id(M) and SDiff id(M(1))0 of

SDiff id(ι1∞(M(1))), respectively. We have a short exact sequence of groups

1! SDiff id(M)≥2

0,Λ
! SDiff id(M)0,Λ ! SDiff id(M(1))0,Λ ! 1

natural in Λ ∈ Gr that splits canonically ifM is of Batchelor type. IfMR is finite-
dimensional, then the same holds true for SDiffcid(M)≥2

0,Λ
:= expcM,Λ(Xc(M)≥2

0 Λ+)

and SDiffcid(M(1))0,Λ := expc
ι1∞(M(1)),Λ

(
ι1∞(Xc(M(1))0)Λ+

)
. If additionally M is a

σ-compact Banach supermanifold, this leads to a short exact sequence of Lie groups

1! SDiffcid(M)≥2

0,Λ
↪! SDiffcid(M)Λ ! SDiffcid(M(1))Λ ! 1

that also splits canonically ifM is of Batchelor type.

Proof. By Corollary 2.2.22, the exact sequence (4.11) leads to an exact sequence

0! X (M)≥2

0 Λ+ ↪! X (M)0Λ+

ι1∞◦π∞1 Λ+
−−−−−−! ι1∞(X (M(1))0)Λ+ ! 0

of Lie algebras. It follows from Lemma C.2.2 that this leads to an exact sequence
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4 Superdiffeomorphisms

of groups that splits if the sequence of Lie algebras splits. The same argument
also works in the case of compact support. Let M be a σ-compact Banach su-
permanifold such that MR is finite-dimensional. Since X (M)≥2

0,b
⊆ X (M)0,b and

ι1∞(X (M(1))0,b) ⊆ Xc(ι1∞(M(1)))0,b are closed and since all the Lie algebra mor-
phisms are continuous, we get a sequence of Lie groups as claimed.

Lemma 4.4.19. LetM∈ SMan.

(a) For each Λ ∈ Gr, the semidirect products

SDiff(M)≥2

0,Λ
:= SDiff id(M)≥2

0,Λ
o Autid(M) and

SDiff(M(1))0,Λ := SDiff id(M(1))0,Λ o ι1∞(Aut(M(1)))

are well-defined and lead to sub-group objects SDiff(M)≥2

0
of SDiff(M) and

SDiff(M(1))0 of SDiff(ι1∞(M(1))), respectively. There exists a short exact
sequence of groups

1! SDiff(M)≥2

0,Λ
↪! SDiff(M)0,Λ ! SDiff(M(1))0,Λ ! 1

natural in Λ ∈ Gr that splits canonically ifM is of Batchelor type.

(b) IfMR is finite-dimensional, then analogous statements to (a) hold for

SDiffc(M)≥2

0,Λ
:= SDiffcid(M)≥2

0,Λ
o Autcid(M) and

SDiffc(M(1))0,Λ := SDiffcid(M(1))0,Λ o ι1∞(Autc(M(1))).

(c) IfM is a σ-compact Banach supermanifold with finite-dimensional base, we
have a short exact sequence of Lie groups

1! SDiffc(M)≥2

0,Λ
↪! SDiffc(M)0,Λ ! SDiffc(M(1))0,Λ ! 1

that splits canonically ifM is of Batchelor type.

Proof. (a) If X ∈ X (M)≥2

0
and f ∈ Autid(M) holds, then we have T f ◦ X ◦

f−1 ∈ X (M)≥2

0
by Lemma 4.1.13. Likewise, if X ∈ X (M(1)) has the local form

(Xα
0 , X

α
1 , 0, . . .) in some atlas of Batchelor type, then T f ◦ X ◦ f−1 also has this

form for f ∈ ι1∞(Aut(M(1))), because f has the local form (fαβ0 , fαβ1 , 0, . . .). Thus,
the semidirect products are well-defined. With Lemma/Definition 4.4.16, we can
express each element of SDiff(M)0,Λ uniquely as f ◦ expM,Λ(X) with f ∈ Aut(M)

and X ∈ X (M)0Λ+ . We define the projection SDiff(M)0,Λ ! SDiff(M(1))0,Λ via

f ◦ expM,Λ(X) 7! ι1∞ ◦ π∞1 (f) ◦ expM,Λ

(
ι1∞ ◦ π∞1 (X)

)
.

This is a morphism of groups because ι1∞ ◦ π∞1 is a functor, ι1∞ ◦ π∞1 |X (M)0Λ+
is a

morphism of Lie algebras and

ι1∞ ◦ π∞1 (T f ◦ Y ◦ f−1) =
(
T (ι1∞ ◦ π∞1 (f))

)
◦
(
ι1∞ ◦ π∞1 (Y )

)
◦
(
ι1∞ ◦ π∞1 (f−1)

)
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4.4 The Supergroup of Superdiffeomorphisms

holds for f ∈ Aut(M) and Y ∈ X (M)0. Naturality in Λ follows because for all
% ∈ HomGr(Λ,Λ

′), we have SDiff(M)%(f◦expM,Λ(X)) = f◦expM,Λ′(X (M)0%(X)).
(b)The same arguments apply to the case of compact support.
(c) This leads to an exact sequence of Lie groups as claimed, because the involved

Lie algebra morphisms are continuous and

Autc(M) 7! ι1∞
(
Autc(M(1))

)
, f 7! ι1∞ ◦ π∞1 (f)

is smooth by the definition of the Lie group structure on Autc(M).

Lemma 4.4.20. LetM be a supermanifold

(a) For each Λ ∈ Gr, the group SDiff(M)≥2

0,Λ
is pro-polynomial and admits an

exponential map

exp≥2
M,Λ : X (M)≥2

0 Λ
! SDiff(M)≥2

0,Λ
.

The exponential maps define a morphism in SetGr and the restriction to
X (M)≥2

0
, resp. to X (M)≥2

0 Λ+, is just the exponential map from Proposition
4.2.6, resp. from Lemma 4.4.18.

(b) If MR is finite-dimensional, then analogous statements to (a) hold for
SDiffc(M)≥2

0,Λ
and

expc,≥2
M,Λ : Xc(M)≥2

0 Λ
! SDiffc(M)≥2

0,Λ
.

(c) IfM is a σ-compact Banach supermanifold with finite-dimensional baseMR,
then expc,≥2

M,Λ : Xc(M)≥2

0,bΛ
! SDiffc(M)≥2

0,Λ
is a global chart for the Lie group

structure defined in Lemma 4.4.19. This chart turns SDiffc(M)≥2

0
into a Lie

supergroup such that

SDiffc(M)≥2

0
∼= ι(Autcid(M))

holds as Lie supergroups.

Proof. (a) For all 0 < n ≤ k ≤ ∞, the Lie algebra morphism πkn : X (M(k))0 !
X (M(n))0 defines a morphism of nilpotent Lie algebras

πkn : X (M(k))≥2

0 Λ+ ! X (M(n))≥2

0 Λ+ .

If we define SDiff id(M(n))≥2

0,Λ
for 1 < n < ∞ as X (M(n))≥2

0 Λ+ equipped with the
BCH multiplication, we see with Lemma 4.2.11 that the group action by automor-
phisms

α : Autid(M(n))× SDiff id(M(n))≥2

0,Λ
! SDiff id(M(n))≥2

0,Λ
,

(f, (λI IX)I) 7! (λIT f ◦ IX ◦ f−1)I
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4 Superdiffeomorphisms

is in each component I given by the action of the polynomial group Autid(M(n))
on its own Lie algebra. Therefore, Lemma C.2.4 is satisfied and we obtain a
polynomial group SDiff id(M(n))≥2

0,Λ
o Autid(M(n)) whose Lie bracket is given by

[·, ·](n)
Λ. Here [·, ·](n) denotes the Lie bracket of X (M(n))≥2

0
. Clearly, we have

lim −
n

(
SDiff id(M(n))≥2

0,Λ
o Autid(M(n))

)
∼= lim −

n

SDiff id(M(n))≥2

0,Λ
o lim −

n

Autid(M(n))

∼= SDiff id(M)≥2

0,Λ
o Autid(M) = SDiff(M)≥2

0,Λ
.

Moreover, since the Lie bracket of the limit is [·, ·]Λ (for [·, ·] the Lie bracket of
X (M)≥2

0
) one easily sees that the exponential map restricts to the exponential

map of Autid(M) and SDiff id(M)≥2

0,Λ
as claimed. If we define

SDiff(M(n))≥2

0,%
: SDiff(M(n))≥2

0,Λ
! SDiff(M(n))≥2

0,Λ′
,

(
X, f

)
7!
(
X (M(n))≥2

0 %
(X), f),

then we also have lim −n SDiff(M(n))≥2

0,%
= SDiff(M)≥2

0,%
under the above identifica-

tion, for % ∈ HomGr(Λ,Λ
′). The naturality of (exp≥2

M,Λ)Λ∈Gr follows from Lemma
C.3.2 because under the exponential map, the polynomial morphism of groups
SDiff(M(n))≥2

0,%
corresponds to the linear map X (M(n))≥2

0 %
.

(b) This follows from the same arguments as in (a).
(c) Let M be a σ-compact Banach supermanifold such that MR is finite-

dimensional. We know that ι(expcM) : Xc(M)≥2

0
! ι(Autcid(M)) is a global chart

and in that chart we have

ker(ι(Autcid(M))εΛ) ∼= Xc(M)≥2

0 Λ+

for all Λ ∈ Gr. Here Xc(M)≥2

0 Λ+ is considered as a polynomial group with the
BCH multiplication with regard to the Lie bracket [·, ·]Λ+ . The induced action of
Autcid(M) on Xc(M)≥2

0 Λ+ is given by

Autcid(M)×Xc(M)≥2

0 Λ+ ! Xc(M)≥2

0 Λ+ ,
(
f, (λI IX)I

)
7! (λITf ◦ IX ◦ f−1)I .

Since SDiffcid(M)≥2

0,Λ
induces the same group structure on Xc(M)≥2

0 Λ+ and since
the actions of Autcid(M) are the same by Lemma 4.4.12, we have ι(Autcid(M)) ∼=
SDiffc(M)≥2

0,Λ
. By naturality, ι(Autcid(M))% and SDiffc(M)≥2

0,%
both correspond to

Xc(M)≥2

0 %
for each % ∈ HomGr(Λ,Λ

′). Since expc,≥2
M,Λ restricts to the respective

exponential maps, it is obvious that expc,≥2
M,Λ is a chart with respect to the smooth

structure from Lemma 4.4.19.
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4.4 The Supergroup of Superdiffeomorphisms

Proposition 4.4.21. LetM be a supermanifold.

(a) Let n ∈ N. There exists an isomorphism of groups

SDiff(M(1))0,Λn
∼= AutTnR(T kM(1))|−Pn0,+

that is the identity on ι1∞(Aut(M(1))) ∼= Aut(M(1)), such that
SDiff id(M(1))Λn

∼= X n(M(1))0|−Pn0,+ holds.

(b) IfMR is finite-dimensional, then an analogous statement to (a) holds for

SDiffc(M(1))0,Λn
∼= AutTnR(T kM(1))c|−Pn0,+ .

(c) If M is a σ-compact Banach supermanifold and MR is finite-dimensional,
then SDiffc(M(1))0 can be turned into a Lie supergroup such that

SDiffc(M(1))0
∼= ι(Autc(M(1)))

holds.

Proof. (a) Let [·, ·] denote the Lie bracket of X (M(1))0. From the definitions in
Lemma 4.4.18 and Lemma 4.4.19, we know that SDiff(M(1))0,Λn is isomorphic
to X (M(1))0Λ+

n
o Aut(M(1)), where the group structure on X (M(1))0Λ+

n
is given

by the BCH multiplication with respect to the Lie bracket [·, ·]Λ+
n
and the action

of Aut(M(1)) is given by λIX 7! λIT f ◦ X ◦ f−1 for I ∈ Pn0,+, X ∈ X (M(1))0

and f ∈ Aut(M(1)). But, by Lemma/Definition E.3.8, this is exactly the same
group structure as the one induced by AutTnR(T nM(1))|−Pn0,+ = X n(M(1))0|−Pn0,+ o
Aut(M(1)) on X (M(1))0Λ+

n
o Aut(M(1)).

(b) This follows from the same arguments as in (a).
(c) It was shown in Lemma E.3.9 that T nAutc(M(1))|−Pn0,+

∼=
AutTnR(T nM(1))|−Pn0,+ holds. Moreover, we know from Proposition 2.3.16
that ι(Autc(M(1)))Λn

∼= T nAutc(M(1))|−Pn0,+ holds as Lie groups such that
ker(ι(Autc(M(1)))εΛn ) ∼= (T nAutc(M(1))|−Pn0,+)idM(1)

. All that is left to see
is that under these identifications ι(Autc(M(1)))% and SDiffc(M(1))0,% are
the same for all % ∈ HomGr(Λ,Λ

′). Since neither group morphism changes
the contribution of Autc(M(1)) in the respective semidirect product, it is
enough to check this on ker(ι(Autc(M(1)))εΛ) and SDiffcid(M(1))0,Λ. Let
exp

ι(Autc(M(1)))
Λ : Xc(M(1))0Λ+ ! ker(ι(Autc(M(1)))εΛ) denote the unique dif-

feomorphism from Proposition 3.2.6. Then the group structure induced on
Xc(M(1))0Λ+ by exp

ι(Autc(M(1)))
Λ , is given by the BCH multiplication with

respect to [·, ·]Λ+ . If ΨΛ : ker(Autc(M(1)))εΛ) ! SDiffcid(M(1))0,Λ is the
isomorphism obtained above, uniqueness of the exponential maps implies
ΨΛ ◦ exp

ι(Autc(M(1)))
Λ = expcM,Λ and since both exponential maps are natural

transformations, so is (ΨΛ)Λ∈Gr.
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Corollary 4.4.22. Let M be a finite-dimensional σ-compact manifold. Then we
have

SDiffc(ι(M)) ∼= ι(Diffc(M)) and
SDiffcid(ι(M)) o Diff(M) ∼= ι(Diff(M))

as supergroups, turning SDiffc(ι(M)) and SDiffcid(ι(M))oDiff(M) into Lie super-
groups.

Proof. The first statement follows immediately by applying Proposition 4.4.21 to
the trivial bundle (ι(M))(1) ∼= M×{0}. The second statement follows analogously
to the proposition, using Lemma E.2.4.

Remarkably, even for the full diffeomorphism group Diff(M), the nilpotent
part ker(ι(Diff(M))εΛ) is only identified with compactly supported superdiffeo-
morphisms. The reason behind this is that Diff(M) is modelled on Xc(M).
We now understand the respective structure of SDiff id(M)0 and SDiff(M(1))0

very well. All that remains to do, is to calculate the semi-direct product for the
case thatM is a supermanifold of Batchelor type.

Lemma 4.4.23. Let M be a supermanifold of Batchelor type modelled on E ∈
SVeclc. Then SDiff(M)≥2

0,Λ
o SDiff id(M(1))0,Λ is a pro-polynomial group with the

Lie algebra
X (M)≥2

0 Λ
⊕ ι1∞(X (M(1))0)Λ+ ⊆ X (M)0Λ

for each Λ ∈ Gr. If MR is finite-dimensional, then the same holds for
SDiffc(M)≥2

0,Λ
o SDiffcid(M(1))0,Λ with the Lie algebra

Xc(M)≥2

0 Λ
⊕ ι1∞(Xc(M(1))0)Λ+ .

Proof. We already know from Lemma 4.4.18 that SDiff id(M)≥2

0,Λ
oSDiff id(M(1))0,Λ

is a polynomial group with the correct Lie algebra. Likewise, we have seen in
Lemma 4.4.20 that SDiff(M)≥2

0,Λ
is a pro-polynomial group that also has the correct

Lie algebra. It only remains to be seen that the action of SDiff id(M(1))0,Λ on
SDiff(M)≥2

0,Λ
restricted to a map

βΛ : SDiff id(M(1))0,Λ × Autid(M)! SDiff(M)≥2

0,Λ

(where we consider Autid(M) ⊆ SDiff(M)≥2

0,Λ
) is pro-polynomial in an appropriate

way and leads to the correct Lie algebra. We have

g◦Λf◦Λg
−1 ∈ f ◦ SDiff id(M)≥2

0,Λ

for g ∈ SDiff id(M(1))0,Λ and f ∈ Autid(M), because the part not dependent on
P(Λ) remains unchanged. It follows βΛ(g, f) = (f−1◦Λg◦Λf◦Λg

−1, f) if we consider
SDiff(M)≥2

0,Λ
= SDiff id(M)≥2

0,Λ
o Autid(M). SinceM is of Batchelor type, we may
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consider Autid(M(n)) ⊆ Autid(M) as a subset. Then

β(n) : SDiff id(M(1))0,Λ × Autid(M(n))! X (M(n))≥2

0 Λ+ ,

(g, f) 7! π∞n
(
(exp≥2

M,Λ)−1(f−1◦Λg◦Λf◦Λg
−1)
)

is well-defined, because fΛk for n < k does not contribute to the right-hand side.
Locally, it follows from Corollary 4.3.10, Lemma 4.4.1 and Lemma 4.2.2 that β(n)

is polynomial and that we have exp≥2
M,Λ ◦ lim −n β

(n) = β.
For the iterated actions of SDiff id(M(1))0,Λ on SDiff(M)≥2

0,Λ
, it follows again

from Corollary 4.3.10 and Lemma 4.4.1 that the total multilinear degree in the el-
ements of SDiff id(M(1))0,Λ is bounded by the number of generators of Λ. Therefore,
Lemma C.2.4 is satisfied and SDiff(M)≥2

0,Λ
o SDiff id(M(1))0,Λ is a pro-polynomial

group.
By the definition of the respective pro-polynomial group structures, it suffices

to calculate the Lie bracket locally. Let U ⊆ E be an open subfunctor and let
prU : P(Λn) × U ! U be the projection. Further, let X ∈ SC∞(U , E)≥2

0
and

Y ∈ ŜC
∞

(U , E)Λ+
n

with Y =
∑

I∈Pn0,+
vI ∧ IY , where IY ∈ SC∞(U (1), E

(1)
) ⊆

SC∞(U , E). Let mΛ denote the multiplication in SDiff(U)≥2

0,Λ
o SDiff id(U (1))0,Λn .

For (mΛ)1,1 as in C.2, we directly calculate(
(mΛ)1,1(prU +X, prU +Y )

)
k

= Ak
( ∑
k≥l even

k!

(k − l)!!l!
dXk−l(idUR)(Yl, prE1

, . . . , prE1
)

+
∑

k≥l odd

k!

(k − l)!l!
Xk−l+1(idUR)(Yl, prE1

, . . . , prE1
)
)

= (dX ◦ (idU , Y ))k

and with Corollary 4.3.10 we obtain(
(mΛ)1,1(prU +Y, prU +X)

)
k

=



∑
k≥l even,

I∈Pn0,+, |I|=k−l

vI ∧
(
d IY0(idUR)(Xl)

)
k even

∑
k≥l odd,

I∈Pn0,+, |I|=k−l

vI ∧
(
IY1(idUR)(Xl)

)
k odd

=
(∑

I∈Pn0,+
vI ∧ d IY (idU , X)

)
k
,

for k > 0 and the projection prE1
: Rn × E1 ! E1. It follows from Lemma A.2.18

and the definition of the Lie bracket [·, ·] of X (M)0 that

(mΛ)1,1(prU +Y, prU +X)− (mΛ)1,1(prU +X, prU +Y ) =
∑
I∈Pn0,+

vI ∧ [IY,X],
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as well as

(mΛ)1,1(prU +X, prU +Y )− (mΛ)1,1(prU +Y, prU +X) =
∑
I∈Pn0,+

vI ∧ [X, IY ],

hold. The same arguments apply in the case of compact support.

Proposition 4.4.24. Let M be a σ-compact Banach supermanifold of Batchelor
type with finite-dimensional base MR. Then SDiffc(M)0 is a purely even Lie
supergroup such that

SDiffc(M)0 = SDiffc(M)≥2

0
o SDiffc(M(1))0

∼= ι(Autc(M)).

Proof. We already know from Lemma 4.4.19 that there exists a split short exact
sequence of Lie groups

1! SDiffc(M)≥2

0,Λ
↪! SDiffc(M)0,Λ ! SDiffc(M(1))0,Λ ! 1

that is natural in Λ ∈ Gr. By Lemma/Definition 3.0.3, we only need to show that
the action defined by

SDiffc(M(1))0,Λ × SDiffc(M)≥2

0,Λ
! SDiffc(M)≥2

0,Λ
, (f, g) 7! f◦Λg◦Λf

−1

is supersmooth. By Corollary 2.2.9, it suffices to check the derivative at points
from Autc(M(1)) × Autcid(M) and by the definition of SDiffc(M)≥2

0,Λ
in Lemma

4.4.20, we can consider the action

βΛ : SDiffc(M(1))0,Λ ×Xc(M)≥2

0 Λ
! Xc(M)≥2

0 Λ
,

(f,X) 7! (expc,≥2
M,Λ)−1(f◦Λ expc,≥2

M,Λ(X)◦Λf
−1)

instead. Let n ∈ N and Λ := Λn. It follows from Lemma 4.4.12 that for f ∈
Autc(M(1)) ⊆ SDiffc(M(1))0,Λ, X ∈ Xc(M)0 and I ∈ Pn0,+, we have

βΛ(f, λIX) = λITf ◦X ◦ f−1.

In particular βΛ(f, ·) is Λ0-linear. To see supersmoothness, we therefore only need
to check the derivative of αΛ := βΛ(·, X). Let φ : U ! Autc(M(1)) be the inverse
of a chart with U ⊆ Xc(M(1))0, 0 ∈ U and φ(0) = id, such that T0φ = idXc(M(1))0

holds under the identification TidAutc(M(1)) ∼= Xc(M(1))0 from Lemma D.3.9. If
lf : Autc(M(1)) ! Autc(M(1)) denotes the left-multiplication by f , then lf ◦ φ is
the inverse of a chart around f and ι(lf ◦ φ) = ι(lf ) ◦ ι(φ) is a chart around the
point in ι(Autc(M

(1))) corresponding to f . We calculate

βΛ(ι(lf ◦ φ)Λ(Y ), X) = βΛ

(
ι(lf )Λ, βΛ(ι(φ)Λ(Y ), X)

)
for Y ∈ (Xc(M(1))0|U)Λ. Therefore, it suffices to calculate the derivative of αΛ at
the identity. Note that T nφ is the identity on the axes, i.e., we have T nφ(εIY ) =
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4.4 The Supergroup of Superdiffeomorphisms

εIY in the notation of Section E.1. With the identifications from Proposition
4.4.21, it follows that

ι(φ)Λ(λIY ) = T nφ|−Pn0,+(λIY ) = expcM,Λ(λIY ).

Using Lemma 4.4.23 and Lemma C.3.3, we obtain

βΛ(ι(φ)(λIY ), X) = (expc,≥2
M,Λ)−1(expcM,Λ(λIY ) · expc,≥2

M,Λ(X) · expcM,Λ(λIY )−1)

= λI [Y,X] +X, (4.12)

where [·, ·] is the Lie bracket of X (M)0. On the other hand, we have
dαΛ(idM(1) , Y ) = [Y,X] by Proposition 4.2.13. Differentiating (4.12) in the first
component then shows that (βΛ)Λ∈Gr is supersmooth. Therefore, SDiffc(M)0 is a
purely even Lie supergroup and since SDiffc(M)0,R = Autc(M) holds, it follows
that SDiffc(M)0

∼= ι(Autc(M)).

4.4.5. The Lie supergroup structure of the
superdiffeomorphisms

The trivialization from Lemma 4.4.17, together with the Lie supergroup structure
discussed in Proposition 4.4.24, now finally allows us to turn SDiffc(M) into a
Lie supergroup for appropriate supermanifolds M. The construction of this Lie
supergroup is basically identical to the construction of a Lie supergroup from a
super Harish-Chandra pair in Proposition 3.3.7.

Theorem 4.4.25. LetM be a σ-compact Banach supermanifold of Batchelor type
such thatMR is finite-dimensional. Then the natural transformation from Lemma
4.4.17, defined by the bijections

SDiffc(M)0,Λ ×Xc(M)1,bΛ
! SDiffc(M)Λ, (f,X) 7! f◦Λ expcM,Λ(X)

for each Λ ∈ Gr, turns SDiffc(M) into a Lie supergroup.

Proof. Let [·, ·]Λ denote the Lie bracket of Xc(M)Λ. Note that, by Proposition
4.4.24, SDiffc(M)0 × Xc(M)1,b is indeed a supermanifold so that we just have to
show that the group operations in SDiffc(M) are supersmooth. For this, we first
show supersmoothness of the conjugation given by

σΛ : SDiffc(M)0,Λ ×Xc(M)1,bΛ
! Xc(M)1,bΛ

(f,X) 7! (expcM,Λ)−1
(
f◦Λ expcM,Λ(X)◦Λf

−1).

Note that σΛ is well-defined because by Lemma C.2.7, we have

(expcM,Λ)−1
(

expcM,Λ(Y )◦Λ expcM,Λ(X)◦Λ expcM,Λ(−Y ))

= X +
n∑
k=1

1

k!
[Y, . . . , [Y︸ ︷︷ ︸

k times

, X]Λ . . .]Λ
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and since Lemma 4.4.12 shows that

(expcM,Λ)−1
(
f◦Λ expcM,Λ(X)◦Λf

−1) =
∑
I∈Pn1

λIΠ(T f) ◦ IX ◦ f−1

for Λ = Λn, Y ∈ Xc(M)0Λ+ , X =
∑

I∈Pn1
λI IX and f ∈ Autc(M). By

Corollary 2.2.9, we only need to calculate the derivative at points of the form
(f, 0) ∈ Autc(M)×Xc(M)1,bΛ

. But, d1σΛ(f, 0)(•) = 0 and d2σΛ(f, 0)(•) = σΛ(f, •)
are both Λ0-linear. It follows that σ is supersmooth. Next, we need to see that
the purely odd multiplication, given by

µΛ : Xc(M)1,bΛ
×Xc(M)1,bΛ

! SDiffc(M)Λ, (X, Y ) 7! expcM,Λ(X)◦Λ expcM,Λ(Y ),

is supersmooth. Let ΨΛ be the map from Lemma 3.3.5. Then it follows from
Lemma 3.3.4 and Lemma 3.3.6 that the morphism defined by

ΦΛ : Xc(M)1,bΛ
×Xc(M)1,bΛ

! Xc(M)0,bΛ
×Xc(M)1,bΛ

,

(X, Y ) 7! Ψ−1
Λ

(
(expcM,Λ)−1(µΛ(X, Y ))

)
is supersmooth. Let pr0 : Xc(M)b ! Xc(M)0,b and pr1 : Xc(M)b ! Xc(M)1,b

denote the corresponding supersmooth projections. By definition, we have

expcM,Λ(pr0,Λ ◦ΦΛ(X, Y ))◦ expcM,Λ(pr1,Λ ◦ΦΛ(X, Y )) = µΛ(X, Y )

for all X, Y ∈ Xc(M)1,bΛ
. Because we have expcM |Xc(M)0,b

= expSDiffc(M)0 ,
Proposition 3.2.6 and Lemma 3.3.6 now show that (µΛ)Λ∈Gr is supersmooth.
Next, we show the supersmoothness of the composition in SDiffc(M). Let
f, g ∈ SDiffc(M)0,Λ and X, Y ∈ Xc(M)1,bΛ

. We abbreviate X̃ :=
(expcM,Λ)−1(σΛ(g−1, expcM,Λ(X))). Then, we have

f◦Λ expcM,Λ(X)◦Λg◦Λ expcM,Λ(Y ) = f◦Λg◦Λ expcM,Λ(X̃)◦Λ expcM,Λ(Y )

= f◦Λg◦Λ expcM,Λ(pr0,Λ ◦ΦΛ(X̃, Y ))︸ ︷︷ ︸
∈SDiffc(M)0,Λ

◦ expcM,Λ(pr1,Λ ◦ΦΛ(X̃, Y )︸ ︷︷ ︸
∈Xc(M)1,bΛ

).

With the statements derived above, it follows that the composition is supersmooth,
because inversion and composition in SDiffc(M)0 are supersmooth. Likewise, the
supersmoothness of the inversion follows from

(f◦Λ expcM,Λ(X))−1 = expcM,Λ(−X)◦Λf
−1 = f−1◦ΛσΛ(f, expcM,Λ(−X)).

From the construction of the Lie supergroup structure, it is obvious that the
super Harish-Chandra pair associated to SDiffc(M) is given by (Autc(M),Xc(M))
together with the action from Lemma 4.2.15.

Theorem 4.4.26. Let M be a σ-compact Banach supermanifold such that MR
is finite-dimensional and let g : M ! ι1∞(M(1)) be a Batchelor model. Then the
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isomorphisms of groups

Θg,Λ : SDiffc(M)Λ ! SDiffc(ι
1
∞(M(1)))Λ, f 7! g ◦ f ◦ (idP(Λ)×g−1)

define a natural transformation Θg, i.e., an isomorphism of supergroups. The Lie
supergroup structure induced by this isomorphism on SDiffc(M) does not depend
on the Batchelor model.

Proof. Evidently, Θg,Λ is an isomorphism of groups for each Λ ∈ Gr. For % ∈
HomGr(Λ,Λ

′) and f ∈ SDiffc(M)Λ, we calculate

Θg,Λ′(SDiffc(M)%(f)) = g ◦ f ◦ (P(%)× idM) ◦ (idP(Λ)×g−1) =

g ◦ f ◦ (idP(Λ)×g−1) ◦ (P(%)× idι1∞(M(1))) = SDiffc(ι
1
∞(M(1)))%(Θg,Λ(f)),

which shows naturality. Let g′ also be a Batchelor model ofM and let SDiffc(M)′

denote the Lie supergroup induced by g′. Then the identity SDiffc(M) !
SDiffc(M)′ is supersmooth if and only if Θg′ ◦ Θ−1

g : SDiffc(ι
1
∞(M(1))) !

SDiffc(ι
1
∞(M(1))) is supersmooth. But, for each Λ ∈ Gr, the map Θg′,Λ◦(Θg,Λ)−1 is

just the conjugation by g′ ◦g−1 in SDiffc(ι
1
∞(M(1)))Λ, which defines a supersmooth

morphism by Proposition 3.2.9.

Remark 4.4.27. If one wants to define supermorphisms or superdiffeomorphisms
for k-supermanifoldsM,N with k ∈ N0, one runs into the following problem. One
cannot simply define ŜC

∞
(M,N )Λ as SC∞(P(Λ)(k) ×M,N ) because one would

lose all λI ∈ Λ with |I| > k. Locally, one can simply set

ŜC
∞

(U , F (k)
)Λn :=

⊕
I∈Pn0

vI ∧ SC∞(U , F (k)
)⊕

⊕
I∈Pn1

vI ∧ SC∞(U ,Π(F )
(k)

)

for E,F ∈ SVeclc and an open subfunctor U ⊆ E
(k). The composition of such

supermorphisms is then just the usual composition, where one cuts of all maps
whose multilinear degree in E1 is greater than k. Next, one needs to check that
this leads to a well-defined functor ŜC

∞
(M,N ). For superdiffeomorphisms, it

appears to be easier to work directly with the pair (Aut(M),X (M)) instead.

For any two supermanifoldsM and N , we define an evaluation morphism

ev : ŜC
∞

(M,N )×M! N

as follows. For morphisms x : P(Λ)!M and f : P(Λ)×M! N , we let

evΛ(f, x) := f ◦ (idP(Λ), x) : P(Λ)! N ,

where we identifyMΛ
∼= SC∞(P(Λ),M) and NΛ

∼= SC∞(P(Λ),N ) via Corollary
4.3.3 (see [40, Section 8.3, p.416]). Molotkov [40, Proposition 8.4.2, p.417] states
that for any supersmooth action α : G ×M !M of a Lie supergroup G on M,
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4 Superdiffeomorphisms

there exists a unique morphism α̂ : G ! SDiff(M) of supergroups such that

ev ◦(α̂× idM) = α

holds. This approach for studying the properties of supersmooth actions of Lie
supergroups on supermanifolds seems to be a promising area for future research.
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A. Important Facts

A.1. Products, Inverse Limits and Direct Sums

Lemma A.1.1 ([21, Lemma 1.3, p.24]). Let E,F be locally convex spaces, U ⊆ E
open and f : U ! F . If f(U) ⊆ F ′ for a closed vector subspace F ′ ⊆ F , then f is
smooth if and only if its co-restriction f |F ′ : U ! F ′ is smooth.

Let J be a set and (Fj)j∈J be a family of locally convex spaces. Then the product∏
j∈J Fj equipped with the product topology is a Hausdorff locally convex space.

Lemma A.1.2 ([23]). Let E be a locally convex space, U ⊆ E open and (Fj)j∈J
be a family of locally convex spaces. Let F :=

∏
j∈J Fj and let prj : F ! Fj be the

projection onto the j-th component. A map f : U ! F is smooth if and only if
fj := prj ◦f : U ! Fj is smooth for every j ∈ J . In this case, we have

df(x, y) =
(
dfj(x, y)

)
j∈J for all x ∈ U and y ∈ E.

Let J be a directed index set. The inverse limit

lim −j∈J Fj :=
{

(xj)j∈J ∈
∏

j∈J Fj : qji (xj) = xi for all i ≤ j
}

of an inverse system ((Fj)j∈J , (q
j
i )i≤j) of locally convex spaces, where qji : Fj ! Fi

is continuous linear for all i ≤ j, is a closed subset of
∏

j∈J Fj and thus a Hausdorff
locally convex space. A direct consequence of this is the following lemma.

Lemma A.1.3 ([23]). Let E,F be locally convex spaces, U ⊆ E be open
and f : U ! F be a map. Assume that F = lim −Fj for an inverse system
((Fi)i∈J , (q

j
i )i≤j) of locally convex spaces and continuous linear maps qji : Fj ! Fi,

with limit maps qi : F ! Fi. Then f is smooth if and only if qi ◦ f : U ! Fi is
smooth for each i ∈ J . In this case, we have

df(x, y) =
(
d(qi ◦ f)((x, y))

)
i∈J for all x ∈ U and y ∈ E.

If I is a countable index set and (Ei)i∈I is a family of locally convex spaces, then
the direct sum

E :=
⊕
i∈I

Ei :=
{

(xi)i∈I ∈
∏
i∈I

Ei : xi = 0 for almost all i
}

can be given a unique Hausdorff locally convex vector topology such that sets
of the form

⊕
i∈I Ui :=

⊕
i∈I Ei ∩

∏
i∈I Ui for open zero-neighborhoods Ui ⊆ Ei

constitute a basis of zero-neighborhoods (see [29]).
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Lemma A.1.4 ([50, Lemma 4.15, p.32 f.]). Let I, J be countable index sets and
(Ei)i∈I , (Fj)j∈J be families of locally convex spaces. For every i ∈ I, let Ui ⊆ Ei be
an open zero neighborhood. Moreover, for every j ∈ J , let Ij ⊆ I be a finite subset
such that

⋃
j∈J Ij = I and such that every i ∈ I is only contained in finitely many

Ij. If for every j ∈ J , we have a smooth map fj :
⊕

i∈Ij Ui ! Fj with fj(0) = 0,
then the map

f :
⊕
i∈I

Ui !
⊕
j∈J

Fj, (xi)i∈I 7!
(
fj
(
(xi)i∈Ij

))
j∈J

is also smooth.

In particular with I = J and Ij := {j}, we see that a map between direct sums
defined by component-wise smooth maps is smooth (this is [17, Proposition 7.1,
p.993]).

A.2. Mapping Spaces

Let E and F be locally convex spaces and U ⊆ E open. We give C∞(U, F ) the
topology that turns

C∞(U, F )!
∏
i∈N0

C(U × Ei, F ), γ 7! (diγ)i∈N0

into an embedding. Here C(U × Ei, F ) denotes the space of continuous functions
U × Ei ! F equipped with the compact-open topology , i.e., the vector space
topology generated by the sets

bK,V c := {γ ∈ C(U × Ei, F ) : γ(K) ⊆ V },

where K ranges through the compact subsets of U × Ei and V through the open
subsets of F . This turns C∞(U, F ) into a Hausdorff locally convex vector space.
Note that for all k ∈ N0 the linear map

dk : C∞(U, F )! C∞(U × Ek, F ), f 7! dkf

is continuous. We refer to [23] and [18] for more details.

Proposition A.2.1 (c.f. [22, Proposition 2.5, p.7]). Let E, F and H be locally
convex spaces, U ⊆ E open and f : U × F ! H smooth. Then the map

f∗ : C∞(U, F )! C∞(U,H), γ 7! f ◦ (idU , γ)

is smooth.

Lemma A.2.2 (c.f. [18, Lemma 4.4, p.23]). Let E,E ′ and F be locally convex
spaces and U ⊆ E ′ and V ⊆ F be open. If f : U ! V is a smooth map, then so is
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the “pullback”

C∞(f, E) : C∞(V,E)! C∞(U,E), γ 7! γ ◦ f.

Lemma A.2.3. Let E, F be locally convex spaces and U ⊆ E open. Then for
every p ∈ U , the point evaluation

evp : C∞(U, F )! F, γ 7! γ(p),

is a continuous linear map.

Proof. Obviously evp is linear, and for any open subset V ⊆ F , we have

ev−1
p (V ) = {γ ∈ C∞(U, F ) : γ(p) ∈ V } = b{p}, V c.

Since the inclusion C∞(U, F )! C(U, F ) is continuous, the statement follows.

Lemma A.2.4 ([18, Lemma 4.6, p.24]). Let E,F be locally convex spaces and
U ⊆ E open. For every open subset V ⊆ U , the restriction map

ρV : C∞(U, F )! C∞(V, F ), γ 7! γ|V ,

is continuous. Moreover, for every open cover U of U , the topology on C∞(U, F )
is initial with respect to the family (ρV )V ∈U.

Lemma A.2.5 ([18, Lemma 4.5, p.23]). Let E,F be locally convex spaces and
U ⊆ E open. If f : U ! R is a smooth map, then so is the pointwise product

mf : C∞(U, F )! C∞(U, F ), γ 7! f · γ.

Lemma A.2.6. Let E,F be locally convex and U, V ⊆ E open. If h : U ! R is a
smooth map with support supp(h) = K ⊆ U , then the map

m˜
h : C∞(U, F )! C∞(V, F ), γ 7! (h · γ)˜,

where

(h · γ)˜(x) :=

{
h(x) · γ(x) if x ∈ U ∩ V,
0 else,

is well-defined, linear and continuous.

Proof. We may assume U ∩ V 6= ∅ because the other case is trivial. We have
(h · γ)˜|V \K = 0 and (h · γ)˜|V ∩U = h · γ. Because (V ∩U)∪ (V \K) = V , it follows
that (h · γ)˜ is smooth. The claim now results from Lemma A.2.4 and Lemma
A.2.5.

Proposition A.2.7 (cf. [18, Proposition 12.2, p.67] and [23]). Let E,F be locally
convex vector spaces, V ⊆ F open, H be a finite-dimensional vector space and
U ⊆ H open. Then a mapping g : V ! C∞(U,E) is smooth if and only if

g∧ : V × U ! E, g∧(x, y) := g(x)(y)
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is smooth. In this case, we have(
dmg(x)(v)

)
(u) = dmg∧(x, u)

(
(v1, 0), . . . , (vm, 0)

)
for m ∈ N, x ∈ V , v = (v1, . . . , vm) ∈ Fm and u ∈ U .

Proposition A.2.8 (cf. [18, Proposition 11.1, p.59]). Let M be a finite-
dimensional manifold and E a locally convex space. Then the evaluation map

ev : C∞(M,E)×M ! E, ev(f, x) := f(x)

is smooth.

A.2.1. Spaces of partially multilinear smooth maps

Let n ∈ N, let E0, . . . , En and F be locally convex spaces and let U ⊆ E0 be open.
Recall Definition 2.2.11. It follows easily from Lemma A.2.3 that the image of the
map

C∞(U,Ln(E1, . . . , En;F ))! C∞(U × E1 × · · · × En, F ), f 7! f∧

is closed. We denote the space C∞(U,Ln(E1, . . . , En;F )) equipped with the in-
duced topology by C∞(U,Ln(E1, . . . , En;F ))c and define C∞(U,Altn(E1;F ))c anal-
ogously.
We denote by Ln(E1, . . . , En;F )b the space Ln(E1, . . . , En;F ) equipped with

the topology of uniform convergence on bounded sets (see for example [23]). We
define Altn(E1;F )b analogously. It is well-known that Ln(E1, . . . , En;F )b is a
Banach space if all involved spaces are Banach spaces. In this case the evaluation
map

Ln(E1, . . . , En;F )b × E1 × · · · × En ! F, (L, v) 7! L(v),

is continuous and so are compositions of the form

Ln(E1, . . . , En;F )b × Lm(E ′1, . . . , E
′
m;Ei)b !

Ln+m(E1, . . . , Ei−1, E
′
1, . . . , E

′
m, Ei+1, . . . , En;F )b, (L,L′) 7! L(•, L′(•), •),

where 1 ≤ i ≤ n, m ∈ N, and E ′1, . . . , E ′m are also Banach spaces (see for example
[33, Proposition 2.6, p.7]). One easily sees that in this case the projection

An : Ln(E1;F )b ! Altn(E1;F )b

is continuous and that Altn(E1;F )b is closed in Ln(E1;F )b.

Lemma A.2.9. Let n ∈ N, E,F and H be locally convex spaces and let U ⊆ H
be open. Then the linear map

An : C∞(U,Ln(E;F ))c ! C∞(U,Altn(E;F ))c, f 7!
(
x 7! Anf(x)

)
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is continuous. In particular, C∞(U,Altn(E;F ))c is a closed vector subspace of
C∞(U,Ln(E;F ))c.

Proof. This follows immediately from Lemma A.2.2 and the definition of An.

Proposition A.2.10 ([20], cf. [23]). Let n ∈ N, E0, . . . , En and F be locally convex
spaces and U ⊆ E0 open. If f ∈ C∞(U,Ln(E1, . . . , En;F )), then f is smooth as a
map

f : U ! Ln(E1, . . . , En;F )c

and as a map
f : U ! Ln(E1, . . . , En;F )b.

Furthermore, we have

dmf(x)(w).v = dmf∧(x, v)((w1, 0), . . . , (wm, 0))

for all m ∈ N, x ∈ U , w = (w1, . . . , wm) ∈ Em
0 and v ∈ E1 × · · · × En.

Corollary A.2.11. Let n ∈ N, let E0, . . . , En and F be locally convex spaces and
let U ⊆ E0 open. If f ∈ C∞(U,Ln(E1, . . . , En;F )), then f is smooth as a map

f : U ! Ln(E1, . . . , En;F )b

and dmf(x)(w, v) as defined in Definition 2.2.11 coincides with dmf(x)(w).v for
all m ∈ N, x ∈ E0, v ∈ E1 × · · · × En and w ∈ Em

0 .

Proof. This follows from Proposition A.2.10.

Lemma A.2.12. Let n ∈ N, E1, . . . , En, F be Banach spaces, E0 be finite-
dimensional and U ⊆ E0 open. Then

C∞(U,Ln(E1, . . . , En;F ))! C∞(U,Ln(E1, . . . , En;F )b), f 7! f,

is an isomorphism of vector spaces.

Proof. By Corollary A.2.11, the map is well-defined. Let W := E1 × · · · × En, let
g ∈ C∞(U,Ln(E1, . . . , En;F )b) and let g∧ : U ×W ! F, (x,w) 7! g(x,w). The
evaluation

evW : Ln(E1, . . . , En;F )b ×W ! F, (L,w) 7! L(w)

is smooth. Thus, the map g∧ : U ×W ! F, (u,w) 7! evW (g(u), w) is smooth,
which implies g ∈ C∞(U,Ln(E1, . . . , En;F )).

Corollary A.2.13. Let n ∈ N0, E1, . . . , En and F be Banach spaces, H a locally
convex space, E0 finite-dimensional and let U ⊆ E0 as well as V ⊆ H be open.
Then a map

f : V ! C∞(U,Ln(E1, . . . , En;F )b)
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is smooth if and only if

(f∧)∧ : V × U × (E1 × · · · × En)! F, (x, u, v) 7! f(x)(u).v,

is smooth. We have(
dmf(x)(v)

)
(u).w = dm(f∧)∧(x, u, w)

(
(v1, 0, 0), . . . , (vm, 0, 0)

)
for m ∈ N, x ∈ V , v = (v1, . . . , vm) ∈ Hm, u ∈ U and w ∈ E1 × · · · × En.

Proof. Let W := E1 × · · · ×En and evW : Ln(E1, . . . , En;F )b ×W ! F, (L, v) 7!
L(v). If f is smooth, then by Proposition A.2.7 f∧ : V × U ! Ln(E1, . . . , En;F )b
is smooth. But then, (x, u, v) 7! f(x)(u).v = evW (f∧(x, u), v) is smooth. Con-
versely, if (f∧)∧ is smooth, then so is f∧ by Corollary A.2.11, and it follows from
Proposition A.2.7 that f is smooth. The formula for the derivative follows from
the respective formulas for the derivative in the corollary and the proposition.

Lemma A.2.14. Let n, l ∈ N, E1, . . . , En, E
′
1, . . . , E

′
l and F be Banach

spaces, E0 be finite-dimensional and U ⊆ E0 be open. Abbreviate W :=
C∞(U,Ln(E1, . . . , En;F )b), W ′ := C∞(U,Ll(E ′1, . . . , E ′l;En)b) and W ′′ :=
C∞(U,Ll(E ′1, . . . , E ′l;E0)b).

(a) The bilinear map

W ×W ′ ! C∞(U,Ln+l−1(E1, . . . , En−1, E
′
1, . . . , E

′
l;F )b)),

(f, g) 7!
(
x 7! f(x)(•, g(x)(•))

)
is continuous.

(b) For m ∈ N, the bilinear map

W ×W ′′ ! C∞(U,Ln+m+l−1(E0, . . . , E0, E
′
1, . . . , E

′
l, E1, . . . , En;F )b),

(f, g) 7!
(
x 7! dmf(x)(•, g(x)(•))(•)

)
is continuous. This is also true if n = 0 or l = 0.

Proof. (a) As mentioned above, the composition

Γ: Ln(E;F )b × Ln(E ′;E)b ! Ln+l−1(E, . . . , E,E ′, . . . , E ′;F )b,

(L,L′) 7! L(•, L′(•))

is continuous. By Proposition A.2.8, it follows that

W ×W ′ × U ! Ln+l−1(E1, . . . , En−1, E
′
1, . . . , E

′
l;F )b,

(f, g, u) 7! Γ(evW (f, u), evW ′(g, u))

is continuous, where evW : W × U ! Ln(E1, . . . , En;F )b and evW ′ : W
′ × U !

Ln(E ′1, . . . , E
′
l;En)b are the respective evaluations. The claim now follows from

Proposition A.2.7.
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(b) Using the the continuity of the composition, we see with Lemma A.2.12 that

W ! C∞(U,Ln+m(E0, . . . , E0, E1, . . . , En;F )b), f 7!
(
x 7! dmf(x)(•)

)
is continuous. Therefore, the claim follows from (a).

Lemma A.2.15. Let E and F be locally convex spaces, let U be an open subset
of a locally convex space and let r, n ∈ N. Then⊕

I∈Pn,|I|≤r

C∞(U,Altr−|I|(E;F ))c ! C∞(U,Altr(Rn ⊕ E;F ))c,

(fI)I∈Pn,|I|≤r 7!
∑

I∈Pn,|I|≤r

vI ∧ fI

is an isomorphism of topological vector spaces. If E and F are Banach spaces and
U is a subset of a finite-dimensional space, then⊕

I∈Pn,|I|≤r

C∞(U,Altr−|I|(E;F )b)! C∞(U,Altr(Rn ⊕ E;F )b),

(fI)I∈Pn,|I|≤r 7!
∑

I∈Pn,|I|≤r

vI ∧ fI

is an isomorphism, as well.

Proof. Both maps are obviously linear. That the first map is continuous follows
because for I ∈ Pn, I = {i1, . . . , i`}, ` ≤ r and f ∈ C∞(U,Altr−`(E;F ))c, we have

(vI ∧ f)∧ = f∧ ◦ (idU , γ)

with γ : (Rn ⊕ E)r ! Er−`,

γ(v) :=
∑
σ∈Sr

sgn(σ)

r!(r − `)!
(
vI(pr1(•), . . . , pr1(•)) · pr2(•), . . . , pr2(•)

)
(vσ)

and the projections pr1 : Rn × E ! Rn and pr2 : Rn × E ! E. We show that the
inverse is given by the continuous map

Ψ: C∞(U,Altr(Rn ⊕ E;F ))c !
⊕

I∈Pn,|I|≤r

C∞(U,Altr−|I|(E;F ))c,

f 7!
(
x 7! f(x)

(
(vi1 , 0), . . . , (vi|I| , 0), j

r−|I|
2 (•)

))
I∈Pn,|I|≤r

,

where I = {i1, . . . , i|I|} and where j2 : E ! Rn ⊕ E is the inclusion. It suffices
to show f(x)(v, w) =

∑
I(vI ∧ Ψ(f))I(x)(v, w) for all x ∈ U , w ∈ ({0} ⊕ E)r−`

and all v = ((vi1 , 0), . . . , (vi` , 0)). Using the antisymmetry of f(x)(v, •) and the
fact that the only contributing summand for fixed J := {i1, . . . , i`} is from the set
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vJ ∧ Altr−`(F ;E), we calculate

f(x)(v, w) =
∑

σ∈S`,τ∈Sr−`

sgn(στ)

`!(r − `)!
vJ(vσ) ·Ψ(f)J(x)(wτ ) = (vJ ∧Ψ(f)J(x))(v, w).

Note that for every α ∈ Sr that is not of the form (σ, τ) ∈ S` × Sr−`, we have
vJ · Ψ(f)J(x)(v, w)α = 0. That the second map is an isomorphism follows easily
with Corollary A.2.13 and the same inverse map.

Corollary A.2.16. Let n ∈ N0, E,F ∈ SVeclc and U ⊆ E0 open. Identify∧
(Rn)∗ ∼= Λn as in (4.8). Then

∏∞
l=0 C∞(U,Altl(Rn ⊕ E1;Fl))c is a topological

Λn,0-module and we have

∞∏
l=0

C∞(U,Altl(Rn ⊕ E1;Fl))c =

∞∏
l=0

(⊕
I∈Pn0

vI ∧ C∞(U,Altl(E1;Fl))c ⊕
⊕
I∈Pn1

vI ∧ C∞(U,Altl(E1;Fl+1))c

)
.

If E and F are Banach spaces and E0 is finite-dimensional, then∏∞
l=0 C∞(U,Altl(Rn ⊕ E1;Fl)b) is a topological Λn,0-module in the same way.

Proof. The associativity of the module multiplication can be seen in the same way
as the associativity of the usual wedge product (see for example [25, Proposition
5.30.1, p.141]). The rest follows from Lemma A.2.15.

Combinatorial formulas

Lemma A.2.17. Let l,m ∈ N0,m + l > 0 and let E0, E1, E and F be R-vector
spaces. Further, let gi ∈ Alti(F ;E0) for i ∈ N even, gj ∈ Altj(F ;E1) for j ∈ N
odd and f ∈ Lm+l(E0, . . . , E0, E1, . . . , E1;E). Then for all n ∈ N, τ ∈ Sl and
τ ′ ∈ Sm, we have∑

(α,β)∈Inm,l

Anf(gα × gβ) =
∑

(α,β)∈Inm,l

sgn(τ)Anf(•τ
′
, •τ )(gα × gβ).

Proof. Let (α, β) ∈ Inm,l, τ ∈ Sl, τ ′ ∈ Sm and (v, w) ∈ Fm × F l. We partition
w into l blocks wβi of length βi, define wβ as the tuple (wβ1 , . . . , wβl) and let
βτ = (βτ(1), . . . , βτ(l)). Analogously, we define vα and ατ ′ . With this notation, we
easily see f(•τ

′
, •τ )(gα× gβ)(v, w) = f(gατ ′ (v

ατ ′ ), gβτ (w
βτ )). Since the length of the

blocks vαi is even and that of wβi is odd, there exists a σ(α,β) ∈ Sn depending on
τ ′ and τ such that f(gατ ′ (v

ατ ′ ), gβτ (w
βτ )) = f(gατ ′ × gβτ )(v, w)σ(α,β) and sgn(τ) =

sgn(σ(α,β)). Now, we have∑
(α,β)∈Inm,l

Anf(gα × gβ) =
∑

(α,β)∈Inm,l

Anf(gατ ′ × gβτ ) =
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∑
(α,β)∈Inm,l

sgn(σ(α,β))A
nf(gατ ′ × gβτ )(•

σ(α,β)) =

∑
(α,β)∈Inm,l

sgn(τ)Anf(•τ
′
, •τ )(gα × gβ).

Lemma A.2.18. Let k ∈ N, E,E1, . . . , Ek and F be R-vector spaces, f ∈
Lk(E1, . . . , Ek;F ), β ∈ Nk such that |β| = n and gl ∈ Altβl(Rn ⊕ E;El) with
gl = vIl ∧ Il

gl, where il := |Il| and Il
gl ∈ Altβl−il(Rn ⊕ E;El). Then, we have

n!

β!
Anf(g1, . . . , gk) =

(−1)N · (n− i1 − . . .− ik − s)!
(β1 − i1)! · · · (βk − ik)!

vI1 ∧ . . . ∧ vIk ∧ An−i1−...−ik−sf(I1g1, . . . , Ikgk),

where N =
∑k

j=2

∑j−1
l=1 ij ·(βl−il) and s is the number of indices such that βl−il =

0, i.e., Ilgl ∈ El constant.

Proof. For 1 ≤ l ≤ k, σ ∈ Sn and τ ∈ Sβl , there exists a τ ′ ∈ Sn with sgn(τ ′) =
sgn(τ) such that

sgn(σ)f(g1, . . . ,sgn(τ)vIl · Ilgl(•
τ ), . . . , gk)(•

σ) =

sgn(στ ′)f(g1, . . . , vIl · Ilgl, . . . , gk)(•
τ ′σ).

Furthermore, there exists a ρl ∈ Sn with sgn(ρl) = (−1)(β1+...+βl−1)·il such that

vIl · f(g1, . . . , Ilgl, . . . , gk)(•
ρl) = f(g1, . . . , vIl · Ilgl, . . . , gk)(•).

The sign arises from swapping a block of length il with the preceding block of
length β1 + . . .+ βl−1. Using this, we calculate

n!

β!
Anf(g1, . . . , gl, . . . , gk)

=
n!

β!

∑
σ∈Sn

sgn(σ)

n!
f
(
g1, . . . ,

∑
τ∈Sβl

sgn(τ)

(βl − il)!il!
(vIl · Ilgl)(•

τ ), . . . , gk

)
(•σ)

= sgn(ρl)
β1!n!

β!(β1 − i1)!i1!
AnvIl · f(g1, . . . , Ilgl, . . . , gk)

=

{
sgn(ρl)

β1!(n−i1)!
β!(β1−i1)!

vI1 ∧ An−i1f(g1, . . . , Ilgl, . . . , gk) if βl − il > 0,

sgn(ρl)
β1!(n−i1−1)!
β!(β1−i1)!

vI1 ∧ An−i1−1f(g1, . . . , Ilgl, . . . , gk) if βl − il = 0.

Applying this equality inductively, we get

n!

β!
Anf(vI1 ∧ I1

g1, . . . , vIk ∧ Ik
gk) =

(−1)N
(n− i1 − . . .− ik − s)!
(β1 − i1)! · · · (βk − ik)!

vI1 ∧ . . . ∧ vIk ∧ An−i1−...−ik−sf(I1g1, . . . , Ikgk),
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where N =
∑k

j=2

∑j−1
l=1 ij · (βl − il).

Lemma A.2.19. Let l, n ∈ N0, E1, E and F be R-vector spaces, f ∈ Altl(E1;E)
and gi ∈ Alti(F ;E1) for odd i ∈ N. Define g′i := (0, g′i) : Rn × F i ! Rn × E1 for
i > 1 and g′1 := (idRn , g1). Then, we have∑

(α,β)∈In0,i+l

n!

β!
An(vI ∧ f)(g′β) = vI ∧

∑
(α,β)∈In−i0,l

(n− i)!(i+ l)!

β!l!
An−if(gβ)

for I ∈ Pn with i := |I|.
Proof. We calculate∑

(α,β′)∈In0,i+l

n!

β′!
An(vI ∧ f)(g′β′)

=
∑

(α,β′)∈In0,i+l

n!

β′!
An
( ∑
τ∈Si+l

sgn(τ)

i!l!
(vI · f)(•τ )

)
(g′β′)

=
∑

(α,β′)∈In0,i+l

n!

β′!
An (i+ l)!

i!l!
(vI · f)(g′β′)

=
∑

(α,β)∈In−i0,l

n!(i+ l)!

β!i!l!
AnvI · (f(gβ))

=
∑

(α,β)∈In−i0,l

(n− i)!(i+ l)!

β!l!
vI ∧ An−if(gβ).

To see the second equality note that by Lemma A.2.17, we have the same con-
tribution to the outer sum for every τ ∈ Si+l. Therefore, we may simply add
(i + l)!-times the summand for τ = id. For the third equality, we use that for
(α, β′) ∈ In0,i+l the contribution to the sum is zero unless β′j = 1 for j ≤ i. Thus, we
may assume β′ = (1, . . . , 1, β1, . . . , βl) for a unique (α, β) ∈ In−i0,l with β′! = β!.

A.3. Lie Groups

A Lie group is a group object in the category Man. Just like for finite-dimensional
Lie groups, we have an associated locally convex Lie algebra structure on TeG
(where e ∈ G is the unit element), denoted by L(G). Setting L(f) := Tef for a
morphism f : G ! H, one obtains a functor from the category of Lie groups to
the category of locally convex topological Lie algebras. See [41] and [23] for more
details.

Lemma A.3.1 ([55, Lemma A.3.3, p.133]). Let G be a Lie group, M a manifold
and α : G×M !M a group action such that for every g ∈ G the map α(g, •) : M !
M is a diffeomorphism . Then α is smooth if and only if there exists an open unity
neighborhood U ⊆ G such that α|U×M is smooth.
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If G is a Lie group and g ∈ G, then cg : G ! G, h 7! ghg−1 is an isomor-
phism of Lie groups. We obtain an isomorphism of Lie algebras Adg = Ad(g) :=
L(cg) : L(G)! L(G).

Proposition A.3.2 ([23]). Let G be a Lie group. Then

Ad: G× L(G)! L(G), (g, v) 7! Ad(g)(v),

is smooth. If [·, ·] is the Lie bracket of L(G), we have

dAd•(v)(w) = [w, v]

for w, v ∈ L(G) and Ad•(v) : G! L(G), g 7! Adg(v).

Remark A.3.3. Let N and G be Lie groups and α : G! Aut(N) be a morphism
of groups that defines a smooth action (g, n) 7! α(g)(n) of G on N . Then the
semidirect product N oαG is a Lie group. Identify N ∼= N ×{eG} ⊆ N oαG and
G ∼= {eN} × G ⊆ N oα G, where eN and eG are the respective neutral elements
of N and G. With this, we have gng−1 = α(g)(n) for all g ∈ G and n ∈ N and
therefore Ad(g, w) = L(α(g)).w for w ∈ L(N). Proposition A.3.2 implies now that
we have dAd•(v)(w) = [w, v] for v ∈ L(G) and w ∈ L(N).

Lemma A.3.4. Let G,G′, N,N ′ be groups and α : G ! Aut(N), α′ : G′ !
Aut(N ′) morphisms of groups. If f0 : G ! G′ and f1 : N ! N ′ are group mor-
phisms, then

f1 × f0 : N oα G! N ′ oα′ G
′

is a group morphism if and only if α′(f0(g)) ◦ f1 = f1 ◦ α(g) holds for all g ∈ G.

Proof. This follows by comparing

(f1 × f0)
(
(n1, g1) · (n2, g2)

)
=
(
f1(n1)f1(α(g1)(n2)), f0(g1)f0(g2)

)
and

(f1(n1), f0(g1)) · (f1(n2), f0(g2)) =
(
f1(n1)α′(f0(g1))(f1(n2)), f0(g1)f0(g2)

)
.

Proposition A.3.5 ([17, Proposition 7.3, p.995]). Let (Gi)i∈I be a family of
smooth Lie groups. Then there exists a uniquely determined Lie group structure
on the weak direct product∏∗

i∈I

Gi :=
{

(gi)i∈I ∈
∏
i∈I

Gi : gi = e for almost all i ∈ I
}

modelled on the locally convex direct sum
⊕

i∈I L(Gi) such that, for some charts
ϕi : Ri ! Si ⊆ L(Gi) of Gi around e taking e to 0, the mapping⊕

i∈I

Si !
∏∗

i∈I

Gi, (xi)i∈I 7!
(
ϕ−1
i (xi)

)
i∈I
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is a diffeomorphism of smooth manifolds onto an open subset of
∏∗

i∈I Gi.

Lemma A.3.6. In the situation of Proposition A.3.5, the projection

prj :
∏∗

i∈I

Gi ! Gj, (xi)i∈I 7! xj

is smooth for every j ∈ I.

Proof. Since prj is a group morphism, it suffices to see this in a unity neighborhood.
There it holds because the projection

⊕
i∈I L(Gi)! L(Gj) is smooth.

Lemma A.3.7. Let G be a Lie group and M a compact manifold (possibly with
boundary). Then the evaluation map

ev : C∞(M,G)×M ! G, (γ, x) 7! γ(x),

is smooth.

Proof. This follows from [2, Lemma 121, p.82] together with [3, Lemma 3.15,
p.199].

A.3.1. The Baker-Campbell-Hausdorff Series

If G is a Banach Lie group, then it has a smooth exponential map expG : L(G)! G
that is a diffeomorphism on a zero-neighborhood. For X, Y ∈ L(G) close enough
to zero, the multiplication in this diffeomorphism is given by the so called BCH
series

exp−1
G (expG(X) · expG(Y )) =

X +
∑
k,m≥0,
pi+qi>0

(−1)k

(k + 1)(q1 + . . .+ qk + 1)
· adp1

X adq1Y · · · adpkX adqkY admX(Y )

p1!q1! · · · pk!qk!m!
,

where adnX := [

n times︷ ︸︸ ︷
X, [X, . . . , [X, •] . . .]] : L(G) ! L(G) if [·, ·] is the Lie bracket of

G; see [41, Section IV.1, p.360ff.] for details and generalizations. If we have
a nilpotent Lie algebra over a field of characteristic zero, this formula defines a
polynomial group multiplication, which we call BCH multiplication (see Appendix
C).
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Multilinear bundles were introduced in [10] to describe higher order tangent bun-
dles. As it turns out, the structure of supermanifolds is closely related to the
structure of multilinear bundles. One important addition introduced below, is the
inverse limit of multilinear bundles.
For this section, we fix the infinitesimal generators εk, k ∈ N, with the relations

εiεj = εjεi and εiεi = 0. As usual, we set εI := εi1 · · · εir for I = {i1, . . . , ir} ⊆
{1, . . . , k}.

B.1. Multilinear Spaces

Definition B.1.1 ([10, MA.2, p.169]). Let k ∈ N. A (locally convex) k-
dimensional cube is a family (EI)I∈Pk+ of (locally convex) R-vector spaces with
the total space

E :=
⊕
I∈Pk+

EI .

We denote the elements of E by v =
∑

I∈Pk+
vI or by v = (vI)I∈Pk+ with vI ∈ EI .

By abuse of notation, we will call E a k-dimensional cube as well. For convenience,
we let a 0-dimensional cube be defined by the total space {0}. The spaces EI are
called the axes of E.
Let (EI) and (E ′I) be k-dimensional cubes. For each partition ν ∈P(I), I ∈ Pk+,

let f ν be an R-`(ν)-multilinear map

f ν : Eν := Eν1 × . . .× Eν`(ν)
! E ′I ,

vν := (vν1 , . . . , vν`(ν)
) 7! f ν(vν).

A morphism of (locally convex) k-dimensional cubes E and E ′ is a (continuous)
map of the form

f : E ! E ′,
∑
I∈Pk+

vI 7!
∑
I∈Pk+

∑
ν∈P(I)

f ν(vν).

The composition of two morphisms is simply the composition of maps. We define
the product E × E ′ by (E × E ′)I := EI × E ′I .

Clearly f is a polynomial map in the sense of Appendix C and thus a morphism
f of k-multilinear bundles (that are also locally convex k-multilinear bundles) is
continuous if and only if all f ν are continuous.
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B Multilinear Bundles

Theorem B.1.2.

(a) The (locally convex) k-dimensional cubes and their (continuous) morphisms
form a category, which we will call the category of (locally convex) k-
multilinear spaces.

(b) A morphism f : E ! E ′ of k-dimensional cubes is invertible if and only
if f ν is a bijection for all partitions of the form ν = {I}, I ∈ Pk+, i.e.,
for all partitions of length one. In this case f−1 is again a morphism of
k-dimensional cubes.

(c) If f : E ! E ′ is a morphism of locally convex k-dimensional cubes such that
f {I} is bijective with continuous inverse for all I ∈ Pk+, then f is invertible.

Proof. Items (a) and (b) are just [10, MA.6, p.172] and (c) follows from the in-
ductive construction in that proof.

We denote the category of k-multilinear spaces by MSpace(k).

Remark B.1.3. It is calculated in the proof of [10, Theorem MA.6, p.172] that
the composition of morphisms f : E ! E ′, g : E ′ ! E ′′ of k-dimensional cubes
E,E ′ and E ′′ is given by

(g ◦ f)ν(vν) =
∑
ω�ν

gω
(
fω1|ν(vω1|ν), . . . , f

ω`(ω)|ν(vω`(ω)|ν)
)
. (B.1)

Of course the sets ω1|ν, . . . , ω`(ω)|ν need not be in (graded) lexicographic order but
by abuse of notation, we also write gω for the map that arises from permuting the
factors.

Definition B.1.4. Let (EI) be a k-dimensional cube. For P ⊆ Pk+, we define the
restriction ((E|P )I) of (EI) by

(E|P )I :=

{
EI if I ∈ P
{0} if I ∈ Pk+ \ P.

It has the total space
E|P =

⊕
J∈P

EJ ⊕
⊕

I∈Pk+\P

{0}.

When convenient, we identify the restriction E|P with the respective n-dimensional
cube in the obvious way if P = Pn+ ⊆ Pk+ for n ≤ k. If E|Pk0,+ = E holds, i.e., if
EI = {0} for I ∈ Pk1, we call E purely even.

Lemma B.1.5. Let P ⊆ Pk+ be a subset such that {
∑

I εIaI : I ∈ P, aI ∈ R} is a
subalgebra of R[ε1, . . . , εk]. Then every morphism of k-multilinear spaces f : E !
E ′ can be restricted in a natural way to a morphism f |P : E|P ! E ′|P . This
restriction defines a functor

MSpace(k) !MSpace(k)
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B.1 Multilinear Spaces

that respects products.

Proof. Let E,E ′ be k-dimensional cubes and f : E ! E ′ be a morphism given by

f ν : Eν1 × · · · × Eν`(ν)
! E ′I ,

for ν ∈P(I) and I ∈ Pk+. If I /∈ P , then there exists 1 ≤ i ≤ `(ν) such that νi /∈ P ,
which implies f(E|P ) ⊆ E ′|P . Therefore, we can define f |P by setting (f |P )ν := f ν

if ν1, . . . , ν`(ν) ∈ P and (f |P )ν := 0 else. Let E ′′ be another k-dimensional cube
and g : E ′ ! E ′′ be a morphism. Since g(E ′|P ) = g|P (E ′|P ) holds, functoriality
follows. That the restriction respects products is obvious.

The purely even k-dimensional cubes clearly form a full subcategory of
MSpace(k) which we denote by MSpace

(k)

0
. It follows from Lemma B.1.5 that we

have an essentially surjective restriction functor

MSpace(k) !MSpace
(k)

0
, E 7! E|Pk0,+ and f 7! f |Pk0,+

for E,E ′ ∈MSpace(k) and f : E ! E ′ a morphism.

Definition B.1.6. Let I ∈ Pk+ and ν = {ν1, . . . , ν`} ∈ P(I). We define a tuple
(ν1| · · · |ν`) by concatenating the elements of ν1, . . . , ν` in ascending order and define
sgn(ν), the sign of ν, as the sign of the permutation needed to bring this tuple
into strictly ascending order.

This definition depends on the order one chooses on the partitions. However,
the sign of a partition taken with regard to the lexicographic order is the same as
when one takes it with regard to the graded lexicographic order, because changing
the position of sets with even cardinality does not change the sign. We will only
use these two orders in the following.

Example B.1.7. Let ν = {{2}, {1, 3}}. Then we get the tuple (ν1|ν2) = (2, 1, 3)
and to permutate this tuple to (1, 2, 3), the permutation σ = (1, 2) is needed. Thus
sgn(ν) = −1.

Lemma B.1.8. Let E,E ′ ∈MSpace
(k)

0
and f : E ! E ′ be a morphism defined by

the family (f ν)ν∈P({1,...,k}). Setting E− := E, we let the morphism f− : E− ! E ′−

be given by (sgn(ν)f ν)ν∈P({1,...,k}). This defines a functor

− : MSpace
(k)

0
!MSpace

(k)

0
.

The functor is inverse to itself and respects products.

Proof. Let E,E ′, E ′′ ∈MSpace
(k)

0
and let f : E ! E ′, g : E ′ ! E ′′ be morphisms.

To check functoriality, it suffices to assume I = {i1, . . . , is} ∈ Pk0,+ and ν ∈P0(I)
because if any |νj| is odd, then f ν = 0 holds. Recall formula (B.1) from Remark
B.1.3. On the one hand, we have(

(g ◦ f)−
)ν

(vν) = sgn(ν)
∑

ω∈P0(I), ω�ν

gω
(
fω1|ν(vω1|ν), . . . , f

ω`(ω)|ν(vω`(ω)|ν)
)
.
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B Multilinear Bundles

On the other hand, we calculate

(g− ◦ f−)ν(vν) =∑
ω∈P0(I),
ω�ν

sgn(ω) · sgn(ω1|ν) · · · sgn(ω`(ω)|ν)gω
(
fω1|ν(vω1|ν), . . . , f

ω`(ω)|ν(vω`(ω)|ν)
)
.

The sign sgn(ν) describes the reordering of the tuple (ν1| · · · |ν`(ν)) to (i1, . . . , is).
For ω � ν let ωj|ν = {νj1, . . . , ν

j
`j
} ∈P(ωj). Then sgn(ω)·sgn(ω1|ν) · · · sgn(ω`(ω)|ν)

gives the sign of the reordering of the tuple (ν1
1 | · · · |ν1

`1
| · · · |ν`1| · · · |ν```(ω)

) to
(i1, . . . , is). Since we only need to consider νj with even cardinality, reordering
(ν1

1 | · · · |ν1
`1
| · · · |ν`1| · · · |ν```(ω)

) to (ν1| · · · |ν`(ν)) does not change the sign and it fol-
lows sgn(ν) = sgn(ω) · sgn(ω1|ν) · · · sgn(ω`(ω)|ν). This implies g− ◦ f− = (g ◦ f)−.
That the functor respects products is obvious.

The motivation for the lemma is essentially to substitute the infinitesimal gen-
erators εi with λi. For more details see Remark B.2.10 below.

B.2. Multilinear Bundles

Definition B.2.1 (compare [10, 15.4, p.81]).

(a) Let E be a locally convex k-dimensional cube. A multilinear bundle (with
base M , of degree k) is a smooth fiber bundle F over a manifold M with
typical fiber E together with an equivalence class of bundle atlases such that
the change of charts leads to an isomorphism of locally convex k-dimensional
cubes on the fibers.

(b) Let F and F ′ be multilinear bundles of degree k with base M , resp. M ′. A
morphism of multilinear bundles is a smooth fiber bundle morphism f : F !
F ′ that locally (i.e., in bundle charts) leads to a morphism of the respective
k-dimensional cubes in each fiber.

We identify multilinear bundles of degree zero with their base manifold in the
obvious way.

It follows from Theorem B.1.2 that the multilinear bundles form a category
which we denote by MBun. Multilinear bundles of degree k form a full subcate-
gory denoted by MBun(k).

Remark B.2.2. The above definition means that in bundle charts a morphism
f : F ! F ′ of multilinear bundles of degree k with fiber E, resp. E ′, has the form

U × E ! U ′ × E ′, (x, (vI)) 7!
(
ϕ(x),

∑
I∈Pk+

∑
ν∈P(I)

f νx (vν)
)
,
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B.2 Multilinear Bundles

where ϕ : U ! U ′ is the local representation of the morphism induced by f on the
base manifolds and

f νx : Eν1 × . . .× Eν`(ν)
! E ′I

is a multilinear map for each x ∈ U , I ∈ Pk+ and ν ∈ P(I). A function of this
form is smooth if and only if ϕ : U ! U ′ is smooth and the maps (x, vν) 7! f νx (vν)
are all smooth. This can be easily checked by restricting to the closed subspaces
of E defined by a given partition.

Definition B.2.3. Let F and F ′ be multilinear bundles of degree k over M and
M ′, with typical fiber E and E ′. Further, let {ϕα : Vα ! Uα × E : α ∈ A} and
{ψβ : V ′α ! U ′α × E ′ : β ∈ B} be bundle atlases of F and F ′. We let the product
bundle F × F ′ be the multilinear bundle of degree k over M ×M ′ with typical
fiber E × E ′ given by the bundle atlas

{ϕα × ψb : Vα × V ′b ! (Uα × U ′b)× (E × E ′) : α ∈ A, β ∈ B}.

Lemma/Definition B.2.4. Let F be a multilinear bundle of degree k with typical
fiber E and bundle atlas {ϕα : Vα ! Uα × E : α ∈ A}. Let P ⊆ Pk+ be a subset
such that {

∑
I εIaI : I ∈ P, aI ∈ R} is a subalgebra of R[ε1, . . . , εk]. Each change

of bundle charts ϕαβ : Uαβ × E ! Uβα × E of F restricts to a map

ϕαβ|P : Uαβ × E|P ! Uβα × E|P .

We denote the multilinear bundle of degree k defined by the charts ϕα|(ϕa)−1(Uα×E|P )

by F |P and call it a subbundle of F . If P = Pn+ ⊆ Pk+ for k ≤ n, we identify F |P
with the respective multilinear bundle of degree n in the obvious way (compare to
Definition B.1.4). Any morphism f : F ! F ′ of multilinear bundles of degree k
restricts to a morphism f |P : F |P ! F ′|P . This restriction defines a functor

MBun(k) !MBun(k)

that respects products.

Proof. Applying Lemma B.1.5 pointwise to transition maps and morphisms of
multilinear bundles in their chart representation shows that F |P and f |P are well-
defined and that the restriction is functorial. That the restriction respects products
is obvious.

Note that in the situation of the definition, the identification of F |Pn+ with a
bundle of degree n is not a morphism of multilinear bundles but only a diffeomor-
phism of manifolds. There are cases where a subbundle is a multilinear bundle of
lesser degree in a natural way that are not contained in the above definition. One
important example is the following.

Lemma/Definition B.2.5. Let π : F ! M be a multilinear bundle of degree k
with typical fiber E. For each I ∈ Pk+, we have a subbundle F |{I} which has the
structure of a vector bundle with fiber EI in a natural way. The 2k − 1 vector
bundles obtained in this way are called the axes of F .
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B Multilinear Bundles

Proof. For any change of bundle charts ϕαβ : Uαβ × E ! Uβα × E of F , we have
that the corresponding change of bundle charts

ϕαβ|{I} : Uαβ × EI ! Uβα × EI

of F |{I} is linear in the second component. Thus the restricted charts define a
vector bundle with typical fiber EI .

Bertram uses the above fact in [10, 15.4, p.81] to define multilinear bundles by
letting these axes take an analogous role to the axes in cubes. It is easy to see
that both definitions are equivalent but our definition via bundle charts makes the
relation of multilinear bundles to supermanifolds more direct.

Definition B.2.6. A purely even multilinear bundle is a multilinear bundle F
of degree k such that F |Pk0,+ = F . The purely even multilinear bundles form a
full subcategory of MBun (resp. MBun(k)), which we denote by MBun0 (resp.
MBun

(k)

0
) and we have the essentially surjective restriction functor

MBun!MBun0, F 7! F |Pk0,+ and f 7! f |Pk0,+

for F, F ′ ∈MBun(k) and f ∈ HomMBun(k)(F, F ′) (resp. MBun(k) !MBun
(k)

0
).

Example B.2.7. Let k ∈ N.

(a) Let U ⊆ E be an open subset of a locally convex vector space E. Define
inductively TU := U × ε1E, T 2U = T (U × ε1E) = U × ε1E × ε2E × ε1ε2E
and so on. Then T kU = U ×

⊕
I∈Pk+

εIE is a trivial multilinear bundle over
U of degree k. The axes are the trivial vector bundles U × εIE ! U .

(b) Let M be a manifold with the atlas {ϕα : Vα ! Uα : α ∈ A}. Then T kM is a
multilinear bundle overM of degree k with the bundle atlas {T kϕα : T kVα !
T kUα : α ∈ A}. Let ϕαβ be a change of charts. Using (a), the corresponding
change of bundle charts is given by

T kϕαβ

(
x,
∑
I∈Pk+

εIvI

)
=
(
ϕαβ(x),

k∑
m=1

∑
|I|=m

εI
∑

ν∈P(I)

dmϕαβ(x)(vν)
)

(see [10, Theorem 7.5, p.47]). The axes of T kM are thus all isomorphic
to TM and we write εITM to differentiate between them. It also follows
from [10, Theorem 7.5, p.47] that for each smooth map f : M ! N between
manifolds, T kf is a morphism of multilinear bundles and we get a functor
T k : Man!MBun(k) in this way.

Lemma B.2.8. Let k ∈ N and let f : M ! N be a smooth map between manifolds.
For each I ∈ Pk1, we have

T kf(εITM) ⊆ εITN

with the notation of Example B.2.7(b).
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B.2 Multilinear Bundles

Proof. This is obvious because T kf is a morphism of multilinear bundles.

Lemma B.2.9. Applying the functor from Lemma B.1.8 pointwise to transition
maps and local chart representations of morphisms, we get a functor

− : MBun0 !MBun0, F 7! F− and h 7! h−,

where F, F ′ ∈ MBun
(k)

0
and h ∈ Hom

MBun
(k)

0

(F, F ′). This functor is an

equivalence of categories and restricts to equivalences of categories MBun
(k)

0
!

MBun
(k)

0
. All these functors respect products.

Proof. Locally this is obvious in view of Remark B.2.2 and Lemma B.1.8. By
functoriality, applying this to all the change of charts of F leads to new cocycles
that define a bundle F−. Likewise, applying it pointwise to the chart representation
of a morphism h : F ! F ′ of purely even multilinear bundles leads in a functorial
way to a morphism h− : F− ! F ′−. Obviously (F−)− ∼= F and (h−)− = h under
this identification, which shows that the functor is an equivalence of categories.
That these functors respect products also follows because it is true locally.

Remark B.2.10. The intuition behind the above equivalence of categories is as
follows. One can take the case of higher tangent bundles as exemplary and define
k-dimensional cubes as families (εIEI) of vector spaces. A morphism f : E ! E ′

of k-multilinear spaces consists then as before of maps

f ν : Eν1 × · · · × Eν`(ν)
! E ′I

for I ∈ Pk+, ν ∈P(I), where it is understood that

f ν(εν1vν1 , . . . , εν`(ν)
vν`(ν)

) = εν1 · · · εν`(ν)︸ ︷︷ ︸
=εI

f ν(vν1 , . . . , vν`(ν)
).

Because of the relations of the infinitesimal generators, this point of view also
explains why one only considers partitions for the morphisms and why the order
of the partitions can usually be disregarded.
We would like to substitute the generators εi with the odd generators λi. One

immediately sees that the order of the partition now plays a role, as a change of
signs might occur. However, as we have shown in Lemma B.1.8, in the case of
purely even multilinear bundles a consistent choice can be made such that this
substitution leads to well-defined bundles and morphisms. In general this is not
the case. With the notation of Lemma B.1.8 one could define a new composition
law

(g− ◦ f−)ν :=∑
ω�ν

sgn(σω|ν)sgn(ω)sgn(ω1|ν) · · · sgn(ω`(ω)|ν)gω
(
fω1|ν , . . . , fω`(ω)|ν

)
,
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B Multilinear Bundles

where σω|ν ∈ S|I| is the permutation that reorders (ν1| · · · |ν`) to (ν1
1 | · · · |ν

`(ω)
``(ω)

) .
If all νi have even cardinality then sgn(σω|ν) = 1 and we get the same definition
as above. In general the formula does not appear to lead to natural manifold
structures though there is one interesting case where it does: If only those f ν , where
ν contains at most one set of odd cardinality, are not zero, the same argument as
before applies. This means that for a supermanifoldM of Batchelor type, at least
M−

Λ would be well-defined. However, morphisms remain problematic.

B.2.1. The tangent bundle of a multilinear bundle

Let F be a multilinear bundle of degree k over M with typical fiber E. Assume
thatM is modelled on E0 and let ϕ : U×E ! V ×E be a change of bundle charts.
Then by definition

ϕ(x, (vI)I∈Pk+) = ϕ0(x) +
∑
I∈Pk+

∑
ν∈P(I)

bν(x, vν),

where ϕ0 : U ! V is a diffeomorphism and bν(x, •) : Eν1 × · · · × Eν`(ν)
! EI are

multilinear maps for x ∈ U , ν ∈P(I). For y ∈ E0 and (wI)I∈Pk+ ∈ E, we calculate

dϕ
(
(x, (vI)I∈Pk+), (y, (wI)I∈Pk+)

)
=

dϕ0(x, y) +
∑
I∈Pk+

∑
ν∈P(I)

d1b
ν(x, y, vν) +

∑
I∈Pk+

∑
ν∈P(I)

`(ν)∑
i=1

bν(x, vν
∧

i),

where vν
∧

i := (vν1 , . . . , vνi−1
, wνi , vνi+1

, . . . , vν`(ν)
) ∈ Eν . The corresponding change

of charts for the tangent bundle TF is given by

(ϕ, dϕ) : (U × E0)× E2 ! (V × E0)× E2.

For I ∈ Pk+ let prI1 : EI×EI ! EI be the projection to the first and prI2 : EI×EI !
EI be the projection to the second component. Then

(ϕ, dϕ)
(
(x, (vI)I∈Pk+), (y, (wI)I∈Pk+)

)
= (ϕ0(x), dϕ0(x, y))+∑

I∈Pk+

∑
ν∈P(I)

(
prI1(bν(x, vν)) + prI2

(
d1b

ν(x, y, vν) +
∑`(ν)

i=1 b
ν(x, vν
∧

i)
))

holds. Thus, TF can be seen as a multilinear bundle of degree k over TM with
typical fiber E×E. The exact same calculation shows that for a morphism of mul-
tilinear bundles f : F ! F ′, the tangent map Tf : TF ! TF ′ is also a morphism
of multilinear bundles. We have thus shown:

Lemma B.2.11. For each k ∈ N0, the tangent functor T : Man!Man restricts
to a functor

T : MBun(k) !MBun(k).
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The functor T : MBun(k) !MBun(k) commutes with restrictions of bundles:

Lemma B.2.12. Let k ∈ N0, F ∈MBun(k) and P ⊆ Pk+ as in Lemma/Definition
B.2.4. Then (TF )|P ∼= T (F |P ) holds as multilinear bundles. If f : F ! F ′ is a
morphism of multilinear bundles, then (Tf)|P = T (f |P ) : T (F |P )! T (F |P ) holds
under the above identification.

Proof. Let F have typical fiber E and let the base M of F be modelled on E0.
Since each change of charts ϕαβ : Uαβ × E ! Uβα × E of F restricts to a map

ϕαβ|P : Uαβ × E|P ! Uβα × E|P ,

we have that dϕαβ restricts to

dϕαβ|P = d(ϕαβ|P ) : (Uαβ × E0)× (E|P × E|P )! Uβα × E|P .

It follows that (ϕαβ, dϕαβ)|P = (ϕαβ|P , dϕαβ|P ) holds. We can repeat the same
argument for morphisms.

By using this lemma, we shall simply write TF |P , resp. Tf |P , for the respective
restrictions in the sequel.

B.3. Inverse Limits of Multilinear Bundles

Lemma B.3.1. Let k ∈ N0 and F be a multilinear bundle of degree k with typical
fiber E and the bundle atlas {ϕα : Vα ! Uα×E : α ∈ A}. For n ≤ k, the projections

(qkn)α : Uα × E ! Uα × E|Pn+ ,
(
x, (vI)I∈Pk+

)
7!
(
x, (vI)I∈Pn+

)
define a smooth surjective morphism qkn : F ! F |Pn+ with ϕα|Pn+ ◦ q

k
n ◦ ϕ−1

α = (qkn)α.

Proof. We only need to show that qkn is well-defined, then smoothness and sur-
jectivity follow immediately. Let α, β ∈ A, x ∈ Uαβ and (vI)I∈Pk+ ∈ E|Pn+ . Then
ϕαβ(x, (vI)I) = ϕαβ|Pn+(x, (vI)I) holds for the change of bundle charts ϕαβ. In
particular, we have ϕβα|Pn+ ◦ ϕαβ(x, (vI)I) = (x, (vI)I). It follows

ϕβα|Pn+ ◦ (qkn)β ◦ ϕαβ = (qkn)α

on Uαβ × E. With this, the lemma follows from the local description of smooth
maps between manifolds.

Definition B.3.2. Let (Fk)k∈N0 be a family of multilinear bundles Fk of degree k
with typical fiber E(k) and respective bundle atlas {ϕ(k)

α : V
(k)
α ! Uα×E(k) : α ∈ A}

such that for all n ≤ k, we have E(k)|Pn+ = E(n) and ϕ
(k)
α |Pn+ = ϕ

(n)
α with the

identifications from Definition B.1.4 and Lemma/Definition B.2.4. In particular
Fk|Pn+ = Fn and all Fk are bundles over F0. Then the family(

(Fk)k∈N0 , (q
k
n)n≤k

)
,
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B Multilinear Bundles

where qkn is defined as in Lemma B.3.1, is called an inverse system of multilinear
bundles . We shall simply write (Fk, q

k
n) in this situation. We call {ϕαk : k ∈ N0, α ∈

A} an adapted atlas of (Fk, q
k
n). Two adapted atlases of (Fk, q

k
n) are equivalent if

they lead to equivalent atlases for each Fk.
Let (Fk, q

k
n) and (F ′k, q

′k
n ) be inverse systems of multilinear bundles. A mor-

phism of inverse systems of multilinear bundles is a family (fk)k∈N0 of morphisms
fk : Fk ! F ′k of multilinear bundles such that q′kn ◦ fk = fn ◦ qkn for all n ≤ k. We
write (fk)k∈N0 : (Fk, q

k
n)! (F ′k, q

′k
n ).

Proposition B.3.3. The inverse system of multilinear bundles with their mor-
phisms are a subcategory of the category of inverse systems of topological spaces
and their morphisms. Let (Fk, q

k
n) be an inverse system of multilinear bundles and

{ϕ(k)
α : k ∈ N0, α ∈ A} be an adapted atlas of (Fk, q

k
n). Then {lim −k ϕ

(k)
α : α ∈ A} is

an atlas of lim −k Fk. Equivalent adapted atlases of (Fk, q
k
n) lead to equivalent atlases

of lim −k Fk. With this manifold structure, lim −k fk : lim −k Fk ! lim −k F
′
k is smooth for

morphisms (fk)k∈N0 : (Fk, q
k
n)! (F ′k, q

′k
n ) of inverse systems of multilinear bundles.

Proof. Let Fk have the typical fiber E(k) and let F0 be modelled on E∅. It is clear
from the local definition in Lemma B.3.1 that qnm ◦ qkn = qkm for all m ≤ n ≤ k. It
then follows from the definition that inverse systems of multilinear bundles, resp.
morphisms thereof, are inverse systems, resp. morphisms thereof, in the usual
sense. Clearly, the composition of two morphisms of inverse systems of multilinear
bundles is again a morphism of this type. Let {ϕ(k)

α : V
(k)
α ! Uα×E(k) : k ∈ N0, α ∈

A} be an adapted atlas of (Fk, q
k
n). By definition E(k)

I = E
(n)
I holds for all n ≤ k

and I ∈ Pn+. Thus, for each α ∈ A, the local projection

(qkn)α : Uα ×
∏
I∈Pk+

E
(k)
I ! Uα ×

∏
I∈Pn+

E
(n)
I

is just the usual projection and lim −k(Uα × E(k)) = Uα ×
∏

I⊆N,0<|I|<∞E
(max(I))
I ,

which is an open subset of the locally convex space E∅ ×
∏

I⊆N,0<|I|<∞E
(max(I))
I .

Also by definition, qkn ◦ϕ
(k)
α = ϕ

(n)
α ◦ (qkn)α holds for all α ∈ A, n ≤ k and therefore

lim −k ϕ
(k)
α : lim −k(Uα×E

(k))! lim −k Fk is well-defined and a homeomorphism because
each ϕ(k)

α is so. We have already seen in Lemma B.3.1 that the changes of charts
ϕ

(k)
αβ : Uαβ ×E(k) ! Uβα×E(k) define a morphism of inverse systems of multilinear

bundles and that we have

lim −k ϕ
(k)
β ◦ lim −k

(
ϕ

(k)
α

)−1|Uαβ×E(k) = lim −k ϕ
(k)
αβ .

Clearly, lim −k(Uαβ ×E
(k)) is an open subset of lim −k(Uα ×E

(k)) and because ϕ(k)
αβ is

smooth for each k ∈ N0, so is lim −k ϕ
(k)
αβ by Lemma A.1.3.

It remains to be seen that lim −k Fk is covered by {lim −k ϕ
(k)
α : α ∈ A}. Because

the index set N0 is countable and the maps qkn are all surjective, the projections
qn : lim −k Fk ! Fn are also surjective (see for example [16, Exercise 7.6.10, p. 269]).
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B.3 Inverse Limits of Multilinear Bundles

For each n ∈ N0 and α ∈ A, we have (qn0 )−1((ϕ
(0)
α )−1(Uα)) = (ϕ

(n)
α )−1(Uα × E(n))

which implies

q−1
0 ((ϕ

(0)
α )−1(Uα)) = lim −n(ϕ

(n)
α )−1

(
lim −n(Uα × E(n))

)
.

Since the sets (ϕα0 )−1(Uα) cover F0, the result follows. The change of charts with
an adapted atlas leads to smooth maps in the same way. Because q0 : lim −k Fk ! F0

is surjective and for each x ∈ F0, we have that q−1
0 ({x}) is homeomorphic to the

Hausdorff space lim −k E
(k), it follows that lim −k Fk is Hausdorff.

Now, let (fk)k∈N0 : (Fk, q
k
n) ! (F ′k, q

′k
n ) be a morphism of inverse systems of

multilinear bundles and {ψ(k)
β : V ′β ! U ′β × E ′(k) : k ∈ N0, β ∈ B} be an adapted

atlas of (F ′k, q
′k
n ). We define

fαβk := ψ
(k)
β ◦ fk ◦ (ϕ(k)

α )−1|
ϕ

(k)
α ◦f−1

k (V
′(k)
β )

for β ∈ B and α ∈ A. Because fk is a morphism of multilinear bundles, we have
ϕ

(k)
α ◦ f−1

k (V
′(k)
β ) =

(
ϕ

(0)
α ◦ f−1

0 (V
′(0)
β )

)
× E(k) for all k ∈ N0. By definition,

(q′kn )β ◦ fαβk = fαβn ◦ (qkn)α

holds and thus

lim −k ψ
(k)
β ◦ lim −k fk ◦ (lim −k ϕ

(k)
α )−1 = lim −k f

αβ
k

holds on lim −k
((
ϕ

(0)
α ◦ f−1

0 (V
′(0)
β )

)
× E ′(k)

)
for all α ∈ A, β ∈ B. These maps are

smooth by the same argument as above.

We denote by MBun(∞) the category of all manifolds arising as such a limit
(together with an equivalence class of atlases that come from limits of equivalent
adapted atlases) and morphisms that come from a respective limit of morphisms.
Taking the inverse limit gives us a functor from the category of inverse systems
of topological spaces to the category of topological spaces that respects products.
By the above, if we restrict this functor to the subcategory of inverse systems
of multilinear bundles (and the respective morphisms), we get a functor into the
category MBun(∞). We also get a functor to Man along the forgetful functor.

Example B.3.4. Let M be a manifold modelled on the locally convex space E
with the atlas {ϕα : Vα ! Uα : α ∈ A}. For n ∈ N0 we set πnn := idTnM and
we have the natural projection πn+1

n : T n+1M ! T nM . For n < k, we define
inductively πkn := πkk−1 ◦ · · · ◦ πn+1

n : T kM ! T nM . Continuing from Example
B.2.7(b), one easily sees that (T kM,πkn) is an inductive system of multilinear bun-
dles with the adapted atlas {T kϕα : T kVα ! Uα ×

∏
I∈Pk+

εIE : α ∈ A, k ∈ N0}.
It follows from Proposition B.3.3 that T∞M := lim −k T

kM is a manifold with the
atlas {lim −k ϕα : α ∈ A}. For any smooth map f : M ! N between manifolds,
one obviously has π′kn ◦ T kf = T nf ◦ πkn if π′kn : T kN ! T nN denotes the projec-
tion. Thus (T kf)k∈N0 is a morphism of inductive systems of multilinear bundles
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B Multilinear Bundles

and T∞f := lim −k T
kf : T∞M ! T∞N is smooth. Moreover, for any Lie group

(G, µ, i, e), we get a Lie group (T∞G, T∞µ, T∞i, e) because the inverse limit pre-
serves products.

Lemma B.3.5. If (Fk, q
k
n) is an inverse system of multilinear bundles, then so is

(TFk, T q
k
n) and

T lim −k((Fk, q
k
n)) ∼= lim −k(TFk, T q

k
n)

holds as manifolds. If (fk)k∈N0 : (Fk, q
k
n) ! (F ′k, q

′k
n ) is a morphism of inverse

systems of multilinear bundles, then so is (Tfk)k∈N0 and we have

lim −k Tfk = T lim −k fk : T lim −k((Fk, q
k
n))! T lim −k((F

′
k, q
′k
n ))

under the above identification. In particular, we may consider T lim −k((Fk, q
k
n)) as

an object in MBun(∞) in a natural way.

Proof. One easily sees from the local description of qkn in Lemma B.3.1 that Tqkn
is the projection TF ! TF |Pn+ . If {ϕ(k)

α : k ∈ N0, α ∈ A} is an adapted atlas of
F , it follows by functoriality of the tangent functor that {Tϕ(k)

α : k ∈ N0, α ∈ A}
is an adapted atlas of (TFk, T q

k
n). For the same reason (Tfk)k∈N0 : (TFk, T q

k
n) !

(TF ′k, T q
′k
n ) is again a morphism. By Lemma A.1.3 d lim −k ϕ

(k)
αβ = lim −k dϕ

(k)
αβ holds

for any change of charts ϕ(k)
αβ . Thus, the change of charts of T lim −k((Fk, q

k
n)) and

lim −k(TFk, T q
k
n) is the same. The same argument works for morphisms.

In other words, taking the inverse limit commutes with the tangent functor.
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C. Polynomial Groups

C.1. Basic Definitions

Polynomial groups were introduced in [10] to construct a suitable exponential
map in the context of groups that have a multilinear structure. They are closely
related to formal groups (see [13] or [51]). In characteristic zero, the categories
of Lie algebras and formal groups are equivalent (see [51, p.112]) and as we will
see, the category of polynomial groups corresponds to the category of nilpotent
Lie algebras. In our discussion, we follow [10, PG, p.192ff.]. While generalizations
to other base fields are possible, we only consider the real case to stay consistent
with the rest of this work.

Definition C.1.1. Let E and F be (real) vector spaces. A homogeneous polyno-
mial map of degree k ∈ N is a map pk : E ! F , such that for all v ∈ E, we have
pk(v) = bk(v, . . . , v) for an R-k-multilinear map bk : Ek ! F . A homogeneous
polynomial map of degree 0 is a constant map p0 : E ! F . A polynomial map
p : E ! F is a finite sum p =

∑
pk of homogeneous polynomial maps. The degree

of p is the largest index such that pk is non-zero.

Clearly, the composition of two polynomial maps is again a polynomial map.
In characteristic zero one can recover the homogeneous parts of a polynomial by
formal differential calculus (compare [10, PG, p.192]). In particular, if E and F
are locally convex spaces then p is smooth if and only if all bk are continuous (see
[23]).
Let E,E ′ and F be R-vector spaces and let q : E × E ′ ! F be a polynomial

map of degree k. We write

q(x, y) =
∑
r+s≤k

qr,s(x, y),

for the decomposition of q(x, y) into parts qr,s(x, y) which are homogeneous of
degree r in x and homogeneous of degree s in y.

Definition C.1.2. A polynomial group of degree at most n is a vector space E
that has a group structure (E,m, i, 0) such that m : E × E ! E and i : E ! E
are polynomial maps and all iterated products

m(k) : Ek ! E, (x1, . . . , xk) 7! x1 · · ·xk,

for k ∈ N, are polynomial maps of degree at most n.
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C Polynomial Groups

Note that the iterated products are automatically polynomial because so is m =
m(2) and the composition of polynomial maps is again polynomial.

Example C.1.3.
(a) Let E be a k-multilinear space. If E is a group such that the multiplication

and inversion are morphisms of k-multilinear spaces, then E is a polynomial
group of degree at most k. Indeed, that the maps are polynomials of degree
at most k follows from the definition of morphisms of k-multilinear spaces
and the iterated product maps are also morphisms of k-multilinear spaces.

(b) Let (G,m, i, e) be a Lie group modelled on E0 and ϕ : U ! V be a chart
of G such that e ∈ U and ϕ(e) = 0. Then the vector space structure
given by T kϕ : (T kG)e ! (T kE)0 turns (T kG)e into a polynomial group of
degree at most k for each k ∈ N. This follows because by Example B.2.7(b)
the multiplication (as well as the iterated product maps) and the inversion
are morphisms of k-multilinear spaces in the chart T kϕ. This can also be
done without a chart using the left (or right) trivialization from Section E.1
(compare [10, PG.2(2), p.193]).

C.2. The Lie Bracket and the Exponential Map

Now, let (E,m, i, 0) be a polynomial group of degree n. By decomposing the
iterated multiplication maps into multihomogeneous parts, we write

m(j) =
∑

p1,...,pj≥0
p1+...+pj≤k

m(j)
p1,...,pj

.

In other words

m(j)
p1,...,pj

(x1, . . . , xj) = bl(x1, . . . , x1︸ ︷︷ ︸
p1 times

, . . . , xj, . . . , xj︸ ︷︷ ︸
pj times

)

for a multilinear map bl : El ! E and l = p1 +. . .+pj. In this notationm(2)
1,1 = m1,1

has a special meaning: One can show that

[x, y] := m1,1(x, y)−m1,1(y, x)

defines a nilpotent Lie bracket on E (see [10, PG.3, p.193f.] and [13, Ch. III,
Par. 5, Prop. 1, p.299]). We denote E equipped with this Lie algebra structure
by L(E). To get some intuition, consider the following. It is quite obvious that
m0,1(x, y) = y = m1,0(y, x) and i1(x) = −x for all x, y ∈ E. Let now

α : E × E ! E, (x, y) 7! m(x,m(y, i(x))) = xyx−1

be the conjugation. The map α is clearly polynomial and we calculate

α1,1(x, y) = m1,1(x,m1,0(y, i0(x))) +m0,1(x,m1,1(y, i1(x)))
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C.2 The Lie Bracket and the Exponential Map

= m1,1(x, y) +m1,1(y,−x) = [x, y]

for x, y ∈ E. Furthermore, we define

ψj : E ! E, x 7!
∑

p1,...,pj>0

m(j)
p1,...,pj

(x, . . . , x)

and denote the homogeneous part of degree j of ψj by ψj,j. Note that all the above
maps are polynomials of degree at most n because m(j) is so. By using ψj,j, one
obtains the following crucial theorem.

Theorem C.2.1 ([10, Theorem PG.6, p.196]). Let E be a polynomial group of
degree n ∈ N. Then there exists a unique exponential map, given by

expE : L(E)! E, x 7!
n∑
j=1

1

j!
ψj,j(x),

with the following properties:

(a) the linear term of expE is the identity,

(b) for all X ∈ E and s, t ∈ R, one has expE((t+ s)X) = expE(tX) · expE(sX),

(c) expE is bijective and the inverse function is given by the polynomial map

logE : E ! L(E), x 7!
n∑
j=1

(−1)j−1

j
ψj(x).

This exponential map has the same relation to one-parameter groups as the
exponential map of a Lie group. For X ∈ E, there exists exactly one poly-
nomial morphism of groups γX : R ! E such that (γX)1(1) = X and we have
expE(X) = γX(1) (see the proof of Theorem C.2.1). From this, one easily deduces
the functoriality of the exponential map like in the Lie group case.

Lemma C.2.2. Let E and F be polynomial groups and ϕ : E ! F be a polynomial
morphism of polynomial groups. Then the linear part L(ϕ) of ϕ is a Lie algebra
morphism of L(E) to L(F ) and the diagram

E
ϕ // F

L(E)

expE

OO

L(ϕ) // L(F )

expF

OO

commutes.

Proof. Let m and m′ be the multiplication of E and F . We directly calculate

ϕ1 ◦m1,1 = (ϕ ◦m)1,1 = (m′ ◦ (ϕ× ϕ))1,1 = m′1,1(ϕ1 × ϕ1),
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C Polynomial Groups

which shows that L(ϕ) = ϕ1 is a morphism of Lie algebras. Let γX : R! E be the
unique polynomial morphism of groups such that (γX)1(1) = X ∈ E. Then ϕ ◦ γX
is a polynomial morphism of groups and we have (ϕ ◦ γX)1(1) = ϕ1((γX)1(1)) =
L(ϕ)(X). Thus, ϕ ◦ γX = γL(ϕ)(X) holds and ϕ ◦ expE(X) = expF (L(ϕ)(X))
follows.

Moreover, morphisms of Lie algebras uniquely determine morphisms of the re-
spective polynomial groups.

Lemma C.2.3. Let E and F be polynomial groups and φ : L(E) ! L(F ) be a
morphism of Lie algebras. Then there exists a unique polynomial morphism of
groups Φ: E ! F such that L(Φ) = φ.

Proof. Let (L(E), ∗) be the nilpotent Lie algebra L(E) equipped with the group
structure given by the BCH multiplication. By [10, Theorem PG.8, p.198],
expE : (L(E), ∗) ! E is an isomorphism of polynomial groups. Because φ is a
morphism of Lie algebras, φ : (L(E), ∗) ! (L(F ), ∗) is a polynomial morphism of
groups. Then expF ◦φ ◦ exp−1

E : E ! F is a polynomial morphism of groups as
well. We have L(expF ◦φ ◦ exp−1

E ) = L(φ) = φ because φ is linear. Conversely, let
Φ: E ! F be a polynomial morphism of groups with L(Φ) = φ. Then, we have

exp−1
F ◦Φ ◦ expE(X) = exp−1

F (γL(Φ)(X)(1)) = L(Φ)(X) = φ(X)

for X ∈ E. Uniqueness follows since expE and expF are isomorphisms.

Since every nilpotent Lie algebra equipped with the BCH multiplication is a
polynomial group (see [10, PG.2(3), p.192]), the above lemmas together with [10,
Theorem PG.8, p.198] implies that the categories of nilpotent Lie algebras and
polynomial groups are equivalent (in characteristic zero).

Lemma C.2.4. Let E and F be polynomial groups and α∨ : E ! Aut(F ) be a
morphism of groups such that the action α : E × F ! F, (x, y) 7! α∨(x)(y) is a
polynomial map and such that there exists n ∈ N so that all iterated actions

α(k) : Ek × F ! F, (x1, . . . , xk, y) 7! α(x1, α(x2, . . . , α(xk, y) . . .))

are polynomials of degree at most n. Then the semidirect product F oα E is a
polynomial group. If [·, ·]E, [·, ·]F and [·, ·]FoαE are the Lie brackets of E, F and
F oα E respectively, we have

[(x, y), (x′, y′)]FoαE = (α1,1(y, x′)− α1,1(y′, x) + [x, x′]F , [y, y
′]E)

for (x, y), (x′y′) ∈ F × E.

Proof. That the semidirect product is a polynomial group is obvious. Let mE be
the multiplication of E, mF the multiplication of F and m be the multiplication in
F oα E, i.e., we have m((x, y), (x′, y′)) = (xα(y, x′), yy′) for (x, y), (x′y′) ∈ F ×E.
With this, we calculate

m1,1((x, y), (x′, y′)) =
(
mF

0,1(x, α1,1(y, x′)) +mF
1,1(x, α0,1(y, x′)),mE

1,1(y, y′)
)
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=
(
α1,1(y, x′) +mF

1,1(x, x′),mE
1,1(y, y′)

)
and the assertion follows.

Next, we consider polynomial groups that, in addition, are Lie groups.

Lemma C.2.5. A locally convex space E that is a polynomial group with the
multiplication m is a Lie group with respect to the global chart expE if and only if
the Lie bracket is continuous, or equivalently, if m1,1 : E × E ! E is continuous.

Proof. The Lie bracket is bilinear and thus smooth if it is continuous. That this
is equivalent to the continuity of m1,1 follows directly from the definition. The
multiplication in the chart expE is the BCH multiplication, which consists of a
finite sum of iterated Lie brackets and thus is smooth if and only if the Lie bracket
is continuous. The inversion is just the multiplication by −1 and thus smooth.

Lemma C.2.6. Let E be a locally convex vector space that is a polynomial
Lie group (with the same vector space structure). Then expE is a diffeomor-
phism and is the exponential map of E. Moreover, (L(E), ∗) is a Lie group and
expE : (L(E), ∗)! E is a polynomial isomorphism of polynomial Lie groups.

Proof. By Theorem C.2.1, smoothness of expE and exp−1
E follows from the smooth-

ness of the iterated multiplications. Likewise, it follows that the Lie bracket is
smooth and thus (L(E), ∗) is a Lie group. We know from [10, Theorem PG.8,
p.198] that expE is a polynomial isomorphism of groups. Let γ : R ! E be a
one-parameter group. Then γ is completely determined by γ′(0) = γ1(1) = X ∈ E
and it follows γ(t) = expE(tX). Hence, expE is the exponential map of the Lie
group E.

Lemma C.2.7. Let E be a polynomial group with the Lie bracket [·, ·] and let
X, Y ∈ E. Then, we have

exp−1
E

(
expE(X) · expE(Y ) · expE(Y )−1

)
= Y +

∑
n∈N

1

n!
adnX(Y ),

where adnX(Y ) := [X, [X, . . . [X︸ ︷︷ ︸
n times

, Y ] . . .]].

Proof. First, note that the series terminates because the Lie bracket of E is nilpo-
tent. Let 〈X, Y 〉 denote the Lie algebra generated by X and Y . By nilpotency of
the Lie bracket, 〈X, Y 〉 is a finite-dimensional nilpotent Lie subalgebra of L(E).
Thus, it carries a unique topology turning it into a topological Lie algebra and
equipped with the BCH multiplication, it becomes a finite-dimensional polyno-
mial Lie group. Then expE(〈X, Y 〉) is a subgroup of E that has the structure of
a finite-dimensional Lie group whose exponential map is simply the restricted ex-
ponential map of E. For finite-dimensional Lie groups, the formula is well-known
(see for example [28, Formula (9.11), p. 307]).
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C.3. Pro-Polynomial Groups

For k ∈ N, let (Ek, km, ki, e) be a polynomial group of degree at most k and
for each l ≤ k, let πkl : Ek ! El be polynomial morphisms of groups such that
((Ek)k∈N, (π

l
k)l≤k) is an inverse system of groups. The category of pro-polynomial

groups consists of objects of the form E := lim −k Ek (in the category of groups)
and group morphisms lim −k ϕk : lim −k Ek ! lim −k((Fk)k∈N, (π

′k
l )l≤k) for polynomial

morphisms of groups ϕk : Ek ! Fk such that ϕl ◦πkl = π′kl ◦ϕk for l ≤ k. Moreover,
we define L(lim −k Ek) := lim −k L(Ek) and L(ϕ) := lim −k L(ϕk), using that every
L(ϕk) is a polynomial morphism of polynomial groups. Finally, we let expE :=
lim −k expEk , which is well-defined by Lemma C.2.2. Note that expE is bijective with
the inverse exp−1

E := lim −k exp−1
Ek

because taking the inverse limit is functorial. We
define the Lie bracket of E as [·, ·] := lim −k[·, ·]k, where [·, ·]k denotes the Lie bracket
of Ek and the limit is taken in the category of Lie algebras. By definition, we have

[(xk)k∈N, (yk)k∈N] = lim −k
(
km1,1(xk, yk)− km1,1(yk, xk)

)
= lim −k km1,1((xk, yk)k∈N)− lim −k km1,1((yk, xk)k∈N).

The idea for considering pro-polynomial groups comes from [10, PG.9, p.198].

Lemma C.3.1. Let E := lim −k Ek be a pro-polynomial group such that all Ek are
locally convex spaces and the projections πkl are continuous. Then E is a Lie group
and the diffeomorphism lim −k expEk is the exponential map of E.

Proof. Because all Ek are nilpotent Lie groups isomorphic to L(Ek) equipped with
the BCH multiplication, E is a Lie group by Lemma A.1.3 (compare [41, Example
IV.1.13, p.364]). Let πk : E ! Ek be the canonical projection. If γ : R ! E is
a one-parameter group, then γk := πk ◦ γ is a one-parameter group of Ek and
lim −k γk = γ holds. By Lemma A.1.3, we have γ′(0) = lim −k γ

′
k(0) and therefore

Lemma C.2.6 implies that expE is the exponential map of E.

Lemma C.3.2. Let E and F be pro-polynomial groups and let ϕ : E ! F be a
morphism of pro-polynomial groups. Then, we have ϕ ◦ expE = expF ◦L(ϕ).

Proof. This follows immediately from Lemma C.2.2 because taking the inverse
limit is functorial.

Lemma C.3.3. Let E = lim −k Ek be a pro-polynomial group with the Lie bracket
[·, ·] = lim −k[·, ·]k and X = (Xk)k∈N, Y = (Yk)k∈N ∈ E. Then, we have

exp−1
E

(
expE(X) · expE(Y ) · expE(X)−1

)
=(

Yk +
k∑

n=1

1

n!
[Xk[Xk, . . . [Xk︸ ︷︷ ︸

n times

, Yk]k . . .]k]k

)
k∈N

.

Proof. This follows immediately from Lemma C.2.7.
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Bundle Automorphisms

To turn the automorphisms Aut(M) of a supermanifold M into a Lie group,
it is crucial to have a Lie group structure on the vector bundle automorphisms
Aut(M(1)). We achieve this for Autc(M(1)) ifM is a Banach supermanifold with
σ-compact finite-dimensional base. The general idea for this is as follows.

Based on [56] it was shown in [50] that the group of compactly supported auto-
morphisms of a principal bundle (with a Banach Lie group as structure group) can
be turned into a Lie group. It is well-known that finite-dimensional vector bun-
dles are associated to their frame bundle. In our situation, where the typical fiber
is a Banach space, the same construction works. We then transfer the Lie group
structure of the group of compactly supported frame bundle automorphisms to the
group of compactly supported vector bundle automorphisms. We need additional
calculations that do not follow from [50], such as the smoothness of the evaluation
map and an exact description of the Lie algebra, and therefore, we cannot avoid
to recall some details from [50].

For this section, we fix a vector bundle π : F ! M with the Banach space E1

as typical fiber, where M is a finite-dimensional σ-compact manifold modelled on
E0. We denote by Aut(F ) the group of vector bundle automorphisms of F , i.e.,
diffeomorphisms f : F ! F such that there exists a diffeomorphism ϕ : M ! M
with

F
f //

π
��

F

π
��

M
ϕ //M.

Mapping an automorphism f to its diffeomorphism ϕ on the base defines a pro-
jection q : Aut(F ) ! Diff(M) to the diffeomorphism group Diff(M) of M . This
projection is obviously a morphism of groups. We define the gauge group of F
as Gau(F ) := ker(q). Furthermore, we define the group of compactly supported
automorphisms of F by

Autc(F ) := {f ∈ Aut(F ) : ∃K ⊆M compact with f |π−1(M\K) = idF |π−1(M\K)
}.

Obviously, Autc(F ) is a subgroup of Aut(F ) and we have the exact sequence of
groups

Gauc(F ) ↪! Autc(F )
q−−! Diffc(M),
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where Gauc(F ) := Gau(F ) ∩ Autc(F ) and

Diffc(M) := {f ∈ Diff(M) : ∃K ⊆M compact with f |M\K = idM\K}

is the group of diffeomorphisms with compact support .
For the remainder of this section, we fix locally finite open covers U := {Ui ⊆

M : i ∈ N} and V := {Vi ⊆M : i ∈ N} of M such that for all i ∈ N, we have that

• Ui is relatively compact,

• V is a refinement of U such that Vi ⊆ Ui,

• Ui and Vi are submanifolds with boundary of M and

• there exists a smooth trivialization τi : Ui × E1 ! F .

Additionally, one can assume that around each Ui a chart can be defined. For the
existence of such covers, we refer to [50]. By abuse of notation, we will also write
τi for the trivializations restricted to Ui, Vi and Vi. For i, j ∈ N, we have smooth
transition functions kij : Ui ∩ Uj ! GlE1 defined by τ−1

i (τj(x, v)) = (x, kij(x).v)
for x ∈ Ui ∩ Uj, v ∈ E1. Here GlE1 ⊆ L(E1;E1)b denotes the group of continuous
automorphisms of E1. It is well-known that GlE1 is a Banach Lie group mod-
elled on glE1

:= L(E1;E1)b, whose exponential map expGlE1
: glE1

! GlE1 is a
diffeomorphism around a zero-neighborhood (see [13, III, §1.1, p.213]).

The frame bundle

We define the frame bundle

Fr(F ) :=
⋃
x∈M

Iso(E1;Fx),

where Iso(E1;Fx) ⊆ L(E1;Fx)b is the Banach space of continuous vector space iso-
morphisms between E1 and Fx = π−1({x}). Together with the obvious projection
Fr(F )!M , this defines a principal GlE1-bundle with the action

Fr(F )×GlE1 ! Fr(F ), (ϕ,A) 7! ϕ ◦ A.

Every trivialization τ : U × E1 ! F of F corresponds to a local section
σ : U ! Fr(F ), x 7! τ(x, •) ∈ Iso(E1, Fx) and a trivialization τ ′ : U × GlE1 !
Fr(F ), (x,A) 7! τ(x, •) ◦ A of the frame bundle. The transition functions
k : V ! GlE1 of the corresponding trivializations are the same. Given a vector
bundle automorphism f : F ! F , one obtains an automorphism of principal bun-
dles f ′ : Fr(F )! Fr(F ) by setting

f ′(τ ′(x,A)) := fx ◦ τ(x, •) ◦ A for (x,A) ∈ U ×GlE1 .

Conversely, for f ′ : Fr(F )! Fr(F ), we let

f(τ(x, v)) := f ′(τ(x, •)).v for (x, v) ∈ U × E1.
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D.1 The Lie Group Structure of the Gauge Group

It is easy to see that these constructions are inverse to each other. Furthermore,
both automorphisms induce the same diffeomorphism on the base and compactly
supported automorphisms correspond to compactly supported automorphisms.
We denote by Autc(Fr(F )) the group of compactly supported automorphisms

of Fr(F ) and let Gauc(Fr(F )) be the subgroup of these automorphisms over the
identity. The Lie group structure on Autc(Fr(F )) is realized as an extension of Lie
groups

Gauc(Fr(F ))! Autc(Fr(F ))! Diffc(M)[Fr(F )],

where Diffc(M)[Fr(F )] is the open subgroup of Diffc(M) such that f ∗F ∼= F for all
f ∈ Diffc(M)[Fr(F )], i.e., the subgroup fixing the equivalence class [Fr(F )] under
pullbacks (compare [41, Example V.1.6(c), p.392]). Analogously, we want to turn

Gauc(F )! Autc(F )! Diffc(M)[F ] (D.1)

into an extension of Lie groups, where again Diffc(M)[F ] denotes the open subgroup
of Diffc(M) that fixes the equivalence class [F ] under pullbacks (compare [41,
Example V.1.7(d), p.392]).

D.1. The Lie Group Structure of the Gauge
Group

Recall Proposition A.3.5. If τ ′i are the trivializations of Fr(F ) corresponding to the
trivializations τi of F and if we let σi(x) := τi(x, •), then the Lie group structure
on Gauc(Fr(F )) is given by the embedding

Gauc(Fr(F )) ↪!
∏∗

i∈N

C∞(Ui,GlE1), ψ′ 7! (pr2 ◦ τ ′−1
i ◦ ψ′ ◦ σi)i∈N

(see [50, Theorem 4.18, p.36]). Note that the Lie group structure induced on
Gauc(Fr(F )) does not depend on the trivialization by [50, Proposition 4.16, p.33].
Defining the embedding

Φ: Gauc(F ) ↪!
∏∗

i∈N

C∞(Ui,GlE1), ψ 7! (pr2 ◦ τ−1
i ◦ ψ ◦ σi)i∈N, (D.2)

we see that we obtain the same closed subgroup of the weak direct product in both
cases because the transition maps are the same. Therefore, we get a Lie group
structure on Gauc(F ) that is independent of the trivialization.

Remark D.1.1. A concrete chart can be described in the following way. Let

gU :=

{
(ηi)i∈N ∈

⊕
i∈N

C∞(U i, glE1
) : ηi(x) = Ad(kij(x)).ηj(x) for x ∈ Ui ∩ Uj

}
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D The Lie Group of Vector Bundle Automorphisms

and let GU := im(Φ). If P ⊆ glE1
is open such that expGlE1

|P is a diffeomorphism
to expGlE1

(P ) =: P ′ let

(expGlE1
)i∗ : C∞(Ui, P )! C∞(Ui, P

′), ηi 7! expGlE1
◦ηi.

Let C := gU ∩
⊕

i∈N C∞(Ui, W̃ ) and C ′ := GU ∩
∏∗

i∈N
C∞(Ui, P

′). Then

(expGlE1
)∗ : C ! C ′, (ηi)i∈N 7!

(
(expGlE1

)i∗(ηi)
)
i∈N

is a diffeomorphism and the inverse of a chart of Gauc(F ) around the identity.

D.2. The Lie Group Structure of the
Diffeomorphism Group

Recall the vector fields Xc(M) of M with compact support from 1.3.2. We turn
Xc(M) into a locally convex space such that

ρ : Xc(M) ↪!
⊕
i∈N

C∞(Ui, E0), Y 7! (pr2 ◦τ−1
i ◦ Y |Ui)i∈N (D.3)

becomes an embedding. Fix a Riemannian metric g on M and let expg be the
corresponding Riemannian exponential map. It was shown in [19] that there exists
an open zero-neighborhood Ω′′ ⊆ Xc(M) such that the map

ϕ−1
g : Ω′′ ! Diff(M), Y 7! expg ◦Y

is well-defined and bijective onto its image O′′ (see also [23], cf. [36]). The Lie
group structure on Diff(M) arises then from O′′ with the chart ϕg : O′′ ! Ω′′ and
Diffc(M) is an open subgroup. One has that

TidDiff(M)! Xc(M), [t 7! vt] 7!
(
p 7! [t 7! vt(p)]

)
is an isomorphism of locally convex Lie algebras. Following [19], we choose Ω′′

small enough such that f(Vi) ⊆ Ui for all i ∈ N and f ∈ O′′. For technical reasons,
we need to consider even smaller open unity neighborhoods than O′′. For this, we
fix a smooth partition of unity (hi)i∈N subordinate to (Vi)i∈N. It was shown in [50,
Remark 5.10, p.44 f.] that there exists an open unity neighborhood O′ ⊆ O′′ such
that O′ is symmetrical, O′ ◦O′ ◦O′ ⊆ O′′ and such that (h1 + . . .+hn) ·ϕg(f) ∈ O′′
for all f ∈ O′, n ∈ N. With the same argument, we also find an open symmetrical
unity neighborhood O ⊆ O′ such that (h1 + . . . + hn) · ϕg(f) ∈ O′ holds for all
f ∈ O, n ∈ N. We fix the neighborhoods O′′,O′,O and set Ω := ϕ−1

g (O).

Remark D.2.1. We define the sets W ′
i :=

⋃
f∈O f(Vi) and Wi :=

⋃
f∈O f(W ′

i ).
The properties O′ ◦ O′ ◦ O′ ⊆ O′′ and f(Vi) ⊆ Ui for f ∈ O′′ imply Vi ⊆ W ′

i ⊆
Wi ⊆ Ui and obviously (W ′

i )i∈N and (Wi)i∈N are open locally finite covers of M .
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D.3 The Automorphism Group

Remark D.2.2. Let ϕi : Ui ! Vi be charts ofM and let ρi : Xc(M)! C∞(Ui, E0)
be the components of the embedding (D.3). Recall the covering (Wi)i∈N from
Remark D.2.1. We fix smooth maps h′i : Ui ! R that are constantly 1 on Wi such
that supp(h′i) ⊆ Ui. The maps ξi : C∞(Ui, E0)! Xc(M), given by

C∞(Ui, E0)! C∞supp(h′i)
(Ui, E0)! Xsupp(h′i)

(Ui)! Xc(M),

f 7! h′i · f 7! Tϕ−1
i

(
ϕi(•), (h

′
i · fi)(•)

)
=: Yi 7! Ỹi

where Ỹi is the continuation of Yi by 0, are smooth because of [18, Proposition 8.13,
p.50] and [18, Lemma 4.24, p.34]. Let R :=

⊕
i∈NRi ⊆

⊕
C∞(Ui, E0) be an open

zero-neighborhood such that ρ−1(R) ⊆ Ω. We define the open zero-neighborhoods
Ω̃i := ξ−1

i (Ω)∩Ri and Ω̃ := ρ−1
(⊕

i∈N Ω̃i

)
⊆ Ω. This enables us to define smooth

maps
ζi : Ω̃i ! O, Yi 7! ϕ−1

g

(
ξi(Yi)

)
with the property ϕ−1

g (Y )|Wi
= ζi(ρi(Y ))|Wi

for all Y ∈ Ω̃, i ∈ N.

D.3. The Automorphism Group

Next, we construct a local section S : O ! Autc(F ) such that Autc(F ) becomes
an extension of Lie groups. For this, we define smooth maps si : O ! O′ ◦ O′ by

s1(f) := ϕ−1
g (h1 · ϕg(f)) and

si(f) :=
(
ϕ−1
g

(
(h1 + . . .+ hi−1) · ϕg(f)

))−1

◦ ϕ−1
g

((
h1 + . . .+ hi

)
· ϕg(f)

)
for i > 1. In the remainder, we abbreviate si(f) = fi for f ∈ O. From the
definition, it follows supp(fi) ⊆ Vi for all i ∈ N and all f ∈ O and limi!∞ f1 ◦
· · · ◦ fi = f as a pointwise limit. The limit becomes stationary because we have
fj = idM if Vj ∩ supp(f) = ∅ and this condition holds for almost all j ∈ N.

Remark D.3.1. Let f ∈ O. By definition, we have

fi ◦ fi+1 ◦ · · · ◦ fi+p =(
ϕ−1
g

(
(h1 + . . .+ hi−1) · ϕg(f)

))−1

︸ ︷︷ ︸
∈O′

◦ϕ−1
g

((
h1 + . . .+ hi+p

)
· ϕg(f)

)
︸ ︷︷ ︸

∈O′

and
f1 ◦ f2 ◦ · · · fp = ϕ−1

g

(
(h1 + . . .+ hp) · ϕg(f)

)
∈ O′,

for all p, i > 1.

We lift a diffeomorphism f ∈ Diffc(M) with supp(f) ⊆ Vi, to f̃ ∈ Autc(F ) via

f̃(τi(x, v)) := τi(f(x), v) for (x, v) ∈ Vi × E1 and (D.4)

f̃(p) := p for p /∈ π−1(Vi).
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D The Lie Group of Vector Bundle Automorphisms

An easy direct calculation shows that this corresponds to the construction in [50]
for the frame bundle. Note that f̃ is an automorphism over f and that f̃−1 = f̃−1.
For f ∈ Diffc(M), we define the local section (cf. [50, Definition 5.12, p.46])

S : O ! Autc(M), f 7! lim
i!∞

f̃1 ◦ · · · ◦ f̃i.

The limit is well-defined because sj(f) = idF if Vj ∩ supp(f) = ∅. Also S is a
section because S(f) is an automorphism over limi!∞ f1 ◦ . . . ◦ fi = f . It follows
in particular that Diffc(M)[F ] is indeed an open subgroup of Diffc(M).

Remark D.3.2. To see the smoothness of several natural actions of Autc(F ), it
is crucial to have a local formula in terms of transition functions for S(f)(τi(x, v))
that is valid in neighborhoods of f and x. Such a formula was derived in [50,
Remark 5.13, p.46] for the frame bundle and since the transition maps are identical,
our formula will be essentially the same. However, since there was a small mistake
in the construction of the open neighborhoods of f and x, we will give a corrected
version here. Note that the correction carries over to the more general case of
principal fiber bundles in [50] and does not impact any other arguments made
there.
Fix f ∈ O and x ∈ Vi. Let j1 be the largest index such that x ∈ Vj1 . For v ∈ E1,

we calculate

f̃j1(τi(x, v)) = f̃j1
(
τj1(x, kj1i(x).v)

)
= τj1

(
fj1(x), kj1i(x).v

)
.

Note that for x ∈ Uj1 \Vj1 , we have fj1(x) = x and the formula is still valid. Next,
let j2 be the largest index smaller than j1 with fj1(x) ∈ Vj2 . Then we get

f̃j2
(
τj1
(
fj1(x), kj1i(x).v

))
= f̃j2

(
τj2
(
fj1(x), kj2j1(fj1(x)) · kj1i(x).v

))
= τj2

(
fj2 ◦ fj1(x), kj2j1(fj1(x)) · kj1i(x).v

)
.

Eventually, this leads to j` < . . . < j1 such that there is no index j < j` with
fj` ◦ fj`−1

◦ · · · ◦ fj1(x) ∈ Vj and we have the formula

S(f)(τi(x, v)) = τj`

(
f(x), kj`j`−1

(
fj`−1

◦ · · · ◦ fj1(x)
)
· · · kj1i(x).v

)
= τi

(
f(x), kij`(f(x)) · kj`j`−1

(
fj`−1

◦ · · · ◦ fj1(x)
)
· · · kj1i(x).v

)
, (D.5)

where the last equality holds because f(Vi) ⊆ Ui. Note that by construction
f(x) = f1 ◦ · · · ◦ fj1(x) = fj` ◦ fj`−1

◦ · · · ◦ fj1(x) holds because the omitted factors
do not change the respective function value. There is an open neighborhood U ⊆ Ui
of x such that U ⊆ Uj1 and such that there is no index j > j1 with x′ ∈ Vj for all
x′ ∈ U . The conditions for formula (D.5) to hold for some other diffeomorphism
f ′ ∈ O and x′ ∈ U are as follows:

f ′j` ◦ · · · ◦ f
′
j1

(x′) /∈ Vj for j < `,

f ′jp ◦ · · · ◦ f
′
j1

(x′) /∈ Vj for jp+1 < j < jp, 1 ≤ p ≤ `− 1 and
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D.3 The Automorphism Group

f ′jp ◦ · · · ◦ f
′
j1

(x′) ∈ Ujp ∩ Ujp+1 for 1 ≤ p ≤ `− 1.

The first condition means that the smallest relevant index is j`. The second con-
dition implies that f̃jp+1 is indeed the next relevant map after f̃jp ◦ · · · ◦ f̃j1 and
the last condition guarantees that the transition maps kjp+1jp are defined for all
` − 1 ≤ p ≤ 1. Since the evaluation map Diffc(M) ×M ! M, (f ′, x′) 7! f ′(x′)
is smooth and in particular continuous by [19, Proposition 6.2, p.28], the finitely
many conditions above yield, after intersection, open neighborhoods Of of f and
Ux ⊆ Ui of x such that formula (D.5) holds for all (f ′, x′) ∈ Of × Ux.

Remark D.3.3. Note that we may substitute terms of the form fjp ◦ · · · ◦ fj1 ,
p > ` in formula (D.5) with fjp ◦ fjp+1 ◦ · · · ◦ fj1−1 ◦ fj1 because, by definition, the
additional maps do not change the respective function value. Now, Remark D.3.1
implies that fjp ◦ fjp+1 ◦ · · · ◦ fj1−1 ◦ fj1 equals(

ϕ−1
g

(
(h1 + . . .+ hjp−1) · ϕg(f)

))−1

◦ ϕ−1
g

((
h1 + . . .+ hj1

)
· ϕg(f)

)
for jp > 1 and

ϕ−1
g

((
h1 + . . .+ hj1

)
· ϕg(f)

)
for jp = 1. In particular, the value of S(f)(τi(x, v)) only depends on f |Wi

for
(x, v) ∈ Vi × E1, with Vi ⊆ W ′

i ⊆ Wi ⊆ Ui as in Remark D.2.1.

To see that this turns Autc(F ) into a Lie group, one has to check that the map

ω : O ×O ! Gauc(F ), (f, f ′) 7! S(f) ◦ S(f ′) ◦ S(f ◦ f ′)−1

is smooth and that for each f ∈ Diffc(M)[F ], there exists an open identity neigh-
borhood Of ⊆ O such that

ωf : Of ! Gauc(F ), f ′ 7! ψ ◦ S(f ′) ◦ ψ−1 ◦ S(f ◦ f ′ ◦ f−1)−1

is smooth, where ψ ∈ Autc(F ) is an automorphism over f . With the corre-
spondence established above, this yields exactly the same maps as in [50]. Thus,
Autc(F ) becomes a Lie group such that (D.1) is an extension of Lie groups. This
Lie group does not depend on the various choices made in the construction of S
(compare [50, Remark 5.23, p.59]). Let C and C ′ be as in Remark D.1.1. Then

Υ−1 : C × Ω! C ′ ◦ S(O), (G,X) 7! (expGlE1
)∗(G) ◦ S(ϕg(X)) (D.6)

is the inverse of a chart Υ of Autc(F ) around the identity.

Lemma D.3.4. The evaluation map

evGau : Gauc(F )× F ! F, (ψ, p) 7! ψ(p)

is smooth.
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Proof. Recall the embedding Φ: Gauc(F ) ↪!
∏∗

i∈N
C∞(Ui,GlE1). For i ∈ N, the

evaluation evi : C
∞(Ui,GlE1) × Ui ! GlE1 is smooth by Lemma A.3.7 and the

projection pri :
∏∗

i∈N
C∞(Ui,GlE1)! C∞(Ui,GlE1) is smooth by Lemma A.3.6.

Because we have evGau(ψ, τi(x, v)) = evi(pri(ψ), x).v, the lemma follows since the
action GlE1 × E1 ! E1 is smooth.

Lemma D.3.5 (cf. [56, Proposition 2.15, p.20]). The evaluation map

ev : Autc(F )× F ! F, (ψ, p) 7! evp(ψ) := ψ(p)

is smooth.

Proof. By [55, Lemma A.3.3, p.133] it suffices to check smoothness on U × F for
some open unity neighborhood U ⊆ Autc(F ). We choose U = Gauc(F ) ◦ S(O).
Let (x, v) ∈ Vi×E1. By Lemma D.3.4 the evaluation Gauc(F )×F ! F is smooth.
Therefore, we only need to show that the evaluation map depends smoothly on
the elements of O. For f ∈ O, we choose open neighborhoods Of of f and Ux of
x as in Remark D.3.2 such that for all (f ′, x′) ∈ Of × Ux, we have

S(f ′)(τi(x
′, v)) = τi

(
f ′(x′), kij`(f

′(x′)) · kj`j`−1

(
f ′j`−1

◦ · · · ◦ f ′j1(x′)
)
· · · kj1i(x′).v

)
for fixed indices j` < . . . < j1. Since the evaluation map Diffc(M) ×M ! M is
smooth (see [19, Proposition 6.2, p.28]), it follows that this is a composition of
smooth maps.

Remark D.3.6. It follows from Lemma D.3.5 that the tangent map

T ev : TAutc(F )× TF ! TF

is smooth. Let Ψ := [t 7! ψt] ∈ TAutc(F ) and v := [t 7! vt] ∈ TF . Then we
calculate

T ev(Ψ, v) = [t 7! ψt(v0)] + [t 7! ψ0(vt)] = [t 7! ψt(v0)] + Tψ0(v).

In particular, the map

evT : Autc(F )× TF ! TF, (ψ, v) 7! Tψ(v)

is smooth as well.

D.3.1. The Lie algebra of Autc(F )

Lemma D.3.7. Recall Remark E.3.6. Any bundle isomorphism over the identity
Θ: F ⊕M TM ⊕M F ! TF induces an isomorphism

Xc(M)× gauc(F )!Xc(F )b, (X,G) 7!
(
p 7! Θ(p,X(π(p)), G(p))

)
of locally convex spaces.
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Proof. Let (X,G) ∈ Xc(M)× gauc(F ) and

Y : F ! TF, Y (p) := Θ(p,X(π(p)), G(p)).

Clearly, Y is smooth and by definition, we have πTF ◦ Y = idF for the projection
πTF : TF ! F . Let ϕi = (ϕi0, ϕ

i
1) : π−1(Vi)! Ṽi × E1 be a bundle chart of F and

Gϕi := ϕi ◦G ◦ (ϕi)−1. By [10, Theorem 10.5, p.62], we have

Tϕi ◦ Y ◦ (ϕi)−1(x, v) =
(
x, v,Xϕi0(x), Gϕi(x, v) + bix(v,X

ϕi0(x))
)
, (D.7)

where bi is the Christoffel symbol corresponding to Φ in the chart ϕi (see [10,
10.4, p.61f]). Note that bi : Ṽi × E1 × E0 ! E1, (x, v, w) 7! bix(v, w) is a smooth
map such that bix is bilinear for all x ∈ Ṽi. In particular, the map Ṽi × E0 !
L(E1;E1)b, (x,w) 7! bix(•, w) is smooth by Proposition A.2.10. We see that the
support of Y is the same as the union of the supports of X and G and that Y is
indeed an element of Xc(F ). Since the map

C∞(Ṽi, E0)! C∞(Ṽi,GlE1), f 7!
(
x 7! bix(•, f(x))

)
is smooth by Proposition A.2.1, smoothness follows from formula (D.7) together
with Lemma A.1.4. Conversely, for Y ∈ Xc(F ), we define X := prTM ◦Θ−1◦Y ◦zM
and G := prεF ◦Θ−1 ◦Y , where zM : M ! TF is the zero section and prεF : TF !
F , Tπ : TF ! TM are the projectors given in [10, 10.7, p.63]. It is easy to see
that this construction is inverse to the above and smoothness follows essentially
in the same way as before because of the local description of Θ−1 given in [10,
Theorem 10.5, p.62].

Remark D.3.8. Since M is σ-compact and finite-dimensional, one can always
construct a linear connection on TF . By [10, Theorem 10.5, p.62] one then obtains
an associated isomorphism Θ as in Lemma D.3.7. It will be useful in the following
to make this construction explicit in terms of the partition of unity (hi)i and the
trivializations τi. By abuse of notation, we will write bi for the Christoffel symbol
expressed with the trivialization τi (instead of a bundle chart). The condition [10,
(10.2), p.62] for a family (bi) to define a connection translates then to

bix(kij(x).u, v) = kij(x).bj(u, v) + dkij(v).u,

for x ∈ Vi ∩ Vj, v ∈ TxM and u ∈ E1. For x ∈ M let Ix be the finite set
{i ∈ N : x ∈ Vi}. We define

bix(u, v) :=
∑
l∈Ix

hl(x)dkil(v).(kli(x).u).

Note that kij(x).kjl(x) = kil(x) implies

dkij(v).(kjl(x)) + kij(x).(dkjl(v)) = dkil(v).
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With this, the following direct calculation shows that these bi define a connection.

kij(x).bjx(u, v) + dkij(v).u

=
∑
l∈Ix

hl(x)
(
kij(x).

(
dkjl(v).(klj(x).u)

))
+ dkij(v).u

=
∑
l∈Ix

hl(x)
(
dkil(v).klj(x).u− dkij(v).u

)
+ dkij(v).u

=
∑
l∈Ix

hl(x)dkil(v).klj(x).u = bix(kij(x).u, v).

Lemma D.3.9. Recall the evaluation map ev : Autc(F ) × F ! F from Lemma
D.3.5. The map

Ψ: TidAutc(F )!Xc(F ), v 7!
(
p 7! T evp(v)

)
is an isomorphism of locally convex Lie algebras.

Proof. By the definition of the respective topologies and Lemma A.1.4, it suffices
to see the smoothness of

gauc(F )× Xc(M) ∼= TidAutK(F )!Xc(F )

in a trivialization. The local calculation will also show that Ψ is well-defined. Let
(G,X) ∈ C × Ω and Υ be as in (D.6). It follows

Tid evp T0Υ−1(G,X) = Tid evp T0Υ−1(G, 0) + Tid evp T0Υ−1(0, X).

For p = τi(x, v), we calculate Tid evp T0Υ−1(G, 0) = Tτi(x, v, 0, G
τi(x, v)) and

Tid evp T0Υ−1(0, X) =

[t 7! s1(expg ◦(tX))∼(p)] + · · ·+ [t 7! sN(expg ◦(tX))∼(p)],

where ∼ denotes the lift defined in (D.4). Using the identification Xc(M) ∼=
TidDiff(M) via X 7! [t 7! expg ◦(tX)], we see that

Tids1[t 7! expg ◦(tX)] ∼= h1 ·X and
Tidsi[t 7! expg ◦(tX)] ∼= −(h1 + · · ·+ hi−1)X + (h1 + · · ·+ hi) ·X = hi ·X.

Let Ix := {j ∈ N : x ∈ Vj} and for j ∈ Ix let vj ∈ E1 such that τj(x, vj) = p. It
follows [t 7! sj(expg ◦(tX))∼(p)] = [t 7! p] = Tτi(x, v, 0, 0) for π(p) /∈ Vj and

[t 7! sj(expg ◦(tX))∼(p)]

= [t 7! τj(sj(expg ◦(tX))(x), vj)] = T(x,vj)τj[t 7! (t(hj(x) ·X(x)), 0)]

= Tτi(x, v, (hj ·X)(x), dkij((hj ·X)(x)).(kji(x).v))
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D.3 The Automorphism Group

if π(p) ∈ Vj. Summing up, we arrive at

Tid evp T0Υ−1(G,X) =

Tτi

(
x, v,X(x), Gτi(x, v) +

∑
j∈Ix

hj(x)dkij(X(x)).(kji(x).v)
)
.

With the connection from Remark D.3.8, we see that this gives us exactly the
isomorphism from Lemma D.3.7. Next, we show that we have a morphism of Lie
algebras. Let Xr(Autc(F )) be the Lie algebra of the right-invariant vector fields
of Autc(F ). Because Xr(Autc(F )) is a Lie subalgebra of X(Autc(F )), we have an
embedding Xr(Autc(F )) ↪! X(Autc(F )×F ) of Lie algebras via X 7! X × zF . Let
Ψ1 : TidAutc(F )! Xr(Autc(F )), X̃0 7! X be defined by X(f) := Tρf (X̃0), where
ρf is the multiplication from the right with f in Autc(F ). It is well-known that
Ψ1 is an isomorphism, which we use to give TidAutc(F ) a Lie algebra structure.
Let X̃0 = [t 7! vt] ∈ TidAutc(F ). Then

T ev(Ψ1(X̃0)(f), zF (p)) = [t 7! vt ◦ f(p)] = Ψ(X̃0)(f(p))

for all p ∈ F and f ∈ Autc(F ). In other words X0 := Ψ(X̃0) is ev-related to
X := Ψ1(X̃0) under the above embedding, which implies that Ψ is a morphism
of Lie algebras. The idea for the last part of this proof is due to Milnor [37, p.
1041].

Lemma D.3.10. The action

Autc(F )×Xc(F )!Xc(F ), (f,X) 7! Tf ◦X ◦ f−1

induced by the action of Diff(F ) on X(F ) is the same as the one induced by the
action of Autc(F ) on TidAutc(F ).

Proof. Let Ψ: TidAutc(F ) !Xc(F ) be the isomorphism from Lemma D.3.9. Let
f ∈ Autc(F ) and X̃0 = [t 7! vt] ∈ TidAutc(F ). If cf is the conjugation with f in
Autc(F ), we calculate

Ψ(Tcf (X̃0)) = Ψ([t 7! f ◦ vt ◦ f−1]) = (p 7! [t 7! f ◦ vt ◦ f−1(p)])

=
(
p 7! Tf ◦Ψ(X̃0)(f−1(p))

)
as needed.

Lemma D.3.11. Let v := [t 7! vt] ∈ T 2F and Y ∈Xc(F ). Then

T evT (Y, v) = v + TY (v0)

holds for the evaluation from Remark D.3.6, where Y is identified with an element
of TidAutc(F ) via Lemma D.3.9 and the sum is taken in Tv0TF .

173



D The Lie Group of Vector Bundle Automorphisms

Proof. Let [t 7! ft] ∈ TidAutc(F ) correspond to Y . We calculate

T evT ([t 7! (ft, vt)]) = T evT ([t 7! (f0, vt)]) + T evT ([t 7! (ft, v0)])

= [t 7! vt] + [t 7! Tft(v0)].

For v0 = [s 7! xs] ∈ TF , we have

[t 7! Tft([s 7! xs])] = [t 7! [s 7! ft(xs)]] = [s 7! [t 7! ft(xs)]]

= [s 7! Y (xs)] = TY (v0),

where the second equality follows from Schwarz’s theorem.
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E. Higher Order Tangent Groups

E.1. Higher Order Tangent Lie Groups

This section is mainly taken from [10, Chapter 24, p.116 ff.]. We use the same
notation for the infinitesimal generators εi as in Chapter B. Let G be a Lie group
with multiplication m : G × G ! G and Lie algebra g. Then T kG becomes a Lie
group with the multiplication T km. The inclusions of the axes induce inclusions
g = (TG)e ! εI(TG)e ⊆ (T kG)e. Obviously, (T kG)e is a closed Lie subgroup of
T kG and we have a short exact sequence of Lie groups

1! (T kG)e ! T kG! G! 1,

which splits along the zero section G! T kG such that T kG = (T kG)e oG as Lie
groups. It is well known that TG ∼= g×G and in the same way, we get an iterated
(left) trivialization

Ψk :
⊕
I∈Pk+

εIg×G! T kG,
(
(εIvI)I , g

)
! g ·

"∏
I∈Pk+

εIvI ,

where all the products are taken in T kG and
∏" indicates that the product is

taken in ascending lexicographic order of the index sets (see [10, 24.3, p. 117]).
Formulas for the multiplication and inversion of the induced Lie group structure
on
⊕

I∈Pk+
εIg consist of iterated Lie brackets and are given in [10, Theorem 24.7,

p. 119]. The map Ψk is an isomorphism of multilinear bundles over G that is the
identity map on the axes. It follows that (T kG)e is a polynomial group and from
this, we get the following theorem.

Theorem E.1.1. Let G be a Lie group and k ∈ N. There exists a unique diffeo-
morphism exp(TkG)e : (T kg)0 ! (T kG)e such that
(a) the representation of exp(TkG)e with respect to the left trivialization is poly-

nomial,
(b) T0 exp(TkG)e = id(Tkg)0

,
(c) for all n ∈ Z and v ∈ (T kg)0, we have exp(TkG)e(nv) = exp(TkG)e(v)n.

The inverse of exp(TkG)e is polynomial. For every Lie group automorphism
ϕ : (T kG)e ! (T kG)e, we have ϕ ◦ exp(TkG)e = exp(TkG)e ◦T0ϕ. Identifying
(T kg)0

∼=
⊕

I∈Pk+
εIg in the usual way, the exponential map can be extended in
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E Higher Order Tangent Groups

a G-invariant way to an isomorphism of multilinear bundles

expTkG : G×
⊕
I∈Pk+

εIg! T kG.

With respect to exp(TkG)e, the group multiplication of (T kG)e is given by the BCH
multiplication with the nilpotent Lie algebra (T kg)0 and the inversion is given by
multiplication with −1. On

⊕
I∈Pk+

εIg, we get the Lie bracket⊕
I∈Pk+

εIg×
⊕
I∈Pk+

εIg!
⊕
I∈Pk+

εIg,

(εI(vI , wI))I∈Pk+ 7!
∑

I∈Pk+,ν∈P2(I)

εI([vν1 , wν2 ] + [vν2 , wν1 ]),

where [·, ·] denotes the Lie bracket of g.

Proof. This is essentially a combination of [10, Theorem 25.2, Theorem 25.4 and
Theorem 25.5, p. 124f.]. That exp(TkG)e is a diffeomorphism follows from Lemma
C.2.6. With [10, Theorem 7.5, p. 47f.], we get the formula for the Lie bracket on⊕

I∈Pk+
εIg by differentiating the bilinear Lie bracket [·, ·].

Corollary E.1.2. Let k ∈ N, G be a Lie group with Lie algebra g, g ∈ G and
Adg : g ! g be the adjoint action. Then, with respect to exp(TkG)e from Theorem
E.1.1, the action of G on

⊕
I∈Pk+

εIg induced by the action of G on (T kG)e is given
by

G×
⊕
I∈Pk+

εIg!
⊕
I∈Pk+

εIg,
(
g, (εIvI)I

)
7! (εIAdg(vI))I .

Proof. This follows by applying Theorem E.1.1 to the automorphism T kcg : T kG!
T kG, where cg : G! G, h 7! ghg−1 is the conjugation.

As described in Remark B.2.10, applying the functor − to purely even multilinear
spaces can be understood as a substitution of the generators εi with the generators
λi. We use this point of view to make the following statement more readable.

Corollary E.1.3. Let k ∈ N and G = (G,m, i, e) be a Lie group with the Lie
algebra (g, [·, ·]). With expTkG as in Theorem E.1.1, we have an isomorphism of
multilinear bundles

expTkG |−Pk0,+ : G×
⊕
I∈Pk0,+

λIg! T kG|−
Pk0,+

.

This isomorphism restricts to a polynomial map

exp(TkG)e |
−
Pk0,+

:
⊕
I∈Pk0,+

λIg! (T kG)e|−Pk0,+
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and turns ((T kG)e|−Pk0,+ ,m|
−
Pk0,+

, i|−
Pk0,+

, e) into a polynomial group. The induced Lie
bracket [·, ·]k on

⊕
I∈Pk0,+

λIg is given by

[λIv, λJw]k = λIλJ [v, w]

for I, J ∈ Pk0,+ and v, w ∈ g.

Proof. With the functoriality of the restriction to Pk0,+ and the definition of − in
Lemma B.2.9, this follows immediately from Theorem E.1.1.

E.2. Higher Order Diffeomorphism Groups

This section is mainly taken from [10, Section 28, p.139ff.]. We subsequently
generalize these results to the group of vector bundle automorphisms.
Let M be a manifold modelled on E0. We denote the space of sections of the

fiber bundle T kM !M by Xk(M). A chart ϕ : U ! V ofM gives rise to a bundle
chart T kϕ : T kU ! T kV and in this chart a section X : M ! T kM is given by

Xϕ(x) := T kϕ ◦X ◦ ϕ−1(x) = x+
∑
I∈Pk+

εIX
ϕ
I (x), x ∈ V,

with smooth maps Xϕ
I : V ! E0. There exists a natural group structure on Xk(M)

that, in a chart representation, is given by

(X · Y )ϕ(x) = x+
∑
I∈Pk+

εI

(
Xϕ
I (x) + Y ϕ

I (x)+

|I|∑
`=2

∑
ν∈P̀ (I)

∑̀
j=1

d`−1Xϕ
νj

(x)
(
Y ϕ
ν1

(x), . . . , Ŷ ϕ
νj (x), . . . , Y ϕ

ν`
(x)
))
, (E.1)

where Xϕ
I and Y ϕ

I are the respective summands in the chart representation of
Xϕ, Y ϕ ∈ Xk(M) and Ŷ ϕ

λj
(x) means that this term is omitted. The inclusions of

the axes TM ! εITM ⊆ T kM induce inclusions

X(M)! Xk(M), X 7! εIX.

Sections of this type are called vectorial . Using vectorial sections and the group
structure of Xk(M), one gets a canonical bijection

⊕
I∈Pk+

εIX(M)! Xk(M), (εIXI)I 7!
"∏

I∈Pk+

εIXI , (E.2)

where
∏" is the product taken in Xk(M) in ascending lexicographic order of the

indices I (see [10, Theorem 29.2, p. 144]).
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E Higher Order Tangent Groups

Remark E.2.1. Since we will use similar left trivializations at various other points,
let us explain in some detail why (E.2) is bijective. We use induction over n in the
following way. LetX ∈ Xk(M), n < k and letXϕ(x) = x+

∑
I∈Pn+1

+
εIX

ϕ
I (x) for all

charts ϕ. Note that the property Xϕ
I = 0 for I /∈ Pn+ is invariant under change of

charts. Thus,X(n) defined by (X(n))ϕ(x) = x+
∑

I∈Pn+
εIX

ϕ
I (x) is also an element of

Xk(M). By induction hypothesis, we can writeX(n) =
∏"

I∈Pn+
εIXI . It follows from

(E.1) that X̃ := X · (X(n))−1 has the local form X̃ϕ(x) = x+
∑

I∈Pn+1
+ \Pn+

εIX̃
ϕ
I (x).

The X̃ϕ
{n+1} are the local description of an element ε{n+1}X̃{n+1} ∈ Xk(M) because

other components do not contribute under change of charts. Then, in the local
description of X̃ · ε{n+1}(−X̃{n+1}), only components with I ∈ Pn+1

+ , n+ 1 ∈ I and
I 6= {n + 1} contribute. Continuing this process inductively with all remaining
sets I ∈ Pn+1

+ \ Pn+ in lexicographic order finishes the proof.

This turns Xk(M) into a k-multilinear space that is a polynomial group of degree
at most k with the induced vector space structure. As a consequence, one has the
following theorem.

Theorem E.2.2 ([10, Theorem 29.3, p.145]). Let k ∈ N and let M be a manifold.
There exists a unique bijective exponential map

expk :
⊕
I∈Pk+

εIX(M)! Xk(M)

such that:
(a) In every chart representation expk is a polynomial map,
(b) for all n ∈ Z and X ∈

⊕
I∈Pk+

εIX(M) we have expk(nX) = (expk(X))n and
(c) we have expk(εIX) = εIX for all I ∈ Pk+, X ∈ X(M).

Moreover, the multiplication on
⊕

I∈Pk+
εIX(M) with respect to expk is given by

the BCH multiplication with respect to the Lie bracket⊕
I∈Pk+

εIX(M)×
⊕
I∈Pk+

εIX(M)!
⊕
I∈Pk+

εIX(M),

(εI(XI , YI))I∈Pk+ 7!
∑

I∈Pk+,ν∈P2(I)

(
εν1εν2 [Xν1 , Yν2 ] + εν2εν1 [Xν2 , Yν1 ]

)
,

where [·, ·] denotes the Lie bracket of X(M). The inversion with respect to expk
is simply the multiplication with −1 and both multiplication and inversion are
morphisms of k-multilinear spaces.

Proof. For the most part, this is just [10, Theorem 29.3, p.145]. That we have
the desired Lie bracket follows readily from the multiplication formula in [10,
Theorem 29.2, p.144]. With this Lie bracket, one sees from the formula of the
BCH multiplication that expk is a morphism of k-multilinear spaces. For the
inversion this is obvious.
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E.2 Higher Order Diffeomorphism Groups

Moreover, the pullback by diffeomorphisms defines a group action by automor-
phisms:

Ad: Diff(M)× Xk(M)! Xk(M), (f,X) 7! Adf (X) := T kf ◦X ◦ f−1.

The resulting semidirect product Xk(M) o Diff(M) is isomorphic to the group
DiffTkR(T kM) of automorphisms of T kM that are smooth over the ring T kR.
This is primarily seen in [10, Theorem 28.3(3), p.140], but since in the theorem
the action of the diffeomorphisms is not given on the level of Xk(M), we will
briefly explain why our description is the same. It is shown in [10, Theorem
28.3(1), p.139] that any X ∈ Xk(M) can be uniquely extended to a diffeomorphism
X̃ ∈ DiffTkR(T kM) such that X̃ ◦ z = X for the zero section z : M ! T kM .
Furthermore, it is shown that the action of f ∈ Diff(M) on X̃ is given by T kf ◦
X̃ ◦ T kf−1. Clearly, we have T kf−1 ◦ z = z ◦ f−1. Therefore, it follows

T kf ◦ X̃ ◦ T kf−1 ◦ z = T kf ◦ X̃ ◦ z ◦ f−1 = T kf ◦X ◦ f−1.

In other words, T kf ◦X̃ ◦T kf−1 is an extension of T kf ◦X ◦f−1 and by uniqueness
this shows that both descriptions are the same.

Remark E.2.3. Let Xk
c (M) ⊆ Xk(M) be the sections of T kM with compact

support, i.e., if X ∈ Xk
c (M), then there exists a smallest compact set supp(X) ⊆

M such that X|M\supp(X) equals the zero section. With the local product formula,
we easily see that for X, Y ∈ Xk

c (M), we have supp(X · Y ) ⊆ supp(X) ∩ supp(Y ).
On the other hand, if X has compact support but Y does not, or vice versa, then
(X · Y ) clearly does not have compact support. Thus, Xk

c (M) is closed under
multiplication and inversion and therefore a subgroup of Xk(M). Of course, the
inclusions of the axes are now given by Xc(M)! εIXc(M)! Xk

c (M) and by the
same argument as for the inversion, the bijection (E.2) restricts to a bijection⊕

I∈Pk+

εIXc(M)! Xk
c (M).

Furthermore, one also sees that for f ∈ Diff(M) and X ∈ Xk
c (M),

we have supp(T kf ◦ X ◦ f−1) = f(supp(X)) and therefore the semidi-
rect product Xk

c (M) o Diff(M) is defined and we get a respective subgroup
DiffTkR(T kM)c ⊆ DiffTkR(T kM). Finally, we denote by DiffTkR(T kM)cc the sub-
group of DiffTkR(T kM) that corresponds to Xk

c (M) o Diffc(M).

Lemma E.2.4. If M is a σ-compact finite-dimensional manifold, then there exist
natural isomorphisms of groups

(T kDiff(M))id
∼= Xk

c (M)

and
T kDiff(M) ∼= DiffTkR(T kM)c.
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E Higher Order Tangent Groups

The latter restricts to an isomorphism

T kDiffc(M) ∼= DiffTkR(T kM)cc.

Proof. We identify (T kDiff(M))id and Xk
c (M) with

⊕
I∈Pk+

εIXc(M) via the re-
spective exponential maps. It follows from Theorem E.1.1 and Theorem E.2.2
that both bijections induce exactly the same group structure on the direct sum.
Since the groups T kDiff(M) and DiffTkR(T kM)c both arise as semidirect prod-
ucts with the above direct sum, all that is left to show is that the action of
Diff(M) on the direct sum is the same for both groups. For this, it suffices
to compare the actions on the axes. Let f ∈ Diff(M) and X ∈ Xc(M). In
the case of εIX ∈ T kDiff(M), we calculated in Corollary E.1.2 that f acts by
Adf (εIX) = εITf ◦ X ◦ f−1. If we interpret εIX ∈ Xk

c (M), then we have seen
above that the action of f is given by T kf ◦ εIX ◦ f−1 but by Lemma B.2.8, we
have

T kf ◦ εIX ◦ f−1 = εITf ◦X ◦ f−1.

It is apparent that Bertram defined DiffTkR(T kM) with the above connection to
T kDiff(M) in mind.

E.3. Higher Order Bundle Automorphism Groups

Definition E.3.1. Let π : F !M be a vector bundle with typical fiber E1, where
M is modelled on E0. We define the subspace of bundle sections X(F ) ⊆ X(F )
as the sections X : F ! TF such that for every bundle chart ϕ : V ! U ×E1, we
have the local description Xϕ = (Xϕ

0 , X
ϕ
1 ) with smooth maps Xϕ

0 : U ! E0 and
Xϕ

1 : U × E1 ! E1, where the latter is linear in the second component.

Lemma E.3.2. In the situation of Definition E.3.1, X(F ) is a Lie subalgebra of
X(F ). If π′ : F ′ !M ′ is another vector bundle and X ∈X(F ) and X ′ ∈ X(F ′) are
Ψ-related for a vector bundle isomorphism Ψ: F ! F ′, then we have X ′ ∈X(F ′).

Proof. Let ϕ : V ! U × E1 be a bundle chart of F and X, Y ∈ X(F ). For
(x, v) ∈ U × E1, we calculate

dXϕ
(
(x, v), Y ϕ

0 (x, v)
)

=
(
dXϕ

0 (x, Y ϕ
0 (x)), d1X

ϕ
1 ((x, v), Y ϕ

0 (x)) +Xϕ
1 (x, Y ϕ

1 (x, v))
)
.

The second component of this expression is linear in v and thus so is the second
component of

[X, Y ]ϕ(x, v) = dXϕ
(
(x, v), Y ϕ(x, v)

)
− dY ϕ

(
(x, v), Xϕ(x, v)

)
.

For the second claim, let F ′ have typical fiber E ′1, let M ′ be modelled on E ′0 and
let ϕ′ : V ′ ! U ′ × E ′1 be a bundle chart of F ′. Let ψ := (ψ0, ψ1) be the local
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description of Ψ in ϕ and ϕ′. After restricting, we may assume ψ0(U) = U ′. We
have (

TΨ ◦X ◦Ψ−1
)ϕ′

= pr2 ◦dψ ◦ (idU×E1 , X
ϕ) ◦ ψ−1.

Let ψ−1 = (ψ−1
0 , ψ−1

1 ). For (x, v) = (ψ−1(x′), ψ−1
1 (x′, v′)), where (x′, v′) ∈ U ′ ×E1,

we calculate

pr2 ◦dψ ◦ (idU×E1 , X
ϕ)(x, v)

=
(
dψ0(x,Xϕ

0 (x)), d1ψ1

(
(x, v), Xϕ

0 (x)
)

+ ψ1(x,Xϕ
1 (x, v))

)
.

Because the second component of this expression is linear in v, we have shown
TΨ ◦X ◦Ψ−1 ∈ X (F ′).

Lemma/Definition E.3.3. Let π : F !M be a vector bundle with typical fiber
E1, where M is modelled on E0. We define Xk(F ) ⊆ Xk(F ) as those sections
X : F ! T kF that with respect to a bundle chart ϕ : V ! U × E1 (and the
respective chart T kϕ) are represented by

Xϕ(x, v) = (x, v) +
∑
I∈Pk+

εIX
ϕ
I (x, v),

with Xϕ
I = (Xϕ

I,0, X
ϕ
I,1). Here Xϕ

I,0 : U ! E0 and Xϕ
I,1 : U × E1 ! E1 are smooth

maps and the latter is linear in the second component. ThenXk(F ) is a polynomial
subgroup of Xk(F ) and the trivialization (E.2) restricts to the trivialization

⊕
I∈Pk+

X(F )!Xk(F ), (XI)I 7!
"∏

I∈Pk+

εIXI ,

where the product is taken in Xk(F ) in ascending lexicographic order. Likewise,
the exponential map from Theorem E.2.2 restricts to a bijective map

expk :
⊕
I∈Pk+

εIX(F )!Xk(F )

with analogous properties. Finally, we define

AutTkR(T kF ) := Xk(F ) o Aut(F )

which is a subgroup of DiffTkR(T kF ).

Proof. Since Xk(F ) is a polynomial group, every Lie subalgebra is also a polyno-
mial subgroup. Thus, Xk(F ) is a polynomial subgroup by Lemma E.3.2. We have
again inclusions X(F ) ↪! Xk(F ), X 7! εIX of the axes and we use the same
arguments as in Remark E.2.1 to see that the trivialization is bijective. From this,
we deduce that the exponential map restricts as needed. Lemma E.3.2 shows that
the action of Aut(F ) ⊆ Diff(F ) on Xk(F ) is well-defined.
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Remark E.3.4. Bertram introduces an additional infinitesimal generator to de-
scribe the structure of T kF in [10, Theorem 15.5, p.81], which one could also use
to define AutTkR(T kF ). However, this does not fit our needs because it would not
correspond to the way the generators λI relate to superdiffeomorphisms.

Definition E.3.5. Let F ! M be a vector bundle such that M is finite-
dimensional and let πF : TF ! F , as well as πM : F ! M , be the projections.
For k ∈ N, we define supp(X), the support of X ∈Xk(F ), as the smallest closed
subset K ⊆M such that X|π−1

F (π−1
M (M\K)) = 0. We then let

Xk
c (F ) := {X ∈Xk(F ) : supp(X) is compact}.

Remark E.3.6. Let π : F ! M be a vector bundle with typical fiber E1. Com-
paring Definition E.3.1 and Remark 4.1.15, we see that X(F ) and X (ι11(F ))0 can
be identified. Taking into account Definition 4.1.8 and Definition E.3.5, the same
holds for Xc(F ) and Xc(ι11(F ))0 if M is finite-dimensional. If, in addition, E1 is
a Banach space, we denote by Xc(F )b the space of sections Xc(F ) equipped with
the topology induced by Xc(ι11(F ))0,b. In other words, we consider X ∈Xc(F )b to
have the local form

Xϕ = (Xϕ
0 , X

ϕ
1 ) ∈ C∞(Uϕ, E0)× C∞(Uϕ,GlE1),

where E0 is the model space of M .

Lemma E.3.7. Let F be a vector bundle with finite-dimensional base manifold
M . Then Xc(F ) is a Lie subalgebra of X(F ) and Xk

c (F ) is a polynomial subgroup
of Xk(F ) for every k ∈ N. Moreover, the left trivialization and the exponential
map restrict to bijections

⊕
I∈Pk+

Xc(F )!Xk
c (F ), (XI)I 7!

"∏
I∈Pk+

εIXI

and
expck :

⊕
I∈Pk+

εIXc(F )!Xk
c (F ).

Finally, the restricted action of Autc(F ) on Xk
c (F ) is well-defined and we let

AutTkR(T kF )c := Xk
c (F ) o Autc(F ).

Proof. It follows immediately from the local description in Lemma E.3.2 that
supp(X · Y ) ⊆ supp(X) ∩ supp(Y ). Thus, we can use the same arguments as
in Remark E.2.3 to see that Xk

c (F ) is a subgroup of Xk(F ) and that the left
trivialization restricts as claimed. This implies that the exponential map restricts
as well. It also follows from the calculations in Lemma E.3.2 that the action of
Autc(F ) on Xk

c (F ) is well-defined.
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E.3 Higher Order Bundle Automorphism Groups

Lemma/Definition E.3.8. Let F !M be a vector bundle and k ∈ N. We con-
sider the polynomial group Xk(F ) = (Xk(F ),m, i, 0) as a k-multilinear space via
expk :

⊕
I∈Pk+

εIX(F )!Xk(F ). Then Xk(F )|−
Pk0,+

= (Xk(F )|−
Pk0,+

,m|−
Pk0,+

, i|−
Pk0,+

, 0)

is also a polynomial group and the group structure induced on
⊕

I∈Pk0,+
λIX(F )

via expk |−Pk0,+ is given by the BCH multiplication with regard to the Lie bracket
defined by

(λIX,λJY ) 7! λIλJ [X, Y ] for X, Y ∈ X (F ),

where [·, ·] denotes the Lie bracket of X(F ). We have a group action by automor-
phisms

Ad|−
Pk0,+

: Aut(F )×Xk(F )!Xk(F ), (f,X) 7! Adf |−Pk0,+(X)

and the induced action on
⊕

I∈Pk0,+
λIX(F ) is given by

(f, λIX) 7! λIAdf (X) = λITf ◦X ◦ f−1

for f ∈ Aut(F ), X ∈X(F ) and I ∈ Pk0,+. We define the group

AutTkR(T kF )|−
Pk0,+

:= Xk(F )|−
Pk0,+

o Aut(F ).

If M is finite dimensional, we analogously define

AutTkR(T kF )c|−Pk0,+ := Xk
c (F )|−

Pk0,+
o Autc(F )

via expck from Lemma E.3.7.

Proof. That Xk(F )|−
Pk0,+

is a group is obvious since m and i are morphisms of k-
multilinear spaces and the involved functors preserve products. The description of
the Lie bracket of

⊕
I∈Pk+

εIX (F ) from Theorem E.2.2 shows that the Lie bracket
is as claimed. Since Adf is an automorphism of the k-multilinear space Xk(F ),
Adf |−Pk0,+ acts well-defined as needed. The same arguments carry over to the case
of compact support.

Lemma E.3.9. Let k ∈ N and F be a Banach vector bundle over a σ-compact
finite-dimensional base M . Then we have isomorphisms of groups

T kAutc(F ) ∼= AutTkR(T kF )c

and
T kAutc(F )|−

Pk0,+

∼= AutTkR(T kF )c|−Pk0,+ .

Proof. By Theorem E.1.1 and Lemma E.3.7, the Lie group (T kAutc(F ))id and
the polynomial group Xk

c (F ) induce the same group structure on
⊕

I∈Pk+
εIXc(F )

because the induced Lie algebra on Xc(F ) is the same by Lemma D.3.9. That
Autc(F ) acts the same way in both cases follows like in Lemma E.2.4 using Lemma
D.3.10 and Corollary E.1.2. From this, we also obtain the second isomorphism.
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